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ON SOME CLASSES OF ARITHMETICAL
FUNCTIONS ON A SEMIGROUP GkK

A. GRYTCZUK (Zielona Gora)

. Introduction

Let K be an algebraic number field of degree n over the rational number field Q.
Denote by GK the multiplicative semigroup of all non-zero integral ideals of K.
In this paper we consider some general classes X of arithmetical functions.

Let

1 1

(1D CriK) = cinnavin

where Cr=-0 is some numerical constant and n, A denote the degree and the dis-
criminant of K, respectively. Moreover let

. —7aq __ CJIK) L
(12 aA-it: <771 log \AI(I(1+2)" s M
(1.3) D 4 S a+it: aS 1—
_ Cr(K)
where w= Io_g 4n> and
(1.4) D = D10ODi.

We will say that the function h belongs to XX iff it satisfies the following conditions:
(i) h: GKX{z£C, |z| »~ 3 —C,
(ii) there exists a constant R=R(K)>0 suchthat

2 h(l,z)\"R (y-x)+ 0Kyr>
x<N(Yy (LZ2)\"R(y-x) (v
for some 0" B < 1,

— * N
(iii) 1GZGK A ) gl *)ft(s), for Res> 1 |z| ~ 1,

(iv) g(s, z) is holomorphic with respect to sED for every fixed |z|s| and
is holomorphic with respect to z in the circle |z|<| for every fixed sED, moreover
g(s, z) is bounded for (s,z)£EDxE where E={z: |z| = 1}

|*



4 A. GRYTCZUK

We prove the following theorems:

Theorem 1. Let 1r£XK, then there exists a sequence offunctions Aj(z) defined
and continuous in the circle |z|S1 and holomorphic in the circle |z|<| such that
for every integer q*O we have

(1.5) 2 h(l,z) = 2 xAj(z)(logx)z-J- 1+ 0K(x(logx)Rez- o 2
IEGK j-0
X
uniformly with respect to |z|*] as where
.y _ Bfiz) 1 H(w, 2) .
1.6) Afiz) = /o, Bfiz) = . ' .dw, =012,...,
( ) ) r(Z'J) ) 2n i -|fJ' ’W(W—|y+l J q

and 6>0 isan arbitrary real number such that 6cq,
1.7) H(s, 2) = g(s, z) exp (zlog (s - 1)EK(S)).
Throughout this paper for complex w, log w denotes its principal branch.

Theorem 2. Let ax be some fixed real number such that SIl-i] and

thefunction h satisfies the following conditions:
(@ \h(l,2)\"Rxfor IEGK and zCE, where Rx=RfiK)"\,
/i(p,z)-z|
(b) % N(py
() h(lod, z)=h(l, 2)h(J, z) for [/, I"GK suchthat (/,/)= 1,
(d) h(l, z) is a holomorphic function with respect to z in the circle |z|<I;
then b™XK.

Corollary. Let h=h(l, z)=f(/)zK{) for \z\sl and /: GK*C, \f (I)\"*Rx
for 1EGK, where Rx=RfiK)"l, F: GK*N U{0}, f(loJd)=/(/)/(/), F(loJd)=
=F(i)+F(@) for 1, JEGK such that (1,J)=\ and f (p)=F(p)=1 for every prime
ideal p£GK. Then b"XK.

for o "ox,

Remark. From this Corollary and Theorem 1 we get in the case n=[K: Q]=1
some results which have been proved by A. Selberg in [4] and by H. Delange in [1].
The proof of our theorems is based on a method due to Fl. Delange [1].

In a forthcoming paper we shall prove explicit asymptotic formula for the func-
tion /i=/(/)zK(i> where f F satisfy the assumptions of the Corollary.

2. Basic lemmas

The following lemma follows easily from results of K. Wiertelak [6], Lemma 7
and Fl. M. Stark [5], Theorem 1

Lemma 1 Let (K(s) denote the Dedekind zeta function of the field K. There
exists a numerical constant ¢>0 suchthat Q<(s)A 0 in the region

. <t< 4@
(2.1 cnW\A\ 1Blog [d]([/] + 2" 00 J

Acta Mathematica Hungarica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 5

Lemma 2. Let C denote the complexplaneandlet AcC, un\A~C, vn:A-+C.
Let BczA and suppose that there are sequences {£/.}, {V,,} where Un 0, V,,"0
such that

K@) ™ Un, \un(z)-vn@\» v,, 2 2 K— -

n

Then the product
T +u.@) exp (- ()
is absolutely and uniformly convergent and boundedfor zdB.

For the proof see [1], pp. 108—109.

Lemma 3. Let K1=C1In\\A\l/n and Cx>c>0, where Czis a numerical constant
and ¢ is asinLemma 1. Then

(2.2) [logix(s)] = C3+ «[log3A:1+loglog(|J|(]i|+2)N]

for sgDI, where C3> 0 is a numerical constant.

Proof. We have

(2.3 logw = S t -<g)dz+I°z
where adDi. We remark that for cts 1+ 2K, log I,il\l(|i 1+2)" we obtain
(2.9)
[logCK(cr+ ii)| = logf — log _

nlog|l+-"-yj S «[log37”*+loglog (N1 Gd + 2)")].

1
2KXlog \A\(\tl+ 2)

the real axis. Then from (2.3) we obtain

For <r<Rea=l+ we integrate over the segment parallel to

(2.5 [logCK(s)| =amax ~ (x+iy) |a-s] + |log &K(a)|.
a,s
For sdD1 we have

(2.6) A=81= okt log |d](ji] +2)"

and from [6]
2.7) " @ =-j"-j-+0 (log (|d(]i] + 2)")).

Jlc/a Mathematica Hungarica 50,1987



6 A. GRYTCZUK

Hence s 11 ! for |i|&2, therefore from (2.7) we get
(2.8) A C2log (Jd I(1i] + 2)").
From (2.8) and (2.6) we obtain

3C2
(2.9) [logC*0)I oK + |log £K(a)|.

By (2.9) and (2.4) the Lemma follows.
In a similar way we get the following lemma.

Lemma 4. Let Kx denote the constantfrom Lemma 3. Then we have
(2.10) [log (s-1Kk(s)| * C4+ «(logbKr+ loglog(|/d|4™))
for sED2, where C4=*0 is a numerical constant.

Finaly we remark that by using Landau’s theorem [2], Satz 210, pp. 131—139
we get the following lemma:

Lemma 5. Let n—[K: Q]sl, t/ren
2

2 1—Aixl s C2(AT);cl - "+f,
NfHie
|

CAK) = nc"\A\” log(Me),

where

and XhzllrgsI X (@)m

3. Proof of Theorem 1

Let Pz(x)= 2 h(l,z) for |z]al, then from (iii) and the classical Perron’s
NChSx
formula we get

1  c+IT

3) £ pz(t)dt = s{81) g(s.2)& (s)ds,

where 0 1 and x>0.
Putting g(s, z)EK(s)=H(s, z)(s—I)-* and

ws-1
(3.2) P(x, z,X) s(s+1) tf(*,z)(S-1)"
by (3.1), (3.2) we get
* s c+iT
(3.3) \; Pz(t) dt = z—rlrli_rp0 Jf <P(s, z,x)ds.

c-1

Acta Mathematica Hurtgarica 50, 1987



Since f=-

ARITHMETICAL FUNCTIONS ON A SEMIGROUP 7

g\(A\an m and 1—r|>? thus 0 5 Let O , and 0O<e<

2
< Arctg —. Then by Cauchy’s theorem the integral on the right-hand side of (3.3)

may be replaced by the integrals A, ...,la over the paths I'1lr..., 'g which are
defined as follows:
I, is the segment (c-iT,
. . (K
2 is the curve described by 1— ---—- I/Ivmr|+2) +it as t increases from —T
-2

to

3 is the segment {lI—A—2i, 1—{]—rjtge);

4 is the segment (1 —u—utg£, 1—reio);

'B is the arc of the circle 1+rew described as 6 increases from —a-f£ to n—e;
6 is the segment (1—re~u, 1—j+it] tga);

7 is the segment <l—IA+17tg6, 1—/+2i);

C (K)

log’ M [(]t 1+ 2),,+it as t increases from 2 to T;

'8 is the curve described by 1—

C N
I", is the segment <l- ,og MX|((r)+y + 'T.C+M-

We note thatr 152, T8and '9depend only on I" and do not depend on r or £
For fixed T and r and for £->0, '3and ' 7 become the segments

r3=(@a—]-2i, I-ri) and T'7—Q@A—7 | —1+2i).

For /4and 7e we have

lim/4= lim /16D(>|g z,x)ds = /}[*FH(a z)(l -a)~z(e~in~ z—-—--—d er»
£ e <T(<7+1)

- yT+1
lim/B=lim / ®(x,z,x)ds = ] H(a, z) 1—o)~z(eix)~ Z— 1T
e-0 e-0 f <j(<7+1)

If yr={x:|x—L1|=#} excluding the point 1—r, then

IeLrB (/14+ /5+ /9 = £f 4>(s, z, x)ds + 2isinnz /f (1—V|)(2—Z\n)- u~zx2~udu

which does not depend on the choice of r.

(3.4)

If ->-°° then /j—0 and /90 so thatX

X

f P2(0 = qz(x)+00(x, 2),
0

Acta Mathematica Hungarica 50, 1987



8 A. GRYTCZUK

where
_ . simrz r HQl1—u,2) , 1 <« |
(3.5) qz(x) =-J -/ (I-u)(2-u)X du+2ri[0(s’Zx)d5

and

(3.6) co(x, z) = J2+J3+J7+Ja,
3.7)
1 Ci(A:) , V-, Ct(K)n
2 MY . | logM|(r|+2)"+",Z" X i+ (]i|+2)log2M I(]i|+2),)
(3.8) /3 = Tr/‘ Gp0> x)ds, /, = oni r]] P(s, z, x) ds,
(3.9
Ci(A:)n
log MK1/N-2)' (t+2)log2M|(i+2)'

By Lemma 3 and assumption (iv) for sEDI we have

(3.10)  |tf(s,z)(s —1)-*| =£g(s, z)|leMItx<*MI =£ T2(™) (log\AV(\E\ +2)™)".
where |z|S1. Since |/|&2 and «-=2+log \A\ thus from (3.10) we get
3.11) [ff(i,z)(i-1)-]s0 3J30(log|<|)’,

where
A.(*) = A2(*)4" 108" (Vs).
For s”r2 or s£ra from (3.2) and (3.11) we have

(3.12) \Hs,z,x)\' S R3(K)x ioglal(rl+2r |/]-2(10g |r[)”.
Since |d|sl, n”I, |t|s2 we obtain

) C\(K)n
(It+2)log2[d|([/[+2)n [ 1+W
where C4>0 is a numerical constant. From (3.13), (3.12), (3.7) and (3.8) we get

(3.13) i+ ca,

+~ cm
(3.14) J2+Ja<z T x t~4ogntdt.
K 2
Let o0<e0<1, then we have
(3.15)
0o
toglal(lr] exp(-e,log,-C,W ron 4 ),

Acta Mathematica Hungarica 50,1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 9

1 — C (% A 1 AN
Putting <X(K)_4fog|; 0Ale) and remarking that for \t\“2 and n<2+log \A\
we get
(3.16)

£log|/|+ iogH (n W logx" £logl?l+aWi ~ - 2MK)e®
Let a= I/x(K)cO then from (3.16), (3.15), (3.14) we get

+ o
(3.17) J2+Js « x2f i“2+#oexp(—2a Mogx)\ogntdt m
2
+@®
= x2exp(—=2a (/logx) J t~2+eolog"t dt.
Denoting by
In= # tzqm t
then we obtain
(3.18) nf ni
. /.S - =
» (I_eoyé(eIOSZ 1) (1 -80)" *
By (3.18) and (3.17) it follows that
(3.19) N+ N*|?7x2exP(—2a(/logx).
Since

A5 2) = g(s, 2) exp z(log (s- )Cx(s))
thus by Lemma 4 and assumption (iv) for s£D2, \r\LLI1 we obtain

(3.21) [#(s, z)] ™ 1?75(").
For s£ET3 or s£T7 and |z|S| from (3.21) follows that
” . Ci(K)
(3.22) |D(X, z, X)[ cx2-7, where iy= log [d|4n"
Since x2-, = x2exp (—ylog x) and
/ d \2

iylogx-l---ﬁ-: \/iylogx----\-/;i:;’| +2a (logx Si 2a j/logx

where a = ia(K)e,0, we have
(3.23) —ylogx ~ —2a (/logx +— .
From (3.23) we obtain

(3.24) x2"1"N x2exp j exp(—2a (logx) = REK)x2exp (—2a (/logx).

Acta Mathematica Hungarica 50, 1987



10 A. GRYTCZUK

From (3.24), (3.22) we get

(3.25) J3+ J7 < x2exp(—2a *ogx).
From (3.25), (3.20) and (3.6) we have

(3.26) co(x, z) <s: x2exp(—2ix Ylogx).

It is easy to see that the function qz(x) in (3.5) is infinitely differentiable with respect
to x for |z|S1. From (3.5) swe get

(3.27)
. smnz " #(s, 2)

4>7(X) = / 1—u du+2itfy (s —D)—=xsds
(3.28)

(Pzx) = InJIZz f H{\-u,z)u~zx~udu+-~r f H(s, z)(s —\)~zxs~1ds.

r 1w

We remark that in the region |j— |z|S1 the function H (s,z) is bounded,
since the condition |j—|Sfj implies Rej"l — and by assumption (iv)

and Lemma 4 we get
(3.29) [tf(s, 2)I = |g(s, z)| lexp (zlog (s- NCK(S))| A7(A)
for [j—1 s rjand |z St 1. From (3.29) we get

Y Y
(3.30) J H(l —u, 2)u~zx~udu y u~Ix~udu.
Putting u- log x we obtain
§ flogX
(3.31) Ju~IxX~udu— J v~le~vdv.
r rlogjc
For |s— and |z|S| we have

(s—)_zxs 1<cxrr_1
and therefore

(3.32) jJH (s,z)(s—1 zxs lds<scxr.

Ir
Putting r_loglx for sufficiently large x by (3.27), (3.30)—(3.32) follows that
(3:33) <p:(x) = o K().

Acta Mathematica Hungarica 50, 1987



ARITHMETICAL FUNCTIONS ON A SEMIGROUP 11

Let and t<d(x, x+C) then

(3.34) j J+ip,()dt-Pz(x) =j K\p z(t)~PAx)\dt.

By assumption (ii) we have

(3.35) \Pz(t)-Pz(x)\" 2 \h(1,2)\sR (K)(t-x)+ 0K(t>).
Since x"t"x+ £ thus O~ t—xLU!; and therefore for and (3.34), (3.35)
we obtain
(3.36) y [ ip.(t)dt-Pz\ S R(K)E+OK(XR).
We have
(3.37)  \Pz(x)-cp'(x)\  \ T PAbtdt-cp'z(x) + j *fpz(t)dt-Pz(x)
X T X

X

Since J Pz(t)dt= Pz(t)dt—J Pz(t)dt thus by (3.4) we get
0

i
X 0

+Z
(3.38) Pz(t)dt = (z(x+ £)- (@ (x)+ o(x+ £, z)- (X, z).

For the function gz(x) we have

|
(3.39) qe(x +£)-cpz(x) = iPz(x) +" J (I-u)g>"(x+uO du.
0

From (3.38) and (3.39) we get
(3.40)

mj/ Pz(t)dt=@E@X)+£]j @-u)(p"(x+uf)du+ cO’x+ "’ w(x..z2\

From (3.26) for we get

(3.41) co(x+ 1;, z) «: x2exp (—2a/logx).

By (3.33) follows that
(3.42) cp"'(x+uO = Ok(2).

Acta Mathematica Hungarica 50, 1987



12 A. GRYTCZUK

From (3.40)—(3.42) we have

X+i

(3.43) —/ Pz(t)dt-cp'z(x) «KE+—x2exp(-2a ' 0gx).
By (3.43), (3.37) and (3.36) and (3.36) it follows that

(3.44) [Pr(*)-(?'(m)] <§ £+xB+ —Cx* exp (- 2a flogx).
Putting £,=x exp (—a)/log x) and remarking that

xB< xexp(—a/logn:)) for x>exp”™ g j and 0afR<1

we get
(3.45) [P2(n:)-<p'(x)| <s:xexp(—a/log¥*).
To finish the proof it remains to evaluate (z(x). Let Ln={s: [5—1|</j} and Lx—

={z: |z|<1}. By (iv), g(s, z) is holomorphic with respect to sfLn for every fixed
|z|S1 and it is holomorphic with respect to z£Lx for every fixed sfL”. Since

H(s, z)=9g(s, z)exp (zlog (s—1)Ck(j)) thus — ~ has this property. Let
L=LnxL1 then by a well-known theorem of Hartogs, H(s, 2) is holomorphic
with respect to both variables (s,z)EL. Therefore —H(Sji can be represented
in the form
H(s,z) .

(3.46) 2Bj(z)(s-\

2; i(z)(s-\y
where
(3.47)

2ni w(w—1)J

are holomorphic functions in the circle |z|<1. By Cauchy’s inequality we have

(3.48) B1ls ~r for j =0, :L,|Z| 1

where
_ H(s, 2)
M o
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We note that H(s, z) is bounded in the region a s |—j, [t|]<2, \z\sl, thus we

have also
\H(s, 2)| » R7U(K) for |s-lI|=M, || <2, |z]|SI.
Since |s—\"rj implies Ressl — thus we have
AN
(3.49) \H(s,2)\ R7(K) R7(K) RT(K) = M(K).

|s| Rej 1-r/
Let \s—I\=0<rj, then putting in (3.46)

(3.50) fVgtl(s,z)= 2 Bj(z)(s-iy-q¢1

we have !

351) F ,+1SI2)|SM (i 2 — = M(K) . )

(B85 F . +USISM (i) 2 W n (K) horksy  MXKG, 9.

Substituting

= 2_O:Bj(,z)(s- iy +Wg+1(s, z)(s- l)og+l

S 1
into (3.27) we get
(352)
P20 = 2xRj(z) — | M-zX_uilH+-22T-(s-iy“zA™ 1i/s+j+IL(jC,2),
where
(3.53) W(x,2) = —2 xBj(z)------—— f ulzx~"du+
(x,2) £ (@) - N

+y-r fw g+l(s, z)(s-1)g+1l~zxs~1ds +

vr
+X—  Z—-——J Wyl —u, Z)ugtl zx udu.
Since for O*j*q we have

P-1-1
Snn~z" J ulzx~"du+-2-rf xs~\s—1J~Zds = (logx)
n r-] 2ni J I—I * _ 1)
yr

thus from (3.52) we get

(3.54) q(x) = 2 OxBj(z) Ngl \*ZE_-J)~ \ +w(x, 2).

Acta Mathematica Hungarica 50, 1987



14 A. GRYTCZUK

For estimating W(x, z) we remark that

4-00

(3.55) J uJ~zx~"du < (logx)_, 3, 0" js g
y
(3.56) [ BE+i(s, z)(s—)?+1 zxs_1du <E (logx)Rez~i_2.
1,
n
(3.57) [ WoHL(1- u, 2)««tl- zx - “dn << (logx)Rez-« -2

r

From (3.55)—(3.57) and (3.53) we obtain
(3.58) IF (X, z) <« x(log &)Ker_B_2.

By (3.58), (3.54) follows that
(3.59) <N*) = ZoXBj(z)( +O0Kx(\ogxT'z-«-*).
Finally we remark that for sufficiently large x we have
*(*)= 2 Hlz= 72:0 xfs:1 (Z(E)--(Iog" - N -1+ 0 K(x(logA)R— «-2)

and the proofis complete.

4. Proof of Theorem 2

We remark that by (a) we have

W>
“D 2 NOR BN for L

By (c) it follows that h(l, z) is multiplicative with respect to /?GK From (4.1)
and Lemma 7.1, [3] follows that

h(l, 2) h(p\z))
1izek N(1)S N(v)ks)

for Rej>1 and |z|SI.
Consider the product

4.2)

It is easy to see that (4.3) can be represented in the following form:

(4.4) 77 (1+ uv0» 2)) exP (- w(s>2))
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where

©° Hv\z
@) P5.2) = 2 e >
4.6 , =72
(46) wis.2) =22

Since \h(I,2)\*Rx for IEGK and |z|S| thus

“.7) " 'fez)l sr'&~nW =r'>(py-i

From (4.7) for awcrx we have

1 " 1
(4.8) 2v',~«S2 (V) 1)2 N(pf°i
for 5!:*i. Similarly we get for
_ |h(p,z)-z i (p\*)
4.9 -Vi(s, 2\ = p
(49) .2 X pl k=2 N(p)ls  kN(p)ks
where
h(pk,z) z
4.10 1 -F
(4.10) A Wpk KkN(p)k 3 Aup)2".

Because * Fp<°° for Oi>? and by (b) we have
p

2 (™ (p™ 4 <0° for where

Thus we obtain from (4.9) and (4.10)

K (s,%)-*(» 2\ " HNA T Z +FP= Fp

15

that is
(4.11) 2 Fp«X. for aa o!> —.

p
From (4.8) and (4.11) and Lemma 2 we get that the product (4.4) is absolutely and
uniformly convergent and bounded in the region |z|™ 1, so we have
(4.12) g(s, 2) = /7(1 +wp(s,z)) exp(-rp(s.z)), 19(s.2)] = n (K)

for (T= (=>»—, |z~ 1 By (d), h(l,z) is holomorphic with respect to z in
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16 A. GRYTCZUK: ARITHMETICAL FUNCTIONS ON A SEMIGROUP

the circle |z|<| therefore the functions given by formulas (4.5) and (4.6) are
holomorphic with respect to z in the circle |z|]< 1 for every fixed s such that

Res = (Tairl> -j.

From (4.5) follows that up(s,z) and vp(s, z) are holomorphic with respect to s
in the region g"Gx>-" for every fixed z, |z|S 1L Therefore g{s,z) safitsies (iv).
From (4.12) and (4.3) and (4.2) we obtain

so that the assumption (iii) is fullfied. To finish the proof it remains to verify (ii).
From (a) we have |h(l, z)\sR x and therefore we get

(4.13) 2 \h(l,2)\"R1 2 I-
x«=N(r)Sy

By Lemma 5 it follows that

(4.19) 2 1=UW y-x)+OK(y 'm+l).
x~N(iyy
Putting /1:l—|/|+1 we have 0S/?<1 for usi and from (4.14) and (4.13) we get

2 Ih(l, )] » RIXh(y-x)+0K({yP) = R(K){y-x)+ 0K(y>)

and the proof is complete.
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HIGH ORDER SMOOTHNESS

M. J. EVANS (Raleigh)

All functions considered in this paper will be assumed to be Lebesgue measur-
able and defined on all of the real line R. In a recent paper [3], T. K. Dutta examined
the notion of a generalized smooth function and obtained several interesting results
for continuous generalized smooth functions analogous to those obtained for con-
tinuous smooth functions in [5] and [8]. The purpose of the present paper is to sharp-
en the hypotheses of Dutta’s results by taking advantage of known results for
smooth functions and symmetrically differentiable functions along with a form of
a lemma due to Auerbach [1], which is slightly stronger in appearance than that
quoted by Dutta [3]. These observations used in conjunction with Dutta’s methods
generate stronger results than those obtained in [3].

We begin by defining the necessary terms. Let / denote a function and let
XCER with / (x0)=aO0. If there exist real numbers a2 a4, % suchthat

K 1Nr

{f(x0+h)+f(x0-h)}/2 = Z - r "+ 0"),

then aXis called the symmetric de la Vallée Poussin (d.l.VV.P.) derivative of / at x0
of order 2k and is denoted by D2k (x0). Similarly, if there are numbers RBIt B3,
..., BX+i suchthat

K 10r+1

{f(X0+h)-f(x0-h)}/2 = 2 (2r+1); fe ++ 0(fo2t+1),

then Rzk+i is called the symmetric d.l.V.P. derivative of / at x0 of order 2k+ 1
and is denoted by D 2k+1f (x 0).
Let m be a natural number and assume that i)2m~2f (x0) exists. Let

2 m1 h& 1

oan(/: x0.0) - \ATY f(x 0 +V+f(xo-h)}/2- 3

Then / is said to be smooth of order 2m at x0 (or 2m-smooth at x0) pro-

vided Ihlm) ho2m(f; x0, h)=Q If / is 2m-smooth at each XxER, we say that / is

2m-smooth.
Smoothness of order 2m+1 (m=1,2, ...) is then defined similarly.
Next, if there are numbers y7i, ..., ym suchthat /(x0)=y0 and

f(x0+h)= 2 \y r +o(hm),
r—0 %o
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then ymis called the unsymmetric d.l.VV.P. derivative (or the Peano derivative) of
/ at x0of order m and is denoted by / m(x0). It is well known that if the ordinary
mth derivative of / atxO0, / (m)(x0), exists then so does f m(x0) and /w(x0) = / (T>(x0).
Similarly, if f m(x0) exists, then so does Dm(x 0) and they are equal.

A set A in R is said to be scattered (separated or clairseme) provided that A
has no dense in itself subset. A function / is said to be a Baire* one function pro-
vided that for each closed set P there are numbers a<b such that (a, b)[TPp9
and the restriction of / to (a, b) MP is continuous. (Dutta [3] referred to this prop-
erty of / as property M.) This notion was introduced by O’Malley [7] and is im-
portant in what follows. It is easily seen that if the points at which a function /
fails to be continuous form a scattered set, then / is a Baire* one function. A useful
tool in showing that a function is a Baire* one function is the following lemma due
to Auerbach [1].

Lemma A. Let P be a nonempty closed set and {/,,} a sequence offunctions
such that the restriction of each f, to P is continuous. Further, suppose that Lan
is a convergent series ofpositive numbers and thatfor each x£ P there is a natural
number N(x) such that \fn(x)\“an whenever n>N{x). Then there exist numbers
a*zb suchthat {a, b)[MTPAO andLf,, converges uniformly on (a,b)C\P.

Although Auerbach’s original lemma was stated for functions /,, continuous
on a closed interval instead of a closed set, only the obvious changes in his proof
need be made to prove Lemma A.

The next two results are the ones that allow us to sharpen the hypotheses in
the results of Dutta [3].

Theorem 1. If f is continuous and m-smooth, then Dm~Z is a Baire* one
function.

Proof. First, consider the case where m is even; say m=2k. For k=1 there
is nothing to prove. Assume the theorem holds for k=1, 2, ..., r. We shall show
that it is true k—r+ 1 as well. Let P be a nonempty closed set. By our assumption,
there exist numbers suchthat (a, b)D Ppfi and the restrictions to (a,b)C\P
of DZ D/f ...,.D2~Z are continuous. Choose an interval [a* b*]C (a, b) such
that (a*, b*)[NPa & Let {h,} be a strictly decreasing sequence of positive terms
such that JEhn converges and a*—hn>a, b*+hn<b for all n. For each nat-
ural number n let 42r(x)=0Z(f ;x, hn) and note, in light of the continuity of
f DZ Dif ..., Dir~Z that the restriction of ¥"f to [a*, b*]MP is continuous.
Furthermore, since / is (2r+2)-smooth, we have that for each X,
E}rja/jOZHZ(/; x, h)=0, and hence

lim Vnfx)~D 2f(x)]h~1= 0.

Thus, there is a natural number N(x) such that |T'f(x)—Dirf (x)|<h, for all
n>A(x). For n>N(x) we have

\n+i(x)-K(x)\'s I 10)-£Z0)|+ In r(x)~02/(x)| < hn+l+hn-=2hn.

So the series (¥ "m1—WP2r) satisfies all the conditions of Lemma A on the closed
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set [a*,b*]C\P. Hence there are numbers a'<b' such that [a',b']Q[a*, b*],
(a',b")OP”0, and 2 {Ne+i~ converges uniformly on [a, b]JMP. Hence
n

Fir+ 21 (i'n+i- *nrp i-e- m converges uniformly on [d, bJC\P and so the
=

limit function D2f restricted to [a,b]MP is continuous. Therefore, D2f is a
Baire* 1 function, and the theorem holds for all even natural numbers m.

For m odd, say m=2k+1, the proof is very similar. The initial case k=1
can be handled by setting (x)=(f (x+hnj)—f(x—hn))/2hn, noting that
IangD (F*(x)—DZX (x))/hn=0, and utilizing Lemma A as above. Assuming the theorem

true for k—1, 2, ..., r, the inductive stage is handled as above using 4Ir+1(x)—
="2r+I(fl h,,).

Theorem 2. Iff ism-smooth, then the set o fpoints at which f isdiscontinuous is
scattered.

Proof. If miseven, then / is 2-smooth; i.e., / issmooth. According to Theo-
rem 2.1 in [4], the set of points of discontinuity is scattered. On the other hand,
if m is odd, then / is 3-smooth. Consequently, / has a finite symmetric derivative
DV everywhere. According to Theorem 1 in [2], the set of points of discontinuity
of / is scattered.

Theorem 3. If f is m-smooth, then

i) exists and is continuous on a dense open set,

ii) the set ofpoints where fm-fx) exists and isfinite of the power of the con-
tinuum in every interval.

Proof. To prove i), let (a, b) be any interval. Since the set of discontinuities
of / is scattered, there is a subinterval (ab')Q(a,b) on which / is continuous.
From Theorem 1we have that Dm~Z is continuous on a subinterval (a", b")* {a', b").
Applyng Lemmas 2 and 3 from [3] we see that / (m2) exists on (a", b") and is, of
course, continuous there since f {m I=Dm &

To prove ii), again let (a, b) be any interval, utilize Theorem 2 to obtain a sub-
interval on which / is continuous, and apply Theorem 3 in [3] to / on that sub-
interval.

We now turn to those results of Dutta [3] wherein in addition to assuming that
/ is m-smooth, we assume that /,,, 2exists.

Theorem 4. Let f be an m-smooth function which has the Darboux property
andfor which /1w 2 exists everywhere. Then if we let E={x :/m_i(x) exists}, we
have

i) fm-x has the Darboux property on E,
ii) If fn-i(x)=0 for all xdE, then/m_2 is continuous and nondecreasing.

Proof. First consider the case m=2. O’Malley showed that i) holds in [7].
To obtain ii), we first suppose /'(x)=-0 for all x(E={x:/'(x) exists}. If / is
continuous then / is nondecreasing according to the lemma on page 27 of [5]. If
/ isnot continuous, then because it has the Darboux property it cannot be monotone.
Hence there are two points, a<b, where f (a)=f(b). Then according to Theorem
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3 in[7]/ has a local extremum at some point xn€(a, b). Because of the smoothness
condition, it is easily seen that f'(x,,) exists and equals 0. This contradiction shows
that / must be continuous and monotone. The general case, /'(x)sO on E, is
handled in the usual manner by considering g (x) =f (x)+ex for arbitrary positive
numbers e.

Finally, as Dutta observed at the end of his paper [3], if m>2, / must be con-
tinuous since it is in fact differentiable under the stated hypotheses. Consequently,
the validity of i) and ii) is an immediate consequence of Theorem 1 in this paper
and Theorems 4 and 5in [3].

The reader will note that analogous sharpening of the hypotheses can be made
in Theorems 6, 7 and 8in [3].

It should be noted that Neugebauer has provided an example [5, p. 27], showing
that neither i) nor ii) is valid in Theorem 4 if the Darboux hypothesis is dropped in
the m=2 case.

The function constructed by Oliver in Theorem 5 of [6] shows that the conclusion
of parti) of Theorem 3'is the best possible, in that given any open dense set G, there
is an w-smooth function for which (x) exists if and only if xEG. The same
example shows that the conslusion of Theorem 1 cannot be replaced by the stronger
statement that the discontinuities of D"“2 form a scattered set, except, of course,
in the m—2 case.
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STRONG SUMMABILITY AND CONVERGENCE
OF SUBSEQUENCES OF ORTHOGONAL SERIES

H. SCHWINN (Berlin)

1. Introduction

We take as a basis general real orthogonal series

(1) 2_0 cn<Pn(x), 2_0' c«<°°,

1
where {(5(*)} is an arbitrary orthonormal system on [0, 1], i.e. \] ) (PI(x)dx=5iJ
0

(i,j=0,1, ...). We consider a summability method A =(ark) and the means

tn(x)= I(2:<81,,ksk(x),

where sk(x) denote the partial sums of the series (1). We always assume A being
regular, i.e. A transforms a general convergent sequence into a convergent one
with the same limit. It is well-known that A is regular ifand only if the following
conditions are fulfilled:

@ lim 2 ark=1
k=0

0 z k*I Ak 0=01..)!
k=0

() limak=0 (k=0,1...)

(cf. K. Zeller; W. Beekmann [15], p. 57).
The series (1) is called A-summable if tn(x)-+f(x) a.e. on [0, 1], and strongly
A-summable with order y>0 ([*]r-summable) if the strong means

- *(*x\_[(* _
—k2:0|eJ|5 (*)-/(*F - 0 ae

on [0, 1 with a suitable functionf (x). In the following “convergence” always means
“convergence a.e.”. It is obvious by Holder’s inequality that with regular methods
A, [/I]7-summability implies both [d]7-summability, if y>/>0 and ~-summability
if yinl

1K,L,... denote constants.
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In the first part we want to prove direct theorems for strong summability. The
convergence of the sequence {w.(X)} may imply [vfp-summability with arbitrary
exponents y>0, if {n} is chosen in a suitable way depending on A alone. Strong
(C, I)-summability of orthogonal series with exponents yS2 were first investigated
by A. Zygmund [18] and S. Borgen [4]. The exponent y=2 may be considered with
respect to (p,,(X)EL2[0, 1] as a natural borderline. Exponents y>2 were first con-
sidered for Cesdro methods (C, a), a>0, by G. Sunouchi [14], later on by O. A.
Ziza [16], [17] for series-to-sequence methods (<p A) and recently by L. Leindler [9]
for generalized Abel methods (A,p). Our interest is directed to general matrix
methods.

The second part is devoted to inverse theorems. From ~-summability resp.
[zl]lv-summability of an orthogonal series one may deduce convergence of a sub-
sequence {T,.(X)}, {«} depending on A alone. The classical result goes back to A. N.
Kolmogbroff [8] and S. Kaczmarz [7] who proved that the series (1) is (C, I)-sum-
mable if and only if {-vM} is convergent. We want to stress here the relations to
general gap theorems and gap methods. Finally we want to point out the equivalence
of summability and strong summability for orthogonal series when applying some
special methods.

2. Strong summability

For a given regular method A=(ank) we consider the column majorants
(2) ak = sup \ankh (fc= 0, 1, ...),

and prove the following theorems.

Theorem 1. For a given regular method A =(a,k) and an increasing sequence
{?} ofnatural numbers let

3) "Z la*siM (1= 0,1,..)

k=nt+1

be fulfilled. Then the convergence of {y,.(X)} implies [A]ysummability of (1) for
O<yn2.

Theorem 2. For a given regular method A =(ank) let the sequences {at} and
{«} satisfy condition (3) and let

*
@ ar —MI_ («isles ar)

ni+l ni

befulfilled. Then the convergence of {m,.(X)} implies [Afi-summability of (1) for any
y>0.

To prove these theorems we need some lemmas. At first we state a result con-
cerning Cesaro methods (C, F)=(AfizI!Af).
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Lemma 1 (G. Sunouchi [14]). Let a>0, y>0; then

(5 he‘?qli?c{/n . k2=0AT-I P * (%) Jdx” Ca i) 2 cl
l z
With ck (x)=72Y 2 SAX) and A"={n+, Q}-
Next we construct the modified arithmetic means for (1) with an increasing {n;}:

®) an(x) = an(x; {«}) = ———" io2 (s70)-*.(9)
ni+l; i=0,1 ..),
and prove
Lemma 2. Let {nt} be an increasing sequence. Then a*(x) 0 ae.

Proof. Let us consider
6i(x)= sup [a*(x)I2

then by <*(x)=0, using Schwarz inequality, we get

di0) "{ g KM -CIW 1}a («m-«/) 2 KW -CiW )

With the aid of the representation

F(*)= wsheer (1 et et \J)) N (X

his leads us for a® n< wnH1, resp. ni+1— HE U + U (+1—2«r<2(n;+1—nn to

(5 i(x) dx™ (n1+l- w) :U-t+1 \n+ nidtl~ znl) k:|21 (fc+ n;+1-2H;)2cl.

co 1 «.

Obviously Of Si(x)dx<°°® and thus by B. Levi’s theorem 2 ~W <K> ae.
i=0 =0
This proves the assertion.

Lemma 3. Let {nj he an increasing sequence and let y=-0. Tfien

l( , ni+i | n*ly +
(WG--FE]S 2o |s*(N)—sHC) — COI7f, dxtsL ] 2 e 0=0,1..).

q =nt+1

Proof. We construct the first partial sums of a new orthogonal series Sc,,$n(x"
in the following way:
0 (n=0,1% .., H+1-1;),
»-("it+i-21)
sn(x) 2 ckqk(x) (n = nl+l-nr+1, ...,2(u,+1-u,)).

fc=n,+1
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The corresponding arithmetic means dn(x) of this sequence are

LN i 0 m=0,1 ..., ni+1—
x - {er (ML 2n)(x) (n= u+1-U ;+ 1, 2(nitl—n,)).

Now by Lemma 1 the estimation is proved.
Lemma 4. Let A= (ank) be a regular summability method and let 5*SO. If

with the majorants (2) kZ:Qaksk< °° isfulfilled, then

@

lim k2=0ankh = 0.

Applying the regularity conditions the statement of this lemma is easily proved.

Proof of Theorem 2. As already mentioned strong summability with higher
order implies the one with a smaller order. Therefore we may assume y~2. We
pick up again the means a*(x) (cf. (5)) and the function / (x) determined uniquely
a.e. by the Riesz—Fischer theorem. Now with I(k)=i if n, A:<n;+1

<yJoD = 2, 1fl] mk (*)-/(*)ly=
= (1) { 2, kM ISy — () —a(mlys 2\ ank- WV +

+ 5__0 Kk\ «K @@x)-f(x)\y} =: 0(L){T®(K)+ T(*)+ T<W>(X)}.

Since the method (\ank\) transforms the space ofnullsequences c(into c0, so x f X(x)"0
a.e, and by Lemma 2 we also get t®(x)->-0 a.e. Then with the majorants
ak (cf. (2)) we get

N - -
(6) ) (x) I2=0 k2=rt «kK(X)-8,,t(x)-(TZ(X)\y.
We prove that the series on the right is finite a.e. For (3), (4) and Lemma 3 with
consideration to the estimation {2 a~LU! af (a,s0; 0</;< 1) yields

C/I {i§0k=2nt XK\SK(x)-sri(x)-a”(x)\yY ,ydx =

of 1 G+l 12l
—0 (D ,2=O\fi\7\%;;ci---# & s k(*)-sn((X)-<f£(X)l)3 dx =

- 0(p 2

1=0rnisl

This shows the finiteness of the series in (6). Lemma 4 immediately furnishes the
assertion.
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The proof of Theorem 1 may be carried out in a similiar way for the exponent
y—2 without using the means <r*(x). We only use the estimation

"iti-i
<Rk (.x)-snt(x)\2dx 3a M 5 em
k=nl

We omit the proof.

The relations of equivalence between convergence of subsequences and (strong)
summability of orthogonal series show that condition (3) may not be weakened in
general. On the other hand we state

Remark 1. For a regular method A —(ak) and an increasing sequence {nt}
let
"iti-1
lim 2, ak=0.
k=nt
Then there exists an [*]y-summable orthogonal series (1) with divergent partial sums
{s,,-(X)} for any 0<yS2.
For in this case there exists an increasing sequence {w} with

Yy ak —M* 0 =0,1,...)
k=4,+1

exhibiting the following property: the number of members out of {u;} between two
adjacent pj and pJ+l (/=0, 1, ...) is not bounded. Then, by [13], there exists a
series (1) with divergent partial sums {*,.(X)} and convergent partial sums {ya.(x)}.

Theorem 1 applied to {/i,} shows the [T]-summability of the series (1) for

O<yn2.
Condition f!im ak=0, which corresponds to the particular case nt=i
-» 00

0—0, 1, ...), plays a certain role in the field of summability of general divergent
sequences. It is well-known that such a method sums at least a divergent sequence
(cf. K. Zeller; W. Beekmann [15], p. 46 f). By Remark 1 it immediately follows that
this result may be stated for the restriction to orthogonal series, too:

Remark 2. For a regular method A=(ank) let 1j[_i»(m<>> ak=0. Then there exists
a divergent series (1) which is [ylp-summable for 0<yS2. However, in general,

condition lim a*=0 may not be replaced by lim inf ak=0.
k ->-00 ft-»00 1

3. Summability and convergence

In the following we first want to turn to aspects of the field of general gap theo-
rems restricting the methods to regular triangular matrices A—ank), ank=0 if

k>n. For a gap series 20un with un=0 if n~nk, n2, ..., the transforms of its
ot

partial sums {v,} for n;*n<u;+1 are
n i
tn = anksk = .2 anjstij9
£0 [E
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where
"T+1- 1
2 ak 0 <O
k:‘r‘1j
2,ank 0=0
k =ni
0 0>0-

The method A*=(a*j) is called a gap method (cf. K. Zeller; W. Beekmann [15];
p. 79). In the context of gap theorems one asks for equivalence of A* to convergence.
Possibly the convergence of a subsequence of {tn} may already imply convergence
of {v,.} or of the series, respectively. To this end, with Sj=s,,. we consider the
following subsequence of {tn}:

— 2 ani+l-i,jsn — 2 Ausj’
J=0 7=0

where AiJ=a*I+1"1>). The method A= A({«})= (Au) has the advantage of having
a triangular form. These gap submethods play an important role in our investigations
of inverse theorems in summability of orthogonal series. In this connection we
introduce the modified means

Ti(x) = 2 AtjsnXx)
j=o

of the series (1). With the majorants
(7 4 = syp\a,, ifd
similar to (2), we prove
Lemma 5. For an increasing sequence {n;} let
"iti- 1
(8) k2—rt 4tk M

be fulfilled. Then for the series (1), {Tfix)} is convergent if and only if {/,._]1(X)}
is convergent.

Proof. Without loss of generality, n,=0 may be assumed. By the regularity
of A (cf. condition (a)) and by Holder’s inequality we get

IListe 1 (2)-TH2= 120 B0 @i+t ik (sk()-sn ()2 =

=012 2 I9ICY —s,, (m)|2= 0(1) __2O g d(sk(x)-s,(x)f.

7=0 k=ttj
This yields
[ SAP(if+1-i(J) —7)(x))2dx=0(1) gocz
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or sup —Ti(x)\<°® a.e. With the regularity condition (c) it follows
t,,.+- 1(x)—Ti(x)-*0 a.e. which completes the proof.

Remark 3. If the columns of A are decreasing (ank*a,,+hk; n”k), the state-
ment of Lemma 5 holds for every increasing sequence {nf}.

The sequence {v,,.(X)} considered so far may be represented as a (direct) se-

quence of partial sums of a new series 200 Q ®”x) which belongs to the class of
i=0
series (1), namely with
A(x) (C -0
Ci={Z 12, <F(Xx)
o 2n c,,(P.,(x) (C, A 0).

Following Lemma 5 it has to be investigated what are the conditions for a given
method not to sum a divergent orthogonal series (1). For general sequences we
mention the result obtained by R. P. Agnew.

Lemma 6 (R. P. Agnew [1]). Let B=(brK) be a regular triangular method with

\K,,\- "2 \b,R A > 0.
k=0

Then B is equivalent to convergence.

The application of the last lemma to ‘blocked” matrices is due to J. A. Fridy
[5] in connection with Tauberian theorems. Another condition for a method to be
equivalent to convergence is

Lemma 7. For a regular triangular method B=(bnk), let
bn+ik - gbrk 0< g< 1;k=0,1 ...; nSrK).
Then B is equivalent to convergence.
Proof. The means t,= 2n! bnksk associated with B are first transformed

k=0
into the means

1-9" hi-1+ 1-9"

where ¢S.g*<1 By Lemma 6, {2} is convergent if and only if {/*} is convergent.
Now

=3 1
-q* + =: :
1t—q l(;O(brkq bn hK)sk+bmns,,} léocrksk
We want to prove that C—ck) is equivalent to convergence; for e,sa0 if k=
=0, 1, ..., n—1 and therefore
1 4
C,- 2 bl = 2 co»k-+1-
k=0 k=Q
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Then Lemma 6 shows the equivalence of C to convergence. Thus the convergence
of {tn} implies that {v,.} is convergent, too.
With respect to orthogonal series we prove

n
Lemma 8. Let B—(b,k) be a regular triangular method with 2 bnk=1 and
k=0

\brkd LUK*qn-k (1 = 0,1,...; n £ fo).
Then B is equivalent to convergence with respect to the orthogonal series (1).
Proof. Because

t a3
()-tn(x) = 2 B2, KK

the assertion follows by
2 1 (sn(x)-tn(x)fdx = 0(2) 2 2 4k(20 otR2= 0(1)10 cl

We want to mention that with respect to the orthogonal series (1), a necessary con-
dition for a method to be equivalent to convergence is deducible from Remark 3.
With respect to orthogonal series we summarize

Theorem 3. Let {nf) be an increasing sequence. If condition (8) is fulfilled for
the majorants {«£} and if the gap submethod /1= J1({«;}) is equivalent to convergence
with respect to the orthogonal series (1), then {tni~fx)} and {i,.(x)} are both con-
vergent or both divergent.

Remark 4. If a gap submethod A=A({ni}) sums a divergent orthogonal
series (1), then there exists a series (1) with divergent partial sums {*?,..(*)} for which
the means {?,,.(*)} are convergent.

To prove this remark we take a divergent series 'AI C;®d;(x). Let {pk} be
1=
chosen such that 2 C#ic(i\k(x) is convergent which holds, for example, if
k=1

2 Clk(log (cf. G. Alexits [2], p. 76). We then consider the series 2 C? ®;(X)
k=2 i=1

with partial sums {SJ(x)} defined by Cf=C; if iApk (k=\, 2,..) and otherwise
C*t=0, k—1, 2, .... This series is divergent and its transforms {I;*(n-)}=A {S)(x)}

converge. Now with respect to {n;} we define the requested series Zzocnqw(*) by
n

Cc (n=mnp i pkk=12.)

n 0 (otherwise),

and we put (pfx)= ®;(x) if iApk, k—1,2..... For the remaining n (with the
coefficients c,,=0), where n*nh i=12,..., or n=w and i=pk, k=12,...,
we take for cp,,(x) successively those functions PRk(x) which have not been used so
far. It is obvious that {inj(x)}={~(x)} and that for the J1-means of the partial
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sums {i,(x)} of the constructed series tni+l(x)=7]*(x), i=1,2,.... Finally
n2_Ocn(Fh(x) belongs to the class of series (1).

When applying gap submethods in summability of general sequences, slight
modifications of well-known gap theorems can be stated by Lemma 7 in the fol-
lowing way:

Remark 5. () If nt+¥nt*g>-1 (/=0, 1,...) then for a gap series 2 un,
n=0
m,=0, if n”riy, «2 the arithmetic means {a,,.} are convergent if and only if
the partial sums {s,,.} (i.e. the series itself) are convergent.

(b) For the discontinuous Riesz means (R*, A 1), A={A,} increasing to in-
finity, let Aj+UA(Si?:>1 (/=1,2,...). Then with a gap series 2 “« m,=0 if
n’tiy, n2, ... the (R*, A I)-means {/,,} are convergent if and onluyzoif {i.~} (resp.
2oo un) converges.

n=0
Theorem 3 allows to conclude from summability (and strong summability with

order ysi) to convergence of the partial sums (¥} For an order y< 1we can
also prove

Theorem 4. Let"{n;} be an increasing sequence, and let together with (8) for
the gap submethod /1({n;}) concerning the method (|a,t|) in dependence of {«} at
least one of thefollowing conditions befulfilled:

(a) A*=A({ny}) is equivalent to convergence (with respect to general sequences),

(b) A satisfies the assumption of Lemma 8.

Then for a series (1) the convergence of the strong means (" 1*x)} (y =»0)
implies convergence of {yH(X)}.

Proof. It suffices to carry out the proof for the exponents y~2; otherwise
Theorem 3 yields the assertion. Now with A= (At)

2o, (0-/00F = 03420 -2 +I5*(9)-5., (O

+ k%O le«, H-iLit|St(*)-/(*)IF = 0(1) K (*) + ***(*)}e

The second term is identical with and therefore t**(x)-»0 (/-»00).
The estimation

©(x) = 0(1) {1 "2 1K +1-i.*l|s»(x) - s. / x)[*}

i=0 k=ttj
holds on the basis of the regularity of A. In the proof of Lemma 5 we have shown
that, if (8) is assumed, the right side tends to 0 (/-00) for every series (1), i.e. we have

2 Al (X)-/(X)I*- 0 (i- o).
j=o
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With (a) the statement now follows immediately. On the other hand, in case (b)
there exists a natural number K, so that with the sequence {mi}={ni.K the gap
submethod A({mt}) satisfies the conditions of Lemma 6. Therefore by (a) {sm(x)}
converges and it is easy to see that so does {«,,.(x)}, too.

4. Applications

We represent the sequence of partial sums {yn(x)} as a transformation of
{in(x)} obtained with the aid of the (simple) summability method T({w:}). If two
summability methods are equivalent with respect to the orthogonal series (1), we
use the symbol

(a) For the class Ap of triangular methods A —(ank) with

{n+\y-v*£Z\ark\>y» M =01
=0

which were first considered in connection with orthogonal series by V. A. Bolgov
[3], we have
TH{2})~*A~*Ula (y=>D0).

Theorems 2 and 4 prove this result in the first instance for the special method (C, 1).
In general

B <PIs*(*)-/(*)ly= M7y 2418709 -/ (%) Iyd

with ;=2 r=0,1 .... Lemma 7 may be applied and Theorem 4 helps to prove
the stated relation. We notice that this class contains a subclass of Hausdorff-methods
H=(h,,k) with (cf. G. H. Hardy [6], Theorem 215)

hrk= () / t\1- 0"-Bk0dt,  UHZLPP. T (p >

and, in particular, the regular Ceséro methods (C, a), a>0. The classical result on
strong summability with large exponents (C, a=>-*[(C, a)]y, a>0, y>0 was ob-
tained by G. Sunouchi [14], and V. A. Bolgov [3] proved A~*TI({2}.

(b) Discontinuous Riesz methods (R*,X, 1), 2={/,} increasing to infinity. If
{/?} satisfies
xntIX,,t > 1 and 2,j+i_12,(
we get by Remark 5, Theorems 1and 4
T(K}) R* A )~*[(JP, 2, 1)]” (0O<yS 2).
The first relation is due to A. Zygmund [19], and the second to J. Meder [10].
If, in addition,

31+1_A = 0 (i) y — A
& (1) el (5 < U
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we get with Theorem 2 even
(R*, 1, D~*[(A4*, x, or (y> 0).

We finally mention that in the case of general summability methods the equivalence
of the summability processes with respect to orthogonal series is not given as was
shown by D. E. Menchoff [11] in the case of summability and convergence of sub-
sequences or by F. Moricz [12] in the case of strong summability and summability.
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NOTES ON LACUNARY INTERPOLATION
WITH SPLINES. Il

(0, 2)-INTERPOLATION WITH QUINTIC G-SPLINES

TH. FAWZY (Ismailia)

1. Introduction

Recently A. Meirand A. Sharma [1], B. K. Swartzand R. S. Varga [2] and A. K.
Varma [3] have studied the use of splines to solve the (0, 2) lacunary interpolation
problem. All of these methods are global and require the solution of a large system of
equations.

Recently, Th. Fawzy [5], [6], [7] presented several local methods for solving
lacunary interpolation problems using piecewise polynomials with certain conti-
nuity properties.

In this paper we study the following (0, 2)-lacunary interpolation problem:

Problem 1. Given A: {xt=ih}f=0 and real numbers {f, /r3}?=o, find S such
that

(17 S(x,) =f and S"(xi) =f", i=0,..n

The prupose of this paper is to construct a spline method for solving Problem 1
using piecewise quintic polynomials, such that for all functions /EC5 the order
ofapproximation is the same as the best order of approximation with quintic splines.

2. Construction of the spline interpolant

We shall construct a solution S of Problem 1 in the form

where k=0, ..., n—L
We shall define each of the explicitly in terms of the data. In particular we
choose
(2.3)
(2.9)

(2.5)
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and
(2.6)
For k=0 we take

(2.7) S = S\

(2.8) Sp =SP-hSp,

(2-9) S =¥ {/1_I°,_T ' '~&" ir 59}’
11 h2 5 hr 1

(2.10) — OTr-4'j

and finally for k=n—1 we take
(2.11) §F>>= StLM**), j=1,3,4 and 5.

Clearly, the function S defined in (2.1)—(2.11) solves the (0, 2)-interpolation
problem 1. Moreover, by the construction it is clear that S is a piecewise quintic
polynomial.

The S[3) have been chosen to make SAright continuous, i.e.

D\ Sk(xk+) = Dr Sk+1(xk+J),
while the have been chosen to make SA continuous. Thus

(2.12) Se GO2[x0, x,,] = {ff C[x0,xn]: DW/€ C[x0, *,]}

where DR is the right derivative.
Indeed, S is the unique piecewise quintic polynomial in

C (09)[x0,x,,] M CO[X,,_2,X,,]
satisfying the interpolation condition (1.1).
S is a special kind of g-spline, we refer to it as lacunary g-spline.
3. Error bounds for the interpolation method
Suppose /€C6[X0, x,,]. Then using the Taylor and dual Taylor expansions it

is easy to establish the following lemma showing how well the approximate
f ((xK) in terms of the modulus of continuity co(D5 4h) of f (5 ().
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Lemma 3.1. For 0"k”~n—2 and j= 1,3,4 and 5,
(3.1) \SP -/<'>(**)1 A ckJh5~Ja>(D5f', h)

where the constants ckj are given in the following table:

(e4] a3 Ck4
169 o1 19
) 4
= 720 6 ~6~
61 7 5 13
IAKAD -2 - i >
540 9 6 6

Theorem 3.1. Let f(LC5\0, x,,] and let SA be the lacunary g-spline constructed
in (2.1)—(2.11). Thenfor all 0~/S5 andall O Sk"n—2, the inequality

m J)(f-S AW XXkl A ckjh5-Jo)(D5; h)

o Ids true where the contants ckJ are given in thefollowing table:

0 4 <£» ck3 ae
k=0 917 827 a1 73 43 19
1080 360 18 9 6 6

319 1579 14 97
1Sfcsn-2 3 B
1080 2160 9 36 6

Proof. Suppose 1"k~ n—2 and let xk*x”"xk+1l. Then using the Taylor
expansion of / (x) we have

V(x)-SAQ\ = \F(x)-SkON B T 1/@fFa)-~j)l hd+ 1/G( " ) - A 5w

4 |/*“>fa)-spi h,, I/B(4)-/Bfa)l ft
=0 5!

where x*<£*<xt+1.
Now, using the above lemma, it is easy to get the required result.
Similar procedures for the derivatives with the help of Lemma 3.1 will easily

complete the proof for \Sk”n —2.
For k—0 and x0SxSxt we repeat the same technique as above and the

results could be easily obtained.
Lemma 3.2. For k=n—1 and j= 1, 3, 4 and 5 we have
\Sk» ~ B4 xK\ S ckjh5~Jco(D5f-, h)
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where
1579 97 13

G~ 2160° 4GB~ 36° @Gi~3 °Kb~ 6 °
Proof. This lemma is a direct consequence of Theorem 3.1, using (2.11).

Theorem 3.2. Let /dCH[x0, xn] and let SA be the lacunary g-spline constructed
in (2.1)—(2.11). Thenfor k=n—\ we have

\\D A (f-SAWANxkXk* A ckjh5* Jco(D5f; h)
where j= 1, 3,4 and 5, and

* 719 * 2927 * 170 * 131 * 37 * 19
a0~ 5400 d~ 1080 C2_ 36 * C3* 18 ki~ 6’ 46~ 6

Proof. Using Lemma 3.2, the Taylor expansion of f(x) for x6[xn-i,x,,]
and the construction of S,,_i(x), it will be easy to prove this theorem.
4. Numerical example
The method is tested for the following example:
f(x) —1+xex, 0S x5 1

We carried out the calculation at x=0.55 and for A=0.1. The following results are
obtained:

Exact values Numerical values Absolute error
f: 1.953 289 160 1.953 289 187 2.7-10-8

2.686 542 178 2.686 542 177 1M0-e
froe 4.419 795 196 4.419 768 559 2.6637 « 10“6
| <3): 6.153 048 214 6.153 042 055 6.159- 10"»
| <4): 7.886 301 232 7.909 976 2 2.367 496 8+10"2
/ (6): 9.619 554 25 9.635 924 1.636975-10-2

5. Remarks

1. The method defined here, in contrast to the other methods, does not require
any end condition to be imposed.

2. The method defined here converges faster than any other known method.

3. A similar method for solving the (0, 2)-interpolation problem using splines
of degree 6 will be presented elsewhere.

4. The constants presented here are not guaranteed to be the best.
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KLASSEN VON MATRIZENABBILDUNGEN
IN FK-RAUMEN

E. MALKOWSKY (GieRen)

1. Einleitung und Bezeichnungen

In [1] und [2] ist es gelungen, fiir Folgenrdume X und Y in bestimmten Fallen
die Klasse (X, Y) aller unendlichen komplexen Matrizen A zu bestimmen, die X in
Y abbilden: (X, /«,), (X, c) und (/«,, Y). Hier wollen wir &hnliche Ergebnisse im
Zusammenhang mit den Raumen Ix, y und bv herleiten. In allen Féllen wird die
Charakterisierung der Matrizenklassen auf die Bestimmung der Dualrdume der
auftretenden Folgenrdume zurlckgefihrt. Aus unseren Sétzen erh&lt man durch
Spezialisierung viele der Ergebnisse aus der Tabelle in [3].

Zundchst benétigen wir einige Bezeichnungen. Wir setzen die Begriffe ,,r-nor-
mierter Raum*®, ,,Schauder-Basis* oder kurz ,Basis* und ,,FK-Raum* als bekannt
voraus (s. [4], S. 94, S. 84 und [5], S. 202).

Mit A bezeichnen wir unendliche Matrizen (ank)/1 komplexer Zahlen.

Mit s bezeichnen wir die Menge aller komplexen Folgen x=(xk)k, und wir
benutzen die ublichen Bezeichnungen fur die Folgenrdume Ip (0</><°°), c0
und c und die zugehorigen natiirlichen /;-Norrnen bzw. Normen \\md], und ||...||,..
Weiter betrachten wir die Folgenrdume

y:= {x€s|(k2n xKec}, yoO:= {x(=2s|(k2n **),,€cC},
=1 -

n ®
- * H ol-
ke und bv:= {x(=2xllgl t+i| <0°};

y, yound vy,, sind mit

= e

FK-R&ume, und bv ist ein FK-Raum mit

|[*|lbv o= I(2_1\xk~xk-i\ (hier ist x0:=0 gesetzt).

Sind X und Y Teilmengen von s, so schreiben wir (X, Y) fur die Klasse aller

Matrizen A, fur die An(x)::kz_lankxk far alle x£X und fur alle nEN existiert
und AX):=(A,,(x)),,€Y fur alle x€X. Ist X ein r-normierter Raum, so setzen wir

{xexIM =,
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Fur Teilmengen Z von s definieren wir die folgenden Dualrdume von X:
Zf;={a(E.s| I(glakxk konvergiert fur alle x£X},

den Kothe—Toeplitz-Dualraum von X,
ZIfl = {af]| k2—1 fir alle x£Z},

falls X ein /--normierter Teilraum von s ist

ZHtll:={aes|sup 2 K**I < “}
A XESx k=1
und wir setzen

l[a]jt:= sup 12 akx® sowie |la|[litll:= sup (™ k*tl)
1 jc6Sx k—1

X £SX K=

far alle afs, fur die die Ausdricke rechts existieren; mit X* bezeichnen wir den
Raum der stetigen linearen Funktionale auf X. Sind X eine Teilmenge von s und
at Zf, so wird durch

[,(x):= 2 akxk furalle x£X
k=1

ein lineares Funktional auf Z definiert. Wir schreiben ZfcZ*, wenn aus a£Zf
folgt /a€Z*.

Zum Schluf? dieses Kapitels machen wir einige Bemerkungen uber Beziehungen
zwischen den einzelnen Dualrdumen:

Aus den Definitionen von Zf, ZIfl und Z T 1ergibt sich sofort:

1. Fir alle Folgenrdume Z gilt ZIflcZf; fur alle /--normierten Folgenrdume
gilt Z»t»cZItl.

Dabei ist die Inklusion in beiden Fallen echt: Fur X:=y ist yltl =/xgbv=yf
(s- [4], S. 117). Wenn wir mit (p den Raum aller Folgen bezeichnen, die nur endlich
viele von Null verschiedene Glieder haben (s. [6], S. 273), dann wird X:=cp mit
IIl...ILp zu einem normierten Raum, und es gilt gi=(jjltl. Bezeichnen wir
namlich fir alle /fEN mit e{) die Folge, fur die =0 fur k™n und e”:=\,
und definieren wir die Folge afs durch ak:=k (k=1,2,...), so gilt

k2_| \ak4 n)\ =«

HalP'fL existiert nicht, und somit ist a$(p”. Wir erhalten die folgenden Charak-
terisierungen fir FK-Rdume:

2. Ist Xczs ein vollstdndiger linearer metrischer Raum, so ist Z genau dann
ein FK-Raum, wenn ZfcZ*.

3. Ist Zci ein vollstdndiger /--normierter Raum, so ist Z genau dann ein
FK-Raum, wenn ZIfl c Z IitiL
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(2. folgt leicht. 3.: Ist X ein FK-Raum und aCA'LU, so folgt a6 X X" mit einer
Anwendung eines bekannten Satzes (s. [4], Satz 11, S. 114). Die Umkehrung ist klar.)

Bekannt ist:

4. Ist X ein normaler Folgenraum,* so gilt (X, Y)—/\X, Y\ (s. [7], S. 374),

wobei  \X, Y\:= {AE(X, Y)| I(2_1\ankxk\<0° fur alle wgN und fir alle x€A}.

Daraus folgt insbesondere:

5. Fur normale Folgenrdume ist X = X",

Aus A'7=Arltl folgt jedoch im allgemeinen nicht, daB X ein normaler Folgen-
raum ist, wie das Beispiel X:—c zeigt.

2. Matrizenklassen (X, Y) bei FK-R&umen

Wir wollen nun einige Matrizenklassen (X, Y) bestimmen, in denen jeweils
einer der beiden Rdume X oder Y ein beliebiger /--normierter FK-Raum ist und der
andere IIf bv, y« oder y. Zunédchst beweisen wir ein Ergebnis, das Satz 1.2 in [1]
mit Ixanstelle von 1,, entspricht.

Satz 1. Ist X ein r-normierter FK-Raum, so gilt
A£(X, IX) 0 sup {||(n%Nank)k||t| N ¢ N endlich} <°°.

Beweis. Wir setzen
M:= sup{||(£2N «md{ Wc: N endlich}.
Wi

Es gelte AM(X,/r). Da Xund FK-Rdume sind, ist die Abbildung A :X *I, linear
und stetig. Es gibt daher eine Konstante K, so daR fir alle x£ X

Far alle endlichen Teilmengen N von N und fir alle x*X folgt daraus

12 2 Ak — 2 12 —x 1 -
k=1n€N nEN fc=I
und daher

A5 BN (g amr K-
Da die letzte Ungleichung fiir alle endlichen Teilmengen N von N gilt, erhalten wir

Es gelte umgekehrt M<°°. Dann folgt fur die einelementigen Mengen {«}
(/i=1,2,...) die Existenz von A,(x)=2_ ankxk fir alle x€X. Fur alle m£N
=i

* Ein Folgenraum A heif}t normal, wenn aus x£X und |ykS|xk| fur alle k=1,2,... folgt
y€X (s. [6], S. 273).
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gilt mit einer bekannten Ungleichung (s. [8], S. 33)
DA\ 212 abkn o V20K 2 ek

=4 "mm“axm ||(n£2N fInff M Lr —4M||x[|Lr.

Da «j€N beliebig war, folgt
2 \An()\ N AM||x||Ur  flr alle x(LX
n=1

und daher A (x)=(A,(X)),,€l, m
Wir beweisen nun ein Ergebnis, das Satz 1.3 in [1] mit f anstelle von ent-
spricht.

Satz 2. Essei Y ein Teilraum von s und (Y*, ||...[]]t) ein normierter Raum.
Gilt ytntii—  sofolgt

Ae(lf,Y)o sup NK®JIImi
ke N '

weis. Ir setzen = Su + S elte _ t, . ann st
Be Wi M:= sup [[@¥)r[+14.  Es gelte Af_(It,Y). D i

(An(x)),,EY fur alle je€/x, und daher existiert ||(/4,,(X)),|||L" fur alle wegen
ytntn=y. £)a f uncj y (mit |...||tw»tn) FK-R&ume sind, ist A: f —Y linear und

stetig, also gibt es eine Konstante K, so daB fur alle x£f
1(4,(a0X]|lp * KM i-
Speziell fir x =e®) (k=1I, 2, ...) folgt daraus
Haiifofilit* —K  fur alle k= 1,2,...
also M<e°,

Es gelte umgekehrt M <°°. Daraus folgt fir alle y£,Syt

2 WS M (fo= 1,2,.)
=i

und speziell fir e(mM€Ft (n=1, 2, ..)

la,d » M]le()t 2M,, fir alle k,n= 1,2,...
also
suRl\ank\ S.M, firalle n=1,2,..
*6

Somit gilt I(2_1\anl<><k\~"n\\x\\i far alle xfjv und fur alle nEN. Daher existiert
A,,(x) fur alle xdf und fir alle N.

* Hierbei ist |[a|| j)fL:=sup lerdINSAY.
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Es sei nun jiSyt beliebig. Dann gilt fiir alle

=) = =
2\yian()l = 210 2Wnkxk= 2W 2\y K ks

A %Rl(nz—lbﬁ\'aj)M i~ MI1*L <
Aus
M)|liitn = [|(*w)jnt" g MIWkK

folgt daher N(x)EYninl=y fir alle xflx.
Wir beweisen nun zwei Ergebnisse, die den Sdtzen 1und 2 mit bv anstelle von
Il entsprechen.

Satz 3. Ist X ein r-normierter FK-Raum, so gilt
zZIE(W ,bv)o sup{]|( %N (ank~an-LY)k\*\M c N endlich} <=».
n

Satz 4. Essei Y ein Teilraum von s und {Y\ jJ||) ein normierter Raum.
Gilt yb1ll= y5 sofolgt

m
@) sup(l(2 a,b) " < co,
4€(bv, Y) 0 meN e Jﬂ
00 I\£:21«rfc)»l-kﬂ1 existiert.

Beweis von Satz 3. Wir setzen

M A IH

suplHaN
Es gelte Ad(X, bv). Da X und bv FK-R&ume sind, ist A: X-*bv linear und stetig,
also gibt es eine Konstante K, so daB fur alle x<tEX

endlich}.

MOOQIlbv =
Daraus folgt M<°° wie im Beweis von Satz 1 mit An(x) —An_1(x) anstelle von
An(x) bzw. mit u,t— anstelle von ank.
Es gelte umgekehrt Fir die Menge {1} folgt die Existenz von Ax(x) =

— 2 aikxk fir alle xCX und dann nacheinander fiir die Mengen {n} (n=2, 3, ...)
k=1

die Existenz von A,,(x)= " 1ankxk far alle x£X.
k=

Wie im Beweis von Satz 1 mit An(x)—A,,".1(x) anstelle von An(x) bzw. mit
ark—an_ijic anstelle von ark folgt (An(x))ndbv fiur alle x£X.

Beweis von Satz 4. Wir setzen
- : - A
M:= n%RI ugzzl flt)»|litll und Mm\ ||£=2| anlllne
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Es gelte A£(hv, Y). Dann ist (A,,(x),,£Y fir alle xEbv, und wegen Y=Y tlitl

PY IntIPft

[|[(*nO))n|L far alle xEbv.

Dabvund Y (mit |[™sli'*H) FK-R&ume sind, ist T:bv-*-T linear und stetig, also
gibt es eine Konstante K, so daR fur alle xGbv

[IKW)JI'th' S *1I*||bv
Es sei mEN beliebig. Dann gilt fir die Folge jc(m) mit

fur 1" k" m
0 fir kK> m

N, x@)), it = || (3 aknijiith = K\WW\y = 2K,

x(MEbv und

Da mEN beliebig war, folgt (i). Da e:=(l, 1, ...)Ebv ist, existiert

wegen (A,,(e)),.£y = ytlitll.
Umgekehrt seien (i) und (ii) erfillt. Aus (ii) folgt, dal die Reihen Z ank far

alle nEN existieren. Daher ist (ankkEcO fur alle nEN. Aus (i) folgt, daR es zu
jedem nfEN eine Konstante Kn gibt, so dal

m
ﬁ%RILZ_lank\ si Kn.
Also ist (ank)kEym fir alle n£N. Insgesamt erhalten wir

(aﬂK)KBpo McO= bvl fir alle nEN.

Das bedeutet aber, dal An(x):kz ankxk fdr alle nEN und fir alle x*bv exi-
=1

stiert. Es seien m£N beliebig, YESY und x£bv. Firalle 1EN und fir alle Teil-

mengen Nmvon {1, 2, ..., m} folgt mit

Ar(y):= JJ_l( 2 anyn (k=12..)

und abelscher partieller Summation

\(ezlenENZm anKM-l)\:: kZ [¥* - x4+ K w'i) o)+ k11U |y ())s

= 2||x|bv-sup
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da x£bv und (2 arkynkfbvt ist, existieren die Reihen 2 xk{ 2 arkyn,
£N =1 n(zN
und es gut i "

_2 kg %maru(y")ls 2|Ix|1bv- SLNpM ~0)|.

Damit folgt fir alle y£ Srt und fur alle x£ bv

m ®
2 bnl»(*)1 =4- max 12 **( 2 amkyn)|

= 8|x||v- max [sup|2 (2 “m¥Y\] S

—8Mbvesup[2 WhI2 ank] = 8||x|/bv-sup 11(2” thfcyqIdl <°°

wegen (i). Da N beliebig war, folgt fur alle y6Syt und fiir alle x£bv
i \ynAn(x)\ S 8||x|lbv.sup [|(i arQni|litll
n=1 16N k=1 "T

also (/4n(x)),.£ytlitll—y fir alle xEbv.
In Verbindung mit den Radumen y,, kdnnen wir die folgenden Ergebnisse be-
weisen :

Satz 5. Ist X ein r-normierter FK-Raum, so gilt
Ae(X,yJ)<”sup li( 2 ankk
(X.yJ)<"sup (2 ark)

~ Satz 6. Essei Y ein Teilraum von s und (7t, ||"-lit) ein normierter Raum.
Gilt Ftlltll =y, sofolgt

(i) sup [I(2 (s1.,*-ank+D),JLrl
AL(y,, Y)<=> XCN

(@) (afc(@ far alle wuCN.

(Satz 5 lieRe sich zwar auf Satz 1.2 in [1] zurlckfihren. Die Arbeitsersparnis
wiére allerdings nicht erheblich; zudem geben wir hier eine Modifikation gegentber
dem Beweis von Satz 1.2 in [1].)

Beweis von Satz 5. Wir setzen M'-sup ||(2 B.D*If. Es gelte AE£(X, ym).

mzN
Da X und FK-R&ume sind, ist die Abblldung A X-*y,, linear und stetig, also
gibt es eine Konstante C, so dal fur alle x£X

M((*)Ir. S C[acp.
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Also ist fir alle mEN

m 00
ZM x)\ =\2x Zank\"CWxV*
n=1 k=1 n=1
und
m 00 m .
||(n2:1«rk)fq|t = ng& I/t2:| xk(nZ:i a K\ =c fir alle mEN.
Daraus folgt M < @

Es gelte umgekehrt M < Es sei XxEX beliebig. Dann folgt mit m:=1 die
Existenz von

00
A =2}
und daraus nacheinander fir n=2,3,... die Existenz von

An(x) = 21ankxk fir alle n6N und fir alle xXEW

Fir alle mEN und fir alle ist

m
1,2 A ( = Z **—ZJ.E*HA H(I\FZ: «r»*)#EIM Urs M «*r
und daher

P Iszln(x)\" M|x]|Ur  fir alle x£X.
ngN fc=l

Das bedeutet aber (*,,(X))nEyoo fur alle XEW.
Beweis von Satz 6. Wir setzen M: —sKuRI I (B, *+1))JIltll. Es gelte
CiK

c
Af(yx,Y). Dann existiert An(x) fur alle xEym und fur alle nEN; das bedeutet
(D (@.Kk€yL = bv M cO fur alle mMEN.

Daraus folgt (ii). Wir definieren die Folge y durch

(2 ym:= k2: xk (m=12..)

und die Matrix B={bnk),tk durch
3) bnk. ark Qfik+ D2,...).

Ist mEN beliebig, so folgt mit abelscher partieller Summation fir alle xEyo°® und

fur alle nEN
2m ankXk - :Zlb,,KyK'I' anryT
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und daher wegen (ii), (1) und yC.Im
4) ||2: | ank*k = k2: | brkYi-

Also ist RE(/<», '), und es folgt (i) mit Satz 1.3 aus [1].
Es seien umgekehrt (i) und (ii) erfullt. Ist m€N beliebig, so folgt aus (i) fur
alle nEN mit brkaus (3)

co

2 K —4 o BiX kA Y= a4 max (4 K™ G, KY
=5 4+Mlle([] < w,

Da miN beliebig war, ist (a,)fabv firalle niN.

Wie im ersten Teil des Beweises gilt dann mity aus (2) und B aus (3) unter
Beachtung von (ii) die Beziehung (4), und mit Satz 1.3 aus [1] folgt {Bn(yj)rkY fur
alle y€l,,. Das bedeutet aber (/i,,(x)),,iT fur alle

Zum Abschluf? dieses Kapitels beweisen wir noch ein Ergebnis, das Satz 1.1
aus [2] mity anstelle von c entspricht.

Satz 7. Es sei X ein vollstandiger r-normierter Teilraum von s mit Basis
(e(kpk. Dann gilt
Ae(xy)o (O sp (24 It <00
(0) (arkrey for alle k= 12,....
Beweis. Ist JIE(X,Yy), so folgen die Bedingungen (i) und (ii) wie im Beweis

von Satz 1.1 in [2].
Es seien umgekehrt (i) und (ii) erfullt. Aus (i) folgt die Existenz von A,,(X)—

= 2 ankxk fir alle xEX und fir alle /iEN wie im Beweis von Satz 5. Wenn wir
fir alle £6N

m
b= 2 ark (M = 12....) und bk:= ligy, brik

setzen, so folgt (A,,(X)),.£y fir alle x£X wie im Beweis von Satz 1.1 in [2] mit bk
anstelle von arkund bkanstelle von ak.
Aus Satz 7 folgt sofort

Korollar 1. Essei X ein vollstandiger r-normierter Teilraum von s mit Basis
(e(kpk. Dann gilt

AeXyuge> B SR I{24*)JIt
(ii) @nfon€7o fur alle k= 12,....

Wir schlielen mit zwei Anmerkungen:
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6. Ist XzDcp ein normaler /--normierter FK-Raum, so ist unter Beachtung
eines bekannten Satzes von Allen (s. [7], Satz 1) offensichtlich, dal Satz 1.3 in [1]
ein Spezialfall von 1 Satz und Satz 2 ein Spezialfall von Satz 1.2 in [1] ist.

7. Als ein Anwendungsbeispiel fir unsere Satze betrachten wir lediglich einige
Spezialfélle von Satz 1. Sind die natiirliche Norm fur X ¥und die Norm || aqui-
valent, wie das unter anderem fir die Rdume Ip ( 0 ¢ und co der Fall ist,
so ist die Bestimmung von (X, /X) auf die Bestimmung von X* zuriickgefuhrt. Wenn
wir flr alle p mit 0 °° die zu p konjugierte Zahl bezeichnen, d.h. g so bestim-
men, dal 4=Iqg, mit 1l-*4le die bliche Norm fir Igbezeichnen und

Mq:= sup{||(J2 ant)k|[,|]iVcN endlich}

setzen, so erhalten wir aus Satz 1:
AE(lp, h) <=Mg<°0 (O< /P —

(s. [3], Nr. 76 fir I<p<oo, Nr. 72, (72.2) fur p=°°, Nr. 77 fir p—1, man {ber-
legt sich leicht, daR gleichbedeutend mit (77.1) ist);

A6(c, h) = (c0, h) (s. [3], Nr. 72, (72.2)).
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HANNYYLLEE MPUBIVIKEHUE YT /IOM
M NMPUBIVXKEHWE YT/IOM U3 CUHIYNSAPHbIX
NHTEMPAJIOB ®YHKUWIA f£LpRY, 2<p<~

M. TOMWNY (CapaeBo)

B aTolh paboTe NpubAvKeHVe YrioM 13 HEKOTOPbIX CUHIYNSPHBIX UHTErpasioB
OLIEHMBAETCA Yepe3 Hawyullivie MPUOXEHUS YI/IOM M3 LenbIX (yHKUMA. [ony-
YeHHbIA pe3ynbTaT NOMb3YeTCA 1S CPaBHEHUS KTacCoB (PYHKLMIA OnpefeneHHbIX ¢
MOMOLLIbK YKa3aHHbIX MPUOIVKEHWIA.

1. BBejeHuMe M BCNoMoOraTtefibHble pe3ynbTaThl

MprbnkeHne Yraom SIBSIETCA XOPOLUMM METOLOM A5 UCCNefOBaHNS HEKO-
TOPbIX KnaccoB yHKUuiA (cm. [4], [8], [9]). B 3Toit paboTe Mbl pe3ynbTaT paboTbl
[8] oTHocALmMIACS Ha dyHKuMM fELp(RN), I<ps2, pacnpocTpaHsieM M Ha Crlydaii

0. [Ans 20 nepvoguyecknx (PyHKUMIA COOTBETCTBYHOLUMIA pe3ynbTaT JaH
B[9].
MycTb faHbl ggpa XA, j=1, 2,..., lj=\, 2,... 478 KOTOPbIX BbIMOMHEHO

fONfYdt= J3T, f  dte M lim f DK(D\dt= 0
t

npuv4emM KoHcTaHTa M He 3aBuCUT OT |j.
OT tyHKUmmM [ 1 3TUX Aaep 06pasyem MHTerpasbl

)
TAjf= 1= o= £ XXt X, xoM ) d,
] —
W= 1,

Ons noboro Habopa wHAekcoB il,...,im npudem 1 1 n3
3TUX MHTErpasioB 06pasyem /M-MepHbIA yron

Hopmy 1l/—y/. ,J1 / ||p Mbl 6yaem oOueHVBaTb Yepe3 Hawsyudlume npubnmke-
Hua yrnom YR Kk (/)p. Mputom

(ku ™ 0),
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gki Uenas QyHKLMA 3IKCNOHeHLManbHOro Tunaktjno nepemeHHo x{.a N0 oCTanbHbIM
NMepeMeHHbIM BO 06LEeM TO MPOU3BOJIbHAA (YHKLUSA.

B nonyyeHuu pesynbtata paboTbl Mbl OyfeM Monb3oBaTcs npeobpasoBaHVeM
dypbe. Mockonbky npeobpasoBaHne dypbe GyHkunn fELp, 2<p<°°, dABnsetcd
060061 eHHOW (yHKLUMEN, TO Mbl MPUBEAEM MOHATUA W pe3ynbTaTbl KOTOpble 0b6ec-
neynBaloT NPUMEHEHNe Npeobpa3oBaHna Pypbe.

BykBoii S 0603Ha4aeTCsA NPOCTPAHCTBO Ha R,, 6ECKOHEYHO AuddepeHUpyemMbIX

yHKUMn (p(x), X=(XX, ..., X,,), |X|=/x2+ ... +X2 [N KOTOPbIX

syp (L+ IX[) [*w (I - C(L, k,(p)<°®

roe C nocroaHHas, /=1,2,..., K=(KX, ..., K,,), kt=1,2,....

BykBoii S' 0603HayaeTCA NPOCTPAHCTBO /IMHENHbIX HeMnpepbiBHbIX (YHKUU-
OHanoB Ha S. 3HauyeHue yHkumoHana fES' Ha yHKuum (pE£S 6ynem O3HauyaTb
cumonom (/, @). PyHkumoHan fES' ToXe HasbiBaeTCA 06OOLLEHHON (yHKLMEN.

Mo onpegenennio  fx=fi B S' ecnm (fx, <p)~(f2, ) AnS Kax[oin yHKUMM
(p£S.

Kaxpgas yHkuma f{x)*"Lp{Rn), 17p < °o, onpegensieT (yHKLMOHaN C MOMO-
Wbt paBeHCTBa

(1.7 <, @ =ffxX)(pXx)dx, f = f.
Rn

Kaxpgas Ha RnnokanbHO MHTerpupyemas QyHKumsa / fAna KOTOPOii
H(*)(1+ x2D-“2dx < (a =0p

onpefenset gpyHkumoHan fES' ¢ nomolwbio paseHcTBa (1.1).

O606LLieHHbIe  (DYHKUMW, OnpeaenseMble NOKanbHO WHTErpupyeMbiMu B Rn
(hyHKumammn no qopmyne (1.1), Ha3biBalOYTCA PerynapHbIMU 06006LEHHBIMU (DYHK-
unamu.

Nemma 1 ([10], rn. I, 85, [11], rn 1, 81), (a0 bya-Peiimonp). [Ans Toro
4yTO06blI NOKaNbHO MHTerpupyemas B Rn dyHkuma f (x) obpawanack B Hynb B R,
B CMbICNe 0006LLEHHbIX (DYHKUWA, HEOBXOAMMO M AOCTATOYHO, 4To6bl /(x)=0
noyTwu Besge B Rn.

Mpeob6pasoBaHue Pypbe P(X) PyHKUUN <pafl gaeTcs paBeHCTBOM

P(*) = | W e~bldt” (x = [
Mpeob6pasoBaHune ®Pypbe / ana fES' onpefenseTca paBeHCTBOM
<J. @)=, 0
O6paTtHoe npeobpa3oBaHue ®ypbe / paetca paseHcTBOM (/)=/.

MpeobpasoBaHne Pypbe npeobpasyeTr S HA S M S' HA S' M NPUTOM B3aUMHO
OHO3HAYHO W B3aUMHO HenpepbliBHO ([10], rn. 11, 89).
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Kpowme™Toro, ecnm o6osHaumm y=(x1,...,xJ, z=(xm+l, x,), ISmSn,
Torgap, (p) obosHauaeT, UTO nNpeobpasoBaHue ~, (~) OTHOCUTCHA K BE/IUUMHEY.
Ecnn a(x) 6eckoHeuHo guddepeHuvpyemas GhyHKUUS 418 KOTOPOA

la<ie(r) & C(fe)(l + [x['(F)

(I(k) — HaTtypanbHoe uwucno, C(K) — KoHcTaHTa), To Ansa ffS' npoussegeHue
afaS' onpepgensetca ([10], [11]) paBeHCTBOM

(af (p) = </, acp).

Mpou3sefeHne af MOXHO onpeAennTb 4YTOObLI MPUHaANeXaTb K Y U Torga
Korga (yHKums a He obnagaeTt npeauayLLMMmM CBOWCTBaAMW, NPW NPeLnonoXeHuu,
yto / NpUHALNEXWUT KakKoMY-TO NoAnpocTpaHcTBy oT S'. Tak npoussefseHue af
ana /ELp, 1lr=p< MOXXHO OnpefennTb C NOMOLWbLIO MYynbTUNAMKATOpa B Lp,
T.e. BCerga Korga a(x) fsngeTca MynbTUNINKATOPOM B Lp.

OnpegenerHue 1([2], 1.5.1.1). dyHKunsA A(X) Ha3bIBAETCA MYNbTUMINKATOPOM
BLp, Ispc °0, ecin oHa u3mepuma 1 OrpaHunyeHa Ha R,, u ans noboi QyHKLmm
faS BbINONHAEGTCA HEPABEHCTBO

0-2) II(A/)X SCP||/tP

rae KoHctanTa Cp He 3aBucuT OT/.
Ons no6oin dyHkyun f(x)ELp(R,,) CywecTByeT Mocnef0BaTeNlbHOCTb (YHK-
umii faS Tak, uto ([2])

(1-3) \WE-fl - o,
Ecnn dyHkuma Amynbtunnukatop B Lp, Torga HepaseHcTBO (1.2) MMeeT MecTo
n ana p b p, npuuem dyrkuma F=(/ff onpegeneHa cooTHoweHMEM
(1-4) 1IM—(A/0X-* 0, 1—
n ona gyHkumm p L p, ffS  cnpasegimso (1.3), ([2], 1.5.1.1).

OnpepeneHune 2. Mycts AMyneTunaukatop B bpu /6 L,,. MpounsseseHne A/
ato Fnpnyem dyHkuna Falp onpefeneHa ¢ MoMOLWbi0 COOTHOLWEeHUA (1.4).

Takum 06pa3om ornpefeneHHoe npoussegeHvie A/ NpUHaNeXUT K S' TaK Kak
FdLp, T.e. no aTomy onpegeneHntio A/ NOHMMaeTcs Kak npeobpasoBaHue Dypbe
thyHkunii Falp.

CnpaBea/vBbI ClieaytoL e NeMMBbI.

Nemma 2. MycTb p, XX, K=1, .., T MynbTUNMKaTopsl B Lp M nNycThb
/,gaLp, 1 < °° Torga

a) R (/+ tO)~= (I')" + (Bg)' n.e.

b) {LZlK)Jy:k:Zl(Pir

| %
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N TeM CamMbiM

a') H(f+g) = «f+Aig «S'
m m
b") (K2=f)f: K%].K f B s\

ATy IEMMY fIETKO YTBEPXKANTb.

Nemma 3 ([2], 1.5.1.1, (9)). NycTs 2, p MynbTUNAMKaTOpPLl B Lp mfdLp,
1 Torga npoussegeHve Ap MynbTuUNIMKATOPe Lp M MMeeT MecTo

(KRJ))~ = (OT1)T)~ ns.
W TEeM cambim

Mn3) = No)? « es'-

ana fELp(R), 1*p"2, n X(-_bXK) paBeHCcTBO X*hp—XK -/ uMeeT mecTO
npuyem npousBefeHVe NOHMMaeM B O0OMYHOM cMmbicne. Ana 2<p<°o0 23T0 pa-

BEHCTBO CNpaBefAnnMBO ecnn npoussegeHne XK of MoHUMMaem B CMbICNe onpefeneHuns
2. VIMEHHO nMeeT MecTo

Nemma 4. Ecnu XX"by u XX wmyneTunavkaTop B Lp, To ana fEL p(R),

17p<®°®, umeeT MecTO X*f=F nB. 1 Tem cambim X */==>XX-/ B §'
npuyeMm (yHKumMa FELp faHa COOTHOLIEHVEM

WF-(*-fr\\p*o, |I—
mana ff umeeT mecTo (1.3).
JokaszatenbcTtBo. Ana XXEbx nff£S umMmeer mecto
XK *f = (K-f) DK*f -)K */[|- Q I- co
Mmeem
AADK* [-K*M + 0K fy -F - O 1 —

OTKyZa C/ieayeT yTBePXAEHNE EMMBI.

Tenepb BBeLeM (PYHKUMU KOTOpPble ABNAKTCA CBepTKaMu (yHKUuM/ c agpamu
Ounpuxne. Mbl faem paccMoTpeHue ans cnydas n=2 T1.e. gna f(x It x2), Tak Kak
ANs nN>2 penaeTcs aHaNOTUYHO.

bynem o603HayaTb

S,,J=nNyf=—L= T f(xx- /j,x2Dh(tj dx Oh > 0),
\2n —@

S,,,f=Djt*f= ! f f(xx,x2- )DH(Qdt2 («2> 0),
\ZT -

w = *va ) AH(O = -
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Nemma 5. Ana dyukyum FELp{R) (n=1), umeeT MecTo Dk*f=cp

n.e. u Tem cambiMm Dk*f=q>=Dk-f B S', npuuem pyskuua (pELp(R) onpeneneHa

COOTHOLLIEHWEM .
KM A-NX-0, /-c,

biana f£S cnpasegmso (1.3).

NokazaTenscTB0o. ®yHKuma Dk (Dk=1 gns [x|SA: u Dk=0 gna \x\>k),
ABNAETCA MYNbTUNANKATOPOM B Lp. T1o3ToMy cyllecTByeT ¢yHKUMs <pELp ans
KOTOpOWA

1<?>-(Ac/lllp - O | —oo0

Kpome Toro umeem (f£S, DkELe, 1<gS«=),
Dk*f = ® k-hr, 1Dk*f-D k*f\ ~ cpl||/-/]|.
Tenepb nmeem
WDk*f-(p\\ —\Dk* f-D k* fl +\\(Dk-J,y -<p\ - 0, | -o00,
OTKyZa cleflyeT YyTBEPXKAEHWE NEMMBI.

Nemma 6 ([8]). dernm pna dyHkumm f (XI5 x2)£Lp(R2), 0603Ha4MMm

S*nJ= S+ Sn-Sni,J
TO UMeeT MecTo

11/-<»,/11, ~ CY,,i4(f)p, ||/-<1]], BCY4Hp (i = 12),
npuyem KOHCTaHTa C He 3aBucuT oT f

Nemma 7 ([2], 1.5.4). MycTb dyHkuma A(X) HenpepbiBHA pa3sBe YTO 3a UCKIIO-
YEHMEM KOHEYHOro uucna Touek u nycTb |A(X)| Si/,

AL R L Fl~ Al -M

npuyem KoHcTaHTa M He 3aBMCUT OT X, &=%2, +3, ... u s>-0; cTasuTCH
+ UM — 3aBUCUMO OT Toro, 6yaeT i k>0 uam /c<O.
Torfa cywecTByeT KoHCTaHTa Cp HesasucAwas or M u f Tak, yTo

\WX2W\p ACpM\\f\\p, 1
ansa seex fEL p.

3Ta nemMma cogepxutcs B [2], 1.54.
O603HaunM
ynn=(('</)l &=0,12,..
rae

A0= {x: |gl ™ 1}, Ak= {X k"< x| 28, n={* ~»
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Nemma 8 ([2], 1.5.6.1). Ana dyHkumm fELp(R), 1 < 00, cnpasednvBbl Hepa-
BEHCTBA

I/1lpSC 1||{i)(/)f(/)}]/2|H C all/llp,

npuyem KOHCTaHThl Cl1, C2 He 3aBucAT OT f
Nemma 9 ([8]). MycTb dhyHKuna AXX)=0 gna [X¥>/x n nycTb OHayL0BNeT -
BOPSET YCNoBMAM fneMmbl 7. Ecan onepaTop P \f onpegenum paseHCTBOM
PiJ Oi, x2 = n0i)/10i, x2

npuyeM cumMBon ~ 1 3HAUNT, 4TO nNpeobpasoBaHMe ~ OTHOCUTCH K MepeMeHHON
Xi, TO crnpasef1BO PaBeHCTBO

PiW fixi,*2 = SkiPNf(x1,x2 n..
ans mo6oin yHkuymm /O H xM)(LL,p{R2)i 1
Nemma 10 ([8]). Ana dyHKuun /O;) npeanono>kumM, 4TO YAOBNeTBOPSET

ycnosuam nemMmmbl 1 myto  2;(x;)=0 pgna |efi>/r. OnepaTtop P\tf onpegenum
paBeHC TBOM

P'iJ Oi, *2 =/0i)/'0 i, *2

MPUYEM CUMBON ~ T 3HAYUT, YTO npeobpasoBaHMe ~ OTHOCMTCA K MEPeMEHHOR Xt.
Torga

PIPhJ(XI,x3 = Plliii/Ol,*%) we
3Ana moboii yHkuun / Oi>*2)£0 (U%), 1

CumBonom 0603HayvaeTcs HepaBeHCTBO a-<Cb /11 HEKOTOPOA KOHC-
TaHTbl C.

2. OueHka npubnunxeHuns

Teopema 1. TNpefnonoXXuUMr 4To (OYHKUMM KA MyIbTUNAMKATOPbLI B Lp 1,
uTo

1-J&ijitj) = 0)j(j) HjO)), ij=12,... (= ri),

npuuem 0)j(1j) >0 u pyHkumu  {,(/m) ueTHble. [na hukcuposaHHoro uncna ij noa-
6epem umcno Sj Tak, YTo 255S/j<2g+1 1 NpeanonoXKumM, 4T 0 BbINOAHEHbI YCNOBUSA:

(@ dyHkuma \c LUl He ybbiBeT Ha [0, 00) « /€]0, 1,
(0 |~ (2/cl] s C™(leT)|, 23S 24
(b 0< C3~

roe KoHcTaHTbl Clt C2, C3 He 3aBUCAT OT napameTpos tj, kj, Ij.
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Torga [AnA Kad>KAOro Habopa wHAekcoB  /, im 186 /Sw S«)
CrpaBej/MBbl HEpPaBEHCTBA

2.1 Wf-yh.-hJWp -

SCM .2 ..2,,2 yl ,1)1 *v:4 enl] .

roe koHctaHta C He saueut oT f m 1j=1,2,

[ okasaTenbcTBO fagum ans cnyyas m=2. CHavyana pacCMOTPWUM OJHO-
MEpHbIA yron. meem

2.2) H/-nj\'s 11/-WH + KW -nsa +
+155 - /AW 1l « yMF) +\SAf~S3J1J1

O603HaumMm BSI= {xx: S2si}. Cuntad f(x1,x2) dyHKuneidi (ogHol) ne-
PEMEHHOW XX Ha OCHOBaHWM neMm 31 5nonyyaeM cnpaBefinBoOCTb B S' paBeHCTBa

Ne n(f-ikf)] =0)Ak&-M f~nj) =
= (LU [(1\(/-N)] = [ (IKK/-IET) =
= (1)3,//- nj) :)kl,(f- nj), a=01,..., s.

W3 aToro paBeHCTBa cnedyeT
(/-1v1)] - yki(f-1?3) 8 S’
0TKyfZja Ha OCHOBaHWM neMMbl 1 nosyyaem
(2.3 ykI[SZAf-IW ] = yki(f~nj) nB. (!=0,1,..., so-
NoNb3yAacb NeMMON 8 umeem

/ \S#A(F-1kn\pdxl« f{Z j11SM f-nin]}Pl2dx1
0TKyZAa UHTErpupoBaHueM Mo X2 creayet

(/1 1} 3 )\ PdXl dx2Vp «

(11{0 ykis* (f-1kF)\Y Itaxl dxtyi’.
Tak Kak 1<a/2 < °° T0 NpuMMeHeHMeM HepaBeHCTBa MWHKOBCKOro Mnony4vyaem
(TP e 1 gWkis~ (/-ikm i -

YuutbiBas, 4To
(I-111)] = o pAana fa> sx
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TO

(2.4) 57 if-M M « WKI[SM f- n j)m -

40
MycTb onepatop P]Y paH paBeHCTBOM
PU1= KIMWXiXi)]/1nr |, *) B S

(byHkums (1)4 o aBngeTca MynbTUNAMKATOPOM B Lp), n nycTb dyHkumm f T(xIt x 2f

£S(R2) Takue, 4Tto
W-/rip - O

VimeeT mMecTo (B 06bIMHOM CMbIC/E) PABEHCTBO
yUfr-njr) = (ly (1 -<)/; - «iOi)[(ibw w ]K =
=coiiUil"K N~A")]/,, fl=o0,1 Sl
0TKyja cnegyet
(2.5) yrdr-~Jr) = Vi(h)ykl(phfr) n.s.
Ha ocHOBaHMM NeMMbl 7 UMEEM
IMe(/- 1) - Mae(fr- Ihfr)Ip(Ki) =
= WL/ 1 (1 T} IpKi) S /-1 - (- UKD
0TKyfJa MHTerpupoBaHueM Mo X2nosy4aem
Hy, /|- OrC)~Ykr(/r- W \p(K) — 11/-4 -/t - [ U)K
OTtcroga Korga r—°° crnegyet
(2.6) WKI(f-nj)-ykl(f-iWw h*) - o, 0.
Kpome Toro umveem

ly e 10 -yl = hM f-PilfM "~ \PIN-KTA « I1]-/«,
T.e.

(2.7) ly, A PV)-y tINei/)llp - 0, r-°°.
Tenepb N0Mb3ysAiCb HEPABEHCTBOM
«Y*/f-11f)-Oh(h) Ykr(PWp~ & ™Me(/- Hr1- Ma(fr~#/r)1 +
+ Y JI-10) =" Y N« + I0IHM Y L IN ) -0>i(fi) Y L IM )«
nonyyaem
(2.8) v, (/- /) = oii(/i)y,INe /) n.B.
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M3 (2.4) Ha ocHoBaHuu (2.3) 1 (2.8) cnepyeT

(29) WsMf-MK « <(h)2, b XK XK m
OyHkumMn P{* mbl onpegenvm c nomouwbio (B S') paBeHCTBa
1 U 1
K =%?, n= = O[22 tEAkL
0, N 25
MmeeT mecto (cM. (2.8) B [8])
(2-10) IIVtiCYIIPORj) — CplIPNNI™/ ) llpeR5  —0) »  si>
rae CpHe 3aBucut o1 YKI(PiV*f).
Byaem nonb3oBaTbCs pPaBeHCTBOM
(213 YK *n =SMPFn-s”-iiiPfn

npuyem [2k J—2k~1 gna &SI, [21']=0 pgna k=0. Tenepb HepaBeHCTBO (29)
naet

(212 \T (/- X «~W 2 117 C N -~ .-1(C/)!p-

B pa6oTe [8] koHCTaTMpoBaHo, yYTo ANns dyHkuun /(X x, x2)E.Lp(R2), 1  3=2,
a 370 3HauNT U Ana yHKumn freES, cnpaBea/iMBO paBeHCTBO

(2.13) 5a Ne[/1-5[A-U0N*N= Z 1 (SY-f) ArilM +
vl=[2fd —

+ (W -/) ub(29-(V .-1]/-/) ullP*1-1]) n-8.

O603Hauas 6ykBoin (?(/) BblpaxeHWe Ha fieBOW CTOPOHbI M bykeoii H(f)
BblpaXeHWe Ha MpaBoi CTOPOHbI paBeHcTBa (2.13) u yuutbiBad, uto G (fr)=H (fr)
“Meem

\G (f)-H (F))\ » WG (f)-G (f\N+\H(fr)-H (f)«

Tak Kak

IG()-G (il - 0, [|A(N-ALW|-0, r-co,

npy npegnonoxexHun, yto ||/—A K 0, To yTBepxaem CnpaBeA/iMBOCTb paBeHCTBa
(213) u pna febp, 2 °0.

Monb3ysicb ycnosusmu (a), (B) n nemmoii 6 n3 (2.12) Ha ocHoBaHuu (2.13)
nonyyaetcs

(2.14) 5~ if-nj)\% « 0 T z \k (@&-i])i2¥ ~ T n P-

kl=0

M3 (2.2), (2.14) nonb3yscb ycnosuem (<) cnefyeT yTBepXJeHWe TeopeMbl Ans
O4HOMEpHOrOo yrna.
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Tenepb LOKaXeM Teopemy AN NPUGAVKEHWUs LBYXMePHbIM yrioM. Ha ocHo-
BaHWUM TeopeMbl ®yGUHN YTBEPXKAAEM CNPABEA/IMBOCTb Pa3foXeHUs

(2.15) f-% ,J = 2 B,
S
npuyem
Bi =f-s;h2sj, Br=~11su
B3 ——If.Bi, Bi —hlhBu
Bf, = S&,(_f— S&,f+ [xS&if), BO——If2Bb,
B7=SM f-s2j-ifj+ if2Sxtf), Ba=- 11B7,
B g—S&DLS, (—I&iliZ).

MNmeeT mecTo

(2.16) ti_;l« «nW /[)p.

O6o03Haunm F=f—S22f Torpa
Bb=SM F-1f]) = S& F—/*S% F.

[ns oueHkn Hopmbl PBEX nonb3yemcs MeTOAOM OAHOMEPHOrO ciyyas, Tak,
yto, B (2.13) Hapgo nucate F BmecTto / (cM. (2.7)—(2.11) B [8]). Takum o6pasom
yunThbIBasA, YTO

SVIF -F A~ (f-S*iX))
nony4vyaem

M p« "iOi) K,Z—Q
OTKy/Ja Nonb3yschb ycnosuem (<) cnegyet

217)  IMVp« coNea>T\ 2,1~ (2% DpTD -1 (Np.

TeM e cnoco6om nosyyaeTcs

(2.18) IM|lp «a>>X)c» LU (M.(ZSNZNZ_O [A2([2*»-1]))2Y™ N _1 (NP
Nmeem
(2.19) \Bal « Mfl, B8\« MI-

UT06bl oueHNTb [[Za] Hanuwem
Bg—S&t(p—Ifip), P=W -~W -
[Ona yHKUMKM e cnpaBedvBbl paBeHCTBa (2.8) 1 3TO 3HAUUT, UTO
Ma*,(<?-/;>) = ®i(li)ytl(P,» B S".
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CyMMI/IpOBaHI/IeM Mo Kr nosiy4yaem
2 ONK(<2-11> = () 2 SHENE,

OH 1(v - i£p) = ohOi) fézoyl(r(pb.<p)>
0TKyfia crefyet

(2.20) B9=5*u(<p-/,» = w4/4 2 O}/Kr(pltp) n.B.
Ky=

Takoke cuntas QyHkuu f(x19x2) dyHKymed (04HOW) NepeMeHHOR X2 MMeeM

(2-21) G- o WPH> ns-

[JanbHelwmne Bblknagku kak B pabote [8]- VIMEHHO, aHaNOMMYHO HepaBeHCTBY
(2.12) umeem HepaBeHCTBO

(2.22) I59R « wi(/) Z 1Neu(f>)-

Monb3yscb paBeHcTBaMU (2.21) 1

yM N1 - sX(pld ) - s lik,-i](plm

n3 (2.22) nonyyaetcs

(223)  [Bet* « cufifju|(/d 2 ISA[P.* I {*W TO- ApA-Um:iN}~

-V .-40T ktgo{sMPtin—s’\—’\jrnip’\y
Ecnn onepauymn P** un &21 BHectM nof CymMmbl M MPUMEHUTL neMmbl 9 1 10
nosiyyaem
(2.24) \BEP« wKh) wi(/2 qu—O“ M W Ilp

roe

2
0
<M- ANe TJ1-Ary(C/)

M3 (2.24) nonb3ys nemmy 8 1 HepaBeHCTBO MUHKOBCKOIO MosyvaeTcs

(2.25) 15| "«cH? (/€[00 2y 2 B M N1 XK < <

««?(/,)®|‘OZK2_OK§:OM M o« -
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AHaNornyHo paseHcTBY (2.13) MMeeT MeCTO pPaBeHCTBO

(2.26) W Y T = AMP11Ub)-A-1(P,?£K) =

_ v,-T:Azfl](szgq- SAMIV)+ Ne*. She [0 ni(2*g -

-(skA-uy”™-ap yrar*«-1).

B paBeHCcTBe (2.26) nofcTaBUM AN Sh BbipaXeHWe [aHO paBeHCTBOM (2.13),
M NOTOM NPUMEHUM fleMMy 6. Torga nosib3yacs ycnosuamu (a) u () u daktom, 4To

S,,(:Snf-f) ~(SW -f) =f-S*uf
nonyvaem
(2.27) «ki(P,raghp « \@}a27 1)\ «\®L ([2kr~rP\ TTA-inA-ij(Mp-
n3 (2.25) Ha ocHoBaHuUM (2.27) nonyyaeTcs oOueHka AN Hopmbl ||BYP. Ha
KOHeL,, U3 paBeHcTBa (2.15) Ha ocHoBaHuUK oueHkuU and ||B|P(r= 1, ..., 9) cneayet

HepaBeHCTBO (2.1).
Teopema foKa3aHa.

3. NWnnwcTpayunsa

MycTb CMHIYNApHbIA MHTerpan Pucca faH A4pom tj) (=1, ...«), anqa
KOTOpOro
1 1il*
X1,Ui) = 1? :
0, Kl > ij,

> 0. O603HaYMM

sPHR) = {/eTa/O: W-®i, ., /Il, =0(g,

/j=1,2,..., AN BCceX HabOpPOB WMHAEKCOB il,...,im Takux, 4To 1SijSn, i=j=
AHréun}.
Ha ocHOBaHMM J0OKa3aHHON Teopembl MEeM HepaBeHCTBO

IRV i/l/lﬂilzo...&r%=0 nor K -

Mycte SpH(RN), r=(rlf ..., r,), Kknaccel HWKONMLCKOrO KOTOPblE AaHHbIE C
MOMOLLbIO HaNAYHLINX NPUBAKEHWIA yriom, [6]

SpH = {feLp: Y, ,,m(f)p:OF:I] 1T;u), ISj*m "},
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Cnencrsumem TEOPEMbBI ABNAETCA BIOXKEHUE

s;®H(RNc S'F(RNc S'H(RX 2<p <

ecnm (7=1,

Ecnun yuecTb pesynbTaT paboTbl [8], TO Mbl yTBEPXAanU, YTO 3TO BIOXKEHMWE
cnpasegnnso gnd 1
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(©,2,3) AND (0, 1 3) INTERPOLATION THROUGH SPLINES

R. B. SAXENA and H. C. TRIPATHI (Lucknow)

1. Introduction

Let
A: 0 = x0< xk An!l< xm=1

be the uniform partition of the interval /=[0, 1] with xk:%, k=0, m and

h= e We define the class of spline functions S*(f as follows:

Any element SAES*{f if the following conditions are fulfilled :

(i) Sa€C3(/),

(if) in each interval [xk, xfctl], Ic=0, ..., m—1 SAEne except in one of the
end intervals, say in [X0, xj, where SAET17.

Here, as usual, 17,, denotes the set of polynomials of degree at most n.

Let there be given two sets of real numbers f(xk), fw (xk), q=2,3, and
<=1, 3 with k=0, ... m, which we shall denote in the sequel by yk, yjfk In this
paper, we solve two lacunary interpolation problems, viz. the (0, 2, 3) and (0, 1, 3)
described in (1.1) and (1.2), respectively, by the elements of The first one is
formulated as follows:

AM =1, 'i'4-vi=X", =23 K=0....m
<V) KSAX0) —>  SA(xm) = ymy

and the second problem as

i£d(*t) = 1, 3n4Uxk) = ¥a), A= »3; k=0..... m,
( 1} koto)=yI\ E£Axm = ¥
Herey'gy, y'6 y" are given reals.

In Section 2, two theorems on the existence and uniqueness of solutions of the
above problems are given. In [1], J. Gy6rvari has considered the (0,2,3) problem
by different spline functions of class C(l). The essential difference here is in the
continuity class and the nature of the spline function. In Section 3, we obtain error
bounds for the error [S~— (4)] and \S{ in the case when /€C§/) and
qg—o,.... 5.
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2. Existence and uniqueness

We first consider the interpolation problem (1.1). Let

SO(x), x0=sx ™ Xl
3n(x) = Sk(x), XKW x*xk+l, k=1, ..., m-2
SmH"X), Xm 1—X —Xm.
Then owing to the conditions (1.1), we can write

-n,0r ,rn , , (X-XUr
@1 so = yor 2, ST 4 O
(22)  SK(X) = yk (x-XR akar Ao -y (< kimk o+ 2«
K=1..,m—1

where the coefficients of these polynomials are to be determined by the following
conditions:

(xk+D) = 3k+1(xk+D) = yk+1,

(2.3 | %*4xk+l) =J<I\(xk+l) = yNer, <F=2,3

. 3K(xk+t) = iSfc+1(xAH), K—0, .., m=2
and
(1-4]) Sn-i0m) = ym Eil-i{xm = yis\ q:l, 1,

For brevity we set
1,2 13
0 Yk+l-yb-hyl-NyZ-N-y?,

Bk  Yk+1—YK-byk — 2~1I>
7, = YK+K-YK-bY'K,
ok '-=Yk+1-Yk, k=0,.., m—L

To obtain the coefficients in £mi(x), we use (2.2) for k =m—1 and apply the
conditions (2.4). We get the following equations:

6 hr _
r2:4~,-£aT-1,r = am-1»
6 /tr_1
("m—=1 Tm-H Frg4 {,r,_l\l Nn—+r  m—A’

6 hr-2 B /jr-3
(r_2)! am-1l,r — )'m-1> ﬂ. (r_3)| e....1>r= 5.-_11
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Solving these equations we get

N h h2
(2.5) MmEl YT~ AMm-l orm-1 it Ayr Am-I>
120 120 36 4
(2.6) Im—1.4 A am-IT jg Pm-1 722 7m-1'i* h @m»
720 720 ,, , 240 30 s
(27) s am-1 Jja Pm-1+ ﬁg m—1 ﬁ2®m-l»
1440 _  _ 1440 ,, 504 72 s
(2.9 om-6 — r6 am-lI+ "5 Pm-1 " 7m-l+ "3 @ml*
We shall now determine the coefficients of Sk(x), k=1, 2. Here we
have
6 hr
Haki~y'k)+ r2=4- ryakr=
e i.r-2 6 1,r-3
=4 (2 T gy «for
and
(afeimT*) —(a*+1,1 Tit+1)+ A 1~ afcr —Rkm
Solving the first three equations we obtain
120 , . - 120 12 2
(2-9) ak, 4 hg (a«[l n ) -+ Jj4 afc po 7 7|—Ak'
720 . 720 96 18 .
(2.10) ak5 i4 (at,l fity |5 ak+ "3 YK At
1440 . 1440 216 48 .
(211) Qk,6 ~ v h,I f*t)~b [I% M 7t+ A3
Substituting the values of aki, awland ak& in the last equation we get the following
relation between (akn—yK and (ak+Ul—yk+), fc=1, ..., m—2:
: . L2 h A2
(2-12) (ak,i—y'k) + (ak+i,i~y'k +H) —~"ak—Rk+"'j 7Ta—
The coefficient matrix of the system of equations (2.5) and (2.12) in the unknowns
(ak i—yk), k=1, m—1 is a non-singular matrix and hence the coefficients ax/l,
k=1,...,m —2 are uniquely determined and so are, therefore, the coefficients
aki’ akb and

5 Acta Mathematica Hungarica 50, 1987



66 R. B. SAXENA and H. C. TRIPATHI

Lastly, for the coefficients of SO(x), we have

7 hr 7 _hr~2 )
l,,1 Sr £ A =\ "o Too
r=4 [ r=4 (r— 1
7 hr-~3 7 ft'-1
5 (r-3)! a’r= &’ 5 (r—)la°T= +
Solving these equations we get
» N 360 , /4 360 0 840 60_ 4.
(2.13) ald A-I»0+ -"*-a0+ -p-70-j<5<>5
4 4680 4680 ,, 10080 840 60 ¢
(2.14) Ggs — ™M (fllLlI=N) 4 Ji~Ro p @ p-2+-p-sp
24480 , /4 24480 ,, 50400 4680 360 .
(2.15) 006 _ h5 Vi 5 Po+ M a0+ A4 * A3 AQ
50400 |, 50400 . 100 800 10080 840 s
(2.16) a07 — " ~6 (al,l J1)4 Po ~1 a0 s To+ A4 QD
Since i1 is already determined, the coefficients aOii, i=4, ..., 7 are uniquely de-

termined. Hence we obtain

Theorem 2.1. For a uniform partition A of the interval /, there exists exactly
one splinefunction SA(X)ES*{ which is a solution of the interpolation problem (1.1).

We now give a theorem which asserts that the interpolation problem (1.2) has
a unique solution in the class S*~ .

Theorem 2.2. For a uniform partition of the interval 1, there exists a unique
spline function SA(x)ZS**| which is a solution of the interpolation problem (1.2).

The proof of this theorem is similar to the above theorem and so we omit it.

3. Error bounds

We shall first prove
Theorem 3.1. Let /ECe(7) and SA(X)dS*n(f be the solution of the problem
(1.1). Then
[S(@(x) -/ (9| si klh5~qwe(h), <=0, ..., 5
where
604, when xf[x{, xt]
k, 24, when xd[xk,n*+l], Kk —1 .., m—=2
35ft, when xdXXn,-l, xn]

and Ke(m) is the modulus of continuity of / (6).
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For the proof of this theorem we shall need
Lemma 1. Let /£C6(/) Then

. hs
Kil = (m-k) — we(/i),

where
(3-1) ekyl := ctkyl—yk.
Proof. If/ECe(/) then on using Taylor’s formula, we can write
M h5 h6
= [ rrr-frr e+ [r/e"),
h3 h* b5
A=|rn~)+ ~ B+3I/(Bbl,
(32) fr ha b4

= M 4+ " j-yis)+-"-1(e)(ff),

where xk<”k, tk, &, ak<x.
From (2.12) and (3.2) in the notation of (3.1) we have

(3.3)

efcl + ek+1,1 " 1Y(B)(& )-/(B)(<T®)]+ -j~ -[/(64 O -/(6)bl ], K: 1, m—2

and

B4) er_lg=-"-[/<g("-D-/ig((Mm_D]+ 1" - [(«)(An D -/ (&M D]

We easily see that the system of equations (3.3) and (3.4) in the unknowns ekyl,
—I have a unique solution

ek,i = dk—dk+i+ dk+z — I)m_1“*dm_i,
where

dk =
It is clear that

W —-"q we(h).
Hence

kfcil S (m -k)*w e(h)
and this completes the proof of the lemma.
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Proof of the Theorem. Let XE[XK, xk+1], k= 1, m—1. From (2.2) we have
Sko)(x) = aky5+ (x-xk) ak
1(5)(x) = yf>+ (x - xK fEK, xk< Xk< x

and

so that
[N B)(x)-/1®)(x)| is K 521 + fcK.e— (6)(A¥).

We estimate the quantities \aky5—y$5)\ and h\akye— (6)(*)I- From (2.10) and
(2.11) on using (3.2) we have

a*5~JI5 = r-ekl-h [fAK -4 A K+3fr(ak)]
and
1440 .
a*,6-/6>(4) = - ekl +2I<e(d) - 9/(§)(1) + Bl<exT) -/(«> (&)

from which owing to Lemma 1 we get

K s-JA1 = 4[2m —@2fc—1)] hwe(h) S 8wé(h)

d
o h\ake-f<&KK)I S [16m —16/c—10)] hwe(h) S 16we(h).
Th

. IS<B)(x ) -1 (B)(X)| S 24ws(h).
Set

g(x) := S?(x)-f~(x).

Then by (1.1) g(xk)=g(xk+1)=0 and so by Rolle’s theorem there exists uk (xk-
<L K<xk+l) such that

g'00 =M 4bl -/@bl =0,
from which we obtain

|584)(jc)-/(4,(c) = 1/ S

»x

S / I7B)(0-/G)0I N S 24hwe(h).
»K

Carrying on similar arguments we easily find that
ISE)(x)-/(1)(x)] SS24h5~qw6(h)

is true for g=1, ..., 5.
For x0"x Sxx and xm-k™ x * x m, we have from (2.1) and (2.2),

I5W (x)-/GX)| s |U0.5-"51+ l«0.e-/(Eeo)l + 2
and
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From (2.7) and (2.8) we can show that
I6m-35* Tm-il = llIftweOO
h\am-116- f w (L -i)\*2 4 h We(h)

and

so that
[5iS.,(*)-/E)™)| ™ 35hw6(h).

Similarly by (2.14), (2.15) and (2.16), we have
l«g5-7 H)l = [52(m-1)+49] hwe(h) 3a 52w6(/i),
MK B-/OUNLS ft[272(m-1)+265] we(h) =272w6(h)
and
h2 .fr

— a0~ T [560(m-I) + 560]w6(h) ~ 280w6(h).
Hence

IN6HW -/ (BWI S (52 + 272+280) we(/i) = 604wb(h).
By the method of successive integration we find that the inequalities

|Sod)(* ) -/ (D)(*)I = 604hs- qwe(h)

and
IN-i(*)-/@) S 35h«-«we(h)

are valid for #=1, ..., 5.

Regarding the error bounds of the spline function §A(x) which is the solution
of the interpolation problem (1.2), we simply state the theorem and omit the proof

Theorem 3.2. Let fECH(l) and 8Arx)s S*@ be the solution of the problem
(1.2); Then
\S«Kx)-f«\x)\ 3ak2h*w 6(h), d O ..,5

where
587+8W, when jcE[id),
K2= 60, when na+[n*, xk+l], k=1 .., m—2
54h, when  XE[xm_i, xm

and as usual we( ) denotes the modulus of continuity of / (6).
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ON JACOBSON TYPE RADICALS OF NEAR-RINGS

K. KAARLI (Tartu)

The main result of this paper is a negative answer to the problem concerning
the radicalness in the sense of Kurosh—Amitsur of the near-ring radical JO. We shall
give negative answers to some hereditariness problems of near-ring radicals too.

1. Introduction

For fundamental concepts and notations of near-ring theory we refer to the
book of Pilz [7]. The only difference is that we accept the left distributive law
x(y+z)—xy+xz, not the right as Pilz. All near-rings will be zero-symmetric, i.e.
the identity Ox=0 is satisfied in all near-rings. We shall use the standard terminology
of radical theory, see for example [2]. A class of near-rings is called hereditary if it
is closed under taking of ideals.

In 1963, Betsch in his thesis [1] defined three Jacobson type radicals for near-
rings:/,,, A and J2. He defined A (A) to be the intersection of kernels ofall A-groups
oftype 1 i=0, 1, 2. Recall here the definitions of these A-groups.

An A-group G with GN”O is said to be

— of type 0 if it is simple and monogenic,

— of type 1 if it is simple and strongly monogenic, i.e. for any g£G either
gN=G or gN=0,

— of type 2 if it has only two A-subgroups.

Since then these radicals have been objects of extensive study. In 1976 the prob-
lem arose whether they are radicals in the sense of Kurosh—Amitsur [5]. The same
problem was also discussed by Pilz [7]. Let §- stand for the class of all / r semisimple
near-rings and R, for the class of all /,-radical near-rings, /=0, 1,2. It was proved
in [5] that any non-zero ideal of a near-ring N€St has a non-zero homomorphic
image belonging to Sh 1=0, 1, 2. Hence  determines the upper Kurosh—Amitsur
radical A; and it was proved that the class of all A;-radical near-rings coincides
with Rh 1=0, 1, 2. Also we showed that A is Kurosh—Amitsur iff it is idempotent
(i.e. Ji(N)=Ji(Ji(N)) for any near-ring A) and in this case J{=Kb 1=0, 1, 2.

We succeeded in proving the relation /2(/)=/2(A)N/ for any ideal / of any
near-ring A [5]. This implies immediately that /2 is Kurosh—Amitsur and both
R2and S2are hereditary.

It is very easy to construct near-rings A with ACA)*0 and /1(/1(A))= 0,
so A is not Kurosh—Amitsur. For example, let G be a finite group having a proper
non-zero subgroup H. Then the near-ring of all mappings from G into G which
preserve 0 and H is just we need.
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The case of JOturned out to be the most difficult one. It was known that JO(N)
is nilpotent provided N satisfies the DCC on right JT-subgroups (Ramakotaiah [8]).
Hence, Jais idempotent on these near-rings. In [5] this result was generalized in two
directions. We showed that /,, is idempotent on so-called semiprimary near-rings
and also on near-rings satisfying the weak DCC on right JT-subgroups. The latter
means that for any element a of a near-ring N there exists a natural number k such
that akN=ak+IN. In [6] we proved that JOis idempotent on the least class of near-
rings closed with respect of taking ideals and homomorphic images and containing
the class of distributively generated near-rings.

In the present paper we shall construct a countable near-ring N with Abelian
additive group, whose JO-radical has a finite 1-primitive homomorphic image. Hence,
Jo(N)AJi(/0(N)) and, of course, JOis not Kurosh—Amitsur.

We shall also show that KOand  have non-hereditary radical classes and non-
hereditary semisimple classes as well.

We shall use the characterization of JO(N) via quasiregularity given by Rama-
kotaiah in [8]. Denote by (S)r the right ideal of a near-ring N generated by the sub-
set SQN. The element aE N is called quasiregular if

at({n—an\nEN})r.

An ideal of N is called quasiregular if all its elements are quasiregular. Ramakotaiah
has proven that JO(N) is the largest quasiregular ideal in any near-ring N.

2. JOis not Kurosh—Amitsur

Let A be a cyclic group of order 4 with a generator a0and let B be a countable
elementary Abelian group of exponent 2. We represent the elements of B as infinite
0, 1-sequences having only a finite number of non-zero entries. Denote by C the
subgroup of B consisting of all sequences having an even number of non-zero entries.
Consider a mapping < B-+B defined as follows:

po) —(2>0,0, ...),

<@, ...,0, I,x£x2 ..) = (0,...,0, I,x1(x2, ...).
k k+1

Obviously, (p acts homomorphically on 5\{0}, ie. if 1,70, b2?40 and bl+bz" 0

then <pl + b2)~(p(b1)+cp(b2).
Let G=A +B and let us identify A and B with their canonical images in G.

Define sO: G-*-G as follows
if a Ala0
0+cp(b) if a=aol.

Proposition 2.1. Let S be the near-ring of transformations on G generated
by the single transformation 0. Then
0] S consists of polynomials n{sO+ n2yj;+... + nksf, where k is any natural
number and nt are arbitrary integers;
(i) S 2=s0S,
(iii) GSHB=C;
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(iv) if sdS, s~0 and aOsE£B then (a0+b)s?+0 for any bCB;
(v) BAGY

(vi) G/B is an S-group of type 1,

(vii) S/(B: G)s is afinite 1-primitive near-ring;

(viii) (B:G)1=0.

Proof, (i) Denote by SOthe set of all polynomials in s{), i.e.

is a natural number, nfiZ).

Obviously, Sq is closed under addition and to prove that it is a sub-near-ring it
suffices to show that S0.S0QSo. Take an arbitrary element s=nls0+ ... +nksfi
from SOand consider the product ss0. Evidently, (a+b)ssn—0 for a”a,,, so we

have to consider the action of yw0only on elements a0O+b. By easy induction argu-
ment it follows

OO0+ b)ss,, = ((«!'+ ... +nKa0+ (n1(p+ ...+ nk(pk)(b))s0.

Now we have two possibilites. If nk+...+nk” 1(mod 4) then (aat+b)ss0—O for
any bEB and m0=0"So. Otherwise

0+ b )"0 = a0+ <p(nitp+ ...+ nkak)(b).
Now observe that (p(b)?+0 for any br B and, moreover, given an arbitrary

b£B, the set (p(b), (p2(b), ..., gk(b) is linearly independent over Z3. Hence, if
ii, ..., im are all the indices i for which w is odd, we get

«0+ (ffi L+ e« +nk(EK)(b) = fI0+ ®(V‘O) +...+ Fg™b)) =
= a0+ (pb+H\b) + ... +<p'T+1(b) = a0+ (nl(pr+... +nk(pk+1)(b) =
= (60+ k)(«l <<<)+In +«fSo +])-

Thus, the property (i) is proved, moreover, we obtained the following multi-

plication rule:
0 if nl+..+nkja 1(mod4)

AN
(1) (™o+... + nfesy uiso+... + nkSgr1  otherwise.

(i) This property is a straightforward consequence of the left distributive

law and the multiplication rule (1).
(iii) Let 5=nli0+...+nfcAg and let (a+b)sEB for some a£A and bEB. If

a”a0 then (a+b)s=0<zC. Letnow a=a0. Then
(a+b)s = («!'+ ... +nka0+ nl(p(b) + ... +nk(pk(b)

and the condition (a+b)sEB vyields nt+...+nk=()(mod 4). Since (p{b), ..., Fk(b)
have the same number of non-zero entries, the latter implies (a+b)s£C. Thus,
we proved the inclusion GSCIBQC. Conversely, for any b=(nk, ..., nk,0, 0, ...)
with nk+...+nk=0 (mod 2) we have

faO(ffiso+ ... +nky if w+...+nk= 0(mod4)

I a0((ni+2)s0+ ... +nkSy) if LW+ ..+ ¢ 0(mod4).
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(iv) Lets be anon-zero element of 5 such that a0s£B. Then s=n1s0+... + nkijj
where some of the coefficients ni is odd and nt+ ...+nk=0 (mod 4). Now, given
b£B, we get

(a0+b)s = nlcp(b)+ ...+ nk<ppb)

and since (p(b), ..., (k(b) are linearly independent, we are done.

(v) Since s0acts on G compatibly with respect to B, so do all elements from
the near-ring generated by it.

(vi) For kaO@zA we have ka0—a0(ksO)EB, so aa+B is a generator of the
5-group G/B. If G/B were not a simple 5-group then 2A+B would be an 5-ideal
of G. However, this conjecture yields a contradiction since

(2a0+ a0 s0—f10s0 = 0 —a0—cp(0)$2A +B.

(vii) Since GIB isan 5-group of type 1, the near-ring 5/(5: G)s is 1-primitive.
It is an easy exercise to verify that it isisomorphic to the near-ring (A, +, *) where
the multiplication is defined as follows:

" if a—al
otherwise.

(viii) By the definition of 5, a”a0 implies (a+b)S—0. This yields immediately
(B:G)1=0.

The Proposition is proven.

Now consider another near-ring of transformations on the same group G. Let
T be the set of all transformations on G satisfying the following conditions:

1) gt*O implies g£B\{0}-,

2) (B\C)t equals the fixed element (depending on t) of 2A +B;

3) (CT\{O})t equals either 0 or 2a,,.

It is easy to check that the set T is closed under addition and multiplication,
soitisindeed a near-ring. Clearly Gand 2A +B as well can be regarded as I"-groups.
The main property of T (for us) will be proved in the next Proposition.

Proposition 2.2. The group /7=2/1 TB is a faithful T-group of type 0, so T
is a Oprimitive near-ring.

Proof. The second condition from the definition of T implies that all elements
from B \C are generators of the -group H. Now suppose there existsa non-zero
proper -ideal Fin H. If FQB then, evidently, FQC, but this yields a contra-
diction since cT%C for any non-zero by the third condition. Hence, there
exists b£B suchthat 2a0+ bdF. Take now arbitrary b'£B\C and tdT such
that b't$F. Then

b't-(b'+2a0+b)t = b'tiF,

a contradiction. The Proposition is proven.
Now we are in the position to finish our construction.

Theorem 2.3. Let N be the near-ring of transformations on G generated by
S and T. Then
(i) 50 IV, T<a/T and N=S+T\

(i) 5 - JON).
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Proof. Since the subsets in G on which S and T take non-zero values are dis-
joint, the additive group generated by S and T is their direct sum. Let us show that
the subgroup S+ T is closed under multiplication, too. To do this take s, s'ES,
t,t'ET and prove that

() (s+tyes+T-,
(1) (s+tyes+T.
() Consider the action of (s+t)s' on a+b. If a~a0 then

(@+b)(s+t)s' = (a+b)ls'e(2A +B)S = 0 = (a+Db)ss'.
For a—a0 we have
(a+b)(s +t)s' = ((a0+b) s+(a0+b)t)s' = (a0+b)ss'.

Hence, (s+1t)s'=ss'£S+T.
(I1) Suppose (C\{0})i'=ffia0(m=0, 2) and consider the action of (s+t)t'
on a+b. For a+a0 we have

(a+b)(s+t)t' = (a+b)tt" = (a+b)(msO+tt")
and for a=a0
(a+b)(s+t)t' = ((@0+b)s+ (a0+b)t)t' = (a0+b)st'.

Now we have two possibilities.

(Hi) a0s$B. Then, by the definition of S, (a0+b)s$B for any bfB. Hence
(@0+b)st'= 0=(a0+ b)tt'. Therefore, in this case (s+t)t'=tt".

(112 a0s£B. If y=0 then, obviously, (s+t)t'=tt'. If s*O then, by Propo-
sition 2.1, (a0+R),sgjC\4{0} and so (a0+b)st'=ma0=(a0+b)(ms0) for any
b£B. Hence, in this case (s+t)t'=msO+tt'ES+T.

Thus, we proved that S+ T isa near-ring of transformations on G and, more-
over, we obtained the following multiplication rule:

) (s+ 1 (s7+ 1) —I ss'+tt' if a0s$B or s=0
(4 ss'+ msO+tt' if aOsEB, s~ 0 and (C\{0})F = mao.

It is easy to see that S=(0: H)N and T=(0: aQ)N, hence both S and T are
right ideals of N. Moreover, since HN”*H, S~N.

(if) By Proposition 2.2, N/S=T is a Oprimitive near-ring and so JO(N)QS.
Hence, to prove the Theorem we need to show that S is a quasiregular ideal of N.
This will be the crucial point of our construction.

Take an arbitrary element sES and set

A, = ({n-sn\neN}\.

We have to prove that s£As. If alsfa+B, a+af), then s2=0 and we are done.
Letnow aOs£a0+B, i.e. s=nks0+...+nkSo where ware integers with w+ ...+nk=
= (mod 4). Let u be the first index for which nu+ 0 (mod 4) and let s2=m1s0+...
...+mvSo. By making use of the multiplication rule (1) we get immediately mL=
=..=mu=0 (mod 4). Hence, s2+s. Since alOsfan+B, a0sZ2a0+B, too, and
G(s—s2£B. Denote "=5-—s2 Obviously, st€A, and by Proposition 2.1 Gs1Q
£C\{0}. Take an element ttT such that (C\{0})f=2ao0. Then, using the mul-
tiplication rule (2) we get 2s0=slt£As. Further, by the definition of right ideal,
(2j0+3y0)x —(3j0)/iy4s for any /£S. Since 5s0=s0 and (3y0)/=0, this yields
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s0SQAs. Applying once more Proposition 2.1, we get S2QA.. Hence, s2£EAs
and sEAs. The Theorem is proven.
Summarizing, we state the main result of the present paper.

Theorem 2.4. There exists a countable near-ring A with Abelian additive group
whose Ja-radical can be mapped homomorphically onto 4-element 1-primitive near-ring.

All but maybe the countability is clear. But S'is countable because it is single-
generated and there is a 1—1 correspondence between T and the set of all pairs
(m, h) where m£{0, 2} and hfH (the pair (m, h) corresponds to the element tET
if and only if (B'\C)t=h and (C\{0})f=mao), hence the countability is also
Clear.

It is well known that given any ideal / of any ring R, any irreducible /-module
may be regarded as an /Tmodule. In [6] the following generalization of this result
was obtained. If A is a near-ring belonging to the ideally and homomorphically
closed class generated by the class of distributively generated near-rings and /¢ A
then any /-group of type 0 can be regarded as an A-group. In general, this result
fails even for finite near-rings. Nevertheless, for a semi-primary near-ring A we
proved in [4] that any /-group of type O, while / being an ideal of A, isan /-homo-
morphic image of some A-group of type 0. Now we are able to show that this weaker
property also fails in the class of all near-rings.

Corollary 2.5. There exists a near-ring A having an ideal S for which there
exists an S-group of type 0 which cannot be represented as an S-homomorphic image
ofsome N-group of type 0.

Proof. Let S=JO(N) and let G be an S-group of type 0. Suppose G is an
S-homomorphic image of some A-group G' of type 0. Then, by the definition of
JO, G'S=0 which implies GS=0, a contradiction.

3. On hereditariness of KO and Kr

As we mentioned in the introduction, the class of A;-radical near-rings coin-
cides with /2-, i= 0, 1. Denote by SKtthe class of A-semisimple near-rings, i=0, 1,
So there are four classes of near-rings: RO, R,, SK0Oand SKtand for each of these
classes we have a problem of hereditariness. We solve all these problems negatively.

Theorem 3.1. There exists a countable JO-radical near-ring A with Abelian
additive group which has an ideal S of index 2 having a 4-element I-primitive homo-
morphic image.

Proof. The construction is nearly the same as that in Section 2. We only change
the right ideal T by T'= {0, t0} where

2a0 if a=0 and DbAO
(a+hyto — 0

otherwise.

It is easy to check that the near-ring A generated by S and T' equals again S+ T
and So A, ' <A . Now the multiplication rule is the following:

ss' if aO0sEB or t' =0

(s+D)(s/+ 1) —I ss'+2s0 if aOsEB and t'A O.
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When proving quasiregularity in Theorem 2.3 we used T only once. We needed
an element i£T such that (C\{0})f= 2a0. Since t6 is good for this, S is a quasi-
regular ideal in our new context, too. Suppose N$RO. Then there exists an A-
group G of type 0. Since S'is a quasiregular ideal, GS=0 and G is an N/S-group
of type 0. But N/S=T', T'2=0, a contradiction. The Theorem is proven.

Corottary 3.2. The class RO is not hereditary, hence the radical KO is not
hereditary.

In [4] we introduced the class 91 of semiprimary near-rings containing all near-
rings with DCC on right A-subgroups and intersecting with the class of rings by
semiprimary ones. We do not want to give here the exact definition ofa semi-primary
near-ring but for our purposes it is enough if we recall three of their properties.

(i) 91 contains all nilpotent near-rings.

(ii) An extension of a nilpotent near-ring by a finite 1-primitive near-ring is
semiprimary (see [4], Corollary 5 and Theorem 6).

(iii) / O-radical semiprimary near-rings are nilpotent ([5], Corollary 10).

It was proved in [4] that 91 is closed under ideals and homomorphic images.
Now we get from Theorem 3.1 the immediate

Corottary 3.3. The class 91 is not closed under extensions.

Next we shall present a simple example to show that the class R1 is not here-
ditary.

Proposition 3.4. There exists afinite JL-radical near-ring with Abelian additive
group having an ideal which is a {-primitive near-ring.

Proof. Let A be a cyclic group of order 8. Consider the set A of all transfor-
mations n on A such that (4A)n=0 and (2/))nT=4A. Clearly, the set A is a near-
ring and A is a monogenic A-group. A straightforward computation will show that
2A and 4A as well are not A-ideals in A, so A is a faithful A-group of type 0. Now,
applying Lemma 3.2 from [3], we conclude that any other A-group of type 0 must
have a form B/C where B is a proper A-subgroup of A and C-:Ka/7.J Since 2A is the

largest proper A-subgroup of A and (2/1) A2=0, we obtain that.A is the only A-
group of type 0. Obviously, A is not of type 1, hence N£R1. However, one can easily
check that A is an S-group of type 1 where S—(0: 2A)N. This proves the propo-
sition.

To conclude this paper we construct an example of a near-ring which will show
that both SKOand SKXare not hereditary. Note that this example was first published
in [3] to show that a minimal ideal S wiht S2A 0 of a finite near-ring need not be
a simple near-ring.

Proposition 3.5. There exists afinite Kr-semisimple near-ring A with Abelian
additive group having an ideal S which has a non-zero nilpotent ideal.

Proof. Let A be again a cyclic group of order 8 and let I' be its automorphism
group consisting of the unit automorphism and the multiplication by 5. Let A be a

1 Note that in [3] 7V-groups of type O were called irreducible A-groups and the notion of the
type of an irreducible A-group had a different meaning.
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so called centralizer near-ring, i.e. the near-ring of all zero-preserving transforma-
tions on A which permute with elements of I'. To understand the structure of N first
consider the acting of ' on A. It is easy to see that the elements of 2A are fixed
points of I and I" acts fixed-point-freely on the complement of 2A. Now an arbitrary
element nZN is uniquely determined by its action on {1, 2, 3, 4, 6} (there are two
2-element orbits: {1, 5} and {3, 7}). Obviously, In and 3n range independently over
A but 2n, 4n and 6n over 2A. From this it follows that N is a direct sum of an ideal
5=(0: 2A)n and a right ideal T=(0: A\2 A)N. Evidently, T is isomorphic to the
near-ring of all zero-preserving transformations on 2A, so it is simple and 2-primitive.
On the other hand, the ideal S consists of all transformations on A which permute
with I and annihilate 2A. Since I' acts fixed-point-freely on A\2 A, we can apply
results of [4]. We observe that A is an iV-group of type 0 and conclude by making
use of Proposition 7 from [4] that S is a minimal ideal of N. Further, since A is a
faithful N-group of type O, N is Oprimitive, hence it is a prime near-ring. This yields
that S is a unique minimal ideal of N. The latter together with the simplicity of
N/S gives that N has only one proper non-zero ideal: S. Therefore, to show NZSK+
we have only to prove that S has a 1-primitive homomorphic image. But this is
obvious because A is a strongly monogenic S'-group.

Now the theorem will be proved if we shall show that S has a non-zero nil-
potent ideal. To do this first observe that 4A<iA. If a£A\2A then a+4=5a

Hence (a+4)s—as=(5a)s—as=5(as)—as=4(as)Z4A for any sZS. If aZ2A then
obviously
(a+4)s —as = O(]4A.

Hence, U=(4A: A)s is an ideal of S. Clearly, U?+0, but U2=0 because of
AU2"(4A)S=0. The proposition is proven.

Corollary 3.6. The class SKO is not hereditary.
Corollary 3.7. The class SKr is not hereditary.

Remark. It is interesting to point out that the class S1is hereditary (see [5],
Theorem 11).
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NON-EXISTENCE OF CERTAIN TYPES OF NP-FINSLER
SPACES

P. N. PANDEY (Allahabad)

1. Introduction

K. Yano [12] defined normal projective connection coefficients Mklby MW
= Gkh—x ‘GKv/(n+ 1), where Gkhare connection coefficients of Berwald, Gjk= djGkh

and dj denotes the operator for partial differentiation with respect to xJ. R. B. Misra
and F. M. Meher [3] considered a space equipped with normal projective connection
coefficients n kh whose curvature tensor NjkHis recurrent with respect to Ifkh, and
called it an RNP—Finsler space. They also studied the projective motion in such
space. R. B. Misra, N. Kishore and the present author [4] studied an SNP—Finsler
space characterized by the vanishing of covariant derivative of the curvature tensor
Njkh with respect to ilkh. These spaces are also studied by U. P. Singh and A. K.
Singh [9], [10], S. B. Misra and A. K. Misra [2]. It seems that the authors [9], [10]
were not aware of the papers [3], [4], this is why they used different nomenclature,
viz. NP—RF,, and NP—SF,, for RNP-Finsler space and SNP-Finsler space re-
spectively. The aim of the present paper is to show the non-existence of non-trivial
RNP-Finsler spaces and SNP-Finsler spaces. The notation of this paper is based
on [3, 4, 6] and differs from that of [2, 8, 9, 10, 12].

2. Preliminaries

Let us consider an u-dimensional normal projective space equipped with the
normal projective connection MiHgiven by

(2.2) n[h= &t x ICwLn+\),

where Gkh are connection coefficientsl of Berwald, G)kh=djGkh and dj=d/dxJ.
The connection coefficients G[h and the tensor Gjkh are symmetric in their lower
indices and are positively homogeneous of degree 0 and —1 respectively. The tensor
G)kh satisfies

(2.2 G)hkxh = G)kxh= Ghlkxh = 0.
Due to symmetry of Gkhand G)kh in their lower indices and their homogeneity in
X' the derivatives d jn kh, denoted by M)kk satisfy the following:

M) Me,—njhk b) nki= Gk c) xJljkh= 0,

id) xhn ‘kh=x,Gjkr/(n+1), e) n\kh=2G\J(n+\).

1 Unless stated otherwise, all the entities are considered as functions of the line-elements
(xI,x*). The indices i,j, k, ... assume positive integral values 1,2, 3,..., n.
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n)khare the same as Ujkh of K. Yano [12, p. 197]. The normal projective covariant
derivative YKT- of an arbitrary tensor Tj, defined by

(2.4 VKTj = dkTj —(drTj)ldkxh+ TjMe—T jnkJ, <Kk = d/dxk
gives rise to the commutation formula2
(2.5) 2V,,V,7j| - N)krTh- NjkhTj- Njksx°drTi

where Njkh are components of a normal projective curvature tensor. The present
author [6] established the relation between this tensor and Berwald’s curvature
tensor Hjkh which is given by

(2.6) Njkh = H)Kbx'g,, LLL kM + 1).

The Weyl projective curvature tensor3 W/ikh and the normal projective curvature
tensor Njkhare connected [12, p. 197] by

2.7) LLKA= Njkn+ 2 {5 MKh—5hM Ne]},

where MJk= —(nNX+ NKkj)/(n2—I) and NJk=N'J. For the tensors H)kh and Wkh
we have the following:
a) H)knxh= HJk, b) Hjkxk= H]J, c¢) buH)k= H)kh,
(2.8) d) Hh = Hkh, e) H\k= Hk, f) HI = (n—\)H,
g) Hkhxh = 11k, h) dhHk = Hkh, i) Hhxh= («-1)//,
and
fa) W uxu= WKk, b) = Wkh, c) Wjkxk= W/,

(29) 1d) Wxr~ 0, ) =0, f)h?k= 0.

It should be noted that if the Berwald connection satisfies G)kr=0, the normal
projective connection coefficients and Berwald’s connection coefficients coincide.
Thus, a Finsler space whose connection coefficients satisfy Gokr=0 is a trivial
normal projective space.

3. An RNP-Finsler space
Let us consider an RNP-Finsler space [2, 3, 9] characterized by
(3.1) 4mNjkh —  Njk,
Njkh~ 0 and a,,are components of a non-null covariant vector field positively ho-

mogeneous of degree zero in x\ Transvecting (2.6) by xh using (2.8a) and taking

2 The square brackets denote the skew-symmetric part of the object with respect to the indices
enclosed within them.
3 The tensor Wikh is the same as PJkh of K. Yano [12, p. 197].
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care of the degree of homogeneity of H)kr in x\ we find
3.2 N)khxh = H)k.
Transvecting (3.1) by xhand using (3.2), we get

(3.3) VmH)k = AmHjk.
Further transvection of (3.3) by xk, in view of (2.8b), gives
(3.4) = ArnH).

Contraction of the indices i and h in (2.6) and the fact that H)kTare positively homo-
geneous of degree zero in x“s imply

(3.5) N 'kr = H'kr,

in view of which contraction of the indices i and h in (3.1) gives
(3.6) VmHjkr = AmHjkr.

By virtue of (2.8e), contraction of the indices iandj in (3.3) gives
(3.7) VmHk = ).mHk.

Suppose F and gu are the fundamental metric function and components of the metric
tensor from which Gjk are derived. The present author [5] proved that the tensors
Hjkand Il) satisfy the following:

(3.8) a) y{H)k=0, b) H) =0, c) gytff = gikH),
where yi=gjjX3 Transvecting (3.4) by ytand using (3.8b), we get
(3.9 77jVnyi - 0.

Writing the expression for Vny; with the help of (2.4) and using (2.1), we have
(3.10) Vmyt = dnyi-(dryi)Gmhxh-y rGmi+ F*GU(n + 1),

since n mxh=Gmxh and ymr=F2 Since the covariant derivative of yt in the
sense of Berwald vanishes identically, we have

(3.11) dmyi-(dry,)G'mxh-y rGini = 0

where gftmis the operator for Berwald’s covariant differentiation. From (3.10) and
(3.11) we have

(3.12) Yryr= F2Gnir/(n + 1),
by virtue of which (3.9) gives
(3.13) H)G'mir = 0.

Differentiating (3.7) partially with respect to xh utilizing the commutation formula
[12, p. 196]

(3.14) dhVmTj— W jhTj = Tjnhmr-T; LW, T]- (4 rT))LWL,m=°
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and using (2.8h), we have
(3.15) VmHkh—H rl Thmk—Hkrl I hmsxs = (dhX*)Hk+XmHkh.
We know that the tensor H)kh satisfies the Bianchi identity [8, p. 127]

Hjkh+ Hkhj+ Hhk _ 0.

Contracting the indices i and j in the above identity, using (2.8d) and the skew-
symmetry of the tensor H)khin the first two lower indices, we have

(3.16) Hkr = Hhk-H kh.

Taking skew-symmetric part of (3.15) with respect to the indices k and h, and using
(3.16) , (3.6) and (2.3d), we have

(3.17) —2 /P TT[A] —2xr 77| GAn¥ («+ 1) = 2Hik'dhkm.

Differentiating (2.1) partially with respect to xJ, taking skew-symmetric part with
respect to the indicesj and h, and using the symmetric property of the tensors G)kh

and djGKmin their lower indices, we have

(3.18) 2M[Tt n = —n+1 St Ghikr.

Using (2.8g) and (3.18) in (3.17), we have
(3.19) AtF[AG ¥/ (n + 1) = 2Hikdn I m.

According to the authors [3, 9], the Weyl’s projective curvature tensor W-kh is recur-
rent in an RNP-Finsler space of dimension greater than 2, i.e.,

(3.20) vmw/kh = ?,jv;kh.
Transvecting (3.20) by xhand using (2.9a), we get

(3.21) Y% = 174 -

Differentiating (3.21) partially with respect to xh, using the commutation formula
(3.14) and taking care of the equations (2.3d), (2.9a), (2.9b), (3.20) and (3.21), we
have

(3.22) (dhKWA = g ‘nrllL- n mIWk- M\TKLL, - L, Glms.
Transvecting this equation by xk and using (2.3d) and (2.9c), we have
(3.23) @, ImVi=n\nmwr- nhjW- -Lj- W/GUse

Transvecting (3.23) by xmand using (2.2), (2.3d), (2.9d) and the symmetry of M)
in its last two lower indices, we get

(3.24) (xmh imw; = Ghirsw ; .
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The projective deviation tensor Wj' and the deviation tensor H) are related by
[8, p. 140]

(3.25) Wj =
In view of (3.25), (3.13) and (2.2), the equation (3.24) reduces to
(3.26) N Q hXm)Wi = HG'Jhr.

Thus we conclude that an RNP-Finsler space F,, (n>2) admits (3.26). Transvect-
ing (3.19) by xh, using (2.2), (2.8i) and the fact that the vector is positively homo-
geneous of degree zero in x\ we get

(3.27) 2("1) HGkr =-(« - DHdkXm.

Since u>1, (3.27) is equivalent to

(3.28) A(M"dT+-~1 Cltr)=0.

This equation gives at least one of the following:

(3.29) a) H=0, b) dkAm+ N4+ 1GI<m: 0.

If (3.29a) holds, (3.26) gives at least one of the following:

(3.30) a) Wj =0, b) xmbhXm=0.

If Wj=0, the space is of scalar curvature [1, 7, 11], and hence we have

(3.31) H) =

where 1'=x¥P and Ilj=gidli. But (3.31) together with (3.29a) implies 7/j=0
which leads to Hjkh=0. In view of this fact the relation (2.6) gives Njkh=0, a
contradiction. Therefore condition (3.30a) can not hold. Condition (3.30b) is equiva-
lent to Xh=dhk, where X=Xmxm Hence the skew-symmetric part of (3.23)
with respect to the indices h and m, in view of symmetry of Gbns and M)TKin the
indices m and h and the equation (3.18), is given by

(3.32) 8[NG ArsW r-% G s = 0.

Transvecting (3.32) by xh and using (2.2) and (2.9d), we get WfGsrs=0\ in view
of which the equation (3.32) gives ff[i,G,,js= 0. Using (3.25) and (3.29a) in Wi,GCays=
=0, we get

(3.33) HIhGmVs- x i(drH[hGmMVJ (n+ 1) = 0.

Transvecting (3.33) by y,, and using (3.8b) and yiXl=F2 we have (drH[h)Gays=0.

Using this in (3.33) we find H{hGsys=0. If the tensor Gsjs is non-zero, we may
choose a vector Tfsuch that G*.fV O. Multiplying H[hGsys=0 by YJand put-
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ting GmjsYJ=cpm, we get H[h(@=0; which implies HI=X"*@ph, where X1is a
contravariant vector. Multiplying HI=X‘gh by gim and using (3.8c), we have
Fh= 4gihXi, where t/ is a non-zero scalar. Hence we have HI=\j/X'grhXr. Contract-
ing the indices iand hin this equation, and using (2.8f) and (3.29a), we get grsX rXs—
=0; which implies X ‘=0 because the metric of the space considered is positive
definite. Substituting X ‘=0 in Hj=X"'(ph, we find Hh=0. This will lead to Njkh=0,
a contradiction. Therefore the supposition GsUsAO is wrong. Hence (3.29a) implies
Gsjs=0. Now, we consider (3.29b). Transvection of (3.29b) by xm and utilizing

(2.2), we have xmdhAm=0; in view of which (3.26) becomes HG)hr=0. This means
at least one of the scalar H and the tensor Gjhr is zero. We have seen that H=0
implies Gjhr—0. Therefore we certainly have Gjhr=0. In view of this fact, (2.1)
shows that the normal projective connection [T, coincides with Berwald’s connec-
tion Gkh. Thus, our normal projective space is a trivial one. Therefore, an RNP-
Finsler space F,, (n>2) is a trivial one. This leads to:

Theorem 3.1. A non-trivial RNP-Finsler space Fn (n>2) does not exist.

Adopting the procedure similar to Theorem 3.1, we may prove that if an SNP-
Finsler space Fn (n>2) characterized by VmNjkh=0 exists, the tensor Gjkr vanishes,
and hence the normal projective space becomes trivial. This gives:

Theorem 3.2. A non-trivial SNP-Finsler space F,, (n>2) does not exist.
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ABELIAN GROUPS LIKE MODULES

S. SINGH (Kuwait)

Consider the following two conditions on a module MR:

() Every finitely generated submodule of a homomorphic image of M is a
direct sum of uniserial modules.

(1) Given two uniserial submodules of a homomorphic image of M, for any
submodule W of U, any non-zero homomorphism f :W-+V can be extended to
a homomorphism g: U-+V provided, composition length d(U/W)*d(V/f(IV)).

The study of modules satisfying (1) and (I1) was initiated by Singh [12]. It has
been seen through a number of papers, some of which are [1, 5, 6, 12, 13, 15], that
the structure theory of these modules is similar to that of torsion abelian groups;
keeping this in view these were called torsion abelian groups like modules (in short
TAG-modules) in [1]. A uniserial module which is not quasi-injective trivially satis-
fies (1), but not (I1). In this paper we study modules only satisfying condition (l),
and call them QTAG-modules. In Section 2, Lemmas (2.2) and (2.3) show that a
certain weaker version of condition (I1) is implied by (I). Further (2.4) shows that
a certain weaker version of the dual of (II) is also implied by (I). In Section 3, the
structure theory of QTAG-modules is developed. Using the results in Section 2,
first of all it is seen that the concepts of exponent and height of an element in a
TAG-module can be defined verbatim for an element in a QTAG-module (see (3.1),
(3.2), and (3.3)). In (3.5) [11, Lemma 7] is strongly improved. After this it is discussed
in brief that almost all the concepts and results for TAG-modules given in [12, 13]
can be defined, stated and proved for QTAG-modules. In particular it is shown that
any QTAG-module M admits a basic submodule and that any two basic submodules
of M are isomorphic. In Section 4, those rings R for which Rr is a QTAG-module,
are studied. The main results are given in (4.5) and (4.6).

8 1. Preliminaries

All rings considered in this paper are with unity 170 and all modules are
unital right modules, unless otherwise stated. For any ring R, J(R) or simply J de-
notes its Jacobson radical. Consider a module MR. The symbols J(M), ER(M)
(or simply E(M)) will denote its Jacobson radical and injective hull respectively;
Ncz'M denotes that N is an essential submodule of M. soc (M) will denote the
socle of M. Put soc®(M)=0. For any kwO, sock(M) is defined inductively by
soc(M/socl (M)) = sock+1(M)/soctt(M). Similarly Jk(M) is defined inductively by
putting Jk+1(M)=J(Jk(M)) and J°(M)=M. M is said to be serial if the lattice
of its submodules is linearly ordered under inclusion [18]; however if M is serial and
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of finite composition length it is said to be uniserial. Following Warfield [18] a ring
R is said to be right (left) serial if Rr (respectively rR) is a direct sum of serial modules.
A ring R which is right as well as left, serial and artinian, is called a generalized
uniserial ring. For most of basic concepts on rings and modules, we refer to Faith
[2] . For the definitions and properties of push out and pull back diagrams we refer
to Stenstrom 17]. For concepts and results on abelian groups, we refer to Fuchs
[3] |, [4]- An element x in M is said to be uniform, if xR is a non-zero uniform sub-
module of M. If S and T are two simple J1-modules, then T is called a successor of
S, and S is called a predecessor of T if Ext (S, T)®0 [18, Definition 5.2]. If x is a
uniform element of a TAG-module MR, following [11], [12], e(x) and HM(x) (or
simply H(x)) will denote the exponent of x and the height of x in M respectively.
For all the basic concepts for TAG-modules, we refer to [12], [13].

§ 2. Some general results for condition (1)

In this section we show that any QTAG-module satisfies a certain weaker ver-
sion of condition (I1) and its dual. We further establish some general results needed
in subsequent sections. We start with the observation that the class of QTAG is
closed under submodules and homomorphic images.

Lemma 2.1. Let AXx, A2 ..., An be any (non-zero) uniserial submodules of a
module MR and let Al+Ai+...+An=Bl®R2®...®Bm for some uniserial sub-
modules Bi, 1~%i"tm. Then

(i) man.

(if) Each Bi is a homomorphic image ofsome Aj.

(iii) Each Aj embeds in some Bt under the projection pp © Z Bk-+Bt.

K n

(iv) Any Aj ofmaximal length among ALA2...,A,, isasummandof Z Ar

1=

Proof, (i) Consider the external direct sum K=A1l®A2®..©An. Then
K/J(K) is a direct sum of n simple modules. Now

m m
® 21b,)/j(® z Bt
(® 210/ (® 2, BY

is a direct sum of m simple modules, and is a homomorphic image of K/J(K). Con-
sequently m~n. This proves (i). Now (ii) and (iii) follow as [11, Lemma 3]. (iv)
follows from (iii).

Lemma 2.2. Let A and B be two uniserial submodules of a QTAG-module M
suchthat AC\B=0. Let a be any homomorphismfrom a submodule W of A into
B such that d(A/W)"*d(B/o(iV)). Then a can be extended to a homomorphism
a\ A—B.

Proof. Consider the push out diagram
W-+A

r
B 4*K
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where i is the inclusion map. Since i is a monomorphism, j is a monomorphism
[17, p. 92]. Consider the injections zj:A A+B, i2:B-»A®B. Using the fact that

K = coker (ixi—i2a: W —A®B)
it follows that ker z=ker a. Thus by hypothesis
d(tl(A)) = d(A) —d (ker oj =d(B) = d(j(Bj).
Since K isa homomorphic image of A+B, itisa QTAG-module. As K=j(B) + t](A),
by (21) K—(B)®C. Consider the projection p: j(B)®C—(B). We have
j~1:j(B)-»B. Then d=j~Ipry.A-+B extends a.
Lemma 2.3. Let A and B be any two unisersal submodules of a QTAG-module

M suchthat ADBa 0 and d(A)Sd(B). Then thereexists a monomorphism a: A-+B,
which is identity on AC\B.

Proof. As d(A)Sd(B), by (21) A+B—B®C. a, the restriction of the pro-
jection p: B®C—B to A, is a desired map.

Lemma 2.4. Let A and B be two uniserial submodules of a QTAG-module M
such that AC\B=0. Let W be any submodule of B and a: A--B/W beany homo-
morphism such that d(IV)*=d(ker a). Then there exists a homomorphism a: A-+B
lifting a.

Proof. Without loss of generality we take 0+0. Consider the pull back dia-
gram

K—A
oo
B-+B/W

where n is natural homomorphism. Since n is an epimorphism, n is also an epi-
morphism. Further as aAO, A(K)cflU. Since B is uniserial, W<zA(K). Then
A{K)/W"a(A)" A/ker a. Thus d(A(K))*d(A), as d(W)"d(ker a). Since A is a sub-
direct sum of A(K)QB and n(K)=A, itisa QTAG-module and it cannot have
a uniserial submodule of length greater than

max (d(A(K)), d(A)) = d(A).

As n is epimorphism, we get K=A'®C for some uniserial submodule A*' such that
n maps A' isomorphically onto A. So we have a monomorphism u:A >K such that
urj=iA Then &=Arj: A—B lifts o and the result follows.

It follows from the above lemmas that if two uniserial submodules A and B
of a QTAG-module M have zero intersection and same composition lengths, they
are isomorphic whenever either they have isomorphic socles or A/J(A)"B/J(B)\
further in that case A and B are quasi-injective as well as quasi-projective. If M®M
isa QTAG-module, then M isa TAG-module.

Proposition 2.5. Let N and K be any two submodules ofa QTAG-module M.
Let x+ N be a uniform element of (K+N)/N. Then
(@) For some uniform element yEK, x + N=y +N.
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(b) If u,v are two uniform elements in x+ N suchthat uRC\vR=0 and e(u)S
then there exists an epimorphism a:vR->-uR suchthat v—a (v)EN.

Proof, (a) Now x=x+N=u+ N—u for some non-zero ufK. By condition (I)

K
= 21 ui
uR QwR
for some uniform elements ut. Then
UR = 21 UtR.
However uR is uniserial. So for some i, say for i=1, TiR--ulR. Consequently

tu=uir, for some rCR. Then y =ulr£K isuniform. Further x—y. This proves (a),
(b) Let uRCWR--{). Now u+N=v+N. So we have the epimorhism

r\:vR - uRUURCN)

suchthat rj(v)=u+(uRr\N). As kert]J=vRC[N and d(vRr\N)*d(uRCIN), by
(2.4) f] can be lifted to an epimorphism a: vR-"uR. Clearly v—o(v)cN. This
proves the result.

Proposition 2.6. Let N be any submodule ofa QTAG-modu/e M. Let x=x+N
be a uniform element in soc (M/N). Let xCEx+ N be a uniform element of smallest
exponent. Let y be any uniform element in M such that 5¢cR=yR. Then either
no/?TyK=0 or e(x0)=e(y).

Proof. Let XORC]JyR+0. By hypothesis e(x0)"e(y). By (2.3) there exists a
monomorphism 0:x0R-*yR, which is identity on xORC)yk. On the contrary
let e(x0)<e(y). Then <r(x0)dN. Now

tj: xOR - (x0-a(xn)R
given by
ri(x0r) = (x0-<x(xQ)r, rCR

is an epimorphism with x0AMyAc:kerr. Thus x1=xa-o0(x0) is a uniform ele-
ment in x +N such that e(xl)ce(x0). This contradicts the choice of x,,. Hence
e(x0)=e(y). This proves the result.

8 3. Some decomposition theorems

For any uniform element x in a QTAG-module, the concept of height of x in
M, denoted by HM(x) (or simply by H(x)) and of exponent of x, denoted by e(x),
is verbatim same as in TAG-module [12]. The proof of the following lemma is ver-
batim same as of [11, Lemma 4], except that we use (2.2) instead of Lemma 2(b)
in [11].

Lemma 3.1. Let x1, Xa, ..., X,, be anyfinitely many uniform elements in a QTAG-
module MR such that for some non-negative integer Kk, H(xi)*k for 1Si=/i.
Thenfor any uniform element x of M in 2 xiR> H(x)"k.
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Let /1 be any non-zero element in a QTAG-module MR. By definition xR =
» .
= 2 xiR> f°r some uniform elements xfM . Define the height HM(x) (or

i—I
simply H(x)) of x, by //(x)=min (//(x;)). This is well defined. Put H(0)=°°>n,
n any integer, and 00+«=00. As in [11] we define Hn(M), forany nsO0. Then

H,,(M) = {XxEM: H(x) S n}

and it is a submodule of M. The following lemma has similar proof as of [11,
Lemma 6].

Lemma 3.2. Let A and B be two submodules of a QTAG-module M such
that M=A+B. Thenfor any kSO

HK(M) = HK(A) + Hk(B).

One can easily see that for a QTAG-module M, Hk(M)=Jk(M) and that
Hk+1(M) is the smallest submodule of Hk(M) such that Hk(M)/Hk+1(M ) is com-
pletely reducible. For any uniform element yEM, a uniform element x is called a
predecessor ofy if yExR and d(xR/yR)= 1, in this case alsoy is called a successor
of X. Let N be a submodule of M. A uniform element yEM isin If (N) if and only
ify admits a predecessor in N. We list some properties of height.

Lemma 3.3. Let M be any QTAG-module. Let x,yf M.
@ 1Hx)Sn ifand only if XEHNn(M).
(i) H(x+y)"*min (H(x), H(yj); equality holds whenever 11(x)-All(y).
(iii) 1f y*"HfxR), then H (y)M1(x)+ L
(iv) If x—yfsoc {M), then If (xR)=HI1(yR).
(v) If xR=yR, then H(X)=H{(y).

Lemma 3.4. Let N and K be two submodules of a QTAG-module M. Then,
for any k"O

HK[(K+N)/N] - (HK(K)+N)/N

Proof. Let x=x+N be a uniform element of If[(K+ N)/N], There exists
a uniform element yEK+N such that xEyR and d(yR/xR)—k. So x=yr for
some rf_ R. Now z=yr is uniform and yrfllk(K+ N)=Hk(K)+1f (N). Thus
x=yr=U for some uf£HKk(K). Obviously [Hk(K)+N]/NczHk[(K+ N)/N]. This
proves the lemma.

Theorem 35. Let M be a QTAG-module over a ring R, T be any submodule
of M and K be any complement of T in M. Then the following hold:

(a) For any simple submodule S of M/(T+K) and any uniform element xEM,
generating S modulo T+K, Ls=[xRr\T+HLT)]/HL(T) is a simple submodule
of \(HL(M)+K)M\T~VHIilT), andis independent of the choice ofx.

(b) S-+Ls gives a mapping of the family of all simple submodules of M I{T+K)
onto thefamily ofall simple submodules of [(AL(M)+ )T /9 LTN).
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Proof. Now (T®K)/Ka'M/K and M/(T+ K) A[M/K]/[(T+K)/K]. By (3.4)
Hr(M/K)O[(T + K)/K] _ (HYM)+K)N(T +K)

HJ(T +K)/K] N HfT)+K A
(HIM)+K)®T +K (HI(M)+K)OT
Hr(T)+K ~ Hr(T)

Thus without loss of generality we take K=0 and hence Tc 'M.

Consider a simple submodule S—xR of M/T. By (2.5) we take x to be uni-
form. Clearly e(x)> 1. Let yR=xRC\T. If yEH1(T) it has a predecessor z£T.
By (2.3) we can choose z such that xr+*zr, rER is an isomorphism between xR
and zR, which is identity on yR. Then x—z£soc (M )aT. This in turn gives xfT.
This is a contradiction. Hence y*H r(T). HenceyR, where y=y+H1(T) isa simple
submodule of [HL(M)C\T]/HL(T). yR is uniquely determined by xR. Let if possible
S=xR=x'R for another uniform element x\ but let xR Ax R. Choose x to be of
smallest exponent such that S~xR. By (2.6) either e(x)=e(x') or XRCIX'R =0.
Let x/?Mx'/?=0. By (2.5) (b) we get an epimorphism rj:x'R"-xR such that
X'—ti(x")dT+K. We can choose x=t](x'). Let y'R"X'RCIT and y=r\(y).
Then yR=xRC\T. Further y'—y£//,((x'-x)R)c:UI(T). This gives yR=y'R in
TIHLT). Let xRfIx'R*"O. By (2.6) e(x)=e(x’). As xR”x'R, xR+x'R=
=x'R®uR for some uniform element u with e(u)<e(x'). In M/T, 5cR=xR+
+Xx'R =x'R + UR. By the minimality of e(x), xR"uR. Hence uR=0 and u£T. Con-
sider the projection p: x'R®uR-»x'R. Write x=p(x)+ur. Then x'R=p(x)R.
For yR=xRC\T, x'RC\T=p(y)R. Now x—p(x)ET vyields y—p(y)"HLT).
Hence yR=y'R in T/HLT). This show that Ls=yR in [HI(M)M\T]/HLT) is
uniquely determined by .S. Now consider any simple submodule yR in
[HI(M)C)T]/HI(T) and takey to be uniform. Since y6//, (M) it has a predecessor
x in M. Then S=xR in M/T is a simple submodule to whichyR corresponds in the
above given correspondence. This proves the theorem.

Remark 3.6. Consider any QTAG-module M. M is said to be /r-divisible if
H1(M)=M, equivalently if every element in M has infinite height (see also [15,.
p. 2034]). Let N be an /r-divisible submodule of M. Let K be any complement of N.
As N=HI1(N), [(H1(M)+K)fINyH 1(N)=0. So by the above theorem M/(N+K)—
=0. Consequently M=N®K and N is an absolute summand of M. In view of
(2.2), (2.3), the proof of [16, Proposition (2.1)] shows that a submodule N of M is a
complement submodule of M if and only if HI(M)C\N=H1(N). (See also [5, The-
orem 3].)

Kulilov’s theorem for the decomposition of abelian /r-groups was generalized
to modules over bounded (hnp)-rings in [11, Theorem 3] and to TAG-modules in
[12]. We now extend it to QTAG-modules. Since the proof is being adapted from
[H, Theorem 3], we shall only outline the proof, indicating the necessary changes
needed.

Theorem 3.7. Let MR be any QTAG-module. Then MR is direct sum of uni-
serial modules ifand only if M isaunion ofan ascending sequence Mn (n=1,2, 3, ...)
of submodules of M such thatfor each n, there exists a positive integer kn with
the property 1fM(x) =kn for all uniform elements x of M,,.
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Proof. Sufficiency. For each n, let P,=soc (M,,). Then P={JI_I Pn is the

socle of M and Pa'M. Follow the construction of a basis S,, of Pn for every n,
as in [11, Theorem 3]. Then Sn<aSn+l and S':llgI S,, is a basis of Pn. Let S=

= {ca: KC/1}. Since each ckis uniform and is in some Mnit has finite height. So we
can find a uniform element affiM such that R and d(akR/ckR)=1f(ck).
Then 2 axR—®lakR. Let

M! =®%akR-

If we show that M=M", the result follows. Let We can find a uniform
element gf M of smallest exponent such that M'. Then e(g)> 1 Let yR=
=soc (gR). Now

Y- clrl+c2r2+...+c,rt

for some cfS, rtER suchthat crrr*0. If t=1, then y=clrl. So H{y)=H{cl).
Consequently e{g)"e{al). By (2.3) there exists a monomorphism a: gR"-ajR,
which is identity on yR. Then g—o(g) is a uniform element such that e(g—o(g))<
<e(g) and g—a(g)$M'. This contradicts the choice of g. Hence t>1 Con-
sequently

gRMNCR =gRMNa(R=0, 1SiSi.

Using (2.2) and following the arguments in [11, Theorem 3] the sufficiency follows.
Necessity is obvious.

Remark 3.8. Call a QTAG-module M to be decomposable if it is a direct sum
of uniserial modules. It follows from the above theorem that any submodule of a
decomposable QTAG-module is decomposable. As for TAG-modules [12] we can
define a bounded QTAG-module. It immediately follows from (3.7) that any bound-
ed QTAG-module is decomposable. Let M be any QTAG-module. As in [12, p. 185]
any submodule N of M is said to be /r-pure in M if Hk(M)C\N—HKk(N) for all k.
Similar to [12, Theorem 2], any bounded /r-pure submodule of M is a summand of
M. In particular if a uniform element ufsoc (M) has finite height k, and x is any
uniform element in M such that ufxR and d(xR/uR)=H(u), then xR is h-pure
in M and hence is a summand of M. Union of a chain of h-pure submodules of M
is h-pure in M.

Lemma 3.9. Let N be a submodule of a QTAG-module M. Then N is an
h-pure submodule of M if and only iffor every uniform elementx=x +N of M/N,
there exists a uniform element x'£M suchthat x + N—x"+N, e(x')~(x).

Proof. Necessity follows as in [12, Lemma 2], using (2.3) instead of condition
(I). Conversely let the given condition hold, but N be not h-pure in M. Let K be the
smallest positive integer such that ffk(M) (TN-/-Hk(N). We can find a uniform
element x£Hk(M)CIN such that x$I1fk(N). Clearly xEHk_r(M). Now there
exists a uniform element yEM suchthat xfyR and d(yR/xR)=k. Then yRC\N=
=xR. By hypothesis there exists a uniform element y'£M such that y=y + N=
=y'+N and e(y')=e(y). Thus y'RC\N=0 and we have the epimorphism a: yR -

—y'R satisfying a(y)=y'. As y—y'ZN,
Hk((y-y")R)aHKk(N).
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We have the epimorphism rj:yR-(y—y')R given by tl(yr)=(y—y"')r—yr—o(yr).
Since e(y')=d(yR/xR)=k, we get rj(x)=x and Hk((y—y')R)=xR. Hence
xfHk(M). This proves the result.

The following is easy to establish.

Lemma 3.10. Let N and K be any two submodules of a QTAG-module M.
Then

(i) If K ish-purein M and NczK, then K/N is h-pure in M/N.

(ii) I'f NczK, such that K/N is h-pure in M/N and N is h-pure in M, then
K is h-pure in M.

For this see also [12, Lemma 2].

After this one can easily see that Lemma 3 and Theorem 4 in [12] hold for
QTAG-modules. If there exists a uniform element n of finite height in the socle of
a QTAG-module M, as seen in (3.7), M admits a uniserial summand containing it.

This all gives, as in [12, Theorem 4 and 5] the following.

Theorem 3.11. (a) Ifevery element in soc (M) is of infinite height, then M isa
direct sum of serial modules, each of infinite length.

(b) Any QTAG-module M admits a uniform summand, which can be chosen
to be offinite length in case not all uniform elements in soc (M) are of infinite height.

Remark 3.12. The concept of a basic submodule of a TAG-module in [13,
Definition 2.5] can be verbatim defined for QTAG-modules. (3.8), (3.10) and (3.11)
yield that any QTAG-module M admits a basic submodule. An easy adaption of
the proof of [1, Lemma 1.1] shows that any complement of Hk(M) is /i-pure and
hence a summand of M. One can prove every result in [13, Section 2] for QTAG-
modules on similar lines. Consequently any QTAG-module M admits a basic sub-
module, and any two basic submodules of M are isomorphic.

8 4. Right artinian serial rings

In this section we determine the structure of a ring R such that Rr is a QTAG-
module.

Lemma 4.1. Let R be any ring such that Rr is a QTAG-module. Then any
simple right R-module admits at most one predecessor.

Proof. Let SR be simple. Let K and T be two predecessors of S. There exist
two indecomposable idempotents e,/o f R such that eR/eJ*"K, eJ/eJ2™ S, fR/fl %
KK and fJ/fJ2"S. Let KAT, then we can choose e, f to be orthogonal. But
by (2.2), there exists an isomorphism of eR/eJ2 onto fR/fJ2 Hence K~ T. This
is a contradiction. Hence S has at most one predecessor.

Lemma 4.2. Let R be any ring such that Rr is a QTAG-module. Let E be an
indecomposable injective R-module. Then either E is uniserial or there exists an
indecomposable idempotent erR and an integer I's 1 such that eR/eJ2 is not
quasi-injective, socf(E) is uniserial and eR/eJ2 embeds in E/sock~1(E).
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Proof. Let E be not uniserial. As R is a right artinian right serial ring, for some
simple /1-module S, E=E(S), and for some t, E=sod(E). As E is not uniserial,
we can find k<t such that sock(E) is uniserial, but sock+1(E) is not uniserial.
Clearly k~1, and we can find two uniserial submodules A and B of E, each of
length k+ 1 such that ApBdgA. Now AIAB=sock(E). Further

K = [A/sock-!(£)] M[B/soc*-*(£)]
is a simple module. By (4.1) K admits only one predecessor. So
A/sock(E) k B/sock(E).
Consequently there exists an indecomposable idempotent R such that
AJsock—HE ) « eRjeJ- » B/soc”iE).

We have an isomorphism <« of A/sock- I(E) onto Bfock~1(E). Now the injective
hull E' of E/sode~1(E) is uniform and a can be extended to an endomorphism otE".
If eR/eJ2 were quasi injective, we get p(A/sodi~1(E))=A/sock~1(E). So A=B.
This is a contradiction. Hence the result follows.

Firstly we give another proof of [14, Theorem 4.1].

Theorem 4.3. Let R be any ring such that Rr isa TAG-module. Then R isa
generalized uniserial ring.

Proof. Now R/J2is also a TAG-module. So R=R/J2 is a TAG-module as
a right J1-module. In a TAG-module every uniserial jubmodule is quasi-injective.
In particular for any indecomposable idempotent efR, eR is quasi-injective. Now
eJ2=0. By (4.2) every indecomposable injective J1-module is uniserial. So by [9,
Theorem 1], every finitely generated J/1-module is a finite direct sum of uniserial
modules. Then by [8, Theorem 13], R is a generalized uniserial ring. Flence by [10,
Theorem 10] R is generalized uniserial.

We now prove a theorem analogous to that of Kupisch for generalized uniserial
rings [7].

Theorem 4.4, Let R be an indecomposable right serial right artinian ring, over
which any simple right R-module admits not more than onepredecessor. Letex, €2, ..., ek
be a maximal set of non-isomorphic orthogonal indecomposable idempotents of R.
Then elt e2, ek can be so arranged that for i<k, ejAO, and there exists an
epimorphism of ei+1R onto ej. Further if ekJ a Q there exists an epimorphism of
exR onto ekJ.

Proof. Since R is right serial, any simple right Jl-module admits at most one
successor. By hypothesis a simple right J/1-module admits at most one predecessor.
Let S+ S2, ..., be longest length sequence of non-isomorphic simple J1-modules,
such that for /</, Si+lis the successor of Sj. Let I<k. By renumbering we can
take

Sta e(l/c(/, 1S i~lI.

It is clear that if an ejR has a composition factor among St (1*i~1), then all the
composition factors of e}R are among S-s. So there exists a simple right J/1-module
S which is not isomorphic to any S;. For some eJt S”ejR/ejJ. No composition
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factor of ejR can be among Si’s. Thus eJReiR=0=eiRejR for 1si” /. This in
turn gives that R is decomposable; which is a contradiction. Hence I=k. Thus
for i<h, as Si+lisa successor of St, Si+i meiJleiJ2* e i+1Rlei+l). Consequently
efAO and there exists an epimorphism of ei+1R onto e,J, for i<k. In addition
let ekJ="0. Then ekJ/ekJ 2 is the successor of Skand we must have

ekJ/ekJ 2 « elR/elJ.
This proves the theorem.

Theorem 4.5. Let R be any indecomposable ring such that RK is a QTAG-
module and for any indecomposable idempotent edR, eJ2" 0. Then either R is a
local ring or R is generalized uniserial.

Proof. If R is local, there is nothing to prove. Let R be not local. We can write
R = elR®e2R® ...@enR

for some orthogonal indecomposable idempotents eh 1 such that for some
tSn, ekR, e2R, mme, R is the largest set of non-isomorphic indecomposable sum-
mands of Rr . Now 1. Let t=\ then eiR”"e 1R for every i. Now, ekR is quasi-
injective. Consequently Rr being a direct sum of n copies of ekR, is quasi-injective.
Hence Rr is self injective. So R is quasi Frobenius. Then duality between right and
left ideals of R, gives R is also left serial. Hence R is a generalized uniserial ring.
Let 1. By (4.4) we can take exR, e2R, ..., etR suchthat e j ;~ei+1R/ei+1Jk)
for id and e,J"elR/elJkV\ for some integers k(i)= 1 Then
mei+lR/ei+1J 2 By the remark following (2.4), ei+lR/ei+lJ 2 is quasi-injective.
Similarly also elR/el] 2 is quasi-injective. So as in (4.3), using (4.2) we get R/J2is
generalized uniserial. Hence by [10, Theorem 10], R is generalized uniserial. This
proves the result.

In the above theorem, the condition that eJ2* 0, for any indecomposable
idempotent e of R, isused to show that eR is quasi-injective for any indecomposable
idempotent é of R=R/J2 In fact we can prove the following.

Theorem 4.6. Let R be any non-local indecomposable ring such that Rrisa QTAG-
module. Then either R is a generalized uniserial ring or it has an indecomposable
idempotent e suchthat eJ2=0 and eRleJ2 is not quasi-injective.

There exist indecomposable non-local rings R, such that R is not a generalized
uniserial ring, but Rrisa QTAG-module.

Example. Let D be any division ring admitting a bi-vector space D/D such
that dimDF > 1, and dimkB=I. Then the matrix ring

is indecomposable, non-local, it is not a generalized uniserial ring, but Rrisa QTAG-
module. Consider the ring
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in which the multiplication is defined by

Fran wiafbN w2l T an i fliiwiz + ~12n22 1
1par az2dlwar b22] Lr21r11 + n22 wat #22022 J

Soc ('r) is a direct sum of two non-isomorphic simple modules. Any right ideal
A of I' is of the form B®C, where B isa summand of TTand Ccsoc (TV). Using
this and that d(TT)=4, it can be easily seen that TTisa QTAG-module, T is inde-
composable, non-local and is not generalized uniserial.

Acknowledgement. The author is extremely thankful to the referee for his various
suggestions.
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PROXIMITIES, SCREENS, MEROTOPIES,
UNIFORMITIES. II

A. CSASZAR (Budapest), member of the Academy

7. Screens and extensions. RE-proximities are defined with the help of exten-
sions of topological spaces. For this purpose, let us say that, for a TP-proximity
$on X, an extension (F, c') of the topological space (X, c6) is compatible with 5 iff,
for A, BczX,

ASB <>c’(A) M c\B) ji O.

Then we can say that 5 is an RE-proximity iff there exists a regular extension com-
patible with S.

A similar characterization is possible concerning LO-proximities. For this pur-
pose, let us recall that, if (X, c) is a topological space, YzoX, s(y)isa c-open filter
in X for yfY, in particular, s(x) is the c-neighbourhood filter of x if x£X, and

s(G) = {yeY: GEs(y)}

for a c-open set GczX, then the sets s(G) constitute an open base for a topology
c' on Y; the space (F, cr) is said to be a strict extension of (X, c) corresponding to
the tracefilters s(y) (in fact, s(y) is the trace in X of the c'-neighbourhood filter of
YY) (141, (6:1.2). _ o _

An extension (F, c') of the topological space (X, c) is said to be Tx-reduced iff
X, YEY, xriy, yeY- X implies that each of the points x, y has a c'-neighbourhood
that does not contain the other. If (F, c) is a ~-reduced extension of (X, c) and
the latter is an Aj-space or a Tx-space, then the same holds for (F, c').

An extension (F, c¢) of a topological space (X, c) will be said to be free iff the
trace in X of the c'-neighbourhood filter of any point yeY —X s free.

(7.2) Lemma. If S is a TP-proximity on X, and (F, c') is an extension of
(X, cs) compatible with S, then the collection of the traces in X of the c'-neigh-
bourhoodfilters of thepoints ye Y is an open screen on X compatible with S so that
S is an LO-proximity.

Proof. The traces in question are c”-open filters in X, in particular, the trace
of the c'-neighbourhood filter of xeX is the cs-neighbourhood filter of x, hence
fixed at x. Therefore we obtain a screen S o n | the elements of which are cd-open
filters.

For A,BaX, ASB iff there is some ye Y whose c'-neighbourhood filter has
a trace s in X satisfying A, Besecs. Thus <5=<5(3), and 3 is an open screen.
By (6.14) Sis LO. O
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98 A. CSASZAR

Conversely, we can say:

(7.2) Lemma. Let S be an open screen on X, <5=<5(S). Then there exists an
extension (F, c¢') of the space (X, cd) such that the collection of all traces in X of
the c'-neighbourhoodfilters of the points yd Y coincides with S. Such an extension
is compatible with <&

Proof. By (6.14), cdis a topology, and the filters SES are cs-open, in parti-
cular, an sd <S fixed at xdX coincides with the cs-neighbourhood filter of x. Hence
there exist extensions satisfying the hypotheses. By <5=<5(S), ASB holds iff there
is an s€<3 such that A, 2?£sec s, hence iff there isyd Y such thatydc'(A)i)c'(B). O

Now we can prove:

(7.3) Theorem. For a TP-proximity O on X, the following statements are
equivalent:

(@) Sisan LO-proximity,

(b) There is a J\ -reduced, compact extension compatible with 5,

(c) There is an extension that is an Sx-space and is compatible with S,
(d) There is afree extension compatible with <§

(e) There is an extension (Y, c') compatible with 8.

Proof. (a)=>-(b): Let SO denote the collection of all minimal d-compressed
filters. By (6.13) and (6.16), ®,, is an open screen such that &= <5(®0). Define, for
xdX, s(x) to be the cs-neighbourhood filter of x, and choose a set Y zdX such that,
to the elements yd Y —X, we make correspond bijectively the free elements of ®0;
let s(y)ESO be the filter corresponding to y. Consider the strict extension (Y, c')
of (X, cs) obtained from the trace filters s(y).

If x,yd.Y, x”*y, ydY—X, then s(x) and s(y) are distinct elements of ®0
(cf. (6.14)) so that neither s(x)cs(y) nor s(x)ns(y) can hold. Hence (T, c')
is a 7\-reduced extension of (X, cs). By (7.2), (F, c') is compatible with S.

We show that (F, ¢') iscompact. Letu be an ultrafilter in F, s’ the ~-neighbour-
hood filter of u, and s=s'\X. Then s is <5-compressed. In fact, if AOB, then
c,(W)Mc,(B)=0, hence either Y—c'(A) or Y —c'(B) belongs to u and to s,
consequently either X—A u X —cs(A) or X —B*>X—cd(B) belongs to s. By
(6.12) there is a point ydY satisfying s(y)czs. If G is c*-open and y£s(G), then
Ggs(y)cs, hence thereisa c'-open set G' such that G'ds' and G'CIXcG. Clearly
G'cs(G) and G'du, hence a(G)€u, and u->-y.

(b)=>(c) is obvious because (X, cH isan Sx-space.

(b) =>(d) follows from the fact thata -reduced extension is free.

(c)=>(e) and (d)=>-(e): obvious.

)=t (7.1). O

The implication (a)=>(b) is contained in [22] for separated proximities, while
(a) =>(0) and (a)=»(d), for separated proximities and so for Tx-extensions again, are
contained in [17] and [18]. The technique of the proof is, however, essentially different
from ours; bunches, clusters, and clans are considered instead of filters.

The implications (c)=>(a) and (d)=>-(a) can be formulated in a slightly more
general manner:
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(7.4) Lemma. Let (X, c) be an Sx-space, (Y,c') an extension of (X, ¢) that is
either S1 orfree, and define, for A, B el,

ASB iff ¢'(A)C]c'(B)"O0.
Then 5 is an LO-priximity compatible with c.

Proof. It is easy to check that 5 is a proximity on X. If XxEX, AczX, x£c(A),
then c'({x})M\c'(A)AS. If x$c(A) then x$c'(A) and, if (Y, c') is Sx, also c'({x})N
Mc'(A)=0; the same is true if (Y, c') is free because then & ({x})=c({a}) and
c({x})Mc(A)=0. Hence c—cd, and (7.1) applies by (4.1). O

Our next purpose is to examine, for LO-proximities, an extension somewhat
similar to the one constructed in the proof of (a) =*(b) in (7.3).

(7.5) Lemma. For any LO-proximity S on X, let Sx denote the collection of
all b-open, g-compressedfilters. Then ®x is a screen such that <5=<5(®x).

Proof. If ® and ®0denote the sets of all *-compressed and all minimal <5-com-
pressed filters, respectively, then © ,,cSjcS by (6.16). From (6.11) and (6.13),
it follows easily that <6Xis a screen and <5(S0)=t>(S1)=d(S)=G O

(7.6.) Lemma. Let O be an LO-proximity on X, and (Y1, cX) be a strict exten-
sion of (X, cd such that the collection of the traces in X of the c[-neighbourhood
filters of the points ydYx—X coincides with the collection of all free elements of
Sx, the set of all b-open, b-compressedfilters. Then (Tx, cf) is a compact, free ex-
tension compatible with b.

Proof. By (7.5) and (7.2) (YLl.c[) is an extension compatible with b. Clearly
it is a free extension. It is compact, too. In fact, we can argue in the same way as in
the proof of (a)=>(b) in (7.3), replacing (Y, c¢') by (Fx, ¢, and with the modification
that s is a d-open, <5-compressed filter, hence s=5(y) for some Tx. O

The extension described in (7.6) plays a role in a theorem on extensions of maps.
Let us first observe:

(7.7) Lemma. Let Z, X be topological spaces, Zx an extension of Z, Yx a
strict extension of X, f :Z-*-X continuous, and suppose that, for zdZx—Z and the
neighbourhoodfilter »>(z) in Zx of z, the neighbourhoodfilter in X of f ((2)[2)
coincides with v'(y)\X where t>'(y) is the neighbourhoodfilter of some point yd Yx.
Then there exists a continuous extension g: Z1-*Y1 of f .

Proof. The condition assumed for z£Z1—7 is fulfilled for zdZ as well; in
fact, by the continuity of f /(0(z)|Z)->-/(z) so that the neighbourhood filter in X
of /(0(z)|Z) coincides with i/(/ (z))\X. Define g{z)=y if the neighbourhood
filter of /(u(z)|Z) is v'(y)\X, ydYx, in particular y=/(z) for zdZ. Theng:Z x—Yx
is an extension of /.

g is continuous at any point z0EZx. In fact, let Gxc X be openin X, g(z0d
€ (CY)= {yd Tx: Gift>, (y)|Tr}. Then x1(G1)n Z —Gx contains a subset of the form
/(G) where G=Uf\Z and U isan open neighbourhood of z0in Zx. Hence zd U
implies G£o(z)|Z, G1$D/(g(z))Jf, 9(z)E£.yx(Gx). Since the sets jx{GX) constitute a
neighbourhood base of g(z0), g is continuous at z0. O
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A Statement similar to the following one can be found in [9], (3.7):

(7.8) Theorem. Let 5X S be LO-proximitieson Z and X, respectively, (Z1,c1)
an extension compatible with dx, (Ft, c\) the extension describedin (7.6), and f: Z —A
(Rx, 5)-continuous. Then there exists a (cx, c[)-continuous extension of f.

Proof. For zdZx—Z, the trace s in Z of the -neighbourhood filter of z is
(>!-compressed by (7.1) and (6.9). Hence /('s) is <5-compressed, and the ~-neighbour-
hood filter of / (s) is still 3-compressed by (6.15); it is also cr-open, hence it coin-
cides with the trace in X of the ~-neighbourhood filter of some y£Yx. Thus (7.7)
applies. O

We add some easy remarks on separation properties of compatible extensions.
Let us say that a screen S is independent if sx, s2€S, %c s, implies sl=s2. A
topology is Sx iff the neighbourhood filters constitute an independent screen.

(7.9) Lemma. Let (Y,c') be a strict extension of the topological space (X, c).
Then the traces in X of the c'-neighbourhoodfilters constitute an independent screen
on X iff ¢ is an Sx-topology.

Proof. For pdY, let xp) denote the c'-neighbourhood filter ofp. Forp, g Y,
v(p)\Xczo(g)\X iff v(p)(zv(q) because (T, cr) is a strict extension. O

Let us say that a screen S> on X is disjoint iff sx, s23, sx” s2 implies the
existence of Sfis; such that 5\ 52=0. A topology is S» iff the neighbourhood
filters constitute a disjoint screen.

(7.10) Lemma. Let (F, cj be a strict extension of the topological space (X, c).
Then the traces of the c'-neighbourhoodfilters constitute a disjoint screen iff ¢ is an
S 2-topology.

Proof. Since the extension is strict, with the above notations, v(p) and u(q)
are distinct iff n(p)\Xy---o(g)\X, and they contain disjoint elements iff n(/>)|F and
u(g)|Z doso. O

In spite of the fact that, for strict extensions, the properties of the extension and
those of the corresponding screen are strongly related, it can happen that a topolo-
gical space (X, cj has two strict extensions (F;, c) (i—1, 2), for the screens  com-
posed of the traces in X of the «*-neighbourhood filters, Sj is coarser than S 2, but

(Fx, &) isnot coarser as an extension than (Fa, r2) (i.e. idx does not possess a (c2, cf)-
continuous extension g: Y2"-Yj).

(7.11) Exampre. Let W=R—{0} be equipped with the subspace topology c of
the usual topology of R, FX R, F2=RUM where RfIM=0, M= {pn:nEN},
N={1,2, ..}. Let Sxbe composed of the c-neighbourhood filters and a filter sO

generated by the filter base r= {£/£:e>0}, Ue—(—s, e)—{0}UN), A =|—:ufn]|.

Let sObe the trace of the cx-neighbourhood filter of O£ Y1. Let S 2be composed of
the c-neighbourhood filters, of sO, and of the filters s, where s,, is generated by the

filter base r,, composed of the sets V—j—j where V isa c-neighbourhood of —.
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Let sObe the trace in X of the c2-neighbourhood filter of 06T2, s,, be the similar
trace for p,,tY2- Both (Yt, cl) and (T2, c2) are supposed to be strict extensions of
(X, c¢). Clearly, Sx is coarser than ©2 (more precisely, ©x and S 2 are equivalent
screens).

Now suppose that idx has a (c2, cy(-continuous extension / : Y%-Y1. Since

/(s0)-0, /(s,) — and Yt is a T2-space, necessarily /(0)=0, f(pn)=-~.

However, / cannot be continuous at 06T2; in fact, Qr6s,, if ?<e, hence, for

these n, p,f{yf Yz: Ufiv2(y)\X}, where u2(y) is the ~-neighbourhood filter of y,
but f(pn) does not belong to the cx-neighbourhood UIU {0} of 06 Yx. O

8. Subcategories of Scr. We have already defined open, independent, disjoint,
and round screens. The following definition, too, is plausible: a screen © on X is
said to be minimal iff every filter s6© is minimal 5(S)-compressed (see (6.9)).

(8.1) Lemma. If 5 isaproximity on X, then a 5-round, 5-compressed filter is
minimal 5-compressed. Hence a round screen is minimal.

Proof. Let © be a (5-round, (5-compressed filter, s'cis a 5-compressed filter.
For 565, there is 5r6® such that S15X—S. Since 5i6secs', necessarily 565’
and s'—s. O

The converse of the first statement in (8.1) is true if 5is an EF-proximity: then,
for an arbitrary filter s is X, the sets S'czX such that S5X—S" for some 565
constitute a 5-round filter ([4], (6.3.9)) coarser than s, and s' is 5-compressed pro-
vided so is s ([4], (6.3.10)), hence s'=s ifsis minimal 5-compressed.

This is certainly not true if 5 is not an RE-proximity. In fact, by (6.13), the
screen S0composed of all minimal 5-compressed filters is compatible with 5 while
5 does not admit any compatible screen composed of 5-round filters ([5], (5.12)).

There are RE-proximities, too, such that a minimal 5-compressed filter need
not be 5-round:

(8.2) Exampre. Let X=co+l, F=w,+ 1 equipped with the order topology,
Z=XxY, T=Z—{i, Mj)} be the Tikhonov plank with the subspace topology c,
and, for A,B<zT, A5B iff c(A)C\c(B)=Q. Then 5 is an RE-proximity because T
is regular. Let s denote the filter in T generated by the filter base r = {R(n, a):
né®, a6t0i}, where

R(n,a) = {(m, fi): n<m< co, a</l< Q.

The filter s is 5-compressed. In fact, if A5B, then c(A)IN)c(B)=9, hence there is
a6b®i such that, say, (co, R)*c(A) for oor. For every such B, there are
mp£co and an open subset VR of Y such that (n, y)<(A for mB<n-<(o, € Vtt. Define
Um= U {VR:mp=m}. Since {Bfcol:a”B-cco” is countably compact, finitely many
sets Um. cover it, and R(n, a)l\A—0 if for every 1.

By (6.12) there is a minimal 5-compressed filter sOcs. sOcannot be 5-round.
In fact, by [5], (8.1), (8.4), and (3.9), the 5-round, 5-compressed filters coincide with
the c-neighbourhood filters, and s does not converge to any pointof T. O
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It is easy to show now that, if S is an LO-proximity on X, then a (5-open, &
compressed filter need not be minimal ~-compressed (i.e. the converse of (6.16)
is not true): let X= R. 5=SC for the usual topology ¢ of R, G=(0, I)cl, r=
={G—F: FaG, F=c(F)}. Thenr is a filter base; let u be an ultrafilter finer than
r, and s the c-neighbourhood filter of u. Clearly u is ~-compressed, by (6.15) so is s,
moreover, s is cM-open. However, s is not <5-round, because G£s, and SSX—G
implies ¢(S)cG, hence G—c(S)£s, S”s. Since $is an EF-proximity, s is not
minimal ~-compressed.

In order to introduce a further type of screens, let us say that a screen S on |
is ascending iff s£<3 implies s'E® for any filter s' in X such that sc s".

(8.3) Lemma. If 3 is an arbitrary screen on X, then the collection of all filters
s' in X that contain some S£<3, isan ascendingscreen S*“ on X equivalent to 3.
3 is ascending iff 3 =3 “. A screen 3' isfiner than 3 iff 3'cz3a 3 and 3’
are equivalent iff 3 *“=3"°.

Proof. Obviously S ¢ 3 hence 3 *“is a screen on X, and it is ascending by
definition. By S¢S * S is finerthan 3 and clearly 3 ““is finer than S. The remain-
ing part is obvious. O

Let us denote by Oscr, Iscr, Dscr, Rscr, Mscr, Ascr the full subcategory of Scr
the objects of which are the open, independent, disjoint, round, minimal, ascending
screens, respectively. Since some of these types of screens are defined with the help
of properties of the induced proximity, it is useful to study the behaviour of the
functor F(3)=S(3) with respect to the operations g_1 and sup.

(8.4) Lemma. If 3' is a screen on X, g:Z-*X, 3=g~13'), a'=4(s",
6= <5(S), then 6=g~1(6"), consequently cd=g~1(ce).

Proof. For A,B<zZ, ASB holds iff A, B6secg-_1(s') for some S'ES’
((6.7), (6.2)), hence iff g(A), g(B)£Esecs' for some s'€S’', ie. iff Ag~1{6")B by
(3.4). The second part follows from (3.10). O

Unfortunately, if 3t is a screen on X for /£/, S =sup {3;:/€/}, then, in
general,
6(3) X supProx{<5(Si): ifJ}-

(8.5) Example. Let Z=T=R, Z=XxY, letpyandp2denote the projections
from Z onto X and Y, respectively, let 3" be the screen on X=Y composed ofall
neighbourhood filters with respect to the usual topology c of R, <k=Pk1(3"),
S=sup{S1 S2}. Clearly P0O(3")Q iff c(P)0c(Q)x&.

Now let

A= {(x,x): x€ER}, B = {(x,¥): x,V¥€R, |x-y| £ 1}

Then ASB for <5=6(S). In fact, A6B would mean, by (6.7), (6.2), (6.4), that there
are d(xi) and o(x2) (where u(x) denotes the c-neighbourhood filter of X£ R) such
that every finite intersection of the elements of pil(d(x1))U ”* 1(o(x2d) meets both
A and B. However, this would imply that every neighbourhood of (xi, x2) with
respect to the Euclidean plane topology of Z meets both A and B, a contradiction.
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At the same time, AS'B for (5=supprax {5, €}, Sk=S(<3k). In fact, if
m n
A:\il Al, B:\IJBj, then at least one of the sets Atis unbounded; choose zx, z2dAh

|xx—x2> 1 for zk=(xk, xk). Then (xx,x2)dB, say, (xx,x2)£Bj, so that AiSkBj
for k=1, 2; indeed, we have Au Bjdsec pk (v(xk)). O

The validity of a weaker statement is the subject of the following problem:
let  be a screen on X for ifl, <»=sup {S,: iG/}, = (5(<5), 6=6(S), q=caqj,
c=cs, and c'=supcl{cr:/6/}; isitalways true that ¢'=cl The following example
shows that the answer is negative in general.

(8.6) Example. Let A=R-, g be the point (0, 0)6 A, and let K denote the circle
with radius 1and centre g, i.e. K={xdX\ |x|= 1} where we use vectorial nota-
tion. For xdX, udK, e=-0, let

Vxue = {+ru:04a r < «},

and let s(x, u) denote the filter in X generated by the filter base {V(x, u, e):s>0}.
Define S' to be the screen on X composed of the filters s(x, u) (xEX, udK).

Now consider Y =XxX with the projections px and p2, and define <k=
=PkXR') f°r k=1,2, S=sup {Sx ®2}, Sk=S(Qk), &= <5(S), ck=cSk, c=cs,
c'=supci {cj, c2}. We show c Xc.

Define, for this purpose,

A - {(g\V\u—N\y, g+\u—v\v)ZY: u, vdK, u " r}.

Then (g, q)$c(A). In fact, a filter s£<5 is generated by the finite intersections of
the elements of sxUs2 where skdQk. If (q,q)dc(A) were true, then there would
exist u, VEK such that

Pi 1V (?, « *0)Mp21V(q v, 8) A X 0

for every s>0. However, this is not true if u— or e<|u—.
On the other hand, (g, q)dc'(A). In order to see this, we have to show that,

n
whenever A=\IJ Ah ndN, there is an i such that (g, g)dc1(Ai)r\c2(Ai), i.e.
(cf. (8.4)) there are u,vEK suchthat

Pi(A)Esecs(q, u), p~ AJdsec s(g, V).
Assume this is not true for some representation A:{i At. Then, for every i, either

Pi(T;){ secs(t/, u) for each udK,
or
p2(A) 6 secs(q, v) for each vdK.

Let B and C denote the union of the sets At of the first and second type, respectively.
Then A=BUC, and

Pi(B) $secs(qg, u), p2C)<{secs(q,v)
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for u,vEK. Hence there is a positive valued function / : K-»(0, 1] such that
q+rufypfB) for 0S r </(u),
q+rv$Pt(C) for 0~ r <f(v).

Now if u,vZK, O<r=|u—A, and /(u)>r, f(fi)>r, then (g+ru, q+rv)£A,
but this point can belong neither to B nor to C:a contradiction. Hence, for a given
utK, viK and \v—u\<f(u) imply f(v)-"\v—u\ ie. limf{v)=0. From the
compactness of K, we easily see that f(u) =0 with an exception of countably many
values of u, a contradiction again. O

A positive result can be obtained by restricting the class of the screens involved:

(8.7) Lemma. Let <% be ascreen on X for i£f such that, for each x£X, there
is a single filter s6<5r fixed at x, (5=sup {S;:/E/}, &=<5(3(), 5=06(Q), ci=cSi,
c=cs, c'=supa {cEifl}. Then c'=c.

Proof. The case 7=0 is obvious. Assume 7”70. Since S, is coarser than 3
for every ifl, dt is coarser than <§ ct is coarser than c, and c' is coarser than c
as well ((6.8), (3.13)). Hence x£c(A) implies x€c'(A).

Suppose x$c(A). Then a filter s€<5 fixed at x satisfies Acfsecs. Now it is
clear that there is a single filter s€3 fixed at x, namely the one generated by the
finite intersections of the elements of (J % where sfi 3 r is the unique element of S;

rer
n

fixed at g. Hence /1 I'II? =0 f°r suitable sets Sk€$ik, ikdl. Define Ak=A —Sk;

n
then A:\i Ak, and x$cik(Ak) because siCis the unique element of 3 it fixed at x.
Thus x$c'(A). O

Let us say that a screen 3 on X is unipunctual iff, for xE£X, there is a single
filter sE3 fixed at x.

In order to obtain a positive result concerning the problem discussed in (8.5),
we need another class of screens; observe that Sj and S 2are unipunctual in (8.5).
We say that a screen 3 on X is saturated iff it is composed of all <5(S)-compressed
filters; such a filter is ascending.

For ascending, in particular, for saturated screens, the construction of sup is
very simple:

(8.8) Lemma. If ST isan ascending screenon X for LL/S, then
sup {3(: i£7}= 1N SI-
ier

Proof. Denote by 3 the sup at the left hand side. Then s£S implies, for
i£1, the existence of SjGSj such that s;c:s, sothat si 3 ; for every i. Conversely,

s£ 3 r for each i implies that s is generated by the finite intersections of (J 3r pro-
ser
vided Si=s for everyi. O

(8.9) Corolnrary. If <§ is an ascending screen on X for idlAfi, then sup {3r:
/67%} isascending. O
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(8.10) Lemma. Let Sf be a saturated screen on X for idlI-/-ft, S = sup {3;:
idl}, 6i=06(&i), $=0(3). Then d=supProx {d,: /€/}, wiR? 3 is saturated as well.

Proof. Denoting by S' the sup at the right hand side, clearly S'is coarser than
S by (6.8). A (5-compressed filter is &-compressed for every i, hence it belongs to
Sj by hypothesis, and also to 3 by (8.8). Hence 3 is saturated.

A d-compressed filter is d'-compressed. Conversely, a d'-compressed filter is
B-compressed for every i, hence it belongs to 3 and it is compressed. Therefore,
(5-compressed and d'-compressed filters coincide. By (6.11), S—5'. O

Let us denote by User and Sscr the full subcategories of Scr the objects of which
are all unipunctual and saturated screens, respectively.

(8.11) Lemma. If 3" is an open, or disjoint, or round, or unipunctual screen on
X, g:Z->-X, thensois S=g_1(3").

Proof. For s'ES', let s be the filter in Z generated by g-1 (s') (provided the
latter is a filter base).

If s'is d(S")-open, Sds, then S*>g~1(S') for some S'ds', and S'ZDSids'
for some d(S')-open Si. By (84) g“1*) is d(S)-open,

If s; is generated by g_1(s,0, s,'€S' for /=1,2, and s1"s2, then si”sa.
If S'is disjoint, thereare Sids( suchthat Clearly g_1(di)ng_1(5j) =
=0 so that 3 is disjoint.

If s"is d(S")-round, Sd s, then S3g_1(5") for some S'd*', and 5~ (3')A —S'
for some Sj~s'. By (8.4) again, g~1(S)0(<zZ)Z-g~1(S')z)Z2—S so that s is
d(S)-round.

If s is fixed at zEZ, then clearly s' is fixed at g(z)dX, hence both s' and s are
uniquely determined. O

(8.12) Lemma. Ifevery 3 ; isan open, or disjoint, or round, or unipunctual screen
on X for idl, thensois 3 =sup {3r:idl}-

Proof. The case 7=0 is obvious. Assume 7”0.

If sd<3, let sf 3; be chosen such that the finite intersections of the elements
of U § generate s.

mi N

If each Si is open, Sds, So f{ Sk, Skdb5ik, ikdl, then we can choose d(S;J-
open sets Skdsik such that Skz) Si. Clearly Si is d(S)-open since d(3 ¥ is coarser

n

than d(S), hence f} Ska S is d(S)-open as well and it belongs to s.

If each Si is disjoint, let s' be generated by the finite intersections of _(€J/ G

i

si€Si, and s”™s'. Then s”si for at least one /, hence there are Sdsf, S'dsi
suchthat iSn5"=0. Clearly Sds, S'ds' so that 3 is disjoint.

The case of round screens is discussed in [5], (7.10). The argument for the case
of unipunctual screens is contained in the proof of (8.7). O

(8.13) Theorem. The categories Oscr, Dscr, Rscr, User are bireflective subcate-
gories of Scr and of every larger full subcategory of Scr, and they are strongly topo-
logical.
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Proof. (0.2), (8.11), (8.12), (6.6). O

Instead of (8.11), a weaker statement can be proved for the subcategories Iscr
and Mscr:

(8.14) Lemma. If S' is an independent or minimal screen on X, g: Z ->X is
surjective, then <5=g_1(S") is independent or minimal, respectively.

Proof. Let s-€<5, and g_1(s-) generate st, /=1,2. |If SxCSa, then
«(M-1(*D)-="(«-1(*0)- Now g(g-'(S'j)=S" (S'czX) implies g "~ 1(»))="*;,
hence sjcsj. If S'is independent, we have s(=sj, S'=s2.

Now assume that S'is minimal, s'€S’, let s be generated by g_1(s"), and let sx
be a <5(S)-compressed filter, s, c:s. Then g(sx) generates a KS')-compressed filter
si, and si<g(g_1(s0)=s/- Hence s(=s', and Sfls' implies S'IDgiS)) for
some SjiSj, hence g“1(S,)z)g_1(g(ii))3Sx so that g_1(S")€s1, scsj, finally
Sx=S. O

(8.15) Lemma. // S' is an ascending screen on X, g: Z-»X is injective, then
S=g~1S") is ascending as well.

Proof. Let s'£S' and let st be a filterin Z such that g_1(s')<sl1l. Then s'<
<g(g-1(s'))<g(si) so that the filter generated in X by g(sx) belongs to S'. By
g-1g(S))=S (SczZ) we get g-1(g(si))=sls hence Si*s- G

(8.16) Lemma. If S' is a saturated screen on X, g: Z —A, then, for S =
=g~1S'), Sa is saturated. In particular, if g is injective, S is saturated itself.

Proof. If s isa <5(S)-compressed filter, then g(s) generates a <5(S')-compressed
filter s' by (8.4), hence s'€S', and g-1(s')<g-1(g(s))-<s furnishes s£Sa. By
(8.3), <5(S)=5(Sa) so that Sais saturated. The second statement follows from
(8.15). O

(8.15) and (8.16) are not sufficient for applying (0.2) or (0.3). However, we can
prove directly the following theorem.

(8.17) Theorem. Ascr is a bi(co)reflective subcategory of Scr; the (co)reflection
of S is Sawith the (co)reflector id.

Proof. By (8.3) S*is an object of Ascr. If S' is an ascending screen on Z,
g: Z—X, and g is (S', S)-continuous, then it is (S', S*)-continuous because S
and S*are equivalent; if g: X-~Z and g is (S>, S")-continuous, then it is (<3, S')-
continuous. O

(8.18) Theorem. Ascr is a strongly topological category with the operatoins

[ &,§(<59 = fsci (®o)a
for an ascending screen S,,,
supAscriSd /£/} = (supscri®;: »€/})“

for ascending screens St.
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Proof. If / : X-+Y, SO is an ascending screen on Y, then S=/_1(S0)“ is
an ascending screen on X, f is (3, SO(-continuous, and if it is (S', 3 0(-continuous,
then it is (f-'i&o0), S0)-continuous, so (3, S 0(-continuous, always because 3 and
/ _1(30) are equivalent. (We write / _1 instead of fs,, and sup for supScr.)

Similarly, if 3; is an ascending screen on X for idl, then 3“is an ascending
screen on X for 3 =sup {3;:/£/}, finerthan every 3; and, if S' is ascending and
finer than every 3, then 3' is finer than 3 and than 3 “. Observe that, by (8.9),
3=3° if 170. If 1=0, 3° is the collection of all filters in X.

Since, if g: Z2—T, f :1-f, and 30 is an ascending screen on Y, / _1(S0)
and / _1(30)“ are equivalent, so are (/0g)-1(®0)=g-1(/-1(©0)) and
~N-1(/-1(®0)e). hence by (8.3)

(log)-4So)a= g-~Z-HSoYYy
(both sides are equivalent and ascending), i.e.

(/°g)A"scr(So) = gAscr (/Ascr(®0))-
Finally if 3; is ascending on X for /€/, g:Z—X then it is easy to see again
that both sides of the equality

g-1((sup{8ipa)a = (sup{g_1(Si)}’

are equivalent and ascending. O

(8.19) Theorem. Sscr is a bireflective subcategory of Scr; the reflection ofa screen
3 on X isgiven by 3s, the collection ofall § (3)-compressedfilters, with the reflector
idx.

Proof. By (6.11), d(®9=d(S) so that 3sis saturated. ScSs by (6.9),
hence 3 sis coarser than 3, and if S isa saturated screenon Y, f : X-*-Y is (3, 3')-
continuous, then, for a filter sf3s s is d(S)-compressed, hence /(s) generates
a <5(3")-compressed filter s, so sTS' and / is (3s, S')-continuous. O

The strongly topological character of the category Sscr is a consequence of the
following :

(8.20) Theorem. For a saturated screen 3, define T(3)=<5(3). Then F
induces an isomorphismfrom Sscr onto Prox.

Proof. By (6.11), d(3(c>))=<5 so that 3(d) is a saturated screen. Conversely,
for a saturated screen 3, S(<5(S))=S by definition. If / :X—Y is (3, £')-
continuous then it is (<5(3), d(S")-continuous by (6.8). Conversely, if / is (G <5)-
continuous, and s is a d-compressed filter, then /(s) generates a d'-compressed
filter, hence / is (3 (d), 3 (d))-continuous. O

It is an attractive idea to use the results on the category Rscr for examining the
category RE-Prox. In fact, by [5], (5.1) and (5.12), if 3 is a round screen, then d(S)
is an RE-proximity, and conversely, if d is an RE-proximity, then the collection
S"(d) of all d-round, d-compressed filters is a round screen inducing d.

However, this method yields modest results only. We have e.g.:

(8.21) Lemma. If 5' is an RE-proximity on X, g\Z~-X, then g_1(d,)=d
is an RE-proximity on Z.
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Proof. (8.11) and (8.4). O

On the other hand, (8.12) (or [5], (7.10)) does not imply similar consequences
for supProx {5 : ifl}=8" ifevery §isan RE-proximity because, taking round screens

such that G="(01, <S5=sup {3;:iff] will be a round screen but 8'a S(<2)
in general (observe that and 3 2in (8.5) are round screens).

If we examine the relation between 8 and <& (8), for RE-proximities S, we expect
that F(8)=<&r(8) induces an isomorphism from RE-Prox onto a subcategory of
Rscr. This is not true because a map / : X-+Y can be (8, <5')-continuous for RE-
proximities § 8' on X and Y, respectively, without being (3I{(b), 0"(<5")-continuous
(5], (8.11)). However, we can obtain again a positive result concerning inverse
images.

(8.22) Lemma. Let f :Z—X, let 8 be a semi-proximity on X, and let
S'=f~1(§). If 5 is a8-compressed or 8-roundfilter in X, then f~ 1(s) generates
(ifitisafilter base) a 8-compressed or 8'-round filter in Z, respectively. Conversely,
let s' be afilter in Z, and let s be thefilter generatedin X by f (s')- If s'is8'-round,
then / “1(s) generates s'; if s' is 8'-compressed, then s is 8-compressed; if s' is
8'-round and f is surjective, then s is 8-round.

Proof. If A, Bdsecs', s' is generated by / _1(s), then f(A), /(B)Esec s,
hence / (A)8f(B) provided s is <5-compressed, so that AS'B.

Now let s be d-round, s' generated by / _1(s), and S'ds'. Then S'z>f ~ 1(S)
for some Sds, and there is Sxds suchthat Sj*SX—S. Then f~ 1(S1)df, and
[(/-"ffi))cSx, f(Z-S" ) f(Z-f~'(S))czX-S imply f-~SjS'Z-S', so
that s' is d'-round.

Conversely, let s' bead'-round filter and let s be generated by / (s'). Then Sfs
implies Sz}f(S') for some S'ds', hence f~ 1(S)z>S', f~ x(S)ks'; on the
other hand, S'ds' implies the existence of N(6s' satisfying S'fi'Z—S', hence
/(SD€s, [ (Si)8f(z—S"), thus so that S) generates s'.
If ' is M-compressed then s is <5-compressed since / is (8', d)-continuous. Finally
if / is surjective, Sds, then SA>f(S') for some S'ds', and SX8'Z—S" for some
Sids'; we have again f(S'Xds, f(Si)8f(Z-S')"X-f(S')nX-S, so that s is
d-round. O

(8.23) Corollary. Let f :Z -X be surjective, 8 an RE-proximity on X,
<K= /-i(<5). Then Sr(<5)=/-1(Sr(<H). O

Concerning the operation sup, the situation is less advantageous. In fact, if
8i is an RE-proximity on X for ifl, then sup |3 r(&): r£/}=3 need not be of
the form Sr(d (0)). Infact, if T is a set of cardinality ojl(e.g. if T denotes the Tikho-
nov plank), and {8p. idl} denotes the family of all possible RE-proximities on T,
then, by [5], (8.10), there is no RE-proximity on T such that O r(§ is finer than
0 I'<\) for every i.

The answer to the following questions is unknown to the author:

Let Si be an RE-proximity on X for idl, 8'=supPuox(d;: ifl).

(@) Is it true that B=4(0) for S =sup {0r(H): f€/}?

(b) Is it true at least that 8' is an RE-proximity?

(c) Is it true at least that there is an RE-proximity 8" finer than 8 and coarser
than every RE-proximity finer than 8'1
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A candidate for S" can be obtained in the following way. By (5.1), S' is an
R-proximity, and by (8.7) cO0.=cs for &= <5(0), and, of course, &is and RE-pro-
ximity finer than S' by (8.12), (6.8), and [5], (5.12). Now [5], (5.16) says that, if S’
is the collection of all (»'-compressed, <5'-round filters, then §(0") is an RE-proximity
finer than S'. However, the author cannot prove that ((S') is coarser than every
RE-proximity finer than S', or, at least, that &(S") is coarser than S.

The relation of screens to merotopies will be discussed in the following Part I11.
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METRIZATION AND LIAPUNOV FUNCTIONS. V

B. M. GARAY (Budapest)

This paper is the continuation of [2a—2d]. The problem we deal with is the
possibility of constructing remetrizations of the phase space such that the new met-
rics describe attraction and repulsion properties of the trajectories.

An obstacle to this approach is the presence of nonequilibrium recurrent trajecto-
ries (precluding the existence of global Liapunov functions). This difficulty can be
overcome by factorization according to Auslénder recurrence classes [4].

Now we concern ourselves with an additional obstacle. Replacing the finiteness
condition of a previous result [3, Theorem 2.1] by local finiteness, we prove a theorem
on the existence of metrics of Liapunov type. On the other hand, we point out by
examples that, in general, local finiteness can not be weakened further. The dyna-
mical system defined in Example 1 has no recurrent trajectories but equilibrium
points. Example 2 shows that the local finiteness condition can not be dropped even
if compact isolated invariant sets are replaced by asymptotically stable equilibrium
points.

Throughout this paper, let (X, d) be a locally compact separable metric space.
Given a point xeX and a set YczX, the distance between x and Y is defined as
d{x, F) =inf {d(x,y)\yEY}. For 0O, the set {xeX\d(x, Y)=cj is denoted by
S(Y, ¢).

Let T:RXX"-X be a dynamical system. For terminology and notations, see
[1], [2a—=2d], [3]. For brevity, we say that a continuous function V: A—R+ is a
Liapunov function for a compact isolated invariant set K if it is a strictly monotonous
Liapunov function for Kon A (K)UK (K) andinaddition, itisa hyperbolic Liapunov
function for K on some compact neighbourhood N of K.

Let 0=CocC 1c:C2cr... be a nested system of compact sets such that
U{C,[nEN}=A and C,cintC,+1, «6N.

Theorem 1 Let KO, KIf Kr, ... be pairwise disjoint compact isolated in-
variant sets. For each nEN assume that the set {TelllLKTC\CnxLl, isfinite. Further,
assume that Km is positively resp. negatively relatively asymptotically stable with
respect to A(Km) resp. R(Km), mEN. Then there exists a remetrization q of Xsuch
that the function Vm: X—R + defined by Vm(x)= o(x, Km) is a Liapunov function
for Km, meN.

Proof. We divide the proofinto three parts:

A) A preliminary remetrization. There is no loss of generality in assuming that

(1) sup {d(x, y)\x, ye A}s3,
(2) d(x,y)=3 whenever xeKp, yeKqg; p,gEN, pXq.
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Proof. Let F= U {iRTImMGN} and define a metric 6 on Y by letting

rmin{3,d(x,y)} if x,yeKp,peN.
*.Y)- 13 if XEKpfy£Ka; p, gEN,p * 0.

It is easy to check that F is a closed subset of X and 0 is a metric on F topologically

equivalent to d\Y. Applying HausdorfFs extension theorem for metrics [6], $can be

extended to a remetrization A of X. d(x, y) can be replaced by min {3, A(x,y)}.O
From now on, assume that conditions (1) and (2) are satisfied.

B) Extension lemma for hyperbolic Liapunov functions (a technical lemma).
Let K<zX be a compact isolated invariant set. It is clear that KczX\C,AK) but
KMNCnUuHIr& for some n=n(K)EN. (Recall that 0=CQ) Let L e i be a closed
set for which LC\(A(K)UR(K)) =& and in addition, d(x,y)=3 whenever xf K,
ydL. Assume that K is positively resp. negatively relatively asymptotically stable
with respectto A (K) resp. R(K). Then there exists a continuous function V: X-[0, 5]
with the following properties:

(3) Visa Liapunov function for K,

4) F-i(0)=K, V~15)=LU(cI(A(K)(IJR(K)\(A(K)UR(K))),

(5) for each x£X, there holds d(x,K)SV(x),

(6) for each xZX\S(K, 1), there holds F(x)s4,

(7) for each x£S(L, I/n)\S(L, 1/(n+1)), there holds V(x)"5—I/(n+l),
n=1,2,...,

(8) for n=0, 1, ..., n{K), there holds inf {F(A:)|x6Cn}&5_I/(n(i:)+ |—n).

(By definition, inf {F(x)|x€0}=°° for each real function F.)

Proof. Let N and W\ N “R + be constructed as in the proof of Lemma 2.1
of [3]. isa compact neighbourhood of K and IF is a hyperbolic Liapunov function
for K on N. Without loss of generality, we may assume that

NdS(K, Dfl (X\C,,m).

The stability conditions imposed on K imply the existence of a constant c0>0 and
of a compact neighbourhood N cft ofif for which N :={xEN\W (x)S c0} and in
addition, {Ttx\xEA(K)f)N, tsO}crjV, {Ttx\xER(K)C)N, t~0}aft. Since W is
a hyperbolic Liapunov function for K on N, the sets

SAK):= {xEA(K)\W(x) = cB = A(K)HdN,
SR(K):= {XER(K)\W(x) = c0} = R(K)OdN

are closed and for each x£A (K)\K resp. xER (K)\K there exists a unique ix(x)ER
resp. iA(i)eR for which TtAX)xCSAK) resp. TtR(X)XESRip and in addition, the
functions tA: A (K)\K Al resp. tR: R(K)\K- R are continuous. In other words,
Saw isasection for A(K)\K and SR(K) isa section for R (K)\K @ both A(K)\K
and R (K)\K are parallelizable.

Let g: [0, cO]—0, 4] be a strictly increasing continuous function with g(0)=0,
g(c0)=4. Define a function V: iV->-R+ by V(x)=g(W(x)). It is obvious that

(3)' Visa hyperbolic Liapunov function for K on N, and

(4/ V~1(0)=K.
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By a simple compactness argument, an appropriate choice of g guarantees for V
to have the following properties as well:

(5) ' for each xEN, there holds d(x, K)"V(x),

(6) " for each xEdN (observe that dNczS(K, 1)), there holds V(x)=4.

In what follows, we extend V from N onto X.

Observe that the sets fE[0, ]} and {I(x|x65'A(K), i€[0, 1]}
are compact, for each t>0. Consequently, the inclusion NczS(K, 1)M(X\C,,"K))
and the conditions imposed on L imply that the sequences

inf{"(x)|xeNe )\/O nNe , ¥n)\S(L, l/(«+])))},
Sr'=M {-tR(x)\xt(R(K)\K)n(S(L, Yn)\S(L, L/(n+ 1))},

n—1, 2, ... consist of positive elements and
snh,4 “u'  as n >
and that
aUr 2O for n=0,1,..., n(K)
where

m:=1tr{*x)x€™)\v)n C},
fk:= inf{-tR(x)\xE(R(K)\K)nCn}.
Choose a strictly increasing continuous function h: R+-*[0, 1) for which /i(0)=0,
h(tA),h(t"R) ~ I-1lI(n(K)+1-n) for n- 0,1,...,n(K),
h(sR),h(sR) =1-1/(mn+1) for n=1,2,...

For xEA(K)\N, let V(x)=4+h(tA(x)) and for xiR(K)\N, let V(x)=4+
+n(—R(x)). Since A(K)fJR{K)=Kc:N, V(x) is well-defined. By (6)', we have
obtained a continuous extension of V onto NUA(K)OR(K). Since /i(r)—1 as

V can be continuously extended onto Z:=iVULUcl (A(K)UR(K)) by
setting F(x)=5 for x£EL\J(d (A(K)UR(K)\(A(K)UR(K))).

Since h is strictly increasing, (3)' and tA(Ttx)—tA(x)—t, tR(T,x)=tR(x)—t
imply that

3) " V is a Liapunov function for K on Z. Further, in virtue of the properties
of h, we have that,

4 " V~10)=K, V~1(5)=L"I(d (A(K)UR(K)\(A(K)UR(K))),

(7 " foreach x£Zf](S(L, I/n)\S(L, I/(n+1))), there holds F(x)s5 —/(n-f-1),
n=12, ..,
(8) " for n=0,1, ...,n(K), there holds inf {V(x)\x£Zf)C,,}=5—1/(u(.K) + 1—).
By (1,) (5)' and (6)', we have that

(5) " for each x£Z, there holds d(x, K)"V(x).

(6) " for each x£Z\S(K, 1), there holds F(x)s4.

The extension of V from Z onto X can be completed now by a repeated appli-
cation of Tietze’s extension theorem. Using (1), (4)"—(1)", it is easy to construct a
continuous extension VL of V satisfying (4)—(7). In fact, VL can be obtained by a
step by step extension of V from Z(\{xEX\d(x, L)~I1/n} onto {xEX\d(x, L)=I/n}
followed by an other step by step extension onto ZUcl (X\S (L, I/m)), n=1, 2, ....
Similarly, it is not hard to extend V continuously so that the extension Vc: X->-[0, 5]
satisfies (4)—(6), (8). V(x) can be defined as max {VL(x), Vc(x)}. O
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Let us remark a useful consequence of (7) in advance:

(9) V(x)=5—d(x, L) whenever d(x, b)LLU1

C) The final remetrization. We apply the Lemma for K=Km, L=Y\Km,
The resulting Liapunov functions are denoted by Vm, m{|N.

In virtue of (5), we have that
(10) for each xiX, there holds d(x, Km)*V m(x), miN.

We show that
(11) for each xiX, there holds Vp(x)+Va(x)"5, p, qiN, p"q.
We distinguish two cases according as xiS(Kp, 1)US(Kq, 1) or not. If xiS(Kp, 1),
then xiS(Y\Kgq, 1), consequently, by (9) and (2), Vq(x)"5—d(x, Y\K g)=
= 5—d(x,Kp) and the desired result follows from inequality d(x, Kp)”V p(x).
The subcase when xiS(Kq, 1) can be settled similarly. Finally, if xiX\(S(Kp, 1)u
US(k,, 1)), (6) implies that Vp(x)+Vq(x)"4+4>5.

Now we are in a position to define 4. For x,yiX, let

a(x.y) = max{d(x, y), sup {Vm(x)-V my)\ [m€N}}.
We show that
(12) for each xiX, there holds q(x, Km)=Vm(x), mi N.
In fact, using (4), yiKm implies that

B(x,y) = max{d(x,.y), sup {Mn(x), 5-V p(x)\pilS,p F m}.
Therefore, by (10) and (11), taking infimum for yiKm, (12) follows.

It is left to show that d and » are topologically equivalent. It is clear that 4 is a
metric on X and that d(xn,x)—0 whenever q(x., x)->-0. Therefore, in order to
prove topological equivalence, we have to show that q..x)-*0 whenever
d(x,,, X)->-0. In the contrary, suppose there exist a sequence {x,,}*czX and a con-
stant e0>0 suchthat d(x,,,x)-+0 for some xiX but g(x,,,x)>s0, niN. Since
X is locally compact, we may assume that xiCmn{x), {xn}*czC,,M for some n=n(x).
Combining (8) with the local finiteness condition, it follows that there is an mO=
=mO0O(n(x), D) iN such that Fm(z)"5—s02 whenever ziCn(x), miN, m=ma.
Consequently, we obtain that m~m 0 implies that

Wh(x) -V O\ A [Fn (-5 [k W
= (5-FrX,,))+(5-Fm*)) si 02+e]2 = 0
for each ni N. Thus,
£o”B(xn, x) = max {d(x,,, X), max {vm(x,,)~Vm(x)\ |m€N, m < mQ}}
which is a contradiction for n sufficiently large. O

We now give two examples showing that the previous theorem is incorrect
without the assumption that the sequence of subsets KO, K1, K2, ... be locally
finite.

Example 1. Let T=({0}U {1/m\m=1, 2, ...})x[-I, IJcR2 Set CO0=(0, 1),
A)—0, —1), A =(0,0) and for m=I, 2, ..., set cm—(jm, 1), Dm= (I/m, —1),
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Em=(l/m, 0). For mEN, let Km=C,,+10Dm+2. Let T: RX-T—X be a dynamical
system satisfying the following conditions:

(CO For each mEN, Cm is a source, D,, is a sink.
(CO There are no other equilibrium points but Cmand Dm, m€N.

It is clear that all conditions of Theorem 1are fulfilled with the exception of the one
concerning local finiteness. Assume that we are given a metric g on X topologically
equivalent to the usual Euclidean metric for which Vm: X*-R + defined by Vm(x) =
=q(x, Km) is a Liapunov function for Kmon X, m£N. Since A(Km)=Cm+lU
Ul/(m+ 2)}x[—1, 1)), we have that

min {g(.Cm+2, Cm+l), g(.Cm2Dm2)} —R(Cmi2, KJ =
> e(Em+i, Kn) = min {g(Em+2, Cm+l), g(Em+2, Dm+2}.
Consequently, by letting we obtain
0 = min {e(CO, CO, g(C0,D0O} a min {q(EO, CO, gq(EO, DO},
a contradiction.

Example 2. For each N, set Tme[l/(3m+4), I/(3w+2)]X[—L I]cR 2
fsm=(1/(3m+3), 0). Let Nr=({0}x[-1, INUAOUITIUAraU ...cR> Let T: Rx
XA'-'-Z be a dynamical system satisfying the following conditions:

(Cj) Foreach mE£N, is a sink with A(Km)=int ,
(C2) Theset (0}x[—L 1 is filled up with equilibrium points.
(C3) For each mEN, Xm is a periodic orbit.

Of course the sequence of the asymptotically stable equilibrium points KO, Ku K2, ...
is not locally finite. (The other conditions of Theorem 1 are fulfilled.) The failure of
Theorem 1 can be shown easily. We leave it to the reader.

Remark. We do not know whether the pairwise disjointness condition of
Theorem 1can be omitted or not. Even the pure metrization aspects of the weakening
of this condition seem to be very difficult. Cf. [5].
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ON DIVISIBILITY PROPERTIES OF INTEGERS
OF THE FORM a+a'

P. ERDOS, member of the Academy and A. SARKOZY (Budapest)

1. Throughout this paper, we use the following notations:

For any real number x let [X] denote the greatest integer less than or equal to
I, and let ||x]| denote the distance from x to the nearest integer: [[id =min (x—x], 1+
+ [X]—x). We write e2nix=e(x). The cardinality of the set X is denoted by \X\.
N{n) denotes the Mangoldt symbol.

In this paper, our goal is to study the following problem:how large can |s/\
be if stc{\,2, .., N) and a+a' is squarefree for all afsrf, afsdl (See [1],
[2] and [4] for other somewhat related results. In fact, in all these papers arithmetic
properties of sums of sequences of integers are studied.)

We will prove the following results:

Theorem 1. For N> NO, there exists a sequence sdc {1, 2, ..., N} such that

(1)
and a+a' issquarefreefor all afs4, af sd.

Theorem 2. If N>NX n/c{l, 2, .., N} and a+a' issquarefreefor all afsd,
afsd then we have

2 j2/<3A3/4log N.

There is a considerable gap between the lower and upper bounds above. We
guess that the lower bound is nearer to the truth. In fact, we conjecture that the
upper bound in (2) can be replaced by Ne(for all £>0 and N=~N2(r)) and, perhaps,
even by (log N)c. Unfortunately, we have not been able to prove this.

By similar but slightly more complicated methods we can get analogous results
for A>th power free numbers.

Also the following related problem can be considered: Let [*aifa?2<..
...<aksN, 1<bl<b2<...<bi”N be two sequences of integers. Assume that all
the sums

at+bj, 1SiSk, \=j=I

are squarefree. Our method gives that
Id< N32+

and we can show that kI/N-» <> is possible, but we of course have no satisfactory
upper bound for kl. Perhaps the following remark is of some interest: there is an
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absolute constant ¢ so that k>cN, /*<» is possible. Here perhaps / must be less
than log N or (log N)c.

2. In this section, we prove Theorem 1. Let prdenote the z-th prime number.
Let N be a large positive integer, define the positive integer K by

3) _h@lpi<"]/2 _r_11pi
and put
P= _I_‘Ilph

Then by the prime number theorem we have

(4) logp =2 2 log/lh~2 2 n(n) ~ 2Pk
i—I "Si>K
so that for N-+ + °° we obtain from (3) that
4P
(logP f p\
hence logP~T so that, in view of (4), for large N
(5) N12=8P = p\ pf < U3 (logP)2™V12< * iVI2(log IV)2
i= 11
Let us take all the integers n satisfying
(6) n = 2 (mod 4)
and
) n"O (modpf) for i=23,...K
These integers lie in
K 1 K 1 K ( 1)
i 0tf-1 - Iy id (rf-2=71f H\) . ZI, >
<—plfl—A=—p—3FtL=—p>—
M R A I LA

residue classes modulo P. Let us take the intersection of the set {1, 2, ..., N} with
K

each of these residue classes. In this way, we get ]j (pf—1) arithmetic progres-
i=2

sions; let us denote the set of them by B, so that

®) Bl = F,(pr-1)>7 p-
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Then for J1€B, clearly we have
9 [N/F] A AW, < [7V/P]+1  (for NleB).

If B, then n satisfies (6) and (7), so that n is not divisible by p\,
Thus if n is not squarefree then pfi\n for some K<iSn(N1D. In view of (4), the
number of the integers nwith n*N, p\n (JV<i'SHTVL2) is

itGv1/2) r N 1 +«0
)%1 L‘bf,] (-1%+1 < é)f< n n=1?K, n ﬁ(ﬂ\(m '%l
1 1 3V
w2 —~ = Vo1 Ve Plogp

for TVlarge enough. Thus, in view of (8) and (9), there exists an arithmetic progres-
sion J1ICEB which contains less than

3V(log/*) 1 37V(logP)-1 L\
|B| “ P/5 N 5PlogP
integers which are not squarefree (for TVlarge enough). Let mx<wu2-=..<n{ be
those integers in which are not squarefree so that
(10) < —mmmoeeee- .
Put un,=0, nt+1=N+I,
M = max |0l (un;, wi+l)]|,

and assume that this maximum is assumed at i—r:

= |N0c (ar, nr+l)|.
In view of (5), (8) and (10), for large TVwe have

— [41 = W = 2 AoM [my,nr+1) S 2 (1 +|~00 (m, Hi+1)])
2P Lr v i=0 i=0

Si(1+¢) =cD2M<(TINL+2A  JW L

hence, by (3),
(11) M > log P —m”elog M2 = -y"-log "\
Let us write
&O0(I(nr,w+l) = {2b, 2b+P, ..., 2b +(M-\)P}.

(Note that by (6) and J10€B, all the elements of 3Bnare even.) The elements of
M(«r,n,+1) are squarefree. In fact, if WEMAOM(ur, nr+l), then by (6) and (7),
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n is not divisible by p\,p\,...,p\, and by nr<n<nr+l, it is not divisible by p%+i,

Pk+2, m’ PnifN)-
Let us put

s/=\b,b+P,...,b+\~ -\p\.

Then for a<Gé, a'Esd we have a+a'C_CH#OIMN)(mr, nr+l), so that a+a' is square-
free.
Finally, by (11) we have

which completes the proof of Theorem 1

3. The proof of Theorem 2 will be based on the large sieve but we shall sieve
by squares of primes. In this section, we derive the sieve result needed in the proof.

Lemma 1. If M, N are integers, N s 1, aM+l, aM+i, ..., aMHN are arbitrary
complex numbers, we put
M +N
S(x)= %  bne(nx).
()= % bne(nx)

Let Che a set of real numbersfor which
(12) Ugc-xM S S> o
whenever x and x are distinct members of SC Then

2 |5(X)PA(<5-1+7riV)2|h(12
Xd2E n

Proof. This is Corollary 2.2in [3], p. 12

Lemma 2. Let M, N be integers, N s 1, and let JT be asetof Z integers in
the interval [M+I, M+N], Put

(13) Z(a.h)= 2 T

n=h (modq)
Thenfor (2>0 we have

(14) P;SQPthzl (z (p\ f)— LT = (Q2+nN)Z.

Proof. Let us write
S(x) = 2 e(n0

Then by [3], p. 23, (3.1) we have

0s p l(z(p.4-4-)"-S I|s(4-)].
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Furthermore, by [3], p. 24, (3.4) we have

y
“1E1 Ag 15059

Putting q=p2 here, we obtain that

(16) P22, (P2 M)-p-2(P 2= | 2 | | T

isasep! WP I

By (15) and (16), we have

a7 pg\szﬁ:&z(pz,h RER

:P.?SQp2h2:1{;(p2h)|5-z(P,h);'+P%_I |p h)- 3
" @i

In order to estimate this last sum, we use Lemma 1 where ZPis taken as the set of

the fractions of the form ~ {p 25.Q, 1Sag/, (a,p)=I1) and 2 (p2"Q,

ISa”p—1). Then for x—P_~t", _i:’-E& (where ai,a2=1 or 2), x"x'
i
we have
fll iPl*-
W\X-X = - # aiPl a?p\l 3- ) é
Pil pV pVp? - plip%

so that (12) in Lemma 1 holds with $—Q 2. Thus by using Lemma 1, we obtain
from (17) that

p%[&f hzzll/z(p*’h)ﬁ]/ S(Q2+nN)réK1= (Q2+nN)z

which completes the proof of Lemma 2.

4. In this section, we derive Theorem 2 from Lemma 2.
Let ,r/c {1, 2, ..., TV} be a sequence such that for all atsi, a'tsi the sum
a+a' is squarefree. Then for allp, a+a'*O (modp2. Thus si may lie in at most

pa_l residue classes modulo p2 hence, defining Z(q, h) by (13) (with si in place

p 2+\

of Jf ), we have Z(p2 h)=0 for at least p2 P2\ _ incongruent values
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of h. Thus the left hand side of (14) in Lemma 2 can be estimated in the following
way:

18 P2 7Y2 72
—N =
( ) 2238 pZAZ:l[,z(th) P \> 5 P*ZSQ Pzifpézif:ﬁ‘lp
72 p2+1 72 72
- Z25- .2 1= 2272 T 4- 2 iza-r(ein)
P Q le&gsuzzo p2so P &

Setting Q=N12 we obtain from (18) and Lemma 2 that

ATH(ATV4<(jV+TIAOZ

hence, by the prime number theorem, for large N we have
2(1+ 97V Y

’ 31Vv34log iV
TMY ragirogw):

which completes the proof of Theorem 2.
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ON THE CHARACTERIZATION OF ADDITIVE
FUNCTIONS ON RESIDUE CLASSES

K. KOVACS (Budapest)

In 1946 P. Erdés [1] discovered the following theorem:

If a real-valued additive function is monotonic, then it is c *log n.

The following assertion can be proved similarly and seems to be known among
number theorists, though | cannot give a specific reference.

(*) Let g2 be a fixed natural number. If the additive function / : N-+R
is monotonic on the residue class (1) modulo g from a point on (nsn0, then / (n)=
=c\ogn forall (n, q)=I.

In [2] we proved the following generalization of the mentioned theorem of
Erdés:

(* *) Ifa function f : N ~R Kk isadditive and its Euclidean norm is monotonic
from some point on, then f(ri)=clogn with a constant vector c£Rk

Applying (*) and (* *) we prove the following theorem:

Theorem. If a function f : N-»Rk is additive and its Euclidean norm is mono-
tonic on an arbitrary fixed reduced residue class a (modq) (gEN, g=2) from a
number nO on, then f («)=clogn forall (n, q)=1.

Throughout the paper the following notations are used: P is the set of all pri-
mes; Pt, PAczP are infinite sets; u, vetc. are vectors in Rk; (u, v) is the scalar prod-
uct; T={nEN: (n, q)—1};, (a)= {n: n=a (mod q)}.

Lemma 1. If \f\ is convergent on some (a), (a, q)=1, then f(n)—0 on T.

Proof of the Lemma. There existsa set of primesp f (a), such that iI_|.rg[1)/ In=c

with some constant c£Rk because the sphere with radius |c| is compact. For all
u€(a) we have a<p@+1C(a), so

c=lim/( fj p2)=lim(2 f(Pii) = (<2U)+ D,

which implies ¢=0.
For a fixed a£(a), let PjE(ot) be primes such that (pj,a)=\. Consider the

i+q>(q)-I
numbers tai= Jq pj. Thus ataf(d) and

j=i
i+i>(e)-I

l/(e)l = IT bl -f(ta)l~ \fata)\+ 2  \f(Pj)\ - O,
7=1

consequently /((a)) =0.
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It is easy to see that /((a))=0 vyields / (n)=0 on T.

Consequence: If |/ 1is monotonic and bounded on a reduced residue class (a)
mod g, then /(«)=0o0n T. So it is enough to examine the case that |/| is monotonic
and unbounded on (a).

Main Lemma. If on (a) and \f\ is monotonic on (a), then f (n)-
=c log n-t-g(n) where (g(n), c)=0 forall nET and g(n)=o (logn) on T.

Proof. We proceed as in [2], so we note only the different steps. \f(n)\
implies that there exists a 1\c P, such that Iim f(P) .=x with |x=1. These
primes are all in the reduced residue classes mod g and there exists at least one (p)
containing infinitely many primes of Pxwith the previous property.

Let b<d, £i/C(1). Take an mEN with mb”n0, (m, gbd)=I and a

(mod g). Then bmp,dmp£(a) for all pGPj(/r). By the monotonicity of [/| on
(@) we have |f (bwp)|™ |/ (dwp)\, which gives like in [2]

(f(bw), S (f(dw),x), ie. {f(b), t>=(f(d), *).

This yields by (*)
{fin), t) = cWogn on T,

so /(n)=c log n+g{n) with {g, c)—0 too, where c=cx. As in [2] (Lemmas 2
and 3) we get that we have only one x and that g(n)=o (log n) for all primes, further
for all squarefree numbers.

We know that g is small on squarefree numbers and we want to estimate it on
an arbitrary n£T. First assume nffx). Take a prime m£[n, 2n\, mi{a), which
exists for large n. By the monotonicity of |/| we know

0 =E|/(m)[2-/(n)[2= cAlogzm —log2n) + |g(m)[2—I|g(n)|2

hence
9(<)|2S |g(m)|2+ 0(log2m —og2n) = o(log2n).

Next, let n£T be arbitrary. Take a prime p(z[n, 2n], pnffa). Then

g{") = g{pn)-g{p) = o(log n),

where the first term is small because pn”ia) and the second because p is a prime.

The proof of the Theorem is continued as in [2]. The proof there is based on
four lemmas (A, B, C, D). Lemmas A and B can be applied unchanged. Instead of
Lemma C we use

Lemma C'. For any large r, in the interval [n n+D], D=er- there are r
pairwise coprime elements of T.

Instead of Lemma D, we work with
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Lemma D". If n,n+j£T and 0<j*q, we have

190+jQl = g (n)--~-
Yn

For an nsuch a j can always be found. The proofs present no difficulties.
So the case g-+-0 on I contradicts g(u)=o(logwn) as in [2]. Therefore g—0,
which gives g(n)=0 on I' by Lemma 1
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ON THE RESIDUAL PARTS
OF COMPLETELY NON-UNITARY CONTRACTIONS

L. KERCHY (Szeged)

Introduction

By a celebrated theorem of B. Sz.-Nagy, to every contraction operator I' on a
Hilbert space there corresponds a unitary operator U, closely related to T, the so-
called unitary dilation of T. Starting from this result B. Sz.-Nagy and C. Foia§
have developed an effective theory for contractions (cf. [14]). If T is not of class
C@ then especially two restrictions of U to certain reducing subspaces play impor-
tant roles in the study of T. These unitary operators are called the residual and * -
residual parts of T. By their aid it could be proved e.g. that every Cu-contraction
has many hyperinvariant subspaces.

In the present paper we intend to give a systematic study of the residual parts
and, as a consequence, to prove a reflexivity theorem for a class of contractions.

We shall deal only with completely non-unitary contractions and use their
functional model. The model operator and the residual parts are introduced in
Section 1. The residual part is well-represented in this model, but the »-residual
part is not. In Section 2 we give a natural representation for the »-residual part
too. Section 3 deals with the canonical intertwining operators between the contrac-
tion and the residual parts and provides a representation for them as a multiplica-
tion by an operator-valued function. Section 4 is devoted to the study of the weak
invertibility of the canonical intertwiners. In Section 5 the residual parts together
with the canonical intertwining operators are characterized as universal intertwiners
corresponding to T. In Section 6 generalizing Cn -contractions we define the class
of quasi-Cn contractions, and using a recent result of Bercovici and Takahashi
we prove a reflexivity theorem for this class. This theorem partly extends the validity
of the main result in [11]. Finally, in Section 7 our reflexivity theorem is applied
for Cu -contractions, and the connection between the result obtained and the general
reflexivity problem of Cu -contractions is discussed.

We shall use the terminology of [14].

1. The residual parts of completely non-unitary contractions

Let 6 and (E* be complex, separable Hilbert spaces and let us consider the Hilbert
space L2((E,)®L2((E)=L2(E+®(E) of vector-valued functions defined with respect
to the normalized Lebesgue measure m on the unit circle ()O (the boundary of the
open unit disc D= {A£C: |A< 1}). Let M denote the operator of multiplication
by the identical function /(A)=A in every L2space. Let us consider a purely con-
tractive, analytic, operator-valued function O : (®, (E*), where (EH
stands for the Banach space of bounded, linear transformations mapping (£ into
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(E*. In a.e. point ££<9D the function 0 has a radial limit 0 (£)(;JSXE (E*) in the
strong operator topology. This limit function, which will be also denoted by 0: 1HO—
(E¥)> is contractive, measurable, and so is its defect function

A: dD- = JRCE), d(O=({/-0(0*000)12
too.
The subspace A=4(0):= T2(C*)©93> where 91=(dL 2((E))", is reducing for
M £ (L2(©*)d L2((£)), hence 1/:=M|A is a unitary operator. Let # 2((E*) stand
for the Hardy space //2((£*):m\i/§()n/"(£+' Then A+:=/72((E*)®91 is invariant

for d, so the restriction C/+:=E/|A+ is an isometry. The operator R=U+|[91 is
the unitary part of U+ according to the Wold decomposition. The isometry
Vi T2(®)"d, Vw=0w®Aw intertwines the multiplications by the identical func-
tions, consequently the subspace 9U+:=F772((E) of A+ is invariant for U+. Let
PB€& (&+) denote the orthogonal projection onto § =8(0):=49+© L1+, and
let T=5'(0)€~f(8) be defined as the compression T:=PeU+|§.

One of the central results of the theory of contractions, having developed by
Sz.-Nagy and Foia8 (cf. [14]), states that this operator T can be considered as the
model of completely non-unitary contractions acting on separable Hilbert spaces.
This means that for every 0, T is a c.n.u. contraction, and every c.n.u. contraction
can be obtained up to unitary equivalence in this way. Furthermore, U+and U are
the minimal isometric and unitary dilations of T, respectively. The unitary operator
RT=R is called the residual part of T.

The subspace QJI::VLZ((&):H\/OU~"$R+ of A reduces U and so does its

orthogonal complement 9?*=H0®1 too. The unitary operator Ri T=R+= U\{i+
is called the * -residualpart of T. Taking into account that the adjoint t/*€ (f)
is the minimal unitary dilation of *6,5?(8), it easily follows in view of the geo-
metric structure of U (cf. [14, eh. II]) that

(D) O*r = No-*)* and RT=(R,,T*y.

2. The representation of the * -residual part

In the model introduced above the residual part of T is well-represented as the
range-space of the defect function of 0. In order to give a similar representation for
the *-residual part of T let us consider the operator-valued function

W: D - & (<s*ee),

-An) [0
“ w =1 0(01 A&J

where d*(£)=[/—0 (0 0(0*]12 is the defect function of the adjoint function 0*(£):=
:=0(0*. Let and x£(E be arbitrary vectors. Applying the commuting
relations

3) 0*d*=d0*, 0d=d*0,
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we get that
W (0(x*®x)L|,ue= 1I(-4(O**+0(Ox)®(0*(O**+40x)IS,eg=
= 1-4(0**+0 (0*111,+10* (O x*+40x]|]| = &4 (0 4 .x,>.,-
- 2Re <0*(04(0**, X), +<0*(00 (Ox, x)Q+
+<0(00* (0**,x*4 + 2Re (Al [ * (Ox,, *>,+
+<J(02X*>g = ||* 31, + |X|! = [|x,0*|||tefi

holds for a.e. £®)D. Since (£ and (£, are separable spaces and fV(Q is selfadjoint,
it follows that W (0 is a selfadjoint, unitary operator a.e. Therefore, the operator
JSF(L2((£,)0L2(©)) of multiplication by the function W is unitary, selfadjoint,
and clearly commutes with M6/ f(L2((E,)® L2((E)).
Let A', A+, ... denote the subspaces obtained by applying the transformation
Wfor A4,4+,..., ie. A'=Il'A, A'+= bPA+, .... Then for the operators U'=M |A’,
U+=U"\SK\, ... we have

U'ssU, 4 =4, T'ssT, R'R, 4=14,

and the unitary equivalences are implemented by the operators W'=N"A© (4, 4,
wi=wla+ter(a+,9£), WO=wNe&(&&), w=w\mej?(%w), w,r=
=H |91,EA'(9i,, 9?0, respectively.

Proposition 1. The subspaces introduced above are of the following form:

4) a'=(4T244® 4(E),
©) L= A 2(E), 91 =wn (B
and

(6) 4 = (4L 24))-.

Proof. Onaccount of (3) we can write for any functions r®L2(®*) and v*U- ((£)
that W(U®AV)——AJu+0AV)®{©*u+A)=AX(—u+0v)® (0*u+Alv), which
yields that

) S 'c(4£2(4))-® T 2(<f).
Since for every u® L2((£)
Wy -4 Olw 1-40 +0dlI rl
) Yoo ox A H[ ox0+d2 \w- /[ o©W
holds, the relations of (5) follow.
For the sake of clarity let us now write Me for the operator of multiplication
by 0, i.e. Me£&(L2((E), L2((E,) is a contraction. Then the adjoint of M0 is the

multiplication by the adjoint function (Me)*=Me¥*, and its defect operators are
the multiplications by the defect functions DMe=MA and DM*—MAt. It is

well-known (cf. [14, sec. 1.3]) that
=(MBbMX ® kér M%
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is true for the defect spaces T™M& and X)M*. Hence we obtain

(9) (d*Z,2(eU)~ = (0dL2®))_© ker 0*.
If nEker 0*, then J*m=m and so

[B:moj==101-

We infer that

(10) Xiker 0* = —| |ker 0*,

hence

(11) W (L2((E*)) z2W (ker 0*) = ker 0*.

On the other hand, for any vector 2£(4L2((£))“ we have

rol rori r OVA

(2) p'w us = PAas\= [ o ]

which vyields

(13) (P*FFOt)" =(0dL 2(G))-®{0},

where PtE "~ (L 2((E*), L2((f)) denotes the orthogonal projection onto the subspace

LZ(&S‘)I . .
ince W is unitary (6) and then (4) follow by (7), (5), (9), (11) and (13).

3. Operators intertwining T and its residual parts

We shall consider the canonical operators intertwining T and its residual parts,
introduced by Sz.Nagy and Foia§, and examine how they can be represented by
the aid of the unitary operator W. In the sequel let /3+, Pb, P3, I\ t,..£ J2(ft)
denote the orthogonal projections onto the subspaces ft+, §, R 9+, ..., respect-
ively.

ySince PVt commutes with U we obtain RA(Pytt\b)=UPiH§)=P tU\8)~
= POtfPb U\6 + Pw PT+U\b=(PxJ8>)T. Hence, the operator

(") X := P*J$<E340, 91%)

intertwines T and its *-residual part R*:XT=R+X, i.e. X belongs to the set
Y (T, RJI:={QE£ £?(8>, 91*): QT—R*Q). Taking into consideration that P®i+9I*=
= {0}, itimmediately follows that

(15) AN(I9NS$)a:T* = THI1* = Pa+9l*
and
(16) X*£J(Rt,T™).
Now, we infer by (1) that the operator
(17) r:=P e|lA€n(9t.S"
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intertwines R and T:

(18) YZS(R,T),

and so for its adjoint

(19) Y* = P*|$ej2?(§,5R)
we have

(20) Y*£J?(T*,R*).

This adjoint Y* is of very simple form, namely Y*=P|$, where PE£JZ(L2((E*)©
®L2((£)) stands for the orthogonal projection onto the subspace L2((£).
On the other hand, if X', Y' are defined in an analogous way with respect to
the space ', then X' has a simple form:
X(&XBX’=p~b’=p+\b".

Let us consider the operator

(21) f:=X'W0e”"(b,lO -

Then 2 intertwines T and R'*, and for any vector 8 we have
'—AMN+ Qv

22) *(«©»)=/»,[ J10%1=-p*[ e-u+jv 1=(-A«+i»)®0.

Now, we examine the operator
(23)

Since every vector [£9? can be decomposed into the sum v=Yv+v', where Vf 91+,
it follows that POttv=PsuYv+P&tv'=XYv, hence

(24) Z = XY (R, RJ.

Let us consider the operator

(25) Z:=Wrmzdf(R,K).

It is immediate that

(26) 2 = W<EXY = X'WOY =%Y.

On the other hand, since Z=WHtlfZ=Z"W r=P"WS{, we infer by (12) that
27) Z(0®t>) = 000,

for every vector yE9L The adjoint of Z is of the form

(28) Z* = P*91* = P|9i+€~N(A* A).

It follows that Z*=(WrZ)*=Z*n£*=Z*JV*\IR*= Z*W\m'* = PIMV\){"*. Hence,
we conclude

(29) Z*(h©0) = O®0*n,
for every vector n€9l*.
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Finally, let us assume that 0 is an inner function, or equivalently that T is of
class C.0. Then © (£) isisometric, and so d (0=0 a.e. on #D. This yields that 91= {0},
A=L2((E*), A+=42((E*) and §=4 2((E*)e0A2((E). Since 0(0 is an isometry,
it follows that A*(£)£ ££ ((E*) is the orthogonal projection onto the subspace ker 0 (Q*
a.e. on #D. Hence we obtain by (6)

(30) OU = A,L2(<Ef = ker 0*.

In virtue of (10) and (30) we infer HE*9IE= IFj9IJ= —/|91i, which implies that
(31) = nfE*n; = 91;,

and by (22) that

(32) Xu=W=*J%u =-Xu = A+u

holds, for every vector n£S§.

4. Weak invertibility of the canonical intertwining operators

In the following proposition the characterizations of injectivity and quasi-
surjectivity of the operators X and Y, introduced in the previous section, are collected.

Proposition 2. a) X isinjective ifandonly if T isofclass Cx., orequivalently
if 0 isa *-outerfunction;

b) Y is quasi-surjective, i.e. it has a dense range, if and only if T belongs to
C.x, or equivalently if 0 isan outerfunction;

c) we have

(33) ker X* = ker 0*IM (A (<E*)O©A 2((£Y));

hence X is quasi-surjective if and only if

(34) ker 0*n(L2(Ry Qtf2((S*) = {0}
d) we have

(35) kerT = ker0n 9 2((£);

hence Y is injective ifand only if

(36) ker0M A 2(£) = {0}

Proof. The statement a) is an immediate consequence of [14, Proposition 11.3.1],
which claims among others that \\Xh\\zHLH)\\T”h\\ holds, for every i€8. The

statement b) follows from a) in virtue of the relation (1).
Let us prove (33). Since X —W" X, we infer, using (15), that

(37) X* = X*VI%it = X*W\W* = P»'W\K .

This implies that

(38) kerX* = IF (ker X*).

On the other hand, for an arbitrary vector h€9?i we have X*u= (—d*n®
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@O0*u)=0, ifand only if 0*u=0 and However, taking
into account that A*u=u whenever 0*u=0, we obtain that X*u=0 exactly when
MEKer 0*n(L2((£Je//2((EJ). Therefore,

(39) kér JF* = Kker 0* M (L2((fJ

and (33) follows by (38), (39) and (10).
Finally, let us verify (35). It is clear that ker Y= RIMAJ1+, so we have to show
that

(40) 91M9Jt+ = ker 0 MH a(®).

Let us assume first that vEker 0 A 26). Then Ov=() and VEH2(&®), which
implies Av—v. Hence v=Avd4R and v=0(Bv= VvE4RI+, i.e. r£91MN4AN10+. Let
us consider now an arbitrary vector npr£91M9Jl+. Since ndr;£91, it follows that
n=0. On the other hand, upr>£94+ implies O®z;= OH'®dvv with a vector wE
£42((E). But here 0w = O results that L=dw= U'Eker 0" ) 2((£).

The statements a) and c) of Proposition 2 together with the relations (22) and
(27) give a generalization of [12, Theorem 10]. In the following remarks we shall
discuss the equation (34), noting that an analogous discussion can be carried out
in connection with (36) too.

Remark 1 First we note that the relation (34) does not imply ker0*={O}
even if we assume that 0 is an inner and *-outer function. Indeed, we can find by
[13, Theorem 2] an inner and * -outer function 0 such that a(A™M)"gT> is true for
the spectrum a(R*) of the «-residual part R¥. For this function we have d*(0:=0
in a.e. point ( of the set <7D\cr(R*) of positive Lebesgue measure. Hence by (30)
we infer that ker 0* = 1*T2((EY)m {0}, while (34) is fulfilled.

Remark 2. There is a close connection between (34) and the point spectrum
ap(T*) of T*. In fact, let us assume that there is a non-zero function ker 0* N
M(L2((EHO© A 2((EH). Then u(Q:=u(£) (E€i)D) will be a non-zero function belong-
ing to A 2((EH). Let us consider the expansion 1h,,e,,, hnEH 2 of the func-

tion a with respect to an orthonormal basis {e,,},, of (E*. Let us form the largest
common inner divisor WEA“ of the inner parts of the functions h,, and define
M6 A 2(©+) as the product ul=hi. Since the system of functions hhnis relatively
prime, it follows that

(41) n(Q) 5i 0, for every AfD.
On the other hand, for the function 0~ulfH?2(&) we have

0~(Oui(0 ="MO0(D*«(D = 0 for ae. C&dD,
and so
(42) 0 2)2) =0, for every 26D.

We infer by (41) and (42) that ker 0~(X)?x{0} for every 26D, and this implies
by [14, Theorem VI. 4.1] that 9p(T*)r>D. Therefore, if aP(T*) does not cover the
unit disc D :

(43) <7p(MNa D,
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then (34) holds, and so X is a quasi-surjective operator. So the preceding argumen-
tation performs a new proof for [14, Proposition II. 3.2].
However, relation (43) is only a sufficient but not a necessary condition for (34).

Indeed, let us consider the domains = |a€D: Re A=— -i-] and Q2= —R x. By

the Riemann mapping theorem there is a function h”~H @ such that h1(D)= QL
Then h2~ —hx is also of class //*, and h2(D)=fl2. For j—1,2, let us consider
the contraction hfS) of class C10 (cf. [13, Lemma 5]), where S denotes the simple
unilateral shift. By the properties of the Sz.-Nagy—Foia8 functional calculus we
can easily infer that

(44) Qjrap(hj(Sr)dG{hj(sr) = Qj ( =12

Let us choose purely contractive analytic functions 0 e ((£;, (E+iJ) such that
Tj=S(0j) is unitarily equivalent to hj(S) for j—1,2, and let us define
0: D—IZ((E= (F1®®2, ®* = ®*1®®*r) as the orthogonal sum 0 —0r®O02.
Then for the operator T=S(0) we have by (44) that ap(T*)=ap(Tjyjap(T2)=
—ap(h(S)*)[Jap(hi(S)*)=D, i.e. (43) does not hold. On the other hand, let us
assume that 0*u=0 for a function mEL2((£*)O#2((£*). Then uis of the form
n=w®n2, where UJEL2((E+3)© //2((Ej) and 0*Uj=0 for j= 1,2. Since in
virtue of (44) &, (Tf) does not cover D, it follows by the preceding part of this remark
that (34) is fulfilled for 0j, hence u~ 0 (j= 1, 2). This results that u=ul®u2=0,
so we obtain that (34) does hold for 0.

We conclude this section with a simple but perhaps suprising corollary of
Proposition 2.

Corollary L a) If X is injective, then so is Y too. Hence T<,R* implies
that R-<T, andso

b) If Y isquasi-surjective, then so is X too. Hence R<d.T implies that T-d<R*,
and so R<d.R+.

(Here the notation T1<T2 (T1<T2) means that T2) contains an injective
(quasi-surjective, resp.) operator.)

Proof. By (1) the statements a) and b) of the Corollary are equivalent. Let us
prove a), so let us assume that X is injective. Then Proposition 2/a yields that 0 is
»-outer, which results by [14, Proposition V.2.4] that 0(C) is injective for a.e.
CddD. Therefore (36) holds, and Proposition 2/d results that Y is also an injection.

5. Characteristic properties of the residual parts

The following proposition states that the mapping Y is a universal intertwiner
between the unitary operator R and T, and that this property together with a mini-
mality condition uniquely determine the pair (R, Y).

Proposition 3. The ordered pair (R, Y) possesses the following properties:
(i) JRker Y is ofclass Cioi
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(i) for every unitary operator G andfor every mapping A(Xf(G, T),
exists a mapping B<iJ{G, R) such that
(45) A =YB.

Furthermore, if (Rx, Yx) is a pair, where Rx is a unitary and Y1EX(RI, T), such
that (i) and (ii) are valid with (R"Yf) inplace of (R, Y), then Rx is unitarily equiva-
lentto R and

(46) Yx=YB
with an invertible transformation B£J{R X R).

Proof. Let ROdenote the unitary part of the isometry P|ker Y. Since the sub-
space A+©dom RO is invariant for U+ and contains §, taking into account that
U+ is the minimal isometric dilation of T, we infer that dom RO0= {0}. Hence,
the pair (R, Y) satisfies (i).

Let us consider a unitary operator G and a mapping A*.Jr(G, T). By the
Lifting theorem (cf. [14, Theorem 11.2.3]) we can find an operator BfJ(G, U+)
such that

(47) A = PeBg.

Since, for every positive integer n, ran7?0=ran (/?0G")=ran (£/" Bt))=U\ ran B0,
it follows that

(48) ran7?0c9L

(47) and (48) show that the operator BEJ(G, R), obtained from BO by restricting
its final space to 91, fulfills the relation (45).

Let us now assume that the statements (i) and (ii) are true for the pair (RIt Yx).
On account of (ii) there exist operators B£Jr(R1, R) and Bfi ,f{R, Rf) such that

(49) YX=YB and Y=Y 1BL

From (49) it readily follows that Y(I-—BBx)=0 and Y1(I—B1B)=0, i..
ran (I- BBX~cker Y and ran (I—BXB)~cker Yx. Applying (i) we can infer that

(50) 7?ran (/—BB"~£C10 and 7?*ran (1—BxB)~dCw.

However, since 1—BB{R}' (= the commutant of R) and |—BxBd {7L}, |9,
Lemma 5] yields that

(51) 7?ran (I~-BB)~dCn and AlJran (f—BiB)~dC1L

The relations (50) and (51) result that BBX=1 and BXB=I, i.e. the mapping B is
invertible. Since similar unitary operators are unitarily equivalent (cf. [14, Propo-
sition 1. 3.4]), the proof is complete.

On account of (1) we can obtain from Proposition 3 an analogous characteriza-
tion for R*and X.

Proposition 4. The orderedpair (7?* X) satisfies the properties
(i) 77ilker X*£C10;
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(i) for every unitary operator F andfor every mapping CiJ(T, F),
exists a mapping F) such that
(52) C = DX.

Moreover, if (R2, X2) is apair, where R2 is a unitary and X.f,f(T, R2), suchthat
(i) and (ii) hold with (R2, X2) inplace of (R*, X), then R2 is unitarily equivalent to
R* and

(53) X2=DX
with an invertible DdJ*(R+, R2).

Remark 3. Applying the argumentation used in the proof of Proposition 3 it
can be shown that the operator B in (45) is unique. Hence the operator D in (52)
is also uniquely determined.

As consequences of the preceding proposition we can obtain the following
statements.

Corollary 2. The three conditions below are equivalent:

(i) T-<F, for some unitary operator F;

(i) X is injective;

(iii) T is the quasi-affine transform of R+: M«<R+.

(7XR* means that .f(T, 1If) contains a quasi-affinity, i.e. an injective opera-
tor with dense range.)

Proof. The condition (i) implies condition (ii) by the statement (ii) of Propo-
sition 4. On the other hand, the statement (i) of Proposition 4 together with the
fact that the simple unilateral shift is the quasi-affine transform of the simple bilat-
eral shift (cf. e.g. [9, Example 1]) give the proof of the implication (ii)="(iii). Finally,
(i) is a trivial consequence of (iii).

d
Corollary 3. If F is unitary and T7~F, then F is unitarily equivalent to
an orthogonal summand of R*.

Proof. The statement follows from Proposition 4 (ii) and [5, Lemma 4.1].
From the two previous corollaries we conclude

Corollary 4. If T-<F, for a unitary operator F, then T<R” and F is
unitarily equivalent to an orthogonal summand of R*.

Remark 4. If T is of class Cu, then the unitary operator F in Corollary 4 must
be unitarily equivalent to R* (cf. Proposition 2 and [14, Proposition Il. 3.4]). How-
ever, in general Fisnot unique. For example, let us consider the contraction T = S (&),
where dim(£=0, dim (E*=1 and O0: D—if ((£ (£*) is identically zero. Then
& H2((&")=H2 i.e. T is the simple unilateral shift, and ft=9I*= L2((E*)=L2
i.e. Rf is the simple bilateral shift. For any Borel subset ccczdD of positive Lebesgue
measure, T is a quasi-affine transform of RJyalL2 Hence, in this case F can be
chosen for any non-zero orthogonal summand of R*.

By the aid of (1) we can obtain the duals of Corollaries 2—4.
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Corollary 5. Thefollowing three conditions are equivalent:

(i) G-<T, for some unitary operator G;
(if) Y is quasi-surjective;
(ili) R<T.

Corollary 6. If G is unitary and G-"T, then G is unitarily equivalent to
an orthogonal summand of R.

Corollary 7. If G-<T for a unitary operator G, then R<T and G is
unitarily equivalent to an orthogonal summand of R.

6. Quasi-Cn contractions

By a recent result of Bercovici and Takahashi there is a close connection be-
tween the injectivity of the canonical interwining operators X, Y and the reflexivity
of T=S(0). Namely, they proved in [4] that if .f(T, Q) contains a quasi-surjective
operator for a non-zero c.n.u. isometry Q, then T is reflexive (cf. [7, ch. 9]), even
more the set Alg Lat TczST(8) of operators leaving invariant every invariant sub-
space of I' coincides with the set H°°(T)={u(T): uEH°°} of functions of T:

(54) Alg Lat =9 “ ().

The assumption above is clearly equivalent to the one that J(T, S)”~ {0} where S
stands for the simple unilateral shift.1 By Proposition 4 this happens exactly when X
has no dense range. Considering also adjoints, the previous result can be stated
in the following form:

If
(55) kér X* {0} or kerT ~ {0},

then (54) holds.

Now we are going to deal with the case when (55) is not fulfilled. In particular,
by Proposition 2 and [14, Proposition VI1.3.5] this happens if T is of class Cu .
Here we shall consider a more general class of contractions.

Definition. The contraction T=S(0) is called quasi-Cn, if

(56) T is of class CI5 i.e. 0 is outer,
and
(57) 0(Q Iis a quasi-affinity for a.e. cedp.

The class of quasi-Cn contractions will be denoted by QCU.

This definition can be contrasted with the notion of contraction weakly similar
to unitary. Namely, by [10, Theorem 4] T is of the latter type exactly when TfC Ix
and 0(Q is invertible for a.e.

1 When | was writing this paper | knew only a preliminary version of [4] written by Takahashi.
In the final version the assumption already is that f(T, 5)?i{0}.
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It is clear that Cxxis a subclass of QC1IX However, there exist quasi-Cu contrac-
tions which are not of class C1X The following example is a modification of the oper-
ator constructed in the proof of [12, Proposition 7]. Let {<}=1 be an orthonormal
basis in the Hilbert space 815 and let TxEEt?(9)i) be the unilateral, weighted shift
defined by Tlen=wnen+1, where the weight sequence {w,,}*=1 consists of non-zero
numbers, with |w,|*l, and tends to zero. Let G£€£i?(8>2) be a bilateral shift of

infinite multiplicity, and let us consider a decomposition 82— ® C"93l, where

dim9JI = KO- Let us choose a non-invertible c.n.u. Cu -contraction ©m
(cf. [3]), and let r2£J2(§3) be the product T2=GD, where £5£«E?($2) is the
diagonal operator defined by D\Gnffl = GPAG~n\GndR (n=0, 1, £2, ..). By
[2, Lemma 3.2] we can find a vector /69J1 such that

il
is an injective contraction. Here 811 denotes the subspace spanned by ex in §I5

and f<BexE&(&Itl, 5lL) is the operator defined by (f® el)h=(h,e1)f, for every
bl5)x=L Finally, let TdJi?(§8 = 8i® §2) be the operator whose matrix is

rTx ex®f 1

(58) 10 t; J

in the decomposition § = ®§2¢

It can be easily verified that " is a c.n.u. contraction belonging to C.{\C1X
Let us consider the regular factorization 0 T—0 20 X of the characteristic function
of T corresponding to the invariant subspace (cf. [14, eh. VII]). Since Txand T2
are of class Cooand CX4, resp., we infer by [14, Proposition VI. 35 and Section V. 3]
that 0i (0 and 0 2(O are quasi-affinities in a.e. point ££<9D. Hence 0 T(Q is also
a quasi-affinity for a.e. ££0D. Therefore, I' is a quasi-Cu contraction which is not
of class Cn .

An argumentation similar to the previous one results that the operators Tx

and T2 occurring in the * j-type decomposition T =] gl *J of a quasi-Cn

contraction T are of class Cand Cxx, respectively.

On account of (27) and (29) we can see that (57) is true for the operator-valued
function 0 whenever the operator Z£J (R, RY introduced in (23) is a quasi-affinity.
Hence, in this case the residual and * -residual parts are unitarily equivalent:

(59)

Furthermore, an application of Proposition 2 yields that if I" isa quasi-Cn contrac-
tion, then X is quasi-surjective and Y is a quasi-affinity, i.e.

(60) R<T<RU

Corollary 4 shows that T is quasi-similar to a unitary operator, i.e. TECIX if and
only if X is a quasi-affinity.
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We have proved in [11] that if T=S{0) is a contraction weakly similar to
unitary, and

(61) j log |[[0dG, dm > —oo,
3D

for a function then (54) holds validity. Takahashi noticed that [11, Lemma 7]
is true in general for every c.n.u. Cn -contraction, so our proof for [11, Theorem 5]
results (54) whenever T=S(0) is an arbitrary Cu -contraction satisfying (61).
Now we further generalize this statement by taking T from QCn instead of Cwu
and replacing the condition (61) by a weaker one.

Theorem 1. Let T—S(0) be a quasi-Cn contraction. If there exist functions
udH2(Q+ and ve(AL2((E))~ such that

(62) j log [—A*uX 0y|(j+dm >m—°°,
3D

then

(03) Alg Lat TN {T}" = A~(I").

Since the bicommutant {T}" of every Cn -contraction T is a reflexive algebra
(cf. [15]), this theorem is indeed a generalization of [11, Theorem 5 (iii)].

Proof. Let ueH2(i&f) and (4L2((E))" be functions satisfying (62). Let us
consider the decomposition u®v=h+Vw of the vector m®«Oy+, where he§
and Vweffl+ (WEH2(&)). On account of (3) and (22) we obtain that WXh=Xh—
= —A”Mu+0v. Since W isa unitary-valued function, it follows that \\(Xh)(Olli¢"ce=

—I(—d*M-H9r>)(Q|le, for a.e. Hence, by the assumption we infer that
(64) J log IXh\SteEdm > -
3D

Let us form the non-zero cyclic subspaces All= \f Tnh and 511= V R"Xh.
14O) mo

In virtue of [11, Lemma 9], (64) implies that A*51t is of class C10, i.e. it is a unilat-
eral shift. Since the operator X\ffle” (T|50i, i?J5ft) has dense range we conclude
by [4] that

(65) Alg Lat(r|5fll) - 7 (T|5LU).

Let us choose now an arbitrary operator Ae Alg Lat TT\{T}". The restriction
5L clearly belongs to Alg Lat (F]5LL), hence by the relation (65) A\9I is of the
form N|5WL=n>(I|5LL)=n>(M")5L, with a suitable function wgH°°. Let us consider
the difference B=A —w(T), for which we have

(66) Be{T}" and BLI = {0}

It is enough to show that B=0, because in this case A=w(T)eH°°(T).
Since 2745t is a unilateral shift, it follows that

67 \ = 5R*,
" ety >
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On the other hand, YZ*DX£{T}' whenever {N*}, and Y and Z* are quasi-
affinities, as I is a quasi-Cu contraction. So we obtain from (67) that

68 V. CIYl=8$.

(68) CE{iy

Now, the relations (66) and (68) result B9)=B(_V_.C9/M= V $CUi=
CE{ry ce{iy

{r}
= V CBW={0}, i.e. B=0 and the proofis complete.

ce{ry

7. Reflexivity of Cu-contractions

As an application of Theorem 1 we prove a reflexivity theorem for a class of
Cn -contractions.

Theorem 2. Let {«BF=1 be a decomposition of the unit circle 0D into the
sequence of Borel sets ofpositive Lebesgue measure. For every k, let us given non-
zero, complex, separable Hilbert spaces (& and of equal dimension such that
nk=dim # = dim isfinite if k=2. Forevery k, let us consider apurely contrac-
tive, analytic function Qk: D - &(fik, ti+), supposed to be outer from both sides.
Let Ak denote its defect function AK(C)—{1—&k{lfi*Qk{Q)12 ((Ei)D), and let /K
standfor its lower boundfunction, i.e.

N (0 = inf {10,(0 *1: *<£* ljc - 1}, UdD.
We assume that

(69) rank Ak=x,, a.e.,

and

(70) f logpkdm+ 2 [ log—— dm >-«>,
*-4

and form the orthogonal sum Q= ®10k:3D—JS?((£= f®l E*, (E+= ®1(E**).
k= = k=

Thenfor the C*-contraction T=S (0) we have
(71) A-(F) = Alg Lat T X {T}" = {T}"

As a corollary we infer that (71) holds if the sequence {nk}k=2 is bounded and,
for every k, Pk—ckK&k+X»D\«k a.e. on D, where 0<c*.<1 is an arbitrary constant.
Indeed, after attaching the set ujafc &£ 2, cfi&-"-| to althe assumptions of Theo-

rem 2 will be fulfilled. So we obtain a positive answer for the problem raised at the
end of [11], i.e. the operator constructed in [11, Example 12] always possesses the
properties of [11, Theorem 5].

Proof. On account of (69) rank A—1 a.e. on r)D, hence the residual part R
is a cyclic operator (cf. [8, Lemma 1]). It follows that T is cyclic too, and so [10]
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Theorem 15 and Corollary 12] yield that {T}"={T}'*H°°(T). On the other hand,
Theorem 1 together with [15] will result the coincidence H°°(T)=Alg Lat T, if we
find functions and vg(dL2((£))_ satisfying (62).

Let K be an arbitrary positive integer. In view of (69) there exists a function
hkf L2(©t) suchthat

(72) IIMOIk =
and
(73) Ak(0 = (1-nNe ) V*KiO®KIiO

holdfora.e. ££0D. Since hkE(AKL2((Ek))~, it follows that ii*k= &khkd(A"KL2((Eik))~,
moreover in virtue of (72) and (73) we have |0«& 0| =Mt(OXak(6 a-e- being
*-outer we know that (£)<1 ae. in ak, while uk(0)=1 for a.e. ££dD\ak.

Hence the function W**="IT"*kE(N*KE2A®**))~ will possess the following proper-
ties:

(74) IIM 0lkt= X&(O0,

(75) &k(Ohk(0 =a (0O M 0.

and

(76) AkO =(1-M O T2KN0O&KNO

in a.e. point ££dD.
Let us now assume that k= 1. In this case we define the functions Mi(://2((E+1)
and vIE (AL2(Gi))- as

(77) w =0 and vk= hk
It follows that

(78) Wl ®n1i|LAE) D) = m (o),
and, in view of (74) and (75),

(79) IK-d*iM+ 02X 012 = uTY/MO,
for a.e. C€6D.

rk

Let us consider now the case k"2, and take the expansion h*k=2 h<Ref?,
j=1

£12 of htk with respect to an orthonormal basis ¥=i of . The relation

rk
(74) shows that 2 \T (C)2=1 in a.e. point £ of a*. Hence, we can decompose ak
j=1

rk
into the union ak= 1J y® of pairwise disjoint Borel sets such that
j=1

(80) (017214 -1a
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holds in a.e. iE£yj*\ for j —1, 2, nk. For every 1sj*nk, let us choose a func-
tion w;)6//2 suchthat

(81) IMY° 1 = Xy<v + QR Xid\ y&> a-e-.

where 0<£>jk)<| is a constant, and define the functions wukEH2(&%K) and vkE
€(d,L2((Ek))- as

K
(82) uk — 12_l Nt)g® and k=0.
Then for the norm of the vector uk®vk we have

(83) lkd M) — IMIIE) = 2 \\ujk)\h —

= 12 (MOIK) + Q)i -m(yjK)) = m(ak+ 2, B2 < 2m (av),
provided
(84) 2 QR < (@

On the other hand, on account of (76), (81) and (80) the following estimate is true
in a.e. point (A™W nk):

l(—arknk + ® kvk)(0w<s*k = [|("*KMK)(O||@** —
= (1 -11%(02)120<a* (0, KK(O)LlK - Hk(OM,Z\Z U]*40|.|.||L|)\ A
s (I-ftk(021/2[l«jt)(0I AT (01-4 |np)(ONna/)1]~
i*j
s (I _"(02V2[(2«K - 1/2- zi;/i > 1.

Taking into consideration that ||(—zl+Hoafed - 0 faif)(O)ll = 0 —1—xf(C) a.e. on dH\txk,
we infer that

(85) W(-A kuk+ 0kvR (O h kA (4«<K)-1/2(1 —ife(0212 ae.,
if
(86)

So if we choose gfk)’ s satisfying (84) and (86), then (83) and (85) are valid.
The relations (78) and (83) result that

(87) k2_1 IM® t)tibA«*)t)®i.Aek) — M(ai)2 + kgz 2R - k2=| 2m(ak = 2,
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hence we obtain vectors UEH 2(<&") and vc(dL2((£))“ by the definitions

@ @©
(88) u— ® uk and v= © Wk
k=1 k=1

In virtue of (79) and (85) it follows that

(89) I(-d+«+ 0a)(Olll = iIK-J*kUk+ekvl<)(0\\2kS

s HO2>Hoo + éz(*nk)_lm- n(0y ae.

Finally, by the inequalities (89) and (70) we conclude that the functions nand v satisfy
(62), so the proof is complete.

Remark 5. As far as we know it is an open question whether the relation (54)
holds for every Cn -contraction T=S(0) with the property:

(90) 0O(C) is not an isometry, i.e. rankd(£)"I, fora.e. £€c)D.

This problem can be reduced to the case when T is cyclic. In fact, let us assume that
the answer is affirmative for cyclic contractions, and let us consider an arbitrary
Cu -contraction T—S(0) possessing the property (90). We shall show that (54)
will be true for this T too.

By the functional model of unitary operators (cf. [6]) we can see that the commu-
tant {R}' of the residual part R is a cyclic operator algebra, i.e. there is a vector
tloE9l such that vV Q>0=91. More precisely, taking into account (90) and [8,

CE{R}
Lemma 1], a function vOf 01 is cyclic for {T?} if and only if
(91) vO(C) "0 for a.e. CtdD.

Let us consider a cyclic vector vOof {R}' such that

(92) i log MO\s dm = -
dD

Then, in virtue of [11, Lemma 9] Aln\’{o i-e- by (90) this operator is a

simple bilateral shift. Since by (25), (27) and (29) Z*Z is the operator of multipli-
cation by 0*0, and 0(C) is an injective contraction a.e., it follows that the func-
tion Z*Zv(0E'R satisfies the condition (91) too. Hence Z*ZvO0 is also cyclic for
{R}'. Taking into account (24) and that Y is quasi-surjective (cf. Proposition 2)
we infer
V (YCZ*X)(YvO= V YC(Z*Z)v0=$.
CE{RY} Ce{R}

As YCZ*X clearly belongs to {T}' whenever CE£ {R}, this implies that the vector
x0=Tr>0 is cyclic for {T}'. Let 3/ denote the subspace i= n\"/O T"x0, cyclic for

T. Since the bilateral shift R\ \éOanO is a quasi-affine transform of I'|9/1, applying
n
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[8, Corollary 1] we obtain that T\W(_Crl and (90) holds for its characteristic
function.

Let A be an arbitrary operator from Alg Lat T. On account of [15] A£ {T}".
On the other hand, A0l belonging to Alg Lat (M$LL) by the assumption it can
be found a function wg£H°° such that A|5W= W (MWL)= wn'(T)|9/1. Since the
operator A —iv(T)E {I'}" annihilates the cyclic vector x0of {T}', we conclude that
A =w{T).

Therefore (54) is true for the contraction T.

Finally, let us assume that T=S(0) is a cyclic Cn -contraction with the prop-
erty (90). Then we have 0<~(Q<1 a.., for the lower bound function /;(() =

=inf {||0(i);c]|: IXI|=1} of 0. If Jlogydm>—°° then O has a scalar

3D
multiple (cf. [14, Propositions V.7.1 and V. 4.1]) and we infer by [11, Corollary 6]
and [10, Theorem 15] that T possesses (71). So it can be supposed that

(93) J log/idm = —oo0.
3D

Let {ck}f=1Dbe a strictly decreasing sequence converging to zero such that cr=1
and the Borel set
A = {CedD: cTI < fi(g) ~ C}

is of positive Lebesgue measure, for every k. On account of [10, Theorem 4] there
(uniquely) exists a basic system (cf. [1]) {8k}’=1 consisting of hyperinvariant sub-
spaces of I' such that rank Ak=ya& and Rk=Hz*k+7jn\ik a.e., where Ak is the
defect function and yk is the lower bound function of the characteristic function
0 k of T\$jk.

Now we can conclude by Theorem 2 that T has theproperty (71) if

5 —1— > — 00

is true witha k0> 1, andif the basic system {8/}k can be obtainedfrom an orthogonal
decomposition of § by the aid of an affine transformation.

Added in proof (March 13, 1987). In a subsequent paper, appearing in Bull.
London Math. Soc. 19 (1987), resting on the results of this work | succeeded in
proving that every Cu-contraction T —S(0) with the property (90) is reflexive.
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INHOMOGENEOUS NORM FORM EQUATIONS
IN TWO DOMINATING VARIABLES
OVER FUNCTION FIELDS

B. BRINDZA and |. GAAL (Debrecen)

1. Introduction

The purpose of the present paper is to give effective bounds for the solutions of
certain inhomogeneous norm form equations over function fields.

The first effective bounds for the integral solutions of Thue’s equations over
number fields were given by Baker [1], using his deep effective method concerning
linear forms in the logarithms of algebraic numbers (see [2]). Baker’s result was
later generalized and improved by many authors, see e.g. Vinogradov and Sprindzuk
[35], Coates [4], Feldman [5], Kotov [18] Gy6ryand Papp [16] and Gy6ry [11]—][15].
Effective bounds for the solutions of certain general classes of norm form equations
in several variables (over number fields) were obtained by Gy6ry and Papp [16],
[17], Gy6ry [8]—[13] and Kotov [19]—[22].

Sprindzuk [31] (see also [32]) gave a so called inhomogeneous generalization
of Baker’s result [1]. Let a be an algebraic integer of degree S3, let K=Q (a) and
0Am£Z. Sprindzuk gave effective bounds for the solutions of the equation

(1) NKaq(x+ay +X) =m

in x,yEZ andl11£ZK, where x,y are dominating variables and Ais a non-domi-

nating variable such that2 Ul<(max (|jd, bl))1-? (0<£<1 is a given constant).
In the special case A=0 this result implies (apart from the form of the bounds)
Baker’s theorem on Thue’s equation.

As a common generalization of the above mentioned result of Sprindzuk on
equation (1) and of a theorem of Gy&ryand Papp [17] concerning norm form equa-
tions in several variables, Gaal [6], [7] obtained effective bounds for certain in-
homogeneous norm form equations in several dominating variables.

On the other hand, Osgood [26], [27], Schmidt [28]—[30], Stepanov [33], Mason
[23], [24], Gy6ry [14] and Brindza [3] obtained effective results on Thue’s equations
over function fields. Mason [23] (see also [24]) established an algorithm to determine
all solutions of Thue’s equations over function fields. Recently Gy6ry [14] and Mason
[25] established effective results on norm form equations in several variables over
function fields.

We remark that Gy6ry [14], [15] derived effective results concerning some gen-

1 ZK denotes the ring of integers of an algebraic number field K.

_ 2For an algebraic number a |a], denotes the size of a, that is the maximum absolute value
of its conjugates.
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eral classes of norm form equations also in the case when the ground ring is an
arbitrary integral domain finitely generated over Z or over a field of characteristic 0.

Our purpose is to derive an effective theorem for an analogue of equation (1)
over function fields. Our result provides an effective bound for the solutions of
Thue’s equations over function fields.

2. Results

In order to formulate our results we need the following notation. Let Kk be an
algebraically closed field of characteristic 0 and denote by k(z) the field of rational
functions over k. Further if K is any finite extension field of k (z), denote by QKthe
set of all (additive) valuations on K with value group Z. For any non-zero ad K let

h k(<= - 2 min {0, »(<*)}

be the additive height of a. Obviously HK(a)=0 ifandonlyif adk. (For a=() put
I1K(a)=0.) By the additive form

véZKV(QO =0
of the well-known product formula one can easily see that

HAU' ) = I HM,
HK{aR) » n K(a)+ I1K(R), 1K@+ R) =8 HK(a)+ HK(R)

forany non-zero a, RdK and mdZ. We remark that if L is an other finite extension
of k(z) and LaK then

tK[1] = [K:L]HAT]
for any adL (see e.g. [29], [14] or [24]). We shall only use these general properties
of valuations of function fields and of the height function. For further properties
see e.g. Mason [24].

In our Theorem, L, M will denote finite extension fields of k(z) such that LaM
and [M: L\=n”3. Further, K will denote the smallest normal extension of L
containing M. Denote by oy, ..., <m the *-isomorphisms of M in K. For any ydM
denote by Y;=<T(y), i=1I, ..., n the conjugates of y over L. We shall denote by g
the genus of K and put G=max (0, 2g—2).

Let Ok be the set of those elements of K which are integral over k[z] (that is
ydOK if and only if r(y)”() for all finite valuation3v in QK). Denote by S a finite
subset of QKwhich contains the infinite valuations. Suppose that if vd$ then all
the conjugate valuations of v over L (that is the valuations of the form t(er(*)),
where a is any L-isomorphism of K into itself) are also in S. Let 0 KiS be the ring of
S-integers of K, that is the set of those elements y of K for which r(y)&0 for all
vdQKS . We remark that OKS is a ring and k[z\QOKQOKyS. An element

3 We adopt the usual definition of additive valuations (see e.g. [24]). Those valuations of K
for which r(r)éO are called finite, others are called infinite.
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ydOKS is called 5-unit if y 1€0K]S also holds. Finally, let 0 MiS=Ok.s"M,
0,,5s=0KsCIL and let |5| denote the cardinality of S. Let a€0 KS be a primitive
element of M over L with HK(ix)SA and let CM/tEL.

As a function field analogue of equation (1), let us consider the equation

2 NML(x+ay +X) = Li

where x,y£0LS are dominating variables and X£Oms is a non-dominating
variable which is in a certain sense “small” compared with the dominating variables.

Theorem. If x,yd Ol s and AEOMS are solutions of equation (2) and
HKE) ~ cOmax {HL(x),HL(y)}
then we have

®) max {HL(x), HL(y)} < M (| S \+ G +2HK(ji) + 25A)

[K:L]
where c0— 400 ¢

In the special case A =0 our theorem gives an effective bound for the solutions
X,YEOLIS of the Thue’s equation

NML(X+<q) = p.

3. Proofs

The proof of our Theorem is based on the following results of Mason4:

Lemma 1 (Mason [25]). Let S denote afinite set of valuations on K and sup-
pose that wi, ..., n,, are S-units in K with i + ms+um=1 but with no proper subset
of 1, Ui, u,n is linearly dependent over k. Then

max HK(ui) » 4m 1(|5| + G).
In the case m=2 a corresponding theorem is as follows:

Lemma 2 (Mason [24]). Let S denote afinite set of valuations on K and sup-
pose that yx, y2, ¥3 are non-zero S-unitsin K suchthat yi+ y2+ y3=0. Then we have

Proof of the Theorem. Let x, yEOLIS and XEOMS be a fixed solution of equa-
tion (2) satisfying the assumptions of our theorem. Let X =max {HK(x), HK(y)}.

4 We remark that the assertions of Lemmas 1 and 2 hold for any finite extension field K of
Hz).
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Then HK(X)<cX with c¢=-~" and equation (2) may be written in the form

(4) i:I‘I*| (x +coiy+Ai) = 1.

We remark that og, a, are distinct, since MjL is a separable extension. (Our
method could be used to equation (4) also under the weaker assumption that there
exist at least three distinct elements among oq, a,, if we supposed that <%= aj
implies Xi—X] For brevity, put /i;=x + «;>>+/; (/=1, ..., n).

Letr,s, t be pairwise distinct indices from {1, ..., n}. Then we have

(ar-a 9(x+aty)+ (as-a ((x+ary)+(a(-an(x+asy) =0,
whence

(5) Br+R's+B't+ A = 0,
where Br = (ss- a,)BrB = (at- anBs,Bt = (ar- <9, and
N = (a,—a9) Xr+ (ar—a() As+ (as—ar) X,.

In the following we shall see that equation (5) may yield one of the three cases
below (A, BI, B2) for the indices r, s, t.

A) First suppose that any three of B‘r Bs,rt and J1 are linearly independent
over k. Dividing (5) by (—J/1) we obtain

(6) ur+us+ut=1

where w=—R'JA, i=r,s,t
We shall use the following notation. For any non-zero y£K let

(v) = {Uefiki,(y) * O}
We remark that for the cardinality of XX (y) we have

VK(Y)\ & 2HK(y)
(see e.g. Brindza [3]).
Let
° Sj. = SU XK (B)U X (A)U  (as—an J XK (ar—a,)U >XK(oc, —as).

Then in equation (6) ur, us, u, are all Si-units. For the cardinality of Sxwe have
ISil S ISl + 2Hk(u) + 24A + 6¢X.

Further, any three of 1, ur, us, u, are linearly independent over k, since this property
holds for Br, Bs, Bt, A. Thus we may apply Lemma 1 to equation (6) and we get

HKUi) S I6lisvi+ G), i =r,s,t
that is
@) HM) * HK(ud+ HK(A) +2A LU
16 |S|+32tfKO) + 392T + 99cW+16G' = Q(3f), i = r,s,t.

B) Consider now the case when there exist three of B', Rs, Bi, A which are
linearly dependent over k. In this case we have two subcases.

Acta Mathematica Hungarica 50, 1987



INHOMOGENEOUS NORM FORM EQUATIONS 151

Bl) First assume that ', Bs and B3t are linearly dependent over k, that is, there
exist non-zero elements ktin k such that if RB"=ktB[ (i=r,s,t) then

®) R"+R:+R" = 0.

Now let
52= SU (R)UJf(a,—a9J (xs—a,) UXK (a,—a9

then R", B", R" are S2-units, and applying Lemma 2 to (8) we get

9) max [h k(-j*) , HK z-\S\ +G.
n n

Put a=R,, Qt=1, Qrz-é/){/-, B*=1Et then we have
(10) RBi =o0i, 1=r,s,t
where a, gr, o8, g, are non-zero elements in K and by (9)
(11) max, HK(ei)"\S\+ 2 H K(ji) + IBA+ G = C2.

B2) Secondly, suppose that two of Bt, R5, 8t, say Br and Bs together with Ji
form a linearly dependent system over k. We may assume that /1"O, because

otherwise we have case BIl. Thus, there are non-zero elements kr, ks, KA in K such
that if Bi—kiBl (i—r,s) and JT'=kAJ1 then

(12) B;+B:+A"' =o.

Let
53= SUX()UX (T)UX (@s~a)UX (a, - an.

Then R", B" and /1" are S3-units and applying Lemma 2 to equation (12) we get

max [h k(-"-), HK(”*)J S |Sa+ (7
that is
(13) HK(B,) S \SA+G +HK(A) +2A 7
S IS)+2HK(R)+28A+9cX+G (i = r,5s).

Let us consider now the system of all possible choices of the indices r, s, t.

First assume that for all choices of the indices we have case BIl. Let us choose
the indices 1, 2, 3, then (10) and (11) imply that there exist non-zero a, a2, q3in K
such that

(14) Bi=<Q, i= 123

where HK(ga”C3 (i=1,2,3). Letr be any index with r>3 (if n>3), and con-
sider the choice 1, 2, r. Again by (10) and (11) we can see that there exist non-zero
ar, gi, g2, g't in K such that

(15) B,=crqgl,i=12,r
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where Hk(g-)"C2 (/'=1,2,r). Comparing the expression for  in (14) and (15)
we get ar=a-~, thatis
(16) Rr = asr,

where HK(gr)~3C 2. Since r was an arbitrary index with /+>3, hence (16) holds
forany r>3 (if n>3). Substituting the expressions (14) and (16) into our equation
(4) wehave o' ...q,=/ whence

HK(c) tk 1 (HK(ji)+ (1- 2)3C" H K(B) +3C2,.

Thus, from (14) and the above inequality we obtain that there exist indices r, s
(say r=1, s=2) suchthat

(17) #*(&) AK(N+4C2 45|+ 9A*00)+ 64T +4C, i =r,;s.

In the opposite case if we can choose r, s, t so that we have case A or case B2,
then there are indices r, s such that (7) or (13) holds. Combining this with (17) we
obtain that in any situation there exist indices r, s such that

max HK(Bi)  Cr(X).
This estimate together with the expressions

<Xr(Bs-K)-*s(Rr-"1) = (Br~K)-(Rs~k)
ar-as ’ ar-as

imply
2CU(X)+4A +2cX,

whence by the definition of Cx(X) and c, (3) follows.
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A SECOND ORDER NONLINEAR DIFFERENTIAL
INEQUALITY

I. BIHARI (Budapest)

Consider the differential inequality
(1) (px’n’-qf(x) >0, '= ta = [t0, eo], (CER,

where _n =-0,p, g > 0& €C(/),/(x)6C(/?), x/>0,x ~ 0,/(0) =0, / Iis increasing

and un=\u\"sgnu, nf£R.
,BY a solution of inequality (1) a function x(t) is meant with the property xgC//),

px'ndCi(l) and satisfying (1). We take into account the class of solutions existing
in the whole interval /. 1t will be proved that K is not empty.

The present paper aims at the extension of N. Parhi’s results [1]. The following
definitions from [1] will be recalled here. A solution x(t) is non-oscillatory if
for t~tx with some ? " t0 and is oscillatory if it has zeros zk, lc—1, 2, arbi-
trarily large and changes sign at xk, finally x(t) is of type Z if it has arbitrarily large
zeros and is ultimately non-negative or non-positive, respectively. The zeros of
x(t) cannot have a finite cluster point t, since then x(x) =x'(x)=f(x(f)),=0 and x'

vanishes by Rolle’s theorem at some xk, therefore px'n\k=0 and
(px'nN'|t=0 involving 0>0 in ().
Theorem 1. Every solution of (1) is non-oscillatory.

Proof. In the opposite case (1) would possess oscillatory or Z type solution,
(M First suppose the existence of an oscillatory or non-negative Z type solution
having two consecutive zeros t0Sa<b between which x(t)>0, i.e.

x(a) = x(b) —0, x'(a) ™ 0, x'(b) ~ 0.

The zeros of x'(t) cluster nowhere (at a finite point). In such point i it would hold
x'(i)=Px'nmi=(px'M\i=0 excluded by (1). Therefore there is a first point ¢ (a<c<b)

where x'(c)=0 and integrating (1) over (a, c) we have

-px""\a—f qgf(x)dt> 0
a

which involves contradiction, because the terms on the left hand side are € 0 and
<0, respectively.
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(i) , Ifa non-positive Z type solution x(t) existed with successive zeros a<h.
then (px'n'|6=-0, so px'nis ingreasing at t=b, bugc px'nb=0, thus in a small

enough neighbourhood of b, /ix"<0 (t<b) and px'n>0 (i>h), i.e. x'>0 and
x=-0 for i— O which is incompatible with the negative Z type character of x(t).
In the sequel the following simple Lemma will be necessary.

Lemma. If x(t)>0, iSh, then x'(t) can have one zero at most.

Namely if it had two zeros t1*x 1-<T2, then from (1) 0— 4 qf(x)dt>0 which

L . n
is impossible.

Theorem 2. The class K is not empty. There are both ultimately positive increas-
ing and decreasing solutions belonging to K i.e. existing on the whole | provided

F(°°)==°, where F(x)= J f~'“(t;)dE, v=—.
n

Proof. 1° Suppose x(t) is a positive solution of the equation

2 (px'ny —kqf(x) =0, k= const> 1

with x(?0)=x0>0, x'(to)=0. This surely exists in a right hand neighbourhood of
t0, and it can be continued to the whole I. Namely, by the Lemma — which is
valid concerning (2), too _)E' has no more zeros. Besides, x(t) is increasing, because

by the transformation t= f p~v(s)ds, the equation (2) turns to

d
(20 dx
or
dx 1—
(29) dx =0

(Here x(e)=x(p()=p®), .v. .5,
which involves that x (t) and x(t) increase, since px n § %? ie x'

ax and ®
have the same sign. From (2) we have (the star * can be omitted since x'>0)

(PxYny -f 4*) = kq
hence by integration by parts

[(px'nf-"(x)\+ f pE'n+lf~i(x)f'(x) dt = k f qdt.
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The second term on the left is positive, thus
< (cp-"+lcp-1fr qdt)"=G(t), ¢ = (px'nf-1(x)\,0
fo
where G(t) is a function continuous on |. Hence

F(x)= ff-vH)dz< / G(s)ds
which exhibits together with F(°°)= °° that x(t) exists on the whole | (namely it is
not becoming infinity at a finite point and neither the zeros of x, nor those ofx/,
cluster at a finite point). Furthermore x(t) is a solution of (1), too.

2° Equation (2) has ultimately positive decreasing solution existing on the
whole /.

Take the solution x(r) of (2)—(2") satisfying x(9=0, x'(TxX)=/r<0 and
continue x(t) backwards to intersect the ordinate t= t0< t1 at the point (x0, x0),
x0>0, what is possible if t«—t0 is small enough. Now fixing the point (r0,x0)
let the slope m=x'(t0)<0 increase. By convexity, the graph of x(t) is above its
tangent line at (10, x0), therefore it is intuitively clear that there is an m=mt<0
at which mli{pﬂ|><><z°° i.e. the point A—(z1,0) ceases to exist. More exactly this

can be seen as follows. First of all a Sturmian theorem (see Theorem 7) holds con-
cerning (2) or (2)—(2") saying that if jCj(r) (/=1,2) are solutions of (2)—(2")

with Jx(t0)=x2(t0) and w, =x[(10)< w2=xr(r0)< 0, then x2>xx as long as
xx~ 0, therefore they intersect the T axis at the points o< t12. In consequence
the numbers m€(— 0] can be ranged in two classes a and B, respectively: the
numbers m belonging to a have the property that the corresponding solutions xm(t)
intersects the T axis (for them the point A exists), while for the m’s of &, A does not
exist. If TEn and then w/(Ea and if m”B and m">m, then m"£R.
In this way a Dedekind’s section is obtained for md(—>30]. Observe that 3 is not
empty, since m—0 is in 8. The value mt={a,R} determines a solution xr(T)=x(/)
which is positive decreasing and exists on the whole I. In the sequel only solutions
belonging to the class K will be taken into account. An exception is Theorem 7.

Theorem 3. Each of thefollowing three sets of conditions involves that the ulti-
mately positive solutions of (1) tend either to infinity or to zero:

(i) J p-*=J g=co
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t S t
(ii) 7(00) = /(00) = 00> Where 1(f) = J p~v(s)(f q(r)dryds, /(/) = J q(s)ds,
0 0 0

oo oo f oo

@iiiy f P~v=" /1 2<*“  JI(°°) wliere /j(0 = f p~v(s) (f qg(r)dr)vds.

Proof. 1° Assuming (i) (by the Lemma) x' is of constant sign for t”~tx with
some If x'>0, i&h, then by (1) (px'n'>0, t~tx and in turn px'n>
>px'nMH=cx, x'>c2p~v (c;=const>0, i=1,2), whence

t
x>x(h)+C2ﬁf p~vds, t_*I_igg X =°°.

If x'<0, iS?i, then k= limx exists and &0. Ifit were k>0 then by (1)

px"’-.px"Jil> J qf(x)dt>f(k) f q(s)ds.
h 4

*
Therefore px'nand x' too, would be positive for t large enough. Consequently k=0
what was to be proved.
2° Assume now (ii). Then if x'<0, iSij we argue as in 1°. If x">0,
then x>M, iSij with some M=const>0. Thus from (1)

px'n> px'h+f(M) f qds >/(M ) J qds,
whence
x'>fv(M)p-v(f qds)y,
X0 > x(h)+/v(M) f p-"(s) (/ g(r) dr)vds
A i
thus ‘lfi()rpx=°°.

, 37 Assume now (iii). If x'>0, féb we argue as in 1° If x'<0, then
px"1 is negative and increasing by (1), so lim(px™)=c exists and is SO. But c
cannot be negative what can be seen as follows. With the transformation

t

t=J p~Vvs)ds used before inequality (1) assumes the form

- p vaf(x) =0,

where

x(®) = x(0, etc., limz === ¢
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If ¢ were negative, x(x) would have an asymptote with negative slope cv involving
the vanishing of x at a finite point (cutting axis t). Therefore ¢=0 and by (1) in

turn
@© 00

-px'n> 1 gf(x), -x' fogf(x))\
t t

t 00

*i-*> [p~Vv(s)(/ q(r)f(x(r))dryds, xx= x(fi).
fi S

Since x is decreasing,
Xi~X > /[ux) 11(t), /(x) =/(x (0),

whence x1>x+/v(x)/1(i). Being /x(°°)="°" we get t!J_QQXZO- Let us observe

that if /(x)=x", then x<Xx/(I+/x(t)) which is an explicit estimate.
Theorem 4. If J p~v=°° j Ix(°°)—="°, &Ix(Q0) / v(*i)*<*i (XXER+)

where [fit) is as above in Theorem 3 and /c=const>1, then the ultimately positive
increasing solutions tend to infinity and there are ultimately decreasing positive solu-
tions tending to apositive limit as t—

Proof. The first assertion can be proved as in Theorem 3, Part 3°. To prove
the second assertion observe that for a solution x(t) of equation (2) with x'<0,

t"tx we had (see Theorem 3, Part 3°) c= lim/;x™ =0 involving

-px’n=kf gf(x), -x’=p~v(k f qgf(x)J,

whence
xx-x = f P~fis)(f kq(r)f(x(r)dr)vds, xx- x(fi) = xx,
h S
hence
X j-x < [v(xi) kviIfit) < /v(x®) k4 x(°°)
finally

X > Xi—fo/ v(*i) Ix(°°) =» 0.
i.e. limx(i)>0. Being x(t) a solution of (1) too, the proof is complete.

Remark 1. Condition /ov v(xD)/1(°°)<Xi can always be satisfied — at fixed
xx — by choosing tx large enough. If /(x)=x" then this condition reduces to
EVI(°°)<I.

Remark 2. Of course, Theorem 3 has a negative wording, too, namely: if (1)
has ultimately positive increasing bounded solution, then /< °o and ifit has a positive
decreasing one not tending to zero, then etc.
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Remark 3. Every solution x of (2) has at most one zero, since x(fi) is convex
where it is positive and concave where it is negative. Thus there are solutions of (1)
with the same property.

*

Remark 4. If f(x)=x", then with the substitution

rt-O'n

w=L- (*>0),

equation (2) turns into the Riccati-like equation

u'+np~viu\l+v—kgq = 0
whence

u'«kq or

Underthe conditions of Theorem 4 and x'-cO we have c= lim (pxn=0, limx> 0,
thus

"t oqds, < P~'(k f qgds)\
whence
logx—ogx™ <t p v(n)(k jg(r) dry ds = fovl2(t)
where
hif)= f+ P v0) (/q(r)dry ds
or

X < X,, exp (fev2(0), x,, =lim x > 0.
Since /2(T)=N(Cp and kv1(°°)<1l we have x1=x1-<xcee=x"e, whence xt>

Theorem 5. If for an ultimately positive increasing solution x(t) of (1) the
function px'n — essentially the derivative — is bounded, then

3) f g(t)f[c £ p v(s)ds)dt <°°,
f0 0

where ¢ is a constant defined below.
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Proof. Let x>0, x'=-0, t~f. Then by (1) px" increases and so in turn

X' > cp-'(t), c= pv(h)*'(h) > 0,
x> x(h)y+c/ /Nl vds>cJ p vds,
i i
t
(px'ny > ?2/(*) > ?2/(c f p~vds),
h

px,n>px'\+ f q(s)f(c f p~v(r)dr)ds.
h 1

*
Since px'nis bounded, so is the integral in question, too. If f(x)=xm m >0, then
(3) assumes the form

foq@)( [P vl) dsmdt <»

*0 fo

The converse of Theorem 5 is perhaps more interesting: if the above integral (3) is
infinite then px™ is not bounded.
X

Theorem 6. If F(—o0)=00 where again F{x)=J f~y(Qdf and hi°°)<e°°

where

hit) = f‘ p-'(.s) (/Sq(r)drj ds, nSl (v&1,

fo fo

Xi=x(h)<0, tfen every ultimately negative solution of (1) £y bounded below.

Proof. The proof itself will show the existence of x(t) for tsf. First of all

we show that the convergence of 12(t) involves that of J p~vdt. Namely, if tlis a
fixed number with t<y8ifi<t then

hif) = h(h)+ f P~v(s) (/ q(r)dr)vds,

K > hit) > hik) +( f qir)dr)vf p-vis)ds,
0 A

t

where K is a positive constant. So Jp ~v{s)ds is bounded. Multiplying (1) by
!
f~\x) we have (being / (x)<O0, t/tfi

ipx*")'f-lix)-q < 0,
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whence following the lines of the proof of Theorem 2 we have
4) *'[ 1(*)< (cp-'+p-1f gds)\ c=pF 1(o0)L

Now two cases must be distinguished:
@) x'(A)>0, ie c<0, then from (4)

(5) Fix) < 4 p v0) ( / q{r)dryds.

(i) x'(A)<0, c>0, then by the use of the inequality

AVEBY o (T+5)Ve 2 V1MW BY

we get from (4) 4
(6) 21 vf’'(x) < chI p~v(s)ds+ j ‘ p~v(s) ( fl q(r) dry ds.
Inequalities (5)—(6) involve the result stated above.
If f(x)=xm 0<T<x 1 then F(x):- \’1‘\“ r=— and if m=n then
F(x)=log \X\.
Theorem 7. Consider the inequalities

. (x*h'-dAt)f(x) S 0 (P1= 22> 0, t 210,

mix')'-gAt)fix) I 0
admitting the solutions x, and x2, respectively, satisfying the conditions

(8J *i(A)= (A SO,
(8) i (A) > NA)-
Then x1>x2, A >A> as long as x2SiO or xXx ceases to exist.

Proof. From (7) we obtain

©) (A*- x)" & (ft- ft)/(A) + q2(f(Xj) -/(A))-

*

*
At i=q the second term on the right hand side is zero. Then gt tsA (An—x2)'>0

and it remains positive for t—A>0 and small enough, A"—A" increases there,
but with respect to (82

A'T:*ncz: A>xX2 Xxx=x2=0

for f—A=-0 and small enough. Thus for small t—A the assertion is true. It must
be shown that it remains valid as long as indicated. If it were not so then a first
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(smallest) t= otl would exist where xi=x'2 (namely at first the derivatives can
get equal while x1=*x2 remains valid for a while). But then we get from (9)

Cc
0= (Xin-x'26 si (Xin-X"2\tI+J [(oi-22)/(xi)« tr(xi)-r(*2))1 dt >
which involves contradiction.

Remark 5. If in (1) /(—x)=f(x) and x(t) satisfies (1) then —x(t) satisfies

(10) (px'b'-gf(x) < o.

Therefore Theorems 1—6 remain valid concerning (10) provided in their wording
the adjectives positive and negative are interchanged. Theorem 7 must be modified
in an obvious way.

1express my deep gratitude to A. Elbert for his valuable remarks and criticism.
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POLYNOMIAL APPROXIMATION WITH EXPONENTIAL
WEIGHTS1

Z. DITZIAN (Edmonton), D. S. LUBINSKY (Pretoria), P. NEVAI (Columbus)
and V. TOTIK (Szeged)

1. Introduction

As many other problems in approximation theory, the problem of weighted
polynomial approximation was initiated by S. N. Bernstein. His question about
characterization of weights w for which polynomials are dense in CO(w) stimulated
a great deal of interest. The final solution came some forty years later, and though
the general description is fairly delicate, for sufficiently regular weights it is equivalent
to

J [log wO)I[l X" 1dx = —°°
R

(cf. [1]). The related qualitative results seem to have appeared first in the works
of M. M. Dzarbasyan and his collaborators [6, 7, 8] (cf. [35]). In the early seventies
G. Freud started a systematic study of the rate of polynomial approximation with
weight

wx(x) = exp(—njs), xGR,A=-0.

Freud and his associates (cf. [9—28]) developed a powerful method which runs
parallel with harmonic approximation and is based on orthogonal polynomials
that are today commonly known as Freud polynomials (cf. [4], [29—34], [35], [36],
[38—40], [41—45], [47—48] and the references therein). The rate of best approxima-
tion was characterized in terms of a /A-functional by G. Freud arid H. N. Mhaskar
in [27] where a possible modulus of smoothness of orders one and two was proposed
as well. The characterization of the relevant X-functional by a fairly simple modulus
of smoothness was given in [4—5].

For technical reasons Freud’s method restricts the parameter A in wx to the
range of A5=2. Freud’s theory has recently been extended to 1<A<2 by A. L.
Levin and D. S. Lubinsky in [29—30].

Let n=1,2,... and 1 Fora function / and a positive weight w
such that fw£Lp(R), let E,,(f,w)p be defined by
(1.1) En(f w)p = ini W(f-P n\\r

1 This material is based upon work supported by the Canadian National Research Council
(first author), by National Science Foundation under Grant No. DMS 84—19525 (third author),
by the United States Information Agency under Senior Research Fulbright Grant No. 85—41612
(third author) and by the Hungarian Ministry of Education (third author). The work was started
while the first, second and fourth author visited The Ohio State University on various occasions
between 1983 and 1985, and it was completed during the third author’s visit to Hungary in 1985.
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where the infimum is taken for all polynomials Pnof degree at most n. This is what
we call the rate of best weighted approximation of the function / by polynomials.
For r€N we define the r-th symmetric difference Anhf of the function / with step
h by

AH(x) = [ (—Dr+kC(r, K)T(c+ (k-r/2)h)

where C(r, k) is the binomial coefficient.
The following theorem is a summary of the results mentioned so far (cf. [4—5]).

Theorem A. Let A=»l, 1 and fwxELp(R). Let r be apositive integer.
Thenfor 0<os-=r

E,,(f, wyp=0(n-aAb/A, n=12,..,
is equivalent to
WXHAM\p=0(h% h—0+

where yh denotes the characteristic function of the interval (—hll(1~X\ #1/(1-5)).

Now let us turn to the question what happens when 0<A”1. For 0-=A<1
the question is vague since the polynomials are not dense in the corresponding
weighted Lpspaces (cf. [33] and [41]). In the singular case A=1, G. Freud, A. Giroux
and Q. I. Rahman [25] proved some convergence theorems in Lxwith weight wx but
the characterization of best approximation in the sense of Theorem A was left un-
resolved. In Section 2 we give this characterization, and in Section 3 we apply The-
orem A to a constructive description of weighted Lipschitz classes. The result we
prove is complete for all A> 1

2. Polynomial approximation with weight exp (—x|)

Here we prove the following

Theorem 1 Let r be a positive integer, 0 and let fw1*L 1(R). Then
(2.1) £,(/, WX - O((log «)*), n-= 12....
holds if and only if
(2.2) M f\i:OQi% h- 0+,
and
(2.3) Hihwi/lli —0 (h3), 0+,

where Ch is the characteristicfunction of the set R \( —exp (I/h), exp (1//;)).
Clearly, (2.1) is equivalent to

E~rfwp=0(n~x, n—12 ...

Remark 1 One would naturally like to find out whether Theorem 1 remains
true for I</)S=0. The necessity of (2.2) and (2.3) can be proved by the method
applied in the proof of Theorem 1 below for every 1</>s <. To prove their suffici-
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ency, the most natural approach would be the one used by Freud (cf. [13—15, 19,
21—23]). However, Freud’s method does not seem to lend itself to treating L p spaces
for p> 1, the main obstacle being that we do not have appropriate information
about the boundedness of the de la Vallée—Poussin (delayed arithmetic) means
of the generalized Fourier series expansion in the orthogonal polynomial system
associated with ™. Interestingly, the weight  is almost classical in the sense that
it behaves like 2(cosh x)-1 and the orthogonal polynomials corresponding to the
latter weight function are a special case of the Pollaczek polynomials (cf. [46] and

[40]).

Proof of Theorem 1 (i): (2.1)=>(2.2). Define the sequence {n(m)} by n_1—0
and log2(n(m))=2m m=0,12,__ Let 0<A<I/2. Then

[log2(«(m))]-1s A < [log2(n(m —1))]-1

for some Tw 1 In [41, Theorem 3] it was proved that the Markov—Bernstein-type
inequality
HPWIlli S /flog k 1-Pwili, Kk > 1,

holds for every polynomial P of degree at most k with an appropriate absolute
constant K>0. Using this inequality the proof of (2.2) becomes a fairly routine
exercise. Let Pnbe a polynomial of degree at most n such that

[1(/-Pn)willi ~ 2En(Z wi)i =§ K(\og2(n))-\

Then
y IWE[dR7]]|T [lwilzfi(/-Pr)]|)i + Hwi[diPri)]|)i.
ere
«Wi[dS(/-Pnm)]|li S *(log2(n(m))-* =Kh*
and
WildiPnm)]|li =£ Khri Wi 1i = KhTélll[m(it)—Pr(k- DI(Nwi« S

S Khr i(lo.g 2(«(fe)) n(t1)(/, Wi s Khx

Now (2.2) follows directly from the latter three estimates.
(ii): (2.1)=*~(2.3). We start with choosing a constant C>0 such that the in-
finite-finite range inequality
UnQn Willi S n_1||B,, Willi

holds for every polynomial Q of degree at most n where tndenotes the characteristic
function of R \(—Cn, Cri) (cf. [2], [15], [31—33] and [37—40]). Let (n(m)} and
{P.,,(m} be defined as in (i), and given 0 let M be such that

Cn(M) < exp (I//i) si Cn(M +1).
Then
IKRWI/li S Nn W i(/-P,,(M)jli+ HC-WI P, (M)|i S

N An(og2z(m (M )))-1+u(M )_11wjiP,,(M)i sNe + 2« (M )-4|w i/7]]i S Kh*
(for Chcf. (2.3)), and this was to be proved.
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(iii): (2.2) & (2.3)=s-(2.1). By (2.2) for every ndN there is a function g,, such
that g, dC(_1> g‘r-1) is locally absolutely continuous and

(2-4) [wi(/-g,)]i + (log2n)~rIW gn(r)|Si = K(log2n)-«

is satisfied with K independent of n (cf. [4, Remark 1] and [5]). By Theorem 2.3 in

[25] we obtain
Eng.,, woi =5 K(\og2ri)~rnw;j g<r) fir +

+Kexp(—n23) k2=mo(|092«)_,t+1||V\ﬂ.g M + MliA,wlgld|l
where il/nis the characteristic function of R \(—n12 n12). By (2.4) the first term
on the right-hand side is O((log n)~a). The second term there can be estimated by

Kexp (- n23)(|Wg.li + IWjgWH) = O((log n)~*)

(cf. [3, Lemma 2.1] and [5]). Finally, by (2.3) and (2.4) we have

INo»Wig,)|li » WmW iif-gM i+ U ririfth = O((log n)-*).
Consequently, we obtain
(2.5) En(g,,, wl)l = O((log n)-*),

and since
En(f Wj)i * En(g,,, wD1+ [wi(/-g,)]|L,

(2.1) follows from (2.4) and (2.5).
Theorem 1has been proved. 0O

3. Constructive characterization of weighted Lipschitz classes

Our next goal is characterizing
IKdJ/||p= 0(hg, h-0 +,
for the weights wx (A>1) in a constructive way as follows.

Theorem 2. Let rEN, 1 0«x</m and A=-1. Assume that f is an
almost everywhere finite valued Lebesgue measurable function. Then the following
assertions are pairwise equivalent.

(i) The r-th symmetric difference of the function f satisfies

3.1 K4E/N,=0(MN h"o+.
(if) The rate of best weighted approximation of f satisfies
(3.2) E,,(fwWA)p= 0(n~*@-1/A), n- oo,

where  wXi,,(X)=wx(\x\ - 1/n).
(iii) We have wxf (¢ £S)dLp(R) for some 6>0 and
(3.3) En(f wx)p = 0(n~x(x~1/), n -m°°
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Remark 2. Applying Fatou’s Lemma it is possible to show that for a=r
condition (3.1) is equivalent to the following: wxf(- +06)fLp(R) for some <5>0,
/ (r_1) is locally absolutely continuous and wfin)ELp{R). Moreover, if a>/e in
(3.1) then / almost everywhere coincides with a polynomial of degree at most r—1
We wish we could characterize all functions / satisfying (3.1) when 0<2sl. Alas,
we cannot do this at the present time.

Remark 3. Let us observe that for /r>0 and |nr|<A/rY(1~n) we have w; (x)~
~wx(xxh), and this is the reason for the appearance of the characteristic function
of the interval (—r1/(1-9), rY(1* ) in Theorem A.

The proof of Theorem 2 is based on Theorem A and the following three lemmas
of technical nature. The next proposition is probably known though we could not
find a reference to it.

Lemma 1. Let f be an almost everywhere finite valued Lebesgue measurable
function on the real line, and let Dhf K2 R, be defined by

DH(x) = 2 cjix +dfi)

where {c” and {dj) are real numbers such that di*dj (i*j) and not every c; equals
0. Iffor some O<plU°® and &>0 we have Dhf£L p[—1,1] for 0</i«5,, then
f€ Lp[a, b] for every subinterval [a, b]cz(—1, 1).

Remark 4. It would have been sufficient to assume DhfdLp[—1, 1] on a
measurable set for which h=0 is a density point. However, even the latter seems
to be superfluous, and we think it is an interesting problem to find thin sets H with
the property that DhfEL p{—1, 1] for /rEH would be sufficient for the conclusion
of the lemma.

Proof of Lemma 1 Let [a, b]cz(—1,1). Since
fIAI/ILN-Li] — IAI/ (" —cur))  x+dii,i—an]
for /i>0, we may assume without loss of generality that d0O=0 and cO=1. Let
<5<min {min (1+a, | —b)/|i/j; r=1, 2, ...,t}, d<d0O, and choose >0 sufficiently
small, for instance >;<2_1<H1+Z\di\~])'~1 is appropriate. Fix a constant C=»0
such that the sets

H = {he(o, GLIIA/|p< C) and F = (*||/(je)] < C}
satisfy

(3.4) m(H)>6—1] and 1 1) > 2.
Let the sets Et, E and Ex be defined by

Et = {(x, h)\xE[a, b], h£(0, 6), x+dthEF}, i=12, ..,

E= flEi and Ex= {h|(x, h)EE}.

Acta Mathematica Hungarica 50, 1987



170 Z. DITZIAN, D. S. LUBINSKY, P. NEVAI and V. TOTIK

Then each Et is a measurable subset of the plane and thus so is E. Moreover, Ex
is measurable for almost every x. Thus if g is a nonnegative measurable function
then the function defined by

X-* f g(h)dh

h€ HM Ex

is also measurable. First let and let

M =2C2 (" +1).
By the choice of H we have

/' f\D hf(x)\"dxdh
H -1

which, by Fubini’s theorem, implies
J J \Dhf(x)\pdhdx<~®°.
lab] hiHCIE*

1(x)[=-M

If |[/(x)]>M and h£Ex then by the definition of M, Ex, E and F we obtain
\fO)\r£2\D hf(x)\. Thus

(3.5) [ M)\ j dhdxM~,
EX>] neH CE*

and if we can show that the inequality

/ dh —T(HIMEYX) > &2
NeHrne*

holds for every x£[d, b], then (3.5) proves the assertion of the lemma. But
m(HD Ex) & <5-m([0,<5]\tf)-m ([0, <5]\E*),
and here by (3.4) m([0, 5]\A)<?/. Furthermore

m([0,S]T\EX) * 2 7([0,<5]\(£,)*)
1

where
[0,0J\(EjY = {hlhaO"x+dthF}, i= 1.2, ..r.

Therefore we obtain
m([0, <5]\(E)*) S m({/| /€[—L,1], t$F})N\d » rAd\-

Collecting the above estimates we can conclude

/ dh”é-ri- 2Md,I]><5/2
neHns* 1=1
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provided I]is sufficiently small. This completes the proof of the lemma for <<
If p—°° then \Dhf(x)\"C for almost every (h,x)EHx[a, b]. The argument
above yields that for every x£[a, b] the set of those h for which x +dfi*F, i=
=1 , 2 has measure at least &2 Thus for almost every xb\a, b] there is
h£H suchthat \Dhf(x)\"C and x+dfi*F, i=1, 2, ..., r, which implies

/()] —\DRFGOV+ 12 Cif(x-+din)l S C (\+ 2, leil)-

Hence we proved the lemma for p= o aswell. O

Lemma 2. Let A>1, 1 and let Lp[a b] for every finite interval
[a, b]. If wAAf fdLp[0, for some 0</r< 1/4 then

wA- -A/2M -U]1€£,[0,-),
and if wrA'bf(:Lp(—-°°,0] for some 0</r<1/4 then
wfi- +h/2)[A'h- If]1EL p(-~,0].
Proof. Let g, and b, be defined by
; an—Ilwa( " —h/2)[Anf (- —i/2)]][Lplrv4i(+1y4
3 cn — WA ¢ —h/2)[Ah 1f L4, (n+1)/4] m
By the assumption of the lemma
(3.6)

and we want to prove
3.7
3.7) 2
Applying the identity
wx(x-h/2)[Ar, 1f{x)] = wkix-hI2)[A'hfix-h12)] +wx{x-h12)[Ah'If (x-h)\

and the relation
Jim whix —h12)/wAx —3h/2) = 0

we can easily obtain
(3-8) C, = a,*(c,_1+ c,_2/4

for sufficiently large n. Since c*-bc”oo0, (3.7) follows from (3.6) and (3.8) by stand-
ard estimates. The case of the negative real line can be treated similarly. O

Lemma 3. Let A>1, and <5>0. Suppose wxf(\ m|=5)<Elp(R)-
Thenfor every M >0 and OS/z<<5/2

(3-9) Iwe(l 1~ ~)/(jup(ri[-m.m]) —K exp (—eM;_1)
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holds with positive constants K and ¢ which are independentof h and M. In addition,
given rEN, thereis h0>0 suchthat

(3.10) K K /IU rm-mm]) ~ K)@xp(—cz_llvl A-D
forevery M >0 and 0sh < ho where the constant Kx>0 is independent of h and M.
Proof. By the assumptions wX«|+8)/GLp(R). Since
wA\X\~h)/wx(\\ —0) & Kexp(—c(|x|)n.1) ~ /fexp(-cM AJ)

for 0M/r<(5/2 and |x| &M, inequality (3.9) follows immediately. Inequality (3.10)
is a straightforward consequence of (3.9). O

After these preliminary results, let us turn our attention to the

Proof of Theorem 2. We will prove the implications (i)=>(ii)=>(iii)=>(i).

()=>(ii). By Lemma 1, fdL p[a b] on every finite interval [a, b]. Thus Lemma 2
may be applied to obtain IHAlft-1/1lp<0° f°r every sufficiently small /r>0.

Repeating this argument we get |knk/11p<0° and a final application of Lemma 2
yields

(3.11) K /(- +<5)p<

for some <$>0. By Theorem A there exists a sequence of polynomials {Pn}
(deg Pntiri) such that

(8.12) llwa( / —P.)llp= 0 (u - “(n-1)/A).

Since for |x|Xn (@) we have wx(x)*w1(\x\ = I/n), this implies

(3.13) Ik,M -P M v =0(«-“w-n s = i/(A).
It follows from (3.11) and Lemma 3 that

(3.14) Ikr,n/IL"(R\t—»»]) = 0(exp(-ca)), s=I/(A-I),

holds with some c¢>0. Finally, the inequality

(3.15) w,,,.PJlz.e(R\[-ns.]) = 0 (exp(-Cln)), s= 1/(A-1),

c1>0, can be obtained from (3.12) and from the existence of a constant C >0
such that

(3.16) 1kn,ndn AR\ cn'Y 0 (exp (—¢,n))|k AnBnlp

holds for every polynomial Q,, of degree at most n (cf. [2], [15], [31—33] and [37—40]).
Indeed, since nl/ASn1/(A-1), we can use (3.16) to establish

1kn,un|lp —K IKA,nMilz.P[-Cnl/A&Cnl/A = ~MKIPnIHPf-Cnl/A.Cn"A],
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and thus by (3.12) |w™\nPB|p is uniformly bounded in nEN. Now we obtain (3.15)
directly from (3.16). Part (ii) of the theorem (cf. (3.2)) follows from (3.13)—(3.15).
(ii) =Kiii). This is obvious.
(iii) =»(i). By Theorem A

WHWKARf\\p = 0(h% ft- 0+

where yhdenotes again the characteristic function of the interval (—rl/(1 5, ft/(1_1)).
The relation

ne—wxAhf\p ~ O (ft*), ft-0 +

follows from Wxf(e +(5)€Lp(R) for some S>0 and Lemma 3. Thus we have
proved Theorem 2. O
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BASIC TOOLS AND MILD CONTINUITIES
IN RELATOR SPACES

A. SZAZ (Debrecen)

Introduction

Starting with this paper, we offer a simple, unified foundation to general topology
and abstract analysis by using a straightforward generalization of uniform spaces
which leads us to more general structures than the ordinary topologies.

As the extensive references show uniform spaces have been defined and gen-
eralized in terms of various objects. The most widely used ones are certain metrics,
relations and covers. Covers are versatile tools in topology, while metrics are better
adapted to arguments in analysis. However, almost everything can be formulated
more simply in terms of relations. Therefore, we adhere to relations.

Before describing the main features of our present approach, it seems nec-
essary to make some historical remarks. Uniform spaces in terms of relations were
first introduced by Weil [97], and later standardized by Bourbaki [10] with some
adjustments. A uniform space in the Weil—Bourbaki sense is an ordered pair
X(%)=(X, ) consisting of a set X and a nonvoid family % of relations Uc XXX
such that

(I) Ucu=A4xc U;
(II) UeU=>3AVewx: VU1,
(II) Ueu =3V, WeuU: WoV cC U,

AV) UVeu=3aweu: W c UNV;
(V) Ue@t, UcVc XXX =V

Each uniform space X (%) gives rise to a completely regular topological space X (7z,)
such that the family % (x)={U(x): Uc%} is the complete neighbourhood system
of each point x in X (7). Moreover, each completely regular space can be obtained
in this manner, and thus precisely those spaces are uniformizable.

Generalizations of uniform spaces, by omitting or weakening some of the
axioms (I)—(V), were introduced by Appert [3], Nachbin [71], Krishnan [54], Alfsen—
Njastad [1], Cech [13], Husek [41], Mordkovi¢ [66], Williams [98], Thampuran [93],
Nakano—Nakano [73] and Mozzochi—Gagrat—Naimpally [67]. Similar generaliza-
tions were also given by Cohen—Goffman [14], Konishi [51] and Davis [20] by
using certain neighbourhood-valued relations which were later called neighbournets
by Junnila [44]. The interested reader can get a rapid overview on the subject by
consulting a recent book of Page [76].

The most widely used generalizations of uniform spaces are the quasi-uniform
ones. (See Csészar [16, p. 66], Pervin [79, p. 174], Murdeshwar—Naimpally [70]
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178 A. SzAz

and Fletcher—Lindgren [28].) These were first introduced in 1948 by Nachbin [71,
p. 104] by omitting the axiom (II) of symmetry. Nachbin originally called them
semi-uniform spaces, and he only used them to define and study uniform preordered
spaces [71, p. 58]. The importance of quasi-uniform spaces might become apparent
only after the striking discoveries of Krishnan [53], Csészér [16, (13.53)] and Per-
vin [78] that each topological space is quasi-uniformizable. This suggests that
topology and analysis should be rather based on generalized uniform spaces than
on the topological ones in which several useful notions of metric spaces become
meaningless.

Adopting this new point of view, in this paper we aim to initiate a simple,
unified foundation to topology and analysis. In order that all the reasonable gen-
eralizations of uniform spaces may be included, and we at once have a more workable
concept without defining bases or subbases, following the ideas of Konishi[51],
Krishnan [54] and Nakano—Nakano [73], we drop all the axioms of a uniform
space except (I). Thus, we consider spaces X(2)=(X, %) consisting of a set X
and a nonvoid family Z of reflexive relations R on X. We call these spaces relator
spaces and show how naturally and easily the fundamental notions and statements
of topology and analysis can be extended to such spaces. The novelty of our treat-
ment is largely due to an extensive and systematic use of nets and relations whose
knowledge is the only prerequisite for reading this paper.

In Sections 1, 2 and 3, we define and study limits Limg, limg, and adherences
Adh, adhy of nets, and closures Clg, cl, and interiors Intg, int, of sets in a relator
space X(2). The results obtained partly reveal the relationship of relator spaces to
convergence, proximity and closure spaces. Moreover, they show that our most
important basic tool is the big limit relation Limg, which expresses convergence of
nets to nets in the relator space X (). In this respect, it is very surprising that the
importance of such a relation between nets seems to have formerly been recognized
only by Efremovi¢—Svarc [26], Mamuzi¢ [63, p. 119] and Husek [41]. (Slmllar
relations for sequences have been considered by Mréwka [68], Goetz [35], Polja-
kov [80], Naimpally—Warrack [72, p. 100] and Fri¢ [29].)

In Sections 4, 5 and 6, we introduce and investigate mild continuities of rela-
tions. We define a relation f from a relator space X(£) into another Y (%) to be
mildly (2, &)-continuous if f~'oSofe# for all S€.%. By introducing a straight-
forward notion of hyperspace of a relator space, we show that mild continuities of
relations can be reduced to continuities of the induced set-valued functions. More-
over, by defining appropriate operations %, 4 and ~ on relators, we prove that
a function f from a relator space X (Z) into another Y (¥) is

(i) (#*, &)-continuous if and only if y,6Limgx, implies f(y,)cLimg f(x,);

(i) (#*, &)-continuous if and only if BEClg (4) implies f(B)eCly (f(4));

(i) (2, &)-continuous if and only if x€limg x, implies f(x)€limy f(x,), or
equivalently x€clg (4) implies f(x)€cly (f(4)).

Thus, the most important continuity properties (i.e., uniform, proximal and

topological continuity) of a function from one relator space into another can be

obtained as particular relator continuities. This remarkable fact has already been

suggested by Nakano—Nakano [73] who also used the useful expression f~'oSof
instead of ([ Xf)~*(S).
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BASIC TOOLS AND MILD CONTINUITIES IN RELATOR SPACES 179

Our terminology and notation in this paper will mainly follow Kelley [49].
The only essential difference is that, following an idea of Cech [13], functions defined
merely on nonvoid preordered sets will also be called nets here. This generalization
is necessary since relators cannot at once be required to be directed with respect
to the reverse set inclusion > which will usually serve as a preorder when a family
of sets is concerned. Moreover, for a net x defined on 4, we shall rather use the
more convenient notations (x,),c,=x and {x,},c,=x(4), where x,=x(a). And,
when confusion seems unlikely, we shall simply write (x,) and {x,} instead of (x,),c 4
and {x,}, 4, respectively.

In connection with relations, we shall also use some particular terminology
and notation. Adopting the functional point of view, a relation with domain X and
range contained in Y (being equal to Y) will be called a relation from X into (onto)
Y. Moreover, if in particular X=Y, then we shall simply speak of a relation on X.
Furthermore, for families # and & of relations, we shall also use the following
straightforward notations:

R(A) = {R(A): RER} whenever A4 is a set,
R1={R-1:ReR), R0 = {RoS: RER, ScF},
RNF = {RNS: RER, S¢F), AN F={RUS: RER, Sc).

And, when confusion seems unlikely, we shall identify singletons with their elements.
Thus, for instance, we shall write 2 (x) instead of 2({x}).

For their help in the effort leading to the present paper, I wish to express my
gratitude and admiration to A. Csdszdr and S. Gacsélyi who suggested improve-
ments and provided encouragement. Moreover, I am also indebted to several further
mathematicians, especially to P. Fletcher, W. N. Hunsaker and N. Levine who
took the trouble to send me several relevant reprints.

1. Limits and adherences

DEerINITION 1.1. A nonvoid family 2 of reflexive relations R on a set X will

be called a relator on X.
An ordered pair X(%)=(X, %) consisting of a set X and a relator £ on X will

be called a relator space.

REMARK 1.2. Relators appear to be the ultimate reasonable generalizations of
the various uniformities. (See, for instance, [76] and [67).)

They have formerly been studied only by Konishi[51], Krishnan [54] and
Nakano—Nakano [73] in greater detail who called them generalized uniformities
and connector systems.

For a preliminary illustration of the forthcoming concepts, it seems appropriate
to use the following

ExampLE 1.3. Let X be a setand 2 be a nonvoid family of nonnegative func-
tions d on XXX such that d(x, x)=0 for all x€X. For each dc2 and &=0,
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define the relation R§ on X by

5(x) = {y: d(x, y)<¢g}.
Then
Ry = {R: d€D, & >0}

is a relator on X, and thus X(Z) is a relator space.

REMARK 1.4. If Z is an arbitrary relator on X, then by defining 2= {dx: R€ #}
such that di(x, y)=0 if (x; Y)ER and dir(x,y)=+ if (x, ))EXXX\R, we
clearly have Z4,=2%

However, this simple fact means by no means that relators are superfluous
since almost everything can be expressed more simply in terms of the ““surroundings”
R than in that of the “metrics™ d.

The next definition has mainly been suggested to us by Efremovié—Svarc [26]
and HuSek [41] who showed that uniformities and their generalizations can also be
described in terms of nets.

DerINITION 1.5. If 2 is a relator on X and A =.4"(X) is the class of all nets
in X, then the relations

Limzg c /" XA and AdhzCc /' XN
defined such that for any (x,)€.A"

Limg((x,)) = {(y)€A": ((72» X)) is eventually in each R}
and
Adhg((x,) = {(7)EA: ((7a> X)) is frequently in each RcZ}
will be called the big limit and the big adherence on X induced by £, respectively.

REMARK 1.6. In the sequel, trusting to the reader’s good sense to avoid con-
fusion, we shall simply write

y.€Limgzx, and y,€Adh,x,

instead of

: (r)ELimg ((x,)) and  (y)€Adh,((x),
respectively.

ExaMPLE 1.7. If Z4 is as in Example 1.3, and (x,) and (y,) are nets in X, then

y.£Limgx, iff Tmd(y,, x,) =0 forall de9g,

and
v,€Adhyzx, iff limd(y,,x,) =0 forall de€g.

To check this, recall that

limr, = sup ggt; r, and 1'1}71 r, = infsup r,

z = @ p=a
for any net (r,) of extended real numbers.

Acta Mathematica Hungarica 50, 1987



BASIC TOOLS AND MILD CONTINUITIES IN RELATOR SPACES 181

THEOREM 1.8. If R is a relator on X, then the relation Limg has the following
properties:
(i) If (x,) is a net in X, then x,€Limg x,.
(i) If y,cLimgx, and ((z5, wp)) is a subnet of ((x,,,)), then wﬂEL%mw zg.

(iii) If (x,) and (y,) are nets in X such that for any cofinal subnet ((zz, wp))
of ((x,, ) there exists a net ((u,,v,)) being frequently in {(z5, wz)} such that
v,€Limgu,, then y,€LimgXx,.

7 [

PrOOF. The properties (i) and (ii) are quite obvious. To check (iii), note that if
(X)zc 4 and (¥.).c 4 are nets in X such that y,¢{Limgx,, then there exists REZ

such that the set
B={a€A: (y., X)¢ R}

is cofinal in 4. Thus, ((xz, ¥s))scp is a cofinal subnet of ((x,,,).c4 such that
v,§ Limgu, for any net ((u,,v,)) being frequently in {(x;, ¥p)}sen-
‘ 3

COROLLARY 1.9. If (x,) and (y,) are nets in a relator space X(), then the fol-
lowing assertions are equivalent:

(l) }’aELima%;

(i) each subnet ((z5,ws)) of ((xa>¥)) has a subnet ((u,,v,)) such that
v,€ Liym 2 Uy

REMARK 1.10. Necessary or sufficient conditions in order that the relation
Limgz may have various useful additional properties will be given later.

Instead of establishing the basic properties of the relation Adhgkz, we shall
now briefly discuss its relationship to Limg.

THEOREM 1.11. If(x,) and (y,) are nets in a relator space X (), then the following
assertions hold:

() If yaEAgih, X,, then w,,EL;‘mg zg for some subnet ((zg, wp)) of ((Xa, VD)
(i) If wﬁEAghg zg for any subnet ((zg, wp) of ((x,¥.), then y;ELimg Xy

PROOF. Suppose that y¢€l‘u\€d}1a X,, and define

B = {(a, )EAXR: (¥, X)ER},

and 2z gy=xX, and wg gy=y, for all (o, R)¢B. Then, by preordering # with
the reverse set inclusion and B by the restriction of the product preorder, one can
easily check that ((zz, wp))pcp is a subnet of ((x,, ,)).c4 Such that wye Lli’ma 2.
This proves (i).

To prove (ii), note that if w,,EA;iha z, for any subnet ((z, wp)) of ((xz, ¥))
then by (i), any subnet ((z5, wy)) of ((x,,»,) has a subnet ((1,,2,)) such that
v,€ Limg u,. Thus by Corollary 1.9, y,€ Limg X
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Remark 1.12. Unfortunately, the converses of the assertions (i) and (ii) in
Theorem 1.11 are not, in general, true.

This follows at once from the next example which reveals a serious disadvantage
of nondirected nets.

Example 1.13. Let X(iM) be a relator space such that (b, a)(|7?n for some
a,b£X and Moreover, let A be a preordered set such that for some a,,
the set {ax, aZ} has no upper bound in A. Define xa=a for all aZA with a”oq
and xx=b for all asoq, and yx—b forall a€A. Then, itisclear that (yx,xX£R
forall RdjM and aSKI, but (ya,xaH RO forall asa?2. Consequently, yXEbHFI XX,

but yx$A§ih"xx.

Remark 1.14. A relator 4 on X, or a relator space X{M) will be called uni-
formly directed if M is directed with respect to the reverse set inclusion.

In uniformly directed relator spaces, we may restrict ourselves to directed nets,
thus the above inconveniences can be avoided there.

Definition 1.15. If St is a relator on X and A/~=J/«X), then the relations
UmAMczJAXX and adb”ezjVXX
defined such that for any (r,)6T

g I™ > ((*)) = {xeX: (x)CLim*((r,))}
adh* ((xj) = {x€T: (x)€EAdha ((x9)}

will be called the little limit and the little adherence on X induced by 'M respectively.
Remark 1.16. Again, we shall simply write

x€lim<xx and x£adh/8xx

instead of
x€lima ((xa)) and xCadh”x*)),
respectively.
The following theorem is an immediate consequence of the corresponding
definitions.

Theorem 1.17. If (xj is a net in a relator space X(R), then
Innga xa= T limR-HXx,)
1

JNles a
and

adhaxa= fl HTN*](Xa)-
X nes a
Remark 1.18. Recall that
limTa=U BI'I AR and IlimTa=n L[f AN
for any net (AX of sets.
The next two theorems follow at once from Theorems 1.8 and 1.11.
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THEOREM 1.19. If Z is a relator on X, then the relation limg has the following
properties:

(i) If x€X and A is a nonvoid preordered set, then xElierfl‘ X4
(ii) If (x,) is a net in X and (y;) is a subnet of (x,), then limg X, Clipm,, Vg-
(iii) If (x,) is a net in X and x€X such that for each coﬁnal subnet (yg) of (x,)
there exists a net (z,) being frequently in {yz} such that xehmg z,, then x¢€ llmgx

CorOLLARY 1.20. If (x,) is a net and x is a point in a relator space X (), then
the following assertions are equivalent:

(i) x€limg x,;
(ii) each subnet (yg) of (x,) has a subnet (z,) such that x€limgz,.
b4
REMARK 1.21. A further important property which the relation limz may have

is the following iterated limit property:
If (x,p)pen, is a net in X for each o in a nonvoid preordered set 4, y,€limg x,,

for each a€A4, and z€limgzy,, then ze(lirqr’l)gxw(,), where (a, p)€4X ¥ B,.
a a, acd

THEOREM 1.22. If (x,) is a net and x is a point in a relator space X (&), then the
following assertions hold:

(i) If xcadhgx,, then xEli;ng yp for some subnet (yg) of (x,).

@) If andhg,y,i for any subnet (yg) of (x,), then x¢ limg X,

REMARK 1.23. Also by Example 1.13, it is clear that the converses of the asser-
tions (i) and (ii) in Theorem 1.22 are not, in general, true.

This strongly suggests that in a relator space X(%), even the relations limg
and adhg cannot, in general, be equivalent tools. However, as we shall soon see,
this is, fortunately, not the case.

2. Closures and interiors

DerINITION 2.1. If Z is a relator on X and 2=2(X) is the family of all sub-
sets of X, then the relations

Clgc?XxX? and Intzc ZXZP
defined such that for any 4A€2
Clg(4) = {BEP: YVRER: ANR(B) = 0}
o Inty (A4) = {B€EZ: 3RER: R(B) C A}
will be called the big closure and the big interior on X induced by £, respectively.
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ExAMPLE 2.2. If Z4 is as in Example 1.3 and 4, BC X, then
BeClg, (4) iff d(B,A)=0 for all deg,
where d(B, A)=inf {d(b, a): bE B, ac A}.

REMARK 2.3. Note also that if £ is in particular a quasi-uniformity, then
Cly is precisely the inverse of the induced quasi-proximity d4 [28, p. 12].

In this respect, it is also worth mentioning that we have Clz'=Clgz: for
any relator Z. (Note that the same assertions hold also for the relations Limg, and
Adhy,.)

The following theorem is an immediate consequence of the definition of Cly,
and the equality Clz'=Clg-1.

THEOREM 2.4. If R is a relator on X, then the relation Cly has the following
properties:

(i) Clg(9)=0;
(ii) A€Cly(A) if V=ACX;
(iii) Clg (4)CClg (B) and Clz'(4)cClz' (B) if ACBCX.

REMARK 2.5. An equivalent reformulation of the first part of (iii) says that

Clz(A4)UClgi(B) € Clgy(AUB)
for all 4, BC X.
Later, we shall see that the converse inclusion can hold for all 4, BCX if and
only if Z is proximally directed in the sense that the family 2 (A) is directed with
respect to the reverse set inclusion for all 4cC X.

THEOREM 2.6. If A is a set in a relator space X (), then
Intg (4) = Z(X)\Cla (X \4)

Cla(4) = Z2(X)\Intz (X \A4).

Proor. For BcX, we have B¢lnty(4) iff R(B)cA for some ReZ iff
(XN\A)NR(B)=0 for some ReZR iff B¢ Cly(X\A). This proves the first assertion.

The second assertion can be at once derived from the first one by writing X\ 4
instead of A.

and

REMARK 2.7. Using this theorem, the properties of the relation Int; can be
easily derived from that of Clg.

Moreover, this theorem shows that in a relator space X (), the relations Clg,
and Inty, are equivalent tools.

DEFINITION 2.8. If Z is a relator on X and Z2=2(X), then the relations
clg € XX and intz C XX
defined such that for any A€Z2
cla(4) = {x€X: {x}€Clz(4)}
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and
intg (4) = {x€X: {x}€Inty (A)}

will be called the little closure and the little interior on X induced by £, respec-
tively. -

REMARK 2.9. When it seems convenient, we shall also use the notations
A=cly (A) and A=inty (A).

The following theorem is an immediate consequence of the corresponding
definitions.

THEOREM 2.10. If A is a set in a relator space X () then clyz(A)=NR1(A).
The next two theorems follow at once from Theorems 2.4 and 2.6.

THEOREM 2.11. If R is a relator on X, then the relation cly has the following
properties:

(@) cla (@) = 9;
(ii) Acclyg(4) if AC X;
(iii) clz(4) c clz(B) if Ac BcC X.
REMARK 2.12. The property (iii) can again be reformulated by stating that

clz(4)Ucly (B) c clgz(4U B)
for all 4, BCX.
But, now the converse inclusion can hold for all 4, BcX if and only if Z is
topologically directed in the sense that Z(x) is directed with respect to the reverse
set inclusion for all x€X.

THEOREM 2.13. If A is a set in a relator space X (), then
intz(4) = X\clzg(X\4) and clz(4) = X\intg(X\ 4).
DEFINITION 2.14. If Z is a relator on X, then the members of the families
Fa={AcX:clg(Ad)=A} and T4z={A C X: intg(4) = A}
will be called the Z-closed and the Z-open subsets of X, respectively.

REMARK 2.15. Note that for AcX, we have A€, (A4€T4) if and only if
clx(A)C A (Acintg (4)).

The following theorem can be easily derived from Theorem 2.11.

THEOREM 2.16. If R is a relator on X, then the family 5 has the following
properties.:

(1) 0€F, and X€ Ty,
(i) NHEF, if 0~ ACT,.

REMARK 2.17. If £ is a topologically directed relator on X, then by Remark 2.12,
we also have AUBc %, for all 4, BE .
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Corollary 2.18. If 3k is a relator on X, then thefollowing assertions are equiv-
alent:

(i) cla (A)€D for all AczX;
(ii) c\a (A)—n {F6 AcF}for all AczX.

Remark 2.19. The property (i) can, somewhat inprecisely, be expressed by saying
that the relation c\a is idempotent.

Later, we shall call a relator 31on X topological if x3_R(x)w- for all xEX and
RC§M, and show that: 3Ais topological iff cla is idempotent iff it has the iterated
limit property.

The next theorem is an immediate consequence of Theorem 2.13.

Theorem 2.20. If (Mis a relator on X, then
IA= A£lB}

Definition 2.21. If 3JLlis a relator on X, then the relation nn defined on X by
aa(x)=c\sa ({x}) will be called the point-closure on X induced by 3L

Theorem 2.22. |f Pbis a relator on X, then
= = (n3a)-1
Proof. By Theorem 2.10, we clearly have
ea(x) =NdA-"x) = (MN~_H(x) = (N1)-1)
for all Xx£X, whence the assertion immediately follows.

Remark 2.23. The point-closure will play an important role in the descriptions
of the so-called weak properties of relators.

For instance, a relator @ will be called weakly topological and weakly sym-
metric if g is closed-valued and symmetric, resp.

Note that weak symmetry corresponds to the famous RO-property of topological
spaces which was mainly studied by Davis [20] and Murdeshwar—Naimpally [70].

3. Interdependence of basic tools

Theorem 3.1. If A and B are sets in a relator space X([3), then the following
assertions are equivalent:

(i) BECI*(");
(1) y}'IOAaTFI xx for some net ((xa,j>3d) in AXB;
(iii) yd AghM<a for some net ((xa,yj) in AXB.
Proof. If (i) holds, then for each RE3/l, there exists (xR,yR)(AxB such

that (yR, xr)(R. Hence, by preordering 31 with the reverse set inclusion, we can
state that ((xR,yR)Ri3i is a netin A'XB suchthat yR(LimaxR. Consequently,

(i) holds.
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On the other hand, by preordering 2 with the largest possible preorder, we can
also state that ((xg, ¥z))rca iSanetin AXB such that yREAghg xg. Consequently
(i) implies (iii) too.

The implications (ii)=(i) and (iii)=(i) are even more obvious.

REMARK 3.2. Note that in the assertion (iii) the net ((x,,y,)) may be required
to be directed even if £ is not uniformly directed.

Note also that by using the assertion (i) of Theorem 1.11, the proofs of the
implications (i)=(ii) and (iii)=(i) can be spared.

The above theorem shows that in a relator space X(2) the relation Clg cannot
be a more powerful tool than Limy, or Adhy,.

THEOREM 3.3. If (x,),c 4 and (¥,)qc 4 are nets in a relator space X (), then among
the following assertions the implications (1)= (i1)<>(iii) hold:

(1) y,€Limg x,;

(1) {yp}sen€Cla({xp}pen) for any cofinal subset B of A;
(ii1) {Wﬁ}ﬁeB€ Cl.@!({za}ﬂEB) JSor any subnet ((Zp, Wp))pen of ((xas ya))aEA'

Proor. This is an immediate consequence of the corresponding definitions.
To check that (ii) implies (iii), note that if ((z;, wp))pcp is a subnet of ((X,, Y2))ac 45
then there exists a function ¢ from B into 4 such that z;=x,p and wy=y,p
forall peB, and for each a€ A thereexists f,€B suchthat @ (f)=a forall f=p,.
Hence, it is clear that {z;};c5={X.}acom and {Wilses={Valuc o), and @(B) is a
cofinal subset of 4. Thus, (ii) can be used to derive that {w,};cs€Cla ({25} cn)-

REMARK 3.4. If in particular A is a linearly ordered set and 2 is a uniformity,
then (ii) also implies (i).

This follows immediately from a deep result of Ramm—Svarc [82, Lemma 2’]
which was later rediscovered by Alfsen—Njastad [2, Lemma 2].

THEOREM 3.5. If (X).c4 and (¥,),c 4 are nets in a relator space X(%), then any
of the following assertions implies the subsequent one:
() y.€Adhg x,;

(i) {}p22€Cla ({xp}p24) for all acA;
(i) wy€ L}'ng zg for some subnets (z5)pcp and Wp)pcp of (XDzca and (Vo)acas

respectively.

PRrOOF. It is clear that (i) implies (ii). To check that (ii) also implies (iii), note
that if (ii) holds, then for each a€ 4 and REZ, there exist @, gy=0a and Y, gy=0o
such that (Vy,, n» Xo, =) ER. Hence, by preordering # with the reverse setinclusion
and B=AXZ with the product preorder, it is clear that (Xy, »)@r)cs and
( J’m.m)(a,. rycp are subnets of (X,),cxa and (¥.).ca, respectively, such that

y‘l’(u. R)E (];’lg_q x¢(a, R)"
REMARK 3.6. If in particular B is a directed set in (iii), then (iii) also implies (ii).

But, as the next trivial example shows, the implication (ii) = (i) cannot, even
for sequences, be true in general.
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ExampLE 3.7. Let X be the set of all real numbers, d the usual metric on X
and Z,=Ry as in Example 1.3. Define x,=n and y,=n+1 for each positive
integer n. Then, it is clear that (x,) and (y,) are sequences in X such that

{ym}ménEClad ({xm}mgn) for all n, but ynQAShQ Xn-
By letting B to be a singleton {x} in Theorem 3.1, we immediately get

THEOREM 3.8. If A is a set and x is a point in a relator space X (), then the jfol-
lowing assertions are equivalent:

(i) xeclg (4);
(i) x€limy x, for some net (x,) in A;

(iii) xcadhy x, for some net (x,) in A.

REMARK 3.9. If Z is, in particular, topologically directed, then the net (x,)
may be required to be directed not only in the assertion (iii), but also in the asser-
tion (ii).

On the other hand, in contrast to Theorems 3.3 and 3.5 and Remarks 3.4 and
3.6, now we simply have

THEOREM 3.10. If (X,),c4 is a net in a relator space X (), then

limgx, = (N cla({xs}sc)
a Be€(A)

where €(A) means the family of all cofinal subsets of A, and
adhg x, = DA cla ({Xs}p22)-

Proor. By letting y,=x for all a€4 in Theorem 3.3, we immediately get

limgx,c () cla({xs}scn)
a Bc¥(A)

To prove the converse inclusion, note that if x€X such that x¢limgx,, then
there exists Rc€Z such that
B ={ucA: x,¢ R(x)}
is a cofinal subset of 4. Moreover, x{clg ({xs}gcp) since {xg}scpR(x)=0.
This proves the first assertion. The proof of the second one is even more obvious.

ReMARK 3.11. Theorems 3.8, 3.10 and 2.13 show that in a relator space X (%),
the relations limg, adhg, clg and int, are equivalent tools.
Moreover, from Theorem 3.8, one can also easily derive the following less

surprising

THEOREM 3.12. If A is a set in a relator space X (), then the following asser-
tions are equivalent:

() A€ F5;
(i) limg x,C A4 for any net (x,) in A;

(iii) adhg x,c A for any net (x,) in A.
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REMARK 3.13. Hence, we can also state that, for a set 4 in a relator space X (%),
we have A€, if and only if ANlimgx,=0 (4Nadhyx,#0) implies that (x,)

is eventually (frequently) in A.

4. Mild continuities

DErFINITION 4.1. A relation f from a relator space X(#) into another Y (%)
will be called mildly continuous, or more precisely mildly (2, &)-continuous, if
floSofe# for all Se&.

REMARK 4.2. Authors dealing with uniform continuity of a function f usually
introduce the auxiliary function fXf defined by (fXf)(x,y)=(f(x),f(»)) and
fail to note that (/Xf)~1(S)=f"toSof.

The useful expression f~!oSof seems to have formerly been explicitly used
only by Konishi [51], Davis [21], Kenyon [50], Doi¢inov [23], Mathews—Curtis [64]
and Nakano—Nakano [73].

The latter two authors have also suggested that by defining appropriate opera-
tions on relators all the important continuity properties of a function can be obtained
as particular relator continuities.

REMARK 4.3. Mild continuities for relations express in general much weaker
continuity properties than upper and lower semicontinuities which are to be defined
according to [86].

Namely, the condition of Definition 4.1 can be rephrased by saying that for
each Sc& there exists REZ such that the properties y€ R(x) and f(y) N S(f(x))#0
are equivalent for any x, y€JX.

Fortunately, for functions the above three kinds of continuity properties coin-
cide. Therefore, in that case the term “mildly” may be omitted without any danger
of confusion.

The next two theorems contain important, but almost self-evident assertions
about mild continuities.

Tueorem 4.4. If f and g are relations from a relator space X() into another
Y(&) such that fcg and f is mildly continuous, then g is also mildly continuous,
provided that X is a stack on XX X.

CoOROLLARY 4.5. If f is a reflexive relation on a relator space X (R) with # being
a stack, then f is necessarily mildly continuous.

THEOREM 4.6. If f is a mildly continuous relation from a relator space X(Z&)
into another Y (&) and g is a mildly continuous relation from Y (<) into a relator
space Z(7), then gof is a mildly continuous relation from X(Z) into Z(T).

To partly reduce the study of mild continuities of relations to that of functions,
we need a straightforward notion of a hyperspace of a relator space.

Acta Mathematica Hungarica 50, 1987



190 A, SZAzZ

DEFINITION 4.7. Let X(%) be a relator space and X=2(X)\{0}. For each
REAR, define the relation R on X by

R(4) = {Be X: BNR(A) = 0}.

Moreover, let #={R: Rc#)}. Then the relator space X(#) will be called the mild
hyperspace of X(£).

REMARK 4.8. Note that by identifying singletons with their elements, X} (95) may
be considered as an extension of X(Z%).

Thus, by using X (9?), the relations defined in Sections 1 and 2 can be naturally
extended to nets and families of nonvoid subsets of X, respectively.

Of course, the same assertions hold also for the upper and lower hyperspaces
of a relator space which are to be defined according to [8].

However, for the above purposes, mild hyperspaces appear to be more suitable
since we have

THEOREM 4.9. If R is a relator on X, then
Cl,=¢3 and Clz;=%"1Cl 0%,

where 9 means the function defined on 2 (?(X )) by u(f)=U.
ProOF. The first assertion is quite obvious. To check the second one, note
that if #¢Cly (o), then LN\ R(#)=0 for all ReA. That is, for each ReZ,

there exists A€o/ and BcZ# such that AcR(B), or equivalently ANR(B)=0.
This means that, for each R€Z, there exist x¢ U/ and ye UZ such that x€R(p).
Consequently, U/ NR(UZ)#0 for all ReZ, and hence UZAECl, (U). That
is, U(B)eCly(%(2)), and hence BeU~'(Cl, (%(2£))). This shows that Clzc

CU*oClzo%. The converse inclusion can be proved quite similarly.

REMARK 4.10. In connection with the mild hyperrelator £, it is also worth
mentioning that the relations limz and adhy can be used to express the topological

lower and upper limits studied by Mréwka [69] and Frolik [30].

DEerINITION 4.11. If fis a relation from a set X into another Y, then the func-
tions ¢, and @, defined on X and X by

¢r(x) =f(x) and P;(4)=7(4)
will be called the little and the big set-valued functions induced by f, respectively.

PROPOSITION 4.12. Iffis a relation from a set X into another Y and S is a reflexive
relation on Y, then

¢floSog; = f1oSof and P;loSod, = (f~loSof)".

Proor. Straightforward computation. For instance, to check the second asser-
tion, note that for 4, Bc X we have Be(®P7'0So®,)(A) iff @,(B)eS(P;(4)) iff
FBYNS(f(A)=9 iff BNf(S(f(A4))=0 iff Be(f~toSof)"(A4).
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THEOREM 4.13. If f is a relation from a relator space X(&) into another Y (%),
then the following assertions are equivalent:

() fis mildly (:%, &F)-continuous;

(i) ¢ is (R, &)-continuous;

(iii) @, is (2, F)-continuous.

PrOOF. By Proposition 4.12, it is clear that (i) and (ii) are equivalent, and (i)
implies (iii).

To check that (iii) also lmphes (i), note that if S€&_ and T=f"'oSof, then

by Proposition 4.12 and the assertion (iii), we have T=R for some REZ, which
implies that T=R.

5. Criteria for continuities

DEFINITION 5.1. If Z is a relator on X, then the relator
A*={Sc XXX: ARcA: Rc S}
will be called the uniform refinement of Z.

THEOREM 5.2. If f is a function from a relator space X () into another Y (%),
then the following assertions are equivalent:
@) fis (#*, &)-continuous;
(i) y,€Limg x, implies f(y,)€Limy f(x,);
(ii}) y,€ Adhg x, implies f(y,)€ Adhy f(x,).

Proor. If (i) does not hold, then there exists S€& such that f~'o Sof¢ Z*.
This means that for each R, there exists (xg, yg)€R such that (xgz, yr)¢f~1oSof,
ie., (f(xg),f(yr))¢S. Hence, by preordering # with the reverse set inclusion,
we can state that (xz) and (yg) are nets in X such that xREL;zmg, Yr, but
S(xp)é L;(my f(yr). Consequently, (ii) implies (i).

On the other hand, by preordering £ with the largest possible preorder, we
can also state that (xzg) and (yg) are nets in X such that xREAlglhg Yr, but
JS(xp)¢ A,ﬁlhy’ f(yr).- Consequently, (iii) also implies (i).

The implications (i)=>(ii) and (i)=>(iii) are even more straightforward con-
sequences of the corresponding definitions.

REMARK 5.3. Note that any one of the assertions

(i) yu€Limg x, implies f(y)cAdhy f(x,);

(V) yaEAdh.‘Z Xa implies f(ya)eLimS’f(xa >
implies (i), but none of them is implied by (i).

Moreover, note also that in the assertions (iii) and (v) the nets (x,) and (y,)
may be required to be directed even if # is not uniformly directed.

2 Acta Mathematica Hungarica 50, 1987



192 A. SZAZ

COROLLARY 5.4. If % and & are relators on X, then the following assertions
are equivalent:

(i) cR*, (i) LimzcLimg; (iii) AdhycAdhg,.
Proor. Apply Theorem 5.2 to the identity function of X(£) into X(¥).

COROLLARY 5.5. If A is a relator on X, then R is the largest relator on X such
that Lim3t=Lima (Adhg*':Ath).

Proor. Use Corollary 5.4 and the inclusions Z*c#* and ZcC(Z*)*.

DEFINITION 5.6. If Z is a relator on X, then the relator
R¥ = {SC XXX: YACX: AREZR: R(A) c S(4)}
will be called the proximal refinement of Z.

THEOREM 5.7. If fis a function from a relator space X () into another Y(&),
then the following assertions are equivalent:

() fis (Z*, ¥)-continuous;

(ii) B€Cly (A) implies f(B)ECly (f(A));
(i) /Y (V)eClg (f~1(U)) implies VECly (U);
(iv) Velnty (U) implies f~2(V)€Intg (2 (U)).

Proor. A simple application of the corresponding definitions shows that (i)
implies (ii). Moreover, by writing f~*(U) and f~*(V), with U, V'Y, instead of
A and B in (ii), respectively, and Y\U instead of U in (iii), and applying Theo-
rem 2.6, on¢ can easily check that (ii)=(iii) and (iii)=(iv).

To prove that (iv) also implies (i), suppose that (iv) holds, and let S¢&% and
AcX. Then, we clearly have f(A)€Int, (S(f(4))). Hence, by (iv), it follows that
L (f(A)eInt, (f~1(S(f(4)))). This implies that A€Int, ((f~'oSof)(4)). Thus,
there exists RE€Z such that R(A)c(f'oSof)(A). Consequently, f~'oSofcZ*.

COROLLARY 5.8. If # and & are relators on X, then the following assertions
are equivalent:

() LcR*; (i) ClacCly; (i) IntyclIntg.

COROLLARY 5.9. If # is a relator on X, then R* is the largest relator on X
such that Cl g4 =Clg (Int,y =1Intg).

DEerINITION 5.10. If £ is a relator on X, then the relator
g ={Sc XXX: Vx€X: ARER: R(x) C S(x)}
will be called the topological rerinement of Z.

The proofs of the next two theorems are quite similar to that of Theorems 5.2
and 5.7.
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THEOREM 5.11. If f is a function from a relator space X(R) into another Y (&),
then the following assertions are equivalent:

@) fis (%, P)-continuous;
(ii) xeliarlng x, implies f(x)Eligny XD
(iii) anghg X, implies f(x)Eaghy f(x).

REMARK 5.12. Any one of the assertions

(iv) xeliar!ngr x, implies f(x)€ aghy f(x),

(v) xcadhg x, implies f(x)€limy f(x,)
implies (i), but none of them is implied by (i).

If Z is topologically directed, then the net (x,) can be required to be directed
not only in the assertions (iii) and (v), but also in the assertions (ii) and (iv).

COROLLARY 5.13. If # and & are relators on X, then the following assertions
are equivalent:

(i) ¥c#; (i) limgclimy; (i) adhgycadhy.
COROLLARY 5.14. If Z is a relator on X, then R is the largest relator on X such
that limz=limg, (adh; =adhg).

THEOREM 5.15. If fis a function from a relator space X(2) into another Y (%),
then the following assertions are equivalent:

(1) fis (R, &)-continuous;
i) x€clg (4) implies f()ecly (f(A));
(i) x€cly (f1(A4)) implies f(x)Ecly (4);
(iv) f(x)€inty (A) implies x€intg (f~1(A4)).

COROLLARY 5.16. If # and & are relators on X, then the following assertions
are equivalent:

() L<&; (i) claccly; (iii) intyCintg.

COROLLARY 5.17. If R is a relator on X, then AR is the largest relator on X such
that clgz=clg (int;=intg).

THEOREM 5.18. If f is a function from an arbitrary relator space X () into a
topological one Y (%), then the following assertions are equivalent:

@) fis (95, &)-continuous;
(i) A€F, implies [1(A)e Fap;
(iil) A€T 4 implies [~1(A)ET 4.

Proor. If (i) holds and A4€%,, then by (iii) in Theorem 5.15, we have
clg(f~1(4)) < f7(cly (4) = f1(4),
whence f~1(4)€Z, follows.
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Conversely, if (ii) holds and Ac ¥, then by Theorem 2.11 and Remark 2.19,
we have

claCl™ X)) ¢ Aa{r*(c\AA))) =f~ L{c\$(A)),

whence, again by (iii) in Theorem 5.15, (i) follows.
The equivalence of (ii) and (iii) is an immediate consequence of Theorem 2.20.

Corollary 5.19. If PAand if are relators on X such that if is topological, then
the following assertions are equivalent:

(@) (i) @iii)S T 4.
Remark 5.20. Note that the implications (i)=*(ii)<=>-(iii) in Theorem 8.15 and
Corollary 5.19 do not require if to be topological.

Corollary 521. If 1% is a topological relator on X, then Ol is the largest
topological relator on X such that {3~

Remark 5.22. By Corollary 5.17, it is clear that the equalities and
are always true; and Si is topological if and only if 01 is topological.

Later, we shall show that a relator 01 is topological if and only if Ot is topologi-
cally transitive in the sense that T(S(x))c.R(x) for some S, whenever

x<zX and RE£l%.
The next simple example shows that the condition of topologicalness cannot
be omitted from Theorem 5.18 and Corollaries 5.19 and 5.21.

Example 5.23. Let X={x,y,z}, and define the relators Ot={R} and if= {5}
on A"such that R(.v)={.v,y} and 5(x)={a, z} and R(t) =S(t) ={y, z} if tE£{y, z}
Then, it is clear that
Fa=Y <= {0, &z}, X},

but the relators 01 and are still incomparable.

Remark 5.24. Note that the relators 01 and if given in Example 5.23 are not
topological since the relations R and S fail to be transitive.

Note also that under the small change S(z)= {z} the relator if becomes
topological, and we still have a reasonable example to Theorem 5.18 and Corol-
lary 5.19.

6. Supplements to Section 5
Theorem 6.1. 1f 01 is a relator on X, then
B*)~ = dYY{{A}*)~ and (0*Y =(ayn({AY)~,
where A is the diagonal of XXX.

Proof. We shall only prove the second assertion, since the proof of the first
one is similar, but simpler. For this, suppose first that T(L{R*)~. Then, there
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exists S€Z* such that 7=S. Moreover, for any A4cX, there exists REZA such
that R(A)cS(A). This implies that R(4)c S (A4)=T(4). Consequently, T€(#)"N
Nn({4y)".

To prove the converse inclusion, suppose now that Te(#)" N({4}*)". Then,
there exists a reflexive relation S on X such that 7= S. Moreover for any Ac¢
there exists REZ such that R(A)cT(4)=S(A4). This implies R(A)cS(A). Con-
sequently, we have ScZ+* and hence T=S¢c(2+)".

REMARK 6.2. To formulate a similar assertion for the relator (%)~ a weakening
of the topological refinement should be introduced.

The importance of the above partial compatibility of the hyperspace opera-
tion ~ with the refinement operations %, # and ~ lies main lyin the next
reduction

THEOREM 6.3. If fis a relation from a relator space X() into another Y (&), then

() f is mildly (R*, &F)-continuous if and only if @, is ((Ql:)*, ‘S;:)-continuous;
(i) f is mildly (R*, &)-continuous if and only if ®; is (%), &)-continuous.

Proor. This is an immediate consequence of Theorems 4.13 and 6.1 and the
second assertion in Proposition 4.12. Namely, for instance, by the above mentioned

results, it is clear that £ is mildly (#*, &)-continuous iff &, is ((9?#) &)-con-

tinuous iff @, is ((4)"N({4}*)", #)-continuous iff &, is ()", &)-continuous.
Combining Theorems 4.13 and 6.3 with the results of Sectlon 5, one can for-
mulate several criteria for mild continuities of a relation from one relator space
into another.
Among these criteria, it seems appropriate to mention here only the ones con-
tained in the next

THEOREM 6.4. If f is a relation from a relator space X(&) into another Y (&),
then the following assertions are equivalent:

(1) fis mildly (Z*, &)-continuous;
(ii) BEClg (A4) implies f(B)ECly ( f(A))
(iii) Aehm A, implies f(A)€ hm = f(4,).

Proor. By Theorems 4.13, 5.7 and 4.9, it is clear that (i) holds iff ¢, is (Z+, P)-
continuous iff BeCly(4) implies ¢ (B)€Cl; (@p(4)) iff (i) holds. Namely,

Pp(A)={f(*)}xca and f(4)= U f).

On the other hand, by usmg Theorems 6.3 and 5.11, one can easily check that
(i) holds iff &, is ((#)", V)-contlnuous iff Aelimg 4, implies & ,(A)Ehzny D(A,)
iff (iii) holds.

REMARK 6.5. It is a striking fact that the sets 4, can be replaced by singletons
in (iii).
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Namely, if (i) does not hold, then there exist S€% and AcX such that
for each REZ there exists xz€R(A4) such that xzd(f~loSof)(4), ie., f(xx)N
NS(f(4))=9. Hence, by preordenng Z# with the reverse set inclusion, one can
easily check that ({xR})RE z1s a net in X such that A€limg {xzr}, but f(4)¢ lim gz f(xg)-

The above fact was formerly utilized by Husek [41] in defining convergence
classes for generalized proximities.

To derive assertions for various mild continuities of composite relations, the
next theorem is also needed.

THEOREM 6.6. If f is a relation from a relator space X () into another Y (%),
then the following assertions hold:

() If f is mildly (®*, &)-continuous, then f is also mildly (R*, &*)-continuous.
@) If f is mildly (Z*, &)-continuous, then f is also mildly (#*,%*)-con-
tinuous.
(iii) If f is mildly (9? &)-continuous, then f is mzldly (9? & #)-continuous. More-
over, if in addition f is a function, then f is also (QZ .?) continuous.

ProoF. Straightforward computation. For instance, we prove the first part of

(iii). For this, suppose that f is mildly (.% &)-continuous and pick T€¢#* and
x€X. Then, there exists S€& such that S(f(x))cT(f(x)). Moreover,

since f~'oSo f€9§, there exists R€Z such that R(x)c(f*oSof)(x). Hence, it
follows that R(x)c(f~"oTof)(x). Consequently, f~'oTofc 2 also holds, which
proves the mild (%, & *)-continuity of f.

Finally, we prove an interesting property of the topological refinement 2% of a
relator Z.

THEOREM 6.7. If A is a set in a relator space X () then

Cl; (4) = {Bc X: BNcl,(4) = 0}
and
Int; (4) = {BcX: BcCint,(4)}

ProoF. If B¢Int; (A), then there exists S€# such that S(B)c A. More-

over, since S€Z, for any x€B, there exists R€Z such that R(x)cS(x). Hence,
since S(x)cS(B) for any x€B, itis clear that BCinty(A).

To prove the converse implication, suppose now that Bcint, (4). Then, for
each x€B, there exists R,€Z such that R.(x)cA4. Define the relation S on X
such that

S(x) = R, (x) if x¢B and S(x)=X if xcX\B.
Then, it is clear that Sc# and
SB)= U S(x) = U Rix) c 4.
Consequently, BeInt; (4). B i

The first assertion of the theorem can be easily derived from the second one by
using Theorems 2.6 and 2.13.
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REMARK 6.8. The above theorem strongly suggests that the relations Limg+
and Adhg# can also be expressed in terms of the relations Cl, and Intg. However,
we could not prove or disprove this.

The results of Sections 5 and 6 make it natural to introduce the following
terminology which will be needed in some subsequent papers.

DEFINITION 6.9. A relation f from a relator space X(#) into another Y (%)
will be called mildly uniformly, proximally, resp. topologically continuousifitis mildly
(#*, &#)-, (#*, &F)-, resp. (#, )-continuous.

REMARK 6.10. The corresponding comparisons of relators Z and & defined on
the same set X is to be defined accordingly.

For instance, we say that & is uniformly finer than £, resp. & is uniformly
equivalent to # if ZC%*, resp. B*=F*.

Similarly, we call a relator 2 on X, or a relator space X(£), uniformly, prox-
imally, resp. topologically fine if Z*=2R, Z*=R, resp. #=2A.

Some notes

NotE 1. The basic tools introduced in Sections 1 and 2 make it possible to
consider relator spaces as certain generalized convergence, proximity, closure or
topological spaces.

To regard a relator space X(£) as a generalized biperfect syntopogenous space
(which is to be defined by omitting the axioms (S;) and (S,) of Csészar [16, p. 58]),
we have to consider the finer tool {Intg: R€Z} instead of Int,= (J Intg.

RER

In this respect, it is also worth mentioning that if % is a relator on X, then
{Clg: RER} is a relator on 2 (X)\{0} whose inverse served in Section 4 as the
mild hyperrelator induced by £. This suggests that Csdszar’s very general theory
could also be based on relators instead of syntopogenous structures.

For this, note that if < is a relation on Z(X) such that

@P<=4=X if AcCX,
) A« X\4 if 0=4CX,

then by defining
RAD) =t c X: 45X}

for all AcCX, we get a reflexive relation R. on Z2(X)\{0} such that for any
A, Bc X, A<B iff X\ B¢R_.(A). Moreover, note that each reflexive relation R on
2(X)\{0} can be obtained in this manner.

NotkE 2. If Z is a relator on X, then by introducing the relator
Ry={4xycSc XXX: JRER: R(A) c S(4)}

for any AcX, one can also prove some localized forms of Theorems 5.7, 5.11
and 5.15. Our conjecture is that a similar thing can also be done in connection with
Theorem 5.2 too by using appropriate refinements of # defined by nets.
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More generally, if £ is a relator on X, then one can also introduce the relators

Ry ={dxc Sc XXX: ARER: YAcsl: R(A) C S(4)}
and
RY ={dx © S c XxX: VA€ ARER: R(A) < S(A)}

for any /2 (X). Note that all the relators #*, Z#, % and R, are particular
instances of some of the relators % and Z#.. Moreover, the necessity of a
particular case of #% has already been indicated in Remark 6.2.

Note 3. Finally, we remark that for any &/ 2(X) one can also consider the
“Pervin relator* [78]
Ry = {RA: AEd},

where R4 means the relation defined on X such that R (x)=4 if x€4 and R4(x)=X
if x€X\ 4. In connection with #, one can easily prove that Z is a “strongly
transitive” relator on X such that &/CJ4 . Moreover, /=4, if and only
if o/ is a generalized topology on X in the sense that &/ contains X and is closed
under arbitrary unions.

Hence, by Corollary 5.21, it is clear that the mapping #—J4 establishes a
one-to-one correspondence between topologically fine topological relators on X and
generalized topologies on X. This latter statement may be considered as an extension
of the “Topology Theorem™ of Nakano—Nakano [73, p. 204].

Namely, by Remark 5.22, a topologically fine relator is topological if and only
if it is topologically transitive. On the other hand, by Remarks 2.12 and 2.19, for
a topological relator #, the family 7, is an ordinary topology if and only if Z is
topologically directed. Moreover, as we shall see later, a topologically fine relator is
uniformly directed if and only if it is topologically directed.
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FIXING SYSTEM AND HOMOTHETIC COVERING
S. FUDALI (Szczecin)

Introduction

Fejes Téth [4] has introduced the notion of the primitive fixing system for an
open (n-dimensional) convex body K as a set Acbd K which stabilizes K with
respect to any translation and no subset of 4 does. In other words, it is a set 4
of points gy, ay, ..., a,-; not belonging to the interior of K which has the fol-
lowing properties: 1° for every translation T there exists a point g;€A4 such that
the segment {(a;, T(a;)) and the image 7T'(K) of K has a non-empty intersection, 2° for
any p—1 points of 4 there exists a translation 7" such that {(a;, T"(a;)) N T"(K)=0
for each ;.

The number of points forming a primitive fixing system for fixed Kc E” depends
on the form of K and on the position of these pointsin bd K; e.g. for a circle CcCE?
there exists a primitive fixing system which consists of three points (Fig. 1a) and
there exists one of four points (Fig. 1b), for the regular hexagon HcC E? there

A

Fig. 2

exist 3-, 4-, 5- or 6-point primitive fixing systems (Fig. 2), for an n-dimensional
parallelotope PCE" every one of its primitive fixing systems consists of exactly
2n points (Fig. 3). We note [4, p. 382] that in E" there exist bodies which cannot be

) a) 5 9
Fig. 3 Fig. 4

stabilized by less than r points, where ré{n+1,n+2,...,2n} (Fig.4 for n=3).
In [4] the following is pointed out:

ReMArk FT. For any plane body, different from a parallelogram, there exists a
primitive fixing system which consists of three points, while for a parallelogram every
such system consists of four points.
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The maximal number of points included in a primitive fixing system for fixed
KczE" can be greater than 2u; L. W. Danzer [3] conjectured that this number is
equal to 2(2"—1) — such a primitive fixing system can be constructed for
Conv (/"U (—")), where 1" denotes the u-dimensional cube (Fig. 5 for n—3).

Since only convex bodies will be considered in the sequel, we agree that the
term body always means a convex body. Similarly only primitive fixing systems
with minimal number of points for a body KcEn will be considered; each of
them will be shortly called a fixing system and denoted by F(K). It is evident that a
fixing system for a given body K is determined non-uniquely; for K there exists an
uncountable family Fix(.K) of its fixing systems.

A body K" will be called homothetic to a body K if K' is an image of K under
some homothety with a ray-ratio k£(0,1). Gohberg and Markus [7] posed the
problem to find the least number of homothetic bodies K' which form a covering
of K; they solved this problem for any plane body.

To cover KcEn with homothetic bodies we have to translate them in En.
So, if a translation is interpreted in a mechanical way and F(K) is considered, its
points impede these translations if we translate these homothetic copies from “out-
side”. This is why we cannot take an arbitrary ray-ratio for the homothetic bodies
used to forming of a homothetic covering of K. We must take into account the
position of the points belonging to F(K). Therefore, in general, the numbers of
covering bodies used to cover K are different depending on whether F{K) is or is
not considered. Hence a problem appears: what is the least number of congruent
bodies K' homothetic to K which can cover K stabilized by F(K)? In the present
paper an answer to this question for a plane body Q is given.

1. Preliminaries

Let F(Q) be a fixed primitive fixing system for a given plane body 0 and denote
by X a homothety with centre sfQ and a ray ratio k€(0, 1), and by Wa(F)
the set of numbers k with the following property: for every translation T there exists
a point aEF(Q), (/€{0,1,...,r—1}) such that int I'(x*(0)M<ar, I'(8))"0. The

number wQ(F) = inf LLi(P) will be called the holding coefficient of F(Q).
It is evident that wQ(F)(fHg(F). For wQ(F) we have

intT'(x7°m (Q))M<ar,I(a,)> =0 and I (;” (0)<a{{T'(a)) N0
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for some translation 7”; the last set may consist of some points only (Fig. 6). There-
fore, the holding coefficient can be interpreted geometrically as such a ray ratio
of homothety which allows some translation of a copy wo(F)-Q among the points
of F(Q); a copy (wo(F)+n)- 0, for an arbitrary >0, is detained by some points
of F(Q). In other words, wy (F) is the greatest ray ratio of homothety which admits to
translate a copy of Q out of the points of F(Q).
Note that the holding coefficient of any F(Q)={ay, ay, ..., a,-1} (p€ {3, 4}) for
a plane body Q can be interpreted as max (wo(F), wy(F), ..., w,_1(F)) £ w(F),
where
dist (a;, a;41)
(R = =SB T
O W) D(a;, a;41)

for each i€ {0, 1, ...,p—1}; the addition of indices is taken mod p and D(a;, a;,)
denotes the length of the greatest chord of Q parallel to the segment {(a;, a; ).
The number (1) will be called the passing coefficient of F(Q) with respect to
(@, a;14)-

DeriNITION. Let {F'(Q)};cr be the family of all primitive fixing systems for a
body QCE" and let W (Q) denote the set of holding coefficients of the systems
F'(Q) for all t€T. A system F°(Q)€{F'(Q)}cr for which wy(F)=inf W (Q)
will be called a pessimal fixing system for Q and denoted by F,(Q); the number
inf W (Q) will be shortly denoted by w(Q) and will be called the coefficient of Q.

Immediately we have

ReMARK 1. For any body QCE" there exist a pessimal fixing system and the
coefficient of Q.

In Fig. 7 we give the pessimal system for a regular hexagon H, a triangle T, a
circle C and for a parallelogram P; the_ coefficient of the respective bodies has the

value w(H)=%, w(T)=%, w(C)=@ and w(P)=—;—. The fixing systems in
o) b) ©) d)
Fig.7
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Fig. 8 for the same bodies are not pessimal. It is easy to see that for 7 and P the
pessimal fixing system is determined uniquely, for H there exist two such systems,
and for C we have uncountable many of them.

Let k°(Q) be the s-th liminal number of Q and let Q’ be homothetic to Q with
the ray ratio k*(Q)€(0,1). (Recall [5] that the s-th liminal number of Q is the least
upper bound of the set of those real numbers r€(0, 1) such that s congruent bodies,
homothetic to Q@ with the ray ratio r, cannot form a covering of Q.) It is evident
that F(Q) is not a fixing system for Q’; it will be called a holding system for Q" if
wo(F)<k*(Q) and an impedient system for Q" if wo(F)=k*(Q). In the first case for
every translation T there exists «;€ F(Q) such that int T(Q")N{a;, T(a;))#9, and
in the second one there exists a translation 7 such that for each a;€ F(Q) we have
int 7(Q)N<{a;, T'(a;)))=9. Whether F(Q) is a holding or an impedient system
for Q' depends on the ray ratio for Q" and on the choice of F(Q) in Fix (Q).

2. Some remarks about a fixing system of a plane body

Consider any plane body Q different from a parallelogram. A point dcbd Q
will be called quasi-antipodal to a point acbd Q if a supporting straight line of Q
passing throught 4 is parallel to one passing through a. (If there is only one such
point 4, then it is called antipodal to a.) The segment {a,d) is the greatest chord
of Q among all chords of Q parallel to the straight line (a,d). By Remark FT
there exists a fixing system for Q which consists of three points. For such fixing
system we have

REMARK 2. In a three-point fixing system for a plane body QO no pair of its
points is a pair of quasi-antipodal points.
In other words: no two points of the mentioned system belong to the parallel
supporting lines of Q.
Fix any two not quasi-antipodal points a;_,, a,¢bd Q (i€ {0, 1,2}, addition
is taken mod 3) such that the curvature of an arc a;_;4;Cbd Q is positive and
N’ i
less than . Moreover, let d;_,d4,Cbd Q always denote the arc disjoint from a;_,a;
and containing only one point quasi-antipodal to a; (j€{i—1,i}), and let 4;;,€bd Q
be an arbitrary point.

REMARK 3. The set {a;—;, a;, a;;,}Jcbd Q forms a fixing system for a plane
body Q if and only if a;,,€int @;_,4;.

REMARK 4. If a;_,, a; belong to F(Q) for a plane body Q, then one and only one
endpoint of the greatest chord of Q parallel to {a;, a;1,) (jE{i—1,i}, a;41€ F(Q))
N —

belongs to a@;_,4d;.
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A

S——
Introduce a parameter 7€ TCR on the arc d;_,4;,Ccbd Q and denote by at.,
N —

each point of d;_,d; corresponding to the value of 7. By Remark 3 we get a sub-
family Fix (Q)cFix (Q) each member of which consists of a;_;, a;, diyq; i.e.

F(Q)={01-1, @, diss). Hence w,(F)= d—‘“—“‘—"—) (cf. (1)) (and Wy (F)=

D( is i+
S S aey) - too] is some function of . It is easy to see that this function
D(aﬁ-l’ b= 1)

N’
is continuous on T (i.e. on the arc d;_,d;) and assumes a value near to 1 if af,,
belongs to an g-neighbourhood of &;; then the value of w;,,(F*) is near some real
number ¢;,,<1.

N’

REMARK 5. If daf,.€intd;_,d; is a point moving from d4;_; to d;, then the
value of w;(F") varies from some real number ¢;<1 to 1, and the value of w,+1(F )
from 1 to some number q,+,<1 Moreover, w; (F‘) (s€ {z i+1}), as a continuous
function, assumes all values in the interval (g;, 1

For shortness, in the sequel, by pgcbd Q we always mean the arc not con-
taining the points p and 4.

LemMA 1. If a;_y,a;6bd Q (i€{0, 1,2}, addition is taken mod 3) are fixed
points in each F'(Q)={a;—,, a;, a,H}Ele (Q), then w;(F") is a monotonic function
of t. If Q is a strictly convex-body, then w;(F") is strictly monotonic.

Proor. At first we will prove this for a strictly convex body Q. If a;_;, a;¢bd O

are fixed, then daf,,€bd Q, with a;_,,q; forming F'(Q), belongs to int 4;_,d;
in view of Remark 3. Take such a point and denote by A%, Ai,, the endpoints of
the greatest chord of Q parallel to the segment {a;, a};,). Next choose #’¢T such

that af,,€int d;_,d; and the length of d;al,;=bd Q is greater than that of g;at,,
provided both of these arcs contain the point d; (Fig. 9); by this choice we have
S—

A.+1€a§+1a in view of Remark 4, and A4{€a; A‘ because of the strictness of con-
vexity of Q. Hence, agam by the strictness of convexity of Q, the straight line
(4%, da,,) through AY,; and af,, is different from (4},,d}.;) and intersects
(4%, a;) in the point o’ which lies on the same side of a; as 0" =(4Y, a,) (4L 4+1, atsq)
and

() o'a;>o0"a.

By the same reason (4, a;) intersects (4%,,, at+,) in o” which is on the same side
of ai,, as o=(4}, a;)(\(A4}+1, dj+1) but at a distance from af,q not greater than
the distance of o from at,,.

Consider the trapezoids Aia;a}, A%, and AY a;al, 1A}, 1, and note that

4 ’
a;aiy; _ o'a;

t
a;q;4q oa;
A;’ "+1 O’AEI
i

[ 3
& W) =T, o

and w;(F") =

by thesimilarity of the triangles oa; d} 11, 04 A}, and the triangles o’ a;a’, 1, 0’4} A%, .
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Fig. 9

If A—AL (Fig. 9a), then both trapezoids have a common lateral side and
(4) Ajaj = Ajuj, o= 0"
Using (2) and (4) we get

1 -
0A4:ou+Mi:1+Mr:t\Ms J M [ =]+MS =
o'at o'dj o' dj 0'dj 0"Cij O
ogj+UjAl _ OA
a Cdj

which implies that O°£\ > -6Rj‘-; as a consequence we have wi(F,")"~wi(Ft) in
view of (3).

If Aj*Aj', then o”0" and the considered trapezoids have at most two vertices
in common: at and A\+L (Fig. 9b, ). In this case draw the straight line L passing

through A\ and parallel to (Af+It 0j+1) and note that L cannot intersect the interior
of the arc a(A\ because (Al+1, M i) intersects and A\, A\+x are antipodal (i.e.
the supporting straight lines passing through A\, Al+1, respectively, are parallel).
Therefore, the point A'= (A(,at)C\LiQ and

©) A'arAfa,,

and the triangles A\axA\ oato" are similar. Thus we have

Ajdj _ A'aj

6) 0aj o"aj*
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Taking into account (3) and using (6), (5), (2) and again (3) we get

1 oA oa;+a; A a; A A’ a; AY a; Ava
et S COLEEA Ly S0 e R g e
w;(F*)  oaq; oa; oa; 0”a; 0" a; o' a;

_daptadi  odi A ]
7 T s g e g
o a; 0 a; a;af41 w;(F*)

which implies w;(F*)=>w;(F?), i.e. the same as in case A{=AY. This means that
w;(F") is a strictly monotonic function.

In the general case, i.e. when bd Q contains some segment of a straight line,
note that w; is constant only in the case when 4!, ; and AY,, simultaneously belong
to the interior of a segment Bcbd Q and A{=A} (Fig. 10b). Then each of the

; .
ratios —4+1 4nd oa§’+1 is equal to 22 which implies that w,(F)=w,(F").
04} 44 0441 0A;
If Aj=AY (Fig. 10a) or A, ,=AY, ,=4d;, then we have a situation as in the case
Q is strictly convex. In none of the cases under the considered hypothesis do we get
w;(F")=w;(F"), in view of convexity of Q. Hence w; is monotonic.

Note that w; (and w; .4, too) cannot be constant on the whole of T because
A}y, for some 7€ T takes the place of d; (if af., tends to 4;) and then for t+AtcT
N—

(4t=0) we have Aif{'=Al., (4¢,,€4;_,14d; for each deT, in view of Remark 4)

and Ai*44:, in view of the fixing of a;, but in this case w; is increasing.
COROLLARY. For any plane body Q and for the family of fixing systems F'(Q)=

={a;_1, a;, 41} (i€ {0, 1,2}), where a;_,,a;cbd Q are fixed, if ai., tends along

4;_,a4;cbd Q from a;_, to a;, then w; ,(F") is decreasing at least in some n-neigh-

bourhood of G;_, and w;(F") is increasing at least on some ¢-neighbourhood of a;.

For a strictly convex body Q w; ,(F") is decreasing and w;(F") is increasing on the
N’

whole arc a;_,d;.

3 Acta Mathematica Hungarica 50, 1987
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Lemma 2. For any plane body Q, different from a parallelogram, there exists

afixing system F(Q) for which wt(F) =wt+l(F) = B (/€{0,1,2}, addition is taken
mod 3), where BE(b, 1) for some real b.

Proof. Let {af Is af, af+1}€Fix (0 be an arbitrary fixing system for Q. This

means, by Remark 3, that af+l belongs to the interior of the arc af_lafcibd Q
where af b af are quasi-antipodal to af_x, af, respectively. Fix the points af _u af

and change the position ofaf+lon &f 1&f. Then,in viewofRemark 5and of Lemma 1,
there exists a real number 2?£(max (qt, gi+l), 1) which is the value of wi+1(Fd)
and Wi(Fd) simultaneously for some Fd (0 —{fif-i, af, af+1}. By the arbitrariness
of the choice of {af_x, af, af+1} we obtain a subfamily Fix (OcFix (0 for each
member FAQ ) of which we have wi(Fd)=wi+i(Fd)= Bd. The values Bd for all
d' form a set A(Q). By the compactness of bd Q there exists infa?(0=fe$£9(0.
Hence for each d we have Bd>b and simultaneously, by the definition of wfF)
(cf. (1)), we have Bd< 1

Theorem 1 For any plane body Q there exists a fixing system F(Q)=
={a0,al, .. ap-j} (p€ {3, 4}) for which wO(F) =wl(F)= —wp_x(F) = T, where
D is the minimal value ofws (76 {(), 1, ...,p —1}) such that this equality holds.

Proof. For a parallelogram this is evident (cf. Fig. 7d). Hence consider any
plane body Q different from a parallelogram and its 3-point fixing system
(cf. Remark FT). Therefore, by Lemma 2, one can find an F (0 = {ao, an, aZcbd Q
such that Wi(F)=wi+1(F)=B for some /€{0,1,2}. Denote by A the value of
Wi-i(F).

Three cases are possible: 1) A=B, 2) A>B, 3) A<B. In the first case we just
have the F(Q) looked for, by a simple compactness argument. In the second case
we have to decrease u¥ 1(F). Denote by a) (jd {~1,/}) a point not quasi-antipodal

to ai+l belonging to the interior of the arc ajdi+lczbd Q which does not include
ai+l and such that (a-_x, a-) is parallel to (ar_15af), and denote by a\+1 the point
of bd Q which together with aj_I5 a-, by Lemma 2, forms a fixing system F*(Q)
in which the equality

@ wfP) = wi+l(F9) =£ B<

holds (Fig. 11). It is evident, by the construction of F(Q), that A*<A, where

91°M
Fig. N
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A'=w;_,(F"). To prove
®) B'=B (ie wi1(F)=wi (F) and w(F) = wi(F)),
note that by Remark 5 we have

dist (@;41, aj—1) ar
o s e RISl T
Wira(F) D(a;41, ai-1)

for fixed points a;,, and a; (or af) and w; ,(F)=w;,,(F) for fixed points a_;
and a; this implies (8). Simultaneously, by the same Remark 5,

lIA

Wi+1(F)

dist (a; 41, af) ar ~
X = —_— = <
M = D(a;44, a}) wilF)

for fixed pomts a; 1 and a;_, (or ai_;) and w;(F)=w;(F") for fixed points a and
at_,. By a continuous variation of 7 (i.e. by a continuous variation of the positions of
a_, and af such that {(a{_,, da}) is always parallel to {g;_;, a;)), in view of monot-
onicity of w, (s€{0,1,2}), for some f, one can get a position of ale ; and of alo
such that Afo=B', Therefore F"(Q) is a fixing system for Q in which wo(F‘o)——
=wy (F0)=w,y(F").

In the third case the consideration is the same as in the second one; it differs
from the previous one in the way of the choice of 4. Each of them must be chosen
in the interior of the arc @a;,,cbd Q which does not include &, and has to
approach the respective endpoint of the greatest chord of Q parallel to {(di_,, af).

So, we have shown that for Q thcre exists some I*(Q)={a}, a¥, a4} for which
the equality wy(F*)=w,(["*)=w (F“) D* holds; it is easy to see that D* is the
holding coefficient of F*(Q). It is possible that there exist more than one such sys-
tems as mentioned above for the fixed Q (e.g. for a triangle there exist uncountable
many such systems — the points of each of them divide each side of the triangle
in the same ratio, cf. Fig. 12). Hence we may consider a family {F“(Q)},cy of such
systems and, as a consequence, a set @(Q) {D*: ucU}. It is evident, by the
compactness of bd Q, that inf 2 (O) L D exists. From the next theorem it fol-
lows that D is the value of the coefficient of Q.

THEOREM 2. F(Q) is a pessimal primitive fixing system for a plane body Q iff
each its passing-coefficient is equal to the coefficient of Q.

Proor. For a parallelogram P this is evident (Fig. 13); each point of F,(P)
is the midpoint of a side of P; w(P)=%. Therefore consider a plane body Q
different from a parallelogram; for it, by Remark 1, w(Q) and F,(Q) exist; the

i

a) b)
Fig. 12 Fig. 13
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latter, by Remark FT, consists of three points: ay, a;, a,. According to the inter-
pretation of w(Q) for a plane body we have

W@ =, inf  (W(F): W(E) = max (wy(F), wi (F), wi(F))}.
I. Let F(Q) be a pessimal fixing system for Q. Assume that w(Q)=w,(F)>
>w;(F) for some s€{0, 1,2} (s#je{s—1,s+1}). By moving a,,, on the arc

A A

d;_,d,, the value of wy(F) can be diminished, in view of Corollary after Lemma 1,
and then, by Theorem 1, one can find F(Q)€Fix(Q) such that wy(F")=w;(F’)
for each j and wy(F")<w,(F). This implies that w,(F) is not Feip?;ﬁ s {w(F)} and,
as a consequence, F(Q) is not pessimal which contradicts the hypothesis.

II. Let wo(F)=w,(F)=w,(F)=w(Q) for some F(Q)=/{dy, a, a,}cFix (Q).
Choose an arbitrary point a;€ F(Q) (i€ {0, 1,2}) and move it to 4;_; along the

N’
arc d;4,4;_,<bd Q which does not contain g; provided a;_, and a;,, are fixed.
N’
Then, by Remark 5, there exists a position a;€intd; ,d;_, such that

dist (a;_+, ai)
D(ai—la a{)

and by the definition of the pessimal fixing system the system F'(Q)={a;_,, a;, a; 1}
obtained is mnot pessimal because of W(F')=w;_,(F’)=>w;_1(F)=w(Q). This
means, in view of the arbitrariness of the choice of a; to move, that every moving
of the points of F(Q) leads to a fixing system the holding coefficient of which is not
less than w(Q). Therefore F(Q) is pessimal.

The pessimal fixing systems for some bodies are given in Fig. 7. The one for
an equilateral trapezoid 77, in which the ratio of the upper base to the lower one
is equal to p, is given in Fig. 14.

Wi (F') = > w;_1(F),

PROPOSITION. Let TP denote an equilateral trapezoid in which C is the length
of a lateral side and the ratio of the upper base to the lower one is equal to p. A fixing
system for T? is pessimal if one of its points is the midpoint of the lower base and
each of the remaining two points of this system belongs to the respective lateral side
1—p
2—-p

Proor. Each of the lateral side and of the lower base of 7% contains only one
point of a fixing system for 77; the upper base of 7?7 does not contain any point
of F(T?). Let F(T?)={a,, ay, a;} be a fixing system for T?=b,byc,c; such that
a, is the midpoint of the lower base and for each jc {1, 2} a; is a point of the lateral

side (b;, ¢;) such that dist(a;, cj)=—;—:—%c (Fig. 14). Note that for F(T?) we

of T? and lies at a distance of

C from the respective vertex of the upper base.

—n)2
have wy(F)=w,(F)=w,(F)=w(F) because w;(F)=p+x, where x= (12_];) ;
and ws(F)=1I—f;2C— for each s€{0,2}; x is the ratio of a;c; to b;b, (Fig. 14)

and it may be found from the equality w,(F)=w,(F). We have to show that for
each F’(T?) different from F(77), w(F’)=w(F) which means that F(T?) is pessimal.
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Fig. 14 Fig. 15

Let a}, a;, aycbd TP form a fixing system F’(7?) different from F(7T%) (Fig. 15).
Two cases are possible for the position of ag, aj, a; with respect to the position of
ay, ay, ay: 1° for some i€ {0, 1, 2} two of the points ag, aj, a; belong to the interior
of d;a; ., (Fig. 15a); the third of these points may be not different from some point
of F(TP); recall that 55 denotes always the arc cE;C bd 77 which does not con-
tain @ and B) 2° the interior of each arc a,a,+1 includes not more than one of the

points ag, ay, a; (Fig. 15b). In the first case, if g;, a1 belong to the interior of dga i1,
then by Thales’ theorem we have w;(F’)<w;(F) because of

’
b,a; 3 b,a,

bl 14 Dy for i=1 and byas _ byay
bicy bycy

Bab i Boby bycs  bscy

(Fig. 16). Simultaneously, also by Thales’ theorem, w;_;(F)=w;_ 1(F) and
Wiy (F) =Wy (F). Therefore, w;(F)<wy(F’) (s€{i—1,i+1}) for each i which
implies, in view of Theorem 2, that F’(7?) is not pessimal.

for i ==, forii=2

Fig. 16

In the second case three subcases are possible: (I) the interior of only one arc
e o r > ’ » N a -’
a;a; ., includes one of the points ag, a;, az; (II) the interior of only one arc 4;a; 4
% 7 5 S -’ &
includes none of ag, ay, as; (III) the interior of each arc 4;@; ., includes some of

a,, d,, a,. In the first subcase, if a/€int d;a,,, (Fig. 17), then by Thales’ theorem
we have wi(F)<w;(F), wi_y(F)=w;_y(F) for i=2, w(F)=w(F), w;-1(F)>

Fig. 17
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wi-i(F) for /=1 and wi(Fn=wi(F), wi_I(F)s*wi*x(F) for i=0 which implies
that only for F'(TP= {a6, ax,a do we have w(F)=svv(F); for /€{1,2} we
have w(F')>w(F). If «m€intai-xai (Fig. 18), then by Thales’ theorem we have
>r,(TY=~(T), wi_l(F')=Wj-iiF) for /=0 and wi(F')"~wi(F) for each /€{1,2}
which implies the same as previously.

Fig. 18

In the second subcase, if u,-€int and a'+1€int ai+14; (Fig. 19), then by
Thales’ theorem we get wi_1(F)>w’i_1(F) for /€{1,2} and wi(F)>w;(F) for

/=0 which means that for each /€{0,1,2} wiF"-w"F). If a[€intdi+la; and
a-+l€int &i_lai+l (Fig. 20), then w"F~rw ~F) for /€{1,2} and wi+1(F")>w j+1(F)

for /=0 which means the same as previously. If aj€int atdi+l and a-+i€int ai+xat
(Fig. 21), then wi+1(F/)»V j+1(F) for /€{1,2} and wi_1(F,)>u'i_1(F) for /=0
which means the same as previously, i.e. w(F")>w(F).

b
Fig. 21
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In the third subcase one can observe that for each i€ {0, 1, 2}, a/€int a;a;,, or
ajcinta;_a; (Fig. 22). In both of these cases by Thales’ theorem we have w;(F’)=>
>w;(F) for each i€{0,1,2}; this implies that w(F")>w(F). Therefore, in each
considered case we have w(F’)=w(F) which means that F(77?) is pessimal.

The consideration above in the first subcase of the second case lets us to point
out the following

COROLLARY. If T? denotes an equilateral trapezoid in which C is the length
of a lateral side, B is the length of the lower base and the ratio of the upper base to
the lower one is equal to p, then each fixing system for TP in which a point belonging
1—F
2-p

to a lateral side lies at a distance C from the respective vertex of the upper

base and a point belonging to the lower base lies at a distance at most —2‘(2‘0—p)B
from the midpoint of the lower base, is pessimal.

by
Fig. 22 Fig. 23

Indeed, it is easy to see that if F(7”) is the pessimal fixing system for 7”7 men-
tioned in the Proposition and F'(T?)={d}, a,, a,} differs from F(7?) only by a
position of a, which is moved from the midpoint to an endpoint of the lower base,
then the function w;(F*) (j€{0,2}) is constant on the segment (a,, a!;), where
atyis a point of the lower base such that (@, ai) is parallel to the diagonal {(cy, by)
and {(a,, df¢) is parallel to (¢, b;) (Fig.23). The length of (g, as) is equal to

p

;T I

3. Some remarks connected with the coefficient of a plane body

Let F(Q)={a,,a;,a,} be a fixing system for any plane body Q different
from a parallelogram. The greatest chord (A4i*2, 4it}) of Q (Fig. 24), parallel to
{a;, a;,,), is contained in the zone between the straight line (a;, a;4,) and the
line passing through the point a;,,¢ F(Q) and parallel to the previous one.

Let L; be a supporting line of Q passing through ;¢ F(Q). All these lines, i.e.
Ly, L,, L,, form a triangle C=A4cyc;c, (where c¢;.,=L;NL;,,), which will be
called the fixing triangle for Q; it includes Q (Fig. 25). Denote by T(a;, a;.;) the
length of the greatest chord of C parallel to the segment {g;, g;1,). Then for each
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r€{0,1,2} we have
9) D(ai,ai¥)" T (ai,ai+,).

Two cases are possible: 1) there is a vertex of C such that no greatest chord
can be drawn parallel to (at, ai+i) for every if {0, 1,2} (then there is another
vertex of C such that exactly two such greatest chords can be drawn, each parallel
to a corresponding segment (at, ai+1)); 2) exactly one such greatest chord passes
through every vertex of C which is parallel to a corresponding segment (ah ai+1).
Each of these cases depends on the form of Q and on the position of the points
of F(Q). Denote by a(the angle of Aalia{a2at the vertex ab by a; its opposite angle,
and by yl the angle of C at vertex cf. Translate yt by the vector cta\ and let T(y,)
be the image of yt at this translation.

Remark 6. None of the above greatest chords of C can be drawn from the
vertex dif x()>)c:int & and two of the above greatest chords of C can be drawn
if T_1(")cyE |If contains only one side of d&h then only one of the above
greatest chords of C can be drawn from the vertex ct.

Theorem 3. The coefficient of any plane body Q belongs to the segment

Proof. For a parallelogram this is evident. Hence consider any plane body Q
different from a parallelogram. Assume that

(10 wd) < .
This means that for every /£ (0, 1,2} we have
(11) dist(ai5 ai+1)/D(ai, ai+l) < j ,

where {a0, at, aZ=F0(Q). For this FO(Q) construct the fixing triangle C=AcO0cl c2
of Q, and denote by T(ab ai+l) the length of its greatest chord parallel to the
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segment {a;; a;4,) (Fig. 25). It is evident that (9) holds for each i. This implies,
i wiew of-(11), that. dist (as, dl) Tles ai+,)<% whtich Teads to

(12) dist (a;, a;+1) < —1- T(a;, a;41)-

By Remark 6 we have two cases: 1° there exists a vertex of C which is an endpoint
of two of the above greatest chords of C or 2° each vertex of C is an endpoint of
one of the above greatest chords only.

The first case, without loss of generality, is illustrated in Fig. 26. In view of (12),
using similar triangles we get

(13) c1ay < aghf = ayc, (taking in account the angle aycay),
(14) Coay < aghl = agcy,  (for the angle a;cyag)

which imply

(15) CiQy < yCis

Thus (10) is false, i.e. we have W(Q)z—f
The second case if given in Fig. 27; by similar triangles, in view of (12), we get
(16) Coay < Aghy = agc, (for the angle a,c,a,)
(17) C1dy < AyCy (for the angle ayc;ay)
which imply (15). This means that in this case we again have w(Q)z—l—.

It is evident that if g; is the midpoint of (¢4, 4oy for each i€{0, 1,2},
then {a,, a;, @}, in view of Theorem 2, is the pessimal fixing system for the tri-
angle C. Hence we have

REMARK 7. For any triangle 7 we have w(T)=%.

Moreover, the following theorem holds.
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Theorem 4. The class of triangles T is the unique class ofplane bodies, different

from aparallelogram, for which w(T)=—.

Proof. Assume the contrary, i.e. there exists a body Q different from a triangle
and from a parallelogram, for which w (0 =y . If FO(Q), consisting of the points

a0, al, a2, is a pessimal fixing system for Q, then for every if {0, 1, 2}, by (9) and
Theorem 3, we have

dist (a{, ai+DID(a,, ai+l) = j
and

(18) dist (at, a{+1)/l'(a,, ai+l) =

where T(at,ai+l) has the same meaning as in the proof of Theorem 3. As pre-
viously, consider two cases. In the first of them, in view of (18) we have c2a0=
= abhlsaOcx instead of (14) and cia0=aahl*a0c2 instead of (13), whence c2a0s
=a0c2, and therefore h@coincides with ¢} (y€{1,2}). Then the greatest chords of
Q coincide with the sides of the fixing triangle for O and this implies the coincidence
of Q with C, contrary to the assumption.

In the second considered case we have c2a0=a0b0"a0cr instead of (16) and
cla0=alc2 instead of (17), from which it follows, as previously, the coincidence of
hO with Cj. Thus Q again coincides with C, and the proofis complete.

For any plane body Q we have w(Q)c(~, |j according to Theorem 3, but
one can ask about a body Q for which w(Q)=s, where sis any number belonging

to Ij . The answer to this question is given by

Theorem 5. For any , 1j there exists a non-empty class of plane bodies
Q for which w(Q)—s.

Proof. Consider a family of trapezoids Tp each with lower base length 1 and
upper onep (p£(0, 1)). Each member of this family can be obtained as an image
of a parallelogram P at some transformation which shortens one side of P from 1
to p. In the limiting cases for p we have the parallelogram P (for p=1) and a tri-
angle (for p=0). In other words, the considered family, together with its limiting
cases, can be obtained by a continuous variation of p in the segment (0,1).

For each Tp there exists FO(TP and w(Tp) by Remark 1; the last quantity
depends on p. Hence for the considered family the coefficient w(Tp) is a continuous

function of p. Its minimal value, by Theorem 3 and Remark 7, is equal to ~

(for p=0). On the other hand it is evident that for p approaching 1 the value of
w(Tp tends to 1 (because exactly two of the points of FO(TH must belong to the
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different lateral sides of 7”). By continuity w(7?) assumes all values between e

2
and 1.

It is not difficult to find the form of the mentioned function w(7”). Consider
an equilateral trapezoid 7T7=b,b,coc,; (Fig. 14) in which b;b,=1, ¢;co=p and
bjcj=1—p (j€{1,2}). The pessimal fixing system for 7%, in view of Proposition,
consists of the midpoint of the lower base and of two points such that each of them
does belong to the respective lateral side and its distance from the respective vertex

(1-p)p*
4

. Denoting the points of the pessimal fixing

- 2
(l=p) =;. On the other
2—p 2—p

hand we have w(T?)=w,(F,) by Theorem 2 and the definition of the coefficient
of 7T7. This implies that

of the upper base is equal to 3

system Fy(7?) as in Fig. 14 we have w;(Fy)=p+

(19) Ww(T?) = ﬁ.

As it is seen, w(7P) is an increasing continuous function of p, with values in
1 ’ ;
<5, l) for pe(0,1). This means that for every s=ﬁ€<%, 1] there exists

P=2——:; such that w(7P)=s.

4. Homothetic covering of a plane body stabilized by its pessimal fixing system

The least number of bodies K’ homothetic to a body K with the ray ratio
kec(0,1) which form a covering of K will be denoted by b(K). Gohberg and Mar-
kus [7] have proved

THEOREM G—M. If" a plane body Q is different from a parallelogram, then
b(Q)=3; in the opposite case b(Q)=4.

It is not so if we consider a body K together with some of its fixing systems
and if we cover K with the homothetic bodies by translating them from “outside”.
The points of F(K) impede these translations and force the homothetic bodies to
have a respective size.

Let w(Q)=q for some plane body Q. Then Fy(Q) is an impedient system for
O’ homothetic to Q if the ray ratio for Q’ is less than or equal to g. Hence Q can be
covered with several homothetic copies of Q by translation of the latter if the ray
ratio for each of them is not greater than ¢. The least number of such Q” which may
cover Q in this way (i.e. Q” cover Q but every point of F,(Q) is not covered) is denoted
by h(Q). Therefore, the natural question appears: what value does h(Q) assume for
a plane body Q.

Before giving an answer to this question we shall prove

LemMmA 3. If {ay, a1, a;}=F(Q) for a plane body Q and Acyc,c, is the fixing
triangle for Q determined by F(Q), then for each ic{0, 1,2} the part Q;=Q
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M~"a;al+lc;+2 of Q can be covered with a copy of Q which is an image of Q under a
homothety with the ray ratio equal to wfF).

Proof. Take a homothety xK > where ki=wfF) and oi_1=(Ai~1a,)M
ai+l); the latter belongs to the opposite angle to <c,+1ci_1ci of the
fixing triangle for Q (Fig. 28). Then yf (Q) is a copy of Q in which the greatest

chord parallel to (ah ai+l) is identical with (a,, ai+l). We have to show that
X& L) covers Rj.

Fig. 28

Let b£bd Bn/diTjOi+jCi-! be an arbitrary point. Its image under yf lies
nearer to 0.-x than b which means that a-ai+lczbd Q is covered with xK J.Ol-

het Ai~JA\+\c:bd Q be the arc which includes ai*1l and take dffmt A\~JA\+\.
The image of d under yf belongs to the straight line (d, o;_j) and lies on the
opposite side of (<7;,ai+l) than o, x (or lies on (u;,ai+l) if (A\~r, A\+[)czbd Q).
The segment (at, ai+l) is covered with the image of (A\~", A\+\). Hence

Lemma 4. If {a0, al, aZ}=F,,{Q) for aplane body Q then AaOala2czQ can be
covered with three copies of Q each of which is an image of Q under a homothety with
the ray ratio equal to w{Q).

Proof. For each /6{0,1, 2} take the homothety xa<@ It is evident, by Belou-
sov’s theorem [1, p. 15] and by the considerations in the Preliminaries about the
liminal number of a plane body and about the passing coefficient, that

2 2

Acta Mathematica Hungarica 50, 1987



FIXING SYSTEM AND HOMOTHETIC COVERING 221

if w(Q) z%. In view of Theorem 3 we have to show that this is so also in the case

(Q)€<2 3)

Let W(0)= _+ _1+42s

2
2

not cover Aaya,a, (Fig.29) (cf. [1], p. 12). Assume that {J x»?(Q) does not
i=0

2
, where s€<0, —é—], then | x»@(daya,a,) does
i=0

Fig. 29

cover Aaya,a, either. (In the sequel, for the generality of the considerations and
of a notation, we shall write 4a;_,a;a;,, (the addition is taken mod 3) instead
of Aayaya,.) Let bé€int Aa;_,a;a;,, be a point which belongs to none of x“’(Q’ ()
and for each i take into account the image b; of b under the homothety xk, where

k=w(Q)= 1+2S . Since b¢ U x5 (Q) thus b;¢Q for each i but only one of
i=0

these points may be a vertex of the fixing triangle for Q. Moreover, it is possible
that in some neighbourhood of b; there exists a point belonging to Q. Note that
(b; 41, b;) is parallel to (a;, a;,.), b;b;+;<a;a;,, and b is the common point of
the diagonals of the trapezoid a,-a,-+1b;b,.+1$ _1. Therefore, Q is included in a
polygon dd{_,d; ,d{d;_1d{,, (Fig.30) and for each i—1 the greatest chord
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(T;_1, A\~]) of Q must be intersecting Ti_land its image by x* must have a length
equal to the length of (ah ai+l).

It is evident that if Ti_1 has the empty common part with xki_1{Aai"xaiai+")
(as a consequence of this we have (Al-1, A\+i)riXoi.("ai-iaiai+i)=0) then
O 1« -1 A\+{)) must be lying between the prolongated lateral sides of Ti_1
nearer to a,--! than (A\~r, A\~\). This implies that the length of xX-iiiA"1, A\+\))
is less than the length of (at, ai+1) which is impossible. Note that the same occurs
if ri_inxSCi("ai_10/Gi+)Fi0 but r,_inz5j I« 4 _1»"lii>)=0- we must look
at the case when \ A\H))"0.

Take into account the segment (ai-1,bi-i) (Fig. 31); it is passing through
b and does intersect (a;,ai+J) in a point &i-x, (bhbi+l) in a point br_15
O.l««;» 0.-+i)) inapointCj-i, (A\~\ A\+\) inapointc;_r; denote by D the length

Fig. 31

of (a,-..1,«?;-1) and assume that dist (b, Gi_i)=/>i-i mD, where p; XE|2£,—"
Then

2
dist(ai_I5 bf-j) = 1+2s (1 —pi-i)D,

' \" 1 23 2/7,_1 s w
distC&i-i, Rj-i) = -—mmmv X X~— D as
(20 3—as—aso— Aok 4
dist(bj-i, Cj-i) = ------m-- g%tlJr'Zs) ‘ D as ai-ibi-i—ai-iCi-1,
dist (bi_15 be_i) = as [ei-jbj-i =
dist(b.-i, c;_r) S dist(b;_!, e;_4 ~ dist(b,_r, b,-_j),
ie.
3—4s—4s"—4p.._j , . 1—92s
2(1+2s) 1+2s

in view of (20)3+4. Since vv(0g; dist (U;_1 ef-j/ﬁ (“i-i belongs to the fixing triangle
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for Q) and

[-2s~2pi_1~ dist(bf-t, a,-i) » 2(1-2s-2pi_J)
1—2s ~ dist(bj-i, e.-i) ~ 3—4s—&*—4/7 X

hence we must have "-—25—2s2—2pi_1" | —2s. This implies /1 -i— —
but Pi-x(z"2?,— -—j thus — "] < —2"- s>0<2s2—25—4- which does

not hold for (o, -i-j. This means that if there exists b£Q which belongs to

none of the homothetic copies of O then for every i the greatest chord of Q parallel
to (ai,ai+i) does not intersect (Jfl.-ifljflj.i). Therefore it is possible that

\ 4+1)) intersects I';_x and its length is equal to the length of (at, ai+1).
However in tliis case Q is included in the quadrangle ai,,xdi-1bi- 1di_1 (Fig. 30)
which implies that the greatest chord (A\+1, A\-r) (and (A\t\, A[+1), too) cannot
be longer than (a”, £;,_]) and, in view of (20)r and of the property of a triangle
concerning its sides, the following inequalities hold:

wir(Fg = GIStETL Q) N dist(gitl>a,-) b
dist (Al+x>Al-x) ~ dist{a*x,bi_x) 2(1—Pi-i)
1+2s
14“2s 1-{-25
2(1 —Pi-x) o~ W)

The inequality wi+1(Fg>w (0 implies, in view of Theorem 2, that the considered
set {ai_1, a;, fli+1} is not a pessimal fixing system for Q which contradicts the
hypothesis.

Theorem 6. For any plane body Q the inequalities

3=£ft(0=s6
hold.

Proof. The first inequality follows from Theorem G—M. The second one is a
simple consequence of Lemmas 3 and 4.

Theorem 7. For each integer gf {3, 4, 5, 6} there exists a class ofplane bodies
Q stabilized by a three-point system for which h{Q) =g.

Proof. It is easy to see that we have h(C)~3 if C is a circle. The points of
FO(C) are the vertices of an equilateral triangle inscribed in C (cf. Fig. la or Fig. 7c),

hence w(C)=-~. Simultaneously k?(C)="~, thus n>(C)=£3(C)<A:2(C) which
means that C can be covered with three homothetic circles (but not with two ones)
in the presence of any FO(C). For a triangle T we have w(F)=i- because the
points of FO(F) are the midpoints of sides of T (cf. Proposition for p=0) and
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A6(IM)=y, k5T)=-y* (cf. [1], p. 15), thus w(T)=Kk\T)<k\T)\ this implies
h(T)=6.

Now consider a one-parameter family of trapezoids Tp, the same as in the
Proposition, and recall that w(Tp) is a continuous function in (0,1) which assumes

all values between —and 1. On the other hand for each fixed jf {4,5} kJT p) is also

a continuous function of the parameter p and, in view of [2, p. 3531 k3(TpP £{", V]

forany p$(0, 1); moreover, for each pf (0, 1) there holds /c3(Tp > /cA(7'p) > kr(Tp).
Both of these functions, w(Tp and kJ(Tp), are continuous, hence for some
p=Pj£(0, I) we have w(Tp=kJI(Tp. Therefore h{Tpi)=j for eachj.

One can obtain the same values of h(Tp), i.c. 4 and 5, by (19) in view of [5,

Theorem 2] and the Theorem in [2]. For P=y1 we get w(7”/4)=)‘/1 = &Ml 1h)-=
<fc3(r ¥4 which implies /j(7m4) = 4; the setting p=\- in (19) leads to h(T 18 =5.
o

Remark also that from (19) we have w(TQ=~=k6(TQ"-k&T°), which
implies /i(T°)=6 pointed out in the proof of Theorem 7, because T° is a triangle;
also W»(MR) =y =&3(T 12 by [5 Theorem 1] which implies /i(T22=3. This means

that the trapezoids T 122 form another class of plane bodies Q, different from the
class of circles, for which h(Q)=3.
Further, the following observation can be made.

Remark 8. For a parallelogram P we have h{P)=4.
Indeed, a parallelogram P is stabilized by a four-point system. Such a system
is pessimal if each of its points is the midpoint of a side of the parallelogram. Then

W(P)=y, but the same number is the value of k*(P) [5, formula (1.4)], which
implies h{P)=A

5. Some remarks and open questions

Depending on the form of a body KczEn a pessimal fixing system for K
is determined uniquely (e.g. for a simplex and for a parallelotope) or not (e.g. for
a ball).

(i) For what bodies Kc.E" (hS 2) is the system FO(K) determined uniquely?
For which ones are there a finite number of FO(7f)?

The number of the points belonging to FO(K) for KcIE" will be called the
fixation index of K and will be denoted by FI(K).

(i) To what interval does the coefficient of KcEn belong if FI(K)=n+r

(re{L, 2, ..})? Is lj this interval for each n if FI(K)=n+1?
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The last seems to be true because wW(6™) n—1 for an n-dimensional simplex
S", but
(iii) Is an «-dimensional simplex the body in En («5;3) for which the coeffi-

cient assumes the minimal value among all possible ones? Is it the unique such body?

For plane bodies Q we have A (O£ {3, 4, 5, 6} (Theorem 6).
(iv) Characterize the plane bodies O satisfying h(Q)=q for each <6{3, 4, 5, 6}

(v) What value does /i(G) assume for GaE" if «==3? The minimal value
of h{G) must be equal to «+ 1 (attained for G which is a ball), but what is the

maximal one?
For a 3-dimensional simplex S3we have S =k3(S3 "k 6(83zi [5, Theo-

2
rem 3], [6, Theorem 2] and w(53 =y because each point of FO(S3 is the bary-

centre of one of its faces. Hence w(5'3 = Ae(5'3, which implies /i(S3=6.
(vi) Is the number 6 the maximal value of h(G) for GczE3 if FO(G) is a four-

point system?
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RECURRENCE IN TOPOLOGICAL DYNAMICS
AND THE RIEMANN HYPOTHESIS

B. BAGCHI (Calcutta)

1. Introduction

The object of this paper is to point out some surprising connections between
two apparently unrelated branches of mathematics. On the one hand we have
topological dynamics with its historical origin in the study of particles in motion;
on the other hand is the theory of Riemann zeta function and other allied Dirichlet
series which arose in the abstract number-theoretic deliberations of Euler, Dirichlet
and Riemann.

In its abstract formulation, topological dynamics studies continuous actions
of topological groups on topological spaces. In the present work, we allow the
additive group of reals (or the additive group of integers) to act on a certain func-
tion space H. The Riemann zeta function £ (as also the other Dirichlet L-functions)
may be regarded as a point in the resulting “flow” H. Implicit in [1] was the result
that the celebrated Riemann hypothesis on the location of the zeros of zeta is equiv-
alent to strong recurrence (in the sense of Gottschalk and Hedlund in [3]) of zeta
regarded as a point in this flow. Analogous results hold for the other Dirichlet
L-functions. Here we further elaborate and develop this relationship to show that
the generalised Riemann hypothesis holds if and only if all the functions in a nat-
urally defined class of Dirichlet series (viz., those with periodic coefficients) are
strongly recurrent points of the flow H. Further, we show that the generalised Rie-
mann hypothesis holds if certain finite subsets of H, each point of which is shown
to be strongly recurrent, are jointly strongly recurrent. This makes it interesting
to study flows in which separate strong recurrence of points in a finite subset implies
joint strong recurrence. By a coherent flow we understand a flow in which this
implication is valid. In terms of this definition, the generalized Riemann hypothesis
is equivalent to coherence of certain “subspace restrictions” of the flow H. So it is
pertinent to ask for sufficient conditions for coherence. To make a beginning in this
direction, we show that locally equi-continuous flows are coherent.

2. Flows and other relevant notions from topological dynamics

Throughout this paper G will stand for either the additive group R of reals or
the additive group Z of integers — as the case may be.

Aflow is a triplet (X, G, n) where Ais a topological space, G—R or Z, and
n: XXG-+X is a continuous map satisfying

@ n(x,0) =x, (b) n(x,t1+t2 =n(n(x,t),t for x£X, tutrG.

In this paper we shall consider flows on metric spaces only. Thus each space X



228 B. BAGCHI

will be considered equipped with a metric g. If Xx, X2, ..., X,, are metric spaces
with metrics gx, ..., gn respectively, then the product space X=X1X...XX,, will
be assigned the metric g given by g(x,y):qu]aglg1 gﬁxj, yﬁ. A flow (X, G, n)

is said to be a continuousflow or a discreteflow accordingas G=R or G—Z.

If (X,G,n) is a flow and tEG, the map a": X-»X is defined by nl(x)=
=n(x, t), xEX. Clearly each a' is a homeomorphism of X onto itself. In case of a
discrete flow, n” is clearly the nth iterate of nl, so that the flow is in this case deter-
mined by the surjective homeomorphism nl Conversely, each homeomorphism of
a space X onto itself induces a discrete flow on X. Thus discrete flow might alter-
natively be described as a space together with a homeomorphism of the space
onto itself.

If (X,G,n) isa flow and Y is a subspace of X, then Y is said to be invariant
in case whenever Xx£Y and t£G, we have n(x,t)£Y. In symbols, we have
Ny, G)—Y. In this case the restriction of n to YXG, which again we denote by
n, determines a flow (Y, G, n). This is called a subspace restriction of (X, G, n).

If (X, G, ) isaflowand AQX, let us define the span of A, to be denoted
by Sp (A), as the minimal invariant set containing A. Notice that we do not require
the span to be closed. Thus 8p04) = {a(x, t): xEA, tEG}=n(A, G). In particular,
for any point x in X, Sp ({x})=a(x, G) is called the orbit of x, and is denoted
by O(x).

If (X,G,n) isaflowand hxO,h£G, letusdefine nh\ XXZ-»X by nh(x,n) —
—n(x,nh). Clearly (X,Z,nh is a discrete flow. We call it the discrete subflow
modulo h. This is clearly a particular instance of the more general notion of “sub-
group restriction” in [4, p. 6].

If for 1*j~n (Xj, G, nj) is a flow (with a common “phase group” G) then
their productflow (¥, G, n) is given by Y =XxX ... XXnand = nxX..*X1,:YXG- Y
where n(x, t)=(nj(xj, t): Is/sn). In particular, when X1—...—Xn—X, we shall
denote the product flow by (X1, G, n).

If (XX, G, 92 and (X2, G, a9 are two flows with a common phase group G,
and cp: Xx—X2 is a continuous map satisfying (p{nflx, /))=a2(<p(x), t), X€XX,
tEG, then we say that @ is aflow homomorphism. If, in addition, @ is a homeo-
morphism between Xxand @{XX then we say that qis an embedding of (Xx, G, nY
in (X2,G, n2.

If (X, G, n) isa flow and xCEX, then we say that x0 is periodic in case there
exists tOEG, tiX 0, suchthat a'°(xQ=x0. Strong recurrence and almost periodicity
are two of the recursion notions which generalise periodicity. We must begin with
a few technicalities in order to define them.

If A if a Borel subset of R, the upper and lower asymptotic density of A, denoted
by 3(A) and 3(A), are defined by

T

1
o7 I IADL

Here IA is the indicator function of A: IA(i)=1 if tEA and =0 otherwise. In
case 3(A)—3(A), we call the common value the asymptotic density of A, and denote
it by 3(A).

If A is a subset of Z, the upper and lower asymptotic density of A (discrete
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version), denoted respectively by c(A) and d(A), are defined by

#(NN[-NT,NT7)
2N

#nn-nr,nj)

d(A) = lim sup IN

d(a) = lim jpf

Here #(e) stands for the number of elements of (e).

In case 3(A)=d(A), we call the common value the asymptotic density (discrete
version) of A, and denote it by d(A).

If AJAR (respectively AAZ) then we say that A is syndetic or relatively
dense in case there exists a compact set KAR (respectively a finite set KA Z)
suchthat A+K=R (respectively A+K=2).

Notice that equivalently a set is syndetic if there is an />0 such that every
interval of length | contains an element of the set.

2.1. Definitions. Let (X,G,n) be a continuous (respectively discrete) flow.
Let x0dX. Then .rOis said to be strongly recurrent in case for every e>0 there
exists a Borel set A AG such that 3(A)>0 (respectively 3(A)>0) and a(n'(x0, x0Q-=e
for all tdA. Here qis the given metric on X. If hd.G, liAO, then x0is said to be
strongly recurrent modulo h in case x0, regarded as a point in the discrete subflow
(X, Z, an), is strongly recurrent.

More generally, a subset Y of X is said to be jointly strongly recurrent in case
for every e>0, there exists a Borel set AAG with 5(A)>0 (respectively 3(J1)>0)
suchthat a(n'(y), y)«<=e for all tfA andall yd Y. Further, Y is said to be jointly
strongly recurrent modulo h if it is jointly strongly recurrent when regarded as a
set in (X, Z, a7. Notice that strong recurrence is an orbital property. That is, a
point /1, in the flow (X, G, 5) is strongly recurrent if and only if it is strongly recur-
rent when regarded as a point in the subspace restriction (O(v0, G, it). More gen-
erally, a subset Y of X isjointly strongly recurrent if and only ifit is so when regarded
as asetin (Sp(Y), G, 7).

The following proposition is a special case of the “inheritance theorem” first
proved by Gottschalk and Hedlund in [3] and later given in an improved form
in [4].

2.2. Proposition (inheritance theorem for strong recurrence). Let (X, G, n)
be aflow, x0dX, hdG, hzO. Then x0is strongly recurrent if and only if x0is strongly
recurrent modulo h.

The next two propositions are important for application but their proofs are
trivial. So we omit the proof.

2.3. Proposition. Let (X,, G, 4,) and (X.,, G, a2 beflows with a common phase
group and let @ be a flow-homomorphism between them. 1f apoint x0dXx is strongly
recurrent then so is cp(XQ£X2.

2.4. Proposition. Let (X,G,n) be aflow and let Y={yt, ..., yr} be afinite
subset of X. Then Y isjointly strongly recurrent if and only if the n-tuple (y,, ..., ¥.,),
regarded as a point in the product-flow (Xn G, 2) , is strongly recurrent.

Propositions 2.2 and 2.4 together yield:
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2.5. Proposition. If (X, G, n) is aflow and Y is afinite subset of X, thenfor
eachfixed h£ G, hAO0, Y isjointly strongly recurrent if and only if it isjointly strongly
recurrent modulo h.

Proof. In view 0f2.4, this follows on applying 2.2 to the product-flow (X", G, n)
with n= #(T).

Similarly, 2.3 and 2.4 imply:

2.6. Proposition. Let Y={y\, ..., y,} be afinite subset of the flow (X, G, n).
Let (p be aflow-homomorphism of the productflow (Xn G, n) into another flow. IfY
isjointly strongly recurrent then <p(yl5 ..., y,,) is strongly recurrent.

The chief utility of Propositions 2.2 and 2.5 lie in the fact that they allow us
to move back and forth between continuous and discrete flows. Because of them
it often suffices to prove results regarding strong recurrence and joint strong recur-
rence for discrete flows only, This technique will be exploited in the concluding
section. Here we use Proposition 2.5 to prove a result which will be used in
Section 4:

2.7. Proposition. Let (X, G, n) be aflow. Let A—{jq, ..., V,,} be a jointly
strongly recurrent subset of X. Let B= {y,, ..., Y,} be afinite subset of X such that
all points in B are periodic (not necessarily with the same periods). Then AOB is
jointly strongly recurrent.

Proof. It clearly suffices to prove only the case /7=1, since the result then
follows by induction on n. Accordingly, let n—1 Let hfG, hAO be a period
of yx. By Proposition 2.5, A is jointly strongly recurrent modulo h. But the orbit
of y\ modulo h is a singleton. Hence trivially AU {1} is jointly strongly recurrent
modulo h. Another appeal to Proposition 2.5 completes the proof.

A parallel notion of recursiveness is that of almost periodicity. A point x0
in a flow (X, G, n) is said to be almost periodic in case for every e>0 there exists
a syndetic set AfG such that for all tEA, e(n‘(x0, x0)-=e. Here, as before, q
is the given metric on X. As with strong recurrence, we could proceed to define joint
almost periodicity and almost periodicity modulo h. Analogues of Propositions 2.2—
2.7 hold for almost periodicity also.

Clearly a syndetic subset of G has positive upper asymptotic density. Therefore
almost periodicity implies strong recurrence. We shall have a brief occasion to
return to almost periodicity in the concluding section.

Most of the notions and results discussed in this section are standard. The
author failed to locate Proposition 2.7 in the literature. Clearly analogues of this
proposition hold for all recursion notions for which the Gottschelk—Hedlund
inheritance theorem is valid. So it must be familiar to experts in the field.

Acta Mathematica Hungarica 50, 1987



RECURRENCE IN TOPOLOGICAL DYNAMICS AND THE RIEMANN HYPOTHESIS 231

3. Strong recurrence in the flow H and the Riemann hypotheses

3.1. The space H. Throughout this paper Q will stand for the open strip con-
sisting of complex numbers z such that -"-<Re (z)<l. Here Re (2) is the real

part of the complex number z. H=H(Q) will stand for the space of all analytic
functions on Q, with the topology of uniform convergence on compacta (u.c.c.).

Let K,,, n51 be a sequence of compact subsets of i2 which increase to Q.
We also assume that for each né 1, K,, is contained in the interior of Kn+1. For
/, gfH, we define

e(f, g) = su?mln , su%/(z)g(z)“

As is easy to check, gis a metric on H which induces the u.c.c. topology. Of course,
q depends on the choice of the sequence Kn. We shall think of H as equipped with
this metric.

3.2. Theflow (H, R, cr). We now allow the real line to act on H by vertical
shift. More precisely, we define o: H /R -H by o(f, t)=g where g(z)=/(z-f//),
z£Q. Clearly this makes (H, R, 0) a continuous flow.

3.3. Dirichlet series, Dirichlet L-functions and the Riemann hypotheses. A Dirichlet

series is a series of the type 2U ann~z>where a,, is a sequence of complex numbers
W= 1

(called the sequence of coefficients of the series) and z is a complex variable. Of
particular importance in the theory is the series £(z)—2I n~ which converges for

Re (z2)> 1, and defines an analytic function there. As |s weII known, the zeta func-
tion £(z) may be analytically continued to the entire complex plane except for a
singularity at z=1. Thus zeta is analytic on £2, and we may (and do) regard £ as
a pointin H.

An arithmetic function is a function/ from the natural numbers into the com-
plex plane. We often write f,, for f(n) and thus display/ as a sequence {/,}. An
arithmetic function/is said to be completely multiplicative in case f(mn)=f{m)f(n)
for ra,nél and /(1)=1. An arithmetic function/is said to be periodic in case
there exists /c=s1 such that f(n+k)=f(n) for all «Si. In this case K is said to
be a period off and we say that/ is periodic modulo k.

A Dirichlet character modulo k is by definition an arithmetic function non-
vanishing only for integers co-prime to K which is both completely multiplicative
and periodic. It is well known that given any k” 1 there are only finitely many
Dirichlet characters modulo k. Indeed, the total number of Dirichlet characters
modulo K equals the number of integers in the interval [1, k] which are relatively
prime to k.

Corresponding to each Dirichlet character y, one defines the Dirichlet L-func-

tion L(., X) by the series L(z, y)= n"_ly(n)n"z. These are natural generalisations

of the zeta function. Indeed £=L (., yQ where y0is the unique Dirichlet character
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modulo 1 Like zeta, all Dirichlet L-functions admit analytic continuation to the
entire plane except possibly at z—1. Accordingly we regard the functions L (.,Y)
as points in H.

The Riemann zeta function vanishes at the points —2, —4, ... the so called
trivial zeros. The classical Riemann hypothesis conjectures that all the nontrivial

zeros of zeta lie on the line Re (z) = —. Likewise, the generalised Riemann hypoth-
esis (GRH) for Dirichlet L-functions conjectures that for each character x, the non-
trivial zeros of L (., xX) lie on the critical line Re (z)=—. In view of the functional
equation and the Euler product for L{., y), an equivalent formulation is: L(z, y)AO
for zCQ. That is, L) This is the form in which we shall consider these
celebrated hypotheses.

34. The relationship between the Riemann hypotheses and strong recurrence.
We begin with the following theorem from [1].

35. Proposition. Let fcs1, andlet X> 1=/i5«, be distinct Dirichlet char-
acters modulo k. Letfj, 1 be members of H such that — also belong to H.

Ji
Thenfor every e>0, theset A ofall iiR such that

(i) ARy a(o*(L(., xin. fj) < £
has positive upper asymptotic density 5(A)>0.

Conversely, iff, Itdj=n, are such thatfor all e>0 the set A of all tfR sat-
isfying (i) satisfies 5(A)>0 then j-iH for \"j~n.

Proof. The direct part is a reformulation of Theorem 3.1 in [1]. The con-

verse may be proved following the arguments in the proof of the ‘if’ part of Theo-
rem 3.7 in [1].

The particular case n=1 of Proposition 3.5 is so important that we state it
separately as:

3.6. Corollary. Let y he a Dirichlet character and let fEH. For e>0, |
At denote the set of all real numbers t such that q(o'(L(., x)),/)<£. Then H
ifandonly if <5(J)> 0 for every e>0.

Recall that in the above g is the given metric on H which induces the u.c.c.
topology.
Substituting L (.,x) for fin Corollary 3.6, we immediately deduce:

3.7. Theorem. Let x be a Dirichlet character. Then the Riemann hypothes
holds for L (., x) ifand only if L(.,y) is a strongly recurrent point of the flow
(7, r;a).
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Notice that in view of Proposition 2.2, Theorem 3.7 might equivalently be
stated in terms of strong recurrence in discrete subflows (H, Z, <€, h-"0.

3.8. Remarks. For each k”~1, there is a unique Dirichlet character Xo mod-
ulo K defined by vy, )= 1 if (0, k) =1, b(«)=° otherwise. is called the principal
character modulo k\ the other characters are called non-principal. The non-trivial
zeros of L(., X0) coincide with the nontrivial zeros of zeta. Accordingly, the Rie-
mann hypothesis for L (.,x0) is equivalent to the classical Riemann hypothesis.
In [2] H. Bohr essentially proved Theorem 3.7 for non-principal characters. His
proof depends on the fact that for non-principal characters y, the Riemann hypoth-
esis is equivalent to convergence of the series 2 7.(p)p~4 z£Q, as p runs over
the primes. Therefore Bohr’s proof does not extend to the principal character.
After minor modifications, the main theorem in [2] may be stated as follows. Let
f(H be given by a convergent Dirichlet series 2 aPP~z> Q, where p runs over

the primes. We also assume that
“rm%UP?}F ﬁ\f(a + it)\2dt <oa for i—< a< 1

Then/is a strongly recurrent point of the flow (H, R, 0). Bohr deduces the non-
principal case of Theorem 3.7 above from this result.

4. Joint strong recurrence and the Riemann hypotheses

Substituting L (., Xj) forfj in Proposition 3.5, we obtain:

4.1. Theorem. Let X i b e Dirichlet characters to a common modulus.
Then the following are equivalent:

(a) Riemann hypothesis holdsfor L (., yf), 1fj*n.

(b) Theset {L{., xj)m1=j=n) isajointly strongly recurrentsubset of (H, R, a).

For integers h,k, 1*h~sk, let  kfH be defined by Gt'rtCZ)—ZO(n"+b)~z,
n=

Re(z)=>1, and hence by analytic continuation. For kw\, let ft, ...,hn be the
integers in [1, K] which are relatively prime to k, and let Xi, e, X» be the Dirichlet
characters modunlo & The map o A"—i/" which sends to

given by gj—(2_ Xj(hi)f, 1=j=n, is clearly a flow homomorphism of the product
=i

flow (Hn R, d onto itself. Its inverse @ 1is given by fj _I}Ii%i Xi(hj)gi and is

again a flow homomorphism. Therefore, by Proposition 2.3, (/, ...,/,,) is a strongly
recurrent point of (Hn R, 0) if and only if <p{f, ..../,,) is. In particular, since

(L(,Xi), .o L (X)) = KO

it follows from Proposition 2.4 that {L(.,x)- 1=/=«} is jointly strongly recur-
rent if and only if {Cy 17h~k, (h, k) =\) is jointly strongly recurrent. There-
fore Theorem 4.1 may be rewritten as:
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4.2. Theorem. Let y1, yn be an enumeration of all the Dirichlet characters
modulo afixed integer k=). Then the following are equivalent:

(@) Riemann hypothesis holdsfor L(., yfi, [*j~n.

(b) The set {£, k: Ishs/c, (h, k)=1} is ajointly strongly recurrent subset of
(H, R, a).

4.3. IT_vlsmma. Let wi, ..., v, be distinct Dirichlet characters to afixed modulus.

Let g—_2__ ajL (-, Xj) where at least two of the complex numbers aj are non-zero.

Thenfor any arbitrary /£#, andfor any £>0, the set Aeofall real numbers t such
that satisfies 5(AB> 0.

Proof. In view of Proposition 3.5, it suffices to show that the set
{42 ajfj:fj*H and :J?_-EW; is dense in H. Let S be the set of all fEH such that
=1 J

—£H. Since S is closed under multiplication by non-zero complex numbers and

since the closure of S contains the constant function 0, it is enough to show that
5,+5°={/1+/2:/i,/26S} is dense in H. But if g£H is bounded then there is a
complex a”O suchthat g(z)Aoc for z€ Q. Hence, putting /1(z)=g(z)—a,/ 2(z)=a,
we get g=fi+f2,fnffS. Thus S +S contains the set of all bounded members
of H. Since the latter set is dense in H, we are done.

We have the representation £**= ﬁjgi Xj(h)L(., yj), for (h,k)=1. Also, if

/ce3 then n=2 so that at least two of the coefficients in this formula are non-zero.
Hence from the above lemma we deduce:

4.4. Proposition. Let Isl/isi/c, /cé3, (h,k)=1. Thenfor any /P //. for any
s>0, the set AEof all real numbers t such that e(ty4Cnpg),./)<£ satisfies 3(Aj>0.

In particular, substituting for/in the above, we deduce.

45. Theorem. Let lwbuwk, /ce3, (h,k)=1. Then C/,a is a strongly recurrent
point of (H, R, a).

4.6. Definition. Forice 1, let Dkbe the span of the set {Chk' 1= /is/c. (h, )= 1}
Thus Dkis the set of all points o'(Ehk) with Ish”k, (h,k)=1, fER. {Dk, R, 0) is
a subspace restriction of (4, R, 0).

Since for each IgR, o'is a flow homomorphism of (H, R, 0) into itself, Theo-
rem 4.5 implies that each point in (Dk, R, 0) is strongly recurrent for /ce3. If
the “generating set” {Oa- I=h"k, {h,k)=1} were jointly strongly recurrent, it
would likewise follow that any finite subset of (Dk, R, a) is jointly strongly recur-
rent. So it is natural to enquire when strong recurrence of the points in a finite set
implies joint strong recurrence of the set. This leads us to the following:

4.7. Definition. A flow (X, G, n) will be said to be coherent in case when-
ever A is a finite subset of X such that each point of A is strongly recurrent, it fol-
lows that A is jointly strongly recurrent.

In view of the discussion preceding this definition, we have:
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4.8. Theorem. Let k”3 be an integer. Then the following are equivalent:
(@) Riemann hypothesis holdsfor L (., f) for all Dirichlet characters x modulo k.
(b) Theflow (Dk, R, 0) is coherent.

In the fifth and concluding section, we shall consider the notion of coherence
in some details. Here we proceed to obtain yet another equivalent formulation of
the Riemann hypotheses.
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