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Acta Physica Academiae Scienliarum Hungaricae, Tomus 46 (1), pp. 3—11 (1979)

UBER DAS TSEE-ADSORPTIONSMAXIMUM
LITHIUM-DOTIERTER BeO-KERAMIKEN

Von
V. Siegel,1 L. Boros2 und H.-H. Kirchnerl

mPHYSIKALISCH-TECHNISCHE BUNDESANSTALT BRAUNSCHWEIG, BRD

I RADIOLOGISCHE KLINIK DER SEMMELWEIS UNIVERSITAT FUR MEDIZINISCHE WISSENSCHAFTEN
BUDAPEST, UNGARN

(Eingegangen: 3. XI1. 1978)

Vergleichende Untersuchungen an undotierten und Li-dotierten BeO-Keramiken zei-
gen, dass in den letzteren das TSEE-Maximum bei etwa 275 °C irreversiblen Anderungen
unterworfen ist. Wéhrend sich dieses Emissionsmaxiraum fir die undotierten Proben nach
einer speziellen Vorbehandlung und einem H-lonenbeschuss nach anschliessender y-Strah-
lenanregung beliebig oft aufbauen lasst, ist dies fur die Li-dotierten Proben nur in den
ersten Messzyklen der Fall, wenn die BeO-Probe bei 500 °C in feuchter Luft getempert
und gelagert wird. Nach wiederholten thermischen Behandlungen an feuchter Luft und
Auswertungen wird das adsorptionsinduzierte TSEE-Maximum auch nach einem in-
tensiven H-lonenbeschuss kaum sichtbar. Das heisst aber, dass die oberflachlichen Li-
thium-Atome ihre aktive Rolle als Adsorptionszentren verloren haben, sei es durch eine
chemische Umwandlung oder durch den Verlust von Li-Atomen durch Abdampfen.

Einfuhrung

Der Einsatz von BeO-Keramiken als Exoelektronen-Dosimeter hat ge-
zeigt, dass die Exoelektronen-Ausbeute bei mehrfachen Bestrahlungen mit der
gleichen Energiedosis von y-Strahlen grossen Streuungen unterworfen ist [1].
Diese Streuungen kénnen nicht mit der Auswertemethode erkldart werden,
sondern sind mit den Adsorptionseigenschaften des BeO verbunden. So
konnte in [2—7] gezeigt werden, dass adsorbierte Oberflachenschichten auf
verschiedenen Oxiden die thermisch stimulierte Exoelektronenemission (TSEE)
stark beeinflussen. Untersuchungen des Verhaltens der beiden TSEE-Maxima
bei etwa 270 °C und 324 °C an BeO-Keramiken haben ergeben, dass insheson-
dere das Maximum bei 270 °C von adsorbierten OH-Gruppen und Wasser-
dampf beeinflusst wird [8].

Dotierung der BeO-Proben mit Lithium

Fur die Dotierung der BeO-Keramiken mit einer Reinheit von 99,25%
wurde in Vaseline dispergiertes metallisches Lithium verwendet, das mdglichst
gleichméssig und mit der gleichen Masse auf die Oberflache der scheibenfor-
migen Proben aufgetragen wurde. Danach wurden die Proben 1 Stunde lang

1* Acta Physica Academiae Scientiarum Hungaricae 46, 1979



4 V. SIEGEL et al.

bei 1000 °€ in trockener Luft getempert und rasch abgekuhlt. Wegen der
grossen Streuung der Messwerte fur die frisch dotierten BeO-Keramiken
wurden sie anschliessend einer mehrmaligen Bestrahlung mit y-Strahlen und
Temperung bis 800 °C unterzogen [9]. Eine dhnliche Vorbehandlung der
undotierten BeO-Proben stellte sicher, dass die Ergebnisse der weiteren Unter-
suchungen an beiden Probenarten verglichen werden konnten.

Vorbehandlung der Proben und Messmethode

Ausgehend von den durch Messungen der Infrarotspektren festgestellten
Desorptionsprozesse auf keramischen BeO-Proben [10, 11] wurden sowohl
die nicht dotierten [12] als auch die mit Li dotierten BeO-Keramiken einer
speziellen Vorbehandlung unterzogen. Sie bestand darin, dass die scheiben-
féormigen Proben innerhalb des Z&hlers in einer trockenen Methan-Atmosphdre
auf 400 °C aufgeheizt wurden, um den physikalisch adsorbierten Wasserdampf
zu desorbieren. Nach einer Abkiuhlung auf 20 °C wurde die Probe innerhalb
des Zé&hlers einem Beschuss durch Wasserstoffionen unterworfen. Zu diesem
Zweck wurde an den Zahldraht des Proportionalzéahlers eine so grosse positive
Hochspannung angelegt, dass die Gasverstdrkung in Methan einsetzen konnte,
wenn die BeO-Probe von aussen mit y-Strahlen eines radioaktiven Prdparates
bestrahlt wurde. In diesem Falle werden in den Metallwdnden des Zé&hlers
Compton- und Photo-Elektronen erzeugt, die in der Methan-Atmosphére
positive lonen infolge der Dissoziation des Methans und Elektronen erzeugen.
Diese negative Ladungstrdger gelangen in unmittelbarer N&he des positiven
Zahldrahts in eine kritische Feldstarke, in der sie durch Stossionisation Elektro-
nenlawinen auslésen, die am Ausgang des Z&hlers als Impulse nachgewiesen
werden.

Auf der anderen Seite entstehen durch die Dissoziation des Methans
positive lonen, von denen die leichtesten H + und unter anderem in Richt-
ung zur Probe wandern und dort auf der Oberflache teilweise adsorbiert
werden kédnnen. Wenn man annimmt, dass die Gasverstairkung wdahrend der
lonen Bedeckung konstant ist, dann ist die Anzahl der gezdhlten Elektronen-
lawinen (Impulse) ein Mass fur die Anzahl der adsorbierten H-Atome.

Diese Vorbehandlung der Proben und anschliessende Auswertung wurde
in einem mit Methan gespulten fensterlosen Proportionalzdhler [13] ausge-
fahrt. Wé&hrend der Messung der thermisch stimulierten Exoelektronenemis-
sion wurde die Probe linear mit einer Rate von etwa 1,4 K* s_1 aufgeheizt.
Vorjeder Messung wurden die Proben im Z&ahler, um den Einfluss von Wasser-
dampf zu vermeiden, mit einer y-Strahlenquelle (137Cs oder 60Co) angeregt.

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



UBER DAS TSEE-ADSORPTIONSMAXIMUM 5
Messergebnisse

a) Undotierte BeO-Proben

Ohne die oben beschriebene spezielle Vorbehandlung der undotierten
BeO-Keramiken beobachtet man nach der Anregung mit y-Strahlen nur das
thermisch stimulierte Exoelektronen-Maximum bei etwa 325 °C (Bild la).
Erst wenn der Wasserdampf desorbiert und H-lonen adsorbiert wurden, er-
scheint nach der Anregung mit y-Strahlen das neue TSEE-Maximum bei etwa
270 °C (Bild Ib) und c). Die Impulsanzahl NEE dieses Maximums héngt
von der Anzahl der registrierten Exoelektronenlawinen (Impulse) wdhrend
des lonenbeschusses bei eingeschalteter Hochspannung am Z&hldraht ab.
Wie man in Bild 2 erkennt, wird bereits bei etwa 3000 Impulsen eine Adsorp-

Bild 1. Anderung der TSEE-Maxima bei 270 °C und 325 °C in Abhé&ngigkeit von der Vorbe-
handlung der undotierten BeO-Probe bei konstanter y-Strahlenanregung. a — ohne Vorbe-

handlung, b — mit H-lonenbeschuss (200 Impulse); ¢ — (770 Impulse). IVjiij — Impulsanzahl
je Sekunde

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



6 V. SIEGEL et al.

Bild 2. Anderung der Impulsanzahl iVEE fur die undotierten BeO-Proben in Abhangigkeit
von der Anzahl der erzeugten H-lonen Impulse bei konstanter y-Strahlenanregung. In Bild 1
sind die TSEE-Maxima fur die Punkte a, b und ¢ dargestellt

tionssdttigung erreicht, da ein weiterer lonenbeschuss keinen Anstieg der
Exoelektronen-Ausbeute bei Anregung mit einer konstanten Energiedosis der
y-Strahlen zur Folge hat. Dieses neue TSEE-Maximum verschwindet wieder,
wenn die speziell vorbehandelte BeO-Probe vor der y-Strahlen-Anregung an
feuchte Luft gebracht wird [9, 12].

b) Li-dotierte BeO-Proben

Dieselben Behandlungsmethoden und Messungen wie an den undotierten
BeO-Keramiken wurden auch an den mit Lithium dotierten ausgefihrt. Auch
hier zeigen die nicht speziell vorbehandelten Proben nur das TSEE-Maximum
bei 325 °C (Bild 3a). Auffédllig ist hier aber, dass die Exoelektronen-Ausbeute
N ee bei gleicher Energiedosis der y-Strahlen um den Faktor 10 bis 15 grdsser
ist als beidenundotierten BeO-Proben, d.h. die Li-dotierten BeO-Keramiken
sind sehr viel empfindlicher [14]. Nach dem lonenbeschuss innerhalb der Me-
than-Atmosphdre des Zd&hlers erscheint wie im Falle der undotierten BeO-
Keramiken nach der y-Strahlen-Angerung das neue TSEE-Maximum bei
etwa 275°C (Bild 3b—d). Im Gegensatz zu den undotierten Proben liegt
die Adsorptionsséttigung fir die Li-dotierten Proben bei der doppelten Anzahl
von registrierten Elektronenlawinen (etwa 6000) wé&hrend des lonenbeschusses.
Bei gleicher Energiedosis der anschliessenden y-Bestrahlung liegt die Exo-
elektronen-Ausbeute im Bereich der Séattigung fir die undotierte Probe bei
N EE = 5,8 « 104, fiir die Li-dotierte BeO-Probe bei = 8,6 » 105 Offenbar
ist die Anzahl der besetzbaren Adsorptionsplatze auf Grund der Dotierung
mit Lithium stark angestiegen.

Acta Physica Academiae Scientiaum Hungarricae 46, 1979



UBER DAS TSEE-ADSORPTIONSMAXIMUM 7

I | | I
100 200 275 300 325 . [00

Temperatur------- >
Bild 3. Anderung der TSEE-Maxima bei 275 °C und 325 °C in Abhéangigkeit von der Vorbe-

handlung der Li-dotierten BeO-Proben bei konstanter y-Strahlenanregung. a — ohne Vorbe-
handlung, b bis d mit H-lonenbeschuss (b — 500, ¢ — 1000, d — 5000 Impulse)

Wie im Falle der undotierten BeO-Proben wurden auch die dotierten
vor jeder Messung bei 500 °C an feuchter Luft getempert, abgekihlt und
gelagert. Dabei zeigte sich nach mehrfacher Verwendung derselben Proben
ein neuer Effekt. Nach der eingangs beschriebenen speziellen Vorbehandlung
und anschliessenden y-Strahlenanregung sollte man wieder das neue TSEE-
Maximum bei 275 °C erwarten. Wie Bild 4 aber zeigt, erscheint es bei einer
registrierten Anzahl von 1000 Elektronenlawinen Uberhaupt nicht (Bild 4a)
im Gegensatz zu Bild 3c, wo ebenfalls 1000 Elektronenlawinen an der frischen
Probe gez&hlt wurden. Nach diesem Messzyklus wurde dieselbe BeO-Probe
vor der speziellen Vorbehandlung mehrere Male bei 500 °C an Luft getempert.
Die anschliessenden Messungen, ausgefihrt wie zuvor, ergaben erneut, dass
sich das TSEE-Maximum bei 275 °C nicht mehr aufbauen liess. Erst bei einer
Anzahl registrierter Elektronenlawinen von 8000 (Kurve b) und 17 000

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



8 V. SIEGEL et al.

s | 1---1% 1
100 200 275 300 325 . 400
Temperatur--—--- > *

Bild 4. Anderung der TSEE-Maxima bei 275 °C und 325 °C in Abhangigkeit von der Vorbe-
handlung fiir eine mehrfach getemperte Li-dotierte BeO-Probe bei konstanter y-Strahlen-
anregung. a bis ¢ mit H-lonenbeschuss (a — 3000, b — 8000, ¢ — 17 000 Impulse)

(Kurve c) zeigt sich eine Andeutung des Maximums bei 275 °C. Nur an einer
frischen Li-dotierten BeO-Keramik-Probe beobachtet man den wachsenden
Anstieg des TSEE-Maximums bei 275 °C mit ansteigender Anzahl der registrier-
ten Elektronenlawinen, wie erin Bild 3 dargestellt ist.

Dieses abweichende Verhalten der Li-dotierten BeO-Proben gegeniber
dem H-lonenbeschuss legt die Vermutung nahe, dass sich das Lithium auf der
BeO-Oberflache chemisch verdndert hat oder abgedampft ist. Fiir einen Ver-
lust an Lithium spricht eine Massenbestimmung des Li an einer unbehandelten
und der hier mehrfach verwendeten BeO-Probe. Die unbehandelte Probe
enthielt 210 /xg Li, die mehrfach verwendete dagegen nur 60 /ig Li. Diese
Schlussfolgerung gilt aber nur fur den Fall, dass beide Proben im Anfangszu-
stand die gleiche Masse an Lithium enthielten, was nicht mehr kontrollier-
bar ist.

Aus [15] ist bekannt, dass sich bei der Einwirkung von H +-lonen oder
H2-Molekulen auf das Li schon bei 20 °C die sehr bestdndige Verbindung LiH
bildet. Dieses LiH wird aber bei hoheren Temperaturen durch das Einwirken
des Luft-Stickstoffes im Beisein von W asserdampf zum grdsseren Teil in die
Verbindung LINH2 Li2NH und Li3N und zum kleineren Teil in Li20 umge-
wandelt.

Die oben beschriebenen Messungen an den Li-dotierten BeO-Keramiken
wurden in Unkenntnis der eben genannten chemischen Umwandlungen nach
dem Tempern und Lagern der Proben an feuchter Luft ausgeflhrt.

Im folgenden wurden die BeO-Keramiken um diese chemischen Um-
wandlungen zu vermeiden, vor jeder Messung

a) bei 1000 °C in trockener Luft oder Argon getempert und abgekuhlt
und anschliessend in einer trockenen Atmosphére im Exsikkator gelagert,

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



UBER DAS TSEE-ADSORPTIONSMAXIMUM 9

0 200 275 300 325 . A00
Temperatur----- > N

Bild 5. Anderung der TSEE-Maxima bei 275 °C und 325 °C einer Li-dotierten BeO-Probe
nach dem Tempern und Lagern in trockener Luft und anschliessender konstanter y-Strahlen-
anregung. H-lonenbeschuss, a — 500, b — 1000, ¢ — 5000 Impulse

b) bei 1000 °C in Argon getempert und anschliessend in feuchter Luft
abgekuhlt und gelagert.

Die Ergebnisse der Messreihe a) zeigen an einem Beispiel Bild 5 und der
Messreihe b) Bild 6.

Nach dem Tempern in trockener Luft und der Lagerung im Exsikkator
bleibt das TSEE-Adsorptionsmaximum bei 275 °C nach der gleichen Anzahl
von gezéhlten Elektronenlawinen (Impulsen) und nach der Anregung mit der
gleichen Energiedosis der y-Quanten auch nach der 12. Messung Uber einen
Zeitraum von 3 Wochen praktisch R%hSTEE. ARARET ifesaim HYsig e HinHt® die
Impulsanzahl NEE des TSEE-Maximums bei 275 °C wie bei einer frischen
Probe von der Anzahl der gezdhlten Impulse beim lonenbeschussab. Da das
TSEE-Maximum bei 325 °C unbeeinflusst bleibt, bedeutet dies, dass die
Empfindlichkeit der BeO-Probe Uber ldngere Zeit konstant bleibt.
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200 275300325 . jiee
Temperatur------- %

Bild 6. Anderung der TSEE-Maxima bei 275 °C und 325 °C einer Li-dotierten BeO-Probe
nach Tempern in Argon und Lagern in feuchter Luft, a — lonenbeschuss etwa 5000 Impulse,
b — ohne H-lonenbeschuss. A — 4. Messung; B — 18. Messung

jedoch die Bildung der Nitride, da die Impulsanzahl IVtB des TSEE-Adsorp-
tionsmaximums unter gleichen Yorbehandlungs- und Anregungsbedingungen

im Verlauf der Messreihe stetig abnimmt.
Diskussion

In [14] wurde gezeigt, dass die Empfindlichkeit der Li-dotierten BeO-
Keramiken konstant bleibt bei einer Lagerung in einer Argon-Atmosphére,
wéhrend die Reproduzierbarkeit der Messwerte in anderen Gasen (Sauerstoff,

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



UBER DAS TSEE-ADSORPTIONSMAXIMUM 11

Stickstoff, Luft) schlechter war. Betrachtet man das Verhalten der beiden
TSEE-Maxima in feuchter Luft, so dndert sich bei gleichen Anregungsbedin-
gungen insbesondere das adsorptionsinduzierte TSEE-Maximum hei 275 °C.
Fir das Lithium ist bekannt, dass es im adsorbierten Zustand als Donator-
Zentrum wirkt, auch wenn es als Li20 oder LiOH auf der Oberflache eines
Oxids vorliegt [18]. Beide Verbindungen reagieren aber bei htheren Tempera-
turen, ebenso wie LiH, im Beisein von W asserdampf mit dem Luft-Stickstoff
unter Bildung von LiNH2 Li2NH und Li3N. Von diesen Verbindungen weiss
man, dass sie in adsorbierter Form als Akzeptor Zentren wirken.

Offenbar wird durch diese Verbindungen beim lonenbeschuss die Adsorp-
tion von H + und verhindert, die auf dem BeO OH-Gruppen bilden, welche
bei der assoziativen Desorption Elektronen freisetzen, die als Exoelektronen
nachgewiesen werden [9, 12]. Die drei Verbindungen Li2NH, LiNH2 und
Li3N zeigen denselben Vergiftungseffekt fir die aktiven Oberflachenzentren
der Exoelektronenemission wie adsorbierte Alkohole [16, 17], mit dem Unter-
schied, dass sie selektiv nur die Adsorptionspldatze fir das TSEE-Maximum
bei 275 °C blockieren.

Wenn man die hohe Empfindlichkeit der Li-dotierten BeO-Keramiken
gegeniber ionisierenden Strahlen konstant halten will, muss man den Einfluss
feuchter Luft vermeiden, um die sensibilisierende Wirkung des Lithiums auf
der BeO-Oberfldche nicht durch chemische Umwandlungen zu geféhrden.
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ON A PLANE MAGNETOGASDYNAMIC SHOCK WAVE OF
VARIABLE STRENGTH
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DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GORAKHPUR, GORAKHPUR 273001, U. F., INDIA
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A particular solution of the equations of one dimensional anisentropic flow of a poly-
tropic gas is linked by a magnetogasdynamic shock to gas at rest in which the density is non-
uniform and magnetic field is constant. The approach is inverse in the sense that the density
distribution is derived from the position of the shock and the prescribed flow behind it. The
velocity and strength of the shock each vary with time.

1. Introduction

Copson [1], Mackie and W eir [2] and many other authors have discussed
the problem of shock waves of constant strength moving with variable velo-
city. In these problems, there occurs ajump in the entropy across the shock,
but the entropy remains uniform (at different levels) on both sides of the
shock. More general situations are that in which a shock leaves a non-uniform
distribution of entropy behind. Smith [3] has discussed a problem of such
a flow in ordinary gasdynamics. The present paper extends the discussion of
Smith’s problem to a perfectly conducting gas in the presence of a transverse
magnetic field. We have started from a known anisentropic flow and linked
it through a shock wave to gas at rest. The state of the stationary gas is not
known until the shock path has been determined. It is shown that the velocity
and strength of the shock each vary with time.

For the anisentropic flow behind the shock, we have used the family of
exact solutions obtained by Weir [4].

2. Weir’s solution

W ith viscosity and heat conduction neglected, the relevant equations
for one-dimensional anisentropic flow are,

aq.p yde ) o9 _ g 2.1
Oi dx dx
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------- h Ul e — 4+ o= 0, (2.2)
dt dx Q dx Q dx

9S 9S

~ . 2.3
di h udX 0, (2.3)

where p, q, h, S, u and p are respectively pressure, density, magnetic field,
specific entropy, fluid velocity and magnetic permeability. For a polytropic
gas the equation of state is

p -Kagvexp (2.4)

where y is the constant adiabatic index, Crthe specific heat at constant volume
and K is the dimensional constant.

It can be verified that Eqs. (2.1) to (2.4) possess a solution (c.f. W eir’s
solution [4])

u® = 2ot + 6, (2.5)

P$2=1(X), (2.6)
1 df

602 — > (2.7)

where
P2= PR+ — PK2 p®2= /1pe2, (0 < B < 1)
and particle paths are given by
X = * - at2- 0t (2.8)

X being the material variable and the suffix 02 is introduced to distinguish
between the weir’s solution and the state of the gas behind the shock. The
pressure and density are constant along the particle paths which are coaxial
parabolas in the (x,f) — plane.

3. The shock path

We shall now link the solution given in Section 2 to a state ofrest through
magnetogasdynamic shock relations for a polytropic gas, namely:

Qw2 = Pitll (3.1)
ha2= hlw (3.2)
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Pi + g phi f- 2W —p1l 3 ph\  Qivf, (3.3)
Pi  phi W = . (3.4)
6i Q le da 2

where v is the velocity of the gas relative to the velocity of the shock and
suffixes 2 and 1 are attached to the states immediately behind and in front
(the stationary gas) of the shock, respectively.

These shock relations must be satisfied at the shock whose displacement
is taken as f = |(t'), where the prime has been added to the time t since we
shall subsequently use it as a parameter. From (2.8)

X = £(t) - ai'2- ot (3.5)

on the shock. It then follows from (2.5), (2.6) and (2.7) that

u2= 2at' -)- B (3.6)
Pi = g{t% (3.7)
0 g(*o (3.8)
2a[f(t") - 2at'- § °
where
«(«) ={E(*) - a*2- *7}
and

Pi = Bp*, P* = Pi + thi 0< B < 1)
Furthermore,

v2= 2at' + 6 —f(i').

In front of the shock, we take the gas to be at rest so that u2= 0 and
vl— —f(t"). Further, P* = pl ph\l2 = k, a constant, since hx is taken to
be constant and by equation (2.2) the pressure gradient must be zero.
The elimination of the unknown between equations (3.1) and (3.3)
yields
P* — Pi = QiVi(vi — Vi)- (3-9

Similarly from Eqgs. (3.1), (3.2) and (3.4) we get

2(1 - B)\ - v2 R =LA V] [e— A rPIVI
(r- 1) y -1

== GivivAvi — Vi). (3.10)
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16 B. G. VERMA and J. P. VISHWAKARMA

Direct substitution in (3.9) and (3.10) of the flow quantities given previously
yields
(2at' -f- d)g + 2ag — 2ak = 0, (3-11)

2ay(g - fe)!l2- (y- D(2at' + <H)[(2at' + <52 - |[]g|
- 2a(2at' + B)[y*T+ (y- 2)(1 - /5)(2at' + d)]g = 0, (3.12)
where
™= yR + 2(1 - R).

Solving the differential equation (3.11), we have

2akt' A

N t' A —d/2a, (3.13)
2at' + O

where A is a constant. The elimination of g between (3.12) and (3.13) yields
the shock velocity as

2at' f- 6
S=y(2ai* + 0)[b V+Uy- 2)(1- 8 "%, (3.14)
y
where
. Bv*
b= (at' + O +
y
and
B ky
A-kd

Integrating the Eq. (3.14), we get the shock path as

f = 2at' + + — (2at' + 6f + C
12ya( % 8a
2at' 0
+ —  (2at + < 62+ 4(r_ )1 _ B) B + I (3.15)
121V
where
2ay*B -
N =>b i (2at' + ())-|-ay*—y Loy

+ 2ay —2)(1 - R) 3B (2at' + H+ 2
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and Cis a constant. Thus the shock relations determine the shock path and
fix the flow quantities on both sides of the shock. In terms of the spatial vari-
ables, the total pressure and density behind the shock are given parametri-
cally by

2akt' + A
p = ] (3.16)

2at' + O

2(A - ko
( 0) (3.17)

(2at' + 0)3(6 —2 + L)’
X —at2— ot = f(t) — at'2— ot (3.18)
where
2at' + 0
L= Ne+ Ly —2)(1 —R) B+ 1

The Eqs (3.16) and (3.17) follow from (3.7) and (3.8), and (3.18) is obtained
by eliminating X between (2.8) and (3.5).
For the stationary gas in front of the shock, the density is given para-
metrically by
2(A - kO)

(Rac + w b + L)y

(3.19)

x= f(I"). (3.20)

Eq. (3.19), the density distribution as a function of time of the shock path,
is obtained by calculating gl from (3.1). To obtain the density as a function
of X, we eliminate t' between (3.19) and the Eq. (3.20) of the shock path. Finally,
the entropy of the stationary gas can then be derived from the equation of
state (2.4) as a function of x.

4. Results and discussion

We have found afamily of solutions whose members depend on the choice
ofvalues forthe various constants. We assume a> 0, d> Oandt]> 0. The shock
must be compressive, thatis, o <pi <pt, or 0 < K< (2ockt'+A)I(20U'+0).
Thus A — kb 0 and all pressures are positive. Inspection of (3.17) and
(3.19) indicates that densities are positive if y > 1.

Taking a = pjpi asa measure of strength of the shock wave, we have
maximum value of a at t= 0 and a —ml as t' —*o00, Hence the strength of
shock wave decreases with time. Also from (3.14), the shock velocity
I -+ oo as t' —»00.
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18 B. G. VERMA and J. P. VISHWAKARMA

Fig. 1. Shock path in (x y) plane (). Variation of density with distance in the gas ahead of
the shock (I1)

Fig. 1. shows a typical configuration of the shock path in the (x, t) plane.
The lower part of the Figure gives the density ratio in the gas upstream of
the shock; g0is the density at x = 0,t= 0. The value chosen for the various
constants are as follows:
A S5y -j- 4
a= 0=1, B=—(y- 1),; C= ¥

2 40

If x > 0, the particle trajectories behind the shock are a family of
straight lines with fluid velocity u — 6. The gas ahead of the shock is at rest
with constant density. The shock velocity is also constant and is given by

0] '( Boy*
c \ 4 Loov- o1, '(BOy N
2 y } 2 y
+o4(y - 2)1 - p)
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Isothermal phase transformation of massive SSe22. - in the presence and absence of
light illumination has been carried out in the temperature range of 98—144 °C using the
electric conductivity method. Illumination affects the nucléation process through “photo-
nucleation”. Kinetic studies have not, to date, been presented so as to identify separately
the light effects on the crystallization processes of materials of Se-like structure. The obtained
conductivity data are presented as power and logarithmic functions to study the crystalliza-
tion kinetics in the light of the present concepts of crystallization in organic polymers.

Introduction

Studies ofthe morphology of crystalline selenium indicate that it crystal-
lizes from the bulk amorphous phase by chain folding [1—3]. Selenium forms
extended-chain crystals by a thickening mechanism similar to that found in
organic polymers [3]. Spherulites in bulk polymers grow outward from a
nucléation centre that is frequently of a heterogeneous character. The radial
growth of a spherulite is commonly the result of the formation of stacks
of bladelike lamellas that grow outward from the nucléation centre. In addi-
tion, the crystallization of amorphous selenium involves both the crystalliza-
tion of polymeric Sen chains and the polymerization of Segrings [4].

The addition of an isoelectronic element as sulphur does not cause a
great disturbance in the short-range order of the atomic distribution of sele-
nium [5]. But, 3—5 at % sulphur doped in selenium results in minimizing
the rate of crystallization [6, 7]. Light, on the other hand, can produce a marked
enhancement on the crystallization kinetics over that obtained from purely
thermal effects [8—11]. This effect has been used to write holograms [12]
and discrete images [10] with lasers.

In this paper, quantitative data on percent crystallization in the ab-
sence and presence of photo illumination for S-doped Se amorphous sample,
namely SSe225, are estimated from recording the electric conductivity changes
continuously during isothermal transformation processes. A kinetic study is
presented using Avrami’s theory.
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20 M. F. KOTKATA et aU

Experimental

Bulk SSe2 5samples have been prepared in the amorphous phase through
heating the constituents at 280 °C for 2 hrs and quenching in air at 18—20 °C
inside evacuated [10-4 mmHg] pyrex cells having parallel faces (~2 mm
apart) and provided with two tungsten electrodes.

Crystallization has been carried out in preheated ovens (0.2 °C max.
fluctuations) under dark and illuminated conditions. Illumination was achieved
by a 250 W ultra high pressure Hg-quartz lamp. The IR part ofthe emitted
spectrum was filtered out to reduce sample heating.

The crystallization was monitored by measuring the electronic conduc-
tion periodically (1/2 min interval) during several isothermal transformations
in the range 98—144 °C using an electrometer with an error less than 2%.
The remarkable increase of the electric conductivity accompanying the
amorphous to crystalline phase change (in the absence or presence of light)
implies that the measured conductivity a at any time t is the result of two
conductivities aa and ac corresponding to a double phase system, amorphous
and crystalline.

Results and discussion

The use of conductivity-structure characterization for a proper descrip-
tion of the volume fraction which has crystallized depends on the specific
regimes of percent transformation. Therefore, the time-dependence of the
electronic conduction of SSe22 5is represented as power and logarithmic depen-
dence and is given in Fig. 1 for some isotherms.

During the transformation process, whether purely thermal or with the
photon effect, there appear to be at least three regimes of a versus percent
transformation: The conductivity remains at first approximately constant,
but after a certain time depending on annealing temperatures it increases
abruptly by several orders to attain a certain maximum value. Such a strong
increase of a is due mainly to the transformation of the very low conductivity
amorphous into a continuous path of rather better conducting crystalline
SSe25 The constancy of the maximum conductivity attained at a given
temperature indicates the stability of the transformed products. Such maxi-
mum value varies with temperature and so it may not always correspond to
the same degree of structural perfection but may rather refer to the degree
of crystallization [13].

In Fig. 1, the minimum to apparent maximum of log a proceeds in a
smooth stage ad for the non-illuminated and in two distinguishable stages
ab and cd for illuminated samples. The decrease in log a in the period be is
ascribed to photo effects. Such effects are more pronounced in the range 108
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Fig. 1. Time-dependence of the electronic conduction represented as a and log a for Se doped
with 4.26 at % S annealed under: (a) dark and (b) photo illumination for a variety of isotherms

to 126 °C when the isothermal time-dependence of the electronic conduction
is represented as log at rather than at. Table | summarizes the effect of tem-
perature on time and log a associated with the individual stages together with
the total change of log a due to the crystallization of SSe25 under photo
illumintaion. The total time of crystallization shows a decrease with increasing
temperature but it is longer for the samples annealed under photo illumination.

Table |

Conductivity-temperature dependence of photo-illuminated SSe2 5samples annealed at different
isotherms

Anneal- —logcr (i2cm)“1 Total change First stage (ab) Second stage (cd)
temp.,°C Initial Final J loger At, min Nlog <1 Alog o-, At,
98 9.69 6.60 3.09 285 One stage process
108 9.26 6.21 3.05 210 0.45 15 2.56 192
117 9.47 5.55 3.92 175 1.16 14 2.82 149
121 9.55 5.47 4.08 160 1.09 13 2.93 144
126 9.69 5.18 451 120 1.27 9 3.26 110
132 9.87 5.01 4.86 100 One stage process
144 9.80 5.34 4.46 53 One stage process
1

Plate 1 is a typical reflection micrograph pattern (X450) taken for
SSe22 thin film isothermally annealed at 100 °C for 2 hrs with 2.13 eV inci-
dent photons. This value is greater than the known value of dissociation
energy of Se—Se bond, 1.8 eV [14]—1.9 eV [15]. Plate 2 is for an identical
SSe22 5 film annealed at 100 °C in the dark. The plates show that the growth
is faster in the dark and leads to a more ordered crystalline network. The
absorbed quanta of light produce, however, an increase in the number of
dispersed centres. Also, the difference in the grain size due to illumination is
clear in Plates 1 and 2.
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2

Plates 1 and 2: Typical micrograph patterns for Se doped with 4.26 at % S films annealed
isothermally at 100 °C for 2 hrs in the presence (Plate 1) and absence (Plate 2) of photo
illumination

Changing the energy ofthe incident photons in the range of 1.91—3.04 eV
has no significant effect on the nature and total duration ofthe transformation
process in the studied temperature range.
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Crystallization kinetics

To study the kinetics of transformation the experimental data should
be expressed in terms of the transformed fraction at different crystallization
times. In the present work, X(t) is evaluated for the S-doped Se sample by
using the relative increase of the electric conductivity during the growth.
This, however, may be realized by considering a power or logarithmic conduc-
tivity dependence according to Odelevsky [16] and Landauer [17], re-
spectively.

For low crystallite volumes, a general power formula is written:

<tk = 671 -f 0,02,

where Olis the fraction left uncrystallized and 02is the corresponding crystal-
lized fraction. For Kk = 1, the conductivity at a time tis

(ft = ®&fa+ (1 — 6,)crc,

i.e. 0t(o)

(oc — 0,) (oc — o04). (1)

On the other hand, when log a is considered to represent the sensitive para-
meter characterizing the conductivity-content dependence, an empirical po-
pular formula may be written as:

loga — Ol log ol + B, log <2
i.e. 6,(log cr) = (log oc — log or,)/(log oc — log 0a). (2)

The subscripts a and crefer to values at the begining and at end of the process.
These correspond to points a and d on the curves of Fig. 1.

The extent of crystallization Xt as a function of the annealing time is
computed on the basis of Eqs. (1) and (2), and Fig. 2 shows some of these
results. The crystallization curves appear to shift toward lower time scales
with increasing temperature as one might expect from the decrease in visco-
sity with increasing temperature.

The crystalllization of organic polymers has been described by the
Avrami [18] formula

Xt= 1 —exp (—Ktn), 3)
where K is the temperature-dependent rate constant and n is a parameter
depending on nucléation and growth mode [19].

To fit Avrami’s equation, a plot of In [—In (1 — X,)] versus In (t)
must yield a straight line whose slope is n and whose intercept on the ordinate
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at In (t) = 0is In (K). Figs. 3 show just such plots for SSe25under the effect
of photo illumination. At some temperatures, the plot takes on two distinct
slopes during the isothermal crystallization which, therefore, can be described
by two different values for both n and K in the rate equation. A change in
the exponent nindicates a change in growth mechanism during crystallization,
a phenomenon quite well known for polymer systems in which a secondary
crystallization occurs after the primary crystallization event [20]. The results
for n and K calculated on the basis of the Odelevsky approach (Eq. (1)) as
well as the Landauer approach (Eq. (2)) are summarized in Table 1.

Fig. 2. Crystallinity percent vs annealing time for Se doped with 4.26 at % S derived from
d.c. conductivity measurements: (a) and (b) under purely thermal effect, and (c) with photon
effect (2.13 eV) on basis of: (a) a, and (b) and (c) log a. Here, Xt= 1 — 0(

Fig. 3. In [—In (1 — X1t)] vs In (0 plots for crystallization kinetics of photo-illuminated Se
doped with 4.26 at % S on the basis of: (a) a and (b) log 0

The kinetic calculations on the basis of log a indicate that the crystalliza-
tion growth under purely thermal effects proceeds by one process as character-
ized by a single value for n or K. The value of n decreases monotonically with
temperature in the range 98—132 °C, while the crystallization rate constant
K increases by 30% with temperature from 98 to 132 °C. In Table Il, on the
other hand, the values of n estimated on basis of a show that the transforma-

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



LIGHT EFFECT 25

tion clearly consists of two stages at temperatures above 120 °C which account
for the presence of secondary crystallization. For the first stage, with d up
to 0.6 —0.7, n1>¢2 while for the second« 2~ 1 which leads to the conclusion
that in this latter stage crystallization is restricted to one-dimensional growth,
the driving force is constant, and no new nuclei are formed. The considerably
higher values of K2 than K1 indicate that the secondary crystallization is
a faster process. But, at a relatively high temperature as 144 °C, n., *>nland
K2<\ Klwhich may be ascribed to the limitation of the applicability of the
(7-crystallinity correlation (Odelevsky approach). While the kinetic calcul-
ations on the basis of loga (Landauek approach) indicate that nx= 3.75
and .. = 1.26 are consistent with the considered mechanism.

Table 11

Avrami constants calculated on basis ofaand log a as conductivity-structure characterization
functions for both illuminated and non-illuminated SSe2-6

Crystallization under photo illumination

Cryst.
temp., 0 n basis ofcr On basis of log a
ni A, n2 A, ni A, nt A
98 276 120x10-11 112 5 X10-5

30XI0-5 152 5.25x10-°

5
- 1.27 3
90xI0-5 1.60 2.35x10-°
3
6

75x10-8 148
54 x10~7 092

108 224 105x10-8 -
117 270 130x10-10 2.00
121 275 166xI0-10 19
124 320 505xI0-11 172

4.
1 30xI0-4 168 1.60x10-°
1

126 380 Il.ioxio-11 098 175XI0-3 0.86
6.
5.

7

8

1

7
.10x10-° 0.88 9.60x10-4 180 1.30x10-°

1.45x10-3 248 2.55x10-«
132 420 530xI0-13 104 30xl0-4 124 1 - -
144 156 3.60x10-° 4.10 00xl0O-¥ 264 190xI0-8 094 1.69xI0-3

Crystallization in the dark
Cryst.

tecmcp.‘ On basis ofa On basis of log o
i A, nr A, ni A, n2 A,
98 320 145x10-13 124 1.65x10-5
108 220 1.05xI10-8 - - 115 7.90 X10-5 - -
117 150 6.35X10-° - - 114 1.25 XI10-4 - -
121 180 4.78x10-7 - - 113 1.70 X10~4 - -

124 240 1.50x10-« 114 125x10-4 112 2.10X10-4 — -
126 242 2.20x10-« 112 165x10-4 110 2.70xI10-4 - -
132 248 3.50x10-« 116 235x10-4 108 i&x LO-éil - -
144 2.14  8.30x10-« 6.50 155xI0-24 375 XI10- 126 1.66x10-4

Subscripts 1 and 2 refer to the presence of primary and secondary modes.

Evidently, there is correspondence between the present kinetics for
SSe2 5 computed on the basis of a and that of Crystal [2] for pure Se com-
puted from densitométrie data. Doping of S leads to generating the secondary
crystallization at a temperature about 124 °C instead of at 100 °C for Se
[2, 21]. The big difference between the rate constant K for SSe22s and that
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of Se identifies the effect of addition of 4.26 at % S in inhibiting the crystalli-
zation process of Se.

The photo effect on the kinetics of SSe225 as obtained on the basis of
log a shows two Avrami exponents referring to two growth stages defining the
crystallization process in the range 108—126 °C (Fig. 3b). The observed
kink between the two kinetic lines lies in the region of pronounced photo
effect and corresponds to 0~ 0.7. However, these results for nx (Table I1),
refer to one-dimensional nucléation growth which seems to be unrealistic.

Apart from this, Avrami’svalues of nlasreflected by a changes (Fig. 3a),
are 2.24 to 4.2 in the range 98— 132 °C and those of re2 fall in the range
1—2 which confirms the expected one-dimensional growth of binding the
terminals ofthe formed individual crystallites asthey come close to each other.
A secondary crystallization has started at 117 °C which represents a lower
temperature than that in dark, 124 °C. Moreover, nucléation of SSe22 50bserved
in the optical microscope is definitely heterogeneous in the entire temperature
range studied. Heterogeneous nucléation has been found inliquid-crystalline
transformation for pure Se and S-doped Se samples too [21].

However, the dramatic variation of the kinetic parameter n may be
attributed to the complex nature of the crystallization of materials of Se-like
structure compared with most polymers and other materials first described
by Avrami theory.

A more detailed investigation of the effect of light on the process of
crystallization is under way; the results will be published in the near future.
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The Debye—Waller factor temperature parameters at different temperatures for
platinum and lead have been calculated by using a modified Sharma and Joshi model. The
calculations were carried out according to previous results [1]. Comparison of theoretical
results with available experimental data, as presented in the vibration spectrum dependent
Debye —Waller factor temperature parameter (¥) versus temperature diagrams, reveals rea-
sonably satisfactory agreement.

I. Introduction

In a previous paper [1] we have used the modified Sharma and Joshi
model for the theoretical investigation of the temperature dependence of
Debye—Waller factors of five FCC metals: copper, silver, gold, nickel and
aluminium. The purpose of the present paper is to report on similar studies
carried out with FCC platinum and lead. Theory and the method of the calcul-
ation were described in [1], to which the interested reader is referred for details.
In this paper, similarly to paragraph IV in [1], we only wish to present and
discuss results obtained with Pt and Pb. The various constants needed in
the calculations are listed in Table I.

Table |

Constants and the parameters used in the calculation

Elastic constants Lattice Phonon frequencies
i 1011 dyn/cm™;
Atomic ( Y| ) Temp.* para- (THz)
Metal mass in Ref. <K) meter Ref.
am.u. cIr c (A) m7,(100) vr (100) H
” ' *GIi9

Platinum  195.09 34.67 25.07 7.65 a 300 3.924 5.789 3.750 5.650 c
Lead 207.19 4.953 4.229 149 b 300 4.9504 1910 0.955 2.212 d

‘ Temperature at which the elastic constants are measured.

a. R. E. Macfarlane, J. A. Rayne and C. K. Jones, Phys. Lett., 18, 91, 1965.

b. D. L. Waldorf and G. A. Alers, J. Appl. Phys., 33, 3266, 1962.

¢c. R. Onhrtich and W. Drexel, Inelastic Scattering of Neutrons in Solids and Liquids,
Vol. 1, International Atomic Energy Agency, Vienna, 1968 p. 203.

d. R. Stedman, L. Aimqgvist, G. Nilsson and G. Raunio, Phys. Rev., 162, 545, 1967.
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IL Results and discussion

1. Platinum

Alexopoulos et al [2] have studied the temperature dependence of
the Debye characteristic temperature for platinum by measuring the tempera-
ture variation of the integrated X-ray intensity of the (331), (420), (422) and
(531) reflections from flat powder samples in the range of 100—700 °K. The
values of the Debye—Waller factor temperature parameter Y obtained from
these authors together with our calculated results are shown in Fig. 1 with
the reference temperature TO= 293 °K. The agreement of the calculated

Y values with experiment is satisfactory.

Fig. 1. Variation of ¥ for platinum. Solid line shows the present calculation. Experimental
points: + Alexopoulos et al.
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2. Lead

The temperature dependence of the intensity of the X-ray reflections
from lead has been studied by Cartz [3], Chipman and Paskin [4],
Mothersole and Owen [5], Chipman [+], and Alexopoulos et al [:]. Cartz
has obtained the temperature variation ofthe Debye characteristic temperature
for lead by measuring the intensity of the diffuse scattering of X-rays from
single crystals at temperatures ranging from 150 to 600 °K. He also made
correction for Compton scattering. Chipman nad Paskin carried out measure-
ments on lead powder at room and liquid nitrogen temperatures. Mothersole
and Owen investigated in the temperature range 293—577 °K on fine grade

Fig. 2. Variation of Y for lead. Experimental points: O Chipman; ¢ Mothersole and
Owen; + Alexopoulos et al.
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powder specimens. The Table summarising the results of these authors con-
tains the values of Y at selected temperatures. Chipman obtained the tempe-
rature variation of the Debye characteristic temperature by measuring the
integrated intensity of a high angle X-ray diffraction peak between 85—576 °K
correcting also for the thermal diffuse scattering (TDS). Alexopoulos et al
used flat powder samples in the temperature range of 100—500 °K for the
reflections (331), (420), (422), (511)—(533), (531), (600)-(442). For the
present comparison the data of Mothersole and Owen, Chipman, and
Alexopoulos et al were selected. The results are presented in Fig. 2 with
TO= 293 °K. The theoretical results agree reasonably well with the experi-
mental values.

The actual discrepancies between theory and experiment could be attri-
buted to various causes discussed already in [1]. Nevertheless one may con-
clude that our attempt to explain the observed temperature variation of the
Debye—Waller factors for platinum and lead on the basis of the modified
Sharma and Joshi model appears to be successful.
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The non-linear hydromagnetic waves for two-electron temperature plasma are shown
to be governed by a Korteweg—de Vries—Burgers equation. Collisional effects have also
been taken into account. Due to the magnetic field the amplitude of the solitary wave decreases
while the width of the soliton and the speed of the shock wave increase.

1. Introduction

Following the work of Jones et al [1] on two-electron temperature
plasma, there is a wide range of interest in the study of such plasmas due to
its application in many physical problems. Goswami and Buti [2] considered
the ion acoustic solitary waves in such a plasma with one of the species of the
electrons as cold and obtained the condition for the existence of solitary waves.
Shukla and Tagare [3] included the effects of collisions by considering fluid
equations with ion viscosity and ion thermal conductivity. They have shown
that shock-like structures evolve when the temperature difference between
the two components of electrons is fairly large.

In the present note the effects of uniform magnetic field on non-linear
hydromagnetic waves in two-electron temperature plasma are investigated.
The magnetic field is considered in the x—z plane making an angle 0 with
the a-axis. Using the perturbation scheme given by Davidson [4], a Korteweg
—de Vries—Burgers equation governing the hydromagnetic waves is derived.
Both collisional and collisonless plasmas are considered and solitary wave
and shock wave solutions are obtained.

2. Analysis

Following Shukla and Tagare [3], the governing wave equations in
the presence of a magnetic field can be written as

ot * ox (n"uég) = °> M
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In Eqgs, (I)to (12), the ion density n,, ion flow velocity u- ion temperature Tf,
electric field E, magnetic field B and variables xand t are the non-dimensionalis-
ed with respect to NO, Cs, Tg- TefjeL, BO, L and LjC¥ respectively, where

Cs/ = Tef T'f =
Ri=—,A 50
<0 V X

Teh Tei

NenTel + NeTeh

‘mDf

NO is total electron density, co characteristic frequency, XD' Debye length,
L characteristic scale length. Subscript i is used for ions and the subscripts
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eh and el are used for high temperature and low temperature components of
isothermal electrons.

Introducing the stretched variables f = el2x — Vp t) and r = e321
(el2is a small parameter proportional to the wave number and Vp is the non-
dimensional phase velocity of the wave) and assuming Ex, Ez, By, uiy, r}i
and kj to be of the order of e.. all the dependent variables are expanded as
series of e around the uniform state as follows:

S —go+ £1g°\ (13)
J-1

where g stands for dependent variables and g0 represents the equilibrium
state so that

1, Nel, Neh for the densities of ions, low and high-temperature
electrons, respectively;
go = 0 for all components of velocity and electric field;
€C0So, o, sin 6 for the three components of the magnetic field;
Tm for the ion temperature.

Substituting Eq. (13) in Eqgs. (1) to (12) and equating the coefficients ,
of ¢, one has
12
(14)

P e T

The phase velocity Vpin Eq. (14) is the same as the velocity of propagation
of hydromagnetic waves which one can obtain for the same plasma system in
the linear approximation.

Equating the coefficients of e in Eqgs. (1) to (12) and eliminating the
second order dependent variables, a Korteweg—de Vries—Burgers equation
is obtained for as given below:

9 407’0 , Sin= s
+ (3 A ) + - R + T(i)
dr 2Vp | A. ~df
M+ sin: o COS2 o 93V
. Vp A¥V% j 9l
\o + &'0 ¥i0y P a;n\l) . (15)

Here A= [NehT-R2+ NdT~2}Téh Vi= e,. %, kt= r.. k0.

In Eqg. (15), the coefficient of third term describes the effect of dispersion.
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For further discussion, Eq. (15) is written as

9f , Of . 44 by
Pil— +f— +Ri— ~Pi— = o (16)
0T de de3 Oe2
which resembles the Korteweg—de Yries—Burgers equation obtained by
Shukla and Tagare [3]. But here

40T 2 SiNz o
i= (3- + ) 2V,
Pi= G- A 9 A2
sinz Q C0S: o
A*R? AW 2
Ri =
(3_”)+A !1+ 2sin20
A2
and
Ui = — Vo , fool-0 K2
pi 3 9
For stationary solution. Eq. (16) yields
U
/= o, (17)
d-. dy 2
where | — t/T and I/ = vJCg.
The solitary wave solution of Eq. (17) in the limit 0 will be
. U 12
/= 3U sech. (i- un (18)
Pi LI 4P N

In the finite limit of (ijRi, Eq. (17) describes a shock wave [5] and the
effective potential well is given by

V()= 3 — f2 (19)

The speed of the shock wave in the rest frame is

I:O—C,,1+.

where f = /(—«>) — Loo) and /(00) = .
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Following the method of Karpman [5], one can show that Eq. (17) has
a monotonie shock wave solution when fil >my lor and an oscillatory shock wave
solution when <[ ylor where

Pier= W )12 (21)

If Pi< jtilcr, then the stationary solution is given by

f — f -\- const, exp (22)

3. Numerical calculations and conclusions

Eq. (18) shows that due to the presence of magnetic field and the ion
temperature, the range of A for which the solitary wave exists is increased.

) ) 5Ti0  2sin. 0 o
The solitary wave exists for A< 3+ ~rL-1 A But an additional
condition must be satisfied, i.e.
Sin: o COS2 o |

(23)

Fig. 1. Variation of the amplitude of the solitary wave w.r. to angle 0
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Fig. 2. Variation of width of the solitary wave w.r. to angle 0

Fig. 3. Variation of the velocity of the shock wave w.r. to angle 0
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compared to the obvious condition M ]> 0 in the absence of applied magnetic
field. Some sample calculations have been made to show the effect of magnetic
field explicitly on the amplitude and width of the solitons and the speed of
the shock wave for a plasma with the following parameters:

Tt= 10: °K, NO= 10.. L= 01m,
Ta = 2 X HO: °K, Nel= Neh= 05 X 10.a m -3, u=1/= 1,
Teh= 3 X 10s °K, B = 2to 10 Tesla, 0= k0— 1.

The amplitude and the width of the solitary wave are plotted in Figs. 1 and
. for various values of the magnitude and direction of the magnetic field.
The amplitude of the solitary wave decreases whereas its width increases as
the magnitude of the magnetic field increases. The effect of the magnetic
field is strongest for perpendicular propagation where it tends to flatten the

soliton. Fig. 3 gives the speed ofthe shock wave and it is seen that it increases
with the magnetic field.
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Similarity solutions in closed forms for propagation of plane shock waves in a relati-
vistic gas of uniform number density are obtained. The shock moves with constant speed.

Introduction

Similarity solutions for one-dimensional flow of a relativistic fluid
headed by a shock front in a cold gas are studied by E1tgroth [2], by assum-
ing the velocity of the fluid as the similarity variable.

In the present paper similarity solutions in closed forms are obtained
when the plane shock front moves through a homogeneous medium of uniform
nucleon number density.

The origin of the (x,t) inertial co-ordinate frame is taken at a plane
where an initial disturbance is given.

We find that such a flow for the similarity parameter | = xath, a and b
being suitable constants, exists only when the shock moves with a constant
velocity. The solutions given in this paper are applicable only to a medium
of uniform pressure or a cold gas.

Equations of motion and boundary conditions

3 \p + (PE "B(p + E)
oxJ: —B2\ 3t o« 0' @
3 \B(p + E) 3 E+ (Pp 2
dx [ . - B2 et |-(P " )
3 r R

0, €))

R +
ax IVIT 2 cf 1 -R*

where p is the pressure and E the proper energy density, both measured in
the rest frame of the fluid; cB is the fluid velocity in the (a, t) inertial frame,
¢ being the speed of light and n is the nucleon number density.
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The shock conditions are

M + BPE dX '@(p + E)

4)
Li-/** 3 det 1 - R2
~R(P + E) - dX E + Btp 5)
1 - R2 dct 1= 82]
ni dX r n ¢
(6)

(1 - R2y=2 del (1 - BZ)IZ

Here [ ] signifiesthe discontinuity sign and dX/dt is the velocity of the shock,
X being the distance of the shock plane from the origin.
The nucleon density of the pre-shock stage is given by

n0 — constant. ©)

Solutions of the equations

We next introduce the following similarity transformations as done by
Courant and Friedrichs [1] for non-relativistic motions of gases:

c B = - U,

; (h
p = xkRtk-2P{£),
E = xk+2tk~2Z(i),

n = xktk Q(£),
where
£ = xah

Here A k, a and b are constants to be determined from the problem.
By their direct substitutions in Eqgs. (1)—(3) and boundary conditions

(4) —(),wefind that these forms are compatible only when we choose alb = —1
and A-j-k— 0. Without any loss we take a— 1 and b= —1, 9= 0 and
K — o.

For our subsequent work we choose the similarity parameter in dimen-
sionless form as
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At the shock front » = r,0 and is taken as constant. So,

X _ Vv _ 9
ct C ()
V being the constant velocity of the shock front.
The boundary conditions at the shock front may be re-written as
Pi = BiVON + 1 (10)
Po 1 RiVo
Ei ~ VAN + Ri
Eo N(r)o Bj) )
n: -3 1)1
— Ve ( R ) . (12

«0 Vo — PI

where N = EQOpOand the subscripts . and 0 stand respectively for quantities
just behind the shock and just in front of it.

We find that unlike its non-relativistic analogue, there aretwo characteris-
tic parameters, instead of one, namely, rj0= V/cand N, depending on the
equation of state of matter in its pre-shock condition.

In the region behind the shock plane we take the equation of state,

(13)
Eqgs. (1)—(3) are now transformed as
d TE{1/3+ p) 1 d '4/3RE (14)
dr] L — B dal L i-H
d |
r4/38E1 , d FEQ+ R*3)1 (15)
al 1 - a dr, - R2
dr nR . d n (16)
dar.Lv, —H M drjvii-p\
Combining (1) and (2) we also find as Eltgroth [2]
1 dE 4 1 dn 17
E d) —+ ¥3 "(1- R2 d]"
Eqgs. (1) and (2) are next re-arranged as
1 dE__dR_ 4 (Pr) + V — 2R) (18)

E dr, —d] "@- B @+ 35- L)
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and
1 dE d?_ 4 B - 1- R2 (19)
E dr] dyj ' 1 —R2 @R- H] — MW’
Comparing (18) and (19) with (17) when dR/drj » 0, we get,
— i _ — N
+ "r] 286 28Brj R2 t (20,
1+ 31*- LW 4R-3rj-rifk2
where
= 1 or—1ir.
Ys Y3
The trial | = yields as a solution
?ll Ifglf-ll- (21)
and | = —y=-, represents the solution
|:'3 i?7+ . (22)
13+ 1]
Case |

We next investigate the existence of solutions for the case N = 3,
which is appropriate for an ultra-relativistic initial state.

For the choice n0O= const. (Eq. (7)), we easily find from the shock con-
ditions that in this case both EO and p0Oare constants.

Egs. (10) and (11) now give

Ri=~ —-, °<% <! and \BhEI. (23)
2 %

Besides, the solution (21) is consistent with (23) only when r]0 =

and rl0= 1. Both these values of rl0 are not tenable, as rj0 = y1=rinthis case

implies the shock speed as equivalent to the speed of sound and rl0= ., the
shock speed attaining the photonic speed. The solution (22) is also inconsistent
with the requirement (23).

So, for the medium considered here, we should take the other alternative
in Eqgs. (18) and (19), namely, dBldrj = 0
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Hence,
o= (24)
E — (25)
and
T—np (26)

which are all constants.

Case |1

Next we seek solutions for the other possibility p0O= 0, appropriate for
a cold gas. The modified shock conditions yield

éii: 2\Vo \O(Wo —3 (27)
_ _ _ _ o %’3 1l
Solution (21) is consistent with (27), only when 0= 1— and:o.”" = (ys-

Besides, it is found that solution (22) is unfavourable and extraneous.
For the value of 8 as given by (21), and from (18) and (16), respectively,
we find that

L v R
+ 2log (2 - (28)
n

;-

log— = V3 logM"-+2 log(2-Y3) (29)

n, 2

In this case if the gas is pushed instantaneously and thereby set into
motion, there is a possible backflow as clearly indicated by our solutions. As
r—»—1, both the energy density and number density tend to zero, thereby
showing that a portion of matter moves backward and the edge of vacuum
is at A= —1. At this boundary we find that the relativistic material moves
with the speed of light into the vacuous region.
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Spectroscopic and electronic parameters of a hollow-cathode discharge in the mixture
of He and Zn vapour were measured. The excitation processes important for the operation
of metal vapour lasers are discussed under different conditions of the discharge.

1. Introduction

Research has been carried out for a long time on noble gas — metal
vapour lasers. CW operation and excitation mechanisms of a He—Zn ion
laser as a function of different parameters (current and pressure dependence
of the output power) are described in [1]. Possible excitations of Zn II levels
were examined using flowing afterglow technique in [2, 3] and [4].

In the present experiments the excitation processes of the He—Zn
system were examined in a hollow cathode discharge tube by measuring
spectroscopic (spontaneous line intensities) and electronic (discharge current
and voltage) parameters. The results give information on the processesin the
hollow cathode discharge and the excitation of the 4912 A Zn II laser line.

2. Experimental details

The geometry of the hollow cathode discharge tube used in the experi-
ments is shown in Fig. 1. The required Zn concentration in the tube was
maintained by two ovens at equal temperatures. The discharge tube was eva-
cuated by a small vacuum system that consisted of a mechanical and an oil
diffusion pump and could be filled by high purity (>>99.9999,) He gas. The
tube was excited by half-wave rectified current. The light from the discharge
was imaged to the entrance slit of a Zeiss PGS-2 2 m spectrograph, used as a
monochromator. The line intensities selected were measured by a photo-

* The present work has been carried out under a contract with the Central Research
Institute for Physies of the Hungarian Academy of Sciences.
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Fig. 1. The hollow cathode discharge tube 1. pyrex tube, 2. end window, 3. connection to the
vacuum system, 4. cathode, 5. anode, 6. Zn metal, 7. ovens

multiplier 1P28. The output of the multiplier or the discharge voltage was
measured with an oscilloscope as a function of discharge current using the
horizontal input of the oscilloscope for the latter.

3. Experimental results

Variation of the discharge voltage with the pressure is shown in Fig. 2
at T — 20 °C for three values of current. In order to be able to interpret these
curves the line intensity of He Il at 4685 A was measured under the same
conditions (Fig. 3). Above « torr a close correlation can be observed between

the two sets of curves.

Fig. 2. The variation of discharge voltage with He pressure for different currents
a.l= 126 mA; b. / = 252 mA; c. | = 378 mA
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Fig. 3. The intensity of the 4685 A He Il line as a function of the pressure at T — 20 °C
a. | —126 mA; b. | —252 mA; c. | = 378 mA

Fig. 4. The dependence of the discharge voltage on He pressure at constant current
(T= 378 mA) for different oven temperatures (Zn concentration)
a. T=20°C; b. T= 440°C; c. T= 500 °C

Next the voltage dependence on the pressure was measured for different
Zn concentrations that were set by keeping the temperatures of the two ovens
at determined and equal values. Fig. 4. shows that a low Zn concentration
(the melting point of Zi is 419.6 °C) changes the original curve significantly
and increasing Zn concentration raises the discharge voltage. Fig. 5 shows the
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Fig. 5. The intensity of the 4912 A Zn line as a function of He pressure at constant current
(1 = 378 mA) at different oven temperatures i.e. Zn concentrations a. T = 440 °C,
b. T= 500 °C

variation ofthe spontaneous light intensity ofthe 4912 A Zn Il laser line with
He pressure for two different Zn concentrations. At 440 °C there is a sharp
He pressure dependence while at a higher temperature the curve broadens.

In Fig. s (a, b, ¢) the discharge voltage (a) spontaneous line intensity of
Zn |1 at 4912 A (b), and spontaneous line intensity of Zn | at 4810 A (c) are
plotted as a function of temperature i.e. Zn concentration at constant He
pressure. It can be seen that while the discharge voltage and the intensity of
the atomic line increases monotonously with rising Zn concentration the ion
line saturates wound 500 °C.

4. Discussion

The pressure dependence of the intensity of the 4685 A spectral line of
He Il (Fig. 3) justifies the fact that the increase of discharge voltage with
pressure above the minimum at. torr (Fig. 2) is caused by the increase of He
ionization rate. The ionization potential of He isvery large (about 25 eV) that
means significant electron energy is lost in the course of an elementary ioniza-
tion process,thus in order to maintain the constant current larger voltage
is required. The drop of the discharge voltage at high pressure is probably
in connection with the fact that the current is partly displaced from the
hollow into the gap between the anode and the cathode in rate this pressure
region. It was not possible to measure He ionization rate in the presence of
Zn because the upper level for the 4685 A He Il line is of very high energy
(about 51 eV) and therefore this level is not populated in the presence of a
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component with low ionization potential. No transition in the visible starts
from a lower energy level of He Il. Still the He ion concentration could be de-
duced indirectly from Figs. 4 and 5. At a low concentration of Zn (T = 440 °C)
the intensity of the 4912 A Zn Il line is maximum at about 10 torr of He and
shows a strong dependence on He pressure. This observation supports the
assumption that in the selective excitation of the 4:PF Zn 11 level the charge
transfer (Duffendach) collisions

He+ + Zn — He + Zn+*

play an important role. The detailed mechanism of the excitation is described
in [3]. This means that the ionization of He is still significant at this tempe-
rature. At T = 500 °C the He pressure dependent selective excitation of the
4912 A Zn 1l line washes outand at the same time a significant increase in
discharge voltage can be observed (Figs. 5 and s/a). In order to interpret
this effect one has to consider the properties of the hollow cathode discharge.
Neglecting the effect of electrons produced by photoeffect the current
density is [5]

/= jc(l1+ v) = eN+v+(1+ vy),

where j * is the ion current density on the cathode, y stands for the secondary
electron emission, N <and are the ion density and ion mobility, respectively.

The increase of discharge voltage may be caused by the fact that due
to their lower ionization potential the Zn + ions take over the main rolein the
ion current gradually. In orderto reach the cathode to produce secondary elec-
tron emissions that is necessary for the stable discharge, the Zn+ ions can
achieve the energy necessary only at a higher voltage due to their larger masses.
Therefore in this region most probably direct electron collisions play the most
importantrole inthe excitation of the 4912 A Zn Il line because of the decreased
He + ion concentration. In this way the selective excitation to the upper laser
level is spoiled, that may be the reason why the optimum Zn concentration
in He — Zn lasers can be reached at a temperature much below 500 °C [1, s ].
Unfortunately no direct measurement could be carried out concerning the
population of the lower level because there is no transition in the visible range
originating from it.

The increase in Zn concentration, as has been pointed out above, leads
to a rise of the discharge voltage (Fig. «/a). Comparing Figs. sa and sc it
turns out that while the Zn concentration increases uniformly the voltage
starts to rise significantly only around 450 °C. This shows that under this
temperature the He + dominates in the ion current while Zn + takes over above
it. The spontaneous intensity of the 4912 A Zn Il laser line increases in the
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temperature range 400—450 °C (range of selective excitation) more than above
it and is saturated around 500 °C. The constant current and pressure limits
the ionization in spite of the increasing Zn concentration.

5. Conclusion

It was shown that in the He—Zn hollow cathode discharge variation of
He and Zn concentrations leads to changes in the discharge parameters through
changing the ionization processes in the discharge. These have important
effects on the excitation of the 4912 A Zn II laser transition, namely at low
Zn concentration the selective excitation to the upper level of this line dominate
through resonant charge transfer collisions with He*, while at higher Zn
concentration direct electron excitation takes over and the selectivity
disappears.

Further measurements will be carried out in the case when the Zn is
introduced in the form of a volatile molecule to the same discharge. In this
case the sufficient Zn concentration can be reached at a lower temperature
and at the same time the presence of the electronegative component may
cause changes in the discharge.

Acknowledgements

Thanks are due to Prof. I. Kovics for his help and support and to Drs L. CsiLrAc,
M. JAnossy and K. Ré6zsa for valuable discussions.

REFERENCES

.J. A. P1PER and P. GiLL, J. Phys. D8, 127, 1975.

. A. R. TurNEr-SmiTH, J. M. GREEN and C. E. WEBB, J. Phys., B6, 114, 1973.

.J. M. GreEN, G. J. CorriNs and C. E. WEBB, J. Phys., B6, 1545, 1973.

. G. J. Coruins, J. Appl. Phys., 44, 4633, 1973.

. G. Francrs in Encyclopedia of Physics, ed. Fliigge, Vol XXII. Springer, Berlin—Géttingen,
Heidelberg, 1956, p. 108.

.J. A. PipER and C. E. Wess, J. Phys., D6, 400, 1973.

LI

(=)

4* Acta Physica Academiae Scientiarum Hungaricae 46, 1979






RECENSIONES

Inelastic Electron Tunneling Spectroscopy

Proceedings of the International Conference and Symposium on Electron Tunneling,
University of Missouri—Columbia, USA, May 25—27, 1977.
Springer Verlag, Berlin—Heidelberg—New York, 1978.

During the last decades several new material-testing methods have appeared and became
generally accepted. A greater part of them is concerned with the investigation of solid surfaces.
Let us mention the different electron and ion-irradiating methods (EMP, IMXA), secondary
ion mass-spectrometry (SIMS) or the varieties of charged particles activation analysis with
nuclear accelerators.

These methods include a separate but substantial group, formed by the different
types of electron spectroscopies, by the help of which the spectra of electrons produced by
different methods from the surface of solids are investigated, producing qualitative or quanti-
tative or trace- and structure-analytical information. In this respect X-ray and ultra-violet
induced photo-electron spectroscopy (XPS alias ESCA and UPS), Auger electron spectros-
copy (AES) as well as ion-induced electron spectroscopy (INS) or characteristic energy-loss
electron spectroscopy (ELS) should he mentioned.

In spite of its name inelastic electron tunneling spectroscopy (IETS) does not belong
to the latter group in the strict sense. Under certain circumstances electrons may penetrate
the insulating layer between two metal surfaces (mostly aluminium oxide on Al-surface with
Pb evaporated on it) as the result of a quantummechanical tunneling effect. The probability
of this penetration depends on the atoms and molecules present at the transition surface and
their vibration states, respectively. These appear in the form of a regular spectrum if the
second derivative of the current-voltage characteristic of the junction has been taken into
consideration. It should be noted here that such investigations are carried out at the tem-
perature ofliquid He (4.2 °K)and with modulation techniques. Molecules to be observed e.g.
cyclic compounds and materials interesting from the biological point of view should be deposit-
ed on the surface of the Al-oxide, in some way. Electron tunneling spectroscopy gives infor-
mation similar to Raman- and infrared spectroscopy, we may say that it makes them complete.

The book which appeared in one of the Springer series (Series in Solid State Sciences)
contains the lectures of an international scientific meeting the aim of which was not only
to present and discuss recent scientific results in connection with the method, but also to
present the method itself to the wide community of representatives of different fields of appli-
cation. Thus the book is extremely useful and suitable also for beginners in this field.

The first chapter is devoted to the treatment of the method, the second one to the
fields of application, while the third deals with theoretical aspects. Separate chapters are
devoted to the description of up-to-date applications, as well as to molecular adsorption on
non-metallic surfaces and finally to the application of the so-called elastic tunneling effect.

It is doubtless that IETS seems to possess unique features (e.g. in sensitivity) and to
have several possible fields of applications in surface chemistry, biochemistry as well as in
the investigation of greasing and adhesion phenomena etc., that is in every field, where the
adsorption of complex molecules on metallic oxides have an important role.

Nowadays, however, we may talk about the wide-range possibilities of the method
rather than about its justified applications. This fact is pointed out in the contributions by
two surface-research scientists and a biologist (Chapter IV, Discussions and Comments).
From this point of view tunneling spectroscopy has not achieved yet the maturity so far
achieved by electron spectroscopy in the strict sense (XPS, UPS or APS).

D. Berényi
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A Perspective of Physics

Volume 2. Selections from 1977 Comments on Modern Physics. Introduced and put
into perspective by Sir Rudolf Peierls.

Gordon and Breach Science Publishers, London—New York —Paris, 1978.

It is good to see the second volume of this highly promising series that gives a very
useful insight into different fields of physics both by the ingeniously written introduction by
Sir Rudolf Peierlts and by his careful selection of papers from Comments on Modern Physics
by distinguished researchers of their fields.

Rereading the introduction of Vol. 1 one can clearly see the trends in the different
branches of physics from the comparison with Vol. 2. The selected papers give a short and
clear view of the field they represent. In this way a coherent picture Is received by the reader
from a very wide subject.

At the same time the individual papers represent most recent research thus giving
a useful reference for the specialists as well.

The main chapters are: Nuclear and Particle Physics, Solid State Physics, Astrophysics,
Atomic and Molecular Physics, Plasma Physics and Controlled Fusion. 5

. Richter

E. W. Williams and R. Hall:

Luminescence and the Light Emitting Diode

International Series on Science of the Solid State. General Editor: B. R. Pamplin,
Pergamon Press, Oxford, New York, Toronto, Sidney, Paris, Frankfurt 1978.

This book offers the readers a comprehensive survey of the physics and technology
of the light emitting devices (LED’s) and p-n junction lasers. The book begins with a good
introduction to crystal structures and growth, and the optical and electrical properties of
LED materials.

In Chapter 3 the authors summarize the different single crystal growth methods used
generally in LED production. A short discussion of the fabrication of the devices together
with a useful data collection regarding diffusion processes are included in Chapter 4. A simpli-
fied theory of the radiative and nonradiative recombination processes, the luminescent effi-
ciency and the solid-state lasers made from LED materials are discussed in Chapters 5 and 6.

The most important characterization measurement methods such as the photolumines-
cence, the cathodluminescence, capacity measurements, diode emission evaluation techniques
(flux, intensity and colour measurements) are described in detail in Chapters 7 and 8 offering
a good physical insight into the light emitting processes in the most important LED materials
GaAs, GaP and GaAsP.

In Chapter 9 a survey of light emitting diodes is given together with the discussion of
the relationship between aspects of LED design and the electro-optical characteristics. The
remainder of the Chapter reviews the progress achieved in producing LED’s from different
materials.

The book ends with the application aspects of LED products, which are divided into
three main groups: (a) LED indicator lamps, (b) LED displays, (c) optically coupled devices.

Although this book is written for post-graduate students, it seems to be useful to a
much wider range of readers who would like to know more about LED and the materials
from which it is made.

T. Gorog
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Ganti, Tibor:

A THEORY OF BIOCHEMICAL SUPER-
SYSTEMS. lis application to problems
of natural and artificial hiogenesis

The chemoton theory represents a conceptionally new approach to the
deduction of the simplest physical—chemical, macromolecular super-
systems satisfying those criteria of life which have been reformulated by
the author almost axiomatically, in a more exact presentation than
commonly known from the literature. The prospects of the further develop-
ment of the theory are promising, because the principles of the chemoton
model are simple and clear, making the deduction of many basic bio-
logical phenomena possible already in its present form, and offering a
feasible explanation for the origin of living systems from which the out-

lines of the strategy for the artificial synthesis of living systems also emerge.

In English — Approx. 80 pages — 17x25 cm — ISBN 9630517191 —
Cloth

AKADEMIAI KIADO, Budapest
Publishing House of the Hungarian Academy of Sciences



309

Vértes, Attila— Korecz, L&szl6— Burger, Kalman:

MOSSBAUER SPECTROSCOPY

The introductory part of the book summarizes the physical fundamentals of
M dssbauer spectroscopy, the purport of information obtainable from the para-
meters characterizing the spectrum, and the technique of measurement. The
other chapters review the results obtained by applying M6sshauer spectroscopy
in the chemistry of solutions, coordination chemistry, quantum chemistry,
metallurgy and biochemistry. The material contained in these chapters enables
researchers to collect information in their respective branches of science, in
addition, they are able to gain insightinto the possibilities of the useful applica-

tions ofthe M dssbauer effects for solving problems in their special field.

In English — Approx. 380 pages — Cloth — ISBN 963 05 1670 5

AKADEMIAI KIADO, Budapest ELSEVIER SCIENTIFIC PUBLISHING
COMPANY, Amsterdam
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A mew volume in the successful series

ABSORPTION SPECTRA IN THE
INFRARED REGION

Ed. by L. LANG

Volume 5

This is the fifth volume of the series which presents the infrared spectra of
selected organic compounds over the range 400—4000 em ™1, tegether with full
details of sample and experimental conditions. The empirical formula, molecular
weight and melting point of each substance is also given. The choice of the
spectra has been made by a panel of experienced spectroscopists, who have
given primary considerations to covering compounds which have been isolated
or synthetized recently. More familiar materials have also been included, gen-
erally because the spectra presented for them are more detailed than those of
other published sources, or because they refer to different experimental con-
ditions.

The volumes of ABSORPTION SPECTRA IN THE INFRARED REGION
provide a valuable source of reference which complements and extends existing
sources. Organic chemists and biochemists in academic and industrial labora-
tories, particularly in the petrochemicals and pharmaceuticals industries, will
find this series an easily accessible source of clearly presented infrared spectra
of an interesting range of compounds.

In English — Approx. 320 pages — Spectra of 300 compounds — 21 X29 cm —
ISBN 963 05 1768 X — Cloth

AKADEMIAI KIADO, Budapest E. KRIEGER PUBLISHING CO. INC.,
Huntington
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THE ROLE OF LITHIUM ATOMS IN THE STRUCTURAL
CHANGES IN Al-Li ALLOY

By
R. KamEL, A. R. ALl and Z. FARID

PHYSICS DEPARTMENT, FACULTY OF SCIENCE, CAIRO UNIVERSITY, CAIRO, EGYPT
and

F. ABp EvL-SALAM
PHYSICS DEPARTMENT, FACULTY OF EDUCATION, AIN-SHAMS UNIVERSITY, CAIRO, EGYPT

(Received 9. XI. 1978)

The dependence of structural changes in precipitating Al-10 at%, Li alloy on the anneal-
ing temperatures as traced by X-rays, electric resistivity and microhardness measurements
revealed the formation and subsequent dissolution of Al-Li precipitates in the temperature
range of 25—500 °C. The observed variations were attributed to the effect of the annealing
temperature on the behaviour of Li atoms within the Al matrix. The increase of the Li concen-
tration in the matrix due to the dissolution of Al-Li precipitates, being 3.75 at %, Li as obtained
from X-ray measurements agreed well with the value 4.0 at %, Li obtained from resistivity
measurements.

Introduction

It has been reported [1] that in supersaturated Al-Li alloys, the f-phase
(Al-Li) precipitated by annealing in the temperature range of 150—300°C
and dissolved at higher temperatures leads to the dispersion of the excess Li
atomsby diffusion through the matrix. Such structural changes affected largely
both the electrical [2] and mechanical [1] properties of the alloy.

The present work aims at tracing the role of Li atoms in the Al matrix
in the structural changes of different temperatures in the alloy from X-ray
diffraction tests. Also, it is aimed at relating the variations in electric resis-
tivity and microhardness to these structural changes.

Experimental

Samples of Al-10 at 9, Li were produced by a method previously de-
scribed [3]. Quenching from 560 °C to room temperature with a rate of
3 X 103 °C/sec was carried out to bring the samples in a metastable standard
condition of solid solution. Isochronal annealings were done by heat pulses of
10 min at temperatures successively increasing in steps of 20 °C. After each
heat pulse the resistance of the samples was measured at room temperature
using a standard potentiometric method [4]. A dummy sample helped to
account for the effect of temperature variation. Microhardness measurements
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were also carried out for the electropolished specimens after giving them the
prescribed heat treatments [5].

X-ray tests were performed using the Debye— Scherrer film technique
in a 114.6 mm diameter Philips camera [¢]. Pure Al was used as a reference
to ensure the accuracy of measurements and to detect the relative variations
in the lattice parameter of the tested samples.

Fig. 1. Typical X-ray photographs for pure Al and Al-10 at % Li alloy

A — Pure Al from the stock.
B —Al-10 at % Li from the stock
C — Al-10at % Liannealed at 250 °C
D — Al-10at % Liannealed at 400 °C
E — Al-10at % Liannealed at 450 °C
F — Al-10at % Liannealed at 500 °C

Results

Typical X-ray photographs for differently annealed samples of the preci-
pitating Al-10 at % Li alloy are shown in Fig. 1. The variation in the lattice
parameter as calculated from (422) Kal line with the annealing temperature
is shown in Fig. 2A. The lattice parameter initially decreased with the annealing
temperature followed by an increase at 450 °C. Changes in electric resistivity
and microhardness associated with the annealing temperature are also given
in Fig. 2 (Band C). The electric resistivity of the precipitating alloy initially
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Fig. 2. The change of lattice parameter (curve A), electric resistivity (curve B) and micro-
hardness (curve C) with the annealing temperature of Al-10 at % Li alloy
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decreased to 300 °C after which an increase to a peak value was reached at
450 °C, followed by a sharp decrease at higher temperatures. The microhard-
ness of AI-10 at % Li alloy decreased by annealing and reached a minimum
value at 450 °C, then increased at higher temperatures (see Fig. 2C).

Fig. 3. Dependence of lattice parameter (a0 and electric resistivity (0) on lithium
concentration

Lattice parameter and electric resistivity were found to be linearly
dependent on Li concentration as shown in Fig. 3 A and B. The slopes of
Fig. 3A and B assumed the values 0.0032 A /at % Li and 0.81 pficm/ at % Li,
which are in a good agreement with previous results [7, s ].
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Discussion

The different recovery processes here observed in precipitating Al-10
at % Li alloy were first reported by Kamel et al [2] using internal friction
and electric resistivity measurements. Accordingly, the present observed
recovery processes in the temperature range 25—450 °C might be ascribed to
the growth of coherent Guinier-Preston zones formed at relatively lower tem -
peratures [9] and the precipitation of the /3-phase (Al-Li) in the temperature
range 200—300 °C [1]. Since no precipitate except (Al-Li) exists, the dissolu-
tion of /3-phase takes place in the temperature range 300—450 °C [1]. The
redissolution of this precipitate caused an increase in the Li concentration
existing within the matrix, leading to an increase in electric resistivity of
3.3 fxQcm (see Fig. 2B).The elimination of the strain fields surrounding the dis-
solved precipitates [:o] may be the cause of softening observed in this tempera-
ture range.

The observed decrease in the lattice parameter due to dissolution of
[3-phase in AIl-10 at % Li assumed the value 0.0012 A (see Fig. 2A). From
Fig. 3A, this decrease in the lattice parameter corresponds to an increase in
Li concentration of about 3.75 at %. Also from Fig. 3B, the observed increase
in electric resistivity in the temperature range 300—450 °C corresponds to
an increase in Li concentration of 4.0 at % which agrees well with the present
X -ray data.

It was reported [2] that above 450 °C Li atoms diffused to the surface
of the specimen at which they are burnt. Above 450 °C the loss in Li concen-
tration in the matrix seems to be responsible for the observed increase in lat-

*tice parameter and decrease in electric resistivity. Due to the existence of
interaction energy between Li atoms and dislocations [1, 3], stabilization of
dislocations takes place as a process of anneal hardening [..], which leads
to the observed increase in hardness above 450 °C.
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PHONON DISPERSION RELATIONS IN bcc TRANSITION
METALS

By
B. P. Singh and M. P. Hemkar

DEPARTMENT OF PHYSICS, UNIVERSITY OF ALLAHABAD, ALLAHABAD-211002, INDIA

(Received in revised form 5. X11. 1978)

Phonon dispersion relations for the normal modes of lattice vibration in bcc transition
metals are computed along the three principal symmetry directions using the extended form
of the Fie1ex five-constant model. The calculated results are compared with the available
experimental data obtained from inelastic neutron spectroscopy and a far better agreement
than that obtained on the basis of other existing models has been achieved.

I. Introduction

In the recent past, a number of authors, such as Behari and Tripathi
[1], Singh and Sharma [2], Shukla and Padial [3], Mahesh and Dayal [4]
and Shukla and Cavalheiro [5], have calculated the phonon dispersion
relations of bcc transition metals using different lattice dynamical models. The
main drawback with these approaches is that they have not considered the
contribution of d shell — d shell central interactions. Consequently, their
results were not in very good agreement with the experimental ones.

Fielek [+] has developed a phenomenological model for fee transition
metals in which he has taken, for the first time, into account the contribution
of d shell —d shell central interaction. We have successfully applied this
model, in its simplified form, in the calculation of phonon dispersion relations
of noble metals [7] and fee transition metals [ ].

In the present paper, we have used the extended form of the Fielek
five force-constant model for bcc transition metals, to calculate the phonon
dispersion relations of a-iron, chromium, molybdenum and niobium along the
symmetry directions [001], [110] and [111]. The motivation of this study is
to check the accuracy of this model for bcc transition metals.

Il. Theoretical formulation

The secular equation determining the angular frequencies co(= 2nv)
of the normal modes of vibration in a cubic lattice can be expressed as:|

ID(g) - MoBIlI= 0, (1)
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where M is the mass of the atom and | is the unit matrix of order three,
g is the phonon wave vector restricted to the first Brillouin Zone (BZ). The
expressions for two typical elements of the dynamical matrix D(q) are given
below:

8 KZ
flu(i) = - —«x(l - epge.) - 4a8l — K + ——,
2
~12(5) = —aiSisS2Cs3,
where
cj = cos (aqf, st= Sin(aq) i- 1,2, 3
a = Semi-lattice parameter and N can be expressed as
ID'(q) -N I 1= 0. 3)
The two typical elements of this determinant are:
Dh(g) - jBi1- GC)+ K~ A'G() .
4

DUg) = ~BS 1523,

The expressions for the remaining elements can be derived in cyclic order
from (2) and (4).

The other quantities appearing in Eqs. (2) and (4) are: the radial force
constants axand a2 the nearest neighbours d shell — d shell central interaction
force constant 3, the ion core—d shell interaction force constant K, the d shell
— conduction electrons interaction force constant A' and according to
Krebs [9]

A=A, TEF W@ H) eGAa+ H 180

a
+ Hpe+ 2ke {P
l9 2t g 2kedP)

HH weG2(| H 1RO ©)

a
|7 2]+ 2kc(P)

71

Here H is the reciprocal lattice vector, e is polarisation vector, ROis Wigner—
Seitz radius and kc(P) is the Bohm—Pine [10] screening parameter. The
G{x) in the expression (5) is given as

G(x) = 3*_3(sinx — x cos X) .
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The five unknown parameters (og,a2 K, B and A') involved in the
solution of Eq. (1) are determined by expanding the elements of the determi-
nant in the long wavelength limit (q—.) and relating them to the three elastic
constants and two zone boundary frequencies vL and vTin [o:] and [1::]
directions (for oc-iron and niobium), respectively, but for molybdenum, the
two zone boundary frequencies chosen are vLand vT2in [co:] and [110] direc-
tions, respectively. In the case of chromium the two zone boundary frequen-
cies vL and vL, are chosen corresponding to [oo:] and [.:0] directions, re-
spectively. The resulting expressions are:

<+ R = —3aC44, (6.a)
A’ 4<<3(C12 - C44) kC{P) s (s -C)
K2

4n, Mvl = — 16 K + (s d)

K ~B-A'G(q)
K2
4n. Mv\ = — 4«, K (s -€)
3 K+-B8-A'G(q)

e MWtz - Sk A K2 )
3 K R-A'G(q)

4n, Mv\. = — 16 —4a, — K + K2 (s 'g)

K+2LB-A'G(q)

The solution of these equations determines all the five force constants. The
physical constants used in the computation work are listed in Table I, and
the calculated values of force constants in Table II, respectively.

Table 1
Physical constants

Elastic constants Lattice Zone boundary frequencies

Metal x 1011dyn cm - * co&s;)am [001] [quTHZ) [110]

Qu C,, C. X10-8 cm VL v VTt >
a-lron 23.31 13.55 11.78 2.8662 856 7.21 - -
Chromium 35.00 6.78 10.08 2.8792 7554 — — 9.4
Molybdenum 44.077 17.243 12.165 3.1468 5.51 — 4.67
Niobium 23.50 12.10 2.82 3.3004 6.54 5.08 — —
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Table 11

Calculated force constants in units of 103dyn cm-1

Metal a2 K R A
a-lron -50.6804 —13.9871 0.2481 0.0346 18.4702
Chromium —45.2785 -40.6255 -12.8488 1.7450 -34.7491
Molybdenum —71.9092 —42.2206 -124.1429 14.4880 80.4750
Niobium 186.5581 -18.8123 7367.9475 -200.5188 152.2360

Fig. 1. Dispersion curves along the symmetry direction for a-iron at room temperature. Solid
curves correspond to the computed frequencies. Experimental points are shown by o, v, A
(Minkievicz et al [11]) and ¢, X, 4 (Bergsma et al [12])

IIl. Results and discussion

1. tx-iron. We have utilized here the experimental values of the elastic
constants obtained by Rayne and Chandrasekhar [11] and the experimen-
tal phonon frequencies of Minkiewicz et al [12] and Bergsma et al [13].
It is quite obvious from Fig. 1 that there is over all a satisfactory agreement
between theoretical and experimental dispersion curves in all the directions
except the 27Tj branch near the zone boundary.
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2. Chromium. The computed phonon dispersion curves are plotted in
Fig. 2 along with the experimental values of phonon frequencies of Shaw and
Muhtestein [14] obtained from neutron scattering measurements. The elastic
constants used in this computational work are the measurements of Bolef
and de Klerk [15]. Fig. 2 shows that three is no very satisfactory agree-
ment between our curves and those obtained experimentally in the range P H.

Fig. 2. Dispersion curves along the symmetry directions for chromium at room temperature.
Solid curves correspond to present calculations. Experimental points are shown by o, 4, X,
(Shaw and Muhlestein [13])

The agreement is not very good either in 27Tj branch near the zone boun-
dary. However, they are better than the theoretical curves deduced from other
existing models.

3. Molybdenum. In this case we have taken the measured values of the
elastic constant due to Featherston and Neighbours [16]. The computed
curves are plotted in Fig. 3. The overall agreement between our dispersion
curves and those obtained by Woods and Chen [17] is quite satisfactory
except in the AL branch near the zone boundary and in the ET branch.
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4. Niobium. The phonon dispersion curves, calculated in the symmetry
directions using elastic constants of W asitewaki [18] are presented in Fig. 4.
They have been compared with the measured results of Nakagawa and
W oods [19]. The overall agreement of calculated phonon frequencies with
the experimental data is quite satisfactory except for the fact that the model
could not predict the crossing over of AL and AT branches. The SL branch
shows a disagreement with the experimentally obtained phonon frequencies

Fig. 3. Dispersion curves along the symmetry directions for molybdenum at room temperature.
Solid curves correspond to present calculations. Experimental points are shown by O, X, 4
(Woods and Chen [16])

near the zone boundary. The most salient feature of our computations is the
crossing over of 27T] and ETt branches, which has never been obtained from
any model so far.

The existing discrepancies, may however, he attributed to:

1) The neglect of the contributions of second neighbours d shell and the
angular interaction.

2) The neglect of ion core-conduction electrons interactions.

3) The form of dielectric function used (in present calculations Lindhard
dielectric function).

4) Assumptions of short-range type interactions.

5) The neglect of flexibility of the rf-orbitals in the present calculations.
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A comparison of present study with earlier workers indicates that this
model yields better results than those obtained with the models which do
not consider the contribution of d shell — d shell interactions. So we can infer
that our model is very suitable for the study of vibrational properties of
bce transition metals.

Fig. 4. Dispersion curves along the symmetry directions for niobium at room temperature.
Solid curves correspond to the calculated frequencies. Experimental points are shown by
0, X, O (Nakagawa and W oods [19])
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QUANTUM CHEMICAL STUDY OF INTERNAL
ROTATIONS IN LIQUID CRYSTAL MOLECULES

By
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QUANTUM THEORY GROUP, PHYSICAL INSTITUTE, TECHNICAL UNIVERSITY, BUDAPEST AND
CHINOIN PHARMACEUTICAL AND CHEMICAL WORKS, BUDAPEST

(Received 13. Il. 1979)
The rotational barriers of p-azoxy-anisole and dibutyl-phenyl-benzoyloxy-benzoates
nematic liquid crystal molecules were calculated by the PCILO and CNDO/2 quantum chemical

methods. It was found that motion in the side group is hindered to a given extent. According
to chemical evidence the central part of the molecules is supposed to be completely rigid.

1. Introduction

The microdynamics of liquid crystal molecules has been studied earlier
by means of quasi-elastic neutron scattering, NMR spectroscopy and dielectri-
cal relaxation time measurements, respectively [1—4]. In this work quantum

Fig. 1. The PAA molecule

Fig. 2. The PB-DBB molecule

chemical results on p-azoxy-anisole PAA, (Fig. 1) and dibutyl-phenyl-benzoy-
loxy-benzoate DB-PBB, (Fig. 2) are summarized. The former is nematic in
the temperature range of 116—136 °C, while the latter in the range of 85—
183 °C, respectively.

2 Acta Physica Academiae Scientiarum Hungaricae 46, 1979



70 S. KUGLER and G. NARAY-SZABO

The PCILO [5, «] and CNDO/2 [7] methods were used simultaneously.
It is known that both methods yield semiquantitative results for barriers to
rotation around o*bonds [s]. In case of delocalization serious discrepancies
can arise [s]; the problem is discussed in case of our model molecules, too.
These were used in order to reduce computer capacity necessary to the cal-
culations. Details of calculations and results are given separately for both
molecules in subsequent sections.

2. p-azoxy-anisole

Rotation of the methyl group

To examine the reliability of both quantum chemical methods for the
rotation of methyl group around the CO a-bond (see Fig. 1) methanol was
examined as an example. PICLO yielded 0.79 kcal * mol-1, the experimental

Fig. 3. Simplified model of the PAA molecule

value is 1.07 kcal * mol.. [s]. According to literature data [10] the CNDO/2
method, combined with arigid model of the molecule, yields 0.67 kcal *mol..
for the barrier height. If a non-rigid molecular model is used, i.e. all bond
angles and bond lengths are optimized during rotation, 1.29 kcal *mol.. is
obtained [11]. Thus the error ofthe PCILO and CNDO/2 methods, in reproduc-
ing barrier heights of the methyl group in molecules of the type CH:—0O—R,
R stands for an aliphatic or aromatic group, can be estimated to be about
0.3 kcal *mol-1.

To reduce computer time and capacity the PAA molecule was modelled
as shown in Fig. 3. The adequacy of this model is proved as follows. First,
the methyl and metoxy rotational barriers were calculated for the whole
PAA molecule. It has been found that these values are in a good agreement
with those obtained for the model of Fig. 1. The difference between both
potential curves is smaller than 0.1 kcal *mol-1. Secondly, rotating the mole-
cular fragment, indicated in Fig. 3, by an angle of 180° around the N—C bond
no significant change (... kcal *mol-1) of the barrier can be observed.
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A rigid model of the methyl group rotation was considered first. The
experimental molecular geometry, obtained by X-ray diffraction technique
in the solid phase, was used [12]. PCILO gave 2.8 kcal *mol.. while 3.0
kcal * mol.. was obtained by CNDO/2 for the barrier to methyl rotation.
According to very probable nonbonded H (benzene) — H (methyl) interactions
as indicated by the enlarged COC angle 118.7° [12] instead of the normal
tetrahedral value, 109.5°, the COC (a) and OCC (B) angles were optimized for
each torsional angle, a and R were varied within the range of 109.7°—121.7°
and 119.2°—128.2°, respectively. It is found that the effect of variation of
both angles on the torsional potential curves is almost the same. This indicates
that it is primarily the H ... H distance which affects the barrier.

Using a nonrigid model, where the COC angle was optimized for each
value of the torsional angle, T, the potential curve for the rotation of the
methyl group was investigated. Seven points, in the range of 0—60° in inter-
vals of 10°, were calculated using the PCILO method. It is found that the
curve, obtained numerically, is very close to the usually applied threefold
expression:

F(t) = (1 — cos 31)

with V3= 3.85 kcal *mol-1. The maximum deviation between both curves
does not exceed . per cent.

The rotational barrier was calculated with the CNDO/2 method, too.
The experimental geometry was used except for the optimal COC angle which
was taken from the PCILO calculation. The barrier height is 4.2 kcal «mol-1.
The equilibrium conformation was found to be, like in case of the PCILO cal-
culations, the staggered one. The experimental barrier height, measured in
the solid phase by NMR [3] and by neutron scattering [2], is 3.7 and 3.51
kcal * mol-1, respectively. The fair agreement between experimental and theo-
retical values suggests that the rotation of the methyl group is governed by
intramolecular forces. Interactions with neighbouring molecules may play
a minor role only.

Rotation of the methoxy group

When rotating the methoxy group around the OC aromatic axis the
COC angle was varied within the range of 100—120° while the OCC angle
was put equal to 120° (see Fig. 1). Using the PCILO method 4.5 kcal *«mol..
is obtained for the barrier height as shown in Fig. 4. In equilibrium the C—0—C
plane is perpendicular to the benzene one. According to X-ray diffraction
studies these planes coincide in the solid phase. However, recent neutron
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scattering measurements on the nematic phase [13] seem to confirm our
results. It is supposed that, in this case, according to the weaker intermolecular
forces, the conformation is similar to that of the free molecule.

The PCILO method gave somewhat contradictory results because,
according to the localized orbitals, used in the calculations, the barrier height
was found to be dependent on the Kekulé structure attached to the jz-system.
In the planar molecule a difference of 1 kcal *mol-: was observed when the
double bond of the Kekulé structure was positioned cis or trans with respect

Fig. 4. Potential curve for the PAA methoxy rotation (nonrigid model)

to the methoxy group, respectively. We feel, however, that this discrepancy
does not have an influence on the equilibrium position of the methoxy group.

Rotation around C—N bonds

As was mentioned before the PCILO method proved to be contradictory
in this case, too. The difference in the barrier heights, calculated with different
Kekulé structures, was found to be 2.5—3.0 kcal * mol.. for all conformations.
According to the failure of the CNDO/2 method to reproduce barrier heights,
due to rotations around delocalized bonds [9], no calculations were performed.3

3. Dibutyl-phenyl-benzoyloxy-benzoate
The DB-PBB molecule contains three benzene rings and two butyl

substituents (see Fig. 2). As in case of the inner part of PAA, rotation around
CC and CO bonds of DB-PBB cannot be described, using the CNDO/2 and
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PCILO methods correctly. Therefore the butyl group was investigated only.
A similar model as for PAA, combined with the PCILO method, was used

(see Fig. 5).

G- v

|:AF|E v -0 - ¢ f
V. V -A x0-H

Fig. 5. Simplified model of the DB-PBB molecule

Methyl rotation around the C'Cn bond

A rigid model of rotation of the methyl group was considered first. The
initial geometry was supposed to be a planar one as shown in Fig. 5. The
C—C—C angle was put equal to the tetrahedral value. As in case of PAA,
the potential curve for the methyl rotation was found to he of cosinusoidal
type. V3= 2.45 kcal * mol.: close to the PCILO value for ethane as calculated
by us 1.99 kcal *mol-1. This indicates that the methyl rotation is not very
much affected by other parts of the molecule unlike to the case of PAA.

In the next step the CICIICIn angle was optimized. Using this non-rigid
model no significant distortion (o ... kcal *mol-1) of the cosinusoidal poten-
tial curve was observed. V3= 2.50 kcal *mol.. with 115° for the optimized
CICIICIn angle. In energy minimum the methyl group is in a staggered posi-
tion with respect to the CnLU and CnHs bonds.

Ethyl rotation around the CuCm bond

A nonrigid model was used. The H.CICIICIn dihedral angle was put
equal to 180° but the CICIIC.: angle was optimized under rotation of the
ethyl group. It was varied within the range of 109—115°. Fig. s represents
the change in energy in the course of a 360° rotation around the carbon-
carbon bond. X = 0° corresponds to the planar trans-form (see Fig. 5). The
rotational barriers are: \'3= 2.2 and V3= 3.2 kcal *mol-1, respectively.
The ab initio STO-3G values for re-butane are: F: = 3.58, P3=5.72 kcal * mol-1,
respectively [14]. The PCILO method generally underestimates barriers
to rotation around cr-bonds. For example the calculated and experimental
(in parentheses [s]) values for ethane, methylamine and methanole are 1.99
(2.93), 1.49 (1.98) and 0.79 (1-07) kcal *mol-1, respectively. Therefore the
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comparison with the ab initio values indicates a qualitative agreement. The
overall shape of the rotational curve is similar to the ab initio one. Thus it is
concluded that, in DB-PBB the rotation of the ethyl group is similar to that
in n-butane. The choice of the Kekulé structures was proved to be irrelevant

in this case.

Fig. 6. Potential curve for the DB-PBB ethyl rotation (nonrigid model)

Fig. 7. Potential curve for the DB-PBB propyl rotation (nonrigid model)

Propyl rotation around the CnICIV bond

In order to study this motion the phenyl ring had to be rotated by 90°
around the CIVC (aromatic) bond in order to avoid close contact between
hydrogen atoms of the aliphatic chain and the phenyl group, respectively.
As it is seen in the subsequent subsection this is the equilibrium conformation
of the butyl group. The carbon atoms of the propyl group were supposed to
be in a planar arrangement during rotation. This choice is supported by the
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results of the previous subsection. In energy minimum the propyl moiety
was found to be planar. A nonrigid model was used the cncm civ angle was
altered within the range or 112—115°. The potential curve is given in Fig. 7
yielding barrier heights: V3= 2.4 kcal *mol.: and V3= 2.6 kcal *mol-1,
respectively. The overall character of the curve is similar to that obtained for
the ethyl rotation. Changing the Kekulé structures a minor discrepancy (0.2 —
0.3 kcal *mol-1) was observed in the calculated energy.

Butyl rotation around the CIVC (aromatic) bond

Using a nonrigid model the initial geometry was chosen to he a planar
one as shown in Fig. 5. The CnICIMC (aromatic) angle was altered within the
range of 112°—115°. A considerable difference (0.7—1.0 kcal * mol-1) in the

Fig. 8. Potential curve for the DB-PBB butyl rotation (nonrigid model)

calculated energy values, due to different Kekulé structures, was observed. The
averaged potential curve is givenin Fig.s .The barrier heightis 1.2 kcal *mol-1.
Due to this inconsistence ofthe PCILO method the barrier height was calculated
by the CNDO/2 method, too. A similar curve with V3= 2.2 kcal *mol .
was obtained. In equilibrium the butyl and phenyl planes were perpendicular
to each other.

Conclusions
|

Computational results are summarized in Table I. The most important
conclusions are the following:

1) Rotation in the methoxy group of PAA and in the butyl ones of
DB-PBB is hindered to a given extent. However, barriers are not very high,
thus a limited motion, especially at higher temperatures, is possible.
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2) The equilibrium geometry in vacuo is similar in both molecules. The
plane or the substituent is perpendicular to the phenyl one. In case of
DB-PBB the butyl moiety has a planar zig-zag form.

Table |

Barriers to rotation of different groups in PAA
and in DB-PBB (in kcal *mol-1)

PCILO CNDO/2

rigid nonrigid rigid
PAA methyl* 2.8 3.85 3.0, 4.2**
PAA methoxy — 4.5 —
DB-PBB methyl8 2.45 2.50 —
DB-PBB ethyl8 — 22,32 -
DB-PBB propyl — 2.4, 26 -
DB-PBB butyl 12 2.2

* Experimental values: 3.51 [2] and 3.7 [3].
** Optimal COC angle taken from the PCILO calculation.

§For ethane 1.99 is obtained (experimental value: 2.93 [8]).

BADb initio (STO-3G) values for re-butane are 3.58 and 5.72, respectively [14].

3) Rotation in the inner part of the molecules (—N(0)N— and
—C(0)0 —) is not to be described by either of the PCILO or the CNDO/2
methods. However, according to chemical intuition, a considerable delocaliza-
tion through these parts of the molecules occurs. Therefore rotation around
NN, CC and CO single bonds, present here, seems to be considerably hindered.
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The free convection flow of electrically conducting fluid along a semi-infinite horizontal
magnetized plate is analysed, when the plate temperature oscillates about a constant mean.
The basic steady flow is purely buoyancy induced, while the oscillations in the plate tempera-
ture cause a time-dependent boundary layer flow and heat transfer. The unsteady boundary
layer equations are linearized and the first two approximations are considered. Two separate
solutions valid for high and low frequency ranges are obtained by series expansion method in
terms of frequency parameters. For very high frequencies, the oscillatory flow pattern is of
‘shear-wave’ type unaffected by the mean flow. The skin friction in the very high frequency
solution has a phase lag of 45° while the phase of heat transfer oscillations is ahead of the plate
temperature fluctuations by s/4.

1. Introduction

In unsteady laminar boundary layer theory one area of study which has
received much attention in recent years deals with boundary layer responses to
imposed oscillations. This theory was initiated by Lighthitt [1] to study the
effect of free stream oscillations of flow and heat transfer along plates and
cylinders. The extension of this theory for free convection boundary layers
along a semi-infinite vertical plate was carried out by Nanda and Sharma [2],
Eshghy, Arpaci and Clark [3] and Kelleher and Yang [4]. Recently
Muhuri and Maiti [5] have studied the oscillatory free convection flow along
a semi-infinite horizontal plate. It is, however, remarkable that the free
convection oscillatory flow of an electrically conducting fluid along a semi-
infinite horizontal plate has received no attention. The present investigation
is, therefore, devoted to the study ofa magneto-hydrodynamic free convection
oscillatory flow of electrically conducting fluid along a semi-infinite horizontal
plate, when the plate temperature oscillates about a constant mean. The
specific aim of the present study is to gain further insight into the flow of
conducting fluid of small viscosity when the magnetic field is applied at the
plate itself. The possibility of setting up a uniform magnetic field in the plate
has been very well discussed by Zhigutev [+]. The oscillatory flow and heat
transfer problems are important in an engineering sense because such flow
occurs very often in practice. The effect of surface temperature oscillations
on the skin-friction and heat transfer from a surface to the surrounding flow
is of special interest to the heat transfer engineer.
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We consider a thin magnetized flat plate extending from 0 to oo in the
m-direction where x measures the distance along the plate lying horizontally
in quiescent electrically conducting viscous fluid (see Fig. 1). The plate is
heated to a temperature Twand is placed in an ambient at Tx. Thus the basic
flow is entirely due to buoyancy effect in the presence of externally applied
magnetic field over a horizontal plate whose temperature differs from that
of the free stream. The effect of the buoyancy force is to induce a longitudinal
pressure gradient which causes flow. It is an interesting flow in its own right
yielding a steady outer flow for the boundary layer as a result of free convec-

Fig. 1. The physical system

tion alone. Moreover this problem should be easily amenable to experiment
in a laboratory. The steady free convection flow over the plate is perturbed
due to a superimposed weak time-varying plate temperature distribution
e(Tw— TJ) cos cot, where is the frequency of oscillations. The amplitude
of the oscillations is assumed to be small (of order ¢) compared with the mean
flow induced by the convection. This enables us to employ the technique of
the linearization for the perturbation due to oscillations.

The basic steady flow is considered using the Karman—Pohlhausen
method and an approximate solution to be used in the subsequenty study of
unsteady flow is obtained. Two different solutions for low and high frequency
ranges are developed for perturbation equations. The method of solving the
problem is essentially the same as developed by Lighthitt [1]. Here, of course,
we have extended Lighthill’s technique to obtain series solution for low
and high frequencies. The matching between the two solutions is found to be
quite satisfactory. For very high frequencies the amplitude of the rate of heat
transfer fluctuations increases with coand its phase is ahead of the plate tem-
perature oscillations by 45°. On the other hand, the phase of skin friction oscil-
lations lags behind that of the plate temperature oscillations by 45°.

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



FREE CONVECTION FLUCTUATING FLOW 79

2. The basic equations

We consider the two-dimensional free-convection boundary layer flow
of an incompressible, viscous and electrically conducting fluid past a semi-
infinite horizontal flat plate, when the magnetic Reynold’s number is very
small. There is no magnetic field in the distant fluid but in the boundary
layer there is a field generated by external means within the plate itself. If
(u, v) and (Hx, Hy) are the velocity and magnetic field components, respec-
tively, the equations which govern the flow in the boundary layer, in MKS
units, are

du du 9u 9 s2 U
e - bvn—-+ v—- P+ATVNelll + ev+Y +
L dt ax 9y ax . dy2
(1)
8HX | 3HXx
+ pe A,
dx Y
o= — —p+-pM - Q> 2)
YW\ *
L T N LR -4 R IR T )
dt AX Y% { &ax 87 2y
4)
Ax 9y
9 N+ A)HX o , (5)
ax s Y
E---h M__g_(_)____[_v__g_q_: a__:_a_2_9__ (6)

dt ox 9y 9y 2

where 0= T — Tce, T being the temperature in the boundary layer. The fluid
has density g, kinematic viscosity v, electric conductivity a, magnetic permea-
bility jieand thermal diffusivity a. g denotes the acceleration due to gravity
and r]is the magnetic diffusivity defined as

V = .

In accordance with the usual practice, we consider density variations
only in the buoyancy force term, other density variations are neglected within
the framework of incompressible fluids. The simplest way to do so is to take
the equation of state in the form

B= e«[i —B(T- T®], (7)
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where B is the coefficient of thermal expansion and is the free stream density.
Using (7) in (2) and eliminating

P+ ~(nel
from (.) and (- ) we obtain
du du du
_9_ e 1- Ma— ----- h Va—--- = V-E?’-u-
a 0ol X y 9y3
' 3H ©®
= X
EL JL +HY
B 9y ax
The boundary conditions of the problem are
= M= o,, v= 0, Hx= HO pg— 6W1+ ecos cot),
v °oo- 'y —y 0 — " 0, HXx 0, H =m0, B—O0; 9)

9y

where wis the frequency of the temperature fluctuations and Qv= Tw —
The magnetic field is applied at the plate in the ~-direction.

The solutions of the above equations are obtained in terms of complex
functions, the real parts of which have physical significance. The plate tem-
perature which can be written as 6W  edweint consists of a basic steady distri-
bution 6Wwith a superimposed weak time-varying distribution edwetnt. We
assume the following forms for u, v, HXx, Hy and B

n = usT- eulelnt, v = vs+ eiqelnt,
Hx= Hxs+ eHxleiat, Hy = Hys + eHyleM, (10)
B= 0S+ es 1 eiarf,

where us,vs, Hxs, Hys and 6S satisfy the steady-state hydromagnetic free con-
vection boundary layer equations

9 9us 3us 3 us dés
+ U = V- +
dy dx 9y 9y3 dx
9 9H xs (1D
\h xs® - + Hys
e 9y dx Y
9H)G.+ V>9H)6 His dus s Ik _ i 2Hxs ) 12,
dx dy dx 9y 9y4
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dos 90s 3.8
Us + Vs .
dx 9y 9j.
_9n+ N =0,
o * ay
9H xs dHyS _ ¢
AX Yy

with the boundary conditions

Yy 0; 0, vs 0, Hxs Ap, ds — oW
Y »xo00. M-VO, -7~ -0, HAX5 0, Hys—0, 0,-0. (16)
9y

Neglecting squares of e and dividing by e‘nt, we find that u, vv A x1, Hyl and Ol
satisfy the oscillatory part of the boundary layer equations

0 - i 9
° jcoul 4~ us °¢! Vsduy+ Wl A
dy L 9* 9y dx ay
te 9 g, 9xt 'r );I—I_]ysQlfstr. L 94  Hyl 3ijxs N
e 9y dx dy 9 ay
oy 3M g pA%
9jJ an
. Hxl 9Hxl Axs 9H XS
1coOHX « dX+ VS —mmmm X _____ o H 9Uy
on 9] dx oy dx
Hys* - - HxI-* - -1 ,
y on dy 02 "
901 . 901 . 90s :  90s _ 9, Os
+ »S - + 1 —-m @ = a -
dx 9J on: 9] 9y2
9«] 9tq
on: 9y '
o Ax , 34,
£.= o y
on: 9J
with boundary conditions
Y= 0 ig=0, tg= 0, H..= 0, 0X= 0W
IMm
J »1 — 0, 9 o» ﬂ)q_—o, Hyl—o, 0X >0
y
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3. The steady state solution

Equations (11) to (16) describe the steady state free convection flow of
an electrically conducting fluid over a semi infinite horizontal magnetized flat
plate maintained at a constant temperature Tw. These equations are the same
as those obtained by Gitr and Casan [7] for electrically non-conducting fluids
but the boundary conditions are different. They have assumed the existence
of a uniform free stream velocity whereas in our case the free stream is assumed
to be at rest. Thus the flow is purely due to buoyancy force which induces a
longitudinal pressure gradient

N = ~
% gRe dxjgedy. (23)

This pressure gradient causes the flow (see Sparrow and Minkowcz [:]).
For the flow below the plate, the coordinate y would be reversed to measure
distances vertically downwards and the negtaive sign in Eq. (23) would be
deleted. It follows that with a flow above the plate for which TwJ>T,, or
for a flow below the plate for which Tw< T, the induced pressure gradient
Qp/gx is negative resulting in an accelerated flow. For flow below the plate for
Tw J> or for flow above the plate for which Tw<J T,,, the situation will
be just reversed. It is therefore sufficient to consider only one of the four situa-
tions. For convenience we shall discuss flow above the plate for which Tw> T,,.

We shall employ the Karman—Pohlhausen method of integration to
solve the steady state equations. Integrating Eqs. (11) to (13) over the width
of the boundary layer, we obtain

| ~e . rr dHO
+gR— \ My H—ello—" 0, (24)
ay2 vy=o g dx Jo y Q ax
ldH
X -0, (25)
9y )y-o

AT liesdy + a 908 = 0. (26)

dx Jo By ,y=

We assume the steady state profile as:
us = UAQr]l— 1l + srjl — rjl) — UBIyii — 3{ + 3rjf — rj{), 27)
Hxs= HO(1 - 6tl+ 8~ - 377, (28)

B, = 041 - 241+ 22 - V), (29)
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where
A HOU I 30d) 4/ied
a 15 Q
-E-(A (A
£:(7(A)
HOU 60 rjd 4/ze s d
B =
- (Ne )
a ~ N H 0) 5q dx
ax

Vi = Y/, V.= ylov U = (gBOo0)2/s {vx}115.

0 and (m are the viscous and the magnetic boundary layer thicknesses, respec-
tively, and these are to be determined with the help of integral equations (24)
and (26). The expressions (27) to (29) satisfy the boundary conditions (16)
and the steady boundary layer equations (11) to (13) aty = 0.

Substituting (27) to (29) into (24) and (26) and considering only the
similarity cases, we get

(36 — 5s) O: = 50(8,4 - 3B), (30)
10 89A 116
m= &2 (31)
420 168 ,
where
. it "
«5= O »2/5 8 = = 125
\gROW gRo*
5s — 30* 15 A R a4A
+ L 0% B -1 + 0%\
50 & 53 50 0*0of
'? 2 4/5
s = He Hi r q, = |_|_|I x4\
Q2  gRdco)
ff = vl/a, A- T1j.

It should be noted that the mean horizontal velocity induced by steady con-
vection is zero at the leading edge of the plate, the analysis is invalid for small
values of x. However, the mean velocity grows as xlls and so the results are
valid far downstream.

The results of practical interest are the skin friction and the rate of
heat transfer from the plate to the fluid which can now be obtained easily.
The skin frcition

du*

oy RO
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Fig. 2. The steady state velocity us/u vsy for /1= 0.1, 10 and s= 0.1,

in the non-dimensional form is obtained as

(vx)15 1.1 3A - B
(gBW S5 [0y y=0 o
The rate of heat transfer
_ 8T,
b= -
. 3y y=0
in nondimensional form is
NUs = (v2 x2)115 1 90,
M &N yus | oJ y=0
= 2/0*,

where Nus denotes the steady state Nusselt number.
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Yy
Fig. 3. The steady temperature field 0J6Wvsy for A= 0.1, 10 and s — 0.1, 0.5, 1

85

The solution of Egs. (30) and (31) are obtained for cr=0.72; A= 0.1, 10
and s= 0.1, 0.5 and 1. Corresponding skin friction and the rate of heat trans-
fer are calculated and the values are given in Table I.

0.1
0.5
1.0

A= 01

0.908
0.894
0.793

Table |

H.

0.355
0.283
0.190

T

0.890
0.599
0.304

A=10
m
0.380

0.309
0.256
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It is obvious that the values of skin friction and the Nusselt number
decrease with the increase ofthe magnetic field strength s. The effect of applied
magnetic field on the velocity and temperature profiles are shown in Figs. 2
and 3. It is found that as sincreases the velocity decreases and the boundary
layer thickness increases, while the temperature inside the boundary layer
increases with s. These results are expected from physical consideration too.

We, next, investigate the nature of the flow and the temperature fields
due to the fluctuations in the plate temperature. Two separate solutions are
obtained: one for small frequencies and the other for high frequencies.

4. Low frequency solution

We have already obtained the basic steady flow using Karman—Pohl-
hausen method, here again we shall employ the same method to solve
Eqgs. (17) to (22). Integrating (17) to (19) from y=0 to y= », we obtain
the averaging conditions

. - — )
| 8aiti + gB JL réldy + J+IH ys” + Hyl B =° (349

| 3y2 ,y=0 dx Jo el dy oY )y=o

Hxl
iw  Hxdy = —g MY (35)
J0 3y }y-o
I

iof oady + — [ (uso1 + u,09dy = —a 00t ] (36)

Jo dx Jo dy )y=o0

Consistent with the boundary conditions (22), we assume the profiles for
ulb Hxl and B1

Ul= UA&ir- H + g¢itf - 3rjff)j + UBJfg - 3rl+ H + 17?), (37)

- 8r2+ 24$ + D*Ne - 2r&+ vt), (38)

. =1 —a1?+ 37l + CXrix— 3r\ + 277) + (M —277?2+ 7. (39)
w 2a

In (37) to (39) Ax, Bv Dv D2and Cx are functions of x and o and are to be
determined. These profiles satisfy the conditions

ldus _ 03M . /h'férxs d3H xI . }llys 024 x1 4 Uyl d2H xs
\dyly o dyA y=0 el 3y2 0y2 dy?

(40)
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= |H ,-~"+Hunur | (41)
i 932 y=o oy ay ly—o
icoOw =<x ”ZOF! 0 (42)
9y 2 /y=0

which are obtained by evaluating equations (17) to (19) aty = 0. Substituting
(37) to (39) in (34) to (36), (40) and (41), we find that the unknowns Av BJt
Dv D2and Cxare given by

25 Ad* 5 3 d -Pj
A = 20T o, @A —dg)Co\xd 5P . B2
3 0t3 12 " (5 dx) 2 + 3
d*3 2 d
En: ------ SD,0*2 -----m-mm - - X— A
2 5 dx 35+ 60 * 2 I
60Ad*2
D2= -7 7 [ico*A, + 18(2,4, + B)] 25 X9 1pn (43)
1250*6 12 dx 51
-6/5 (3/5 + X—
dx T DI+ T D2
. 3 d\ 173
CX= — -(36 + 9C, + ico*a) — erd*2 ... h *—
60 5 dx 1260
17cr . P 5
—C, D Ico L Ico
30 5040 (24 N 504 1008
1260 2520
where co*J denotes the non-dimensional frequency parameter. Eqs. (43)

I \
may be solved by expanding Av B15£),, D2and C, in the series of the form

Al= ~(ico*)nA,,. B1=2(™ *)nBm-
=0 n=0

x= 2 (*Wr cl »1 = 2 (ict")n Di« (44)
12=0 /1=0

D2= 2 D2
7= 0
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Substituting (44) in (43) and comparing the coefficients of like powers of
(ico*) on both sides, we get a series of simultaneous algebraic equations
which can be easily solved for Aln, BIn,DIn,D2n and CIn(n = 0, 1, ...). It
should be noted that the power series (44) probably will not converge for all
values of co*, but they ought to be satisfactory for small values of frequency
parameter.

The solution of Eqgs. (17) to (20) in the limiting case co—m0 is the quasi-
steady solution to be denoted by (w0, v0), (Hx0, Hy0) and 0Q These are the coeffi-
cients of e in the velocity, temperature and magnetic field distributions for
steady flow with an imposed plate temperature 6*(1 + e). Hence

(U0, £0) = T-(M>@s)
(XA yo)==0*-7-(56 9 y5),
30*

BO= ew ~ 6. (45)
90*

That this solves Eqs. (17) to (22) when co—m0 can be verified by direct sub-
stitution. It can also be verified easily that this quasi-steady solution corres-
ponds to A 10, BI0, C10, D10and H20in (44). Expressions (37) to (39) can be now
expressed as the sum of the in-phase and out-phase components as

M —uod- iu2 HXL— Hx0 -f- iHxX2,
0i = 0o+ 62 (46)
The velocity, the magnetic and the temperature fields may now be written

in the form
u = us-j- eRycos (cot aXx),

HX= Hxs+ eR2cos (cot + a2,

0= 6S+ eR3cos (cot + ad), (47)
where

R, = (uS + ui)l = tan-1
H

R2= (Hio+ a2 tan-! Y
Hx0

R3= (0* + el)12 tan-
Br
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In free convection problems the skin friction and the rate of heat transfer at
the plate are always of primary importance, we shall study the effect of mag-
netic field on these characteristics. The skin friction in the non-dimensional
form is found to he

niget @b
i e Real
o n=0
= eR4cos (cot -f- a4) say (48)

The rate of heat transfer for low frequency fluctuations is obtained in dimen-

sionless form
[ picot @

---------- 2 (*"T c.
<5* n=o

(49)
= eRscos (cot -f- a5 say .

5. High frequency oscillations

For very high frequencies Lighthitt [1] has shown that the oscillating
flow is to a close approximation an ordinary “shear wave” unaffected by the
mean flow. Following Lighthitt, we get the oscillatory component of tem-
perature 6V as

which is obtained by retaining the terms with the factor co together with the
derivatives of the highest order in (19). This shows that when the frequency
of surface-temperature oscillation becomes very high, the thickness of the
oscillatory boundary layer is of order y a/co and it should be confined in a very
thin region adjacent to the plate. Here we again seek a series solution in the
high frequency range, utilizing this limiting solution as the zeroth-order
approximation. For this purpose we expand uv Hxl and in the inverse
powers of ym

D 1 1
JR— “i12 + eee
U+ y(o Ml + l@ i2 5

= HxI0-- ! Hx, HA2  eee s (50)

y 0) @

— 010 + 7=- 0L, H-—--012 + sees
I co [e0]
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Introducing the variable z — Ycoy, (17) to (19) take the form

0s Uy _duy 1 3 1l ous
023 02 ym 02 L ez
OH xI OHXx
-J M-\ H= ,
a2 dz
1 i i XX . 04.X5)1
B {«S—Q—M £y 0«s irr  atixi bFIXl—’X_)
® 02 0* dx Q o 3* 1J
— L BrE> (51)
)32 dx
OZHX]_ Hxl dHXl + ’Qia‘f ] —U¥-- H |‘O'vIS +
a Ly iz 7 0 R 02
. Tas 0Ax1 hft,dHXS tv, ONi " 07s
Wi dx dx dx (120
di 61 00! 1 *
et —_— vs -7A- + OO§\_ — 6 “M 9 —I
02 -N'= V& 62 02 @ 0* dx 1

W ithin the oscillatory boundary layer, the steady flow is approximated as

"0« 2 (a2
s= ws(0) +J ° y2 (a2u + .

dy y» L2 (oy2 |y=0

:(3d-B))Oé\6+

Hxs= Hxs{0) + y dHx N Y2 (OZFIX- N
Oy Jyo L2 ( 3y2 jy=0 (52)
= 40— ’50’(‘192 +
. 00s Y2 026s
¢B= 0S(0 )+ + + o
dy )y-o 2 oy2 y=0
= gn 20w Z+
= Yop 21

Substituting (50) in (51) and using (52), we get the following equations for

u 10’ -~xio aQd O0io
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03«10 . Omlo

= 0,
02® 02
02Axo . ..
— iHxio = 0,
023
02010 _ -0
02i '
with boundary conditions
0: «O = 0, Hxl0o - o0, 010 — 6u,,
00 «wjg_”Q » O«io g v Axwo —0,

The solution of (53) is

Moo= 0, HxIO= 0, 010= Qwe ,

91

(53)

(54)

(55)

which is unaffected by the steady mean flow. Interaction terms, however,
appear in the subsequent higher approximations. The next non-zero term in

0! is 013 which satisfies the equation

013— ie3= 3A~ B un 2%,
0z2 10&r 02

z= 0: 013= 0; z 0o; 0i3 —=0.
The solution of (56) is

6WU 3A — B 1z3 | * 2 —yr«z

T 1 1

20a ox 3 2 \fijet ~ 2i/a

The first non-zero term in «t is m1B which satisfies the equation
. 0«18
,» 0BUIk - Lot 9d013,
023 02 X

I =0 op=0 z—o0: ub—>0, 27 »Q.
02
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The solution of (58) is

3gR6w U (3A - B) 7M2 -3m2
.
' somox2(M2—m2  3M  2MLM2- m2)
31M4- 22M2m2+7m 4
H 2 (59)
IM3(M2m2)?

55 M 6- 45 Ailm2+ 29 M2m4— 7 m6 o \WZ ¢

+
2M4(M2— m23
where M = |/i7&, m = ]/i/r- The non-zero term in Hxlis j2/x17 which satisfies
329 X7 Hxii 6.4 0 3uie
4 - THxii =
25
0z2 X 02 (60)
z=0 Hxll = 0 Z—Poo axi7= 0
Solving the above equation, we get
9gRewUHO0O61(3A - B) - e-MZ z3 2M
e, = Pe~z + A 22+
625wax3(M 2 — m2) M2-1213 M2- 2
2z(3M2 {2 SM(M2+ 12 5M2- m2 IZZH- 4Mz
_______________ n
(M2- 122 (M2- 123 2M(M2- m2) M2-12
2(3M2+ I 17M4—2M2m2+ m4 2M
( 2 + 2+ + (61)
(M2— 122 2M2(M2- m22 M2-12
31M4- 22M2m2+ 7m4 Me~MZ me
+
2M 3(Af2- m22 M2- 12 m2 12)

55 Me— 45 M4m2+ 29M2m4- 7m6
2M4AM2- m2)3

where 1= Yi/rj and P is a constant of integration which can he obtained with

the condition Hxll — 0 at z = 0.
For high frequency oscillations the rate of heat transfer and skin friction
characteristics of the problem can now be obtained easily. The rate of heat

transfer in dimensionless form is

' * 1/2
aw ¥ f aw cos (wt -f- ae), (62)
vo2¢ 40w*
where
3A - B
«, = tan -u[> + Y2<5+2
40 fé w*22
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Fig. 4a. Phase angle a4 of the oscillating skin friction vs a>*/ca* for A= 0.1 and s= 0.1, 0.5, 1

The Nusselt number at the plate has a phase lead which tends to shear-wave
value jr/4 as co—>-00. The skin friction in the non-dimensional form is obtain-
ed as

* 30**(3A - B) 24er32+ 4ler + 28erl2+ 7 . s
= e |—---1( ) 1 oot e cos (cot — rr/4), (63)

100co0*62 + 1)4

which has a phase lag of 45°. It is interesting to note that for very high
frequencies the skin friction is extremely small being of the order of co-5/2

The high and low frequency solutions may be matched on the basis of
the rate of heat transfer oscillations, taking the matching point as the frequency
at which the low frequency solution predicts a phase advance equal to that
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Fig. 4b. Phase angle a4 of the oscillating skin friction vs co*/co* for A= 10 and s= 0.1, 0.5, 1

of the ‘shear wave’ solution. We find the critical frequency parameter coj
for which tan a5= 1, giving a5= jt/4. It is found that the critical frequency
od* increases with s and A The values of co* for various s and Aare given in

Table II.

Table Il
) 01 0.5 1
X
0.1 7.1 15.1 16.9
10 11 44.4 92.4
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Fig. So. Phase angle a5 of oscillating heat transfer vs a*(¢* for A= 0.1 and s= 0.1, 0.5, 1

Fig. 5b. Phase angle a6 of oscillating heat transfer vs a>*/a>* for A= 10 and s= 0.1, 0.5, 1
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The frequency response of the heat transfer and skin friction as functions of
coco* are plotted in Figs. 4 and 5 for A= 0.1, 10 and for s=0.1, 0.5 and 1.
The phase angle of the fluctuating component of heat transfer increases for
small frequencies. The phase lead after reaching peak values begins to decrease
for higher frequencies and attains the asymptotic value at co*. On the other
hand, the phase angle of the skin friction, after attaining the maximum lead
turns sharply towards the phase lag. From these Figures it is obvious that
co* gives an approximate indication of the range of the validity of the two
solutions.
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INTERPRETATION SIMPLE DU PARAMETRE
ANHARMONIQUE (YRT)D'UN SOLIDE

Par

Y. Thomas
et
B. Taravel

INSTITUT DE RECHERCHES SCIENTIFIQUES ET TECHNIQUES
40945 ANGERS CEDEX (FRANCE)

(Recgu 13. 11. 1979)

Un paramétre empirique mesurant I’anharmonicité des solides est interprété, comparé
avec les autres parametres utilisés jusqu’ici et calculé pour quelques solides ioniques et quel-
ques métaux.

Siy est le paramétre de Gruneisen, B le coefficient de dilatation cubique
et T la température d’un solide, Dugdale et Macdonald [l] suggérent que
la quantité sans dimension {yRT) mesure I’anharmonicité des vibrations
thermiques de ce solide. Nous proposons une justification simple de ce para-
metre et nous le calculons pour quelques solides.

L’énergie potentielle d’une paire d’atomes peut s’écrire, a une constante
pres:

V(x) = —2 X2 -|- bx3 -f- ex4 +

ol a, b, ¢ sont des coefficients et m— r — r0 est la variation de la distante r
entre les atomes a partir de la position d’équilibre r0. La force entre ces deux
atomes est:

4/, A4r
F(X) = —ax 1+ — X + — X2+ ...) = —ox(l + e)

a a

ou e est I’écart par rapport a la loi de Hooke. Sa valeur moyenne — sans
dimension — au second ordre peut donc mesurer I’anharmonicité:
4c
e — -3b.x
a

Dans I’approximation du solide d’EINSTEIN, si E est I’énergie thermique
d’un oscillateur:

e E -
( o5 a2
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98 Y. THOMAS et B. TARAVEL

d’ou le coefficient de dilatation cubique (si 6 est la température de Debye,
aT]>0: Ec”kT et Cvla chaleur spécifique est quasi constante):

A %C,, 9bk
B=4+ -7 - 1+ — E
r dT rna* a2 rna

permettant de donner une signification trés générale a s:

(1)

Si on adopte le potentiel de Mie Lennard-Jones:

A B
rn

ou A et B sont des constantes, m et n des exposants (n > m > 0), on a

mn T, mn(m-\-n-\-3) . . . .
a=——\Vgeth= — et et VO ou VO est lenergie de dissociation
ro ®ro
d’une paire de particules. Pour un réseau de type quelconque, si N est le
VON f
nombre d’Avogadro et f I'indice de coordination, I’énergie ®o = Or

brn m+ n+ 3 e
d’ou I’égalité fondamentale

(m -f-n f- 3)2E
(YRT) m (2)
4 mnVn
Remarquons que:

R~ Sky soit BVO constante [2]

mnV,

on retrouve aussi un paramétre parfois utilisé comme mesure de I’anharmo-
nicité [3]:

5 Y y/T.
dT

Etant donné les lois approximatives adoptées pour I’énergie et le potentiel,
ces équations ont principalement I'intérét de mettre clairement en évidence
les lois de variation et les dépendances qualitatives en fonction des divers
parameétres caractérisant un solide enharmonique.
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Application a quelques solides ioniques:

On adopte le potentiel de Mie Lennard-Jones

Tableau |

Résultats pour quelques solides ioniques. (T = 300 K) [5]

Solides g e10«K-1 v ei°< = ('LHVAB! E-10* BV, (6N)
LiF 102 1,34 260,8 2449
Licl 132 1,52 335,1 255,1
LiBr 150 1,70 364,2 254,1
NaCl 330 1,63 376,5 594,0
NaBr 337 1,56 401,4 601,9
KF 300 1,45 355,8 511,2
Kcl 303 1,60 430,5 498,0
KBr 330 1,68 459,3 527,1
Kl 375 1,63 504,9 528,2
RbBr 312 1,37 484,2 462,1
RblI 357 1,41 534,0 471,3

A T = 300 K, le caractére enharmonique croit (alors que le degré d’ionisation
décroit) pour les composés de masse croissante d’un métal donné.

Application a quelques métaux:

On adopte le potentiel:

\

ou rest la distance entre deux atomes voisins et A', B' sont des constantes [4].
L’anharmonicité des métaux varie dans le méme ordre que celle — plus faible
— de leurs composés ioniques. A T = 300 K, pour des corps de structure
identique, e — proportionnel a Fo"l — varie toujours dans le sens de B qui
semble une meilleure caractéristique de I’anharmonicité que y ou (yB) parfois
utilisés.

Le coefficient b varie comme /S-1 et ne peut caractériser I’anharmonicité
du solide.
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Tableau 11
Résultats pour quelques métaux (T = 300 K) [5]

Métaux R «10ek - 1 y £10¢= 4% 10c t
W 12,9 1,62 223,5
Mo 15,3 1,57 235,8 8
Ta 19,5 1,75 318,8
Fe 33,5 1,60 476,1
Li 180 1,17 1171,1
Na 216 1,25 17139 8
K 252 1,34 1828,8
Rb 270 1,48 2202,3
Cs 291 1,29 2401,2
Pt 26,85 2,54 525,6
Ni 40,2 1,88 666,3 12
Au 42,45 3,03 749,1
Cu 50,1 1,96 840,3 12
Ag 58,5 2,40 1014,3

Les résultats expérimentaux [5] montrent que I’équation (2) n’est pas
rigoureusement vérifiée. Cela est principalement di a la dépendence explicite
de B avec la température qui permet de formuler une mesure plus précise de
I’anharmonicité [6]:

dlog s

e = gr

ou n est un coefficient fonction de la température pouvant étre déterminé par:

IrBTji
a la température T,-
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and
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DEPARTMENT OF PHYSICS AND ATMOSPHERIC SCIENCE, DREXEL UNIVERSITY,
PHILADELPHIA, Pa., USA

(Received 15. I1. 1979)

The electric conductivity of metal-p-quaterphenyl-metal thin polycrystalline layers
sandwich structures have been investigated as a function of voltage, thickness, and tempe-
rature. The films which ranged in thickness from 0.9 to 1.6/tm were measured in the tempera-
ture range of 100—370 K. The experimental data may he explained by space charge effects
with contribution of Richardson—Schottky mechanism or in terms of injection modified by
space charge effects.

1. Introduction

In recent years there has been increasing interest in research on the
physical, especially electrical, properties of organic materials [1—6]. Organic
substances are interesting as new materials which can be used in microelectro-
nics because of their semiconducting properties. They are also interesting due
to their structural similarity to biologically important materials.

In this paper the dark electrical conductivity of polycrystallinep>-quater-
phenyl layers in the temperature range 100—370 K have been investigated.
The study of the current-voltage characteristics gives information concerning
the position of trapping levels and their spatial density and the analysis of
the current — thickness dependences is very important for selecting the
pertinent model of the conductivity.

Because the current — voltage characteristics in examined films showed
a nearly vertical region we have tried to adopt one carrier space charge limited
currents (SCLC) theory to interpret the results obtained. We have not been
able to fit any of existing SCLC models [7, 8] to the experimental points in
spite of the fact that current — thickness characteristics give incorrect slope
if one carrier SCLC theory is taken into account.

The experimental data may be interpreted in terms of injection theory
proposed by Ashiey and Milnes [9] or by SCLC with contribution of Richard-
son—Schottky mechanism.
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Fig. 1. Dependence of the logarithm of the current on the logarithm of voltage for p-quater-
phenyl layer with Al—Au electrodes. Thickness of the layer 0.9 pm. Temperature 300 K

2. Experimental

The layers of p-quaterphenyl were prepared by vacuum sublimation
from a quartz crucible. The evaporation process was carried out in a vacuum
of 10-7 torr on a glass substrate being at a temperature of 300 K. Vacuum
evaporated metallic electrodes of gold and aluminium in sandwich configu-
ration were applied. Film thicknesses (0.9—1.6 pm) were measured by an
interference method and by measuring film capacitance. The optical measure-
ments were made with the MIN-4 interference microscope, which has an
accuracy of 50 A and the capacitance measurements were made with a
General Radio impedance bridge and checked with a General Radio model
1673 capacitance bridge.
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Fig. 2. Dependence of the logarithm of the current on the temperature reciprocal for different
voltages. Thickness of the layer 0.9 fnn

The current measurements were carried out in a vacuum of 10-3 torr
using the Keithley model 25054 solid state logarithmic response picoammeter
and a Hewlett—Packard model 7005A X —Y recorder to record the data.

As a power source the Hewlett—Packard model 202A function generator
and Harrison model 682A Power Supply-Amplifier were used since it produced
a very low frequency (0.01 Hz) triangular wave which made it suitable for
making d.c. measurements.

A Leeds and Northrop model 1992 temperature-milivolt transmitter
with copper-constantan thermocouple was used for recording the sample

temperature.
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B. Results

The typical current — voltage characteristics for different gold electrode

bias drawn in a lgl — IgU plot at room temperature are shown in Fig. 1.
log |
-5
-6
-7
-8
-9
38 39 40 41 42 43 log L

Fig. 3. Dependence of the logarithm of the current on the logarithm of the thickness for
p-quaterphenyl layers. Voltage U = 50 V

Fig. 2 shows the dependence of the logarithm of the current on the tem-
perature reciprocal for different voltages. The slope of these plots enables one
to calculate the activation energy.

Fig. 3 shows the dependence of the logarithm of the current on the
logarithm of the thickness for examined p-queterphenyllayers.

Fig. 4 shows Ig IjL versus U/L2dependence. The general scaling relation-
ships proposed by Murgatroyd [10, 11] for space charge limited currents show
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how shape of the current — voltage characteristic depends on the trap distri-

bution and the sample thickness.
Fig. 5 shows the Fermi level dependence on the logarithm of the voltage

for the investigated p-quaterphenyl layers.

Fig. 4. Dependencce of the Ig I/L versus Ig CYL2for p-quaterphenyl layer. Gold electrode on
positive bias. Thickness of the layers: -3- 0.9 pm, 9 0.93 pm, 01.01 pm, v 1.56 pm, o 1.59 pm
4. Discussion of the results

4.1 Space charge limited currents

The SCLC theory in dielectric materials predicts that the slope of the
current — voltage characteristics depends on the trap distribution. In the
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Fig. 5. Dependence of the Fermi level on the logarithm of voltage

most papers an exponential trap distribution has generally been assumed
[1—3, 8] and the current density — voltage dependence is given by the follow-
ing equation o
eeo.l Ll r2/+11 1+1 JJt+l
leH(1+1)] L/+1 L2+ ™
where Ncis the effective density of states in the valence band, e0is the vacuum
permittivity, e is the dielectric constant of the material, 1 is the free carrier
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mobility, H the number of the traps per unit volume, U is the applied voltage,
L is the thickness of the sample, and I = T/T.

The slope of the high voltage part of the lg I versus Ig U characteristic
b= T,T + 1 gives the “characteristic temperature” T, and the characteristic
energy of the trap distribution.

The value of the critical volrage at which the current increases steeply
corresponds to the trap density, H, in the solid by the expression [8, 11]

el2 [9 HP (b4+1\b (b4 1 ||+
UrpL = I—— )( J J - (2)
€€y 8 N, b 2b+1
when b — o
eHIL?
UrpL = (3)
2¢eg,

Our experimental results give average value for T, = 2940 K and char-
acteristic energy of the trap distribution kT, = 0.25 eV. The trap density
changed from 0.5 - 102 m—2 to 2.35 - 102 m~3 for different p-quaterphenyl
samples and average value equals H = 1.6 - 102 m—3,

From the logarithm of the current versus reciprocal temperature and
logarithm of the current versus logarithm of the voltage plots we have obtained
an energy of activation and the value for IV u.

The values of activation energy of 0.14, 0.09, 0.05 and 0.10 eV for dif-
ferent voltages have been obtained. At low temperatures there were smaller
values of the energy of activation. At a temperature about 300 K the
activation energy changed to higher values.

These values are in good agreement with the activation energy obtained
by Szymanskr [1].

The SCLC theory predicts a logarithmic dependence of current on
thickness for the exponential trap distribution. It can be seen in Fig. 3 that
lIg I versus Ig L plot gives a straight line what is typical for the exponential
trap distribution.

The dependence of the Fermi level, for the exponential trap distribution,
on voltage is given by the following equation:

2
E, — kT, b+ 1) i eHI? : )
b(2b + 1) eeq U

As b is known from the logarithm of the current versus logarithm of the voltage
characteristics one can evaluate the Fermi level for different voltages. Fig. 5
shows the dependence of the Fermi level on the logarithm of voltage. It can
be seen that this plot gives a straight line. This can be taken as evidence that
traps are exponentially distributed in material.
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The value of the activation energy for the exponential trap distribution
can be interpreted as maxima situated on this distribution.

From the SCLC theory the slope oflg | versus Ig L plot for the exponen-
tial trap distribution ought to have a twice higher value than the slope of the
Ig | versus Ig U characteristic [8, 11], which does not agree with our results.
As can be seen in Fig. 3 the slope of the plot is about 14. It is less than we
expected from SCLC theory.

This result and the very low Ndi value (about 1010 m“1V -1 s_1) show
that the SCLC theory only partially describes electric conductivity in the
investigated p-quaterphenyl layers. This may be explained by the following
physical reasons.

At reasonably strong applied electric fields there is a sufficient supply
of carriers available to enter the insulator from the electrode and current —
voltage characteristics are determined by the bulk properties of the investi-
gated material. At high fields, or if the injecting properties of the contact are
not very good, the current is less than what the bulk of the dielectric is ca-
pable of carrying. Under these conditions the | — U characteristics of the
sample are controlled not only by the hulk properties but also by conditions
existing at the electrode — material interface. The current controlled by the
space charge may be still predominant conductivity mechanism but it ought
to be weaker dependent on the thickness of the sample than predicted by the
one carrier SCLC theory.

If the electrode saturates we will expect the field to be uniform through
the sample with

| A u 1v2
_L exp BLI? m (5)

as it was pointed out by Murgatroyd [12].

Then we can expect that the upper part of the Ig JL versus Ig U/L2
plot is to he ordered in the manner sketched in Fig. 6. The maximum field that
may be applied to the insulator before the electrode saturates is given by:

= (6)

where cis the thermal velocity of the carriers, n is the mobility of the charge
carriers.

The thermal velocity may be estimated for organic materials from the
field at which the mobility of the carriers equals the drift velocity. For tetra-
cene thin films this field is about 104 Y/cm [13]. Similar results have been
obtained for p-quaterphenyl layers [14]. As we can see from the experimental
data at field order of 104Y/cm the current is controlled by space charge. So
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Fig. 6. Ordering due to electrode limiting (redrawn from [12])

we can suppose that in the investigated thin polycrystalline p-quaterphenyl
layers the conditions at metal — organic material interface play a significant
role during the current passing through the layer. It may he confirmed by the
data presented in Fig. 4 which was drawn in the general scaling rule for space
charge currents proposed by Murgatroyd [10].

The next point which ought to be explained is the low value for Ndx
This problem is typical for organic materials. We suppose that the theoretical
interpretation is responsible for the discrepancy. The current — voltage and
current — thickness dependences have been calculated with assumptions that
the mobility of the carriers is independent of the applied field and the sample
thickness. The experimental data obtained by Mycielski [13] for tetracene
thin films have shown that the carrier mobility depends as well on applied field
(above 104Y/cm) as on the film thickness (below about 5 pm). The mentioned
problem is unsolved. It requires further intensive experimental as well as
theoretical research.
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4.2 Injection currents

The SCLC theory predicts a power law dependence of a current on a
thickness for the exponential trap distribution. It can be seen in Fig. 3 that
the Ig | versus IgL plot gives a straight line typical for the exponential trap
distribution, but according to the SCLC theory the slope of this characteristic
ought to have a value about twice higher than the slope of the Ig | versus
lg U dependence [8, 15], which does not agree with our results. As can be
seen in Fig. 3 the slope ofthe lg 1l —IgL plotis about 14 what is not in con-
formity with one carrier SCLC theory. This means that the measured current
is closed to the (1//L)n relation and may indicate the relative unimportance
of space charge effects.

The results obtained are in a good agreement with the Ashtey—Milnes
model in which the charge carrier mobility and/or the cross-section for trapping
depend on the electric field [8].

The exponential increase of the current with voltage is mainly related
to injecting of the carriers from the electrode. If diffusion processes may be
neglected, in the high electric field the current density is given by

j = {VpP + /wOe¢ejE, @)

where p and n are the concentration of the free hole and electron, respectively,
fijp and pntheir mobility, j the total current density and e is the charge of an
electron, E is the electric field.

The value of n may he obtained from the particle conservation equation

=JLoil _ _ L dia, 8)
e

Tn dx e dx

where jn and j are the electron and hole current density, respectively, rn
and Xp are the electron and hole life time, respectively.
The life times of the carriers are given by the following expressions:

= (CnCnN-m)-1 and tp= (opcpN")-1 9)

where cnand cp are the thermal velocities of electrons and holes, respectively,
N Tnand N Tpare the concentration of the electron and hole traps, respectively,
an and op are cross-section for trapping of electrons and holes, respectively.

We know that in high electric fields the mobility of the carriers depends
on the field and decreases with increasing of the electric field (see for example
[13]). In weak fields the mobility is constant and its variations occur above
a certain critical value of the field, Ec, and velocity of the carriers increases
with field. In a high enough field the optical phonons are excited, the velocity
of the carriers begins to saturate and mobility decreases with the field.
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Let the mobility of the carriers and the capture-cross-section depend on
the field as follows:

Ec)1UB—R
Vp= Tpo (10)
E \Vh-ip
Mn= o .
" ir\ ()
and
"EcC J«.-»/*
an =~ MO (12)
E I
where and pn0 are the mobilities of the holes and electrons at the low

electric field, respectively, 0 and a0 are constants, amOis the capture cross-
section for the trapping of electrons at low electric field.

With the above equations, the expression for the current — voltage
dependence, obtained by Ashley and Milnes in Ashley—Milnes regime is
5%+ 1
j = K — oo ,

where K is a constant.

As can be seen from Eq. (13) the dependence of the cross-section for
trapping on the electric field may be obtained from the slope of the current
— thickness dependence.

We also see that the slopes of the Igl —IgL and Igl —Ig U depend-
ences ought to be very similar, as it was observed in our experiments.

We have only one information about field dependence of the carrier
mobility in p-quaterphenyl layers [14] which is similar to that obtained by
Mycielski et al [13] for thin tetracene films e.g. the mobility depends on the
field as E~n, where n varied between 0.5 and 1, the Bp ought to have values
varying between 1 and 2/3. For these values of Bp, the field-dependence of
the capture cross-section for trapping changes with the field as E~12 It is
of course an unphysical result and we can suppose that the mechanism of the
conductivity is determined by injection from the electrodes without changes
of the capture cross-section for trapping.
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ON CONCENTRATION DEPENDENCE OF
LUMINESCENCE DECAY TIME OF MOLECULES IN
ISOTROPIC MEDIA

By
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(Received in revised form 22. 11. 1979)

Assuming that only monomers and non-luminescent dimers appear in the solution and
non-radiative electronic energy transfer results from a dipole-dipole interaction we have obtain-
ed an expression for the dependence of luminescence decay time on the reduced concentration
y of the dye molecules in the solution. In order to compare the obtained theoretical results
with the experiments, measurements have been carried outon the concentration changes of lu-
minescence decay time of Na-fluorescein in glycerol-alcohol solutions.

After corrections for reabsorption and influence of the secondary fluorescence, the
obtained experimental results show a satisfactory agreement with the theoretical prediction.
The subsequent slight increase and decrease of T found at the increasing concentration can be
attributed to the competition between the electronic excitation energy diffusion process among
the monomers and the process of photoluminescence concentration quenching by dimers,
as well as by monomers.

1. Introduction

The concentration increase of luminescent molecules in solutions is often
seen in the changes of quantum yield r) of photoluminescence (PL), emission
anisotropy r and also in the changes of PL decay time 1 of active molecules.
Many authors have dealt with the mentioned concentration effects [1—4].
Recently we worked out the theory of PL concentration quenching (PLCQ)
and PL concentration depolarization (PLCD) where we took into account the
association of active molecules and the multi-step mechanism of non-radiative
transfer of electronic excitation energy [5, 6].

Regarding these real phenomena accompanying the concentration effects
it is possible to describe the experimental results correctly over a wide range
of concentrations [7—09].

In Section 2 we present a theoretical description of the concentrational
changes of PL decay time obtained after taking into account the above men-
tioned processes. Sections 3 and 4 contain the results of measurements of
PL decay time of Na-fluorescein in glycerin-alcohol solutions, their comparison
with the theory and a discussion.

*Address: Instytut Fizyki, Politechnika Gdanska, Gdansk—Worzeszcz, Majakowskiego
11/12, Poland

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



114 C. BOJARSKI and E. GRABOWSKA

2. Theoretical considerations

Similarly as in [5, 6] we accept that in an inactive medium there are
statistically distributed molecules of donor D and acceptor A treated as electri-
cal dipoles. The absorption and emission spectra of the donor as well as the
emission spectrum of the donor and the absorption spectrum of the acceptor
partially overlap. All molecules Dx can undergo deactivation as a result of the
following processes: light emission, internal quenching, non-radiative energy
transfer to a non-excited molecule of type D or to a molecule A with rate
constants kF, kg, kDD and kDA, respectively. We assume that the non-radiative
transfer occurs as a result of dipole-dipole interaction for which the rate con-
stant [1] amounts to:

kDA — ftp + kQq) (1)

Roa is the critical distance of energy transfer from an excited molecule of
donor Dx to a molecule of acceptor A, R are the distance between the inter-
acting molecules.

In the theory of concentration effects [5] developed formerly, all lumi-
nescence centres were divided into groups, according to configurationl a of
non-excited molecules D and A,inthe environment of DX,in order to characte-
rize the spatial distribution of the active molecules in the solution.

In order to characterize the time evolution of energy migration process
all molecules Dx were divided additionally as follows: molecule Dx belongs

to the group of molecules of the nth order if it obtained excitation energy
after its“n” non-radiative transfers. We denote molecules D*n\ characterized
by configuration a, with and the number of molecules of such type after

time t, from the moment of an impulsive excitation, with Nj?\t). The lumines-
cence decay time can be calculated from relation:

' = n2=02(r JE " I-)W*dt/\nzzo 2a JE Non)Wdt' (2)

if we know the analytical form of function N”\t). These functions satisfy the
system of equations [5]:

dN?\t
) -K NP (1),
dt
3)
--T-0-= KN + (2V P).
a
for «i — 1) 2}3(; eeey
1 We accept that this configuration is determined by distances RIt.. Rnd-1 and

Ru ..., RNa of all the non-excited molecules D and A from the molecule Dx; Ag and Vs

denote the number of molecules D and A in the system.
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where fer= kF -f- kq-)- kaDD -f- kaDA and Pa means the probability that the
excited molecule of the donor has environment a of the donors and acceptors.
The concentration dependence of PL decay time should be calculated in a dif-
ferent way, because it is difficult to find the functions N%*\t) from the system
of equations (3).

Let denote the mean time that elapsed from the moment of photon
absorption by a molecule of type to its emission by a molecule of type
D(N and T denote the mean time of excitation energy localization on mo-
lecules D™\ In the case of a very weak coupling, according to Forster’s
classification [10], the excitation can be treated as temporarily localized on
one single molecule and the process of excitation energy transfer as an incoher-
ent motion of this kind of localized excitation. Thus, time is the sum of
localization times of excitation energy on the molecules of each order:

-] = T<io) . (4)
k=0

In the case of a very weak coupling the vibrational relaxation in excited state
occurs completely before each act of energy transfer (before each jump). There-

fore, it seems to be justified to accept the mean times being identical for
the molecules of an arbitrary order.
Hence
tIN = (n+ 1)), (5)
where n is the number of acts of non-radiative energy transfer, is the

mean lifetime of molecules excited directly by light absorption. We also accept-
ed a simplified assumption that at fixed concentrations of molecules D and A
the localization time was independent of configuration cr. Actually
depends on configuration cr, particularly in the range of low concentrations
where the fluctuations of molecule numbers D and A are pronounced in the
nearest environment of molecule It leads to an earlier deactivation of
these luminescence centres which are characterized by a favourable configu-
ration a for the non-radiative energy transfer from molecules D™n' to mole-
cules D or A.

At stationary excitation the PL decay time of molecules D can he cal-
culated on the basis of relation:

T= 2 rPtyo/jg rfin (6)
where denotes the PL quantum vyields of molecules D™\ at which [5]
rfn)= PF .pnDD’ @)
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Taking into account relations (5) and (7) in Eq. (6) we obtain:

* = *(0) + 1)Pddl pdd m (8)
n=0 /n=0

PF and PDDdenote the relative probabilities of PL emission and non-radiative
energy transfer from Dx to D, respectively, at which [5]:

Pf= VO[1 -fir)], 9
Pdd = «/(r) » (10)
where

f{y) = iny exp (/)[! - erf(y)], (n)

« — Ydly * (12)

Vor ]
Y=Yd+ M= — PD L PA (13)
w'0D ~OA

rj0 is absolute PL yield of the donor molecules at y —m0, CD and CA as well
as COD and Coa denote concentrations and critical concentrations of the
donor and acceptor, respectively. Taking into account relation (10) and condi-
tion PDD< 1in Eq. (8) we get:

X= t07[1 — of(y)] . (14)

The PL decay time 4°" of molecules D” depends on the concentrations of
molecules D and A in solution. This dependence can be found on the basis of
relation (2), because function

2 = N \t)

is known. According to Forster’s calculations [11], as well as to other
authors’ [12—16]:

iV(O)(t) = iv<al(0) exp | 4to) Zylf 4*0 (15)

This function takes into account the averaging all the configurations of
molecules D and A in the environment of and represents the number of
><>> molecules after time t from the moment of impulsive excitation.

Using (15) Garanin [16] obtained:

I~ tiV(o(t) dt 1+ y2- [y + r2/(y)
(0> = = 4() (16)
J“ Ne (t) dt i -yl
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where is mean PL decay time of molecules D~ at CD-—0 and CA —m02.
Taking into consideration Eq. (16) in (14) and denoting by ro0we finally
obtain:

1+ y2- + Y2 /(y)

Tn [ —nr)] [ —«o/ly)] (7)

Eq. (17) describes the changes of mean PL decay time as the function of
reduced concentration y = yD -f- yA.

In the case of a one-component system the role of the acceptor can be
played by the dimers of molecules D. If dimers Z)| are characterized by a
smaller PL quantum vyield than molecules D, then the non-radiative energy
transfer from Dxto Huy leads to concentrational quenching and thus to a drop
of quantum vyield in the range of high concentrations.

The same effect is also responsible for the drop of r/r0. When, apart
friom PL quenching by dimers in solution, also monomer quenching takes
place, factor a, which occurred in the expression for PL quantum vyield (cf.
Eq. (41™) in [5]), should he replaced by a0a. Here a0 is the probability that
excitation degradetion during its transfer between monomers does not occur.3
On account of the above mentioned reasons factor a0 was introduced into
Eq. (17). The concentration dependences of PL decay time at several values
of dimerization constant4 Ky and probability o0 are presented in Fig. 1. A
characteristic feature of the majority of the presented course of «/t0 is a
maximum whose value depends remarkably on Ky and a0. In the case of a
pronounced monomer quenching (curve 4) practically there is no maximum.
The noticeable maximum /0 predicted by formula (17) in the case of small
Ky and a0= 1has not been observed in experiment so far. The measurements
of ¢/t0 versus c in one-component systems exhibited a constancy of r in the
wide range of concentrations and their drop at high c [16, 18—26]. However,
no satisfactory theoretical description of such concentration courses like
that of «/t0 has been given up to now. Since the formula (16) predicts a drop
of t/t0o at comparatively low concentrations (at y = c/cO= 1, r/r0 amounts
to only 0.434; cf. curve 2 in Fig. 3) this drop has been ascertained at ¢ > c0”"

2 In [16] all the non-excited active molecules in solutions are treated as acceptor mole-
cules; r<> and ¢[0) correspond to rt and T10 in Galanin’s denotations.

sao can also be interpreted as mean value of the probability of the so called non-
active transfer [17].

4+ The non-dimensional dimerization constant Ky — ya/ybu s connected with the equi-
librium constant K = C"/C:2 by dependence

Ky = 2KCOALYnCo, (18)

where C', yg, COand C", yam Ca denote concentrations, reduced and critical concentrations,
respectively.
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a)

b)
Fig. 1. Concentration changes of the PL-decay time r/ro versus reduced concentration y

calculated for several values of dimerization constant Ky on the basis of Eq. (17) taking into
account (Fig. la) and neglecting (Fig. Ib) monomer quenching

ssal 10~3 M/l i.e. at 'y > 1in the course of the experiments. Below we present
the experimental results of t/tOversus c corrected for reabsorption and secon-
dary fluorescence, their comparison with Eq. (17) and also the discussion of

the results.
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3. Experiments

Glycerol-alcohol solutions of Na-fluorescein were prepared to test Eq.
(17) experimentally. The characteristics of these solutions were given in Table I.
The PL decay times were measured on a phase-fluorometer constructed in
our laboratory [27]. The samples were excited by wavelength 1 = 475 nm
of 50 W halogen lamp. An SPM-2 monochromator was used for the excitation.
On the observation side an OG-1 cutoff filter (A > 530 nm) was employed.
The absorption spectra were measured on a VSU-P spectrophotometer and
the fluorescence spectra and quantum yield on the device described earlier
[28]. The fluorescence spectra were corrected for the spectral sensitivity of
the photomultipier and for reabsorption [29].

In order to obtain the true values of 7 it is indispensable to take into
account the effect of reabsorption and secondary fluorescence or to use suffi-
ciently thin layers.

According to KETsKEMETY et al [30] the secondary effects can be

neglected if
238t od <00, (19)

where ¢, denotes the maximum value of the absorption coefficient, ¢ is
concentration, and d the thickness of the luminophore layer. In our investi-
gation cuvettes of thicknesses smaller than 10 ym already for ¢ 5,8 - 10-¢ M/1
(&max = 0.75 - 105 1/Mcm) are required to fulfil the condition (19). Since the
investigation of concentration changes of 7 was intended to be realized over
a wide range of concentrations (from 10-5 M/l to 5 - 10-2 M/I) the measure-
ments of 7 were carried out in a cuvette of a relatively big thickness (d =0.2 ¢cm),
taking into account the influence of secondary effects on the basis of rela-
tion [25]:

T=17(1 — %), (20)

where » = I,/I,, I, and I, denoting the intensities of primary and secondary
fluorescences. The concentration dependence of coefficient x indispensable for
obtaining the corrected values of 7, can be found basing on the exact theory
of the influence of secondary effects on luminescent properties of solutions,
worked out by Bun6 and KerskEmETY [31].

Values of % found in this way for the system of Na-fluorescein in glyce-
rol-alcohol solutions were taken from [32].

4. Results and discussion

In Fig. 2 the dependence of PL decay time 7 of Na-fluorescein in glycerol-
alcohol solution versus concentration is presented. The crosses and empty
circles stand for the values of 7 uncorrected and corrected for secondary effects,
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respectively. It can be seen that the neglect of the reabsorption and secondary
fluorescence causes a strong deformation of the course of concentrational
changes of PL decay time. It is known that such a deformation appears if
there exists a partial overlap of the absorption and emission spectra and the
measurements are carried out in thick layers [16, 19]. Let us remark that
regarding the secondary effects essentially decreases the values of r, still the
character of the course of ¢(c) remains the same. A characteristic feature of
the «(c) courses is a maximum at a certain concentration of dye molecules.

105 104 103 1

ctMin] — »

Fig. 2. Dependence of PL decay time r of Na-fluorescein in glycerol-alcohol solution versus
concentration c¢; x, O — experimental points uncorrected and corrected for secondary effects,
e« —points corrected on the basis of the values of / according to [25]

In order to verify the values of T, marked by empty circles, Fig. 2 also pre-
sents the values of T corrected on the basis of the known concentration chan-
ges of coefficient y calculated for the same system by Budé and Szalay [25]
(full circles). As can be seen in the Figure, the values of r, corrected in this
way, are slightly lower than the previous ones, while the courses of t/r0 are
in both cases practically identical. In Fig. 3 the theory is compared with the
experimental values of r (marked in Fig. 2 by empty circles). The solid line
shows the theoretical curve calculated on the basis of Eq. (17) for Ky =
= 7 «10~4and a0= 0.91. Value Ky was found on the basis of (18) from the
known dimerization constant K. This latter as well as critical concentrations
c0and ej were found experimentally, but parameter aOwas found with the best
fitting of the theoretical curve and experimental points. The values of the
above mentioned quantities are listed in Table I. In Fig. 3 the dashed line
presents the concentration changes of r based on Eq. (16) given by Galanin
[16]. It can be seen that the drop of the experimental values of x occurs at
much higher concentrations than it is predicated by formula (16). The latter
one is right only in the case when two kinds of molecules of donor D and
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acceptor A appear in the solution and when condition CA  CDis fulfilled. In
this case the non-radiative energy transfer occurs mainly in one step from
D to A. As we proved before [33] the multi-step mechanism of energy trans-
fer from D* to A, occurring according to the scheme

D*+ D+ ... + D+ A D+ D*+ ... + D+ A

KD N KN
DA-DA- " Lo

(21)

had a pronounced effect on the concentration changes of PL quantum yield.
The comparison of curves 1 and 2 in Fig. 3 proves that the influence of this
mechanism on the course of the changes of PL decay time is essential as well.

Fig. 3. Comparison of the experimental values of T of Na-fluorescein in glycerol-alcohol solution

versus reduced concentration y with Eq. (17); o — experimental points corrected for secon-

dary effects; 1 — theoretical curve for Ky — 7 « 10-4 and ao = 0.91; 2 — curve plotted on
the basis of Eq. (16) according to [16]

Table |

Values of some parameters characterizing Na-fluorescein in glycerol-alcohol solutions*

visco-  jb Q C; K RO K
System Solution sity ao VS
(poise) 10-3M/1 A 10-¢ UM
Na-fluorescein  glycerol
~r2<)HiofrNa2i 5% Methanol
MW = 376.29 0.4% H2D 6.0 293 439 3084 441 505 091 7 01 08

0.1% NaOH

*the quoted values of parameters are very close to those of Na-fluorescein in glycerol-

water solutions.
bmeasurements of r were carried out for T = 300 K.
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As is seen in the Figure, an approximate agreement of the experimental
results -with Eq. (17) is obtained. This result can be regarded as satisfactory,
the more so as all the parameters (except for aQ) indispensable for the compari-
son of the theory with the experiment were found experimentally. Moreover,
it seems to be worth mentioning that Eq. (17) predicts the concentration range
correctly, in which the drop of t/t0is really observed. This fact we consider
as the main result of the present paper.

The measured values of x marked by crosses presented in Fig. 2
exhibit a distinct maximum also characteristic for other systems of partially
overlapping absorption and emission spectra in case the measurements are car-
ried out in thick cuvettes. Such a maximum can be explained [19] with the
influence of secondary effects leading to a lengthening of t and with the
influence of concentration quenching leading to a shortening of t.

The explanation of the increase of X merely on the influence of secondary
effects is based on the tacit assumption5 that the non-radiative excitation
energy transfer in an ensemble of molecules of the same kind does not change
the value of r until the processes leading to energy degradation appear in
this ensemble.

In the present paper we have accepted that the non-radiative electronic
excitation energy transfer causes, on the one hand, the lengthening of r on
account of the independence of the destiny of excitation energy in a molecule
of an arbitrary order D® on its former history and, on the other hand, the
shortening of localization time t”~ of excitation energy on molecules D<K
because of the possibility of the transfer of this energy to all the active mole-
cules in the solution treated as acceptors.

The calculations based on this assumption proved that the above mention-
ed effects causing the change of t in opposite directions did not compensate
each other (cf. curves in Fig. 1). It can be explained by monomer quenching
that the calculations predict a relatively large increase of ¢/t0, especially for
small Ky, whereas in the experiment only a slight increase, constancy in the
wide concentration range or a monotonie drop of x with the concentration
is observed.

It was found in the experiments on concentration quenching, concentra-
tion depolarization and sensibilized fluorescence that this kind of quenching
could not be neglected [8, 34, 35].

It is also possible that the divergence between the experimental and
theoretical values of x/x0 (when a0=1) results, to some extent, from the simpli-
fication ofthe calculation ofr/r0.The course ofconcentration changes of PL decay
time found experimentally and theoretically in this work suggests that, apart

s Unfortunately we have not found any quantitative justification of such an assumption
in the literature on this subject.
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from the radiative energy transfer, the process of non-radiative energy transfer
is also partially responsible for the lengthening of r. Still the shortening of T
is conditioned by PL concentrational quenching by non-luminescent dimers
as well as by monomer quenching mentioned above.

To verify formula (17) fully itis indispensable to carry out further precise
measurements on concentration changes of PL decay time in the systems
of remarkably differing values of dimerization constant.

This work was supported by the Polish Academy of Sciences under project MR. I. 9.
- 453
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RECEISSIONES

L. Varyi: Atom and lon Sources

Akadémiai Kiado, Budapest, 1977

Atom and ion sources have been playing a fundamental role in experiments ever since
the very beginning of nuclear sciences. These days they are more and more extensively used
in various fields of science and technology, thereby creating the need for an up-to-date compil-
ation which surveys the different types of particle sources. The aim of the present monograph
— as is pointed out in the author’s preface — is to provide specialists not only with a text-
book on the physical processes taking place in atom and ion sources but also with a manual
on the available types; this enables the most appropriate source to be selected for a given task.

The first Chapter of the book deals with elementary physical processes (excitation,
ionization, recombination, charge transfer, etc.) a knowledge of which is important in under-
standing the working principles of particle sources. Not only the relevant theoretical back-
ground but also numerous experimental results are given in this part. Gaseous and ther-
mal sources for the production of neutral particle beams are discussed in the next Chapter
where high intensity and high energy sources, suitable for special physical, chemical and
technological processes, are also described. In the third Chapter the reader is able to acquaint
himself thoroughly with the large variety of conventional ion sources applied in mass spectros-
copy, in low and high energy accelerators, in isotope separators, etc., beginning with the many
different types of discharge sources and ending with those ionizing atoms of solid materials.
It is mainly in nuclear and particle physics that use is made of the special ion sources, such as
those of negative and multiple ionized beams, described in Chapter 1Y. This Chapter also
deals with the technique of producing pulsed and polarized beams. The last part of the book
(Chapters V and VI) is devoted to the treatment of some important characteristics of ion
beams and to methods of their measurement. Tables of physical quantities and a reference
list containing almost 1500 items complete the book.

The obvious intention of the author was to provide as comprehensive coverage as
possible. This is already obvious in the introductory part and the same effect is reflected
throughout the whole book by the presentation of a large number of actual devices with
numerous illustrations showing technical details. There are only a few results in the given
topic which are not mentioned or at least referred to. The presentation of the devices and their
illustration is useful not only to researchers who wish to choose an adequate particle source
for their work but also to those designing and constructing new devices as they are able to
find many versions of construction and a great number of data on working parameters. The
volume presents the theoretical and the practical aspects in a good proportion demonstrating
that the author has his own experience in the use as well as in the development of different
kinds of particle sources.

The effort to present the material in a comprehensive form has, besides the above men-
tioned advantages, its own drawbacks, the principal one being that it is difficult to distinguish
between well proved devices and those which are important solely from an historical point
of view. A critical evaluation of the many different types of atom and ion sources presented
in the monograph would be very helpful to the reader and the need for this is substantiated
by the fact that the majority of the references are more than 10 years old. The style of the
book, especially when describing devices, is clear and concise enough. Unfortunately the
general, physical treatments contain some obscure parts which are not easy to follow and one
has the feeling that this may be largely due to the translation.

J. Eb6
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Electroluminescence

jEdited by J. 1. Pankove. Springer-Verlag, Berlin, Heidelberg, New York, 1977
127 figures, 16 tables, X1 -f- 212 pages

Electroluminescence has been known for more than half a century, its utilization
has become practical only within the last years. The major attributes of electroluminescent
devices are compactness, ruggedness, and long operational life. But much progress remains
to be achieved with respect to efficiency, cost, for large-area displays, etc.

The contributors to this book were selected for their long and continuing expertise in
the study of luminescence in selected compounds. They are:

J. I. Pankove: Introduction

Y. M. Tairov and Y. A. V odakov: Group 1V. Materials (Mainly SiC).

P. J. Dean: I11—V. Compound Semiconductors

Y.S. Park and B. K. Shin: Recent Advances in Injéction Luminescence in I |—X1. Compounds.
S. Wagner: Chalcopyrites

T. Inoguchi and S. Mito: Phosphore Films

The book serves two purposes: 1. to educate newcomers to this exciting area of physics
and technology; 2. to provide specialists with useful references and new insights in adjoining
areas of luminescence.

Since the boundaries of present knowledge have been outlined by each author, this
volume of the Topics in Applied Physics should serve as afirst stepping stone for future progress.

Z. B odo

Amorphous Semiconductors 76

Proceedings of the International Conference,
Balatonfiired, Hungary, 20—25 September 1976
Edited by I. Kosa Somogyi, Akadémiai Kiadd, Budapest, 1977, 554 pages,
Author and Subject Index

The high activity in the field of amorphous semiconductors is also demonstrated by the
conferences organized periodically. This Conference “Amorphous Semiconductors 76” was
the third in the series of regional conferences on this topic. The previous conferences were
held in Sofia (1972) and Reinhardsbrunn, GRD (1974).

This Conference like the preceding ones covered all aspects of amorphous semiconductor
research and application. Beside chalcogenide bulk glassy semiconductors, the problems of
thin films were discussed from different angles.

The contributions represented also the tendency to get more quantitative information
on the structure of the different materials as well as to establish correlations between structural
and physical properties. The effect of additives and impurities on the physical properties was
discussed in numerous papers. Switching, structural transformations and photostimulated
processes as well as devices were also included in the program. Several sessions were dedicated
to the theory as well as to optical and electrical properties.

Practically, all laboratories in Central Europe carrying out research work on amorphous
semiconductors or dealing with the development of devices were represented by prominent
experts, authors of the 90 papers collected in the Conference Proceedings.

The papers are grouped under the following headings: Switching, Devices, Theory,
Effect of Doping and Impurities, Optical Properties, Electrical Properties, Structural Trans-
formations, Structure and Characterization of Materials.

P. B. Barna
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Hermann Haken:
Synergetics — An Introduction

(Second Enlarged Edition), Springer-Verlag, Berlin, Heidelberg, New York, 1978
(pp. X1 -f- 355 with 152 Figures)

Synergetics is a new field of interdisciplinary research which deals with nonequilibrium
phase transitions and self-organization in physics, chemistry, biology and other fields. It in-
vestigates the spontaneous formation of many subsystems and phenomena, etc. (See further
details in the review on the first edition: Acta Phys. Hung., 43, 352, 1977.)

The publication of this second edition was motivated, first of all, by the fact that the
first edition had been sold out in less than one year. Of course, the author has used this oppor-
tunity to include some of the most interesting recent developments. For example, he has added
a whole new chapter on the fascinating and rapidly growing field of irregular motion caused
by deterministic forces. This kind of phenomenon is presently found in diverse fields ranging
from physics to biology. Furthermore he has included a new section on the analytical treat-
ment of a morphogenetic model using the order parameter concept first developed in this
edition. Needless to say that the few minor misprints and errors of the first edition have also
been eliminated.

This edition, similarly to the first one, is also beautifully presented by the famous
Springer-Verlag. The hook can he recommended to physicists, chemists, biologists, etc. and
is really indispensable to university libraries, especially libraries of research centres of physics,
chemistry and biology.

I. Gyarmati

The Ta-You Wu Festschrift
Science of Matter

Edited in Honor of Professor Ta-You Wu by Shigeji Fuyita
Gordon and Breach Science Publishers, New York, Paris, London, 1978

This volume is a collection of papers covering a wide range of subjects, edited and
published to pay tribute to Professor Ta-You Wu on the occasion of his seventieth birthday.
An outstanding scientist himself in the field of atomic and molecular physics and several other
fields and an enthusiastic teacher, Professor Wu became associated with a number of distin-
guished scientists (mostly his former students and colleagues) during his 50-year research and
teaching career, who joined in celebrating the anniversary by contributing some up-to-date
Teview papers and also some original reports. Naturally, the papers submitted are hetero-
geneous in nature, reflecting the variety of interests of their contributors.

The fields covered by the papers are: Philosophy, Particles and Fields, Phase Transi-
tion, Statistical and Plasma Physics, Solid State Physics, Molecular Physics, Mathematics
and Applied Mathematics, Astronomy, Biophysics.

E. Fehér

English—Russian Physics Dictionary

Editor: D. M. Tolstoi, USSR, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris,
Frankfurt, 1978. 848 pages, $ 50.00, £ 25.00

The volume is a comprehensive work of reference containing the Russian equivalents
of some 60.000 terms from all basic areas of modern physics including general, theoretical and
applied mechanics; molecular physics; statistical physics; thermodynamics and thermophysics,
geophysics and physics of the atmosphere; astrophysics; solid-state physics; macroscopic
electrodynamics; atomic and nuclear physics; optics; theory of relativity; quantum mechanics;
high energy physics; physical chemistry and computer science.
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By this publication Pergamon Press has met a long-felt demand for a reliable and
really up-to-date English—Russian physics dictionary, which can be recommended for use
to scientists, engineers, teachers and students at senior level in physics and related fields.
The dictionary provides an especially valuable tool for translators, editors of technical journals

and librarians. ) ) ) o
The dictionary is neatly printed and easy to handle. One minor critical remark: head-

words introducing longer entries are rather hard to look up; these should have been set in

a different type or positioned more to the left of the column of the text.
E. Fehér

Printed in Hungary

A kiadasért felel az Akadémiai Kiadé igazgatdja Miiszaki szerkeszt§: Botyanszky Pal
A kézirat a kiadoba érkezett: 1979. II11. 26. — A kézirat nyomdaba érkezett: 1979. TIl. 30. — Terjedelem: 6,5 (A/5) 30 abra

79.7019 Akadémiai Nyomda, Budapest — Felel6s vezets: Bernat Gyorgy



NOTES TO CONTRIBUTORS

I. PAPERS will be considered for publication in Acta Physica Hungarica. only if they have
not previously been published or submitted for publication elsewhere. They may be written
in English, French, German or Russian.

Papers should he submitted to

Prof. I. Kovéacs, Editor
Department of Atomic Physics, Technical University
1521 Budapest, Budafoki Gt s, Hungary

Papers may be either articles with abstracts or short communications. Both should
be as concise as possible, articles in general not exceeding 25 typed pages, short communica-
tions s typed pages.

Il. MANUSCRIPTS

1. Papers should be submitted in five copies.

2. The text of papers must be of high stylistic standard, requiring minor correc-
tions only.

3. Manuscripts should be typed in double spacing on good quality paper, with generous
margins.

4. The name of the author(s) and of the institutes where the work was carried out
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be ready for the blockmaker. The other sets attached to the copies of the manuscript may be
rough drawings in pencil or photocopies.
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FREE CONVECTION EFFECTS ON THE FLOW
PAST A VERTICAL POROUS
PLATE SET IMPULSIVELY INTO MOTION
WITH NEGLIGIBLE DISSIPATION

By

A. R. Bestman

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY, PORT HARCOURT, NIGERIA

(Received in revised form 17. 1. 1979)

The flow induced by the impulsive motion of a vertical porous plate is analysed under
the following assumptions: (i) that the flow is incompressible, (ii) that the suction normal
to the plate is constant, (iii) that the temperature difference between the plate and the free-
stream, Tw— T,,, is large enough for free convection currents to flow, and (iv) that the flow
is slow enough for dissipation to be neglected. By employing the Laplace transform tech-
niques solutions for the linear coupled differential equations are obtained in a closed form.
It is observed that the temperature distribution (and hence the heat transfer at the wall) is
unaffected by the free convection currents. Only the velocity and the shear stress vary with
free convection currents.

1. Introduction

Menotd and Yang [1] presented an analytical solution of an unsteady,
incompressible laminar free convection flow pastatinfinite vertical flat plate.
A review of much of the previous work is presented in this paper. Pop and
Soundalgekar [2] have extended this study to the case of compressible free
convection flow.

In all quoted authors, the flat plate is assumed to be impermeable and
the effects of forced convection are absent. It is now a well-known fact in
areodynamics that suction has a stabilizing effect on boundary layer growth.
Also from the technological point of view forced convections are prevalent.
The object of this note is therefore to study the combined effect of free and
forced convection flow of an incompressible Newtonian fluid past a vertical
porouswall. The model used is a vertical porous flat plate whichis set impul-
sively into motion with a step change in surface temperature. In Section 2 the
governing equations are derived and in Section 3 the solutionsare deduced
by employing the Laplace transform techniques. The solutions obtained are
discussed in Section 4.
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130 A. R. BESTMAN

2. Formulation of the problem

The physical problem consists of a vertical infinite porous flat plate,
stationary at time t' < 0, and in contact and at the same temperature T,,
withthe fluid occupying the semi-infinite spacey' > O.Here a Cartesian coordi-
nate system is employed with y' perpendicular to the plate. At time t' > 0
the plate is simultaneously raised to a constant temperature Twand moved in
its own plane with velocity UO winle fluid is sucked with constant velocity
VOnormal to it. It is assumed that the difference between the temperatures
of the plate and the freestream is moderately large for free convection currents
to flow. If (u', v') are the velocity components, then under these assumptions
the continuity equation reduces to

and employing this the momentum and energy equations become

du’ du’ dp' dau’
' r( e'g>
dt 9y’ dx dy'2
0= - 9 (la, b, ¢)
9y’

e'c'(ff-- r"~|<r - T>- *£<r - r-)+"' (17)

where the dashes are dimensional variables and all the physical quantities
have their usual meaning. The boundary conditions are

\y=o ot T \y=o — Twe t> 0 (2u)
\y'-*oo - 0, T"ly_oc = Toe,
U= 10, T = T»- t <0 (2b)

Equations (la, b) and (2a) can be combined to give

du’ du’ 3y 2
dt dy’ 9y"2 B')8- 3

Under the Boussinesq approximations, fluid properties are assumed
constant except in the buoyancy term where the density varies according
to the law

(DNB(TI - TO,,). (4)
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FREE CONVECTION EFFECTS 131

By virtue of (4), the approximate forms of (lc) and (3) are

du' du’
dr a7 = a4y 2 + 0~Ne(T' - Tuw),
9 92 [9uM 2
(C - TT1e) = K (r - F«)+ /X10U (5)
e“C'l jr ~ viey ay'2 9"

To facilitate analysis it is expedient to introduce the non-dimensional
variables

V'V ' T - T
y=2-HJ, u=u'\vO0, t vVl 0= 0a
ar Tw—1»
tcp = VOR{Tw- r M) E Ui )
uOvi Cp(Tw- T,,)

Here Gis the free convection parameter or the Grashof number, v the Prandtl
number and E the Eckert number. Substituting (6) in (2) and (5) we get
1 obl _Qy__ d2u
4 dt  dy  dy2
11 00 00\ 82 (du'

= b oE

+ GO,

0 —— — (7a, b)
14 01 dy g« [ay,
and
Wly-0 - Oly-o0 - 17 1(> 0 8)
Rly—=0= 0 ly—=a@= 91 I
m=20, 0=20 1< 0. 9)

The problem is now reduced to mathematical terms. It is required to solve
(7) subject to boundary and initial conditions (8) and (9). But this problem is
coupled and nonlinear and is not amenable to analytical treatment. However,
when the flow velocities induced are small,the dissipation term in (7b) is also
negligibly small. The analysis in this note will be restricted to this state of
affairs.

3. Solution for negligible dissipation

When E ==0in (7b), let us define the Laplace transform and its inverse as
f(y, S) = \]Pe~stf(y, t)dt,

*L 1/(b s) = f(ji = "t1~7 eSt/(y> s)ds = "T~1 f est/(y, s)ds.
- ( ) (J ) 2idtl jy—/co (y ) 2 7Ib )Brx (y )

*Brt and Brs represent Bromwich contour of the first and third kinds.
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132 A. R. BESTMAN

Then the equations satisfied by 0 and O are

— sT ----El.lil-: -EI_'fl.'-__-f_ U-) ,
4 dy dy2
(4 dyJ dy2
uly=o= ®Ily=0= ’
wt+o = 0Ov”fo.= 0.
The solutions of these are
0= — e~T, (10)
5=ni+ j ~ny; o = 1. n
s~ s+ Y (M)
and
4G T PF"Y — p-TY
n= —e~ny+ ,
s 0 - 1[5{20 + s+ 2(0r3 as)W)]
(12
ac I e-nY—e-1Y
= — e~ny -\ *
s o F[-s{(<7,f )2, U2
where
n = -i- [cr + {02+ as ' w = - 1+ 1+ s Z
[ y1'2] f i [ ( Vv

To obtain the inverse Laplace transforms, we will require the following
integrals

I exp {zt- b+ a2V2} J= _

1
i JB

3 (eC*erfc[(6 + 2at)l2tl2] + e

erfc [(6 - 2at)l2t4*]}, (13)
and

J_ I exp(l2- al) =

= J_exp (ft2(x afc)erfc[(a £ 26t)/2tV2], (14)
29» JBr, | + 2

which are given in McLachtlan [3]. By a straightforward application of (13),
(10) can be inverted as

O=yexpp/2|-Ly + 2tjj2iX2) + y e-'Verfcpl/iji-y —2iJ*2 J. (15)
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To invert (11) it is necessary to consider the second term only. The first term
can be obtained from (15) by putting o= 1. Thus

iy exp |st- Y j(s + I)1z
L"1 1= e~y —— ds,
s(s -j- 1) 12 2ni  Br, s(s + 1)«
expil2-y |y
= e 2 dl,
i» J Br, 12— 1

where the second equation is obtained by putting

(S+ 1)1/2= 1.
Therefore
L-/ ery) = e“by-'e— |- f— ——— e — | exp fI2* -—--- —lyjdf,
Is(s + 1)i/2j 27ti Jer,15 — 1 s+ j [ 2 yj

and the integrals can now be evaluated in virtue of (14). We get

aff (Ty+2 vertel g 2)|Zj/2]]+
AT o T-y. —erfcji I ) 2)|Z]/a|, 0

(16)

Finally to invert (12), we first consider
exp jot— i-FANS + i)
1
ds .
2ri o, KOS+ R+ awzpe i

Putting (s + a)* = | in this we obtain

o 1 _c-lqy

S{((]’-f S)ﬂ'f‘ atizy2 J

exp JId-1_ffr2y|s

o-my

S{(ff + s)I/2+ ffl/2}2) aE + al2)2

e "ot L
i JEI]F:MI —l/))  4<r(S + fflf2)

+ e X a — dl.
2ul/2( |+ ctJ_/2)2+ (n+ - P
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134 A. R. BESTMAN

The integrals appearing in the above equation can be evaluated directly
using (14) or by differentiating (14) with respect to b under the integral sign
which is valid by virtue of absolute convergence. We invert the middle term
in (12) by employing the formula

~roapme—-—aeaczlS = 1 — 2n~12all212 + (1 — 2at) eaf[erfc (aV/d/2) - 1],
2n| .J?B(Sﬂ

(which is equation (10) in [4], p. 234), and the convolution theorem. Putting
all together the inversion of (12) may he deduced as

u= —ZEfrfc [{qu Ujllzwzj +oeyerfo Y200/ 2460 —

4G
je_oy erfc j012kpmy — 2t — erfc Yy 12192 | —
a—1 Q| 712
! [ o—y+21]
1 2t th ‘!a
4012 AV2 41
—al2 ~y~n~ erfc jol/2]-i-y + 2tj/2t¥2 +

+ m  al-N-y + 2t - 2tj erfc MLU2I"-Y + 2] /2t]/21

* u(_y + 2t
2<Ne / H. y + 2] exp 4t "
26 -iv T
21y f
+73TLYP [(T3+2 e eye”[(r-
o) T 281t — 112 — 1 —2a(t — t)] erfc [orl/2t 1/2 dr. (17)

nl2

Also of importance in technological applications are the heat transfer
rates and the shear stress, both at the wall. The heat transfer is given by
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and employing (6) a non-dimensional form will be

qv 30
4= — (18)
kV O{Tw— T oo) Ay y=0

By virtue of (12) we get

1ooalr £ a erfc (—oUAYD) If
nw 2
1 all2
e-«+ <r{l + erf (—oU2*1/2 19
T wiH12 { ( & 19
Finally the shear stress is
u'
gy’

which by virtue of (6) reduces to the non-dimensional form

t= t7e-*W> = — (20)
3y yv-0

For flow with unit Prandtl number, we can deduce the result

== IJM * 1+ erf (2! § Gerf (112, 2D

When o #=1, the expression for the shear stress is cumbersome and the
integrals involved are not expressible in a closed form.

4. Discussion

In the previous two Sections we have formulated and solved an unsteady
flow problem involving combined forced and free convections when dissipation
effects are negligible. It is observed that the temperature field is in no way
affected by the free convection currents. However, the temperature and velo-
city fields consist of forward and backward propagating waves of non-dimen-
sional velocity 4. The forward moving wave has an amplitude which decays
exponentially.

The heat transfer rate at the wall is negative for all t]> 0 and tends
to —a as t —o00. Hence the heat transfer rate is numerically equal to the
Prandtl number at the ultimate steady state condition. For the shear stress
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136 A. R. BESTMAN

at the wall we restrict our discussion to a = 1. This, though hypothetical, is
not too separated from the real life since a = 0.71 for air. Thus the shear
stress is negative for an externally heated plate (G << 0). However, positive
shear stresses are possible when the plate is externally cooled (G > 0) and
G fairly large. The ultimate steady state shear stress is G — 1. Hence the
steady state velocity is of the separation type when G = 1.
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Hydromagnetic forced convection in a parallel plate channel bounded by a rigid insu=
lated plate and a permeable bed and permeated by a uniform transverse magnetic field has
been considered taking Hall effects into account. Solutions for the flow above the bed, Zone 1
and that below the bed, Zone 2 are obtained using the matching conditions at the interface and
also suitable boundary conditions at the bed. The primary flow, secondary flow, induced mag-
netic field components and the temperature distribution are found. The shear stresses and the
Nusselt number at the bed and at the plate are calculated. Hall currents are found to exert
a profound influence on the flow and heat transfer characteristics.

1. Introduction

The importance of flows through and past porous media in technology,
geohydrology, petroleum industry and geophysics is indisputable. The flow
through porous media is usually determined using Darcy’s empirical formula.
BEAVERS and JosePH [1], SAFFMANN [2], TAYLOR [3] and RAJASEKHAR [4]
have investigated flow past horizontal porous beds. The temperature distri-
bution for a Poiseuille was examined by VipyAnNipaI, SITHAPATI and NARA-
YANA [5] and for plane couette fow in the presence of buoyancy forces was
studied by RuprAIAR and VEERABHADRAIAH [6]. The Hartmann flow past a
permeable bed in the presence of a transverse magnetic field was investigated
by Rupraiag, RamA1AE and RAJASEKHAR [7] to illustrate the experimental
work of WALLACE, PIERCE and SWAYER [8]. The aim of this paper is to take
into consideration the Hall effects and study these effects on the flow and
heat transfer characteristics. Such a study will be of some use in the problem
of cooling nuclear reactors where very strong magnetic fields are used and
also in the utilization of the enormous power beneath the Earth’s crust in the
geothermal fields, which are clearly a problem of flow past a porous medium
with the Earth’s surface as a naturally permeable bed.

Here we consider the flow of an electrically conducting liquid through
a parallel plate channel z’ = +1 bounded below by a permeable bed. We
suppose that strong uniform magnetic field H; acts along the z’-axis. A uni-
form pressure gradient is maintained in the longitudinal direction in both
the channels and the permeable material. In Zone 1 the flow is laminar and
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138 V. VIDYANIDHI and P. C. L. NARAYANA

is governed by magnetohydrodynamic equations (with Hall effects included)
while the flow in the Zone 2 is determined by the modified Darcy’s law. We
use the slip velocity boundary condition [1] at the permeable bed. We fur-
ther assume that the upper plate is at temperature T = T1while on the per-
meable bed we adopt the thermal slip boundary condition considered by
Rudraiah and Yeerabhadraiah [6] and also independently by Vidyanidhi
and Narayana [9]. It is well known that the introduction of Hall effects
produces a cross flow [10]. The present investigation thus gives a complete
picture of the flow and heat transfer characteristics when the Hall parameter
is present.

2. Mathematical formulation

The physical model consists of two Zones; in one Zone, from the imper-
meable upper rigid plate up to the permeable bed, the flow called the modified
Hartmann flow (due to Hall effects) is governed by magnetohydrodynamic
equations and in the other Zone below the permeable bed, the flow is deter-
mined by the modified Darcy flow. In the following, we shall call the former
Zone 1 and the latter Zone 2. The basic equations and the corresponding bound-
ary conditions are set up for Zone 1 and 2, respectively. Solving these equa-
tions, the solutions are matched at the interface to get uniformly valid solu-
tions throughout the region of flow.

The basic equations [10] are

V'eV'= 0,

(V' mV)V' = - —Vy + wW2V' +  jrXL,. 1)
B Q

Maxwell’s equations are
V'XE'= 0, V'xXH'=1J'

along with Ohm’s law including Hall effects given by

J'+ — J'XH’= oe[E'+ H'V'XHT, 2
Ho

where J', co 1, /ne, ae denote the current density, electron Larmor frequency,
electron collision time, magnetic permeability and the electrical conductivity,
respectively. In writing the Eq. (2), the ion slip effects arising out of imperfect
coupling between ions and neutrals as well as electron pressure gradient are
neglected.
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The equations of energy including viscous dissipation term @ and ohmic
dissipation is
o7« V)T = KV — g+ LT (3)

Oe

where K is the thermal conductivity of the liquid and 7" the temperature.

We choose the coordinate system such that the z’-axis is perpendicular
to the bed 2" = 0 and the upper plate z’ — l. There is a uniform magnetic
field H, along the z’-axis. At large distances from the entry section the flow
will be fully developed and in the steady state, all the physical variables depend
on z’. Following SHERMANN and Surron [10], we assume

V'=(u',v,0), H <(@,b,H) J=UT,0,

E' = (E; = ¢}, E, = ¢y, EJ).

We use further that the non-dimensional variables

L S| .

cl? o, e H,cl? H,
W e N N
u.clPH, T,—T, u 9K

in which 7", the temperature in the flow is assumed to be
T(x', #') = Ax" | T'(s) ,

and the dimensionless parameters defined by

2 pr2p2
M:m, Rm:ds/“'eoe’ Pr—_—i‘c—p, %=—I—<—,
w K ecp
P 2o p P’ : Ec:.L, Ao_—_—L,
K (T, — T) (T, —T,)

where T, is the temperature of the plate and T is the ambient temperature.
Introducing

g=u+w, J=J,—iJ,, e=e,—ie,, h=h,+ih,

the foregoing equations reduce to
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Zone 1:

—- —mY — —1 — m2, 4
dz2 *)

1 1 dh

(e —Qq) = —-mn
1 — idix o ®)
420 —PeAOQ (Real part ofq) —PAC da dg + Mzdh-dh\ (6)

dz2 dz dz dz dz

where the bars represent the complex conjugates and

M
V(1 —iwx)

For Zone 2: The modified Darcy law for Q* and the equations corres-
ponding to (4) and (6) are

1-f~-m2
<=
m2+ a?2 (7)
L(Jm — (m2-f 09g = —1 — m2, (8)
92 _ _ pea0(Real part of q) — prEc 04 9 dh-dh ©)
dz2 dz dz dz dz

In this Zone we have the additional dimensionless parameter a — 1/¥&' K is
the permeability of the porous medium. Boundary conditions: At the imper-
meable rigid plate, we use the condition for no slip

= 0 at . = ., (10)

while at the permeable bed we adopt the Beavers and Joseph [1] condition,
which in this case, becomes

4z soos = - Q*» (11)

h=0 at z= 1. (12

Supposing the rigid plate to be made up of insulating material, we also adopt
the thermal slip condition [6], [8]

T —g.[T(0)-Ta, (13)
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is the Biot number, TOthe temperature in the porous bed. This

where /9,
reduces to R
JU
= /9,00 at . = 0, \ (14)
dz
and
(15)

0= 1at .= ..

In addition we have the continuity of g, h and 0 across the interface . = 0.
The conditions (11) and (13) can be equivalently represented in Zone 2 by
g -‘mQ* when . = —I/a,o0, (16)

and
0 —m0 when . = —1IR"a. 17)
For simplicity, we choose ex = 0. The total current flowing through the cir-

cuit in Zone lis given by | = J1Jydz'. For Hartmann flow (flow water) we

require 1 = 0. This gives the value of e required to achieve the Hartmann

flow, i.e.,
e = Real part of 1 — icor)\] qdz = e* (say).

The solutions for the two Zones are obtained separately and are matched
at the interface to get a continuous velocity distribution. Thus for Zone 1,

from (4) subject to (10) and (11) using (7), we have

1+ s}
M2 (cj sh mz f c2ch mz — 1), (18)

q:_
nr

where ch, sh denote hyperbolic functions and cv c2are complex constants

given by
a,crm —chm {2+ m2 1=

c, =
(@2+ m2 1+ (r,,<7tanh m2ch m ]_

= (say),
1 — h .
cn — Y S (say),
ch
where
x™aPl |6
I« 02) * % [(a,h9)
2 ch a cos /9 — axsh 2a -f- bxsin 2/9
ch 2a + cos 2/9
b (2 shasinfB axsin 2/9 + bxsh 2a)
T ch 2a + cos 29
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Pi= x(a2+ Xx—33)(ppi+ qqt)+ R(a2+ 3a2- /) (p492— g4 2,
9i = a(ax a2— 33 (pyd- ¢p 4+ /3@2+ 3a2 - R (g2g4+ p2p 9,
I(«, B) = [(*2+ «2- [22+ 4«252] |"l + a<r 2 *sh2a+ Bsm 2B +
X2+ ch 2a -f- cos 2/3
i 1 sh22a — sin22/3
[a2+ /32 ch2a+ cos 23
wherein
Pi —1 + xrer (a sh 2a + B sin 2/3),
(a2 + /32) (eh 2« -f- cos 2/3)
723 = o=t (asin 23 — R sh 2a),
’ (a2 + /3) (ch 2a + cos 2/3)

(a2 R2

p3= (a2— B2 ch Xcos R (ch 2a + cos 2/3) -f- 2a/3 sh a sin B,

g3 — 2a/3 ch a cos /3 —a/3(ch 2a + cos 2/3) — (a2 — /@) sh a sin B,

2
P37"2+ a2—R2) + 2qaxB] + 1
Pe (a2+ R22(ch 2a + cos 2/3) [ 2 faxt]

2

va [03(a2+ a2- /) - 2xBp3].
' (a2 + /R)2(ch 2a + cos 2/3)

Separating the real and imaginary parts of q from (18)

a2— /3R 2xRB
b | + e\(Pb—1) (19)
-4 (a2+ 1322 (a2+ R2F
2xRB a2 —R2
(Ps — 4) + * e'14 (20)
"= 4(5 122 (a2+ /22
where
p5= a2ch az cos /3z — b2sh az sin Rz o4sh az cos Rz — ch az sin Rz,

gB= 62ch az cos /3z -J- .. sh az sin Bz + sh az cos Rz -f- «i ch az sin Rz .

The magnetic field is obtained from (2) using the condition (12)

R.. X2 — 132 2xB )
fox = e(z — 1) + cor + € Ji(a,/3) -
1+ co2T2 (a2- 1322 (a2+ /)2
2- /32
2x8 + : cor + core gj(*> i3) (21)

(a2 + /32)2 (a2 + 1)
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where

"
Re tyre(l —2) B2 oors 2
1+ fo2T2 1 [(a2+ n (a2+ 722
+ core 2- R2 2xR -
r + elgi(a>/S)J,
22 (EQ"' 822 lgi( )
. 1
li(a, 13) - [(aza + 72/3) (sh az cos Bz — sh a cos B) 4-
«2+ IR
+ (622 — a) (ch a sin B — eh az sin Bz) 4*
4~ (axa + b) (ch az cos /5« — ch a cos ) 4~
+ (6@ — af) (sh a sin 8 — sh a« sin Bz)] —z -f 1,
Si(«>RB) = [(fcza — ad) (sh xz cos Bz — sh a cos B) —

THE HALL EFFECTS ON HYDROMAGNETIC FLOW

— (a2 + b@) (ch asin B — ch az sin Bz) 4=
+ (bx&x — a) (ch az cosBz — ch a cos B) —

— (axa + bd) (sh asin B —sh a sin Bz)].

The shear stresses at the plate and at the bed are given by

du
dz

dv
dz

where

- 2
dz ~==M +n @2+ 122 °

ej>

* | [ 24 | @ X1
gz U™ [(62+&2P3'f'|(€(ﬂ+3 +1

“{ITR + " b=

—*2-—--%-2el(613+ 1) J E— AE.——(axa - bd)], (26)
H4- B2 ' J 1 © o (a*4-0%)2 ]

Pe

?e

= (a.* — b)sh a cos/B3— (62 4- a-j/O as*n B +
4- («!« — bh)ch a cos B — (6xa 4~ «i/?) sh] a sin /2,

= (Ma + ccg)sh a cos B 4- (a2 — fe”) ch asin R 4-

4- (6xa 4~ ail3)ch a cos B (axa — 67) sh asin /3.

143

(22)

(23)

(24)

B w
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The temperature distribution for Zone 1, by solving (6) using the boundary
conditions (14) and (15) is

B= kt+ kZ — Pe AOF(z) — Pr EcG(z), (27)
where

Ki — 1 [L-Pe Ao{F'(0) - F(1) - B,0F(0)} -
1+ BR*a
- Prec{G'(0) - G() - B.0G(0)}] .

k2= 1 — k+-\- Pe 4 OF(1) Pr Ec G(l) .
(here dashes denote differentiation "with respect to z)

p/g\ = ff a@2-B 2 1fap7- M? + 9iPs- Ms _
[w +n 1MW (*2+ n

ia2+ F%ﬁib*Pi + Q7+ Ms + ai9s}JI.

) 2+ 62 (ch2
G(z) = (a2+ 62 2e(«2- B g @ (ch 2az

h dg,M (*2+ 222 | 8
?‘, %&ch 2az cos 2[32:]
+
R2 a2 R2

+

+
N J,1(a”a + b”™) sh 2az («2r1 — M 2) 4n 2Rz
|| 2
M2 Pezz ., — a* . o (azPl 1'b°IPe Ms
1+ w2r21 2 a2+ )2 ' («“+ «m
z 2ald
+ {btPi + «2?27 + M s + arg)} +
"2 (a2+ RA*
+ 2e(a2—R2 + .., + bl ch2az cos 2Rz
(@+ 22  (a2+ R2)2 | | s a2 82 J+
a2+ B2 (ch2az ( cos 2Rz (a™a + bjb2 sh 2az
TRy TR L 41+ 4a2 '
(a21l— adnb) sin 2Rz - .
+ 4{|'2 (a2+ @2 (@»7 - M? + «IPs —Ms)jj-
wherein
Pl = (@2—¥® ch az cos /?z — 20cB sh az sin Bz,
H = 2xB chaz cos/Sz+ (a2—R2 sh az sin Rz,
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(a2 — B2 sh az cos Bz — 2xRB eh az sin Bz,

ps
g8

2xB sh az cos Bz -f- (02 — R2) eh az sin Bz .

For Zone 2, the velocity and temperature distribution from (8) and (9) using
(7) subject to (16) and (17) are

. 1 1 T
g= c3ch]/m2+ a2z + c4sh Ym2+ 02z -)-------mmmmmmmm- , (28)
m2 -f- 02
0= fe3+ &. — Pe AR(z) —PrEcS(z2), (29)

where ¢3= a3 -f- i63 (say), c4= ad+ i.. (Say) and vy{m2 a2 = f -+ i%.
Separating the real and imaginary parts of (28),

[L+ (a2- R2Ye] [a2+ a2- RZ} + 4a2f2e

: — (30)
{a2+ a2- RD2+ 4a23

U —

(02+ a2- R22a/Se - 2al/3[l + (a2- /32 €]
v - + 095 (31)
(02+ a2- R22+ 4ax2

where
do — [(02+ a2—R2) (1 + a2 —/?2) + 4a23e] —
02+ a2- R22+ 4a2%
[(«» —i2) {(1 + a2 - Sx)(a2-1) -
(«2+ R22
— 2xB s .e} + 2a/?{2a/?e(a2 — 1) + b2(l + az —RPe)}] ,
b3 — [2a/? e(a2+ a2—/R) - 2xB(l - a2+ "e)] -

(a2+ a2- RA2+ 4a22

[@2 —BR2 {2xRe(a2 — 1) + M 1 + ~ R2)} —
(«2+ 1722

- 2a0{(l + a%x - RE)(a2- 1) - 2xBb2e}],

a3sh 2yz — 63sin 2z
ch 2™z — cos 27z

63sh 2yz -f- a3sin 2%

b4 =
ch 2yz — cos 27z
p9= a3chyzcos — b3sh%esin %z -j- adsh %rcos %z —
— b4ch xpzsin yrz,
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= s ch %zcos yz -f- a3sh %zsin. '/z + . shipzcos .. -f-

-f- a.ch fz sin %z,

k3= fe. - Pe J1.[P(0) - ii(0)] - Pr Ec [G(O) - S(0)],

fo = — \k3- PeAOR l-——-- —1- PrEcsf-— 11,
B*°Y I B>l B.°)\

R(z) = ff, + a. - R 1+ *2 - R+
() (ﬁz+ dz - 8324' 4az:02 B.{( a( )

+ da./%e} + (fo + a. - B (pl0+ Pu) + 2a/?2(ql0+ gu)J,

<+ + b {ch:ipz
S(Z):N”)Q)Ps Y A S
coe 2Xz) (asa« + b3b4) sh .yiz (a3b. — fzad) sin . %z4
%X J \Y% 4;,
M2 Tex 2 e

[(ff2+ «2—
1+ cov [ 3 (f + a: - @2+ 4a22j[2

N 1+ *2- RB2%) + 4a22e] + (f. + a2- Z2)(p10+ PII) +

+

2a/?(g10 + gu) + <?(*)|/| <2(*b

(1+ a2 - BPe)2+ 4a27% zo + (a=:+ 8 ch:y)z COS 212
(ffz + a: - BZ)Z"' 4az. 2

I ..+ bd) (ch 2rpz cos 2Xz\ (asas + ssed) sh.yz
8 [ W2 X2 1 442

(6364 —_— a453) Sin 212

X + [+ - 2o+l "

- W (Pio + .Pu) + H?e(glo+ gn)],

P10 = °3ch Vzcos X2 —-s sbyz sin %z,
5i0 — sch Wecos Xz 4*a3shrpzsin iz,
Pi. = aafz cosXze —- V2s*! Xz 1

3i: = . W cos Xz + ff. chy)zsin %z .
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The Nusselt numbers at the lower plate NuO, and the upper plate Nux are
given by

dd
\dz)z=0
VU0 (32)
K - 60)
dél
vy, dzjz=i 33)
BT - 6(1) °’

(0]
where Om = | 9dz is the average temperature.

3. Results and discussion

Throughout this paper we take a, = 0.1, /?, = 1. As our primary
interest is to examine the interactions of the Hall parameter cor, Hartmann
number M and Darcy’s number a, we allow these to vary. We have plotted
u(z) and —v(z) for some typical values of cor, M and a for short circuited
circumstances e = 0 and for flow meter e = e*. Fig. 1 shows that u(z) increases
with increase in cor, while Fig. 2 shows a similar result for the cross flow
—vV(z). The flattening effect of magnetic field in the velocity profiles is clearly
discernible in the Figures. The effect of the permeability of the medium Kk,
characterised by the parameter a, is to increase the velocity. We find that
the slip velocity at the permeable bed decreases as a increases for given M

Fig. 1. Primary flow
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Fig. 2. Secondary flow

Fig. 3. Primary induced magnetic field
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and car. The curve 5in Fig. 2 reveals that the cross flow due to the Hall effects
shows an incipient flow reversal, although the primary flow does not. Also
the velocity profiles are found to increase with e in each case.

The Figs. 3 and 4 indicate that the dissipation of the induced magnetic
field is in accord with the pulling of the line of force by the convection channel.

Fig. 4. Secondary induced magnetic field

It is interesting to note that non-zero values of hy exist at the permeable bed
for the flow meter circumstances; of course hx vanishes at this bed in agree-
ment with Rudraiah, Ramaiah and Rajasekhar [7] in the absence of Hall
effects. Fig. 5 shows the temperature distribution. It is found to increase with
cor, decreases as M or a increases. The effect of eis to increase the temperature.
The results are anticipated on physical ground judging from the behaviour
of the velocity profiles.

When the Hall effects are absent, the skin friction for the primary flow
of the bed is found to increase as a increases and decreases. However, as cor
increases, it decreases, passes through zero and changes its direction for fixed
a and M. Such behaviouris ruled out for the primary stresses at the plate and
for the secondary stresses both at the plate and at the bed. The effect of e
is in general to increase the skin friction. The results are inferred from a sample
of data presented in Table I.
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Fig. 5. Temperature profiles

Primary and secondary shear stresses

0.19417
0.11736
0.45613
0.37306
-0.04434
-0.11552

-0.19877
-0.44836

Table |

% o

e= ¢~

Primary shear stresses

0.23396 -0.63576
0.20656 -0.45082
0.49465 -0.46599
0.49352 —0.38285
-0.03160 -0.54231
-0.09559 —0.56371
Secondary shear stresses
-0.24991 0.44427
-0.54116 0.26509

—0.76604
-0.79344
-0.50535
—0.50648
-0.71926
-0.69136

0.48434
0.26201

Table 11 gives the computed values of e* needed to achieve the Hartmann
flow. When e < e*, the channel is short circuited (in our analysis we have
taken e = 0 for this case) and all the currents flow in one direction and the
net current flow is clearly non zero. When e >
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Table IM

Computed values of e*

M

1 0.20492 0.20841 0.21882 0.28934

2 0.19000 0.19232 0.19934 0.25089

10 3 0.17150 0.17343 0.17928 0.22177
4 0.15332 0.15507 0.16036 0.19868

5 0.13711 0.13873 0.14360 0.17909

1 0.08445 0.09044 0.10830 0.22918

2 0.08073 0.08328 0.09102 0.14944

1000 3 0.07548 0.07681 0.08817 0.11054
4 0.06962 0.07051 0.07319 0.09238

5 0.06379 0.06450 0.06662 0.08142

the opposite direction and this corresponds to magnetohydrodynamic accele-
rator or pump. The parameter e modifies the usual Hartmann flow in that
current distribution changes as does the induced magnetic field.

Table IT!

Values of the Nusselt number for e*

Qa M cor Nu$ Ni4
10 1 0.2 2.06292 -1.50459
10 5 0.2 2.41072 -1.68197
10 1 0.5 2.28051 -1.52632
100 1 0.2 2.06840 -1.58278
1000 1 0.2 2.07201 -1.59124
Table 111 gives the computed values of the Nusselt numbers. These are

in general found to increase with M or a or cor at the bed and at the plate.
The negative sign in Nusselt number indicates the direction of the heat flow
from the liquid to the plate.

The foregoing analysis reveals that the inclusion of the Hall currents
exerts a profound influence on the flow and the heat transfer characteristics.
It is also observed that the viscous and ohmic dissipation terms have signi-
ficant effect in increasing the heat transfer coefficients.
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ENERGY OF x*2 STATE OF ScO MOLECULE

By
V. M. Rao, M. L. P. Raoand P. T. Rao

DEPARTMENT OF PHYSICS, ANDHRA UNIVERSITY, WALTAIR, INDIA

(Received 7. I11. 1979)

The potential energy curve of the X 2 state of the astrophysically important ScO mole-
cule has been constructed by R—K—R—V method and its dissociation energy has been
evaluated by fitting the electro-negativity potential function to the experimental potential
curve.

1. Introduction

The accurate determination of dissociation energies is of considerable
importance in the study of chemical binding. The dissociation energies are
generally determined by spectroscopic, thermochemical and mass spectre-
metric methods. Of these, the Birge —Sponer extrapolation [1] is suitable
in cases where an appreciable number of vibrational quanta are known.
However, this method is not quite reliable for molecules where ionic forces
contribute considerably to the binding. Various empirical potential functions
have been proposed based on certain physical and chemical models leading
to information about the chemical bond.

The Lippincott [2] three parameter potential function based on a (5-type
model of binding is indispensably covalent in nature. For molecular binding
where ionic contribution becomes important, the Szé6ke and Baitz [3] poten-
tial function which includes explicitly the electronegativities ofthe constituent
atoms, yields better results. The ionic contribution in the bond of ScO molecule
is quite considerable and hence it is expected that the electronegativity poten-
tial function would yield a reliable estimate of dissociation energy of this
molecule. In the present work, this method has been applied and the results
are presented.

2. Computational procedure

The potential function proposed by Szé6ke and Baitz is

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



154 V. M. RAO et al.

where n is defined by the relation n = de/D:/z, d is a proportionality factor
which is constant for molecules of the same bond type and related to the
force constant by the relation k. = d (e,e, D.)V2 r;1, e isthe geometric mean
of the PAULING [4] electronegativities e,, e, of the constituent atoms. a and b
are empirical parameters: a = 0.35 e”2 and b is a universal constant (1.065)
being independent of the bond type. D, and r, have the usual spectroscopic
meanings.

By using the RYDBERG—KLEIN—REES [5—7] method as modified by
VANDERSLICE et al [8, 9], the turning points corresponding to each vibrational
level have been computed. The values of r;, and r,,, of each vibrational
level are substituted in Eq. (1) and the corresponding U values are calculated
for different D, values. The correlation coefficient between the estimated
values and the experimental values is determined. The particular values of
D, corresponding to maximum correlation coefficient is regarded as the true
dissociation energy.

3. Results and discussion

The spectroscopic constants employed in the present work have been
taken from [10—14]. The results of fitting the electronegativity potential
function to the R—K—R—V curve are shown in Table I. It can be seen
from the Table that the dissociation energy D, is 5.39 eV, which corresponds
to the maximum correlation coefficient. The values of the R—K—R—V
turning point and the electronegativity potential energy values obtained for
the estimated D, value are shown in Table II.

GAYDON [15] recommends a value of 6 +- 1 eV for the dissociation
energy of X2 state of ScO, whereas the value obtained by us using the three
parameter LippINcoTT [2] function is 5.48 eV. The value obtained in the
present study is 5.39 eV.

The dissociation energy of a molecule is closely related to the ionicity
of the bond in question and it has been suggested that r,/r, gives its measure.
rx is the hypothetical crossing point between the ionic potential energy curve
and the asymptote of the covalent potential curve and r, is the equilibrium
internuclear distance. For a diatomic molecule 4B, r, is given by the relation
rx(A) = 14.40/(I.P. (A) — E.A.(B)) where I.P. and E.A. arethe ionisation
potential of atom A and electron affinity of atom B respectively, both expressed
in electron volts. For the X2 state of ScO, ry/r. is equal to 1.69. According
to the definition of ionicity as given by HiLDENBRAND [16] and HERZBERG
[17], the bonding in ScO falls in an intermediate region where both ionic
and covalent contributions are significant. As the SzOKE and BA1rz potential
function is based on ionic model alone, it gives a slightly lower estimate of

the dissociation energy (5.39 eV) of X2X state of ScO molecule.
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Correlation between the electronegativity and the R—K—R —V potential curves

U (cm-1)

484.84
1447.43
2402.55
3350.13
4 289.93
5221.91
6 145.84
7061.67
7 969.60
8 869.69
9761.97
10 646.09
11 522.01

D, (V)

5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50

Correlation
coefficient
0.99999094
0.99999288
0.99999543
0.99999592
0.99999704
0.99999790
0.99999849
0.99999882
0.99999889
0.99999871
0.99999827
0.99999759
0.99999665
0.99999546
0.99999404
0.99999236
0.99999045
0.99998829
0.99998590
0.99998328

Table M

Potential energy curves of X2 state of ScO

min (A)
1.614
1.579
1.556
1.538
1.523
1.510
1.498
1.488
1.478
1.469
1.461
1.453
1.446

mex ()

1.723
1.768
1.800
1.828
1.853
1.877
1.898
1.919
1.939
1.958
1.977
1.996
2.014

Umta (cm-»)

484.97
1448.84
2404.11
3352.10
4 .290.19
5223.81
6 145.93
7 056.08
7962.68
8 863.49
9 769.86

10 654.80
11 533.16

Umax (cm-»)[

485.85
1450.82
2 407.49
3357.49
4297.30
5232.82
6 155.91
7 065.94
7971.55
8 870.05
9772.25

10 649.93
11517.86
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The propagation of weak discontinuities in relativistic fluids with vibrational relaxa-
tion has been studied. The velocity of propagation of a relativistic weak discontinuity has been
determined. The fundamental equation governing the growth and decay of a relativistic weak
wave has been obtained and solved. The relativistic results are shown to be in full agreement
with earlier results of classical gasdynamics. The problem of breakdown of weak discontinui-
ties has also been investigated. The critical time tcis determined when the breakdown of the
wave will occur and consequently a shock wave will be formed due to non-linear steepening.
It is shown that there exists a critical amplitude of the wave such that all compressive waves
with an initial amplitude greater than the critical one will break down and a shock-type dis-
continuity will be formed, while an initial amplitude less than the critical one will result in a
decay of the wave. The local and global behaviour of the wave amplitude is also discussed.

I. Introduction

Weak waves have been extensively studied 'during [the last decade.
Recker [1] and Bowen and Chen [2] studied various properties of accel-
eration waves in non-equilibrium flows. Rarity [3] studied the problem of
breakdown of acceleration waves in flows with vibrational relaxation.

The recent advances in space technology have drawn a great deal of
attention towards the study of wave propagation in relativistic gasdynamics.
Eckart [4] and Taub [5] provided theoretical foundations of relativistic
shock waves. The relativistic theory of propagation of weak waves in a perfect
gas has been treated by Saini [6], Coburn [7] and Kanwal [8]. The growth
of weak waves in relativistic gasdynamics has also been studied by McCarthy
[9] for an ideal perfect gas. Nonequilibrium effects on the breakdown of weak
waves have been recently studied by Ram [10]. The main academic interest
of the present paper is to study the problem of growth and decay of relati-
vistic weak waves in gas flows with vibrational relaxation and to determine
a critical stage when there occurs a breakdown of the weak wave and the
consequent formation of a shock wave.
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Il. Basic preliminaries

The notations used in this paper are, with a few minor exceptions, iden-
tical with those employed by Grot and Eringen [11].

Let X k be the rectangular coordinates of a material point in a three
dimensional space. The motion of a material body can be described by a new
set of coordinates xk given by

xk = xk(X* ad4); X= ct, (i,k= 1,2,3),
where t is the time and c is the constant velocity of light in vacuum. Let us
introduce the concept of an Einstein—Riemann space Vt by four coordinates

Xa= (x\ xX) with a metric ds2= T npdxddxr. The metric has constant compo-
nents given by

rm=ru= gap [(«=T1 44= -1

The world velocity can be expressed as

Wa*) =R 1, uUuUl= -1 ; 2.1

where

7= (!'—v3c2-1/2. (2.2)

Here the range of Latin indices is 1, 2, 3 and that of Greek indices is 1, 2, 3, 4.
A dummy index will usually imply summation unless specified otherwise.
The invariant derivative of any function <p(xx) can be expressed as

oP u nly' U*?,*’ (23)

The equations of motion of a gas with vibrational relaxation in a relativisti-
cally correct form can be written in the form:

(eU*),* = 0 (2.4)
T% = 0, (2.5)

Dg- A eO(q-q)= 0O, (2.6)
C
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where
Tal = coU*UR + ps

= U4P+ &%
o= g1+ elc2+ kqglcd) -
Here p, g, Tak e, @ and q, g respectively represent the gas pressure, the particle
density per unit volume, the energy momentum tensor, the internal energy
per unit mass, the relaxation frequency and the vibrational energy per unit
mass of the gas, local equilibrium value of g. Here K is the constant specific
heat of the internal energy reservoir. A comma followed by an index denotes

partial differentiation with respect to the corresponding coordinate.
From (2.4) and (2.5) we get

pac2DU* +~s"P R = 0, 2.7)

(gac* [/% - U*piv= 0, (2.8)

where a = 1+ J/c2 A= h(p, r],q) is the enthalpy of the system per unit mass.
The Eqs. (2.7) and (2.8), respectively, represent the conservation of

momentum and energy in a relativistic fluid motion with vibrational relaxa-
tion. In view of (2.3) and (2.4) the Eq. (2.8) can be expressed in the form

gbh — Dp -0, (2.9)
where

N= —Y¥— 2-+kq, (2.10)
Y—1 8B

y is the ratio of specific heats of the gas.
In consequence of (2.9) and the first law of thermodynamics we have

DV= -D q, (2.11)

where t] is the entropy of the system per unit mass and T is the absolute
temperature.
Using (2.10) in (2.9) we get

Dp - a}Dg+ k(y- | )®A - )=0, (2.12)
C

where ajis frozen speed of sound given by

dp_
92 4,
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I1l. Compatibility conditions on a time-like hyper surface

Let E{xu be a regular surface in an Einstein—Riemann space with
parametric equations

xf = yr(b\ b\ b3, 3.1)

where bl, b2 and b3 are parametric coordinates of the surface. The vectors x*r,
where semicolon denotes covariant differentiation with respect to bz are
tangential to E(x'D. The surface E{x") is called a time-like hypersurface if JV,,
the components of the unit normal vector to the surface, is a space-like vec-
tor, i.e.

N'N* =1.

The time-like hypersurface E(x*) may be regarded as a surface s(t) in space-
time for which the parametric equations are

s4= ct, xl= ~(61 b2 X4) . (3.2)

If n, are the components of the unit space normal to s(t) and G is its speed of
propagation, then we can write

ivV'= B{n‘, G/c}; N, = B{n, -Glc}, (3:3)

where
B=(1- Gar)"12

Let R be the region of the Einstein—Riemann space Vtwhich is divided
by the time-like hypersurface E(A?) into two regions R1land R2 Let any flow
parameter z with its first and second derivatives be continuous in R1-f-27
and R2-)- 27, but suffer a discontinuity in its first and second derivatives
across 27. Such a discontinuity is called a ‘weak discontinuity’ or ‘weak wave’.
If [z] denotes the jump in z across E(x[), the geometrical compatibility con-
ditions to be satisfied across 27(a®) are [12]

[z«] = CNa, (3.4)

[*aj] = CNaNR + 2iVEx®)C,x — Chzpx( xB), (3.5)

where
C =[za]iv", C = [z"p] N*NR,

bXf= N x™ ir, x}= raBa'*x?r,
p=— {Map + Mpa), agp= xMx?p.
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IV. Law of propagation
Using (3.4) and the identity

a™x%x% =]Y >- N*N\
we get

[Dz] = V[zp NB] + 0[z], (4.1)
where

d[«] = — VNA~z]A, (4.2)

Taking jumps in (2.4), (2.6), (2.7) and (2.12) and making use of (4.1) we get

Vv + (%iVa= 0, (4.3)
Ve= 0, (4.4)

pa (P-Yr + ps®NR = 0, (4.5)
Vfi - a}Vv--0 (4.6)

where
A=JU:BINBR, v=[QBRINB v=][PRINE,

e = [q.B\ F=U'IVa. 4.7)
From (4.3), (4.5) and (4.6) we get

*

etf - ajl<?) (48)

Using (2.1) and (3.3) we get
v= - BRGJc, (4.9)
where GO= G — t/n, is the local speed of propagation of the surface s(t) in

space-time, which coincides with G in the instantaneous rest frame. In con-
sequence of (3.3), (4.2) and (4.9) we have in the local instantaneous rest frame:

cofz] = R*+[z], (4.10)
ot

where 6jot is Thomas’ delta derivative [13].
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From (4.8) and (4.9) we get

Gl{oR* + «/M | - B2} + (2GO0+ N»,)«/lc2nY = a2. (4.11)

In an instantaneous rest frame the Eq. (4.11) assumes the form
G2= aj/a. (4.12)

The velocity of propagation GO given by (4.12) in an instantaneous rest
frame is in full agreement with earlier results of Rarity [3] and McCarthy
[9] in particular cases.

If the medium is in uniform state of rest ahead of the wave front and
if the motion is studied in the rest frame of this uniform state, the speed of
propagation GOis a constant.

V. The growth equation

In this Section we shall derive a fundamental growth equation which
will govern the growth and decay of a weak discontinuity during its course
of propagation.

Now we define the amplitude b of the wave 27(x*) by the relation

b= cX= cX'Nx= cA‘lVa, (5.1)

where IVx= s*NR are the space-like components of iVa
Differentiating (2.4), (2.7) and (2.12) with respect to xB and taking
jumps across ~(x"*) with the help of (3.4) and (3.5) we get

«/ Aft*
O0(t*Nx) + gV
B « + VX2 ( ) g V2

@+ My \K - eoM(N') + -7 Ne RNXxs*yG A +
Qf 2 (N Ycl & V]J

Ve
) 1+ V2
oz <K + 2 ? M +
“1)® KA _ 925292 @+ V)
+ely-1)®P K" 2¢(5 —9) + €2 i oFi i) v
(y- Doedll - i) 4. u* (1P = o (5.2)
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In view of (4.8) the coefficient of AN, in (5.2) vanishes and, therefore, we
get the following equation to be satisfied by A:

020 — afle) 80) — 0~ (a2 Nk -+ AN + oB{(y + 1) — 3aje} +
+ oily— oL {2e(q q>+e( R 89”—A
op dp

— (r — 1) D0%k(q — q)li v AoV]a;i + 2 L cz NS 8(pN,/V) —

— po(1 + V’)'llN“ o(N,) =0, (5.3)
which is the required growth equation governing the global behaviour of the
amplitude cA of a relativistic wave in gases with vibrational relaxation. In

*
a local instantaneous rest frame for which N* = (1 + V2)¥2 (a', 0),
Eq. (5.3) takes on a particularly simple form

A—%b——(Q E)b + B> =0, (5.4)
14
where '
e
2 ol
o N af/c?

2} 1 —GYe&’

B—zc {(y + 1) o — 3a}/?},

E=Soq0— 1)<1>k[29(q —q+¢
Zaf

e

Here (2 is the mean curvature of the propagating surface s(t) in space-time.

VI. Local and global behaviour of waves

In this Section we shall study the local and global behaviour of weak
discontinuity in an instantaneous rest frame. If s denotes the distance tra-
versed by the wave along its normal trajectory in time ¢, we have

el 6.1
x 0 (6.1)
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which gives a relation s = GQ, where GO is the constant speed of the wave
front propagating in a uniform state ahead of it in the rest frame of this uni-
form state. For non-plane waves and is calculated in the form [14]

Q= Qo KOs (6.2)
1- 2QO0s + KO0s2

where Q and KO are the values of the mean and Gaussian curvatures of
the initial wave front.
Using (6.1) and (6.2) in (5.4) and integrating we get

b(t) = bOF(t) \] F(r)dr\] , (6.3)

where
F(t) = e~Et{(l - K*"GO0*)(1 - K2GO0t)}~"A%. (6.4)

Here bOis the initial wave amplitude at time t = 0 and K It K 2are the principal
curvatures of the initial wave front which are negative for diverging waves
and positive for converging waves.

Let us consider the case of a diverging wave with initial amplitude
60!> 0. From (6.4) we observethat F(t)isaboundedand monotonically decreas-
ing function of t and tends to zero as t —°0. Thus for the interval (0, 00)
of t we have

0~ F(t)~ 1, 0" £ F(v)dr < oo. (6.5)
Using (6.5) in (6.3) we get
lim b(t) = 0,
t-* o0
which shows that the wave will continuously decay and will be damped out

ultimately. On the other hand if bO< 0 (the case of a compressive wave)
there exists a critical value bc of |bO| for diverging waves given by

(1% 1] TUT*I((*}I Il

For compressive waves with initial amplitude bO numerically less than bc
we have

0<1 + F(r)dr< 1 for 0< t<Coo. (6.6)
i ‘-c

Since Krand K 2 are negative for diverging waves, we have

lim F(t) = 0, (6.7)
/—-o
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In consequence of (6.6) and (6.;) we have
lim b(t) = 0 6.8

when 1b01> bc, there exists a finite critical time tc given by

A 6.9
B\bO\"’ (6-9)
such that
lim b(t) = oo . (6.10)
e

From (6.8) and (6.10) we conclude that a weak compressive wave with initial
amplitude numerically less than bcwill decay, while a weak compressive wave
with initial amplitude numerically greater than bc will grow and after a finite
critical time tc it will terminate into a shock wave in consequence of (6.10).
The underlying mathematical fact is that due to non-linear steepening the
flow parameters themselves suffer a discontinuity culminating into a shock
wave.
From (6.9) we get

A=\ F()dtIF(te > 0,

which proves that the critical time tc increases with relaxation effects. This
shows that the relaxation process will delay the shock formation and thus has
a stabilizing effect.
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CW laser operation was observed at transitions of Kr II, Ar IT and Xe II in noble gas
mixture hollow cathode discharges. The laser transitions are excited in two steps: 1) ionization
of atoms, 2) excitation of ions to the upper laser state. It is shown that in contrast to the
pulsed positive column system the dominant process of ionization of Kr atoms is not Penning
collisions but electron impact. This result is found to be valid also for the CW He-Ar and
He-Ne-Xe hollow cathode ion lasers. Excitation of ground state ions to the upper laser state
is considered to be second kind collisions with metastable atoms.

1. Introduction

Pulsed laser oscillation in positive column He-Kr and Ne-Xe noble gas
mixture discharges was obtained first by DANA and LAUREs [1]. Lasing at
various Kr and Xe ion transitions was observed in the afterglow 5—15 usec
after the discharge pulse. The Kr and Xe ions were assumed to be produced
by Penning ionization by metastable He and Ne atoms, respectively, and
excitation of these ions to the upper laser state was considered to be second
kind collisions with He 23S (Ne 1s) metastables.

Further investigation of these pulsed laser systems has been performed
by BreEron [2] and KATo [3—5].

On the basis of the two step excitation mechanism laser oscillation at
the 4765 A transition of Ar II was obtained in the afterglow of a pulsed He-Ar
positive column discharge [6]. Investigations on pulsed positive column ion
lasers (He-Cd 5378 A and He-Kr 4694 A) [7], and on the CW hollow cathode
He-Cd laser [8], raised the possibility for CW operation in various noble gas
mixture hollow cathode discharges.

CW laser oscillation was obtained first at the 4694 A transition of Kr
II in a hollow cathode He-Kr discharge [9]. In this experiment efforts aiming
to obtain CW oscillation in the other two noble gas mixture systems were
unsuccessful.
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CW laser operation in He-Ar was obtained using an improved hollow
cathode tube construction [10]. Experiments in the Ne-Xe system were success-
ful by using a special high voltage hollow cathode discharge [11], and it was
found that addition of He significantly increases laser output power. New
CW Kr and Ar ion transitions were obtained in a high voltage hollow cathode
discharge of 160 cm active length [12]. The CW noble gas mixture ion laser
transitions with main operation data are summarized in Table I. An output

Table |

CW noble gas mixture ion laser transitions

) Wavelength Upper state Threshold
Gas mixture (A) e?:\r/g)y current*

He-Kr Kr 11

12 torr He 6510 19.47 21

75 mtorr Kr 5126 19.57 44
4694 19.47 11
4583 19.57 4.2
4387 19.47 45
4318 19.47 2

He-Ar Ar 1l

11 torr He 6861 19.87 2.3

0.7 torr Ar 6483 19.97 2.5
4765 19.87 2.2
4579 19.97 4.2
4545 19.87 35

He-Ne-Xe Xe Il

7 torr He 5314 16.43 4

4 torr Ne 4863 16.43 12

45 mtorr Xe

Energy of exciting He 235 19.82

metastable states Ne Is5 16.62

*Threshold currents measured in a high voltage hollow cathode discharge tube of
160 cm active length

power of 100 mW was observed at the strongest 4694 A Kr Il transition.
CW laser action in flute type and segmented bore He-Kr hollow cathode
discharge tubes was investigated recently [13, 14].

In this paper the excitation mechanism of the cw hollow cathode
He-Kr ion laser is considered in detail. It is shown by calculations that
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contrary to the pulsed positive column system, the dominant process of ioni-
zation of Kr atoms is not Penning ionization but electron impact. This result
is found to be valid also for the CW He-Ar and He-Ne-Xe hollow cathode lasers.

2. Excitation processes

For excitation of the CW He-Kr hollow cathode ion laser a two step
process is considered: 1) ionization of Kr atoms, 2) excitation of these ions to
the upper laser level. This is shown schematically in Fig. 1, in which relevant
energy levels of the Kr ion and the exciting He metastable are also shown.

Fig. 1. Partial energy level diagrams of Kr and He (e = electron impact)

In our considerations population of the lower laser level is assumed to be
negligible.

In ionization of Kr atoms (1) the following atomic processes are relevant:
electron impact ionization

Kr-f-e =Kr++ e+ e
and Penning ionization
He 235 + Kr He -f Kr+ + e + JIE .
He 23S metastables are produced by electron impact excitation

He -f-e —%He 23S (- e
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and they are de-excited mainly by electron impact ionization:
He 235 + e »He++ e + e.

In step (2) Kr ions are excited by second kind collisions between metastable
He atoms and ground state Kr ions

He 235 + Kr+ Kr+* + He .

First a calculation of Penning and electron impact ionization rates is
given to determine which ofthese mechanisms is dominantin producing ground
state Kr ions. This is followed by a discussion, which deals with excitation
of ground state Kr ions to the upper laser state.

3. Calculation of Kr ionization rates

For calculation of the ionization rates we take the following model:
He 23S metastables (M) are produced by electron impact excitation and lost
by electron impact ionization, by diffusion to the walls of the discharge tube
and by Penning and second kind collisions.

Kr ions (N +) are produced by electron impact and Penning ionization,
and they have an average lifetime of r+. The rate equations are then the

following:

dM D
N Htne < ™ve} — M ne<of4> + — - b N KT <apv) + N + <ffov> (1)
dt AdD :
dN + (1 \
— — = NKTne<ff+»e> + MNKI <opv) — N+ — + M <> , (2)
where

NHe = density of ground state He atoms;

ne — electron density;

a™ = cross section for He 23S production by electron impact;

ve = velocity of electron;

of = He 23S destruction (ionization) cross section by electron impact;
D = diffusion constant of He 23Sin He;

N = characteristic diffusion length of He 23S in He;

Op = Penning ionization cross section of Kr atoms by He 23S atoms;
oc = cross section for second kind collision of Kr ions and He 23S

atoms;
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p = He pressure;
v = relative velocity of colliding atoms;
at = total electron impact ionization cross section of Kr.

In a stationary state,

dm dN*
= 0, = 0.
dt dt @)

Then, from (1), taking into account that N + iVKr the metastable density
in steady state is,

M = N Hene(o™ vey
n/R? ve>+ DjAD + NKr(opv)

and the ratio of electron impact and Penning ionization rates of Kr is

R = NKrne<°t Ve> = ne(a+ Ve)

M N Kr<°p v> M <ap v)

In order to calculate the metastable density M and then the ionization ratio
R, following data are needed: electron density, cross sections as a function
of energy, electron energy distribution function, He metastable diffusion
coefficient and diffusion length.

The, following rate integrals have to be calculated: (oe \e}, (ae Ve),
at\B)/, apvy The last integral is approximated by ap where average
values ap= 9.7xI10-le cm2 [15] and hHe = 1.5 X FO5cm/s are used.

The remaining three integrals are all of the same type:

"2 112 .
PPy — = E Y2f(E) Oi(E)dE, (6)
me) Jo

where di = at] at or at, and f(E) is the electron energy distribution function.
The cross sections used in the calculation are shown in Fig. 2. at is obtained
from [16], at from [17] and al from [18]. Because the cross sections are zero
below the threshold energies (see Fig. 2), integration is carried out from Eth,i
to infinity. The integrals have been calculated in two cases: first assuming
a Maxwellian electron energy distribution function with (somewhat arbitrarily)
kTe= 5eV and then using data from [19], where electron energy distributions
have been measured in the negative glow of an abnormal glow discharge.
Functions f(E) in both cases are shown in Fig. 3. In case of Maxwellian distri-
bution the integrals can be calculated exactly, but in the other case numerically.
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Fig. 2. Electron impact cross sections relevant to the CW He-Rr hollow cathode on laser as

a function of electron energy (ofl= He 23S production cross section, of = -He 23S destruc-
tion cross section and of = Kr ionization cross section). The value of the Penning ionization
cross section op is also shown

Fig. 3. Maxwellian distribution function with kTe= 5 eV and electron energy distribution
measured in [19] in the negative glow at 1.5 mm from the cathode surface (He pressure 10 torr,
discharge current 3.5 mA)

In the calculation of R p He = 15 torr was taken. The diffusion coefficient
isD = 470 cm2torr s-1 [20]. For a cylinder of radius r and height h the follow-
ing expression of the diffusion length is used [21]:

2 64 21-1

A2= \Y

The first term in (7) can be neglected. For a typical hollow cathode diameter
2r= 5 mm and A2= 1.1X10-2 cm2 results.
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Electron density has been obtained by extrapolating the data given in
[22] up to a current of 40 mA/cm at 8 torr He pressure. The value of n, is then
1.5 10%3/ecm3. No data of n, are given in [22] for higher He pressures, but
since electron density does not change very strongly with He pressure, this
value is taken for the calculation at 15 torr. Recent measurements on electron
density [23, 24] give values near to that obtained in this way.

4. Discussion

When using a Maxwellian distribution function a value of 0.3 is obtained
for the ionization ratio R, whereas using the electron energy distribution measur-
ed in the negative glow, R = 120 results. In the former case it can be said
that electron impact ionization and Penning ionization rates are about of the
same order of magnitude but in the latter case electron impact ionization is
dominant.

The former result is not valid for our case, however, because a Max-
wellian distribution is not a good approximation for a hollow cathode dis-
charge since thisis known to have much more high and low energy electrons.

Possible sources of error in our calculation are the following: The measur-
ed cross sections are known to be accurate to 10—20 per cent. The electron
density value may deviate by 50 to 100 per cent from the actual value. The
main source of error is in the electron energy distribution, because the measured
data do not correspond exactly to our experimental situation. It is difficult to
estimate exactly this error, but even if the value of R has an error of a factor
of ten, which is with high probability an upper limit, the final result remains
the same, i.e. in the He-Kr hollow cathode discharge electron impact ionization
is dominant over Penning collisions in producing Kr ions. Comparing this
result with that obtained using a Maxwellian distribution it can be seen that
the high energy electrons play an important role in producing Kr ions in the
hollow cathode discharge.

It was observed that output power and efficiency increases in a high
voltage hollow cathode He-Kr laser. This is due to the larger number of high
energy electrons in such a tube, thus in this case electron impact ionization of
Kr is even more effective than in a conventional hollow cathode discharge.

In the pulsed positive column He-Kr discharge laser oscillation occurs
in the afterglow when the electrons have lost most of their energy and no
electron impact ionization takes place. This means that in the pulsed laser
system Penning ionization is the process producing ground state Kr ions.

Because the relevant cross sections in the case of Ar and Xe do not differ
much from those of Kr [18], our conclusions are valid for the other noble gas
mixture ion lasers as well.
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Since the Maxwellian electron energy distribution is more or less valid
for a positive column, from our results it follows that in this case the Kr ion
density is much less. This shows that it should not be easy to obtain cw laser
oscillation in a positive column He-Kr discharge and may explain why efforts
aiming on this were unsuccessful [25].

5. Excitation of the upper laser state

In the following some aspects of excitation of ground state ions to the
upper laser level are discussed. It is known that only those Kr ion laser tran-
sitions oscillate in which the upper level is in near resonance with the He
23S state. Also these laser transitions do not operate in pure Kr. From these
facts it can be concluded that excitation of ground state Krions to the upper
laser state is due to second kind collisions between ground state Kr ions
and He 23S metastables.

Although the energy of the excited state of Ar ion is a little higher than
that of He 235 (Table 1), the second kind collision is assumed to be energetically
possible because the Ar ions have large enough kinetic energy in the discharge
to cover the energy difference [26].

The role of He in enhancing laser output in the He-Ne-Xe laser is pro-
bably the following: Electron density and the component of high energy elec-
trons is larger in the He-Ne-Xe mixture than in Ne-Xe and thus much more
Ne metastables and Xe ions are excited. In the He-Ne mixture second kind
collisions between He metastables and Ne also lead to an enhancement of Ne
metastable density.

6. Summary

Excitation mechanism ofthe cw He-Kr hollow cathode ion laser has been
studied. Considering a two step excitation process it has been shown that the
dominant process in producing Krions is electron impact. The second step, exci-
tation of these ground state ions, is due to second kind collisions between Kr
ions and He triplet metastable atoms. This kind of mechanism is found to be
valid for the other cw noble gas mixture ion lasers as well.
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The role of the point-defect scattering relaxation rate has been studied in the lattice
thermal conductivity of an insulator by calculating the lattice thermal conductivity of GaAs
for the different values of the point-defect scattering strength. All calculations have
been performed in the frame of the recently proposed model of DuBEY and MisHO of the
phonon conductivity of an insulator. The study is made for low as well as high values of the
point-defect scattering strength in the entire temperature range 4—100 K.

The lattice thermal resistivity of an insulator has been studied by several
workers and is found that the transportation of heat by lattice waves in a solid
is governed by the anharmonicities of the lattice forces such as various imper-
fections of the crystal lattice and by the external boundary. It is well known
[1—4] that the point-defects (isotopic impurities) are one of the very important
scatterers of phonons at temperatures near the conductivity maxima, and the
lattice thermal resistivity of an insulator is mainly due to the point-defect
scattering relaxation rate at these temperatures. Thus, there is a need to study
the role of the point-defect scattering relaxation rate in the calculation of the
lattice thermal conductivity. Recently, the authors [4, 6] studied the phonon
conductivity of GaAs in the entire temperature range 2—800 K. But their
studies are confined to see the role of the three phonon and boundary scattering
processes only, while the study of the role of the point-defect scattering has
been totally ignored in their previous studies. In continuation of the earlier
study, the aim of the present note is to study the role of the point-defect
scattering relaxation rate in the calculation of the lattice thermal conductivity.
The study is performed by introducing a new parameter “p’’ which is the ratio
of the point-defect scattering strengths of the normal sample and the sample
under study (having an impurity concentration different from the normal
sample), similar to the previous study of the role of the boundary scattering
[6]. The new parameter “p”’ can be defined as p = (point-defect scattering
strength for the sample under study)/(point-defect scattering strength of the
normal sample) and it depends totally on the extra impurities present in the
normal sample. GaAs is taken as an example and its lattice thermal conduc-
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tivity has been calculated in the entire temperature range 4—100 K for

the different values of “p”.
Following Dubey and Misho [7, 8] the phonon conductivity of an insu-

lator can he expressed as

K=K T+ KL, (1)

KT= (CjvTd) font2c,T FX{x)dx + (CjvT2)J ~ r F2x)dx, 2)

KL= (CJvLy) F3(x) dx + (Cdviz) f~ r CL F~x) dx, 3)

where C = 2Cl= (fcB/3n:2) (kBTjh)3 r”j = r~1+ r~1+ rjphksi; i = T and
L, Ft = x*ex(ex- 1)-2(1 + A,T222(L + 3 T 221 i= 1,2, 3 and 4, kB is

the Boltzmann constant, h is the Planck constant divided by 2jr, v’s are the
phonon velocities, jR’s are the constants and depend on the dispersion curve
of the sample under study, O’s are the characteristic temperatures, Tjjl, "1
and rjTpft are the scattering relaxation rates due to boundary [9], point-defects
[10] and three phonon [7, 8] scattering processes, respectively (for details, see
[5]1). The boundary scattering relaxation rate used in the present analysis is
due to Casimir [9] and it can be expressed as t"1= r/L, where L is the
Casimir length ofthe crystal. The expression for rjphused in the present study
includes both three phonon normal and umklapp processes and it is the same
as proposed by Dubey and Misho [7, 8]. In writing Eq. (1), the correction
term [11] due to the three phonon normal processes has been neglected due
to its very small contribution [12—15].

As stated above, our aim is to study the role of the point-defectscattering
relaxation rate [10]. Therefore, before giving the details of the calculations, it
is needed to give a few lines about the point-defect scattering relaxation rate
tpil- When the wave length of the phonons is large compared to an imperfec-
tion in the crystal, the scattering can he treated classically in the manner of
Lord Rayleigh. Klemens [10] has treated the problem by perturbation theory
and derived an expression for the asymptotic limit of low temperature and low
frequency of phonons which does not include the dispersion of phonons. He
finds as expected r”~ 1cc wlwhich can also be expressed as rjtl= Awi. The
proportionality constant A (which is known as the point-defect scattering
strength) depends on both mass difference and force constant difference bet-
ween the host lattice and imperfections, the latter difference is difficult to
estimate both because input data for new binding scheme may not available
and Dbecause the strain field associated with the point imperfection can
cause smallchangesin the force constantsinthe crystal. Accordingto Ki1emens,
the point-defect scattering strength A can be expressed as

A = {VI4,nv3d)Jglldl - mjm)2,
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where V is the volume, v is the average phonon velocity, m-is the mass of an
impure atom, mis the average mass of all atoms,/, isthe fraction of atoms with
mass /n, and suffix i is used to denote impure atoms. The above stated expres-
sion for the point-defect scattering relaxation rate has been used by several
workers and it is found that it gives very good response to the experimented
data of the lattice thermal conductivity.

If An is the point-defect scattering strength of a normal sample, any
change in the impurity concentration or presence of any other defect (mass
difference), causes a change in A Following the earlier work of the authors
[6] and introducing a new parameter “p”, the point-defect scattering strength
A of the new crystal (after increasing impurities in it) under study can be
expressed as a function of A as A = Anp. Thus, it is clear that p measures
the ratio of the point-defect scattering strengths of the normal sample and the
sample under study. The value of “p” totally depends on the extra impurities
present inside the normal sample. Assigning the different values for “p” as
p = 0.1,0.2,0.3,... 1and 10, 102 ..., 105 and using the conductivity integ-

Fig. la. Phonon conductivity of GaAs in the entire temperature range 4—100 K for the
different values of “p” in the range 0.1—0.6
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rals stated in Eq. (2) and (3), the lattice thermal conductivity of GaAs has been
calculated in the entire temperature range 4—100 K for the different values
“p”. The study is limited upto 100 K only, due to the fact that above this
temperature the point-defect scattering relaxation rate does not make a signi-
ficant contribution to the combined scattering relaxation rate and the lattice
thermal resistivity is mainly due to phonon-phonon scattering processes.

The constants used in the present analysis are taken from the earlier
report of the authors [5] for GaAs and results obtained are shown in
Figs, la, Ib, 2a and 2b. The percentage change the the phonon conducti-
vity due to a change in the point-defect scattering strength A (i.e. for the
different values of“p ”)is also calculated and the results are listed in Table I.
From Figs, la and Ib (corresponding to p <[ 1 and to p > 1, respectively),
it is clear that the position of the conductivity maxima in K vs T curve
is shifted from its normal position due to a change in the point-defect
scattering strength A. If A < An (i.e. p < 1), it shifts towards the higher
temperature whereas it is shifted to lower temperature forp > 1, and it can
be explained looking at the role of the boundary scattering relaxation rate [6]

Fig. Ib. Phonon conductivity of GaAs in the entire temperature range 4—100 K for the
different values of “p” in the range 10°—105
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Fig. 2a. Variation of the phonon conductivity of GaAs with respect to the point defect scattering
strength A at different temperatures in the range 4—10 k

Fig. 2b. Variation of the phonon conductivity of GaAs with respect to the point defect scattering
strength A at different temperatures in the range 20—100 K
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Table |

The percentage change in the lattice thermal conductivity of GaAs for the different values of
the point-defect scattering strength i.e. for the different values of“p” at different temperatures

P T=56 T=38 T= 10 T=20 T= 30 T= 40
0.1 54.26 67.50 47.50 47.50 30.00 22.30
0.2 41.14 50.16 51.60 37.60 24.60 18.80
0.3 3191 38.50 34.50 29.90 20.20 15.80
0.4 24.79 29.53 30.30 23.60 16.40 13.10
0.5 18.97 22.43 23.00 18.30 13.00 10.80
0.6 14.09 16.56 16.90 13.70 10.00 8.30
0.7 9.90 11.56 11.80 9.80 7.30 6.60
0.8 6.21 7.22 7.40 6.10 4.80 4.70
0.9 294 3.40 3.40 3.00 2.50 2.00
1.0 0 0 0 0 0 0
2 -19.23 -21.61 —22.10 -19.20 -14.80 -11.00
3 -30.00 —33.25 —33.80 -30.20 -24.40 -19.30
4 -37.25 —40.90 —41.60 -37.70 -31.30 —25.50
5 -42.61 —46.45 —47.20 -43.10 -26.50 -20.40
6 -46.79 —50.72 —51.40 -47.40 -41.70 —34.40
7 -50.17 -54.15 —54.90 -50.90 -44.20 -37.90
8 -53.00 -56.98 —47.70 -53.80 -47.10 —40.80
9 -55.40 -59.38 —601.0 -56.20 -49.70 -43.30
10 -57.90 -61.43 —62.20 -48.30 -51.80 —45.50

100 -87.29 -89.32 —89.70 -89.90 -85.00 -81.70

1000 -96.97 -97.58 —99.70 -97.20 -96.30 -95.30
10 000 -99.36 -99.50 —99.90 -99.40 -99.20 -99.00

in the calculation of the lattice thermal conductivity. At the same time, it is
also very clear from these Figuresthat as A increases, slope ofthe K vs T curve
near the conductivity maxima becomes flatter. Thus, one can conclude
that the point-defect scattering relaxation rate is one of the responsible factors
to assign the position of the conductivity maxima. In other words, one can
say that is one of the responsible factors to minimise the lattice thermal
resistivity ofthe sample at these temperatures (near the conductivity maxima).
It can also he concluded that the curvature of the K vs T curve near the con-
ductivity maxima is governed mainly by the point-defect scattering strength
A which depends on the concentration of the impure atoms present inside the
crystal lattice.

From Figs. 2a and 2b (corresponding to T <; 10K and T > 10 K,
respectively) it can be seen that the lattice thermal conductivity decreases
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with an increase in the point-defect scattering strength A at every tempe-
rature. In other words, the lattice thermal resistivity increases with an in-
crease of the impurity concentration. From these Figures as well as with the
help of Table I it can be seen that the maximum effect of A on the lattice
thermal conductivity is at 10 K which correspondsto the conductivity maxima.

*

The authors wish to express their thanks to Dr. R. A. Rashid and Dr. R. H. Misho

for their interest in the present work.
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The difference of dipole moments between the excited and ground state was determined
to be 1.9 and 1.8 Debye for 9-acetoxyanthracene and 10-phenyl-9-acetoxyanthracene from
the frequency shifts of absorption and emission spectra. The polarizability of these two com-
pounds is 36 X 10-% and 54 X 10-% cm?, respectively. The measured natural lifetimes are
compared with those calculated from the absorption integral taking into account the effect
of intermolecular interactions on the optical properties of dissolved molecules.

1. Introduction

Among meso-substituted anthracenes only a few lasing dyes are known
[1—3]. Recently we found [4a] that some of 9-acetoxyanthracene derivative
show the lasing action in toluene and dioxan. The selection of aromatic hydro-
carbons as laser dyes can be facilitated, taking into consideration all spectros-
copic data available for the group of dyes. Further these experimental data are
of great importance concerning many theoretical investigations of the anthra-
cene derivatives since they allow the comparison with theoretical values.
In earlier papers [4, 5] we reported the results of studies on the absorption and
emission spectra, quantum yields and mean decay times of the fluorescence
of 9-acetoxyanthracene derivatives. In this paper we report the polarizability,
o,and the difference of the dipole moments of the excited and ground states,
Al = fi, — fig, of the 9-acetoxyanthracene (I) and 10-phenyl-9-acetoxy-
anthracene (II). They are determined from the changes of intensities of absorp-
tion spectra and from the frequency shifts of absorption and emission spectra
when the dyes are dissolved in various solvents.

2. Effect of the internal field in solution on the electronic absorption
and emission spectra and on the lifetimes of the molecules in the excited state

The shift of the electronic absorption and emission spectrain the solution
from their position in the gas phase is related to the dielectric constant (D)
and the refractive index (n) of the solvent.

* This work was carried on under the Research Project 10.2
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The theoretical explanation of this shift was given by Bayliss [6],
Ooshika [7], Lippert [8], Bilot et al. [9], Liptay [10], and Mataga et al
[W]. A review of the above mentioned theories is given in the book of Mataga
and Kubota [12].

The comprehensive treatment of solvent effects on electronic spectra of
dissolved polyatomic molecules gives the following formula which explains
the frequency shift (see [9] and [10]) of the absorption and emission maxima
in various solvents:

Av = va—ve= m «d(n, D) -|]- const, (1)
where

m - 2Ne' - ‘re>* |
her3 2)

D-1 n2—1
20+ 1 22+ 1
i 2a n2—1 E 2a D- 1] @)
r3 2n2+ | r3 2D + 1j

and where r is the radius of the cavity in Onsager’s theory, [Ag and /ne are the
dipole moments of the ground and excited singulet state and a is the real part
of the complex polarizability of the molecule under investigation.

It results from Eq. (1) that a graph of Avversus d(nD) should be a straight
line, the slope of which is given in Eq. (2). To perform this plot, the value of
a/r3must be known in order to determine the variable d(n, D) for various so-
lutions.

The value a/r3of dissolved molecules can be determined (the appropriate
method is due to Schuyer [12]), if the oscillator strength, /, is treated as an
invariant quantity in transition from vapour to solution where only dielectric
effects appear. The dielectric effects have no direct influence upon the transi-
tion probabilities and solely effect the internal field strength of the light wave
acting on the molecule, and thus they are of a universal nature.

In this case when the solvent as an external physical medium hasno
direct influence on the changes in transition probability the expression for
the oscillator strength/of a dissolved molecule can be written in the form [13]

g . fewmdv—f = B, (4)
nei j

where Js;Mdv is the experimental value of the absorption integral of the
solution, c is the velocity of the light and m, e are the mass and the charge
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of the electron, respectively. The correction function ¢(n) depends on the
effective internal electric field acting on a molecule in the solution. Considering
the solvent to be a continuous, structureless dielectric characterized by the
refractive index n, the simple relation

¢(n) =n ©)

holds. But taking into account the individual properties of the dissolved
molecules and the polarization resulting from the dipole induced in the mole-
cule under the effect of the light wave [14], the correction function is:

@r2+1P(  a 222
9ns i 2n 4+ 1 i

¢(n) = (6)

Substituting the above expression (Eq. (6)) for ¢(n) in Eq. (4) and rewriting
it in the form:
1 1 « 1 2n%2—2

oo g 7
(g'Ss;M dv)12 B2 rPr B2 2n2-11 (7

where g’ = 3mc/me? (2n® + 1)/9n3 and the other quantities are as defined
earlier a linear dependence between (g'fe;M d»)~V2 and (2n% — 2)/(2n% 4 1)
is obtained.

The line in the graph of Eq. (7) intersects the axis of ordinates in the
point B~V2 and has a slope equal to «/(r’|/B). The quotient of the two quanti-
ties yields the required parameter o/r3.

Taking into account the influence of the solvent and the width of the
spectra of complex molecules [13] the following expression is obtained relating
the integral probability of absorption to the lifetime of the molecule in the
excited state:

1 1
f Ve;mdv ng(n) ;

T[ns] = 3.43 x 108 (8)

From the above relations it follows that the data obtained from absorption
and emission spectra of dissolved molecules in various solvents can be used
by means of Eq. (1) and Eq. (7) to determine the dipole moment of the excited
molecule fi(or the value Az = ji, — ji,) and the real part of the complex
polarizability «. The additional knowledge of the lifetime 7 and the quantum
yield Q of fluorescence of the investigated molecules give a possibility to check
these values.
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3. Results and discussion

The synthesis of the investigated compounds is given in our former paper
[4]. The structural formulas are shown in Fig. 1. The compounds were recrystal-
lized from ethanol before use. The solvents were spectroscopic pure. The con-
centration of the compounds in the solution was 2 X 10-5 gem-3. The absorp-
tion spectra were measured with a Zeiss-Jena type VSU-2 spectrometer.

'1.9-acetoxyanthracene 1. 10-phenyl -9-acetoxyanthracene

Fig. 1. The structural formulae of 9-acetoxyanthracene and 10-phenyl-9-acetoxyanthracene

The emission spectra and the quantum yield (for n-heptane solutions
only) were obtained using the apparatus described in [5]. The measurements
of fluorescence lifetime in n-heptane solutions were performed by means of
a phase fluorometer [16].

The obtained experimental data are collected in Table I. The frequencies
va and ve give the value of the lowest vibrational peak of the absorption and

Table |

The physical parameters of the used solvents and frequencies of the lowest vibrational peak
of the absorption and emission spectra

10-Phenyl-9-acetoxy-

Refrac-  Dielec- 9-Acetoxyanthracene anthracene
Solvent tive tric

index—const 4y vofem-] Mem-7 d(D)  vafem*1 ve[em-1]
1 Methanol 13290 31.20 0939 29100 25650 0.8183 28450 24950
2 Ethanol 1.3623 25.00 0.8857 29000 25550 0.7726 28 250 24650
3 n-propanol 1.3854 21.80 0.8483 28900 25600 0.7405 28 350 24750
4 n-heptane 13867 1.97 0.0102 29000 25750 0.0096 28 500 25000
5  n-butylchlorate 14022 7.39 05497 28900 25700 0.4927 28250 24700
6  Tetrahydrofurane 1.4045 7.39 05483 28900 24450 0.4915 28300 24750
7 n-heptanol 1.4250 12.10 0.6915 28850 25650 0.6099 28200 24 750
8  Cyclohexane 14464 223 0.2654 28800 25700 0.2494 28200 24750
9  Chloroform 14467 514 03851 28750 25500 0.3491 28520 24550
10  Cyclohexanol 1.4648 15.00 0.7227 28850 25600 0.6325 28200 24700
11  Benzene 15014 2.28 0.0049 28800 25650 0.0045 28 100 24850
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emission spectra. The dielectric constants and the refractive index were taken
from the tables in “Technique of Organic Chemistry”, Volume VI1I [17].

Using the values of n, D from the Tables and from our measure-
ments the coefficients a/r3were determined on the basis of Eq. (7). Fig. 2 shows
the graph obtained for the dependence (g'MEm dv)~"2versus (2n2— 2)/(2n2+ 1)
for 9-acetoxyanthracene. In Fig. 2 the crosses give the dependence (g'*ejMdv)~"2
versus (2n2 — 2)/(2re2 -)- 1) for non-dipole (4) and (11) and mixtures of two
non-dipole solvents, respectively.

Fig. 2. (g J evMdv)~111as afunction of (2rex— 2)/(2n* + 1) for 9-acetoxyanthracene in various

solvents. The figures near the points refer to the sample No. as in Table I. The points marked

by crosses give the above dependence for n-heptane (4) and benzene (11) mixtures for different
proportions

As can be seen in Fig. 2 the experimental points approach the straight
line well.

The values of the a/r3 coefficient, calculated for the 9-acetoxyanthracene
and 10-phenyl-9-acetoxyanthracene (the graph ofthe dependence {g'
versus (2re2 — 2)/(2n2-f- 1) is similar to the one in Fig. 2) are equal to 0.62
and 0.54, respectively. Utilizing the above values the variable d(n, D) were
calculated for the solutions given in Table I. In these calculations for the radius
of the spherical cavity with a point dipole at the centre the mean radius of the
molecule has been calculated from the length of the chemical bonds.

The dependence Av = va— as the function of d(n, D) of the two
compounds is given in Figs. 3a and 3b. In this case the scattering of the
experimental points is negligible. The values of the Onsager radius r, the
direction coefficients m (for the straight lines in Figs. 3a and 3b) and the
values of Ay calculated by means of Eq. (2) are collected in Table Il. The
values obtained for A/l show that the dipole moment of the excited state
differs from the ground state value for both molecules. The changes are not
so large as for some other molecules (see [8]).
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a) 9-acetoxyanthracene, w - 0.62

bl 10 phenyl-9-acetoxyanthracene, -r"‘]=0.5i

Fig. 3. The values of va— ve as a function of d(n, D) for 9-acetoxyanthracene and 10-phenyl-
9-acetoxyanthracene. The figures near the points refer to the sample No as in Table |

Applying the same values of r, the polarizability of the 9-acetoxyanthra-
cene and 10-phenyl-9-acetoxyanthracene molecules is determined to be equal

to 36 X 10-21 and 56 X 10-24 cm3, respectively.

Since the expressions used for the determination of A~jl and e are obtained
using the simplified form of the Onsager’s reaction field model [12] it is very

Table Il

The mean polarizability a and AJi = yr—~values of 9-acetoxyanthracene and 10-phenyl

9-acetoxyanthracene.

-call a
Compound if M M» mr(c['n?‘!l]
Anthracene 0.66b 3.61
9-Acetoxyanthracene 10.56 11.07 0.62 3.89
5.97 289
10-Phenyl-9-acetoxy- 9.15 9.18 0.54 4.75
anthracene 5.10 292

aN. G. Bakhshiev et ab, Optika i Spektrosk., 24, 901, 1968.
bW. Liptay et al., Z. Naturforsch., 26a, 2020, 1971.
“Yu. B. Malihanov, Optika i Spektrosk., 43, 431, 1977.
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difficult to state how reliable the data determined in this work are. Some
answers to this question can be obtained when the result is compared with the
data known for anthracene or other similar molecules. As can be seen in
Table IT the mean polarizability « and the Ag = i, — ji, values of 9-acetoxy-
anthracene and 10-phenyl-9-acetoxyanthracene are larger than those of
anthracene. These differences are not very large if one considers that the
investigated molecules have only an identical frame in which the electronic
transition takes place. Our results agree with the data obtained for 9-bromo-
anthracene (4z = 1.7 D [18]) and 9,9-bianthryl (« X 10% ecm?® = 56 + 3 [19]).

Another way of testing the correctness of the «, 4u and r value may be
the comparison of measured and calculated natural lifetimes using Eq. (8).

For this aim the absorption spectra of n-heptane solutions were selected. The
results of these calculations are collected in Table II too. The 7$3 and 7§
are calculated for the two cases where the solvent is considered to be a con-
tinuous, structureless dielectric and where the individual properties of the
dissolved molecules and the polarization resulting from the dipole induced in
the molecule are taken into account. The comparison of measured natural
lifetimes 7,,,,/Q (see Table II) with those calculated from the absorption integ-
ral shows good agreement only for those values for which the quantity o«/r®
was taken into account.

This agreement gives confidence for the correct determination of the
polarizability and Ap value of these two compounds.
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The temperature behaviour of the heat conductivity of metals is investigated in the
case when the anharmonic properties of phonons are taken into account in the pseudoharmonic
approximation. The results show that the pseudoharmonic effects of lattice vibrations are
not negligible in calculations concerning the high temperature region. A comparison with
e_erJefrime_ntaI data is given for copper, silver and gold theoretically described by various poten-
tial functions.

1. Introduction

Some years ago the influence of the pseudoharmonic effects of lattice
vibrations on the temperature behaviour of the electrical conductivity was
shortly reported [1]. The theoretical results corrected by means ofthe anharmo-
nicity of phonons come much closer to experimental data than the correspond-
ing ones calculated in the harmonic approximation. The illustrative considera-
tions were presented for the model discussed by Par [2] and by Prakasnh and
Sharma [3] applied to the description of the electrical conductivity while the
pseudoharmonic correction was introduced by means of the evaluations given
by siki1es [4] on the basis ofthe Morse potential. The above calculations showed
that the pseudoharmonic effects should not really be neglected in considerations
of thermal properties of transport phenomena. Thus, it seems to be natural
to check this suggestion studying not only electrical conductivity but also
other phenomena. For this reason, the aim of the present paper is to analyse
the temperature behaviour of the heat conductivity in the high temperature
limit of the pseudoharmonic procedure.

On the other hand, we are stimulated for further applications of the
pseudoharmonic procedure to transport phenomena because of the interesting
fact that there exists a very simple relation for the renormalization of the
temperature in standard formulas derived in the harmonic approximation [1].
This feature allows us in fact to draw the temperature behaviour of the kinetic
coefficients without any additional procedure in their determination except
for the change for the phonon basic frequency.
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In order to find the lattice vibration parameters the self-consistent
theory of anharmonic crystals developed by Prakida and Sik1é6s [5] can be
used. The above approach is based on the Green’s function method which
allows us to describe dynamic as well as thermodynamic and elastic properties
of crystals. In its general form the theory can be formulated for an arbitrary
potential function leading to the results taking all higher-order terms of the
lower-order perturbation theory into account in aself-consistentway and includ-
ing the damping effects [6—8]. In the frames of the first approximation of
this theory, the so called the pseudoharmonic approach or the approximation
of the self-consistent phonons, in which the damping processes are not taken
into considerations, the self-consistent equations were obtained for physical
quantities in systems of the three-dimensional face centred cubic lattice with
the central pair interaction in the nearest neighbours approximation [4, 9].
This level of approximation is a starting point for calculations connected
with the temperature renormalization of phonon spectra in the present
paper.

Usually, the exemplification of the general procedure derived for the
pseudoharmonic theory is done by means of the Morse potential function
which is very useful for numerical calculations because of its quite simple form
in the pseudoharmonic representation. However, the Morse curve is one of the
simplest potentials used for the description of the diatomic interaction in
molecules as well as in crystals. Therefore, the detailed analysis was performed
also for potentials typical for crystals as the Lennard-Jones one [10] and other
various curves discussed in the theory of molecules [11]. One ofthe conclusions
obtained was quite unexpectable since it seems to be very strange, but extre-
mely interesting, that some kinds of potential curves satisfying the Varshni’s
criteria [13] cannot be applicable in low-temperature limit where the pseudo-
harmonic approach leads to the negative values of the force constants. In any
case, the above fact implies a careful choice of the initial interaction function
which should be tested not only before but also after the renormalization pro-
cedure. The analysis recently done [11, 12] shows that the Rydberg potential
function leads to sufficiently good results for the large class of various
properties.

In the present paper we also consider the properties of the heat conduc-
tivity in metals by means of the model function suggested by Varsnhni [14]
in the case of an arbitrary external pressure. The choice of the Varshni’s
potential follows from the fact that its testing with respect to the Varshni’s
criteria gives better results for the Sutherland’s parameter than for the Morse
as well as Rydberg functions [13]. It is worth-while to remark that the Suther-
land’s parameter plays an essential role in molecular investigation [15] and
therefore the recognition for applicability of the varsnhni’s shape potential
to solids is very fruitful.
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2. Heat conductivity in pseudoharmonic approximation

In order to determine the heat conductivity it is usual to apply the Boltz-
mann equation for the transport inthe crystallinelattice. The scattering mechan-
isms for propagating phonons are considered in fact by the phonon reciprocal
relaxation time which is assumed to be taken as the sum of the relaxation
times for each phonon scattering because of their proportionality to the cross
sections. In the case of an ideal lattice the main scatterers are expected to be
sample boundaries and point defects as impurities, displacement, local electro-
nic density inhomogeneities or fluctuations. The phonon processes, i.e. the
anharmonic effects of phonons, are usually neglected since the mean free
path of phonons is sufficiently large compared to sample dimensions at low
temperatures.

Independently of the method for derivation of the formula for thermal
resistivity determining the heat transport properties its essential dependence on
temperature T' is expressed by the variable Aw°/kyT, where the symbols %
and kg have their usual meaning as the Planck’s and Boltzmann’s constants,
respectively. The phonon frequency w® is given in the harmonic approximation
and then the thermal resistivity can be written in the form:

1
kT

WyT) = ( ]"f(hw*’/kBT), (1)

with ¢ = 3 for insulators [16] and ¢ = 2 for metals [2, 3]. The expression (1)
is of a quite general form as far as a pure boundary mechanism of phonon scat-
tering in the heat conductivity is considered. This situation is well satisfied
in insulators while some discrepancies between the general formulation (1) of the
theory for metals and corresponding experimental results can follow from the
use of the free electron model in which the electron-phonon matrix elements
ignore usually the exchange and correlation effects. It is well known that
the transport coefficient of metals is very sensitive to the form of the matrices
used for electron-ion interactions [3]. However, this sensitivity concerns not
only thermal, but first of all electric conductivity which can be related to
the former by means of the Lorentz number. Since the experience of the
previous investigations connected with the electric conductivity [1, 17] indi-
cates that only the phonon frequency renormalization is even enough reason
to conclude on the important role of the pseudoharmonic corrections to the
temperature behaviour of the electric resistivity and taking into account that
the Lorentz number is a linear function of temperature at sufficiently high
temperature, we can really assume that the essential contribution to the heat
conductivity in the high temperature limit is caused by the phonon properties.
In other words, from the physical point of view this means that the reciprocal
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relaxation time of the phonon-phonon collision process is more significant
than other kinds of relaxation mechanisms, of course, the phonon-phonon
interaction plays a decisive role in the temperature interval above the maximum
point of curves obtained in the harmonic approximation where the influence
of the other, above mentioned scatterers, seems to be well established.

In terms of the pseudoharmonic theory of phonons the frequencies of
lattice vibrations co are related to those co® found in the harmonic approxima-
tion by means of a very simple renormalization factor a(T) as:

cojh) = cc(T) co%h), (2)

while the dependence on the wave vector h of the phonon modes remains
unchanged as well as the polarization Ais the isotropiccharacter. For this reason
the renormalization factor <z(T) scales the temperature only leading to the
relation:

ur) = ?)

which can he obtained immediately by substituting the expression (2) into
the general formula (1) for the heat resistivity. In this way, the formula (3)
allows to include very easily the phonon-phonon interaction in the pseudo-
harmonic approximation into the heat resistivity by the simple renormaliza-
tion procedure for temperature in conventional expressions.

3. Phonon frequency renormalization in pseudoharmonic approximation

The renormalization factor <x(T) appearing in the dispersion relation (2)
is well defined by the pseudoharmonic approach to the problem in question
[4] namely:

f(T, lo
fe(re)

*AT) = (4)

where f°(re) is the harmonic force constant determined by the second deriva-
tive ofthe initial, pair interaction potential ®(r), taken at the equilibrium point
r = re. Analogously, the pseudoharmonic force constant f(T, le) is expressed
by the second derivative of the self-consistent potential ®(T, r) taken at the
equilibrium point r = lein which the first derivative of ®(T, r) vanishes. In
order to complete all the equations necessary in calculations of this paper
we remember the shape of ®(T, r) as follows [4]:

O(T, r) = d2'>(r), (5)
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where the mean square displacement of neighbouring atoms u2(T) related to
the square of the equilibrium value le determines the temperature behaviour
of the effective potential (5) by the well known relation:

AT) = o A oA
R D A ©

for z = 12 in the case of the f.c.c. lattices. In the high temperature limit we
can reduce the relation (6) to the linear function of u(T) with respect to the
temperature independently of the dispersion law for phonon branches. In
better approximation the following expression is used [18, 19]:

~2 _ 6kBT 3k2 afcl
fo(rex2t 10/°(re kBT ~ 6.22f°(rt) (kery '

where kK = 3]/18 n2hv/a, with v denoting the velocity of sound and a the lat*
tice constant.

The detailed calculations performed in the present paper concern three
cases with respect to the initial potential curves: a) Morse potential widely
discussed by Sik1os (e.g. [20]) as a model potential for the description of ther-
modynamic properties of anharmonic csystals, b) Rydberg potential expressed
in the pseudoharmonic approximation in which the accuracy ofthermodynamic
properties is the best in fact in comparison with other kinds of potential curves
still considered [11], ¢) Varshni potential which is tested for crystals because
of its very good applicability for molecules in gaseous medium [13, 14]. The
initial potential functions are:

o(r) = -De{[exp (—b(r - re)) - 1]2- 1}, (8)
®d(r)= -De[l + 6(r- relexp [-6(r - )], 9)
&) = Def(1- exp [—6(r2 - )2 - 1}, (10

for Morse, Rydberg and Varshni approximations, respectively.

The constants have their characteristic values for crystals considered
[21] and they are collected in Table | forcopper, silverand goldin which we are
interested from the point of view of the heat transport behaviour.

In this way we obtained a closed system of equations (4)—(10) which
determine the renormalization factor a(T) appearing in the formula (3) found
in the harmonic approximation. It is worth-while to strongly underline that
the described procedure based on the renormalization x(T) allows us to obtain
directly the corrected thermal resistivity IV(T) using the known values for
NVOT*), where T* = T/x(T). Moreover, the same relation should be satisfied
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Table 1

Numerical values of the parameters of the interaction potentials of Mmouse, Ryanerg and
varsnni types for copper, silver and gold

Metals Curve PY M r, [nm] De ®10-*e [J]
Copper Morse 13.649220 0.286074 5.424099
Rydberg 20.027270 0.281625 6.096274

Varshni 28.943860 X a* 0.271097 7.571969

Morse 13.501210 0.312624 5.091160

Silver Rydberg 19.657010 0.309035 5.605234
Varshni 24.789800 x a, 0.301363 6.585555

Morse 16.243880 0.299983 7.583399

Gold Rydberg 24.407570 0.297946 8.113146
Varshni 29.177310 X a, 0.294382 8.909224

in the case of the electric resistivity or another quantity. So, we can see that
the phonon frequency renormalization factor is of a universal character and
for this reason we present it not only by graphs (Fig. 1) but also in Table Il for
several metals in the case of the Rydberg function which leads to the best
results for the correction of the heat conductivity.

Fig. 1. The phonon frequency renormalization factor a(T) for the Rydberg interatomic poten-
tial determined in the case of copper, silver and gold
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Table M
Phonon frequency renormalization factor a(T) of the Rydberg potential for copper, silver and gold

Metal

TIK] Copper Silver Gold
100 0.751414 0.685448 0.651599
120 0.675132 0.651114 0.602830
140 0.640422 0.618285 0.587305
160 0.632578 0.611726 0.556515
180 0.626309 0.577790 0.527131
200 0.620045 0.553640 0.522183
220 0.613788 0.519136 0.519647
240 0.607538 0.508814 0.516368
260 0.601297 0.505376 0.513190
280 0.595064 0.503754 0.510432
300 0.578840 0.501982 0.507916

4. Results and discussion

Numerical results for the temperature dependence of the thermal resis-
tivity W(T) are given by graphs for copper (Fig. 2), silver (Fig. 3) and gold
(Fig. 4). Calculations are based on the theoretical results published by P rakash
and Sharma [3] in the harmonic approximation and compared with experimen-
tal data reported by White [22—24].

Fig. 2. The thermal resistivity for copper as a function of temperature. The solid line shows

the results in the harmonic approximation [3]. The points refer to the experimental data [22].

The dashed curves represent the results calculated for the phonon spectrum renormalized by
the pseudoharmonic theory for the Morse, Rydberg and varshni potentials
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Fig. 3. The thermal resistivity for silver as a function of temperature. The points refer |to the
experimental data [23]. The meaning of other curves as in Fig. 2

Fig. 4. The thermal resistivity for gold as a function of temperature. The points refer to the
experimental data [24]. The meaning of other curves as in Fig. 2

The results for W(T) corrected by means of the anharmonicity of lattice
vibrations come much closer to experimental data in the high-temperature
region. The best agreement of values calculated for the thermal resistivity in
the pseudoharmonic approximation with experimentaldata was obtained forthe
Rydberg interatomic potential. Let us remember here, that this function
used earlier [11] to describe the thermodynamic functions in the pseudo-
harmonic approximation gave also quite good results in comparison with
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other potentials. The conclusions following from the thermal resistivity on the
temperature limit are in agreement with those obtained from the analysis
of the electrical resistivity for which the Rydberg potential leads to the best
correction [17]. The last remark seems to be very important, as it allows us
to formulate a new kind of the criterion for the correctness of interatomic
interactions applied to solids. We can see, in fact, that some effective self-
consistent potentials can be more suitable for cyrstals than others although
they were more accurate in harmonic approximation (e.g. Varshni’s function).
It is also worth-while to notice that the agreement between results for thermal
and electric resistivities is not unexpectable because of the mentioned relation
formulated by the Lorentz number. The existence of this agreement can be
treated as an additional test of the correct formulation for presented consi-
derations.

In general we would like to conclude that the pseudoharmonic approach
to the transport problems connected with phonon processes leads to a very
useful method of taking the pair anharmonic terms into account and the pro-
posed procedure of temperature renormalization is a very convenient tool for
the description of the temperature behaviour of transport coefficients.
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Acoustic transients generated by high voltage pulses in longitudinal KDP modulator
crystals were investigated. Photographic method has been developed to visualize the acoustic
waves. The experiments directly demonstrate the piezoelectric acoustic wave generation, the
acoustic wave propagation, the reflexion, diffusion and diffraction of acoustic waves and the
interaction of acoustic waves with crystal imperfections. From the experimental results the
velocity of shear waves and the related elastic constant can be evaluated.

1. Introduction

For quantum-electronic applications devices based on the linear electro-
optic effect [1] are widely used. Crystals having good linear electrooptic
properties are usually strongly piezoelectric [2]. An electric field applied to
linear electrooptic crystals acts on their refractive properties by two distin-
guishable mechanisms. The primary effect is direct interaction between the
electric field and the electrons and optical phonons of the crystals. The mecha-
nical strains caused by the inverse piezoelectric effect give secondary contri-
butions to the change of refractive indices by the strain optic effect, which is
known as the secondary electrooptic effect.

Several papers [3—18] have been published on problems originating
from the secondary electrooptic effect. Such problems are, e.g., the separation
of the primary from the secondary effect, the disagreements between the results
of different measurements of the linear electrooptic characteristics of crystals
[3—7], and, mainly in the area of applications, the influence of the secondary
effects on the operation of electrooptic devices [6—18].

The origin of these problems essentially lies in the different time-depen-
dences of the primary and secondary effects. The primary effect follows quasi
simultaneously the applied electric field. The secondary-strain-optic contribu-
tion reacts with delay according to the inertia and resistance of the lattice to
mechanical deformations.
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Moreover, piezoelectrically induced lattice deformations are generated
locally in the crystals and they are sources of acoustic waves [19]. The acoustic
waves propagating across the crystal result in spatial and time-dependent
changes of refractive properties which may cause, e.g. undesirable transient
effects in the operation of electrooptic light shutters [6—14] or resonance in
the frequency transfer characteristic of periodically driven electrooptic modu-
lators [15—18].

We have investigated the behaviour of acoustic transients generated by
relatively short, high voltage pulses applied to 0 °Z cut KDP crystals. The
methods published in the literature are based on measuring the pulse response
of the transmission of modulators made of electrooptic crystals.

Most of these investigations give the time-dependence of the transmis-
sion averaged on the aperture of the crystal [8—13]. In references [7] narrow
light beams were used to investigate the acoustic transients in discrete points
of the aperture.

In our experiments we have developed a method to obtain better spatial
resolution [14]. The transmission pictures of KDP crystals, placed between
crossed polarizers, have been photographed with relatively short exposure
times. The photos were taken with variable delays after the high voltage
pulses. The delay times were changed in /xsec steps, thereby giving a good
temporal resolution as well. Photos taken in such a way provide very
informative pictures about the transient processes.

By this method phenomena such as propagation, reflection, superposition,
interference and dispersion of piezoelectrically induced acoustic transients
can be observed. The photos also give information on the interaction of
acoustic waves with the crystal imperfections.

2. Principles of investigations

The features of acoustic wave propagation in anisotropic media can be
obtained by solving the equation [19, 20].

8Tu

812 dxj ()

82,
Q-—"L=
Here qgis the density of the crystal; xj is the particle position vector-compo-
nent in the crystallographic coordinate system; uj is the particle displacement
component; Ty-s are the components of the stress tensor, which depends on the

i 1 8uk ™ 8ue
2
Ski 2 dxe dxk @
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strain tensor component and on the electric field components as follows:
F/i = Cfjki mSkl  kijKKk o (@)

Here Cijkrs are the components of the stiffness tensor and e*y-s are
the tensor components describing direct relations between the electric field
and the piezoelectrically induced stress. The repetition of the indices implies
summation.

In the case ofthe KDP sample investigated in our experiments the KDP
crystal is cut perpendicular to the crystallographic axes with edges a, a, 1
and the electric field is applied along the [0 0 1] direction (Fig. 1). The electric
field, taking into account the 42m symmetry of KDP crystals, causes T12
and T2l non zero stress components by the inverse piezoelectric effect. T12 is
the shear stress producing displacement u2along the [0 1 0] direction. Simil-
arly, T2l induces displacements in the [1 0 0] direction.

According to the symmetry of the arrangement and neglecting the in-
fluence of the lateral surfaces the shear displacement ulspatially depends on
the X2 coordinate only and u2depends on xXx respectively. This means that all
planes parallel to the (100) and (010) surfaces of the sample are planes of con-
stant phase and the wave can be treated one-dimensionally. In this way ux
and u2 are functions of the time and the x2 or xx coordinate, respectively:

«l =" ("1)? n2— uxi, i) . (4)

From Eqgs. (1)—(3), using condition (4), two relatively simple equations
follow for the generation and propagation of piezoelectrically induced acoustic
transients:

82ul 1 92u!
9% 2 82

W0 (d3E3), ©)

82u?2 1 go2
9,2 812

Fig. 1. The investigated KDP sample
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Here the condensed matrix notation is used and the constants are:

N36 = e3lceB’ 12= cmlbe

Expressions (5) and (6) are inhomogeneous wave equations describing
plane waves propagating with velocity v defined above. The sources of the
waves are the gradients of the piezoelectrically induced strains. Assuming the
electric field to be homogeneous within the sample, nonvanishing gradients
of the piezoelectric strains are only at the (100) and (010) side surfaces of the
sample. Thus, the sources of the acoustic waves are at the side surfaces of the
KDP crystal sample.

The method for the solution of the inhomogeneous wave equations is
given in papers [19] and [7]. The Green function method is used in the case
of rectangular voltage pulses. The general conclusions can he applied in our
case as well.

The spatial distribution of the source term according to the abrupt fall
of the (d3E3J) term at the lateral surfaces of the crystal sample can be given
by a very sharp distribution. The time dependence of the source term and the
shape of the acoustic pulses is determined by the time-dependence ofdriving
voltage (Fig. 2). The distribution ofthe strain in the acoustic pulses propagating
in the KDP sample is expected to be as shown in Fig. 2. The lined strips re-
present the areas wherethe strain differs from zero. These strips are assumed to
be propagated with constant velocity, neglecting the dispersion of Fourier
components of acoustic pulses. Arriving at the opposite side faces of the sample
the acoustic pulses are expected to be reflected back into the crystal.

The acoustic pulses shown in Fig. 2 can be made visible on the principle
of the strain-optic birefringence. If the crystal is placed between crossed pola-
rizers on the areas of the aperture where the strain differs from zero, a time-
dependent, spatial transmission is expected which is determined by the strain
distribution. The transmission in crossed polarizer arrangement, if the analyzer

Fig. 2. Expected strain distribution
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is parallel to the xr or the x2 crystallographic axis depends on the retarda-
tion I as

T =T maxsin*-£. (7)

The retardation

An e |
= 2n (8)

where An is the strain-optic birefringence, | is the length of the crystal and
Ais the wavelength of the transmitted light in vacuum.

The strain-optic birefringence linearly depends on the strain; in the
acoustic pulses propagating along the x1 axis

An - — njjpeeS12 (9)
and in the acoustic pulses propagating along the x2 axis, similarly

An = ~ noPetS2i (10)

n0 is the ordinary refractive index of the uniaxial KDP crystal and pM is
the proper strain-optic coefficient, in condensed matrix notation.

As can be seen in Fig. 2 the areas in which the strain, and thus the
transmission, differs from zero, are moving strips. Using relatively short light
pulses, with variable delay to the high voltage pulses, we can follow the pro-
pagation of the acoustic pulses with a camera focussed on the exit face of
the KDP crystal.

3. Experimental set-up

A detailed description of the experimental method has been reported
[14]. The main part of the experimental set up can be seen in Fig. 3.

A 15 mm X 15 mm X 25 mm sample was cut from a KDP monocrystal
grown by our group. The 25 mm edge is along the x3 axis (see Fig. 1). The

R3=0=4 KoP
IDPPT IHVP
Fig. 3. Experimental set-up
KDP-crystal sample, P-polarizer, A-analyser, DPD-digital pulse delay generator, HVP-high
voltage pulse generator, RL-ruby laser, T-Galilean telescope, C-camera
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(001) end faces are polished. Copper plate electrodes with 13 mm diameter
circular opening are pressed to the end faces of the sample by springs. The
KDP sample is placed between crossed polarizers. The polarization direction
of the polarizer (P) is parallel to xv and that of the analyser (A) is parallel
to the x2 crystallographic axis. The half-wave voltage measured under static
conditions is about 17 kV for the wavelength of the He-Ne laser (6328 A) in
the middle point of the aperture. This high value can be explained by the non-
uniform electric field distribution due to the large aperture diameter and by
the high resistance of the junction between the copper plate electrode and the
crystal surface.

The experimental system is controlled by an eight channel digital pulse
delay generator (DPD). The delay of pulses of each channel can be set sepa-
rately from each other in 1 ysec steps. The precision of the delay is about
50 nsec.

The KDP modulator is driven by 12 kV pulses of a high voltage pulse
generator (HYP). The HYP generator is started by a pulse from a channel of
the DPD generator. The rising and trailing edges of the high voltage pulses
are about 50 nsec long and the pulse width is about 300 nsec.

The exposure light is given by a ruby laser (RL). The laser is controlled
by another channel of the DPD generator. The halfwidth of the RL pulses is
about 60 nsec. The laser radiates in TEM 00 mode. The cross-section of the laser
beam is enlarged and collimated by a Galilean telescope (T). This cross-
section is about twice as large as the clear aperture. The delay of the exposure
light pulses is changed in 1 ,usec steps over the 1—150 Lsec range.

The camera (C) is focussed on the exit face of the crystal and it takes
a picture in every shot of the laser, setting variable delay for every shot after
the high voltage pulse on the KDP crystal. So the camera takes a ciné film
of the acoustic processes taking place in the crystal on shot by shot basis.

4. Experimental results

The frames of the ciné film of the acoustic processes can be seen in
Figs. 4—7. The most characteristic propagating features of the acoustic pulse
generated in the KDP crystal by the inverse piezoelectric effect are demon-
strated on the frames. The pictures were taken in 1 /isec steps. The delay of
the ruby-laser pulse to the driving pulse of the modulator is given at the
bottom of every frame. The bright crossing bars on the frames are the trans-
mission patterns representing the propagating acoustic pulses.

The velocity of propapation of the acoustic pulses was calculated from
the distances measured on the photos. It was found to be the same in both
directions of propagation. The calculated value is (1540 + 100) m/s.
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a, ljjsec bj 2o sec ¢ 3 jusec
d) A sec e 5lisec f,6nsec
Fig. 4. The acoustic transients start from the side surfaces and propagate with constant
velocity

Fig. 5. The transmission background
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Fig. 6. The phase change at reflexion

Fig. 7. The building up of the standing wave transmission patterns (42 fiaec)
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\
The acoustic pulses move from the side faces towards the centre of the

crystal. They cross each other and move further to the opposite side faces
as can clearly be seen on the frames. Arriving'to the opposite faces the waves
are reflected and start to move back into the crystal. This cycle is repeated
again and again.

If we follow the propagation of the acoustic pulses, several phenomena
can be observed.

The acoustic pulses interfere with each other. During their propagation
they diffuse. Diffraction of the acoustic pulses can also be observed. There
are areas on the aperture where the bright bars representing the acoustic
pulses are significantly widened or they nearly disappear. Leaving these areas
the bright bars are very regular parallel strips again as they were earlier.

In spite of these processes the acoustic pulses can be seen also at delays
being as large as 150 usec. But these processes causing the smearing off of the
acoustic pulses give rise to the appearance at transmission of patterns similar
to that well known from the work of STEPHANY [15].

5. Discussion

The frames in Fig. 4 give direct evidence that the sources of the acoustic
waves are at the free surfaces of the crystal, as was concluded by JAcoBSEN
[19] (and was shown for longitudinal KDP modulators in reference [7]).
More precisely, the sources exist in the crystal where the gradients of the
dy,E, product differ from zero, as can be seen from wave equations (5) and (6).
The assumption is valid only in a homogeneous electric field approximation
that sources of acoustic waves are at the side surface of the crystal. Actually
in our high aperture electrode arrangement the electric field has a non-
uniform distribution inside the crystal and there are non-zero gradients of the
dyE, term. Since the electric field changes relatively slowly the source terms
relating to the non-uniform electric field distribution inside the crystal can
be neglected.

The acoustic pulses are composed of acoustic waves due to the Fourier
components of the generating high voltage pulse. The composing acoustic
waves must be in good approximation plane waves as can be concluded from
the photos of the acoustic pulse (Fig. 4).

From the measured propagating velocity of the acoustic pulses and the
density of the crystal the ¢y, elastic coefficient can be calculated. Its value
is (6.1 + 0.6) . 10° N/m? in good agreement with the value published by
Mason [21].

At the intersection of the acoustic pulses a positive superposition of the
acoustic pulses can be observed. This means that the acoustic pulses propa-
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gating at right angles to each other cause in refractive indices changes of the
same sign. From the similar brightness distribution in the acoustic pulses it
can be concluded that they are very similar to each other regarding their
strain distribution as well. Arriving at the opposite faces the acoustic pulses
are reflected.

The transmission picture taken in the experiments can be separated
into two parts. The primary one is the time-dependent part, i.e. the propaga-
tion of the bright bars representing the acoustic pulses as discussed above.
Besides the primary part there is a transmission background which is constant
in time as can be seen on every frame.

The transmission background is shown in the photo of Fig. 5 taken
when no acoustic transient was present in the KDP sample. The curved strips
are the fringes of equal thickness — the polished end faces of the crystal are
not exactly parallel to each other and they are slightly spherical. As can be
seen in the photos the density and the curvature ofthe fringes ofequal thickness
change on the aperture of the crystal. Besides these relatively regular inter-
ference fringes there are significant nonuniformities on the transmission pic-
tures. The most obvious one can be seen slightly above the horizontal dia-
meter of the aperture. This nonuniformity can be caused by a crystal imper-
fection across the crystal. The stress distribution in the imperfection causes
the characteristic transmission distribution by the strain optic birefringence.
The crystal was checked in a Mach—Zender interferometer KP-74 and the
distortion of the interference fringes proved the assumption.

The stress field of this crystal imperfection interacts with the stress field
of the propagating acoustic pulses. It can be seen in the frames of Fig. 4 that
the stress field of the crystal imperfection and the acoustic pulse interfere posi-
tively on the right side of the imperfection and they cause each other diminish
in the area on the left side. The stress field of the imperfection probably
changes the sign from left to right. At the middle part of the aperture inter-
ference of the acoustic pulses with the assumed stress distribution cannot be
observed (Figs.4d and e). Thisproves that the stress changes sign in the central
part of the imperfection and therefore the stress in the middle part is neg-
ligible.

Returning to the reflection process it can be established that the stress
field of the acoustic pulses changes sign during reflection. The vertical bright
bar at the left side of Fig. 6a shows negative interference with the stress dis-
tribution of the crystal imperfection. After reflection nearly at the same place
a remarkable positive interference can be observed (Fig 6b).

The diffusion of the acoustic pulses can be well observed after the first
tén photos. The diffusion is the consequence of the dispersion of the Fourier
components of the acoustic waves composing the acoustic pulse, and that of
the diffraction in the reflection processes on the side faces.
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The interaction with the crystal imperfections causes the spreading of
the acoustic pulses. The short wavelength components exist longer and there-
fore the acoustic pulses are observable long after generation. The components
oflong wavelengths give rise to the appearance of transmission patterns similar
to the typical standing wave transmission patterns which are developed in
the case of periodical driving (Fig. 7).

6. Conclusion

The experiments prove the results calculated by the simplified mathema-
tical model. The method developed for investigations makes a direct visualiz-
ation of the acoustic transient processes possible.

The experimental results can be evaluated quantitatively, beside the
sound velocity and related elastic constant, the elastoopic, piezoelectric and
electrooptic properties of crystals can be calculated by the microdensitometric
evaluation of the photos. Such measurements are planned.

The experimental method may be very useful in the design of electrooptic
devices in which disturbing acoustic transients and resonances may take place.
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Walter Thirring: Classical Dynamical Systems
Springer, New York, Wien, 1978, 258 pages

The author is respected for his exactly soluble models in the scientific world community.
This book, the first in a series of four volumes, containing his lectures at the Vienna University,
deals with classical mechanics. The theorems and problems treated are essentially the same as
in any University course, but a special flavour is given by the full mathematical rigour. It
is remarkable that this does not make the treatment longer, it has made it even more compact.
The language of the book is the elegant Bourbaki language of modern mathematics, generally
spoken among mathematicians and spreading among theoretical physicists. Looking at the
contents of the different chapters, one discovers that the restricted motions and some approxi-
mation methods (relevant mainly for mechanical engineering) are omitted; they were incon-
sistent with the spirit of the book. On the other hand, a consequent use of configuration
space, phase space and fourdimensional space time is offered, which is certainly the most
powerful way to present the Newtonian dynamics from a 20th century point of view. In this
framework e.g. the Liouville theorem, quasi ergod theorem, the asymptotic treatment of scatter-
ing problem have found a natural place. The book is strongly recommended to mathematics
students, who are interested in learning hard physics in their own language. It is also recommend-
ed for those readers of physics, who are eager to present classical dynamics as a relevant

part of 20th century physics.
G. Marx

Particles and Fields

Edited by David H. Boal and Abdul N. Kamah
Plenum Publishing Corporation, New York and London, 1978, viii + 462 pages

This book contains the invited lectures and seminars presented at the Banff Summer
Institute on Particles and Fields, held at the Banff Center in Banff, Canada, from 25 August
to 3 September, 1977. It presents recent experimental and theoretical developments in particle
physics and field theory. The book contains such topics as extended objects, lattice gauge
theories, quantum chromodynamics, Reggeon field theory, the theoretical interpretation of
colliding electron-positron beam experiments and gauge theories of weak interaction. Experi-
mental reviews of recent work in charmed particle and neutrino physics, as well as summaries of
the theoretical implications of these experiments are also given.

The book includes eight lectures and six seminars. Lectures:

Contemporary Reggeon Physics (Abarbanel)
Chromodynamic Structure and Phenomenology (Appelquist)
Charmed Particle Spectroscopy (Feldman)

Hadron Spectroscopy and the New Particles (Gitman)
Extended Objects in Gauge Field Theories ("t H ooft)
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Classical and Semi-classical Solutions of the Yang-Mills Theory
(Jackiv, Nohl and Rebbi)

Some Recent Advances in Neutrino Physics (Mann)

Lattice Gauge Theories (Weinstein)

Seminars :

Non-perturbative Method in Field Theory (Caianiello, Marinaro and Scarpetta)
Dimensional Régularisation and Hyperfunctions (Fujii)
Transverse Momentum Distribution of Partons in Quantum Chromodynamics (Lam)
Trimuons (Phillips)
An Approach to Measurement in Quantum Mechanics
(Sudarshan, Sherry and Gautam)
A Survey of Vortices in Gauge Theories (Tze)
G. Knapecz

General Physics with Bioscience Essays
John Wiley & Sons, Inc, New York, Chichester, Brisbane, Toronto, 1979, pp. 555

This book is a text for a general introductory course in physics for students whose main
interest and careers lie in other areas. The mathematical ability necessary to master the mate-
rial presented is not great — high school algebra is used extensively and simple trigonometry
is used where necessary. The App<ndix sommames a 1of the mathematical techniques required
to understand the discussions and to solve the pioblems.

There is a streng emphasis on classical physics, with discussions of all the important topics
but there is also a generous amount of material on medern physics.

To understand and appreciate the various ccncepts and applications of physics, con-
siderable drill in problem solving is required. Each chapter contains a collection of worked
examples covering all of the important points. Moreover, at the erd of each chapter there is
a list of questions to test the student’s cc mprehensicn of the concepts and a geneious number
of problems to test his or her problem-solving abilities. The more difficult problems are indi-
cated by an asterisk, and the answers to the odd-numbered problems are at the back of the
book. Altogether, there are approximately one thousand questions and problems in the 20
chapters of this book. For the students who whish assistance in a planned study program,
a Study Guide is available to accompany the text.

Many of the students who take an introductory physics course are looking towards
careers in medicine, dentistry, nursing, medical technology, microbiology, chemistry, and a
variety of other professions in or related to the life sciences. These students, in particular,
sometimes wonder how the subject of physics plays a role in the behavior of living things.
The attempt to provide a partial answer to this curiosity has led to the development of the
unique aspect of this book, that is, the inclusion of a number of essays on bioscience topics
that emphasize the importance of physical principles in the operation of living systems. Each
essay is related directly to the material in the chapter of which it is a part. But the essays
are supplementary to and separate from the material in the chapters themselves. That is,
the essays are optional and can be completely skipped without loss in the flow of physics ideas.
However, by omitting the essays, some of the most interesting physics in the book will be lost !

One of the ideas in preparing this collection of bioscience essays was to provide, for
every main physics topic, some quantitative life-science application Therefore, each essay
contains some numerical discussion of the topic and some numerical problems so the students
can see how calculations are carried out in a different area of science. The essays here amount
to about 13 percent of the text.

l. Kovacs
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Quantentheorie elementarer Objekte

Von Prof. Dr. CARL-FRIEDRICH Frhr. von WEIZSACKER, Starnberg
(Nova Acta Leopoldina. Neue Folge. Nr. 230, Bd. 49)

1978. 19 Seiten
Broschiert 2,80 M

Carl-Friedrich Frhr. v. Weizsdcker, dessen Geltung und Kompetenz sowohl als Theore-
tischer Physiker, wie auch als Naturphilosoph weltweit unbestritten ist, greift die in der
LEOPOLDINA mehrfach von verschiedenen Wissenschaftlern diskutierte Frage wieder
auf, die man Uberspitzt formulieren konnte: »Sind Elementarteilchen elementar?«
Der Autor entscheidet sich nach grindlicher Diskussion dafir, lieber von »elementaren
Objekten« zu sprechen.

Ausgehend von der griechischen Atomistik und der klassischen Physik KEPLERs und
NEWTONSs zeigt er, wie mehrfach versucht Gurde, die moderne Mikrophysik aus der
klassischen Physik herzuleiten oder diese zumindest auf jene zurickzufiuhren. Er er-
ldutert, wie das, was noch vor 2 Jahrzehnten fir »elementar« gehalten wurde, heute
wiederum in noch kleinere »Elemente« zerlegt wird, die Quarks. Mittlerweile gibt es
davon auch schon wieder GUber 20 verschiedene. Nach einer Diskussion von Symmetrie-
und Drehgruppen kommt er auf die in seinem |Institut aktuell bearbeitete Uralternative

zu sprechen, das Ur.

Die philosophische Interpretation der modernen Physik

Zwei Vorlesungen

Von Prof. Dr. Carl-Friedrich Frhr. v. WEIZSACKER, Starnberg
(Nova Acta Leopoldina. Neue Folge. Nr. 207, Bd. 37/2)

5. Auflage

1978. 39 Seiten

Broschiert 6,80 M

In den beiden Essays gibt der bekannte theoretische Physiker, der sich auf den Gebieten
der Theorie der Elementarteilchen, der Kosmogonie und der Turbulenztheorie weltweit
einen Namen gemacht hat, der aber gleichzeitig eine der markantesten Naturphilo-
sophenpersénlichkeiten ist, einen Uberblick Gber seine Sicht der derzeitigen philosophi-
schen Problematik der modernen Physik. Er zeigt inshesondere neue und sehr originelle
Gedanken udber die Stellung der modernen Physik im Gesamtsystem der Naturwissen-

schaften Uberhaupt.

Bestellungen an den Buchhandel erbeten

JOHANN AMBROSIUS BARTH LEIPZIG
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Papers should be submitted to
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LES NOMBRES QUANTIQUES COMME PARAMETRES
CACHES DANS L’INTERPRETATION CAUSALE DE LA
MECANIQUE ONDULATOIRE

Par
T. MATRAI

CHAIRE DE PHYSIQUE A L'ECOLE SUPERIEURE PEDAGOGIQUE DE EGER, EGER, HONGRIE

(Regu 16. 1. 1979)

Ce travail adhére a la conception de M. L. DE BROGLIE [1]. Suivant celle-ci, la mécanique
ondulatoire ne fournit que des données probables sur une microparticule seulement parce
que celles-ci sont incomplétes et méme imprecises. Point de besoin alors de considérer la
particule comme par sa nature floue dans ’espace de ses cordonnées et de sa vitesse. Attri-
buons ici donc — a la particule — un lieu r(f) ponctuel, c’est-a-dire une orbite précise a un
temps t arbitraire dans le systéme d’inertie! et prétons l'incertitude Heisenbergienne seulement
a 'intervention de mesure [4]. Cette étude méme — profitant des enseigments de plusieurs
tentatives précedentes [5—12] — cherche a interpréter un cas individuel a ’aide de la géné-
ralisation connue (jusqu’ici pensée formelle) de la point-dynamique Hamilton— Jacobienne.?
Elle cherche, notamment sur le chemin, proposé également par Boam [7], la solution totale
de I’équation Jacobienne généralisée mais elle y explore par des considérations de corres-
pondances les paramétres de dynamique, designés habituellement dans la mécanique classique
par o 2 ainsi que B; (j = 1, 2, 3), puis elle les suit jusqu’a leur dérobade. Il en dégage ainsi les
paramétres, mdlques par «, sont contenus en fait dans les fonctions propres de mécanique
ondulatoire, mais en derniére analyse, trivialement cachés dans le domaine, déterminé par
les nombres quantiques, c’est-a-dire dégénérés en comptables. C’est pourquoi, dans la valabilité
de la statistique quantique de bien beaucoup de particules, ne peuvent pas se présenter de
changements séculaires qui, selon PAuL [14], peuvent étre provoqués par les parameétres
cachés. En effet, les statistiques quantiques comptaient méme jusqu’ici avec des nombres
quantiques, et cela est en concordance compléte avec les expériences. Le travail présent
démontre comment il faut ordonner une orbite a la particule et dans son état pur et son état
mélangé, mais il montre aussi que les paramétres, indiqués par § ont leur réle non seulement
dans la détermination de I’orbite individuelle, mais dans celle de multitude statistique de parti-
cules & la mécanique ondulatoire méme. Pendant la discussion, il devient également prouvé
que, en général, la vraie impulsion ne correspond pas précisement a la canonique; entre elles
se présente donc un rapport plus général que dans I’équation connue sous le nom équation de
guidage [15]. Ainsi, le paradoxe de vitesse y mentionné ne peut étre posé ici.

Remarques initiales aux précédents du sujet

M. Born, & qui on attribue I'interprétation statistique de la fonction
d’onde Broglienne et avec cela celle de la mécanique ondulatoire, croit exprés-
sement pour impossible [16] — tout comme Newton la lentille achromatique
— de pouvoir trouver une interprétation individuelle avant la méme de la
nature statistique. Sous ses arguments vraiment trés pesants, selon la théorie

1 On peut I'interpréter en vertu du principe de la relativité restreinte aussi [2], c’est-
a-dire méme, si dans la généralisation cherchée de la dynamique, la loi d’inertie ne conserve
pas sa vigueur générale dans un cas individuel, et ainsi la définition de LANGE sur le systéme
d’inertie [3] perd son sens.

2 Sur un autre chemin plus approfondi, qui fait descendre la particule des ondes
Brogliennes, voir [13].
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218 T. MATRAI

devenue légitime: plus une particule est petite, moins elle est descriptible par
le modéle de Laplace. C’est J. Neumann qui a établi les bases de ces concep-
tions dans un systeme d’axiomes — pareil a table de pierre — lequel [17]
exclut méme I’existence des parametres «cachés» et par la formulation causale
de la mécanique ondulatoire bien que cela f(it pressée assidiment par Lorentz,
Planck [18] et par Einstein [19] a I'intérét de «totalité». Mais plus récem-
ment, méme Bell a cru trouver une preuve a I’'impossibilité des parametres
cachés laquelle a été réfutée efficacement par de Broglie [20]. Wigner a
relevé, dans le cadre desconceptions Neumanniennes certaines difficultés de la
notion de la particule «floue» [21], tandisque Tisza a essayé expressément la
reconstruction de celle-la [22]. Ce travail ici serait inséré par les études polé-
miques de Born parmi les «épreuves réactionnaires p-absolutisantes» (c’est-a-
dire au genre, partant dela priorité de I’existence de la particule) dont plusieurs
variantes se montraient jusqu’ici comme inachevées, ainsi les travaux de
Frenkel [5], ceux de Blohincev [6], de Bohm [7] et celui de I’auteur
[8—9], puis, adhérant au critéere de la stabilit¢ dynamique de Poincaré—
Birkhof—Ljapunov—Chetaev: les études de Chako [10], de Kalitzin
[11] et celui de Pyragas—Alexandrov [12]. A savoir, eux tous érigent
des signaux de route instructifs pour sortir du labyrinthe du postulat a la
totalité.

§ 1. L algorithme Jacobien pour attribuer une orbite méme a une
particule de mécanique ondulatoire

a) Pour début et pour y faire tard des références, nous décrivons les
équations de la mécanique ondulatoire et nous développons I’analogie formale
a I’équation de point-dynamique de Hamilton—Jacobi. Nous commengons
par I’équation de Schrodinger dépendant du temps, suivant laquelle pour une
particule libre de masse m dans I’espace du potentiel réel

V= V[ t] (la,1)

connu de la mécanique classique, s’accomplit I’équation:

-2 AP+FY=-D— (a2

2m i dt

Ici, 29k ™ h est le constant de Planck, A = div grad est opérateur connu de

Laplace et
P - y(r,t (1a,3)

est la fonction d’onde Broglienne (nommée état). Cela est forcément complexe
en raison de la forme de (la, 2). Grace a la forme linéaire homogéne de (la, 2)
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LES NOMBRES QUANTIQUES 219

nous trouvons parfois pour (la,2) une solution normalisée pour laquelle la
condition

f"’?f* Y. dr=1 (1a,4)

seraremplie. Dans celle-ci, la ¥* signifie le complexe conjugué de ¥, 'intégral
de volume (par I’élément d°r) s’étand pourtant sur 1’espace configurationnel
infini (o0). Cette condition ne peut étre accordée qu’avec la ¥ quadratiquement
intégrable qui disparait dans |r| =r — co. Conformément a I’expérience, la
quantité

P Y = pr, 1) = 1 (1a,5)

donne la densité spatiale pour la probabilité (c’est-a-dire la fréquence) de trou-
ver la particule au lieu r a l'instant . En vertu de la régle d’addition des
probabilités exclusives, cette affirmation est en accord avec la (la,4) expri-
mant la certitude.? Si nous inversons la fonction d’onde, écrite sous forme
trigonométrique:

P==]p .S (1a,6)
+
nous gagnons

h v
S(l', t) = —2—'—:* - In ?]_#_ (18.,7)

qui est méme par sa forme réelle, nommée fonction principale. A I’aide de
celle-ci, la complexe (1a,2) se décompose en deux équations réelles. L’une
d’elles est:

- grad S} -+ 28, . 0, (1a,8)
ot

c’est-a-dire formellement une équation de continuité ou, justement pour cela,
il faut considérer le vecteur, mis en parenthéses graciles comme densité de
courant de probabilité. Et I’autre équation:

1—grad”S+V—l— U= ———as—, (1a,9)
2m ot

3 Par la forme de I’équation (la, 2), la solution (la, 3) permet — outre les variables
r et t, mises en parenthéses rondes — méme d’autres variables (paramétres) qui ne figurent pas
dans ’équation (la, 2). De telles apparaissent nécessairement et habituellement dans la solu-
tion nommée totale et non générale des équations aux dérivées partielles. Une autre variable
n’est d’accord avec l'affirmation (la, 5) que si dans les périodes des épreuves répétées de
retrouver certaines grandeurs, c’est-a-dire paramétres, prennent toujours la-méme valeur.
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se présente dans la forme élargie par U de Véquation Hamilton —Jacobienne,
connue dans la point-dynamique ou

e - (1a,10)

est le potentiel subséquent de de Broglie [15]. Si donc, h —0, la (la,9)
passe dans la forme classique. On peut obtenir I’'intégrale W dans la forme
(la,6) par la solution sur S et g des équations différentielles simultanées
(la,8-9).

Dans un espace potentiel, indépendant du temps, c’est-a-dire conservatif

V= V[t] (la,11)

on peut se contenter pour la plupart de la solution de forme simple, nommée
séparée:
4= m mV(). (la,12)

A savoir, dans un tel cas stationnaire, a I’aide de la constante B de séparation,
qui doit étre prise pour complexe (la,2), peut étre disloquée en deux équations
complexes d’entre lesquelles I’'une ne contient que la variable t et I’autre que
la variable r. Entre elles, I’'intégrale complete de I’équation différentielle
contenante i:

m = e , (la,13)

ou D est aussi une constante arbitraire complexe d’intégration. Et I’équation
de r variable est:

— A+ (B—V}p=0 (la,14)
2m

nommeée équation-amplitude. Ici, pour la.fonction d'amplitude ip — qui peut étre
cherchée toujours méme en forme complexe — est valable a cause de (la,4):

ip*.m= Q (la,15)

et puis, a cause de (la,5) dans le cas de (la, 4)

i mpre dx= 1 (1a,16)

est aussi remplissable. Introduisons la quantité réelle E:

E= (B* + B)/2. (1a,17)
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Maintenant, a cause de (la,7) — représentée par (D* | D)/2 = const. —:

3 ln—y;— — const. (1a,18)

S(r,t) = —Et +2—i g

C’est pourquoi, en cas conservatif la (1a,9) se réduit par I’abréviation:

% e I ) (1a,19)
2t  y*

a I'équation Jacobienne, nommée abréviée:
—21; grad’S, + V+4+ U=E (1a,20)

ou alors, A cause de (1a,15) et (1a,10), ni p, ni U ne dépendent du t. Et (1a,8)
se réduit?* comme cela:

div {L . grad s,} =0. (1a,21)
m

b) Calcul d’orbite dans ’état «pury; les paramétres de caractére o et 8

Nous voulons que (1a,9) laquelle ensemble avec (1a,8) et (1a,10) est
équivalente a (1a,2), non seulement par forme, mais aussi par contenu, soit la
généralisation de I’équation Hamilton— Jacobienne classique (% — 0). C’est
pourquoi nous n’acceptons q'une solution totale de forme: S = S|r, , a;, ay, %3].
Par conséquent, a cause de (1a,7),il faut chercher dans la ¥, donnée par (1a,3),
outre les r et ¢ encore trois paramétres réels a; (j=1,2,3), c’est-a-dire, il
faut la (la,3) trouver dans la forme

¥ = Yr, t, o, g, 4] (1b,1)

qui est dérivable non seulement par rapport a r et ¢, mais a «; aussi, au moins
deux fois (et méme mélangée).5 Nous remarquons que en expériences pour

¢ En cas de particule de charge électrique (la, 21) doit exprimer la conservation de
charge. Et cela ne peut étre possible méme en cas J/ = 0 et stationnaire [23] que, si S, = 0,
c’est-a-dire, si p 5= p*. C’est pourquoi, il faut construire tous les diviseurs de la y séparés selon
les cordo;mées en cas non trivial dans formes complexes (voir encore § 1/d, la note 6 et § 3/c,
puis [24]).

5 Les parenthéses rondes autour de r et ¢t dans (la, 3), veulent exprimer que la valeur
de la fonction peut dépendre d’autres paramétres encore. Mais les parenthéses de crochets
dans (1b, 1) excluent d’autres variables qui différent des quantités contenues en elles.
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déterminer la g, donnée par (la,5), il faut restituer les circonstances a chaque
épreuve, etil ne faut varier que r et t. Ainsi, xj caractérise, a vrai dire, I’entou-
rage de départ.

Dans des cas conservatifs, p.e. dans les solutions stationnaires usuelles
de (la,2), des parametres x se présentent d’habitude sous formes des constants
de séparation mentionnée. Notamment, dans (la,9), la séparation du temps
et des cordonnées introduit dans (la,20) la cq == E, et dans cette derniére,
la séparation des trois cordonnées entre elles résulte nécessairement encore
les valeurs réelles: a2, a3. Mais I’exigence de I’integrabilité quadratique et celle
de I'univalence (a savoir de la régularité, choisit encore, pour oq, oq, X3jusqu’ici
arbitraire réelle, un domaine discret, c’est-a-dire comptable par des nombres,
nommés quantiques. En cas de potentiel central, il est d’usage de faire descendre
0g, o2, o3 p.e. des nombres quantiques connus: n, |, m. C’est pourquoi:

xj = xj(n, I, m);j=1,2,3, (Ib,2)
ol
a(oq, 0q, g3) ¢
d(n, I, m)

Mais, méme en cas non-stationnaire, se présente le paramétre X, p.e. chez le
paquet d’ondes au mouvement linéaire de vitesse v = X sans force (voir [8],
p. 329.(3,2)). Dans la suite, nous examinons aussi les conséquences de lI’appari-
tion de tels parameétres.

Si pour (la,2), nous avons vraiment trouvé une solution de forme (Ib,I),
nommée pure, alors d’aprées le théoréme connu de Jacobi [25], — a I’aide de S,
donnée par (la,7) — Yéquation orbitale cherchée sera donnée par le systéme
d’équations:

dsf[r, i, 00, x> a3j

Bj G = h 2,3), Ib,3
i G ) (1b.3)
il est vrai: dans une forme implicite. La, Bj — au moins dans le domaine de
valeur du premier membre — signifie trois nombres réels arbitrairement

choisissibles.

En cas mentionné du V conservatif et central, p.e. (Ib,3) est de forme
suivante d’aprés (Ib,2):

s aM+a& a; as dm

Bj U= 1,2,3). 1b,4
dn  DXj dl dxj im,j dxj J ) ( )

Selon la fonction-amplitude complexe ip et avec (la,19), méme la S peut-étre
exprimée dans une forme différentiable par rapport aux nombres n, I, m.
A savoir, par la séparation de (la, 14), seprésentent des équations différentielles
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auto-adjointes ordinaires. Mais la solution de telles sera donnée par des poly-
nomes de l-iéme degré (de valeur aux bords prescrite) qui sont produits d’habi-
tude par formules recursives aussi. Par conséquent, ces polynomes peuvent
étre déduites — a la suite de Rodrigues -~ des l-iémes dérivées d’une fonction
génératrice convenable. Une telle dérivée peut étre produite méme dans une
forme intégrale par le théoréme de Cauchy ([26] p. 153), différeutiable partielle-
ment par rapport a I, comme paramétre. Dans (1b,4) done, 9S/d! existe. P.e.
la forme intégrale de la fonction sphérique «adjointey connue — par abrévia-
tion y=cos ¥ — (voir [27]):

C o r - 1 .
Prp)=—--| (e+ V@ —1:cosg) - eim.dg.
2% =
Mais par la méthode ici mentinnée, méme la fonction de Laguerre L,(r)
peut étre construite en forme différentiable par rapport a n. C’est pourquoi,
d’aprés (1b,3) — en état pur l'orbite est vraiment déterminée.

Dans la suite, nous introduisons comme abréviation:

o au lieu de «; il S

b5
B au lieu de §; g =152 (Ih.5)

c’est-a-dire la représentation par des lettres deboutes et grosses, substituant
I'index j. Ainsi, la forme explicite de I’équation orbitale (1b,3) est la suivante:

r = rft, o, B]. (1b,6)

Mais, la détermination générale de celle-ci est un devoir grave, exigeant —
méme dans le plus simple cas — D’itération par calculatrice électronique.
Pourtant, méme sans cela concernant ’orbite, par (1b,3), on y peut conclure
a des propriétés importantes (voir § 2a—b).

(En méme temps le probléme se pose ici de déciser si, 'orbite de la sin-
gularité d’une solution plus générale a (1a,2), mentionnée en [13], satisfait
méme la (1b,3), contenante de ¥ totale (1b,1), respectivement la (1c,5) sub-
séquente.)

¢) Calcul d’orbite en état «mélangéy, apparition de nouveaux paramétres

Produisons dans ’argument des solutions (1b,1), qui appartiennent au
méme V' de ’équation (1a,2), une suite a, (I =1, 2, ..., n) de paramétre a,
parmi les éléments de laquelle ne doivent pas se trouver deux égaux. Comme
chaque fonction de n’importe quel ordinal ! de la suite de fonctions

¥, =¥rta] (@=12...n) (1c,1)
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tirées ainsi de (lb,l), satisfait (la,2), par conséquent, la combinaison linéaire

-V, (le,2)
i=i
est aussi une solution de celle-1a, ou le complexe c, est constant. C’est pourquoi,
dans la forme trigonométrique de

e, y, me»T* (Ic,3)

ri(>0) et 6, sont des constants réels. La (le, 2) décrit un état mélangé (autre-
ment: celui méme de superposition ou bien d’interférence) des états pours
d’ordinal | dont la forma d’argument — par I’abréviation de (Ib,5) — est la
suivante:

W= VY[r,ta,yh<s 1= 1,2,..., n]. (le,4)

De cela, le systéme d’équations

J aSfr-w*ly* O; 1= If2°ee”ra]= R (= 1,2,3) (le,5)
i-i a«l]
définie, d’une facon implicite, I’orbite par S, provenant de (la,7), comme
généralisation conséquente de (Ib,3). Dans cela, méme maintenant, la Bj
signifie une valeur tripartite, choise arbitrairement du domaine de valeurs
du premier membre. Cette orbite a caractére de mécanique ondulatoire porte
méme maintenant la forme suivante:

r=r[t,a,B,y, 0; 1=1,2,...,n]. (le,6)

(Un état mélangé survient p.e. si, dans l’espace configurationnet voyagent
certaines surfaces de guidages dans le long desquelles la direction de grad S
ne peut étre que tangente.)

Mais dans la (le,4) les valeurs des parametres ylet d, sont réglées par
la normalisation de la V, donnée par (le,2). Notamment, par la forme trigono-
métrique de 4rl

V*mY = J- y?2«Q+ 2J vy, eyke . C0SS*---S'-+-A
/ k.l ft

aki— ak  d;. (1°%?)

En étendant sur I’espace infinie I’'intégrale de volume de cette équation et
en y introduisant I’abréviation suivante:

A ,= [ OP?y* + S4TO<Pr=1J" ecos Sf- SA+ K d?T (le,8)

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



LES NOMBRES QUANTIQUES 225

d’apreés (la,4) nous gagnons:
n n
SR Py A1, (1e,9)
1 kel

Et cela est une équation quadratique pour un, disons: justement pour le dernier
paramétre vy,, il y a seulement les précédents du nombre (n — 1) qui peuvent
étre choisis arbitrairement. Mais, méme alors, le y,, calculé d’eux, doit étre
constant dans le temps dont la condition nécessaire et suffisante est le sys-
téme d’équation:

A 0 BA=1.50 5 (16,10)

di
Dans cela, le nombre des équations est n(n — 1)/2. La (1¢,10) s’accomplit
sans condition avec n arbitraire, si 4,, = 0 et en se cas de (1¢c,9):

Sp=1. (1e,11)
l

Nous notons que, en état stationnaire de I’espace V conservatif, le systéme des
fonctions ¥, est orthogonal et ainsi A,, = 0.

Pourtant en cas général (1c,10) ne peut pas étre satisfait pour les valeurs
arbitraires de o, mais seulement pour les valeurs déterminées par elle. Néan-
moins, le nombre des équations indépendantes, qui peuvent étre produites de
lal=1,2,...n, cest-a-dire n(n — 1)/2, ne peut étre plus grand que le
nombre 3n 4 n = 4n, d’ensemble des variables o, d;.. Par conséquent, la
condition (1c,10) ne peut étre satisfaite sans contradiction qu’en cas, sin = 9.
Et cela indique le caractére causal de la mécanique ondulatoire, & savoir que
le nombre n des états purs, qui peuvent se mélanger I'un avec I’autre, est en
général limité.

d) Calcul d’orbite en cas de mélange d’états purs a o égaux; apparition de
nouveaux parameétres

Il peut arriver que, en cas du-méme V, la (1a,2) posséde méme deux
solutions ¥’ et ¥”, de forme (1b,1) mais avec a égaux, qui ne sont pas iden-
tiques entre elles (linéairement indépendantes):®

Vi, t,a] 2 ¥P'[r, t,a]. : (1d,1)

¢ Tel est p.e. le polynome de Legendre a I-er type (P)) ainsi que le méme a II-iéme type
(Q)), a l'index l. Mais par un procédé universel ([26] p. 402), on peut construire pour une
solution particuliére de I’équation différentielle de Sturm-Liouville (p.e. méme de Laguerre),
une autre solution qui la compléte entiérement. Par conséquent le facteur complexe de la
¥, mentionné dans la note 4, appartenant a la cordonnée @, a la forme Py(#) -} ieQ(®) ou le
facteur e est réel constant.

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



226 I. mAtrai

La restriction de numérotage dans le premier alinée de § l|c exclut un tel cas.
{SiW et W" sont stationnaires, c’est-a-dire tous les deux sont de forme (la,12),
il est a comprendre que les JB' et JB" dans (la,13—14) sont égaux.} Bornons-
nous ici au cas n = 1 de (le,4), c’est-a-dire aux fonctions d’état non sans faute
stationnaire, quand en vertu de (Ic,I) y = 1leta= 0, conformément a (ld,I).
Alors la solution de (la,2) est la combinaison linéaire

*F[r, t,a,c',c"]= ¢ «W + ¢c" W (1d,2)

aussi, si les c' et ¢"y sont complexes constants. Ecrivons méme maintenant
(Id,2) en forme trigonométrique, ainsi, en vertu de (la,6):

¥ A YT egS: - efS"/i (id,3)
+ +
et
c'==e" «efil% ; c"= e"eel"*, (1d,4)

ou e', e"etrj, rf sont des constants réels, mais les e {> 0. Avec ces nouveaux
constants, la forme a argument de (ld,2) est en derniére analyse

TFfr, t,a, c', c"]s W[v,t,a, e, e, n,r"] (1d,5)

{Mais puisque, d’aprées I’expérience, chaque état — satisfaisant (la,2) — peut
se produire, il faute donc normaliser méme W, donnée, par (Id,2), et cela par
(la,4 —5). Par conséquent conformément a (le,9) les constants e', " et r]', rf
méme ici ne peuvent pas étre choisis tout indépendamment I’'un de I’autre.
Formons d’abord W*. W par (Id,3—4):

e'Y + eV + 2e'e'2+s"q2mwC0sS S ~~ S’ + (id,6)
h
ou
V= TT- (1d,7)

De cela, I’exigence de normalisation de (la,4) nous conduit a I’équation quad-
ratique:

g2+ e"2+ 2ee" «A =1 (1d,8)
ou
A= TYYF ecos S -—~~s"+ Ad3r. (1d,9)
J + %

En cas du constant e'(*>0), (Id,8) peut étre résolue selon e". Mais méme e" ne
peut pas dépendre du temps, c’est pourquoi une solution de forme (Id,2),
resp. (ld,5) peuvent posséder un sens probabiliste dans le cas ou

(1d,10)
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La condition suffisante en est que, p.e. le V soit conservatif et la paire de
solution ¥’, ¥ soient stationnaires, quand a cause de (1a,15), o’ et p” sont
indépendants du temps, et S’, S” sont de forme (1a,18). Mais le discriminant
de I’équation quadratique (1d,8) — quant a ¢”, qui doit étre réel — ne peut
pas étre négatif. Et cela peut arriver seulement, si

A2 > (2 — 1)/ (1d,11)

Dans le cas général donc, a cause de (1d,8), parmi les &', &” et ', ” du second
membre de (1d,5), seulement trois peuvent étre choisis arbitrairement: p.e.
e’ et ', n", mais &' doit satisfaire quand méme (1d,11). C’est pourquoi, par
I'indication ¢ = ¢’ et avec (1d,7) la fonction d’état du second membre de
(1d,5) sera en définitive:

VY =Y[r,taqcn] (1d,12)

D’aprés les mentionnés. ¥ peut étre toujours construite en forme complexe
aussi au plus sera irréguliére.t}

§ 2. Quelques conséquences dynamiques importantes

Ici nous répétons, mais avec généralité de mécanique ondulatoire (c’est-
a-dire sans négliger 7), les déductions par lesquelles on a I’habitude de conclure
dans la dynamique classique (4 — 0) de Hamilton— Jacobi aux lois de mouve-
ment Newtoniennes, resp. de conservation.

a) L’espace a vitesse de la particule est calculable d’une fagon explicite,
connaissant S et a I’aide de I’équation orbitale implicite (1c,5) en produisant
sa dérivée totale par rapport au temps ¢ (p.e. employant les cordonnées Carte-

siennes dans r — ix j_y + k2):

n 528 o B O . no92S . n $’S '
s s 22 —05(j=1,2,3). (2a,1
;‘ 0t day 4 x; 0x0a yzl‘ Ay 0y i z? 9z Qo " o

Le déterminant de ce systéme d’équations linéaires aux x, y, z est:

;‘ 0% S/0x doy ; 8* S|y dauyy ; 0% S0t douyy
D= ; 9* S|0x douy ;‘az S/dy dous ;az S/0z dos | . (2a,2)
> S/9x dayg ; & S|dy douyg g & S/0z doyg
Supposons que
D SE 0, (28’3)
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c’est-a-dire, excluons le cas trivial de Sr= 0 (voir encore la note 4 et le dernier
alinéa du 8§ 2|b subséquent). En employant la régle de Cramer sur (2a,1):

2id 2 Sldt dxn 2i‘a 2 Sldy dxtI2i 32 Sldz d«a

i = -D"1e 2 d2SIdt dxl22 d2S/dy dxlt2 a2 Sldz dxlt (2a,4)
I I

2I d2 Sldt dX|3t2 d2Sldy dx|3|2 a2 Sldz dxI3

et de méme y, z. P.e. dans le cas d’une dimension et pour (c’est-a-dire cas
d’argument [x,t,x]):
d2sidt dx

(2a,5)
d2Sldxdx
La (2a,4) donne la vitesse de la particule, setrouvant dans le lieur a un instant
t. Pour la calculer, il faut connaitre I’orbite de forme (le,6) explicite.

b) La relation des impulsions «raie» et canonique

Les explications suivantes reposent sur une reconnaissance nouvelle
(aussi pour la mécanique classique) selon laquelle, de I’équation Hamilton—
Jacobienne (la,9) et de I’équation orbitale (implicite), accessoire (le,5), suit
I’autre équation, appelée d’exprimer la relation des impulsions vraie et canoni-
que, et avec cela les lois de conservation. Pour la recouvrir, il faut interpréter
I'impulsion vraie:

= mer. (2b,1)

Et Vimpulsion canonique sera définie par
p = grad S. (2b,2)

Calculons la différence d4mpulsion

{==mr — grad S. (2b,3)
Pour ce but, il suffit de se borner a la composante X, notamment d’aprés
(2a,4):
2I d2 Sldt dxn 2I d2 Sldy dxn zl d2 Sldz dxn
= mD- ZI d2 S/dt dxlt 2| a2Sldy dxltzI d2 Sldz dxn (2b,4)

dx
2 d 2sidt dxI3 2 a2s/dy dxI32 a 2sidz dxI3

Dans la premiére colonne du déterminant, signalé ici, nous pouvons substituer
les éléments de forme d2Sldtdxlj-par des expressions, gagnées de (la,9) en cela
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dérivant partiellement par rapport a «;, mais d’oli les dérivées 9V]da,;; tom-
bent a cause de (1a,l). Ensuite, en vertu des théoremes d’échange des dériva-
tions partielles ainsi que de transformation de déterminants:

l ;‘ oU 9oy, 2 0*S/dy deyy 2;32 S/0z douy |
1

fo=m-D-1. ;‘;;v/aoc,2 ;az S/dy do ;az S/9= 30:,2‘ (2,5b)
20Uy 3 9° S0y daig 20 /05 dous.

et des expressions semblables se présentent pour fy et f, aussi. On voit que
en général, f # 0. Dans un cas pur d’une dimension p.e.:

Jx = —mdU|ox. (2b,6)

En méme temps, f # 0 trahit que ¥ n’est pas un vecteur potentiel, et ainsi

I’équation de guidage Broglienne [15] est valable dans une forme plus générale

que dans la dynamique classique (4 — 0), o notamment a cause de (la,10)

dans (2b,5) la colonneZ&U/&ac,,—»O, mais méme ici, tout au plus en cas de
1

liaison scléronome. C’est pourquoi dans le cas classique I’équation mr = grad S
est en effet une conséquence directe des équations: 9S/da = 3 orbitale et
Jacobienne. Par contre, toutes les interprétations de la mécanique ondulatoire
qui n’élargissent pas I’équation de guidage, peuvent décrire tout au plus un
cas spécial de mécanique ondulatoire, ainsi p.e. [8—9],7 en plus les modéles
de hydrodynamique, étudiés a la suite de E. Madelung.

Nous notons donc que, dans (2b,3), f est formellement analogue au
membre additionnel —eA/c de I'impulsion classique de la charge e ponctuelle,
si A signifie le potentiel vecteuriel dans le lieu de la charge ([28] p. 379.). En
cas de y réel, S, = 0, par conséquent, a la fois D = 0, et ainsi, p.e. dans un
cas d’unidimension, f =0 a cause de (2b,6), c’est-a-dire mx = 9S,/0x d’ou
provient le cas statique: x = 0.

c) La force, le travail, 'équation de mouvement

Se bornant a I’espace potentiel (1a,1), on définie le champ de force F(r, t)
et le travail W, accompli par lui sur la particule suivant I'orbite r = r(t)
dans un intervalle ¢' <“¢", par les équations:

F= —grad V; W EJ“:' Fdr . (2e,1)

7 Mais [8] exige encore un élargissement, parce que elle a exprimé la p de 1’équation
partielle-différentielle & continuité non dans une forme générale désirable (c’est-a-dire conte-
nant des fonctions arbitraires), mais seulement dans celle d’une solution totale (c’est-a-dire,
contenant des constantes arbitraires) pour éliminer la ¢ de (1la, 9) ici.,
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Nous en recevons la forme générale du théoréme a «force vive», c’est-a-dire
du méme a travail par I'intégration du gradient de (la,9), dans la forme sui-
vante:

grad2g + 3g.+ u

2m dt (2¢.2)
Ll
/ grad S grad’ ds ,_dZS H du dt.
h m dt dt2 dt
Il devient clair que le deuxiéme membre de dépend de la forme de I’orbite

aussi, et ce membre, en cas h =20, peut disparaftre seulement en cas de poten-
tiel conservatif (la,11).

Nous arrivons a I’équation de mouvement — de méme — par le gradient
la (la,9). Celui-ci est le suivant d’aprés (2b,3):

(mi —f) —- — e grad (mi- — f) grad U = F (2c,3)
dt m

et correspond a Yéquation de Newton. Notamment en cas (irréel) h —0 (quand
f= 0etgrad U= 0), elle prend la forme connue: d(mi)/dt = F. Mais (2c,3)
montre que, en cas de F ==0 (si h 0), f n’est pas constant, c’est-a-dire, la
loi d'inertie perd2 sa valabilité générale. La (2c,3) en soi, n’est pas capable
méme de la détermination de I'orbite.

d) Prévention contre un paradoxe de vitesse

Il est connu que, en cas V = 0, la solution de (la,2) est méme I’onde
plane de forme de deux dimensions

Xsin 0/ + Zcon o0i\

Suivant (la,7) y est f, == 0, et par conséquent — a cause de (2b,1) et (2b,3) —
la particule, toute comme la phase d’onde sont de vitesse ¢. Mais de deux
telles ondes pures (I — 1, 2), peut étre superposée une

ip"*pi+ x2

mélangée aussi, et cela correspond a (le,2), de plus prées: au cas physique
aussi, ou, devant un miroir plan imparfait, I’'onde plan Wlrencontre la R2
reflétée ([15] Chap. X. §5.). Ici, a I'ag correspond I’angle 6, (incident 0X= —62
de réflexion), a I’a/2 correspond en cas 1= 1,2 également vet par I’'indication
de [15], la y est déterminée par la réflexivité rj. Selon la supposition de mi —
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— grad S, [15] a donc démontré que, dans I'espace de ¥, la vitesse de la
particule est, d’'une fagon paradoxe, toujours plus grande de ¢, lésant ainsi
le principe de la relativité restreinte. Bien que dans une théorie, pas encore
relativistiquement corrigée, une lése comme cela peut étre supportable,
pourtant, en répétant les calculations mentionnées, nous pouvons nous per-
suader de ce qu’en cas ¥ mélangé: f # 0, donnée par (2b,5). Ainsi, au lieu
de mr = grad S, il faut partir de (2b,4). Et cela coupera court au dressement
du paradoxe.

En méme temps, on peut établir que, ici la dynamique proposée est
au fait un renouvellement de la théorie des ondes pilotes de M. de Broglie dans
une forme élargie.

§ 3. Assujetissement des paramétres découvertes a la
mécanique ondulatoire

a) Le caractére statistique des paramétres de genre 3 et leur rapport & la densité
o des particules virtuelles

Dans I’état général (mélangé), donné par (lc,4) a la particule, c’est-a-
dire en cas de paramétres [o, v, 0,51 = 1,2, ..., n] fixés, en (1c,5) — dans le
domaine de valeur du premier membre — le § du second membre peut étre
arbitrairement toujours et toujours autre. Nommément, dans une nouvelle
«épreuvey — qui cherche a établir empiriquement g, définie par (la,5) — si
B; (j = 1,2, 3) difféere un peu de la précédente par 0f;, alors — selon la nou-
velle épreuve dans I'instant ¢, ¢c’est-a-dire 6t = 0, correspondant au précédent —

or=i-0x+4joy- +k-dz
peut étre calculée a la base de (le,5) du systéme d’équations linéaires:

0 S 0 S 0 0S .
B =8 . S D0 s A L ‘(j=12,3)
ﬂ] ox 1 3a,j 4 3)' [} 3(21] 0z 7 3“1] (38,1)

La particule se «déplace», c’est-a-dire migre dans la nouvelle épreuve avec
or relativement a la précédente. Par conséquent, méme au prisme de diagonale
principale 6@, se trouvant dans I’espace 8, correspond un parallélépipéde de
diagonale principle 6r dans I’espace r.

Suivant cette conception, I'incertitude Heisenbergienne peut étre exprimée
ici dans la forme suivante: Pour les épreuves de retrouver, interprétées aprés
(1b,1), les circonstances de départ mentionnées déterminent d’avance avec
précisité seulement les paramétres [o, y, 6,5 | = 1,2, ..., n] caractéristiques
a I’état de la particule et pas® le B, c’est-a-dire B est tout indéfini pendant

% Contrairement a la mécanique classique.

\S]
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I’épreuve, seulement aprés I’épreuve peut on y tirer des conclusions a sa
valeur, justement suivant le résultat de I’épreuve. Mais les épreuves réléevent
que, les (3, appartenant aux épreuves, ont pourtant limite de distribution a
densité certaine dans I’espace B.

Pour la calculer, il faut considérer que, dans I’ensemble d’orbites virtu-
elles, appartenant a I’état égal, le nombre des orbites, dont les parametres
desquels tombent dans I’intervalle Bl + dBR2, est autre que, le nombre des
orbites, dont les parametres tombent dans I’'intervalle B\ + dBx2, ou "~ R[.
La distribution statistique de Bx mentionnée consiste en cela que, dans I’inter-
valle B' + dRBj2, les Bx de certaines orbites (& savoir «atteinte») se placent avec
une fréquence relative dpx (c’est-a-dire probabilité), ainsi:

dpx= Px[a,y, 0,; = 1,2,...,n; B'] mdB (&l). (3a,2)

Une relation analogue est valable pour B2 et B3 aussi. Partant, selon la régle
de multiplication des probabilités indépendantes, la probabilité d3 d’une
atteinte, tombante dans I'intervalle Bj + dBj/2, est la suivante:

dip = dpxmdp2mdp3= PxmP2mP3 mdix mdR2 mdR3.

Omettant le signe de virgule déja dispensable audessus de R, introduisons la
fonction de «distribution a /b>:

PxmP2mP3 Q[ahy, 6,; 1= 1,2,...,n; B]. (3a,3)
Avec cela

® P = Q- dRxdB2dR3 (Si) , (3a,4)

ou la forme de la fonction Q sera déterminée par |’état, reproduit souvent
des épreuves, et par leR. En tous cas, nous la considérons pour continue quant
aux variables, au moins par étapes. Le nombre relatif p des atteintes qui
tombent dans un domaine fini, signé (B) de I’espace B, gagnons — dans le
sense de la regle d’addition des probabilités des événements exclusifs —:

. J(Bae P - J\lxaﬂ-dﬁdeZdBB (~1). (3a,5)

Cette intégrale triple d’espace B peut étre exprimée par intégrale d’espace I,
c’est-a-dire selon les mentionnés, au sujet de (3a,1) nous pouvons projeter le
domaine (B) — fixé dans I’espace B — a un domaine correspondant (R) qui
erre dans I’espace r, notamment par la transformation d’intégrale a volume
connue:

o = Q mdxiris3 = |JJER mD - dxdy dz . (3a,6)
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ou D est le déterminant de Jacobi de la transformation, donnée par (le,5),
mais qui correspond, par bonheur, a (2a,2). Mais ici le facteur Q de la fonction
a intégrer doit étre compris suivant (3a,3) et (1lc,5) dans la forme Q[a;, y,, d;3

1=1,2,...,n; > 0S/0a]. Dailleurs puisque la (3a,6) doit accomplir n’importe
1
quel volume dxdydz, la densité p de la probabilité se trouve dans lieu r a

I’instant ¢:
dp

b S 3a,7
dxdydz ( )

Il

Cela donne en méme temps la fonction de distribution Q = p/D inconnue,
mais au lieu de 3, comme fonction de la variable r. Si nous voulons donc savoir
de quelle maniére () dépend le B, il faut substituer, au lieu de la variable r
dans g/D le r = r(t) exprimé de 1’équations d’orbite implicite (1c,5). Par la,
la détermination de Q est un devoir, égal a la calculation d’orbite.

b) Le role des paramétres dynamiques dans les valeurs moyennes et dans le
Jormalisme des opérateurs

Nous avons vu dans a) que, calculant depuis le début de la durée des
épreuves d’états concordants (mentionnés déja dans la note 3 aussi) a I'instant
t, la particule passe (ou bien peut étre trouvée) en cas d’un autre 8, dans un
autre lieu r. Tout comme la valeur la plus fréquente des éléments dans une
suite de mesure — autour de laquelle la somme, c’est-a-dire I’intégrale des
carrés d’écarts montre minimum — sera fournie par leur valeur moyenne
arithmétique, de méme ici: la situation ¥ la plus fréquente (c’est-a-dire probable)
de la particule dans I'instant ¢, est donnée par la valeur moyenne de mécanique
ondulatoire ¥ des situation, observées dans les épreuves:

A S N EJ'" Qrdsrzrw Pdr, (3b1)

et cela analogue au centre de masse. De la méme fagon, la valeur probable p
de I'impulsion canonique p est:

iszg-grads-dsr (3b,2)
qui sera a la base de (1a,5), (1a,7) et (la,4)
r h
pltoa,y,051=1,2,...,n]=—| ¥P*-grad¥-d°r (3b,3)
i
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De méme, la valeur E probable de I’expression —dS/dt peut étre écrite d’une
facon:

E [f 6,; 1=1,2,... = -4 -T —  da3r. 3b,4
IF. 09, ¥.. 0. 20l IJ at ' (30.4)

qui, dans un cas conservatif et stationnaire, est indépendant de t. Si, pour
satisfaire méme la (la,4), nous nous bornons — dans la (la,2) — a la solution
de la W, disparaissant au moins a la maniére de 1/r dans I’infini, en ce cas
(p.e. selon [28] p. 111) a la base de mf = p, c’est-a-dire de (2b,3) il existe en
méme temps:

f= flta,yhoi\ I=1,2,,..,»]a0. (3b,5)

Par conséquent, I’introduction des paramétres cachés ne modifie pas le théoreme
connu d’Ehrenfest.

La (3b,3—4) trahit en méme temps la regle des opérateurs aussi.

Dans cet élargissement de la dynamique Hamilton—Jacobienne, I’'inter-
prétation statistique de la mécanique ondulatoire consiste en ce que, nous
faisons tomber les paramétres de caractére B par calcul de la moyenne, et ainsi,
nous nous contentons des valeurs moyennes a mécanique ondulatoire, concer-
nant les quantités physiques. La résolution de ce devoir, plus simple que le
calcul d’orbite individuelle, crée en méme temps, la relation en tout cas indis-
pensable avec la physique macroscopique. C’est pourquoi, le développement
de I’interprétation statistique mérite beaucoup d’honneur.

c) Les paramétres de dynamique et le probleme des valeurs propres

En cas de W stationnaire (grace au V conservatif), méme les équations
(la,11—21) permettent que les arguments contiennent, outre r et t, des para-
meétres dynamiques aussi. Mais on peut voir de (la,18) que la séparation
(la,12) peut étre accordée seulement avec la forme (lb,I) de W, c’est-a-dire
avec la forme pure, puisque la séparation ne peut étre accomplie ni avec (le,4)
de | y>1, ni avec une fonction d’état mélangé (Id,2). Ainsi, I’argument de
fonction possible de (la,2) est inustré par la relation:

Y = #[t,a] mv[r, a] (3c,1)

a la base de laquelle
dans (la,13): B = B[a]; D= DJ[a], (3c,2)
(12,15): g = ¢*5«] » (3¢,3)
(la,17): £ = E[a]; dans (la,19): Sr= Sr[r,a]. (3c,4)
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Mais a cause de (3c,3) dans (1a,10): U = UlJr, a]; ensuite f = f[r, o] inter-
prétée par (2b,3), enfin a la base de la (3c,4) la vitesse donnée par (2a,4):
r = v[r, a], c’est-a-dire elles sont de forme stationnaire.

Pour terminer la E, donnée par (1la,17), nous évoquons la discussion
connue du probléme des valeurs propres, afin de montrer que les paramétres
de dynamique s’y conforment souplement. Dans

W, = e—iBrt+ D)k . 4

interpretée par (1a,12—13) et (1¢,1), a cause de la forme d’argument (3¢,1—2)
de y;:
v =y[r, o]; B, = Bla]; D, = D[a] . (3¢.5)

Ici, selon la prescription de numérotage donnée dans le premier alinéa § 1|c,
sil = m, 'inégalité: a; = a,, existe toujours et méme inversement. A Iintéret
de normalisabilité de ¥, nous exigeons aussi que la fonction d’amplitude y,
disparaisse dans I'infini et cela plus lentement de 1/r. Cela veut dire pluspréci-
sement que dans n’importe quel lieu r = [r/, ou r — oo, doit s’accomplir
p, - " — C,, et ici C; est un constant fini, complexe et A >> 1, réel. Pour tirer
en usage des conséquences de la disparition dans I'infini, nous formons i la
base de (1a,14)

- 2
I= j (it — yit dy) d*x = — ~2 (Br — B) J“’ vE - - dPr. (3c6)

Aprés avoir transformée 'intégrale I de volume en superficielle par le théoréme
de Green, nous I’étendons sur la surface d’une sphére de rayon r — oo, dans
I’élément de surface r? . d2 de laquelle ’angle solide, coupé par elle est dQ,
c’est-a-dire:

b 31/)1 al/)m
)= ®, —TU ¥ M2 g0,
Jf—*oo (q) ar y)l ar ]

Mais selon la restriction la fonction a intégrer disparait en cas r —~co et A = 1
le moins favorable encore permis. C’est pourquoi I — 0, et de (3¢,6) devient

(Bh— B)| vh-w d°r=0. (3¢,7)

Si ici | = m, c’est-a-dire dans le sens de I’adjonction d’indexe a,, = o, et par
la v, = vy, alors en conséquence de (1a,16), de (3c,7) devient

Bf = B, . (3¢,8)
Le constant B, est donc réel, et ainsi de (1a,17) et de (1a,14)
2
Bl:EI:_L. ﬂ_}_[/
2m Y
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devient une valeur propre, et dedans la fonction xt, nommée propre qui la
fournit. Mais dans (3c,7), m” 1| et ainsi yl Iprexiste aussi. S’il' y a un cas
nondégénéré, c’est-a-dire B; Bm (= a cause de (3c,8) B*), alors de la
forme connue:

J” &meW md3r = 0

se suit la condition d’orthogonalité.
'Bir;

Le § 1/d a fait allusion que méme les deux états IB]’t a] » y 1, a]
indépendants peuvent se méler en cas de V conforme. La restriction de numéro-
tage exclut un tel W du systeme des fonctions orthogonales contenant W,
c’est-a-dire un tel W" est I’6lément d’un autre systéme de telles fonctions.
C’est I’analyse des parameétres de dynamique qui nous a conduit a cet étab-
lissement.
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TWO-PHASE FLOW HEAT TRANSFER IN A CIRCULAR
PIPE WHEN THE INLET TEMPERATURE VARIES

PERIODICALLY WITH TIME
By
K. S. ShIRKOT and SURJIT SINGH

DEPARTMENT OF MATHEMATICS, HIMACHAL PRADESH UNIVERSITY, SIMLA-171005, INDIA

(Received 31. I11. 1979)

The problem of two phase flow heat transfer in a circular pipe is analysed when the
temperature of the dust particles and of the liquid varies sinusoidally with time. The effect of
various parameters on the amplitudes of dust particles, liquid-dust mixture and clear liquid
is calculated. Graphs have been drawn to compare the values. It is found that the effect of
dust particles is to flatten the temperature profile and thus increase the heat transfer.

Tp
T

SSNZ—+ DT :"-«OXXO.Q
o)

temperature of dust particles
temperature of liquid

specific heat of dust particles

specific heat of liquid

thermal conductivity of dust particles
thermal conductivity of liquid

fluid density

co-efficient of viscosity of liquid
kinematic co-efficient of viscosity
Prandtl number (= fiC/K)

Reynold’s number (= r utv)

time

radius of the pipe

z-flow direction

velocity component in z-direction
average velocity

mass of dust particles per unit volume (= rnNO= constant)]
heat transfer co-efficient for flow over dust particles
surface area of dust particles

volume of dust particles

constant well temperature

The meaning of any other symbols is given in the text as it occurs.

1. Introduction

In the solution of the transient forced convection energy equation of
dust particles and of liquid in a circular pipe Soo [1] has assumed that the
inlet temperature of dust particles and of liquid is constant across the flow.
Shirkot and Singh [2] have analysed the two-phase laminar flow in a chan-
nel when the temperature varies linearly with time. It is found that the tem-
perature of dust particles and ofliquid decays exponentially along the channel.
In the present paper an exact solution of a two-phase flow problem with fully
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238 K. S. SHIRKOT and SURJIT SINGH

developed flow in a circular pipe is obtained under given boundary conditions
when the inlet temperature of dust particles and of liquid varies sinusoidally
with time. The effect of various parameters on the amplitude of dust particles
(ap), liquid dust mixture (as) and clear liquid (a) is calculated. Graphs have been
drawn to compare the values. It is found that the effect of the presence of
dust particles is to increase the heat transfer.

2. Formulation of the problem

We consider a steady laminar flow of a dusty viscous liquid with uniform
distribution of dust particles in a circular pipe. The dust particles and the
liqguid entering the pipe have temperatures which are spatially uniform across
the entrance section of the pipe hut vary sinusoidally with time. Therefore we
can write the inlet conditions as

Tp(r, 0,t) =T 0+ (AT)Osin cet, 1)
T(r,0,t) = TO+ (AT)Osin wt, 2)

where TOis the cycle mean temperature (zITQ), is the amplitude and bl is the
inlet frequency.

To obtain heat transfer performance and the temperature of dust partic-
les and of liquid, it is necessary to set up two energy equations, one for the dust
particles and one for the liquid dust mixture. They are given as follows:

dTp
+H, dTr -G (T-T,), 3
dt di @
dTp dTp (mNQCp, dTp d Tp]
dt rodz gC vt di (4)
v d2T 1dT
---------- h oo BAT
e dJ2 f df
where
0 (ffivo)CpG g hpAp
qC ' (MNOCpVp
Simplifying (4), we get
dT dT v_(a2T | 1 g7 |
T— + 2BXTp- T).
dt di g dr2 roodr ] ATp ) ®

The inlet boundary conditions of the problem are as follows:
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=]
-

(6)

Tp = T, + (4T), sin &%, ] Ly

T — T, + (AT), sin @i

or or |- 4

i)

ﬁn) :m(aT) =0 T,=T=T,atF=r,i>0. (7
F=0

The system satisfying Eqs. (3) and (4) is subjected to the following
restrictions [1]:

(i) Radiation effect is neglected.

(i) Each dust particle is small and maintains uniform temperature due to
its high thermal conductivity K.

(iii) The liquid and the dust particle cloud have similar velocity profiles.

(iv) The dust particles are uniformly distributed throughout the pipe and the
suspension is extremely dilute.

(v) The effect of collision with wall is neglected.

(vi) Axial conduction is negligible with respect to bulk transport in the direc-
tion. This is a reasonable assumption when Peclet number exceeds 100 [3].

Further, to simplify the method of analysis the case of constant velocity
will be considered here. For this purpose, we substitute u = @t = i, for the
velocity profile in (3) and (4) or (5). We now introduce the following non-

dimensional quantities: G
B o T (Y
i R T Ve
2 — 2
w = _r @ I 3 ‘84 e M 3
V4 v (4

Egs. (3) and (5) then become

30, a0
LR TR b0 0 8
L+ RE2 = 30— 6) 8)
00 00 1 (0260 1 60

BT A YIRS . e D L 9
ey Plaﬁ S ) 9)

The inlet boundary conditions reduce to

0p=0=sinwt at z =0, (10)

39p] 00 A
=0, |— =0,0,=0=0, atr=1,t >0. 11
[3r s Fril g P o8 (11)
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3. Method of solution
The above problem can be separated into two as follows:

Op = epi{r,z) + 6p,(r,z,t) ,
0= 0i(r,z) + 0r, z, 1),

where 6V 02 0 and Op> satisfy the following equations

4Bb .
R ~ =RJRi-eP),
dz
i do! = JL (ini_ 1 dot . &(® G
dz Q \{dr2 rodr .
6i= 0, Op,= C
|
dOL _ o 30p.)_ 0,
-}rzo dr j,
[0l = O&d 6p,=
Oop, R Odp, .
dt dz p>t
n do2 , ~ do2 d202 1 do2
+ &(0p, ~ @) *
dt dz dr2 r dr
[0 = sincot, 02= sin cotf] when z= 0,
a0z _ o (dop. = 0:02= 0,0 = Oatr= 1,t>0.
dr r=0 dr ,r=o

Solving (14) and (15) under the conditions (16)—(18), we get

0i(r,z) = 00 4 «a & 1 Jo(retm T— “A"' e-p** _
n=1 SriJI(*n) .an — Mo ].

Mo |p |
A, — Mo 1 3 m]l
2 i - Mo
epAr'z) = 0o — $ 3 o(reo) J__ll_e M[*
0=1*n/1(«n) 140 m\vb Mo
where
Bz t Bl | a0 12

28, = A+ A+ ji- + ~R3
i? PR R PR PR2
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2/ln= A + A +J3~ [ALzA+jE - ARz 12 (26)
R PR R PR PR2
and a,, (n = 1,2,3,...) are the positive roots of jTo(a) = 0.
In order to obtain Oft (r, z,t) and 0.(r, .s ¥ we define the following auxi-
liary problem:

KHANK =00, @

dt
7N +Tir] + A€ s)’ )
o2 = COS COt, Bpr= cos cot] when z= 0, (29)
— =0, |-"-] = 0; B2= 0, BP = 0at r=1, t> 0.(30)
dr r=o [ dr /=0

Let us define new temperature functions Bp and ( such that 6P =
= Opr+ iQpi and Oc= . + 10.- Then the problem given by (19), (22) and
(27)—(30) can be combined to give the following equations

Adt + R d,z\ + B30c- e R), (3i)

_,Cl,l?ﬁ dec: 1(020c y 1 d_ei\ 'I\/Iozil(aOp«-ch 32)

dt dz Q dr. rodr

(Ops = e, OC= ent) when z= 0 (33)
i "pA = 0, N -] = 0; (Ope= 0, 0OC= 0)at r=1, t>0.(34)
I dr jr=o dr )r=o

We now assume the periodic solutions of the form:
oR(r, z> = eatv(rz)> (35)
0C(r, z, t) = eM op(r, z), (36)

where P and @ satisfy the following

icerp -f R g = /93— ip , (37)
z
wp+ fii? = JINe . +i | | + Biy,- cp) (38)
dz o | dr. r drj
{ip= 1, @=1) when z= 0, (39)
(-"- =0, fA~A  =0;(@p=20 9= 0 at r= 1,t> 0. (40)
vdr Jr.o dr Jr=o
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Solving (37) and (38) under the conditions (39) and (40), we get

02= 2sin ait — @Z\I\“ J O(r«n) RAN o
R Jn: 1 Ri J\An i
(41)
RL
s 1 KW, rH,
6P= 2sin cot — to 7 , Ji ok A
R =1 00t (&) A
(42)
where ) .
Vn = Bv K + Hn- ',-A‘aﬁ P,L +| PaFl)w 43)
* 1/2
M &+ & , «@ )2 4% @)
P PR PP2

4. Discussion

When the boundary conditions on the wall of the pipe for 0 and Op are
homogeneous, that is when 00is zero, we have

op(r«, ) = M r>z>0" (45)
B (r,z,t) = 0Ar, z, t) . (46)

6pi(r, z, t) and 02(r, z, t) show that the temperatures of dust particles and of
liguid decay exponentially along the pipe. For asingle phase system the number
of dust particles per unit volume is zero (834= 0), then

0s(r>.,t) = 2sin cot- y Jo(r0 (47)
R n=1 nJ I(a fl)
where

Cn= exp

In many applications, heat transfer in regions away from the inlet is of
interest and for such situations, only the first term in (41), (42) and (47) is
taken and for this case the temperature atr = 0 is given by

t

0=2 sin cot — — 7 a, (48)
R

Bp = 2 sin cot—Ez (49)
R ,
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0S= 2sin lcot — — 2\ as, (50)

where

_ e~"zm Kz 4 e PR
xidiai) A A Aidi(ai)

and

are respectively the amplitudes of dust particles, liquid-dust mixture and
clear liquid.

Remarks

By using Soo’strial solution, (Eq. (4.47) on p. 155 of [1]) we have obtained
ordinary differential equations of Bessel’s type. The resulting boundary value
problem turned out to be a Sturm—Liouville system. This is important

Fig. 1
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Fig. 3
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because Soo obtained a Sturm—Liouville system for a degenerate case only.
Eqs. (23) to (26) of this paper represent a general solution of the heat transfer
problem.

(i) From Fig. 1 it is clear that the amplitudes increase with R and ap >

> a > as.
(ii) Fig. 2 shows that ap decreases with the increase of 3 (and so Rt) but

a increases and ap >>a > as.

(iii) From Fig. 3 we find that the amplitude apand a increase with increasing
BjRgand ap”™>a > as (atleast for the values of various parameters occur-
ring here).

Therefore the effect of dust particles is to flatten the temperature profile
and consequently increase the heat transfer. The phase lags are the same for
two-phase and single-phase system. Also, as the inlet frequency is increased
the phase lag increases and as the Reynold number R is increased, the phase

lag decreases.
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RAYLEIGH-TAYLOR INSTABILITY OF A COMPOSITE
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By

R. C. SHARMA and K. P. THAKUR
DEPARTMENT OF MATHEMATICS, HIMACHAL PRADESH UNIVERSITY, SIMLA-171005, INDIA
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The frictional effect of collisions of ionized with neutral atoms on the Rayleigh—Taylor
instability of a composite mixture through porous medium is considered in the presence of
a horizontal magnetic field. For the case of two uniform fluids separated by a horizontal
boundary, the magnetic field completely stabilizes certain wave-number band. For the case
of exponentially varying density, the collisions are found to have no effect as such on the
stratification. However for the stable stratification, the growth rates increase with the increase
in permeability of the medium whereas for the unstable stratification, the growth rates may
be both increasing or decreasing.

1. Introduction

CHANDRASEKHAR [1] has given a detailed account of the stability of
superposed fluids in the presence of magnetic field through non-porous medium.
When a fluid permeates a porous material, the actual path of an individual
particle of fluid cannot be followed analytically. The effect, as the fluid slowly
percolates through the pores of the rock, is represented by a macroscopic law.
This is the usual Darcy’s law. As a result of this, the usual viscous term in the
equations of fluid motion is replaced by the resistance term (u/k,)q, where p
is the viscosity of the fluid, k, the permeability of the medium and q the velo-
city of the fluid, calculated from Darcy’s law. Woopine [2] has considered
the Rayleigh instability of a thermal boundary layer in flow through a porous
medium.

It is quite frequent that the medium is not fully ionized and may be
permeated with neutral atoms. The medium has been idealized therefore, follow-
ing HANs [3], as a composite mixture of a hydromagnetic (ionized) component
and a neutral component, the two interacting through mutual collisional
(frictional) effects. HAns [3] and BraTia [4] have shown that the collisions
have a stabilizing effect on the Rayleigh—Taylor instability. However, for
the Kelvin—Helmholtz configuration, RAo and KALrA [5] and Hans [3]
have found that the collisional effects are in fact destabilizing for a sufficiently
large collision frequency.

In the present paper we study the collisional and porosity effects on
the Rayleigh—Taylor instability of a composite mixture through porous
medium in hydromagnetics.
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2. Perturbation equations

Consider an incompressible composite layer consisting of an infinitely
conducting hydromagnetic fluid of density q, permeated with neutrals of
density qd, arranged in horizontal strata; through porous medium and acted
on by gravity force g¢g(0,0, —g) and horizontal magnetic field H(H, 0, 0).
Assume that both the ionized fluid and neutral fluid behave like continuum
fluids and that effects on the neutral component resulting from the fields of
gravity and pressure are neglected. The magnetic field interacts with the
hydromagnetic component only.

Let OQ 6p, q(n, v w) and b(hx, hy, hz) denote respectively the perturba-
tions in density, pressure, velocity and magnetic field H; gd, vc, ueand p denote
the velocity of the neutral fluid, the mutual collisional (frictional) frequency
between the two components of the composite medium, the magnetic permea-
bility of the medium and the viscosity of the hydromagnetic fluid, respecti-
vely. Then the linearized perturbation equations governing the motion of
the composite medium are

<3-= - Vvdp + g0Q+ (VXh) X H+ Qve(gd- q)--—- q, (1)
dt 471 19
_ d ,
ot ve{q q) 2
Veqg= 0, Veh= 0, ?)
d A dg

4
dt dz @

V =V X H).
” x(q ) (5)

Analyzing the disturbances into normal modes, we seek solutions whose
dependence on space coordinates X, Yy, z and time tis of the form

f(z) exp (ikxx + ikyy + nt), (6)
where kx,ky (k = |/ (fc] L) are the wave numbers along x and y directions

respectively, f(z) is some function of z and n is a complex constant.
Eliminating qd between Eqgs. (1) and (2) and using (6), Egs. (1)—(5) give

gu — —ikxdp , (7)

n+ VoQr= —ikyop - (ikxhy — iky hx) , (8)
4n
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’ gw= —D6bp M {Dhx — iAxh2 - gdg,
|r +T1 4n (9)
ifoxn + ikyV-{- Dw = 0, (10)
ikxhx + iky hy -\mDhz = 0, (n)
nég = —wDg, (12
nhx = ikxHu, nhy = ikxHv, nh2— iAxHw , (13)

where
1+ o vV = I , a0 — and D -
ra+ “c, e e dz

Eliminating <pbetween Eqs. (7)—(9) and using Eqgs. (10)—(13), we get

1 n k2H?2
n'[D{gDw) - A2pu;] --—---—-- [D(gvDw) - A2gvw] + - X

fcj 4nn (14)

(D2- A2u> A2 {Dg)w = 0

3. Two uniform fluids separated by a horizontal boundary

Consider the case of two uniform fluids of densities (lower fluid) and
g2 (upper fluid) separated by a horizontal boundary at z= 0. Eq. (14) for
both regions of fluid reduces to

(D2- k2w = 0. (15)
The general solution of Eq. (15) is
w = AeHz -f- Be~kz, (16)

where A and B are arbitrary constants.
The boundary conditions to be satisfied in the present problem are as
follows.

(i) The velocity w should vanish when z —% -foo (for the upper fluid) and
z — —o0 (for the lower fluid).
(ii) w(z) is continuous at z = 0.
(iii) The pressure should be continuous across the interface.

The continuity of pressure means that
1 , 12 1f2 12

n'AQ(gDw) + — AO(gvDw) + A Au(Dw) + AO(qw0 = 0. (17)
nn n
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Applying the boundary conditions (i) and (ii), we can write

MX= Ae-+az(z < 0), (18)
and
M2 = Ae~ta(z > 0), (19)

the same constant A has been chosen to ensure the continuity of w at z = 0.
Applying the condition (17) to the solutions (18) and (19), we get

n3+ Nc(«0+ 1)+ + *\p) n2+ (xlvl+ a2v2) + 2k2v\ +

I K
(20
+ i —«) N+ [2KvAa + gk(xt —a2]vc= 0,

where v\ — peH 24n(gl+ Q)

(a) Stable case (aor > Pa)-

In this case, Eq. (20) does not allow any positive root as there is no
change of sign. This means that the system is stable.
(b) Unstable case (p2> Pi)-

In this case if

2*4 «a < gk(*2 —ax), (21)

the constant term in Eq. (20) is negative. Eq. (20) therefore allows one change
of sign and so has one positive root. The occurrence of positive root implies
that the system is unstable. If

2%4va > gk{<*i — «i) , (22)

Eqg. (20) does not admit of any change of sign and so no positive root occurs.
The system is therefore stable.

Thus for the unstable case (g2 > ex), the system is stable or unstable
according as p2—  is less than or greater than neH X&2ngk. In the absence
of magnetic field, the system is unstable for 2 > Q as one of the values of
n given by Eq. (20) is positive. But the presence of magnetic field has got
stabilizing effect and completely stabilizes the wave-number band k > fc*
where

= 2ng (e, - Pl)sec2e (23)
fleH 2

and O is the inclination of the wave vector k to the direction of magnetic
field H.
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4. The case of exponentially varying density

Let us consider the density stratification in a continuously stratified
medium of depth d as ‘
o(2) = 0, €%, (24)
where p, and § are constants. Let us assume that fd < 1, i.e., the variation
of density at two neighbouring points in the velocity field, which is much
less than the average density, has a negligible effect on the inertia of the fluid.

Following CHANDRASEKHAR [1], the boundary conditions for the case
of two free surfaces are

=Nl =10 st s—=0 sad d. (25)
The proper solution of Eq. (14) satisfying (25) is
w = A sin m:lzz 2 (26)

where A is a constant and m is any integer.
Substituting (26) in (14) and neglecting the effect of heterogeneity on
the inertia, we get

+ o+ { (27)
which on simplification gives

n3+[wwo+])+J11nh+ﬁlwc+kiVL—§ﬁan+
k, k, L

2
+[k§v2-%]vc=o,

(28)

where

ot o Setuy g and L = (ﬂ, + k2.
4mp, d
For the stable stratification (§ << 0), Eq. (28) does not have any positive
root implying thereby that the system is stable. For the unstable stratification
(B >0) and for k2 > k’v?L/gf, the constant term in Eq. (28) is negative.
This means that Eq. (28) possesses one positive root implying thereby that the
system is unstable. Let n, denote the positive root of Eq. (28). Then

2
n%+[vc(«o+ 1) +ki] n3+[—,’c’—vc+ Kot — %Jno-l-

;! 1

2
+[k§ v — -5%%: 0.

(29)
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To find the role of collisions concerning the growth rate ofunstable
modes, we examine the nature of dnjdvc. Eq. (29) gives

anQ _ U (Kkn+ 1) 4—:—n0+ Lo

(30)
dvc

3o + 2ive(al0|l ) + — + -+ «.nm i
L J k x L
Therefore if, in addition to k2 > k2/2jgB, which is a sufficient condition
for instability, we have either of the conditions
Rk2 .
« v2- 9 ti + 2re0 vAso+ 1) ~J+ 3nl (31)
- | -
dn0/dvcis always negative. Thus with the increase in collisional frequency, the
growth rate decreases.

We conclude therefore that for k2> k"vZA;gB. the system is unstable
and the growth rate, under either of the conditions (31), decreases with the
increase of collisions. If k2< kxVZA/gR, the system is stable.

To find the effect of permeability of the medium on growth rates, we
examine the nature of dnjdkv Eq. (29) gives

+ Vc)nn
— (32)
3no + 2n0lve(a0 + 1) H— —
| Ki
Eq. (32) implies that for stable stratification (8 < 0), dnjdkxis positive;
meaning thereby that with the increase in permeability of the medium, the
growth rate increases for the stable stratification.
For unstable stratification (8 > 0) and for

dno

gRk2

L 3«0 + 2re0jvc(a0+ 1) + -j—f + j Ve + vl , (33)

dn0Ojdkxis negative or positive for the greater than or less than sign, respecti-
vely; meaning thereby that with the increase in permeability of the medium,
the growth rates are both decreasing and increasing for the unstable strati-
fication.
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Oriented tellurium films have been deposited on mica at temperatures ranging between
333K and 423 K. The electrical properties are measured. The results are discussed in relation
to those resulting from electron microscopical and optical investigations. The existence of
two acceptor states in the band gap is demonstrated. these states act as sources of holes below
400 K. On annealing the samples in situ, the electrical properties and the Hall coefficient
imply considerable influence on the semi-conducting behaviour by electrons from the conduc-
tion band. I. R. spectral measurements have revealed the presence of three different peaks
corresponding to three activation energy values of 0.05 eV, 0.12 eV and 0.31 eV.

Introduction

The structure of thin semi-conducting films as well as the experimental
conditions used in their preparation are known to affect the electrical proper-
ties of these films to a great extent. The mobility of carriers together with their
concentrations represent two parameters which are most sensitive to the
vacuum, the rate of deposition, the temperature of substrate and the annealing
program. With regard to tellurium, the atoms have been found to possess high
mobilities on heated substrates; thus allowing the structure to be very much
governed by the surface free energies of the crystallites [1]. Thin films on
cooled substrates have polycrystalline structures with dropletlike islands. On
raising the temperature of the crystalline substrate, these droplet-like islands
assume the dendritic shape with a considerable ability for nucleation of twins.
Little information only is available in the existing literature on the correlation
between the electrical properties and the microstructure of such oriented films.
By careful selection of the experimental conditions, we were able to deposit
oriented tellurium films on freshly-cleaved surfaces of mica. Electric resistivity
and galvanomagnetic properties of these films were measured and the results
were supported by further optical studies in the I.R. range.

Experimental

Thin tellurium films were thermally evaporated from heated silica crucible
on freshly cleaved surface of mica under vacuum of 10 ~4 ubar. The mica employ-
ed was of Egyptian locality of muscovite type. The glide plane of muscovite
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coincides with its cleavage plane and this makes it easy to be cleaved and prod-
uce thin sheets of extended crystalline layers. The cleaved surface is approxi-
mately atomically flat [2]. Before evaporating the tellurium films, the mica
was heated up to 675 K forone hour to minimize the presence of any unavoid-
able surface impurities. Special mechanical diaphragms were used to evaporate
thick layers of gold electrodes at the terminals of the mica sheets. Before the
deposition of tellurium films, the mica was maintained at the required tempe-
rature. The experimental conditions (substrate type, substrate temperature
and rate of deposition) which yield tellurium films of monocrystalline structure
were selected from our previous work [3]. Accordingly, 20 nm/sec was a suitable
rate, ona mica substrate maintained at atemperature of423 K. Simultaneously
prepared tellurium films on optical quality were used for measuring the film
thickness by Toransky method [4]. The electron microscope samples were
detached from the tellurium films deposited on mica and treated under the
same conditions. The mica with the film on it was gently immersed in distilled
water on which few drops of petroleum ether were added. The floating pieces
were fixed on the electron microscope grids. For |I. R. studies some discs of
mica simultaneously prepared and similarly treated were used.

Results and discussion

When the temperature of the substrate is close to that of the room, and
the rate of deposition is above 10~7cm/sec, the film is composed of polycrystal-
line islands of droplet-like shape as shown on Plate (la). The corresponding
electron diffraction pattern in Plate (Ib) is anormal ring pattern indicating no

Plate (la). 9000 times magnified photograph of Te film 0.05 /on thick deposited on cold
mica substrate

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



SEMI-CONDUCTING PROPERTIES 255

preferred orientation even on tilting the film 30°. One should mention that
when the rate of deposition ranged between 2 X 10~8cm/sec and 10~7cm/sec,
the dendritic shape started to appear with a poor orientation, detected by the
weak arcs which were superimposed on the ring pattern (Plate 2).

Plate (Ib). Transmission electron diffraction from the same area recorded in Plate la

Plate (2). Transmission electron diffraction for Te film 0.05 /um thick deposited on mica
with a smaller rate of deposition than that used for film recorded in Plate Ib

The details of the morphology and structure studies using different sub-
strates are published elsewhere [3]. On raising the substrate temperature
ranging between 333 K and 423 K, the transmission photographs show the
dendritic growth confirmed by two superimposed electron diffractions as
shown on Plates (3a) and (3b), (4a) and (4b). This type of electron diffraction
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implies the presence of two groups of crystals inclined at an angle of about
68°, with a common zonal axis [1012].

Similar results have been reported by Weidmann and Anderson [1].
This pattern represents twinning along the (1012) plane. Annealing the film
leads to a sharper electron diffraction and the disappearance of many peculia-
rities from the diffraction. These observations are due to increasing the

average dendritic size, washing out most of the thermally unstable defects
and a better ordering in the film.

Plate (3a). 9000 times magnified photograph of Te film 0.06 fira thick, deposited on mica
at 333 K, with a rate of deposition of about 50 nm/sec

Plate (3b). Electron diffraction recorded from the area shown in Plate 3a
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The electrical resistivity was measured in situ before and after anneal-
ing. The low temperature resistivity and galvanomagnetic behaviour were
measured under atmospheric pressure. The irreversible changes, on admitting
air to the specimen chamber, matched the resistivity data in situ in the dif-
ferent ranges of temperature.

For non-annealed films deposited on mica at room temperature and at
a deposition rate exceeding 50 nm/sec, the resistivity — temperature relation-

Plate (4a). 9000 times magnified photograph of Te film, 0.065 fim thick, deposited on mica
substrate at 423 K, and left at this temperature for about 30 minutes before switching off the
substrate temperature

[Plate (4b). Electron diffraction pattern recorded from the area shown in Plate 4a
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ship was found not to differ much from that for films deposited on glass under
the same experimental conditions [3]. Below 10 °C, the relation yields an
activation energy of 0.05 eV with a minor dependence on temperature. As the
temperature exceeds 10 °C, a linear temperature-dependent relation is obtained
with an activation energy of 0.14 eV for films of thicknesses greater than 0.2 u.
For thinner films, the second activation energy value increased to about
0.19 eY. The reason for this is the disturbance by tunneling activation energy
in thinner films [5, 6]. Annealing the film in situ at 423 K for three hours
reduced the resistivity by about 20%. This reduction in resistivity is attributed
to increasing the mobility of the charge carriers due to the increase in the
average dendritic size and the reduction in concentration of lattice defects

[7, 8].

Fig. 1. Log resistance vs 1/X for Te films deposited on glass at room temperature and for that
deposited on mica with the experimental conditions mentioned for Plate 4a

As a matter of fact, if the mica substrate is kept at its temperature after
deposition for a time exceeding thirty minutes, the reduction in resistivity is
about to stop. Admitting air thereafter did not alter the resistivity. On the
other hand admitting of air just after stopping film deposition increases the
resistivity by about 5% for films deposited on heated substrates and 20%
for films deposited on cold ones.

Fig. 1lisjust a representative run for the variation of log R vs the recip-
rocal of the absolute temperature. For this run a tellurium film was deposited
on mica maintained at 423 K with a rate of deposition of 20 nm/sec. The mica
substrate was kept at the temperature mentioned for about thirty minutes
after the deposition ceased. One has to state that it took about fifty minutes
for the film to cool down to room temperature before the first run was taken.
The resistivity —temperature relationship shown in Fig. 1 can be easily divided
into three distinct regions. Above 80 K to about 240 K, the resistivity is nearly
independent of temperature and the activation energy amounts to 0.05 eY.
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The second region extends over a temperature range of 240 K to 400 K, the
dependence of resistivity on temperature is quite evident and appears to be
due to a deep-lying acceptor state which starts to show itself above 200 K
with an activation energy of 0.12 eV. In the third region, the dependence of
resistivity on temperature yields an activation energy of about 0.31 eV. As
a matter of fact, samples annealed for three hours in situ showed similar trends
but slight shifts in those three regions to lower temperatures occurred. This
observation implies that the concentration of the thermally unstable impuri-

Inp

Fig. 2. Ln Ry and In P vs the reciprocal of the absolute temperature for Te film deposited
on mica with the experimental conditions of Fig. 1

ties was too high. On admitting air to the specimen chamber, the same type
of relation still existed but with a shift towards high temperatures by about
100 K. Unfortunately, it was not possible to raise the temperature above
550 K because the resistivity increased by few orders of magnitude due to
film rolling, cracking and re-evaporation. It seems that above 450 K, the
resistivity is very much influenced by electrons from the conduction band.

The Hall coefficient was measured at about 0.5 T, the results are presented
in Figs. (1—2). The dependence of Ry on temperature does not differ much
from that of resistivity and is similar to that reported by ALBERS and Link [9]
with some shift in the transition temperature between three regions. These
authors were able to discuss their results in terms of a model already valid
for single crystals. Accordingly, the hole concentration P below 400 K was
expressed as:

P(T) = p, + pT),

where p,, the temperature-independent concentration of shallow traps and
diffused oxygen, is associated with the least activation energy (0.05 eV),
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while the second parameter represents the concentration of deep traps due to
lattice defects and is temperature-dependent. pT) can be written as:

E2being the activation energy of deep traps and Ep the Fermi level. The value
of E2 estimated by Albers and Link amounted to 0.115 eV which is in good
agreement with our value 0f0.12 eV deduced from the second region. The third
region was explained in terms of a second conduction band as a source of
holes in which the electrons had very high effective masses and negligible
mobility.

80- o=on glass
b=non annealed £
c=annealed on mica

60-

20-

A

Fig. 3. Variation of transmittance with wavelength in I. R. region for Te film deposited on
mica with experimental conditions as in Fig. 1

Since the third region gives an activation energy of about 0.31eV
which is very close to the hand gap of tellurium, one may assume that in
this region the film has an intrinsic behaviour and the total impurities are
depleted. The uncertainty in measuring the Hall coefficient in this range of
temperature makes it, however, difficult to draw definite conclusions. More-
over, the variations in the structure, confirmed by electron microscopy in this
range of temperature which showed the casual disappearance of the dendritic
shape with a filament growth in the film [3] adds to the previous reason.

The transition from extrinsic to intrinsic behaviour is confirmed by
optical measurements on some samples in the infra-red range (2 /urn—25 /im).
The existence of three band-to-band transitions is clear in Fig. 3. These
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bands have depths of 0.04 eV, 0.14 eV and 0.33 Y measured from the valence
band of tellurium. Future measurements of the Hall coefficient under I. R.
stimulation as well as thermal glow curves will undoubtedly furnish additional
important information with regard to the type of carriers and energy levels
created in the band gap.
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A differential geometric analysis has been made with respect to free surfaces in both
undeformed and deformed crystals. It has been shown that such well-defined tensor quantities
as distortion, torsion, anholonomic object, Burgers vector and Burgers circuit may be defined
with respect to such a surface.

Introduction

It has already been shown that internal surfaces such as grain boundaries
[1] and two-phase interfaces [2] can be described in terms of well-defined
dislocation arrays. A problem closely related to this concerns the nature of
a free surface. In particular, one wishes to know the exact configuration of
the Burgers circuit and the corresponding tensor quantities associated with
these free surfaces. The purpose of the present study is thus to employ the
techniques of differential geometry in the analysis of this particular problem

Burgers circuit associated with a simple surface

Consider the perfect crystal shown in Fig. la. A reference circuit may
now be constructed within such a crystal as shown by the arrows along the
path 1-2-3-4-5-6-1. If now the crystal in Fig. la is cut along the dotted line
which passes through points 3 and 6, and the right half of the crystal removed,
we obtain the configuration shown in Fig. 1b. It is seen that a closure failure
shown by the dotted arrows between points 3 and 6 now exists. The purpose
of what follows is to discuss quantitatively the meaning of these Burgers circuits.

In general, the closure failure b* associated with a given Burgers circuit
may be written as [3]

b = § A% dxK, (1)

* The present research effort was supported by the United States Energy Research
and Development Administration under Contract No. AT-(40-1)-3935 and by an award from
The Alexander von Humboldt Stiftung.
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where A is defined as the distortion tensor which relates the local coordinates
in the initial or undeformed state (K) to those in the torn or natural state
(fc) [4]. In the present study, lower case Latin letters will be used to denote

L 3 2
5 6 ' 1
o
0
a0 (K) state
b) K state

Fig. 1. Burgers circuit associated with a) the interior of a'perfect crystal b) the surface of a
perfect crystal

the natural state, while upper case Latin letters will he used to denote the
initial state. Stoke’s theorem may also be used to convert the line integral
of Eq. (1) to a surface integral as follows:

bk:J diL AK]dFLK =J -1 [dLAK - dKAi) dFLK. 2

Still another way to write Eq. (2) is in terms of a surface integral referred to
the final state which gives

b*=J y A\A* [dLAK - dKAi) dFIm . ©)
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or more compactly as
»

t;mkdF ,n (4)

where O/m/; is termed the object of anholonomity and defined as

Quo* = Af-AKdteAla- B

We see then that the distortion tensor appears in all of the expressions for
bk and thus plays a prime role in the theory of defects. It will therefore now
be examined in greater detail.

In the case of the cut or torn crystal show'n in Fig. Ib, which contains
a free surface, the distortion tensor may be written as

AK=06KH (-*1), (6)
K

where eéK is the Kronecker delta, while 11(—x1) is the Heaviside function de-

fined by
0 if x1> 0,
Hi-*1) = . (?)
K 1 if < 0,

and where x1is the distance measured along the unit vector el of the local
K K
coordinate system located at the position of the potential interface of the

crystal shown in Fig. Ja. Now according to Eqgs. (1) and (6)
bl — A\AX1-f- AVAx2+ A\Ax1-f- A\ Ax2, (8a)

ft 5—1 1-2 u2-4 4—5

where Ax1 etc. are the distances 5-1 etc. shown in Fig. la. Since A\ = 0
5—1

and since Ax1— —Ax1it follows that
5—1 2-4
hj= 0. (8b)
On the other hand
b2= A\ Axl+ AiAx2+ A\Axl+ A\ Ax2. (9a)
ft 5—1 1-2 2—4 4—5

Since AZ2s equal to zero along the line 1—2 in Fig. la, thesecond term in
the aboveequation vanishes. Thus, only the last term remains which is

b2 = —4a0 . (9b)
tt
This is simply the distance 3—6 shown by the dotted arrows in Fig. Ib, since

a0is defined as the unit cell dimensions of the simple cubic lattice. It is to be
emphasized here that b2 is not a measure of dislocation content, but rather

a measure of the amount of newly created surface. The ramifications of this
concept will be met with later.
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In order to see what the closure failure of Fig. Ib means in terms of Eq.

(2) it is a simple matter to show that bl= 0 since from the equation
K

F=f[—dtA\dFR2- —dt A\dF2] = 0 (10)
K JSL?2 K 2 k J

in view of the fact that A\ = 0. However

2= —dlAldF ~-— dlA\dFA" (11a)
* \% 2 K 2 K
and since
dF P= _qra (Mb)
K K
and using Eq. (6)
62 = gﬂ H(—x)dF P (11c)
K = K K

However, since (5)
d]H:(-XfD: -0 (x1), (|id)

where (a*J) is the Dirac delta function defined as zero for x1 0, and which
K K
possesses the following property

(lie)
Eq. (11c) reduces to

(1)

which is identical to that given by Eq. (9b). We have thus established the
consistency of our analysis.

Still more insight into the nature of the Burgers circuit of Fig. Ib can
be obtained by analyzing it with respect to Eq. (4). In particular, from Eq. (5)
we may write

QH*"— A\A\dxA \- — A\A\BtA\. (12)
K 2 2

The inverse distortions Af can be obtained from the following relationship

AKATf =6) (13)
and since from the relation

dxK = A~ dxk (14)
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it is apparent that Aff need be defined only within the (k) state, we can write

A$ = ft . (15)

This, together with Eq. (6) enables us to write Eq. (12) as

Q122= - — 0(xD (16a)
K 2 K

and similarly
£Bi2= +7d(*) (16b)
K 2 k

which when substituted into Eq. (4) gives

b2= — 4a0 (17)

K

which is again identical to the values obtained by the previous two methods
which led to Eqs. (9b) and (l1If). It is a simple matter to show that only the

components of the anholonomic object given by B 22 and i’2 are non-zero
K K
for the surface shown in Fig. (Ib). Even in this case, however, it vanishes

everywhere except at the surface. Thus, the anholonomic object measures
the amount of free surface, associated with a given Burgers circuit. Since there
are no dislocations associated with the state shown in Fig. Ib, the torsion
tensor = 0 (4).

Burgers circuits associated with more complex surfaces
In order to gain some perspective with respect to the more complex

distortions to be considered shortly, let us first consider the elastically strained
state of Fig. 2a which can be obtained from the following distortion:

/1 0 0\
Aie = —tan. 0/2 1 0 (18)
\Y 0 0 1/
while from the relation
AKA? = b (19)

we obtain the inverse distortion

/ 1 » <M
A«=\ tan 0/2 1 0 . (20)
Voo 0 I
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The elastic distortions will be denoted by Greek letters. It also follows that
these distortions connect both the base vectors, as well as the components
according to

e*= A?eK (21a)
and
dx* = AKdxK. (21b)

We can now write, similar to Eq. (1)
b"= § AKdxK. (22)

Next, there are two ways to express the Burgers circuits associated with the
(x) state. In the first case, we may write

AK = dk. (23)

This has the effect of keeping the components associated with the (K) state
of Fig. la identical in value to those of the (x) state shown in Fig. 2a. This
process is termed dragging [6] and obviously leads to b*= 0. On the other

Fig. 2. Elastically distorted state
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hand, b* may be computed by employing Eq. (18), together with Eq. (22).
This leads to the Burgers circuit shown in Fig. 2b, where again 6* = 0. Another
way of viewing this elastic distortion is in terms of either and Sj*1l In
particular, since the distortiontensoris constant, theirspatial derivatives vanish,
and accordingly so do the anholonomic object and torsion.

Fig. 3. Dislocated states associated with a free surface

Let us now envisage a process in which a triangular-shaped piece of
material is added to the rightmost face of Fig. Ib so as to generate the states
shown in Fig. 3. In particular, the (k1) state Fig. 3a is step-shaped, while the
(k2) state of Fig. 3b is smooth. These same configurations could also have
been generated by a plastic deformation ofthe (K) state in Fig. la. Considering
first the (k2 state, it is seen, that the Burgers circuit 5-6-7-3'-3-4-5 contains
the closure failure 3-3'. This closure failure is due to dislocations, as indicated
by the standard edge dislocation symbols. We may treat this closure failure
more quantitatively by writing a distortion tensor

Ak*= <5Md(-*1) (24)
K1
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similar to Eq. (6), where
x1 = x1— x2tan 0/2 . (25)

ft* K K

In order to obtain the correct closure failure associated with the (A2) state,

we must now write
bk = - $ A? dxk, (26)
d
which, except for the negative sign, is of the same form as Eq. (1) The addi-
tional subscript d in Eq. (26) will be used to denote dislocations. Also import-
ant to note, is that the reference circuit in the (k) state must now involve
four solid arrows along the line 6-3, and in the opposite sense to those shown
in Fig. Ib, since we are only interested in the defect content with respect to
this particular state. We can therefore write Eq. (26) as

bl = -A\Ax\- A\Ax2- A\Axl- A\Ax2, (27a)
k',d 5-6 6—3 3—4 4—5

which in view of Eq. (24) and (25) reduces to

bl= 4 a0Otan 0/2 (27b)
ke,d

and is just the closure failure 3-3' in Fig. 3b. Similar to Eq. (2) we can also
write bk‘in terms of a surface integral as

d
dF k (28)
or in terms of (fc2) state coordinates as
bk= - T SjI* rfF'2™2, (29a)
d Js
where SPmk‘is the torsion tensor defined as
SiJ’= APAZ.duAn;] (29b)

and is thus of the same form as that given by the anholonomic object of
Eq. (5). However, both are basically different in that the torsion tensor
measures the dislocation content of a crystal, whereas the anholonomic object
is related to the creation of free surfaces. Thus SPmk‘ = 0, since no additional
free surface is created in generating the (k2) state from the (fc) state. Eq. (28)
can now be used to write

V = - T —d2A\dF X% d2A\ dF 12 (30)
X'A n o2 2
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where with the help of Eq. (24) and (25) we see that

gar %
e akxz = o(x) tan 02, (31)
K i

which when substituted into Eq. (30) gives
bl = 4a,tan 6/2 , (32)

1,d

which is identical to that given by Eq. (27b) obtained by the line integral
method. The torsion tensor can also be found from Eq. (30) to be

St Rt &, d(x') tan 0/2, (33)
Kt 12 2o LR

which when used in conjunction with Eq. (29a) also leads to the same result
as that given by Eq. (32). It should also be pointed out that in obtaining
Eq. (32) use was made of the fact that

o) — o(x) (34)

which follows readily from Eq. (25) and a relation of the type given by Eq. (31).

We have proceeded to a point where we are now in a position to consider
the still more complex (k') state illustrated in Fig. 3a. As in the case of the
(k?) state we can again write

b = — f AR dx* (35)
g |
or alternately

B — | Stim dFO (36)

where S, X = Si." and b¥ = b¥. In addition to the dislocation content,
d d

the (k') state also has associated with it a contribution from the newly created

surface steps indicated by the dotted arrows 7’-7 and 6’-6 in Fig. 3a. This

particular closure failure can be represented by

e '" AR dxk (37)
or alternately as
b — j Spimak dFPm* | (38)
S
where
B = Al Ao Al (39)
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It is a simple matter to show that

= (40)
so that = —bk'. More generally, we could also have written the total el6-
li
sure failure associated with Burgers circuit in Fig. 3a as
bkl= - js[Slimkl - Q,mn dFlim = 0. (41)

Thus, for the (k1) state, the torsion tensor just balances the anholonomic
object.

There is still deeper mathematical significance associated with the (k)
and (fcl) states, both of which possess an anholonomic object. In particular,
if the rotations d*me” or d[miep] do not vanish at every point, then the coordi-
nate system is anholonomic (6). In fact, the following equations’

d[mei] = 0 (42a)
and
d [mieii]

1
o

(42b

are the integrability conditions of the systems

dmX = em (43a)
and
dm, X = emi. (43b)

Since the base vectors can be related to one another through equations of
the type

et = A?eK (44a)
and
ép. = Ap ek, (44b)
we can write
et= AE eK= Af gk = Af* (45a)
and
ép= Ap ék ==Ap 0k= A, (45b)
where the symbol = indicates that we have chosen the base vectors with
respect to a given coordinate system, while eK and ék are unity when L = K
and | — k. Eq. (45) now allow us to write the integrability conditions of Eq.
(42) as
d[mei] = d[mA[]~ O (46a)
and
d Jt. 9[miAp]*=10 . (46b)
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On the other hand, for the (fc2) state of Fig. 3b

d[me]” a[TTA\n= 0. (47)

The above equations become somewhat more clear when we write out the
components as

Y #1 A{ (48a)

and

> ALA 1 - 2 A2N1 r(48b)

It follows that whereas the relations vanish on the planar surface 6-7-3' in
Fig. 3b, Eq. (48a) becomes finite on the stepped surface of Fig. (3a). In parti-
cular, whereas the first term in this equation vanishes, the second becomes
a Dirac delta function. Thus, keeping the face planar in Fig. (3b) has precluded
the introduction of an anholonomic object.

Some further tensor quantities associated with surfaces
The torsion tensor can now be used to obtain the dislocation density as

can be seen by writing Eq. (29) in differential form as follows [7]:
dbk*= dFItm' = —Stimr £"222dFn.  a"2*dFn,, (49)

where a*** is defined as the dislocation density given by
sodtr= -e " 22"8 (50)

and where en'I'm' is the permutation tensor defined by
emnd'm2 = eny*ryyg , (51)

while endm’ ig the permutation symbol and g is the determinant of the metric
tensor gyp. The indices n2and k2in a”*refer to the line direction and Burgers
vector component respectively of the dislocations. Thus, for the configuration
in Fig. 3b, we may write
a3l= —2SU1= 6(xl)tan 0/2, (52a)
K

where Eq. (33) has been utilized. Now upon integration, the above equation
becomes

a3l= I ™gl dxltan 0/2 = tan 0/2 . 52b
asl= (/%,) (52b)
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In terms of Fig. 3b, this result simply refers to the length 3-3' divided by 6-3.
In those cases where only an anholonomic objectis present we can write, similar

to Eq. (50) [8] _ _
ank = Enim Qimk"' (53)

For the configuration shown in Fig. Ib, the above equation becomes

a®= 2R122= -<5(*X, (54a)
K

K K

where Eq. (16) have been utilized. Upon integration, the above relation simply

reduces to
a3dl= —1, (54b)

which in terms of Fig. Ib is the distance 3-6 divided by 6-3. Finally, for the

(kD state
a"*1= =0 (55)

as expected, since the torsion tensor and anholonomic object just cancel one
another. However, Eq. (55) could be written in terms of either or Rp’A*1
to find the respective dislocation and surface densities. It is also important
to note here that it is the equality of the torsion tensor and the anholonomic
object in anholonomic coordinates that has enabled Zorawski [8] to develop
an eloquent theory of defects based on Qpmik' rather than Sym

Anotherimportant tensor quantity isthe Riemann—Christoffel curvature
tensor which may be written as follows [6] :

HmO* = <h — dmHo -j- T)p Pfn0 — IF'Tp Hoi (56)

where the Ikr are given by [8]

Hm = ~NW T k+ g,09kn Qmn°® - gmOgkn °n,° (57)
and where are Christoffel symbols of the second kind defined by
{Im} = ~2~° m MO0 ~ dogim e (58)

The metric tensor can be written as

gim = ei M= Af = O?H\~Xk), (59)
K

while
gri= 0 ? H\-X 1) (60)

K
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so that from Eq. (58), the non-vanishing components of p become
m

{111L v {122}k g [212Ik iy o

Utilizing Eq. (16), Eq. (57) gives the following non-zero components of I';‘m

Il = I'% = 3, (62a)
k k k
I}, = —o(x") (62b)
k k
and
1“5.2:{2} — 20:i%= 0. (62¢)
k 21)x k

Now in a two-dimensional space, the curvature tensor R;, becomes R;;",
where the remaining indices are 1 or 2. It therefore follows from Eq. (56)
and (62) that R, * = 0. Similar results can be obtained for the remaining
states discussed earlier. This is an important finding and means that the
integrability conditions associated with I}, are satisfied [9]. Physically, this
means that the parallel displacement of any vector from one point to another
is independent of path. This is certainly true for all of the Burgers circuits
considered thus far. The results given by Eq. (62) are also interesting in con-
nection with the following relation [3, 6]:

dCk = —TI'%, C™da! (63)

which says that the parallel transport of a vector C™ over a given distance

dx' gives rise to a change in this vector by dC*. For example, when I, is used
k

in conjunction with Eq. (63) we find that dC? becomes equal to —C? as a test
vector C?is displaced parallel along the x! direction and across the free surface.
In other words, the test vector C? is contracted to zero at the free surface, as
it should be. It is possible under some conditions to have I'}, = 0.States in
which this occurs are said to possess distant or teleparallelism [6]. This will
occur either when both .Q,‘,;f and Sl',',f" vanish or in the case where both are

k
present Q;.¥ = S; -k, In both cases we must also have {l }: 0.
m

Im

Summary and conclusions

It has been shown that well-defined Burgers circuits can be associated
with free(asurfaces in both deformed and undeformed crystals and that a
closure failure is associated with such surfaces. In addition, such free surfaces
have associated with them well-defined tensor quantities such as distortion,
torsion, anholonomic object, etc.
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The present status of the theory of matter accretion on stars is reviewed. The paper
deals mainly with thermodynamics and hydrodynamics of accreting gas in the absence of a
magnetic field. Particular emphasis is put on the main problems which are still unresolved.

Introduction

The physical problems in the theory of matter accretion on the stellar
objects are reviewed. As it is well known, such theory has been recently used
to explain X-ray emission by galactic binary systems.

In this paper we limit ourselves to the general physical features of accre-
tion and therefore we do not take into account the particular problems con-
nected with neutron stars and black-holes. We hope to give an account of
this aspect of the theory in a forthcoming paper.

Section 1 deals with the early theories proposed by EppineToN, HOYLE
and LYTTLETON in connection with star energy source and terrestrial climatic
variations.

In Sections 2 and 3 we deal with the thermodynamics of falling matter,
while the role of radiation pressure will be taken into account in Section 4.
In Sections 5 and 6 we shall treat in detail the accretion on to objects moving
through the ambient gas at a supersonic speed. Section 7 is concerned with
Bonp1’s theory of subsonic accretion and Section 8 gives finally a review on
the general hydrodynamical problem.

§ 1. Early accretion theories

The idea that matter withdrawn from interstellar gas by the gravitational
force of a star can supply energy to the star itself by deposition of its kinetic
energy onto the surface, can be traced back to EppincTon [7]. The hope was
to explain the origin of stellar energy, as thermonuclear reactions were not
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known at that time. Neglecting the interaction of atoms among themselves
and taking into account the constancy of energy and angular momentum with
respect to the star centre, one finds that particles having a distance from the
centre less than

2GMR 1V2

must necessarily fall on the surface.

In the above formula G is the Newtonian gravitational constant, M and
R are the mass and radius of the star, respectively, and v is the velocity of
the star relative to the gas cloud. In fact if we call v' the velocity of a particle
grazing the stellar surface, we have clearly:

ROv = Rv',

and therefore
(A,)2__1 , 2GM

(R 1 Rv2
As in cases of interest, 2GMjRv- 1, one has at once formula (1). The rate
of accreted mass is:
dM 2nGMR
,,,,,,,,,,,,, = JzRhgv - q (2
dt v

where gis the mass density of the cloud.

One easily sees that for a normal (i.e. not collapsed) star and a number
density of the gas ~1 atom/cm3, this process cannot supply the required
energy by many orders of magnitude.

About after ten years, Hoyte and Lyttieton [9] proposed a theory of
accretion in which the effects of collisions among particles in the cloud were
taken into account.

The purpose of their paper was to explain the earth climatic changes
during Geological Eras due to a variation in the solar luminosity when the
sun enters a cosmic cloud in its motion around the galactic centre.

W ith reference to Fig. 1, the gas flows from left to right with collisions
taking place in A, to the right of the sun S' as its gravitational attraction
causes two opposite fluxes of particles to collide. The effect of such collisions
is to destroy the particle angular momentum about the sun. If, after collision,
the radial component of the velocity is less than the escape velocity at A,
the particles fall on to the sun surface; therefore the accretion radius RA
can be calculated by requiring that in A, radial velocity is equal to parabolic
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velocity. This interpretation of facts, though quite rough, gives the right answer
anyway: a more rigorous treatment has been given by Bondi and Hoy1e [2]
(see further on §5). A gas element is subject to hyperbolic motion around the
sun, i.e.:

— = 1--ecosO0,

Fig. 1

where p and e are respectively the orbit parameter and eccentricity. The
direction parallel to the initial assymptote is given by r —% oo, that is:
ecosOt-f~1=0
and, as 0X— 02= g, also:
ecos 02+ 1= 0,
esin 02= (e2— 1)12

from which follows:

Taking time derivative of the trajectory equation, one gets the radial compo-
nent of the velocity:

f= — r20sin 0= sin 0,
P P
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since

r20= h= ]fGMf= id.
Therefore

[rB| = e |sin §l— = esin02— = |rn]|. 3)
P “p

This means that the radial velocity at A is equal to the cloud velocity at
infinity. The square of the parabolic velocity at A is given by

2GM 4GM
SA p
i
and therefore the particles fall on the sun if the following inequality is satisfied

In physically interesting cases, RA is always greater by several orders of
magnitude than RO, i.e. the accretion radius for non interacting particles
(see formula (1)). The rate of matter accretion is now

dMm 4jtG2M 2
= TRaQ/— ! g 4)

(Hoyle and Lyttleton [10], Hoyle and Lyttleton [11])

Since the velocity of escape at the surface of the sun is very large, i.e.
6.2 « 107 cm/sec, one can assume that all the particles reaching the surface
of the sun arrive with the escape velocity which, as one can easily see, corres-
ponds to a kinetic energy ~9 <« 10~9 ergs per hydrogen atom. Now the ioni-
zation energy of the hydrogen atom is about 4 « 10-11 ergs, hence it can
be concluded that the particle cannot get rid of any appreciable portion of
its energy by ionization processes before reaching the sun: therefore the kinetic
energy of the falling particles has the net effect to increase the sun’s radiation,
as the extra energy gained in this way must be reemitted.

The energy brought to the sun per second is easily obtained by (4) and
turns out to be

4 « 10€8

ergjsec .
V3
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We see that the increase in sun’s radiation depends on the density of the
cloud and on the velocity of the sun relative to it, being directly proportional
to the first factor and inversely proportional to the cube of the latter factor.
Thus slight changes in these factors bring about considerable ranges of variation
in the solar radiation, and, for plausible values of p and v, it may be caused
to change from 0.1 to 10009, according to the density and velocity of the cloud.

According to the authors, if the increase in the solar luminosity is mode-
rate (<'109,), we shall have on the earth an increase in the precipitation of
snow (because of the enhanced evaporation) in those regions normally within
the snow line and therefore the onset of an Ice Epoch.

If on the other hand the solar luminosity is increased by a factor greater
than 2, a hot and humid climate will ensue even in polar regions: in this way
the peculiarities of the carboniferous Epoch can be explained.

One easily sees that, assuming a constant density ~10-% gr/cm?® of the
cosmic clouds, the above figures can be obtained for a relative velocity of
~20 km/sec and 2 km/sec, respectively.

§ 2. Critical temperature of the accreting gas

The physical problems involved in accretion onto normal stars have
been investigated for the first time by HovyLE and LyrTLETON [12]. Let us
consider a radial flux of matter with a temperature 7’ toward a star of Mass

M. Because of the continuity equation for a stationary flux (M = constant
through a spherical surface of radius r) one gets:
s M
4 nr2v

For free falling gas, v = V2GM|r and therefore

s
BT R %
Our assumption of a radial stationary flux requires that the gravitational
force (which acts inwards) on a volume elementdV,i.e. GMpdV|r?,is greater
than the pressure gradient (which acts outwards) due to the density gradient.
The latter is given by RoT’dV/r, where R is the perfect gas constant and T’
the gas temperature. As the gravitational force goes as r~/* and the pressure
gradient as r°*, the latter is equal to the former for r sufficiently great and
this for any temperature T’. The accretion can take place only if this value of
r (which will be called r; or thermal radius) is greater than the accretion

radius (formula (3)).
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From the above consideration, one sees that a critical temperature must
exist above which rr <[ RA. For the sun, with v = 20 km/sec, such a tempe-
rature turns out to be ~16 000 °K.

As is well known, the gastemperature of a cloud in which no high surface
temperature star is present, cannot be greater than 104°K, because of recom-
bination effects. Therefore the problem of critical temperature for stars of
1 Mg has no particular difficulty.

On the contrary one encounters some difficulties for massive stars, like
V  Puppis stars, with masses ~20 M q, surface temperatures T ~20 000 °K
and relative velocity with respect to the cloud of about 5 km/sec. For such
stars the critical temperature is of several thousands degrees: it is thereforevital
to see if the cosmic cloud can emit radiation by processes other than inverse
photoelectric effect. One easily sees that free-free transitions are ineffective. In
fact the cross-section for the emission of 1 e.v photon at a temperature
— 104 °K is ~10~25cm2 while the cross section for the capture of an electron
by a proton is «10~2 cm2:it turns out therefore that an electron is cap-
tured before it can emit by free-free transitions an appreciable fraction of its
energy.

A more effective process is however infrared emission by hydrogen
molecules, which will be considered in the next section.

§ 3. Cooling mechanism for the falling gas

Let us consider a hydrogen plasma (protons, electrons and H2,
molecules) lighted by a source at a temperature T. Every ionization contri-
butes kT to the thermal energy of the gas. Calling g the cloud density, X the
fraction by weight of ionized matter, mHthe proton mass, u the mean velocity
of electrons, and a the cross section for recombination of Hj" or H + with
the electron at the cloud temperature T', the number of electrons per c.c. is
XgjmH and the number of recombinations per c.c. per second is:

X2 fMJ.

At equilibrium the ionizations per second must be equal to the recombinations
per second and therefore the thermal energy given by electrons to molecules
per c.c. and per second is:

XYy Jar' KT,

where ¥ is the fraction by weight of molecules and ('~ 2 «10~18 cm2 is the
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cross section for equipartition of energy between electrons and molecules.
On equating these two formulae and remembering that

4-10-7
TI

O~

(STUCKELBERG —MORSE [16]), we get:

From this one sees that, unless?is very large, T’ is small compared with T.

Let us now investigate whether the energy acquired by a molecule in one
excitation act can be radiated away before the molecule undergoes a second
excitation. As the electric dipole moment of a hydrogen molecule in the
ground state vanishes, one has to do with forbidden transitions whose proba-
bility is less than the probability of allowed tranmsitions by a factor of 108,
Assuming a mean life of 10-° sec for an allowed transition, the mean life of
a forbidden one is therefore 102 sec.

The time elapsed between two successive excitations is given by 1/on,v
where ¢ ~10-8 ¢m? is the excitation. For a gas with an electron number
density n, = 10 cm -2 and v ~5 - 107 cm sec~1, one gets a time ~107 sec:
this means that the molecule can give away its excitation energy before a
second process can take place.

Another process which can give energy to the gas is the angular momen-
tum destruction induced by molecular collisions of the falling matter. The
number of collisions to which a molecule is subject over a distance equal to
the accretion radius is given by

2GM

v2

ony ,

.

where ¢ ~ 10-¢ cm? is the geometrical collision cross section and ny = 10®
hydrogen atoms per c.c. For a star mass M = 5 M@ and v = 5 km/sec, this
number is ~103 and therefore sufficient to ensure equipartition among mole-
cular states. The characteristic time of accretionis ~GM|/v3, which is >102sec:
therefore the energy gained in this way is radiated away. Let us now investi-
gate whether an appreciable number of molecular hydrogen can exist at a
distance comparable with accretion radius, particularly near massive stars
which emit a substantial amount of ionizing radiation. First of all the material
sufficiently near the star is completely ionized and in this domain its tempera-
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tlre is the star surface temperature. Assuming radial accretion, the number
of recombinations per cm. per sec at a distance x from the star is

TH

where v(T) is the velocity of electrons and <r(T) is the recombination cross
section. Remembering that q(x) = p(r) (r/gc)3rthe total number of recombina-
tion within a sphere of radius r is:

VT)<J(T) T anxi dx = "L VUT) €«T)g2(r)r3log ,
mfi mb R

where R is the radius of the star.

As ionizations and recombinations per second must be equal and as
about one half of the ionizing photons can he given by recombinations them -
selves and the energy required for a single ionization process is ~2.5 «10-11 erg,
the star must supply an amount of energy

24r(T)<r(T)-®-r3 log — 2.5 « 10- 11 erg|sec]
TH R

in order to produce a number of ionizations about equal to one half recombina-
tions. Assuming that the star radiates as ablack-body and calling ethe amount
of radiation with an energy greater than 25 ¢« 10-u erg, one must have:

e= 2nv{T)o(T)-"-r3log— m2.5 «10“11.
m B4 R

This equation allows one to calculate the radius r of the sphere within which
m atter is completely ionized (Strémgren's radius). In the case of V-Puppis
E ~ 10% erg/sec, R ~ 5 « 1011 cm, and therefore r = 5 « 1016 cm, which is
greater than RA~ 1016 cm (and this always in the envisaged case of ~103
atoms cm-3). Outside the Strémgren’s sphere, only a small fraction of the
material can be ionized. In fact the number of ionizing quanta at a distance
X r goes down with an exponential law of the kind er—¢T, where T is the
ionization mean free path.

So, in order that an accretion process can take place onto stars like
V-Puppis, the gas density must be greater than 103 atoms cm-3.
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§ 4. Effects of radiation pressure

In order to evaluate the effect of radiation pressure it is first of all neces-
sary to calculate the mean life of atomic levels for the absorption of a quantum
ofradiation. This will be achieved through the estimate ofthe number of atoms,
within a distance r from the star, which are excited by a quantum of energy
hu>0, where co0is the frequency of the line. The probability that a quantum of
energy between hw and ft (co -f- dco) is absorbed before it reaches a distance r,
is approximately given by

n Nrc2

(Heitter [8] p. 186, eq. (16)), where N is the number density of hydrogen atoms
and therefore Nr is the number of atoms contained in a cylinder of unitary
cross section and height r, wab is the transition probability for spontaneous
emission between the states a and b,y = 2/3 r0co™c is the natural width of the
line and r0= 2.8—10~13 cm the classical radius of the electron (Heitler

[8], p. 35, formula (6)).
Asy~ wab (Heitler [8], p. 184, formula (12)), one has:

Y ? wab~ 6 1018

for co0~ 2 e« 10le rad/sec corresponding to the energy required for a transition
from the ground state to the first excited level in a hydrogen atom (~10 eV).
The quantum can be considered completely absorbed for a value of co given by

Nrc2

6 . 1018 =
% — c00)3

- coO\~VW ~Nr-

The radiation emitted in this frequency interval is completely absorbed before
it can reach a distance r.

If u(co) is the black body radiation energy density, for a temperature
20 000 °K, wu(co0)~ 5 ¢ 10-14 erg/cm3 Hz. Thus the required emission of
absorbed radiation is approximately given by

4R 2¢(i(@>0) 2 [0 — co0] ~ 102¥ 2(Nr)12,

where R is the radius of the sphere.
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As one erg corresponds to about 5 « 1010 quanta, the number of atoms
excited per second is 5 « 1012 R2(Nr)”*2 As the total number of atoms within
a sphere of radius r is 4/3 reiVr3 the fraction ofatoms excited per second within
such a sphere is of the order of 102R 2N~12r_5/2, and therefore the mean life
of the first excited level of hydrogen atom at a distance r — 5 ¢ 101®cm and
with a density N — 104 cm-3 and a stellar radius R = 5 « 1011 cm, turns
out to be:

10-i2R-2iVY2r52~ 109sec .

The exciting quantum has approximatively 5 ¢10~22 momentum units and
therefore every atom gets in the mean about 5 « 10~3L momentum units per
second.

The gravitational force exerted by a star of mass M ~ 20 Mq on a hydro-
gen atom at a distance ~5 < 10le cm is ~10-3° dyne, so that the absorption
of this line contributes 1/6 the total pressure necessary to sustain the atom
against gravity.

It follows that none of the transitions Is —*np can sustain hydrogen
atoms because of the probability decrease with increasing n (Condon and
Shortley, [3]).

If matter density is sufficiently high, line excitations cannot sustain
atoms against gravity atthe capture radius and m atter moves therefore towards
the star surface, as required by accretion theory.

On the other hand, the effect of radiation pressure on ionized matter is
quite negligible. In fact, in this case, it is entirely due to the interaction of
photons with free electrons (Thomson scattering) with a cross section aT =
= 6.65+10-5cm2.

The pair electron-proton is subjected to two forces:

1) the radiation pressure force acting on the electron and pointing
outwards, which is given by

L
anr2e 7

where L is the star luminosity, r the distance of the pair from the star.
2) The gravitational force acting on the proton and pointing inwards, i.e.

GMmH
r2

At equilibrium one gets:

AnGMmHe 1.2 H%%--M—-erg/s:ec , (6)
oj Mp
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This value of the luminosity is called the Eddington limit: for L > Lz matter
is “blown away”’ by radiation pressure.

For a 20 Mg star, L = 2.4 - 10% erg-sec™ . As the effective luminosity
is ~10%7 erg/sec, radiation pressure is entirely negligible.

§ 5. Supersonic aceretion in the case of interacting particles

We have seen above that accretion can be treated in two extreme approxi-
mations: one is to consider non interacting gas particles, in which case the
accretion radius is given by (1), the other is to consider interacting particles:
the latter case leads to the accretion radius given by (3) and this applies when
the mean free path of a particle is much less than R,. A more rigorous treat-
ment than the one given in Section 1 has been given by Bonpr and HovLE [2]
for the case of non interacting as well as of interacting particles.

Let us consider first the case of non interacting particles. With
reference to Fig. 2, trajectories 1 and 2 represent the paths of particles
grazing the star surface which is represented by the circle. These trajec-
tories divide the space into three regions: a), b) and c). All particles moving
in region a) hit the stellar surface. In region b) there is but one trajectory
through a given point. In ¢) however there are two trajectories through a
given point, apart from the points of the accretion axis, where there is an
infinite number because of cylindrical symmetry. If we now consider the case
of interacting particles with a low gas temperature (cf. § 3), there is no change
in the properties of regions a) and b): in fact particles cannot collide as only
one trajectory goes through each point. This is not true for region c), where
particles collide even if their temperature is low: these collisions tend to pre-
vent two fluxes of particles from passing through each point not on the axis.
In fact it is clear that the two stream region cannot have dimensions much
greater than the mean free path of the particles and therefore this region
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shall have dimensions much less than RA (formula (3)). As a consequence the
mechanism of accretion is determined by the four regions a), b), cl) and c2)
shown in Fig. 3.

Region cl) is a two stream region with a thickness of the order of the
mean free path and regions a), b) and c2) are all single stream. For a very
high density of the cloud, region cl) becomes a surface of discontinuity. In
c2) the pressure is very high as the density is great. This pressure causes a force
on region cl) directed outwards which balance the momentum transverse
component of matter coming in from b).

Fig. 3

Using a hydrodynamical terminology region cl) may be called a shock
wave. The problem of accretion in its most general form is a hydrodynamical
one and will be treated from this point of view in Section 8.

The behaviour of a particle crossing the shock can be qualitatively
described in this way: the gas loses the component of the velocity perpendi-
cular to the shock wave front, while the parallel component, i.e. the one directed
radially, is left unchanged. With reference to Fig. 1, if the particle impact
parameter is greater than RA (cf. formula (3)), the radial velocity is greater
than the parabolic velocity and the gas goes to infinity, while if the impact
parameter is less than RA, the gas falls on to the star after crossing the shock
wave front.

This result, strictly rigorous in case of Fig. 1, where it was assumed that
collisions took place only on the axis, is still true also in the more general
case of a shock, provided the Mach cone is narrow enough, i.e. for relative
velocities V much greater than the sound velocity a; the opening B of such a
cone is given by

From these considerations one already sees the importance of sound speed in
accretion problems.

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



PHYSICAL ASPECTS OF MATTER ACCRETION 289

§ 6. Braking force

A very important dynamical effect is the braking force produced by the
cloud on the star. This force is due to the particles changing their momenta,
via the interaction with the gravitational field of the star. This process has
been investigated for the first time by Bondi and Hoyle [2] and by Dodd
and McCrea [6—6].

Let us consider first the case of non interacting particles. With references
to Fig. 1 we call ppthe angle between asymptotes of the hyperbolic trajectory
of a particle coming from B whose impact parameter is /. The particle comes
in from infinity and goes to infinity, in the direction of the asymptote DE,
thereby changing only the velocity direction (not modulus !), through an angle
ip. From standard formulae of celestial mechanics (Ogorodnikov, [14])
one has:

where M is the mass of the star and V the relative velocity between star

and particle.

The vectorial change in the velocity is given in modulus by 2V sin ip/2
and makes an angle n-\-ipl2 with the arrival direction. The component of AY
along axis SA is therefore \AY\ = 2V sin2 ip/2. On expressing sin2ip/2 by

tg ipl2 one gets:
— oV
\w = — n W -

+
1% oM

Consider now a ring of radius I, thickness dl centered on SA and area 2nl dl.
The total mass which crosses this area per unit time is gV 2nl dl, -where g
is the cloud density. These particles act on the star with a force:

dF = gAvVv2nldl

from which we get the total force:

F=4nV2e b 2per In1+ 1
fo-1, T-Vi V2 G2M 2
G2M 2

where Ixis the extension of the cloud. This force is not negligible if

I v*
cam2 1
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i.e. when the linear dimensions ofthe cloud are much greater than the accretion
radius ~G M /F2 This means that the braking effect is essentially due to
the particles far away and not to those falling on the star.

One important consequence of this fact is that the same expression for
the force is valid also in the case of interacting particles.

As accretion increases when relative velocity decreases (cf. formula (3)),
Mc Créa [6] has investigated the problem if the braking of stars by inter-
stellar gas in the galaxy is responsible for the exceedingly great luminosity
of some of them and Salpeter [15] has examined whether the emission of
quasars can be explained in terms of the braking of massive objects by diffuse
m atter.

§ 7. Hydrodynamics of accretion in the case of subsonic relative
velocity of stars and clouds

Let us now consider the case where the relative velocity between the
star and the cloud is equal or less than the sound velocity in the cloud. This
problem has been investigated by Bondi [1] in the hydrodynamical approxi-
mation. See also Zel’dovich and Novikov [17], p. 435. A star of mass M
is at rest in an infinitely extended gas cloud with a density and pressure
p M. The motion of the gas is stationary and spherically symmetric. We shall
neglect the increase of the star mass, so that the field of force is constant.
The gas can he characterized by its adiabatic index y, density g, pressure p
and sound velocity:

The phenomenon obeys the following equations:
1) Continuity equation:

AnrYm — A (constant), (7)

where r is the radial coordinate, v the velocity of the gas directed toward
the star and A is a constant which represents the accretion rate in gram per
second.

2) Bernoulli equation:

v2 TP dp GM

2~+\]P.'T ) const = 0.

The integration constant is zero because of boundary conditions at infinity.
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3) Adiabatic equation:

P
(8
By means of (8), the Bernoulli equation takes the form:
V2 GM
+
2 r ©)

Eqs. (8) and (9) are valid in case no heat exchange takes place between two

neighbouring fluid elements. We can however take account of heat exchange

by suitably modifying y, which in any case must always lie between 1 and 5/3.
The adiabatic index is in general defined as:

i dlogp |
| dbg g]S const.

where S is the entropy per gram given by

S = —Ini— |+ — —n kT - constant.
7] (T/nd 2 p

Here & = 8.31 « 107 erg/°K < gr is the perfect gas constant, K = 1.38 «10_
erg/°K is the Boltzmann constant with 51 = N OK and NO— 6.023 « 1023 gr-1
is Avogadro’s number (inverse of proton mass); ft is the molecular weight
defined, for a neutral gas, as the number of nucleons in a nucleus. For a neutral

gas the number of particles per c.c. n is given by n = ----7-1---. The perfect gas
PmH
equation is:
p = nkT = —C— kT = -i-{NOk )T = -~ -,
lim H P P

If the gas is completely ionized the number of particles per c.c. n is given by

i . Q Q .
the number of nuclei per c.c., i.e.———- plus the number ofelectrons z --——-- Jd.e.:
n— 1+ * g

P mH

In this way to a completely ionized gas can be attributed a molecular weight

P
1+ 2

where fi is the molecular weight for the neutral gas.

Acta Physica Academiae Sciemiarum Hungaricae 46, 1979



292 L. BARONI et al.

So for neutral hydrogen and helium one has respectively: g = 1 and
w= 4; for the same gases when completely ionized, p' = 1/2 and p' — 4/3,
respectively. When the gas is either completely ionized or neutral, y can be
calculated by the above formulae getting:

Inp = const -|------ log Q,
3

from which

In general however the ionization state of a gas depends on pressure and
density, i.e. y is a function of p and g bounded between 1 and 5/3. (Cf.
Zel’'dovich and Novikov [17] p. 213).

As during accretion the physical conditions of the gas are variable, one
can expect a variation of y too.

These configurations are particularly important for accretion onto
compact objects, while for normal stars, y can be considered fairly well constant.
Eqgs. (7) and (9) can be put in a dimensional form by introducing the sound
speed at infinity:

Qo
and putting:

GM
r= X——,V=ya,,6 Q= ZQ,

the continuity equation takes the form:

xXMyz = A, (10)
where Ais given by:
i 4jrA(GM)2

(1L
The Bernoulli equation has the form:
(12
To solve (10) and (11), let us put
y-1
2
n—yz (13)
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where u is the ratio of the local velocity of the gas v to the local sound speed

yp Y2
In fact going over to original variables

Q r—
\Y 2
\P°
But
a= W Y Yo 1 P2
\'B I e* [ IF » Q1
and therefore, because (8):
. v-i
QD . y 12 _ ﬂm ) 12
Q Qo Qoo
that
From (13) and (10), we get:
L, 2
va-1 I N dy+1 V+i
y = uy+l |l—
and (12) becomes:
4 -t ¥+_11 5—3y
yRL — 1= A Y ot * wil (14)
2 y-1 wu2) Ly

The right and left hand side of this equation are separately the sum of a posi-
tive and a negative power of their variables, and therefore each of them has
a minimum. The left hand side minimum occurs when n = 1 and is given by

+1
—---*_-y. The X dependent part of the right hand side has a minimum when

X_I (5 — 3y), the value of which is
1 y+1 1 53y

fyr T6-3) @9

On substitution of these values in (14) one gets the results that Acannot be
greater than

Z+L X- 5~
AC | FRGES 6 — S (16)
2

Therefore the accretion rate cannot be greater than
[} o (17)
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Ac takes on values between 1.12 (for y = 1) and 0.75 (for y = 5/3). This
means that if A> Ac, the problem has no solution and accretion cannot take
place. A simple graphical discussion (see Zet’dovich and Novikov [17], p.
436) shows that if A> Ac the velocity of the gas is everywhere less than the
speed of sound (subsonic accretion everywhere). If A]> Ac, there exists a dis-
tance above which the velocity of the gas is less than the sound speed and
beneath which it is greater (supersonic accretion).

In this case, as for x = 1/4(5 —3y),u—1,i.e. v = o, the radius at which
transition to supersonic accretion takes place is

5- 3y GM
. . 2 112
At this radiusy = and so:
5—3y
2
5—3y
As z y 2, we get for the density:
5—3y
2 -
6s=e. _ 777 'Ii
5—3y

Only supersonic accretion an can give energy to the star, while the
subsonic case can be considered as a settling of the gas on the stellar atmos-
phere, the latter case is possible if pressure, near the star surface is suffici-
ently high.

To ensure supersonic accretion, the existence of rsis not sufficient, but
it is also necessary that phenomena taking place in stellar atmosphere do
not perturb the gas conditions at a distance rs.

From the barometric formula, one can evaluate the height of the atmos-
phere:

s = NQKTR2
GMy,

The above condition is therefore
H R <Crse

If now rs R, supersonic accretion is certainly possible for H R and this

T < 107 LMO )(.Lf)
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Condition r; > R is definitely verified, for a realistic state of gas at infinity,
i.e. T < 10%°K, even for stars with a radius substantially greater then R,.
A fortiori this condition holds for collapsed stars.
We have therefore a vast class of stars for which accretion is supersonic

and therefore can be a source of energy.

In computations, 1, can be considered of unity order, so that from (17)
we get
__dM  4aG* M2y,

dt ad,

A (18)

If a star moves with respect to intersteller gas at a speed less than the speed
of sound, accretion is essentially dominated by sound velocity, while for
supersonic relative velocity (cf. formula (4)) it is dominated by the star velocity.

The hydrodynamical problem in the case of arbitrary relative velocity
has not yet been solved. We have only BonpI’s conjecture (Bonpr [1]) that
accretion rate is given by

i 47(GM)2 o, g (19)
(v% + at)32

which admits, as limiting cases, formulae (4) and (18). BoNDI’s conjecture
has not been confirmed, not invalidated: there is only a partial confirmation
by Dopbp [4]. In any case, formula (19) agrees with one’s intuition and certainly
gives the correct order of magnitude.

In order to make up one’s mind which of the theories exposed so far is
to be applied to real cases, one must first of all check whether the body has a
subsonic or supersonic velocity with respect to the gas.

If the velocity is subsonic, one can apply (approximately) the theory
discussed in this section (body at rest), if on the contrary one has to do with
supersonic velocity one must apply the theory of Section 1.

In the cases so far examined, i.e. those relative to stars, the geometrical
radius of a body turns out to be always many orders of magnitude less than
the various accretion radii considered; in the case of galaxies or of clusters
of galaxies the geometrical radius and aceretion radius are comparable.

§ 8. The general hydrodynamical problem

The general hydrodynamical problem, i.e. the solution of hydrodyna-
mical time dependent equations at various Mach’s number, has been studied
for the first time by HunT [13] though in an incomplete form. The procedure
consists in integrating the time dependent equations of fluid dynamics, from
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a given initial time up to the time when a stationary solution is reached. The
fundamental equations are:

LA S RPN LS hnsind= d

dt r2 dr rsine

(conservation of mass per unit volume),

dm d 1 d :
- - r~ P+ + - wsin 0 =
dt r2 dr rsin0  dQ
Veldl
m+2p
!

(conservation of radial momentum per unit volume),

dn oy ramn 1 1 n2 . v.m

+ __ sino0 — cot O
gt o+ dr o . rsino [T

(conservation of transverse momentum per unit volume),

1 m
m=E | . rUE +p) d E+ p)— sino
LU dt dr 6] rsin0 dd Q

(conservation of total energy per unit volume),

m2-f- n2

P (r-i)
Q
(equation of state).
The solution found by Hunt by numerical integration of the above

equations are not general, because:

a) the mass M of the star is taken as a constant.
b) The braking forces of Section 6 are neglected.

¢) The cooling of the gas is not taken into account.
d) Only y = 5/3 is considered.

While assumption from a) to c) are well justified in many cases of
physical interest, assumption d) is a severe restriction to the generality of the
solution (the author is fully aware of this limitation).

Hunt’s results (for Mach’s numbers 0.6; 1.4; 2.4) confirm the result
obtained in preceding sections. In particular:

1) for subsonic relative velocities one has practically spherical symmetric
accretion and therefore Bondi’s theory for a body at rest can be applied.
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2) In the case of supersonic relative velocities there appears a shock
front, which, for increasing Mach’s number, approaches the body and shrinks
downstream to the axis of accretion (HoYLE— LyYTTLETON—BONDI’s theory).

§ 9. Conclusions

The physical theory of accretion, as it appears from the above conside-
rations turns out to be in a fairly satisfactory state. In fact one can confidently
use the laws discussed in the preceding sections to get reliable order of magni-
tude estimates. It appears also that the main features were already clear by
the mid fifties and no substantial progress has been made since then. There
remains however a set of important problems still to be solved or deepened.

1) A thorough investigation of the general hydrodynamical problem
with varying y and any star velocity is still lacking. This problem is crucial
for the theory of accretion onto collapsed stars in binary systems where the
velocities are highly supersonic. HUNT’s solution, which takes into account
Mach’s numbers up to 2.4 is clearly inadequate. It would be very interesting
also a proof of BonNDI’s conjecture (19).

2) Due to the great difficulties of the magneto-hydrodynamical equa-
tions, the influence of a magnetic field on accretion has not yet been satis-
factorily investigated. What one can find in the literature is only a host of
partial results which, though very important, are not yet systematically
arranged in a general framework. This state of affairs is particularly relevant
for accretion onto neutron stars and black-holes, in connection with the theory
of galactic X-ray sources. We hope to give a survey of these partial results
in a forthcoming paper.
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The effects of non-equilibrium dissociation and that of wave front curvature on the
propagation of sonic waves and their consequent formation into shock waves are examined.
Special attention is paid to waves of plane, cylindrical and spherical geometry propagating
into regions of weak equilibrium or strong equilibrium. It is found that a state of strong equilib-
rium has a stabilizing influence in that not all compression waves will grow into shock waves.
Further, it is interesting to note that in a weak equilibrium state, all compression waves, no
matter how weak initially, always end up into a shock whereas all expansion waves decay
but not completely unlike the situation that occurs in a strong equilibrium state.

1. Introduction

The growth and decay behaviour of sonic waves, following the analysis
of THOMAS [2], has been investigated by several workers [1—7] in a variety
of material media. Calling a state with a zero reaction rate and a non-zero
affinity a weak equilibrium state, and one with both of these quantities zero
a strong equilibrium state, BOWEN [8] has investigated the influence of these
thermodynamical states on the propagation of plane acceleration waves in
a mixture of chemically reacting elastic materials. In this paper, using the
singular surface theory due to THOMAS [9, 10], we have investigated the growth
and decay behaviour of sonic waves propagating into regions of strong and
weak equilibrium of an ideal dissociating gas. It is found that in a strong
equilibrium state there exists a critical value of the initial discontinuity such
that all compression waves whose initial discontinuity is less than this critical
value damp to zero and waves with initial discontinuity greater than this
critical value grow without bound in a finite time. For the case of weak equi-
librium state, it is found that all compression waves grow into a shock after
a finite time whereas all expansion waves decay and ultimately take a stable
wave form. It is found that the geometry of the wave front affects the growth
properties indirectly in that the critical value of the initial discontinuity
depends on the initial curvatures of the wave front. The critical values of the
initial discontinuity for cylindrical and spherical waves for which the respective
waves never completely decay are found to be larger in magnitude than the
corresponding value for plane waves. The specific source of non-equilibrium
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effects considered here is the dissociation recombination reaction in a symmet-
rical diatomic gas; the present method can, however, be employed to vibration-
al excitation, ionization etc. Here we have considered the useful approxima-
tion of the ideal dissociating gas due to Lightnhitt [13]. The species that
make up the gas mixture are assumed to behave individually as thermally
perfect gases. The temperature range is taken from 2500 °K to 4500 °K. In
this temperature range, the contribution of energy from electronic excitation
and ionization are both assumed negligible. The radiation heat loss from the
mixture and the molecular transport effects leading to viscosity, diffusion
and heat conduction are also neglected.

2. Basic equations

The equations governing the three-dimensional unsteady motion of an
ideal dissociating gas are [14]

£ u Qi -f- qujj— 0, (1)
dt
6 — + eujusjtp,s =0, (2)
at
I dh , dp ,
B1l-~-+ uihu = 3 + uip>i €)
t
ﬂd"t‘ A vioci= W, 4

where the summation convention on repeated indices is employed, and a comma
followed by an index denotes the partial derivative with respect to a space
variable. The range of Latin indices is taken to be 1,2,3. The symbols appearing
in (1)—(4) are as follows: g is the density; p is the pressure; ui are the gas
velocity components; h is the specific enthalpy; a is the mass fraction of the
reactant species, which takes part in the simple reversible reaction

A2= X A+ A+ X . (5)

(The species X can be either the diatomic molecular species A2or the atomic
species A) and W is the rate of progress of reaction (5), namely

W= 1-1{lWL1 - a) —a2}. (6)
The quantities x and K are the forward-reaction time,

L= 44(l £an2 0]
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and the equilibrium constant,
K=2 oxp(—T,T 8
" exp (— T4/T), (8)

respectively. The quantities k,, m, p; and T, appearing in (7) and (8) are
respectively the recombination rate coefficient, the molecular weight of A,,
the characteristic density for dissociation and the characteristic temperature
for dissociation. In the temperature range 2500 °K ~ 4500 °K, the variation
in these quantities is very small and hence they will be treated as constants.

The thermal and caloric equations of state for the gas mixture are [13]

p=e(l + «) RT, )
h={4+« T+ «T,} R, (10)
where R is the gas constant for A,.

Eq. (3) with the help of (1), (2), (4) and (6—10) is conveniently trans-
formed into

0
o T wpi+ eafuy + eafoW =0, (11)
where a, is the frozen sound speed given by aj = —gp; I" being the ratio of

frozen specific heats given by I" = (4 -+ «)/3, and ¢ is a function of local ther-
modynamic properties given by

1 o
o= ﬁ{(Td/T) ke L — B

3. Kinematics of moving singular surfaces

In this Section, appropriate kinematics to describe the motion of a weak
discontinuity surface is outlined. We shall assume that the reader has some
familiarity with the kinematics of moving singular surfaces [9, 10]. We consider
a moving singular surface X' given by f(x;,t) = 0, and that we denote by n;

/
the unit normal vector f,,;/|grad f| and by G =— g‘gﬂgradf[ the normal speed

of advance of X. For definiteness, we require that the description of the sur-
face X' is such that G is always positive. This means that the normal n; always
points in the direction of propagation of 2. The jump in any quantity across
2'is denoted by [Z] = Z, — Z,, where Z, denotes the value of Z immediately
ahead of the wave front, and Z, is the value of Z immediately behind it. If,
across 2, the function Z is continuous, while its first and second order partial
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derivatives with respect to &, and t suffer jump discontinuities then it can be
shown that [9, 10]

Ail = Bn,; = -GB , 12, 13
[ | (12, 13)
[Z,n] = Buw Jij + g*?B, a(reiXjp+ njxW) - Bgalg'dbayxiixj6, (14)

-GB + — Jnt-g*(GB),.xtR, 15
dxj dt dt 9" ( ) (15)

where 8= [Z{lre B = [Z,,;]n(ny and < )represent the rate of change of

() as seen by an observer fixed on S. A comma followed by a Greek index
say (a) denotes partial derivatives with respect to the surface coordinate ya.
The range of Greek indices is 1, 2. Quantities g“*and bal are the contravariant
and covariant components of the first and second fundamental tensors of S
respectively. We also recall the following relations which we shall be using
in our further analysis

u,@= —govbR*xi'y; 2Q = @gxBbad and it = —gasc ~xis, (16, 17, 18)

where Q is the mean curvature of 27.

4. Derivation of the growth equation

A moving singularity surface 27, across which the flow parameters are
continuous but which is such that at least some of the first partial derivatives
of these flow parameters suffer jump discontinuities at the surface, is called
a weak discontinuity or a sonic wave. It follows from Section 2, that the
quantities p, q, a, ug fly, T, W and a are continuous across 27 and they will
have their subscript 0 values at the wave front. Assuming the state ahead
of27to be uniform, it is shown in [1] that either G — un0= or G— und=
= 0, where un0 = uiOr-is the component of fluid velocity normal to the wave
front 27. The case G — ur0= 0 which corresponds to a material surface is
discarded as uninteresting, and we assume without loss of generality that

G —um+ aue (19)

W hen the medium ahead of the wave is uniform and at rest, it follows from
(19) that the wave front 27 propagates through the medium with the frozen
sound speed. As a result of which the successive positions of the wave front
27 at different instants form a family of parallel surfaces with straight lines

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



ON THE PROPAGATION OF SONIC WAVES 303

as their orthogonal trajectories [11]. Thus given the wave surface at t = 0,
say X, the position of the surface at any time ¢t >> 0 can be determined by
measuring the distance traversed by the wave front along the normals to 2,
In the rest of the paper, we shall be concerned with the situation when the
medium ahead of X' is uniform and at rest. Then, on evaluating equations

(1), (2) and (4) across X' and using (12),(13) and (19), we get

C A Qo )- e £/a}°’ zi ot Ani, n = 0’ (20, 21, 22)

afo

where

A= [ui,j] nj, £=[pilni, £ =[e.i]lm

and 7 = [o,;]n; are the quantities defined over 2.
If we differentiate (2) and (11) with respect to x,, take jumps across 2,

and multiply the resulting equations by n,, we find, on using the relations
(12)—(22), that

Y E :
o— = —(§ — 04 @y, ), (23)
ot
y 1
B st — o oAl oy e — Lok 8 g
ot Qo @5,
where 7 5
A= [ui,jk] n;n;n, {= [P-»ij] n;n;
and
2
) e i{sro(ro — )2 (W, + i“’—] 4o ST 1)} :
2 Tl

Eqgs. (23) and (24) can be combined to yield

(I'y + 1) ay, Bt
Qo

%f— + (4 — a5, )T + (25)
where use has been made of (20).

Eq. (25) is the required growth equation for the discontinuity { which
we have been seeking. In view of the relations (20), Eq. (25) yields a differen-
tial equation for 2 and one for &. Thus, Eq. (25) is sufficient to predict the
growth or decay of a discontinuity associated with the wave surface 2. For
a family of parallel surfaces, propagating with constant velocity, the mean
curvature (2 has the representation [12]

QO = Kngul
1 —2Q,a,t+K,a} 2’

(26)
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where Qti and KO are respectively the mean and Gaussian curvatures of EOQ.
Substituting for Q in (25) and integrating, we get

£ = Co(l — 2i30a/,t + KOq},la-* exp (—AOt) "

1+ (/Vx— “N foJf {1- 200 7T+ KO0a%T*)-*exp (- A01)}dt "’
0

where C0is the value of £ at the wave front at t — 0.

It is clear from (27) that the temporal behaviour of the density gradient
at the wave head will depend critically on the sign of AQO. Following Bowen
[8], it follows that for a state of strong equilibrium A Qis non-negative whereas
for a weak equilibrium state AO may be positive or negative. To make the
exact result (27) more accessible, we discuss the following three cases of
plane, cylindrical and spherical waves.

5. Discussion

Case (i): Plane waves

For a plane wave front Q0— KO0= 0, the Eq. (27) reduces to the form

Coexp (—AO0t) (28)

i+ —exp (-n 0%}

where
fc= 2(?0A1(Fo o)«

Eq. (28) shows that if CO> 0 (i.e. an expansion wave front) and AO> 0
then the denominator of (28) remains positive and f -u»0 as t —»o00, the wave
damps out. Also if CO 0 (i-e- a compression wave front) and if it has the
magnitude less than fc then the denominator of (28) remains positive and
f —0 as t 00, i.e. a compression wave decays and damps out ultimately.
Further, if C0is negative and has a magnitude equal to Cc, then C = C0 and the
wave propagates without any growth or decay. But if C0 is negative and has
a magnitude greater than Qthen |C| —»00 for a finite t* given by

(29)

Thus at a finite time t* the density gradient at the wave front becomes infinite
and this signifies the appearance of a shock wave. Thus we find that Cc is a
critical value ofthe initial discontinuity in the sense that all compression waves
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with initial discontinuity less than this value attenuate while all compression
waves with initial discontinuity greater than this value grow into a shock
wave after a finite time. It is evident from the expressions of (. and ¢* that
they are increasing functions of 4, i.e. the dissociation effects are to increase
the shock formation time.

For A4, < 0 (which can only occur in weak equilibrium state) it follows
from (28) that if £, >> 0 then { — |{ | as t — oo, i.e. all expansion waves decay
and ultimately take a stable wave form. This interesting feature of expansion
waves does not appear in the former case in which all expansion waves decay
and damp out ultimately. But if {; << 0 and 41, << 0 then we have the criterion

ko
l/lol

log |1+ (30)

for the shock formation at a finite time. Thus, in this case we find that a dis-
continuity, no matter how small, associated with a compression wave always
grows into a shock. It is also evident from (30) that the weak equilibrium state
causes the compression wave to steepen more swiftly than it does in an inert
atmosphere (in which 4, = 0).

Case (it): Spherical waves

If the wave front X' at time ¢t = 0 is a sphere of radius R, then at any

1
time t >0, X' is a sphere of radius R = R, } ast. For such a wave Q) =— —-

R,

1
and K, = R2 and thus the Eq. (27) reduces to

Lo(Ry/R) exp {—Ay(R — R,)/a;,}

A Eg(AOR/afo :
COR exp (A R /afo) E (A Rovaf.,) ll E(A Ro/auf-)}

(Tt P

Qo

where E (x) = f t=1le 'dtis a tabulated function known as exponential integral
x

function. For 4, >0, the term in the curly bracket in the denominator of
(31) increases monotonically from 0 to 1 as R increases from R to . Hence
in this case also there exists a critical value of initial discontinuity ., the
magnitude of which is given by

|2 I _ _20pexp (—4yR,/ay)
X (Fo > I)Ro Ei(AoRo/afo)

(32)

such that if {, < 0 and has a magnitude less than |f,| then the denominator
of (31) remains positive and finite and thus { — 0 as R — oo, the compression
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wave decays and damps out ultimately. Further, if £E0< 0 and has a magnitude
equal to |Ec|, then |£] —=£cas R —»o00. i.e. the wave does not completely decay
and ultimately takes a stable wave form. But if £0<C 0 and has a magnitude
greater than |£c|, then we have the criterion

TWna-TGf»! -TOK™

E,(AORiafa) = T- Ei(AOR 0alu) (33)
Ifol

for the shock formation at a finite R — R = RO+ afJ- From the inequality
Ef(x) < e~x/x, it follows that |Ec| (critical value of the discontinuity for the
spherical wave) is greater than the corresponding value for a plane wave.

From the expression (32), it follows that _H(];i 7>0 which means that
A

the critical value of the initial discontinuity increases with A 0. Also Iz\tcc: <0
R

which implies that the initial curvature has a stabilizing effect on the tendency

of the wave surface 27to grow into a shock in the sense that an increase in the

value of the initial curvature causes an increase in the critical amplitude.
Further, it is also evident from (33) th at-a-;‘:-d7>0 which means that an increase

in AOwill cause the shock formation time tto increase, i.e. the non-equilibrium
dissociation effects are to increase the shock formation time I. On the other
hand, if the wave is expansion (£07>0), then £—m0 as R —moo, the wave
decays and damps out ultimately.

For Ag < 0, the denominator of (31) reduces to

(F _L 1) r-A ,Rla,,
14+ - -—C0R» exp (AgRg/djJ ! X~xexdx. (34)

2po0 J —A R.lalo

When G > 0, the denominator (34) remains positive and tends to infinity as
R —moo. This happens because of the diverging nature of the integral involved
therein. Also, numerator of (31), for AO< 0, tends to infinity as JR —»oo0.
Hence, by making use of L’Hospital’s rule, we obtain that £ —»|Ec| (critical
value for a plane wave) as R —w o0o0. Also, (34) shows that if £0<7 0 then we
have the criterion

-AJRaf
J " X-lexdx = 2go exP (—MigR dM

\Co\(r0 + 1)HO
-A,RJa/n

for the shock formation at a finite R = R.
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Case (iit): Cylindrical waves

In this case also the growth and decay phenomenon is very much similar
to those of plane and spherical waves. If the diverging wave front X at t = 0
is a cylinder of radius R, then at any time ¢ >0, X'is a cylinder of radius

1
3R, and K, = 0 and thus Eq. (27)

R = R, + a;t. For such a wave Q, =—

assumes the form

So(Ry/R)!2 exp {—4y (R — Ry)/a;,}

Lo 12 X (35)
R L Lo exp (44 Rolay) ks ] exfc (4,R,/a; )2
20, 0%,
o |p . _erfe (Ao Rjag )1 ﬁ}
‘ erfc (4,R,/a;,)"?

3
where erfc (x) = V—_J e~"dt is the complementary error function. For A4, >0,
T Jx

if {;, > 0 then { remains positive for all R >> R, and monotonically approaches
zero as R — co. Also if {, < 0 and has a magnitude less than !Z |, where

A, ay, }”2 20, exp (—4, Ry/ay)
7R, (I'y+1) erfe (A4, Ro/ap,)'?

then { — 0 as R — oo, the wave damps out. Further, if {; < 0 and has a mag-
nitude equal to |Z‘c| then the wave decays and [ — || (critical value for a
plane wave) as R — oo, i.e. the wave ultimately takes a stable wave form.
From the inequality erfe(x) << e™/x |/ 7, it follows immediately that |£,| (for
cylindrical wave) is greater than the corresponding critical value for a plane
wave. But if [, << 0 and has a magnitude greater than ]Z‘c] then we have the
criterion

(36)

~

2 z 12
s ‘M) ik [1 & H_J o (M_) i (37)
af, |C0| o
for the shock formation at a finite R — R. However, if {o>0and 4, >0
then (35) shows that { — 0 as R — oo, the wave damps out. It is evident
from (36) and (37) that the dissociation effects are to increase the shock

formation time.

For A, < 0, the growth and decay phenomenon is again similar to those
of plane and spherical waves, i.e. if {, > 0 the { — || (critical value for a
plane wave) as R — oo. But if {; < 0, then we have the criterion

j T exp (x?) dx — R, “fn)— "2 gy exp (—4, Ry/ay,)
(—44Rq/ay,)1/2 IA0| (Fo I l)lcol

for the shock formation at a finite distance R — R*.
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In the self-similar piston problems, relating to plane, cylindrical or spherical piston,
the effects of transverse magnetic field have been studied. It has been observed that on account
of the magnetic field the range between the shock front and the piston increases. The effect
of magnetic field increases towards the piston and is more pronounced near it than at the
shock front. There is very slow change in the flow velocity. While the radiation affects the
pressure more than the other flow variables, the flux falls steeply behind the shock front.
Also, there is a rapid fall in values of pressure and temperature behind the shock. A comparison
between the results obtained with and without radiation in the presence of magnetic field has
been illustrated through figures.

¥ Introduction

Wang [1] considered the piston problem with thermal radiation for one
dimensional unsteady shock using the similarity method of Sepov [2].
HeLLiweLL [3] took a more general case of the piston problem with radiation
heat transfer for general opacity and transparent limit and NicAsTro [4]
considered the similarity analysis of the radiative gasdynamic equations
with spherical symmetry without considering the magnetic field.

Our aim in the present paper is to study the effect of azimuthal (trans-
verse) magnetic field in the case of self similar piston problem with thermal
radiation as treated by HELLIWELL [3] for a plane, cylindrical or spherical
piston. As in Ervior [5] we have assumed the radiation parameters to be
independent of the magnetic field. The effect of magnetic field is prominent
on the piston surface.

We have taken a differential approximation for the equations of radia-
tive transfer in a gray gas and made certain simplifying assumptions to make
the discussion less complicated. These assumptions include a perfect gray gas
in local thermodynamic equilibrium, transparent shock, cool piston neither an
emitter nor a reflector, negligible radiation pressure and energy. The radiative
effects are presumed frequency independent and ambient gas ahead of the
shock wave is cool and shock wave itself is transparent to radiation.

We have calculated the results with and without radiation in transverse
magnetic field by Runge—Kutta numerical method for the particular value
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of y, a and B in the transparent limit for a spherical shock wave. The calcula-
tion can also be done for general opacity in the presence of a magnetic field
by the above method which is given in detail in the section ‘results and dis-
cussion’ taking different values of y and R. A comparison between the magne-
tic field effects with and without radiation has been made for the spherical
piston case through the Figures 1—&6.

Fig. 1. Velocity distribution

Fig. 2. Density distribution
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Fig. 3. Pressure distribution

Fig. 4. Magnetic field distribution

Fig. 5. Temperature distribution
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Fig. 6. Radiative flux distribution

2. Equations of motion and boundary conditions

One dimensional fundamental equations of motion, taking inviscid
perfect gas, for mass, momentum, energy and transverse megnetic field are
(cf. Summers [6], Rosenau and Frankenthal [7])

Da du '.au 2.1
— + + - — = :
Dt % (v ) r O
D 1 ah2
u | d . A2 + = 0, (2.2

Dt a dr
Dh du ahu

1 (2.3)
Dt dr r
DE D 1 d v -

-+ — —0, (2.4)
Dt +P Dt ¢ a dr r q

where v= 1, 2, 3 for plane, cylindrical and spherical pistons respectively and
o = 0 for plane and a = 1 for both cylindrical and spherical cases.

q = q - q + ! (25)

p=TrlaT, (2-6)

E - P . 2.7)
(V-Do

Here h is the magnetic field transverse to the flow, p the pressure a
the density, n the velocity, y the specific heat ratio, E the specific internal
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energy, ¢ the time and r is the single spatial co-ordinate being either axial
in flows with planar geometry or radial in cylindrically and spherically sym-
metric flows. In addition, ¢ denotes the magnitude of the flux of thermal
radiation along the co-ordinate direction, ¢ are its forward and backward
components, respectively.

Finally, the equations under differential approximation for the variation
in the radiative flux components may be written, following HELLIWELL [3],
as follows: general opacity

(g — ¢4) = 4nkB — 2k(g_ + ¢4) (2.8)
/]
—@_+q) = (2.9)
ar
transparent limit
B VR ek (2.10)
or

where B denotes Planck’s radiation function and is given by B = oT*/x, ¢ is
Stefan’s constant and k is the local volumetric absorption coefficient.

We assume in the present analysis the simple relation (involving solely
the density and temperature) of the form

k= Ko*17. (2.11)
The piston speed is taken as
U= Uyt" (n>-1). (2.12)
The density and magnetic field distribution laws are

U= =g.rN (>0 (2.13)
and

h=h =hyr ™ (w >0), (2.14)

where n, w and w, are arbitrary constants. A shock wave running ahead of
the piston in a self-similar flow pattern must be strong in order that the ambient
pressure ahead may be neglected compared with that behind the shock.

We assume the piston to be cool and black and gas ahead of the shock
wave to be also cool so that it does emit radiative energy. Thus no radiative
flux passes into the gas behind the shock wave from upstream.
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The jump conditions, to those of strong shock which is transparent, are

M= 2ci(y + 1), (215)
o= [+ Yy~ DT (219
Pi= [2{y+ HKc2 (2.17)
hi= [+ DIEY - (218)

where cis the shock speed and the suffixes 1 and 2 denote conditions upstream
and downstream, respectively. Thus for the region of disturbed gas between
the piston and precursor shock wave (2.13)—(2.18) together with

g+ = 0 (2.19)
provide the boundary conditions just behind the shock, while (2.12) with

qg_ =0 (2.20)
give the corresponding conditions at the piston face.

As Wang [1] determined for the plane case in the formulation of self-
similar piston problem

WE (2.21)
5a + 2R

ne W (2.22)
w5

and to make the magnetic field nondimensional, we choose

2wl= w. (2.23)

3. Similarity considerations and solutions

A dimensionless similarity variable, A can be defined as

X = <}1)

where 6= n -(- 1 and the parameter Apis inserted so that immediately behind
the shock wave one may choose A= 1. The position of the piston face is given
by A= Xp. Then the field variables of the flow pattern in terms of dimension-
less functions of A, are
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rvV(X) 3.2)

a0R(X) (3.3)

po= jw—2[2 7 (3.4)
olI2H(X)

- w -1 ’ (35)
r 2t

0= "5 @)

It is also convenient to define a dimensionless acoustic speed and Alfvén speed
in terms of the variables Z and X, respectively, where

Py =z — (3.7)
a R 1t,
h2 |"2'[JL] =X (3.8)
a R 1t,

W ith these new variables the governing equations and associated boundary
conditions for a gas of general opacity are,

2yv{ia — V) {(6 — V)(v- w) + V- 1} - 2ZV(tv - 2)—

- 2Z+yX){(u> - 2)(6- V)+2}+2y{ZwV+aX(0- F)}+

X Rd f- (2a — 2v f- to -\- 4)y XV -f- 2yf] (3.9)
dx S - V{(»- Vy - (X+ 2)} o
dv

V)y-— -(v-w)V, 3.10
- («5 )R X ( ) ( )
dz 2y - 1 X dR 2Z(V— 1)+ (y- DwzZV+yf (3.11)
dX 17 H 6 — V)

dR  (2a—2v w 4)XF —2X (3.12)
dX R dX 06— V)

To the other two equations for Q_ and Q-+ we use the similarity trans
formations in equations (2.8) and (2.9) and get

i
ZXAd_X- = m- p- 5) K, Xs Z?R* <2+
(3.13)
1 2? 1 /20+54
Iv- 1) - — K2XBZfiR* C++ KrXKa '0+*1P,
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d_)'l- i 1 2 N
2A dl I(v—l) + MK 2A9 Z*AC 1+ j(2io—V—5)+
(3.14)
7 AN
+ K 2A9Z A (2+-K 1AN2)
where
f=f(Z,R,Q_,Q+ A = (3.15)
28
subject to the boundary conditions
V = 26 (3.16)
y-1-1
R -r+1 , (3.17)
y—1
(r+ )2 -
X - Mx2062y + 1, (3.19)
y—1
Qx —0 at A= 1, (3.20)
F= &S ()_=0at A= A (3.21)

In the transparent limit, by putting 1i2= 0 in the general set, we get appro-
priate equations. The equations for V, R, Z and X then become independent
of the radiative flux components Q+, and may he solved separately. The
variation of Q with Ais then obtained, following Hettiwen1 [3], as

LRov_w arl ZHV-W dv

HKI i) 3" e
1 1t +v- W l Xdrj N
1+ Ap g(v) _V

where
1 (iEx5)
g(r,)=xtKLZ"*R"r,y 9"

and Z, R are regarded as functions of 1.
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From (3.1)—(3.6), the relationships between the similarity solution and
the physical variables are

(y + }) FA (3.23)
20
a y A fOA-" (3.24)
<5 7+ 1
p () + 1)Zi?2A2-« (3.25)
Ps 2y62
= - MAY - DRX)U* L2 (3.26)
w oy + 1)
(y + D*zA* (3.27)
2y(y — <52
— (Q-—Q+) "i-h (3.28)
Qs-

where A= r/rs and the suffix s denotes values just behind the shock front.
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An analysis of the mass transfer effects on the hydromagnetic free — convective flow
of an electrically conducting, incompressible viscous fluid, past an infinite, non-conducting,
porous, vertical wall with constant suction, has been carried out, in presence of a transverse
magnetic field. The induced magnetic field is taken into consideration and the terms repre-
senting the viscous dissipative heat and the Joule heating are included in the energy equation.
Approximate solutions to coupled non-linear equations governing the flow are obtained, when
the magnetic Prandtl number is unity and the magnetic parameter M < 1. Expressions are
given for the velocity, the induced magnetic field, the temperature, the skin friction, the elec-
tric current density and the rate of heat transfer in terms of the Nusselt number. The variations
of the above quantities are presented graphically, and the paper is concluded with a quanti-
tative discussion.

1. Introduction

It is known that flows arising from differences in concentration or mate-
rial constitution alone and in conjunction with temperature differences have
great significance not only for their own interest but also for the applications
to geophysics, aeronautics and engineering. There are many interesting
aspect of such flows, so in recent years analytical solutions to such problems
of flow have been presented by many authors. SPARROW et al [4] have present-
ed an analytical study of the effects of buoyancy in a binary boundary layer
into which a foreign gas is injected through a porous surface. SOUNDALGEKAR
[3] has studied the effects of mass transfer on steady free convective flow
of a dissipative, incompressible fluid past an infinite vertical porous wall,
with constant suction. Recently, HALDAVNEKAR and SOUNDALGEKAR [1] have
carried out an analysis of the mass transfer effects on the steady free convective
flow of an incompressible electrically conducting, viscous fluid past an infinite
porous plate with constant suction and transverse magnetic field. In this
study the magnetic Reynolds number of the flow is taken to be small enough
so that the induced magnetic field can be neglected. Also the viscous dissi-
pative heat in the equation of energy is assumed to be negligible as compared
to Joule dissipative heat.
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Hence, in the present analysis we study the effects of the mass-transfer
on the steady free convective flow, of an electrically conducting, incompres-
sible, viscous fluid, past an infinite vertical non-conducting porous wall with
constant suction, in the presence of a uniform transverse magnetic field. The
induced magnetic field is not assumed negligible and the terms, which re-
present the viscous dissipative heat and the Joule dissipative heat remain in
the equation of energy. Approximate solutions to a coupled non-linear system
of equations governing the flow are derived when the magnetic Prandtl
number is unity, and expressions are obtained for the velocity field, the
induced magnetic field, the temperature field, the skin friction, the rate of
heat transfer, in terms of the Nusselt number and for the electrical current
density. Finally, all the above quantities are shown graphically, followed
by a discussion.

2. Mathematical analysis

We assume as the coordinate origin 0, an arbitrary point on an infinite
vertical porous wall, which is taken to be an electrical insulator. The «'-axis
is chosen along the vertical wall in the upward direction and the y'-axis is
chosen normal to it. The electrostatic system of units has been used throughout,
and we assume that, in the present analysis, all the physical variables are
function of the space coordinate y only. Also the applied magnetic field is
uniform and perpendicular to the wall, so that in the region considered,
H = H(FIX Hy. 0). Under these assumptions, the steady free convective flow
on an electrically conducting, viscous incompressible fluid is governed by the
following set of equations

V-AT =V~ ~ B(T»-T L)+ gR*(C'- CL) + H
oy Oy2+g(» )+ gB*( ) Q+ y (1)

V’dHX_EI(,du 3 1 d2Hx’ 2)
dy' dy' dy'2

v, 4T’ K dzr' t v ldu'y |, 1 (dHxja 3
dy' Q@ dy'2 cp [dy'J ' <Qp 1dy' ©)
dC da2c'

v’ = D : (4)
dy' dy'2
dv'

0, ®)

dy'

where all the above physical quantities have their usual meaning, except C'
which is known as the species concentration, D is the molecular diffusivity and
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B* is the volume coefficient of expansion with concentration. The second and
the third terms on the right hand side of Eq. (3) signify, respectively,the heat
generated by friction (or viscous dissipative heat) and the Joule heating.

The boundary conditions for the velocity field, for the temperature field

and for the species concentration are:

gl W=, T =T C=C

? ’ ’ ’ ’ (6)
. ooy, == 0y Bl T ICh— CL.

The appropriate boundary conditions on H, are (for detailed discussion
see PANDE [2]):

y:(): Hx=09 Hy:Hov

(M
y—+oco: H,—0, H,— H,

From Maxwell’s equations the components of electrical current density

are given by
Jx=0, j,=0

and (8)

e

T |

oy
and the divergence equation for the magnetic field gives
H, = constant = H,, 9)

where H, is the externally applied transverse magnetic field.
Integration of (5) gives

v = —v,, (10)
where v, is the constant suction velocity. The negative sign in (10) indicated

that the suction velocity is directed towards the wall.
We now define the following non-dimensional parameters:

u=u,7 y:ﬂa 6= T,éTia
v, v T, — T,
C=u:, H:{ﬁo—)llzﬂ’
Cy —CL g} e

Rt vg B(Ts, 3_ T2) (the Grashof number),

r
Vo

* AT ’
G = M(—ng'—c“)« (the modified Grashof number) ,
Vo
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Pm= <™p (the magnetic Prandtl number),
P = QL (the Prandtl number),
K

E = (the Eckert number),

\Y .

(the Schmidt number),

D

M= TPojun « (the magnetic field parameter). (")

ve ) «

W ith the help of Eqgs. (9) and (10) and of the non-dimensional quan®
tities (11) the Eqgs. (1), (2), (3) and (4) reduce to:

d2u du 6.0 GrC—M-dH (12)
dy2 dy dy
1 a24 . 0 (13)
Prr  ay?2 dy dy
g_z_g___l_ b~ =PE idu 2 PE [dH (14)
dy2 dy lay | PR dy .
A + 0, (15)
dy2 dy

and the boundary conditions (6) and (7) in the non-dimensional form become:

y=10 u=0 0=1, C=1 4 =0,
(16)
y —0: un-w0, 0—0, C—0, A —0.

Eqs. (12)—(15) are coupled non-linear differential equations and to
solve we follow the power series solution method. As the fluid is incompressible
and the suction velocity is small the Eckert number E is also small (<"1).
Hence, we expand u, 4, 0 and C in powers of E and neglect terms of order
E2 and higher.

Thus, we have

n = Uq-f- Euj,

0= 0o -~b 17
H=HO0+ EHv (10
C= CO+ ECV
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On substituting (17) into Eqs. (12)—(15), equating the coefficient of E and
neglecting terms in E2and higher order, we get

<+ 4 =- Mo- GCO- ML , (18)
u"+ uj= —Gro4—Gecd—me;, (19)
— 0"+ ho + M«; = 0, (20)
Pm

-ALAT + A5+ Mu; = o, (21)
v+ P'0O= 0, (22)
0;+ PO; = p«'2 _ — an2, (23)

Pm

c; + seQ = o, (24)
cr+ 4.c; = o, (25)

where the dashes indicate derivatives with respect to y.
The corresponding boundary conditions are:

Y= 0:u0= 0,ux= 0,00= 1,0l= 0,C0= 1, CL= 0, HO= 0, HI= 0,

y —»0: u0—0, —»0, 00— 0, 6X— 0, CO— 0, Cx— 0, HO-+ 0, Hx— 0. *

Solving Eqgs. (18)—(25) under the boundary conditions (26), when the
magnetic Prandtl number Pm= 1 and substituting the solutions obtained
in (17) we have

Ane-'Y - e-pY)+ Ar(e~ay - €“N) + Asae~"~ - e~Py) +

u(y)
+ At(e~By- e~Scy) + ~ (P7e-» + 4 B"» - (B, + roe~py+
+ (B7+ P8e-22 + (B8+ P9e-2¢ - (B, + 4) +

+ (Tx+ 4)e”25cY - (P2+ 4) eHatsjy + ([, + 4) sofy-
- (N + 4) BHO+a*- (T'5+ 4) e-tf+/ly+ ([, + 4) e-(P+30y), (27)

A(y) 4(e-&Y—e~pY) + A2(e~'Y — e~Scy) — A 3(e~Py — e~Py) —

- 4(B"» - B"**) 4 (F7e-"Y- 4 e~A+ (F0- B,)e-pY+

+ (B7- I8e-2¥+ (B8- ro9e~2ry+ (A, - B9e-(«+ta> +
+ (T, - 4)e-28 + (4 _ T2)e-(*+34y + (', - 4)e-2¢ +
+ (4 - ThHe-"+plY+ (4 - THB-»+«c)y+ (I,- 4) e-(p+34y), (28)
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B(y) = e-py + E(B5e~Py - Ase~2iy— A6e~2Py + A7e~(*-p)y — Ase~2Scy +
+ AOe-<*+Sc)y - Bje~28y + B2e~(RB+P)y + B3e~(R+sdy _ B, e-(P+sjy) (29)

and
c = e~Scy, (30)

where

a=1+M, 0= 1- M, ~ = - " gar= o A

2P(P - «) 2S@SC- a)
A Gr Ay Gce ,AS_aP"!+ +2)2
2P(P-R) 2SESC- R) :a- P
a P( f2 - i 4~NpP N1+ 1) SCP (M + M)

4cAS@(A + ) D BP(A3+ A)2
@ +;58(«+sc-P) 20_ P
4P Y (N + A . B 4RPScAi(A3+ AJ

R+ p ‘ 3_(r3+ SO(B + Sc- P)
, APAATAZT A3A) , P5= J15-|-J16—M7-)-"48—yig-J-P!—P 2P 3+ P 4
p + sc
B A
BR= Mr , &7: G_r ;S , Bb— GrA
P(P-a) 2 a2 2P(2P - a)
B -Glrﬁ(y jn G‘rAg ™ Gr-qu
9 == * | e 7 911— 77777*" 79 J2
P(P+a) 25Q2SC- a) Sc(Sc + a)
~ GrB: GrB2 A - B3
T 21920 - «) 0+ P)(B+p - « 77 (0+SQ(0+Sc- a)
GrB,

—, 7=B6-—B7—B8+BY—T1+IM2—P+-I.+ [ —e»

A= (P+Sog(P+Sc-a)
r p = C AGGr
° P(P-0)’ . 2a(2a—0) . 2P(2P-0)
~ A 7Gr j _ ~g Gr j _ N9 Gr
4 = (ac+P)(a+P-0)’ 2 25@2sC—0)’ (a+S(«+Sc-0)
P,Gr P3Gr
(31)
202 0(0+P) SESC+ 0)
4 - PG Ng= Po~Ps—"+-"4i—" o+ N3—il+zis+/16—A7,

(P+Sg(P+Sc-0)
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Using the expressions (27), (28) and (29) the skin friction 7, the electric
current density, Z, and the rate of heat transfer, expressed in terms of the
Nusselt number Nu, in the nondimensional terms, are given respectively, by

wr _ (o
vp 10y Jy=0
= A\(P — o) + Ay(S; — @) + A4(P — ) 4+ A(S. — p) +

E
+'2—(_°‘F7_ﬂ48+P(Bs+Po)—2“(B7+Ps)_

T =—

_ZP(B5+r9)+(“+P)(Bs+A1)_2Sc(F1+A2)+
+ (« + S )2 + 45) — 28(Is + 4)) + (B + P)Iy + 45) +
+ (B + S)Is + 4g) — (P + S)Ig + 4))» (32)

Z:M(#O]llzz_(aH Ser

N hr e

Yo\ @ dy ¥
= —A,(PePY — ae=) — Ay(S,e=5¥ — ae~%) +'
+ APy — o) - A0~ — o) —

2 _’2‘3 (BAge— — aT'ye= — P(Ty — By) e=P —
— 2(B, — T'y)e—* — 2P(B, — I) e~"P¥ —
— (& + P)(dy — By) e+ — 35T, — 4) =255 —

) (a s Sc)(As — TI3) e (c+S)y — 2ﬂ(1-'3 — Ad) erely
— (B + P)(4s — TI') e=+Py — (B + S)(4y — I's) e—B+Sdy —

— (P4 SYTg — &) e=+5) (3)
and ;
Nuepia :_(ﬂ — —P+ E(P(—B, + B, —
KT, — T.)v, dy ly=o
— By + 24y — 4;) + «(245 — 4, — 4,) + f(2B, — B, — B,) +
- Sc(2A8 — A, — B, + B4)). (34)

3. Discussion

This paper is concerned with the study of the effects of mass transfer
on the hydromagnetic free-convection flow past an infinite vertical porous
wall with constant suction. The results are displayed in Figs. (1)—(8), respec-
tively, for the dimensionless forms of the velocity, the induced magnetic
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fields, the skin friction, the electric current density and the Nusselt number.
The variations of the temperature field are given in Table | for different values
ofthe magnetic parameter M. In order to he realistic, the values ofthe Schmidt
number Sc are chosen to be 0.22, 0.60 and 0.75 which correspond to hydrogen,
water-vapour and oxygen, respectively, at approximately 25 °C and 1 atmos-
phere, when for the Prandtl number P we get the value P = 0.71, correspond-
ing in the air. The values of all the other parameters are chosen arbitrarily.

Fig. 1. The velocity profiles n for P = 0.71

The variation of the velocity field for different values of Scand M are
shown in Fig. 1. From this Figure we see that the velocity is greater in the
case of the hydrogen (Sc= 0.22) than in the case of the oxygen (Sc= 0.75).
Also we remark that as magnetic parameter Mincreases the velocity decreases
for all the values of the Schmidt number Sc, which quantitatively agrees with
the expectations since the magnetic field exerts a retarding force on the
flow. In Fig. 2 the velocity profiles are shown for constant Gcand M and for
different values of Sc, Gr, and E. It is known that the Eckert number E
may be interpreted as the addition of heat due to viscous dissipation while
the Grashof number Gras the addition of heat due to free-convection currents.
Thus the case when (Tw—TJ) >0 or G> 0 with E 0 corresponds to
the external cooling of the wall, while the case when (Tw— T'J) <0 or G< 0
with E < 0 corresponds to the external heating of the wall. From Fig. 2 we
observe that, in the case G <CO0 with E < 0, for large values of Schmidt
number Sc, the velocity is negative and decreases as E increases. Thus the
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Fig. 2. The velocity profiles u for P = 0.71

Fig. 3. The induced magnetic field H for P = 0.71
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velocity profile is of reversed type in the case of the water vapour (S¢c— 0.60)
and oxygen (Sc= 0.75). Finally from this Figure we see that, in the case
G ]> 0 with E 0, the velocity is positive and increases as E increases for all
values of Sc.

Fie. 4. The induced magnetic field H for P = 0.71

Fig. 5. The variations of the skin friction r for P —0.71
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The variations of the induced magnetic field H are shown in Fig. 3 for
different values of Scand M. From this Figure we see that the induced magne-
tic field gets positive values near to the wall, while far from the wall it gets
negative values, and this means that there is a reverse ofthe induced magnetic

Fig. 6. The variations of the Nusselt number Nu for P = 0.71

Fig. 7. The electric current density Z for P = 0.71
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field. Also we remark that as M increases the induced magnetic field also
increases for all values of the Schmidt number. In Fig. 4 the variations of
induced magnetic field H are shown with y for different values of Scand E.
We observe that, in the case G< 0 with E <[ 0, the induced magnetic field

Fig. 8. The electric current density Z for P = 0.71

decreases as the Eckert number E increases, while in the case G]>0 with E > 0
as E increases the induced magnetic field also increases for all values of Schmidt
number Sc.

The numerical values of temperature O calculated from expression (29)
are given in Table 1. We remark that as magnetic parameter M increases, the
temperature decreases for all values of Sc. Also, from this Table we see that
the temperature increases as E increases.

The skin friction r is plotted against,G in Fig. 5 for different values of
M and Sc. We see that, for all values of Schmidt number Sc, as M increases
the skin friction decreases. Thus the presence of the magnetic field helps in
reducing the frictional drag on the wall.

The Fig. 6 displays the variation of the Nusselt number which represent
the local dimensionless coefficient of heat transfer. We see that an increase
in the strength of the magnetic field causes the Nusselt number to decrease.

The variation of the electric current density Z is shown in Figs. 7
and 8. From the Fig. 7 we see that as magnetic parameter M increases the
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Table I
The variation of the temperature 6 profiles for P = (.71
Gymtt Ge=2 E = 0.001
eIy, S, = 0.22 =3 S, = 0.60 S = 0.75
T ¥ [egmainos M =015 M=004 | M=015 | M=004 | M=ols

0.0 1.000000 1.000000 1.000000 t 1.000000 1.000000 | 1.000000
0.2 | 0.769644 0.767742 0.768657 | 0.763513 0.769126 : 0.763703
0.4 0.587249 0.584201 0.587289 | 0.580236 0.587218 0.580162
0.6 0.447354 0.443656 0.447592 ‘ 0.440307 0.446990 0.439841
0.8 0.341264 0.337269 0.340715 ‘ 0.334003 0.339324 ' 0.333193
1.0 0.260985 0.256952 0.259137 11 0.253331 0.257399 ; 0.252294

Gy=—5 G =2 M = 0.04

S, = 0.22 S, = 0.60 ¥ S, = 0.75

y E=—0001 | E~—0003 | E=—0001 | E——0003 | E=—0001 | E=—0003

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.2 0.747046 0.735604 0.740685 0.716521 0.739263 0.712257
0.4 0.557748 0.539929 0.550220 0.517345 0.549234 0.514386
0.6 0.416179 0.395414 0.409617 0.375730 0.409417 0.375128
0.8 0.310326 0.288775 0.305472 0.274214 0.305904 0.275510
1.0 0.231076 0.210099 0.228137 0.200984 0.228948 0.203416

G, =5 Gy =2 M = 0.14

S, = 0.22 S, = 0.60 Se = 0.75
B E = 0.001 | E = 0.003 E = 0.001 ] E — 0.003 E = 0.001 | E = 0.003
0.0 1.000000 1.000000 1.000000 1.000000 1.000000 | 1.000000
0.2 0.769644 0.803400 0.768657 0.800437 0.769126 0.801846
0.4 0.587249 0.628433 0.587289 0.628553 0.587218 0.628338
0.6 0.447354 0.488940 0.447593 0.489658 0.446790 0.487247
0.8 0.341264 0.381591 0.340715 0.379942 0.339324 0.375771
1.0 0.260985 0.299528 0.259137 0.293984 0.257399 0.288769

|

electric current also increases for all values of S. Finally from Fig. 8
we see that the electric current density increases as the Eckert number E

increases.
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DEPENDENCE ON THE GEOMETRY AND
ON THE BASIS SET OF LOCALIZED ORBITAL ENERGY
AND MOMENT CONTRIBUTIONS

I. ENERGY QUANTITIES
By
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In a series of papers we investigate the localized orbital contributions at the molecular
experimental and theoretical equilibrium geometries using various basis sets. The present
study deals with some energy quantities obtained from localized charge densities: the kinetic,
the (effective) potential and the selfinteraction energies are discussed. Several regularities
were found for the systems considered, namely the molecules HF, H,0, NH; and CH,, re-
spectively.

1. Introduction

As the simplest antisymmetric wavefunction of a closed-shell system,
a single determinant of one-particle functions is invariant under any unitary
transformation [1], the tranformations could be chosen to obtain new orbitals
localized as much as possible [2]. Several localization procedures have been
published as well as many advantages of using localized orbitals have been
pointed out recently [3—7]. In a series of papers we also investigated various
properties of localized charge densities for some ten- and eighteen-electron
systems [8—11].

It is known that in any quantum-chemical calculation the problem arises
which type of basis set and which geometry data are to be used for the study
of the given molecular system. As to the choice of a suitable basis set, there
are usually the computer time and/or size which make a limit for the number
of basis functions. It has been pointed out, e.g., that at least one d function on
the oxygen is necessary to take for the molecule H,O in order to obtain an ac-
ceptable value for the total energy as well as for the electric moments (more
details on basis set dependence seein [12—14]). An exhaustive analysis of the
effect of basis set variation on the localized charge distribution of H,0 has also
been done [1]. From the results it follows that in the presence of polarization
functions (at least one d-type on the oxygen) the energy contributions as well
as the electric moment components provide regular differences for bond and
lone pair localized orbitals. The change of energy contributions parallels with
that of total energy and similarly the first and second order moment com-
ponents (localized moments) with that of the corresponding total molecular
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values [10]. These results confirm — together with those obtained for the
transferable property [11] — that the localized orbital energy contributions
and the localized moments are suitable for characterizing even larger molecules.

It is interesting to investigate how the choice of geometry data influence
the values for the localized orbital energy and moment contributions. The
molecules are often investigated at their experimental equilibrium geometry
(if available). In many cases — for simplicity — standard [15] or model [8]
preferable. for the determination of harmonic force constants which geometry
geometrical values are taken for the calculations. It is known that there are
not too many differences between the total molecular properties whether
calculated at the experimental or theoretical (or nearby) geometries. In
spite of this, many authors argue (see, e.g., [16] and reference therein),
which geometry data are preferable for the determination of harmonic force
constants. In this paper we summarize our results obtained for HF, H,0 and
NH, core, bond and lone pair localized orbitals and those obtained for CH,
core and bond pair localized orbitals. We investigated the localized charge
densities at the molecular experimental and calculated equilibrium geometries
by the use of different basis sets.

2. Total energies and total kinetic energies

For a systematic study a suitable basis set is necessary. Various basis
sets were chosen for the molecule HyO in order to investigate it at the experi-
mental and the calculated equilibrium geometry. The results are given in Table I
the values suggest that the so-called 6-31G/d basis set seems to be the more
convenient as the total energy is quite acceptable (the p-type polarization
functions on hydrogens do not give large contributions to the total energy)
and also the virial coefficient is one of the best. The detailed description of
the basis sets considered are given in the corresponding papers: STO-3G [17],
4-31G [18], 6-31G [19] while 6-31G/d and 6-31G/d+p [20]. In order to
investigate similar results as well, for a comparison the values obtained by the
so-called DUNNING’ basis sets are also given [12]. From the values one can
see that the resulting total energy by basis 6-31G/d is better than any of
(sp/s) type but worse than, e.g., DUNNING’s contracted Gaussians of [4s3pld/2s].
The calculations, however, are rather effective, as pointed out in [18—20,]
with basis sets of split-valence types. Therefore we made our geometry depen-
dence study by the use of basis 6-31G/d. For a comparison the corresponding
values which we obtained by using 6-31G basis are also given. All calculations
were performed on a CDC 3300 computer (Hungarian Academy of Sciences,
Budapest).

The experimental geometry data were taken as those used in an earlier
work [7]. The theoretically obtained values for basis 6-31G were as given in
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Table I

Total energies calculated for H,O (in hartree)

T | Total kinetic
otal energy ‘ energy
STO-3G Exp —74.96381 74.53346
Calc —74.96543 74.46618
4-31G Exp —175.90847 75.87753
Cale —175.90987 75.89167
6-31G Exp —75.98480 75.91439
| Cale —75.98628 75.93238
6-31G/d | Exp —176.01205 75.76360
| Cale —176.01231 75.80832
6-31G/d-p | Exp —76.02318 | 75.74601
Cale ki 76.02365 75.80347
[4s3p/2s] | Exp —176.00209 —
[4s3pld/2s] Exp —176.02882 —
[4s3pld/2slp] Exp —176.04172 75.98016
Calc —76.04209 76.02276
Table II

Total energies calculated using basis 6-31G and 6-31G/d (in hartree)

Basis 6-31G
Total energy I Tot:l:el;igymatic
|

HF Exp | —99.98341 { 100.06277
Cale —99.98343 ‘ 100.05384

H,0 Exp —175.98480 75.91439
Cale —175.98628 75.93238

NH, Exp —56.16146 56.12776
Cale —56.16632 56.18475

CH, Exp —40.18035 40.17622
Cale —40.18060 40.24605

Basis 6-31G/d

Total kinetic

Total energy energy
HF Exp —100.00326 99.84123
Cale —100.00333 99.85858
H,0 Exp —176.01205 75.76360
Cale —176.01231 75.80832
NI, Exp —56.18513 56.01449
Cale —56.18536 56.06068
CH, Exp —40.19585 40.10471
Calc —40.19602 40.14709

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



336 E. KAPUY et al.

[19], except for HF, where the R = 1.7403 a.u. was calculated (not given in
the above reference). As to basis set 6-31G/d — even they have already been
calculated [21] — we also were looking for the theoretical equilibrium geomet-
ries. This was necessary because in the calculations (as reported in [21]), an
average value of 0.8 was used for the exponent of d-type functions, while we
performed the calculations by using optimized exponents for each compound
(values taken from [20]). The calculated equilibrium geometry data (only
slightly different from those given in [21], are the following:

HF R -1.7183 a.u.
H20 R = 1.7876 a.u., a= 105.51°
NH3 R - 1.8943 a.u., a= 107.13°
CH4 R = 2.0512 a.u. (tetr.)
The results obtained for these molecules are given in Table Il. The total ener-

gies are rather different obtained by basis 6-31G at the experimental and the
calculated equilibrium: the largest difference was found for NH3(270.005 a.u.),
that for H20 is about 0.0015 a.u. while for HF and CH s less than 0.0003 a.u.
The case is not the same for the total kinetic energies: the larger differences
were found for CH4and NH3. As to the results obtained by basis set 6-31G/d,
they are rather close to each other at the experimental and the theoretical
equilibrium, but only for the total energy. The kinetic energy result depends
strongly on the geometry: the differences obtained at experimental and the
calculated equilibrium are about 0.04—0.05 a.u., except for HF (less than
0.02 a.u.). The total energies and total kinetic energies obtained for these
molecules suggest, that the inclusion of d-type function on the heavy atom is
important. Although the use of a basis (sp/s) type may be sufficient for some
cases, the geometry should then be chosen very carefully.

3. Energy contributions of core orbitals

Several quantities can he used for characterizing localized orbital densi-
ties (see, e.g., [7—9, 22]). In the present paper we investigate four quantities as
energy contributions obtained from the individual localized orbitals. There
are three different types of localized charge distributions for the systems
considered: core, bond and lone pair orbitals. The energy contributions studied
are the following: the kinetic, the potential, the self-interaction, and the so-
called effective potential energy quantities. First the core orbitals are inves-
tigated.

The values obtained are given in Table Ill. In order to avoid the super-
fluous enlargement of the paper the results obtained only by basis 6-31G/d
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Table III

Energy contributions from core localized orbitals using basis 6-31G/d
(in hartree)

Kinetic energy ‘ Potential energy
E L. lile ML
HF Exp 39.3595 |  —79.9215
Cale 39.3585 —179.9255
H,0 Exp 30.6572 | —63.4006
Calc 30.6536 —63.4108
NH, Exp 23.0578 —48.8815
Calc 23.0555 —48.8940
CH, Exp 16.5918 —36.3665
Calc 16.5933 —36.3813
Selfi s Effoctive p
HF Exp 5.48787 —65.1388
Cale 5.48780 —65.1378
H,0 Exp 4.84412 —50.8877
Cale 4.84384 —50.8820
NH, Exp 4.20048 —38.3918
Cale 4.20024 —38.3860
CH, Exp 3.56153 —27.6859
Calce 3.56160 —27.6829

are presented. The kinetic energy contributions do not differ much whether
obtained at the experimental or at the calculated equilibrium geometry.
(They differ less from each other than the corresponding total kinetic energy
values for all compounds studied). As the potential energy contributions do
not involve the whole (‘“effective’) potential energy for a given localized
orbital, we calculated the effective ones for each type of localized orbital den-
sities by the following equation:

le=V, + ;(2 Giljiy — <Gjli),

where V; = potential energy contribution of the i-th localized orbital, the
expression in parentheses represents the interaction energy between the i-th
and j-thlocalized orbital and so V' is the resulting effective potential energy
contribution for the given i-th orbital. Both ¥, and Vi are given in Table III
for the core orbitals. The results suggest that as the ¥’y potentials show smal-
ler differences between the experimental and the calculated equilibrium geo-
metries, these contributions may be used as transferable quantities (similarly
to the kinetic ones [23]) in a study of related large molecules.
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The self-interaction energy contributions do not change much either as
going from the experimental to the calculated equilibrium position of nuclei.
It is remarkable that the signs of these changes parallel with those found for
the kinetic energy contributions (see Table Ill). It generally holds that all
deviations calculated for the core orbitals between the experimental and the
theoretically determined equilibrium geometries are rather small, smaller
than 0.05% in any cases.

4. Energy contributions obtained for bond and lone pair orbitals

The quantities discussed for core orbitals are given also for the bond
orbitals: they are given in Table IV. The mostremarkable results show that all
quantities are larger at the calculated than at the experimental geometries.
This may certainly be due to the shorter bond length at the theoretically

Table IV

Energy contributions from bond pair localized orbitals using basis 6-SIG/dJ"in hartree)

Self-interaction Effective potential
HF Exp 2.20646 —10.4503
Calc 2.21469 —10.4828
h 2 Exp 1.62373 -8.65182
Calc 1.63501 -8.70041
NH3 Exp 1.19079 —7.16050
Calc 1.19847 —7.19583
CH4 Exp 0.86508 —5.87136
Calc 0.87018 —5.89695
Kinetic energy Potential energy
HF Exp 0.91894 —3.31001
Calc 0.92292 —3.32581
H20 Exp 0.83325 -2.57031
Calc 0.83907 —2.59100
NH3 Exp 0.75750 —2.00023
Calc 0.76160 —2.01317
CH4 Exp 0.68737 —1.53839
Calc 0.69001 —1.54592

obtained total energy minima. As it is well known the shorter the bond distance
the larger the nuclear potential, so the electron density becomes also more
compact [24]. This fact is reflected even in the energy contributions obtained
for bond pair localized orbitals.
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As to the values of energy contributions resulting for lone pair orbitals
(HF, H,0 and NH,), similar conclusion could be found for the kinetic energy
contributions. The self-interactions, however, are always larger at the experi-
mental than at the calculated equilibrium geometry of nuclei (see Table V).
The effective potential values donot change in the same direction for the studied
systems. The general conclusion can be made that there are the kinetic energy
terms which reflect the most suitably (i.e. for all of different types of localized
orbitals) the increasing electron density as going from the experimental to
the calculated equilibrium geometries. This result may well be used if the
total energy of related larger systems is constructed by the use of the kinetic
energy contributions of localized orbitals determined at the calculated equilib-
rium geometry of a small molecule.

5. Conclusion

Several energy quantities have been discussed using the localized decompo-
sition of the total charge distribution for some small molecules. It can be seen
that the kinetic, the self-interaction and the effective potential energy contri-
butions characterize suitably the main differences for the various types of
localized orbitals. There is an interesting question, however, to be further
analyzed. It is a longstanding goal in the study of localized charge densities,
to be able to determine whether a bond or a lone pair distribution is “larger”
or ““greater” in a given system [25]. There are the self-interaction energy con.

Table V
Energy contributions from lone pair localized orbitals using basis 6-31G/d (in hartree)
i Self-interaction Effective potential P
s ; frod X
HF Exp ‘ 2.78488 —11.6279
Cale 2.78536 —11.6310
H,0 Exp 1.98861 —9.34880
Cale 1.99026 —9.35482
NH, | Exp 1.37712 —7.43426
’ Cale 1.37946 —7.43999
I Kinetic energy Potential energy
|
HF Exp 1.03012 | —3.77782
Cale 1.02991 —3.77834
H,0 Exp 0.87860 —2.76981
Calc 0.87753 —2.76867
NH, Exp 0.73644 —1.97108
Cale 0.73485 —1.96911
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tributions which could be related to the “extent” of an individual charge den-
sity. As one can see from the results (Table IY and Table V), there are the
lone pair orbital self-interaction energies which are larger than the bond pair
ones by about 10% (for HF) and 5% H(2), butthe opposite relation holds
(bond pairs are larger than the lone pair one) for molecule NH 3(approx, by 3 %).
These results affirm that there is no reason to expect a larger extent for a
bond or a lone pair localized charge distribution. These quantities do not
depend only on the enlargement of the basis set but also, e.g., on the num-
ber of different types of localized orbitals (i.e. on the system) as well. It can
also be noted that the effective potential energy contributions do show similar
regularities for the studied molecules.

In the next paper of this series other types of energy quantities will be
discussed: the interaction energy contributions between the localized orbitals.
After that paper an analysis of the first and second order electric moments
of localized charge distributions will follow. It is planned to publish a study
on the geometry and basis set dependence of the localized moment characteris-
tics as well.
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J. U. Keller:

Technische Thermodynamik in Beispielen, Teil 1, Grundlagen

Walter de Gruyter, Berlin, New York, 1979, pp. 307

This is the first volume of a handbook for technical thermodynamics taught nowadays
at German Universities. Its aim set is to be helpful to students interested in the various fields
of technical sciences where thermodynamics is an indispensable discipline as, for instance,
classical engineering, different fields of technology, physical engineering, physical chemistry,
chemical technology and so on. With this book the author’s main goal is to help the students
to overcome certain difficulties encountered in the case of applications of the laws, fundamen-
tal relations and basic concepts of thermodynamics for given, relatively simple tasks and
problems.

In the first part of this volume of Ketter’s work seventy well selected examples are
discussed through detailed calculations and complete solutions. These examples refer to
the zeroth, first and second laws of classical thermodynamics, further some of them belong to the
domain of thermodynamics of multiphase systems. On the other hand, the second part of this
volume is devoted to a short, concise but very careful and clear presentation and definition
of the most fundamental and relevant concepts and notions of thermodynamics. The treatment
of this part clearly presents that thermodynamics is not a technical discipline but rather an
important field of classical physics, i.e. a fundamental science for a high number of applied
sciences.

The material contained in the book has been written and arranged in such a manner
that university students and even lecturers can equally profit from it. Consequently, the book
published in the “de Gruyter Lehrbuch” series will be certainly very useful to everybody
interested in the applications of classical thermodynamics. The neat printing and very fine
edition of the book Is the merit of the Publisher.

I. Gyarmati

A. Z PaTASHINSKII and V. L. Pokrovskii:

Fluctuation Theory of Phase Transitions

Translated and edited by P. J. Shepherd, Pergamon Press, Oxford, New York, Toronto, Sydney,
Frankfurt, 1979, pp. 321

Statistical physics can explain various properties of condensed matter and predict
diverse phenomena in metals, alloys, insulators, semiconductors, liquid helium and so on. In
certain cases the theories treat successfully the properties of condensed matter as sets of an
ideal gas of excitations. However, regarding the problem of phase transitions (critical pheno-
mena) fluctuations grow in a system as its critical point is approached. In these cases the
fluctuations interact with each other so intensively that it is no longer possible to describe
them as an ideal gas.

It is well known that some years ago a new model of critical phenomena based on the
hypothesis of scaling the fluctuations was proposed to describe the strong interactions of
fluctuations and the predictions of this theory agree well with certain kinds of experiments.

The purpose of the excellent book of the famous Russian authors, members of the so-
called Landau school, is to give an account of the physical ideas of the scaling model and to
review some of its special applications in the study of various properties of systems close to
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phase transitions. The book is not an exhaustive monograph of the theory of phase transitions,
although the English edition is a corrected and enlarged version of the original Russian. Of
course, as Landau’s works have played an important role in the development of the theory
of second order phase transitions the book begins with the summary of the Landau theory.
The subsequent chapters are devoted to the treatments of the thermodynamics of strongly
fluctuating systems, some applications of scaling hypothesis, dynamical phenomena in the
critical region, the approximate calculation of critical indices, the microscopic theory of phase
transitions, the theory of renormalization group, etc.

Undoubtedly, the book will give an invaluable aid to researchers of the field of solid
state physics and can be very useful to university lecturers and young scientists, too.

l. Gyarmati
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