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EDITOR S NOTE

“Hungarica Acta Physica” was the title of the first foreign language physics 
journal to appear in Hungary. It was published in 1949 in English and German and the 
Editor was Prof. K. Novobátzky. In the period directly following the Second World 
War, Hungarian physicists encountered difficulties in publishing their papers abroad, 
and so the results obtained by them during and after the war appeared in that journal; 
in this way it became the representative journal of physics in Hungary. For instance it 
was here in the very first paper that the report appeared of the Hungarian lunar radar 
experiment for which the equipment had been constructed with several interruptions 
during the war; the first successful experiment took place only one month after the 
radio announcement on the American experiment (February 1946). However, only a 
single volume (6 issues) was published. This was due to the reorganization late in 1949 
of the Hungarian Academy of Sciences which had taken over the responsibilities of 
scientific publishing. A new journal replacing its predecessor was launched under the 
title “Acta Physica Academiae Scientiarum Hungaricae”, with Prof. P. Gombás as 
Editor (1952-1971). The Editorial Board of the new publication then formulated the 
following aim:

“The aim of the Hungarian Academy of Sciences in starting the new series of 
Acta Physica is to contribute to the improvement of the international relations of 
progressive science, to the further development of science, to the cause of peace and the 
closer friendship of peoples.”

These aims are no less valid to-day.
Some confusion was to arise, however, because the numbering of the volumes of 

the new journal commenced from 1, which was less than helpful for those not familiar 
with the history of the two journals. This is one of the reasons for us taking this 
opportunity to clarify the situation.

From the first issue up to the present time the journal has had the same cover, 
with the title page in Latin. Unfortunately, however, Latin, the language of science, that 
was at one time known all over the world, and represented one of the most significant 
achievements of the Middle Ages, is now gradually dying out; it is taught in fewer and 
fewer schools and has largely been replaced by English. The principal reason for this 
was the emigration of European Scientists to the USA during the Second World War 
causing the centre of the physical sciences to shift from Europe to the USA. In addition,

I* Acta Physica Hungarica 54, 1983
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the favourable development of international relations during the past three decades 
means that our periodical is no longer the representative of Hungarian physics to-day. 
The majority of Hungarian physicists no longer send their papers exclusively to the 
Hungarian Acta but also to the various international journals, authoritative in the 
particular fields cultivated by the physicists. On the other hand, physicists from abroad 
find it advantageous to submit their papers to the Hungarian journal — so the latter 
itself has become international.

In view of these developments the Hungarian Academy of Sciences decided to 
change over to English on the cover and title page, maintaining the title in Latin, while 
papers continue to be accepted in English, French, German and Russian.

The Editorial Board has taken this opportunity to simplify the slightly 
complicated Latin title of the Journal to read “Acta Physica Hungarica”, a title which 
we believe is in better accord with international practice, particularly since the Journal 
is mostly referred to by that title anyway. The new title “Acta Physica Hungarica” is 
introduced with the present issue. Advanced printing techniques make it possible for 
the Journal to appear with a more pleasing colour cover. We wish to emphasize that 
this is not a new journal; the volumes are numbered consecutively. Our aim is to bring 
ourselves more up to date with these minor changes which, we hope, will prove to be of 
satisfaction to our authors and to our readers.

Budapest, 3rd May 1983.
Prof. I. Kovács

Acta Physica Hungarica 54, 1983
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ELECTRON IN EINSTEIN’S UNIFIED 
FIELD THEORY

J. N. S. K a s h y a p

Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

(Received 14 October 1981)

In this paper an exact solution of the field equations of Einstein’s unified field theory [7] is 
obtained for the space-time defined by the most general spherically symmetric metric of Synge in 
Kruskal coordinates. It describes the gravitational field of electron.

1. Introduction

In general relativity Einstein—Maxwell field equations describe the gravita
tional field of electron. However, due to 4-potential vector tpx , it is considered not to be 
internally consistent as the field equations for empty space-time. Hence the need of a 
field theory known as unified field theory was realized. In such a theory matter is 
treated as absorbed into the field itself. It describes gravitational and electromagnetic 
phenomena in one and the same framework. Among the unified field theories 
developed so far Einstein’s unified field theory [7] is more applicable from the physical 
point of view. It has been successful in the study of the hydrogen atom [1], Faraday’s 
electromagnetic induction [2] and the Biot— Savart law for magnetic effect due to 
current [3]. But it has been shown that it is not possible to describe an electron in the 
theory [4]. This result throws a dark shadow of suspicion on the sound footed unified 
theory of Einstein. The present investigation shows that the electron is in total grip of 
the theory and gives a good account of how the electron is described.

Let us consider the most general spherically symmetric space-time in Kruskal 
coordinates (u, 9, tp , r) defined by the metric [5]

ds2 = — 2/ dudv + r2(d92 + sin2 9dtp2), (1.1)

where /  and r are functions of (u, v). Here, the space-time K4 is the product of a unit 
sphere S2 and a 2-space U 2 in the sense that an event of V4 corresponds to an ordered 
pair of points, one on S2 and the other on U2. The usual polar coordinates ($, tp) belong 
to S2 and the coordinates (u,v) belong to U2. For the metric (1.1) Schwarzschild 
solution (5) and Reissner—Nordstrom solution [6] have already been obtained. In the 
present investigation we impose the field equations of Einstein’s unified field theory [7] 
for the space-time characterized by the metric (1.1) and show how it describes the 
gravitational field of electron.

Acta Physica Hungarica 54, 1983



4 J. N. S KASHYAP

2. Field equations

In Einstein’s unified field theory the total field is given by the real non-symmetric 
tensor gXfl defined as

(2. 1)

in the usual notations. The symmetric gXli coincides with the metric tensor of 
Riemannian space-time and the skew-symmetric gX)1 is used to interpret the 
electromagnetic phenomena. Here we consider the total field as characterized by

9 i 4 = - / .  Я гг = r2, д3з = г2 sin2 9,

g13 = esin9,  (2.2)

all being functions of и and v alone. In (2.2) the symmetric gXfI correspond to the metric
(1.1). The field equations used by us are those of Einstein (1953) [7]:

where

g ^ . v - g a ^ x v - g i . r i ß= о, (2.3a)

г ^  = 0, (2.3b)

^ = 0 ,  (2.3с)

ûji.t>] = 0> (2.3d)

-  j (ГЬ 'М + Г^,д) + Г{ЕГ ‘е. - Г у ' \ £ - (2.4)

р  _  г а  ,_ Г 0  Г а Г а — Г& Г я
К-Лц * Яд,а ' '  Xji* ßa  * ‘ Яа* ßji 1 Я а1 ßn  •>

in the usual notations. Hereafter, the differentiations with respect to и and v are 
represented throughout by the suffixes 1 and 4, respectively (e.g., f x= d f /du , 
f u = d 2f/dudv,  etc.).

The external field of the isolated charge is the vacuum electrostatic field 
characterized by

J ß = j t r ,ißgiÄP. n = b  (2-5)

where J ß is the charge—current density and is Levi—Ci vita’s tensor density. 
From (2.5) we get

e -  constant. (2.6)

The field equation (2.3a) determines the affine connections. For the total field
(2.2) there are eighteen non-vanishing components of the affine connections and, under

Acta Physic a Hungarica 54, 1983
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the restriction imposed by (2.5) they are as follows:

r 1 _  f* r 2 _  г з  —
/  — — Ar
ß

Г 22 = J f rr*’ r 33=Sin2S r^2,

Г  21 2 4
г З  __ ^ 4  p 4  J 4

1 — ~~ ~Ar ’ 1 AA ~
_ h

4 4  у  »

ТГ22= ~7?ГГ 1> ^33 =  sin2 3 r f 2,
В

Ä f '

r l 3 ~ c o t 9 ,  Г |3 = — sin Scos 9,

e cosec 9 . e sin 9
M 2 = ----— '‘I- F\3 =Ar3

, e cosec $ ,
^ 2 4  = ------------ 7 - 3 —  » 4 ,  Г 34 =

Лг3 r l ’

Ar3
e sin 9 

Ar3

where

2esin9 . 2esin3 
Г 23= — - г - r * ,  П з  = Л/ r r i.

Л = 1 + ^ г ,  ß = l

(2.7)

( 2.8)

From (2.7) it is obvious that the field equation (2.3b) is identically satisfied. 
Making use of (2.7) we obtain the components of R Xfl and R Xfl from (2.4). Consequently, 
the field equations (2.3c) and (2.3d) take the form:

r 4 4  / 4  _  A*_ _  «

U f  A -  ’

1
7 / 14

2 8e2
+ Â , ' “  + A * ? r' r' = 0’

/  4e2 \  4e* В A f
[ r"  + ^ rir*) + Â S r ' r* + 7 r ' r* + 2 /  = °’

d '  4  ̂ 2e2 \1
du Л /г  '

Ô 4 ( 2e2 \1
dv к м

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.90
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6 J N. S. KASHYAP

The field equations (2.9a) and (2.9b) give after integration

,  2ß ,  2a
(2. 10)

where a[ = a(u)] and ß\_ = ß(v)~] are arbitrary functions of integration. From (2.9e) and 
(2.9f) we obtain

2e2 1
+ Ar rxr4 = ~~r K A f r , ( 2 . 11)

where К is a constant of integration. Substituting the value of / , /  f  from (2.9a) in (2.9c) 
we have

+ ^ /Ъ ± _ ^ ± | = 0.14 _

A J y ' A r \ r  у A 

Similarly, from the Eqs. (2.9b) and (2.9c) we get

' r l4 _ 2r4 / r 1A A

(2. 12)

r4 A )  + Ar \  r4
-  —  1 = 0.

The Eqs (2.12) and (2.13) give, after integration

rJ ±
r x

fl4

A

A,
!v ^ ’

У

(2.13)

(2.14)

(2.15)

where у [ = у (u)] and 0[ = d(n)] are functions of integration. For the values of / given in 
(2.10) the Eqs. (2.9d) and (2.11) provide

В
B [ rl ± - ^ \ - - - ^  + - r 4 + ^  = 0,r, A ) r A r r

В
A x \  e2 Ay

7 7
В а л 

H—  Гу H—  — 0,

2Ő

s ß '

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Acta Physica Hungarica 54, 1983
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Similarly, from (2.15) and (2.19) we obtain

á l  - K a r -  2У
A г2 J a '

То find an analogue of Reissner—Nordstrom solution we further assume 

Ke2= —E2, y= —2met, <5=—2mß.

(2.21)

( 2.22)

The constants m and E can be identified, respectively, with the mass and charge of the 
electron. Now, making use of (2.14), (2.20) and (2.22) in (2.16) we get

ß f  2m /— E2

Similarly from (2.15), (2.17), (2.21) and (2.22) we get 

Putting the value of either r4 or r, from (2.23) and (2.24) in (2.10) we have

AB \

(2.23)

(2.24)

(2.25)

3. Gravitational field of the electron

We know that
dr = rxdu + r^dv, (3.1)

which, after using (2.23) and (2.24), gives

ß ^ l  — ~ ~ J ^  + - j J  d r = —adu — ßdv. (3.2)

If we put

U‘ ß V* г г ъa = - ~ ü >  -~p>

where U = U(u) and V =  K(r), then (3.2) and (2.25) take the form

В 1
2m
~7

A B \

e 2\ ~ 1 , dU dV
- - ? )  d r - - v + T ’ (3.4)

2m r -  E2\ dU dV
- T ' / 7  + '? (3.5)
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8 J. N. S. KASHYAP

From the Reissner—Nordstrom solution we find that the product of the coefficients of 
dr2 and dt2 is unity. Taking this point into consideration we define

dU
A d t = i r

dV
T ' (3.6)

The relations (3.4) and (3.6) give

4
dU dV „
Т Г - T - B

dr2 — A 2dt2.

Making use of (3.7) in (3.5) we obtain

- 2 f d u d v = * ( \ - 2̂ s/ Ä  + dr2-

(3.7)

(3.8)

Therefore, the metric form (1.1) reduces to

ds2 dr2 +  r2(d&2 + sin2 Мер2) —

A
В

i 2m /—1 ----- - у / A +
r v (3.9)

where A and В are given by (2.8). The line-element (3.9) corresponds to the Reissner— 
Nordstrom solution in general relativity and shows how the gravitational field of 
electron is described in Einstein’s unified field theory. If E = 0 we get the Schwarzschild 
solution.
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REARRANGEMENT HEAVY ION COLLISIONS WITH TWO 
NUCLEON TRANSFER

Ahmed O sman and S. S. Abdel-Aziz

Physics Department, Faculty o f Science, Cairo University, Cairo, Egypt

(Received in revised form 27 October 1981)

The theory of heavy ion reactions with two-nucleon transfer is considered. These reactions 
are considered as one-step direct nuclear reactions. The initial and final channel wave functions are 
taken as distorted waves describing the two heavy ion interactions through optical model potentials. 
An analytical expression for the differential cross-section is developed using the distorted wave Born 
approximation. We considered in the present work the heavy ion reactions with two-nucleon transfer 
of the incident heavy ion projectiles 10B, 160  and 180  bombarding the heavy target nuclei 160 , 
26Mg, 42Ca, 48Ca, 60Ni, 74Ge and 76Ge with incident projectile energies between 50.0 MeV and 100.0 
MeV, leaving the residual nuclei in different excited states. Numerical calculations are carried out of 
the angular distributions of these two-nucleon heavy ion reactions. The agreement between the 
theoretically calculated differential cross-sections and the experimental data is good. Also, 
reasonable spectroscopic factors are extracted.

1. Introduction

Recently, heavy ion reactions with one and two-nucleon transfer have been 
considered by many authors. Baltz et al. [1], Baltz [2] and Bond et al. [3] investigated 
heavy ion reactions with single nucleon transfer performing DWBA calculations for 
different heavy ion reactions. In these calculations they used an optical model 
potential. The imaginary part of the potential is taken to consist of a strongly absorbing 
volume part describing the small diffusivity and a surface absorptive part with standard 
diffusivity. This potential gives good results in the nuclear surface region explaining the 
large cross-sections in the forward angles measured experimentally. Also, this model 
for the optical potential does not absorb in the nuclear interior. In the case of two 
nucleon transfer reactions, the bound state configuration is found to depend upon its 
angular shape which needs using a weakly absorbing volume potential. Osman [4] 
introduced a theoretical study for 6Li induced reactions as a direct stripping nuclear 
reaction mechanism. Eisen et al. [5], Pieper et al. [6] and Fortune et al. [7], [8] studied 
the two-neutron stripping and pick-up reactions for 160  projectiles incident with 
energy 56 MeV on 42Ca and 48Ca targets. They calculated the angular distributions of 
these reactions leaving the residual nuclei in their ground states and in the first excited 
states using both of the cluster and the macroscopic distorted wave Born 
approximation calculations. The optical model parameters which they used did not
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10 AHMED OSMAN and S. S. ABDEL AZIZ

explain the obtained cross-sections for these transfer reactions. In order to compare the 
theoretically calculated and the experimentally observed cross-sections for the elastic 
scattering process, they used the extracted parameters in the initial and final channels, 
where they obtained better fitting for the transfer cross-sections. Feng et al. [9] studied 
the two-neutron stripping reactions of lsO incident projectiles bombarding 48Ca 
targets and they obtained very small theoretical values for the cross-sections of these 
heavy ion transfer reactions. Bond et al [3] measured the angular distributions for the 
heavy ion reactions of two-nucleon transfer processes in case of 160  and 180  
projectiles incident on 74Ge and 76Ge targets. In their study of the case of stripping 
reaction, they observed a 2 + state which indicates the existence of interference between 
the direct and the two step transfer mechanism. They found that the angular 
distributions for the stripping reactions in the first 2 + state have the same shapes as that 
for the pick-up reactions in its ground states. The same two-neutron transfer reactions 
74Ge(l80 ,  ieO )76Geand 76Ge(160 , 180 ) 74Ge have been studied by Lemaire and Low 
[10] using the exact finite coupled channel Born approximation and also by using BCS 
random phase approximation wave functions. The differential cross-sections of these 
reactions have been measured which are described by the calculations using optical 
model potentials. It was found that the 180  has a 2+ state and exists in the coupled 
channel Born approximation analysis of the experimental angular distributions of 
74Ge ground state. Hamm and Nagatani [11] investigated two-neutron and two- 
proton heavy ion transfer reactions for 10B projectiles incident with energy 100 MeV 
on the targets 12C, 14N and 1бО. They introduced calculations using the exact finite 
range distorted wave Born approximation assuming the cluster transfer of the two 
neutrons or the two protons for the strongly populated level in the mass numbers — 14 
and 18 — residual nuclei and for the 2 + level in the 180  residual nucleus. The shapes of 
the angular distributions have been fitted using the cluster model approximation and 
the wave coupling model predictions. Berg et al. [12] measured the differential cross- 
sections of the transfer heavy ion reactions with incident 160  and 180  projectiles 
incident on 28Si target nucleus, using the exact finite distorted wave Born 
approximation for the surface transfer set of the optical model parameters. A 
theoretical study of heavy ion reactions as a three-body problem has been introduced 
by Osman [13], [14] using projection operators [15]. Clear features are extracted by 
comparing the results with Coulomb transfer reactions [16].

In the present work, a theoretical study is introduced for the heavy ion reactions 
with two-nucleon transfer. Analytical theoretical expression for the differential cross- 
section is developed. The theory and the expressions are developed using the distorted 
wave Born approximation. Optical model potentials are used to describe the 
interaction wave functions in both of the inital and final channels. The parameters of 
the optical potentials are determined from the fitting of the experimental scattering 
data of the corresponding heavy ions. These expressions are applied to different 
rearrangement heavy ion collisions with different two-nucleon transfer. Two-nucleons 
stripping as well as two-nucleon pick-up reactions are considered. Numerical calcu
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lations are carried out for the heavy ion reactions 16O (10B, 8Li)18Ne, 16O(10B, 8B)180 , 
42Ca(160 . 14C)44Ti, 48Ca(160 , 14C)50Ti, 26Mg(180 , 160 ) 28Mg, 48Ca(180 , 16O )50Ca, 
60Ni(180 , 160 ) 62Ni, 74Ge(180 ,  160 )76Ge, 42Ca(160 , 18O)40Ca, 48Са(1бО, 180 ) 46Ca 
and 76Ge(160 ,  lsO)74Ge. The incident energies of the incident heavy ions have values 
between 50.0 MeV and 100.0 MeV. The aim of the present work is to study the heavy 
ion reactions with two-nucleon transfer. The use of the DWBA calculations is done to 
show that the DWBA approximation is suitable for studying such reactions and is able 
to calculate the differential cross-sections of heavy ion reactions. Another purpose of 
the present study is the aim of studying the finite-range effects in these reactions. These 
finite-range effects appear by using finite-range nuclear potentials. The finite-range 
effects are important in obtaining the correct value of the cross-sections. Then, it is our 
aim to get the correct values of the spectroscopic and normalization factors. Thirdly, 
the study of nuclear reactions with two-nucleon transfer gives more information about 
the energy levels of the captured nucleons in the different shells. Then, in the present 
study, the DWBA calculations have to be reformulated and modified to include all 
these effects. Including all these effects, the DWBA approximation is reformulated and 
modified and evaluated in the present theory for heavy ion reactions with two-nucleon 
transfer. In the present work, we carried out theoretical calculations for the differential 
cross-sections of these heavy ion reactions for different values of incident energies and 
leaving the residual nuclei in different excited states. The calculated angular 
distributions are compared with the experimental data. From the fitting of the 
theoretical and the experimental angular distributions, extracted values of the 
spectroscopic factors are obtained.

In Section 2, we introduce the developed expressions of the differential cross- 
sections of the heavy ion reactions with two-nucleon transfer using the distorted wave 
Born approximation. Numerical calculations and results are given in Section 3. Section 
4 is left for discussion and conclusions.

2. Expressions of the differential cross-sections with two-nucleon transfer

Let us consider the two-nucleon transfer heavy ion reactions represented as

A(C + (a + b))+T->R(T+(a + b)) + C, (1)

where A is the projectile composed of the bound state of the two particles (a, b) and the 
core C. In the projectile A, let us assume that the particles a and b have relative angular 
momenta /„ and lb, respectively. The residual nucleus R has been formed after the 
reaction process occurs and both of the particles a and b have been captured by the 
target nucleus T and are bound in R with relative angular momenta l„a and l„b, 
respectively. The transition matrix element 7}f of such reaction can be written in the 
form

Tfi = ^ f- ) \Vac(ra)+Vbc(rb)\iP\ + ) . (2)
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In writing the transition matrix element 7} ( as in the form given by Eq. (2), we have 
neglected the potential due to the stripping associated with the Coulomb excitation 
and another potential between the core C and the target nucleus T, since we are 
interested in the region outside the nucleus. Let us consider that the coordinates R and 
R' are the separation coordinates between the interacting heavy ions in the initial and 
final channels, respectively. Then we can write

R=r,+
m A

and
mT

R = — rc
mR mK

(3)

(4)

where p is the separation coordinate between the center of mass of the particles a and b 
and the core C. r(. is the separation coordinate between the particles C and T. The wave 
functions and ф{/~> represent the interaction wave functions in the initial and final 
channels, respectively, and can be written as

M +)= ^ +)(R)Xi
and

(5)

(6)

where i/H+)(R) and i/i(_)(R') are the distorted wave functions. Xi is the wave function of 
the internal motion of the projectile and the target nucleus, while Xj is the wave 
function of the internal motion of the residual nucleus R and the ejected particle C. Let 
us represent both of Xi and Xf in the L —S coupling scheme, from which we can 
represent the wave functions in terms of the relative and center of mass wave functions. 
Then

<«,/, N,L; i f  I n ja, nblb\ i f )  (juj 1сцс 11АцА)

(lm LM I i f /г) ( i f /1S a \j Hj) ФД) <MS) Й К -  <h>)

Xi: Xil VZMab) < l(P) (7)
and

х, - е {
/„_ /„ JaJ l T rn„ a' I

® l T J ( J aJ b)
[ Nf S '  U  KJbUjH тМп 

T(JaJb; i f .  S') <nf l„, Nf Ln, if„  I nf J „a, nfblnb-, if„> 

(lnmn L  Mл \ У „ цп) ( I f  „ цп S' a' \ J Hj)(J HjI t Ht I Hr) 

<MQ <MS) xas K ,  o'b)xi: xiI

( 8 )
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Introducing Eqs. (5), (6), (7) and (8) into Eq. (2), we get for the transition matrix element 
an expression given as

n, n,  i f  la lnJ a Ja l I J  m m„
: N ,  lb Kjb Jb LLn J M M n\ ®  I- j{J“Jb) 

®,cAiJt)  T(JaJbi i f .  S') T( jJb; i f  S) (nf la, N f Ln; i f ,  | 

nfa I > И/Л«,; ^ n )  <n,/, i f  I nala, nbl„; i f )

(/„m„ LnM„ I if,//,) ( if ,/г, S' ff'| У /iy) (J //у / г /Гу I / R /г„) 

(/m LM I i f  /г) ( if  /г S <х[/ /г,) O' /г; /с /гс 1 ,

where the integral is given by

Í C ( Ü { W + ^ W Î  l/,m(rafc)

^ lm(P) drû(, dp j Фг„м„(Р + О  iA< + ’(R) drc.

(9)

( 10)

Taylor expansions are used for the distorted waves i/̂ <+)(R) and *(R'), and also for 
the bound state wave function (pLM(p + rc). These expansions in partial waves are given 
by

m . mab
|А<+>(гс+ ^ р )  =  4 я ^ 7 р- ^ ( + ) X (Ог У Г(к,)У ^(гс) ^ ( + ,(гс) (11)

т л l m

*«-ч=ч
^m R m .

= 4ягГ ^Г р Vv(-> X (i)' (-
I 'm'

\ ï I7'(k/) IT'W
( 12)

and the bound state wave function can be expanded as

<P*nMn(rc + p) =  ( -  l )L" <Р*„м„(Гс-Р )  =  ( -  1)L" e ' p V ф*„ <Р*„мА)-
Then

^î„M„(rc + p) = ( - l ) L" e - p ТГ„м"(гс)Фг„м„(Гс). (13)

The relative motion wave functions of the two captured particles in the projectile 
U[m (rab) and in the residual nucleus vlnnin (rab) as well as the center-of-mass bound state 
wave function Ф1М (p) can be taken as Morinigo wave functions [17]. The forms of 
these wave functions are

< m> J  = N(/„ . .  У ; ь- 1е-*г‘>УГГ(r j ,  (14)

Ulm(rab) = N(l, .. 1 7 Ы ,  (15)
and

4>lm(9) = N(L, . .  . )pL- l e-*’ У” (р). (16)
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14 AHMED OSMAN and S. S. ABDEL AZIZ

Also we use for both of the potentials Kc(ra (and Vbcir b) expressions given in the form of 
the Yukawa potential as

D
_ 1 /0  aC 0 -  0Lac(ra -  RaC)

and

Kc(rJ=V°ac- -e

R
VbC(rb)=V°bĈ e - ^ - R̂ .

(17)

(18)

where

Introducing Eq. ( 10) into Eq. (9) and making use of Eqs. ( 11 )—( 18), and then performing 
the integration over rab, we get for the transition matrix element an expression as

Т = 4 т г у {  ”/  ^  1° ln„ja Ja 1 lnj  m mn 1 /fj, * (J J )
fi ^  [Nj N ,  if„  lb l„Jb J„ LL„ J M M n\ ® ,Tji a b)

®  ,cj{jJb)T(JaJ b̂ n  S') T(jJ„-, i f  S) <inf ln, N,L„ ; if„  | 

nf jna, nfbl„b; if„> <«;/, A,L; i f  I nala, nblb; i f )

(/„ m„ L„ M„ \ if„ Цп) №п Pn S'a' \ J Pj) (J Pj IT pT \ I R pR)

{lm L M\ £ f  p)(£F n S  a \ j  pj) (j pj Ic pc \ IA pA)

M. L  (19)

F(rc) = P F l + QF2, (20)

P = V°R„ flaCRaC
27Ti (20/,

\  mnb J

(21)

Q =
V°brRЬС̂ ЪС*o0ibcRbc

V m*b J

ITTT(2t)!, (22)
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F . W - I / { « * + * -  I V W ' J ] ■»

таь ( 2 m AT\ 1/2 ,

m , V Ä2
№ -  Кл г (гс )] 1/2 _

- ^ ) 1,2K r - U r c ) ] 1/2

F 2(rc)=  11 | а ьс + * -  1/2 [ £ , -  KÄC(rc)] 1/2 _

" U / 2 ш а т Х 1/2

т л I h 2
LEi-VAT(rc)V12-

^ У  '2 [E,T- V 2nT(rc)-]1/2

(23)

(24)

Since the transition matrix element 7}, has been given and expressed by Eq. (19), then 
we get for the differential cross-section of the rearrangement heavy ion collisions with 
two-nucleon transfer an expression as

d a rri\Tmic k f 1
d ß -  (2nh2)2 Yt (2IA+ í ) (2 IT+ l ) J t J  fil

PCUR

(25)

In the present work, an expression for the differential cross-sections of heavy ion 
reactions with two-nucleon transfer has been evaluated. The DWBA approximation 
has been used in the present formulation in Section 2. The present formulations of the 
DWBA differ from previous approximations. The difference is that the finite-range 
effects in the nuclear potentials have been taken into account in the present 
formulations. These effects have been solved, evaluated and are given explicitly by the 
factor F(rc) as given by expressions (20)—(24). In getting the explicit form of the present 
formulations, we used the Taylor expressions for the captured nucleons wave function 
as well as for the distorted wave functions. The local WKB approximation is used also 
for the (P) operators for its operations on the corresponding captured nucleons and 
distorted wave functions. The obtained factor F(rc), due to the finite-range effects which 
appear only in the present formulations depends on the optical model potentials 
between the interacting ions. This makes our present formulations for the DWBA 
different from previous formulae.
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16 AHMED OSMAN and S. S. ABDEL AZIZ

3. Numerical calculations and results

In the present work, the heavy ion reactions with two-nucleon transfer have been 
studied. Theoretical investigations for these reactions are introduced. Expressions for 
the differential cross-sections have been developed using the distorted wave Born 
approximation. Numerical calculations are carried out for the angular distributions for 
different heavy ion reactions. We investigated the two nucleon transfer heavy ion 
reactions 16O(10B, 8Li)18Ni and 16O(10B, 8B)180  with 10B projectile ions incident on 
160  with an energy of 100 MeV leaving both of the residual nuclei 18Ni and 180  in 
different excited states. The 160  projectile ions are used in bombarding the 42Ca and 
48Ca target nuclei with an energy of 56 MeV in the reactions 42Ca(160 , 14C)44Ti, 
48Ca(160 , 14C)50Ti leaving the residual nuclei 44Ti and 50Ti in different excited states. 
The angular distributions of the two neutron stripping heavy ion reactions 
26Mg(180 , 160 ) 28Mgand 48Ca(180 , 16O)50Ca have been calculated for ieO projectile 
ions incident on 26Mg and 48Ca target nuclei with energy 50 MeV. While for the 
transfer heavy ion reaction 60Ni(180 , 160 )62Ni the angular distributions are measured 
for 180  incident energy 65 MeV leaving the 62Ni residual nucleus in its ground state. In 
the case of the reaction 74Ge(180 , 160 )76Ge, the angular distributions are studied for 
180  incident energy 75 MeV, leaving the residual nucleus 76Ge in the ground state and 
its first excited state. Also, two neutron pick-up heavy ion reactions are investigated via 
the reactions 42Ca(160 , 18O)40Ca and 48Ca(160 , 180 )46Ca, at 160  incident energy of 
65 MeV. While differential cross-sections have been calculated for the heavy ion 
reaction 76Ge(,60 , 180 )74Ge at 1бО incident energy 77.56 MeV leaving the residual 
nucleus 74Ge in different excited states. Optical model potentials have been used in 
performing the distorted wave Born approximation calculations. Wood-Saxon 
potential form is used for the optical potentials. The different values of the different 
parameters of the optical potentials used in the present work are given in Table I. The 
present numerical calculations are performed on the CDC 6600 computer. We used in 
the present calculations the computer program LAJOLLA. This is the international 
computer program code but it is modified to include the factors which appeared in our 
present formulations due to the finite-range effects and other different approximations 
used in Section 2. In the present computations, we used the DWBA computer code 
programs by using a number of partial waves which range between 20-60 according to 
each case of the considered heavy ion reactions separately. Each individual case for the 
reactions considered needs a computer time between 30 — 65 minutes. With these 
computer program codes, the differential cross-sections of heavy ion reactions are 
calculated. The calculated angular distributions are shown in Figs 1-10. The 
theoretical calculations are shown by the solid curves. The experimental measurements 
are also given by the points. The present theoretical calculations are fitted to the 
experimental angular distributions. From this fitting, the spectroscopic factors of these 
reactions are extracted. The present obtained values of the extracted spectroscopic 
factors are listed in Table II.
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Fig. 1. Differential cross-sections of the reactions 16O(l0B, 8Li)18Ne and 
16O(10B, 8B)180  at 10B incident energy 100 MeV leaving the residual nuclei 
18Ne and 180  in different excited states. The solid curves are our present 
DWBA calculations. The optical model parameters are listed in Table I. The 

points are the experimental data and are taken from reference [11]

Fig. 2. Differential cross-sections of the reaction 42Ca(160 , 14C)44Ti at 160  
incident energy 56 MeV leaving the residual nucleus 44Ti in different excited 
states. The solid curves are our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data

and are taken from reference [5] ~
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Fig. 3. Differential cross-sections of the reaction 48Ca(l60 , l4C)50Ti at 160  
incident energy 56 MeV leaving the residual nucleus 50Ti in different excited 
states. The solid curves are our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [5]

00

Fig. 4. Differential cross-sections of the reaction 26M g('80 , 160 )28M gat lsO 
incident energy 50 MeV leaving the residual nucleus 28Mg in the ground 
state. The solid curve is our present DWBA calculations. The optical model 
parameters are listed in Table 1. The points are the experimental data and are 

taken from reference [18] J* = 0*

A
H

M
ED

 O
SM

A
N

 and S. S. A
BD

EL A
ZIZ



Acta Physica H
ungarica 54. 1983

Fig. 5. Differential cross-sections of the reaction 48Ca(,80 ,  16O)50Ca at 180  
incident energy 50 MeV leaving the residual nucleus 50Ca in different excited 
states. The solid curves are our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [9]

Fig. 6. Differential cross-sections of the reaction 60Ni(180 , 160 )62Ni at 
incident energy 65 MeV leaving the residual nucleus 62Ni in the ground state.
The solid curve is our present DWBA calculations. The optical model 
parameters are listed in Table I. The points are the experimental data and are

taken from reference [1] 'o
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Fig. 7. Differential cross-sections of the reaction 74Ge(,80 , l60 )76Ge at 180  
incident energy 75 MeV leaving the residual nucleus 76Ge at the ground state 
and at the 0.56 MeV first excited state. The solid curves are our present 
DWBA calculations. The optical model parameters are listed in Table I. The 

points are the experimental data and are taken from reference [10]

Fig. 8. Differential cross-sections of the reaction 42Ca(160 , 18O)40Ca at ,60  
incident energy 56 MeV leaving the residual nucleus 40Ca in different excited 
states. The solid curves are our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [5]
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Fig. 9. Differential cross-sections of the reaction 48Ca(160 , lsO)46Ca at 1бО 
incident energy 56 MeV leaving the residual nucleus 46Ca in different excited 
states. The solid curves are our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [5]

Fig. 10. Differential cross-sections of the reaction 16Ge(160 , 180 )74Ge at 160  
incident energy 77.56 MeV leaving the residual nucleus 74Ge in different 
excited states. The solid curves are our present DWBA calculations. The 
optical model parameters are listed in Table I. The points are the experi

mental data and are taken from reference [10]
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Table 1

Optical model parameters

Channel К
[MeV]

г,
[fm]

“г
[fm]

W
[MeV]

г*
[fm]

aw
[fm]

r,
[fm]

eLi + ,8Nc 100.00 0.970 0.650 40.00 1.180 0.450 1.200
8B + 180 100.00 0.070 0.650 40.00 1.180 0.450 1.200
i°B + i60 100.00 0.970 0.650 40.00 1.180 0.450 1.200
14C + 44Ti 35.90 1.350 0.900 101.50 1.272 0.286 1.250
i4C + 5°tí 33.90 1.344 0.850 110.20 1.274 0.280 1.250
160  + 28Mg 33.40 1.321 0.923 10.72 1.251 0.410 1.250
l60  + 42Ca 35.90 1.350 0.960 101.50 1.272 0.286 1.250
160  + 48Ca 33.90 1.344 0.800 110.20 1.274 0.280 1.250
160  + 50Ca 97.00 1.210 0.497 59.70 1.140 0.422 1.250
160  + 62Ni 70.00 8.310 0.400 8.00 8.200 0.500 1.250

l60  + 76Ge (str.) 14.00 1.355 1.332 36.34 1.260 0.482 1.355
,60  + 76Ge (pick.) 46.71 1.250 0.583 17.69 1.250 0.583 1.250
,80  + 26Mg 34.40 1.335 0.918 10.84 1.267 0.430 1.250
180  + 40Ca 35.90 1.350 0.960 101.50 1.272 0.286 1.250
,80  + 46Ca 33.90 1.344 0.800 110.20 1.274 0.280 1.250
180  + 48Ca 97.00 1.210 0.497 59.70 1.140 0.422 1.250
18O + 60Ni 70.00 8.680 0.400 8.00 8.200 0.500 1.250
180  + 74Ge (str.) 41.92 1.204 0.664 20.937 1.204 0.664 1.204
180  + 74Ge (pick.) 19.49 1.332 0.558 17.48 1.316 0.445 1.332

Table II

Extracted spectroscopic factors

Reaction Incident Excitation 
energy [MeV] energy [MeV] L J Spectroscopic

factors

1(,O(,0B ,8Li),8Ne 100.00 3.380 3,4 A* 0.6531

16O(10B, 8B)180 100.00 1.980 3, 4 2* 0.6628
100.00 3.550 3, 4 4 7 0.6749

42Ca(l60 , l4C)44Ti 56.00 0.000 0 0 + 0.6922
1.080 2 2* 0.7193
2.450 4 4 + 0.7225
3.360 4 4 + 0.7367
4.000 4 2 + , 4 \ 5 - , 6  + 0.7313

48Ca(,60 , 14C)50Ti 56.00 0.000 0,2,4 0* 0.7038
1.550 0,2,4 2* 0.6884
2.680 0,2,4 4 + 0.7256
3.200 0,2,4 6 + 0.7164
7.190 0,2,4 0 + 0.7313

26Mg(180 , ,60 ) 28Mg 50.00 0.000 0,1,2 0.7419
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Table II. (cont.)

Reaction Incident Excitation 
energy [MeV] energy [MeV] L J . Spectroscopic

factors

48Ca(180 , 16O)50Ca 50.00 0.000 0 0 + 0.6932
1.020 0,2 2* 0.6318

60Ni(180 , 160 )62Ni 65.00 0.000 1,2 0 + 0.6088

74Ge(180 , 160 ) 76Ge 75.00 0.000 1,2 0 + 0.6013
0.560 1,2 2* 0.6887

42Ca(l60 , 18O)40Ca 56.00 0.000 0 0 + 0.6914
1.980 2 2 + 0.7268
3.550 4 4 + 0.7093

48Ca(160 , 180 )46Ca 56.00 0.000 0 0 + 0.6697
1.350 2 2 + 0.6284
1.980 2 2* 0.7156
3.550 4 4 + 0.7389

76Ge(160 , 1 eO)74Ge 77.56 0.000 1,2 0 + 0.6029
0.597 1,2 2* 0.6638
1.980 1,2 2* 0.6087

4. Discussion and conclusions

In the present work, we introduced a study for heavy ion reactions with two 
nucleon transfer. We developed analytical and theoretical expressions for the 
differential cross-sections. Numerical calculations for the angular distributions are 
carried out using the distorted wave Born approximation. In these calculations optical 
model potentials are used in describing the initial and final channel interactions 
between the interacting heavy ions. The different parameters of the optical model 
potentials are determined by fitting the theoretical calculations of the differential cross- 
sections of the elastic scattering heavy ion reactions with the experimental data. Then, 
the optical model parameters are fixed. These fixed parameters of the optical model 
potentials are used in the calculations of the differential cross-section of the heavy ion 
reactions with two-nucleon transfer. The present theoretical calculations are compared 
with the experimental measurements. From Figs 1-10, we see that the agreements 
between the present theoretical calculations of the differential cross-sections and the 
experimental data are good. The present theoretical calculations produce the 
oscillatory pattern as well as the maxima and minima of the experimental 
measurements. Fitting the theoretical calculations of the angular distributions with the 
experimental data, the spectroscopic factors of the reactions are obtained. The
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obtained values of the spectroscopic factors are close to 1. From Table II we can see 
that the obtained values of the extracted spectroscopic factors are reasonable.

Thus, we can conclude that the present theoretical calculations using the 
distorted wave Born approximation reproduce the experimental measurements of the 
differential cross-sections both in shape and in magnitude.
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Heavy ion reactions with a neutron transfer are considered. Reactions with the different 
heavy ions 10B, 13C, 14N, 160 , 180  and 32S are incident on the different targets 12C, 160 , 27A1, 28Si, 
32S, 40Ca, 48Ca, 54Fe, 60Ni and 208Pb with the reaction process of a neutron stripping or a neutron 
pick-up. The energies of the incident heavy ions have values in the range between 36 MeV and 
155 MeV. Theory of these transfer reactions is studied using DWBA approximations. Numerical 
calculations of the differential cross-sections are carried out using the DWBA calculations. Good 
agreement between the theoretical calculations and the experimental measurements is obtained. 
From the comparison of the present theoretical calculations and the experimental data of the angular 
distributions, spectroscopic factors are extracted.

1. Introduction

Stripping and pick-up reactions with a single-neutron transfer have been studied 
for nuclear reactions with heavy ion projectiles. These reactions are investigated 
theoretically following different approaches. Garrett et al. [1] studied the 
27A1(32S, 33S) 26A1 reactions at an incident energy of 100 MeV. Different optical model 
parameters have been used in comparing the DWBA calculations of the angular 
distributions with the experimental data. Using 160  projectile with an energy of 
139 MeV incident on the heavy target nucleus 208Pb, Becchetti et al. [2] studied the 
single neutron transfer reactions leading to 209Pb residual nucleus. In their analysis a 
shift was found between the maxima of the different levels. The theoretical DWBA 
calculations show that the angular distributions are functions of the Q-value, which is 
not observed experimentally [2], [3]. Nair et al. [4] measured the differential cross- 
sections of different single neutron transfer reactions using 14N and 10B incident 
projectiles. The energies of 14N and 10B ions are 155 and 100 MeV, respectively, which 
are above the Coulomb barriers in the initial channels. Exact finite-range DWBA 
approximation is used in calculating the angular distributions. Comparing the 
theoretically calculated values with the experimental results, the spectroscopic factors 
are obtained. Osman [5] introduced a theoretical study for 6Li induced reactions as a 
direct stripping nuclear reaction mechanism. Moffa et al. [6] introduced a theoretical 
study localizing the heavy ion reactions in both of the coordinate and of the angular 
momentum spaces. They got a quantum mechanical formula relating the coordinate
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with the angular momentum which is compared with the experimental work. A 
theoretical study of heavy ion reactions as a three-body problem has been introduced 
by Osman [7], [8] using projection operators [9]. Experimental angular distributions 
have been measured by Westfall and Zaidi [10] for different heavy ion reactions using 
13C projectile with an incident energy of 36 MeV on 160 , 28Si and 32S target nuclei for 
angles between 4° and 40°.

Clear features are indicated by comparing the results with the exact finite-range 
DWBA and with Coulomb transfer reactions [11]. The 28Si, 40-48Ca, 54Fe(180 , 170) 
single-neutron stripping reactions at a bombarding energy of 50 MeV are studied by 
Petersen et al [12]. They introduced a comparison between the experimental data and 
the full-recoil finite-range DWBA analysis. The obtained spectroscopic factors agree 
with the spectroscopic factors obtained from light ion reactions except for one case. 
Single neutron transfer reactions for 160  projectile of 208Pb target have been measured 
by Olmer et al [13] at a bombarding energy of 312.6 MeV. Comparing the DWBA 
calculations with the experimental results, good agreement is obtained for the relative 
final-state, but this DWBA analysis fails to predict the absolute energy dependence of 
the observed transfer cross sections. Nagel [14] applied the exact finite-range Born 
approximation for the reaction 12C(14N, ,3N)13C at 100 MeV 14N energy. Nagel 
observed a disagreement for the 2S transition. The suggested mechanism of this 
reaction does not succeed in removing the phase discrepancy between the experimental 
results and the finite-range DWBA predictions for the angular distributions.

In the present work we introduce a theoretical study for heavy ion reactions with 
single neutron transfer. The heavy ion reactions with single neutron stripping 
1бО(13С, 12C)170 , 32S(13C, 12C)33S, 60Ni(13C, 12C)61Ni, 12C(14N, 13N )13C,
208Pb(160 , 15O)209Pb, 28Si(180 , 17Oj29Si, 40Ca(180 , 170 )41Ca, 48Ca(180 , 170 )49Ca 
and 54Fe(180 , 170 )55Fe are considered. Also, we study the heavy ion reactions with a 
single neutron pick up 16O(10B, n B)150 ,  160 ( 14N, 15N)150  and 27A1(32S, 33S)26A1. 
The DWBA approximation is considered. In the present work, it is our aim to study the 
heavy ion reactions with a single neutron transfer. In this study, we show that the 
DWBA approximation is suitable to calculate the differential cross-sections of such 
reactions. Also, we aim to study the finite-range effects in such reactions. These finite- 
range effects are important and appear by using finite-range nuclear potentials. These 
finite-range effects are important to produce the correct value of the cross-sections. 
Then we aim to obtain correct values for the spectroscopic and normalisation factors. 
Then, the DWBA calculations have to be reformulated and modified to include all 
these effects. Including all these effects, the DWBA approximation is reformulated and 
modified and evaluated in the present theory for heavy ion reactions with single 
neutron transfer. This theory is applied to the considered heavy ion reactions. 
Numerical calculations for the differential cross-sections are carried out using the 
DWBA calculations. The present theoretically calculated angular distributions are 
compared with the experimental measurements. From the fitting between the 
theoretical and experimental values, spectroscopic factors are extracted.
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In Section 2, the DWBA approximation for nuclear reactions between heavy 
ions are introduced. In Section 3, numerical calculations and results are given. Section 
4 is left for discussion.

2. The DWBA approximation for heavy ion reactions

The heavy ion reactions with neutron transfer will be considered. These reactions 
are treated theoretically as direct nuclear reactions. The initial channel is the 
interaction between the heavy projectile A, incident on the target T. The projectile A is 
taken to be the bound state of a neutron n and a core C. This direct neutron transfer 
reaction leads to the final channel of an interaction between the outgoing particle C 
and the residual heavy nucleus R. The residual nucleus R is taken to consist of a bound 
neutron n to the projectile T. This reaction is represented as

A(n + C) + 7—*C +  R(n + T) , (1)

where n is bound to the core C in the projectile A with relative angular momentum /, 
while n is bound to T in the residual nucleus R with relative angular momentum L. The 
transition amplitude for this direct stripping reaction with the neutron transfer [15] is 
given as

Tfi = (4/y )\V„c \4'\ + ))  (2)

4/\ + ) and 4J<f ) are the ingoing and outgoing wave functions describing the reaction 
processes in the initial and final channels, respectively [16]. These wave functions can 
be introduced as

Г ^ = ( р ^ Ч г + ^ - р ) ,  (3)r ,=<A <r,(

(4)

t/'(+) and are the ingoing and outgoing wave functions which carry all the 
distortion effects due to both of the Coulomb and nuclear interactions in the initial and 
final channels, respectively. <p, and <pf  are the initial and final non-interacting states of 
the system and are expressed as

<Pi= eiki V , , (5)

9 f = e ikf * 0 LM(rn)9Kfe)v№*)(PÏÏ(Q • (6)

R and R' are the separation coordinates between the projectile A and the target nucleus 
T  in the initial channel and between the outgoing particle C and the residual nucleus R 
in the final channel, respectively. (рЦ is the self bound wave function for the particle i. 
(Pi„ is the bound state wave function representing the bound state of the neutron n to 
the core C in the projectile A with relative angular momentum /. Фьм is also the bound
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state wave function of the bound neutron n to T  in the residual nucleus R with relative 
angular momentum L. p, r„ and r are the separation coordinates between n and C, n and 
T and between C and T, respectively.

Introducing Eqs (3-6) into Eq. (2), we get for the transition amplitude the 
expression

Tfi=  Z Z ® (IJ) ® *(L,J)(InHnl™\jn)(jßIcRc\lARA)-
тццс MfißT

( I ^ nL M \J fl)(J^ITfiT | / к/г*)/ГЛ (7)
with

I?lM =  Í dpeiQ p VnC(p) (P,JP) Í е‘ч ГФ(* + p) ^  r -  ~  p ) • ф1 + >(r +  p ) d r , (8)
m r mR m,

where

and

1 тт 1q = k,------ kr
mR

Q = — k,+ — к/-mA mR

(9)

( 10)

mt is the mass of the particle i. ©  (l,j) and ®  * (L, J) are the spectroscopic factors. 
Taylor expansions are used for the wave functions

in the form

Ф?м(г + Р), ф( + )( г  + ^ L p )  andV mA J \m R mR j

4Ji(a r + bp) = eb,, *4'i4, i(a r ) . ( 1 1 )

The neutron bound state wave function in the residual nucleus is separated for the 
radial part as

*LM(r)=VNL(r)YV(r). (12)

The distorted wave functions ф( +1 and ф{ ~1 are expanded by the partial wave expansion 
and expressed as

and

•А< + ,(к|- г) =4л X i*Yr*(b i)YmAi)4>x(r) 
Xmx

= 4я X P Y ^ i/iY ? *
Ртц

(13)

(14)
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Introducing Eqs (11-14) into Eq. (8), we get

/Г = ( 4 я ) 2Х X Y ; ^ f ) \â p v nc(p)<plm(p)-
A il т ят (1

• e‘lQ l,f» +i« iV +l mHvv( 1,1 • p |d r r 2e'4 г1/*^(г)|/^я(г)|/̂ * ( —  r
nn

•Jdi2r ^ ( ß r) n m" —  Qr Р Т М(Я)-
m7
mR (15)

Expanding е‘ч r in partial spherical harmonics, and collecting all the spherical 
harmonics and summing them together, we get for Eq. (15) an expression as

I?lM= Z Z (47t)1/2( —)v+^_2 +mv + mA(jy + ', + v(2 i+  l)(2 /i+  1) •
ЯЯ ц t n ^ f t i ц 

V<T mamA

■ {(2v — 2A'+ l)(2v+ 1) (2L + 1)}1/2(2у2Д. + l)1/2(/c,)A •

mT
m. —  k,mR

(v — A' — (mv +  т д.)2'тл. | v — mv) •

• (ут ,1тд I am„) (jцт„ LM \ oma) (v -  Я' -  (mv + \ Лтл) ■

■ (A1 -  mx. Amx| Лтл) (v0 A0 \ <j0) (ц0 L01 <r0) (v -  A'0p0 \ Л0)

(А'0 А0 \Л 0)Р л (cos cp) J dr r 2F ^ (r ) jv(q r)U $ L(r)il/х(г)ф *  , (16)

where

FZ(r)= J dpKnC(p)<pim(p)eitQ- iK  + ̂ V  + » - ^ V - » a  . (17)

We use a Morinigo wave function [17] for the bound state of the neutron n in the 
projectile <pim(p), and also a Yukawa potential for Kc(p) as

Kc(p)=V°c—  (18)
P

To solve the integral F"'m(r) as expanded by Eq. (17), we use the following expansion for 
the exponential

ei[Q-.ve>-.^vv( . mn _ -1
' шя ^  ^ = 4 n Z
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] (19)

The delta (F) operators present in Eq. ( 19) operate on the corresponding wave functions 
[11] which can be introduced by using the local WKB-approximation as

mfj is the reduced mass of the (i,j) bound system, while £{/in is the binding energy for the 
bound system of the (i,j) particles. V‘Jpl is the optical potential for the interaction 
between the particles i and j.

From Eqs (16) and (21), and introducing it into Eq. (7) determine the 
transition amplitude, we get an expression for the differential cross-section as

In the present Section, an expression for the differential cross-sections of heavy 
ion reactions with a single neutron transfer has been evaluated. In the present 
formulation in Section 2, the DWBA approximation has been used. The present 
DWBA formulations differ from the previous approximations in that in the present 
evaluation we took into account the finite-range effects in the nuclear potentials. These 
effects are solved and are given explicitly by the factor F1'm{r) as given by expressions 
(21) and (22). To get an explicit form in the present formulations, we used the Taylor

( 20)

Then, the finite range form factor FfJr) can be given by the expression

Ft(r) = 4nll2N(l, . . .) Е«.ЛлС̂ « -(2 /) 'Г (/+ 1 /2 )

уГ № --Р л,(г)] [Q-PJr)]
( 21)

{ K c  + ß)2 + i Q - P n,(r)V}2 ) í +  1/2 ’

where

( 22)

HAßT 
Vc Un

(23)

Acta Phys ica Hungarica 54, 1983



H E A V Y  I O N  R E A C T I O N S 31

expansions for the captured neutron wave function as well as for the distorted wave 
functions. Also, the local WKB approximation is used for the (V) operators for its 
operations on the corresponding captured neutron and distorted wave functions. The 
obtained factor, F"^(r), due to finite-range effects which appear only in the present 
formulations, depends on the optical model potentials between the interacting ions. 
This makes our present formulations for the DWBA different from previous formulae.

3. Numerical calculations and results

Heavy ion reactions with one neutron transfer are studied. The interactions 
between the heavy ions in the initial and final channels are treated by using the DWBA 
approximation. Different heavy ion reactions are considered with the heavy ion 
projectiles 10B, 13C, 14N, 160 , 180  and 32S incident on the different targets 12C, 160 , 
27A1,28Si, 32S, 40Ca, 48Ca, 54Fe, 60Ni and 208Pb. The energies of the projectiles for the 
different reactions considered have values in the range between 36 MeV and 155 MeV. 
A theoretical expression for the differential cross-section using DWBA is obtained and 
is given by Eq. (23). Numerical calculations are performed for the angular distributions 
for different heavy ion reactions with single neutron transfer.

The neutron stripping heavy ion reactions 1бО(13С, 12C)170  and 
32S(13C, 12C)33S are studied at 13C incident energy of 36 MeV. The angular 
distributions are measured for angles between 4° and 40°. The residual nucleus 170  is in 
an excited state with excitation energy 0.871 MeV, while the 33S residual nucleus in the 
other reaction is in its ground state. The reaction 60Ni(13C, 12C)61Ni is studied at 13C 
incident energy of 60.83 MeV leaving the 6INi residual nucleus in excitation energy 
0.284 MeV with total spin 1/2” . The neutron stripping reaction 12C(14N, 13N)13C is 
measured at 14N incident energy of 100 MeV. The residual nucleus 13C of this reaction 
is left with an excitation energy of 3.09 MeV and total spin l/2 +. The 160  ions with an 
energy of 139 MeV are used as projectiles in the neutron stripping reaction 
208Pb(16O, I5O)209Pb leaving the 209Pb residual nucleus in different excited states. 
180  ions with energy 50 MeV are used to study different heavy ion reactions with 
neutron stripping on the different targets 28Si, 40Ca, 48Ca and 54Fe. The outgoing ion is 
the 170  ion, which in its excited state 0.87 MeV and total spin l/2 + in the case of the 
reactions 28Si(180 , 170 ) 29Si, 40Ca(180 , 170 )41Ca and 48Ca (180 , 170 )49Ca. In the 
case of the reaction 54Fe(lsO, 170 )55Fe, the outgoing 170  ion is in its ground state. 
These reactions are studied in case that the residual nuclei 29Si, 41Ca and 49Ca are in 
their ground states while the residual nucleus 55Fe is studied in two cases, one is its 
ground state and the other is when the 55Fe nucleus has excitation energy 0.441 MeV.

Also, we studied here the heavy ion reactions with one neutron pick-up process. 
The 16O(l0B, 1 lB)150  reaction is studied at 10B incident energy 100 MeV, leaving the 
150  residual nucleus in different excited states. In the case of the 160 ( 14N, 15N)lsO 
reaction, the 14N incident energy is 155 MeV and the 150  residual nucleus is in its
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ground state. Also, we studied the 27A1(32S, 33S)26A1 neutron pick-up heavy ion 
reaction at 32S incident energy of 100 MeV leaving the residual nucleus 26A1 in its 
ground state.

The differential cross-sections of these reactions are numerically calculated using 
the present theoretically obtained expressions. In the present DWBA calculations, 
optical model is used with Wood-Saxon optical potential. The different parameters of 
the optical potential are given in Table I. The present numerical calculations are 
performed on the CDC 6600 computer. In the present calculations we used the 
computer program LAJOLLA. This is the international computer program code but it 
is modified to include the factors which appeared in our present formulations due to the 
finite-range effects and other different approximations used in Section 2. In the present 
computations, we used the DWBA computer code programs by using a number of 
partial waves which range between 15-40 according to each case of the considered 
heavy ion reactions separately. Each case for the reactions considered, need a computer 
time between 20 — 45 minutes according to each case separately. With these computer 
program codes, the differential cross-sections of heavy ion reactions are calculated. The 
obtained results of the calculated angular distributions for these reactions are shown in 
Figs 1-10. The solid curves are our present theoretical calculations. The points are the

Table I

Optical potential parameters

Channel V
[MeV]

ro
[fm]

“a
[fm]

W
[MeV]

r,
[fm]

a,
[fm]

Г'
[fm]

,0B + 16O 14.500 1.300 0.800 6.500 1.315 0.550 1.250
" B + lsO 14.500 1.300 0.800 6.500 1.315 0.550 1.250
12c + ,7o 100.323 1.140 0.560 12.960 1.284 0.442 0.925
,2C + 33S 100.166 1.235 0.507 8.489 1.234 0.889 1.083
12C + 61Ni 100.000 1.400 0.600 40.300 1.400 0.600 1.500
13c + 16o 100.323 1.140 0.560 12.960 1.284 0.442 0.925
13c + 32s 100.166 1.235 0.507 8.489 1.234 0.889 1.083
13C +  60Ni 100.000 1.400 0.600 40.300 1.400 0.600 1.500
,3N + ,3C 145.000 0.925 0.816 35.300 1.300 0.178 0.925
,4n  + 12c 145.000 0.925 0.816 35.300 1.300 0.178 0.925
i* N + 160 100.000 0.970 0.970 39.500 1.290 0.400 1.250
15n  + ,5o 100.000 0.970 0.970 39.500 1.290 0.400 1.250
15O + 209Pb 40.000 1.310 0.450 15.000 1.310 0.450 1.300
16O + 208Pb 40.000 1.310 0.450 15.000 1.310 0.450 1.300
,70  + 2,Si 60.000 1.200 0.529 15.500 1.140 0.728 1.250
,70  + 4,Ca 61.800 1.240 0.528 8.270 1.270 0.727 1.250
170  + 49Ca 97.000 1.210 0.497 59.700 1.140 0.422 1.250
170  + 55Fe 66.800 1.210 0.531 41.600 1.200 0.585 1.250
l80  + 28Si 60.000 1.200 0.529 15.500 1.140 0.728 1.250
18O + 40Ca 61.800 1.240 0.528 8.270 1.270 0.727 1.250
180  + 48Ca 97.000 1.210 0.497 59.700 1.140 0.422 1.250
l80  + 54Fe 66.800 1.210 0.531 41.600 1.200 0.585 1.250
32S + 27AI 100.000 0.800 0.500 100.000 0.800 0.500 1.250
33S + 26AI 100.000 0.800 0.500 100.000 0.800 0.500 1.250
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Fig. I. Differential cross-section of the reaction l60 ( 13C, 12C)170  at l3C 
incident energy 36 MeV, leaving the residual nucleus 17 О in its excited state 
0.871 MeV. The solid curve is our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [10]

Fig. 2. Differential cross-section of the reaction 32S(13C, l2C)33S at ,3C 
incident energy 36 MeV, leaving the residual nucleus 33S in its ground state. 
The solid curve is our present DWBA calculations. The optical model 
parameters are listed in Table I. The points are the experimental data and are 

taken from reference [10]
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Fig. 3. Differential cross-section of the reaction 60Ni(l3C, u C)6lNi at l3C 
incident energy 60.83 MeV, leaving the residual nucleus 6'N i in its excited 
state 0.284 MeV. The solid curve is our present DWBA calculations. The 
optical model parameters are listed in Table I. The points are the experi

mental data and are taken from reference [6]

Fig. 4. Differential cross-section of the reaction I2C(14N, l3N)13C at 14N 
incident energy 100 MeV, leaving the residual nucleus 13C in its excited state 
3.09 Mev. The solid curve is our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [14]
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Fig. 5. Angular distributions of the reaction 208Pb(160 , 15O)209Pb at incident 
160  energy 139 MeV, leaving the 209Pb residual nucleus in different excited 
states. The solid curve is our present DWBA calculations. The optical model 
parameters are listed in Table I. The points are the experimental data and are 

taken from reference [2]

Fig. 6. The differential cross-sections of the reactions 28Si, 40Ca, 
48Ca(180 , 170 )a t  incident leO energy 50 MeV, leaving the residual nuclei in 
their ground states. The solid curve is our present DWBA calculations. The 
optical model parameters are listed in Table 1. The points are the experi

mental data and are taken from reference [12]
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Fig. 7. The differential cross-sections of the reactions 52Fe(180 , ,70 )55Fe at 
180  incident energy 50MeV, leaving the residual nucleus 55Fe in different 
excited states. The solid curve is our present DWBA calculations. The optical 
model parameters are listed in Table I. The points are the experimental data 

and are taken from reference [12]
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Fig. 8. Angular distribution of the reaction ,6O(10B, n B)lsO at 10B incident 
energy 100 MeV, leaving the residual nucleus 150  in different exicted states. 
The solid curve is our present DWBA calculations. The optical model 
parameters are listed in Table I. The points are the experimental data and are 

taken from reference [4]
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Fig. 9. Angular distribution of the reaction 100 ( I4N, 15N)15O at incident 14N 
energy 155 MeV, leaving the lsO residual nucleus in its ground state. The 
solid curve is our present DWBA calculations. The optical model parameters 
are listed in Table I. The points are the experimental data and are taken from 

reference [4]

Fig. 10. Differential cross-section of the reaction 27A1(32S, 33S)26A1 at incident 
32S energy 100 MeV, leaving the 26A1 residual nucleus in its ground state. The 
solid curve is our present DWBA calculations. The optical model parameters 
are listed in Table I. The points are the experimental data and are taken from 

reference [1]
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experimental measurements taken from references [1], [2], [4], [6], [10], [12]—[14]. 
From the fitting of our present theoretically calculated angular distributions with the 
experimental measurements, spectroscopic factors are extracted. The extracted values 
of the spectroscopic factors are listed in Table II.

T a b le  II

Extracted spectroscopic factors

Reaction Incident 
energy [MeV]

Excitation 
energy [MeV] L J ’ Spectroscopic

factors

160 ( 13C, 12C)170 36.00 0.871 1
1 +
2

0.6138

32S(I3C, ,2C)33S 36.00 0.000 1,2
3 +
T 0.6917

60Ni(13C, I2C)6 ,Ni 60.83 0.284 0
r
T 0.7427

,2C(14N, ,3N)13C 100.00 3.090 1
1 +
2

0.7619

208Pb(16O, ” O)209Pb 139.00 0.000
0.800

1
1

0.6123
0.6119

1.450 1 0.6089
2.050 1 0.5713
2.490 1 0.6248
3.050 1 0.6093
3.500 1 0.6278
5.520 1 0.6199
7.000 1 0.6038

28Si(180 , 170 ) 29Si 50.00 0.000 0
1 +
T 0.7315

*°Ca(180 , l70)* 'C a 50.00 0.000 3
7 '
T 0.7598

*8Ca(180 , 170 ) " C a 56.00 0.000 1
3 -
T 0.7624

54Fe(180 , 170 ) 55Fe 50.00 0.000 3,2,1
3"
T 0.6719

0.441 3,2
I -
T 0.6934

16O(,0B, “ B f^O 100.00 0.000 0,1
r
T 0.7018

2.140 0,1
I -
T 0.6985

,40 ( 14N, 15N),50 155.00 0.000 0,1
1"
~2

0.7438

27A1(32S, 33S)26A1 100.00 0.000 0
5*
2

0.7549
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4. Discussion and conclusions

In the present work, we studied the heavy ion reactions with single neutron 
transfer. The theoretical calculations are carried out using DWBA calculations. In the 
present calculations, the parameters of the optical potentials are obtained by 
performing calculations of the elastic scattering differential cross-sections of the 
corresponding heavy ion reactions and fitting the theoretical calculations to the 
experimental data. Then, the optical model parameters are thus obtained and to be 
used in calculating the neutron transfer reactions between the heavy ions. Different 
reactions are considered between different heavy ions at different incident energies. The 
present theoretical calculations produce the oscillatory pattern as well as the maxima 
and minima of the experimental measurements. F rom Figs 1-10, we see that the present 
calculations fit the experimental measurements with good agreement of the angular 
distributions. Also the present calculations are able to get the right shape and produce 
the right peaks of the differential cross-sections. From this fitting, the values of the 
spectroscopic factors are obtained and are close to 1. Table II shows that better 
spectroscopic factors are extracted from the present calculations.

Thus, we can conclude that the present calculations for heavy ion reactions with 
single neutron transfer produce the right differential cross-sections in both magnitude 
and shape.
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ENHANCED FABRY—PEROT FRINGE VISIBILITY OVER 
LONG PATH DIFFERENCES 

USING Se-MgF2 . . .  MULTILAYER COATINGS

S. M o k h t a r , M . S. Sh a a l a n  and W . O sm an

Length Metrology Department, National Institute of Standards, Cairo, Egypt 

(Received in revised form 24 November 1981)

The optical constants of selenium are determined in the red end of the visible spectrum. 
Reflection and phase characteristics of Se single films are obtained. Highly reflecting Fabry—Perot 
mirrors are constructed from semiconducting Se films with high refractive index in alteration with 
dielectric MgF2 films at A 644 nm. Reflection coefficients 68%, 74% and 87% were realized for 3,5 and 
7 layer coatings with negligible absorption. Clearly visible F—P fringes are obtained up to Path 
Differences of 0.12 m, 0.14 m and 0.18 m for the cases of 3, 5 and 7 layer coatings, respectively, 
employing ordinary sources of spectral radiation.

1. Introduction

Fabry—Perot étalons play an important role in length metrology laboratories, 
both in absolute wavelength measurement and in investigations concerning properties 
qualifying certain wavelengths as standards. The half-width and visibility of the F—P 
fringes are factors of paramount importance. They are both functions of the reflection 
coefficient of the interferometer’s coatings and their spectral dependence [1].

In this paper a multilayer coating system on glass substrate for use at the red end 
of the visible spectrum is described. Alternate films of semiconductor selenium and 
dielectric MgF2 in three, five and seven layers produced high reflection, very low 
absorption and enhanced visiblity of F—P fringes over relatively longer Path 
Differences using ordinary spectral radiation sources, thus improving over the use of 
Ag or Al.

Selenium films were used for their negligible absorption in the red part of the 
visible spectrum, their ease of evaporation in vacuum and their high refractive index. *

* Now on leave to the Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, 
P. O. Box. 9028, Saudi Arabia.
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2. The optical constants of selenium

Selenium optical constants n and k, where n = n — ik, were determined previously 
by several workers (Koehler [2], Prosser [3]. Subashiev et al. [4] and Miloslavskii [5]). 
Techniques based on photometric and polarimetric measurements were used. A 
method due to Valeev [6] employed transmission measurements of the bare and coated 
substrate respectively over a wavelength range. He applied the method in case of CdTe 
films in the i.r. Nomograms were used to extract data on n and к as function of A. This 
method is applied here in the visible region in the A range 600 — 800 nm. For details of 
the calculations reference [6] may be consulted.

Table I

The optical constants of selenium experimentally determined for a film of a 
thickness of 700 nm

Present work Koehler’s results

n k* n к

600 2.90 0.029 2.90 0.06
650 2.65 0.026 2.75 0
700 2.63 0.021 2.67 0
750 2.60 0.019 2.63 0
800 2.56 0.018 2.60 0

* Third decimal figures are indicative.

In this work the transmission vs A information for the uncoated and coated 
substrate was obtained employing a Zeiss PMQ III spectrophotometer. Values of T 
are reliable to ±0.01. Measurements were performed on a Se film of thickness 700 nm 
determined by weight and a calibrated Edward’s crystal oscillator thickness monitor. 
Thickness of that order approximates quite closely to the bulk behaviour. Selenium 
was thermally evaporated under vacuum of 10” 3 * * 6 mbar onto optically flat substrates to 
±  0.001 mm and left in vacuum to attain room temperature. No substrate heating took 
place. The experimentally determined values of n and к in the wavelength range 600 
— 800 nm are given in Table I. Koehler’s results [2] in a similar range are included for 
comparison.

3. Reflection characteristics of single selenium films

Reflection vs wavelength characteristics were obtained for three Se films using a
specially designed reflection attachment to the Zeiss PMQ III spectrophotometer.
Three films of thickness 160, 180 and 200nm were deposited in vacuum of 10”6 mbar. 
Thickness was determined interferometrically using Tolansky’s method [7]. Values of
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Fig. I. Experimental variation of the reflectivity of single Se films with wavelength

Fig. 2. Experimental variation of absorption of single Se films with wavelength

d are subject to inaccuracies of the order of 1.5 nm. Fig. 1 shows the variation of 
reflectivity R with wavelength X at the interface air/film. A film of d — 180 nm increases 
the reflectivity of the bare glass substrate from 4% to some 42% at X = 644 nm with 
(nd/A) = 0.74 over a fairly broad band. Fig. 2 shows the variation of the absorption A 
= (T+ R)— 1, for the three films, with X. A is less than 2% at X 44 — 655 nm.
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4. The optical phase properties of a single Se film with (nd/\)=  0.75

The low absorption of Se films in the red and its dielectric behaviour beyond this 
region in the i.r. may be confirmed from the optical phase properties. According to 
Born and Wolf [8] the optical phase function F for non-absorbing thin films at a 
certain wavelength would satisfy the condition

F=(2y —ß, — B2) = (2n± 1)л,

where у is the change of phase in transmission and ß, and B2 are the phase changes 
upon reflection air/film and dielectric substrate/film, respectively.

Table II

The optical phase properties of a Se single film of thickness 
d= 180 nm at A = 644 nm with (ná/A) = 0.74

У в, Вг F = ( 2 y - B ,- B 2)

0.54л 1.0171 1.03 л -0.96л

These phase changes have been determined for a Se film of d = 180 nm + 1.5 nm 
at Я = 644 nm with (nd/À) = 0.74 using a two-beam interferometric method previously 
reported by Barakat et al [9], [10], [11]. The results are given in Table II. The changes 
of phase are estimated to be accurate to +6° or О.ОЗЗл corresponding to some 0.03 of 
an order separation in the two-beam interference system employed at Я = 644 nm. The 
order separation is Я/2. It is clear then that selenium may be expected to behave very 
nearly as a dielectric in the longer wavelength region of the visible spectrum. This has 
encouraged its use in multilayer systems exploiting its high refractive index and ease of 
vacuum evaporation.

5. Se-MgF2 .. . multilayer coatings on glass substrates for Я = 644 nm

The multilayer coating system using Se films of thickness d=  180 nm and M gF2 
of Я/4 at Я = 644пт was prepared on glass substrates by thermal evaporation in 
vacuum of less than 10“ 5 6 mbar. Film thickness was controlled during evaporation using 
an interferometrically calibrated thickness control unit manufactured by Edward’s.

Fig. 3 represents the experimental variation of reflectivity with wavelength for 
three, five and seven layers of Se—MgF2—Se . . . .  The reflection coefficient is 
maximum at Я = 650пт reaching 87% of the incident intensity for the seven layers 
coating.
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Fig. 3. Experimental variation of reflectance with wavelength for three, five and seven layer Se— MgF2 . . .
coatings

Table III

Computed and experimental reflectances of 3, 5 and 7 layer 
coatings Se— MgF2 —Se

Number of layers Comp. Ref. Exp. Ref.

3 layers Se—MgF2—Se 69% 67%
5 layers Se— . . .  Se 79% 74%
7 layers Se— . . .  Se 90% 87%

A computer program was written using a formula due to Vasicek [12] and the 
Koehler [2] optical constants for selenium to compute the reflectance of 3,5 and 7 layer 
coatings. Experimental and computed results are presented in Table III.
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6. Experimental variation of F —P fringe visibility with the interferometer's Path
Differences

The optical arrangement for securing F—P fringes in transmission is illustrated 
in Fig. 4. Fringes were photographed on panchromatic glass photographic plates. The 
plates were calibrated for the red line of A644nm. A microdensitometer was used to 
determine maximum and minimum intensities of transmission fringes. Interferometer’s 
plate separations were measured using a special head internal distances measuring

Fig. 4. The optical arrangement for securing F—P transmission fringes

Table IV

Maximum Path Differences at which F—P fringes are visible employing 
Se—MgF2 . . .  coatings at X =  644 nm

Number of layers Reflectivity Fringes visible Fringes vanish

three 67% at 0.12 m at 0.20 m
five 74% at 0.14 m at 0.23 m
seven 87% at 0.18 m at 0.28 m

micrometer. Three cases were investigated where the interferometer’s inner surfaces 
were coated with 3, 5 and 7 layers Se—MgF2 . . .  coatings of reflectivities 67%, 74% 
and 87%, respectively. Table IV gives the maximum Path Differences at which fringes 
were still reasonably resolved and visible together with the distances at which they 
completely vanished.

Fig. 5 shows the experimental variation of V with the interferometer’s Path 
Differences. Plates 1, 2 represent fringes obtained at Path Differences 0.10 and 0.18 m, 
respectively, for the case of a 7 layer coating.
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Fig. 5. The variation of the visibility of F— P transmission fringes with the Path Differences

Plates 1—6. 1. F—P rings at a plate separation of 10 cm in case of 7 layer coating. 2. F—P rings at a plate 
separation of 18 cm in case of 7 layer coating. 3. F— P rings at a plate separation of 8 cm in case of 5 layer 
coating. 4. F—P rings at a plate separation of 14 cm in case of 5 layer coating. 5. F—P rings at a plate 
separation of 10 cm in case of 3 layer coating. 6. F—P rings at a plate separation of 12 cm in case of 3 layer

coating
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 ̂Plates 3, 4 represent fringes for 0.8 and 0.14 m in the case of 5 layers coating. 
Plates $, 6 are those obtained for 0.10 and 0.12 m in the case of a 3 layer coating. It must 
be noted that loss of definition in fringes belonging to lower reflection coatings is due in 
an appreciable part to loss of collected beams due to their escape from the 
interferometer’s edges, an effect masterly discussed by Tolansky [1].

7. Discussion

The refractive index values obtained for a Se film of thickness 700 nm are proved 
to be somewhat lower than those obtained by Koehler [2]. This may explain the 2% 
difference between computed and experimental reflection coefficients in Table III 
where computed values are based upon the Koehler constants. However, the high 
reflection coefficients allowed the use of the Se— MgF2 . . .  multilayers as F—P 
mirrors permitting long Path Differences up to 0.18 m using ordinary spectral sources. 
This would facilitate interferometric applications in length metrology experi
mentations.
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X-ray measurements of the crystalline and amorphous states of AsSey_xTex compounds, 
with y=  1.0 and 2.5 and with 0 < x < y, have shown that the structure of the parent alloys is very 
sensitive to the addition ofTe. Changes with composition and structural features have been discussed 
and compared with the stoichiometric system As2Se3-As2Te3. Interplanar spacings, dhkl, and relative 
intensities, RI, of the recorded reflections are given here for the first time. Two phases, denoted as a- 
and y-phases, have been found to exist at ~20, lOand 14at%Te, for AsSe, _хТех, AsSe15_xTex, and 
AsSe2 ,_ xTex systems, in their crystalline states. When Se:Te is equal to 2:1, a type of ordering is 
suggested, similar to either of Bi2Te2Se or of As2Se3S. The diffraction patterns for the amorphous 
compounds give a “three stepped hump” pattern with maximum intensity of the second hump step.

1. Introduction

Much work has been done recently on the thermal, electrical and optical 
properties of the arsenic chalcogenide glasses. Compounds of the type As2X3, where 
X = S, Se, Те, as well as their mixed materials are particularly interesting as they may be 
obtained as well in crystalline as in glassy forms. In such cases a clear understanding of 
the properties of the crystalline state can provide a foundation for the investigation of 
the glassy materials.

Earlier investigations [1 — 3] showed a short-range order for the amorphous 
As2Se3 similar to that of the analogous crystal orpiment, As2S3. The texture of As2Te3 
which possesses a layer structure like that of As2Se3 and As2S3 suggests a mechanism 
for the dependence of layer structure on composition [1, 4]. The change in structure 
with the increase of the coordination number in As2Te3 and As2Se3 takes place by 
“wrinking” of the layers. The unit cell of both As2Se3 and As2Te3 is monoclinic. The 
latter consists of zigzag chains in which the As atoms are octahedrally and trigonally 
bonded to Те atoms.

Mixed systems of binaries such as As2Se3-As2Te3 and As2Se3-As2S3 have been 
the subject of detailed investigations [1, 5-8]. The compositional dependence of 
properties in an alloy system As-Se-Te has also been studied [9, 10]. In the present 
report, the structural changes with the composition of As-Se-Te compounds have 
been studied in both glassy and crystalline forms by X-ray diffraction.
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2. Sample preparation and X-ray measurements

Three series of As-Se-Te compounds of the general formula AsSe,,_xTex, with 
y =  1.0,1.5 and 2.5, and with 0 < x < y, have been prepared as bulk glasses by quenching 
from the melts [9, 10]. The corresponding polycrystalline forms are obtained by 
annealing the glassy samples at temperatures between their softening and crystalline 
temperatures, Tg-Tc, for different soaking times. These are varied between 160-to- 
260 °C, and between 7-to-60 h, depending on the composition of the examined 
material [11]. After each annealing period, the sample was left to cool in the oven.

The amorphous and crystalline states have been determined by X-ray diffraction. 
The amorphous phase yields a diffuse pattern whereas sharp lines indicate the 
crystalline state. The samples were ground in a quartz mortar to obtain samples in a 
powder form. A smooth powder specimen surface is produced by mixing the powder 
with glass in an aluminium holder.

An up-to-date Philips diffractometer has been used with CuKa radiation. The 
scanning rate (2°/min) and the general operating conditions were kept constant all over 
the investigation. However, a slow scan, (l/8°/min), was used whenever it proved 
necessary.

3. Results and discussion

3.1. The amorphous state

The X-ray diffraction patterns for the amorphous AsSej_xTex and 
AsSe2 5_xTex systems are shown in Figs 1 and 2, respectively. The patterns are quite 
similar to those obtained for the As2Se3-As2S3 [12], As2Se3-As2Te3 [5], and for the 
(As2Se3), _x(Tl2Se3)x [13] glassy compounds. The diffraction patterns show a three 
stepped hump around the Bragg angles; 12-21, 21-44 and 44-60 degrees, for the first, 
second, and third step, respectively. The second hump has the highest intensity for the 
two systems and also occupies the largest angular range. This means that the second 
step possesses the highest contribution of diffracting atomic planes in the present 
domains. This has been justified by comparing the diffraction patterns for glassy and 
crystalline samples of AsSe and AsSe2 5, as shown in Figs 3 and 4. These Figures show 
the presence of the highest number of strongly reflecting planes in the region of the 
second hump.

As Figs 1 and 2 show, the diffraction patterns of the investigated glassy materials 
depend on the composition, where a shift of the apex of the second hump step is found 
in addition to the gradual decrease in intensity of the first step. The displacement in the 
apex position of the second hump is gradual and monotonie with composition. This is a 
strong evidence in favour of the assumption that the stepped hump, characteristic of 
Arsenic-Chalcogenide glasses, is due to the existence of highly reflecting planes of 
countless randomly distributed diffracting domains in the angular position corre
sponding to each step.
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3.2. The crystalline state

A.The AsSe-AsTe system

The X-ray diffraction patterns obtained for the AsSe, AsSe0.6Te04, 
AsSe0 5Te0 5, AsSe0 3Te0 7, AsSe01Te09 and AsTe compounds in their crystalline 
states are depicted in Fig. 5. The Figure shows that the addition of Те to the parent 
AsSe is accompanied by changes in the diffraction patterns. The strong effect is well 
demonstrated by the AsSe and AsSe0 л Те09 diffraction patterns.

The differences in the diffraction pattern of AsSe due to the addition of 20 at% 
Те, i.e. the composition of AsSe0 6Te0 4, might be summarized as follows: i) Around 
20  = 16-20°, three peaks (d = 0.5639,0.5149 and 0.426 nm) disappeared and the inten-

Fig. 5
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sity of another peak (d = 0.4978 nm) is reduced by about 73%. ii) The intensities of the 
two peaks around 20  — 22° (d — 0.4032 and 0.3955 nm) as well as those around 20  = 38° 
(d = 0.2384 and 0.2337 nm) disappeared, iii) Around 20  =  30-32°, the peak intensities 
of the lines of d = 0.2893 nm, 0.2866, 0.2805 and 0.2775 nm are reduced by 70, 75, 35 
and 35%, respectively. Besides, a well resolved peak developed at d= 0.283 nm. iv) The 
shape of the peaks around 2 0  — 50-54° changed.

The changes in the positions, intensities, and shapes of the peaks indicate 
changes in the AsSe structure due to additional Те atoms. Since the general appearance 
of the diffraction patterns for AsSe and AsSe0 6Te0.4 is the same, the new structure 
might be considered, as a phase based on the AsSe structure where Те atoms might 
substitute the Se atoms. In other words, a solid solution based on AsSe structure 
developed, which might be called а-phase. However, the appearance of new lines in the 
diffraction pattern of AsSe0 6Te0 4 indicates the formation of a new phase, which we 
may call a y-phase. The two phases might be referred to as a rich Se phase (а-phase), and 
poor Se phase (y-phase).

This means that about 20 at%Te in AsSe! .Де* compounds is accompanied by 
phase separation. For compounds of larger Те content, namely AsSe0 5Te0 5, 
AsSe0 3Te0,7 and AsSe0л Те0 9, the changes in the diffraction pattern of AsSe0 6Te0 4 
mentioned above are increased. This indicates that the increase of the number of Те 
atoms in AsSe, _xTex is accompanied by greater changes in the AsSe structure.

By using the AsTe diffraction pattern obtained under the same conditions, it was 
possible to determine the Bragg lines of the y-phase (Fig. 5).

Quantitative measurements have been made by measuring the d-spacing for 
every line in the pattern of each compound together with their relative intensities (7//0). 
The respective data are summarized in Table I. The Table confirms the disappearing 
and the development of lines as mentioned before. This indicates the formation of the 
two phases.

An attempt has been made to determine the ratio of the two phases for each 
compound. The results are collected in Table II.

From the above discussion it can be concluded that phase separation takes place 
when the Те content reached about 20 at% in the AsSe, _xTex compounds.

В: The As2Se5-A s2Te5 system

The X-ray diffraction patterns obtained from the investigated crystalline samples 
of the AsSe2 5_xTex system are presented in Fig. 6. One may conclude from these 
patterns that some changes are due to the introduction of Те atoms in the parent 
As2Se5. By comparing the patterns of AsSe2 5 and AsSe2 0Te0 5, clear changes are 
visible in the ranges 20  = 28-30°, 40-46° and 50-56°. These changes appear as new 
lines in the diffraction pattern, together with a small shift of the positions of the other 
lines (20) of the parent sample. The same argument given for the AsSe, _хТех system 
may be applied here, and one may suggest that a phase separation takes place at about
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Measured d-spacing and relative intensities for the observed reflections of the examined compounds of the
system A sS e^jT e,

Table I

AsSc AsSe0.6Te0 4 AsSc^<Ге  ̂  ̂ AsScqjTe^  ̂ Asq [T c^  As'i'c
d [nm] R1 d [nm] RI d [nm] RI d [nm] RI d [nm] RI d [nm] RI

0.6414 50 0.6415 56 0.6364 31 _ _ _ _ _ _
— — — — — — 0.6321 71 0.6321 68 0.6325 69

0.5600 15 0.5600 5 — — 0.5600 3 0.5600 3 — —
— — — — 0.5466 8 — — — — — —

0.4978 59 0.4978 7 — — — — — — _ _
0.4032 17 — — — — — — — — — —
0.3955 20 — — — — — — — — — —
0.3861 7 — — — — — — — — 0.3850 32

— — 0.3827 16 0.3811 3 0.3827 37 0.3827 20 — —
0.3764 22 0.3750 3 — — — — — — — —
0.3463 5 — — — — — — — — 0.3326 6

— — — — 0.3238 14 — — — — — —
0.3200 100 0.3202 100 — — 0.3192 100 0.3202 100 0.3186 100

— — 0.3159 73 — — — — — — — —
0.3055 12 — — — — — — 0.3043 7 — —
0.3015 20 0.3026 9 — — 0.3973 30 0.3973 24 0.3978 5

— — 0.2965 53 0.2966 66 — — — — — —
0.2944 55 — — — — — — — — _ _
0.2893 75 — — 0.2933 100 — — 0.2890 4 — —
0.2866 93 0.2857 12 0.2840 8 — — — — — —

— — 0.2830 10 — — — — — — — —
0.2805 79 0.2805 8 — — — — — — — —
0.2775 49 0.2770 17 — — — — 0.2763 24 — —

— — — — 0.2755 12 — — — — 0.2755 15
— — — — 0.2740 9 — — — — — _

0.2607 20 — — — — — — — — — _
0.2550 55 0.2541 P 0.2534 14 0.2529 41 0.2529 31 0.2528 28
0.2474 10 0.2474 3 — — — — — — _ _
0.2394 22 — — — — — — — _ _ _
0.2384 21 — — — — — — — _ _ _
0.2337 12 0.2350 6 0.2337 5 0.2337 20 0.2338 69
0.2263 8 0.2253 18 0.2253 7 0.2253 47 0.2253 13 — —

— — 0.2220 17 0.2225 11 — — 0.2225 24 0.2243 8
— — — — — — — — — — 0.2217 40

0.2185 9 — — 0.2191 4 — — — — — _
0.2165 17 — — — — — — — — _ _
0.2141 21 — — 0.2141 6 — — — — — _
0.2136 20 0.2131 8 — — 0.2126 14 0.2126 9 — —

— — — — — — — — — — 0.2117 13
0.2066 5 0.2057 7 0.2057 3 0.2057 16 0.2080 10 0.2076 16
0.2020 8 — — — — — — — — 0.2026 3

— — — — — — — — — — 0.2969 15
0.1960 23 0.1960 17 0.1956 17 0.1952 27 0.1952 27 0.1963 21
0.1944 20 0.1941 11 0.1924 21 0.1924 6 — — 0.1922 5
0.1845 11 0.1845 6 — — 0.1841 7 0.1845 8 0.1866 4

— — 0.1810 10 — — — — — — 0.1831 26
— — 0.1800 8 0.1803 5 0.1806 17 — — — —
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Table I. (cont.)

AsSe 
d [nm] RI

AsSe0 € 
d [nm]

;Те0 4 
RI

AsSe0 
d [nm]

5 ^ 0  5
RI

AsSe0 
d [nm]

,зТе07
RI

Aso.i 
d [nm]

T e0.9
RI

AsTe 
d [nm] RI

0.1796 29
0.1771 26 — — 0.1771 4 — — 0.1774 7 0.1774 9

— — — — 0.1750 6 — — 0.1758 7 0.1752 5
0.1734 32 0.1734 6 — — 0.1743 8 — — — —
0.1719 39 — — 0.1721 6 — — 0.1727 4 — —
0.1760 18 0.1668 7 0.1663 6 0.1668 13 0.1663 12 0.1667 9

— — 0.1650 5 — — 0.1650 5 — — — —
— — — — 0.1634 10 — — — — — —

0.1625 12 — — 0.1625 5 — — — — — —
— — — — — — — — 0.1600 9 0.1613 17

0.1595 14 0.1596 5 0.1595 6 0.1597 8 — — 0.1595 9
0.1582 9 0.1582 4 — — 0.1580 8 — — — —
0.1553 15 0.1551 8 — — — — — — 0.1549 11

— — — — 0.1545 5 0.1545 15 0.1537 11 — —
0.1525 14 — — — — — — — — — —
0.1507 10 — — — — — — — — — —
0.1490 8 — — — — — — — — 0.1473 17

— — — — — — — — 0.1454 6 0.1455 9
0.1445 16 0.1442 5 — — 0.1442 10 0.1441 9 0.1439 5
0.1435 9
_ :— — — — — 0.1405 5 0.1411 9 0.1415 10

0.1378 11
— — 0.1351 5 — — — — 0.1350 8 0.1351 6

Table II

a-phase/v-phase ratio in AsSe, _*Te, compounds 14

_ . . Percentage of atoms , , ,Composition (у/a) ratio

AsSe 50 50 _ _
AsSe0 6Te0.4 50 30 20 26.4
AsSe0 5Te0.5 50 25 25 17.5
AsSe0 3Te0 7 50 15 35 38.8
AsSe0 ,Te0 9 50 5 45 48.5
AsTe 50 — 50 —

14 at% Те. The rich Se phase might be called а-phase, and the poor one y-phase. The 
two phases might be referred to as a solid solution of As, Se and Те atoms.

This phase separation appears also in the compounds of a higher Те content, i.e. 
in AsSet 5Te, AsSe^ ^s^^t^s» AsSeg75Tei_75 and AsSeg5Te2-

Two methods have been adopted to confirm the formation of two phases in 
the AsSe2 5- xTex system by measuring both the d-spacing and lattice parameters. 
Table III summarizes the measured d values for the Bragg reflection together with the
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Measured d-spacing and relative intensities for the observed reflections of examined compounds of the
system AsSe2 5_,Tex

Table III

AsSe2 5 AsSe2Te0 j AsSe, ,Te AsSe, 25Te, 25 AsSe015Te175 AsSe0 5Te2
d [nm] RI d [nm] RI d [nm] RI d [nm] RI d [nm] RI d [nm] RI

_ _ _ _ _ _ . _ 0.7200 6 _ _
— — — — — — — — 0.6660 5 — —
— — — — — — 0.6414 4 0.6414 6 — —
— — — — 0.6361 8 — — — — — —
— — — — — — — — • — — 0.6277 10
— — 0.5149 9 — — — — — — — —

0.5116 19 — — — — 0.5116 5 0.5117 12 — —
— — — — 0.4952 12 — — — — — —

0.4929 89 — — — — 0.4929 35 0.4929 66 — —
0.4208 25 — — — — — — — — — —

— — 0.4032 16 0.4032 4 0.4032 5 0.4032 13 — —
0.3911 22 0.3911 16 — — 0.3861 27 0.3928 14 — —

— — 0.3811 49 0.3811 35 — — 0.3811 42 0.3200 24
— — — — — — 0.3764 7 0.3750 18 — —

0.3748 30 0.3735 24 — — 0.3735 6 — — — —
0.3300 19 0.3300 7 — — 0.3300 8 0.3282 8 — —
0.3238 33 0.3238 18 — -- . — — — — — —

— -i- — — 0.3215 37 — — 0.3215 18 0.3215 85
— — — — 0.3183 40 0.3183 100 — — 0.3183 100
— — 0.3126 100 0.3126 100 — — 0.3126 100 — —

0.3116 27 — — — — — — — — — —
— — — — — — — — 0.3102 77 — —
— — 0.3084 67 — — — — 0.3086 68 — —
— — 0.3015 9 0.3054 7 — — — — — —

0.3004 22 0.2946 44 — — 0.2944 13 — — — —
0.2922 65 0.2922 34 0.2933 9 — — 0.2922 36 0.2924 19
0.2904 57 — — — — — — — — — —
0.2890 91 0.2886 7 0.2882 11 0.2893 23 0.2890 66 — —

— — 0.2857 70 0.2875 12 0.2866 27 — — — —
0.2840 100 — — 0.2840 16 — — 0.2848 68 — —
0.2821 70 0.2813 41 — — 0.2821 17 — — — —
0.2796 84 0.2796 59 0.2796 12

— — 0.2796 59 — —
— — — — 0.2763 7 — — — — 0.2755 5
— — 0.2614 13 0.2607 3 0.2614 6 — — — —

0.2600 23 — — — — 0.2550 8 0.2600 12 — —
0.2541 36 0.2541 24 0.2541 8 — — — — — —

— — — — 0.2535 9 — — 0.2535 27 0.2529 5
0.2474 17 0.2468 9 — — 0.2474 8 0.2468 9 — —
0.2397 26 0.2410 16 0.2404 7 0.2417 7 0.2397 15 — —

— — 0.2380 16 0.2384 5 — — 0.2380 15 — —
0.2337 13 0.2343 9 — --• 0.2331 27 0.2337 9 0.2331 24

— — — — 0.2326 9 0.2320 23 — — — —
— — 0.2280 6 — — 0.2274 11 0.2286 4 0.2280 18
— — — — 0.2236 31 0.2253 9 — — — —
— — 0.2225 23 — — 0.2220 27 — — — —

0.2210 7 0.2210 36 0.2210 30 — — 0.2210 39 0.2215 25
— — 0.2170 20 0.2180 9 — — — — 0.2175 2
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Table III. (cont.)

AsSe2 . 5  AsSe2 Te0  5  AsScj^Tc AsScj_2 jTej_2 5  AsScq ^Tcj 7 5  AsScQ_jTe2

d [nm] RI d [nm] RI d [nm] RI d [nm] RI d [nm] RI d [nm] RI

0.2165 15 0.2165 18 _ _ _ _ 0.2165 23 _ _
— — 0.2151 18 — — 0.2151 5 — — — —
— — — — — — — — 0.2141 23 — —

0.2136 18 — — — — — — — — — —
0.2117 10 0.2113 14 — — — — — — 0.2117 2
0.2102 20 — — — — 0.2080 11 0.2102 18 — —
0.2057 12 — — — — 0.2070 12 — — 0.2066 7

— — 0.2035 9 0.2048 13 0.2043 3 0.2035 12 — —
— — 0.1980 10 — — — — — — — —

0.1964 12 — — — — — — 0.1964 12 0.1952 8
0.1941 17 0.1941 12 0.1944 6 0.1944 9 0.1941 15 — —

— — — — 0.1913 19 — — — — 0.1917 7
0.1876 11 0.1895 5 0.1906 15 — — — — — —

— — 0.1847 7 0.1841 7 0.1830 17 — — 0.1830 11
— — 0.1810 20 0.1810 16 — — 0.1806 19 0.1820 10

0.1793 36 0.1796 39 0.1803 14 0.1796 13 0.1796 43 0.1793 2
0.1771 33 0.1774 22 0.1774 4 — — 0.1771 26 0.1774 3
0.1743 22 0.1750 13 0.1750 4 0.1750 11 0.1750 15 0.1743 3

— — 0.1721 21 0.1724 9 0.1724 9 — — — —
0.1713 36 0.1716 24 — — 0.1716 9 0.1719 32 — —

— — — — 0.1697 3 — — 0.1693 8 — —
0.1600 12 0.1600 7 — — 0.1610 10 — — 0.1610 5
0.1587 11 0.1585 10 — — 0.1595 7 — — 0.1590 5

— — 0.1575 9 0.1573 8 — — — — — —
— — 0.1548 7 0.1548 5 — — — — 0.1545 2
— — 0.1543 7 — — — — — — — —
— — 0.1540 7 — — — — — — — —

0.1523 13 0.1523 10 0.1523 3 — — 0.1523 13 — —
0.1505 9 0.1507 5 — — — — 0.1503 9 — —

— — 0.1450 9 — — — — 0.1458 16 — —
0.1442 10 0.1442 12 0.1446 10 0.1446 9 0.1448 16 0.1450 6

— — 0.1421 7 0.1418 -8 — — — — 0.1420 4
— — 0.1400 9 ' -- — 0.1411 7 — — 0.1410 4
— — 0.1371 9 ' -- — 0.1375 5 — — 0.1377 4

0.1335 10 0.1351 6 0.1351 4 — — — — — —

relative intensities of the investigated compounds. The Table shows the formation of 
new lines resulting from the development of a new phase. Because of the line-resolution 
problem, only the lattice parameters for the а-phase (Se-rich) have been determined 
and given in Table IV. The Table shows first the lattice parameters of the a-phase 
whose unit cell volume is generally larger than those of AsSe2 5, as expected. Second, no 
variation in the lattice parameters appears as one passes from AsSe2Te0.5 upto 
AsSe0 75Te175, consequently the unit cell volume does not change. The average values 
of a, b, c, ß and Kare: 1.2074, 0.9853, 0.4308 nm, 85° 20  and 0.510225 (nm)3, 
respectively. These two observations indicate that the increase in the lattice parameters
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Table IV

The estimated lattice parameters and unit cell volumes of the As2Se5-As2Te5 compounds

Composition a [nm] b [nm] c [nm] ß° V [nm3]

As2Se5
AsSe2.0Te0.5
AsScj jTc jQ
AsSe! 25Te1 25 
AsSe0 75Tei 75

1.2052
1.209 ±0.002 
1.198 1  0.004 
1.21410.001 
1.108 1  0.002

0.9854
0.983610.001 
0.985110.001 
0.985410.001 
0.9870 1  0.001

0.4252
0.4291 ±0.001 
0.4305 1  0.001 
0.432710.001 
0.4296 1  0.001

87.85
85.23010.24
85.76010.41
84.58810.57
85.35310.18

0.504851 
0.50845710.002 
0.506618 1  0.009 
0.515214 1  0.002 
0.510612 1  0.001

of the а-phase is consistent with the formation of a substitutional solid solution (a- 
phase) where Те, whose atomic radius (0.143 nm) is larger, replaces the Se atoms of 
smaller atomic radius (0.116 nm).

Consequently, one may conclude that the structure of the parent compound 
AsSe2 5, is very sensitive to the addition of Те atoms, and an addition of about 14 at% 
Те is already accompanied by phase separation.

4. Conclusion

The X-ray measurements made on amorphous and crystalline AsSe^./Te* 
systems showed that the structure of these compounds is very sensitive to their 
compositions. In the amorphous states, three stepped hump diffraction patterns were 
found with a maximum intensity at the second step. The shift in the apex of the second 
hump and the decrease in the intensity of the first hump, resulting from increasing Те in 
the compounds indicate the structural dependence on their compositions.

The structural dependence on the composition has been also found in the 
crystalline states. In other words, a phase separation has been detected for AsSe0 6Te0 4 
and AsSe2Te0 5 compounds of ~20 and 14 at% Те, respectively. The two phases 
formed might be denoted as а-phase (rich Se phase) and y-phase (poor Se phase or rich 
Те phase).

A phase separation might also be observed for the stoichiometric system 
AsSe, 5-Д е* at about 10 at% or higher Те content, as indicated by the diffraction 
patterns presented in Fig. 7. The AsSeTe0 , compound of Se:Te = 2 : 1 constitutes an 
exception as shown in Fig. 7. For this compound the diffraction pattern is different 
from those of smaller or higher at% Те. This means that for such compounds the 
change from the parent sample, AsSej 5, is not of a phase separation type. One may 
suggest that the changes in the diffraction pattern are due to some ordering process 
similar to that observed either for Bi2Te2Se [14], of Te : Se =  2 : 1, or for As2Se2S [7,8] 
of Se : S = 2:1. The type of ordering in AsSeTe0 5 needs more investigation which is 
presently being carried out.

In the AsSe! _xTe^ system, the a- and y-phases have structures based on AsSe 
(monoclinic) and AsTe (f.c.c.), respectively. The a- and y-phases found in AsSej 5 _xTcx
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Fig. 7

compounds have structures based on AsSe15 (monoclinic) and AsTe15 (monoclinic), 
respectively. For the AsSe2 5 _xTex system on the other hand, the a- and y-phases have 
structures based on AsSe2 5 and AsTe2 5, respectively.

Table V summarizes the structural changes with the composition for the three 
As-Se-Te systems as obtained from X-ray diffraction measurements.
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Table V

The structural changes of the As-Se-Te systems with the composition as obtained from X-ray powder diffraction studies

Single phase (a) Single phase (y)

Parent Composition of 
similar structure

Compositional range of two phases 
a (rich in Se) + y (rich in Те) Composition of 

similar structure Parent

AsSe
Monoclinic 

a0 = 0.669 nm 
b0= 1.386 nm 
c0 = 1.000 nm 
/1 = 113.8°

AsSe, _,Те„ 
with xg0 .4

AsSe-AsTe, with S  20 at% Те 
i.e. from AsSe0 5Te0 5 

to AsSe0 ,Te0 9

AsTe
F.c.c.:

a0 =  0.5778 nm

As2Se3 As2Te3
Monoclinic As,Se,-As,Те,, with> 10 at% Те Monoclinic

a0 = 0.430 nm AsSe, ,_„Te. i.e. from AsSe, 15Te0 35 to AsSe,.s - ,Те, a0 =  1.4339 nm
b0 = 0.994 nm with xáO.25 AsSe0 50Te with a state of ordering with x g  1.15 b0 =  0.4006 nm
c0 = 1.284 nm at Se:Te = 2 : 1; AsSeTe0 5 c=0.9873 nm
ß =  109.1° 0 =  95.0°

AS2SC5 As2Se5-As2Te5, w ith^ 14 at% Те As2Te5
i.e. from AsSe2 0Te0 5

to AsSe0 5Te2.0
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Some exact solutions of Einstein’s equations corresponding to source-free electromagnetic 
fields plus the scajar fields are obtained. The geometry of these solutions is described by an axially 
symmetric static metric in prolate spheroidal co-ordinates. The details regarding these solutions are 
also discussed. A three-parameter solutions of static Einstein—Maxwell equations, obtained by 
Bonnor, is derived as a particular case.

1. Introduction

The importance of exact solutions in the general theory of relativity is quite well- 
known. Due to the non-linearity of the field equations of general relativity, it is 
extremely difficult to solve them. Therefore only a handful of exact solutions of these 
equations are known in the literature. The purpose of the present investigation is to 
derive some exact axially symmetric static solutions for the interacting electromagnetic 
and scalar meson fields, which we call Einstein—Maxwell—Yukawa (EMY) fields.

Stephenson [1] has obtained a static spherically symmetric solution of the EMY 
field equations in which the scalar meson field is associated with a meson of non-zero 
rest mass ц. According to him such a solution will represent (apart from spin effects) the 
classical gravitational field of a proton. Thus, it seems worth while to derive exact 
solutions of EMY field equations. In this paper we shall restrict our analysis to the case 
/i=0. Therefore now onwards the Yukawa field is supposed to be massless.

Teixeira, Wolk and Som [2] have studied a general class of static cylindrically 
symmetric solutions of EMY field equations. These solutions reduce to the solutions 
obtained by Marder [3] in the absence of electromagnetic and scalar fields.

Lai and Khan [4] have obtained a static solution of the EMY field equations. 
Their solution includes the solutions previously obtained by Patel [5], Singh [6] and 
Taub [7] as particular cases. They have also derived a non-static solution of these field 
equations in terms of Einstein—Rosen metric.

Akabari and Patel [8] have obtained various static solutions of EMY field 
equations in oblate spheroidal coordinates. These solutions reduce to the solutions 
discussed by Misra [9] in the absence of scalar fields. When the electromagnetic field is 
switched off in their solutions, they reduce to the solutions obtained by Patel and 
Trivedi [10].
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We shall discuss here some new static solutions of EMY field equations in 
prolate spheroidal co-ordinates which are generalizations of the electrovac universe 
discussed by Bonnor [11].

2. The metric and the field equations

We investigate the line element

ds2= e2k dt2—a2 (Ç2 — 1)(1 — rj2)e~2l‘d(p2 —

( 1 )

where К and H are functions of £ and i/ only and a is a constant. We number the co
ordinates as

X1 = £, x2 = rç, x 3 = (p and x4 = t.

In what follows the lower suffixes 1 and 2 after any unknown function imply a partial 
differentiation with respect to £ and rj respectively. The surviving components of Ricci 
tensor for the metric (1) are given by 

1
R[ = a2e2H(Ç2 — I)2) 

1p2_ ___________
2_ Л„2Нп:2 „2a2e2H(Ç2 —rj2)

p 3  _  __ n 4 ______________________

3~  4~  a2e2H(Ç2- r , 2)

[ -  (£2 -  1 ) (Я и  + 2K Î) +  2£K, — ( 1 — i;2) Я 2 2 + 2>?Я2] , 

[ —( í2~  l )H H — 2ÇH! — (1 — i;2)(H 22 + 2K2) —2i/K2], 

[(Í2-1 )K u + 2 ^ 1 + ( 1 - i;2)/í 22- 2 i,K2],

1
ç2 — 1 1— rj2 a2e2H(Ç2 — ti2)

- 2  K ,K 2+ r2< ^ 2 +  * 2) _  +
- 1  l-« f2 J '

The field equations of space-times containing electromagnetic fields and a zero- 
mass meson field, but no matter, are

К  = -  8zr [ — FijFkj + 1/4<5' Fab F°b + g" V„ V>k] , (3)

where (i)Flk is the skew-symmetric electromagnetic field tensor which satisfies 
Maxwell’s equations

Fik = Ai,k — Ak,i (4)
and

(5)F '\* = 0

and (ii) V is the zero rest mass scalar field which satisfies

n V = g ,JV;ij= 0. (6)
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Here a comma indicates partial differentiation and a semicolon indicates covariant 
differentiation.

For the space-time defined by the metric (1), the equation (6) reduces to the usual 
Laplace’s equation. If we assume that F is a function of £ and rj only, the Eq. (6)
hpromps

« а -1 )И 11 +  2€К1+ (1 -1 |2)Ки - 2 ,К 2=0. (7)

Here it should be noted that the Eq. (7) is independent of the metric potentials К  and H.
Zipoy [12] has shown that the solutions of (7) can be written as a linear 

combination of Legendre polynomials of integral order l (See also Hobson [13]). 
Bonnor and Sackfield [14] showed that the solutions for / =  0 and /= 1  can be 
interpreted as a mass monopole and dipole respectively with Euclidean topology. 

Following Bonnor [11], let us choose the electrostatic 4-potential At — as

Л |= - |= < 5 ? ,  (8)
V ™

where ß is a function of Ç and q only. The Maxwell’s equations (5) gives us the following 
differential equation for the function ß

( e - l ) ß l i+ 2 tß 1H l - r i 2)ß22-2riß2 = 2(t2- l ) K lß 1 + 2{ l-r ,2)K2ß2. (9)

We have verified that the entire solution of the EMY field equations (3) is determined 
by (7), (9) and the following three differential equations:

(Ç2 — l ) K l l +2ÇKl + K 22( i - r i 2) —2riK2= i^e~2K[(Ç2 — l)ßl+(l  - r i 2)ß%], (Щ

2(Я1+ К 1) = ^ - ^ [ 2 ^ 2-1)К ?-2а1-»72Ж 1 - 4 ^ 2-1)Х 1К2]
¥ - 4

+  -
(1 - г ,2)

f - г ,2
8я(£2 — 1)(1 — г, 2)

[ ■- ш 2 -  \)ßl + 1(1 ■- v2)ß\ + 2r\(? -  1 ) /Ш  +

e - r , 2
\ у г  Ы ~ П г)У\ 
с 1 ? - \ ■îijFiKjJ, ( П )

2(H2 + K 2) = (j 2— ^l2r,(Ç2- l ) K 21- 2 r , ( l - r ,2)K22+ 4 Ç ( l - ' l2)K1K 2] + 
С -»/

-2K(*2_U
+ . Г  , Ч - ^ 2 -  №  +  »id - ri2)ßl+ 2 Í(1 - rç2) /? ^ ]  +

e - r , 2

Щ £ 2- Щ 1 - г , 2)
+

e - r , 2 'ЩеР - м +чул ( 12)
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We have also verified that the condition of integrability (Hl + K 1)2=(H2 + K 2)i for 
(11) and (12) is satisfied.

A heedful observation of the Eqs (9) and (10) reveals the fact that the 
determination of the functions ß and К does not depend upon the scalar field V It is 
evident from the Eqs. (11) and (12) that the determination of the function H depends 
upon V.

3. The solutions of the field equations

Bonnor [11] has solved the differential equations (9) and (10) with the aid of the 
method developed by Chandrasekhar [15]. The solution of (9) and (10) can be 
expressed in the form

and
ß = U ~ l V~2(C U -B V ) (13)

= U ~2V~2(UV—BV—CU)2 (14)

with U = B + Ari — Ç, V=C + Atj + Ç. Here A, В and C are constants of integration 
satisfying the relation

BC = A2- l . (15)

The remaining unknown functions Fand H can now be determined from the Eqs (7), 
(11) and (12).

We limit ourselves to the monopole and dipole solutions of (7). Therefore we 
consider the following two cases:

( i)

(ii)

V= N  log

V=Lr\ 1 -É 2 log

(16i)

(16Ü)

where N  and L are arbitrary constants.
In these two cases the Eqs (11) and (12) yield the following expressions for the 

function H

(17i)

— 47iL2(l — >72) (17ii)
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Thus the Eqs (13), (14), (15), (16i) and (17i) give us the monopole solution and the Eqs
(13), (14), (16 ii) and (17 ii) give us the dipole solution of EMY field equations for the 
metric ( 1 ). It should be noted that there are four arbitrary constants in each of the above 
mentioned solution of EMY field equations.

For the discussion of details, we restrict our analysis to the monopole solution 
only. The details regarding the dipole solution can be discussed on similar lines. Instead 
of using the constants A, В and C, it is physically more significant to use the constants 
m, e and b defined by (Bonnor [11])

m = (C-B)a, e = (C + B)a, - bm = a2A(B -  C). (18)

Here m and e are respectively the mass and charge parameters and b corresponds to the 
distribution of higher multipoles.

The monopole solution of EMY field equations may be written in terms of the 
spherical polar co-ordinates г, 9 and cp by means of the transformation

a£ = r- m, t] =  cos 9. (19)

The explicit form of the metric for the monopole solution can be expressed as 

ds2 = — W 2[P2Q~(3 + 3 2nN^Z 32*Ni(Z  - ld r 2 +  d32)

+ Z P ~ 2 sin2 9d<p2] + P 2IT-2di2,
where

— a2 + b2 cos2 9,

( 20)

1 у
- — ) —a2 cos2 9,
2 171J

W= r2 — ̂ b cos 9 +  ,

Z  = ( r -  y  m'j - a 2,

a2 = b2 + l/4(m2— e2). (21)

The electrostatic potential ß and the scalar field Fean be expressed in terms of r and 9 as

- mb cos 9}
V = N  log (22)

As noted by Bonnor [11], the singularity structure of the metric (20) is very 
complicated. But the singularities are within the region r= l  where l stands for the
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greater of |a | +  - |m | and \b\ +  ^\e\. Therefore the solution described in the 
2 2

metric (20) is meaningful for the following range of the variables:

r>l, 0^9^71 , 0 ^ ф ^ 2 л , — oo < i < oo. (23)

It is clear from the result (22) that the scalar field Kis real for the region r>l.
The following particular cases of the solution (20) may be of physical significance.

(i) N = 0. In this case we recover the electro vac universe discussed by Bonnor [11].
(ii) e=0, тф 0, ЬфО, Ыф 0. In this case the solution (20) describes a scalar field 
generalization of Bonnor’s [16] dipole solution. The substitution N  = 0 in this solution 
yields the dipole solution of Bonnor with a slight change of notations.
(iii) b = 0, т2фе2, N  ф0. The solution (20) reduces to a scalar field generalization of a 
non-spherical Weyl solution.
(iv) 6 = 0, m2 = e2, N  Ф 0. In this case the solution (20) is equivalent to a scalar field 
generalization of Reissner—Nordstrom solution with m2 = e2. Putting N =0, we get 
the Reissner—Nordstrom solution with m2 = e2.
(v) m = 0, e = 0, N  ф 0. In this case, the electrostatic potential vanishes. Therefore the 
solution reduces to a purely zero-mass meson solution. When the scalar field is 
switched off, the space-time becomes flat. This is a noteworthy feature of this solution.

Thus we have obtained some zero-mass scalar field generalizations of the three- 
parameter solution of Einstein— Maxwell equations discussed by Bonnor [11]. An 
interesting feature of these solutions is worth mentioning. The presence of the scalar 
field does not affect the electrostatic potential and vice-versa. But the scalar field affects 
the geometry of the space-time because the metric potential H depends on the scalar 
field V.
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Results of investigations of a longitudinal hollow-cathode discharge are presented for a 
hollow cathode of 5 mm diameter and a length variable from 8 mm up to 96 mm. Hollow cathodes of 
such dimensions are used in discharge tubes employed in laser technology.

Axial distributions have been determined for the current density over the cathode surface, 
discharge current intensity and discharge plasma potential. Also voltage vs current discharge 
characteristics have been measured.

The measurements have been carried out for discharge in helium at a pressure ranging from 
1.67 hPa to 34 hPa. The current intensity varied from 1.86 mA to 250 mA depending on the cathode 
length.

The investigations covered hollow-cathode discharges in the presence of one anode as well as 
two anodes located at the opposite ends of the cathode. An axial inhomogeneity of the discharge 
plasma resulting in nonuniform axial distributions of the cathode and longitudinal currents as well as 
nonuniform axial distribution of the discharge plasma potential was observed for both cases.

The inhomogeneity of the longitudinal hollow-cathode discharge affects the operation of the 
laser discharge tube. Some consequences of this inhomogeneity are discussed.

1. Introduction

In the hollow-cathode discharge tubes two principal kinds of electric discharge 
can be distinguished: the transverse and the longitudinal discharge [1, 2].

The transverse discharge occurs in tubes where the tube geometry and 
configuration of the electrodes — cathode and anode — makes the electric charge 
carriers, electrons and ions, move transversely to the hollow cathode axis (Fig. la).

It is characteristic of the longitudinal discharge that electrons leaving the 
cathode surface move towards the anode along the hollow cathode axis (Fig. lb).

Both the transverse and longitudinal discharge, as well as a discharge of 
intermediate nature, have been applied for the excitation of lasing in various media 
[ 1, 2].

The properties of longitudinal hollow-cathode discharge proved especially 
convenient for the forming of population inversion in the He —Cd mixture, generating 
the three basic spectral lines: blue, green and red, which can be mixed to produce white 
light [3].
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The importance of this fact from the viewpoint of possible applications has 
increased the interest in properties of the longitudinal hollow-cathode discharge. The 
principal parameters of such discharge which decide whether it is applicable to the 
excitation of lasing media are the current density distribution over the cathode surface, 
the discharge plasma current distribution, the cathode fall distribution, the electron 
energy distribution function, the electron number density distribution, etc.

Fig. 1. Schematic diagram of typical hollow cathodes characterized by (a) transverse and (b) longitudinal
discharge direction

Papers on the investigations of some of these parameters [4-11] except [9], refer 
to the longitudinal discharge in hollow cathodes not typical of the laser technology. As 
the laws of similarity do not hold for the hollow-cathode discharge, the applicability of 
the results published in [4-11] to the description of the longitudinal hollow-cathode 
discharge in laser tubes is limited.

This paper presents the results of investigations concerning some properties of 
the longitudinal discharge in a hollow cathode characterized by parameters typical of 
discharge tubes used in laser technology.

2. Measuring set-up

The dimensions of the hollow cathode and the measuring range were chosen to 
be typical of the longitudinal hollow-cathode discharge in lasing mixtures of helium 
with metal vapours (Cd, Zn, I etc.).

The discharge tube (Fig. 2) consisted of 52 independent annular segments 2 mm 
thick. The segments were made of stainless steel. Their inner and outer diameters were 
equal to 5 mm and 20 mm, respectively. Each of the segment rings was separated from 
the adjacent ones by mica spacers 0.05 mm thick. The rings were put in a pyrex tube in 
such a way that discharge could occur inside the system of rings only. Separate electric 
leads to each of the rings made it possible to change the ring polarity freely and to form 
a hollow cathode of a length variable from 2 mm up to 96 mm. The current to each of 
the rings could be measured. The measurements were made by measuring the voltage 
drops across calibrated (6 ohm) resistors connected to respective ring circuits. To
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facilitate the measurements the voltage drops across the resistors were transferred to a 
storage oscilloscope via an electronic commutator. Owing to the use of the 
commutator the measuring time was reduced to a fraction of a second. This decreased 
the influence of the working gas temperature changes on the results of measurements. 
Continuous distributions of the cathode current densities were obtained by smoothing 
the discrete distributions displayed by the oscilloscope. Fig. 3 gives an example of the 
smoothing operation. The evaluated accuracy of the measurements made in this way 
was ±5%.

vacuum system

Fig. 2. Hollow cathode draft (52 segments 2 mm thick, with 5 mm I. D.). The polarity of electrodes for 
asymmetric (A) and symmetric (S) cathode supply is shown

Fig. 3. Oscillograph record showing the cathode current distribution along the hollow cathode. Helium 
pressure: 26.66 hPa, current intensity; 10 mA, cathode length; 98 mm. The manner of smoothing the

stepwise distribution is presented
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The experiments included measurements of the density distributions along the 
cathode and V-I characteristics of the discharge for two geometries of the electrodes: 
asymmetric and symmetric (Fig. 2). For the asymmetric electrode configuration the 
discharge was maintained between the hollow cathode and one annular anode. To 
obtain a symmetric configuration the hollow cathode was placed between two anode 
rings ensuring symmetry of the power supply to the discharge. In each case the cathode 
was separated from each of the anode rings by one distance ring, completely insulated.

It should be noted that in laser tubes designed to obtain a longitudinal hollow- 
cathode discharge an asymmetric as well as a symmetric arrangement of electrode 
segments is adopted.

The measurements were carried out for a discharge current intensity and a 
helium pressure varied from 7.5 mA to 250 mA, and 1.67 hPa to 34 hPa, respectively.

3. Results and discussion

3.1. Introduction

In the longitudinal hollow-cathode discharge two kinds of current can actually 
be distinguished: the transverse or cathode current and the longitudinal current (Fig. 4). 
The transverse current of electrons and ions flows between the cathode surface and the 
negative glow which fills the cathode inside. The longitudinal current is produced 
mainly by electrons moving in the negative glow region towards the anode. The surface 
density of the transverse (cathode) current in a particular point of the cathode depends 
on the cathode fall value and parameters of the negative glow plasma at this point, that 
is also on the local value of the longitudinal current intensity. The longitudinal electric 
field in the negative glow causing the motion of electrons towards the anode is 
responsible for the longitudinal current flow. Thus, between the anode and a point on 
the cathode surface a specific potential distribution exists which is the resultant of the 
local cathode fall, longitudinal electric field in the negative glow and sometimes also the 
anode fall at the anode surface (Fig. 4). This can be written in the following way

V=K  + j£ (z )dz+ F c(z), (1)

where V is the working voltage, Va is the anode fall, E(z) is the intensity of electric field in 
the negative glow at a distance z from the anode, and Vc(z) is the cathode fall at the 
cathode surface at a distance z from the anode.

It is evident from Eq. (1) that the properties of the longitudinal hollow cathode 
discharge are determined mainly by the variable distance of the respective cathode 
surface elements from the anode. As the distance from the anode increases the value of 
the integral expression (1) increases. This means that at a fixed working voltage the 
local values of the cathode fall decrease as we go into the cathode. Thus also the
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local values of the transverse current intensity vary. For a sufficiently long cathode or 
relatively low working voltage Eq. (1) may not be satisfied for distances from the anode 
exceeding a certain finite value z=£. Physically this means that the depth of 
penetration of the discharge current into the cathode is limited, so that only part of the

U - Uq ♦ ) E ( z ) dz ♦ Uc ( z ) 
о

Fig. 4. Transverse and longitudinal current in the hollow cathode (£ -  penetration depth)

cathode surface is covered by the discharge. Obviously, an increase of the working 
voltage will result in an increase of the depth of current penetration into the cathode.

This inhomogeneity of the longitudinal discharge resulting from the difference in 
the distances between the anode and the respective cathode elements should be 
expected in the measurements.

3.2. Asymmetric electrode geometry

Results of measurements of the cathode current density distributions and 
voltage-current characteristics for the asymmetric electrode configuration are shown 
in Figs 5® —®  and 6®—® .

In general, the cathode current distribution over the cathode surface is 
nonuniform independently of the cathode length, helium pressure and discharge 
current intensity. This is in agreement with considerations in Paragraph 3.1.

As for the form of the cathode current distribution its variations dependent on 
the current intensity, cathode length and helium pressure are observed. The variations 
are larger for short cathodes and for the lowest helium pressure equal to 1.67 hPa, as 
well as for the highest ones, equal to 24 hPa and 34 hPa.

Fig. 7 shows some oscillograph records of the cathode current distribution for 
different distances between the hollow cathode and the anode, equal to 2 mm and 
50 mm, respectively. They show that the form of the cathode current distribution does 
not depend on the hollow cathode — anode distance. Similar results were obtained for 
various ranges of variability of the discharge parameters and distance between the 
hollow cathode and anode.

From Fig. 8 it is evident that for lower values of the current intensity, and 
corresponding lower working voltages the depth of discharge penetration into the

Acta Physica Hungarica 54, 1983



76 J .  M I Z E R A C Z Y K

( a j )  helium  p re s s u re  = 1.67 h P a  (1 .25  Tr)

Fig. 5. Distributions of line and surface density of cathode current along the hollow cathode for different 
cathode lengths, discharge current intensities and helium pressures. Helium pressure: ® -  1.67 hPa, ® -  
3.33 hPa, ® -  6.66 hPa, ® -  10.66 hPa, ® -  16.66 hPa, ® -  24 hPa, 34 hPa. Cathode length: a -  96mm, 
b -  72 mm, c -  48 mm, d -  24 mm, e -  16 mm, f -  8 mm. The curves, from the lowest one upwards, correspond 
to the following discharge currents: 7.5 mA, 15 mA, 30 mA, 50 mA, 75 mA, 100 mA, 150 mA, 200 mA and 

250 mA. Some distribution curves for high current intensities are missing

cathode is small, independently of the helium pressure. The discharge length, 
amounting to the penetration depth, increases as the discharge current intensity 
increases. At the same time for the lowest helium pressures, 1.67 hPa and 3.33 hPa, the 
discharge length increases but slightly for current intensities above 70 mA. As for the
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(cl) helium pressure = 6.66 hPa ( 5 Tr )

helium pressure = 10.66 hPa (8 Tr)

Fig. 5. (cont.)

dependence of the discharge length on the gas pressure it was shown that for a fixed 
discharge current intensity there is a specific pressure of helium, 16-17 hPa, at which 
the hollow-cathode discharge length is the largest (Fig. 9). On the other hand, when the 
working voltage is fixed, the discharge length increases with the helium pressure to 
reach its steady value on a level characteristic of the particular working voltage at 
pressures exceeding approximately 20 hPa (Fig. 10).

The results of measurements of the cathode current density can be employed to 
determine the distributions of the longitudinal current intensity in the hollow cathode.
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(éj) helium pressure = 16.66 hPa (12.5 Tr )

(fj) helium pressure - 24 hPa ( 18 Tr )

Fig. 5. (cont.)

The dependence of the longitudinal current intensity on the position along the 
hollow cathode axis is one of features by which this kind of plasma differs from the 
positive column plasma, where the axial current intensity is constant.

It was shown in [4] and [10] that the cathode current density distributions for 
hollow cathodes characterized by large diameters, 20 mm and 50 mm, depend for a 
fixed working gas pressure only on the distance measured from the point defining the 
discharge penetration depth. Thus they are functions of the quantity £ — z (see Fig. 4). 
However, the results of the present work show (Fig. 5) that the cathode current density
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Fig. 5. (coni.)

distributions depend not only on the distance <* — z, but also on the discharge current 
intensity (and, as in the former case, on the gas pressure).

A similar result was obtained in [6] for a discharge in a hollow cathode of 
relatively small diameter (14 mm). Based on these results it might be concluded that for 
a discharge in hollow cathodes characterized by relatively small diameters the relation 
between the cathode current density and the cathode dimensions and discharge 
parameters becomes more complex than for cathodes of larger diameters.

This affects directly the method of determining the discharge plasma potential 
distribution along the hollow cathode axis. It was shown in [4] that for the cathode 
current density, a function of the distance z only, it is sufficient, when determining 
the axial distribution of the discharge plasma potential, to know the working voltage 
value and the corresponding distribution of the cathode current density. For the 
reasons presented above this method of determining the plasma potential distribution 
was inadequate in the case described in this paper.

Therefore, to approximately determine the potential of a plasma inside the 
hollow cathode measurements were carried out of the floating potential of the odd 
cathode segments, electrically insulated. The hollow cathode was composed in this case 
of the even segments. The insulated segments may be regarded as the electric probes. 
Their floating potential must not differ significantly from the plasma potential.

Fig. 11 shows the results of measurements of the floating potential of insulated 
segments in the hollow cathode at a selected helium pressure of 16.66 hPa. Based on 
these measurements it can be concluded that in the hollow-cathode discharge plasma 
there is a region characterized by a nearly constant potential gradient, i.e. a constant 
intensity of the longitudinal electric field. This is similar to the situation in the glow
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Fig. 6. Voltage-current characteristics for the longitudinal hollow-cathode discharge in cathodes of different 
lengths. Helium p ressu re:® - 1.67 hPa, ® - 3.33 hPa, ® - 6.66 hPa, ® -  10.66 h P a ,@ - 16.66 h Pa,

® - 2 4  h P a ,®  -  34 hPa
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discharge positive column where the longitudinal electric field is responsible for the 
drift of electrons toward the anode. Our observation confirms the results of earlier 
works [7] and [11] where it was suggested that in the longitudinal hollow-cathode 
discharge three regions may be distinguished, namely the negative glow region, the 
transient region and the positive column region.

To sum up the results, as presented above, of investigations of the longitudinal 
hollow-cathode discharge in an asymmetric configuration of electrodes it should be 
noted that the discharge is inhomogeneous irrespective of the cathode length. The

a) b)

Fig. 7. Examples of double oscillograph records showing the cathode current distributions for different 
distances between the hollow cathode and anode. The helium pressure was equal to 16.66 hPa, the cathode 
length was 48 mm and the cathode-anode distance was 2 mm and 50 mm; the current intensity was equal to:

a)—15 mA, b) — 120mA
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Fig. 8. The hollow-cathode discharge length plotted against the discharge current intensity

Fig. 9. The hollow-cathode discharge length plotted against the helium pressure for fixed discharge current
intensity

inhomogeneity concerns the distributions of the cathode and longitudinal currents as 
well as the plasma potential distribution along the discharge axis.

As for the voltage-current characteristics for the longitudinal hollow-cathode 
discharge note that due to the inhomogeneous distributions of both the cathode and 
longitudinal currents it is impossible to generalize the V-I characteristics so as to 
eliminate their dependence on the cathode length. In this case introducing the notion of 
longitudinal current intensity reduced to the cathode length unit has no physical 
meaning. It may only be regarded as the mean value.

From the analysis of voltage-current characteristics and cathode current density 
distributions it follows that for a fixed gas pressure discharges characterized by
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Fig. 10. The hollow-cathode discharge length plotted against the helium pressure for fixed working voltage

Fig. / /. The floating potential of insulated odd cathode segments for the hollow-cathode discharge with one
anode

identical current density distributions occur at the same working voltage, cf. for 
instance relevant plots for the longest cathodes which are only partly covered by the 
discharge (Figs 5 and 6). It may happen, however, that identical working voltages 
correspond to discharges with different cathode current density distributions if only the 
discharge current intensity and helium pressure remain unchanged. This effect is

Acta Physica Hungarica 54, 1983



84 J .  M I Z E R A C Z Y K

characteristic of longer cathodes (96 mm, 72 mm and 48 mm), where for different 
current density distributions the voltage-current characteristics might sometimes be 
identical. Such behaviour of the discharge may be explained based on the discussion 
presented in Paragraph 3.1, which showed that the working voltage depends on the 
electric field intensity and cathode fall distributions. For different distributions of the 
cathode current density in the corresponding discharges such distributions of the 
longitudinal electric field intensity and the cathode fall value may develop that the 
working voltages for these discharges may happen to be identical.

The characteristics plotted in Fig. 6 show that in most cases the working voltage 
increases with the current intensity. This is valid also for a discharge covering part of 
the cathode only, except for the discharge in the longest cathodes (48 mm, 72 mm and 
96 mm) at the lowest pressure of helium (1.67 hPa). It is only by this behaviour of the 
voltage following the current intensity rise in the case of cathode whose part only is 
covered by the discharge that the hollow-cathode discharge differs from the classical 
glow discharge with flat or convex cathode.

A glow discharge covering only part of the flat or convex cathode, called the 
normal glow discharge, has three features. First, the current is uniformly distributed 
over the cathode part covered by the discharge. Second, a rise in the discharge current 
does not result in the current density growth but causes the area covered by the 
discharge to increase proportionally to the current intensity rise. Finally, the value of 
the cathode fall remains unchanged with the discharge current rise until the entire 
surface of the cathode is covered by the discharge.

When the whole cathode surface is already covered by the discharge a further rise 
in the discharge current intensity is accompanied by a substantial voltage rise, the 
current density distributing uniformly over the cathode surface. Such discharge is 
called an abnormal discharge.

It was already mentioned that for the hollow cathode the working voltage 
increases with the discharge current intensity increase, irrespective of the degree of 
cathode surface coverage by the discharge. The current density is not constant over the 
cathode surface covered by it, and this surface does not rise proportionally to the 
discharge current intensity. The cathode fall is not constant either along the cathode 
axis. Thus, classical notions concerning the normal and abnormal glow discharge with 
flat or convex cathode do not apply to the longitudinal hollow-cathode discharge, 
which was already pointed out in [5]. Nonetheless, the conclusions drawn from this 
fact are frequently neglected in the literature.

The increase of the working voltage with the growth of the cathode surface area 
covered by the discharge observed for the hollow-cathode discharge may be explained 
according to Paragraph 3.1, by the necessity of increasing the voltage to draw the 
electrons out of cathode regions more and more distant from the anode.

Curves plotted in Figs 12 and 13 show the dependence of the working voltage on 
the helium pressure for different lengths of the hollow cathode and different intensities 
of the discharge current. The form of these curves is characteristic of the discharge in
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helium pressure [ hPa ]

Fig. 12. Working voltage vs helium pressure for different discharge current intensities. Cathode length:
a) -  8 mm, b) -  24 mm, c) -  72 mm

which a so-called hollow-cathode effect [12] occurs, which consists of the existence of a 
so-called optimum pressure of the working gas at which a particular intensity of the 
discharge current is obtained at the lowest working voltage. In the case under 
consideration the hollow-cathode effect is more distinct for high current intensities and 
shorter cathodes. It depends thus mainly on the cathode current density.

Figs 14®—©show the dependence of the working voltage on the cathode length. 
It is evident that for a given discharge current intensity the working voltage rises with
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Fig. 13. Working voltage vs helium pressure for different hollow-cathode lengths. Discharge current 
intensity: ®  — 15 mA, ©  -  50 mA, @  -  100 mA, @  — 200 mA, ©  — 250 mA

the cathode length reduction, the rise being the more distinct the lower is the helium 
pressure.

The analysis of the results obtained leads to the conclusion that this effect can be 
attributed not only to the cathode current density rise due to the cathode shortening, 
but also to the resulting changes of the current distribution over the cathode surface.
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Fig. 13. (coni.)

3.3. Symmetric electrode geometry

The longitudinal discharge in a hollow cathode operating in conjunction with 
two anodes was investigated for one value of helium pressure, 16.66 hPa, most typical 
of hollow-cathode lasers.

The results are shown in Figs 15 and 16. In a hollow cathode fed symmetrically 
the current distribution is symmetric with respect to an axis traversing the cathode 
centre and dividing the system of electrodes into two asymmetric halves composed of 
one anode and one half of the original cathode. In order to distinguish such a discharge 
from the asymmetric discharge in a hollow cathode operating in conjunction with one 
anode, it will be called the symmetric discharge.

The symmetric discharge as well as the asymmetric one is characterized by 
nonuniform distribution over the cathode discharge. To facilitate the evaluation of the 
extent of this nonuniformity cathode current distributions normalized relative to the 
corresponding mean values of the current density are shown in Figs 17 and 18. Here the 
horizontal line on the level of unity represents the normalized uniform distribution of 
the current density irrespective of the discharge current intensity.

It is evident from Figs 17 and 18 that the cathode current density distribution is 
most nonuniform for the longest cathodes. The lower the current intensity, the more 
marked is this nonuniformity. In the extreme case (cathode length of 96 mm, discharge 
current intensity of 30 mA) the difference between the maximum and minimum value 
of the current density over the cathode surface is more than twice as large as the 
corresponding mean value of the current density. Shortening of the cathode or increase 
of the discharge current intensity results in flattening of the distribution nonuniform
ities. At the same time the saddle-like distribution curves assume a parabolic shape.
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Fig. 14. Working voltage vs hollow-cathode length. Discharge current intensity: ®  — 50 mA,
@ -1 0 0  mA, 200mA
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helium pressure - 16.66 hPa (12.5 Tr)

Fig. 15. The cathode current density distribution along the hollow-cathode fed symmetrically. Helium 
pressure: 16.66 hPa; discharge current intensity: 3.75 mA, 7.5 mA, 15 mA, 30 mA, 60 mA, 120 mA, 240 mA

Fig. 16. V-I characteristics for the longitudinal hollow-cathode discharge with (1) one and (II) two anodes. 
Helium pressure: 16.66 hPa, cathode length: 96 mm, 48 mm, 24 mm, 12 mm and 6 mm. Along the abscissae

the anode current intensities are shown
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Fig. 17. Cathode current density distributions normalized with respect to the mean value of the current 
density for the hollow-cathode operating in conjunction with two anodes. Helium pressure: 16.66 hPa, 
cathode length: 96 mm, 42 mm, 24 mm, 12 mm. Numbers represent mean values of the cathode current 

density and (in brackets) discharge current intensities, respectively

z/L

Fig. IS. Discharge density distributions in the hollow-cathode operating in conjunction with two anodes, 
normalized with respect to the mean value of the cathode current density. Helium pressure: 16.66 hPa, 
cathode length: 96 mm, 48 mm, 24 mm, 12 mm; mean value of the cathode current density: 15.91 mA/cm2
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This makes it possible to obtain a uniform or nearly uniform distribution of the 
cathode current density. For instance, a nearly uniform distribution of the cathode 
current density may be expected for a discharge in a hollow cathode 48 mm long if only 
the discharge current is kept within the 30 mA-60 mA interval (cf. Fig. 17). Note, 
however, that this uniformity of the cathode current density is accompanied by a 
nonuniform distribution of the longitudinal discharge current. Thus, the hollow- 
cathode discharge in the presence of two anodes is, as a whole, inhomogeneous.

The symmetry of cathode current density distributions in a hollow-cathode 
discharge where two anodes are used suggests that the discharge consists of two parts, 
each of them belonging mainly to its anode and the adjacent half of the cathode. The 
structure of the symmetric discharge may be explained better on the basis of a 
comparison of working voltages and cathode current density distributions for 
symmetric and asymmetric discharges, and also for an asymmetric discharge with a 
cathode shortened by half (Figs 16 and 19), termed briefly the asymmetric half
discharge. The following conclusions can be drawn from this comparison:

For the longest cathode (96 mm) all of the above mentioned three distributions 
of the cathode current density are identical irrespective of the type of discharge, unless 
the anode current intensity exceeds 15 mA. Potentials of anodes corresponding to 
these distributions are the same. This means that the symmetric discharge is then 
composed of two mutually independent asymmetric discharges, each of them occurring 
only between its anode and the adjacent cathode half. The presence or absence of one 
asymmetric discharge does not affect the other discharge. Likewise, the symmetric 
discharge may be regarded as composed of two asymmetric half-discharges.

With a rise of the discharge current intensity in the longest cathode the 
distributions of the cathode current density in the asymmetric discharge begin to differ 
from the other two distributions, which remain indistinguishable. The difference 
appears mainly because in the asymmetric discharge the current may be distributed 
over an area larger than in the remaining two cases. Consequently, the mean value of 
the cathode current density per unit .length of the cathode surface covered by the 
discharge is lower, and therefore the working voltage for the asymmetric discharge is 
lower, too (see e.g. Fig. 16). Similar conclusions may be obtained from the analysis of 
the discharge in the 48 mm hollow cathode. In spite of insignificant differences 
between the forms of distributions of cathode current densities for the symmetric 
discharge and corresponding asymmetric half-discharge the symmetric discharge may 
still be regarded as consisting of two, nearly independent asymmetric half-discharges.

For cathodes shorter than 48 mm both parts of the symmetric discharge affect 
each other and cease being independent. This results in differences in the forms of the 
cathode current density distributions and changes of anode voltages of the symmetric 
discharge and asymmetric half-discharge. The shorter the cathodes, the larger these 
differences.

It follows from the above discussion that for the range of parameters as 
considered here the symmetric discharge in a hollow cathode whose length is 48 mm or
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Fig. 19. A comparison of cathode current density distributions for the symmetric discharge (solid line), 
asymmetric discharge (dash-dot line), and asymmetric half-discharge (circles). Helium pressure: 16.66 hPa, 
cathode length 96 mm, 48 mm, 24 mm, 12 mm. Current intensities shown (1.88 mA up to 120 mA) denote

the anode current values

more may be regarded approximately as composed of two independent asymmetric 
half-discharges. On the other hand, for cathodes shorter than 48 mm both parts of the 
discharge interact, which leads to changes in the working voltage value and form of the 
cathode current density distributions.

The decrease, occurring in the latter case, of the anode voltages in the symmetric 
discharge compared with the asymmetric half-discharge characterized by the same 
intensity of the anode current possibly results from the presence of the so-called pendel 
electrons [13] in the central region of the cathode equidistant from both anodes. The 
presence of such electrons, causing additional ionization of the gas, should lead to a
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drop of the working voltage. Besides, in the symmetric discharge the contribution of 
photons to the production of electrons on the cathode surface in the intermediate 
region is larger than in the case of two asymmetric half-discharges where photons are 
more likely to escape outside. This may be another reason for the working voltage 
decrease for the symmetric discharge.

Fig. 20. The floating potential of insulated odd cathode segments in the hollow-cathode discharge with two 
anodes for different intensities of the anode currents

For the symmetric discharge, as for the asymmetric one, the plasma potential 
distribution along the cathode was estimated by measuring the floating potential of 
electrically insulated odd cathode segments (Fig. 20). The measurement confirmed the 
presence in the discharge of a region of nearly constant longitudinal electric field 
intensity, suggesting the existence in this region of a plasma exhibiting properties of the 
positive column.

4. Concluding remarks

The results of investigations presented in this paper lead to the following 
conclusion:

The longitudinal discharge in a hollow cathode having dimensions typical of the 
laser technology is axially inhomogeneous irrespective of the configuration of the 
electrodes, anode and cathode — symmetric or asymmetric. Axial distributions of the
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cathode current density and longitudinal current as well as axial distributions of the 
plasma potential are, as a rule, nonuniform. From this point of view minor differences 
only have been observed between the longitudinal discharge in hollow cathodes typical 
of laser tubes and the classical hollow-cathode discharge [4-11].

An appropriate choice of the cathode length and current intensity for the 
symmetric discharge will ensure a uniform cathode current density distribution. 
However, this will not provide for a uniform distribution of the longitudinal current 
and corresponding uniform axial distributions of the plasma potential and cathode fall.

The presence in some regions of the discharge plasma of a constant electric field 
suggests that the plasma in these regions has properties of the positive column plasma 
of glow discharge.

The properties of the longitudinal hollow-cathode discharge for which only part 
of the cathode surface is covered by the discharge differ essentially from those of the 
normal glow discharge between flat or convex electrodes. It is therefore inappropriate 
to call the former using the classical term “normal glow discharge” rather than “normal 
hollow-cathode discharge”.

The inhomogeneity of the longitudinal hollow-cathode discharge affects the 
operation of the laser tube considerably. First of all a nonuniform excitation of laser 
levels along the cathode axis should be expected. Therefore a considerable part of the 
hollow cathode may be inactivefrom the viewpoint of lasing even when filled with 
discharge plasma. This reduces the so called active length of the laser tube. Nonuniform 
current and plasma potential distributions may result in nonuniform cathodic 
sputtering and heating of the cathode surface leading to a shortened lifetime of the 
device.

If operated with a mixture of gases the effect of cataphoresis may be expected to 
occur in the hollow cathode due to the presence of the longitudinal electric field. Such 
an effect is undesirable as it might make the continuous laser operation difficult to 
maintain (e.g. in the H e-K r+ laser).

The investigations of the symmetric discharge showed that for a laser tube filled 
with alternating cathode and anode segments an increase of the number of segments for 
the tube length and discharge current intensity fixed results in a decrease of the working 
voltage.

The results presented in this paper do not provide a complete answer as to the 
optimum length of the hollow cathode with longitudinal discharge to be used for lasers. 
It follows from the analysis of uniformity of the cathode current density distribution 
and working voltage value for the asymmetric and symmetric discharges that in laser 
technology the most appropriate application of cathodes is the following: cathodes of a 
length of 12 to 24 mm are suitable for asymmetric power supply, and those of a length 
of 24 to 48 mm are suitable for a symmetric configuration. Then the cathode current 
density distributions are relatively uniform and the working voltages necessary to 
ensure the appropriate current density are not very high.
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However, to answer the question mentioned above fully the microscope 
parameters of the hollow-cathode discharge plasma should be measured. These are 
mainly the axial distributions of the electron energy distribution function and electron 
concentration. An analysis of the results of such measurements should provide the 
answer required.
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In this paper a method is given to compare Rosen’s theory of gravitation and Einstein’s 
theory of gravitation on the ground of the emission of gravitational radiation by a binary system with 
a compact companion. The conclusion is that the emission of gravitational radiation deduced from 
Rosen’s theory is three orders of magnitude greater than foreseen by Einstein’s theory.

Rosen’s bimetric theory of gravitation [1] predicts the existence of dipole 
gravitational radiation and this is due to violation of the equivalence principle for 
strongly self-gravitating bodies [2].

Gravitational and inertial masses differ appreciably when the gravitational field 
is strong (e.g. in a neutron star) and therefore dipole radiation is possible. Will and 
Eardley [2] calculate the rate of change of the orbital energy £  of a binary system due to 
dipole gravitational radiation and find:

d£
di

20G
9c3 Aí2(s i - s2)2 |r|, ( 1)

where r is the distance between the two stars, p the reduced inertial mass and

«1.2 =  -j(G m u2c2) 1 ( dxdx.
K|,I x - x '

with with p the rest-mass density.
The main difficulty with Rosen’s theory is the wrong sign in the above formula 

according to which gravitational radiation emission increases the energy of the system. 
To overcome this difficulty Rosen [3] has shown on the ground of the Wheeler- 
Feyman absorber theory [4] that gravitational radiation is to be found only in the form 
of standing waves and therefore physical systems emitting gravitational radiation 
cannot lose or gain energy in an appreciable amount although a gravitational detector 
does respond to gravitational waves. From now on we shall refer to this theory as WFR
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suggestion. A direct verification of this phenomenon has been suggested by Fortini et 
al. [5].

An indirect evidence could come from the observations of the period changes of 
the binary pulsar PSR 1913 + 16 as predicted by Taylor et al. [6] on the ground of 
general relativity. If the predicted value is observed both the bimetric theory of 
gravitation and the WFR suggestion would be invalidated.

If, on the other hand, the detected changes in the period are not in complete 
agreement with the Einstein’s theory of gravitation, then general relativity can be 
rescued only by the WFR suggestion.

In this case, however, Einstein’s theory should compete with other theories of 
gravitation including the bimetric theory itself. Therefore if the WFR suggestion is 
real, it is no longer possible to discriminate between the Rosen and Einstein theories 
as proposed by Will and Eardley [2] through the period changes in a system like 
PSR 1913+16.

In this work we show that it is possible to distinguish between the two theories by 
measuring the “intensity” of gravitational radiation.

We must remember that in the framework of the WFR suggestion what is 
measured by a gravitational wave detector is the energy exchanged by the system with 
the standing gravitational wave and in this case formula (1) gives a measure of the 
amplitude of the wave.

For our purpose it is convenient to choose binary systems in which the dipole 
radiation strength (as predicted by the bimetric theory) is much different from that of 
quadrupole radiation (as predicted by general relativity). A binary system formed by 
two neutron stars is not well suited because dipole radiation depends critically, through 
the term s, — s2, on the masses of the stars as pointed out by Will and Eardly [2]. If, 
however, we consider a binary system formed by a neutron and a normal star, the 
gravitational wave emission does not depend critically on the masses: in fact for a 
normal star s ~  10"6 and for a neutron star s ~  1 0 1. Besides this, such systems are 
relatively abundant in our galaxy (~  103-104) [7].

The ratio Q between the energy exchanged by dipole emission in the bimetric 
/d £ \

theory I —  I D. R. and the energy exchanged by the quadrupole emission in general

relativity G. R. is easily calculated on the ground of a paper by Will [8] and 

turns out to be
_ fd E \  l td E \  5 Ç c2 ,
e ' W » , ( W o ,  " 8 K I ? |S' - S2' • (2)

where £ $nd K t are dimensionless parameters. Their values in the present case are 
20 21

£=  — y  and К i = — —. In Table I calculated Q values for some X-emitting binary 

systems are given.
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Table I
Calculated values for X-emitting binary systems

Binary period
И

Visible
companion

Neutron star 
velocity [cm/s] Q

Cyg X-l 4.83 105 20 M 2.49 107 5760
Cen X-3 1.8 105 16 M 3.21 107 3460

SMC X-l 2.67 10s 25 M 3.27 107 3340
Vel X-l 1.73 10s 25 M 2.3 107 6750

As one can see, if the bimetric theory is correct, gravitational radiation should be 
three orders of magnitude greater than foreseen by general relativity.
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Interaction of an electromagnetic wave incident obliquely on a homogeneous, magnetized, 
collisional and moving plasma slab is investigated. The effects of plasma slab velocity (ß = v/c), 
electron density (wjw), and angle of incidence (9) on reflection, transmission and absorption 
coefficients are discussed numerically. It is observed that for higher densities of plasma the reflection 
coefficient decreases with increase in the angle of incidence, whereas for lower densities of plasma the 
reflection coefficient remains constant up to 0 = 35°, afterwards it increases rapidly and becomes 
greater than unity. For lower plasma frequency the absorption coefficient has an oscillatory 
behaviour.

Introduction

It is well known that electromagnetic waves can propagate in a homogeneous 
and isotropic plasma. It is of interest to know how such waves interact when arriving at 
an interface of collisional, magnetized and moving plasma slab. The problem of 
electromagnetic interaction with a moving plasma slab is of considerable importance 
in the fields of ionospheric studies, re-entry communication, black out problems, 
meteorology etc., and have received considerable attention of many workers including 
Yeh [1]; Collier and Tai [2]; Jain et al. [3]; Tiwari et al. [4]; Phalswal and Varma [5]; 
Phalswal et al. [6]; and Phalswal and Singh [7]. However, Phalswal and Singh [7] have 
studied the problem for moving plasma slab in the presence of an external static 
magnetic field.

The object of the present paper is to provide a theoretical expression for power 
reflection (R), transmission (T) and absorption (A) coefficients for p-polarized wave for 
a moving, homogeneous collisional plasma slab in the presence of an obliquely applied 
static magnetic field B, by solving Maxwell’s equations under necessary boundary 
conditions. The effects of plasma density (w jo f ) ,  slab velocity (ß) and angle of incidence 
9 have been studied numerically.
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Formulation of the problem

Consider a collisional plasma slab (with sharp boundaries at Z = 0 and Z = d0), 
which is embedded in a uniform static magnetic field B. The static magnetic field is 
always at an arbitrary angle 9 with propagation vector K. The plasma slab can move 
with any uniform velocity v in x-direction, so that there will be no Doppler shift in 
frequency for the reflected and transmitted waves. Let us also consider two reference 
frames: the primed frame being fixed in the moving plasma slab and the unprimed 
frame is attached with e.m. wave source. Thus the two reference frames are in relative 
motion.

Following Appleton’s equation (Heald and Wharton [8]) we get the complex 
refractive index in the primed frame as:

Д'2 = 1 -
w'p2/co'2 sin2 9'

2

sin2 9' — sin4 .9 —(1 — ajp2/a>'2) cos2 9'

iv' си),2 {1 +a>'b2/(ti'2 sin2 9' + 3 cos2 9'/sin2 9'}

W W S -a » ;2/iu'2sin2 9 ' - ( l - ( u ; 2/cu'2) ^ r ^ i
sin 9 1

( 1 )

where fi', co'p, со', v' and oj'h are the complex refractive index, plasma frequency, angular 
frequency, collisional frequency and cyclotron frequency of the electrons in the primed 
system, respectively, ignoring ion dynamics. Now following Sommerfeld [9] the 
incident field equations for p-polarized wave in the unprimed system are:

By = B0 exp [ — i(K cos 9 Z  + К sin 9 x — cotj],

Ey=0, (2)

where B0, К  and со are the amplitude of the incident magnetic field, the wave vector in 
the positive direction of the Z-axis and the angular frequency of wave, respectively.

Further following Phalswal and Singh [7] in primed frame and matching the 
tangential electric and magnetic fields at the interfaces Z ' = 0 and Z ' = d' we obtain

A'n = B'0 1 - K 'J K '  
l + K'JK ' ’ (3)

r , 2B'o
' l+ K 'J K ”

where K' = œ'/c,
K's = (o'/c • fi',

(4)
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1 - co'2/co'2 sin2 В'
с

iv' со'2 {1 +со'ъ/а>'2 sin2 $' +  3 cos2 З'/sin2 #'} 2
(6)

(7)

В'0, Ar', G\are arbitrary constants, /F, and k' are the real refractive index, attenuation 
index and dielectric constants, respectively. K ' and K's are wave vectors in free space 
and plasma slab in primed frame, respectively. From Eqs (2)-(7), matching the 
tangential electric and magnetic fields at Z =0, we obtain (Heald and Wharton [8]) the 
average power reflection, transmission and absorption coefficients as

R ’ =

(8)

where

(9)

K'r and K\ are real and imaginary parts of K'JK ', and are given by
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with
A \  =1 (o'2/œ '2 sin2 $'

B, _  v' со'2 {1 +œ'b2/œ '2 sin2 9 ' +  3cos2 S'/sin2 9'}
1 со’ со'2 (O

1 ----- ^ s in 2 9 ' — (1 — o}'2/(o'2)
(O

cos 
sïn2 9

9 'V

S'J

(10)

Similar calculations will give reflected and transmitted fields at the two interfaces of the 
slab in the unprimed frame.

Now making use of phase invariance (Pauli [10]), the variance of Maxwell’s 
equations with respect to the Lorentz transformation (Sommerfeld [9]), and satisfying 
the boundary conditions, we obtain the equations of transformation from primed to 
unprimed frame as

co' = a(co — vK) = txco(l — ß),

K ’ = 0L

K ^  = oc(K' - ^ l )  = 0l2K ( \ - ß ) 2,

K™ = « U ’s - (̂ ' \  = <x2K ( l - ß ) ( D - ß )  = K™,

K('2,= a = a2K(l —ß)2,

ш(Г1) = <x(co’ -  К  ’ßc) = a2a i l - ß ) 2,

ш(Г2) = a(co ’ - К  ’sßc) =  a 2c o ( \ - ß ) ( \  - D ß )  =  co(,' \

co(,2) — a(co' +  K ’ßc)  =  tx2co(\ — ß 2),

d=
d’
a a v' = av,

(1 - K r)2+ K f ( i - ß \ 2 
(1 + K r)2 + K 2 \ l + ß )  ’ ( 11)

ß = - ,  d0 is the proper thickness of the slab, c = velocity of light.
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with

D = 1 -
со'2/со'2 sin2 S'

sin2 S' — ^ ^ s in 4 S '—(1 — со'2/со'2) cos2 S'

iv' со'2 {1 + co’b2/co'2 sin2 S' + 3 cos2 S'/sin2 S'}
CO

ш | i - c ü ; 2/ t j '2 sin2 s ' - ( i - cü;2/cd'2) cos2 n  [ r sin S J

1/2

r v ^ i + ^ i + ^ i 1/2, к , =

1 s + "l
__1L 2 J 2

1/2

A , = \ ~
col/co2 sin2 S

ot2(l — ß)2 sin2 9 — col/co2 sin4 S — Q0 cos2 S ’

у си2 [a2(l — ß)2 + cob/co2 sin2 S + a2(l -/?)23 cos2 S/sin2 S] 
со со2 [a2( l —/?).2 —cü̂ /cü2 sin2 S —ß 0cos2 S/sin2 S]

Ôo =  [a2( l - ^ ) 2- û i > 2]- (12)

When the slab is moving in the x-direction, there would be no Doppler shift in 
the frequency for the reflected and transmitted waves. Thus the angle of incidence 
remains invariant in this case.

Reflection, transmission and absorption coefficients

Now following Phalswal et al [6] and Phalswal and Singh [7], we obtain 
reflection, transmission and absorption power coefficients in the unprimed frame

r
R =

l+ ( l-2 y .)e x p 4 coxdo
c • a

l - y 2 exp
4coxd,7.d0\  

•a )

(1 —Ур)2 exp
T  =

2coxdo 
c ■ a

. 4or/d0
1 —yl exp I - c ■ a

A =

J ,  (  2coXdo \j j

2coxdo ĵ
1 ~Ур exp I

(13)
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Results and discussion

For cop=0, i.e. in the absence of plasma the reflection and absorption coefficients 
reduce to zero. In case of collisional (v ф 0), magnetized (шь ф 0) and 9 = 90°, i.e. for the 
normal incidence case the reflection coefficient (R) in Eq. (9) reduces to the similar one 
obtained by Phalswal and Singh [7]. In case of collisional (v ф 0), unmagnetized (cob=0) 
for d0 = oo the reflection coefficient (R) in the Eq. (9) reduces similarly to the one

obtained by Phalswal and Varma [5]. Taking y/wp-0 .0 \,  ^  = d0= 10 cm, the effects

of the plasma density (wjco), the slab velocity (ß= v/c) and the angle (9) are plotted in 
Figs 1-3.

Fig. 1 shows the variation of reflection, absorption and transmission coefficients 
with slab velocity (ß =  v/c) for œp/œ =  0.5, 1.5; ((оь/шр)2 =  5 and 9 = 30°, 45°. When the 
slab moves away from the e.m.w. source, then for u>p/co= 1.5, 3 = 45° the reflection 
coefficient (R3) decreases with ß, but the absorption coefficient increases slightly and 
remains constant over a wide range of velocity; whereas for the case in which the

Fig. 1. Variation of R, T and A with a plasma slab velocity (ß = v/c)---- œp/u) = 0.5,,/œp = 0.0l,œ j(i)p=5.0,
3 = 30°........... 3 = 45°, —. — шр/ш =  1.5, v/wp- 0.01, œb/(op = 5.0, 3 = 45°
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-------► Cûp/co

Fig. 2. Variation of R, T  and A as a function of plasma density (wjto) —  v/oip = 0.01, wb/wp = 5.0, /i =  0, 
9 = 3 0 ° ,---------- v/(Dp = 0.01, o)b/u>p = 5.0, ß = 0,(K) 1,3 = 45"

plasma slab moves towards the e.m.w. source the reflection coefficient increases, but the 
absorption coefficient shows a slight decreasing effect up to ß = —0.4 and at ß — 
— 0.6(Л3) becomes more than unity. The transmission coefficient shows a slight 
increase at a very high velocity of plasma slab, but when it moves towards the e.m.w. 
source it suddenly decreases to minimum at /1 =  —0.6, it becomes almost zero. For a 
plasma frequency less than the wave-frequency (a>p/co) =  0.5 and 9 =  30°, the absorption 
coefficient (Aß) shows a negligible variation at extremes i.e. at a very high frequency of 
plasma slab, whereas the transmission coefficient shows a decrease at ß = 0.4, otherwise 
the variation is almost negligible. However, the reflection coefficient (/?,) is maximum 
at ß =0.4 and it decreases in limits ß  ̂  0.2. Similarly if we change the angle of incidence 
to 45°, there is a shift in the maxima of reflection coefficient (R2) at /1 = 0.2 and the 
minimum of transmission coefficient also shows a shift at /1 = 0.2. The variations in 
absorption coefficient are negligible.

In Fig. 2 the R, A and T  are plotted as a function of plasma density (cop/w) for 
/1 =  0, 0.001, (a>b/a>p)2 =  5 and 9 =  30°, 45°; the reflection coefficient is maximum and 
greater than unity when o p/u) = 0.7 to 0.8. It decreases in the limit wp/w  > 0.8 < 0.7. The 
absorption and transmission coefficients are minimum at œp/w = 0.8, then the 
transmission coefficient again increases up to <x>p/a>=\.\, after that transmission

Acta Physica Hungarica 54, /983
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------► e
Fig. 3. Variation of R, T  and A as a function of angle incidence (9) in degrees —  v/co(, =  0.01, 

u ijœ =  1.5, (ojb/ojp)2 =  5.0, /< = 0, —. — v/ojp =  0.01, w jw  = 0.5, (wb/wp)2 = 5.0, ß= 0

coefficient ( Ti) shows a rapid decrease and at density wp/(o = 1.5 it becomes quite 
negligible, whereas the absorption is fairly constant. When /7 =  0.001 and the incident 
angle is 45°, the reflection coefficient\R 2) is maximum at Wp/<u =  0.6 and it decreases in 
the limit a>p/a> ̂  0.6. There is an increase in the absorption coefficient (A2) with density 
up to cOp/co =  1.0 and then it remains constant. However, the transmission coefficient 
(T2) has the minimum value at cop/c o -1.1 and then it increases in the limit w jco ^  1.1.

In Fig. 3 the variations of R, A and T  are shown with the angle of incidence 9 at 
Wp/fc>= 1.5,0.5; /7 = 0 and (u>b/iop)2 = 5. For a higher density of plasma (cop/w  =  1.5) with 
the increase in the angle of incidence the reflection coefficient (R ^  decreases whereas 
absorption coefficient (A J  remains constant up to 35° and after that it also decreases. 
The transmission coefficient (Tj) remains negligible from 30° to 35°, however, at other 
angles it increases. For lower plasma frequency (top/(o = 0.5), the reflection coefficient 
(Я2) remains constant up to 35° after that (Я2) increases and becomes greater than unity 
at 60°. The transmission coefficient shows a reverse effect, up to 40° it remains constant 
and afterwards it decreases exponentially and becomes negligible at 60°. However, the 
absorption coefficient (A2) shows an oscillatory behaviour with the angle of incidence 
as shown in Fig. 3.
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The CW CO- laser induced oxidation of vanadium was investigated. On the surface of 
vanadium grew a V20 5 layer. During the oxidation of vanadium most of the V20 5 formed was in the 
liquid state. Times needed for melting of V20 5 were measured for various polarizations of CW C 0 2 
laser light. Some interesting stochastic phenomena were observed during the oxidation of vanadium.

Investigations into the laser-induced chemical processes on the surface of solids 
have recently aroused considerable interest [1]. The principal characteristic of 
processes like these is the fact that they generally take place under conditions of 
considerable nonequilibrium. The reason for this is the fast change in temperature on 
the surface cr ' . J  :ct "“suiting fro*" i  significant change in the absorptivity of the 
substance. The dynamics of the so-called thermochemical phenomena is highly 
complex. Namely, the chemical processes effected by laser light have as concomitants 
various phenomena of instability and self-induced oscillations.

An important product of chemical synthesis is related empirically to the 
oxidation of metals. The oxidation of a number of metals (e.g. Cu, Fe, W, Ti, Al) effected 
by laser light in the atmosphere has been investigated by many researchers [1]. 
Nevertheless, there are no reserrch results available for the oxidation of several, 
practically important substances, e.g. various semiconductors and basic materials for 
chemistry and technology. V20 5 can be quoted as an example of such a substance 
showing semiconductor properties, and known, above all, as a catalyst [1-3].

The present paper is a report on the experimental results gained from the 
oxidation of the vanadium metal effected by a CW C 0 2 laser light in the atmosphere.

The block-scheme of the experimental arrangement can be seen in Fig. 1.
The surface of a 5 x 5 xO.l mm3 metal plate of vanadium was illuminated, at 

right angle, by CW C 0 2 laser of type ИЛГН-701. The temperature (T) and its derivate 
(idT/dt) were recorded with the help of a chromel-alumel thermocouple alloyed into the 
back surface of the object, and by a loop oscillograph (type H-115).

A typical oscillogramme is presented in Fig. 2.
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As Fig. 2 shows, the change in the temperature of the object and in the speed of its 
heating points to the non-constant quality of absorptivity A. The change in A is related 
to the fact that during the oxidation of vanadium a “metal +  oxide” absorbent system 
was formed. Following the method described in [4], with the data shown in Fig. 2, the

Fig. 1. Experimental setup: 1 -  CW He-Ne laser, 2 -  CW C 0 2-laser, 3 -  beamsplitters, 4 -  metallic mirrors, 
5 -  chopper, 6 -  calorimeter, T -  lens, 8 -  thermopile, 9 -  sample, 10 -  loop oscillograph

temperature dependence of absorptivity, i.e. the function A(T) presented in Fig. 3, can 
be determined.

At the initial stage of heating absorptivity A of the object is equal to absorptivity 
A0 = 0.08 obtained for pure vanadium metal at a wavelength of A = 10.6 /яп [5]. At the 
subsequent stages, the increase of thickness x of the oxide layer is in direct proportion

Acta Physica Hungarica 54. 1983
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Fig. 3. Temperature dependence of absorptivity in terms of data shown in Fig. 2

to the increase of absorptivity A of the sample. Theoretically, the function A(x) can be 
given as follows [4]:

e, n, к and Я are the dielectric constant, refractive index, absorption index and 
wavelength, respectively.

The results of experiments with structure analysis and ion “back-scattering” 
show that an essential proportion of the oxide layer is made up of V20 5. The 
experimental results with respect to the latter are presented in Fig. 4.

Fig. 5 shows a picture of the surface of a vanadium sample oxidized by C 0 2 laser 
light, taken with a conventional microscope. The microcrystal structure characteristics 
of V20 5 can be distinguished clearly.

For Я =  10.6 /лп, the optical constants have the assumed values of n =  0.8, к=  1 
and the absorptivity is calculated as Л0 =  0.08, then the shape of the theoretical curve 
A(x), determined in terms of formula (1) has the form presented in Fig. 6.

When comparing Fig. 3 with Fig. 6, it becomes obvious that the shape of function 
A obtained experimentally is more complex than that obtained by calculation. First of 
all, it can be established that, as the evidence of the experiments proves the oxide layer

4-7Г/Сto be as thick as 100 /лп, thereby fulfilling condition ax>  1 (where a =  ——- is the
A

Л ( х ) = 1 - И 2,

( 1 )

8 * Acta Physica Hungarica 54, /983
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Fig. 4. “Back scattering” curve of an oxidized V sample

absorption coefficient), absorptivity A is determined unequivocally by the optical 
parameters of the oxide layer:

A =
4 n

( n +  \ ) 2 +  k 2 '
(2)

This shows that the difference between the theoretical (calculated value /1 = 0.75 
(Fig. 6)) and the experimental value A = 0.35 (Fig. 3) can be explained by a change in the 
optical parameters during the heating. The characteristic of this change is presented in 
Fig. 7, where function п(к) formed in terms of connection

_ 2 - A 0 
Ao

1 - Ap
( 2 - A 0)2

(1+K2)
)

(3)

is drawn at /1 =  0.35 [4].
Another fact throwing further light on this problem when comparing Fig. 3 

with Fig. 6 is that the experimental curve A(T) shows anomalies at T=680°C and 
T=1100°C. These anomalies cannot be connected with the interference oscillation 
experienced for A(T) when using other substances, because V20 5 exhibits stronger 
absorptivity at a wavelength of A= 10.6 /an (ocAp 1).

The anomaly discernible at T=680°C is related to the fact that the optical 
properties vary when V20 5 is converted from the solid phase to the liquid phase (the 
melting point of V20 5 is T= 680 °C [2]). And the anomaly experienced at T= 1100 °C 
can be explained by the fact that during the heating the frequency of the plasma 
undergoes a change and shifts to shorter wavelengths, because the concentration of the 
free charge carriers of the oxide layer increases [5].

One of the characteristics of our experiments most worthy of interest is that 
during the oxidation of vanadium most of the V20 5 formed was in the liquid state. 
Among others this is suggested by the oscillogramme in Fig. 2 too, making quite

Acta Physica Hungarica 54. 1983
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Fig. 5. Microscopical picture of an oxidized V sample

obvious that at the heating stage the energy absorption related to latent melting heat of 
fusion is considerably lower than the energy emanating at the cooling phase.

In our experiments the dependence of activation time ta on the angle of incidence 
& of the laser light was also investigated. It is a well-known fact [6] that for highly 
absorbent oxides, such as V20 5, curve ta(0) can be assumed to show a low minimum at 
about 55°. The minimum results from the fact that, for angles of incidence near

A da Physica Hungarica 54, 1983
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Brewster’s angle, the beam of light polarized parallel to the plane of incidence gets 
absorbed in a high degree. It may be noted that the “depth” and “position” of the 
minimum depend strongly on power P of the incident radiation [6]. In this connection, 
it is note worthy that, when investigating into the inflammation of tungsten excited by 
C 0 2 laser light [6], a very low minimum shown on curve tB(0)  has been observed 
(where tB is the time of the inflammation). The power of C 0 2 laser light used in [6] was 
700 W (the power of laser light used by us for the present investigations was 40 W).

Times ta(0), needed for melting V20 5, can be seen in Fig. 8, plotted against the 
angle & of incidence of the laser light, for various polarizations.

In Fig. 8, despite the small power employed, it is clearly discernible that for a 
perpendicular polarization (1) ta±(0) will increase monotonically (curve 2), while for a 
parallel polarization (||), ta ц(6>) has a minimum (curve 1). The depth of the minimum of 
function fa||(6>) depends on the optical constants of the oxide layer [6] as well as on the 
power of laser light, and is in direct proportion to the following quantity:

(4)

On the evidence of the experiments, function ta^(0) has no minimum for Cu20 , 
at A= 10.6 fxm and at 40 W. The difference in the shapes of functions taN(0) Cu and 
V targets is due to the great difference between the L-s: in system Cu + Cu20  
L = 5 • 10" 3, while in V + V 20 5 L=  11.

At last, it should be noted that during the laser induced oxidation of vanadium in 
the atmosphere some interesting stochastic phenomena could be observed. Having 
achieved a steady state (stationary) temperature, the dT/dt curve showed in certain 
cases regular oscillations (Fig. 9).

Acta Physica Hungarica 54, 1983
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Fig. 8. Activation time vs the angle of incidence of laser light for various polarizations

о о о о о
о < t, <  t2 <  t3 <  t4 <

Fig. 10. Behaviour of a C 0 2 laser irradiated plate showing regular oscillations in subsequent moments

The period of the oscillations ( ~  5 s) was of a relatively constant duration. 
Simultaneously with the appearance of the oscillations, a luminous spot could be seen 
circulating around the irradiated area of the sample, and the period of this was in good 
agreement with the period of the oscillations of dT/dt (Fig. 10).

The above stochastic processes are connected to non-linear interactions caused 
by a strong positive feed-back; investigations into this feed-back are now in progress.

Acta Physica Hungarica 54, 1983
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DETERMINATION OF THE REFRACTIVE INDEX, 
THE ABSORPTION COEFFICIENT AND THE THICKNESS 

OF AMORPHOUS V20 5 THIN FILMS 
FROM REFLECTANCE INTERFERENCE SPECTRA

The absorption coefficient, refractive index and thickness of amorphous vanadium pentoxide 
thin films have been determined from reflectance interference spectra in the wavelength range of450- 
710 nm. In the photon energy range of 2.15-2.70 eV the wavelength dependence of the absorption 
coefficient obeys Urbach’s rule.

The optical properties of amorphous transition metal oxides have received much 
attention during the last decade [1-4] since these oxides in thin film form could have 
considerable application in digital display devices. Most of the studies deal with W 0 3 
thin films [1,2]; relatively little attention has been paid to vanadium pentoxide [3,4].

In this paper we present optical data of amorphous V20 5 thin films obtained by 
vacuum deposition. We show that applying a new improved method based on the ideas 
of A. M. Goncharenko [5] the absorption coefficient, refractive index and thickness of 
the films can be obtained from a single reflectance interference spectrum.

The sample structure used is shown in Fig. 1. The film to be characterized is of 
uniform thickness d and complex refractive index n2 = n2 — ik2. If the film is weakly 
absorbing, i.e. n2 > k2 the reflectance R for normal incidence is given by [5]

L iem  P h a n *, L. M ic h a il o v it s  and I. H evesi

Institute of Experimental Physics, József Attila University, Szeged, Hungary

(Received 23 February 1982)

Introduction

The method

R =  ( у ^ - у ^ ? ) 2 + 4у/>УУ? sin2 Ф
(1)

* Department of Physics, University of Hanoi, Viet-Nam.
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d V2 O5  film

substrate

Fig. 1. Sample arrangement for reflectance measurement

where
(n2 ~ ni)2 + kl (la)Г* (n2 + n,)2 +  fc! ’

_  (« 2 -" з)2+^2 
Г2 (л2 + Иэ)2 +  ̂ § ’

(lb)

/ 4  n \
(lc)Г] =  exp 1 -  —  k2d 1,

2 n
(Id)Ф = - T M -

Examination of Eq. (1) for the conditions under which maxima and minima occur 
produces the following results:

If n2> nl and n2> n 3 the light reflected from the n2 — n, interface undergoes a 
phase change of n, from which it follows that maxima in R occur, when

("I +  y)^m ax =  2n2d, (2)

where m is an integer (the order of the interference) and Я denotes the wavelength of the 
incident light. The maximum value of R at this wavelength is

Minima in R occur, when
"iAmin = 2 n2d (4)
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and the minimum value of R at the corresponding wavelength is

R„ A2 (5)

The Rmin values at Amax and Rmax values at Amin can be obtained by applying the 
approximation procedure given in [6]. Introducing

A s  i +y^max and д _
^ —  V ^ m a x  1 —  V  ^ m i n

from Eqs (3) and (5) follows that

= y / Ä B - l  
1 J Ä B + l ’

If л1 =  1 we can write
(>~1 + 1) + л/(>~1 +  l )2—(rt — 1) (fcf+  1)

(6)

(7)

( 8)

s/r~24
l(n2- n 3)2 + k ï  
(n2 + n3)2 + kl eXP (9)

The values of n2, k2 and d can be determined by the following iterative 
approximation method: Supposing that k2 = 0 the first approximation value of n2 can 
be obtained from Eq. (8). The film thickness d may then be determined from the 
position of an extremum and Eqs (2) or (4). Finally, Eq. (9) gives the first approximation 
value of k2. Repeating this procedure the values of n2, k2 and d can be determined with 
the desired accuracy.

The integer m can be calculated from Eqs (2) and (4), supposing that the change in 
the refractive index between two neighbouring maxima and minima is negligibly small.

The value of the refractive index n3 of the substrate can be obtained from

R =

Acta Physica Hungarica 54, 1983
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Experimental details

The V20 5 films were prepared by vacuum evaporation ofV2O s powder (purum, 
Reanal, Hungary) from vanadium boats in <2 x 10“ 3 Pa vacuum. During evapora
tion the substrates were held at room temperature.

The reflectance of the film and its substrate was measured as a function of the 
wavelength by an Optica Milano CF 4 DR spectrophotometer supplied with an 
integrating sphere at nearly normal incidence ( ± 4°). An aluminium mirror was used as 
reflectance standard. To prevent reflection from the substrate-air interface, the back 
side of the substrate was roughened and blackened.

Results

In Fig. 2 the measured reflectance interference spectrum of a V2O s film of 500 
±  25 nm thickness is shown. The values of n2 and k2 calculated from this spectrum by 
the iterative method presented before are given in Fig. 3. The optical constants 
obtained from reflectance spectra of different samples of slightly different thicknesses 
were in good agreement indicating that with this relatively simple method correct 
values for the absorption coefficient, refractive index and thickness of the V2Os films

Л tnm]
Fig. 2

can be obtained. From the n2, k2 and d data we recalculated the reflectance spectrum at 
different wavelengths. These points are marked by open circles in Fig. 2. The agreement 
between the measured and calculated values is very good, which verifies the 
applicability of the approximation procedure used.

Acta Physica Hungarica 54, 1983
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X [ n m l

Fig. 3

h v t e V ]  -------- ►

Fig. 4. Dependence of the absorption coefficient on photon energy

Hevesi et al [7, 8] pointed out that the long wave tail of V20 5 single crystals 
showed an exponential dependence on photon energy. From the results presented in 
Fig. 4 it can be seen that the absorption coefficient of the amorphous V20 5 layers 
obtained by vacuum evaporation obeys Urbach’s rule between 2.15 and 2.70 eV.
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MAGNETORESISTANCE AND ELECTRON SCATTERING 
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Results of magnetoresistance measurements performed at 300K and 77K on GaAs single 
crystals having electron concentrations in the range of 10*6 to 1018 cm -3 were analysed using the 
concept of effective relaxation time Teff ~  e’’"  where reff is the effective scattering exponent. The 
values of reff deduced from the experiments are in accordance with dominant polar optical phonon 
and space-charge scattering at room temperature as well as with dominant ionized impurity 
scattering with an admixture of space-charge scattering at liquid nitrogen temperature. Results for 
the Hall factor at these two temperatures are also presented; at 300K гн к  1, but at 77K it changes 
appreciably with the carrier concentration.

1. Introduction

The magnetoresistance coefficients measured on semiconductors in low 
magnetic field contain useful information about the band structure and scattering 
mechanisms of the semiconductor under investigation. In the case of a semiconductor 
having a simple band structure, e.g. a spherical minimum of the conduction band at the 
centre of the Brillouin zone with a dispersion law of E = h 2k 2 ß m *, the longitudinal 
magnetoresistance vanishes, the transversal component is isotropic, and its coefficient 
depends only on the scattering mechanisms [1]. In many respect, n-type GaAs is close 
to this picture of the “ideal” semiconductor. Its conduction band minimum is spherical 
and is located at the centre of the Brillouin zone [2, 3]. The only deviation is the slight 
nonparabolicity of the conduction band [3], which manifests itself above about 
5 x 1 0 ' 7 cm“ 3 electron concentration [4]. Therefore the magnetoresistance coeffi
cients measured on GaAs make it possible for us to draw conclusions about the 
relevant scattering mechanisms. The analysis is not simple because in n-type GaAs 
combinations of different types of scattering mechanisms dominate the mobility.

Calculations for lattice scattering mechanisms were performed recently by 
several authors, notably by Rode [5], Fletcher and Butcher [6], Pödör and Nádor [7], 
(see also the reviews of Rode [8] and of Nag [9]). According to these calculations, at 
room temperature polar optical phonon scattering is by far the strongest electron 
scattering mechanism due to the lattice. At a temperature of 77K the three lattice

* Present address: Department of Electronic and Electrical Engineering, University of Ife, lie- Ife
Nigeria
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scattering mechanisms — polar optical phonon, acoustic phonon and piezoelectric 
scattering — have roughly the same weight.

In low mobility crystals with an intermediate and a high electron and impurity 
concentration and presumably with a substantial compensation (mainly such crystals 
are of interest in this work), ionized impurity scattering and scattering on space-charge 
regions [10  to 14], also play an important role.

Space-charge scattering in semiconductors is caused by space-charge regions 
that form around localized composition and impurity concentration inhomogeneities. 
This mechanism was first proposed by Weisberg [10] to explain anomalously low 
mobilities in GaAs. Later, Conwell and Vassel [15] proposed a simple model where the 
space-charge scattering relaxation time was given by

tsc — (NscQv) 1>

from which the space-charge mobility is obtained as

4e
Msc= 3(2nm*kBT)í/2NSCA ’

where Nsc is the volume density of the space-charge scattering centres, which can 
vary widely depending on the properties of the sample, Q is the cross-sectional area 
of the centres, and v is the electron velocity. This differs by a numerical factor of 
4/Зя1/2 =  0.7523 from the original formula due to Weisberg [10].

Recently [16, 17], however, instead of the space-charge scattering mechanism, 
scattering on localized potential was proposed and analysed by Chattopadhyay [17], 
using the scattering cross section for such potential considered by Faulkner [18] and 
Dean [19] (c.f. also the earlier work by Anselm and Askerov [20], also in the review 
[21]). This scattering cross section also predicts a mobility contribution varying 
inversely as the square root of the temperature, under certain simplifying 
considerations.

It can be concluded that in practical cases the carrier scattering and the electron 
transport is dominated by the combination of two or three or even more 
simultaneously acting scattering mechanisms.

The transport coefficients are straightforwardly evaluated in the relaxation time 
approximation. With one notable exception, for the relevant scattering mechanisms, 
the relaxation time is a power function of the electron energy т ~  £  where the exponent r 
has a half integer value [ 1 ]. Polar optical phonon scattering cannot be described with a 
relaxation time aprroach [1, 2, 22]. For limited temperature ranges, however, an 
effective exponent using the relaxation time approach can also be introduced for polar 
optical phonon scattering according to Ehrenreich [23], Kuzel [24] and Voronina 
et al. [25].

In the present paper megnetoresistance measurements performed at temper
atures of 300K. and 77K on strongly doped and compensated GaAs will be analysed
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using two different models to account for the combined scattering effects which prevail 
in this range of concentration and temperature.

The first model is based on the calculations of Kravchenko et al. [26], who 
calculated the galvanomagnetic coefficients for n-type GaAs taking into account the 
inelastic scattering on the polar optical phonons, and the usual elastic scattering 
mechanisms, describable with the relaxation time approximation, but have neglected 
the effects of space-charge scattering. The second model is based on a relaxation time- 
type approach using a single scattering exponent rcff in the expression for the effective 
relaxation time, reff ~£reff. A similar analysis of the different transport coefficients with 
some applications to GaAs has been made by Emelyanenko et al. [27], and of the 
thermoelectric power of GaAs by Hamerly and Heller [28]. The theoretical bases of 
this latter model will be summarized in the next paragraph.

2. Theoretical background for the relaxation time-type model

In the relaxation time approximation the magnetoresistance coefficient £ and the 
Hall factor, defined as the ratio of the Hall mobility to the drift mobility гн = цH//r are 
expressed as (see e.g. [ 1])

_ <t3) <t>
<r2) 2 - 1, ( 1 )

rH =
<t2)
< * > 2 '

(2)

If the relaxation time is a power function of the carrier energy, i.e. т ~  er then ç and 
rH can be expressed with the help of the Fermi integrals (see e.g. [1]), as

Гм —
3( 2r+ - j F 2r+i(C)FI(C) 

2(r-f y V [F r+I(C)]2
(3)

f  =
3r + | ) ( r + | ) F „ 4 (0 F ,4 (O

2 r + j J [ F 2r+l(0]2
1 гф

r+-jFr+̂ (0[l+exp—СГ1 

2r+ |Y[F2r+.L(C)]2
- 1, r = j ,  (4)
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whereF„(0= J еп[1 + exp(e —0 ] 'de are the Fermi integrals. For the case of classical

statistics the Fermi integrals are reduced to gamma functions.
For a given r with increasing degeneracy, i.e. with increasing (, the values of rH 

and Ç decrease in a monotonous way, and for £-*-oo rH= l  and £ =  0.
Eqs (3) and (4) are supplemented with the relationship between the carrier 

concentration (Flail coefficient) and the Fermi level

n = ^ ~ = N cFHC), (5)eRH 2

_3
where Nc = 4n(2m*kBT/h2)2. Using Eqs (3), (4) and (5) the Fermi level Ç, and the 
theoretical value of the magnetoresistance coefficient £ can be calculated from the 
measured value of the Hall coefficient for a specified scattering mechanism, i.e. for a 
given value of the exponent r. This procedure can also be reversed, and from the 
measured values of £ and RH the values of £, the scattering factor zH, and the 
“effective” exponent reff can be deduced. However, this reversed procedure yields two 
sets of values for reff and f due to the forms of the curves corresponding to Eq. (4). This 
property of iI and of rH was already noted by Kuzel [24] in the context of calculating the 
effective exponent reff for polar optical phonon scattering from different transport 
coefficients. In practical cases the solution can be made unambiguous using 
supplementary informations about the scattering processes.

3. Experimental techniques and results

The samples used in the measurements were cut out from single crystals grown 
by the horizontal Bridgman method. The crystals had a room temperature electron 
concentration (nH =  1 /eRH) between 1 x 1016 and 2 x 1018 cm 3, at 77K the electron 
concentration was between 1 x 1016 and 2x 1017 cm” 3. Some of the high concen
tration samples were not investigated at low temperatures. The electron mobility was 
correspondingly low, between 2000 and 4000cm2/Vs at room temperature and 
between 2000 and 6000cm2/Vs at 77K.

Conductivity, Hall coefficient and mobility were measured by the usual d.c. 
compensation method on bar shaped samples with six alloyed contacts, between 
temperatures of 300 and 77K. Magnetoresistance was also measured by the usual d.c. 
compensation method at temperatures of 300 and 77K as described in our earlier work 
[29].

In Fig. 1 some typical results of the mobility versus temperature measurements 
are presented. Fig. 2 shows some typical curves of the low field magnetoresistance 
measurements. From their slope the magnetoresistance coefficient £ = Ар/рц^В2 was 
determined. The results for nH = 1 /eRH, ри, and £ for temperatures of 300K and 77K are 
collected in Table I.

Acta Physica Hungarica 54, 1983



M A G N E T O R E S I S T A N C E  A N D  E L E C T R O N  S C A T T E R I N G  M E C H A N I S M S  IN  G a A s 129

Fig. 1. Mobility versus temperature. Theoretical values for polar optical phonon scattering (PO — -), and
lattice scattering (L ------•) are shown, the fits to the experimental data using lattice mobility, ionized impurity

mobility (1) and space-charge scattering (SC) are also presented

Fig. 2. Magnetoresistance measured at room temperature versus the square of the magnetic field. 
O  — n = 8.1 X 1016 c m '3, An =  3.7x 1017c m '\  801 s — n= 1.6x 1018c ,n '3

9* Acta Physica Hungarica 54, 1983
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Table I
Results and analysis of magnetoresistance measurements

Sample
No

n 300K

N ' 3]
Рнзоок

[cm2/Vs] чзоок " 7 7 K
[cm 3]

Л Н 7 7 К
[cm2/Vs] 7 7K

r eff
300K

r eff
77K K = N JN d

1 1.9 X 1016 2650 0.17 1.3 X 1016 4200 0.51 -0.43 1.47 0.79
2 2.7 x lO 16 2800 0.24 1.5 X 1016 6800 0.30 -0.48 1.09 0.73
3 4.0 x lO 16 3300 0.078 3.0 x lO 16 3500 0.29 -0.31 1 .1 0 0.75
4 8.1 x lO 16 3850 0.047 6.7 X 1016 4000 0.17 -0 .24 0.90 0.51
5 1.7 X 1017 3500 0.086 1.5 x lO 17 3200 0 . 2 0 -0 .33 1.14 0.59
6 1.9 X 10‘7 2750 0 .1 1 2 .1  X 1 0 17 2 0 0 0 0.30 -0.38 1.50 0.63
7 4.8 X 1017 2550 0.060 — — — -0 .30 - 0.54
S 1 .6  X 1 0 18 1950 0.085 1 .6  X 1 0 18 1400 - -0 .50 - 0.55

Note: n= l/eR t

в PÖDÖR
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4. Analysis of the experimental results. I. Mobility

Before presenting the results of the analysis of magnetoresistance measurements, 
we would like to make a concise survey of the dominant scattering mechanisms 
operating in n-type GaAs which are relevant for the present work. At a temperature of 
77K the lattice limited mobility is more than an order of magnitude greater than the 
mobilities measured in our samples, therefore the effects of lattice scattering can be 
safely neglected. The mobility at this temperature is dominated by ionized impurity 
scattering for electron concentrations greater than about 1015cm~3. In most cases 
besides ionized impurity scattering, scattering on space charge regions also plays an 
important role [10 to 15].

At 300K the dominant lattice scattering mechanism is the polar optical phonon 
scattering, other lattice scattering mechanisms make only a small contribution to the 
mobility [2, 6, 7, 30]. Besides polar optical phonon scattering, ionized impurity 
scattering and space-charge scattering play an important and in some cases, dominant 
role, depending on the carrier concentration, compensation degree, etc. [10  to 15].

Fig. 1 presents also the results of an analysis of the mobility versus temperature 
curves in terms of mobilities limited by lattice scattering, ionized impurity scattering 
and space-charge scattering. Theoretical values of the lattice limited mobility are taken 
from the earlier work of the present author [7], ionized impurity scattering is 
accounted for by the Brooks—Herring formula, making allowance for the degen
eration (see e.g. [21]), and space-charge scattering is described with the formula 
discussed in the Introduction. For reference the contribution of polar optical phonon 
scattering to the lattice limited mobility is also separately depicted [7]. The results of 
this mobility analysis, which is typical for the other samples investigated in this work 
demonstrate the points made above, and are in full accordance with the results of 
previous mobility analysis on higher purity epitaxial layers, performed by the present 
author [ 12].

5. Analysis of the experimental results. II. Magnetoresistance

Kravchenko et al [26] have calculated the magnetoresistance coefficient, £, and 
presented curves of it in function of Дн/Мн, lattice for different electron concentrations at 
temperatures of 300 and 77K. They have taken into account the lattice scattering 
mechanisms and ionized impurity scattering, but neglected space-charge scattering. 
Our experimental data for Ç are compared with the results of the model due to 
Kravchenko et al [26] in Figs 3 and 4.

As can be seen in Fig. 3 the measured values of £, at room temperature are 
generally greater than the corresponding theoretical values calculated in [26] for the 
respective electron concentrations, but in most of the cases the discrepancy is not too 
important, taking into account the inherent errors in measuring the magnetoresistance
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Fig. 3. Comparison of the room temperature values of £ with the theoretical curves of Kravchenko et al [26]. 
1 — л = 1016сп Г 3, 2 — л = 1 0 17сп Г 3, 3 — n = 1 0 ,8 cm“ 3

Fig. 4. Comparison of the 77K values of £ with the theoretical predictions of Kravchenko et al [26]. Values of 
Hh/Fh. lattice for the curves are 1 —6 x 10-3, 2 —1 x 10-2, 3 —2 x 10-2

coefficients. But as the data presented in Fig. 4 show, the measured values of Ç at 77K 
are consistently higher than the theoretical values calculated from the curves of 
Kravchenko et al [26]. In both Figures the data points are identified with the 
corresponding values of nH = \ /eRH. It is supposed here that the discrepancy between
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our experimental data and the theoretical predictions presented in [26] are chiefly 
caused by the fact that, while in our samples space-charge scattering plays an 
important role in determining the mobility and also the other transport coefficients, 
the theoretical calculations referred to above have not included this type of scattering 
mechanism.

Therefore our magnetoresistance measurements were reinterpreted on the basis 
of the relaxation time-type approach using a single scattering exponent, reff, based on 
the model presented above.

Fig. 5. Values of the effective scattering exponent reff at room temperature (O) and at 77K (Л)

As it has been already mentioned in the preceding Paragraph, such an analysis 
gives two values of rcff for each measured value of the magnetoresistance coefficient £. 
One of them is negative, the other one is positive. The values of reff for the room 
temperature measurements are presented in Table 1 and Fig. 5. Only the values of 
reff < 0 are shown, because as will be discussed these values have physical meaning in 
this case. The positive values of reff showed a wide scatter between 0.3 and 1.0. Two lines 
are drawn in Fig. 3 for r = 0 corresponding to polar optical phonon scattering in the low 
temperature limit (ТЩв0) and for r— — 1/2 corresponding to space-charge scattering 
[15] or to acoustic phonon scattering, which latter is not relevant at room temperature. 
Using the results of Kuzel [24], a better estimation can be made for r valid for polar 
optical phonon scattering. With 0 D=42OK we have @ J T = \ A  and for this value 
different transport coefficients result in a value of r=  —(0.35 — 0.45) for polar optical 
phonon scattering. From our measurements we have (see Fig. 5) reff = — 0.4 +  0.1 which 
can be readily interpreted supposing that the dominant scattering mechanism in our 
samples at room remperature is due to the combination of polar optical phonon and 
space-charge scatterings. This interpretation is in accordance with other works on
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mobility in GaAs [11, 12, 31, 32] and with the conclusions drawn from the analysis of 
thermoelectric power measurements by Hamerly and Heller [28]. We think that the 
positive values of rcff, mentioned above, cannot be reconciled with dominant polar 
optical phonon scattering with any combination of ionized impurity scattering, even 
with neglecting the effects of space-charge scattering, which neglection, according to 
our opinion, would be unjustified.

The values of reff for 77K temperature are shown also in Table I and Fig. 5. 
Because at this temperature ionized impurity scattering is by far the strongest 
scattering mechanism, which is characterized by r =  +3/2, in this case the negative 
values of re(f have no meaning. The values of reff with three exceptions where they are 
close to + 3/2 show a wide scatter around about 1, more exactly rcff = 1 .1+  0.2. In those 
samples where reff« 3 /2  the scattering is nearly pure ionized impurity scattering (c.f. 
[33]). The value of reff »1.1 can be interpi -ted supposing dominant impurity scattering 
with an admixture of another scattering mechanism with a lower value of r, presumably 
space-charge scattering. As it was already mentioned, lattice scattering is not 
significant in our samples at low temperatures.

In Table II we have compiled the values of reff for different temperatures 
determined in this work, by Emelyanenko et al. [27], Hamerly and Heller [28] and 
Voronina et al. [25] for all samples having similar electron concentrations, except for 
the samples measured by Voronina et al [25], which were high purity epitaxial layers, 
with electron concentrations of the order of 1014cm 3.

Table II
Values of rc„ determined in this work and in the literature

T
[K]

Measured transport 
coefficient r eff Reference

77 magnetoresistance 1.1 ±0.2 this work
100 magnetoresistance 0.6 ±0.1 [27]
100 thermoelectric and 

thermomagnetic effects (0.2 -0.4) [27]
300 magnetoresistance — 0.4±0.1 this work
300 thermoelectric power -(0 .2 -0 .7 ) [28]
300 magnetoresistance -(0 .27 -0 .4 ) [25]
300 Hall factor -(0 .37-0 .47) [25]

It can be seen from Table II that the values of reff determined from different 
transport coefficients at 300K are in a good agreement with each other. For high purity 
epitaxial samples, in the temperature range of 150—300K, where polar optical phonon 
scattering is dominant, reff remains nearly constant [25]. In the case of samples with 
greater impurity content, the value of reff increases continuously as the temperature is 
lowered showing the increasing role of ionized impurity scattering.

An interesting byproduct of the analysis presented above is the determination 
of the scattering factor rH for the concentration range of our samples and for the given
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scattering process. The value of rH as function of the electron concentration (nH~  
= 1 /eRH) at 300K and 77K is presented in Fig. 6.

At 300K, for the concentration range of interest in this work, rH is close to 1. In 
the range of 1016 —1017 cm-3  it decreases from 1.10 to about 1.05, then remains 
constant at a value of 1.05 + 0.05. According to Fletcher and Butcher [ 6] for pure lattice 
scattering rH = 1.16, our calculations, using the method proposed by Rode and Knight

Fig. 6. Concentration dependence of the Hall scattering factor, rH, at room temperature (O) and at 77K (Л )

[30], gave rH = 1.18. Lattice scattering is dominant below about 5 x 10 15 cm " 3 electron 
concentration (without compensation), therefore we can conclude that with increasing 
n, rH quickly decreases to about 1. Our results agree well with the experimental results 
of Baranskii et al. [34], who obtained experimentally rH=1.0, for the electron 
concentration range of 1 x 1015 — 1 x 1018cm~3.

At a temperature of 77K the value of rH in our low mobility samples for n x  
1016 cm -3  is about 1.5 and gradually decreases with increasing n to about 1.2. 
According to Fletcher and Butcher [6] and according to our own estimations for lattice 
scattering rH = 1.10. The value of rH presumably increases from this value in the 
concentration range of 1014— 1016cm " 3 to about 1.5, its maximum value, then it 
decreases again. But different compensation degrees can modify this behaviour. 
According to the measurements of Baranskii et al [34] in the concentration range of 
1 x 1015 — 1 x 1018cm ” 3 rH decreases from 1.12 to 1.0 in variance with the results 
presented above. It is not yet clear what the reason is for this disagreement.
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6. Conclusions

From the analysis presented above the following conclusions can be drawn:
i) With the help of the quantity rc(f introduced through the relation Teff ~  er' n a 

consistent description of magnetoresistance and mobility measurements on GaAs can 
be given. The concept of reff is also useful for the description of other transport 
properties as was referred to above.

ii) From the magnetoresistance measurements it could be inferred that for the 
concentration and mobility range covered by our samples, polar optical phonon 
scattering and space-charge scattering dominate the mobility at room temperature, 
and ionized impurity scattering with an admixture of space-charge scattering is the 
relevant scattering mechanism at 77K. These results are in accordance with the results 
of direct mobility measurements.

iii) It is established that the scattering factor at 300K is nearly equal to unity in a 
wide concentration range and shows a more pronounced dependence on the electron 
concentration at 77K at least for the concentration and mobility range covered by our 
samples.
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Concentrational changes of the fluorescence quantum yield and emission anisotropy were 
measured for rhodamine 6G (donor) in the presence of malachite green (acceptor) in glycerin — 
alcohol solutions, excited in the anti-Stokes and Stokes regions. Reduction of the nonradiative 
energy transfer efficiency in the case of anti-Stokes excitation was observed. The results of 
measurements proved to be in good agreement with the theory [10] which allows for a multistep 
mechanism from donor to acceptor energy transfer for Stokes as well as anti-Stokes excitation. 
However, in the latter case this agreement could have been obtained for a clearly lower value of the 
absolute donor fluorescence yield.

1. Introduction

Investigations of concentrational changes of the photoluminescence (PL) 
quantum yield t]/ri0 in rhodamine solutions have shown that for excitation in the anti- 
Stokes (AS) region the PL concentrational quenching is less intense than for the Stokes 
(S) excitation [1—3]. It should be emphasized that this effect is significantly weaker 
than the analogous one observed in the case of emission anisotropy (Weber’s red edge 
effect [4—6]). For this reason an especially careful determination of inactive 
absorption was necessary to ensure the evaluation of true i//i/0 values. However, for PL 
self-quenching nonluminescent dimers are mainly responsible for inactive absorption. 
For them the extinction coefficient e"(v) in the AS region is usually much larger than the 
extinction coefficient e'(v) for monomers. Besides, for v<v0 0 values of both 
coefficients may be highly inaccurate, as the absorption spectra for dimers and 
monomers are calculated from a family of absorption curves corresponding to different 
dye concentrations rather than being directly measured. Therefore a two-component 
system seems to be better suited for investigations, because for such a system the donor 
and acceptor absorption spectra may be determined with higher accuracy than 
resolved monomer and dimer spectra.

In this paper we discuss results of measurements of the quantum yield, and 
emission anisotropy concentrational changes for the fluorescence in a two-component 
system in which molecules of rhodamine 6G act as donors and those of malachite green 
as acceptors.

* Address: Instytut Fizyki, Politechnika Gdanska, ul. Majakowskiego 11/12, 80-952 Gdansk,
Poland.
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2. Experimental

Three series of glycerin-alcohol solutions of rhodamine 6G (donor) and 
malachite green (acceptor) were prepared. Rhodamine 6G (C26H27O 3N 2CI, 
m.w. =  450.98) and malachite green (C25H26N 2 0 4, m.w. =  418.53) were purified in the 
normal way by recrystallization. Anhydrous analytically pure glycerin mixed with 25% 
of methanol (p. a.) without any further purification was used as solvent. Dye 
concentrations were adjusted by weighing in such a way so as to ensure for each series 
of solutions a constant ratio of the malachite green concentration (CM) to the square of 
rhodamine 6G concentration (CR) {CM/CR = K). For the respective series this ratio 
amounted to = 76 dm3 ■ mol - *, K 2 = 1895 dm3 ■ mol-1 and K 3 = 7581 dm3 • mol-1
for systems I, II and III, respectively.

The quantum yield and flourescence spectra were measured for samples frontally 
excited with the aid of a Q-400 mercury lamp. An SPM-2 monochromator was used to 
select wavelengths =  546 nm and Д2 =  578 nm for the S and AS excitation, 
respectively (Д0-о = 544 nm). An IF 625 Ca filter was used for observations. For 
measurements of the quantum yield and fluorescence spectra a device described 
elsewhere [7] was adopted. The absorption spectra were measured with a VSU2-P 
spectrophotometer. For emission anisotropy (EA) excitation also the. Q-400 mercury 
lamp was applied. The measurements of EA were carried out using a device described 
in [8]. Corrections for secondary fluorescence were introduced for EA, while in the case 
of quantum yield corrections for secondary fluorescence as well as anisotropy of the 
spatial distribution of fluorescence were applied, as in [9]. All measurements were 
made at 293K.

The actual values of the PL quantum yield were determined on the basis of the 
relation

where (i//»j0)' is the PL quantum yield with no correction for inactive absorption by the 
acceptor, e m  and e r  are extinction coefficients for malachite green and rhodamine 6G, 
respectively, and x = CR/(CR + CM). For AS excitation the correction factor in (1) may 
reach high values. For instance, for Дгж =  578п т the expression in square brackets 
changes from 4 to 438 for the concentration in system III variable between 
6.3 ж 10- 6 mol • dm - 3 and 9.1 x 10 - 4 mol ■ dm - 3. Analogous changes corresponding 
to excitation at Àex = 546 nm wavelength cover the range (1—2.1). The accuracy with 
which the correction factor may be determined depends mainly on the accuracy of 
measurement of the extinction coefficient for rhodamine 6G. To increase this accuracy 
the coefficient e r  was measured in the AS region, using cuvettes of appropriately large 
thickness. The maximum error associated with the determination of the correction 
factor was evaluated to be equal to 1.2%, the error in determination of the mole content 
of rhodamine 6G in the solution having been neglected.

( 1 )
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3. Results and discussion

Fig. 1 shows the absorption and fluorescence spectra for rhodamine 6G as well as 
the absorption spectrum for malachite green in glycerin-alcohol solutions. The 
substantial overlaps of the fluorescence and absorption spectra of rhodamine 6G, as 
well as the rhodamine 6G fluorescence spectrum and the absorption spectrum of 
malachite green provide for efficient energy migration among the donor molecules and 
its transfer to the acceptor. Values of critical concentrations C0 and distances R0 for the 
processes under consideration are specified in Table I. Fig. 2 presents the results of 
measurements of concentrational changes of the quantum yield ri/rj0 and emission 
anisotropy r/r0 for fluorescence of rhodamine 6G in the presence of malachite green, 
fluorescence occurring as a result of Stokes and anti-Stokes excitation. The solid lines 
showing concentrational changes of r\/r\0 for S excitation were calculated from the 
formula [ 10]

n_ = 1 - f ( y )
i/o l - a 0a /(y ) ’ ( 2)

where
f(y) =  л 1 /2y • exp (y2)[ 1 -  er/(у)] , (3)

У = Ук+Ум a = 7 r

yR + Ум '
(4)

Here C0R, C0M are critical concentrations and a0 is the probability of absence of the 
energy degradation in the process of energy migration between rhodamine molecules. 
The values of C0R and C0M were calculated for the absolute value of rhodamine 6G PL 
quantum yield equal to r/o = 0.85 as given in [11]. The value of the orientation factor 
<k2> for the lowest concentration was assumed to equal 2/3 [12]. Consequently тг<^т, 
was assumed, where тг is the rotation time for rhodamine 6G molecules and t, is the 
excitation energy localization time. In [13] it was shown that an increase of 
concentration of active molecules in a solution may result in a decrease of x, leading to 
xr p  Tj. Then <k2> =  0.476 [14,15]. The values of <к2(у)> for intermediate concentration 
were calculated in a similar way as in [13,16]. The Figure shows the good agreement of 
experimental results for S excitation with theoretical curves of t]/r\0 (empty circles and 
solid lines).

An equally good agreement of experimental and theoretical [relation (2)] values 
of ri/ri0 was obtained for AS excitation (black circles and dashed lines). This, however, 
was achieved for the values of critical concentration C0R and C0M higher by 46% than 
those assumed for Stokes excitation. Note that the rise of critical concentration caused 
by the red shift of fluorescence spectrum for AS excitation does not exceed several 
percent [2]. Thus, the increased values of C0R and C0M may be obtained only on 
assumption of a drop of the absolute PL quantum yield for rhodamine 6G subject to 
AS excitation to »/0 =  0.40.
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4
Table I

Characteristic data for rhodamine 6G — malachite green systems in glycerin — alcohol solutions

T Viscosity 4o C o  R C o m Ror К о м

[K] [Pa • s] [nm] [ - ] [mol • dm -3] [mol ■ d m '3] [nm] [nm]

546 0.85 3.18 x 1 0 '3 1.92 x 1 0 '3 4.99 5.91
293 0.124

578 0.40 4.64 x 1 0 '3 2.80 x 1 0 '3 4.40 5.21

Fig. 1. Absorption (e„) and fluorescence (F„) spectra for rhodamine 6G and absorption spectrum (cM) for 
malachite green in a glycerin-alcohol solution; 100 x e r  — a 100 times magnified part of the rhodamine 6G

absorption band

Also shown in Fig. 2 are concentraw.-nal changes of the PL emission anisotropy 
for the same systems subject to S and AS excitation. Experimental results for system I 
fall satisfactorily well along theoretical curves given by [17]

( . - « « . / ) [ ■  +  ■ ! = ■ £ _ ] ,  (5,
r° L

where /  =  f(y), oc0 and a correspond to those in (2). The solid and dashed lines were 
calculated for the same absolute yield values as the corresponding quantum yield 
curves. This applies also to the remaining systems. For systems II and III theoretical 
curves do not describe the experimental results as well as those for system I. This may
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4  -3 -2 -4 -3 -2

lg(CR+CM) --------------►

Fig. 2. Concentrational changes of the quantum yield r\/g0 and emission anisotropy r/r0 for fluorescence of 
rhodamine 6G in the presence of malachite green in glycerin-alcohol solutions. Solid and dashed lines for 
g/rio have been calculated from formula (2), while those for r/r0 — from formula (5); curves 1,2,3 correspond 

to i/0 = 0.85, curves Г, 2', 3' — to д'с =0.40
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be caused by neglecting in Eq. (5) of the quenching by malachite green molecules 
present in the luminescence centre [18] as well as by reduction of the measurement 
accuracy, resulting from strong quenching of the rhodamine 6G PL in the systems 
investigated. This quenching is also responsible for the effect of repolarization, 
exhibited markedly enough for systems I and II. Repolarization was already observed 
for systems characterized by strong quenching of PL by dimers [17, 19, 20]. For 
systems under consideration the participation of rhodamine 6G dimers in quenching 
may be neglected. It is known that rhodamine 6G in glycerin, and also in ethyl alcohol, 
exhibits nearly concentration-independent absorption spectra. The same is valid for 
glycerin-alcohol solutions as used in the experiments reported. On assumption that for 
the solution of rhodamine 6G under consideration К =  0.11 dm3 • m ol-1 as for 
rhodamine 6G in ethanol [21] the ratio C"/CM, which is highest for system I, does not 
exceed 0.11% (C"/CM x  K /K t , where К = C"/C2 is the dimerization constant, K, are 
values of the constant defining CM for the respective systems; C" and C  are the 
concentrations of dimers and monomers, respectively).

The Rayleigh scattering of exciting light on active molecules is another factor 
which may affect experimental values of t]/r]0 in the AS region. Table II shows the values 
of errors caused by omission of the effect of light scattering when calculating the true 
values of r]/r]0 according to Eq. (1). The values of coefficient e r  for /> 5 7 8  nm were 
obtained by extrapolation (cf. Fig. 3) of eR(v) values as described by an approximate 
equation given by Erickson [22, 23]

where v0 _0 is the frequency of purely electronic transition. The extinction coefficient 
associated with scattering, e ' ,  was calculated using the relation [24, 25]

where R is the scattering cross-section and C is the dye concentration. The values of R

were measured for Я =  632.8 nm wavelength; for other wavelengths the relation R ~  ~

was adopted. It is evident from Table II that in the case of AS excitation at 578 nm the 
effect of light scattering is negligible, while in the longer wavelength region its omission 
may result in substantial errors. It should be emphasized that omission of the light 
scattering effect in the problem under consideration leads to reduction of true i\/r\0 
values.

Note that for system I, which is characterized by the lowest K, difference: 
between the course of yield curves for S and AS excitation are relatively srnan 
compared with those for systems II and III, where PL quenching by malachite green is 
markedly stronger. The reverse is observed for the emission anisotropy, where system ;

(6)
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T able  II

Errors in true values of t|/t/0 due to the neglecting of the effect of exciting light
scattering

Я

[nm]

А4/Ч0
Ч/Чо
[%]

546 5.26 ж 104 11.7 X 10~2 2.23x10" 7 0.002
578 437 9.94 X 1 0 '2 2.14 x lO "4 0.02
625 0.631 6.83 x 10"2 1.08x10"* 10
632.8 0.1955 6.50 X 10“ 2 3.41 X 10"1 25
648 0.0562 5.91 X 10"2 1.05 51

Fig. 3. The anti-Stokes part of the rhodamine 6G absorption band

exhibits the largest differences between the curves. The small differences between r/r0 
for S and AS excitation are the obvious results of the strong PL quenching by the 
acceptor for systems II and III.

In should be pointed out that the true values of r\/r\0 could have been determined 
in our case more accurately than for systems where the PL quenching depends on the 
presence of nonluminescent dimers. Good agreement of experimental results for г\/г\0 
and r/r0 with those calculated according to (2) and (5) was obtained for values of 
parameters determined based on independent measurements (see Table I). The 
probability oc0 was the only parameter of the theory that was determined from the best 
fit of experimental results to theoretical curves. It was equal, for system I, to 0.9 and 0.8

1 0 * Acta Physica Hungarica 54, 1983
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for S and AS excitation, respectively. Also the results of ri/ri0 and r/r0 measurements 
obtained for AS excitation could have been described correctly with relations (2) and 
(5), however, for a much lower absolute yield. This confirms the Vavilov law [26-28] 
stating that a drop of the absolute yield should be expected in the AS region. Another 
explanation of the lower efficiency of the energy transfer process for AS excitation is 
also possible, and may be attributed to an inhomogeneous broadening of the 
absorption and fluorescence bands of interacting molecules [29-31].
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By using Clebsch representations for all necessary vector fields, an action principle for a 
compressible, inviscid, one-component magneto-fluid, undergoing isentropic motion in an 
electromagnetic field, is given.

1. Introduction

There are many papers regarding the derivation of the equations of magnetofluid 
dynamics from an action principle. One of the first and most important problems 
arising in such derivations is the construction of a Lagrangian density, suitable for the 
considered magnetofluid model.

Regardless of the particular cases which are under discussion, there exist certain 
rules (or procedures) used in the derivation of the set of equations describing the 
behaviour of the magnetofluid system. One of these rules says that the electromagnetic 
field E, В is expressed in terms of either the well-known potentials А, Ф [e.g. 1-7] or the 
so called “generalized antipotentials” [8]. On the other hand, the fluid velocity field v is 
usually represented in terms of a set of Clebsch potentials, and an interaction term as 
well. Both electromagnetic and Clebsch potentials are taken as variational parameters. 
But we should mention that this procedure is not compulsory: the Clebsch 
representation of the velocity field can be obtained as a result of the variation.

The main purpose of the present paper is to give a variational principle for an 
inviscid, conducting fluid, and show that the representation of all vector fields in terms 
of Clebsch potentials is not only a possible, but also a useful method in the Lagrangian 
approach of magnetofluid dynamics. 2

2. Construction of the Lagrangian density

Let our model of magnetofluid be an inviscid, one-component, compressible 
fluid, which undergoes isentropic motion in the electromagnetic field E, B. If we denote 
by p and pe the mass and charge densities, and suppose that the particle number density

Acta Physica Hungarica 54, 1983
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n is identical to the charge carrier density ne, then we may write pe/p = e/m, which is an 
invariant in our non-relativistic approximation.

Hamilton’s principle requires

áS = á j |J Í  JS?dxdzdt = 0, (1)

where the action S is formed by three parts: one belongs to the electromagnetic field, 
one to the fluid, and one gives the interaction between the two physical systems. Then 
the Lagrangian density will have the same composition and we choose

(2)
Z L \i0

^ fluid= ^ - p v 2-pe-a .[d ,p  + ei(pvi)']-ßp(dts + vidis), (3)

£РЬл = рЧр,А1-Ф ) .  (4)

In these formulas, Ф and A are the scalar and vector potentials, e and s are the internal
energy and the entropy per unit mass, while a and ß are two Lagrangian multipliers. It 
is assumed that k ~ k 0 and p~.p0> where к and p are the permittivity and the 
permeability of the fluid.

Before going further, we shall briefly discuss the significance of the Lagrangian 
densities (2), (3), and (4). The expression (2) is the Lagrangian density of the

e
electromagnetic field in vacuo; it is known as the Larmor invariant. Since pe= — p, wem
may write (4) as

JSfln,=  — p(Vi A i - Ф). (5)
m

We deliberately left at the end the Lagrangian density (3), given by Herivel [9], because 
we want to work on it. First, one observes that the equation of continuity and the 
equation of conservation of entropy play the role of two constraint equations. On the 
other hand, the analytical mechanics formalism says that Euler-Lagrange equations

gJSf Ô ( № \
d(pis) dxj )

(•/ = 1,4; s=l,2, ...), ( 6)

where Xj =  x, x 2 =  y, x 3 =  z, x4 = t, and cp(s) stand for variational parameters, are form- 
invariant with respect to the “divergence transformation”

2 ”(x j , V м , =  & ( x „  <Pis\  <РУ) +

+ SSF*(X'.»“) (J,K = 1,4), (7)
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if the domain of integration is fixed, and the variational parameters cp(s) take fixed 
values on the boundary which limits the integration domain. Here and throughout this 
paper the Einstein’s summation convention is used.

Making allowance for (7), we shall add the term
^ ___

—  (рт})= — (pa)+ —  (pccDi) 0 = 1,3)

to Eq. (3) and get

^ fluid =  j  Pvivi~P£ + P(d,« + Vjdja)—

— ßp(d,s + vidis) . ( 8)

In view of (2), (5), and (8), we shall write our Lagrangian density as

l i e  1
£ ’= T k0EiEi- — - B iBi+ - p ( v iAi-<t>)+ — р£м ~ р е  +

2 2p0 m 2

+ р(д,а +  иД<х)-ßp(d,s + vidis) . (9)

3. The Lagrangian formulation. First method

The fundamental system of equations describing the behaviour of our fluid 
include: Maxwell’s equations

£ijkdj Ek + dtBi = 0; diBi = 0 , (10a, b)

e.jfcSj(p0 1 Bk) =  peo. + d,(k0 ; di(k0Ei) = pe , ( lla ,b )

' e equation of motion
l e i

o,orr -k^kvi = ----- д,р+ — Е(+ — eimJ m2k, (12)p m p

as well as Ohm’s law, the equation of state, and the equations of conservation of mass 
and entropy. Part of these equations have already been used in the construction of the 
Lagrangian density (9). The first group of Maxwell’s equations (10a, b) serve to define 
the electromagnetic field E, В in terms of potentials А, Ф:

E( = — а, Ф — d, Ai ; ВI =  eijk djAk. (13a, b)

In view of the.,e considerations, we shall take as independent variational 
parameters Ф, Aj, vjt a, s, p. Making allowance for the Euler-Lagrange equations (6), 
where <£ is given by (9), one obtains:

(Ф) d^koEi) — pe = 0,  (14)
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(Aß eijk dj(p о 1 Bk) -  P% -  d,(k0 £ f) = 0 , (15)

(Vi) Vj + diOi — ßdts+  — A  = 0 , 
m

(16)

(a) dlp + ci(pvi) = 0 , (17)

(s) d,ß + vidiß - T =  0 , (18)

(P)
1 p e

— ViVi — E— — + d(a + t;IdiaH— (viAi — <P) = 0. (19)

The first two equations (14) and (15) are just Maxwell’s source equations (11a, b). 
Eq. (16) is a generalized Clebsch transformation, a,/?, and s being a set of Clebsch 
potentials. In the derivation of the last two equations (18) and (19) we used the 
fundamental thermodynamical equation of reversible processes

Tds = de (p, s) + pd (20)

By eliminating the Lagrangian multipliers a, ß from Eq. (16), (18), and (19), we shall 
arrive at the equation of motion (12). To do this, one takes the gradient of (19). The 
result is:

V X curl v + (v • F)v — Fe — p l Fp + p 2pPp + d,(Pa) +

+  (Fa)xcurl v +  (v- F)(Fa) +  (Fa- F)vH—  F (v  А —Ф) = 0.
m

In view of (16), (18) and (20), we still have:

ßPs-----А ) X curlv + (v• F)v— TPs — p l Vp — dt\  + d,(ßPs) —

But

-  <5, A + (v • F) (Fa) + (Fa • F)v +  -  F(v ■ A -  Ф) = 0. 
m m

d,(ßV s) = (V s)d,ß — (ßPs) X curl v — ß(y ■ F)(Fs) — ß(Vs • F)v,

(v • F)(Fa)= — (v • F)v +  ß(\ • F) (Fs) +  (Fs)(v • Vß)-----(v • F) A ,
m

so that, after some reduction and arrangement of the terms, we are left with

dv 1 . e 1
— — + — j xBH----E ------Fp = 0,

at p m p

i.e. the desired equation of motion (12).
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4. The Lagrangian formulation. Second method

The definition of the electromagnetic field E, В in terms of the electromagnetic 
potentials and their use as variational parameters is a well-known procedure. A little 
more unusual is, in our opinion, the representation of the electromagnetic field in terms 
of Clebsch potentials. In the following we shall show that this representation is very 
useful in our variational formulation.

Starting with one of Grad’s [10] ideas, let the vector potential A be defined in 
terms of the Clebsch potentials £, r\, £ as

^=-í.«+*C .i (í. ,=a,ö. (21)
If one introduces this definition in (13a, b), one gets:

where

Е к = - ф*+£.гП.к-чЛ,к>

B k ~ Ek j m 4 , j C . m  >

Ф* = Ф -

(22a, b) 

(23)

As one observes, the definition (21) makes it possible to express the electromagnetic 
field in terms of three scalar functions Ф*, r\, £, instead of four quantities Ah Ф. These 
functions appear as Clebsch potentials of the vector potential A. They may be called 
second-order potentials or superpotentials.

In view of (16) and (22), all vector fields interfering in the Lagrangian density (9) 
can be expressed in terms of Clebsch potentials. In order to choose these potentials as 
variational parameters, we make some arrangement of the terms in (9), and get

Se= k o E i E i - ~  B i B i - -  рФ*-  2- pViVi-pe + 
2 2/i0 m 2

e e
+ pz.t -  ßps.,----- p£.. + -  РЧС., ■ (24)m m

Taking as independent variational parameters Ф*, t], £, a, ß, s, p, and having in mind 
the transformation ((see (16))

(Ф*) < ? , . ( к о £ | ) - р е  = 0 , (26)

(4) Ir-ijk dj(pô1 Bk) -  pevi -  e,(k0 £,•)] diC =  0 , (27)

(Ö д , Р е  +  д , ( р % ) = 0 , (28)

(a) d , P  + d,(pv,)=0, (29)
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(ß) d,s +  r idis = 0 , (30)

(s) d,ß + vieiß - T =  0 , (31)

ip)
e l  p-----Ф* — — ViVi — e--------hc,a — ßd,s +

+ ^ ( - e , l ;  + r,d, 0 = 0 . (32)

One easily recognizes the soi rce Maxwell’s equations (it is assumed that the
quations of conservation of charge, mass, and entropy, and the Eq. (18) and (19) as 

well. Using the already known procedure, we take the gradient of (32):

e
----- РФ*—v x curl v — (v • F)v—Fe — p Fp + p pVp +

m

+dt( ra) - ( r ß )d ls - ß d t( V s ) + ~ v ( - d tt+r,dlc)=o.  (33)

But, in view of (25)

d,(Fa)= -d ,y  + d,ß(rs) + ßd,(rs)-

--1-т®+эмго+ча,(Р0],m

curl v= Pß x Ps— — Ри x P ( , 
m

so that, after performing some reduction in (33), we are left with the expected equation 
of motion (12)

dv . pe 
—  +  p _ 1Fp—— (E +  vxB)  = 0.  
di p

5. Discussion

We have started this investigation based on the idea that all variational 
parameters (except for p) are Clebsch potentials. As one can see, the result is in complete 
agreement with that obtained by a “classical” method in Section 3. The advantage of 
this procedure is threefold: (i) it allows a symmetric formulation of the variational 
principle; (ii) it provides some extra information about the behaviour of the 
magnetofluid (e.g. the equation of conservation of charge); (iii) the equation of motion 
can be deduced in a simple way.
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One can also see that the Eqs (19) and (32) are Bernoulli-type equations. Since
e ----

p'j = V j + — A j = —<Xj + ßsj  =  ôS'/dxj (J = 1,4) is the generalized momentum per unit m
mass, the Eq. (32) may be written as

i r + l‘ - ° -  <34)
where

k =  ~ v 2 + e +  -  +  — Ф (35)
2  p m

is the Hamiltonian per unit mass of the magnetofluid. Eq. (34) is similar to the usual 
Hamilton-Jacobi equation, S' being the action per unit mass. This comes to prove that 
our formalism is opened to various applications.
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The integration of the spin coefficient equations of spatially symmetric vacuum is carried out 
for non-geodesic eigencongruences and vanishing shear parameter. Two different solutions, a special 
Einstein-Rosen metric and a solution belonging to the spatially symmetric analogous of the 
Papapetrou-type metrics are obtained. The corresponding electrovac class of common eigenrays 
contains only Ernst counterparts of the vacuum metrics.

1. Introduction

The spin coefficient technique has yielded many new exact solutions of the 
Einstein equation of the general relativity. If one does not assume any symmetry for the 
spacetime, the four dimensional Newman-Penrose equations can be analytically 
solved for geodesic rays (principal null congruences) [1,2,3]. When the space-time has 
a non null symmetry, the spin coefficient formalism can be reformulated in a three 
dimensional background space [4,5] and for timelike symmetry the vacuum equations 
have been integrated both for jc =  0, офО, [6] and for кф 0, <т =  0 [7]. (The 
asymptotically good Kerr solution is among the k = <t =  0 metrics). These solutions 
have nongeodesic rays because the eigenrays are the three dimensional projections of 
the rays if and only if <r=0. [4] It is interesting that the more general ка =  0 class does 
not contain any generalization of the Kerr solution.

Since the structure of the spin coefficient equations does not become more 
complicated if one chooses space-like symmetry instead of the timelike one, it is 
obvious to try to integrate the two cases mentioned above for spatial symmetry too. (If 
к = a = 0, the metric is algebraically special, and even the four-dimensional equations 
can be integrated). In fact, the general solution is known if k =  0, <t#0, [8] which class 
does not contain also any generalization of the Kerr metric. In this paper we integrate 
the opposite к Ф 0, a =  0 case. The analogous stationary solutions are very special: two 
different metrics exist, which do not have any arbitrary parameter except for a trivial 
constant conformal factor [7].

For the cases investigated till now, if the vacuum equations were integrable, the 
corresponding electrovac solutions of common eigenrays could be obtained too. Thus 
we will investigate this more general case.
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Since the integrational process runs on the same way as in [7], we will not go into 
details of identical steps. In Section 2 we give the equations to be solved. Section 3 
shows the way of the integration. Finally, in Section 4, we give the explicit form of the 
solution and discuss its behaviour.

2. The field equations

The general formulation of the 3 dimensional spin coefficient method for 
spatially symmetric space-times can be found in [5]. Since the orthonormality relations 
do not fully determine the triad vectors, the equations can be simplified by choosing a 
triad in which

G_=£ = 0. (2.1)

The second condition can always be fulfilled, the first is not met only if the solution does 
not have eigenrays, which case is exceptional [5]. Since this paper deals with the 
solutions in which the shear parameter of the eigenray congruence vanishes, both 
conditions can be fulfilled. Then the basic vector / is the tangent vector of the 
congruence, and a rotation around /

m' = melC°; DC° =  0 (2.2)

remains free, by means of which a phase with vanishing D derivative can be removed 
from one of к, a or G +. [5]

The conditions (2.1) restrict the triad, but not the metric. For the metric, our 
assumption is that

<x =  H _ =  0, кФ 0 . (2.3)

(The first condition does not mean that the eigenray congruence is shearfree, because 
[a] is not the shear if к #0 . The second can be interpreted such that the eigenrays of the 
G and H fields coincide.) With these assumptions the field equations are as follows: 
[5, 9]

Dp—5K = Kz + KK  — p2 — G0G0 — H0R 0 ,

Dx= — px + icp — G0G_ — H 0H_ ,

DG0 = ( — 2 p + G0 — G0) G0 +  i<G +—H0H0 ,

DH0 = ^ — 2p + у  G0 2 ^ 0 + ,

DG+—ÔG0 = kG0—(p + G0)G+ — H0H+ ,

D H +-Ö H 0= ^ K + y G  + ̂ H 0-

ÔK =  KT  —  K 2 ,

P+-2 {C ■I 4-
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öp= ~ ( p - p ) K - G 0G+- H 0H + , 

öt + öt = — 2 tt  + pp — G0G0 — G+G- — H0H0 — H + H - ,

SG0= - ( k + G )G0- H _ H 0,

SH0= - ( i c + j G _ j H 0 ,

5G+=(p-p )G0- ( r  + G . )G +- H - H +,

5Н+=( р- р)Н0- ( т + ^ с Л н + , (2.4)

where
D Ô -Ô D = -pô  + KD,

ôS - S ô = t ô - T Ô - ( p - p ) D .  (2.5)

In order to obtain the metric, we first apply the commutators on the field 
quantities. Then, writing the known derivatives into the obtained equations, we may 
get further differential equations. When the system has become closed, proper 
coordinates are to be chosen, in which the Eqs (2.4-5) become partial differential 
equations of the first order. Integrating these equations, the three dimensional 
quantities gik, G and H are obtained, whence the metric and the electromagnetic 
potential can be reconstructed.

We must note that every solution of the Einstein-Maxwell equations contains 
two trivial arbitrary constant parameters. The first is a constant conformal 
(homothetic) factor in ds2 and its square root in the electromagnetic potential, the 
second is a constant duality angle in the complexified electromagnetic potential 
[ 10, 11].

3. Integration of the field equations

First let H0 be zero. Then Eqs (2.4) show that H = 0, i.e. there is vacuum. Now G 
must not vanish, because this would lead to the trivial Minkowskian line element only. 
If G0 / 0 ,  applying the first of the commutators (2.5) on In G0, a new equation for к  is 
obtained:

Then, applying the same commutator on In к, the result is as follows:

- - G+ n оp = к —-  =>Dk =  0 , (3.2)

which means that к can be made real and pu»ui ve by means of the transformation (2 .2).
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Finally, derivating the algebraic identity (3.2) by S, we obtain:

G + = 0=>p =  0 . (3.3)

Writing these results into the field equations, it is seen that

Dt = D y=0, y2 = G0G0, (3.4)

2кт = у2 .
Thus г is also real and positive.

If # o# 0 , the first of the commutators (2.5) is to be applied on both in G0 and 
In H0. We obtain Eq. (3.1) again, and a new algebraic equation

G0H + = G + H0=>(G X H) = 0. (3.5)

(The field equations show again that G0 must not vanish.) Applying the first of the 
commutators on In к, we obtain the Eq. (3.2) again, whence, letting S on it,

p = G+ = H + = 0  (3.6)

and the system of equations has become closed.
Now a coordinate system is to be chosen. Since the remaining equations have the 

same structure (except for some signs) as in [7], the convenient coordinate system is 
also the same (except for the change in the index numbers 1 ->0, 2-vl, 3-+2), and, 
mutatis mutandis, we can perform the same integrational process again. For vacuum, 
there are two different solutions:

ds2 =  F 2{ch (2T) Op2(d T 2 -  dp2) -  p2 d<i2] -  ch“ 1 (2T) (dz + p2 d(p)2} (3.7)
and

ds2 =  F 2{c2T[ep2(dT2 — dp2)—p2 d4>2] — e~2T dz2} . (3.8)

Here we have introduced canonical coordinates.
Eq. (3.5) shows that G and H are parallel vectors. Thus, if | q° \ < 1, the electrovac 

solutions are Ernst counterparts of the vacuum ones. [11]. When |q ° |^ l ,  Ernst’s 
method cannot be applied [12]. Nevertheless, having written the result (3.6) into the 
field equations (2.4), two sets of the equations are obtained. The first set contains the 
differential equations for In H 0 \ on the right hand sides of these equations H0 does not 
occur. The remaining equations are differential equations for the spin coefficients and 
G0, and on the right hand sides of them H0 occurs only in the combination G0 G0 
+ H0H0. Thus the way of the integration is independent of the ratio G0/H0, i.e. the 
counterpart solutions remain valid for | q° | ^  1 too. Therefore we will not explicitly 
calculate these solutions here. The counterpart solutions have two (one complex) extra 
parameters, one of which is the trivial duality angle, and the other is the charge 
parameter.
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4. The behaviour of the solutions

As in the stationary case, there are two vacuum solutions, without any nontrivial 
arbitrary parameters. The solutions have two commuting space-like Killing vectors:

K, = (0 ,0 ,1 ,0), (4.1)

K 2 =(0,0,0,1).

This fact may be interpreted as cylindrical symmetry. In the second metric the two 
Killing vectors are mutually orthogonal, in the first they are not, and the Killing vector 
of direction z (with respect to which the 3 +  1 decomposition of the “3 dimensional 
relativity” has been done) is not hypersurface orthogonal. If the symmetry were 
timelike, the first line element would be stationary, and the second static. For space-like 
symmetry, such a distinction might be also possible, but there are no conventional 
distinguishing terms.

The second line element is a special Einstein-Rosen solution [13]. The first is a 
new solution, nevertheless, in it

=  <?(/]> (4.2)

i.e. this solution belongs to a class analogous to the Papapetrou solutions of the 
stationary problem [14].

The electrovac solutions are of similar behaviour as the vacuum ones. Thus, 
having integrated the whole ка = 0 class of both the stationary and the spatially 
symmetric problems, we have not obtained any generalization of the Kerr and Kerr- 
Newman metrics for which k  =  o  =  0  [15].
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The experimental investigation and theoretical analysis of the anomalies observed earlier in 
the rotational structure of the H2 Fulcher-3 band system is carried out. The anomaly consists in the 
substantial deviation between the measured intensity ratios of R and P lines starting from the same 
rotational level and the values predicted by the Hönl-London formulas. For the first time the 
quantitative interpretation of this phenomenon is given on the basis of the nonadiabatic theory of the 
perturbation of the rotational levels of the upper d3 П* state by the other 3£'u+ electronic-vibrational 
states of the molecule. The influence of the vibration-rotation interaction is also discussed and taken 
into account.

Introduction

More than 40 years ago N. Ginsburg and G. H. Dieke [1] observed the 
anomalies of the intensity distributions in the rotational structure of Fulcher-a 
emission bands (d3i1^, v' — a3Z 3, v" radiative transitions) of the H2 molecule. The 
measured ratios IR/IP of the intensities of pairs of R and P branch lines starting from the 
same rotational levels differ sufficiently from that predicted by the well-known Hönl- 
London formulae.

Later Dieke tried to explain these peculiarities in the relative transition 
probabilities by the perturbation of the initial d3n f  state by the other electronic states 
of the molecule [2]. But the nonadiabatic theory developed by him was found to be in 
serious disagreement with the experimental data.

In the work of D. Villarejo et al. [3] an attempt was made to explain the 
dependencies of the ratios of the line strengths of R and P branch lines on the rotational 
quantum number in the framework of an adiabatic theory but taking into account the
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vibration-rotation interaction. However, the results of numerical calculations for 
Fulcher-a bands have shown that the effect is rather weak and cannot explain the 
observed phenomenon either.

The goal of the present work is to give an adequate explanation of the 
peculiarities in the relative line strengths on the basis of experimental investigations 
and theoretical analysis.

First of all more detailed experimental studies of the relative line strengths were 
carried out. The technique used here and the results are described in §1. §2 is devoted to 
theoretical analysis, the purpose of which is to derive and to examine simple analytical 
formulae for the dependencies of radiative transition probabilities on the rotational 
quantum number of upper level. The comparison of the theory and the experiment is 
discussed in §3. In conclusion, the main results of the work are summarized.

In the optically thin plasma the intensity of the electronic vibro-rotational line1 
belonging to the spontaneous emission band spectra /Ц v v - is connected with the 
population density of upper level N n.v.r  and corresponding transition probability 
An"V' j" by the well-known expression

where ri and n" denote sets of quantum numbers describing the initial and final 
electronic states of the molecule, v', v" and J', J" are vibrational and rotational 
quantum numbers, respectively, is the wave number of the rí, v', v", J"
transition.

According to wave mechanics Aty'J'-j- may be related to the electronic vibro- 

rotational line strength £  [5] by

where gr  is the degree of degeneracy of the initial state.
If the vibration-rotation interaction is negligible, the expression (l-2a) is 

simplified and the so-called rotational line strength Sr r - may be introduced by

§1. Experimental studies

}n'v'J" n"v"J" » (1-1)

(1—2a)

(1—2b)
M

1 “Intensity of the spectral line” hereafter refers to the energy of quanta belonging to the transition 
emitted by unit volume in unit time to all directions.
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where R ' , i s  the matrix element of the dipole moment on the electronic and 
vibrational wavefunctions. In the Franck-Condon approximation the v' and v" 
dependency of | | 2 may also be factorized as the Franck-Condon factor. (For
further details on the quantum-mechanical theory of electronic-rotational radiative 
transitions see the monograph [5]).

The ratio of the intensities of two lines starting from the same rotational level 
does not depend on the initial level population density and is connected with the 
corresponding ratio of line strengths.

For example this ratio for R and P branch lines:

For d3/7„ and d3£* states of the H2 molecule the spin-multiplet splitting is 
known to be small in comparison with the rotational constant Be. (The triplet structure 
of the emission bands was not resolved in our and G. H. Dieke’s experiments). So in 
both states rotational levels may be characterized by the quantum number N of the 
total angular momentum without allowance for electron spin. Then the formula (l-3a) 
in our case may be rewritten as

Thus for the experimental determination of S(N') it is necessary to measure at once the 
intensities of R and P lines with the same upper level and belonging to the same 
electronic-vibrational bands.

For the studies of the intensity distributions among the rotational structure of 
molecular bands the spectrophotometrical system must in general possess sufficiently 
high spectral resolution and light sensitivity. These two requirements contradict each 
other and it is not easy to fulfil both requirements in one apparatus. Then it is advisable 
to use two spectral systems with different characteristics. For example the 
identification of the rotational lines may be carried out under maximum brightness 
conditions in the light source when the line intensities may be disturbed by 
reabsorption. In this case it is most important to achieve higher spectral resolution 
even by decreasing the sensitivity. However, for the measurements of the intensities of 
widely separated weak lines higher sensitivity is necessary and a lower resolution is 
sufficient. J

The experimental set-up used in the present work was analogous to that of our 
previous papers [6,7]. The schematic diagram of the experimental apparatus is shown 
in Fig. 1. It consists of the gaseous discharge light source and two analogous

(1—3a)

M

(l-3b)
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Fig. 1. Schematic diagram of the experimental apparatus: 1-hot oxide cathode; 2-capillary; 3-anode; 4,5- 
stabilized power supply circuits; 6 ,6'-light filters; 7 ,7'-aperture stops; 8, 8'-achromatic objectives; 9 ,9'-plane 
mirror; 10-long-focus Ebert-Fastie monochromator; 12, 12'-FEU-79 photomultipliers; 13, 13'-stabilized 

rectifiers; 14,14'-dc amplifiers; 15,15'-automatic electronic potentiometers

spectrophotometrical systems which differ only in the dispersion and transmission of 
monochromators. In the first system (6-10, 12-15) the 2.65 m Ebert-Fastie type 
monochromator (10) was used with a grating of 1800 lines/mm (in first-order), which 
provided a spectral resolution of 0.01-0.02 nm. In the second system (6'- 8', 11-15') the
0.75 meter Czerny-Turner type monochromator (11) with a grating of 1200 lines/mm 
was employed in second order and had somewhat smaller dispersion but a 
considerably higher transmission. An alternative use of the two systems generally 
improved the performance of the experimental set-up. The simultaneous application of 
both systems, however, increased the amount of information available on the intensity 
measurements of the same spectral lines and the reliability of the experimental data.

The determine the relative spectral sensitivity of the photoelectric systems we 
measured the spectrum of two tungsten ribbon lamps of different geometry having 
glass and sapphire windows.

In the wavelength range 520-750 nm the sensitivity values obtained with various 
lamps (at three different temperatures of the ribbon for each lamp) differ on the average 
by less than 5-6%. For the pair of lines the error was not larger than 1.2%.

As light source an arc discharge through a 1.5 mm diameter capillary was used. 
The construction of the discharge device was described earlier [8]. In the experiment 
described here the discharge device was filled with spectrally pure hydrogen rectified by 
passing through heated nickel. Previous investigations [7] have shown that in the 
range of discharge currents i — 0.05-0.35 A and gas pressures P = 67-1600 Pa various 
secondary effects (for example reabsorption) do not influence the value of the line 
intensities. So the basic measurements were carried out at / =  0.08,0.15 and 0.3 A and 
P = 533 and 1600 Pa.

Just like in the work [1] the main difficulty restricting the number of measured 
ratios S(N') consists in the accidental overlapping of the spectral lines belonging to
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different electronic-vibrational bands. In the emission spectrum of the hydrogen 
molecule various branches, bands and even band systems are usually superimposed 
due to the anomalous high values of vibrational and rotational constants. In some 
cases two or more different lines lie so close to each other that on account of Doppler 
broadening and/or the insufficient resolution of the spectral apparatus it is impossible 
to resolve them for the intensity measurements. This situation may be called accidental 
overlapping. It should be noted that in this case the measured ratios (1—3b) have to be 
changed owing to the variation of discharge conditions.

This spectrum has not yet been fully identified in spite of the extensive work 
carried out on this problem. Many lines are not identified unambiguously, even in the 
most complete available tables of the H2 spectral line wavelengths [9]. Therefore “a 
priori” it is impossible to select unambiguously the pairs of lines suitable for the 
determination of the ratios S(N'). Let us illustrate this on the example of the (2-2) 
Fulcher-a band.

Table I shows the wavelengths of R and P branch lines of interest to us and some 
other lines lying in their neighbourhood. The line intensities shown in Table I can be 
used only as a qualitative indication of the true intensities because they are only eye 
estimates on an approximately logarithmic scale. Columns 2, 3 and 4 of Table I 
represent the intensities obtained under different gas pressure and power conditions of 
a microwave electrodeless discharge light source.

It can be seen from the Table that some lines (RO, R3, R5, P3 and P4) are 
identified unambiguously and it is neecessary to study the intensity distribution in the 
corresponding branches experimentally to improve this earlier identification based on 
the measurements of the line wavelengths only [ 10].

In addition to this, with the aid of tables like Table I the overlappings in the 
bands can be analysed conveniently. For this purpose the line wavelength 
measurements were combined with spectral measurements of intensity distributions in 
the vicinity of the lines interesting for the determination of the ratios S(N'). Three 
situations have occurred:

1. Both lines of R and P branches starting from the same rotational level are free 
from overlapping. It means that an obstacle line nearest to the spectral line of in terest to 
us is displaced outside the contour of the Fulcher line. As an example the 
neighbourhood of (2-2) P5 Fulcher-a line is shown in Fig. 2a. It is seen that the emission 
of the 636.2337 nm and 636.2706 nm lines nearest to (2-2) P5 is hardly probable to be 
included into the measured value of (2-2) P5 line intensity. This Figure also shows that 
our spectral apparatus made it possible to distinguish between two lines separated by a 
distance of 0.0048 nm in the spectrum (see lines 636.4618 nm and 636.4666 nm in 
Fig. 2a).

2. One of the lines indispensable for the determination of line strengths ratio 
(l-3a) may be overlapped ((2-2) PI line in Fig. 2b) whereas another line of the pair is 
to be free from blending ((2-2) R5 in Fig 2b). So the ratio S(N') thus obtained may be
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Fig. 2. Typical results of the measurements of spectra in the vicinity of lines for the (2 — 2) band: a) N' = 4,
b) N' = 6 and c) N' = 3

over- or underestimated to some extent. For example, the ratio S(N') for v' = v" — 2 and 
N' = 6 seems to be probably underestimated.

3. Both lines of the pair may be overlapped by some lines of unknown intensity. 
In this case it may be impossible to determine the S(N') (See e.g. Fig. 2c).

Such an analysis is useful in understanding the nature of intensity distributions in 
the branches. But it cannot provide an unambiguous answer to the question whether the 
measured ratio S(N') obtained in the experiment corresponds to that of line strengths 
S(N').

To solve this problem a series of experiments have been carried out under 
various regimes in gaseous discharge light source. It is quite clear that for the lines free 
from overlapping their intensity ratio (closely connected with S(N')) has to be 
independent of the discharge conditions. The purpose of this series was to select such 
line pairs.

The order of the measurements was as follows. The intensities of R and P lines of 
the pair were measured one after another three times. Then the corresponding three 
values of S(N ') were calculated and averaged. After that the discharge conditions 
(pressure or current) were altered and the same procedure has been repeated.

As an example in Table Ha the results obtained at various discharge currents are 
presented for v' = v" — 2 and N' = 6 transitions. It is known (see Table I and Fig. 2b) that 
the (2-2) PI line (N' = 6) can be overlapped by the (4-0) P4 line (N' = 3) belonging to the 
2K-»2B electronic transition (in Dieke’s notation). So when the current i is increased
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Table I
(2- 2)

Л-branch P-branch

Я [nm] Intensity Notation к [nm] Intensity Notation

1 2 3 4 5 1 2 3 4 5

620.0927 10 7 — —
620.0954 - - — - 627.1118 - - 2
620.1185 29 25 19 R0 627.1311 27 23 17 P2
620.0185 29 25 19 3A-2C (1-0) 2 627.1390 - - — -
620.1423 6 - - - 627.1547 3 - - -

618.2730 10 7 — — 629.9173 9 2 — —
618.2990 29 28 24 R1 629.9423 31 28 23 P3
618.3220 6 - - - 629.9423 31 28 23 X-2B (0-6) R2

632.9648 24 — 20 —
632.9696 - - 15 -

616.7568 — — — — 632.9752 15 - - -
616.7732 24 21 19 R2 632.9816 15 23 24 P4
616.7797 3 — — — 632.9816 15 23 24 3D-2B (3-10) P4
616.7903 - - -  - 632.9780 - - - -
615.5466 3 — — — 636.2224 3 5 — —
615.5629 24 22 23 R3 636.2337 3 - — -
615.5629 24 22 23 Z-2B (1-6) PI 636.2479 24 24 24 P5
615.5629 24 22 23 3D-2B (0-4) P6 636.2706 2 — — -
615.5860 3 - - -

614.6670 2 2 — 2-2B (2-9) R0 639.7216 — — 2 —
614.6901 17 15 20 R4 639.7445 17 15 18 P6
614.6931 — — — 3D-2B (0-4) P5 639.7662 1 - - -
614.7222 2 2 - -

614.1504 5 4 _ 3E-2C (3-1) P3 643.4628 2 — - -
614.1787 15 15 20 R5 643.4835 19 18 22 P7
614.1787 15 15 20 643.4897 — - - 2K-2B (4-0) P4
614.2044 2 2 - -
614.0576 1 _ _ — 647.4366 1 2 _ Y-2C (2-1) R2
614.0724 1 2 — R6 647.4551 2 5 4 P8
614.0954 11 _ _ — 647.4551 2 5 4 4f -3B (2-0) R1

647.4551 2 5 4 3f -2c (0-1) R3
647.4773 - 2 2 -

Table lia

i [mA]

S[R5]
S[P7] /  S[R5] \

No. 1 No. 2 No. 3
\  /

30 0.45 0.53 0.48 0.49 +  0.02
65 0.53 — 0.51 0.52 + 0.01

150 — 0.53 0.55 0.54 +  0.01
300 0.57 0.53 0.53 0.54 +  0.02
400 0.54 0.55 0.55 0.55 + 0.01
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Table lib

S{R(N - D ]---— . D =467 Pa S [ R ( N - 1)]
, N' „ S[K(N+ 1)] S[P(1V +1)] ’

i =  0.08 A . i =  0.15 A i =  0.3 A i =  0.15 A
p = 1600 Pa

1 0 1.48 + 0.04 1.28 + 0.02 0.99 +  0.02 1.14 +  0.02
2 0 1.59 + 0.02 1.45 + 0.01 1.52 +  0.02 1.66 +  0.02
3 0 0.92 + 0.02 1.23 T  0.01 — 1.57 + 0.02

0 4 0 0.85 + 0.02 0.86 + 0.01 0.84 +  0.02 0.83 +  0.02
5 0 0.44 + 0.02 0.42 + 0.01 0.47 +  0.01 0.46 +  0.01
6 0 0.66 +  0.02 0.67 + 0.01 0.67 +  0.02 0.67 +  0.01
7 0 0.75 +  0.02 0.74 + 0.01 0.71+0.02 0.79 +  0.02
8 0 0.58 + 0.02 0.57 + 0.02 0.58 +  0.02 0.58 +  0.02

1 0 2.49 + 0.06 3.50 + 0.06 3.96 +  0.06 9.2+ 0.2
1 1.79+0.02 1.80 + 0.01 1.76 +  0.02 1.80 +  0.02

2 0 1.36 +  0.02 1.35 + 0.03 1.34 + 0.02 1.38 +  0.02
1 1 1.34 +  0.02 1.37 +  0.01 1.37 + 0.02 1.37 +  0.02

3 0 1.47 + 0.03 1.42 +  0.01 1.36 +  0.02 1.34 +  0.02
1 1.67 +  0.02 1.99 +  0.03 2.39 +  0.02 2.23 +  0.02

4 0 - — — _

5 1 18.8 +0.1 18.0 +0.3 9.1+0.2 8.4+  0.1
6 1 4.26 +  0.07 5.57 +  0.05 7.4+  0.2 7.8 + 0.2

Table lie

v' N' v"

S[K(AM)]
S[«(A + 1)]’ P

467 Pa
S[R(N -1)] 

S[P(N +1)] ’

i =  0.08 A i =  0.15 A i = 0.3 A i = 0.15 A 
p=  1600 Pa

1 1.66 + 0.01 1.65 + 0.03 1.64 + 0.02 —

2 1.69 + 0.04 1.68 + 0.02 1.63 +  0.03 1.64 + 0.02
2 1 1.06 + 0.02 1.07 + 0.02 1.10 +  0.03 1.08 + 0.02

2 1.08 + 0.02 1.11+0.03 1.09 + 0.02 1.09 + 0.02

2 3 1
2

0.93 +  0.03 0.96 + 0.02 0.93 +  0.04 0.94 + 0.02

1 14.50 + 0.5 8.3 +0.1 6.5 +0.2 10.5 +0.2
2 0.73 +  0.02 0.71+0.01 0.73 +  0.02 0.72 + 0.01

5 2 0.99 + 0.02 1.00 +  0.02 1.24 +  0.02 2.48 + 0.04
1 0.66 +  0.02 0.67 + 0.02 0.67 +  0.02 0.66 + 0.02
2 0.54 + 0.01 0.56 +  0.01 0.56 +  0.01 0.53 T  0.02

2 1.56 + 0.03 1.58 + 0.02 1.56 +  0.03 1.62 + 0.03
3 1.44 + 0.02 1.43 + 0.02 1.45 +  0.02 1.50 +  0.02

3 2 2 1.02 + 0.02 1.01+0.01 1.03 + 0.02 1.01+0.03
3 0.97 +  0.02 0.97 + 0.02 0.95 +  0.02 0.95 +  0.03

3 2 1.89 + 0.06 2.10 + 0.04 2.33 +  0.03 2.15 + 0.02
3 0.77 +  0.01 0.73 +  0.02 0.75 +  0.02 0.73 + 0.03
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T a b le  l i d

v' v" N'

0 0 1
0 0 2
0 0 3
l 0 1
l 0 3
l 1 3
l 1 5
l 1 6
2 1 2
2 1 4
2 2 5
3 2 3
3 3 1

the gas temperature also increases. The relative contribution of the obstacle line (4-0) 
P4 starting from the rotational level with lower rotational quantum number N has to 
be decreased and the measured S(N') must come nearer to the true value of the line 
strengths ratio. Nevertheless, it is probable that the highest measured value 
S(6) = 0.55 ±0.01 remains somewhat underestimated.

The typical results obtained with the first spectral system (Fig. 1) are shown in 
Tables lib  and lie for three different currents and two pressures. It can be seen from 
these data that the measured ratios of the intensities for the lines with v', v" and N' 
summarized in Table lid change noticeably. This fact, together with the above 
mentioned analysis of the line contours and wavelengths, shows that they are 
overlapped. It is impossible to use them for the determination of S(N') values, therefore 
these transitions were excluded from our further consideration.

The Fulcher-a bands starting from the d3/7„+, t /=  1 state are known to be 
perturbed irregularly due to the close position of perturbed and perturbing (e3£„+, 
iJ=4) rotational levels. So the intensities of corresponding R and P lines differ greatly 
from those predicted by Hönl-London formulas. These lines are inconvenient for the 
determination of relative line strengths S(N') and have been omitted from the present 
work.

If we propose a regular character of the perturbation for d3/7u+, v' =  0,2, 3 states 
taking into account: i) the displacement of perturbed and perturbing levels, ii) the 
behaviour of N'-dependences of Л-doubling and, iii) the character of changes in the 
intensity distributions among the branches during the variation of discharge 
conditions, some sudden change in the monotonies in these distributions have to be 
interpreted as due to accidental overlapping. So in some cases the true values of the 
intensities may be determined by graphical interpolation of ЛГ-dependences of the 
intensities in the branches.

For example such intensity distributions for the R and P branches of the (0-0) 
band obtained at constant gas pressure and three different discharge currents are
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Fig. 3. Intensity distributions in the R and P branches of the (0 — 0) band at different discharge currents: 
i =  0.08 A (curve 1). 0.15 A (2) and 0.3 A (3). I — values obtained in the experiment, II — results of graphical

interpolation

shown in Fig. 3. Factor G accounts for the nuclear spin orientation, with G = 1 for odd 
values of N' (parahydrogen) and G = 3 for even N' (orthohydrogen). It can be seen from 
the Figure that the (0-0) P6 N '  = 5 and (0-0) R6 (N ' = 7) lines have anomalous high 
intensities. So neither of the ratios S(5) and S(7) can be determined directly from the 
experimental data. However, they may be graphically interpolated. The errors of the 
determination and the way of their estimation are also indicated in Fig. 3 for i = 0.08 A,
0.15 A and 0.3 A. The ratio S ( N ' )  for v' =  v” = 2 and N '  — 5 has been obtained in the same 
manner.

The fact that some ratios are independent of the discharge conditions in the 
experiment may be due to two reasons.

1. The obstacle lines (nearest neighbours) inside the spectral widths of the lines 
are those of negligibly low intensity and so their existence does not influence the 
determination of the relative line strength ratio.

2. The range of variation of the discharge conditions is not wide enough for the 
dependence to be noticeable, but one of the lines (or both of them) is overlapped.

It is clear that the second reason seems to be less probable and so we selected all 
the pairs of lines independent of the discharge conditions for further investigation. It 
should be noted here that unfortunately this is still possible and the erroneous values of 
S(N') thus obtained could not be recognized in a purely experimental way.
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After the preliminary investigations described above the intensity measurements 
of the selected number of lines were carried out. The aim of this second step of the 
experimental part of our work was to decrease incidental errors. So the ratios S(N') 
have been measured in the same way but 6 times under certain fixed conditions 
(i =  0.15 A and P = 533 Pa). The values obtained in the present work for S(N') are 
presented in Table III.

Table III

N'
v' H lR (N -m

V —V
0 2 3 H\_P(N + 1)]

1 0 — 1.67 + 0.02 —
2.00l - 1.65 + 0.02 1.58 + 0.02

0 - 1.10+0.01 0.96 + 0.02
2 - l - 1.09 + 0.04 - 1.50

l — - 1.01+0.01
0 - - 0.74 + 0.02

3 - l - 0.96 + 0.05 - 1.33
l - 0.94+0.01 -

4 0 0.84+0.01 0.72 + 0.01 - 1.25
5 0 0.74 + 0.03* 0.65 + 0.03* - 1.20

0 0.67 + 0.01 0.55 + 0.01 -

l - 0.66 + 0.01 - 1.17
7 0 0.60 + 0.04* - - 1.14
8 0 0.58+0.01 - - 1.125

It can be seen from Table III that the difference generally possible between the 
line strengths S(N') obtained from the intensities of the bands having the same upper 
and different lower vibrational levels is unnoticeably weak for the transitions studied 
here. So the ratios S(N') may be associated with the vibrational quantum number of 
upper state, i.e. with t>'. For clarity, the data are also presented in graphical form (Figs 
4a, b, c), where experimental points corresponding to various diagonal and non
diagonal bands starting from the levels with the same v' are specially marked.

The values obtained earlier by Ginsburg and Dieke [1] are also shown in Fig. 4. 
They are generally in good agreement with the results of our measurements. Certainly, 
our data appear to be more realistic due to the higher dispersion of our spectroscopic 
equipment and the more precise knowledge of the sensitivity of the spectrophotometric 
systems.

The corresponding ratios of Hönl-London factors are also shown in Fig. 4 as 
well as the relative line strengths S(N') calculated by Villarejo et al. [3] with adiabatic 
theory accounting for the influence of vibration-rotation interaction on the Franck- 
Condon factors. It is quite clear that there is actually a difference between the measured 
ratios S(N') and those calculated in the framework of adiabatic theory. The difference 
increases with the growth of ЛР.
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Figs. 4а, b, с. Relative line strengths in R and P branches starting from the levels of d3П *, v' = 0,2 and 3 states 

Experiment: 1 — data of [1]: 2 and 3 — results of the present work.
Theory: 4 — ratios of corresponding Hönl-London factors; 5 — adiabatic approximation with the values of Franck-Condon factors obtained with “RK.R” and “ab 
initio” potentials in [3]; 6 — adiabatic approximation with the values of Franck-Condon factors calculated in the present work using the Morse-Pekeris potentials 

in (2 — 24); 7,8 — non-adiabatic theory, calculations by means of the formulas (2 — 13a), (2 — 22), respectively U>
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Therefore, in deriving simple analytical formulae for the dependences of 
radiative transition probabilities on the rotational quantum number N' in our case it is 
necessary to make use of the non-adiabatic theory accounting for the interaction 
between electronic vibro-rotational states of the molecule.

§ 2. Theoretical treatment

Unknown non-adiabatic wave functions may be represented in the form of series 
expansion over the complete set of basis functions which are eigenfunctions of the 
Schrôdinger equation written in the adiabatic approximation. Constructed in such a 
way the total wave function may be substituted into the Schrôdinger equation written 
in a general form. Then one obtains an infinite set of algebraic equations for the 
coefficients of the series expansion. This cannot be solved in a general way, so two 
relatively simple cases are considered in particular: 1. the perturbation of 3ДИ+, v' state 
mainly due to the interaction with only one 3Z'U+, v' electronic-vibrational state of the 
molecule; and 2. the perturbation caused by the interaction with an indefinite number 
of perturbing E'u+, v' states but lying so far from the perturbed d3i lu+, v' state that the 
interaction may be considered weak.

In both cases we neglect generally possible П — A and П — П interactions. It will 
be seen in §3 that available experimental data for N'dependences of the line strengths of 
Fulcher-a bands in the emission spectrum of the H 2 molecule can be explained without 
including these effects in the theoretical scheme.

The so-called pure Hund’s limiting case b) is used throughout the analysis, 
because no triplet splitting can be observed either in the upper, or in the lower state, and 
so the spin-orbit and spin-spin interactions can be neglected.

2.1. Two interacting electronic-vibrational states (3/7(b)<->327 + )

Let us consider the line strengths S(N') for 3/7„+, i/->a3Z9+, v" transition, where 
the rotational levels of upper state are perturbed by some other 3Z,+, v state. So only 
the (3n J_ 1, 3Z '/ i1), (3i l j , 3E'j+) and (3n J+ i, 3Z'j++l) perturbations exist. The matrix 
elements for this case are (e.g. see [5] pp. 259 and 260):

where

<3Л7-i|fí|3̂ -i>  = Г] J ,
< 3л ;  \н\3г / у = r j j i j y + 1 ) ,

<3я ; +, I Я |3̂ ++1 > = ^ 8 ( 7 + 1 )  (J+ 2 ) ,

ч = %Т12Ц
3Л, v', J 3Г +, и ) ( В ^ ) ( 3П, ЗгЗ г  + 1

(2- 1а)

(2- lb)

L( is the £ component of the matrix of the resultant orbital angular momenta of the 
electrons, and r is the internuclear distance.

A da Physica Hungarica 54. 1983



O N  T H E  I N T E N S I T Y  A N O M A L I E S 175

Accordingly, the perturbed i.igenfuncfions expressed by the unperturbed 
eigenfunctions assume the following form

<3/7 _  j , J Ip= sy >(j)<3 Л7_ u j  I + S Ÿ \J K 3Z '/-1 ,J \ ,

where

s\m

<3я ;  , j \ ’ = $ ш зп ; , J I + s f 4j ) e r / , j \ , (2-2)

<3n y + j , j \p= s ^ { j ) ( 3n J+u j I + s^>(j)<3r / + u j I ,

, У Щ а ТТ) . s< = F V -F „  .
Vi^-F^ + S^JV+l) ’ ' J ( F W - F N)2 +  Sri2N ( N + l )  ’

(2-3)

and if i = l ,  2, 3 then N  = J — 1, J, J +  1 and <3X, J\ =Ф0(3Х), Rx(r)ux are the 
eigenfunctions for case b) Ф0, R and и are the electronic, the vibrational and the 
rotational part, respectively. П + and П ~ denote the following

<3/7+ | =  —y= [ < 3Л + 0 | +  <3Л _ o l]  ,
v/2

<3/?n I = -7=[<3Л + „|-<3Л_п|].
У 2

( 2- 1)

(This agrees only for 3Л7 with the notation used in [5]).
As can be easily seen from Fig. 5 the line strengths of the R and P branches 

observed in an identical upper state are composed of sums of line strengths of the 
following (actually coincident) branches

S I P ^ J  + 1)] =  SlP\pi(J + 2)] +  S[pQYl(J + 1)] + S lPRŸl(JÏÏ + 

+  S № \ J  + 1)] +  S lPQ<tt(J)] + S[P</>(J)] ,

S\_&P)(J -  1)] =  S[R[P)(J)] + S[R{2p)(J -1 )]  + S[*ß<fl (J)] +

+ s № \ j - 2 ) - ] + s m i ( j - 1 я + s m i M ] .

(2-5)

where (p) means the perturbed branches.
Of the amplitudes pertaining to these line strengths the one for P\P)(J + 2) will be 

the following:
Rz [ W  +  2)] =  <3Я7_ 1, J  + 1 1 ■”MZ 1%+_ y, J + 2} =

= w v + 1)<3Я7_ lf j + 1 1 m z \ 3i;_  t , j +2>+

+ S Ÿ V  + l)<3£yL x, J  +  11 Mz 13i ; _  !, J + 2> = (2-6)

— S n \J  + 1)Яni .
lJ(2J + 5) 
2(2J + 3) +  SŸ \J+

j(J + 1) (2J +  5) I
I 2J + 3
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J T j . , (F , )u T j (F2)u
N J

Fie/. 5. Diagram for illustration of the branches starting from the same upper state (e.g. AT = 8) of а 3Я->3Г
transition

where we have used the unperturbed amplitudes given in Table IV, in which

Dilu(J")=(Zv"J"\M ,\nv 'J '>  =

=  Я <t>0(3Z + ) R l r  M,<I>oCn)R?j,r2drdT, (2—7a)

D‘rx(J") =  (Zv"J"\Mr\Z'v'J') =

= Я фо(3£  + 1 1 фо(3 г  + ) R f r  r2dr dx , (2—7 b)

where sign ; means P, Q, R, for J" = J' + 1, J" = J \  J"= J ' — 1, respectively.
Producing the amplitudes in a similar way for the other branches as well, the 

corresponding line strengths will be given by the squares of these:

S [ / W  + 2)] = + + S - V ^ D r J 2̂  \

stp№(j  +1)]  =  ^  \s$v+Щх +  >

-  2(J + l № A l)(2A l { S1!’(-,+  l)0 "  +
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s t W + i ) ]
J 2(J + 2) 
2(J + 1)

J
2(J + 1)2

S^\J)D pns + S^(J)Dpr i l ^ ^ -  \  

S ^ V )D Qni +

(2-8)

W O O ]  =
J(2J - 1) 
2(2 J  +  1) S < f(J-l)D pi + S< ?V -l)ß£*

2 (./ + l)

Summing up and calculating the same for the R branches we obtain in a good 
approximation (neglecting the small differences between DQ and DR, D‘‘ in (2-8) in the 
summation procedure)

S t P ^ J  +  l)]
3 ( d + l) [2 J ^ p,  +  (F!/’» -F J)Dp , ] 2 

( F y - F j ) 2 + Sr,2J(J+ 1) (2-9a)

S[P(PV -  1)] 3J[2(d+ \)riDRn: - ( F y - F j ) D * sy
( F ^ - F j ) 2 +  S n 2J ( J + 1) (2-9b)

Be the observed Л-type doublet AvA(3n N.) equal to Ftf) — FN. for all three 
components when the perturbing 1  term is below the perturbed П term:

W - F N. = A v * e n N.). (2- 10)

The relations are illustrated in Fig. 6.

Fig. 6. In this schematic Figure the soiid lines represent the perturbed energies; the dashed lines represent the 
energies for the hypothetical case of no interaction between two states; the unperturbed d3/7 state coincides 

with the F„ state and so Frn — Fn gives the observed Л-type doublet
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Branches

labié IV

3Л(Ь)-3Г+(Ь) 3r ,+(b)-3Z+(b)

P ЛЛ

fQm (J)

rR l3(J)

Pi(J)

fQ2AJ)

+ &П
l(J-2)(2J+\)

2(17-1)

nRun: 2(J + 1)2(2J + 1) (2J -I- 3)

_i)S/i(j-i)2(j+D
272

~D%: 2(7 + 1)2

+ ° ч
/(7-1) (27+1) 
1 27-1

- « S l i

~ D* \
I  1
1 (7+ 1 ) (27 + 1) (27 + 3)

+0' \
/(7-1) (7 + 1)
1 J

- D h I 1
/7+Т

PAJ)

RAJ)

R2(J)

rQi AJ)

RAJ)

RQ3z(J)

rp >AJ)

+ DFn
17(27-1'
2(27+1) + Dy î !(J + 0(27 — 1)

27 + 1

~ D" \
/(7 + 1) (27 + 3) 
1 2(27+1) + D?' \

/7(27 + 3) 
/ 27 + 1

~ D" \
/7(7 + 2)2 
/ 2(7 + 1)2 + D* \

/7(7 + 2) 
/ 7+1

/7+Т
/ 272 -DÏ;

b

—
/(7 + 3) (27+1) 
/ 2(27 + 3)

/(7+ 2) (27 + 1) 
/ 27 + 3

/ 7 + 2
~Pfs

/ 1
/ 2(7 + 1)2 /7+1

+
/  7+1 — D /  1
/ 272(27 — 1) (27 + 1) /7(27-1) (27+1)

By using (2-9a, b) and (2-10) one obtains for the ratio of the perturbed line 
strengths of the R and P branches the following expression

S(N' )
S[R(N'~ 1)] 
S[P(N'+ 1)]

N' p ( N '+ !> //)« ;-Л И ( 3Л „0Р *Л 2 
N 4 1  L 2N ^D pn,  + AvA(3n M ,

(2-11)

In the simplest case of reliability of the so-called Franck-Condon approximation 
(see e.g. [7]) the matrix elements (2-7a) and (2-7b) are proportional to fn iJns>  / f  r.
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/£ .г the corresponding overlap integrals of the vibrational wave functions of the upper 
and lower state:

D*z(v', AT; V", N ' - \ ) =  M n i(v', 1>")<Я, v\ N ' \Z, v", N' —1> =  M nl(v'v")fRn î ,

Dnz(v', N'; v", N 4 1 )  =  Mn i(i/, v"){n, v', N' \ Z, v", N 4 1  > =  M n^v'v")fpn i , (2-12a)

V, N'\ v", v"KZ’, v’, N ’\Z, v", = v")fRs ,

D' Av\ N'; v", N'+  1) =  t;")<Z', v', N'\Z, v", N' +1 > =  M r î (tT, v")frr ï . (2-12b)

Using (2-12a) and (2-12b) we get for (2-11)

where

S(N') N' [ 2(N'+l)T(N')fRn i - A VA(3n Nr) f « s l 2 
N '+ l |_  2N'z(N')fpnl + AvA(3n N.) fpr l  J ’ (2-13a)

r i ( N ' ) M n i ( v ' v " )
Mr i (v', v") (2-13b)

Neglecting in (2-13a) the usually weak effect of vibration-rotation interaction in 
radiation processes we obtain the following expression

S(JV') N' r2(N 4-l)z(N ')-A vA{3n N.)T  
N' + 1 )_ 2N'r(N') + ávA(3n N.) (2-14a)

taking into account only the effect of perturbation between а 3П and 3Z states.
Neglecting the effect of vibration-rotation interaction in the perturbation matrix 

element (2-la), too, we get the following

S(N') N‘ Г2(ЛТ+1)т —dH (3tf,v.)T 
N 4 1  L 2N'z + AvA(3n N.) J (2-14b)

In this case, of course, rç and so т do not depend on N' either.
In the case of two far lying terms it would be suitable to introduce instead of the 

difference of the perturbed and unperturbed terms, F{P) — F, the difference of the 
perturbed and perturbing terms, Fn(N') — Fr.(N') =  v(Я, Z‘) where

v (n ,Z ’) ~  const. > 8?/2J ( J + l ) . (2-15)

Here it is supposed that the perturbation effect is so small in comparison with the term 
distance that the perturbed position of the perturbed and perturbing terms can be 
substituted by the unperturbed position of these terms and the term differences do not 
change with the rotational quantum number. According to the well known 
perturbation calculation [5] we obtain

W - F *  = -
v(Fl, Z1)

+
v(n ,Z’)

+ 8i|2N '(N 41) ~ 8rç2N '(N 41) 
АП, Г )  '

(2-16)
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Putting (2-16) in (2-14b) we get

S(N')
N'

N '+ l

2(N' + l ) x -
^rj2N '(N '+l)

* П ,Г )

2N'x +
Srj2N'(N'+l)

v(77,27)

N '+ l
N'

1 - y N '1 + y(N' + 1) J ,(2-17)

where the last small square terms in the numerator and denominator of the last 
expression have been neglected. Here

y =  8
v(77, F. ) м п1

(2-18)

Otherwise the results are the same as in the case of a 1J7+-» 1Z + transition 
perturbed by a 127 + state, but they differ from Dieke’s results [2], who has neglected the 
so-called interference terms.

2.2. Low interaction of 3П(Ь) state with an indefinite number of 27, v' states

This case may be treated in the first order of the well-known perturbation theory. 
Particularly for the ratio of line strengths of the members of R and P branches of d3rtu, 
v', N'-*a3Zg, v", N" the transition starting from the same initial level (after averaging 
over initial and summing over final spin projections) can be easily obtained as

where

S(N')
N '+ l D U N ' - 1) 1 — N'yR(N')

N' d U n ' + i ) _1 +(N' + l)yp(lV')J

y*(N') = y{N', АП1лг = лг-! ! yFm  =  y(N', N")\N..=N.+ l ,

(2-19a) 

(2-19b)

y(N',N")
<77, V, N' D,

r2
Г ,  ff, N'y<Z, v", N"\M t \Z',ff,N 'y

CF „A N '} - J FrM N ') ) ( I ,  v", N "\M ,\n ,v ',  N'}

H is the reduced mass of nuclei and Fnv.(N') — Fr ~.(N’) are the term differences between 
perturbed and perturbing levels.

For the applicability of the theory it is necessary that

N'\y(N',N") I 
4 «  1 . (2-19c)

Depending on the vibrational (v', v") and rotational (N\ N") quantum numbers 
the magnitudes y(N', AT) may be obtained either theoretically by numerical calculation 
of the electronic wave functions or semiempirically by finding the values which give the 
best fit to the experimental data on relative line strengths S(N'). (As in the previous case
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we are not interested in vibrational dependencies, therefore the indices v', v" are omitted 
in (2 -19a)).

From the structure of formulae (2-19b) it can be seen that y(N', N") has to depend 
more weakly on N" than on the initial rotational quantum number N'. Indeed, the 
^''dependence (leading to a difference between yR and y*) can be due to the vibration- 
rotation interaction only, namely to the dependencies of matrix elements of dipole 
moment over vibrational wave functions on the rotational quantum numbers. (It 
should be noted that these matrix elements for the same (R or P) lines enter into the 
numerator (for £ '->£ transition) and the denominator (for T1-*Z) of (2-19b) and may 
compensate each other to some extent. It is sufficient also that they are put under the 
sign of summation).

The dependence of y(N', N") on N' may be caused by the /V'-dependences of the

matrix element for the operator and the term differences Fn~.(N‘) — Fr ü.(lV') as well.

Although, generally speaking, both dependencies (on N' and N") should be 
rather weak, their weaknesses have to be of different order. If we neglect the weaker 
^"dependence (or the effect of vibration-rotation interaction in the perturbation terms 
of (2-19b)), then formula (2-19a) is reduced to

S(N')
N'+  1 D U N ' -  1) гГ 1-ЛГу(ЛГ)

N' DPn.AN'+  1) _l+(N'+l)y(N')
(2-20)

The determination of the matrix elements entering into (2-20) meets with significant 
difficulties because the modern methods to solve the adiabatic Schrôdinger equation 
numerically cannot ensure the necessary precision to describe adequately the effect of 
vibration-rotation interaction (see below §3). So in deriving the N dependences of 
relative line strengths accounting for the effect we shall use simple analytical 
expressions for the matrix elements instead of the results of numerical calculations. 
According to Tipping and Chackerian [11] in the case of weak vibration-rotation 
interaction the analytical forms of the squares of the amplitudes in the first 
approximation are as follows:

[D*,(AT - l )]2 = M 2n,(V, i/')[l +a(v'v")N'~\ , 

IDP„AN'+  l )]2 =  M ^(t/, i/')[l -a(v'v")(N' + 1)] ,
(2-21)

where M nî(v\ v") and a{v', v") are independent of the rotational quantum numbers AT, 
N". Then substituting the restricted series into the formula (2-20), making the 
necessary transformations and neglecting the small square terms (see 2 - 19c) one 
obtains

5(А') = ^ Г - - Ь ^ Ж ) _ 1
AT l l+ ( N '+ l ) y (N ' ) y (2- 22)
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where ÿ(N') = y(N')—a(v'v") accounts for both effects: the vibration-rotaiion inter
action in the radiative transition and the N-dependence of the matrix element 
combination (2-15a) describing perturbing interactions between various electronic- 
vibrational states of the molecule. The effective values of ÿ(N') may be also obtained 
either theoretically by numerically calculating the electronic wave functions or 
semiempirically by finding the values which give the best fit to the experimental data 
about S(N').

If one neglects the vibration-rotation interaction

S(N')
N' + I f  1 -N 'y (N ')

N' L l+ (N '+ l)y(JV ')J’
(2-23)

which coincides with the previous expression. So in any experimental studies the two 
different effects cannot be distinguished.

It should be noted that formula (2-23) coincides with (2-17) if one considers the 
perturbation to be caused by the single electronic-vibrational state of a molecule.

2.3. Transition to formulas of adiabatic theory

If the perturbation is negligible, whereas the vibration-rotation interaction 
remains sufficient, then the non-adiabatic formulas derived in the present work must 
turn into that obtained in the adiabatic theory. For this transition it is necessary to put 
the corresponding terms describing the perturbations [dv in (2-11), and y(N\ N") in (2- 
19a)] equal to zero. Then

S(N')
D S J N '- l)  2 N '+  1 
O f,i(N 4 1) N' ■

(2-24)

This expression is identical to that used by Villarejo et al. [3]. If the vibration-rotation 
interaction can also be neglected for the transition under study the ratio of line 
strengths becomes equal to that predicted by the well-known Hönl-London formulas

S(N')
N '+ l  

N' '
(2-25)

§ 3. Comparison of theoretical and experimental results

As it was seen in §1 the Hönl-London formulas are in contradiction with the 
experiment. The attempt by Villarejo et al. to improve the adiabatic theory in the 
framework of Franck-Condon approximation by taking into account the influence of 
vibration-rotation interaction on the corresponding overlap integrals was not 
successful either [3]. The interaction proved to be rather weak to account for the 
observed deviation although it was noticeable for the transition under study.

This situation is illustrated in Figs 4a, b, c where one can see S(N') value0 
calculated by (2-24) in adiabatic approximation by numerically solving the
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Schrödinger equation with Rydberg-Klein-Rees potential in [3] (curve 5) and with 
Morse-Pekeris potential in the present work (curve 6).2

We have carried out calculations not only for the additional verification of the 
previous results obtained by Villarejo et al. but, in principle, to include the vibration- 
rotation interaction into the non-adiabatic theory (formulas (2-13a), and (2-19a)). 
Unfortunately, the comparison of the results of two independent numerical 
computations in (2- 20) based on different methods shows that for the d3n n̂ a 3Ig 
transition in the H 2 molecule the modern methods of Franck-Condon factor 
calculations give an uncertainty comparable to the order of the effect of vib-ation- 
rota'ion interaction (see Fig. 4, curves 5 and 6).3

Both methods have their own advantages and disadvantages. In the literature 
there is no generally accepted answer to the question which of them gives better or 
more correct results (see e.g. references and discussion in [4] pp. 73-75). Therefore, in 
the further analysis of the applicability of nonadiabatic theoretical models we shall use, 
on the one hand, in (2-13a) the Franck-Condon factors calculated with Morse-Pekeris 
potential, on the other hand, in (2- 22), the expressions based on the analytical form 
(2-21) for squares of amplitudes D taking into account the weakness of vibration- 
rotation interaction obtained in the numerical calculations mentioned above.

Earlier, the only non-adiabatic theoretical scheme was developed for pure p- and 
d-complexes [5]. The formulas in this scheme have been verified in the analysis of 
rotational distributions in certain emission bands of N 2 [13] and He2 [5] molecules 
but they have been found not to be valid for the triplet term 3p-complex of the H 2 
molecule because in our case the conditions of existence of the pure p and d complex are

not fulfilled (e.g. Bn = B1 = B\r\ = -^= ,7^  = ^/2,x = B).

Let us proceed to the comparison of formulas (2-13a) and (2-22) with the 
experimental data. The values of parameters t(N') and y(N') entering into these 
formulas calculated with the measured ratios S(N') from Table III and А\>Л(3П) data 
adopted from [2] (see in Tables Va, b, c) are presented in Fig. 7. It can be seen that: i) the 
results obtained from diagonal and non-diagonal band intensities coincide within the 
error limits of the experiment; ii) decrease of x(N') and ÿ(N') with the growth of AT 
observed here may be described by a linear function with good accuracy (see Table VI).

For ÿ(N') this dependence is rather weak (comparable to the experimental 
uncertainty) and may be interpreted as:

0
2 The deviation from the Franck-Condon approximation, i.e. the weak dependence of the electric 

dipole moment on the internuclear distance observed for 43Лл->а3Гв+ transition in our previous paper [7] 
was found to have practically no influence upon the ratios S(N'). So in formula (2-24) Franck-Condon 
factors may be used instead of squares of amplitudes Dfrf(N') with an accuracy much better than the 
precision of the experiment.

3 It should be noted that when neglecting the effect of vibration-rotation interaction our computer 
рг>.теЗиге gives results coinciding with those obtained by Spindler [12] with an accuracy better than 0.1%.
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T able Va*
d3n * (v ’ = 0)

N' S°(N') / И 3Л*)
SC(N') 

( 2 - 14b) /S i ( N '- l ) f n i W  1) Æ ( J V '- l ) f rrÁ N '+ í)
s cm

(2-13a)

4 0.84 3.87 0.74 0.9618 0.9679 0.1998 0.1870 0.84
5 0.74 5.22 0.68 0.9609 0.9683 0.2021 0.1867 0.73
6 0.67 6.14 0.65 0.9600 0.9686 0.2044 0.1866 0.66
7 0.60 6.40 0.68 0.9591 0.9688 0.2069 0.1868 0.62
8 0.58 6.50 0.71 0.9582 0.9690 0.2095 0.1874 0.57

T able Vb*
d*n;(v'=2)

N' S°(N') d vV n „ .) scm
( 2 - 14b) Æ ( N '- l ) ГпА"' + 1) / Ï A N ' - 1) f lA N '+ D

SC(N') 
(2-13a)

1 1.66 0.96 1.57 0.8195 0.8298 0.0316 0.0327 1.66
2 1.10 2.64 1.05 0.8157 0.8327 0.0315 0.0334 1.10
3 0.95 4.75 0.84 0.8116 0.8353 0.0315 0.0343 0.87
4 0.72 6.87 0.74 0.8075 0.8374 0.0316 0.0355 0.73
5 0.65 8.41 0.71 0.8032 0.8394 0.0320 0.0371 0.65
6 0.61 8.87 0.73 0.7989 0.8409 0.0326 0.0392 0.61

T able Vc*
din* (v ' = 3)

N' S°(N') M 3/7„)
s cm

(2-14b ) K A N ' - 1) f Fn A N '+ 1) / ? r  (AT- 1) f l A P  + l)
s cm

( 2 - 13a)

1 1.58 1.98 1.45 0.9643 0.9664 0.1938 0.1894 1.57
2 0.98 4.40 1.01 0.9635 0.9669 0.1957 0.1884 1.01
3 0.74 6.41 0.89 0.9627 0.9675 0.1976 0.1876 0.72

* Note. The columns 2 show the mean values of the intensity ratios observed in different transitions 
belonging to the same upper levels, the columns 3 are the observed values of the /1-type doublets [2], the 
columns 4 give the theoretical calculated values of the intensity ratios from (2 -  14b) with constant т values 
(for the numerical values of т see Table VI), columns 5, 6, 7, 8 show the Franck-Condon factors calculat
ed theoretically, and the last columns represent the values of the intensity ratios calculated theoretically from 

(2 —13a) with t(N')=t0 — t1N' (for the numerical values of t„ and t, see Table VI)

T able Vi

V' f
r(N') = т0-т ,Л Г

У
y (N') = О

1
-'

i

4 Vo У1

0 3.3+ 0.8 1.34 + 0.05 (1.06±0.07)10_1 0.042 ±0.002 0.052 ±0.002 ( 1.60 ±  0.05) 10 “ 3
2 5.9+1.3 0.369 ±0.004 (2.53 ±  0.01)10“ 1 0.059 ±0.006 0.068 ±0.001 (2.57 ±  0.04)10-3
3 9.0 ±2.5 3.1 ±0.2 (6.1 ±0.9)10-* 0.085 ±0.003 0.081 ±0.002 — (2.0 ±  0.9) 10 ~3
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Figs. 7a, b. N '-dependences of t(N') and y(N") obtained from (0-0) (1), (2-2) (2), (2-1) (3), (2-3) (6), (3-3) (4) and 
(3-2) (5) transitions. Solid lines are the results of linear approximation by the least square method

Acta Physica Hungarica 54. 1983



186 I K O V Á C S  c l  a l .

1. an effect of small systematic error of the experiment;
2. small square terms omitted in derivation of formula (2- 22) although the 

absolute values of y ( N ' )  are found to fulfil the inequality (2-19c);
3. a noticeable contribution of the effect of vibration-rotation interaction;
4. N '-dependence of the term differences in (2—19b).
In any case the weakness of the N ‘’-dependence of y ( N ' )  observed here is in 

accordance with the “a priori” view of the situation.
The dependence o ft (IV') on N '  seems to be due to points 1. and 3. mentioned. In 

this case t( N ' )  shows the dependence on N '  of the perturbation matrix elements 
separately from the matrix elements of the radiative transitions. From the relatively 
stronger variation of т(AT) as compared to ÿ ( N ' )  it follows that the latter is compensated 
to a certain extent by the dependence of the perturbation matrix element.

The dependencies of the ratios S ( N ' )  on N ’ for the bands with v'=0, 2 and 3 
calculated by formulas (2-13a), (2-22) with the linear approximations of the N'- 
dependences of r ( N ' )  and y ( N ' )  are presented in Figs 4a, b, c. It can be seen that both 
theories generally are in good agreement with the experimental data. So in our case the 
interaction with several (or even with an infinite number of) states is equivalent to that 
with a single effective electronic-vibrational state.

Thus the comparison of theoretical and experimental results shows that the 
intensity anomalies in rotational structure of the Fulcher-a bands of (he H2 molecule 
are caused mainly by the perturbation of the upper d3i l * , v' states due to the 
interactions with other 3I 'U+, v states of the molecule.

Conclusion

The main goal of the present work was to understand whether the non-adiabatic 
quantum approach is capable of describing the radiative transition probabilities in the 
case of a perturbed upper state when the simple formulas of adiabatic theory are not 
valid.

We have chosen for the investigation of radiative transition probabilities one of 
the simplest situations, a simplest neutral molecule and a lowest triplet П emitting 
electronic state. Nevertheless, up to now the reiterated attempts to solve the problem 
(see Introduction) have failed.

The results of our work show that the non-adiabatic theory based on the 
consideration of interactions between the electronic-vibrational states of the molecule 
and taking into account the relatively weak effect of vibrational-rotational interaction 
makes it possible to explain all available experimental data on the line strengths of 
d3n„+, v', N'->a3Zg , v", N" radiative transitions in the H 2 molecule. Thus the 
agreement between theory and experiment indicates the correctness of the proposed 
theoretical scheme and seems to confirm our knowledge of the structure of the 
molecule.
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The adequate theoretical description of the investigated transition makes it 
possible to obtain the corresponding radiative transition probabilities semiempirically, 
by finding the values of fitting parameters from the finite volume of experimental data 
on the relative line strengths and calculating the line strengths for electronic-vibro- 
rotational transitions with arbitrary vibrational and rotational quantum numbers by 
means of the formulas of the theory.

In particular, the line strength values for the R and P branches of Fulcher-a 
bands of hydrogen obtained in the present work have shown considerable deviations 
from those predicted by the formulas of adiabatic theory, the difference increasing with 
the growth of v' and N'. This circumstance has to be taken into account in the 
determination of the rotational level population densities of d3# u+, v' states of the H 2 
molecule in non-equilibrium ionized molecular gases and plasma.

Moreover, it should be emphasized that theoretical and experimental in
vestigations analogous to the present work may be applied for the determination of the 
electronic-vibro-rotational radiative transition probabilities in diatomic molecules. 
Due to the difficulties of purely theoretical calculations of electronic wave functions 
such a semiempirical approach (widely applied to obtain electronic-vibrational 
transition probabilities [4]) seems to be most promising.
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Emission and absorption spectra of NdO have been obtained in the 500-1100 nm region. 
Vibrational and rotational analyses have been carried out. The rotational analysis shows that there 
are at least 4 low-lying states which give rise to absorption bands. The observed Л-type doubling has 
been interpreted by the theoretical formula produced for the intermediate case between Hund’s case 
a) and b) of a 5 Л state. The anomalous high values and the opposite sign of the centrifugal constants D 
have been explained by the heterogeneous perturbations.

Introduction

The electronic structure of rare earth monoxides has been of considerable 
interest for many years because of the great uncertainty in the calculated thermody
namic properties of these gases, which arises from the unavoidable use of estimated 
molecular properties in the computation of high temperature thermal functions. In 
recent years the CeO [12, 13] and PrO [10, 14, 15] molecules have been extensively 
studied, and the experimental information obtained seems to be sufficiently complete 
to understand their electronic structure.

Till now the electronic spectrum of NdO has not been analyzed. In a short 
communication [ 1] we reported on the preliminary results of the rotational analysis of 
3 bands of NdO. This paper deals with the analysis of the most intense band systems of 
NdO in the region 500-1100 nm.

1. Experimental

Emission and absorption spectra of NdO were obtained by using a vacuum 
furnace with a tantalum heater [2] heating the neodymium oxide N d20 3 to 
temperatures about 2000-2200 °C. The emission spectrum was recorded in the region 
500-1100 nm, the absorption spectrum was obtained only between 500-800 nm 
because of the unavailability of a suitable source of continuous spectrum in the infrared 
region.
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Plates for the vibrational analysis were taken in a PGS-2 spectrograph with a 
dispersion of about 0.2 nm/mm (grating with 600 lines per mm, blaze angle 
corresponding to a wavelength of 1900 nm). Plates for the rotational analysis were 
taken in our Laboratory by a spectrograph constructed ( /  = 3000 nm) in VI-XII 
orders of grating (300 lines per mm, 200 mm long, blaze angle corresponding to the 
wavelength of 6000 nm) with a dispersion of 0.03-0.1 nm/mm and an actual resolving 
power of about 300000-400000.

The samples of Nd20 3 containing both the natural neodymium and the isotope 
142Nd were used. Rotational analysis was carried out for 142NdO.

Different glass filters and a predisperser were used to block out overlapping 
orders. An iron hollow cathode lamp provided a reference spectrum and measurements 
were carried out using an IZA-2 comparator. The precision of the measurement is 
considered to be about of 0.02 cm -1  for sharp unblended lines.

All the intense band heads of NdO listed in [3] were observed in this work.

2. Vibrational analysis

Numerous bands (~400) were measured in the region 500-1100 nm. According 
to the Wigner-Witmer correlation rules atoms of Nd (S^2) and О (2^1) lead to 
molecular states of high multiplicity [3-9]. But as in case of CeO and PrO all the 
transitions appear to be singlet ones. About sixty bands were arranged into 8 systems 
(or subsystems). Table I gives the wavelengths and the wavenumbers of band heads and 
their assignments. The systems are marked by Roman numerals in the order of their 
wavelength positions in the spectrum. Two single 0-0 bands of the systems IV and V, 
for which the rotational analysis was carried out, are included in Table I.

The assignments of the 0-0 bands were facilitated by the observation of the 
spectrum of the natural isotope mixture: the Av Ф 0 bands seem to have the band heads 
and the rotational structure broadened by isotopic shift, unlike the Av = 0 bands on 
spectrograms taken with low dispersion.

The 0-0 bands of the systems V-X were observed in absorption. The VII (0-0) 
band at 689.7 nm is the most prominent in absorption and it probably corresponds to 
the very strong band a♦ 680.2 nm observed in the absorption spectrum of the matrix 
isolated NdO molecule at 4 К [4]. However, it is very difficult to guess to which band 
the other very strong band at 566.8 nm observed in the neon matrix corresponds.

Table II gives the vibrational constants calculated from band heads. The 
vibrational constants in lower states have close values, and their AGl/2 are in 
agreement with the infrared band observed in the neon matrix. So the results of the 
matrix study cannot be used for distinguishing the transitions terminating in the 
ground state.
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Table I

Band heads of NdO and their assignments

âir
[nm]

Vrvac
[ c m '1]

Assignment 
System v ' — v"

Л-air
[nm]

Vrvac
[cm-1]

Assignment 
System v’ — v "

1974.92 9300.5 I 0 -1 772.26 12945.4 III 3 -1
1033.75 9670.9 II 0 -1 761.45 13129.2 VI 0 - 1
988.57 10112.8 II 3 - 3 741.04 490.8 V 0 - 0
986.11 138.0 I 0 - 0 733.00 638.8 VII 1 -2
975.20 251.5 11 2 - 2 731.53 666.3 VII 0 - 1
962.48 387.0 11 1 -1 781.70 910.1 VI 2 - 2
951.08 511.5 II 0 - 0 717.02 942.8 VI 1 -1
950.39 519.2 III 2 - 3 715.76 967.4 VI 0 - 0
942.82 603.6 ' III 1 -2 705.60 14168.5 VIII 3 - 4
934.61 696.7 III 0 -1 703.37 213.4 VIII 2 - 3
921.83 845.0 I 2 -1 702.30 235.0 IX 0 - 2
915.81 916.3 1 1 - 0 701.07 260.0 VIII 1 - 2
913.15 948.1 11 3 - 2 698.80 306.4 VIII 0 - 1
901.47 11 090.0 11 2 -1 689.71 494.9 VII 0 - 0
890.66 224.4 II 1 -0 665.91 15012.8 IX 1 -2
880.43 355.0 III 2 - 2 664.30 049.3 VIII 2 - 2
873.37 446.8 III 1 -1 663.34 071.1 X 0 - 2
872.00 464.9 VI 0 - 3 IX 0 - 1
865.98 544.4 III 0 - 0 662.09 099.6 VIII 1 -1
848.16 787.0 II 3 -1 659.82 151.2 VIII

О1О

837.94 931.0 II 2 - 0 630.74 849.9 IX i - i
832.91 12002.9 III 4 - 3 629.10 891.3 VIII 2 -1
831.85 018.1 VII 0 - 3 628.57 904.7 X . 0 - 1
826.09 101.9 III 3 - 2 628.19 914.4 IX ] 0 - 0
819.47 199.7 III 2 -1 626.92 946.7 VIII 1 - 0
813.14 294.6 III 1 - 0 601.53 16619.7 IX 2 -1

VI 0 - 2 599.01 689.5 IX 1 - 0
808.25 369.1 IV 0 - 0 597.89 720.7 X 1 -1
791.69 627.8 II 3 - 0 597.36 735.6 VIII 2 - 0
784.34 746.1 III 5 - 3 597.08 743.6 X 0 - 0
780.07 815.8 VII 1 -3 572.59 17459.7 IX 2 - 0
778.58 840.3 VII 0 - 2 570.31 529.8 X 2 -1
778.27 845.4 III 4 - 2 569.33 559.6 X 1 - 0

538.36 18 569.7 X 2 - 0

Table II
Vibrational constants of 142NdO* (in cm*1)

System v„ (0 , tt)'e x'e (O , W ' X '

I 10166.7(9) 790.4 6.0 835.7**
II 10572.2(9) 722.7(9) 4.4(2) 842.4(9) 1.0(2)
III 11590.4(10) 754.6(8) 1.2(2) 848.8(13) 1.0(3)
VI 13976.8(4) 826.0(7) 6.1(2) 842.6(4) 2.1(1)
VII 14511.4(3) 798.1(2)** 831.7(4) 1-5(1)
VIII 15177.5(7) 798.4(10) 2.1(3) 850.3(6) 2.4(2)
IX 15943.7(16) 784.6(19) 3.7(6) 845.1(19) 2.1(6)
X 16754.5(10) 822.9(13) 3.4(1) 844.2(13) 2.7(1)

* The numbers in parentheses are the uncertainty in the last digit that corresponds to two standard
deviations
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3. Rotational analysis

The wave numbers of rotational lines in the 0-0 bands of the systems I-V, VII, 
VIII and X and in the 1-0 band of system I are given in Table IV. The lines overlapped 
by other band lines are marked with asterisks. Those lines which are badly blended are 
indicated by two asterisks. The lines which form the bandhead are marked by “ h ” .

All but two of the analyzed bands (the 0-0 and 1-0 bands of system I) consist of R, 
Q and P branches. The relative numbering for these bands has been established by 
finding agreement between the combination differences AlF: R(J) — Q(J) = Q(J+ 1) — 
— P(J + 1) for the upper state and R(J)—Q(J+ 1 ) = Q(J)-P(J + 1) for the lower state. 
The relative numbering for the bands of the system I has been found by finding 
agreement between the combination differences A 2F" = R(J — 1) — P(J +1) for both the 
0-0 and the 1-0 bands. The absolute numbering has been found by the requirement 
that A2F(J) = 4B(J + 1/2) plotted as a function of J should tend to zero at 
J  =  —1/2.

The rotational constants and the band origins (see Table III) have been 
calculated by the least-squares techniques using the equations

AlF = 2B(J + \ ) -4D(J + \ f ,  (3.1)

d 2F =  4B(J + l/2 )-8D (J + l/2)3, (3.2)

R(J -  1 )+P(J) = 2v0 -I- 2(B' -  B")J2 -  2(0' -  D ") J \J 2 +  1). (3.3)

Since the multiplet structure is not obvious in the spectrum the assignments of 
electronic transitions can be carried out only using case c) designation (i.e. Í2' — Q"). It is 
rather difficult to observe the lowest J lines of the transitions, especially in the spectra 
obtained at temperatures as high as in this experiment. The weak first lines are often 
overlapped by the other lines of the same band or of the other. The assumed electronic 
assignment (see Table III, “Remarks” column) should not be considered final, but very 
probable.

The short description of the rotational structure and the proposed electronic 
assignment are given below for all analyzed bands.

System I. 986.1 nm (0-0) and 916.8 nm (1-0)

Bands consist of single lines of the R and P branches. I(R)xI(P).  The lines at 
lowest J numbers unblended in the 0-0 band are R(5) and P(6), and in the 1-0 band 
P(5). Besides, in the 0-0 band the weak lines which can be assigned to Q(4), ß(5) and (2(7) 
were measured. For this reason the system I was assigned to (ß '= 4 )—(ß" =  4) 
transition.

The upper state of the 0-0 band is perturbed. The “extra’Mines were measured for 
42 ÜJÜ  49. The B' — B" and v0 methods, invented by Gerő and developed by one of us 
(I. K.) [5] were applied for the determination of the constants of the perturbing state
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Fig. 1. Determination of the constants of the perturbing state in the Í (0-0) band, 
а) В'  — B" curve; b) з -curves giving the spacing of the vibrational levels of the interacting states

(see Fig. 1) and the zone of perturbation. Constants of the perturbed state were 
calculated as usual, excepting the zone of perturbation (37 ̂  J  ̂  53). Provided that the 
D-values of the interacting states are equal, the calculation of the perturbation-matrix 
element HAB using the formula:

F  1.2 =
f a + f b

+ (3.4)

where FA, FB and Flt F2 mean the unperturbed and the perturbed energies, 
respectively, gives H AB= 0.91+0.02 cm-1, which does not depend on J.

System II. 951 nm (0-0)

The band consists of the doubled R, Q and P branches. I(Q)> I(P)> I(R). The 
splitting in the band can be represented by the formula

Av(J) =  Ra( J - l ) - R b ( J - i )  =
(3.5)

13

=QÁJ)-Qb(J) =
=Pa( J + l ) - P b(J + l),
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which is valid for substates with Ü =  2 [6] and shows that the splitting occurs in the 
upper state. The theoretical interpretation of these splittings will be given in Section 4. 
The assumed electronic assignment (O' =  2) — (fi" =  3) is in agreement with the 
observation of the first lines, ß(3) and R(3). (See Section 4.)

System III. 866 nm (0-0)

The band consists of the doubled R, Q and P branches. I(Q) > I(P) > I(R). The Л- 
doubling is unusual, it changes the sign with increasing J. It is unlikely that both states 
are splitted, because in this case the difference of the line components in the P and R 
branches equals the difference of the Л-type doublings of the upper and lower states, 
and in the Q branch it equals their sum. So when the splitting of the Ra and Rb lines 
changes sign and is equal to zero, the splitting in the Q branch cannot be equal to zero.

Table III

Rotational constants and band origins (in cm *)*•*

band
[nm] Assignment Band

origin B' D' • 107 B" D" ■107 Remarks

986.1 1(0-0) 10132.0(1)*
10125.9(1)**

0.3408(1)*
0.3440(5)**

2.3(3)* 0.3617(1) 3.6(1) 4 - 4

915.8 1(1-0) 10911.33(1) 0.3373(2) 0.2(5) 0.3615(1) 2.8(6) 4 - 4
951.0 11(0-0) 10506.06(2) 0.3401(1)*

0.3403(l)b
2.3(2)* 
3.5(1)b 0.361 o(l) 2.7(2) 2 -3 , 3-4****

866.0 111(0 — 0) 11539.77(3) 0.3351(2)*
0.3350(2)b

-21.9(5)* 
— 22.4(4)b 0.3613(1) 2.0(2) 1 -2

808.3 IV(0-0) 12365.92(1) 0.3222(2) -28.0(7) 0.3625(2) 4.2(7) 0 -1
741.0 V(0-0) 13472.38(1) 0.3592(2) 6.0(7) 0.3662(1) 7.2(5) J ß = l ,  П " й 5
689.7 VII(0-0> 14495.89(1) 0.3560(1) 8.7(6) 0.3623(2) 3.8(5) d ß  = - 1 ,  ß " g 7
659.8 VIII(O-O) 15151.33(1) 0.3579(1) 1 9(5) 0.3612(1) 0.1(4) J ß = l ,  ß " g 5
597.1 X (0-0) 16737.93(2) 0.3397(2) -5.2(23) 0.3614(1) 1.3(8) 3 - 4

* constants for the perturbed state 
** constants for the perturbing state 

* — constants for the a levels 
b — constants for the b levels

*** The numbers in parentheses are the uncertainty in the last digit that corresponds to two 
standard deviations.

**** jh g  assignment 2 — 3 follows from the observation of the first lines, but the more probable 
assignment 3 — 4 from the Л-type doubling analysis (See Section 4.)

As Table III shows the value of the centrifugal stretching constant has negative 
sign and differs considerably from the value calculated from the Kratzer relation. The 
Л-type doubling and the anomalous behaviour of the centrifugal constant will be 
theoretically interpreted in Section 4.
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System IV. 808.3 nm (0-0)

The band consists of the single R, Q and P branches. I(Q)> I(P)> I(R). The 
combination defect was not detected. The observation of the unblended Q( 1) line and 
the intensity distribution led to the electronic assignment (fl' = 0) — (Q"= 1). The 
regular course of the branches is violated for J' > 39. Here, too, the centrifugal constant 
D shows anomalous behaviour which is theoretically interpreted in Section 4.

System V. 741.0 nm (0-0)

The band consists of the single R, Q and P branches. I(Q)> I(R)>I(P). No 
combination defect occurs. Because of the small difference B' — B" the R lines are not 
overlapped. The R lines presented in Table IV begin with R(0). But the R lines with 0 
^  J  Sj 4 are not regular and seem to be doubled, so their assignments are not certain. 
From the analysis it follows strictly: AQ= +1 and ß " ^ 5 .

System VII. 689.7 nm (0-0)

The band consists of the single R, Q and P branches. I(Q)> I(P)> I(R). The R 
lines are not overlapped, but they are very weak at low values of J. From the analysis it 
follows that A12 =  — 1 and Q" ̂  7. The regular course of branches is violated at J > 39.

System VIII. 658.8 nm (0-0)

The band consists of the single R, Q and P branches. I(Q)> I(R)> I(P). The R 
lines are not overlapped by the other band lines. Their intensity decreases sharply at 
J <5. There are many unidentified lines in this band. It cannot be excluded that the R 
lines at J < 5 which are weak and diffuse are erroneous. The rotational analysis gives 
AQ= +  1 and Q''-й 5.

System X. 597.1 nm (0-0)

The band consists of the single R, Q and P branches. I(Q)> I(P)> I(R). The first 
lines R(4), 6(4) and P(4), which are not overlapped, imply that the band corresponds to 
the (ß ' =  3) —(fi" =  4) transition. The theoretical interpretation of the anomalous 
behaviour of the centrifugal constant D will be given in Section 4.

4. Theoretical part

a. The A-type doubling

The transitions (ß ' = 2) — (ß" =  3) and (Q'= 1) —(ß ” = 2) show Л-type doublets. 
In order to describe the observed splittings theoretically we assume in the first step that 
the upper states of these transitions are а 5П2 and а 5П 1 term, respectively. The 
formulas of the Л-type doublets valid in the neighbourhood of Hund’s case a) and b) 5/7

Acta Physica Hungariea 54, 1983



196 L . A . K A L E D I N  e t  a l.

terms were given by Kovács and Péczeli [6]. These are for 5/72 and 5/7, terms in the 
neighbourhood of the Hund’s case a) the following:

where

П * П 2) =

М 5п 2) = п 5п 2) (7 -  1 )7(7 + 1) (7+  2),

Av(sn i) = f ( 5n i)J(J + \),

С0(17У-16) + С1(У -2)(11У -8)+ 12С 2У (У -2)(У -3) 
У(У—2)2 (У—4)2

а-^гт ч 2С0(5У+6) + ЗС1(У +2)У +С2(У+2)У2 
П  l ) ~  (У+2)У2

(4.1а) 

(4. lb)

(4.2а)

(4.2Ь)

and Y=A/B  (А = multiplet splitting constant), C0, Cj, C2 are constants.
The tendencies of the observed splittings show that the formula (la) may be 

sufficient for the state 5Я 2 but the formula (lb) for the state 5/7, is unsuitable. In the 
latter case, namely, the splitting as function of the rotational quantum number about 
7 ~  50 changes its sign. In order to explain this phenomenon we produce the /1-type 
doublet formula for the 5/7, term valid in the intermediate case between Hund’s case a) 
and b). and b). For a detailed treatment see [17].

The wave function of а 5П 1 state in the intermediate case is as follows:

'H5n î ) = s 3.JiHsn î ) + s 2'Jii,(5n î ) + s l 'Jii,(5n î ) +

where
+ S0, X 5H0±) +  S _1, ^ ( 5H Í I), (4.3)

ф ( 5П * )  = — [i/d5/7 + 0)±iM5H_n)]
У 2

(0 =  3 ,2 ,1 ,0 ,-1 )

are the wave functions of Hund’s case a) and the Sn j  transformation matrix elements 
have the following forms:

S3,j = fAY) .
/6(7 — 2) (7 — 1) (7 + 2) (7 + 3)

Cj(J)

S l.j = fAY)gJ(Y)

! 52,2= - ( У - З Ш У )
/6(7-1) (J + 2)

C j ( J )

C j ( J ) (4.4)

W Y - X W № S_„-fj(Y) ' 6 J 2 ( J  +  1)2

where
Cj(J) ’ " ' - w  Cj(j) ’

CAJ) = 6 fA  Y ) \ j  - 1  ) (7 + 2) [( У -  3)2 +  (7 -  2) (7 +  3)] + fA  Y)2gA Y)2 +

+  6 g A Y)2J(J + 1) [( У - 1)2 + 7(7 +  1 )], (4.5)

/Л У )= (У -1 ) (У -6 ) -27(7 +1); g А У)=(У— 3)(У+2) — 2(7 -  2) (7 +  3).
(Substituting У=0, we get the form valid in pure Hund’s case b) [7]).
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In the case of 5Я terms, perturbation by the 5Z  terms affects the originally 
coinciding components differently and therefore a splitting occurs. Using the formula
(4.3) the perturbation matrix elements between the 5Я* and 5 2^ states will be

H (5n ± 5r 2±) =  S3,JH (5n 3± % ± ) +  S 2,J/ / ( s/72±5Z 2±) +  S _ 1,i H(5/ 7 Í 15r 2±),

H(5nî5zî)=s2'jH(5nî5zï)+sUjH(!inî5zï)+s0'jH(5nà5i:î)+
+ S _ UJH(5n * sZÍ),  (4.6)

H(5n } 5Z^)=SUjH(5n f 5Z^) + S0tJH(5n i 5Z^), 
where (see e.g. [5] pp. 54-55)

H(sn i  5Z})  = 2 ^ ( J - 2 ) ( J  + 3); Я(5Я± 5Z})  = Щ  + 2r/);

H(5 Я Î , ■sZ i) = + ( -  1 )s2riJ(J -  1 ) (J + 2); Щ5 I l } 5Z i )  = 2t]s/{J  — 1)(J + 2);

Н(5Я 1±52:1±) = Уб(^ + 2>7); (4.7)

Я(5Я0± ̂ f )  =  +  ( - 1  )í2r/v/7 (7T Í); Я(5Я ± % * ) = + ( - 1  )x2(^ +  2rj)-

H ( * n t sZ f )  =  [ ±  1 - ( - 1  )г]^ У л J+ T ); Я(5Яо 5Zq ) =  [+  1 —(— 1 )*]V 3(i + 2f|)

and Ç = (ALi)(5n 5Z), r] =(BLç)(5n*Z). A denotes the coefficient of the spin-orbit 
coupling, В is the rotational constant, lx (5n 5Z) denotes the matrix element of the 
component of the electronic orbital angular momentum in the £ direction, 
perpendicular to the molecular axis for the stationary molecule. On the right sides of 
the formulae (4.7) the upper or lower sign are to be used according to the 5Я + or the 5Я 
term, respectively, and in the exponent Z = 0 or 1 according as the perturbing 5 Г term is 
Z + or Z . The spin-spin and spin-rotation interactions are neglected here.

If the multiplet spacing is large as compared to the spacing of the components, 
the perturbation calculation for non-degenerate systems in the first approximation 
yields for the perturbed energies:

р (5 л /)= ' ( ! л *)+ ? д е ) [ | я ( 5 л ‘ 5̂ | 2+

+ 1Я(5Я ± 5Г ± к) |2 + IH{5rij 5Z £ t) |2] . (4.8)

Written out in detail the Л-type doublet assumes the form instead of (4.1b) 

Av(5n j ) = F p{5n î ) - F p(5n j )  =

f / У Ы У )  
с / J ) 2й;(У )+3Ш (У" 1)2

— 2(У— 3) — + 2)]

+ ЗС1[(У -1)з2(У )-

+

+ С2[ 12((J- 2 ) (J + 3)—(У - 3)(У — 1 ))(J — 1 ) (J + 2) + fj(Y)gj(Y)}J(J + 1 ), (4.9)
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w h ere
(—1 )^  + 2 г,)2

v(5n 5Zk) ’ С,
( - 1 ) ^  + 2 ^  

v(5n 5Zk)

( - i ) V
v(5n 5Zk) '

(4.10)

The last member of (4.9) gives a possibility for the change of sign in the /1-type 
doublet. Therefore neglecting the effects of the terms containing the constants C0, Ct 
and assuming Лг(5/77)(./~50) = 0 we obtain from (4.9) Y= 195 cm-1. Substituting this 
value in the formula (4.9) and fitting to the observed Л-type splitting we get C2 = [2.05 
+  0.10] • 10_4cm_1 and the solid line curve in Fig. 2. The agreement between the 
observed and calculated splittings is fairly good, apart from a short region between J 
- 20 and 30.

Fig. 2. The mean values of the Л-type doubling observed in the P, Q and R branches on the III (0-0) band. In 
Eq. (4.9) of the theoretical curve C0 =  C, =  0, C2 =  [2.05 + 0.10] ■ 10~4 cm *, У=195сш -1 . (RMS =

=  0.045 cm "1)

When we suppose moreover that the upper state of the (ß ' =  2)—(fi" =  3) 
transition is another component of the same 5 Я state and substituting in (4.2a) the 
values of C2 and Y  given above, we get

/ №  -  ~  6.Л • 1 0 - c m - .  (4.11a)

Using this value the formula (4.1 a) yields a curve near to the solid line curve in Fig. 3 for 
the Л-type doubling of the 5П2 state.

This agreement is, however, illusory. This supposition namely contradicts the 
fact that in the observed region of the rotational quantum number J with the value У 
given before the condition of the application of the formula (4.1a) valid in the 
neighbourhood of Hund’s case a) is not fulfilled that is Y$>2J is not valid. Therefore, 
similarly as for the 5П 1 term, the Л-type doublet formula for the ЪП2 term valid in the 
intermediate case between Hund’s case a) and b) should also be produced.
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Fig. 3. Mean values of the /1-type doubling observed in the P, Q and R branches on the II (0-0) band. In Eq. 
(4.1 Id) of the solid line curve ES: 1000 c m '1 and the constants C0, C ,, C2 should be chosen suitably. The 
same curve can be obtained from Eq. (4.1a) with/i(5/72) =  [7.69 + 0 .13]10 '8 c m '1 (RMS = 0.11 cm-1). In Eq. 

(4.1 le) of the dashed line curve/(5/73) = [1.70±0.01] • 1 0 '11 c m '1 (RMS = 0.05 c m '1)

In a manner similar to that for the 5/7, term it is necessary to give at first the 
forms of the transformation matrix element valid for the 5/ / 2 term in the intermediate 
case. These are

$ 3 . J  + l — ~~ f j +  t(^)
/8(7 — 2) (7 — 1 ) (7 + 2) (7 + 3)

c J+l(J)

S2.j+i= ( Y - S - u - ) f J+i(Y) / 2 (7 -1 ) (7 + 2)
1 CJ + l (J) ’

Si .J+l = f J+l(Y)gj + 1(Y)
CJ+1(J) ’

(4.11b)

S0.y + i = ( r + 4  + u +)g, + 1(y) /27(7+1) 
Cj+i(7) ;

1 — gj+i(T)
/872(7+  l)z 

CJ+1(7)
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u± = v/ ( y - 2 ) 2 + 4 J ( J -2 )± (y -2 ) ; / ,  + 1( y ) = y M+-4J; Й, +1(У) =

=  (У—4)u“ + 4(J — 2); C j  + i(J) =  2fJ + i (Y)2(J — 1)(J +  2 ) [(У—8 —м“)2 +

+ 4(J — 2) (J +  3)] +  3 /, + 1(У)2д7+1(У)2 +

+ 2g j  + j ( У )2J( J  +1 ) [( У+ 4 + и + )2 + 4 J (J + 1 )]. (4.11 c)

The Л-type doublet formula for the SIJ2 term derived for the intermediate case by 
the procedure treated before, making use of the transformation matrix elements (4.11 b), 
is the following:

w h e re

Л v(5/7J+1) = f j +l (Y)gJ + l (Y) m  +
gJ+l (Y)
fj+i (Y)

(У+4 + О 2 +

-I- С ! [3( У+ 4 + и + )g J + ! ( У ) + ч Y -  8 — и~ ) (J — 1 ) ( J + 2)] +

+ C2[4{(У—8 —ц~)(У+4 + и+)—4fJ —2)(J-l-3))] ( J - l ) ( J  + 2) +

+ 3//+ i ( y ^ +i(y)Jj(J+l).  (4.1 ld)

Putting in formula (4Л ld) for C0, Cl5 C2 and У the values determined before for 
the 5П Х term, we get a substantial deviation from the observed splittings, in particular 
for higher J values (e.g. Л v(70) =  0.66 cm “ 1 instead of 2.07 cm “ x). The investigation of 
the formula (4.1 ld) shows that in the case of Y< 1000 cm - 1 it is impossible to approach 
the observed splittings with C0, C X, C 2 values of the same sign. On the other hand, if 
У ̂  1000 cm“ 1 the problem will be undetermined for the constants У, C0, CX,C 2 that 
is to say there will be an infinite number of possibilities for the suitable constants and in 
the case of any arbitrary selection of the suitable constants we get the solid line curve as 
in Fig. 3. In the case of these relatively high values of У, namely, the condition of the 
application of the formula (4.1 a) valid in the neighbourhood of Hund’s case a) is more or 
less fulfilled. That means that in the case of a Л-type doublet of this ЪП 2 term the 
formula (4.1a) valid in the neighbourhood of Hund’s case a) is applicable and gives a 
good approximation, if У ^Ю О О ст-1 with / ( 5Я 2) = [7.69±0.13]10“ 8с т 1. It 
seems then that this si l 2 term does not belong to the same electronic state as the sn x 
term discussed before. On the other hand, to determine the exact numerical values of 
the constants У, C0, Cl5 C2 we should know the Л-type doublings of the other 
components of the same multiplet state belonging to this 5H2 term.

In any case a much better agreement can be obtained if S2' = 3 would be supposed 
instead of Q' = 2 with the aid of the following formula valid in the neighbourhood of 
Hund’s case a) [6]:

Л v(sH3) = f ( 5n 3) (J  - 2  ) ( J - 1 )J(J + l ) (J  + 2)(J + 3), (4.1 le)

Acta Physica Hungarica 54, 1983



E L E C T R O N I C  S P E C T R U M  O F  N d O 2 0 1

where/(5/73) =  [1.70+0.01] • 10_ u  c m '1 (for the detailed form of/(5/f 3) see [6]). In 
Fig. 3 the dashed line shows the theoretical calculated values according to (4.1 le). That 
means: in spite of the observed first lines (where, however, the P(3) line was not 
detected, the Q(3) line coincides with the R(32) line and R(3) can be accidental) a 
5TI3-*SA4 transition is more probable than a 5/72->5d 3 transition.

b. The anomalous D-values

In the upper states of (ß ' =  1) -  (Q" =  2), ( ß '=0) -  (ß" =  1 ) and (ß' = 3) -  (ß" =  4) 
transitions the centrifugal constants D have opposite signs and in the first two cases 
anomalously high values ( — 22.9 • 10“7 cm -1, —28.0 • 1 0 '7 cm -1 and —5.2 • 10-7 
cm“ 1). This phenomenon can be interpreted as a perturbation of another term where, 
though the perturbing term lies sufficiently far from the perturbed term so as not to 
cross it, it is nevertheless near enough for the variation of term distances with the 
rotational quantum number not to be negligible in comparison to the distance of the 
perturbing term [16]. According to the well known perturbation calculation the 
perturbed term will be in the first approximation

F(ÁJ)=Fn(J) +
l# (ß ,ß ') |2 

v(ß,ß ') '
(4.12)

In this case in the first approximation it can be written

V(G,Q') = v + (Bl}- B n.)J(J + 1), (4.13)

where the distance of the vibrational levels is denoted now by v and Bn and denote 
the rotational constants of the perturbed and perturbing terms, respectively.

Using (4.13) expanding the reciprocal values occurring in (4.12) we obtain

1
v(ß, ß ')

{Bn - B a)J{J+ l)j
(4.14)

Let ß ' =  ß  +  1 so that AA = + 1, A I  — 0 and A #0, / l '# 0 , then the perturbation 
matrix elements have the following form [5]:

H(Q, ß ±  l) = 2i/v /J (J  + l ) - ß ( ß ±  1) (4.15)

and the perturbed term will be in the first approximation

F pn(J) = F0 + Bi}J ( J + l ) - D ï J 2( J + l ) 2 + —  [ J ( J + l ) - ß ( ß ± l ) ] .

(Ba - B a±l)J(J+1)
= Fo +  B ^ + l t - W + l ) 2, (4.16)
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w h ere
4w2

F0 = F0 ±1); ß n =  ß n + ^ l

Dn = Dn + ^ r ( ^ n  — Æ«±i)-

Q((2± l)(Ba - B a±i
, (4.17)

The sign of the last term in the expression of Dn depends on the sign of Bn — 
— Bn±1, therefore when BQ±1> Bn it can be negative and of greater absolute value as 
compared to Dn. This gives a possible explanation for the negative Dn values.

Discussion

Table III gives the molecular constants derived from the rotational analysis. It is 
readily seen that the transitions analyzed have no common upper states. However, it 
cannot be excluded that the systems I and X with assumed Q." =  4 (the combination 
differences are equal up to J  =  31 within the error limit of measurements) and the 
systems IV and VII have the lower states in common. So the analysis has shown that 
the NdO molecule has at least 4 states which give rise to absorption bands.

Table IV

Wavenumbers of band lines of NdO

System I Band 986.1 nm

J R Q P

4 10131.58
5 10135.50 31.37
6 35.96 31.12 10127.00
7 36.36 30.82 26.12
8 36.69
9 37.00 24.07

10 37.26 22.93*
11 37.48 21.86*
12 37.60 20.62
13 37.78
14 37.96h 18.07
15 37.96h 16.83
16 37.96h 15.50
17 37.96h 14.08
18 12.64*
19 37.78 11.20*
20 37.60 09.69*
21 37.39 08.14
22 37.17 06.54
23 36.84 04.89
24 36.55 03.19
25 36.17 01.50
26 35.78 10099.72
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Table IV (cont.) 

System I Band 986.1 nm

J R Q P

27 10135.32 10097.91
28 34.85 96.08
29 34.32 94.17
30 33.75 92.26
31 33.14 90.26
32 32.48 88.27
33 31.79 86.21
34 31.07 84.15
35 30.29 82.00
36 29.47 79.84
37 28.63 77.60
38 27.74 75.33
39 26.85 73.06
40 25.89 70.75
41 24.93 22.93* 68.38
42 23.93 22.01 66.03
43 22.93* 21.06 63.60 61.58
44 21.86 20.02 61.17 59.29
45 20.82 18.97 58.73 56.87
46 19.75 17.82 56.28 54.44
47 18.69 16.60 53.83 51.98
48 17.58 15.33 51.32 49.36
49 14.01 48.78 46.71
50 12.64 44.01
51 11.20 41.28
52 09.69 38.45
53 1 08.20 35.63
54 06.62 32.71
55 04.98 29.77
56 03.32 26.78
57 01.61 23.75
58 10099.85 20.66
59 98.07 17.52
60 96.21 14.36
61 94.30 11.15
62 92.38 07.90
63 90.41 04.62

System I Band 916.8 nm

J R P

4 10914.20*
5 14.64* 10907.28
6 15.04* 06.26
7 15.35* 05.23
8 15.65* 04.18
9 15.89 03.09
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Table IV (corn.)

System I Band 916.8 nm

J R P

10 10916.08 10901.94
11 16.34h 00.72
12 16.34h 10899.47
13 16.34h 98.17
14 16.34h 96.82
15 16.34h 95.41
16 16.23 93.96
17 16.23** 92.48
18 15.95 90.93
19 15.65* 89.51**
20 15.35* 87.71
21 15.04* 86.01
22 14.64* 84.29
23 14.20* 82.52
24 13.74 80.69
25 13.22 78.82
26 12.64 76.90
27 12.05 74.94
28 11.37 72.93
29 10.67 70.88
30 09.93 68.78
31 09.12 66.64*
32 08.28 64.44
33 07.40 62.19
34 06.45 59.92
35 05.49 57.59
36 04.47 55.24
37 03.40 52.80
38 02.28 50.36
39 __01.13__ 47.83
40 10899.91 45.29
41 98.68 42.74**
42 97.39 40.03

System 11 Band 951.0 nm

J К  Rb Qa Qb P„ Рь

3 10508.59 10508.59 10505.88* 10505.88*
4 09.09 09.09 05.64 05.64 10502.88 10502.88
5 09.53 09.53 05.48 05.48 01.99 01.99
6 09.99 09.99 05.14* 05.14* 01.Q7 01.07
7 10.23* 10.23* 04.82 04.82 00.03 00.03
8 10.59* 10.59* 04.49 04.49 10499.05 10499.05
9 10.88* 10.88* 04.12 04.12 97.94* 97.94*

10 11.16* 11.16* 03.68 03.68 96.88 96.88
11 11.37* 11.37* 03.22 03.22 95.73 95.73
12 11.53* 11.53* 02.71* 02.71* 94.53 94.53
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13
14
1?
16
17
IX
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
ЗХ
39
40
41
42
43
44
45
46
47
4X
49
50
51
52
53
54
55
56
37
58
59
60
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62
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Table IV ( c o n t . )

System II Band 951.0 nm

R„ Rb Qa Qb Pa Pb

10511.69 10511.69 10502.18
11.81h 11.81h 01.56
11.81h 11.81h 00.89*
11.81h 11.81h 00.21
11.81h 11.81h 10499.49
11.69 11.69 98.72*
11.53* 11.53* 97.94*
11.37* 11.37* 97.07
11.16* 11.16* 96.18
10.88* 10.88* 95.25*
10.59* 10.59* 94.26*
10.23* 10.23* 93.24
09.84 09.84 92.18
09.40 09.40 91.07
08.93 08.93 89.92
08.41 08.41 88.71
07.85 07.85 87.50*
07.22 07.22 86.20
06.59 06.59 84.87
05.88* 05.88* 83.49*
05.14* 05.14* 82.07
04.34 04.34 80.61
03.51 03.51 79.11
02.71 02.71 77.56
01.81 01.75 75.96
00.89 00.73 74.36

10499.77 72.70
98.72* 71.00*

10497.69 97.51 69.26
96.61 96.46 67.43

95.25* 65.59
94.26* 94.04 63.72
92.99 92.76 61.77
91.70 91.40 59.83
90.36 90.06 57.81
88.97 88.71 55.76
87.50* 87.24 53.67
86.08 85.72 51.45
84.52 49.28
83.04 82.60 47.09
81.42 80.93 44.84
79.83 79.23 42.56
78.12 77.56 40.19
76.42 75.67 37.82
74.62 73.92 35.38
72.84 72.03 32.91
71.00* 70.13 30.41
69.11 68.12 27.84

66.13 25.25
65.27 64.08 22.63

19.96

10502.18 10493.29 10493.29
01.56 92.03 92.03
00.89* 90.73 90.73
00.21 89.37 89.37

10499.49 87.97 87.97
98.72* 86.53 86.53
97.94* 85.04 85.04
97.07 83.49* 83.49*
96.18 81.92 81.92
95.25* 80.30 80.30
94.26* 78.65 78.65
93.24 76.93 76.93
92.18 75.17 75.17
91.07 73.39 73.39
89.92 71.55 71.55
88.71 69.68 69.68
87.50* 67.75 67.75
86.20 65.80 65.80
84.87 63.81 63.81
83.49* 61.77 61.77
82.07 59.63 59.63
80.61 57.55 57.55
79.11 55.34 55.34
77.56 53.11* 53.11*
75.96 50.80* 50.80*
74.36 48.53 48.50
72.61 46.22 46.14
70.87 43.83 43.75
69.11 41.41 41.30
67.30 38.95 38.83
65.46 36.42 36.30
63.56 33.87 33.73
61.60 31.26 31.09
59.63 28.61 28.44
57.55 25.95 25.73
55.49 23.23 22.97
53.36 20.45 20.17
51.15 17.64 17.33
48.93 14.81 14.47
46.68 11.91 11.51
44.38 08.96 08.55
42.02 06.00* 05.54
39.64 02.96 02.48
37.20 10399.92 10399.35
34.71 96.82 96.20
32.16 93.68 92.98
29.58 90.51 89.72
26.97 87.20 86.39
24.27 83.96 83.08
21.53 80.67 79.69
18.78 77.36 76.27
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Table IV (cont.)

System II Band 951.0 nm

J Ra Rb Qb P. Рь

64 10461.22 10459.83 10417.25 10415.97 10373.97 10372.81
65 59.91 57.55 14.47 13.09 70.54 69.25
66 57.00 55.34 11.69 10.17 67.07 65.66
67 53.11* 08.84 07.24 63.58 62.07
68 52.62 50.80* 06.00* 04.23 60,03 58.39
69 50.33 48.23 03.09 01.19
70 48.00 45.87 00.10 10398.07
71 43.36 10397.13 94.93
72 43.36 94.12 91.74
73 91.04 88.48

System III Band 866.0 nm

J R . Rb e . Qb P■ P b

3 11537.57* 11537.57*
4 36.63 36.63
5 11539.06 11539.06 35.69* 35.69*
6 11543.42* 11543.42* 38.69 38.69 34.70* 34.70*
7 43.68* 43.68* 38.34* 38.34* 33.65 33.65
8 43.93* 43.93* 37.91 37.91 32.57* 32.57*
9 44.09* 44.09* 37.43 37.43 31.42 31.42

10 44.28* 44.28* 36.88* 36.88* 30.20 30.20
11 44.38h 44.38h 36.31 36.31 28.89 28.89
12 44.38h 44.38h 35.69* 35.69* 27.67 27.67
13 44.38h 44.38h 34.99 34.99 26.30 26.30
14 44.38h 44.38h 34.30 34.30 24.92 24.92
15 44.28* 44.28* 33.52 33.52 23.47 23.47
16 44.09* 44.09* 32.69*' 32.69* 21.96 21.96
17 43.93* 43.93* 31.82 31.82 20.40* 20.40*
18 43.68* 43.68* 30.92 30.92 18.83* 18.83*
19 43.42* 43.42* 29.97 29.97 17.20* 17.20*
20 43.12 43.12 28.98* 28.98* 15.53* 15.53*
21 42.78 42.78 27.95 27.95 13.80 13.80
22 42.38 42.38 26.87* 26.87* 12.06 12.06
23 41.96 41.96 25.77 25.77 10.30 10.30
24 41.52 41.52 24.64 24.64 08.46 08.46
25 41.03 41.03 23.47* 23.47* 06.60 06.60
26 40.50 40.50 22.27* 22.27* 04.71 04.71
27 39.97 39.97 21.04* 20.99* 02.77 02.77
28 39.43 39.43 19.79* 19.74 00.81 00.81
29 38.87 38.87 18.49 18.44 11498.84 11498.84
30 38.34* 38.16 17.20* 17.13 96.82 96.82
31 37.57* 15.86 15.87 94.78 94.78
32 36.88* 14.49 14.42 92.70 92.70
33 36.13 13.11 13.03 90.67 90.59
34 35.53 35.40 11.72 11.61 88.58 88.47
35 34.85 34.70 10.30 10.17 86.45 86.37
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Table IV (cont.)

System III Band 866.0 nm

J Qa Qb P. Pb

36 11534.12 11534.03 11508.88 11508.76 11484.32 11484.22
37 33.30 07.44 07.32 82.19 82.04*
38 32.69* 32.57 05.99 05.87 80.02 79.90
39 31.93 31.82 04.55 04.43 77.88 77.75
40 31.20 31.08 03.09 02.96 75.70*
41 30.48 30.33 01.63 01.51 73.5.4 73.37
42 29.71 29.62 00.19 00.08 71.36 71.22
43 28.98* 28.89 11498.72 11498.60 69.12* 69.12*
44 28.23 28.23 97.27 97.19
45 27.51 27.51 95.83 95.76 64.87 64.87
46 26.87* 26.87* 94.37 94.37 62.62 62.62
47 26.14 26.14 92.96 92.96 60.52 60.52
48 25.50 25.50 91.56 91.56 58.37 58.37
49 24.81 24.81 90.17 90.17 56.26 56.26
50 24.21 24.21 88.80 88.80 54.14 54.14
51 23.47 23.47 87.48 87.48 52.07 52.07
52 22.80 22.80 86.10 86.10 50.02 50.02
53 22.27* 22.27* 84.65 84.65 47.86 47.86
54 21.54 21.54 83.30 83.30 45.74 45.74
55 20.99* 21.04* 81.99 82.04 43.72 43.72
56 20.40 80.66 80.81 41.66 41.66
57 19.79* 19.94 79.36 79.49
58 19.12 19.26 78.07
59 18.83* 76.76
60 17.99 18.15 75.45 75.70
61 17.36 17.57 74.14 74.39
62 72.81 73.10
63 16.17 16.44
64 15.53* 15.78 70.12
65 14.96 15.25 68.84 69.12*
66 14.63
67 14.03
68 13.42
69 12.41 12.83
70 11.85 12.22
71 11.61
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Table IV (cont.)

System IV Band 808.3 nm

J R Q P

1 12367.19* 12365.86 12365.27*
2 67.63* 65.69 64.45
3 68.05* 65.50* 63.52
4 68.32* 65.27* 62.49
5 68.57* 64.74* 61.51*
6 68.73* 64.27 60.29*
7 68.90h 63.72 59.18*
8 68.90h 63.11* 57.90
9 68.73* 62.26* 56.52

10 68.57* 61.51* 55.08*
11 68.32* 60.60 53.54
12 68.05* 59.65 51.92
13 67.63* 58.63 50.20*
14 67.19* 57.53 48.51
15 66.74 56.36 46.68
16 66.16 55.08* 44.77
17 65.50* 53.81 42.85*
18 64.74* 52.43 40.76
19 63.96 50.98 38.68
20 63.11* 49.49 36.51
21 62.26* 47.92 34.28
22 61.26 46.30 31.99
23 60.29* 44.66 29.68
24 59.18* 42.85* 27.25
25 58.06 41.07 24.81*
26 56.84 39.22* 22.26
27 55.62 37.33 19.70
28 54.33 35.35 17.07
29 53.02 33.37 14.39
30 51.62 31.29 11.67
31 50.20* 29.18 08.89
32 48.74 27.04 06.07
33 4716 24.81* 03.14
34 45.58 22.56 00.26
35 44.01 20.29 12297.28
36 42.36 17.97 94.29
37 40.76 15.65 91.23
38 39.22* 13.33 88.28
39 11.02 85.15
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Table IV (cont.)

System V Band 741.0 nm

R Q P

13473.14
73.72
74.47
75.22
75.94
76.54
77.16
77.76 13472.08
78.38 71.95
78.97 71.82
79.55 71.66
80.10 71.47
80.66 71.34
81.16 71.14
81.70 70.94
82.21 70.74 13460.04
82.70 70.49 59.05
83.17 70.26 58.00*
83.67 70.01 57.11
84.10 69.77 56.10
84.54 69.47 55.15*
84.95 69.18 54.15
85.42 68.88 53.12
85.79 68.56 52.10
86.13 68.23 51.00
86.51 67.87 49.95
86.87 67.51 48.86
87.22 67.16 37.66
87.59 66.82 46.72
87.92 66.46 45.76
88.24 66.04 44.65
88.53 65.61 43.42
88.80 65.20 42.22
89.06 64.75 41.16
89.36 64.31 39.91
89.59 63.86 38.81
89.83 63.39 37.66
90.05 62.89 36.44
90.26 62.41 35.21
90.45 61.86 34.04
90.60 61.34 32.75
90.73* 60.79 31.51
90.89h 60.21 30.23
90.89h 59.61 28.99
90.73* 58.90 27.63
90.73* 58.00* 26.19
90.73* 57.33 24.56
90.73* 56.56 23.18
90.73* 55.89 21.68
90.73* 55.15* 20.24*'

54.58 18.87
17.63
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System VII Band 689.7 nm

J R  Q P

Table IV (cont. )

7 14501.22
8 01.90
9 02.46

10 02.99
11 14495.04 14487.17*
12 04.16 94.92 86.33
13 04.69 94.77 85.49*
14 05.25 94.56 84.61
15 05.79 94.39 83.73
16 06.25 94.19 82.80
17 06.78 93.96 81.90
18 93.73 80.90
19 07.69 93.49 79.99
20 08.12 93.21 79.01
21 08.55 92.92 77.99
22 08.97 92.65 77.01
23 09.31 92.32 76.01
24 09.75 92.00 74.96
25 10.11 91.66 73.93
26 10.47 91.29 72.86
27 10.74 90.90 71.78
28 11.08 90.50 70.68
29 11.32 90.10 69.52
30 11.64 89.66 68.48
31 11.81 89.19 67.23
32 12.09 88.72 66.07
33 12.35 88.24 64.88
34 12.51 87.70 63.65
35 12.68 87.17* 62.43
36 12.80 86.65 61.18
37 12.96 86.07 59.90
38 13.02 85.49* 58.60
39 84.82 57.34

System VIII Band 659.8 nm

J R Q P

2 15153.47
3 54.15
4 54.85
5 55.54
6 56.22
7 56.88
8 57.56
9 58.18

10 58.85
11 59.47
12 60.11
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Table IV (cont.)

System VIII Band 659.8 nm

J R Q P

13 15160.73 15141.36
14 61.34 40.61
15 61.98 39.73
16 62.55 38.89
17 63.18 38.19
18 63.80 15150.16 37.30
19 64.36 49.97 36.49
20 64.88 49.86 35.65
21 65.50 49.70 34.82
22 65.98 49.54 33.83
23 66.54 49.38 32.99
24 67.11 32.05
25 67.60 49.13 31.15
26 68.14 48.82 30.19
27 68.66 48.65 29.32
28 69.23 48.40 28.46
29 69.75 48.30 27.49
30 70.19 48.04 26.53
31 70.67 47.80 25.60
32 71.17 47.58 24.67
33 71.65 47.31 23.75
34 72.13 47.05 22.71
35 72.53 46.81 21.75
36 72.97 46.50 20.75
37 73.34 46.24 19.78
38 73.78 45.88 18.76
39 74.20 45.57 17.75
40 74.58 45.28 16.73
41 74.91 44.94 15.73
42 75.37 44.59 14.61
43 75.50 44.16 13.51
44 12.39
45 11.18

System X Band 597.1 nm

J R Q P

4 16740.89* 16737.43 16734.73
5 41.37* 37.24 33.85
6 41.81 37.02 32.90
7 42.20 36.72 31.96
8 42.56* 36.38 30.91
9 42.81* 36.01 29.84*

10 43.07* 35.56 28.77
11 43.29* 35.16 27.63
12 43.46* 34.64 26.47
13 43.59* 34.05 25.21*
14 43.64h 33.47 23.95
15 43.64h 32.82 22.64
16 43.64h 32.09 21.25*
17 43.59* 31.36 19.80
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Table IV (co n t.)

System X Band 597.1 nm

J R Q P

18 16743.59» 16730.63 16718.39
19 43.46* 29.84* 16.88
20 43.29* 29.00 15.38
21 43.07* 28.06 13.80
22 42.81* 27.15 12.19
23 42.56* 26.18 10.52
24 42.28 25.21* 08.87
25 42.01 24.20 07.16
26 41.63 23.18 05.43
27 41.37* 22.14 03.70
28 41.10 21.15 01.94
29 40.89* 20.14 00.19
30 19.21 16698.50
31 96.82

All the bands in the visible region reveal perturbations: the picking out of 
branches with J values larger than those indicated in Table IV is complicated by very 
strong perturbations in the upper states.

The results of this work and the experimental data recently obtained on the 
spectrum of FdO [8,9] apparently contradict the wide-spread idea that the electronic 
states of the molecules containing rare earth elements must be necessarily in Hund’s 
case c) [10, 11].
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MHD NATURAL CONVECTION 
AND MASS TRANSFER THROUGH 

A HORIZONTAL POROUS CHANNEL
A. R a p t is

Department of Mechanics, School of Physics, University o f Ioannina 
Ioannina, Greece

(Received 16 November 1981)

The study of the effects of natural convective (free convection) flow through a 
porous medium plays an important role in many industrial processes. For this reason 
Raptis et al. [3, 4] recently studied the free convection and mass transfer through a 
porous medium bounded by a infinite vertical plate.

The flow of a viscous, incompressible, electrically conducting fluid between two 
infinite parallel plates in the presence of a uniform transverse magnetic field was 
studied by Katagiri [1]. The motion of the fluid is induced by the impulsive motion of 
one of the plates. Muhuri [2] extended the study of the above problem when one of the 
plates starts moving with a uniform acceleration and there is a uniform suction and 
injection at the plates.

Recently Raptis and Tzivanidis [5] studied the mass transfer effects on the flow 
past an accelerated infinite vertical plate with variable heat flux on the plate. Also 
Raptis and Tzivanidis [6] studied the effects of mass transfer, free-convection currents 
and heat sources on the Stokes’ problem for an infinite vertical plate.

The object of the present paper is to study the effects of the natural convection 
and mass transfer of a conducting fluid through a very porous medium bounded by two 
horizontal and unmoving plates, by the presence of a magnetic field assuming uniform 
axial temperature and concentration variations along the plates. The magnetic 
Reynolds number is considered to be small so that the induced magnetic field is 
negligible and the magnetic field is normal to the plates.

In this problem, the x'-axis and y'-axis are respectively taken along and 
perpendicular to the parallel plates with the origin on the lower plate. The two plates 
are considered to be of infinite extent so that the motion is independent of x' (except

Acta Physica Hungarica 54, 1983



2 1 4 A  A . R A P T 1 S

pressure). Then the equations for the steady motion in x' and y' directions for the 
velocity field (u', 0) are:

. d2u' p .
0= -  -r-7 + - T 7 “ — o B qU

d j \
dx' dy K' ( 1 )

0 =  -
dy' P 9, (2)

where p is the coefficient of viscosity, p' is the pressure, a is the electric conductivity, B0 
is the magnetic field normal to the plates and all the other variables are defined by 
Raptis et al. [3].

Assuming a uniform axial temperature variation and a uniform axial 
concentration variation along the plates the temperature and the concentration can be 
written respectively as

T ’ — T0 = L jx' +  S'(y')>

C  — C0 = L2x ' +  C\  (y')>
(3)

where Lj, L2 are constants, C  is the concentration, T' is the temperature and T0, C0 are 
a reference temperature and concentration, respectively.

The density variation which is going to be used in Eq. (2) is given by the equation 
of state

P' = P o i l - ß ( T ' - T 0) - ß * ( C - C 0)], (4)

where p0 denotes the density of a reference state, ß is the coefficient of volume 
expansion and ß* is the coefficient of thermal expansion with concentration. Putting 
Eqs (3) and (4) into (2) and after integrating we get

p'=~Po ay'+ PoaßLi x ' ÿ  +  p0gß*L2 x'y' +

+ p0g ß $ 9'dy' + p0gß*^C\dy ' + R(x'). (5)

Eliminating p' from Eqs (1) and (5) and taking into account that all the fluid 
properties are assumed constant except that the influence of the density variation with 
the temperature is only considered in the body force term, then after introducing the 
dimensionless quantities

PX

L3 dR 
p0v2 dx ' ’ ( 6)

(where L is the distance between the plates), we get

1 и — M и = Gy +  G*y — 1, (7)
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Fig. 1. Velocity profiles: 1: G =  4, G* =  3, К = 0.3, M =  1, 2: G = 4, G* = 3, К =0.3, M = 4, 3: G =  4, G* = 5, 
К = 0.3, M =  l,4: G = 4, G* = 5, K = 2, M =  l, 5: G = —4, G* = 3, К = 0.3, M =  1, 6: G = -4 ,  G* =  3, К =0.3, 

M =  4, 7: G =  — 4, G* = 5, K = 0.3, M =  1, 8: G = - 4 ,  G* =  5, K = 2, M = 1

where G* =

(tBqL2

ßgL4L t
(Grashof number), G =

ß*gL*L2
v2Py

(modified Grashof number)

К'
M  =  — -— (magnetic parameter) and К  =  —, (permeability parameter), 

vpo L
Since Px > 0, the positive and negatives values of L x correspond to heating and 

cooling, respectively, (G ^0) along the channel plates.
The solution of Eq. (7) satisfying the non-slip conditions u(0) = 0 and w(l) =  0 at 

both plates is
1

и =

where

1
y/ K ~ 1 + M l e m2- e '  

(G + G*)y+ 1

- 1- (em2 + G + G* -  ï)em'y + (emi +  G + G* - \)етгу~\

(8)

m, =
J K ~ l + M ’ J K ~ l + M '

The effects of the Grashof number, modified Grashof number, permeability 
parameter and magnetic parameter on the velocity field are shown in Fig. 1.
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BOOK REVIEWS

Structural Stability in Physics

Springer Series in Synergetics,
Editors: W. Giittinger and H. Eikemeier, 
Springer-Verlag, Berlin, Heidelberg, New York, 
1979 pp. VIII +  311, 108 figures

This Volume contains the Proceedings of two 
International Symposia on Applications of Ca
tastrophe Theory and Topological Concepts in 
Physics, held at the Institute for Information 
Sciences, University of Tübingen, FRG, May 2-6 
and December 11-19, 1978. The May Symposium 
centred around the granting of a honorary doctors 
degree to René Thom, by the Faculty of Physics of 
the University of Tübingen, in recognition of his 
theory on structural stability and morphogenesis. 
The May Symposium was followed by a second one 
on the same subject in December. Attended by more 
than 50 scientists, it provided an opportunity for 
mathematicians, physicists, chemists etc. to ex
change ideas about the subjects mentioned above.

The first part of this Volume begins with Thom’s 
reflections about the role of catastrophe theory in 
Natural Philosophy. E. C. Zeeman summarizes the 
use of catastrophes for modeling in sciences and 
W. Güttinger provides a short sketch of recent 
trends in applying catastrophe theory to physics. In 
the second chapter recent developments in the 
theory of random waves, fractals and diffraction 
catastrophes are outlined. The papers of the third 
chapter deal with attempts to use catastrophe 
techniques in spaces with infinitely many dimen
sions and to establish links with bifurcation theory. 
The contributions of the fourth chapter centre 
around the topological classification of singularities 
in ordered media, flow fields and wave fronts. The 
fifth chapter is devoted to topics in statistical 
mechanics and phase transitions. The papers of the 
sixth chapter deal with both the mathematical 
aspects and the physical significance of the soliton

concept, whose topological background is still 
almost unexplored. The last chapter on dynamical 
systems crosses the boundaries of physics and 
concludes with an overall view on chaos with many 
fascinating problems.

In summing up, the papers of these Proceedings 
are interesting, and fascinating but, at the same time, 
a little “chaotic”.

I. Gyarmati

Hartmut M. Pilkuhn: Relativistic Particle Physics

(Texts and Monographs in Physics) Springer- 
Verlag, Berlin, Heidelberg, New York, 1979, pp. XII 
+  427, 85 figures

The book contains an excellent in-depth sum
mary of the questions in particle physics, viewed 
from the basis of personal and intimate experience.

One wonders how the author can produce so 
many illuminating short cuts in order to make 
ample space for practical calculations. All the 
argumentations are strict and require the intristic 
knowledge of the armaments attacking the pro
blems of particle physics.

The material is presented in eight chapters. The 
first one is devoted to one-particle problems, 
starting from Lorentz invariance, Klein-Gordon, 
Pauli and Dirac equations, including Coulomb 
scattering. The second chapter describes two par
ticle problems, decay rates, cross sections kinema
tics, unitarity, scattering by a 4-potential, Breit 
equations, etc., Chapter 3 turns to the field of 
radiation and presents quantum electrodynamics. 
Unitarity and analyticity are discussed in detail. 
Chapter 4 introduces the particle zoo, including new 
particles and charm. The following chapter de
scribes weak interactions, e.g. /(-decay, neutrino 
experiments, the Weinberg-Salam model, CVC,
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PCAC, etc. Chapters 6,7 and 8 treat the analyticity 
and strong interactions, particular hadronic pro
cesses and particular electromagnetic processes in 
collision with atoms and nuclei. Appendices A.-C, 
contain special Functions, SU2 and SU3, units and 
particle tables. QCD is hardly mentioned. The 
orientation in these topics is facilitated by means of 
an extensive list of references and a comprehensive 
index.

The book is highly recommended to graduate 
students as well as to researchers involved in high 
energy physics.

K. L N .

Walter Thirring: lehrbuch der Mathematischen 
Physik 4.
Quantenmechanik grosser Systeme

Springer, Wien-New York, 1980, X + 268 pages

“Im Kontrast zum reversiblen, indetermini
stischen Character der zugrundeliegenden 
Quantengesetze verhalten sich makroskopische 
Körper irreversibel und deterministisch. Wie lässt 
sich der scheinbare Widerspruch verstehen?” These 
are the first sentences of this textbook of statistical 
mechanics. The clear formulation of the question 
expresses the sharp and demanding logic of the 
author. The treatment of statistical mechanics 
makes use of the mathematics, introduced in the 
former Volumes (mainly in the first Volume) and of 
the presentation of quantum mechanics, as intro
duced in the third Volume.

The style of the book is similar to the former 
Volumes: it is exact and compact; more simple and 
more abstract proofs are given than usual. The 
important applications are included. The whole 
series is warmly recommended to those physicists 
who hate handwaving arguments and who are 
masochistic enough to enjoy modern mathematics. 
Luckily enough, there are plenty of them.

G. Marx

The (p, n) Reaction and the Nucleon-Nucleon Force

Editors: C. D. Goodman, S. M. Austin, S. D. Bloom,
J. Rapaport and G. R. Satchler
Plenum Press, New York and London, 1980

The thick, handsome volume contains the 
Proceedings of the Conference on the (p, n) Reac
tion and the Nucleon-Nucleon Force held in

Telluride, Colorado, 29-31 March, 1979. This topic 
is closely related to those of the Gull Lake 
Conference (The Two-Body Force in Nuclei, ed. by 
S. M. Austin and G. M. Crawley, Plenum, 1972) and 
of the Tucson Conference (Effective Interactions 
and Operators in Nuclei, ed. by B. R. Barrett, 
Springer, 1975). However, as is testified by the 
Proceedings, this Conference is more than an up-to- 
date review of the same topic. It is richer than the 
previous reviews first of all in the detailed discussion 
of medium-energy and mesonic effects. On the other 
hand, unlike the Tucson Conference, this meeting 
was motivated by experiments, and, as the scope of 
experimental facilities has recently widened sub
stantially, so has the topic that was to be covered by 
the Conference.

In fact, the meeting was prompted by the 
emergence of the first results from the Indiana 
University Cyclotron Facility. This makes it pos
sible to study (p, n) reactions between 50 and 
200 MeV, a region completely inaccessible for 
accurate measurements previously.

The significance of the (p, n) reaction for nuclear 
physics is twofold. First, since the strongest (p, n) 
transitions, those conserving the target isospin, are 
caused primarily by the isovector terms of the 
effective nucleon-nucleon force, they are unique 
tools to study these interaction terms. Second, as 
these transitions lead to some of the basic excita
tions of nuclei, they reveal fundamental aspects of 
nuclear structure and excitability.

Two of the most important transitions are those 
that go to the ground state analogue and to the spin- 
flip isospin-flip (Gamow-Teller) giant resonance. 
The analogue state is defined by all its quantum 
numbers being equal to those of the ground state of 
the neighbouring isobaric nucleus except, of course, 
for the isospin projection. The Gamow-Teller 
resonance is an excitation, over the ground state, 
that carries spin-parity (and isospin) 1+(1). The 
former process is due to the scalar-isovector inter
action term and the existence of the neutron excess 
density of the target nucleus. The latter one is caused 
by the vector-isovector term and the existence of the 
spin-isospin-dip excitation mode. It is this transition 
that has lately attracted particular interest since the 
Indiana measurements have confirmed the con
jecture that the Gamow-Teller mode is concen
trated into a well-defined giant resonance, which is 
excited very neatly through (p, n) at such a high 
bombarding energy.

Most of the papers in this Volume are concerned 
with these aspects. The effective interactions are 
discussed both in the context of their theoretical 
derivation and of their extraction from experimental 
data. The analysis of experiments poses the question
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of reaction mechanism, and this also receives due 
attention in the Volume. The picture is completed by 
the reviews on the hadronic analogues of the (p, n) 
process (pion and kaon charge exchange, (3He, t) 
and (n, p) reactions) as well as the electromagnetic 
excitation of the Gamow-Teller states. The list of 
authors contains plenty of prominent names.

R. G. Lovas

Interacting Bose-Fermi Systems in Nuclei

Editor: F. Iachello, Plenum Press, New York and 
London, 1981, pp. 412

Ettore Majorana International Science Series. 
Physical Sciences, Volume 10

This Volume contains the 41 talks presented at 
the second workshop on interacting Bose-Fermi 
systems in nuclei, Erice, Sicily, June 12-29, 1980. 
Thus, it is a companion volume to the earlier 
“Interacting Bosons in Nuclear Physics” (Volume 1, 
1979 in the above series). While Volume 1 presents 
the investigations in the Interacting Boson Model 
up to 1978, this Volume presents the subsequent 
results from 1979, 1980 (Part I), and also the 
generalization of the model to odd-A nuclei (Part II).

The 28 talks in Part I treat the successes and 
limitations of the Interacting Boson Model applied 
to even-even nuclei (phenomenology, microscopic 
studies, extensions, application to reactions, clas
sical limit, and related topics).

Since the original model was not able to describe 
the collective states of even-odd nuclei, a suitable 
extension has been worked out by Iachello and 
Schölten. This Interacting Boson Fermion Model is 
treated in the remaining talks in Part II. Phenome
nological, microscopic and supersymmetry aspects 
of the new exciting model are equally described in 
the Volume.

This excellent, nice, well organized, valuable 
book can be recommended those who are interested 
in the new developments of the nuclear structure.

G. Pócsik

Developments in the Theory o f Fundamental 
Interactions

Proceedings of the XVIIth Winter School of 
Theoretical Physics, Karpacz, Poland, February 
22-March 6, 1980. Editors: L. Turko and
A. Pekalski. Harwood Academic Publishers, Chur- 
London-New York, 1981.

The annual “Winter School of Theoretical 
Physics” held in Karpacz, Poland, is usually devoted 
to quantum field theory and elementary particle 
physics. The various lectures published in this 
Volume are devoted to recent developments in the 
theory of strong interactions, supersymmetric field 
theories, in particular, supergravity.

After the spectacular triumph of field theoretic 
methods, in particular Yang-Mills gauge theories, 
exciting new ideas have been put forward in the 
description of the strong and electromagnetic 
interactions for the possible unification of all 
interactions and for subquarks and lepton 
structures. Of these, perhaps the most beautiful 
ideas are related to supersymmetry. Many theorists 
share the opinion that supersymmetry may be a very 
important and relevant new principle above the 
energy scale of ~  1000 GeV.

The Volume reviewed here contains lectures on 
supergravity (L. Brink, A. Van Proyen, P. Brei- 
tenlohner, E. Sokatchev) as well as lectures on the 
more general properties of supersymmetric field 
theories (P. Fayet, J. T. Lopuszanski, J. Lukierski).

Other authors contributed lectures on Quantum 
Chromo Dynamics. Both the phenomenological 
aspects (O. W. Greenberg, J. Hietarinta, J. Kripf- 
ganz, R. D. Peccei, J. Ranft, etc.) and the nonper- 
turbative aspects (W. J. Zakrzewski, I. Ya. Arefeva, 
V. F. Müller, T. T. Wu, etc.) are considered.

Although some of the ideas presented in these 
lectures proved to be not very practical, most of the 
lectures describe very recent and important 
developments.

The Volume can be recommended to pro
fessional field theorists.

Z. Kunszt
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Acta Electronica

Revue trimestrielle éditée par les laboratoires 
d’électronique et de physique appliquée, Paris 
Rédacteurs scientifiques: Ginette Pouvesle, 
rédacteur en chef Rita Hubac, rédacteur en chef 
adjoint Annie Mircea
Abonnement (4 numéros) France 120 F, Étranger: 
160 FF

All four issues of Vol. 23 are devoted to the same 
topic: the study of GaAs based microwave devices, 
as carried out by French researchers. The works give 
a detailed insight into the state of art concerning 
research and, partly, technology in French labora
tories. For example Vol. 23 No. 2 presents papers as 
follows:

Introduction by J. L. Teszner; GaAs FET: 
analytical model and equivalent circuit by 
D. Boccon-Gibod; Noise behaviour and practical

realization of GaAs microwave FET-s for micro- 
waves by P. Baudet; Power GaAs MESFET: design 
and technology by P. Baudet; FET microwave 
characterization; noise figure, gain, power measure
ments on microwave bench by M. Binet, P. Baudet; 
FET automatic microwave characterization by 
M. Parisot, M. Binet, A. Rebier; GaAs MESFET 
reliability study by D. Meignant; Modelling of sub
micrometer gate FET by B. Cemez, A. Сарру, 
G. Salmer, E. Constant.

This Volume of the Journal can be recom
mended to engineers specializing in the field of 
microwave electronics. This way of presenting so 
many papers on the same topic — in this case GaAs 
based microwave devices — offers the possibility to 
compare French results and problems with the 
results achieved and the problems encountered by 
researchers in other countries.

M. Somogyi
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The present investigation deals with a study of the y-radiation effects on the d.c. electrical 
resistivity of S i0 2 —N a20  —CaO glasses containing Cu°, C u+, Cu2+ and a mixture of C u+ and 
Cu2 + ions over the temperature (T) range from 300 to 630 K. The applicability of the polaron 
hopping conduction mechanism has been established from the reciprocal temperature dependence of 
In p/T  for the samples under investigation. The electrical resistivity is found to decrease by increasing 
the TM valency which enhances the hopping process. The post-irradiation effect due to ionizing 
gamma-radiation is investigated within the framework of the electron (and hole) trapping theory, and 
an average value of 0.45 is obtained for the parameter A, characterizing traps with an exponentially 
decreasing number below the conduction band.

1. Introduction

Many papers have been published [1] on the electronic conductivity of oxide 
glasses containing a single transition metal (TM) oxide, which can remain in the glass in 
two (or more) different valence states. However, to our knowledge, little has been 
reported in the literature [1 —3] on glasses containing two or more different 3d TM 
oxides together.

Transition metal additives can be used to probe the oxidation state of glasses 
because their site symmetry determines the ordering of the ligand-field splitting of their 
d-levels and hence the energies of intra-atomic (Laporte-forbidden) transitions [4].

Many glasses containing transition-metal ions, for instance vanadium or iron, 
are semiconductors. It is generally recognized that the conductivity in such glasses is 
due to the presence of ions of more than one valency, for instance V4+ and V5+ and
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Fe24 and Fe3 + ; an electron can pass from one ion to another, and the process is similar 
to impurity conduction in nickel oxide [5].

The group IB atoms occupy covalent sites; Cu in Se is known to be of a fourfold 
coordinated state, <4> [6]. This shows the remarkable influence that the relatively 
weakly bound, but compact, d-orbitals possess, in general, the valence properties of the 
noble metals and their compounds.

The Cu(l) atom occupies a covalent site with formal charge Cu1+ and has a 
diamagnetic response in chalcogenide glasses [7], whereas a Cu(II) atom, which probably 
occupies an ionic site Cu2 + , gives a paramagnetic response from its d9 configuration
[4].

The present work is an investigation of the d.c. electrical resistivity of S i0 2 — 
Na20  —CaO glass containing Cu, Cu + , Cu2+ and a mixture of C u4 and Cu2+ ions. 
The effect of gamma ionizing radiation on the conduction mechanism is studied and a 
prediction for the trap distribution according to Fowler’s model is presented.

2. Experimental

2.1. Sample preparation

The raw materials used in preparing the glass specimens were acid-washed 
quartz powder and reagent grade chemicals in the form of carbonates or oxides.

A batch giving 100g glass of the composition 62.4 S i0 2—16.69 N a20  — 
20.91 CaO mole% were mixed thoroughly. To this batch CuO was added as shown in 
Table I. The mixed batch (with the added ingredients was placed in Pt 2% Rh crucible

Table I
Amounts (in g) of CuO added to 100 g glass of the mentioned composition

Sample No CuO Valency of Cu Remarks

G-l 0.1 Cu° melted under reducing conditions
G-II 0.1 Cu + melted under reducing conditions
G-III 0.1 Cu2 + melted under normal conditions
G-IV 0.1 Cu° & Cu + melted under reducing conditions

and melted at 1723± 10 К for 3 h in a gas-fired furnace. After melting, the glass was cast 
into plates and annealed at 773 К for 4 h, then ground and polished to get the form of 
disks of dimensions 1 0 x 1 0 x 3  mm.

Samples in which copper is in the oxidation state 0 or +1 were prepared as 
described above after 2 — 12 g of oxalic acid was added.
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2.2. Irradiation facilities and electrical measurements

A 60Co gamma cell model 220 (233 TBq) was used as a source of ‘/-radiation. The 
glass specimens were exposed to different doses with a gamma dose rate of 10.5 Gy s~1 
at room temperature.

The d.c. electrical resistivity of the irradiated specimens was measured at two 
hours after irradiation. A simple indirect method was used to measure the resistivity. 
The electrical circuit consists of the glass sample connected in series with a d.c. 
stabilized power supply and a standard resistance (105Q) across which an X —Y 
recorder is connected. The X — Y recorder is of Philips PM 8141 type with an accuracy 
±0.25% and maximum sensitivity 50gV/cm. The voltage drop across the standard 
resistance is recorded and the resistivity of the glass sample is calculated.

3. Results and discussion

First, it seems important to mention that for mixed oxide silicate glasses, like that 
used in the present work, Zachariasen’s random network model had a central role in 
ideas of glass structure [8]. Although the model may need some modification when 
used to describe medium range order in certain systems, it usually gives a good 
description and classification of the short range order and coordinations in terms of the 
concepts of network-forming (covalent) and network-modifying atoms; for exceptions 
see Weyl and Marboe [9].

Figure 1 depicts the reciprocal temperature dependence of In (p/T) for the 
untempered and unirradiated G-I, G-II, G-III and G-IV glasses. It is seen that each 
curve can be divided into two regions: the lower temperature region where the 
resistivity increases with temperature and the higher temperature region where p 
decreases as T  increases. Moreover, for most of the second region there is a linear 
relation between In (p/T) and 1 /77 The electrical resistivity behaviour in the first region 
may be attributed to the effect of moisture and humidity content in the samples used. 
On the other hand, the linear part of the higher temperature region, to which we pay 
more attention can be interpreted as follows. Schmid [10] predicted that, for oxide 
glasses containing TM ions, if the 3d electron is highly localized and the interaction 
with phonons is strong enough, a small polaron will be formed, and at high 
temperatures it will move by a hopping process assisted by optical phonons. Austin and 
Mott [11] have reviewed the conduction in small polaron systems. They also suggested 
that the electron transfer in TM-ion glasses can be ascribed to this small polaron 
hopping between two localized TM-ion centres. Glasses containing C u+ can 
apparently exist in a conducting and a non-conduction state [12], and this may be 
associated with a rearrangement of the glass so that the hole in Cu2+ is taken up in a 
bond.
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[K l

Fig. !. The reciprocal temperature dependence of In (p/T) for the intempered and unirradiated glasses

For the glasses used in the present work a suitable formula for the conductivity a 
is [11]:

o = C ( \ - C ) ( e 2/ R K T ) e x p ( - 2 t x R - W / K T ) .  (1)

For the resistivity p, Eq. (1) can be written as:

ln (p/T) =  ln \_RK/e2 C( 1 — C)] + 2a R + W/K T. (2)

Here R is the mean distance between the ions, C and (1 — C) are the proportions of Cu + 
and Cu2+, respectively, a is the rate of decay of the wave function (t/r ~  exp ( — <xR)) of an 
electron on Cu2+, and

VF=lFH+ y  WD.

WH is the energy of polaron formation and WD is the Miller-Abrahams term. WD is 
called also the disorder energy, which is the energy difference between initial and final 
sites due to variations in the local arrangements of the TM ions. It is seen from Eq. (2) 
that as the value of C increases the electrical resistivity decreases. This agrees with 
Fig. 1. It might be said that for a multivalency element, the increase in the order of its 
valence state will decrease its stability. This will enhance the hopping process and the 
electrical resistivity will be decreased. It is important to note there that glass G-1V (of 
mixed Cu+ and Cu2+ ions) is of lowest resistivity value in the linear part. This is 
attributed to the suggestion that hopping between neighbouring ions of different 
valences is evidently more favourable energetically than hopping between ions of the
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-•--------- IK 1

6 2 3  5 7 3  5 2 3  473 4 2 3  3 7 3  3 2 3  3 0 3

Fig. 2. The reciprocal temperature dependence of In (p/T) for the annealed glasses at 673 К for 5 h

- I K )

6 2 3  5 7 3  5 2 3  473 4 2 3  3 7 3  3 2 3  3 0 3

Fig. 3. Ln (p/T) as a function of 1 /Т  for the studied glasses after irradiation with y-radiation dose of
1300 Gy
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same valency [3], and thus the resistivity decreases. Also, it is shown that the lower 
temperature limit of the linear part of the reciprocal temperature dependence of 
In (p/T) decreases with increasing the TM valency. In other words, the temperature 
range of applicability of relation (2) increases with increasing the TM valency. Such a 
result is fairly acceptable, considering that the higher TM valence states contain a large 
number of hopping sites. This is why the polaron hopping process does not need a high 
temperature to predominate.

The electrical resistivity was measured for all the prepared samples after their 
annealing at 673 К for 5 h, and the plots of In (p/T) as a function of 1 / Т are given in 
Fig. 2. This second annealing process affects mainly the lower temperature region, 
and a resistivity transition temperature T0 is seen to distinguish between two stages of 
behaviour obeying Eq. (2). In fact, the existence of resistivity transition temperature is 
characteristic for most insulating materials, and its value depends significantly on the 
changes in sample treatment and composition [13].

Figure 3 depicts the reciprocal temperature dependence of In (p/T) for glass 
samples irradiated with у-dose value of 1300 Gy. It is seen that for most of the linear 
parts of these curves the resistivity values are of the same order of magnitude for 
different TM valence states. Comparing the results of this Figure with those in Fig. 1, it 
is seen that the resistivity increases by irradiation. Also, it is clear that the temperature 
range of applicability of Eq. (2) increases by this ionizing y-radiation. It might be 
thought that the reaction

C u+ + /iv = Cu2 + +e

takes place together with the formation of colour centres. Thus, gamma irradiation of 
sodium silicate glasses containing TM oxides induces trapped-hole and trapped- 
electron centres. The principal type of hole traps may be an oxygen atom bridging Na 
and/or Cu atoms or bridging two Na (or Cu) atoms. On trapping a hole it forms the 
alkali-oxygen (or Cu-oxygen) hole centre. The second type of hole traps is C u+ which 
forms Cu2 + after trapping a hole. The main electron trap may be the preexisting voids 
of molecular dimensions in the glass matrix [14]. The other electron trap is the Cu2 + 
ion which produces C u+ after trapping occurs. In the present analysis, as the dose of 
gamma radiation is low, recombination of the two carriers will be neglected, in other 
words, only the electrons and holes trapped (in reference to recombining) will be 
considered. Having trapped their electrons, the TM ions tend to cluster. As the 
temperature rises, clustering proceeds more rapidly, producing major agglomerations. 
Moreover, in silicate structures, a silicon atom is always linked to four oxygen atoms
[14], so a short range correlation of the Si04 tetrahedra (probably between 5 and 
1.0 nm) was suggested, similar to the а-phase in crystalline quartz. It is well known that 
most glasses process sub-microscopic crystalline structure [5]. Such structures are 
helices or chains of silica. Averaged over the volume of the glass, the substructure is 
basically random, but over distances up to about 1.0 nm there is some correlation
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between adjacent S i0 4 tetrahedra. It is the substructure which forms the same electron 
trap as in bulk silica glass.

Figure 4 shows the reciprocal temperature dependence of In (p/T) for samples of 
G-II before and after irradiation with different doses (900, 1300, 1900 and 2500 Gy). It 
is seen that for higher doses the temperature range of applicability of Eq. (2) increases. 
This might be attributed to the suggestion that for higher gamma doses there is an 
increase in the probability of hopping sites formation at lower temperatures.

4----T IK)
62 3  5 7 3  5 2 3  4 7 3  4 2 3  37 3  3 2 3  30 3

Fiy. 4. The reciprocal temperature dependence of In (p/T) for glass G-II before and after irradiation with
different y-ray doses

0 —0 —0  2500 Gy, □ —□  1300 Gy, V -V -V  1900 Gy •  unirr. 0 - 0 —0  900 Gy

Moreover, it is seen in Fig. 4 that for a gamma-irradiated sample with 900 Gy dose 
the electrical resistivity is lower than that for the nonirradiated sample. This might be 
due to the increase of hopping sites by the ionizing gamma-rays. However, for doses 
higher than 900 Gy the resistivity increases due to the impeding effect of charge carrier 
scattering and the decrease in its mobility. For such disordered systems the resistivity is 
proportional to a generalized dwelling time that may include back-and-forth hopping 
effects. This dwelling time characterizes the possibility of leaving the site and returning
[15].

It is important to say that the electrical resistivity temperature dependence was 
measured for all the prepared samples after irradiation with different gamma doses.
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16
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G II
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G IV

17
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Fig. 5. The effect of dose, for all the prepared samples, on each of: (a) the resistivity measured at 393 К and
(b) the activation energy W

The used doses were the same as those used for G-II. The reciprocal temperature 
dependence of In (p/T) for all those samples were carried out and were found to behave 
in the same way as that shown in Fig. 4, so they are not presented here.

Figures 5a and b show the effect of dose on each of the logarithm of resistivity 
measured at 393 К and the activation energy W, respectively, for all the prepared 
samples. The curves in these Figures have a similar character in which the values of 
resistitity, and activation energy, tend to reach the maximum at higher irradiation 
doses. To interpret this result we write Eq. (2) in the form:

Using the data of In (p/T) reciprocal temperature dependence at T= 393 К to calculate 
In В and plotting In В against gamma dose for each glass, Fig. 6 is obtained. This Figure 
shows that as the gamma dose increases In В increases, reaching a maximum value, 
then it decreases. It seems likely that the essential factor affecting the value of In В is a. 
Consequently, the tendency of In p393 to reach maximum values (in Fig. 5a) at higher 
gamma doses might be attributed to the decrease in the value of ot. This is because C, R 
and W  change slightly with gamma dose.

In (p/T) = ln B+W/KT, (3)
where

(4)
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The obtained results can be discussed in terms of the model suggested by Fowler
[16] to explain the induced conductivity in insulating materials due to ionizing 
radiation. According to this model, the measured conductivity a after irradiation will 
be the sum of the induced and static conductivities. Consequently, the calculated 
activation energy fkwill be the sum of an irradiated activation energy Wx and the depth 
W0 below the conduction level. The model predicts that the induced conductivity ax 
during irradiation should vary with radiation intensity or dose rate S according to the 
relation:

ff* = a S \  (5)

where a is proportionality constant and A has the theoretical value between 0.5 and 1, 
depending on the given substance and the distribution of electron (and hole) traps.

Fig. 6. The factor In В as a function of the y-radiation dose

Now, in order to obtain some information about the distribution of trapping 
centres in glasses we shall make use of the equation:

ax = G0Sáe~ Wx/kT. (6)

This equation was used for the first time by one of the authors [17] to explain the post 
irradiation effects in mica on the basis of the electron trapping theory. Later on [18] it 
was used to calculate the characteristic parameter A for some ferroelectric crystals. In 
the present work, it can find further experimental evidence for its applicability to 
glasses.

The parameter A was calculated using Eq. (6) and an average value of A =0.46 
±0.05 was obtained. This implies, according to Fowler’s model, that the electron (and 
hole) traps distribution in the glasses considered here is exponential in depth.
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Spectral investigation of N d3+ in NdCl3, MgCl2, CaCl2, CdCl2 and NH4C1 complexes have 
been carried out. For the first time the second derivative spectra of these five Nd3+ complexes have 
been studied. From the observed features of the 4F 5/2 and 4G5/2 bands, crystal field (A20,A 40) 
parameters were evaluated assuming Cik symmetry for the Nd3+ in these complexes. The Slater— 
Condon (F2> F4, Fb), spin—orbit (f4/), nephelauxetic (Д), bonding (<5) and Judd—Ofelt intensity 
(T2, T4, T6) parameters are evaluated. Theoretical estimates of spectral intensities calculated from 
Judd—Ofelt and electric (Scd)-magnetic (Smd) dipole line strength methods are in good agreement 
with the observed values.

Introduction

The absorption and fluorescence spectra of neodymium ion incorporated in 
various crystal lattices have been extensively studied. [1-4]. Electron spin resonance 
studies of Nd3 + diluted with lanthanum chloride have been carried out by Brower [5] 
and Clarke [6].

Carnall et al [7], Tandon [8] and Jeanlouis [9] have reported the solution 
absorption spectrum of neodymium ion and correlated the observed energy levels and 
spectral intensities of the bands with the theoretically calculated values of energies and 
intensities.

Since no optical absorption studies have so far been reported earlier in the 
literature for the trivalent neodymium ion in MgCl2 CaCl2, CdCl2 and NH4C1 
complexes, the authors have undertaken the present investigation of work. For the first 
time, the second derivative spectra of these complexes have been studied by the 
authors.

Experimental studies

To the saturated solutions of magnesium chloride, calcium chloride, cadmium 
chloride and ammonium chloride, one mole per cent of NdCl3 was added. In addition 
to these four solutions 1 mole per cent NdCl3 solution was also prepared in the present 
investigation.
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Absorption spectrum of NdCl3 complexes in the wavelength region 270- 
830 nm was carried out on a Perkin—Elmer 551 recording spectrophotometer. 
Second derivative spectra of these complexes were also recorded in this wavelength 
region by using a derivative accessory to the spectrophotometer. The Perkin—Elmer 
551 recording spectrophometer records the spectrum in the range of 850 nm to 200 nm.

The near infrared spectrum from 750 nm to 1100 nm was recorded on a Carl- 
Zeiss specord 61 recording spectrophotometer. Since there is no derivative accessory 
for this spectrophotometer, only normal spectra were recorded.

The intensity of a band is a measured in terms of a quantity known as oscillator 
strength (/). The experimental value of the oscillator strength ( / )  is expressed in terms 
of the molar extinction coefficient (e) and the energy of the transition in wavenumbers 
(v) by the following relation [10]

/=4.32 X 10“9 J e dv , (1)

where dv is the half band width. The molar extinction coefficient (e) at a given energy (v) 
is computed from the Beer—Lambert law

where c is the concentration of the system in moles/lit, / is the light path in solution (cm) 
and A is the absorptivity or optical density. In the present work c=  1 mole per cent, 
/ = 1 cm light path hence the absorbance (A) itself becomes the extinction coefficient (e). 
The refractive indicies (n) of the NdCl3 complexes were measured on PZ0 Warszawa 
3275 refractometer.

Theory

The observed energy levels of rare earth ions in solution are fitted by a least 
squares fit method. The Slater—Condon (F2, F4, F6) and spin-orbit (£4/) parameters 
for the free ion and the ion in solution may not differ very much. Therefore the 
correction factors AF2, AF4, AF6 and d£4/ for the ion in solution are evaluated by the 
least squares method. The energy Ej of the j th level may be written in terms of the 
changes in the parameters by Taylor-series expansion as follows

£ '  =  £ o J + ^ F t + ^ A F . +  ^ á F e + g j - A b f ,d F4 dFA d£4 /
(3)

I  I ^   ̂.
where E0, is the zero-order energy of theyth level and — / , and — — are the

dF2 dF4 dF6 d£4/
partial derivatives. The numerical values of zero-order energy and partial derivatives 
are given by Wong [11]. Using the experimental energy levels for Ej and the numerical 
values of zero-order energy and partial derivatives, a number of linear equations equal
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to the number of observed levels were formed. By employing the least-squares method, 
the values of AF2, AF4, AF6 and AÇ4f were calculated. These were added to the zero- 
order parameters to obtain the parameters F2, F 4, F b and for the five N d3 + 
complexes studied. Thus

F2 = F2 + AF2 ,

f 4 = f °4+ a f 4 ,

F6 = F°6 + AF6 , (4)

t 4 f  =  t l f  +  A t  4 / ,

where F2, F4, F° and Ç4f are the zero-order parameters [11]. The r.m.s. deviation is 
calculated from the formula

(7 = (5)

where Ai is the deviation of the ith level and N  is the number of levels fitted.

Spectral intensities

Theoretical estimates of intensities for the observed bands were made following 
the methods of

(a) Judd—Ofelt;
(b) Electric (Sed) and magnetic (Smd) dipole line strengths.

(a) Judd— Ofelt method

Judd [12] and Ofelt [13] independently showed the oscillator strength of an 
induced electric dipole transition to be related to the energy of the transition v(cm“ ‘) 
and squares of the matrix elements of the unit tensor operators Ux connecting the 
initial and final states (ipJ and ttp'J') via three phenomenological parameters 
7](A = 2,4 &6). As per theory

fed ~  X T M f Nm U X\ \ f Ni l/ 'J f .  (6)
A = 2 , 4 , 6

Evaluation of reduced matrix elements ( f NipJ\\Ux\ \ fNil/'J') in (i) LS and (ii) 
Intermediate coupling cases.
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(i) LS coupling

The evaluation of reduced matrix elements is made using the formula

S  + L  + J  + Á i

(ГФГ\\иЖФ'Л=

[(2J  + 1) (2J' +  1)]1/2 ( f NSL\\ Ux\ \ fNSL').

The right hand side matrix elements of (/^SLH Ux\\ fNSL') are taken from the tables of

Nielson and Koster [14] and the values of the 6j symbol 1 (for A = 2,4&6) are
taken from the tables of Rotenberg [15].  ̂ '

(ii) Intermediate coupling

The calculation of the reduced matrix elements in an intermediate field is 
illustrated for a typical transition like 4Dl/2-*2Pl/2 belonging to (Nd3+)4 /3

configuration. The energy matrix for j  =  is a 2 x 2 matrix given as [16, 17]

where Cl5 C2, C3 and C4 are the eigenvectors corresponding to the intermediate fields 
I4D'i /2> and I2F 1/2>, respectively. Now we have

There will be no cross terms involving 4D1/2 with 2P 1/2, since the matrix element 
between different spin states are zero.

The values of the reduced matrix elements (,*Dl/2\\Ux\\*Dl/2y and 
<2'Pi/2ll^ All2f>i/2> >n LS coupling are easily determined from Eq. (7). From these and 
the eigenvectors (C1( C2, C3 and C4) obtained by solving energy matrices [16, 17] the 
reduced matrix element (4Z)'1/2||E/A||2/>'i/2) f°r the intermediate coupling case are 
calculated using Eq. (7b). The reduced matrix elements are thus transformed from the

We write
l4 0 ' , / 2 >  = C 1|4D1/2> + C2|2P 1/2>,

(7a)
|2P'1/2> = C3|2P 1/2> + C4|4D1/2>,

(4D'1/2|| l /2||2P'1/2) =  [(C1|4D1/2> + C2| 2P t/2» || t /2||(C3| 2P 1/2> + C4|4D1/2» ]  

=  [C 1C4<4D i/2||1/a||4D1/2> +  C2C3<2P 1/2||1/2||2P 1/2>].
(7b)
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LS basis states to the physical coupling scheme prior to being squared and substituted 
in Eq. (6). The squared values of Eq. (7b) were substituted in Eq. (6) and using / cxpt for 
/ ed the values of Tx parameters were evaluated by the least squares fit method.

(b) Method of  electric (Sed) and magnetic (Smd) dipole line strengths

Theoretical spectral intensity /  can be evaluated by the relation

where n = refractive index of the medium 
Sed = electric dipole line strengh 
Smd = magnetic dipole line strength 

m = mass of an electron 
c = velocity of light, h = Planck’s constant 
e =  energy of an electron in coulombs 
v =  energy of the band in cm-1, J — value of initial level J

(symbols have the same significance as described in Eqs. (6, 7 and 8)), and

Values of ||L + 2S||2 are as given hereunder (since selection rule is 47 =  0, +1) 
7' = 7

Sed = e2 1.085x 10“ (27 +1) У Tx( f Nil/J\\ Ux\ \fNil/'J')2 (9)
X = 274, 6

( 10)

( S U  H L + 2S||SL, J') = gJ(J+\)(2J +\ ) ( 11 )
where

J(J + \) + S(S + \ ) - L ( L + \ )  
g ~  + 27(7 + 1) ( 12)

7 = 7 -

(SL7||L + 2S||SL,7—1) = (S + L + 7 + l ) ( S  + L + l - 7 ) ( 7  + S -L )(7  + T -S )  
47

(13)
7=74-1

(SL7||L +  2S||SE,7+1) =

2 Acta Physica Hungarica 54, /983
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The matrix elements calculated from Eqs. (11-14) were transformed into the 
intermediate coupling scheme before computation of the magnetic dipole contribution ‘ 
represented by Eq. (10).

The observed UV —Vis and NIR spectra of NdCl3 complexes are shown in 
Figs 1-5 and Figs la-5a, respectively. The assignment of electronic transitions to the 
eighteen observed bands of Nd3+ in NdCl3, MgCl2, CaCl2, CdCl2 and NH4C1 was 
straightforward.

By the method of least squares the Slater—Condon and spin—orbit parameters 
were evaluated and presented in Table II. Theoretical energies were next calculated 
with these parameters and are presented in Table I alongwith the experimental values.

The energy matrices for 4 /3 configuration have been diagonalized on an 
IBM 370/155 computer to compute the eigenvalues and eigenvectors for NdCl3 
complexes with the Slater—Condon and spin—orbit parameters (Table II). The 
eigenvectors thus obtained were used in the calculation of the squared reduced matrix 
elements ||( /я||2 for the observed terms. The values of electric (Scd), magnetic (Smd)

Results and discussion

6.0
36 31 28 25 22 19 16 13 » 103I cm"' 1!-----

270 350 430 510 590 670 750 530
wavelength [ nm ]

13000 11000 9000
wave numbers [cm"1!

a) b)

Fig. la. Absorption spectrum of Nd3 + :NdCl3 (a) normal (b) second derivative 
Fig. lb. Near infrared absorption spectrum of Nd3 + :NdCl3
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Fig. 2a. Absorption spectrum of Nd3 + : MgCI2 (a) normal (b) second derivative 
Fig. 2b. Near infrared absorption spectrum of Nd3+:MgCI2

Fig. 3a. Absorption spectrum of Nd3 + :CaCI2 (a) normal (b) second derivative 
Fig. 3b. Near infrared absorption spectrum of Nd3+:CaCl2
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238 S. V. J. LAKSHMAN and S. BUDDHUDU

Fiy. 4a. Absorption spectrum of Nd3 + :C dC l2 (a) normal (b) second derivative 
Fiy. 4b. Near infrared absorption spectrum of N d3 + :CdCl2

a)

34 31 28 25 22 19 16 13 . Ю3 [ст '1]

Fiy. 5a. Absorption spectrum of Nd3 + :N H 4C1 (a) normal (b) second derivative 
Fiy. 5b. Near infrared absorption spectrum of N d3 + :NH4C1
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Table I

Experimental and calculated energy levels for Nd3 Complexes in solution

Energy
levels

Nd3 + in NdCI3 Nd3 + in MgCl2 Nd3+ in CaCl2 Nd3+ in CdCl2 Nd3+ in NH4C1

^cxpi
cm "1

^ca lc
cm "1

F̂cxpl
cm

t 'c . lc
cm 1

£expi
cm 1

^calc
cm“ 1

Êexpi
cm

^ca lc
cm“

£*xpt
cm 1

£«k
cm 1

2Dy2 34347 34429 34 447 34 419 34 305 34416 34 433 34 406 34 364 34 415
2D32 33 323 33 304 33 445 33 305 33 323 33 281 33 401 33 268 33 357 33 293
*DV1 30 360 30 384 30 305 30 340 30 306 30 364 30488 30 303 30 357 30 372
* o ,;2 28 653 28 736 28 735 28 741 28 653 28 371 28 818 28 707 28614 28 732
4Os,2 28 327 28 389 28 309 28 392 28 249 28 371 28 369 28 360 28 329 28 335
40 t 2 28 051 28 107 28 090 29 114 28 011 28 087 28 169 28 075 28 105 28 050
2 p P\ 2 23 365 23 316 23 364 23 317 23 256 23 300 23 364 23 283 23 310 23 214
2 D 2:2 21 277 21 243 21 322 21 243 21 277 21 219 21 299 21 214 21 277 21 239
2G4,1 20921 21 009 20965 20921 21 018 20 988 20986 20980 21 008 21 002
4 G v ;2 19 531 19431 19 569 19436 19418 19416 19512 19411 19 455 19 436
4g 7„ 19 139 19053 19 157 19056 19084 19 032 19 194 19019 19120 19 044
4G5/2 17 246 17 066 17261 17 070 17 201 17 054 17 291 17 048 17 236 17 066
4e 42 14 749 14 652 14 738 14 654 14 727 14464 14 749 14 706 14 639 14 646

*->3/2 13 687 13 585 13 643 13 587 13 605 13 578 13 661 13 575 13 642 13 582
4 FГ 7 /2 13 387 13 385 13513 13 387 13 477 13 377 13514 13 374 13 495 13 582
2" 4 2 12 555 12 632 12 563 12 641 12 563 12614 12 587 12 602 12 579 12 630
4 Fr  5/2 12 438 12468 12 477 12415 12 420 12 492 12405 12402 12 461 12410
4 Fr  3/2 11 370 11 406 11 375 11 409 11 370 11 399 11 385 11 395 11 380 11 405

r .m .s . + 81.0 + 91.0 + 74.0 + 111.0 + 75.0
d e v i a t i o n

ЮU)
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Table II

Slater—Condon (F2,F 4 and Fb), spin—orbit (£4/) and refractive index (n) for NdCl3
complexes in solution

Parameters
Nd3t

in
NdCI3

Nd3 + 
in

MgCI2

N d3 + 
in

CaCl2

Nd3 + 
in

CdCl2

Nd3 + 
in

NH4CI

Fi 328.13 327.93 328.08 327.97 328.00
F* 51.14 51.25 50.99 50.91 51.16
Fb 5.32 5.31 5.32 5.32 5.31
£4/ 856.00 855.66 856.05 856.81 855.02
n 1.3317 1.3834 1.3635 1.3595 1.3772

dipole line strengths for the NdCl3 complexes are presented in Table III. Theoretical 
estimates of oscillator strengths calculated from Judd—Ofelt and electric (Sed)- 
magnetic (Smd) dipole line strength methods are in good agreement with the 
experimental values. The values of experimental and calculated oscillator strengths for 
the NdCl3 complexes are given in Table IV.

Bonding

The nephelauxetic ratio (ß) has been calculated as

ß=vc/va (15)

where vc and va refer to the energies of the corresponding transitions in the complex and 
aquo ion, respectively. In the evaluation of bonding parameter ((5), the average 
nephelauxetic ratio Д was used. The bonding parameter (Ô) has been calculated [2, 18]

( 5 = ^ - x l 0 0 .  (16)
о

The bonding will be covalent or ionic depending upon the positive or negative nature of 
the value. The following Table gives the details of thé nephelauxetic ratio /? and 
bonding parameter (<5) for N d3+ complexes.

Complex Nephelauxetic ratio (Ji) Bounding parameter (<5)

Nd3 + : MgCI2 1.0014 -0.1431
Nd3 + : CaCl2 0.9994 0.0585
Nd3 + :CdCl2 1.0017 -0.1707
Nd3 + : NH 4C1 1.0006 -0.0063

Since Ô values are negative for N d3+ in MgCl2,CdCl2 and NH4C1 complexes, the 
nature of bonding is ionic in these complexes. The positive nature of (5 for Nd3+ in 
CaCl2 suggests covalent bonding in this complex.
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Table III

Electric (Sed), magnetic (Smá) dipole line strengths for NdCl3 complexes in solution

Energy
levels

Nd3t in NdClj Nd3 + in MgCl2 Nd3 + in CaCl2 Nd3 + in CdCl2 Nd3 + in NH4C1

Scd
( X  1 0 2 2 )

S m <l
(ж 1022)

Scd
( X  1022)

■Smd
( x  1022)

Scd
( X  1022)

Smd
( X  1 0 2 2 )

S ,d
( x  1 0 2 2 )

^m d
( x  1 0 2 2 )

S .d
(x  1022)

Smd
( x  1 0 2 2 )

“ » 7 , 2 1.67 0.229 2 . 2 0 0.003 2.60 0.007 2.91 0.007 2.49 0.008
40 „  2 35.76 0 50.18 0 44.98 0 57.65 0 59.29 0
40 5,2 1 2 . 6 6 0 17.75 0 17.47 0 20.94 0 20.06 0
40 3,2 30.70 0 43.52 0 39.76 0 50.62 0 51.41 0
2P„2 4.66 0 6.83 0 6 . 0 1 0 8.24 0 8 . 0 0 0
2o 3i2 3.80 0 3.74 0 3.34 0 3.89 0 4.23 0
2G4/2 6.33 0.016 6.89 0 . 0 0 2 5.82 0.008 7.74 0.005 9.13 0 . 0 0 2

“ С Ч(2 19.22 0 . 0 2 1 24.38 0.008 23.46 0.015 26.99 0.008 27.57 0.088
4 G 7,2 35.72 0.007 46.94 0.017 50.63 0.016 44.71 0 . 0 0 1 52.09 0 . 0 2 2

4 G 5/2 170.40 0 227.59 0 2 2 1 . 8 8 0 197.80 0 231.90 0
12.27 0.059 15.24 0 . 0 0 1 16.28 0.065 15.22 0 . 0 0 1 17.07 0.023
53.29 0 64.70 0 64.49 0 72.18 0 69.55 0

*FV2 59.19 0 . 0 1 0 72.38 0.034 71.21 0.045 83.02 0.019 81.11 0.041
2 H** /2 23.97 0.015 31.82 0.007 33.07 0 . 0 1 1 36.26 0.050 35.49 0.005

Г 5 /2 123.20 0 157.41 0 152.00 0 178.50 0 176.20 0
a F̂ 3 /2 43.11 0 59.92 0 56.07 0 68.58 0 66.79 0
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Table IV

Experimental and theoretical estimates of oscillator strengths ( / x 106) of the observed bands for NdCl3 complexes in solution

Energy (i) Nd 3 + in NdClj (ii) Ndl3+ in MgCl2 (iii) Nd3+ in CaCl2 (iv) Nd3+ in CdCl2 (v)Nd 3+ in NH *CI
levels

/ e x  pi
f a

J  ca lc П .  1C fcxpl f a
J  ca lc

fb
J  ca lc

f a
J  ca lc

fb
J  ca lc fcxpl f a

J  ca lc
f b

J  ca lc fcxpl f u
J  ca lc

f b
J  ca lc

“ 0 7 , 2 0.07 0.12 0.12 0.15 0.09 0.09 0.12 0.10 0.11 0.13 0.12 0.12 0.12 0.10 0.10
4 0 |  12 1.21 1.32 1.32 1.61 1.93 1.92 1.48 1.70 1.70 1.49 2.18 2.18 1.51 2.26 2.26
4d 0.56 0.46 0.46 0.86 0.67 0.67 0.73 0.65 0.65 0.84 0.78 0.78 1.00 0.76 0.76

1.03 1.11 1.11 1.44 1.63 1.63 1.28 1.47 1.46 1.75 1.87 1.87 1.63 1.92 1.92
2 p  Г 1 /2 0.11 0.14 0.14 0.23 0.21 0.21 0.18 0.18 0.19 0.22 0.25 0.25 0.18 0.25 0.25
2 ^ 3 / 2 0.08 0.10 0.10 0.18 0.11 0.11 0.15 0.09 0.09 0.17 0.11 0.10 0.19 0.12 0.12
2 G „ 2 0.10 0.17 0.17 0.23 0.19 0.19 0.19 0.16 0.16 0.23 0.21 0.21 0.30 0.26 0.26
4g „/2 0.32 0.49 0.48 0.52 0.64 0.64 0.93 0.60 0.60 0.69 0.61 0.69 0.56 0.71 0.72
4 G 7 ,2 0.83 0.88 0.89 1.33 1.20 1.20 1.13 1.12 1.28 1.47 1.28 1.12 1.61 1.32 1.32
4g „ 2 3.75 3.79 3.79 5.23 5.24 5.24 5.01 5.03 5.00 4.47 3.83 4.49 5.29 5.32 5.31
* F 4, 2 0.09 0.22 0.25 0.12 0.30 0.30 0.12 0.30 0.34 0.14 0.29 0.30 0.17 0.35 0.33

0.59 0.94 0.94 0.86 1.18 0.78 1.16 1.16 1.18 0.97 1.30 1.29 0.17 0.35 0.33
4 f 7 /2 1.07 1.02 1.02 1.25 1.31 1.31 1.13 1.26 1.26 1.38 1.47 1.47 0.92 1.26 1.26
2H 4I2 1.49 0.39 0.41 1.57 0.53 0.53 1.55 0.55 0.55 1.72 0.60 0.60 1.49 0.59 0.59

r  5 /2 1.88 1.98 1.97 1.97 2.62 2.62 2.45 2.49 2.49 2.77 2.93 2.93 2.84 2.92 2.92
4  F̂  3 /2 0.79 0.63 0.63 1.21 0.91 0.91 1.00 0.84 0.84 1.52 1.03 1.02 1.51 1.01 1.01

r.m.s.
+  0.127 +  0.309 + 0.162 +  0.414 +  0.357

deviation

where a, b are from Eqs (6 and 8)
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Hypersensitive transition

Transitions where intensities are particularly sensitive to the host and follow the 
selection rule.

A J S 2 ,  A L ^ 2  and dS^O

are termed hypersensitive transition. For N d3+, the transition 4G5/2<-4/ 9/2 is the 
hypersensitive transition. The parameter T2 varies with the environment, at the same 
time parameter T4 also varies even more and T6 by about the same amount. A strong 
correlation exists between T2 and the oscillator strengths of the observed bands which 
does not exist for T4 and T6 (It is because the above selection rules hold good for T2).

Complex T2( x l0 9) TA X 109) T6( x l 0 9) / (  X 106)

Nd3+ in NH4CI 0.209 0.227 0.368 5.32
Nd3+ in MgCl2 0.208 0.256 0.374 5.24
N d3+ in CaClj 0.191 0.299 0.405 5.03
Nd3+ in CdCl2 0.151 0.276 0.303 3.83
Nd3+ in NdClj 0.142 0.289 0.416 3.79

The oscillator strengths of the observed bands which are calculated with T2, T4 and T6 
are given in Table IV for all the Nd3+ complexes studied.

Crystal field splittings

Second derivative spectra of NdCl3 complexes in different hosts show splitting in 
the electronic states 4F 5/2 and 4G5/2 into two and three levels, respectively.

Since C3fl symmetry is common to trichlorides, we assumed the same symmetry 
for Nd3+ ion in all the complexes studied in the present work. In Cih symmetry, 4F 5/2 
and 4G5/2 terms are expected to be split into three levels each designated as + 1/2, +  3/2 
and + 5/2 crystal quantum states.

Table V

Operator equivalents in the intermediate field for Nd3 + complexes in solution

Complexes Terms 0 1 1 * 1 1 / ' ) <J\\ß\\i> </IMl/>
N d3 + :NdCl3 0.014 70 0.001 43 0

4G5/2 0.003 85 0.004 24 0
N d3 + : MgCl2 Г  5 /2 0.013 80 0.001 22 0

4g 5/2 0.003 38 0.003 91 0
N d3 + :CaCl2 4  FГ  5 /2 0.014 11 0.001 33 0

4g 5/2 0.003 63 0.004 06 0
N d3 + :CdCl2 4 FГ  5 /2 0.013 80 0.001 29 0

4G5/2 0.003 45 0.004 12 0
N d3 + :NH4C1 4FГ  5 /2 0.014 47 0.001 38 0

4g 5/2 0.003 75 0.004 11 0
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Within a pure f N configuration, the potential ECF for Cih symmetry may be 
written as

£ CF = '42O^2O0tj + ^40^40 ßj"F ̂ 60^60 v/ + ^66^66 Vj > (17)

where A20, A40, A 60 and A66 are crystal field parameters, 0 20, 0 40, O60 and 0 66 are 
the operator matrix elements and ctj, ßj and v2 are the operator equivalent factors. 
These a,, ßj and Vj factors are available in literature for all the states required in the 
above calculation except for the transitions *D5I2-*AF5/2, 4G5/2; 2D5/2->2D'5/2, 2F5/2, 
2F 5/2; 2F)$i2~*2F 5/2 » 2F s/2 » 4^ 5/2 ~*4Gs/2 ; 2^ 5/2~> ^ 5/2- The operator equivalent 
factors for these transtions are evaluated following the usual procedure of Judd [16] 
and are presented hereunder.

Transitions ai ßj vi

4D5„ - * F 5/2 0.0661 0.0090 0
40 5, 2 - “G5/2 0.0121 -0.0002 0
2 ° 5 / 2 - , 2 ° '5 /2 -0.0118 -0.0025 0
2 0 5, 2 - 2 ^ 5 ,2 0.0185 -0.0014 0
2ß 5, 2 - 2f'5/2 0.0158 0.0028 0
2/у 2 г

U 5 I 2 ^  r  5/2 -0.0097 -0.0033 0
4  г  4 / 1 

r  5 /2  * U 5/2 0.0347 0.0035 0
2 D  —¥2F ^ 5 / 2  * r  5/2 -0.0227 0.0031 0
2 IT _ > 2 f '  

г 5 / 2 ^  r  5/2 0.0447 -0.0018 0

The operator equivalent factors a,, ßj, Vj in the intermediate coupling case are 
calculated and presented in Table V. The operator matrix elements O20, 0 40, 0 60 and 
0 66 are taken from Hufner [19].

The band maxima positions for the split components of 4F 5/2 and 4G5/2 levels in 
N d3+ complexes are given in Table VI. The energy difference between the two 
components observed for 4£ 5/2 in the second derivative spectrum of NdCl3 complexes 
could belong to the energy difference between the crystal quantum states of one set of 
the following

±1/2 and ±3/2

±3/2 and ±1/2

± 1 /2 and ±5/2

±5/2 and ±1/2

±3/2 and ±5/2

±5/2 and ±3/2
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Table VI

Observed crystal field energy levels of 4E5/2 and 4G5/2 with their crystal quantum states in NdClj complexes
in solution

Energy
levels

Nd3 + N d3 + Nd3 + Nd3 + N d3 +
e in NdClj in MgCl2 in CaCl2 in CdCI2 in NH4C1

E [cm - '] E [cm - '] E [cm-1] E [cm-1] £  [cm-1]

4 F
*  5 /2 ±5/2 12415 12 408 12 420 12427 12412

±1/2 12458 12441 12 465 12465 12444

4G5,2 ±3/2 17 180 17 188 17210 17 182 17 202
±5/2 17 250 17 249 17 286 17 272 17 282
±1/2 17 284 17 279 17311 17 301 17 306

Similarly the energy difference between two components of any three of the observed 
levels of 4G5/2 could belong to one of the above six sets of crystal quantum states. Since 
the value of v7- is zero for 4F 5/2 and 4G5/2 states, we then have the potential ECF for these 
states as

Ecf~  A2o02o&j + AioOwßj . (18)

From the known a7, ßj, O 20, and 0 40 values the crystal field parameters A10, Л40 were 
evaluated by solving 36 equations (six each belonging to 4F 5/2 and 4G5/2 states). The 
crystal field parameters which were of the same order of parameters reported in 
literature were chosen as the appropriate parameters. With these parameters, the 
position of the third component level (which was not taken in earlier calculation) of 
4G5/2 was calculated and it is interesting to note that this is in good agreement with the 
experimental value.

After the crystal quantum states were fixed for the levels of Nd3+ in NdCl3 
complex, the crystal quantum numbers were assigned to the split levels of 4F 5/2 and 
4G5/2 states in the other Nd3+ complexes from the nature and position of the 
component levels. By solving simultaneous equations, the appropriate crystal field 
parameters were evaluated. The crystal quantum numbers assigned to the levels are 
also presented in Table VI. The calculated splittings are shown in Fig. 6. The crystal 
field parameters are presented in the following Table.

Crystal N d3 + Nd3 + Nd3 + N d3 + Nd3 +
field in in in in in

parameters NdClj MgCI2 CaCI2 CdCl2 NH4C1

A 20 130.15 129.52 115.18 126.22 100.62
^40 -101.04 -94.29 -71.59 -85.60 -69.85
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5/2 '5 /2

Calc [cm '] Obs [cm ']

±3/2 -ir 22.09 ±3/2 -, ±3/2 -,r 76.16 ±3/2 -p
11.17 97.48

±5/2 - - 10.92 ±5/2 - - 12415 ±5/2 - ----- 21.32 ±5/2 - -
43.50 43 33.52

±1/2 J----- 32.58 ±1/2 JL 12 458 ±1/2 J ----- 54.84 ±1/2 —

Calc [cm ‘] H Obs [cm ']

17250

— 17 284

70

34

Nd3 + :MgCl2

±3/2

±5/2

± 1/2

17.05

10.97

-28.05

6.08

39.02

±3/2

±5/2

± 1/2

12 408

12441
33

±3/2

±5/2

± 1/2

65.49

-17.74

-47.74

83.23

30.00

±3/2 -r- 17188 

±5/2 - -  17 249 

±1/2 — 17 279

61

30

Nd3 + :CaCl2

±3/2

±5/2

± 1/2

13.86

10.57

-24.43

3.29

35.00

±3/2

±5/2 +  12 420 

±1/2 -L 12 465
45

±3/2

±5/2

± 1/2

51.48

-13.26

-38.22

64.74

24.96

±3/2 -r  17 210 

±5/2 - -  17 286 

±1/2 -L 17311

76

25

Nd3 + :CdCl,

±3/2

±5/2

± 1/2

16.45

10.77

-27.23

5.78

38.00

±3/2 - j  

±5/2 - -  12 427 

±1/2 -L 12465
38

±3/2

±5/2

± 1/2

62.61 

-16.80  

-45.80

79.41

29.00

±3/2 -p 17182 

±5/2 - -  17271 

±1/2 — 17 301

89

30

Nd3+:NH4C1

±3/2 -ip 14.46
5.70

±5/2 - 8.76
31.99

±1/2 J----- 23.23

±3/2 -p  

±5/2 - -  12 412 

±1/2 -L 12 444
32

±3/2 -np 50.89 ±3/2 -|p 17 202
64.38 80

±5/2 - - -13.49 ±5/2 - - 17 282
23.91 24

±1/2 JL -37.40 ±1/2 - - 17 306

Fig. 6. The observed and calculated splittings of *Fbj2 and 4G5/2 levels in the second derivative spectra of 
NdCl3 complexes. Here g is the crystal quantum number
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The properties of the unrestricted Hartree— Fock (UHF) wave function are discussed with 
particular attention to the vicinity of the “critical point” where the UHF wave function starts to differ 
from the restricted Hartree— Fock (RHF) one. By considering the simplest analytically solvable 
model, the origin of the critical point is analysed, based on the decomposition of the DODS 
determinant in terms of the full Cl wave functions. It is shown that the UHF energy curve departs 
from the RHF one by exhibiting a discontinuity of the second derivative. (The first derivative of the 
UHF energy is continuous for any system.) The wave function obtained by subsequent spin projection 
of the UHF wave function (i.e. without performing orbital reoptimization) gives a discontinuity 
already for the first derivative of the energy, showing that this procedure is inapplicable to calculate 
potential curves.

1. Introduction; a numerical example

The “unrestricted” Hartree-Fock (UHF) method applying single determinant 
DODS (“different orbitals for different spins”) wave function is, as is well known, 
probably the simplest one accounting for a part of the correlation energy and 
correcting the improper dissociation behaviour of the usual “restricted” Hartree— 
Fock (RHF) method using doubly filled orbitals. However, it is known that in many 
cases the UHF method fails to give solutions differing from the RHF one. Often, e.g. for 
the H 2 molecule [1, 2], the UHF orbitals are “split” (i.e. we obtain really different 
orbitals for different spins) only at larger internuclear distances.

The present paper deals mainly with the consideration of a very simple 
analytically solvable model problem, devoted to obtain a better qualitative 
understanding of this phenomenon. Our interest will be focused on the effects which 
take place in the vicinity of the “critical point” where the splitting of the UHF orbitals 
starts. This was motivated by some problems encountered in our former ab initio study 
[3] of the potential curves of the В—H molecule given by different one-electron 
methods, and were not solvable by means of numerical calculations only. For this 
reason, before going to consider the analytical model, we shall briefly recall, from a 
slightly different point of view, some results of these calculations:

It was found that the RHF curve shows the known incorrect dissociation 
properties and the UHF solution does not differ from the RHF one up to relatively
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large interatomic distances (~3.4  a.u.). With the further increase of the internuclear 
separation the UHF potential curve departs quite smoothly from the RHF one (Fig. 1) 
and then very quickly approaches a correct asymptotic energy value. The most 
impressing is the behaviour (see Fig. 1) of the potential curve obtained by performing 
the spin projection of the UHF wave function (UHF + SP method). As the separation 
of the RHF and UHF curves occurs, the UHF 4-SP curve at first decreases with the 
increase of the internuclear distance, then goes over a minimum and starts to increase 
only at RBH ~  3.6 a.u. (A correct potential curve would increase monotonically at these 
separations.) The complete potential curves are shown and discussed in [3]. The UHF 
4-SP procedure should be distinguished from the spin projected extended Hartree— 
Fock (EHF) method [4, 5] in which the spin projected wave function itself is optimized 
variationally. For the В—H molecule the EHF method gave a potential curve which 
had a well-balanced shape and was correct not only qualitatively but at least 
semiquantitatively at all interatomic distances [3].

We were not able to follow numerically how exactly the UHF + SP curve 
approaches the RHF one with the further decrease of the internuclear distance, since it

Fig. I. Potential curves of the BH molecule near the “critical point”

became impossible to obtain converged UHF solutions reliably differing from the 
RHF ones [3]. Nevertheless, the inspection of Fig. 1 (which is essentially a part of Fig. 1 
in [3], drawn with larger scales on both axes) suggests that it seems rather unlikely that 
the UHF 4- SP curve will take a very short turn and then approach smoothly the RHF 
one, as the UHF curve does. On the contrary, one may expect that the UHF-bSP curve
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will meet the RHF one quite sharply at an internuclear distance about 3.395 a.u. This 
expectation is in agreement with the behaviour of the overlap integrals AUHF of the 
corresponding orbitals* obtained by performing the pairing of the UHF ones. Fig. 2 
shows how the lowest AUHF depends on the interatomic distance. It is most probable 
that the curve AUHF(mm) crosses sharply the unity level at the same internuclear distance 
R к  3.395 a.u. where the energy curves meet each other. This means that this point is the 
“critical” one, in which all the UHF orbitals become doubly filled (all AUHF = 1), thus 
coincide with the RHF ones, and in this point we shall really have £ u h f  + s p  =  £ u h f  

= £ rhf for the energies. In other words, as far as such conclusions may be drawn merely

^UHF (min)

Fig. 2. The lowest overlap integral of the UHF corresponding orbitals for the BH molecule as a function of
the internuclear distance

on the basis of numerical calculations, these results indicate that at this point the 
specific UHF solution differing from the RHF one disappears completely. (If the 
specific UHF solution would exist everywhere but approach the RHF one so closely 
that they become indistinguishable numerically, then all three energy curves would 
approach smoothly each other, as well as the curve AUHF<min) the unity level.)

Now, there appear different questions concerning the behaviour of the potential 
curves and wave functions in the vicinity of the critical point. These questions are 
related, of course, not only to the calculations described in [3].

The most important problem probably consists in a deeper understanding of the 
origin of the “critical point”. Furthermore, the RHF and UHF curves coincide with 
each other at the internuclear distances smaller than the critical one and become slowly 
separated when the internuclear distance increases. Apparently both curves are 
continuous and smooth. Nevertheless, as Pulay emphasized [7], it follows from the 
properties of Taylor expansions that at least for one of these two curves there must be a 
discontinuity in some of the (higher) derivatives. In fact, if all the derivatives would be

* According to the known “pairing theorem” [6] it is always possible to find unitary transformations 
of the orbitals which ensure without changing the many-electron determinant wave function that the orbitals 
a, and fe, filled with spins a and /I,respectively, become not only orthonormalized but also “paired”: 
(aj I bj~) = g  | А,-1 á l ) .  The paired orbitals are often called “corresponding orbitals”. In the case of the 
В— H molecule the pairing led also to a well-pronounced localization of the orbitals, the lowest | A, | always 
corresponded to the В—H bond.
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continuous, the curves would coincide everywhere, because it would be possible to 
expand them into a common Taylor series around an arbitrary point within the 
interval of the internuclear distances smaller than the critical one. There the curves are 
identical and, therefore, all the derivatives occurring in their Taylor expansion are 
equal.

The above problem is closely related to the fate of the specific UHF solution at 
the internuclear distances smaller than the critical one: whether or not the UHF 
solution has an analytical continuation in this interval, corresponding again to a 
stationary (even if not minimum) energy value.

It seems also desirable to obtain a better understanding, why the existence of the 
critical point leads to the sharp departure of the U H F+ SP  potential curve from the 
RHF one and to that of the curve from the level X = 1. It is also of interest to discuss 
the qualitative differences between the behaviour of the UHF and spin projected EHF 
methods: the RHF wave function represents a particular solution of both UHF and 
EHF equations, but only in the EHF case exists for all internuclear distances a distinct 
(specific) solution with an energy lower than the RHF one.

2. The simplest model

In order to obtain a qualitative answer for the problems raised above, we decided 
to perform an analytical study of the most simple model system for which these 
questions have a meaning at all. The model problem selected is that of the H 2 molecule 
treated at the CNDO level of integral approximation, or -— which is mathematically 
the same — the PPP model for the я-electrons of the ethylene molecule.

Let us denote by and Хг the two atomic orbitals (АО-s) and introduce the 
notations hij and yfj- for the elements of the one-electron (core) and Coulomb integral 
matrices. Any wave function with the projection Sz = 0 of the resulting spin can be 
expressed as a linear combination of the four determinants which can be built up of the 
pure АО-s X1, Xi and have Sz = 0. By diagonalizing the 4 by 4 Hamiltonian matrix in the 
space of these four determinants one easily finds the solutions (cf. [8], for instance) of 
the full Cl problem, which give the exact energies and wave functions for the model 
under consideration. The exact ground state wave function is a Weinbaum’s type 
spatially symmetric singlet with the energy

Es i = t + l ~  y v V + 1 6/*2’ (*)

where we have introduced the notations

(2 )
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It is evident that the inequalities indicated in (2) hold for any reasonable electronic 
model-Hamiltonian.

There is another symmetric singlet solution having the energy

Es2 = t + 2 + y v V  + 16^2’ (3)

as well as an antisymmetric singlet with the energy

£ sa = t + y, (4)

and a single (antisymmetric) triplet wave function having the energy

ET = t. (5)

It is easy to see that the energy of the ground state singlet is always lower than 
that of the triplet while the other two singlets lie above the triplet.

The RHF wave function is uniquely determined by the symmetry of the model 
and coincides with the simplest LCAO-MO wave function:

ПнР =  ̂ [<р(1)а(1М2)/3(2)], (6)

where the orbital (p is defined as

and ,c/ is the antisymmetrizer. 
The RHF energy is

<P =  —^(Xi+Zz).
Ф -

£ rhe'~  l + 2 + ^ß-

(7)

( 8)

A DODS determinant wave function may be written as 

*^dods = -'d \_a(\H\)b(2)ß(2)l
where

1
a =

\ / l  +<
--(xi + qxi); b = l

=j(x2+qxi)-

(9)

( 10)

The orbitals a and b are related by the symmetry transformation, as it is usually 
obtained for the UHF orbitals of the systems of this type.

Assuming the coefficient q to be real, we obtain the energy of the DODS function 
as

where
EDODS = t + 4ßp + 2yp2,

P =
Я

1 +q2 '

( П )

( 12)

3* Acta Physica Hungarica 54, 1983



2 5 4 I MAYER

It follows from (12) that the following inequality holds for the parameter p:

\P\ Û y ,  (13)

otherwise q becomes complex. The limiting value |p | =  1/2 is achieved if | q | =  1. In turn, 
ifp =  1/2 then q= 1 and the DODS wave function reduces to the RHF one. As it is easy 
to see, the overlap of the DODS orbitals a and b is i  =  <a|h) =  2p.

Let us require the energy (11) to be stationary under the variation of the orbital 
coefficients (i.e., under the variation of the quantity q). We have

dfipops _  dopons •— = 0 (141
dq dp d q

:cáP . ,d £ c
Therefore, (11) will be stationary either if -f-  = 0 or if = 0. In the first case we

d q dp

find —  = 0 if 1 — q2 =  0, i.e. q=  ±1. The upper sign corresponds to the RHF wave 
d q

function (6), the lower to a determinant in which the antibonding orbital—F (x\ ~Xi) is

doubly filled. Thus, as expected, the RHF wave function is a particular solution of the 
UHF problem. The specific UHF solution is obtained if the condition

d£poDs= 0  (is)
dp

is fulfilled. By performing the differentiation, we obtain the condition of the stationary 
energy as

P = ß = \ß\
У У

(16)

If у ̂  21 /I |, p ̂  1/2, and we may find from ( 12) two real values (q j and q2) of q ensuring 
the fulfilment of (16). Thus we obtain two UHF wave functions which, however, differ 
only by the interchange of the spins a and ß or that of the АО-s ц  and %2 'n (W), since 
ЯI =  By substituting (16) into (11) we have for their energy the value t — 2ß2/y. If, 
however,у <2\ß\, we havep> 1/2, therefore by substituting the value ofp prescribed by 
the stationarity condition (16) we obtain from (12) complex roots for the quantity q 
which was assumed to be real. It may be shown by a slightly more involved analysis 
that the situation is not changed if we permit the two UHF orbitals to have quite 
arbitrary, even complex, orbital coefficients (cf. [2]). In this most general case we obtain 
again exactly the same UHF solutions as above, and if y<2\ß\,  the condition of the 
stationary energy for the specific UHF solution leads to complex roots for a quantity 
which is defined as an absolute value, and must be, therefore, real. Consequently, the 
point in which y =  2 |0 |is  the “critical point” where the specific UHF solution ceases to
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exist and there is no analytical continuation of the specific UHF solution beyond the 
critical point. Since the UHF energy is defined as the minimum possible energy which 
may be obtained by using single determinant wave functions, we must write

£ U H F -

if 2 |0 |,

if y<2\ß\.

(17a)

(17b)

It is easy to see that EVHF < ERHF if there exists the specific UHF solution and that 
£ UHF = £ RHF in the critical point y = 2|)?|. Here the UHF wave function also becomes 
identical with the RHF one and, therefore, A = 2 p = l. According to the above 
discussion, the absence of the analytical continuation of the UHF wave function in the 
interval y < 2\ß | may be connected with the fact that the overlap integral 2 — 2p = 2\ß\/y 
cannot exceed unity in the absolute value.

The complete disappearance of the specific UHF solution in the case of y <2\ß\ 
means that the RHF solution becomes the absolute minimum on the energy- 
hypersurface for the single determinant wave functions. In the interval y>2\ß\,  
however, the RHF energy represepts not a minimum but only a saddle point, and there 
is a pair of symmetrically situated minima corresponding to the two UHF wave 
functions differing from each other by interchanging the АО-s Xi and Хг or the spins a 
and ß. As the critical point is approached (y/\ß\->2), the UHF minima become more 
shallow and move closer to the RHF saddle point (/ tends to 1) until they coincide with 
the latter (and with each other) when y =  2 |ß\. It is easy to see that in this critical point 
not only the first derivative of the energy d£DODS/d<7 is equal zero, but the second 
derivative d2£ DODS/dq2 vanishes, too. Therefore, in the vicinity of the critical point the 
energy hypersurface becomes extremely fiat in the directions corresponding to the 
orbital splitting; this is also in accordance with the numerical experience [3].

3. The origin of the “critical point”

Since the orbital splitting is permitted, the UHF method means the use of a more 
flexible trial wave function in the variational procedure than the RHF one. It seems 
worthwhile to discuss why such an increased flexibility can lead to a considerable 
energy gain in one geometric interval but becomes completely ineffective in another. 
For this purpose we shall consider the expansions of different SCF-type functions as 
linear combinations of the exact (full Cl) eigenfunctions of the model-Hamiltonian 
characterizing our system.

The RHF wave function is a superposition of the two symmetric singlet 
eigenfunctions having the energies (1) and (3), with the weights (squares of the 
coefficients)

(1+*)2 , О-*)2
2(1+ x 2) 2(1+ x 2) ’
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respectively. Here
J y 2 + \6ß2 + y

~  m
(18)

is the ratio of the coefficients at the covalent and ionic terms in the exact (full Cl) 
ground-state eigenfunction. As known, the ionic terms are strongly exaggerated in the 
RHF wave function: they have the same weight as the covalent ones. Accordingly, the 
highest Cl wave function consisting mainly of these ionic terms* appears with a 
considerable coefficient in the expansion of the RHF wave function.

The single determinant DODS wave function (9) is not an eigenfunction of the 
total spin (S2) but is a mixture of singlet and triplet components. In our analytic model 
the two symmetric singlet and the triplet eigenfunctions have the weights

(2p + x)2 (2px — l)2 l - 4 p 2
2(1 + x2) ’ 2(1+ x 2) 2

respectively. (The antisymmetric singlet does not appear in the expansion.) If p = 1/2, 
we come back to the RHF case. When p decreases from this value, the weight of the 
higher singlet decreases too, until it becomes zero at p = l/2x. This value of p, however, 
is not reached in the UHF case, i.e. if we perform the variational optimization of the 
single DODS determinant wave function. Really, the triplet energy (5) is lower than 
that of the highest singlet but the triplet component appears not simply in place of the 
latter. With the decrease of p the weight of the exact ground state (lowest singlet) also 
decreases and, since ET>Es l , this effect is connected with an energy increase.**

Performing the variational optimization of the UHF wave function we seek for 
the best compromise between these effects. It is clear that one obtains a specific UHF 
solution differing from the RHF one only if (at the given value of the parameters) the 
factors leading to the energy gain are able to overcompensate those which are 
connected with a loss in the energy. Thus, in our case the net energy effect due to the 
orbital splitting may be written as

^DODS ^ R H F  0  — 2 p ) 2 | / ? | - | ( l + 2 p )  , (19)

and, as easy to see, it really cannot be negative if y<2\ß\,  since (1 — 2p)^0 and (1 +2p)
2. In this case, therefore, the decrease of the weight of the exact ground state in the 

DODS wave function prevents the orbital splitting.

* For the higher symmetric singlet the ratio between the coefficients at the covalent and ionic terms is 
given by x'=  — 1/x, and, therefore, |x '|<  1.

** A characteristic numerical example for the sharp decrease of the overlap between the UHF and 
exact ground state wave functions as compared with the RHF case may be found in [9, 10]. (We note here 
that the lowest triplet energy for the л-electron model of butadiene discussed in [9] is —76.634 eV and not 
— 67.634 eV as it was misprinted.)
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From a more physical point of view, the above results may be interpreted as 
follows. Permitting the orbital splitting we can decrease the weight of the ionic terms 
overestimated by the RHF wave function but, at the same time, the appearance of the 
triplet component in the DODS wave function leads to the decrease of the bond order 
between the atoms, too. (The bond order is 1 for the RHF case and decreases to 2p in 
the DODS one.) As the internuclear distance decreases, the value y = yn  — y)2 giving 
the difference of the energy between the purely ionic and covalent configurations 
decreases, while the bonding parameter ß increases in the absolute value. Now, it may 
happen that starting from some value of the internuclear distance (from the “critical 
point”) the energy loss connected with the decrease of the bond order overweights the 
effect due to the improvement in the ionic terms, and therefore, no orbital splitting will 
take place. The competition of these effects becomes very perspicuous if we rewrite (19) 
as

E d o d s  -  E R H F =  2 1 ß | (  1 -  2p) -  У-  ( 1 -  V ) .  ( 2 0 )

Similar arguments may be used to explain qualitatively the observation [3] (see 
also Fig. 1 in [2]) that the UHF potential curve approaches the (correct) asymptotic 
value too quickly when the interatomic distance increases. In the limit of the infinite 
interatomic separations the lowest singlet and triplet Cl energies become equal due to 
the absence of the interaction between the atoms, but the triplet energy approaches the 
common asymptotic value from above while the singlet energy from below. As the 
energy difference between the ionic and covalent configurations increases with 
increasing interatomic distance, the orbital splitting and thus the weight of the triplet 
component in the UHF wave function also increase, until the weights of the triplet and 
of the singlet become equal in the limit of infinite separations. At intermediate 
interatomic distances the UHF potential curve represents some mean between the 
singlet and triplet curves, and this places it close to the asymptotic level. In other terms, 
as the interatomic distance increases, it becomes quickly of minor importance from the 
point of view of the UHF energy (as compared with that of reducing the weight of the 
ionic terms) that the large triplet component is connected with the decrease of the bond 
order. This means that at these distances the UHF method underestimates the 
remaining binding effects though the latter still have an important influence on the 
detailed shape of the exact potential curve. It may be of interest to note that the bond 
order Dl2 =  2 x / ( 1  + x 2 ) for the exact full Cl wave function is always less than 1. 
Therefore, the RHF method overestimates the energy effects connected with the bond 
order term, and the same holds, of course, for the UHF wave function in the interval 
where it coincides with the RHF one.

One can conclude that the single determinant UHF wave function does not have 
enough flexibility for both to describe adequately the binding effects and to reduce 
effectively the weight of the ionic terms, and gives, therefore, a too quick transition 
between the limiting cases for which essentially only one of these factors is taken into 
account.
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If we subject the DODS determinant to spin projection then the triplet 
component disappears and the wave function

Y ' s p  =  < 0 V d o d s  =  & S J  [a( 1 )a( 1 )b(2 ) ß ( 2 ) ]  =  ( 2 J )

=  {  { s i  [u(l)/3(l )h(2>a(2)]}

becomes a linear combination of the two symmetric singlets only. (Here C s is Löwdin’s 
spin projection operator for the singlet state [4].) This means that in our case the spin 
projection restores not only the correct spin properties but also the spatial symmetry of 
the wave function. A similar situation may often be encountered [9-11]. The energy 
corresponding to the wave function (21) can be given as

£ SP — t
4yp2+ 8 ßp 

1+4 p2 '
(22)

In the U H F + SP method we perform the spin projection of the UHF wave 
function, i.e., take the orbitals which minimize the energy (11) of the single DODS 
determinant. Then, for the interval y>2\ß\  we have p = \ß\/y and (22) becomes

r  . Ж  2bVHf + SP- t - 2 y ’ 1 + т г/у2- W

Obviously, £uHF+SP< £ UHF< £ RHK in all cases when y>2\ß\  and the specific 
UHF solution differing from the RHF one exists at all. It is easy to see that in these 
cases the UHF + SP method leads to an improvement also for the quality of the wave 
function (weight of the true ground state in the superposition) as compared with both 
RHF and UHF methods. The effect which can be obtained in the UHF + SP case is, 
however, quite sensitive to the relations between the parameters ß and y (and is, in 
general, strongly system dependent [11]). In particular, £UHF+SP also tends to £ RHF 
when the critical point is approached: there the UHF wave function becomes identical 
to the RHF one which is automatically a pure singlet. In the U H F + SP method we 
apply the UHF value p = \ß\/y of the orbital splitting parameter, which is based on a 
delicate equilibrium between the different factors influencing the energy of the single 
determinant. The changes in the parameters of the system may shift considerably the 
position of this equilibrium (the degree of splitting of the UHF orbitals) and lead at the 
same time to only moderate changes in the resulting UHF energy, as the different 
competing factors discussed above cancel the effect of each other to a large extent. Since 
the triplet component playing a central role in determining the UH F energy is excluded 
by the spin projection, no such cancellation takes place for the UHF + SP wave 
function and the latter will be “out of balance” and may exhibit even a wrong 
qualitative dependence of the energy on the parameters characterizing the system.
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Thus the spurious extrema on the UHF + SP curve discussed in the Introduction may 
be immediately connected with the not truly variational character of this method: we 
optimize another wave function than we really do use.

As mentioned above, in the UHF case the presence of the triplet component 
prevents the parameter p to reach the value 1 /2x at which the highest singlet disappears 
from the expansion of the DODS determinant. This becomes, however, possible if we 
use the spin projected wave function directly as trial function in the variational 
procedure (EH F method), since in this case the triplet component is excluded from the 
very beginning. In other words, setting p = l/2x , the spin projected determinant (21) 
becomes identical with the exact ground state wave function. This is in agreement with 
the known fact that the EHF procedure is equivalent to the full Cl in any two electrons 
— two orbitals case. (This is not valid, of course, for models with more than two 
electrons and/or orbitals.)

It seems worthwhile to consider the behaviour of the EHF method also by 
performing directly the variation of the expression (22) for the energy of the spin 
projected determinant (21). Requiring the energy (22) to be stationary under the 
variation of the orbital coefficients, i.e., under the variation of the quantity q in (10), we 
obtain the condition

dEsp = d£sp dp =  0. (24)
dq dp dq

The solutions of (24) correspond either to ^  = 0, or to =  0. Therefore, similarly
aq dp

to the UHF case, the RHF-type wave functions for which —  = 0; </= + 1 give
dq

particular solutions for the EHF problem, too. The specific EHF solution, however,
d£SP

may be obtained from the condition —- = 0. Then the differentiation of (22) givesdp

y ± J y 2+ \ b ß 2
8/?

(25)

which, as it is easy to see, coincides with the condition p = l/2x, discussed above, if we 
select the negative sign*. By substituting this value of p into (22) we can check explicitly 
that the EHF energy is really equal to that of the exact ground state Cl solution.

In the EHF case we have for the coefficient q the equation

q _  y ~ s/ y 2+ \ 6 ß 2 
1 +q2 8)3

(26)

* The positive sign in (25) corresponds to p= — x/2; in this case the spin projected wave function (21) 
becomes identical to the highest symmetric singlet Cl solution.
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which has always real, positive solutions. Thus, in contrast to the UH F case, the specific 
EHF solution differing from the RHF one exists at any values of the parameters. 
According to the above discussion, this difference between the behaviour of the UHF 
and EHF methods may be connected with the fact that in the EHF case there are no 
such factors, as the reduction of the bond order due to the triplet component in the 
UHF case, which could prevent the orbital splitting.*

4. The derivatives at the critical point

At the critical point y = 2\ß\ the specific UHF solution coincides with the RHF 
one and ceases to exist. Therefore, we have at this point a transition from one branch of 
the solutions of Eq. (14) (d£DODS/dp=0) to another (dp/dt/ =  0). As we have seen, the 
UHF energy changes continuously at this transition and we shall show that the same 
holds for its first derivative, too. In fact, according to (8) the derivative of the RHF 
energy can be written as

dERHF = ^  , 1  dZ , 
dr dr 2 dr dr *

(27)

where r is the internuclear distance. For the interval y>2\ß\  (i.e. r > r c, where rc is the 
internuclear distance corresponding to the critical point) we have for the derivative of 
the UHF energy (17a)

d£UHF dr 4ß dß 2ß2 dy
— л ------------ =  J-------- — ~ 7 ~  н------T  ~ r -dr dr y dr y dr

Since the right-hand sides of (27) and (28) are equal ar r = rc (y = 2\ß\) and the UHF 
energy curve coincides with the RHF one when y<2\ß\, we obtain

d£uHF
dr

d^UHF ( dt 1 dy + 2 — ^
r=,, + o dr r = rc~ 0 \d r  + 2 dr d r )

(29)

i.e., the first derivative of the UHF energy changes continuously when passing the 
critical point. This conclusion is in agreement with the general result of Meyer and 
Pulay, valid also for the many-nuclear molecules, according to which the first 
derivative of any SCF energy can be determined from the wave function alone, without 
the knowledge of the derivatives of the orbital coefficients [14, 15]. In other words, the

* For some larger systems the splitting of the different orbital pairs may become competitive due to 
the specific spin-coupling scheme [12, 13] inherent in the many-electron EHF wave function. This problem 
is, however, beyond the scope of the present paper.
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coincidence of the RHF and UHF wave functions at the critical point predetermines 
the equality of the first derivatives of the corresponding energies, too. (We shall return 
to this question later.) No such considerations apply, however, for the derivative of the 
UHF + SP energy as the U H F+SP method is not strictly speaking an SCF 
(variational) one. For the UHF + SP energy we have again d £ UHF+SP/dr = d £ RHF/dr 
if y>2\ß\, since in this interval the UHF + SP wave function also coincides with the 
RHF one, while for y>2\ß\  we obtain from (23)

d£ UHF+SP 4Д
dr

dt
df (y+4/? 2\ 2 2 y3^ -  + (^ß3- ß y 2) dydr dr (30)

At the critical point (30) becomes

d^UHF + SP
Or r — rt + 0

(31)

The right-hand side of (31 ) differs from (27), therefore the UH F + SP energy curve 
has a discontinuity of first derivative at the critical point. An exception is possible only

if the additional condition y  dy/dr = d|/?|/dr also holds at r = rc. (In this case the ratio

2\ß\/y determining the existence or absence of the specific UHF solution has a zero 
derivative.) This would represent, however, a rather unrealistic assumption since y and 
\ß\ must change in opposite directions when the internuclear distance increases.

For the parameter p the value p =  1/2 is kept until y<2\ß\, therefore

= 0. For the interval, where the specific UHF solution exists, p=  — ß/y, and
r = rc -  0

accordingly
dp 
dr г = rc + 0

m  dy dß
y \2  dr dr (32)

dp
dr

Since the right-hand side of (32) differs from zero (except the unrealistic case discussed 
above), the parameter p also exhibits a discontinuity of its derivative at the critical 
point. This means that the overlap integral X = 2p of the UHF orbitals departs sharply, 
i.e. with a non-horizontal tangent, from the unity level when passing the critical point, 

dp
(As —  = 0 at the critical point, the ratio q of the LCAO coefficients departs from unity

dq
by having a vertical tangent.)

We shall discuss briefly that the continuity of the UHF energy derivative may be 
attributed to the fact that an infinitesimal splitting of the orbitals (i.e. an infinitesimal 
lowering of the parameter p with respect to the value p= 1/2) does not lead to any first 
order energy change in the critical point: by performing the differentiation in (20) we 
obtain that d(£DODs — ^ rhf)/^P is zero here. This interrelationship is, in fact, not
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restricted to our simple model but may be used to show that the UHF energy curve 
must always have a derivative equal to that of the RHF one in the critical point:

The critical point separates the intervals where the RHF energy is stable and 
where it is unstable with respect to the orbital splitting. If only an infinitesimal splitting 
is considered, the partial derivative of the energy difference £ Dods — £ rhf* taken 
according to the appropriate parameter characterizing the orbital splitting in the 
energetically most favourable direction,* must have opposite signs in these intervals. 
Therefore this derivative is zero in the critical point.

The energy £ dods is a continuous function of the orbital splitting parameter as 
well as of the different quantities (one- and two-electron integrals) characterizing the 
system. The latter depend on the internuclear distance, of course. The UHF energy is 
nothing else than the DODS energy obtained by substituting the SCF value for the 
orbital splitting parameter; this SCF value also changes with the internuclear distance. 
Therefore, in order to obtain the change of the UHF energy caused by an infinitesimal 
change of the internuclear distance, one has to determine the derivative of the DODS 
energy in a well defined direction in the space of its arguments, which is prescribed by 
the changes in the different parameters under the influence of the changing internuclear 
distance. This means that the full derivative of £ UHF —£RHF, taken according to the 
internuclear distance can be written as a sum of the partial derivatives of £ Dods — £ rhf 
according to these different quantities, each multiplied by the full derivative of the 
corresponding parameter. At the critical point the partial derivative according to the 
splitting parameter must be zero as discussed above. Now, the partial derivatives of 
£ dods — £ rhf according to the one- and two-electron integrals must be taken by 
keeping the splitting parameter fixed at its value corresponding to the critical point, 
where the UHF and RHF wave functions coincide with each other. This just means 
that no orbital splitting is considered; under this limitation £ DOds ~~ £ rhf is identically 
zero, of course, and all its derivatives vanish. Thus the derivative of the UHF vs RHF' 
energy difference is zero in the critical point and the UHF and RHF curves have equal 
derivatives.

The above considerations may be well illustrated on our simple model. In fact, 
denoting by A £  =  £ DOds -  £ RHf and by pu the SC F value ( 16) of p, we ha ve according to 
(20)

cK £u h f~ £ rhf) I _  d(d£) I _ 
dr r=, dr p=pu

| r  ,c 1r = rc

* We need not specify here the nature of this parameter, only require that it must be continuous and 
have continuous (one side) derivative at the critical point, as well as that Edods must be its continuous and 
continuously differentiable function. (In our simple model the parameter p fulfils, the coefficient q does not 
fulfil these conditions.)
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+ 2(1 -2 p ) m
dr p=pu 

r = rc

{ т (1- 4 Л з ; ] | , .*  + [L —1 r — rc *-
4 y p  — \ ß \ )

dp"
dr P = Pu

r = rc

(33)

The first two terms vanish simply because pu — — at r = rc, the third is zero since

y = 2|/?| also holds at the critical point.
Turning to the second derivatives, we obtain by performing the differentiation in 

(27) and (28)

d2ËRHF d2t 1 d2y d2ß
dr2 dr2 2 d r2 dr2

d 2 £ LIHF _ d 2 t _ 4 ^ d 2^ + 2 ^ d 2 y  4 / d / l  ^  d y \ 2

dr2 dr2 y dr2 y2 d r2 y \d r  y d rJ

(34)

(35)

respectively.* At the critical point r = rc we have y = 2\ß\ = — 2ß, therefore

d2£uHF d2£RHF Г1 (  dy 2 d i m 2n
dr2 r = rc + о dr2 r = rc J i^dr < w J I (36)

According to (17)
d2£uHE _ d2£ RHF

dr2 r=rc-o d r2 r = r/

Eq. (36) shows, therefore, that the second derivative of the UHF energy has a 
discontinuity at the critical point, except the physically unrealistic case (dy/dr =  
=  2d|^ |d r at the critical point) discussed above.

5. Conclusions

The above analysis is based mainly on the consideration of the simplest model. It 
seems, however, evident that the use of the ZDO assumption for the integrals does not 
change the main features of the problem. Thus, for instance, the formulae (8) and (17)

* There is no need to consider the second derivative of the UHF + SP energy, since already the first 
derivative has a discontinuity at the critical point.
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for the RHF and UHF energies, respectively, remain valid also in the ab initio case, if 
one uses Löwdin-orthogonalized basis functions and replaces ß by

and y by
y' = y + K l2.

(K l2 = <Х1(1)Хг(2)кГ21 lfoO)Xi(2)> is the exchange integral for the pair of the orbitals Xi 
and x2 •) Therefore, until ß' < 0, the results obtained for the conditions of the existence of 
the specific UHF solution as well as for the derivatives of the RHF and UHF energy 
curves also require only these substitutions. Some other formulae become slightly more 
complicated; their changes, however, may not influence the qualitative aspects of the 
problem. The main conclusions remain valid also if we turn to the consideration of 
more complicated models with more than two electrons and/or basis orbitals. In fact, 
one can easily generalize for other systems the physical picture which we used to 
rationalize, how the energy of the single DODS determinant UHF wave function 
results from a compromise between different effects acting in the opposite directions. 
One obtains a specific UHF solution differing from the RHF one only if the orbital 
splitting can give a net energy lowering. Therefore, at the “critical point”, where the 
UHF wave function starts to differ from the RHF one, the first order effects of the 
different competing factors influencing the UHF vs RHF energy difference fully 
compensate each other. This conclusion is not restricted to the simple model 
considered and consequently the UHF energy curve must always depart from the RHF 
one quite smoothly, i.e. by having a continuous first derivative equal in the critical 
point to that of the RHF curve. As the triplet etc. components are excluded by the spin 
projection, no such compensation takes place for the U H F + S P  vs RHF energy 
difference; this leads to the discontinuity in the derivative of the UHF + SP energy. 
Since the RHF and the specific UHF wave functions correspond to different branches 
of solution of the variational problem for the single determinants, the parameters 
characterizing the UHF wave function (as orbital coefficients or overlaps of the 
corresponding orbitals), though they coincide with the RHF values at the critical point, 
have discontinuous derivatives here. Only the first order effects of the orbital splitting 
are compensated at the critical point but not the higher order ones; the UHF energy 
curve has a discontinuity of the second derivative.

These results indicate that one can use the UHF method for studying potential 
curves except if the second derivative is needed in the interval close to the critical point. 
One has, however, to take into account also that probably the UHF potential curve 
will give a too quick transition to the asymptotic region when the internuclear distance 
increases. The UHF + SP method may perhaps give a better asymptotic behaviour (cf. 
Fig. 1 in [3]); it is, however, not adequate for studying whole potential curves or 
surfaces. The analysis presented above indicates that the pathological behaviour of the 
UHF + SP curve found in [3] is connected with the essentially nonvariational 
character of the UHF + SP method and not with the particular system studied; similar
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artefacts may be expected in other cases as well. The potential curves given by the EH F 
method (and also by the “Half Projected H F” one [16,17]) are expected to have well- 
balanced shapes, much more correct than those of the UHF curves.

Finally, we should like to make some more general remarks based on the 
differences between the behaviour of the UH F and spin projected EHF methods. First, 
the existence of the specific EHF solution in the interval where the UHF wave function 
does not differ from that RHF one indicates that probably a similar situation can be 
encountered for other (e.g. spatial) symmetries, too. In other words, if one permits the 
breaking of a symmetry restriction and despite of this obtains a wave function which 
possesses automatically the correct symmetry, this fact does not necessarily mean that 
the corresponding projected method (in which the symmetry breaking wave function 
projected on the appropriate symmetry subspace is used as variational one) will not 
give a lower energy. Furthermore, the continuous behaviour of the EHF wave function 
suggests that it is hardly a strict approach to treat [2,18] the appearance of the critical 
point for the UHF wave function as a sort of electronic phase transition (“Mott 
transition”). The critical point is connected with the limitations inherent in both RHF 
and UHF methods and has only a very slight, if any, connection with the problem that 
whether the localized or the delocalized description of the electronic structure is more 
adequate for a given system. This conclusion is in concordance with the recent UHF 
crystal orbital results of [19], where it was discussed that the instability of a “metallic” 
RHF solution towards the orbital splitting occurs when the RHF wave function is very 
bad, and therefore the appearance of the DODS solution cannot really be used to 
describe metal—insulator transitions.
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The Debye-Waller factors for low energy electron diffraction (LEED) for thin films are 
considered in harmonic and anharmonic approximation. The numerical calculation for some 
parameters describing thin film dynamics of the lattice particle in the case of the high temperature 
limit is presented. The results show an interesting distribution of the Debye-Waller factor in the 
direction perpendicular to the thin film surface as well as its anisotropic character.

1. Introduction

We consider the temperature dependence of the low energy electron diffraction 
by thin films. In order to describe the relation between parameters describing the 
temperature properties of thin film scattering we present a derivation of the Debye- 
Waller factors for thin films in harmonic approximation (Sections 2, 3) and we 
generalize the obtained formulas for the case of anharmonic crystals using the 
pseudoharmonic approximation (Section 4). The expressions obtained for the 
temperature, scattering angle and thickness dependence of the Debye-Waller factors 
are discussed in Section 5, where we present some numerical computation results.

2. Derivation of the Debye-Waller factor for thin films

We consider a film situated in a Cartesian coordinate system with z-axis oriented 
in the direction perpendicular to the surface of the film. We divide the film into n layers 
determined by atoms belonging to the crystallographic planes parallel to the surface of 
the film. The position of an atom in plane is given by the two-dimensional vector j, and 
the layers are labelled by v. The dynamics of the crystal lattice of thin films are 
determined by the Hamiltonian in the harmonic approximation

H = w ï ( P l j ) 2/ M „ j + ~ y j I  < в Т ÔRliôRÏy- ( 1 )
Z vjs Z vjs

where Psl>i and ôRsvj are the 2-components of the momentum and the displacement
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operators, respectively, belonging to the (rj)-th atom. Asvs-v y denote the tensor elements 
of the interaction forces, Mvi is the mass of the (rj)-th atom.

In the representation in which the Hamiltonian (1) has the diagonal form [1]:

where wqXll are the frequency eigenvalues, nqXfl denotes the average number of phonons 
in the (q//í)-state, N is the number of the atoms in the each atomic layer parallel to the 
surface, and n is the total number of the atomic layers of the film, q represents the 
propagation vector in two-dimensional space belonging to the first Brillouin zone. The 
operator eqXfi denotes the transformed polarisation vector, and ТЦЯ are the 
transformation coefficients in the direction perpendicular to the surface of the film. 
ачЯ>1я ,Я/1 are the creation and annihilation operators of a phonon in (qz^)-state, 
respectively.

By means of the expression (3) we can calculate the mean square displacement 
<<5R̂ > of the (rj)-th atom in the film. The result is:

This result can be used to determine the temperature dependent atomic potential 
Kj(r — R„j) of the (rj)-th atom in the film, supposing that we know it at the temperature T 
= OK. Namely, let us denote by K0(r — R„j) the scattering potential of the (ly')-th atom in 
the film at zero temperature, thus following [2] we can determine VT

We consider now, as an example, the diffraction of the electrons by the film. In this case 
Koir-R^j) can be written in the standard way

where the numerical coefficients a„ and ß„ are given for different atoms by Tietz [3]. In 
this case the temperature dependent potential of the (rj)-th atom Kr (r — R„j) can be

( 2)

the displacement <5R„j can be written as follows

(3)

(4)

(5)

( 6)
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calculated by means of Eq. (6) and Eq. (5), and as a result we obtain

Ze1 №B*
*7-(Г —R,j)= -  -, p . X >„f„(lr - Rrjl)g 2 , (7)

Z I Г Ky j  I n

where F„(|r — R„j|) is given by

For the above determined potential one can calculate the scattering amplitude of 
the (nj)-th atom in thin film in the first Born approximation at a given temperature. The 
result is

f A  K ,q) =
m ® , „ s i n  (Kr)
—  Z  4яг2Кг(г—R^) —  —-

2nh~ “o 

2mZe2 у

Kr

K2BV
n ß 2n+ K 2 (9)

where К denotes the scattering vector.
The total scattering amplitude of the thin film can be written in the following way

f T(K,n)
K 2B V 

2 =
n

I
1=  1

K 2BV

/ ? ( K ,  S)e~ —  , ( 10)

where f^ (K,S)  denotes the scattering amplitude of the (n)-th atomic layer at the 
temperature T=0K, and S stands for the value of the surface area. Because only the Bv 
quantities are temperature dependent in the expression (10) the temperature effect of 
the diffraction is described by the exponential factors

k 2b  „

9v = e~ 2

which corresponds to the Debye-Waller factor in the bulk theory, but in the thin film 
case it is the position dependent quantity and should be calculated for each atomic 
layer parallel to the surface.
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3. A model for the factor gv calculation

The gv-factor can be expressed by the Debye-Waller coefficient Wv =  у  K 2BV in

the form
( 1 1 )

and we will calculate the Debye-Waller coefficients Wv. In order to calculate the 
coefficient Wv we have to know the dispersion relation of the phonons in thin film and 
the quantity T*x.

The phonon theory of thin films elaborated by Wojtczak and Zajac [1] allows us 
to write the quantity T*x in the general form

TvX = Ax cos(<xxv + ßx), (12)

where ax and ßx can be obtained from the boundary conditions, dependent on the 
structure and orientation of the film. For simple cases they are determined in [1]. Ax in 
Eq. (12) are the normalization constants. In order to obtain an analytical result for the 
Debye-Waller coefficients we chose a simple dispersion relation [5]

2 4xa ■ 2 1 Sin2 у  +  sin2 A' . 2«я
+ л т Т

1/2

W,q л 3 = vvm|jïin2Яха + sin“1 «  2 — sin 
В

(13)

where A, A and В, В denote the force constants.
Inserting the relation (4) and (12) into Eq. (11) we have: 

hK2
Wv = -------=— У A \ c o s 2 ( olx v  + ßx) •

v AMN2n i t  x

Í . 2 Л 2 cth (hw xl/kT) . 2 . 2 cth(hw X2/kT)■ < sin2 0  cos g>---------3---------- f- sin 0  sin ( P -------- ----------- h
l wqA1 wqi2

+ cos2 0
cth (/т-„яз//сГ)|

^,23
(14)

The sum over q, due to the periodic conditions which are fulfilled in the direction 
parallel to the plane of the film, can be replaced by an integral using the relation

! ( . . . ) =
s

4i?

a

Í J dqxdqy(. . .)
It П
a a
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thus Eq. (14) becomes

where

hK2 "
Wv = 4M N 2n  X, T »x {71W s i n 2 0  + COS2 0/3(Я)},

, , n  4N 2k T t I 2
Л(А)3 — ■ In I 1 +

1/2

rcÄw2 • 2 “ I 
E j  S in  —

A'

, / n  4N2kT (  
/ 3W  = In 1 +

2-

2 \ 1/2

2 “ 1£b sin —

Ел =

and we have made the use of the fact that in our model WqXl = WqX2. 
Let us introduce the following quantity

1 " Í 2 \ 1/2
4 v ( n )  =  -  £  т2х \п 1 +n 2 <*2 Ea sin2 у J

1 " / 2 \ 1/2 
?«(«) = -  I  T ^ ln ( l  + -------- -n 2=1

EB S in ‘  —

thus we can rewrite Eq. (15) in the form 

K 2kT
W„

7 lM w 2

K 2kT

r]v(n) [sin2 0  + COS2 0

4яЛ

К  > 7»

> /»  [1 + ^ (n )  cos2 0 ],

where

Ш  =  - rf
W2 i/„(n)

1

(15)

(16)

(17)

(18)

(19)

( 20)

and can be called the anisotropy coefficients of the Debye-Waller factors of thin films.
From the last form for quantity Wv one can see the anisotropic character of the 

Debye-Waller factor as well as its position and the thickness dependence.
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4. Debye^Waller factors in pseudoharmonic approximation

The model for the Debye-Waller factors calculation presented in the last 
paragraph for thin films can be easily generalised to the case of anharmonic 
approximation [4, 7, 8]. It is known [4, 7] that the solution of the Green function 
equation in the pseudoharmonic approximation has the same form as in harmonic 
approximation but the frequencies of the phonons are renormalized by some 
temperature coefficient a( T) as follows

^ A„ =  a2(T )w ^,

where wqA(J are the harmonic frequency and a(T) is defined by [4]

a2( 7 ) = l - 3 6
0R uJ-<5R„t )2

Using the same renormalization constant for all branches ц the pseudoharmonic 
Debye-Waller factors take the same form as in the harmonic model, namely

Wv = K kJ- ■ rjv(n) [ 1 + <Цп) cos2 0 ],

where by Wv we denote the Debye-Waller coefficients in the pseudoharmonic model 
and fjv(n) is given by

nini
( 2 1 )

- , , 4v(n)
4 v (n ) = -27—*2( T)

and

W, =
Л Т )

( 22)

One can see that the anisotropy coefficients Çv(n) are the same as in the harmonic 
model. From the above formulas it is evident that the anharmonic model of the film 
even in its simple pseudoharmonic approximation changes the temperature de
pendence of the LEED amplitude.

5. Numerical results

In this Section we present the results we have obtained numerically using the 
formula for the Debye-Waller factors of thin films derived in Section 3 in the harmonic 
and pseudoharmonic approximation (Section 4). All numerical computations are done 
for the film of n = 10 atomic layers, with an asymmetric boundary condition and with 
s.c. structure. The orientation of the considered sample is chosen as [001]. For this case

we have ßx = — olJ2  and ая = ^  . In Fig. 1 we present the obtained distribution of the
2 n
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Fig. /. Debye-Waller factor distribution in the direction perpendicular to the surface =0.5, ee = 0.5, r.= 1,
<9=180 )

Fig. 2. Debye-Waller factor distribution in the direction perpendicular to the surface, for different angles
— 0-8, i:B = 0.9, £ = I )
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Fig. 3. Debye-Waller factor distribution in the direction perpendicular to the surface, for different
parameters (eB = 0.9, £= 1, 0 =  180“)

Fig. 4. Temperature dependence of the pseudoharmonic effect of the Debye-Waller factor

Debye-Waller factors in the thickness direction of the thin film. In Fig. 2 we show the 
same distribution but for two different angles of the diffraction. Next, in Fig. 3 we 
present the distribution of the Debye-Waller factors for different surface parameters 
eA. The results of the harmonic and pseudoharmonic approximation for the Debye- 
Waller factors are compared in Fig. 4, where we show the curve of the temperature

Wv
dependence of the quantity —f .

w
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The authors have used the RETTUPS Monte Carlo computer model for the simulation of the 
sputtering process. After the setting of the program for pure targets the sputtering features of binary 
alloy targets have been modelled by simulating a mean event. The composition changes of the surface 
close layers in Ni—Au, Ni Pd and Ni—Cu have been examined, comparing the results to 
experimental data of the literature. The sputtering has been executed by 1 keV Ar+ ions. The 
influence of the mass ratio and that of the binding energy ratio of the components on the sputtering 
features have also been investigated. As a conclusion the qualitative measure of surface enrichment in 
these target systems could be determined.

Introduction

The ion sputtering of multicomponent alloys has become the research area of the 
recent years. As there were already a large number of experimental data available for 
the sputtering yields of pure metals [1], the attention of researchers has been drawn to 
multicomponent targets. Surface enrichment, preferential sputtering [2, 3, 4] and 
cascade mixing [5, 6, 7] are characteristically important questions to solve in 
multicomponent targets and these tasks require the observation of the ion bombarded 
surfaces.

The development of this kind of research work is mostly due to Auger Electron 
Spectroscopy [8, 9, 10, 11, 12]. Anyway, we can accept the sputtering features of a 
multicomponent target only, if the so-called steady state sputtering is already reached 
[13], i.e. the sputtering yield ratios of the bulk correspond to the stoichiometric ratios 
for the components. That is the way how Shimizu [14] and later Betz and his co
workers [15, 16] have carried out special Auger examination procedures, which 
may result in a qualitative estimation of the measure of surface enrichment or 
preferential sputtering in binary alloy targets. The target is bombarded by ions within 
UH V environments and the sputtered material is deposited on a substrate placed close 
to the target surface. During the sputtering they examine the surface of both the target 
and the substrate by AES. Obviously, from the assumption of the steady state 
sputtering, the target surface corresponds to the bulk conditions, while the surface of
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the substrate shows a temporary, altered surface composition. A ratio results from 
the Auger intensity ratios measured this way, which is thus characteristic to the 
degree of surface enrichment (or depletion). Betz and co-workers have worked out 
another similar method. They measure the Auger intensity ratios originated from 
scribed or fractured surfaces of the target and from the sputtered areas within UHV 
environments and draw a conclusion for the stationary value of surface enrichment.

There is not only an experimental way leading to the examination of the 
influences of ion sputtering and the understanding of the complex processes in the 
target material. Many researchers use analytical methods (mostly by approximately 
resolving the Boltzmann transport equation [5, 17]) to find out, how the composition 
of the target changes due to ion bombardment. Others apply computer simulations 
[18, 19, 20, 21, 22] accepting the measured sputtering features as the test of their 
models. These authors expect from their models to serve predictions on unknown 
features.

The model

One sort of the simulations models the target as a gaslike material. We could not 
use this approximation, as we do not have an appropriate method to take into account 
the different kinds of particles by the collision cross sections [23]. The other type of 
models simulating an amorphous target [20] can probably show a realistic picture of 
the sputtering process, but the computational difficulties do not allow us to use this 
possibility. For a good synopsis of the physical problems, easy handling and limited 
computer time we chose first a monocrystal target model, by which we could obtain 
results comparable to experimental data, and which were also suitable to predict 
qualitatively correct sputtering features.

For the simulation of the collision dynamics, we have chosen the binary collision 
approximation, and every interactive particle has a screened Coulomb potential. The 
choice of the interaction potential can be explained by its reasonable fitting feature 
besides the economic point of view of the computer time. Therefore the applied 
screening function was the Bohr function [24]:

F(r)=Fc(r)exp( —r/a),

where V(r) is the applied potential, Vc(r) is the Coulomb potential and

, «в
(Z ^  + Zl'3)1'2’

where aB is the first Bohr radius, Z , and Z 2 are the atomic numbers and к is the fitting 
parameter. This function connected to a reasonably chosen maximum impact 
parameter (p =  d/yj8, where d is the lattice constant) has become useful to describe the 
collision processes in a crystal target which is built up from nonoverlapping spheres.
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The modelling of the collisions and the characteristics of the crystal depend to a 
great extent on the choice of the special energy values, as the displacement, threshold 
and binding energies. Let us consider a collision, where the initial kinetic energy of the 
primary particle is £ ,, and after the scattering E { — ET, where ET is the transfer energy. 
The lattice atom can be displaced, if ET> Ed (where Ed is the displacement energy) and 
it can be added to the cascade so with an energy ET — Eb, where Eb is the binding energy. 
The active, moving particles are followed in the program as far as their energy decreases 
below Ec, where Ec is the threshold energy. A moving particle can replace a lattice atom 
on its site, if ET>Ed and E x is less than the minimum of Ec and Ed. In our model Ec is a 
constant value that corresponds to the isotropic surface binding model [20]. A 
common value of 3.5 eV proved to be suitable for the metals under investigation. The 
other two energy values are chosen to be equal to the cohesive energy of the crystal 
[25]. If Ec was chosen according to the planar model [21,26,27],(i.e. the velocity of the 
moving particle perpendicular to the surface corresponded to the velocity contained in 
threshold energy Ec), then the low energy edge of the sputtered particle spectrum 
slightly decreased.

Fig. I. The sputtering yields of Ni vs the primary energy. The bombarding particles are A r+ ions. The 
deviation bars denote the measured results

To test our model we have begun our investigations on pure metal targets. Since 
we had enough experimental results for comparison to our calculated ones for nickel 
[1] and since Ni produces an f.c.c. lattice, a structure well-suiting our model, we have 
used a Ni monocrystal target bombarded by Ar+ ions with the primary energy of 
1 keV.

In Fig. 1 the sputtering yield of Ni is shown as a function of the primary energy. 
The results are in satisfactory agreement with the measured data (deviation bars) [1]. 
Further on we will always speak about normal incident angle, and about the (100) 
incident plane of the crystal.
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Results

The change of the surface composition in binary alloys was examined by the 
model in Ni—Au, Ni— Pd and Ni—Cu systems. First of all we were interested in how 
the mass ratios and the binding energy ratios influence the composition change, the 
preferential sputtering.

In Table I one can see the binding energy values (Eb) from the literature [6, 28], 
the experimental sputtering yields (Sexp) [2], the binding energies used in the 
calculation (Eb) and the calculated yields for pure materials (Scalc). The Fitting 
parameter is always 1.1 here according to the tested simulation for Ni.

Table II contains the mass and binding energy ratios [6, 28].

Table I

Binding energy and sputtering yields

£„[eV] S „p[ l  keV, A C ] Sc.,c[l keV, AC] £?[eV]

Au 3.8 3.6 3.2 3.5
Pd 3.9 3.1 3.0 3.8
Cu 3.5 3.6 3.8 3.5
Ni 4.45 2.2 2.4 4.6

Table II

Mass and binding energy ratios

Ni—X M J M X £?ni/£*x

( Au 0.298 1.314
X  ̂ Pd 0.550 1.211

t  Cu 0.924 1.314

From the different compositions we could infer the influence of the mass ratio 
[29] in the case of Ni—Cu resembling Ni—Au, while in the cases of Ni—Pd to Ni—Au 
and of Ni—Pd to Ni—Cu we could obtain information on the influence of the binding 
energy ratios [30].

For the first time now let us consider a solid solution crystal target consisting of 
A and В types of atoms. We examine the behaviour of this sample after sputtering by 
1 keV Ar+ ions. The atomic mass and binding energy of the different types of atoms are 
different.

In Fig. 2 one can see the sputtering yield ratio (S,,/SB) vs the concentration ratio 
of the target (C J C A). The function parameter is the mass ratio (ц = Мв/МА). The 
binding energy is the same for the components. The decreasing slope of the linear 
functions shows the physically understandable fact that during the development of the 
cascade only a smaller amount of atoms with bigger mass displaces from the lattice site.
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Fig. 2. The sputtering yield ratio (SB/S A) of a target consisting of A and B types of atoms vs the concentration 
ratio of these elements (CB/C A). The function parameter is their mass ratio (g = Мв/М л). The binding energies

are the same (Еьл =  EbB)

Fig. 3. Similar functions to those of Fig. 2. The function parameter is the binding energy ratio (ç = Еьв/Еьл).
The masses are the same (M A = M s)

In Fig. 3 the case is similar, but the function parameter is the binding energy ratio 
(Ç = EbB/EbA), and the mass is the same for the components.

According to these investigations we concluded that the sputtering yield ratio is 
more sensitive to the change of the binding energy ratio of the components, than to that
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of the atomic mass ratio. In these investigations the concentration ratio has no 
significant role within the accuracy of the computations.

Considering a real alloy the main problem is, how the partial sputtering yield 
ratio of the alloy depends on the yield ratio of the elements. This is the first question to 
deal with, when studying the preferential sputtering. Probably, that component will be 
enriched on the surface which does not sputter preferentially according to the yield 
ratio of the pure materials.

Table III shows the measured sputtering yield ratios [16, 28] of pure materials 
(SA/SB (pure)), those of alloys (SA/SB (alloy)), and, finally, the calculated ratios (SVSB) in 
the cases of the alloys under investigation. A = Ni in the Table.

T able III

Sputtering yield ratios

A - B S,/S„(alloy) SA/S„ (pure) S,/S„

( Au _ 0.55 0.673
B ( Pd 0.67 0.71 0.78

( Cu 0.625 0.611 0.72

As our RETTUPS Monte Carlo simulation program registers the number of the 
displaced and stopped atoms in every atomic plane, the possibility is given to determine 
depth profiles.

The program models the average collision cascade induced by one bombarding 
particle, and the kinetics in a model cannot be followed without memory. For 
substitution we applied the following conceptual model. Let us consider the depth 
distribution of the sputtered particles, and let us have its average value. In agreement 
with the literature we came to the conclusion that the overwhelming majority of the 
sputtered particles originates from the surface close some atomic layers [26, 32, 33, 34, 
35]. (Nevertheless, the cascade mixing disturbs the material at a depth of about 10 nm 
[5]). Let us now figure that on the surface there is a sputtering effect different from the 
one in the bulk material in steady state condition. This sputtering does not happen in 
stoichiometric ratios, which causes a surplus in one kind of atoms. With the 
assumptions that the profile of this surplus in the target is linear and the bulk sputtering 
is according to the steady state condition we suppose that in the middle of the surface 
close layer, where the disturbation is the strongest (in the third atomic plane below the 
surface for example) the value of the surplus concentration is equal to the mean value 
determined above. A linear function recounted to the target concentration therefore 
shows that the sample is in steady state, but there is preferential sputtering, which 
means that there is an enriched component on the surface. These linear functions are 
denoted with the dotted lines in Figs 4, 5 and 6 . The thin horizontal lines show the 
concentration before sputtering.
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Fig. 4. The Ni concentration aftersputtering by 1 keV A r+ ions in a Ni—Au target. The initial composition is 
denoted by the horizontal line. The dotted line shows the linear function according to the conceptual model

of surface enrichment

Fig. 5. The Ni concentration after sputtering by 1 keV A r+ ions in a Ni—Pd target. The initial composition is 
denoted by the horizontal line. The dotted line shows the linear function according to the conceptual model

of surface enrichment

Fig. 6. The Ni concentration after sputtering by 1 keV A r+ ions in a Ni—Cu target. The initial composition is 
denoted by the horizontal line. The dotted line shows the linear function according to the conceptual model

of surface enrichment
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In the above model our supposition was that the maximum change of the 
concentration is smaller than 20% per atomic planes. A bigger deviation would mean 
such a drastical modification of the material that a linear model could not include it in 
the calculation. The other assumption that the cascades are independent and 
nonoverlapping is fulfilled in the measurements, too [16]. This is due to the small 
primary doses. Owing to the small value of the primary energy we may neglect the 
examination of greater depths of the target (z/d> 12, where z is the depth measured 
from the surface, d is the lattice parameter).

Figures 4, 5 and 6 show the concentration of Ni after sputtering in Ni—Au, Ni— 
Pd and Ni—Cu alloys with the initial composition of 50% as the function of the 
normalized depth.

According to the Figures, there is a small Ni enrichment on the surface in the case 
of the Ni—Au target and no enrichment is found at Ni—Pd within the 10% standard 
deviation of the computation. There seems to be a significant enrichment of Ni at Ni— 
Cu. As the experiments show in the third and second case there is a certain amount of 
Ni enrichment [3, 16] a more significant one for Ni—Cu and a small one for Ni—Pd 
(2 keV Ar + ). We have no measured data about the surface composition change in Ni— 
Au systems.

Conclusions

The RETTUPS simulation model developed by the authors can produce 
valuable and comparable results which in an experimental sense agree well with the 
sputtering yields of pure targets of the literature (Ar + ). With the parameter 
values fitted to pure targets we could reach qualitatively good results in the 
investigation of binary alloys.

It can be seen that the sputtering features of the pure materials survive in alloy 
sputtering. This fact must be partly due to the assumption that the binding energies are 
invariantly transferred from the elements to the alloy components. According to our 
calculations and the measured data [35] the total sputtering yield increases linearly 
with the concentration from the material with lower sputtering yield to the other with a 
higher one. For deeper-going conclusions we should need further knowledge of the 
atomic processes in solids.

Sigmund has pointed out the fact that according to the measurements the 
composition of the surface close layers is different in the case of high and in the case of 
low primary ion current density [ 17]. In his calculations performed on a small intensity 
primary beam the tendencies agree with the results of our model computations. The 
component with higher atomic mass value enriches on the surface, if the other features 
of the components are similar [16, 36].
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VIBRATION OF A VISCOELASTIC 
FLUID SPHERE

K . D ob ró k a

Department of Physics, Technical University for Heavy Industry, 3515 Miskolc, Hungary

(Received 9 September 1982)

The characteristic equation for the vibration of a viscoelastic (Oldroyd or Maxwell) fluid 
sphere is derived. It is shown that this equation can be written formally in the form obtained by 
Chandrasekhar for selfgravitating viscous globe. Real solutions corresponding to the first two 
aperiodic modes and the complex solutions corresponding to damped oscillatory motions of the 
Oldroyd liquid sphere are also evaluated.

1. Introduction

Previously it was shown by Tang and Wong [ 1 ] that the characteristic equation 
determining the aperiodic and vibrational modes of an incompressible viscous globe 
under the action of gravitational or electrical forces (with high, low or zero electric 
conductivity) and surface tension can be reduced to the form given by Chandrasekhar 
[2]. This characteristic equation is a very general one. It can be applied in a broad range 
of phenomena such as vibration of stars, liquid drops and of atomic nuclei, too. Our 
purpose is to show that under more general conditions, when the fluid has viscoelastic 
nature, the characteristic equation can also be written in the form of Chandrasekhar’s 
equation.

To describe the viscoelastic nature of some polymers and suspensions Oldroyd 
introduced the constitutive relation [3]

{ 1 + + = {1 + ей} 2 r , e ‘k ' *1 *

where aik is the stress tensor, p is the scalar pressure, — is the mobil operator, eik is the

rate of strain tensor -HIM).
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г] is the coefficient of viscosity, Aj is the stress relaxation time, A2 is the strain retardation 
time, ôik is the Kronecker delta, while vh x, are the velocity and position vector, 
respectively. With the help of ( 1 ) the stress relaxation and strain retardation obtained in 
some fluid mechanical experiments can be interpreted. In the following we shall treat 
the small amplitude vibration of an incompressible Oldroyd liquid sphere.

2. The characteristic equation

After Chandrasekhar, the boundary of the vibrating mass is assumed to be sharp 
and given by

r'(9, <p, t)=R + e{t)Ylm(9, <p), ( 2)

where R is the equilibrium radius, is the spherical harmonic and

e(t) = e0e~al,

where e0<^R. We can write the linearized equation of motion as

1 + Я | ^ } { ^ 7  +  w j  =  j l + Л ,  Vzlv,

V being the kinematic viscosity, p is the máss density,

ő p  , P *  X I /w = -----(- —  oV,
P P

(3)

öp and ö Kare the perturbation of the pressure and of the (gravitational or electrostatic) 
potential caused by the vibration, p* is the corresponding mass or charge density, as 
the case may be.

Assuming the time dependence of all quantities in the form similar to (3) we get 
the only space dependent equation

1 — A2<t— <tu + V -— -—  rot rot u = — grad w ,  1 — A,<r (4)

u being the amplitude of the velocity. As in the papers [1], [2] the quantity w can be 
written as

w = Po E + —  /  (0 *Ylm =  (/ +  1 )n 0r‘e Ylm, к  p t\ (5)
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where P0 and П0 are constants and

——-  CM for self-gravitating globe,

Л1)= <
—— -kO  for uniform volume charge,
21+ 1 *  6

^  f°r sur âce charge with low conductivity,

V 0 for surface charge with high conductivity.

Here G denotes the gravitational constant, M is the mass of the globe, Q is the electric 
charge and k = (4ne0) ~ \  e0 being the vacuum permittivity. (Whether to take the 
gravitational field into account in the case of viscoelastic liquid drop is of course a 
purely academic question; this is done only to complete our discussion.)

By means of Eqs (4), (5) it can be seen, that u is a poloidal vector with the 
components in spherical coordinates [4]

( 6)

r sin 9 dr d(p
1 d U(r) dYlm c _at

where U(r) is the determining scalar function satisfying the equation

(7)

The general solution of Eq. (7) is

U = Ar2jl + ̂ (qr) — ^  n orl + ( 8)

where У) + ̂ .(х) is the spherical Bessel function of order / + — and
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The constants appearing in (8) can be determined by means of the boundary 
conditions:

(i) The ur radial component of velocity must be compatible with the form of the 
boundary given by Eq. (2)

ur(r^r ')=  ~ ( 7 E 0 Y,m e ~ a‘ . (9)

(ii) The tangential stresses

1 — A2<t f 1 dur
a» =pVT ^ \ - r - d 9

Ц» dus 
r dr

\ - X 2<j{ 1 dur uv
(Trip P v j _  | r sjn ^ ^  r f a

must vanish on the boundary.
(iii) The (r, r) component of the total stress tensor

° r r  =  P o  +  ô p - 2 p v
1 — i 2er dur 
1 — A,er dr

on the deformed boundary must be equal to the force acting on a unit surface because of 
the surface tension and the Coulomb repulsion.

Combining Eqs (6) and (8), the boundary conditions (i), (ii) give

and

A =
2(1 —  1)e 0 o R 2

1 { 2 x J 1 + * ( x ) - x 2J i +}_(x )}

П n = - ,  t i l _ _ _ _ u
I -  1 t  - > „ n  1 ^ 2  '  ’/( /+ !) /? '- ' (2x(?/+i(x) —X

( 10)

where the notations

X  =

and

Q,+

loR2 1 — k xa
V 1 —  A 2 <7

1 , Л ( х )

2 Л +i M
were used.

By means of the boundary condition (iii) we can find

K o T /a + iK io R 1- 1} ^
21 \ —l 2o(dur
R 1 — Xi<x \  dr / ,=“  = 0 -

where

a l o  = K l ~  1) (I +  2) ̂ 3  - {  B(l) +  ^  f  (/),

(П)
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T is the surface tension and

B(l) =

GM
"

3kQ2 
4  n p R 2

for uniform gravitating globe,

for uniform volume charge,

l2 —31—2 kQ2
21+ 1 4npR5 

kQ2
( / - 1)-

for surface charge with low conductivity,

for surface charge with high conductivity.' AnpR5

Taking into account Eqs. (10), (11) the following equation can be written

ojo 2(l2 — 1) 2(1—1)1
a 2 X 2 —  2xQ,+}_(x) X 2

which is formally the same as the Chandrasekhar characteristic equation.
In the special case, when Д2 = 0 Eq. (1) gives the constitutive equation of the 

Maxwell fluid, so Eq. (12) can be considered as the characteristic equation of a
Iq-R2

vibrating sphere of Maxwell fluid with x =  /-----(1 — A,<r). I f / ,  =0  and X2 =  0 Eq. (1)

gives the state equation of the Newtonian liquid. In this case the Eq. (12) is completely

the same as the Chandrasekhar equation with x =

In the following we exclude in our considerations the gravitational case and give 
numerical results concerning the viscoelastic drops.

I -■
2(/+  l)ß,+I(x)

-2e ,+i(x)
( 12)

3. Aperiodic motion

x = a
1 — a.cr*

r* ----------
1 — a2<7*
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The real solutions of Eq. (12) describe aperiodic motions of the fluid sphere. In 
order to find numerical results, it is suitable to introduce dimensionless quantities: the 
relaxation “time” а1=Я 1<т/ 0, the retardation “time” a2 — Я2<г,-0 and the generalized

, a, 0R2 _
viscosity а = —----- . So we can write

V
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with «г* = . The special case of =  <x2 also gives the results of Chandrasekhar [2]
ai,o

and Tang and Wong [1]. The viscoelastic nature of the fluid is shown by the fact that
a 1— ф 1. On the other hand, it was shown by Oldroyd [3], that Aj >Я2 Ш тг ^i> so our 
a 2 9
numerical calculations are carried out in the case, when the non-Newtonian feature of

a,
the fluid is most characteristic: — = 9 [3].

«2

Fig. I. The real solutions of the characteristic equation for / = 2 in the interval 0 < <r* < — as a function of ot2
ai

at various values of the parameter a, (full curve). The broken curve shows the results of Newtonian case

As is shown by Chandrasekhar, there is an infinite number of intervals of x, 
where the characteristic equation has real solutions. The first of them for 1 = 2 is 
0 < x  <2.6656.

In Oldroyd fluids two regions of real a* roots can be separated. In the first one 

ff* <  — and at small a* the solutions concerning the viscoelastic drops are near to
a i

those of Newtonian fluid sphere. At the relaxation “times” a, <0.2104 the curve a2(ff*) 
has a maximum a„ax (Fig. 1). In contradiction with the Newtonian case, this maximum 
is only a local one, there can also be aperiodic solutions in the range a2> a 2ax. At a 
value a, =0.2404 the curve a2(ff*) has an inflexion point, where a2 =  4.7374, while at 
larger values of otj the curve is monotonie. The local maxima belonging to various 
parameters are in the interval

3.6902 < a2 ax < 4.7374.

In the other range a* St — , the solutions are plotted in Fig. 2.
a 2

For /=  3 similar results can be found (Fig. 3). The first interval of x in which real 
solutions exist 0 <  x <  4.0019. The curve a2(<r*) has a local maximum at the values of the 
dimensionless relaxation times a, <0.2229.
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Fig. 2. The real solutions of the characteristic equation for Í = 2 in the range a* ä  — as a function of a2. They
“2

are labelled by the value of a.

Fig. 3. The real solutions of the characteristic equation for / = 3 aperiodic modes of decay as a function of a2, 
labelled by the value of a, (full curve). Broken curve shows the 1 = 2 mode with a, = 0 , 1

Fig. 4. The first order (broken line) and second order (full line) real solutions of characteristic equation for 
1 = 2 and / = 3 with a ,= 0 , 1 as a function of a 2
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The second interval of x giving real solutions are for 1 = 2 5.311 4 < x < 5.4730 

and for 1=3 6.6308< x < 7.1003. In the range of a* <  — the results for a,=0.1 are
0Et

plotted in Fig. 4.

4. Periodic motion of viscoelastic drops with damping

The complex solutions of Eq. (12) are similar to those given by Tang and Wong 
[ 1] in the sense that when the local maximum a^ax exists, for a2 ><*„„„ the imaginary 
part of a* rises rapidly from 0 towards 1, and at a2 =  a2ai the real part of a* coincides 
with the aperiodic solution. This is shown in Fig. 5 for / =  2 and in Fig. 6 for / = 3. As in

Fig. 5. Complex solutions of the characteristic equation are plotted as a function of a2 labelled by the 
parameter a , . The real part of the a* is shown as a full curve, the imaginary part is shown as a broken curve.

The order of deformation is 1 = 2

Fig. 6. Complex solutions of the characteristic equation as a function of a2. The orders of deformation are 
1 = 2 and / = 3. The dimensionless relaxation “time” is a, =0, 1
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Newtonian liquids there can exist no complex solutions for a2 <oc2ax. Because of this 
fact a critical radius exists, above which periodic motions occur:

^ c r i t  ®max

In Oldroyd fluids the local maximum otmai and also Rcri, is always greater than that in 
Newtonian liquids.

5. Conclusions

Applying the constitutive equation of the Oldroyd fluid the Chandrasekhar 
characteristic equation is derived in a more general form. Our results give both the 
characteristic equations of vibrating Maxwell and Newton fluid spheres as special 
cases. Real and complex numerical solutions concerning the Oldroyd fluids are given.
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THE PARTIAL WIDTH OF THE HIGGS BOSON 
IN H ^ W  +  W ~ y  DECAY

T. T o r m a

Astronomical Research Institute, 1121 Budapest, Hungary 

(Received 12 October 1982)

The partial width of the process II ->W * W y is examined in the standard Weinberg-Salam 
model. The photon spectra are plotted with different m„>2mw values. The decay ratio R = 
= r(H -* W +W-y)/r(H->W+ W ~ ) is evaluated and found to beO(.Ol). This process may be observed 
at mH ~  150 GeV.

The decay modes of the neutral Higgs boson are discussed in the literature [1-4]. 
The characteristic feature of these processes is that H decays into the heaviest particle 
kinematically available. This is the result of generating the masses by spontaneously 
broken Higgs-fermion interaction; so the coupling constant is proportional to the 
fermion (or W ) mass. This makes the decay mode very sensitive to m„, which is a free 
parameter of the theory. There are hopes that in photon production processes in the 
range of small photon energies a propagator can be made small in Feynman graphs, 
and the decay rates are increased.

In this paper we examine the decay H -» W  + W ~ y. The corresponding Feynman 
graphs are shown in Fig. 1. The interaction is given by the vertices

Hl = g m w H (x )-m x )W l(x)
or (1)

gmw - e\W + J-  EÀ(Woul)
and

d  [(*3 +(k2- k 3)lllgli2li} + (kl к2)ц3У • (2)

The differential decay width is

d r
1 d3p d3<7 d3k 1

■ (2n)*ô4(k + p + q -H ) I  |W |2,
polar, of W + . W

(3)
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where the S-matrix element has the form

+ Щ Р к  + ,£,) M )  + [Êpp* + ,  • (fc -« ) ]  (£,£/)} +

‘«»'Ии' , , Mi/- ч

-  2( e q f ) k + pëpjipe/) + 2(е,рк + рвДЦ,)},

(4)

where all vector indices are omitted, eö are the polarization vectors for the particle with 
momentum Q:

3 /  Q * Q » '

Ре =  I  ejQejQ= - \ 0 Хц-j= 1 m2w
= (Q2- m 2w)Dt{Q)

and for the photon
Pf = Py = k2 ■ DF{k).

Substituting (4) and (5) into (3) we choose a special coordinate system

(5)

kx = mw ■ j  ( 1 |0 |0 |

Hx = mw (

P = % •

q - m w

/  Я x
V 2 ~ J

|0 |0 |

ЮИ1

l

à ( \  à 
2 ~ X V ~ y

m

Я X у У , 1 1 Я
2 + I - I |0 | - 4 | - i  + -  +  x Va у 

А2 = -у ( \ - - ^ ) ( Х 2- 2у)- \ ,

) Я = ^

) у =

mw 

тиЕу 
m2„

ß = T w/mw
(6)
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and integrating over W +W phase space we find

d Г
dT y

f d W )

8(2л)3 sin2 Qw (gmw)
dx-Z|SH|;

j  ( l  - V I  — 4/(A* — 2y))

( 7 )

where the physical range for у is

° ^ T -  2. (8)

As a result we have •d +v>
d f
dE (2n)sin2 &w Я;2 dx •

j  (l -V)

+
Г2(х, у, Я)Fi(x, У,*)

x 2+ ß2 ' [x(y —x) + /)2] 2 + /i2(2x —y)2J ’ ( 9 )

where

F, = 2(x2 —x + y) + A ■ <2 + I ——  1 + y - y 2 + (2 y - \ ) -  x — x

F2 = 2x2 -  A • < y + 2 V 2 2 V 2
2 1 /Я2

_  у  ( у  ~  1

,  + И Г - Ч  + Г + 2 х +  Зух2 — 2х3 >. (Ю)

The finiteness of VT boson width is taken into account by substituting mw~* 
-*mw — i r w in the W denominator.

We have integrated (9) and found an expression we do not display for lack of 
space. The result is plotted in Fig. 2. To get the width, it was numerically integrated over 
Ey. For comparison we computed the total width Г(Н ->W+ W~), and the ratio to 
H^*W *W ~y  is given on the graphs as

R — Г n-*w+w-y/I и -  tv * tv-■>

where

F ц -w* w — g mtv \ f ^ ^
2 +  ( y - l
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Fig. 2. The dr(H -*W *W  y)/dEy differential cross section against Ey.n  is the fermion generation number, Г 
means F ( H ^ W '  W~y) and R = Г(Н - W +W ~y)/r(H -*W +W ) and X = mH/m w

As Fig. 2 shows, the infrared divergencies do not occur because of the finiteness of 
the W width"’.

The best region for detecting H ^ W  + W y  is that of large mH masses, but it must
2

remain below the next threshold. This is at mH = 2mz , i.e. Я = — 5—— =  2.6, where
COS &  ц г

H-+ZZ  begins to dominate.
In this region mH/mw=(2.05 . .  . 2.5) we get an observable value

R=(  10 2 . . .  10 3).

(n In the standard WS model r w = 0.882 ■ n, where n is the fermion generation number, available 
below the mw/2 limit. The minimum value for n is 3 (see e.g. [4]).

Acta Physica Hungarica 54, 1983



T H E  P A R T I A L  W I D T H  O F  T H E  H I G G S  B O S O N 301

Acknowledgement

I express my gratitude to Prof. G. Pócsik for his constant aid and consultations in preparing this
paper.

References

1. G. Pócsik and G. Zsigmond, Phys. Lett., 112B, 157, 1982.
2. J. Ellis et al., Nucl. Phys., B106, 292, 1976.
3. G. Pócsik and T. Torma, Z. Phys., C, 10, 367, 1981.
4. J. Bernabéu, P. Pascual, Electro-Weak Theory, GIFT, 1981.

6 *

Ada Physica Hunmarka 54. IVN3





Acta Physica Hungarica 54 (3— 4), pp. 303—312 (1983)
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(Received in revised form 30 September 1982)

This paper reviews some work done in our laboratory on the binary amorphous system Se— 
Те. The compositional dependence of some physical properties such as: density, dc conductivity and 
thermal conductivity, have been investigated. A number of results are reviewed. The effects of 
composition, temperature and time of annealing on the dc conductivity are explained in terms of 
structural changes and crystallization kinetics. The spectrum of the activation energies of 
crystallization for the amorphous solid and liquid phases is discussed.

1. Introduction

This laboratory has been engaged for some time in studying the transport 
properties of some different amorphous chalcogenide systems. Although there is still 
much to be done, it is now possible to discuss a number of common features that appear 
to be emerging for the system Se—Те. To characterize a material, it is necessary to do a 
large number of different experiments on the same material.

Series of Se—Те alloys, ranging in chemical composition from pure Se to pure 
Те, were prepared by melting and quenching the mixture [1]. The vitreous and non- 
vitreous state was confirmed earlier by DTA measurements [1] and X-ray diffraction 
[2]. The equilibrium phase diagram of the system Se—Те has been constructed [1]. An 
eutectic point is observed at the composition of TeSe30 at 180°C during the 
supercooling process. The diffraction pattern of the vitreous state is characterized by 
two broad maxima using the wavelength 2 = 0.1542 nm. The phase diagram of the 
whole system shows the presence of three distinguishable substitutional solid solution 
phases termed A, A + B, and В phases, where the compositional ranges for these three 
states were reported [ 1, 2].

For both the vitreous (glass) and crystallized states, the variation of the density 
[1], dc conductivity [3,4], and thermal conductivity [5] with the Те concentration for 
some Se—Те compositions have been measured. The crystallization kinetics of the 
vitreous (amorphous solid) materials have been investigated by isothermal [3,6,7] and 
by non-isothermal [8, 9] techniques. Also, the kinetics of liquid-crystal (1—c) phase 
transformation have been studied for some Se—Те compositions [4].
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The aim of the present work is to clarify some of the previous results gained from 
different physical measurements for various compositions in the system Se—Те 
together with some aspects of their crystallization. A number of new results for some 
other compositions TeSe, are presented. The compositional range of IOOOSï x ^  2.5 was 
covered.

2. Thermal spectrum of electrical conductivity

Figure 1 shows a typical variation of the dc conductivity during a consecutive 
heating-cooling cycle of the sample TeSe500. The characteristic value of Ea for each of 
the initial amorphous (line AB), liquid (line FG) and polycrystalline (line IJ) phases are 
represented in the Figure. The point В (72 °C) represents the beginning of the 
amorphous—crystal (a—c) transition Ta _ c, during the heating cycle. The melting point 
lies between points E and F (210-225 °C).

TeSe 5 0 0

io‘ / t [K’b

Fig. I. Thermal spectrum of the electrical conductivity of TeSe500

Upon cooling a liquid below its melting point Tra, it either crystallizes or forms a 
glass. During crystallization the viscosity, energy, volume, internal energy and hence 
the electrical conductivity change discontinuously, and the transition is first-order. In 
glass formation, however, these properties change in the vicinity of the glass transition 
temperature Tg. In Fig. 1, the point H (177 °C) represents the beginning of the 1—c 
transition, 7J_C.
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Table I

Transition temperatures of Se—Те glasses

Composition Te [at%] T.- « ГС] 7i-c [ C] Tm (DTA) [°C]

Se 0.0 65 157 221
TeSe,ooo 0.099 69 165
TeSe500 0.199 72 177
TeSe100 0.990 72 198
TeSe80 1.235 74 182
TeSe50 1.96 77 132 222
TeSe30 3.23 88 163 223
TeSe20 4.76 92 170 224
TeSel2 5 7.41 92 186
TeSe10 9.09 232
TeSe5 16.67 244,252
TeSe25 28.57 97 259 273,292
TeSe, 5 40.00 308,325
TeSe 50.00 333,354
Te3Se 75.00 395,423
Те 100.00 454

Table I gives the composition dependence of the transition temperatures Ta_c 
and 7Î_C. The melting points Tm as determined from DTA measurements are given in 
Table I. The Table shows that Ta c increases monotonically with increasing tellurium, 
while Tt _ c shows a certain minimum at the eutectic composition TeSe30. Starting from 
the composition TeSe5 (16.6 at% Те), the endothermic peak on the thermograms of the 
DTA splits, which means two melting points, Tml and Tml.

3. Characteristic physical properties

3.1. The glassy and crystalline states

The electrical conductivity a(T) was measured as described previously [8], the 
thermal conductivity x(T) has been measured using a specially developed technique 
[ 10] based on the principle of steady-state longitudinal heat flow [11]. The coefficient x 
of the samples was determined relative to that of fused quartz.

Figure 2 illustrates the composition dependence of the activation energy of the 
conduction (£„), the conductivity at 20 °C (<t20), the thermal conductivity at 20 °C (*20), 
and the density (d) for both the glassy and crystalline states. The values of <j20, X20 and d 
are higher, while Ea are smaller in the crystalline state than those of the amorphous 
state. Thus, the variational trend of the composition dependence of Ea is opposite to 
that of a20 • In the glassy state, this may be associated with the conducting regions of the 
Mott model [12]: with variable range hooping occurs at a different Te-content. A 
maximum value for Ea and a minimum for <r20 is observed at about 2 at% Те.

I
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In elemental selenium each atom must have two neighbours to satisfy the valence 
requirements. This is achieved either by the formation of small molecules Se8 or linear 
polymeric chains Sen. These structural groupings do not alter with the isoelectronic 
additives of Те to Se. However, the addition of Те is associated with the formation of 
mixed eight-membered rings, i.e., Se8_xTe„. Also, this may be effective in changing the

at 7o Те

Fig. 2. The composition dependence of Ea (activation energy of conduction), o2о (electrical 
conductivity at 20 °C), y20 (thermal conductivity at 20 °C) and d (density) for glasses and crystals

Se—Те

length of the selenium chains. This explains the experimental fact according to which 
the observed variation of E„ with the tellurium concentration is mainly accompanied 
by a micro-heterogeneity in the sample structure. The higher value of £„ at about 2 at% 
Те indicates a maximum micro-heterogeneity. This means that the formation of 
monomers (rings) and polymers (chains) with mixed numbers of Те atoms occur with 
greater probability than a unique number all over the matrix structure.

The monotonie decrease of the measured thermal conductivity x with Te-content 
(Fig. 2) is attributed to a decrease in the carrier mean free path. The latter depends on 
the degree of microheterogeneity, i.e. it is affected by the addition of Те atoms with their 
greater atomic radius. The computed electronic contribution of the thermal currents 
(due to both free electrons and electron--hole motion) shows an increase with the Te- 
content, whereas the main contribution of thermal transport is still due to phonons in 
the glasses investigated.
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3.2. The liquid state

Figure 3 shows the composition dependence of E„ and a0 for the liquid alloys 
Se—Те. The present results for E„ are compared with those previously published [13- 
15]. The composition dependence of a 20 (the intercept of the lines In ст=/(1/Г) at 20 °C) 
is also given in Fig. 3. With the increase of the Te-content, the quantities E„, a0 and <r20 
vary in a complex manner. This is attributed to the presence of different electron states 
of the alloys in the different concentration ranges [4].

--------    ----—!------- 1---------|-------- I--------!-------- 1--------1--------1--------
Se Ю 20 30 40 50 60 70 80 90 Те

al % Те

Fig. 3. Composition dependence of £„, a 20 and a0 (temperature-independent pre-exponential factor)
for liquid Se—Те

О our data, Д ref. [13], □  ref. [14], x ref. [15]

The addition of Те dissociates the long Se chains, and this dissociation begins 
immediately after melting [13]. Apparently, the composition dependence of a0 is 
opposite to that of o20 (Fig. 3). The relative low values of er0 for the compositions with a 
Te-content of about 1.0 and 5.0 at% respectively indicate that the low density of the 
electron state may be localized in the quasi-gap. The degree of localization is affected by 
the concentration of Те atoms as well as of their distribution in the liquid phase. The 
presence of an electron state within the quasi-gap creates another possibility for 
transferring charge carriers, namely by jumps over the localized states. Assuming an 
intrinsic conduction in the present liquid alloys, an estimation for the carrier mobility 
has indicated the presence of thermo-activation for the compositions up to 1.5 at% Те. 
At higher Te-content, the carrier mobility is temperature-independent. For the latter 
case, the variation of the conductivity with composition is due to the variation in 
carrier density rather than mobility.

At very low Te-content, up to about 2 at%, the Те atoms are distributed 
randomly over the Se chains leading to the increase of both £ffand a0. Flowever, the Те 
atoms being distributed uniformly over the Se chains facilitate their dissociation, which 
leads to the observed decrease of E„ up to 5 at% Те. In the composition range of Те ̂  5-

Acta Physica Hungarica 54, 1983



308 M F. КОТКАТА and М К. EL-MOUSLY

15 at%, the molecular size of the liquids Se—Те decreases so markedly that their 
dissociation energy becomes dependent on the molecular weight and therefore E„ 
increases with the Te-content. In other words, the increase of Ea is due to the decrease in 
the molecular weight of the chains in this composition range. A further addition of Те, 
in a concentration > 15 at%, is accompanied by an increase in the predominance of the 
Те—Те bonds in the molecules. This leads to the apparent gradual decrease in the 
activation energy of the electrical conductivity with tellurium.

4. Crystallization kinetics

The crystallization kinetics of the Se—Те system was investigated for the 
amorphous solid and liquid phases using electrical conductivity measurements. Here, 
the electrical conductivity a has been used as a characteristic physical quantity to 
follow the growth of the crystalline phase in the amorphous or in the supercooled liquid 
phases. The change of a during both a—c or 1—c transformations has been recorded as 
a function of the time i at different annealing temperatures. At any annealing 
temperature, a varies with time t up to a certain limit (point D on the curves of Fig. 4) 
characterizing the degree of perfectness of the alloy [unpublished work]. The annealing 
temperatures were selected to be in the range between Tg and Tm.

The measurements of a = f(t)  were performed by a stagewise and a continuous 
technique, respectively. In the former technique, the a—c transformation was carried 
out step by step by isothermal annealing in an oven preheated at the required 
temperature. After each step the sample was polished to eliminate the effect of surface 
crystallization, and the characteristic physical quantity a{T) was measured in the 
temperature range below Tg, where the crystallization process is practically non
existent. In addition, the continuous technique has been used for the a—c as well as for 
1—c transformations. In this technique, the conductivity was recorded continuously 
(1/2 min interval) during an isothermal transformation process:

For a—c investigation, the as-prepared quenched sample was heated at 300 °C 
for one hour in a pyrex ampoule, sealed under vacuum and provided with two tungsten 
electrodes, then quenched in ice-water and the function <r(t) measured isothermally.

For the 1—c experiment, the as-prepared sample was fused at 300 °C for one 
hour, then quickly transferred to a preheated oven adjusted to the required temperature 
of annealing.

Figure 4 shows an example for the continuous variation of In a with the 
annealing time during both a—c and 1—c transformations carried out at 100 °C for the 
composition TeSe30.

For a—c, the part AB represents a gradual increase of a as a result of the normal 
heating of the amorphous solid sample. The transformation a—c passes through two 
distinguishable time-dependent stages. The first, BC, shows a small increase in the 
electronic conduction followed by a big increase during the second stage CD.
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For 1—c, the part AC represents the gradual decrease of a due to a normal 
cooling of the liquid sample from 300 °C to 100 °C. The transformation 1—c takes place 
through one smooth stage CD.

At any intermediate point during both transformations a—c and 1—c, the 
measured value of a(t) represents the contribution of two conductivities of two mixed 
phases: amorphous solid with crystalline (for a—c) or liquid with crystalline (for 1—c).

TeSejQ crystallized at 100 °C 

-In 6

Oi */. 
г  1 0 0

- 80

60

- АО

20

time [ min ]

Fig. 4. Crystallization analysis of TeSe^0 crystallized at 100 °C in the amorphous-crystalline and
liqnid-crystalline ranges

The fraction transformed at different annealing times a(f) was calculated by using the 
relative increase in the electronic conduction during the crystallization growth (CD on 
the curves of Fig. 4). The amount of material left uncrystallized at a time t has been 
calculated on the basis of the experimental results using the empirical relation 
previously used for Se and Se—S alloys [16-18],

®t = (ln <z„ —In <r,)/(ln <xa —In er0), (1)

where <r0 and are the conductivities at the beginning (point C), and end (point D) of 
the process, respectively, and a, is the conductivity at time t between these limits. The 
untransformed supercooled liquid volume is assumed to be equivalent to the 
amorphous part. The results of a =  / (i) for TeSe30 are given in Fig. 4 for both a—c and 
1—c cases. The obtained curves have a sigmoidal shape indicating an autocatalytic 
reaction which is often observed in various kinds of solid reactions.

Avrami’s equation [19] relating the fraction of the crystalline volume a grown 
from the amorphous phase to the time of annealing,

(1—a) = 0  = exp( —Xi") (2)

has been successfully applied to study the crystallization kinetics of amorphous Se and 
Se—S alloys [16-18]. The same procedure has been followed here to study 
quantitatively the crystallization process of amorphous and liquid Se—Те alloys.
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The parameter п of the Eq. (2), characterizing the nucléation mechanism and the 
dimension of crystal growth, has been calculated using the equation:

In ( — In 0,) =  ln К + n In t. (3)

Accordingly, the plot of In ( — In 0,) versus In I leads to a straight line of slope n. This 
has been verified for the investigated compositions during the two transformation 
processes over the measured temperature ranges, and the results for TeSe30 at 100 °C 
are given in Fig. 4.

The values of crystallization constant, which depends on the temperature and the 
definition of the crystallization rate K, were calculated for each value of 0  using the 
equation:

К -  In (0  “ ')/!". (4)

The last step of the calculation was carried out by a computer to check the reliability 
and limitation of using In <r [7] as a sensitive parameter for studying the crystallization 
kinetics of the investigated samples.

The rate constant К  is given by the Arrhenius equation as:

K = K 0exp( — E/RT), (5)

where R is the universal gas constant. For each TeSex composition, a plot of In К 
(average value over the range of 0  ~90%-15%) versus 1/Tcould be fitted over a certain 
temperature range with a straight line whose slope defines the activation energy of the 
process E. On the other hand, one has to take into account that the constant rate is 
proportional to l/т (the overall time of transformation). Here, also, a plot of In ( 1 /т) 
versus 1/Tcould be fitted over a certain temperature range with a straight line whose 
slope defines E. The activation energy of a particular composition as determined by the 
two methods; In К versus 1/Tand In (l/т) versus \/T, are in good agreement. Table II 
gives the calculated values of E with their corresponding temperature ranges for the 
compositions investigated in both a—c and 1—c.

Table II indicates that the crystallization activation energy depends on the 
concentration of tellurium as well as on the heat treatment of the sample. For the same 
temperature range, the activation energy of the crystallization of amorphous Se 
increases gradually with the addition of Те up to the composition ofTeSe80 (1.235 at% 
Те). Then, E shows a marked increase at about 2 at%Te followed by a decrease with Те 
up to about 10 at%, subsequently E increases again with the Te-content. This 
composition-dependence of E might be attributed to the degree of dispersion and the 
energy of formation of the chemical bonds in the Se—Те matrix. The highest value of 
£■=3.73 eV at about 2 at% Те corresponds to the maximum micro-heterogeneity in the 
alloy TeSe50 that produces anomalous changes in the various properties.
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Table II

Crystallization activation energy of (a) amorphous and (b) supercooled liquid Se—Те alloys

(a) (b)

Composition £ [eV ] Temp, range [°C] Composition E[eV ] Temp, range ["C]

Se 1.3 75-90 Se 1.2 80-110
0.83 90-120 0.48 110-160
0.23 120-160

TeSelooo 1.13 90-120 TeSe50 0.76 90-130
0.3 120-160

TeSe50o 1.35 90-120 TeSe,0 0.37 90-180
0.3 120-160 TeSe20 0.5 100-150

TeSe10o 1.46 90-120 TeSe15 0.6 130-160
0.3 120-160 TeSe,0 0.7 100-150

TeSe80 2.0 90-120
0.34 120-160

TeSe50 3.73 80-110

TeSe30 2.96 80-110

TeSe20 2.47 65-90
2.2 90-110

T eS e ,,, 2.48 65-90
1.94 90-110

TeSe10 2.39 85-105

TeSe25 3.54 80-110
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DC CORONA DISCHARGE ON MONOPOLAR 
BUNDLE WIRES

M . A b d e l -S alam , M . F a r g h a l y  and S. A b d el-Sa t ta r

Electrical Department, Assiul University, Assiut, Egypt
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The solution of monopolar corona equation already reported in literature is extended for 
bundle conductors using a modified iterative procedure to estimate the corona current contributed 
by each subconductor of the bundle. The solution is based on underlying assumptions, some of which 
are waived in the present calculations. The variation of ion mobility with its lifetime as well as the 
change of the corona onset voltage from point to point on each subconductor are taken into account 
for the first time. The calculated corona currents from each subconductor are compared with those 
measured experimentally for a laboratory model.

1. Introduction

HV dc has many advantages over the conventional ac for long transmission [1]. 
Recent advances in the development of the hv terminal equipment have increased the 
feasibility of dc transmission. Consequently, various problems associated with it have 
been studied extensively.

One of these problems is the corona occurring on the transmission lines and the 
power loss, radio interference, television interference and audible noise associated with 
it. Theoretical analysis of corona loss on dc transmission lines is very useful for line 
design.

In this paper, recent approaches [2-4] for calculating corona loss in monopolar 
configuration are critically reviewed and the underlying assumptions are discussed. 
Then, an approach is suggested which takes into account for the first time the variation 
of ion mobility with its lifetime as well as the change of corona onset voltage from point 
to point on each subconductor of the bundle. This improves the accuracy of theoretical 
predictions.
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2. Monopolar corona equation and the progress in its solution

The main system of equations describing the monopolar corona discharge is:

The first is the Poisson’s equation for the electric field; the second is the equation for 
current continuity; the third is the equation for current density and the fourth equation 
is the electric field given in terms of the potential [4].

Eq. (1) can be replaced by a single third-order non-linear partial differential 
equation [4]:

Eq. (2) is the general form for monopolar corona equation and there is no method 
known for solving it in the general case without simplifying assumptions.

Deutsch [4] was the first to make an approximate analysis for the line-to-plane 
geometry. Following Deutsch were Popkov, Tayrlin and Usynin [4] who made a 
solution more accurate than Deutsch. As reported earlier, [4], the analysis developed 
by Sarma and Janischewskyj was based on following assumptions:

(i) The electric field at the surface of the hv conductor during corona remains 
constant at its onset value.

(ii) The mobility of ions is constant independent of their life time.
(iii) Deutsch’s assumption as it demonstrates that the space charge affects only 

the magnitude but not the direction of the electric field.
Although the calculated results agreed reasonably with those measured 

experimentally for single-conductor lines, the method has never been checked for lines 
with bundle conductors [5].

Very recently, Sunaga et al [3] reported a new approach for calculating the 
ionized field of hv dc transmission lines with bundle conductors. They replaced the 
bundled conductors with an equivalent single conductor having the same electrostatic 
capacitance. Therefore, the first assumption was replaced with the following two 
supplementary assumptions:

(ia) The amount of corona current emitted from a bundled conductor is 
correlated to the conductor surface field by using simplifying relationships having 
empirical constants.

(ib) The ratio of the corona current density to the applied field for the bundled 
conductor is not different from the equivalent conductor.
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The empirical constants in (ia) are determined [3] from corona current 
measurements on the available test line. As is well known, the corona current 
measurements change from place to place and may vary from time to time [6]. This 
restricts the application of the analysis by Sunaga et al to any general monopolar 
configuration.

In reality, the field due to space charge at any point in the discharge space can be 
decomposed into two components; one along the flux line passing it and the other in the 
normal direction. The first component affects only the magnitude and not the direction 
of the applied electric field as introduced well in corona loss computation by others [2, 
3], while the other component is neglected by them. This latter component has a lateral 
effect on the applied electric field making them angularly displaced from their 
trajectories in the absence of space charge as studied previously [4, 7].

3. Underlying assumptions for solving the corona equation

Assumption (i) demonstrates that the electric field at the surface of the hv 
conductor in corona remains constant at its onset value. When corona occurs on a hv 
conductor, the electric field at its surface is decreased slightly (5-10%) from the onset by 
the ion space charge built up around it. The decreased field was measured 
experimentally [8] and predicted theoretically [9]. Therefore, assumption (i) is not 
quitejustified. In some preliminary calculations, such effect was found to be noticeable 
only in the region of the onset and becomes negligible at higher voltages. Therefore, all 
the present calculations take into account that the surface field at each point on the 
subconductors periphery is constant at its onset value.

On the other hand, when corona occurs on a hv bundle conductor, the onset 
voltage is no longer assigned a unique value due to a significant change of the applied 
field from point to point on the subconductor periphery. The corona onset voltage is 
calculated based on the physical processes involved in corona discharge phenomena 
[10] (Appendix I). Previous investigators [3, 5] have not taken into account such a 
change for corona onset voltage around the periphery of subconductors; a 
phenomenon which has been observed experimentally by Simpson [11].

In the present work, the corona onset voltage is considered to change from point 
to point over the subconductor surface. This means that the subconductor does not go 
as whole in corona at one voltage value.

Assumption (ii) demonstrates that the mobility of ions is constant independently 
of their lifetime. Detailed investigations [12-14] have been made to establish definitely 
that the mobility of ions is not constant in the corona area. Different empirical relations 
have been developed [12-14] in literature which correlates the mobility value (k) to the 
lifetime of ions (f), (Fig. 1).

It is clear that the value of ion mobility obtained by Popkov [ 12] fits on average 
the values obtained by Arai and Tsunoda [13] and Vereshchagin and Litvinov [14]
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over all the lifetime. Therefore, the values of Popkov for the change of mobility with 
lifetime have been considered in the present calculations.

Assumption (iii) Deutsch’s assumption demonstrates that the space charge 
affects only the magnitude but not the direction of the electric field. This assumption 
was aimed at making the calculations possible. It is perfectly valid in symmetrical

Fig. I. Variation of ion mobility with its lifetime

configuration (such as the concentric cylindrical geometry). It will be sufficiently close 
to reality in other configurations where the space charge density in the interelectrode 
region is not very large [2].

Very recently, Janischewskyj and Gela [15] succeeded to extend the finite 
elements technique to waive the analysis from this assumption in coaxial cylindrical 
geometry, for which the field is radial even with the space charge effect.

The object of the present paper is to report an iterative algorithm for calculating 
corona loss from bundled conductors with Deutsch’s assumption being retained in the 
calculations. The same authors are working now to use the finite elements technique to 
waive these calculations from this assumption. They hope to make the obtained results 
public in the very near future.
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4. Method of analysis

Defining equations

According to Deutsch’s assumption (iii), the space-charge-free field £ , at any 
point in the interelectrode region is related to the field in presence of space charge £ by:

£  = Я£,, (3)

where Я is a scalar point function of the space coordinates. £  and Ex may be defined in 
terms of the corresponding space potential cp and <р{, respectively, in the form

£ = — V cp = dtp
d 7 ’

(4)

£ , — 1

where s is the distance measured along the flux line of the space-charge-free field. 
Combining Eqs (3) and (4) and simplifying

Substituting Eq. (3) into Eq. (1)

dip
d(Pi

F-(A£,) = - ,
£o

kV ■ £ , + £ ,  • Vk

(5)

But V ■ £ , = 0  and £ , • Vk =
Exdk

ds

dk
ds e0£[

Changing the independent variable to cpx, one can write

£ ,d /

Then

dk i d  к \  j  d <Pi 
ds \d ipxj \  ds

E xdk

d (px

d(px e0Ex

dk
d<Px e0E X

(6)
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From Eqs (1) and (3)

J  =  Kp£,A,

V ■ J = 0, 

У ( К р А Е х) = О, 

K p A V E x+ E x ■ F(XpA) =  0.

Substituting by V ■ E x =0,

£ , • F(KpA) = 0,

(KpA) = 0,

, dp dA d £
K x d^ + P* d 7  + d 7 ~ °

or
dpKAEX —— + pK £,

d<Pi
dA 

d<p 1 + p /£  1
dK
d<Pi

= 0.

Substituting by Eq. (6),

dp p2 p d/c
dq>x e0A£f к d(pi

Eq. (7a) can be rewritten in the following form by substituting

(7a)

But
ds

dtpi

d к
d(Pi

1

■ ^ L .  =
' ' d <p.

d/c di ds 
di ds dcpx

dt 1 - Г  
аП d s ~ ~ K E ~  KAEt

P2 P d/c
e0/ £ 2 A£2£ j di ’

(7b)

where di = ds/v is an incremental value of the ion lifetime; v = KAEx is the ion velocity; 
ds is an incremental distance along the flux line. Eqs (5-7) describe the distribution of 
the electric field and the charge density in the interelectrode spacing providing that the 
applied electric field is precalculated over all the interelectrode spacing.

The boundary conditions required to solve these equations are given in terms of 
the voltage applied to the hv bundle conductor and the magnitude of the electric field at 
its surface. If A0 represents the value of the scalar point function (A) at the subconductor 
surface, it follows from assumptions (i) and (iii) that Ae=  V0(\j/)/V where У0(Ф) is the
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corona onset at a point described by the angle ф over the periphery of the 
subconductor. The details for calculating У0(ф) for hypothetic smooth subconductors 
are given in Appendix I. However for an actual subconductor a reduction surface factor 
m is assumed for the corona onset voltage. This factor depends on the surface condition 
of the subconductor and sometimes reaches 0.4 on full-scale transmission lines.

The complete specification of the problem for any particular flux line is, 
therefore, given in terms of the differential equations (5-7) with the following boundary 
conditions;

(i) (p= V at <Pi = V \ at subconductor
(ii) Л = Ае=К0( ф)/У at (pi = V J surface
(iii) (p = 0 at <Pi =o at ground surface

Computational steps of the boundary value problem defined by equations (5-8) 
at a given value V of the applied voltage

The computational steps are outlined in the flow chart of Fig. 2 and summarized 
as follows:

1. At a given point P on the'subconductor periphery, the electric field £ , is 
calculated using the charge simulation technique [16] (Appendix II). The field line 
emanating from this point is also traced to determine the distribution of the applied 
electric field along it.

2. The corona onset voltage K0(i//) is calculated at the point P (Appendix I). This 
defines the boundary conditions (i) and (ii) of Eq. (8) at the voltage value V.

3. Assume an arbitrary guessed initial value of space charge density pe at the 
point P (Appendix III).

4. Integrate the system of equations (5-8) along the already traced field line 
emanating from the point P, taking into account the variation of ion mobility with its 
lifetime, (Fig. 1).

5. The resulting value of the potential ip at the end of the field line (i.e. at the 
ground surface) is compared with the zero value defined by the boundary condition (iii) 
of Eq. (8).

6a. When the boundary condition (iii) of Eq. (8) is not satisfied in the above step, 
the assumed initial value of pe is then adjusted and the procedure (steps 3 through 5) is 
repeated. Appendix III gives how pc can be changed with the aim to maintain the 
convergence of the solution.

6b. When the boundary condition (iii) is satisfied the charge density p and hence 
the current density J at the point P on b.e subconductor surface are calculated 
providing that the eiectric field at this point is predefined by condition (iii) of Eq. (8).

7. Repeat steps 1 through 6 for all the points on the subconductor surface (n,). 
This determines the current density distribution over the subconductor periphery at 
the voltage value V.
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Fiq. 2. Flow chart for present method

8. Integrate the resulting current density distribution over the subconductors 
surface to determine the contributions of each to the total corona current from the 
bundle.

9. Increment the value of the applied voltage V by an increment A V and repeat 
steps 2 through 8 to determine the subconductor corona current for different voltages 
up to a maximum voltage Kmax.
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5. Experimental setup

A laboratory model has been strung from smooth wires (0.175 cm in radius and 
4.5 m in length) to simulate the subconductors of bundle —4 diamond. The ground 
plate was simulated by an earthed aluminium plate. The bundle height above the 
ground was changed by changing the relative position of the aluminium plate with 
respect to the hv wires. Microammeters were connected at the hv circuit to measure 
the corona current from each subconductor. This hv circuit was so dimensioned that 
corona is only generated at the wires under test. To achieve this condition, both ends 
of each wire were enclosed in metallic spherical caps to avoid corona discharge at 
these ends. Precautions were also taken for all connections of the measuring circuit to 
be free from corona.

To measure the lateral distribution of corona current at the ground plate, the 
earthed aluminium plate has been divided into 30 segments each (5 cm x 4.5 m) spaced 
1 mm apart. To each segment, a sensitive microammeter was connected to measure the 
current received by it. Division of received current by the segment area defines the 
current density at the segment position.

The available hv source was up to 125 KV, the ripple and harmonic contents of 
its output were less than 1%. The output voltage was measured accurately using a 
resistive voltage divider.

6. Results and discussion

a) Corona current from bundle

Figures 3-5 show the calculated and measured values of the total corona current 
from bundle —4 diamond at different heights above the ground plate. It is satisfying 
that the present calculations fit reasonably the experimental results. However, the 
calculated corona current contributed by each subconductor does not fit exactly the 
corresponding measured value (Figs 6-8).

The authors attributed this discrepancy to the fact that the ions drift along flux 
lines other than the electrostatic field lines, i.e. Deutsch’s assumption is not quite valid 
for corona generation on laboratory models.

It is quite clear from the experimental results (Fig. 6), that subconductor I which 
is the nearest one to the ground plate contributes mainly to the total corona current 
only for small heights above the ground plate. With the increase of the bundle height 
above the ground plate, side subconductors start to contribute more and the corona 
current from them exceeds that from subconductor I in contrast to the present 
calculations.

In reality, the inclusion of the space charge effect in corona loss calculations for 
complex geometries such as bundled conductors is extremely difficult. Previous
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Fig. 3. Calculated arid measured total corona 
V— I characteristics for a laboratory model 

(H = 0.28 m)

Fig. 4. Calculated and measured total corona 
V— l characteristics for a laboratory model 

(Я = 0.38 m)

applied voltage V [KV]

Fig. 6. Calculated and measured corona V— l  
characteristics of each subconductor of the bundle 

for a laboratory model (H = 0.28 m)
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Fig. 5. Calculated and measured total corona V— l 
characteristics for a laboratory model (// = 0.5 m)
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Fig. 8. Calculated and measured corona V—  I 
characteristics of each subconductor of the bundle 

for a laboratory model (H = 0.5 m)

investigations [4,7] verified that the space charge seems to contract the flux lines of the 
ionized field with respect to those of the space-charge-free field. For one and the same 
corona current emitted from the bundle as a whole, the space charge density over the 
interelectrode spacing increases with decreasing the bundle height above the ground 
plate. Therefore, the flux lines of the ionized field are expected to be more contracted on 
decreasing the bundle height above the ground plate. This means that the ions emitted 
from subconductor I will be convected along flux lines being contracted to be very close 
to the central axis of the bundle, where the applied field is too high. Subsequently, the 
corona current contributed by subconductor I is expected to be the high portion of the 
corona current from the bundle on decreasing its height in agreement with the present 
calculation (Fig. 6). With the increase of the bundle height above the ground plate, the 
space charge density and hence its contracting effect for the flux lines starts to be 
mitigated. Hence, side subconductor II starts to contribute more to the total corona 
current emitted from subconductor I (Fig. 8). On the contrary, the present calculations 
showed always that subconductor I contributes the highest portion of the total corona 
current. This may be attributed to the pertinent inaccuracy on using Deutsch’s 
assumption. Measurements and calculations showed that subconductor III con
tributes always the smallest portion of the total corona current. This is explained by the 
fact that the ions emitted from this subconductor are convected along flux lines 
characterized by length in path and weakness in applied field value.
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for a laboratory model (Я =  0.38 m)
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b) Current density at ground plate

Figures 9-12 show the calculated and measured values of the current density at 
the ground plate for different bundle heights and different applied voltages. The 
calculations and measurements show two peaks in the current density distribution over 
the ground plate, the first is located directly underneath subconductor I and the second 
is shifted laterally. The inconsistency between the calculated and measured peaks, 
magnitude and position, over the ground plate may be also ascribed to the inaccuracy 
due to using Deutsch’s assumption.

Fig. 10. Calculated and measured current density 
distributions at the ground plate (H = 0.28 m and 

K= 90 KV)

c) Effect o f  surface condition

The surface condition of the subconductors decides the corona current 
contributed from each one and hence affects significantly the total corona current of the 
bundle. On decreasing the surface factor (m) from 1.0 to 0.9; the total corona current 
emitted from the bundle increases by about 60%. Hence the current density 
distribution over the ground plate showed a corresponding increase e.g. 140% at the 
first peak and 500% at the second peak.
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Fig. 9. Calculated and measured current density 
distributions at the ground plate (H = 0.28 m and 

V = 80 KV)
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Fig. 12. Calculated and measured current density 
distributions at the ground plate ( // =  0.38 m and 

K= 100 KV)

Fig. 14. Corona charge density distribution along a 
particular flux line
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Fig. 11. Calculated and measured current density 
distributions at the ground plate (// = 0.38 m and 

K=90 KV)

Fig. 13. Corona charge density around the 
periphery of each subconductor of a labora
tory model for constant and variable mobility
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d) Effect of temporal variation of ion mobility

All the calculations reported in the preceding Sections take into account the ion 
mobility to change with its lifetime according to Popkov’s data (Fig. 1). The charge 
density, the current density around the periphery of each subconductor and hence the 
total corona current assume higher values on considering the mobility constant at a 
given value ( = 1.5 m2/V • S) either for a laboratory model (Fig. 13) or for a full-scale line
[17].

Fig. 14 shows the charge density distribution along a flux line at constant and 
variable mobility. It is seen that the charge density decreases along the flux line for 
constant mobility while it increases for variable mobility. This is attributed to the fact 
that the ion life time for the laboratory model is so short that the mobility decreases 
along the flux line (Fig. 1 ). This reflects itself in an increase of the charge density along 
the flux line to maintain the current continuity (Fig. 14).

7. Conclusions

On the basis of the present analysis, the following conclusions can be drawn 
concerning monopolar corona on bundle transmission line configurations:

1. The corona onset voltage is calculated for the first time around the periphery 
of each subconductor of the bundle. It changes from point to point at the subconductor 
surface in agreement with experimental findings.

2. The monopolar corona equation of the ionized field originating from multi
interacting corona sources is formulated and solved for the first time taking into 
account the variation of both the ion mobility with its lifetime and the onset voltage 
around the periphery of subconductors.

3. The corona current contributed by each subconductor of the bundle is 
calculated and compared with the corresponding measured values on laboratory 
model. Although the calculated total corona currents fit reasonably the corresponding 
measured values, the contributed currents from each subconductor showed a 
discrepancy between calculations and measurements.

4. The lateral distribution of the corona current at the ground plate is calculated 
and also compared with that measured experimentally.

The above analogy between theory and experiment emphasizes the need to know 
the trajectory being different from the electrostatic field lines along which the ions will 
convect; i.e. Deutsch’s assumption should be waived.
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Appendix 1
Criterion of corona onset

The present analysis is restricted to the positive polarity; where the corona onset 
voltage V0(ф) (see Eq. (8)) should be calculated for positive corona.

In the positive corona discharge, one electron is assumed to initiate electron 
avalanche starting at the ionization zone boundary where the applied field strength is 
sufficiently high that the ionization coefficient exceeds the coefficient of electron 
attachment. During the avalanche growth, more electrons and positive ions are 
produced by ionization collisions. Simultaneously, photons are also produced by 
exciting atoms and as a result of electron—ion recombinations.

The criterion for corona onset was suggested as follows [10, 18]; the photons 
reaching the ionization zone boundary are just enough to produce one photo-electron 
to start a successor avalanche. Having the values of physical parameters involved in the 
discharge process (namely ionization, attachment and absorption coefficients, etc.), the 
fulfilment of this criterion depends upon the system geometry, its electric field 
distribution and the value of the applied voltage. Thus, for a given conductor bundle, 
its field distribution should be calculated firstly as shown in Appendix II. The corona 
onset voltage at a given point on the subconductor surface is the voltage which satisfies 
the above criterion, providing that the avalanche growth takes place along the radial 
direction passing this point.

Fig. А-l. Per unit corona onset voltage around the periphery of each subconductor

Figure А-l shows the calculated corona onset voltage around the periphery of 
each subconductor of the laboratory model. It is clear that the onset voltage varies 
from point to point at the subconductor surface and also changes from subconductor
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to subconductor. This is attributed to the fact that the applied field changes around the 
periphery of the subconductor and the point having the highest value of the applied 
field (Appendix II) goes at first in corona. The onset voltage F0(ip )  around the periphery 
of each subconductor can be expressed in the form

VoW  =
'O m a x + Vo V — Vm in  . r Omax r O m in  /H--------- -— —  cos ip ,

where K0max and F0min are the maximum and minimum values of the onset voltage 
where the applied electric field reaches minimum and maximum values, respectively; ip 

is the angle measured around the periphery of each subconductor starting from the 
point having the maximum onset voltage.

The position of the maximum and minimum values of the onset voltage for each 
subconductor depends on the bundle geometry. Fig. А-l gives these positions for the 
diamond geometry.

Appendix II
Calculation of the electrostatic field

The applied (electrostatic) field is calculated using the charge simulation 
technique [16]. Each subconductor of the bundle-4 is simulated by a number Nq of line 
charges (Nq = 4-6) uniformly distributed around a fictitious cylinder of radius rf . rf  can 
take any value between 0.1 rc and 0.5 rc for acceptable accuracy of the solution, rc is the

F ig . A -2 . Geometry of the charge simulation technique method

subconductor radius. The unknown line charges have magnitudes (Qj,J = 1,2, .  . .  4Nq) 
which can be reduced in number to 2N q according to the existing symmetry about the 
у-axis (Fig. A-2). The images of all these charges with respect to ground are considered.
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The potential at any point P[ in space is the algebraic sum of the potential, at this point 
produced by each simulating line charge Qj and its image.

At any point on the subconductor surface, this calculated potential cannot easily 
equal the applied voltage V. Therefore, the magnitudes for the line charges Qj are 
chosen so that the calculated potentials at a large number of point N B = 4Nq deviate 
only slightly from the actual potential V The deviations are minimized by the least 
square technique [19]. The x- and у-component of the electric field intensity can be 
expressed as a function of coordinates of line charges and the point p, (x, y) at which the 
field is to be calculated in the form

4Д, Г
£*(*, j') = Z t Qj I -

Ey(x , y )  =  Qj \

X 4i + x  , X ij- x 
Da D 3

Yqj + y _  y4j + У 
d 4 d 2

X q j  x  , X qj  x ~\

D\ D2 J

\ j - y  Y g i - y l

D3 D, J ’
where the distances £),, D2, D3 and D4 are as shown in Fig. A-2. X qj, Yqj determines 
coordinates of the Jth line charge.

Fig. A-3. Per unit applied electric field around the periphery of each subconductor

Fig. A-3 shows the per-unit applied electric field around the periphery of each 
subconductor of the bundle under consideration.

The differential equation describing the field line is

dy/dx =  Ey/Ex .
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Runge-Kutta and/or corrector-predictor methods [19] were used for solving this 
differential equation to trace the flux lines emanating from subconductors. The step 
over the field line was chosen very small close to the subconductors and increased on 
going far from them.

Appendix III
Guessing of the corona charge density at the subconductor surface

An initial estimate of the charge density at a point defined by the angle i/t on the 
subconductor surface was considered as a fraction of the mean value of space charge 
density pm along the field line [2]:

P e t =  1 -5  p m,

P e2 =  3 .0  p m,

where

Pm=£o(V-Ki'P)/l Î (dvJEDdcpi
0 q> 1

with K0(i/r) =  onset voltage, Kis the applied voltage, E x is the electrostatic field. 
Subsequent values of pei(i>2) were expressed in the form

P e i -  P e i -  1 +
Ö<Pi -  1 (Pei  -  1 Pei  -  2)

Ö < P i - 2 - ö < P i - l

where c><p, is the per unit potential error at the ground surface corresponding to 
iteration i as:

à<Pi=(V— ? dtp)/К
0

This approach assures always a convergence to a value of pe where <5<p, tends to zero.
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It is pointed out that exact values of the magnetic moments of SU(3) baryons can be obtained 
by assuming the dependence of the magnetic moments on the quark interaction energy.

Introduction

Baryon magnetic moments have attracted great attention during the last few 
years. Many authors [1-9] employing different techniques have calculated these. The 
Coleman-Glashow (CG) formulas [10] for the hyperon moments reveal a rather 
confusing situation; the Z + moment is consistent with the CG formula, the Л moment 
which has been measured to good precision deviates significantly from the CG value 
цл = —0.957. None of the other theoretical approaches used so far have been able to 
give an overall satisfactory fit.

In this note we present a fit to the magnetic moments of SU(3) baryons in terms of 
the quark interaction energies.

Magnetic moments of SU(3) baryons

The mass of a baryon which is made up of three quarks q , , q l and q2 is given by
[П]

B(qi,qi ,q 2) = 2m(ql) + m(q2) +  -  V(ql ,q l , 1) +

+ у  У(ЧиЯ2, í) +  y  V(qi,4i,0) + ^ V(qi,q2,0) + A, ( 1 )

where m(q) is the mass of the quark q, V(qlyq: .s) is the interaction term representing 
the pairing energy between qx and q2, the third index rt,r'esenting the spin, and A is a 
constant. In analogy to SU(3) we assume that the magnetic moment of a baryon is
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dependent on the charges of the quarks [12] and the interaction energies. In analogy to 
Eq. (1) we write that the magnetic moment of a baryon В is given by

HB = aQi+aQ2 + aQ3 + ^ V'(ql , q 1, 1) + y  V \q l ,q 2, 1) +

+ \ v ' ( q l ,q2,0) + ^ V ' ( q 1,q2,0), (2)

where Q is the charge of the quark 1 and V'(q1, q 1, 1) means the interaction term, etc. 
We assume that in Eq. (2) the interaction energy does not depend on the spin, i.e.

^ '( 9 i . 9 i . l ) = n « 1,9 1,0) and V'(ql ,q2,\)= V '(q l ,q 2,0).

Then, the Eq. (2) will be modified to

M(B) =  a(Qi  +  62 + 63) + ^  (^i> tl i )  +  2y ' (q1, q 2). (3)

The magnetic moments of SU(3) baryons will be given by

P(uud) =  a + V'(uu) + 2 V'(ud)

N(udd) =  V'(dd) + 2V'(ud)

Z + (uss) =  a + V'(uu) +  2 K'(us)

Z - (dds) =  -  a + V'(dd) + 2 V'{ds)

S°(uss) =  K'(ss) +2V'(us)

E ~ (dss) =  — a + K'(ss) + 2 V'(ds)

A(udanti, s)= V'(ud)+ V(ds)+V'(us)

Fitting the values of a and V as follows

a = -0 .7 8 8

V(uu)= 3.738 V (d d )= -1.75 K(ss)=-0.580

V(ud)= —0.080 V(ds)=-  0.224 F(us)=-0.310

The values of the magnetic moments obtained from these values are given in Table I.
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Table I

Comparison between the experimental and predicted values 
of the magnetic moments

Baryon Predicted value Experimental value

P 2.79 2.79
N -1.91 -1.91
I * 2.33 2.33
2Г -1.41 -1.41
~0 -1.20 -1.20
Е~ -0.240 -1 .8 5  .75
л -0.614 -0.614

Conclusion

From our results one can conclude that the quark—quark interaction, which has 
been usually neglected, has certain deeper influence on the magnetic moments. The 
discrepancy between the theory and the experiment may be due to relativistic effects, 
the effects of the qq sea (meson current) which have to be examined thoroughly and due 
to the fact that the interaction term V'(q1,q 2, 1) may not be exactly equal to 

These have to be thoroughly examined.
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Communication by speech is the most direct connection between human beings. Noise 
disturbs this connection because it masks some components of acoustical features and therefore 
reduces the information content of speech. Diminishing of intelligibility does not only prevent 
communication but can bring forth dangerous situations. The paper discusses the mechanism of 
speech production and the most important peculiarities of speech as information. The chief goal of 
the treatment is the redundancy of speech which is the most important factor to preserve information 
in the presence of noise interference. In connection to this the acoustical data of intelligibility 
measured chiefly by the author, will be given. A new computation method for the determination of 
intelligibility percentage in the presence of noise interference will be presented.

1. Communication by speech

The English word noise has two meanings. It means statistically fluctuating or 
simply non-periodical sound whose energy distributions depending on the frequency 
(so-called Fourier spectrum) consists of continuous, eventually densely located non
harmonic elements or is interspersed with them. According to its other meaning noise is 
any sound disturbing man in any of his activities. In certain languages there are two 
separate words for the two meanings.

Sounds with continuous spectrum may, of course, also carry information just as 
the so-called musical sounds with harmonic components. The former type is 
characteristic of several consonants, while characteristic examples for the latter are the 
vowels.

The disturbing noise may be the sound of both physical characters, but 
disturbance in understanding speech is caused in most cases and to the greatest extent 
by sounds with continuous spectrum. That is, the two meanings of noise are coinciding 
at such occasions.

Speech is the most important means of communication for human beings. Its 
functioning is linked with a bilateral human capability, with the ability of formation 
and of understanding of speech. Basic conditions of this are the following: intention of 
communication, the system of signals used according to a common agreement, the 
perfect condition of organs serving for emission and reception as well as the ability of
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understanding. Therefore, the chain of speech communication is a complicated system 
where brain, nerves, speech organs and hearing all participate (Fig. 1). Feedback 
serving for the checking of transmission, namely, the fact that the speaker hears also his 
own voice, is not a basic condition but improves the speed and safety of 
communication.

<- ..
C L N, M 1 R n 2 C2

Fig. 1. Diagram of the communication chain; l — information, C, 2 = cerebral function, Л/12 = nervous 
connections, M = motoric emission, R = reception, R' = feed-back information for the emitter, 

/ 12 = information store of both emitter and receiver

Communication by sounds is known also in the world of animals, but this is 
different from human speech, because with animals each information is given by a 
separate signal. Thus, of course, it is inapt for information on thoughts. Human speech 
is a system of signals built up on 35-40 elements, where meaning relies on various forms 
of connections between elements. Not only the possibility is given to form a new speech 
sound compound for any meaning, but also for the construction of a grammatical 
system in order to develop a literary language semantically perfectly tinged.

Speech is perfectly understandable — under appropriate acoustic circumstances 
— for healthy people mutually knowing the system of acoustical signals agreed upon 
(the language). By acoustical circumstances first of all the loudness of speech, the 
distance between speaker and listener and environmental background noise are meant. 
“Intelligibility” may decrease depending on them, what is more, it may even be lost. 
Therefore, the notion of intelligibility has a great importance in the evaluation of 
speech communication. With noise present both the speaker and the listener are faced 
with a difficult task; the former is disturbed by noise in thinking and the formation of 
speech, while the latter in hearing the series of signals and the cerebral evaluation of 
information content. It is first of all the phenomenon of “masking” that makes 
communication difficult [1].

Brain-work is, as a matter of fact, the decoding of the acoustical material heard, 
that will become more and more difficult according to what share and part of 
information is made unintelligible. Therefore, the harmful effect of speech—noise 
interference consists not only in the fact that the information is not understood, but 
also that the establishment of communication requires great efforts both on the side of 
emission (shouting) and on that of reception (combinative thinking).

That is why Robinson [2] ranks speech interference among primary human 
effects of noise. Namely, in speech disturbance stress is laid on the cerebral evaluating of
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sound material just as in the sensational evolution of loudness and noisiness. However, 
the similarity is still not full, because in the case of speech interference our brain deals 
not directly with the determination of some property of noise, but with the decoding of 
information material distorted indirectly by the masking effect of noise. It is also true 
that speech interference is not a secondary derivative of such character as impaired 
hearing, nerval or organic diseases. This chain of thoughts necessitates the insertion of 
a third kind of noise effect between the two extreme types, the sensational judgement of 
the quantitative data of noise and the development of harmful effects of noise. To this 
interstate could be ranked also the sleep-disturbing effect of noise, whose further 
consequences are tiredness, reduced mental alertness, nervousness, etc. It is 
characteristic of these categories (speech interference, sleep interference) that they exist 
only while noise is present. With the elimination of noise also the phenomenon 
disappears. This is not the case with impaired hearing, nerval taint or organic diseases 
remaining also in noiseless state. These latter are the real secondary noise effects.

For acoustical communication several examples may be found also in the world 
of animals. The primary reason for this is the suitability of biological sound for 
communication purposes. Sound may be easily and rapidly formed, it contains a 
relatively wide variation of information possibilities and has an adequate distance 
effect, too. It may be well used also in the presence of natural obstacles (bush, wood, 
forest). It is also an important characteristic that acoustic signals may be “coded”, that 
is animals belonging to other species do not know what information is contained in the 
given signal. The sound formed by animals has really all the features to be a carrier of 
the most important chain of communication.

In the course of investigations it turned out that most animals have a relatively 
abundant acoustical vocabulary. At least a dozen of animals are known that are able to 
produce 18-25 various phonetic signals (finch, dolphin, roaring monkey, etc.).

Sound forming is usually of a not too differentiated quality, but it has variable 
components. Such is first of all the frequency band used. Within one species the band of 
sound issuing and the sensibility range of the receiver organ are naturally in harmony. 
But the sound will not necessarily be perceived by the member of another species. It is 
very interesting that among mammalia examined until now man is perhaps the most 
sensitive in the range of low frequency sounds, while fully insensitive to very high 
frequency sounds. The frequency of the highest sound heard by man is 16-18 kHz, 
while the ears of chimpanzees are sensitive up to 22 kHz, those of dogs up to 38 kHz, of 
washbears up to 50 kHz, of cats up to 75 kHz, of bats up to 120 kHz. Non-mammals 
are usually insensitive to high sounds. This is surprising because previously we had 
thought that crickets, but also birds were sensitive to very high sounds. In reality the 
upper limit of the hearing of birds is around 8-12 kHz according to experiments [3].

Variation is possible first of all in pitch and time. It seems much less probable that 
the quality of sound would have an information-carrying role. But for man even this 
factor results in unlimited combination possibilities, i.e. the multiplication of meaning 
content.
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2. Vibration of vocal cords

The primary source of the formation of speech sounds is the glottis. The 
originally closed vocal cords are made to vibrate by the flow of air flowing out of lungs. 
The fundamental tone generated in this way is transformed into speech sounds by 
various resonator holes, finally the sound will be radiated into the environmental air
space through the oral aperture and/or nostrils (Fig. 2).

Beneath vocal cords one single large hole — the chest — is to be found. This hole 
includes the energy source of the sound formation system — the lungs. Since there are 
several soft and thus largely damping substances in the hole, it is first of all the trachea 
that has the role of a resonator. Since this resonator has a rather low own resonance, it 
does not influence the sound quality of speech sounds but may characterize individual 
timbre. In case of a normal speech sound the pressure of air flowing out of lungs 
corresponds to that of a water column of about 4 cm. When shouting very loudly and 
with high pitch it may even reach the pressure of a 20 cm high water column. The 
energy of the streaming air changes partly into sound energy, but the efficiency of 
transformation is very low, only some tenths of a thousandth.

Vocal cords block up the way of air as an elastic tightened membrane and form 
the sound source of speech and singing voice. It is about a pair of folds whose 
longitudinal tension, setting and gap size may be changed depending on our will. 
Muscles are partly imbedded into the vocal cords and partly make move the cartilages 
placed around. Vocal cords adhere to the cartilages and thus the exact setting and 
control is made by means of these. Cricoid is the basic cartilage of larynx. Above it the 
thyroid cartilage is located. Vocal cords begin with the inner part of its front wall that 
may be tightened by the thyroid cartilage. Arytenoid cartilages are placed on the 
backward side of cricoid. Vocal cords end on them whose approaching or keeping 
away is regulated by them. The cartilage covering the larynx has a protective role and

Fig. 2. Schematic view of speech organs
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has nothing to do with sound formation. In Figs 3a and 3b the cross-section of larynx 
and the rough layout of vocal cords are presented. The movement of vocal cords may 
be best explained On the cross-section, but experimentally it may be examined precisely 
in the two other major directions. Pseudo (or false) vocal cords to be seen in the figure 
do not participate in sound formation under normal conditions, but in pathological 
cases and with operative help they may take over — imperfectly — the voice-forming 
role of vocal cords.

Fig. 3a. Vertical cross section of larynx, b) horizontal sections in the height of glottis with open and closed
state

The length of vocal cords is 20-25 mm. Their movement takes place in such a 
way that the air flow pouring out of lungs knocks against the obstacle raised by closed 
glottis. If surplus pressure exceeds the compressing strength of vocal cords the flow of 
air breaks through the closure. In this way the surplus pressure will immediately 
diminish and resulting from their elasticity vocal cords are closed again. Air flowed out 
is continuously replaced from lungs, therefore after a certain time it will reach the 
surplus pressure required for a break-through again, and the movement goes on. Of 
course, elasticity data of vocal cords and flow data of the air current are in harmony. 
There is such a relationship between flow velocity in the contraction and pressure that 
at the narrowest place of larynx (glottis) air pressure will be the smallest. This physical 
circumstance promotes, what is more, partly governs the closure of vocal cords.

Vocal cords do not form a system opening and closing in plane, but move away 
and upward, then with an elliptical movement they collide further down and, when 
closing the edges are pressed together or may even be placed one above the other. 
Closure does not take place at once along the glottis, either, but the glottis is gradually 
closed from the front to the back and thus the entire movement has a character of a 
snake-like movement in space that may be well observed with a stroboscope. After
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closing, vocal cords strive for the repetition of the process even by themselves — 
because of their elasticity —, therefore, they start again towards the opening upwards. 
The well timed increase of pressure of air coming from lungs assists this movement [4].

Since the basic material of speech sounds comes to being through the movement 
of vocal cords, also more detailed data of the process should be presented. Such are the 
form of vibration, the relationship between the duration of opening and closing as well 
as the harmonic content of the sound thus obtained. The time pattern of the glottis 
opening is a function of typical triangle form where the opening stage steeply increases. 
The duration of opening and closing state may be examined either with stroboscopic 
method or by the form in time of the sound obtained. According to data obtained from 
oscillograms the opening quotient amounts to 0.2 at the normal pitch of speech sound 
and may increase quite up to a value of 0.7 with the increase of pitch by two octaves. 
According to the experiments the absolute value of opening time is constant: 2-2.5 ms 
[5, 6]. As against this, according to the stroboscopic method the opening quotient 
hardly depends on the frequency and its value is around 0.7 [7].

It is difficult to make a decision here, because it is very difficult to exactly define 
what we mean by an acoustically open state.

3. Differentiated phonation

The sound generated by glottis — the voice — is one of the raw materials of 
speech. Its oscillogram has the form of characteristic saw-tooth just as that of mechanic 
or electric self-induced vibrations. The harmonics content of the voice decreases by 
about 12 dB/octave. This raw material is transformed into speech sounds with 
characteristic timbre by the resonance effect of holes above the glottis.

However, there are also several other methods of forming speech sounds. In the 
cavities above the glottis closures and narrowings may be established and thus various 
kinds of noise may be created. Narrow gaps may be formed between lips, lips and teeth, 
tongue and teeth as well as between tongue and various places of palate. Voiceless 
fricatives (/, s, / ,  etc.) are formed in this way. If also voice is made sound the 
corresponding voiced pairs (u, z, j )  will be heard. With the sudden bursting of 
corresponding closures stops p, i, k, and in a voiced form b, d, g are obtained. The rapid 
consecutive application of the closure- and gap-forming methods will result in new 
sounds, they are the so called affricates, e.g. ts, tf. Also the timbre of noise sounds is 
influenced by holes above the glottis, but the real resonance effect is exercised first of all 
in the formation of vowels and semi-vowels (m, n, l, r, etc.).

Relatively most is known about the physical structure of vowels. Vowel-forming 
holes transform voiced sounds in their harmonic content as a result of their resonance 
effect (Fig. 4). Therefore, places of resonance amplification plotted against frequency 
are called “formants”. Helmholtz has created a certain kind of filter theory for the 
explanation of the generation of vowels. At present this is replaced by a more modern
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“tube theory” [8]. According to the drawing in Fig. 2 a tube with varying cross-section 
is leading from the glottis to the opening of the mouth, its length is about 17 cm. If the 
vowel-forming tube is considered a system with a quarter of a wavelength, its 
fundamental tone is around 500 Hz that may, of course, be modified by the formation 
of the tube (tongue, opening of the mouth). Indeed, the first resonance places (formants) 
are to be found between 200-1000 Hz. Places of further resonances may be found 
around 1500 Hz, 2500 Hz, etc. also with very wide modification possibilities (formants 
2, 3, etc.).
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Fig. 4. Evolution of vowel sounds. Upper left: cord tone, right: Fourier-spectrum of cord tone and modifying 
effects caused by transfer functions, below right: final spectrum, left: final oscillogram

The first two formants show the acoustical character of vowels rather well. The 
final acoustical form of speech sounds develops but after the radiation through the 
apertures of resonator cavities. The radiation resistance of oral cavity raises the upper 
range of spectrum in a first approach by 6 dB/octave. Thus the heard character of 
upper formants will be stronger.

Therefore, the development of the acoustical character of vowels is a complicated 
process. In Fig. 4 we tried to outline the individual phases of the process. According to 
the system theory resonance curves modify the original series of harmonics. The effect 
of radiation resistance already mentioned is.superposed on this that gives the final 
acoustical form. However, this may only be measured in the axis of the radiation. 
Laterally the radiation diagram is frequency dependent because of interferences and 
the shadowing effect of head, respectively. The usual frequency spectrum of speech 
sounds is distorted laterally or at the back, that makes also intelligibility more difficult.

Much less is known about the physical character of consonants than about that 
of vowels, but the so-called semi-vowels are formed identically as vowels. In the 
acoustical quality also elements of noise character may be observed and the formants of 
surrounding vowels also strongly influence the formation of the character in time. The 
character of consonant of continuous noise develops in a wide frequency band, but it
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may be rather well recognized and identified from analysed patterns. The most 
complicated mechanical recognizing task is caused by stops. With them attempts are 
made to achieve some result by the “locus” notion for the time being. Locus is a 
frequency place to which second — eventually third — formants of surrounding vowels 
are approaching when changing the form of the vocal tract [9].

With the appropriate formation of cavities a theoretically infinite number of 
vowel kinds may be created, but within one language usually only 5-15 vowel qualities 
are really used. Even if not exactly, but about the same consideration holds also for 
consonants. From the information theoretical viewpoint it is very important that out of 
the continuously changeable possibilities in very large numbers the language selects a 
signal store consisting only of a few number of discrete elements. This phenomenon is, 
of course, connected also with our perception possibilities, but within one language 
each member of a language community has an “absolute hearing” for distinguishing 
tone qualities. Most languages build up their vocabulary usually from 35-45 speech 
sounds.

4. Speech as information

If all speech sounds would have the same relative occurrences, the information 
content of a phonetic signal were around 5-5.5 bits. Since the velocity of speech can be 
about 10-12 signals per second, the information capacity of speech is about 50-60 bit/s. 
The so defined information content of a short sentence reaches 500 bits. If our brain 
worked like a digital computer, both the sending and the receiving intellect ought to 
make maximum 2500= 10150 decisions during this time for coding and decoding the 
phonetical and linguistical information, respectively. Beside this, the brain can 
distinguish between real quality informations (i.e. the phonetical contents of the 
information) and other ones (e.g. individual character, emotion content etc.). All these 
data indicate how faster (how much more efficiently) the brain performs its evaluating 
work than computers.

The question will be made even more complicated if we try to determine the 
information content of speech sounds analyzed from the physical side by artificial 
recognition. A physical analysis of speech sound will not result in the determination of 
a single quality, but the analysis is extended to the pitch of sound, duration, intonation 
and resonance data of 3-4 formant places, etc. The quality of sound should be 
determined on the basis of these permanently changed 8-10 data.

The solution of the problem has not been possible with our contemporary 
technical possibilities. However, by means of synthetisation and transformation into 
acoustical signals of the same information data a well understandable artificial speech 
may be generated. This fact points to the special activity of brain in decoding speech 
information. Because of the overlapping of formant places dependent on pronoun- 
ciation decisions made on the basis of formants are not always unambiguous. It may be 
added to this that the individual timbre, the connection of the sound in question with
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other sounds, and the emotional content of the text give a lot of additional information 
to the acoustical signal. Physical analysis is not able to distinguish between elements of 
the recorded information “parcel”. It is an elementary observation, for example, that 
the loudness of speech may alter the formant structures more than it is characteristic for 
the difference between two vowels. Physical analysis is not able to separate the 
disturbing “additional information” which sometimes necessarily seems more 
significant from the “main information” characterizing the real quality, and thus, a 
simple analysis is not suitable for the mechanical recognition of quality. This parcel 
character of physical data of speech sounds is one of the important basic principles of 
research [10].

It results from the foregoing that the brain is likely to take considerably more 
data into consideration than physically available when making decision concerning 
quality. Besides, it makes not only short-time analysis within a given sound, but 
permanently considers also relations with preceding and following sounds, what is 
more, it even compares the material perceived with its own lingual and intellectual 
vocabulary and it corrects the eventually wrongly identified signal qualities afterwards. 
Thus, its work is further enlarged.

As a matter of fact, the interesting technical idea that the automatic recognition 
and identification of quantized signals may be technically solved, however, with the 
present technical level this is not possible for continuous ones, was raised even through 
the failure of the automatic recognition of speech sounds. Namely speech itself is not a 
succession of information signals, but their total confluence out of which our signal 
recognition systems are not able to select discrete qualities. First of all two things have 
to be solved yet: one is the segmentation of individual signals, while the other is their 
identification with elements of the quantized quality system. However, identification is 
not fully possible because of the suppressing effect of additional information even if the 
possibility of correlation analysis is included in the solution.

Therefore, physical data of human communication have developed according to 
the abilities of man. The speed of formation and of understanding is about the same, 
and this determines the capacity of elementary information material and the 
information capacity of speech sound. It is obvious that the most open system types 
(Morse signals) could not correspond to human needs because of the time-duration of 
their decoding, while the closest ones (picture-writing) because of their absurd large 
memory store. Therefore, the number and quality of speech elements had to develop by 
psycho-physiological reasons.

The carrier of the information material of speech communication is always some 
series of physical signals. But, this is subject to the interference of environmental 
physical and biophysical phenomena in the course of their spreading, transformation, 
perception and even understanding. Only quantitative data of the information 
material transmitted may be measured, but its contentual value may not. Yet, a 
relatively small phonetical change may involve considerable contentual deviation. 
Therefore, the stability of signals is a decisive problem of communication.
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The informative efTect of signals is not unambiguously influenced by various 
distortions, for example, the resonances of oral holes are practically distortions in the 
development of speech sounds, or the dynamical compression of hearing in 
understanding. All this promotes the adequate development and reception of signals 
carrying information. As against this, interference with noise always affects in the 
direction of the reduction of information content.

Fig. 5. Example shows the conserving effect of redundancy. The distortion in the second row cannot eliminate
the meaning of the redundant form

The signal-noise ratio (difference between signal and noise levels) is one of the 
most fundamental data of the efficiency of communication. In the understanding of 
speech sounds the judgement of so-called distinctive features (difference thresholds) has 
an important part and this judgement is made difficult by the masking effect of noises. It 
is a general rule of nature that the intelligibility of a series of signals masked by noise 
may be gained by increasing the redundance of the carrier signals. Redundance may, 
for example, be increased by the multiplication of distinctive features of the individual 
elements, the numerical increase of the series of signals or by the repetition of signal 
processes (phonetical or verbal redundance).

The next redundance possibility is the length of sound signal series designating 
meanings and grammatical categories. The entire vocabulary of a language could be 
made up of sound relations of two, three and four elements. All combinations (e.g. four 
identical consonants one after the other) are, however, usually not made use of by 
languages in order to ensure intelligibility, i.e. information. Instead, longer words are 
formed. Longer signal series are less sensitive to noise, because the loss of one or 
another information element may be easily corrected in the brain. The time for 
information increases in this way. Shortness increases the amount of information per 
unit time, but also increases sensitivity to noise. Speech has developed in such a way 
that these two viewpoints are in balance.

In Fig. 5 the informational effect of two signal series is presented without and 
with noise interference, respectively. Interference has hardly any harmful effect on the 
information content of redundant series, while a perfectly informative signal series 
(containing no insignificant auxiliary signals) will become fully indecipherable [10].

У7777Л V777Z\ v / /M A'w'vt
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Therefore, with large basic noise redundance should be increased in speech 
communication. For example, space language vocabularies do not allow the “yes—no” 
version, but instead the use of “affirmative—negative” is obligatory.

5. Acoustical data of speech and intelligibility

Resulting from the peculiarities of speech sounds acoustical power and spectrum 
are permanently changing in the course of speech. In order to be able to determine 
acoustical data for the speech itself certain statistical considerations have to be made. It 
may be stated concerning a longer speech whether it was too still, of normal intensity or 
too loud. A similar procedure may be followed also in the course of measurements. The 
average sound pressure level of normal speech is about 72-76 dB at a distance of 30 cm 
from the speaker. Measuring data under various circumstances may be found in Table 
I. The Table contains the average of the Hungarian speech of 18 men, measurements 
were made by the so-called speech choir method [11, 12].

Table 1

Average sound pressure level of man’s speech at 30 cm distance from 
head

Speech Front Side Behind

Murmured 63 _ _
Still 67 62 57
Normal 74 70 64
Loud 81 76 72
Shouted 86 - -

Beside average levels also the form of the average spectrum of speech has to be 
known. In Fig. 6 an average spectrum of 8 European languages was indicated for 
man’s voice. Data are plotted in spectrum level (energy level falling to 1 Hz 
theoretical bandwidth) and with a fluctuation possibility of + 3 dB are valid for the 
English, German, Swedish, Russian, Italian, Hungarian [12] as well as Spanish [13] 
and French [14] languages. In Fig. 6 the zero level is the average (long-time) sound 
pressure level of speech.

From Fig. 6 speech levels falling to octave bands of 250.. .4000 Hz medium 
frequencies may easily be converted. These data are needed if we wish to calculate the 
intelligibility of speech in advance for noises of various spectral compositions.

Speech sounds are of various intensity and structure, therefore noise does not 
equally mask them, but the more intensive the noise the more it will mask. According to 
traditional definition intelligibility is the numerical quotient of the understood 
elements and all speech elements (sound, syllable, word) communicated. However,
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intelligibility percentages determined on the basis of fluent speech are quite different 
from the values referring to individual syllables or separate (meaningful or 
meaningless) words [15]. Namely, in the identification of meaningful texts very great 
deviations may be stated depending on the practice, individual abilities and intelligence 
as well as on the text. For example, with a 50 per cent syllable intelligibility, speech 
intelligibility may reach 90 per cent. Therefore, almost exclusively syllable intelligibility 
is used for investigations.

Fig. 6. Average speech spectrum of European languages. All data fall within + 3 dB band of the curve plotted

For direct measuring several procedures are known. Their common feature is 
that they try to find an answer to the intelligibility of mainly monosyllabic and 
disyllabic words with identical or similar voice structure as the language investigated. 
It is not absolutely necessary that the individual words have some meaning. And, if so, 
then mistakeable words are selected, where, for example, changing one phonem (speech 
sound occurring in the language in question) causes changes also in the meaning. E.g.: 
boon-coon-loon-moon-noon-soon.

The intelligibility percentage determined may be used for indicating the 
suitability for work of the acoustical surrounding. However, because of the clumsiness 
of subjective measuring also some computation methods have developed in the course 
of time.

One of them is the estimation method using the total noise level. Following from 
the data of Table I the masking effect of noise may be somewhat compensated by the 
increase of sound intensity. An important consideration is the relationship between 
spectra of speech and of interfering noise. For example, “white noise” (the energy 
density of spectrum is constant as a function of frequency) masks stops according to 
Table II. The basic assumption of the data of the Table is that the sound pressure level 
of speech and noise should be identical, i.e. the signal to noise ratio is 0 dB. In such 
cases the intelligibility of the individual sounds is called intelligibility stability [16].
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Table II

Percentual intelligibility stability of stops for 
the English and Hungarian languages

Sound English Hungarian

P 50.5 46.5
t 76.5 87.5
к 50 78.5
b 75 75
d 73 68
9 59 66.5

Under similar circumstances the intelligibility of vowels may reach even 98 per 
cent. Therefore the exact knowledge of spectral relations is needed.

Fletcher [15] gave possibilities for other solutions by introducing the term 
“articulation index”. The essence of articulation index lies in that the intelligibility 
referring to the entire frequency range is made up of partial intelligibilities achieved in 
the individual frequency bands. On the basis of this the action of speech interference 
level (SIL), then its modified forms were introduced.

The preferred speech interference level (PSIL) is the simple arithmetical mean 
value of the noise level to be measured in octave bands with 500, 1000 and 2000 Hz 
medium frequencies, respectively. As a function of this the admissible distance and 
sound intensity to be used for intelligibility in speech communication are given. Data 
are presented in Table III [17].

Table III

Admissible PSIL-values in dB mean values as a function of speech distance and sound
intensity

Distance [m] Normal Raised voice Loud Shouted

0.3 68 74 80 92
0.6 62 68 74 80
0.9 58 64 70 76
1.2 56 62 68 74
1.5 57 60 66 72
1.8 52 58 64 70
3.6 46 52 58 64

The computations presented did not take spectral deviations of speech and 
interfering noise into consideration. The spectrum of speech may be assumed as given 
according to Fig. 6. Of course, the spectral forms of speech with intensities deviating 
from the normal one are also known [12]. The spectrum of the given noise should be 
compared to them. But this is not enough to forecast intelligibility, since also partial 
intelligibility percentages falling to the individual octave bands have to be known.
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Relevant data are presented in Table IV where partial values falling to the individual 
octave bands may be found by the author for English [15], Russian [19] and 
Hungarian [20] languages. The first two result from conversion, while the third one 
from direct measuring.

Table IV

Partial intelligibility percentages (Л0 measured in octave bands, without background noise

Centre of band (Hz): 125 250 500 lk 2k 4k 8k

English 3 15 29 28 17 8 —

Russian 1 6 23 32 26 10 2
Hungarian 2 13 18 22 22 20 3

Mean values: 2 11 23 27 22 13 2

It results from Table IV that the octave band with 4000 Hz medium frequency 
largely contributes to the intelligibility, therefore it cannot be omitted from the 
computation. The level values of speech and noise components should be determined 
in five octave bands. Furthermore — according to an idea of D. E. Broadbent [21] — 
we may agree that if some component of noise level is at least by 30 dB below the speech 
level, it has no effect to intelligibility, while if it is at least by 20 dB above it, then 
understanding will be made quite impossible. Transitional cases are handled 
proportionally. Level data of the individual bands are weighted by partial percentages 
of intelligibility, then partial results are added. Thus we get an intelligibility index in a 
given noise:

1 ( S - N ) i  +  20
I  < V

where S, and N t are the ith octave band levels of speech and of noise, respectively: and 
X t is the percentual intelligibility component in the same octave band according to the 
data of Table IV.

—

10 dB —

250 500 1k 2k 4k
octave bands

Fig. 7. Diagram for computation of interfering effect of a given noise with speech, i.e. of intelligibility 
of syllables in a given language. Straight lines: speech spectrum, broken lines: noise spectrum. For details

see the text
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In Fig. 7 beside octave band data of the average energy spectrum of speech of 
normal intensity also octave levels of a hypothetical noise source— measured at the ear 
of the listener — were plotted. If the computation mentioned is made according to the 
summation of

( S -N ) 250 + 20 v  i ( S -N ) 500 + 20 v
50 * 2 5 0 + -  5Ö * 500+ . . .

then for these circumstances an intelligibility of 51.4% will be obtained for the English 
language and that of 54.7% for the Hungarian one. For verification of the computation 
use data of Table IV and Fig. 7. The achieved values depend, of course, on the speech 
level and on the noise spectrum in another case.
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REPARAMETRIZATION OF SUPERGROUP: 
SUPERSPACE AS A VECTORSPACE
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In this paper we show that, with reparametrization of supergroup, superspace as the 
homogeneous space of it will be linearized, superfield will be defined uniquely, vector coordinates and 
spinor coordinates will play the equal rôle. . .  We can list all possible subgroups of supergroup easily 
in this way of parametrization. The representation of this algebra will be given. The linearization of 
superspace would lead to new approaches to construct geometrical structures on it. The Abelian 
translation group would make easier the construction of the harmonic analysis on it. Last of all, the 
SU{N) internal symmetry of extended superunified theories would be manifest in these models.

1. Introduction

In original works [1,2], the supertranslation group has been introduced with 
parametrization by the generators Q, Q, P of the pseudo Lie algebra

{q , q] = 2 o, p \

{ß, ß} =  {ß, ß} = [/V  ß ] =  U V  ß] = UV p v] = o . (l.i)

Elements of the supertranslation group can be parametrized as:

G(c„, Ç, 0= exp  Цс^Р“ + ÇQ + QÇ) • (1.2)

The product defined on the group is not linear, not global, even not commutative 
[3, 4]:

С(с„,С „Г1)-С (с2<1,С2,Г2)=

= C(c1(1 + c2/J +  i(C2<T„ii — Ci Ci + C2, Ci +C2) •

Then the superspace and the superfields defined on it can be introduced as:

Ф(х, 8, 8) =  exp [i(jc„ P> + 9Q + ßS)] Ф(0,0). (1.4)

Using the Cambell—Haussdorf identity, by such way of parametrization with 
Q, Q and P" we have three different definitions of superfield corresponding to the
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following three choices (see [5]):

exp [ i ^ P "  + 9Q + 6ЭД Ф(0,0) =  Ф(х, 9, 9), 

exp [i(x„P" + 9Q)] • exp(ißS)<f>(0,0) =  Ф,(х, 9 ,9), 

exp [i(x„P" + öS)] ' exp (iSÔ)<ï>(0,0) =  Ф2(х, 9, 9).

(1.5)

This way of parametrization has some “esthetical” shortcomings:

a) The spinortranslations do not form one-parameter group. This kind of 
parametrization is not as canonical as the usual techniques treated with Lie groups.

b) The supertranslation group is not commutative. The harmonic analysis and 
the generalized Fourier transformations have not been discussed yet on the superspace. 
Because the supertranslation group is not compact, but locally compact only, the 
commutativity would make this construction easier by the recipe given in [6].

c) Superfields are not determined uniquely.
d) When the geometrical structures on a manifold are constructed, an algebraic 

structure used to be given on it, so that the manifold will become a vectorspace. 
Concretely, one always makes an additive group isomorph with the translation group. 
With the previous parametrization both cannot be realized at the same time, because 
the supertranslation group is not Abelian. We cannot use the standard techniques to 
construct a linear geometry on it.

e) Geometrically speaking, up to now the superspace is considered as a fibre 
bundle [7,8], not base manifold. The geometry on it is a non-linear one. So vector 
coordinates and spinor coordinates do not play the same rôle in our formalism.

In this study on the reparametrization of supergroup, we try to overcome all 
these minor esthetical shortcomings.

In [9] the authors have affirmed that the most general form of the commutator of 
the Fermi generators of degree 1 is:

According to them, if cLM = 0 then 0  = 6  =  0- So in the case of non-vanishing 
Fermi generators cLM can always be normalized to 6LM. However, it is not true, if we 
reexamine the analysis in which {QL,Q M} belongs to the ( 1 /2,0) (0, 1/2) = (1/2,1/2) 
representation of Lorentz group. Because zero belongs to any representation, so in 
(2. 1) cLM can vanish quite right. For instance, let us take the following non-vanishing 
Fermi generators:

2. Reparametrization of supergroup and superspace

{~QL, Qm}= clm<j„P“. (2. 1)

(2.2)
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with Q and Q given in (1.1). .9 and 5 are spinorcoordinate operators of*the superspace
(1.3). As we know from [3]

{ e .s} = { & $ } = /•  (2.3)

We have the following minimal extension of Poincaré algebra 

[P„, Tip] = [P„, 7 S p ]  = {Tsp, Ъ р } ,

{Tsp, Tsp} = {Tsp, Tsp} = 0 , (24)

[Ai^v. Tsp] = 1/2 • aßV Tsp ,

[М Цу, Tsp] = 1/2 • <x„v Tsp .

We can see that in this case Fermi generators form a Grassman algebra (while the 
generators given in (1.1) form a Clifford algebra). Supertranslation group will be 
parametrized as:

G(fl„, C, 0  = exp [i(a„P" + CTsp + TspO] ■ (2.5)

The product defined on this group turns to be commutative, linear and global:

G {alß, C„ f.) • C(a2„  C2, Q  = G(ű,„ + u2„  {, + i 2, Г, + C2) • (2.6)
Superfield will be determined uniquely if the superspace is parametrized with 

Tsp, Tsp and P":
Ф(х, 3, S) = exp [i(x^ P" + 9Tsp + ЪрЗ)] Ф(0,0). (2.7)

Let us parametrize the elements of the minimal spinor extension of Poincaré 
group with generators Tsp, Tsp, P" and M„v by {Л, ац, (}. We can get easily the set of all 
possible subgroups of it, when we fix each parameter:

1. {1,0,0} = 1 : it is the trivial group, the unit of the supergroup.
2. {/1,0,0} e £: it is the usual Lorentz group.
3. {A, a 0} e if: it is the usual Poincaré group.
4. {1,ű„,£} eS 7 i it is the commutative supertranslation group.
5. {1 ,^ ,0}  e 7: it is the usual space time translation group.
6. {1,0, C} e Tsp: it is the new spinor translation group.
7. {A, 0, (} e S2: it is the new super Lorentz group.
It is worth noting that in this way of parametrization we get two new groups Tsp 

and 5 2 . The consideration of these is an interesting work, and it will be discussed 
elsewhere.

The superspace now is the set of numbers (x„, 9,5) transforming under the action 
of the element {A, a„,i} of supergroup as follows:

х„-»Л};дсу + ам,

3->A(A)9 + t;, (2.8)

5->A (A)5+Ç.
Acta Physica Hungarica 54, 1983
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So we come to a natural and general definition of supergroup: Supergroup is the 
group of inhomogeneous linear transformations acting on superspace and leaving 
Minkowski space and spinorspace invariant.

3. Representation of Tsp algebra

Let us consider the massive case: Take P = 0 and P0 = m Tsp - Tsp is Casimir 
operator then, because it commutes with all other generators. So we have:

i) Irreducible multiplets with Tsp ■ Tsp | <p> = 0

There are two possibilities:
a) Tsp \m ,J ,J3ylo= 0:\m ,J ,J3ylo is the Grassman vacuum with left-handed 

chirality. This vacuum degenerates with four states forming a complete basis, which 
spans a 4-dimensional representation space:

|m, ~f3>0; Tspa\m ,J ,J 3yo; Tsp„Tspß\m ,J ,J3yl0 . (3.1)

b) Tsp\m ,J,J3yo = 0: \m ,J ,J3yr0 is the Grassman vacuum with right-handed 
chirality. This vacuum degenerates with four states forming a complete basis, which 
spans a 4-dimensional representation space:

Im ,J ,J 3yr0; Tspx\m ,J ,J 3yr0; TspxTspß\m, J , J 3>r0 . (3.2)

ii) Irreducible multiplets with Tsp ■ Tsp|<р> = 0

It occupies 8 states forming a complete basis. It is an octet with neutral chirality:

Tsp\m, J, J 3>S#0; Tsp\m, J, J 3>5#0:

\m ,J ,J3y0; TspJm ,J,J3y0; Tspa-|m, J , J 3>J; ^  ^

TspsTspß\m, J, J 3yo; TspiTspß\m, J, J3yo;

Tspa TspßIm, J ,J 3y0 .

In the space of functions on the supergroup, we represent the generators of the 
minimal spinor extension of Poincaré group as:

M liV= i ( x „ d v - x y d f ) +  1 / 2 (3-4)

Tspx = id/d9„\ Tspi =  id/d$i.
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Generally speaking, the 16-component superfield is reducible and it can be reduced 
into the sum of an irreducible quartet with left-handed chirality (independent of 5), and 
an irreducible quartet with right-handed chirality and an octet with neutral chirality. 
At the same time, it is the product of a superfield with right-handed chirality and a 
superfield with left-handed chirality:

Ф(х„ 9,5) = Фг(х, 9) + Ф‘(х, 5) +  Ф"(х, 9,5) = 5)

= Ф,г(х, 9) • Ф"(х, 5).

Let us note that the product of superfields of the same chirality is a superfield of 
that chirality.

4. Discussion

The construction of Lagrange field theory for Tsp algebra is straightforward by 
the standard method proposed by Salam and Stradee [2]. Here we do not discuss it in 
detail.

From a geometrical viewpoint, the constructon of geometrical structures on the 
superspace as a vectorspace is a very interesting work. For this purpose we would 
define a certain scalar product on superspace as:

<■Z ,Z '}  = gmnZ m-Z n where Z m = (x)1, 9,5).

First we consider the flat superspace, in which gmn is a global supermetric tensor. 
Only from the scalar nature and from the symmetric property of this product with 9 
and 5 we come to

<Z, Z> —f(x ^ x ß, 9, 5) = x lix ß . (4.1)

Proof: From the scalar nature of this product, we must pair 9 with 9 in any terms of this 
product. So:

<Z, Z> =/(x„x '\ 95).

But because the product is symmetric, if in a certain term of the product there is a 
95 ■ C(x, 9, 5), there must be 59 ■ C(x, 9, 5) terms in the product. However, the two 
terms destroy each another.

So: Distance in superspace is the distance is Minkowski space, but the angle in 
superspace is not that one in Minkowski space.

So we can see that the spinor coordinates would give contributions to the 
curvature of manifolds in the superspace. Indeed, if we give a hypersurface by the 
following equation:

9 = 9(x); 5(x)= 5. (4.2)

We can come to a curved Minkowski space as a physical manifold in the 
superspace with the following metric tensor:
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9„Áx) = 9 ^  + 9 ^- d9a(x)/dxv + gllidSi(x)/dxv +

+ 0 « v  д9*(х)/ёхц + givd5i(x)/dx>‘ +

+ g^d9c‘(x)/dxl‘ ■ d9t>(x)/ëxv + д^ё9а(х)/ёхц ■ ё9^(х)/ёх' + 

+  g fa ë 8 * ‘( x ) / ë x ,‘ ■ ë 5 a( x ) / ë x v +  g 0tjjë 9 ',( x ) / ë x ' 1 ■ d W ( x ) / ê x v . 

Specially, if we choose:

(4.3)

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 - 1 0 0 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 i

0 0 0 0 i 0 0 0

0 0 0 0 0 i 0 0

(4.4)

With the assumption that the scalar product is bilinear and symmetric with 9 and
5. Then (4. 3) gets the following form:

9„v(x) = gIIV + i(d9(x)/dxl‘ ■ ё$(х)/ёх' +

+ ё9(х)/дх>‘ ■ ë9(x)/ëxv) = gßV + S .
(4.5)

The S-term will cause the curvature of the space. We stop the discussion with the 
remark that: In the superspace we can get all configurations o f gravity corresponding to 
the set of the possible 9 = 9(x)', 9=9(x) in it.

In conclusion, we note that with Tsp algebra, the SU (N ) internal symmetry will 
be manifest.

Consider the extended superunified algebra in the general form:

1Л . * \ ] = IP " B,-] = [P„, e ' ]  = [M„v, B J = o ,

[ Pp] = HgMp Pv -  gvp Pfi ,

[M„v, 0 L] = 1/2 • a ^ Q f ,

{ Q ^ Q ^ } = ^ ( a l)L M Bl , (4.6)

{ Q ^ Q n = c LMK ) xiP \

[В„Вт] = ,Тс*тВ*,

[Bh QL] = Z s r  -QM ■

Acta Physic a Hungarica 54, 1983



R E P A R A M E T R I Z A T I O N  O F  S U P E R G R O U P 359

When сш  =  0, we get the Tsp algebra.
Using Jacobi identity (Bh QL, QM) we come to:

XcLM . jMiv + Zslm , fMN = (J (4.7)

or in the matrix form: c • s) ■= —s • c.
In usual models, with cLM =  ô LM, we have s,= — s ,. As we now, s, matrices are the 

representations of the internal symmetry group. So the internal symmetry group must 
be orthogonal. We could get the S U ( N )  symmetry only after a lengthy manipulation 
with so called self-duality (see [10]).

In our Tsp algebra cLM =  0, (4.7) satisfies automatically. So we can get a manifest 
S U ( N )  superunified theory. This kind of symmetry fits better with reality.
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1. Introduction

Recently Podlaha and Sjödin [1] have deduced the “relativistic” Doppler 
formulas for light within the framework of one class of the theories of ether, in which the 
ratio of transversal to longitudinal contractions is i/r(w)/<p(w) =  1:(1 — w2/c 2) 1/2 =  \/ß  
and the frequency changes of (atomic) oscillators are proportional to C2(w) = ß\ w is the 
body’s speed relative to the ether. They base on the wave theory of light but accept the 
ether “seulement au sens d’un système de référence préféré”.

Podlaha and Sjödin write that “nous nous refusons de réduire la physique en 
mathématique, mais considérons plutôt tout processus physique comme quelque chose 
de réel”, and that their formula “permet une compréhension meilleure des causes 
physiques de l’effet que la déduction relativiste habituelle“.

The above and other assumptions taken by Podlaha and Sjödin determine 
unambiguously the definite consequences. Then the velocity of light c is isotropic only 
in the preferred frame FP, and in other frames FM as moving relative to FP this velocity 
must be a vectorial sum of c and speed wM of FM. To be sure one can do that the velocity 
of light measured in FM will be c [2], but the one-way anisotropy will not be liquidated. 
Further, the relativistic change of the frequency of the oscillators is related exclusively 
to FP and is a function of speed w only; they are two absolute magnitudes. The 
frequency of identical oscillators, as an absolute one, is the greatest and equal to v0 only 
when the oscillators are at rest in FP. The frequency of the same oscillators but at rest in 
FM, also as an absolute one, is equal to vM =  v0ßM. Thus, each of these frequencies of the 
same oscillators has the one and only value relative to FP, F M, the source’s frame Fs, 
and observer’s frame FB. Nothing but the difference (or relative difference or ratio)

* Mailing address: Skr. p. 2057, Wroclaw 1, Poland
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depends on the speed of the other frame. For instance, the frequency of oscillators in Fs 
moving with speed ws does not depend on the speed wB of FB, it does not depend either 
on the relative speed v between Fs and FB.

The situation is different in Einstein’s special theory of relativity (STR) where the 
relativistic effect takes place exclusively directly between two inertial reference frames. 
When one of them is “stationary” (n =  0), then the other must be “moving” (v^O). The 
relativistic effect arises in the “moving” frame but is observed in the “stationary” frame. 
This effect is a function of the relative speed v directly and exclusively between the two 
frames. But each frame can be “stationary” and/or “moving”. There exists here a full 
symmetry between the two frames when, for example, two beams of photons are 
exchanged between these frames; such a symmetry does not exist in the ether world. 
The relativistic change of frequency in Fs, when observed or compared in FB, can be 
only negative in STR but negative (ws>w B) as well as positive (ws < w B) in the ether 
theory. Thus, it seems rather impossible for the two theories to give the equivalent 
Doppler formulas, as it follows from formulas (1) and (3) deduced in [1].

It is necessary to remember in short that the measured values of both Doppler 
effects (singly or together) depend on the methods of measurement used in the 
experiments real and . . . imaginary (very often used by authors). In the ether theory 
with time dilation and length contraction the same photon can have different values, 
for instance, when emitted and measured in the same frame FM: 1. the simultaneous 
marking of two neighbouring crests on a measuring rod gives different values in the 
directions parallel and perpendicular to wM and it depends on the value of wM, 2. the 
measured time of passings two neighbouring crests through the same point always 
gives frequency v0 independently of the value of wM. In this concrete case, in the ether 
theory, the quadratic Doppler effect, as one objective and dependent on wM, must be 
separated (or calculated) from the result directly received if the used method of 
measurement warrants its at least theoretical separation (or calculation). Thus both 
theory and formula of the Doppler effect must show the objective effects independent of 
the methods of measurement. In practice, unfortunately, the derivation and/or 
discussion of the Doppler formulas are based on the results (readings) of a selected 
(sometimes, convenient) method of measurement (e.g., see [3, 4, 5, 2]). We base on the 
objective effects; the photons, their real energies (represented by frequencies and 
wavelengths) do not “adopt” to a method of measurement. 2

2. Contradictions in the statements of [1]

2.1. Podlaha and Sjödin assume that the oscillators moving through the ether 
really change their frequencies. In consequence, they multiply (revalue) the classical 
Doppler formula by the factor &(ws)/Q(wB)= ßs/ßB in order to obtain the relativistic

Acta Physica Hungarica 54, 1983
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Doppler formula valid in the ether theory:

j _  wB cos ß
c Q(ws)

V =  v0 ----- - - - - - - - - - - - - - - - - - - - - ,j ws cos a. ß(wB)
c

( 1 )

where v0 is the proper frequency of the source (oscillator) at rest in FP, v is the frequency 
emitted in Fs and measured by the observer В at rest in FB, a and ß are the angles, 
measured in FP, between the speeds ws and wB, respectively, and the source-observer 
direction.

Formula (1) is contradictory to the facts following from the assumptions in [1]. 
For a simplification of our discussion we exclude the classical expression or take cos a 
= cos/1 = 0. Firstly, when ws =  wB=/=0, v = v0! for any values of these speeds. This is 
physically impossible in the ether theory, because then the frequencies both emitted in 
Fs (as vs =  v0ßs) and in FB (as vB =  v0ßB) are the same and equal to the frequency of the 
photons emitted in Fs (as vs) and observed in F B (as vSB). Secondly, when ws =  0, the 
frequency observed in FB ought then to be greater than v0 (equal to v0//JB)! Thirdly, 
formula (1) is useless when applied in experiments, because in F B only two frequencies 
vB and vSB are attainable.

Podlaha and Sjödin write that formula (1) is similar (semblable) to that derived 
by Ives (formula (9) in [6]); we say that the two formulas do not differ in the question 
under discussion. However, Ives treats his formula as a general one in the ether world, 
but they write that “malheureusement la formule (1) est en général valable seulement 
dans le système de référence préféré”.

2.2. In the ether world with the preferred frame the Doppler formula must be 
derived in such a manner to be valid in every frame. The frequency of the oscillators at 
rest in Fs, vs =  v0ßs, will be obseved (measured) in FB = FP (will enter into FB = FP) as

v s p  =  V s / [  1 -  (  ws cos ot)/c] =  v0/ y [  1 -  (ws cos a)/c]

and as
v 1 (wB cos ß)/c _  1 (wB cos ß)/c
SB s 1 — (ws cos a)/c V° 1 — (ws cos a)/c ^s

( 2)

(3)

in FB when wB #0. Frequency v0 cannot exist in FB when wB #0 . But v0 is represented 
unambiguously in FB by the frequency

vb = v0/?b (4)

of the identical oscillators at rest in FB. Therefore, formula (3) can be rewritten as

l - ( w B cos ß)/c ßs 
l - (w s cosa)/c ßn (5)
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Formula (5) is a correct Doppler formula in the ether world and is valid in any 
(intertial) reference frame of this world. This formula is free from the objections in 
Section 2.1 referred to (1). Podlaha and Sjödin and Ives overlooked or “lost” the third 
element, vB, in the formula of revaluation (see (4)), and this is why one finds v0 instead of 
vB in (1); we find the same mistake in Section V —C [7].

2.3. Let us forget for a “moment” that v0 is unsuitable in (1). Podlaha and Sjödin 
use the transformation formulas to transform their formula (1) into the observer’s 
frame, and they get (3) in [1]:

(1 ~ v 2/c'2)112 r
V

1 — -cos 0 B 
c

( 6 )

where v and v0 keep the same meanings as in ( 1 ), c' — ßBc/il/ii is the velocity of light in F„, 
V is the source’s speed relative to FB, &B is the angle between v and the source-observer 
direction as measured in FB, Г = ßBQ{ws)/ßsQ(wB). Relying on the experimental results 
or in accepting the Lorentzian world [8], Podlaha and Sjödin put c' = c — and 
Г = 1, and formula (6) becomes also Einstein’s formula. Our third objection in Section 2.1 
relative to formula (1) is also valid relative to formula (6) as a relativistic formula in the 
ether theory since frequency v0 has the same meaning as in (1). Whereas when formula 
(6) is treated as Einstein’s one, frequency v0 is correct, because the frequency emitted in 
both source’s and “stationary” frames is always v0, which does not take place in the 
ether world when ws /  0 (although the readings can give v0 when a convenient method 
of measurement is used).

To compare formulas (1) and (6) we assume that the photons are emitted 
perpendicularly to ws and wB. Then the classical expression in ( 1 ) and the expression in 
the denominator of (6) cancel; the relativistic speed addition gives v - w s— wB when 
both ws and wB< ĉ. Then formulas (1) and (6) can be reduced to, respectively,

v — voC 1 — (w| —wB)/2c2] (7)

v = v0[l — (ws —wB)2/2c2]. (8)

Thus, firstly, the quadratic effect in (7) can be positive as well as negative, but only 
negative in (8)! Secondly, it can be though that ws < wB! Thirdly, the absolute values of 
the quadratic effects in (7) and (8) differ from one another! This difference is 
proportional to w„:

w f-w i (ws- w B)2 2wBu 
2c2 2c2 ~  2c2 ’ W

when ws ф 0 and wB /  0. Thus the equivalence between ( 1 ) and (6) cannot exist here, too.
2.4. The aberration effect was used in order to derive (Ives, [6]) formula (6) from 

( 1 ) in the direction of emission perpendicular to ws or to show the equivalence (Podlaha 
and Sjödin, [1]) between formulas (6) and (1). The reason for which Ives did so, can be

Acta Physica Hungarica 54, 1983

and



D O P P L E R  F O R M U L A S  F O R  L I G H T  D E D U C E D  B Y  P O D L A H A  A N D  S J Ö D I N 365

found in [9, 6]. This problem needs a separate discussion. Note, however, that the 
quadratic Doppler effect in (6) becomes now a function of two effects: time dilation, and 
longitudinal Doppler effect due to the aberrational inclination; this is clearly seen in 
(14) [6]. But then the effect (its value) due to time dilation would have to depend on the 
direction of emission.

2.5. Podlaha and Sjödin propose a new modification of the rotor experiment to 
state the value of Г : emitter-source S and absorber-source A rotate on two different 
coaxial disks with two independent (linear) speeds, respectively, vs and vA. The 
frequencies of S and A are compared with the frequency of the source comoving with 
the observer В (with laboratory and axes); formula (6) is used twice. The laboratory 
speed is wB relative to FP. When the directions of all three speeds are parallel and both 
vs and vA^c , formula (13) in [1] reduces to

^v= vSB- v AB = ~v0^ 2^ ) .  (10)

Using our formula (5) for the same situation, we have ws = wB + t;s for S and wA 
— wB i  vA for A. The difference between the frequencies vSB of S and vAB of A, measured 
in FB, is then

^v = vSB- v AB= —vb t>Vs -  f  a  -  2 w B(i>s —  

2c2 2c2
”a)^

( 11 )

when all wB, vs and vA'4c. The difference between (10) and (11) is evident, even if we 
neglect the difference between v0 and vB. The two last formulas are identical and correct 
when wB = 0, that is, when laboratory rests in FP.

3. Discussion and conclusion

The experiment proposed by Podlaha and Sjödin could test difference (9) and 
state existing the speed wB (when vA = — vs in formula (11)). But the results of all four 
Ives—Stilwell experiments [10— 13], of all rotor experiments [14— 16], and of 
temperature-dependent experiments [17, 18] compel us to accept that the absolute 
speed wB of the laboratory at rest on the Earth’s surface is equal to zero! The last two 
groups of experiments also contradict Einstein’s Doppler formula: there is one-way 
frequency change of the oscillators between Fs and FA. And in the temperature-depend
ent experiments there is a change o f the sign of the effect!; besides, the frequency 
difference was proportional to (t>f — t>A) but not to (ys —ua)2'

Somebody can say that in the proposal by Podlaha and Sjödin there exists an 
analogy to the photons emitted by a star and observed in a free cosmo-space (in the 
worst case, on the Earth’s surface), and, consequently, a difference of pseudo- 
gravitational potentials can exist in their proposed experiment. But such an objection 
cannot exist with reference to the second variant of Dos Santos proposal [19] (two 
rotors with coinciding axes, emission and absorption perpendicular to the angular
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rotors’ speeds). This variant (with various and different values of rs and rA, and with 
axes parallel and perpendicular to the Earth’s absolute speed wK) enables us to test 
Einstein’s equivalence principle. We expect that the results will confirm expression (t>f 
— pA), contradict Einstein’s equivalence principle, confirm the dependence of the 
relativistic effect only on the value of speed, and give wE = 0.

The equivalence between (1) and (6) can exist in no way, as Eqs (7), (8), and (9) 
show; but first of all vB instead of v0 must be in (1), as it is in (5). (Note that such two 
equivalent formulas are written by Buonomano and Moore [20]; they also use the 
aberration angles in derivation [21].). Our formula (5) is a universal one in the ether 
world, that is to say it is the one and only one to be used in any (inertial) reference 
frame.

But formula (5) similarly as formula (6) and formulas derived by others [1, 5, 6, 
20, 23], applied to the Ives—Stilwell experiments (then ws = wB + t>s), gives the positive 
quadratic Doppler effect:

vSb = vb(1 ±t>s/c +  u|/2c2). (12)

The positive resultant effect is produced by the classical part which contains term 
+ vl/c2. But formula (12) is contradictory to the results of these experiments (they gave 
the positive effect but for wavelengths). Besides, we do not find speed wB in (12). 
Therefore, the classical Doppler formula needs a separate discussion.

The absence of the dependence on wB in the results of all three groups of 
experiments suggests that the ether if any ought to be attached to the Earth’s surface. 
There exists such a possibility if we assume that the ether, a new sort of ether, is a 
“shadow” of the gravitational fields (with all their properties such as density, density 
gradient, superimposition, rotary motion). In the terms of our Earth, the Earth’s mass 
can already be large enough for the density of the ether belonging to the Earth on and 
close to its surface to be predominant against a background of the component density 
of the ethers belonging to the other celestial bodies, so that the relativistic effects are 
such as observed. This predominance must diminish with the distance from the Earth’s 
surface (centre), and in such a situation the E-W anisotropy in Hafele and Keating’s 
experiment [22] and its absence in the experiment by Champeney et al [15] ought to be 
evident.
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Albert Einslein in Berlin, 1913 1933 I—II. Doku
mente. Edited by Chkista Kirsten and Hans- 
Jürgen Treuer, Akademie-Verlag, Berlin, 1979,
286 + 286 pp.

Albert Einstein spent two mature decades in 
Berlin, in close contact with Planck, Laue and 
others, enjoying the relaxed atmosphere of the 
Weimar Republic. Prof. Hans-JürgcnTreder collec
ted all relevant documents of this period (written 
mainly not by Einstein, but about Einstein) and 
published them with a detailed analysis of the two 
Berlin decades. The series of documents starts with 
the recommendation of Einstein for the Berlin 
Academy, signed by Planck, Nernst, Rubens, 
Warburg. One reads the much quoted sentences: 
"Zusammenfassend kann man sagen, dass es unten 
den grossen Problemen, an denen die moderne 
Physik so reich ist, kaum eines gibt, zu dem nicht 
Einstein in bemerkenswerter Weise Stellung genom
men hätte. Dass er in seinen Spekulationen ge
legentlich auch einmal über das Ziel hinaus
geschossen haben mag, wie z. B. in seiner 
Hypothese der Lichtquanten, wird man ihm nicht 
allzuschwer anrechnen dürfen; denn ohne einmal 
ein Risiko zu wagen, lässt sich auch in der exaktes
ten Naturwissenschaften keine wirkliche Neuerung 
einführen. “

Not all of the documents are so interesting, most 
of them are academic red tapes. The police and 
embassy reports about Einstein’s behaviour in 
Germany and abroad reflect his pacifism and 
liberalism. The suspicions of the German author
ities help us to honour his human greatness.

The careful presentation of even the minor 
documents may be helpful to the researcher of the 
history of modern science.

G. Marx

A. Bohr und B. R. Mottelson: Struktur der 
Atomkerne Bd I II. Akademie-Verlag, Berlin. 
1980, 496 + 653 Seiten

Die deutsche Gesamtübersetzung des Werkes 
“Nuclear Structure l-П " [Benjamin, New York, 
Amsterdam, 1969, 1975] des Nobelpreisträger 
Verfasserdoppels erschien erst ein halbes Jahrzehnt 
nach dem Erscheinen der Originalausgabe. Das 
grossangelegtc, grundlegende Opus unternahm die 
systematische Darstellung des damaligen Standes 
unseres Verständnisses der Kernstruktur mittels 
einer phänomenologischen Analyse der beobachte
ten Kerneigenschaften. Phänomenologie bedeutet 
hier: anstatt der vollständigen Reihe von Frei
heitsgraden zu arbeiten, schon mit einigen wenigen, 
aber dem konkreten Problem am besten angepass
ten Koordinaten herauszukommen. Da das zu 
erörternde Material ausserordentlich vielfach ist, 
solch ist auch das Spektrum der angewandten 
Methoden. Doch gibt es Gesichtspunkte, die sich 
durch den ganzen Gedankengang ziehen und dessen 
theoretisch-methodische Einheit gewährleisten. Es 
soll nur ein allgemeines Prinzip erwähnt werden: 
Die Auswahl und Entwickelung der diskutierten 
Modelle erfolgt stets auf Grund der von der 
elementaren Wechselwirkung erforderten exakten 
und annähernden Symmetrien.

Band I, "Einteilchenbewegungen", gliedert sich 
auf drei Kapitel wie folgt: Symmetrien und 
Erhaltungssätze; Bewegung unabhängiger Teil
chen; Einteilchenkonfiguralionen. Das eigentliche, 
kernphysikalische Wesen der Ausführung befindet 
sich in den oft kurzen Hauptteilen der einzelnen 
Kapitel. Die als Hintergrund dienenden mathema
tischen und quantenmechanischen Grundlagen sind 
in den zahlreichen Anhängen auf hohem Grade 
ausgearbeitet. Kapitel I setzt zuerst die Raum- und 
Zeitparität, die isobare Invarianz, die Hyperladungs-

Acta Physica Hungarica 54, 1983



370 BOOK REVIEWS

erhaltung und die unitären Symmetrien aus
einander. Es kulminiert endlich in der Ableitung der 
allgemeinsten Form jener Zweikörperkräfte, die die 
erwähnten Symmetrien befriedigen. Die anschlies
senden Anhänge beschäftigen sich mit den 
Drehungs-, Zeitumkehr- und Permutationssymmet
rien. Im Mittelpunkt von Kapitel 2 steht die 
Einleitung der Begriffe des mittleren Kernpotentials 
und des optischen Potentials In den Anhängen 
werden einige Probleme, wie z. B. die Niveaudich
teverteilung, die Stärkefunktioneneigenschaften, 
mit Hilfe statistischer Methoden gelöst. Kapitel 3 
verhandelt die Übergänge zwischen Kernniveaus, 
hervorgerufen durch elektromagnetische und 
schwache Wechselwirkungen. Ein Anhang ist der 
Formulierung der Theorie des /(-Zerfalls gewidmet.

Band II, “ Kerndeformationen” , befasst sich mit 
der Anregung kollektiver Freiheitsgrade der 
Nukleonenbewegung. Kapitel 4 stellt die Theorie 
der Rotationsspektren dar, samt der Kopplung der 
Rotation zur Einteilchenbewegung und den 
Eigenschaften der Hochspinniveaus im Yrastgebiet. 
Kapitel 5 erörtert die Einteilchenbewegung in einem 
deformierten Potential, im Zusammenhang mit 
Transferreaktionen. Im Kapitel 6 wird es gezeigt, 
wie eine Vibration zustandekommt, falls eine 
primäre Dichteänderung eine solche Änderung der 
Einteilchenbewegung hervorruft, die ihrerseits eine 
sekundäre Dichteänderung von derselben 
Grössenordnung erzeugt. Es werden die Kopplun
gen Dipol—Quadrupol, Vibration—Rotation und 
Vibration—Einteilchenbewegung betrachtet. Ein 
interessantes Problem, die Existenz kollektiver 
Anregungen, die keine klassische Analogie haben 
(Rotation im Isospinraum, Vibration durch 
Ladungsaustausch, Oszillation durch Paarer
zeugung) schliesst den Gedankengang.

Trotz dem breiten Kreis des behandelten Mat
erials blieben einige wichtige Probleme in den 
Hintergrund verbannt. Der Leser sucht umsonst 
eine Diskussion der leichtesten Kerne. Die Diskus
sionen des Schalenmodells und der Theorie der 
Kernmaterie sind je zu einer einzigen Seite 
zusammengedrängt. Das Fehlen von Themen, wie 
das zeitabhängige Hartree-Fock Modell, die 
Generatorkoordinatenmethode oder das Modell 
der wechselwirkenden Bosonensysteme, ist zur Zeit 
des Erscheinens der deutschen Ausgabe schon 
auffallend. Doch ist dieser scheinbare Mangel des 
Werkes nur der Preis, der für die äusserst 
sorgfältige, sachmässige, aber zeitraubende Arbeit 
der Übersetzung zu zahlen ist.

T Dolinszky

Chronobiologie, Chronomedizin, GDR USSR 
Symposium Hallc/Saale, July 10-15, 1978. Edited 
by J. Schuh, K. Hecht and J. A. Romanow, 
Akademie-Verlag, Berlin, 1981

The book contains the full text of the con
tributions to the German-Soviet Symposium held 
in Halle, July 10-15, 1978. The subject of the 
Symposium was the biological and medical aspect 
of periodic processes observed in living organisms. 
In this comparatively new field participants from 
the GDR and from the USSR presented 52 and 26 
papers, respectively. The papers were grouped 
according to methodical, biological and medical- 
pharmaceutical aspects.

/. Methodical aspects

In this part o f the Symposium 12 German and 2 
Soviet papers present the mathematical methods 
applied in the study of periodic time-processes. The 
following two papers should be specially noted.

In his paper on “ Rhythms in Biology and 
Medicine” H. Drischel discussed the general char
acteristics of biological rhythms. The short wave
length tail of the broad spectrum (with periods from 
milliseconds to several years) is temperature de
pendent oscillation, while oscillations of longer 
wavelength are independent of it, but other environ
mental factors affect them more. The observable 
macroscopic rhythms may be derived from elemen
tary biochemical and biophysical processes.

R. Sinz dealt with the thermodynamical 
approach of the problem. In his paper on “Oscillat
ion as a Characteristic of Dissipative Structures 
and Organic Ordering" he also pointed out the 
timeliness of this field. The oscillations characterize 
the so-called dissipative systems on every level of 
organization and are of fundamental importance in 
the formation and maintenance of order in biolo
gical systems and for the multioscillatory functional 
order of living organisms.

Regarding the papers in general it can be stated 
that the biometrical methods of data processing 
render it possible to separate the stochastic and 
deterministic components and to analyse the 
periodic components of the time-series. The sep
aration of these latter was carried out by various 
orthogonal transformations. Fourier-analysis with 
trigonometric functions and the use of processes 
applying Haar und Walsh functions were presented.

W. Meyer and his coworkers analysed the 
minute-rhythm of the central nervous system and 
blood pressure in their contribution on “ Frequency-
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specific method of analysis to determine time-series 
types.” In the processing of time-series they applied 
smoothing, polynomial regression, cluster analysis, 
etc.

2. Biological and medical-pharmacological aspects

These papers presented the rhythmicities ob
served at the different (biochemical, biophysical, 
genetical, physiological) levels of organization of 
the living organism.

The contribution of H. J. Müller on “Chronobio- 
logical aspects of the seasonal ‘niching’ of ar
thropods” is of special interest. The author stressed 
the importance of the biological rhythm and the 
regulation and inhibition of development in the 
synchronization of the autogeneses and the ecologi
cal utilization of time niche dimension.*

E. Porzig in his paper on “Chronobiological 
aspects of livestock production” pointed out that 
from agricultural aspects the knowledge of the 
biological rhythm and the adaptation to the existing 
periodicity may result in a considerable increase of 
productivity.

According to Yu. A. Romanow in the appli
cation of medicaments the knowledge of biological 
cycles has two significances. On the one hand, the 
effectiveness of medicaments depends on the time of 
their administration (i.e. in which phase of the cycle 
it is administered), on the other, medicaments may 
affect the cycle itself. (“Chronobiology, chrono- 
pharmacology and chronomedicine.”)

The paper on “The significance of biorhythms 
in diagnostics for prognostication of illness” by 
N. I. Moissejewa and her coworkers may be of 
interest proposing the use of the biorhythm as a 
preliminary indicator for the prognosis of an illness. 
The proposal is based on their results obtained on 
the heart function and circulation of patients 
suffering from (cranial and cerebral) nervous 
trauma and schizophrenia.

The report by I. E. Ganelina and S. K. Tchurina 
on “Observations on the effect of biorhythm on the 
onset and development of acute myocardial in
farction” summarized the interesting results ob
tained from the statistical evaluation of the data of a

* In the course of their accommodation living 
organisms — adjusting themselves to the most 
different environmental conditions — aim to utilize 
every part of the territory at their disposal. A similar 
effect can be found in relation to time period, since 
in the case of living organisms active and passive 
phases and favourable and unfavourable periods 
follow each other, which renders possible the 
optimal utilization of a given territory for several 
species.

great number of case histories. According to them 
the existence of a cycle of 42-day duration could be 
shown. The mortality was highest among persons 
who had developed the disease in the first and 
fourth week of the cvcle.

The material of the Conference may be of 
interest not only for the researchers of one part
icular field. It may serve as a valuable source of 
information for biologists, physicians, pharmacolo
gists as well as mathematicians, physicists and 
chemists. It shows a new attitude, taken toward the 
general assertion of various periodicities on the 
different levels of biological organization, affecting 
naturally a wide spectrum of biological sciences. At 
the same time it points out interesting new possi
bilities of the application of mathematical and 
physical methods.

G. Ron to

Erich Lohrmann: Hochenergiephysik,
B. G. Teubner, Stuttgart, 1981, 248 Seiten

Die zweite, neubearbeitete, erweiterte Auflage 
dieses ausgezeichneten Büchleins der Teubner 
Studienbücher-Serie ist ein schönes, nützliches 
Geschenk von dem Verlag (und von dem Autor) an 
die Physiker, die sich für die Physik der Elementar
teilchen, für die neuen Ergebnisse der Feldtheorie 
der Teilchen interessieren. Der Fachausdruck 
“Hochenergiephysik” ist heute ein Synonym für 
“die Physik der Elementarteilchen": je grösser die 
verwendete Energie ist, umso tiefer, d. h. in umso 
kleinerem Zeitraum-Intervall sich die Gesetze der 
Mikrowelt zu erkennen geben. Seit der ersten 
Ausgabe des Buches wurde das Lepton-Quark- 
Modell der Teilchen erwiesen; so ist es selbst
verständlich, dass der Verfasser die Behandlung 
des Themas auf dieses Modell gründet.

Der Inhalt des Buches ist in vier Kapiteln 
eingeteilt. Das erste Kapitel enthält die Grundlagen 
des ganzen Themas von der Beschreibung der 
Beschleunigern über den “Zoo" der Elementar
teilchen bis zu den Erhaltungsgesetzen und 
Symmetrien. Die weiteren Teile des ersten Kapitels 
dienen der Vertiefung und Erweiterung der 
erwähnten Themen.

Der Gegenstand des zweiten Kapitels ist die 
Beschreibung der elektromagnetischen Wechselwir
kung, wobei auch die experimentellen Beweise der 
Quantenelektrodynamik diskutiert werden.

In dem dritten Kapitel wird starke, in dem 
vierten die schwache Wechselwirkung lehrreich und 
pädagogisch brilliant behandelt.

Trotz dem kleinen Umfang des Buches werden 
das farbige Quark-Modell, der Strom-Strom-Typ 
der schwachen Wechselwirkung, die Cabibbo-
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Theorie, die CP-Verletzung. die Hauptprobleme der 
К'- und der Ncutrinophysik umfangreich und nach 
dem heutigen Stand der Theorie behandelt.

Das Buch ist übersichtlich und gut verständlich 
geschrieben. Viele anschauliche Zeichnungen und 
Tabellen, Literatur- und Sachverzeichnis 
ermöglichen es dem Leser, sich schnell einen 
Überblick zu verschaffen. Von der Stoffauswahl her 
ist das Buch besonders für die Leser von*Nutzen, die 
die Elemente der Atom- und Kernphysik kennen 
und die sich für die Elementarteilchenphysik inter
essieren. Für diesen Personenkreis - und für jede 
Physikbibliothek — ist cs wärmstens zu empfehlen!

Ä\ L. Nagy

The Role o f Coherent Structures in Modelling 
Turbulence und Mixing. Proceedings of the Internat
ional Conference, Madrid, June 25-27 1980. Edited 
by J. J imenez, Lecture Notes in Physics, Vol. 136, 
Springer-Verlag, Berlin, Heidelberg. New York, 
1981. XIII + 393 pp

This Volume contains 17 contributions presen
ted at the Madrid Conference, organized to help 
promoting development in the field, where the 
growing recognition of the existence of large-scale 
structures in many turbulent flows had already led 
to a deeper insight into the nature of turbulence, 
stimulating new ideas for new experiments. On the 
other hand, in computation and modelling the new 
ideas have not yet produced the important results 
expected of them. So the importance of improving 
the cooperation between experimentalists, en
gineers and theorists became evident in a field led by 
experimental researchers.

The papers are grouped essentially in three 
sections, theory, experiments and applications. The 
sections are headed by invited review papers, viz. by 
J. Mathieu's and G. Charney’s “ Experimental 
Methods in Turbulent Structure Research",
H. E. Fiedler’s (and coworkers’) “ Initiation, Evol
ution and Global Consequences of Coherent 
Structures in Turbulent Shear Flows” (experi
mental section), P. G. Saffman’s “Coherent 
Structures in Turbulent Flow", (theoretical section) 
and A. Linan's “Lewis Number Effects on the 
Structure and Extinction of Diffusion Flames Due 
to Strain” (applications section). The other papers 
treat closely interrelated subjects in the field of 
computer analysis, large scale and periodic 
structures, jet flows, boundary layers, turbulent 
combustion, etc.

The publication of this Volume will hopefully 
contribute to a joint development of theoretical and
experimental research in the field. . ,,/. A bony i

N. P. Konopleva and V. N. Popov: Gauge Fields. 
Harwood Academic Publishers, Chur, 1982

This is a translation from the second Russian 
edition which appeared in 1980. The subject is 
timely; gauge fields have become a prominent 
working tool in quantum field theory and elemen
tary particle physics.

The discussion starts with a crisp review of 
recent developments in particle theory and gauge 
fields. Global and local transformations in relativ
ity, spherical solutions of the Yang—Mills equa
tions, gravitation as a gauge field and gauge theories 
of strong interactions form the menu of the first 
chapter which has been considerably expanded for 
the second edition. Chapter 11 is devoted to the 
Lagrangian theory of gauge fields, Noether’s 
theorems and to Lie derivatives. This is followed by 
a more geometrical approach to the subject: es
sentially, an introduction to fibre bundles. The 
quantum theory of gauge fields is finally described 
in detail in Chapter IV. Stress is laid here upon the 
path integral approach although a section deals also 
with the canonical quantization of the gravitational 
field.

I should like to praise the simple and elegant 
style in which the volume was written for a physicist 
audience. Much of the flavour of the book is 
conveyed intact by the excellent translation due to 
N. M. Queen. References are amply supplied at the 
end of each chapter.

Very recently, we have seen a series of successes 
in the treatment o f the gauge equations. Among the 
new techniques applied, the Backlund transformat
ions, complex twistor manifolds or lattice com
putations deserve mentioning. Unfortunately, this 
upsurge in the theory occurred after the present 
book was completed. Considering the past success
ful efforts of the authors in keeping the volume up- 
to-date, the reviewer has every reason to expect a 
third edition, extended also to these tantalizing new 
ideas.

Z. Perjés

Neutrino Physics and Astrophysics. Proceedings of 
the Neutrino ’80 Conference (Erice, Sicily). Edited 
by Ettore F iorini. Ettore Majorana International 
Science Series, Volume 12. Plenum Press, New York 
and London, 1982, 421 pp.

Physicists celebrated the 50th anniversary of the 
idea of the neutrino at this World Conference in 
1980. For fundamental research the discovery of the 
neutrino indicated the strength of the conservation 
theorems in the search for understanding Nature.
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But in the seventies the neutrino has become an 
efficient tool for the exploration of the deep 
structure of matter. With its help one can see the 
controlled fusion reactor inside the stars. We may 
hope that the neutrinos may help in catching the 
view of the first second in the history of the universe. 
These are the topics and chances to which the 
International Neutrino Conferences are devoted.

The 1980 Conference was dominated by the 
semicentenary celebration of the “elusive" neu
trino. The Proceedings offers the recollection of R. 
Peierls about the theoretical search, leading to the 
concept of neutrino, the description of the early 
days of experimental neutrino physics by F. Reines, 
and the flicks of the great moments of the neutrino 
history by B. Pontecorvo. These pages will become 
important sources for the experts of the history of 
science and a good reading for everyone interested 
in the birth of grand ideas.

1980 was an exciting year anyway. The big 
machines produced neutrinos in immense quantities 
for the exploration of the hadron structure and the 
weak interactions enabling the authors of review 
talks to draw a conclusion from the high energy 
physics of the seventies. But at the doorway of the 
eighties a search started to go beyond the “classic” 
quark-lepton physics, to look for new peaks beyond 
the trinity of the strong-electromagnetic-weak 
interactions.

The first reports about possible neutrino mass, 
neutrino oscillation, proton decay, grand uni
fication of forces and the related push for new 
machines and detectors lead the reader into a virgin 
area. The short reports are omitted from the 
Volume, a pity for the reporters. But the printed 
review talks offer a more enjoyable lecture than the 
conventional conference proceedings.

G. Marx

Nunlinear Phenomena at Phase Transitions and 
Instabilities. Edited by T. Riste, NATO Advanced 
Study Institutes Series, Series B: Physics, Volume 
75. Plenum Press, New York and London, 1982, 
pp. 4SI

The present NATO Advanced Study Institute 
held in Geilo, March 29—April 9 1981, was the sixth 
in a series devoted to the subject of phase transitions 
and instabilities. The institute provided a useful 
forum for the review and discussion of nonlinear 
phenomena associated with instabilities in various 
systems. The "Nonlinear P'vnomena at Phase

Transitions and Instabilities", utilizing the experi
mental and theoretical efforts of the past decade, 
tries to elucidate the nature of this nonlinearity.

Giving special emphasis to such significant 
topics as anharmonic properties near structural 
phase transitions, transports, and fluctuations in 
linear array of multistable systems, this Volume 
offers several papers written by the most advanced 
scientists in their fields. K. A. Miiller’s lectures give 
a good review of the experimental evidences and 
theoretical models for collective anharmonic 
behaviour near the structural phase transitions in 
special SrTiOj-type and ferroelectric systems. The 
new theoretical results of structural phase trans
itions are clearly presented in A. D. Bruce’s lecture 
in connection with the classical phonon-based 
theories and renormalisation group methods. An 
interesting model to study the dynamic correlations 
in the ordered phase of perovskites is outlined in 
Meissner, Menyhárd and Szépfalusy’s lectures.

The lectures also paid much attention to hydro- 
dynamic instabilities for which the non-linearities 
and boundary conditions perform the selection and 
stabilization of certain structures and patterns. A 
number of Rayleigh—Bénard problems and Lorenz 
model are described showing that the bifurcation 
theory is relevant both to the theory of hydro- 
dynamic instabilities and to the transitions between 
modulated crystal structures. In addition, this 
Volume gives a detailed picture of nonlinear 
thermal convection, nonlinear fluctuations, steady 
states, limit cycles. An intuitive description of 
fluctuations near the critical points and near the 
instability points in driven system is studied by 
V. Degiorgio. One of the most interesting review 
lectures of the Volume is presented by 
M. G. Ve Larde in association with the study of 
some outstanding aspects and features of the time 
evolution of non-linear systems. This lecture re
views the different pictures of the onset of tur
bulence, the phase transition picture and the 
stability of steady states, the dynamical — stability 
of limit cycles, and finally the present situation and 
trends of the strange attractor theory.

The last lectures deal with the recent progress in 
the study of the two-dimensonal melting problem, 
confirming or denying the existence of the cont
inuous melting process.

The Volume may be interesting for students and 
gives a thoroughly up-to-date review of this rapidly 
developing field for the specialists. It is especially 
valuable to physicists concerned with all types of 
nonlinear systems.

/. Gyarmati
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