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BI-IDEALS IN REGULAR SEMIGROUPS 
AND IN ORTHOGROUPS

MARIA M ADDALENA MICCOLI (Lecce)

Introduction

Several authors (Lajos, Steinfeld, Kuroki, Szász, etc.) have started a deeper 
study of regular semigroups and of some of their sub-classes through bi-ideals, 
obtaining also interesting characterizations.

Recently Steinfeld [10] has proved that the complete regularity of a semigroup 
is sufficient for the complete regularity of each of its bi-ideals. In the present work 
we prove that the regularity of a semigroup is not sufficient to ensure the regularity 
of each of its bi-ideals.

Besides we prove that there exists an isomorphism between the semigroups 
©(S') and S (S /$ ) of the bi-ideals of S and S/$, quotient of S  with respect to 
Green’s relation § , when S  is a regular semigroup and §  is a congruence.

The authors we have quoted made use often of the semigroup ©(S) of the 
bi-ideals of S  in order to characterize certain classes of semigroups S  through prop
erties of ©(S). Among other things we find the connexion between ®(S) and the 
band E  of the idempotents of an orthogroup S ; in particular we prove that there 
is an isomorphism between ©(S) and Ъ(Е).

Recall that a subsemigroup 5 (^ 0 )  of a semigroup S  is said to be a bi-ideal of 
S  if BSBQB.

It is well known that if S  is regular, then BSB=B for every bi-ideal В of S.
Theorem 1. I f  every principal bi-ideal o f a semigroup S  is regular, then S is 

completely regular.
Proof. Let aZS and let (a)b be the principal bi-ideal generated by a. Since 

(a)b is by assumption regular and (a)b=aSa, there exist x£(a)b and s£S  such 
that a=axa = aasaa= a2sa2. It follows that a is a completely regular element 
of S. □

In [10] Steinfeld proved that the complete regularity of a semigroup is equiv
alent to the complete regularity of each one of its bi-ideals. It follows immediately 
from this and from Theorem 1 that the regularity of a semigroup does not imply 
the regularity of its principal bi-ideal.

One usually denotes by ©(S') the semigroup of the bi-ideals of the semi
group S.

Theorem 2. Let S be a regular semigroup and let §  be a congruence on S. Then 
the semigroups ©(S) and ©(S/§) are isomorphic.

P roof. Let the mapping / :  © (S)—©(S/§) be defined by f(B )= H B, where 
HB={Hb}beB. T h en /is  an isomorphism. Notice, first of all, that B — IJ Hb for

b i B

l*
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every bi-ideal В of S. Indeed, for every x£ (J Hh, there exists bfiB  such that
b£B

x§>b'\therefore x = xax= b'sx= b's'b' (for some a, s, s'), i.e. x£B. This immediately 
implies that /  is one-to-one.

On the other hand, if T Q S  is such that ff={#,}(£X is a bi-ideal of S /$ , 
then U H, is a bi-ideal of S. Indeed if x, yd (J Ht and sdS, there exist tlt t2ZT

t i T  t i T
such that x£H h, у£Н,г and, since H  is a bi-ideal of S/§>, Hh • Hs -Ht2=Ht, where 
t f i  T. Therefore

xsyeH tlHsHl2 = H , я  U Ht
t £ T

i.e. (J H, is a bi-ideal of S, hence f  is onto.
t i T
Finally let В, B ' be two bi-ideals of S  and let b£B and b'£B'; then HbHb. — 

= Hbb■ and hence HBHB.Q H BB.. Besides let x(LBB', b£B, b'£B ' suchthat x=bb'. 
Then if h£Hx, hS=bb'S, Sh=Sbb'. It follows from this and the regularity of S  
that h=hah=bb'sh=bb's'bb' where a, s, s' are suitable elements of S. Therefore 
h£Hbb,s.bHb.. Besides k ^ h  is in Hx, there k=bb's"bb', where s" is a suitable ele
men of 5  and bb's"b$ybb's'b. Then Hx=HWs.b.bHb. and hence HBB.^=HBHB.. □

Recall that a semigroup S  is said to be intra-regular if a = xa2y where x, у  
are suitable elements of S, for every a<zS.

Pastijn [6] has proved that if S  is regular, 23(5”) is a normal band (i.e. for 
every Л, B, C£SB(S), ABCA=ACBA) if and only if S  is intra-regular. Through 
this property of 93 (S) and since S  is regular and intra-regular if and only if 23 (S) 
is a band (cf. [9]), we get quickly the following theorem.

Theorem 3. A semigroup S  is regular and intra-regular i f  and only i f  IB{S) is 
a normal band.

Since an orthogroup is a particular regular and intra-regular semigroup, if S  
is an orthogroup, 23 (S) is a normal band. It is interesting to find the connexion 
between 23 (S) and the band E  of the idempotents of an orthogroup S.

Theorem 4. A semigroup S  is an orthogroup i f  and only i f  every bi-ideal o f S  
is an orthogroup.

The proof of this theorem descends from a similar theorem for completely 
regular semigroups given by Steinfeld (10].

Corollary 5. A semigroup S  is an orthogroup with band o f idempotents o f type 
SF, where is any o f the types o f band classified by M. Petrich in [7], i f  and only 
i f  every bi-ideal o f S  is an orthogroup with the band o f idempotents o f type ф.

If S is an orthogroup where §  is a congruence, the bands E  and S/Ь are iso
morphic. Then from Theorem 2 we know that bands 23 (S) and 23 (E) are isomorphic. 
But, if S  is an orthogroup, the isomorphism between 23 (S') and 23(F) exists even 
if §  is not a congruence. In fact the following theorem holds.

Theorem 6. I f  S  is an orthogroup with the band o f idempotents E  then the bands 
23 (S) and 23(F) are isomorphic.

A cta  Mathematica Hungarica 47, 1986
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Proof. Let the mapping Z: © (S )—©(E) be defined by Z(B)= E(B), where 
E{B) is the band of idempotents of B. We prove that Z  is an isomorphism.

Let В and B' be two bi-ideals of S  such that E(B)=E(B') and let b be an 
element of B. According to Theorem 4, there is an element xdB  such that b=bxb 
and xb —bx, then, bx being an idempotent of В and so of B', b = bxb=bxbxb 
is an element of B'. Analogously we can prove that, if b' is an element of B', b' is 
an element of B. Therefore B —B', namely Z is one-to-one.

Now, let В be a bi-ideal of E and В ' the bi-ideal of S  generated by B. Then every 
element of В is an idempotent of B'; moreover, if e is an idempotent of B', since 
B'=BSB, there are b1,b 2d.B and sd S  suchthat:

e = b1sb2 =  b\sb\ = bxeb2,

then e is an element of B. Therefore B ' is a bi-ideal of S  whose band of idempotents 
is B, so Z  is onto.

Finally let В and B ' be two bi-ideals of S; then, obviously, E(B)E(B')Q  
QE(BB'). Moreover, if e is an element of E(BB'), there are b£B and b'dB' 
such that e=bb'. If we denote by h' the identity of §-class of B ' containing b' 
and by b the identity of §-class of В containing b, we have

eh — bb'h = hbb'h =  hehd.E(B), h'e = h'bb' — h'bb'h' = h'eh'd.E(B').

Then, if h-1 is the inverse of b in §-class of В containing it and if Ь'~г is the inverse 
of b' in $-class of B ' containing it,
ehh'e =  bb'hh’bb’ = bb'h'hh'hbb' = bbfh 'h fbb ' = bb'h'hbb' = bb'bb' = e2 = e, 

then e is an element of E(B) •E(B'). Therefore Z is a homomorphism. □
We recall that a band E is said left [respectively, right] regular iff ax=axa 

[resp. xa=axa\ for every a, xdE. S. Lajos ([3], [4]) has characterized the ortho
groups with left [resp. right] regular band of idempotents E. In fact he has proved 
the following theorem (of which, obviously, the dual holds).

Theorem 7. A semigroup S is an orthogroup with left regular band of idem
potents E  i f  and only ifiB (S) is a regular semigroup whose S  is a right identity.

The following theorem (of which the dual holds) characterizes the same class 
of semigroups, but pointing out the relation between E  and ©(S').

Theorem 8. A semigroup S is an orthogroup with left regular band o f idem
potents E  i f  and only //"©(S) is a left regular band.

P roof. Let S be an orthogroup with left regular band of idempotents E and 
let A, X  be two bi-ideals of E. Then, if ad A and xd X, ax=axa, i.e. A X  QAXA. 
Moreover, if a,a'd.A and xdX, axa'=a(xa'x), then AXAQAX. Therefore ©(.E) 
is a left regular band. Hence, from Theorem 6, it follows that ©(S) is a left reg
ular band.

Conversely, if S (S ) is a left regular band, then ©(S) is a regular semigroup 
and BS=BSB=B  for every bi-ideal В of S. From this and from Theorem 7 it 
follows that S is an orthogroup with left regular band of idempotents E. □

Acta Mathematica Hungarica 47,1986



6 MARIA MADDALENA MICCOLI: BI-IDEALS IN  REGULAR SEMIGROUPS AND IN ORTHOGROUPS

We recall that a band E is said left [resp. right] normal iff efg=egf [resp. 
gfe=fge] for every e,fig£E . Obviously a left [resp. right] normal band is left 
[resp. right] regular.

T heorem  9. A semigroup S is an orthogroup with left regular band of idem- 
potents i f  and only 1/93(5') is a left normal band.

P ro o f . If 5 is an orthogroup with left regular band of idempotents E, by 
Theorem 8, 93(5) is a left regular band. In addition let A, X, Y be bi-ideals of 5, then

AXY = AXYX = AXAYX Я AYX, AYX =  A Y X Y  = AYAXY Q AXY.

It follows that 93(5) is a left normal band. The converse, from Theorem 8, is 
obvious. □

The following characterization, by Kuroki (cf. [5]), of the orthogroups in 
which the band of idempotents E  is a semilattice, is an immediate consequence of 
Theorem 9 and its dual.

T heorem  10. A semigroup S is an orthogroup with semilattice E o f idempotents 
i f  and only i/93(5) is a semilattice.

Since, as we previously observed, if 5  is an orthogroup 93(5) is a normal band, 
from Theorems 8, 9, 10 and their duals we can finally obtain the following theorem.

T heorem  11. I f  a semigroup S  is an orthogroup with the band o f idempotents of 
type ф, where ip is any of the types o f band classified by M. Petrich in [7], then 
93(5) is a band o f type ip. In addition i f  the type ip is that of left regular, or right 
regular band or semilattice, then and only then the converse holds.
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ON A PROBLEM OF KAPLANSKY
I. A. A M IN (Cairo)

Dedicated to Professor R. Wiegandt on his 50th birthday

Classes of torsion-free abelian groups having inequivalent 
indecomposable decompositions

In this section we construct classes of torsion-free abelian groups with the 
aim of enriching our knowledge of the antimonies of various indecomposable decom
positions of torsion-free abelian groups of countable ranks. Jonsson’s suprising 
discovery in this respect [8] (see also [9]) has shaken, by then, our firm belief in the 
role of the notion of isomorphism. Since this discovery of Jonsson, various authors 
published results, using the basic ideas of Jonsson, demonstrating the different 
aspects of such study [7]. In this section we rely heavily, as others, on the original 
technique introduced by Jonsson. However, the groups constructed here depend 
on integral parameters that can be chosen in different ways to enlighten our know
ledge in this respect. Also, known results (see [7]) can be even drawn alternatively 
from our general setting. Our main results are

Theorem 1. For every finite cardinal m, there exist indecomposable torsion-free 
abelian groups A and В each o f rank 2 such that yi m+ t^ ß m+1 while AsjkBs for 
s = l ,  ..., m.

Theorem 2. For every finite cardinal m, there exist indecomposable torsion-free 
abelian groups A and В each o f co-rank, со is the first infinite cardinal number, such 
that A'"+1=Bm+1 while A Ŝ B S for s= l,... ,m .

Construction

1. Let m and n be given positive integers with и >2, and let V be an mn-dimen- 
sional vector space over the field Q of rational numbers. Take {x^: i= l, .. . ,n ;  
j =  1, ...,m } as a basis for V. Let furthermore Pj; rts, j =  1, ...,n , í= l ,  ...,n  — 1 
and 5=1, be pairwise disjoint primes and choose positive integers ats,
(=1, ..., n and 5=1, ..., m, such that a,s is not divisible by rls for each t, s. Con
sider the following subgroup of (V, + )

(̂ 115 • • • ? Ял —1,1 * •• •) Я inn > &п — l,m > tl, m)
1 7/1 77t

=  “  Xlj , ( ^  Xfu “Ь Clfj ^  *̂ í +1, ti) *  ̂  ̂9 * * * ? ^9 j   ̂9 *••9 ^9  ̂ I 9 * * * 9 ^ I 9

P i  ^ t j  4 = 1 4 = 1

wherein (В) is understood to be the subgroup of (V, +> generated by a non
empty subset В of V. In the sequel, if no ambiguity may arise, we shall write 
A(ats;n; mi), and sometimes A(n,m), to stand for the above constructed sub
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group of (V, +  ). If moreover n = 1, we may take a further abbreviation by writing 
A (a,; и), or A(n), for the same group. The group A(n, m) is obviously a torsion- 
free abelian group of rank mn. Furthermore, one can easily check that

A(ats, n, m) A (иц, • • ■, ^ i , и, 1)® — ®^4(uim, •. •, un— m, и, 1).
2. In a similar fashion to that given in [2], one can prove that

A(au , ..., ß„_w ; и, 1)
is an indecomposable torsion-free abelian group of rank n. Furthermore if in A (a,, n) 
we replace the parameters a1, . . . ,a „-j by parameters b1,.. . ,b n- 1 of the same 
type we can prove, as in [2], that A(at, n) = A(b,, n) if and only if there exist integers 
sl9 ..., s„ satisfying the following relations

Pk+iak =  ±pskkbk (modrk), k =  1, ..., и- l .

3. Consider now a group A(btz; n, m) of the same type as that of A(atz; n, m), 
where the concerned primes are the same in both groups. We prove that 
A(atz; n, m) = A(btz; n, m) implies that

an at2...a,mpskk++i'=  ± b n bt2...bskk (modrz) k =  1, . . . ,n ~ l , z =  1, ...,m

and st£Z.

We first observe that an isomorphism i//: A (a,z \ n, m) -<-A (b,z; n, m) can be extended 
to an isomorphism between the injective hulls of these groups (in fact ij/ is extendable 
to an endomorphism of V). This simply means that ij/ admits multiplication by 
elements of Q. On the other hand it is a well known fact that the class of /»-divisible 
abelian groups is homomorphically closed. So, one can infer that the image of x tj 
under I{/ should lie in the /»(-divisible subgroup of A (btz\ n, m). Thus, for some 
integers ut; c1( ..., cm we have

1
' K X i j )  —  ~ x r  2 c t x it •

P i 1 t =1

Using the same argument for ф~\ it is not hard to see, after effecting on both sides 
of the last equation by that each c, is either equal to zero or a rational number 
of the form dtp”<, d ,,f t£Z. But we also know that both

in m  1 m m

—  ( 2 xiu + b i jZ x i+1,„) and — ( 2 ' l / (xiu)+ a i j 2'l'(Xi+1,«))
• i j  u = 1 u =  1 ’ i j  U=1 M=1

are elements of Im il/=A(bts\ n, m). So, any linear combination of such terms is 
again an element of Im tjj. Thus routine calculation gives rise to congruences yielding 
eventually the following relations

an at2... atm pft} = ± b a bn ... bs,‘ (mod rtz), t =  1, ..., я - l ,  z =  1, m

and tSj,
This establishes the required assertion.
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4. If со is the first infinite cardinal number, we prove that the congruences 
derived in 3 above are sufficient to establish the isomorphism A(atz\ со, m) =  
^ A (b tz; со, m). We first prove our assertion in the case for which m= 1, and 
simple induction draws what is to be proven. To this end consider an co-dimensional 
vector space over Q with a basis x h y t: i£Z  and let ph r2i: /= 1 ,2 , ... be a set 
of pairwise disjoint primes. Choose positive integers a2i and b2i; /£Z  such that 
r2i does not divide neither a2i nor b2i for each i. Construct as above the subgroups 
A(b2i',co, 1), A(a2ib2i\ со, 1) of the group (yp. i£Z) and the subgroups A(apco, 1), 
A(l-,co, 1) of (xp i£Z), where A (l;co ,l) stands for A(a2p со, 1) and a2i= l  
for each i£Z. Define a linear mapping ф of V such that ф(х2п- 1)= х 2п_1, ф(x2n) = 
=c2n+d2nr2ny2ny2n, Ф{У2n—i)~ У2n—1 and ф(у2п)= г22п+а2пу2п, where the integers 
c2n, d2n are chosen so that c2na2n = \+ d2nr\n for each niZ . Obviously ф is non
singular and Ф~1(х2л)=а2пх2п- А 21г2пу2к, Ф ~ \у ^ = с 2п-г1 1х 2п. Now if F desig
nates the free abelian group generated by the base elements of V, fairly direct com
putation shows that ф maps the generators of A(a2p, со, 1 )®A(b2i; со, 1) into those 
of A( 1; со, 1 )® A(a2ib2i; со, 1); and similarly ф~г acts on the concerned generators. 
Thus we have

A{ 1; со, 1 )®A(a2ib2i; со, 1) 9cA(a2i; со, 1 )®A(b2i; со, 1).
Having done this, we can relabel and replace 2i by /, and so simple induction on 
m shows in this case that if the congruences cited in 3 above are satisfied with i£Z 
we should have

m
Am( 1; ft), l)(BA(an at2...atm; со, 1) ^  ® A(atJ\ со, 1),

)=i
where t£Z  and A'n( l ; со, 1) means the direct sum of m copies of A(l;co, 1). 
But since

A(atlat2...a tm; со, 1) = A(btlbt2... b,m; со, 1)
if and only if the congruence relations given in 3 above are satisfied for each t£Z  
(see [3] and [2]), we conclude that

m m
ф  A(atJ; со, 1) ^  ® A(btJ-, со, 1) 

j= 1 J=1

whenever the above relations are satisfied for each t£Z. Thus the prementioned 
relations are sufficient for

A(atz; co,n) = A(btz; со, m)
where со is the first infinite cardinal number. The necessity condition for the countable 
cardinal case is given by 3 above.

m
5. It is obvious from the argument used in 4 above that ® A(ap, 2 ,1)^

m i = l
^  ® A(bt;2,1) if and only for some integers y, k,

i =l

a1a2...amp {= ±  b1b2...bmps2 (mod r)

bearing in mind that the only primes involved here are pu p2 and r. It seems most 
likely that the assertion is true for any finite cardinal n.
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6. The above results show that any of the required isomorphisms breaks down 
if only one of the concerned congruence relations fails to be satisfied. Now take 
n= 2\p1=7, p2= \l, r=  11, a = 1 and n= 2. It is easy to see from our conditions that

m m 5
ф  A( 1; 2, 1) is not isomorphic to ® A (2;2 ,1) for sS 4 , yet ® A( 1; 2, 1)^
i=l i=l i=l

5
= ® A(2;2, 1). In fact rudiments of number theory will always insure, by proper

i=l
choices of the concerned primes and parameters, that for any finite cardinal number 
m there exist primes px, p 2, r and integers a, b neither of them is divisible by r such 
that Am(a; 2, l ) ^ A m(b; 2, 1); whilst As(a \2, \ ) ^ A \b \  2, 1) for s = l , . . . ,m - l .  
Our remarks show that this result can be extended to the case in which n is equal 
to the first infinite cardinal number со. Thus by choosing appropriate concerned 
parameters, we see that for every given finite cardinal m, there exist co-rank torsion- 
free indecomposable abelian groups C and D such that Cm=D m; whereas CS=T>' 
for i = l ,  ..., m — 1. These results establish Theorems 1 and 2.

On a theorem of Kaplansky

This section is mainly concerned with the indecomposable decompositions of 
countable rank reduced torsion-free modules over a discrete valuation ring. Theo
rems 3 and 7 are the most important results of this section. Theorem 3 sharpens 
an embedding theorem of Kaplansky for such modules. We also hint that the tech
nique used in proving Theorem 3 can be applied to draw at once known important 
results. Theorem 7 gives a counter example disproving a result of the author; whilst 
Theorem 8 gives a modified version of this false result.

In this section R designates a PID, Rp is the discrete valuation ring obtained 
by localizing at the prime element p of R. R* is the p-adic completion of Rp, and 
A* is understood to be the p-adic completion of a reduced Rp-module A. In the 
following theorem we give a generalization to Kaplansky’s theorem concerning 
finite rank reduced torsion-free 7?*-modules [10] pp. 46—53. Theorem 3 extends 
on the one hand Kaplansky’s theorem (see Theorems 20,22 and 23 of [10]) to cover 
the countable rank case, and on the other hand it gives a computational scheme 
for the finite rank case.

T h eorem  3. A countable rank reduced torsion-free Rp-module o f p-rank oc is a 
dense submodule o f the direct sum of a purely indecomposable Rp-modules. I f  A is 
o f finite rank n — y. + k, then the rank o f each direct summand does not exceed k + 1. 
Furthermore, the tensor product of two finite rank R-modules A and В is a dense pure 
submodule o f a free R*-module.

P roof. If В is a basic submodule of A, then r(B)—r{R*®B)—rp{R*p®A) 
and R*(g)A — R*<8)B®D, where D is the maximal divisible submodule of R*<g>A. 
But since R*<S>B is free and R*® M =M  for any /?*-module M, we see that 
RP®A is the direct sum of copies of R* and its quotient field, a result we obtained 
without appealing to Kaplansky’s fundamental decomposition theorem. Now flat
ness of A shows that the map ф: A —R *0A , ф(а)=1<8>а is indeed a monomor
phism whose image generates the R*-module R*<S>A. But since the equation px=
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=  1(g) a, 0Aa£A, has no solution in R*®A if and only if the equation px= a  
has no solution in A (see [1]), we infer that A is embedded isomorphically into the 
free R*-module R*®A. In fact such a monomorphism can be effected by an injec
tion ß such that ß(a)=c, where ф (a)=c+cl, c£R*@A and d£D. A further 
application of Lemma 4.1 of [1] shows that a (A) is pure in R*<g>A. Take a basic 
{ep. e£x} for R*®B  and identify A with its image under ß. Since a pure R* is 
purely indecomposable, we deduce that the pure closure At of the /-th components 
of A in the free decomposition of RP®B is purely indecomposable. Thus A can 
be regarded as a pure submodule of ®  At as asserted. Suppose now that the p-rank

i £ a
a of A, consequently R*P®B, is finite. Consider a p-independent set {b1, ...,ba) 
of Rp®B and extend it to a maximal linearly independent subset {bp />1} of 
R*<g)B and then express each /> a , as an linear combination of blf ..., bm. 
So, if r(A) is finite and equals a + k, fairly direct computation shows that r(Aß 
cannot exceed k + 1 as asserted. In the general case in which a is countable, we 
recall that A and R*PZ A  have equal p-ranks. The final required result concerning 
A® В can be thus effected by using Theorem 5.13 of [1]. The proof of the theorem 
is complete.

R em ark  4. The argument used in the first part of the proof Theorem 3 gives 
an implicit proof of Kaplansky’s theorem on the direct decomposition of a countable 
rank reduced torsion-free 7?*-moduIe (see [10] Theorem 20, p. 48).

R em ark  5. Theorem 3 shows that ® A JA is divisible.

R em ark  6. The argument used in the first part of Theorem 3 can be applied 
to get a direct proof of the freeness of a countable rank deduced torsion-free R*- 
module (see [10], Theorem 20).

Now we give a counter-example disproving Theorem 5.3 of the author’s paper 
[1]. In that paper the factorization given by equation 2 is dubious.

Theorem 7. There exists a rank 3 reduced torsion-free indecomposable module 
over a non-complete discrete valuation ring that does not possess the exchange property.

P roof. Consider the irreducible polynomial f(x )= x3—2x2—x —3 over Z. 
Thus K = Z x/(f(x )) can be regarded as a rank 3 abelian group. But since /(x ) =  
=(x — l) (x + l)(x —2) in Z/(5), K/5K can be represented as the product of three 
fields. Let now Z 5 be the discrete valuation ring constructed by localizing at the 
prime 5. This means that localizing at 5 shows that Kb is a rank 3 free Z5-module. 
Moreover, the third isomorphism theorem shows that Kb has exactly three maximal 
ideals. Now let R be the obtained by inverting one of these maximal ideals after 
localizing. R/5R is a domain of order 25 that can be represented as the direct sum of 
two fields. Thus R is not a local ring. Also R is a rank 3 torsion-free Z 5-module. So, 
the abelian group (R, + ) is quasi-isomorphic to a free module over the centre 
A of End (R, + ) [7]. The rank of this quasi-isomorphic image should be 1 or 3. 
But since (R, + )  cannot be quasi-isomorphic to a free Z 5-module, we conclude 
that, up to isomorphism, A — (R, + , .). Thus End (R, +) = (R, + , .). Thus 
(R, + )  is a rank 3 reduced torsion-free indecomposable Z 5-module whose endo
morphism ring is not local.
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However we have
T heorem  8. A finite rank reduced tonion-free Rv-module having a p-rank not 

exceeding 3 possesses the Krull—Schmidt property.
P roof. If A is such a module, the number of summands in any of its inde

composable decompositions cannot exceed 3. If the number is exactly 3, then each 
summand is necessarily purely indecomposable. But since any purely indecomposable 
module has the exchange property, we see that A has the Krull—Schmidt property. 
So, the only alternative to be investigated is the case in which we have two decomposi
tions A=B® C=D(BE  of A, where rp(A) = 3. So, rp(B) = rp(D) = 1, say. Thus 
В and D have the exchange property and so B®C?=B@D@K and D ® E s= 
c^B® D® L  for some modules К  and L  such that Cs=£>®K and E ^ B ® L  (see
[4]). But since a purely indecomposable module is cancellable, we conclude that 
K ^ L .  This completes the proof.

This means that Theorem 5.6 of [1] becomes valid if we replace “Azumaya- 
Fitting” by “has the Krull—Schmidt property”.

The author thanks Professor B. Warfield, Jr. for a communication concerning 
Theorem 7.
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STRONG APPROXIMATIONS OF RENEWAL PROCESSES 
AN D THEIR APPLICATIONS

L. HORVÁTH (Szeged)

1. Introduction

Let (X, Y), {{Xn, Yn), F„=(F*X), F®), и^1} be a sequence of random
vectors with values in Rd + 1. Many authors (see, for example, the Introduction and 
Chapter 2 in Csörgő and Révész [8]) studied the rate of strong approximation of 
the partial sums (U(t), S(t)),

It] и
u(t)=  Z x i> S(t)=  2 Y i

i = 1 i = 1

by a ( J + 1 (-dimensional Wiener process. Horváth [13] obtained that a strong invari
ance principle for the partial sums of independent, indentically distributed random 
variables (i.i.d.r.v’s) with positive expectation always implies a strong approxima
tion for the corresponding renewal process. The renewal process, being the inverse 
of the partial sum process is defined as

N  (?) =  inf {s: U(s) >  /},

=  °°, if {s: t/(s )> i}  =  0.

First we show that Theorem 2.1 in [13] remains true if we drop the independence 
and identical distribution assumption on the summands. A joint approximation of 
N(t) and S(N(tj) will be proved in Section 2. Partial sums indexed by a renewal 
process appear in the mathematical theory of risk processes and queuing processes. 
Gut and Janson [10] gave some other interesting examples of the use of S(N(t)) 
in the theory of chromatography, classical renewal theory, chemistry, physics, 
replacement policies and economics.

In the last section we consider some applications of our main theorems. We 
obtain that our method gives the best possible joint approximation of U(t), S(t), 
N(t) and S(N(t)).

We can assume without loss of generality that our probability space (fí, s i,  P) 
is so rich that every r.v. and all processes introduced later on are defined on it. 
Throughout this paper we use the maximum norm in Rk denoted by ||x||fc=  max |x(|,
x=(xx, ..., x k). The transpose of a row-vector x is a column-vector denoted by x T. 
Let aAh =  min (a, b), «Vb =  max (a, b). We use the abbrevations £T= o  (a(T)) 
and G = 0 (b (F )) , where {cT, a(T), b(T), ГёО} are stochastic processes, to 
mean that

lim £т/а (T ) =  0 a.s.
T-roo
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and
/ ’{limsup \£T\/b(T) =  oo| =  0,

respectively. We say that a(T) is not greater than Ъ(Т) almost surely (a {T )fb  (T)), 
if for almost all co£Q there is an integer n0=n0(co) such that a(T)^b(T) for 
T=n0.

2. Strong approximations of the renewal process and the partial sums 
indexed by the renewal process

Several authors proved strong invariance principles for sums of random vari
ables or random vectors under different conditions. We do not want to summarize 
these results in a single statement and hence we are not going to list the different 
sets of conditions (moment and dependence conditions) allowing such strong approxi
mations. We will simply assume that the partial sums can be approximated by a 
Gaussian process and strong invariance principles for N(t) and S(N (tj) will follow 
from this assumption of strong approximation.

Co n d it io n  A. We can define a (d+\)-dimensional Wiener process
{W(t) = (Wm (t), ..., W(d+1\ t ) ) ,  ISO}, EW (t) =  0, EW T(t)W (s) = Train (t,s)

such that
(2Л) - Р г | И 0 - М  S (t)-m t)-W (t)\\d+1 S  o(r{T)),

where f =  l= i,j= d + l is a nonsingular covariance matrix, (p, m) is a con
stant vector, r{T) is nondecreasing, regularly varying at infinity and

(2.2) r(T ) = 0({T\og\ogT?l%

For the sake of simplicity we use the notation а2=у1Л. Condition A in the 
following theorem (and Condition В in Theorem 2.2 below) is meant only for the 
first component.

T heorem  2.1. I f  p>0 then Condition A  implies that

sup |/i_1t — N (t)— p ^ W ^  (p~l t)\ ~  o(r(T)),
O S fS T

i f
(2.3) (T log log T)1/4 (log Т у /2 = о (г (Г)) 
and

limsup(7Toglogr)-1/4(k>g;r)-i/2 sup \p~1t — N(t)—p~1W il'>(p-1t)\ = 
r— “ ostsr

=  l ^ o^ p - 1/* a.s ., 
i f
(2.4) r(T) =  О ((T log log 7’) '/4(log Г)1/а).

It is very important that the partial sums and the renewal process are approxi
mated by the same Wiener process. It follows from this theorem that the rate of
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the best joint approximation of partial sums and the renewal process is the Stras
sen rate.

P roof. Basically we follow the line of the proof of Theorem 2.1 in [13] but 
we use only our condition and the properties of the Wiener process. First we note 
that the regular variation of r{T) implies that

(2.5) linkup },(T) 

for every e>0 and by the monotonicity of r(T )  we get

(2.6)

г((1+в)Г)

lim sup
T—► OO

г(Г+в(Г))
r(T)

for every е(Г)&0 such that e(T) — 0(T) as T —°°. Conditions (2.1), (2.2) and 
the law of the iterated logarithm for the Wiener process imply that
(2.7) limsup(27Toglogr)-1/2 sup \U(t)-nt\ = o a.s.

T-=° OSIST

Therefore,
(2.8) U(T) S  (1 +е)цТ
for each e>0. Using the Lemma in [13], (2.5) and (2.6) we get

(2.9) sup — i| s  sup 1L/(0—í| 1É’
0 StrST  O S tS N ( r R )

S  sup ||t_1i7(0 —*| ^h '(T ),
0StS(l + E)T

where
ht(T) = (1 +e)1,2h~1g(2T \og log T)1/2.

Now consider the decomposition
(2.10) t-N ( tn )  = g_1(l7 (N(tß))~fiN  (//i))+/i_1(/il- С/ (7V(//r))).
First we approximate the first term in (2.10) by the help of (2.9), (2.6) and our con
dition. We get
(2.11) sup \U (N (tfi))-^N (tfi)-W w (N (tM  = o{r(T)).

0SÍST
We estimate the random increment of the Wiener process by (2.9) and Theorem 1.2.1 
of Csörgő and Révész [8]. We have for all e> 0
(2. 12)

sup |JF(1)(iV(/^))—lF(1)( 0 | s  sup sup [lF(1)( i+ s )-JF (1)(0l
O S tS T  0 S t S ( l + 8 ) T - Ä e(T ) 0 S s S / le(T)

1 ' (1 +e)1/421/4 er3/2 g -1/2(r io g  log T ^O og  T )1/2.

We show that the second term in (2.10) is almost surely less than the rate of 
increments in (2.12) and we prove that this term is again o(r(T)). It follows from
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the definition of N(t) that sup equals the largest jump of
ostsr

/.it—N(t) on [0, U(N(Tfi))~\. Using again (2.8), (2.6) and Theorem 1.2.1 of [8] we 
obtain

sup |/íí—U(iV(r^))|a£  sup \U (t)-n t—W w (t)\ +
0 S t S T  0 S t S ( l + s ) T

+ sup sup |lF (1>(r+s)-)T(1)1(0l =  o(r(T))+ О ((log T)!/2).
0 S t S ( l + E ) r  O S s S l

Hence we proved the theorem if (2.3) is satisfied and obtained in the case of
(2.4) that

(2.13) lim sup(Tloglog7’) -1/'4(log7’)-1/2 sup It —N(tfi)— -f T (1)(/)| =’
T — °° O S f S T  /т  1

=  lim sup (Tlog log T )“ 1'4(log T )-1'2 sup - \W ^ \N { tn ) ) -W w {t)\ S
T - * =  O S t S T  g

S Í V ' V - 3/2 a.s.
In order to finish the proof of the second part of the theorem it is enough to 

show the opposite of the inequality (2.13). The approximation in (2.11) implies 
that the limit points of the processes {(2ff2g~2Tlog log T)~1/2(N(Ttfx)-Tt), O ^ tS  1} 
and {(2<r2Tlog log T)~ll2W w (Tt), 1} are the same as T-*-°°, the so-called 
Strassen set £?. This is the set of absolutely continuous functions /  (with respect 
to the Lebesgue measure) such that

/(0 )  =  0 and f ( f ' 0 ) ) 4 t s  1.
0

The function

ha

is an element of Sf for each 0<(5<1, and therefore there is a sequence of random 
variables nk=nk(w) such that

lim sup \(2o2ii~2nk loglognk)~1/2(N (nktii)—nkt) — hg(t)\ = 0 a.s.
ostsi 1

Using a modification of the proof of Theorem 1.2.1 (iii) in [8] we get 
lim (Tlog log T)“1/4 (log J 1) - 1/2 sup |jT(1)(Tr+/i,5(i)(2<72̂ ~ 2Tloglog —
T~°° i-astsi

-W™ (Ti)\ =  (1 —(5)1/2 21/4 <73/2/i-1/2 a.s.
We obtained that

lim sup (Tloglog T ) -1/4(log7’) - 1/2 sup — \W ^4N (tu))-W ^\t)\ a  
r --= 0S tar g 1 1

a.s.,
which implies the opposite of the inequality on the right side of (2.13) and the proof 
of Theorem 2.1 is complete.
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Condition A guarantees that the Strassen-type law of the iterated logarithm 
holds for the partial sums. When /i=0 we have to use an other type of the law 
of the iterated logarithm for partial sums and we have to assume a stronger condi
tion on the rate of approximation in (2.1).

C o n d it io n  B. We assume that (2.1) is satisfied with rate
(2.14) r(T) = flog Г )"2) 
and r(T) is nondecreasing and regularly varying at infinity.

Introduce the following processes:
U*{i) = sup U(s)

O ŝ f̂
and

Lit) = inf (x: W(l)(x) >  tj

= inf{x: sup IL(1)(s) =- i}, 0 S i< « > .

The process L(ot) is well-known in the stochastic literature as the first passage 
time for the standard Wiener process (cf. Ito and McKean [16], Chapter 1.7).

T heorem  2.2. I f  p=0 and <7>0 then Condition В implies that there is an 
almost surely finite random variable t0=t0(co) such that

L ( t- r ( t2(log I)3)) S  N(t) is L(t + r(t2(log /)3))>
i f  /==/„.

P roof. By the theorem of Hirsch [12] and (2.14) we get that U* and the 
supremum of Ww  have the same lower and upper classes of functions, for example

(2.15) U*(T) S 'Г1'2 (log Г )" 1 (loglog Г )"2.

Using (2.15), (2.6) and Condition В we obtain

N(t) — inf (x: £/*(x) =► /} =  inf {x: 0 s. x  S  I2(logi)3 and U*(x) >  t} s

S  inf |x : 0 S  x S  i2 (log I)3 and W(1)(x) =- t+ r(t2 (log I)3)} =  L(t + r(t2 (log I)3))

for almost all со and all large enough t depending on со. The second part of the 
inequality follows in a similar way.

Theorem 2.2 immediately implies strong laws for N(t). Let 23 be the set of 
all continuous, non-decreasing, real valued functions, /, defined on [1, °°) with 
/(1)>0.

Corollary 2.1. We assume that p=0, a > 0  and Condition В is satisfied. Then 

liminf I-2 (log log 1)^(1) =  -7T0 ~2 a.s.
t —OO 2

and i f  /£23 then
P {N(at) >  /4 (0  i.o. as t — °°}
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18 L. HORVÁTH

equals 1 or 0 according as J  t 1(l(t)) 2 dt equals, or is less than °°
1

P{N(crt) <  i2(/(0)_1/2 i.o. as t - оо} =

1, if

0, i /  /  (Z(0)_1/2í_1exp^—i - ^ - j í /г =oo

and
1 =s lim inf (jV(0)1/loBloEÍ S  lim sup (ЛГ(0)1/1о81°*' S  e2 e.j.

Proof. By (2.14) lim i _1r ( i2(log i)3) = 0 and therefore in the light of Theo
rem 2.2 it is enough to determine the corresponding strong laws for L{t). On the 
other hand, L (a t)  is equal in distribution to the first passage time of a standard 
Wiener process, therefore we can use the classical theorems of Khintchine [20], 
Breiman [5] and Mijnheer [23] (cf. Theorems 8.2.1,4.2.1 and 8.1.2 in [23], respec
tively).

Our processes N(t) and L (t)  are continuous from the right and have finite 
limits from the left so it is very natural to use the Skorohod metric p[0> r] on Si[0, T] 
in our case.

Corollary 2.2.
Qto,Ti(T~2N(t), T~2L(t)) 

goes to zero in probability as T— ».
Proof. Let e>0. By Theorem 2.2 there exists a T0=T0(e) such that 
P{L(l —r ( r 2(log r ) 3)) S  N(t) S  L (i+ r(7’2(log Г)3)), 1 -e .

It is easy to see that
T~ 2 sup N(t) -+ 0 a.s. and T~2 sup L{t) — 0 a.s.

O S t S r  O S t S z

as T-+°° for each r>0, so it is enough to show that 

р[0>г](Г -2Т(0, T~> L(t-r(T*  (log ТУ))) (?t0.„(!,(/), L ( / - r - ‘r ( r s(log Г)3)))
and

e[OtT]( r - 2L(O ,7’- 2L(i + r(7’2(lo g r)3) ) ) ^ 0[Ojl](JL (O ,L (i+ r-1r ( r 2(logr)3)))
(L(t)=0, tsO ) go to zero in probability when Let Ж denote the following
function:

if Ой t 3S2;r-1r ( r i (log7')3),

= ' i - r - V ( r 2(logT)3) if 2 r - 1r ( r 2(logT)3) 1 - T - 1,
(1 +  r(T 2(logT)3))t-*r(T2(logT)3) if l - r - ' s / s i .
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STRONG APPROXIMATION OF RENEWAL PROCESSES AND THEIR APPLICATIONS 19

We obtain
e[0jl](L (0 ,L (i-7 ’- 1r(7’2(log 7’)3) ) )^  sup +

O^t^l

+ sup |L(.yf(0)—i>(t —7,_1r(T’2(log7’)3))| ^  7’“1r(7’2 (log Г)3) +
ostsi

+ 2L(27’_1r(7’2(log T)3)) +  sup (L((l + г (Г 2(1оё Г)3) t - r ( T 2(log r ) 3) ) -

-  L { t - T ~ 'r ( T 2(\ogT?)))^

= T~lr(T2 (log 7’)3)+2L(27’- 1r ( r 2(log Г)3))+Е(1) -  

—Z,(l —T~1 — T ~ 1r (T 2(\ogT)3))

for L  is a nondecreasing process. L(t) has stationary increments so we get 
P { L (\) -L ( l - T - ' - T - 1 r (T 2(\ogT)3)) >  Ccr2(7’- 1 + 7’- 1r(7’2(log7’)3))2} ==

for every C > 0. Condition (2.14) implies that r _1r ( r 2(log Г)3)—0, Г—°о, so 
we proved that p[0(1](L(/), £ ( i —r _1r ( r 2(log Г)3))) goes to zero in probability, 
because £(0)=0 and L  is a.s. continuous at zero. In a similar way we can check 
that p[0>1j(Z.(i), i ( i+ 7 ’“ 1'‘(T’2(log Г)3))) also goes to zero in probability.

The weak convergence of {T~2N(Tt), O S i^ l}  in the usual Skorohod space 
@[0,1] follows from Corollary 2.2. Kennedy [19] obtained estimates of the rate of 
convergence in limit theorem for T~2N(T). Siegmund and Yuh [27] proved a one- 
term Edgeworth expansion for certain first passage distributions for random walks. 

The focus of the following theorem is the vector-valued process
M(t) =  S(N(t)) — mp~1t, 0 ~  <  °°, Ц >  0.

Gut and Janson [10] proved the weak convergence of T~1/2M (Tt) to a Wiener 
process in the case d= 1. Borovkov [4] obtained lower and upper bounds for the 
Lévy—Prohorov distance between M(t) and its limiting process for a general r /S l. 
Assuming that {(Xt, Yt), i ^ l}  are i.i.d.r. vectors, Horváth [14] studied the rate of 
strong approximation of M (t). The following theorem states that Condition A 
always implies a strong approximation for the stopped sums M (t) as well. Let 
{G(t), t ű~0} be a d-dimensional Gaussian process defined by

|G (0 =  (G(1)(0 , G « > ( i ) ) ,
lG(i)(r) =  W(l+1)(t) — mifi~1Ww (t), 1 á  i S  d, m =  (m1. ..., md).

An easy computation shows that G has the covariance matrix r* = {yfj}, where

Уt , j  =  y i + i , J + i - H ~ 1 ( y i + i , i Tnj + y j + i , i m i )  +  m i m j P ~ i y i , i ’ 1 -  U  -  d -

T heorem  2.3. I f  0 then Condition A implies

sup \\M (t)-G (p-4)\\ ^ o (r (T )) ,
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20 L. HORVÁTH

i f
(2.17)
and

(T log log T)11* (log Т)11'2 = o(r(T))

i f
(2.18) r(T ) =  0 ((T log log Т )г/* (log T)112).

Proof. We use the following decomposition of the i- th  component of the 
processes:

-  fV(i+1) (p . - 11) +  m, (ц - ■ (ji- 10 -  (ц- 11- N (t))) =  Л «  (/) +  4 f) ( /)+ 4 °  (I).

First we note that Theorem 2.1 and the law of the iterated logarithm for the Wiener 
process imply that
(2.19) lim sup (Flog log T )~ 1/2 sup |iV(i)— /г-1/| = 21/2oyi~3/2 a.s.

Т  — ОЭ

We estimate the increments of the Wiener process by the help of Theorem 1.2.1 in 
[8] and get
(2.20)

In the same way as we proved the opposite of the inequality in (2.13) in the proof 
of Theorem 2.1 we can prove the opposite of (2.20) and get

lim sup (3"loglog T) 1/4 (logT)~1/2 sup И£°(01 =  21/4ŷ -aM+107r-3/4 a.s.T-+<x>

We have already estimated A tf\t )  in Theorem 2.1 and, putting together the obtained 
bounds, the theorem is proved. 3

Exa m ple  1. “Collective risk theory”. Collective risk theory is concerned with 
the random fluctuations of the total assets, the risk reserve, of an insurance company. 
The policyholders pay premiums regularly and at certain random times make claims 
to the company. We shall assume that the initial risk reserve of the company is 
Ло =-0 and that the policyholders pay premium of a per unit time. Let X, {Xh i^ l}  
be a sequence of i.i.d. positive r.v’s with ЕХ=ц>0, 0< az= E (X —/i)2<°°. The

Using (2.19), (2.6) and (2.1) we get

sup == o(r(T)).
O^t^T

3. Applications
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random variable Z ; will represent the time between the (i— l)th claim and the 
ith claim. The number of claims in time t is N (t)—1, 0 When the ith claim 
occurs the company pays the policyholder a positive amount Yt. We assume that 
Y, {T;, /^1} are i.i.d. r.v’s, m — EY, and y2—E (Y — m)z, and the sequence {7;} 
is also independent of the sequence {Z,}. The risk reserve at time t is R (t)= R 0+ 
+ at- S (N (t) ~  1).

If we also assume that E |Z |P< °° and E\Y\P<°° for some 2 then it 
follows form the Komlós—Major—Tusnády theorem (cf. Theorem 2.6.3 in [8]) 
that Condition A is satisfied with rate T 1,p and 1T(1) and W(i) are independent. 
Using Theorem 2.3 we can approximate R(t) with the process D (t) = R0+ 
+ (a—p~hn)t — G(p~1t). If 2< p< 4 then

(3.1) sup |J?(0- jD(0I =  о(Г1/р)
o s ra r

and if p  ̂ 4  then

(3.2) sup ^ ( O - ű íO I ^ O ^ T lo g lo g T ^ a o g r ) 1'2)-
OSÍST

If we calculate the covariance function of G(/i-1/) we find a representation for it 
in distribution by means of a standard Wiener process {W(t), iS 0}. This is

{Gip-'t), t ä  0} JL {(y2 +  &  (0, t S  0}.

This representation together with (3.1) and (3.2) not only gives an improved version 
of Theorem 6 of Iglehart [15] but gives a rate of the approximation of the risk 
reserve process.

Naturally, if we assume only that (X, Y), {(Zi5 Y{), i s l }  is a sequence of 
i.i.d.r. vectors, E X = p> 0, £ jZ |p<°°, .EjT|p-=°° for some 2< p^3  then Theo
rem 3 of Berkes and Philipp [3] implies that Condition A holds with rate T e, —

— ? . An immediate consequence of Theorem 2.3 is that
160

sup |Д(0-1>(0| =  о(Г<0,
OStST

i?> 1/2 — (p — 2)/160 and

{G(p~4), t s  0) JL {(yaIt_1—2/i_2mylj2-)-m2ju_3(T2)1/2 W(t), t ^  0}, 

where ylt2=E(X—p)(Y —m) and W  is a standard Wiener process.
E x a m ple  2. (Example D in [10].) Let Z, {Xh i^ l}  be a sequence of i.i.d.r.v’s, 

EX—p^~0. How large is the sum of the squares when the sum of Z ; first reaches 
the level r? In this example T = Z 2, Y ~ X f ,  /S i ,  m = E Y= E X 2. First we have 
to introduce some notations. Let x ) denote the distribution function of Z  and 
let S'tix) be the empirical distribution function of Xlt ..., defined by

^ ,(x )  = {1 sä i si [/]: Z ,<  *}, i s  1.
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The partial sums U(t) and S(t) can be written in the form

U{i)-ix[t] =  M f  xd(rt{x ) -* (x ) )

and

(3.3) S(í)-m [í] =  W f  x 4 ( ^ t(x ) -^ (x ) ) .

Komlós, Major and Tusnády proved (cf. Theorem 4.4.3 in [8]) that we can 
define a two-parameter Gaussian process {K,(x), 0, — such that

(3.4) sup sup \[t\{&t( x ) - ? ( x ) ) - K t(x)\ ^  О ((log Г)2)
O î^T —OOCXCOO

and
EKt(x) = 0, EK,(x)Ks{y) = {tf\s){P (xf\y)-& (x) 3Цу)).

First we show that if E\X\P<°° with p> 4, then

(3.5) sup \ u ( i ) - p t -  f  xdK,{x)\ =  0 (T S)
o s r s r 1 1

and

(3.6) sup I s C O - m t -  f x2 dK,(x)\ ~ 0(T*)
OStST1 1

2
for some q>— . We prove only (3.6), the proof of (3.5) is the same. Let x^1̂  — 

P
— T 1,p+i and X  (f  = T 1,p+e with some 8 >0. Using representation (3.3) we obtain

«. Xü>
sup \U (t)—p t— f x2 dK,(x)| ^  sup [i] f  |J^(x)-J^(x)|dx2 +

+ sup [/] f  \3?t(x)-3F(x)\dx2+2T2lp+s sup sup j[/](.^(x)-
° - r - T O ^ t ^ T  - o o < X < o o

— i*(x)) — K,(x)l + sup f  |Aj(x)|dx2+  sup f \K,(x)\dx2 =
0S t S T  0 S Í S T  ^(2)

=  Ay(T) + ...+ Ab(T).
By our moment condition

lim |xlp3F(x) =  0 , lim |x|p(l -3?{x)) = 0 ,
X-+ — 00 X-+°o

and therefore we get by the help of Theorem of James [16] that
4!>

(Tlog log Г)1/2 J  (^ r(x))1/2_ádx2S
—  о©

yd/p+W-p/s+í+pí) (Tloglog T )1/2 =  0 (Т 2/р+лй + р0г).
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Replacing James’ law by Corollary 1.15.2 in [8], we get

A^(T) =  о  (T 2tp+iö+pä2)

A similar argument shows that

A2{T) =  0 ( T 2/p+ii+pd2)
and

Ar(T) =  o ( T 2/p+iö+pö1).

An estimation of A3(T) follows from (3.4):

A,{T) =  0 ( T 2/p+2>).
These estimations give the proof of (3.6), since <5 =-0 can be taken as close to zero 
as we wish. The process defined by (2.13) has the form

G(t) — J x2dKt(x) — fi 1 m f  xdK t(x)

and we can easily prove that the following distributional representation holds: 

{GQi- Ч), t ^  0} { t*  W(t), t ^  0},
where W denotes a standard Wiener process and

г = — {Е Х * -т * -2 р -1т(ЕХа-тр)+р-*т*о*},

H =  EX, m = EX2, a2 =  Е {Х -ц)2 = m - g 2.

Theorem 2.3 implies that in this case

sup \М(0 - С 01-Ч )\^о (Т « ), 
o s t m T

2
—, if E\X\P with 4 < р ё 8  and
P

sup 0((T  log log T)lfi (log T)112),
0 S t S T

if with p > 8.
The method of proof in Example 2 always works if Y  is a function of X, 

i.e. {(Z;, Y,), г'^1}={(Т;,g(Xt)), /S i}  with some function g. This kind of con
nection between X  and Y  is very usual in renewal and reliability theory and in replace
ment policies (cf. [9], [8], Chapters 3 and 4.2 in [1]).

E xa m ple  3. “Renewal process based on m-dependent r.v’s.” Let X, { Т ;, / sl 1} 
be a stationary m-dependent sequence of r.v’s. The nonnegative integer m will be 
fixed. The renewal process N(t) based on m-dependent r.v’s was studied by Jan- 
son [18]. Janson proved that if £ X = /i> 0 then t _1N (t)  goes to a.s. and if
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EX2< °° then t~ 1J2(N(t)-tfx~1) has a normal limit distribution as t-*«>. We 
show that the result of [13] can be extended to ni-dependent r.v’s.

We assume that EX2< °° and let p—EX. Heyde and Scott [11] proved that 
Condition A is satisfied with the rate (T log log T) 1/2 and the variance of Ww  is

m—1
a2 = var X1+2 2  cov {Хг, Xi+1).

i= l
Theorem 2.1 then gives

sup \ц-Ч - =  o((T log log ТУ'2),
OS(ST

which immediately implies the lav/ of iterated logarithm:
lim sup(TloglogT)~1/2 sup |g-1/ —jV(í)| =  21/2£Tg_3/2 a.s.

о

If we assume that E\X\P<°°, for some 2, then Theorem 4.1 of Philipp 
and Stout [24] says that Conditions A and В hold with rate Te, g 
therefore we get from Theorems 2.1 and 2.2 that

sup |g -1f - iV ( r ) - / i -W (1)0 i - 10l =  o(T°),
O S t S T

5 1—pr + —  and 
В 12

if EX—p > 0 and the strong laws in Corollary 2.1 hold for N (t), we have the 
weak convergence of N(t) in Corollary 2.2 when p —0.

Example 4. “ Processes of runs.” Let {c;} be a sequence of i.i.d.r.v’s with dis
tribution function S'. We consider only two types of runs down. We say that 
Zk, £i+i , ..., £k+p is a run down of length p or more, if £*>£*+!>... >£*+p. The 
random sequence £k+1, ..., £k+q is a run down of length q if C/t-i=£/<,

Zk+q-Zk+a+i- The number of runs down of length p or more 
in die sequence (£x, ..., will be denoted by U(n). It is easy to see that U(n) 
is the number of £x, ..., which are initial points of a run down of length p or
more. We can define S{n), the number of runs down of length q in £x, ..., £n in a 
similar way. First we introduce some notations:

(3.7) p = p(p) =  lim — EU(n),n—<■= П

(3.8) a2 = a2(p) — lim e [— U (n) — p\

and

(3.9) m — m (q) — lim — ES (n) л—“ n

(3.10) y =  lim e [— S(ri) — /и) ,И-« \n  )

(3.11) Vi,a = Um E ^  S (я) -  mj  U (я) - gj
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Whenever SF is continuous, the limiting distributions of the normalized U(и) 
and S(n) do not depend on S'. Assuming the continuity of 3F, Levene and Wolfo
witz [22] determined the limiting expectation and variance of V and S. They 
obtained that

, ч 1 / \ q3 + jq + l
(g+3)!

2M _  1 2/1+1 Ч*1 1
a { p )  0 - Ы ) !  ((p +  l) ! )2 +  tJv2 kl

y(q) =  qi ^ +2)\ (g3 +  3g + 1)(g3 + 2r/2 + 2g-4).

Wolfowitz [28] proved that the random variables n~1/2(U(n) — fin) and n~1/2(S(n) — mn) 
have a two-dimensional normal limit distribution as

In addition to the number of runs, the initial points of runs are also investigated 
in the stochastic literature. Let N(n) denote the initial point of the nth run down 
of length p or more. The random variable S(N{n)) is the number of initial points 
of runs down of length q in the shortest sequence which contains exactly n initial 
points of runs down of length p or more. Pittel [25] proved in the case p — 1 that

( 2  W / 2the finite-dimensional distributions of the sequence I — « J  (2n—N(nj) con
verge to the corresponding finite-dimensional distributions of the Wiener process.

( 3 y /2Révész [26] proved a strong invariance principle for (N(n) — 2n). We show
that these results follow from Theorems 2.1 and 2.3.

Introduce the sequences {(A), T,), i S  1}:

and
Yi = =§ i„  f, >  {l+1 £ i  + q ’ ^ i  + q “  ísi + g + l}? Í — 2,

M
where 1 [A] denotes the indicator of the event A. It is easy to see that äÜ(l) = 2 X„

S ( t ) = 2 X i  anci N (t)—N([t]) is the renewal process based on the sequence
i = l

{Xh г i=l}. Theorem 4 of Kuelbs and Philipp [21] implies that Condition A holds 
with rate Te, l/4<(?-= 1/2, and we get the following result:

sup |(^ -1i- iV (i)) - / i" 1» r(1)(it-1OI =  o ( r Ä), 1/4 <  e <  1/2
O S IS  T

and
sup \ S ( N ( t ) ) - m p - 4 - G ( р - Ч ) \  =  o(Te), 1/4 <  q  <  1/2,

o s ie r

where G  is defined by (2.13). Computing the covariance of the limiting processes we 
obtain representations of the Gaussian processes:

{p-1 W™ (p-4), t S  0} =£= {op-WWii), t S  0}
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and
{Gin-'O, t == 0} =£ {(?)1/21É(0, f S  0},

where Ж is a standard Wiener process,
? =  —2 /i-1 ylj2 +  m 2̂ “ 2<r2}

and Ц, y, yli2, m, cr are defined by (3.7)—(3.11).
We considered only processes of runs down but with the same method we can 

develop strong approximations o f processes of other types of runs (runs up, runs 
down or up, and turning points).

Example 5. “First passage times of lacunary trigonometric series.” Let {nk, 1} 
be a lacunary sequence of positive real numbers (not necessarily integers), that is, a 
sequence satisfying

(3.12) k ^ l ,
n k

for some q > 1. We consider pure cosine series of the form
и

U{t) =  2  Xk, *« = 21/2 cos (2nnk£,\
k =  1

where £ is a r.v. uniformly distributed on (0, 1). The renewal process N(t) is the 
first passage time of the lacunary trigonometric series U (t). Theorem 3.1 of Philipp 
and Stout [24] says that Condition В is satisfied with rate Te, q>5/ 12 and 1T(1> 
is a standard Wiener process. Instead of (3.12) Berkes [2] assumed the weaker con
dition

(3.13) к i=l ,
n k

with some a<  1/2 and he proved that Condition В holds with r(T) = T e, e = e(a)< 
<1/2 and ff= l. Thus, if (3.12) or (3.13) is satisfied, then Theorem 2.2 and Corol
laries 2.1 and 2.2 hold for the first passage time of the lacunary trigonometric series.

Example 6. “ The zeros of a random walk.” Let £., {£k, 1} be a sequence
of i.i.d.r.v’s taking on integer values with Р(£ = к )—рк (k=  ±1, ±2 ,...). We 
assume that
(3.14) E£ =  0, E ? = u2 <oo and g.c.d. {k: pk >0} =  1.
We define the following sequence of r.v’s:

Xk =
i, if 2 Z i  = о

i = l

o, if 0 .

The occupation time of the recurrent random walk is defined by

1/W =  # { k : 0 < k g [ i ] ,
к . M

2 íí =  o} =  2 X i  = v * ( t\
i = l  1
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because Xt, i> 1 are nonnegative r.v’s. Csáki and Révész [7] proved that if £|CI"' <  
<oo for some 3 < m < 4 , then there exists a Wiener process fV(1)(t), EW m(t)=0 and
El¥w (t)Ww (s) — -^rnin(i,j) such that(7

sup I s u p  Ĥ (1)(s)| H=o(Tx)
for every A >  1 /m.

If N(l) is the inverse of Úll(t) then N(k) denotes the time when the random 
walk returns to zero at A: + 1-th times, so 0, N (\), N(2),... are the zeros of the 
random walk. When we proved Theorem 2.2 and Corollaries 2.1 and 2.2 we used only 
that Condition В implies the strong approximation of the partial sums with the 
supremum of a Wiener process. Thus, under condition (3.14), Theorem 2.2 and 
Corollaries 2.1 and 2.2 hold for the zeros of the random walk. Corollary 2.1 gives 
a characterization of the upper and lower classes of the zeros, Corollary 2.2 says 
that {a~2T2N{Tt), 0 ^ /S l}  converges weakly to the first passage time of the 
Wiener process. For the case of symmetric random walk — 1 )= P (£=  —1)= 1/2) 
Chung and Hunt [6] obtained upper and lower classes for the zeros.
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ON THE EXISTENCE OF CERTAIN SEMI-BOUNDED 
SELF-ADJOINT OPERATORS IN  HILBERT SPACE

Z. SEBESTYÉN (Budapest)

Let В be a densely defined self-adjoint operator in a Hilbert space H which is 
bounded below by one, that is В satisfies
(1) Wl2 (Bx, x) (xe®(2?)) 
where 3>(B) denotes the domain of B.

It is natural to ask: given a function b defined on a subset of H  with values 
in H, under what condition does there exist such a semi-bounded operator В which 
extends h? A closely related question is treated in [2] for bounded В and yields, as 
a consequence, the classical Krein’s extension theorem among others. The present 
result on extension of this type (Theorem 1) is a generalization of the known Fried
richs’ extension theorem [1]. We treat also some factorization problems continuing 
observations of the author in [2], [3]. Our constant reference is [1].

T heorem 1. Let b be a function given on a dense subset H0, in the Hilbert space 
H, taking values in H. There exists a semi-bounded self-adjoint operator В in H sat
isfying (1) which extends b i f  and only if

(2) \\Z <И|2 ^  ( 2  cxb(x), Z  ex*)X X X
holds for any finite sequence {c*} of complex numbers indexed by elements o f H0.

P roof. The necessity of (2) is obvious, since the existence of such an extension 
implies

IIZ  С,*|Г = (b (Z  c*x)- 2  c.rx) = ( 2  cxBx, z  cxx) = ( Z  cxb(x), z  cxx).
x  x x  x  x  x  x

To prove the sufficiency assume (2) and let Y  denote the set of complex valued 
functions of finite support on H0. We introduce a semi-inner product on Y by

(3) ( Z  c*<5.v, Z  dA )  := ( 2  cxb(x), Z K  y),X У X у I
where őx=őx(x') denotes the function defined in case x ,x '£ H 0, by 1 if x '—x  
and by 0 if x'?±x. After factorization of Y  by the nullspace of ( , ) and comple
tion with respect to the norm arising from the norm inherited from the inner product 
on this factor space, we get a Hilbert space K. For simplicity we denote the scalar 
product and the image of elements of Y by the original symbols. By (3) and (2) 
we can get a contraction V from К into Я, defining it by

(4) H Z  cxSx) := Z  cxx
X X
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on Y. V satisfies for any л- in H

( 5 )  | | F ( F * x ) | | 2 ^  \\V*x\\* =  (V(V*x), х ) .

Its adjoint satisfies for any x  in H0
(6) У*(Ь(х)) =  Sx (in K), 
since

(V*(b(xj), 2  dy by) = (b(x), V (2  dydy)) = (b(x), 2  d y  >') =  2  áA >
У У У У

holds for any ^  í/y(5y in У.
У

If у б //  and VV*y=0, then for any xdH 0, by (6) and (4), we have
0 = (  VV*y, b(x)) = (v;, V*(b(x))) = (V*y, Sx) = (y, V(öxj) = (y, x).

This implies y=0, because H0 is (by assumption) a dense subset in 11. The self- 
adjoint (contraction) VV* on H  has then a densely defined inverse В which is self- 
adjoint (see § 119 in [1]). В = (УУ*)~г has the property (1) as a consequence of (5) 
and extends b, since by (6) we haveVV*(b(x))=V(őx)= x  implying that b (x) = 
=(VV*)~1x = £ x  holds for any x  in H0. The proof is complete.

The next corollary is known as “Friedrichs’ extension theorem” of a semi- 
bounded symmetric operator to a self-adjoint one.

C o r o l l a r y  1. Let b be a linear operator on a dense subset H0 of H, which is 
symmetric:
(7) (bx, y) = (x, by) (x, ye tf0)
and bounded below by 1, i.e.
(8) ||x||2 S  (bx, x).

Then there exists a self-adjoint extension В ofb  with property (1).
P ro o f . In case b is linear, (8) is the same as (2). We remark that (7) is super

fluous or exactly is a consequence of (8) (in a complex Hilbert space), since (bx, x) 
is non-negative, hence real, for any x  in H0.

The following two theorems are closely related to Corollary 1 in [2].
T h eo rem  2. Let A and C be densely defined operators in 11 such that the range 

of C\S(A) is dense in H. There exists a self-adjoint operator В with property (1) and 
such that
(9) A e  BC 
i f  and only i f  2(A)<z2(C) and

(10) ||Cx||2 s  (Ax, Cx) (xe$(A)).

P ro o f . The necessity of (10) follows from (9) by (1) at once. Indeed,

(Ax, Cx) = (B(Cx), Cx) S  ICxil2
holds for any x  in 2(A).
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To prove the sufficiency of property (10), by a similar argument as in the proof 
of Theorem 1, define a semi-inner product on 0(A) by
(11) <x, y):= (Ax, Cy) (x,y£0(A)).

The so arising Hilbert space К is the completion of the quotient space 0(A)/N  
with respect to the norm inherited from the inner product ( ,  ) on this space, where 
N  is the nullspace of ( ,  ) in 0(A). If for any x in 0(A), Jx  denotes its image in K, 
by (10), the map
(12) V(Jx):= C x (x£0(Aj)
is a densely defined linear contraction from К into H. Its unique continuous exten
sion, as a contraction operator of К into H, is denoted also by V. Now we have
(13) VV*(Ax) =  Cx (x €0(A)).
Indeed, for any x, у  in 0(A )

(V*(Ax), Jy) = {Ax, V(Jy)) =  (Ax, Cy) = (Jx, Jy)
by (11) and the definition of J hence VV*(Ax)=V(Jx) — Cx  holds by (12).

Now
\\V(V*x)\\2 \\v*x\\2 = (VV*x, x)

holds also for any x  in 0(A ). If VV* = 0, then F* =  0 and thus 
0 =  (V*x, Jy) =  (x, V (Jy)) = (x, Cy)

follows for any у in 0 (A )  implying x = 0, since the range of C s(/1) is dense in H. 
So VV* is a self-adjoint invertible operator, the inverse of which B = (VV*)~1 is 
the desired semi-bounded self-adjoint operator in H. It has property (1) in the 
same manner as before by (5) in the proof of Theorem 1 and also satisfies (9) by (13). 
The proof is complete.

T h eorem  3. Let A and C be densely defined operators in the Hilbert space H. 
There exists a bounded operator В on H which is positive and satisfies (9) i f  and only if  
0(A )cz0 (C ) and
(14) j|Tx||2 ^  M (Ax, Cx)
holds with some constant M  is 0 independent of x.

P r o o f . The necessity of (14) is a simple consequence of the positivity of В 
(using a Schwarz-type inequality as follows):

Mx ||2 =  121 (Cx)12 3? ||5|| (B(Cx), Cx) = 151 (Ax, Cx)
holds for any x in 0(A), proving (14). To prove the sufficiency, we are in the posi
tion to take a Hilbert space К arising from 0(A) by a semi-inner product given 
under (11), only the map V will be defined by a suitable modification as

(15) V(Jx):= A x (x£0(A))

thus giving a continuous linear operator V from К into H. Its adjoint operator 
satisfies
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(16) V*(Cx) = Jx
for any x  in @(A) since by (11) for any у  in 3>(A) we have

(Jy, V*(Cx)) = (V (Jy), Cx) = (Ay, Cx) = (Jy, Jx).
In consequence B=VV*  is a suitable operator, since

B(Cx) = (VV*)(Cx) = V(V*(Cx)) = V(Jx) = Ax 
holds indeed by (16) and (15) for any x  in !3>(A) so proving (9). The proof is ended.
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APPROXIMATION BY VILENKIN—FOURIER SUMS
S. FRIDLI (Budapest)

Introduction. In this paper we deal with the connection (in different spaces) 
among the Vilenkin—Fourier sums, the modulus of continuity and the Lebesgue- 
constants (with respect to the Vilenkin-system). We give two sided estimates for 
an expression containing these quantities. The corresponding problem for the trig
onometric system was considered by Lebesgue [7] and Oskolkov [8].

1.

Let m:=(mk, k£ N) (N= {0, 1, ...}) be a sequence of natural numbers, whose 
terms are not less than 2. Denote by Z mk (k£ N) the discrete cyclic group of order 
mk, and define Gm as the direct product of Z„,k’s (endowed with the product topology 
and measure). Gm is a compact Abelian group with the normalized Haar measure ц. 
The elements of Gm are of the form x=(x„, xlt •••) (0=xk<mk, k, xk£~N).
Further we need the following subsets of Gm\

I0:=Gm, In+1 := {x€Gm|x0 = :...=  xn — 0} (/z£N)
and

/„(*) := {x + y4Gm\y<iIn}

(where +  is the note of the group operation, and — is its inverse).
Introducing the notations

M0:= 1, M„+1:= j j  mt (n£N)
i=0

we have /i( /J = — .
We denote by Gm=0A„, n£N) the character system of Gm ordered in the Walsh— 

Paley sense (see [11]). Gm is a complete orthonormal system, and the functions i]/„ 
(n€N) are defined as follows. Let

rk(x) exp (xe Gm, /c^N).mk

Each n€N can be written uniquely in the form
oo

n = 2  nkMk
k =0

(0 =2 nk <  mk, nke N).

3
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Thus

Фп= 2г"кк (и€ N).
к = О

\1/„ (паN) are called Vilenkin functions, and Cm forms a group for the multiplica
tion. The Dirichlet kernels are

A.:= 2  Фк («£N)
k = 0

for which it is well-known (see e.g. [10]) that
rM„,

(1) = {0 (n€N).

:= / 1A I dß is the fe-th Lebesgue constant with respect to Gm (fe£N). The
o„

spaces C(Gm) (the space of continuous, complex valued functions defined on Gm) 
and Lp(Gm) (with respect to the Haar-measure ц) (1 are defined in the
usual way. If fE L \G m), then

/(* ) :=  fß ß k d /i  (fe€ N)
Gm

is the fe-th (so-called) Vilenkin—Fourier coefficient, and

Skf : =  2 / ( 0  «Af (fe€N\{0})
i = 0

is the fe-th partial sum of the Vilenkin—Fourier series of f .  Now we define a Hardy- 
type space by means of a martin gal maximal function. Let f£ L \G m), and

/*  (x) := sup Mn\ f x x fd fi I (xa Gm)

where
Т с / O ' )  : = / ( * + y )  (y£Gm).

It is said that /belongs to the Hardy-space H(Gm) iff /* € L 1(Gm), and its norm is 
defined by || / | | H:=|| /* ||i- If the sequence m is bounded, then H(Gm) has an atomic 
structure [1]. We shall use the common notation Y(Gm) for the spaces C(Gm), Lp(Gm)
(1 =p<°°) and H(Gm). It is known that A: Gm—[0, 1], a (x) - *k is an

fc=o Mk+1
almost one-to-one and measure preserving mapping. The modulus of continuity of 
a function fa  Y(Gm) is defined as

co(f Y, <5) := sup I /  T/i/lr (<5 >  0).

It is easy to see that the analogue of the nice property of the classical modulus of 
continuity, i.e.

с о ( / ,  У ,  á )  S  ( [ | r ]  +  l ) c u ( / , y , < 5 ' )
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fails to hold for all f£ Y (G m) and S, <5'>0. However, if we see a special case, 
i.e. if we assume that there exists N such that

1
1

Ö'
Ж

then it is not hard to check that

(2) a i ( / ,y ,ő ) ^ 2 ( [ |r ]  +  l)m (/,y ,ő ')  (f<ZY(GJ)

(where [a] is the entire part of the real number a). In this paper we deal with the 
expression

( 3 )
i f - S kf \ r

co(f Y, к ~x)Lk (fee N, fe Y (G j) .

Trigonometric system. The analogous question for the trigonometric system 
was considered by Lebesgue [7]. He showed the existence of /£С ( 1) (the space 
of continuous functions with period 1) for which

lim sup l l / - S * ( / ) l l c  
сй(/, C, l/k)Lk > 0

(where Sk( f ) is the k-th partial sum of the trigonometric Fourier series of / ,  Lk is 
the k-th Lebesgue constant with respect to the trigonometric system, and со is the 
classical modulus of continuity).

Oskolkov [8] improved the Lebesgue’s result. He proved that there exists / 6С( 1) 
such that

lim inf l l / - ^ ( / ) l l c
05(fC, l /k)Lk > 0

Walsh-system on [0, 1]. Gulicev [5] studied the corresponding question for the 
Walsh-system on [0,1]. He proved that for all ДС(1)

Ч У — •S’f c / l l c  _ Q  
co{f С, 1 /k)L (fee N)

(where L k is the k-th Lebesgue constant with respect to the Walsh-system and Skf  
is the k-th partial sum of the Walsh—Fourier series of / ) .

Throughout this paper C >0 will denote an absolute and Cp> 0 an only 
on p depending constant (not necessarily the same at different occurrences).

2. Results
Vilenkin-system on Gm. We deal with the expression (3). First we consider the 

case L p(Gm) (1 <p<°°).
T heorem 1. For all sequences m and f£ L p(Gm) (1 </>-

U - s k/ l
°)

lim inf k-°° co(f,Lp,llk )L k =  0 .

3* Acta Mathematica Hungarica 47, 1986
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The proof o f this theorem is based on the fact that Gm is a basis in Lp(Gm) 
(1 <p<co) [9]. This is not true for C(Gm), nevertheless the following theorem is 
valid.

T heorem 2. For all sequences m and f£C(G m)

lim in f—co(f, c, l/k)Lk =  0.

This is not the case in L \G m), what is showed in
Theorem 3. For all sequences m there exists f£ L \G m) such that

lim inf H /-fr/lli
(o ( fL \  \/k)Lk > 0.

I t is known [1] that H(Gm) separates the sets L \G m) and LT(Gm) (1 < ? < “>), On acco
unt of this it is of interest what is the case in H(Gm). The answer is given in

Theorem 4. For all sequences m there exists f£H (G m) such that

lim inf II/-  $k/IIH
(o(f,H,l/k)Lk 0.

For the proof of Theorem 4 we need a lemma, which is the extension to 
H{Gm) of the following well-known Efimov’s result [2]

(4) IIf - S uJ I ,  S  co(f Lp, M ~ x) == 2 \ \ f-S MJ \ \ p (f£Lp(Gm), p s  1, «€N),

\ \ f -S Mnf\\c  S  co(f C, M - 1) ^  2 \ f - S Mnf \ \ c (/€ C(GJ, «£N).

Lemma 1. For all sequences m and f£H(Gm)

\ \ f - S Mnf\\H ^  co(f H, l/M„) s  2 \ \ f - S MJ \ \ H (n£N).

We remark that it will be clear from the proof of Lemma 1 that the above 
inequalities remain true, if we write EMn( f  H) instead of \\ f — S Mnf\ \ f! (where 
E M ( / ,  H) is the distance in H(Gm) between f  and the subspace generated by
MIO

R emarks. 1. Theorem 2 means that a result of Oskolkov’s type is not valid 
for Gm.

2. The analogue of Lebesgue’s result is trivial for Gm, since coif, T, 
■^2\\f—SMnf\ \Y (see [2] and Lemma 1) and L Mn— 1 (n€N), consequently

('t€N ' /6y<0- ))'

We get lower estimate for “lim sup” in Remark 2. In the next theorem we deal 
with upper estimation.
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Theorem 5. i) I f  the sequence m is bounded, then for all fdY (G f)

lim sup \ f - S kf \ Y
co(f Y, 1 /k)Lk

< OO

ii) I f  the sequence m is unbounded, then there exists f£  Y  (Gm) such that

lim sup w {f Y, l/k)L k
= :  oo

Vilenkin-system on [0, 1]. Since the Vilenkin functions can be regarded even as 
complex valued functions defined on [0, 1], therefore the analogue of the state
ments of Theorems 1, 2, 3 are to be studied in C(l), Lp{ 1) (1 =p<  °°) with respect 
to the Vilenkin-system and w. We denote the corresponding statements as Theo
rem Г, 2', 3', and we shall prove that they are true.

R em a r k s . 1. Only the proof of Theorem У is essentially different from the 
proof of Theorem 3.

2. Theorem 2' was proved for the dyadic case by Gulicev in [5]. He announced 
Theorem 3' without proof for the dyadic case in [4].

3. Proofs

P roof o f  T heorem 1. Let f£ L p(Gm) It is known [10] that there
exists a sequence of natural numbers (k„, n£N) such that M n<kn<2Mn (n£N)
and L*n>C  log M„. By (2) we have 4a> ^/, Lp, | / ,  Lp, . Since
Őm is a basis in Lp(Gm) (1-=/?-=°°) [9], thus there exists Cp> 0  such that

II f - s kj \ \ p s  U - s MJ \ \ P+\\skn( f - s Mnn i P s  (1+ c p) \ \ f - s Mj \ \ p.

From (4) we have 

Thus
и ^ Ы к  -  ( i + c , ) f l / - W l ,  1

m{ f  Lp, \/k„)Lkn -  1 /4 « /-SM„ /|| C log M„ p log Mn K ’ 

consequently Theorem 1 is true.
Proof of Theorem 2. We follow the method of Gulicev [5] in the proof of 

this theorem. First we verify
Lemma 2. Let s<n and k< M s (s,n, k £ N). Define q} andpj as 

qj := Mn+(mn. 1- i ) M ^ 1 + ...+(mn. j - l ) M n- j ,

P j : = q j + k  ( j  =  0, 1, ...,/i-s—1).
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Then for all fdC (G m)

1 "-s- 1 ( M 3 Y 12
—  Д  ll^w/llc -  з |! /11с+ (-^Д -) ll/L .

P roof o f  L emma 2. From the definition of the Vilenkin functions we have 
DPj=Dqj+'l/<ijDk, hence

тгЬ 'T‘ i ^ / i c I I  /  о Aeolic— 
s 7^ "If II fm D„^»M')\\c+

+  - ~ J  Д  I I  / / ( 0  ̂ qj(x-  0  Dk {x t) dn(0 ||c =: 0-1 + ̂ 2•

Since 2Mn= qj+ M n_, and by (1) b M= l( /£ N ), therefore L q.^3 , consequently
° i—3|| /He

bet us consider o2. From к « Ms it follows that Dk is constant on each set 
I fx )  (x£Gm). The sets I fx )  (x€Gm) decompose Gm into M s pieces of disjoint 
sets denoted by 7„;И (и=0, 1, 1). Denote the characteristic function of
7S„ and define the function Ku as follows:

Ku(x):= Dk(x ^  t) (t€7SiU, и =  0, Ms- 1). 
According to \Ku{x)\^M s (x£C?m, w=0, M s— 1) and 

4*qj( x - t )  = f q.{x) (0 (x, i£ Gm)
we have

1 n-s-l.. Ms~1 „ ,, ЛЛ Ms- ln - s—1
«. =  —  2  2  к .  2  2

п  Ъ J —Q u =  o ~ п  Ъ u =  0 1 =  0 ( i  1

By the Cauchy—Schwarz and Bessel inequalities we obtain
n —s —1

2i =0
m y < < q f ) \ ^ n - s n±  1

J = 0

-  A - S( f f 2Xu)112 s  У n —  S Ms~1/2 ll/llc,

whence
f  M 3 Y 12
Ы  l / l c .

The proof of Lemma 2 is complete. 
Applying Lemma 2 we prove Theorem 2. 
Let /£С(С7т) and

s. := max {u£N s  l j  (n£N).
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Obviously s„-zn for all n£N and the sequence (sn, n£N) tends monotonously 
to +°°.

There exists [10] k< M Sn (depending on n) for which 
ll-Dtlli >  c log MSn (n£N) 

and if n is large enough, then
LPj*=Lk- L t > C log MSn—3 >  Cs„ (j = 0, 1, / i - s „ - l ) .

It is clear that
\ \ f -S Pjf\\c  S  f l / - 5 * ./1  с + IISPJ( / - SMn f)\\c- 

By II/— >5Мп/11с—*»(/> С, М~г) and by the definition of sn we get from Lemma 2

— — " 2  1 \ \ f - S Pjf \ \c  S  co(f C, M~1)+4a>(f, С, M " 1)  =  5  с о ( / ,  C . M " 1)i = o
(«€N).

Since l< ^ - < 2 ,  by(2) со(/, С, M “1)=54m( / ,  C ,p [ r). The above estimations yield

min H / - ^ / l l c  _  1
osis«-s„-i Cü(/ C,PJ1)LPJ « ( / ,  C, M„ x)s„ sn 

Theorem 2 is proved.
P roof of T heorem  3. Let (Ah i£ N) be a sequence of positive real numbers tending

oo

monotonously to zero, and 2  Define the function / as follows:
i =  l

(5) f ‘=  2  ■Ai+i(DMl+1—DM̂ )Q)AiDM(l.
i =  0

It is obvious that /belongs to L \G m). Let Mns k ^ M n+1 (к , n£N), thus

I I / - A / I I 1 s  \\SMntl( f ^ S kf)\\i =  lSMn+1f - S kf \ \k =  An+1\\DMn+l-D k\\1.
It is easy to show that ||А*„ + г- A lli^  1, thus by ||An„+1lli= l and by HAIIi^H 
we have II An„+i—Alli —max (1, Lk — 1), i.e. ||Aií„+,-A II i S  1/2Z*. Hence

I!/—•S'k/IU =  1/2 A,+1A-
Applying (1) and (4) we obtain

cu(/, L \  1 /к) ^  со (/, L \  l/M n) == 2 U - S mJ U  =

= 2 II ^  ^ i+1(DM|+1—X)M()||x <  4 2
i=n i=n+1

From the above estimations it follows that

I I /-A /l i t  V2An+1Lk _  1 An+1
co(f L1, l/k)Lk 4 J  A L  ̂ 8  2  Ai

i=n+1 i=n+1
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By choosing A,:=2~l (/€N) the conditions concerning (Ah idN) are satisfied and

co(f, L \  llk)Lk j  (Jed N).

The proof of Theorem 3 is complete.
Proof of Lemma 1. Let fdH (G m) and nd N). We have

II/-^m„/IIh = I / (A*) -/(*  + 0) DMn(i) dfi(/)||H =
Gm

= f  sukPMk I /  / ( /(л ) - / (* +  0) (0 d/i (0 dp (x)| dp (y) ^
Gm LW Gm

-  / S4P Mk f  м п I /  (/(*) - / (* +  0) dfi (x)| dll (0  dn (y)
Gm L LOO

-  I  Mn f  s4? Mk I /  (/(*) -  A *  +  0) dll 0 )| dll (y) dn (0 S 
L om LOO

The proof of the second inequality is very easy. Since Th(SMnf ) = S Mnf  (hdl„), 
therefore

CO sup ||/ -T A/ | |H=§ sup 1/ —Sm / | |я  +
л(Л)-=1/М„ А(А)с1/ЛГ„

+  sup
X(h)<l/Mn

\W ( f - S Mnf)\\a — 2 И/—5 ^ / 1 я,

which was to be proved.
Proof of T heorem 4. It is easy to see that (DMri+1—DMn)*= |DMn+1—DM \ 

consequently ||T»Mn+1- D MJ|H=||£)Mn+1-£»MJ |1< 2  {ndN). Let /  be the"function 
as in (5). Thus for Mnrsk<Mn+1 (k, ndN) we have as above that

II/-  <5*/II я  — II/-  ‘S't/lli — ~2 ^ n-viLk
and by Lemma 1

co(f H, 1 Ik) == со ( /  \ \ f - S MJ \ \ H =

=  2 (I £  Ai+1(DM — DM )||H «= 4 2 ! -di-
i= n i = n + 1
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Let At:= 2~l (i£N), then the conditions concerning (A,, i/N ) are satisfied and

\ \f - skf\\„ 2~  An+1Lk
(k€N).co(f,H ,l/k)Lk 4 J

1 = Л+1
Theorem 4 is proved.

For the proof of Theorems Г and 2' it is enough to observe that all the con
siderations used in the proof of Theorems 1 and 2 are valid in this case too. We
need only to take into account the inequality \\ f—S Mnf\ \c^ w ^ f ,C ,^ - ^

k- 1
(ДС(1), n€N) [3] and to make such changes like to write 2  ФАХ) ФМ  (*> f€[0, 1])

1 = 0

instead of Dk(x-\-t) (x, t£Gm) and [o, instead of /„ (n£N) etc.

Proof of Theorem 3'. Let / b e  the same function as in (5). (DMt (г/ N )  are of 
course the Dirichlet kernels of the Vilenkin system defined on [0, 1].) It is easy to see 
(by means of the mapping A) that the estimation for || f —Skf \ \ t is valid in this case 
too, i.e.

I / —St/Hi =  ~2 A„+1Lk (к, n£N, Mn S  к <  Л/л+1).

This is not the case for w (/, LA, l /к) (/c£N), because the relation 55(f, LA, 1 /M „)á 
S 2 | | /— does not hold for all f(LL\ 1) and n£N.

Let us estimate w(/, LA, 1 /к) in the following way. It is clear that

1 lk )* d i( f ,  LA, ^ - )  * ä > [ f - S u J ,  ± y c ö [ s Mj , L \ ^ y
Obviously

ü [ f - S MJ , L \ ± r ) ^ 2 \ \ f - S MJ \ \ 1^ A  Í  A,.
V jVL nJ

It is to be seen from the form of SMnf  that S Mnf  is constant on the intervals
U — -4-1 (/=1, and Г0, . From this it follows thatfM i+1 M t) V M J

® ( = / \s " J V > - s " A x + w ) \ dx =
n l

— 2  I и м S Mn f a / M ._j,i/л/,.2)I -r~ r  +
i=2 m n

+ Î M„/(0,1/Af„) — SMn/(1/M„ 1/Af„ _ i)i -Щ+ |5Мп/(0,1/M„)| ,

(where S Mnf a/Mt^ llUl) (/=  1, SMnf (олШя) are the above mentioned con-

Acta Mathematica Hungarica 47, 1986



42 S. FR ID L I

stants). Since (Ah id N) is monoton, therefore

and

Thus

$мпАо,1/мл) — 2  A (Mj+1-M j)
j=о

i-2
^„/(X/Mi.i/Mi-!) — 2  dj+i(M J + 1 — Mj)—A iM i-i.

j=о

CO +

" - 1  1
+ 2  Aj + x(M j+1 — Mj)-j-7~ Oi+o2+as .j=о Jyi„

From the monotonicity of (A t, idN)

on the other hand

hence

*1+ a2 ^ J2 A j M j — ,

аз — 2  M j ,j=1 M n

From the above estimation we have

l l / - S * / l l i  ^  1 / 2  An+1 1/2 An+x
w ( f ,L \ l / k ) L k 4  J  ^ + 2  2 ^  4  J  ^  +  2

i = n + l  j = l  i = n + l  j = l  W /

By choosing A t:= (:£N) we get

(fc€N).I I / - ^ /C i  J _
« ( / ,  L \  l/k)Lk ^  48 

The proof of Theorem 3' is complete.
P roof o f  T heorem  5. i) Let M „ s /c < A f „ +1 (A:, n^N). Applying the convolu

tion theorem concerning homogeneous Banach spaces (see [6]) we obtain from (4) 
and Lemma 2 for all fdY(G m)

\\f~Skf\\r  — II/-  ̂ м„/11у +  li «S'* (У— ̂ лг„/)11г —

= (1 +Lk) \ \ f - S MJ \ \Y £  2Lkco(f Y, M -1).
By (2) we have

co ( f  Y, M -1) ё  2mnco(f, Y, /с"1)
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consequently

sup —У  v  , _,4 f — supco{f Y ,k~ x)Lk
ii) Let (At, i£N) be a sequence of real numbers tending monotone decreasingly

CO
to zero, and 2  Лг||1>М(||у< °°. (The sequence (Ait i'€N) depends on Y.) Define the

i = 0
function/ as follows:

/'■— 2  Ai rT‘ 1Dm, =z 2i = 0  i = о

(?i is the complex conjugate of r-t.) Obviously /6  F(Gm).
Let

dy.= (m j- l)M j (je  N),
then

\ \f-Sdjf\\r = U S Mjf\\y= \ \2Аг~гМ\у  s

— Aj\fjD MJy— 2  A, W f^W y.
i = J + 1

It is clear that
coif Y, ciy) coiSMj + if  Y, d y )+ c o if -S Mj+1f  Y, d j 1). 

Furthermore the assumption

Y, d y )  ^  2 | / - 5 M.+1/ | | y 2 2  A t II f tDMlU
i= j  +  1

1 2is trivial. From the definition of d} ( N) we have -гг-----
Since SMj+1f  is constant on every set IJ+iix) (y'€N, x£Gm), therefore 

« (5 Mj+1/ ,  У, d / 1) = 1̂ +1/ - т . ^ м , +1/«у =

0 iz} i
=  ^  ||(^ -T ejr>) JC>MJ|y, (ey := (0, О, Г, 0, ...)£Gm).

M y-+i 1 M j+x

It is easy to show that
M:IIП DMi fl с = М,- and со iSMj + 1/ ,  C, d j ^ ^ c A j - M ,

\\rtDMl\\p = М Г 1/" and coiSMj+1f  IP, d y )  <  cA jM j-1'"—  ( ij€ N , 1 ^  p).
IT lj

Since ifiDMt)*=DMt and ( i r j - r ejfj)DMj)*= \ i f j -T ejfj)DMj\, we have 

I M aJ h =  1 and m(SMj+1/, # ,  d / 1) CAj-±- (i,j€N).
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Let

then

and

At
M r2 M r 1, if Y(G J = C(Gm)
M r2( M r 1,p)~ \  if Y (G J = L’ (G J  (1 
М Г \ if Y(Gm) =  H(Gm) (Í6N),

\ \ f - s djf \ \ r s ^ M j -2

ш(/, Y, d j 1) <  + < C M y2m jl.
Applying that L(mj_1)Mj=a2 we have

Theorem 5 is proved.

\ \ f - S djf\\y  
c o ( f  Y, d j l)Ld]

Cmj 0<= N).
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DUALITY OF BANACH FUNCTION SPACES 
AND THE RADON—NIKODYM PROPERTY

HANG-CHIN LAI (Hsinchu)

1. Introduction. In this paper we shall study the duality of Banach function 
spaces. Throughout the paper, we let A1 be a Banach space and X* its dual space. 
Let (Í2, Г, ft) be a measure space with a fixed positive measure p on the cr-field 
Г of the set Q. We consider the space L P(Q, X) of all (equivalence classes of) ЛГ-valued 
strongly measurable functions/on Q such that

l l / l l p  =  ( / l ! / ( O I I , ’ ^ ( 0 ) 1 /P <  +  00 f o r  l ^ p < - ;
n

and the space L°°(Q, X ) of all ЛГ-valued essentially bounded strongly measurable 
functions / o n  Q such that

1/1 ~ = ess sup {||/(01; t€ß} <  +oo.

Let q be such that —+ —=1 for 1 and consider Lq(Q, X*). An exact
P 4

determination of the relationship between LP(Q, X ) and Lq(Q, X*) is useful for 
applications. For example, if Q=G is a locally compact group with Haar measure, 
then the characterization of
(1) Lp(G, ЛГ)* L q(G, ЛГ*), 1 =£ p  <  o=
is useful and important in the study of multiplier problems of Banach function 
spaces (cf. [6], [10]).

In [3], Diestel and Uhl have shown the following
T h eorem  A ([3, Theorem 4.1.1]). For a finite measure space (Í2, Г, fi), a 

necessary and sufficient condition in order that

(2) Lp(Q, X)* ^  Lq(Q, X*), 1 == p <  1  +  1  = 1
p q

holds is that X* has the Radon—Nikodym property with respect to p.
D efin itio n . A Banach space ЛТ has the Radon—Nikodym Property (RNP) with 

respect to a finite measure space (fi, Г, fi) if for each ^-continuous vector measure 
ф: Г —ЛГ of bounded variation, there exists a Bochner integrable function g: Q—X  
suchthat ф(Е)— J g dp for all EdT.

£

Many authors investigated the RNP, for examples, [1, 3, 4, 5, 8, 9].
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The dual space X*  has the RNP with respect to a finite measure space if and 
only if X  is an Asplund space.

D efinition . A Banach space X  is said to be an Asplund space (what Asplund [1] 
called a strong differentiable space) if every continuous, real-valued, convex func
tion defined on an open subset of X  is Frédiét differentiable on a dense subset Gd 
of its domain.

In this note we shall establish the relationship (2) in a more general meas
ure space.

2. Preliminaries. Let (Q, Г, p) be a measure space, M  be the set of all real
valued measurable functions on Q and M + the set of all nonnegative measurable 
functions on 12.

A  mapping q: M +—R=R  U{+°°} is called a functional norm if for any 
f ,g d M +, it satisfies the conditions:

i) e ( / ) ^ 0  and e ( / )  = 0 if and only if / = 0 .
ü ) e  (<*/) =  <*£(/) for a > 0

iü) eif+ g) 2= e (/)+ e (g )
iv )/= S g  implies e ( / ) = s e (g).

This q  can be extended to M  by defining e ( f ) —е ( | / 1) for all ДА/. Then 
Le = Le(Q, Г, p) ^  {/CM; Q{ f)  < + - }

is a Banach space with norm q called a Banach function space. The dual norm q' 
of the functional norm q  is defined by

Q'(g) =  sup { / \fg\ dp: q( / )  =i l} for g£M

and the dual function space is defined by
La. = Le.(Q, Г, p) -  {g€M, g'(g) <+=»} 

which is also a Banach space.
Obviously, all L P(Q, Г, p), 1 +  and Orlicz spaces are Banach function

spaces.
A sequence {fi,,} of measurable subsets of Q is said to be admissible with 

respect to в if
Qn\Q, p (ß„) <  +  oo and q  (x„n) <  + °°.

Here and in what follows x denotes the characteristic function.
A set E dQ  is called unfriendly if for any B d E , BdT with p(B)>0  we 

have q ( xb) =  +  °°-
By the definition of Le, especially in LP(Q), 1 Sp<°=>, we can assume that 

Г always contains no unfriendly sets and always has an admissible sequence in (fl, Г, p). 
A function /€ L e has absolutely continuous norm if
a) lim^(x£n) =  0 whenever E„dE, Е„£Г such that q(Xe)<  +  “  and 

lim p(E„) = 0.П
Acta  Mathematica Hungarica 47, 1986
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b) lim Q(fxn-n ) —0 for any admissible sequence {fi„}.П П
Define Laa= {f£ L Q\ f  has absolutely continuous norm} and Ljj= span { f£ L e\ f  

is bounded and has support in Q„ for some admissible sequence n— {ß„}}.
It was known that (cf. Gretsky and Uhl [5] or Gretsky [4])

1) I j = n 4 i
It

2) (L%)*^Le> if and only if there exists an admissible sequence n such that 
L*=La.

Now let Г0={ЕеГ; q(xe)<  + 4  г 'о= {Е£Г, e 'fc )<  +  °°} and Г00 =  Г0ПГ0. 
Then the absence of unfriendly sets (with respect to q and q') guarantees that the 
<r-finite measure space Q can be written as a countable union of sets from Г00.

We write Le(X), L“(X) and L*(X) instead of Lc, L“ and Z.J for the U-valucd 
functions which are strongly measurable. The dual function space of Le(X ) is 
given by

Lq.(X*) = {g: Q — X* strongly measurable and p'(llgll) < °°}
where

ő'(lkll) =  sup { / 1 (fit), g(t))\dn\ f£Le(X)}.
eOl/lOsi 5

Gretsky and Uhl [5; Theorem 3.2] established the following result.
T heorem  B. Let (12, Г, ц) be а-finite and Lg(X)=L^(X). Then

(3) L ° (X f  -  Le.(X*)
under the correspondence F^Lae(X)* and gdLe-(X*) given by

F (f)  =  f( / ( t) ,g ( t ) )d p  for all fiL°e(X) 
n

i f  and only i f  each К£Г00, X* has the RNP with respect to pK which is defined on 
ГП К by рк(Е)=р(ЕП К ) for all EdT.

In particular, if X  is reflexive, or X* is separable, or p is purely atomic, then 
X* has the RNP and so (3) holds.

For convenience, we say that a Banach space has the wide RNP if it has the 
property formulated in Theorem B. We give

D efinition . Let (Q, Г, fi) be a measure space. A Banach space X  is said to 
have the wide RNP with respect to p if for every К£Г with p(K )<  °=, X  has the 
RNP with respect to pK defined by рк(Е)—р(КГ)Е) for all E d Г.

The following problem arises: if Le(X )= Lp(Q, X), then what is the
space Le’(X*)l Our main goal is to characterize La\X*) to be L9(Q, A-*).

3. The dual space of LP(Q, X) on a measure space (Q, Г, p). First we note that 
if Le(X)=Lp(Q, X), l=ip<°o, then
(4) $ = {E tr- p(E ) < о»} = Г0 =  Г'0 =  Г00 (cf. Sect. 2).
In fact E£$ if and only if yE: Q-+X satisfies \\Xe\\p= Q(Xe)<: +  °°> that is, Е £Г0. 
On the other hand if Xe■ which can be written ^Е(1)=х*а£(/) where
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x*£X* and a£ is the scalar valued characteristic function, then, by Holder inequality, 
we have

q'(xe) =  е '( Ы )  =  sup { / |< / ( o ,ze(0 >Idm \\f\\p s i }  =
ß

=  s u p { /  ( f i t ) ,  X *
n

aE(f)dp: fly| 1}
'  \\\х*ЫЕ)

if 1 <  p <  o° 
if p =  1.

Hence Е£Г'0 if and only if p(E)<°°, that is, E£$.
Further, we want to characterize the spaces L°Q{X) and L*(X) when Lt (X) = 

= LP(Q, X). We give the following
Lemma 1. I f  Ьв(Х )= Щ й, X) for 1 ^ < »  then Lae(X )= L p((2, X), and so 

for any admissible sequence n,
(5) L°e(X )= L *(X ) = X).

P roof. For any f£ L p(Q, X), there exists an admissible sequence {£>„} 
such that

«/«0 - 0j ,  =  ( f  \ m v d p y p^ \ .
n-n„

Then lim Q(fan - nr)=0. On the other hand,

1Ы1Р =  e(Xü) =  ( / lxaE(í)\\p dfi)Vp = ||x|| ii(E)1/p, xex .
я

е(Хв)<0° if and only if /i(is)<°°. Thus for any sequence {En}, E„<̂ E, e(x£)<  °° 
suchthat limц(Еп)=0 we have lim p(/£n)=0. This shows that ffJF fX) and so
L°{X) = LP{Q, X).

Now for any admissible sequence n, (5) follows from L“(X)aL*(X)<zL„(X) = 
—L \Q , X). Q.E.D.

R em a rk . For p —°°, L°°((2, X )= LQ{X)9i L ae(X) since if Q is purely nonatomic 
then Z.“(X)={0}.

Our main result can be stated as follows.
T heorem  2 . Let (Q, Г, p ) be a measure space and Le{X)= Lp(Q, X), 1 <

Then

(6) Lp (ß, X f  s< L*(Q, X*), - 1 + 1 = 1
P d

under the correspondence F£LP(Q, X)* and g(LL4(Q, X*) defined by

(7) F {f) = f  ( fg ) ( t)d p  for all f i L p(Q, X)
я

i f  and only i f  X* has the wide RNP.
P roof. By Lemma 1 and Theorem B, we have only to show that

LefX*) £= L fQ , X*).

Acta Mathematica Hungarica 47, 1986



DUALITY OF BANACH FUNCTION SPACES AND TH E RADON—NIKODYM PROPERTY 49

The Holder inequality guarantees that every g£Lq(i2, X*) defines a continuous 
linear functional FdLp{Q, X)* such that ||F|| S ||g ||e, while the isometry can be 
shown by the same argument as in [3] (cf. also [5, Theorem 3.2]).

We prove that for every F£LP(Q, X)* there corresponds a g£Lq(C2,X*) such 
that IIF II = II g|| q. It sufficies to show that F is identically equal to zero if F is restricted 
to the functions in L P(Q, X) not belonging to IJ LP(E, X) where $ is the family

E € $
of measurable subsets EczQ with g(E)<  °=.

Let Е£Г, L P(E, X )= {f£ L p(Q, X )\f= 0  outside!?} and write F (f)  = FE( f E) 
as the continuous linear functional on LP(E, X). If E(z$, then by Theorem A,
there exists a unique gE£Lq(E, X*) such that F( f  ) = FE( f E)= J ( / ,  gE)(t)dg for

£
all f£ L p(E, X) and ||g£||e= ||!rf:ll = ||jF1 if and only if X* has the RNP with respect 
to gE.

Let £j and E2 be two disjoint subsets of finite measures. Then

( 8 )  g E x U E z  =  g E i  +  g E a ’  I l g f i l U E a l ?  =  II S e J S +  l l g l S j N e .
Indeed, for any f£ L p(Ei{JE2, X), we have / = / i + / 2 with f £ L p(Ei, X), i= l,2 ,  
and so

H f)  = F ( f )  + F(f2) = f  </l5 gEl)(0 dg + f  </2, gE2>(0 dg =
Q Q

= f  ( f  gEl + gEi)(t)dii.
Í2

By the uniqueness of gEluE2 corresponding to F, we see that (8) holds.
Now let y =  sup ||gE||r  Since Lq, 1 < 5 0 », permits an admissible sequence

E € $
in Q, we can consider a monotonously increasing sequence of sets E,,(z$ such that 
i?0=lim  En and g (/)= lim gE (l). Then g is strongly measurable and, by Lebesguen n n
dominated convergence theorem, we obtain

IlglU =  lim ig jJ , = y == 1Л 1-П

Note that E0 is cr-finite. If E£$ with ЕГ\Ео=0  then gE=0. Indeed, Ena E 0 
for all n, thus it follows from (8) that for large n ||gEU£„ll2=llgEll|+llgEjl2> thus if 
IISeIU^O, then IIgEи£„!!«>У which is a contradiction. Hence for any E£$ and 
any f£ L p(E,X), there"is gE£Lq(E, X*) corresponding to F£LP(Q, X f  suchthat

F (f) = f  < / ,  g £ > ( 0  dg = f  < / ,  g £ U E 0> ( 0  dg = f  ( f  g)(t) dg.
n SI я

Finally, for any f£ L p(Q, X), it has absolutely continuous norm, and Lp permits 
an admissible sequence, there exist a monotonously increasing sequence of sets 
Q„, g(Qn)< + °°, lim Qn=Q0 and a sequence of functions f ndLp(Qn, X) such thatП
f„-*f in LP(Q, X). By the argument given above, we see that as the equality

F (fn) = f ( fn ,  gn„)(0 dg = f  </„, gßo)(0 dg
íi -Q
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tends to the representation of (7), and

II8«в =  li™ IlfnJa — У — |F||.

The converse inequality ||Т|| = ||g ||4 follows from Holder inequality. Therefore our 
theorem follows from Theorem B, that is, (6) and (7) hold if and only if A* has 
the wide RNP. Q.E.D.

If p = l,q= oo  and (Í2, Г, p) is u-finite, that is, Q= [J E„, p(E„)<  +  ■», then
П = 1

for any F£L\Q , X)*, by Theorem A, there is a g,fL°°(En, X*) such that 

F\l4 ewx) ( / )  =  FEn(J) = f  </, g„)(0 dp, for all fCM{En, X)

and
I l g J U  =  I I ^ J I  S  \\F\\

if and only if X* has the RNP with respect to pEn, and so ||g |U =||/;’||. Thus if 
f£ L \Q , X), then there exists a sequence f n£L \E n, X ) with f„-*f in L \Q , X) 
such that

F(fn) = f  (A , g„)(0 dp =  f  (/„, g>(0 dp.
En ß

Since F is continuous, both sides of the equality converge to 

F (f)  =  /  </, g>(0 dp with Igl«, S  ||F||.
Si

It follows that ||g |L= ||F ||. Hence we obtain the following 
T heo rem  3. I f  (£2, Г, p) is a о-finite measure space, then

(9) LX(Q, X)* sí L°°(Q, X*)
under the correspondence F(iL1(Q, X)* and g£L°°(Q, X*) defined by

(10) F (f)  = f  (fi g)(t) dp for all f t L f Q ,  X)
Si

i f  and only i f  X* has the wide RNP.
4. The dual space of L1(Q, X) on a locally compact Hausdorif space 12. Let

Q be a locally compact Hausdorif space and M(Q) the space of regular Radon 
measures, that is, the dual space Cc(Qj* of Cc(£2), the set of all continuous func
tions on Q with compact support. Let p be a positive Radon measure, that is,

i f f )  = J f i t )  dp fe 0 for f i t )  S  0 in Cc(l2).
S3

Then the space Cc(Q, X) of continuous A-valued functions with compact support 
in 12 is dense in LP(Q, X), 1 In this case Theorem 3 holds without cr-finite
condition on Q, we shall give a characterization of the dual space L \Q , X)*.

Let X) be the space of locally bounded almost everywhere A-valued
functions on 12, that is, g€L.,“ ,e.(i3, A) is uniformly bounded outside the local null
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sets in ß. A set F c ß  is said to be local null if р(КГ\Е)=0 for any compact sub
set К in ß. The norm of g € “a c.(í2, X) is given by

l l g l l ~ , I . . . e  =  s u p [ e s s s u p | | g ( 0 l l ]  < “

where the supremum is taken over all compact subsets к  in ß  (see Dieudonne 
[2, p. 83]). Evidently, ||g|L,i.a.e^l|gll~ and F “(ß, A )c F “a<,(ß , X). Hence we have 
the following

T heorem  4. Let Q be a locally compact Hausdorff space with a positive Radon 
measure p. Then
(11) L1(Q, X f  -  Lra.e(ß, X*)
under the correspondence F£L\Q ,X)* and g<zL^e(Q, X*) i f  and only i f  X* has 
the wide RNP with respect to the positive Radon measure p.

Proof. For any / £ C c(ß , X) and g € F ”a-e.(ß, X*), we have 

I / </, g)(t)dp\ ^  ||/ ||i ||g |k ,.a.e-
S2

Since Cc(ß, X) is dense in L\Q , X), it follows that g defines a bounded linear 
functional F£L\Q ,X)*  suchthat ||F[I — IláílU.i.a.e-

Conversely for any F£L\Q , A")* and any compact subset К of ß, the restric
tion F\l4K'X)=Fk corresponds to a function gK£Lr'J(K, X * ) d L ^ e (K, X*) such 
that F ( / )  = j { f g K){t)dp  for all / € L \K , X), and | | g j  = ||F J á ||F | |  (by Theo-

Í2 ________
rem 3) if and only if X * has the wide RNP. Since |J  L \K , X) = L \Q , X )  and

к
L\Q , X) permits an admissible sequence of subsets in Q, we have 

sup ||g|U,i.a.e.S sup ||gK|U =sup ||FK|| =S IIF||

where the supremum is taken over all compact subsets of ß. Define g(t)= gK(t) 
locally for almost every t£K. Then we have ||g||<» i a e —IIF||, and so (11) holds.
Q.E.D.

R em a r k . It is of some importance to remark that if the locally compact Haus
dorff space ß  is the union of (possibly uncountable) er-finite subsets Qa such that

(i) if p(E) <oo then F f)ß a7^0 for at most a countable number of a; and
(ii) any Borel set К  with p(Kf]Qx) = 0 for all a implies p{K) — 0.
Then F f l J ß ,  X*)=L°°(Q,X*).
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ON LINEATIONS
M. BOGNÁR and G. KERTÉSZ (Budapest)

In 1978 on the mathematical competition which is held in memóriám Miklós 
Schweitzer for students in Hungary the first author raised the following problem.

Let /  be a superjective mapping of the hyperbolic plane onto itself such that 
the image of collinear points is again collinear. Prove that /  must be an isometry.

To give a proof we first need to show that the map /  is injective.
This can be verified by using a lemma of Nándor Simányi. Simányi was a 

participant of this competition.
First we say that a map / :  M —M of a euclidean, hyperbolic or projective 

space M  of arbitrary dimension into itself is a lineation of M  if for each straight 
line e of M  f{e) is confined to a straight line of M.

Now the lemma of Simányi sounds as follows.
Lemma 1. Let M  be the euclidean or hyperbolic plane and let f :  M-+M be 

an onto lineation o f M. Then for each element Q o f M  the set / _1({<2}) ts convex.
Proof. We argue by contradiction.
Suppose the existence of distinct points A, B, C in M  such that 

/(Л) = f(B ) — Q, f(C ) = P * Q

and that C lies on the segment [А, В].
Let Cj and e2 be lines in M  both perpendicular to ePQ and such that P£e1 and 

Q£e2 (see Fig. 1). Thus 
( 1) ^ 0^2 =  0.

Let и£е1\ { Р }  and FÉé>2\{ ö } - Let D df~ \{U }) and ^ /^ ( { F } ) .  / i s  an 
onto map hence there exist such points D and G. Moreover the points А, В, C, D, 
G are pairwise distinct.
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Since /  is a lineation and the points P, Q, U, V are pairwise distinct we have 
obviously
(2) / ( елв) c  ePQ>

( 3 )  R e  AG U e BC) c e 2 ,

(4) f(e CD) cz ex.

Further since f(D )= U $ePQ and f(G) = V $ePQ it follows by (2) that D 4eAB and 
G$eAB. However in view of the axiom of Pasch the line eCD intersects either the
segment [A, G] or that of [B, G]. Hence

e cD П ( e AG U eBG) A 0.

Let HdeCDf)(eAGUcflG). Then by (3) and (4) we have /(Н )£е1Пе2 and this 
contradicts relation (1). □

We turn now to the following
Lemma 2. Each onto lineation o f the euclidean or hyperbolic plane is an injec

tive map.
Proof. We argue again by contradiction.

Let / :  M-+M be an onto lineation of the euclidean or hyperbolic plane M  
and suppose the existence of two distinct points A ,B £ M  such that f{A )—f{B). 
Let P —f( A ) and let ex be a line in M  for which

(5) f(e AB) cz ex.
We then have obviously P£ex.

Let e' be a line in M  going through P and distinct from ex. Let Q be a point 
of e'\{.P} and C £ /- 1({g}) (see Fig. 2). Then in view of (5) we find C $eAB.

Let D be an interior point of the angular region opposite to <  ACB. Then 
the line eCD meets the segment [A, 13] in a point D'. In view of Lemma 1 we have 
f(D ') = P and thus

f ( e CD> — f l e CD0  c  e PQ —  e  -
Consequently f(D)£e'.

f(D )A P  since otherwise by CT[D, D'] and because of Lemma 1 there would 
hold / (C )—P  contradicting the assumption f{C) = Q ^P . Hence f(D )£e'\{P }, 
D e n ( e '\{ p } ) .
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Thus / _1(e'\{P}) contains the interior of an angular region. Consequently 
it contains a nonempty open set of M.

Observe that if e[ and e2 are distinct lines going through P then the sets 
/ - 1(^ \{Р }) and / _1(eá\{/J}) are disjoint. For that reason, since the set of lines 
of M  going through P and distinct from e1 is uncountable, there exists an 
uncountable family of mutually disjoint nonempty open subsets of M  contradicting 
the fact that each family of this kind is countable.

The injectivity of /  is proved. □
Thereafter observe that for any bijective lineation f :  M-+M the map 

/ -1: M-*M  is obviously a lineation too. Moreover /  maps each straight line e 
of M  onto a straight line é  of M, and distinct lines should be transformed into 
distinct ones.

Now in order to prove the original problem observe first that the hyperbolic 
plane M  may be considered as the interior of a conic к lying in the real projective 
plane P 2. (Interior of к means the set of points of P2 that fail to lie on any tangent 
of k.)

Next, the bijective lineation / :  M-*M  may be extended to a bijective lineation 
/ :  P 2-<-P2 as follows.

For Q£P2 let el and e2 be distinct straight lines going through О and inter
secting M. For г — 1, 2 let e[ be the straight line containing the set /(M flq )  and 
let/ ( 0  be the common point of e[ and e2 (see Fig. 3). According to the Desargues’ 
theorem / :  p 2-»p2 is uniquely defined, /  is clearly a bijective transformation of 
P 2 and f \ M= f  Moreover by Desargues’ theorem /is a lineation of P 2.

Thus / transforms к onto a conic k' and the interior M  of к onto the interior 
M ' of k'. However /(M )= /(M )= M . Consequently k '= k  and thus /belongs to 
the group of congruences of M. The map / and also the map f= f \M is a congruence 
of M  indeed.

This is a solution of the problem in question. □
Later in 1979 the first author raised the following question.
Is Lemma 2 true if we replace the euclidean or hyperbolic plane by the real 

projective plane?
The question was affirmatively answered by the second author. He also proved 

that if n is an integer bigger than 1 and M  is an /г-dimensional euclidean or real 
projective space then each onto lineation of M  is injective.
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First let us see the case n = 2.
Lemma 3. Let M be the real projective plane and let f :  M-+M be a lineation 

such that f(M )  contains at least 4 points in general position (i.e. each triple o f them 
is non-collinear). Then f:  M-*-M is a bijective map.

Proof of the Lemma. We only need to show that any lineation of the real 
projective plane keeping fixed 4 points in general position is an identity map of 
the plane.

Now let / :  M-+M be a lineation of M  keeping fixed the points A1, A2, A3 
and A4 such that each triple of them is noncollinear. Obviously we only need to 
prove that each point of eAlAs is a fixpoint of f  However the set of fixpoints of the 
map/lying on eMM is apparently dense in eAlM. Moreover f{ e AlM)<zeAlM. Thus 
for proving the lemma we only need to show that for any three distinct fixpoints 
А, В, C of /  lying on eAlAs and for each point P of eAlÄ2 both of the relations 
(AB,CP)>0 and (AB, C f(P))<0  cannot hold true. {(AB, CP) is the cross ratio 
of the points А, В, С, P).

Now let А, В, C be distinct fixpoints of /ly in g  on eAlAjs. Let D=AS and let 
G be a fixpoint of /  lying on the line eBD and being distinct from D and B. There 
exists obviously such a fixpoint.

Introducing the symbol °° the relations
h(P) — (AB, CP) (PeeAB) and h'(Q) = (DB, GQ) (Q£eDB) 

define clearly bijective maps
h: eAB — R U {<»} and h': eDB — ли{°°}.

Now let
m — h o f\ê Boh~1: i?U {°°}->-i?U {=}

and
m' = h 'o f\eDBoh'~1: RU {=*=} -  Д U M - 

Since A, В and C are fixpoints of /  it follows
(6) m(l) =  1, m(0) = 0, m(°°) = °°.

The remaining part of the proof proceeds in several steps.

Fig. 4

1° First we show that m=m'.
In fact let U be the common point of eAD and eGC (see Fig. 4). U is clearly a 

fixpoint of/. Let {“ } and P=h~1(x). Then (AB,CP)=x. Let Q be the
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common point of eUP and eDB. Then we have (DB,GQ)={AB,CP) and thus 
Q=h'~1{x). By the collinearity of P, Q, Uand by f{U ) = Uwe find that U,f{P) and 
f{Q ) are collinear as well and thus [AB, Cf{P))={DB, Gf(Q)). Consequently 
m (x)—m'{x) indeed.

2° Let us introduce the relations

0 = -  =  — = — (a€ i? \{ 0}), -Cl oo со
oo

a
oo a

(а€ Л \{ 0}).

Let V and W  be points of eAB where the cases V=W =A  and V=W —B are 
excluded. We then have obviously

{AB, CW) 
{AB, CV) = {AB, VW).

3° Let V and W be points of eAB where the cases V—W = A  and V—W = B  
are excluded. Let Z  be the common point of eGV and eAD and let S  be the common 
point of ezw and eDG. Then {AB, VW)={DB, G S ).

The statement is obviously true if V£eAB\ { A ,  Bj. (See Fig. 5.)

If V=A  then Z=A, S = B  and thus {AB, VW)=0=(£>B, GS). On the 
other hand if V=B  then Z= D , S=D  and thus {AB, VW )—°° = {B>B, GS).

4° Let x, у  be elements of 7?\{0} where the cases m{x)=m{y)=0 and m{x) = 
=m{y)—°° are excluded. Then

(

x \  m{x)

In fact let Р1= й - 1(у) and P2=h~1{x). Then by 2° we have

( 7 ) {АВ,РгР2) {AB, CP2) 
{AB, СЛ)

x 
У '

Let Т  be the common point of eGPl and eAD and Q the common point of eTP„ 
and eDB. Then 3° and (7) show that (DB, GQ) = {AB, P1P2) = — and thus

(8 )
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Since the case m (x)=m (y)=0  is excluded it follows that the case / ( i \ ) =  
—f(P 2)= B  cannot occur. Likewise the case f(P1)=f(P2) = A cannot occur either. 
Now since/ is a lineation f ( T )  must be the common point o f eGf(Pi) and eAD. More
over f(Q ) is the common point of er(T)f(P, and eDB. Thus we have according to (8), 
3°, 2° and 1°

m ( f ) = (DB, G / m = w « = $ % % % %  -  Ш  

as required.
5° Taking also (6) into account 4° shows that for any y6ÄU{<*>} we have 

m(y)  m (y) ’
We are going to finish the proof of the lemma.
6° Let P  be a point of eAB such that (AB,CP)> 0 and (AB, С Р )^°°. Let 

x=(AB, CP) and y= + Yx. Then
/ У(AB, Cf(Pj) = m(y*) = m I

У
However 5° shows that m (y) = m ^ - j  can only occur in the case m (y)= ±  1 and
thus in view of 4° and 5° we have

m(y)
Consequently (AB, C f(P )) cannot be a negative real number. 

The proof of Lemma 3 is complete. □
And now let us formulate again the theorem of the second author.
Th eo rem  1. Let n be an integer bigger than 1 and let M  be an n-dimensional 

euclidean or real projective space. Then each onto lineation o f  M  is injective.
P r o o f . According to Lemmas 2 and 3 we need only consider the case n>2. 

Now suppose that the theorem is true if we decrease the integer n (at most until 2).
Let / :  M-*M  be an onto lineation of M.
First we call a system (q i,.. .,q k) of points of M  independent if k ^ n + l  and 

if there is no (k—2)-plane of M  containing all the points qA , ..., qk.
Each subsystem of an independent system of points is independent as well.
Moreover for any independent system of points (qx, ..., qk) there is a unique 

( k - l)-plane of M  containing all the points qx, ..., qk. We say that this plane is 
spanned by qx, ...,qk and we denote it by S(qx, ..., qk).

7° Let (px, ...,pk) be an independent system of points in M  such that the 
system (f(P t), •••»/(Pk)) is independent as well. Then

f ( S ( p lt -,Pk)) <= S ( f(p 1), ...,f(pk)).
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To prove this statement we proceed by induction.
If k = 1 then the statement is obviously true. Now let l < í á n + 1 and sup

pose that the statement is true for k = t— 1. Let (pk, ...,/?,) be an independent 
system of points in M  such that ..., f(p ,)) is independent as well and let
q£S(p!, ...,p t).

For /= 1 ...... i let Si= S(pu ...,P i-i, pi+1, ...,pt) and
S'i = S ( f ( p 1), . .. ,f(P i- i) ,f(p i+i), —,f(p,)).

Then there is obviously an index / ( l ^ / = i )  and a point q' in Sj such that q belongs 
to the line ep.q.. (If M  is a real projective space then we may select i= l) .  By the 
induction hypothesis f(q')£S'i and thus f(q ')^ f(p d . Hence f(q) belongs to the 
line eHq,)f(pi) and thus to the plane S ( f (p 1), . . . , f  (p,)) as required.

Accordingly the statement is true for k —t which completes the proof.
8° Let (pt , ...,p k) be a sequence of points in M  such that (f(Pi), . .. , f(p k)) 

is an independent system. Then (pk, ...,p k) is an independent system too.
In fact let S be the intersection of all planes of M  containing the set {p1, ...,pk}. 

S' is a plane and we may select an independent subsequence (ph, ..., p lt) of the 
sequence (P i,...,p k) suchthat S = S (p k, ...,p it). Consequently in view of 7°

/(S ) C s(f(Pi), . . .J ( pO) 

and thus for / = 1, ..., к we have

f(P,)£S(f(Ph), -./Of,))-

Hence t= k  and ij= j  for j= l , . . . , k .  Accordingly (р1г ...,p k) is an independent 
system of points as required.

9° For 0^ k S n  and for any plane S of dimension к  the set /(S )  is contained 
in a /с-plane of M.

In fact otherwise /(S )  would contain an independent system of points 
(p[, . . . ,p i+i). Let P i€ S n /- 1({Pi}). Then by 8° the sequence (plt ...,pk+2) would 
be independent as well and it would lie in S which is impossible.

10° Let 1 S k ^ n  and let S be a /с-plane of M. Suppose that/(S') is confined to 
the union of a finite number of (k — l)-planes of M. Then there is a (/< + 1 (-plane 
S ' in M  such that f ( S ')  is confined to the union of a finite number of /с-planes of M.

In fact let / ( 5 ) c S '1U ... US) where Sl t . . . ,S r are (k— l)-planes of M. Let 
/C A f\(S '1U...US'r). There exists obviously such a point q'. Let q£f~\{q'})- Then 
q$S. Let S ' be the (A: + 1 (-plane containing the set {^}US and for /= 1 , ..., r 
let Si be the Л-plane containing {/(US';. If M  is a euclidean space then let S "  be 
the Л-plane going through q and parallel to S  and let S '+1 be a Л-plane containing 
f(S " ). In view of 9° there exists such a plane Sr'+1. If M  is a real projective space 
then let S '+1 be an arbitrary Л-plane. In both cases we obviously have

/(s') c  s í u . ..u s ;+1.

11° Let l ^ k ^ n .  Then for each Л-plane S  in M  f( S )  can not be confined to 
the union of a finite number of (Л—l)-planes.
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Since the only и-plane of M  is M  itself and /  is an onto map the assertion is 
obviously true for k=n. Hence according to 10° it is true for every к (k^n).

12° Let S' be a 2-plane of M. Let S ' be a 2-plane of M  containing f (S )  (see 9°). 
Then f(S )= S '.

We argue again by contradiction. Suppose the existence of a point q' in S ' \ f ( S ) .  
Let q£f~l({q'})- Then q$S. Let Sx be the 3-plane of M  containing SU{^}. If 
M  is a euclidean space then let S 2 be the 2-plane going through q and parallel to S  
and let S'2 be a 2-plane of M  containing/(S2). If M  is a real projective space then let 
S'2 be an arbitrary 2-plane of M.

Now in both cases/LS)) is clearly contained in S 'U Sj which is impossible 
by 11°.

We are going to finish the proof of the theorem.
13° Let p and q be distinct points of M  and let S  be a 2-plane of M  containing 

p  and q. In view of 12° f(S )  is a 2-plane of M. Let g: f(S)->-S be a bijective linear 
map (that means g  takes each line into a line). There exists obviously such a 
map. Then

g o / | s : S -  S
is an onto lineation and thus according to Lemmas 2 and 3 g (/(p )W g (/( i7)). Thus

The theorem is proved.
Now we can raise the following question.
Is Lemma 2 true if we replace the euclidean or hyperbolic plane in it by the 

hyperbolic space?
Since the hyperbolic space may be considered as an open ball in the euclidean 

3-space where the straight lines of the hyperbolic space are the nonempty inter
sections of the straight lines of the euclidean space with the open ball, the following 
theorem of the first author gives an affirmative answer to this question.

T heorem 2. Let К be a nonempty open convex set in the euclidean n-space R" 
where nS  2. Let f :  K-+R" be a mapping satisfying the following two conditions:

(a) for each straight line e o f Rn there exists a straight line e' o f Rn such that

А е П К ) с е ',
(b) f(K ) is open in Rn.

Then the map f:  K->~f(K) is bijective andf(K) is a convex set.
P roof. 14° Let ( p 1 ; ...,pk) be an independent system of points in К  such that 

is independent as well. Then

f(S (P u  ■■■, А )П * ) c  S (f(p О, . . . , f (Pkj).
To prove this statement we proceed by induction.
If k = 1 then the statement is obviously true.
Now let 1< Г ёи  +  1 and suppose that the statement is true for k = t—1. Let 

(р1г . . . ,a ) be an independent system of points in К  such that (f ( p i ), ...,/(p,)) 
is independent as well and let q ^S (p x, ...,р,)Г\К. For let Sj=
=  *S’(p1, ...,P i- i ,p i+1, ...,p ,) and S ',= S(f(p j), ...,f(P i-i) ,f(p i+1), ..•,/(/>,))• Then 
there is obviously an index i (1 ^ i ^ t )  and a point q' in S tC\K such that q belongs
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to the line ePiq.. By the induction hypothesis f(q ')£S ' and thus f(q ')^f(P i)- Hence 
f{q) belongs to the line ef(q,)f(Pi) and thus to the plane S ( f(p 1), ...,/(/>,)) as 
required.

Accordingly the statement is true for k= t which completes the proof.
15° Let (px, ...,pk) be a sequence of points in К  such that (/(P i), ..., f(p kÍ) 

is an independent system of points. Then (рг, pk) is an independent system of 
points too.

The proof is nearly the same as that of 8° only 7° must be replaced by 14° and 
f(S )  by A S  ПК).

16° For 0S k ^ n  and for any A>plane S  of Rn the set /(ST1.K) is contained 
in a A:-plane of Rn.

The proof is the same as that of 9°. Only / (£ )  must be replaced by /(ST )#) 
and 8° by 15°.

17° For each q£Rn / - 1({<7}) is a convex set.
We argue by contradiction. Suppose that a, b, c are points of К  such that c 

lies on the segment [a, b] and /(a )= /(h )—q, f(c )—q' ̂ q- Let S ' be a hyperplane 
of R" going through q' and missing q and let e' be a straight line of Rn going through 
q and parallel to S ' (i.e. e'C\S' = 9). Let q'2,...,q 'n be points of S'D/CK) such 
that the system (q',q'2, ...,q'n) should be independent. Since f{K ) is open in Rn 
and q'£f(K) there exists such a system. Let p2, ■■■, p„ be points of К  such that for 
i= 2, ...,n  the relation f{p^= q[  holds. In view of 15° (c,p2, ...,p„) is an inde
pendent system of points.

Let S = S (c ,p 2, ..., pn). According to 16° we have f ( S  C\K)<^S' and since f(a) = 
=f(b) = q $ S '  it follows {а, Ь}П5' =  0. However c£S  and thus [a, i>]П 0, a 
and b lie on different open halfspaces of Rn bounded by S.

Let q* be a point of e'f)f(K )  distinct from q. Since f(K )  is open in R" and 
q£f(K) there exists such a q*. Let Р*£/_1({<7*})- Then р*т±а and p*^b . Moreover

(9) /(< V  C\K)c. e', f ( e bp, f]K )cze'.

By the convexity of К  the segments [a, p*] and [b, p*} belong to К  and thus 
in view of (9) we have
(10) A[a,P*]U[b,p*])cze'.

However since a and b lie in different halfspaces bounded by S  it follows that 
([a, p*]U[b, and thus (10) implies е'П S '^ 0  which contradicts the
assumption e'C\S' = 0.

The assertion is proved.
18° Suppose the existence of distinct points a,b£K  such that f(a)=f{b). 

Then there exists a sequence p0, ..., p„_2 of points of К satisfying the following three 
conditions.

(i) p0=b,
(ii) (a,p0, ..., P„-2) is an independent system of points in Rn,

(iii) { f(Pa), ... ,f(p n- 2j) is an independent system of points as well.
We shall construct such a sequence by a recursive way.
The systems (a, b) and (Ab)) are clearly independent.
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Suppose that 0 < & ёи —2 and the points p0, ...,р к- г of К  have been taken 
suchthat p0=b and the systems (a,p0, and ( f(p 0), ... ,f(p k- 1)) should
be independent. Let S  = S(a,p0, . .. ,р к-\) and let S '  be a к-plane of R" conta
ining the set f(SC)K). According to 16° there exists such an S'. Observe that for 
i =  0, к — 1 f(Pi) obviously belongs to S'. Let qk be a point of f ( K ) \ S ' .  Since 
f (K )  is nonempty and open in R" there exists such a point qk. The system 
( / ( p 0)> •■■rf(Pk-i)> 4k) is then clearly independent.

Let л € / _1({%})- Then pk (f S  and thus the system {a, p0, ..., pk) is likewise 
independent.

The existence of a sequence (p0, 2) with the desired properties is
proved.

19° Under the same assumption as in 18° and for the same sequence p0, ..., p„-2 
let us consider the simplex sn" 1 with vertices a, p(), ...,p n_2. By the convexity of 
К  one obviously has sn~1(zK.

We are going to show that
/(s" -1) c  S (f(p 0), ...,/(p„_2)).

We proceed by induction.
For i— 1, ..., n — 1 let s‘ be the simplex of Rn with the vertices a,p0, ...,p i- 1 

and let S ‘~1= S ( f( p 0), ...,/(p ,-i)). Since f(a )—f( p 0) it follows by 17° that 
/ W c S 0.

Suppose that 1< г ё и - 1  and that f( s ‘~r)czS‘~2 holds true.
Let d£s\ Then d lies on a segment [d',pt_ J  where d'£sl~r and thus by 

the induction hypothesis f(d ')£ S '~ 2. However since the system of points 
(/(Po)> •••?/(P i-i)) is independent it follows that /O i - iH  -S’'-2 and thus /(Рг-х)^ 
й/(сГ). Consequently

fQ d ',p t- $ c f { e rr t_J\K )ci e / ( d ' ) / ( P i - l )  C  S ‘ 1

and thus f(d )£ S i~1 which proves / ( s ^ a S 1“1.
20° We are going to prove that the map /  is injective
We argue again by contradiction.
Suppose the existence of distinct points a, b£K  such that f(a)= f(b). Let 

p0, ...,pn- г be the same as in 18°. Moreover let s"~1 and S"~2 be the same as in 19°. 
According to 19° we have 
(11) / ( s ’i c S - 8.

Let S —S(a ,p0, ...,p„_2) and let S'0 be an (и — l)-plane of Rn containing 
f(S f)K ).  In view of 16° there exists such a plane and we obviously have S n~2c:S'Q. 
Let S ' be a hyperplane of Rn distinct from S'0 and containing S"~2. Let 
q 'e (S 'n f(K j) \S n- 2. Since f(K )  is open in Rn and by (11) S'C\f(K)?í1d there 
exists such a point q'.

Let qZ-f^dq'})- Since q' = f(q)$f(SC\K) it follows q$S  and thus the system 
of points {a,p0, ...,p„ -2,q) is independent. Hence we get an и-simplex snq in Rn 
with the vertices a, p0, ...,p„_2, q where s"-1 is a face of snq.

For i—0, ..., n —2 let Фj be the open halfspace of R” bounded by the hyper
plane S(a,p0, ...,P i_ i,p i+1, ...,pn- 2, q) of R” and missing the point p t. Let Фа
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be the open halfspace of Rn bounded by S (p 0, ...,p„_2> q) and missing the point 
a. Then

С9 =  ФаПФ0П...ПФп. 2ПК
is obviously a nonempty open set in Rn and q$Gq.

Let u£Gq. The straight line equ meets s"_1 in a point u* and q belongs to the 
segment [u,u*]. Moreover we have equ~ e qu*. Since u*^sn~1 it follows
(12) /(и*)€5п- 2 c  S'.
On the other hand
(13) /(? )  = q'es'\s"-2 
and thus
(14) f ( e qu) = f(equ*) e  eq.n „t) c  S'.

According to (12) and (13) the line eq,f(u*) intersects S"~2 in the only point 
f(u*). Moreover by (14) we have
(15) /(и)€ев./(„*).

f{u)= f(u  ) can not occur since otherwise in view of q£[u, u*] and 17° f(q ) — 
=f(u*) would hold and this is impossible by (12) and (13). Thus /(и)т^/(и*) con
sequently by (15) and (14) we have f(u )£ S '\S " ~ 2. This yields the relation
(16) G9c f - \ S ' \ S n~2).
Consequently f~ 1( S ' \ S n~2) contains a nonempty open subset of Rn.

However for distinct hyperplanes Si and S2 containing S n~2 the sets S [ \ S n~2 
and S 2\ S n~2 are disjoint and thus the sets f~ 1(S'1\ S n~2) and / _1(S i \S " _2) 
are disjoint as well.

The family of hyperplanes of P" containing S"~2 and distinct from S'0 is uncount
able and thus there would exist an uncountable family of mutually disjoint non
empty open sets of Rn contradicting the fact that each family of mutually disjoint 
nonempty open sets of R n is countable.

The injectivity of the map /  is proved.
What about the convexity of ДК)? First observe that the space R" can be con

sidered as P "\VP"~1 where for i—n—l, n Pl is the /-dimensional real projective 
space. Now the bijective map / :  K-+f(K) may be extended to a bijective lineation 
/:  P"—Pn in the same way what we have done at the proof of the original problem.

Now let a', b' be distinct points of f ( K ) and let a = f~ \a ') , b= f~ \b '). Then 
f{[a,b\)c:f{K)c:Pn\ P n~1 and f([a,b]) is a projective segment in P” with the 
endpoints a', b'. However since f([a, Ь])ПР"_1=0 f([a,b]) is the euclidean seg
ment in R" joining a' and b' and thus [a', b']af(K). f ( K ) is convex indeed. The 
proof of Theorem 2 is complete. □

Now we can raise the following question:
Does Lemma 3 remain true if we replace number 4 by number 3 in it?
It is easy to see that the answer is negative. Or even more there exist several 

lineations / :  M-+M of the real projective plane M  such that f(M ) consists of 
three noncollinear points. Each lineation of this kind clearly gives rise to a colouring 
of M  in three colours so that no straight line contains points of all three colours.
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In fact if f(M )=  {a, b, c} then let us colour the points of / - 1({a}) by red those of 
/ _1({Ь}) white and those of / - 1({c}) blue. On the other hand each colouring of 
this kind corresponds obviously to a unique lineation / :  M-+M  such that /(M ) 
consists of three noncollinear points.

Now by a colouring of a projective plane we understand in the sequel a colour
ing of the plane in three colours say red, white and blue so that no line contains 
points of all three colours.

One type o f colouring say radial colouring can be obtained by colouring a 
point p red, say and colouring each line through p  with p delated either solid white 
or solid blue, randomly. Another type say axial colouring is obtained by colouring 
the points of a line e either white or blue randomly and colouring all points not 
on e red. We shall call colourings of either of the above type trivial. The trivial 
colourings are precisely the ones on which some colour is confined to a line.

Thereafter the first author posed the following question :
Does there exist a nontrivial colouring of the real projective plane?
The question has been answered affirmatively by A. W. Hales and E. G. Straus 

[2]. They also proved in 1980 that the projective plane P \F )  over the commutative 
field F has no nontrivial colouring if and only if F is an algebraic extension of a 
finite field.

Finally we refer the reader to the paper of David S. Carter and Andrew Vogt [1]. 
They solved the problem of characterization of all lineations of projective or affine 
Desarguesian planes. However as to the hyperbolic plane the same problem is still 
unsolved.
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PROPERTIES OF THE RELATIVE ENTROPY 

OF STATES OF VON NEUMANN ALGEBRAS

D. PETZ (Budapest)

In an operator algebra the measure of the Kullback—Leibler information was 
defined by Umegaki [26]. Nowadays it is quite common that a non-commutative 
algebra with a specified positive functional may serve as the basic object of an 
algebraic (or non-commutative or quantum) probability theory. In case when s i 
is a von Neumann algebra possessing a faithful normal semifinite trace т then any 
normal state of s i  can be described by a positive selfadjoint operator affiliated 
with si. In the finite dimensional case this operator is simply the corresponding density 
matrix. To be more concrete, if (pi(a) = r(oia) (ad si, i=  1, 2), the relative entropy 
of tpx and cp2 is then defined as follows:

<Pt) =  <?2(l0g 02 “ log Ql) =  t(0 2(lOg 02-lO g  0i)).

We ought to note here that the relative entropies occurring in the literature 
differ slightly sometimes both in sign and order of the states. For example the entropy 
S b- r in [5] is related to this one as

S b - r ( (P i ’ •Р г )  —  V Ú -

Some properties of the relative entropy have important physical interpreta
tions ([5], [18], [27]). We do not treat them in details but we look at the following 
phenomena. If 'M is another algebra and a stochastical mapping a: OS-^si carries 
the states co1, co2 into cp1, cp2, respectively, then intuitively it is more difficult to 
make distinction between <px and <p2 than tor and co2, consequently it is quite 
natural that S ^ ,  u>2)^S(cpi, tp2).

If s i  does not have a trace then one can not compare two states by means of 
their densities. In an arbitrary von Neumann algebra Araki defined the relative 
entropy of two normal states using the relative modular operator ([2], [3]). By now 
all the important properties of the Kullback—Leibler relative entropy have been 
verified in general von Neumann algebras. Among them the convexity must have 
the largest literature. In this paper we do not touch this area and we refer to the 
recent paper [10] and the older ones [13], [14]. We prove the strong superadditivity 
of the relative entropy utilizing an idea of Lindblad ([16]).
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Auxiliary results

In this section we prove some auxiliary results. Most of them may be known 
but have not succeeded in finding satisfactory references. First we look at theorems 
of interpolation type.

Let A be a positive selfadjoint operator on a Hilbert space Ж  and let e>0 
be fixed for a while. The domain S>(A') becomes a Hilbert space Ж\ with the norm

КП, = (el€l*+M*««*)1/*
for any O s t s l .  The pair (Ж0, Жг) is a compatible couple in the sense of inter
polation theory and it may be the starting point of an interpolation giving a scale 
of spaces (Ж0, Ж^), (O SiSl). Since we use only few results of interpolation theory 
we do not want to introduce its complete machinery. Instead, we refer to some 
standard books [4], [21] and [24]. In [24] one can find the following theorem: 
(Ж0, Ж^),= Ж, (1.18.10). It will be used to prove

P roposition 1. Let Aj be a positive selfadjoint operator on Ж1 (/= 1 ,2). I f  
T : ЖЛ-*Ж2 is a bounded operator such that

(i) T 9 ( A d c 9 ( A J ,
(ii) \\АгП\\ TM id iII (£€^(4 ,)), 

then we have for every O^t^í 1 and C,£!3(A\)

\\А\П\\ш\\Т\\.\\А\а.
Proof. For every fixed s> 0  we have (Ж({\ Ж^),=Ж/ ( j —1,2 and O ^ /^ l)  

by the above cited result. Since \Щ \\^ \\Т \\  and \\Щ \^2ЩТ\\ •||1/||*>»
for every %£Ж^ and р^Жг the Calderon—Lions interpolation theorem (see, for 
example, [4, 8.12] or [21, IX.20]) gives that

w n u i  2  Iг I U\\*}

holds for any £d@)(A\)=Ж*. Equivalently,

е\\П \\Ч \\А^Щ 2 ^ \ \Т \ \ \в и Г  + Ш Г ) -

Letting £— we obtain the Proposition.
L emma 1. I f  A is a positive selfadjoint operator and 'i^LHA) then \\А‘1\\ ^  

for any O s t^ l .
P roof. It is sufficient to apply the three lines theorem [7, p. 520] to the bounded 

analytical function z^-A zt, (O sR e z S l) . (For a more elementary proof, see [17, 
p. 141].)

L emma 2. Let A be a positive selfadjoint operator and ^S /(A ). Then

ш1-щА^а2-\\т
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exists. It is finite or — °° and equals J log ).d(Ex^, f )  where J A dEx is the
о о

spectral resolution o f A.
P roof. By the spectral theorem

í - i (M ,/,€ i2- i m  =  /  o-
0

Using the monotone convergence theorem we have

/  i - i ( A ‘ - l ) d < U a € ,  { > 7 Г н Г f  log я а д  5, о

and the limit is finite. According to the Fatou lemma

f  log Xd(Exl;,Z)sz limsup f  t H A '-l) d(Exf  f)
•/ t-*-+ О

and on the other hand log A s t '(A'—1). Hence

/  f—1 (Ae — 1) d{Ex£, О т т г Г  /  lo g A d ^ ^ , 0-

The strong convergence of bounded operators admits an extension to self- 
adjoint ones. Let A„ be a selfadjoint operator (n— 1,2, ..., °°). Then A„-+Am 
strongly in the generalized sense if (J„+iA/)_1—(Jo.-1-iA/ ) -1 strongly for some 
A<ER\{0} ([20] VIII. 7).

P roposition 2 ([19, p. 312]). For selfadjoint operators A„ (n= l,2 , ..., °°) the 
following conditions are equivalent.

(i) exp (i7d„)—-exp ( / / d j  for every i£R.
(ii) f(A n) —- f{ A m) for every continuous bounded function f,

(iii) I f  A„ — J A dEx is the spectral resolution then Ex(a, b) —- E j(a , b) for

every a,b£jL — opp{AJ).
(iv) A„-+Aao strongly in the generalized sense.
Lemma 3. Let A „be a positive selfadjoint operator (n =  1 ,2 ,. . . ,° ° )  and f:  R + —R 

a function such that / ( 0) =  0 and f  is continuous and strictly monotone increasing on 
(0, + “ ). I f  A„-*A„ strongly in the generalized sense and Ker d„->-Ker Аж then 
/(d„)—/ ( d J) strongly in the generalized sense.

Proof. Let g= /|(0 , +  »). If 0 $ (a, b) then Z(e.»)/(^«) =  Z(e-1(e).e-1tt))(^») and 
in case of 0€(e, b) we have Z(a,b)/ ( d n)= ^ (ff-i(o)>e-i(l,))(dn) + Ker A„. When a, b$ 
$opp(A„) then g~1(a), g - 1(h) C<Tpp(dOT) and condition (iii) in the previous Propo
sition is satisfied.
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The relative entropy

Throughout this section s i  will be a von Neumann algebra with a normal 
faithful positive functional cp. We assume that s i  acts on a Hilbert space Ж and cp 
is given by a cyclic and separating vector £.

L emma 4. Suppose that co(a)=(aq, q) for some q£#f. Then the quadratic form
q: ac>-+o)(aa*) (a£si) and the conjugate linear operator S: a(i-+a*f (a£si) are
closable. Moreover, A —S* S is the associated self adjoint operator for the closure q 
o f q. (This means that 3>(All2) = <2>(q) and q(() — \\All2(\\ for (d&>(q)).

P roof. Introducing the operator F: af<-*a'*^ ( a f s i j  we have

<SaZ,a'0  =  (Fa’S ,a t )

and so SczF* and F cS * . Hence S'is closable and A —S*S  is selfadjoint. Now 
it is easy to see that q is also closable. ([9] Theorem 1.17, p. 315.)

Let £€£&(A). Then there is a sequence (a„f) such that an^-*(, a*i-^S(£Si(S*). 
In this case we have (^Sc(q). For p£3>(q), q(p)=(S*Sp, p.) and by Theorem 2.1 
on p. 322 of [9] A is associated to q.

The operator A=A(co, cp) is called relative modular operator by Araki [2].
An interesting consequence of Lemma 4 is that A (со, cp) does not depend on the
representing vector q. In Araki’s definition r\ is to be chosen from the natural posi
tive cone.

The relative entropy is defined as follows:

S(w,cp) = - l i m ot-i(\\A‘' 4 V - \ m -

This definition is essentially due to Uhlmann [25] who formulated it by means of 
a quadratic interpolation machinery. According to Lemma 2 it is equivalent to 
Araki’s form

S(co, cp) = -(log  A (со, cp)£, {)

where the right hand side is defined via the spectral resolution of A (со, cp).
T heorem 1 ([3]). Let si, cp and со be as above. Then for Ax,A2> 0  we have
(i) S (jxco, X2cp) = X2S(co, cp)—X2cp(l) logAi/Ajj,

(ii) S(co,cp) i=<p(l)[log<p(l)-logw(l)].
P roof, (i) is straightforward from the definition. To prove (ii) one can use 

Lemma 1:
t - H W A ^ V - i m  S  ; - 1(Ш 2(1- ,)М 1/2£1Г'-Ш12).

Letting t-+ + oo we obtain (ii).
The next result is due to Uhlmann ([25]). In the proof we try to exclude inter

polation theory as much as we can but we need Proposition 1 very heavily. We 
recall that a: six-^si2 is a Schwarz map if a (a) *a (a) = a (a*a) for every a£.six.

T heorem 2 ([25]). Let six and s i2 be von Neumann algebras with positive normal 
functionals cox, cpx arid co2, cp2, respectively. Assume that cpx, cp2 are faithful and
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(Pi(l) = <p2( l)= l.  I f  or. si1-*si2 is a unit preserving Schwarz map such that 
and w2°a —®i then

S(co2, (p2) cp,).

Proof. We may suppose that cp, is given by a cyclic separating vector 
(/=1,2). Since

< P a ( a ( a i ) * a ( ö i ) )  =  Р а И 0 * 0 ! »  S  cpfataf)

the formula Та1Ь>1=а.(аУ)Ь>2 (a^js^i) defines a contraction of into Жг.
For the relative modular operators A1 and A2 we have oji(aia*i ) = ̂ A]ii a f i\\2 

(a,£s/i,i=  1,2). Here ^ ^ is a c o re fo rd h 2 ( /= 1 ,2 , see[9, p. 331]). Let ^ ^ ( d ] / 2). 
Then there is a sequence suchthat /ll/2ű"<̂ 1->-dJ/2/i1. Since

IIА \ гТа” lii—A 2/2Töí ̂ il|2 =  co2 (a (a? -  aj") a (aj* -  a?*)) s  d ^ a í ^ J 2

we obtain that (АУ^Та”̂ )  is a Cauchy sequence. On the other hand T a 'lf^ T p ,  
and so T p ^ S fA y 2). Now we have infered that T2£(Af“)cz2 (A\12) and can apply 
Proposition 1:

t-ЩДГЪ112-|1<У2) ^ /-1(11«1Г-1Ш-
Taking the limit /-*-+0 completes the proof.

Corollary 1. I f  со2Шсо1 then S(co2, cp)sS(col , (p).
Corollary 2. I f  8$ is a subalgebra of s i  and cp0=cp\&, co0=co\^ then 

S(coo, cp0)^S(co, (p).
This monotonicity property of the relative entropy was proved by Araki [2] for 

special subalgebras.
If cp and со are states then S(co, cp) ^ 0 by (ii) in Theorem 1. When S(co, (p) = 0 

then S(co\ŰS, cp\iS)=0 for every commutative subalgebra. Hence cp(a)=co(a) for 
every a€sisa as it is known from information theory ([12]). Consequently, cp — co. 
A stronger result of this type is obtained by Hiai, Ohya and Tsukada.

Theorem 3 ([8]). ||<p — co[|2^ 2 ^ (со, cp).

Properties of the relative entropy

Let (p, со be faithful normal states of a von Neumann algebra s i. The following 
theorem shows how S(co, cp) can be expressed by means of the unitary cocycle 
[Deo, Dcp], ([6], [22, 3.1]).

Theorem 4. Assume that S (co, cp)<  +  «=. Then

S(co, cp) =  Hirnot- 1((p([Z)a>, Dcp],)-1).

Proof. [Dco, Dcp],=A(co, cp)uA (cp, cp)u and we have 

cp([Dco, Dcp],) = (A (со, cp)u {, {)
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since A {cp, cp)^ = f  Let J X dEx be the spectral resolution of A (со, cp). So
0

oo

r 1(cp([Dco,Dcp]t) - l )  = f  t-'(X u- \ ) d n (A) =
0

oo oo

=  f  /_1(cos(í logA) — J t~x sin (/ log A)d^(A)
о о

1 oo

where ф(А) = d{Ex£, <*). We take the integrals as f  + f  and apply the dominated
0 1 l

convergence theorem. The condition S(co, cp)< -f is equivalent to J-log Я ф (А )<
о

1

<°° so J t ” 1(cos(/logA) —1)ф(Я)-^0 ( |/—1(cos / log Я — 1)| = —log A) and
о

1 1  oo

J t -1 sin (t log X)dp(X) — J log Xdp{X). On the other hand, J X dp{X)< + °° and 
0 0 0 
we have

oo oo oo

J i_1(cos(ilogA) — l)dp{X) 0, J i_1 sin (i\ogX)dp{X) — J \ogXdp(X).
1 l l

The proof is complete.
Corollary. Let co1, cpx, a>2, срг be faithful normal states o f six and si2, respec

tively. I f  S(cox(3co2, cpx<g)cp2) is finite then

S{cox®co2, cpx®cp^ =  S{cox, cp^-\-S{oo2, cpfi.
Proof. Since [Dcox®co2, Dcpx®cpt]t—[Doox, Dcp{\,®[Dcot , Dcp2], ([22], 8.6) we 

can obtain the Corollary by derivation.
Let id be a subalgebra of s i . If id is invariant under the modular automorphism 

group of со then Takesaki’s theorem provides an co-preserving conditional expecta
tion Ea of s i  onto & ([23], [22, 9.1]). Denote сроЕш by <p'. With this notation 
we have

Theorem 5. Assume that cp, со are faithful and S(co,cp), S{cp',cp) are finite. 
Then

S{co, cp) = S(co\id, cp\id) + S(<p', cp).
Proof By the chain rule we have 

(*) [Dco,Dcp]t = [Dco,Dcp']t[Dcp',Dcp]t.
Here [Deo, Dcp']t=[Dco\3d, Dcp\3d]£id (see [22, 10.5]) and we apply Theorem 4. 
Let u„ v„ wt be the cocycles occurring in (* ). Then

cp (Mf) - 1 = ((v,z, 0  - 1)+«W,<ü, O - 0 + -1) i, O* -  OO- 
Since the last term divided by t tends to 0 as c —+0 we obtain the result.
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Theorem 5 generalizes Theorem 3.2 in [8] where it is assumed that co\£% is 
tracial. However, for the sake of perfect comparison we should admit that our con
dition on the finiteness of the entropies is slightly stronger than that in [8].

Let sé = sdx®sd2 and assume that co = co1®co2 and cp = cp12 are faithful normal 
states of sd. Now sdx and s i2 are subalgebras of sd under the natural identifications 
^ ! = ^ 2®С and sd2 = Q®sd2. There exists an co-preserving conditional expecta
tion E2 of sd onto sd2 satisfying E2(a®tí) — co1 (a) 1 ®b (E2 is called Fubini map
ping, see [22, 9.8]). Denote (Ри\^Ъу (pt (i =  l , 2). So for cp' in Theorem 5 we have

сp'(a®b) = (p(E2(a<S>b)) = c o ^ c p fb )  

and cp’—oo3®cp2■ Theorem 5 tells us that

Ф12) = S(co2, (p2)-\-S{(x>1®(p2, (p12)

provided that each entropy is finite. Therefore,

SCa»!®^, (p12) ^  S((o2, cp2)+S(co1, cpj

and we may call this inequality the superadditivity of the relative entropy. (When 
co1, co2 are traces then taking the negative we obtain the usual subadditivity prop
erty, see [18, 7.2.10] and [5, p. 273]). By the same method we can deduce the strong 
superadditivity.

Theorem 6. Let sd = sdx®sd2®si'3 and let <рпз, со be faithful normal states 
of sd. Assume that co=co1®co2®co3 and denote (p123 restricted to sd3, sd2, sd3, 
jdx®sd2, sd2®sd3 by tp, , cp2, cp3, (p12, (p23, respectively. Then

S(co, (p123) + S(co2, (p2) & 5 (0»!® ^, (pu)+S(co2®co3, <p23)

if  all terms are finite.
Proof. On the one hand

S ( c o , ( p 123)  =  (p12) + S ( a i j ® c u 2®  cp3 , cp123)  S  5 ( с и 1 ® с и 2 , ( р 12)  +  5 ( а ) 2 ® ф з ,  cp23)

and on the other hand

S(co2®cp3, <p23)+S(co2, cp2) = S(co3®co3, <p23).

We note that the idea of this argument is due to Lindblad [16] who proved a 
similar result for sdi—dS(3^’).

Finally, we treat some continuity property of the relative entropy. Araki proved 
that the relative modular operator A (со, cp) is a continuous function of со and cp: 
If and (p„-~(p in norm then A(co1, cp„)-+A(a>, cp) strongly in the generalized
sense ([3]). The continuity of the relative modular operator can be used to prove 
the lower semicontinuity in norm of the relative entropy ([3], 3.7).
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ON FUNCTIONS DEFINED BY DIGITS 
OF REAL NUMBERS

Z. DARÓCZY, corresponding member o f the Academy, A. JÁRAI (Debrecen) and 
I. KATAI (Budapest), member of the Academy

1. Introduction. Let p >  1 be a natural number. Let 9Jtp denote the set of all 
functions F: [0, 1)-*R for which there exist

fn- {0, 1, —1} — R («€N)
with the property

i l / „ ( f c ) l< + ~  (fe = o, l,n = l
such that

(1.1) F(x) = Zf„(e„(x)) whenever x€[0 ,1)
/ 1=1

where

( 1 . 2 )  J c =  2 ^  ( e „ ( * ) € { 0 , l , . . . , p - l } )
n = l  P

is the unique p-base expansion of x. Expansion (1.2) is named unique, if numbers
of the form so-called p-base rational numbers, have finite expansions (1.2).

P
(See for example Galambos [1].) Let

9Гр = {Е |Е Ш р, F(0) = 0}.

In this paper we shall study the properties of 9JIp. As the main result the 
following theorem will be proved:

Theorem 1. I f  p >  1 and q> 1 are relative prime numbers and F£9JlpП 
then there exist A,B£  R suchthat F(x) = Ax+ B whenever x€[0,1).

2. Reduction of the problem. Our investigations are made easier by the following 
two lemmas.

L em m a 1. I f  F£9Jlp then there exists an Ff_ 9Jlp for which

(2.1) F(x) = F(x) + F(0) whenever x€[0, 1).

P r o o f . Let F69Jlp. Then there exist functions

/„: {0,1, ...,p  —1} -«• R
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with the property

such that

where

2  l / - ( f c ) l < “  (/с =  о,  1 , . . . ,  р — i )

т  = 2 1 {/„(*. (*)) -Л (0)} + 2fn  (0)

Х = Ш0 — 1 Р

is the unique p-base expansion. Using F(0)= 2  fn (0) and writing
o = l

and

we get 

and

f n ( k ) f n ( k )  —fn (0) (к =  0, 1, . . . ,p - l )

f(x ) :=  2f„(e„(x))
/1 =  1

F(x) =  F(x)+.F(0) (x€[0, 1))

2 \fn (k ) \^ o o  (fe =  0, 1, ..., p — 1).

: o o  (fc =  0 , 1 , p - 1),

This means that F£M p and F(0) = 0, i.e. F£ .
Lemma 2. F€9JZ® i f  and only i f  F: [0, 1)—R,

n 0) = 0, i  |f(A]|0  =  1  I v  P  / |
and

(2.2) F(x) J f  Ш )
'•0 = 1 P > 0 = 1 \  P  )

for each unique expansion

*€[0, 1).
0 = 1 P

P roof. Let and x =  2 ^ - -  Then by F(0) = 0 and F ( Ц ^ )  =
0=1 P V p  /

= /л(« ,й )  (1.1) implies (2.2) with (& =  0 ,1, . . . , p - 1). Conversely,

if F: [0, 1)—R, F(0)=0 and (2.2) holds then for / n(A :) := F ^ ]  ()fc=0, 1, . . . ,p - l )

(1.1) is satisfied and 2  \fn(k)\<°° (& = 0, L . .. ,p  —1). This proves that F£9Jt°. 
/1 =  1

Equation (2.2) essentially says that the unique p-adic series expansion is addi- 
tively transformed by F into an absolutely convergent series.
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3. Elementary study of the cases p = 2 and q—3. Let F€ ©íj! П and let Qp 
denote the set o f/7-base rational numbers in [0,1). If л:£(0, 1) and jc (£ Q2, then 
e„(l — x)=  1 — b„(x). By Lemma 2 we have

(3.1) = :л

00 € (X)where x — 2! n̂ n • There exists an лг€(0, 1) suchthat x{Q 2U Q 3 and in the
/1=1 2

<5 ,Wexpansion x= 2  ->n n=1 3
implies

each S„(x) is 0 or 2. Then ő„(l — x)=2 —<5„(x) and (3.1)

(3.2, ^  =  F W  +  f ( l  - * )  =  J  { Fß= J £ )  ( ^ 4 ^ ) }  -  Í  f ( ^ )

Now let iV£N be fixed. Then there exists an x£(0, 1) for which x(tQ 2UQ3 and
Шin the expansion x=  2  m 

n — 1 3
each á„(x) is 0 or 2 if nAN, but <5N(x) = 1. By

<5„(;t)=2—<5„(1 —x)  we have öN( l — x )= l. (3.1) and (3.2) imply

•< = № >+f(l-*> = . I M ^ + K ^ ^ j + H i p r )  =
n^N

i.e.

(3.3)

=  ^ - F ( L ) + 2f ( ^ ) ,

Because of Q2n Q 3 = {0}, (3.1) implies by Lemma 2 and by (3.3)

(3 ,,  ,  .  , £ M 2 £ L )  -  F ( ± ) +F { j ± )  -  f ( T ) + i , # )  

for any N£N. Putting N —\ we obtain F ^ - j  +  2F ( y ) =y  ̂ Le.

(3.5)

Using induction, we get from (3.4) by (3.5) that =  Le. by Lemma 2

F(x) = f [ | ^ )  =  J  f ( ^ )  = Д<5„(*) f ( T )  =  J  = Ax.

This proves that there exists such that F(x)—Ax. Applying Lemma 1 we
see that Theorem 1 holds for p — 2 and q—3.
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This proof strongly relies on equation (3.1), which in the general case p> 2 
fails to be trivially satisfied.

4. Continuity properties of We shall prove the following result interes
ting also in itself.

T heorem  2. I f  F€9J1® then F is continuous at each point x6[0, 1 ) \Q P and 
right continuous at each point x£ Qp.

P ro o f . Let x€[0, 1) and e> 0. Since the series 2 a„ defined by
/1 =  1

k =  О I V P /I

is absolutely convergent, there exists an N£ N for which 
choose a natural number 0 = /< 7̂  for which

2  an«=N + 1
e
T Let us

S  X  <
J + l

If then the digits in the />-base expansion of у  are en(y)=en
for l ^ n S N .  This implies e„(x)—£„(y) if n = \,2 , Hence by Lemma 2

| F ( x ) - F ( y ) |  =  I  Í  f ( ^ )  -  J  f N £ ) |  = =
U=i  V P f  n=l \  p  )\

^  j  i d „ < £
n = N  +  l \  V P /  V P  / |  w=N + l

whenever -^4~gy<^~V . This means that F is continuous at x if (thatis,
p N p N p N

x$Q_), and F is right continuous at x if -4r=x6 Q .У piy У

R e m a r k . Theorem 2 is sharp in the following sense: There exists an F£9Jt° 
which is discontinuous at each point x£Q p, x>0. For example, the function

(4.1) F(x):=
n=l n 

°° e (x)defined by the unique expansion x=  2  „ has this property. This function is
n = l  P

an element of 9)1®, hence it is enough to prove that if x€Q p, x>0, then F is not 
left continuous at x. Consider therefore a positive p-adic rational number

'ÍS1 «.(*) , k + l 
Ä  P n +  P N

(fe6 {0, 1, p —2}).
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For K > N  put
.. к  i ,  p - 1" ' I  ^  V i ,  p -  ■

This monotone increasing sequence converges (from the left) to x, so if F were 
continuous at x we would have
(4.2)
(4.1) and (4.2) together imply

" v 4 ( x )  , k +

lim F(xK) = F(x).

z +-„ti n2 N 2 
and from this we get

1 -  lim f v 4 ( * K  к * p - П
i™  u-5 «2 + ^ 2 + « = ^ i «2 r

which is a contradiction.
5. The case of continuity. We shall prove the following result:
Theorem 3. I f  F £501° is continuous on [0,1), then there exists an A fR  such 

that F(x)=Ax whenever x£[0,1).
P r o o f . Let &€{0, 1, — 2} and let 1VFN be fixed. Moreover, let

* - i e„(x) fc +  1 
~ Ä  f  + PN

be the unique p-base expansion, and for each K > N  let

K' Á  Pn р" п Ж г P" '
Then Jim xK=x, hence (2.2) and the continuity of F  imply

= 1“  ^  "

= "i‘ f ( ^ ) + f ( 4 ) +  2  ?№ )■
Hence by

we have

(5.1)

в д = ; | ‘ f ( ^ ) + f (í ± í )

where A:= Z  F { ^ -)■„=1 V p /
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Writing k = 0 in (5.1) we get

Putting this back into (5.1) we see that

(5.2)
This implies

(5.3)

On the other hand, substituting k = 0, N = l in (5.1) and using (5.3) we obtain

u - F $ - f
Moreover, for k= 0  (5.1) yields

(5.4) F  ( p )  =  ^  J / M  =

Using induction on N, if =  for n<N  (this is true for и=1) then we
get by (5.4)

л-Ж
hence

’ (— 1 =  —  
pN’

By (2.2) we now obtain

=  2 ^ - = A x .
V/! = l P > n = l  V Í  /  Л = 1 P

6. The proof of Theorem 1. Let p >  1 and <7==-1 be relatively prime numbers 
and F£ 9ЛрП 9Ji(J. Then by Lemma 1 there exists an 9Лр П 9Л® for which

F{x) = F{x) + F{ 0) =  F(x)+B.

By Theorem 2, F is continuous if xr€[0, 1 )\Q P or if x€[0, l ) \Q g i.e. everywhere, 
because of QplTQ9={0}. Hence by Theorem 3 there exists an A€/R for which 
P(x)=Ax, i.e.

F(x) = Ax + B whenever x€[0, 1).
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R em a rk s , (i) There arises the question whether the condition (p , q)= 1 is 
necessary? In the proof we have used the fact that if x> 0  and x fQ p then x(-Q q. 
We shall prove that if (p, q)= r> \ then there exists an F£®i°n©i° which is not 
of the form Ax. One of the simplest examples is the function

(6. 1) F(x):=
if O s r < -  r

1 +x  if — ^  x <  1. r

Putting s:=— and t:=— we have here two cases: r r

If X— and , then =  — for each n£N, i.e.n = l P Г p pn Г p

F(x) = x =  Í ^ =
n=l P n = 1 V P '

S  G \ X )  1 SIf, on the other hand, x ^ —= — then by we get —---- fe—= —. More-r p p r p
over, = — if n= 2 ,3 ,. . . ,  and so

P r p

а д = 1 + *  = 1 + 2 ^  = 1 + ^ + М  = ^ ) + 2 ^ )n =  l  P P n =  2 P v  P t n — 2 v  P /

:£»W • . e.

which implies F65Di£. The proof of F£931° is quite similar: In view of
have only to replace л by Г and p by q.

On the basis of this example we may formulate the following result:

we

T heorem  4. Let p => 1 and q> 1 be natural numbers. Every F69Jip(TSWe is a 
linear function i f  and only i f  p and q are relatively prime numbers.

P roof. If (p ,q)= l, then F is linear by Theorem 1. If (p, q )^ \  then by the 
previous example there exists a nonlinear F£ 9Jip П .

(ii) The original problem can also be formulated thus: Let p > l ,  q>~ 1, F€931p 
and G£$llq. If F(x)=G(x) for x£[0, 1), what can we then say about F? Now 
this formulation makes it natural to ask: what can we say if F(x)—G(x) whenever 
x fS c[0 , 1) where S is a set having some given property?

T heorem  5. I f  (p,q) = \ and F 6 9Jip, G £93ie moreover S  is a dense subset of 
[0, 1) and F(x) = G(x) whenever x£S, then there exist real numbers A and В for 
which

F(x) = G(x) = A x+В whenever x€[0, 1).

Proof. By Lemma 1 F(x)=F(x) +  F(0) and G (x)= F(x)+G (0) where
F01l°p and 6F9J1“. By Theorem 2 the functions Fand G are right continuous,
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hence F and G are right continuous, too. This proves that 
F(x) =  lim F(s) = lim G(s) =  G(x).

S ix  Six
s e s  s£S

Using Theorem 1, we now get F(x) = G(x)=Ax + B whenever x£[0, 1).

Reference

[1] J. Galambos, Representation o f  real numbers by infinite series, Lecture Notes in Mathematics 
502. Springer Verlag (1976).

( Received November 30, 1983)

DEPARTM ENT O F  M ATHEM ATICS 
L . KOSSUTH U N IV ERSITY  
DEBRECEN 10, H U N G A R Y

DEPARTM ENT O F  N U M ERICAL 
M ETHODS A N D  CO M PU TER SCIENCE 
O F  THE L. EÖTVÖS UNIVERSITY, 
BUDAPEST, H U N G A R Y

Acta Mathematica Hungarica 47, 1986



Acta Math. Hung. 
47 (1—2) (1986), 81— 87.

RANDOM GRAPHS OF BINOMIAL TYPE 
WITH SPARSELY-EDGED INITIAL GRAPHS

A. RUC1NSKI (Poznan)

I. Introduction. Erdős and Rényi [1] have considered a random graph K„iP 
obtained from the complete graph Kn by an independent deletion of each edge 
with probability 1 —p, p=p(n). They have shown that for a given balanced graph 
H  with к vertices and / edges the function p=n~k,t is such that Prob (K,up z> I I ) -*■0 
if p/p —0 and tends to one if p/p-+°° as

Later Schiirger [7] proved a similar result dealing with a random square lattice 
on n vertices Ln>p. It says that for every graph H  with / edges which can be embedded 
into a square lattice L„ the function и-1/! is a threshold for the event {LnpzjH} 
in the above sense.

In this paper we show existential and distributional results about small sub
graphs of a class of random graphs, which will follow from a general theorem proved 
in [6]. Moreover, in Section III the distributions of vertices by degrees are given 
and in Section IV the probability of connectedness and the orders of components 
of random graphs are considered. We will generalize and sharpen results of [2], 
[3] and [7].

Throughout this paper we will write V(G), e(G), a{G) and A (G) for the set of ver
tices, number of edges, number of automorphisms and maximum degree of a given 
graph G, respectively. The notation Z„~*Po(A) and X„~+N{0, 1) means that a 
sequence of random variables Xn, и =  1,2, ... , has asymptotically (as «->•“ ) the 
Poisson and standard normal distribution, respectively. Moreover EX  denotes the 
expectation of a random variable X  whereas Var X  stands for its variance. For 
convenience we shall write f{rí)~g{rí) if f(n)/g(n)-+l as We say that
an event A„ holds almost surely (a.s.) if Prob (A„)--l as n-+°°.

A d-dimensional lattice Ln(d), <7 is 2, is the graph with the vertex set 
{(vq, ..., xd): 0^X i = n — ], x t are integers} such that there is an edge between

d
(*x, ...,xd) and ( л , . . . ,  yd) if and only if 2 1  T;-*il = T The graph Qn= L2(n)

i = 1
is called an n-cube. We will denote by L[l), i= 3, 4, 6 the triangular, square and hexa
gonal plane lattice on n vertices, respectively.

Let {ING (и)} be a sequence of graphs on n vertices and suppose that each 
edge of ING (и) is independently deleted with probability 1—p, р=р(и). 
Actually, we have a sequence of probability spaces (C#„, Pn), where rSn is the family 
of all spanning subgraphs of ING (n) and for every Gd/dn,

P„(G) =  pe(G)( l - p ) e(ING("))_e(G).
Such a random graph is denoted by INGp (n). (More correctly INGp (п) = (У„, P„).) 
It is natural to call the graph ING {rí) the initial graph of a random graph INGp (и).

6
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We will say that/(/?) is a slow function if for every e>0, f{n) = o(nl). (In particular, 
/(и) = 0(1).) The name of sparsely-edged random graph we restrict to random graphs 
for which e(ING (/j))/|F(ING  (n))| is a slow function.

II. Subgraphs. First, let us recall a general theorem which was proved in [6]. 
For a given graph F, V (K )= {i\, .... vk} we call a graph F with F(F)={ j1, ..., 
a copy of К  if the bijection , z =  l, ..., k, is an isomorphism between К  and F.
Let us denote by bn(K) the number of ^-element sequences of vertices of ING (n) 
which induce in ING (и) a subgraph containing a copy of K.

Let Я  be a given connected graph with к vertices and / edges. A graph iso
morphic to Я  is called a H-graph. Denote by rH a sum of r disjoint Я-graphs and 
by Жг any other sum of гЯ-graphs. Finally, let Xn = X„(H) be the number of 
Я-graphs contained as subgraphs in INGP (n).

T heorem  1. Let Then
(A) i f  bn(H)p1̂ 0 then Prob (X„>0) =  o(l),
(B) i f  b„(H)pl-+c>-0 and for every r= 2,3, ... b„(rH)~brJH ) whereas 

Ьп(Жг)ре(жЬ = о(\) then X„ Po (c/a(H)\
(C) i f  bn(H)pl-~oo and bn(2H)~bl(H) whereas Ьп(Ж2)р«*Ь=о(Ъ2п(Н)р21) 

then Prob (X„ = 0) = о (1),
(D) i f  bn(H)pl-+°o and for every r= 2,3, ... bn(rH )~brn(H) whereas

ьпт к ( Ю р е̂ )+г1 = o(i)
then (X„ -FZ„)/(Var Z„)1/2 —  Щ0, 1).
Now, we shall show that for random graphs with sparsely-edged initial graphs 

the conditions of Theorem 1 can be considerably simplified.
Let us introduce a sequence of initial graphs ING (n) with F(lNG(u)) = 

= {v1, . . . ,v n} suchthat A (ING (и)) is a slow function. For every connected graph 
Я  with к vertices and / edges denote by Qt=Qt(H) the number of (k— lj-element 
sequences (s2, ...,$*) of vertices of ING (и) which together with the vertex vt 
as Si induce a subgraph containing a copy of Я  in ING (n), / =  1, ..., n.

. n
T h eorem  2. Suppose that {/: £?, = (), z = l, ..., n}\ = o(ri) and denote p= pl 2  Qi-

i =  1
Then, as и->-«>,

РгоЬ(2Г„>0)-{° *  Xu —  Po (с/a (H)) i f  p -  c >  0
and

(Xn—EX„)/(Va.T X„)112 Я(0, 1) i f  p —
but p is a slow function.

Proof. First, we shall show that 
(1) bn(rH) ~  brn(H), r = 2 ,3 ,. .. .
Note that for every sequence (ax, ..., a„) of positive numbers the inequality

(2ЧУ-i = 1 2 a; . a, s
it.-c 2  Я.-Г2 2  «?i =  l  i — 1

/lefa Mathematica Hungarica 47, 1986
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holds. In our case bn (H ) = 2  Qi> so
i = l

о  s  tra(H)-b„(rH) ^  ( 2 )  К-ЦН) I  ef .

Since i f  is connected, i =  l, Therefore

2  вУЬКЮ =£ nd27 ( « - o («))2 =  o(l),
1 = 1

because A2k is a slow function. The statement (1) is proved. For every graph Жт 
let us denote by v and со the number of vertices and components of Жг, respectively. 
Then

bn (Жг) = О (n<°Av- '“) and e (Жг) ^  lco + 1.

So, if p is a slow function then
Ь„(Жг)р«*г) =  0(f(n) n~1/l),

where /(и) is also a slow function. Thus all assumptions of Theorem 1 are fulfilled 
and Theorem 2 follows.

n
Note that now the function p —( 2  is the threshold for {INGP (ri)z>H}

i = 1
and that p=n~1/lf~ 1(n), where f(ri) is a slow function (compare with mentioned 
results of [1] and [7]).

E xamples. Let ING (ri)=Ln(d). We are interested, for instance, in the dis
tribution of d-cubes Qd contained as subgraphs in a random graph Ln p(d). Notice 
that in this case

b„(Qd)/a(Qd) = ( n - lY .

So, putting p = cn~ll2d~1, it follows from Theorem 2 that P o (cd2“~').
Now let ING (и) =  Q„. Then

K(Qä)/a(Qd) = ( j)  2"-"

and putting p = c(nd2n)~1ld2d l we obtain also that X„(Qd)^*  Po (cá2d-1). In fact, 
we confirm a speculation on the threshold for small subgraphs of a random и-cube 
given by Erdős and Spencer in [2].

III. Vertex degrees. In such a general approach almost nothing is known about 
the parameters but in particular cases. The most obvious one is when we put 
H = K lth the star with / edges. Then Qi(Khl) = (di)l=di(di — l)...(di — l+ \), where 
d{ is the degree of the vertex vt in ING (и). Note that a star K1>t corresponds to a 
vertex of degree / in a graph if there are no bigger stars in it. The next result deals 
with vertex degrees in a random graph INGp (и) which has an almost d-regular 
initial graph, i.e. when |{i: di9£d}\=o(n) and A (ING {n))~d.

T heorem  3. Let Y {nl) denote the number of vertices o f degree l in a random graph 
INGp (и) with an almost d-regular initial graph ING (и), 1=1, 2, ... and let d—d{ri)

6* Acta Mathematica Hungarica 47, 1986
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be a slow function. Then, i f  p = c((d)ln)~1/l then Y„(i) Po (cl/ l !) for Z> 1
and Уя(1)/2~*-Po(c) for 1= 1; if p = fin)((d),n~1/(), where /(и ) -» 00 z'j  a .s/ovv 
function, then (Yf> - E Y (f  )/(\ar Y f ) 1/2̂ N ( 0 ,  1).

P r o o f . In the first case p-*cl whereas in the second one p -+ ° °  and i t  is a slow 
function. Moreover a(K1f)= l\  and for every /> / p 0, so Y f  =Xn(Kl l) a.s. 
and the statement follows from Theorem 2. (For 1=1, Yj,1} =2V„(if2).)

E x a m p l e . Let us return to the «i-dimensional random lattice Ln< p(d) and put 
p=cn~d/l. Vertices of degree 2d in Ln(d) are called inner vertices. We can restrict 
ourselves only to the random variable Y„(i) which counts inner vertices of degree /
in Lnp(d), because E (Y <nl) — Y„(,,) = o(l). So we have Yn(I> Po 1=2, 3, ...
..., 2d. On the other hand, considering a random graph L nA_p(d) as a complement 
of L„iP(d) in Ln{d), it is obvious that if p = l —cn~dl1 then Y,(,2d~l) Po >
1=2, ..., 2d. So, the results we have obtained are very complete, because they cover 
all 1=0, ..., 2d. Replacing the constant c by a slow function we change
the Poisson distribution of У„(,) to a standardized normal distribution. All these 
above results agree with our intuition that for every 1=1, ..., 2d—\ the number of 
vertices of degree / increases first and then decreases in the process of evolution of 
a random (/-dimensional lattice (for the notion of evolution see [1]). For d= 2, i.e. 
for the random square lattice these results were observed by Z. Palka and L. V. 
Quintas (a personal communication).

IV. Components and connectedness. In this section we will consider the order 
t]1 of the largest and the order rl2 of the second largest component of a random 
graph INGP (n) as well as the probability of connectedness. Theorems 4—7 
below cover not necessarily the same class of random graphs but all of them deal 
with sparsely-edged random graphs and all of them can be applied to random 
plane lattices.

Denote by r k(v) the set of vertices lying at the distance at most к from a given 
vertex г; of ING (n) and put B(k)= max |Г*(г»)|.

t;€ F (IN G O O )

T heo rem  4. Suppose that d = d (lN G  («)), p--p(n), k=k{n) are such that 
n{{A -\)p )k=o{\). Then zh(lNG„(«))=££(&) a.s.

P r o o f . The probability that there is a path of length к in INGP (n) is 
0(n((A — l)p)k) = o(l). Consider the largest component S  of ING;, («) and the 
longest path P in it. Then |5 |s 5 ( |P |)  but the length of P is less than к a.s. Thus 
the proof is complete.

Note that, in fact, the above theorem is practically useful when ING (n) is a 
sparsely-edged graph.

C o ro lla ry  1. (a) I f  p=o(l/n) then rh(Q„,!,)=o(2") a.s.
(b) I f  1 /(2(/ — 1) then (Ln>p{d)) = 0 ((log n)d) a.s.
(c) I f  1/((/,—1) then r)y{L fp) = 0({\og n f) a.s., where /= 3 ,4 ,6  and 

(/4 — 4, (/g =  3.
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P r o o f . Put k= nlf, where f —f(n)-+°° but f —o(\/np). Then the assumption 
d3=6, of Theorem 4 holds and

m(Qn,P) ^  m  = i  (") ^  k (e f f  =  o(2").

Let us estimate В (к) in the case of L„(d). It is easy to show that B(k) is equal 
to the sum over / running from 0 to к of the numbers of integer solutions (xl5 ..., x,;)

Ad+кЛof the equation 2j W  =  /. This sum is less than 2d jc )■ So, putting k — c log n
(c is large enough) we arrive at Statement (b).

Finally, notice that for lattices L (nl\  /= 3,4,6, if k=k(ri)^-°° then B(k) = 
= 0 (k 2) and the proof of (c) follows on similar lines as (b).

Let us concentrate now on the order of the second largest component of 
ING;) (rí) in the case when ING (rí) is a plane lattice.

T heorem 5. I f  p > (i —2)/(i— 1) then r]3(L^ p)= 0 ((\ogn)i) a.s., /= 3 ,4 ,6 .

Proof. Note that each minimal cutset of Z,® has either 0 or 2 common edges 
with a given face and therefore edges of any minimal cutset can be ordered in such 
a way that any two consecutive edges belong to the same face. The probability of the 
existence of such sequence of clog« edges in Ь („‘\ _ р is 0(n((i—1)(1 — p))cloen')— 
= o(l) for c large enough. Thus our random process of deleting edges from Z.® 
can only cut out a component of L®, of order О ((log nf) a.s., /= 3 ,4 ,6 .

Let us return to the parameter in the case when A (ING (??)) = 0(f).
T heorem  6. Suppose that A —A (ING (n))=0(l) and p is fixed, i.e. p does 

not depend on n, 0 < p < l .  Then
lim rj,(ING.(rí))In < 1.

P r o o f . Suppose that the above limit is equal to 1. It means that there is a func
tion f —f(rí)-*°= such that r\x=n — nff. But the probability that JNGf) (n) has a 
connected subgraph of order n—n /f is, based on the inequality (5) from [5], at most

[nnlf) ( l  - ( l - p y y - V f  = 0(1).

The previous result implies that a random graph INGp (rí) with small 
4(lNG(n)) becomes connected just when p=p(rí)-+1. The following theorem 
sharpens this fact for a special class of random graphs. Denote by f  the number of 
cutsets of ING (rí) which have exactly i edges not all incident to the same vertex, 
/ = 1, 2, . . . .

T heo rem  7. Let ING (rí) be an almost d-regular plane graph with F edges in 
the largest inner face. Suppose that F is a slow function, d is fixed and f  = o(ni,d), 
/=1, Then for p —\ —cn~1/d

Prob (INGp (n) is connected) exp (— cd) as n -» °°.
P r o o f . First, we will prove that besides a giant component there are only 

isolated vertices a.s. Similarly as in the proof of Theorem 5 it is easy to show that
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the probability of disconnection of ING (и) by deleting a minimal cutset with more 
than d edges is o(l). Thus the probability of disconnection of ING (и) in another

d
way than isolation of a vertex of degree d is 0 ( ^  f { \  — p)')=o(l). To complete

i =  l
the proof it is enough to observe that the number of such vertices in INGP (n) 
is the same as the number of vertices of degree d in IN G ^p (и). So, applying Theo
rem 3 we arrive at the statement.

Corollary 2. Let /= / ( « )  — °° as и—®, Then

Prob ( Z ^  is connected) —
0, i f  p = 1
exp (— cd0, i f  P — 1 — cn-Wt,
1, i f  p = l - f - 1n - 4 \

i — 3, 4 ,6, d$ — 6, d4 — 4, dß — 3.
Comment. The results of this section confirm (compare with [1], [2]) that in 

the process of evolution of a random graph INGP (и) first (when p is small) there 
are only small components. Next, the largest one grows more and more and orders 
of others decrease. If p is large enough (1/2 for Q„,p, 1 —c/n for L [f p) then there 
are only isolated vertices outside the largest component and finally (see Theorem 7) 
INGp (n) becomes connected.

R emarks. Theorem 4 and 5 were proved in [3] for L f f  Let us notice that 
Fiiredi’s statement (a) of Theorem 2 ([3]) can not be deduced from his proof, because 
the information about the order of the second largest component does not imply 
that we have a giant component in Lffp. We have to mention also that Theorem 7 
for L ^ p was proved independently in [3] and [4] and the methods of proof in 
Section IV are mainly those of [3].

Let i>GF(lNG («)). A simple observation that INGP (n) is disconnected if and 
only if there is a component in IN G P (n) not containing v leads to a generaliza
tion of Theorem 7 over such initial graphs ING (n) that ING (n)—v is an almost 
^-regular plane graph. Thus, in particular, Theorem 7 can be applied to wheels 
W n—vXC„. Finally, let us point out that some stronger results about the largest 
and the second largest component of L (f p, with proofs involving percolation theory, 
can be found in [8].

Acknowledgement. I wish to thank the referee for drawing my attention to the 
paper of Grimmett and W. Kordecki and Z. Palka for valuable comments.
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ON DISPERSION AND MARKOV CONSTANTS
V. DROBOT (Santa Clara)

Let {x„} be a sequence of numbers, 1. H. Niederreiter in [3] introduced
a measure of denseness of such a sequence as follows. For each N  let

dN — sup { min
O S x S l  11S«SJV

and put -D({*„}) = lim supw NdN. In particular he carried out investigations of 
sequences of the form x„=n$(mod 1) for irrational 9’s. For such a 9 he defined 
the dispersion constant by /9(,9)=7)({u9(mod 1))). It turns out that D (9)<°° 
if and only if the continued fraction expansion of 9 has bounded partial quotients. 
Moreover if ifi and ifi are equivalent, then D(91)=D(92). (Two numbers are called 
equivalent if their continued fraction expansions coincide from some point on.) 
He also shows that if 9 is equivalent to ifi =  (l +  /5)/2  then Z>(9) =  (5+3 (5 )/10 =  
=  1.170..., if 9 is equivalent to 32 = / 2 then D(9) = (l+ ^2 )/2  =  1.207... and if 
9 is not equivalent to either ifi or ifi then 7+ (■+)=3 — (3 =1.267.... Thus the dis
persion spectrum D, i.e. the set of all possible values of D(9), contains gaps. Niederrei
ter also identifies another gap in D: ((l + /3)/2, (13 + 7 ]/13)/26) =  (1 -366..., 1.470...). 
All this suggests an analogy with Lagrange (or Markov) constants and Lagrange 
spectrum. For each irrational 9 the Lagrange (or Markov) constant is defined by

M (&)_1 =  lim inf„ n I n9\\

where || 11| denotes the distance from t to the nearest integer. The Lagrange spectrum 
L is then the collection of all possible values of M(9). (The set L has lots of gaps 
like those above; for an extensive description of these see [1].) In particular Nieder
reiter asks whether M (fi)<M (ifi) implies D(91)<D(92). The purpose of this 
paper is to show that this conjecture is not quite true, in fact if

*  =  323 + /9 50 629 =  1>3957_

92
96 228 962 +  ]/10015935 143 166740 

27 494036 7.14004...

then M(91) =  9.2857..., M(92) = 9.2498... , and D(ő1) =  2.8276..., D(92) = 
=2.8394... . The peculiar nature of the numbers ifi and 92 will be explained later.

The constants M{9) and D{9) are however closely related through the fol
lowing theorem.
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T h eo rem . For every 9 we have

(1) i(M (S )+ 2 )  S D ( S ) ä {  ( В Д + Щ  +  2) •

Thus, generally at least, the values of D{9) tend to increase with M (9). Before 
proceeding with the proof we introduce some notation. For any number 9, its con
tinued fraction expansion

9 = Co(3) + - i ^  +  - 1 •+ . . .
C i ( P )  c 2( 9 )

will be denoted by
S =  [c0(9), c,(9), c2(3), ...] =  [c0, c„ c2, ...].

We set
Ш  ’  ^ i  — 3 . 9  ^ i  — 2  5 • • • 9  A i & )  A I  [ ^ i  +  1 ?  ^ i  +  2 9  Ci+ 3 9  * '  * ]  9

F i ( ß )  = H i  = [0, ci+2, ci+3, ...] =  At — ct+1, M t(9) = Mi = A i + A i  = X i + c i + 1 + F i -  

As usual we put q -x — 0, P - ,=  1, q0= 1, Po = ̂ 'o and

Pk +1 ”  ci  + lA + A -l>  Чк + l — ck+l4k +  4k-l-
We also set 6k = {— \)k{qk9 — pk)= \qk9 — pk\. The following are standard facts about 
continued fractions:

k+1“ [ '% 1] ’ Чк0к~ Ж ’
Чк- 1 
Чк

-  A l

where [.] denotes the greatest integer function. For all this see [2] chapter 3, for 
instance. With this notation we know that the Markov constant M{9) is given by 
M($) = lim supfc Mk(9).

The following identity will be used repeatedly

(2) = Mj
M ,

or 1 l-A:
M i-,

This follows immediately from

- +  ■

Mi •

-1) ci + 2»- ]  =
1--- -1 1 А;+Л;
A; + Л, А(Лг

For each 9 and each i we also introduce the quadratic polynomial

Фi(x,9 ) =  Ipt(x) =  - ^ - { - х 2 + ( Л г - Я г - 1 ) х + Л ( ( 1 + Я , ) } .

The polynomial iA,(x) assumes its maximum at the point 1) and the
value at this point is given by

(3) *,W = j(M ,+ A +2)
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as can be easily checked. If щ is the integer which is closest to xt then |х,-и,| S y  and

The proof of the theorem consists then in showing that

(5) D(9) = lim sup;
for it is clear that (3), (4) and (5) imply (1).

We recollect now some facts regarding the distribution of the sequence 
n9(mod 1). These results can be found in [4]. We denote n9(mod 1) by {n9}. 
For each fixed n let 1 ^ a nS n  besuchthat {a„9} is the smallest among {9}, {29}, ... 
..., {n9} and let 1 SbnS n  be such that {bn9} is the largest. Put an= {an9} and 
ßn= l — {bn9}. The interval [0,1] is then divided by {9}, {29}, ..., {и9} into (n + 1) 
subintervals as follows: n + l  — an of them are of length a„, an+bn—(n+1) of 
them are of length <x„+ßn and n+ l-b„  of them are of length ßn. Notice also 
that the left-most subinterval has length a„ and the right-most interval has length 
ßn. One can actually find an, bn, a„, ßn in terms of continued fraction expansion of 
9=[c0, clt c2, .. ]. Given n to find a„ and a„ set
(6) n = q2m + rq2m+1+s, 0 S r <  c2m + 2, 0 S  s <  q2m+1 

so that </2m—и < ^2т+2- One has then
(7) an = +  г#2т + 1> an =  2̂m — r 2̂m + l ■
To find b n and ß „  we express n  as
(8) n =  q2m-i + uq2m+v, 0 S  u <  d2m+1, 0 =2 v <  q2m 
so that q2m- 1-^n ^q 2m+j. We have then

(9) b n —  +  ßn —  ^2m-l —м̂ 2т-

We are now ready to prove (5) and hence the theorem. First of all it is clear that 
one has Z>(9)=lim sup„ (n + \)dn since plainly dn~*0. The equation (5) will then 
follow from
(10) Max (/i + l)d„ = Max фк(Ь)

We break the proof into two cases, depending whether к is even or odd and present 
the detailed arguments only in the even case, the case of к being odd is completely 
analogous. Assume then that k=2m  and q 2 m — и < #2т+1- To establish (10) we 
show that for each n in this range one has

for some O á íx c ^ + i ,  and conversely, for each such b there is a corresponding 
n for which the equality holds in (12). We break up the interval [q2m, q2m+1) as 
follows

and
( 1 1 ) 0 S  nk <  ck+1.

( 12) (Л + 1R  = 2̂m(*>)
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Case I. q2m — И < q 2m- l  -b 4zm-
Case II. q2m- 1 + bq2m Ш n <  92m-i+(b +  l)g 2m, f> = 1, 2, c2m+1-  1.

In case I a„=<52m_i, ß„—S2m (see (6)—(9)) and the largest value of d„ occurs when 
v= 0  in which case dn = S* ,-1 or when x =  1 in which case dn m or when
xis a midpoint of one of the intervals of length <xn+ßn, in which case c/n= y  (oe„+/!„).
Since a„<ß„ we see that for n in this range dn = d2m-\ and the largest value assumed 
by (n+\)d„ is for n + l= q 2m- i  + q2m, that value being

( q z m - l  + q z m ) ^ 2m - l
_1__  1 1

M2m -1 J-2m M2m-1

= [ 1 +  ”  "7 7  Л2т (1 +Я2и) -  lA2m(0).

(Equation (2) was used here to deduce the second equality.) In case II, for each 
fixed 1 s=b<c2m+1 we get a„ =  <52m, ß„ = ö2m- 1 -b ö 2m. Since b<c2m+1, д2,п^ г-  
—bd2m>82m so hence d„=ßn and the largest value assumed by (n + ])d„ is
when n+ 1 = q2m-i+ (b+ l)q2m, that value being

(qzm -1 +  (b +1) q2m) (<52m - 1 — bi52m) =

Mom
1 1

I 2m M 2m-i -b(b + 1) Ms2m
Replacing M 2m_x by the expression from (2) this quantity becomes

"77—{—Ь2+(Л2т—12т—\)Ь+ Л 2т(1+12т)} — Iß2m(b).
ivl 2m

Thus for q2m̂ n < q 2m+1,

(n + \)dn Ш \ß2m{b) for some 0 ^  b <  c2m+1

and for every such h there is an n for which the equality holds. To complete the 
proof we must show that the maximum on the right hand side of (10) does not 
occur for h = c 2m+1, or what amounts to the same thing we must show (11). How
ever n2m̂ x 2m + — and *2m =  y  (c/2m fi + /i2m- ; . 2m- l )  so (11) is equivalent to d2m+1+ 
+V2m -hm < 2d2m+i or Jti2m-A 2m« f 2m+1 which is clear since /r2m< 1, A2m> 0  and 
d2m+jS l.  The left inequality of (11) follows from n2m̂ x 2m—— in the same way. 
Thus the Theorem is proved.

The inequality (1) is actually the best possible in the sense that both 

(13) Z>(3) = i(M (S )+ 2 )
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and

(14) D(ß) = +
can occur. Indeed consider

9 =  [11...1 A 11...1 A 11... 1 A...], A >  3
ml m2 m3

where -*■ <=°. It follows from the proof of the Theorem that for A

odd, xt— 0, thus (14) holds and for A even (а?;—иг|—тр  thus (13) holds.
The equation (10) can be used to calculate the values of D{S) for quadratic 

irrationalities 9, i.e. those S’s whose continued fraction is periodic. If 9 has a con
tinued fraction expansion 9 — [c0, c\, c2, cp_J  where the bar indicates the 
period, let

Áj [0, Cj, Cf_j, •■•], ЛI [ct, c j f. I , Cj 4.2, •••], Nt i Áj-\-Aj

where the sequence c0, clt ..., cp_x is extended periodically in both directions. 
As before put

fc(x) =  -=7 { -х2+(Л;- 1 ;-1)л:+Л;(1+!,)},

.Xj =  у  (Л; — I, — 1), и,-= the integer closest to x;.

It is evident that D(9)~ Max |//;(«;)- The calculation of £>(9) can now be easilyO^i^p — 1
accomplished using this identity. The numbers .9, and 32 mentioned at the beginning 
of the paper are

9, =  [1,2, 1,1,8, 1,2, 2, 1], 92 = [7, 7, 7, 9, 9, 9, 7, 7, 7].
It would be interesting to find examples with shorter period and/or smaller continued 
fraction digits.
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EMBEDDING AND COMPACTNESS THEOREMS 
FOR IRREGULAR AND UNBOUNDED DOMAINS 

IN WEIGHTED SOBOLEV SPACES
S. SALERNO and M. TROISI (Salerno)

Introduction. It is well known that embedding theorems, due to Sobolev, 
Gagliardo, Nirenberg, and compactness theorems, due to Kondracev and Rellich, 
for the classical Sobolev spaces, essentially require that the domain is bounded and 
verifies the cone property.

Consequently, a large amount of work has been carried out by several authors 
to weaken these assumptions, often in the more general context of weighted spaces.

Typical results (cf. for example Avantaggiati [2], Benci and Fortunato [3], 
Matarasso and Troisi [8]) ensure the compactness with rather weak assumptions, 
fulfilled, for instance, by cusps on the domain, when the embedding is already 
known and using weights infinitesimal in the singular set and to the infinity. In 
this way, unconditional results are in particular obtained for unbounded domains 
which verify the cone property. For other results in this direction, but with regard 
only to the unboundedness of the domain, we refer to the works of Berger and 
Schechter [4], Edmunds and Evans [6] and to the book of Adams [1].

In this type of results, the weights often play the role of balancing irregularities 
of the domain. Our purpose in this work is to further investigate the correlations 
between irregular domains and weights. We obtain embedding and compact embedd
ing theorems with the same exponents of the theorems of Sobolev. As a consequence, 
we reobtain some results of Adams [1], Benci and Fortunato [3], Berger and Schech
ter [4], Edmunds and Evans [6], Matarasso and Troisi [8], Muckenhoupt and Whee- 
den [10]. We also obtain rather precise results for a class of domains, including 
cusps, having simple geometrical properties. We point out that the embedding 
with the Sobolev exponents without weights fails also for the simplest types of 
cusps; in this direction, Campanato [5] obtains embedding theorems with optimal 
exponents, depending on the irregularity of the domain.

We take the pleasure to thank Prof. L. Carbone for the helpful discussions on 
the subject.

Let Í2 be an open set of Rn and let {(3;};ел, be a family of bounded open sets, 
contained in Q, which covers Q and fulfils the finite intersection property, and such 
that every Q t verifies the cone property, with cone of height ht and aperture в , 
в  independent of i  (see Part 3). We call “weight function” on Q  every measur
able function a: Q—R + a.e. positive in Q. We set

1. Notations and statement of the results

( 1 . 1)
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Let us point out that (1.1) defines a norm if and only if a is a.e. positive in Q. 
We denote by LP(Q, a) the Banach space of the functions и defined on Q such 
that u\nf /Т (Д ) and ||M||iP(n>(7) is finite, equipped with the norm (1.1), and with 
W;0'Pi(Q ,a,ß) the Banach space of the distributions и on Q suchthat u£LP0(Q, a) 
and Dyu€Lpl(Q, ß) for |v |= r, equipped with the norm

( 1.2)

We also set 
(1.3)

11 w r„ „ (П, x, fl)PO,PlK ’ I ^4 LPe(i2, a) ^ . 2  ^ ' U ^LPi(.n, PY

№Г<Р1(п,р) 2  « ß v«ll
| v |= r

LP\(n ,ß) ( f ß (x) \D zu \ ^  d x y lf'. 
n

Let a, ß, у be weight functions and Q. a, О measurable nonnegative functions and 
define
(1.4)

(1.5)

( 1.6)

(1.7) 
where

( 1.8) 

(1.9)

Nr,,,r ( e .  ß )  =  l e l f . n k k n ,

{ x (  q z Po'o )  1-1 1
V  й  ’ 10 + 1 '  1 N 4 ( a - 1 , yQ“, ß i ) f ,  „ ’ f0 » x *Po

f  A (  qx \  1
N\{M) = sup \ h. '  t_i •r+ i'N , (ß~ \yQ 4, ß ;)[,

i^M n * ’ T JPi

N0 = N0(l), N ,=  N,(1),

K i P ,  P o )  = - { | f c | P  +  n \ ~ — !)}’

Кl ip , Pi) = Pir- \ k \ ) - n ^ ~ - l j .

Our main results are the following:
Embedding Theorem. Let r£ N +, к a multiindex, \k\<r and

( 1. 10)

( 1. 11)

with

( 1. 12)

\k \ S  a <  1,

T — i L ^ a [ ± J Ü ± ^ l ] H 1 - a)± h ± L + K ,
q \P i h n) p0 tQ n

1
P i - 1

l < l S + i

Then the following inequality holds:

(LIB) m ku\L4n,y) -  C{ W0||M||tP„№(t)+ N'0— N t \и\щ П а) \V
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Compact Embedding T heorem. With the notations and assumptions o f  the 
Embedding Theorem, suppose also that a> 0  and

(1.14) iV0 + iV1< + - ,

(1.15) lim N0(M ) =  0.Af + °°
Then the operator

ufW'P0tPi(Q, a, ß) -  QDkueL“(Q, y)
is compact.

The sequel of the paper is organized as follows: Part 2 is devoted to the proof 
of the theorems stated above; Part 3 examines the decomposability of the domains, 
and the relation with the functions

h(x, в) =  sup (r£(0, 1]|3 a closed cone of vertex x, aperture в and height r, 
contained in Í2},

hj (x, 0) =  sup {r£(0, 1]|3 an open cone of vertex x, aperture 0 and height r,
contained in Í2},

Moreover, we give in Theorem 3.14 an explicit formulation of embedding and com
pactness results in terms of a, ß, у, Q,h(x, 0) for a class of domains not verifying 
the cone property; in Part 4 we shall show that this class includes cusps.

Part 4 applies the results obtained before to cusps, evaluating the order of 
magnitude of h(x, 0) for these domains. Finally, we also consider a case in which 
the weights “explode” on an unbounded domain of small measure.

2. Proofs

In the sequel we shall denote by С, C ' and C; some constants.
Lemma 2.1. Let Qh be an open set which verifies the cone property with cone of 

height h and let p, p0, p fi[\, +°°), r£N, k £ N n, a£p^-, 1 j such that \k\<r and

Then we have

1— s  a 
P

1 ~a  | \k\
Po n '

(2.1) J  \Dku(x)\p dx Ш C Po)( J  \u(x)po dx)p/po +

-f M1- ‘,)'ío(p>Po)+eAiO’,Pi) ( J  |u(x)!íW x)(1_a)p,Po ( J"\Dru(x)\py dx)ap Pl} ,
Í2h

where the constant involved in (2.1) is independent o f h.
^

Proof. We consider the function y —(p{x)=— x0£i2 fixed. Clearly, 
Q=(p(Qh) verifies the cone property with cone of height 1. Let u: Qh R.
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ű=uocp к Then, by a known result (for example Adams [1] p. 106, Gagliardo [7], 
C. Miranda [9]), we have
( 2.2)

f  \Dka\pdy  s  c { ( f \a\pody y lp° + ( f  \ü \pody y i- a)p"’° ( f  \Dru \Prdy)aplPi} .
ß  ß  ß  ß

With easy computations, we get for every i£ N n

(2.3) f  \D‘a(j)\p dy = h^p-n f  |Z)‘ M(x)|pdx.
n nh

Now, we immediately obtain our statement from (2.2), (2.3).
Proof of the Embedding T heorem. From Lemma 2.1, setting

we obtain 
(2.4)

, _  , ( Vх Pot0 ) , _  , I qt Pih  )

I 0 = c{hj»\u\ V„ +( #°M Vo )1~‘(# 11ДГц1 VÁ „)“■
T—1 ’ 1 (0+ l  ’ ‘ t0+ l  ’ ' t , +  l ’ ‘

Moreover, applying the Hölder inequality we have

(2.5) Jy{x)\Q{x)Dku(x)\q dx == j? f  y(x)\Q(x)Dku(x)\qdx s
n i=1ßi

S  2 \ y Q \ o t\Dku \\r  ; 
i=i Т=Г’Я'

pt 1 t

J \u (x ) \ ,+1 dx S  ( J  a (x)- 'dx) t+1 ( у*а(х)|м(х)|р dx) t+1 .
ß ,  ß |  ß f

From (2.4) and (2.5) we get
_ /  T—1 \

Ivß’ lr.ß, la_1|?o.Pfli} lMIIpo(ß„«) +(2.6) |ßD*«U.(ß,v) =S С ^
i = l

+ ( |< ~ > Н ! * М > ' - ( Д  { » P ‘ ) ' | « Ч л Г * К ! « | в 'Ц ь л я )>.

Now, recalling the notations (1.5), (1.6), (1.7), formula (2.6) becomes 
(2.7)

Since q=Po, Q=Pi, our statement follows from (2.7) by the Hölder inequality.
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R em ark . When the terms of the sums of the right member of (2.6) are infinites
imal, the upper bound (2.6) is lower than the upper bound (1.13). This loss causes 
conditions non optimal in general on the weights; but in this manner we are able 
to obtain embedding and compactness results with the Sobolev exponents.

P roof of the C o m p a c t  E m b e d d in g  T heorem. We obviously have

(2.8) \QDku\L q( f i ,y )  ^  C { \ Q D k u\i ,4 (  и  n (,y ) +  \ Q D k u \ ^  и  n , ,y ) } -

In our hypothesis, | J  Í3; verifies the cone property with cone of height h^mini<M
Since N0 + Nx< + oo, we have by the Embedding Theorem

Pih Pofo
(2.9) \QDku\L4 и С {М ){г \1 У и \^  ( и ßj) +  C(e)|M|t ‘.+» { и «,)}>

i^M i^M i^M

(2.10) \QDku\L4 и «,,у) ё  д\1У и\^ +C{ó)N 0(M)\\u\\LPo(
i>M . . . »  . . . »t>M

From (2.8), (2.9) and (2.10), we obtain for every M , е, (5>0

(2.11) \QDku\L4ii>y) == b\Dru\LP4i}'ß) + C{b)N0{M)\\u\\LM +
ым ‘

P ih  Pptp
+вС(М)|2Хи|£,,.+1 {0) +  C(e, M)\\u\\L »0+1 ( и 0|,}.

Let now {w„}„£iv be a sequence of functions in Wpr0>Pl(i2, a, ß) weakly convergent 
to zero and
(2. 12)

Since U Í2;
iS M

embedding

\Uniwr (n,a,ß) — C-
Pp>Pi ^

is bounded and verifies the cone property, we have the compact

P 1*1

w'Pltl Р А ( и Д ) ^ ' ‘+1( и Д )
r , + l  ’ t0+ l  , S M  ' - M

(cf. Lemma 6.6 and Theorem 6.2 of Adams [1]). 
Hence

(2.13) lim I
n-*-  +  OO

Pih

I U '1 +  1 ( и  я , )
iS M

0.

Using (2.12), formula (2.11) gives, for every M, e, S >0 
(2.14)

Pl*l
\QDku„\L4o,v) <  C{ö + C(ö)N0(M)+eC(M) +  C(e, M)\\u„\\Lh+i ( y 0j)}

i^M
where the constant is independent of <5, г, M , n.
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Choosing <5< A and M  such that C(<5)TV0(M)<A, as we can do by (1.15), 
and then a such that sC(M)<A, formula (2.11) gives for every X£R +

PiU
(2.15) llßA?kMnlL«(o,y) -= C{A +  C(A)||mJ i, ,i+1 ( и П()},i^M
where the constant is independent of A, n.

Finally, using (2.13), we get by (2.15) for every A and for и>и„(А)

(2.16) \0,Вкип\ьч(п,у) ^  CA.
Then, the arbitrarily of A implies

lim \QDkun\L4S} ) =  0.
П-*- -f- oo

3, Dccomposability of domains

We shall give a decomposition of the open set Q using a function a(x)£C°(Q) 
and strictly positive on Q; for this purpose, we introduce the following

D efinition. We say that Q has the (^-property (with respect to a (x)) if for 
every ex, e2, with e2>£x>0, the open set ß(£1? e2)=  {л:€й|е1<а(д:)с£2} is such 
that inf hn(x, 0)>O.x 6 file,, £,,)

T heorem 3.1. Let a(x)£C°(Q), a(x) >0  in Q, Q having the (3>)-property. Then 
there exists an admissible decomposition {ß,}i€JV of Q. Moreover, i f  a(x)€Lip (Q) 
and for some 0>O
(3.1) CLa(x) <  h(x, 0) <  C2a(x), Vx£ß, 
then hi =  /i(fi;) Ш C inf h(\, в).xCSi,

P roof. We can assume, without loss of generality, that Q is bounded, because 
otherwise we can work on

Q, =  Q П  {x eR n\Xi <  jc,  <  A J+ 1) ,  A =  (A l5 . . . ,  A„)£TV".
We define the open sets

Q+(b) — (x£fl|a(x) >  b}, Q~{b) = {xdQ\a(x) < b},

Z>* = Í2 + ( 2 - +x>) П ß - (2-(lfc- x>).
Clearly, we have

( 3 .2 )  Q =  Й + ( 1 / 2 ) U ( U  A ) .
i =  2

For кл< к2, we define
(3.3) d(K , k2) = d(Q+(2~ki), a - (2-**)).
The continuity of a(x) on Í2 bounded implies
(3.4) d(kj.,ka) ^  0.
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a , =  U c t (x),
X Í D ,

where Ct(x) is an open cone contained in Q, such that х£С{(х), of height ht, with

(3.6) 0 <  ht S  Cmin{d(i + 1, i+2), inf h(x, 6)}.
1 x  € Dt >

This cone exists by the (^)-property; moreover, we can assume that ht is a decreasing 
sequence. The constant C which appears in (3.6) is such that 0<C-=1 and it will 
be chosen in the sequel.

Clearly, the sets are open, QtcQ , (J Qt=Q and every Qt verifies the cone
i = l

property with cone of height greater than or equal to /i;. We show that the family 
has the finite intersection property if C is small enough. Indeed let 

y € ß ,n ß i+3. Then

yeCi(xi), y€Ci+3(xi+3), with xi+3€A-+3,
which implies

2- 0+1) <  <  2- 0-D5 2_(i+4) < a(xi+s) <  2_(i+2).
Then we get

(3.7) d(i +  l, i+2) ^  |x ,-* ,+s| |хг- у |  + |у - х ;+3| S  2(lii+hi+3)

Ш 4hi S  4Cd(i +  l, i+2),

which is a contradiction if C -= - j .
To prove the last part of Theorem 3.1, we denote by L  the Lipschitz constant 

of a(x); clearly, we have by (3.1)
(3.8) C32~‘ á  inf h(x, 0) s C42 -‘

x é í i l

and so it suffices to show that we can choose in the construction above hi=C2~i 
for a suitable constant C. Let £2+(2~(,+1)), z£Q~(2~(,+2)), such that
d(i+ 1, /+ 2 ) > y  d{y, z). Then, by the Lipschitz property of a(x)

(3.9)

J(i+ 1 , i+2) >  у  b - z l  -

Formulas (3.7) and (3.9) give g^-2- i s4A;s4 C 2 _i which is absurd for
proving the finite intersection property, and the Theorem.

In view of the applications, we shall consider the following choices of the func
tions a(x):
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(i) a(x) = d (x, dQ)
(ii) a(x) = d (я, S) for S  c  dQ
(iii) a (x) = h (x, 0) for some 0, when h (я:, 0) = iq (x, 0).

The first function is clearly in C°(Q) (in fact, it is in Lip (Q)) for every domain Q, 
and so it shows that an admissible decomposition always exists for every open set Q. 
Unfortunately, the values of ht are far from what one expects (consider for instance 
Q having the cone property).

The choice (ii) requires the (^-property : it often gives good values of ht with 
an appropriate choice of S, which can be considered in a sense the “singular part” 
of dQ.

For the choice (iii), we prove the following
Lemma 3.2. The function h (x,0) is lower semicontinuous (in x).
P roof. Let /i(x0,0) = 1; then, for every e>0, there exists a cone

C (x0, 0,1 — e)czczQ, that is C(x„, 0, 1 — e)czQ; let d=d(C,dQ)>0. Consider the
cone C(x, 0, 1— e), obtained translating the cone C(xa, 0, 1— e) with vertex in x 
in spite of x0. I f  \x—x0|<d/2, we have

d(y, C(x, 9, 1 — e)) <  d/2, Vy£C(x, 0, 1 -e), 
whence C(x, 0, 1 — e) c c  Q. This means that

h(x, 0 )£  1 - e, Vx with |x—x0| <  d/2,
from which we infer

h (x0, 0) ^  lim inf h (x, 0).
* - * o

L emma 3.3. The function h1(x, 0) is upper semicontinuous (in x).
P roof. Let x„-*x in Q, {C„}„iN a sequence of cones of vertex x„, opening 

0 and height h„, with hn-*h. Passing to a subsequence, we can assume that the 
bisectors bn of C„ converge to b. We show that the cone C of vertex x, height h, 
opening 0 and bisector b is contained in Q. Clearly, we have

C =  jj> = x+ g(b+ yb)\0 g ^ c h ,  уьФ ) х, ^ щ -< c (0 )J

where c(0) is a constant which depends only on the opening. Let

<? = j У = x+ pb + QÍb + уь) |0 <  в <  ch', p >  0, h'+p < h, <  C(^)J

be a cone of vertex x+pb well contained in C  and let ydC, y= x+ pb + q{b+yb), 
vn = ( x - x n) + (Q + p )(b -bn). Then y=x„ +Q(bn+yb)+{pbn+v„}.

We denote by P„ the projection on the linear space generated by bn, and by 
Qn the projection on ( b We observe that e„ =  ||x—x„|| + ||h—b„\\ ->0, and get 
y = x „  + Íe+p)bn+Qyb+P nvn+Q„vn. Then

(i) (Q+p)b„+P„v„ = abn,
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with 0 < a < e  + /i+Cen</i' + /i +  C£n</i if n>n0 because h' + p-^h and £„-*-0;

(ii)
\\вУь+<2пУп\\ 

\\(Q+H)bn + Pnvn\\
в \\Уь\\

Q + p  IM
+ Ce„<c(0)

if л> л0, because ■■■< с (в), p>  0 and £„—0.
This shows that j€C„, hence CcC„ci3 for every C c c C , which implies 

CaQ . We deduce
h± (x0, 0) S  max lim hx (x, 0).

By these Lemmas, if, for some 0, h(x, 6)=hj(x, 0) and this function (continuous 
in Q) can be continuously extended to Q, the conditions of Theorem 3.1 are ful
filled.

In several cases, also for simple domains having the cone property, the func
tions h(x, 0) and hfix, 0) are really discontinuous in some points, but for our 
purposes it is enough to have a lipschitzian function a(x) of the same order of mag
nitude of h(x, 0). We have indeed the following explicit version of the compact 
embedding theorem, that we state for the sake of simplicity only in the case of 
weights of L“ -type.

Theorem 3.4. Let Q be bounded, a (x) 6 Lip (fi) and assume that, for suitable 
constants Clf C2, we have

(3.10) Cxhfix, 0) =

Define S = {x€$i2|u(x)=0} and

(3.11) a “ 1,

(3.12) sup
x . y i A ,

a(x)
a O') C, V£>0,

w ith  C4, ß , у, Q in d ep en d en t o f e ,

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Ш a < 1, a =- 0; r
1 +  ® for i =  0,1,

1 ( 1  r )  1 |fc|- s o ---------+ ( l - a ) — +  — ,q \P i n) p0 r

h(x,eyo(‘t.Po)y(x)Qq(x) Alim-------------,——г----------= U,x-~s a.qlpo(x)

h(x, ey>(‘i’p‘)y(x)Qq(x)
s — wm— *: + ” '

where 20, have been defined in (1.8), (1.9).
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Then the operator
uf~WPo,Pi(Q’ a> ß) -  QDkuZL\Q, y)

is compact.
P roof. By (3.10), Í2 has the (^-property for a(x). Then, we take the decompo

sition given by Theorem 3.1 and apply the compact embedding theorem 
Choosing t0 — t1 = T=+°o.

Now, our theorem follows computing N0(M ) and N fM )  by (3.12), (3.16) 
and (3.17).

4. Examples

We show that the assumptions of Theorem 3.4 are fulfilled for the following 
simple bidimensional cusp

(4.1) Q = {(*!, x2)£R 2|0 < Xj <  1, - /(x 0  < x2 - c /(x j )  

with /6 С 2([0, 1 ]);/(0) = / 4 0 ) - 0 ; / ( x , ) , €7?+.
Proposition 4.1. Let £2 be defined by (4.1). Then there exists 0O such that for 

every x = (x ! ,x 2)€i3 and 0 < 0 O, we have

(4.2) Q /(X i) = h(x, в) Ш C2/(x x).

P ro o f . The straight line of angle в passing for x intersects the curve X2= f(X1)
_ _ _ -f ix')

for X x tg 9—f( X 1)= x1 tg 9 —x2. Since in our hypothesis ------=o(l), we have
for xx small enough
(4.3) X i ^ C  ||x||, |X2| =  |/(Xi)| <  C/(||x||).

Similar estimates hold for the curve X2— —f(X fi.
Since every cone of vertex x and opening в obviously intersects one of the 

graphs X2= f(X 1), X2= —f( X x), we obtain by (4.3)

(4.4) h (x, 0 ) S C  min (Хг, X 2) ^  C/(||x||).
Moreover, if we set

rfiQ = {(xl5 /(xj))}, d2Q =  {(xx, -/'(xi))}
we have

d(x, d1Q)+d(x, d2Q) ^ f { Xl) ё  C/(||x||)

and (4.2) is completely proved because xx< ||x ||<Cxx.
By Proposition 4.1, we can apply Theorem 3.4 choosing u (x )-/(xx). It turns 

out that S  = {()}, which is the expected singular point of our cusp.
Similar results also hold for general cusps (see Adams [1] p. 124) with a suitable 

regular function h(x) of the same order of magnitude of h(x, в).
Finally, we show in the following example that the compact embedding can 

hold also if the new weight is considerably bigger that the previous one, assuming 
the condition that this happens on a set of suitably small measure.
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Proposition4.2. Let Q = R +X R +, q > p ^ \ ,  a (x )= l-b |x j  — xa|x j, /?(*)=  
=  1 + x f /?, y(x) =  l + х х, suchthat

(4.5)

(4.6)

1 1 М -1 1
— =----=-------------7Г,q p t 2

(4.7)

Then we have the compact embedding Wpp(Q, a, ß)-*Lq(Q, у).
P roof. Clearly, there exists an admissible decomposition of Q  by squares

ß, such that and C1̂ ^(.Q.)s;C2, for every i. Then, we can apply
Theorem 1.2 with tg—tx—t, t=  +  °° and obtain that the stated compact em
bedding holds if conditions (1.14), (1.15) are fulfilled. In our case this means that

(4.8) N0(M) = sup {|a_1|r/n( b U ,}  -  0 (M -  +  »),

(4.9) Nx =  sup {Iß-'Wh |y|t.0|} <  + “ •i> 1
SC!Now, (4.9) is immediate and we come to the study of N0(M). For A>f, -—

we have, setting Q(x, d)=  {y£fl]||x—y||<rf},

(4-10) \<*~\{цх,а)\у\РЛ(х,л) <  C |a_17p/el(,n(x.rf) <
<  |a- 1yP/«|(_0(Xiá)Xf,( +  |a -1 yPlq|e_Пепo,x.d)h(ß£fl-Q(x, d))1/i_1/fl,

where
a , =  { х € 0 | | * - , ( * Ж * ) ,’/* 1 э -« } -

Then, our Proposition follows at once by (4.10) if we are able to show
(i) sup |a-1yp/?|e>ß(Xil,) < + » ,

xQ
(ii)  ̂ lim ^(ßEDi2(x, dj) = 0, \/e£R +.

With regard to (i), we observe that, since k<sqjp,

(4.11) / '
_____ dx2_____
{ l+ (x i-x 2)xf)°

dy
(1+xfy)0 C f

dy
1 +xieye ’

We obtain, dividing [0, 1] to intervals of the type щ \ ,
(4.12)

Г dy 1 1 1 ^  1
J  1 +Ay° i + A ( - L ) 9 А1/в ~  А1,в Z  1+i9

CA~1,e.
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Moreover, if Xx>l 

(“.13) /  T
dy

j -+ .p9x f

By (4.12), (4.13), we get 

(4.14) /

Cxf'"9 f

dx2
{ l+ (x i-x a)xí}e

£  < C

Схг

Still using (4.12), we have

(4.15) /
dx2

f
dy

XJ { l+ (x 2-X j)xi}° j  {1+xly}9 

By (4.14), (4.15) we obtain
dxx

C xfs.

(4.16) / C(1 +Xx)-S.0 ae (x)

It follows for х г large enough (which can obviously be assumed)

. / . m *

if (ßpjq) — s<  0.

* o , i+ á / 2 + “  Л  V"
/ I  , ч I dx <  f  у(хУ>* f

ж *о,<0 ^  d /2  0 a  W

* 0 ,l+ dl2
C J (l+ X xf^-sdX x  <  +  ->

xo,i~dl2

Finally, (ii) follows because i > —+1, observing that
4

- ÍQe — ix^fix j X) Xa <  Xj +
E *(1 + x 1)*’/? — 1

xi I
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К РАСШИРЕННОМУ ИНТЕРПОЛЯЦИОННОМУ 
ПРОЦЕССУ ЭРМИТА—ФЕЙЕРА

Д. Л. БЕРМАН (Ленинград)

1. Введем следующие обозначения: через С обозначим множество всех 
функций, непрерывных в [ — 1, 1]. С2 обозначает подмножество из С, состоящее 
из всех функций Д х), имеющих в [ — 1, 1] непрерывные производные f"(x). 
А1 обозначает подмножество из С, состоящее из всех функций Д х), имеющих 
левую производную /'(1). Аналогичным образом определяется множество 
функций А2. Пусть задана матрица чисел

(м) {х£п)}, к = 1 ,2 , ..., п, и — 1,2, г (и ) Y ( " ) .лп- 1 X)(л) 1,

и пусть Hn( f x )  — полином степени 2п — 1, однозначно определяющийся из 
условий H„(f, х£п)) — /Ц Т 0), //„'(/, х£п))=0, к = 1,2, ...,п. Классическая теорема 
Л. Фейера [1] утверждает, что если п-я строчка, {х£п)}£=1, состоит из чисел 

2 к  — \хД  =cos—-— л, к = 1, 2, ..., п, то для любой Д С  выполняется равномерно
в [ — 1, 1] соотношение Hn( f  х)-*Дх), Хорошо известно, что процесс
{Hn( f  х)} называется интерполяционным процессом Эрмита—Фейера.

Пусть полином //„ (/, х) построен для л-й строчки произвольной матрицы 
узлов вида (м). Наряду с полиномом Hn( f x ) рассмотрим полином Fn( f  х) 
степени 2п+3, который однозначно определяется из условий

F,,(/, X«) = Д х Д ) ; F„(f ±  1) =  Д ±  1), F: (/, хД ) = F ' (/, ±  1) =  0,

к =  1, 2, ..., п.

Интерполяционный процесс {Fn( f  х)} естественно называть расширенным 
интерполяционным процессом Эрмита—Фейера. В [2], [3] автор изучал процесс 
{Fn( f,  х)} для случая узлов 
( 1)

у(и + 2) л0 =  1, у(и + 2)
х к =  COS

(2к — \)тс 
2 п к = \ ,2 ,  ..., п, т (л + 2) лп +1 = - 1, п 1, 2,

Оказалось, что этот процесс при /(х ) = |х| расходится при х =  0. Метод из 
[2—3] не позволил изучить поведение процесса {F„(\z\, х)} при х^О . Поэтому 
этот Метод был заменен другим методом, сущность которого изложена в рабо
тах [4—7]. С помощью этого метода было доказано, что процесс {Fn(\z\, х)}, 
построенный при узлах (1), расходится всюду в ( — 1, 1). Такое утверждение 
имеет место для /(х )= х 2 и для /(х )= х  при х ? 0. См. [6—7]. Упомянутые
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результаты были в [8] обобщены в двух направлениях. Во-первых, вместо мат
рицы узлов (1) рассматривается некоторый общий класс матриц узлов, вклю
чающий матрицу (1). Во-вторых, вместо функций х  и х2 рассматривается про
извольная функция из класса С2. В связи с [8] возник вопрос о замене класса 
С2 более широким классом функций. Этот вопрос в случае сходимости в сре
днем, и был поставлен в [8]. В основе всех результатов из [8] лежит

Лемма. Пусть

(2) «„(/) =  у  Hi ( f  1)+777ТТ[/(О - -Я»( / j 0],2 ш„(1)

где H „(f х) — интерполяционный полином Эрмита—Фейера, построенный при
П

корнях многочлена соп(х)= JJ (х—х[п)). Пусть матрица узлов (м) удовлетворяет
i = i

условиям: 1) (м) является Q-нормальной;1 2) корни а>„ расположены симмет
рично относительно х=0; 3) [ю'(1)(шв(1))_11 =  0(л2); 4) для любого х£( — 1, 1) 
существует такая последовательность {«;}, что lim o)f,.(x)/oJ2(\) >С(х) >0,
где С(х) зависит только от х. Тогда существует такая последовательность 
натуральных чисел {т;}, что для любой /6  С2 выполняется равенство

lim <хт ( /)  = a f \  1),
I со

где константа а зависит только от матрицы узлов.
При доказательстве леммы был использован следующий известный факт: 

Для любой / 6 С2 существует такой многочлен Рп(х) степени п, что всюду 
в [-1 ,1 ]
О) ___ 2_s ___

\ f (s\x ) - P ^ ( x ) \  == ш (/" , 13, 8 = 0, 1,2,

где со — модуль непрерывности f"(x).
В настоящей работе доказывается эта лемма без использования неравенств

(3) , что позволяет отказаться от требования, что /€ С 2. При этом лемма зна
чительно усиливается, а стало быть усиливаются все результаты из [8].

2. Пусть п-я строчка матрицы (м) состоит из корней полинома ю(х) =
п

=со„(х)= JJ (х —х/п)). Согласно Л. Фейеру [9] матрица (м) называется g-нор-
i = i

мальной, если существует такое число р>0, что всюду в [ — 1, 1] выполняется 
неравенство

vk(x) =  1 - ( .x - x ín))co,'(xjcn))(co'„(xjcn)))-1 >  в >  0, k =  1, 2, ..., п, п =  1, 2, ...,

где {4B)}jU — корни соп(х). Л. Фейер [9] доказал, что если матрица (м) состав
лена из корней полиномов Якоби где — 1 Sa„, /?„< — у <0,

1 Определение ^-нормальной матрицы узлов дано ниже.
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п = 1, 2, 3, ... , а у — сколь угодно малое фиксированное число, то она е-нор- 
мальная.

Среди всевозможных матриц вида (м) выделим класс матриц К. Будем 
говорить, что матрица (м)£К, если (м) удовлетворяет следующим условиям:

П
1) (м) ^-нормальная; 2) корни полинома со(х) = [J (х —х[п)) расположены сим-

>=1
метрично относительно точки х=0; 3) для любого х б (—1, 1) существует 
такая последовательность х натуральных чисел, что выполняется нера
венство

(4) l im - ^ § ^ - ^ C ( x ) > 0 ,
«лД1)

где С(х) зависит лишь от х.
П

Введем числа2 ű?„= ^  [//и)(1)]2. Известно [9], что для ^-нормальной мат-
i= i

рицы выполняется всюду в [—1,1] неравенство

(5) Í[//"4x)]2 sS -i.
!=i в

Поэтому i S - ,  п= \, 2, ... . Следовательно, имеется такая последователь- 
в

ность натуральных чисел {и,},“ х, что существует конечный предел
(6) lim d„. =  d.

i-voo 1

В нижеследующей лемме рассматривается именно такая последователь
ность {«;},“  1-

Лемма. Пусть линейный функционал а„ (/)  построен при матрице узлов 
(м)£К. Пусть {и,},” 1 удовлетворяет условию (6). Тогда для любой /£  Ах, удов
летворяющей условию /(1 )= 0  выполняется равенство

(7) 1шга„ (/)  = —4 — /'(1).1-+оо

Д оказательство. Хорошо известно [9], что

где

(8)

Стало быть,

(9)

Ял (/, х) = 2  /(*f°) Pf0 (*)]*»(*).
k =1

1к(х) = lín) (х) -----
м„(х)

( х - х ^ ) с о '( х ^ )  ■

ЯЛ/, 1) = Z /(4 B))t/I(l)^'(l) + 2/t(l)íí(l)^(l)].
к =  1

1кп) (*) — фундаментальный полином Лагранжа, который определяется согласно (8).
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Очевидно, что3

( 10) «( 1)»к/ (1) =  - т а (1)<(дс*)К ( ^ ) ) 3(1 -Х к?  '
После простых вычислений, получим, что

Поэтому 

(11) 2/*(1)/£(1)®*(1) =  —2 
Из (10) и (11) следует, что

’«(**)(! - x kf  \

coli О
("n(^))2(l-^fc):

co„(l) 1

- f l  ^ ( l
1 У © .о )1 -**)ji

\ x k) 2 \
/2(0 +(xk) l - x k)

+2 hk( 1), К  Сх) =  [/<"> (х)]Ч(*)-си(1)

Отсюда и из (9) получим, что

(12) #„ '(/, 0  = - Д у ^ ^ ( 1 ) - 1 ^ ^ / | ( 1 )  + 2 - ^ - Я „ ( / ,  1).

Из (2) и (12) вытекает, что 

(13) ^  /(**Ж (1) 4. f ( x k)l 1(1) , ®'(1) ,„ч
а"( / ) = - Д  2(— ~ Л  2 ( l - x J - + W / ( ) -

По условию /(1 )= 0 , поэтому

(14)
Очевидно, что

„ ч  4 , f ( x d h k( 1) ^  Я х к) т  _  „ , с.
а"( / ) = "  45 ” 2t í =3ö "  Д  “ 2 ( Т ^ г = *1 + ^

f r  =  4- 2  f(X]~KXk) hk(í).
2  *=i 1 - Д *

По условию существует /'(1). Поэтому по с > 0  можно найти такое <5 >0, что

/(!)- /(* * )(15) 1 - х к
п

если 1— хк<5. Так как 2  hk( 1) =  1, то

■/41)

к =  1

(16) f r - ®  =  l | ( /(11)_ f - ) -Л 1 ) )  й*(1).

3 Ради простоты письма иногда опускается верхний индекс и у х£п) и 1кп,(х).
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Из (15) и (16) вытекает, что

/'(1)(17) S i- - f  2  |л*(1)1+4- 22 1 -х.^д 2 1-Xj.̂ ö
m - f ( x k)

\ - х к -/41) К(1 У

Согласно условию матрица узлов (м) ^-нормальная, поэтому А*(х)ёО, 
х€[—1, 1], к=1, ..., п. В частности, At (l)^0 , к —\, ... ,  п. Поэтому из (17) 
получаем, что

/'(1 )(18) S i - т 4 ( 4 К я » | )  Д  м » .

где 11/1 =  Мах |/(х)|. *€[-1,11 
Заметим, что

(19) 2  2 - Ц г - М 1 )
- x ^ ö  к = 1 О

и что для ^-нормальной матрицы

( 2 0 )  l i m  Í ’ ( 1 - 4 " ) ) M " ) ( 1 )  =  0 .
к=1

Из (19) и (20) выводим, что

( 21) lim 2  /iín)(l) =  0. 
л- “  i - * í n>*  s

Из (18) и (21) получаем, что

(22) lim 5,1<п) = т

Рассмотрим теперь S^n>. Очевидно, что

Г О К5£п)-

где с/„ =  2  42(1)- Ясно, что

=  4 |  ( у ^ + Г О ) )  №П,0 Ж

(23) ^ | 2 Л 0 ) + у  22 fc = i 2- 1-*
/К )
1-Xit + Г 0 ) 11(1).

Учтем теперь неравенство (5), тогда из (23) выводим, что

S£”> ё  ^ + 1  ( 4 ^ + 1/'(1)|) г 2 =й [/?> (I)]2(24)

Очевидно, что

(25) ^  2 ( 1 О)]2.\ — хк̂ д ° к=1
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Согласно Г. Грюнвальду для ^-нормальных матриц [10]

lim 2 ( 1 - 4 л)) Г О ) ] 2 =  0.л-~  k=i
Поэтому из (24) и (25) заключаем, что

(26) H m S W = Ä - ,П—*~ оо 2

ибо lim í/„—d. Из (14), (22), (26) выводим (7).П-*- оо
Теперь можно доказать следующую теорему:
Теорема. Для того чтобы расширенный интерполяционный процесс 

{F„(f х)}, построенный для четной функции /£ А г, расходился всюду в ( — 1, 1) 
при любой матрице узлов из класса матриц К необходимо и достаточно, чтобы 
f ' (  1) было отлично от нуля.

Д оказательство достаточности. Положим rn=rn{ f  x)=Fn{ f  х) — 
— H n( f  х). Очевидно, что можно положить /(1) =  0, ибо в противном случае 
мы  бы рассматривали функцию (p(x)=f(x)—f (  1) и воспользовались бы ра
венством rn( f  x) = r,t((p, х). По условию Дх) — четная функция и корни поли
нома со„(х) расположены симметрично, поэтому H „{f х) и F„(f х) — четные 
полиномы. Следовательно, из определения Н„ и F„ получаем, что
(27) r„(f х) = о)Дх)(Апх 2+В„), 
где Ап и В„ определяются из системы уравнений

Гтиа(1 ) (Л + 5 „ )= /(1 )-Я л(/, 1); 
\2o3n{\)w'n{\)(An + Bn) + 2An03l{\) = -# „ '( / ,  1).

Отсюда и из (27), после простых вычислений, получим, что

(28) '-„(/; X) = [ссп(/)(1 - х 2)+ /(1 )-Я „ (/, 1)],

где а„(/) определяется сЬгласно (2). Поскольку матрица узлов (м) из класса 
К, то выполняется неравенство (4). Кроме того, согласно теореме Л. Фейера
[9] при ^-нормальной матрице узлов для любой /£  С выполняется равномерно 
в [ — 1,1] равенство lim H„{f x )—f(x ). Поэтому из леммы и (28) вытекает, что

И—*• оо

(29) jjm Irnj(f, х)| С(х)(1 -М) 1/401 
2 (1 - * 2).

По условию / '( 1 ) ^ 0 ,  поэтому из (29) следует, что hm г„X / х) ^ 0  приj-*-oo *
х € (—1, 1)- Итак, достаточность доказана.

Необходимость доказана в [8] (стр. 9). Надо только класс функций С2 
заменить классом функций А1.

Из теоремы, в частности, вытекает такой результат: пусть матрица узлов
(м) состоит из корней ультрасферических полиномов ]_

2 '
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п —1,2, . . . .  Пусть f f A x, четная и / '(1 )^ 0 . Тогда процесс [F„( f ,  х)}“=1 рас
ходится всюду в ( — 1,1).

Доказательство этого утверждения находится в [8]. При этом класс 
С2 следует заменить классом Ах. Лемма из этой заметки позволяет усилить 
и остальные теоремы из [8]. Усиление состоит в том, что класс функсий С2 
заменяется классом функций Ах, или классом функций Л2. Одновременно с [8] 
была опубликована интересная статья [11] R. Bojanic. Между [8] и [11] много 
общего, но между ними имеется и существенное различие. В [8] рассмотрение 
проводится для некоторого класса матриц узлов, включающего узлы Чебы
шева, но при этом предполагается, что функция из класса С2. В [11] рассматри
ваются только узлы Чебышева, но зато функция из класса Ах, или из класса А2.

В заключение отметим, что для процесса {Fn( f  х)} характерно, что 
концевые точки х = ± 1  являются узлами интерполяции. Этому вопросу 
посвящено исследование Р. Вертеши [12].

Замечание. В лемме требуется, чтобы f(x )  удовлетворяла условию 
/(1)=0. Докажем, что это требование можно отбросить. Положим в (14) 
f(x )  =  1. Из определения а„(/) следует, что в этом случае а„(/) =  0. Поэтому 
из (14) выводим, что
( ) Д>'(1) 4- Ml) , 4. 3(1)
1 ; (0 (1) Á 2 ( l - x k) + Á 2 ( l - x k)-
Из (* ) и (14) получаем, что

«„(/) =  j i  Л1} ~ { (Хк) М О + 4- 2  /(1 ]} { {Хк) ЧОУZ  к = 1 ( ~ Х к Z  1 -~ Х к

Остальная часть доказательства леммы сохраняется.
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ON THE ERDŐS—STRAUS NON-AVERAGING 
SET PROBLEM

H. L. ABBOTT (Edmonton)

A set S  of integers is said to be non-averaging if the arithmetic mean of two 
or more members of S  does not belong to S. Denote by f(n ) the size of a largest 
non-averaging subset of (0, 1 , 2 , n). Straus [7] raised the problem of estimating 
/(и) and proved (cl5 c2, ... are positive absolute constants)

/(и) >exp(cj У log n).

Erdős and Straus [5] proved that

Ли) <  с2и2/3
and conjectured that for some c3

Ли) <  exp (c3 У log и).

This conjecture was shown to be false by the author [1] who proved that
(1) Л«) =*- с4и1/10.

In this paper we obtain a further improvement on the lower bound for f(n) 
by proving the following result:

T heo rem . For some c5 and all sufficiently large n
(2) Л и ) > с 5л1/5, 
and for some c6 and infinitely many n
(3) Л") >  c6 n1/5(log log r i fb.

P r o o f . We give the proof of (3). The proof of (2) runs along similar lines, but 
the technical details are simpler.

Let В be the product of the first r primes. Let p be the least prime exceeding 
(log log B)1'30 and let q be the least prime exceeding pw. Then, as

(4) p ~  (log log 5 )1/3° 
and
(5) q ~  p10 ~  (log log B)113.

It follows from the prime number theorem (or a weaker result) that, for large r, p 
and 2 q do not exceed the rth prime so that В Ip is an integer and BI2q is an odd
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integer. We set
(6) n =  (В1рУ°
and our goal is to show that for the integers n given by (6), (3) holds.

Let m=(B/2q)2 and consider the equation
(7) a^ + af+al+al = m.
It is a well known theorem of Jacobi (see, for example [6], pp. 312—314) that the 
number of solutions of (7) in integers a0, ax, a2, a.A is given by 8er(m), where a(m) 
is the sum of the divisors of m. We shall be interested only in solutions in non
negative integers. The number I of such solutions is easily seen to satisfy

(8) ~  a(m) =. 1 = 4tr(m).

If we use (i) the fact that В is the product of the first r primes, (ii) the explicit 
expression for a(m) in terms of the prime factorization of m, (iii) the theorem of 
Mertens (see [6] pp. 351) and (iv) the relations given by (4), (5), (6) and (8) we find 
after some routine calculations that
(9) c7n1/5 (log log n)2/5 <  / < csn1/5 (log log n)2/s.
We omit the details of these calculations.

We associate with a solution of (7) the lattice point (a0, ax, a2, a3) in R* and 
we note that the points corresponding to solutions lie on a sphere. We also associate 
with a solution of (7) the number

a = a0 + a1B3+a2B6 +аяВ9.

Consider the set of / numbers obtained in this way and let S  be a subset of those 
whose cardinality satisfies
(10) \S\ = [cl]

where c<min (1, 2c8). Note that if a fS  then, since 0S a; m = B/2q,

тГ-"
where we used (5) and (6). Thus S c  {0,1,2, ..., «}.

Next we show that S  is a non-averaging set. Suppose that this is not the case. 
Then for some At, 2sfc«=|S[, there are k + \ distinct numbers a(1), a(2>, ..., a(*+1) 
in S  such that
(11) ö(1) + a(2) + ... =  ka<fc + 1)
where
(12) aU) = +a[i)B3+a[i)B6+ aiy )B\

and a&j>, a}j), a(2j), a ĵ) is a solution of (7) for /= 1 ,2 , . . . ,k + 1. Then from (11) 
and (12) we get
(13) А0 + А1В3 + А2В6 + А3Вя =  0
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where

(14) A, =
Now by (5), (9), (6), (4) and (10)

ka[k+1) — 2 Ч Л- 
i=1

A0 s  ka^k + 1) < < cc8n1/5 (log log n)2/5~

'CCo ,B3(loglog2?)2/5
V 2 ' — сскВ я 2 8 ß 3.

Similarly, we find that A0> —B 3 so that j/l0|< ß :i. It then follows from (13) 
that A0 = 0. The same argument shows that A1 = A3 = A3=0. We then get from
(14) that

(15) a p +1) = i - 2  aiJ) for i = 0, 1, 2, 3./С у=1
However, if Pk, P2, Pk+1 are the lattice points in R* corresponding to the 
numbers aw , a(2>, ..., a{k+1) then (15) is just the assertion that J*k +1 is the centroid 
of PL, P 2, ..., Pk, contradicting the fact that Pli Pn  •••> Pk+1 are distinct points 
on a sphere. Thus S' is a non-averaging set. We therefore have

/(«) S  |S| = [cl] >  c2«1/5(loglogw)2/5,
by (9) and (10), so that (3) holds.

We remark in conclusion that many of the results of [2] and the principal result 
in [3] may be improved simply by using (2) instead (1). We remark also that the 
geometric aspects of the proof of our theorem have their roots in [4].
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COUNTABLE ADDITIVITY OF MULTIPLICATIVE, 
OPERATOR-VALUED SET FUNCTIONS

W. RICKER (North Ryde)

Let A' be a locally convex Hausdorff space, always assumed to be quasi-com- 
plete, with dual space X '. The space of all continuous linear operators on X, equipped 
with the strong operator topology, that is, the topology of pointwise convergence 
on X, is denoted by L(X). The identity operator is denoted by I.

An important problem in the spectral theory of linear operators is to deter
mine when a given additive, multiplicative, L(X )-\alued map P, defined on a cr-alge- 
bra J i  of subsets of some set Q and satisfying P(Q)=I, is a spectral measure, 
that is, to determine when P is strongly cr-additive. Of course, the multiplicativity 
of P means that P(EC)F)=P(E)P(F) for every E £ J i and F£Ji. Since the 
dual space of L(X) is the (algebraic) tensor product X ® X ', it follows from the 
Orlicz—Pettis lemma that the сг-additivity of P is equivalent to the cr-additivity of 
each of the complex-valued set functions defined by

(Px, x'): E+* (P(E)x, x'), E £Ji,

for each xd X  and x'£X '. In [3], T. A. Gillespie showed that there is a large class 
of Banach spaces X, including all weakly sequentially complete and all separable 
spaces, such that P is cr-additive whenever there exists a total set of functionals 
rQ X ' such that for each x£X, each of the functions (Px, x'), х'£Г, is cr-addi
tive. This is a considerable simplification in practice, since the total set Г may be 
substantially smaller than all of X'. A further improvement, incorporated into this 
note, is to admit for the possibility of varying with respect to x£X, the total set 
of functionals Г such that the functions (Px, x'), x '6Г, are cr-additive.

Since a satisfactory spectral analysis of operators, even for those defined in 
Banach spaces, often requires a consideration of operators defined in locally con
vex spaces, it is useful to have available sufficient conditions, such as those given 
in [3], but valid in more general spaces X, which guarantee the strong cr-additivity 
of a large class of additive, multiplicative, Z.(A)-valued maps defined on cr-alge- 
bras of sets. The aim of this note is to formulate some such conditions. Most of the 
criteria presented are based on the special role played by the sequence spaces c0 
and l°° in the theory of vector measures.

1. By a spectral measure of class (J i\  P(x), xf^X), where J i  is a cr-algebra 
of subsets of some set £2 and Г (x) is a total subset of X ' for each x£X, is meant 
an additive, multiplicative map P: J i  -~L(X) satisfying P(Q)—I, such that the 
range P(Ji)={P{E)\ E£Ji}, of P, is an equicontinuous part of L(X ) and for 
each x£X , the set functions (Px, x'), х'^Г(х), are ст-additive. It follows from 
a result of A. Grothendieck (see Proposition 0.5 in [6] for example) that if the space
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X  is metrizable, then the requirement of equicontinuity of the range Of Pis redundant. 
If X  is a Banach space and there is a total subset FQX' such that Г(х)=Г  for 
each x£X, then P is a spectral measure of class (Ji, Г) in the sense of N. Dun- 
ford [2], p. 324.

A locally convex space X  is said to be weakly X-complete ([6], p. 5) if every 
sequence {x„}“=1 of its elements such that {(x„, x')}"=1 is absolutely summable 
for each x '£X ', is itself summable with the sum belonging to X. Weakly sequentially 
complete spaces, in particular reflexive spaces, are weakly X-complete.

P ro po sitio n  1. Each o f the following conditions is sufficient to guarantee that 
every spectral measure of arbitrary class {Ji\ Г(х), x£X), where J i  is a o-algebra 
o f sets and Г (x) is a total subset o f X ' for each xf_X, is strongly o-additive.

(i) X  does not contain a closed subspace isomorphic to l°°.
(ii) X  is weakly 1-complete.
(iii) X  is metrizable and separable.
(iv) X  has the properties that a subspace o f X ' is weak- * closed i f  its intersec

tion with weak- * closed, bounded subsets is weak- * closed and any continuous linear 
mapping from l°° to X  is weakly compact.

Remarks. Proposition 1 (i) is an extension of part of Theorem 1 in [3]. Further
more, since a space X  is weakly X-complete if and only if it does not contain a copy 
of c0 (see Theorem 4 in [7] for example), it is clear that (ii) follows from (i). Sim
ilarly (iii) follows from (i) also, since any subspace of a separable, second countable 
space is itself separable. Since the class of weakly sequentially complete spaces 
is a genuine subset of the class of weakly X-complete spaces (an example is discussed 
in [4], p. 73), it is clear that parts (ii) and (iii) of Proposition 1 are an extension of 
the Corollary in [3]. It is interesting to note that if in addition to being weakly 
X-complete the space X  is metrizable, then part (ii) of Proposition 1 is a simple 
consequence of a well known result in the theory of vector measures (Theorem 0.4 
of [6]). However, the multiplicativity of any spectral measure of class (J i ; Г (x), x^X )  
makes it possible to omit the metrizability condition on X. Finally, Proposition 1 (iv) 
follows from Proposition 0.7 of [6]. Accordingly, to prove Proposition 1 it suffices 
to prove part (i). However, first some preliminary lemmas are needed.

Let P be an additive, multiplicative, L(T)-vaIued map, defined on a ст-algebra 
Л  of subsets of some set Q, such that its range P (Ji)  is an equicontinuous part 
of L(X). Let sim (Ji) denote the vector space of all J i-simple functions on Q. Ifn
f —^v-b/Ei is an element of sim (Ji), where af, lS iS /j, are complex numbers

i=l
and Eh lS iS n , are elements of J i ,  then P( f )  will denote the continuous oper-

n
ator 2  %iP(Ei). It is well known that P( f )  is independent of the particular repre-

i=l
sentation o f /a s  a finite linear combination of characteristic functions of members 
of J i.

Lemma 1. The family of operators 

(1) {P (f)-,fisim (Ji), l/IL  ^  1}

is an equicontinuous part o f L(X).
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Proof. See the proof of Proposition 1.1 in [5], for example.
Let л'£ X. Then Px: E*-*P(E)x, E £Jt, is an additive, X-valued measure, 

Furthermore, for each continuous seminorm q on X, the equicontinuity of P{.M) 
implies that

ß(q, x) =  sup{9(P(£)x); E£Ji} <°°.

Accordingly, the well known inequality

(2) q(P(f)x) ^  4ß(q, х)||/|Ц , Д .s/w(.///),

follows; see the proof of Proposition 11 in Chapter 1 of [1], for example.
I f / i s  a bounded, ^-measurable function on £2 such that O g /s l ,  then there 

exists a sequence of ^/-simple functions /„ , n—1, 2, . . . ,  satisfying 0 = /„ sS 1, 
n =  l,2 , . . . ,  such that /„-►/ uniformly on Q. Since the topology of L(X) is gen
erated by the seminorms T>-*-q(Tx), T fL (X ), for each x£ X  and each continuous 
seminorm q on X, it follows from (2) that {P(/„)}„=i is a Cauchy sequence in 
L(X). Since closed, equicontinuous subsets of L(X) are complete and {P(f„)Yű=i 
is contained in the set (1), it follows from Lemma 1 that there exists an operator 
P (f)dL (X )  such that P(f„)-*P(f), in L{X). It follows that the domain of the 
integration map f<-+-P(f),f£sim {J i), can be extended to the space of all bounded, 
.//-measurable functions.

The following result is a simple consequence of the multiplicativity of P. 
Lemma 2. Let f  be a bounded, Ji-measurable function on Q. Then

P(fXE) = P(E)P(f) = P(f)P(E),
for each E ^J i.

Proof of Proposition 1 (i). We proceed as in the proof of Theorem 1 in [3]. 
Let P : J t  -~L{X) be a spectral measure of class ( .//; Г(х), x£X), where J i  is 
a ír-algebra of subsets of some set Q and Г (x) is a total subset of X ' for each xdX- 

Suppose that P is not strongly c-additive. Then there exists an element x£X  
such that the T-valued set function Px is not cr-additive. Arguing as in the proof 
of Theorem 1, p. 42, of [3], it follows (using the totality of Г (x)QX') that there 
exists a sequence {er„}“= x of mutually disjoint elements of J i  such that the series

oo

2  P(v„)x  is not convergent in X  hence, not Cauchy in X. Accordingly, there exists
n = 1
a basic neighbourhood of zero in X  of the form ( J ( e , p)= {zf_X; p(z)-=e}, where 
£>0 and p is a continuous seminorm on X, such that for every positive integer N 
there exist integers m, n> N  (with m<n, say) such that

2  P ( < T i ) x < t U ( e ,  p ) .
i= m  +  l

It follows that there exists a sequence of mutually disjoint elements E„, n = 1 ,2 ,. .. ,  
of J i, such that
(3) p{P{En)x) ^  e, n = 1 , 2, ... .
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Given an element a=  {a„}“=1 in let f a denote the bounded, ^-measurable
CO

function 2  anXE„- Then the assignment 
/1 = 1

Ф: a —*• P(fa)x i <*€/”%

is a linear map of /“ into X. It follows from (2) that the inequalities

(4) я(Фа)==40(я, * )Ш -  =4ß(q,x)la\ \oa,

are valid for each continuous seminorm q on X.
Fix a= {a„}“=1£/“ . Then it follows from (3) and Lemma 2 that

(5) e |a„| tS \xn\p(P(En)x) = p(a„P(En)x) =  p(P(En)P (fa)x) = p(P(En) Фа),

for each л=1, 2, . . . .  If denotes the polar of the subset, p _1([0,1]), of ЯГ 
then it follows from the equicontinuity of P (Jt)  that the function

p*: z  ► sup {\(z, Р(Е„Ух% xfiU°p, n =  1, 2, ...}, z£X,

is a continuous seminorm on X. Furthermore, (5) implies that p* satisfies the ine
qualities
(6) ellalU ^р*(Фа), а € /“ .

It follows from (4) and (6) that the range of Ф is a closed subspace of X  iso
morphic to /“ . This contradicts the hypothesis on the space X  and hence, the proof 
of Proposition 1 is complete.

2. Proposition 1 gives sufficient conditions which ensure that every spectral 
measure of class ( J t ; Г(х), x£X ), where J t  is a a-algebra of sets and Г(х) is a 
total subset of X '  for each x£X, is strongly ст-additive. It is just as desirable, per
haps even more so, to have available criteria which can be used to determine the strong 
ff-additivity of particular spectral measures of some given class (J t; r (x ),xd X ). 
Propositions 2 and 3 below give two such criteria.

Let P be an additive, multiplicative, L(X )-valued set function defined on some 
er-algebra of sets J t .  For each x£X , let J iP[x] denote the cyclic subspace of X  
generated by x  with respect to P, that is, the closed subspace of X  generated by 
{P(E)x; ЕЧЛ).

Lemma 3. Let P  be an additive, multiplicative, L(X)-valued set function with 
equicontinuous range, defined on some о-algebra o f sets J t. Let x^X. I f  x f iX '  
is a functional such that (Px, x') is о-additive, then also (P f x ') is о-additive, for 
each £€ JtP[x\.

P roof. It follows easily from the а-additivity of (Px, x'), that (Pq. x') is 
er-additive whenever f  belongs to the linear span of {P(E)x; E £Jt}.

Let ££Лр[х]. Then there is a net of elements {£„} such that each ca belongs 
to the linear span of {P (E )x;E dJt}  and —£, in X.

It follows from the equicontinuity of P(Jt) that the function q given by

q(z) = sup{|<z,/)|; yfi{P (E )'x '; E€Jt}}, z£X,
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is a continuous seminorm on X. Let E„, n = 1 , 2 , , be a sequence of elements 
from J t  which decreases to the empty set 0. Then the inequalities

|<P(£„K,x'>| S  \(Р(ЕяЖ - 0 ,х ' ) \ + \ ( Р ( Е ^ а,х ')\ rs
S  q t f - 0  + \(P(En)Z ',x%

are valid for each a and « = 1 ,2 ,. . . .  If e>-0, then there exists an index a(e) such 
that q(f — <Ja{s))-=e/2. Since (P^xM,x ')  is u-additive and E„\9, there exists N 
suchthat \(P(E„)tx(e), x')|-=e/2 for each n ^ N .  It follows that (P(En)£, x')-~ 0 
as n-+°°. Hence, (Pc, x ') is er-additive.

Proposition 2. Let P be a spectral measure of class ( J t ; Г(х), x£X), where 
J l  is a о-algebra of sets and Г (x) is a total subset of X ' for each x£X. I f  the cyclic 
space J tP[x\ satisfies any one o f the criteria (i)—(iv) of Proposition 1, for each x fX , 
then P is strongly a-additive.

Proof. Fix x£X. Then J tP[x] is an invariant subspace for each operator 
P(E), E((Jt, and the restriction Г„(х), of Г (x) to J(P[x] is a total subset of J tP[x\. 
Let Гх(£)—Г0(х) for each g€JtP[x]. It follows from Lemma 3 that if P x denotes 
the restriction of P to J tP[x\, then Px is a spectral measure of class (J t;  jTx(£), 
£dJlP[x]) in L(J/P[x]). Proposition 1 implies that Px is er-additive. In particular, 
Px(En)x —0 in J iP[x] whenever E„, n = l ,  2, . . . ,  is a sequence of sets in J t  decreas
ing to 0. Hence, P(E„)x-+ 0 in X. This shows that Px is er-additive for each xdX, 
that is, P is er-additive.

R emark. For X  a Banach space, a version of Proposition 2 was proved in 
[3] (Theorem 2). It is worth noting that in practice, Proposition 2 has a larger range 
of application than Proposition 1 since the subspaces J tP[x], x£X, may be sub
stantially smaller than all of X.

A  locally convex space X  is said to be essentially separable with respect to a 
weaker topology т ([6], p. 12), when any countable subset of X  is contained in a 
linear subspace of X  which is separable with respect to the given topology on X  
and closed with respect to t.

Propositions. Let P be a spectral measure of class {J t\ Г (x), x£X ), where 
J t  is a о-algebra of sets and Г (x) is a total subset of X ' fo r  each хвХ. Let Г„(х) 
be the restriction of Г (x) to J tP[x\,for each x£X. I f  J tP[x] is metrizable and essen
tially separable with respect to the topology a(JtP[x], Г0(х)), for each xf_X, then 
P is o-additive.

Proof. Fix x£X. In the notation of the proof of Proposition 2, Px is a spectral 
measure of class (Jt; Гх(£), ££JtP[x]). Accordingly, Px is rr-additive by Theo
rem 0.3 of [6] and hence, it follows that P  is rr-additive.
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STRONGLY CONVERGENT TRIGONOMETRIC SERIES 
AS FOURIER SERIES
N. TANOVIÍ-MILLER (Sarajevo)

A study of strong convergence of trigonometric and Fourier series was recently 
introduced in [8]. Its interest is justified by the fact that it lies between absolute and 
ordinary convergence in regard to which trigonometric and Fourier series have 
been thoroughly investigated.

In this paper we are concerned with the question under which conditions is 
an a.e. strongly convergent trigonometric series, of index А ё 1 ,  a Fourier series. 
We show that, if a trigonometric series is strongly convergent of index A>1, on 
a set of positive measure or on a set of second category, then it is necessarily a Fou
rier series of a function /  which belongs to LP for each рШ 1, and that this result 
can not be improved as to conclude that /€£°°. A similar statement is not true 
for the strong convergence of index A = l .  Namely, there are trigonometric series 
that are strongly convergent a.e. to a function which is not in U  for p>3/2. The 
question whether such series are Fourier—Lebesgue or Fourier—Stieltjes series 
remains unsolved. We also prove several simple statements concerning the above 
problem and the convergence in the norm

1. Definitions and preliminaries

A real or a complex valued sequence (sk) is strongly Cx summable to a num
ber t, of index A > 0, and we write sk — t [CJA if

( 1 . 1 )
1

и+1 2  к - 'I яk=0

This definition was introduced by Hardy and Littlewood in connection with the 
Fourier series, see [1] and [9].

A notion of strong convergence developed with the natural extensions of the 
above concept of strong summability, to Cesäro methods Ca, aSO, and other 
summability methods, see [5] and [6] and the references cited there.

A real or a complex valued sequence (sk) is strongly convergent to a number t, 
of index A>0, and we write sk -* t [7]л if

(1.2) * ; 2  |(k +  l) (S i-0 - fc (s* -i-0 |A =  o(I).n + i  *=о

Here and in the other similar expressions s^x=0.
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If A and В  are two convergence (summability) methods we write A=>B if 
sk-*t A implies sk-+t B. By I  we shall denote the ordinary convergence, that is 
sk-*t I  if sk-*t in the ordinary sense.

The following properties of strong convergence [/]я and strong summability 
[CJ* can be easily verified, for more general results see [5] and [6]:

(i) [Лл => [Л„ and [Ci]x =► [С,]„ for A >  ц >  0.
(ü) [/]a =>/=»• [Ci]A => Ci for A s i .

(in) If A s  1 then the following are equivalent:
1. sk -* t [7]я,
2. sk -* t and

(1-3) —X T  ^  fcA|Sk-s*-il* =  o(l)n + i

3. sk — t [Ci\x and (1.3) holds,
4. sk — t Ci and (1.3) holds.

Statements (i), (ii) and the equivalence of 1. and 2. in (iii) are corollaries of 
Theorem 1 in [6] and Theorem 5 in [5]. The equivalence of 1. and 3. follows from (ii) 
and the Minkowski inequality. Moreover by (ii) clearly 3. implies 4. and from (i) it 
follows that 4. implies 2.

Our next definition contains by now the well established concept of absolute 
convergence of index A>0, see [4] and [6].

A real or complex valued sequence (sk) is absolutely convergent to a number 
t, of index A=-0, and we write .?*.—/ |/ |A if sk-*t and

(1.4)
fc=l

If Ä—1 then clearly (1.4) implies that sk-~t for some t and this is not true for 
A > 1, see [8].

The following statement shows the relationship between these types of con
vergence, see [6]:

(iv) |/|*=» [/]*= » / for A S i .

The absolute and strong convergence of index 1 we shall call simply the absolute 
and strong convergence, denoted by |/ | and [/], respectively.

Clearly, if the above definitions are applied to sequences of real or complex 
valued functions on the real line, in particular to trigonometric or Fourier series, 
then the corresponding statements (i) through (iv) are valued for the appropriate 
pointwise or uniform convergence on some subset of real line.

For p s l ,  let Lp denote the set of all real or complex valued functions f  such
that \ \ f \ \ = [ ± - J \ f \ > y  is finite, with the integral being taken over any interval

A cta  Mathematica Hungerica 47, 1986



STRONGLY CONVERGENT TR IG O N O M ETR IC  SERIES AS FO U RIER SERIES 129

of length 2л. Let C denote the set of all continuous real or complex valued 2л- 
periodic functions. For f£ L p, р ё  1, and a point x  let

Then X is called a Lebesgue point of f£ L p if Фх,р(0=о(1) as I —0 + . By a theo
rem due to Lebesgue almost all points are Lebesgue points of f

2. Strong convergence of trigonometric series; introductory results and remarks

Given a trigonometric series

let sn(x) and an(x) denote the и-th partial sum and the и-th Cesäro C\ partial sum 
of (2.1) respectively. If (2.1) is a Fourier series of a function fd L 1 we shall write 
s„f and a„ f for the corresponding partial sums s„ and a„.

The strong convergence [7]Л of trigonometric and Fourier series, of index Afel 
was first considered by the present author in [8]. Some results about the absolute 
convergence |/ |A of index A>1 were recently obtained in [4] as a special case of more 
general results on absolute summability of trigonometric series. The absolute con
vergence |/ |A for X—\ is just the ordinary absolute convergence in regard to which 
trigonometric series have been thoroughly investigated.

The results obtained in [8] already indicate that the strong convergence of 
trigonometric series has some of the characteristics of both absolute and ordinary 
convergence. Moreover, they put in a new light some of the wellknown properties 
of trigonometric and Fourier series, in a sense that some theorems concerning 
ordinary convergence can be extended to strong, but not to absolute convergence 
and that some statements about absolute convergence hold for strong convergence 
under weaker assumptions; see Theorems 5, 6 and 7, their corollaries and remarks 
in [8].

An obvious similarity with absolute convergence (also with absolute con
vergence of index A>1, see [4]) is exhibited by the following analogies of the clas
sical theorems due to Denjoy and Lusin, see [1] or [9]:

Theorem A. (Theorems 1 and 2 in [8].) I f  a trigonometric series (2.1) is [/]x 
convergent o f index A ^ l , on a set o f positive measure or on a set o f second cat
egory then

ФХ,Р(0 = f  у  (f(x  + u) + f(x  -  u)) - f ( x )  du.
n "0

(2. 1) a j 2+ 2  (ak cos kx +  bk sin kx)

(2.2)

that is kak-*0 [Cj]; and kbk—0 [Сг]А.

Applying this to Fourier series we have:

9 Acta Mbthcmatica Htmgtu i t  я 47, 1986



130 N. TANOVlC-M ILLER

T heorem  В . (Theorem 3 in [8] is slightly improved.) Let A ^l.
i) //(2.1) is a Fourier series o f a function f£ L p for some р ё  1, then s„f-*f [/]я 

at every Lebesgue point o f f  i f  and only i f  its coefficients satisfy (2.2).
ii) //(2.1) is a Fourier series o f a function f£ C  then s„f—f  [/]я uniformly i f  

and only i f  its coefficients satisfy (2 .2).
R em a rk . The above statement i) differs from Theorem 3 in [8] only in the 

case if ffild  and f $ L p, p>  1, and that only in the sufficiency part. Namely, from 
the equivalence of 1. and 4. in (iii) and the Fejér—Lebesgue theorem it follows 
that s„f-+f [/]я at every Lebesgue point of /  whenever (2.2) holds. The author 
overlooked this fact in the proof of Theorem 3 in [8], using instead the equivalence 
of L and 3. in (iii) and the corresponding more difficult results on [Ся]я summability 
of Fourier series, see [8], [1] and [9]. Thus, if / 6L1 and f$ L p for 1 and (2.2) 
holds, we were only able to conclude that snf-+ f [/]я a.e.

Due to the above mentioned similarity with the absolute convergence and 
the fact that an a.e. absolutely convergent trigonometric series is necessarily a Fourier 
series of a continuous function, it is natural to ask whether an a.e. strongly [/]я 
convergent trigonometric series, of index A sl, is a Fourier—Lebesgue series. The 
answer is positive for the strong convergence of index A> 1 and moreover such 
series are necessarily Fourier series of functions belonging to Lp for each p = \ . 
For the strong convergence of index 1, the question is much more difficult and we 
give only some partial results.

3. Strong convergence [/]я and Fourier series

T heorem  1. I f  the coefficients o f a trigonometric series (2.1) satisfy (2.2) for 
some A=-1 then (2.1) is a Fourier series o f a function f  which belongs to Lp for each 
p ~ l  and a„-*f [/]я at every Lebesgue point o f f

P ro o f . If (2.2) holds for some A>1, that is if kak-~0 [Сх]я and kbk-*0 [Сх]я 
then by (i) clearly (2.2) holds for each q, lc g S m in  (A, 2). Therefore, by partial 
summation;

Z k l « =  Z i q\*i\q+ -^  2 i q\«i\q =
, k = l  k =  1 K k =  1 V *  /  i =  t  П ; =  1

= 0(1) "z  i i « k i« + 0 ( i )  =  o ( i)  S ' i + k i ) .
k =  1 K’  , =  1 k = i  K '

Here and throughout the paper, for a sequence (xk), Axk—xk-~xk+1 for k=0, 1,2........
Consequently Z  lűtl,< 0 ° an<i using the same argument it follows that 

Z  By Hausdorff—Young theorem, see [1] or [9], there is a function
ffiLP, where l/p+ i/q  — 1, such that (2.1) is the Fourier series of /  Since this is' 
true for each q, 1 <<7^ min (A, 2), we have ffiL p for each

p ^  min (A, 2)/(min (A, 2) — 1).
Thus ff iL p for each p S l .  ,*.
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From Theorem В we conclude moreover that sn-*f [/]л at every Lebesgue 
point of /.

The following result is just a simple corollary of the above Theorem 1 and 
Theorem A, i.e. Theorems 1 and 2 in [8]:

Theorem 2. I f  a trigonometric series (2.1) is [/]; convergent for some A> 1, 
on a set o f positive measure or on a set o f  second category, then (2.1) is a Fourier 
series o f a function f  which belongs to LP for each 1 and sn -* f [/]; at every Lebesgue
point o ff.

Corollary 1. A trigonometric series (2.1) is [7]л convergent a.e. to a function 
f  for some A>1, i f  and only i f  (2.2) holds and (2.1) is a Fourier—Lebesgue series.

Proof. This is an immidiate consequence of Theorem 2 and Theorem B.

Remark 1. Theorem 2 and consequently Theorem 1, can not be improved as 
to conclude that /£L°°. The following example shows that there is a trigonometric 
series which is strongly [7]я convergent a.e. for every A s l ,  so that it is a Fourier 
series of a function /  which belongs to L p for each p = l,  but such that j \  L°°.
Namely it is well known that the series У,-7-,----r cos k x  converges a.e. to a

it=2 к log к
function / 6Т1, see 7.3 in [2] Vol. 1. Since the coefficients of this series clearly sat
isfy (2.2) for each Я> 1, by Theorem 1 we are able even to conclude that the series 
is strongly [7]я convergent a.e. to a function/belonging to L p for each рШ 1. How
ever, by what was shown in 12.8.3, [2] Vol. 2, /£L°°.

We prove now that the above results can not be extended to strong convergence 
of index 1.

Theorem 3. There are trigonometric series that are strongly convergent a.e. to 
a function which is not in LP for p >3/2.

Proof. Consider the cosine series

(3.1) a0/2 + 2! ak cos kx
* = 1

with coefficients defined below.
Given a lacunary sequence (kj), that is a sequence of positive integers such 

that kj+1SQkj for . /= 1, 2 , ... and some ß > l ,  let

(3.2) ak = - r) for k =  k j ,k j+ \ ,  ...,k j + [j1/2]-, ) =  1 ,2 ,... 

ak = 0 otherwise.

We now prove that there exists a function / such that the series (3.1) with coeffi
cients given by (3.2), is strongly convergent to / a.e.'and f \L P  for />'-3/2. That 
is we claim:

1. sn-* f  [7] a.e. for some function f .  1 ,
2. /£  Lp for />>3/2 where (.?„) is the sequence of the partial sums of (3.1).
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Proof of 1. By statement (iii) of Section 1 it suffices to show that

(3.3) — 2  fc|s*(*)-s*-i(x)| = o(l)л+ I  fc=0

uniformly in x  and that for some function f
(3.4) s„(x) - f ( x )

for almost all x. For n ^ k 2, let /,, be the largest integer j  such that k ^ n .  Then 
from (3.2) clearly

1 Я 1 Л . - 1  ky + l - l  I И
TIT 2  k\dk\ = ~—r r  % 2  k\ak\ +—  2  k\ak\^

П T 1 * = 0 n +  l  j =1 n + 1 *=*J Jn

1 yV 1 1 1
-  П + 1 yti kj+1 In O' +1) +  In (JH+1) ■

By the lacunarity of the sequence (kj), kJ+1S — (kj+1~kj) and the above in-
Q

equality
1(3.5) 2 k \ a k\ = o(l).П-\- I lc=0

Now (3.5) clearly implies (3.3).
Next we prove that (3.4) holds for some function f  In order to see this let us 

write applying partial summation

(3.6) sn(x) = a j2 + 2  ak cos kx = 2  AakDk(x)+ a„ D„(x),

where D„ denotes the Dirichlet kernel.
Since a„ —0 and Dk(x )= sin (^+  l/2)x j-Qr v?íq (mod 2л:) by (3.6) .?„(x)

2. Sill TCj 2
converges a.e. if and only if the series

(3.7)
converges almost everywhere. 

From (3.2) clearly

2  da* sin(2fc+ l)x
о

2
k =0

|da*|2 =  2 2/=1
I

j in2 0  +  1)
c  oo

and consequently (3.7) is a Fourier series of a function g f IJ, see 8.3.1, [2], Vol. 1. 
Since (3.5) clearly implies that

~ r  2  =  o ( l ) ,n + l *=0
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from Theorem В it follows that (3.7) is strongly convergent to g for almost all x. 
Therefore sn(x)-+f(x) a.e. where the function/is uniquely determined a.e. by the 
equation
(3.8) f ( x ) = g(x/2)/2 sin x/2 a.e.,

which completes the proof of 1.
Proof of 2. Suppose, on the contrary, that f£ L p for some /»>3/2. We may 

assume that 2ё/>>3/2. By what we have seen already, (3.7) is the Fourier series 
of g£L2, converging a.e. to that function. Hence by (3.8), (3.7) is the Fourier series 
of 2 sin x / ( 2x), where /  is integrable. Consequently,

1 /
Aah = — / 2sinx/(2x) sin (2k + ])xclx =

71 J— 7t
1 *

=  — f  [cos2kx—cos(2k+2)x]f(2x)dx for k =  0, 1, 2, .. ..71 J— 7C
Я - 1

But a„ — a0 = — 2! dak and therefore
k = 0

I r 1 r 1 ra„ — a0 = —— / [cos n x— l]/(x) dx = — / f{x) cos nx d x -----/ f(x ) dx.
271 — 2e Л 0 71 U

Since ű„ — 0 a n d /is  integrable, by the Riemann—Lebesgue lemma it follows that
j 2 к

an=— f  f. Hence
77 У

1 2ra„ = — / f ( x ) cosnxdx  for и = 0, 1, 2, . . .  n J

that is, (3.1) is the Fourier series of /
Now by assumption /£  I f  for some p, 3/2</»s2 and therefore by the Haus- 

dorif—Young theorem, the sequence of its Fourier coefficients (ak) must satisfy 
the inequality

2  к  I" ^ ll/lil
k =  1

where \/p+ l/q  = l. This implies, by (3.2), that

у --------------- i__________  f l / 2  <  II f\\4
Á  j q,2\n9u + i ) J

which is impossible, since the last series diverges for q<3. Hence j \  J.p for /»>3,2.
R e m a r k . The present author was unable to show whether the sum function 

of the above cosine series is integrable. The question is whether such series are 
Fourier—Lebesgue or Fourier—Stieltjes series at all. In view of the following results 
it would be sufficient to establish that 0 (1).
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Co n je c t u r e . There are trigonometric series that are strongly convergent a.e. 
and are not Fourier—Lebesgue or Fourier—Stieltjes series.

Our next task is to prove several simple statements showing the relationship 
between the strong convergence and the ordinary convergence in the norm.

Theorem  4. i) Let (2.1) be [/] convergent a.e. to a function f .  I f  f<z L' and (2.1) 
is the Fourier series of f  then || sn —/Ц x = о (1) as n -► °=.

ii) Let (2.1) be [/] convergent a.e. Then (2.1) is a Fourier— Lebesgue series i f  
and only i f  II xm-i„ ||i^ o ( l)  as in, n-* °°, and (2.1) is a Fourier—Stieltjes series 
i f  and only i f  ||x„||1= 0 (l) as n —

iii) Let (2.1) be [1], convergent a.e. to a function f, for some Я > 1. Then f€ L p 
for each p s l ,  (2.1) is the Fourier series o f f  and IIsn—f\\p= o{\) as n-+ °°.

P roof. We first note that by the assumption in all three statements (2.1) is 
[/] convergent a.e. Therefore by Theorem A (2.2) holds for A =l.

Now clearly,
I "

s„(*) -  M  =  — —r  Z  k (aк cos kx + bk sin k x )
n + 1 r=i i

so that by above relation
(3.9) s„(x)-(7n(x) =  o(l)
uniformly in .v.

i) If Д 1 1 and (2.1) is the Fourier series of /th en  from (5.5) Ch. IV in [9] 
it follows that l|<r„—/||i  = o(l). By (3.9) dearly ||j„ —o ji= o ( l )  and consequently
IK -/lli= o (l) .

ii) Statement ii) follows in the same way from (3.9) and the well known facts 
that: (2.1) is a Fourier—Lebesgue series if and only if ||<7m—<t„||1 =  o(1) as m,n — °°;
(2.1) is a Fourier—Stieltjes series if and only if ||<rJi = 0 ( l) , see (4.3) and (5.5) 
Ch. IV in [9] or Theorems 4 and 5, §60, Ch. I in [1].

iii) Although statement iii) can be regarded as a simple consequence of Theo
rem 2 and the well known theorem about the convergence in the norm of Fourier 
series of functions in Lp, p>  1, one should prefer the trivial argument used above. 
By Theorem 2 clearly f£ L p for each p = l and (2.1) is the Fourier series of f .  
Consequently from (5.12) Ch. IV in [9] or Theorem 3, §60, Ch. I in [1] it follows 
that ||(T„—/ | | p =  o(l). By (3.9) clearly ||.s„ — o„\\p = o(\) and the conclusion follows.

R emark 1. The assumption that (2.1) is [/] convergent a.e., respectively [7]я 
convergent a.e. for some A >1, in statements i) through iii) can be replaced by the 
assumption that the corresponding convergence holds ön a set of positive measure 
or on a set of second category, or simply by the assumption that the coefficients 
satisfy (2.2) for Я =  1 respectively for some Я >  1.

R emark 2 . There are trivial examples of Fourier series of functions in Lp, p ^ l ,  
that converge to that function in the corresponding norm and whose coefficients 
do not satisfy (2 .2).

The following cosine series with monotone coefficients illustrate this fact:

z
k =  1

-r cos kxк and M w k coskx-
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By 7.3 in [2] Vol. 1, the first series converges a.e. to a function /€ L 2, is the 
Fourier series of /  and ||s„ —/ | | 2—o(l); and the second series converges a.e. to 
fd L 1, is the Fourier series o f /  and ||s„—/||i= o ( l) .  However clearly the coeffi
cients of either series do not satisfy (2.2).

In conclusion of this paper we remark that the results presented here show 
that the trigonometric series which are strongly a.e. convergent of index A>1, are 
quite well behaved, being the Fourier—Lebesgue series of their sums, a subclass of 
П /Л  while the situation is much more intriguing with the strong convergence 

pa 1
of index 1. It is well known that there are a.e. convergent trigonometric series that 
are not Fourier—Lebesgue or Fourier—Stieltjes series. We have conjectured that 
this statement extends to strong convergence. Whether this conjecture is true is a 
very interesting question in view of the fact that |/|=>[/]=>-/ properly and that 
an a.e. absolutely convergent trigonometric series is necessarily a Fourier series of 
a continuous function.

The work on this paper was partially supported by the Research Council of
S. R. Bosna and Hercegovina.
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AN EXTREMUM PROBLEM CONCERNING 
ALGEBRAIC POLYNOMIALS

P. ERDŐS (Budapest), member of the Academy and A. K.. VARMA (Gainesville)

Let Sn be the set of all polynomials whose degree does not exceed n and whose 
all zeros are real but he outside ( —1,1). Similarly, we say p„€Q„ ifp„(x) is a real 
polynomial whose all zeros lie outside the open disk with center at the origin and 
radius 1. Further we will denote by H„ the set of all polynomials of degree = n 
and of the form

If
( 1.1) p jx )  = £  akq„k(x), with ak ш 0, к = 0, 1, 2, ..., n,

k = 0

where qnk(x) =  (1 +x)k(l — x)n~k. Elements of H„ are called polynomials with posi
tive coefficients (in 1 — x  and 1 +.xr) by G. G. Lorentz.

The following inequalities for derivatives of polynomials of special type 
are known:

T heorem A  (P . Erdős). Let pn£S„ then

max \p'„(x)\ = 4 -en max \p„(x)\.— l^x^l L — l^x^l

Further, the constant e can not be replaced by a smaller one.

T heorem  В (G. G. Lorentz). Let p„f И „ then for each r=  1 ,2 ,... there exists 
a constant Cr for which

(1.2) max jp'r,(x)j =á c ,r í max \p„(x)\.— l^X^l —l^JC l̂

T heorem C (J. T. Scheick). I f  p„dH„ and n S l then

(1.3) max \p'„(x)\ — 4 -c« max |p„(x)|,2. —I^jĉ I

(1.4) max \p"(x)\^  e n (n - \)  max |p„(x)|.— — l^X^l

T heorem D (A. K. Varma). Let p„dS„, then we have

( 1.5)  /  (1 - x 2)(p'n(x)f dx n{n4 (2 ^ f  - ] J  ~x*)Pl(x)dx
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with equality for  p„(x) =  ( l +х)" or рп(х)—( 1—х)и. 
then for п ^ 2

( 1.6)
1

/  (p'n(x))2dx п(2« + 1)(и — 1) 
4(2« —3)

Мoreover i f  p„ (1 )==/;„ ( — 1 ) = 0  

1
f  (pn(x))2dx.

-1
equality holds for only P„(x) =  c (l+ x )(l —x)"-1 or pn(x)= c(\ — x)(l +x)"-1.

It is known [2] that if p,fS„  (or p f Q n) then pn£H„ or - p n£H„. Thus 
Theorem В as well Theorem C can be looked as a generalization of Theorem A. 
Similarly Theorem D is an extension of Theorem A in L2 norm for p„£S„. The 
object of this paper is to extend Theorem В as well as Theorem D in L« norm 
for pn£Hn.

Theorem 1. Let p„£H„ then for и ё 2

(1-71 / (P'„(x)fdx -  / (Pn(x)Ydx.

equality holds iff p„(x) = c( 1 +x)"_1(l — x) or p„(x) = c(\ + x )(l —x)"-1.
Theorem 2. Let p„£H„ then

(1.8) /  0  -x*)(p'(x)Tdx ^  /  (1 -x*)pt(x) dx

with equality for p„(x) = ( I +  X)" or p„(x)=(l — x)”.
Corollary. I f  pn£On then (1.7) and (1.8) are valid.
2. Some lemmas. For the proof of Theorem 1 and Theorem 2 we need the 

following lemmas.
Lemma 2.1. Let p„£H„. Then we have

(2. 1) _ / d - * > : ( * )  d x s ( „ ^ ’>3, / n txM x .

Proof. F rom  (1.1) we have
(2.2) Pn(x) = 2  «рД1 +x)p(l - x ) 4, a £  0.
Hence we may write

p  +  q =  2/;

/  (1 - x 2)p'(x) dx = 2 apq f  (l+ x )p+1(l - x ) q+1dx.
Л ---Ом уp +  q =  2rt

But on using

(2.3)
/  (1 +x)p+1(l —x)4 + l dx 

-1
1

/  ( l+ x )p(l - x f d x

4 (p  +  l)(<? +  l)
(p + q+y)(p + q + 2)
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and simple computation the lemma follows. Note that equality in (2.1) holds for 
р*п(х)= (]+ хГ  or p2(;c )= (l-x )2".

L emma 2.2. Let p„ f  Hn and suppose that
(2.4) A(1) =  A (-1 ) =  0.

Then for n'=2 we have

f  (Pn(x)2dx
(2.5) ---------------

/  (Pn(x)fdx

n(n— l)(2n +  1) 
4(2« -3 )

equality iff a (x) =  (1 + i )(I - x ) n 1 or p „ (x )= (l-x )(l +x)" l. 
P r o o f . From (1.1) and (2.4) we may write

( 2.6)

Therefore
P„(x) = 2  а*л0 ~x)k( 1 +*)" k, ukn =  0, 1 = к = n — \ .

k = 1

/  pl(x) dx = 2  2  a k n a jn  f  (1+x)2n- fc- J(l - x )k+J dx. 
- 1  i” 1 *=1 -1

On using the known formula 

(2.7) j o - # 0 +# * - 2........

" -1 V  aknajn2in+1 T (k+ j + \)T(2n — k —j  +  1)
we have

( 2 .8)  f  pl(x) dx  =  2  2
_ x  J=i *=i

Next, we turn to prove that

Г {2n + 2)

(2.9) f  {p’n(x ) fd x 22n-2(« — 1) V  " -1«b1«Jn^(/c+i + l ) r ( 2« ^ fc - j )
2  2(2и —3) j=i

To prove (2.9) we first note that if
<2.10) qkn(x) = ( l - x ) k( l+ x y - k,
then

Г (2n)

(2.11) 4kn(x) =  — fc(l— x)*-1(l +x)"_<I + (n — fe)(l —x)*(l +x)" k 1, 
and on using (2.7) we have

(2.12) Ik J = f  qL(x)q'jn(x)dx = ^ ^ [ k j r ( k + j - l ) r ( 2 n - j - k  + \) +

+  (n~k) ( n - j ) r ( k+ j  + l ) T ( 2 n - k - j ~ l ) -  
- ( ( j(n -k )  + k(n —j))T(k + j  )T(2n- j  -  k)].
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After a simple computation it can be shown that

(2.13)

where

V k , j  =

- \)Г{к + j +1)Г(2л- j  -  к  +  1) 
Г (2ri)

n (k +j ) -  2 kj — n(k - j  )2
(k +j) (k  + j  —  1 )  ( 2  n - j  -  k ) ( 2 n - j  — k - l )  

Next, we will show that for k , j =  1, 2, n— 1

(2.14) 1
ßk'J -  2 (2n —3) ’

equality holds only for /<= 1, /'= 1, or k=n — l, j= n  — \. In (2.13) let k + j—l 
then (2.14) is equivalent to

/(/ — l)(2n —/)(2w - / - 1) ^  (2n—3)[2и/—2 n(k— j)2—4kj] 
or

/(/ — 1)(2я — /) (2w — / — 1) S  (2/7 — 3) {2nl — / 2 — (2я — 1)(fc —) )2)

/(2/7 - / ) ( / - 2)(2/7 -  / -  2) +  (2/7 - 1 ) (2/7 -  3)(/c - j f  £  0.

This proves (2.14). Now, one using (2.13) and (2.14) we have

2-n- 2 (// -1 )  Г (к +j +1) Г (2/7- j  -  к +1)

or

(2.15) J  qi„(x)q'jn{x) dx (2/7-3) Г  (2/7)

Now, on using (2.15), (2.10), (2.11), we obtain (2.9). Further from (2.9) and (2.8) 
we have (2.5). This proves Lemma 2.2.

3. Proof of Theorem 1. Let pn£Hn. Then from (1.1) we have

(3.1) p„ (x) = Ű0(l +X)" +  C7„(1 - x f  + q jx )  
where

(3.2) qn(x)  = "2 ű t( l+ x )" -fc(l ~ x f ,  a* =  0.k = 1

We note that q„(\ )—qn( —1)=0, therefore on using Lemma 2.2 we have 

1
/  q'nixfdx

(3.3)
/  4n(x)2d x

n  (2/7+l)(/7—1) 
T  2/7-3 /7 £  2.
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Next, from (3.1) and (3.2) we have

(3.4)
1 и222"-1  3

f  p'„(xf dx =  ln  (ai +  a 2) +  J  q'n(x f  dx +

+ 2n f  (a0(l +x)n_1 —a„(l —xy~ 1)q'n{x)dx — 2a0a„nz f  (1 - x 2)" -1 dx.

By integrating by parts we obtain

(3.5) /  ft,'(*){ao(l+-*0" 1- a n( l “ ^)n *}dx

=  - ( w - l )  f  qn(x){a0{\ +x)n~2 +  a„(l —x)"~2}dx =  0 .

From (3.4) and (3.5) we obtain

(3.6) / p 'A x fd x ^  f  q; { x fd x + 22n~ln4al+al)
-1 -1

Also from (3.1) it follows that

2/1 — 1

(3.7) f !/ \ j  (a<j +aj)2“n + 1 r 2
J  dx S -----2n+l---- + J )dx-- l  1 * -1

Therefore by (3.6) and (3.7) we have

1 1 22n~1n2(ao+a%)
4 n  W  и л  "Г

-i
/  X  (*)2 dx f  qi ( x f  dx +-

(3.8) -1 2/1 —  1

f  pl(x)dx f  q2{x)dx + (a2 + a ! ) 2 ^
2/2 + 1

It is easy to verify that

22n- 1n2(al+a2) 22"+1(a5 +  a2) n (2n + \ ) ( n - 1)
(3.9) 2 и - 1  (2/2 +  1) 4  (2/2 — 3)

Using (3.9) and (3.3) we obtain

f  P nixfdx
-1_________

f  p;(x) dx

n (2/2 +  l )(/2 — 1) 
T  (2/2-3)

This proves Theorem 1.
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4. Proof of Theorem 2. Let p„£H„. First we write
(4.1)

f  (1 - x 2)p'n(x)2 dx J  (1 - x 1)p 'Jx f dx f  pI(x) dx
zl_______________ _  -1 -1

(4.2)

/  (1 - x 2)p2„(x)dx f  pl(x)dx f  (1 - x1) pI(x) dx
-1 -1 -1

On using Lemma (2.1) we obtain
1

f  pl(x) dx
А  _  (« + l)(2« +  3)

f  (1 - x - ) p ‘i ( x ) d x
2(2«+  1)

equality holds for /?„(x) =  (l+ x)n or pn(x )- (  1-x)". Next, we will prove that 
for pn£H n

1
/  (1 - x 2)p'n(x)2dx 

(4.3) -----T-----------------
f  P n (x )d x

n
T*

equality holds for /7„(x) =  (l +x)*(l - x ) n~k k = Q, 1, «. Let pn£H„. Then
may write

(4-4) P n ( x ) =  Z a kn ( \  - х ) к ( ]  + х ) " - к =  2  a k„ q k„ ( x ) .
k = 0 k = 0

Following the proof of Lemma 2.2 we first note that

(4.5) f
-1

where by fc+j = /,

we

№kj

(4.6) =

Г (2« +2)

(2n — [)(2n — l+ l)k j+ (n2 — nl + kj)l(l + l) — l(2n — l)(nl — 2kj)
l(2n — l)

T  l ( 2 n - l ) - ~ ( 2 n  +  l ) ( k - j y  1 2  n
l(2 n ~ l)

equality holds iff k= j, k  = 0,1, ...,«. Therefore

(4-7) f  qL(x)q'jn( x ) ( \ - x 2) dx +  22И+1 n r(k+ J+  1)Г (2и — fc—) + 1) 
2 Г (2«+2)
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By using (4.4), (4.7) we have
1

I ( \ - x 2)p'n(xYdx 22,1+1 n 
-  Г (2« +2) 2

П П
2  2  akr,aJnr (k + j + \ ) r (2 n

k=0j=0 - k - J + 1) =

This proves (4.3). Now, using (4.1)—(4.3) we have

/  f t,W 2(l ~ x2)dx  
-1_______________

/  PnW2(l -X 2) d*
-1

/? (и +  1)(2и +  3) 
“  2 2(277 +  1)

This proves Theorem 2 as well.
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A REPRESENTATION THEORY FOR ORTHOMODULAR 
LATTICES BY MEANS OF CLOSURE SPACES

LUISA ITURRIOZ (Lyon)

1. Introduction

In [2] a representation theorem by means of sets and a topological representa
tion theory for orthomodular lattices were developed, using orthogonal spaces 
and ordered topological spaces. A summary of these results has been reported 
in [4].

In the set-theoretical representation theorem the underlying set is taken as 
the set of all ultrafilters in the orthomodular lattice carrying an orthogonality 
relation.

By contrast, in the topological theorem the base set of the representation is 
given by the set of all proper filters in the orthomodular lattice.

Orthomodular lattices are non-distributive generalizations of Boolean algebras. 
The representation theorem by sets mentioned above gives, in the distributive case, 
the Stone representation for Boolean algebras [2, Corollary 1], as expected. But 
this is not the case for the topological representation. This fact naturally led to the 
formulation of one of the open problems stated in [2]: do there exist more “eco
nomical” underlying sets for the topological representation of an orthomodular 
lattice? In this paper we give an answer to this question in terms of closure spaces.

The results established here have been presented at the First Meeting on Ordered 
Sets and Applications, C.N.R.S., held at Villeurbanne, France, in March 1982.

2. Preliminaries

In this section we explain the terminology and notation to be adopted here. 
We also collect, without proof, some results which will be needed in the sequel.

An abstract system (P',0, 1, = , ')  is an orthomodular ordered set if it is an 
orthocomplemented ordered set satisfying for all a, b£P the following conditions:

1) if a = b' then the join ad b exists in P
2) a ^b  implies b—ad(a' Ab).
We will refer to an orthomodular ordered set P, for short.
Note that if asfc the right hand side of 2) exists because the meet a'Ah exists 

and (af Ab)Sa’.
In the presence of 1), the condition 2) can be replaced by 2') a S b  and a'Ab=0 

imply a = b [1].
Let P be an orthocomplemented ordered set. For a, b£P we say that a com

mutes with b, in symbols aCb if a Ab and a Ab' exist and a is their join, i.e. 
a—(aAb)d(aAb'). The center Z  of P is the set of all a£P such that a commutes 
with p for all p£P. We recall the following result

10
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Lemma 1 [5, p. 254]. The center Z  o f an orthomodular ordered set P is a Boolean 
algebra.

An orthomodular lattice L is an orthocomplemented lattice which satisfies 
the orthomodular law, i.e. for all a, b£L, if a ^b  and a 'Ab = 0 then a = b.

Orthomodular lattices are generalizations of Boolean algebras. This fact is 
precisely described by the following result

Lemma 2 [5]. For an orthomodular ordered set P the following conditions are 
equivalent:

(i) P is a Boolean algebra
(ii) P = Z

(iii) P is a lattice and x/\y = 0 implies x ^ y '.

A (0, l)-lattice homomorphism h from an orthomodular lattice Lx to another 
Z-2 is said to be an ortho-homomorphism if h(a') = (h(a))' for all a(zLL.

A  closure space (X , C) is a non-empty set X  and a mapping C: P (X )—P(X) 
satisfying the following conditions, for all A,B£P(X): CO) C0 = 0, C l) AXCA, 
C2) A f B  implies САЯ1СВ, C3) CCA — CA. A  subset A is closed if C A= A  and 
A is open if —A is closed. The mapping I: P(X)—P(X) defined by / = —C — 
satisfies the properties dual of those of C above, and A is open if IA = A . Let 
CO(X, C) be the family of all subsets A of X  which are both closed and open. If 
C also satisfies C4) C (A U B )= C A JC B  the closure operator C is said to be addi
tive and (X, C) is a topological space.

A non-empty subset F of P is increasing if a£F and u = h imply b£F.
A  Z-filter in P is a non-empty subset F of P such that [5, p. 255]
F l) F is increasing
F2) if a,b£FC\Z then aAb£F.
In particular [a)—{b^L\ a = b} is a Z-filter. A Z-filter F is said to be proper 

if a£ F implies a'$F. If a A 0 the Z-filter [a) is proper. The kernel of an ortho
homomorphism is a proper Z-filter. If F is a proper Z-filter in an orthomodular 
ordered set P then F H Z  is a proper filter in Z, as a consequence of the definition.

If A is a subset of an orthomodular ordered set P we note (A)= {xf_P: there 
is a£A  such that a ^ x } . (A) is the increasing set generated by A.

Lemma 3. Let {Т,}гет be a family o f Z-filters in an orthomodular ordered set P. 
Then the Z-filter generated by {F;}ieI denoted (F;)ieJ is equal to [J / '^ ( V  (F;nZ)),

i i
where \J (F;flZ) is the filter in Z  generated by the family {F;nz}iei o f filters 
in Z.

P r o o f . Let G =  U F;U (\/ № flZ )). We have F;^G , for all i. Suppose 
x£(V (F ,nZ )), so that there exists V (F.-flZ) such that a S x  As a£\J ( F ^ Z )
then there are f f i F h flZ , ..., F ^ F ^ f lZ  such that f i1A fhA...Afin̂ a ^ x .  But 
fi1A fii/ \ . . . l \ fn€(Fi)ieI so x€(F;);ci. It remains to show that G is a Z-filter. The 
condition FI) is clearly satisfied. Suppose a, bf__GC\Z=\/ (FfilZ). Then there
are f i f iF hn z ,  . . . ,f itf iF inC]Z, and f i f iF ^ O Z , ...,fJm£FJmC\Z such that f f \ . . .
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. . .h f - ^ a  and Л Л . . . Л Л  Sb, so that f . h . . .A f  Л / .- .Л  ■••A/,- = ahb. This 
yields a h b Z f  (F;n Z )^ G . Thus the lemma is proved.

i
A Z-filter F is a Z-ultrafilter if it is proper and if it is contained in no other 

proper Z-filter. By Zorn’s lemma every proper Z-filter in an orthomodular ordered 
set P is contained in a Z-ultrafilter. If M  is a Z-ultrafilter in P then M flZ  is an 
ultrafilter in Z.

A useful characterization of Z-ultrafilters is the following
Lemma 4 [5, p. 256]. For a proper Z-filter F in an orthomodular ordered set P 

the following conditions are equivalent:
(i) F is a Z-ultrafilter

(ii) for every aZP, a$F implies a' € F.
We end the present section by recalling the following statement
Lemma 5 [5, p. 257]. The family o f all Z-ultrafilters in an orthomodular ordered 

set P is a separating family.

3. Representation theory

Let L  be a non-trivial orthomodular lattice. We now outline the construction 
of a representation of L  by sets.

Theorem 1. Every orthomodular lattice L can be ortho-embedded in an ortho
modular lattice of sets.

P roof. Let X be the family of all Z-ultrafilters in the orthomodular lattice L. 
We define the map u: L-+P(X) in the following way: a>-*-u(a)={MZX: aZM}. 
The map и is an order isomorphism of L  onto PP={u(a): aZL} such that u(a') = 
= —u{a) [5, p. 257]. In particular u{O) =  0 and u(l) = X. Hence и is an ortho
isomorphism of L onto PP—{u(a)\ aZL}. Nevertheless PP is not, in general, a sub
lattice of P(X).

In order to characterize the orthomodular lattice PP — {u(a): aZL) we are 
going to supply X  with a closure operator C.

Following [3] we define for any A Q X  the set CA = (~){u(a): AZZu(a)}. The 
map C : P(X)-+P(X) satisfies the axioms CO)—C3) above and the system (X, C) 
is a closure space. We claim that ZPQCO(X,C). In fact suppose u(a)Zd> so 
Cu(a) = u(a). Since ~u(a) = u(a')ZPP we infer that C — u(a) = —Iu(a) = —u(a), i.e. 
Iu (a) = u(a). Hence и (a) Z СО (X, C ).

R emark 1. If G is an open set of (X, C) we have G= —CF= 
= — П {u(a): FQ«(«)} =  IJ {u(a'): u(a')^G}, i.e. every open set in (X, C ) is a 
union of subsets of PP.

R emark 2. The family 3? in Theorem 1 is an orthomodular lattice of clopen 
sets. This means that for every A,BZP? there exist A h В and A f  В which are 
clopen, i.e. that 1(АГ\В) and C (A U B) are closed and open sets respecthely 
and AhB=I(A(~)B), A \/B=C(AU B). In addition SP satisfies the orthomodular 
law, that is, if A ^ B  and /( — АПВ) = 0 then A=B.
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Using Lemma 2 we state
C orollary. I f  L  is a Boolean algebra, then Theorem 1 gives the Stone repre

sentation.
The following facts are noted for future use.
L emma 6. I f  a, b belong to the center Z  of an orthomodular lattice L then u(al b) =  

= u(a)Uu(b), u(aAb)=u(a)C\u(b) and C is additive on {u(a): a£Z}.
L emma 7. Let L  be an orthomodular lattice, and {X, C) the associated repre

sentation closure space as above. The family C {X ,C ) of all closed sets in (X, C ) 
satisfies the following property:

K) I f  is a family o f closed sets in (X, C) with f jC — 0 then there
i

exist ij, ...,/„€ / such that Ck C\ ...C\Cin=$.
P roof. Since each closed set C, is a meet of subsets of SP it is enough to show 

that if f ) “(ai) = 0 then there exist ah, ain suchthat и(а;1)П ... Пм(а,п) = 0.
i

Assume f]u(at) = &. This means that there is no M AX  suchthat MAu(at), for
i

all /€/, i.e. such that [at)QM, for all /£/. Hence the Z-filter ([a,)) is not proper. 
By Lemma 3 this means that there exists x such that

x, i ' e y k - ) U ( y  ( k - ) n z ) ) .

Case 1. If x, x '£ (J[a;) then there are at, aj with a ^ x  and f l^ x ,Sa[.
i

We obtain u(ai)f]u(aj)Qu(ai)C\u(a'i)— — u(at)=Q and the result follows.
Case 2. If x ,x '€ .(\/ ([aJilZ )) there are b, cA V ([u.OflZ) such that b ^ x  and 

c ^ x '.  Since b, c d f  ([a^DZ) we infer that there are ЬкА[ак)Г\Х, ..., binA[air)C\Z
i

and CjfilajJDZ, ..., cJmZ[ajm)r iZ  with bh/\ ... l\bin~ b ^ x  and cJlA...AcJmS c S  
^ x '^ b ' .  This yields и(ак)Г\... Пм(я1п)Пи(ал )П ... r\u(aJm)Qu(bk) í] ... Пи(&,п)П 
П u(cj j) П... П и (c jJ  — и (Ь,Л...AbinAcjl Л... Л cJm) <=и(ЬАЬ')=и( 0) =  0 which was to 
be proved.

Case 3. Assume x£ Jl lad and x f ( \ /  ([a,-) H Z)). There are ai(f  {aj and
bii€ K )n Z ,...,b ,.n€ K ) n Z  suchthat а,0ё х  and bk A ...Abin̂ x ' .  Thus u(aio)Q 
Яи(х) and u(ak)C\... C]u(ain)(Xu(bk A...Abin)!Lu(x')Qu(a'io). We obtain м(а,0)П 
П и(ak) П... Пu(ain) Q и(aio) fl w (a-0) =  0. This completes the proof.

L emma 8. Let L  be an orthomodular lattice and u: L~*CO(X, C ) the embedding 
considered in Theorem 1. Every clopen set A in (X, C ) is a finite meet (A) of members 
o f AP=[u (a): aA L) i.e. A belongs to 3P.

P roof. Suppose Z£CO(X, C). Because A is closed, A = f \ A t with Ax=
i

=  u(at). By assumption A is also open so A~[J  Вj ,  Bj=u(bj), by Remark 1. 
Hence Q=Ar\—A = r \A ir \Q —Bj . By Lemma 7 there are i\, j\, ...,jm
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suchthat Л(1П...ПЛгпП-СВл и ...и Я Ут)= 0  so AhÍA...C\Ain^ B h \J ...yjBJm<^AQ 
QAhr\...C\Ain. We infer А = А кГ\... ClAin. Thus A=IA = l(u(ah)f]... C\u{ain)) = 
=u(ah)/\...Au(aij£ 3 > by Remark2. This completes the proof.

L em m a  9. Let L be an orthomodular lattice and (X, C) the closure space as 
above. The family CO(T, C) o f all clopen sets in (X, C) satisfies the following 
property:

P) I f  {Ai}lsiälI is a family o f clopen sets and А1ПА2Г)...Г\А„=0 then one of 
the following conditions holds:
(i) there are l ^ i , j ^ n  suchthat AtL\Aj=0,
(ii) there are l ̂ i 0 = n and Bh, ...,B l £Z(CO(X,C)) suchthat A tl£=Bilt..., 
At QBt and АиПВиП...Г\В, - 0 .  Pip —  ip i о 4  lp

P r o o f . Assume и(а1)П ...i]u(an)=0. This implies that there is no M £X  
such that M£u(at) for 1 ё (Т и, i.e. such that [a;)T M  for all 1 = /= « . Hence 
the Z-filter ([a,), ..., [a„)) is not proper. This means that there exists x  such that

________________ П П
x, x'€([a1) , ..., [a„)) = (J [ß,)U( V (W H Z)). It is straightforward to complete the

i = 1 1 =  1
proof.

The results above suggest the following definitions. An abstract closure space 
S =(X, C ) is said to be compact if the family C{X, C) of all closed sets in (X, C) 
satisfies the property K) in Lemma 7. S  is a Hausdorff closure space if for any 
x,y£X , x 3 y ,  there exist open sets A, В such that x£A, y£B  and Л Pl.ß =  0.

Let S= (X ,C )  be a closure space. A family S!QP{X) is called a base for 
C if each closed set of (X, C ) is the intersection of members of 31.

If L  is an orthomodular lattice, the closure space S(L)=(X, C) is called the 
dual closure space. Let L(S(L)) be its base, ordered by inclusion.

An abstract closure space S= (X ,C ) is called an orthomodular closure space 
if 1) S  is a compact Hausdorff closure space, 2) the family L (S)  of all clopen sub
sets of S, ordered by inclusion, is an orthomodular lattice and C is additive on 
the center Z(L{S)), 3) the family L (S) is a base satisfying property P) (in 
Lemma 9).

If S  is an orthomodular closure space, the operations on L(S) are given by 
the equalities A/\B=I(AO B), A 4 B= C(AU B) and — A is the complement of A. 
L (S ) is called the dual orthomodular lattice of S(L).

Summing up the results above and in view of these definitions we can for
mulate

T heorem  2. I f  L is an orthomodular lattice, S(L) is an orthomodular closure 
space and the map a^*u(a) is an orthoisomorphism between L and the dual ortho
modular lattice L(S(L)) o f its dual closure space S(L).

4. Duality theory

If S1! and S2 are orthomodular closure spaces a map / :  Sx^-S2 is called C-con- 
tinuous if the inverse image of each set in L (S 2) is in L(S'i). A bijection / :  5’1ч-5’2 
is said to be a closure isomorphism if /  and / -1 are C-continuous.

The next theorem gives a characterization of the representation closure space 
of an orthomodular lattice.
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Theorem 3. I f  S  is an orthomodular closure space then L (S ) is an orthomodular 
lattice and S is closure isomorphic to S(L(S j).

Proof. Let S(L(S)) be the dual space of the orthomodular lattice L(S). For 
each x£X  define Ф(х)= {A £ L (S ) : x£A}. Clearly Ф(х) is an increasing subset 
of L(S). Let A, B£ S(x)r\Z (L (S ))  so х£АГ)В = АЛВ by the additivity of C 
on the center; hence Ф(х) is a Z-filter in L(S). Ф(x) is maximal since А ^Ф (x) 
implies x$A, with A£L(S), that is x £ —A and — A£L(S); hence —А£Ф(х) 
and Ф: S —S(L(S)). To show Ф is onto let Л/0={Л;}г€/ be a Z-ultrafilter in 
L (S )  and consider Q At. We have f) AtA0', otherwise by compactness there

A t ^ M 0 i
are г'1; suchthat AtlC\ ... DAin=0. То avoid a cumbersome notation we
write А1Г)...ПА„=0. By hypothesis L(S) satisfies property P). If there are 
1 ^ p , q ^n  suchthat Apf)Aq = 0 we infer ApQ —Aq. Hence —A f M 0 and M0 
is not proper, a contradiction. Suppose there are Ako and Bk>, BkfZ (L (S ) )  
such that AklQBkl, ..., AkrQBkr with АкаГ\Вк1Г\... Г\Вкг~0, i.e. AkoQ — Bkl(j ... 
. . .U — Bkf M 0. But M0 is an ultrafilter in Z (L (S ))  so there is ks, with l S r á r ,  
such that —Bkf M 0 and M0 is not proper, an impossibility. These contradictions 
imply that there is so A f  Ф(х) for all i and M0C Ф(х). By maximality

i
М 0=Ф(х). Ф is one to one because S' is a Hausdorff closure space and L(S) is a 
base for C. Finally let u\ L(S)-<-S(L(S)) be as in Theorem 1. Suppose A£L(S). 
Then x£A means that А£Ф(х). Since Ф(х) is a Z-ultrafilter this is equivalent to 
Ф(х)£и(А). Thus Ф(А)=и(А). This implies that Ф and Ф-1 are C-continuous. 
This completes the proof.

The point of the present approach is exhibited by the following result.

Corollary. I f  L  is a Boolean algebra, S (L ) becomes the Stone space o f L.

F inal remark. In Section 3 we may take the family SA =  {«(a) : a£L} as a 
subbase for a topology г on X. But the topological space (X, t) obtained in this 
way does not characterize, in general, the orthomodular lattice L , i.e. there exist 
non-ortho-isomorphic orthomodular lattices which provide the same topological 
space. For instance let MO2 — {0,a,b,a ',b ', 1} be the orthomodular lattice with 
four atoms and В  the Boolean algebra with four atoms. They are not ortho-iso
morphic because they do not have the same number of elements. In both cases X  
contains four points and the associated topology r  is the discrete one. We conclude 
that the topological spaces are homeomorphic while the orthomodular lattices are 
not ortho-isomorphic.
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AN INDIVIDUAL ERGODIC THEOREM 
FOR SUPERADDITIVE PROCESSES

R. SATO (Okayama)

1. Introduction

Let T  be an invertible positive operator on Lx of a сг-finite measure space. 
Under certain norm conditions on T n, we shall prove an individual ergodic theorem 
for superadditive processes with respect to T.

Let (X, 2F, ji) be a сг-finite measure space and T  a positive linear operator 
on L1(ji)=L1(X, dF, p). A superadditive process (with respect to T) is a sequence 
{ F ,L i  of functions in Ц(р) such that Fn+k̂ F„ + T nFk for all n, 1. Applying 
Ito’s theorem [6] and Akcoglu—Sucheston’s theorem [2], which is a generalization 
of Kingman’s deep theorem [8], it may be readily seen that if Г  is a Markovian 
(i.e. J  Tfdp=J f  dp for all fk b fp ) )  and satisfies the Z^-mean ergodic theorem, 
then Tor any superadditive process with

the pointwise limit lim — F„ exists a.e. on X. It is well known that this assertion n n
does not necessarily hold if the hypothesis that T  satisfies the Z^-mean ergodic 
theorem is not assumed (see e.g. [3]). On the other hand, by a theorem of 
Akcoglu—Chacon [1], the hypothesis may be replaced by ||Г||рё 1  for some 
l< gá«= , where ||T’||P=||T'||L (p) denotes the operator norm of T  as an operator 
on Lp(p). In this note, however, we do not assume T  Markovian, nor ||Г||Р̂ 1  
for some l<pS«=. Instead of these conditions we assume Г invertible and power 
bounded as an operator on Ьк{р) and Lp{p), respectively. The theorem which we are 
going to prove is as follows.

T heorem . Let T  he an invertible positive operator on L1 (p), where p is a o-finite 
measure, such that

2. The theorem

( 1) sup II 7,"|| ! =

and also such that for some 1 < p á °»

(2) sup oo



154 R . SATO

Let {F„}„al be a superadditive process in Lr(p) such that

(3 )

Then

supT  f  Fndp = y < ~ .nil n *'
lim — Fn exists a.e. on X. n n

Proof. Let LIM denote a Banach limit (see e.g. [4]), and define

m(A) = LIM ( j T nlA dp) for AddT with p(A)< °° ,
where lA denotes the indicator function of A. When p(A)=°°, choosing a sequence 

°f sets in #■ so that p(A/)< AiCzAi+1 and lim At=A, we define m(A) =
= lim m(A;). It is then easily checked that m is a cr-finite measure on BP satisfying

i

= m = Kifi.

To see that Г  is a Markovian operator on L t (m), let p(A)< °° and e>0.
к

Take a simple function lt= 2  <2,lEi with EiC\Ej = $ for iAj, so that TlA^ h
i = l

and Í  (TlA—h) ф < г .  Then we obtain

m(A) = LIM ( f  T nlA dp) = LIM ( f  T n+1lA dp) s

L IM (/ T n h dp) =  J  hdm  ^  L I M ( /  Tn+1lA dp — Кхг) =

Since e>0 is arbitrary, this proves that m ( A ) —J  TlAdm. By an approximation 
argument, Г is a Markovian operator on L1(m).

Next, let us fix an r with l < r < ^ .  We shall consider T as an operator on 
Lr(m). First, by the Riesz convexity theorem, T may be regarded as an operator on 
Lr(p) satisfying

sup II
— oo < n  <  oo

Then we have

^ /  I/ Г  dp = f  I/ Г  d m S K j \ f \ r dp

for any function /  on X,  and thus
sup \\Tn\\LÁm) 3? K?'Kr.

— oo<n<oo

Hence, by [11] (see also Remarks 3.1 in [7]), if we set

/* (* ) = sup^- 2  \Т‘Дх)\ for f £ L r{m)

then /* € L r(ra). This together with standard arguments (see e.g. the proof of Corol- 
lary in [5]), shows that for any f£ L r(m) ( = Lr(n)) the pointwise limit lim— 2  T ' fn n í=о
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Lastly, to complete the proof, take any 0< fdL1(m)C\Lr(m). Since
1 (1 «-1 . ) F

^ F n  = \ - 2  T ' fУ1 \ Yl 1 = 0 ' 7̂ Jliy1
on X,

и  —  X.

it is enough to show the almost everywhere convergence of F „/(2  T‘f  ). Here
i=0

we may assume without loss of generality that F„S 0 for all и^1 (see e.g. Intro
duction in [2]). Then we have sup— f  F„dm^K1y<  » , and hence by Akcoglu—

ngl и ^
Sucheston’s ratio ergodic theorem [2] for superadditive processes, the almost every-

n — 1
where convergence of Fnj { 2  T 'f  ) follows. The proof is complete.

;=о
R e m a r k . The theorem holds even if the norm condition (2) is replaced by the 

following:
( 4 ) sup

n i l

1 " -1 . 
-  2  T' n i = 0

In fact, it is known (see e.g. [9], p. 420) that if a positive operator T satisfies 
||Т'||1ё1  and (4), then for any / 6 Lp, with 1 the almost everywhere con-

1 »-I .
vergence of the average — 2  T 'f  follows. Using this result and the above argu-

n  i= о
ment, the remark may be readily checked. It should be noted here that this gen
eralizes the corollary in [10], where T  was assumed to be an operator on Lx(n), 
with fi finite.
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A DIRECT DEFINITION OF DISTRIBUTIVE EXTENSIONS 
OF PARTIALLY ORDERED ALGEBRAS

A. LENKEHEGYI (Szeged)

It is shown that distributive extensions of partially ordered algebras can be 
defined without any reference to the Priestley-spaces of the distributive lattices in 
question. Namely, given a partially ordered algebra

SU = (A ;F ,& y
and a bounded distributive lattice

D =  (2>; A ,V ,0 , 1)
let A[D], the underlying set of the extension Sl[X>] consist of all functions §: A —D 
satisfying

(1) the range of £ is finite, i.e. |£(Л)| is finite;
(2 )  É(a)AÉ(b)= V 5(c) for all a,b£A-

c ^ a ,b

(3) V (£ (« ) \ V £(b)) =  1 in the Boolean algebra generated by I) (here x \ y
a £ A  b>a
means xA /  and the empty join is 0).

The operations are defined as follows: for any n-ary operational symbol p from 
the type of 31 (и >0), for any £lt ..., £,n£A[D] let p (£l t ..., £„) be the map A-*D  
for which

(4) ß t f i , .... L m  =  v (М Л...Л£,(&„))
*>,....ЪпЧА

li(bv ... ,b „ ) s a

for any а в A. If р is 0-ary, and takes the value d£A  in SI, then let p assign in A [Z>] 
the function £: A -+D carrying d to 1 and the other elements of A to 0. The partial 
order in 31 [2>] is taken componentwise, i.e. £. = p iff £(a) ё  t](a) in 2> for every 
a€A.

The definition contains that of Boolean extensions of algebras as a special case 
when Ф is Boolean and the order of SI is trivial (i.e., the equality).

R em a r k . The idea of working out such a definition is due to A. P. Huhn. 
The result was announced at the Czechoslovakian Summer School, Kromeriz, 
8 September, 1980.

The operations in F  are assumed to be isotone with respect to s .
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Motivations. The notion of the extension of a (universal) algebra by a Boolean 
algebra was introduced in the fifties by A. L. Foster [2] (see also Grätzer [3], Bur
ris [1]). Foster’s definition is the following: let

я  = (A ;F )

be an algebra, 93=(B, Л, V , ', 0, 1) a Boolean algebra. For the extension 9I[23]=: 
= {A[B] \ F ) the underlying set A[D] is exactly the set of all mappings A-+B 
with the following properties:

(1„) If (Л)I is finite;
( 2 0)  f  ( a ) A f  ( b )  =  0  i f  a , b £ A , a 7 ± b ;

(30) V f(fl) -  1 in 93.
a 6 A

For /г-ary (и >0) operations ц from the type of 91,

( 4 0)  / r ( f x ,  . . . .  « ( « )  =  V  ( f i ( b i ) A  . . . A f „ ( b „ ) )
b j , bn £ Л 

/*(&!, •••» bn)= a

(a€A, f1; ..., f„6A([B]); the 0-ary operations are defined just as after (4). 
(Note that Burris denotes this construction by 91 [93]* and he means by 91 [23] 
a little bit more general notion: if 93 is complete, then (10) is omitted and in
finite joins are also allowed in (3„) and (40).)

There is another possibility for introducing Boolean extensions. Namely, it 
is well known that every Boolean algebra can be represented as the Boolean algebra 
of all clopen subsets of its Stone space. The Stone space of a Boolean algebra 93 
consists of all dual prime ideals of 93, and all sets of form SPd = {P\P is a dual prime 
of 93 and d £ P }  (where dGjP> is arbitrarily fixed) and the complements of these 
sets give a subbase (in fact, a base) for the topology (M. H. Stone [7]). Let us denote 
this space by then we can consider all continuous functions / :  Aj,-*9l (with 
respect to the discrete topology on 91), they form a subalgebra of the power 91s®, 
and it is isomorphic to 9C[23]. An isomorphism is given by the correspondence 

where ff€9l[93] having the property

(5) f/ ( a ) = / ^ 1(u) for every a£A

(here for any d£B, d is identified with 0>d, this identification gives the canonical 
representation isomorphism of 23 with the lattice of all clopen subsets of S (the 
latter is called the dual lattice of á^)).

But bounded distributive lattices have also representation spaces, the so-called 
Priestley-spaces; these are defined in the same way as in the case of Boolean alge
bras with the further specification that this space is partially ordered under set 
inclusion. The canonical representation isomorphism is the same as mentioned at 
the end of the previous paragraph. (For the details consult H. A. Priestley [4], [5].)

Now, it is clear that the second definition of 91 [93] above can be generalized 
to partially ordered algebras and distributive lattices by considering all continuous 
monotone mappings from the Priestley-space of £> into 91 (the latter is endowed 
with discrete topology). (This idea seems to go back to E. T. Schmidt [6].) Then the
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question naturally arises, whether one can construct a definition for distributive 
extension like that of Boolean extensions listed in (1„)—(40) (i.e., a direct definition, 
not using representation spaces), so that the correspondence under (5) gives an 
isomorphism between the two constructions. We shall see that the definition in the 
abstract fits, even it generalizes the direct definition of Boolean extensions.

The justification of the definition. Let D be a bounded distributive (in what 
follows, 0, 1-distributive) lattice, (X \S T ,^ )  its Priestley-space as defined above 
(with X  being the set of all dual prime ideals of D, 2Г being the topology mentioned 
and S the set inclusion between elements of X), 21 an ordered algebra. Let us identify 
Ъ with the lattice of all clopen increasing subsets of (X ; AT, á ) .  Given an arbi
trary continuous monotone map / :  {X, T, =:)-•-21, we want to construct a func
tion i f : A ^ D .  Of course, its values cannot be determined as the /-inverse images 
of the one-element sets, because these images are not increasing in general (although 
they are clopen), and so do not belong to 2>. But we get elements of £> by taking 
the /-inverse images of increasing subsets of 21; and these sets completely deter
mine/, because for any а £ Л ,/-1(а)= /~1( [я ) ) \ / '-1([а)\{а}) (here [x)—{y\y^x )). 
Furthermore, it is sufficient to know the /-inverse images of all sets of form [I) 
since for any increasing subset A0 of A we have A0={J {[b)\b <zAn}. Now consider 
the sets f ~ l ([a)), there are only finitely many of them (even if A is infinite!), because 
the range of /  á?(/ )  is finite, being /  a continuous map of a compact space into a 
discrete, and so / - 1 ([a )) —f~l([а )  Г Ш ( / ) ) .  It is easy to see that
(6) / _1 ( W ) n / _1([h )) =  U  / _1( 0 ) )  for every a , b £ A  and

c ^ a ,  b

U (/-1([e))\U/"1([*))) = ^
a £ A  b > a

Note that the Boolean lattice of all clopen subsets of X  can be viewed as Boolean 
algebra generated by D, introducing the operations of taking complements and 
assigning 0 and I  as 0 and 1, respectively; see Priestley [5]. Define the function 
i f  associated with /  as the map A-*D satisfying
(7) (a) = f~ 1([a)), a£A.
(7) trivially turns into (5), if 21 is trivially ordered and X> is Boolean (lattice or algebra).

With respect to (6), the remark preceding it and (7), we introduce a
Definition. The extension of 21 by X) is the partially ordered algebra 21 [35] =  

=  (A [D] ; F, S )  described in the introduction.

Theorem. The definition is correct, and the correspondence /'-•■if is an iso
morphism between the subalgebra of 21 consisting of all continuous monotone maps 
/ :  (X, AT, S)->-2I and the 2Í [T>] in our previous direct definition.

Proof. The joins in (2) and (3) as well as in (4) are always finite (because of 
(1)), so the definition is correct.

Let cp denote the correspondence f ^ i f .  First we shall see that cp is onto. For 
this, let i  be any function satisfying (1)—(3), and consider the map /: (X, ЗГ, ^ ) —2t 
for which
(8) /~ 1(fl) = í(«)\ U a b ) ,  a e A .

b>-a
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f i s  well-defined: If a ^ b ,  then /~ 1(а)Я £(а)\£ф ) , so / ^ ( e )  П 
n / _1(h)=0. If a\\b and still x^ f~ 1(d )i)f~ 1(b), then we would also have 
х£с(а)П£(й), so by (2), for suitable element c (c^a,b), х€£(с). But c ^ a  or 
c^b , for example, о  a, and then f ^ 1 (a) Q £ (а )\£  (c), a contradiction, because 
x 6 /_1(a). Therefore, in the case of a^b, f ~ 1(a)f}f~1(b) = $ always holds.

f  is defined everywhere: By (8) and (3), the sets f~ l (a) cover X.
f i s  continuous: Trivial, since the £(a)’s are clopen and the union in (8) is 

finite.
f i s  monotone: From (8) we see that £ (a )= /_1([a)), and from this the asser

tion follows easily; we also see that £=£/, proving that q> is onto.
Now let f i ,  ...,/„ be (X, 2Г, s)->-5l continuous monotone functions (и>0), 

li an n-ary operation, f —n i f i ,  Then by the monotonicity of g

Г ' Ы  =  Осл, - . Я Г 1 ( И  -  U ( f r 4 bx)C \.. .c \ f- \bn)) =
иф,....Ь„)®0

= и  (/Г 1([Ь1))П ...П /И- 1([Ь„))).иФх. ...,Ьп)Яа
This shows that <р preserves operations (the case of 0-ary operations is left to the 
reader).

Finally, f ^ g  is equivalent to / _1([а))Г^_1([а)) for every a€A, i.e. £,f (a) = 
= £g(d), which is £f=£e, and this means that <p is an order-isomorphism, too. 
The proof is complete.

The remark preceding the definition establishes that we indeed generalize 
Foster’s definition concerning Boolean extensions.

References

[1] S. Burris, Boolean powers, Algebra Universalis, 5 (1975), 341—360.
[2] A. L. Foster, Generalized Boolean theory of universal algebras, Part I, Math. Z., 58 (1953),

306— 336; Part II, M ath. Z., 59 (1953), 191— 199.
[3] G. Grätzer, Universal Algebra, 2nd ed., Springer-Verlag (New York—Berlin, 1979).
[4] H. A. Priestley, Representation o f  distributive lattices by means of ordered Stone spaces, Bull.

London Math. Soc., 2 (1970), 186—190.
[5] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc.

London Math. Soc., (3) 24 (1972), 507— 530.
[6] E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Math. Forschungber. XXV (Ber

lin, 1969).
[7] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc.,

40 (1936), 37—111.

( Received December 27, 1983)

JÓZSEF ATTILA UNIVERSITY 
BOLYAI IN STITUTE 
A R A D I V ÉRTA N Ü K  TERE 1 
6720 SZEGED 
HUNGARY

Acta  Mathematica Hungarica 47,1986



Acta M ath. Hung. 
47 (1—2) (1986), 161— 163.

AN INEQUALITY FOR THE DIR1CHLET DISTRIBUTION
D. M ONHOR (Budapest)

1. Introduction and notations

The classical Chebyshev inequality and its generalizations (Bernstein, Kol
mogorov, Rényi—Hajek inequalities etc.) are useful tools for proving weak and 
strong laws of large numbers. There is a considerable literature on this topic. Using 
different techniques, Berge [1], Lai [3], Marshal [4], Olkin [4], [5] and Pratt [5] 
investigated the multivariate generalization possibilities of the Chebyshev inequality. 
All of these inequalities are valid for wide classes of the probability measures, for 
example, for the class of all probability measures having second moments. How
ever, the bounds for some important multivariate distributions seem to be of interest 
for the applications, especially, for the optimization problems. In this paper one 
such bound is given for the Dirichlet distribution. The Dirichlet distribution is 
defined by the following density:

f i x i, r (v1 +  - + v .  + 1) ^ 1- 1...x;n-1( i - x 1- . . . - x n)v, + x-i
if

r (v 1)r(v2)...T(v„ + 1)

*€[£„] = {*: x  = (xu  ..., xn), Xi SO, i = 1, ..., n, % xt ^  1}

and f{pci, . . . ,xn)=0 otherwise. V ] , . . . , v „ +1 are positive parameters. Following 
Wilks [7] we use the notation D(x}, ...,x„; vls ..., v„; v„+1) for the Dirichlet dis
tribution function, i.e.,
(1) D(xu  ..., xn; vls ..., v„; v„+1) =

.ГОд-Ь... +vn+1) 
r (v 1)T(v2)...r(v„+1) / - /0̂ yt^xiti=lt...

•Tn”-1( l — Ti — ••• —>’n)v"+1—1 <■iy j.-d y„.

2. Some auxiliary lemmas

We make the following change of variables in (1):

(2) y i= z 1, y 2 = za(l-Z j), . . . ,y n = Z n il-zJ  — i l - z , - , ) .
L emma 1. For (2) the following relation holds:

1 - Л - . . . - Л  =  ( l - ^ . - T l - z , ) ,  i =  1,

11
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Proof. When /=1 the statement is trivial since l — y 1 = l — z 1 . Suppose that 
the lemma is true for i^ k ,  and we prove it for k + 1.

=  ( 1 - Z i ) . . . ( l - z k) - y k+1 =
r r ( ] - z 1) . . . ( l - Z k) - Z k + 1 ( l - Z 1) . . . ( l - Z k)  =  ( l- z O - .O -Z ^ C l-Z t+ O , 

hence the lemma is proved.
Lemma 2. The change of variables (2) of the integration maps

П
s„ = { j :  У = (yi, У„), Уг > o, i =  1, ...,n, 2  Л <  1}i = 1

onto
I„ =  {z: z = (zlt  ..., z„), 0 < zf <  1, i =  1,..., и}.

П
Proof. If  (jFi, ...,y„)6Sn, then у*>0, i = l ,  n ,  2  L.-^l- This implies that

i = l
0 < y ,< l ,  i = l ,  ..., и. Thus, we have 0 < zx<  1 and it is easy to see that z(> 0 , 
i = 2, ..., n by induction. We need to prove that zfd ,  i = 2, ..., и. Indeed, other
wise there exists &=*1 suchthat zf< l ,  for and z4>  1. This fact implies
the existence o f such a point y»=(jFi, . . . , y n)  for which we have This is a
contradiction to ( y ^ ,  ...,y„)£S„. Hence, z;<  1, i =  l ,  In a similar way it
is easy to see that each z f j „  is an image. Hence the lemma is proved.

Lemma 3. The change of variables (2) of integration maps
П

{у: У =  (Уи yn), 0 <  y; <  Xj, i =  1, ..., n, 2  Уг <  1}
i = l

onto
{Z: z =  (zl5 ..., z„), 0 <  Zj <  Xi, 0 <  zf <

^  min{ ( l - z 1) . . . ( l - z i_1) ’ !} ’ l = 2 ,

This is an immediate consequence of (2).

T heorem.

( 3 )

3. An inequality

D(xk, vl5 ..., v„; vn+1) =

r (vi +  ... +vn+1)
min ( - , l )  min ( -------—-----------, i \

l U - :  1 )  \ ( l - z 1) . . . ( l - z n _ 1) )

f  dzk j  dz2... I

( 4 )

f W - r í v j  J “ “l J "*e-  ■> zil" X
X ( l - Z 1) ’' . +  " + ' ’n + 1- l z 2v» - 1 ( l - Z a) '’.+  -  +  vn + I - l . . . r vn- 1( l _ Zn)vn + 1- l dZii>

£)(X!, .... x„; vl5 ..., v„; vn+1) ^ ■ ^ Vi +  --_+v"+  ̂ x
1 [yn + 1)

XB(xk; vx; v2+ ...+ vn+1)5 (x 2; v2; v3 + . . .+vn+1)...Ä(x„; v„; v„+1)

where B{x\<x',ß)= J t* 1( l —t)ß~1dt.
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Proof. Д(Уи -,Уп) 
D{zx, ...,z„) = (1 —z1)n_1(l —Z2)"_2...(l —z„_x). Using the previous

lemmas the integrand is transformed into the following expression:

The Dirichlet distribution is one of the important multivariate distributions 
that appear in the applications, especially, in order statistics, probabilistic con
strained programming models, delivery problems etc. [6]. The bound is useful, since 
the gamma and the beta functions are widely tabulated.
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T
for /=1, and (zl5 ..., z„)€/„. The theorem is proved.

5. Concluding remarks
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ON THE OPTIMAL LEBESGUE CONSTANTS 
FOR POLYNOMIAL INTERPOLATION

P. VÉRTESI (Budapest)

1. Introduction

Let X= {xkn}, k = \, 2, ..., tv, n= \, 2 , . . . ,  be any triangular matrix with

(1.1) 1 =  X n + l , n — X nn Xfi — i t n <  n ~ -Xln — Xon —  1 ? ^ 1,2, . . . .

As it is well-known, in the study of the Lagrange interpolation the behaviour of 
the Lebesgue functions

( 1.2)

and the Lebesgue constants
(1.3)

n

x) = 2  M Y  *)l
k — 1

K U O =  max: k n(X,x)

is of fundamental importance. In (1.2) and (1.3), sometimes omitting the super
fluous notations,

П
kn (x) = C0n (x) К  (**) (x -  Xk)] 0J„ (x) = c„ f f  ( x -  xk).

k = 1

In this paper, roughly speaking, we are going to prove the following relation: 
If y=0.577215... is the Euler constant and (y+ln -^-j=0.521251... , then

1* := min2„(Z) = — In n+x+o{\). x n

(For the precise formula see (3.5).)

2. Preliminary results

From our point of view, the most important results are as follows (for further 
references see [12]—[15]).

2.1. In 1914 G. Faber [1], in 1916 S. Bernstein [2] proved that for arbitrary X
. In n . „ ,
Y(Y) >  > n L 2 ,....

о у к

1 The minimum is attained (see Theorem 2.1).



166 P. VÉRTESI

P. Erdős [3] in 1961 obtained that

2
(2. 1) In n — Cj ^  A* S  — In n + c2.

(Here and later c, c1, c2, const., denote absolute, positive, not necessarily dif
ferent real numbers.)

In 1981 P. Erdős and P. Vértesi [4] established the Erdős conjecture on the 
Lebesgue function and proved as follows.

Let e> 0  be any given number. Then for arbitrary matrix X  there exist sets H„ 
with \Hn\=e and r/(e)>0 such that

A„ (X, x) >  t] (e) In n i f  x€[— 1, 1 ]\#„  and 
This result was sharpened by P. Vértesi [5] and [6].

n0(s).

2.2. Another conjecture of P. Erdős and S. Bernstein for X* was proved by 
T. A. Kilgore [7] and C. De Boor and A. Pinkus [8] in 1978. To formulate the result, 
first let us see some observations.

A simple argument shows that for и ё 2, X„(X,x) is a piecewise polynomial 
with X „(X ,x)^l and X„(X, x) = l iff x —x kn, l ^ k S n .  Between consecutive 
nodes, A„(X, x) has a single maximum, in ( — 1, xnn) and (xln, 1) it is convex 
and monotone (see e.g. F. W. Luttmann and T. J. Rivlin [9]).

Let us denote the local maxima by
(2.2) bkn (Ю •— max

n -X—Xk -l,
A„(X, x), к — 1, 2, ..., n + 1; n s  3.

Another simple observation is that to obtain A*, “without loss of generality 
we (can) restrict our attention to those nodal configurations where — \= x nn and 
1 =xln". (See Kilgore [7, p. 274].) We call these X  canonical matrices.

Now the statement is:
Theorem 2.1 ([7], [8]). Let the matrix X  be canonical. Then A„(X, x) equi- 

oscillates, i.e.,
(2.3) ц2п(Х) = fi3n(X )= ...=  ßnn(X), 
iff A „(A ) =  A*. Moreover, for arbitrary canonical X
(2.4) min Цкп(Х) =  A,*i max цкп(Х), n £  3.

Here, the above (so called) optimal matrix X* (which has (2.3)) is unique.
2.3. Using the analogous result of [8] it turns out that trigonometric interpola

tion on [0, In') at equidistant nodes is optimal.
For the corresponding Lebesgue constants %*, the values

(2.5) г* 1 4, 2fc—1 , ,  
4» "■

(2.6) ■̂2n + l =  ^2(2n+l)> П — 1 , 2 ,  . . . ,

were obtained by H. Ehlich and K. Zeller [12, (2.4)].
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The complex case, when the nodes are on the unit circle line Г, was treated 
by L. Brutman [10] and L. Brutman, A. Pinkus [11]. They proved that again the 
case of the equidistant nodes (on Г) is optimal and the corresponding Lebesgue 
constants A* are:
(2.7) X*n = I t ,  n =  1 ,2,...
(see [10, (23)]).

Very recently P. N. Shivakumar and R. Wong [13] further V. K. Dzjadik and 
V. V. Ivanov [14] obtained asymptomic expansions for the right side of (2.5). Espe
cially, in [13] the expansion

(2.8) 1* 2 ,  2 , “ ak
- ln « + X  + - l n 2 +  2 -zbf.
71 71 k = l  rl

ak = (-1)*+1(2гк- 1- 1 ) 2я “ -»ДЬ 
4fc- 1/c(2/c)!

was established as n-*°° (Bk are the Bernoulli numbers). Further, the error has 
the same sign as, and is in absolute value less than, the first term neglected (compare
R. Giinttner [18, Theorem 1] and (3.2)). I.e., by (2.5)—(2.8) we see that the problem 
of the optimal nodes and the corresponding Lebesgue constants is settled considering 
the trigonometric or the complex interpolation.

3. Asymptotic for A*

3.1. If X c[ — 1, 1], neither the optimal system, nor A* has been known. But 
there are some estimates for A*. The mentioned Erdős theorem (see (2.1)) gives a 
fairly sharp evaluation, especially if we take into account that he could not use 
Theorem 2.1 and its very useful relation (2.4) (see further (3.1)).

Let us remark that for arbitrary (not only for canonical) X  we have (2.4). Indeed, 
if 1—xln>0, say, consider the “intermediate” matrix zkn= xkn—(xln+xnn)/2 finally 
the matrix Xc\= Y =  {ykn} where ykn—zkn/zln, l^ k ^ n ',  n = 3,4, .... It is easy to 
see that Y  is canonical, from where (2.4) holds true for Y. Moreover, by construc
tion pk„(X)=pk„(Y) if 2 ^ k S n ,  which gives the statement.

By the above remark we can write for arbitrary X  the relation

(3.1) min pkn(X)
I S k S n + l

min pkn(X) si A* S  max pkn(X)2^k^n 2^k^n max pkn(X)

which can be used to obtain estimates for A* applying special matrices X  and evaluating 
the differences

<5„W := max pkn( X ) -  mm p.kn(X),2̂ /ĉ w 2 ̂ k^n

max Tkn (* ) -  min pkn(Y).l^k^n+1 l^k^n+1

3.2. Two very natural choices for the special X  are the Chebyshev matrix 
r= |c o s - ^ j—“ л}’ k = \,2 ,  ...,n, n= 1 ,2 ,... and the matrix of the Chebyshev

extremum nodes V = jcos j ,  к = 0,1, ..., n— 1, n =  2, 3, ....
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Ehlich and Zeller [12] proved that
Л„(Г) =  2n+1(F) = X I, 71 =  1,3,5, ....

A„(T) = Án+1(V)+g„ = Ä£n, n = 2 ,4 ,6 ,..., 
from where by (2.8)

(3.2) U T )  = l ln n + x+ l i a2 + ̂ - s n, /1 s i

where O ge„< 0.0088л“4. Using analogous estimations and (3.1), Dzjadik and 
Ivanov [14] got the value of 2* within the error 0.45.

They had no knowledge o f the paper of L. Brutman [15] written in 1978, where 
using a quite serious analysis o f A„(T, x), he proved that
(3.3) <5„(T)< 0.201 if 3
from where by (3.1) we can obtain 2* within the error 0.201.

By further analysis R. Giinttner [18] obtained that

(3.4) 0n(T ) = ^ l n 2 - ^ - + o ( l ) ,
П J 7 t

(for a different proof see 4.4) i.e., the error can be lessened to 0.01686.... But we 
can not obtain a better estimation for 2* using T.

Further calculations show that for other special matrices X, ön(X)>ö„(T) 
(see e.g. [9] and [12]).

3.3. The main goal of this paper is to prove 
Theorem  3.1. We have the relations

(3.5) const 
(In n)l/s 2 * -—I n n - *

71

д а + ° И  n =  2m- -Jr+0 (i) v

4. Proof. Properties of the matrix T

4.1. First we quote and verify some important properties of the matrix T. 
As it was proved by N. A. Pogodiceva [16] (see further [17, 8.2.5])

(4.1) 2 „ (Г ,х )= ||7 ;(* ) | In «+0(1), - l s x s l ,  7 i= l ,2 , . . .

uniformly in x  and n. Here T„(x)=cosn3, x=cos 3, is the и-th Chebyshev poly
nomial.

2k — 1Let l^n [$/;—l,nj f̂cn]5 h 1, 2, . . .,n + l, where n, к —1,2, ...,//,
90—0, 9„+1=n. Let tk[3]=tkn[T, S] be the trigonometric polynomial coinciding
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with A„[9] — А„[Г, 9]:=А„(Г, cos 9) on Ik. By virtue of the symmetry of the 
nodes we will examine ?k„[9] only for 1 ^ k = m  + \ where m = [ y ] . Let 
vkn—cos t;kn where £k„ are the local maximum places of tk on Ik. Then we have

0) 4  :=
к - 1 л ^  £k, tk is a concave function in [xk, £k], l s f c s m  +  l, tx=

= £i = 0, further rm+1 =  £m+1 = if n is even.

ГАИ(Г) =  bK J >  /2KJ tmi u  >  /m+i[cm+1],
} U „(r)  =  íJ tj] >  /2[tJ  tm[xm] >  tm+j[rm + j].

Further
(4.2) he [Tfc] ~  hc + 1 [T/c + l] — [тк] — A„ [т^+-J

COS$fc(l— cos Sj) 1+0 ( I )
„ • n . К  К - l  n (4fc —1)(4/< —3)(2/c — 1) и sin sm —— sm —-—

1 ^  к ^  m,

if и is big enough which henceforward will be supposed, 
(iii) t[ [tJ  =  0, further

(4.3) 8«
9я2 [i + 0  (~г)| = Ф 2] >  t'á[r3] >.•■> C + ibm+i] ^ 0

(see Brutman [15, Theorem 1 and Lemma 1, further (13), (15) and (17)]); in (4.2) 
and (4.3) we used

(4.4)
sin x  = x  — thx3 — x (l — ri1x2), 0 <  w, <  —0

cos x  = 1 — t]2x2, 0 <  t]2 <  -i-.

They will be applied later, too.
4.2. First we prove the right hand side of (3.5). If n=2m, by (ii) and (3.1) 

A*sA„ . But by [15 (24)], A„ |y j= A m(T), from where using (3.2) and m —n/2

A„* ^  A,71L 2
, 2 , n 2 ,  ,^m(T) — — In — +X + —In 2 + n Z n 12

from where we get the corresponding part of (3.5).
(t )'

-+ o И
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Let now n= 2m + \. Then again K-Kiím+i]- Here by [15 (26), (16) and 
Lemma 1]

where by [15 (27)]
О <  A,[<í;m+1]—2п[тт+1] <  — ,

2 т  2 lc_1 1 7Г
U^m+i] = 2^ГГГ Д  COt 2(2т + 1) 71+ 7Гtan 4 ^ := Pn+R” ■

Неге 0
Estimating Р„, we shall use the expansion

coiJC = ~  ^ 2 2r [8*1 - щ р  x€(—7Г, я), 

holding uniformly in any closed subinterval, from where we get
4  я 1

W ) = - 2 -  4- 2  Ш  ? S r  i  V k  - 1)^1it A  2k- 1  тс ré( (2r)! (2/1)*

(cf. (2.5), 3.2 or [13, (3.2) and (3.3)]). Now, using that the function cot x is mono
tone decreasing in (0, n/2), we have, using the previous two relations

A m

p» = ^ 2
_4_ ~ \B2r\

w  2  ( i k - i r - 1 >  i m(T).n = 1  2fc — 1 n rt i  (2r)! (2m + l)2r

Here by (3.2) and m — (n/2)(\ — \/n) further ln (1+ x )= x ——+ ... (|лг| -= 1) we get

i . ( r ) = | 1n ( ^ ( | - i ) ) + Z + | l n 2 + o ( i )  =  L „ „ + z - }| + o ( l ) ,

from where we get the right side of (3.5) when n=2m + \. Later on we use that

P .=
2 m+1 2fe — 1

2  -----r^TZ2m+ 1 k=i 2(2m + l)

2r m-f 1

4  m -f 1 1
— 7  — -—n 2k— 1

- — 2  1B~r
TÍ

n r ti (2r)! (2m +  l)2r ^

(since the (m + l)th term equals 0 in P„). 
Further, we get, as above, that

^ 2  (2/c —l)*“ 1 <  Ат+1(Г)

i.e. we can state that 

(4.5) A,
whatsoever is n.

+1( Г ) - | - 1 п  n + x + ^ + O ^ ) ,  

nfrm + l] = ~^Xnn+X+ 0 [ ^\  if « = «0,
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4.3. To prove the left hand side is more tedious. First we prove that the local 
maximum points of x) are “close” to xk. More preciously

(4.6) £it = íjj+áfc with 0 =§ <5* =  О [— * 1 S k á m  + l,
l «yln n )

uniformly in n and k.
2Indeed, obviously Xn[£,^\^Xn[xk\= — In n + 0 (l) (see (4.1)). Again by (4.1), we

TCcan suppose nökS —<1. Now by (4.1)

— In /2+0(1) = Xn[^k] =  — |cos n£k\ In /2+0(1) =71 71

7 1 /  и2^2 и4<54 1
=  — (cos nők) ln и+0(1) =  — 1̂ 1---- 2^  + 1/ — 1п/г + 0(1) =

=  — ln n — (1 —/? П t.k I ln и+0(1) ä — ln n — n2öl ln /1 +  0(1)
Л 7t t  12 /  Tt 127t

(0 < 7 /<  1).
By these, /22<5£1п/2=0(1), which gives (4.6). An important consequence of (4.3) 
and (4.6) is the estimation
(4.7) Xn[xk] 'S X„ [£,] ä  X„[xk]+ 0  | — , I s l e s  m + l,

uniformly in n and k. This can be obtained using (i), (4.3) and (4.6) for tk at xk.
4.4. By the above results we can verify (3.4). Indeed, according to (4.7), (ii),

(4.2), (4.5) and (3.2)
w n  = A„K2]-A„Km+1] =  A„[T2]-A„[Tm+1]+ 0  i - = ^ )  =  К Ь Л -

v fin n )

2- i + 0 (T i= -) '
as it was stated.

The matrix D

4.5. The main idea of the proof is to construct another matrix D, which is
2“close” to T, moreover, for which Xn(Dc)^ X n[T, xm, x] % — In n+%. For this aim letTt

(4.8) D = {yk, x2, ..., xn-!,y„}, и = 1 ,2 , . . . ,  

where xk=xkn are the Chebyshev roots, 1 +/:==/?,

(4.9) yi =  —yn =  cos (9X+ 1/0  with 0 <  i//„ = ,
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where c will be determined later. Obviously

Tn(x){y{-x2)(4.10) A (*) := co„(D, x) =
from where

D'n(x) = 
which means

x \—x2

[t;  ( x )  (yf -  x2) -  2 xT„ (x)] (x! -  x2) +2 xT„ (x) (y\ -  x 2) 
( x f - x 2)2

(4.11)

D'n(xk) =  T~ ~ }’[ 2 Xl) =  TÍ (? k\ , 2 , к =  2,3, ..., n  —  l,x l - x l
1 + x t - y j

y l - x l

X I - у  i

4.6. First we verify that

(4.12)
By

x i - y „

A„(A x) = Xn(T, x )+ 0 ( l)  = — |cos n9| ln n+ 0(  1).n

(4.13)

we have

cos2 a —cos2 ß = sin(a+jß) sin(/l—a) =  

= (cc+ß)(ß-ct)[l-ri1(u+ßy2][ l- ti2(ct-ß)2],

(4.14) х 1 - у ! = ( ^  + фп]фп[1 + о [~ )][1 + 0 (ф 2)] = ^ [ 1 + 0 ( п Ю 1

Now, by (4.10), (4.11), (4.14) and T„(yk) -  -sin  пф„ = -п ф п[\ + 0(п2ф1)],
(4.15)

fi (A * ) =
Т п ( х ) ( У г + х )  x \ - y l Т„(х) уг+х п

(х1- х ) ( х 1+х)2у1Тп(у1) (х1-х )(х 1+х) 2ух и2 [l+0(ml/n) l

from where we obtain |/,(Д х)| = 0(1). Similarly, \ln{D, x)| — 0(1), too.
Consider now 2n(D, x). By (4.10), (4.11) and using the boundedness of |/i(D)|, 

\ln{D)\, \k{T)\ and |/„(Л1,

(4.16) ± Л ,(А *) =  ( U ^ § )  nz { \  + ̂ ^ \  \lk{T,x)\±
V X k — X  J k = 2 V У \ — x k )

±(|fi(A  x)\ + 1/„(A x)l) =  Я„(Г, x ) + - ^ f  " i11 lk{T, x)| +
X i  X  k = 2

n —1 __-li 2 n i 2  y . 2  n —1 y . 2  , . 2

+ 2  ^ r ^ M T , x ) \ + ^ - ^  2  ^ n r \ l k(T ,x)\+ 0(l):=^  i ; 2  _  y . 2
k =  2 У  l  X k

y 2 ___ y . 2  , , 2  y . 2
X 1 X  k =  2 У \ ~ Х к

Яп(7’, x)+ A + A + A + ^ (1 ) .

Acta Mathematica Hungarica 47, 1986



ON T H E  OPTIMAL LEBESGUE CONSTANTS F O R  POLYNOM IAL INTERPO LA TIO N 173

Here, if ^min |9 —S*| = |S — 37| and x^O, say,

Tn{x) sin 9k11/ «-I
^  = 0 (1 )^ -  z

n  k =  2 
k * j

П (Xi — x) (Xx +  x )  (X — Xk)

„ а д * .  2 11 ”‘ k
n *=2 П j 2 n (k + j) ( \k - j \+ i)

+ 0(1) = 

+0(1) =

= о(пфп) —  2

using \x—xk\-

j  2 fc = 2 (/c+j')(|k—J'l + l)

+ o W  = o ( ^ L ) +o m ,

. 9 —9k . S+SJ k+ j \k— j | +  l

= о [ ф ] ( 2  + 2 + 2 ) +' J '  k~cJI» jl2Sk~=2j k>2j

2 sin — 1- sin2 2 n  n
( k^j )  and |Г„(х)| |x—x^| l -

IT'  (ху)|~и2) -1. By similar arguments

г , = о ( * " ; " + 1 | |  and x , =  0 ( ", « l" 0 '+1>) ,

i.e. |2а| +  |Г2| + \%ъ\+0(})=К for a certain K > 0. Now, if X„(T,x)s2K, by
(4.16) , 2n(D ,x)^3K . If l n{T, x)>2K, by (4.16), А„(Г, x ) - K ^ X n{D, x)^Xn{T, x) + 
+K, which was to be proven.

2
4.7. According to (4.12), 2n[D, тк]= — In и+ 0(1), \ S k ^ n  + \, from where7Г

for the local maximum place zk=cos £k of A„ (D, x) we get

(4.17) & =  т* + е* with \gk\ = o i — - i = | , I ^  к ^  n + l,

uniformly in n and к (see the corresponding argument in 4.3; 2n[D, 3] := 2n(D, cos 9)).
4.8. To estimate the local maximum values of A„(A x), we prove the fol

lowing. If о  0 is fixed,

(4.18) A „ ( A  x) =  [ l -  n ^ x2) \ k W, х )+ 0 (п ф п) if S c ,

from where we immediately get, imiformly in n and k,

(4.19) U D ,4 +i] = ( l ~ ^ 2 [ ) U T , 4 +i]+0(mkn), к = 0, 1,..., m + l.
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Indeed, if we verified (4.18), then by (4.13) 

nil/,
, н - « ’ а и г ' = 7  4 i f e - « r - '**■! ['■+ °  ( ^ F 2 )] “

=  7 1 ‘  .......

from where we obtain (4.19).
To prove (4.18) first we compare l1(T ,x )  and li(D, x). By definition

(4.20) k(T, x) -  Гп(*)Ш1^ - -  ~  + 0  Ш  .n (x — x±) 2n2 х —хг \n 2)

To estimate lx(D,x) we write

1 а д y f - x l
x f - x 2)1 * - T i 2 н а д )

Here, if n|$ — 9x|&c,

J i - ^ i  __________ пф„[1 + О Щ |__________
( x - yx)2yxT„(л) и(д:-л:1+ х 1- ^ 1)2(1+у1- 1 )  sin пф,,

______________ ъфп [1 +0(пф„)\______________ __ я[1+ 0(#„)]
n (x—x ±)[ 1 + О(# „ )]2[ 1 +0(n~2)]пф„ [ 1 +0(n2 ф)] 2n2( x - л:^

(see (4.14) and (4.15)), which means

(4.21) 1X(A  x) = fl - XJ f - y\ \ h(T, x)+0(ml/„) if n lS - S J S c .  

Using similar arguments for l„(T,x) and ln(D, x), we can write as follows

2„(A x) =  ( l - 4 Z 4 )  Z 1\lÁT,x)\ + \l1(D,x)\ + \ln(D ,x)\+Ii + I3 = 

= [ 1 - ф ^ ) 2 п(Т ,х)+ 0(пф п), n l S - S J ^ c
V A J X  /

(see (4.16) and (4.21)), from where by (4.14) we get (4.18).
4.9. Now we are ready to prove that

(4.22) A„[A ht] — 2„[A {«cl — A-Á.D, TjJ+O j^ = = -j> fc =  1, 2, ..., m + 1, 

uniformly in к  and n.
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Here the first inequality is trivial. To obtain the second one, we write by (4.18) 
and (4.19)

(4.23) A „ ( A  zk) = [l -  ф 1 - 4 )  ] А"(Г’ ^ + ° ( ^ " )  =

=  [1_ n ( x l - t nos4k) ] Xn[T,4] + [l ~ n ( x l - t o s2t *)]‘

•(Я„[Г, « -Д .Р ; ^  +  U T ,  W +OW J :=

: =  А Л А  Tk] +  J2+J3+0(ml/„).

First we remark that by (4.17) and (4.13)

пф„
Ш  =0(1)- ■К[тЛк\ ^  Cl к = 1, 2, ..., m + 1.

/ ln n (k  +  l)3 ,L /in n

Now if Xn[T, 4] = A„[T, tJ ,  then by (4.17) and (4.3) the difference is

from where J9=0
( /in  n )

° Ш ’
which gives (4.22). We can use the same argument

whenever О^А„[Г, тк\ —А„[Г, £к] = - т = >  к=  1,2,..., m +1, и = 3 ,4 ,.. . .  On the
/ln n

other hand if for any fixed N  there would exist an n ^ N  and a к such that

К [т ,ч\-К [т Л Л
3ct 

/In и
then

А „ [ Д  & Н Л Л А  rk] — — =■ +  - = + О(пф„) <  А Л Д  Tfc] 
/1пл /ш и

if N ^ n 0, a contradiction. I.e., (4.22) is proved. 
4.10. Next we verify that for к —1, 2, ..., n?

(4.24) An [Д  Tfe+1] — A„ [Д

14 Г %пфп\п n 
71 L Л

1
(2k -  3) (2k - 1) (2k +1) (4k -  3) (4k -1 )  (2k - 1)—pc ]+ °(пф л)

uniformly in к and n.
Indeed, by the equation

[4(k—l)2 —1]_1—(4k2—l)-1 =  4 [(2 k -3 )(2 k -l)(2 k + l)]-\
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further by (4.19), (4.1) and (4.2) we can write

^  J  - W -  **1 =  ^  [ « t - i ) » - i  — f f i f ]  w  '**>]-

[■
4niК

n 4(k — 1) 

4

4 (/e — l)2

# ^=j] № . Tj-АЛГ, Ti+1])+<9(̂ „) =

[ f i n  „ + 0 ( 1 ) ] - 1
1 + 0 S)

я (2k — 3) (2k — 1) (2k +1)

+ 0 ( * ) + 0 W ,) =  i [ ! ^

(4/e — 3) (4/c — 1) (2/e — 1) 

1

+

1
(4/e — 3) (4/e — 1) (21c — 1) 

which gives (4.24).

(2/t — 3) (2/e — 1) (2/e +-1)

J +0(l)(ml/nk~ 3 + к~1п -2 + пф„к-5 + пф,,),

4.11. Now let \]/„=n/(8nln n). Then by (4.22) and (4.24) we have for 
к — 1,2, ..., m 
(4.25)

1
К  (A z*+1) К  (A  zk) я [ _  3) (2/c _(2k — 3) (2fc — 1) (2k +  1) (4/e — 3) (4/e — 1) (2/e — 1) +

+  0
(/in  n )

By (4.25) we investigate dkn(D):=Xn(D, zk+j) — Xn(D, zk). Obviously dk(D)?« 
«í — 8/(Зя)<0, but for any fixed M  by a simple computation we can verify 
dk(D)>0, k = 2, 3, M. Now let M  be big enough. Then by (4.25)

dk(D) n
1 1

8 k3 1+ 0 Ш32/c3 1 + 0
(t ))j+ 0  (t ^ = )  =  '  V\n n '

8л:/с3+0 W+°(i/fî )
from where dk(D) > 0  if M S k ^ c k(\n n)116. Thus we obtained the relations
(4.26) 4(D) > 0  if 2=sfc=sCl(lnn)1/e 
with a certain cx > 0  (of course, n =  и0).

4.12. To complete the proof the only thing we have to prove is the relation

(4.27) A„(D, zk+1) = ^  In n + x + 0  ( ^  \ y ls ) */ ci(ln «)1/6 =  к Ш m,
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considering (4.26), (4.27), finally (3.1). To this end first we remark that

£lc +  l l  =  (Л-ЛА f̂c + l]- ^n[ATfc + l])+(^7i[^' *к + \\~К \Т , Tfc + i])+ /n[7’, тк + 1]. 
Here by (4.22)

moreover, by (4.19)

Finally, by (4.5) and (4.2)
m

j = k  + 1

if CxOn d f 'á l t á m ,  i.e. by (4.28)—(4.30) we obtain (4.27), as it was to be proven. 
4.13. Let us remark that for our matrix D we have

i.e. Dc has the smallest possible Lebesgue constants at least asymptotically.
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ON A CERTAIN CLASS OF COMPLETE REGULARITY
J. FERRER and V. GREGORI (Valencia)

Given two topological spaces X  and E, X  is said to be ^-completely regular if 
X  is homeomorphic to a subspace of E m for some cardinal m. (£(£) represents the 
class of all £’-compietely regular spaces, and it is said to be a class of complete 
regularity, g* denotes the space consisting of three points 0, 1, 2 in which the only 
proper open set is {0}. C(X, E) is the set of all continuous functions from X  to E. 
For other references and notations see [1].

Let Г  be the space consisting of the points 0, 1, 2 where {0} and {1, 2} are the 
only proper open subsets.

T heo rem , (£(£) is the class of all zero-dimensional spaces.

P ro o f . Assume that X  is zero-dimensional. For two distinct points x, у  in X, 
the function /  with values in {1,2} and f( x ) ^ f( y )  belongs to C(X, T ). Also 
if x is not in the closed subset F of X  and Gx is a dopen neighbourhood of x dis
joint with F, then the function g such that g (y )= 1 if y£G x and g (y)= 0  else
where, belongs to C (X ,T )  and g(x)$g(F). From [1, Theorem 3.8], X  is T-com- 
pletely regular.

Since the property of being zero-dimensional is productive and hereditary, the 
conclusion follows.

L em m a . I f  X  is a zero-dimensional non-indiscrete space, then each point in X 
has a proper neighbourhood.

P r o o f . Suppose that X  is the only neighbourhood of some point p. Let G 
be a dopen subset. If pZG then G = X  and if p^G  then pdX ~G  which is open, 
thus G = 0.

P ro po sitio n  1. (£(£’) is the class o f all zero-dimensional spaces i f  and only if 
E is a zero-dimensional, non-T0, non-indiscrete space.

P r o o f . Obviously, E  is not indiscrete. Since £€(£(/1), E  is zero-dimensional. 
It follows from [1, 3.11] that E  is not T0. Conversely, it is trivial from [1, 3.5] that 
t£(E)c(i(T). On the other hand, it suffices to show that (£(£). Since E  is not 
T0, there are two distinct points a, b in E  with the same neighbourhoods. From 
the previous lemma, there is a proper clopen subset G such that {a, b)czG. The 
subspace Ex={a, b, c}, where cdE^G , is homeomorphic to T.

In [1, page 171], S. Mrówka says: “(£(£) is the class of all topological spaces if 
and only if E  contains a non-trivial (i.e., containing more than one point) T^-sub- 
space and a non-trivial indiscrete subspace.”

12*
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From our Theorem, it is evident that the space T verifies all the above con
ditions, nevertheless (£(Г)И(£(5*); therefore, Mrówka’s statement is not correct. 
In the following, we give a correct version of Mrówka’s result.

P ro po sitio n  2 . 4(E) is the class of all topological spaces i f  and only i f  E  is a 
non-T0 space with a proper closed subset F such that there are two points a(LF, b$F, 
with the property that every neighbourhood o f a is also a neighbourhood of b.

P roof. Assume that 4(E )  is the class of all topological spaces. Since 5 *  is  
is-completely regular, from [1, Theorem 3.8], there is a finite number n and 
/£C(<5*,En) which verifies /(0)(£/({!, 2}) and thus every neighbourhood o f / ( l )  
is a neighbourhood of/(0); iff  is a projection o f /o n  E such that a suitable neigh
bourhood of f ( 0 )  does not contain f (  1), then a = f(  1) and b = f(  0) satisfy the 
conclusion. Moreover, there is g£C(3r*, 2?) which verifies g(l)^g (2 )  and thus, 
g (l) and g(2) have the same neighbourhoods.

Conversely, it is sufficient to see that 5y*£(£(E'). For this purpose we make 
use of [1, Theorem 3.8]. The functions gf£C(3:*, E), /=1,2, such that g,(l) and 
gi(2) are two distinct points with the same neighbourhoods and gi(0)=gt(i), verify 
condition (a). The function fdC(($*,E) with f(0 )= b  and /( l)= /(2 )= o , satisfies 
condition (b) of the above mentioned theorem.
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NEW PROOFS OF A THEOREM OF KOMLÓS
M. SCHWARTZ (Columbus)

The theorem of Komlós [3] states that from an /.'-bounded sequence of random 
variables, a subsequence can be extracted so that every further subsequence con
verges Cesaro a.s. to the same limit. In the following, this theorem is proved in 
two new ways. The first proof is classical in nature, using a Kolmogorov-type maxi
mal inequality, while the second parallels the argument given by Etemadi [2] in 
showing the strong law of large numbers for pairwise independent, identically dis
tributed random variables. These are in contrast to the proof given by Komlós 
which uses martingale difference sequences.

We begin with some lemmas similar to those in [3]. Throughout, we are con
sidering a probability space (Í2, 3i, P)- For <7=~0, denote F„ (x)= x lv _ a_ a] (x).

Lemma 1. Suppose {Xn} is a sequence of random variables satisfying sup E\Xn\<
ft

■<; °°. Then there exists a subsequence {X°} such that for each further subsequence {X'}, 

(1) {/•„(T',’)} is uniformly integrable,

<2) 2 * m  > / ! ) < - ,/1=1
.and

(3) 2 - ^ т Е Ш Х Я l1+£< ~ ,  for all e > 0 .

Proof. For each j S l ,  there exists a subsequence {XJ:„} of {Xj-hn} (taking 
{Т0п}= {T,,}) and a scalar М ЛШ0 suchthat

lim f  \Xj„\dP = Mj.
jg-»oo J . *

By a diagonal argument, we can choose {T”} such that for any further sub
sequence {X'f.

(4) f  \X ' \ d P ^ M J+^ ,  i S » , l S  j i  n\
1 ]

Since {X„} is //-bounded, we have ^
j=-1

readily shown.

From this and (4), (1)—(3) can be
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From (1) and (2), we see the known result that {Xn} has a subsequence equi
valent to a uniformly integrable sequence. Denote X„-*X cf(V , L°°), if {T„} con
verges weakly in L1 to X.

Lemma 2. Suppose Xn-*Xa{L1, L°°) and Fk(Xn)^ ß k a {Id, lr ) ,  for random 
variables X, ß^fld , k s l .  Then ßk-*X a.s. and in Id.

Proof. W e can suppose th a t (4) holds fo r all subsequences of {T„}. Then, 

2  E\ßk~ßk-i\ S  Z )i™ E \F k{Xn) - F k-.k{Xn)\ á  2  i ^  +  i )
k = 1 k = l  n  =  1 V л  /

Hence, ßk-*ß a.s. and in Id for some ßf,Id. From this, it can be shown that 
ß= X  a.s.

The next lemma provides some groundwork for the maximal inequality fol
lowing, and an estimate to be used later. (Cf. Révész [4].)

Lemma 3. Let {T„} be any sequence o f random variables. Then there exists a 
subsequence {X°} o f {X„}, and a sequence {/)„} o f  bounded random variables such that 
for any further subsequence {X f\ o f {T°},
(5) Fk(X ')  -  ßk a{L \ L°°), k s  1, 
and
(6) I / (Fn{X ')ßn-ßl)dP\ 1, for all и S I .

Proof. For each / 's i ,  there exists a subsequence {Xj „\ of {Т}_1>п}, and a 
random variable ßj, \ß j\^ j a.s., such that Fj{Xj „)-+ßj o{Id, L°°). In particular, 
we choose {Xjt„} to satisfy j f  (Fj{XJ<n)ßj—ßj) d P \s \ ,  for all n S l.  Letting T„°= 
=Xn>n, (5) and (6) follow.

Lemma 4 (maximal inequality). Let {X„} be any sequence o f random variables 
and let {a„} be a sequence o f random variables in Id. Then there exists a subsequence 
{T®} of {Xn}, and a sequence {/?„} of bounded random variables such that for any

f2subsequence {X'} o f {X%}, and for  0 < e -= L- —, 1 Sm <»,

р( л и  [ b z '\ > e) -  i  { \ i Ê y ^ ) .
where we write Z i=Fi{Xl)—ßt, i'S l.

Proof. By Lemma 3, we obtain {ß„} and can suppose (5) holds for any sub
sequence of {X„}. In fact, we have Fk(Xn)-+ßk <r(L“ , L1), fcfel.

Let Xx—Xi ,  and suppose X?, i ^ j —1 have been chosen. By the weak con
vergence, we can choose Xf  satisfying the finitely many conditions below:
(7) |£ |> г( а д ° )  - ß r)as{Fs(X?)-ß,)]\ <  1/(48 • 2J' - 1), 
for lS iS j  —1, r ^ i , s ^ j ;

(8) I /  rj.r(Fr{Xß)-ßr) * l F f X f ) - ß s)dP\ <  1/(48 •
.....a, ;b , , . . . , b t)
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for l ^ i S j ' - l ,  rtái, sS j, l S / S j  — 1, all finite sequences {al 5 a,}, {bu .... b,} 
satisfying lS a 1< . . .< a ,S j  —1, 1 ^ , and bk^ a k for where

A,(alt .... a,; bu  ..., bt) = {, ™x J  Д  ab((Fb j s  2~'/2>

| Í a j F J Z y - / y | > 2 - ' /2},

4 ( « i 5 M = { K ( ^ lT O - M
Let {Z„'}={Z®n} be a subsequence of {A'®}; denote Z„ = F„(X') — ß„, 1. For
ls2V ám <n, let e=2~N/2 and denote

Л  = {  max I ^  a.-Z.-l >  e}.
l m S j S n  I

n
We have Лг=  U B k , where we write B k —  A N { c m , . . . , c k , m , . . . , k ) .  Then,

k — m

E ( 2  aiZ,)2 = f ( Z « i Z , ) 2d P =  2  f ( Z « i Z i Y d P ^
i=m a i = m k = m » i=mле °k

* 2  f ( 2  xtZ , f  dP +2 2  2  2  /  «iZiOijZ, dp £  e2P (/lE) - 1/3 • 2",,-----:  k=m j=k+1 i=m Bk=mю i=m

by definition of Bk and (8). On the other hand,

E( 2  aiZ)2 = 2  E(*iZ?+2 2  2  Ê Z&jZj) ^i=m i=m j = m+li=ra

2 £ (а ,г;)2 +  1/6-2'я,
i = m

by (7). Hence,

W  S - l ( i  £ (« д а + 1 /2 .2 - ) .£ t = m

If 2_(Ai+1)/2< s < 2 _iV/2 for some l ^ N S m — 1, then we get the stated result, while 
if 0< e< 2-m/2, the inequality holds trivially.

The Komlós theorem follows from Lemma 1 and the next result.
L emma 5. Suppose Z„—Z  o(Ll, L°°) for some random variable Z£ZA Then 

there exists a subsequence {Z®} of {Z„} such that for each further subsequence {Z„'},

— 2  x l  ~*x  n-s. {and in L1).
П  i=l

P roof. We can assume (2), (3), (5) and (6) hold for subsequences of {Z„}. By 
Lemma 4, there exists a subsequence {Z®} of {Z„} such that for e>0, lS m < n

Acta Mathematica Hungarian 47. 1986
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and any further subsequence {Xj,},

where Z, =  F ,( j r , ') - / i |, /£ l .  By (6) and (3),

^  E Zf _ "  EF-^X lf , „ - J _
i=i *2 i=x i2 i=i г2

~ Z-
Consequently, ^  —r1 converges a.s. By the Kronecker Lemma, Lemma 2 and (2), 

i=i I
1 "- У Х 1 - + Х  a.s.
П i = l

R e m a r k . Since {Af„} is uniformly integrable, we have convergence in 1? as 
well. In addition, X  is the only possible limit under the given hypothesis.

T h eo rem  6 (Komlós). Suppose {Xn} is a sequence o f random variables satisfying 
sup£|Ar„H°o. Then there exists a subsequence {X°} and a random variable ß^L1П
such that for each further subsequence {X'},

(9 ) - Z x in i=1 a.s.

P r o o f . By Lemma 1, we can split a subsequence {A^J into Xkn—Y„+Zn, 
where F„ — Y  erfL1, L°°) for some F€iA, and Z„-=0 a.s. Applying Lemma 5 to 
{F„}, the result follows.

The Komlós theorem can be proved using an argument similar to that given by 
Etemadi [2] in proving the strong law of large numbers for pairwise independent, 
identically distributed random variables.

T h eorem  7 (Komlós). I f  sup JE | |  -= °°, then (9) holds.

P r o o f . Without loss of generality, we can assume Xn^ 0 ,  n S l. By Lemmas 1, 
3 and (7), we can suppose for any subsequence {X'}

( 10) i n * , :n=i
n) <  °°,

( 11)

and

EZl
<  OO.

(12) 2  2  \E(ZiZj)\ where Z„ =  Fn{ X ') -ß n, «5=1.
i=lj=i+l

Furthermore, by Lemma 2,

(13) ! ßk ”*■ ß a-s- for some ßdL1.
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Let {*,;} be a subsequence of {A-,,}, and define

5. = É x ' ,  s ;  = i  t„ = 1  A.i=1 i=l 1=1
Let £>0, a > l ,  and write A:„ =  [a"], n ^ \ .  Now, by (11) and (12),

i  P (\S L -T kn\ >  kne) ё  c z ± E ( s ; n- r knr  ==
1=1 /» = 1 l*n

OO 1 k „  o o  1 o o  o o  o o  ^ 7 2

с 2 - Я  2EZÍ+C 2 - p  2  2  \E{z,zj)\*ic 2 - Z j rn = 1 K-n i~i n — 1 ,vtt i=lj=i+l i — 1 *■ n=1
where c denotes a constant, possibly different at each appearance. By the Borel— 
Cantelli lemma,

By (10) and (13), ^
k„

0 a.s.

ß a.s. By monotonicity of {S„}, we get

— ß = lim —  s. ffin -^-: aß a.s. 
a ~  л  я  л

£
Since this holds for all a > l ,  we conclude ~ ^ ß  a-s-

R e m a r k . With slight modifications, both proofs will work under the weaker 
hypothesis that {X„} contains a subsequence {7„} such that Y„ f  |x| ф (х )<  ®. 
(Cf. Aldousfl].)
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A RULE OF SIGNS
FOR REAL EXPONENTIAL POLYNOMIALS

J. STEINIG (Geneve)

N
1. Introduction. A real exponential polynomial is given by f ( x )  = 2  Pi(x)eLx,

г - i
where Аг are distinct real numbers and P, are real polynomials. Some classical 
results provide upper bounds on Z ( / ) ,  the number of real zeros of f  (each counted 
according to its multiplicity). In the particular case that the Рг are non-zero con
stants, say Рг= а ( (г =  1, N), Laguerre’s rule of signs [1] bounds Z ( f ) by the
number of changes of sign in the sequence аг, ..., aN. This number, which we 
denote by W(ak, ...,% ), is defined as the number of pairs am_k, am (/c = 1) such 
that am- kam< 0 and am_„=0 for v  =  l , ..., к — 1. With this notation, Laguerre’s 
rule can be formulated as follows [2, V.77],

N
T heorem  A (Laguerre). Let f(x )=  ^  atex̂ , where the at and A; are real,

1 = 1

a ^ O  (i—l,. . . ,N )  and А ^.-.^А ^ . Then Z ( f ) ^ W ( a 1, . . . ,a ]y), and Z ( f )  is 
o f the same parity as IV(a,, ..., aN).

In the general case we have [2, V.75]
N

T heorem  B. Let f(x )  =  2  P fx )e x‘x, where P , is a real polynomial o f degree
г= 1

n;, Р,(х)фО (/=1, ..., N) and the Аг are distinct real numbers. Then 

(1) Z ( f )  Ш %  щ+ N - l .
i  =  1

Theorem В does not contain Theorem A, since W(ak, ..., aN) ^ N — 1. We will 
replace (1) by an estimate that implies it, and reduces to Laguerre’s when each Pt 
is a constant. The proof uses Theorem A. Then we will discuss the sharpness, or 
possible lack of sharpness, of this bound for Z ( f ) .

2. A rule of signs. In (1), N — 1 can be replaced by an expression that is equal 
to W(ai, ...,aN) if nt=0 and Pi{x)—ai for i= l, . . . ,N .

N
T heorem  1. Let f (x )  = 2! where P{ are real polynomials and Ax< ...

i = l
...-«Aj,. Suppose no Pi is identically zero; let n: be the degree and at the leading 
coefficient o f P,. Then,

Z { f tS .  jtrii+ W f,
l(2)
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where
(3) wf  =  W {(-  iy * a lt  ( -  Iy * a t , . . . ,  ( -

with тк=щ +... +nk (1 SA=-JV). Moreover, both sides o f  (2) are of the same parity.
P ro o f . Let 

and for 2 s k ^ N ,  let 

Then

gj (x) =  е я1* ( е ~ ;-1* /(х ) ) (п,)

g k ( x )  = e**x(e-**xgk- 1(x)Y"J. 

gN (x) = bx e+x +  . ..+bN ex»x,
where b, , ...,bN are non-zero constants, given by

(4) hi = ( n f u i  Ц  ( f - k j f j .
J=1 J*i

N
By Rolle’s theorem, Z ( / ) á  2  nr srZ(gN), and by Laguerre’s rule, Z(gN) s

i-l
^ W ( b k, bN), whence

Z ( f ) & i=l
Now from (4) we have

sgn bj =  (— ])"j + i+-■•+"» sgn aj (1 ~  j  ~  N — 1)
and sgn bK — sgn aN, so that on multiplying the sequence bx, ..., bN by ( —l)m» 
we get

W(bk, ..., bN) = W((-  1 уча,, ..., ( -  l)m- a N),
and (3) is proved. The statement concerning the parity of Z ( / )  follows easily from 
[2, V.8], since f ( x )~ a Nx Nex*x (x— +  °°) and f(x )~ a l x"1e*ix (x — — °°).

N
3. Sharpness. If Д х ) = 2 В Д ^ we define mk (1 SfcSiV) and Wf  as in

i = l
N

Theorem 1, and set d= m N = nt. The following result shows that equality can
1 =  1

hold in (2).
Theorem 2. Make any choice o f integers Neil,  W(0 = W ^ .N—\) and и ,ё 0 

(7=1, .... N) and o f real numbers with <  ,A2< ... <  Ajy. Prescribe d+ W  real
numbers xv, with x1S x 2S . . . S x d+w. There exist N  real polynomials P fX ) фО

N
with deg Pi—iti, such that i f  f(x )= J£  Pi(x)ei‘x, then Wf  = W, Z ( f ) —d+Wf

i=i
and the real zeros o f f  are the xv, each with a multiplicity equal to the number of its 
occurrences in the sequence {xv}ÍÍjT

P ro o f . Consider the d+ N  coefficients of P1, . . . ,P N as unknowns; let at 
denote the coefficient of x"‘ in Pt. If we add to the conditions
(5) /(x v) =  0, v =  Í, ...,d+ W
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(modified appropriately if multiple zeros are prescribed) the (N — 1) —if  equations
(6) at- ( —  l ) » ~ l f l , + 1  =  0 ,  i = \ , . . . , N - \ - W ,
we have a system of d + N —l homogeneous linear equations for d+ N  unknowns. 
We shall show that any non-trivial solution of this system is such that
(7) cii 0 for i = \ , . . . , N .
Then, the corresponding real exponential polynomial /  has all the required prop
erties. Indeed, each P, has the prescribed degree nt. Also, (7) implies that Wf  — 
= W(( — ))muil , (— ])m!a2, ..., ( — 1 Then because of (6),
(8) Wt  =  W ((- 1 )■"» — űjV_1K, ..., ( -  l)m»aN) W.

Finally, Z ( f ) S d + W f ^ d + W  by (2) and (8), so that Z ( f ) = d + W  and W = lVf  
because of (5).

To establish (7) we first observe that if c/( = 0 for some i then either P f X )  = 0 
or degPiSn, —1. Consider now the at with i ^ N —W ; by (6), they are all zero 
if one of them is. But a ~  0 for each i S N —W would entail, by the preceding

N
observation and (2), Z ( / ) ^  77. — (jV — W) + Wf = d + W — 1, in contradiction

i — 1
with (5). Hence (7) holds for i ^ N —W; the same type of argument as in (8) then 
yields Wf SW .  Consequently, if at least one at with i > N —W  were zero, (2)

N
would give Z ( f ) ä ^ n ,  — 1+W,  again contradicting (5). This completes the proof 
of (7).

In contrast to Theorem 2, we shall now show that equality can fail to hold 
in (2), by a margin as wide as we please. (Remember that d+Wf —Z ( f )  must be 
even.) The notation is the same as in Theorem 2. (Theorem 2 is the case M = 0 
of Theorem 3; we treat that case separately since its proof is somewhat 
simpler.)

Theorem 3. Choose integers iV s l . l f i  (0=5 IT ISA— 1J, n(^ 0  (i =  l, N) and 
M  (M even, O ^ M ^ d + W ) ,  and reals Af (A1<A3< . . .< i JV). Prescribe d+ W  — M 
real numbers x v, with x x^ x 2̂ . . . ^ x i+w- M. There exist N  real polynomials P fx )  ф0
with deg Pt= n; such that i f  f (x )=  ^  Pi{x)extx, then Wf =W, Z ( f ) —d + W  — M

i = l
and each xv is a zero o f f  with a multiplicity equal to the number o f its occurrences in 
the sequence {xv }HY M-

P roof. We may assume Ax >0. We also assume xv< x v+1 for all v (the proof 
goes through mutatis mutandis in case of multiple zeros). Choose some x* > xd + yy- M, 
and consider the following system of d + N — 1 homogeneous linear equations for 
the d + N  coefficients of the Pp.

/ 0 0  =  0, v = l  , . . . , d + W - M ,  

а г- ( -  l)"<+>ai+1 = 0 , i =  1, ..., N — 1 —W, 

/<*>(**) =  0, к =  1, ..., M.

(9 )

( 10) 

(ID
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Any non-trivial solution of this system is such that a ^ O  for To see
this, we consider/'. Since lim /(x )= 0 , and because of (9 ) ,/ 'has at least d+ W  — M
zeros on ( —°°, xd+fK_M) [2, V. 16]. With (11) it follows that Z ( f ' ) S d + W .

N
Now / '( x ) =  Qi(x)e*‘x with Qi(x)= 'чPi(x)+P{(x) ; since 2,^0, either 

>=1
Qi(x)=Pi(x) = 0, or deg ß ~ d e g  P,. On combining this with (2) we see that 
for all i ^ N —W  would imply Z ( f ' ) S d —(N — W) + Wf , S d + W  — 1, which is not 
true. Hence a ^ O  for i ^ N —W,  by (10), and Wf , ^ W  (the sequence involved 
has at most N  terms, and the first N — W  have the same sign). This in turn implies 

for N —W ^ i S N  (else Z ( f ' ) S d — 1+W).  So a ^O , and degPi=nh 
for each /. Also, Wf =Wf , (2(аг# 0 , so 2гог is the leading coefficient of <9,; and 
2,->0). Then, d + W ^ Z ( f ' ) ^ d + W } , ^ d + W  gives Wf  = W.

It remains to show that Z ( f ) = d + W  — M.  If not, then / would have at least 
2 more zeros, because of the parity statement in Theorem 1 (fV=Wf  and M  is 
even). But then/ '  would have a zero distinct from those already enumerated, which 
is impossible. This concludes the proof.
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ON THE CONVERGENCE OF EIGENFUNCTION 
EXPANSION IN THE NORM OF SOBOLEFF SPACES

1. JOÓ (Budapest)

1. Let Skd R '‘ (nS3; k — 1, be manifolds of dimension dim Sk=mk=
S ji- 3 having smooth projection to Rmx, i.e. there exist coordinates (ii ,y) = 
=  (£i> •••> £mk; )’n-mk) and functions suchthat

sk = {«, y)eR": yj = <р)<Л), \V<Pj(0\ ^  c}}, 5 =  \J s k.
k = 1

Let c j^C^ iR^S)  be a real-valued function, for which
(1) \D°q(x)\ S  C[dist(jc, S)]-*-'*1, (x£Rn, 0 ^  H =£ 1), 
holds, for some tí= 0 .

Consider the Schrödinger operator L0— — A +q{x) •, D(L0)=Co (R"). Such 
operators occur as the Hamiltonian of molecules [6—12]. E.g., in the case of Li 
(or H2) molecule we have л= 6, m =3, x£R3, y£R3, q(x„ );) =  c1|x |'_1 +  c2| j |_1 +  
+c9\x—y\~ \ H= —A+q(x,y)  •. In the case of homogeneous and isotropic space 
the manifolds Sk are subspaces in R".

It is easy to see that for dim SSn —3 we have q(iI.\oz(Rn) if t< 3/2. Indeed, 
taking into account

l - 1 2  [distOc, S*)]"1 £  [dist (x, S) ] -1 ss £  [dist(x, Sk)]~\
k = l  k = l

it is enough to prove this for S = S k, dim 5 = и ё и - 3,
S =  {(Z,y)€Rn: yj =  (pj(£), |V<p,©| S  Cj\ j  =  1, . . . , n - m ) .

Using the coordinate transformation (£, y)-*-(£, z), Zj—yj — cpj(£) we have for the 
Jacobian D(£, z)/D(£, y) = 1 and for any 0Si/€CS°(/?n)

(2) J  \q(x)\2q(x)dx = f  dt; j  \q{$, z +  tp(0 )|2i/(^ z + </>(£)) dz,
R n R m R n~m

where <р=((рг, ..., (pn_m)£C1(Rm R"~m). On the other hand for any x = (^,y)6 /?" 
and u=(^, cp(^))£S we have

\у-<р(01 S  Ь - « н 1 ) И Х 1 ) - ф ( 0 1  S  b - < p ( l ) | + ! V ( o ( D I  ■ \l-Z\ ^
^ C ( \y -c p & |+ |? - £ |) ,

hence
\ y - t p m 2 S  2C2(|y-<p(f)|2+ | | - < ^ )  = 2С2|х— и|2,
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i.e. \y — (p(iJ)|sCdist(x, S), consequently
\q{!;,z+<p{£))\ s  C[dist((£, z+cp(£)), S')]“ 1 =g C\z\~\

According to (2) we have
(3) j  \q(x)\2T](x)dx S  C f  d£ f  |z |-2T;(c, z + (p(£j)dz

R "  R m
if 2t —m. But we assume in this work that nv^n — 3, i.e. n — m ^ 3  and hence 
for t< 3/2 we get 2 т < 3 ^ и —m. It follows from Lemma 3 of the present 
work that the operator L0 is bounded below, i.e. (L0f , f ) = (  — A f f ) + ( g f , f )  — 
= (Vf Vf)  + ( q f f )  = — c ( f  f ) for every fczC^{Rn) and hence, by a theorem of K. 
O. Friedrichs [3] the operator L0 has a selfadjoint extension L withL ^ —cI. Denote

L= j  X dE; the spectral expansion of L  and consider for any f £ L 2(R") the expan

sion E ; f
It is proved in [5]: if т — 1 and O S iS l , then \\Exf —/||я*(я-)--0 as X-*<*>. 

HS(R") denotes the space of functions from L2(R"), with the norm [6, 2.3.3]

l ! / l l H W : =  l l ( / - ^ / 2/ l k ( R " )  =  « O  +  l É i r W ö l l M R » ) .
Later on this theorem was extended in [4] for T = 1 and 0 ^ s ^ 2 .  The localiza

tion of Ex was investigated in [8]. Our aim is to prove the following
7

Theorem. Suppose t£[0, 3/2) and 0 ^ s= 2  o r  t£[0, 1/2) and — — r.
Then, for any fZHs(R") we have

(4) I £ , / - / ! ! H ‘ ( R " )  -  0 as X

It follows from Lemma 3 below — among others — taking into account the 
Kato—Rellich theorem [11, X.2] that the operator L0 is essentially selfadjoint, 
further D (L0)=D(L) = H 2(Rn). Our theorem seems to be true for arbitrary 

7
t£[0, 3/2) and — т but our Lemma 9 is not enough to prove this. Accord
ing to the ideas of L. L. Stachó [15] this last result does not seem to be refinable,

7namely we can not replace t = 3/2 or s =  — — t.
The author is indebted to professor §. A. Alimov and to V. S. Serov for 

their valuable suggestions.
2. For the proof we need some lemmas.
Lemma 1. Let A: = 3. 1 -^p~=k, Ogi</c//). Then for any f£ISp(Rk)

(5) II W ,/(-x)IIZp(Rfc) — С И/1  L‘p(Rk) 
holds.

Here and below in this work C is a constant independent of /  and not nec
essarily the same in each occurrences.
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P r o o f . Using the notation /:= |||х |- */(х)||£ we get by Holder’s inequality

SfFI '  U  W | '  и л  ~ p  j  u v  j  r  '  / \ j  |- “
R k 0 0 dt dt dr =1 =  f  \x\-sp\f(x)\p dx =§p f  de f  г*-1-*' f  l/l^-1

0 0 г

= T E ÍF J/ W " , ^ 1|(v'-í w ) h s
s  C( / ( | x | - s |/(x )|)^ x )(p- 1)/p( f  \Vf\p\x\<-°+»pdx)1,p =

Rk R k

=  CIip~1)lp( f  \Vf\p\x\(- s+1)p dx)Vp,

hence
(6)

If s is an integer, then iterating (6) s times we get (5). 
Now define

M VWIr-piR1“) — с I! M( s+1)v/(x)[|MR,).

s0 :=

к к---- 1, when — is an integer
P P

otherwise.

Taking into account Theorem 4.3.2/2 of Triebel [6]:
Lp(Rk) = (Lp(Rk), s = 6s0, 0 <  0 <  1;

we obtain

(7) I I I I £„(«*) — С 11/'1т-’(лк) (0 -  s -  so 4 s)-

Now let s6(s0> 4p). It follows from (7) that for lS p 0<&/s0

(8) IIM-V(*)IU,e(**)S c\\f\\LSpVRk)

holds. On the other hand, for any lá^!<A:/(s0+ l)  we get from (7)

(9)
II M - V ( * ) l l Li i(Rt) S C [  II \x\-‘’•f(x)hPiob+ II k | - s» v / ( x ) |U Pi(Rk)+ II |x | - * o - i / ( j c ) |U Pi(Rk)] ^

— C  [11/11̂ *0 (Rk) +  l l y i l i ,S O  + l(Rb)] — C  11/11 l,s0 + l(Rk).

Taking into account (LPo, L j1)i = L j (0 < á < l, p~1 = (] —ő)pö1+Spj'1) (cf. Triebel 
[6], 2.4.2/1) we obtain from (8) and (9) the estimate

( 10) M s°y'(-*::)ISî (Pk) — c (Rk) ( V 0  < < 5 <  1).

Now, using (10) we prove (5) for s0<s-=&/p. Define <5= s —s0. It is easy to see 
that <5£(0, 1). Indeed, if к/p is an integer, then ö= s—s„=^— — ej — — lj  = l — s
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= у  —£, 0-=£-=lj. If к/p is not an integer, then <5 =  ̂ ——fij — J < 1 —£. Con
sequently, from (10) we get

II M ^WUipCR“) = íj l-̂ l- (̂l,̂ '|—5°-/'(-̂ '))||ьр(Л,с) —
— С II1̂  I_ Я°У'(ЛГ) II Z.J (Л11) — C\\f\\L’p(Rk)-

Lemma 1 is proved.
L emma 2. For any natural number k ^3 , 0 s .y < 3 /2  and f£ C ^ (R k)

(11) IIM~S/(X)ll£2(Rk) — С||/11н1(«к)11/11я2(Кк)-
P roof. First we prove (11) for i £ l .  Using (6) at p = 2 and taking into account 

the inequality |x[- 2s+2S |* |~1-|-l (0^ 2s —2^ 1) we get

IIM-s/(*)IH2(*k) S  C ||x |-s+1V /(x)|||l(R.) ^
S  C[ II |x |  - 1/2 v / ( x ) | | £ 2(R>.) + и v / ( x ) [ | ! 2(Rk)].

Hence, taking into account the following estimate (cf. [4, Lemma 1])

(12) «M~1/2/(*)||£2(Rk) ^  C ||/ | |H.uk)fl/||t2(Rk) (k s  3, /6  C0” (Rk))

we obtain (11) for the case 1 ^ ж З /2 . If O S i^ l ,  then (11) follows from (5) 
immediately. Lemma 2 is proved.

L emma 3. For any t£[0, 3/2) and £>0 there exists C (e)> 0  such that for 
every fcCj(R ' j  ( n ^  3) the following estimate holds:

( 13)  l k / l l £ 2( R " )  =  £ 1. Л я 2( £ " )  +  С ' ( £ ) | | / | | | 2( Я " ) -
Proof. Using (3) for t] — \ f \ 2, applying (11) for k= n —m and taking into 

account the inequality

(14) a b ^ e a 2+ -~ b 2 (a, b, s 0), 
we get

Ill7/I!I2(R") — -̂3 НУ11я1(/г'*) 1^'11я2(л") — ~2 1.Я1я2(я") +  С (8) И/ИяЧа") •

Hence, taking into consideration the estimate

И/Иячя») — £lll/llli2(Rn)+C(el)ll/lll2(R")!
we obtain

k/lL(R") — 2" l/llH2(R")+ElC(£)ll/llH!(R")+^(£l)C'(£)||/||22(Rn).

If we choose £j so that £1C(e)<l/2, then (13) follows. Lemma 3 is proved.
Corollary. For any г£[0, 3/2) the operator L0 is essentially self adjoint and 

D (L0)=D (L) = H 2(Rn). '
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Proof. F rom  (13) we obtain for any e >  0 the estimate

(15) lk/ILa(Rn) — £ ll(f ~̂ )/ÍL2(R") + C (s) ||/||l2(R") •
Since I —A is essentially selfadjoint and D ( I —A)—H 2(Rn), the Corollary fol
lows by Kato—Rellich’s theorem [11, Х .2].

R em ark . For the essential selfadjointness of L 0 it is enough to prove the 
estimate

II9/IIi.2(r") — С|/1н2(к")1/1нг-г(я")>
for some <5 > 0 , because

Ik/llialR") — £II/IIh2(R’,) + C’(£) |/|[Н2-й(К") =
—  e  1 / 1  B \ R n)  +  £ i  C  ( e )  1 / 1  н 2 ( я ” )  +  C  ( £ i ) C ( £ )  И /  I I  l 2 ( r " )  •

L emma 4. For any f £ H 2(Rn)

(16) ll//llLa(R") — ^ll/llfi^R")- 
P roof. Using (13) we obtain for any f £ H 2(Rn)

!1//IL2(r") ~  II- 4 / '+ 9 /1 l2(r") — IM/lli2(R ")+ k /IL 2(R") —

— C [|/IIh!!(r")+I/IIe2(r")] — 6'II/1h!(r")-
Lemma 4 is proved.

L emma 5. There exist constants C ^ O  and C 2>  0 such that for every f £ H 2(Rn)

(17) ll//1£2(R") — 6̂ 11/1 H2(R") — QII/IIljIR")-
P roof. Using (14), applying the Cauchy—Bunyakovsky inequality, further 

taking into account the identity

M/H5.(r») =  IM/IILír") - 2 ( ? / ,  4 Л + | |? / | | |2(Лп),
we obtain

\ ( я /  A f ) \  — II <7/11 z.2(r”) ll4/"lt2(R") — £14/llí!2(R") +  C'(£) | |9 / l l 2(Rn)
and

s  W W l ^ - i K q f  А П + и т ^  ^

— M/llialR”)- 8 l4/'lli2(R")— C ( e) II 9/lli2(R") —

= (1 -  £) II4/II!2(r") - c  (£) Ik/liiR") •
Now applying (13) for some £i>0, it follows

IIZ/IILir") — (1 — £) M/lljfR") — £i C(e) | |/ | | |í2(r") — C(e, £i) I/IIl^r").

On the other hand

I14/1Ii.2(r") — II4/-/+/IIl2(r") — II (d —//ItifR")—||/||l2(r")
consequently

l / / l l i2(R”) — (i —£—£i C(s)) | | / | |h2(r")—C(£, £j) II/II£2(r") 

and hence (17) follows if we set £=1/2 and st is small enough. Lemma 5 is proved.
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Lemma 6 . There exists po>0 such that for any p=p0 and f<zC^{Rn) we have

(18) 1 V IL i* » , S  c j f \ \ m  (L, := L+pI).

The constant Cfl does not depend on f.
P roof. It follows from (1 7 )  using the spectral theorem that

||/||я2(К") — Q  ||7 /|||2(R") +  C2 ||/ ||i2(R'1) =
CO CO

f  (P + l ) d ( E , f f ) ^ C  f  (X+tiyd(Exf f )  = C \L J \ 'W ,
~  c o — d j

if IiíS/í0 and p0 is large enough, because in this case we have 22+ l s{X+ pY  
(2& — C0, p ^ p 0). Lemma 6 is proved.

Lemma 7 [4, Lemma 6]. Let A and В be strongly positive selfadjoint operators in 
the Hilbert space H. Suppose that the conditions

(19) D (B) cz D (A),

(20) \ A f \ H 3= C\\Bf\\H (f€D(B)), 

are fulfilled. Then for any 06 [0, 1] we have

(21) \\A°f\\H ^ C e\\B°f\\H (f£D(B)).

Lemma 8. For any p ^ p 0, 56 ĵ O, y - r j  and f£ H s(R")

(22) « W H « * -)  ^  C J/B h-o,»,.

Proof. First we prove (22) for 0^,y^2. It is trivial for 5 = 0  and it was proved 
in Lemma 4 for 5= 2. Now apply Lemma 7 for A = L B = I —A, D(B) = H 2(Rn). 
We obtain:
(23) \ K f \ \ w ' )  3- C[|/||H2e(R..) (0 ^  0 S  1).

Now let 2 < 5< ——T. Using Lemma 1 we obtain for any р0<3/т the estimate

(24) ll^/l/|x .i,o(R") =  C"[||/lliPo(K") + ll/lli^^^  + lk/llr^cR")] S

-  C[ll/llLa (Jtn)+ ||/lL* (Rn)] S СЦ/11 г (sn).
Pov J P(T '  Pov

On the other hand, using Lemma 1 once again, we obtain for any р1<3/(т +  1) 
and f£L 3Pl(Rn) the estimate

(25) IIV L ./IU ^) == C[||/||t3i(R„) +  ||(V9)/||tpi(R») +

+  lkV/|U (Rn)] C [||/||L3 m + l/Ц^ч-4Rn)] S  C\\f\\L3
i'1 PjV /  P i  v 7 P lK '

A c ta  Mathematica Hungarica 47, 1986



EIG EN FU N CTIO N  EXPANSION IN  THE N O RM  O F SOBOLEFF SPACES 197

Using (24), (25), the equality (LPo, (0<<5<1, p г=(1 - fy p ^ + ő p r 1) of
Triebel [6, 2.4.2/1] and taking into account that in our case p< 3/(r+<5), we obtain 
for any <5€(0,1) and f£ L 2p+d(Rn) the estimate
( 2 6 ) — С 11/ 11т^+0(й") •

Now we are in the position to prove (22) for 2 < 5< ——r. Set S:=s—2. Then 
7 3—г —2 < y , further we obtain from (26) that for any f £ H s(Rn) we have 

Lflf ^ H s(Rn). Using (23) and then (26) we obtain

1 1 ^ ' д 2 / 1 е 2 ( Я " )  = \ m 2(Lßf) \ l 2 ( K " )  =  C =  C | / Í I l §  +  « (R " )  =  С Ц / И н * ! « ’ ’ ) -

Lemma 8 is proved.
7

Lemma 9. Suppose 0 ^ s s 2 , 0 ^ t<3/2 or 0 ^ t <  1/2 аис/ 0 ^ s < —— t. Г/ich 
/ or any p ^ p 0 and g£Hs(Rn) we have

(27) II§I!hs(r") — C W L f g h ^ y
Proof. (27) is trivial for s = 0 and it was proved in Lemma 6 for s = 2. Hence, 

using Lemma 7 for B = LP, A = I —A, D(A) — H 2(Rn), we obtain

(28) II í>I!hs(rm) — C |Lp 2g||z.2(R") (0 -  s á  2, 0 S t <  7/2 —r).
7

Now suppose 0s t < 1/2 and 2 < ж —— r. Let d\—s —2. For any g£Co(Rn) 
we have obviously by (28)

(29) IIgllHs(Rn) — IKjr_'^)^lH'5(R") — 67||Lp/2( / —d)g||L2(R») S

s  C [ |L ^ g |i2(R-) +  | |L ^ a , - i ) g l L 2(R»)] ^  C [ | |L - 4 ^ /2g )L (R») +  i l^ /2(^)«E2(R") +  
+ l̂ 'M/“g|li.2(R")] — 67[||L*/2g||ij(Rnj+|L^/2(qrg)||ti(iRn)].

Now we estimate ||L£/2(<7g)||L2- We obtain from (3) and (5)
(30) ll?g!lt2(R") — 67||g|Ht(R") (0 — г c  3/2) 
and
( 3 1 )  | g ? l l H > ( R " )  =  I k V g l ^  +  I I V g r g l l ^  +  l g i l i ,  ^  C f l g l j r ^ R » )  ( 0  S t <  1 / 2 ) .

We apply the interpolation theorem of Stein [13]. To this suppose ö is such that 
t  + c><3/2 and choose e>0 so that t (<5) = t , where t(z):= z(0,5—e) +  (l,5—e)(l—z). 
Define the operators Az and Tz as follows:

Azg := |?(x)|t(z)/t(sgn ?(x))g(x), Tzg := (I - A Y /2Azg.
From (30) and (31) we obtain for any g£C^(R"):

ll^zgflw R ") =  M z?IIl2(R") — ^ , |? llH s/t-*(R") ( R e  z =  0 ) ,
and

ll^g||L2(R") — Mzgilfl'IR") = ClgllH'/'-'iR") (Rez =  1),
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hence by Stein’s interpolation theorem [13] we get for z=5:

ll îgllz* — IIh8'2-«» Magllta — C||g||H8/s-c,
i.e. using also (14) we obtain

||#£||ял(Л”) — ellsllH2(R") + C(e)l|g||l.2(R")-
Hence and from (29) the desired estimate (27) follows. Lemma 9 is proved.

P roof o f th e  T h eo rem . Using (22) and (27) we obtain for f£H s(Rn):

W f - E J U '  =  \ \ L - ^ L f { I - E k)f\\H> ==

S  C WLfil-EMWu = C\\(I-Ex)(Lff) \\Li -  0 (2 - ~).

The Theorem is proved.
R e m a r k . If the S^’s are subspaces, then we can state the Theorem for any 

t€[0, 3/2) and sdjo, — —ij  because in this case we can prove Lemma 9 in a more 
general form. This follows from the following fact: if ^(z)6Cj”(fil\{0}) is a func
tion for which \Dxg(z)\^C\z\~T~w (z^O) holds, then g£Hs(R") for any —
—r=:<5. For the proof of this fact it is enough to show that g£H$~x(Rk) (here 
H  denotes the Nikol’skii’s class of functions), because taking into account the 
well known imbeddings H^~TczH^ciBd2~zeciL52~e our statement follows. We use here 
the notations of [14]. For the proof we must show the estimate

I := cu|2) (ZPg, 0 := sup f  \A2hDxg\ dz =  0 (is_|il1) (supp g c  Q).
\ h \ S , nJ

The desired estimate follows immediately for |z|«=2/j and |z|s2/i, resp. from the 
following estimates:

sup f  \AlDxg(z)\ d z ^ 4  sup f  \Dxg(z)\dz  =§
W&sr 1*1 st ̂

2\h\

”  C sup f  |z|-*-W+*-i dz = sup 0(]ft|*- t - , *l) =
\h\mttf 1*1 sr

= 0 (р -1“'), Q' := (z€fi: \z\ <  2\h\};

\AlD*g\ = d2

hence
C Z  (E>x+Pg)(z*)\h\\ z*£[z -h ,z  + h],

| P | = 2

— sup /  |z| 
l*ls i  2|*l

/  sup |h|2 2  f  \D*+ßg\ d z + 0 ( f - M) ^
1*1 —2 =

lai-2+fc-i d z + o ^ - W )  = O(f-W), Q":= {z€ß; \z\ S  2 |/i|}.
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^-PROXIMITIES
Á. CSÁSZÁR (Budapest), member of the Academy

1. Introduction

D. Harris [8] has introduced R-proximities in order to investigate regular- 
closed extensions of regular topological spaces. With a slight modification of his 
definition, we say that a binary relation <5 on the power set ф (X) of X  is an R-prox- 
imity iff

Rl. Ад В implies Bö A,
R2. 0SX (5 means non-á),
R3. A 9^9 implies Ad A,
R4. A<5(RUC) iff AŐB or AÖC,
R5. {x}SX— V implies the existence of W  such that {x}SX—fV, WSX—V.

We omit the condition assumed in [8] (x}<5 {y} implies x —y.
Clearly the concept of an R-proximity is a generalization of that of an Efre- 

movic proximity (see e.g. [3], p. 63). Similarly to the case of Efremovic proximities, 
an R-proximity S induces a topology on X  if we put

(1.1) x£clA iff {x}öA.

This topology is always regular ([8], Lemma 1; in the present paper regularity 
does not include Тг).

Conversely, if X  is a regular topological space, there are A-proximities com
patible with X  (i.e. such that they induce the topology of X). One of them is defined by

(1.2) AŐB iff с1Л П с15^0 ;

more generally, if Y is a regular extension of X  (i.e. a regular space containing X  
as a dense subspace), we obtain an A-proximity on X  by putting for A, B a X

(1.3) AÖB iff с1уЛПс1уА ^ 0  
([8], Lemma 2).

The purpose of the present paper is to investigate those A-proximities that 
are defined by (1.3); we shall call them RE-proximities. A special kind of RE-prox- 
imities is the concept of an RC-proximity; this is an R-proximity obtained by (1.3) 
from a regular-closed extension Y  of X.

For technical reasons, we shall use some concepts and results from the theory 
of syntopogenous spaces (see [3]). We also need some results of a recent paper 
of K. Matolcsy [9]; the author is very thankful to him for some essential contribu
tions to the content of this paper.
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2. Local syntopogenous structures

Let <5 be a relation on ^P(JF) satisfying R1—R4 (such a relation is called prox
imity in [1], basic proximity in [2]), and define, for A ,B aX ,

(2.1) A <  В iff A S X -B .

Then <  is a symmetrical topogenous order on X, and conversely, if <  is a sym
metrical topogenous order on X, and <5 is defined for А, В с :X  by

(2.2) Ад В iff A <  X —B does not hold,

then ö satisfies R1—R4 (which can be easily seen using the argument in [3], pp. 
62—63).

The relations <5 and <  obtained from each other with the help of (2.1) and
(2.2) will be said to be associated with each other.

In particular, Ö is an R-proximity iff the symmetrical topogenous order <  
associated with 5 satisfies

(2.3) {x} <  V implies the existence of W  such that {x} <  W < V

(this is another formulation of R5). Let us agree in calling R-order a symmetrical 
topogenous order fulfilling (2.3).

According to the terminology of [10], a local syntopogenous structure on X  is 
a system of topogenous orders on X  satisfying 

LI. For < i ,  there is suchthat
L2. For <  £ if, there is such that {x}< V implies the existence of

IF with {x}<0IF«)F.
(2.4) Lemma. < is an R-order iff it is a symmetrical topogenous order such that 

{<} íj ű local syntopogenous structure. □
In the following we collect some simple facts concerning local syntopogenous 

structures. As it has been observed in [5], pp. 2—3, the majority of concepts defined 
in [3] for syntopogenous spaces can be generalized for order structures (i.e. systems 
d£ of topogenous orders satisfying LI), so in particular for local syntopogenous 
structures.

(2.5) Lemma. I f  !£ is a local syntopogenous structure then so is $£'.
Proof. Let If x£X, V a X ,  and x< 'F , then x < F  for some

Let correspond to < according to L2. Then x < 0IF<0F for some
W e X ,  hence x < 'fF < 'F . □

(2.6) Lemma ([10], (1.9)). I f  Id is a local syntopogenous structure then d£p is 
a perfect syntopogenous structure.

P roof. For a given let be chosen according to L2. Then
A< PB implies x<U  for x<GA, hence x < 0Cx< 0U for some Cx<zX. Therefore

A < g c =  u  □
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(2.7) Corollary. I f  f£ is a local syntopogenous structure then f£,p is a top
ology. □

(2.8) Lemma. I f  (i'€ /^ 0 )  is a local syntopogenous structure on X, then so is

* =  V  ^  =  ( U  &i)e-sei iii

P roof. An arbitrary order <  € &  can be written in the form

< = (Ü1
where i f  I. Choose <'k€£fik for according to L2. Then x-=.V implies
by [3], (3.7)

v  = n v k, x < k vk (k = 1, ..., n),
1

consequently x<'kWk<'kVk for suitable sets Wk, and finally x< !W < V for

w  = h w k, < ' =  ((j 0 4 □
1 1

(2.9) Lemma. I f  f: X-+Y and f£ is a local syntopogenous structure on Y then 
so is / -1(££) on X.

P roof. For < , < 0£ jS? satisfying L2, we find that x f~1(< )V  implies /(x )<  
< 7 - / ( Z - F ) ,  hence

f i x )  <o U -=:0Y —f ( X — V)

for a suitable set UczY. Setting W = f ~ 1(U), we have

f ix)  < 0 U a  Y - Д Х - IV), f iW)  c i / < 0 f  - Д Х -  V), 

i.e. x f - \ ^ 0) W f~ \^ 0)V. □
(2.10) Corollary. I f  (г'€/т^0) is a local syntopogenous structure on Xt

then so is & = X 2 ’i on □
m  «er

By generalizing the respective definitions formulated for syntopogenous struc
tures in [3], p. 224 and [4], p. 240, we say that a filter base r in X  is compressed with 
respect to an order structure ££ on X  iff A< B  implies the existence of
R£x satisfying either R a B  or RC)A=Q, and that r is round with respect to 
iff R £t implies the existence of and Rx€r such that RX<R.  It is easy
to check that the statements [3] (15.47), (15.48), (15.50), (15.51), (15.52), (15.54), 
(15.55) and [4] (16.41) to (16.43) remain valid if we replace syntopogenous struc
tures by arbitrary order structures.

(2.11) Lemma. I f  is an order structure on X  and s is a round, compressed filter 
then s is a maximal round filter.
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Proof. Let s ' i d s  be a round filter and S'Z s'. Then there are S[Zs' and 
<ZL£ suchthat S[<S'.  Since S inSV fi for SZ s, there is SZ s suchthat S a S ' ,  
i.e. S'Zs.  □

(2.12) Lemma. I f  L£ is an order structure on X  and r2 and r2 are round filter 
bases, then

r =  Г!(П)г2 =  {/?!П  ̂ ^ i€ri, Л2€г2}

is a round filter base provided its elements are non-empty.

Proof. Rh R-ZXí, <£3? (/= 1 ,2) imply < хи  < 2c  -c for a suitable
<£.£?, hence R[ORo-^R] П Л 2. □

(2.13) C orollary. I f  d£ is an order structure, x is a round filter base and s is
a maximal round filter then 0(£г(П)е implies r e s .  Consequently, i f  sAs '  are 
maximal round filters then there are SZs, S'Zs'  satisfying STl5' = 0. □

(2.14) Lemma. I f  Jz? is an order structure then every round filter base is con
tained in a maximal round filter.

Proof. Apply the Kuratowski—Zorn lemma. □

(2.15) L emma. Let L£ be a local syntopogenous structure on X. I f  x is a com
pressed filter base, and xZ X  is a cluster point of x with respect to the topology STtp, 
then r —x.

Proof. For an JSf'^-neighbourhood V  of x, we have x< V  for some 
hence x < 0lF < 0F for some and W cX .  Then ЛГИТ^0 for RZx so
that Я0<= V for some R()Zx. □

3. Л-orders

Let <5 be an Л-proximity on X  and <  the Л-order associated with <5, Lf={<}.  
We shall refer to concepts connected with the local syntopogenous structure ST 
as to concepts connected with <  or <5; e.g. we shall speak of <-round filters or 
/»-compressed filters, etc.

By (2.7) 3~ ={-=?} is a topology; it coincides with the (classical) topology 
induced by <5 in the sense of (1.1). In fact, for the latter ArzintB  iff {x)S>X-B 
for xZA,  i.e. iff x<B  for xZA,  or equivalently iff A < PB.

(3.1) L emma ([8] Lemma 1, 3.1, 3.2). Let <  be an R-order on X, ST= {<p}. 
Then:

(a) The topology -T is regular.
(b) Every <-round filter is regular.
(c) Every ST-neighbourhood filter is maximal <-round.
Proof, (c): For a ^neighbourhood V of xZX, we have x-^V,  hence 

x-=-W<V for some W. Thus W is a ^neighbourhood of x, and the neighbour
hood filter d of x  is <-round. If s n o  is a <-round filter, and SZs, choose S lt S2Zs
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suchthat S1< S ,  S2-^S1. Now x ^ S l would imply x < X —S2, i.e. X —S 2£vcl s . 

Hence x£S-i and x< S ,  «Sdo.
(b): If s is a <-round filter and S£ s, then there is S ^ s  such that S ^ S .  

Hence S ^ v S ,  S jC intS , m tS^s. On the other hand, X —S ^ X —Sj ,̂ X —Scz 
c in t(Z — Si), clSiCzS, cl S & .

(a): By (b) and (c) the ^neighbourhood filters are regular, i.e. ST is regular. □
(3.2) Lemma. Let {<0} he a regular topology on X. Then

(3.3) <  =
is the finest R-order compatible with < 0. The R-proximity <5 associated with <  is 
given by
(3.4) AlB  iff AHclB  = с\АПВ = 0.

Proof. <  is a symmetrical topogenous order. x <  V implies x < 0F, hence 
there are open sets G; satisfying x£G2c:cl G2cG iC cl Gxc F .  Thus Gi-<0V, 

i.e. х< (7!<К , and <  is an i?-order.
By the above argument x< 0V implies x < F  while the converse is obvious. 

Hence <  is compatible with <0.
If < ' is an Ä-order (or, more generally, a symmetrical topogenous order) 

suchthat < 'p= < 0 then <0, hence < 'c < .
Finally ASB-o A < X —Bo A d n t  (X —B) and B c in t (X—A ) o A  Del B=BC\

ПсЫ  = 0. □
(3.5) Lemma. Let X  be a regular topological space with the topology {<„}. 

Then
(3.6) < ' - <o 
is an R-order compatible with <0, und
(3.7) A < ' В iff с l  Ac: int В, 
hence the R-proximity 6' associated with < ' is given by
(3.8) AS'В iff cl A fiel В F  0.

Proof. < ' is a symmetrical topogenous order. t <S<0F implies x < 0F. 
Choose again open sets G; such that

x£G 3 c  c l 6 3 с  C2 c  cl G2 c  Gx c  F.
Then

x  <0 cl G3 <0 C2 <o cl G2 -<o Gj ci F, 
i.e.

x < ' G2 < ' F,
and -c' is an 7?-order. Also х < Т - » г < / ,  thus -=' is compatible with 

A -с' В о  A С -<0 В for some C
< 0. Finally

hence
о  cl А с  С c  int В for some С о  cl A ez int В, 

A S 'B o  A < ' X —B o  cl A a  m t ( X - B ) o c \ A C \ c \ B  = 0. □

Acta Mathematica Hungarica 47, 1986



2 0 6 Á. CSÁSZÁR

Let us introduce the notation and őx for the relations < ' and S', respec
tively.

(3.9) L em m a . In a regular space X, the -round filters coincide with the regular 
filters.

P roof. (3.1) and (3.7). □
(3.10) Lem m a . Let X  be a regular space and <  a topogenous order on X. We

have iff every neighbourhood filter is -=>compressed.
P roof. The neighbourhood filter о of x is -^-compressed iff A-<B, x£clA 

implies x£intB.  Hence all neighbourhood filters are ^-compressed iff A<B  
implies c l A a m t B  i.e. A<XB by (3.7). □

In genera], there are compatible Л-orders <  in a regular space X  that do not 
satisfy the condition - c c < x . E.g., on the real line R with the usual topology,

cl (0, 1) П (1, 2) =  (0, 1) П cl (1, 2) =  0 
but

cl (0, 1) Del (1, 2) 0

so that (0, 1)5(1, 2) for the Л-proximity (3.4) but (0, 1)5R(1, 2).
On the other hand, a class of compatible Л-orders coarser than is obtained 

from the following:
(3.11) L em m a . Let X  be a regular space, n£ N, and define A<„B iff there 

are open sets Glt ..., Gn such that
cl A c  Gi c  cl c  G2 c  ... c  Gn a  cl G„ a  int В.

Then <„ is a compatible R-order on X, and
(3.12) <„ + 1 c < „ e < x for n£N.
The round filters coincide with the regular filters.

P roof. Clearly <„ is a symmetrical topogenous order. x<„ V implies x£int V, 
hence there are open sets G„, ..., G\, ffn+1, ..., H1 satisfying

int V э  cl G„ э  G„ Э cl (?„_! =3 ... 3  Gx з
3  cl Hn+1 3  Hn+1 3  ... 3  cl 3  Hx 3 cl {x},

so that х<„Яп+1<„Е. Thus <„ is an Л-order. The same argument shows x<„F  
for every neighbourhood V of x so that <„ is compatible with X.

(3.12) is obvious. Hence -=„-round filters are < x-round and regular by (3.9). 
Conversely if s is a regular filter then S£s  implies the existence of open sets Gfis 
satisfying

intS1 3  cl Gn 3  G„ 3  . . .3  cl Gx з  Gx з  cl G0, 
so that G0<nS. □

Observe that the Л-proximity <5X associated with satisfies
(3.13) ASxB iff there are open sets G and H  such that cl A cG , cl BczH, (?П #=0.

(3.14) C o r o lla r y . Sx=Sx iff X  is normal. □
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4. ЛЛ-orders

Let X  be a regular space, and Y  a regular extension of X. Then is an Л-order 
on Y, compatible with Y, and by (2.4) and (2.9) < y|A is an Л-order on X  compatible 
with X. We call RE-order on X  an Л-order obtained in this way from a regular 
extension of X; more generally, an ЛЛ-order on a set X  is an Л-order <  on X  such 
that <  =  < yjA for a suitable regular topological space Y containing X, equipped 
with the topology |-=p}, as a dense subspace. An ЛЬ’-proximity is an Л-proximity 
associated with an ЛЛ-order.

(4.1) Lemma. Let Y  be a regular extension o f X, and ő be the RE-proximity 
associated with <Y\X. Then, for A , B a X ,

(4.2) ASB iff c\YAC\c\YB ^  0.
Consequently
(4.3) Ад В implies c\x AS clx Л; 
in particular
(4.4) < r l * c < x.

P roof. ASB iff A ( ^ Y}X)X-B,  i.e. iff A ^ y( X - B ) \ J ( Y - X )  = Y - B ,  or 
equivalently iff cly A (Tcly Л=0 by (3.8). □

We shall see (cf. (8.3)) that (4.3) is not sufficient for <5 in order to be an RE- 
proximity.

Our next purpose is to show that the description of ЛЛ-orders is closely related 
with their round, compressed filters.

(4.5) Lemma. Let Y  be a regular space, / :  X —Y, f (X )  dense, s a regular filter 
in Y. Then
(4.6) / - 4 s )  =  { /-4 5 ): S€s} 

generates in X an f ~ \ < Y)-round filter r, and

(4.7) {с1/(Л): Лег} 
is a filter base that generates s.

P roof. Clearly /(A )n sV 0  for S £ s so that (4.6) is a filter base in X. By
(3.9) S £ s implies S Y<YS  for some G /s ,  whence

/ - 1 ( 5 1) / - 4 < r ) / - 1 ( 5 ) ,

and (4.6) generates an /  ' 1(<y)-round filter r.
For Лее choose an open Ges suchthat G c c lG c S . Then / _1( 5 ) с Л с 1  

implies с1/(Л)гэс1/(/-4С)):=с1 (G fl/(T))D G es, hence с1/(Л)ев. On the other 
hand, G3 c lG = c l(G n /(T ))= c l/( / -4 G )) ,/“4G )er. □

(4.8) Lemma. Let f :  A—T, 8 be an R-proximity on Y satisfying the condition

(4.9) ASB implies cl AS cl B,
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<  the R-order associated with 8, and f (X )  dense in Y  (always with respect to the 
topology induced by 8). Then, for a <-round filter s in Y, the filter base / -1(s) 
generates an f ~ 1(<)-roundfilter x in X, and

(4.10) {cl/OR): Л€г}
generates the filter s. Conversely i f  x is an f ~ 1(<)-round filter in X, then (4.10) gen
erates a round filter s in Y, and f ~ 1(s) generates x.

P roof. By (3.1) a <-round filter s is regular so th a t/ _1(s) generates a filter 
r in X, and (4.10) generates s by (4.5). r is / -1(<)-round by [4], (16.43).

For an arbitrary / _1(<)-round filter r, the filter base (4.10) generates in Y 
a <-round filter s. In fact, suppose clf(R)<zSczY, R€_x, and choose R fix  such 
that R1f~ 1(^)R . Then /( /? ,)< Y - f ( X - R ) ,  hence by (4.9)

d  f{Rd  <  Y  - c l  f ( X - R )  c  cl f (K)  c  5,
cl f{Rfi^5.  On the other hand, for the same sets S, R, Rlt f ~ 1(S )z iR z ) f~ 1(c\ fiRO) 
because cl f(RJC) f ( X —R)=Q, therefore / - 1(s) generates r. □

(4.11) Corollary (cf. [8], Lemma 2). Let Ybe a regular extension o f a topological 
space X, and < = < r |X  Then the <-round filters r coincide with the traces in X  
o f the regular filters s in Y, and the formulas
(4.12) x = s \X =  {STl-T: 56s},
(4.13) s =  {S' c  Y : S  r> cly R for some J?€r}
establish a bijection between these two classes o f filters.

P roof. By (3.9) the regular filters in Y are precisely the < y-round filters, and 
ő—Sy clearly satisfies (4.9). □

(4.14) Lemma. Let Y  be a regular extension o f X, у£ У, о the neighbourhood 
filter o f y, r=o|T, and < =  < y|T. Then x is a <-round, -^-compressed filter.

P roof. By (3.10) d  is < y -compressed, hence r is ^-compressed ([3], (15.48) 
and (15.51)). Since u is regular in Y, x is <-round by (4.11). □

5. Preregular systems of filters

The above results permit us to characterize RE-orders (and ÄT-proximities) 
with the help of suitable systems of filters. The method is similar to that followed 
in [9] for characterizing .RC-proximities.

(5.1) Theorem. Let Y be a regular extension o f the topological space X, < =  
=  <y\X. Denote by 9t the system o f all traces in X  o f the neighbourhood filters of 
the points y£Y. Then
(5.2) x(LX implies that there is an rG9i such that x£  fir,
(5.3) implies that there is R fix  such that Rfix' whenever r'G9l 

and OCr'lÄj.
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The system 91 determines - in the following manner:
(5.4) Л <  7? iff r£91, 0 ̂  r |̂ 4 implies Bfx, 

or equivalently, for the R-proximity ö associated with <,

(5.5) AöB iff r£9í, 0$r|A implies X —Bfx.

Proof. (5.2) holds for r= o |T  if о is the neighbourhood filter of x  in Y. 
By (4.14) every r£91 is -«-round and ^-compressed, thus for Л0£г€91 there is 
R fix  such that Л]< R0; then (5.3) holds since r/91 is -«-compressed. (5.5) is 
true because, by (4.2), ASB iff clT A 0clY B —9, and (5.4) means the same as
(5.5) . □

We shall prove a certain converse of (5.1). For this purpose, let us say that 91 
is a preregular system of filters on X  iff 91 is a set of filters in X  and satisfies (5.2) 
and (5.3).

(5.6) Lemma. 7/91 is a system of filters satisfying (5.3), and r, r/91, r ^ r ' ,  
then there are Rfx, Rfix' suchthat ЛПЛ' =  0.

Proof. Suppose Л0€г—r' and choose Rfix  according to (5.3). Then
0€t'|/?i. □

(5.7) Corollary. I f  91 is a preregular system of filters on X  then, for x£X,  
there is a unique xf 91 such that x£ П x. □

(5.8) T heorem. Let 91 be a preregular system of filters on X, and define, for 
A, BczX, a relation < by (5.4). Then -- is an R-order on X.

Proof. Clearly 0<0 and X<X,  further A ' e A ^ B e B '  implies A '~- B'. 
If A<B  then AczB; in fact, x f A —B would imply x £ f)r  for some r£91, hence 
B$ r, which contradicts (5.4). Thus <  is a semi-topogenous order on X.

If T<71, r£91, and 0 $ r |T —B, then 7?$r, hence $£x\A, X —Afx. Hence -« 
is symmetrical. Further А = А 1ПА2, В = В 1ПВ2, Ai^ B i (i =  l,2) implies that 
В fix whenever rf91 and 0$x\A, consequently in this case Bfx.  Hence -« is a 
topogenous order.

Let х < Л 0. If x is the unique filter in 91 that satisfies x£  Hr (cf. (5.7)) then 
Rfix by (5.4). Choose R fix  according to (5.3). Then Rr-«Л0 by (5.4), and x < R v 
because 0$r'|{x}, r/91 implies r' = r by (5.7). □

If 91 is a preregular system of filters on X, and a relation -« satisfies (5.4), then 
we shall say that 91 induces the Л-order -« as well as the Л-proximity associated 
with <  (by (5.8) <  is an Л-order in fact). Now (5.1) can be interpreted by saying 
that an Л/í-order is always induced by a preregular system of filters.

(5.9) Lemma. 7/91 is a preregular system o f filters and <  is the R-order induced 
by 91, then every xf 91 is -round and < -compressed.

Proof. The first statement follows from (5.3), the second one from (5.4). □
(5.10) Lemma. Under the hypotheses o f  (5.9), i f  x fX ,  r€91, and x f  D t,  then 

x coincides with the neighbourhood filter o f x  with respect to the topology {-«p}.
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Proof. x < pK<=>.\<K=>K6 r by (5.4). Conversely Кбr implies á< К because 
0$r'|{;c}, r '€ 9 t cannot hold unless r '= r  (cf. (5.7)). □

Consider now an arbitrary preregular system 91 of filters on a set X. By (5.8) 
91 induces an Л-order <. Let us equip X  with the topology (regular by (3.1)),
and denote by SR' the subset of 91 composed of the free filters r691. Since every 
гб 91' is regular ((5.9) and (3.1)), hence open, we can construct a strict extension 
([6], (6.1.8)) Y  o f X  such that the elements of Y  — X  are in a one-to-one correspond
ence with the elements of 91', and гб 91' is the trace in X  of the neighbourhood 
filter of the corresponding point of Y —X. By (5.10) the elements of 91 coincide 
with the traces of the neighbourhood filters of the points хб Y, hence (5.3) implies 
by a theorem of [7] that Y is a regular space, and it is a reduced extension of X, 
i.e. хб Y —X,  уб Y, X9±y implies that the neighbourhood filters of x and у  are 
distinct. It follows from (5.4) and (5.1) that < =  -=y|Z.

Thus we have proved the following converse of (5.1):

(5.11) T h e o r em  (K. Matolcsy). Let fíi be a preregular system of filters on X,
and < the R-order induced by 91. Then <  is an RE-order; more precisely, there exists 
a regular, reduced extension Y  o f  X  (equipped with {<p}) such that the filters гб91 
coincide with the traces in X  o f  the neighbourhood filters of the points of Y, and <  =  
=  <r|T. □

(5.12) C o r o l l a r y . A topogenous order is an RE-order iff it can be induced 
by a preregular system of filters.

Proof. (5.1) and (5.11). □
Let us call, for a given preregular system 91 of filters on X, an extension Y  

of the space X  equipped with {<p}, where <  is induced by 91, associated with 91 
iff it has the properties described in (5.11) (i.e. iff Y  is a reduced, regular extension 
of X  and the trace filters of the neighbourhood filters of the points of Y coincide 
with the filters гб 91).

The following proposition motivates a certain partial ordering in the class of 
all preregular systems of filters on X :

(5.13) L e m m a . Let 91y and 91a be two preregular systems o f filters on X, -=г 
and the RE-orders induced by 91 y and 913, and Уг, Y,, two extensions associated 
with 91! and 912, respectively. Then the following statements are equivalent:

(a.) For ггб912 there is r16911 such that ГхСГг-
(b) There is a continuous extension f:  Y2-~Y1 of  idx.

P roof. (a)=>(b): By (5.7) and (5.10) the topology {<f} is coarser than {-=£}, 
and the trace filter in X  of the neighbourhood filter of every у6 Y2 converges in T ,. 
Since Tj is regular, the existence of a continuous f :  T2—Yx, f \ X = \ d x follows by 
[6], (6.2.2).

(b)=>(a): I f  r2 is the trace of the neighbourhood filter of y26 T2 then / ( r2) — 
— i.e. tjCTa for the trace r, of the neighbourhood filter of yx. □

Let us say, for two preregular systems 911 and 912 of filters on X that 9?x is 
coarser than 912, 912 is finer than 9Í! iff (5.13) (a) holds.
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(5.14) Lemma. If, under the hypotheses o f (5.13), both 31г and 312 are finer than 
the other one then 31, =  312. This is true iff У, and Y2 are equivalent extensions o f X  (i.e. 
iff' there is a homeomorphism f:  Y2 — Y, such that f  \X=idxJ-

Proof. If rá c o d ra , г ^ Э ^ , r2, r2€312, then r2= r 2 by (5.6), hence r3 =  r2 
and З ^ с З ^ . Similarly 31хс:312. If У3 and У2 are equivalent extensions then 3?1 =  3i2 
by (5.13) and the statement established already. Conversely if 311 = 3?2 then there 
are continuous mappings / :  У2 — У, and g : У3 — У2 such that f \X = g \X —idx . Now 
gof : У2 — У2 is a continuous extension of idx, whence it coincides with idy2 because 
a point у2€У2 —X  and another point у 2€ У2 have distinct neighbourhood filters, 
consequently disjoint neighbourhoods by the regularity of У2 ([6], (2.5.24)). 
Similarly fog=idYl. □

(5.15) Lemma. I f  31, and 312 are preregular systems o f filters on X  and 312 is 
finer than 313 then < 3 c  < 2 for the respective induced RE-orders.

Proof. If A<YB, r2£3?2, and 0 $ r2|A, then choose r, £31, such th a t r ,c t» .  
Clearly 0 ̂  r3|A, hence i?£r3c :r2. □

The following theorem constructs compatible RE-orders from arbitrary suffi
ciently coarse compatible Л-orders of a regular space X :

(5.16) Theorem. Let X  be a regular space, ----- an R-order compatible with X 
and satisfying « = -< x. Then the set 31 of all <-round, <-compressed filters is a 
preregular system of filters, and the RE-order induced by 31 satisfies ■*=' and 
is compatible with X. <  is an RE-order iff <  =

Proof. By (3.1) and (3.10) the neighbourhood filters belong to 31, so (5.2) is 
fulfilled. If /?0€r£31 and RY<R0, Rfir,  then (5.3) holds because r'£31 is <-com- 
pressed. Thus 31 is preregular.

By (5.4) A ^ B  implies A<B.  By (5.10) the {-='^-neighbourhood filter of 
x f X  is the same as its neighbourhood filter in X  (it is namely the unique r£31 
satisfying Hr, cf. (5.7)). Hence -=' is compatible with X.

< =  < ' implies that <  is an RE-order. Conversely if <  is an RE-order, then 
there is by (5.1) a preregular system 310 of filters that induces <. By (5.9) 91„c31. 
hence 310 is finer than 31, so by (5.15). □

(5.17) Corollary. An arbitrary RE-order <  is induced by the set 31 of all 
<-round, <-compressed filters; 3? is the largest preregular system offillers inducing <.

Proof. (5.16) and (5.9). □
(5.18) Corollary. Let X  be a regular space, < a compatible RE-order, 31 the 

system o f all <-round, compressed filters, and Y an extension associated with 31. 
Then every reduced, regular extension Z  o f X  such that < = < Z\X is equivalent to a 
subspace Z ' of Y satisfying I c Z ' c  Y; these subspaces Z ' constitute a non-empty 
ascending system in Y.

Proof. < = < y|Z  by (5.17) and (5.11). An extension Z  with the above prop
erties is associated by (5.1) with a preregular system 310 of filters that induces <; 
hence 310c31 by (5.17). Denote by Z ' the subspace of У composed of those points
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y£ Y  for which the traces of their neighbourhood filters belong to 9t0. By (5.14) 
the extensions Z  and Z '  are equivalent. If Z 'czZ"czY  then clearly

<  =  -«y|X  CZ < Z.|X  C  < Z'|X  =
hence < z„|Z =  < . □

It is convenient to say the extensions Y  described in (5.18) to be associated 
with the RE-order -«. It can happen (see (8.8)) that some proper subspaces Z 'czF  
fulfil the condition -< = < Z,|X.

6. E C-orders

According to [9], the concept of a regular-closed space in the sense of [8] can 
be generalized in the following way: a topological space X  is said to be T3-cIosed 
iff every maximal regular filter is fixed in X; for T> -spaces this condition furnishes 
the regular-closed spaces of [8].

Let us call RC-orders the EE-orders on X  that have the form -« =  < y|X where 
У is a T3 -closed, regular extension of X. An RC-proximity is an EE-proximity 
associated with an ЕС-order; if Y  is supposed to be a T3-space, we obtain the RC- 
proximities in the sense of [8].

Now we can prove the following characterization of EC-orders:
(6.1) Theorem. Let X  be a regular space and <  an RE-order compatible with X.

- is an RC-order iff every maximal round filter is < -compressed. I f  this condi
tion is fulfilled then all maximal -=-round filters constitute a preregular system 91 o f 
filters such that the extensions Y associated with 91 are reduced, T3-closed extensions, 
associated with <.

P roof. Let Z  be a regular extension of X  such that < = < Z|X. By (4.11) the 
-«-round filters coincide with the traces of the regular filters in Z, and larger <-round 
filters correspond to larger regular filters ((4.12) and (4.13)). Hence maximal ««-round 
filters are traces of maximal regular filters. If Z  is X3-closed, the latters are fixed 
in Z, i.e. neighbourhood filters of points z£Z. Such a filter is < z-compressed by
(3.10), and its trace is -«-compressed by (4.14).

Suppose now that -= is an EE-order, compatible with X, with the property 
that every maximal -«-round filter is «--compressed. Since conversely -«-compressed, 
-«-round filters are maximal -«-round by (2.11), therefore the system 9Í of all maxi
mal -«-round filters is the same as the system of all -«-round, -«-compressed filters, 
consequently it is a preregular system of filters inducing -« (see (5.17)), and an 
extension Y  associated with 91 is associated with -c as well. If s is a maximal regular 
filter in Y  then r= s |X  is maximal -«-round by the first part of the proof, so r£91, 
and r=o|X  for the neighbourhood filter d of some y£Y.  By (4.11) s = u ,  and s 
is fixed, Y is 77-closed. □

An EE-order need not be an ЕС-order (see (8.4)). However, the extension 
associated with an arbitrary EE-order has a property similar to but weaker than 
7)j-closedness.

For this purpose, let us say that an extension Y  of a topological space X  is 
disjunctive iff cl y Л П cl y B = ß whenever A, В are disjoint, closed subsets of X.
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(6.2) Lemma. A regular extension Y o f X  is disjunctive iff -<x=

Proof. The equality < x =  <y |Z  is equivalent, by (4.4), to < x c < y \X, i.e. 
to the condition that clx А del* 5  = 0 implies с1уЛПс1у В =  0 ((3.8) and (4.2)). □

A regular space X  will be said to be D-closed iff there is no proper reduced, 
regular, disjunctive extension of X.

(6.3) T heorem. A regular space X is D-closed iff every <x -compressed, regular 
filter is fixed.

Proof. If Y  is a reduced, regular, disjunctive extension, and y £ Y — X, then 
the trace г=п|Т of the neighbourhood filter u of у is -compressed, -round 
by (6.2) and (4.14), hence -compressed and regular by (3.9); but r is free because
Y is a reduced, regular extension ([6], (2.5.24)).

Conversely, suppose that there is in X  a free -compressed, regular (i.e. 
< y-round) filter x. Let 91 be the system of all <x-round, -<x-compressed filters; 
91 is preregular by (5.16). Let Y  be an extension associated with 91. In other words,
Y is an extension associated with <x, hence it is a proper (because r€91), reduced, 
regular extension of X, and <x =-=y\X by (5.18). By (6.2) Y  is a disjunctive exten
sion. □

Now we can prove:
(6.4) Theorem. Let <  be a compatible RE-order in a regular space X  and Y 

an extension associated with < . Then Y  is a D-closed space.
P roof. If a filter s is < y-compressed and regular, i.e. < y-round by (3.9)’ 

then r= s |Z  is <-round by (4.11) and ^-compressed by [3], (15.48) and (15.51)’ 
Therefore r= u |Z  for the neighbourhood filter d of some ye Y. By (4.11) s=n 
so that s is fixed and (6.3) can be applied. □

Unfortunately D-closedness does not characterize the extension Y  associated 
with <  because there may exist proper .D-closed subspaces ZczY  satisfying <  = 
= <z\X (see (8-8)).

It is easy to obtain all reduced, regular, disjunctive extensions of a space X:
(6.5) Theorem. Let X  be a regular space and Y an extension associated with 

<x. Then the reduced, regular, disjunctive extensions o f X  are, up to equivalence, 
the subspaces Z  of Y such that X a  ZczY.

Proof. (6.2) and (5.18) show that every extension in question is equivalent 
to a subspace Z  of Y  such that XczZczY. Conversely (6.2) implies that Y  itself 
is disjunctive and then the same is obviously true for every Z lying between X 
and Y. □

7. (91, 9?')-contimious mappings

Let 9Í and 9Т be preregular systems of filters on X  and X', respectively, and 
/ :  X-+X'. The mapping /  will be said to be (9?, SRj-continuous iff r£9l implies 
that the filter base

f(x) =  {f(R): Rex}
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is finer than some filter г'£91'. Thus, in the case X=X',  91 is finer than 91' iff 
id Y is (91, 9T)-continuous.

Some of our preceding results can be easily generalized for (9Í, 9T)-continuous 
mappings. In the following propositions 9? and 9Г always are preregular systems 
on X  and X', <  and <' the RE-orders induced by 91 and 91', X  and X '  are equipped 
with the topologies {<p} and {< 'p}, respectively. (< , <')-continuity of / :  X —X'  
means ({<}, {<'})-continuity.

(7.1) Lemma. I f  f :  X —X '  is (91, 4H')-continuous then it is (< , -=')-continuous.
Proof. A < 'B  implies f ~ 1{ A ) ^ f ~ 1(B) since, if 0 $ r | f o r  some r£91, 

then 0$r'| A for an r'£9T coarser than /(r), hence Bdt ' , f (R )cB  for some Rfx,  
and f - \ B ) £ x .  □

There are some partial converses of (7.1).
(7.2) Lemma. Let X  be a D-closed regular space, 91 the system o f all com

pressedregular filters, and f : X —X'  continuous. Then f  is (91, 91 ’f  continuous.
Proof. By (3.9) and (5.17) 91 is preregular and induces -=x . By (6.3) every 

r£91 is fixed, hence it is the neighbourhood filter of some xd X  by (5.10). Hence 
f (x ) - f {x)  with respect to {</p}, and / ( r) is finer than the neighbourhood filter 
of /(x ) that belongs to 91' by (5.10) again. □

(7.3) Lemma. I f  f :  X —X'  is continuous then it is (< x, <x,)-continuous.
Proof. clx АГ\clx В implies c\X'f(A)OclX'f(B)?±$. □
Observe that (< , <')-continuity of/ does not imply its (91, 91')-continuity in 

general (see (8.5)).
(7.4) Lemma. Let Y and Y '  be extensions o f X  and X ' associated with 91 and 

91', respectively. I f  g: Y —Y' is continuous and g ( X ) c X '  then f= g \X  is (91,91')- 
continuous.

Proof. Every r£91 is the trace in X of the neighbourhood filter о of some 
yd Y. Hence /( r )^ g (y )  in Y ' so that / ( r) is finer than the trace r ' of the neigh
bourhood filter of g(y); clearly r'£  9T. □

(7.5) Lemma. Let Y and Y '  denote the same as in (7.4). I f  f :  X —X'  is (91, 91')- 
continuous then there is a continuous extension g: Y —Y' off.

Proof. By (7.1) /  is ({<p}, {-='p})-contin uous, and if r is the trace in X  of 
the neighbourhood filter of some yd Y, i.e. if r£ 91, then/(r) is finer than some 
r'£9T so that / ( r )  —y' for a point y'd Y' whose neighbourhood filter t>' satisfies 
r' = v'\X'. Hence [6], (6.2.2) applies. □

Now let 91 and 91' denote the systems of all <-round, -^-compressed and 
--'-round, < '-compressed filters, where < and < ' are /lb-orders on X  and X', 
respectively (cf. (5.17)). We say that / :  X —X'  is strongly (< , -E)-continuous iff 
it is (91,91')-continuous. In particular, if X —X',  <  is said to be strongly 
finer than <', < ' strongly coarser than <  iff idx is strongly (< , <')-continuous, 
i.e. iff 91 is finer than 91'. By (7.1) strong (-=, <')-continuity implies (-=, <')-con-
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tinuity, and if <  is strongly finer than «=' then <  is finer than < '; the converses 
are not true (see (8.5), (8.9), (8.11)).

(7.6) L em m a . Let SR, SR', SR" be preregular systems of filters on X, X', X "  respec
tively, / :  X - * X \  g: X'-~X". I f  f  is (SR, 4R')-continuous and g is (SR', SR")-coh- 
tinuous, then g o f is (SR, SR")-continuous.

P roof. For r£SK, there are r'íSR', r"€SR" such that/ ( r) is finer than r', g(x') 
is finer than r". Then g(f(x)) is finer than g(r'), hence than x". □

(7.7) C o ro lla ry . I f  < , <" are RE-orders on X, X ', X" respectively,
f:  X-*X' ,g:  X ' -*X", a n d f  is strongly (-=, < ')-continuous, g is strongly (-=', <")- 
continuous, then go f is strongly (<, <")-continuous. □

(7.8) C o ro lla ry . The relation “strongly finer” is transitive. □
On a regular space X, is the finest compatible RE-order by (4.4). How

ever, it need not be the strongly finest one (see (8.12)).
(7.9) L em m a . Let (/£ 7 V 0 ) be R-orders on a set X, and

<  =  (U  < f)*-lei

Then <  is the coarsest R-order finer than every .
P ro o f . Clearly

{<} = (V {<,})',
ia

hence the statement follows from (2.4), (2.8) and (2.5). □
The analogous question for .RE-orders is more delicate.
(7.10) L em m a (K. Matolcsy). Let SR; (/£ /^ 0 ) be preregular systems o f filters 

on X. Then there is a preregular system SR o f filters that is the coarsest one o f all pre
regular systems finer than every SR,.

P r o o f . Consider all centred systems of the form (J r; where r.CSR,, and let
iei

SR denote the system of filters generated by these centred systems.
For xdX,  there is r,€SR; (/£/) suchthat x i  П h- Clearly (J rf is centred

«6 /
and generates a filter r£ SR with x£ f) r.

Now let r í  SR be generated by (J r;, rt6 SR;, and R£t.  Then
iei

Ro>f)Rk, Rke xik, ikei.
fc=1

Choose R'k£xik suchthat r*iSRifc, 0$r*|R* implies Rk£x*. Then

R' = n  Äi€r.
k = 1
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If r"£91 is generated by U  x", rj'£9?;, 0 r'rj/?', and /?"£ r-' is arbitrary, then
i t  I

R ' f r" so that R'T\R'kZ)R'T\R'fV>. Hence ®<íx"k\R'k, thus Rfx-k, f) R ^ " ,
*=i

i?£r". Therefore 9Í is a preregular system of filters.
If r£9I is generated by (J r;, Г;£9?;, then r;c:r; hence 9Í is finer than every dif

fer
Finally if 9i' is a preregular system finer than each 9?;, and r'£9T, then there 

are г;£Л; suchthat r jC f ; clearly |J  rf is centred and generates a filter r£9?,
i i l

r e t '.  □
(7.11) T heo rem  (K. Matolcsy). Let < , (/£ /^0) be RE-orders on X. Then 

there is an RE-order <  on X  finer than each < г and such that <  is strongly coarser 
than every RE-order «=' strongly finer than each

Proof. Denote by 9?г the system of all < ;-round, < ,-compressed filters, and 
consider the coarsest of all preregular systems finer than each 91, (cf. (7.10)). If  <  
is the 7?£-order induced by this 91 then it is finer than each by (5.15). If < ' is 
an RE-order strongly finer than each and 91' denotes the system of all -='-round, 
^'-compressed filters, then 91' is finer than each 9?;, thus it is finer than 91 and 
also finer than the system of all <-round, ^-compressed filters (larger than 9?) 
so that < ' is strongly finer than <. □

We cannot assert that <  is strongly finer than each -=;; in fact it can happen 
that, for a family {<г: г£/} of /v£-orders on X, there is no 7?iT-order strongly finer 
than each (see (8.10)).

(7.12) L emma (K. Matolcsy). Under the hypotheses o f (7.10), let < ( and <  
be the RE-orders induced by 91; and 91, respectively, further -=r* =  ((J < ;)'г. Then

hi
every r£ 91 is -round and -=*-compressed.

П
P roof. If  r is generated by (J гг, г;£91,-, and 7?£r, then Rz> П Rk, Rk€*ik’

i i l  k = 1
i f  I. By (5.9) r ik is < ifc-round, hence there are R f  t ik such that R'k<ikRk. Now 
R '— f ^ R ' f  r, and R'<*R, i.e. r is <*-round.

k = 1
For the same r, suppose 0(£г|Л, A<*B. Then there are sets AJk, BJk such that

m ríj m rij
а  С U П Ajk, и  П  Bjk с  B,j—1k=l j=lk=l

Ajk ~<-i(j,k) Bjk > 1 0 , k)f I.
Clearly there is a у such that 0$.x\Ajk for each k —\, . . . ,nj.  Since ii0-t)c r ,  we 
have 0 Í hence Bjkf i г(уд)с г  because xiUik) is < uj.k)-compressed by

4
(5.9). Thus f l  И дО  and В £ x so that r is <*-compressed. □k- 1

(7.13) C o r o lla r y  (K. Matolcsy). Under the hypotheses o f (7.12), -c and 
induce the same topology, namely the supremum o f the topologies {<P}.
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P roof. <* induces this supremum since

=  (U =  (Ui€ / /€/
Now denote by 91* the system of all <*-round, -=*-compressed filters; by (7.12) 
9íc9í*. Consequently 91* is a preregular system of filters. In fact, (5.3) is valid 
for 91* because its elements are <*-round and -c*-compressed, and (5.2) is guar
anteed by 91 cr 91*. Now the {-^{-neighbourhood filter of x£ X  is by (5.10) the 
unique filter r$91 such that x£ [") r; the same r is by (5.7) the unique filter belonging 
to 91* with the same property. But r is <*-round, <*-compressed, hence maximal 
<*-round by (2.11). By (3.1) the {<*p}-neighbourhood filter of x is maximal -=*- 
round as well, hence it is identical with r by (2.13). □

8. Counter-examples

We pointed out several times that some more or less plausible statements are 
not true. We give now the counter-examples necessary for this purpose.

Let X  be the set of the ordinals ^a> and Y  that of the ordinals i£cox, both 
equipped with the order topology. Denote N = X —{co}, Nl — Y — {cox}. Consider 
the product space Z = X X Y ,  and denote by T  the subspace T = Z — {(со, со,)}. 
Thus T  is the famous Tychonofif plank.

(8 .1 ) L em m a . In T there is a single free, regular fiter, namely the trace r0 in 
T o f the neighbourhood filter s0 o f (со, cot)6Z.

P roof. Z  is a regular space, hence s0 is regular, and the same holds for r0 in 
T; r0 is obviously free.

Now let 5 be a free, regular filter in T. Z  is compact, hence s has a cluster point 
in Z  which cannot be distinct from (со, cox) since s is free. Z  is compact T2, hence 
s -» (со, cox). Hence r0 a  s.

Consider S£ s, and let G, be open and F  a closed set in T  such that (for the 
closures in T)

S z> cl Gx z> Gx э  cl G2 z > G2 d  cl C3 э  G3 d  F£ s .

Suppose first that Ffl(.lVX{co1}) is infinite; say (kn, wx)£F, kn£N  for ndN. 
Then there are ordinals <х„~=хох such that (k„, a)€G3 for a„-=a^cox. If a„S 
ß<(üx for each n, then (со, a)£cl G3 whenever ß<a<co1. For every such a there 
is nadN  such that (и, a)£G2 for ия<иёсо. There exists a k d N  such that nx= k  for 
uncountably many a, whence
(8.2) (n, coj)6cl G, for /с <  n < со.

We can find, for every А-=и<со, a yn< cox such that y„<aSa>x implies 
(и, a)€Gj, so that if у„тёу-=сог then (n, a)6cl Gx whenever /c<nSco, y<aSco, 
(except the case n=oo, ot—cox). Therefore c! Gx€r0, S£v0 in this case.

Suppose now that Т’П(ЛГХ{со1}) is finite. Then there is an n f N  such that, 
for и0-=жсо, there exists e„<oox satisfying (и, a)(fF for e„<aScox. For an 
e such that s„Se<co1 (и„-=:и-<со), we have (n, a)(fF whenever n0-=n-=co, 8<aScox. 
But (со, cox) is a limit point of F in Z, which is possible only if FH({co}XiV1) is
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uncountable. Hence there are uncountably many a<cot and, to each of these a, 
an n £ N  suchthat implies (n, !<)fC3c 6V There is a k f N  suchthat

= к for uncountably many a, and then (8.2) is valid. By the above reasoning 
this implies S € t0 so that s c r B. □

(8.3) C orollary. Consider in the space T  the R-oder -cj defined in (3.11) and 
the R-proximity Slt associated with < l5 given by (3.13). Then < 1c < 7- and <5, sat
isfies (4.3), but is not an RE-order.

Proof. We know from (3.12) that < x is coarser than and (3.13) fur
nishes (4.3) for S=Si- By (3.11) the < x-round filters coincide with the regular 
filters of T. Among them there is a single which is free, namely the filter r0 in (8.1).

Now r0 is not «=, -compressed. In fact, let A a N  be the set of the even num
bers and BczN  that of the odd numbers. Then A X {(«,}<>, В X (ш,} since A XT 
and B X Y  are disjoint open subsets of T. However, every element of r0 meets both 
A X {®i} and ŐX Ц }.

Apply (5.16) for X=T,  < =  <x. Then 91 consists of the neighbourhood filters 
only so that < '= -= т . By (3.14) <iX < T, hence is not an RE-order. □

(8.4) C orollary. The filter r0 is not -compressed, consequently the space 
T is D-closed without being T3 -closed. The extension associated with is T itself; 
hence < r  is not an RC-order.

Proof. The unique free, regular filter r0 in T  is not < r -compressed; in fact, 
v4 = AX{cu!} and B={ffl}XiV, satisfy

АЗт В, 0 $ го|Л, 0 $ ro|ß.

Hence every -compressed, regular filter is fixed. On the other hand, r0 is a free 
maximal regular filter.

A < T-round, -compressed filter is regular in T  by (3.9), therefore none 
of these filters is free, and the extension associated with < r  is T  itself. By (5.18) 
T  is the unique extension T ' of itself such that -сг= < г,|T; consequently there 
is no Tj-closed extension T' with this property, and < r is not an ÄC-order. □

(8.5) Lemma. Consider the subspace 7j — X X  A, of T, and let f:  f  — T denote 
the canonical injection. Then f  is (< Tl, <T)-continuous without being strongly 
(< Tl, <T)-continuous.

Proof, f  is continuous, hence its (< Xl, -=r )-continuity follows from (7.3). Let 
91 and 9?, denote the systems of all -=r -round, < T-compressed and < Xl-round, 
< Tl-compressed filters, respectively. We know from (8.1) and (8.4) that 9? con
sists of the neighbourhood filters in T ((3.9), (3.10), (5.17), (5.10)).

On the other hand, the trace filter rx=r0|7j belongs to 9?х. In fact rL is regular 
in Tl5 hence < Tl-round by (3.9). It is also -=Tl-compressed because if A and В 
are disjoint, closed subsets of Tj then A П({со}Х.ЛГ1) and BC\({(o}XN1) are dis
joint, closed subsets of the space {со} X Aj . The latter is homeomorphic to Nt a  Y, 
thus, by a well-known property of Nlt there is a ß< ш, such that, say, (to , a)$A  
for ßйа< Й !. For every a of this kind, there are and an open neighbour-
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hood Ux of a in Nx such that
ЛП(Ухх и а) = 0,

where
Vx = {x£X: na < x  s  со).

Let G„ be the union of those sets Ua for which na=n. The sets G„ constitute a count
able cover of the subspace

С =  {абЛ^: ß ä а <  w j  с  Nu
р

Since Nx and consequently C are countably compact, Ccz (J G„k. For
«t=i

m=max {nk: k= l, ...,/?}, we have AC\(DXC) — 0, where

D = m <  x  S  со};

in fact, x&D, y£C  implies y<zG„k for some k, hence y£ Ua for an a. such that 
па—пкШт<х^со, so x€ Vrj. Now D xC  clearly belongs to ij.

If / ( 1!) = ̂  were finer than some rf 91 then we would have rt -<-z for some 
z f  T, which is impossible. □

(8.6) Corollary. For the space T1 in (8.5), we have

(8.7) <Ti = < Т|ГХ =  < z |Ti,

and Z  is an extension o f Tx associated with < Tl.
Proof. Let A and В be disjoint, closed subsets of Tj. We have seen in the 

proof of (8.5) that {co,coß)^c\z AC\c\z B. Consider (n, cox) for some n£N, and 
V={n}XN1. AD V  and В Г\V are disjoint, closed subsets of the subspace V a T x, 
homeomorphic to Nx, thus there is a such that, say, (n, a)$A  for /i< 0!S
=сог. Now {(«, a): ß-^xXcof is a neighbourhood of (n, cox) in Z  so that 
(и, Cűj) $clz Z.

Therefore < r i=  ~=z\Ti ■ Clearly

< zl^ij<— ^т\Тг c
so that (8.7) is established.

We show that the < ri-round, < Tl-compressed filters in Tj coincide with 
the traces of the neighbourhood filters in Z. From (8.7) we obtain by (4.14) that 
these traces are < Xj-round and < Tl-compressed. Conversely, a < Tl-round, 
< Tl-compressed filter in Tx is, by (2.11), maximal < Xl-round, and by (4.11) it is 
the trace of a maximal regular filter in Z. Since Z  is compact T2, such a filter is a 
neighbourhood filter. □

(8.8) Corollary. For the above space T,, the extension Z  associated with -<Tl 
contains a proper D-closed subspace T  such that < Tl=-=T|Ti.

P r o o f . (8.6) and (8.4). □
(8.9) L emma. Let <  denote the discrete topogenous order on T. Then -<Tc  

but <  is not strongly finer than < T.
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Proof. {<} is a symmetrical topogenous structure, hence <  is an RE-ordet 
(the extension associated with <  is the Cech—Stone compactification of the dis
crete space T). Let r be an ultrafilter in T, finer than the filter r0. Clearly r is -«-round, 
-«-compressed, but it is not finer than any < r -round, -compressed filter because 
the latters are, by (3.9), (8.1), (2.11) and (3.1), neighbourhood filters in T. □

(8.10) . Corollary. On the set T, there is no RE-order that would be strongly 
finer than any RE-order on T.

Proof. Such an RE-order would be finer than any RE-order on T, thus it 
would coincide with the discrete order < . However, the latter is not strongly finer 
than by (8.9). □

(8.11) Lemma. Consider the subspace T2 = N X Y  o f T. Then -<T\T2a  < T„ but 
-=T2 is not strongly finer than <T\T2-

Proof. The first assertion is obvious by (4.4). Let s be an ultrafilter in N  finer 
than the filter base (R„: n£N}, Rn={x£N: х ё« ). Denote by r the filter in T2 
generated by the filter base

{SXf,: S€s, a <  cOi),

where Vx= {yd Y : Clearly r is regular in T2 because S  is dopen in N,
Va is open in Y, and implies Faz)dy Vß. Hence r is < T2-round by (3.9).

We show that r is < Гг-compressed. In fact, let A,Bc^T2 be disjoint, closed 
subsets of T2. For n£N, either Af)({n}XVan) or ЕП({»}хЕ„п) is empty for 
some x„ <  coL. Let C be the set of those n fN  for which this holds for Af]({n}XY). 
Either C or N —C belongs to s.

In the first case there is an a<u>1 such that a f o r  n£C; then CXK.Gr 
does not intersect A. In the second one there is а<ш г suchthat a„Sa for »6 N —C, 
and then (N —C )X V x does not meet B.

By (2.11) and (4.11) the < г |7(,-round, < T|7^-compressed filters are traces 
in T2 of maximal regular filters in T, and the latters are by (8.1) either neighbour
hood filters in T  or equal to r0. None of the formers is coarser than r because 
x (cn, cox) in Z, and г0|Г2 is not < r j7),-соimpressed. In fact, if P and О denote 
the sets of the even and the odd numbers in N, respectively, then BX  (tUi) and 
QX{a>x} are disjoint, closed subsets of T, and each element of r017L intersects 
both of them. Hence -=T„ is not strongly finer than □

(8.12) Corollary. In the space T2, there is no compatible RE-order that would 
be strongly finer than all compatible RE-orders.

Proof. Such an 7?7?-order would be finer than all compatible RE-orders, i.e. 
it would coincide with < Ta by (4.4). However, < Ta is not strongly finer than the 
compatible /tL-order <T\T2. □

Similar questions, answered negatively in the above examples, have been raised 
in [8] for A'C-orders instead of .RE-orders. Our results may be considered as first 
tentatives towards an answer, although they do not solve the problems because 
the order < r  involved in them is not an RC-order.
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A REMARK ON A THEOREM OF H. DABOUSS1
I. K Á T AI (B u d a p e s t) , m em ber o f  th e  A cad em y

1. Let е(а)=е2л,а. Let Л  denote the class of complex valued multiplicative 
functions, and $0 denote the class of real valued additive functions.

Let Í F be the set of those multiplicative functions/ for which |/(и)|ё1 
holds for every natural number n. Some years ago H. Daboussi has shown that for 
every irrational a

(1.1) -rr 2  Д л )е (л а )-О  (A -«>)
TV n s N

uniformly in f i tF . Later this result has been extended and improved in [1] and [2]. 
An immediate consequence of Daboussi’s theorem is the following result. 
If a is an irrational number and F£ sd, then the sequence

(1.2) =  F(n)+om
is uniformly distributed mod 1. Moreover, there exists a sequence £>„ =  (?„(a) >0 
monotonically tending to zero such that

sup sup
F í . s í  0 3 7 « = á -c l

( i t{ n ^ N ,  { i .} 6 [7 ,  á ) } - A ( 5 - y ) ) ( A s  1 ) .

2. We shall say that a sequence of real numbers t(n) (n—l,2 , ...) belongs 
to Г  if F(n) + t(n) (n = 1,2,...) is uniformly distributed modi for every F^sd. 
It would be interesting to characterize ЗГ. We are unable to do this, but we can 
prove that

(2.1) 0 ( A - »)

holds uniformly for /6 # "  for a quite large set of t(n).
T heorem  1. Let us assume that for every positive К there exists a finite set 

o f primes Pi<p%< ...<pR such that

( 1)  4 : =  i l / A > i ,i=l
(2) for the sequences ци]{т) = 1(ррп) —1(pjm) the relation 

— 2  e(hi,j(mj) -  0 (x -°=>)x m=l
holds, whenever i^ j ,  i, j£  {], ..., R}.

(2.2)
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Then there exists a sequence o„ > 0  monotonically lending to zero such that

(2.3) sup
f t ?

— 2  f(n)e(t(n))
M n-cN — Qn-

T heorem 2. Let us assume that fo r  every positive К there exists a finite set 
',¥y o f primes < pR such that

(1) ApK := Z l l Pi>K,
; > = i

(2) the sequences riij(m )= t(p im) — t(pj m) (m = 1 ,2 ,...) are uniformly dis
tributed mod 1 for every i f j ,  i, jfi {1, R}-

Then tC-.T. Furthermore, for the discrepancy sequence

we have 
(2.4)

Dn(F) := sup
О ̂  у <  <5 <  1

#{{F(n)+/(n)}6[y, <5)}—(<5 — y)

lim sup sup Dn(F) =  0.
JV—=о F t s 4

3. Proof of Theorem 1. Let c, c\, c2, ... be absolute positive constants, 
В, Вг, B2, ... be real numbers majorized by absolute constants.

After fixing а К we put =  LP, and (Op(ri)= 2  1- From the Túrán—Kubi-
p\n

Pt»
lias inequality we get immediately

(3.1) 2  \<Og.(ri)-Af схх^А^)11г.
n ^ x

Let
(3.2) S(x) = S(x, f ) = 2  f {n)e{t (n%

n ^ x

(3.3) H(x) = H(x, / )  =  2  f(n)e(t(n))a>p(n).
n ^ x

From (3.1) we deduce
(3.4) \H(x) — A&S(x)\ ^  c1x' V A&.

Furthermore,
H ( x )  =  2  2  Л р т ) е ( { ( р , п ))-

p m  = i x  
pt»

For (p, m)= 1 we may write / (pm) = f  (p)f(iii). The contribution of the pairs p,m 
satisfying (p, ш)> I can be majorized by x 2  1 Ipf. consequently

(3.5) H (x)=  2  f ( m) 2  f (P;)e (j(Pim)) + R<x = 2  f ( m) I m +  B,x.
Pi ^x / m t n ^ x / p x

Since (a+b)2̂ 2 (a 2 + b2) for real a, h, using the Cauchy-inequality, we get

(3.6) |#(x)|2 =  2( 2  l/(m)l2)( 2  \Zm\2)+2Bíx* = 2UV+2BU2.
m ^ x l p x m^§x/pl
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We have U ^x. Furthermore,

v  =  2  2  f (Pdf (Pj ) e(i (Pi m) - t { P j  mi).mSx/Pt p̂ PjSxIm
The contribution of the terms Pi=Pj is Consequently

(3.7) V ^ x A & +  2  \ 2  e(,t (Pim) —t(pJ m))[.

Collecting our inequalities (3.4), (3.6), (3.7), we get

(3.8) № f ' i  e ,A , 2  ■' 2  e(,lp ,m )-,(p ,m »\.
м л Г  - - . ( F i )

Let B(x)=  sup |5 (x ,/) |. Since the right hand side of (3.8) does not depend on /,
fz ?

it holds for B(x) instead of |*S(x,/)| as well. Consequently

(3.9) lim sup [~ ~ ~ j  —

Since 0> = 3PK can be chosen such that A<?>K for arbitrary large K, (3.9) implies 
that B(x)=o(x) (x—oo).

4. P roof of T heorem  2. Let к be an arbitrary nonzero integer. By putting 
f(n) = e(kF(nj), t(n)-~kt{ri) the conditions of Theorem 1 are satisfied. By using a 
quantitative form of the Weyl-criterion, for example Erdős—Túrán inequality, we 
get our theorem immediately.

5. Some rem arks. 1. Theorems 1 and 2 remain valid assuming only that ph 
Pj are coprime integers.

2. If then t(n) is uniformly distributed modi. This is obvious, since
the zero-function is additive.

3. There exists a t(ri) uniformly distributed mod 1 which does not belong 
to FT. Indeed, let co(n) be the number of prime divisors of n. Then aco(n) is uni
formly distributed mod 1 if a is an irrational number, this can be proved in several 
ways. By putting t(ri) = oca>(n), F(n)— — <xco(ri)£stf, we get that 0=F(n) + t(ri), 
which cannot be uniformly distributed.

4. Let t{ri) — a,knk+...+a.1n be a polynomial of n such that at least one of 
the coefficients oq, ...,oq is irrational. Then the conditions of Theorems 1 and 
2 hold.
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ON SOME FUNCTIONS DEFINED BY THE CANONICAL 
EXPANSION OF COMPLEX NUMBERS

S. KÖRMENDI (Budapest)

1. We shall say that a Gaussian integer &=a+bi is a canonical number base 
if every Gaussian integer a can be represented uniquely in the form
(1.1) oc — Uq -f- Új S -f* • ■ * ~b ctr Sr
where a ^ A  = {0, 1, ..., N{S) — 1}. I. Kátai and J. Szabó proved in [1], that 3 is 
a canonical number base if and only if R eS< 0 and I m 3 = ± l .  In the same 
paper they proved that if 5 is a canonical number base then every complex number 
z can be written in the form

(1.2) z =  2! ai
l = —oo

These investigations have been extended for arbitrary quadratic fields by 
I. Kátai and B. Kovács [2], [3], and for some other algebraic fields by B. Kovács [4].

The geometrical properties of sets of complex numbers that have an expansion
(1.2) with a given integer part have been considered by W. J. Gilbert [5], [6].

In their paper [7] Z. Daróczy, A. Járai and I. Kátai determined those func
tions for which

(1.3)

holds for every Sk — 0 , \ , . . . ,q —l, k —1,2, ..., where q ^2  is an integer. Namely 
they proved that if F satisfies (1.3) then F(z)=az+b  holds with suitable con
stants a, b.

Let $ = — A ± i  be a Gaussian number base. Let H  denote the set of all com
plex numbers that have at least one representation in the form

( 1 . 4 )  z = i | f ,  a^ A =  { а д - í j .

Theorem. Let F be a complex valued function defined on H, F(0)=0. 
Assume that

(T5) ^ )  = | / ( | f )
holds for every z^H . Then
(1 .6 ) jF (z ) =  cz+dz,
with suitable constants c, d.

15*
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2. Proof of the theorem

L em m a  1. Under the conditions stated in Theorem we have

(2. 1)
oo N(3)-l 

2  2
1=1 k = l

<  oo.

P r o o f . It is obvious that Re F(z) and Im F(z) satisfy the relation (1.5), 
consequently we may assume that F  is a real valued function. For k£ A let

Let zk and wk be defined by

wk =

Since the series represent complex numbers zk, wk£H, therefore

are absolutely convergent. Making this for each k, we get (2.1) immediately.
L em m a 2. Let В and C be positive coprime integers, D ~B+C, and X0=0, 

Xk, ..., XD be arbitrary complex numbers satisfying the following relations:

(2.2) Xc+n = Xc +Xn (и = 0, . . . ,* )

(2.3) XB+m =  XB+Xm (m = 0, ..., C).

For every integer n(L {1, 2, ..., D}, i f  n —qC—sB with nonnegative integers q, s, 
then X„=qXc—sXB. Consequently X„—nXk.

P r o o f . First we shall prove that
(2.4) XqC- sB = qXc —sXB
whenever 1 ^ q C —sB ^D . We shall prove it by induction with respect to t(q, s)= 
=q+s.

(2.4) is obviously true if t(q,s) = 1. In this case q=  1, i= 0 . Let us assume 
that (2.2) has been proved for every q, s satisfying t(q, s ) S r —l. Let t(q,s) = r, 
n — qC—sB. If n<C, then J £ l ,  n + b = n1̂ D , nk = qC — (s— \)B, from (2.3) 
Xn =Xn+ X B.

Furthermore t(q, ( s —1))=/— 1, and so Xni=qXc —( s —l)X B. Consequently 
Xn = Xn - X B=qXc- s X B, (2.4) holds.

Let n>C. Then n1= n—C=(q — l) C —sB, from (2.2) and by the induction 
argument

Xn = Xc +Xn_c =  Xc + q - 1, Xc-s X B =  qXc —sXB.

The case n=C  is obvious.
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To prove the second assertion we observe that 1 =£ C —t]B with suitable posi
tive integers  ̂and rj. Consequently Х^—^Хс-цХд. Furthermore n —{n^)C-\щ )В , 
and so Xn=ntXc~ щ Х в= n{£XC- rjXB)= nXl .

To prove our theorem we are looking for such complex numbers that have 
two different expansions of the form (1.4), and we shall derive some relations among
the values F

The minimal polynomial of 9 has the form <p(z)=z2+2Az+A2 + l, whence 
we deduce immediately that
(2.5) 
with
(2.6)

From (2.5) we get

(2.7)
Since

from (2.7) we get

(2.8)

93- 1 =  -B 9 2-C 9 + A 2,

Я = 2 ,4 -1 , C = ( A -  l)2.

( В C A2\ 1
{ 9 92+ 931 1 -1 /93 ~  L

1 +II

1 -1  /93

В 1 ^  ^
91+3J jfo  92+3J =  2 -

A2

Let us divide both sides of (2.8) by 9l, 1. Then

(2.9) В
9l + Д  9!+3J+J + 2

j £ o  9 2 + 3 J + ' j ? o

A2
Q3 + 3J +  I •

Let B = x—y, x, y£A. Then

(2.10)
1 x 
9‘ + 91+l + 2j=1

в
gi+3j+i J=0

C
< p + 3 j + l

_ 2 _ + v  
91+i + Д

A2
g3+3j+i •

Since /, x, у, В, C, A2£A, from (1.5) we get that

(2.11) =  constant
for x —y — B, x,y£A .

Similarly, if we put C = u—v in C/92+l, we get

(2. 12)

for и—v=C, u, v€A. 
That is

(2.13)

FЫМ ~ F  ( sM = constant
Acta Mathematica Hungarica 47,1986
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for v^2, and

(2.14) 
for v&3.

Let us assume that v^3. We put Then from (2.13) and (2.14)
we get

XR+y = Xc+v = Xc-{-Xu.

The condition (В, C)=  1 obviously holds. Consequently from Lemma 2 we get 
X„=nXx, that is

(2.15) =  (У- 3’ Л€Л)-
Let

Лг = F (lß ') , Sr = 2  Aj.
j~r

From (2.9) we get immediately that

(2.16) Al + 2  BA1+3J+l+ 2  CA2+3j+l — A2 2  ^3 + 3 y + z>
j = о j=0 j =0

whenever /S2. Let us consider this equation for l —R, R+ l, R+2, and take 
the sum of both sides of these equations. We get immediately that / lR +  TR+1 + 
+  /1r+2+í?‘Sr+i +C7>S'jR+2 =  ;42>S'r+3 if =2.

Since B+C = A2, we have

Ля + Ак+1 + Ля+2+В(Ля+1+Ля+2) + СЛк+2 = 0. 
Consequently

(2.7) Ля +  (1 +Д) Ля+1 +  (1 +B + C) Ar + 2 — 0.

Observing that l +B=2A, 1 + B + C ~ A 2 + 1, we get that the characteristic poly
nomial of this recursion is K{xv) = (A2+ \)w 2 + 2Aw+l.

The roots of K(w) are 1/3 and 1/3. Consequently AR—c(l/9)R+d(l/B)R 
(/?=2) with suitable constants c, d. Hence we get F(z)—cz+dz, if z  can be 
expressed in the form

(2Л8) z  =  M w -

Let us consider now (2.9) for /=1. Let

C
# 3  +  3j  ’

oo D oo

2  Q2 +  3 j  + ^y=o # j = о
tj = “  _ T 2_

Д  34+3j' ■

From (2.9) we get -^-+£ = >7, consequently +  £ =  a£{0, ...,Л 2-1}.
Since £, and t] can be expressed in the form (2.18), therefore F(^)=c^+d^, F(rj)=
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=cr\+dr\, furthermore

we get

f  = * - 0 * 5 = 5  = 4 + 4 Í ) -

By using F(0) = 0, this gives f ( -^ )  =  c ^ + d  .

So we proved that = c (jv ) +d > for еуегУ
our theorem follows immediately.

a£A, v 5 l .  Thus
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ON THE EXPECTED TIME OF THE FIRST 
OCCURRENCE OF EVERY к BIT LONG PATTERNS 

IN THE SYMMETRIC BERNOULLI PROCESS
A. BENCZÚR (Budapest)

Let Tk(co) denote the first occurrence time of every к bit long sequence in 
the realization co = co1co2... (а>;= 0 or 1, / = 1 ,2 ,...)  of the symmetric Bernoulli 
process. Using Theorem 3.1 from Shou-Yen Robert Li [1] we give an elementary 
proof of

2*(fc In 2 —ln k) S  E(Tk(coj) S  2k+\ k  In 2+ c+ 0(2~k)).
Let Uk denote the set of different zero-one sequences of length k. We say the 

sequence B=bl bi ...b l is an i-contimation of the sequence A = a1a2...a„, if

a n —  b i - i >  a n - 1  =  b j - i - i ,  . . . ,  =  i > i .

In the case when / is the smallest number for which В is /-continuation of A, we 
say В is strict i-continuation of A.

Let HQUk be a subset of Uk. We define for the sequences A€H  the con
tinuation mean of A in H by

(1) 1(H\A ) = k£  2-4[H>(A),
i = 1

where 1{H)(A) is the number of sequences in H  that are strict /-continuations of A. 
It is easy to see that l(H)(A) is the expected number of the different elements of H  
which occur in a random, symmetric and independent continuation of A with 
к — 1 bit.

In [1] Shou-Yen Robert Li gives the continuation measure A *B  of two pat
terns of series of independent, identically distributed discrete random variables. 
Applying it for the symmetric Bernoulli process, we get for A, Bd Uk :

A * B =  k£  с(2*-г,
i=l

{1, if В is /-continuation of A 
0, else.

Lemma. Let iV(H)(ta) be the time of the first occurrence o f an element from H, 
where oj = co1íú2... is a realization o f the symmetric Bernoulli porocess, i.e.:

N w (a>) = min {с%_*+1Юл_*+2...(*>*€#}.
Let

рл — p  {“ »<“' -  fc+1 • • • = A},

(2)

where
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and |Я | be the cardinality o f  H. Then
(3) 2* 2  Ta(1(h)(A) + 1) ^  |Я |Я (Я (н>(<п)) 2k+1 2  PaO(A) + 1).

A d H  A d H

R e m a r k . The expression 2  P a l(li>(A) has a special meaning. It is the
A d H

expected number of elements from Я  that occur in the subsequence of 
со: coNoo_k+1...coNun...(oN(H)+k_1. Denoting it by а (Я), we get from (3):
(3') 2*(я(Я) +  1) S  |Я |Я (Я (н)(со)) = 2*+1(л(Я) +  1).

Proof. Theorem 3.1 of [1] states that for every A £H
(4) 2  PBB* A = E (N m («в)).

B d H

Summing it with respect to A and exchanging the order of summation we 
obtain:
(5) 2  PB 2  В* A =  |Я |£ (Я (я)(ю)).

B d H  A d H

We can estimate B*A  by
(6) 2k~‘ si в * А  2 -2к~‘

when A is strict /-continuation of B.
Let H(B, i) denote the subset of Я  that consists of the strict /-continuations 

of B, obviously IH{B, i)\ — l[H)(B). Using this notation we get

(7)

The term

(8)

2  b * a  = b * b + k2  2  в * a .
A d H  i =  1 A  d H(B, 0

2  B*A  can easily be estimated from (6):
A d H ( B , i )

2  B * A  dsl№ (B )-2k~i+1 = ! Ц ^ - 2 к+1
A  £ H(B, 0  2

B* A
л e н(в, о

n n>(B)
2d '

Using the trivial inequalities 2k^ B * B < 2 k+1 we get from (1), (7) and (8)

(9) 2*(1+/(Н)(Я)) = 2  В* A 2k+1(l+ lw (B)).
A d H

Estimating the left hand side of (5) by (9) we obtain the inequality (3) of our lemma.
Let (Q, si, P) be the probability space describing the symmetric Bernoulli process. 

The elements со of Í2 are the infinite binary sequences oj=̂ co1co2... , where cu;=0 
or 1, /= 1 ,2 , ... . The first occurrence time of every element of Uk is defined by

Tk(co) — min {T|for every AdUk
there exists i S  T —k+ l such that coicoi+1...coi+k- 1 = A}.
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For the subsequence co1co2...(oTk we define a set of different, disjoint subsequences

ßi = co1...cok,

ßi = £0i2” -£0ii + t-l>

ß s  —  a ) is - - - a , is + i t - l !

ß lV(to) _  í 0 <W(o,)- ” íü ÍN(<»)+fc-l

in the following way. Let us suppose that we have already defined ßs. Then we 
choose /s+1 so that

h+i = min {a>jCüJ+1...(úJ+k_1 (o,o>l+1...(ol+k- 1 for every l <  is}.j^is+k

It can be easily seen that the sequence ßx(co), ß2(co), ..., ßm0y(co) is uniquely defined 
for every co£Q.

Let be the set of k-long sequences that do not occur in со before ßj,
and let Mj((o)=\Hj(co)\.

It follows from the construction of the sequence ßt , ß2, ..., ßN, that Mj(co) — 
— M j+1(co)=l+Xj(a)), where 0^ Xj(a> ) к — 1 and X j(со) is explicitly the num
ber of different elements of ЯДю) that occur in the subsequence ooij+1coij+2... 
...cotj+l_1. The last notation we need is the distance Y j(со) between ßj and ßj+i:

(10) Yj(cü) = ij+1(co)-ij(co), for j  = l, N(co), 

where i'i =  l and iN(m)+r = Tk((o).
Using our notations, we can construct Tk(co) as a sum of random numbers of 

weakly dependent non-negative variables:

N(a>)

(11) Tk(co) = 2  Yj(a>).
1=0

We shall use this form to obtain a lower and upper estimation of E(Tk{co)). 
In order to simplify our formulae in the sequel we omit the argument со of the ran
dom variables.

Theorem 1. We have
E{Tk) == 2k(k In 2—In k — c),

where c is the Euler-constant.

P r o o f . Taking the expectation of (11) and neglecting YN from the right side 
we get

(12) E(Tk) ^ E ( 2 Y j ) .
7 =  1
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We can calculate the expectation on the right side as the expectation of the 
conditional expectation with respect to Hlt Я2, ... and H

(13) E { 2 Y j )  =  E \ E ( 2 Y j \ H x, t f2, .... #,)] =
J=1 j =i

=  E [ E {  2  Y j \ H i, H 2, Я,)] + £ [ е д |Я 1Я2...Я;)]+ £ [£ ( У а д . . . Я , ) ] .
y=i ;=(+!

As Я(Г,|Я1Я2...Я ,)=Я(У ,|Я(), and

В Д  У  У)|Яа, Я2, Я;)] = Е[Е( У  а д ,  Я2, ..., Я ,.,)],
j =i j=i

it follows that

(14) e (NZ  Y j )  =  E ( 2  ЕЩ Н ,)).
J=1 J=1

Let us observe that if Hj is given, is equal to the first occurrence time N(Hß of 
H j, then
(15) E(Yj \Hj = E(N<-Hß).

Using inequality (3') of the lemma, we get

(16) E(Yj \Hj) ^

From (14) and (16) it follows that

(17)
N - l  ( N - l

E { 2  Y j ) ^ 2 kE \ Z
j = l  V = i

n(Hj) + \ \ 
M j )

Using simple transformations we get

(18) £~(У n{HM  + l ) = L ( y ^ d ± t ^ 5 t i

As M j-M J+1—X j+ 1, and O ^ X j^ k —l the second term on the left side of 
(18) has its minimal value ln/c +  0(A:_1) when X} = k — 1, for y = l, 2, ..., N — 1. 

Using the same arguments as in the steps between (13) and (14) we get

(19) i l^ ) 4 ¥4 ^ i 4
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As n(Hj) and Mj are measurable with respect to Hj,

(20) e {~ mj Xj \m )  = - ъ - Ш д - т ш

It is not true that E(Xj\Hj) = n(Hj), but n(Hj)^E(Xj\Hj), since counting Xj 
we neglect the elements of //,- that have occurred after ßj and before ßJ+i- Com
bining this with (19) and (20), we get that the third term in (18) satisfies the 
inequality

(21)

As the first term in (18) is equal to In 2k+ c+ 0(2~k), from (12), (17) and (18) 
we get E(Tk)^ 2 k(\n 2k—In k+c), and this proves Theorem 1.

T heorem  2. E(Tk) ^ 2*+2(ln 2k+ c+ 0(2~k)).
P ro o f . Starting from (11) and using the method of getting (14) and (16) we 

can show that

(22) E(Tk) S  E ( 2  E(Y,\H,)) ^  2k+'E \j=1
As the second term on the right side of (18) is less than or equal to zero, we can 

neglect it, and
2k 1

(23) -  ”  ‘ "

According to (20)

(24)

1 ^)-
( j  n (H j)-X j\ = ( $  n jH J-E jX jlH j)}
v=l Mj ) v=i Mj )

Let H j = H j —H J+1—ß j +1 be the set of subsequences of the sequence coij- k+1... 
...coij...coij+k_1 belonging to H j .  By a simple extension of the notions l(H)(A) 
and 1 Г ( А )  for the case when A $ H ,  we can investigate the difference ЦН1\ А ) —

- 1 ? ‘ - h > \ a \
It follows from the structure of the set H ]  that two elements of H ]  cannot be 

the strict /-continuations of A with the same /.
So l\H? { A ) - f”1~H'J\A ) ^ \ ,  and

(25) ßHj \ A ) - l (HJ~H'i\A) 1.

As n ( H j ) =  2  Pa I(hHA) and E(Xj\Hj)=* 2  Pa I(Ĥ \ A ) ,  we get
AiHj AiHj

(26) n ( H j ) - E ( X j \ H j ) =  2  Pa (1 ^ 4 A )-1 ^ -» 'H A )) ^  2  Pa =  1 .A£Hj A£Mj
If we use the trivial estimation

E Í 2\j=i M j) i=i i
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from (22), (23), (24) and (26) it follows that E(Tk) ^ 2 k+2(\n 2k+ c+ 0(2~k)), which 
proves Theorem 2.
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ON SOME DE LA VALLÉE POUSSIN TYPE 
DISCRETE LINEAR OPERATORS

O. KIS and J. SZABADOS (Budapest)

0. Introduction. We shall define a de la Vallée—Poussin type trigonometric 
kernel (see (3) below), and the associated trigonometric as well as algebraic approx
imating operator. This kernel depends on several parameters (j, k, /, and m), and 
depending on the relation among these parameters, the corresponding operator 
shows fairly good properties. For some combination of the parameters we shall 
determine the exact norm of the operator, for other values we give reasonable esti
mates for the norms (see Sections 7 and 10). We shall prove the Jackson, Timan, 
and Telyakowski—Gopengauz theorems with explicit constants (see Section 15), 
and will see that for a certain choice of the parameters our operator converges 
in the order of best approximation. (Compare e.g. [5], where the constant given 
for the Telyakowski—Gopengauz theorem is of order 103, while our constant is 
~5.7; cf. Section 16). At the same time our operator interpolates at certain nodes, 
and reproduces polynomials of certain degree. For some combination of the para
meters all of these good properties listed so far can be achieved with the same oper
ator. At the end of the paper we give a constructive solution to a problem raised by G. 
Freud and A. Sharma [2].

1. N o tatio n s , t is a real variable, g is a real or complex valued 27r-periodic 
continuous function of t. The positive integers /, m and the nonnegative integers k, 
l are such that the number

(1)

is a nonnegative integer. Further let

(2)

(3)

(4)

S jk lm iS’ 0 —  2  g(.tv)sJklm(t~tv)-
v=0

(5)
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2. R emarks. S 1Wm(g, t) (m odd) and *Sj01m(g, t) (m even) are ordinary inter- 
polatory polynomials, S110m(g, t) and S310m(g, t ) were investigated by D. Jack- 
son [4] and J. Szabados [6], respectively.

í̂oomCO (m odd) is the Dirichlet kernel, JUOm(0  is the Fejér kernel, i3i0m(O 
is the de la Vallée—Poussin kernel, and i 130m(/) is the Jackson kernel.

The estimates given in this paper should be viewed as m o o  (or n —► oo ), while 
the other parameters (j, k, l) remain fixed. We separate the indices by commas 
if it can be misunderstood (e.g. we write sJtk+ltltm(t), but sJklm(t)).

3. Lemma. Sjklm(g, t ) is a trigonometric polynomial o f order at most n, and

(6) SjUmig, tv) =  g(iv) (v =  0, ±  1, ±2, ...).
4. R emark. Proofs will start in Section 20, where the coefficients of SJklm(g, t ) 

will also be calculated.
5. N otations. Ej(g) (v= 0 , 1 ,2 , ...) denotes the best approximation of g by 

trigonometric polynomials of order at most v in uniform  metric,

jm — 1
(7) Ljklm(t) = 2! \sjklm(.l~OI>

v=0

(8) q = (jm  — km + k — l —l).

6. Remark. Since j, m and n are integers, so is q=jm —n —1.
7. Theorem. I f  q ^  0, then

(9) \SJklm(g, í)-g (O I S (1 +LJklm(t))EqT(gy,

0°) \\LjkiJ = max LJklm(t)

is a decreasing function of к and I;

(1 1 )—(12 ) il̂ TOmll — ' J У v =
2 j'2
— z  i/cos-J v = 1

(13) I ld iim  II —— iogj+2.; n
(14) ll-̂ 221mll

(15) кlCO«4.

2v — l
~2j~

У 3 
2

9m2

i f  j  and m are even;

1.155;

JT
9 1.223.

8. Remarks. Let X} denote the Lebesgue constant of the Lagrange interpola-
2v — 1tion with respect to the Chebyshev nodes cos— (v — 1, ...,./). It is known

AJ
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[1] that

= 2  col~ Z i~  n 0 =  •••)•
7  V =  1 47

This together with (11)—(12) easily yield

1 ( U-D/2 2v —1 )
4  1+2 2  1/sin 4 ^ - 4  =2,- U  =  1,3,...)
J '  v = i  4 7  /

-'./lOm

By [3]

where

2 j/2 2v -1
4  2  1/sin 4 ^  Я =  Xj (j = 2, 4, ...)■
J  v = i  47

Xj =  —log j+ c+ aj ( j  =  1,2,...),J TP J

=  | ( ,  + !„g i)= ° .9 6 2 5 ... ,

and y=0.5772... is the Euler constant, (y= 1, 2, ...).
For certain values of the indices, Lemma 29 will give the explicit form of the 

Lebesgue function Ljklm(t).
If j  and m are odd, k — l=Q, then in (9) n=q = ̂ L — , but ||£_,-00т|| ~

2 1 -----log(y'm) is an unbounded function of n. If fcsl and / s 0 are fixed and j
71 2 is large, then nlq is close to 1, but \\LJklm\\~—logy is relatively large.71

9. N otations. The modulus of continuity of g is denoted by co(g, S);
к

(16)
jm—l

M jk lm  ( 0  =  2

sin m-t — L

m • sin -t —L
cos-t - L

(This is a decreasing function of к and /.)
10. T heorem . I f  k ^ l ,  l ^ l  and q^O, then

(17) 1 SJklm(g, t)-g (t)\ = 1 jklm  (0 + — M]t fc, 7—1, m (Oj ’>

(18) Mj20J t )  =  j 7 = i;

(19) V2
M jaJf)  *= y y j  f  7 = 2 ;

( 2 0 ) -  3 j  6w2 - 4 ; г/ j' - 2-
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(21)

11. Corollary. (17), (14), (18) and (1) imply

2 4 '
I S221m (g, i ) - g  (Oil = (t j (g’ -йтг) •

12. R emarks. The coefficient on the right hand side of (21) is less than 2.428. 
Lemma 39 will give the explicit form of M jklm(t) for certain values of the 

indices.
(9) and the Korneicuk inequality

(22)

yield
£.r (8 ) s » ( g . - j | r )

IISjklmig, 0-g(0ll = (l+ll^imWII)«(g,—̂ - )  ■

Nevertheless, the estimate (17) can be more exact than this.
13. Notations, x  is a variable in [ — 1 ,1], t = arc cos x, f( x )  is a real valued 

continuous function of x; E f f )  (v =  0, 1, 2, ...) is its best approximation by alge
braic polynomials of degree at most v;

(23)

(24)

Pjklmif X )  = S j klJ f О C O S , t)\ 

2nvx„ = cos ■jm (v =  0, ±  1, ±2 , ...).

14. Remark. F1 0 0 x )  (m odd) and Pvnm( f  x) (m even) is the Lagrange

interpolating polynomial associated with the nodes co s-----.m
15. Theorem. Pjkim(f, x) is an algebraic polynomial of degree at most n, and

(25) PJkln( f  xv) — f(x-t) (v =  0, ±  1, ± 2 ,...).
I f  q = 0, then
(26) \PJklm( f  x)-/(x)I ^  (1 +Ljklm(t))Eq( f )  (|x| S  1).

I f  fc s l and q = 0, then

(27) \Pjklm( f  x ) - / ( x ) |  ^  a) ( /,  - ^ )  [тД)т( 0 + ^  Mjklm(t)\ (|x| == 1).

I f  k ^ 2  and q~ 0 , then

(28) IPjklm( f  X) - f ( x )I S  m (/, —  ljm X2) [LJklm(t) Млм+1,т (0]

+o> (/» J ^ )  [LJklm( t ) + ^ M J>k_1<lim(t)\ (|x| ^  1).

+

A cta  Mathematica Hungarica 47, 1986



ON  SOM E DE LA VALLÉÉ POUSSIN TYPE D ISC R ET E LINEAR OPERATORS 243

I f  j  is odd, k ^ 2  is even, and q = 0, then

(29) IPJklm( f  *)-/(*)! ^  ® (/, ) LJklm{t)+w [ f  •

• [21-д/т(1) +  - ^ т (|x|  = 1).

I f  j  or m is even, к is 2 and q = 0, then

(30) \PJklm( f  x ) - / W l  ^  ft) (/, •

' ^ L j k im ( t ) + ~  + M j >k_ i i  m ( t ) ^  ( |л г | =  1 ) .

I f  j  is odd, k= 2 and m are even, and q=0, then

(31) _____

IpJUmw, * )-/(* )i s  и (/, [ щ ит(!)+ [ \+ Щ  Mjklm{о] (\x\ ^  í).

16. C o ro lla ries. (27), (14), (18) and (1) yield

I l i W / ,*>-/(*)! +

(28), (15), (19), (18) and (1) give (since MjWm(i) is a decreasing function of Í)

ч /у чI (И  2 у б \  ( r n ] / \ - x 2\ (11 181 ( .  tt2|jc| 1
iPm" - / wl  s  It +—  j ffl r - t t H + h r + т Г С  T f iy J

(1*1 s  l).

(The coefficients on the right hand side are less than 2.782 and 3.047, respectively.) 
(30), (15), (19), (10) and (1) yield (since M jklm{t) is a decreasing function of /)

l * W / ,  *)-/(*)! -  ( ^  + H i ± l ) 0J(y; (|X| g  1).

(Here the coefficient is less than 5.647.)
17. R em a r k s . (26) and the Korneicuk inequality

t )
yield

I Pjklm (/> *) -/(*)| ^ (1 +^Д(т(0) «  (/, (1*1 -  D.
but (27) may be more exact than this.
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In general, for 2, (28) is more precise than (27). For k= 2 in (28) and 
2

(30), ||Af,-1/m|| ~ —log ( jm ) is an unbounded function of m, while in this case in n
(29) and (31) the coefficients are bounded (provided j  is fixed).

If — l ^ x < l  and m is large enough, then (28) is more exact than (30).

18. N otations. Let

(32) _f 1, if 0 ^  v «= jm,
avjOm — { 0, if v <  o or v S jm ;

(33)

m — 1

2 ^ v  — h , j , k ~ l,m> i f

@vjkm
A =  0

.0, if

0 s  v <  jm + km — к, к S  1, 

v <  0 or v ь  jm  + km —к, I s i .

19. Lemma. We have

(34)

(35)
[v/m]

+ j k m  =  2  ( -  1 ) ‘
h = 0

Especially

(36)

[v/m]

+ j k m  = 2  ( -  i)'' \h
/c'j (v + k — hm 

к j , if  O S v ■ jm;

k\ (v + k — hm) IWm]-./ k\ (v+ k — hm — jm

•*vl km

Л [v/m]—j

-  2  ( -  1)л
/  A =  0

j ,  i f  V ^ j m .

20. P roof. We prove by mathematical induction that if z ^ l  is an arbitrary 
complex number, then

(l-ZJm)(\-Zmf  jm+km̂-k-1_ _v
v 3 ' !  ( l — z ) k+ 1  ~  + g  a '>jkmz  ■

For k = 0 the statement follows from (32):

\  2 ^т jm — 1 jm  — 1
= 2  Z 2  v̂j'Om2

1 —  Z

If (37) holds for к — 1 in place of k, then by (33) it holds for k, too:

( l - Z - im) ( l - Z m) ' ‘ ( 1 - Z j m ) ( l - Z m) k - 1 1 - Z m j m + k m - m - k  v " ^ i 1 _h

( i-z )* +1 = T T ^ z f  w 2 T = Д  av>M_limZV Д z =

km + j tn—k — 1
2  &vjkmz .

v =  0
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If |z |< l, then

( l-z - 'm) ( l - z m)fc
a - * « — ( i - z” \ k < - 1)1 Ю 2“  , 1  ( ’ i  *)*•

= °  л <-1)1 й  -  Ж z’ ! ' < - » (i) ( '
+ k —hm\

v + k —hm —jm)}
This together with (37) implies (34)—(35). 

Now if |z |< l again, then

- i ' S W í ' í r * * " ) -
This and (37) yield (36). 

21. Notation. Let

(38) 1
' ) l j m k + l  2  I l. I a v + n - h , j , k , m  ( v  —  0 ,  ±  1 ,  ±  2 ,  . . . ) ."Jklm 2ljmk+1 h-e0Kh 

22, Lemma. We have

(39) = bvjklm, i f  V > 0;

1(40)

(41)

у jklm -  -r— , i f  9  = 0  and - ? S v S í ;  
j  m

(42)

Sjk tm  (0 —  ^ 0 j t i m + 2  ^  bvjklm COS Vt.
V —X

23, Proof. Let z —elt. We get from (3)

z J m / 2 _ z - j m / 2  /  ^ a / 2  _  z - m / 2 \ k (  7 l / 2 _ | _ z - l / 2

2] I ?
W O  =  -

j z'n/a -  z - m/3j fc j  z1/2 +  Z“ 1/a j'

jm* r l |~ z ^ - z - 1̂  j t+1

Hence and from (1) and (37)

(1—z-/m) ( l - z m)‘(l+ zy
^  jk lm  (0 2‘jmk+1(l —z)k+lz"

2 i
j m + k m —k — 1

2  “hjkmZ“ 2 ’| ‘. |z rIi=0_________r= - 11 *
2 ,jm k+1z"
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Thus we get from (38) 

(43) SjklmO) — 2  bhjklm2*- 
/l=  — n

(42) does not change if we replace / by — Hence (43) yields (39). 
(43), (39) and (4) imply (41).
We obtain from (32)—(33) by mathematical induction:

(44) * v jkm — mk, if km —к S  v <  jm.

If qSO, —q ^ v ^ q  and 0 = h ^ l ,  then by (1) and (8) km — k ^ v  + n-h-^jm , and 
therefore (38) and (44) yield (40).

24. Proof of Lemma 3. By (5) and (41)
jm — 1
2v = 0(45) SJklm (g, t) =  2  8OXKjum +  2 2  h j k i m  cos h(t — ty)) =v=0 A=1

jm—1 n jm — 1
Ьоjklm 2  g(*v)+ 2 COsht(2bhjklm 2  g(tv) COS hty) +

jm — 1
+ 2  SÍn ht(2bhjklm 2  gOv) Sin hty).

Thus S j klm( g ,  t ) is a trigonometric polynomial of order at most n.
(2)—(4) imply

, = if ü “ ) |v>
lo, if (jm)fv.

This together with (5) yields (6).
25. Lemma. I f  q S 0 and y(t) is a trigonometric polynomial of order at most 

q, then
(46) SJklm(y, t) =  y(t).

26. Proof. If </£0 and

(47) yr(t) = f  (z =  e1', r = 0, ±  1, ±2, ..., ± q ),

then with the notation гу—еи-> (v=0,1, ...,jm — 1) we get by (5) and (43)

Now (2) yields 

(49)

by (48), (49), (40) and (47) we obtain

(50) - SJktm(yri t) =  jmbrJklmzr = zr = yr(t).

A d a  Mathcmatica Hungarica 47, 1986
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But any trigonometric polynomial of order at most q can be written in the form

2  сгУЛ0,
r = - q

where cr are complex numbers. Thus the statement follows from (5) and (50).
27. Proof of (9). If у  denotes the best approximating trigonometric polynomial 

of g of order at most q, then by (46), (5) and (7) we have

\Sjklm(g, 0 - g ( 0 l  =  ISjklm(g, t) — SJklm(y, t )+y( l) -g( t ) \  =
j m  — 1 jm  — 1

=  I 2  ( g { Q - y i f ^ ) s JMm( t - Q + y { t ) - g ( t )  ^  2  | g ( f v ) - T ( f v ) l -
v =  0 v =  0

• IfyUmtf-OI +  L K O -giO l =  (Ljklm{ t )+ \)E f  (g).

28. Proof of t h e  second statement of Theorem 7. Since cos- ~  1 and
mt tsin -r- sin —2 2 , thus by (3), (7) and (10), |i jHm(i)|, LJklm(t) and ||L j* ,J 

are decreasing functions of к and /.

29. Lemma. is a j^-periodic function. I f  0, jk  is odd and
/ is even, then

( [«/«]
Ь о Д / т + 2  2  b vm, j ,  k , l , m  COS V 

v = l

I f  j, l and m are even, к is odd then 
(52)

I«/«+ 1/2]
Ljklmi t) = 2m bm(v-l/2),j,k,l,mC°S

( 1 V 7 I Im r+ — / c o s ^
t J  У 1 J  )

( П !í 7t) ,1 ( l \ лs l v -  — mH—-1 Уcos V ——1 —l 2 ) '1 j ' l 1 2 ) J

jm — 1 jm — 2
2  \Sjklm

v =  0 /—
S **4. 1 **4. < 1 2  \SjklmQ

v =  — 1

30. P roof. By (7) and (2)

„ ( 2n \  ( 2л \
Ljk,m г + 7^rJ ~  Л  Sjk,m l ' + 7 ^ “  4

By (41), sJklm(t) is 2n-periodic, hence

s j k l m ( t  ~  t  - 1) =  Sjk lm  " f j  =  Sjk lm  2 я +  - |  Sj k l m ( t ~ t j m - l X

i.e. Ljklm(t) is, indeed, -^--periodic:

( 2я) J'm-J
• I 1 1 2  \Sjk lm  0  " k f '  i ' j k lm

jm j  v=0
(t).
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Because of (41), sjklm(t) is an even function. If jk is odd and / is even, then by 
(2)—(3)

sgn sJklm( t - t hj+r) = sgn Sjklm(thj+r- t )  = ( -  l)r (0 =§ h <  m, 0 ^ r < j )

w h e n ------ 0. Hence and from (7), (43) and (2) we get
jm

j — 1 m — 1 j—1 m — 1 n
LjklmO) = 2  2  (-* lYSjklm(thj+r~ 0 = 2  (~ O' 2  2  bvjkimr=0 h=0 r  = 0 h = 0 v — — ft

Here

(53)
Thus by (2)

Here

J - l  n (  Z  m ~ 1
= 2  ( - D r 2  Кт Л Щ  2

r = 0 v =  — n \  Z  /  h = 0

y 1(zH > = fm> if w lv’
h=o 10 otherwise.

[n/m] j - l
LJklm(t) — m 2  Ьт,М т г - ”"' 2  ( -  D'zT-

v =  — [n/m] r = 0

Д  ( 27У 1 +е2™"
e - n i v / j

TZVcos —  
j

e h ( n / j  + m t) _j_ e - iv (* l i+ m t) 2 COS V

i.e. (51) holds true, indeed.
If j, l and m are even, к is odd, then by (2)—(3)

sgn sjklm(thj+r- t )  = ( -  iy +r (0 S l i < m ,  0 á r < j )

for
2-------< i< 0 . Thereforejm

■ L jk lm iO

j  — 1 m — 1 J — 1 n m — 1 ( 7 \ v

2  2  ( - 0 ‘+W ' « +r - 0  = 2 ( - 0 r 2  (-П " 2  Kjklm =
r —0 h — O r —0 v =  —n /i =  0 \  Z  /

Here

Therefore

j - i  « f z )v m_1
= 2  ( -  0" 2  KJklm \ - A  2  (— zí)h-

"S1 / /ч!, ( m, if 2v/m is an odd integer,
Д  (~ ZÍ) = { o , otherwise.

[л/т+ 1/2] J-l

LjklmiO — m 2  ^m<v-l/2),j,fc,i,mz 1/“> 2  (~  ^av-l)’’-
v=  — [л/т—1/2] r= 0
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Here
J - 1 7  л — (2v— l ) i j t / ( 2 j )
у  r _  7 И / 2 : у  —  __ _____ z _______________ _________________

' Z  V Z 2 v - l J  -  1 + e ( 2 v - l ) n i , j  -  2v —  1
COS-

2j

g— i(V—1/2)<ни + я/j) _|_ gi(V- 1/2)(ии + я/j) _  2 COS И ) (  Wt +  y j  ’ 

which proves (52).
У+131. P roof o f (U ). I f / ' is odd, k = ), and 1=0, then by (I) n=—^— m — 1

= J 2 * ■ (^) shows that m. Thus by (40), (51) can be writtenand 
in the form 

(54)

J z J
2

1 Í °Ti)/2 ( n\ I v?r)^iom(0 =  j | l + 2  2  c o s v |m /+ y J |c o s — j.

2kSince Ljklm(t) is --p erio d ic , this yields (11).

./+132. P roof of (12). I f /  and m are even, k = 1, and /= 0 ,  then и =  ;—̂

f— + 4-1 =4r, and </ =  ■•----- m. Hence and by (40), (52) can be written in the form lm 2J 2 2

(55) LJWm (0  =  j -  | c o s ( v - i - j  (mi + y )  j  cos (v -  j )  j  •

2nSince Ljklm(t) is — periodic, this implies (12).jm
2n

2n
jm

(56)

33. P roof of (13). Let j  be even, m odd and Since Ljkim(t) is

-periodic, (7) can be written in the form

j'm/2
A / l l  r a ( 0  — 2  ls j l lm ( ^  Л>)|-

v =  l  — jm/H

In Section 28 we already mentioned that

(52) lSjlljn(0l — lSj'01m(0|-
By (3),

sgn Sj-oim (t -  О  = sgn Sjoim (* +  '»-1) (v =  1, 2, ..., jmjl).
Hence

|Sj01»i 0  О  +  Sj'01,,, 6  +  iy l) • jSj'olm { / л) 'bS/oim (̂  “f fv — l) I •
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Here by (2)

SjoimC^ ^v) ~ b S /0 1 m (^ “b ^ v - l )  —  S jo im
( n 2v — 1 ) ( л  2v — 1 )
I'^TST— T Z rn) +s» - { ' - j ; + — V

is the fundamental polynomial of Lagrange interpolation at cos^f — based

on the Chebyshev nodes. Its absolute value in j o ,  3 —j  attains its
jm j

> maximum at

t — - —. Hence, by (2), (3), (57) and the inequality c o tx d /x  (0<х<я/2) we jm
obtain

(58)

2 2v — 1 4 1=  - —cot—— TC

Si,jOlm(— -'llV jm )\

(3) and the inequality

jm 2jm

cos x 1
sin2 x x

n 2v— 1 

j  (0<х<л/2) yields

jm

(1 S  v Sjm /2).

1
ÍV-Ícos--—2

jm2 . iv- i  sin2 - —2

+
cos U-x + t '

2

sin2 ÍV-1+Í
2

- —  I 1 1 I
= jm 2 l( iv- i ) 8+ (L -i +  0 2i '

For v^2, here the right hand side attains its maximum for r =  0 or t= t1. The 
value of this maximum is ^ - ^ - +  *  j .  This together with (56) and (58)
implies

4 [j/»]+i j ;
W O S 7 2  --------

1 2j_ -  _1_
it vii 2v—1 it2 ([j /tc] + 1)2 + it2 v=№]+2 v2

71 (2 + 1°8(1//я] + 1) )+  Я2([; /^]+1)2 +  K2([j / i ]+l) ^  71 l° 8 i +

+ 4 ( 2+1Ч т 4 ) ) 4  4 - 4 ' o g ^ 2-283-
2nSince LJklm(t) is -^-periodic, this gives (13).
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34. P roof of (14). By (7), (3), (16), (11), and (20), using Cauchy—Schwarz 
inequality,

(-iklm (0 ~
2m —1
2

v = 0

sin m (t — tv)

2m • sin t - L

sin m Í-ÍV
2

! f - ivm • sin
2

cos-t - U

2m —1
2v=0

sin m(i —/v) 2 2̂ T1

2m • sin t — t,

sm m ■t - t .

- ‘V
2 J m • sin—=—

= 1̂,1,
40,2т(0-̂ 242т(̂ ) ~t~ >

(cosV")
which yields the statement.

35. P roof o f  (15). If j —k = 3 and /=2, then by (1) n=3m — 1, [—1=2,
I  L wi J

and by (8 ) q = 0, by (40) Ьозз2т =  3 ^* Also by (38) and (39)

m̂332m  ̂— m, 3,3, 2, m 12/71̂  (a2m-1,3,3 , tn + 2 a2m_2i3i 3 , m + a2m-3,3,3.m)*

l
я , 3 ,3 ,2 , m =  b. 2m, 3 ,3 ,2, m \2m* (ß m  — 1 ,3 ,3 ,  m T  2 u m -  2 ,3 ,3 , m T  — 3 ,3 , 3, m)*

(34) gives

a m - v ,  3, 3,1

These relations imply

( m + 3 - v l _  (2m + 3  —v)
l  3 ) ? 2̂m — v, 3 ,3 , m 1 3

m332m 18m 36m3
Thus we obtain from (51)

1 1 , 1
э 6 2 m, 3 ,3 ,2 ,  m T "18m 36m3

y 2m, 3 ,3 ,2 , m cos 2

Since

Í.33ím(0 = ™ [b0332m+4bm332mc o s ( rn l+ y j-4 h

“ T + ( ' r - 9 ^ ) cos(m,+7 ) - ( 4 +'s 

«»-('> “  ( lT + 9 У s i n  2 (” ' +y) -  I T  -  ш ) sin (” ' +t )

and |sin 2í|á2|sin  t\, we have ^332m(0>° if 3w ’ and ^332т(0
if - -^ -< /< 0 . Using the -^--periodicity of L332m(i)> we get the statement: 3m 3m

1 -̂ зз2т 11 — '̂332m(— ~  ” 9

2 11 
9m- <  9 '
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36. P roof of (17). If q^O, then by (5) and (46)

whence

(59)

jm—1
2  sjklm(t ~ tv) — Sjklmih 0  =  h

v = 0

Sjklmig, 0 - g ( 0  = 2  (g(tv)-g(t))Sjklm(‘ -tv)-
v =  0

If thíát~~th+l, then by (2), e.g. for jm  even, this can be written in the form 

(60)
h+jm/2

Sjklm(g,0-g(.t)= 2  (g(tV)-g(t))Sjklm( t - Q ,
v =  / i + l - j m / 2

being g and sJklm 27i-periodic functions. (The case of odd jm  can be treated 
similarly.) Therefore

h + j m / 2

( 61)  \sjam(g, 0 - g ( 0 l  s  2  | g ( O - g ( 0 M s y « m ( ' - O I - •
v — h +  l ~ j m f 2

Here

(62) ig (o -g (o i =  o>(K -íi) s  kv—íi)-

If t is a node, then by (6), (17) obviously holds. Otherwise by (3) we get for
t e l .  /а  1

к

(63)

Here

(64)

(65)

П  7Z
sin jm-t - t , sin m t - K

. t - t v m ■ sin——

cos-t - h cot-t - K
M , | .

sin jm- t - K

cot-t -U

^  1,

• I f - f J  S2 .

It is easy to see that the summation in (7) and (16) can be taken from any integer 
и to u+jm—1. Thus (61)—(65), (7) and (16) imply (17).

37. Proof of (18). By (7), (3), (2) and (54)

(66)
m—1

1̂10m (0  =  2
v =  0

Í ( ‘ n v \sin i n  1—--- —(2 i n  )

(  1 rcv'l
m -sm l— ——(2 m l )
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(16), (2) and (66) yield 

(67)
jm—1

Mj20m (0  = 2

( tsin m 1 — 7TV "j
jm )
nv 'I

111 ■ sin | —(2 jm )

j —1 m-1
2 2h = 0 v=0

(t nv n i l  )
---------- :—

2 m j m ) * 2
m (t nv n h ) 

— ----------- —
2 m jm J

, ( 2nh )
2  7ц0,„ H . I -  J-/1 = 0 V /

38. Proof of (19). By using Cauchy—Schwarz inequality, (16), (18) and (20) give

-̂ /31»! (0
jm — 1
2 v = 0

sin m t —t-}
2

m • sin t - t y
2

cos-t - u

jm — 1
2v=0

sin m -t - K

. t - t v m • sin ——

jm — 1
2v = 0

sin m t - t y )
2

m • sin t - ty
2

t - tcos2— S  MJ20m(t)MJi2m(t)

which yields the statement. (We used (20) which will be proved in the next two 
sections.)

k + l39. Lemma. I f  к and l are even, j=k/.2 ^ 2 ,  and m = —- —> /, then

( km+ k+ l

< 6 8 >

40. Proof. Just like in case of (67) we get

—1—v—hm\

к — 1

(69)
By (51)

(70)

= 2  4 , -v=0 V J'll /

["/"1
■/^i,t-i,;,Bi(0 =  (^o,i,it-i,i,ni+2 ^  bh,„ti,k_ it7iш cos hmt).

л=1

(1) shows that now n = — {km — k+ l) and hence

( 7 1 ) a — l.
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Since

(72) 2  cosh m [ t - ~ )  = 2  cos[ h m i - ^ \  =  0.
» = 0  ( Jin ) yf 0 ( ) /

(69)—(72) imply MJklm(t)=/mfe0, i , t - i,/,m • Hence and by (38), (36) and (71) we 
obtain (68).

41. Proof of (20). (68) yields

(73)

Mjiim (0 4m3 24-/»=0 iy
2m + 2—v — hm 

3 M - 6m2
1  
3 '

42. Notations.
(74) PoU) = Sj*,m(0,

(75) (*) =  sJklm (t -  ty) +  sjklm (t + /,), 0 <  v <  jm/2,

(76) Pym/aW =  sjklm( t - t jm/2), if jm  is even.

(77) 7),(x) =  cos hi (h =  0, 1,2, ...),

(78) g = /o co s .

43. P roof of the first statement of T heorem 15. If jm is even, then by (23), 
(5), (2), (24), and (74)—(76)
( 7 9 )

jm-1 jm/2 — 1
Pjklmif, x) = 2  R x y)sjklm( t - t y) = /( l)P o W +  2  f ( x y)py(x )+ f( - \ ) p im/2(x).

v = 0  v = l

If jm  is odd, then
(jm —1 )/2

(80) Pjklm(f,x) =  /(1 )a ,(*)+ 2  f ( x y)pv(x).
V =  1

We get from (41), (79) and (80) that
П

Pn(x) =  bojklm+2 2  bhJklmTh(x\
h = 1 

n
Pv(x) = 2b0Jklm+4 2  bhjklm cos hty Th(x), 0 < v <  jm/2,

/1 =  1

P;m/aW =  b0Jklm +2 2  ( -  ly^umT'eW ,/1=1
as well as PJklm(f-,x) are algebraic polynomials of degree at most n, since the 
Chebyshev polynomial Th(x) is of degree h.

44. P roof of (25). This follows from (23), (24), (2) and (6).
45. P roof of (26). If tysO and iv(x) is an algebraic polynomial of degree at 

most q, then y  = ivocos is a trigonometric polynomial of order at most q, and
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hence by (23), (78), and (46)

Pjklmiyv, X) = SJklm(WOCOS, t )  = vv(cos t ) =  w(x).  

Thus, just like in Section 27, by (79)—(80) we obtain

Uml  2]
(81) \ P ju J f  x ) - f ( x )I tS (1 + 2  \PÁx)\)Eq{J).

v =  0
By (75)
(82) |p,(*)| S  0 - 0 1 + ( ' + '»)! (0 < r <  jm/2).

(81), (82), (74), (76) and (7) imply (26).
46. R emark. In general, (81) is more exact than (26).
47. Proof of (27). Let c.g.jm even (the case of odd jm  can be treated similarly), 

and xh+l^ x S x h. Now (61) can be written in the form

h + jm l?■
(83) \Pjklm( f  x ) - / ( x ) \  ^  2  !/(* ,)-/(*) I ■ \sjklm( t - t v)\.

v=h + l  — jm /2

Here |x — xv| = |cos/ —cos tv\=2 sin - and hence

(84) 
Since

(85)

№)-/(,,)! V|)-
2jm

and here

• U—tsm—y ~ sjkim( t~ tv) 

t~K

2 . t - ty
n sin jm  —-—

sin m t - t y
2

m • sin t - t y
2

cos-t - t y

sm jm 1, (83)—(85), (7) and (16) yield (27).

48. P roof of (28). Since

(86) x —x, = cos t — cos ty — cos t —cos — t + = cos i(l — cos(tv —1)) +

+ sin t ■ sin (/„ — /) = 2 sin2 1 cos t+2 sin t ■ sin ' cos —  - ,
we have

. ,, .. ( „ n sin t \ (, 2jm t, — t ty — /I)(87) \f(x) - f ( X y ) \  J ( l + —  sm —  -cos—  |J

( у. я 2 | c o s  11 )  (  2j2m2 . „ / „  —  / )

+“' L ^ ? i J ( ,+ V smT - )
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Since

(88) 2 j m
it

. tv - t  / „ - /
■ c o s - — . sJklm( t -  О

cos-t . - t l+l
sm j m

2
tv - t  

sm m —- —

71 . K - t
m  ■ sm —-—

2 5

a n d  here the la s t factor is Ш1,  fu rther 

2] * m *  . ,  tv - t(89) ‘ sill2 —-r \sJklm( t - t v)\ 2j

t - t v 
sin m  —-—2

7Í2 . t - t v
m  • sm —-—

2

k - 1

COS-
t  — t. . . t~ tv . t - t ,sin jm —-—  sin m  -—̂ —

and here the last two factors are S i ,  we obtain from (83), (87)—(89), (7) and (16) 
that (28) holds.

49. Proof of  (29). Let us write (60) in the form

j m/2 — 1
P j k l m ( J X ) —f ( x )  J ?  ^  (У (-̂ v + /i + j r )  У (■*•)) Sjk lm (/v + Л + j r  0?v — 1 г — —т/2

provided m is even (the case of odd m can be treated similarly). Applying Abel 
transformation we get

m/2—1
(9°) 2  (/(*v + h + jr) - fix))  SJklm  (/v + h + jr  -  t) =

r = - m l  2

m/2 —1 m/2 —1
( / ( * v  +  /») ' / ( ^ ) ) |  Sjk lm  ( t v  + h + ju  0 +  ( . /  ( * v  + Л + J r )  У  (*^v + h + j r  -  j ) )  *u=0 r=l

m/2—1 -1
Sjkitn̂ ty + h+ju 0  (/O v + h—j) /(* ))  Sjkim(jv + h+ju 0  +u—r u=—m/2

— 2 r

^ (J(Xy + h + rj) ,/'C^v + Ä + /+  jr)) 2  Sjkim(tv + h + ju 0*
r = —m/2 u=— m/2

Since у is odd and к  is even, it follows from the definition of sjklm(t) that for 0^w < 
<m/2

S g n  S j k i m ^ v + h + j u  0  S g n  S jkim (^v + h — j —j u  0  (  0  +  +  ?
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and the sequences |^w,„(tv+i.+jU- 0 | ! \Sjkim(tv+h-j-}u-t)\ (« = 0 ,1, m/2 -1 )  are
decreasing. Therefore

(91)
ml 2—1

2  Sjklm(fv + h + ju 0 | — kjWm(̂ v + h + ;> 01 (1 — ^ — ш/2 I),

(92) I 2  Sjklm(tv+h-j-j«-t)\ = \Sjidm(tv+k-j-jr- t ) \  (— m/2 ^ rS -2 ) .i/= — m/2
Evidently

(93) — x„ =  cos t ^ j - c o s  tn — 2 sin

. я Г =  2 sin — •! m lsin / ■ cos

7Г . (  7Г 1
—  S il l  p  — — j  =

= 2 sin — isin t ■ cos I + —  — 4-cos t sin — cos(L —t)4~ m l \ m ) L m

.  n . tv- t  —4- 2cos — sin—-—cos—-— [. m 2 2 JJ
Therefore

and
(94)

2n'Xv- j ~ x e\ S  —  sin t + |cos t\ l— f  +m «'(■
2л2 4л
mr m

. tv- t  tv- t  sin ———  cos .2 2 )•

I г, ч f ,  M -  [ f  2я sin i) (  27t2|cosi|1( 2in\f(xv„j) --/(*„)! S  cu[/, — J +Ш [/,  — ^ 5- J  p-E  —
2^2|cos/|) ( 2m I . /„ - /  tv- t \  110 1 |sin — — cos

The same holds for \ f ( x v+J)—f(x v)\, too. 
(86) yields

271 2я2
l*-*,+*l =  —  sin Г4 - - 5- |cos /| (í* S  t =S /A+1),w m

i.e.

(95) |/(x) - / ( x v+A)| = 60 (/> ~  sil1 /) +(o [/, - ^ r  |cos í | | .

and the same holds for |/(x )—/(x v+/l_y)|, too. (90)—(95), (88), (7) and (16) 
give (29).

50. P roof of (30). We may assume that — 1 < л  <1, since for x = ± l  we 
have zeros on both sides of (30). From (86)
(96)

cos /„ —/ t 2jm
2 ^  л |cot t\ sin2
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(3) and (2) imply 

(97) ~ ~  |cot t \  sin2 =

2 sin jmt/2
TC m ■ sin t

sin m t — ty
2

m • sin t~ ty
2

cos-t - L
COS t\ sin m t- U

Here the second factor is Sy/2 (being jm even), and the last factor is s i .  (83), 
(88), (96) and (97) give (30).

51. Proof of (31). We obtain from  (93)

\xv- j  — XB\ S  —  sin r i l  +  icot r| (sin — + 2 sin >v„ 1 COS .
m l  v m 2 2 )J

Hence
(98)

! / ( * > > - . / ) - /С О  I =  «  ( / ,  — )  |2  +  |cott| (sin ^ -+ 2  sin -^y-^cos^—| j | .
The same holds for \ f (xv+t)—f(x ^ \ .  (86) gives

2 n .
l * - * » + * l  =

Therefore

(99) |/(x) - / ( * v+*)| S  со ( /  (2 +  |cot t  ■ sin iü ± Z Í |) .

|jc— jcv+a| S  sin r(l + |cot t  ■ sin ?v+*—- j .

A similar estimate holds for |/ ( x )—/( x v+i_J)|. In (98) we have

( 100)

Thus

( 101)

n t„ — t ( 2n )m — s s m ^ — н — s í „ s i + t  .m 2 1 m )

sin jmt/2■ t„-t  cot t  ■ sin ——  S jk lm ( t v — t) jm  • sin t cos t\

where

( 102)

sin m t „ - t

. t„ - t  m • sin —-—

it-i

cos-t „ - t

jm t  sin - jm
sin t .

(90>—(92), (98)—(102) and (7) imply (31).
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52. Theorem. Let 0 < £ ̂  1, iVs20/£2 an arbitrary integer, f  {x) an arbitrary 
continuous function in [ — 1,1]. Then there exists a polynomial JN( f , x ) of degree 
at most N ( \ + e) which depends on f(x) linearly, interpolates f ( x )  in at least N  
nodes, and

(103) I f i x )  -  JN( f  x ) \ s  -H  Ш ( /  ~ -2l^  ( - 1 S X S 1 ) .

53. Remark. Theorem 52 gives a constructive answer for a problem raised 
by G. Freud and A. Sharma [2]. Later the problem was solved by them [2, addendum] 
and by P. Vértesi [7, Theorem 2.6] without giving an estimate for the constant 
figuring on the right hand side of (103).

54. Proof of Theorem 52. Let j=[5/e], k=3, 1—0, m= 2 . - j  +2. Then 
by (1) the degree of the polynomial Pj30m( f ,x )  is

jm 3/n _
" =  V + - r - 2 N- ■ I +7 +  3 ^ - 1  + 3 - 2  <  A + ;  +  —  = i v ( l + - ^  +  4-) ^

I) A (l+£)

(n is an integer, since m is even). (79) implies that Pj30m( f x )  depends linearly on
2.71Vf(x). By (25), Pj30m( f ,x )  interpolates/^) at the nodes cos-— (v=0, 1, ...,jm/2),
J™

i.e. at least in

(104) ^ + 1 = ; [ i L i ] + J + l B * +1

points. (30) yields with JN( f ,x )= P ja0m( f x )

\ W ,  x ) - f (x )  I sü со (/, lj m X j  (l7-30M(0 + -^  4/y3im (t) + ̂ — Mj2(lm (t)).

(The conditions are fulfilled, since m is even, / S 5, and hence and by (8), 0.)
Now (10)—(12), the first statement in Section 8, (18)—(19) and (103) give

(105) IJN(f, x ) - f ( x )I s  со ( /  n}/\ ~ X2) (1 + | l o g ;  + | ] / | ;  + £ )  ^

CO

2 5The function £2-|— £2log— hП E
in (0, 1]. Therefore

, 2 ,  5 1 0 i / T  11-1—  log — I-----I/ T ' ~П E П ] 3 £
25

3-----r£ ПЕ-

¥ w  —1E "* ЛЕ2 j

2n of 1+ —71

i / T 25\
ТГ+---Г J 71 )

10 1/ 2

which, together with (105), implies (103).
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ON THE EQUICONVERGENCE OF EIGENFUNCTION 
EXPANSIONS ASSOCIATED WITH ORDINARY 

LINEAR DIFFERENTIAL OPERATORS
V. KOMORNIK (Budapest)

The equiconvergence theorems are very useful in the spectral investigation of 
differential operators because many results known for the most special operators 
may be transferred by their application to more general ones. For the case o f ortho
normal bases consisting of eigenfunctions of second-order operators several results 
have been obtained since the beginning of this century, see e.g. [1], [2], [3], [5], [7], 
[8], [14], [19], [22], [23]. All these results are contained in a result of I. Joó and the 
author [10]. It concerns also the non-selfadjoint case i.e. when eigenfunctions of 
higher order are also used and when the system is not orthonormal but only a Riesz 
basis. (On the existence of such Riesz bases see [4], [11], [20], [21].) The proof was 
based on an efficient method due to V. A. Il’in (see e.g. [2]) of the constant applica
tion of some mean value formulas.

The aim of the present paper is to extend this result for differential operators 
of higher order. In some special cases this was already done in [15]. Our main tool 
will be a generalized Titchmarsh type formula derived in [12]. We note that it is 
not a mean value formula if the order of the differential operator is odd. In some 
cases a simpler expression for its coefficients was found by I. Joó [9]; these expressions 
are important because they make possible to obtain sharp estimates for the coeffi
cients. We shall need several results proved in [10], [17] and [18], too.

By and large the following result will be proved: all Riesz bases (and in particular 
all orthonormal bases) consisting of eigenfunctions (maybe also of higher order) of 
some и-order linear differential operator, locally behave in the same way. Here we 
stress two circumstances:
— there are no assumptions on the distribution of the eigenvalues: they can be 

arbitrary complex numbers;
— there are no boundary conditions.
As an immediate consequence of this result we note that (for example) Carleson’s 
theorem remains valid for “all” eigenfunction expansions.

All the preliminary results used in this paper are contained in [10], [12], [17] 
and [18]. All the results of the papers [12] and [17] are needed. From [18] we need 
the case /= 0  of Theorem 3; for its proof it is not necessary to apply the results 
of the paper [16]. From [10] we use only a result of technical character (Lemma 6). 
For the reader’s convenience we collect in Section 2 all preliminary results used in 
this paper.
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1. Formulation of the main result

Let G be an open interval on the real line, n a natural number, qfH"~cs(G) 
a complex function (s=2,...,n)  and consider the differential operator

Lu = uw  +  ̂ 2«(и_2) + ?3и("-3) + ... + q„u
defined on H"oc(G). (Recall that, by definition, H\oc(G) is the set of all complex 
functions v£Lf00(G) having distributional derivatives in £f0C(G) of order up to k.)

As usual, a function и ф 0 is called an eigenfunction of order 0 (of the oper
ator L) with some eigenvalue ЯСС if Lu=/m. Furthermore, a function и is called 
an eigenfunction of order к  (of the operator L ) with some eigenvalue ЯСС 
(Je —1,2,...) if the function u* := Lu—lu is an eigenfunction of order к —1 with 
the same eigenvalue Я.

Let us now given a system (ur)?L1 of eigenfunctions and denote or (resp. Яг) 
the order (resp. the eigenvalue) of ur. Assume that the following three conditions 
are satisfied:

(C 1) (ur) is a Riesz basis i.e. (ur) is the image of an orthonormal basis under 
a linear topological isomorphism of L2(G);

(C 2) sup C O  *

(C3) if orS l  then u* = us for some index s.
By (Cl) there exists a unique system (vr) in L 2(G) such that (ur, vs)=Srs (the 
Kronecker symbol). Introduce the following notations:
(1) |vr| =  max {|Img|: gCC and g" = 2r},

o-v (/. x) = 2  i f  «VK (x) (v >  О, /С L2 (G), xC G),
I*J *=v

Sv(/, x, R) =  J R ^ (y yS xy f(y )äy  (v>0,/CL2(G),x±i?CG).

The aim of this paper is to prove the following result:
T heorem. To any compact subinterval К  o f  G there exists a number R0> 0 

such that
lim sup |5"v(/, x, R ) - e v( f  x)| = 0 

хек
whenever f£ L 2(G) and 0<R-=2?o. □

R emarks, (i) We note that S v( f x , R ) does not depend on the system (мг).
(ii) The conditions of the theorem are very weak. The assumptions (C 1)— 

(C 3) are practically satisfied for almost all known Riesz bases of eigenfunctions. We 
emphasize that there are no assumptions on the distribution of the eigenvalues Яг. 
Several sufficient conditions are known for the existence of orthonormal bases of 
eigenfunctions (see e.g. [21]), and more generally, for the existence of Riesz bases 
of eigenfunctions (see [4], [11], [20]).

(iii) For second-order operators several equiconvergence theorems were proved 
from the beginning of this century, see e.g. [1], [2], [3], [5], [7], [8], [14], [19], [22]. 
These results are contained in a theorem of Joó and Komornik, proved in [10] 
by developing an important method of V. A. Il’in [2]. This result is also slightly
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stronger than the case n= 2 of the above theorem: instead of q ^ L ioc{G) it was 
sufficient to assume that q2£L]0C(G).

(iv) The proof of the just mentioned result of Joó and Komornik is not applicable 
for the general case. However, by integrating by parts we obtain the desired esti
mates also in this case. On the other hand, in [12] a new method (based on a suitable 
generalization of the well-known Titchmarsh formula) for the spectral investiga
tion of и-order differential operators was developed. Using this method, several 
results were proved, see e.g. [12]—[18]. The present paper represents a new evidence 
for the efficiency of this method. Some special cases of the theorem of the present 
paper were proved in [15].

2. Preliminary results

A) We shall need the following estimate, which is a consequence of some results 
of [17], [18]: putting
(2) |pr| =  min {|Re/i|: /i£C and цп = 2r},
to any compact intervals K-lCz G, K2czintXj there exists a positive constant e0 
such that

(3 )  llMrllE~(K2) e ^'''£o — ~  llMrlll.2(Xl) ( r =  •••)•eo
B) In [12] we derived a generalization of the well-known Titchmarsh formula 

for «-order operators; the results cited in A) were proved by the use of this formula. 
Now we need another generalization of the Titchmarsh formula.

Denote со1г . . . ,w„ the и-th roots of unity and set w = [~ y ~ ] - F °r 0?í/i£C,
i> 0  and — m i< y< («—m)t we denote by f k(n, t) the elementary symmetric 
polynomial of degree m — k of the variables eß0‘̂ \ ..., c'1“»4 with the main coeffi
cient ( — l)*1 (k= m —n, ..., m) and we put

F(P, t ,y )=  2  fik (ß, О 2  - ~ i  e^P<y+w.
k = l  +  l - y l t ]  p = 1 KfJ.

One can easily see that f k and F can be continuously extended for all /i€C, 0
and —m t^ y ^ (n  — m) t. Furthermore, the extended function F has the following 
properties for any fixed /i£C and t>  0:
(4) F(/i, t, •) is « —2 times continuously differentiable in (-m i, (« -ra )i)  and

D‘3F(ii, t, —m t+ 0) = D|F(p, t, (n — m )t—0) =  0 (i =  0, ..., « —2).
(5) F(ß,t, •) is « times continuously differentiable in (kt, (fc + 1)/) and D3F= 

=HnF (—m ^ k ^ n  — m — l).
( 6 )  - D l - ' F f a ,  t, ( «  — m ) i — 0 )  = / m - n ( Ц, 0 ,

D^-'Fin, t, —fci + 0)—£>3_1 F(n, t, —kt—0) =  /*(/!, t) (m -«  <  к <  m),
Щ '1 F{n, t , - m t + 0) = f m(qi, t).
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Using these properties and integrating by parts we obtain for any u£H?oc(G) the 
formula

m x + mt
(7) 2  fk(ß>Ou(x + kt)+ J F(p., t ,x -x )[+ u(x )~ u{n){x)} dt =  О

k  — m —n x + ( m —ri)t

whenever t>0, x+(m —n)t£G and x+mt^G.
C) Apply the formula (7) to the eigenfunction ur. Denoting by цг an arbitrary 

и-th root of I r, we obtain

(8)
m x \ mt n

2  fk(ur> t)ur(x + kt)+ f  F(nr, t, x - t) [ 2  ?sW«r"‘ s,W-M*(T)] dx = 0
k ^ m - n  x + ( m -« ) t  s = 2

whenever 0, x+(m — ri)t£G and x  + mt£G.
For n = 2 and or = 0 this reduces to the Titchmarsh formula. For n=2  and 

orr̂ 0 it was found by Joó [6]. For or= 0, и arbitrary (then w*=0) the formula
(8) is a special case of a more general formula derived in [12]. We note that the 
above simple form of the coefficients f k (which has great importance to obtain 
some estimates in the sequel) was proved by Joó [9].

We shall frequently use two equivalent forms of the formula (8). Index the 
и-th roots of ).r so that

Re fir, 1 S . . .5 R  e^r.n

and put цг=цг_т, Qr= Re цг, vr=Im  /rr. These notations are consistent with the 
former ones used in (1), (2), (3) and (8). Denote gk(jir, t) and G(ßr, t , y ) (resp. 
hk(nr, t ) and H(ßr, t , y )) the functions obtained from f k(n,, t) and F(jir, t, y) 
by dividing by (resp. e ^ . i  + -+м,,т)»). Then from (8) we obtain
the following two formulas:

(9 )
m xÍ̂ mt n

2  Skikr, t)ur(x + kt)+  f  G(nr, t, x - r ) [ 2  qs(x)u(rn- s)(x)-u?(x)] dx = 0,
k = m - n  x  + (m — n)t 5=2

( 10)
m x+ m t  n

2  hk(gr, t)u,(x +  kt)+  f  H(iir, t , x - x ) [ 2  4 s i + ) ^ n ~ s ) { x ) - u * { x ) \ d T  =0.
k = m - n  x + ( m - n ) t  5=2

D) It follows obviously from (4) that

(11) Dl3G(nr, t ,  — mi+0) =  Dl3G(nr, t, ( n -m ) t  — 0) = 0,

D'3FI(iiT, t, —mt+0) =  D‘3H(iiT, t,(n — m)t — 0) = 0 (0 ^  i ^  и—2, r = 1, 2, ...).

The following estimates follow directly from the definition of the coefficients 
in the formulas (8), (9), (10); we refer to [15] and [17] for some details. In all these
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estimates we assume that £>,ё0 and t >0.
(12) &k0*r, t), hk(nr, t), D2gk(/ir, t) and D2hk(nr> t) tend to 0 if \k \^2  and

I Hr, ^
(13) g ji/i,,/) and g_!(/z,,0 remain bounded, D2g1(jir,t), D ^ g ^ ^ t )  and

|v I
g0(fir, t) — tend to 0 if Qrt-~°° and — ■*<».

Qr
(14) hk(nr, /), /i_j(/i„  /), Ajhi(gr, /), D2h -1(nr, t) and h0(nr, t ) ~  1 tend to 0 if

Qrt- and M
в г

remains bounded.

(15) g -i0 tr, t ) ,  gi(nr, t )  and й_!(/1г, 0  remain bounded, D2g_1(ßr,t) ,  Z>2gi(/W X 
gi(ßr,0 + h  fornodd D2h_1(ßr, t )  and h0( n , , t ) - l ,  fo rn even g . ^ . O  + l 
tend to 0 if |vr i | —► C O  and Qr t  remains bounded.

(16) For any real number v the fractions

go(fir, t ) - g 0(iv, t) and /iiQir, t) — h1(iv, t)
t t

remain bounded (uniformly in v) if Qrt and \ц, — iv| remain bounded. 

n r . M G fc , U y) DjH(nr, t ,y )
’ |/ir|i+1- ne<?,(t-W) \цг\1̂ - п e~0r\y\

are uniformly bounded (/=0, — 1, r = l ,2 ,  ...).
E) It follows from Theorem 2 in [12] that for any compact subinterval К of 

G there exists a constant C >0 such that

\u'r IIl°°(K) — C(1 +  |/ir|)||Mr||t“(K) (r — 1> 2, ...).

F) Finally we recall two important properties of the Riesz bases: the generalized 
Bessel inequality and the generalized Parseval identity. First, there exists a constant 
C such that

(18) 2  l<«„ w>l2 S  C |M b (G) Vw£Z,a(G).r = l
secondly,

(19) </, w) = 2  ( f  vr)(ur, w) V / ,  wdL\G).
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3. Estimation of the sum of squares of the eigenfunctions

In this section, under the conditions of the Theorem we shall prove the following 
strong estimate:

P ro po sitio n . To any compact subinterval К o f G there exists a positive number e 
such that

sup Z  ll“rlli“(X)e|e-1* <°°.
v £ l  | v - | v r | | 3 1

This result will follow from several lemmas.
Lemma 1.

sup 2  Í = 0 (1 )  (A -*■=»).
v S l  |v —vr |3 1  V Qr )

угшлег
Qr S A

P roof. Fix 0 such that K2nRczG where Ka:={x: dist (x, K)^6}. For 
any x£K, R ^ t ^ 2 R  and r£Iv(A):={r: |v — vr|^ l ,  vr^ A p r, vr^ A ) .  by the
application of (9) we obtain

2 R 2R

— f  e~iv,g0(pr, t)dtu,(x) = Z  f  е~ы gk(pr,t)ur(x + k t ) d t -
Л к *  О

2 R x  + m t n

-  f  е~ы f  G(pr, t, х-т)[и*(т) - Z  qs(t)u^-a)(xy]dTdt.
R * + (m -o )r  s =  2

Integrating by parts and using (11) hence we obtain

/  e~ivtgo(Hr, t)dt ur(x) =  Z  gk(hr,2K) f  e -h'ur(x + kt)dt-
t dк* 0

2 R t

— Z  f  D2gk(pr,t)  f  е~ы wr(x +  fc£)d%dt +
m—n^k^m d dk̂ O

n n —s (  \  2R x  + mt

+ Z  2  ( - O ' " T 5 /  e -1" f  D"~s~i+1G(pr, t, x - r ) -s~2 i = 0 ' 1 ' R x + ( m —n)t

■ f  d ‘> ( ( )« ,« №  dr dt
x  + (m—n)t

2 R

-  f  е~ы f  D3G(pr, t , x - r) f  и?(£) dZ dr dt.
R x + ( m —ri)t x  + (m — n)t

The following estimates will be uniform in v, x, r, t, r  when A-+ Using the esti
mates (12), (13), (17), with suitably defined functions wk, w2, vr3, w ^ L 2(G) (which
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depend also on v, x ,  t , t, k ,  s , i )  we obtain 
ur ( x )( 1 - 0 ( 1 ) ) ^  2  0(l)|<Wl, t/r>| + 2  f  0(l)\(w2,ur)\dt +

( ) -  . . .  и - с Ь с . . .  . . .  c  I . - - . . .  “m—n^k^m k* 0 m—n^k^m d к* 0
2R x-f-min n —s 2Я * + w,i -  -

+ 2  .2  /  /  ^ ( 1)KW3, мг>| dt dt + f  J  0(1) |(w4, u*)\ dz dt.
s — 2 i — 0 R x  +  (m—n)t R x  + (m—n)t

Taking the square of this inequality, summarizing for r£lx(A), using (18) and (C 3) 
we obtain

2 R

2
гам )

ur (x ) 2  (̂l)llwiflií(G)+ 2  f  ^ ( 1 ) II.WallivG)dt +
■ I, __ . . .  *m—n-̂ kktím к* 0 m — n^k^m d k^ 0

2Я x+mtn n —s 2R *х ^ тГ
+  2  2  f  f  0 ( l ) \ \ w 3\\l4G)d T d t +  J  J  0 ( l ) | | w 4 | | f i ( G ) d T d i .

s —2 i — 0 д  x + (m  —ri)t R  x + (m —n)t

Furthermore, one can easily see that ||W||f*(G)==0(l), i= 1,2,3. 4, therefore

2
ШМ)

ur(x)
Qr

= 0(1).

Integrating on K, we obtain the required estimate. □ 
Lemma 2.

sup 2  i- li--rll'L' (K)) = 0 (1 )  (A 
v g l  | v + v r | ^ l  '  5 Qr '

)•
vr m - A e r er®x

Proof. Quite similar to that of Lemma 1, replacing e~ivt by eivt. □
Lemma 3. For any fixed A>  0 we have

2  № w  = 0 ( i)  ( в -*«.).
|»r|cAerагшв

Proof. Fix R > 0 such that K^rCzG. For any x£K, R ^ t ^ 2 R ,  
r£I(B):—{r: |vr|< A qt , qt^B},  applying now (10), integrating by parts and 
using (11), we obtain

— J  h0(nr, t)dt ur(x) = 2  2R) J ur(x + k t ) d t -
R т—п̂ кШт ftк* 0

2 ft rí

-  2  /  Duhißr-t) f  U,(x+k£)dl;dt +m—n^k^m R Rк* 0
n n — s /  \  2R x+ni l x

+ 2 2  ( - 0 sГ  7*1 /  / Л Г ' - ,+*Н(&, t'-x-T) f  qPfäUriQdZdxdt-s=2 / = 0 ' f r  x + x+(m-n)t
2R x+m t x

-  f  f  D3H(ji,, t, x  - t) J' unO dZdrdt.
R x  + (m—n)t x + ( m —n)t
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The following estimates will be uniform in x ,  r ,  t, t  when ß  — °°. Using the esti
mates (12), (14), (17) with suitably defined functions w5, w'6, iv7, wfiL2(G) (having 
also the parameters x ,  t, r, k ,  s ,  i ) we obtain

2R
(1 —о(1))|«г(лг)| S  2  0(1)|<W5, Mr) |+  2  f  0(l)\(we,ur)\dt  +

m — n ^ k ^ m  m - / i S k á m Rк*О кйО
п n __s  2R x + m t  2 R x + m t

+ 2 2  f  f  0(\)\(w1,u r) \d x d i+  f  f  0(l)\(ws,u*)\drdt.
s ~ 2  R x + (m—ri)t R x+ (m  — n)t

Furthermore we have ||wí||£2(g) = 0(1), i —5, 6, 7, 8 and the proof can be finished 
by the same way as in Lemma 1. □

Lemma 4. For any fixed  ß >0 we have

sup 2  \\u r \ \ h ( K )  =  0 ( 1 )  ( D  -oo).
* e l  |v—vr|s i  

o=s er-=B
vr S D

Proof. Fix 0</?0< -^ p - such that K in R o c z G  (|AT| denotes the length of K ) .  

We will show that for any fixed 0 <*«=/?„ we have the estimate

(20) 2  kO O l2 ^  c ( i + 0 (i))i? 2  ll«Jb(K )+o(i)
r i l  r i l

(D — <=,) uniformly in v s l ,  y £ K  and uniformly for any finite subset /  of 

/ v (£)):= {r: |v —vr| S i ,  0 ^ 5г< Д  vr

(C is an absolute constant). Hence the lemma will follow easily. Indeed, integrating 
on К  we obtain

2  № (K) ^  c | * | ( i + o(1))ä 2  ll« rllV )+ o (i).rgi rgj

Choose at the beginning of the proof R  so small that Then, being all

the terms finite by the choice of /,

2  t e l b w  =  o(i),r€/

and, being IaJfiD)  arbitrary,

2  Ы Ь т  =  0(1)re J„(D)
as stated in the lemma.

Denote c  the centre of K .  We prove (20) differently in the following three cases:
a) y~c,  b) y S c  and n is even, c) y S c  and n  is odd.
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a) Applying (10) with x=y — t we obtain

2 R 2 R

-  f  t)dtu,{y) =  f  (g0(ur, t ) - g 0(iv, tj)ur( y - t ) d t  +
R R

+  /  g0(iv, 0мг( ^ - 0 * +  2  gk(Hr,2R) f  Ur( y - t  + kt)d t-i> m — n̂ák=km dR к* 0Д

- 2  f  A i& O W ) /  wr( j - im—n^k^m о д
ft 5̂  0,1

Я Я-* }’-<+'»<
+ 2  2 ( - i y  , /  /  i4 — i+1G 0 ir , / ,^ - / - T ) .

s =  2 i =  0 '  1 '  R V —  /4 -in i —nlf

f  q^(S)ur^ ) d ^ d x d t -
y  — t+(m —rt)f

2K j> —f + mf г
- /  /  DzG(nr,1, y - t - x )  f  u*(£,)didx dt.

R y —t + ( m —ri)t y —t + (m —n)t

The following estimates are uniform in v, y, r, t, x when Introducing the
functions h ’9 ,  w13€JJ(G) (depending also on the parameters v, y, x, t, k, s, i)
in a suitable way, by (12), (15), (16) and (17) we have

(Л —o(l))|urOOI = CR3liIh,||jtíjjc) + |<w9, ur)\ +

+ 2  O(l)l<»io,m—n̂ k'Sm 
k ^  0,1

ur)\ +  2  f  £4i)K wn> Mr)l dt+
m —nTéik~km n 

0,1

n n —s  2 R y —t+ m t  2 R y —t+ m t

+ 2  2  f  f  0(l)|<w12, ur) \ dxd t +  f  f  0(l)\(w13,u*)\dxdr.
s = i  *= 0  R y — t+ (m —n)t R y —t + ( m —n)t

Taking the square of both sides, summarizing for r£l, taking into account that 
INL*<g)= 0(1), i= 9, ..., 13 and using (18) we obtain (20).

b) Applying (10) with x —y + t  we obtain almost the same formula as in the 
preceding case, with the following changes:

—  y —t is replaced by y + t  everywhere,
— instead of gt {цг, /), g-Ац,, t ) is placed on the left hand side.

(20) may be derived exactly by the same manner as before because g_i(/ir, 0 =  
=  —1 + o(l) by (15) (this does not remain true if n is odd).
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c) We apply now (11):

+

— f  t)di ur(y) = f  (hl(jir, t ) - h l (iv,t))ur(y + t)d t  +
R R

2 R 2 R

+ /  M iv, t)ur(y+ t)d t+  2  hk(ßr, 2Л) f  ur(y + k t)d t —
p m —n ^ k ^ m  о
R к *  о д  R

2 R t

-  z  f  A A O W )  f  ur(y + k£)dZdt +
т—пёгк=т r rkf* 0,1

n n - s  ( п - ч \  V* * t mtz z i- о1' , /  f m-*-i+iH(yr,t,y-r).
*=2 -' = «  ̂ '  R *+(*-»)»

T . /
/  q«4 t)u r(Z)d{;d x d t -

m - n ) t

X

- f  f  D3H(nr, t, y - x )  f  u*(fi)d£,dxdt.
R y + ( m —n)t y+(m — n)t

Using (12), (15), (16) and (17), with obvious notation we obtain

( / ?  — 0 ( l ) ) | w , ( > ’) |  5 5  C Ä 3 /a  I Ц , I ! , * ( * >  + 1 < % ,  “ r ) l  +

+  Z  0 ( l ) | < w 1 5 , « r ) | +  Z  f  0 ( l j ] ( w 1 6 , ur)\dt +

>’ + (m—/i)f 
2R y +  wf

/я — пШк-im 
k *  0,1

m—n^k^m i> 
к *  0,1

„  n _ s 2R y -fm f 2R y +  rai

+ Z Z  f  f  0(\)\(w17, ur)\dx dt+ f  f  0(l)|<w18, u*)\dxdt.
s = 2  1 = 0  R ~ ■R y - f (m —/*)f

Furthermore ||и>г||£2(О)=0(1), /= 14 , 18 and (20) can be obtained as in
Part a). □

Lemma 5. For any fixed B>  0 we have

SUp Z  j»-Hi*(K) = 0 ( 0  (0  - ” )■
v S l  iv +  vr | S l  

0Sgr-:B
vr S - D  .................................

P roof. It is quite similar to that of Lemma 4, replacing in the formulas the 
term g0(iv, t ) (resp. /i,(/v, /)) by g0( - iv ,  t) (resp. h fi- iv ,  /)). Q

L emma 6. For any fixed B, D > 0  we have

Z  II « r l l L ( K )  ■ <  ° ° -er\ <« vrl<D
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P roof. We will show the existence of a constant C such that 

(21) Я2 z  kOOl2 ^  CR> 2  I k l I b d D  + Cr£I rit
\K 1

for any y£K, anc* ôr апУ fin*te subset 7 of J:— {r: \Qr\<B, |vr|<Z>}.

Indeed, then choosing R suchthat CR\K\S y ,  integrating on К and taking into 
account that 7 (and therefore 2  М Ьчю ) is finite, we obtain

ril

2 1мг1Ь(ю ^  2C\K\
~  R*

uniformly in 7; hence the lemma follows.
Denote again c the centre of K. To prove (21), we distinguish three cases: 

а) уёс , b) y ^ c  and n ^ 2 ,  c) y=c  and n = l .
a) Apply (8) with x = y —mt, 0 < i<  R, then we obtain

-  /  fm(ßr, <)dt ur(y) = 2  f  (fk(Rr^)-fk(0,0))ur(y ~ m t+ k t)d t  +
0 k = m - n 0

m — 1 R
+ 2  /  fk(0,0)ur( y - m t  + lct)dt +

к = т —п о , .

+ 2  2  (-0'i”7S) f  f  ir3- s- i+1F(nr, t , y - x )  f  qP ( Q u ,® #  d x d t -
*= 2  <=» v '  0  y - „ t  y - m

-  f  f  £>3F(nr, t, y - x )  j  u* (£) dt, dx dt.
0 y —nt y —nt

Being f k, F smooth the functions

fkiHr, t ) ~ fk(0, 0) and D„-s-i + I f f a ' t ' y - j )

are bounded for \gr\<B, |v,j<7>, 0< i<7? and y —nt<x<-y. Furthermore, 
| / m(gr, /)| =  1. Therefore, introducing the functions (depending on the parameters 
y, x, k, s, i) w19, w20, w21ZL2(G) in a suitable way, we obtain the estimates

*kO O I S  C1Ä3/2||Hr||ti(JC)+  2  I<wi9, «r>l +
k = m—n

+ 2  2 /  f  С г \ { щ 0, ur)\ dx dt +  f  /Ca|<w21, u*)\dxdt
s - 2  /= 0  0 j 0 y-nl

and IWjjl^o + C,, i — 19, 20, 21 for some constant Сг. Hence (21) follows by the 
usual way.
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b) Apply now (8) with x= y+ (n  — ni)t, 0 < /<  R, then

- //п .-Д Р г, t )d tu r(y) =  j?  /  (/*(/L, O -/*(0. 0))«r(y+(w -m )/ + fcO)ííM-
0 k=*m—« 4 -1  q

m R
+ 2  f  f k(Q,0)ur(y + (n -m )t  + kt)dt +

A =  m—и-f 1 о

л /I_s  /  \  Л y4-«f r

+  2 1 2  (-1 )4  i i f f  D n3- * - i+1 F(nr, t, y  + n t-т) f  <7,ш (£) uÁÍ)d£clx d t -
»“ 2 ;=o '  /  о ,  /

К y+w f T

-  /  /  A.F(jUr, t, У + nt -  r) f  II* (<*) d^dxdt. 
о у  у

Hence one can proceed as in the preceding case because пЩ2 implies also
l/m-.O*,, 01 =  1-

c) This case can be treated quite similarly to the case b), with a sole change : 
before the estimations we divide the formula written just above by fW. Then

Jm-iXßn t) 
e<v

and the usual procedure works. □

Proof or the Proposition. It follows from Lemmas 1—6 that

sup 2»si |v-|»g|si 
i ,e o

If n is even then the condition e,SO is always satisfied. If n is odd then we have 
also

sup 2
»81 |v-|»rll<?,S o

by a reflection principle described in the introduction of [17]. Therefore we have 
ip both cases

fo r any compact subinterval Kx o f  G. Applying (2) (choose K.. = К ) hence we 

obtain the proposition ^with e  = for example!. □

sup
V̂ l 2»-|»,ll

( ||цг!1/.г(К1)1 
S i '  1 +  |(?r | /

( M ^ r
A  l - e ,  )
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4. Proof of the Theorem

The idea of the proof is the following. Putting

<Hv, |vr|) =

and

w(x +  0

I i f  V > Vr \ ,

1
2 i f  V = V , | ,

0 i f  V < V,|

sin v/ if kl <nt
0 otherwise,

by the application of the proposition proved in the preceding section we will show 
that for any compact subset К  of G

(22) sup sup 2  |<Я- w)-ö(v, |vrl)MrC*)|8 <°°
v > 0  x £ K r  =  l

whenever R is sufficiently small (w^JJ(G) depends on the parameters v and R). 
Taking into account that

x, R) = ( /  w) = 2  \ f  vr){ur, w>,
Г — 1

° Á f  x) =  2  ( f  vr)S(v, |vr|)Rr( x ) - T  2  ( f  "r>Mr( 4r — 1  ̂ I Vr | =  V

applying the Cauchy—Schwarz inequality, (22) and the proposition again, we 
obtain

sup sup IS,(f, x , R ) - a v( f  x)\ S  C || f \ \L,(G) (V/€L2(G))
v>o хек

with some constant C independent of f  Now it suffices to show that 

lim sup \Sv( f  x , R) — av( f  x)| = 0
v_*°° хек

for any /fro m  a dense subset of L2(G). But this last property is satisfied for any 
finite linear combination /  of the eigenfunctions ur because then /  is continuously 
differentiable and ay(f,  x)= f(x)  for v sufficiently large, therefore one can apply 
a classical result of the theory of Fourier series (see [24], Volume 1, p. 55).

The rest of this section is devoted to the proof of the estimate (22). In the sequel 
we shall consider only the case и>1 because the case n= 1 (then Lu = u') can be 
easily led to the case n—2 (Lu — u

Lemma 7. We have
,  2 R

t / - dt ►0 i f  ц£С, R e / ?>0 and |/uR|-
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P roof. It suffices to show that
2 R

r  f  e" d' S  eRe"K minm {*’ llm uR\ }

For this, first we note that obviously

f  e“' dt ^R e  fiR

On the other hand, applying the theorem of Bonnet, there exist Rs=Rx, 
R«^2R  such that

1 2R
— f  e>“ dt <
R rJ R

+

f  eRc'"coslm [it dt
R

|i

+

— f  eRc'" sin Im ptdt = i —eRe',R f  cos Im ptdt R J  R „ +

+ — eRe"R f  sin Im i-itdt 
R „ jlm /r/?|

gRCHR g

Lemma 8. For any compact intervals KxczG, A fcint Kx there exists R0>0 
such that for any fixed 0 < R < Rn

К
ur(x —t) + ur( x + t )—2ur(x)ch prt dt =S

_ In \prS  C —r -̂p- (II u, 
\Иг I rllL (K,) +i!»;!

whenever \pr\ is sufficiently large.
P roof. We shall use the notations of Section 2. We shall assume that ersO. 

The case gr-=0 hence can be obtained by the reflection principle mentioned at the 
end of Section 3.

Putting

»rO O  =  Иr(y)+ f  2  —jrii 2  qs( r ) u f - s) (t) -  (x)) dr
/  P =  1 ПИг s — 2

one can readily verify that v f  H"oc(G) and ?;*n) = p"vr. Consequently vr is a linear 
combination of the functions eWtO’-*), ..., By (3) we can fix R„ >0 such
that KinRac.Kx and

(23) K ! l”(k4„Ro> -  C ||“гПе- осо ('■ = 1 -2 , ...).

We shall distinguish two cases: a) n is odd and 1 i.e. n—2m ~l,  mS2. b) n is 
even i.e. n — 2m, m i l .
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ä) For any x£K ,0< S< 2R a and 5 the determinant

vr(x — m S )  . . .  e ~ mitr . Ps

vr( x -2  5) ... e-^r.n*

(vr(x—t) +  vr(x + t) — 2vr(x) ch n,t)...(2 ch pir p t — 2 ch pirt ) ... 
yr(x + 25) ... eilJ'.ps

vr(x+(m + 1)5) ... e<m+1)Pr,Ps

(/>=1, ...,n) vanishes. Expanding it according to the first column, with obvious 
notation we obtain

d (/ir , S)(ur(x—t ) + ur(x+ t)—2ur(x)c h  /xrt) =  £  'M /V . 5 , t)ur(x + kS) +
— m̂kk̂ km -f 1 |fcIS2

jc+ (m -fl)S  n

+ f  D(/ír, 5, t ,  x - t) ( 2  qs{x)u^-s)(z)-u*{-t))dx.
x - m S  5 = 2

One can easily see (cf. (4)) that

DiD(nr,S,t, —(m + l)5) =  D{D(nr, S, t, mS) =  0, j  = 0, . . . , n - 2. 

Therefore the above formula implies

d(jir, S)(ur(x — t )  + ur(x + t)~2ur(x) ch f i r t )  =  2  dk(nr, 5, t)ur(x + kS) +
-mgkSm-fl1*1 s  2

n n—s

+ 2  2  ( -  !)■'
s =  2 i — 0

i r ) l
x+( m + l )S

S, t , x - z )q ^ ( z )u r(z) dz

— j  D(fir, S , t , x —z)u*(z)dz.
x —mS

Putting
Q ( ß r ,  5 )  =  g((m +  l ) p r , ,  +  . . . +  2)lr  m - 2 /C ,m + 1 - - ml‘r,„)-v ,

by the method of [17] we obtain the estimates

Kfor, 5, 01 S  QlßOl,, 5)1 • |/ir7 +  |e(',r,m + Pr,m + l)S|),

5, t ,x - z ) \  =s Cj |ß(/ir, 5)| • |/trK+1~"min {1, \n,t\}ee-s -, 

furthermore, being n odd there exists a constant a > 0  with

Re/'r.m-i = and R e /ir>m + 1 S  - a  |ai,[, Vr.
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(In the above estimates Cr denotes an absolute constant.) Using these estimates 
from the formula we obtain

d(ft, S) ur{x — t) + ur(x+ t)—2ur{x)da firt
ß ( f t .  S) t == C ,|/ir| e - W . K |L- (KM)e.'s +

+  2 2 C ik i*“ *- ' m in d e r | - \  i} ||Mr||L. u,2ns)eirs +
S = 2  1 = 0

+  Q lftl2~n min flft.il-1. l}lk*IL“(K2„s)ei's 
with another absolute constant C2.

Let us now fix 0 arbitrarily. If |/ir|> —  thenЛ
R W-1 R

f  min{|ftt|_1, l } d t  S  j  1 d t 4- J  Iftil“1̂  = Iftl-^l+ln/i + ln |ft|),
о 0  1м,Г*

therefore if R < S ^ 2 R  and |ft|>m ax | l ,  -^-J then

d(nr, S) R
r ur(x —  t )  + ur(x + t )  — 2ur(x) ch nrt

6 (ft, s ) J0 t
dt :■

If Iftl is sufficiently large then by Lemma 7 we have

whence

2 R
f

d{nr, S)
ö ( f t ,  S)

, c  R dS >  —

/
ur(x — t )  +  ur(x  +  t )  — 2ur(x) ch f.ir t dt á

In |ft
C* ~~jJ[J~ (I! Wrlii.“ (K4,,„) +  II Wrilz.“ (X 4„H) ) e ' iVK

with some constant C4 depending only on R. faking into account (23) and the 
condition (C 3) the Lemma follow s.

b) For any x £ K ,0 < S < 2 R lt and 0< /< 5  the determinant

vr(x) ... 1
(vr( x - t )  +  vr(x + t ) -2 v r(x) ch nrt ) ... (2 ch nr p t — 2 ch gr/) ...
(ur(jc-2S) +  tv(jc+2S)) ... (2 ch 2fir<pS)

(vr(x — mS)+vr(x+mS)) ... (2 ch m/irfPS)
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(p— 1, m) vanishes. Expanding it according to the first column, with obvious 
notation we obtain the formula

d(pr, 5)(ыг( х - / )  +  нг(х + 1)-2мг(д;) chgrl) =
=  Z  dk(pr, S, t)(ur(x+kS) +  ur(x-kS))  +

0 ̂ ksm k^l
x + m S  n

+ f  D(pr, S, t, x  -  t)( 2  4sСО «г"~s) (0 -  U* (t)) dr.
X - m S  5= 2

One can easily see that D{D(pr, S, t, ±mS) — 0, j=0, — 2, therefore
d(g,, S)(ur(x — t) + ur{x+t)—2ur(x)d \nrt) =
= z dk (ßr, s, t)(ur(x + ks) +  nr (x -  kS)) +

Ô k̂ m к* 1
n n —s /  \  x + m S

+  Z  Z  (-O'Г i  I /  S, t, x-x)q^(x)ur(x)dx-
> = 2 > = °  ^  '  X - m S

x+ m S
f  D(nr, S, t, x-x)u*(x) dx.

x —mS

Putting Q(pr, S) = e(m>lr,i+ - +2i,r,m-i)s we have the estimates

\dk(p„ S, 01 S  Q lß fo , 5)| • Ift.il • if т ш  2,
\D{D(nr, S, t ,x -x ) \  == CxIß(/i„ 5)| • |AirK+1-"min{l, \prt\}<*f.

Furthermore, d0(pr, S, t)=0 if m=  1 and there exists a constant a > 0  suchthat 
Re/i,.im_1̂ a |g r| ( r= l ,  2, ...) if mS2. Therefore, fixing 0 < a r b i t r a r i l y ,  
we obtain

A t . ,  СЛ P  U . .  *
dt =ädin,, S) R

r ur (x — t) +  u, (x +1) — 2 uT (x) ch pr t
Q(Pr, s ) J0 t

—  C 2 ~  ( ! « г 1 т ~ ( Х .„ я ) +  !1М* ||г .° " (К ,„ я ) ) e 2 írR

if i?<5<2R  and |gr|> m ax |l, -^-j and the proof can be finished 
Part a). □

as in

Lemma 9. For any 0 there exists a constant C > 0  such that

rR sin vtchprt . Cel«rl*/  ----- — ^ - d t - ö ( y ,  |vr|)
o 1 2 + |v —|vr||

for all v>0 and r —1 ,2 ,.... 
P roof. See [10]. □
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Let us now prove (22). Given a compact interval KczG arbitrarily, fix another 
compact interval K^czG such that A fcintA i, and then a number A, > 0  such 
that (A0 is defined as in Lemma 8), KinRxczK1,

This choice is possible by the proposition of Section 3.
Fix 0<А <А 4 arbitrarily and fix a constant A = A (A) >2 such that the 

assertion of Lemma 8 holds true whenever |/rr| >A. In the sequel C denotes diverse 
constants independent of v S l, x£K  and r = l , 2 , . . . .

Consider first the case when \цг\>A. Applying Lemmas 8 and 9 we have

for all v a j  and x£K. Using (24) and (C 3) with any fixed 0< g< l we obtain

Consider now the case when \fir\ s A .  For any v ^ l  and x£A, integrating

(24)
Vgl Iv — Ivr|I =il

R •

( - ^ M - F ( 2  +  |v - |v r| | ) - 1)( |iu r||

2  |<«r. w)-<5(v, |v ,|K (x )|2 si

=  c 2  ( i _ 2 + E + ( i  +  |v — i | ) - 2 )  2  ( « « r L - í w ^ * » ) 1 S

S i C 2 ( i - 2+£+ ( l + |v - i | ) - 2) s  c
1 =  1

i.e.
(25)

by parts and taking into account that the improper integral 

vergent, we obtain
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But \nr\ is bounded, therefore by the result mentioned in Section 2, Part E) we 
can conclude that

\(ur, w)| =s C||Hr||JL- (Kl)
and

|<t/r, w )-á(v, |v,|)w,(x)| Ш C |m,||l- (Ki).

Using again (24) we obtain

(26) 2  |<nr, w)-£)(v, |vr|)t/r(x)|2 s  C.
W s Л

(25) and (26) imply (22) and the proof of the Theorem is finished. □
R em a r k . We note that in the proof of the Proposition in Section 3 we did 

not use the full assumption (C 1) but only its consequence (18). Thus our result 
remains valid for all (not necessarily complete) orthonormal systems consisting of 
eigenfunctions of order 0 (for example). □

O p e n  P roblems. 1. It would be interesting to know whether the assumption 
(C 3) is necessary for the validity of the Proposition.

2. From the viewpoint of applications the Theorem proved in this paper seems 
to be very general and satisfactory. However, from a pure mathematical viewpoint 
it would be useful to enlighten whether the result remains true for the more general 
differentia] operator

Lu = и (,| ,  + ? 1 и ( " " 1) + - + ? 11и ,  qs£L\oc(G), s =  1, ..., n.
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EXTENDING FAMILIES OF DISCRETE ZERO SETS
C. E. AULL (Blacksburg)

1. Introduction. In [2], the extending of families of disjoint zero sets of a set 
S' to a family of disjoint zero sets of the space X  were studied. Here we restrict the 
disjoint zero sets of S to discrete families or at least to families discrete in the unions.

D efinition 1. A set S is TC "-embedded in X  {DC "-embedded) [DC "-embedded] 
if any family of disjoint (discrete) [discrete in their union] zero sets may be extended 
to a disjoint family of zero sets of X. A zero set, Z, of S is extended to a zero set 
E(Z) of X, if E(Z)C\S=Z. It is clear that for a set SczX, TC "-embedding =>■ 
^  DC "-embedding =>DC "-embedding. Since TC "“-embedding was studied in [2], our 
emphasis will be on DC "-embedding and DC "-embedding including with cardinality 
restrictions on the discrete families and relations to analogous type embeddings of 
cozero sets and open sets.

The following lemma proved in [1] will be useful in proving results in this paper.
Lemma A. Suppose each set o f type A in S  can be extended to a set o f type A, and 

i f  {/•)} is a disjoint family o f sets o f type A in S  and {Hb} is a disjoint family o f sets of 
type A in X  such that Fbd H b, and the intersection of two sets o f  type A is o f type A, 
then {Fb} may be extended to a disjoint family o f sets o f type A.

2. Some cardinality restrictions. In [2] it was shown that a denumerable family 
(family of cardinal coj) of disjoint zero sets of a subset S may be extended to a family 
of disjoint zero sets of a space X  if S is C "“-embedded (C-embedded) in X.

Definition 2 (Zenor [10]). A space X  is a Z-space if given 2 disjoint closed sets 
of X  one a zero set, they are completely separated in X.

Theorem 1. Let S be a Z-space and let {Zx: a £fl} be a discrete family o f zero 
sets o f cardinality co1. Suppose S is C*-embedded in a Tychonojf space X. Then the 
family [Zx] may be extended disjointly to X.

Proof. For every Zx, there exist disjoint zero sets Ha and #*, of X  such that 
Zxd H x, and U {Zß: }сЯ *. Let Mx—HaC\(j {H j: ß <  a}, then {M j is

ß
a disjoint family of zero sets of X  such that Z ad M x. An application of Lemma A 
completes the proof.

With the continuum hypothesis, we may replace a>1 by c in the above proof. In 
the case of normal spaces, we may make the replacement without CH.

Theorem 2. Let S be normal and let {Za: a£A, \A\Sc} be a discrete family of 
zero sets. Then {Zx} may be extended disjointly to any Tychonojf space X  that S  is 
C*-embedded in.

l*
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Proof. Let {Z a} be indexed by R the real numbers. Construct a continuous func
tion / on B=  U {Z a: a£R} such that f ~ 1(a) = Z a. Then since В is closed/ may be 
extended to S  and hence to X  so that there exist disjoint zero sets of {#„} of X  such 
that Zac H a. An application of Lemma A completes the proof.

If all the zero sets are regular closed, we may replace normal by metanormal 
(every regular closed set is C*-embedded).

Corollary 2. I f  D is discrete and \D\Sc, then D is TC*-embeddedin any space 
D is C*-embedded in.

Theorem 3. Let S be normal and hereditarily extremally disconnected and C*- 
embedded in X. Let (Za: a£ A : \A\^c} be a family o f zero sets discrete in their 
union. Then {Za} may be extended disjointly to X.

Proof. Similar to Theorem 2.

3. DC*-embeddings. D efinition 4 (Junnila [7]). A topological space X  is collec- 
tionwise (5-normal (C6—N ) if for every discrete family of closed sets {Fa} of X. 
there is a disjoint family of G^-sets, {Ga} such that FaczGa.

It is clear that we may replace Gä-sets by zero sets in the above definition in a nor
mal space.

Theorem 4. The following are equivalent for a normal space X:
(a) X is Cs- N ,
(b) every closed set is DC*-embedded.
Proof, (a) -»-(b). If {Zaj is a discrete family of zero sets of a closed set F, {Z a} 

is a discrete family of closed sets of X  and can be expanded to a disjoint family of 
zero sets of X. An application of Lemma A completes the proof.

(b)-*-(a). Let Fa be a discrete family of closed sets. Since each Fa is a zero set in 
U f fl, a closed set, the result follows.

Definition 5. A set S is Tz-embedded (TG-embedded) in a space X  if any disjoint 
family of cozero (open) sets {Ga} of S  may be extended to a disjoint family of cozero 
(open) sets of X. If {&’„} is restricted to discrete families, we say S  is Z>,-embedded 
(DG-embedded) in X.

In [1], it was proved that a space is collectionwise normal iff every closed set is 
Dz-embedded (Z>G-embedded).

Corollary 4. I f  every closed set is Dz-embedded (DG-embedded), then every 
closed set is DC*-embedded.

4. DC*-embeddings. Definition 6. A topological space X  is collectionwise 
5-normal (Cs —N ) if for Fa closed in X, {Fa} discrete in UFe, there exists a disjoint 
family of Gä-sets {Ga} such that FacG a.

Again, we may replace Gá-set by a zero set in a normal space in the above 
definition.

Theorem 5. The following are equivalent for a normal space X:
(a) X  is C%-nor mal.
(b) Every closed set o f X  is DC*-embedded in X.
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Proof. The proof of (a)—(b) is similar to that of Theorem 4. (b)—(a). Let {Fa} 
be a family of closed sets of X  discrete in U Fa. Each Fa is open in U Fa. So there is 
a family of disjoint open sets, {Ga}, of F= UFa by Theorem 2 of [1] such that 

By the normality of X, there is a family of zero sets of F, {Ha}, such that 
FaczHaczGa. By (b), {Ha} can be extended to a disjoint family of zero sets {Za} 
suchthat FacZ„.

In [1], it was shown that every closed set is r z-embedded iff for any family of set 
{Fa} discrete in their union such that each Fa is an Fa-set of X. Then there exists a 
family of disjoint open sets {Ga} such that FacG a. Also from [1] if every closed set 
is FG-embedded, then every closed set is T..-embedded.

Corollary 5. I f  every closed set o f  a normal space X  is TG- or Tz-embedded, 
then every closed set o f X  is DC*-embedded.

The following lemma might be compared with Corollary 7B of [1].
Lemma 6. The following are equivalent for a normal hereditary extremally discon

nected space X  and (a) « (b ) in normal spaces:
(a) X  is HCd — N  (every subset is Cd—N).
(b) Given a collection o f subsets {Fa} o f X  discrete in U Fa, there exists a disjoint 

family o f zero sets {Za} such that Fa c  Z a.
(c) X  is Cj—N.
(One might Compare (b) with McAuley’s [8] equivalence of hereditary collec- 

tionwise normality.)
Proof. (b)->-(a) and (b)—(c) are immediate, (c) -►(b). Let {F„} be discrete in 

UFa. Each Fa can be extended to_an open set Ga in_F= UP„ and {(?„} is disjoint. 
Then Ga in Fis closed in X and {Ga} is discrete in U Ga since Ga is open in F. So (b) is 
satisfied.

(a) -*-(c). Let {Fa} be discrete in U Fa and let Fa be closed in X. There exists a fa
mily {Ga} of disjoint open sets of F =  UFa such that Fac G a again by Theorem 2
of [1]. ___

There exists an open set G of X such that GH UFa=  U Ga. There exists a family of 
disjoint G^sets of G, {Ha}, such that FaczHa since G is Cs—N  by (a) and since 
{Fa} is closed and discrete in G. Each Ha is also a Gb of X.

T heorem 6. The following are equivalent for a hereditarily extremally disconnected 
space X.

(a) X  is normal and HC0 — N.
(b) Every subset o f  X  is DC*-embedded.
(c) Every subset o f  X  is DC*-embedded.
(d) Every closed subset o f X  is DC*-embedded.
(e) X  is normal and Cs—N.
Proof, (a)—(c). Let {Z„} be a family of zero sets of a set S, discrete in UZa. 

There is a family of disjoint zero sets of X, {Ha}, such that Z a<zHa by (a) and Lem
ma 6. An application of Lemma A completes the proof.

(c)—(b) and (c)—(d) are immediate. (b)-*(c). Let {Z a} be a family of zero sets of
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S  discrete in M = U Z a. Since M  is Z)C*-embedded in X, there exists zero sets {Ha} 
of X  such that Z aa H a. An application of Lemma A completes the proof.

(d) --»(e) follows from Theorem 5.
(e) -»(a) follows from Lemma 6 .
C orollary 6. Let X  be hereditarily extremally disconnected. Then any of the 

following imply conditions (a) to (e) o f  Theorem 6.
(a) Every closed subset o f X  is TG-embedded.
(b) Every closed subset o f X  is Tz-embedded.
(c) Every subset o f X  is DG-embedded.
Proof. Theorem 6 and Theorems 4 and 5 of [1].
We note that since (a) and (c) are equivalent to HCN we only need extremally 

disconnected in the corollary statement in these cases.
5. Some examples and questions. Example 1. R. Fox has shown that R is not 

TC  ̂ -embedded in ßR. Since R is Lindelöf (hereditary Lindelöf) R is X>C*-embedded 
(DC  ̂ -embedded) in ßR.

Example 2. The one point compactification A of a discrete space of cardinality 
greater than c, is DC  ̂ -embedded in any product of closed intervals it is embedded in 
since X  is compact, but is not £>C+-embedded in such a product since Engelking [5] 
has shown the product has at most c disjoint zero sets.

We have thus shown that TC *-embedding, DC ̂ -embedding and DC  ̂ -embedding 
are distinct properties. However Theorem 6 shows that if every set is D C*-embedded 
then every set is £)C*-embedded. So we have the following set of relations (a) -»(b) -» 
-»(c)-»(d)-»(e) for a space X:

(a) X  is perfectly normal and extremally disconnected.
(b) Every subset of X  is 7’C*-embedded.
(c) Every subset of X  is DC*-embedded.
(d) Every subset of X  is DC*-embedded.
(e) X  is normal and hereditary extremally disconnected.
In [2], it was shown that under the existence of measurable cardinals or the 

assumption of club (b)-»(a) based on work of Blair [5] and Wage [10]. The question 
then arises, does (c)-»(b) and does (e)-»(d), particularly if we use M A+ ~CH?

6. A mapping theorem. The following theorem can be proved by the same 
methods used in the proof of Theorem 2 of [1].

T heorem 7. Let SczX and let f  be continuous on X  such that f ~ 1(f(S))= S. 
I f f  is cozero set preserving and Sis TC*-embedded (DC*-embedded) [DC*-embedded] 
in X  then f ( S ) is TC*-embedded (DC*-embedded) [DC*-embedded] in f(x).

Corollary 7. Under cozero set preserving maps, the combination normality and 
Cg — N  (Theorem 5), and the combination hereditarily extremally disconnected, nor
mality and HCS — N  (Theorem 6) are preserved.
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LOCAL EXPANSIONS ON GRAPHS 
AND ORDER OF A POINT

J .  J .  C H A R A T O N IK  an d  S. M IK L Ó S  (W ro c law )

Let X  and Y  be metric spaces with metrics clx and dY, respectively. A mapping 
/ :  X-+Y of X  onto Y  is said to be a local expansion if it is continuous and if for 
every point x  of X  there exist an open neighborhood U of x  and a constant M  >  1 
such that for every two points у  and z of U the inequality

dY (/(.y)J'(z)) S  Mdx (y, z)
holds.

Discussing some properties of local expansions on metric continua ([1], [6]), espe
cially on linear graphs ([3]), we have observed that the order of a point does not 
decrease under a local expansion ([1], Proposition 4.2; [3], Proposition 5). Investi
gating this fact more carefully for linear graphs, we have discovered some reasons of 
it. The results are presented in this paper.

We use the concept of order of a point in a space in the sense of Menger—Ury- 
sohn (see [4], p. 274 or [7], p. 48). A point of order 1 in the space X  is called an end 
point of X; the set of all end points of X  is denoted by E(X). A point of order 3 or 
more in the space X  is called a ramification point; the set of all ramification points of 
X  is denoted by R(X). By an я-od we mean a set homeomorphic to the one-point 
union of n closed intervals.

We recall several properties of local expansions. All of them are easy to verify 
and some of these properties have already been established for local expansions 
/ :  X —X  of a metric space X  onto itself ([3], Properties 1—4) and they are stated 
here for a more general case of local expansions from one metric space onto another.

Proposition 1. Let two metric spaces (X, dx) and ( Y, dY) be given, and let f : X —Y 
be a local expansion. Then

(i) /  is locally one-to-one: for every point x<EX and for the open neighborhood U 
of x as in the definition of the local expansion, the partial mapping f\U : U ~-f(U)cz Y  
is one-to-one;

(ii) for every point x£X  and for the open neighborhood U o f x  as in the definition 
o f the local expansion, every arc abczU is mapped onto an arc f(a)f(b) homeomor- 
phically under f;

(iii) for each simple closed curve S c X , its image f(S )  does not contain end 
points o f itself;

(iv) for each arc abczX no point o f ab\{a, b} is mapped on an end point o f 
f(ab);

(v) i f  X  is compact then the inverse image f  1(y) o f every point y£ Y is finite.
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Definitions of notions undefined here can be found in [3] and [5].
The following example shows that a continuous image of a linear graph (even 

of an arc) under a local expansion need not be a linear graph.
Example 1. There is a local expansion / :  [0, 1 ]-*K of [0, 1] onto К  such that: 
1° К  is a plane hereditarily locally connected curve metrized by a convex metric; 
2° К  has exactly one end point and countably many points of order 4; other 

points of К  are of order 2;
3° / i s  a local expansion with M = 2 for every point x£[0, 1];
4° / - 1(/(x)) = {x} for all x£[0, 1] save a countable set

1 2 1 1 J_ 2£ oi
4 7 4 7 8 7 8 7 16 7 16 7

for elements x of which we have / _1(/(х)) =  {x, 1—x};
5° ordy K= 2 ■ c a rd /- 1(y) for all y£AT\{e}, where e is the only end point of K.

To construct the example consider two auxiliary functions / i , / 2: [0> 1] — R, 
the graphs of which are pictured in Fig. 1 and Fig. 2, define a mapping/from [0, 1] 
into the plane R2 by
(1) f(x ) = (Л (х ),/2(х)) for x£[0, 1],
put ЛТ=/([0, 1]), and take the length of the shortest arc in A" joining its two points as 
a metric for K. This metric is obviously convex. The continuum К  is depicted in Fig. 3.
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The continuum К  can also be described in some other way. Namely, let G be the 
graph of the function / 2 (see Fig. 2) and let a mapping g from G into the plane R2 
be defined by

(2) g ((*!>**))
C*1, X 2), if

И ]

(1 —Xj ,  x2), if X j 6 [ И

Then K=g(G). In other words, К is obtained from G under the mapping g 
which is the identity on the left half of G and the symmetry with respect to the

straight line Xj =  — on r'£ht half of G.

Now properties 1° and 2° of К  are evident from the construction; in particular 
e = (0, 0) is the only end point of K. By the definition of the metric on К we see that

any subsegment of [0, 1] contained in jo , , [ i ,  l j  or in [ - ^ > ’ " i l  *S
expanded twice under / ,  whence 3° follows. Properties 4° and 5° easily follow from 
the definition of / ,  and therefore the argumentation is complete.

Now we introduce some auxiliary notions and notations. Let X be a linear graph 
and let x be a point of X. We denote by K(X, x) the closure of an arbitrary component 
of X\{x}. The set K(X, x) is said to be of the first kind provided that it contains a 
simple closed curve. Otherwise it is said to be of the second kind.

Consider an arc x p a X  and let K(X, x; p) denote the closure of the component 
of -У\{х} that contains the point p. Then obviously xpaK (X , x; p). The arc xp 
is said to be of the first kind with respect to x provided that K(X, x; p) is of the first
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kind, i.e., if it contains a simple closed curve. Otherwise xp is said to be of the second 
kind with respect to x.

Given a point x of a linear graph X, let Ux be an open connected neighborhood 
of x containing neither end points nor ramification points except, perhaps, x  itself. 
Thus
(3) ( Ux\{ x } )  П (E(X) U R (20) = 0,

and Ux is an л-od, where n = ordx X:

(4) Ux = U {xpr- i = 1. 2, ..., ordxZ}.

The number of the arcs xp, which are of the first kind with respect to x  will be 
called the cyclic order of X  at x, and it will be denoted by c(X, x ) ; the number of the 
arcs xpi which are of the second kind with respect to x will be called the tree order 
of X  at x, and it will be denoted by t(X, x). Therefore we have

(5) c(X, x) + t(X, x) = ordx X  
for every point x(LX.

Lemma 1. Let X  and Y be linear graphs and let / :  X-+Y be a local expansion of 
X  onto Y. For each point x £ X  let Ux be an open connected neighborhood o f x  satisfy
ing (3) and such that Uxa  U, where U is an open neighborhood o f x as in the defini
tion of the local expansion f .  I f  an arc xpt o f  (4) is o f the first kind with respect to x, 
then its image f(xp^) is an arc o f the first kind with respect to its end point fix').

Proof. Since xp.c U, hence /  maps xpt homeomorphically onto an arc f ix )  fip i)  
(see Proposition 1 (ii)). Suppose on the contrary that fix)f(p i) is of the second kind 
with respect to fix ) .  Put T = K (Y ,fix );fip ,)). Thus Г is a tree in Y containing the 
arc f(x)fip i). Consider two cases. If xpt lies on a simple closed curve S, then 
f(x ) f ip l) d f ( S ) ,  whence f i S )  has a nondegenerate intersection with T. We see that 
TC)f(S) is a tree as a subcontinuum of T, and therefore f i S )  contains an end point 
of itself, contrary to (iii) of Proposition 1. If  xpt is contained in no simple closed 
curve, then, since it is of the first kind with respect to x, there exists an arc xq and 
a simple closed curve Sx such that xpt a x q d x q U  5, <zK(X,x; pi) and xqOSx — {q). 
Since no point of хд\{х, q) is mapped to an end point offixq )  by (iv) of Proposition 
1 and since the arc fix)fip ,) is contained in TClfixq), we conclude that fixq )c zT  
and, moreover, fixq )  is an arc with f l f i ^ f i q ) .  Thus f ( S x) has a nondegenerate 
intersection with Г, which implies, as in the previous case, a contradiction with (iii) 
of Proposition 1. So the lemma is proved.

Since Uxa U  and f\U  is one-to-one by (i) of Proposition 1, hence f\U x is a 
homeomorphism, and therefore we conclude from Lemma 1 the following

Corollary 1. Let X  and Y  be linear graphs and let f:  X -* Y  be a local expan
sion of X  onto Y. Then the cyclic order of a point is never decreased, i.e., for every point 
x(LX we have
(6) c(X, x) S  c(Y, fix )) .

Lemma 2. Let two linear graphs 7) and T2 be given such that T2 contains no simple 
closed curve, and let f:  f i ^ f i T ^ d f i  be a local expansion o f Tx into T2. Then Tx
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also contains no simple closed curve,/ is an embedding, and for every arc AczT1 we 
have
(7) ЦА) <  l{ f(A )),
where 1(A) and ).(f(A)) are defined by (3) о /[5], p. 80.

Proof. Suppose S' is a simple closed curve in X). Then/ ( S )  is a nondegenerate 
subcontinuum of the tree T2, so it is a tree. Hence it contains an end point of itself, 
contrary to (iii) of Proposition 1. Further, it is known that for every агспйсг7’1 
the partial mapping f\ab: ab—f(ab) is a homeomorphism (see [1], Corollary 4.1), 
whence/is one-to-one, and thus it is an embedding because T1 is compact. Inequality
(7) has been proved in Proposition 7 of [3] for local expansions of linear graphs onto 
itself (i.e., under an additional assumption Тг= Т 2 in our notation), but the whole 
argumentation remains true without this assumption. So the lemma is proved.

Let (X, dx) and ( Y, dY) be metric spaces. A continuous mapping / :  X-* Y  of X  
into Y is said to be an expansive embedding provided that for every two points 
y, zdX  we have dx(y, z)<dY(/(>’),/(z)). It is easy to verify that if / is  an expansive 
embedding, then / :  X ^-f(X )czY  is a homeomorphism.

Lemma 3. Let X  and Y be linear graphs and let f:  X-* Y be a local expansion o f 
X onto Y. Further, let K(X, x) and K(Y,f(x) ) be o f the second kind, and let there exist 
an arc xpaK (X , x) whose image f(xp) is contained in K(Y, fix')). Then f(K(X, x ) )c  
czK(Y,f(x)), and f\K (X , x): K(X, x )^ K (Y ,f(x ))  is an expansive embedding.

Proof. Suppose on the contrary that there exists a point qdK(X, x) such that 
f(q)£  Т\АГ(У,/(х)). Note that qAx. Since K(X, x) is of the second kind, it is a tree 
for which the point x  is an end point, and we see that xpDxqciK(X, x) is a nondege
nerate arc, the image of which under/is contained in K{Y,f(x)). Consider the com
ponent of the set xq f} f~ 1(K(Y,f(x))), i.e., the maximal subarc xr of the arc xq 
suchthat f(x r )c K (Y ,f(x )) . Sincef(q) is out of K(Y,f(x)) we see that r^ q ,  i.e., 
xr is a proper subarc of the arc xq. The set K (Y ,f(x))  being of the second kind, the 
continuum /(x r) is a tree for which/(x) is the only boundary point. Thus we conclude 
from continuity of /  that /( r)= /(x ) . Since every tree has at least two end points, 
there is an end point vv of/(xr) which is distinct from /(x). Let s£xrC\f~'1{w). So 
.r€xr\{x, r} and f(s)= w  is an end point of /(x r) contrary to (iv) of Proposition 1. 
The further part of the conclusion of the lemma is a straight consequence of Lemma 2. 
Thus the proof is complete.

Proposition 2. Let X  and Y  be linear graphs and let / :  X ^ Y  be a local expan
sion of X  onto Y. If, for a point x£X, we have

(8) ord* X  >  c(Y, / ( x)),
then, among t(X, x) sets K(X, x) of the second kind there exist at least m(x) = ordx X — 
-c (Y ,f (x ) )= t(X ,x ) -  (c (Y ,f(x ))-c (X ,x ))  o f  them, say K /X , x) for i=  1 ,2 ,... 
..., m(x), such that the partial mapping f\{J{K fX , x)\ / = 1 , 2, ..., m(x)} is an 
expansive embedding o f \fi{K/X, x): i= \ ,2 ,  ..., m(x)} into [J{Kj(Y,f(x)): 
y'=l, 2, ..., t{Y,f(x))}, where all K j(Y ,f(x)) are o f the second kind.

Proof. Let U be an open neighborhood of x as in the definition of the local ex
pansion / .  To simplify notation, put n = ordx X, c=c(X, x) and t—t(X, x). So
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n=c+t by (5). Consider an и-od at x contained in U, which is the union of n arcs 
Lk (k—1, 2, n) emanating from x and disjoint out of this point. Label these arcs 
in such a manner that the indices k ^ c  correspond to arcs of the first kind with 
respect to x : L k,L 2, ..., L c, while further indices correspond to arcs of the second 
kind with respect to x: L c+1, Lc+2, ..., Lc+t.

Since L kczU for /c= 1, 2, n, it follows from (ii) of Proposition 1 that 
f\L k: Lk -+f(Lf) is a homeomorphism. So the image under/o f every Lk is an arc f (L k) 
having f(x )  as its end point. We know by Lemma 1 that for ks.c  the arcs f (L k) 
are of the first kind with respect to /(x). Hence every arc Lk for c + \ S k ^ c  + t=n 
is mapped under /  onto an arc which can be either of first or of second kind with 
respect to /(x ). Since in an ord/(x)T-od at f ( x )  we have c(T ,/(x)) arcs of the first 
kind with respect to f{x) and since c=c (X, x) of them are already occupied (in 
the sense that they have nondegenerate intersection with the arcs f(L k) for k=  1,2, ... 
..., c), hence at most c (Y ,f(x ) )—c arcs L k with k —c + 1, c+2, ..., c+ t can be 
mapped into arcs of the first kind with respect to /(x) (note that c ( f , /(x ) ) -c s O  
by (6) of Corollary 1). Therefore it remains at least m (x)= t— (с(т,/(х)) — c) 
arcsLk. (where к£{с+ \, c+2, c+t} and / = 1, 2, .. .,  ra(x)) ofthesecond kind 
with respect to x, and every of them is homeomorphically mapped onto an arc of 
the second kind with respect to f(x). Observe that m (x)> 0  by the hypothesis. Since 
every such arc Lkl is contained in a set K(X, x) of the second kind (being the closure 
of a component of -T\{x}), we have at least mix) sets K fX , x) of the second kind 
with Lki(zKi(X, x) for i — 1, 2, ..., m(x). Since the arc f (L k.) is of the second kind 
with respect to fix ) , it is contained in some set K j(Y ,f(x)) of the second kind, where 
j€  {1, 2, ..., t(Y,f(x))}. Therefore K j(Y ,f(x)) is a tree and we conclude from Lem
ma 3 that f \K t(X,x): Kt(X, x) — K j(Y,f(x)) is an expansive embedding. Thus the 
proof is complete.

As a consequence of Corollary 1 and of Proposition 2 we get the following
Theorem  1. Let X  and Y  be linear graphs and let f:  X -* Y  be a local expansion 

o f X onto Y. Then for every point x£X  we have
(6) c(X, x) ss C(Y, /(x))
and either ordx X^c(Y,f(x')'), or — i f  ordx X > c(Y ,f(x))  — there are ordx X — 
— c( Y,f(x) ) trees being the closures of components of T \{ x )  which are expansively 
embedded under f  into the corresponding trees being the closures o f some components 
o f  F\{/(x)}. Furthermore, this expansive embedding is one-to-one with respect to the 
trees in the sense that no two different trees Kh(X, x) and Ki2(X, x) are embedded into 
the same tree Kj ( Y, /(x)).

Co ro lla ry  2. Let X  and Y  be linear graphs and let f :  X-~ Y be a local expan
sion of X  onto Y. Then for every point x£X  we have
(9) ordx X  5= ord/(x) Y.

Indeed, if ordx T ^ c (F ,/(x )) , then (9) trivially holds by (5) applied to Y  at 
/(x). Otherwise we have (8), and by Proposition 3 there exist m(x) arcs in X  of the 
second kind with respect to x which are mapped onto corresponding arcs of the se
cond kind with respect to /(x ). Thus we have the inequality m (x)st(Y ,f(x )), i.e., 
i ( I ,x ) - ( c ( f , / ( x ) ) - c ( J ,x ) ) S i ( r , / ( x ) ) ,  and using (5) we have (9).

Acta  Mathematica Hungarica 47, 1986



LOCAL EXPANSIONS ON GRAPHS 293

Corollary 3. Lei / :  X —Y be a local expansion o f a linear graph X  onto a linear 
graph Y. Then

Indeed, for every end point у  of Y  only end points of X  can be in f  1(y), i.e., 
f ~ 1(y)czE(X) for all y£E(Y) by (9), whence (10) follows.

Example 2. There exists a local expansion / :  [0, l]-*-,S of the unit interval 
[0, 1] onto the unit circumference S=  {(x,, x2): x f+ x2 =  1} such that none of ine
qualities (6), (9) and (10) can be replaced by the corresponding equality.

Indeed, put /(x ) =  exp (2nix) for x€[0, 1]. Then/ is a local expansion with the 
coefficient M= 2n for all x, and none of the three inequalities mentioned above 
turns into equality.

Example 3. There exists a local expansion / :  X-+ Y  of a simple triód X  onto a 
circle with a tail Y, and there are two points x and x' of X  such that for x inequality 
(8) is satisfied, while for x' it is not.

To describe the example, let x1, x2 be the cartesian rectangular coordinates of 
a point in the euclidean plane. Put A =  {(xx, 0): O S x ^ l} , Б={(0, x2): 0 s x 2S l}  
and C = {(0, x2) : — lS x 2^0} and define X= AU BU C  with the natural convex 
metric. Further, put Z)={(x1,0); 0SXx^2}, S'={(x1,x 2): (x1 + l)2+ x 2= l}  and 
define TA LU S'w ith the natural convex metric. Finally define / :  X-+Y as follows.

(1 +  cos 7tx2, sin 7ix2) if Xx =  0 and x2£[—1,1], i.e., if(x l3 x2) ez 5UC.
Thus f(A ) — D and f(B U C ) = S. We see that for all points x £ /l\{ ( l, 0)} we have 
(8). In particular, for x=(0, 0) we have ordx X=3 and c(F ,/(x )) =  2, and for 
х£Л\{(0, 0), (1, 0)} we have ordx X=2  and c(F ,/(x)) =  l. For x = ( l ,  0) we have 
ordx X —c(Y ,f(x)) = 1. If x=(0, 1) or x=(0, — 1), then ordx X=1 and 
c(Y ,f(x)) = 2. If x£5U C \{(0, 0), (0, 1), (0, — 1)}, then ordx X = c(Y ,Д х)) = 2.

Let us consider now a particular case of Y=X. Under this additional assump
tion one can prove some further properties of expansive embeddings of the trees 
mentioned in the conclusion of the theorem. To show these properties we start with 
the mapping of the set of end points.

Proposition 3. Let / :  X-*X be a local expansion o f a linear graph X  onto itself 
Then f\E (X ): E(X) -+E(X) is a one-to-one and onto mapping (i.e., f  permutes the 
end points o f X).

In fact, by Proposition 6 of [3] we have f(E(X))czE(X). The inverse inclusion 
is a consequence of inequality (9), whence we see that f  maps the set E(X) onto itself. 
Since E(X) is finite, the conclusion holds.

Under the assumption Y = X  we get from Propositions 2 and 3 the following 
corollary, in which notation of Proposition 2 is used.

Corollary 4. Jf f:  X-+X is a local expansion o f a linear graph X  onto itself, 
and i f  for a point x£ X  we have ord x X> c(X ,f(x)), then there are at least m (x) =  
=  ordx X— c(X ,f(x)) sets K fX , x) (/=1, 2, ..., m (x) ) o f the second kind such that

( 10) card E (Y )  ^  card E(X).

f ( ( x  i ,x 2)) =
(2xx, 0) if XjF[0, 1] and x2 =  0, i.e., if (x1, x 2)ZA,
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the partial mapping / | ( J {К{(Х,х): /=  1, 2, m(x)} is an expansive embedding of
U {Kí(X, x ): i = 1, 2, ..., m (x)} into U { K j { X ,  f i x )): j= \ ,2 ,  ..., tfX, f i x ))}, where 
all K j(X ,f(x )) are o f the second kind. Furthermore, for every i=  1, 2, m(x') and
for some properly chosen j£  {1, 2, t(X, fix))} we have f(E (K fX , x)))c 
czE(Kj(X,f(x))).

As a consequence of the above corollary we get Theorem 2 of [3], which we refor
mulate in the form of

C orollary 5. I f  f :  X-*X is a local expansion o f a linear graph onto itself, then 
there exists a point pZX  at which X  is o f the maximal order, and such that for every 
component o f A\{/>} its closure KiX, p) is o f the first kind.

P roof. Consider the set M  of all points x  of X  at which ordx X  is maximal, and 
let P be a subset of M  composed of these points p of M  for which c(X, p) is maximal. 
By inequality (9) we have f(M )czM , whence by (6) it follows f{P)czP. Suppose 
on the contrary that there is a point pZP  having a set K(X, p) of the second kind, 
i.e. such that t(X ,p )> 0. Note that the number t(X ,p) is constant for all points 
pZP by the definition of P. Now consider an arc p0e0 such that (a) p0ZP, (b) effE {X ), 
(c) p0e0 is contained in some tree KiX, p 0), and (d) A (p0 e0) is the greatest possible for 
all arcs satisfying (a), (b) and (c). Let U0 be an open connected neighborhood of p0 
such that U0aU , where Uis an open neighborhood of p0 as in the definition of the 
local expansion / .  Then f\U 0 is a homeomorphism by (i) of Proposition 1, whence 
we conclude, using Lemma 1, that f(K (X , p0)) is contained in some tree of the form 
K (X ,f(p 0)). Applying Lemma 2 we see that f \p 0e0 is an expansive embedding with 
A(p0eo)<4f(Po)f(eo)) which contradicts to condition (d) of the definition of p0e0. 
This completes the proof.

Recall that the condition formulated in Corollary 5 is not only necessary but 
also sufficient for the existence of a local expansion of a linear graph onto itself (see
[3], Theorem 1).

Frequently local expansions are considered together with openness of the mapp
ing. We shall see now that not only the order ([5], Proposition 1) but also the cyclic 
order and the tree order of a point are invariants of open local expansions of linear 
graphs. We begin with the following

Lemma 4. Let X  and Y be linear graphs and let f :  X-+Y be an open mapping of X  
onto Y. Then for every two points x  and p o f X  we have

K(Y, f(x ); f{p)) с / ( В Д  x; p)).

Proof. Suppose on the contrary that there exists a point y (/f(T ,/(x ); f ( p ) ) \  
\ f ( K ( X ,x ;  p)). Thus y-Yfix) and since K {Y,fix)\ f (p ) ) \{ f ix ) }  is just the com
ponent of T \{ /(x )}  containing the point fip ), hence there exists an arc f(p )y  in 
this component. Thus it does not contain fix ). Let us order this arc from f ip )  to y. 
Since f ip )  is in f iK iX , X-, p)) while у  is not, there exists a last point y0 of the 
arc f ip ) y  which belongs to f(K (X , x; p)). Then obviously y0Xy. Let q£K iX ,x; p) 
besuchthat fiq )= ya. Thus qXx. Indeed, if q=x, then /(x )= y 0£ /(p )j, contrary 
to the choice of the axe fip )y . Hence U = K iX ,x; p)\{x} is an open neighborhood 
of q. S ince/is open,/((7) is an open set around y0, and therefore the intersection of

Acta Mathematica Hungarica 47, 1986



LO C A L EXPANSIONS O N  GRAPHS 295

f(U ) with the subarc y0y of the arc f(p )y  is nondegenerate, contrary to the definition 
of Jo-

Taking X = [— 1, 1], T=[0, 1] and f:  X-+Y  defined by f(x )  = \x\ we see that 
for 1/2 and p —1/3 the inclusion in Lemma 4 cannot be replaced by equality.

Theorem 2. Let f : X-+Y be an open local expansion of a linear graph X  onto a 
metric space Y. Then:

1° Y is a linear graph;
2° f  is a local homeomorphism;
3° for every point x£X  we have

(11) ord* X  = ord f(x) Y,
(12) c(X, x) -  c{Y ,f(x)f
(13) t(X ,x ) = t(Y ,f(x ));

4° for every continuum Q ^ Y  the inverse image / -1(0 has finitely many com
ponents, and every one of them is mapped onto the whole Q under f ;

5° i f  a point y<G Y lies in a simple closed curve Q (contained in Y), then every 
point o f the inverse image f ~ l(y) also lies in a simple closed curve S  (contained in X), 
and f \ S : S-+Q maps openly S onto Q;

6° for every point x£X  and for a (properly chosen) point p fX  the kind o f an 
arc xp is an invariant o f the mapping f  in the following sense. Given a point x£X, let Ux 
be an open connected neighborhood o f  x  satisfying condition (4) and such that Uxcz U, 
where U is an open neighborhood o f xa s  in the definition o f the local expansion f  I f  an 
arc xpi o f (4) is o f the first (resp. second) kind with respect to x, then its image f(x p )  
is an arc o f the first (resp. second) kind with respect to f{x).

Proof. Properties 1° and 2° are known: namely the property of being a linear 
graph is preserved under open mappings ([7], Chapter X, Theorem 1.1, p. 182), 
and every open local expansion is a local homeomorphism ([1], Proposition 3.7). 
Let x  be a point of X. To prove (11) of 3° observe that one inequality is proved in 
Corollary 2 as (9), and the opposite inequality is a consequence of openness of the 
mapping and it is proved as Corollary 7.31 of [7], p. 147. Properties (12) and (13) of3° 
will be shown in the final part of the proof.

To verify 4° note that if Q is a one-point set, then the conclusion follows from (v) 
of Proposition 1, because/ is a local expansion. So, let Q be nondegenerate. Since Y  
is a linear graph by 1°, it follows that Q has the non-empty interior (cf. [2], p. 54). 
It is known that every open mapping of a locally connected continuum is quasi
monotone ([7], Chapter VIII, Corollary 8.11, p. 152) which means that for every sub
continuum 2  of У having the non-empty interior the inverse image f ~ 1(Q) has 
finitely many components and every one of them is mapped onto Q under / .  Since 
the linear graph X  is a locally connected continuum indeed, 4° is established.

To show 5° let us take a point y£ g c : У, where g  is a simple closed curve. Since 
/ -1( 0  is an inverse set ([7], p. 137), it follows by (7.2) of [7], p. 147 that the partial 
mapping / | / _1( 0  is open. Since / _1(S) has finitely many components by 4°, say 
C i,C 2, we conclude that every one of them is an open subset of f ~ J(Q),
whence it follows that f\C k: Ck-*Q is open for every /с= 1, 2, ..., m. Moreover, 
we have f(C k)=Q for every к by 4°, and we see that every component Ck is a linear
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graph as a subcontinuum of X. Therefore (11) can be applied to the open local ex
pansion f\C k of Ck onto Q (fc=l, 2, m), whence we have ordpCk=2 for every
point p k c k. Thus every Ck is a simple closed curve ([4], §51, Y, Theorem 6, p. 294). 
Now let x€ f~ 1(y )a f~ 1(Q)=\J{Ck: k=  1,2, m). Then x£Ck for some k,
and 5° follows.

One part of 6°, namely for arcs of the first kind, has been proved previously as 
Lemma 1 (even without openness of/ ) .  To prove the other part, for arcs of the second 
kind, let us take an arc xpt of the second kind with respect to x and observe that the 
set K(X, x; p() is a tree. Denote it by T. Obviously xpta T .  Since x p ^ U ,  hence/  
maps xpi homeomorphically onto an arc f(x)f(p i) (see Proposition 1 (ii)). Suppose 
on the contrary that f( x ) f (p t)  is of the first kind with respect to f(x), i.e. that it is 
contained in the closure K=K(Y,f(x)', f{ p ,)) of the component of У \{/(х)} 
containing the point f ( p t) and such that a simple closed curve Q is contained in K. 
By Lemma 4 we have K a f(T ). Thus f(T )  contains Q. Let yX f(x)  be a point of Q, 
and take a point xx of T  such that /(x 1) = j .  Thus x x^ x .  Since the closure T  of 
the corresponding component of X \{x} is a tree, and since x /  T, there is no simple 
closed curve in X  containing xx; but this contradicts 5°. Therefore 6° is established.

Now equalities (12) and (13) of 3° are immediate consequences of 6° by (11) and 
(5). Thus the proof of the theorem is complete.

Remark that the role of X  and Y  are not reversible in 5° of Theorem 2 in the sense 
that if f :  X-+Y is an open local expansion from a linear graph X  onto a linear graph 
Y  and if a point x€ X  lies in a simple closed curve contained in X, then f(x )  need 
not lie in anysimpleclosed curve in Y. To see this take four different points a0, ax, a2, a3 
and join them by arcs (named edges) as follows: every at is joined by exactly 
one edge with u3_; and by exactly two edges with ax_t, where indices are considered 
modulo 4, and where the edges are assumed to be disjoint out of their end points. No 
other edges are considered, in particular there is no edge joining a; with ai+2. Let X  
be the union of all six edges. Metrize X by  a convex metric assuming that the length of 
every edge is equal to 1. So X  is a linear graph. Note that every point of X  lies in a 
simple closed curve. Further, let A and В be two disjoint circumferences of length 2 
each and let C be a straight line segment also of length 2 joining a point p  of A with 
a point q of B. Metrize the union Y= AUB'AC  by the convex metric generated by 
lengths of arcs in A, В and C respectively. Let a mapping f :  X-»Y  of X  onto У 
be defined as follows./(u 0)= /(ű1)= p ;/(a 2)= /(ű 3) =  9,;/expands each of thetwo edges 
joining a0 and ал twice, mapping it onto A, each of the two edges joining cu with a3 is 
expanded onto B, and finally the edges axa2 and a0a3 are expanded onto C. It can be 
easily seen that / i s  an open local expansion (with the coefficient of expansion M = 2 
at each point х£У), and that the interior points of axa2 and a0a3 are mapped on 
some interior points of C, so their images do not belong to any simple closed curve 
in Y.
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AND THEIR CODES*

H. JÜRGENSEN (London, Ontario), H. J. SHYR (Taichung) and 
G. THIERRIN (London, Ontario)

1. Introduction

In this paper we prove several properties of monoids with disjunctive identity. 
As is well-known a disjunctive identity of a finitely generated monoid corres
ponds to a biprefix code, in fact a strong code in the sense of [16, 17]. Whereas finite 
strong codes have been characterized completely [16, 17], little is known about infi
nite strong codes in general.

In this paper, several properties of strong codes in general, as well as of a special 
class of strong codes are proved. To a great extent, the Dyck languages are charac
teristic for the structure of these special strong codes. Some insight into the structure 
of these codes as well as that of monoids with disjunctive identity will also be gained 
from considering special monoid presentations, a subject which has recently received 
renewed interest for applications in other areas of computer science, too [3].

2. Notation and definitions

Let X be an alphabet, that is a non-empty set. X* denotes the free monoid gene
rated by X. Let W+=W*=X*\{1}.

If S' is a semigroup then S 1= S  if S  is a monoid, and 5 1=S'U {1} otherwise 
with 1 acting as the identity of S 1. For L Q S , xZS, let

L..x = {(и, v)\u, vZ S1, uxvdL}.
The principal congruence aL of L  is defined by

xaLy ** L..x  =  L..y.
The residue of L  is the set

W(L) = {xlxíS, L..x = 0}.
L  is said to be disjunctive in S  if aL is the equality; it is quasidisjunctive in S  if

xaLy  -*■ x=  у or x, y£lV(L).

For x£S  and any equivalence о on S let [x]e be the e-class of x and for M Q S  let 
M /q be the set of g-classes of elements in M ; thus, in particular, {x}/g = [x]e. L/gl

* This research was supported by grant A7877 of the Natural Sciences and Engineering Coun
cil o f Canada and also by Deutsche Forschungsgemeinschaft.
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is disjunctive in S/crL. As W(L) is either empty or an ideal of S  the set W(V)/aL 
is either empty or consists of a single element, the zero of S/aL, and W(L)/aL= 
= W(LjaL).

We shall also have to consider the congruence o£ of L  for L T S  defined by 

xa£ у  -*-*• (V и, v£S: uxv£L ** uyv£L).

Clearly and aL coincide on monoids. o f  is the principal congruence in the sense 
of Dubreil (see [5]). Whereas L  is always a union of uL-classes, it need not be a union 
of -classes at all.

A semigroup is said to be totally disjunctive if each singleton subset of it is dis
junctive. If there is no risk of confusion we do not distinguish between a singleton set 
and its element notationally.

3. Monoids with disjunctive identity — basic properties

The examples one would have in mind when starting to consider monoids with 
disjunctive identity would be:

— groups,
— the bicyclic monoid B,
— the polycyclic monoids.

We shall prove some propositions which seem to indicate that the monoids listed 
are somehow characteristic for the class of monoids with disjunctive identity, and we 
shall later give further classes of examples.

Lemma 3.1. Let S be a semigroup with a non-zero disjunctive element. Then S 
has a unique [0-^minimal ideal which contains all disjunctive elements o f S.

Proof. Let Ot̂ LX  {0}, L 'T S h e  disjunctive. If I  is a non-zero ideal of S  then 
0 fi L P l/^  {0}. Hence, if L — (x) then x is in the intersection К  of all non-zero ideals 
of S. Therefore K = S 1x S 1 and К  is the unique [0-]minimal ideal of S. □

As an immediate consequence of 3.1 one observes that for x disjunctive in S  
either W(x) = 0 or W(x) = {0} if S  has a zero. For | W(x)| ̂  1 by disjunctivity. 
If W {x)^0  then JF(x)={0} as W(x) is an ideal of S.

Proposition 3.2. Let M be a monoid with disjunctive identity. Then M is a simple 
or 0-simple monoid.

Proof. By Lemma 3.1, the identity is in the unique [0-]minimal ideal of M. 
But M \M = M , so M  is simple or 0-simple. □

Evidently, Proposition 3.2 generalises to monoids with quasidisjunctive identity. 
In that case MJW{X) is a [0-]simple monoid. That not every simple monoid has its 
identity element disjunctive will be shown later in Example 6.2.

For a while we conjectured that Proposition 3.2 could be strengthened to say 
that a monoid with disjunctive identity is an inverse [0-]bisimple monoid. This would 
combined well with the following result due to В. M. Schein:
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P roposition 3.3 [15]. Each non-zero element o f a [0-]bisimple inverse semigroup 
is disjunctive.1

Semigroups with each element disjunctive, called totally disjunctive in [10], 
were studied to a certain extent in [9, 10].

The above conjecture is "settled” by the following counterexamples.
E xam ple  3.4. Consider the Bruck-extension ([5, §8.5] and [10]) BR(M, 9) of the 

monoid M={1,0} with 10=01 =  00=0, 11 =  1 and 0(Af) =  l. M  is totally dis
junctive, and therefore BR(M, 9) is totally disjunctive [10]. However, BR(M, 9) is 
not [0-]bisimple as M  is not bisimple [5].

The following example shows that even a simple monoid with disjunctive iden
tity need not be inverse.

E xam ple  3.5. Let X — {x, y} and consider the monoid M  with the presentation 
(X\x2y=  1). Each element of M  can be represented by a word w of the form

y n x y m 1 хутг ... x y mk X1
with n, k, /SO, ml5 m2, ..., mk^ l .  Multiplying w by

v 2m. —1 v 2m, —1 v 2mt — 1 nX  X  ь . . .  X  2 Л- i  X

from the left and by y l from the right yields 1; hence M  is simple.
The Si- and Ä’-classes of w are

i?w = {ynxym 1 ... xymkx:\l ^  0}
and

L w — {yHx y mi ... xymkxl\it — 0};
hence M  is not bisimple; in fact the S'-class of w is

Dw = {уяхут 1... xymkxl\n, l ^  0}.
M  is regular, each £?-class containing idempotents of the form

y”x y mi ... xymi<xi with / = 2 (n +  m1 + ... + mk) — k.
We now show that M  is not an inverse monoid and that this also obtains for the 

monoid X*/oL where L  is the set of words in X* which represent the identity of M. 
There are surjective homomorphisms q>, <pL, (pM,

such that (pL is given by w^*[w]â , cpM is defined by the presentation of M, and 
cp(m) =  <pLcpf1 (m). In particular, (Ptf (\)=L. Clearly, yxx and xyx  denote non
commuting idempotents in M. So M  is not inverse.

1 The definition o f disjunctivity is slightly different in [15]. However, it does not matter for this
case.
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On the other hand yxx  and xyx are both not in L, and from (x)(yxx) (xy) yyxyx $ L, 
(.x)(xyx)(xy)= l£L  we see that <p(yxx) A q>(xyx). Similarly, (p ((xyx) (yxx)) A 
A (p ((yxx) (xyx)) —cp (yxx). Hence X*/oL is not inverse; however, 1 is disjunctive 
in X*/cL by the construction.

Even though the disjunctivity of its identity has quite severe implications for the 
structure of a monoid M  it turns out that this property is still weak enough to allow 
for the following embeddability theorem.

Proposition 3.6. Each monoid can be embedded into a bisimple monoid with a dis
junctive identity.

Proof. Consider the monoid Ji(A) of [5, §8.6], that is, A is a set with \A\ an 
infinite regular cardinal number and Ji(A ) is the set of mappings £ of A into itself 
such that \£(A)\=\A\ and |^_1(a ) |< \A\ for all a£%(A). Each monoid can be 
embedded into Ji(A) for some A, and Ji(A )  is a bisimple monoid [5] with identity i, 
the identity mapping. It is sufficient to prove that i is disjunctive in J/(A). Consider 
5, ££Л(А), 07*1;, <5(a)A£(a) say. Let C be a cross-section of containing a. 
Let r\ be any bijection of A onto C and a=t]~1(a). Clearly t]d,Ji(A). We now choose 
б£Л(А) such that 6£r] = i and d ^ A i .  For b££(A) let 6(b) = >i~1£~1(b); for 
b$t;(A) let 6(b)—b' for some b'£A suchthat b'Aa.

Clearly 0 is a mapping as \rj~1Q~1(b)\= 1 for all b£%(A), and в£Л (А ). For 
c£A obviously 6^t](c) = c and 6 r̂j = i. Now consider 6öi](ä) = 60(a). If ö(a)$£(Ä) 
then 60(a) — b'Aa  and ОдщАг. Otherwise <5(a)AC(a) implies that £~1<5(а)П 
П<̂ _1̂ (а) =  0 and thus ä = 6^ri(a)=ri~1̂ ~ 1̂ (a)^ri~1̂ ~1ö(a); again 0<5r]Ai. □

It is interesting to note that J t  (A) is in fact totally disjunctive; thus each monoid 
can be embedded into a totally disjunctive bisimple monoid.

4. The pre-image of 1

Let M  be a monoid with disjunctive identity. We decsribe the properties of lan
guages _LQX* for an appropriate alphabet Z_such that X*/oL^ M  and LfaL— 1.

If M is a submonoid of a monoid M, then M is said to be expansion and contrac
tion closed if it satisfies the following two conditions:
(S0) \/x, y, m£M(xy£M, m &YÍ -► xmy£M),
(W0) \/x, у, m fM (xm y(xM, m£M — ху£М),

Proposition 4.1. Let М х, М2 be monoids, ср a homomorphism of M x onto M2. 
I f  M,, has a disjunctive identity then Mx has an expansion and contraction closed sub
monoid M, such that <p- 1(l)= M . In this case then M2ssM J gjj with M /om— L

Proof. Let 1 be disjunctive in M2 and define M=(p~1( 1). Clearly M  is a sub
monoid which satisfies (S’j) and (%f). As 1 is disjunctive in M2, the congruence defined 
by (p is the coarsest one saturating M. Therefore it coincides with aM. Hence the rest 
of the claim. □

The statement of Proposition 4.1 has a converse as follows:
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P roposition  4.2. Let M  be a monoid and M a submonoid of M  which is expansion 
and contraction closed. Then M/ о M is a monoid with disjunctive identity.

P r o o f . It_is sufficient to_prove that M is а <ти -class. If (x, y)£M..m  for 
x,y^M^_ m£M then xmy£M  and therefore xydM  by (Ф0) . This implies 
(х ,у )е м .л .  _  _

On_ the other_hand, if (x, y)£M .. 1_ for x ,y£ M  then xy fM  and therefore 
xmy£M  for m£M by(<o0)-Thus(x, This proves \aMm forallm inM . □

The family lF0M  of expansion and contraction closed submonoids of a monoid M  
is a complete lower semilattice with smallest element {1} with respect to intersection. 
If {М;|/6/} is any family of MfdL0M, then M= П M t is non-empty, as 1 £Мг 

_  _  /€/
for all Mt. If xy£M  and m£M then xy^M t and m.£M\ for all/; by (S'n) xmy£Mt 
and therefore xmy£M. The proof for (7?0) is similar.

_A submonoid M of a monoid M  is called left unitary if m£M, mm£_M implies 
m£M. By duality one defines “right unitary”. M is unitary if it is both left and right 
unitary. A code is called biprefix if it is both a prefix and suffix code.

P ro po sitio n  4.3. Each M£dF0M  is a unitary submonoid of M.
P r o o f . Consider m£M, m£M  with mm=\mm£M. By (7?„) also 1 m£M. 

Thus M is left unitary. Dually, mm£M  again implies m£M, and M  is right uni
tary. □

C o ro llary  4.4 (see also [6]). Each M£lF0X* is generated by the biprefix 
code where M ~ = M \{  1}.

For codes the properties (S’g) and are expressed as follows: Let X  be an alpha
bet, C Q X + a code. C is said to be strong [16,17] if C satisfies the following two con
ditions :
(S’.) fix , y, m£X + (xyd C, m£C -* xm y£ C +),
(j£j) fix, y, m£X*(xmy, m dC + — xy£C*).

Every strong code is a biprefix code. However, not every biprefix code is strong; 
for instance C={ab} over X= {a, b) is not strong but of course biprefix.

As one might intuit, strong codes are closely related to expansion and contrac
tion closed monoids.

P ro po sitio n  4.4. Each M£2FtíX* is generated by a strong code; conversely, 
i f  CQ X* is a strong code then C*£&r0X*.

Finite strong codes were completely characterised in [16, 17]. Let X  and C Q X + 
be finite, and let a\fi\\C= {u£X\X*uX* Then, if C is a strong code, C=
= (alphC)n for some n. The converse is obvious. Clearly X*/ec* = Z„ or Z®, 
where Z„ is the cyclic group of order n and Z" is Z„ with a zero element added, 
depending on whether alph C = X  or alph Cj±X.

As will be seen in the sequel, the situation is far more complicated if C  is infinite.
Example 4.5. Consider the context-free grammar G=(F, X, P, a), where 

X={a, b}, V= [a, b, о, т} Р={а-*атЬ, т —гг, t-+aib, t -*1}. Clearly, L  (G) satis
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fies (<#j) and So L (G) is a strong code, and L(G)* is the Dyck language [7]. 
X*/aL(G)* is the bicyclic monoid with L(G)*/<tI{G)* — 1. We shall call L{G) the Dyck 
code over {a, b}.

E xam ple 4.6. Consider L={w\w£X*, |w|e= |w |b} where X={a, b) and |w|„, 
\wb\ denote the number of a’s and b's in w, respectively. L  is a deterministic context- 
free language. X*/oL is isomorphic with Z, the infinite cyclic group, and LjoL=0, 
the additive identity of Z. Thus L is generated by a strong code C, which by the above 
results of [16, 17] is not finite.

That expansion and contraction closed monoids or strong codes may be arbi
trarily complex seems obvious; still we postpone a more precise statement to this ex
tent to the next chapter. However, already at this stage, we should like to mention 
the example of a language L Q {a, b}* provided by [8] which is not context-free, 
but is the <rL-class of 1:

E xam ple 4.7. Let M  be the monoid generated by 1 =  {a, b) subject to the rela
tion ab2a2b= 1. Let L  be the set of words equivalent to 1. Then L/ol =1 and M  
is an infinite group [8, 20].

5. Getting closer to the Dyck languages

Example 4.5, that is the Dyck language over X =  {a, b}, suggests to strengthen 
the expansion and contraction conditions as follows:
(<f2) Vx, y, m £X + (xydC, m£C xm y^C),
('g’a) Vx, y, m£X*(xmy£C, m £C,xy  5̂  1 •— xy€C).
In addition we introduce the condition of infix closure:
(J )  Vx, у, m£X*(xmy£C, xy€C, т £ Х + -* m€C).

Clearly, if C satisfies (<f2), (rd2) then it also satisfies (<oj), (<'éj). The converse is not 
true in general. To see this take L  as in Example 4.6. Then abdC, bafC  for C the 
code generating L, but a(ba)b=(ab)2$C.

On the other hand, evidently the Dyck code over {a, b] satisfies the conditions 
(<?2), (rd2). It is slightly more difficult to see that the code of Example 3.5 satisfies (6"2) 
and (%), too; if L is the language of that example then the code C with C*=L is 
given by C —xLxLy where L can also be characterised as the set of all words w 
over X={x, y} suchthat |w|x=2|w |J, and |м|жё2 |и |у for all prefixes и of w. This 
allows one to show that (#2) and (S2) obtain.

With (Sfi we associate a partial ordering ^  of X* with respect to CQX* as
E

follows: Let x, y£X*. The relation s  is the transitive closure of s '  where
E E

x S i 'y  if and only if
E

(a) x, y$C  and x= y  
or

(b) x —xxx2, xx, x 2€ X +, y = x 1mx2 for some m£C.
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Clearly,
cf 2C =  {y\y£X*, x ^  у  for some x£C}

E

is the smallest subset of X* which contains C and satisfies (S2). Let 
Min£ С =  {jc|jc€ С, у  л: — у  =  л: for у€ С }

be the set of minimal elements of C. Obviously, Min£ C is well-defined and non
empty for any Cf£0, {1}.

For instance, Min£ C = {ab} for the Dyck code C over X =  {a, A}.
L emma 5.1. I f  CQX* satisfies (S2) and (&2), then S2 Min£ C =C.
P ro o f . S2 Min£ C g C  is obvious. Let w£C. If w6Min£ C then w6<?2 Min£ C. 

Otherwise, w=xmy with xy€C, x, y £ X +, m£C. But |xy|< |w |, |m|<|w|. By 
induction xy<E<f2 Min£ C, m t£ aMinEC. Thus xmy=wüS2 Min£ C. □

In terms of grammars, Lemma 5.1 can be expressed as follows: Let C Q f*  
satisfy (S2). Then C=L(G) for the following (generalized) context-free grammar 
GC=(V, I ,  P, a):

V = {<r,t}U I ,

P — {a -*■ w|w6Min£C}U { t  -*■ w|w£Min£C}U

U {<т -*■ w1zw2\wi, w2£A'+, WiWgíMinECjU

U {r — w1zw2\w1, w2€ Z +, и»! w2€Min£C}U {t tt}.

Gc is “generalized” in that P may be infinite if Min£C is. Clearly, if Min£ C itself 
is context-free, then Gc can be made a context-free grammar with finitely many pro
ductions, and L(GC) is context-free.

The construction of Gc shows that if C happens not to be context-free then this 
fact is caused by Min£ C not being context-free.

P roposition  5.2. Let C g  J *  satisfy (S2). I f  Min£ C is generated by a type i 
grammar, / = 0, 1,2, then also C is generated by a type i grammar.

That Min£ C for a code C satisfying (S’..) need not be context-free can be seen in 
the following example:

E xam ple 5.3. Consider a subset C  of the set C= {a"babn\n^2). As C is a subset 
of the Dyck code, which satisfies (S2), also S2C ' is a code. Clearly Min£ S2C '= C  
and C  can be chosen non-contextfree. Observe that the smallest subset of {a, b}* 
which contains C and satisfies both (S2) and (г#2) is the Dyck code itself. To be slightly 
more specific: Let C  be the smallest subset of {a, b}* which contains C 'Q C  and 
satisfies (S2) and (rS2), and let

к = gcd{n — m\n > m, anbab"£C', ambabmdC '}

if |C '|>1. In this case

МтЕС '^ { а кЬк}0{апЬаЬп\апЬаЬп̂ С', n == N )
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where
N =  min{n|gcd{« — m\n ^  и >  m, anbabn£C', ambabm£C'} = k}

ThusMin£ C ' is finite and 67' is context-free. This is trivially true for |6?'| =  1 as well.
As property (S2) implies (S’,), by Proposition 4.4 a code satisfying («#„) is strong 

and hence biprefix. However, the following proposition shows that (<f2) is still far 
more restrictive.

Proposition 5.4. Let C be a code over X  satisfying (<f2). Then for all u £ X + at 
least one o f the sets Х +иПС and uX+f]C is empty.

Proof. Suppose uv£C, wudC for some v, \v£_X+. Then, by (<f2), w(uv)u= 
=(wu)(vu)£C, contradicting the fact that C is a prefix code. □

This implies that all words of a code C satisfying (ß2) are primitive, that is, if 
ur£C for some u£X+, r ^ l  then r= 1. Such a code is antireflective [21], that is if 
uv£C then vu$C  for u, v £ X +.

Observe that it follows from Proposition 5.4 as special cases that:
(1) the only code C over X= {a} which satisfies (<f2) is C={a}, and that,
(2) in a code C over X  = {a, b} satisfying (<f2) each word begins with a and ends 

on b or vice versa, or C T  {a, b).
The second statement indicates that codes over X= {a, b) and satisfying (6"2) 

have a bracket structure with right and left brackets distinguished similar to the case 
of the Dyck code.

Proposition 5.5. Let СЯ=Х* be a code satisfying (<?2), C%X. Then C is not 
regular.

Proof. C f X  implies that C is infinite by (<?2). Suppose C  is regular. Consider 
w=xy£C, |x| =  1, |y|>0. By (^2), also x"yndC for all n 5 l .  By the pumping 
lemma for regular languages [7] xmk+ly"£C for some m, l with m ^ l, l+m =n, 
all к and n large enough. But then C is not a suffix code, a contradiction. □

Proposition 5.6. Let С T  X* be a strong code satisfying (<f2). Then the group o f 
units o f X*/oc* is trivial.

Proof. Let M=X*/ac* and suppose that M  has a non-trivial group of units. 
Equivalently, there are u, vd_X* satisfying u, v^C *, uv, vu£C*. Let \uv\ be minimal 
with respect to this property. Hence u, v, uv, vu do not have any proper subword in C. 
Therefore uv, vudC, contradicting Proposition 5.4. □

As a simple interesting consequence of Proposition 5.6 we note that for a 
strong code C satisfying (<f2) and such that X*/ac* is bisimple or 0-bisimple, all 
groups of X*/ac* are trivial, that is, X*/ac* is aperiodic. One should also observe 
that the code generating the language L of Example 4.7 does not satisfy (<?2) as the 
corresponding monoid X*/(jL is in fact a non-trivial group by [8, 20]. Similarly, for 
the code generating the language {vv| |w|„= |w]} over the alphabet {a, b} the condi
tion ((fa) does not obtain (see Example 4.6).

The following examples show that conditions (<a2), (%), and (J )  do not imply 
each other. We shall then prove that (<?2) and ( J )  are contradictory for every non
trivial code C.
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E xam ple  5.7. Consider the alphabet X={a, b). The code {a2b2, a2b3} does 
not satisfy (^2) not (J )  but satisfies (<f2). The code {a"b"\n ё  1 }U {a2bab2} is (Tf2) 
but not (J )  nor (S’.,). The code {a"b"|л ё  1} U {b2aba2} is (J) but neither (T2) nor 
(^2)- Finally {anbn\n'^.\} is both (ß2) and (J),  but not (&£).

P roposition  5.8. Let CQX* be a code such that C |T .  Then C does not satisfy 
both (S2) and (J).

Proof. By Proposition 5.4, an^C  for a£X,  n ^ 2 .  Hence by C % X  there is 
w£C such that w contains at least two different symbols from X. Suppose

w = a"ia$ ... a f , a,- 7̂  ai +i, к = 2.

By (<?2) we may assume that 4 and Иц nk=2. Let m ,m > 0 with m+in=n
Then the word

ai(a"ia2t ... a"k) a f a\*.. ■ akk
is in C and is equal to

alfa 'l'a^... ű^űf)ű22 ••. a f .
By ( J )  this implies that

a ™ .. . afcafeC,

contradicting Proposition 5.4. □
The essence of Proposition 5.8 is, that a code satisfying ( J )  cannot have simple 

“pumping” properties. A special case is treated in the following statement; recall 
that LQX*  is regular-free if no infinite subset of L  is regular [18].

P ro po sitio n  5.9. A code C satisfying (./) is regular-free.
P ro o f . Suppose C  is an infinite regular subset of C. By the pumping lemma for 

regular languages there is u=xvy£C' with vA  1 suchthat xvnydC ' for all лёО. 
Hence xy£C' and by (,/) it follows that v"£C for all nSl .  Therefore C is not a 
code, a contradiction. □

The combination of (S2) and (fd2) is also quite restrictive as can be seen from the 
following example: Let C f X *  be a code satisfying (S%) and (T2) where {a, b}QX.

m  ri
If ambr, anbs£C with m , r , n , s ^  1, then — = —. For, by (^2) one has amnbn\  amnbmsdC.r s

171 TlIf —- ^  — then also ms Anr, ms>rn without loss in generality, and C is not a prefix r s
code, a contradiction. Thus, if C contains ambr with m chosen to be minimal then

Cf]a*b* =  {akmbkr\kCN}.

A finite strong maximal code C over the alphabet X  is always equal to X" for 
some n. No infinite code satisfying (<?2) can be maximal neither as a code nor as a pre
fix code nor as a suffix code. This implies, for instance, that the Dyck code D over 
X= {a, b} is not maximal; this is, of course, obvious anyway, as DU {a} is a suffix 
code. Similarly the code

C — {b}(J {ab"a\n ^  0}
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over X — {a, b] which is given as an example of a maximal biprefix code in [14] 
cannot satisfy (<?2) as it is maximal even as a code; that (<?2) does not hold for this 
code can also be derived as a consequence of Proposition 5.6 as X*/oc*=Z2, the 
cyclic group of order 2.

There is no obvious relationship between X*/oc and X*/oc* even if C is a strong 
code. For instance, for C as in the last example, Х*/ас is ^-trivial and thus is aperio
dic whereas X*/ac* is a non-trivial group. However, if C satisfies (<f2) and (fi2) then 
there is a closer connection.

Proposition 5.10. Let C be a code satisfying both ( S f  and (T2). Then C is a oc- 
class and C + is contained in a -class in X +/a£, that is the class of C itself.

Proof. Suppose that u,v£C  and (x,y)£C..u. If x ^ l  then xuyf_C 
implies xvy by (fi2) and (<#2)• If x = l  or у — 1 then x = l  = y  as C is a prefix and 
suffix code and again xuy£C  implies xvydC. Thus C is contained in a single oc- 
class which proves the first statement. For the second statement consider c£C, 
u£C+ and x, y £ X +. If xcy£_C then xuydC  using (fiS2) once and (<f2) possibly 
several times. Conversely if xuy^C then xcydC. Hence ue£c for all u£C+, 
c£C. □

From the first part of Proposition 5.10 one may expect that the properties (<f2) 
and (T2) have a formal counterpart in X*/<rc . This is the contents of the next propo
sition :

Proposition 5.11. For a finitely generated monoid M  the following properties are 
equivalent:

(1) There is a finite alphabet X  and a code C Q X + satisfying (<?2) and (^ 2) such 
that X*!ac = M.

(2) There is an element m£M  with the following three properties:
(a) mm2 =  m=/ii1m->mi =  m2 = l,
(b) m = m1m2 with т1Х1т6т2—т1тт2=т,
(c) Wjmm.2 =  m with т1т±1?±т2->-т1т2 = т.
Proof. Let C be given according to property (1), and let m=C/oc by Proposi

tion 5.10. C being a biprefix code yields (2a), whereas (S2) and ( f 2) imply (2b) and 
(2c), respectively. Conversely, given M  and m f M  according to (2), let X  be a set 
of generators of M  and cp: X*-+M the homomorphism induced by the inclusion 
XQM.  Consider C = q>~1(rri). By (2a) C is a biprefix code, hence a code. Properties 
(2b) and (2c) imply (<f2) and (%>), respectively. □

Finally we observe, that if C is a strong code which satisfies (<?2) then C * is very 
pure and C is a circular code [2]. A fortiori, this is true if C  satisfies both (<f2) and (fi>2).

6. Special monoid presentations

Let X  be an alphabet (finite or infinite) and R a set of relations over X*, that is, 
of equations of the form u=v  with u, v^X*. The pair is the presentation of
the monoid M síX*/qr where o R is the finest congruence on X* such that u q r v  
for all u, v£X*  with u = v£R.  Presentations (X\R) such that u—vdR implies that
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v= 1, the empty word, were called special in [1], trivial in [6], unitary in [3]. They will 
be referred to as special in the sequel.

The bicyclic and polycyclic monoids, the groups, the monoid (x, y\x2y=  1) of 
Example 3.5 and the monoid (a, b\ab2a2b = l)  of [8] can serve as examples of mo
noids with special presentations. In general little is known about monoids that have 
a special presentation. From a slight generalization of Example 3.4 we shall see that 
there are even simple monoids which cannot be presented in this way.

L emma 6.1. Let M  be a monoid. M  has a special presentation {X  \ R) and a disjunc
tive identity i f  and only i f  QR — aL with L the QR-class o f 1.

P r o o f . By definition qr for all congruences т on X* such that L  is a 
т-class. If 1 is disjunctive in M  then M  has no proper congruence т with 1 as a т-class 
and thus qr = ol . On the other hand, if oR = aL, then 1, being the aL-class of L  is 
disjunctive. □

Using Lemma 6.1 we can find a monoid with disjunctive identity which does not 
have any special presentation.

E xa m ple  6.2. Consider the Bruck-extension BR(M, 6) of the monoid 
Af={l, zl5 z2}, zizj = lz i=zi\= z i for /,y '= l,2 , 11 =  1 with 6 (M) = 1. BR(M ,9) 
is a simple monoid with identity (0, 1, 0). However

(n, zl5 m)<T(0>1>0)(n, z2, m)

for all n, m. So the identity is not disjunctive. On the other hand, as the u(0>10)-class 
of the identity is just {(0, 1, 0)} it follows that for any presentation of M  the
qr -class L  of 1 coincides with the <rt -class. Thus, 4T/<t(010) does not have a special 
presentation. In fact, М/сг(01>0) is the monoid considered in Example 3.4. It can be 
presented by

(X\{ab =  1, zb =  b, az =  a, z2 =  z})

where X= {a, b, z}. Let q be the congruence corresponding to this presentation. The 
о-class of 1 is the set C* where C is the smallest strong code containing the set

L  = {anzlbn\n & 1, I 0}U{a"6"|ns:l}.

Each g-class has a unique representative of the form b"am or b"zam for п,тШ0.
Now consider the presentation (X\{u=l for u£L}) with its corresponding 

congruence q'. By construction q' ^ itc*, and the (/-class of 1 is again C*. One then 
computes that the set z* (bz*)* (az*)* forms a cross-section through the set of q - 
classes. This may help in visualizing the gap between q' and crc*.

L em m a  6.3. Let M  be a monoid with disjunctive identity. Then there is a special 
presentation (X\R) o f a monoid M ' and a surjective homomorphism cp: M '-*M  such 
that <jo_1(p(l)= 1.
f-lZ P r o o f . Let X  be a set of generators of M  and let ф: X*-+M be the extension 
of the inclusion IQ M . Then consider the presentation (X\R) with R=  {w|i/í(w)=  1}. 
Clearly QR^ a R which proves the lemma. □
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A monoid homomorphism with the property that cp L/>(1)= 1 will be called 
identity separating. Thus the Lemmas can be combined to yield:

P ro po sitio n  6.4. Let M  be a monoid with disjunctive identity. Then M is the least 
identity separating homomorphic image o f a monoid having a special presentation.

We now proceed to characterize special presentations of simple monoids.
Let X  be an alphabet (finite or infinite), and let u, v £ X +. We say that и meets

v if
(1) veX*uX* 
or
(2) и =  щи, v — üvx for some й £ Х +, щ , v ^ X *  
or
(3) и = йи2, v = v2ü for some й£Х +, u2, v2£X*.

Let LQ X*. The word и is said to meet L if и meets some v£L. Finally, if (X|Ä) 
is a special presentation, then и is said to meet R if и meets the set Ll{ = {v\v= 16 A}.

P ro po sitio n  6.5 .A  monoid M is simple i f  and only i f  it is the homomorphic image 
of a monoid M ' having a special presentation (X|2?) such that every w£X + meets R.

P r o o f . Let X  be any set of generators of M, cpM the surjective homomorphism 
of X* onto M  which extends the inclusion XQ M , and let 1), i?={w = l|
w£L}. Clearly, M  is a homomorphic image of M ' where M ' is the monoid presented 
by (X\R). Consider w<P_X*. As M  is simple there are a, b£M  suchthat a(p(w)b = 1 
but then (p~1(d)wcp~1(b)l̂ R  and w meets R.

For the converse observe that each homomorphic image of a simple monoid is 
also a simple monoid. It will therefore suffice to prove that a monoid M  having a 
special presentation (X|i?) such that every w meet R is simple. Let <pR be the homo
morphism of X* onto M  given by R. Suppose M  is not simple. Then there exists 
m£M  such that MmM  does not contain the identity element. Choose w€X* in 
such a way that w has minimal length and satisfies 1 $McpR(w)M. Clearly, X*wX* 
does not contain a word v such that (v—1)(; R. As w meets R, however, there exists 
a relation (i;=l)£Ä suchthat w—wu, v=uv or w=uw, v=vu for a non-empty 
word u£X+ and some w, wf_X*. Suppose the former (the other case being the dual). 
Then (pR(wv) = cpR(w) and |vPj<|w|. From the minimality of w it follows that there 
exist a,b£M  suchthat 1 =  a(pR (w) b — a<pR(w) <pR (v) b, a contradiction! □

A special presentation (X|jR) is called complete if every word in X* meets R. 
Let L={w\w=\£.R) if (X|2?> is a special representation. A subset of X* is dense, 
if it intersects every ideal of X*. By Proposition 6.5 the gap between q r  and aL can 
be narrowed down a bit.

P ro po sitio n  6 .6 . Let С С  X* be a strong code with C* dense. Then X*/crc*, 
the syntactic monoid o f C*, is the least identity separating homomorphic image o f a mo
noid M  which has a complete special presentation.

We conclude this section with a theorem relating the groups of units of X*/qr 
and X*/ql to each other.

Acta Mathematica Hungarica 47, 1986



M ONOIDS W ITH DISJU N CTIV E ID ENTITY 311

Proposition 6.7. Let (Х|Я) be a special monoid presentation, L =[1]CK, and let 
Gr , Gl be the groups o f units o f X*/qr and X*/aL, respectively. Then GR = GL. To 
be more precise: [u]aif G L implies [u]a i=[d\t , and [u]eR̂ GR if  and only if  
W \'fG L.

P r o o f . Clearly, when passing from qr to oL, GR is mapped into GL. Now con
sider u, v£X* such that [u\ai, [v \ ab, are inverses of each other in GL, that is,

Ух, y€X*: xuvy£L ** xvuy£L ** xy£L.
Letting xy=  1, this implies uv,vu£L, hence u v q r v u q r  1. Thus [и]0н, [v]Qn are units 
in Gr and inverses of each other. This proves that GR is mapped onto GL and that no 
element outside GR is mapped into Gl . Finally consider u,v,w£X* such that

[«kJ»]**, =  [v h ju ]^  =
and

[“k N JL = [wL М \<ч. = HW-
As above it follows that uv,vu,uw,wu£L. That is uvqrvuqr uwqr wuqr and [м]вн, 

Me« are units in g r with И « ’ М ея Everses of [и]вк. Therefore Ме« =  М е". 
Thus [v]aL=[w],L and [v\aif G L implies H K= M ee£GR. □

As an immediate consequence one has the following:
C o r o lla r y  6 .8. Let (X\ K) be a special monoid presentation of a group and let 

£  = [!]*«• Then cl= qr .
This corollary can be applied to Example 4.7, that is the language L correspond

ing to ({a, b}\ab2a2b=  1) in order to show that the systactic monoid X*/oL of L  in 
fact coincides with the monoid having this presentation.

Finally one should note that by a result of [4] for special monoid presentations 
with a single relation w= 1, there is a linear time algorithm that given input w will 
determine whether the group of units of the monoid presented is trivial or non-tri- 
vially finite or infinite.

The main application of Proposition 6.7 in the context of this paper should be 
seen in combining it with Proposition 5.6.

C o r o lla r y  6.9. Let CQX* be a strong code satisfying (<?2)- Then the group of 
units o f the monoid presented by (X\{w— 1, wdC}) is trivial.
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ON COMPACTLY DOMINATED SPACES
S. DEO and R . KRISHAN (Jammu)

1. Introduction

A topological space X  is said to be compactly dominated (or Morita Л-space) 
[2] if there exists a family {Afa}ae A of compact subsets of X  which dominates the space 
A ([9], p. 14), i.e.,

(i) X=  U Kx, and for each subfamily {Kß\ß£A'} of {Kx}xÍ a , U Kß is
«ea ßiA'

closed in X,
(ii) the topology of the subspace Y  = [J Kß is the weak topology defined by

ßtA’
the family of subspaces {K.ß}ßiA..

The need for studying such spaces stems from the following considerations: Let X  
be a topological space for which some dimension function (for example covering di
mension dim) is defined. Can we determine dim X  if we know dim К for each compact 
subset К  of XI Particularly, we want to know under what conditions on X, if any, 
does there exist a compact subset К  of X  such that dim X=dim K? The answer to 
this question, of course, depends on the space X  as well as the dimension function 
under consideration. For instance, in the case of covering dimension dim, the answer, 
in general, is no. To see this let us consider the Tychonoff plank Í2=[0, wx]X 
X[0, w0] — {(wi, w0)}. Any compact subset К of Í2 is zero-dimensional whereas 
dim Q= 1 ([9], p. 162). This shows that even in a locally compact space X, dim X  
may not be determined by dimensions of its compact subsets. On the otherhand let us 
consider the sheaf theoretic cohomological dimension dimL ([1], [4], [5]) over a given 
ring L. For this dimension function, however, if X  is any locally compact space, then 
dimL X  is simply sup (dimL K} where К  runs over all compact subsets of X : this of
course follows from the local property of dimL [1]. A locally compact space is clearly 
compactly generated, but if we take X  to be compactly generated and consider the 
same sheaf theoretic cohomological dimension dimz, which is known to be better- 
behaved than covering dimension dim, then dimL X  need not be determined by dimL К  
where К  varies over all compact subsets of X. For example, consider the Knaster— 
Kuratowski space X  ([8], p. 54). Then A is a one dimensional metric space and hence 
dimz T=dim  X—\. X is compactly generated, but there cannot exists a compact sub
set К of A such that dimz K= 1. This is because X  is totally disconnected and hence 
any compact subset К  of X  is also totally disconnected. Consequently, dimz K= 
=dim K = 0. This shows, by the way, that in general the weak topology sum theorem 
is valid neither for the covering dimension dim nor for the cohomological dimension 
dimz . However, if the topology of X  is the weak topology defined by a family of 
closed subsets of X  in the sense of Morita ([8], p. 215), then it has been proved that 
the sum theorem is valid for the cohomological (for all locally paracompact spaces)

3*



314 S. D E O  and  R. K RISH A N

as well as the covering dimension (for normal spaces) [3]. This leads us to ask the 
following question: What are those spaces X  whose topology is the weak topology 
defined by a family o f  compact subsets o f  X  in the sense o f Morita?

Using the terminology of Pears [9] we will call such spaces compactly dominated 
spaces, and the objective of this paper is to investigate various interesting topological 
properties of such spaces. Unless mentioned otherwise all of our spaces under consi
deration are assumed to be Hausdorff and so by a compact space we mean a compact 
Hausdorff space.

2. Examples and characterizations

A topological space X  is said to be dominated by a closed covering {Д*}«€ j ([9], 
p. 14) if for each subset A' of A, IJ Д ,  is closed in A  and the subspace (J Ax of

a 6 kl' a 6 A '
X  has the weak topology with respect to the covering {A.J,fA.. Thus we have the 
following:

D efin itio n  2.1. A space X  is said to be compactly dominated, if it is dominated 
by a covering consisting of compact subspaces of X.

It is clear that any space X  having a locally finite covering by a family of compact 
subsets is a compactly dominated space. Every compact space is trivially compactly 
dominated. Also note that a discrete space X  is dominated by the family {{x}|x6 A} 
consisting of singletons and so is compactly dominated. Conversely, any space X  
dominated by a family consisting of finite sets must be obviously discrete. For the 
sake of completeness we include the proofs of the following two examples which show 
that the concept of compactly dominated spaces is a generalization of compact spa
ces as well as СЖ-complexes.

E xam ple  2.2. A CW-complex is compactly dominated.
P roof. We shall prove that for any CW-complex К  its geometric realization \K | 

(which is also a CW-complex) is compactly dominated. For, let S  = {S'.,} be all 
cells of K. Then by definition, |A| =  U \S*\ and \K\ has the weak topology defined
by {ISaI}. Let Y=  |J  IŜ I, {Sß)ßiA is a subfamily of {SJ. Then Y is closed in \K\

ßdA
since for any |Sa|, Т П |5Я| is a finite union of faces of Sa, which is again closed in 
|5e|. Hence Y is closed in |A|. Next, let F c F  such that FD|S^| is closed in \Sß\. 
For any a either |5a| is a face of IS Î for some ß or else |5г| is disjoint from \Sß\. 
In any case FIT Sp is closed in |5^| implies that FIT |£ J  is closed in |£a|. Hence F is 
closed in |A|. Thus \K\ is a compactly dominated space. Q.E.D.

E xam ple  2.3. A locally compact paracompact space X  is compactly dominated.
P ro o f. Since X  is locally compact there exists ([6], p. 238) an open covering 

{V(x)}xg x ° f U, where each V(x) is relatively compact. Now, X  being paracompact, 
there exists a locally finite closed covering {Faj of X  which refines {V(x)}xex and 
each Fa is compact. Therefore X  is compactly dominated. Q.E.D.

T heorem  2.4. A separable topologically complete space X which is not locally 
compact at any o f  its points cannot be a compactly dominated space.
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P roof. Since X  is topologically complete, it is of second category by Baire’s 
category theorem ([6], p. 299). Also, X  is not locally compact at any of its points 
implies that any compact subset of X  is nowhere dense. Suppose X  is compactly do
minated. Then there exists a covering {Ax}xiA which dominates X  and where each Ax 
is compact. Since X  is separable, there exists a countable dense subset, say А — {хг, 
x 2, ..., xn, ...}, of X. Then clearly for every x fiA  there exists an afiA  such thai 
xfiA Xi. Thus Acz U Ax. Since A is a dense subset of X  we have X = A c  IJ Ax —

<x£A а£А
=  U Ax since U Ax is closed in X. Therefore X=  (J Ax, i.e., X  is the countable

a£A a£A a£A
union of nowhere dense sets of X. This is a contradiction since X  is of second category. 
Hence X  cannot be compactly dominated. Q.E.D.

The above theorem gives us the following corollary giving various counter-exam
ples for compactly dominated spaces.

C orollary  2.5. None o f  the following spaces is compactly dominated;
(i) the set P o f all irrationals with the inherited subspaces topology from  R,

(ii) the countable product R'J o f real lines,
(iii) the space C[0, 1] o f  all real valued continuous functions on the unit interval I  

with the metric topology generated by the sup norm,
(iv) any infinite dimensional separable Hilbert space H.
The following result turns out to be quite interesting:
P roposition  2.6. The set Q o f rationals with the inherited subspace topology from 

R is not compactly dominated.
Proof. Suppose Q is compactly dominated. Therefore there is a covering 

{AfirjXA of compact subsets of Q which dominates Q.
Since Q is countable, there is a subfamily, say 1? of the above family

which covers Q and dominates Q. We shall show that this is not possible. For, con
sider any point x of Q. Consider a neighbourhood base at x of the form Bf c  B% z>... 
. . . c B ^ c .... Select a point x f iB f — Axl (since AX1 is nowhere dense). Select for each 
n s  1, x„£B*—(Aai U ... U AXn) (since An U ... U AXn is nowhere dense). So that we have 
a sequence (x„) which converges to x. Therefore the infinite set (x„}“=1 is not closed. 
But as the set {x„}r=i is finite in each AXn, it should be closed. This contradiction es
tablishes the claimed result. Q.E.D.

Theorems 2.4 and 2.6 are essentially due to A. K. Desai (private communication).
The following proposition gives some necessary conditions for a space to be 

compactly dominated. However, none of them is sufficient as shown by Corollary 2.5.

P roposition  2.7. Suppose X  is a compactly dominated space. Then
(i) X  is paracompact,

(ii) X  is a k-space.
P roof, (i) Since X  is compactly dominated, there exists a covering {Fx}x€A 

which dominates X  and where each Fx is compact. Since each Fx is compact, it is 
paracompact. Thus it follows from ([9], p. 65) that X  is paracompact.

(ii) To show that X  is ic-space, it is enough to show ([6], p. 248) that X  is the 
quotient of a locally compact space. Since X  is compactly dominated there exists a
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covering {Fa}a€ d dominating X  and where each Fx is compact. Let 2  Fx denote the
ad A

free union of the family {Fa}ae A, where each Fx is compact. 2  F«. *s evidently locally
ad A

compact. By ([6], p. 132) we know that X  is the quotient space of the free union of 
its compact subspaces, i.e., X — 2  Fa/~ . Hence X  is a к-space. Q.E.D.

а d A
The above proposition shows that a ст-compact space need not be compactly 

dominated :
E xam ple 2.8. The following spaces are a-compact, but not paracompact, and hence 

cannot be compactly dominated:
(i) The Arens Square ([10], p. 98).

(ii) The Double origin topology ([10], p. 92).
(iii) The nested interval topology ([10], p. 76).
(iv) The countable particular point topology ([10], p. 44).
(v) Roy's lattice space ([10], p. 143).

We note that local compactness is not necessary for compactly dominated spa
ces. In fact, a compactly dominated space need not be locally compact at any of its 
points as the following example shows.

oo
Exam ple 2.9. Let S°°= U S", where S 1c S 2c . . . c S 'c . . .  with inductive

П—1
limit topology. Then S°° is a CW-complex and hence compactly dominated, but S°° 
is not locally compact at any of its points.

Now we come to a characterization of spaces dominated by closed covering.
Theorem  2.10. A space X  is dominated by a closed covering { Ax}r/ ( A i f  and only i f  

X is  a continuous closed image o f  a free union 2  where AX=AX, for every 
xeA.

Proof. Suppose X  is dominated by a closed covering {Ax}x id . For each olZA 
we pick a space Ax so that AX = AX. Let hx: AX-*AX be a homeomorphism. Consider 
the space 2  A ‘x and define a map h: 2  Ax—X  so that h\Ax = hx. Clearly h is

ad A  adA
continuous and onto. We claim that h is closed. Let F be the closed subset of the free 
union 2  Let A'= {<х£А\ГП А хА0}. Then F — (J (FC\A'X) implies that
h(F)=  (J h(FC\A'x) = U h(F)C\Ax. Now h(F)r\Ax=ha(Fr\A ') is closed in

aZA ' a £ A '
Aa, since Ff)Ax is closed in A'a and h\A'a is a homeomorphism. Thus we find that 
h(F)C]Ax is closed in Ax for each a£A'. Since (J Ax is closed in X  and has the

new
weak topology defined by the covering {Ax}xiA,, it follows that h(F) is closed in 
IJ Aa. But (J Aa being closed in X  implies that /z(F) is closed in X. Conversely,

а  6 А' а в A'
suppose v: 2  A'x^-X is a continuous closed surjection, where v\Ax: A'x->-Ax

а£ А
is a homeomorphism. Let A' be a subset of A. Since IJ Ax is closed in 2  Ax,

a£A' â A
we find that U Ax=v( U A'x) is closed in X. Next we shall prove that [J Aa

а в A' a(zA' а в A'
has the weak topology defined by the family {AJocZA'}. Let G be a subset of IJ Ax

ad A'
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such that G f l i ,  is closed in Ax, for every a£A'. Then G— 1J (GClAJ. Let
G 'c A ' which is homeomorphic to GП Ax. Then G' is closed in A', which means 
(J G' is closed in (2  Л'а. Now v being closed we find that v( |J  G')=

a € 4 '  a £ A '  a £ A
= IJ (GDAJ=G  must be closed in J  v4a.Thus J  Aa has the weak topology

ctdA' oc£A' a £A '
defined by the family {Ax\a£A'}. Hence X  is dominated by the closed covering 
Ш .е л -  Q.E.D.

The results of the following corollary are well known ([9], p. 65, 27, 34). The 
above theorem yields their simpler alternative proofs.

C o ro lla ry  2.11. I f  a space X  is dominated by a closed covering {Aa\a£A}, 
where each Ax is paracompact (normal or perfectly normal, respectively), then X  is 
paracompact (normal or perfectly normal, respectively).

The following corollary gives a characterization of compactly dominated spaces.
C o ro lla ry  2.12. A space X  is compactly dominated i f  and only i f  X  is a conti

nuous closed image o f a free union o f compact spaces.

3. Natural questions

In this section we determine the behaviour of compactly dominated spaces with 
respect to subspaces, products and continuous images.

T heorem  3.1. (a) A closed subspace o f  a compactly dominated space is compactly 
dominated.

(b) An arbitrary subspace o f a compactly dominated space need not be compactly 
dominated.

P r o o f , (a) Suppose A is a closed subspace of a compactly dominated space X. 
Since X  is compactly dominated, there exists a covering {Fx}x(:a of compact subsets, 
which dominate X. For every a£A, А П Fx is clearly compact. We claim that A is 
dominated by the family Obviously A=  J  Af)Fx and for any
A'czA, U (АПРХ)= А П (  U Fa) is closed in (J (AClFJ. Further let

a £ A' a £ A' a £ A
В a  U A F\FX suchthat ВГ\(А П Fx) is closed in ADFX for every a£A', then we 
shall show that В is closed in U AlAFx. Since ВП(АП1~а)=ВПВх for every

a£ A'
af_A', it follows that B=  J  (ВП Fx) is closed in J  (А П Fx). Hence A is com-

л^А' a.£A'
pactly dominated. Q.E.D.

(b) See the following example:
E x a m ple  3.2. Consider the set P (respectively Q) of all irrationals (respectively 

rationals) with the inherited subspace topology from R. R being locally compact and 
paracompact is compactly dominated by Example 2.3 whereas P (respectively Q) 
is not compactly dominated by Corollary 2.5 (respectively Proposition 2.6).
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Theorem 3.3. (a) A continuous closed image o f  a compactly dominated space X  
is compactly dominated.

(b) A quotient space o f a compactly dominated space, however, need not be com
pactly dominated.

P roof, (a) Suppose X  is compactly dominated and f :  X —Y  is continuous clo
sed surjection. By Corollary 2.12, X  is a continuous closed image of a free union 
say ZZa, of compact spaces. Let v: ZZx-»X be such a map. Then clearly v is con
tinuous closed surjection. Hence by Corollary 2.12 again Y  must be compactly domi
nated. Q.E.D.

(b) See the following example:
Example 3.4. P, the set of all irrationals being metrizable is a Л-space. Let {Ca} 

be the set of all compact subsets of p. Then by ([6], p. 132) 2  CJ ~  is homeomorphic
a

to P. Here 2  C* is a compactly dominated, but by Corollary 2.5, P is not com-
a

cactly dominated. Hence the quotient of a compactly dominated space need not be 
pompactly dominated.

R emarks 3.5. We note that the quotient space of a Л-space is always a Л-space 
([6], p. 248), but in contrast with this the quotient of a compactly dominated space 
need not be compactly dominated, by the above example.

Using the above theorem we now obtain another useful characterization of com
pactly dominated spaces.

Corollary 3.6. A space X is compactly dominated i f  and only i f  X  is a continuous 
closed image o f a locally compact paracompact space.

P roof. If X  is compactly dominated, then by Corollary 2.12 it is immediate that 
X  is a continuous closed image of a locally compact paracompact space. Conversely, 
a locally compact paracompact space is compactly dominated by Example 2.3, and 
by Theorem 3.3 a continuous closed image of such a space must be compactly domi
nated. Q.E.D.

Theorem 3.7. (a) Let X be a compactly dominated space. I f Y  is locally compact 
paracompact, then X x Y  is compactly dominated.

(b) The product o f  two compactly dominated spaces need not be compactly domi
nated.

P roof, (a) Since X  is compactly dominated, there exists a covering {Ax}x£A 
consisting of compact subspaces of X  which dominates X. Y being locally compact 
implies there exists a covering {Uy} of Y  consisting of relatively compact open sets. 
Thus_we get a covering {Vy} of Y  consisting of compact subspaces of Y, where 
Vy—Uy for every y£ Y. Again Y  being paracompact implies there exists a locally 
finite closed refinement {Bp} of {Vy}. Thus by ([7] Thm. 1) it follows that X x Y  is 
dominated by the covering {AxX B ß} consisting of compact subspaces of XX Y. 
Hence X x T is  compactly dominated. Q.E.D.

(b) See the following example:
Example 3.8. Let J t bt the set of all maps of Z + into itself. Consider the family
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{uv\(p£Jf} in one-to-one correspondence with the set J Í  and the family {vn\n£Z+}. 
Let V— ® R„ and W — ® R„n. We take the finite topology on both V and W.

q>C.M 9 n £ Z  +
Thus V and W  having finite topology are CIL-complexes and hence are compactly

dominated. Consider P= { { w ) “’ ’ w > v-)\,p íJ í- "i Z * h r x i r - We o,aim
that V X W  is not a /с-space. Suppose the contrary. Then P must be closed in V  X W. 
We shall show that P is not closed in the product VX,W. Otherwise CP (the comple
ment of P) would be open, and since the origin o f CP, there would be a basic neigh
bourhood U1X U2 with o fU 1XU2c:CP. Since L\, U2 are open in V and W, res
pectively, for each cp and each n, there would be an av and an such that {Áuv o á
ёА<а^}с{715 {pv„\oSp<a„}(zU2. Let t p f j f  be the map (p(n)=max\n, — +1L Un.
and find n with w(n) =-----. Then — — us , — — v= \fU l XU 2, but it is not inаф \<p{n) * <p(n) n)
CP, a contradiction. Thus the product V x W  is not even a к-space and hence it is 
not compactly dominated by Proposition 2.7.

We conlcude with the following.
R em a rk  3.9. The product o f two continuous closed maps need not be closed. Let 

us consider the spaces V and W  of Example 3.8. Then V and W  are compactly domi
nated. We apply Corollary 2.12 to find vx: and v2: 2  Bß->-W as

O.ÍA ß ÍA'
two continuous closed surjections, where 2 ) and 2  Bp are t'ree unions of

a £A  P i A '
compact spaces. Then, clearly, 2  (Aa X Bf) is a free union of compact spaces.

(x,P) iAXA'
But ViXVa: 2 ’ Л Х  2  Bß^-V xW  is not closed, for, otherwise V X W  would be

ag a  P£A'
a compactly dominated space, in contrast with Example 3.8.
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COMPARING ALMOST-DISJOINT FAMILIES
P. KOMJÁTH (Budapest)

0. Introduction

In this paper families of almost-disjoint, countably infinite sets will be consi
dered, i.e. families of type s i  — (Ax. a£x> where \AX\ — со and \Axf)Aß\ is finite 
whenever One of the early results in the theory of almost-disjoint sets is
the following theorem of E. W. Miller [3]: if s i —(Ax: <x<x) is a family of infinite 
sets and instead of almost-disjointness the stronger \АхГ\Ар\шп holds with a 
fixed n<co, then s i  has the property B, i.e. there is a coloring of the union set 
with two colors and without a monochromatic A. This is no longer true for almost- 
disjoint families.

The role of property В in connection with this result is a bit misleading, because, 
as it was later discovered, much stronger properties hold under the Miller condi
tion, e.g. s i  has a transversal — a one-to-one choice function. That the transversal 
property really implies property B, at least for families of infinite sets, is proved in
[1]. The strongest property to date gained from the Miller condition is the following: 
s i  is essentially disjoint, i.e. there are finite sets (Bx: a< x ) such that the sets 
{Ax—Bx: a-=x} are disjoint (see [2]). This property is obviously stronger than any 
of property В and the transversal property.

As these properties are proved under a relatively mild restriction on the size 
of pairwise intersections, one may wonder whether one of them or any other non
trivial property at all can be recognised from the matrix {\Ax(~)Ap\: a < /?<>;}. 
Call two enumerated almost-disjoint families s i  =  {Ax: a< x} and 38 = {Ba: 
a<x} similar if \АхГ)Ар\ =  |Д*ПBp\ holds whenever a t < ß < x .  The question 
therefore is: which properties are similarity-invariant? It is easy to see that property 
В and the transversal property are not, as we can simultaneously enlarge each set 
with two (or infinitely many) new elements without changing any AxDAp. Howe
ver, essential-disjointness is similarity-invariant. Even more is true, namely a certain 
monotonicity holds: if s i  = (Ax: a<x) and 38=(BX: <x<x) are both almost- 
disjoint families, \Ах0 А „ \ ^ \ В хП В р\ holds for a < ß < x  and В  is essentially dis
joint then so is s i . The proof of this statement is the main content of the present 
note. We will derive from it, as an immediate corollary, Miller’s theorem.

In this paper the standard set theory notation is used.

1. The main argument

D ef in it io n  1. A system s i= (A x: a< x ) is almost-disjoint, if \Aai)Ap\<co= 
= \AX\, \A„\ holds for

D ef in it io n  2. A system s i  = (Ax\ a c x )  is essentially disjoint if and only if
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\Ax\=(o for a < x  and there exist finite sets {Д*: x<x} such that the sets {Aa—Ba: 
a<x} are pairwise disjoint.

Lemma 1. Assume x>co regular, .si= (Ax: a<x) is an almost-disjoint sys- 
tem, and for every s i' c  s i  with \si'\< \si\, s i '  is essentially disjoint. Then s i  is 
essentially disjoint if  and only i f

(1.1) L  — {a < x: there is a ß(oi) S  a with iT ^ f l  U A f \ = to} 
is non-stationärу .

Proof. Assume first that L  is stationary. If {Ba: a<x} witnesses essential dis
jointness, for <x£L (AßM — Bß(a)) U [J Ai is non-empty, choose an element x x
from it. It is easy to see that ß(d) is one-to-one on a stationary set L 'c L ,  for these 
a’s the points {xa: a£Z/} are different. If a £L', xaf_Ay(!X) for a suitable y(a)<a, 
by the pressing-down lemma y(a) = y for a stationary L"czL'. But then {xa: 
y(a)=y} would be x different elements of Ay!

Assume now that L  is non-stationary. As 0£L, we can choose a closed un
bounded C ^ x —L with 0£C. Let {ea: oc<x) be the monotone enumeration of 
C. By hypothesis, each of the systems {Ai : са^ £ <Ся+1} is essentially disjoint, let 
{В(х,0- £€[ся,с я+1)} witness this. For с€[ся, ca+1), В*=А( П {0 А у: y<ca} is 
finite, as caf_L. Put, for i€ [ca, ся+1), Bi = B(a, £)U£b. Then the sets {A$ — B4: 
£<х} are pairwise disjoint.

Lemma 2. Assume that x>o> is regular, s i  — (Ax: a< x ) is an almost-disjoint 
system and fo r  every s i 't z s i  with \sd'\<\si\, s i '  is essentially disjoint. Then s i  is 
essentially disjoint i f  and only i f
(1.2) N  = {a < x: there is a ß(a) S a  with sup \AßW(jA y\ =  ю}

y-=a
is nonstationary.

Proof. A s N'—L, the only if part follows by Lemma 1.
To prove the other direction, assume that N  is non-stationary, but L is statio

nary. Choose a closed, unbounded C Q x — N, increasingly enumerated as (ca: 
a<x}, c„=0. For every <i;6[ca, ca+1), the number

(1.3) n(£) = sup |^ГМ ,,|

is finite, by the definition of N. If ca6£ choose an element ß(a)^cx with 
И р(«)П( U Ay)\ =n(ß(oi)) + l. With a successive application of the pressing-downу < c a

lemma we can find a stationary subset of L  — N, say L' such that the ordinals 
{ß(a): a£L'} are different, n(ß(c/))=n, and there is a y< x  such that

Ai)\= n + l- As the set [(J  AA ',+1 has cardinality less than x, there
s-=y

is an unbounded set L" <z.V suchthat Aßw C\(U A,) contains the same (« + 1)-
i-=y

element set for a£L". Choose t, x fL "  with т < с ж<т' where ca is in C. Then, by
(1.3) \АтПАГ'\ ^ п  but, as z ,x 'dL ", they contain the same (n +  l)-element subset, 
a contradiction.
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2. Applications

Lemma 3. I f  x > c f  (x), sd—(Ay. a < x )  is a family such that every sd 'a sd  
with \sd'\<- \sé\ is essentially disjoint, then sd is essentially disjoint, as well.

Proof. See [2], Proposition 5.
Theorem. Assume that sd= (A y  a < x )  and (A = (B, : a < x )  are almost-dis- 

joint systems. I f  \AxC]Aß\^ \B xUBß\ for a <  /1 <  x and 28 is essentially disjoint 
then sd is essentially disjoint, too.

Proof. By induction on A s x we prove that every subsystem of sJ with cardi
nality sA is essentially disjoint. For Asco this follows from almost-disjointness, 
see Proposition l.b in [2]. If the statement is proved for every A'< A and {Ay. 
a £ X} is a subfamily of size A, we use Lemma 3 or Lemma 2 according to whether A 
is singular or regular. If A is regular, take {By. a£X}. By re-ordering X  in order- 
type A, we get two families sd'={A'y ж  A} and 28' = {B'y. a <  A) with the proper
ties that 28' is essentially disjoint, every subsystem of s4' with cardinality less than A 
is essentially disjoint and \АхП Ар\^ \B'xCiB'ß\ for a</?<A. By this, if a£N(jd') 
then ot£N(2#') applying (1.2). So N(sdjQ N(28') and Lemma 2 gives that sd' is 
essentially disjoint. If A is singular, {Aa: a.£X} is essentially disjoint by Lemma 3.

Corollary (Miller [3], Komjáth [2]). I f  n<co, sJ= (Ay  a < x ) is an almost- 
disjoint system with \AxC\Aß\^ n  for a< /?< x, then s i is essentially disjoint.

Proof. By our Theorem, it is enough to find an essentially disjoint {By. ж х }  
with \BxUBß\=n (a</?<x). For this, take the system {XU Y y  a<x} where 
\X \—n, I Ya\ = co, and the sets {X, Yy. a<x} are all disjoint.
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THE STRUCTURE OF INEFFABILITY PROPERTIES
OF PxX

D O N N A  M. CARR1 (Mississauga)

Notation and basic facts

Unless we specify otherwise, x  denotes an uncountable regular cardinal, and Я 
a cardinal S x . For any such pair, PxX denotes the set { x c l :  \x\<x}, and X<x 
is the cardinality of this set.

The basic combinatorial notions are defined here for PxX as in Jech [11]. For 
any x£PxX, x  denotes the set {y£PxX\ xd y} . X<zPxX is said to be unbounded iff 
{ 'iх^Р у))(Х Г \х ^ 0), and IxX denotes the ideal o f not unbounded subsets of PxX. 
In the sequel, an “ ideal on PxX” is always ”a proper, non-principal, %-complete ideal 
on PxX extending 4 a” unless we specify otherwise. Further, for any ideal /  on PxX, 
I + denotes the set {XaPxX\ X $ I} , and I* the filter dual to I.

C d P xX is said to be closed in PxX iff (V X a C )(X  is a chain of length< x  => 
=>-U X£C), and is called a cub iff it is both closed and unbounded. Further, S a P xX 

is said to be stationary in PxX iff STlC^O for every cub CczPxX. Finally, N SxX 
denotes the non-stationary ideal on PxX, and CFxX its dual.

The diagonal union V(Xx: а-=Я) of a Я-sequence (Xa: а<Я) of subsets of PxX 
is defined by V(Ua: а<Я)= {x£PxX: (ЗаСхг)(л:€ЯГа)}, and for any ideal /  on 
PxX, V /is the set defined by {X cP xX: ( 3 (Г Я: а <Я)€Л/)  (X=V(Xx: а<Я))}. 
It is easy to see that V/ is a (not necessarily proper) ideal on PxX extending I.

An ideal Ion  Px X is said to be normal iff V /= /, equivalently, iff every f :  PxX-* 
X which is regressive on a set in I + (i.e. has the property {x£PxX: f(x )£x}£ l + ) is 
constant on a set in 7+. Jech proved in [11] that N SxX is normal, and we proved in 
[5] that 'VIxXc :W IxX = NSxX and hence that N SxX is the smallest normal ideal on 
PxX.

0. Introduction

In [11] Jech provided the following PxX generalizations of Jensen’s notions (see 
[12]) of ineffability and almost ineffability.

0.1. D e f in it io n . For any uncountable regular cardinal x  and any cardinal 
X ^x , x is said to be

(1) X-ineffable iff for every (Ax: x£PxX) suchthat (Vx6 Px X)(Axczx),
(ЗЯ c  X){H — {x£PxX: Ax = AC)x}£NS+x),

1 The results in this paper were first announced in [6], and are included in the author’s Ph. D. 
dissertation (McMaster University, 1981) written under the direction o f Donald H. Pelletier to 
whom the author is grateful.
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and
(2) almost /.-ineffable iff for every (Ax : x£Px/.) such that

(Vjc€P,A)(í4x c  jc), (ЗА с  k)(H =  {x£PxX: Ax = А Пх}€/„1).

Magidor [13] subsequently proved that x  is supercompact iff x is л-ineffable for 
every X ^x . In 3.3 below we use our results to improve this result of Magidor by 
showing that x  is supercompact iff x is almost /.-ineffable for every As*:.

DiPrisco and Zwicker [9] defined mild A-ineffability, and showed that it charac
terizes strong compactness in the same way; i.e. that x is strongly compact iff x is 
mildly A-ineffable for every Хшх. The definition we give in 0.2 below is easily 
seen to be equivalent to the one given in [9].

0 .2 . D ef in it io n . For any uncountable regular cardinal x and any cardinal 
/ .= / ,  % is said to be mildly ) -ineffable iff for any (Ax: x£P xX) suchthat (\fx^P x/) 
(Axdx), (3AczX)(\fx£PxX)(Hx={y£x: АуП х= А П х}А 0).

We study this notion of DiPrisco and Zwicker in [7] and [8] where we find that it 
is a PxX generalization of weak compactness in the sense of some of the latter’s fami
liar characterizations.

Baumgartner [1], [2] showed that many small large cardinal properties can be 
viewed as properties of normal ideals on x. For instance, he showed in [1] that x  is 
almost ineffable iff there is a normal ideal NAInx on x such that for every X c x ,  
X£NAIi% iff for any (Ax: ccdX) suchthat (Voc£X)(Aacoc), (3A cx)(H =  {а.£Х\ 
Ax = Af]oc}^I+) where Ix is the ideal of size subsets of x.

In Section 1 of this paper we give natural ideal-theoretic characterizations of 
A-ineffability, almost A-ineffability and mild A-ineffability. Whereas we find that the 
ideals characterizting A-ineffability and almost A-ineffability are normal, the one cha
racterizing mild A-ineffability is not normal. Thus we came to regard mild A-ineffa
bility as an “ideal-theoretically weak” Pxl  generalization of weak compactness, and 
sought an “ideal-theoretically stronger” PxX generalization of weak compactness 
between mild A-ineffability and almost A-ineffability. We define such a notion in Sec
tion 3 below, and study it further in Section 3 and in [8].

Our definition of this new ineffability property of Px A was motivated by some 
work of Shelah [15] together with a result of our own (1.3 below). A perusal of She- 
lah’s paper suggests the following definition together with the formulation of his 
result that succeeds it.

0 .3 . D e f in it io n . For any uncountable regular cardinal x, Xczx is said to have 
the Shelah property iff for any ( /a: ctfX) suchthat ( ia £ X ) ( fa: a->-a), (3 /:  x-+x) 
(Va<x)({ß£[cc, x )0 X \ f ß\oc=f to.} AO) where [a, x)= {ß< x: aéz ). Further, de
fine the set NShx by NShx= { X d x : X  does not have the Shelah property}.

Shelah proved that x is weakly compact iff x  has the Shelah property, and that if 
x has the Shelah property, then NShx is a normal ideal on x.

We conclude this section by noting that x  is easily seen to have the Shelah pro
perty iff x satisfies “Baumgartner’s principle” where the latter is defined in 0.4 below. 
This definition is easily seen to be equivalent to the version appearing in Erdős et al.
[ 10].
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0 . 4 .  Definition. An uncountable regular cardinal к is said to satisfy Baumgart
ner's principle iff for any »«-sequence (gx: a<»c) of regressive functions on x, (3/ :  
» < - j < ) ( V a < » < ) ( { / ? e [ a ,  x ) :  ( V £ < a ) ( g ^ / J ) = / ( £ ) ) H 0 ) .

1 .  The ideals NInxX, NAInxX and NMInxX

In this section we give ideal-theoretic characterizations of A-ineffability, almost 
A-ineffability and mild A-ineffability.

1 . 1 .  D efinition. For any uncountable regular cardinal x  and any cardinal 
As»«, say that X a P xX is
(1) X-inejfable iff for any (Ax: x£X ) such that ( V x S ^ ^ c z x ) ,

(3А с  A)(tf =  {xeX: Ax =  Л П *}€.№%),
(2) almost Л-ineffable iff for any (Ax: x£X) suchthat (Vx£X)(Axczx),

(3 A c X )(H  = {x6X: Ax = АПх}е/+х),
(3) mildly /.-ineffable iff for any (Ax: x<zX) suchthat (\/x£X)(Axax),

(3 A a  X)(yx£PxX')(Hx = {у£ХГ\х: АуГ)х = АПх} 0).
Notice that the condition given in the conclusion of (1) can be replaced by 

(3H£&>(X )D N Six)(yx, y^H)(xczy=sAx=AyC\x). Similarly, the condition given 
in the conclusion of (2) can be replaced by

(3 Н£0>(Х) П Ix\ )  ( Vjc, у  € H) {x а  у  => Ax = Ay П x).
Now define the sets NInxX, NAInxX, NMInxX by

NInxX — {X ez PxX: X  is not A-ineffable},
NAInxX = {X a  PxX: X  is not almost A-ineffable},

NMInxX =  {2^0; PxX: X  is not mildly A-ineffable}.
It is clear that 4л c  NMInxX c  NAInxX a  NInxX. Moreover, it is clear that x  is A-inef
fable iff PxX$NInxX, x  is almost A-ineffable iff PxX$NAInxX, and x  is mildly A-inef
fable iff PxX<tNMInxX.

Note that easy arguments (e.g. see [7], [8]) show that if x  has any one of these 
ineffability properties at level A for some Аёх, then x  is weakly compact and has 
that ineffability property at every level y£[%, А]. Moreover, it is easy to see that x  is 
ineffable iff x  is »«-ineffable, that »< is almost ineffable iff»«is almost »«-ineffable, and 
th a t»«is weakly compact iff »< is mildly »«-ineffable.

1 . 2 .  Theorem. For any uncountable regular cardinal x and any cardinal X ^ x ,
(1) x is X-inejfable iff NInxX is a normal ideal on PxX, and
(2) x is almost X-inejfable iff NAInxX is a normal ideal on PxX.
Proof. We will just prove (2); (1) follows by a similar but even simpler argument. 

The reverse implication of (2) is clear, so it remains to prove the forward one.
The assumption that x  is almost A-ineffable guarantees that NAInxX is proper.
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Also, it is easy to see that IxXcN A InxX and that (У A, YczPxX)(XcY& Y£NAInxX=> 
=>X£NAInxß).

Now pick 0>x and {Xy: v<S}aNAInxX. For each v<<5, let (A%: x f X v) 
witness X vdNAInxX. Set X =  U {Zv: v-=(5} and suppose by way of contradiction 
that X  $ N  A InxX. For each x€X, let v(x) be the least v«=<5 suchthat x f X v, and 
set Ax=A*(x). Now let A c X  be such that H = {xfX : Ax= A f)x}fI^x. The x- 
completeness of IxX guarantees that ( 3 v <  <5) (HC)Xvf I f ) .  Let у be the least ordinal 
<<5 suchthat HC\Xyf I ^ x. Note that (У х ^ А /П А ^ ^ х )^ ) . Then the minimality 
of у together with the minimality of the v (x)’s imply that {x^X y: v (x )= y } flf  thus 
contradicting XyfNAInxX.

We next show that N SxXczNAInxX and then use this fact to prove that NAInxX 
is normal. Pick X fN S xX, and (by [14]) let / :  X-+XX.X be such that ( У A) 
(f(x )£xX x)  and (Voe, /?< /.)(/“1({(a, ß)})fIxX). For each x fX  set f(x )  = 
= (ax, ßx)£ xX x , and define Axc x  by Ax= U/(x) =  {ocx , ßx). Now notice that 
(ff x fX )(ff yfXC\x){Ax= A yC\x=>yff~1({(-j.x, ßx)})U f~1({(ßx, a*)})). Thus we have 
that (Vx6W)({y€Tflx: Лх = АуПх}£1хХ), so XfNAInxX.

Now pick X£NAIn£x, let p: AxA>--X, and set Cp= {xfP xX: p"{xXx)czx). 
Since Cp is cub in PxX, it follows by the previous paragraph that XC]CpfN A In xX. 
We will show that ХГ)СР$ WNAInxX; it will then follow that X$VNAInxX. Suppose 
by way of contradiction that XC\Cp£4NAInxX, and let f :  XP\Cp^X  be NAInxX- 
small and regressive on АГПСр. For each a<A, let (A%: x £ /_1({a})) witness 
/ “ЧМ ^АГЛ/л^. Then define (Ax: x fC pf)X ) by Ax={p(£,f(x)): £еА '(х)}, and 
let HczXDCp be such that H fl$ x and (Vx, y ^ H )(x a y  =>AX=AyC\x). Notice 
that Ax = AyDx=>f(x) = f(y). This shows that (3 oc<X)(VxfH)(f(x) = a), and hence 
that ( З а < 2 ) (Я с /_1({а})) thus contradicting f ~ 1({a})eNAInxX. □

As an easy consequence of the preceding theorem together with the fact that N SxX 
is the smallest normal ideal on PxX [5], we obtain the following useful characteriza
tions of A-ineffable and almost Я-ineffable subsets of PxX.

1.3. C orollary. X c~PxX is X-inefable (almost X-inejfable) iff for any (f x\ 
xeX) such that (V x € * )(£ : x -x ) , (3 /: X-*X)[H={x(LX: f x=f\x}£NS+x(/+,)].

Proof. The reverse implications are clear. Pick X f l  + where I f  {NInxX, NAInxX} 
and let (f x : x f X )  besuchthat (d x fX ) ( fx : x —x). Further, let p: AxA>—<-X and 
set Cp= {x fP xX: p"(xXx)czx). The normality of I  together with the minimality 
of NSxX guarantees that XP\Cpf I +.

For each x fX D C p, define Axc x  by Ax—{p (f,fx(!fj): ££x}, and then let 
HcXPlCp besuchthat H f I xX and (Vx, y£H)(xczy =>Ax= Ayf)x). Notice that 
Ax=Ayllx  means that {p(Z,fx(0): ££x} =  {p (L f?(£))’■ <^6у}Пх and hence that
f x—f y\x- Thus define / :  A—A by /(a) =f x(«) where x is any element of HO  (a). □

The ideal-theoretic characterization of mild A-ineffability is much weaker than that 
given in 1.2 above for A-ineffability and almost A-ineffability as we now show:

1.4. P roposition. For any uncountable regular cardinal x and any cardinal 
X^x, x is mildly X-ineffable iff NMInxX = IxX.

Proof. It is clear that if NMInxX =I*i, then x is mildly A-ineffable, and if x  is
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mildly /-ineffable then 4 a eNM InxX. We show that if x is mildly Я-ineffable, then 
I+xeN M InxX. Pick XfJ+x and let (Ax: x£X) besuchthat (Vx€X)(Axax). For 
each z£PxX -X  pick xz£XOz, and for each z£X  set xz=z. Define A'z=AXzHz 
and \e tA eX b e  such that (\/ г£РхХ)(кЗу£г)(А'уГ\г=АПг). Then (Vz6PxA)(3y€£) 
(АХуПуГ)г=АГ\г), so (Vг£РхХ)(Зх£ХПг)(АхГ)г=АПг). □

We conclude this section with some remarks on the “projections” of the ideals 
studied above from Pxx to x.

It is easy to see that for any normal ideal I  on Pxx, I\x= {Yf)x: Y£ l}  is a nor
mal ideal on x. Moreover, (I\x)+ = {Fflx: T £ /+} and I= {Y e P xx: YV\x£l\x}. 
As an easy consequence of these facts together with 1.2 above we obtain

1.5. Proposition. For any uncountable regular cardinal x, NInx=NInxx\x 
and NAInx—NAInxx\x. □

It is also easy to see that for any uncountable regular cardinal x, Ix = Ixx\x and 
hence that NMInxx\x is not the weakly compact ideal on x. This is not surprising for 
as we show in [8], mild Я-ineffability is a Px/generalization of weak compactness in the 
sense of some of its familiar characterizations. And as Baumgartner observed in [2], 
p. 87, these characterizations of weak compactness do not yield the weakly compact 
ideal; they just yield l x.

In Section 2 below we define a new ineffability property of PxX “between” mild 
Я-ineffability and almost Я-ineffability whose associated ideal is normal, and show that 
the projection of this ideal from Pxx to x  is the weakly compact ideal. We study this 
notion further in Section 3 below and in [8].

Motivated by Shelah’s work in [15] together with out 1.3 above, we define a new 
ineffability property of PxX as follows:

2.1. D efinition. For any uncountable regular cardinal x and any cardinal X ^x, 
say that Xc:PxX has the X-Shelah property iff for any {fx: x£X) suchthat ( i  x^X ) 
(fx: x -x ) ,  (3/ :  X-~X)(VxePxX)(Hx= { y d X n x : fytx=ftx}AO).

Further, define the set NShxX by NShxX= {XczPxX: X does not have the A-She- 
lah property}, and say that x is X-Shelah iff PxX$NShxX.

It is clear that IxX(zNMInxXczNShxX, and in view of 1.3 above, it is also clear that 
NShxX c  NAInxX cz NInxX.

The main result of this section is that x is A-Shelah iff NShxX is a normal ideal on 
PxX (Theorem 2.3 below). We start with the following simple preliminary which was 
inspired by a result of Baumgartner and Laver [4].

2.2. Lemma. Suppose that I^& ‘(PxX) is such that

2. A new ineffability property of PxX

( 1)

(2)

(3 )

(VX, Y с  PxX){X c: Y h Y Z I^ y  X ei), 
(V X €/)(V F64a)(ATUF€/), and

V i e l .
Then I  is a x-complete normal ideal on PxX.
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P roof. It suffices to prove that I  is x-complete. In fact, we will show that 
I*= {X£PxX: Pxk —X £ l)  is x-complete.

Pick (5<x and let (Xx: а-=<5)бг(/*). For each /?<Я write ß=Sy+a 
where ysO and a «=<5, and set Yß — Xx. By (3), Y=A(Yß: ß<X)= {y£PxX: 
(Vjß€y)(y€ Yß)}£l*, so it follows by (2) that ГП^€/*. Now note that (\/у€ТП(5) 
(<5cy &(V/J£y)(y€ Yß)). Thus ГП ^с: Г) {Ха: oc<<5}. It now follows by (1) that 
П{Ха: a«5}<E/*. □

2.3. Theorem. For any uncountable regular cardinal x and any cardinal Яёх, x 
is Я-Slielah iff NShxX is a normal ideal on Pxl.

P roof. The reverse implication is clear. Moreover, it is clear that if x  is Я-Shelah, 
then NShxX is proper, and that if XczPxЯ is Я-Shelah, then every Y z)X  is Я-Shelah 
and X£l+x. Thus NShxX satisfies (1) and (2) of the preceding lemma, so we complete 
the proof by showing that it also satisfies (3).

Let (Xv: v <  Я) xNShxX, and for each v< Я let ( fx : xdX v) witness Xv£NShxX. 
Set X= V(Xv: v<2). Suppose that X $ N S h xX; we derive the required contradiction 
as follows.

For each x í X  let (ajj, ..., a j, ..., (v<ot(x))) enumerate x in increasing order.
Notice that in view of the fact that IxXa N S h xX, we may assume w.l.o.g. that X c  {0} 
and hence that (Vx£X)(aJ=0).

For each x£ X  pick y(x)£x so that x€Xy(x) and define gx: x —x  by

(y (x) if £, =  where v =  0 or lim(v) 
gx ( 0  (a*) if £ =  a* where v =  ц + \.

Now let g : Я—Я besuchthat x£P xX )(z\y£X ^x)(gy\x=g\x), and set y=g( 0). 
Finally, define / :  2 —Я by /(£)=&(£ + 1). We show that (\/х£Р*Я)(Зу£ХгПх) 
{fy\X = f fx) thus contradicting XyfN S h xX.

Pick x£Pxa and set x '=xU  {0}U {£ +  1: %£x}. Now pick y£XP\x' suchthat 
gylx'=g\x'. Notice that since 0£x'czy, gj,(0)=y, so y(y) = y. Thus observe that 
for each %£x we have f(Q = g(£ + l ) :=gy(€ + 1)=J^(0 since {£, £ + 1 } c / c y .  □

It is easy to see that x has the Shelah property and hence (by [15]) is weakly 
compact iff x is x-Shelah. Moreover, an easy argument using Theorem 2.3 above and 
the remark preceding 1.5 yields

2.4. Proposition. For any uncountable regular cardinal x, NShx=NShxx\x. □
In view of the facts that x is weakly compact iff x  is mildly x-ineffable (see [7]) 

and x is weakly compact iff x is x-Shelah, it is clear that x  is x-Shelah iff x  is mildly 
x-ineffable. In Section 3 we will see that the Я-Shelah property and mild Я-ineffability 
are not equivalent for arbitrary Я => x, however.
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3. 2-Shelah cardinals and supercompactness

The main result of this section is that if x is 2я * “-Shelah, then x is 2-supercompact 
(Theorem 3.2 below). Our proof of this requires the following easy preliminary which 
shows that the 2-Shelah property is a PxX generalization of “Baumgartner’-s prin
ciple” (see 0.4 above).

3.1. Proposition. For any uncountable regular cardinal x and any cardinal 2 s x ,  
XczPxX has the X-Shelah property iff for any X-sequence (gx: a<2) o f regressive 
functions on PxX, (3 /: X-~X)(V x£PxX)(Ex= {у£ХГ\х: (V a£x)(gx(y)=f(d)')}?±0').

3.2. T heorem. For any uncountable regular cardinal x and any cardinal 2&x, 
i f  x is 21<X- Shelah, then x is X-super compact.

Proof. Set у=2я<“ and let (fx: a<y) enumerate the set of all regressive func
tions on PxX. For each y£PxX fix an element t y of y, and then for each oc*=y define 
gP Л Д -V  by

fÁ (y ^ X )  if у П Х *  0 
gÁy) — | T̂  otherwise.

It is clear that for each a<y, gx is regressive and that f x—gx\PxX.
Now let g: y-*y besuchthat (\/ ydPxy)(Ey= {z£Pxy: yczz&(V<x€y)(gx(z)= 

= ?(“))}£^х)-  Notice that g: y^X.
For each y€Pxy, set E ' = {z П 2: z£Ey}. It is easy to see that:
(0 (V Pxy)(E'£If)),

(ii) (Vу£ Р Ж Е ;  с  П {E(x): aiy}), 
and

(iii) (V a< 2 )(F {; , c  Й П Р Х2).
An immediate consequence of (i)—(iii) above is that { E f : <x<y} generates a 

proper x-complete filter F in SP{PxX) extending I f .  We claim that Fis a normal ultra- 
filter.

Let / :  PxX-*X besuchthat X= {x£PxX: f(x)dx}£F  and let ß be any ordinal
suchthat f p\X=f\X . Then since E(pf F  and since E{ß)~ {°}={*€PX2: f ß(x) = 

=g(ß)}, it follows that /  1({g(/?)})€F.
Pick XczPxX and let yx : PxX-*{0, 1} be its characteristic function. Notice

that Xx is regressive on {0, 1 }r\PxXZF. An argument similar to the one used in the 
preceding paragraph shows that (3/J-=y)(g(/?)€{0, 1}&Zx1({g()5)})eF). □

An easy consequence of 1.3 and 3.2 together with fact that 2-supercompactness 
implies 2-ineffability (Magidor [13]) is the following improvement of Magidor’s 
characterization [13] of supercompactness.

3.3. Corollary, x  is supercompact iff x is X- Shelah for every 2 ^ x  iff x is almost 
X-ineffable for every 2 sx .

Proof. By 1.3 and 2.1 above, N ShxXczNAInxXcN In xk for every 2 s x . The rest 
now follows by Magidor’s result and 3.2. □
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We conclude this section by showing that the /.-Shelah property and mild л-inef- 
fability are not provably equivalent for arbitrary Baumgartner [3] obtained a
result which amounts to the same thing.

3.4. Corollary. The /.-Shelah property and mild /.-ineffability are not provably 
equivalent for arbitrary

Proof. By Theorem 3.2 together with the DiPrisco—Zwicker characterization [9] 
of strong compactness, and Menas’ result [14] that the least measurable cardinal 
which is a limit of strongly compact cardinals is itself strongly compact, but is not 
2*-supercompact. □
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SATURATION OF AN INTERPOLATORY POLYNOMIAL
OPERATOR

A. K. VARMA (Gainesville) and P. VÉRTESI (Budapest)*

1. Introduction. We obtain the saturation order and the saturation class for 
the interpolatory polynomial operator introduced by O. Kis and P. Vértesi [1].

2. Preliminary results. 2.1. As far as we know, D. L. Berman [1] and G. Freud 
[2] were the first ones who, answering a question of P. Butzer, proved the Jackson 
theorem via interpolatory polynomials o f degree Sen  (see (i)—(vi)). From that time 
at least a dozen papers appeared proving the Jackson, Timan or the Gopengauz— 
Teliakovskii theorem. The authors are, among others, M. Sallay, R. B. Saxena, 
P. Vértesi, О. Kis, A. К. Varma, T. M. Mills, A. Sharma, J. Szabados, R. Bojanic, 
R. DeVore, К. K. Mathur, N. Misra and H. G. Lehnhoif. (For detailed references, 
see [4] and [5].)

2.2. Perhaps of the simplest form is the operator found by O. Kis and P. Vér
tesi [1]. The aim of this paper to find the corresponding saturation order and satura
tion class. To be more precise, let for n = 1,2, ...

(2. 1)

and consider the trigonometric polynomial
n

( 2.2) Pn(f 0 = 2  f(tkn)Ukn(.0, ri — 1,2, ... ,

for the continuous 2^-periodic /  (shortly /€  C). Here

(2.3)
where

ukn(t) =  411(0-311(0, к =  0, ± 1 ,.... ±n,

(2.4)
(2и +  1) sin— -

are the fundamental functions of trigonometric interpolation based on (2.1). Obvi
ously

The work was completed during the second author’s visit in Gainesville, in 1983 and 1986.
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(i) degpn t?4n,

(ii) Pn(/, tkn) = Ж „ ) ,  k - 0 , ± l , ..., ± n ,

moreover, by [1], (1.2),

(iii) \Pn(/, 0 =  const, m (/, , n = 1,2,...

where со is the usual modulus of continuity, (“const.”, c,cx, ... mean absolute posi
tive numbers.)

2.3. If g(x) is continuous on [-1 , 1] (shortly g6C), let us consider

(2.5) qn (g, x) =  Z  8  (cos t J  “kn (arc cos x), n=  1 ,2 ,....
к — —n

It can be seen that
(iv) qn is an algebraic polynomial of degree -Ш4п,

(У) Чп (g, cos tkn) = g (cos tk„), к = 0, 1, ..., n,

(vi) k .(g ,* )-g (x )l gs const. [co(g,1/1 n X « = 1,2,...
(see [1]).

2.4. A very natural question arises: How good is the polynomial p„, i.e. can 
the order of approximation be better than 1 In (excluding the trivial functions, of 
course)?

3. Results. Let ||/ || and ||g|| be the usual maximum norm for fdC  or g€C, 
respectively. The saturation order and saturation class for pn is contained in the follo
wing

Theorem 3.1. For the operator pn

(3.1) \\Pn(f 0-Д01 =

For qn we state

(3.2) lk „ (g ,  x ) - g ( x ) ] |  =

•Ш iff f  = constant,

f f  f f  Lip 1 •

then

[•Ш iff g = constant,

m iff cp£ Lip 1.

R emarks, a) To prove these theorems we cannot use the usual saturation argu
ments. The method of our “ad hoc” proof was initiated by G. Somorjai [8].
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b) . By (3.2) we get

(3.3) \\qn(h,x)-h(x)\\ = o [± )

if h(x)= y 1—x 2 (because now <p(i) = sini). Considering that he Lip 1/2 but 
h ft Lip (1/2+e) (e>0), this estimation is better than (vi).

c) . Similar saturation theorems can be proved if the corresponding inter- 
polatory operators are based on the roots of P„(a,/?)(x), (1 — x2)P„(a,/J)(x), etc. The 
main tool is in P. Erdős, P. Vértesi [9] which actually gives a correct proof for 
Theorem 2.4 in [6].

4. Proofs. 4.1. P roof of T h eorem  3.1. If, omitting the superfluous notations, 
tj are (one of) the nearest nodes to t, i.e.

(4.1) t = tj +
2n + \ where —n S a - a пШ n,

we shall see that the operator norm has the same order as the absolute value of 
the у-th term. Namely,

8(4.2)

Indeed, by (2.4) and (4.1)

-3  = M O I s  2  к  (01 s  const.
“  к = —n

10(01 S

2 2и + 1 . .
V —  ^  2

+ *

moreover, by |4 |s l ,  \uj\ = \lj\3\4 — 3lj\s\lj\3^S /n 3. To obtain the upper estimation, 
by (2.3) and (4.1)

^2n+- \ t - t k\sin“
(4.3) k ( 0 l  — 7

(2« +  l)3sin3^ ^ -
const-

::: const
\ j ~ k \3

if к = j ± \ , j ± 2 , ... ,j± n .

By (4.3) and k | s 7  we get (4.2), considering that

4.2. Let
2 K(0l = 2 К  (01-

k = —n k —j —n

Mf  (/) := lim
y-+t

m - f { y )
t - y , feC.

Then, by [9; 2.1] we have
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L em m a  4.1. I f  Е а [ —л,л)  is a set such that [—л , л ) \ Е  is countable. Then 
Mf := sup Ms (t) = M)■ {E):~ sup Mf  (t), i.e. we have

*€ [—я,  я) t £ E

(a) / =  constant iff M f (E) — Q,

(b) /£ L ip l iff Mf  ( £ ) < - .
4.3. Now we state
L em m a  4.2. I f  /6  G then

(4.4) Пт {n I p„ ( f  t) - f  (01} ^  const ■ Mf .Í1-* 00

Proof of Lemma 4.2 (Parts 4.3—4.8). First we assume that M f >  0; otherwise 
the lemma is trivial. Let

E  := {x; x6[— тс, л ) ,  х / л  is irrational}.

Then by [9] we can state
Lemma 4.3. Let xa£E and g>Q be fixed. I f  {y,} is an infinite sequence with 

y\-*xa, У1^ х п, then one can find infinitely many (different) nodes tjk,„k and numbers 
{Xk}<^{yi} with

Q2
(4.5) \Xo  — tJk,„k\ S — , k =  1, 2 , . . . ,

nk

(4.6) 3nk IXk - t Jk.nk\ ^ 2e_
nk

к = 1, 2, . . . ,x k£{y,}

Mr
lf  0 > 0  is small enough.

By Lemma 4.1 one can choose a T0£E  such that M f (T0) ^ - ~ - ^ 0 .  Let
71 10 < —’ say- Let 0 < £ ^ _  be fixed. Then by definition there exists a d0,

0 <  d0 ■< — , such that

(4.7) /(0 - /(L „ )
t Tq

;(1 +e)Mf (T0) if 0 ^ \ t - T 0\ ^ d 0.

Let us define the sequence {.ff.} such that

Tq, r =  1, 2, ...; lim 2Tr = Tqr — oo
and

(4.8)
/ ( ^ ) - / ( Г 0)

^ - T 0

( [ - e ) Mf (TQ)

max—n^t<n
| t - r 0| a | ^ - T „ |

f ( t ) ~ f (T0) 
t — T0

if Mf  <  

if Mf — oo.
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That means, in both cases 

(4.9) /« - / ( T o ) ! + e f(STr)-f(Tg)
t - T 0 1 —e Л - т 0 if \ЗГГ — Тй\ = 11 T01 = dg,

г = 1,2.......
4.4. Now, using the properties of {Л}, and Lemma 4.3 we shall prove that

max {Ipn(f, T0) - f ( T 0)I, Ipn(J\ 2Tr)-f{ST r)|} S  -L  | f(T0) - f{ .T r)\
71

at least for proper subsequences of {STr} and {и}.
4.5. Indeed, let us apply Lemma 4.3 with the cast x0—T0, {_y,} =  {^} for the

set E. Then there exist 1 ..., ••• ... (we denote the
elements of the subsequence by 2Tk again) such that

(4.10) |T0-- 1. | ^ _ £ l к  = 1,2, ...,

(4.11) 3mk
1 2g

" Ok.Wfcl — m ’ mk 1,2.......

By (4.10) and (4.11) it is easy to get

Q(4.12)
if q is small enough. 

Now let iVy't- Then

(4.13)

Here, if q is small enough,

4mk \* i - T 01 3g
mk

д л ь / « ) / ( Л Ь Я Л ) Л - T0 _l_ / ( T o ) - / ( h ) To h
Л - h Л ~ Т ,о л - h To — h Л - h

Л _ To
I L
mk

2 n -  в

and, as above,

To h
Л ~  h

2 mk +1 mk

To—Л + Л - h
CJ- _  / 
J k  l i

1-f

Л - h
^  1+g.

Let |Г0 — hl=4>; then using (4.9) we get from (4.13)

/ (̂ )-/(oL [g+(1+g)|±il| Щ Щ .
Л  L I L 1 £j |  Л  h>

whenever e and q are small enough.

^  (1 +3e) Д Л )- /(Т „ )
^k~Tg
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On the other hand, if M f =°°, by (4.8),

ж ) - т
y k- t i —  Eö + ( 1 + e ) ] r k- T 0

Summarizing, we obtain

/ ( & ) - №(4.14)
f k - t t

(1 +3e) f(-rk) - f ( T 0)
— T  •S к -*0

I whenever |!Г0 —h| S  d0 
I or for any i if Mf — °°.

(4.14) will be used to estimate pn—f  Indeed, with j= jk we can write

mk
(4.15) \pmk( f , r k) - f ( r k)\ = \ 2  l / ( 0 - / ( ^ ) ] « r ( ^ ) | s

i/(^)-/(o)i • ы*а\- 2 \т-/ш\ ■ k№)I -0^|tf-T0|S<I0i*j

2  l / (0 - /(* D I  • \ щ Ш  := A1- A 2- A 3.
IU TQ\>d0

4.6. First we suppose that for a certain к

(4.16)
Then by (4.2) and (4.16)

(4.17)

l / ( ^ ) - / ( 0 ) l  s  т 1 / ( ^ ) - / ( г 0 ) | .
Л ё ^ 1 / ( ^ ) - Л Г 0)|.

Moreover, using (4.3), (4.14), (4.11), (4.12) and (2.1),

(4.18) Л ^ с о : 2о-фг-т0|з<г0
i*i

0s
n т\\ЗГк-и\*  -

2  1 A * d - f ( T 0)\ — e e2
0-=|í| Toledo

i*j

Ш const. (1 + 3s) o2| / ( ^ )  - / (T0) \. 

Let Then, by (4.3), we estimate A3 as follows:

(4.19) и e3 S  , о const. II/II
A3 =£ const. 1/1 —3 2  d0 3 = 2 ,3 e3-

171 к i =  — m, 171 к a 0
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Using (4.15)—(4.19), (4.8) and (4.12)

b . ( / . ^ ) - / O T I  8 1/О Т-ЛТО 1 g - ^ M U 3 , )e ' - w g H 4 y  a

■ | / о т - / ( т а ( ^ - с о т ,.(1 + з .)С» - ” ^ М £ )

S  \  | / ( ^ ) - / ( Г 0)|, if q  is small enough. л
On the other hand, if M f = °°, we estimate as follows (see (4.3), (4.8) and (4.12)):

(4.20) A3 ^  const. 2
\ h - T 0\>do

const. (1 +3e)

\f(3rk) - f(Q \
№ ~ 0l т1\ЗГк-и\* -

2  4 -2 ^/№ ) - / ( /> ) Q3
^~k~To ml

S  const. (1 +3e)
Using these we get again

mkdl l/G /D -/(/> )!•

1
(4.21) IPmk( f  Гк)-/{2Тк) I ё —  |/(Г 0) - / ( ^ ) | ,  
whenever (4.16) holds true.

4.7. Now let us suppose that (4.16) does not hold. Then obviously
(4.22) \f(T0) - / ( 0 )| s \f(T0)-f(£T k)\ - \f(£Tk) ё

^  \f(T0) - f ( r k)\ - 1  |/(Г 0) -f(2Tk)\ = l | / (r0) - / ( ^ ) | .

As above
(4.23) \Pmk(f, T0) - / ( Г 0)I 
where by (4.2) and (4.22)

Bk:= \f(T 0)-f(tj)\\u j(T 0)\ ^  ± \ f ( , r k) - f ( T 0)\. 
Further, by (4.3), (4.5), (4.8)

B2 := 2  1/(0)- f ( T 0)\ I и, (Г0)| const. 2  •
... 10 —JoliV;

<?° ^  const. 1т1\и-Т0\ * - '  \ЗГк-То
s  const. 06| / W - / ( r o)|.

Finally, if as in (4.19) (see (4.3))

2  1 /(0 )- /(Г о)1к(Го)| =§
l*i-T0M 0

K w l|i, .- r0|:

const. 11/11 Q5

mid£
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If, on the other hand, = we get by (4.3), (4.8), and (4.12)

B3 ^  const. 2 \ f ( ^ ) - f ( T o ) \  в
\ti-T 0\

■e5Z
l

rnldl

Using these estimations we get from (4.23)

—n---- ГГц- s  const.---- —— —
m k \ U ~ T 0 \ \ ^ k ~  T 0

const. \f(-Tk) - / (T 0)I

mk

mkd% '

(4.24) I Pn,k( f  Ъ) -/(To) I ^  I m )  -f(STk) I

for a proper q, whenever (4.16) does not hold. (4.21) and (4.24) complete the 
proof of 4.4.

4.8. Now using 4.4 and (4.12), we have

Щ \\pmk( f  0 - / ( 0 II 
from where we get (4.4) by (4.8).

,  g \f(T0)-f(d rk) 1 
4 7I3 \T0- r k\

4.9. Now we prove Theorem 3.1. The first part of (3.1) comes from (iii), 
(a) and (4.4). Now let / 6 Lip 1; then by (iii), \\pn(f, t) —/(OllSconst. л -1, on 
the other hand if ||/>„(/ 0~/(O il = 0(n~ 1), then by (4.4) °°, i.e. /6Lip 1.

4.10. P roof of T h eorem  3.2. The proof can be done as before considering the 
relations cp(t)=g(cos t) and p„(<p, t) = q„(g, cos t).
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DISTRIBUTION OF DIGITS OF PRIMES IN 

q -ARY CANONICAL FORM

I. KÁTAI (Budapest), member of the Academy

1. Let 2 be an integer, j / e={0, 1, . .. ,q — 1}. Every nonnegative integer 
can be uniquely written in the form

n = 2 aA n)q j> aj(n)£s?q.j=o

For an arbitrary subset 28 of the nonnegative integers, let Am(x) be the counting 
function of the elements of 28 not exceeding x, and

Aas ( * |^ ’ ’ ^Г) =  #  {n£28\n S  X , cij^ri) = b, (l =  1, ..., r)}.

For the set 28 of all primes we shall use the notation

( |A. •\x , i ') „ (  |A , •— П \x  .
V Ibi, - b j 1 Ibi,. br)

If 28— the whole set of the nonnegative integers, then we shall write

( |A . • J r ) A \ji, ■ J r )

r k ,  • b j = A lx
hi, .: , b )

If x — qN— 1, N  a positive integer, 0 ^ j 1<j2<...~zjr^ N —l, then

4 4

for every choice of bx, ...,b r£s/q. Let now qN^ x < q N+1, 1,
bx, b2, ..., br2.s2q. Every n ^ x  can be written in the form

n =  mqJr+1 + v, 0 =  c <  qb+1m = 0J. [ ф

If w = ["^7Tr]’ then the couple (m, v) gives an integer n if and only if p g  j — A  j. j

( 1. 1)

X
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X.qL+1. Since al(n)=afv) for l= jr, therefore

<• ■*> " Hi;:::: £)=ЬМ+|) * И1- >|tz  -
=  Y + 0 ( q }r - ) .

Here and in the sequel [z] and {z} denote the integer part and the fractional part of z, 
resp.

We should like to prove a similar theorem for the primes, namely that

(1.3) П ( 1°’ h, ■■ ;  j f r l

Hb, b2, ..., brJ (l +  o ( i ) ) - ®  я(х)

uniformly asу2-= ...~<jr< N —c log N, qN<x, г ^ с г log N, where A(b) = 0if (b,q)>  1 
and k(b) = q/<p(q) if (b,q)= 1.

By using the results on the exponential sums with prime variables due to I. M. 
Vinogradov, and some theorems on the distribution of primes in arithmetical pro
gressions we shall get such a theorem (Theorem 1) in Section 3.

If j r is a value close to N  then we may hope to have a relation like

(1.4) n [ x \ 0, { " " " l ' )  =  ( l + o ( l ) ) h ’ " l lb, b2, ..., br) v ' log* ( lb, b2, .
(see Theorem 2).

In the further sections we shall apply Theorems 1 and 2 to prove the existence of 
the distribution of ̂ -additive functions on the set of primes with and without norma
lizing factors.

2. Lemmas. л(х,к,1) denotes the number of primes p, = /  (mod k), p ^ x .  
The letters c, clf c2, ..., denote suitable positive constants, not the same at every 
occurrence.

Lemma 1. Let 0<£<1 and

s  = [ 1 -  г ,  i ) u u  ( [ — £ ,  4 + i | ] u [ ° ’  ab=i\iq q J/
Then

(2.1) #{p -  X| | ^ TJe‘S|  -  Ĉ (X)

uniformly for lSySlV, where qN^ x .  I f  £qJ+1< l, then the left hand side o f (2.1) 
is zero or one.

Proof. L et us fix a small сг > 0 . We know  th a t

(2.2) л  (x + y) —л (x) <3C у/log X,
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if y^>xCl. If

(2.3)

then
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+ P ^ x ,

mqJ+1 + ocqJ+1 <  p <  mqJ+1 + (a + t!,)qJ+1

with a suitable integer m—0, 1, [xfqi+1].
Let us assume that ZqJ+1> xCl. Then, by (2.2), the number of primes satis

fying (2.3) is less than

2  n(tnqi+1 + aqJ+1 + l;qj+1) — Ti(mqi+1 + ciqj+1) <sc — • —r <sc £л(х).
m X  <7

Let £qJ+1< xCl. For a fixed integer the condition

holds if and only if

— ^ + 0 + m ,  |0| ^  m = integer,

i.e. if p=bqJ + 0qJ+1+mqi+1. Then 6qi+1 = I=  integer, \l\<£qJ'+1. If £qJ+1~=: 1, 
then /=0, so qJ\p. This may occur only if q= p ,j=  1. Let us assume that £qJ+1>  1. 
The number of primes satisfying (2.4) can be estimated by the so called Brun—Titch- 
marsh inequality

2  n (x ,  qJ+1, l) <s= £я(х).

The number of primes p under the condition

Ь £ т} е [о .Я и < 1 - { ,  4

can be estimated similarly, so we omit the details.
Let (pb(x) be a periodic function mod 1,

<Рь(х) =  <

r

1 if x i { ~ ,

1 if
yq

bx = —2 q
0 if х ф ,  1]

b + 1
<7

b_ b + \ 
q ’ q

5 A c t a  M a t h e m a t i c a  H u n g a r i c a  4 7 ,  1 9 8 6
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For the sake of brevity let e(y)=einiy. The Fourier-expansion of cpb(x) has the 
following explicit form:

, cm(b) =

<Рь(х)= 2  cm(b)e(mx),
m = — oo

Hr)
2nim И - т Н -

Let 0 < Л < 1/2<7, and
1 a /2

f b(x) := -г f  (pb(x+ z) dz.
-All

Then the Fourier coefficients in the expansion

fb (x)=  2  dm(b)e(mx)
satisfy the relations

( 1)

(2)

do(P) =  —, dm(b) = em(b)- 
4

( mA\ ( m A t2~J
2 nim

d„(b) =  0 if m =  0 (mod 9), m 0

(3)

Furthermore, we have
\dm(b)\ =: min i ^ - ,  —̂ -1  ■ V ti  m n m 2 7

a) 0 S/j,(x) 5  1 for every x,

b) /*(*) = 1 if хЛ—+ A ,  b + l — d | , bestfq,

c) II 0 if x€[0, l ] \ ( b A ,b + 1 +A ), b^s/q
Let now bx, b2, ...,br£stq,

F(x  1, . ..fbr(xr).

Let 1 ...<Irs N  be integers,

Q =  [ _ J _  _ L_1
[qb+i ’ - »

Let J t denote the set of the vectorials M =[m 1? mr] with integer entries trij. 
We shall define t(y) as

í(>;) F (qb+1 ’ ű^+1) ’
Лс/а M a t h e m a t i c a  H u n g a r i c a  4 7 ,  1 9 8 6
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Since the Fourier series o f fbj(xj) are absolutely convergent, therefore 
(2-5) t(y) = %  EMe(MQy),

M
where

EM = dmi{bi) d,„r(br),
MQ denotes the dot product.

Let (b0,q )= \,
(2.6) Ж(х, b0) =  2  *(P)>p^xp=b0 (m odi)

(2.7) S(M ,b0) =  2  e{MQp).
P̂ XP=b0(m odi)

From (2.5) we get

(2.8) Ж (х, b0) = q, b0)+  2  EMS(M \ Ю-
q  о

Furthermore, by Lemma 1, applying it with % = A, we have

(2.9) П [x\°K ' £ l' ) =  J f  (x, bo) + О ((r +1) Atz(pc)).

Now we shall estimate the exponential sums S(M , b0). 
л

Let MQ=—~, (A, H) = 1. First we observe that EM= 0 in (2.4) if H\q. Indeed, H
from

A
—  ql,+i= mlr+mlr^ q l - lr-x + ...,

we get that q is a divisor of the left hand side, so q\mlr, dm[ (br) = 0, EM = 0.
To estimate S(M , b0) for relatively small H, we start from the relation

(2.10) S (M ,b 0)=  2  e [ ~ l] ^ (x ,[ H ,q ] ,l)+ 0 ( l) .
lmod [ t f , i ]  /

i= b 0( mod i )
Since

Tt(x, k, l) — «  xe~difloe x (p(k)

holds uniformly in ls& s(lo g x )Cl with an ineffective but positive constant dx 
([1], Ch. IV), we have

(2.11) S(M, b0) =  0; H, q) + 0(Hxe~*Jf^ ) ,
where

(2.12) E(b0;H ,q )=  2  4 4  4
l mod [Я, i] V. /

Z=fc0(m odi)

Лс/а Mathematica Hungarica 47, 1986
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Now we observe that the sum (2.12) is zero. Indeed, we put l=b0 + tq, t —0,1, ...
m 1 - 1, k J S J L  , and get

E(b0; H, q) = Д  e ( ^ ( b 0 +  i,)) -  e b0)

( 4 4

o.
l

So we have proved
Lemma 2. T/- w a positive constant, l ^ H s ( l o g  x)Cl, H+q, then

(2.13) S(M, b0) =  0{xe~dJi°**)

holds with a suitable positive constant d2.
R emark. A somewhat weaker estimation could be obtained by using the Bar- 

ban—Tshudakov—Linnik theorem [3] and its generalization in the wider range 
l ^ H ^ x c, since H  runs over the integers all prime factors of which divides q.

We shall use the following theorem of I. M. Vinogradov ([2], Theorem 2) which 
we state as

Lemma 3. I f  1 H+q, then

• | e-o.5tiog* +  j / r- iH  + x(2.14) S'(M, b0) « log3 x  I

L emma 4. Let e0 be a sufficiently small positive constant, ушхе~‘а̂ 1оех, log H -

у log log Я
«=£ /log X. Then 

(2.15) 2  * x—y^p^x 
P = b 0  (m odi)

( 4 4 УН log:

Lemma 4 is stated and proved in [2] (Ch. X, § 3, Lemma 4) without assuming the 
condition p=b0 (mod q). Since this little modification does not imply any important 
change in the proof, we omit it.

3. Now we are in a position to formulate and prove our theorems.

Theorem 1. Let qN< x< qN+1, 0 1  s / 1< /2-=...</I.s.iV, b0,bx, ... 
...,bffisdq, (b0,q)=  1. Then

(3.1)
4 L0;,

+o ( 4  (10 4̂ 4 )
with a suitable positive constant d, uniformly in r, lx, ..., lr, bx, ..., br.

Acta  Mathematica Hungarica 47, 1986



DISTRIBUTION OF D IG IT S  O F PRIMES 347

Proof. Since H\qlr+1, therefore l ^ H < q l' +1, and so by Lemmas 2, 3, 4 we get

S(M, bo) «  n(x) {e_C4(lo8J:)l/2+(logx)4 ' }

with a suitable positive constant c4, uniformly for every M.
From (2.7), (2.8) we get

(3.2) Я

I"—*о

... lr \
y \b0, bl f .

li x
q r(p(,q)

+ 0((r+ l)Jn(x))+

+ O(Kn(x)e~c*0ogx),/,) + O ' 7t(x)(log x)4j ,
where K —Z\EM\.

From inequality (3) in Section 2 we deduce

whence

(3.3)

K ^ \-+ 2 2  m i n i — , -Ц ] ,(9  m=i u m  птЧ) 

К  si ( -  + 2d log e/dj

immediately follows. Let d = e  21°8«fw. Then the right hand side of (3.3) is <Э(д r), 
furthermore

(r + 1) d л (x) <sc e -
This completes the proof of Theorem 1.

Let now /o=0, (1S ) /4< /2 /r= 2V, qN^ x c q N+1, 2r<iV1/s, (b0,^ r)= l, 
b0,b1, ..., brds4q. Let us assume that ZV—/r<iV1/4 and let v be the largest integer 
for which /v< 2/v+1—N —2N 1/4 is satisfied, i.e.

ls ^ 2 ls+1- N - 2 N ^  ( s = r ,  .... v + 1 ) ,  lr+1 := N
/„ <  2ly+1 — N —2N11*.

Let

We have
N - l s ^ 2 N 1'*+2(N - ls+1) ( s S v + 1 ) ,

whence
N —lv+1 ^  (2+22+  ...+2r~v)N 1,i+2r~'’(N —lr) «  N 1̂ 1'4 = N 9/2°,

and so
(3.4) t ^ N - c N 9'20.

Let the function S(u) be defined by

fl if =  b° (s =  v + 1, .... r)
U lO otherwise.

Acta Mathematica Hungarica 47, 1986
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(3.5)

The primes pd[ l,x] can be written in the form
p = uq'+v

и = 0, 1, . . . ,  [-~r] •

The fulfilment of the conditions alh(p)=bh (h=0, v) depends only on the 
value v, consequently the condition aih(p)=b„ (h= 0, r) is equivalent with the 
following conditions:

a,h(v) = bh (h = 0, v) and S(u) =  1.

The number of primes p  with u=0 or w=|^U is less than 2q‘, thereforeVq J

(3.6) п ( х I0’ ^ " ■ ’ lA  = lX£ s ( u ) \ n ( ( u +  1)д*|0,V \b09 bi, br)  m= i  L \  \b09 bl9 brJ
© «*»

*

\  q  Ibo, b x ,  . iJJ
To estimate the right hand side of (3.6), we shall use Theorem 1:

(3.7) т > - ) л ( х | £  = д а ? . Л / (") [ " ((" + 1 )г ,)- п (”^ +

+ 0(<q-'>\ix e - i"°**v, 2  <5(и)) + О ((log*)3 2
иШх/Я‘ v  » S j /S* Я '

From (1.2) and the definition of S we get

2  <5 (и )  «  xqv-'-t,
n s x / q c

so the first error term on the right hand side of (3.7) is less than
<k x 1í x q - '- t е -м °вх)1'г, 

and by taking into account (3.4),

(3.8) «Ü le-au o g * )1̂

The second error term is less than

« ( l o g *)3* 1' 2 ^ 1̂ " ” 2  <5( ц) « * (1°^Х)3 xl/2g(1/2)'v « ^ ( 'Q g ^)3 (i/2)(n-hv)-^ 
nsxii' q  q ‘ q

and by observing that
(3.9)

j  (N+  / , )  — t =  j  (N+  / ,  -  2lv + ,)  +  [ 1 7V1/4j  S  -  j  N -^  «  4 -
Acta Mathematica Hungarica 47, 1986
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Since for n £ l

we get 

(3.10)

Я*
logX + 0 log^ 7 + 1q и

44 log2* _
я'= ^  + 0 {q 4 \o g x )^~ %

д г =  —X  "V ,- 1 2  «5(M)  +  o Í 4 r e - ^ lo* ^ /1)  +  0 ( 9 () +<p(q)q iogx a£ jq< Kqr )
+ 0 {q t~'’{log*)9'20" 2 2  <5(и)). 

Arguing as in the proof of (3.5) we get

A ^x1°, tit •••>
'bo, bit • • ■ t

О

h, - , U
bi,-S’H'M'li £.::ЙЧЧ£.£:;::У]+о<л

Since the diiference just after 6(u) is exactly qt~y~1, we have

ixl°’ Zl’ -: , lr)
l 1b0, bi, . b j s x li1

Substituting this in the right hand side of (3.10), and taking into account that 
<f <sz qN/ q ^ N1/l and qr <  2cr <s: N c/S,

we get 

(3.11) <_ О ■.К )
rlbo , b i,. . ; b r) 9 (Я) log

+  0  |X r ( lo g x )9/20“ 2j  .

- a [x I0, X ■"’ !:]x V |b„, Ъг, ..., br) +

So we have proved the following
Theorem 2. Let qN^ x < q N+1, r be a nonnegative integer, 2r<2V1/5, /„=0 , 

( l^ ) /1< /2< . . .< / rSiV; b0, bx, ..., br(:stfq, (b0,q )— 1. Then (3.11) holds uniformly 
in /l5 ..., lr, bx, ..., br, r.

Let

(3.12) r^— n
l l9  • - t l r '

, b j l i x r l b o , b i , . • • 5 b r

M l 0’ h t ~ > 4 ,
У \ b0 , b i ,  .. ■ t b X

where e(0) = q/(p{q) and e(/) =  1 if / s i .
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Corollary. Let 0 ̂  /0<  /х ^  TV. Then under the conditions o f Theorem 1

(3.13) d r « - L  ( e - ^ ^ + O o g * ) 4 ( ^ ) 1/2j , 

while under the conditions o f Theorem 2

(3.14) ^ « s r J - i lo g j t ) « /20) - 1.

4 .  Let / b e  a real valued (/-additive function, i.e. such that

An)  =  Z f ( a j W ) ,  / ( 0) =  0. 
j =о 

Let

(4.1) m k =  l  qZ f ( b q k), Z P Q q *) -  m |,
Я ь=о Ч ь=о

and
(4.2) M(x) -  2  ™k, D*(x) = Z

kSN kmN
where qN̂ x < q N+1.

Since for x = q N+1—1, f(n) can be interpreted as the sum of random variables, 
we can prove that

- J tT 8 2 _1 ( /(« ) ~  W +1 ~  l ))2 =  D2(qN+1 — 1),4 n=0

whence for every x ^ l
(4.3) Z  ( / (« )  -  M (x ) y  =  c x D 2(a)n^x
follows.

Theorem 3. Же /гаге

(4.4) 2 ( A p ) - M (x )Y ^ c n (x ) D 2(x )
PSi

vv/Г/г a suitable positive constant c=c(q).

Proof. Let

H { b q j) = f ( b q J) — m J, t0(n) =  H ( a 0(n)) = /(a „ ( /i) ) -m 0, 

h ( n ) =  2  H (a j(n)) ,  tt (n)  =  2 1 H { aj{n)) .
j =1 J=L+1

First we observe that
?2(”) ^  3 (/2(п) +  ̂ (и ) +  /|(п)).

We have
2  lo(p) = 2  Н г(Ъ)п{х, q, b) + 0(ol)<s:n(x)(7l.

p ^ x  (b,q) =  l
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Let us now consider

We have
№ = )  i t  '?(«)•II л  p ^ x  л  n^ x

Et = 2  2  H 2(bqJ)öíx\J,)+ 2  2  2  H(biq>i)H(baqi*)&[x\J l’ £ ) ,
j  \  \ o )  j ^ i t b 1,bt e ^ q \  l » i !  « V

where j , j \  and j 2 in Ex run over the integers in [1, L], while in E2, j , j \ , j 2e[L + l, N], 
Let L = N —cx log N  with a constant so large that

.(  I A, A'I
H „  J : (log x ) " AID: (log x) ‘

hold uniformly for j= L , j \  <j 3 á  L. Then

Ex « (logx)“2( 2  2  \H(bqj) \ f ,
j S L  b

and by Cauchy inequality,

Ex <k (log x)~2L ( 2  <r?)-
V =  1

To estimate E2 we use (3.14) and get

E2 «  (logx)*™-1 ( 2  2  \H(bqi)\)\
L  +  l < j ^ N  b

whence by Cauchy inequality,

E2 <s: (log х)9/30-1 log iV( 2  ff»)*
v = L + l

Furthermore, applying (4.3) for t;(n) instead off(n )—M(x), we deduce immediately 
that

2  *!(«) « * 2 ^  2  * !(« )« x  2  ffv-
v = l  v = i + l

Collecting our previous estimations we get (4.4).
Let sj(b) be arbitrary complex numbers defined for j=  1,2, .... Let

N=N(x) be the integer satisfying the condition qNS x < q N+1, and let tN be a sequ
ence of positive integers for which

(4.5) (N —tN)llog N  -  «  (N  -  - )  
holds. Let

(4.6) S(n) = 2  sj(aj(n))>
7 = 1

(4.7) Ek(x) := -r/-  2  Sk(p )~  2  Sk(n),11 Л p^x X n^x
fc s l, integer.
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Let the coefficients C(kJl1, be defined by the identity

(4.8) (* !+ ...+ x (w)* =  2  Z  C(k; 1г , ..., vl 5 . . . ,  v , )* ^ 1 . . . x}'.
1 = 1 lSl,-ci,«=...-=I,.(Stw) 

v , +  .. .  +  vr  =  *

Let к be fixed. From the Corollary we get

.(  \ h ,  .... Ц
' v Ibi, ..., b j **: (log x)~ if l g i j lr r g  k,

with an arbitrary large H  for x> x(H ). Using twice the polynomial identity (4.8), 
we get

Ek(x) =  z  Z  c (k > *1» •••> hl vx, . . . ,v r) 2  n s j ^ b ^ s i x l 1' , r)
r  =  l  l i , v i b v . . . t br  v . . . i  v

« ( i o g x ) - H2  2  C(k- h , ..., iT- yl t ... ,  vr) 2  П К Ш
Since

' hî t *>.....К

by using (4.8) we get
n \sh(bi)\v‘ П  ( Z  K(.bt) \) \

(4.9) Ek(x) «  (logx)-«( 2  2  \s j ( b ) \ T -
1 = 1 ь

So we have proved
Lemma 5. Under the condition (4.5) the inequality (4.9) holds for every j t g l ,  

where the constant implied by <sc in (4.9) may depend on k.

5. Now assume that/(Z> -̂0 is bounded as y— bf-_séq. We are interested in the 
limit of the distribution functions

(5.1) Gx(y) =  i  {n; 0 ^  n <  x\f(n) <  M(x)+yD(x)}
for x-*-°°.

Let the mutually independent random variables £0, | l5 ... be defined by 

P(Zj = f(bq j)) -  \  (b ts /q, J =  0, 1, 2,...),
4

and let »7л=£о +  ...+£л_1. It is obvious that

Gqx(y) = HN(y) =  P(% <  +

The condition У(6^{) = 0(1) implies

- l p ( | ^ - m / )  = 0 (l) O -o e )
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and so by Berry’s theorem (see e.g. [4], Ch. XVI) we have
c

\Gq*(y)-<p(y)\
where

D(qN~l) ’

< * > 0 0  =  - 4 = -  f  e~,,,2dt.
У 2k JL

Hence we deduce that
(5.2) lim Gx(y) =cp(y)

JC-*-co

assuming that D(x)-+°° (x-»■<»).
Let £iV-*0, rv-*o°, such that

(5.3) N— tN -* N - t N^ e ND(qN), D(qN)-D(q<»)rSeND(qN). 
Since /и*=0(1), we have

(5.4) M(qN) - M ( q ‘») «
Let qN< x< qN+1, and write the integers n S r  in the form

(5.5) n = uq'x + v, 0 ^  v «= u =  0, 1,..., qN~‘».
From (5.5), (5.3) we get

f(n)—M(x) f f ä - M t f « - 1)
D(x) D{q'» -1) s  qn,

where gN is a suitable sequence tending to zero. The number of integers n S x  
having a fixed residue v (mod qfn) is x/q‘n + 0 (  1). Therefore we have

0 (q ^ -M) + HtN( y - e N) == Gx(y) == H,N(y+QN) + 0{q<»-N),
which implies (5.2).

So we proved
Lemma 6. I f  f(Jbqs)= 0{\), D(x)-*°°, then (5.2) holds.
Theorem 4. Let fibq1) be bounded, Z>(x)-*<=°,

(5.6) Fx(y) := {p x | /0 )  <  M(x)+yD(x)}.

Then there exists a sequence x y ( —°°) jmcA that

(5.7) ТЧО) -  <p(y) (v - ~ )
/o r  all real numbers y. I f  in addition
(5.8) Z)(x/log x)/Z)(x) •* 1 (x -  =»), 
then
(5.9) lim Fx(y) = cp(y)

X-+00

holds.
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P ro o f . First we observe that there exists a suitable sequence xv(—° ° )  and a se
quence r v ( -+°°) such that
(5.10) D ( z ( x v)) /£>(x v)  1 (v - = ° ) ,
where
(5.11) z(xv) =  xve - rvloglogV 
Assuming the contrary, we would have

£>2(x)-£>2(xe-d(logIogx)) >  aD2(x)
with suitable positive constants a, d for every large x, which gives that

with a constant ß > 0, but this contradicts the fact that

D2(x) =  2  av « lo g * .
Under the additional condition (5.8) we shall choose xv=v (v = l,2 , ...) with 

an appropriate rv, rv->-°o.
Let us assume that xv and rv are chosen properly, let sx be the integer such that 

qs*^z(x)< qsx+1. Let furthermore

fx(n) = Sx(n) = 2  f(a j(n )qJ)+ f(a0(ri)qj),
j  =  1 J  =  *x + 1

d(x) =  M (x)—M (z(x))+m 0, q N+1.

Let the variable x  run over the values x v. We shall define

R2(x) = 2  <
sx-zlSN

From (5.10) we get
(5.11) R(x)/D(x) -  0.
Let

___ gx(.n)-A(x) 0 _  f x(n )-M (z(x ))
D(x) ’ Pn D(x)

From (4.3) and Theorem 3 we get

(5.12) 2  W * « ‘ ( I t -)’1 
From (5.12) we get

> s } - 0, ^ y # { p s x | | a p| >  e} -  0

and so the quantities <x„ + ßn = D~1(x)(f(n) — M(x)) (n = 0, x) are distributed 
as ßn (n = 0, x) in the limit, and the same is true for ap + ßp and ßp. Since <xn+ß„ 
(n—0, ...,x) are distributed in limit according to the Gaussian law, the same is
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true for ß„ (n—0 , ..., x), consequently

( * — )X П̂кХ
for every integer fcsl. It remains to prove only that

(* — )•
11 Л  p ^ x

But this is an immediate consequence of Lemma 5. By taking 

from (4.9) we get

(b) _  f(dq j) - m j  
jW  D(x)

2 ß kP~  2 < « ( } o g x y B( 2 2 \ s j ( b ) \ y «
I I X  P S ,  X  „ s x  I

« ( lo g х)-в N * { 2  2  M b ) I T 2 « ( l o g * ) - ™  =  0 (1),I ь
if H>2k.

6. In paper [6] written jointly with J. Mogyoródi we have considered the
function

Ф )  = 2  aÁ n)
j = о

for prime rís, and proved that under the unproved density hypothesis for the Riemann 
zeta function,

Fx(y) {p x\a{p) < Mx+ y D x) = ^ ( y j  + O ^ l o g l o g x ) - 1/ 3)

holds, where
_  g ~  1 log* 2 g2- 1 log*

2 lo g g ’ x 12 lo g g '
Theorem 4 gives immediately

lim Fx(y) = <p(y)

without the unproved hypothesis since the condition (5.8) holds.
7. H. Delange [7] investigated the existence of the limit distribution of values of 

real g-additive functions. Let Nx(a) denote the number of those integers n(iSx) 
for which /(« )<  a. We say tha t/(л) has a limit distribution with the distribution 
function F(a), if

N M
x F(a)

for all continuity points of F(u). H. Delange proved that the fulfilment of the follow-

Acta Mathematica Hungarica 47, 1986



356 I. KÁTAI

ing conditions are necessary and sufficient for/ to have a limit distribution:
со q — 1

(a) 2  2  f ( aclJ) converges,
j = 0 a —1

(b) 2  2 f 2(aqj) converges.
j = 0 a = 1

Let Mx(oc) denote the number of those primes p(=x) for which /(p )< a . We 
say that f(p) has a limit distribution with the distribution function F(a), if

(7.1) M M
n(x) - Я « )

at every continuity point of F(oc). In [8] we have proved that the fulfilment of (a), (b) 
implies (7.1), if q is a power of an odd prime. The proof was based on the Barban— 
Linnik—Tshudakov theorem [3] stating that

n(x, qr, l) =  ( l+ 0 (logx)-c) - ^ y
whenever x ^ ( q r)3.

From Theorem 3 we can deduce another proof of our theorem. Let us assume 
that (b) holds. This implies that the sequences

m j = ^  2  f(a q J), o) = ^~ 2  (f ( aqj) - mj)2
4  a = 1 (1 a — 0

tend to zero, furthermore that

2°)<°°-
j = 0

Let Ln be a sequence of positive integers tending monotonically to infinity 
and assume that L N=0(\og log N) holds. Let qNS x S q N+1, and

hvO) =  2  (f ( aA n)qJ) - m j).
j = L N + l

Since
sup sup \f(bqj)-m j\ ^  qn , qn -+ 0

b í s f q j s L N + 1
and

2  °f — 6ív> Qn 0, 
i=ln

therefore from Theorem 3 we deduce immediately that 

(7.2) 2  *n(p ) ^eNn(x), en -+ 0.
p < x

Let

K(n)= 2 (fiflj («) qr) - mj)> Kr = 2 mj ■
j = 0 j = 0
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Let us consider the characteristic function

(7.3) tpx(t) =  —!-r- 2  eiz(f(p)~K«\n(x) pSx
The convergence of cpx(x) is necessary and sufficient for the existence of the limit 
distribution for f (p )—KN. Since

f ( p ) - M N = hN(p )~ M LN + tN(p),
from (7.2) we deduce that

<рх(т) = 4 л Z e ’( y , ) ' My + 0 (l)Ti\X) p^x
uniformly in |t | < c . Since hN(p) depends only on p (mod qL*), therefore we have

</>*(?) = 4 t  271W  i<,t»
and so by the prime number theorem for the arithmetical progressions we get
(7.4)

<Px(r) = 4 т е"""°( 2  eit/(i)) я  - ( 5 l eiT/(a,J))e_itmj + 0(1) = ^rNW + 0(l).ФК.Ч) 1 = 1 1 = 1 9 a — 0(l,9)=l
Condition (b) implies that *Р£гг(т) converges as LN-+<=°. Then from (7.4) <px(t) 

has a limit as well, consequently

(7.5) l im -^ y { p  S  x \ f ( p ) - M N <  a} = F(a)

exists for every continuity point of F(a).
Let now assume that (a) holds, i.e. that 2  mj converges. Then from (7.4) we get

(7.6) фх(t) := 4 л  2  eit/(p) =  ^ b ,(t)+ o (l), 
where

(7.7) P*(t) =  4 t  ( 2  eit/(,)) Я  4  2  *it/(a,J))-4>\.q) i=i 7=1 9 я=о
(*.«)=1

The convergence of ¥**(т) is guaranteed by (a), (b), so they imply the
convergence of фх(т) (x—°°)-

So we have proved the following
Theorem 5. Let fb e  a realvalued q-additive function such that (b) holds. Then (7.5) 

holds with a distribution function F(a) the characteristic function o f which can be writ
ten as

<PfÍx) = 4 t ( 2  ei,/(I)) e~,,m° П  - { 2  eixS(aqi)) e ~ hmi ■ФКЯ) 1 = 1 1 = 1 Я Я = 0
(!.«)=!
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Assume in addition that (a) holds. Then f(p ) has a limit distribution with the distribution 
function (7(a), the characteristic function o f which can be represented as

(7-9) *e(T) = eit/(°) n \ { 2  eiliiaqi)\
Ф к Ч )  i = i  4  o=o

It seems probable that the fulfilment of (a) and (b) is necessary for the exis
tence of the limit distribution of f(p). Presently we can prove it under the condition 
f(bqJ) = 0 (  1).

Theorem 6. Let f  be a realvalued q-additive function such that the limit distribution 
off(p) exists. Assume that f(bqJ~) is bounded as bdsdq. Then the conditions (a),
(b) hold.

Proof. Let

G(a) =  lim {p x}f(p) < a},

mj =  2  f(aqJ), = У (f(aq j) - m j) \  D2(x) = 2  ah

where N = N (x) is defined by qN^ x < q N+1. First we prove that D(x) is bounded. 
Let us assume that D(x)->-°°, The conditions of Theorem 4 are satisfied. Let x y 
be such a sequence for which (5.8) holds. Since for all y«x,

G(a)-G(y) =  l i m - ^ y #  {p ^  xvlv ^ / ( p) ^  «} =

=  lim
1

—--Г" #
Tt(Xy)

y - M N 
D4xv) -

f ( p ) - M N
D \x y)

ct — M N
D 4 Ä J}

and the last difference is less than О ( "■В~2(хУ) ’ t^ s *mP^es C7(«) = G(y). This cannot
1be satisfied, so D(x) is bounded. Since / ( 0) =  0, therefore — m f  and so

^ 2  2 P ( a f )  ^  2  И + т ?) <
4  j  a

Consequently condition (b) is satisfied. Then from the first assertion stated in Theo
rem 5 we have that

lim
X — oo

1
л(х) # { p  ^ x \ f ( p ) - M x a} = F(a)

holds for all continuity points of F(oi). Now we shall prove that Mx is bounded. Assu
me in the contrary that MXv-+ °° for a suitable sequence vv—oo. If a is a continuity
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point of F, then

F(a) =  lim -^ -y  #  {p Ш x v\f(p) <  MXv+ a} is Jim G(tv+cc), 

where is a sequence such that Since lim G(ß)=1, we have F (a)= l,
ß—°°

This is impossible. Similarly, we can get a contradiction assuming that MXv->-—°°. 
So we have proved that Mx is bounded. Let now

ß = lim Mx lim M x = у.
Х - * - о о

Let MXv-*ß, МУу-+у. Then
G(oc+ß—e) S  F(a) G(ot + ß + e), G(a +  y—e) ::3 F(a) ^  G(a+y+£)

whenever a is a continuity point of F, and e is an arbitrary positive number. Let 
y — ß£< L _ _ . Then a + y —e=-a+ß+e, G(a+y —£ )^F (a)^ G (x + ß+e). From the mo

notony of G, G(y) is constant in the interval y£[x+ß+e, a + y —г]. Since the set of 
continuity points a of F is everywhere dense on the real line, we conclude that G is 
constant on the whole line. This is impossible. So ß=y, Mx is convergent, conse
quently the condition (a) is satisfied. This completes the proof of Theorem 6.
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ON THE RATE OF CONVERGENCE OF A 

LACUNARY TRIGONOM ETRIC INTERPOLATION

PROCESS

J. SZABADOS (Budapest)

1. Introduction. Let n, m£N +,
'Утгк

(1) xk = xkn = - ^  ( k m .

The problem of (0, m) interpolation for the nodes (1) consists of finding trigonometric 
polynomials Rn(f, x) of order at most и —1 to a given f(x)fC .,n such that
(2) Rn( f ,x k) = f ( x k), R l r \ f x k) = 0 (fc =  0 ,1.......« —1).
It is well-known (cf. A. Sharma—A. K. Yarma [1]) that this problem has a unique 
solution when m is odd and n is arbitrary, or m is even and n is odd. We shall investi
gate the rate of convergence of this process in these cases. The mentioned relation of 
m and n will be assumed in the sequel.

2. The rate of convergence in terms of best approximation. Let 2Tn be the set of
all trigonometric polynomials of order at most n, let

En(f)  =  jinf max |f(x )  — T(x)| (n£N0+) 

be the best approximation of an f(x)£C2w, and let

cos(f, h) sup
x , \ t \ S h

Z ( - D ‘fc = 0
f(x+ kt) (s€ N+)

be the modulus of smoothness of f(x)  of order s.

T heorem  1. For any f(x)£C 2„ we have
(3 )

i+ c-ir „
\\ f(x )-R „ (f,x )\\= 0 (n  2 Ein,n ( f ) + n - ”'Z ( k + \ Y - 1Ek(J) (m£N+).

Here and in what follows the О-signs mean a constant depending only on m.
R em a rk s . 1. For m odd, the estimate shows that the process is uniformly 

convergent for all f(x)dC2n. This fact was established in [1]. As for error estimates, 
the result of P. Vértesi [2, Theorem 2.5] cannot even give 0(n ~ m log n), while (3) 
can reach 0(n~m) for smooth functions (see Section 3).

2. For m even, the estimate shows that a sufficient condition for the uniform 
convergence is En(f)= o(n~1). The latter is equivalent to co2(f, H)—o(li) which, as

6*
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a sufficient condition was found in [1]. In [2, Theorem 2.3] it is shown (as a special 
case of a more general statement) that there exists an /i(x)6C2it suchthat co2(/i > A)= 
= 0(h), but /?2„+1(/i, n) does not converge to f fn ) .  It would be interesting to 
strengthen this counterexample to the following

C o n je c t u r e  1. There exists an / 2(x)cLip 1 such that R2n+1(J2, x) does not 
converge uniformly to/ 2(x) (m even).

As for the rate of convergence, Theorem 2.3 in [2] cannot give even 
О |я<мт f  — j  j , i.e. 0(nl~m), while (3) can reach 0(n~m) again (m odd, n even).

The proof of Theorem 1 is based on two lemmas. Denote by /(x) the trigono
metric conjugate of /(x )6C2)t.

Lemma 1. I f  T(x)£tf~in/il, then

\\T(x)-Rn(T, x)I = 0(n~m) {||Г(т)| + «Г(т)||}.

that
P roof. It follows from formulae (5) and (6) of [1] and the unique existence of Rn

п Г j m n — 1
T (x ) -R n(T, x) = 2  T<mKxk) 2k=1 L n j=1

for any T(x)£&~„, with

im eV(*-*»)+(_ lyV -'K - '0 A„(x)]
(n ~j)m -  ( —j)"

AM I
nm+1 J

' ■ W  =  { s i

Thus

( 4 )

1 —cos nx (m even) 
sin nx (m odd).

i — l\m » -i 1 и
eil*-R„(eilt, x) = ~ ~ 2 г in _ j r _ ( _  j)m Д  ei(l- j)xK+ ( -  l)me~ijx ■

Now let

( 5 )

then

(6)

• 2  ei(l+j)x«] =
k=l

( - iy n .eitx ( l_ e -inx)
( я - / ) т - ( - / ) т (/ = 0, 1,

1
(n -z )m- ( - z ) m
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We obtain from (4) and (5)

(7) eilx—R„(e,ilt, x) = ( - l ) m+1( l - e ~ ,nx) 2  akni~k~m(ei,xy k+m) (l =  0 , 1 , n).
)c =  0

Now if r(x)€^j;n/4] is of the form

. a0 W*1

then evidently
a [«/4]

(8) W(x) = T(x) + if(x )  = -J-+  2  (ai- ibi)ßilx-/  i=i
Thus by the linearity of the operator R„ we get from (7)

(9) W (x )-R n(W,x) = ( -  l)m+1( \ - e ~ inx) 2  akni- k- mÍV(k+m)(x).
k =  0

Taking real parts on both sides of this relation, using the Bernstein—Szegő inequality 
and (6) we get

! № ) - й „ ( г , , ) | ]  s  ( I ) * < I T ' - 4 + l f ‘->l> -

which was to be proved.
Lemma 2. I f  TN(x) is the best approximating trigonometric polynomial of order N  

o f f(x)eC 2n then

(10) rnax{||7’J<m)| | , | | f p )| |} s 2 2m+1 (N6N0+ ; m<EN+).
k — 0

Pro o f. Since both sides of (10) remain unchanged if we replace f(x )  by fix') +  
const., we may assume that Г0(х) =  0. Let 2i~1 =  jV<2s (for N=  0 the statement is 
obvious), and

V0(x) = T fx), Vk(x) = T2x(x)-T 2k-i(x) (к = 1, ..., j - l ) ,
Fs(x) =  TN(x )-T 2s-i(x).

Then obviously
И F0|| S  2Ea(f), ||K ,|S 2  E *-x(f) (k = l,.. .,s ) ,

and hence by the Bernstein—Szegő inequality
max {I Fo||, |F 0'||} 2£0(/), max {flF^I, |[P(m)||} S  2km+1E * -i{ f)  (к =  1,..., s).

Since TN(x)= 2  K(x)> we get
k= 0

max { № | ,  ü fp ll) ^  2E0( f)  + 2  2km+1E * - f f )  ^  2im+k 2  {k + 1 Г ^ С Я -
k = 1 k=0
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We now want to show that the order of magnitude (when in (10) cannot
be improved.

E x a m p l e  1 .  I f

fs(x)  = 2  3-fccos 9kx
k =  0

then for the best approximating polynomial TN(x) we have

(11) minden, I ! L-Г J(fc+1 Г-ЧЬШ (JV6N+).
k  =  о

Namely, let 9s^ jV<9s+1. It is readily seen that
к

Tk(x) =  2  3~Jc° s9 ixt&a*
J=о

is the best approximating polynomial off 3(x) of order at most N, and

Hence

( 12)

while

(13)

EM) = 2  3~j = ̂ rTk ( ^ N 0+).

2  ( k  +  l T ^ E M  ^  E 0 ( f 3) +  2  в  ■ 9 k m + m - ' E M )  =
fc=0 k = 0

1 s^  __j_ 4 .9 "»-i (З2"1- 1)̂  ^  2 ‘3(2m_1)(s+1),
2 t=i

№ > || ^  тах{ |Г ^)(0)|, |r ^ >  ( |) |}  s  | Д  (-3)<-->>*|

( _  3 ) ( 2 m - l ) ( s  +  l ) _  j

(_ 3)2m-l_1

3 ( 2 m - l ) ( s  + l ) _  j  J

32m- 4 l  ~  ~2
.  3 (2 m -l)s

and similarly 

(14)
(12)—(14) prove (11).

P roof o f  T heorem  1. We shall make use of the representation

№ > I ё  i - .  3(2m-m

(15) 
where

and

(16)

ft—1
x ) =  2  f ( x k) F n ( x - x k)

F  ( V ,  _ 1 / ,  , ,  V  ( n - j ) m c o s j x  \  
F n ( x )  n  [ 1 + 2  Д  ( / 2 _ j ) m _ ( _ j r |

n-i 1+C-Qm
fl^|| =  | |2 l ^ - ^ ) l | |  =  o(n 2 )

fc= 0
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(cf. [1], formulae (4) and (21)). Let T{x)iSTlnjn be the best approximating polyno
mial of f ix )  of order at most |j j - j . Then by (15), Lemmas 1 and 2 we get

\\f(x)-R„(f, x)|| S  l/(x )—T (x)I +1T (x)—Rn(T, x)|| + ||i?„(T —f,  x)|| ==

But evidently
^  (l + m ) E ln/» ( f)+ 0 (n -”) 2  (k + i r ^ E M ) .

k—0

£[„,«(/) =  0 (n -m) Z ^ k + i r ^ E . i J ) ,
fc= 0

and (16) yields the statement.
3. A better estimate for odd ra’s. While Theorem 1 gives an error estimate 

valid for any /(x)£C 2lt, the best order 0(n~m) for odd m’s can be attained only un-
CO

der the strong condition £  (k + l)m~1Ek( f)< °° . G. Sunouchi [6] proved that if
* =о

fix') and f(x)£C 2n then

(17) \ \ f(x )-R n(f, x)| =  О |com (/, -^-]+cam ( / ,  -i-jj (m odd, /i<EN+).

(In case m = l, this was proved in [4].) This result is not so general as Theorem 1, 
but it gives the optimal order under weaker conditions. In order to see th a t/(m-1>(^)
and / (m_1)(x)£Lip 1 is indeed a weaker condition than (A: +  l)'n-1£,Jt(/)<oo,

fc= 0
we shall analyze the following

E xa m ple  2. There exists an f 4(x) such that / 4(m_1)(.v) and ^ (m-1)(x)€Lip 1, but 
lim inf nmEnif^) >0 (for odd m’s). Thus in this case Theorem 2 gives 0(п~т) for theП-*-оо
error of approximation, while Theorem 1 gives only 0(n~m log rí).

Let
1

(z — l)2me z~1 if |z| S. 1, z ^  1 
0 if z  =  1.

F(z) =

Fiz) is analytic in |z |< l, and
* m

F (m)(z) ^ e ' - H - l + i c ^ - l ) 1)
k =  l

where clf ..., cm depend only on m. Thus
sup |F (m)(z)| <°°, i.e. /r(m-i)(z)gLip 1. 
I*l-iz# 1

The same is true for the real and imaginary part of E(eix), i.e. for 

fiix )  =  — e~1/2 ^2 s in y j cos ^ m x -y c o ty j
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and

Evidently
(18)

A ( x ) = - e  1/2 2̂ s in y j  sin ^ m x - y c o ty j .

f l m+1)(x)  = - e - 1/ * ( - l ) ( - + 1) / * ( 2 s i i i y )  c o s f m x - y e o t y j + O C x - 1)  (x  -  0 ) .

Let 0-cxo-=: — be such that

1 XO [ лу  cot у — тх о =  |2 

then elementary calculations yield

x 0- 2

16n(m + 1) + í + í - i y ™-1)/2 я;

m + 1
nn = О (n x)

fYl -|- 1
for sufficiently large n’s. Now if |a'0 — Í ! = —----•, thenn

and hence
2 l / i l ± i - {nn = 0{n x)

у  co t-у -— тл :0 — ̂ y  cot у  — mijj = ------- -------- -  +  ОСЯ“ 1) =£ ^  + 0 (n ~ 1/2)
2 sin sin —2 2

for sufficiently large n’s, i.e. by (18)

/ 4(m+1)( 0  =  — e~1/2 ^2 sin y j  cos | y  cot -y- — mx0 — | y  cot у  — j J + 0(£~ x) Ш 

nn 71 , _  n fl в I m + 1)
“  4(jr+T) cos7 + 0 ^ " ) s  2ЯГ =  — )

for sufficiently large n’s. By the definition of the modulus of smoothness

09) <».«(/..- i ) * , f < - » , t ) 4 « - + 4) =

On the other hand, by the generalized Bernstein inequality (see e.g. [3], p. 344),
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using ■Е*(/4) = с1&_ш, we get

Thus (19) yields

п [Ал] n

- 1 2 ( fc + i) m̂ ( / 4 ) ^ c 2« - m- 1( ^ ci + £u-.]C/’4) 2 ( k + i r ) s
k=l k=l fc = l

á  Ac2« -m + c3£'Un]( /4).

provided Я =—------.4c2m

F ( f \  >   ̂ 2c2 ^
Сз Un]^  =  2mпт л"~ >  4m«m

This proves lim inf«m£'B(yi)>0.
Л -4 -OO

4. The saturation problem. In case of odd m, G. Sunouchi [6] solved the satura
tion problem of the operator Rn. He proved that

0{n~m) 
o(n~m)

iff / (m 1)(x) and / (m x)(x)€Lip 1, 
iff fix)  — const.

We note that in case m = 1, this was proved by V. F. Vlasov [5] and J. Szabados
[4] independently.

I am unable to solve the saturation problem for m even. In this connection I 
propose the following

Conjecture 2. Let m be even, / ( х)6С2,.  Then

(a) | |/ (х ) -Д 2п+1(/,х)|| = 0 (n ~ m) iff com+1( f  h) = 0 (hm+1);

(b) II/(jc) - ä2i,+i (/, x)|| =  o(n~m) iff f (x)  = const.
The “if” part of (a) follows from Theorem 1, but the converse is an open problem.
6. A Voronovskaya type estimate. If we assume slightly more on f ix )  than it is 

done in the saturation theorem, then we can establish a result on the behaviour of 
the sequence

3„if, x) = nm{ f ( x ) - R n(f, x)} in = 1, 2 , ...).
T heorem  2 . Assume that

(20) f  C°(-^, ’ ^  dh < °° imodd) or / (m + x)(x)£C2lI (m even),
о h

Then for the sequence A = [A„ i f  x)}“=1 and 3=  {A2ll+ iif  x)}“=0 the following possi
bilities arise:

(a) I f— =  — Up, q) = 1) is a rational number, then A and A have finitely many n q
cluster points, namely

(21)

( _  l)(m-l)/2 jsin^.y(m) + ̂ -fMf)]N0,2, ...,2 q  — 2 ip  even) 
0, 1, . . . ,  2q—l ip  odd))
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when m is odd, and

( 2 2 )  ( - l ) " / 2- i  ^ l - c o s ^ / ^ ^ - s i n - y / W ^ ) ]  ( r  =  0 ,  2 ,  2 q - 2 )

when m is even, respectively.
X(b) I f — is irrational then any q satisfying
71

(23) / (m) (л:) -  V/(m,(x)2+ / (m)(z)2 / (m) (x) +  V f(m)( x ) 4 / M (x)2
will be a cluster point o f  A or A, and there are no other cluster points.

l4-r_iy«
P r o o f . Let М —тЛ--------- --------- . By (20), there exist Tn(x)(dT„ so that

(24) | | / « ( x ) - r « )(*)|| =  0(nJ-“)co (fW \ I )  ( j  =  0, 1 , M).
Let first m be odd. Using the notation

(25) F0(x) =  T fx ) ,  Vk(x) = T * (x ) -T 2«-i(x) (* =  1,2,...), 

we have /(x) = 2  Vk(x). Here
k = 1

(26) IF J  =  0 (2_*m) to ( /(m), 2~k) (к = 1, 2, ...), 
whence

=  0 {k2 -km) ( o ( fm\  2~k) (к =  1, 2, ...).
oo oo

Thus 2  Vk(x) converges uniformly, i.e. f(x )  = 2  K(.x) exists. Moreover, by (26)
k =  l  fc =  1

and the Bernstein—Szegő inequality
Ю Т  -  О(2k(J~m)) со( / (m\  2_i) (7 =  1, 2, ..., m).

Therefore by (20)

2 Ю Т  = 0 ( 2 « ( / (m), 2~k)) = o [ f  dh) = 0 (1)
fc= l k = l  \ ~ s n  '

U  =  1, 2, . . . ,  m; s — °°),

i .e . / (j)(x)= ^  K(jJ (x) (J= \,2 , ..., m) converge uniformly. Especially by (25)

(27) Urn | | / (m> (x ) - f2(.m)(x)|| =  0.
S-*- oo

Hence and by (24), using again a well-known inequality of Steckin (cf. [3], formula 
4.8 (18))

(28) j|T’2(,m+1)|| = 0(2s)co (f(m\  2~s), I f 2(f +1)|| = 0(s2s)c o (f(m\  2~s) = о(2s), 

since (20) implies a> | / (m), — j  log« —0 (« — oo).
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Now if m is even, then (27)—(28) trivially hold by (24).
Now let 2s+2S « < 2 s+3. Then by (24), (9), (16), (6), (27) and (28) we get

4 ,(/,x )  = nm {/(x) -  T2s (x)} +  nm {T2s(x) -  Rn (T2. , x)} + nm Rn (T2> - / ,  x) =

= «"(l +  ||i^»)0 (»i-M) © ( / (М)Д )  +

+ nm( -  l)m +1 2  «*„ Re{(l- e ~ inx) i - k- m [ T p m)(x) + i f £ +"°(x)]} =
k = 0

=  О (/ (м>, -^)j + ( -  l )m+1 Re {(1 —e~inx) i~m[T(2 (x) + iT£\x)]} +

+ 0  ( i  ( ^ ) fc2 ^ -1)j [|Г2(Г+1)|| + ||f(27+1)||] = О [ш(/Ш)Д)) (l + Д  (I) ]  +

+ o(l) Д  (4 )  + ( - l)m+1Re{(l- e - inx) i ~m [ / (m) (x) + i f (m) (x)]} =

=  ( -  l)m+1 Re{( 1 -  e~inx) i~m[ / (m> (x) +  i / (m) (x)]}+ о (1).
Here

|( _  l)(m-i)/2 |-sjn пх / (т)(х)+(1 —cos nx)/(m)(x)] (m odd)
(29) Re{...} {(_ l)m/a[(l — COS их)/(т>(х)—sin их/(т)(х)] (m even).

Now if — = —, (p, q)= 1 then, for a given r described in (21) or (22), choose a 
7i q

fJl
sequence n ^ n ^ . . .  suchthat nkp= r  (mod 2q). Thus sinn(tx = s in — , cos nkx=

1
=cos — , and (21) and (22) follow from (29).

4.
xIf — is irrational, then to any given 0^a<27r, there exists a sequence пх<п2< ...
7C

such that nkx-+ot mod 2n. Being the range of the functions

(pk (oc)—sin ос/ (m) (x) +(1 — cos а) / (m) (x) (m odd)
<p2(a) =  (1 —cos a ) / (m)(x)-sin a / (m)(x) (m even)

exactly the interval (23), the statement follows.
R em arks. 3 . In the case when x / jt is rational, Theorem 2 gives only an upper 

bound for the number of cluster points, since there may be equal numbers among 
them.

4. The only case when A has a limit is when / (m)(x )= /(m)(x)=0, and in this 
case the limit is 0 .
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ON THE NUMBER OF OCCURRENCES OF 
SEQUENCE PATTERNS

A. BENCZÚR (Budapest) and I. KÁTAI (Budapest), member o f  the Academy

1. Let B — {0, 1} and let B" be the set of words over В having exactly n letters,
i.e. Bn= {bx ...bn\bj£B (J—\, ..., n)}. B° denotes the empty word, B*=  |J  Bn is

/1 =  0
the set of all words over В having finite length. In this section Greek letters denote 
words over B, except A: A (a) denotes the length of a.

For a word ß=b1...bn let (ß)r—br+l ...bn, and s[ß]=b1...bs. Consequently 
s[(.ß)r\~br + l- '-br+s-

Let ß= b1...bn, a.=a1...at, t^n . We shall say that at occurs in ß if there exists 
an index s ^ n  — t such that ,[(/i)s]=a. We say furthermore that s is an index of 
occurrence of a in ß. Let the whole set of indices of occurrences of
a in ß.

The combinatorial structure of the occurrence of patterns in words has been 
considered earlier by several authors. We mention only the paper of L. J. Guibas 
and A. M. Odlyzko [2] that contains further references concerning the previous inves
tigations.

Let a be fixed and let ß run over the set of all words in B" randomly. There are a 
lot of interesting questions concerning the statistical behaviour of s1} ..., st . The most 
straightforward one is the distribution of /. Our main purpose in this paper is to give 
an estimation with a good remainder term for / (see Theorem 1).

D ef in it io n  1. We shall say that A is a  shifting index for x —a: ...at, l s A < / ,  
if ah+1...a t—a1...at_h. Let ás? (a) be the whole set of shifting indices of a: AX<A2< ... 
. . . < A S.

It may occur that Jf(a) is empty. It is obvious furthermore that ht, hjdätf(ct), 
h i+ hj^t imply hi+hj£í%(a). So, if u=[t/h1], then for j= l , . . . , u .

Let now hd38(u) such that hx\h. We shall prove that in this case h +hx>t. 
Assume in the contrary that h + h ^ t .  Since hxdJ ’(a), therefore aj+hi=cij for 
y = l, ..., t —hx, i.e. the sequence aj is periodic with period hx. Furthermore, since 
AGá?(a), therefore aj+h=aj (J= 1,..., t —H). Hence we shall deduce that 
h - h xd$t{a), i-e- а,+(/,-Л])= а , for / = 1, ..., t —h+hx.

The last relation is obviously true for l= hx+j, j = l , 2 , ..., t —h, since al+h_hi—
z=ah+j — aj — aj+hl=ai-

For /=  1, 2, ..., hx we can make use of the assumption hx+ h< t in the following 
way: ah+l—at for / = 1, 2, so ah_hl+l=ah+l=at, which proves that the
relation ah+l=al holds for every /= 1 ,2 , h+hx. Repeating this idea with
h—hx instead of h several times, we conclude that there is a shifting index which is 
smaller than hx. So we have proved the following
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Lemma 1. For the set of 38 (a) there are three possibilities:
(1) 38(a) is empty,
(2) 3t(f) contains only elements greater than or equal to t/2. Then h ^ t/2 .
(3) 38(a) contains at least one element less than t/2. Then h ^ t /2 ,  jh^38(a) 

fo r  j = \ , ..., [i/AJ. I f  h£38(<x), hx\h, then h-\-hx>t.
2. Let оз\ — а>̂ (йг... be a random infinite Bernoulli-trial, and let a=a1...at 

be fixed. Let A t denote the event

At: <x>i...cűi+f—! = a.

Let furthermore Vr(N) denote the probability of the event that among Ax, ... 
..., An_, exactly r occur, and let

(2 .1) v fz )  = Z V rm z N
N

be the generator function.
Let

а д  е « - ? ( т ) ‘ + ( т ) ’ ь Ь -

(2.3) H(z)  = ( \ - z )Q (z ) .

where here and in the sequel Z  denotes a summation over h£ 38(a).
h

There are several ways to get an explicit expression for vr(z). Since in [2] an 
outline of the deduction is given (Section 2), we state it without proof.

Lemma 2. We have

(2-4) а д  = (-
0 'idSp

(2.5) VÁz) = \ - z  + H (z )

3. Let Cs be the random variable that counts the number of occurrences of a 
in a random co1...coN. Since

P(CJV =  Г) =

Vr(N) if N ^ t ,  
1 if N ~ z t ,  
0 if t,

г ё  0 
r = 0
г f e l ,

by using the formulae (2.4), (2.5), and differentiating them twice we get immediately

\N - t+ \ for N  = /
(3.1) m  n) =  • 2‘

0 for N  <  t,

(3.2) ЩСп) = aCx + b for N  S  2t,
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where

(3.3)
1 1 —2i 2

a ~  2t+  22' + 2f '

( l  1 2
(3.4) b - ~ ta + { ¥ + 2T' ~ Y

4. In this section we shall give an asymptotic formula for Vr(N) with an optimal 
remainder term. For the sake of simplicity we shall assume that the length t of a is 
quite large, 10. We should mention that a more general problem has been consi
dered by D. A. Moskvin and A. G. Postnikov [1]. Namely they proved the following 
assertion. Let [a, b] g  [0, 1] any interval, and let % denote its indicator function. Let

В Д .[ в ,ь ] ) =  Z x ( { 2  *0),
k = 0

i.e. the number of those k= 0, 1, . . . ,й — 1, for which the fractional parts {2kC} 
belong to [a, b\. Then for each nonnegative integer /,

meas ( { : 0 ё ^ 1 ,  Nn(£, [a, b]) = /) =

ylnTTl:exp
(-<t/2  nn

uniformly in /. Here a is defined by

(1 — п(Ь — а)У
Ш *

<r2 = lim— f  (Nn(Z ,[a ,b ])-(b -a )n fd ln П J

Our purpose now is to improve the remainder term in this special case. To carry 
out the proof without a cumbersome discussion we shall assume that

(4.1) t ё  10, 2' S  log N.

We shall use the Parseval formula

(4.2) K (N ) = f  vr(ew) e - iNt>dd.

In order to estimate the right hand side we should approximate vr near 0=0 quite 
well, and to give an upper estimation for vr out of a small interval.

Let
N  N------  <  »• <  ------

2,+1 ~ ~  2,_1 ‘

Let w—eie — l —z —l, and let the coefficients c0, cl5 ..., ct be defined by 

(4.3) if ( l  +w) =  —w 2! "^г(1 +w),l+ ^-(l +w)( =  c0 + c1w +  ...+c,w t.
2‘
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So

(4.4) co—1/21, cx -----

(4.5) c — "V ^ j 1)
— Zj 2* 1 2t+1 *

Lemma 3. Let the least shifting index hx defined in Section 1 be not less than 2. 
Then

(4.6)
for |w |^8c0, furthermore

ff(l+ w )
w =£0,47

(4-7) Ms! 2n J vr(z)z N dO
|w|B8c0

0 ,9 » « ^ ,

with a suitable absolute constant BL.
The inequality (4.7) holds in the case hx = 1 as well.
Pr o o f . S ince

therefore

(4.8)

7 f ( l + w )

w

H(l+w)
w

Let us assume that h, s 2 .  From Lemma 1, all elements of :M(a) up to t —hx 
are multiples of hx, so for hx< t\2

2 2h
1

2 'u - l + 2‘-*i+1
1 1

2hl- l  +  2f~hl ‘

Here the right hand side is the largest if hx= 2, t —10. If hx > t/2 , then

2  1/2" 2 1 
2,/2 “  16 '

Then the right hand side of (4.8) is less than l/3 + l/28 + 1/8 <0,47. 
Hence we have

and

H(z) H(z) l 0,47
H(z) — w w l \ H {z)\ 

\ w  1
“  1-0,47

\H(z) — w s  M fi \ H ^( 1 w ) S  0,53 1 w

0,9,
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So, by (2.4) we get

|У>| -  /
| Í T |S 8 C 0

1 H(z)
H(z) — w

</0Ä

S  0 ,9 Г - 1 c0 f  -r^wctörsi Bl • 0 ,9 (1/2)JVc°,
|Т|=>8с0 1И’1

i.e. (4.7) holds.
Let us consider now the case hx— 1. Observing that

[(i) -• ]  = (1 - ')  <1 ( I ( l ) ] + П ') (1 Í -

~(тГЧМ)-
( | - 1 ) { о - г) + в д }  =  - ( | Г ‘+ 2 ( 4 ) - 1 ,

we get easily the formula

a 0 - z / 2 ) 2 [1 l - z + ( 1 )' 11

[ l - Z  + (1 П 1 1 - Z  + ( 1 r
Consequently

The minimum of the right hand side is attained for |1—z| =  8c0, so

kO)l
9 1 „

_  4 Co 2 " 9c°
~7,52c2 7,5c0

r_  p y 1
52 l 5J ’

hence (4.7) immediately follows.
This completes the proof of Lemma 3.
Lemma 4. For any positive integer l and any complex number w the inequalities

hold.

| ( l  +  w ) ‘ - l - / w |  ^  /(Z -1 )H 2(1 +  M ) ' - 2, 

| ( l + w ) '  — 1 | S  Z | w | ( l  +  | w | ) ! _ 1

P r o o f . Observing that the coefficients wk of the function (1 +w)k are positive, 
the left hand sides of the inequalities are not greater than (1+  H ) '—1 — l\w\,
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(1 +  |и>|)'—1, respectively. By using the wellknown mean-value theorems, the ine
qualities follow immediately.

Lemma 5. The inequality

(4.9) |- w + t f ( l  +  w)|2S  m i+ w ) \^ + \ l+ 2 2 M*

holds for each real 0, w—eie— l= z  — 1.
Proof. We have

Furthermore
I—w + tf(l+ w )|2 =  |i / ( l  +  w)|2+ H 2-2R e>vtf(l + w).

Revvz* — Re(z‘ x — zt) = cos (/ — 1) 0 —cos td — 2 sin ~  sin 0,

and |w|2=4 sin2 0/2. Since sm nx 
sin л: S n  for integer n, we have

Observing that
|2 Re wz‘\ s  4 sin2 0 s in (2 t-1)0/2 

2 sin 0/2 ( 2 t - l)|w|2.

—2 Re wH(l+w) — 2c0Re wz‘ &

(2 i- l )c 0]|w |2,

(4.9) immediately follows. 
Let

F(z):= H(z)
1 - z  + tf(z ) '

Since \H (z)\sH (l)= c0, from Lemma 5 we deduce

|F(z)|2
r 2co

co+4‘ m:

in the interval |w |^8c0. Let \w\ = c0r/. Then

|F(z)|2 1

> + T

Let M  be a small positive number to be chosen later. Assume that M s  |w |s8c0.
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Then
1 ___ 1 I w I2

|tf(l + w )-w |2 -  M 2 |t f ( l+ w )-w |2 “  M*X
2

2 f |tf(l + w )-w |2+ |tf( l+ w )|2\  __ 
|tf(l +  w )-w |2 f ~

и т(‘ + 1
and so for vr (z) we have 

(4.10) vr(z)\ s  ^ ■ ( | а д г - 1+ | а д г +1

e-(it*/4)((i--i)/a)4"o 1 (r- 1)/2 4c0
M 2 1 V2 '  M 2

[ 1+ JH

M (log N Y
(Nc0)1/2 ■

Let 

(4.11)

From (4.11) we get immediately that 

1
(4.12) |Л1 = 2 n J  vr(z)z Ndz

M \̂w\^8c0
B2c2N2 
log2 N exp ( -  B3 log2 N),

with suitable positive absolute constants B2, B3.
Let us assume now that |w|sAf. Let

, \ (1+ w V -l , (l+w)‘- l - t w
Ф )  =  - w Z ------2*------ + -------- 2'----------

i.e.
jy(l+w ) = c0+c!w  +  r(w).

Since (1 4-1w|)r<2, therefore by Lemma 4 we have

|r(w)| S  31w|2.(4.13)
Consequently

(4.14) W W
tf ( l+ w ) “  Cq

(4.15) W 2
H 2( 1+w) '

■MWn-
= ( * h ° m

Here and in the sequel the constants implicitly stated in the order terms are absolute, 
they do not depend on t.
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Furthermore,

F(z)"1 =  1 w

= exp (-

= « P ( 'n -

a
H(z) 

w 1 w2
H(z) 2 H 2(z)

and so by (4.14), (4.15) we get

c -  ( r - ')+ ( i f +°  (-■F(z)r~l = exp 

Furthermore,
N - tz N+t = exp((— ./V+1) log (1 +  w)) = exp([ —7V+t]w4---- -— w2+0(Nw3))

1
(1 - z + H (z ) )2 eg

[ , + (.
H ( l + w)-w A V  cl- 1

with

Observing that

)i= ~л exP ( — 2 log(1 + Л)),

^  _  Я (1+ уу) —w
w

and that 

we get
1 1

(1 —z +  tf (z ) )*  “  cS “ P

Co c0 \  c0 /

г а -  ' - « и -
— 21og(l +Л) = — 2Л +  Л2 +  0(Л3),

c0 L C0 c0 J

Л2 = ( с 1 -0 2Д г + 0
co

(if)
Consequently

(4.16) 
where

(4.17)

(4.18)

vr(z) = — exp (At w + A2w2+ 0(Nw3)), 
co

, C+1-2C! , лг .Л  = ----------- ~ - ( N - t ) ,
c0

N - t
- Í 1 c ) r_1 p c 2 (Cl- l ) 2l

2 1 b  ClJ eg L c0 cg J
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Let

(4.19)

Since

we have

where

*A: = 2~ f  vr(z)z~Nde.
|w|

w — W— —+ 0(93), \v2 = — 92 + 0(93), w3 — О (в3), 

D — \Ai\ +  |у42| +  7 V + (l/c 0)3,
ÍV 2Nand M1 is defined by \e,Mi — 1 \ = M. In the range —— ----we have D =  О(N/c0).2c q c0

Since

we get
(4.20) 
where

(4.21)

(4.22)

Since

еоо>вз) =  j + 0 (D93), 

— R\ + 0  (R2),

s > =  2 exp (M. «-(-<■+t H " -

Я, = 4  / ,0>с<р(-(л, + ̂ )»-фю.

oo 1

f  93ex p (-E 9 2) d 9 = - ^  f  и3 exp ( — u2) dzz,

A .and A2+ — » N / c0, we get 
(4.23) Ä2«  1/JV.

Let Rt =R3—Rit where R3 is defined by the right hand side of (4.21) extending 
the integration to the whole real line. Then

№|я̂ ,,/„,“рНл+̂ в')да-
Since for positive X  and Y,

f  e xp (-Y 9 2)d9 = —= f  е~”гdv̂  
x *Y x Iy

• I f f - ' *
2v : dv

xfi 2 X Y ?  2 X Y v2j
l  7 e~v*dv2 = —-—e~x’~Y
r r vJ x*y 2XY  ’
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A
by choosing X = M x, Y=AS4— we get

1
c0XY

and so
(4.24) R i«  l/N.

L emma 6 . Let a and b be real numbers, b >  0 ,

Then

L(a, b) = J exp(iae — b02)d9.

L(«,!>)=j|exp(-|t).

Since
P roof. The assertion is known. For the sake of completeness we shall prove it.

Ъв2-
we have

>-iae = b(a-i-?l ) + L ,

L(a,b) = e x p  ( - • | g . )  / ex p  ( - Í. ( в - i ]

The integral on the right hand side can be considered as the integral of e~by)t dw taken
on the line Im w =-^-. Moving this line into Im w =0, we get 2b

( 2 \ °°
~^b)  f  e x P ( — bx2)dx =

— oo

=  P f  е х р - Ш  =  t e x p  ( - • £ ) .

By using Lemma 6, we have

R* =

where
2 c0 Уnb

exp
( - 5 ) -

r
Co

l - 2 Cl Агa — A i ---------N-\-k, к ---------- —+  t, b — A2- \ - - — er-\-f,c0 2

.  > + « Ц й ,  / .
2 c o c l

\ —2c1—4c2 cf — Cx+1/2
2 c0 + - r 2co

Let s= ---- N. Then
a2 = s2+ 2ks +  k2, 4b = 4ec„ N +  4ec0 s+ 4/,
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and so

in the interval
4b 4 ec0 N + 0

|s| S iV 1/2(log N Y
say. Let rj=sN~1/z. Then

- (-£) - ««• Ш Ш-
Furthermore

and so
У 4b 4eco N 112

(1 + 0 (v /N 'i%

к “ ” t i )  = (4 e c ,W - eXP ( - ^ ) ( ' +° ( t ! ^ )

exp( - £ ) [1+0m l’(4-26) J®exp ( - £ ) c0(4ec0N)112
where

K = _M_ +  _M8Co 1
N  1/2 N 1/2 c0N '

КLet K— f Since ec0—O(l/co), therefore M «:—щ- and so the order term in the 
}'4ec0 co

right hand side of (4.26) is less than

<sc 1

Consequently
c£/2 N 112 exp(- -*!)b

\ k \

,j/« N ii? +  су*Ыш

Ч ~ з 0 + 0 ( ж ) ’

l^ l3
) ® ° Ш

R, =  - =

and by introducing
(4.27) 
we get
(4.28) R3 =

ync0(4ec0N)112

<t^2
exp

71П Í2ec%,

(r - N c 0Y  
2 No2 )+0 Ш'

Taking into account the relations (4.27), (4.24), (4.22), (4.21), (4.20), (4.19), (4.7), 
(4.2), we get(4-29) F'(i,, = ̂Wexp(-iw}1)+0 (i)
for every r f N, 2c0ivJ = S. (4.29) is valid for the integers r out of S, moreover the
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sum 2  K (n)’ extended for all of these r ’s is less than O(l/Nc0). To prove this, it
ríS

is enough to use Cebishev-inequality,
p(\cN- M u ^ m N) « i ß * ,

and take into account (3.1), (3.2), (3.3), (3.4). Hence we get that

2  vr(n) «  1 /Д
r(£ s

with A»' : J N Since a!X c 0, we have 1/A2«:1/Nc0.
We have proved the following
Theorem 1. Let us assume that í ís  10, 2 's lo g  N. Then

uniformly in r, where

ff2 =  c g + i-v -C i lc o ,  c0 =  ^- ,  cx =  -  2  2 h + tco-
\ Z  )  Z  *gää(ot)

R emarks. 1. From (4.19), (4.12), (4.7) we get

Vr(N ) = h  = О (exp (—_S4 log2 N))
for bounded t. Approximating F(z) and z~N by a function of the form exp (polynomial 
of 0) in the interval |cu|sAf we would deduce for Vr(N) an asymptotic expansion as 
well.

2. The order of the second maximal term in the asymptotic expansion of Vr(N) 
is 1/JV, which shows that the order of the remainder term in N  is best possible.

3. We hope to generalize our theorem such that it implies the Moskvin—Post- 
nikov result with the improved remainder term 0(l/ri). The main difficulty is to cons
truct the generator function and to estimate it on the unit circle.

Acknowledgement. We are indebted to the referee for calling our attention to the 
paper [2] and some other previous results.
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A NORMAL CONNECTED LEFT-SEPARATED SPACE
I. JUHÁSZ (Budapest) and N . YAKOVLEV (Sverdlovsk)

Answering the question of A. V. Arhangelskii, M. G. Tkacenko [1] constructed 
a regular, connected, left-separated space and posed the following problem: does 
there exist a normal, connected, left-separated space?

Using (CH), we construct here a regular, hereditarily Lindelöf (and hence nor
mal), connected, left-separated space.

Recall that the space X  is called left-separated, if there exists a well-ordering of 
X={xa: a< r}  such that for any а<т the left ray {xß: /?<а} is closed in X. Every 
ordinal is considered as the set of all preceding ordinals and cardinals are identified 
with the corresponding initial ordinals. We shall denote by I  the unit interval [0, 1] 
in the natural topology.

If a is an ordinal, then I x= x { f '  where Iß = I  for each /?<а. Let В
be a fixed countable base of /, let /6[а]<<0, i.e. /  is a finite subset of a, and let 
e: 7—7? be a function. Then we set [e]={/€/a: V/?€7 (f(ß)z£iß))}- Clearly, [г] 
is an elementary open set in I х, and the set G= {[г]} of all [e] is a base of the product 
topology on I х. The domain of a function e will be denoted by Г (г).

D efinition, (a) Let E =  U{[e„]: n£co}, then D is called an Ts-set in 7“;
(b) Let E=U{[e,J: n£co} and Г (с,)ПГ(£;) = 0 if i Xj,  then D is called a E- 

set in I х.
If D is an E-set (or E-set) then we put T (E)=  U {Г(г„): n£co) where 

E = U  {[£„]: и€а>}.
The next proposition is obvious.
Proposition 1. Every D-set is open and dense in I х.
Let Xpfjß and x= (xß)ß(a£ lx, then the subspace ox= {y£ ix: \{ß: yßX x ß}\< 

<ю} is called the а-product of Iх defined by the point x.
The following is well-known.
Proposition 2. For each x f j x, ax is a dense and connected subspace o f Iх.
Theorem 1. Let for every i£co E, be a D-set in I х and P=  П {Dp /£co}. Then 

there exists a point x £ lx so that P fta x .
Proof. We can restrict our attention to the coordinates in T=  U {Г(E ;) : /£а>} 

and since Г is countable, it is sufficient to prove this theorem for a=oo.
First we shall prove the following lemma.
Lemma. For every i£co let yt be an infinite family o f pairwise disjoint finite sub-
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sets ofco. Then there exists an infinite and disjoint subfamily /íc  U {у,-: /Сю} such that 
/z Пу,- is infinite for all i£co.

P roof o f  t h e  L emma. Let us enumerate (y ; : /Сю} in a sequence X0, Х1г . . .  
such that every y, occurs in this sequence infinitely many times.

Let N0 be an arbitrary element of X0 . Suppose, that for each /<  к  we have already 
chosen Nt so that

( )  N ,a ,
(o) if /<&, j< k  and rV /, then АгП.Л(/=0.
Let Nk be an arbitrary element of Xk such that NkC\Ni=0 for every / < k. 

Such an Nk exists in Xk, since U{/\á: /< /с} is finite and the elements of Xk are disjoint. 
Obviously, /i= {N k: А:Сю} is as required.

Now let Dj be a D-set, A  =  U {[ej,]: пСю}. Let Г  ̂= Г(£|,) and у,= {Г*: иСю}. 
According to the lemma there is a disjoint and infinite subfamily /ic U  {у,-: /Сю} 
such that /гПуг is infinite for all /Сю. Then there is a point хС/и such that 
x (j)C 40) holds whenever T 'fp  and j'C Г‘п ■

Since xC[ej,] for each rj,CjU, x^D, for every /Сю and hence xC fl {D;: 
/Сю}=Р.

Now, if yCer^, then >’(/) is distinct from x only for finitely many coordinates j. 
Therefore, for every /Сю there is ДС/тПуг suchthat х/Г‘п—у/Г‘п. Consequently, 
xC[4] implies y^\ei^czDi. Thus у  в П {Dp i£co}=P, and we have proved that 
P ^ c x.

The following is now obvious:
C o ro llary . The intersection o f countably many D-sets is a dense and connected 

subs pace of I х.

Theorem 2 (CH). There exists a hereditarily Lindelöf left-separated and connected 
space T.

P roof. We shall construct this space as a subspace of (the Г-product of) J°n.
Let us consider the space Z“1. If is the family of all the D-sets in 7“1, then it is 

easy to see that \!3\ = c. Since we assume (CH), we may write 2t={Dp. cúS u-^ü)]} 
and it can be assumed in a standard manner that r(D JQ ix  for every oc-<co1.

Let <? be the family of all nonempty F-sets in I “1. Then again \S \ =  c, and hence 
|<f2| = C. Assuming (CH) we can enumerate <o2 as <f2= ((i/a, Fa): ю ^а<ю !} in 
such a way that for every a<ojj Г ( Í/J U Г ( VJ Q a.

Let co^ß-^co1 and let P p =  f]{Da: a<jS}. Since for every Г (Д ,)^ас/? ,
then Q ß = p r ß P p is a dense and connected subspace of I L

For every ß with a>Sß-^co1 we choose a point J } fT n suchthat
1. if Upr\V„ = 0, then f ß£P ß\(U ßUVp), and if Ut ClV„^0, then f ßdPßf) 

П Ußn v ß;
2- Mß) =U
3. f ß(y)=0 for every y>ß.
This can be done, because if UßC\Vß = &, then (prß Uß) U (prß Vß) does not cover 

Qß (otherwise Qß would not be connected).
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If, on the other hand, UßP\Vßf 0, then prß(UßC\ Vß) is a nonempty open set 
in P , and therefore prß(UßC) Vß) ПQßf 0, because Qß is dense in P.

Let T = {fa:
I. The space T is left-separated. Indeed, if 0(/а)= (рг~а(1/2, 1])ПГ, then for 

every ß<oc 0=/^(а)$(1/2, 1], hence / Д 0 ( / а).
II. The space T is hereditarily Lindelöf. Suppose the contrary, then, as is well- 

known (cf. [2]), there is a right separated sequence {yß: ß ^ c o ^ Q T  such that if 
Ур=Л«о then ß<ß' implies a(ß)<a(ß').

Let [вр] be an elementary neighbourhood of yß from G such that [ê ] П {yß, :
ß'>ß}=0.

Let Tß= r(sß). Since {Tß: ß ^co f is an uncountable family of finite subsets of 
co1, this family contains an uncountable d-system [2]. Without loss of generality we 
may assume {Tß: /)<«,] to be such a family. Then for every ß -^щ Г ß = Г Li Г ß 
and r ßC\Tß. = Q, if ß ^ ß '.  We may also assume that for every ß', ß<w1 eß/T =
^ Д ’-

Let for every idea e;: T t—B be defined as вг=е;/Г(. Let E>= U {[£,]: iLco}. 
Then D is a D-set in /"*, hence there is an а0<а>1, so that D = Dao. Let ß^a> 
be an ordinal such that а (/5) > a0. Then yß [£,,] for every п£а>, and therefore 
yß^D=D ao. But according to 1 ,/ ^ ^ ( 3)= П {£»„: ct<oi(ß)}^Dao, since <x0<a(ß), 
a contradiction. Thus T  is hereditarily Lindelöf.

III. T is connected. Suppose it is not. Then, there exist open sets U and V so 
that i/PlTVfi, Kn7V0, t / U F ? !  and £/ПКПГ=0.

Since T  is hereditarily Lindelöf and G is a base in / и», we can assume that both 
U and V are .E-sets and hence there is an о -̂^сох, so that (U, V)=(Uao, Vai).

Let us consider the point f af  T. If ^ „ 0 ^ = 0 ,  then f afP ,.a\(G ao\J Vai) Q  
QPao\ T  and this is impossible, hence UXoi) Као̂ 0. But then f f  PaoP\UXoП Vao 
and thus f XoLUr\VC\T=Q, again a contradiction. Consequently, T is connected.

We conclude this note by drawing attention to the fact that the space T  is here
ditarily Lindelöf actually because it has a property which is a straightforward genera
lization of the so-called HFC property, defined for subspaces of 2“1 in [3].
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NECESSARY CONDITIONS FOR CERTAIN 
SOBOL’EV SPACES

F. SZIGETI (Budapest)

Dedicated to K. Tandori on his 60th birthday

Introduction

Let ]a, b[czR be an open (not necessarily bounded) interval, p£\ 1, °°[ be a 
real number. The following well-known result was proved by F. Riesz:

An absolutely continuous function f:]a,b[-+  R (or C) has its derivative 
f '£ L p(a,b) if and only if, there exists a real number K^O  such that for any system 
{]a;, h,[c]a, b[: i=  1, 2, ...} of nonoverlapping bounded subintervals the inequality

T, l / IM -Z M I ' .. , ,
?  \ b , - a , r ' ~ S K

holds. That is, the functions belonging to the space Wp[a, b] can be characterized by 
this property.

Our main objective is to generalize this result for the multidimensional case. Our 
main results are the following theorem and its corollary (Theorem 2).

T heorem  1. Let n fN ,p , s£R. Suppose that pZ]\, “ [ and + n— 1 
P

]ah h,[c;R (i= l, 2, ..., n) be open (not necessarily bounded) intervals,

Let

Q := X ]a j,b j[ , Qi = X ) a J,bj[.
7=1 7=1j*i

I f  f£ W sp(Q), then there exist real numbers ÄjsO (/=1, 2, ..., ri), such that for any 
systems

{]%, btj[ c  ]ab bt[: j  =  1,2,..., f )  (i =  1, 2,..., n, I f N )  
o f nonoverlapping bounded subintervals the inequalities

hold.

h
2 -7=1

bjj —fi,  

\btj aij
“oiiwThßi)

p-i Kt 0  =  1 ,2 ,...,«)

For any /= 1 ,2 ,.. .,« , af]at, bt[, f  a: Qt—R (or C) denotes the function
£•—/(& , - ,Z i - i ,a ,

The following theorem will be mentioned as the most important consequence of 
Theorem 1.

n— 1
Theorem 2. Let n£N, p, .v^R. Suppose that p€]l, °°[ and -------- .
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Let ]űj, i f[ c R  (7=1, 2, n) be open (not necessarily bounded) intervals, ß :=
П П

:= X ]a ,,b j[ , ß,:= X  ]ajy b,[. I f  /£  W*P(Q), then there exist real numbers
j=* 1 ;=1j^ i

L ^ Q  (7= 1, 2 , n) such that for any systems
{]ац, b,A a  ]a,-, b,[: j  =  1, 2, /,} (i =  1, 2, n, I f  N)

o f nonoverlapping bounded subintervals and sets {£у£ Qt, j=  1, 2, 7;}
lities

hold.
A  lbij- а ц Г 1 S I ,  (i = 1, 2, r i)

the inequa-

1. In this section we survey some facts on Sobol’ev spaces.
Let k ,n £ N, p£]l, °°[, ß cR "  be an open subset. The Sobol’ev space IVP(Q) 

consists of the functions f :  ß-<-R (or C) satisfying the condition

Let IL»(ß):=Lp(ß).
Let the integer part of a real number s be denoted by [$]. If j £R+, then the 

Sobol’ev space JVP(Q) consists of the functions / :  ß-*-R (or C) satisfying the 
condition

l l / I L j ( f i ) í l l / l l í v j , * 3! « ) - ! -  2  f
'  l*l“W йхй

\Daf(x )—D:if(y ) \p
\х-у\Х -% № р)

\ V p

dxdy  I -

a) The Sobol’ev embedding theorem (see [1], [2]) is well-known: if —, then
P

IT* (ß )c C (ß ), and the inclusion operator is continuous and linear.
b) We need a one dimensional version of the trace theorem: let n£N, p,  s£R,

ß cR "  be an open subset. Suppose that p£]l, «>[, s- n - 1. If /£  Wsp (ß), then for
each <^£R"—1, 7=1 2, n, the function f i,s: ß (,i=R  (or C), where

O'*4 = {i£R: « 1 , Si-1, t, S t , £„-i)£ß}
and /'■4(7):=/(<?!, ..., Si-i, t, Si, Sn-i), belongs to the space for
each 0^ o < s ———  (see [2]).

2 .  In this section the main results (Theorems 1 and 2) will be proved.
Proof of Theorem 1. Consider an arbitrary element ^£ß(cR"_1. By the 

trace theorem b) the functions/1’4 belong to the space Wp(at, b() for each 7= 1 ,2 ,...
..., n, ( £ ß ;, because s — ^  >1. Thus the functions f l,s are absolulety conti
nuous, and

/'■4( b ) - / '’4(«) =  /  a,/*-«
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Estimate the norm \fi.b~fi.Aw‘-\od :

\\fi,b~/i,oll«''-1(ß|) = II/1’ (fr)-■/1’’(а)1ж’-1(0|) —

— ||У — (У |д,/*-(0[ж;-1(и1)Л)р =
a a

—  f  WdJ1 ,‘ (,t)\\wy\n,)d t (b - аУ 1-
a

Let {]au , bÍ3][c.]ai, bt[: j=  1, 2, / ;} be a system of nonoverlapping bounded
subintervals. Applying the inequality

\fi,b~fi,a\wy'í(Cii) — (̂  — a)P 1 У ll̂ //,'"(OIÎ '-1(ßi)̂ i
we get

г, у
C  I A b U 4 i ,  a .r I F ' 1(ß j)  f  II ii T i.* /V \l|P  A+̂ r-

Д — i t ; - ^  Д /  1 J

— У ||^>/‘’"(01ж^-1(П,) — Pi/ll^-hO )-
“i

if  j ^ i l ^ / l l k . - w  then the statement of Theorem 1 is true for K{.

Corollary. If {]аи , Ьи[а]аь bt[ j= l, 2, (/= 1, 2, ..., n) are systems of
nonoverlapping bounded intervals, then the inequality

£  2  ^ ‘•blj-fi,a,j\\wsp-\i3l) _ „ rnP
i= l y ' =  l

holds for every f£W sp(i2).
Proof of Theorem 2. Now we combine the result of Theorem 1 with the 

Sobol’ev embedding theorem. Consider the spaces ЕР*-1(Й,) (i =  l, 2, ..., n). The

-Z7..IP-1\ b i j ~  a l j
n\\J\\wt(n)

dimension of Qt is n—1, thus the inequality s — 1: n— 1 shows that the condition
of the Sobol’ev embedding theorem is satisfied, that is there exist real numbers 
Af;S0 (7=1, 2, ..., n) such that for each lVp~1(Qi) the inequalities

l l f t l l c ( O i )  —  - ^ i l l S i l l I F * - 1( f l i)  0  =  2 ,  . . . ,  r i )

hold, thus for each

| g i ( £ f ) l  —  | | g i l l ^ * - 1 ( ß i)  (i =  1»  2 »  • ••>  ri).
Acta Mathematica Hungarica 47, 1986
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Let {]аи , Ь0[с]д(, bt[: j = l ,  2, ...,/,} be a system of nonoverlapping bounded 
subintervals and ./=  1, 2, f }  be a set. Now

4 '  \ f l < b i j ( £ t j )  f i , a t J ( £ i j ) \ P „

Д  I b i j - a t j l * - 1

I f.b ti ~ f.a  у II Wy \Qt)
I b tj-a tJ'.p - i M fldJW w y ■

If L i^ M f  II<9; / II и"»-i(n)’ then the statement of Theorem 2 is true for L;.

R em a rk . Theorems 1 and 2  give a necessary condition for a function to belong 
to the Sobol’ev space WSP(Q) jv=-l + ——-j . It is very probable that Theorem 1 is 
also a sufficient condition.
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A MOMENT THEOREM FOR CONTRACTIONS 
ON HILBERT SPACES

Z. SEBESTYÉN (Budapest)

Given a subset X  of a Hilbert space H  which spans the space H, and a function 
/ :  Z XX-+H, where Z, as usual, stands for the set of integers, one can ask whether 
there exists a contraction T on the Hilbert space H  such that

(1) T „ x = f(n ,x ) (n£Z, x£X )  

holds, where Tn is defined for ndZ  as follows:
fГ" i f  n a? 0 ,

(1  ̂ Tn = \T* l»l if n ^ o .

For a continuous semigroup {T,}(§0 of contractions on the Hilbert space H, 
with an extension T ^ ,—T* ( t s 0) to R, the corresponding problem is that given a func
tion / :  R x X —H, under what condition does there exist a continuous semigroup {Tt} 
of contractions such that
(2) Ttx  = f i t ,  x) (te R ,x e X ).

The present note gives an answer to these problems. It is in connection with the 
preceding papers [1], [2] on this subject. [1] deals with equation (1) required for 
X = {x0} and n^O only, i.e., the equation T"x0= xn (n—1 ,2 ,...), with given 

and analogously for the continuous one parameter case T, (tsO). On 
the other hand, [2] considers the case when the operators Tn we are seeking for are 
not derived from some contraction T  as in (Г) but rather from some unitary 
operator U on a Hilbert space H ' and from an operator V: H '—H  
of the form Tn—VUnV* (n£Z); and analogously, T,=VUtV* (Г6ER) where Ut 
is a continuous one parameter group of unitaries. (In fact, [2] treats even more gene
ral groups and «-semigroups.)

For unitary dilation theory we refer to Sz.-Nagy [3].
T heorem  1. There exists a contraction T satisfying (1) i f  and only i f  the function f  

satisfies
(3) / ( 0,*) = x (x£X ),

(4) (/(и , x), f(m , y)) =  (f ( n - m , x), y) (m, n£Z: mn s  0; x,y£X),

(5) Ц2" cn,xf{n, x)||2 = 2 2  cm,yc„,x(f(n—m, x), y)
n , X  171, у  77, X

where {си>*} (n£Z, x£X) is an arbitrary finite double sequence o f  complex numbers.

8
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Theorem 2. There exists a continuous family {Г,} o f  contractions satisfying (2) 
i f  and only i f  f  is continuous in its first variable and satisfies the identities (3), (4), (5) 
with m, n taking their values in R.

P ro o f  o f  N ecessity. 1. Let Г be a contraction on the Hilbert space H  and 
let U be a unitary dilation on a Hilbert space К  containing H  as a subspace. Then for 
the orthogonal projection P of К onto H  we have
(6) Tnx — PUnx (n£Z ,x£H )
where T„ is defined by (Г). Let further {C„tX} be a finite double sequence of complex 
numbers indexed by elements of the set Z x X .  Then we have by (1) and (6), for any 
x ,y  in X,

/(0, x) = T0x  =  x,
(f(n , y)) =  (T nx , Г*1"1 у )  =  (Г "+Н * , у )  =  (Tn- mx, у ) =

— (f(n  — m, х), у )  if m < 0 ,  л ё О ,
(/(« , X ), f (m , у ))  =  (T*W*, T my ) =  (r*<H+™>x, у ) =

= х, у )  = ( f(n —m, х),  у )  if m ё  О, 0;
and

Ц2” c„,x f ( n , x ) II2 =  \ \ 2  с„'ХТпх ||2 =  ||Р  2  с„,х и пх ||а ^  II2  сл,х^"^||2 =
п , х  п , х  п , х  п , х

=  2 2  cm,ycn,x(U"x, Um у ) = 2 2  cm,yC„,x(Un- mx, у ) -
т ,у  п ,х  т>у п ,х

=  2 2  Ст,у С „,х (.и п- т Х , Р у )  =  2  2  Cm,y C „,x ( P U n- mX , у) =
т,у п ,х  т ,у  п ,х

=  2  2  дт ,у С П,Л Т п - тХ , у ) =  2  2  Cm,у C„,x( f ( n - m ,  X), у ).
т,у п ,х  т , у  п , х

2. The case of a continuous semigroup {Г,} of contractions can be dealt with 
in a similar way by using the corresponding minimal dilation {[/,}.

Proof o f  Su ffic ien c y . 1. Let F0 be the (complex) linear space of all finite 
double sequences {c„tX} (n£Z ,xdX )  of complex numbers with the shift operation

U0{cn,x}-= {c'n.x}, where c'„,x =  c„_1>x (и€Z, x£X).
Introduce a semi-inner product ( . , . )  in F„ by

(7) <{с„,Л, {dm,y}) := 2  2  Jm,yCn,x(f(n-m, x), y).
m,y n ,x

Positive semi-definiteness follows from (5). It also follows from (5) that the linear 
map V0 defined by

K{c„,x} := 2  c„,xf(n , x ) ({c„>;c}6 F0)

is a contraction from F0 into the Hilbert space FI.
Denote F the Hilbert space resulting from F0 by factoring with respect to the 

null space of ( . , . )  and then by completing with respect to the norm inherited. At the 
same time U0 induces a unitary operator U on the Hilbert space F and V0 induces a
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contraction V from F into H. In what follows the equivalence class represented by 
{c„'X} is also denoted by {£„,*}.

We first show that for any x£X

(8) V*x = {d„'X}, where d„iX
1 if n = 0 
.0 otherwise.

For this let so that (7) gives, in view of (3) and (4),

V*x) = (V{cm,y}, x) = 2  cm,y(f(m> У)> X) =m,y
= 2  2  ^m,y 71, У\ x) —m,y n,x

as desired. Now we get by (8) for any x in X,

UV*x =  {h„'X}, where h

U~1V*x =  {k„'X}, where k„t

= { '•
'•* 10,

f ’lo,

1, if n — 1, 
otherwise,

1, if n —~  1, 
otherwise.

Defining T —VUV* we have a contraction on H  satisfying (1). Indeed, 
Tx = VUV*x = V{hntX} =  2  K J ( n ,  x) = / (  1, x),

T*x = VU~1V*x = V{kntX} =  2  K J ( n ,  X) = / ( - 1, x)

by the definition of {h„ x} and {k„:X}. We use induction on n (first for natural num
bers): assuming (1) for an 0 we observe that for any yC.X

(У, Г"+1х) = (T*y, T nx) = (T *y,f(n , x)) =
=  (V U -'V * y ,f(n ,x )) -  {VU-'{dn,y),f(n ,x )) = ( f ( - l ,y ) , f ( n ,x ) )

(by (4))=(y ,/(n  +  l, x));
because this shows that (1) also holds for n+1.

For a negative integer n the same method applies and the proof of Theorem 1 is 
complete.

2. The proof of Theorem 2 is similar. We have only to add the observation that 
continuity in the parameter is immediate from the construction.
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HÖLDER-TYPE INEQUALITIES 
FOR QUASIARITHMETIC MEANS

ZS. PÁLES (Debrecen)

1. Introduction

Let cp: R + -<-R be a continuous strictly monotonic function. Define the quasi
arithmetic mean Мф by the help of cp as follows:

M 9(*!, xn) = 4>~x 2  <?(*<)) •V П j=i )

In [2], L. Losonczi considered the Holder-type inequality 

1 "
(1) — 2 x iy i ^  MyiXi, ...,x„)M,ll(y1, ..., yn). n i=1

Assuming (p, ф: R+ -►R to be twice differentiable with nonvanishing first derivative, 
he proved that (1) is satisfied for any x x, ..., x„,yx, ...,y„6R+ if and only if there
exist p ,q > \  with — + — =1 so that 

P 4
1 и (  1 n \ 1Ip (  \ n Ч 1/®

(2) —  2 x ty i S  — 2  * f l  h 7 2  УП ^ М , ( х 1, . . . , х п)Мф(у1, . . . , у п)

holds for all values xx, . . . ,x n,y x, ...,y„€R+.
The aim of the present note is to prove this theorem without any differentia

bility assumption on cp and ф. Our method will be completely different from Loson- 
czi’s one. An important cornerstone of the discussion is the Lemma (see below) 
which gives some information about nonconcave functions. I am very grateful to 
Prof. Gy. Szabó, since he gave me the simple but nice idea of the proof of this Lemma.

2. Results

L em m a . Let T Q R be an interval and let f :  / —R+ be a continuous strictly mo
notonic nonconcave function. Define the set Hf  by

Hf := / /(*)
l / o o

x, y€/, f(x )+ f(y )
Л Ч Й Г

Then there exists 1 </r such that the interval ] 1, p[ is contained in Hf .
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that

(3 )

P roof. Since / i s  nonconcave and continuous, hence there exist x ,y ^ l  such

f(x )+ f(y )
A

We may assume that x<y. Now consider the function

g(r) : = ■ / ( , ) - +  xs,sy
It is obvious that g(x)=g(y)=0. Further, because of (3), we have g P / j  <0 . 
Hence there exists a uniquely determined value t0£]x,y[ such that

(4) g(t0) á  g(u), if x <  и <  t0,

(5) g(t0) <  g(v), if t0 <  v <  y.

Choose £0>0 so that [?„-£„, t0 +  e0]c [x ,у]. Then, applying (4) and (5), we get

gOo-e) +  g(>o +  e) 
gUo) < ---------- 2-----------

that is

(6) m / ( / o —® ) + / ( / o + e)

for 0<£<e0, Now, (6) and the definition of Hf  imply

(7 )

for 0<£<£„. Let
and

A t  o+ £ )  1 f ( t0- e )  1

P ■=

f ( t n +  En)
/(to-£o)
f i t  0- s 0)
f ( t0 + s0)

, if / i s  increasing, 

, if / i s  decreasing.

Since/is strictly monotonic, hence /I >1. Further, the continuity of / and (7) yield
]1, i*[c:Hf . □

T heorem . Let q>, ф : R+-*-R be continuous strictly monotonic functions. Ine
quality (1) is satisfiedfor all xlt ..., x n, y lt ...,y„£R+, n€N i f  and only i f  there exist
p ,q > \ with — I----=1 suchthat

P 4
( 1 " Y lp

(8) — 2  *f I = м 9(хг, ..., x„)\П , = 1 /
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and
(1  " Ylq

(9) I— 2  УЦ -  Щ ( У 1 ,  •••. Уп)\n  ,=1 /

/o r яиу xl5 x„ and yx, ..., yn in R+.
P ro o f . Let P be the set of all values p  >0 for which (8) is satisfied for any 

xl5 x„£R+, n€N. Substituting yx= ,. .—y n= \ into (1) we easily obtain that 
1 €P. Since, for 0<p'<p, Xj, x,/R+ , n€N we have

/  I л \ ! / p '  (  I л \V P

(see [1, Theorem 5, p. 15]), hence pgP, 0 < / /< / ;  implies //€  P. Therefore P  is an 
interval. If P were unbounded then (8) would hold for all positive p. Then, taking the 
limit /7—00 we would obtain

max Xj S  Af^Xj, ...,x„)
I S !  S it

(see [1, Theorem 4, p. 15]). This contradiction proves that that P is bounded. Denote 
by p0 the least upper bound of P. Then, since the right hand side of (8) is a continuous 
function of p, we have p0£ P. In other words, we have proved that P=]0, p 0] for 
some l ^ p 0<°°.

Similarly, denote by Q the set of all positive values q for which (9) is satisfied. 
Then we obtain that Q=]0, q0] for some 1 ё # 0<°°.

Now we shall show that

( 10)
Po do

== 1.

To get a contradiction, assume that (10) is not valid. Then there exist Po^Pi, do^di 
such that

— + — =  i.
Pi 4i

But then p-iiP  and qx $ Q. That is, there exist xlt ..., x„€R+ suchthat
vl/P ,

Let Y;:= cp(x;) for i*= 1, ..., и. Then we have

i.e. the function / := (<p~ 1)Pl is nonconcave. Similarly, it follows from that
the function g:=(t/!-1)41 is also nonconcave.

Now, applying the Lemma, we obtain that there exist 1< ji, v such that 
]1, p[aH f and ]1, v [c i/s is satisfied.
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But then Hf P\Hg is nonvoid. Hence there exist st , s2£<p(R+) and tlt t2€i/^(R+) 
such that

(ID
and

f(ßi) g(h) 
f(h) gOd

( 12) f ( * i )+ f(s2) __ +  g ( / i )  +  g ( / 2)  _ _ ( h  +  t2\
------ 2------ ^ i T T  --------2------

Let xi=(p~1(si) and yi—^ ~ 1(ti) for /=1,2. Then, by (11), we have

Therefore

(13)

x?1 У11
xg1 y\* ‘

X i y i +ХъУъ =  ^xf>+xg'j 1/p> ^ у ^ + У Ц 11“1

Applying (12), we obtain

x f+ x g l Г . 1(y(x1) + 9 (x2) j j 1/P| y f  + y f  '
И - ¥

i.e.

(14) > ü / . f e .  *>, M

Now, inequalities (13) and (14) give the desired contradiction, since then (1) is not 
satisfied for jcl5 x2, уг, y2£R+ •

This contradiction validates inequality (10).
If (10) is satisfied then we can find 1</з =/>0, 1 < q^q() so that

P

As we have proved, pdP, qZQ therefore (8) and (9) hold.
Thus the proof of the “only if” part of the Theorem is complete. We omit the 

the proof of the “if” part since it is based upon the classical Holder inequality, and 
is very simple.

At last we mention a somewhat generalized form of the Theorem. The proof of 
this result can easily be made by the same way as above.

G eneral Theorem. Let к =^2, q>lt ..., q>k: R + ->-R be continuous monotonic 
functions. Then the inequality

Y n к к
—  2  П X i j  =s # м  (*!,-, . . . , x „ j )
n ,=1j = i  j = 1

is satisfied for all xy£R+; /=1, ..., n; j — 1,..., k; «€ N i f  and only i f  there exist
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Pi, ...,pk> l  with 2 — =1 such that 
i=i Pj

( I  n \ ! /P j
— 2  xiJ\ ^  M^.ixi, ..., x„)i= 1 /

for any xlt x„£R+, n€N and for each j = l , . . . , k .
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