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ON SOME CLASSES OF ARITHMETICAL 
FUNCTIONS ON A SEMIGROUP GK

A. GRYTCZUK (Zielona Gora)

I. Introduction

Let К  be an algebraic number field of degree n over the rational number field Q. 
Denote by GK the multiplicative semigroup of all non-zero integral ideals of K. 
In this paper we consider some general classes Ж  of arithmetical functions.

Let

( 1. 1) Сг(К) = 1
C1n\\A\i'n

1

where Сг =-0 is some numerical constant and n, A denote the degree and the dis­
criminant of K, respectively. Moreover let

( 1.2)

(1.3)

a A-it: <7^1 — СЛК)
log \A I (I (1+2)"

]_
2 ’ M

D 4 s a + it: a  S  1 —tj
2 ’

, Сг(К)where w =  — г-р— > ' log M|4n

(1.4)

and

D = D1 Ö D i .

We will say that the function h belongs to Ж  iff it satisfies the following conditions:

(i) h: GKX{z£C , |z| ^  1} — C,
(ii) there exists a constant R = R (K )> 0  suchthat

2  I h ( I , z ) \ ^ R ( y - x ) + 0 K(yr>
x<N(I)^y

for some 0 ^  ß <  1,

(iii) 2  = g(s> *)ft(s), for Re s >  1, |z| ^  1,
16 GK А  (7 )

(iv) g(s, z) is holomorphic with respect to s£D  for every fixed |z |s l  and 
is holomorphic with respect to z in the circle |z |< l  for every fixed s£D, moreover 
g(s, z) is bounded for (s, z )£ D x E  where E= {z: |z| =  1}.

l*



4 A. GRYTCZUK

We prove the following theorems:

Theorem 1. Let 1г£Ж, then there exists a sequence o f  functions A j(z) defined 
and continuous in the circle |z |S l  and holomorphic in the circle |z |< l  such that 
for every integer q^O  we have

(1.5) 2 h(I,z) = 2  xA j(z)(logx)z- J- 1+ 0 K(x(logx)Rez- q- 2)
I£ G K j - 0N(I)^x

uniformly with respect to |z |^ l  as where

(1.6) A fiz) = В fiz )  
r ( z - j )  ’ В fiz) = 1

2n i , I
H(w, z) .dw, j  =  0, 1, 2,..., q

-if=Ä-=>, w(w — i y +1 
and ő > 0  is an arbitrary real number such that ő cq ,
(1.7) H(s, z) = g(s, z) exp (z log ( s - 1)£K(s)).

Throughout this paper for complex w, log w denotes its principal branch.

Theorem 2. Let ax be some fixed  real number such that S l - i ]  and

the function h satisfies the following conditions:
(a) \h(I, z ) \^ R x fo r  I£GK and zCE, where Rx = R f iK ) ^ \ ,

|/ i(p ,z )-z |
(b )  %  N ( p y for o ^ o x,

(c) h(IoJ, z)= h(I, z)h(J, z) fo r  /, J^G K suchthat ( / , / ) =  1,
(d) h(I, z) is a holomorphic function with respect to z in the circle |z |< l;  

then Ь^Ж.

Corollary. Let h= h(I, z )= f  ( /)zF(i) for \ z \ s l  and / :  GK^ C , \ f  ( l ) \^ R x 
for I£GK, where Rx = R f iK ) ^ l ,  F: GK^ N U{0}, f ( I o J )=  / ( / ) / ( / ) ,  F(IoJ) = 
= F(i) + F(J) for I ,J £ G K such that (1 ,J )= \ and f  (p) =  F (p )= l for every prime 
ideal p£GK. Then Ь ^Ж .

Remark. From this Corollary and Theorem 1 we get in the case n=[K: Q] = l 
some results which have been proved by A. Selberg in [4] and by H. Delange in [1]. 
The proof of our theorems is based on a method due to FI. Delange [1].

In a forthcoming paper we shall prove explicit asymptotic formula for the func­
tion / i= /( / ) z F(i>, where f  F satisfy the assumptions of the Corollary.

2. Basic lemmas

The following lemma follows easily from results of K. Wiertelak [6], Lemma 7 
and FI. M. Stark [5], Theorem 1.

L emma 1. Let ( K(s) denote the Dedekind zeta function o f the field K. There 
exists a numerical constant c >  0 suchthat Ck(s) A 0 in the region

(2. 1)
cn\\A\ 1/Blog |d |(|/| +  2)"

— oo< t <  -j- OO.

Acta Mathematica Hungarica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 5

Lemma 2. Let C denote the complex plane and let A c C , un \ A ^ C , vn: A-+C. 
Let BczA and suppose that there are sequences {£/„}, {V„} where Un 0, V„^0 
such that

k(z)I ^  Un, \un(z )-vn(z)\ ^  v„, 2  2 K ,— -
n n

Then the product

f j ( \  + u„(z)) exp ( - t„(z))
n -l

is absolutely and uniformly convergent and bounded for zdB.

For the proof see [1], pp. 108—109.

Lemma 3. Let K1= C 1n\\A\1/n and Cx> c > 0, where C± is a numerical constant 
and c is as in Lemma 1. Then

(2.2) |log ix (s)| == C3 + «[log3A:1+ lo g lo g ( |J |( |i |+ 2 )n)]

for s<zDl , where C3> 0 is a numerical constant.

Proof. We have

(2.3) log ш  = S t - <z) dz+ l° z

1 1where adD i . We remark that for cts 1 +  

(2.4)

|logCK(cr +  ii)| =

we obtain

For < r< R ea= l +

2K, log IAI (|í I +2)"

lo g f  — log —

n l o g | l + - ^ - y j  S  «[log37^+ loglog(И1 Ckl + 2)")].

— we integrate over the segment parallel to1
2KX log \A\(\tI +  2) 

the real axis. Then from (2.3) we obtain

(2.5) |logCK(s)| =á max
a,s

For sd D1 we have

(2.6) |я —s| =

and from [6]

(2.7)

~  (x + iy) |a -s ]  +  |log CK(a)|.

2Kt log |d |(|i| +2)"

^  (®) = - j ^ - j - + 0 (log (|d |(|i| + 2)")).

Лс/a Mathematica Hungarica 50,1987



6 A. GRYTCZUK

1
S — 1

1 for |i| ё 2 , therefore from (2.7) we getHence

( 2 .8)

From  (2.8) and (2.6) we obtain 

(2.9) |logC*0)l

^  C2 log (|d I (I i| +  2)").

3C2 
2 K ,

+ |log £K(a)|.

By (2.9) and (2.4) the Lemma follows.
In a similar way we get the following lemma.
L emma 4. Let K x denote the constant from Lemma 3. Then we have

(2.10) |log (s-1 K k(s)| ^  C4 +  «(logЪКг + loglog(|/d|4"))

fo r  s£D2, where C4=*0 is a numerical constant.

Finaly we rem ark that by using Landau’s theorem [2], Satz 210, pp. 131—139 
we get the following lemma:

Lemma 5. Let n —[K: Q ] s l ,  t/геи
2

2  1 —A/ixl s  C2(ÄT);c1 - "+f,
I i G K N(I)=i:c

where
l

C2(K) =  nc^ \ A \ ^  log(M |e),
and Xh=res С к (■'')■

i=i

3. Proof of Theorem 1

Let Pz(x)= 2  h(I,z) for | z |á l ,  then from (iii) and the classical Perron’s
1 C G K

N ( . I ) S x
formula we get

* 1 c+iT ys+1
(ЗЛ) f  Pz(t)dt = -s(s+ 1) g(s,z)& (s)ds,

where о  1 and x > 0.
Putting g(s, z)£zK(s)=H(s, z ) ( s —l)-*  and

(3.2) Ф(х, z ,x )
w-S+1

s(s+ l) tf(* ,z )(S- l ) '
by (3.1), (3.2) we get

* ,  c+ iT
(3.3) f  Pz(t) dt = ——r  lim f  <P(s, z,x)ds.V 2.711 r —°o Jc - i T

A cta  Mathematica Hurt gar ica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 7

C (К )Since r]= -— - ■ and 1— ri>— thus 0 .  Let 0 and 0 < e <  log \A\4n 2 2 '
2

<  Arc tg — . Then by Cauchy’s theorem the integral on the right-hand side o f (3.3)

may be replaced by the integrals Д, . . . , I a over the paths Г 1г ..., Гд which are 
defined as follows:

to

Г, is the segment ( c - iT ,

C  ( K )
Г2 is the curve described by 1— ---- , vfv, /  +it as t increases from —Tlog И |( |г |+ 2)п

- 2 ;
Г3 is the segment { l —r\ — 2i, 1 — t] — irj tg e ) ;
Г4 is the segment (1 —ц —щ tg £, 1 —reic);
Гв is the arc of the circle 1 +rew described as 6 increases from —я -f £ to n — e; 
Г6 is the segment (1— re~u, 1 —rj + it] tga);
Г7 is the segment <1 —17+117 tg 6, 1— r/+2i);

С  (K)Г8 is the curve described by 1— ,__, +it as t increases from 2 to T;log M |(|t 1 +  2)"

С х (^ )
Г, is the segment <1 -  ,og M |( r + y + ' T . С+ 'П -

We note that r l5 Г2, Т8 and Г9 depend only on Г and do not depend on r  or £. 
For fixed T  and r and for £->0, Г3 and Г 7 become the segments

Г3 = (1 — t]-2 i, l -r i)  and Г7 — (1 — /7, l  — rj + 2i).

For /4 and 7e we have

л /̂*Гlim /4 =  lim / Ф(ж, z, x)ds = f  H (a ,z)(l -a )~ z(e~in)~z— ---- —
£-*° e-*° <т(<7+1)

- у.т + 1
lim / в =  lim / Ф(х, z, x)ds = ] Н (а, z) (1 — o)~z(eix)~z — ---- r r
e - 0  e - 0  f  < j (< 7 + l)

If yr= { x : |x —1|= 7-} excluding the point 1 —r, then

der»

da.

lim ( /4 +  / 5 +  / 6) =  f  4>(s, z, x)ds + 2is in n z  f  Z\ - u~zx2~u due~0 £  /  (1 — и)(2 —n)

which does not depend on the choice of r.
If Г->-°° then / j —0 and /9—0 so that X

X

(3.4) f  P2 (0 =  <pz (x )+ со (x, z),
0

Acta Mathematica Hungarica 50, 1987



8 A. GRYTCZUK

where
_ , . simrz r H (1 — u,z) „ , 1 <• ,

(3.5) cpz(x) =  - J - /  ( l - u ) ( 2 - u ) X d u + 2 r i [ 0(s’ Z’x)d5
and
(3.6) co(x, z) =  J2+J3+ J 7+Ja,

(3.7)

1 Ci(A:) , V - , Ct (K)n
2 М У .  I logM |(|r| +  2)" + ' ,Z’ -XJ l i + ( |í |+ 2)log2 M I(|í |+ 2)

(3.8) /3  =  /  ф 0> x) ds, / ,  =  J  Ф(я, z, х) ds,
т г'

, )
dt,

2ni Jг',

(3.9)

Ci(A:)n
(t+2)log2M |(í+2)'log ИК1/И-2)'

By Lemma 3 and assumption (iv) for s£Dl we have 

(3.10) |tf(s,z)(s —1)-‘| =£ |g(s, z)|eMlto«<*MI =£ T?2(^)(log \A\(\t\ +2)")". 
where |z |S l . Since |/|& 2 and «-=2+log \A\ thus from (3.10) we get 

3.11) | f f ( i , z ) ( i - l ) - | s ü 3(JO(log|<|)’,
where

Д ,(* )  =  Д2(* )4"1о8"(И в).
For s ^ r 2 or s £ r a from (3.2) and (3.11) we have

(3.12) \H s,z,x)\ S  R 3(K)x  iog|a|(|r|+2r  |/|-2(l0g |r|)”.

Since |d |s l ,  n ^ l ,  | t |s 2  we obtain

C \(K )n(3.13) i +  - / 1+W C4,(|t|+2)log2 |d |( |/|+ 2 )n 

where C4> 0  is a numerical constant. From (3.13), (3.12), (3.7) and (3.8) we get
+ ~  ; c m

(3.14) J2 + Ja<z: f  x  t ~4ogntdt.
K 2

Let 0 < e0< 1 ,  then we have

(3.15)
CxOO

iog|a|(|r| e x p (-e „ lo g ,-C ,W  ' ° ^ + ).

Acta  Mathematica H ungarica 50,1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 9

С (ЮPutting <x(K)= л л I  ,, Al  ̂ and remarking that for \ t \ ^ 2  and n< 2  +  log \A\

we get 

(3.16)

4 log (\A\e)

£°log|/| +  iog H ( n W lo g x "  £° lo g l? l+ a W i ^  -  2 M K )e °

Let a= l'/x(K )c0 then from (3.16), (3.15), (3.14) we get
+ 00

(3.17)

Denoting by

then we obtain 

(3.18)

J2+Js «  x 2 f  i“2+£oexp( — 2a ^\ogx)\ogn t dt ■
2

+ 00
=  x2exp( —2a (/logx) J  t~2+eo log" t dt.

In = +f ^ d t

/ „ S

t2~eo

Y\ f П Í
v r(e l082-  1) =

(1 -во)" ‘(l-eo )B
By (3.18) and (3.17) it follows that

(3.19) Л  +  Л * |?х2ехР( — 2a(/logx).
Since

Я (5, z) =  g(s, z) exp z(log ( s -  l)Cx(s)) 
thus by Lemma 4 and assumption (iv) for s£D 2, \г\Ш1 we obtain 

(3.21) |# (s, z)| ^  i?5(^ ).
For s£T3 or s£T '7 and |z |S l  from (3.21) follows that

Ci(K)(3.22) |Ф(х, z, x)[ <sc x2- ”, where iy =

Since x2 -, =  x2exp (—iy log x) and
log |d |4n '

/ _______ qj \2 ____  _____
iylogx-1-----=  / iy lo g x ----- -=r| +2a (logx Si 2a j/logx

П \  Vri )

where a =  ia(K)e,0 , we have 

(3.23) — iy logx ^  — 2a (/logx +  — .
From (3.23) we obtain 

(3.24) x2" ’1 ^  x2exp j  exp( — 2a ( logx) =  R6(K)x2 exp ( — 2a (/logx).

Acta Mathematica Hungarica 50, 1987



10 A. GRYTCZUK

From (3.24), (3.22) we get

(3.25) J3+ J 7 <*: x2exp( — 2a ^logx).

From (3.25), (3.20) and (3.6) we have

(3.26) co(x, z) <s: x2exp( — 2ix У log x).

It is easy to see that the function cpz(x) in (3.5) is infinitely differentiable with respect 
to x for |z |S l .  From (3.5) swe get

(3.27)

4>'z(x) =
sm nz ч

/ 1 — u d u + 2i f /Vr

# (s , z) (s —1)—zxs ds

(3.28)

(Pz(x) =  lnJ IZ f  H { \ - u , z ) u ~ zx~ udu + - ^ r  f  H(s, z)(s — \)~zxs~1 ds. 
r 1 vr

We remark that in the region | j — |z |S l  the function H (s ,z ) is bounded, 

since the condition |j — l|S f j  implies R e j ^ l — and by assumption (iv) 
and Lemma 4 we get

(3.29) |tf(s, z)I =  |g(s, z)| |exp (zlog ( s -  l)CK(s))| Я7(Я)

for |j  — 1| s  rj and |z| St 1. From (3.29) we get

ч ч
(3.30) J  H (l —u, z)u~zx~ u du у  u~1x~udu.

Putting u-

(3.31)

log x we obtain

tj t] log X
J u ~ 1x ~ ud u — J  v~1e~vdv.
r rlogjc

For |s — and |z |S l  we have

(s — l) _zxs_1 <sc xr r _1
and therefore

(3.32)

Putting r — 

(3.33)

1
log X

j H ( s , z ) ( s — 1) zxs 1ds<scxr .
1r

for sufficiently large x by (3.27), (3.30)—(3.32) follows that

<p:(x) =  o K(  l) .

Acta Mathematica Hungarica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 11

Let and t<L(x, x+C) then

(3.34) j  J+ip , ( t ) d t - P z(x) =  j  Xj \ p z(t)~P Á x)\d t.

By assumption (ii) we have 

(3.35) \Pz( t) -P z( x ) \ ^  2 \h ( I , z ) \ s R ( K ) ( t - x ) + 0 K(tl>).

Since x ^ t ^ x + £  thus O ^t — хШ!; and therefore for and (3.34), (3.35)

we obtain

у  /  ': p , ( t ) d t - P z(x)\

\  T  PÁt)dt-cp'z(x) +  j  * f p z( t ) d t - P z(x)
X ’  X

X

Since J  Pz(t)dt=  j  Pz(t)d t— J  Pz(t)dt thus by (3.4) we get
x 0 0

x+Z
(3.38) J  Pz(t)dt = (pz (x +  £) -  (pz (x) +  со (x + £, z) -  со (x, z).

(3.36)

We have

(3.37) \Pz(x)-cp'(x)\

S  R(K)£+0K(xß).

For the function <pz(x) we have
l

(3.39) cpz(x + £)-cpz(x) = i(p'z(x) + ̂  J  (l-u)q>"(x+uO du.
0

From (3.38) and (3.39) we get

(3.40)

■j /  Pz(t)d t = (p'z(x) + £ j  (1 -u)(p"(x+u£)du+ c0̂ x + ^’ w (x . . z\

From (3.26) for we get

co(x + !;, z) «: x 2 exp ( —2a/logx).(3.41)

By (3.33) follows that

(3.42) cp"(x+uO =  Ok( 1).
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12 A. GRYTCZUK

From (3.40)—(3.42) we have

X + i

(3.43) — /  Pz(t)d t-cp 'z(x) «к£ +  —x2e x p (-2 a  ' ogx ).

By (3.43), (3.37) and (3.36) and (3.36) it follows that

(3.44) | Рг (* ) - (? '(л:) | <к £ + xß + — x* exp ( -  2a f  log x ).к C

Putting £,=x exp (—a )/log х) and remarking that

x ß < x  exp ( —a /lo g  л:) for x  >  exp ^  g j and 0 ä  ß <  1

we get 

(3.45) |Р2(л:)-<р'(х)| <s:xexp( —a /log* ).

To finish the proof it remains to evaluate (p'z(x). Let Ln= {s:  [5—1|</j} and L x — 
= {z: |z |< l} . By (iv), g(s, z) is holomorphic with respect to s f  Ln for every fixed 
|z |S l  and it is holomorphic with respect to z£L x for every fixed s fL ^ . Since

H(s, z )= g(s, z)exp (zlog ( s — 1)Ck(j)) thus —  ’ has this property. Let

L = L nx L 1 then by a well-known theorem of Hartogs, H (s, z) is holomorphic
H (s z )with respect to both variables (s,z)£L. Therefore — - j —— can be represented 

in the form

(3.46) 

where

(3.47)

H (s,z) 2 B j ( z ) ( s - \ y  
j =0

2ni w(w — 1)J

are holomorphic functions in the circle |z| <1 . By Cauchy’s inequality we have

(3.48)

where

1В Д 1 s  ^ r

M  =  maxzg L,

for j  = 0, 1, ...,|z | 

H(s, z)

1
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ARITHMETICAL FUNCTIONS ON A SEMIGROUP 13

We note that H (s, z) is bounded in the region a s l —tj, |t| < 2 , \ z \ s l ,  thus we 
have also

\H(s, 2)| ^  R7(K) for |s - l |= M ,  |/| < 2 , | z | S l .

Since |s — l\^ r j  implies Re s s l  — thus we have

(3.49) \H(s,z)\ ^  R 7(K ) R 7(K)
|s| R e j  1-г/

Let \s —l\=ö<rj, then putting in (3.46)

2 R 7(K) = M (K ).

(3.50) 

we have
fVq+1(s ,z )=  2  B j ( z ) ( s - i y - q- 1

1

riq( r i-ö ) Mx(K,q, S).(3.51) F , +1(Sl2) |S M ( i )  2  Щ п —  = M (K )  1
j= q + l  T

Substituting

=  2  = B j(.z)(s - i y + Wq+1(s, z)(s - l )q+1 
S ] = 0

into (3.27) we get

(3.52)

(p'z(x) = 2x ß j(z) —  /  MJ'- zX_uíÍH+-2^T-(s-iy“zÂ “ 1í/s+j+ÍL(jC,2),

where

(3.53) W(x, z) = — 2  xB j(z) - - - - - - -—— f  uJ~zx~"du+
J- о я У

+  y - r  f w q+1(s, z ) ( s - l ) q+1~zx s~1ds +
Vr

+  x — -Z—- — — J  Wq+1(l — u, z)uq+1 zx u du.

Since for O ^ j^ q  we have

-S'n n-~z— ^  J  uJ~zx~" du+ -^-r f  x s~ \ s — 1)J~Z ds = 
n  J 2ni Jr yr

thus from (3.52) we get

(3.54) cp'z(x) = 2  xBj(z) № *£ - ~ \ + w(x, z).
о 1 \ Z —J)

(logx)P-1- 1

П * - 1)
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14 A. GRYTCZUK

For estimating W (x, z) we remark that
4-00

(3.55) J  uJ~zx~"du  <sc (logx)_,_3, 0 ^  j  s  q
ч

(3.56) /  B£+i(s, z)(s — l)?+1_zxs_1 du <£ (logx)Rez~i_2.
1,

n
(3.57) /  Wq+1( 1 -  и, z)««+1- zx - “ dn << (logx)Rez- « - 2.

Г

From (3.55)—(3.57) and (3.53) we obtain

(3.58) IF (x, z) <k x(log д:)Ксг_в_2.

By (3.58), (3.54) follows that

(3.59) <^(*) =  Z oX B j(z)( + 0 K(x ( \o g x T 'z-«-*).

Finally we remark that for sufficiently large x  we have

* ,(*) =  2  H I  z) = 2  x 3 (z)- - ( lo g ^ - ^ - 1 +  0 K(x(logA)R— « -2)
J € G K 7=0 4 ( Z —
»(i)si

and the proof is complete.

4. Proof of Theorem 2

We remark that by (a) we have

(4.1) 2
Í 6 G .

W> z)
N (I)S 2i e c K N (I)a for 1,

By (c) it follows that h(I, z) is multiplicative with respect to / ? GK. From (4.1) 
and Lemma 7.1, [3] follows that

(4.2) 2
I Z G K

for R e j > l  and |z |S l .  
Consider the product

h(I, z) 
N ( I ) S

h ( p \ z ) ) 
N(v)ks)

It is easy to see that (4.3) can be represented in the following form:

(4.4) 77 (1 +  uv 0» z)) exP ( -  vv (s> z))

Acta Mathematica Hungarica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 15

where

(4.5)
oo

uP(s,z) = 2 -
k=1

(4.6)
CO

vp(s, z) = z 2
k= 1

H v \ z )
M in sk s  >

Since \h (I ,z )\^R x for l£GK and |z |S l  thus

(4.7)

From (4.7) for ашсгх we have

(4.8) 2 v ' , ~ « S 2

" ' fe z ) l s r ' & ~ n W  = r '>( p y - i

1 ^  1
(JV(p)ff- l )2 N(pf°i

1for <7!=*—. Similarly we get for

(4.9)

where

(4.10)

- V f (s, z)\ == |h ( p , z ) - z
Ж рГ

“  h(pk,z) Z
A  W(p)ks kN(p)ks

k = 2

й ( р \ * )
N(p)ks kN(p)ks

1 - F  
3 АЧр)2". ” •

Because ^  Fp< °°  for Oi>— and by (b) we have
p 2

2  |/i(^ ’( p ^  Z| < 0 ° fo r  w here

Thus we obtain from (4.9) and (4.10)

that is 

(4.11)

K ( s ,*)-.*(», z)\ ^  ]h(PN ^ r  Z| + F P =  Fp

2  Fp «X. for a a  o'! >  —.
p

From (4.8) and (4.11) and Lemma 2 we get that the product (4.4) is absolutely and 

uniformly convergent and bounded in the region |z |^  1, so we have

(4.12) g(s, z) = /7(1  + wp(s,z)) e x p ( - rp(s,z)), |g(s,z)| =s n (K)

for (T = (Tx =»—, |z| ^  1. By (d), h(I,z) is holomorphic with respect to z in
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16 A. GRYTCZUK: ARITHMETICAL FUNCTIONS ON A SEMIGROUP

the circle |z |< l  therefore the functions given by formulas (4.5) and (4.6) are 
holomorphic with respect to z in the circle |z| <  1 for every fixed s such that

Res =  (T ä ir1 > - j .

From (4.5) follows that up(s,z)  and vp(s, z) are holomorphic with respect to s 

in the region g ^G x> -^  for every fixed z, |z| S 1. Therefore g{s,z) safitsies (iv). 

From (4.12) and (4.3) and (4.2) we obtain

so that the assumption (iii) is fullfied. To finish the proof it remains to verify (ii). 
From (a) we have |h(I, z ) \ s R x and therefore we get

(4.13) 2  \ h ( I , z ) \ ^ R 1 2  I-
x«=N(r)S у

By Lemma 5 it follows that 

(4.14)

Putting /1=1 —
И+1

2  1 = Щ у - х ) + О к(у '■+!).
x~-N(iy^y

we have 0S/?<1 for и s i  and from (4.14) and (4.13) we get

2  Ih(I, z)| ^  R1X h (y -x )+ 0 K(yP) = R ( K ){ y -x )+ 0 K(yl>)

and the proof is complete.
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HIGH ORDER SMOOTHNESS
M. J. EVANS (Raleigh)

All functions considered in this paper will be assumed to be Lebesgue measur­
able and defined on all of the real line R. In a recent paper [3], T. K. Dutta examined 
the notion of a generalized smooth function and obtained several interesting results 
for continuous generalized smooth functions analogous to those obtained for con­
tinuous smooth functions in [5] and [8]. The purpose of the present paper is to sharp­
en the hypotheses of Dutta’s results by taking advantage of known results for 
smooth functions and symmetrically differentiable functions along with a form of 
a lemma due to Auerbach [1], which is slightly stronger in appearance than that 
quoted by Dutta [3]. These observations used in conjunction with Dutta’s methods 
generate stronger results than those obtained in [3].

We begin by defining the necessary terms. Let /  denote a function and let 
x 0£R  with /  (x0)= a 0. If there exist real numbers a 2, a4, %  suchthat

к 1Лг
{ f(x 0+ h)+ f(x0-h )}/2  = Z - щ г ^ + о ^ ) ,

then a2k is called the symmetric de la Vallée Poussin (d.l.V.P.) derivative of /  at x 0 
of order 2к  and is denoted by D2kf  (x0). Similarly, if there are numbers ßlt ß3,
..., ß2k+i suchthat

к 1Л г + 1
{f(X 0 + h ) - f ( x 0-h )} /2  = 2  (2 r+ 1 ) ; f e +l +  0(fo2t+1),

then ßzk+i is called the symmetric d.l.V.P. derivative of /  a t x 0 of order 2k + 1 
and is denoted by D2k+1f ( x 0).

Let m be a natural number and assume that i)2m~2f  (x0) exists. Let

(2mV Г m~1 h& 1
02m( /;  x 0,h )  -  \ ^ [ { f ( x o  + V + f(x o - h )} /2 -  2

Then /  is said to be smooth of order 2m a t x 0 (or 2m-smooth at x0) pro­
vided lim h02m( f;  x0, h) = Q. If  /  is 2m-smooth a t each x£R , we say that /  is

h-*- 0
2m-smooth.

Smoothness of order 2m+1 (m = l,2 , ...) is then defined similarly.
Next, if there are numbers y<>, 7i, ..., ym such that / ( x 0)= y 0 and

f ( x 0+ h )=  2 \ y r  + o(hm),
r —0 * •

2



18 M. J. EVANS

then ym is called the unsymmetric d.l.V.P. derivative (or the Peano derivative) of 
/  at x0 of order m and is denoted by / m(x0). It is well known that if the ordinary 
mth derivative of /  a tx 0, / (m)(x0), exists then so does f m(x0) and / ш(х0) = / (т>(х0). 
Similarly, if f m(x0) exists, then so does Dm/ ( x 0) and they are equal.

A set A  in R  is said to be scattered (separated or clairseme) provided that A 
has no dense in itself subset. A function /  is said to be a Baire* one function pro­
vided that for each closed set P  there are numbers a<b  such that (a, b) П P p 9  
and the restriction of /  to (a, b) П P is continuous. (Dutta [3] referred to this prop­
erty of /  as property M.) This notion was introduced by O ’Malley [7] and is im­
portant in what follows. It is easily seen that if the points a t which a function /  
fails to be continuous form a scattered set, then /  is a Baire* one function. A  useful 
tool in showing that a function is a Baire* one function is the following lemma due 
to Auerbach [1].

Lemma A. Let Р be a nonempty closed set and { /„} a sequence o f  functions 
such that the restriction o f  each f ,  to Р is continuous. Further, suppose that Lan 
is a convergent series o f positive numbers and that for each x£ P there is a natural 
number N (x) such that \ f n(x ) \^a n whenever n>N{x). Then there exist numbers 
a*zb suchthat {a, b) П P A  0 and L f„ converges uniformly on (a,b)C\P.

Although Auerbach’s original lemma was stated for functions /„ continuous 
on a closed interval instead of a closed set, only the obvious changes in his proof 
need be made to prove Lemma A.

The next two results are the ones that allow us to sharpen the hypotheses in 
the results of Dutta [3].

Theorem 1. I f  f  is continuous and m-smooth, then Dm~2f  is a Baire* one 
function.

Proof. First, consider the case where m  is even; say m =2k. For k  = l there 
is nothing to prove. Assume the theorem holds for k = l ,  2, ..., r. We shall show 
that it is true k —r + 1 as well. Let P be a nonempty closed set. By our assumption, 
there exist numbers suchthat (a, b)D P p fi and the restrictions to (a,b)C\P
of D2f  D ^ f ...,D 2r~2f  are continuous. Choose an interval [a*, b*]C (a, b) such 
that (а*, Ь*)Г)Ра &. Let {h„} be a strictly decreasing sequence of positive terms 
such that J£hn converges and a* — hn>a, b* + hn<b for all n. For each nat­
ural number n let 4,2,r (x) =  02r (f ; x, hn) and note, in light of the continuity of 
f  D2f  Dif  ..., Dir~2f  that the restriction of ¥'“r to [a*, b*] П P is continuous. 
Furthermore, since /  is (2r+ 2)-smooth, we have that for each x, 
lim/j02r+2( / ;  x, h) = 0, and hence
ft-»- 0

lim V n fx )~ D 2rf(x )]h ~ 1 =  0.
П-►<»

Thus, there is a natural number N(x) such that | T 'f (x) — Dirf  (x)| < h„ for all 
и>А(х). For n> N (x) we have

\ n + i ( x ) - K ( x ) \  s  I 10 ) - £ 27 0 )| + 1n r(x )~ ö 2r/(x ) | <  hn+1+hn -= 2hn.

So the series (¥^г+ 1—vP2r) satisfies all the conditions of Lemma A on the closed
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set [a*,b*]C\P. Hence there are numbers a' <.b' such that [a',b']Q[a*, b*], 
(a ',b ')O P ^0 , and 2  {№ +i~ converges uniformly on [a, b'] П P. Hence

n

lF‘ir+ 2  (i'n+ i- ^nr)> i-e- m  converges uniformly on [d, b']C\P and so the
n = 1

limit function D2rf  restricted to [a', b'] П Р  is continuous. Therefore, D2rf  is a 
Baire* 1 function, and the theorem holds for all even natural numbers m.

For m odd, say m = 2 k + l,  the proof is very similar. The initial case k = l  
can be handled by setting (x )= ( f  (x+ h n j)—( f ( x —hn ))/2hn, noting that
lim ('F*(x) — D1f  (x))/hn = 0, and utilizing Lemma A as above. Assuming the theorem

Ii —► OO

true for k —1, 2, ..., r, the inductive stage is handled as above using 4/lr+1(x )— 
= ̂ 2r+l(fl h„).

Theorem 2. I f  f  is m-smooth, then the set o f  points at which f  is discontinuous is 
scattered.

Proof. If m is even, then /  is 2-smooth; i.e., /  is smooth. According to Theo­
rem 2.1 in [4], the set of points of discontinuity is scattered. On the other hand, 
if m is odd, then /  is 3-smooth. Consequently, /  has a finite symmetric derivative 
DV  everywhere. According to Theorem 1 in [2], the set of points of discontinuity 
of /  is scattered.

Theorem 3. I f  f  is m-smooth, then
i) exists and is continuous on a dense open set,

ii) the set o f points where f m- f x )  exists and is finite o f  the power o f the con­
tinuum in every interval.

Proof. To prove i), let (a, b) be any interval. Since the set of discontinuities 
of /  is scattered, there is a subinterval (a b ' ) Q ( a , b )  on which /  is continuous. 
From Theorem 1 we have that Dm~2f  is continuous on a subinterval (a", b") ̂  {a', b'). 
Applyng Lemmas 2 and 3 from [3] we see that / (m-2) exists on (a", b") and is, of 
course, continuous there since f {m- ‘1'> = Dm- 2f

To prove ii), again let (a, b) be any interval, utilize Theorem 2 to obtain a sub­
interval on which /  is continuous, and apply Theorem 3 in [3] to /  on that sub­
interval.

We now turn to those results of Dutta [3] wherein in addition to assuming that 
/  is m-smooth, we assume that /„,_2 exists.

Theorem 4. Let f  be an m-smooth function which has the Darboux property 
and for which / ш_2 exists everywhere. Then i f  we let E = {x  : / m_i(x) exists}, we 
have

i) fm-x has the Darboux property on E,
ii) I f  fn -i(x )= 0  for all xdE, then / m_2 is continuous and nondecreasing.

Proof. First consider the case m = 2. O ’Malley showed that i) holds in [7]. 
To obtain ii), we first suppose /'(x )= -0  for all x (lE = { x : / ' ( x )  exists}. I f  /  is 
continuous then /  is nondecreasing according to the lemma on page 27 of [5]. If 
/  is not continuous, then because it has the Darboux property it cannot be monotone. 
Hence there are two points, a<b, where f  (a)=f(b). Then according to Theorem
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20 M. J. EVANS: HIGH ORDER SMOOTHNESS

3 in [7] /  has a local extremum a t some point x n€_ (a, b). Because of the smoothness 
condition, it is easily seen that f ' ( x „) exists and equals 0. This contradiction shows 
that /  must be continuous and monotone. The general case, / '( x ) s O  on E, is 
handled in the usual manner by considering g (x) =f  (x)+ ex for arbitrary positive 
numbers e.

Finally, as Dutta observed a t the end of his paper [3], if m  > 2 , /  must be con­
tinuous since it is in fact differentiable under the stated hypotheses. Consequently, 
the validity o f i) and ii) is an immediate consequence of Theorem 1 in this paper 
and Theorems 4 and 5 in [3].

The reader will note that analogous sharpening of the hypotheses can be made 
in Theorems 6, 7 and 8 in [3].

It should be noted that Neugebauer has provided an example [5, p. 27], showing 
that neither i) no r ii) is valid in Theorem 4 if the Darboux hypothesis is dropped in 
the m = 2 case.

The function constructed by Oliver in Theorem 5 of [6] shows that the conclusion 
o f part i) of Theorem 3 is the best possible, in tha t given any open dense set G, there 
is an ш-smooth function for which (x) exists if and only if x£G. The same
example shows that the conslusion of Theorem 1 cannot be replaced by the stronger 
statement that the discontinuities of D'"“ 2/  form  a scattered set, except, of course, 
in the m —2 case.
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STRONG SUMM ABILITY AND CONVERGENCE 
OF SUBSEQUENCES OF ORTHOGONAL SERIES

H. SCHWINN (Berlin)

1. Introduction

We take as a basis general real orthogonal series

(1) 2 cn<Pn(x), 2 ' c« < ° ° .
n = 0  и = 0

1
where {(/>„(*)} is an arbitrary orthonormal system on [0, 1], i.e. J  <pi(x)(pJ(x)dx= 5iJ

0
( i , j= 0 ,1, ...). We consider a summability method A = (ank) and the means

tn(x )=  2 a „ ksk(x),
k=0

where sk(x) denote the partial sums of the series (1). We always assume A being 
regular, i.e. A transforms a general convergent sequence into a convergent one 
with the same limit. It is well-known that A is regular if and only if the following 
conditions are fulfilled:

(a) lim 2  ank =  1
k=o

(b) z  k* l ^  к  0  =  0, 1, . . . ) !
k = 0

(c) lim ank =  0 (k = 0, 1, . . . )

(cf. K. Zeller; W. Beekmann [15], p. 57).
The series (1) is called A-summable if tn(x)-+ f(x) a.e. on [0, 1], and strongly 

A-summable with order у >0 ([^]r-summable) if the strong means

=  2  |e J |s * (* ) - / (* F  -  0 a.e.
k = 0

on [0, 1] with a suitable function f  (x). In the following “convergence” always means 
“convergence a.e.” . It is obvious by Holder’s inequality that with regular methods 
A, [/l]7-summability implies both [d]7'-summability, if у > / > 0  and ^-summability 
if у й 1.

1 K ,L ,...  denote constants.



22 H. SCHWINN

In the first part we want to prove direct theorems for strong summability. The 
convergence of the sequence {.vn.(x)} may imply [vfp-summability with arbitrary 
exponents y>0, if {и,} is chosen in a suitable way depending on A alone. Strong 
(C, l)-summability of orthogonal series with exponents у S 2  were first investigated 
by A. Zygmund [18] and S. Borgen [4]. The exponent у= 2  may be considered with 
respect to (p„(x)£L2[0, 1] as a natural borderline. Exponents у >2 were first con­
sidered for Cesäro methods (C, a), a > 0 , by G. Sunouchi [14], later on by O. A. 
Ziza [16], [17] for series-to-sequence methods (<p, A) and recently by L. Leindler [9] 
for generalized Abel methods (A,p). Our interest is directed to general matrix 
methods.

The second part is devoted to inverse theorems. From ^-summability resp. 
[zl]v-summability of an orthogonal series one may deduce convergence o f a sub­
sequence {T„.(x)}, {«,} depending on A alone. The classical result goes back to  A. N. 
Kolmogbroff [8] and S. Kaczmarz [7] who proved that the series (1) is (C, l)-sum- 
mable if and only if { -vM } is convergent. We want to stress here the relations to 
general gap theorems and gap methods. Finally we want to point out the equivalence 
of summability and strong summability for orthogonal series when applying some 
special methods.

2. Strong summability

For a given regular method A=(ank) we consider the column majorants

(2) a.k =  sup \ank\ (fc =  0, 1, ...),П

and prove the following theorems.

Theorem 1. For a given regular method A = (a„k) and an increasing sequence 
{/?;} o f  natural numbers let

(3) "‘Z  1 a* si M  (1 =  0 ,1 ,...)
k= n t + 1

be fulfilled. Then the convergence o f  {.у„.(х)} implies [A]y-summability o f  (1) for 
0 < y ^ 2 .

Theorem 2. For a given regular method A = (ank) let the sequences {at } and 
{«;} satisfy condition (3) and let

M*(4) cck ^  — -----— ( « iS lc S  лг+1)
n i + 1 n i

be fulfilled. Then the convergence o f {лт„.(х)} implies [Afi-summability o f  (1) fo r  any 
у >0.

To prove these theorems we need some lemmas. At first we state a result con­
cerning Cesäro methods (C, F)=(A7nzl!A f).
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Lemma 1 (G. Sunouchi [14]). Let a > 0 , у >0; then

I í  sup Í 2  AT-l ! « * ( * ) } d x ^  C(a;О Чёя<«= V л п k=0 '  > i )  2  c l
n—0

1
With c k ( x ) = ^ Y  2  SÁ X) and A " =  {n+„ Ci}-

Next we construct the modified arithmetic means for (1) with an increasing {n;}:

(5) a*n(x) = a*n(x; {«,}) =  — — — ' j  2  (s*(x)-*,,,(*))

ni+1; i = 0, 1, ...),
and prove

Lemma 2. Let {nt} be an increasing sequence. Then a * (x) 0 a .e .

Proof. Let us consider
ői(x)= sup |a*(x)|2,

then by <t*(x) = 0, using Schwarz inequality, we get

di(x) ^ {  2  K M - C i W I } a ^ ( « m - « / )  2  K W - C i W )
- ■ - n = n . + lП=Л;+1

With the aid of the representation

* : (* ) =  i  ( 1- „ + r ,+-1-^ + i ) c^ (x)k=nt + l  V n  +  n i + 1 — Z n t +  V )

his leads us for я^ п< йН 1, resp. n i + 1 — нгё и + и (+1 — 2«г< 2 (и ;+1—иг) to  

f  ői(x) d x ^  (п1+1- щ) 2  ?ИЧ4 2 ” (/с +  и;+1- 2 н ;)2с1.0J п=щ+1 \n + ni + l~zni) k=ni+l
со 1 «.

Obviously ^  f  S i(x)dx< °° and thus by B. Levi’s theorem 2  ^ W <K> a.e. 
i=o0J г=о

This proves the assertion.

Lemma 3. Let {nj he an increasing sequence and let y=-0. Tfien 
1 ( , ni + i - l  л*1у +

/  loT------Г 7Т 2  |s*(^)—sHiC«) — C*0I7f d x t s L  2  c n 0  =  0, 1,...) .
q L 2 (W | _|_i A?j) k = n i * n=nt + l

Proof. We construct the first partial sums of a new orthogonal series Sc„$n(x  ̂
in the following way:

(П =  0, 1, ..., Hi + 1-И;),

s n ( x )

0
» -(" i+ i-2"i)

2  ckcpk(x) (n =  п1+1- и г+ 1 , ...,2 (и ,+1-и ,) ) .
f c = n , + l
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The corresponding arithmetic means dn(x) of this sequence are

„ n _ í  0 (и =  0, 1, ..., ni+1—nt)
(Jn x  -  {ст*_(П(+1_2л)(х) (n =  и;+1- И ; + 1, 2(ni+1 — и,)).

Now by Lemma 1 the estimation is proved.

Lemma 4. Let A = (ank) be a regular summability method and let 5*SO. I f  

with the major ants (2) 2  ak sk <  °° is fulfilled, then
k=Q

oo
lim 2  ankh = 0.

k=0
Applying the regularity conditions the statement of this lemma is easily proved.

Proof of Theorem 2. As already mentioned strong summability with higher 
order implies the one with a smaller order. Therefore we may assume y ^ 2 . We 
pick up again the means a* (x) (cf. (5)) and the function / (x) determined uniquely 
a.e. by the Riesz—Fischer theorem. Now with l(k )= i  if и,^А:<и;+1

<y)0D = 2  lflJ  ■ k (* )-/(* ) ly =k=0

= 0(1) { 2  lönkl • |Sfc(̂ )— (л:) — сг̂ (лг)|у -ь 2 \ ank\-Wt(x)V +
к=0 к=0

+ 2  Кк\ • K (J x ) - f ( x ) \ y} =:  0(1){т®(ж)+ т<п>(*)+т<ш>(х)}.
fc = 0

Since the method (\ank\) transforms the space of nullsequences c(l into c0, so x f X) (x )^0  
a.e., and by Lemma 2 we also get t® (x)->-0 a.e. Then with the majorants 
cck (cf. (2)) we get

(6) *nl)(x)^ 2  2  «kK(x)-s„t(x)-(TZ(x)\y.i=0 k = nt
We prove that the series on the right is finite a.e. For (3), (4) and Lemma 3 with 
consideration to the estimation {2 а ^ Ш !  af ( a , s 0 ; 0 < /;<  1) yields

/  { 2  2  xk\Sk(x)-sni(x)-a^(x)\yY,ydx =
q i=0 k=nt

oo f 1 «i + 1-l 12/y
— 0 (1) 2  \fi7Z------ —Г 2  k ( * ) - s n((x)-<r£(x)|)|  dx =i=o t ^\n i+i — nt) k=„t )

- 0 ( 1) 2
i=0 n=ni-srl

This shows the finiteness of the series in (6). Lemma 4 immediately furnishes the 
assertion.
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The proof of Theorem 1 may be carried out in a similiar way for the exponent 
y—2 without using the means <r*(x). We only use the estimation

<*k\sk(.x)-snt(x)\2dx за M
" i+ i- i

2  <%■
k = n l

We omit the proof.
The relations of equivalence between convergence of subsequences and (strong) 

summability of orthogonal series show that condition (3) may not be weakened in 
general. On the other hand we state

R emark 1. For a regular method A —(a„k) and an increasing sequence {nt} 
let

" i+ i-1
lim 2 , ak = 0.

k  =  nt

Then there exists an [^]y-summable orthogonal series (1) with divergent partial sums 
{s„.(x)} for any 0< y S 2.

For in this case there exists an increasing sequence {щ} with

У  ak — M *  0  =  0 , 1 , . . . )
к=Ч , + 1

exhibiting the following property: the number of members out of {и;} between two 
adjacent pj and pJ+1 ( /= 0 , 1, ...) is not bounded. Then, by [13], there exists a 
series (1) with divergent partial sums {^„.(x)} and convergent partial sums {.уд. (x)}.

Theorem 1 applied to {/i,} shows the [T]'-summability of the series (1) for 
0 < y ^ 2 .

Condition lim ak = 0, which corresponds to the particular case nt = i
ft-» oo

0 —0, 1, ...), plays a certain role in the field of summability of general divergent 
sequences. It is well-known that such a method sums a t least a divergent sequence 
(cf. K. Zeller; W. Beekmann [15], p. 46 f). By Remark 1 it immediately follows that 
this result may be stated for the restriction to orthogonal series, too:

R emark 2. For a regular method A= (ank) let lim ak=0. Then there existsft-»«»
a divergent series (1) which is [ylp-summable for 0 < y S 2 . However, in general, 
condition lim a* =  0 may not be replaced by lim inf ock=0.

k ->-oo ft-»00 ' 1

3. Summability and convergence

In the following we first want to turn to aspects of the field of general gap theo­
rems restricting the methods to regular triangular matrices A —(ank), ank= 0 if

k> n. For a gap series 2 un with un= 0  if п ^ п к, n2, ..., the transforms of its
и=0

partial sums {v„} for и;^ и < и ;+1 are
П i

t n =  2  a n k s k  =  2  a n j s tij9 fc=0 j =0
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where

"7 + 1- 1
2  ank

k = ” j
n

2 a nk 
k  = ni

о

0  <  0

O' =  0 
0  >  0 -

The method A* = (a*j) is called a gap method (cf. K. Zeller; W. Beekmann [15]; 
p. 79). In the context of gap theorems one asks for equivalence of A* to convergence. 
Possibly the convergence of a subsequence of { t n } may already imply convergence 
of {v,,.} or of the series, respectively. To this end, with Sj=s„. we consider the 
following subsequence of { t n } :

— 2  a ni+1- i , j sn — 2  A u s j ’
J = 0  7 = 0

where AiJ=a*l+1̂ 1>J. The method A =  A( {«,}) =  (Au) has the advantage of having 
a triangular form. These gap submethods play an important role in our investigations 
of inverse theorems in summability of orthogonal series. In this connection we 
introduce the modified means

Ti(x) = 2  AtjsnXx) 
j'= o

of the series (1). W ith the majorants

(7) 4  =  sup \a„ i.fcll *
similar to (2), we prove

L emma 5. For an increasing sequence {n;} let

(8)
"i+i- 1

2  4 t k M
k — nt

be fulfilled. Then fo r  the series (1), {Tfix)} is convergent i f  and only i f  {/„._] (х)} 
is convergent.

Proof. Without loss of generality, n„= 0  may be assumed. By the regularity 
of A  (cf. condition (a)) and by Holder’s inequality we get

ILí+1- i (a: ) - 7 ’í(x)|2 =  I 2  J+2  a„i+1- lik (sk( x ) - s n.(x))\2 =
7=0 k = rij

=  0(1) 2  J+2  ISjtĈc) — s„ (л:)|2 =  0(1) 2  J+2  r4 ( s k(x ) - s ,(x ) f .
7 = 0  k = t t j  j = 0  k= rij

This yields
1

/  S4P(ínl+1- i ( Jí) —7)(x))2 d x = 0 ( l) 2
n—0

C2
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or sup — Ti(x)\<°° a.e. With the regularity condition (c) it follows
t„.+1- 1(x )—Ti(x)-*0 a.e. which completes the proof.

R emark 3. If the columns of A  are decreasing (ank^a„+hk; n ^ k ) ,  the state­
ment of Lemma 5 holds for every increasing sequence {nf}.

The sequence {v„.(x)} considered so far may be represented as a (direct) se-
oo

quence of partial sums of a new series 2  Q  Ф^х) which belongs to the class of
i = 0

series (1), namely with

\ ( x )  (C, -  0)

c„ (P„(x) (C, A  0).

Following Lemma 5 it has to be investigated what are the conditions for a given 
method not to sum a divergent orthogonal series (1). For general sequences we 
mention the result obtained by R. P. Agnew.

Lemma 6 (R. P. Agnew [1]). Let B=(bnk) be a regular triangular method with

\K „\- "2 \b„k\ ^  >  0.
k = 0

Then В is equivalent to convergence.

The application of the last lemma to ‘blocked’ matrices is due to J. A. Fridy 
[5] in connection with Tauberian theorems. Another condition for a method to be 
equivalent to convergence is

L emma 7. For a regular triangular method B= (bnk), let

bn+i.k -  qbnk (0 <  q <  1; к = 0, 1, ...; л Sr к).
Then В is equivalent to convergence.

<P
C i = { ‘Z  c*}1'2; <F(x)

cT 2. '“'I n = n.

Proof. The means 

into the means

П

t„= 2! bnksk associated with В are first transformed
k = 0

1 -9 "
h i - l  + 1 - 9 "

where qS.q*<  1. By Lemma 6, {?„} is convergent if and only if {/*} is convergent. 
Now

71—1 71
1 (bnk- q * b n. hk)sk+ b nns„}=: 2  cnksk. t — q k=0 k = 0

We want to prove that C —(c„k) is equivalent to convergence; for e„sá 0  if k=  
= 0, 1, ..., n—1 and therefore

77—1 77
c„„- 2  Ы  =  2 c»k-+1-

k = 0 k=Q
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Then Lemma 6 shows the equivalence of C to convergence. Thus the convergence 
of {tn} implies that {v„} is convergent, too.

With respect to orthogonal series we prove
n

Lemma 8. Let B —(b„k) be a regular triangular method with 2  bnk= 1 and
k = 0

\bnk\ Ш K*qn- k (и =  0 ,1 ,. . . ;  и £  fc).

Then В is equivalent to convergence with respect to the orthogonal series (1). 
Proof. Because

the assertion follows by

tt Д —1
sn(x)-tn(x) =  2  cß(Pß(x) 2  Kk,д—1 fc=0

2  / (sn( x ) - t n(x ) fd x  = 0(1) 2  2  4 ( 2  9л-к)2 = 0(1) i  cl
*2 =  1 /ч n  =  1 и =  1 k  =  О н = 0

We want to mention that with respect to the orthogonal series (1), a necessary con­
dition for a method to be equivalent to convergence is deducible from Remark 3. 
With respect to orthogonal series we summarize

Theorem 3. Let {nf) be an increasing sequence. I f  condition (8) is fulfilled for 
the major ants {«£} and i f  the gap submethod Л = Л({«;}) is equivalent to convergence 
with respect to the orthogonal series (1), then {tni~ fx )}  and {i„.(x)} are both con­
vergent or both divergent.

R emark 4. If a gap submethod A = A({ni}) sums a divergent orthogonal 
series (1), then there exists a series (1) with divergent partial sums {•?„.(*)} for which 
the means {?„.(*)} are convergent.

CO

To prove this remark we take a divergent series ^  C; Ф;(х). Let {pk} be
i=l

chosen such that 2  C /lfc (i \ k (x) is convergent which holds, for example, if
k  =  l

2  C lk (log (cf. G. Alexits [2], p. 76). We then consider the series 2  С? Ф;(х)
k = 2  i = 1
with partial sums {SJ(x)} defined by C f= C; if iA p k ( k = \, 2, ...) and otherwise 
C*t = 0, к —1, 2, .... This series is divergent and its transforms {Г;*(л-)}=Ä {S)(x)}

converge. Now with respect to {n;} we define the requested series 2  cn фи(*) by
n=0

cП
С; (n = пр, i pk, к =  1, 2, ...) 
0 (otherwise),

and we put (pnfx ) =  Ф;(х) if i A pk, k —1,2....... For the remaining n (with the
coefficients c„=0), where n ^ n h i=  1, 2, . . . ,  or п= щ  and i= pk, k = 1, 2,.. . ,  
we take for cp„(x) successively those functions (Pßk(x) which have not been used so 
far. It is obvious that {inj(x)}= {^(x )}  and that for the Л-means of the partial
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sums {i„(x)} of the constructed series tni+1(x)=7]*(x), i=  1 ,2 ,.... Finally
oo

2  cn (Pn (x) belongs to the class of series (1).
n = 0

When applying gap submethods in summability of general sequences, slight 
modifications of well-known gap theorems can be stated by Lemma 7 in the fol­
lowing way:

Remark 5. (a) If nt+1/nt^ q >-1 (/= 0 , 1, ...) then for a gap series 2  un,
n = 0

m„= 0, if n^riy, «2, the arithmetic means {a„.} are convergent if and only if 
the partial sums {s„.} (i.e. the series itself) are convergent.

(b) For the discontinuous Riesz means (R*, A, 1), A={A„} increasing to in­

finity, let A„í+1/A„(S í?:>1 ( /= 1 ,2 ,...) . Then with a gap series 2 “«  m„ = 0 if
u = 0

n^tiy, n2, ... the (R*, A, l)-means {/„.} are convergent if and only if {j„.} (resp.
oo

2  un) converges.
n = 0

Theorem 3 allows to conclude from summability (and strong summability with 
order у s i )  to convergence of the partial sums (x)}. For an order y<  1 we can 
also prove

Theorem 4. Let ̂  {и;} be an increasing sequence, and let together with (8) for  
the gap submethod Л ({n;}) concerning the method (|a„t |) in dependence o f  {«;} at 
least one o f  the following conditions be fulfilled:

(a) А^=А({пу}) is equivalent to convergence (with respect to general sequences),
(b) Á satisfies the assumption o f  Lemma 8.
Then for a series (1) the convergence o f  the strong means (t̂ I ^ x)} (у =»0) 

implies convergence o f {.yH.(x)}.

Proof. It suffices to carry out the proof for the exponents у^ 2 ;  otherwise 
Theorem 3 yields the assertion. Now with Ä = (Ä tj)

2  Á ij |s„ (x )-/(x )F  =  0 (1) { 2 " * 2  • |s*(x)-s„  (x)|7+
j = 0 j=0 k=nj 1

+  2  |e«,+i-i.itl|S t(*)-/(*)l,p} =  0 ( !)  К  (*) +  ***(*)}•
k = 0

The second term is identical with and therefore t**(x)-»0 (/-»oo).
The estimation

t?(x) =  0 ( 1 )  { Í  "J2  1 K +1-i.* l |s»(x) - s. / x)|*}
j  =  0 k = tt j

holds on the basis of the regularity of A. In the proof of Lemma 5 we have shown 
that, if (8) is assumed, the right side tends to 0 (/ -oo) for every series (1), i.e. we have

2  А / I (x) - /(x )  I * -  0 (i -  «о). 
j=o
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With (a) the statement now follows immediately. On the other hand, in case (b) 
there exists a natural number K, so that with the sequence {mi}={ni.K\  the gap 
submethod Ä ({m t}) satisfies the conditions of Lemma 6. Therefore by (a) {sm.(x)} 
converges and it is easy to see that so does {«„.(x)}, too.

4. Applications

We represent the sequence of partial sums {,ym.(x)} as a transformation of 
{in(x)} obtained with the aid o f the (simple) summability method Т({ш;}). If two 
summability methods are equivalent with respect to the orthogonal series (1), we 
use the symbol

(a) For the class Ap of triangular methods A —(ank) with

{ n + \y - v * { Z \a nk\>y» M  (и =  0, 1,
k = 0

which were first considered in connection with orthogonal series by V. A. Bolgov 
[3], we have

T({2'})~*A ~*U ]a ( y > 0).

Theorems 2 and 4 prove this result in the first instance for the special method (C, 1). 
In general

2  <hJs*(*)-/(*)ly =  M \ - ~ r r  2  ls*(x) - / ( * ) ly4 ;fc=0 1И+ 1 k~0 >
with и;= 2‘, г = 0 ,1, .... Lemma 7 may be applied and Theorem 4 helps to prove 
the stated relation. We notice that this class contains a subclass o f Hausdorff-methods 
H=(h„k) with (cf. G. H. Hardy [6], Theorem 215)

hnk =  ( " )  /  t \  1 -  0 " -fc«K0 dt, U t)Z L p[0, 1] (p  >  1)
'К' о

and, in particular, the regular Cesäro methods (C , a), a>0. The classical result on 
strong summability with large exponents (C, a)=>-*[(C, a)]y, a > 0 , у >0 was ob­
tained by G. Sunouchi [14], and V. A. Bolgov [3] proved А ~*Г({2‘}).

(b) Discontinuous Riesz methods (R*,X, 1), 2 = {/„} increasing to infinity. If 
{/?,} satisfies

XntJX„t >  1 and 2„j+i_1/2„(

we get by Remark 5, Theorems 1 and 4

T(K}) R*, Я, 1) ~*[(JP, 2, 1)]” (0 <  у S  2).

The first relation is due to A. Zygmund [19], and the second to J. Meder [10].
If, in addition,

3!± l_A  =  0 ( i ) ------ 1-----
X„+i ni+1- n i

(/I; ^  П <  U< + 1)
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we get with Theorem 2 even

(R*, 1, 1)~*[(Д*, x, o r  (y >  0).
We finally mention that in the case of general summability methods the equivalence 
of the summability processes with respect to orthogonal series is not given as was 
shown by D. E. Menchoff [11] in the case of summability and convergence of sub­
sequences or by F. Móricz [12] in the case of strong summability and summability.
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NOTES ON LACUNARY INTERPOLATION 
WITH SPLINES. Ill

(0, 2)-INTERPOLATION W ITH QUINTIC G-SPLINES

TH. FAWZY (Ismailia)

1. Introduction

Recently A. Meirand A. Sharma [1], В. K. Swartz and R. S. Varga [2] and A. K. 
Varma [3] have studied the use of splines to solve the (0, 2) lacunary interpolation 
problem. All of these methods are global and require the solution of a large system of 
equations.

Recently, Th. Fawzy [5], [6], [7] presented several local methods for solving 
lacunary interpolation problems using piecewise polynomials with certain conti­
nuity properties.

In this paper we study the following (0, 2)-lacunary interpolation problem : 

P roblem  1. Given A: {xt=ih}f=0 and real numbers { f ,  / г"}?=о, find S  such
that

The prupose of this paper is to construct a spline method for solving Problem 1 
using piecewise quin tic polynomials, such tha t for all functions /£C 5, the order 
of approximation is the same as the best order of approximation with quintic splines.

where k = 0, ..., и—1.
We shall define each of the explicitly in terms of the data. In particular we 

choose

( 1.1) S(x,) = f  and S"(xi) =  f " ,  i = 0, ..., n.

2. Construction of the spline interpolant

We shall construct a solution S  of Problem 1 in the form

(2.4)

(2.3)

(2.5)

3
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and

(2.6)

For k = 0 we take

(2.7) S„(5) =  S<r' \

(2.8) S p  = S P - h S p ,

(2-9) Ф  =  ¥ { /l '/ _ / °,,_ T ' ^ 4) " i r 5“6)}’

(2.10)
1 1  h2 5 hr 1

=  Д т г - 4 ' j

and finally for k = n —1 we take

(2.11) SjJ> = S t LM**), j  = 1 ,3 ,4  and 5.

Clearly, the function S  defined in (2.1)—(2.11) solves the (0, 2)-interpolation 
problem 1. Moreover, by the construction it is clear that S  is a piecewise quintic 
polynomial.

The S[3) have been chosen to  make S"A right continuous, i.e.

D \ Sk (xk +1) =  Dr Sk +1 (xk +1),

while the have been chosen to make SA continuous. Thus

(2.12) Se  C<0'2) [x0, x„] = { f f  C[x0, x n] : D% /€  C[x0, *„]}

where DR is the right derivative.
Indeed, S  is the unique piecewise quintic polynomial in

C (0>2)[x0,x„] П C 6[x„_2,x„]

satisfying the interpolation condition (1.1).
S is a special kind of g-spline, we refer to it as lacunary g-spline.

3. Error bounds for the interpolation method

Suppose /€ C 6[x0, x„]. Then using the Taylor and dual Taylor expansions it 
is easy to establish the following lemma showing how well the approximate 
f (J>(xk) in terms of the modulus of continuity co(D5f 4, h) of f (5)(x).
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L emma 3.1. For 0 ^ k ^ n —2 and j=  1 ,3 ,4  and 5,

(3.1) \SP  -/<'>(**)I ^  ckJh5~Ja>(D5f', h)

where the constants ckj are given in the following table:

Ckl Ck3 Ck4

©II-i* 169 91 19
720 ”36

4
~6~

l ^ k ^ n - 2
61 7 5 13

— — —

540 9 6 6

Theorem 3.1. Let f(LC5\x0, x„] and let SA be the lacunary g-spline constructed 
in (2.1)—(2.11). Then fo r  all 0 ^ / S 5  and all O S k ^ n —2, the inequality

m J)( f - S A)\\L̂ Xk,Xk+ll ^  ckjh5~Jo)(D5f ;  h)

о Ids true where the contants ckJ are given in the following table:

Ck0 4 <£» ck3 Ck6

k = 0
917 827 91 73 43 19
1080 360 18 9 6 6

1S f c s n - 2
319 1579 14 97

3
13

1080 2160 9 36 6

Proof. Suppose l ^ k ^ n —2 and let хк^ х ^ х к+1. Then using the Taylor 
expansion of / (x) we have

\ f ( x ) - S A(x)\ = \ f ( x ) - S k(x)\ =§ Í  l / (J)f a ) - ^ j)l hJ+ 1 /(5)( ^ ) - ^ /i5 ш

4  | / “ > f a ) - s p i  h , , l / (5)( 4 ) - / (5)f a )l ft.
J =0 5!

where x*<£*<xt+1.
Now, using the above lemma, it is easy to get the required result.
Similar procedures for the derivatives with the help of Lemma 3.1 will easily 

complete the proof for \ S k ^ n —2.
For к —0 and x0S x S x t we repeat the same technique as above and the 

results could be easily obtained.

Lemma 3.2. For k = n  — 1 and j=  1, 3, 4 and 5 we have

\S(k» ~ ß 4 x k)\ S  ckjh5~Jco(D5f-, h)
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where
1579 _  97 _  13

Ckl ~  2160 ’ Ck3 ~  36 ’ Cki ~  3’ °къ ~  6 ‘

P roof. This lemma is a direct consequence of Theorem 3.1, using (2.11).

T heorem 3.2. Let /d C 5[x0, x n] and let SA be the lacunary g-spline constructed 
in (2.1)—(2.11). Then fo r  k = n —\ we have

\ \D ^ ( f - S A)\\L̂ x k,Xk̂  ^  ckjh5 *- Jco(D5f ;  h) 

where j=  1, 3, 4 and 5, and

* 719 * 2927 * 170 * 131 * 37 * 19
Ck0 ~  540 ’ Ckl ~  1080 ’ C*2 _  36 ’ C‘3 “  18 ’ Cki ~  6 ’ Ck5 ~  6 '

P roof. Using Lemma 3.2, the Taylor expansion of f ( x )  for x 6[xn-i,x„] 
and the construction of S„_i(x), it will be easy to prove this theorem.

4. Numerical example

The method is tested for the following example:

f ( x ) — 1 + xex, 0 S  x 5  1.

We carried out the calculation at x= 0.55  and for A=0.1. The following results are 
obtained:

Exact values Numerical values Absolute error

f : 1.953 289 160 1.953 289 187 2.7 -1 0 -8
2.686 542 178 2.686 542 177 1 ■ io-e

f " : 4.419 795 196 4.419 768 559 2.6637 • IO“6
/ <3): 6.153 048 214 6.153 042 055 6.159- 10"»
/ <4): 7.886 301 232 7.909 976 2 2.367 496 8 • 10"2
/ (б): 9.619 554 25 9.635 924 1.636 975 -10 -2

5. Remarks

1. The method defined here, in contrast to the other methods, does not require 
any end condition to be imposed.

2. The method defined here converges faster than any other known method.
3. A similar method for solving the (0, 2)-interpolation problem using splines 

of degree 6 will be presented elsewhere.
4. The constants presented here are not guaranteed to be the best.
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KLASSEN VON MATRIZENABBILDUNGEN 
IN FK-RÄUMEN

E. MALKOWSKY (Gießen)

1. Einleitung und Bezeichnungen

In [1] und [2] ist es gelungen, für Folgenräume X  und Y  in bestimmten Fällen 
die Klasse (X, Y ) aller unendlichen komplexen Matrizen A zu bestimmen, die X  in 
Y  abbilden: (X, /«,), (X, c) und (/«,, Y). Hier wollen wir ähnliche Ergebnisse im 
Zusammenhang mit den Räumen lx, у und bv herleiten. In allen Fällen wird die 
Charakterisierung der Matrizenklassen auf die Bestimmung der Dualräume der 
auftretenden Folgenräume zurückgeführt. Aus unseren Sätzen erhält man durch 
Spezialisierung viele der Ergebnisse aus der Tabelle in [3].

Zunächst benötigen wir einige Bezeichnungen. Wir setzen die Begriffe „r-nor- 
mierter Raum“, „Schauder-Basis“ oder kurz „Basis“ und „FK-Raum“ als bekannt 
voraus (s. [4], S. 94, S. 84 und [5], S. 202).

Mit A bezeichnen wir unendliche Matrizen (ank)пЛ komplexer Zahlen.
Mit s bezeichnen wir die Menge aller komplexen Folgen x = (x k)k, und wir 

benutzen die üblichen Bezeichnungen für die Folgenräume lp (0</><°°), c0 
und c und die zugehörigen natürlichen /;-Norrnen bzw. Normen \\■■■]],, und ||...||„ . 
Weiter betrachten wir die Folgenräume

n n
y:=  {x€s|( 2  xk\e c } ,  y0:= {x€s|( 2  **)„€c0},

k= 1 k —1

П oo
und bv := {x€x| 2 *t+i| < o °};k—1 k —1

y, y0 und y„ sind mit
n

:=  s u p |^ x t |
n£N fc=l

FK-Räume, und bv ist ein FK-Raum mit

||*||bv '•= 2 \xk ~ x k-i\ (hier ist x0:=0  gesetzt).k=1

Sind X  und Y Teilmengen von s, so schreiben wir (X, Y) für die Klasse aller 

Matrizen A, für die An(x):= 2  ankx k für alle x £ X  und für alle n€N existiert
k=1

und A(x):=(A„(x))„€Y für alle x€X . Ist X  ein r-normierter Raum, so setzen wir

{ x e x \M  =  1 } .
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Für Teilmengen Z  von s definieren wir die folgenden Dualräume von X:
oo

Zf;={a(E.s| 2 akxk konvergiert für alle x£X},
k =1

den Köthe—Toeplitz-Dualraum von X,

Z lfl := {a£j| 2  für alle x£Z},
k =1

falls X  ein /--normierter Teilraum von s ist

ZHtll:= { a e s | sup 2  K**l <  “ }>
x £ S x k = l

und wir setzen

||a]|t :=  sup I 2  акхк\ sowie ||a||lltll:= s u p ( ^  k * t l )
x  £  S x  к =  1  jc  6  S x  k —1

für alle a£s, für die die Ausdrücke rechts existieren; mit X* bezeichnen wir den 
Raum  der stetigen linearen Funktionale auf X. Sind X  eine Teilmenge von s und 
a£ Z f, so wird durch

/„(x):=  2  akxk für alle x £ X
k = l

ein lineares Funktional auf Z  definiert. Wir schreiben Z fc Z * , wenn aus a£Zf 
folgt / a€Z*.

Zum Schluß dieses Kapitels machen wir einige Bemerkungen über Beziehungen 
zwischen den einzelnen Dualräumen:

Aus den Definitionen von Zf, Zlfl und Z 1̂ 11 ergibt sich sofort:
1. Für alle Folgenräume Z  gilt Z l f lc Z f ;  für alle /--normierten Folgenräume 

gilt Z » t»cZ ltl.
Dabei ist die Inklusion in beiden Fällen echt: Für X:=y ist yltl = /xgbv= yf 

(s. [4], S. 117). Wenn wir mit (p den Raum aller Folgen bezeichnen, die nur endlich 
viele von Null verschiedene Glieder haben (s. [6], S. 273), dann wird X:=cp mit 
II. . . II„о zu einem normierten Raum, und es gilt g i= (jjltl. Bezeichnen wir 
nämlich für alle /j£N  mit e{n) die Folge, für die := 0 für k ^ n  und e ^ := \,  
und definieren wir die Folge a fs  durch ak:=k (k=  1 ,2 ,...) , so gilt

2  \ak4 n)\ = «.
k  — l

HalP'f11 existiert nicht, und somit ist a $ (p ^ .  Wir erhalten die folgenden Charak­
terisierungen für FK-Räum e:

2. Ist Xczs ein vollständiger linearer metrischer Raum, so ist Z  genau dann 
ein FK-Raum, wenn Z fc Z * .

3. Ist Z c í  ein vollständiger /--normierter Raum, so ist Z  genau dann ein 
FK-Raum, wenn Zlfl c Z lltl1.
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(2. folgt leicht. 3.: Ist X  ein FK-Raum und аСА'Ш, so folgt ябХ 11!" mit einer 
Anwendung eines bekannten Satzes (s. [4], Satz 11, S. 114). Die Umkehrung ist klar.) 

Bekannt is t:
4. Ist X  ein normaler Folgenraum,* so gilt (X, Y )— \X, Y\ (s. [7], S. 374), 

wobei \X, Y\:= {A£(X, У)| 2  \ankxk\<0° für alle wgN und für alle x€A}.
k =1

Daraus folgt insbesondere:
5. Für normale Folgenräume ist X ^ = X ^ .
Aus A'7=Arltl folgt jedoch im allgemeinen nicht, daß X  ein normaler Folgen­

raum ist, wie das Beispiel X:—c zeigt.

2. Matrizenklassen (X, Y )  bei FK-Räumen

Wir wollen nun einige Matrizenklassen (X, Y) bestimmen, in denen jeweils 
einer der beiden Räume X  oder Y  ein beliebiger /--normierter FK-Raum ist und der 
andere llf bv, y«, oder y. Zunächst beweisen wir ein Ergebnis, das Satz 1.2 in [1] 
mit lx anstelle von l„ entspricht.

Sa tz  1 . Ist X  ein r-normierter FK-Raum, so gilt

A£(X, Ix) о  sup {||( 2  ank)k||t | N  c  N endlich} < °° .
n 6N

Bew eis. Wir setzen

M:= s u p { ||( 2  «пл)а||+| W c: N endlich}.
w£N

Es gelte А ^ (Х ,/г). Da X und FK-Räume sind, ist die Abbildung A : X  *l, linear 
und stetig. Es gibt daher eine Konstante K, so daß für alle x£ X

Für alle endlichen Teilmengen N  von N und für alle x ^X  folgt daraus

und daher
I 2  2  ^nk^k\ — 2  I 2  — к  I
k=1 n€N  n£N fc=l

III/'-

SUP j 2  2  ank)I =x£Sx k = 1 n£ N ( 2  апк)<(||̂  — К-n6N

Da die letzte Ungleichung für alle endlichen Teilmengen N  von N gilt, erhalten wir 

Es gelte umgekehrt M < °°. Dann folgt für die einelementigen Mengen {«}
oo

( /i= l ,2 , . . . )  die Existenz von A„(x)= 2  ankx k für alle x€ X . Für alle m £N
*=i

* Ein Folgenraum A heißt normal, wenn aus x £ X  und |yk|S |x k| für alle k = 1 ,2 ,... folgt 
y € X  (s. [6], S. 273).
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gilt mit einer bekannten Ungleichung (s. [8], S. 33)

2 \ A n(x )\=  2  \ Z  ankxk\^ 4 -  max \ 2 xk 2  ank\tä
n = 1 11=1 k  = 1 Amc:{l m} пелгт

=  4 ' max ||( 2  flnk)fc||f M 1/r — 4M||x[|1/r.
" m ^ t l ......Щ  n £ N

Da «j€N beliebig war, folgt

2  \An(x)\ ^  4M||x||1/r für alle x(LX
n = l

und daher A (x) = (A„ (x))„ € l, ■
Wir beweisen nun ein Ergebnis, das Satz 1.3 in [1] mit f  anstelle von ent­

spricht.

Satz 2. E sse i Y ein Teilraum von s und (Y*, | | . . . | |t)  ein normierter Raum. 
Gilt ytntii — so folgt

A e(l±, Y ) o  sup !IKfc) J l mi
ke  N '

Beweís. Wir setzen M :=  sup |[(ая*)п||+141. Es gelte Af_(lt , Y). Dann ist
N

(An(x))„£Y für alle jc€/x, und daher existiert ||(/4„(x))„|||1" für alle wegen
ytntn =  y. £)a f  uncj у  (mit || ...||t »tn) FK-Räume sind, ist A: f  — Y linear und 
stetig, also gibt es eine Konstante K, so daß für alle x £ f

||(4,(дОХ||р ^  K M i-

Speziell für x  = e(-k) (k = l,  2, ...) folgt daraus

H(aiifc)filiyt " — К  für alle k =  1, 2, . . .

also M <°°.
Es gelte umgekehrt M < °° . Daraus folgt für alle y£,Syt

2  \У«<*л\ S  M  (fc =  1,2,...)
*=i

und speziell für e(n)€ F t ( n = l ,  2, ...)

|a ,J  ^  M ||e(n)||t —\M„ für alle k ,n =  1, 2, . . .
also

sup \ank\ S. M„ für alle n =  1 ,2 ,...
*6N

Somit gilt 2  \ankxk\~ ^n \\x \\i für alle x f j v und für alle n£N. Daher existiert
k=1

A„(x) für alle x d f  und für alle N.

* Hierbei ist ||a|| j!111 :=sup l e ^ d l ^ S ^ } .
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Es sei nun j íS y t  beliebig. Dann gilt für alle

2 \ y n\\An(*)l =  2 Ш  2W nkXk\=  2 W  2 \ y n\ K k\ s
n = l n = 1 k = 1 k =1 n=l

Ä sup ( 2 11Уп\ | a J ) M i  ^  M  1*1! <
k€ N n=l

Aus
M(x)||iitn =  | |( ^ w ) jn t "  g  MlWk

folgt daher Л(х)£Уйй1] =  у  für alle x f l x.
Wir beweisen nun zwei Ergebnisse, die den Sätzen 1 und 2 mit bv anstelle von 

II entsprechen.

Satz 3. Ist X  ein r-normierter FK-Raum, so gilt

zl£(W ,bv)o sup{||( 2  (апк~ап-1,кУ)к\\*\М c N  endlich} <=».
n£N

Satz 4. Essei Y ein Teilraum von s und { Y \  j| J | | ) ein normierter Raum. 
Gilt у Ь 1Ш =  у 5 so folgt

4€(bv, Y ) о

m
(i) sup ||( 2  a„t)„||l!t" <  с о ,  

me N k = l  111

00 I\ ( 2  «nfc)»HVtl1 existiert.
k = 1 1

Beweis von Satz 3. Wir setzen

M ^ s u p l H U  endlich}.
/i£N

Es gelte Ad(X, bv). Da X  und bv FK-Räume sind, ist А : X-*bv linear und stetig, 
also gibt es eine Konstante K, so daß für alle x<£ X

MOOllbv =

Daraus folgt M < °° wie im Beweis von Satz 1 mit An(x) — A n_1(x) anstelle von 
An(x) bzw. mit u„fc — anstelle von ank.

Es gelte umgekehrt Für die Menge {1} folgt die Existenz von A x(x) =

— 2  aikxk für alle xCX  und dann nacheinander für die Mengen {n} (n= 2, 3, ...)
k = l

die Existenz von A„(x)= ^  ankxk für alle x£X .
k =1

Wie im Beweis von Satz 1 mit An(x) — A„^.1(x) anstelle von An(x) bzw. mit 
ank — an_ijfc anstelle von ank folgt (An(x))ndbv  für alle x£X.

Beweis von Satz 4. Wir setzen

M:=  sup [|( 2  fl«t)»||i!tl1 und M m\— | | ( 2  a ^ l l l 1111-
m6N k = l  k = l
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Es gelte A£(hv, Y). Dann ist (A„(x))„£Y für alle x£bv, und wegen У= У tlItl
P Y l^ tlP f t

||(^nO))n||!|!tl1 für alle x£bv.

D abvund Y  (mit ||**■ |li!"*’H) FK-Räume sind, ist T:bv-*-T linear und stetig, also 
gibt es eine Konstante K, so daß für alle xGbv

| |K W ) J I 'tll S  *ll*||bv

Es sei m£N beliebig. Dann gilt für die Folge jc(m) mit

{1 für 1 ^  к ^  m 
0 für к >  m

x(m)£bv und

||(^„(x(m>))„||ntll =  | |( J  ank)n||lltll == K\\xW\\bv = 2K.

Da m£N beliebig war, folgt (i). Da e := (l, 1, ...)£bv ist, existiert

wegen (A„(e))„£ y =  ytlltll.

Umgekehrt seien (i) und (ii) erfüllt. Aus (ii) folgt, daß die Reihen Z  a nk für
k=1

alle n£N existieren. Daher ist (ank)k£c0 für alle n£N. Aus (i) folgt, daß es zu 
jedem n£N  eine Konstante K n gibt, so daß

m
sup j 2  a nk\ si Kn. 
m€N *=1

Also ist (ank)k£ym für alle n £ N. Insgesamt erhalten wir

(апк)к£У°о П c0 =  bv1" für alle n£N.

Das bedeutet aber, daß An(x)=  Z  a nkx k für alle n£N und für alle x^bv exi-
k= 1

stiert. Es seien m£N beliebig, y £ S Yt und x£bv. Für alle l£N und für alle Teil­
mengen Nm von {1, 2, ..., m} folgt mit

A ^ ( y ) : =  J (  2  anJy n) (k = 1, 2,...)
J=1

und abelscher partieller Summation

\ Z  M  Z  апкУп)\ = =  Z  l * * - * * + i l K w "i ) 0 ’) l  + к 1 И | у ( ) ' ) 1  sfe=1 n £ N m k = l

=  2 ||x |bv-sup
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da x£bv und ( 2  ankyn)k£bvt ist, existieren die Reihen 2 xk{ 2  ankyn),
n £ N m k = 1 n(zNm

und es gut

\ 2 xk( 2  апкУ„)I S  2 | | x | ] b v - s u p M ^ O ) | .
t=i neNm ieN

Damit folgt für alle y£ S r t und für alle x£ bv

m oo
2  bnl И»(*)1 = 4 -  max 12  **( 2  апкуп) |

=  8 ||x||bv - max [sup | 2 ( 2  “пкУп)\] S

— 8 Mbv • sup [ 2  \Уп\ I 2  ank|] =  8 ||x||bv-sup 11(2” öfnfc)/«||lltl1 <°° 

wegen (i). Da N beliebig war, folgt für alle _y6 Syt und für alle x£ bv

i  \ynAn(x)\ S  8 ||x||bv. sup [ | ( i  anfc)n||lltll
n = l  Í6N  k = l  " T

also (/4n(x))„£ytlltll —у  für alle x£bv.
In Verbindung mit den Räumen y„ können wir die folgenden Ergebnisse be­

weisen :

Satz 5. Ist X  ein r-normierter FK-Raum, so gilt

Ae(X ,yJ)< ^sup  II( 2 ank)k
mdN n=1

Satz 6. Es sei Y  ein Teilraum von s und ( 7 t , ||"-lit) ein normierter Raum. 
Gilt Ftlltll =  у , so folgt

A£(y„,Y)<=>
(i) sup | | ( 2  (я „* -а л.к+1))„|Ц.т1

XC N k £ K  '

(ü) (ank) f c (l fü r  alle иСN.

(Satz 5 ließe sich zwar auf Satz 1.2 in [1] zurückführen. Die Arbeitsersparnis 
wäre allerdings nicht erheblich; zudem geben wir hier eine Modifikation gegenüber 
dem Beweis von Satz 1.2 in [1].)

Beweis von Satz 5. Wir setzen M :=sup ||( 2  ß„)[)*||f. Es gelte A£(X, ym).
m(z N n= 1

Da X  und FK-Räume sind, ist die Abbildung А : X-*y„ linear und stetig, also 
gibt es eine Konstante C, so daß für alle x£ X

M (*)Ir. S  С [дср .
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Also ist für alle m£N
m oo m

Z M x ) \  = \ 2 x k Z a n k\^C W xV *
n=1 k = 1 n = 1

und
m oo m

||( 2  «nk)fc||t =  sup I 2  xk( 2  a„k)\ === c  für alle m£N.
п=1 xesx /t=i n=i

Daraus folgt M <  CO,
Es gelte umgekehrt M <  Es sei x£X  beliebig. Dann folgt mit m := 1 die 

Existenz von
oo

A (x ) =  2 1k—l

und daraus nacheinander für и = 2 ,3 ,.. .  die Existenz von

A n(x) = 2  ankx k für alle и 6N und für alle x£W
k = 1

Für alle m £N und für alle ist

m  oo m m

1 2  A ( * ) |  =  I Z  * * ( 2  e * ) |  ^  | | (  2  « » * ) # I M 1 /r  s  M « * r* = 1 k = 1 n = 1 w = l
und daher

m
SUP I 2  Лп(х)\ ^  M||x]|1/r für alle x £ X .
mg N fc=l

Das bedeutet aber (^„(x))n£yoo für alle x£W.
Beweis von Satz 6. Wir setzen M := su p  ||( (uBi—a„ *+1))J|lltll. Es gelte

KcN k i K  ’ '
A f(y x , Y). Dann existiert An(x) für alle х£уте und für alle n£N; das bedeutet

( 1) (a„k)k€yL =  bv П c0 für alle и£N.

Daraus folgt (ii). Wir definieren die Folge у  durch

m
(2) y m:= 2  xk (m =  1, 2,...)

k=l

und die M atrix B={bnk)„tk durch

(3) bnk. ank Qfi,k+i 1)2,...).

Ist m£N beliebig, so folgt mit abelscher partieller Summation für alle x£yo° und 
für alle n£N

m  m—12  a n k X k =  2  Ь„кУк +  аптУт
k = 1 k = l
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und daher wegen (ii), (1) und yC.lm

(4) 2  ank*k = 2  ЬпкУк-li = l k=l

Also ist ß£(/<», Г), und es folgt (i) mit Satz 1.3 aus [1].
Es seien umgekehrt (i) und (ii) erfüllt. Ist m€ N beliebig, so folgt aus (i) für 

alle n£N mit bnk aus (3)

m со

2  \Kk\ — 4 • max I 2  hk\ = 4 • max ( 2  К"'! | 2  K k\) ^t=l JVmc{l....,m} 'k i n m 1 .....m> ' l=1 ' k k N m '

=5 4 • М||е(̂ |[| <  ■»,

Da m í N beliebig war, ist (a„fc)fcib v  für alle n i  N.
Wie im ersten Teil des Beweises gilt dann mit у  aus (2) und В  aus (3) unter 

Beachtung von (ii) die Beziehung (4), und mit Satz 1.3 aus [1] folgt {Bn(yj)nk Y  für 
alle y€l„. Das bedeutet aber (/i„(x))„iT für alle

Zum Abschluß dieses Kapitels beweisen wir noch ein Ergebnis, das Satz 1.1 
aus [2] mit у anstelle von c entspricht.

Satz 7. Es sei X  ein vollständiger r-normierter Teilraum von s mit Basis 
(e(k))k. Dann gilt

A e ( X ,y ) o (Í) sup ||(2 4 * )* ||t -=:o0’
m (N  n= 1

(ü) (ank)ney für alle k =  1, 2, . . . .

Beweis. Ist Л£(Х, у), so folgen die Bedingungen (i) und (ii) wie im Beweis 
von Satz 1.1 in [2].

Es seien umgekehrt (i) und (ii) erfüllt. Aus (i) folgt die Existenz von A„(x)— 

= 2  ankxk für alle x£X  und für alle /i£N wie im Beweis von Satz 5. Wenn wir 
für alle £6 N

m
bmk-= 2  ank (m =  1, 2,...)  und bk:= lim bmk

n~l m-*°°

setzen, so folgt (A„(x))„£y für alle x £ X  wie im Beweis von Satz 1.1 in [2] mit bmk 
anstelle von ank und bk anstelle von ak.

Aus Satz 7 folgt sofort

K orollar 1. Es sei X  ein vollständiger r-normierter Teilraum von s mit Basis 
(e(k))k. Dann gilt

A e(X ,yu)<=> (i) sup | |( 2 4 * ) J |t
m£N n=l

(ii) (önfc)n€7o fü r  alle к = 1, 2, . . . .
Wir schließen mit zwei Anmerkungen:
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6. Ist XzDcp ein normaler /--normierter FK-Raum, so ist unter Beachtung 
eines bekannten Satzes von Allen (s. [7], Satz 1) offensichtlich, daß Satz 1.3 in [1] 
ein Spezialfall von 1 Satz und  Satz 2 ein Spezialfall von Satz 1.2 in [1] ist.

7. Als ein Anwendungsbeispiel für unsere Sätze betrachten wir lediglich einige 
Spezialfälle von Satz 1. Sind die natürliche Norm für X 1* und die Norm || äqui­
valent, wie das unter anderem für die Räume lp ( 0 c  und c0 der Fall ist, 
so ist die Bestimmung von (X, /x) auf die Bestimmung von X* zurückgeführt. Wenn 
wir für alle p mit 0 °° die zu p konjugierte Zahl bezeichnen, d.h. q so bestim­
men, daß 4 = lq, mit II-**|Ie die übliche Norm für lq bezeichnen und

M q:= sup{||(J2 ant)k||, |iV c N  endlich}

setzen, so erhalten wir aus Satz 1:

A £(lp, h) <=> M q < °o  (0 <  /? — °°)
(s. [3], Nr. 76 für l< p < o o , Nr. 72, (72.2) für p = °°, Nr. 77 für p — 1, man über­
legt sich leicht, daß gleichbedeutend mit (77.1) ist);

A6(c,  h )  =  (c0, h)  (s. [3], Nr. 72, (72.2)).
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НАИЛУЧШЕЕ ПРИБЛИЖЕНИЕ УГЛОМ 
И ПРИБЛИЖЕНИЕ УГЛОМ ИЗ СИНГУЛЯРНЫХ 

ИНТЕГРАЛОВ ФУНКЦИЙ f £ L p(RH), 2 < р < ~

М. ТОМИЧ (Сараево)

В этой работе приближение углом из некоторых сингулярных интегралов 
оценивается через наилучшие приближения углом из целых функций. Полу­
ченный результат пользуется для сравнения классов функций определенных с 
помощью указанных приближений.

1. В ведени е и в с п о м о г а т е л ь н ы е  р е з у л ь т а т ы

Приближение углом является хорошим методом для исследования неко­
торых классов функций (см. [4], [8], [9]). В этой работе мы результат работы 
[8] относящийся на функции f£L p(Rn), l< p s 2 ,  распространяем и на случай 

оо. Для 2п периодических функций соответствующий результат дан
В [9].

Пусть даны ядра Ж^, j = l ,  2, . . . ,  l j=\ ,  2,.. .  для которых выполнено 

f  Ж/ft) dt =  j/2jT, f  dt ё  M, lim f  \Ж/(1)\ dt =  0
- t ,  J

причем константа M  не зависит от lj.
От функции /  и этих ядер образуем интегралы

сТС I 1 00
’i j * f =  l l j f =  —j= =  f  f ( x t ,  . . . ,X j-1, X j - t j , X j +1, . . . ,xn)M ’i](tJ)d tj ,

\ xiTZ —oo

W =  I l j ! / ,  ....

Для любого набора индексов i1, . . . , im, причем 1 1 из
этих интегралов образуем /и-мерный угол

Норму II/— у/. , Л| / ||р мы будем оценивать через наилучшие приближе­
ния углом Ykt к. ( / )р. Притом

(кч ^  0),

4
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gki целая функция экспоненциального типа k tj по переменной х {. а по остальным 
переменным во общем то произвольная функция.

В получении результата работы мы будем пользоватся преобразованием 
Фурье. Поскольку преобразование Фурье функции f £ L p, 2 < р < ° ° , является 
обобщенной функцией, то мы приведем понятия и результаты которые обес­
печивают применение преобразования Фурье.

Буквой S  обозначается пространство на R„ бесконечно дифференцируемых 
функций (р(х), х = (х х, ..., х„), |х| =  / х 2 + ... + х 2 для которых

sup (1 +  |х|') |^ w (^)l -  С(1, к ,(р )< °°X
где С постоянная, /=  1 ,2 ,..., к = (к х, ..., к„), k t=  1 ,2 , . . . .

Буквой S ' обозначается пространство линейных непрерывных функци­
оналов на S. Значение функционала f£ S '  на функции (p£S будем означать 
символом ( /, ср). Функционал f £ S '  тоже называется обобщенной функцией.

По определению f x= fi в S ' если ( f x, <p)~(f2, <р) для каждой функции 
(p£S.

Каждая функция f{x )^L p{Rn), 1 ^ р  <  °о, определяет функционал с помо­
щ ью  равенства

(1.1) </, (р) =  f  f(x)(p(x) dx, f  = f .
Rn

Каждая на Rn локально интегрируемая функция /  дла которой 

/ / ( * ) (  1 +  х2) - “/2 dx <  (я = 0)>

определяет функционал f£ S ' с помощью равенства (1.1).
Обобщенные функции, определяемые локально интегрируемыми в Rn 

функциями по формуле (1.1), называюутся регулярными обобщенными функ­
циями.

Л ем м а 1 ([10], гл. II, §5, [11], гл 1, §1), (дю Буа-Реймонд). Для того 
чтобы локально интегрируемая в Rn функция f  (х) обращалась в нуль в R„ 
в смысле обобщенных функций, необходимо и достаточно, чтобы / (х )  =  0 
почти везде в Rn.

Преобразование Фурье ф(х) функции <рдД дается равенством

Ф(*) = I <рW е~Ы dt’ (,х  = Д

Преобразование Фурье /  для f£ S '  определяется равенством

</. Ф) = </, Ф)-

Обратное преобразование Фурье /  дается равенством ( / ) = / .

Преобразование Фурье преобразует S  на S  и S ' на S' и притом взаимно 
однозначно и взаимно непрерывно ([10], гл. II, §9).
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Кроме^ того, если обозначим у= (х1, . . . , х J ,  z= (x m+1, х„), lS m S n ,
тогда р ,  (р )  обозначает, что преобразование ~ ,  (~) относится к величине у. 

Если а(х) бесконечно дифференцируемая функция для которой

|а<к>(л:)| á  C(fc)(l +  |x|'(,I>)

(I (к) — натуральное число, С (к) — константа), то для f f S '  произведение 
afaS' определяется ([10], [11]) равенством

(a f (р) =  </, аср).

Произведение a f  можно определить чтобы принадлежать к У  и тогда 
когда функция а не обладает предидущими свойствами, при предположении, 
что /  принадлежит какому-то подпространству от S'. Так произведение a f  
для /Е  Lp, 1 г=р <  можно определить с помощью мультипликатора в Lp, 
т.е. всегда когда а(х) является мультипликатором в Lp.

О пределение 1 ([2], 1.5.1.1). Функция Я(х) называется мультипликатором 
в Lp, l s p c  °о, если она измерима и ограничена на R„ и для любой функции 
fa S  выполняется неравенство

0-2) | |( A / ) X S C P|| / ! P

где константа Ср не зависит от / .
Для любой функции f ( x ) £ L p(R„) существует последовательность функ­

ций f a S  так, что ([2])

(1-3) \ \ f - f l  -  о ,

Если функция А мультипликатор в Lp, тогда неравенство (1.2) имеет место 
и для р Ь р, причем функция F = ( / f f  определена соотношением

(1-4) 1!^—(А /0 Х -*  о, 1 —

и для функции p L p, f f S  справедливо (1.3), ([2], 1.5.1.1).

О пределение 2. Пусть А мультипликатор в Ьр и / 6 L„. Произведение А/ 
это F причем функция FaLp определена с помощью соотношения (1.4).

Таким образом определенное произведение А/ принадлежит к S' так как 
Fd Lp, т.е. по этому определению А/ понимается как преобразование Фурье 
функций Fa Lp.

Справедливы следующие леммы.

Л ем м а  2. Пусть р, Хк, к= 1, ...,т  мультипликаторы в Lp и пусть 
/ ,  gaLp, 1 < °°. Тогда

a) (ß ( /+  Ю) ~ =  (/'/)" +  (ßg) '  п.в.
т т

b) { { 2 K ) J y =  2  ( P í r
k = 1 k =1
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и тем самым

a') H (f+ g)  =  «f+Aíg « S '

b')
m m

( 2 K ) f =  2 K f  в s \к = 1 к=1
Эту лемму легко утверждить.

Л ем м а 3 ([2], 1.5.1.1, (9)). Пусть 2, р мультипликаторы в Lp и f d L p, 
1 Тогда произведение Яр мультипликаторе Lp и имеет место

(KßJ))~ = (От)Т)~ п.в.
и тем самым

МлЗ) = № )?  « •s'-

для f £ L p(R), 1 ^ р ^ 2 ,  и Ж(-_ЬХ{К) равенство Ж*ф—Ж -/  имеет место 
причем произведение понимаем в обичном смысле. Для 2 < р < °о  это ра­
венство справедливо если произведение Ж  • f  понимаем в смысле определения
2. Именно имеет место

Л ем м а 4. Если Ж^Ьу и Ж  мультипликатор в L p, то для f£ L p(R),
1 ^ р < ° ° , имеет место Ж* f = F  п.в. и тем самым Ж * /= Г = Ж -/ в S ' 
причем функция F£Lp дана соотношением

\ \ F - ( ^ - f r \ \ p ^ o ,  I —

и для f f  имеет место (1.3).

Д о к а за т е л ь с т в о . Для Ж£.Ьх и f £ S  имеет место

Ж  * f  = (Ж - f )  1 Ж * f - Ж  * / || -  О, I -  со.

Имеем

^  \\Ж* / - Ж *М  + II(Ж  f y - F И -  О, I —

откуда следует утверждение леммы.
Теперь введем функции которые являются свертками функции /  с ядрами 

Дирихле. Мы даем рассмотрение для случая п= 2 т.е. для f ( x lt х2), так как 
для п >2  делается аналогично.

Будем обозначать

S „ J  =  П„у * f  = —L =  Г f(xx -  / j , х 2) D,h ( tj  dtx Oh >  0),
\ 2n —со

1 °°
s „ , f  =  D„t * f  =  — f  f(xx , x 2 - 12) DH (Q dt2 («2 >  0),

\ Z7T — oo

w  =  *s„, v ,  A ,, (O  =  -
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Л ем м а 5. Для функции f£ L p{R) (п = 1), имеет место Dk *f=cp
п.в. и тем самым Dk*f=q> = Dk- f  в S ', причем функция (p£Lp(R) определена 
соотношением

к М А - Й Х - о ,  / - с ,

ы для f £ S  справедливо (1.3).

Д о к аза т ел ь с тв о . Функция Dk (Dk= 1 для |x|SÄ: и Dk = 0 для \х\> к), 
является мультипликатором в Lp. Поэтому существует функция <p£Lp для 
которой

1<?>-(Ас-//Г11р -  О, I — оо.

Кроме того имеем ( f£ S ,  Dk£Le, l< g S « = ),

Dk* f  = Ф к - h r ,  1 Dk* f - D k*f,\\ ^  cp| | / - / | | .
Теперь имеем

\\Dk*f-(p\\ — \\Dk* f - D k* f l  + \\(Dk -J,y  -<p\\ -  0 , l -oo, 

откуда следует утверждение леммы.

Л ем м а 6 ([8]). Дели для функции f  (xl5 x 2)£Lp(R2), обозначим

S * n J =  SnJ + S nJ - S ní„J
то имеет место

I I / - <»,/11, ^  CY„i4 ( f ) p, | | / - < / | | ,  35 C Y 4 f)p (i =  1, 2),

причем константа С не зависит от f

Л ем м а 7 ([2], 1.5.4). Пусть функция А(х) непрерывна разве что за исклю­
чением конечного числа точек и пусть |А(х)| S i / ,

±2 ’"1 |Ф + 1 ) т 1 ~ 4 / т 1 - М’j-=±aiti- i | [ s j  I s )\

причем константа М  не зависит от х , & = ± 2 , ±3, ... и s>-0; ставится 
+ или — зависимо от того, будет ли к >  0 или /с< 0.

Тогда существует константа Ср независящая от М  и f  так, что

\\{X?y\\p ^CpM\\f\\p, 1
для всех f £ L p.

Эта лемма содержится в [2], 1.5.4.
Обозначим

УЛЛ =  ( ( ! < / ) /  & =  0, 1, 2,.. .
где

А0 =  {х: |д] ^  1}, Ак =  {х: 2к~' <  |х| 2к), (1)л =  {*’ ^
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Л ем м а 8 ([2], 1.5.6.1). Д ля  функции f£ L p(R), 1 <  оо, справедливы нера­
венства

l / l l p S C 1||{ Í y f ( / ) } 1/2| H C a||/ ||p,
о

причем константы С1, С2 не зависят от f

Л ем м а 9 ([8]). Пусть функция Я(хх) =  0 для |хх| > /х и пусть она удовлет­
воряет условиям леммы 7. Если оператор P \ f  определим равенством

P iJ  O i, х2) =  лOi) / 1 O i, х2)

причем символ ~  1 значит, что преобразование ~  относится к переменной 
Xi, то справедливо равенство

P i W f i x i , *2) =  SkíPl\ f ( x 1, х2) п.в.

для любой функции / О н  x^)(LL,p{R2)i 1

Л ем м а 10 ([8]). Для функции /О ;)  предположим, что удовлетворяет 
условиям леммы 1 и что 2;(х ;)= 0  для |xrf| > / г. Оператор P\tf  определим 
равенством

P'iJ O i, *2) = / O i ) / 'O i ,  *2)

причем символ ~  г значит, что преобразование ~  относится к переменной x t. 
Тогда

Pll PhJ(Xl, х2) = Plliíi/Ol, *2) и-e-
Эля любой функции /  Oi > *2) £ О  (Ü*), 1

Символом обозначается неравенство а-<СЪ для некоторой конс­
танты С.

2 . О ц ен к а  п ри б л и ж ен и я

Т ео р ем а  1. Предположимг что функции ЖА мультипликаторы в Lp и,
что

1 -J&ijitj) = o)j(lj) 1HjOj), íj =  1, 2, . . .  (j = rí),

причем o)j(lj) > 0  и функции {,(/■) четные. Для фиксированного числа Íj под­
берем число Sj так, что 2sj S / j <2sj+1 и предположим, что выполнены условия:

(а) функция \ф Ш  не убывет на [0, оо ) и  /€ [0, 1],

( 0  |^ (2 /с / | s  С2|^ (/с7)|, 2/сJ- S  24

(-5) 0 <  С3 ^
где константы Clt С2, С3 не зависят от параметров tj, k j ,  lj.
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Тогда для каждого набора индексов / ,  im 1 ё /S w S « )
справедливы неравенства

(2. 1) W f-yh.-hJW p -

1^(4+1)1*S C M  2  ... 2  2  V í i  -* v -4  елЛ .J =  1 « ^  =  0 i ;n  =  0 j  =  l  K i .  +  i  1 'rn J

где константа С не зависит от f  и lj=  1 ,2 ,__

Д о к аза т ел ь с тв о  дадим для случая и=2. Сначала рассмотрим одно­
мерный угол. Имеем

(2.2) I I / - n j \ \  s  I I /-  W H  + 1!I k W - п я  +

+ 152Si/ - / í11W II «  yMf)  + \\S^f~S2sJ lJ l
Обозначим BSl= {xx : S 2si}. Считая f ( x 1, x 2) функцией (одной) пе­

ременной x x на основании лемм 3 и 5 получаем справедливость в S' равенства

№ п ( f - i k f ) ]  = 0)Ak § - M f ~ n j )  =

= (1 Ц [(1 \(/-^ )] = [(i)4 (iKK/-/£7) =
= (1)3,//- nj)  = ykí(f- nj),  fel = 0, í , ..., Sl.

Из этого равенства следует

( / - / ! / ) ]  -  ykl( f - I ? J )  В S ' 
откуда на основании леммы 1 получаем

(2.3) ykl[S2s A f - l W ]  = ykl( f ~ n j )  п.в. (fc! =  0 ,1 , . . . ,  so-

пользуясь леммой 8 имеем

/ \S#1( f - I k n \ pdx1« f { Z j l 1[ S M f - n in ] } Pl2dx1

откуда интегрированием по х 2 следует

( / 1 I } J ) \ P dXl dx2)Vp «

( / / { Д  ykls* (f-Ik f)\Y ltdxl dxtyi’.

Так как 1 <д/2 <  °° то применением неравенства Минковского получаем

Учитывая, что
l l ^ . ( / - / i11 / ) l l p «  2  \\ykl[ s ^ ( / - i k m i -0

( / - / / / ) ]  =  о  для fei >  sx
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то

(2.4) 1 s ^ i f - П М «  2  \\ykl[S M f - n j )m -fcj=0

Пусть оператор Р]1 /  дан равенством

P Ű 1 =  K l^W xíX i)]/1^ ,  *2) В S '

(функция (1)д ф является мультипликатором в Lp), и пусть функции f T(xlt x 2)f_ 
£S(R2) такие, что

II/ - / r i p  -  0»

Имеет место (в обычном смысле) равенство

y U f r - n j r )  =  (1 ц ( 1 - < ) / ;  -  «iO i)[(i ь ку ш ] К  =

=  c o i í Ü í l ^ K l ) ^ ^ ) ] / , 1, fel =  о, 1, Sl,

откуда следует

(2.5) y ^ d r - ^ J r )  = Vi(h)ykl(phfr) п.в.

На основании леммы 7 имеем

IУ кг ( / -  / )  -  У кг (fr -  Jh fr) II p(Ki) =

=  IIУ ki { /  ’ / 1 /  ( /  / 1 / )}  I! p(Ki) S  | | / - / i11/ - ( / r - / 11/r)l!?(K1) 

откуда интегрированием по x2 получаем

Ну , / / -  ПгГ)~Укг(/г -  Ш \ р  (К ,)  —  I I / -  4 / - ( / г  -  / 11/ г)!1?(К 2) •

Отсюда когда г — °° следует

(2.6) \\ykl( f - n j ) - y kl( f - i W h ^ )  -  о, оо.

Кроме того имеем

1у , 1 № 1 Л - у , 1№ 1 / г)11 =  h M f - P i l f M  ^  \ \P i \ f -K fA  « I I / - / « ,  
т.е.

(2.7) l|y,1(JP/11/ ) - y t 1№ í/)llp -  0, г - ° ° .

Теперь пользуясь неравенством

«У*/f - I l f ) - O h ( h )  У кг(Р Ш р^ & 1 У кг ( / -  НгЛ -  У кг (fr ~  # /г)1  +

+  II У , / / - / , / ) - " / / )  У , /^ / ) «  +  II Oil (М У , / ^ / )  -0>i(/i) У ,/^ /)«  

получаем

(2.8) y,1( / - / 11/ )  =  oii(/i)y,1№ l/)  п.в.
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Из (2.4) на основании (2.3) и (2.8) следует

(2.9) \\sMf-П Ж  «  <(h) 2  Ъ Ж Ж ■к. = 0

Функции Р{*/  мы определим с помощью (в S') равенства

К  = % ? ,  п =  =
1, Ui\ ^  1 

Ф[(2к% t£ A ki
о , \t,\ 2*i.

Имеет место (см. (2.8) в [8])

(2-10) IlytiĈ /JllpORj) — CpI!7̂ !№Г*/ ) IIр(я2)5 — 0) 1» si>

где Ср не зависит от ykl(Pi\*f).
Будем пользоваться равенством

(2. 11) у Ж *  л  = S M P F n - s ^ - i i i P f n
причем [2к 1]—2к~1 для & S l, [2'1“1] =  0 для к = 0. Теперь неравенство (29) 
дает

(2.12) \ т ( / - П Ж « ^ Ш  2  11^1( С Л - ^ . - 1] (С /) !р -

В работе [8] констатировано, что для функции / ( х х, x 2)£.Lp(R2), 1 з=2,
а это значит и для функции f r£S, справедливо равенство

(2.13) 5 а № Г Л -5 [А -Ч 0 Й * Л =  Z 1 (SyJ - f )  A r i lM  +
v1 =  [2fcl —

+ ( W - / )  чЬ(2fc0 - ( V .- 1 ] / - / )  чЦР*1-1]) п-в.

Обозначая буквой ( ? ( / )  выражение на левой стороны и буквой H ( f )  
выражение на правой стороны равенства (2.13) и учитывая, что G (fr) = H ( fr) 
имеем

\ G ( f ) - H ( f ) \  ^  \ \G (f) -G ( fr)\\ + \\H(fr) - H ( f )«.
Так как

l |G ( /) -G (/r)ll -  0, | |Я ( Л - Я Ш | | - 0 ,  г - с о ,

при предположении, что | | / —Л К 0, то утверждаем справедливость равенства
(2.13) и для f e b p, 2 °о.

Пользуясь условиями (а), (ß) и леммой 6 из (2.12) на основании (2.13) 
получается

(2.14) IIs ^ i f - n j ) \ \ % « о т  z  \ к ((2fex-i])i2¥ ^ т л Р-
k l = 0

Из (2.2), (2.14) пользуясь условием (<5) следует утверждение теоремы для 
одномерного угла.
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Теперь докажем теорему для приближения двухмерным углом. На осно­
вании теоремы Фубини утверждаем справедливость разложения

(2.15) f - % , J  = 2  В,
1 =  1

причем
Bi = f - s ; h2s j ,  в г = ~ 1 1 в и 

Вз — —lf,. Bi, Bi — hlhBu

Bf, =  S2s,(_f— S2s,f+ I}x S2si f ) ,  B0 — — If2Bb,

B 7 = S M f -  s 2* j -  i f j +  if2 S2stf ) ,  в а = -  I I B 7,

Bq — S2s12S,(f— l&i1i2f) .

Имеет место

(2.16) i ; « « n W / ) p .t—1
Обозначим F = f—S2.2 f  Тогда

Въ = S M F - I f J )  =  S&! F — /,* S2s, F.

Для оценки нормы |J Br>\\ пользуемся методом одномерного случая, так, 
что, в (2.13) надо писать F  вместо /  (см. (2.7)—(2.11) в [8]). Таким образом 
учитывая, что

S vlF - F ^ - ( f - S * i2SJ )
получаем

M p «  " íO i) 2к,—0 1
откуда пользуясь условием (<5) следует

(2.17) IM  Ир « с о № а > т \ 2  | ^ 1([2^-1])рТ2Л - 1 (/)р.
кх=0

Тем же способом получается

(2.18) |М ||р  « а > Ж )с » Ш  «A?1(2Sl)|2 2  |^?2([2*»-1])|2У^ Л _1 (Л Р.кг—0
Имеем

(2.19) \\Ва\\ «  Mfl, \\В8\\ «  M l-  

Чтобы оценить |[2?а[| напишем

Bq — S2st (cp — I f  ip), <p =  W - ^ W -  

Для функции ер справедливы равенства (2.8) и это значит, что

(!)я*,(< ? - /;> )  =  ® i(/i)yt l ( P ,»  в S '.
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Суммированием по кг получаем

2  0)лк (<?-/;» = C0i(/i) 2 ykl(Pi\(p),fcj —0 1 fcx=0

O H  (v - i £<p) = ohOi) 2  укг(рь.<р)>1 fcj=о
откуда следует

(2.20) В9 = 5 * ч (< р - /,»  =  юД/Д 2  Укг(р1\ч>) п.в.
ку = 0

Также считая функцию f ( x l9x2) функцией (одной) переменной х 2 имеем

( 2 -2 1 ) Ч> =  2  УкЛрнГ> п -в -
kt =0

Дальнейшие выкладки как в работе [8]- Именно, аналогично неравенству 
(2.12) имеем неравенство

(2.22) ||59||2р « ш| ( /1) Z  1 № ч (Д > ) -
кх= 0

Пользуясь равенствами (2.21) и

у М Л  =  s 2k,(pl2J ) - s lik,-i](plm

из (2.22) получается

(2.23) ||Бв1* « cufí/j)ш |(/2) 2  ISA[P,“  J  { * W T O - ÄpA-ЧЛ ;/)}]~
fc1 = 0 fc2 = 0

-  V .-4 0 T  2 {sMPtin-s -̂ ĵmip^y
kt=О

Если операции Р,** и «5>2*1 внести под суммы и применить леммы 9 и 10 
получаем

(2.24) \\ВВГР «  wKh) ш1(/2) 2  II 2  M W I I p
fej = 0 fc2=0

где
<П -  ^ № Г Л - ^ г ч ( С / ) '

Из (2.24) пользуя лемму 8 и неравенство Минковского получается

(2.25) 1|5в||^«сн ?(/1)£»|02) 2  2 Ь М Л Ж < <
к. =0 fc,=0

« « ? ( / , ) ®Ю2) 2  2  М Г « -к.=0к9=0
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Аналогично равенству (2.13) имеет место равенство

(2.26) уМ Ч Л  = яМР11Чь)-^-ц(Р,?£к1) =

=  * 2 1 (^v2 Sh  -  Skl) M l  (v2)  +  № * .  Sh -  Í O  ni  (2 * a) -
v,-[A _1]

- ( s k A - ч ^ - а д  ч^аг*«-1]).

В равенстве (2.26) подставим для Sh выражение дано равенством (2.13), 
и потом применим лемму 6. Тогда пользуясь условиями (а) и (ß) и фактом, что

S„(.Sn f - f )  ~ (S vJ - f )  = f - S * u f
получаем

(2.27) «yki(P,r адИр «  \Ф}Д2^ ] ) \  • \Ф1 ([2кг~г])\ Г[А- in A -ij(П р­

и з  (2.25) на основании (2.27) получается оценка для нормы ||В9||Р. На 
конец, из равенства (2.15) на основании оценки для ||В,||Р (г =  1, ..., 9) следует 
неравенство (2.1).

Теорема доказана.

3 . И л л ю с т р а ц и я

Пусть сингулярный интеграл Рисса дан ядром tj) (J= l, ...,«), для 
которого

l ' j l *
XI,Ui) =

1

>  0. Обозначим

I?
о, К/l >  íj,

s rPF(Rn) = {/етд/О: II/-®i, ...I, /II, = 0(Я1 m j= l

/ j = l , 2 , ..., для всех наборов индексов i1, . . . , i m таких, что 1 S i jS n ,  í= j=  
^нгёи}.

На основании доказанной теоремы имеем неравенство

1/2, 2I / -у,,...«, / II ,«  п ir/и i ... 2  п фг'гь ...К (лР}
1 m j= l Л,- =0 к, =0 J=x 1 m1 m

Пусть S rpH (R n), r=(rlf  ..., r„), классы Никольского которые данные с 
помощью наилучших приближений углом, [6]

т
SpH = { fe L p: Y, ,, ( f ) p = 0 (  П  1Т;ч), l S j ^ m ^ } .1 m j =1
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Следствием теоремы является вложение

s ; (1> H(Rn) с  S ' F(Rn) с  S '  H(R,X 2 <  p  <  

если (7=1,
Если учесть результат работы [8], то мы утверждали, что это вложение 

справедливо для 1
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(О, 2, 3) AND (0, 1, 3) INTERPOLATION THROUGH SPLINES
R. B. SAXENA and H. C. TRIPATHI (Lucknow)

1. Introduction

Let
A: 0 =  x0 <  xk Am_! <  xm = 1

кbe the uniform partition of the interval /= [0 , 1] with xk = — , k  = 0, m and
m

h = — . We define the class of spline functions S*(f  as follows: m
Any element SA£S*{f  if the following conditions are fulfilled :
(i) Sa€C 3(/),

(ii) in each interval [xk, xfc+1], lc=0, ..., m —1 SA£ n e except in one o f the 
end intervals, say in [x0, x j ,  where SA£T17.

Here, as usual, I7„ denotes the set of polynomials of degree a t most n.
Let there be given two sets of real numbers f ( x k), f w (xk), q= 2,3, and 

<7 =  1, 3 with k  = 0, ... m, which we shall denote in the sequel by y k, yjf k  In this 
paper, we solve two lacunary interpolation problems, viz. the (0, 2, 3) and (0, 1, 3) 
described in (1.1) and (1.2), respectively, by the elements of The first one is
formulated as follows:

and the second problem as

i£d(*t) =  Л , ЗлЧхк) = Укя), Я =  1» 3; k = 0.......m,
(  } k o t o ) = y l \  £'Á(xm) = Ут-
Here y 'o, y 'm, y 'ó, у " are given reals.

In Section 2, two theorems on the existence and uniqueness of solutions o f the 
above problems are given. In [1], J. Győrvári has considered the (0,2,3) problem 
by different spline functions of class C(l). The essential difference here is in the 
continuity class and the nature of the spline function. In Section 3, we obtain error 
bounds for the error [ S ^ —/ (4)| and \S{̂  in the case when /€C 6(/) and

ÍA
<U) к

4 M  = Л. 'íi'4-vj = >{”, q = 2, 3; к =  0.......m.
SA(xo) — }\r> SA (xm) = y'm;

q —o , .... 5.
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2. Existence and uniqueness

We first consider the interpolation problem (1.1). Let 

S0(x), x0 =s x ^  Xl
Зл (х) =  Sk(x), хк Ш х ^ х к+1, k = l ,  ..., m - 2

Sm — i(^X), Xm_1 — X — Xm.

Then owing to the conditions (1.1), we can write

(2. 1)
(х-л;0)г ,r) , J, ( x - x 0)r

S0(x) = y0 +  2  ~ T - — T o 0 +  2=i >'■ r= 4  Г\

(2.2) § k(x) = yk+ ( x - x k) a k A + ^ - ^ -  y "  +  (* *k f  ■ y k + 2  «2! 3!

к = 1, ..., m — 1

г“  r !

where the coefficients of these polynomials are to be determined by the following 
conditions:

(xk+1) =  3 k+1(xk+1) = yk+1,
(2.3) I %*4xk+1) = J < l\(x k+1) = у№ г, <7 =  2 ,3

. 3k(xk+t) = iS'fc+1(xA+1), к — 0, ..., m —2

and

( 2 - 4 )  S m - i O m )  =  y m, £ | i ? - i ( xm) =  yiS\ q = 1 , 2 , 3 .
For brevity we set

l,2 1,3
: =  Ук+1- y b - h y l - ^ y Z - ^ - y ? ,

ßk Ук+1—Ук-Ьук — 2~тГ>

7, := Ук+к-Ук-Ьу'к,
ök '-= Ук+1-Ук, к = 0, ..., m —1.

То obtain the coefficients in £ m-i(x), we use (2.2) for k  =  m — 1 and apply the 
conditions (2.4). We get the following equations:

6 hr
2  ~-Гат-1,г = am-1»r=4 ' < 6

6 /tr_1
(^m —1,1 Tm—l )  F 2  /„ i \i  /̂n —l , r  ßm — 1’

r= 4  ( г  —

6 hr~2
( r - 2 ) ! a m - l , r  —  ) ’m - 1>

в /jr-3
Д  ( r —3)! e" " 1>r =  5" -1’
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Solving these equations we get

(2.5)

(2.6)

(2.7)

(2.8)

A
have

, _  2 h h2
m̂ —1,1 Ут — 1  ̂ ^m-l rm- l  t'  ̂ Ут — 1 ^m-l>

J m —1 ,4 A4

720

120 120 36 4
am-lT г,я Pm-1 ^2 7m-l "i" l, ®m-l»/I3

/ I 8

720 „ , 240 30 s
a m - 1 J j4  Pm-1+ i.3  7m —1 t a  ® m - l »A3

A

Ю
h2

1440 _ _ 1440 „ 504 72 s
öm-l,6 — r 6 am -l+ ^5 Pm-1 ^4 7m -l+ ^3 ®m-l*

We shall now determine the coefficients of Sk(x), k  = 1, 2. Here we

6 hr
H ak,i~y'k)+ 2 - г у ак.г =

r =  4

and

e  i . r - 2  6 I , r - 3

=  7fc, 2 ~— —  «,=4 ( r —2)! r=4 (r —3)! fc.r

( a f c , i  —  T * )  —  ( a * + l , l  T l t  +  l )  +  ^  1 ^ | afc,r — ßk■

Solving the first three equations we obtain

120 , „ . 120
(2.9)

(2.10)

a k,  4  J ,3  ( a «[,l л ) - !-  J j4  a fc 1,2 7 * “b  и  ^ k  ’
12
A2

2
7Г

ak,5

h3

720 . 720 96 18 .
|j4  ( a t , l  f i t )  |j5  a k +  ^3 У к ^it»

(2. 11)
1440 . 1440

Qk , 6 ~  v h , l  f * t ) ~ b  г.6
/ I 6

216 48 .
A4 7 t+  A3

Substituting the values of ak i , акЛ and akCt in the last equation we get the following 
relation between (ак л —у к) and (ак+1Л —yk+i), f c = l ,  ..., m —2:

2 h A2
(2-12) (ak, i—y'k) + (ak+i,i~y'k + i) — ~^ak — ßk + 'j  7a —

The coefficient matrix o f the system of equations (2.5) and (2.12) in the unknowns 
(ak, i —y k), k = l, m — 1 is a non-singular matrix and hence the coefficients акЛ, 
k = l , . . . ,m  — 2 are uniquely determined and so are, therefore, the coefficients 
ak,i’ ак,ь and
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Lastly, for the coefficients of S 0 (x ), we have 

7 hr 7 hr~2
„1 Я0,г ®0> £  ~7~ --)\ I ^ojr To>

r = 4  Г! r = 4  (r — ZJ!

7 hr~3 7 ft'-1
r5  ( r -З ) !  a°'r =  <5°’ , 5  (г—1)! а°’Г =  +

Solving these equations we get

»  , „N 360 , /4 360 0 840 60 4 .
(2.13) a0>4  ---- ---------------------- ^-/»0 +  - ^ * - ao + -p-7o-j<5<>5

4 4680 4680 „ 10 080 840 60 c
(2.14) ű0j5 — ^4 (fll.l—J l̂) 4 Jf~ßo  p  «0 p -  2o +  -p- <5<)>

(2.15)
24 480 , /4 24 480 „ 50 400 4680 360 .

00,6 _  h5 V*1»1 /j5 P o +  ^6 a 0 +  ^4 *  ^3 ^0’

(2.16) 50400 , 50 400 . 100 800 10080 840 s
a 0,7 — " ^6 (al,l J l )  4 yp Po ^ 7  a 0 ^ 5  7o +  ^4 O0.

Since й1Д is already determined, the coefficients a0ii, i= 4, ..., 7 are uniquely de­
termined. Hence we obtain

T h e o r e m  2.1. For a uniform partition A o f the interval /, there exists exactly 
one spline function S  A (x)£ S*(f  which is a solution o f  the interpolation problem (1.1).

We now give a theorem which asserts that the interpolation problem (1.2) has 
a unique solution in the class S* ̂ .

T h e o r e m  2.2. For a uniform partition of the interval I, there exists a unique 
spline function S A(x)ZS**l which is a solution o f  the interpolation problem (1.2).

The proof of this theorem is similar to the above theorem and so we omit it.

3. Error bounds

We shall first prove

T h e o r e m  3.1. Let /£C e(7) and S A(x)dS*n('f 
(1.1). Then

|S («)(x) - / («)(jc)| si k1h5~qw6(h),
where

k,
604, when x f[x {), x t]
24, when xd[xk, л*+1], 

35ft, when xdXXn,-!, x m]

be the solution o f  the problem 

<7 =  0, ..., 5

к — 1, ..., m — 2

and K'e (■) is the modulus o f con tinuity o f  / (6).
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For the proof of this theorem we shall need 

L e m m a  1. Let /£ C 6(/). Then

h5
K i l  =  (m - к )  — we(/i),

where

(3-1) ekyl := ctkyl— yk.

P r o o f . If /£ C e(/) then on using Taylor’s formula, we can write

(3.2)

M h5 h6
=  | r ^ 4)+ - f r ^ 6)+ | r / (e)(^ ) ,

h3 h* b5
А  =  | г ^ ) + ^ в,+ 3 Г/ (в,Ы ,

h* h3 h4

<5* =  M 4)+ ^ j- y i5)+ -^ - / (e)(ff*),

where xk< ^k, t]k, Ck, crk< x.
From (2.12) and (3.2) in the notation of (3.1) we have

(3.3)

efc,l +  e k + l , l ^  1 У ( в ) ( & ) - / (в ) (< т * )] + - j ^ - [ / (6Ч О - / ( 6 ) Ы ] ,  к =  1 ,

and

m —2

(3.4) ет_1д =  - ^ - [ / < e) ( ^ - 1) - / i e)((Tm_l)]+ 1^ - [/(«)(Cm- 1) - / ( e)(>;M- l)].

We easily see that the system of equations (3.3) and (3.4) in the unknowns ekyl, 
— l have a unique solution

e k , i  =  d k  —  d k + i  +  d k + z  — l ) m _ 1 “ *: d m _ i ,
where

dk =
It is clear that

Ш  — -^q we(.h).
Hence

kfc.il S  ( m - k ) ^ w e(h)

and this completes the proof of the lemma.
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and 

so that

P r o o f  o f  t h e  T h e o r e m . Let x£[xk, xk+1], k =  1, m —1. From (2.2) we have 

S (kb)(x) = aky5+ ( x - x k) aky6

/(5) (x) =  yf> + ( x -  xk) f (6) ( lk), x k <  Xk <  x

| ^ 5)( x ) - / (6)(x)| is K 5—̂ 1  +  fcK.e—/ (6)(A*)|.

We estimate the quantities \аку5—у$.5)\ and h\aky6—/ (6)(^)l- From (2.10) and 
(2.11) on using (3.2) we have

a*,5~JÍ5) = ^ - e k,1- h [ f ^ k) - 4 f ^ k) + 3 f^ (a k)]

and

a * ,6 - / (6>(4) =  -
1440
hb ekyl + 2/<e> (4) -  9 /(6) (Í*) +  8/<e> (cTk) -/(«> (A*)

and

Thus

Set

from which owing to Lemma 1 we get

K s - J ^ l  =  4[2m —(2fc — 1)] hw6(h) S  8w6(h)

h\ak,e-f< 6KK)I S  [16m —(16/c —10)] hw6(h) S  16we(h). 

|S<5)( x ) - / (5)(x)| S  24w6(h). 

g(x) :=  S ? (x ) - f~ (x ) .
Then by (1.1) g(xk)= g(xk+1) = 0 and so by Rolle’s theorem there exists цк (xk- 
< ц к< хк+1) such that

g'OO =  ^ 4,Ы - / (4)Ы  =  0,
from which we obtain

|5ri4)( jc ) - / (4,(jc)| =  1 /  s
»k

S  /  l ^ B)( 0 - / (5)(0l Л  S  24hw6(h).
»k

Carrying on similar arguments we easily find that

|S£,)( x ) - / (í)(x)| SS 24h5~qw6(h)
is true for q=  1, ..., 5.

For x0̂ x S x x and x m- k^ x ^ x m, we have from (2.1) and (2.2),

|5 W (x ) - / (5)(x)| s  |Uo.5-^5)l + ̂ l«o.e-/(e)ao)l + h2
-*0,71

and
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From (2.7) and (2.8) we can show that

löm —1,5 “ Tm-il =  llftweOO
and

h\am- ll6- f w ( L - i ) \ ^ 2 4 h W6(h)
so that

|5 iS . ,(* ) - / (e)(*)| ^  35hw6(h).
Similarly by (2.14), (2.15) and (2.16), we have

I«o,5- 7 o6)I =  [52 (m -l)+ 49] hw6(h) за 52w6(/i), 
й К в - /(6)(Л,)1 S  ft[272(m -l)+265] w6(h) == 272w6(h)

and
h2 /г

—  |a0>v| ^ T [560 (m -l) +  560]w6(h) ^  280w6(h).

Hence
l^ó5) W - / (5)WI S  (52 +  272+280) we(/i) =  604w6(h). 

By the method of successive integration we find that the inequalities

|So4)( * ) - / (‘!)(*)l =  604hs- qwe(h)
and

l ^ - i ( * ) - / (4)(*)l S  35h«-«we(h)
are valid for #=1, ..., 5.

Regarding the error bounds of the spline function §A (x) which is the solution 
of the interpolation problem (1.2), we simply state the theorem and omit the proof

T h e o r e m  3.2. Let f£ C 6(I) and §A ( x ) 6  S*(3J 
(1.2); Then

\S « K x )- f« \x ) \  за k2h ^ w 6(h),

be the solution o f  the problem 

c[ 0, ..., 5,
where

K2 =
587+8Й, when jc€[jc0,

60, when л+[л*, xk+1], к = 1, ..., m —2 
54h, when x£[xm_i, x m\

and as usual w6( •) denotes the modulus o f continuity o f  / (6).
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ON JACOBSON TYPE RADICALS OF NEAR-RINGS
K. KAARLI (Tartu)

The main result of this paper is a negative answer to the problem concerning 
the radicalness in the sense of Kurosh—Amitsur of the near-ring radical J0. We shall 
give negative answers to some hereditariness problems of near-ring radicals too.

1. Introduction

For fundamental concepts and notations of near-ring theory we refer to the 
book of Pilz [7]. The only difference is that we accept the left distributive law 
x (y + z)—xy+ xz, not the right as Pilz. All near-rings will be zero-symmetric, i.e. 
the identity 0x= 0  is satisfied in all near-rings. We shall use the standard terminology 
of radical theory, see for example [2]. A class of near-rings is called hereditary if it 
is closed under taking of ideals.

In 1963, Betsch in his thesis [1] defined three Jacobson type radicals for near­
rings : /„, A  and J 2. He defined A (A) to be the intersection of kernels of all A-groups 
of type 1, i = 0, 1, 2. Recall here the definitions of these A-groups.

An А-group G with G N ^O  is said to be
— of type 0 if it is simple and monogenic,
— of type 1 if it is simple and strongly monogenic, i.e. for any g£G either 

gN=G  or gN=0,
— of type 2 if it has only two A-subgroups.
Since then these radicals have been objects of extensive study. In 1976 the prob­

lem arose whether they are radicals in the sense of Kurosh—Amitsur [5]. The same 
problem was also discussed by Pilz [7]. Let Sj- stand for the class of all / r semisimple 
near-rings and R, for the class of all /,-radical near-rings, / =  0, 1,2. It was proved 
in [5] that any non-zero ideal of a near-ring N € S t has a non-zero homomorphic 
image belonging to Sh 1=0, 1, 2. Hence determines the upper Kurosh—Amitsur 
radical A; and it was proved that the class of all A;-radical near-rings coincides 
with Rh 1= 0, 1, 2. Also we showed that A is Kurosh—Amitsur iff it is idempotent 
(i.e. Ji(N )= Ji(Ji(N)) for any near-ring A) and in this case J {=Kb 1=0, 1, 2.

We succeeded in proving the relation / 2( / ) = / 2(А )П / for any ideal /  of any 
near-ring A [5]. This implies immediately that / 2 is Kurosh—Amitsur and both 
R2 and S 2 are hereditary.

It is very easy to construct near-rings A  with A CA)^0 and / 1( /1(A)) =  0, 
so A  is not Kurosh—Amitsur. For example, let G be a finite group having a proper 
non-zero subgroup H. Then the near-ring of all mappings from G into G which 
preserve 0 and H  is just we need.
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The case of J0 turned out to be the most difficult one. It was known that J 0(N) 
is nilpotent provided N  satisfies the DCC on right ЛГ-subgroups (Ramakotaiah [8]). 
Hence, Ja is idempotent on these near-rings. In [5] this result was generalized in two 
directions. We showed that /„  is idempotent on so-called semiprimary near-rings 
and also on near-rings satisfying the weak DCC on right ЛГ-subgroups. The latter 
means that for any element a  of a near-ring N  there exists a natural number к  such 
that akN = ak+l N. In [6] we proved that J 0 is idempotent on the least class of near­
rings closed with respect of taking ideals and homomorphic images and containing 
the class of distributively generated near-rings.

In the present paper we shall construct a countable near-ring N  with Abelian 
additive group, whose J0 -radical has a finite 1-primitive homomorphic image. Hence, 
Jo(N )AJi (/0 (N)) and, of course, J0 is not Kurosh—Amitsur.

We shall also show that K0 and have non-hereditary radical classes and non- 
hereditary semisimple classes as well.

We shall use the characterization of J0(N ) via quasiregularity given by Rama­
kotaiah in [8]. Denote by (S ) r the right ideal of a near-ring N  generated by the sub­
set SQ N . The element a£ N  is called quasiregular if

a£({n—an\n£N})r.

An ideal of N  is called quasiregular if all its elements are quasiregular. Ramakotaiah 
has proven that J0(N) is the largest quasiregular ideal in any near-ring N.

2. J 0 is not Kurosh—Amitsur

Let A  be a cyclic group of order 4 with a generator a0 and let В be a countable 
elementary Abelian group of exponent 2. We represent the elements of В as infinite 
0, 1-sequences having only a finite number of non-zero entries. Denote by C  the 
subgroup of В  consisting of all sequences having an even number of non-zero entries. 
Consider a mapping <p: B-+B defined as follows:

фФ) — (1> 0, 0, ...),
<p(0, ...,0 , l , x ±,x 2, ...) =  (0 ,...,0 , l ,x 1(x2, ...).

k k+1

Obviously, (p acts homomorphically on 5 \{ 0 } ,  i.e. if й, ^ 0 , b2?±0 and b1 + bz^ 0 
then <p(bl + b2)~(p(b1)+cp(b2).

Let G = A  + B and let us identify A  and В  with their canonical images in G. 
Define s0: G-*-G as follows

{0 if a A1 a0 
a0 + cp(b) if a = a0.

Proposition 2.1. Let S  be the near-ring o f transformations on G generated 
by the single transformation ,y0. Then

(i) S  consists o f polynomials n{ s0 +  n2 .vj; + ...  +  nk sf, where k is any natural 
number and nt are arbitrary integers;

(ii) S 2 = s0S',
(iii) G SH B= C ;
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(iv) i f  sdS, s ^ 0 and a0s£B then (a0+b)s?±0 for any bCB;
(v) B ^ G \

(vi) G/В is an S-group o f  type 1;
(vii) S/(B: G)s is a finite 1-primitive near-ring;

(viii) (В : G) 1 =  0.
Pr o o f , (i) Denote by S 0 the set of all polynomials in s{), i.e.

is a natural number, nfiZ ).

Obviously, Sq is closed under addition and to prove that it is a sub-near-ring it 
suffices to show that S'o.SoQS'o. Take an arbitrary element s=nls0+ ... + nk sfi 
from S0 and consider the product ss0 . Evidently, (a + b)ssn — 0 for a^a„, so we 
have to consider the action of yy0 only on elements a0+b. By easy induction argu­
ment it follows

O0 + b)ss„ = ((«! +  ... +nk)a0 + (n1(p + ...+ nk(pk)(b))s0.

Now we have two possibilites. If nk + ...+ nk ^  1 (mod 4) then (aa + b)ss0 — O for 
any b£B and лл’0 = 0^So. Otherwise

(й0+ Ь )^ 0 =  a0 + <p(nl tp + ...+ nk q>k)(b).

Now observe that (p(b)?±0 for any br-_B and, moreover, given an arbitrary 
b£B, the set (p(b), (p2(b), ..., q>k(b) is linearly independent over Z3. Hence, if 
i'i , ..., im are all the indices i for which щ is odd, we get

«o +  <p(ffi <? +  ••• + nk(pk)(b) = fl0 +  Ф (V ‘O) + ...+  <р‘™(Ь)) =
= а0 + (рЬ+\Ь) + ...+<р'т+1(Ь) =  а0+ (п1(рг + ... +nk(pk+1)(b) =

=  (öo +  k)(«l «<)+■•• +«fSo + 1)-
Thus, the property (i) is proved, moreover, we obtained the following multi­

plication rule:

(1) (и^о+ ... +  nfcsg
0 if n1 + ...+  nk já 1 (m od4) 
щ ső + ... +  nk Sq+1 otherwise.

(ii) This property is a straightforward consequence of the left distributive 
law and the multiplication rule (1).

(iii) Let 5 = n 1i 0+ . . .+ n fcA§ and let (a+ b)s£B  for some a£A  and b£B. If 
a ^ a 0 then (a+b)s=0<zC. Let now a = a 0. Then

(a + b)s =  («! +  ... +nk)a0 + n1(p(b) + ... +nk(pk(b)

and the condition (a+b)s£B  yields nt + ...+ n k = () (mod 4). Since (p{b), ..., <pk(b) 
have the same number of non-zero entries, the latter implies (a+b)s£C. Thus, 
we proved the inclusion GSClBQC. Conversely, for any b = (nk, ..., nk, 0, 0, ...) 
with nk+ ...+ nk=0 (mod 2) we have

f a0(ffiso + ... + nks%) if щ + ...+ n k =  0(mod4) 
l a0((ni+2)s0 + ... + n kSo) if Щ + ...+Щ ф 0(mod4).

Acta Mathematica Hungarica 50, 1987



74 К . K A A R L I

(iv) Let s  be a non-zero element of 5  such tha t a0s£B. Then s= n1s0+ ... + nk ijj 
where some o f the coefficients ni is odd and nt + ... + nk=0  (mod 4). Now, given 
b£B, we get

(a0+ b)s = n1cp(b)+ ...+ n k<p(b)

and since (p(b), ..., (pk(b) are linearly independent, we are done.
(v) Since s0 acts on G compatibly with respect to B, so do all elements from 

the near-ring generated by it.
(vi) For ka0(zA we have ka0—a0(ks0)£B , so aa+B  is a generator of the 

5-group G/В. I f  G/В were not a simple 5-group then 2A + B  would be an 5-ideal 
of G. However, this conjecture yields a contradiction since

(2a0 + a0)s 0 —fl0s0 =  0 — a0 — cp(0)$2A +B.

(vii) Since GIB is an 5-group of type 1, the near-ring 5 / ( 5 : G)s is 1-primitive. 
It is an easy exercise to verify that it is isomorphic to the near-ring (A, + , •) where 
the multiplication is defined as follows:

{a ' if a — a0 
0 otherwise.

(viii) By the definition of 5 , a ^ a 0 implies (a+ b)S—0. This yields immediately 
(B:G) 1 =  0.

The Proposition is proven.
Now consider another near-ring of transformations on the same group G. Let 

T  be the set o f all transformations on G satisfying the following conditions:
1) g t^O  implies g £ B \{0}-,
2) ( B \ C ) t  equals the fixed element (depending on t) of 2A + B;
3) (CT\{0})t equals either 0 or 2a„.
It is easy to check that the set T is closed under addition and multiplication, 

so it is indeed a near-ring. Clearly G and 2A + B  as well can be regarded as Г-groups. 
The main property of T  (for us) will be proved in the next Proposition.

Pr o p o sit io n  2.2. The group /7=2/1 Т В is a faithful T-group o f type 0, so T  
is a О-primitive near-ring.

Pr o o f . The second condition from the definition of T  implies that all elements 
from B \ C  are generators of the Г-group H . Now suppose there exists a non-zero 
proper Г-ideal F in  H. If F Q B  then, evidently, FQC, but this yields a contra­
diction since cT% C  for any non-zero by the third condition. Hence, there
exists b£B  suchthat 2 a0 + bdF. Take now arbitrary b '£ B \ C  and td T  such 
that b't$F. Then

b 't - ( b '  + 2a0 + b )t = b'tiF ,

a contradiction. The Proposition is proven.
Now we are in the position to finish our construction.

Th e o r e m  2.3. Let N  be the near-ring o f  transformations on G generated by 
S  and T. Then

(i) 5 о  IV, Г<аЛГ and N = S + T \
(ii) 5  -  J 0(N).
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P r o o f . Since the subsets in G on which S  and T  take non-zero values are dis­
joint, the additive group generated by S  and T  is their direct sum. Let us show that 
the subgroup S + T  is closed under multiplication, too. To do this take s, s '£S, 
t , t '£ T  and prove that

(I) (s + ty e s + T - ,
(II) ( s + t y e s + T .
(I) Consider the action of (s+ t)s ' on a + b. If a ^ a 0 then

(a + b)(s + t)s ' = (a+b)ls'e(2A +B)S = 0 =  (a + b) ss'.

For a—a0 we have
(a+b)(s + t)s' = ((a0+b) s +(a0+b) t) s' = (a0 + b)ss'.

Hence, (s+ t)s '= ss '£ S + T .
(II) Suppose (C \{0})i'= ffia0 (m =0, 2) and consider the action of ( s + t) t '  

on a+b. For a+a0 we have

(a + b)(s + t)t' = (a + b )tt ' = (a + b)(ms0+ tt')
and for a = a0

(a + b)(s + t) t ' = ((a0+ b)s+ (a0+ b)t)t' = (a0 + b)st'.

Now we have two possibilities.
(Hi) a0s$B. Then, by the definition of S, (a0+ b)s$B  for any b fB . Hence 

(a0+ b)st'=  0=(a0+ b )tt'. Therefore, in this case ( s + t) t ' = tt'.
(II2) a0s£B. If y= 0 then, obviously, (s + t) t '= t t '. If s^O  then, by Propo­

sition 2.1, (a0+ ß ) ,s g jC \4{0} and so (a0+b)st'=m a0 = (a0+b)(ms0) for any
b£B. Hence, in this case ( s + t) t ' = ms0+ tt'£ S + T .

Thus, we proved that S + T  is a near-ring of transformations on G and, more­
over, we obtained the following multiplication rule:

(2) (s + 1) (s7 + t') — I ss '+ tt' if 
ss' +  ms0 + tt'

a0s$ B  or 
if a0s£B,

s = 0 
s ^  0 and (C \{0})F  =  ma0.

It is easy to see that S= (0: H )N and T=(0: a0)N, hence both S  and T  are 
right ideals of N. Moreover, since H N ^ H , S ^ N .

(ii) By Proposition 2.2, N /S= T  is a О-primitive near-ring and so J 0(N )Q S . 
Hence, to prove the Theorem we need to show that S' is a quasiregular ideal of N. 
This will be the crucial point of our construction.

Take an arbitrary element s£ S  and set

A, = ({ n -s n \n e N } \.

We have to prove that s£A s. If alts£a+ B , a+af), then s2= 0 and we are done. 
Letnow a0s£a0+B, i.e. s= nks0+ ...+nkSo where щ are integers with щ +  ...+ n k = 
= (mod 4). Let и be the first index for which nu + 0 (mod 4) and let s2 =  m1 s0 + ... 
...+ m vSo. By making use of the multiplication rule (1) we get immediately mL = 
= ...= m u = 0 (mod 4). Hence, s2+s. Since a0s fa n + B, a0s2£a0+B, too, and 
G (s—s2)£B. Denote ^ = 5 —s2. Obviously, st€A, and by Proposition 2.1 Gs1Q 
£ C \{ 0 } . Take an element t tT  such that (C \{0})f= 2ao. Then, using the mul­
tiplication rule (2) we get 2s0=s1t£As. Further, by the definition of right ideal, 
(2j,0+ 3y0)x/ —(3j0)/íy 4 s for any /£ S .  Since 5s0=s0 and (3.y0) /= 0 ,  this yields
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s0SQ A s. Applying once more Proposition 2.1, we get S 2Q A... Hence, s2£A s 
and s£As. The Theorem is proven.

Summarizing, we state the main result of the present paper.
Theorem 2.4. There exists a countable near-ring A with Abelian additive group 

whose Ja -radical can be mapped homomorphically onto 4-element 1-primitive near-ring.
All but maybe the countability is clear. But S' is countable because it is single­

generated and there is a 1 — 1 correspondence between T  and the set of all pairs 
(m, h) where m £{0, 2} and h fH  (the pair (m, h) corresponds to the element t£ T  
if  and only if (B '\C ) t= h  and (C \{0 } )f= m ao), hence the countability is also 
clear.

It is well known that given any ideal /  of any ring R, any irreducible /-module 
may be regarded as an /Tmodule. In [6] the following generalization of this result 
was obtained. I f  A  is a near-ring belonging to the ideally and homomorphically 
closed class generated by the class of distributively generated near-rings and / с  A 
then any /-group of type 0 can be regarded as an А-group. In general, this result 
fails even for finite near-rings. Nevertheless, for a semi-primary near-ring A we 
proved in [4] tha t any /-group of type 0, while /  being an ideal of A, is an /-homo­
morphic image o f some А-group of type 0. Now we are able to show that this weaker 
property also fails in the class of all near-rings.

Corollary 2.5. There exists a near-ring A  having an ideal S  for which there 
exists an S-group o f  type 0 which cannot be represented as an S-homomorphic image 
o f  some N-group o f  type 0.

Proof. Let S = J 0(N ) and let G be an S-group of type 0. Suppose G is an 
S-homomorphic image of some А-group G' of type 0. Then, by the definition of 
J 0, G'S= 0 which implies G S = 0, a contradiction.

As we mentioned in the introduction, the class of A;-radical near-rings coin­
cides with /?,-, i=  0, 1. Denote by SK t the class of A-semisimple near-rings, i= 0, 1, 
So there are four classes of near-rings: R0, R , , SK 0 and SKt and for each of these 
classes we have a problem of hereditariness. We solve all these problems negatively.

Theorem 3.1. There exists a countable J 0-radical near-ring A  with Abelian 
additive group which has an ideal S  o f index 2 having a 4-element Í-primitive homo­
morphic image.

Proof. The construction is nearly the same as that in Section 2. We only change 
the right ideal T  by T '=  {0, t '0} where

It is easy to check that the near-ring A generated by S  and T' equals again S + T '  
and S o  А, Г < А .  Now the multiplication rule is the following:

3. On hereditariness of K0 and Кг

(a + b)tó — I 2a0 if a = 0 and b A 0 
0 otherwise.

(s +  í) (s/ + 1') — I
ss' if a0s£B  or t' = 0 
ss' +  2s0 if a0s£B  and t 'A  0.
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When proving quasiregularity in Theorem 2.3 we used T  only once. We needed 
an element i£T  such that (C \{0})f =  2a0. Since tó is good for this, S  is a quasi­
regular ideal in our new context, too. Suppose N $ R 0. Then there exists an A- 
group G of type 0. Since S' is a quasiregular ideal, G S = 0 and G is an N/S-group 
of type 0. But N /S = T ', T '2 = 0, a contradiction. The Theorem is proven.

C o r o l l a r y  3.2. The class R0 is not hereditary, hence the radical K0 is not 
hereditary.

In [4] we introduced the class 91 of semiprimary near-rings containing all near­
rings with DCC on right А-subgroups and intersecting with the class of rings by 
semiprimary ones. We do not want to give here the exact definition of a semi-primary 
near-ring but for our purposes it is enough if we recall three of their properties.

(i) 91 contains all nilpotent near-rings.
(ii) An extension of a nilpotent near-ring by a finite 1-primitive near-ring is 

semiprimary (see [4], Corollary 5 and Theorem 6).
(iii) / 0-radical semiprimary near-rings are nilpotent ([5], Corollary 10).
It was proved in [4] that 91 is closed under ideals and homomorphic images. 

Now we get from Theorem 3.1 the immediate

C o r o l l a r y  3.3. The class 91 is not closed under extensions.

Next we shall present a simple example to show that the class R l is not here­
ditary.

P r o p o s i t i o n  3.4. There exists a finite JL-radical near-ring with Abelian additive 
group having an ideal which is a {-primitive near-ring.

P r o o f . Let A be a cyclic group of order 8. Consider the set A of all transfor­
mations n on A such that (4A)n=0 and (2/))nT=4A. Clearly, the set A  is a near­
ring and A is a monogenic А-group. A straightforward computation will show that 
2A and 4A as well are not A-ideals in A, so A is a faithful А-group of type 0. Now, 
applying Lemma 3.2 from [3], we conclude that any other А-group of type 0 must 
have a form B/C where В is a proper А-subgroup of A  and C-=a/7.J Since 2A  is the

к
largest proper А-subgroup of A and (2/1) A2 =  0, we obtain that .A is the only A- 
group of type 0. Obviously, A is not of type 1, hence N £R 1. However, one can easily 
check that A  is an S-group of type 1 where S —(0: 2A)N. This proves the propo­
sition.

To conclude this paper we construct an example of a near-ring which will show 
that both SK0 and SK X are not hereditary. Note that this example was first published 
in [3] to show that a minimal ideal S  wiht S 2A 0 of a finite near-ring need not be 
a simple near-ring.

P r o p o s i t i o n  3.5. There exists a finite Kr-semisimple near-ring A with Abelian 
additive group having an ideal S  which has a non-zero nilpotent ideal.

P r o o f . Let A be again a cyclic group of order 8 and let Г  be its automorphism 
group consisting of the unit automorphism and the multiplication by 5. Let A be a

1 Note that in [3] 7V-groups of type 0 were called irreducible А-groups and the notion of the 
type of an irreducible А-group had a different meaning.
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so called centralizer near-ring, i.e. the near-ring of all zero-preserving transforma­
tions on A which permute with elements of Г. To understand the structure of N  first 
consider the acting of Г  on A. It is easy to see that the elements of 2A  are fixed 
points of Г and Г  acts fixed-point-freely on the complement of 2A. Now an arbitrary 
element nZN  is uniquely determined by its action on {1, 2, 3, 4, 6} (there are two 
2-element orbits: {1, 5} and {3, 7}). Obviously, In and 3n range independently over 
A  but 2n, 4n and 6n over 2A. From this it follows that N  is a direct sum of an ideal 
5 = (0 : 2A)n and a right ideal T=(0: A \ 2 A ) N. Evidently, T is isomorphic to the 
near-ring of all zero-preserving transformations on 2A, so it is simple and 2-primitive. 
On the other hand, the ideal S  consists of all transformations on A which permute 
with Г  and annihilate 2A. Since Г  acts fixed-point-freely on A \2 A ,  we can apply 
results of [4]. We observe that A  is an iV-group of type 0 and conclude by making 
use of Proposition 7 from [4] that S  is a minimal ideal of N. Further, since A is a 
faithful N-group of type 0, N  is О-primitive, hence it is a prime near-ring. This yields 
that S' is a unique minimal ideal of N. The latter together with the simplicity of 
N /S  gives that N  has only one proper non-zero ideal: S. Therefore, to show NZSK± 
we have only to prove that S  has a 1-primitive homomorphic image. But this is 
obvious because A  is a strongly monogenic S'-group.

Now the theorem will be proved if we shall show that S  has a non-zero nil- 
potent ideal. To do this first observe that 4A<iA. If  a £ A \2 A  then a + 4 = 5a.
Hence (a+ 4)s—as=(5a)s—as=5(as)—as=4(as)Z4A for any sZS. If aZ2A then 
obviously

(a+ 4 )s  — as = 0(|4 A.

Hence, U=(4A: A)s is an ideal of S. Clearly, U?± 0, but U2 = 0 because of 
A U 2^(4 A )S = 0 . The proposition is proven.

C orollary  3.6. The class SK0 is not hereditary.

C orollary  3.7. The class SKr is not hereditary.

R em a r k . It is interesting to point out that the class S1 is hereditary (see [5], 
Theorem 11).
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NON-EXISTENCE OF CERTAIN TYPES OF NP-FINSLER
SPACES

P. N. PANDEY (Allahabad)

1. Introduction

K. Yano [12] defined normal projective connection coefficients П ‘кЛ by П'кИ = 
= Gkh—x ‘Gkhr/(n + 1), where Gkh are connection coefficients of Berwald, Gjkh =  djG‘kh 
and dj denotes the operator for partial differentiation with respect to x J. R. B. Misra 
and F. M. Meher [3] considered a space equipped with normal projective connection 
coefficients n kh whose curvature tensor NjkH is recurrent with respect to Ifkh, and 
called it an RNP—Finsler space. They also studied the projective motion in such 
space. R. B. Misra, N. Kishore and the present author [4] studied an SNP—Finsler 
space characterized by the vanishing of covariant derivative of the curvature tensor 
Njkh with respect to i l ‘kh. These spaces are also studied by U. P. Singh and A. K. 
Singh [9], [10], S. B. Misra and A. K. Misra [2]. It seems that the authors [9], [10] 
were not aware of the papers [3], [4], this is why they used different nomenclature, 
viz. NP—RF„ and NP—SF„ for RNP-Finsler space and SNP-Finsler space re­
spectively. The aim of the present paper is to show the non-existence of non-trivial 
RNP-Finsler spaces and SNP-Finsler spaces. The notation of this paper is based 
on [3, 4, 6] and differs from that o f [2, 8, 9, 10, 12].

2. Preliminaries

Let us consider an и-dimensional normal projective space equipped with the 
normal projective connection ПкН given by
(2.1) n [h = &кН- х 1С'ш Ц п+ \),
where Gkh are connection coefficients1 of Berwald, G)kh = djGkh and dj=d/dxJ. 
The connection coefficients G[h and the tensor G‘jkh are symmetric in their lower 
indices and are positively homogeneous of degree 0 and — 1 respectively. The tensor 
G)kh satisfies
(2.2) G)hkxh =  G)khxh =  G‘hJkx h = 0.
Due to symmetry of G‘kh and G)kh in their lower indices and their homogeneity in 
x' the derivatives d j n ‘kh, denoted by П)кк, satisfy the following:

Гa) П)к„ — n ijhk, b) n khi = G'khj ,  c) xJIljkh =  0, 
id )  xhn ‘kh = x ,Grjkr/(n + l), e) n \kh = 2G \J(n+ \).

1 Unless stated otherwise, all the entities are considered as functions of the line-elements 
(xl, x ‘). The indices i ,j ,  k, ... assume positive integral values 1, 2, 3 ,..., n.
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n )kh are the same as Ujkh of K. Yano [12, p. 197]. The normal projective covariant 
derivative УкТ- of an arbitrary tensor Tj, defined by

(2.4) VkTj = dkTj —(drTj)IJkhxh + T j П'кг — T jn rkJ, <)k =  d/dxk,

gives rise to the commutation formula2

(2.5) 2V„ V„7j| -  N)krT'h -  N jkhTj -  Njksx°drTi

where Njkh are components of a normal projective curvature tensor. The present 
author [6] established the relation between this tensor and Berwald’s curvature 
tensor Hjkh which is given by

(2.6) N jkh = Н)кЪ-х 'д „ Щ кМ  +  1).

The Weyl projective curvature tensor3 W/kh and the normal projective curvature 
tensor Njkh are connected [12, p. 197] by

(2.7) ЩкИ = Njkh + 2 {(5[j- Mk]h — 5'h M№]},

where M Jk= —(nNJk + Nkj)/(n2—l) and N Jk=N'Jk. For the tensors H)kh and W/kh 
we have the following:

a) H)khxh = Hljk , b) Hjkx k = Hlj,  с) ЬнН)к = H)kh, 
d) H\kh = Hkh, e) H\k = Hk, f) HI = ( n — \)H, 
g) Hkhxh = 11 k, h) dhHk = Hkh, i) Hhx h =  ( « - ! ) / / ,

fa) Щ ихн = W/k, b) =  W/kh, c) Wjkx k = W/,
1 d) Wr‘x r ~  0, e) Щ[л =  0, f ) h ? ki =  0.

It should be noted that if the Berwald connection satisfies G)kr= 0, the normal 
projective connection coefficients and Berwald’s connection coefficients coincide. 
Thus, a Finsler space whose connection coefficients satisfy GrJkr= 0 is a trivial 
normal projective space.

(2.8)

and

(2.9)

3. An RNP-Finsler space

Let us consider an RNP-Finsler space [2, 3, 9] characterized by 

(3.1) 4mNjkh — Njkh ,

Njkh ̂  0 and a,„ are components of a non-null covariant vector field positively ho­
mogeneous of degree zero in x \  Transvecting (2.6) by x h, using (2.8a) and taking

2 The square brackets denote the skew-symmetric part of the object with respect to  the indices 
enclosed within them.

3 The tensor W/kh is the same as P‘Jkh of K. Yano [12, p. 197].
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care of the degree of homogeneity of H)kr in x \  we find

(3.2) N)khxh =  H)k.

Transvecting (3.1) by xh and using (3.2), we get

(3.3) VmH)k =  Am Hjk.
Further transvection of (3.3) by xk, in view of (2.8b), gives
(3.4) =  AmH).

Contraction of the indices i and h in (2.6) and the fact that H)kT are positively homo­
geneous of degree zero in x‘’s imply

(3.5) N 'kr = H 'kr,

in view of which contraction of the indices i and h in (3.1) gives

(3.6) VmHjkr = Am Hjkr.

By virtue of (2.8e), contraction of the indices i and j  in (3.3) gives

(3.7) Vm Hk = ).m Hk.

Suppose F and gu are the fundamental metric function and components of the metric 
tensor from which Gjk are derived. The present author [5] proved that the tensors 
H ‘jk and II) satisfy the following:

(3.8) а) у {Н)к = 0, b) H) =  0, c) gytf£ =  gikH), 

where yi=gjjX3. Transvecting (3.4) by y t and using (3.8b), we get

(3.9) 77jVmyi -  0.

Writing the expression for Vmy; with the help of (2.4) and using (2.1), we have

(3.10) Vmy t = dmyi- ( d ry i)G'mhxh- y rG'mi + F *G U (n + l),
since n rmhxh = Grmhxh and yrxr = F 2. Since the covariant derivative of y t in the 
sense of Berwald vanishes identically, we have

(3.11) dmy i-(dry,)G'mhxh- y rG'ini = 0
where gftm is the operator for Berwald’s covariant differentiation. From (3.10) and
(3.11) we have

(3.12) Ут уг =  F2Grmir/(n + l), 

by virtue of which (3.9) gives

(3.13) H)G'mir = 0.

Differentiating (3.7) partially with respect to xh, utilizing the commutation formula 
[12, p. 196]

(3.14) dhVmTj— W j hTj = T j n ‘hmr- Т ; Щ т]- ( д гТ))Щтэх°
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and using (2.8h), we have

(3.15) VmHkh—HrIIrhmk—HkrIIrhmsxs = (dhX^)Hk+XmHkh.

We know that the tensor H)kh satisfies the Bianchi identity [8, p. 127]

Hjkh +  Hkhj +  Hlhjk —  0 .

Contracting the indices i and j  in the above identity, using (2.8d) and the skew- 
symmetry of the tensor H)kh in the first two lower indices, we have

(3.16) H'khr =  Hhk- H kh.

Taking skew-symmetric part of (3.15) with respect to the indices к and h, and using
(3.16) , (3.6) and (2.3d), we have

(3.17) — 2 //r77[A|m|t] — 2xr77[Jt|r| G^ms/(« +  1) =  2Hik'dnkm.

Differentiating (2.1) partially with respect to xJ, taking skew-symmetric part with 
respect to the indices j  and h, and using the symmetric property of the tensors G)kh 
and djGkhm in their lower indices, we have

(3.18) 2П[т п  =  — л+1 S‘u Grhjkr.

Using (2.8g) and (3.18) in (3.17), we have

(3.19) 4tf[AG^ms/(n + 1) =  2 Hikdn l m.

According to the authors [3, 9], the Weyl’s projective curvature tensor W-kh is recur­
rent in an RNP-Finsler space of dimension greater than 2, i.e.,

(3.20) v mw/kh =  ?,jv;kh.

Transvecting (3.20) by x h and using (2.9a), we get

(3.21) УтП% = 1тЧ -
Differentiating (3.21) partially with respect to xh, using the commutation formula
(3.14) and taking care of the equations (2.3d), (2.9a), (2.9b), (3.20) and (3.21), we 
have

(3.22) (dhK W A  =  Я ‘mr Щ1 -  n rhmJ W'k -  П \тк Щ  -  Щ  Gl ms.

Transvecting this equation by xk, and using (2.3d) and (2.9c), we have

(3.23) Ф„ l mW i  =  n \ mr w r -  n rhmj Wr‘ -  - L j -  W/GUs •

Transvecting (3.23) by x m and using (2.2), (2.3d), (2.9d) and the symmetry of П)кН 
in its last two lower indices, we get

(3.24) (xmh i m)w; = Gshrsw ; .
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The projective deviation tensor Wj' and the deviation tensor H) are related by 
[8, p. 140]

(3.25) Wj =

In view of (3.25), (3.13) and (2.2), the equation (3.24) reduces to

(3.26) ^ Q hXm)Wi = HG'Jhr.

Thus we conclude that an RNP-Finsler space F„ (n >2) admits (3.26). Transvect- 
ing (3.19) by xh, using (2.2), (2.8i) and the fact that the vector is positively homo­
geneous of degree zero in x \  we get

(3.27) 2 ( ^ 1 )  HGrkmr = - ( «  -  1 )HdkXm.

Since и>1, (3.27) is equivalent to

(3.28) я ( ^ Я т + - ^ т С1тг) = 0 .

This equation gives at least one of the following:

(3.29) a) H  =  0, b) dkAm + G'kmr = 0.n+  1
If (3.29a) holds, (3.26) gives at least one of the following:

(3.30) a) Wj =  0, b) xmbhXm = 0.
If W j=  0, the space is of scalar curvature [1, 7, 11], and hence we have

(3.31) H) =

where 1‘=х1/Р  and lj =giJli. But (3.31) together with (3.29a) implies 7/j =  0 
which leads to Hjkh=0. In view of this fact the relation (2.6) gives Njkh= 0, a 
contradiction. Therefore condition (3.30a) can not hold. Condition (3.30b) is equiva­
lent to Xh = dhk, where X = Xmxm. Hence the skew-symmetric part of (3.23) 
with respect to the indices h and m, in view of symmetry of Gshms and П)тк in the 
indices m and h and the equation (3.18), is given by

(3.32) ö[hG ^rsW r - % G smVs =  0.

Transvecting (3.32) by xh, and using (2.2) and (2.9d), we get Wf Gsmrs = 0\ in view 
of which the equation (3.32) gives ff[i,G„]ys = 0. Using (3.25) and (3.29a) in Wfi,Gsmys=
=  0, we get
(3.33) HlhG°mVs- x i(drH[h)G°mVJ (n + 1) =  0.
Transvecting (3.33) by y,, and using (3.8b) and yiXl = F 2, we have (drH[h)Gsmys = 0. 
Using this in (3.33) we find H{hGsmy s = 0. If the tensor Gsmjs is non-zero, we may 
choose a vector Tf such that G ^ .fV O . Multiplying H[hGsmys = 0 by Y J and put­
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ting GsmjsY J=cpm, we get H[h(pm̂ =0; which implies H l= X ‘(ph, where X 1 is a 
contravariant vector. Multiplying Hl = X ‘<ph by gim and using (3.8c), we have 
(Ph =  4/gihXi, where t// is a non-zero scalar. Hence we have H l = \j/X'grhX r. Contract­
ing the indices i and h in this equation, and using (2.8f) and (3.29a), we get grsX rX s— 
= 0 ; which implies X ‘ = 0 because the metric of the space considered is positive 
definite. Substituting X ‘ =  0 in H j=X'(ph, we find H'h = 0. This will lead to Njkh=0, 
a contradiction. Therefore the supposition GsmJsA0  is wrong. Hence (3.29a) implies 
Gsmjs = 0. Now, we consider (3.29b). Transvection of (3.29b) by xm and utilizing
(2.2), we have xmdhAm= 0; in view of which (3.26) becomes HG)hr= 0. This means 
at least one of the scalar H  and the tensor Grjhr is zero. We have seen that H = 0 
implies Gjhr—0. Therefore we certainly have Grjhr= 0. In view of this fact, (2.1) 
shows that the normal projective connection ГГк1, coincides with Berwald’s connec­
tion Gkh. Thus, our normal projective space is a trivial one. Therefore, an RNP- 
Finsler space F„ (n>2) is a trivial one. This leads to:

Theorem 3.1. A non-trivial RNP-Finsler space Fn (n >2) does not exist.

Adopting the procedure similar to Theorem 3.1, we may prove that if an SNP- 
Finsler space Fn (n > 2) characterized by VmNjkh= 0 exists, the tensor Grjkr vanishes, 
and hence the normal projective space becomes trivial. This gives:

T heo rem  3.2. A non-trivial SNP-Finsler space F„ (n > 2 ) does not exist.
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ABELIAN GROUPS LIKE MODULES
S. SINGH (Kuwait)

Consider the following two conditions on a module M R:
(I) Every finitely generated submodule of a homomorphic image of M  is a 

direct sum of uniserial modules.
(II) Given two uniserial submodules of a homomorphic image of M, for any 

submodule W  of U, any non-zero homomorphism f  :W -+V  can be extended to 
a homomorphism g: U-+V provided, composition length d (U /W )^d (V /f (IV)).

The study of modules satisfying (I) and (II) was initiated by Singh [12]. It has 
been seen through a number of papers, some of which are [1, 5, 6, 12, 13, 15], that 
the structure theory o f these modules is similar to that of torsion abelian groups; 
keeping this in view these were called torsion abelian groups like modules (in short 
TAG-modules) in [1]. A uniserial module which is not quasi-injective trivially satis­
fies (I), but not (II). In this paper we study modules only satisfying condition (I), 
and call them QTAG-modules. In Section 2, Lemmas (2.2) and (2.3) show that a 
certain weaker version of condition (II) is implied by (I). Further (2.4) shows that 
a certain weaker version of the dual of (II) is also implied by (I). In Section 3, the 
structure theory of QTAG-modules is developed. Using the results in Section 2, 
first of all it is seen that the concepts of exponent and height of an element in a 
TAG-module can be defined verbatim for an element in a QTAG-module (see (3.1),
(3.2), and (3.3)). In (3.5) [11, Lemma 7] is strongly improved. After this it is discussed 
in brief that almost all the concepts and results for TAG-modules given in [12, 13] 
can be defined, stated and proved for QTAG-modules. In particular it is shown that 
any QTAG-module M  admits a basic submodule and that any two basic submodules 
of M  are isomorphic. In Section 4, those rings R for which Rr is a QTAG-module, 
are studied. The main results are given in (4.5) and (4.6).

§ 1. Preliminaries

All rings considered in this paper are with unity 1^0  and all modules are 
unital right modules, unless otherwise stated. For any ring R, J(R) or simply J  de­
notes its Jacobson radical. Consider a module M R. The symbols J(M ), ER(M) 
(or simply E(M)) will denote its Jacobson radical and injective hull respectively; 
Ncz'M  denotes that N  is an essential submodule of M. soc (M) will denote the 
socle of M. Put soc°(M )=0. For any кшО, sock (M ) is defined inductively by 
soc(M/soclt (M)) =  sock + 1 (M)/socfc (M ). Similarly J k(M ) is defined inductively by 
putting J k+1(M )= J(Jk(M )) and J°(M )= M . M  is said to be serial if the lattice 
of its submodules is linearly ordered under inclusion [18]; however if M  is serial and
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of finite composition length it is said to be uniserial. Following Warfield [18] a ring 
R  is said to be right (left) serial if Rr (respectively rR) is a direct sum of serial modules. 
A  ring R which is right as well as left, serial and artinian, is called a generalized 
uniserial ring. For most of basic concepts on rings and modules, we refer to Faith
[2] . For the definitions and properties of push out and pull back diagrams we refer 
to Stenstrom 17]. For concepts and results on abelian groups, we refer to Fuchs
[3] , [4]. An element x  in M  is said to be uniform, if xR  is a non-zero uniform sub- 
module of M. If S  and T  are two simple Л-modules, then T  is called a successor of 
S, and S  is called a predecessor of T  if Ext (S , T )® 0 [18, Definition 5.2]. If x  is a 
uniform element of a TAG-module M R, following [11], [12], e(x) and H M(x) (or 
simply H(x)) will denote the exponent of x and the height of x  in M  respectively. 
For all the basic concepts for TAG-modules, we refer to [12], [13].

§ 2. Some general results for condition (I)

In this section we show that any QTAG-module satisfies a certain weaker ver­
sion of condition (II) and its dual. We further establish some general results needed 
in subsequent sections. We start with the observation that the class of QTAG is 
closed under submodules and homomorphic images.

L emma 2.1. Let Ax, A2, ..., An be any (non-zero) uniserial submodules o f a 
module MR and let A l + A.i + ... + A n = B1 ® ß2® ... ® ßm for some uniserial sub- 
modules Вi, 1 ~^ki^±m. Then

(i) m án.
(ii) Each Bi is a homomorphic image o f some A j .

(iii) Each Aj embeds in some Bt under the projection pp © Z  Bk -+Bt.
к n

(iv) Any Aj o f  maximal length among A1,A 2,.. . ,A „  is a summand o f  Z  A r
i=l

P roof, (i) Consider the external direct sum K = A 1®A2® ... © An. Then 
K /J(K ) is a direct sum of n simple modules. Now

m m
(® 2 1 b ,)/j (® z  Bt)

j =1 i=f
is a direct sum of m simple modules, and is a homomorphic image of K/J(K). Con­
sequently m ^ n . This proves (i). Now (ii) and (iii) follow as [11, Lemma 3]. (iv) 
follows from (iii).

L emma 2.2. Let A and В be two uniserial submodules o f a QTAG-module M  
suchthat AC\B=0. Let a be any homomorphism from a submodule W  o f A into 
В such that d (A /W )^d(B /o(iV )). Then a can be extended to a homomorphism 
a\ A —B.

P r oof . Consider the push out diagram

W -+ A
1"

B —j* K
A cta  Mathematica Hungarica 50, 1987



ABELIAN GROUPS LIKE MODULES 87

where i is the inclusion map. Since i is a monomorphism, j  is a monomorphism 
[17, p. 92]. Consider the injections zj: A A+ B, i2: B-»A® B. Using the fact that

К  = coker (ix i — i2 a : W  — A ® B )

it follows that ker z; =  ker a. Thus by hypothesis

d(t](A)) = d(A) — d (ker oj == d(B) =  d(j(B j).

Since К  is a homomorphic image of A + B, i t is a  QTAG-module. As K = j(B ) + t](A), 
by (2.1) K —j(B)® C. Consider the projection p: j(B )® C —j(B). We have 
j ~ 1:j(B)-»B . Then d = j~ 1pry.A-+B extends a.

L emma 2.3. Let A and В be any two unisersal submodules o f a QTAG-module 
M  suchthat A D B a  0 and d(A)Sd(B). Then there exists a monomorphism a: A-+B, 
which is identity on AC\B.

Pr o o f . As d(A )Sd(B ), by (2.1) A + B —B®C. a, the restriction of the pro­
jection p: B ® C —В to A, is a desired map.

Lemma 2.4. Let A and В be two uniserial submodules o f  a QTAG-module M  
such that AC\B = 0. Let W  be any submodule o f В and a: A -- B/W beany homo­
morphism such that d(lV)^=d(ker a). Then there exists a homomorphism д: A-+B 
lifting a.

P r o o f . Without loss of generality we take o+0. Consider the pull back dia­
gram

K —~ A
X\ |(T+ +
B -+ B /W

where л  is natural homomorphism. Since л  is an epimorphism, л is also an epi- 
morphism. Further as а АО, A(K) cflU. Since В is uniserial, W<zA(K). Then 
A {K )/W ^a (A )^  А/ker a. Thus d(A(K))^d(A), as d(W )^d(ker a). Since A is a sub­
direct sum of A(K)QB  and л(К )= А, it is a QTAG-module and it cannot have 
a uniserial submodule of length greater than

max (d(A(K)), d(A)) = d(A).

As л is epimorphism, we get K = A'® C  for some uniserial submodule A' such that 
л maps A' isomorphically onto A. So we have a monomorphism ц : A >K such that 
urj = iA. Then ä =  Arj: A —B lifts о and the result follows.

It follows from the above lemmas that if two uniserial submodules A  and В 
of a QTAG-module M  have zero intersection and same composition lengths, they 
are isomorphic whenever either they have isomorphic socles or A /J (A )^B /J (B )\  
further in that case A and В are quasi-injective as well as quasi-projective. If  M ® M  
is a QTAG-module, then M  is a TAG-module.

P r o position  2.5. Let N  and К be any two submodules o f a QTAG-module M. 
Let x + N  be a uniform element o f (K + N )/N . Then

(a) For some uniform element y£K, x  + N = y + N.

Acta Mathematica Hungarica 50,1987
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(b) I f  u ,v  are two uniform elements in x + N  suchthat uRC\vR = 0 and e (u) S  
then there exists an epimorphism a:vR->-uR suchthat v — a (v)£N.

Proof, (a) Now x = x + N = u + N —ü for some non-zero u fK . By condition (I)

к
uR= 2! uiR>=1

for some uniform elements ut. Then

UR =  21 ütR.
i

However uR  is uniserial. So for some i, say for i= l,  TiR--u1 R. Consequently 
ü=üir, for some rCR. Then y  = ul r£K  is uniform. Further x —y. This proves (a), 

(b) Let uRC\vR--{). Now u+ N = v+ N . So we have the epimorhism

r\:vR  -  uRU uRC N )
suchthat rj(v) = u+ (uRr\N ). As k e r t]=vRC[N and d(vR r\N )^d(uR C lN ), by
(2.4) t] can be lifted to an epimorphism a: vR-^uR. Clearly v — o(v)cN. This 
proves the result.

P r o po sitio n  2.6. Let N  be any submodule o f  a QTAG-modu/e M . Let x = x + N  
be a uniform element in soc (M /N ). Let x0£ x + N  be a uniform element o f smallest 
exponent. Let у  be any uniform element in M  such that 5cR=yR. Then either 
д:о/?ПуК=0 or e(x0)=e(y).

Proof. Let x 0RC]yR + 0. By hypothesis e (x0)^e (y ) . By (2.3) there exists a 
monomorphism o : x 0R-*yR, which is identity on x0RC)yk. On the contrary 
let e(x0)< e(y). Then <r(x0)dN. N ow

given by
tj: x 0R  -  (x0- a ( x n))R  

ri(x0r) = (x0-<x(x0))r , rCR

is an epimorphism with x0Я П уЯ с:ker rj. Thus x 1= xa- o ( x 0) is a uniform ele­
ment in x  + N  such that e(x1) c e ( x 0). This contradicts the choice of x„. Hence 
e(x0)=e(y). This proves the result.

§ 3. Some decomposition theorems

For any uniform element x  in a QTAG-module, the concept of height of x in 
M , denoted by H M (x) (or simply by H(x)) and of exponent of x, denoted by e(x), 
is verbatim same as in TAG-module [12]. The proof of the following lemma is ver­
batim same as of [11, Lemma 4], except that we use (2.2) instead of Lemma 2(b) 
in [11].

L emma 3 .1 . Let x 1, xa, ..., x„ be any finitely many uniform elements in a QTAG- 
module M R such that for some non-negative integer к, H (x i)^ k  for  1 S i= /i . 
Then for any uniform element x  o f  M  in 2  x iR> H (x )^ k .

i

A cta  Mathematica ffungarica 50, J987



ABELIAN GROUPS LIKE MODULES 89

Let л: be any non-zero element in a QTAG-module M R. By definition xR = 
» .

= 2  x iR> f° r some uniform elements x fM .  Define the height H M(x) (or
i —l

simply H(x)) of x, by //(x ) =  min ( //(x ;)). This is well defined. Put H (0)=°°>n, 
n any integer, and oo+«=oo. As in [11] we define H n(M ), for any n s 0. Then

H„(M) = {x£M : H(x) S  n}

and it is a submodule of M. The following lemma has similar proof as of [11, 
Lemma 6].

Lemma 3.2. Let A and В be two submodules o f  a QTAG-module M  such 
that M = A + B . Then fo r  any к SO

Hk(M) = Hk(A) + Hk(B).

One can easily see that for a QTAG-module M , Hk(M )= Jk(M ) and that 
Hk+1(M ) is the smallest submodule of H k(M ) such that Hk(M)/Hk+1(M ) is com­
pletely reducible. For any uniform element y£M, a uniform element x  is called a 
predecessor of у  if y £ x R  and d(xR/yR)=  1, in this case also у  is called a successor 
of x. Let N  be a submodule of M. A uniform element y £ M  is in I f  (N ) if and only 
if у  admits a predecessor in N. We list some properties of height.

Lemma 3.3. Let M  be any QTAG-module. Let x, y f  M.
(i) I I  (x) S  n i f  and only i f  x£H n(M ).

(ii) H (x +y) ̂ m in  (H(x), H(yj); equality holds whenever II(x)-A lI(y).
(iii) I f  y ^ H fx R ) , then H ( y ) ^ / I (x)+  1.
(iv) I f  x —yfsoc {M), then I f  (xR )= H 1 (yR).
(v) I f  xR= yR , then H (x)= H (y).

Lemma 3.4. Let N  and К be two submodules o f  a QTAG-module M . Then, 
for any k ^ O

Hk[(K + N )/N ] -  (Hk(K )+ N )/N

Proof. Let x = x + N  be a uniform element of I f[ (K +  N)/N], There exists 
a uniform element y £ K + N  such that x£yR  and d(yR /xR)—k. So x= yr  for 
some rf_R. Now z= yr  is uniform and y r fI Ik(K + N )= H k(K) + I f  (N). Thus 
x=yr=U  for some u£Hk(K). Obviously [Hk(K) +N]/NczHk[(K+ N)/N]. This 
proves the lemma.

Theorem 3.5. Let M  be a QTAG-module over a ring R, T be any submodule 
o f M  and К be any complement o f  T  in M. Then the following hold:

(a) For any simple submodule S  o f  M /(T+ K ) and any uniform element x£M, 
generating S  modulo T+K, Ls= [xR r\T + H 1(T)]/H1(T) is a simple submodule 
o f \(H 1(M ) + К)Г\Т~\/H ilT), and is independent o f the choice of x.

(b) S-+Ls gives a mapping o f the family o f all simple submodules o f  M l {T+K) 
onto the family o f all simple submodules o f  [(Я1(М) +  ̂ )П Г ] /Я 1(Г).

Acta Mathematica Hungarica 50,1987
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Proof. Now (T ® K )/K a 'M /K  and M/(T+ К) ^[M /K]/[(T+K)/K]. By (3.4)

Нг(М /К )П [(Т  + К )/К ] _ (Н1(М )+ К )П (Т  + К)
H J(T  + K)/K] ^  H f T )  + K ^

(H fM ) + K ) ® T  + K  (Н1(М ) + К )П Т
Нг(Т) + К  ~  Н г(Т)

Thus without loss of generality we take K=  0 and hence T с  'M.
Consider a simple submodule S —xR  of M /T. By (2.5) we take x to be uni­

form. Clearly e (x)>  1. Let yR = xR C \T . If y£ H 1(T )  it has a predecessor z£T. 
By (2.3) we can choose z such that xr+*zr, r£R  is an isomorphism between xR  
and zR, which is identity on yR. Then x —z£soc (M ) a T . This in turn gives x f T. 
This is a contradiction. Hence у ^ Н г(Т). Hence yR, where y= y+ H 1(T) isa  simple 
submodule of [H1(M )C\T]/H1(T). y R  is uniquely determined by xR. Let if possible 
S = x R = x 'R  for another uniform element x \  but let xR  Ax R. Choose x to be of 
smallest exponent such that S ~ x R . By (2.6) either e(x)=e(x') or xRClx'R = 0. 
Let х/?П х'/?=0. By (2.5) (b) we get an epimorphism rj: x 'R ^-xR  such that 
x ' — ti(x')dT+K. We can choose x=t](x'). Let y 'R ^x 'R C lT  and y = r\(y'). 
Then yR=xRC\T. Further y '—y £ / / , ( (x '-x )R )c :U l (T). This gives yR = y'R  in 
TIH1(T). Let x R flx 'R ^ O . By (2.6) e(x)=e(x'). As x R ^ x 'R , xR + x'R =  
= x'R® uR  for some uniform element и with e(u)<e(x'). In M /T, 5cR=xR+ 
+ x'R  = x 'R  + UR. By the minimality o f e(x), x R ^u R . Hence uR = 0 and u£T. Con­
sider the projection p: x'R® uR-»x'R . Write x = p (x )  + ur. Then x'R= p(x)R . 
For yR=xRC\T, x 'R C \T= p(y)R . Now x — p (x )£ T  yields y —p (y)^H 1(T). 
Hence yR = y'R  in T/H 1(T). This show that Ls = y R  in [Н1(М )Г\Т]/Н 1(Т ) is 
uniquely determined by .S'. Now consider any simple submodule yR  in 
[H1(M)C)T]/Hl (T) and take у to be uniform. Since у 6 //, (M ) it has a predecessor 
x  in M. Then S = x R  in M /T  is a simple submodule to which yR  corresponds in the 
above given correspondence. This proves the theorem.

Remark 3.6. Consider any QTAG-module M . M  is said to be /г-divisible if 
H 1(M )= M , equivalently if every element in M  has infinite height (see also [15,. 
p. 2034]). Let N  be an /г-divisible submodule of M. Let К  be any complement of N. 
As N = H 1(N), [(H1(M )+ K )f] N y H 1(N)=0. So by the above theorem M /(N+ K ) — 
=0. Consequently M = N ® K  and N  is an absolute summand of M . In view of 
(2.2), (2.3), the proof of [16, Proposition (2.1)] shows that a submodule N  of M  is a 
complement submodule of M  if and only if H1(M )C \N = H 1(N). (See also [5, The­
orem 3].)

Kulilov’s theorem for the decomposition of abelian /г-groups was generalized 
to modules over bounded (hnp)-rings in [11, Theorem 3] and to TAG-modules in
[12]. We now extend it to QTAG-modules. Since the proof is being adapted from 
[H, Theorem 3], we shall only outline the proof, indicating the necessary changes 
needed.

Theorem 3.7. Let M R be any QTAG-module. Then M R is direct sum of uni- 
serial modules i f  and only i f  M  is a union o f an ascending sequence Mn (n=  1, 2, 3, ...) 
o f submodules o f M  such that for each n, there exists a positive integer kn with 
the property I fM (x) = k n for all uniform elements x  o f  M„.
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Proof. Sufficiency. For each n, let P„ = soc (M„). Then P={J Pn is the
П

socle of M  and P a ' M .  Follow the construction of a basis S„ of Pn for every n, 
as in [11, Theorem 3]. Then Sn<aSn+1 and S'=1J S„ is a basis of Pn. Let S =

П
=  {ся: кСЛ}. Since each ck is uniform and is in some M n it has finite height. So we 
can find a uniform element affiM such that R and d(ak R/ckR) = I f  (ck).
Then 2  axR — ® Ia kR. Let

M '  = ® 2 a kR-я
If we show that M = M ' ,  the result follows. Let We can find a uniform
element g f  M  of smallest exponent such that M ' . Then e(g) >  1. Let yR =
=  soc (gR). Now

У -  c1r1 + c2r2+. . .+c,r t
for some c f S ,  rt£R  such that сггг^ 0 . If t= 1, then y = c 1r1. So H{y)=H{cl ). 
Consequently e{g)^e{a1). By (2.3) there exists a monomorphism a: gR^-ajR,  
which is identity on yR.  Then g — o(g)  is a uniform element such that e(g — o(g))< 
<e(g)  and g —a(g)$M'.  This contradicts the choice of g. Hence t >  1. Con­
sequently

gR П C; R = gR П a( R = 0, 1 S i S i .
Using (2.2) and following the arguments in [11, Theorem 3] the sufficiency follows. 

Necessity is obvious.

R emark 3.8. Call a QTAG-module M  to be decomposable if it is a direct sum 
of uniserial modules. It follows from the above theorem that any submodule of a 
decomposable QTAG-module is decomposable. As for TAG-modules [12] we can 
define a bounded QTAG-module. It immediately follows from (3.7) that any bound­
ed QTAG-module is decomposable. Let M  be any QTAG-module. As in [12, p. 185] 
any submodule N  of M  is said to be /г-pure in M  if Hk(M)C\N—H k(N)  for all k. 
Similar to [12, Theorem 2], any bounded /г-pure submodule of M  is a summand of
M. In particular if a uniform element uf  soc (M ) has finite height k, and x is any 
uniform element in M  such that u f  xR  and d(xR/uR)=H(u),  then xR  is h-pure 
in M  and hence is a summand of M. Union of a chain of h-pure submodules of M  
is h-pure in M.

L e m m a  3.9. Let N  be a submodule o f a QTAG-module M. Then N  is an 
h-pure submodule o f  M  if  and only i f  for every uniform element x = x  + N  o f M/N,  
there exists a uniform element x ' £ M  suchthat x  + N —x' + N, e(x' )~(x) .

Proof. Necessity follows as in [12, Lemma 2], using (2.3) instead of condition 
(II). Conversely let the given condition hold, but N  be not h-pure in M.  Let к be the 
smallest positive integer such that f f k(M) (T N-/- H k (N). We can find a uniform 
element x£Hk(M)ClN  such that x $ I f k(N). Clearly х£Нк_г(М). Now there 
exists a uniform element y £ M  suchthat x f y R  and d(yR/xR) = k. Then yRC\N=  
=xR.  By hypothesis there exists a uniform element y '£ M  such that y = y  + N=  
=y'  + N  and e(y') = e(y). Thus y'RC\N=  0 and we have the epimorphism a: yR  - 
—y 'R  satisfying a(y)=y'.  As y —y'ZN,

Hk( ( y - y ' ) R ) a H k(N).
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We have the epimorphism rj: y R - ( y — y ' )R  given by t l (yr)=(y—y ') r—yr — o(yr). 
Since e(y') = d(yR/xR)=k,  we get rj(x)=x and Hk((y—y')R) = xR.  Hence 
x f H k(M).  This proves the result.

The following is easy to establish.

Lemma 3.10. Let N  and К be any two submodules o f a QTAG-module M. 
Then

(i) I f  К  is h-pure in M  and NczK, then K /N  is h-pure in M/N.
(ii) I f  NczK, such that K/N is h-pure in M /N  and N  is h-pure in M, then 

К is h-pure in M.

For this see also [12, Lemma 2].
After this one can easily see that Lemma 3 and Theorem 4 in [12] hold for 

QTAG-modules. If there exists a uniform element и of finite height in the socle of 
a QTAG-module M, as seen in (3.7), M  admits a uniserial summand containing it.

This all gives, as in [12, Theorem 4 and 5] the following.

Theorem 3.11. (a) I f  every element in soc (M) is o f  infinite height, then M  is a 
direct sum o f serial modules, each o f infinite length.

(b) Any QTAG-module M  admits a uniform summand, which can be chosen 
to be o f  finite length in case not all uniform elements in soc (M) are o f infinite height.

Remark 3.12. The concept of a basic submodule of a TAG-module in [13, 
Definition 2.5] can be verbatim defined for QTAG-modules. (3.8), (3.10) and (3.11) 
yield that any QTAG-module M  admits a basic submodule. An easy adaption of 
the proof of [1, Lemma 1.1] shows that any complement of Hk(M ) is /i-pure and 
hence a summand of M.  One can prove every result in [13, Section 2] for QTAG- 
modules on similar lines. Consequently any QTAG-module M  admits a basic sub- 
module, and any two basic submodules of M  are isomorphic.

§ 4. Right artinian serial rings

In this section we determine the structure of a ring R  such that Rr is a QTAG- 
module.

Lemma 4.1. Let R be any ring such that Rr is a QTAG-module. Then any 
simple right R-module admits at most one predecessor.

Proof. Let SR be simple. Let К  and T  be two predecessors of S. There exist 
two indecomposable idempotents e , / o f  R such that eR /eJ^K , eJ/eJ2 ^  S, f R / f l  % 
к  К  and f J / f J 2^ S .  Let K ^ T ,  then we can choose e, f  to be orthogonal. But 
by (2.2), there exists an isomorphism of eR/eJ2 onto f R / f J 2. Hence К  ~  T. This 
is a contradiction. Hence S  has at most one predecessor.

Lemma 4.2. Let R  be any ring such that Rr is a QTAG-module. Let E  be an 
indecomposable injective R-module. Then either E  is uniserial or there exists an 
indecomposable idempotent er- R and an integer I s  1 such that eR/eJ2 is not 
quasi-injective, socf(E) is uniserial and eR/eJ2 embeds in E/sock~1(E).
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Proof. Let E  be not uniserial. As R is a right artinian right serial ring, for some 
simple Л-module S, E=E(S),  and for some t, E=sod(E).  As E  is not uniserial, 
we can find k < t  such that sock(E) is uniserial, but sock+1(E) is not uniserial. 
Clearly k ^ l ,  and we can find two uniserial submodules A and В  of E, each of 
length k + 1 such that А ф В ф А .  Now AIAB = sock(E). Further

К = [A/sock-!(£)] П [B/soc*-*(£)]

is a simple module. By (4.1) К  admits only one predecessor. So

A/sock(E) к  B/sock( E ).

Consequently there exists an indecomposable idempotent R such that 

AJsock —1 fE ) «  eRjeJ- ^  B / s o c ^ iE ) .

We have an isomorphism <r of A/sock- l (E) onto Bfock~1(E). Now the injective 
hull E'  of E/sodc~1(E) is uniform and a can be extended to an endomorphism otE ' .  
If eR/eJ2 were quasi injective, we get p(A/sodi~1(E)) = A/sock~1(E). So A= B.  
This is a contradiction. Hence the result follows.

Firstly we give another proof of [14, Theorem 4.1].

Theorem 4.3. Let R be any ring such that R r is a TAG-module. Then R is a 
generalized uniserial ring.

Proof. Now R/J2 is also a TAG-module. So R = R/J2 is a TAG-module as 
a right Л-module. In a TAG-module every uniserial jubmodule is quasi-injective. 
In particular for any indecomposable idempotent e fR ,  eR is quasi-injective. Now 
e J 2= 0. By (4.2) every indecomposable injective Л-module is uniserial. So by [9, 
Theorem 1], every finitely generated Л-module is a finite direct sum of uniserial 
modules. Then by [8, Theorem 13], R is a generalized uniserial ring. Flence by [10, 
Theorem 10] R  is generalized uniserial.

We now prove a theorem analogous to that of Kupisch for generalized uniserial 
rings [7].

Theorem 4.4. Let R be an indecomposable right serial right artinian ring, over 
which any simple right R-module admits not more than one predecessor. Let ex, e2, ..., ek 
be a maximal set o f non-isomorphic orthogonal indecomposable idempotents o f R. 
Then elt e2, ek can be so arranged that fo r  i< k, e jA O ,  and there exists an 
epimorphism o f ei+1R onto e j .  Further i f  ek J a O, there exists an epimorphism o f  
exR onto ekJ.

Proof. Since R is right serial, any simple right Л-module admits at most one 
successor. By hypothesis a simple right Л-module admits at most one predecessor. 
Let S±, S2, ..., be longest length sequence of non-isomorphic simple Л-modules, 
such that for /< / , Si+1 is the successor of Sj. Let l<k.  By renumbering we can 
take

S t ä  е(Л/с(/ , 1 S i ^ l .

It is clear that if an ejR has a composition factor among St ( l ^ i ^ l ) ,  then all the 
composition factors of e}R are among S-s. So there exists a simple right Л-module 
S' which is not isomorphic to any S;. For some eJt S^e jR /e jJ .  No composition
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factor of e jR  can be among Si’s. Thus eJReiR= 0= e iRej R  for 1 s i  ̂ /. This in 
turn gives that R is decomposable; which is a contradiction. Hence l=k .  Thus 
for i< h, as Si+1 is a successor of S t, S i+i meiJleiJ 2^ e i + 1Rlei+1J. Consequently 
e f A O  and there exists an epimorphism of ei+1R onto e,J, for i<k.  In addition 
let ek.J =^0. Then ekJ/ekJ 2 is the successor of Sk and we must have

ek J/ek J 2 «  e1R/e1J.
This proves the theorem.

Theorem 4.5. Let R  be any indecomposable ring such that RK is a QTÄG- 
module and for any indecomposable idempotent edR, eJ2^  0. Then either R  is a 
local ring or R is generalized uniserial.

Proof. If R is local, there is nothing to prove. Let R  be not local. We can write

R = e1R ® e 2R ®  ...@enR

for some orthogonal indecomposable idempotents eh 1 such that for some
tSn ,  ekR, e2R, ■■■, e, R  is the largest set of non-isomorphic indecomposable sum­
mands of R r . Now 1. Let t= \  then eiR ^ e 1R for every i. Now, ekR  is quasi- 
injective. Consequently R r being a direct sum of n copies o f ekR, is quasi-injective. 
Hence Rr is self injective. So R  is quasi Frobenius. Then duality between right and 
left ideals of R, gives R  is also left serial. Hence R is a generalized uniserial ring. 
Let 1. By (4.4) we can take exR, e2R, ..., etR su ch th a t e j  ;~ei+1R/ei + 1J k(,) 
for i d  and e ,J ^ e 1R/e1J kV\ for some integers к (i) =  1. Then 
mei+1R/ei+1J 2. By the remark following (2.4), ei+1R/ei+1J 2 is quasi-injective. 
Similarly also e1R/e1J 2 is quasi-injective. So as in (4.3), using (4.2) we get R / J 2 is 
generalized uniserial. Hence by [10, Theorem 10], R is generalized uniserial. This 
proves the result.

In the above theorem, the condition that eJ2^ 0, for any indecomposable 
idempotent e of R, is used to show that eR is quasi-injective for any indecomposable 
idempotent ё of R = R /J2. In fact we can prove the following.

Theorem 4.6. Let R  be any non-local indecomposable ring such that Rr is a QTAG- 
module. Then either R is a generalized uniserial ring or it has an indecomposable 
idempotent e suchthat e J 2 =  0 and eRleJ2 is not quasi-injective.

There exist indecomposable non-local rings R, such that R  is not a generalized 
uniserial ring, but Rr is a QTAG-module.

Example. Let D be any division ring admitting a bi-vector space DVD such 
that dimDF > l ,  and d im kB = l. Then the matrix ring

is indecomposable, non-local, it is not a generalized uniserial ring, but Rr is a QTAG- 
module. Consider the ring
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in which the multiplication is defined by

r a n t> 1 2 l f bn W 12 1 Г a n  ^ 1 1  f l l l W 12 +  ^ 1 2 ^ 2 2  1
I . P 21 a 22 Jl W 21 Ь 22 J L^21 ^ 1 1  +  ̂ 2 2  W 21 # 2 2 ^ 2 2  J

Soc (Гг) is a direct sum of two non-isomorphic simple modules. Any right ideal 
A of Г is of the form B®C,  where В is a summand of TT and C cso c  (TV). Using 
this and that d(TT)=4, it can be easily seen that TT is a QTAG-module, T  is inde­
composable, non-local and is not generalized uniserial.

Acknowledgement. The author is extremely thankful to the referee for his various 
suggestions.
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PROXIMITIES, SCREENS, MEROTOPIES, 
UNIFORMITIES. II

Á. CSÁSZÁR (Budapest), member of the Academy

7. Screens and extensions. RE-proximities are defined with the help o f exten­
sions of topological spaces. For this purpose, let us say that, for a TP-proximity 
<5 on X, an extension (F, c') of the topological space (X , c6) is compatible with 5 iff, 
for A, В czX,

AS В <=> c’(A) П c \B )  ji 0.

Then we can say that 5 is an RE-proximity iff there exists a regular extension com­
patible with S.

A  similar characterization is possible concerning LO-proximities. For this pur­
pose, let us recall that, if (X, c) is a topological space, YzoX,  s (y) is a c-open filter 
in X  for y f  Y, in particular, s(x) is the c-neighbourhood filter of x  if x £ X ,  and

s(G) =  { y e Y :  G£s(y)}

for a c-open set GczX, then the sets s(G) constitute an open base for a topology 
c' on Y ; the space (F, cr) is said to be a strict extension of (X, c) corresponding to 
the trace filters s (y) (in fact, s(y) is the trace in X  of the c'-neighbourhood filter of 
y ^ Y )  ([4], (6.1.2)).

An extension (F, c') of the topological space (X, c) is said to be Tx-reduced iff 
x, y£Y,  x r iy ,  y e Y - Х  implies that each of the points x, у  has a c'-neighbourhood 
that does not contain the other. If (F, c ) is a ^-reduced extension of (X, c) and 
the latter is an Áj-space or a Tx -space, then the same holds for (F, c').

An extension (F, c') of a topological space (X , c) will be said to be free  iff the 
trace in X  of the c'-neighbourhood filter of any point y e Y —X  is free.

(7.1) L em m a . I f  S is a TP-proximity on X, and (F, c') is an extension o f 
(X , cs) compatible with S, then the collection o f the traces in X  of the c'-neigh­
bourhood filters o f the points ye  У is an open screen on X  compatible with S so that 
S is an LO-proximity.

P r o o f . The traces in question are c^-open filters in X, in particular, the trace 
of the c'-neighbourhood filter of x e X  is the cs -neighbourhood filter of x, hence 
fixed at x. Therefore we obtain a screen S o n I  the elements of which are cd -open 
filters.

For A ,B a X ,  ASB iff there is some y e  Y  whose c'-neighbourhood filter has 
a trace s in X  satisfying A, Be  secs. Thus <5=<5(3), and 3  is an open screen. 
By (6.14) S is LO. □
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Conversely, we can say:

(7.2) L em m a . Let S  be an open screen on X , <5=<5(S). Then there exists an 
extension (F, c') o f  the space (X, cö) such that the collection o f all traces in X  o f  
the c'-neighbourhood filters o f the points yd Y coincides with S . Such an extension 
is compatible with <5.

Proof. By (6.14), cd is a topology, and the filters s£S  are cs -open, in parti­
cular, an sd <S fixed at xdX  coincides with the cs -neighbourhood filter of x. Hence 
there exist extensions satisfying the hypotheses. By <5=<5(S), ASB  holds iff there 
is an s£<3 such tha t A, 2?£sec s, hence iff there is yd  Y  such that ydc'(A)i)c'(B).  □

Now we can prove:

(7.3) Th e o r e m . For a TP-proximity Ő on X, the following statements are 
equivalent:

(a) S is an LO-proximity,
(b) There is a J \  -reduced, compact extension compatible with 5,
(c) There is an extension that is an Sx-space and is compatible with S,
(d) There is a free extension compatible with <5,
(e) There is an extension (Y, c') compatible with 8.

Proof. (a)=>-(b): Let S 0 denote the collection of all minimal d-compressed 
filters. By (6.13) and (6.16), ®„ is an open screen such that <5 =  <5(®0). Define, for 
xdX,  s(x) to be the cs-neighbourhood filter of x, and choose a set Y zdX  such that, 
to  the elements y d  Y —X, we make correspond bijectively the free elements of ®0; 
let s(y)£S0 be the filter corresponding to y. Consider the strict extension (Y, c') 
o f (X, cs) obtained from the trace filters s(y).

If x,yd.Y, x ^ y ,  y d Y —X,  then s(x) and s(y) are distinct elements of ®0 
(cf. (6.14)) so th a t neither s (x )c s (y )  nor s (x )n s (y )  can hold. Hence (T, c') 
is a 7\-reduced extension of (X, cs ). By (7.2), (F, c') is compatible with S.

We show th a t (F, c') is compact. Let u be an ultrafilter in F, s'  the ^-neighbour­
hood filter of u, and s = s'\X. Then s is <5-compressed. In fact, if AÖB, then 
с, (у4)Пс, (В) =  0, hence either Y —c'(A) or Y —c'(B) belongs to u and to s', 
consequently either X —A u X —cs(A) or X —B^>X—cd(B) belongs to s. By 
(6.12) there is a point ydY  satisfying s(y)czs. If G is c^-open and y£s(G), then 
G g s(y )cs , hence there is a c'-open set G' such that G'd s' and G'ClXcG.  Clearly 
G 'c: s (G) and G 'du, hence á ( G ) € u , and u->-y.

(b)=>(c) is obvious because (X, c5) is an S x-space.
(b) =>(d) follows from the fact that a -reduced extension is free.
(c) =>(e) and  (d)=>-(e): obvious.
( e ) = > ( a ) :  (7.1). □
The implication (a)=>(b) is contained in [22] for separated proximities, while 

(a) =>(c) and (a)=»(d), for separated proximities and so for Tx -extensions again, are 
contained in [17] and [18]. The technique of the proof is, however, essentially different 
from ours; bunches, clusters, and clans are considered instead of filters.

The implications (c)=>(a) and (d)=>-(a) can be formulated in a slightly more 
general m anner:
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(7.4) L emma. Let (X, c) be an Sx-space, (Y, c') an extension o f (X, c) that is 
either S 1 or free, and define, for A, B e l ,

ASB iff  c'(A)C]c'(B)^0.

Then 5 is an LO-priximity compatible with c.

P r o o f . It is easy to check that 5 is a proximity on X. If x£X, AczX, x£c(A),  
then с'({х})Г\с'(А)А$. If x$c(A)  then x$c'(A)  and, if (Y, c') is Sx, also с'({х})П 
П c' (A) = 0; the same is true if (Y, c') is free because then 6/ ({x}) =  c'({a}) and 
с({х})Пс(А)=0.  Hence c —cd, and (7.1) applies by (4.1). □

Our next purpose is to examine, for LO-proximities, an extension somewhat 
similar to the one constructed in the proof of (a) =*(b) in (7.3).

(7.5) L emma. For any LO-proximity S on X, let S x denote the collection of 
all b-open, д-compressed filters. Then ®x is a screen such that <5=<5(®x).

P r o o f . If ® and ®0 denote the sets of all ^-compressed and all minimal <5-com- 
pressed filters, respectively, then © „ c S jc S  by (6.16). From (6.11) and (6.13), 
it follows easily that <5X is a screen and <5(S0) =  t>(S1) =  d (S ) =  (5. □

(7.6.) L emma. Let Ő be an LO-proximity on X, and (Y1, cx) be a strict exten­
sion o f (X, cd) such that the collection o f  the traces in X  o f  the c[-neighbourhood 
filters o f  the points y d Y x — X  coincides with the collection o f all free elements o f 
S x, the set o f all b-open, b-compressed filters. Then (Tx, cf) is a compact, free  ex­
tension compatible with b.

P r o o f . By (7.5) and (7.2) (Y1,c[) is an extension compatible with b. Clearly 
it is a free extension. It is compact, too. In fact, we can argue in the same way as in 
the proof of (a)=>(b) in (7.3), replacing (У, c') by (Fx, cx), and with the modification 
that s is a d-open, <5-compressed filter, hence s =  5 (y) for some Tx. □

The extension described in (7.6) plays a role in a theorem on extensions o f maps. 
Let us first observe:

(7.7) L emma . Let Z,  X  be topological spaces, Z x an extension o f  Z , Yx a 
strict extension o f X, f : Z-*-X continuous, and suppose that, for zdZx — Z  and the 
neighbourhood filter x>(z) in Zx o f  z, the neighbourhood filter in X  o f f  (t> (z)[Z) 
coincides with v' (y)\X where t>'(y) is the neighbourhood filter o f some point yd  Yx. 
Then there exists a continuous extension g: Z 1-*Y1 o f f .

P r o o f . The condition assumed for z £ Z 1—Z  is fulfilled for zd Z  a s  well; in 
fact, by the continuity of f  /(o(z)|Z)->-/(z) so that the neighbourhood filter in X  
of /(o (z ) |Z ) coincides with i/( / (z))\X. Define g{z)=y  if the neighbourhood 
filter of /(u (z )|Z ) is v'(y)\X, y d Y x, in particular y = /(z )  for zdZ.  Then g : Z x—Yx 
is an extension of / .

g is continuous at any point z0€Zx. In fact, let Gx c X  be open in X, g(z0)d 
€ (C?i) =  {yd Tx: Gfi£t>, (y)|Tr}. Then x1(G1) n Z —Gx contains a subset of the form 
/(G ) where G = U f \ Z  and U is an open neighbourhood of z0 in Zx. Hence zd U 
implies G£o(z)|Z, G1$D/(g(z))|Jf, g(z)£.yx(Gx). Since the sets j x(Gx) constitute a 
neighbourhood base of g(z0), g  is continuous at z0. □
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A Statement similar to the following one can be found in [9], (3.7):
(7.8) Theorem. Let 5X, S be LO-proximities on Z  and X, respectively, (Z 1, c 1) 

an extension compatible with dx, (F t , c\) the extension described in (7.6), and f:  Z —Á 
(ßx, 5)-continuous. Then there exists a (cx, c[)-continuous extension o f  f .

Proof. For z d Z x—Z, the trace s in Z  of the -neighbourhood filter of z is 
(>!-compressed by (7.1) and (6.9). Hence / ( s) is <5-compressed, and the ^-neighbour­
hood filter of / (s) is still 3-compressed by (6.15); it is also сг-ореп, hence it coin­
cides with the trace in X  of the ^-neighbourhood filter of some y £ Y x. Thus (7.7) 
applies. □

We add some easy remarks on separation properties of compatible extensions. 
Let us say that a screen S  is independent if sx, s2€ S , %c s, implies s1 = s2. A 
topology is Sx iff the neighbourhood filters constitute an independent screen.

(7.9) Lemma. Let (Y, c') be a strict extension o f  the topological space (X, c). 
Then the traces in X  o f the c'-neighbourhood filters constitute an independent screen 
on X  iff c is an S x-topology.

Proof. For p d Y ,  let x>(p) denote the c'-neighbourhood filter of p. For p, q£ Y, 
v(p)\Xczo(q)\X iff v(p)(zv(q) because (T, cr) is a strict extension. □

Let us say tha t a screen S> on X  is disjoint iff sx, s2€ 3 , sx ^  s2 implies the 
existence of S f i  s ; such that 5 \П  5’2=0. A topology is S» iff the neighbourhood 
filters constitute a disjoint screen.

(7.10) Lemma. Let (F, c j  be a strict extension o f the topological space (X, c). 
Then the traces o f  the c'-neighbourhood filters constitute a disjoint screen iff  c is an 
S 2-topology.

Proof. Since the extension is strict, with the above notations, v(p) and и (q) 
are distinct iff и (p)\Xy---o(q)\X, and they contain disjoint elements iff n(/>)|F and 
u(g)|Z  do so. □

In spite of the fact that, for strict extensions, the properties of the extension and 
those of the corresponding screen are strongly related, it can happen that a topolo­
gical space (X, cj has two strict extensions (F;, сг) (i— 1, 2), for the screens com­
posed of the traces in X  of the «^-neighbourhood filters, S j is coarser than S 2, but 
(F x, c\ ) is not coarser as an extension than (Fa, r 2) (i.e. idx does not possess a (c2, cf)- 
continuous extension g: Y2^-Yj).

(7.11) E x a m p l e . Let W =R — {0} be equipped with the subspace topology c of 
the usual topology of R, FX =  R, F2 =  RUM  where R flM = 0 , M =  {pn: n£N}, 
N ={1,2, ...}. Let S x be composed of the c-neighbourhood filters and a filter s0

generated by the filter base r =  {£/£: e>0}, Ue — ( —s, e)—({0}UN),  A = |—: u£ n | .

Let s0 be the trace of the cx -neighbourhood filter o f 0£ Y1. Let S 2 be composed of 
the c-neighbourhood filters, of s0, and of the filters s„ where s„ is generated by the

filter base r„ composed of the sets V — j—j where V is a c-neighbourhood of — .
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Let s0 be the trace in X  of the c2-neighbourhood filter of 06T2, s„ be the similar 
trace for p„tY2- Both (Yt , c1) and (T2, c2) are supposed to be strict extensions of 
(X, c). Clearly, S x is coarser than ©2 (more precisely, ©x and S 2 are equivalent 
screens).

Now suppose that idx has a (c2, cy (-continuous extension / : Y% — Y1. Since 

/ ( s o) - 0 ,  / ( s „ ) ^ — and Yt is a T2-space, necessarily / (0 )  =  0, f ( p n) = ~ .

However, /  cannot be continuous at 06T2; in fact, С/г6s„ if — < e, hence, forn
these n, p , f { y f  Y z : Ufiv2(y)\X}, where u2(y) is the ^-neighbourhood filter of y, 
but f ( p n) does not belong to the cx-neighbourhood Ul U {0} of 06 Yx. □

8. Subcategories of Scr. We have already defined open, independent, disjoint, 
and round screens. The following definition, too, is plausible: a screen © on X  is 
said to be minimal iff every filter s6© is minimal 5(S)-compressed (see (6.9)).

(8.1) L e m m a . I f  5 is a proximity on X, then a 5-round, 5-compressed filter is 
minimal 5-compressed. Hence a round screen is minimal.

P r o o f . Let ©  be a (5-round, (5-compressed filter, s ' c i s  a 5-compressed filter. 
For 56 s, there is 5 г6® such that S 15X—S. Since 5i6sec s ' ,  necessarily 56 s ' ,  
and s ' —s. □

The converse of the first statement in (8.1) is true if 5 is an EF-proximity: then, 
for an arbitrary filter s is X, the sets S 'czX  such that S5X—S '  for some 5 6 s 
constitute a 5-round filter ([4], (6.3.9)) coarser than s, and s' is 5-compressed pro­
vided so is s ([4], (6.3.10)), hence s '= s  if s is minimal 5-compressed.

This is certainly not true if 5 is not an RE-proximity. In fact, by (6.13), the 
screen S 0 composed of all minimal 5-compressed filters is compatible with 5 while 
5 does not admit any compatible screen composed of 5-round filters ([5], (5.12)).

There are RE-proximities, too, such that a minimal 5-compressed filter need 
not be 5-round:

(8.2) E x a m p l e . Let X=co+l,  F=w , + 1, equipped with the order topology, 
Z = X x Y ,  T = Z — { ( o j , Mj)} be the Tikhonov plank with the subspace topology c, 
and, for A,B<zT, A5B iff c(A)C\c(B)=Q. Then 5 is an RE-proximity because T  
is regular. Let s denote the filter in T  generated by the filter base r =  {R(n, a):
n6®, a6t0i}, where

R(n,  a) =  {(m, fi): n -< m <  со, a < / l <  cOi).

The filter s is 5-compressed. In fact, if A5B, then с(А)Г)с(В)=9,  hence there is 
a6®i such that, say, (со, ß)^c(A)  for сог . For every such ß, there are
mp£co and an open subset Vß of Y  such that (n, y)<(A for mß<n-<(o, y€_ Vtt. Define 
Um= U {Vß: mp = m}. Since {ß£col : a^ß-cco^  is countably compact, finitely many 
sets Um. cover it, and R(n, а)Г\А — 0 if for every i.

By (6.12) there is a minimal 5-compressed filter s0c s .  s0 cannot be 5-round. 
In fact, by [5], (8.1), (8.4), and (3.9), the 5-round, 5-compressed filters coincide with 
the c-neighbourhood filters, and s does not converge to any point of T. □
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It is easy to show now that, if S is an LO-proximity on X, then a (5-open, Ő- 
compressed filter need not be minimal ^-compressed (i.e. the converse of (6.16) 
is not true): let X =  R. 5 = SC for the usual topology c of R, G= (0, l ) c l ,  r =  
= {G — F: FaG, F=c(F)}.  Then r is a filter base; let u be an ultrafilter finer than 
r, and s the c-neighbourhood filter of u. Clearly u is ^-compressed, by (6.15) so is s, 
moreover, s is c^-open. However, s is no t <5-round, because G£s, and S S X —G 
implies c (S )c G ,  hence G —c(S)£s, S ^ s .  Since <5 is an EF-proximity, s is not 
minimal ^-compressed.

In order to introduce a further type of screens, let us say that a screen S  on I  
is ascending iff s£<3 implies s'£® for any filter s ' in X  such that s c  s'.

(8.3) L emma. I f  3  is an arbitrary screen on X, then the collection o f  all filters 
s ' in X  that contain some s£<3, is an ascending screen S “ on X  equivalent to 3 . 
3  is ascending iff  3  = 3 “. A screen 3 '  is finer than 3  i f f  3 'c z 3 a, 3  and 3 ' 
are equivalent i ff  3 “ = 3 '° .

P r o o f . Obviously S c 3 “, hence 3 “ is a screen on X, and it is ascending by 
definition. By S c S “, S  is finer than 3 “, and clearly 3 “ is finer than S . The remain­
ing part is obvious. □

Let us denote by Oscr, Iscr, Dscr, Rscr, Mscr, Ascr the full subcategory of Scr 
the objects of which are the open, independent, disjoint, round, minimal, ascending 
screens, respectively. Since some of these types of screens are defined with the help 
of properties of the induced proximity, it is useful to study the behaviour of the 
functor F ( 3 )= S ( 3 )  with respect to the operations g_1 and sup.

(8.4) Lemma. I f  3 '  is a screen on X, g :Z-*X ,  3 = g ~ 1(3'), á ' =  á(S ') , 
(5 =  <5(S), then ö=g~1(ő'), consequently cd=g~1 (ce.).

P r o o f . For A,B<zZ,  ASB holds iff A, B6secg-_1(s') for some s '£ S ' 
((6.7), (6.2)), hence iff g(A), g(B)£se cs ' for some s '€ S ',  i.e. iff Ag~1{6')B by
(3.4). The second part follows from (3.10). □

Unfortunately, if 3 t is a screen on X  for /£/, S  =  sup {3; : /€/}, 
general,

ő(3)  X  supProx{<5(Si): ifJ}-

then, in

(8.5) E xam ple. Let Z = T = R , Z = X x Y ,  letpy a n d p 2 denote the projections 
from Z  onto X  and Y, respectively, let 3 '  be the screen on X = Y  composed of all 
neighbourhood filters with respect to the usual topology c of R, <3k=Pk1(3'), 
S  =  su p { S 1, S 2}. Clearly P0(3')Q iff c(P)0c(Q)x&.

Now let
A =  {(x, x): x€R}, В = {(x, y): x, y€R, |x - y |  £  1}.

Then AS В for <5=6(S). In fact, Aő В  would mean, by (6.7), (6.2), (6.4), that there 
are d(x í) and o(x2) (where u(x) denotes the c-neighbourhood filter of x£ R) such 
that every finite intersection of the elements of p i 1(d(x1) ) U ^ 1(o(x2)) meets both 
A and B. However, this would imply that every neighbourhood of (xi, x2) with 
respect to the Euclidean plane topology of Z  meets both A  and B, a contradiction.
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At the same time, AS'В  for (5' =  supprox {<5,, <52}, Sk=S(<3k). In fact, if
m n

A = \J Ai, B = \JB j ,  then at least one of the sets At is unbounded; choose zx, z2dAh
1 l

|xx —x2|> l  for zk = (xk, xk). Then (xx, x 2)dB, say, (xx, x2)£Bj , so that AiSkBj 
for k = l ,  2; indeed, we have Au Bjdsec pk 1(v(xk)). □

The validity of a weaker statement is the subject of the following problem: 
let be a screen on X  for i£l, <» =  sup {S,: i'G/}, <5; =  (5(<5;), ő = ő(S) ,  q  =  caj, 
c=cs, and c '=supcl {сг: /6/}; is it always true that c' = c l  The following example 
shows that the answer is negative in general.

(8.6) E xample. Let A= R-, q be the point (0, 0)6 A, and let К  denote the circle 
with radius 1 and centre q, i.e. K = {x d X \  |x| =  1} where we use vectorial nota­
tion. For xdX, udK, e=-0, let

V  (x, u, e) =  {x + r u : 0 á  r  <  «},

and let s(x, u) denote the filter in X  generated by the filter base {V(x, u, e): s >0}. 
Define S ' to be the screen on X  composed of the filters s(x, u) (x£X, udK).

Now consider Y = X x X  with the projections px and p2, and define <5k= 
=PkXiß ')  f°r k =  1 ,2, S  =  sup {Sx, ®2}, Sk=S(Qk), <5 = <5(S), ck = cSk, c=cs, 
c '= supci {cj, c2}. We show c Xc.

Define, for this purpose,

A - {(_q-\-\u — v\u, q + \u — v\v)ZY: u, vdK, и ^  r}.

Then (q, q)$c(A). In fact, a filter s£<5 is generated by the finite intersections of 
the elements of sxU s2 where skdQk. If (q,q)dc(A) were true, then there would 
exist u, v£K  such that

Pi 1 (V (?, «, *0) П p2 1 (V (q, v, в)) П A X  0

for every s>0. However, this is not true if u—v or e < |u — v\.
On the other hand, (q, q)dc'(A). In order to see this, we have to show that,

n
whenever A = \J Ah ndN, there is an i such that (q, q)dc1(Ai)r\c2(Ai), i.e.

l
(cf. (8.4)) there are u ,v £ K  suchthat

Pi (A,)£sec s (q, u), p^AJdsec s(g, v).

Assume this is not true for some representation A={J  A t . Then, for every i, either
1

Pi(T;)({ sec s(t/, u) for each ud K, 

p2(At) 6 secs(q, v) for each vdK.
or

Let В and C  denote the union of the sets A t of the first and second type, respectively. 
Then A=BU C,  and

Pi(В) $ sec s(q, u), p2(C)<{ sec s (q,v)
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for u,v£K.  Hence there is a positive valued function / : K-»(0, 1] such that

q + rufyp fB)  for 0 S  r < /(u ) ,  

q+rv$Pt(C)  for 0 ^  r <  f(v).

Now if u,vZK, 0 < r = |u —v\, and /(u )> r ,  f ( f i )>r,  then (q+ru, q+rv)£A, 
but this point can belong neither to В  nor to C : a contradiction. Hence, for a given 
u£K, v£K  and \v—u\<f(u)  imply f (v )-^ \v—u\ i.e. lim f { v ) = 0. From the

V -*-U

compactness of K, we easily see that f ( u )  = 0 with an exception of countably many 
values of u, a contradiction again. □

A positive result can be obtained by restricting the class of the screens involved:

(8.7) L emma. Let <St be a screen on X  for i£ f such that, for each x£X, there 
is a single filter s6<5г fixed at x, (5 =  sup {S; : /£/}, <5г=<5(3(), 5=ö(Q), ci=cSi, 
c = cs , c' =  supa  {cÉ: i£I}. Then c' =  c.

P r o o f . The case 7=0 is obvious. Assume 7 ^ 0 . Since S, is coarser than 3  
for every i£I, dt is coarser than <5, ct is coarser than c, and c' is coarser than c 
as well ((6.8), (3.13)). Hence x£c(A)  implies x€c'(A).

Suppose x$c(A).  Then a filter s€<5 fixed at x  satisfies A cfsec s. Now it is 
clear that there is a single filter s € 3  fixed at x, namely the one generated by the 
finite intersections of the elements of (J % where s f i  З г is the unique element of S ;

г erП
fixed at д:. Hence Л П П = 0 f° r suitable sets Sk€$ik, ikdl. Define Ak = A —Sk;

ln
then A = \J Ak, and x$c ik(Ak) because si(c is the unique element of 3 ifc fixed at x. 

1
Thus x$c'(A).  □

Let us say that a screen 3  on X  is unipunctual iff, for x£X,  there is a single 
filter s £ 3  fixed at x.

In order to obtain a positive result concerning the problem discussed in (8.5), 
we need another class of screens; observe that S j and S 2 are unipunctual in (8.5). 
We say that a screen 3  on X  is saturated iff it is composed of all <5(S)-compressed 
filters; such a filter is ascending.

For ascending, in particular, for saturated screens, the construction of sup is 
very simple:

(8.8) L emma. I f  S f is an ascending screen on X  for L L /S ,  then

sup { 3 (: i£ 7 } =  П S l ­
ier

P r o o f . Denote by 3  the sup a t the left hand side. Then s £ S  implies, for 
i£I,  the existence of SjGSj such tha t s ;c:s, so that s i  3 ; for every i. Conversely, 
s£ З г for each i implies that s is generated by the finite intersections of (J зг pro-

• er
vided Si=s for every i. □

(8.9) C o r o lla r y . I f  <St is an ascending screen on X  for idlAfi,  then sup {Зг: 
/67} is ascending. □
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(8.10) Lemma. Let S f be a saturated screen on X  for id I-/-ft, S  =  sup {3; : 
id I}, ői = ő(&i), <5 = 0(3). Then d =  supProx {d,: /€/}, йяй? 3  is saturated as well.

Proof. Denoting by S' the sup at the right hand side, clearly S' is coarser than 
S by (6.8). A  (5-compressed filter is <5;-compressed for every i, hence it belongs to 
Sj by hypothesis, and also to 3  by (8.8). Hence 3  is saturated.

A d-compressed filter is d'-compressed. Conversely, a d'-compressed filter is 
(5;-compressed for every i, hence it belongs to 3  and it is <5-compressed. Therefore, 
(5-compressed and d'-compressed filters coincide. By (6.11), S — 5'. □

Let us denote by User and Sscr the full subcategories of Scr the objects of which 
are all unipunctual and saturated screens, respectively.

(8.11) Lemma. I f  3 '  is an open, or disjoint, or round, or unipunctual screen on 
X, g:Z->-X, then so is S = g _1(3').

Proof. For s '£ S ', let s be the filter in Z  generated by g -1 (s') (provided the 
latter is a filter base).

If s 'is  d(S')-open, Sd s , then S^>g~1(S')  for some S 'd  s', and S ' ZD Sid s' 
for some d(S')-open Si. By (8.4) g“ 1^ )  is d(S)-open,

If s; is generated by g_1(s,0, s,'€S' for /= 1 ,2 , and s1^ s 2, then s í^ s á . 
If S 'i s  disjoint, thereare Si d s( suchthat Clearly g_1(d’i)n g _1(5,j) =
=  0 so that 3  is disjoint.

If s' is d(S')-round, Sd s, then S,3 g _1(5") for some S'd*' ,  and 5 ^ ( 3 ') А — S '  
for some S j^ s '. By (8.4) again, g~1(S'1)0(<Z)Z-g~1( S ' ) z ) Z —S  so that s is 
d(S)-round.

If s is fixed at z£Z, then clearly s' is fixed at g(z)dX, hence both s' and s are 
uniquely determined. □

(8.12) Lemma. I f  every 3 ; is an open, or disjoint, or round, or unipunctual screen 
on X  for idl, then so is 3  =  sup {Зг: id I}-

Proof. The case 7=0 is obvious. Assume 7^0 .
If sd<3, let s f  3 ; be chosen such that the finite intersections of the elements 

of U Sj generate s. 
mi n
If each S i is open, S d s, S o f |  Sk, Skd 5ik, ikdl, then we can choose d (S ;J -

1
open sets S'kd s ik such that Sk Z )  S i . Clearly Si  is d (S)-open since d (3 1[t) is coarser

П
than d(S), hence f) S'ka S  is d(S)-open as well and it belongs to s.

1
If each S i is disjoint, let s ' be generated by the finite intersections of (J s,',

i€/
s i€S i, and s ^ s ' .  Then s ^ s i  for at least one /, hence there are S d sf, S 'd s i  
suchthat iSn5" =  0. Clearly Sd  s, S'd s' so that 3  is disjoint.

The case of round screens is discussed in [5], (7.10). The argument for the case 
of unipunctual screens is contained in the proof of (8.7). □

(8.13) T heorem. The categories Oscr, Dscr, Rscr, User are bireflective subcate­
gories o f Scr and o f every larger full subcategory o f  Scr, and they are strongly topo­
logical.
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Proof. (0.2), (8.11), (8.12), (6.6). □
Instead of (8.11), a weaker statement can be proved for the subcategories Iscr 

and Mscr:
(8.14) L emma. I f  S ' is an independent or minimal screen on X, g: Z  ->X is 

surjective, then <5 = g _1(S ') is independent or minimal, respectively.

Proof. Let s-€<5', and g_1(s-) generate st, /= 1 ,2 . If SxCSa, then 
« (^ -1(*D)-=^(«-1(*0)- Now g ( g - ' ( S ' j ) = S '  (S'czX)  implies g ^ 1 (»;)) = *;, 
hence s j c s j .  If  S 'i s  independent, we have s( =  s j , S! =  s2.

Now assume that S 'is  minimal, s '€ S ', let s be generated by g_1(s'), and let sx 
be a <5(S)-compressed filter, s, c:s. Then g(sx) generates a <5(S')-compressed filter 
si, and s i< g (g _1(s0 ) = s/- Hence s (= s ', and S f l  s' implies S'lDgiS)) for 
some S jiS j, hence g“ 1(S,')z )g _1( g ( i i ) ) 3 S x so that g_1(S")€s1, s c s j ,  finally
Sx=S. □

(8.15) Lemma. / /  S ' is an ascending screen on X, g: Z - » X  is injective, then 
S = g ~ 1(S ') is ascending as well.

Proof. Let s '£ S ' and let st be a filter in Z  such that g_1( s ')< s 1. Then s '<  
< g (g -1 (s '))< g(si) so that the filter generated in X  by g (sx) belongs to S '.  By 
g - 1(g (S ) )= S  (S c Z )  we get g -1 (g(si)) =  sls hence Si^ s - G

(8.16) L emma. I f  S '  is a saturated screen on X, g: Z —A, then, for  S  =  
= g ~ 1 (S '), S a is saturated. In particular, i f  g is injective, S  is saturated itself.

Proof. If s is a <5(S)-compressed filter, then g(s) generates a <5(S')-compressed 
filter s' by (8.4), hence s '€ S ',  and g-1 ( s ')< g -1 (g(s))-<s furnishes s£ S a. By 
(8.3), <5(S) =  5 (S a) so that S a is saturated. The second statement follows from 
(8.15). □

(8.15) and (8.16) are not sufficient for applying (0.2) or (0.3). However, we can 
prove directly the following theorem.

(8.17) Theorem. Ascr is a bi(со)reflective subcategory o f  Scr; the (со)reflection 
of S  is S a with the (со)reflector id.

Proof. By (8.3) S “ is an object of Ascr. If S '  is an ascending screen on Z, 
g: Z —X,  and g is (S' ,  S)-continuous, then it is (S ', S “)-continuous because S  
and S “ are equivalent; if g: X-~Z  and g is (S>, S')-continuous, then it is (<3a, S ')- 
continuous. □

(8.18) Theorem. Ascr is a strongly topological category with the operatoins

/ а“,с\(<5о) =  fsci (®o)a
for an ascending screen S„,

supAscriSd /£ /}  =  (supscri®;: »€/})“ 

for ascending screens S t .
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Proof. If / : X-+ Y, S 0 is an ascending screen on Y, then S = / _1( S 0)“ is 
an ascending screen on X, f  is (3 , S 0 (-continuous, and if it is (S ', 3 0 (-continuous, 
then it is ( f - ' i& o ) ,  S 0)-continuous, so (3 , S 0 (-continuous, always because 3  and 
/ _1(3 0) are equivalent. (We write / _1 instead of fs„ and sup for supScr.)

Similarly, if 3; is an ascending screen on X  for idl, then 3 “ is an ascending 
screen on X  for 3  =  sup { 3 ; : /£/}, finer than every 3; and, if S ' is ascending and 
finer than every З г, then 3 '  is finer than 3  and than 3 “. Observe that, by (8.9), 
3  =  3° if 1^0 .  If 1=0, 3 °  is the collection of all filters in X.

Since, if g: Z —T, f : I - f ,  and 3 0 is an ascending screen on Y, / _1(S 0) 
and / _1( 3 0)“ are equivalent, so are (/og)-1 (®0) = g -1 ( / -1 (©o)) and 
^ -1( / -1 (®o)e). hence by (8.3)

( / o g ) - 4 S o ) a =  g - ^ Z - H S o  y y
(both sides are equivalent and ascending), i.e.

(/°g)A"scr(So) =  gAscr (/Äscr(®o))-
Finally if 3 ; is ascending on X  for /€ /, g : Z —X  then it is easy to see again 

that both sides of the equality
g - 1((sup{8i})a)a =  (sup{g_1(S i)‘,})° 

are equivalent and ascending. □

(8.19) Theorem. Sscr is a bireflective subcategory of Scr; the reflection o f  a screen 
3  on X  is given by 3 s, the collection o f all ő (3)-compressed filters, with the reflector 
idx .

Proof. By (6.11), d(® s)= d (S ) so that 3 s is saturated. S c S s by (6.9), 
hence 3 s is coarser than 3 , and if S ' is a saturated screen on Y, f  : X-*-Y is ( 3 ,  3 ')-  
continuous, then, for a filter s f  3 s, s is d(S)-compressed, hence / ( s) generates 
a <5(3')-compressed filter s ', so sT S ' and /  is (3 s, S')-continuous. □

The strongly topological character of the category Sscr is a consequence of the 
following :

(8.20) T heorem. For a saturated screen 3 , define Т(3)=<5(3). Then F 
induces an isomorphism from  Sscr onto Prox.

Proof. By (6.11), d(3(c>))=<5 so that 3 (d ) is a saturated screen. Conversely, 
for a saturated screen 3 ,  S(<5(S)) =  S  by definition. If  / : X —Y is ( 3 ,  £ ')-  
continuous then it is (<5(3), d(S'))-continuous by (6.8). Conversely, if /  is (<5, <5')- 
continuous, and s is a d-compressed filter, then / ( s) generates a d'-compressed 
filter, hence /  is (3  (d), 3  (d'))-continuous. □

It is an attractive idea to use the results on the category Rscr for examining the 
category RE-Prox. In fact, by [5], (5.1) and (5.12), if 3  is a round screen, then d (S ) 
is an RE-proximity, and conversely, if d is an RE-proximity, then the collection 
S''(d) of all d-round, d-compressed filters is a round screen inducing d.

However, this method yields modest results only. We have e.g.:

(8.21) Lemma. I f  5' is an RE-proximity on X, g \ Z ^ - X ,  then g_1(d,) =  d 
is an RE-proximity on Z.
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Proof. (8.11) and (8.4). □

On the other hand, (8.12) (or [5], (7.10)) does not imply similar consequences 
for supProx {(5; : i f l } = 8 '  if every <5; is an RE-proximity because, taking round screens 

such that (5г= ^ ( 0 г), <5 =  sup {3; : i f f ]  will be a round screen but 8'a S(<Z) 
in general (observe that and 3 2 in (8.5) are round screens).

If we examine the relation between 8 and <Br(8), for RE-proximities S, we expect 
that F(8)=<&r(8) induces an isomorphism from RE-Prox onto a subcategory of 
Rscr. This is no t true because a map / : X-+Y  can be (8, <5')-continuous for RE- 
proximities <5, 8' on X  and Y, respectively, without being (3 Г(Ь), 0''(<5'))-continuous 
([5], (8.11)). However, we can obtain again a positive result concerning inverse 
images.

(8.22) Lemma. Let f : Z —-X, let 8 be a semi-proximity on X, and let 
S' = f ~ l (§). I f  5 is a 8-compressed or 8-round filter in X, then f ~ 1(s) generates 
(ifit  is a filter base) a 8’-compressed or 8'-round filter in Z, respectively. Conversely, 
let s' be a filter in Z, and let s be the filter generated in X  by f  (s')- I f  s' is 8'-round, 
then / “ 1(s) generates s'; i f  s ' is 8'-compressed, then s is 8-compressed; i f  s ' is 
8'-round and f  is surjective, then s is 8-round.

Proof. If  A, Bdsecs', s ' is generated by / _1(s), then f (A ) ,  /(ß )£ se c  s, 
hence / (A)8 f ( B )  provided s is <5-compressed, so that AS'B.

Now let s be d-round, s ' generated by / _1(s), and S 'd s'. Then S 'z>f ~ 1(S) 
for some Sds ,  and there is S xd s  suchthat Sj^SX—S. Then f ~ 1(S1) d f ,  and 
/ ( / - ' f f i ) ) c S x, f ( Z - S ' ) ^ f ( Z - f ~ ' ( S ) ) c z X - S  imply f - ^ S j S ' Z - S ' ,  so 
that s' is d'-round.

Conversely, let s' be a d'-round filter and let s  be generated by / (s'). Then S f  s 
implies S z } f ( S ' )  for some S ' d s', hence f ~ 1(S)z>S', f ~ x(S)k s '; on the 
other hand, S ' d s ' implies the existence of N(6s' satisfying S ' f i 'Z —S', hence 
/(SD €s, / ( S í ) 8 f (Z—S'), thus so that s) generates s '.
If s' is ^'-compressed then s is <5-compressed since /  is (8', d)-continuous. Finally 
if /  is surjective, Sds,  then S^> f ( S ' )  for some S ' d s', and S'X8 ' Z — S '  for some 
Sid s'; we have again f (S 'x)ds , f ( S i ) 8 f ( Z - S ' ) ^ X - f ( S ' ) n X - S ,  so that s is 
d-round. □

(8.23) C orollary. Let f : Z  -X  be surjective, 8 an RE-proximity on X,
<5' =  /-i(<5). Then S r(<5')=/-1( S r(<5)). □

Concerning the operation sup, the situation is less advantageous. In fact, if 
8i is an RE-proximity on X  for i f  I, then sup | З г(<5г) : г £ /} = 3  need not be of 
the form S r(d (0)). In fact, if T  is a set of cardinality oj1 (e.g. if T  denotes the Tikho­
nov plank), and  {8р. idl} denotes the family o f all possible RE-proximities on T, 
then, by [5], (8.10), there is no RE-proximity on T  such that 0 r(<5) is finer than 
0 Г(<5г) for every i.

The answer to the following questions is unknown to the au tho r:
Let Si be an RE-proximity on X  for id I, 8' = supProx (d; : i f  I).
(a) Is it true that (5' =  á (0 )  for S  = sup {0 r (<5/): f€/}?
(b) Is it true at least that 8' is an RE-proximity?
(c) Is it true at least that there is an RE-proximity 8" finer than 8' and coarser 

than every RE-proximity finer than 8'1
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A candidate for S" can be obtained in the following way. By (5.1), S' is an 
R-proximity, and by (8.7) c0. = cs for <5 =  <5(o), and, of course, <5 is and RE-pro­
ximity finer than S' by (8.12), (6.8), and [5], (5.12). Now [5], (5.16) says that, if S ' 
is the collection of all (»'-compressed, <5'-round filters, then <5 ( o ')  is an RE-proximity 
finer than S'. However, the author cannot prove that Ö (S ') is coarser than every 
RE-proximity finer than S', or, a t least, that <5 (S ')  is coarser than  S.

The relation of screens to merotopies will be discussed in the following Part III.
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METRIZATION AND LIAPUNOV FUNCTIONS. V
В. M. GARAY (Budapest)

This paper is the continuation of [2a—2d]. The problem we deal with is the 
possibility of constructing remetrizations of the phase space such that the new met­
rics describe attraction and repulsion properties of the trajectories.

An obstacle to this approach is the presence of nonequilibrium recurrent trajecto­
ries (precluding the existence of global Liapunov functions). This difficulty can be 
overcome by factorization according to Ausländer recurrence classes [4].

Now we concern ourselves with an additional obstacle. Replacing the finiteness 
condition of a previous result [3, Theorem 2.1] by local finiteness, we prove a theorem 
on the existence of metrics of Liapunov type. On the other hand, we point out by 
examples that, in general, local finiteness can not be weakened further. The dyna­
mical system defined in Example 1 has no recurrent trajectories but equilibrium 
points. Example 2 shows that the local finiteness condition can not be dropped even 
if compact isolated invariant sets are replaced by asymptotically stable equilibrium 
points.

Throughout this paper, let (X , d)  be a locally compact separable metric space. 
Given a point x e X  and a set YczX,  the distance between x  and Y  is defined as 
d{x, F ) =  inf {d(x,y)\y£Y}.  For o O ,  the set {xeX\d(x, Y)=cj  is denoted by 
S(Y,  c).

Let T : R X X ^ -X  be a dynamical system. For terminology and notations, see
[1], [2a—2d], [3]. For brevity, we say that a continuous function V: A —R + is a 
Liapunov function for a compact isolated invariant set К  if it is a strictly monotonous 
Liapunov function for К оп  A (К ) UK (К)  and in addition, it is a hyperbolic Liapunov 
function for К  on some compact neighbourhood N  of K.

Let 0= C oc C 1c:C,2cr... be a nested system of compact sets such that 
U{C„|n€N} = A’ and C „cin tC „+1, «6N.

T heo rem  1. Let K0, Klf Кг, ... be pairwise disjoint compact isolated in­
variant sets. For each n£ N assume that the set {теЩКтС\СпхЩ is finite. Further, 
assume that Km is positively resp. negatively relatively asymptotically stable with 
respect to A(Km) resp. R(Km), m£N. Then there exists a remetrization q o f  Xsuch 
that the function Vm: X —R + defined by Vm(x) =  о (x, Km) is a Liapunov function 
for Km, me N.

P r o o f . We divide the proof into three parts:

A) A preliminary remetrization. There is no loss of generality in assuming that
(1) sup {d(x, y)\x, ye  A }s3,
(2) d(x,y)=3  whenever x e K p, y e K q; p,q£N,  pXq.
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Proof. Let F =  U {jRTJmGN} and define a metric 6 on Y by letting 

rm in{3,d(x ,y)} if x , y e K p, p e N.
(*, У) -  1 3 if X£Kp fy £ K a; p, q£N,p  ^  q.

It is easy to check that F  is a closed subset of X  and ö is a metric on F  topologically 
equivalent to d\Y.  Applying HausdorfFs extension theorem for metrics [6], <5 can be 
extended to a remetrization A of X. d(x, y) can be replaced by min {3, A (x , y)}. □ 

From now on, assume that conditions (1) and (2) are satisfied.

B) Extension lemma for hyperbolic Liapunov functions (a technical lemma). 
Let K<zX be a compact isolated invariant set. It is clear that K c z X \ C , AK) but 
К П С пШ+1^& for some n = n(K)£N. (Recall that 0 =  CO.) Let L e i  be a closed 
set for which LC\(A(K)UR(K)) = &, and in addition, d(x,y) = 3 whenever xf_K, 
y d L .  Assume that К  is positively resp. negatively relatively asymptotically stable 
with respect to A ( K ) resp. R(K). Then there exists a continuous function V: X-^[0, 5] 
with the following properties:

(3) V is a Liapunov function for K,
(4) F - i(0 )= K ,  V ~ 1(5)=LU(cl(A(K)(J R ( K ) ) \ ( A ( K ) UR(K))),
(5) for each x £X ,  there holds d (x ,K )SV (x ) ,
(6) for each x Z X \ S ( K ,  1), there holds F (x )s 4 ,
(7) for each x£S(L ,  l / n ) \ S ( L ,  1/(и+1)), there holds V ( x ) ^ 5  — l/(n+l), 

n = 1,2,.. . ,
(8) for n= 0, 1, ..., n{K), there holds inf {F(A:)|x6Cn} & 5 _ l/(n (i:) + l — n).

(By definition, inf {F(x)|x€0}=°° for each real function F.)

Proof. Let N  and W\ N ^ R + be constructed as in the proof of Lemma 2.1 
o f [3]. is a compact neighbourhood of К  and IF is a hyperbolic Liapunov function 
for К  on N. W ithout loss of generality, we may assume that

N d S ( K ,  l)fl (X \C „ m ).

The stability conditions imposed on К  imply the existence of a constant c0>0 and 
of a compact neighbourhood N c f t  of if for which N  := {x£ N \ W (x) S  c0} and in 
addition, {Ttx \x£A(K) f)N ,  tsO}crjV, {Ttx\x£R(K)C)N, t ^ 0 } a f t .  Since W  is 
a hyperbolic Liapunov function for К  on N, the sets

S A(K):= {x£A(K)\W(x)  = c0} =  A(K )H dN ,

SR(K):= {x£R(K)\W(x)  = c0} =  R ( K ) O d N

are closed and for each x £ A ( K ) \ K  resp. x £ R ( K ) \ K  there exists a unique ix(x)£R 
resp. iÄ(i)eR  for which TtA(x)x C S A(K) resp. TtR(x)x £ S Rip  and in addition, the 
functions tA: A ( K ) \ K  Al  resp. tR : R ( K ) \ K -  R are continuous. In other words, 
S a w  is a section for A ( K ) \ K  and S R(K) is a section for R (K ) \K ú, both A ( K ) \ K  
and R (K )\K  are parallelizable.

Let g: [0, c0] —[0, 4] be a strictly increasing continuous function with g(0)=0, 
g(c0) = 4. Define a function V: iV->-R+ by V(x)=g(W(x)) .  It is obvious that

(3)' V is a hyperbolic Liapunov function for К  on N, and 
(4 / V~1(0) = K.

A cta  Mathematica ffungarica 50, 1987



METRIZATION AND LIAPUNOV FUNCTIONS. V 113

By a simple compactness argument, an appropriate choice of g guarantees for V 
to have the following properties as well:

(5) '  for each x£N,  there holds d(x, K )^V (x ) ,
(6) ' for each x £ d N  (observe that dNczS(K,  1)), there holds V(x)=4.
In what follows, we extend V  from N  onto X.
Observe that the sets f£[0, t]} and {Г(х|х65'Я(К), i€[0, т]}

are compact, for each t > 0. Consequently, the inclusion NczS(K, 1)П(Х\С„^К)) 
and the conditions imposed on L  imply that the sequences

i n f { ^ ( x ) | x e № ) \ / O n № ,  1 / n ) \S ( L ,  l/(«+l)))},
Sr '= M { - t R( x ) \ x t ( R ( K ) \ K ) n ( S ( L ,  1 / n ) \S ( L ,  1/(и + 1)))}, 

n— 1, 2, ... consist of positive elements and

s ^ ,4  -*■“  as n ->•“
and that

âUr ^O  for n =  0, l , . . . , n (K )
where

Гл := т Г { ^ ( х ) |х € ( ^ ( ^ ) \^ ) П  C„}, 

fk:= i n f { - t R( x ) \ x £ ( R ( K ) \ K ) n C n}.

Choose a strictly increasing continuous function h: R + -*-[0, 1) for which /i(0)=0, 

h(tA),h(t"R) ^  l - l l ( n ( K ) + l - n )  for n -  0 ,1 ,...,n(K),  
h(s”A),h (s”R) == 1 -1 /(и  +  1) for и = 1 ,2 , . . .

For x £ A ( K ) \ N ,  let V(x)=4+ h(tA(x)) and for x i R ( K ) \ N ,  let V(x)=4+  
+  й (—tR(x)). Since A(K)f]R{K)=Kc:N,  V(x) is well-defined. By (6)', we have 
obtained a continuous extension of V  onto N U A ( K ) Ö R(K).  Since /i(r) — 1 as 

V  can be continuously extended onto Z:=iV ULU cl (A(K)UR(K))  by 
setting F (x )= 5  for x £ L \J ( d  (A(K)U R(K))\(A(K)UR(K))) .

Since h is strictly increasing, (3)' and tA(Ttx ) —tA(x)—t, tR(T,x) = tR(x)—t 
imply that

(3) " V  is a Liapunov function for К  on Z. Further, in virtue of the properties 
of h, we have that,

(4) " V ~ 1(0)=K, V ~ 1(5)=L'J(d (A(K)UR(K))\(A(K)UR(K))) ,
(7) " for each x£Z f] (S (L ,  l / n ) \S ( L ,  l/(n+ l))), there holds F (x )s 5  —l/(n-f-l), 

и =  1, 2, ...,
(8) " for n = 0,1, . . . ,n(K),  there holds inf {V(x)\x£Zf)C„}=5 — 1/(и(.К) +  1 — л). 

By (1,) (5)' and (6)', we have that
(5) " for each x£Z, there holds d(x, K )^V (x ) .
(6) " for each x £ Z \ S ( K ,  1), there holds F (x )s4 .
The extension of V  from Z  onto X  can be completed now by a repeated appli­

cation of Tietze’s extension theorem. Using (1), (4)"—(1)", it is easy to construct a 
continuous extension VL of V  satisfying (4)—(7). In fact, VL can be obtained by a 
step by step extension of V  from Z( \{x£X\d(x ,  L )~ l /n }  onto {x£X\d(x, L)=l/n}  
followed by an other step by step extension onto ZU cl (X \ S ( L , l /и)), и= 1 , 2, .... 
Similarly, it is not hard to extend V  continuously so that the extension Vc: Х->-[0, 5] 
satisfies (4)—(6), (8). V(x)  can be defined as max {VL(x), Vc(x)}. □
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Let us remark a useful consequence of (7) in advance:
(9) V(x) = 5 —d(x, L) whenever d(x, Ь)Ш 1.
C) The final remetrization. We apply the Lemma for K = K m, L = Y \K m. 

The resulting Liapunov functions are denoted by Vm, m{|N.
In virtue of (5), we have that

(10) for each x i X ,  there holds d(x, Km) ^ V m(x), m i  N.
We show that

(11) for each x i X ,  there holds Vp(x) + Vq(x )^5 ,  p, q i N, p ^ q .
We distinguish two cases according as x i S ( K p, 1)US(Kq, 1) or not. If  x i S ( K p, 1), 
then x i S ( Y \ K q, 1), consequently, by (9) and (2), Vq(x)^5  — d(x, Y \ K q) =
=  5 —d(x,Kp) and the desired result follows from inequality d(x, Kp) ^ V p(x). 
The subcase when x i S ( K q, 1) can be settled similarly. Finally, if x i X \ ( S ( K p, 1 ) U  
U S (k ,, 1)), (6) implies that Vp(x)+Vq(x ) ^4 + 4 > 5 .

Now we are in a position to define q . For x, y i X ,  let
q ( x , y) =  max{d(x, y), sup {\Vm( x ) - V m(y)\ |m€N}}.

We show that
(12) for each x i X ,  there holds q ( x , Km) = Vm(x), m i  N.
In fact, using (4), y i K m implies that

в (х ,у )  = max{d(x,.y), sup {Vm(x), 5 - V p(x)\pilS,p F  m}.
Therefore, by (10) and (11), taking infimum for y i K m, (12) follows.

It is left to show that d  and n  are topologically equivalent. It is clear that q  is a 
metric on X  and that d(xn, x ) —0 whenever q ( x „ ,  x)->-0. Therefore, in order to 
prove topological equivalence, we have to show that q ( x „ , x ) ~ * 0 whenever 
d(x„, x)->-0. In the contrary, suppose there exist a sequence {x„}^czX and a con­
stant e0> 0  such that d(x„,x)-+ 0 for some x i X  but g(x„,x)>s0, n i  N. Since 
X is locally compact, we may assume that x i C n{x), {xn}^czC„M for some n=n(x). 
Combining (8) with the local finiteness condition, it follows that there is an m0 = 
= m 0(n(x), E0) i N such that Fm(z)^5  — s0/2 whenever z i C n(x), m iN ,  m = ma. 
Consequently, we obtain that m ^ m 0 implies that

Wm(xn) - V m(x)\ ^  | F m ( x „ ) - 5 |  +  | 5 - K „ W I  -
= (5-F ra(x„))+(5-Fm(*)) si e0/2+eJ2  =  £0 

for each n i  N. Thus,
£о^в(хп, x) =  max {d(x„, x), max {\Vm(x„)~Vm(x)\ |m€N, m <  m0}},

which is a contradiction for n sufficiently large. □

We now give two examples showing that the previous theorem is incorrect 
without the assumption that the sequence of subsets K0, K1, K2, ... be locally 
finite.

Example 1. Let T=({0}U { l / m \ m = l ,  2, . . .} ) x [ - l ,  l ] c R 2. Set C0=(0, 1), 
A) — (0, —1), A  =  (0, 0) and for m = l, 2, ..., set C m — ( l j m ,  1), D m =  ( l / m ,  — 1),
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Em = (l/m, 0). For m£N, let Km= C„+1ÖDm+2. Let T: RX-T— X  be a dynamical 
system satisfying the following conditions:

(C0 For each m£N, Cm is a source, D,„ is a sink.
(С0 There are no other equilibrium points but Cm and Dm, m €N.

It is clear that all conditions of Theorem 1 are fulfilled with the exception of the one 
concerning local finiteness. Assume that we are given a metric g on X  topologically 
equivalent to the usual Euclidean metric for which Vm: X ^-R + defined by Vm(x) = 
= q(x, Km) is a Liapunov function for Km on X, m£N. Since A(Km) = Cm+1 U 
U({l/(m +  2)}x[—1, 1)), we have that

min {g(.Cm+2, Cm+1), g(.Cm+2,D m+2)} — ß(Cm+2, K J  =»
>  e (Em+i, Km) = min {g(Em+2, Cm+1), g(Em+2,Dm + 2)}.

Consequently, by letting we obtain
0 =  min {e (C0, C0), g(C0,D0)} a  min {q(E0, C0), q(E0, D0)}, 

a contradiction.
E xample 2. For each N, set Tm=[l/(3m +4), l/(3w+2)]X[ —1, l ] c R 2, 

/s:m=(l/(3m +3), 0). Let ЛГ=({0}х[-1, l])UAr0UiTiUAraU .. .c R >. Let T: R x  
XA'-'-Z be a dynamical system satisfying the following conditions:

(Cj) For each m£N, is a sink with A(Km) =  int ,
(C2) The set (0}x [— 1, 1] is filled up with equilibrium points.
(C3) For each m£N, Xm is a periodic orbit.

Of course the sequence of the asymptotically stable equilibrium points K0, Ku  K2, ... 
is not locally finite. (The other conditions of Theorem 1 are fulfilled.) The failure of 
Theorem 1 can be shown easily. We leave it to the reader.

R em ark . We do not know whether the pairwise disjointness condition of 
Theorem 1 can be omitted or not. Even the pure metrization aspects of the weakening 
of this condition seem to be very difficult. Cf. [5].
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ON DIVISIBILITY PROPERTIES OF INTEGERS 
OF THE FORM a + a '

P. ERDŐS, member of the Academy and A. SÄRKÖZY (Budapest)

1. Throughout this paper, we use the following notations:
For any real number x  let [x] denote the greatest integer less than or equal to 

д:, and let ||x|| denote the distance from x  to the nearest integer: |[jc|| =min (x —[x], 1 +  
+  [x] —x). We write e2nix=e(x). The cardinality of the set X  is denoted by \X\. 
Л{п) denotes the Mangoldt symbol.

In this paper, our goal is to study the following problem: how large can | s/\ 
be if s t c { \ , 2 ,  ..., N )  and a+a' is squarefree for all a£srf, a f s d l  (See [1], 
[2] and [4] for other somewhat related results. In fact, in all these papers arithmetic 
properties of sums of sequences of integers are studied.)

We will prove the following results:

Theorem 1. For N > N0, there exists a sequence sd c  {1, 2, ..., N } such that

and a+a' is squarefree for all a f s4, a f  sd .

Theorem 2. I f  N > N X, л / с { 1 ,  2, ..., N }  and a+a' is squarefree for all a£sd,  
a f s d  then we have

There is a considerable gap between the lower and upper bounds above. We 
guess that the lower bound is nearer to the truth. In fact, we conjecture that the 
upper bound in (2) can be replaced by N e (for all £ >0 and N=~N2 (г)) and, perhaps, 
even by (log N)c. Unfortunately, we have not been able to prove this.

By similar but slightly more complicated methods we can get analogous results 
for A>th power free numbers.

Also the following related problem can be considered: Let l ^ a i ^ a 2< ... 
. . .<aks N ,  1 <b1<b2< .. .< b i^ N  be two sequences of integers. Assume that all 
the sums

( 1)

( 2) j?/<3A3/4log N.

at + bj, 1 S i S k ,  \ = j  = l

are squarefree. Our method gives that

Id <  N 3'2+c

and we can show that kl/N-» <=> is possible, but we of course have no satisfactory 
upper bound for kl. Perhaps the following remark is of some interest: there is an
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absolute constant c so that k > c N ,  /-*-<» is possible. Here perhaps / must be less 
than log N  or (log N)c.

2. In this section, we prove Theorem 1. Let р г denote the z'-th prime number. 
Let N  be a large positive integer, define the positive integer К  by

(3)
and put

Kn  p i  <  ^ 1/2 n  p i
i = 1 i = 1

P =  П  ph
i = 1

Then by the prime number theorem we have

(4) logP  = 2  2  log/h ~  2 2  л ( п )  ~  2P k
i — l  "S i> K

so that for N-+ +  °° we obtain from (3) that

4P
(log P f  p \

hence log P ~ T  so that, in view of (4), for large N

(5) N 1'2 =§ P =  p \  p f  <  1/3 (logP)27V1/2 <  * iV1/2 (log IV)2.
i = l  1 1

Let us take all the integers n satisfying

(6) n =  2 (mod 4) 

and
(7) n ^ O  (mod pf) for i = 2,3, . . .K.

These integers lie in

к 1 к 1 к ( 1 )
П O t f - 1)  =  т  и  ( r f - 1)  =  T f ] J i - 7 >i  =  2 -Э i = l  i =  l  V Pi '

<  — p / f  ( l  — —1 = — p — 1— =  —  p  >  — p  
3 il{ г  p f ) 3 C(2) Я2 5

residue classes modulo P. Let us take the intersection of the set {1, 2, ..., N}  with
к

each of these residue classes. In this way, we get ] j  (pf—1) arithmetic progres-
i = 2

sions; let us denote the set of them by B, so that

(8) |B| =  Я ( рГ - 1 ) > т р -» =  2 Э
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Then for Л€В, clearly we have

(9) [N/F] ^  \Щ <  [7V/P]+1 (for Л ев).
If B, then n satisfies (6) and (7), so that n is not divisible by p\, .

Thus if n is not squarefree then pf\n for some K < iS n (N 112). In view of (4), the 
number of the integers и with n ^ N , p\\n (JV<i'S7t(TV1/2)) is

it(JV1/2) r  N 1 + ~  AT + ~  1 +«o 1

2 4  < 2 < 4 < ^  2 2 V 14 =«-Ж+1 LpfJ (=K+1 pf n=TK„  n n=TK +1 ( и - ! ) и

=  w 2  :— - )  = TV 1
Рк + 1-  1

TV 1 37V
Рк P log P

for TV large enough. Thus, in view of (8) and (9), there exists an arithmetic progres­
sion Л 0€В which contains less than

3JV(log/*)_1 __ 37V(log P ) - 1 TV
|B| “  Р/5 ^  5 Pl ogP

integers which are not squarefree (for TV large enough). Let их< и 2-=...<п{ be 
those integers in which are not squarefree so that

( 10)

Put и„=0, nt+1= N + l ,

15 TVt < ---------- .
P logP

M  = max |^ 0П(и;, wi+1)|,

and assume that this maximum is assumed at i—r:

M  = |Л0с (я г, лг+1)|.

In view of (5), (8) and (10), for large TV we have

N_
2P [ 4 1  =  Ш  =  2  ^ о П [ и ; , й г +  1) |  S  2  ( 1 + | ^ 0 П ( и „  H i  +  1) | )

L Г  J  i =  0 i =  0

S i ( l  + « )  = « + l ) 2 M < ( T l ^ L + l)2A 31 M N  
PlogP

hence, by (3),

(11) M  >  log P — ■^•log TV1/2 =  -y^-log V̂-

Let us write
&0(l(nr, wr+1) =  {2b, 2b + P, ..., 2b + (M- \)P} .

(Note that by (6) and Л 0€В, all the elements of 3Bn are even.) The elements of 
П(«г,и ,+1) are squarefree. In fact, if и£Л0П(иг, nr+1), then by (6) and (7),
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n is not divisible by p \ , p \ , . . . , p \ ,  and by nr<n<nr+1, it is not divisible by p%+i,
Pk + 2, ■■•’PnifN)- 

Let us put

s / = \ b , b  + P, . . . ,b  + \ ^ - \ p \ .

Then for a<Csé, a'£sd  we have а+а'С_С#0Г)(пг, nr+1) ,  so that a+a' is square- 
free.

Finally, by (11) we have

which completes the proof of Theorem 1.
3. The proof of Theorem 2 will be based on the large sieve but we shall sieve 

by squares of primes. In this section, we derive the sieve result needed in the proof.

Lemma 1. I f  M, N  are integers, N s  1, aM+1, aM+i, ..., aM+N are arbitrary 
complex numbers, we put

M  + N
S ( x ) =  %  bne(nx).

n=M +1

Let SC be a set o f real numbers for which

(1 2 )  Ц дс-х'И  S  S >  0

whenever x  and x  are distinct members o f  SC. Then

2  |5 (x)P^(< 5-1 +  7 riV )2 |h (1|2.
xd2E n

Proof. This is Corollary 2.2 in [3], p. 12.

Lemma 2. Let M , N  be integers, N s  1, and let JT be a set o f Z  integers in 
the interval [M + l, M + N ] ,  Put

(13) Z ( q , h ) =  2  1-
near

n=h (mod q)
Then for  (2 > 0  we have

(14) 2  P2 2  [z (p \  fc)— I T  = (Q2 + n N ) Z .
P*SQ h=l \ P >

Proof. Let us write
S (x) =  2  е(и°0-

Then by [3], p. 23, (3.1) we have

o s  p  l ( z ( p . 4 - 4 - ) ‘ - S l | s ( 4 - ) | .
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Furthermore, by [3], p. 24, (3.4) we have

ч
ч 2h= 1 2 ~ тd\q « 1SOS9

(a.«)=l
Putting q= p2 here, we obtain that

(16) p2 2  (z (p2, h ) -^ - z ( P, h))2 =  2  к И Г -
h= 1 V P ) ISaSp2 I V P /|(a,p)=l

By (15) and (16), we have

(17) 2  p 2 z { z ( p 2, h ) - ± í  =
p2̂ Q h=1 ' P *

p2 2  [z ( p 2, h ) ~ z ( P ,  h))'+ P 2  [ z i p , h ) - ^ \  =
h= 1 V P > ft=l V P ) )=  2  P!SQ

=  2  p!sß _____ P‘(a. p)=l

In order to estimate this last sum, we use Lemma 1 where ЭР is taken as the set of 

the fractions of the form ~ { p 2S.Q, 1 S a g / ,  (a ,p )= l )  and 2  (p2^ Q ,

I S a ^ p — 1). Then for x —- ~ t ^ ,  x ' = - ^ - £ &  (where oc1, a2= l or 2), x ^ x '
Pi Рг

we have

\\x -x  = fll #2 aiP l*-a2p\l 1 1
Pi1 pV pV-p? -  p\ip%* -  Q2

so that (12) in Lemma 1 holds with <5 — Q 2. Thus by using Lemma 1, we obtain 
from (17) that

2  f  2  l z ( p * , h ) ~ ]  S ( Q 2 + nN)  2  1 =  (Q2 + nN)Z
p2Sß h=l v P / п€Ж

which completes the proof of Lemma 2.

4. In this section, we derive Theorem 2 from Lemma 2.
Let ,г /c  {1, 2, ..., TV} be a sequence such that for all a t  s i, a 't s i  the sum 

a+a' is squarefree. Then for all p, a + a '^O  (mod p2). Thus s i  may lie in a t most 
p2— 1—- — residue classes modulo p2, hence, defining Z(q, h) by (13) (with s i  in place 

of J f  ), we have Z(p2, h) = 0 for at least p 2 p2- \ _ p 2+ \  .incongruent values
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of h. Thus the left hand side of (14) in Lemma 2 can be estimated in the following 
way:

„ , ,  ' 2
(18)

P2 (  7 Y  72
2  p2 Z [ z ( p 2,h)— ^ \  s  2  P2 2  4  =
2ä ß  A = 1  '  P > P * S Q  l S A S p 2 P

z 2 p2 + 1

Z(p2, A)=0

=  Z  5 -  2  1 =  ^  „2 2
P2^ Q  L' l^ A ^ p 2 p2S Ö  P ^

Z(p2,A)=0

72 72
4 -  2  i = 4 - ^ ( e i/2).

Setting Q=N1/2, we obtain from (18) and Lemma 2 that

^ 7 r (A r1/4)<(jV+7iA OZ

hence, by the prime number theorem, for large N  we have 

_  2(1+ ti)7V 9 TV
л (TV1'4) TV1' 4 ( i 'o g w ) '

31V3/4 log iV

which completes the proof of Theorem 2.
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ON THE CHARACTERIZATION OF ADDITIVE 
FUNCTIONS ON RESIDUE CLASSES

K. KOVÁCS (Budapest)

In 1946 P. Erdős [1] discovered the following theorem:
If a real-valued additive function is monotonic, then it is c • log n.
The following assertion can be proved similarly and seems to be known among 

number theorists, though I cannot give a specific reference.
(* ) Let q ^ 2  be a fixed natural number. If the additive function / : N-+R 

is monotonic on the residue class (1) modulo q from a point on ( n s n 0), then / (n) = 
= c\ogn  for all (n, q)= l.

In [2] we proved the following generalization of the mentioned theorem of 
Erdős:

(* *) If a function f : N ^ R k is additive and its Euclidean norm is monotonic 
from some point on, then f(r i)  = c log n with a constant vector c£Rk.

Applying (* )  and (* * ) we prove the following theorem:

Theorem. I f  a function f  : N-»Rk is additive and its Euclidean norm is mono­
tonic on an arbitrary fixed reduced residue class a (mod q) (q£N, q = 2) from  a 
number n0 on, then f  («) =  c log n for all (n, q ) = l .

Throughout the paper the following notations are used: P is the set of all pri­
mes; Pt , P^czP are infinite sets; u, v etc. are vectors in Rk; (u, v) is the scalar prod­
uct; T={n£N: (n, q)— 1}; (a)=  {n: n = a (mod q)}.

Lemma 1. I f  \ f \  is convergent on some (a), (a, q)= 1, then f ( n )—0 on T.

Proof of the Lemma. There exists a set o f primes p f  (a), such that lim /  (/;;) =  c
Í—► oo

with some constant c£Rk, because the sphere with radius |c| is compact. For all 
u€(a) we have a<p(4)+1C(a), so

c =  lim / (  f j  p2) =  lim ( 2  f(Pii) =  (<?U) +  l)c,
S - “  Í—S i  =  s

which implies c=0.
For a fixed a£(a), let Pj£(ot) be primes such that (p j, a )= \. Consider the

i+q>(q)-l
numbers tai= ]J pj. Thus ataf(d )  and 

j = i
i+i>(e)-l

l/(e)l =  IГ Ы - f ( t ai)I ^  \f(a tai)\ + 2  \f(Pj)\ -  0,
7 = 1

consequently /((a )) =  0.
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It is easy to see that / ( ( a ) ) = 0  yields /  (n) = 0 on T.
Consequence: If | / 1 is monotonic and bounded on a reduced residue class (a) 

mod q, then / ( « ) = 0 on T. So it is enough to examine the case that | / |  is monotonic 
and unbounded on (a).

Main Lemma. I f  on (a) and \ f \  is monotonic on (a), then f  (n)-
= c  log n-t-g(n) where (g(n), c) =  0 for all n £ T  and g(n) = o (log n) on T.

Proof. We proceed as in [2],
implies that there exists a 1 \с  P, such that

so we note only the different steps. \f(n )\
f(P )lim

p- pePi
-=x with |x| =  l. These

\f(p )\
primes are all in the reduced residue classes mod q and there exists at least one (p) 
containing infinitely many primes of Px with the previous property.

Let b< d, £>, í/C( 1). Take an m£N  with m b ^n 0, (m, qbd)= l and a
(mod q). Then bmp,dmp£(a) for all pGPj П(/г). By the monotonicity of | / |  on 
(a) we have | f  (bwp)| ̂  | / (dwp)\, which gives like in [2]

(f(bw), t> S  (f(dw), x), i.e. {f(b), t> == (f(d ), t).

This yields by (* )
{fin ), t) =  c ■ log n on T,

so / ( n ) = c  log n+g{n) with {g, c)—0 too, where c=cx. As in [2] (Lemmas 2 
and 3) we get that we have only one x and that g(n) = o (log n) for all primes, further 
for all squarefree numbers.

We know that g is small on squarefree numbers and we want to estimate it on 
an arbitrary n£T. First assume nffx). Take a prime m£[n, 2n\, mi{a), which 
exists for large n. By the monotonicity of | / |  we know

0 =E |/(m )|2- | / ( n ) |2 =  c2(log2m — log2n) + |g(m)|2 — |g(n)|2,
hence

|g(«)|2 S  |g(m )|2 + 0(log2 m —log2 n) =  o(log2 n).

Next, let n£T  be arbitrary. Take a prime p(z[n, 2n], pn ffa ). Then 

g{") = g{pn )-g{p ) =  o(log n),

where the first term is small because pn^ia) and the second because p is a prime.
The proof of the Theorem is continued as in [2]. The proof there is based on 

four lemmas (А, В, C, D). Lemmas A and В can be applied unchanged. Instead of 
Lemma C we use

L emma  C'. For any large r, in the interval [n, n + D], D =  er~ there are r 
pairwise coprime elements o f  T.

Instead of Lemma D, we work with
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L emma D'. I f  n ,n + j£ T  and 0 < j^q , we have

IgO+jQI = g ( n ) - - ~ -  
Y n

For an n such a j  can always be found. The proofs present no difficulties.
So the case g-+-0 on Г  contradicts g (и) =  о (log и) as in [2]. Therefore g  — 0, 

which gives g(n)= 0 on Г by Lemma 1.
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ON THE RESIDUAL PARTS 
OF COMPLETELY NON-UNITARY CONTRACTIONS

L. KÉRCHY (Szeged)

Introduction

By a celebrated theorem of B. Sz.-Nagy, to every contraction operator Г on a 
Hilbert space there corresponds a unitary operator U, closely related to T, the so- 
called unitary dilation of T. Starting from this result B. Sz.-Nagy and C. Foia§ 
have developed an effective theory for contractions (cf. [14]). If  T  is not of class 
C00 then especially two restrictions of U to certain reducing subspaces play impor­
tant roles in the study of T. These unitary operators are called the residual and * - 
residual parts of T. By their aid it could be proved e.g. that every С и-contraction 
has many hyperinvariant subspaces.

In the present paper we intend to give a systematic study of the residual parts 
and, as a consequence, to prove a reflexivity theorem for a class of contractions.

We shall deal only with completely non-unitary contractions and use their 
functional model. The model operator and the residual parts are introduced in 
Section 1. The residual part is well-represented in this model, but the »-residual 
part is not. In Section 2 we give a natural representation for the »-residual part 
too. Section 3 deals with the canonical intertwining operators between the contrac­
tion and the residual parts and provides a representation for them as a multiplica­
tion by an operator-valued function. Section 4 is devoted to the study of the weak 
invertibility of the canonical intertwiners. In Section 5 the residual parts together 
with the canonical intertwining operators are characterized as universal intertwiners 
corresponding to T. In Section 6 generalizing C n -contractions we define the class 
of quasi-Cn  contractions, and using a recent result of Bercovici and Takahashi 
we prove a reflexivity theorem for this class. This theorem partly extends the validity 
of the main result in [11]. Finally, in Section 7 our reflexivity theorem is applied 
for Cu -contractions, and the connection between the result obtained and the general 
reflexivity problem of Cu -contractions is discussed.

We shall use the terminology of [14].

1. The residual parts of completely non-unitary contractions

Let 6  and (£* be complex, separable Hilbert spaces and let us consider the Hilbert 
space L2 ((£„) ® L2 ((£) =  L2 ((£+ ® (£) of vector-valued functions defined with respect 
to the normalized Lebesgue measure m on the unit circle (Ю (the boundary of the 
open unit disc D =  {A£C: |A| <  1}). Let M  denote the operator of multiplication 
by the identical function /(A )=A  in every L2-space. Let us consider a purely con­
tractive, analytic, operator-valued function 0 : (®, (£*), where (£+)
stands for the Banach space of bounded, linear transformations mapping (£ into
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(£*. In a.e. point ££<9D the function 0  has a radial limit 0  (£)(; JS?((£, (£*) in the 
strong operator topology. This limit function, which will be also denoted by 0 :  1Ю — 

(£*)> is contractive, measurable, and so is its defect function

A: dD - = JSP(C,(£)), d (0 = (/-0(0*000)1/2
too.

The subspace Я = Я (0 ) :=  T2(Cr*)©93> where 91= (d L 2 ((£))", is reducing for 
M £ (L2(©*)ф L2((£)), hence 1/:=М |Я is a unitary operator. Let # 2((£*) stand 
for the Hardy space / / 2((£*)= V Л/"(£+. Then Я+ := /7 2((£*)®91 is invariant

műé 0
for С/, so the restriction С/+ :=Е/|Я+ is an isometry. The operator R = U +|91 is 
the unitary part of U+ according to the Wold decomposition. The isometry 
V: Т2(® )^Я, Vw=0w® Aw  intertwines the multiplications by the identical func­
tions, consequently the subspace 9Й+:=F772((£) of Я+ is invariant for U+. Let 
Рв€& (& +) denote the orthogonal projection onto §  =  § ( 0 ) := Я + © Ш1+, and 
let T = 5 '(0 )€ ^ f(§ )  be defined as the compression T:=Pe U+|§ .

One of the central results of the theory o f contractions, having developed by 
Sz.-Nagy and Foia§ (cf. [14]), states that this operator T  can be considered as the 
model of completely non-unitary contractions acting on separable Hilbert spaces. 
This means that for every 0 ,  T  is a c.n.u. contraction, and every c.n.u. contraction 
can be obtained up to unitary equivalence in this way. Furthermore, U+ and U are 
the minimal isometric and unitary dilations o f T, respectively. The unitary operator 
RT = R is called the residual part o f T.

The subspace 9Jl:= V L2((&)= V U~"$R+ of Я reduces U and so does its
n̂ O

orthogonal complement 9?*=Я0®1 too. The unitary operator Ri.̂ T=R+ = U\(i}l+ 
is called the * -residual part o f  T. Taking into account that the adjoint t/*€ (Я)
is the minimal unitary dilation of Г*6,5?(§), it easily follows in view of the geo­
metric structure of U (cf. [14, eh. II]) that

(1) Д*,г =  №-*)* and R T = (R„T*y.

2. The representation of the * -residual part

In the model introduced above the residual part of T  is well-represented as the 
range-space o f the defect function of 0 . In order to give a similar representation for 
the * -residual part of T  let us consider the operator-valued function

(2)

W: r)D -

w (0  = [

&  (<s*ee),
- А Л )  0 ( C )

0 ( 0 *  A(0

where d * (£ )= [/—0 ( 0  0 (0 * ]1/2 is the defect function of the adjoint function 0*(£):=  
:=0(O *. Let and x£(£ be arbitrary vectors. Applying the commuting
relations

(3) 0 * d * = d 0 * , 0 d = d * 0 ,
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we get that

W  (0(х*®х)Ц|,Ш(е =  ll(-4 (O * * + 0 (O x )® (0 * (O * * + 4 O x )IS ,e (g =

=  1 - 4 ( 0 * * + 0  (0*111,+II 0 * (O x * + 4 0 x ||| =  <4 (0 4 . x „ > .,-
-  2Re < 0 * (0 4 (0 * * , X ), + <0*(00 (Ox, x)Q +

+ <0 (00* (0**, x * 4  +  2Re (A ( 0 0 *  (O x , ,  *>,, +

+  < J (0 2X,*>g =  | |* J ! ,  +  ||X||! =  | |x ,0 * | | | t e ffi
holds for a.e. £®)D. Since (£ and (£, are separable spaces and fV(Q is selfadjoint, 
it follows that W (0  is a selfadjoint, unitary operator a.e. Therefore, the operator 

JSf (L2((£,)0L2(©)) of multiplication by the function W  is unitary, selfadjoint, 
and clearly commutes with /V/6 ^f(L2((£,)® L2((£)).

Let Я', Я+, ... denote the subspaces obtained by applying the transformation 
W  for Я ,Я +,..., i.e. Я '=!ГЯ , Я'+ =  ЬРЯ+ , .... Then for the operators U '= M  |Я', 
U'+ = U'\SK\, ... we have

U 's s U ,  4  = 4 ,  T 's s T ,  R ' ^ R ,  4 = 4 ,  
and the unitary equivalences are implemented by the operators W ' = И^Я© (Я, Я'),
w ; = w | я + е ^ ( я + , я £ ) ,  w0= w № & ( & & ) ,  wr= w \ m e j ? ( % w ) ,  щ ,г=
= H/ |9 l,£Ä '(9 i,, 9?0, respectively.

P roposition  1. The subspaces introduced above are o f the following form:

(4) я ' =  ( 4 Т 2( 4 4 ® 4 ( £ ) ,

(5) Ш'+ = Я 2 ((£), 9Л' = и  ((E), 
and
(6) 4  =  ( 4 L 2(4 )) - .

P r o o f . On account of (3) we can write for any functions г® L2(®*) and v^U- ((£) 
that W (u®Av)—(—AJfu+0Av)®{© *u+A2v)=AJf(—u+ 0v)® (0*u+ A ‘iv), which 
yields that
(7 )  Я ' с ( 4 £ 2 ( 4 ) ) - ® Т 2(<£).

Since for every и® L2 ((£)

(8) W V w r - 4 0 1[ 0 ]  1r -4 0  + 0 d l  rl
[ 0* AJ UH [ 0 * 0  + d2 \ W ~  [ /  г 0©w

holds, the relations of (5) follow.
For the sake of clarity let us now write M e for the operator of multiplication 

by 0 , i.e. M e£& (L 2 ((£), L2((£,)) is a contraction. Then the adjoint of M 0 is the 
multiplication by the adjoint function (M e)*=Me*, and its defect operators are 
the multiplications by the defect functions DMe = M A and DM* —M At. It is 
well-known (cf. [14, sec. 1.3]) that

= (М в Ъ мХ ®  kér M%
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is true for the defect spaces T>M& and  X)M*. Hence we obtain

(9) (d*Z,2(eU)~ =  (0 d L 2(®))_ © ker 0*. 
If  n£ker 0*, then J*m= m and  so

Гв::пои]=гл=-1о1-
We infer that
(10) Ж |кег 0 *  =  —I  |ker 0*, 

hence
(11) W (L2((£*)) z> W  (ker 0*) =  ker 0*.

On the other hand, for any vector ?>£ (4L2 ((£))“ we have

r () l  Г 0 Г 1 r  0V\
( 1 2 )

p'w uJ  =  PA av \ = [  0  ]
which yields
(13) (P*FF9t)" = ( 0 d L 2(G))-®{O},

where Pt£ ^ ( L 2 ((£*), L2 ((f)) denotes the orthogonal projection onto the subspace
L 2 (.&*)■

Since W  is unitary (6) and then (4) follow by (7), (5), (9), (11) and (13).

3. Operators intertwining T  and its residual parts

We shall consider the canonical operators intertwining T  and its residual parts, 
introduced by Sz.Nagy and Foia§, and examine how they can be represented by 
the aid of the unitary operator W . In the sequel let / >я+, Pb, P3!, l\ t ,...£ JS? (ft) 
denote the orthogonal projections onto the subspaces f t+, § , SR, 9Í+, ..., respect­
ively.

Since PVt commutes with U  we obtain R^(Pytt\b)=U PiHJ§)= P 9{tU\§)~ 
=  P9tfPb U\‘ö+  Рш Рт+ U \b= (PxJ§>)T. Hence, the operator

(И ) X  :=  P*J$<E340, 91*)
intertwines T  and its * -residual p a rt R* : XT=R+X, i.e. X  belongs to the set 
У (Т , RJ:={Q£ £?(§>, 91*): Q T— R*Q). Taking into consideration that P®i+9l* =  
=  {0}, it immediately follows that
(15) ^ ( 9 ^ $ ) э :Т* =  Т*|91* =  Р я +|91*, 

and
(16) X * £ J (R t,T * ) .

Now, we infer by (1) that the operator

(17) r : = P e |Ä € ^ (9 t .S '
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intertwines R and T:

(18) Y Z S (R ,T ) ,  
and so for its adjoint

(19) Y* = P* |$ej2?(§,5R) 
we have
(20) Y*£J?(T*,R*).

This adjoint Y* is of very simple form, namely Y * = P |$ , where P£ JZ(L2((£*)© 
®L2((£)) stands for the orthogonal projection onto the subspace L2 ((£).

On the other hand, if X ', Y ' are defined in an analogous way with respect to 
the space Я', then X ' has a simple form :

Х ( & Ж Ъ Х ’ =  p ^ b ’ = p+\b'.

Let us consider the operator

(21) f : = X 'W 0 е ^ ( ь , Ю -
Then 2  intertwines T  and R'*, and for any vector §  we have

(22) * (« © » )= /» „ [  j ] [ “ ] =  -p*[
' — A^u + Qv l

e - u + j v  1 = ( - A « + ö » ) ® o .

Now, we examine the operator

(23)
Since every vector г; £9? can be decomposed into the sum v=Y v+v', where v'f_ 9Л+, 
it follows that P9ttv= P suYv+P&tv'=XYv, hence

(24) Z  =  XY (R, R J .
Let us consider the operator
(25) Z:=W r̂ Z d f(R ,K ) .
It is immediate that
(26) 2  = Wr<ifXY =  X'W0Y =%Y.
On the other hand, since Z=WftilfZ=Z'W r=P^W\4S{, we infer by (12) that

(27) Z(0®t>) =  0t>©O, 

for every vector y£9L The adjoint of Z  is of the form

(28) Z *  =  Р*|91* =  P |9 i+€^(Ä *,Ä).

It follows that Z*=(Wr̂ Z)*=Z*n£*=Z*JV*\,!R'* =  Z*W\m'* =  PIV\9{'*. Hence, 
we conclude
(29) Z*(h©0) =  О®0*и, 
for every vector m€9I* .
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Finally, let us assume that 0  is an inner function, or equivalently that T  is of 
class C.0. Then © (£) is isometric, and so d (0 = 0  a.e. on #D. This yields that 91= {0}, 
Я = L 2 ((£*), Я + = Я 2((£*) and § = Я 2((Е *)е0Я 2((£). Since 0 ( 0  is an isometry, 
it follows that A * (£)£ ££ ((£*) is the orthogonal projection onto the subspace ker 0  (Q* 
a.e. on #D. Hence we obtain by (6)
(30) 9U =  A ,L 2(<£f =  ker 0*.

In virtue of (10) and (30) we infer H£**|9Í£ =  IFj9ÍJ= — /|91i, which implies that

(31) =  и £ * и ; =  91;, 
and by (22) that
(32) X u = W * Jf%u = - X u  = A+u 
holds, for every vector n£§.

4. Weak invertibility of the canonical intertwining operators

In the following proposition the characterizations of injectivity and quasi­
surjectivity of the operators X  and Y, introduced in the previous section, are collected.

Proposition 2. a) X  is injective i f  and only i f  T  is o f class Cx., or equivalently 
i f  0  is a * -outer function;

b) Y is quasi-surjective, i.e. it has a dense range, i f  and only i f  T  belongs to 
C .x, or equivalently i f  0  is an outer function;

c) we have

(33) ker X*  =  ker 0 * П (Я  (<£*)© Я 2 ((£*)); 

hence X  is quasi-surjective i f  and only i f

(34) ker 0 * n ( L 2(ß y  Q tf  2((S*)) =  {0};

d) we have
(35) k e rT  =  к е г 0 П Я 2((£); 

hence Y is injective i f  and only i f

(36) ker 0 П Я 2((£) =  {0}.

Proof. The statement a) is an immediate consequence of [14, Proposition II.3.1], 
which claims among others that \\Xh\\ =  lim \\Tnh\\ holds, for every й€§. TheП —► oo
statement b) follows from a) in virtue of the relation (1).

Let us prove (33). Since X —Wr^  X, we infer, using (15), that

(37) X* = X*VI%iit = X*W\W* = P » 'W \,K .
This implies that
(38) kerX * =  IF (ker X*).

On the other hand, for an arbitrary vector h€9?í  we have X*u=  (— d*n®
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@ 0*u)= 0, if and only if 0*u = 0 and However, taking
into account that A*u = u whenever 0*u = 0, we obtain that X*u = 0 exactly when 
м€кег 0 * n (L 2( ( £ J e / / 2((£J). Therefore,

(39) kér JF* =  ker 0* П (L2((f J  

and (33) follows by (38), (39) and (10).
Finally, let us verify (35). It is clear that ker Y=  SR ПЯЛ+, so we have to show

that
(40) 91П 9Jt+ = ker 0  П H  a(®).

Let us assume first that v£ker 0 П Я 2(6). Then 0v=() and v£ H 2(<&), which 
implies Av—v. Hence v=Avd4R and v=0(Bv = Vv£4ßl+, i.e. г;£91ПЯЛ+ . Let 
us consider now an arbitrary vector ифг£91 П 9Jl+ . Since ифг;£91, it follows that 
n= 0. On the other hand, ифг>£9Я+ implies O®z; =  0H'®dvv with a vector w£ 
£ Я 2((£). But here 0w  =  O results that L, =  dw =  U'£ker 0Г )Я 2((£).

The statements a) and c) of Proposition 2 together with the relations (22) and 
(27) give a generalization of [12, Theorem 10]. In the following remarks we shall 
discuss the equation (34), noting that an analogous discussion can be carried out 
in connection with (36) too.

R emark  1. First we note that the relation (34) does not imply ker0*={O} 
even if we assume that 0  is an inner and * -outer function. Indeed, we can find by 
[13, Theorem 2] an inner and * -outer function 0  such that а(Я^)^дТ> is true for 
the spectrum a (R*) of the «-residual part R ¥. For this function we have d*(0:=O 
in a.e. point ( of the set <7D\cr(R*) of positive Lebesgue measure. Hence by (30) 
we infer that ker 0*  =  Л*Т2((£!).)и  {0}, while (34) is fulfilled.

R emark  2. There is a close connection between (34) and the point spectrum 
ap(T*) of T*. In fact, let us assume that there is a non-zero function ker 0*  П 
П(L2((£+)© Я 2((£+)). Then u(Q:=u(£) (£€i)D) will be a non-zero function belong­
ing to Я 2((£+). Let us consider the expansion h„e„, hn£ H 2, of the func-

71
tion a with respect to an orthonormal basis {e„}„ of (£*. Let us form the largest 
common inner divisor й£Я“ of the inner parts of the functions h„, and define 
м16 Я 2(©+) as the product u1 = hü. Since the system of functions hhn is relatively 
prime, it follows that
(41) и,(Д) 5-í 0, for every ÄfD.

On the other hand, for the function 0~u1£H 2(&) we have

0~(O ui(O  ="M O0(D*«(D =  0 for a.e. C€dD,
and so
(42) 0  2)^(2) =  0, for every 26D.

We infer by (41) and (42) that ker 0~(X)?±{0} for every 26D, and this implies 
by [14, Theorem VI. 4.1] that <rp(T*)r>D. Therefore, if crP(T*) does not cover the 
unit disc D :
(43) <7р(Пф D,
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then (34) holds, and so X  is a quasi-surjective operator. So the preceding argumen­
tation performs a new proof for [14, Proposition II. 3.2].

However, relation (43) is only a sufficient but not a necessary condition for (34).

Indeed, let us consider the domains =  | a€D: Re A:=— - i - j  and Q2= — ß x. By

the Riemann mapping theorem there is a function h ^ H 00 such that h1(D) = Q1. 
Then h2~ — hx is also of class / / “ , and h2(D )= fl2. For j —1,2, let us consider 
the contraction h fS )  of class C10 (cf. [13, Lemma 5]), where S  denotes the simple 
unilateral shift. By the properties of the Sz.-Nagy—Foia§ functional calculus we 
can easily infer that

(44) Q j^ a p(h j(S r )d G {h j(S r )  =  Q j  (j  = 1, 2).

Let us choose purely contractive analytic functions 0  e. ((£;, (£+iJ) such that
Tj = S ( 0 j ) is unitarily equivalent to h j(S )  for j — 1 ,2 , and let us define 
0 :  D — Jz?((£ =  (£1®®2, ®* =  ®*,1®®*,г) as the orthogonal sum 0  — 0 г® 0 2. 
Then for the operator T = S (0 )  we have by (44) that a p(T*) = a p( T jy j  a p(T2) = 
— ap(h1(S)*)[Jap(hi (S)*) = D, i.e. (43) does not hold. On the other hand, let us 
assume that 0*u= 0 for a function m£L2((£*)©#2 ((£*). Then и is of the form 
и= щ ® и2, where Uj£L2((£+>; ) © / / 2((E+!j-) and 0*Uj = O for j=  1,2. Since in 
virtue of (44) er,, (T f) does not cover D, it follows by the preceding part of this remark 
that (34) is fulfilled for 0 j ,  hence u ~ 0 ( j =  1, 2). This results that u= u1®u2 = 0, 
so we obtain that (34) does hold for 0 .

We conclude this section with a simple but perhaps suprising corollary of 
Proposition 2.

C o r o lla ry  L a ) I f  X  is injective, then so is Y too. Hence T<,R* implies 
that R-<T, and so

d d
b) I f  Y  is quasi-surjective, then so is X  too. Hence R < .T  implies that T-<R*,

d
and so R<.R+.
(Here the notation T1< T 2 (T1< T 2) means that T2) contains an injective
(quasi-surjective, resp.) operator.)

P r o o f . By (1) the statements a) and b ) of the Corollary are equivalent. Let us 
prove a), so let us assume that X  is injective. Then Proposition 2/a yields that 0  is 
»-outer, which results by [14, Proposition V.2.4] that 0(C) is injective for a.e. 
CddD. Therefore (36) holds, and Proposition 2/d results that Y  is also an injection.

5. Characteristic properties of the residual parts

The following proposition states that the mapping Y  is a universal intertwiner 
between the unitary operator R  and T, and that this property together with a mini­
mality condition uniquely determine the pair (R, Y).

Proposition 3. The ordered pair (R, Y ) possesses the following properties: 
(i) JR|ker Y is o f class Cioi
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(ii) for every unitary operator G and for every mapping A (X f(G , T), there 
exists a mapping B<iJ{G, R) such that

(45) A = Y B.

Furthermore, i f  (Rx, Yx) is a pair, where Rx is a unitary and Y1£ X (R l , T), such 
that (i) and (ii) are valid with ( R ^ Y f )  in place o f  (R, Y), then Rx is unitarily equiva­
lent to R and

(46) Yx =  Y В

with an invertible transformation B £ J { R X, R).

P r o o f . Let R0 denote the unitary part of the isometry P|ker Y. Since the sub­
space Я + © dom R0 is invariant for U+ and contains § , taking into account that 
U+ is the minimal isometric dilation of T, we infer that dom R 0= {0}. Hence, 
the pair (R , Y) satisfies (i).

Let us consider a unitary operator G and a mapping A^.Jr(G, T). By the 
Lifting theorem (cf. [14, Theorem II.2.3]) we can find an operator B(f J ( G ,  U+) 
such that
(47) A = Pe Bg.

Since, for every positive integer n, ran7?0= ran  (/?0G")=ran (£/" B tí)= U \  ran B0, 
it follows that

(48) ran7?0c9L

(47) and (48) show that the operator B £J(G , R), obtained from B 0 by restricting 
its final space to 91, fulfills the relation (45).

Let us now assume that the statements (i) and (ii) are true for the pair (Rlt Yx). 
On account of (ii) there exist operators B £Jr(R1, R) and B fi ,f{R , R f)  such that

(49) YX = Y B  and Y = Y 1B1.

From (49) it readily follows that Y (I—BBx)= 0  and Y1(I—B 1B)=0, i.e. 
ran ( I -  BBX)~ c k e r  Y  and ran (I—B XB)~ c k e r  Yx. Applying (i) we can infer that

(50) 7?|ran ( / — BB^~£C10 and 7?^ran ( I—BxB)~dCw .

However, since I —BB1̂ {R}' (=  the commutant of R) and I —B xBd {7L}', [9, 
Lemma 5] yields that

(51) 7?|ran (I~B B 1)~dCn  and AJran ( f —Bi B)~dC11.

The relations (50) and (51) result that BBX= I  and B XB=I, i.e. the mapping В  is 
invertible. Since similar unitary operators are unitarily equivalent (cf. [14, Propo­
sition II. 3.4]), the proof is complete.

On account of (1) we can obtain from Proposition 3 an analogous characteriza­
tion for R* and X.

P roposition  4. The ordered pair (7?*, X ) satisfies the properties
(i) 7?í|ker X*£C10’,

Acta M athematica Hungarica 50, 1987



136 L. KÉRCHY

(ii) for every unitary operator F and for every mapping C íJ (T ,  F), there 
exists a mapping F) such that

(52) C =  DX.

Moreover, i f  (R2, X2) is a pair, where R2 is a unitary and X .f , f(T , R2), suchthat 
(i) and (ii) hold with (R2, X 2) in place o f  (R*, X), then R2 is unitarily equivalent to 
R * and

(53) X 2 = D X  

with an invertible DdJ^(R+, R2).

Remark 3. Applying the argumentation used in the proof of Proposition 3 it 
can be shown that the operator В in (45) is unique. Hence the operator D in (52) 
is also uniquely determined.

As consequences of the preceding proposition we can obtain the following 
statements.

C orollary 2. The three conditions below are equivalent:
(i) T-< F, for some unitary operator F;

(ii) X  is injective;
(iii) T  is the quasi-affine transform o f  R+: Г«< R+.
(7XR* means that . f (T , Ilf) contains a quasi-affinity, i.e. an injective opera­

tor with dense range.)
Proof. The condition (i) implies condition (ii) by the statement (ii) of Propo­

sition 4. On the other hand, the statement (i) of Proposition 4 together with the 
fact that the simple unilateral shift is the quasi-affine transform of the simple bilat­
eral shift (cf. e.g. [9, Example 1]) give the proof of the implication (ii)=^(iii). Finally, 
(i) is a trivial consequence of (iii).

d
Corollary 3. I f  F  is unitary and T ^ F ,  then F is unitarily equivalent to 

an orthogonal summand o f  R*.
Proof. The statement follows from Proposition 4 (ii) and [5, Lemma 4.1].

From the two previous corollaries we conclude

Corollary 4. I f  T -<F, for a unitary operator F, then T < R ^ and F is 
unitarily equivalent to an orthogonal summand o f R*.

R emark 4. If T  is o f class Cu , then the unitary operator F in Corollary 4 must 
be unitarily equivalent to R* (cf. Proposition 2 and [14, Proposition II. 3.4]). How­
ever, in general F  is not unique. For example, let us consider the contraction T = S (&), 
where dim(£ =  0, dim (£* =  1 and 0 :  D — i f  ((£, (£*) is identically zero. Then 
§>—Н 2((&^)=Н2, i.e. T  is the simple unilateral shift, and ft = 9l* =  L2((£*) =  L2, 
i.e. R f is the simple bilateral shift. For any Borel subset ccczdD of positive Lebesgue 
measure, T  is a quasi-affine transform of R JyaL2. Hence, in this case F  can be 
chosen for any non-zero orthogonal summand of R*.

By the aid of (1) we can obtain the duals of Corollaries 2—4.
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C orollary 5. The following three conditions are equivalent:
d

(i) G-<T, for some unitary operator G;
(ii) Y is quasi-surjective;

(iii) R < T.

C orollary 6. I f  G is unitary and G-^T, then 
an orthogonal summand o f R.

C orollary 7. I f  G-<T for a unitary operator 
unitarily equivalent to an orthogonal summand o f R.

6. Quasi-Cn contractions

By a recent result of Bercovici and Takahashi there is a close connection be­
tween the injectivity of the canonical interwining operators X, Y and the reflexivity 
of T = S (0 ) .  Namely, they proved in [4] that if . f (T , Q) contains a quasi-surjective 
operator for a non-zero c.n.u. isometry Q, then T  is reflexive (cf. [7, ch. 9]), even 
more the set Alg Lat TczST (§) of operators leaving invariant every invariant sub­
space of Г  coincides with the set H°°(T)={u(T): u£H°°} of functions of T :
(54) Alg Lat Г = Я “ (Г).

The assumption above is clearly equivalent to the one that J (T , S ) ^  {0} where S  
stands for the simple unilateral shift.1 By Proposition 4 this happens exactly when X  
has no dense range. Considering also adjoints, the previous result can be stated 
in the following form :

If
(55) kér X*  {0} or kerT  ^  {0}, 

then (54) holds.

Now we are going to deal with the case when (55) is not fulfilled. In particular, 
by Proposition 2 and [14, Proposition VI.3.5] this happens if T  is of class Cu . 
Here we shall consider a more general class of contractions.

D e fin itio n . The contraction T = S (0 )  is called quasi-Cn , if

(56) T  is of class C l5 i.e. 0  is outer, 
and
(57) 0 ( Q  is a quasi-affinity for a.e. C € d D .

The class of quasi-Cn  contractions will be denoted by QCU.
This definition can be contrasted with the notion of contraction weakly similar 

to unitary. Namely, by [10, Theorem 4] T  is of the latter type exactly when T fC lx 
and 0 (Q  is invertible for a.e.

G is unitarily equivalent to 

G, then R < T  and G is

1 When I  was writing this paper I knew only a preliminary version of [4] written by Takahashi. 
In the final version the assumption already is that f ( T ,  5)?í{0}.
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It is clear that Cxx is a subclass of QC1X. However, there exist quasi-Cu  contrac­
tions which are not of class C1X. The following example is a modification of the oper­
ator constructed in the proof of [12, Proposition 7]. Let {<?„}"=1 be an orthonormal 
basis in the Hilbert space § l5 and let Tx€£t?(9)i) be the unilateral, weighted shift 
defined by Tl en=wnen+1, where the weight sequence {w„}“=1 consists of non-zero 
numbers, with |w „ |^ l, and tends to zero. Let G€ i?(§>2) be a bilateral shift of

infinite multiplicity, and let us consider a decomposition § 2— ® C"931, where

dim9Jl =  K0- Let us choose a non-invertible c.n.u. Cu -contraction (9Л)
(cf. [3]), and let r 2£J2? ( § 3) be the product T2 = GD, where £>£«£?( $ 2) is the 
diagonal operator defined by D\Gnffl = GnAG~n\Gn4)R (n=0, ±1, ± 2 , ...). By 
[2, Lemma 3.2] we can find a vector /69Л such that

j l ,

is an injective contraction. Here § 1,1 denotes the subspace spanned by ex in § l5 
and f<8>ex£&(&ltl , 5Ш) is the operator defined by ( f® e 1)h= (h,e1)f, for every 
Ы5)х>1. Finally, let TdJi? (§  =  § i® § 2) be the operator whose matrix is

(58)
Г Tx ex ® f  I
l o  t ; J

in the decomposition §  =  ® § 2 •
It can be easily verified that Г  is a c.n.u. contraction belonging to C .{ \C 1X. 

Let us consider the regular factorization 0 T—0 20 X o f the characteristic function 
of T  corresponding to  the invariant subspace (cf. [14, eh. VII]). Since Tx and T2 
are of class Coo and CX1, resp., we infer by [14, Proposition VI. 3.5 and Section V. 3] 
that 0 i  (0  and 0 2(O are quasi-affinities in a.e. point ££<9D. Hence 0 T(Q is also 
a quasi-affinity for a.e. ££0D. Therefore, Г is a quasi-Cu  contraction which is not 
of class Cn .

An argumentation similar to the previous one results that the operators Tx

and T2 occurring in the * j-type decomposition T = | q1 * j of a quasi-Cn

contraction T  are of class C00 and Cxx, respectively.
On account of (27) and (29) we can see that (57) is true for the operator-valued 

function 0  whenever the operator Z£ J  (R , Rx)  introduced in (23) is a quasi-affinity. 
Hence, in this case the residual and * -residual parts are unitarily equivalent:

(59)

Furthermore, an application of Proposition 2 yields that if Г is a quasi-Cn  contrac­
tion, then X  is quasi-surjective and Y  is a quasi-affinity, i.e.

(60) R < T < R Jf.

Corollary 4 shows that T  is quasi-similar to a unitary operator, i.e. T£C 1X, if and 
only if X  is a quasi-affinity.
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We have proved in [11] that if T = S {0 )  is a contraction weakly similar to 
unitary, and

(61) j  log |[0ü|](í, dm >  — oo,
3D

for a function then (54) holds validity. Takahashi noticed that [11, Lemma 7]
is true in general for every c.n.u. Cn -contraction, so our proof for [11, Theorem 5] 
results (54) whenever T = S (0 )  is an arbitrary Cu -contraction satisfying (61). 
Now we further generalize this statement by taking T  from QCn  instead of Си 
and replacing the condition (61) by a weaker one.

T heorem  1. Let T —S(0 ) be a quasi-Cn  contraction. I f  there exist functions 
udH 2(Q;+) and ve(A L2((£))~ such that

(62) j  log j] — A^uX  0y|(j+ dm >■ — °°,
3D

then

(o3) Alg Lat ТП {T}" = Я ~ (Г ).
Since the bicommutant {T}" of every Cn  -contraction T  is a reflexive algebra 

(cf. [15]), this theorem is indeed a generalization of [11, Theorem 5 (iii)].

P r o o f . Let u e H 2(i&f) and (4L2((£))' be functions satisfying (62). Let us 
consider the decomposition u® v= h+ Vw  of the vector m® «O y+ , where h e§  
and Vweffl+ (w £H 2(&)). On account of (3) and (22) we obtain that WXh = Xh — 
= — A ^u+ 0v. Since W  is a unitary-valued function, it follows that \\(Xh)(OIIíê oce =  
— Il(—d*M-H9r>)(Q||e,, for a.e. Hence, by the assumption we infer that

(64) J  log 1 X h \Ste(E dm >  -
3D

Let us form the non-zero cyclic subspaces 5Ш =  \f Tnh and 511= V R"Xh.
n̂ O n̂ O

In virtue of [11, Lemma 9], (64) implies that Ä*|51t is of class C10, i.e. it is a unilat­
eral shift. Since the operator X \ f f l e ^  (T|50i, i?J5ft) has dense range we conclude 
by [4] that

(65) Alg Lat(r|5fll) -  Я ” (Г|5Ш).

Let us choose now an arbitrary operator Ae Alg Lat ТГ\{Т}". The restriction 
Л|5Ш clearly belongs to Alg Lat (Г]5Ш), hence by the relation (65) А\9П is of the 
form Л|5Щ=и>(Г|5Щ)=и>(Г)|5Ш, with a suitable function w£H°°. Let us consider 
the difference B = A  — w(T), for which we have

(66) Be {T}" and ВШ =  {0}.

It is enough to show that B = 0, because in this case A = w(T)eH°°(T).
Since 2?*|5ft is a unilateral shift, it follows that

(67) V 2)511 =  5R*.
D €{**}’
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On the other hand, YZ*D X £{T}' whenever {Л*}', and Y  and Z* are quasi­
affinities, as Г is a quasi-Cu  contraction. So we obtain from (67) that

(68) V С 9Л =  $.
C€{iy

Now, the relations (66) and (68) result B9)=B( V С9Л)= V $C9Ji =
С€{г}' ce{iy

=  V СВШ =  {0}, i.e. B = 0 and the proof is complete.
С £ { Г } '

7. Reflexivity of Cu -contractions

As an application of Theorem 1 we prove a reflexivity theorem for a class of 
Cn  -contractions.

T heorem  2. Let {«fe}£°=1 be a decomposition o f  the unit circle 0D into the 
sequence o f Borel sets o f  positive Lebesgue measure. For every k, let us given non­
zero, complex, separable Hilbert spaces (&k and o f  equal dimension such that 
nk = dim (£(. =  dim is finite i f  k  = 2. For every k, let us consider a purely contrac­
tive, analytic function Qk: D - «Sf (fik, tfi+:k), supposed to be outer from both sides. 
Let Ak denote its defect function Ak(C)—{l—&k{lfi*Qk{Q)1/2 ((£i)D), and let /лк 
stand for its lower bound function, i.e.

Л ( 0  =  inf {10 , ( 0  *1: *€<£*, IjcI -  1}, UdD.
We assume that

(69) rank Ak=x„ a.e., 
and

(70) f  log pk dm + 2  Í  log ———  dm > -« > ,
* - 4

and form the orthogonal sum Q =  ®  0 k: 3D — JS?((£ =  ® (£*., (£+ =  ®  (£**).
k = 1 fc=l k = 1

Then for the C^-contraction T = S  (0 ) we have

(71) Я -(Г )  =  Alg Lat T X {T}" = {T}'.

As a corollary we infer that (71) holds if the sequence {nk}k=2 is bounded and, 
for every k, Pk—ckX<*k+X»D\«k a.e. on <)D, where 0<с*.<1 is an arbitrary constant.
Indeed, after attaching the set u j a fc: &£ 2, cfc&-^-| to a1 the assumptions of Theo­

rem 2 will be fulfilled. So we obtain a positive answer for the problem raised at the 
end of [11], i.e. the operator constructed in [11, Example 12] always possesses the 
properties of [11, Theorem 5].

P r oof . On account of (69) rank A — 1 a.e. on r)D, hence the residual part R 
is a cyclic operator (cf. [8, Lemma 1]). It follows that T  is cyclic too, and so [10]
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Theorem 15 and Corollary 12] yield that {T}" =  {T}'^H °°(T). On the other hand, 
Theorem 1 together with [15] will result the coincidence H°°(T) =  Alg Lat T, if we 
find functions and vg(dL2((£))_ satisfying (62).

Let к be an arbitrary positive integer. In view of (69) there exists a function 
hkf  L2(©t ) suchthat

(72) IIMOIk =
and

(73) Ak(0  =  (1 - n № ) V* KiO®KiO

holdfora.e. ££0D. Since hk£(Ak L2((£k))~, it follows that íí*k = &khkd(A^kL2((£it,k))~, 
moreover in virtue of (72) and (73) we have ||Д«&(0|| =Mt(OXak( ö  a -e- being 
* -outer we know that (£)<1 a.e. in ak, while цк(0)=1 for a.e. ££dD \ak . 
Hence the function й**=^Гг^*1к€(^*1к£2(®**))~ will possess the following proper­
ties:

(74) I I M 0 lk fc =  X«k(0 ,

(75) &k(O hk(0  =  ä (0 M 0 .  
and

(76) A,k( 0  =  (1 - M O T 2 К Л О & К Л О  

in a.e. point ££dD.
Let us now assume that k =  1. In this case we define the functions Mi(://2((E+1) 

and v1£_(Al L2(Gi))-  as
(77) щ =  0 and vk =  hk.

It follows that
(78) II wl ®n1||L2((Eti)(I)i2(ffii) =  m (otj), 

and, in view of (74) and (75),

(79) IK -d*iMl+ 0 ^ X 0 1 ^  =  иТУ/М О, 

for a.e. C€őD.
nk

Let us consider now the case k ^ 2 ,  and take the expansion h^k = 2  h<k) e f^ ,
j = l

£ I  2, of htk with respect to an orthonormal basis }”=i o f . The relation
nk

(74) shows that 2  \ T (C)|2 =  l  in a.e. point £ of a*. Hence, we can decompose ak 
j = 1

nk
into the union ak= IJ y® of pairwise disjoint Borel sets such that

j = 1

(80) (01^(2и 4) - 1,а
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holds in a.e. í£yj*\ for j — 1, 2, nk. For every 1 s j ^ n k, let us choose a func­
tion wj';)6 / / 2 suchthat

(81) I мУ° I =  Xy<v +  Qjk) Xíd\ y<*> a -e-.

where 0<£>jk)< l  is a constant, and define the functions ик£ Н 2(&̂ к) and vk£ 
€(d,L2((£k))- as

"к
(82) uk — 2  Mjt) ej® and vk = 0.

1=1
Then for the norm of the vector uk®vk we have

(83) II «к Ф II 12с«е*л) ф — llM*llll(e**) =  2 \ \ ujk)\\h —

=  2  (m(yjk)) +  Qjk)i(l -m (y jk)))) =  m(ak) +  2  в?'** <  2 m ( a t) ,  l= i l= i
provided

(84) 2  Qjk)l <  ™(a*)-l= i
On the other hand, on account of (76), (81) and (80) the following estimate is true 
in a.e. point (1 ̂ Ш п к):

ll( — А ^ кИ к +  ® k v k )(0 \\< S * k =  ||(^*кмк)(0||®** —

=  ( 1  - / 1 * ( 0 2) 1 / 2 I < « * ( 0 ,  К к(0)Чк =  ( 1  -H k(02)1,2\ 2  uj*40Щ Ч )\ ^
s  (l - f t k(0 2)1/2[l«jt)(0l |А Г ( 0 1 - Д |и р )(0ПЛ/‘) (01] ^

i*j

s  (l _ ^ ( o 2)1/2[(2«k) - 1/2- z V > ] .i=i
Taking into consideration that ||(—zl+fcwfc4 -0 fciifc)(C)ll = 0 —1 —>ufc(C) a.e. on d H \txk, 
we infer that

(85) \ \( -A ,kuk+ 0 kvk)(O h ,k ^  (4«k) -1/2(l —/ife(02)1/2 a.e., 

if

(86)

So if we choose gfk)’ s satisfying (84) and (86), then (83) and (85) are valid.
The relations (78) and (83) result that

(87) 2  llMi ® t;)tllb2(«*)t)® i.2(e k) — m( a i ) 2 +  2  2m(cck) =
k = 1 k = 2 2  2m(ak) = 2,

k = l
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hence we obtain vectors u£H 2(<&̂ ) and v c (d L 2((£))“ by the definitions
OO CO

(88) и — ® uk and v = © vk.
k = l  k = l

In virtue of (79) and (85) it follows that

(89) I ( - d + «  +  0 a ) ( O l l l  =  Í  K-J*kUk + e kvk)(0\\2̂ k S
k = l

s  Hi (С)2 Хон ( 0  +  2  (*nk) _1 C1 -  л  ( 0 2)  a.e.fc = 2
Finally, by the inequalities (89) and (70) we conclude that the functions и and v satisfy 
(62), so the proof is complete.

Remark 5. As far as we know it is an  open question whether the relation (54) 
holds for every Cn -contraction T = S (0 )  w ith  the property:

(90) 0(C) is not an isometry, i.e. r a n k d (£ )^ l , for a.e. £€c)D.

This problem can be reduced to the case when T  is cyclic. In fact, let us assume that 
the answer is affirmative for cyclic contractions, and let us consider an arbitrary 
Cu -contraction T —S (0 )  possessing the property (90). We shall show that (54) 
will be true for this T  too.

By the functional model of unitary operators (cf. [6]) we can see that the commu- 
tant {R}' of the residual part R  is a cyclic operator algebra, i.e. there is a vector 
tf0€9I such that V Сг>0=91. More precisely, taking into account (90) and [8,

C€{R}'
Lemma 1], a function v0f  01 is cyclic for {T?}' if and only if

(91) v0(C) ^ 0  for a.e. CtdD.

Let us consider a cyclic vector v0 of {R}' such that

(92) j  log I v0\s dm = -
dD

Then, in virtue of [11, Lemma 9] Ä| V i-e- by (90) this operator is a
n^0

simple bilateral shift. Since by (25), (27) and (29) Z*Z is the operator of multipli­
cation by 0 * 0 ,  and 0(C) is an injective contraction a.e., it follows that the func­
tion Z *Z v0£ ‘'R satisfies the condition (91) too. Hence Z * Z v 0 is also cyclic for 
{R}'. Taking into account (24) and that Y  is quasi-surjective (cf. Proposition 2) 
we infer

V (Y C Z * X )(Y v0)=  V YC (Z *Z )v0 = $ .
C€{R}' C€{R}'

As YC Z*X  clearly belongs to {T}' whenever C£ {R}', this implies that the vector 
х0=Тг>0 is cyclic for {T}'. Let ЗИ denote the subspace 9JÍ =  V T"x0, cyclic for

n^0
T. Since the bilateral shift R\ V Rnv0 is a quasi-affine transform of Г|9Л, applying

nS 0
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[8, Corollary 1] we obtain that Т\Ш(_Сг1 and (90) holds for its characteristic 
function.

Let A be an arbitrary operator from Alg Lat T. On account of [15] A£ {T}". 
On the other hand, A\40l belonging to Alg Lat (Г|$Щ) by the assumption it can 
be found a function w£H°° such that А|5Ш =  н’(Г|Ш1) =  и'(Т)|9Л. Since the 
operator A — iv(T)£ {Г}" annihilates the cyclic vector x0 of {T}', we conclude that 
A = w{T).

Therefore (54) is true for the contraction T.

Finally, let us assume that T = S (0 )  is a cyclic Cn -contraction with the prop­
erty (90). Then we have 0 < ^ (Q < 1  a.e., for the lower bound function /;(() =  
=  inf { ||0(i);c ||: ||x|| =  1} o f 0 .  If J log ц dm >  — °°, then 0  has a scalar

3D
multiple (cf. [14, Propositions V.7.1 and V. 4.1]) and we infer by [11, Corollary 6] 
and [10, Theorem 15] that T  possesses (71). So it can be supposed that

(93) J  log /i dm =  — oo.
3D

Let {ck}f=1 be a strictly decreasing sequence converging to zero such that сг = 1 
and the Borel set

A =  {CedD: ciTl <  f i ( £ )  ^  c*}

is of positive Lebesgue measure, for every k. On account of [10, Theorem 4] there 
(uniquely) exists a basic system (cf. [1]) {§k }j”=1 consisting of hyperinvariant sub­
spaces of Г such that rank Ak = yak and ßk = HZ*k + 7 jn \ik a.e., where Ak is the 
defect function and yk is the lower bound function of the characteristic function 
0 k of T\$jk.

Now we can conclude by Theorem 2 that T  has the property (71) if

(94)
oo

2k—k0
m  (a ) log

__1___
dim §>k

>  — oo

is true with a k 0>  1 , and i f  the basic system {§/c }k can be obtained from an orthogonal 
decomposition o f  §  by the aid o f  an affine transformation.

Added in proof (March 13, 1987). In a subsequent paper, appearing in Bull. 
London Math. Soc. 19 (1987), resting on the results of this work I succeeded in 
proving that every Cu -contraction T — S (0 )  with the property (90) is reflexive.
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INHOMOGENEOUS NORM FORM EQUATIONS 
IN TWO DOMINATING VARIABLES 

OVER FUNCTION FIELDS
B. BRINDZA and I. GAÁL (Debrecen)

1. Introduction

The purpose of the present paper is to give effective bounds for the solutions of 
certain inhomogeneous norm form equations over function fields.

The first effective bounds for the integral solutions of Thue’s equations over 
number fields were given by Baker [1], using his deep effective method concerning 
linear forms in the logarithms of algebraic numbers (see [2]). Baker’s result was 
later generalized and improved by many authors, see e.g. Vinogradov and Sprindzuk 
[35], Coates [4], Feldman [5], Kotov [18] Győryand Papp [16] and Győry [11]—[15]. 
Effective bounds for the solutions of certain general classes of norm form equations 
in several variables (over number fields) were obtained by Győry and Papp [16], 
[17], Győry [8]—[13] and Kotov [19]—[22].

Sprindzuk [31] (see also [32]) gave a so called inhomogeneous generalization 
of Baker’s result [1]. Let a be an algebraic integer of degree S3, let K = Q (a) and 
0A m £Z. Sprindzuk gave effective bounds for the solutions of the equation

(1) N K, q (x  +  a y  + X) = m

in x, y £ Z  and1 l £ Z K, where x, у  are dominating variables and A is a non-domi­
nating variable such that2 Ul<(max (|jc|, Ы))1-? (0< £< 1  is a given constant). 
In the special case A=0 this result implies (apart from the form of the bounds) 
Baker’s theorem on Thue’s equation.

As a common generalization of the above mentioned result of Sprindzuk on 
equation (1) and of a theorem of Győryand Papp [17] concerning norm form equa­
tions in several variables, Gaál [6], [7] obtained effective bounds for certain in­
homogeneous norm form equations in several dominating variables.

On the other hand, Osgood [26], [27], Schmidt [28]—[30], Stepanov [33], Mason 
[23], [24], Győry [14] and Brindza [3] obtained effective results on Thue’s equations 
over function fields. Mason [23] (see also [24]) established an algorithm to determine 
all solutions of Thue’s equations over function fields. Recently Győry [14] and Mason 
[25] established effective results on norm form equations in several variables over 
function fields.

We remark that Győry [14], [15] derived effective results concerning some gen-

1 Z K denotes the ring of integers of an algebraic number field K.
2 For an algebraic number a |a|, denotes the size of a, that is the maximum absolute value 

of its conjugates.
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148 В. BRINDZA and I. GAÁL

eral classes of norm form equations also in the case when the ground ring is an 
arbitrary integral domain finitely generated over Z or over a field of characteristic 0.

Our purpose is to derive an effective theorem for an analogue of equation (1) 
over function fields. Our result provides an effective bound for the solutions of 
Thue’s equations over function fields.

2. Results

In order to formulate our results we need the following notation. Let к  be an 
algebraically closed field of characteristic 0 and denote by k(z) the field of rational 
functions over k. Further if К  is any finite extension field of k  (z), denote by QK the 
set of all (additive) valuations on К  with value group Z. For any non-zero ad К  let

h k (<*) =  -  2  m i n  {0, »(<*)}

be the additive height of a. Obviously H K (a) =  0 ifa n d o n ly if  adk. (For a =  () put 
IIK (a)=0.) By the additive form

2  v(°0 =  0v£i2K
of the well-known product formula one can easily see that

H A « " )  =  M  H M ,
HK{aß) ^  n K(a) + IIK(ß), IIK(a + ß) =§ H K(a) + HK(ß)

for any non-zero a, ßdK  and mdZ. We remark that if L  is an other finite extension 
of k(z)  and L a  К  then

# K ( a )  =  [K:L]HA « )
for any a dL  (see e.g. [29], [14] or [24]). We shall only use these general properties 
of valuations of function fields and of the height function. For further properties 
see e.g. Mason [24].

In our Theorem, L, M  will denote finite extension fields of k(z) such that L a M  
and [M: L\ = n ^ 3 . Further, К  will denote the smallest normal extension of L 
containing M. Denote by оу, ..., <ти the ^-isomorphisms of M  in K. For any ydM  
denote by У;=<Т;(у), i = l ,  ..., n the conjugates of у over L. We shall denote by g 
the genus of К  and put G =  max (0, 2g—2).

Let Ok be the set of those elements of К  which are integral over k[z] (that is 
ydO K if and only if r(y )^() for all finite valuation3 v in QK). Denote by S  a finite 
subset of QK which contains the infinite valuations. Suppose that if vd $  then all 
the conjugate valuations of v over L  (that is the valuations of the form  t(er( •)), 
where a is any L-isomorphism of К  into itself) are also in S. Let 0 KiS be the ring of 
S-integers of К , that is the set of those elements у of К  for which r(y)& 0 for all 
vdQ K\ S .  We remark that 0 KS is a ring and k[z\Q O KQOKyS. An element

3 We adopt the usual definition of additive valuations (see e.g. [24]). Those valuations of К 
for which г(г)ёО  are called finite, others are called infinite.
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уdOK'S is called 5-unit if у 1€ 0 KjS also holds. Finally, let 0 MiS = Ok.s ^ M ,  
0 ,,s  = 0 K,s ClL and let |5 | denote the cardinality of S. Let a € 0 K S be a primitive 
element of M  over L  with H K(ix)SA and let CM/t€L.

As a function field analogue of equation (1), let us consider the equation
(2) NM/L(x + ay + X) = Ц

where x, y £ 0 LiS are dominating variables and X£Om s  is a non-dominating 
variable which is in a certain sense “small” compared with the dominating variables.

Theorem. I f  x, yd Ol s and A£0M>S are solutions o f equation (2) and 

H K(X) ^  c0max {HL(x),HL(y)}

then we have
M

(3) max {HL(x), H L(y)} <  (| S  \ + G+2HK(ji) + 25A)

where c0—[K:L] 
400 ‘

In the special case A = 0  our theorem gives an effective bound for the solutions 
x ,y £ 0 LiS o f the Thue’s equation

NMjL(,x + <xy) =  p.

3. Proofs

The proof of our Theorem is based on the following results of Mason4:

Lemma 1 (Mason [25]). Let S  denote a finite set o f valuations on К and sup­
pose that щ , ..., n,„ are S-units in К with щ + ■■■ + um= 1 but with no proper subset 
o f  1, Ui, u,n is linearly dependent over k . Then

max HK(ui) ^  4m_1(|5 | +  G).

In the case m = 2 a corresponding theorem is as follows:

Lemma 2 (Mason [24]). Let S  denote a finite set o f valuations on К  and sup­
pose that yx, у 2, Уз are non-zero S-units in К  suchthat yi +  y2 +  y3:=0. Then we have

Proof of the Theorem. Let x, y £ 0 LiS and X£0MS be a fixed solution of equa­
tion (2) satisfying the assumptions of our theorem. Let X  = max {HK(x), H K(y)}.

4 We remark that the assertions of Lemmas 1 and 2 hold for any finite extension field К  of
Hz).
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Then HK(X)<cX  with c = - ^ ^  and equation (2) may be written in the form

(4) П  (x + cciy + Ái) = ц.
i= * l

We remark tha t oq, a„ are distinct, since M jL  is a separable extension. (Our 
method could be used to equation (4) also under the weaker assumption that there 
exist at least three distinct elements among oq, a„ if we supposed that <Х; =  аj  
implies Xi—Xj For brevity, put /i;= x + «;>>+/; (/=1, ..., n).

Let r, s, t be pairwise distinct indices from {1, ..., n}. Then we have

(ar - a s)(x + at y) +  (as- a ()(x + ar y ) + ( a (- a r)(x +  as y) = 0,
whence
(5) ß'r +ß's +ß't +  A = 0, 

where ß'r = (<xs-  a,)ßr, ß' =  (at -  ar)ßs, ß't = (ar -  <xs)ß, and
Л = (a, — as) Xr+ (аг — a() As +  (as — аг) X,.

In the following we shall see that equation (5) may yield one of the three cases 
below (A, Bl, B2) for the indices r, s, t.

A) First suppose that any three of ß'r , ß's , ß't and Л are linearly independent 
over k. Dividing (5) by (—Л) we obtain

(6) ur + us+ut = 1 

where щ = — ß'JA, i=r, s, t.
We shall use the following notation. For any non-zero y£K  let

(y) =  {ü£fíK|i,(y) ^  0}.

We remark that for the cardinality of Ж  (у) we have

\Ж(у)\ á  2HK(y)
(see e.g. Brindza [3]).

Let
Sj. =  SU  Ж (ß)U Ж  (A)U (as—ar) J  Ж  (ar—a,)U Ж(ос, —as).

Then in equation (6) ur, us, u, are all Si -units. For the cardinality of Sx we have

ISil S  ISI +  2Нк(ц) + 24A  +  6cX.
Further, any three of 1, ur, us, u, are linearly independent over k, since this property 
holds for ß'r , ß's , ß't , A. Thus we may apply Lemma 1 to equation (6) and we get

HK(Ui) S  lófliSVI +  G), i = r ,s ,t
that is
(7) H M )  ^  HK(ut)+ H K(A) + 2A Ш

16 |S |+ 32tfK0 )  +  392T + 99cW+16G' =  Q(3f), i = r ,s ,t.
B) Consider now the case when there exist three of ß ', ß's , ßi, A which are 

linearly dependent over k. In this case we have two subcases.
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Bl) First assume that ß ', ß's and ß't are linearly dependent over k, that is, there 
exist non-zero elements k t in к such that if ß"= ktß[ ( i= r ,s , t )  then

(8) ß"+ ß:+ ß" = 0.
Now let

52 =  SU (ß)U Jf (a,—as)J  (xs—a,) U Ж  (a,—as)

then ß", ß", ß" are S 2 -units, and applying Lemma 2 to (8) we get

(9) max [h k (- j^ )  , H K z-\S,\ + G.

n n
Put a = ß„ Qt= 1, Qr=-w-, в*=1Г  then we have 

ßt ßt
( 1 0 )  ßi = O Q i ,  i = r ,s ,t
where a, gr, qs, q, are non-zero elements in К  and by (9)

(11) max HK(ei) ^ \S \+ 2 H K(ji) + l6A + G =  C2.
i=rt s,f

B2) Secondly, suppose that two of ß 'r , ß 's , ß't, say ß'r and ß's together with Л 
form a linearly dependent system over k. We may assume that Л^О , because 
otherwise we have case B l. Thus, there are non-zero elements kr, ks, kA in к  such 
that if ß i —kißl (i—r,s)  and Л' = кАЛ then

( 1 2)  ß ;+ ß :+ A '  =  о .
Let

53 = S  U Ж  (ji) U Ж (Л') U Ж  (ars ~  a,) U Ж  (а, -  аг).

Then ß", ß" and Л' are S 3 -units and applying Lemma 2 to equation (12) we get

max [h k ( -^ - ) , H K ( ^ ) J  S  |Sa| +  (7

that is
(13) H K(ß,) S  \S3\+G + H K(A) + 2A ^

S  IS) + 2HK(ß)+28A+9cX+G  (i = r, s).

Let us consider now the system of all possible choices of the indices r, s, t. 
First assume that for all choices of the indices we have case Bl. Let us choose 

the indices 1, 2, 3, then (10) and (11) imply that there exist non-zero a , q 2 , q 3 in К 
such that

(14) ßi = <jQi, i =  1, 2, 3

where Н К(д д ^С 3 (i=  1 ,2 ,3). Let r be any index with r > 3  (if и>3), and con­
sider the choice 1, 2, r. Again by (10) and (11) we can see that there exist non-zero 
ar, gí, q'2, q't in К  such that
(15) ß, = cr qI , i = 1,2, r
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where Нк (д -)^С 2 (/'=1,2, r). Comparing the expression for in (14) and (15) 

we get ar= a - ~ ,  that is

(16) ßr =  авг,
where HK(gr) ^ 3 C 2. Since r was an arbitrary index with /•>3, hence (16) holds 
for any r> 3  (if n > 3). Substituting the expressions (14) and (16) into our equation
(4) we have cr" ... q„= // whence

H K(c) tk 1 (HK(ji)+ (и- 2)3C2) ^ H K(ß) + 3C2,.

Thus, from (14) and the above inequality we obtain that there exist indices r, s 
(say r=  1, s = 2) suchthat
(17) #*(& ) Я к(//) +  4С2 4|5| + 9Я*0г) +  64Т + 4С, i = r,s.

In the opposite case if we can choose r, s, t so that we have case A or case B2, 
then there are indices r, s such tha t (7) or (13) holds. Combining this with (17) we 
obtain that in any situation there exist indices r, s such that

max H K(ßi) Сг(Х) .
I  — Г ,  S

This estimate together with the expressions

im ply

<Xr(ßs-K)-*s(ßr-'1) =  (ß r~ K )- (ß s~ k )
a r - a s ’ ar - a s

2C1(X)+ 4A + 2cX,

whence by the definition of Cx(X)  and c, (3) follows.
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A SECOND ORDER NONLINEAR DIFFERENTIAL
INEQUALITY
I. BIHARI (Budapest)

Consider the differential inequality

(1) (px’n)’ - q f ( x ) >  0, '=  t a  = [t0, eo], (0€R,

where n =- 0,p, q >• 0& €C (/),/(x)6C (/?), х /  >  0, x ^  0 ,/(0) =  0, /  is increasing
*

and un=\u\"sgnu, n£R.
By a solution of inequality (1) a function x(t) is meant with the property x g C //) ,

*
px'ndC i(I) and satisfying (1). We take into account the class of solutions existing 
in the whole interval /. It will be proved that К  is not empty.

The present paper aims at the extension of N. Parhi’s results [1]. The following 
definitions from [1] will be recalled here. A solution x ( t)  is non-oscillatory if 
for t ^ t x with some ?, ^ t0 and is oscillatory if it has zeros zk, lc—1, 2, arbi­
trarily large and changes sign at xk, finally x(t)  is of type Z  if it has arbitrarily large 
zeros and is ultimately non-negative or non-positive, respectively. The zeros of
x(t)  cannot have a finite cluster point t ,  since then x(x) = x '(x )= f (x (f)) =  0 and x'

*
vanishes by Rolle’s theorem at some xk, therefore p x 'n\,k=0  and
(px'n)'|t= 0  involving 0 > 0  in (1).

T heo rem  1. Every solution o f  (1) is non-oscillatory.

P r o o f . In the opposite case (1) would possess oscillatory or Z  type solution,
(i) First suppose the existence of an oscillatory or non-negative Z  type solution 

having two consecutive zeros t0S a < b  between which x(t)> 0 , i.e.

x(a) = x(b) — 0, x'(a ) ^  0, x'(b) ~ 0.

The zeros of x '( t) cluster nowhere (at a finite point). In such point i it would hold
* *

x '( i )=Px'n\i = (px'nY\i = 0 excluded by (1). Therefore there is a first point c (a<c<b) 
where x ' (c) = 0 and integrating (1) over (a, c) we have

-px '" \a— f  qf(x) dt >  0
a

which involves contradiction, because the terms on the left hand side are ё  0 and 
<0, respectively.
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(ii) If a non-positive Z  type solution x(t)  existed with successive zeros a< h , 
* * * 

then (px'n)'|6=-0, so px'n is increasing at t = b, but px'n\b = 0, thus in a small
* * .enough neighbourhood of b, /ix '"< 0  (t<b) and p x 'n >0 (i>h), i.e. x' >0 and 

x=-0 for i — 0 which is incompatible with the negative Z  type character of x(t). 
In the sequel the following simple Lemma will be necessary.

L emma. I f  x ( t)> 0 , iS h ,  then x '(t)  can have one zero at most.

?Namely if it had two zeros t1^ x 1-<T2, then from  (1) 0— I q f ( x ) d t> 0 which
n

is impossible.

T heorem  2. The class К is not empty. There are both ultimately positive increas­
ing and decreasing solutions belonging to К i.e. existing on the whole I  provided

F(°°)==°, where F(x)= J f~ '“(t;)d£, v=—.
n

P roof. 1° Suppose x(t) is a positive solution o f the equation

(2) (px'nY — k q f(x )  =  0, к =  const >  1

with х(?0)= х 0> 0, x '( to) = 0. This surely exists in a right hand neighbourhood of 
t0, and it can be continued to the whole I. Namely, by the Lemma — which is 
valid concerning (2), too — x' has no more zeros. Besides, x(t) is increasing, because

t
by the transformation t=  f  p~v(s)ds, the equation (2) turns to

(20 d
dx

or

(2я)
dx
dx

(Here x ( t )= x(t),p (r)= p (t) ,

[ШН1/ч№)=о’
tl — 1

=  0-

~  - v V v /  ' V V V 5  Г  V /  Г  ч  v v  1  \ J )  *'-*-**' ^

* ( dx\nwhich involves that x (t) and x(t) increase, since p x 'n =  y - ^  I , i.e. x ' — ___ ^

have the same sign. From (2) we have (the star * can be omitted since x '> 0)

dx , dx and

(PxYnY - f  4*) =  kq
hence by integration by parts

[(px'n) f - ' ( x ) \ +  f  p£'n+1f ~ i (x)f'(x) dt =  к f  qdt.
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The second term on the left is positive, thus

<  (cp -'+ lcp -1 f  q d t)"= G (t) , c = (px'n) f - 1(x)\,0
fO

where G(t) is a function continuous on I. Hence

F (x)=  f f - v(H)dZ <  /  G(s)ds
ro

which exhibits together with F(°°)=  °° that x(t)  exists on the whole I  (namely it is 
not becoming infinity at a finite point and neither the zeros of x, nor those of x', 
cluster a t a finite point). Furthermore x (t)  is a solution of (1), too.

2° Equation (2) has ultimately positive decreasing solution existing on the 
whole /.

Take the solution x(r) of (2')—(2") satisfying x (tx) = 0, х '(тх) =  /г<0 and 
continue x (t) backwards to intersect the ordinate t =  t0< t1 at the point (x0, x0), 
x0>0, what is possible if tx—t0 is small enough. Now fixing the point (r0,x 0) 
let the slope m = x'(to)< 0  increase. By convexity, the graph of x (t) is above its 
tangent line at (t0, x0), therefore it is intuitively clear that there is an m = mt <  0 
at which lim xx= °°  i.e. the point A —(z1,0)  ceases to exist. More exactly this

m-*ml
can be seen as follows. First of all a Sturmian theorem (see Theorem 7) holds con­
cerning (2) or (2')—(2") saying that if jCj(r) ( /= 1 ,2 )  are solutions of (2')—(2")

with Jcx (t0) = x2(t0) and ш, =x[ (т0 ) <  ш2 =  х'г (r0 ) <  0, then x2 > x x as long as 
xx^ 0, therefore they intersect the т axis at the points txx< t12. In consequence 
the numbers m€( — 0] can be ranged in two classes a and ß, respectively: the 
numbers m belonging to a have the property that the corresponding solutions xm (t) 
intersects the т axis (for them the point A  exists), while for the m’s of ß, A  does not 
exist. If т£и and then w/(Ea and if m ^ß  and m">m , then m"£ß.
In this way a Dedekind’s section is obtained for m d (— °=>, 0]. Observe that ß is not 
empty, since m — 0 is in ß. The value mt={a,ß} determines a solution хг(т)=х(/) 
which is positive decreasing and exists on the whole I. In the sequel only solutions 
belonging to the class К  will be taken into account. An exception is Theorem 7.

T heorem  3. Each o f the following three sets o f  conditions involves that the ulti­
mately positive solutions o f  (1) tend either to infinity or to zero:

(i) J  p-* = J  q = со,
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t  S  t

(ii) / ( o o )  = / ( o o )  =  oo? where 1(f) =  J  p~v( s ) ( f  q(r)dryds , / ( / )  =  J  q(s)ds,
o o  о

oo oo f oo

(iii) f  P~v = “ , /  ? < “ , Л(°°) w/iere / j(0  =  f  p~v(s) ( f  q(r)dr)v ds.
о s

Proof. 1° Assuming (i) (by the Lemma) x' is of constant sign for t ^ t x with 
some If x' > 0 , i& h , then by (1) (px'n) ' >  0, t ^ t x and in turn px'n >
>px'n\H= c x, x ' > c 2p ~ v (c;= const> 0 , i= l ,2 ) ,  whence

t

x > x ( h )  +  C2 f  p ~ vds, lim x =°°.
J  t-*- OO

h
If x '< 0 , iS?i, then к =  lim x exists and ё 0 . If it were k > 0 then by (1)

px"’-.px",|i1 >  J  q f ( x ) d t > f ( k )  f  q(s)ds.  
h 4

*
Therefore px 'n and x' too, would be positive for t large enough. Consequently k = 0 
what was to be proved.

2° Assume now (ii). Then if x '< 0 , iS i j  we argue as in 1°. If x' >0, 
then x > M , íS íj  with some M = const> 0 . Thus from (1)

t  t

px'n >  px'n\h + f ( M )  f  qds  > / ( M )  J  qds,

whence
t

x' > f v( M ) p - v ( f  q d s ) v,

thus lim x=°°.
t - f O O

t  S

X(0 >  x ( h ) + /v(M ) f  p - ' ( s )  ( /  g (r) d r)v ds
*i 'i

3° Assume now (iii). If x '> 0 , f ё Ь  we argue as in 1°. If x '< 0 , then
* * 

px"1 is negative and increasing by (1), so lim(px'") =  c exists and is SO. But c
cannot be negative what can be seen as follows. With the transformation

t

t=  J  p ~ v(s)ds used before inequality (1) assumes the form

where

- p vqf(x)  => 0,

x(t) =  x(0, etc., lim z =<*>, c
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If c were negative, x ( t )  would have an asymptote with negative slope cv involving 
the vanishing of x at a finite point (cutting axis t). Therefore c =  0 and by (1) in 
turn

CO oo

- p x 'n > I  qf(x), - x '  f  q f (x ) ) \
t  t

t  oo

* i - * >  / p ~ v( s ) ( /  q (r)f(x (r))d ryd s , xx =  x(fi). 
fi s

Since x is decreasing,

Xi~X  > / v (x) I1 (t), /(x ) =  / ( x  (0),

whence x1> x + / v(x)/1(i). Being /x(°°)= °° we get lim x=0. Let us observe
t-*-oo

that if / ( x ) = x ”, then x<Xx/(l + /x(t)) which is an explicit estimate.
oo oo

Theorem 4. I f  J  p ~ v=°°, j  /x(°°) —= °°, &v/x(00) / v(*i)*<*i (xx£R+)
where I fi t)  is as above in Theorem 3 and /с= const >1, then the ultimately positive 
increasing solutions tend to infinity and there are ultimately decreasing positive solu­
tions tending to a positive limit as t —

Proof. The first assertion can be proved as in Theorem 3, Part 3°. To prove
the second assertion observe that for a solution x (t)  of equation (2) with x '< 0 ,

*
t ^ t x we had (see Theorem 3, Part 3°) c=  lim/;x'" =  0 involving

whence

hence

finally

- p x ’n =  к f  q f(x), - x ’ = p~v (k  f  q f(x )J ,

xx- x  = f  P ~ f i s ) ( f  k q ( r ) f ( x (r)) dr)v ds, xx -  x (fi) =  x x, 
h s

x j - x  < / v(xi) kvIfit) < / v(xx) k 4 x(°°) 

x  >  Xi — fcv/ v(*i) /x(°°) =»• 0.

i.e. lim x(i)> 0 . Being x(t)  a solution of (1) too, the proof is complete.

Remark 1. Condition /cv/ v(x1) / 1(°°)<Xi can always be satisfied — at fixed
*xx — by choosing tx large enough. If /(x )= x "  then this condition reduces to 

£V l(°°)< l.

Remark 2. Of course, Theorem 3 has a negative wording, too, namely: if (1) 
has ultimately positive increasing bounded solution, then / <  °o and if it has a positive 
decreasing one not tending to zero, then etc.
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Remark 3. Every solution x  of (2) has at most one zero, since x(fi) is convex 
where it is positive and concave where it is negative. Thus there are solutions of (1) 
with the same property.

*
R emark 4. If f(x )= x" , then with the substitution

rt-O'n
и = Ц -  ( * > 0 ) ,  

x"

equation (2) turns into the Riccati-like equation

u' + np~v\u\1+v — kq = 0
whence

u' «= kq  or

Underthe conditions of Theorem 4 and x'-cO we have c=  lim (p.xn)= 0, limx >  0, 
thus

^ f  qds, <  P ~ '( k f  q d s ) \

whence

lo g x —logx^ -< f  p  v(.r) (k j q ( r )  d r y  ds = fcvI2(t)

where

hif) =  f  P v0 ) ( / q(r) d r y  ds
t  S

or

x  <  x„ exp (/cv/ 2(0), x„ = lim x  >  0.
t - * -  o o

Since / 2(Т )= Л (СЮ) and kvI1(°°)<1 we have x 1= x 1-<xoae= x^e , whence xt >

Theorem 5. I f  for an ultimately positive increasing solution x (t)  o f  (1) the 
function px'n — essentially the derivative — is bounded, then

(3) f  q ( t ) f [ c  f  p v(s)ds)dt <°°,
f0 f0

where c is a constant defined below.
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P r o o f . Let x> 0 , x'=-0, t ^ f .  Then by (1) p x"  increases and so in turn 

x ' >  cp-'(t), c =  pv(h) *'(h) >  0,
t  t

x  >  x(h) + C /  /I v ds > c J  p v ds,
'i 'i

t
(px 'nY  >  ?/(*) >  ? / ( c  f  p~vd s ),

h
t  S

px ,n >  p x ' \ + f  q (s) f(c  f  p~v(r)dr)ds. 
h '1

*
Since px 'n is bounded, so is the integral in question, too. If f ( x ) = x m, m >0, then 
(3) assumes the form

f  q(t)  ( / P _ v 0 )  d s ) m d t  < ~ .
*0 f0

The converse of Theorem 5 is perhaps more interesting: if the above integral (3) is 
infinite then px'" is not bounded.

X

T heo rem  6. I f  F (— oo)=oo where again F{x) =  J  f ~ y(Qd£ and h i ° ° ) < ° °  

where
t  S

h it) = f  p-'(.s) ( /  q ( r ) d r j  ds, n S l  (v & 1),
f0 f0

X i= x (h )< 0 , tfen every ultimately negative solution o f (1) £y bounded below.

P r o o f . The proof itself will show the existence of x ( t)  for t s f .  First of all

we show that the convergence of I2(t) involves that of J  p ~ vdt. Namely, if t1 is a 
fixed  number with t<y§ifi<t then

h i f)  =  h(h)+  f  P~v(s) ( /  q(r)dr)v ds,
*1 *0

К  >  h it)  >  h ik )  + ( f  qir)dr)v f  p - vis)ds,
*0 *1 
t

where К  is a positive constant. So J p ~ v{s)ds is bounded. Multiplying (1) by
*1

f ~ \ x )  we have (being /  (x)<0, t ^ t f i

ipx*")'f-1i x ) - q  <  0,
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whence following the lines of the proof of Theorem 2 we have

(4) * '/_1 (*) < ( c p - '+ p - 1 f  q d s ) \  c = px!*nf  1(дс)|,1.

Now two cases must be distinguished:
(i) x '(A )> 0 , i.e. c<0, then from (4)

(5) Fix') <  J  p v0) ( / q {r)d ryds.

(ii) x '(A )< 0 , c>0, then by the use of the inequality 

A v + Bv or ( T + 5 ) V< 2 V- 1(^V+ JSV)

we get from (4)
Í  t  t

(6) 21_vf ’(x) <  cv J  p ~ v(s)ds+ j  p ~ v(s) ( f  q(r) d r y  ds.

1

Inequalities (5)—(6) involve the result stated above.
* \x\1~rIf f (x )  = x m 0 < т < ж  1, then F(x):-

F(x)=log \x\.

Theorem 7. Consider the inequalities 

( x 'h '-d Á t) f( x )  S  0

r = — and if m =  n then n

(7) (?1 =  ?2 >  0, t S? t0),
■ix'n) ' -q Á t ) f ix )  S  0

admitting the solutions x, and x 2, respectively, satisfying the conditions

(8J *i(A) =  (A) S  0,
(82) -̂ i (A) >  -^(A)-
Then x1> x2, A  >A> as long as x2SiO or x x ceases to exist.

Proof. F rom  (7) we obtain

(9) (A* -  x'f)' & (ft -  ft)/(A ) + q2(f(Xj) -/(A))-
* *

At i= q  the second term on the right hand side is zero. Then at t= A  (An—x2 ) '> 0* *
and it remains positive for t —A > 0  and small enough, A"—A" increases there, 
but with respect to (82)

* *A" =*■ x'2n, A > x2, Xx =- x2 =- 0
for f—A=-0 and small enough. Thus for small t —A the assertion is true. It must 
be shown that it remains valid as long as indicated. If it were not so then a first
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(smallest) t = o t 1 would exist where xi=x'2 (namely at first the derivatives can 
get equal while x1=*x2 remains valid for a while). But then we get from (9)

C

0 =  (xín-x '2%  s í  (xín-x '2n)\tl+ J  [ ( 9 i - ? 2 ) / ( * i )  +  t f2( / ( x i ) - / ( * 2 ) ) ]  dt >  0
*1

which involves contradiction.

R em ark  5. If in (1) / ( —x )= f(x )  and x(t)  satisfies (1) then —x (t)  satisfies 

(1 0 ) ( p x 'b '- g f( x )  <  o .
Therefore Theorems 1—6 remain valid concerning (10) provided in their wording 
the adjectives positive and negative are interchanged. Theorem 7 must be modified 
in an obvious way.

1 express my deep gratitude to Á. Elbert for his valuable remarks and criticism.
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POLYNOMIAL APPROXIMATION WITH EXPONENTIAL
WEIGHTS1

Z. DITZIAN (Edmonton), D. S. LUBINSKY (Pretoria), P. NEVAI (Columbus) 
and V. TOTIK (Szeged)

1. Introduction

As many other problems in approximation theory, the problem of weighted 
polynomial approximation was initiated by S. N. Bernstein. His question about 
characterization of weights w for which polynomials are dense in C0(w) stimulated 
a great deal of interest. The final solution came some forty years later, and though 
the general description is fairly delicate, for sufficiently regular weights it is equivalent 
to

J  [log w(x)][l +X2]"1 dx = — °°
R

(cf. [1]). The related qualitative results seem to have appeared first in the works 
of M. M. Dzarbasyan and his collaborators [6, 7, 8] (cf. [35]). In the early seventies 
G. Freud started a systematic study of the rate of polynomial approximation with 
weight

wx(x) = exp( — |л:|я), xGR,A=-0.

Freud and his associates (cf. [9—28]) developed a powerful method which runs 
parallel with harmonic approximation and is based on orthogonal polynomials 
that are today commonly known as Freud polynomials (cf. [4], [29—34], [35], [36], 
[38—40], [41—45], [47—48] and the references therein). The rate of best approxima­
tion was characterized in terms of a /^-functional by G. Freud arid H. N. Mhaskar 
in [27] where a possible modulus of smoothness of orders one and two was proposed 
as well. The characterization of the relevant X-functional by a fairly simple modulus 
of smoothness was given in [4—5].

For technical reasons Freud’s method restricts the parameter A in wx to the 
range of A5=2. Freud’s theory has recently been extended to 1< A < 2 by A. L. 
Levin and D. S. Lubinsky in [29—30].

Let n=  1 ,2 ,... and 1 F o ra  function /  and a positive weight w
such that fw £L p(R), let E„(f,w)p be defined by

(1.1) En( f  w)p = ini \\W( f - P n)\\r

1 This material is based upon work supported by the Canadian National Research Council 
(first author), by National Science Foundation under Grant No. DMS 84— 19525 (third author), 
by the United States Information Agency under Senior Research Fulbright G rant No. 85—41612 
(third author) and by the Hungarian Ministry of Education (third author). The work was started 
while the first, second and fourth author visited The Ohio State University on various occasions 
between 1983 and 1985, and it was completed during the third author’s visit to Hungary in 1985.
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where the infimum is taken for all polynomials Pn of degree at most n. This is what 
we call the rate of best weighted approximation of the function /  by polynomials. 
For r€N  we define the r-th symmetric difference Arhf  of the function /  with step 
h by

Arhf ( x )  = Í  ( — l)r+kC(r, k )f(x  + (k -r /2 )h )
k =0

where C (r, k) is the binomial coefficient.
The following theorem is a summary of the results mentioned so far (cf. [4—5]).

T heorem  A. Let A=»l, 1 and fw x£Lp(R). Let r be a positive integer.
Then for  0<os-=r

E„(f, wx)p =  0 ( n - a(A- b /A), n = 1, 2 ,...,
is equivalent to

\ \ Х н ^ М \ р =  0(h% h — 0 +

where yh denotes the characteristic function o f the interval (— hll(1~x\  й1/(1-Я)).

Now let us turn to the question what happens when 0<A ^1. For 0-=A< 1 
the question is vague since the polynomials are not dense in the corresponding 
weighted Lp spaces (cf. [33] and [41]). In the singular case A= 1, G. Freud, A. Giroux 
and Q. I. Rahman [25] proved some convergence theorems in Lx with weight wx but 
the characterization of best approximation in the sense of Theorem A was left un­
resolved. In Section 2 we give this characterization, and in Section 3 we apply The­
orem A to a constructive description of weighted Lipschitz classes. The result we 
prove is complete for all A >  1.

2. Polynomial approximation with weight exp (— |x|)

Here we prove the following

T heorem  1. Let r be a positive integer, 0 and let fw 1̂ L 1(R). Then

(2.1) £„(/, WjX -  О ((log «)"“), n =  1, 2......
holds i f  and only i f

(2.2) M f \ i  =  OQi% h -  0  +  ,  

and

(2.3) IlihWi/lli — 0 (h a), 0 + ,
where Ch is the characteristic function o f  the set R \ (  —exp (l/h), exp (1//;)).

Clearly, (2.1) is equivalent to

E ^ f  w^p =  0 (n ~ x), n — 1, 2, ....

R em ark  1. One would naturally like to find out whether Theorem 1 remains 
true for l</)S=o. The necessity of (2.2) and (2.3) can be proved by the method 
applied in the proof of Theorem 1 below for every 1</>s <>o. To prove their suffici­
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ency, the most natural approach would be the one used by Freud (cf. [13—15, 19, 
21—23]). However, Freud’s method does not seem to lend itself to treating L p spaces 
for p >  1, the main obstacle being that we do not have appropriate information 
about the boundedness of the de la Vallée—Poussin (delayed arithmetic) means 
of the generalized Fourier series expansion in the orthogonal polynomial system 
associated with и^. Interestingly, the weight is almost classical in the sense that 
it behaves like 2 (cosh x)-1 and the orthogonal polynomials corresponding to the 
latter weight function are a special case of the Pollaczek polynomials (cf. [46] and 
[40]).

P roof of T heo rem  1. (i): (2.1) =>(2.2). Define the sequence {n(m)} by n_1—0 
and log2 (n(m)) =  2m, m =  0, 1, 2 ,__ Let 0< A < l/2 . Then

[log2(«(m ))]-1 s A <  [log2(n(m — 1))]-1

for some тш  1. In [41, Theorem 3] it was proved that the Markov—Bernstein-type 
inequality

IIP'Willi S  /flog  к 1-Pwili, к >  1,
holds for every polynomial P of degree at most к  with an appropriate absolute 
constant K > 0. Using this inequality the proof of (2.2) becomes a fairly routine 
exercise. Let Pn be a polynomial of degree at most n such that

l l ( / - Pn) Willi ^  2En(Z  Wi)i =§ K(\og2(n ))-\
Then

l|Wi[drft/]||i ||w i[zfi(/-Pn(m))]||i +  l|wi[diPn(m)]||i.
Here

«W i[dS(/-Pn(m))]||i S  *(log2(n(m ))-‘ == Kh*
and

l|W i[díPn(m)]||i =£ KhrI W i l i  =  KhT 2  II[Pn(it) — Pn(k- i)](r)wi «i  S
fc = 1

S  Khr i ( l o g 2(«(fc)))^n(t_1)( /, Wi)i s  Khx.
k=  0

Now (2.2) follows directly from the latter three estimates.
(ii): (2.1) =*-(2.3). We start with choosing a constant C >0 such that the in­

finite-finite range inequality

UnQn Willi S  n_1||ß„ Willi
holds for every polynomial Q of degree at most n where t n denotes the characteristic 
function of R \ ( —Cn, Cri) (cf. [2], [15], [31—33] and [37—40]). Let (n(m)} and 
{P„(m)} be defined as in (i), and given 0 let M  be such that

Cn(M ) <  exp (l//i) sí C n(M + 1).
Then

IKftWi/lli S  II(л W i(/-P „(M))j|i+ НС* Wi P„(M)||i S

^  A ^(log2 ( и ( M )))- 1 + и ( M ) _ 1 1 W jP„(M)||i  s № + 2 « ( M ) - 4 | W i / | | i  S  Kh*

(for Ch cf. (2.3)), and this was to be proved.
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(iii): (2.2) & (2.3)=s-(2.1). By (2.2) for every ndN there is a function g„ such 
that g„d C(r_1>, g‘r-1) is locally absolutely continuous and

(2-4) |w i( /-g „ ) ||i  +  (log2 л)~г 1W] gn (r)|Si == K(log2 n)-«

is satisfied with К  independent of n (cf. [4, Remark 1] and [5]). By Theorem 2.3 in 
[25] we obtain

En( g „ , w O i =§ K(\og2 rí)~r II Wj g<r) fl!  +

m
+ K exp( — n2/3) 2  (log2«)_,t+1l|w1g‘*:)||i +  ̂ :liA„w1gJ|1

k=0
where il/n is the characteristic function of R \ ( —n1/2, n1/2). By (2.4) the first term 
on the right-hand side is О ((log л)~а). The second term there can be estimated by

К  exp ( -  л2/3)(|| Wj g„Ii + 1 WjgW Hi) =  О ((log п)~*)

(cf. [3, Lemma 2.1] and [5]). Finally, by (2.3) and (2.4) we have

l№»Wig„)||i ^  \\фп W ii f - g M i+ U r í^ i fh  =  О ((log и)- “).
Consequently, we obtain

(2.5) En(g„, wl)l = О ((log л )-“),
and since

En( f  Wj)i ^  En(g„, w1)1 +  ||w1( / - g „ ) | |1,
(2.1) follows from (2.4) and (2.5).

Theorem 1 has been proved. □

3. Constructive characterization of weighted Lipschitz classes

Our next goal is characterizing

I K d J / | |p =  0 (h a), h - 0  +  ,

for the weights wx (A>1) in a constructive way as follows.

T heorem  2. Let r£N , 1 0 « x </■ and A = -l.  Assume that f  is an
almost everywhere finite valued Lebesgue measurable function. Then the following 
assertions are pairwise equivalent.

(i) The r-th symmetric difference o f the function f  satisfies

(3.1) К 4 Е /Л ,  =  о ( П  h ^ o + .
(ii) The rate o f best weighted approximation o f f  satisfies

(3 .2 ) E „ (f  wAj„)p =  0 ( л ~ * (Я-1)/А), n -  oo, 

where wXi„(x)=wx(\x\ -  l/n).

(iii) We have wxf  (• ± S)dL p(R) fo r  some 6 >0  and

(3.3) En( f  wx)p = 0 (n~ x(x~1)/x), n -*■ °°.
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R emark 2. Applying Fatou’s Lemma it is possible to show that for a =r 
condition (3.1) is equivalent to the following: wxf ( -  + ö)fLp(R) for some <5>0, 
/ (r_1) is locally absolutely continuous and w fir)£L p{R). Moreover, if a >/• in 
(3.1) then /  almost everywhere coincides with a polynomial of degree at most r — 1. 
We wish we could characterize all functions /  satisfying (3.1) when 0 < 2 s l .  Alas, 
we cannot do this a t the present time.

R emark 3. Let us observe that for /г>0 and |лг|<А/г1/(1~л) we have vv; (x)~  
~ w x(x±h), and this is the reason for the appearance of the characteristic function 
of the interval (—/г1/(1-я), /г1/(1“ Д)) in Theorem A.

The proof of Theorem 2 is based on Theorem A  and the following three lemmas 
of technical nature. The next proposition is probably known though we could not 
find a reference to it.

L emma 1. Let f  be an almost everywhere finite valued Lebesgue measurable 
function on the real line, and let Dh f  h(?_ R , be defined by

Dhf ( x ) =  2  c j i x  + d fi)
i= 0

where {c^ and {dj) are real numbers such that d i^ d j  ( i^ j)  and not every c; equals 
0. I f  for some 0<рШ°° and <50> 0  we have Dhf £ L p[—1,1] fo r  0< /i«5„ then 
f€  Lp[a, b] for every subinterval [a, b]cz(— 1, 1).

R emark 4. It would have been sufficient to assume Dhf d L p[ — 1, 1] on a 
measurable set for which h = 0 is a density point. However, even the latter seems 
to be superfluous, and we think it is an interesting problem to find thin sets H with 
the property that Dhf£ L p{— 1, 1] for /г£Н would be sufficient for the conclusion 
of the lemma.

P roof of L emma  1. Let [a, b]cz(—1,1). Since

f i A i / I L n - L i ]  — l A i  / ( '  — с?/г) I) x+dii,i—ал]

for /i>0, we may assume without loss of generality that d0 = 0 and c0= l .  Let 
<5<min {min (1+ a , l —b)/|i/;|; г=1, 2, . . . ,t}, d < d 0, and choose q> 0  sufficiently 
small, for instance >;<2_1<5(1 +Z\di\~1)'~1 is appropriate. Fix a constant C =»0 
such that the sets

H  = {he(o, «5)1 IIA ,/||p <  C) and F  =  (*||/(je)| <  C }
satisfy

(3.4) m ( H ) > ö —r] and 1, 1]) >  2 — rj.

Let the sets Et, E  and E x be defined by

Et = {(x, h)\x£[a, b], h£(0, ő), x + dt h£F }, i = 1, 2, ..., r,

E = f]E i  and Ex =  {h|(x, h)£E}.
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Then each Et is a measurable subset of the plane and thus so is E. Moreover, Ex 
is measurable for almost every x. Thus if g is a nonnegative measurable function 
then the function defined by

X-* f  g(h)dh
h €  Н П  E x

is also measurable. First let and let

M  = 2C 2 ( ^  + 1).
By the choice of H  we have

/  f \D hf(x ) \"d x d h
H -1

which, by Fubini’s theorem, implies

J  J  \Dhf(x )\pd h d x < °° .
la,b] híHCíE*

| / ( x ) | = - M

If | / ( x ) |> M  and h£E x then by the definition of M , E x, E  and F we obtain 
\f(x)\r£2\D hf(x ) \. Thus

(3.5) /  \f(x)\” j  d h d x ^ ~ ,
[a, i>] лен OE*

and if we can show that the inequality

/  dh — т (Н Г\Ех) >  <5/2
ленП£*

holds for every x£[ű, b], then (3.5) proves the assertion of the lemma. But 

m (H D  Ex) ё  <5-m([0 ,< 5]\tf)-m ([0 , <5]\£*), 

and here by (3.4) m([0, 5] \Я )< ? /.  Furthermore

m ([0 ,S]\Ex) ^  2  т ([0 ,< 5 ]\(£ ,.)* )
1 =  1

where
[0,0 ] \ ( E jY  = {h lh a O ^^ x + d th F } , i = 1,2, ...,r. 

Therefore we obtain

m([0, <5]\(£,)*) S  m({/| /€ [—1,1], t$F })/\d t\ ^  r,/\d,\-

Collecting the above estimates we can conclude

/  d h ^ ö - r i -  2 M d , l]><5/2
ленпя* 1=1
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provided I] is sufficiently small. This completes the proof of the lemma for <=».
If p — °° then \Dhf ( x ) \^ C  for almost every (h, x)£H x[a, b]. The argument 
above yields that for every x£[a, b] the set of those h for which x  + dfi^F, i=  
=  1 , 2 has measure at least <5/2. Thus for almost every xb\a, b] there is 
h£H  suchthat \Dhf ( x ) \^ C  and x+ dfi^F , i=  1, 2, ..., r, which implies

|/(x)| — \Dhf(x)\ + 1 2  Cif(x + dih )I S C (\ + 2  lcil)-
i = l  i= 0

Hence we proved the lemma for p =  oo as well. □

Lemma 2. Let A>1, 1 and let Lp[a, b] for every finite interval
[a, b]. I f  wÁA f,fd L p[0, for some 0</г< 1/4 then

wA(- - Ä / 2 M - 1/ ] € £ , [ 0 ,- ) ,

and i f  w^A'bf (:Lp( —°°,0] for some 0</г<1/4 then

w fi- +h/2)[A'h- 1f ] £ L p( -~ ,0 ] .

P roof. Let a„ and b„ be defined by

an — 1w a (  ' —h/2)[Arhf  (- — Ii/2)]][Lp[n/4j(„+1)/4]
and

cn — li Wh( ‘ —h/2)[Arh 1 f ]IILp[n/4,(n +1)/4] ■

By the assumption of the lemma

(3.6)

and we want to prove

(3.7) 2n=1
Applying the identity

wx(x-h /2)[A r„ 1 f{x)]  =  wkix-hl2)[A'hf ix - h l2 ) ]  + wx{x-h l2)[A rh-'1 f  (x -h ) \  

and the relation
lim w^ix — hl2)/wAx — 3h/2) =  0X-+oo

we can easily obtain

(3-8) c„ =  a„+(c„_1 +  c„_2)/4

for sufficiently large n. Since с^-Ьс^оо, (3.7) follows from (3.6) and (3.8) by stand­
ard estimates. The case of the negative real line can be treated similarly. □

L emma 3. Let A>1, and <5>0. Suppose wxf ( \  ■ | ±<5)<ELp(R)-
Then for every M >  0 and OS/z<<5/2

(3-9) Iwa(I • I ~ ^ ) / | | l p (r / [ - m . m ]) — К  exp ( —cM;'_1)
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holds with positive constants К  and c which are independent o f  h and M. In addition, 
given r£ N, there is h0> 0 suchthat

(3.10) K K / I U r m - m.m]) ^  Kx e x p (  —c 2 _1 M A~ 1)

forevery M >  0 and 0 s h < h o where the constant Kx> 0 is independent o f h and M.

P r oof . By the assumptions vv̂ d • |± ő )/G L p(R). Since

wÁ\x\~h)/w x(\x\ —Ő) ä  Kexp( — с(|х |)л_1) ^  / f e x p ( -c M A_1)

for 0^ /г<(5/2 and |х| &М, inequality (3.9) follows immediately. Inequality (3.10) 
is a straightforward consequence of (3.9). □

After these preliminary results, let us turn our attention to the

P roof o f  T heorem 2. W e will prove the implications (i)=>(ii)=>(iii)=>(i).
(i)=>(ii). By Lemma 1, f d L p[a, b] on every finite interval [a, b]. Thus Lemma 2 

may be applied to obtain l|H'Adft-1/llp < 0 ° f° r every sufficiently small /г > 0. 
Repeating this argument we get |клк/11р< 0 °> and a final application of Lemma 2 
yields

(3.11) K / ( -  ±<5)||p <  oo

for some <5 > 0 . By Theorem A there exists a sequence of polynomials {Pn} 
(deg Pntiri) such that

(3.12) ||wa( / —P„)||p =  0 ( и - “(л-1)/А).

Since for |х |ё Х и 1/(Л-1) we have wx(x)^w 1(\x\ ±  l/и), this implies

(3.13) Ik ,M - P M v = 0 ( « - “w- n  s =  i/(A—l).

It follows from  (3.11) and Lemma 3 that

(3.14) lk r,n/lL '’(R \t—»».»•]) =  0 (е х р (-с я )) , s = l / ( A - l ) ,  

holds with some c>0. Finally, the inequality

(3.15) II w,, „ P„|| z.e(R\[-ns. n*]) =  0 ( e x p ( - Cln)), s =  1/(A-1),

c1>0, can be obtained from (3.12) and from the existence of a constant C > 0 
such that

(3.16) 1кл, n ön II l>4R \c -  сл‘Ч  ö  (exp ( —с, n)) |k  A, n ß n II p

holds for every polynomial Q„ o f degree at most n (cf. [2], [15], [31—33] and [37—40]). 
Indeed, since n1/AS n1/(A-1), we can use (3.16) to establish

1кл,иЛ||р — К  lkA,n^llilz.I’[-Cnl/A>Cnl/A] =  ^IklPnlliPf-Cnl/A.Cn^A],

Acta Mathematica Hungarica 50, 1987



POLYNOMIAL APPROXIMATION WITH EXPONENTIAL WEIGHTS 173

and thus by (3.12) ||w ,̂nPB||p is uniformly bounded in n£N. Now we obtain (3.15) 
directly from (3.16). Part (ii) of the theorem (cf. (3.2)) follows from (3.13)—(3.15).

(ii) =Kiii). This is obvious.
(iii) =»(i). By Theorem A

\\XhWxArhf \ \p = 0 (h%  f t -  0+

where yh denotes again the characteristic function of the interval (— /г1/(1_Я), ft1/(1_1)). 
The relation

11(1 —Xh)wxArhf\p ~ О (ft*), f t - 0  +

follows from Wxf (• +(5)€ Lp(R) for some S > 0  and Lemma 3. Thus we have 
proved Theorem 2. □
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BASIC TOOLS AND MILD CONTINUITIES 
IN RELATOR SPACES

Á. SZÁZ (Debrecen)

Introduction

Starting with this paper, we offer a simple, unified foundation to general topology 
and abstract analysis by using a straightforward generalization of uniform spaces 
which leads us to more general structures than the ordinary topologies.

As the extensive references show uniform spaces have been defined and gen­
eralized in terms of various objects. The most widely used ones are certain metrics, 
relations and covers. Covers are versatile tools in topology, while metrics are better 
adapted to arguments in analysis. However, almost everything can be formulated 
more simply in terms of relations. Therefore, we adhere to  relations.

Before describing the main features of our present approach, it seems nec­
essary to make some historical remarks. Uniform spaces in terms of relations were 
first introduced by Weil [97], and later standardized by Bourbaki [10] with some 
adjustments. A uniform space in the Weil—Bourbaki sense is an ordered pair 
X(‘9/)=(X, consisting of a set X and a nonvoid family of relations ( / c l x l  
such that

(I) U£W=>Ax a  U\

(II) £ / e ^ 3 F € ^ :  V c  £/_1;
(III) =>3V, W£<%: WoV c  U;

(IV) U, V£W=>3JVeW: W c  UDV;

(V) U£<%, UcVczXxX=>VeW.

Each uniform space X(aU) gives rise to a completely regular topological space X(3~m) 
such that the family aM(x) = {U{x)\ Ufj0?/} is the complete neighbourhood system 
of each point л: in Х{.Тт). Moreover, each completely regular space can be obtained 
in this manner, and thus precisely those spaces are uniformizable.

Generalizations of uniform spaces, by omitting or weakening some of the 
axioms (I)—(V), were introduced by Appert [3], Nachbin [71], Krishnan [54], Alfsen— 
Njástad [1], Cech[13], Husek [41], Mordkovic [66], Williams [98], Thampuran [93], 
Nakano—Nakano [73] and Mozzochi—Gagrat—Naimpally [67]. Similar generaliza­
tions were also given by Cohen—Goffman[14], Konishi[51] and Davis [20] by 
using certain neighbourhood-valued relations which were later called neighbournets 
by Junnila [44]. The interested reader can get a rapid overview on the subject by 
consulting a recent book of Page [76].

The most widely used generalizations of uniform spaces are the quasi-uniform 
ones. (See Császár [16, p. 66], Pervin [79, p. 174], Murdeshwar—Naimpally [70]

l*
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and Fletcher—Lindgren [28].) These were first introduced in 1948 by Nachbin [71, 
p. 104] by omitting the axiom (II) o f symmetry. Nachbin originally called them 
semi-uniform spaces, and he only used them to define and study uniform preordered 
spaces [71, p. 58]. The importance o f quasi-uniform spaces might become apparent 
only after the striking discoveries o f Krishnan [53], Császár [16, (13.53)] and Per- 
vin [78] that each topological space is quasi-uniformizable. This suggests that 
topology and analysis should be rather based on generalized uniform spaces than 
on the topological ones in which several useful notions of metric spaces become 
meaningless.

Adopting this new point of view, in this paper we aim to initiate a simple, 
unified foundation to topology and analysis. In order that all the reasonable gen­
eralizations of uniform spaces may be included, and we at once have a more workable 
concept without defining bases or subbases, following the ideas o f Konishi [51], 
Krishnan [54] and Nakano—Nakano [73], we drop all the axioms of a uniform 
space except (I). Thus, we consider spaces X (ß )  =  (X , 01) consisting of a set X  
and a nonvoid family РЛ of reflexive relations R on X. We call these spaces relator 
spaces and show how naturally and easily the fundamental notions and statements 
of topology and analysis can be extended to such spaces. The novelty of our treat­
ment is largely due to an extensive and systematic use of nets and relations whose 
knowledge is the only prerequisite for reading this paper.

In Sections 1, 2 and 3, we define and study limits Lima , lima  and adherences 
Adh;*, adh jj of nets, and closures Cla , с1я and interiors lnta , int^ of sets in a relator 
space X{0t). The results obtained partly reveal the relationship of relator spaces to 
convergence, proximity and closure spaces. Moreover, they show that our most 
important basic tool is the big limit relation Lim^ which expresses convergence of 
nets to nets in the relator space X (ß ) .  In this respect, it is very surprising that the 
importance of such a relation between nets seems to have formerly been recognized 
only by Efremovic—Svarc [26], Mamuzic [63, p. 119] and Husek [41]. (Similar 
relations for sequences have been considered by Mrówka [68], Goetz [35], Polja- 
kov [80], Naimpally—Warrack [72, p. 100] and Fric [29].)

In Sections 4, 5 and 6, we introduce and investigate mild continuities of rela­
tions. We define a relation /  from a relator space X (ß )  into another Y (ß )  to be 
mildly {ß, ^ -con tinuous if / _1o 5 o / ( f  for all S £ ß .  By introducing a straight­
forward notion of hyperspace of a relator space, we show that mild continuities of 
relations can be reduced to continuities of the induced set-valued functions. More­
over, by defining appropriate operations * , #  and '  on relators, we prove that 
a function /  from a relator space X (0?) into another Y (ß )  is

(i) {ß*, ^ -continuous if and only if ^ C L in ^ x ,, implies / ( y j  G Li my / (x a)\
(ii) {ß*, ^-continuous if and only if BdC\&(A) implies /(В)£С1у (/(Л ));

(iii) (ß , ^ -continuous if and only if x£lim a x:a implies /(x)€lim y /(x a), or
a a

equivalently x£cl& (A) implies /(„x)£cly
Thus, the most important continuity properties (i.e., uniform, proximal and 

topological continuity) of a function from one relator space into another can be 
obtained as particular relator continuities. This remarkable fact has already been 
suggested by Nakano—Nakano [73] who also used the useful expression / ' ’o ^ o /  
instead of ( / X / ) _1(S).
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Our terminology and notation in this paper will mainly follow Kelley [49]. 
The only essential difference is that, following an idea of Cech [13], functions defined 
merely on nonvoid preordered sets will also be called nets here. This generalization 
is necessary since relators cannot at once be required to be directed with respect 
to the reverse set inclusion zd which will usually serve as a preorder when a family 
of sets is concerned. Moreover, for a net x  defined on A, we shall rather use the 
more convenient notations ( x ^ aiA= x  and {xa}aiA=x(A), where xx=x(oi). And, 
when confusion seems unlikely, we shall simply write (xa) and {ла} instead of (xa)XÍÁ 
and {xX í a , respectively.

In connection with relations, we shall also use some particular terminology 
and notation. Adopting the functional point of view, a relation with domain X  and 
range contained in Y  (being equal to Y) will be called a relation from X  into (onto) 
Y. Moreover, if  in particular X = Y , then we shall simply speak of a relation on X. 
Furthermore, for families 3% and i f  of relations, we shall also use the following 
straightforward notations:

3i(A) =  {/?(Л): R£3#} whenever A is a set,

St~1 = {R*1: R£3t), 3to£f = {R oS : R£3t, S e ^ } ,

3 t \S f  =  {ROS: R€3t, Se^}, 3tM£f = {R Ö S : R£3t, S£Sf}.

And, when confusion seems unlikely, we shall identify singletons with their elements. 
Thus, for instance, we shall write 3t(x) instead of ik({x}).

For their help in the effort leading to the present paper, I wish to express my 
gratitude and admiration to Á. Császár and S. Gacsályi who suggested improve­
ments and provided encouragement. Moreover, I am also indebted to several further 
mathematicians, especially to P. Fletcher, W. N. Hunsaker and N. Levine who 
took the trouble to send me several relevant reprints.

1. Limits and adherences

D efin itio n  1.1. A nonvoid family o f reflexive relations R on a set X  will 
be called a relator on X.

An ordered pair Х(Зй) = (Х, (Ж) consisting of a set X  and a relator I o n  L  will 
be called a relator space.

R emark 1.2. Relators appear to be the ultimate reasonable generalizations of 
the various uniformities. (See, for instance, [76] and [67].)

They have formerly been studied only by Konishi [51], Krishnan [54] and 
Nakano—Nakano [73] in greater detail who called them generalized uniformities 
and connector systems.

For a preliminary illustration of the forthcoming concepts, it seems appropriate 
to use the following

E xample 1.3. Let X  be a set and 3) be a nonvoid family o f nonnegative func­
tions if on X X X  suchthat d (x ,x ) = 0 for all x£X. For each d£S> and 0,
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define the relation Rd on X  by

Then
Rate)  =  {y- d (x ,y )<£) .  

=  {Rd: dd3), £ >  0}

is a relator on X, and thus X {ßg)  is a relator space.

R emark  1.4. If Ш is an arbitrary relator on X, then by defining Q>a= {dR: Rf M}  
suchthat dR(x, y )= 0  if (x, y )£ R  and dR(x, y)=  + « . if (x, y ) £ X x X \R ,  we 
clearly have

However, this simple fact means by no means that relators are superfluous 
since almost everything can be expressed more simply in terms of the “surroundings” 
R d than in that of the “metrics” d.

The next definition has mainly been suggested to us by Efremovic—Svarc [26] 
and Husek [41] who showed that uniformities and their generalizations can also be 
described in terms of nets.

D e f in it io n  1.5. If M is a  relator on X  and Ж = Ж ( Т )  is the class of all nets 
in X, then the relations

L % c / X /  and Adhe с  ЖХ-Ж

defined such th a t for any (ха)€ Ж

L im ^ W )  = {ОаК-Л"': (O'«,*«)) is eventually in each RCM) 
and

A dha ((x„)) =  {(уа)6 Ж : ((ya, x j)  is frequently in each RiM)  

will be called the big limit and the big adherence on X  induced by M, respectively.

R em ark  1.6. In the sequel, trusting to the reader’s good sense to avoid con­
fusion, we shall simply write

y^Lirm * xa and ya£ Adh* x*
a a

instead of
O JeL inr*  ((x j) and (yJ^A dh* ((xj),

respectively.

Example 1.7. If Ma is as in Example 1.3, and (xa) and ( y j  are nets in X, then 

ya€Lim^xa iff lim d(ya, x j  =  0 for all d€3>,a a
and

y^dA dhjjX a iff [irn d (y e , xa) =  0 for all d£3>.
“ a

To check this, recall that

lim r„ =  sup inf r» and lim rx - inf sup r»
„ a ß s x  F a a

for any net (ra) of extended real numbers.
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Theorem 1.8. I f  Ж is a relator on X, then the relation Lima has the following 
properties:

(i) I f  (xa) is a net in X, then x xf  Lim* xx.
a

(Ü) I f  уЛ̂ и т л хх and ((zß, wß)) is a subnet o f  ((x„, ya)), then M ^Lim * zp.
Cf ß

(iii) I f  ( x j  and (yx) are nets in X  such that for any cofinal subnet ((zß, wfi) 
o f ((xa,y j )  there exists a net ((uy, v y)) being frequently in {(zß, wß)} such that 
v S L i m Muy, then j a6Lim<*xa.у a

Proof. The properties (i) and (ii) are quite obvious. To check (iii), note that if 
(xx)xca and {yx)xiA are nets in X  such that j^ L in r*  x x, then there exists R í ЖЛ
such that the set

В = {cciA: (ya, *,)$/?}

is cofinal in A. Thus, {{xß, y ß))ßiB is a cofinal subnet of ((xx, y x))xiA such that 
v f i U m x U y for any net ((uy, vy)) being frequently in {(xp, yß)}ßiB-

Corollary 1.9. I f  (xx) and (ya) are nets in a relator space Х(Ж), then the fol­
lowing assertions are equivalent:

(i) у Х Н т я хх-,a
(ii) each subnet (fzß,wß)) o f ((ха,у а)) has a subnet ((uy, v y)) such that 

vyfiL\mx  uy.

Remark 1.10. Necessary or sufficient conditions in order that the relation 
Lima may have various useful additional properties will be given later.

Instead of establishing the basic properties of the relation Adha, we shall 
now briefly discuss its relationship to Lima-

Theorem 1.11. I f  {xfi and (ya) are nets in a relator space Х(Ж), then the following 
assertions hold:

(0 I f  уxik d h a xx, then wßi U m x zß for some subnet ((zß,wß)) o f  ((xx, y x)).CC P
(ii) I f  wf íA á h mz„ for any subnet ((zß, wß)) o f ((xx, ye)), then y„€Limj, xe. 

Proof. Suppose that ya€AdhaXa, and define
A

B =  {(a, R ) i A X d t :  (yx, xx) iR ) ,

and z(/X' R)=xx and w(XtR)=yx for all (<x,R)iB. Then, by preordering Ж with 
the reverse set inclusion and В by the restriction of the product preorder, one can 
easily check that ((zß, wß))ßiB is a subnet of ((xx, y x))xeA suchthat tv^Lirrij, z^.
This proves (i).

To prove (ii), note that if wßiAd\va zß for any subnet ((zß,ß
then by (i), any subnet ((zß,wß)) of ((xa, yfi) has a subnet (( 
vyíL im a uy. Thus by Corollary 1.9, ya€LimaXa.

Wß)) of ((xa,y a)), 
uy, vy)) such that

Acta Mathematica Hungarica 50,1987



182 Ä. SZÁZ

Remark 1.12. Unfortunately, the converses of the assertions (i) and (ii) in 
Theorem 1.11 are not, in general, true.

This follows at once from the next example which reveals a serious disadvantage 
o f nondirected nets.

E xample 1.13. Let X(iM) be a  relator space such that (b, a)(|7?n for some 
a ,b £ X  and Moreover, let A  be a preordered set such that for some a ,,
the set {ax, a2} has no upper bound in A. Define xa=a  for all a ZA  with a^oq 
and xx=b for all a so q , and yx—b for all a€A. Then, it is clear that (yx, x x)£R  
for all RdjM and a S Kl, but (ya,x aH R 0 for all a s a 2. Consequently, ух£Ытя xx,OL
but yx $ Adh^ xx.a

Remark 1.14. A relator á? on X , or a relator space X {M) will be called uni­
formly directed if M is directed with respect to the reverse set inclusion.

In uniformly directed relator spaces, we may restrict ourselves to directed nets, 
thus the above inconveniences can be avoided there.

D efin itio n  1.15. If S/t is a relator on X  and A/~=J /~(X ), then the relations

U m ^ c z J ^ X X  and a d b ^ e z j V X X

defined such that for any ( r , ) 6 T

l™ *((**)) =  {xeX: (x)CLim*((r,))}
and

adh* ((x j)  =  {x€T: (x)€Adha ((хя))}

will be called the little limit and the little adherence on X  induced by 'M, respectively. 

Remark 1.16. Again, we shall simply write
x€ lim<* xx and x£ adh/j8 xx

a a

instead of
x€lima ((xa)) and xC adh^x*)),

respectively.
The following theorem is an immediate consequence of the corresponding 

definitions.

T heorem  1.17. I f  ( x j  is a net in a relator space X (ß ) ,  then 
1ппя ха =  П lim R-H x,)

1 Л е я  a
and

adha xa =  f l  Н тЛ “ ](Ха)- 
x лея  a

Remark 1.18. Recall that

lim Ta = U  П A ß and IimTa = n U ^ ^
a  a  ß ^ a  a a ß ^ a

for any net (Ax) of sets.
The next two theorems follow at once from Theorems 1.8 and 1.11.
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Theorem 1.19. I f  0t is a relator on X, then the relation \\тя has the following 
properties:

(i) I f  x £ X  and A is a nonvoid preordered set, then r t l i m x
(ii) I f ( x x) is a net in X  and (yß) is a subnet of(xa), then lima xac lim # y ß.

tX ß

(iii) I f  ( x f  is a net in X  and x4_X such that for each cofinal subnet (yß) o f  (xx) 
there exists a net (z,.) being frequently in {>'»} such that x f j i m ^  zy, then xBlim ^x,.

У ас

Corollary 1.20. I f  (xf) is a net and x  is a point in a relator space X(:M), then 
the following assertions are equivalent:

(i) xfWm^xp,
a

(ii) each subnet (yß) o f  ( x j  has a subnet (zy) such that x£  lim.<* zr

R emark 1.21. A further important property which the relation Шпл m ay have 
is the following iterated limit property:

If (xaß)pcB* is a net in X  for each a in a nonvoid preordered set A, yx£ Мтя ха»
ß

for each a £A,  and z£lim<gyx, then z<E \ima xxlf(x), where (а, <р)УАХ X  Bx.
* (■*>'*’> *SA

Theorem 1.22. I f  (xa) is a net and x  is a point in a relator space X(0t), then the 
following assertions hold:

(i) I f  x£adh*  xx, then x£lima y» fo r  some subnet (yß) o f  (xa).
X ß

(ii) I f  x£adhMyß for any subnet (yp) o f  (xa), then x£ lim 3lx x.
ß  ас

Remark 1.23. Also by Example 1.13, it is clear that the converses of the asser­
tions (i) and (ii) in Theorem 1.22 are not, in general, true.

This strongly suggests that in a relator space X(M), even the relations linr* 
and adh<* cannot, in general, be equivalent tools. However, as we shall soon see, 
this is, fortunately, not the case.

2. Closures and interiors

D efinition 2.1. If 01 is a  relator on X  and  5P=2P(X) is the family o f all sub­
sets of X, then the relations

C l^ c z ^ X ^  and In tя а 0 > х 0 ‘

defined such th a t for any A^SP

Cf*(zí) =  {B£0>: \jR£0t: AftR(B)  tí 0}
and

Int*(zí) =  {B£0>: 3 Rd0t: R(B) c  A}

will be called the big closure and the big in terior on X  induced by M, respectively.
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E xample 2.2. If ЗЯ3 is as in Example 1.3 and A, B e X ,  then 
Bf_C\j,s (A) iff d(B,A) = 0 for all df2>, 

where d(B, A) = m i {d{b, a): bCB, af_A}.

R emark 2.3. Note also that if 01 is in particular a quasi-uniformity, then 
С\я  is precisely the inverse of the induced quasi-proximity [28, p. 12].

In this respect, it is also worth mentioning that we have CL*1 — Cl^-t for 
any relator 01. (Note that the same assertions hold also for the relations LimÄ and 
Adh^.)

The following theorem is an immediate consequence of the definition of Cl,* 
and the equality С П /= C\$-i.

T heorem 2.4. I f  01 is a relator on X, then the relation Cl<* has the following 
properties:

(i) Cl3r(0) =  0;
(ii) А€С1Я (А) i f  0 x A e X ;

(iii) С1я (А)еС1я (В) and C l^ G ^ c C l* 1 {В) i f  A e B e X .

R emark 2.5. An equivalent reformulation o f the first part of (iii) says that 

С1я ( А )0 С \ я ( В ) е С \ я (А 0 В )
for all А, В с X.

Later, we shall see that the converse inclusion can hold for all A, B e X  if and 
only if 01 is proximally directed in the sense that the family 0ЦА)  is directed with 
respect to the reverse set inclusion for all A e X .

T heorem  2.6. I f  A is a set in a relator space X(ß) ,  then 

Int*(A)  =  i?(30\C U (JT V O
and

С \Я(А) = 0>{Х)\Ш я (Х \А ) .

P roof. For B e X ,  we have B£bAm{Ä) iff R ( B ) e A  for some R^0l  iff 
(X\A)C]R(B)  = Q for some R ^ M  iff U$CL*(A'\v4). This proves the first assertion.

The second assertion can be a t once derived from the first one by writing X \ A  
instead of A.

R emark  2.7. Using this theorem, the properties of the relation Intя can be 
easily derived from that of С\я .

Moreover, this theorem shows that in a relator space Х(-Щ, the relations С\я 
and Inf* are equivalent tools.

D efin itio n  2.8. If 0t is a relator on X  and 0>=0(X),  then the relations 
cla  c  SPXX and int* c  0>X X  

defined such that for any A£gP

cla (A) = {xiX:  (x}€C4(T)}
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and
intя (А) = {х£Х: fx}6 Int *(/!)}

will be called the little closure and the little interior on X  induced by 3H, respec­
tively.

R emark  2.9. When it seems convenient, we shall also use the notations 
А ~ с \ я (A) and A = int#(Ä).

The following theorem is an immediate consequence of the corresponding 
definitions.

T heorem  2.10. I f  A is a set in a relator space X(32) then cl^ (A)= П,М~1(А).

The next two theorems follow at once from Theorems 2.4 and 2.6.

T heorem  2.11. I f  01 is a relator on X, then the relation с\я has the following 
properties:

(i) cl*(0) =  0;
(ii) A c  cl Я(А) i f  А с  X;

(iii) с\я  (A) с  с\я (В) i f  А с  В с  X.

R emark  2.12. The property (iii) can again be reformulated by stating that 

с\я {А)\Зс\я ( В ) с с \ я (А13В)
for all A, B c X .

But, now the converse inclusion can hold for all A, BczX  if and only if 32 is 
topologically directed in the sense that 32 (x) is directed with respect to the reverse 
set inclusion for all x£X.

T heorem  2.13. I f  A is a set in a relator space X(32), then

\тя (А) =  Х \ с \ я { Х \А )  and с\я (А) = Х \ Ы Я( Х \ А ) .

D efin itio n  2.14. If á? is a relator on X, then the members of the families

&я = {А с  X: с1я (A) = A} and 2Гя — {A ez X: int^ (A) = A}

will be called the 32-closed and the 32-open subsets o f X,  respectively.

R emark  2.15. Note that for A c X ,  we have A^áf# (А£0~я) if and only if 
clя ( А ) с А  ( А с т 1 я (A)).

The following theorem can be easily derived from Theorem 2.11.

T heorem  2.16. I f  32 is a relator on X, then the family has the following 
properties:

(i) 06 and XdlFg,
(ii) i f

R em ark  2.17. If 32 is a topologically directed relator on X, then by Remark 2.12, 
we also have A U B £ 0 ä  for all А,
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C orollary 2.18. I f  3k is a relator on X, then the following assertions are equiv­
alent:

(i) с 1а ( А ) € Ъ  for  all AczX ;
(ii) с\я (А) — П {F6 A c F } for  all AczX.

R emark 2.19. The property (i) can, somewhat inprecisely, be expressed by saying 
that the relation с\я is idempotent.

Later, we shall call a relator 3/1 on X  topological if x3_R(x)w> for all x £ X  and 
RC-jM, and show that: 3Ä is topological iff с1я  is idempotent iff Итя has the iterated 
limit property.

The next theorem is an immediate consequence of Theorem 2.13.

T heorem 2.20. I f  (M is a relator on X, then

ЗГЯ =  А£Гв}.

D efinition 2.21. If  3/1 is a relator on X, then the relation пл defined on X  by 
дя (х)=с \я  ({x}) will be called the point-closure on X  induced by 3/1.

T heorem 2.22. I f  3% is a relator on X, then

= = ( пза )-1.

P roof. By Theorem 2.10, we clearly have

ея (х) = П Я - ^ х )  =  ( П ^ _1)(х) =  (П Л )- 1̂ )  

for all x£X,  whence the assertion immediately follows.

R emark 2.23. The point-closure will play an important role in the descriptions 
of the so-called weak properties of relators.

For instance, a relator (31 will be called weakly topological and weakly sym­
metric if дя is closed-valued and symmetric, resp.

Note that weak symmetry corresponds to the famous R0 -property of topological 
spaces which was mainly studied by Davis [20] and Murdeshwar—Naimpally [70].

3. Interdependence of basic tools

T heorem 3.1. I f  A  and В are sets in a relator space X(ß),  then the following 
assertions are equivalent:

( i )  B€C l*(^);
(ii) у лОАтя хх fo r  some net ((xa,j>a)) in A X B ;a

(iii) y rJf  AdhMxa fo r  some net ((xa, y j )  in AXB .a
P r o o f . If (i) holds, then for each R£3/l, there exists (xR, y R) ( A x B  such 

that (yR, xr) (R.  Hence, by preordering 3/1 with the reverse set inclusion, we can 
state that ((xR, yR))Ri3i is a net in A'XB  suchthat y R(  Lima xR. Consequently,
(ii) holds.
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On the other hand, by preordering 0t with the largest possible preorder, we can 
also state that ((xR, yR))Ri^  is a net in A x B  such that yÄ£Adh * Consequently
(i) implies (iii) too.

The implications (ii)=>(i) and (iii) =>(i) are even more obvious.

R emark 3.2. Note that in the assertion (iii) the net ((xa, ya)) may be required 
to be directed even if 01 is not uniformly directed.

Note also that by using the assertion (i) of Theorem 1.11, the proofs of the 
implications (i)=»(ii) and (iii) =>(i) can be spared.

The above theorem shows that in a relator space X {0) the relation С1а cannot 
be a more powerful tool than Lima or Adha .

T heorem  3.3. I f  (xx)xeA and (yx)xeA are nets in a relator space X{0), then among 
the following assertions the implications (i)=>-(i!)•<=>■ (iii) hold:

(i) уаШ т я ха;a
(ii) {Ур}Рев£С\я ({хр}р(:11) for any cofinal subset В o f A;

(iii) {Wß}ßiB£Cla({zx}ßeB) for any subnet {{zß,wß))ßiB o f  {(xx, y x))xfA.

P r o o f . This is an immediate consequence of the corresponding definitions. 
To check that (ii) implies (iii), note that if ((zß, wß))ßeB is a subnet of ((x,, ya))ae^, 
then there exists a function cp from В into A such that zß= x v(P) and wß= y v(ß) 
for all ß£B, and for each adA  there exists ßa£B  suchthat <p(ß)^a for all ß = ß x. 
Hence, it is clear that {zß}ßiB={xx}xiq>w and {wß}ß€B={yx}xiipW, and cp(B) is a 
cofinal subset of A. Thus, (ii) can be used to derive that {wß}ßiB£C\äl({zp}ß€B).

R em ark  3.4. If in particular A is a linearly ordered set and 01 is a uniformity, 
then (ii) also implies (i).

This follows immediately from a deep result of Ramm—Svarc [82, Lemma 2'] 
which was later rediscovered by Alfsen—Njástad [2, Lemma 2].

T heorem  3.5. I f  (xx)xiA and {yfix( A are nets in a relator space X{fX), then any 
o f the following assertions implies the subsequent one: (i)

(i) yx£ Adh^x*;
a

Oi) {Ур}р^С\я ({хр}„^х) for all a£A;
(iii) w^Lim,* zß for some subnets (zp)ßiB and (wß)ßiB o f  (xa)a£yl and (ух)хйА, 

respectively.

P r o o f . It is clear that (i) implies (ii). To check that (ii) also implies (iii), note 
that if (ii) holds, then for each a £A  and there exist « and il/iXiR̂ a
such that (Уф(Х'Ю, Hence, by preordering 01 with the reverse set inclusion
and B = A x M  with the product preorder, it is clear that (*«.(„, H))(a, me в ar>d 
(Уф(*.*,)(«.R)ев are subnets of (xx)x€A and (ух)хСл, respectively, such that
Уф(*. Л)’

R em ark  3.6. If in particular В  is a directed set in (iii), then (iii) also implies (ii).

But, as the next trivial example shows, the implication (ii) =>■ (i) cannot, even 
for sequences, be true in general.
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E xam ple 3.7. Let X  be the set of all real numbers, d  the usual metric on X  
and as in Example 1.3. Define x n= n  and y„= n+ \ for each positive
integer и. Then, it is clear that (x„) and (y„) are sequences in X  such that 
{Ут}т̂ С 1 Яа({хт}т̂ п) for all 77, but y A A d h Mxn.П

By letting В  to be a singleton {x} in Theorem 3.1, we immediately get

Theorem 3.8. I f  A is a set and x is a point in a relator space X(0) ,  then the fo l­
lowing assertions are equivalent:

(i) x(Ecl,*(T);
(ii) x€ lim ^ xx for some net (xx) in A ;

IX

(iii) xG adh jj xa for some net ( x j  in A.
a

Remark 3.9. If 01 is, in particular, topologically directed, then the net ( x j  
may be required to be directed not only in the  assertion (iii), bu t also in the asser­
tion (ii).

On the other hand, in contrast to Theorems 3.3 and 3.5 and Remarks 3.4 and 
3.6, now we simply have

Theorem 3.10. I f  (xx)x€ A is a net in a relator space X (0 ) ,  then 

Ншя ха = П cl*
“ В€7?(А)

where &(A) means the family o f  all cofinal subsets o f A, and

а0Ъя хх = П с1л ({х,},2а).
a  Z Í A

Proof. By letting yx—x  for all ad A  in Theorem 3.3, we immediately get

lim я хх а  f |  cla ( { x ^ €B).
“  B e v ( A )

To prove th e  converse inclusion, note th a t if  x £ X  such th a t x$ firm* xx, then
a

there exists RdM  such that
B = {<x£A: xaíi?(x)}

is a cofinal subset of A. M oreover, х$с1я {{xß}PÜB), since {x/S}íeB rijR(x)=0.
This proves the first assertion. The proof of the second one is even more obvious.

Remark 3.11. Theorems 3.8, 3.10 and 2.13 show that in a relator space X { ß \  
the relations lima , adh^, cla  and int* are equivalent tools.

Moreover, from Theorem 3.8, one can also easily derive the following less 
surprising

Theorem 3.12. I f  A is a set in a relator space X(3$), then the following asser­
tions are equivalent:

(i) A d^at\
(ii) lim я х хс А  for any net (xa) in A;

IX

(iii) adh^ xxc A  for any net ( x j  in A.
<X
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R emark 3.13. Hence, we can also state that, for a set A in a relator space X(3t), 
we have A^STя  if and only if А П Н тя хах 0  ( A d adha xa^0 ) implies that (xfl

a <x
is eventually (frequently) in A.

4 .  M ild  con tinu ities

D efinition  4.1. A relation /  from a relator space X(3i) into another Y(£A) 
will be called mildly continuous, or more precisely mildly (Si, ^-continuous, if 
f ^ o S o f e S i  for all SZS?.

R emark 4.2. Authors dealing with uniform continuity of a function /  usually 
introduce the auxiliary function / X /  defined by ( fX f ) ( x , y ) = ( f ( x ) , f ( y ) )  and 
fail to note that ( f X f ) ~ 1( S )= f ~ 1o S o f

The useful expression f ~ 1o S o f  seems to have formerly been explicitly used 
only by Konishi [51], Davis [21], Kenyon [50], Doicinov [23], Mathews—Curtis [64] 
and Nakano—Nakano [73].

The latter two authors have also suggested that by defining appropriate opera­
tions on relators all the important continuity properties of a function can be obtained 
as particular relator continuities.

R emark 4.3. Mild continuities for relations express in general much weaker 
continuity properties than upper and lower semicontinuities which are to be defined 
according to [86].

Namely, the condition of Definition 4.1 can be rephrased by saying that for 
each SZ£A there exists RfS i  such that the properties yZR(x)  an d /(y )D iS (/(x ))x0  
are equivalent for any x, yZX.

Fortunately, for functions the above three kinds of continuity properties coin­
cide. Therefore, in that case the term “mildly” may be omitted without any danger 
of confusion.

The next two theorems contain important, but almost self-evident assertions 
about mild continuities.

T heorem 4.4. I f f  and g are relations from a relator space X(Si) into another 
Y(£A) such that fczg  and f  is mildly continuous, then g is also mildly continuous, 
provided that Si is a stack on X X X .

C orollary 4.5. I f f  is a reflexive relation on a relator space X{3i) with Si being 
a stack, then f  is necessarily mildly continuous.

T heorem 4.6. I f  f  is a mildly continuous relation from a relator space X(SA) 
into another Yi ff )  and g is a mildly continuous relation from Y(iA) into a relator 
space Z(ST), then g o f  is a mildly continuous relation from  X(ß)  into Z(ST).

To partly reduce the study of mild continuities of relations to that of functions, 
we need a straightforward notion of a hyperspace of a relator space.
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D efin itio n  4.7. Let X ( ß )  be a relator space and ^ = ^ ( X ) \ { 0 } .  For each 
RC01, define the relation R on X  by

fi(A) =  {B£$: ВПЛ(А)  0}.

Moreover, let át = {R: RdiM}. Then the relator space X(ÍÉ) will be called the mild 
hyperspace of X{ß).

R em ark  4.8. Note that by identifying singletons with their elements, X(l%) may 
be considered as an extension of X (ß) .

Thus, by using X(M), the relations defined in Sections 1 and 2 can be naturally 
extended to nets and families of nonvoid subsets of X, respectively.

Of course, the same assertions hold also for the upper and lower hyperspaces 
of a relator space which are to be defined according to [8].

However, for the above purposes, mild hyperspaces appear to be more suitable 
since we have

T heorem  4.9. I f  (Ш is a relator on X, then

С\я  =  and Cl- =  » - 1 0 0 ,0 » ,

where Щ means the function defined on 3P(fP{X j) by °U(si) = U sd.

P r o o f . The first assertion is quite obvious. To check the second one, note 
that if á?ECi~ (sd), then sdCiR( ß ) X 0 for all R£ffl. That is, for each R tdt, 
there exists A ^sd  and such that AfR(B) ,  or equivalently АГ)В(В)А0.
This means that, for each RCJit, there exist rC U rf  and y£ UfA such that x£R(y).  
Consequently, Usd C]R(U3S)^0 for all R(Ll%, and hence 1_Ш£С1Я ( U ^ ) .  That 
is, °U(ß)£_G l#(<%(sd)), and hence (%(sd))). This shows that C l~c
с:аи~1оС\яоаМ. The converse inclusion can be proved quite similarly.

R em ark  4.10. In connection with the mild hyperrelator 01, it is also worth 
mentioning that the relations lim- and adh- can be used to express the topological 
lower and upper limits studied by Mrówka [69] and Frolik [30].

D efin itio n  4.11. I f / i s  a relation from a set X  into another Y, then the func­
tions (pf  and <Pf  defined on X  and % by

<P/(x)=f(x) and Фг (A) = f ( A )

will be called the little and the big set-valued functions induced by / ,  respectively.

P roposition  4.12. I f f  is a relation from a set X  into another Y  and S  is a reflexive 
relation on Y, then

(p^oSocpj- = f ~ 1o S o f  and Ф]г1о§оФг  =  ( / _1о 5 о /)" .

P r oof . Straightforward computation. For instance, to check the second asser­
tion, note that for A ,B £ %  we have В£(Ф/1о § о d>f)(A) iff Ф f (B)GS{(p f (A)) iff 
f ( B ) n S ( f ( A ) ) * 0  iff B C ] f^ (S ( f (A ) ) ) xQ  iff BCfi f- 'oSof)~(A).
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T heorem  4.13. I f f  is a relation from  a relator space X{ß) into another Y(£P), 
then the following assertions are equivalent:

(i) /  is mildly {ß , SPf continuous;
(ii) cpf  is {ß , £P)-continuous;

(iii) d>f is {fk, SPfcontinuous.

Proof. By Proposition 4.12, it is clear that (i) and (ii) are equivalent, and (i) 
implies (iii).

To check that (iii) also implies (i), note that if S££P and T = f ~ 1o S o f  then 
by Proposition 4.12 and the assertion (iii), we have T = R  for some R£0l, which 
implies that T=R.

5. Criteria for continuities

D e fin itio n  5.1. If  01 is a relator on X,  then the relator

®*={S <^XXX:  3 Re@: R  c  S j

will be called the uniform refinement of 0t.

T heorem  5.2. I f f  is a function from  a relator space X(0t) into another Y(SP), 
then the following assertions are equivalent:

(i) /  is (ß*, ^-continuous;
(ii) ya€Lima xa implies / (y J g L im ^ /ix J ;

a a
(iii) ул£AdhgXz implies /(>v)€ A dhy./(xJ.

a a

P r o o f . If (i) does not hold, then there exists S^SP such that У~го S o f  $02*. 
This means that for each R, there exists (xR, у r)£R su ch th a t (xR, y R) $ f ~ x° S o f  
i.e., ( / ( ar) , / ( j’r))C S. Hence, by preordering 02 with the reverse set inclusion, 
we can state that (xR) and ( y R)  are nets in X  such that xR€Lima j R, but

R
f ( x R)$ Liniy. f ( y R). Consequently, (ii) implies (i).

R
On the other hand, by preordering 02 with the largest possible preorder, we 

can also state that (xR) and (yR) are nets in X  such that xR£Adha yK, but
R

f ( x R)$ Adh^ f ( y R). Consequently, (iii) also implies (i).
R

The implications (i)=>(ii) and (i)=v(iii) are even more straightforward con- 
sequences of the corresponding definitions.

R em ark  5.3. Note that any one of the assertions
(iv) y ß U m x Xa implies / (y a)€ A d h ^ /(x J ;

a a
(v) yx£ Adh^x* implies f ( y x) e U m y f ( x J ;

a a
implies (i), but none of them is implied by (i).

Moreover, note also that in the assertions (iii) and (v) the nets (x j  and (ya) 
may be required to be directed even if 01 is not uniformly directed.
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C orollary 5.4. I f  0  and i f  are relators on X , then the following assertions 
are equivalent:

(i) У с й * ;  (ii) L im ^cL in v ; (iii) Adha <c A dhy.

P roof. Apply Theorem 5.2 to the identity function of X(0)  into X(£f).

C orollary  5.5. I f  0  is a relator on X, then 0 *  is the largest relator on X  such 
that 1Лта*=1Лта  (Adha*=Adha ).

P roof. Use Corollary 5.4 and the inclusions 0*<z0*  and 0cz(0*)*.

D efin itio n  5.6. If 0  is a relator on X, then the relator

0 *  = { S ^ X x X :  M A a X : 3 R d 0 :  R ( A ) ^ S ( A )}  

will be called the proximal refinement of 0 .

T heorem 5.7. I f f  is a function from a relator space X(0)  into another Y(tf),  
then the following assertions are equivalent:

(i) / is ( 0 * ,  0 ) - continuous',
(ii) В£С\Я (A) implies f (B ) £ C l f ( f (A ) ) ;

(in) f - ' i V K C l z i f - ^ U ) )  implies VfC\y (U)-
(iv) F e in tsr(U) implies f  1(F )6 ln táf ( /  1([/)).

P roof. A simple application of the corresponding definitions shows that (i) 
implies (ii). Moreover, by w r itin g /-1(t/) a n d / -1 (F), with U, VczY,  instead of 
A  and В in (ii), respectively, and Y \ U  instead o f U in (iii), and applying Theo­
rem 2.6, one can easily check that (ii)=>-(iii) and (iii)=>(iv).

To prove tha t (iv) also implies (i), suppose that (iv) holds, and let S d i f  and 
AczX.  Then, we clearly have f (Ä )d \n l y  (S(f (A))).  Hence, by (iv), it follows that 
f - 1 (/(/!))€ I nt* ( f ~ 1(S (f (A )))). This implies that Adlntg, ( ( / ” 1 о Ao/) (/!)). Thus, 
there exists RCz0  suchthat R ( A ) c z ( f~ 1oSof )(A) .  Consequently, f ~ 1oSof(-0*.

C orolx.a r y  5.8. I f  0  and i f  are relators on X, then the following assertions 
are equivalent:

(i) SA c.0*;  (ii) C fjjcC l^; (iii) I n ty d n t^ .

C o rolla ry  5.9. I f  0! is a relator on X, then 0 *  is the largest relator on X  
suchthat С1я # =С 1а (Inta# =  Ints,).

D efin it io n  5.10. If 0  is a relator on X, then the relator

0  =  { S c  X X X :  ЧхеХ: 3 R d 0 :  R(x) c  S(x)} 

will be called the topological refinement of 0 .

The proofs of the next two theorems are quite similar to that of Theorems 5.2 
and 5.7.
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T heorem 5.11. I f f  is a function from a relator space X(0í) into another Y(£A), 
then the following assertions are equivalent:

(i) /  is (ß , £A)-continuous;
(ii) x6lim a xa implies f  (x) 6 lim ̂ / ( x j ;

a a
(iii) xgadhя хх implies / ( x ) € a d lv / ( x a).

a a

R emark 5.12. Any one of the assertions

(iv) х£\\тя x„ implies /(x )€ a d h y / ( x j ,a a
(v) x $ ad h ^ x a implies / ( x ) € l in v / ( x a)a

implies (i), but none o f them is implied by (i).
I f  0t is topologically directed, then the net (xa) can be required to  be directed 

no t only in the assertions (iii) and (v), but also in the assertions (ii) and (iv).

Corollary 5.13. I f  01 and I f  are relators on X, then the following assertions 
are equivalent:

(i) (ii) lim«gClinv; (iii) a d h ^ c a d h ^ .

Corollary 5.14. I f  M is a relator on X, then 01 is the largest relator on X  such 
that lim ~ = lim a (adh~ =adh«*).

T heorem 5.15. I f f  is a function from a relator space X(0l) into another Y(£f), 
then the following assertions are equivalent:

(i) / is (01, I f  )-continuous-,
(ii) x£clЯ(А) implies f (x )ec \y  (f(A))-,

(iii) х € с1я ( / _ 1 (у4)) implies / (x )£ c ly  (A);
(iv) f (x)£inty  (A) implies x £ in ta  ( / _1(^)).

Corollary 5.16. I f  0t and are relators on X, then the following assertions 
are equivalent:

(i) i f  cz0t\ (ii) c l^ c c l^ ;  (iii) in ty c in t^ .

C orollary 5.17. I f  3k is a relator on X, then 01 is the largest relator on X  such 
that clá =cL* (intá = in ta ).

Theorem 5.18. I f f  is a function from an arbitrary relator space X(0£) into a 
topological one Y(,9?), then the following assertions are equivalent:

(i) /  is (0., continuous-,
(ii) AhS'y implies / _1(Л)С^*;

(iii) A(i0~у  implies f ~ 1(A)£0~st.

Proof. If (i) holds and A£ then by (iii) in Theorem 5.15, we have 

clЯ(Г Ч А ) )  d f - \ d A Ä ) )  = f ~ 1(Ä), 
whence / _1(x4)£«^ follows.
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Conversely, if (ii) holds and А с  У, then by Theorem 2.11 and Remark 2.19, 
we have

claCГ Х(Л)) с  с\я {Г'(с\АА)))  = f ~ 1{c\Sr(A)),

whence, again by (iii) in Theorem 5.15, (i) follows.
The equivalence of (ii) and (iii) is an immediate consequence of Theorem 2.20.

Corollary 5.19. I f  PÄ and i f  are relators on X  such that i f  is topological, then 
the following assertions are equivalent:

(i) (ii) (iii) S T я .

Remark 5.20. Note that the implications (i)=*(ii)<=>-(iii) in Theorem 8.15 and 
Corollary 5.19 do not require i f  to be topological.

Corollary 5.21. I f  1% is a topological relator on X , then 01 is the largest 
topological relator on X  such that {3~

Remark 5.22. By Corollary 5.17, it is clear that the equalities and
are always true ; and Si is topological if and only if 01 is topological. 

Later, we shall show that a relator 01 is topological if  and only if 0t is topologi­
cally transitive in the sense that T (S(x))c .R (x)  for some S, whenever
x<z.X and R£l%.

The next simple example shows that the condition o f topologicalness cannot 
be omitted from Theorem 5.18 and Corollaries 5.19 and 5.21.

Example 5.23. Let X = {x ,y , z } ,  and define the relators 0t = {R} and i f =  {5} 
on A"such that R(.v)={.v, y} and 5 (x) = { a, z} and R(t)  = S( t)  = {y, z} if t£{y,  z}. 
Then, it is clear that

F я = У <r =  {0, {>’, z}, X },

but the relators 01 and are still incomparable.

Remark 5.24. Note that the relators 01 and i f  given in Example 5.23 are not 
topological since the relations R and S  fail to be transitive.

Note also that under the small change S(z)= {z} the relator i f  becomes 
topological, and we still have a reasonable example to  Theorem 5.18 and Corol­
lary 5.19.

6. Supplements to Section 5

Theorem 6.1. I f  01 is a relator on X, then

(ß*)~ = ФУУ{{А}*)~ and (0 * Y  = ( ä y n ( { A Y ) ~ ,

where A is the diagonal o f  XXX .

Proof. We shall only prove the second assertion, since the proof o f the first 
one is similar, but simpler. For this, suppose first tha t T(L{ß*)~. Then, there
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exists S(L3%* suchthat T = S .  Moreover, for any there exists ШЗЛ such
that R(A)cS(A) .  This implies that R ( A ) c S ( A )  = T(A). Consequently, Г\
n ( w y .

To prove the converse inclusion, suppose now that T£{8tY  n({d}*)~. Then, 
there exists a reflexive relation 5 o n I  such_that T=S.  Moreover for any A f X ,  
there exists RPM suchthat R ( A ) c T (A ) —S(A).  This implies R(A)cS(A). Con­
sequently, we have S £ ß *  and hence T = S l( :k * Y  ■

R em ark  6.2. To formulate a similar assertion for the relator (Ж)~ a weakening 
of the topological refinement should be introduced.

The importance of the above partial compatibility of the hyperspace opera­
tion ~  with the refinement operations * , #  and '  lies main lyin the next 
reduction

T heorem  6.3. I f f  is a relation from a relator space X('M) into another Y (If), then

(i) f  is mildly {01*, I f f  continuous i f  and only i f  Фу is {{&)*, Iffcontinuous;
(ii) f  is mildly {ft*, Iffcontinuous i f  and only i f  Фу is { f ß Y ,  I f f  continuous.

P roof. This is an immediate consequence of Theorems 4.13 and 6.1 and th e  
second assertion in Proposition 4.12. Namely, for instance, by the above mentioned 
results, it is clear that /  is mildly {ß*,  ^-con tinuous iff Фу is {tßt*Y, ^ - c o n ­
tinuous iff Фу is {(0ÍY П({/1}*)~, ^-continuous iff Фу is ({ß)~,  ^ -continuous.

Combining Theorems 4.13 and 6.3 with the results of Section 5, one can for­
mulate several criteria for mild continuities of a relation from one relator space 
into another.

Among these criteria, it seems appropriate to mention here only the ones con­
tained in the next

T heorem  6.4. I f  f  is a relation from a relator space X{01) into another Y { I f  ), 
then the following assertions are equivalent:

(i) /  is mildly {31*, Iffcontinuous;
(ii) В1С\Я {А) implies f ( B ) e C Y ( f ( A ) ) ;
(iii) A O im ~ A x implies f ( A Y U m ~ f { A x).

P r oof . By Theorems 4.13, 5.7 and 4.9, it is clear that (i) holds iff <pf  is {3&*, Sf)- 
continuous iff В^С\Я{А) implies (pf {B) lCl^  ((pf{A)) iff (ii) holds. Namely, 
( p M )= { f{x ) } xiA and f{A) — (J f ix ) .

x £ A
On the other hand, by using Theorems 6.3 and 5.11, one can easily check that 

(i) holds iff Фу is ({ä)~, ^ -con tinuous iff A f j i m -  Ax implies Ф f {A)XX\m~ <Pf ( A J  
iff (iii) holds.

R emark 6.5. It is a striking fact that the sets A x can be replaced by singletons 
in (iii).
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Namely, if  (i) does not hold, then there exist Sat?  and A c X  such that 
for each RPM there exists xr€R(A) such tha t xR$ ( f ~ 1oSof)(Ä) ,  i.e., / ( x K)D 
riiS '(/(/l))=0. Hence, by preordering CÉ with the reverse set inclusion, one can 
easily check that ({л'л})К(;я is a net in Xsuch that A€  lim« {xR}, but /(A )1} lim^ f ( x R).

The above fact was formerly utilized by Husek [41] in defining convergence 
classes for generalized proximities.

To derive assertions for various mild continuities of composite relations, the 
next theorem is also needed.

T heorem  6 .6 . I f  f  is a relation from a relator space X{M) into another Y(Sf), 
then the following assertions hold:

(i) I f  f  is mildly (ß*, ^-continuous, then f  is also mildly (ß*, Sf*)-continuous.
(ii) I f  f  is mildly (01*, SR)-continuous, then f  is also mildly iß * , Sf*)-con­

tinuous.
(iii) I f f  is mildly {ß, SR)-continuous, then f  is mildly (St, ,9?*)-continuous. More­

over, if  in addition f  is a function, then f  is also (01, ß f  continuous.

P roof. Straightforward computation. For instance, we prove the first part of
(iii). For this, suppose that /  is mildly (01, ^ -continuous and pick T££A* and 
xdX.  Then, there exists S^SR such that S ( f ( x ) ) a T ( f ( x ) ) .  Moreover, 
since f - ' o S o f e ® ,  there exists RfM  such that R(x)cz ( f~1oSof)(x).  Hence, it 
follows that R ( x ) a ( f ~ 1oTo f ) (x ) .  Consequently, / -1o Toff_fk also holds, which 
proves the mild (01, -У *)-continuity of /.

Finally, we prove an interesting property of the topological refinement 8k of a 
relator 01.

T heorem  6.7. I f  A is a set in a relator space X(0l) then 

Ц *  (A) = { B c X :  B t l c l J A )  *  0}
and

Int ~(A) = { B c X :  B c z in t jA ) } .

P r o o f . If B^ ln t -(A) ,  then there exists S p é  such that S ( B )c A .  More­
over, since S£St,  for any x£B ,  there exists R(-0t, suchthat R(x)<zS(x). Hence, 
since S ( x ) c S ( B )  for any x£B,  it is clear that He: intя (A).

To prove the converse implication, suppose now that ß c in t^  (A). Then, for 
each xf_B, there exists R xdSt such that R x(x)cA .  Define the relation S  on X  
such that

5(x) =  Rx(x) if and S(x) = X  if  x d X \ B .

Then, it is clear that SS/M and

S(B)  = U Six) =  и  Ъ ( х )  с  A.
х£в x ев

Consequently, Belnt^ (A).
The first assertion of the theorem can be easily derived from the second one by 

using Theorems 2.6 and 2.13.
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R em ark  6.8. The above theorem strongly suggests that the relations Lim<*# 
and Adhя * can also be expressed in terms of the relations С1Я and Intg. However, 
we could not prove or disprove this.

The results of Sections 5 and 6 make it natural to introduce the following 
terminology which will be needed in some subsequent papers.

D efin itio n  6.9. A relation /  from a relator space X(P0t) into another Y(PP) 
will be called mildly uniformly, proximally, resp. topologically continuous ifit is mildly 
(3$*, Of}-, {01*, Pf)-, resp. {PA, ^-continuous.

R em ark  6.10. The corresponding comparisons of relators 0t and Pf defined on 
the same set X  is to be defined accordingly.

For instance, we say that Pf is uniformly finer than PPt, resp. Pf is uniformly 
equivalent to M if PAaPf*, resp. 0l*=Pf*.

Similarly, we call a relator PA on X, or a relator space X(PA), uniformly, prox­
imally, resp. topologically fine if PA*—PA, PA*— PA, resp. 01=01.

Some notes

N ote 1. The basic tools introduced in Sections 1 and 2 make it possible to  
consider relator spaces as certain generalized convergence, proximity, closure or 
topological spaces.

To regard a relator space X(.'%) as a generalized biperfect syntopogenous space 
(which is to be defined by omitting the axioms (A,) and (S2) of Császár [16, p. 58]), 
we have to consider the finer tool {Intj;: RPjM} instead of In t^ =  U Int*.

In this respect, it is also worth mentioning that if 01 is a relator on X, then 
{C1K: RfiA)  is a relator on ^ (X ) \{ 0 )  whose inverse served in Section 4 as the 
mild hyperrelator induced by 01. This suggests that Császár’s very general theory 
could also be based on relators instead of syntopogenous structures.

For this, note that if <  is a relation on 0 { X )  such that

(i) 0 <  A  <  X  if А с  X,

(ii) A T X \ d  if 9 A A c z X ,  

then by defining
R K(A) = {В с  X: A «  A"\.B}

for all d e l ,  we get a reflexive relation JR< on ^ (X )\{0 }  such that for any 
A , B c X , A < B  iff X \ß '[R < (/i) . Moreover, note that each reflexive relation R  on 
^ (X )\{ 0 }  can be obtained in this manner.

N ote 2. If  01 is a relator on X, then by introducing the relator

^  =  { lx c S c  X X X :  3 Rd0l: R(A)  c  S(T)}

for any A c X ,  one can also prove some localized forms of Theorems 5.7, 5.11 
and 5.15. Our conjecture is that a similar thing can also be done in connection with 
Theorem 5.2 too by using appropriate refinements of 01 defined by nets.
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More generally, if PPA is a relator on X, then one can also introduce the relators

« ; - { J x c S c  X X X :  3 R^SA: \Adr f:  R(A)  c  S(zl)} 
and

0t% =  {Ax <= S’ <= X x Z : \ /A£sf:  3 RC.0t: R(A)  c  S(T)}

for any л/а0*{Х ). Note that all the relators á?*, á?#, ^  and J?x are particular 
instances o f some of the relators SA% and PA%. Moreover, the necessity of a 
particular case of PA% has already been indicated in Remark 6.2.

Note 3. Finally, we remark that for any  s4c.PP{X) one can also consider the 
“Pervin relator“ [78]

— {7?л: A€s/},

where RA means the relation defined on X  such that Ra(x) = A  if xcA  and R A(x)=X  
if x £ X \ A .  In connection with PA one can easily prove that PA, is a “strongly 
transitive” relator on X  such that Moreover, sé — я^  if and only
if s4 is a generalized topology on X  in the sense that s i  contains X  and is closed 
under arbitrary unions.

Hence, by Corollary 5.21, it is clear tha t the mapping ЗА-*РГЯ establishes a 
one-to-one correspondence between topologically fine topological relators on X  and 
generalized topologies on X. This latter statement may be considered as an extension 
of the “Topology Theorem” of Nakano—Nakano [73, p. 204].

Namely, by Remark 5.22, a topologically fine relator is topological if and only 
if it is topologically transitive. On the other hand, by Remarks 2.12 and 2.19, for 
a topological relator PA, the family 2Гя is an ordinary topology if and only if PA is 
topologically directed. Moreover, as we shall see later, a topologically fine relator is 
uniformly directed if and only if it is topologically directed.
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FIXING SYSTEM AND HOMOTHETIC COVERING
S. FUDALI (Szczecin)

Introduction

Fejes Tóth [4] has introduced the notion of the primitive fixing system  for an 
open (и-dimensional) convex body AT as a set A a h á  К  which stabilizes К  with 
respect to any translation and no subset of A does. In other words, it is a set A 
of points a0, % ,..., ap- x not belonging to the interior of К  which has the fol­
lowing properties: 1° for every translation Г  there exists a point а£А  such that 
the segment (ah T(afi) and the image T(K)  of К  has a non-empty intersection, 2° for 
any p — l points of A  there exists a translation T'  such tha t (ctj, T ' {a j ) ) f \T \K )—9 
for each j .

The number of points forming a primitive fixing system for fixed K a E n depends 
on the form of К  and on the position of these points in bd K;  e.g. for a circle CczE2 
there exists a primitive fixing system which consists of three points (Fig. la) and 
there exists one of four points (Fig. lb), for the regular hexagon H c z E 2 there

QOÖÜ
a) b) c) d)

Fig. 2

exist 3-, 4-, 5- or 6-point primitive fixing systems (Fig. 2), for an и-dimensional 
parallelotope PczE" every one of its primitive fixing systems consists o f exactly 
2и points (Fig. 3). We note [4, p. 382] that in E" there exist bodies which cannot be

b)

Fig. 3

о) b) C)
Fig. 4

stabilized by less than r points, where г£{и + 1,и +  2, ...,2и} (Fig. 4 for n = 3). 
In [4] the following is pointed out:

R em ark  FT. For any plane body, different from a parallelogram, there exists a 
primitive fixing system which consists of three points, while for a  parallelogram every 
such system consists of four points.
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The maximal number of points included in a primitive fixing system for fixed 
KczE" can be greater than 2и; L. W. Danzer [3] conjectured that this number is 
equal to 2(2"—1) — such a primitive fixing system can be constructed for 
Conv (/"U ( —/")), where 1" denotes the и-dimensional cube (Fig. 5 for n — 3).

Since only convex bodies will be considered in the sequel, we agree that the 
term body always means a convex body. Similarly only primitive fixing systems 
with minimal number of points for a body K c E n will be considered; each of 
them will be shortly called a fixing system and denoted by F(K). It is evident that a 
fixing system for a given body К  is determined non-uniquely; for К  there exists an 
uncountable family Fix(.K) of its fixing systems.

A body K'  will be called homothetic to a body К  if K'  is an image of К  under 
some homothety with a ray-ratio k£(0,1). Gohberg and M arkus [7] posed the 
problem to find the least number o f homothetic bodies K'  which form a covering 
of K; they solved this problem for any plane body.

To cover K c E n with homothetic bodies we have to translate them in En. 
So, if a translation is interpreted in a mechanical way and F(K) is considered, its 
points impede these translations if  we translate these homothetic copies from “out­
side”. This is why we cannot take an arbitrary ray-ratio for the homothetic bodies 
used to forming of a homothetic covering of K. We must take into account the 
position of the points belonging to  F(K). Therefore, in general, the numbers of 
covering bodies used to cover К  are different depending on whether F{K) is or is 
not considered. Hence a problem appears: what is the least number of congruent 
bodies K'  homothetic to К  which can cover К  stabilized by F(K )? In the present 
paper an answer to this question for a plane body Q is given.

1. Preliminaries

Let F(Q) be a fixed primitive fixing system for a given plane body 0  and denote 
by Xs a homothety with centre s f  Q and a ray ratio k€(0, 1), and by Wa(F) 
the set of numbers к  with the following property: for every translation T  there exists 
a point a£F(Q)  (/€{0,1 ,..., r —1}) such that int Г(х*(0)П<аг, Г(я())^0 . Thedf .
number wQ(F) =  inf Щ(Р) will be called the holding coefficient of F(Q).

It is evident that wQ(F)(fHg(F). For wQ(F ) we have 

int T'(x7°m (Q))П<аг, Г (а,)>  =  0 and Г  ( ; ^ ( 0 )П<а{, T'(a t)) И 0
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for some translation T' \  the last set may consist of some points only (Fig. 6). There­
fore, the holding coefficient can be interpreted geometrically as such a ray ratio 
of homothety which allows some translation of a copy wQ(F) ■ Q among the points 
of F(Q); a copy (wQ(F)+t]) • Q, for an arbitrary 17>0, is detained by some points 
of F(Q). In other words, wa(F) is the greatest ray ratio of homothety which admits to 
translate a copy of Q out of the points o f F(Q).

Note that the holding coefficient of any F(Q)={a0, ax, ..., ap- x} (p£ (3, 4}) for 
a plane body Q can be interpreted as max (w0(F), WjfF), ..., wp_ !(F ) )=  vP(F), 
where

( 1)
w. m _  dist(a»ai+i) 

Л '  D(a„ ai+1)
for each i€ { 0 ,1, — 1}; the addition of indices is taken mod p and £>(a;, ai+1)
denotes the length of the greatest chord o f Q parallel to the segment (at, ai+x). 
The number (1) will be called the passing coefficient of F(Q) with respect to
(af, flj+i).

D e f in it io n . Let { F '(0 } feT be the family of all primitive fixing systems for a 
body Q a E " and let W(Q)  denote the set of holding coefficients of the systems 
F'(Q) for all t£T. A system F4(Q)d {F'(<2)},eT for which H’Q(F'°)= inf I F ( 0  
will be called a pessimal fixing system for Q and denoted by F0(Q); the number 
inf W(Q) will be shortly denoted by w(Q) and will be called the coefficient o f  Q.

Immediately we have

R em ark  1. For any body Q a E ” there exist a pessimal fixing system and  the 
coefficient of Q.

In Fig. 7 we give the pessimal system for a regular hexagon H, a triangle T, a 
circle C and for a parallelogram P; the coefficient of the respective bodies has the 

3 1 1/3 1
value w(H)=-^,  w(T)=-^-, уу(С)=-^ -  and w(P)=— . The fixing systems in

0 0̂ "̂
o) b) c) d)

Fig. 7
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Fig. 8 for the same bodies are not pessimal. It is easy to see that for T  and P  the 
pessimal fixing system is determined uniquely, for H  there exist two such systems, 
and for C we have uncountable many of them.

Let ks(Q) be the 5-th liminal number of Q and let Q' be homothetic to Q with 
the ray ratio k s(Q)^(0,1). (Recall [5] that the s-th liminal number of Q is the least 
upper bound o f the set of those real numbers r£ (0, 1) such that s congruent bodies, 
homothetic to  Q  with the ray ratio  r, cannot form  a covering of Q ) It is evident 
that F(Q) is n o t a fixing system for Q'; it will be called a holding system for Q' if 
Wq(F)<Ícs(Q) and an impedient system for Q' if  wQ( F ) ^ k s(Q). In the first case for 
every translation T  there exists a ;£F(<2) such tha t int T{Q’)C\{ai, Г (а;) ) ^ 0 ,  and 
in the second one there exists a translation T '  such that for each o,-£ F(Q) we have 
int Т\(У) П {aj, T'(aj))=0. W hether F(Q) is a holding or an impedient system 
for Q' depends on  the ray ratio for Q' and on the choice of F(Q) in Fix (0).

2. Some remarks about a fixing system of a plane body

Consider any plane body Q different from a parallelogram. A point d£bd Q 
will be called quasi-antipodal to  a point a£bd Q if a supporting straight line of Q 
passing throught ä is parallel to  one passing through a. (If there is only one such 
point á, then it is called antipodal to a.) The segment (a, a) is the greatest chord 
of Q among all chords of Q parallel to the straight line (a, a). By Remark FT  
there exists a fixing system for Q which consists of three points. For such fixing 
system we have

Remark 2. In a three-point fixing system for a plane body Q no pair of its 
points is a pair o f quasi-antipodal points.

In other w ords: no two points of the mentioned system belong to the parallel 
supporting lines of Q.

Fix any tw o not quasi-antipodal points о£_15 a,£bd Q (/£{0,1,2}, addition 
is taken mod 3) such that the curvature of an arc ai- 1aic:bd  Q is positive and
less than n. Moreover, let d ^ ^ c b d  Q always denote the arc disjoint from ai_1al 
and containing only one point quasi-antipodal to űj (/£{ /—1 ,/}), and let ui+l£bd О 
be an arbitrary point.

Remark 3. The set { a ^ ,  at, aí+1}cbd  Q forms a fixing system for a plane 
body Q if and only if ui+1£int d.-id,-.

R em ark  4 . If a . - j ,  at belong to F(Q) for a  plane body Q, then one and only one 
endpoint of the greatest chord o f Q parallel to  (aj, ai+1) ( /£ { /— 1, /}, ai+1£ F(Q))
belongs to ái_ 1ái.
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Introduce a parameter t £ T c R  on the arc äi_1äi(zbäQ  and denote by a‘i+l 
each point of äi_1äi corresponding to the value of t. By Remark 3 we get a sub­
family Fix (0 c :F ix (Q ) each member of which consists of l5 ah o}+1; i.e.

dist (at, a'i+1)
F,(Q) = {ai- 1, a i, a U i}. Hence w f F 1)-- (cf. (1)) (and wi+1(F)  =D{at, a\+1)

dist (a,+1, Q,-i)_ tOQ j -g some function 0f t. It is easy to see that this function 
D(a‘i+1, di-i) )

is continuous on T  (i.e. on the arc äi_1äi) and assumes a value near to 1 if a\+1 
belongs to an e-neighbourhood of ät; then the value of vvi+1(F') is near some real 
number 1.

R emark  5. If aj+1£int äi_1äi is a point moving from to ät, then the 
value of wfF*) varies from some real number 1 to 1, and the value of wi+1(F') 
from 1 to some number #i+]<  1. Moreover, wfiF*) ( j d {/, / + 1}), as a continuous 
function, assumes all values in the interval (qj , 1).

For shortness, in the sequel, by p q a b d Q  we always mean the arc not con­
taining the points p  and q.

L emma 1. I f  a;£bd Q (/£{0,1,2}, addition is taken m od3) are fixed  
points in each F,(Q)={ai- 1, ait a-+1} £ F ix (0 , then Wj(F') is a monotonic function 
o f t. I f  Q is a strictly convex body, then и’; (/•') is strictly monotonic.

P roof . At first we will prove this for a strictly convex body Q. If  и;_1( af£bd Q
are fixed, then a}+1£bd Q, with űj_i, at forming F‘(Q), belongs to int 
in view of Remark 3. Take such a point and denote by A\, A \+1 the endpoints of 
the greatest chord of Q parallel to the segment (at, a\+1). Next choose t f i T  such
that a}'+1£int á j-iá j and the length of u}aj'+1c b d  О is greater than that of cfia\+1 
provided both of these arcs contain the point ät (Fig. 9); by this choice we have
/t-'+i£a-'+1á; in view of Remark 4, and A,l^a iA\ because of the strictness of con­
vexity of Q. Hence, again by the strictness of convexity of Q, the straight line 
(A f+1, a'i'+ j) through Aj'+1 and a}'+1 is different from (A‘i+1, а]+1) and intersects 
04}', a,) in the point o' which lies on the same side of a, as о"=(А‘/ , а,)С)(А\+1, а}+1) 
and
(2) о 'я ( :>о"аг.

By the same reason (4}', a,) intersects (A\+1, a\+1) in o" which is on the same side 
of a}+1 as o—(A'i, ai)n(A'i+1, a\+1) but at a distance from o}+,  not greater than 
the distance of о from oj+1.

Consider the trapezoids Л}я;-а}+14}+1 and A ti'aiati'+1A'/+l, and note that

(3) wi(F ‘) = aia'+i
A\A\+1

oa{
oA'i and WiCF1') fl,aí+1

A\'AU 1
o'a( 

o 'A \

by the similarity of the triangles oat a\+x, oA\ A\+x and the triangles o' ai а‘-+x, o'A'/ A\'+1
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Fig. 9

If A — A 1/  (Fig. 9a), then both trapezoids have a common lateral side and

(4) Ajaj = Ajüj ,  о =  о".
Using (2) and (4) we get

o'A4 =  о Ч  +  M Í  =  1 + М Г  =  t  | M S  J M [  =  ] + M S  =
o 'a t o'dj o' Clj o'üj o"cij Oflj

oOj + üjAl _  OÁ'
OOj Odj

which implies that °.a' >  - - a-‘- ; as a consequence we have wi(F,')^~wi(Ft) in о A\ oAj
view of (3).

If Aj^A j ' ,  then o ^ o "  and the considered trapezoids have at most two vertices 
in common: at and A\+1 (Fig. 9b, c). In this case draw the straight line L  passing 
through A\ and parallel to (A‘i+lt oj+1) and note that L  cannot intersect the interior
of the arc а(А\ because (A‘i+1, M i)  intersects and А\, А \+х are antipodal (i.e. 
the supporting straight lines passing through A\, A‘i+1, respectively, are parallel). 
Therefore, the point A '= (A ( , at) C\LiQ  and

(5) A ' a ^ A f a , ,

and the triangles А\ахА \  oato" are similar. Thus we have

(6)
A'jdj _  A'  a j 
oa j o" a j *
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Taking into account (3) and using (6), (5), (2) and again (3) we get

1 _  oA\ __ QQj+M Í _  , . M i  , , A'cij A f a t A? a,
w,(F') oat oat oat o"at ^  + o"at ^  o'at

_  o'cii + ciiA'i _  o'A‘- _  A‘'A;’+1 _  1
o'at o'cit сца\+1 wt( F ‘ )

which imphes wi(Ft')^~wi(Ft), i.e. the same as in case A\=A^. This means that 
w fF ‘) is a strictly monotonic function.

In the general case, i.e. when bd Q contains some segment of a straight line, 
note that wt is constant only in the case when d-+1 and A ‘/+1 simultaneously belong 
to the interior of a segment ß c b d  Q and А \= А г- (Fig. 10b). Then each of the

. oa\л.л , ods4.1 . , оciI . . ..ratios ———  and — is equal to — - which implies that wi(F) = wi(F‘). oAi+1 oAi+1 oAt
If A \A A \  (Fig. 10a) or A,i+i= A l\1= ai, then we have a situation as in the case 
Q is strictly convex. In  none of the cases under the considered hypothesis do we get 
и'i(F,)> w j(F '), in view of convexity of 0. Hence wt is monotonic.

Note that vv; (and wi+1, too) cannot be constant on the whole of T  because 
A\+1 for some t£T  takes the place of at (if a‘i+1 tends to ät) and then for t+ A tdT
(d i> 0 ) we have =^i+ i (Af+1̂ .ái^ 1ái for each d£T, in view of Remark 4) 
and А\+м АА\,  in view of the fixing of at, but in this case wt is increasing.

C orollary. For any plane body Q and for the fam ily offixing systems Ft(Q)= 
— {ai-1, öj, uj+i} (i‘€ ( 0 ,1, 2}), where а ^ г, a f b d  Q are fixed, i f  a\+1 tends along
ái^ájC ibd Q from ai_1 to ah then wi+1(F‘) is decreasing at least in some ^-neigh­
bourhood o f 0;_i and w f F 1) is increasing at least on some E-neighbourhood o f ät. 
For a strictly convex body Q vvi+1(F') is decreasing and w fF 1) is increasing on the
whole arc äi^ l äi.
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L emma 2. For any plane body Q, different from a parallelogram, there exists 
a fixing system F(Q) for which wt(F) = wt+1 (F) =  В (/€{0 ,1,2}, addition is taken 
mod 3), where B£(b, 1) for some real b.

P r o o f . Let {af_ls af, af+1}€Fix ( 0  be an arbitrary fixing system for Q. This
means, by Remark 3, that af+1 belongs to the interior of the arc áf_1áfcibd Q, 
where áf_b  äf are quasi-antipodal to af_ x, af, respectively. Fix the points af_ u  af
and change the position ofaf+1on äf_ 1 äf. Then,in viewofRemark 5and o f Lemma 1, 
there exists a real number 2?£(max (qt, qi+1), 1) which is the value o f wi+1(Fd) 
and Wi(Fd) simultaneously for some F d ( 0  —{flf-i, af, af'+1}. By the arbitrariness 
of the choice of {af_x, af, af+1} we obtain a subfamily Fix ( 0 c F ix  ( 0  for each 
member Fd\Q ) of which we have wi(Fd')=wi+i(Fd') =  Bd'. The values Bd' for all 
d' form a set Á(Q). By the compactness of bd Q there exists inf á?(0= fe$£9(0 . 
Hence for each d we have Bd’>b and simultaneously, by the definition of wfF)  
(cf. (1)), we have Bd'<  1.

T heorem  1. For any plane body Q there exists a fixing system F(Q) = 
= {a0, a 1, ..^ap-j}  (p€ {3, 4}) for which w0(F) = w1(F) = — vvp_x(F) =  П, where 
D is the minimal value o f ws (л’6 {(), 1, . . . ,p  — 1}) such that this equality holds.

P r o o f . For a  parallelogram this is evident (cf. Fig. 7d). Hence consider any 
plane body Q different from a parallelogram and its 3-point fixing system 
(cf. Remark FT). Therefore, by Lemma 2, one can find an F ( 0  =  {ao, ал , a2}cbd Q 
such that Wi(F)=wi+1(F)=B  for some /€{0,1,2}. Denote by A  the value of 
Wi-i(F).

Three cases are possible: 1) A = B ,  2) A>B,  3) A< B.  In the first case we just 
have the F(Q) looked for, by a simple compactness argument. In the second case 
we have to decrease и>г_1 (F). Denote by a) ( jd {*—1, /}) a point not quasi-antipodal
to ai+1 belonging to the interior of the arc ajäi+1czbd Q which does not include 
ai+1 and such that (а-_х, a-) is parallel to (аг_15 af), and denote by a\+1 the point 
of bd Q which together with aj_l5 a-, by Lemma 2, forms a fixing system F‘(Q) 
in which the equality

(7) w f P )  = wi+1(F‘) =£ B<

holds (Fig. 11). It is evident, by the construction of F(Q),  that A*<A, where
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A^w^fiJF*). To prove

(8) B ' ^ B  (i.e. wi+1(F‘) üsr wi+1(F) and wt(F‘) ^  wfF) ) ,

note that by Remark 5 we have

/Е,ч _  dist(ai+1, at_!) df 
wi+i(p ) =  -ТГ72------ 2Г-^Г- =  wi+i(p )D(ciii + l> 1

for fixed points ai+1 and at (or a\) and wi+1(F) = wi+1(F‘) for fixed points а-_2 
and a\\ this implies (8). Simultaneously, by the same Remark 5,

Wi(F) dist(ai+1, a{) df
D(ai+1, a I) =  w i ( F )

for fixed points ai+l and ai_1 (or a-_i) and wi( F ) ^ w i(F)  for fixed points a\ and 
ö}_!. By a continuous variation of t (i.e. by a continuous variation of the positions of 
а '_ г and a\ such that (a-_i, a-) is always parallel to a,)), in view of monot­
onicity of ws (s£ {(), 1,2}), for some ta one can get a position of ű-°_] and of a-0 
such that Ata=Bto. Therefore F‘a (Q) is a fixing system for Q in which w0 (F'°) =  
=  w1(F ,0) = w2(F'°).

In the third case the consideration is the same as in the second one; it differs 
from the previous one in the way of the choice of a). Each of them must be chosen 
in the interior of the arc ajai+1c:bd Q which does not include äi+1 and has to 
approach the respective endpoint of the greatest chord of Q parallel to <aj_l5 a\).

So, we have shown that for Q there exists some T“( 0  = (a", a“, a“} for which 
the equality w0(F") =  w1(F“) = h’2(F “) =  D“ holds; it is easy to see that Du is the 
holding coefficient of FU(Q). It is possible that there exist more than one such sys­
tems as mentioned above for the fixed Q (e.g. for a triangle there exist uncountable 
many such systems — the points of each of them divide each side of the triangle 
in the same ratio, cf. Fig. 12). Hence we may consider a family {Fu(Q)}uiV of such 
systems and, as a consequence, a set !3(Q)={DU: u£U}. It is evident, by the 
compactness of bd Q, that in f^ (Q ) =  D exists. From the next theorem it fol­
lows that D is the value of the coefficient of Q.

T heorem  2. F(Q) is a pessimal primitive fixing system for a plane body Q iff 
each its passing-coefficient is equal to the coefficient o f  Q.

P r o o f . For a parallelogram P  this is evident (Fig. 13); each point of F0(P) 

is the midpoint of a side of P; w(P)=—. Therefore consider a plane body Q 

different from a parallelogram; for it, by Remark 1, w(Q) and F0(Q) exist; the

b)

Fig. 12 Fig. 13
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latter, by Remark FT, consists of three points: a0, alt a2. According to the inter­
pretation of w(Q) for a plane body we have

w(Q) = F m fQ){w(F): w(F) =  max(w0(F), wx(F), w2(F))}.

I. Let F(Q) be a pessimal fixing system for 0. Assume that w (0 = w s(F )>  
>Wj(F) for some {0,1,2} (s^y'd {j —1,5 +  1}). By moving as+1 on the arc
4 - i« S! the value of ws(F) can be diminished, in view of Corollary after Lemma 1, 
and then, by Theorem 1, one can find F'(Q)£Fix(Q) such that ws(F')=Wj(F') 
for each у and ws(F ')< w fF ). This implies that ws(F) is not ^ in f  {»P(F)} and,
as a consequence, F(Q) is not pessimal which contradicts the hypothesis.

II. Let h-o(F) =  w1(F) =  w2(F) =  w(0  for some F(Q) = {a0, аг , a,}f  Fix (Q). 
Choose an arbitrary point af_F(0)  (/€{0, 1,2}) and move it to á,_! along the
arc ái+1ái_1crbd О which does not contain at provided ai^ 1 and ai+1 are fixed. 
Then, by Remark 5, there exists a position a't£int áj+ jáj-! suchthat

Щ- Á F  0
dist(a;_!, a't) 
D(at- 1, a-) Wi-i(F),

and by the definition of the pessimal fixing system the system F'(Q)={ai- 1, a-, ai+i) 
obtained is not pessimal because of w(F')=wi - 1(F')>wi_1(F)=w(Q).  This 
means, in view of the arbitrariness of the choice of at to move, that every moving 
of the points of F(Q) leads to a fixing system the holding coefficient of which is not 
less than w(Q). Therefore F(Q) is pessimal.

The pessimal fixing systems for some bodies are given in Fig. 7. The one for 
an equilateral trapezoid T p, in which the ratio of the upper base to the lower one 
is equal to p, is given in Fig. 14.

P r o p o sit io n . Let Tp denote an equilateral trapezoid in which C is the length 
of a lateral side and the ratio o f the upper base to the lower one is equal to p. A  fixing 
system for Tp is pessimal i f  one o f its points is the midpoint o f the lower base and 
each o f the remaining two points o f this system belongs to the respective lateral side

o f Tp and lies at a distance o f  —— C from  the respective vertex o f the upper base.

P r o o f . Each of the lateral side and of the lower base of Tp contains only one 
point of a fixing system for Tp\ the upper base of Tp does not contain any point 
of F(TP). Let F(Tp)={a0, a 1,a2} be a fixing system for Tp=bl b2c2сг such that 
a0 is the midpoint of the lower base and for each y£ {1, 2} as is a point of the lateral

side (bj, Cj) such that dist (cij, c f  — 1 - F  
2 - p

C (Fig. 14). Note that for F(TP) we

have w’o(F) =  w fF )  = w2(F) — w(F) because wfiF) —p + x ,  where
2 —p

1 —p—X
and ws(F )= —— - — for each {0, 2}; x is the ratio of ajCj to bjb0 (Fig. 14)

and it may be found from the equality w1(F) = wfF).  We have to show that for 
each F \T P) different from F(FP), vv(F') =  vv(F) which means that F(TP) is pessimal.
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*0

Fig. 14 Fig. 15

Let a'o, a[, a2f bd Tp form a fixing system F '(T P) different from F (T P) (Fig. 15). 
Two cases are possible for the position of a{,, a2 with respect to the position of 
a0, a , , a2: 1° for some i f  {0, 1, 2} two of the points a'0, a[, a2 belong to the interior 
of a~ai+i (Fig. 15a); the third of these points may be not different from some point 
of F(TP)-, recall that ab denotes always the arc abahd  Tp which does not con­
tain ä and 5), 2° the interior of each arc a"ai+1 includes not more than one of the 
points a'0, a[, a2 (Fig. 15b). In the first case, if a\, al+1 belong to the interior of aiai+г , 
then by Thales’ theorem we have wi(F')~^wi(F) because of

&ia i . b1a1 e_. ___n b0a1
bl c1 bxcx b0b 1 h0 ̂

for i = 1 and b2a2 
b2 c2

^  for i = 2 
b% c%

(Fig. 16). Simultaneously, also by Thales’ theorem, wi_1(F /) =  wi-i(^ )  and 
wi+i(F ') = wi+i(F)-  Therefore, Wi(F')<ws(F') {/ — 1, / +1}) for each i which
implies, in view of Theorem 2, that F'(TP) is not pessimal.

Fig. 16

In the second case three subcases are possible: (I) the interior o f only one arc 
a~ai+1 includes one of the points aó, а'г, a2, (II) the interior of only one arc ßiöf+J 
includes none of a'0, a[, a2, (III) the interior of each arc aíái+1 includes some of 
a„, a[, a2. In the first subcase, if a -fin t atal+1 (Fig. 17), then by Thales’ theorem 
we have w ^F ^-^w ^F ), wi_1(F ')> w ’,-_1(F) for i —2, wj(F0 =  wi(F ), w ^ ^ F ') ^

Fig. 17
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wi-i(F )  for /=1 and wi(F r)=wi(F), wi_ l (F')s^wi^ x(F) for i= 0  which implies 
that only for F'(TP) =  {aó, ax, a2} do we have w(F')=svv(F); for /€{1,2} we 
have w (F ')>w (F). If  «■€ in tai- xai (Fig. 18), then by Thales’ theorem we have 
>г,(Т ')=^(Т ), wi_1(F') =  W j-iiF) for /= 0  and wi(F')^~wi(F) for each /€{1,2} 
which implies the same as previously.

Fig. 18

In the second subcase, if  u,-€int and a,'+1€int a í+1á; (Fig. 19), then by
Thales’ theorem we get vvi_1(F')>w’i_1(F') for /€{1,2} and wi(Fr) > w ;(F ) for
/= 0 which means that for each /€{0,1,2} wiF^^-w^F). If a[€int ái+1a ; and 
a,-+1€int äi_1ai+1 (Fig. 20), then w ^ F ^ w ^ F )  for /€{1,2} and wi+1(F ')> w j+1(F)

for /= 0  which means the same as previously. If aj€int atäi+1 and a,-+i€ in t ai+xät 
(Fig. 21), then wi+1(F’/) » V j +1(F ) for /€{1,2} and wi_ 1( F ,)> u 'i_1(F )  for /=0  
which means the same as previously, i.e. w(F')>w(F).

/ ° o \

°2
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In the third subcase one can observe that for each i£ {0, 1, 2}, a-£int я;«;+1 or 
aíeintaJTTűi (Fig. 22). In both of these cases by Thales’ theorem we have w fF ')>  
>w;(F) for each i£{0, 1,2}; this implies that w(F')>w(F). Therefore, in each 
considered case we have w (F ')^w (F )  which means that F (T P) is pessimal.

The consideration above in the first subcase of the second case lets us to point 
out the following

Corollary. I f  Tp denotes an equilateral trapezoid in which C is the length 
o f a lateral side, В is the length o f the lower base and the ratio o f the upper base to 
the lower one is equal to p, then each fixing system for Tp in which a point belonging

to a lateral side lies at a distance
J _
—-----C from  the respective vertex o f the upper
2 - P

base and a point belonging to the lower base lies at a distance at most 

from the midpoint o f the lower base, is pessimal.

P
2(2 - p )

В

Fig. 22 Fig. 23

Indeed, it is easy to see that if F{TP) is the pessimal fixing system for Tp men­
tioned in the Proposition and F'(TP)= {аг0, ax, af) differs from F(TP) only by a 
position of a0 which is moved from the midpoint to an endpoint of the lower base, 
then the function Wj(F‘) ( ;T (0, 2}) is constant on the segment (a0, af), where 
a'j is a point of the lower base such that (a1, a'„°) is parallel to the diagonal (cx, b2) 
and (a2, a'02) is parallel to (c2, bL) (Fig. 23). The length of (a0, af) is equal to

P p
2(2— p)

3. Some remarks connected with the coefficient of a plane body

Let F(Q)= {a0, at , a2) be a fixing system for any plane body Q different 
from a parallelogram. The greatest chord (A\+2, A\Xf) of Q (Fig. 24), parallel to 
(ah ai+1), is contained in the zone between the straight line (ah ai+1) and the 
line passing through the point ai+2£F(Q) and parallel to the previous one.

Let Li be a supporting line of Q passing through afc F(Q). All these lines, i.e. 
L 0, Lx, L 2, form a triangle C=Ac0c1c2 (where ci+2= L if]L i+1), which will be 
called the fixing triangle for Q; it includes Q (Fig. 25). Denote by T(at, ai+1) the 
length of the greatest chord of C parallel to the segment (at, ai+1). Then for each
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г'€ {0,1,2} we have

(9) D(ai , a i+1) ^ T ( a i,a i+,).

Two cases are possible: 1) there is a vertex of C  such that no greatest chord 
can be drawn parallel to (at, ai+i) for every i£ {0, 1,2} (then there is another 
vertex of C such that exactly two such greatest chords can be drawn, each parallel 
to a corresponding segment (at , ai+1)); 2) exactly one such greatest chord passes 
through every vertex of C which is parallel to a corresponding segment (ah ai+1). 
Each of these cases depends on the form of Q and on the position of the points 
of F(Q). Denote by a( the angle of Aaüa{a2 at the vertex ab by a ; its opposite angle, 
and by у I the angle of C at vertex cf. Translate yt by the vector ct a\ and let т(у,) 
be the image o f yt at this translation.

Remark 6. None of the above greatest chords of C  can be drawn from the 
vertex Ci if x()>;)c:int &h and two of the above greatest chords of C can be drawn 
if т_1( ^ )с у £. If  contains only one side of óth then only one of the above 
greatest chords o f C can be drawn from the vertex ct.

Theorem 3. The coefficient o f  any plane body Q belongs to the segment

Proof. For a parallelogram this is evident. Hence consider any plane body Q 
different from a  parallelogram. Assume that

( 10) w(ß) < 2 '

This means that for every /£ (0, 1,2} we have

(11) dist(ai5 ai+1)/D(ai, ai+1) <  j ,

where {a0, at , a2}=F0(Q). For this F0(Q) construct the fixing triangle C=Ac0cl c2 
of Q, and denote by Т(аь  ai+1) the length of its greatest chord parallel to the
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segment (at, ai+1) (Fig. 25). It is evident that (9) holds for each i. This implies, 

in view of (11), that dist (a,, ai+i)lT(at , ai+i ) < y  which leads to

(12) dist (at, ai+1) <  ~  T(at, ai+1).

By Remark 6 we have two cases: 1° there exists a vertex of C  which is an endpoint 
of two of the above greatest chords of C  or 2° each vertex of C is an endpoint of 
one of the above greatest chords only.

The first case, without loss of generality, is illustrated in Fig. 26. In view of (12), 
using similar triangles we get
(13) сга0 <  a0hl ^  a0c2 (taking in account the angle a0cla2),

(14) c2a0 -c cighy =  a0C! (for the angle aiC2a 0)

which imply
(15) Cj Uq <  a0cx.

Thus (10) is false, i.e. we have w ( 0 S y .
The second case if given in Fig. 27; by similar triangles, in view of (12), we get

(16) c2a0 <  a0h0 S  a0ct (for the angle a1c2an)

(17) Cj a0 <  a0c2 (for the angle auc1a2)

which imply (15). This means that in this case we again have w ( 0 a y .

It is evident that if at is the midpoint of (ci+1,c i+2) for each /€{0, 1,2}, 
then {a0, ax, a2}, in view of Theorem 2, is the pessimal fixing system for the tri­
angle C. Hence we have

R emark 7. For any triangle T  we have w(T)=— .

Moreover, the following theorem holds.
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Theorem 4. The class o f triangles T  is the unique class o f plane bodies, different 
from  a parallelogram, for which w (T )= —.

Proof. Assume the contrary, i.e. there exists a  body Q different from a triangle
and from a parallelogram, for which w (0  = y . I f  F0(Q), consisting of the points

a0, aL, a2, is a pessimal fixing system for Q, then for every i£ {0, 1, 2}, by (9) and 
Theorem 3, we have

dist (a{, ai+1)lD(a„ ai+1) = j

and

(18) dist (at , а {+1)/Г(а„ a i+1) =

where T(at,a i+1) has the same meaning as in the proof of Theorem 3. As pre­
viously, consider two cases. In the first of them, in view of (18) we have c2a0= 
= a0h lsa 0cx instead of (14) and ci a0=aah l^ a 0c2 instead of (13), whence c2a0s  
= a0c2, and therefore hJ0 coincides with c} (у € {1,2}). Then the greatest chords of 
Q coincide with the sides of the fixing triangle for О and this implies the coincidence 
o f Q with C, contrary to the assumption.

In the second considered case we have с2а0= а0Ь0^ а 0сг instead of (16) and 
c1a0=a0c2 instead of (17), from which it follows, as previously, the coincidence of 
h0 with Cj. Thus Q again coincides with C, and the proof is complete.

For any plane body Q we have w (Q )c (~ , l j  according to Theorem 3, but

one can ask about a body Q for which w(Q)=s, where s is any number belonging

to lj  . The answer to this question is given by

Theorem 5. For any , l j  there exists a non-empty class o f plane bodies

Q for which w (Q )—s.

Proof. Consider a family o f trapezoids Tp each with lower base length 1 and 
upper one p (p£ (0, 1)). Each member of this family can be obtained as an image 
o f a parallelogram P  at some transformation which shortens one side of P from 1 
to  p. In the limiting cases for p  we have the parallelogram P  (for p = 1) and a tri­
angle (for p = 0). In other words, the considered family, together with its limiting 
cases, can be obtained by a continuous variation o f p in the segment (0,1).

For each T p there exists F0(T P) and w(Tp) by Remark 1; the last quantity 
depends on p. Hence for the considered family the coefficient w(Tp) is a continuous

function of p. Its minimal value, by Theorem 3 and Remark 7, is equal to ~

(for p=0). On the other hand it is evident that for p  approaching 1 the value of 
w (Tp) tends to 1 (because exactly two of the points of F0(TP) must belong to the
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different lateral sides o f Tp). By continuity w(Tp) assumes all values between y  

and 1.
It is not difficult to  find the form of the mentioned function w(Tp). Consider 

an equilateral trapezoid Tp=b1b2c2c1 (Fig. 14) in which bxb2= l, с1сг =p and 
b j C ~ \ —p  (y'£{l,2}). The pessimal fixing system for T p, in view of Proposition, 
consists of the midpoint of the lower base and of two points such that each of them 
does belong to the respective lateral side and its distance from the respective vertex

(А \2
of the upper base is equal to ^  . Denoting the points of the pessimal fixing

2 - P
system F0(TP) as in Fig. 14 we have w1(F0)=P + (1 -P Y 1 On the other2 —p  2 —p
hand we have w(Tp)= w 1(F0) by Theorem 2 and the definition of the coefficient 
of Tp. This implies that

(19) w(Tp) = A p

As it is seen, w(Tp) is an increasing continuous function of p, with values in 

y ,  l j  for p € (0 ,1). This means that for every s — ^ g ( |y , l j there exists

p= 2 — — such that w (Tp)=s.

4. Homothetic covering of a plane body stabilized by its pessimal fixing system

The least number of bodies K ' homothetic to a body К  with the ray ratio 
k£(0,1) which form a covering of К  will be denoted by b(K). Gohberg and Mar­
kus [7] have proved

Theorem G—M. I f  a plane body Q is different from  a parallelogram, then 
b(Q)=3; in the opposite case b(Q) = 4.

It is not so if we consider a body К  together with some of its fixing systems 
and if we cover К  with the homothetic bodies by translating them from “outside”. 
The points of F(K) impede these translations and force the homothetic bodies to 
have a respective size.

Let w{Q)=q for some plane body Q. Then F0(Q) is an impedient system for 
Q' homothetic to Q if the ray ratio for Q  is less than or equal to q. Hence Q can be 
covered with several homothetic copies of Q by translation of the latter if  the ray 
ratio for each of them is no t greater than q. The least number of such Q' which may 
cover Q in this way (i.e. Q' cover Q but every point of F„(0) is not covered) is denoted 
by h(Q). Therefore, the natural question appears: what value does h(Q) assume for 
a plane body Q.

Before giving an answer to this question we shall prove

Lemma 3. I f  {u0, ax, a2} = F(Q) fo r  a plane body Q and Ac0c1c2 is the fixing 
triangle for Q determined by F(Q), then for each /£{0, 1,2} the part Qt=QC\
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П ^ а ;а1+1с;+2 o f  Q can be covered with a copy o f Q which is an image o f  Q under a 
homothety with the ray ratio equal to w fF ).

P roof. Take a homothety xk‘ > where k i= w fF )  and o i_ 1 = (Aii~1, а,)П 
ai+1); the latter belongs to  the opposite angle to < c ,+1ci_1ci of the 

fixing triangle for Q (Fig. 28). Then y f  (Q) is a copy of Q in which the greatest 
chord parallel to (ah ai+1) is identical with (a,, ai+1). We have to show that 
Хк0‘ Ш) covers ß j.

Let b£bd ßn/düTjOi+jCi-! be an arbitrary point. Its image under y f  lies 
nearer to o.-x than b which means that a~ai+1czbd Q is covered with xk‘ J.Öl­
het Aii~1A\+\c:bd Q be the arc which includes ai^ 1 and take dffm t A\~1A\+\. 
The image of d  under y f  belongs to the straight line (d, o;_j) and lies on the 
opposite side of (<7;,ai+1) than о,_х (or lies on (u; , a i+1) if (А\~г, A\+[)czbd Q). 
The segment (at, ai+1) is covered with the image of (А\~^, А\+\). Hence

L emma 4 . I f  {a0, a1, a2}=F„{Q) for a plane body Q then Aa0a1a2czQ can be 
covered with three copies o f Q each o f  which is an image o f Q under a homothety with 
the ray ratio equal to w{Q).

Proof. For each / б { 0 , 1, 2 }  take the homothety x.a,<Q>- It is evident, by Belou­
sov’s theorem [1, p. 15] and by the considerations in the Preliminaries about the 
liminal number of a plane body and about the passing coefficient, that

Fig. 28

2 2
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2if w ( 0 £ y . In view of Theorem 3 we have to show that this is so also in the case

I ) .
Let w{Q )= L +s = 1 ^ ± , where s€^0 , -jrj; then |J  ^ (0)(Ля0«1 a2) does

2
not cover Aa0axa2 (Fig. 29) (cf. [1], p. 12). Assume that U  X«,(e)( 0  does not

1 = 0

Fig. 29

cover A a ^ a ^  either. (In the sequel, for the generality of the considerations and 
of a notation, we shall write Aai- 1aiai+1 (the addition is taken mod 3) instead 
of dűoűjfla-) Let b^int Aai- 1aiai+l be a point which belongs to none of j $ (<2)(6) 
and for each / take into account the image b, of b under the homothety ~/at, where 

1 +2s 2
k= w (Q )= — -— . Since b$ ÍJ 'Á (Q) thus b& Q for each i but only one of 

2 i=o
these points may be a vertex of the fixing triangle for Q. Moreover, it is possible 
that in some neighbourhood of bt there exists a point belonging to Q. Note that 
(bi+l,bi) is parallel to (at, ai+1), bibi+1< a iai+1 and b is the common point of 
the diagonals of the trapezoid aiai+1bibt+1 =  Tt^1. Therefore, Q is included in a 
polygon did[_1di+1d-di_1d!+1 (Fig. 30) and for each i — 1 the greatest chord
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(T;_1, A\~]) of Q must be intersecting Ti_1 and its image by x* must have a length 
equal to the length of (ah ai+1).

It is evident that if Ti_1 has the empty common part with xkai_1{.Aai^xaiai+ )̂ 
(as a consequence of this we have (Al-1, A\+i)riXoi. 1(^ai - i aiai+i)= 0) then 
Д . 1« ^ - 1, A\+{)) must be lying between the prolongated lateral sides of Ti_1 
nearer to a,--! than (А\~г, A\~\). This implies that the length of x X -iiiA ^1, A\+\)) 
is less than the length of (at, ai+1) which is impossible. Note that the same occurs 
if  r i_i nxS(_ i(^a í_1ű/űi+1)Fí 0 but r ,_ in z5 j_1« 4 _1»^!ii>)=0- w e must look 
at the case when \  А\+\))^0 .

Take into account the segment (ai- 1, b i- i ) (Fig. 31); it is passing through 
b and does intersect (a;, ai+J) in a point ä i -x, (bh bi+1) in a point Ьг_15 
Д .!««;»  ö.-+i)) inapoin tC j-i, (А \~ \ A\+\) in a po in tс;_г; denote by D the length

Fig.  31

of (a,-..!,«?;-!) and assume th a t dist (b, űí_i)=/> í- i ■ D, where р ;_х£ |2£ ,— ^  

Then
2

dist(ai_l5 bf-j) =  1+2s (1 —P i - i ) D ,

(20)

, - v 1 2 S  2/7; _ 1 , w
d i s t C & i - i ,  ß j - i )  = -------- x ~2s~~— D  aS

3 — 4 s — 4s2 — Ad- -I
d i s t ( b j - i ,  Cj-i) = ---------ő z t  , ‘ D  a s  a i - i b i - i — a i - i C i - 1 ,

2 ( 1 + 2  s)

dist (b i _ l 5  b t*_ i )  =  a s  [ « i - j b j - i  =  •

Assume that ^1+1)Пх^._1(^а(_1и;а;+1) ^ 0; then

dist(b.-i, с;_г) S  dist (Ь;_!, е;_4) ^  dist(Ь,_г, b,-_j),
i.e.

3 — 4s — 4s  ̂— 4p.._j ,  . 1 —2s _
2(1+ 2s) 1 +2s

in view of (20)3>4. Since vv(0g; ^  ^  (^i-i belongs to the fixing triangledist (U;_ 1, Cf-jJ
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for Q) and

l -2 s ~ 2 p i_ 1 ^  dist (bf-t, a ,-i) ^  2(1 - 2 s - 2 p i_1)
1—2s ~  dist (b j-i, e.-i) ~  3 — 4s — 4s** — 4/?|__x

hence we must have ^ - —2s—2s2 — 2pi_1^ l —2s. This implies Л - i — —

but Pi-x(z ^2?,— - — j  thus — 2^2j  < — 2^ -  s=> 0<2s2—2s—4- which does

not hold for (o , - i- j. This means that if there exists b£ Q which belongs to
none of the homothetic copies of О then for every i the greatest chord of Q parallel 
to (a i,a i+i) does not intersect (Jfl.-ifljflj.i). Therefore it is possible that 

\  4+1)) intersects Г;_х and its length is equal to the length of (at, ai+1). 
However in tliis case Q is included in the quadrangle ai„xdi- 1bi- 1d'i_1 (Fig. 30) 
which implies that the greatest chord (А\+1, А \-г) (and (A\±\, A[+1), too) cannot 
be longer than ( a ^ ,  £;_].) and, in view of (20)г and of the property of a triangle 
concerning its sides, the following inequalities hold:

wi+1(F0) = d ist(Д;+1, Qj-x) ^  dist(qi+1> a,--!) 
dist (A ‘i+x> A ‘i-x) ~  d ist{a^x , b i _x)

D
2(1—Pi-i)

1 +2s
14“ 2s 1 -{-25

2 ( 1  —Pi-x) 2 ~ w ( Q ) .

The inequality vri+1(Fo) > w ( 0  implies, in view of Theorem 2, that the considered 
set {ai_1, a;, fli+1} is not a pessimal fixing system for Q which contradicts the 
hypothesis.

T heorem 6. For any plane body Q the inequalities

hold.
3=£ft(0=s6

Proof. The first inequality follows from Theorem G—M. The second one is a 
simple consequence of Lemmas 3 and 4.

Theorem 7. For each integer q£ {3, 4, 5, 6} there exists a class o f  plane bodies 
Q stabilized by a three-point system fo r  which h{Q) = q.

Proof. It is easy to see that we have h(C )~  3 if C is a circle. The points of 
F0(C) are the vertices of an equilateral triangle inscribed in C (cf. Fig. la  or Fig. 7c),

hence w (C )= -~ .  Simultaneously k ? (C )= ^~ , thus и>(С)=£3(С)<А:2(С) which

means that C  can be covered with three homothetic circles (but not with two ones)

in the presence of any F0(C). For a triangle T  we have w (F )= i-  because the

points of F0(F) are the midpoints of sides of T  (cf. Proposition for p = 0) and
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А-6( Г ) = у ,  k 5(T)=-y^- (cf. [1], p. 15), thus w (T ) = k \T ) < k \T ) \  this implies

h(T)=6.
Now consider a one-parameter family of trapezoids Tp, the same as in the 

Proposition, and recall that w(Tp) is a continuous function in (0,1) which assumes

all values between — and 1. On the other hand for each fixed j f  {4, 5} kJ\ T p) is also

a continuous function of the parameter p  and, in view of [2, p. 353] k3(Tp) £ { ^ ,  y j

for any p$(0, 1); moreover, for each p f  (0, 1) there holds /с3(Tp)> /с4(7'p) > k r‘(Tp). 
Both of these functions, w(Tp) and k J(Tp), are continuous, hence for some 
p=Pj£(0, l) we have w (T p)= k J(Tp). Therefore h{Tpi)= j  for each j.

One can obtain the same values of h (T p), i.c. 4 and 5, by (19) in view of [5,
1 4Theorem 2] and the Theorem in [2]. For P =  y  we get w(7”/4) =  y  =  &4(Г1/4)-= 

<fc3( r 1/4) which implies /j (7m/4) = 4; the setting p = \-  in (19) leads to h (T 1,a) = 5.
О

Remark also that from (19) we have w(T0) = ~ = k 6(T0)''-k&(T°), which

implies /i(T°)=6 pointed out in the proof of Theorem 7, because T° is a triangle;

also н»(Г1/2) = у =&3(T1/2) by [5, Theorem 1] which implies /i(T1/2) = 3. This means

that the trapezoids T 1/2 form another class of plane bodies Q, different from the 
class of circles, for which h(Q)=3.

Further, the following observation can be made.

R em ark  8. For a parallelogram P  we have h{P )= 4.
Indeed, a parallelogram P is stabilized by a four-point system. Such a system 

is pessimal if each of its points is the midpoint of a side of the parallelogram. Then

w’(P) =  y ,  but the same number is the value of k*(P) [5, formula (1.4)], which
implies h{P) = A.

5 . S o m e re m a rk s  an d  open q u e s tio n s

Depending on the form of a body KczEn, a pessimal fixing system for К  
is determined uniquely (e.g. for a simplex and for a parallelotope) or not (e.g. for 
a ball).

(i) For what bodies Kc.E" (hS 2) is the system F0(K ) determined uniquely? 
For which ones are there a finite number of F0(7f)?

The number of the points belonging to F0(K) for K clE" will be called the 
fixation index o f К  and will be denoted by FI(K).

(ii) To what interval does the coefficient of K c E n belong if FI(K )= n+ r

(r£ {1, 2, ...})? Is l j  this interval for each n if  F I(K )= n+ 1?
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The last seems to be true because vv(6’") и — 1 for an и-dimensional simplex

S", but

(iii) Is an «-dimensional simplex the body in En («5;3) for which the coeffi­
cient assumes the minimal value among all possible ones? Is it the unique such body?

For plane bodies Q we have A (0£ {3, 4, 5, 6} (Theorem 6).
(iv) Characterize the plane bodies О satisfying h(Q)=q for each <76 {3, 4, 5, 6}.

(v) W hat value does /i(G) assume for G aE "  if «==3? The minimal value 
of h{G) must be equal to « +  1 (attained for G which is a ball), but what is the 
maximal one?

9 2For a 3-dimensional simplex S 3 we have — = k3(S3) ^ k 6(S 3)= — [5, Theo-
2

rem 3], [6, Theorem 2] and w (53) = y  because each point of F0(S 3) is the bary-

centre of one of its faces. Hence w(5'3) =  A;e(5'3), which implies /i(S3) =  6.
(vi) Is the number 6 the maximal value of h(G) for GczE3 if F0(G) is a four- 

point system?
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RECURRENCE IN TOPOLOGICAL DYNAMICS 
AND THE RIEMANN HYPOTHESIS

B. BAGCHI (Calcutta)

1. Introduction

The object of this paper is to point out some surprising connections between 
two apparently unrelated branches of mathematics. On the one hand we have 
topological dynamics with its historical origin in the study of particles in motion; 
on the other hand is the theory of Riemann zeta function and other allied Dirichlet 
series which arose in the abstract number-theoretic deliberations of Euler, Dirichlet 
and Riemann.

In its abstract formulation, topological dynamics studies continuous actions 
of topological groups on topological spaces. In the present work, we allow the 
additive group of reals (or the additive group of integers) to act on a certain func­
tion space H. The Riemann zeta function £ (as also the other Dirichlet L-functions) 
may be regarded as a point in the resulting “flow” H. Implicit in [1] was the result 
that the celebrated Riemann hypothesis on the location of the zeros of zeta is equiv­
alent to strong recurrence (in the sense of Gottschalk and Hedlund in [3]) of zeta 
regarded as a point in this flow. Analogous results hold for the other Dirichlet 
L-functions. Here we further elaborate and develop this relationship to show that 
the generalised Riemann hypothesis holds if and only if all the functions in a nat­
urally defined class of Dirichlet series (viz., those with periodic coefficients) are 
strongly recurrent points of the flow H. Further, we show that the generalised Rie­
mann hypothesis holds if certain finite subsets of H, each point of which is shown 
to be strongly recurrent, are jointly strongly recurrent. This makes it interesting 
to study flows in which separate strong recurrence of points in a finite subset implies 
joint strong recurrence. By a coherent flow we understand a flow in which this 
implication is valid. In terms of this definition, the generalized Riemann hypothesis 
is equivalent to coherence of certain “subspace restrictions” of the flow H. So it is 
pertinent to ask for sufficient conditions for coherence. To make a beginning in this 
direction, we show that locally equi-continuous flows are coherent.

2. Flows and other relevant notions from topological dynamics

Throughout this paper G will stand for either the additive group R of reals or 
the additive group Z of integers — as the case may be.

A flow is a triplet (X, G, n) where A is a topological space, G — R or Z, and 
n: XXG-+X  is a continuous map satisfying

(a) n(x,0) = x, (b) n (x ,t1+ t2) = n (n (x ,t1) , t2) for x£ X , tu  t^G .

In this paper we shall consider flows on metric spaces only. Thus each space X
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will be considered equipped with a metric g. If Xx, X2, ..., X„ are metric spaces 
with metrics gx, ..., gn respectively, then the product space X = X 1X ...X X „  will 
be assigned the metric g given by g(x, y) =  max gAx,, у  A. A flow (X, G, л)l^j^n J J J
is said to be a continuous flow  or a discrete flow  according as G =  R or G—Z.

If (X ,G ,n ) is a flow and t£G, the map я': X -»X  is defined by nl(x)=  
= n(x, t), x£X . Clearly each я ' is a homeomorphism of X  onto itself. In case of a 
discrete flow, л” is clearly the nth iterate of л1, so that the flow is in this case deter­
mined by the surjective homeomorphism л1. Conversely, each homeomorphism of 
a space X  onto itself induces a discrete flow on X. Thus discrete flow might alter­
natively be described as a space together with a homeomorphism of the space 
onto itself.

If (X , G, л) is a flow and Y  is a subspace of X, then Y  is said to be invariant 
in case whenever x £ Y  and t£G, we have n (x ,t)£ Y . In symbols, we have 
л(У, G) — Y. In this case the restriction of л to YXG, which again we denote by 
л, determines a flow (Y, G, л). This is called a subspace restriction of (X , G, л).

If (X, G, я) is a flow and AQ X, let us define the span o f A, to be denoted 
by Sp (A), as the minimal invariant set containing A. Notice that we do not require 
the span to be closed. Thus 8р04) =  {я(х, t): x£A, t£G} = n(A, G). In particular, 
for any point x in X, Sp ({х})=я(х, G) is called the orbit of x, and is denoted 
by O(x).

If (X ,G ,n )  is a flow and hxO ,h£G , let us define nh\ X X Z -» X  by nh(x,n) — 
— n(x,nh). Clearly (X ,Z ,n h) is a discrete flow. We call it the discrete subflow 
modulo h. This is clearly a particular instance of the more general notion of “sub­
group restriction” in [4, p. 6].

If for 1 ^ j ~ n  (X j, G, nj) is a flow (with a common “phase group” G) then 
their product flow (У, G, л) is given by Y = X x X ... X Xn and я =  лх X .. • X я„: Y X G -  Y 
where n (x, t)= (nj(xj, t): l s / s n ) .  In particular, when X 1—...—Xn—X, we shall 
denote the product flow by (X я, G, л).

If (Xx, G, я2) and (X 2, G, я2) are two flows with a common phase group G, 
and cp: X x—X2 is a continuous map satisfying (p{nflx, / ) )= я 2(<р(х), t), x€X x, 
t£G, then we say that cp is a flow homomorphism. If, in addition, cp is a homeo­
morphism between Xx and cp {Xx) then we say that cp is an embedding of (Xx, G, лх) 
in (X2,G , л 2) .

If (X, G, л) is a flow and x0£X, then we say that x0 is periodic in case there 
exists t0£G, tüX 0, such that я'°(х0) =  х0. Strong recurrence and almost periodicity 
are two of the recursion notions which generalise periodicity. We must begin with 
a few technicalities in order to define them.

If A if a Borel subset of R, the upper and lower asymptotic density of A, denoted 
by 3(A) and 3(A), are defined by

Here IA is the indicator function of A: IA(i) =  l if t£A  and =0 otherwise. In 
case 3(A )—3(A), we call the common value the asymptotic density of A, and denote 
it by 3(A).

If A is a subset of Z, the upper and lower asymptotic density of A  (discrete

2 T
1

- T
J  IA(t)dt.

T
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version), denoted respectively by cl (A) and d(A), are defined by

cl (A) =  lim sup #(ЛП[-ЛГ,ЛГ])
2N d(A) = lim inf

N-*■0о
#(Л П [-Л Г,Л ])

I N

Here # (•) stands for the number of elements of (•).
In case 3(A) = d(A), we call the common value the asymptotic density (discrete 

version) of A, and denote it by d(A).
If AJAR (respectively A A Z )  then we say that A is syndetic or relatively 

dense in case there exists a compact set K A R  (respectively a finite set K A Z ) 
suchthat A + K =  R (respectively A + K = Z ).

Notice that equivalently a set is syndetic if there is an /> 0  such that every 
interval of length l contains an element of the set.

2.1. Definitions. Let (X ,G ,n )  be a continuous (respectively discrete) flow. 
Let x 0dX. Then .r0 is said to be strongly recurrent in case for every e>0 there 
exists a Borel set A AG  such that 3(A)>0  (respectively 3(A)>0) and а(п'(х0), x0)-=e 
for all tdA. Here q is the given metric on X. If  hd.G, liA0, then x0 is said to be 
strongly recurrent modulo h in case x0, regarded as a point in the discrete subflow 
(X, Z , ял), is strongly recurrent.

More generally, a subset Y  of X  is said to be jointly strongly recurrent in case 
for every e>0, there exists a Borel set A A G  with 5(A)>  0 (respectively 3(Л )>0) 
suchthat а(п'(у), y)«=e for all t fA  and all yd Y. Further, Y is said to be jointly 
strongly recurrent modulo h if it is jointly strongly recurrent when regarded as a 
set in (X, Z, ял). Notice that strong recurrence is an orbital property. That is, a 
point л-,, in the flow (X, G, я) is strongly recurrent if and only if it is strongly recur­
rent when regarded as a point in the subspace restriction (O(.v0), G, it). More gen­
erally, a subset Y  of X  is jointly strongly recurrent if and only if it is so when regarded 
as a set in (Sp (Y), G, я).

The following proposition is a special case of the “inheritance theorem” first 
proved by Gottschalk and Hedlund in [3] and later given in an improved form 
in [4].

2.2. Proposition (inheritance theorem for strong recurrence). Let (X, G, n) 
be a flow, x0dX, hdG, hzO . Then x0 is strongly recurrent i f  and only i f  x0 is strongly 
recurrent modulo h.

The next two propositions are important for application but their proofs are 
trivial. So we omit the proof.

2.3. Proposition. Let (X ,, G, я,) and (X.,, G, я 2) be flows with a common phase 
group and let cp be a flow-homomorphism between them. I f  a point x 0dXx is strongly 
recurrent then so is cp(x0)£X2.

2.4. Proposition. Let (X ,G ,n ) be a flow and let Y = {y t , ..., yn} be a finite 
subset o f X. Then Y  is jointly strongly recurrent i f  and only i f  the n-tuple (y ,, ..., y„), 
regarded as a point in the product-flow (Xn, G, я) , is strongly recurrent.

Propositions 2.2 and 2.4 together yield:
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2.5. P r o p o sit io n . I f  (X, G, n) is a flow and Y is a finite subset o f X, then for 
each fixed h£ G, h A  0, Y is jointly strongly recurrent i f  and only i f  it is jointly strongly 
recurrent modulo h.

P r o o f . In view of 2.4, this follows on applying 2.2 to the product-flow (X", G, n) 
with n=  #(T).

Similarly, 2.3 and 2.4 imply:

2.6. P r o po sitio n . Let Y = {y \, ..., y,,} be a finite subset o f the flow (X , G, л). 
Let (p be a flow-homomorphism o f the product flow (Xn, G, л) into another flow. I f  Y 
is jointly strongly recurrent then <p(yl5 ..., y„) is strongly recurrent.

The chief utility of Propositions 2.2 and 2.5 lie in the fact that they allow us 
to move back and forth between continuous and discrete flows. Because of them 
it often suffices to prove results regarding strong recurrence and joint strong recur­
rence for discrete flows only, This technique will be exploited in the concluding 
section. Here we use Proposition 2.5 to prove a result which will be used in 
Section 4:

2.7. P r o po sitio n . Let (X, G, л) be a flow. Let A — {jq, ..., .v,„} be a jointly 
strongly recurrent subset o f X. Let B=  {y,, ..., y,,} be a finite subset o f X  such that 
all points in В  are periodic (not necessarily with the same periods). Then A Ö B  is 
jointly strongly recurrent.

P r o o f . It clearly suffices to prove only the case /7=1, since the result then 
follows by induction on n. Accordingly, let n — 1. Let hfG , hAO be a period 
of yx. By Proposition 2.5, A is jointly strongly recurrent modulo h. But the orbit 
of y\ modulo h is a singleton. Hence trivially A U {>’1} is jointly strongly recurrent 
modulo h. Another appeal to Proposition 2.5 completes the proof.

A parallel notion of recursiveness is that of almost periodicity. A point x0 
in a flow (X, G, л) is said to be almost periodic in case for every e> 0  there exists 
a syndetic set A f G  such that for all t£A , e(n‘(x0), x0)-=e. Here, as before, q 
is the given metric on X. As with strong recurrence, we could proceed to define joint 
almost periodicity and almost periodicity modulo h. Analogues of Propositions 2.2— 
2.7 hold for almost periodicity also.

Clearly a syndetic subset of G has positive upper asymptotic density. Therefore 
almost periodicity implies strong recurrence. We shall have a brief occasion to 
return to almost periodicity in the concluding section.

Most of the notions and results discussed in this section are standard. The 
author failed to locate Proposition 2.7 in the literature. Clearly analogues of this 
proposition hold for all recursion notions for which the Gottschelk—Hedlund 
inheritance theorem is valid. So it must be familiar to experts in the field.
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3. Strong recurrence in the flow H  and the Riemann hypotheses

3.1. The space H. Throughout this paper Q will stand for the open strip con­

sisting of complex numbers z such that -^-<Re (z)< l. Here Re (z) is the real

part of the complex number z. H =H (Q ) will stand for the space of all analytic 
functions on Q, with the topology of uniform convergence on compacta (u.c.c.).

Let K„,  и51 be a sequence of compact subsets of Í2 which increase to  Q. 
We also assume that for each и ё  1, K„ is contained in the interior of K n+1. For 
/ ,  g fH , we define

e(f, g) =  sup min j — , sup |/ ( z ) - g ( z ) |I .
nei tra z iKn t

As is easy to check, q is a metric on H  which induces the u.c.c. topology. O f course, 
q depends on the choice of the sequence K n. We shall think of H  as equipped with 
this metric.

3.2. The flow (H , R, cr). We now allow the real line to act on H  by vertical 
shift. More precisely, we define o: H / R - H  by o (f, t)= g  where g (z )= /(z -f //), 
z£ Q. Clearly this makes (H, R, o') a continuous flow.

3.3. Dirichlet series, Dirichlet L-functions and the Riemann hypotheses. A Dirichlet

series is a series of the type 2Ü ann~z> where a„ is a sequence of complex numbers
»1 =  1

(called the sequence of coefficients of the series) and z is a complex variable. Of

particular importance in the theory is the series £(z) — 2! n~~ which converges for
11 =  1

Re (z) >  1, and defines an analytic function there. As is well known, the zeta func­
tion £(z) may be analytically continued to the entire complex plane except for a 
singularity at z = l .  Thus zeta is analytic on £2, and we may (and do) regard £ as 
a point in H.

An arithmetic function is a function /  from the natural numbers into the com­
plex plane. We often write f„ for f(n) and thus display /  as a sequence {/,}. An 
arithmetic function /is  said to be completely multiplicative in case f(mn) =f{m )f(n )  
for га ,пё1  and /(1)= 1. An arithmetic fu n c tio n /is  said to be periodic in case 
there exists /c=s 1 such that f(n+ k)= f(n)  for all « S i. In this case к is said to 
be a period of f  and we say that /  is periodic modulo k.

A Dirichlet character modulo к is by definition an arithmetic function non­
vanishing only for integers co-prime to к  which is both completely multiplicative 
and periodic. It is well known that given any k ^ l  there are only finitely many 
Dirichlet characters modulo k. Indeed, the total number of Dirichlet characters 
modulo к equals the number of integers in the interval [1, k] which are relatively 
prime to k.

Corresponding to each Dirichlet character y, one defines the Dirichlet L-func- 

tion L (., x) by the series L(z, y) =  ^  y (n)n^z. These are natural generalisations
n=1

of the zeta function. Indeed £ = L (., y0) where y0 is the unique Dirichlet character
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modulo 1. Like zeta, all Dirichlet L-functions admit analytic continuation to the 
entire plane except possibly at z —1. Accordingly we regard the functions L ( . , y) 
as points in H.

The Riemann zeta function vanishes at the points —2, —4, ... the so called 
trivial zeros. The classical Riemann hypothesis conjectures that all the nontrivial

zeros of zeta lie on the line Re (z) =  —. Likewise, the generalised Riemann hypoth­

esis (GRH) for Dirichlet L-functions conjectures that for each character x, the non­

trivial zeros of L ( . ,  x) lie on the critical line Re (z) =  —. In view of the functional 

equation and the Euler product for L{., y), an equivalent formulation is: L(z, y )A 0  

for zCQ. That is, This is the form in which we shall consider these
L (-,x)

celebrated hypotheses.
3.4. The relationship between the Riemann hypotheses and strong recurrence. 

We begin with the following theorem from [1].

3.5. P r o p o sit io n . Let f c s  1, and let Xj> 1 =/i5«, be distinct Dirichlet char­

acters modulo k. Let f j ,  1 be members o f  H  such that —  also belong to H.
J i

Then for every e >0, the set A  o f  all í íR  such that

(i) sup q(o‘(L(., Xj ) ) ,  f j ) <  £
1 ̂  j  ~$n

has positive upper asymptotic density 5(A)>0.
Conversely, i f f ,  ltá j= n , are such that fo r  all e>0 the set A o f all t f  R sat­

isfying (i) satisfies 5(A)>0 then j - i H  for \ ^ j ~ n .

P roof. The direct part is a reformulation of Theorem 3.1 in [1]. The con­
verse may be proved following the arguments in the proof of the ‘if’ part of Theo­
rem 3.7 in [1].

The particular case n = 1 of Proposition 3.5 is so important that we state it 
separately a s :

3.6. C o r o lla r y . Let у he a Dirichlet character and let f£ H . For e> 0 , let 

At denote the set o f all real numbers t such that q(o'(L (., x) ) ,/)< £ . Then H 

i f  and only i f  <5(J£)>  0 for every e>0.

Recall tha t in the above q is the given metric on H which induces the u.c.c. 
topology.

Substituting L ( .,x ) for f i n  Corollary 3.6, we immediately deduce:

3.7. T h e o r e m . Let x be a Dirichlet character. Then the Riemann hypothesis 
holds for L ( . , x) i f  and only i f  L (., y) is a strongly recurrent point o f the flow
(я , r ; a).
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Notice that in view of Proposition 2.2, Theorem 3.7 might equivalently be 
stated in terms of strong recurrence in discrete subflows (H , Z, <rh), h-^0.

3.8. R emarks. For each k ^ l ,  there is a unique Dirichlet character Xo mod­
ulo к defined by у„(и) =  1 if (и, k) = 1, b (« )= °  otherwise. is called the principal 
character modulo k \  the other characters are called non-principal. The non-trivial 
zeros of L (., Xo) coincide with the nontrivial zeros of zeta. Accordingly, the Rie- 
mann hypothesis for L ( . ,x o) is equivalent to the classical Riemann hypothesis. 
In [2] H. Bohr essentially proved Theorem 3.7 for non-principal characters. His 
proof depends on the fact that for non-principal characters y, the Riemann hypoth­
esis is equivalent to convergence of the series 2  7.(p)p~Zi z£Q, as p  runs over 
the primes. Therefore Bohr’s proof does not extend to the principal character. 
After minor modifications, the main theorem in [2] may be stated as follows. Let 
f ( H  be given by a convergent Dirichlet series 2  aPP~z> Q, where p  runs over

p
the primes. We also assume that

1 J 1lim sup— г / \f(a + it)\2dt <oa for — <  a <  1. 
r - “ Zl _JT z

Then / i s  a strongly recurrent point of the flow (H , R, o). Bohr deduces the non­
principal case of Theorem 3.7 above from this result.

4. Joint strong recurrence and the Riemann hypotheses

Substituting L (., Xj) for f j  in Proposition 3.5, we obtain:

4.1. T heorem . Let X i b e  Dirichlet characters to a common modulus. 
Then the following are equivalent:

(a) Riemann hypothesis holds for L ( ., yf), 1 f j ^ n .
(b) The set {L{., x.j) '■ 1 =j=n) is a jointly strongly recurrent subset o f (H, R, a). 

For integers h ,k , l^ h ^ s k ,  let k£H  be defined by Cft.itC2) — 2 ( n^  + b)~z,
n = 0

Re(z)=>l, and hence by analytic continuation. For к ш \,  let ft,, . . . ,h n be the 
integers in [1, k] which are relatively prime to k, and let Xi, •••, X» be the Dirichlet 
characters modulo &. The map cp: Я " —i/"  which sends to

n
given by g j— 2  Xj(hi)f, 1 =j=n, is clearly a flow homomorphism of the product

(=i
1 " -------

flow (H n, R, ct) onto itself. Its inverse cp 1 is given by f j  — — 2  Xi(hj)gi and isП i = i
again a flow homomorphism. Therefore, by Proposition 2.3, ( / ,  ...,/„) is a strongly 
recurrent point of (H n, R, o) if and only if <p{f, ...,/„) is. In particular, since

(L(.,Xi), ...,L (.,x„ )) = <КСл1>к,
it follows from Proposition 2.4 that {L(., xj)'- 1 = /= « }  is jointly strongly recur­
rent if and only if {Сл.ц: l ^ h ^ k ,  (h, k) = \)  is jointly strongly recurrent. There­
fore Theorem 4.1 may be rewritten as:
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4.2. T h eo rem . Let ул , yn be an enumeration o f  all the Dirichlet characters 
modulo a fixed integer k = ) . Then the following are equivalent:

(a) Riemann hypothesis holds fo r  L ( ., yfi, l ^ j ^ n .
(b) The set {£,, k: l s h s / c ,  (h, k) = 1} is a jointly strongly recurrent subset o f 

(H, R, a).

4.3. L em m a . Let ул , ..., y„ be distinct Dirichlet characters to a fixed  modulus.
П

Let g — 2  aj L ( - , Xj) where at least two o f the complex numbers aj are non-zero. 
j=i

Then for any arbitrary /£ # ,  and fo r  any £>0, the set Ae o f all real numbers t such 
that satisfies 5(AE) > 0.

P roof. In view of Proposition 3.5, it suffices to show that the set

{  2 aj f j : f j^ H  and -7-É w} is dense in H. Let S' be the set of all f£ H  such that 
4 = 1  Jj >
—£H. Since S  is closed under multiplication by non-zero complex numbers and

since the closure o f S  contains the constant function 0, it is enough to show that 
5,+ 5 ’= { /1+ /2: / i , / 2€S} is dense in H. But if g £ H  is bounded then there is a 
complex a^O  suchthat g(z)Aoc for z€ Q. Hence, putting / 1(z)=g(z)—a, / 2(z)=a, 
we get g = fi+ f2, f n f f S .  Thus S  + S  contains the set of all bounded members 
of H. Since the latter set is dense in H, we are done.

1 " ------We have the representation £*,* =  — 2  Xj ( h ) L( . ,  yj), for (h ,k ) = l . Also, ifП j = i
/с ё 3 then n= 2  so that at least two of the coefficients in this formula are non-zero. 
Hence from the above lemma we deduce:

4.4. P r o p o sit io n . Let lsl/isi/c, /сёЗ, (h ,k) = l. Then for any /Р  //. for any 
s> 0 , the set A E o f  all real numbers t such that е(тЧСлд),./)<£ satisfies 3( A j>0.

In particular, substituting for / i n  the above, we deduce.

4.5. T h eo r em . Let 1 шЬшк, /с ё 3, (h, k) =  l. Then С/,д is a strongly recurrent 
point of (H, R, a).

4.6. D e f in it io n . F o r / с ё  1, let Dk be the span of the set {Ch,k' 1 = / i S / c ,  (h, /c )  =  l}. 
Thus Dk is the set of all points o'(£h,k) with I s h ^ k ,  (h, k) = 1, f£R. {Dk, R, o) is 
a subspace restriction of (Я, R, o).

Since for each IgR, o' is a flow homomorphism of (H , R, o) into itself, Theo­
rem 4.5 implies that each point in (Dk, R, o) is strongly recurrent for /сё3. If 
the “generating set” {Сил'- l = h ^ k ,  {h,k) = 1} were jointly strongly recurrent, it 
would likewise follow that any finite subset of (Dk, R, a) is jointly strongly recur­
rent. So it is natural to enquire when strong recurrence of the points in a finite set 
implies joint strong recurrence of the set. This leads us to the following:

4.7. D e f in it io n . A flow (X, G, n) will be said to be coherent in case when­
ever A is a finite subset of X  such that each point of A is strongly recurrent, it fol­
lows that A is jointly strongly recurrent.

In view of the discussion preceding this definition, we have:

A cta  Mathematica Hungarica 50, 1987



RECURRENCE IN TOPOLOGICAL DYNAMICS AND THE RIEMANN HYPOTHESIS 235

4.8. T heorem . Let k ^ 3  be an integer. Then the following are equivalent:
(a) Riemann hypothesis holds for L ( ., f )  for all Dirichlet characters x modulo k.
(b) The flow (Dk, R, o) is coherent.
In the fifth and concluding section, we shall consider the notion of coherence 

in some details. Here we proceed to obtain yet another equivalent formulation of 
the Riemann hypotheses.

N

A Dirichlet polynomial is a function of the form z-* 2  ann~z. These are entire
П = 1

functions and therefore may be regarded as points in (H , R, a).

4.9. L emma . Let A be a finite subset o f  (Я , R, <r) which is jointly strongly 
recurrent. Let В be a finite set o f  Dirichlet polynomials. Then A LI В is jointly strongly 
recurrent.

N
P r o o f . Let A = { f ,  ...,/„}, B={gx, . . . ,g m}. We may write gj(z)= 2 arjr~z.

r — 1
N

That is, g j=  2  arjhr> I s j s m  where hr is given by h,(z)=r~7, z f  £2. Each hr is clearly
Г — 1

a periodic point of (H, R, a). Therefore by Proposition 2.7, { / j ,  ...,/„ , hx, h2, ..., hN} 
is jointly strongly recurrent. That is, by Proposition 2.4, ( / j ,  h}, . . . ,h N) is
a strongly recurrent point of the product flow (H"+N, R, <r). Also, the map from 
Hn+N into # " +m which sends (0l5 ..., 0n+N) into (0*, ..., 0*+m), with Oj—в j  if

N

1 = jS n  and 0*+j =  2  arjO„+r for 1 S jS m , is a flow homomorphism of (Hn+N, R, a)
Г= 1

into ( # B+m, R, a) which sends the strongly recurrent point ( f , ...,/„, hx, ..., hN) 
into the point ( / i ,  gx,. . . ,g f ) .  Therefore by Proposition 2.3,

(.fl9 '"ifn i Si 9 •••9^m)
is strongly recurrent. Hence, by Proposition 2.4, AU B= { f , gi, ..., g,„} is
jointly strongly recurrent.

4.10. P roposition . Let A be a finite subset o f (H, R, <r) which is jointly strongly 
recurrent. Let В be a finite subset o f (H, R, <r) such that each point in В is given by 
a Dirichlet series which converges uniformly over Q. Then A U B  is jointly strongly 
recurrent.

P r o o f . Let A = { f ,  ...,/„}, B - { g x, ..., gm}. Let e> 0  be arbitrary and let 
us choose i/> 0  and a compact set К a  Q suchthat whenever hx, h,fi_H satisfies

£
sup \hfiz) —h2(z)\<t], it follows that Q(hx, h j ) ^ — .
z i K  3

By assumption, there exists Dirichlet polynomials g*,...,gm  such that
в

sup|gj(z)— gj(z)\<t]. Hence, by choice of tj, we have g(gj, g*) and
zen 3
Q(a'(gj), <x'(g*))< j  for all real /.

Now, by the preceding lemma, there exists a set U of reals with <)({/) > 0  such
g

that whenever /([{/, we have Q{a'(fj).fj)~=e for 1 Sy S  и and Q(o'(gJ), g * )< y
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for l s /S m . Hence the triangular inequality for q implies that for tdU  we also 
have Q(a'(gj), g j)<£ for 1 SysSm. Since e> 0  was arbitrary, this implies A U B  = 
=  {/i, •••,/„, g l, ■■;gm} is jointly strongly recurrent.

For k ^ l  let Pk denote the set of all f£ H  which are obtained by analytic con-
CO

tinuation of a Dirichlet series 2  ann~z-, R e (z )> l ,  where {«„} is a sequence of
n=i

complex numbers which is periodic modulo k. We also let P=  1J Pk. Then we have:k = 1

4.11. Theorem. For any integer A:si, the following are equivalent:
(a) The Riemann hypothesis fo r  L{., y) fo r  all Dirichlet characters у modulo k.
(b) Each member of Pk is a strongly recurrent point o f ( //, R, <j).

In consequence, the generalized Riemann hypothesis holds for all Dirichlet 
JL-functions if and only if all points of P are strongly recurrent.

P roof. Since for characters x  modulo k, L ( . ,  y) is in P k , (b)=>(a) is a con­
sequence of Theorem 3.7. To prove (a)=>(b), let f t P k- Then we have / ( z )  =

CO

— 2  amm~z for R e(z )> l, where {am} is periodic modulo k. Let Ek be the set
m = l

of all integers m s i  such that whenever a prime p  divides m, p  also divides k. Let 
Xi, ...,Z„ be the Dirichlet characters modulo k. For 1 - /"  n and m£Ek, let us 
define amj  by

1 k --------
amj =  —  2  Xj(h)amh. 1 — j  n.и л=1

Let us now define gj in H  by

g;(z) =  2 <xmJm- z, z£ Q, 1 =  j  =  и.
mCEk

Clearly the above series converges absolutely for Re (z)>0 and hence uniformly 
for z in Q. Also, we have the formula

O )  f = 2 S j L ( . , X j )

which may be verified by direct manipulation for R e(z)> l and hence by analytic 
continuation.

If (a) holds, then by Theorem 4.1, {£(., Xj)' 1 ^ j= n )  is jointly strongly recur­
rent. Hence, by Proposition 4.10, {L(., Xj)'- l ^ j ^ n } \ J  {gj\ l ^ j ^ n }  is jointly 
strongly recurrent. Hence by Proposition 2.6,/ given by the formula (* ) is strongly 
recurrent. So we are done.

4.12. Example. In view of Theorem 4.11 it might be natural to conjecture that

whenever f £ H  is given by analytical continuation of a formula /(z )=  2 ann~z->
11 =  1

R e(z)> l, with {a„} bounded, /  is a strongly recurrent point of (Я, R, er). The 
following example shows that this is false. Take a„ =  ( -  l)n-1n_1/2, n5rl. Then
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{a„} is bounded, /(z ) =  2 ann~* — ( 1 —23/4_z)C (z +  -^-J. T h u s/is  entire and there-
fore may be regarded as a point in H. However this function /  is not a strongly 
recurrent point of (H, R, a). To prove this, let К  be the compact subset of Ü 
given by

„  f . 5 7 7t л  1

It is easy to see th a t / is  nonzero on K. Therefore we may choose e such that 0<e-= 
<  Inf |/(z)|. I f /  were strongly recurrent, then the set A of all real t suchthat

z £ К
sup |/ (z + i7 ) - /( z )H e  would satisfy i)(/f)>0, and in particular A would be 
.•cr

. . . 3 2 iim iunbounded. For t€A , K —it contains no zero o f /  Since each point — + — -

with m€Z, m A 0, is a zero of/ ,  this can not happen if |/| is sufficiently large. This 
contradiction shows that /  is not strongly recurrent.

5. On coherent flows

We begin with an inheritance theorem for coherence:

5.1. Proposition. Let (X ,G ,n ) be a flow, h£G, h zß . Then (X ,G ,n ) is 
coherent i f  and only i f  the discrete subflow (X , Z, nh) is coherent.

Proof. This is an immediate consequence of Propositions 2.2 and 2.5.
Next we consider some negative examples. Let К  be the space of all bisequences 

of signs. That is, К  consists of sequences e„: n £ Z  with e „ = ± l. We give it the 
topology of pointwise convergence. Clearly, there is a metric on К  which induces 
the topology of pointwise convergence. Let it1: K-+K be the homeomorphism 
defined by r1(£)=s' when e '= e„+1, n£Z. n1 induces a discrete flow (K ,Z ,n ) 
on К. К  is clearly a compact topological group under the operation of pointwise 
multiplication. Let /i be the unique Haar probability measure on K.

5.2. Proposition. The flow (K, Z , л) is not coherent. Indeed, whenever A is a 
Bor el subset o f К with ц (A) >  0, there exist e, e' in A such that both e and e' are strongly 
recurrent but (e, s'} is not jointly strongly recurrent.

Proof. Relative to the probability measure ц, л 1 is a measure preserving and 
ergodic transformation (see [7, pp. 40 and 53]). Hence by the individual ergodic 
theorem ([7, p. 31]), we have, for every nonempty open set UQK,

d({neZ: я"(е)<Е U}) ^  ц (Ю  >  0 

holds for almost all (ju) e in K.
Since the topology of К  admits a countable basis, it follows that almost all 

(д) points of К  are strongly recurrent. That is, if L  denotes the set of all strongly 
recurrent points of K, then ß (L) = 1. Therefore ц(АГ\Ь)=/л(А)>0. Hence, 
replacing A by A O L  if necessary, we may assume that AQL.
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Suppose, now, that each pair e, ö in A  is jointly strongly recurrent. The map 
from К 2 to  К  sending (e, S) to £<5-1 =  e<5 is a flow homomorphism. Hence by 
Proposition 2.6, the image A A ~1={eS~1: e£A, ö£A} of A  under this map con­
sists of strongly recurrent points. That is, we have AA~1QL. But К is a compact 
group and A  is a Borel subset with [i(A)>0. Therefore Theorem В in [5, p. 68], 
suitably generalised, implies that AA~X contains a neighbourhood of the identity 
1 of K. Hence this neighbourhood is contained in L. That is, there exists an integer 
N ^ l  such that whenever в in К  satisfies c„ =  1 for —N ^ n S N ,  it follows that 
£ is strongly recurrent. This absurd conclusion establishes the proposition.

5.3. P ro po sitio n . The flow  (H, R, er) is not coherent.

P r o o f . Let (К, Z, 7t) be the flow introduced above. Let cp: K-*H be defined 
by: for £ in K, (p(e)=fe where

/* (z )=  2  en(z - ir i)  2, z£ß.
П =  -o o

Clearly cp is a flow homomorphism of (К , Z , n) into the discrete subflow modulo 1 
(# , Z, crj) of (Я, R, u). Since <p a is 1—1 continuous map from the compact space 
K, it is a homeomorphism of К  onto <p(K). Thus cp embeds (K. Z, n) as a sub­
space restriction of (//, Z , oy). Hence Proposition 5.2 implies that ( //, Z , erj) is 
not coherent. Hence by Proposition 5.1, (H , R, a) is not coherent.

Next we proceed to obtain a sufficient condition for coherence. We begin -with:

5.4. D efinitions . We say that a  flow (X, G, л) is equicontinuous in case for 
every x0 in X  and for every e>0, there exists an /;==-0 (possibly depending on 
both xn and £) such that whenever x in X  satisfies g(x, х 0)< ц , we have for all t in 
G д(л’(х), л ‘(х0))<е. That is, the requirement is that the family {л ': t f  G} should 
be equicontinuous at each point of X. Notice that equicontinuity of a flow depends 
only on the topology of the phase space X  (and of course on the behaviour of the 
phase projection л) and not on the particular metric q.

We say that a flow (X, G, л) is locally equicontinuous in case for every finite 
subset A o f X, the subspace restriction (Sp (A), G, л) is equicontinuous.

Discrete flows induced by isometries of the phase space are clearly equicon­
tinuous. The next proposition shows that these examples are typical.

5.5. P r oposition . Let (X , G, л) be a flow on a metric space (X , q). Then 
(X, G, л) is equicontinuous i f  and only i f  there exists a metric q* on X  which is equiv­
alent to q and relative to which each л \  t£G, is an isometry.

P r o o f . The ‘if’ part is trivial. To prove the ‘only if’ part, we may assume that 
q is bounded (replace, if necessary, n by the equivalent metric min (1, g)). Define 
e*: J X L - R  by Q*(x, y) =  sup {п(л'(х), n f  yj): t£G). A routine check shows 
that q* works.

5.6. L em m a . Every equicontinuous flow is coherent.

P r o o f . Since a  discrete subflow o f  an equicontinuous flow is clearly equi­
continuous, it is sufficient to  consider (due to  Proposition 5.1) discrete flows. Accord­
ingly, let (X , Z, л) be a  discrete flow which is equicontinuous. In view of Prop­
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osition 5.5 we may assume that, relative to the given metric q on X, n is an iso­
metry of X.

Now let {a'j , . xn} be a finite subset of X  such that each Xj, lS /S n ,  is 
strongly recurrent. Let e>0. Then there exists A jQ Z  with 3(Aj) > 0 such that

g

for m ^Aj, e(nm(xj), X j)< Y ’ 1 =j=n. Hence if r,s£A j, then

g(nr- s(Xj), Xj) = e(Kr(xj), ns(Xj)) S  g(nr(Xj), Xj) + e(n'(Xj), Xj) <  e.

П
Hence, if we put B=  П (Aj —A j), where A j—A j= {r—s: r ^A j, s£Aj}, then for

j=1
m£B, we have Q(nm(Xj), Xj)<e for 1 =j=n. Since each A j satisfies 3(A j)> 0, 
Theorem 1 of [6] implies that 3(B) >0. Hence {xl5 ..., x„} is jointly strongly recur­
rent, and we are done.

5.7 T heo rem . Every locally equicontinuous flow is coherent.

P roof. Let (X, G, n) be a  locally equicontinuous flow. Let A  be a finite subset 
of X  such that each point in A  is strongly recurrent. Since by definition of local 
equicontinuity the subspace restriction (Sp (A), G, n) is equicontinuous, Lemma 5.6 
implies that A  is jointly strongly recurrent in (Sp (A), G, n). Hence A is jointly 
strongly recurrent in (X, G, л) and we are done.

Theorem 5.7 is clearly not the last word on coherence. The next proposition 
shows that locally equicontinuous flows exhibit a property which can not be expected 
of general coherent flows.

5.8. P r o po sitio n . A point in a locally equicontinuous flow is strongly recurrent 
i f  and only i f  it is almost periodic.

P roof . A s before, it suffices to consider discrete flows. Since almost periodicity 
always implies strong recurrence, we only need to prove the ‘only if’ part. Accord­
ingly, let (X, Z, n) be a discrete locally equicontinuous flow and let x0 be a strongly 
recurrent point in this flow. Arguing, with the equicontinuous flows (O(x0), Z, я), 
as in the proof of Lemma 5.6, we see that for every e>0 there exists a set A f Z  
with 3(A) > 0 such that whenever m is in B —A —A, we have д(лт(х0), x0)< e . 
But by Theorem 2 of [6], В is syndetic. Hence x0 is almost periodic.

Although the evidence is admittedly very scanty, the results of the previous sec­
tion tempts one to make the following conjecture. Future work on coherence should 
be directed towards settling it.

5.9. C o n je c t u r e . Let D be the space of all / 6 H such that / i s  obtained by

analytic continuation of a Dirichlet series 2! Re (z)> 1, where an is a bounded
n = l

sequence of complex numbers. Clearly D is an invariant subset o f (H, R, er). There­
fore the subspace restriction (D, R, o) is a flow in its own right. We conjecture 
that (D, R, cr) is coherent.

Since the flows (Dk, R, ет), k ^ 3 ,  of 4.6 are subspace restrictions of (D, R, o), 
in view of Theorem 4.8 we have:
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5.10. T heorem . The coherence conjecture in 5.9 implies the generalised Riemann 
hypothesis fo r  all Dirichlet L-functions.

Notice that Example 4.11 shows that all points of (D , R, a) are not strongly 
recurrent.
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SEMI-SIMPLICITY OF ALTERNATIVE LOOP RINGS
E. G. GOODAIRE and M. M. PARMENTER1 (St. John’s)

0. Introduction

A loop is a set L together with a binary operation (g, h) -*gh for which there is 
a two-sided identity element and with the property that the left and right multiplica­
tion maps determined by any element of L  are one-one and onto. Given any associa­
tive and commutative ring R, one can mimic the construction of the group ring 
to form the loop ring RL. We have for some time been intrigued by the fact that 
a loop ring can be an alternative (but not associative) ring; that is, there exist loop 
rings which are not associative but in which the associator (x, y , z) = (xy) z — x(yz)  
is an alternating (skew-symmetric) function of its arguments. The variety of alter­
native rings (that is, rings in which the associator is an alternating function) not 
only includes the variety of associative rings but resembles it in many ways: many 
of the ideas and theorems of the associative theory have natural extensions to the 
alternative case. In this paper, it is our aim to establish conditions which guarantee 
the semi-simplicity of alternative loop rings with respect to any nil radical and with 
respect to the Jacobson radical.

Suppose G is a non-abelian group with involution g —g* and g0 is an element 
in the centre of G which is fixed by *. Let L  be the set

(1) L  — G U Gu, и an indeterminate
together with multiplication defined by

(2)

gQiu) = {hg)u 
(gu)h =  (g h*)u 

(g u)(hu) = g0h*g
for g, h£G.

In [3] it was observed that provided R  has no 2-torsion, R L  is an alternative 
ring if and only if g+g* is in the centre of the group ring RG for all g€_G. Thus 
we were able quickly to produce two alternative loop rings by taking G to be the 
group of quaternions, the involution to be the inverse map and g0 either element 
of the centre of G.

Recent results concerning the structure of RA loops (by which we mean those 
loops whose loop rings are alternative but not associative) can be used to show that

1 This research was supported in part by the Natural Sciences and Engineering Research 
Council, Grants No. A9087 and A8775. The first author wishes to thank for its hospitality the 
Department of Mathematics of the University of British Columbia and for his continual encourage­
ment, Dr. С. T. Anderson.
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the construction indicated above, at first thought to be very special, in fact describes 
precisely how all alternative loop rings arise. In order to see this, we first record 
some features of RA loops established in [1].

T heorem  1. Let L be an R A  loop. Then

(i) The centre, Z(L), and nucleus, N(L), coincide.
(ii) g2e Z (L ) for any g£L .

(iii) There exists an element e£Z(L) o f order 2 such that for every g and h in 
L, either hg=gh or hg=egh, and for every g, h and к in L  either g(hk)=(gh)k  
or g(hk) = e(gh)k.

(iv) There exists a subgroup G o f L  o f index 2, with Z (G )= Z(L), and an ele­
ment u£L — G such that every element o f L  can be written uniquely in the form guc, 
g£G, e—0 or 1. Multiplication in L  is given by

( 3 )
g(hu) = (gy • hy ■ (gh)y • gh) и 
(gu)h = (hy- gh)u  

(gu)(hu) =  g y (g h )y - g0gh

where g0=u2 and y: G—Z(G ) is defined by

8У =
Í1 i f  geZ(G) 
\e i f  g$Z(G).

It was noted in [1] that the map у satisfies (gh)y=gy ■ hy • hgh~1g~1. Therefore, 
defining g*=(gy)g  we obtain an involution on G and the multiplication rules (3) 
are precisely those of (2). In what follows, we will say that a group G determines 
an RA loop L A G  determines L  in the sense of part (iv) of Theorem 1. We emphasize 
the significance of Theorem 1: every RA loop can be constructed from a group 
by the method outlined in (1) and (2).

1. The nucleus and centre

In the rest of this paper, R  is always a commutative associative ring with identity 
in which 2x=0=>x=0 and L  is an RA loop determined by a group G. We have 
noted that the map *: G - G  defined by

* f g gez(G )
8 [eg g$Z(G)

is an involution on G. This extends easily to an involution on the group ring 
RG: ( 2  Xgg)*— 2  agg*- Now the conjugacy class of an element g€G is {g}

g £ G  '  ... ч .
or {g, eg} according as g is central or not (because of Theorem 1 (iii)) and since 
the class sums (i.e. complete sums of the elements in a conjugacy class) span the 
centre of RG, it follows that both g+g* and g+eg  are in Z(RG) for any g€G; 
hence
(4) a+a* and (l + e)x£Z(RG) for any adRG,
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It can further be readily verified that

(5) tx£Z(RG) o- a* =  a 

and

(6) cc£RG and ea = a => a £Z(RG).

It is clear from Theorem 1 that any element of RL  can be written uniquely 
in the form x+ yu, where x ,y£R G . We refer to x  and у as the RG  and RGu com­
ponents of x+ yu  respectively. Multiplication in R L  is very reminiscent of multi­
plication in a Cayley—Dickson algebra (see for example [4, Sec. 2.2]):

(x+ yu)(z+ w u) = (xz+ g0w*y)+(wx+yz*)u, where x, y, z, wfRG.

P roposition  2 . The centre, Z (R L ), and nucleus, N(RL), o f the ring RL coincide 
and are equal to {x+yu\x,y€.Z(RG), ey=y}= {x+yu\x£Z{RG) and ey=y}.

P roof. The equality of the two indicated sets follows immediately from (6). 
The Proposition is therefore established by proving that the nucleus and centre 
of R L  are the first of these two sets. Let r= x+ yu , s=z+wu, t= p+ qu, where 
x, y, z, w,p, q(LRG. Direct calculation gives

(8) (r, s, t) = g0[(w*y, p) + (q*w, x) + (q*y, z*)] +  [<?(x, z) + w(x, p*)+y(z*, p*) +

+  go (d, w*)y+g0(w*tf, y)] u.
Now suppose that x ,y£Z(RG) and ey—y. Since for any y= yggCz RG, y —y* =

9dG
=  (1 — <?) 2  Tog’ the condition ey= y  forces y (y —у*)=0. Consequently

0 tZ (G )

(yy)* =  У*У* = УУ* =  т (у * -у + у ) = УУ = УУ-
In other words, yy is central for all y£RG. It now follows easily that (r, s, t)= 0; i.e. 
that r£N(L). Conversely, suppose r£N(L) so that (r ,s ,t)  = 0 for all s and t. 
For any a and ß in RG, the centrality of a-fa* and ß+ß* implies that (a*, ß)=  
=(<x, /P )=  —(a, ß) and (a*, ß*) =  (a, ß). Referring to (8), it follows that

go [('v* У, p )+ (q* w, x) +  (y* q, z)] + [q (x, z) -  w (x, p) +  у (z, p) -

-  go(?. w)y + g0(w*?, у)] и = 0.

Suppose x$Z(RG). Then choosing tv such that (w, x )^() andsetting q = l,p = z= 0 , 
the RG component of (r, s, t) is g0(vv, x)+0. Therefore x must be central and

go[О*У, p) + (y*q, z)] + [y(z,p )- g0(V/, w )y-fgo(w*0,y)] и =  0.

If y$Z(RG), choose у so that ( y ,p ) ^ 0  and set w—1, z~0 . Then the -RG-com- 
ponentof (r, s, t) is go(y,p)^0 . Thus both x and у are central elements of RG and

go[(w*У, p)+(y* q, z)\ + [y(z, p) -  g0(q, w)y] ы =  0.

Easily y{z,p )= 0 for any z,p£R G , in particular with z=g, p = h , g and h non­
commuting elements of G. Then gh — hg=gh — e g h = (l—e)gh and y ( l —e)gh=0=>
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=>y(l—e)= 0  because gh is inverible. Thus the nucleus of RL  is the required set. 
Tо see that this coincides with the centre of RL, let r= x  +yu, s=z+wu  and compute

(r, s) =  [O, z) +  g0 (w* у -  у * w)] +  [w (x -  x+) +  у (z* -  z)] и.

Certainly if x and у  are in Z(RG ) and ey= y  (implying yy central and y (y —y*)=0 
for all y£RG), then (r, .?) =0. On the other hand, (r, s) =  0 for all s implies (x, z )=0, 
y(z*—z) = 0 and w*y=y*w  for all z  and w. With z —g, a non-central element 
in G, we get cy=y, and with w= 1, y= y* . So x and у  have the desired properties.

Now for r= x+ yu£R L , define r* = x* +eyu. Then * is an involution on RL. 
Moreover, the Proposition, together with (5), give immediately

C o rolla ry  3. r£ Z (R L ) о  r*=r and so, in particular, for any r£ RL, r+r* 
and rr* are central elements o f RL.

P r o po sitio n  4. Every non-zero ideal o f  RL contains a non-zero central element.

P r o o f . Any element r in RL  is either in the centre o f  RL  or can be written in 
the form

(* ) r = n +  2  «eg
aíS

where n£Z(RL), S is some finite non-empty subset of L —Z (L ), and no ag is 0. Suppose 
that r is a non-zero element of an ideal J. Multiplying by the inverse of a loop ele­
ment if necessary, we can assume that the coefficient of the identity in the representa­
tion of r as a linear combination of loop elements is no t zero. Now if r£Z(RL) 
then r£JD Z(R L)  and we are done; otherwise, write r in the form (* ) and choose 
any hdL  which fails to commute with some gdS. W rite S = S iU T 1 where Sx= 
= {g£S\gh=hg) and TX= S —Sx. By assumption, and so |5'1|< |5 | .
Observe that by (4) and Theorem l(iii), g+ h~ 1gh= g+ egdZ(RL) for any gdTx. 
Therefore, r1= r+ h~1rh (an element of J)= 2n+ 2 agg+  2  °,n (g + e8 )~ n 1 +

g i T t
4 2  ßgS where n fZ ( R L ) .  Since the coefficient of the identity in the representa-
. 9€Sition of h гг1г as a linear combination of loop elements is the same as that for r, 

and since we are assuming that the ring R  has no 2-torsion, we know that rxz0 . 
So if 5 \ =  0, r ^ J n z i R L )  and we are done; otherwise since rx has been expressed 
in the form (*), we can repeat for rx what we did for r and obtain a non-zero element 
r.,dJ(\Z(RL) which can be written in the form r2=n2+ 2  rgSi where |S,2|<|*S'i|.

g i S t
Continuing in this fashion we obtain eventually a non-zero element of / f lZ ( i? I )  
because S  is finite.

2. Nil ideals

In any power-associative ring (one in which, for each natural number n, all 
nth powers of any element are equal), an element x  is nilpotent if some positive 
power x"=0. A ring A is nil if each of its elements is nilpotent and nilpotent if 
for some natural number n, all products of n elements o f A, with any arrangement 
of parentheses, are zero; in the latter case, as with associative rings, we write A n= 0. 
A  non-associative ring is said to be semi-prime if it contains no non-zero trivial ideals
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(that is, ideals I  with P  = 0), a condition which, if the ring is alternative, is equiv­
alent to the absence of non-zero nilpotent ideals. In general, a semi-prime ring may 
still contain nil ideals; the next result is therefore of interest.

Proposition 5. Suppose RL is an alternative loop ring. Then RL is semi-prime 
i f  and only i f  RL contains no non-zero nil ideals. Therefore RL is semi-simple with 
respect to a particular nil radical i f  and only i f  RL is semi-simple with respect to any 
other nil radical.

Proof. A nil radical is one which lies between the Baer lower radical and the 
upper nil radical (see [4; Chapter 8]) and so the last statement is clear. One direc­
tion of the first statement is obvious. On the other hand, if RL  is semi-prime and 
/  is a non-zero nil ideal in RL, then, by Proposition 4, J  contains a non-zero element 
in Z(RL)= N (RL). Thus /  contains a non-zero central element with square 0. 
Such an element clearly generates a non-zero principal trivial ideal. This contradic­
tion establishes the result.

Corollary 6. Let R L  be an alternative loop ring and G any group which de­
termines L. Then i f  RG is semiprime, so is RL.

Proof. If RL contains a non-zero trivial ideal, then Z (R L )  contains a  non-zero 
element x+ yu  with square 0. But (x +yu)2= (x2 +g0y*y) +  (yx  + yxr) и= (x2 + g 0>’2) +  
+2yxu since x*—x  and y*=y. Therefore, xa-t-g0y2= jx = 0  (in the absence of 
2-torsion). Hence, 0 = x 3+ g 0y2x = x 3 (because yx=0). Thus x  is a nilpotent ele­
ment in the centre of RG. If it is 0, y2= 0  and so we can always find a non-zero 
nilpotent element in the centre of RG. Such an element clearly generates a nilpotent 
principal ideal of RG, contradicting the assumption that RG  is semi-prime.

Theorem 7. An alternative loop ring R L  is semiprime i f  and only i f  the group 
ring o f the centre of L is semiprime.

Proof. It is a result o f Connell [2] that a group ring RG is semiprime if and 
only if R  is semiprime and G contains no finite normal subgroups whose order is 
a zero divisor in R. Suppose then that R Z  is semiprime (Z = Z (L)) and G is any 
group which determines the RA  loop L. In order to show that RL  is semiprime, 
it suffices by Corollary 6 to show that RG  is semiprime. If  it is not, then by Con­
nell’s result, G must contain a finite normal subgroup H  whose order is a zero divisor 
in R. Write \H\ =2ab with b odd. Then certainly b is also a zero divisor in R. Now 
# Z (G )/Z (G )s tf/(# n z (G )), and since [G: Z(G)]=4, we conclude that HC\Z{G) 
has order divisible by b which is impossible since ffflZ (G ) is a finite normal sub­
group of Z. Conversely, if R L  is semiprime, then certainly R Z  can contain no non­
zero nilpotent elements since any nilpotent element in R Z  generates a nilpotent 
ideal in RL. Thus RZ  is semiprime and the Theorem follows.

This theorem, together with Proposition 5 (which holds for commutative associa­
tive rings as well as for alternative loop rings) reveals

Corollary 8. With respect to any nil radical, RL is semi-simple i f  and only i f  
the group ring o f the centre o f L is semi-simple.
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3. The Jacobson radical

We now turn our attention to the Jacobson radical of RL, the largest quasi­
regular ideal of RL, also known in the theory of alternative rings as the Smiley or 
Zhevlakov radical. Our aim is to  show that Corollary 8 is also valid for this 
radical. To do this, we will require the concept of a normalizing extension.

Definition. A ring S' (with identity) is a finite normalizing extension of a sub­
ring R with normalizing basis st , s2, ..., sk provided R  has the same identity as

к
S, S=  2  Rsi and RSi=SiR for a l l i ; .

i =  l
It will be useful to introduce the trace t and norm n, functions from RL  to 

Z(RL) defined by t(r) = r + r* and n(r) — rr* for r£RL. One can verify that 
the trace is linear over Z(RL) and associative (t(rs ■ u) = t(r ■ su) for all r, s and и 
in RL), that the norm is quadratic over Z{RL) and that RL  is quadratic as an algebra 
over its centre:

r2 — t(r)r  + n(r) = 0 for all rdRL.

Proposition 9. Z(RL) is a finite normalizing extension o f RZ{L).

Proof. Let G be any group determining L. Then Z (G )= Z (L )(= Z )  and G/Z  
is the Klein 4-group [1]. Thus G is the union of cosets Z, Za, Zb, Zab for some 
elements a and b not in Z. Clearly, for no z€Z  is za central, and so the conjugacy 
class of za is {za, eza}. Since Z (RG) is spanned by class sums of G, any element 
in Z(RG) is an А-linear combination of z;, Zj-a(l +e), zkb( 1 +e), ztab( 1 +e), where 
z t, Zj, zk, zt€Z ;  i.e. xd Z (R G )^-x= t1 + t2a(l +c) +  f3b(l +e) +  t4ab(l +e) where the 
I fR Z .  Now if x+ yu£Z(R L), then xf_Z(RG), yCzZ(RG), and ey=y. Writing 
y = s l +s2a (\+ e )+ s3b{\-\-é)+si ab{\-\-é) with s fiR Z , the condition ey=y implies 
(1— ̂ ^  =  0. This means that the coefficients of g and eg in the representation of 
sk as a linear combination of elements of Z  are equal; i.e. jx=(1 + e ) i ' for some 
s'ZRG. It is now apparent that x+ yu  is an RZ-linear combination of 1, 
a (  1+e), b{ 1+e), ab{ 1+e), (l+ e)w , a(l+ e)u, b{\+ e)u, ab{\+e)u, these elements 
all lying in Z (R L ) by Proposition 2. Thus these eight elements form a normalizing 
basis for Z(R L )  over RZ.

Corollary 10. J(RZ)=0-e>J(Z(RL))=0.

Proof. If S  is a  finite normalizing extension of R, then for some integer n, 
(J(S j)nfJ ( R ) S L J ( S ) .  With S = Z (R L ) and R  = RZ, it is clear that J(Z{RL))=  
=0=>J(RZ)=0. On the other hand, if J (R Z )= 0, then R Z  is semi-prime and 
J(Z{RL)) is nilpotent by the Proposition. But if Z{RL) contains any non-zero 
nilpotent element, we can clearly find a non-zero nilpotent ideal in RL, contradicting 
the semi-primeness of RZ  assured by Theorem 7.

Theorem 11. J(RL)=0*>J(Z(RLj)=0.

Proof. Since J(RL)C \Z(RL)G  J(Z{RL)), if J(Z (R L ))= 0, then J(R L)= 0 
by Proposition 4. On the other hand, suppose J (Z iR L fz G .  Let a be any non­
zero element in this radical. Following an argument of [4, p. 208], we observe that 
t(r )a -n (r )a 2 is in J(Z{RL)) and so is a quasi-regular element of RL  for any
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r fR L . Thus 1 - t(r )a + n (r)a 2 is invertible in Z(RL ); call its inverse b. Let 
d=ba2n(r) (so that d + b —bt(r)a=  1) and f — —bar-\-d. Remembering that r 2 = 
— t{r)r—n(r) and that a, b and d  are in the centre of RL, (ar)f=  —bcrr2+ard=  
= ard-ba2t(r)r+ d= ar(d—bat(r))+ d= ar(l—b )+ d= ar+ f from whence ar is 
quasi-regular. Hence aRL is a non-zero quasi-regular ideal of R L  and J (R L )Z  0.

Combining the result of this Theorem with Corollary 10 we obtain a t once

Corollary 12. J (R Z )= 0oJ(R L )= 0 .

When R  is a commutative ring, necessary and sufficient conditions for J(R Z)= Q  
are known [2]. So it is known precisely when an alternative loop ring over a com­
mutative ring is Jacobson semi-simple. Interestingly enough, the associative case 
is still unsettled, even over fields of characteristic zero.
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PROPERTIES OF RING ELEMENTS THAT DETERMINE 
SUPERNILPOTENT AND SPECIAL RADICALS

S. VELDSMAN (Port Elizabeth)

§ 1. Introduction. In [5], Wiegandt considered certain conditions on properties 
that elements of a ring may have which determine radical classes. This approach 
has simplified considerably the process of determining whether a property o f ring 
elements determines a radical class. We extend these ideas to determine which 
properties yield supernilpotent and special radical classes. In Section 2 we recall 
the essentials from [5] and in Section 3 we characterize supernilpotent and special 
radical classes in terms of certain properties. Section 4 is devoted to examples where 
we apply our theory to some well known properties. We also introduce a new prop­
erty which generalizes nilpotency and takes the characteristic of the ring into con­
sideration to  obtain a special radical class. All rings considered are associative (not 
necessarily with identity). For the general theory of radicals, see [4] and for special 
and supernilpotent radicals we refer to [1], [2] and [3].

§ 2. Essentials. Let 0  be an abstract property that an element of a ring may 
possess. ~ 0  will denote “not 0 " ,  the logical negation of 0 .  We assume, for con­
venience, tha t the zero of the ring has both 0  and ~ 0 .  An element x of a ring 
A is a 0-element in A if it has property 0 .  A ring A (subring of A, ideal of A) is 
a 0-ring ( 0 -subring of A, 0 -ideal of A) if each of their elements is a ^-element in A.

The following conditions will be frequently used:
Let I  be an ideal in A.

(a) If  x  is a ^-element of A, then the coset x + I  is a ^-element of A/I.
(ß) If x€7 is a ^-element of A, then x is also a ^-element of I.
(<5) If x € /  is a ^-element in 7, then x is also a ^-element of A.
(E) If /  is a ,^-ideal of A  and the coset a + I  is a ^-element in A/I, then a 

is a ^-element of A.

For a property 0 ,  the class of all ^-rings will be denoted by R(0). If 0  is a 
class of rings, then 0 0  is, as usual, defined by

0 0  =  {A\A has no non-zero ideals which are in 0}.

If 0  is a radical class, then 0 0  is the semisimple class of 0 .

2.1. P roposition. Let 0  be a property which satisfies conditions (a), (<3) and (e). 
Then R (0 )= {A \A  is a 0-ring} is a radical class. I f  0  also satisfies condition (ß), 
then R (0 ) is a hereditary radical class. Conversely, i f  0  is a radical class, then there 
is a property 0  which satisfies conditions (a), (<5) and (e) such that 0 = R (0 ) . I f  0 is 
hereditary, then 0  also satisfies condition (ß).
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Proof. The first statement is just Theorem 1 of [5]. Let J  be a radical class. 
If 01(A) denotes the J ’-radical of the ring A, we define a property SP as follows: 
л: is a ^-elem ent of A iff x<SSP(A). Clearly, SP — R (^). Because 9(0P(A))Q 
QSt(9(A))=0#(B) for any surjective homomorphism 9: A-+B, SP satisfies con­
dition (a). (<5) follows from SP(I)fSP(A) for any ideal I  in A. To show that SP 
also satisfies condition (e), let I  be a ^-ideal in  A  (i.e. IQ02(A)) and let a + 7  be 
a ^-element in A/I. By (a), the coset (a+I)+SP(A)/I is a ^-element in 
(AII)l(SP(A)/l)^A lá(A). Because (A/:M(A)) = 0, aAK/M (A)jI and hence a£SP(A) 
follows. If SP is hereditary, then SP(I)=IC\SP(A) for any ideal /  in A, hence SP 
also has (ß).

Starting w ith a property SP which satisfies conditions (a), (<5) and (e), SP =  R (SP) 
is a radical class. Using the above proposition again, there is a property SP' (viz. 
a£0i(A)) which satisfies conditions (a), (<5) and (s) such that R (SP)=SP = R (SP'). 
What is the relationship between SP and SP"] Obviously, if x  is a ^'-element of A, 
then it is also a  ^-element. The converse is no t true. For example, let SP be the 
nilpotency property. The SP — R(SP) is a radical class and then SP' is the property 
x£0l(A), i.e. iff (x), the ideal in  A generated by x, is a nilideal. If  A is the complete

• • *1 matrix ring o f  order two over the integers, then x =  I I is nilpotent (hence a

^-element), b u t (x) is not a nilideal of A (hence x is not a ^'-element).
In general, x  is a ^ '-elem ent iff (x) is a á^-ideal of A and it is easy to see that 

SP and SP' will coincide if and only if SfSP= {A\A has no non-zero ^-elements}.

§ 3. Special and supernilpotent radicals. We now introduce two more conditions 
a property SP may possess:

(<r) If x  is a ~  ̂ -element in A, then there is a prime ideal I  in A, x<j /, such 
that A/I has no non-zero ^-ideals.

(t) If x  is a ~ ^-element in A, then there is a semi-prime ideal I  in A, x<j/ , 
such that A j I  has no non-zero ^-ideals.

3.1. Proposition. Let SP be a property which satisfies conditions (a), (/?), (<5) 
and (a). Then II (SP) is a special radical class. Conversely, i f  SP is a special radical class, 
then there is a property SP which satisfies (a), (ß), (8) and (a) such that SP = R(SP).

Proof. R(SP) homomorphically closed and hereditary follows from (a) and (ß) 
respectively. I f  A$R((P), there is a non-zero ~^-elem ent x in A. By (a), there is 
a prime ideal I  in A, x$I, such that A ll  has no non-zero ^-ideals. Hence A jl  
is a non-zero primefactor ring of A which has no non-zero R(^)-ideals by (<5). 
Corollary 1 in  [3] then yields the desired result. Conversely, if  SP is a special radical 
class, there is a property SP (viz. a(SP(A)) which satisfies conditions (a), (ß) and 
(<5) with á? =  R (SP) by Proposition 2.1. Using the fact that SP(A) — П {/|/ an ideal 
in A such th a t A /I  is a prime ring which has no non-zero ideals in SP), also (a) 
follows.

Likewise, for supernilpotent radical classes, we have:

3.2. Proposition. I f  property SP satisfies conditions (a), (/?), (<5) and (t), then 
R(SP) is a supernilpotent radical class. Conversely, i f  SP is a supernilpotent radical 
class, then there is a property SP which satisfies (a), (ß), (<5) and (t) such that SP—R(SP).
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§ 4. Examples. Our first three examples are well known and use standard 
techniques. We merely illustrate the use of Proposition 3.1 which simplifies the 
calculations of verifying whether a class of rings, determined by some property of 
the elements of the rings, is a special radical class.

4.1. Let gP be the nilpotency property. Then gP satisfies conditions (a), (ß) 
and (á). We show (a) is also satisfied. Suppose x is a ~^-elem ent in A. Then 
M = {x, x2, x3, ...} is an га-system that does not contain 0. By Zorn’s Lemma, 
choose an ideal I  in A maximal with respect to /П М = 0 . Then /  is a prime ideal 
and x$I. If Bj[ is a non-zero ^-ideal of A/I, then, for each b€_ B, there is a 
positive integer n such that b"fj. Because I c B ,  B D M a O. Hence xm£ l  for some 
m which contradicts /П M =0. Thus A ll  has no non-zero ^-ideals. Hence R(^), 
the class of all nilrings, is a special radical class.

4.2. Let gp be the left quasi-regular property of an element x in a ring A. Then 
gP has (a), (ß) and (<5). We show (A also satisfies condition (a). Suppose x  is not 
left quasi-regular in A. Then / '=  {yx—y\y€A }  is a left ideal in A which does not 
contain x. By Zorn’s Lemma, choose a left ideal M  in A  maximal with respect to 
I 'Q M  and x(J M. Let 1= {a£A\aAQM }. Then I  is a (two-sided) ideal in A, 
IQ M  and x(f/. Furthermore, M  is a maximal left ideal in A. Using this, /  a prime 
ideal in A follows. Lastly we show that AI I  has no non-zero ^-ideals. Suppose 
J /I  is a non-zero ,^-ideal of Ajl. Then JA % M  and A 2(̂ M .  From this JA + 
+ M = A  and AJA% M  follows. Let a ^J  and be A such tha t Aab%M. Because 
A ab+ M = A , there is a yd A such that b —yabdM. From  a£J, y a + I  a ^-ele­
ment in A /I  follows. Hence there is a z£A  such that zo ya fj. Then b —b — 
—{zoyd)={b—yab)—z(b —yab) is in M . This means AabQ M  which is a con­
tradiction. Hence R(iP), the Jacobson radical class, is a special radical class.

4.3. Let x be a ^-element in the ring A iff x is G-regular, i.e. iff

x€G(x) =  {xa + a + Z (biXcti + biCißla, a{, b ^A ).

Then 3? satisfy conditions (a) and (<5). We show the validity of (a). Suppose x is 
not a G-regular element in the ring A. Then x$G(x). By Zorn’s Lemma, choose 
an ideal I  in A maximal with respect to G (x)Q I and x(f /. Then I  is a maximal 
ideal in A and x + /( ^ 0 )  is the identity element of A/I. Hence A/I is a simple 
ring with an identity element from which I  a prime ideal follows. The additive inverse 
of the identity (if not zero) in any ring is never G-regular. From this, and the fact 
that A /I  is simple, it follows that A /I  has no non-zero ^-ideals. Because R(^), 
the class of all Brown—McCoy radical rings is hereditary, R (^ ) a special radical 
class follows.

4.4. Let SP be the following property: x is a ^-element in A if there exists 
positive integers к and n such that (nx)k = 0. Clearly gP satisfies (a), (ß) and (<5). 
We show gP also has (a). Let x be a ~.^-element of A. Hence (пх)к^ 0 for all n 
and k. Let S=  {(nx)k\n, к  positive integers}. Then S  is an m-system. F or (nx)k 
and (mx)1, let r=nl+1mk+1x. Then (nx)kr (mx)1= ((/m)x)k+l+1£S. Because 0^5, 
by Zorn’s Lemma, there is an ideal I  in A  maximal with respect to I(~)S=0. Then 
I  is a prime ideal, x-f /  and A /I  has no non-zero ^-ideals. Indeed, let B /I  be a 
non-zero ideal of A/I. Because I c B ,  there are positive integers n and к  such
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that (nx)k£B. I f  (nx)k+I is a ^-element of B/I, then (m(nx)k)l£ l  for some 
m  and /. This contradicts 7(TjS = 0. Hence (nx)k4-/  is a non-zero ~  ̂ -element 
of B/I. Hence R (^ )  is a special radical class and contains all the nilrings as well 
as the rings (and also fields) with non-zero characteristic.
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TYCHONOV’S THEOREM FOR G-SPACES
S. A. ANTONYAN (Yerevan) and J. DE VRIES (Amsterdam)

The aim of this note is to present a version of most of the result of the paper 
[1] in the English language. Briefly, it concerns a version for G-spaces of the well- 
known result that every Tychonov space of weight т can be topologically embedded 
in Г , the product of т copies of the unit interval I. We shall provide full proofs 
for our results (in [1], only a special case is proven without indication of proofs 
of the more general cases). Also, we generalize the results of [1] to arbitrary locally 
compact, sigma-compact groups (in [1], results are stated only for compact and 
for locally compact second countable groups). Finally, we point out some con­
nections with related results.

The letter G shall always denote a topological group. For terminology and 
notation concerning G-spaces, we refer to [7].

T heorem  1. Let G be locally compact and sigma-compact. Then for every G-space 
(X, n) with X  a compact Hausdorjf space o f  weight ea(X)=\ т there exists an action 
n o f G on R1 such that

(i) the cube Г  is an invariant subset o f  R1 under this action;
(ii) X  can equivariantly be embedded in Г.

Moreover, there exists a linear structure on R' making Rr (with its ordinary 
product topology) a locally convex topological vector space such that

(iii) Г  is a convex subset o f  R';
(iv) the action к is linear (i.e. n‘: Rr * R' is linear for every tdG).

P r o o f . We assume that X  is not finite, so that t  ̂  R0 (if necessary, replace X  
by XU I  (disjoint union) and extend the action of G to this larger space such that 
all points of I  remain invariant). The proof consists of several steps.

Step 1. Let Cc(G) be the space of all real-valued continuous functions on G, 
endowed with the compact-open topology, and define an action q of G on Cc(G) 
by e f(s):= f(s t)  for /<ECc(G) and s, t£G (for о to be continuous it is essential 
that G be locally compact; cf. [7; 2.1.4]). Then Cc(G)' is also a G-space, the action 
of G on Cc(G)' being defined coordinate-wise by q. Since X  can be embedded in 
Rr, it follows from [7; 7.1.4] that, as a G-space, X  has an equivariant embedding q> 
in the G-space Cc(G)z.

Since G is locally compact, Cc(G) and hence Cc(G)T are complete locally con­
vex topological vector spaces. Since <p[X] is a compact subset of this space, also 
the closed convex hull К  of (p[X] in Cc(G)r is compact [3; Ch. I, § 4, no. 1]. More­
over, the action of G on Cc(G)T is linear and continuous, and this implies that К  is 
invariant in Cc(Gy under the action of G,
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Resuming, we have a complete locally convex topological vector space Cc(G)z, 
a linear action of G on it, and we have a compact convex invariant subset К  in which 
X  can equivariantly be embedded.

Step 2. This step consists in proving the following statement, which comprises 
essentially the main idea of [1]:

Let Kn be an infinite-dimensional compact convex subset of a separable Fréchet 
space E. Then there exists a homeomorphism ф: E-^W» such that ф[A-]= F«.

The proof consists of a straightforward application of three results from infinite 
dimensional topology. First, by the Anderson—Kadec theorem, there exists a 
homeomorphism фх: E-* RN», and, second, by Keller’s theorem [2; III, Theo­
rem 3.1], there exists a homeomorphism фг: /Г0—/ к». Now we have the homeo­
morphism 1̂ 2° »Arl'Ai [^ol: Ф1 [A"o] -*■ / K° between the compact subsets фг [A-,,] and 
I*» of the infinite dimensional separable Fréchet space R 4  According to a theo­
rem of Klee [5], this homeomorphism has an extension to a homeomorphism 
tj: R^o-^R^o. Now let ф:=г]оф1.

Step 3. Our topological group G is assumed to be sigma-compact, so Cc(G) 
is a Fréchet space. Now observe that we can write so the index-set for
the product Cc(G)x may assumed to  be a disjoint union of т copies of a given count­
able set. This fixes a homeomorphism

Ф:Сс(С У ~ П  Ex
А€Л

where A is a set of cardinality т and E x=Cc(G)^ for every /Е A. From this descrip­
tion it also follows, that Ф is linear and that Ф is equivariant. For every /Е Л, let 
Фл: CC(G)X—Ex be the composition of Ф with the canonical projection onto Ex. 
I f  we put КХ:=ФХ[К], then Kx is a compact convex invariant subset of Ex.

Note that E x is an infinite-dimensional Fréchet space (a product of countably 
many Fréchet spaces) and we may assume that Kx is also infinite dimensional. 
(If it is not, then proceed as follows: let JQ C c(G) be the (invariant!) set of all 
constant functions on G with values in the interval /. Note that J  is homeomorphic 
with /  so that, in particular, J  is compact. Then J *0 is a compact subset of Cc(G)N°= 
—E x, hence KX(JJ*« is compact. If  we replace Kx by the closed convex hull of 
K X{JJ*«, then we obtain an infinite-dimensional compact convex subset of Ex, 
which is still invariant under the action of G.)

It follows that the closed linear subspace Fx of Ex generated by Kx is an infinite 
dimensional Fréchet space, invariant under the action of G. Moreover, since Kx is 
separable (being compact and metrizable) Fx is separable as well.

Resuming, we have for every l£ A  an infinite-dimensional compact convex 
subset Kx of a separable Fréchet space Fx. Moreover, G acts linearly on Fx such 
that Kx is an invariant subset of Fx (the action of G on Fx is, of course, the action 
which is inherited from the action o f G on Ex in which Fx is an invariant subspace). 
Finally, note that the composition of q> (from Step 1 of the proof) and Ф is an 
equivariant embedding of X  into the invariant compact convex subset J] Kx of

пел
the linear G-space [J Fx.

А 6 Л

Step 4. By Step 2, for every A there exists a homeomorphism фх: Fx Rs°,
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with Il/x[Kx]=Po. The maps ij/x define in the obvious way a homeomorphism 
W: /7  Fx^(R*°ys*Rz such that W [ ]J  Kf\=(I*<>)x^ I x. If the linear structure

пел хел
and the action of G are carried over from ]J Fx to  RT via this homeomorphism

хел
T, then it is clear that the properties (i) through (iv) of the theorem are valid. □

R emarks 1. In [1], the theorem is only proved for the case that G is compact 
and X  is a compact metric space. In that case, one needs only Steps 1 and 2 of the 
above proof (the case that X  is finite is dealt with in a different way). Notice, that 
in [1] the embedding of X  into a compact convex invariant set of a linear Fréchet 
G-space (i.e. Step 1 of the proof) is obtained in a different way, as follows: since 
G is compact (!), there exists an invariant metric d on X. Let CU(X)  be the space 
of all continuous functions on X  endowed with the topology of uniform convergence, 
and define an action a of G on CU(X)  by ofi{x)= f(nt~1 x) for /£ С „ (X), t£G, 
x£X.  Then CU{X) is a separable Fréchet space (for separability, use the Stone— 
Weierstrass theorem), a is a linear action of G on CU(X)  and, finally, X  can equivari- 
antly be embedded in CU(X) by means of the mapping x-*d(x, •): X-+CU(X) 
(that this mapping is equivariant follows from invariance of the metric d).

In [1], the above theorem (or rather, the stronger Theorem 2 below) is stated 
without proof for the case that G is locally compact and second countable.

2. For the case t — 80 the above theorem, as far as properties (i) and (ii) are 
concerned (so without the statements about the linear structure) follow easily from
[9]. In that case, no assumptions about G need to be made. For a related result, 
see [2; VI. Corollary 7.1]. Compare also with [6; 3.6] (actually, Theorem 1 above is 
stronger than this result in [6] in that G is allowed to be only sigma-compact instead 
of second countable).

In Theorem 1, the linear structure and the action of G in RT depend on the 
given G-space (X, я). The following “universal” result generalises Theorems 3, 4 
and 5 in [1] where only second countable locally compact groups or compact groups 
are considered.

T heorem  2. Let G be locally compact and sigma-compact. Then for every infinite 
cardinal number t^ u>(G), the weight o f  G, there exists an action ii o f  G on R1 
such that

(i) the cube Г  is an invariant subset o f  R1 under this action;
(ii) every G-space (X,n)  with X  a Tychonov space o f weight r o ( X ) ^ r  can 

equivariantly be embedded in Г.
Moreover, there exists a linear structure on R1 such that RT is a locally convex 

topological vector space and properties (iii) and (iv) o f  Theorem 1 are valid.

P r o o f . Every G-space (X, я) with X a Tychonov space of weight w ( X ) ^ t  can 
equivariantly be embedded in (Cc(G)T, q) (compare with Step 1 of the proof of 
Theorem 1; for the embedding, compactness of X  need not be assumed). By [8], 
the G-space (Cc(G)T, q) can equivariantly be embedded in a G-space (X*; я*), 
where X* is a compact Hausdorlf space of weight

to(X*) == max { if  (G), w(Cc(G)T)}.

(if(G) is the Lindelöf degree of G.) Since if(G) =  R0 and {Cc (G)T) = xa> (G)= г,
it follows that m{X*) = T. Now apply Theorem 1 to (X *, я*). □
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R em ark . Certain restriction on the group in Theorem 2 seems inevitable. The 
following example arose in a discussion with Jan van Mill.

Let G be the full homeomorphism group of Q, endowed with the discrete 
topology, and let G act on Q in the obvious way. Suppose that Q could be equivari- 
antly embedded in a compact subset of R ' with t =  K0= a?(Q) and tha t the action 
of G on Q could be extended to an action of G on R *4 Then the closure X  of Q 
in К**» would be a compactification of Q such that every homeomorphism of Q 
extends to a homeomorphism of X.  By [4], this would imply that X ^ ß Q ,  a con­
tradiction (/?Q cannot be homeomorphic with a subset of the metrizable space RN<>).
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