Acta Mathematica Hungarica

VOLUME 47, NUMBERS 1-2, 1986

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD
A. CSASZÁr, Z. DARÓcZY, P. ERDÓS, L. FEJES TÓth, A. hajNAL,
I. KÁTAI, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA, A. RAPCSÁK,
P. RÉVÉSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

Akadémiai Kladó, Budapest
ACTA MATH. HUNG. HU ISSN 0236-5294

ACTA MATHEMATICA HUNGARICA

Acta Mathematica publishes papers on mathematics in English, German, French and Russian

Acta Mathematica is published in two volumes of four issues a year by
AKADÉMIAI KIADÓ
Publishing House of the Hungarian Academy of Sciences
H-1054 Budapest, Allkotmány u. 21.
Manuscripts and editorial correspondence should be addressed to
Acta Mathematica, H-1364 Budapest, P.O.B. 127
Orders may be placed with
KULTURA Foreign Trading Company H-1389 Budapest P.O. Box 149
or with its representatives abroad.

Acta Mathematica is indexed in Current Contents.

ACTA MATHEMATICA HUNGARICA

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD

Å. CSÅSZÅR, Z. DARÓCZY, P. ERDŐS, L. FEJES TÓTH, A. HAJNAL, I. KÅTAI, L. LEINDLER, L. LOVÅSZ, A. PRÉKOPA, A. RAPCSÅK, P. RÉVÉSZ, VERA T. SÓS, E. SZEMERÉDI, B. SZ.-NAGY

CONTENTS

VOLUME 47

Abbott, H. L., On the Erdős-Straus non-averaging set problem 117
Amin, I. A., On a problem of Kaplansky 7
Aull, C. E., Extending families of discrete zero sets 281
Benczur, A., On the expected time of the first occurrence of every k bit long patterns in the symmetric Bernoulli process 233
Benczur, A. and Kátai, I., On the number of occurrences of sequence patterns 371
Берман, Д. Л.. К расширенному интерполяционному процессу Эрмита-Фейера 109
Bognár, M., and Kertész, G., On lineations 53
Carr, Donna M., The structure of ineffability properties of $P_{\star} \lambda$ 325
Charatonik, J. J. and Miklos, S., Local expansions on graphs and order of a point 287
Császár, A., RE-proximities 201
Daróczy, Z., Járai, A. and Kátai, I., On functions defined by digits of real numbers 73
Deo, S. and Krishan, R., On compactly dominated spaces 313
Drobot, V., On dispersion and Markov constants. 89
Erdös, P. and Varma, A. K., An extremum problem concerning algebraic polynomials 137
Ferrer, J. and Gregori, V., On a certain class of complete regularity 179
Fridli, S., Approximation by Vilenkin-Fourier sums 33
Gregori, V. and Ferrer, J., On a certain class of complete regularity 179
Horváth, L.. Strong approximation of renewal processes and their applications 13
Hang-Chin, Lai, Duality of Banach function spaces and the Radon-Nikodym property 45
Iturrioz, L., A representation theory for orthomodular lattices by means of closure spaces 145
Járai, A., Daróczy, Z. and Kátay, I., On functions defined by digits of real numbers 73
Joó, I., On the convergence of eigenfunction expansion in the norm of Sobolev spaces 191
Juhász, I. and Yakovlev, N., A normal connected left-separated space 383
Jürgensen, H., Shyr, H. J. and Thierrin, G., Monoids with disjunctive identity and their codes. 299
Kátai, I., A remark on a theorem of H. Daboussi 223
Kátai, I., Distribution of digits of primes in q-ary canonical form 341
Kátai, I. and Benczur, A., On the number of ozcurrences of sequence patterns 371
Kátai, I., Daróczy, Z. and Jára, A., On functions defined by digits of real numbers 73
Kertész, G. and Bognár, M., On lineations 53
Kis, O. and Szabados, J., On some de la Vallée Poussin type linear operators 239
Komjáth, P., Comparing almost-disjoint families 321
Komornik, V., On the equiconvergence of eigenfunttion expansion assosiated with ordinary linear differential op arators 261
Körmendi, S., On some functions defined by the canonizal expansion of complex numbers 227
Krishan, R. and Deo, S., On compactly dominated spazes 313
Lenkehegyi, A., A direct definition of distributive extensions of partially ordered algebras 157
Miccoli, Maria Maddalena, Bi-ideals in regular semigroups and in ortogroups 3
Miklos, S. and Charatonik, J. J., Local expansions on graphs and order of a point 287
Monhor, D., An inequality for the Dirichlet distribution 161
Páles, Zs., Hölder-type inequalities for quasiarithmetic means 395
Petz, D., Properties of the relative entropy of states of von Neumann algebras 65
Ricker, W., Countable additivity of multiplizative, operator-valued set function 121
Ruciński, A., Random graphs of a binomial type with sparsely-edged initial graphs 81
Salerno, S. and Troisi, M., Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces 95
Sato, R., An individual ergodic theorem for superadditive processes 153
Schwartz, M., New proofs of a theorem of Komlós 181
Sebestyén, Z., On the existence of certain semi-bounded self-adjoint operators in Hilbert space 29
Sebestyén, Z., A moment theorem for contractions on Hilbert spaces 391
Shyr, H. J., Jürgensen, H. and Thierrin, G., Monoids with disjunctive identity and their codes 299
Steinig, J., A rule of signs for real exponential polynomials 187
Szabados, J. and Kis, O., On some de la Vallée Poussin type linear operators 239
Szabados, J., On the rate of convergence of a lacunary trigonometric interpolation process 361
Szigeti, F., Necessary conditions for certain Sobol'ev spaces 387
Tanovic-Miller, N., Strongly convergent trigoncmetric series as Fourier series 127
Thierrin, G., Jürgensen, H. and Shyr, H.J., Monoids with disjunctive identity and their codes 299
Troisi, M. and Salerno, S., Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces 95
Varma, A. K. and Erdös, P., An extremum problem concerning algebraic polynomials 137
Varma, A. K. and Vértesi P., Saturation of on interpolatory polynomial operator 333
Vértesi, P., On the optimal Lebesgue constants for polyncmial interpolaticn 165
Vértesi, P. and Varma, A. K., Saturation of an interpolatory polynomial operator 333
Yakovlev, N. and Juhász, I., A normal connected left-separated space 383

CONTENTS

Miccoli Maria Maddalena, Bi-ideals in regular semigroups and in orthogroups 3
Amin, I. A.,On a problem of Kaplansky 7
Horváth, L., Strong approximation of renewal processes and their applications 13
Sebestyén, Z., On the existence of certain semi-bounded self-adjoint operators in Hilbert space 29
Fridli, S., Approximation by Vilenkin-Fourier sums 33
Hang-Chin Lai, Duality of Banach function spaces and the Radon - Nikodym property 45
Bognár, M. and Kertész, G., On lineations 53
Petz, D., Properties of the relative entropy of states of von Neumann algebras 65
Daróczy, Z., Járai, A. and Kátai, I., On functions defined by digits of real numbers 73
Ruciniski, A., Random graphs of binomial type with sparsely-edged initial graphs 81
Drobot, V., On dispersion and Markov constants 89
Salerno, S. and Troisi, M., Embedding and compactness theorems for irregular and unbounded domains in weighted Sobolev spaces 95
Берман, Д. Л., К расширенному интерполяционному процессу Эрмита-Фейера 109
Abbott, H. L., On the Erdős-Straus non-averaging set problem 117
Ricker, W., Countable additivity of multiplicative, operator-valued set functions 121
Tanović-Miller, N., Strongly convergent trigonometric series as Fourier series 127
Erdós, P. and Varma, A. K., An extremum problem concerning algebraic polynomials 137
Iturrioz, Luisa, A representation theory for orthomodular lattices by means of closure spaces 145
Sato, R., An individual ergodic theorem for superadditive processes 153
Lenkehegyi, A., A direct definition of distributive extensions of partially ordered algebras 157
Monhor, D., An inequality for the Dirichlet distribution 161
Vértesi, P., On the optimal Lebesgue constants for polynomial interpolation 165
Ferrer, J. and Gregori, V., On a certain class of complete regularity 179
Schwartz, M., New proofs of a theorem of Komlós 181
Steinig, J., A rule of signs for real exponential polynomials 187
Joó, I., On the convergence of eigenfunction expansion in the norm of Soboleff spaces 191
Császár, A., RE-proximities 201
Kátai, I., A remark on a theorem of H. Daboussi 223
Körmendi, S., On some functions defined by the canonical expansion of complex numbers 227
Benczur, A., On the expected time of the first occurrence of every k bit long patterns in the symmetric Bernoulli process 233
Kis, O. and Szabados, J., On some de la Vallée Poussin type discrete linear operators 239
Komornik, V., On the equiconvergence of eigenfunction expansions associated with ordinary linear differential operators 261

BI-IDEALS IN REGULAR SEMIGROUPS AND IN ORTHOGROUPS

MARIA MADDALENA MICCOLI (Lecce)

Introduction

Several authors (Lajos, Steinfeld, Kuroki, Szász, etc.) have started a deeper study of regular semigroups and of some of their sub-classes through bi-ideals, obtaining also interesting characterizations.

Recently Steinfeld [10] has proved that the complete regularity of a semigroup is sufficient for the complete regularity of each of its bi-ideals. In the present work we prove that the regularity of a semigroup is not sufficient to ensure the regularity of each of its bi-ideals.

Besides we prove that there exists an isomorphism between the semigroups $\mathfrak{B}(S)$ and $\mathfrak{B}(S / \mathfrak{S})$ of the bi-ideals of S and S / \mathfrak{G}, quotient of S with respect to Green's relation \mathfrak{H}, when S is a regular semigroup and \mathfrak{F} is a congruence.

The authors we have quoted made use often of the semigroup $\mathfrak{B}(S)$ of the bi-ideals of S in order to characterize certain classes of semigroups S through properties of $\mathfrak{B}(S)$. Among other things we find the connexion between $\mathfrak{B}(S)$ and the band E of the idempotents of an orthogroup S; in particular we prove that there is an isomorphism between $\mathfrak{B}(S)$ and $\mathfrak{B}(E)$.

Recall that a subsemigroup $B(\neq \emptyset)$ of a semigroup S is said to be a bi-ideal of S if $B S B \subseteq B$.

It is well known that if S is regular, then $B S B=B$ for every bi-ideal B of S.
Theorem 1. If every principal bi-ideal of a semigroup S is regular, then S is completely regular.

Proof. Let $a \in S$ and let $(a)_{b}$ be the principal bi-ideal generated by a. Since $(a)_{b}$ is by assumption regular and $(a)_{b}=a S a$, there exist $x \in(a)_{b}$ and $s \in S$ such that $a=a x a=a a s a a=a^{2} s a^{2}$. It follows that a is a completely regular element of S.

In [10] Steinfeld proved that the complete regularity of a semigroup is equivalent to the complete regularity of each one of its bi-ideals. It follows immediately from this and from Theorem 1 that the regularity of a semigroup does not imply the regularity of its principal bi-ideal.

One usually denotes by $\mathfrak{B}(S)$ the semigroup of the bi-ideals of the semigroup S.

Theorem 2. Let S be a regular semigroup and let \mathfrak{H} be a congruence on S. Then the semigroups $\mathfrak{B}(S)$ and $\mathfrak{B}(S / \mathfrak{G})$ are isomorphic.

Proof. Let the mapping $f: \mathfrak{B}(S) \rightarrow \mathfrak{B}(S / \mathfrak{G})$ be defined by $f(B)=H_{B}$, where $H_{B}=\left\{H_{b}\right\}_{b \in B}$. Then f is an isomorphism. Notice, first of all, that $B=\bigcup_{b \in B} H_{b}$ for
every bi-ideal B of S. Indeed, for every $x \in \bigcup_{b \in B} H_{b}$, there exists $b^{\prime} \in B$ such that $x \mathfrak{H} b^{\prime}$; therefore $x=x a x=b^{\prime} s x=b^{\prime} s^{\prime} b^{\prime}$ (for some a, s, s^{\prime}), i.e. $x \in B$. This immediately implies that f is one-to-one.

On the other hand, if $T \subseteq S$ is such that $H=\left\{H_{t}\right\}_{t \in T}$ is a bi-ideal of S / \mathfrak{S}, then $\bigcup_{t \in T} H_{t}$ is a bi-ideal of S. Indeed if $x, y \in \bigcup_{t \in T} H_{t}$ and $s \in S$, there exist $t_{1}, t_{2} \in T$ such that $x \in H_{t_{1}}, y \in H_{t_{2}}$ and, since H is a bi-ideal of $S / \mathfrak{H}, H_{t_{1}} \cdot H_{s} \cdot H_{t_{2}}=H_{t^{\prime}}$ where $t^{\prime} \in T$. Therefore

$$
x s y \in H_{t_{1}} H_{s} H_{t_{2}}=H_{t^{\prime}} \subseteq \bigcup_{t \in T} H_{t}
$$

i.e. $\bigcup_{t \in T} H_{t}$ is a bi-ideal of S, hence f is onto.

Finally let B, B^{\prime} be two bi-ideals of S and let $b \in B$ and $b^{\prime} \in B^{\prime}$; then $H_{b} H_{b^{\prime}}=$ $=H_{b b^{\prime}}$ and hence $H_{B} H_{B^{\prime}} \subseteq H_{B B^{\prime}}$. Besides let $x \in B B^{\prime}, b \in B, b^{\prime} \in B^{\prime}$ such that $x=b b^{\prime}$. Then if $h \in H_{x}, h S=b b^{\prime} S, S h=S b b^{\prime}$. It follows from this and the regularity of S that $h=h a h=b b^{\prime} s h=b b^{\prime} s^{\prime} b b^{\prime}$ where a, s, s^{\prime} are suitable elements of S. Therefore $h \in H_{b b^{\prime} s^{\prime} b} H_{b^{\prime}}$. Besides $k \neq h$ is in H_{x}, there $k=b b^{\prime} s^{\prime \prime} b b^{\prime}$, where $s^{\prime \prime}$ is a suitable elemen of S and $b b^{\prime} s^{\prime \prime} b \mathfrak{S} b b^{\prime} s^{\prime} b$. Then $H_{x}=H_{b b^{\prime} s^{\prime} b^{\prime} b} H_{b^{\prime}}$ and hence $H_{B B^{\prime}} \subseteq H_{B} H_{B^{\prime}}$.

Recall that a semigroup S is said to be intra-regular if $a=x a^{2} y$ where x, y are suitable elements of S, for every $a \in S$.

Pastijn [6] has proved that if S is regular, $\mathfrak{B}(S)$ is a normal band (i.e. for every $A, B, C \in \mathfrak{B}(S), A B C A=A C B A)$ if and only if S is intra-regular. Through this property of $\mathfrak{B}(S)$ and since S is regular and intra-regular if and only if $\mathfrak{B}(S)$ is a band (cf. [9]), we get quickly the following theorem.

Theorem 3. A semigroup S is regular and intra-regular if and only if $\mathfrak{B}(S)$ is a normal band.

Since an orthogroup is a particular regular and intra-regular semigroup, if S is an orthogroup, $\mathfrak{B}(S)$ is a normal band. It is interesting to find the connexion between $\mathfrak{B}(S)$ and the band E of the idempotents of an orthogroup S.

Theorem 4. A semigroup S is an orthogroup if and only if every bi-ideal of S is an orthogroup.

The proof of this theorem descends from a similar theorem for completely regular semigroups given by Steinfeld [10].

Corollary 5. A semigroup S is an orthogroup with band of idempotents of type \mathfrak{P}, where \mathfrak{P} is any of the types of band classified by M. Petrich in [7], if and only if every bi-ideal of S is an orthogroup with the band of idempotents of type \mathfrak{P}.

If S is an orthogroup where \mathfrak{H} is a congruence, the bands E and S / \mathfrak{H} are isomorphic. Then from Theorem 2 we know that bands $\mathfrak{B}(S)$ and $\mathfrak{B}(E)$ are isomorphic. But, if S is an orthogroup, the isomorphism between $\mathfrak{B}(S)$ and $\mathfrak{B}(E)$ exists even if \mathfrak{S} is not a congruence. In fact the following theorem holds.

Theorem 6. If S is an orthogroup with the band of idempotents E then the bands $\mathfrak{B}(S)$ and $\mathfrak{B}(E)$ are isomorphic.

Proof. Let the mapping $Z: \mathfrak{B}(S) \rightarrow \mathfrak{B}(E)$ be defined by $Z(B)=E(B)$, where $E(B)$ is the band of idempotents of B. We prove that Z is an isomorphism.

Let B and B^{\prime} be two bi-ideals of S such that $E(B)=E\left(B^{\prime}\right)$ and let b be an element of B. According to Theorem 4, there is an element $x \in B$ such that $b=b x b$ and $x b=b x$, then, $b x$ being an idempotent of B and so of $B^{\prime}, b=b x b=b x b x b$ is an element of B^{\prime}. Analogously we can prove that, if b^{\prime} is an element of B^{\prime}, b^{\prime} is an element of B. Therefore $B=B^{\prime}$, namely Z is one-to-one.

Now, let B be a bi-ideal of E and B^{\prime} the bi-ideal of S generated by B. Then every element of B is an idempotent of B^{\prime}; moreover, if e is an idempotent of B^{\prime}, since $B^{\prime}=B S B$, there are $b_{1}, b_{2} \in B$ and $s \in S$ such that:

$$
e=b_{1} s b_{2}=b_{1}^{2} s b_{2}^{2}=b_{1} e b_{2}
$$

then e is an element of B. Therefore B^{\prime} is a bi-ideal of S whose band of idempotents is B, so Z is onto.

Finally let B and B^{\prime} be two bi-ideals of S; then, obviously, $E(B) E\left(B^{\prime}\right) \subseteq$ $\subseteq E\left(B B^{\prime}\right)$. Moreover, if e is an element of $E\left(B B^{\prime}\right)$, there are $b \in B$ and $b^{\prime} \in \bar{B}^{\prime}$ such that $e=b b^{\prime}$. If we denote by \hat{b}^{\prime} the identity of \mathfrak{H}-class of B^{\prime} containing b^{\prime} and by \hat{b} the identity of \mathfrak{S}-class of B containing b, we have

$$
e \hat{b}=b b^{\prime} \hat{b}=\hat{b} b b^{\prime} \hat{b}=\hat{b} e \hat{b} \in E(B), \quad \hat{b}^{\prime} e=\hat{b}^{\prime} b b^{\prime}=\hat{b}^{\prime} b b^{\prime} \hat{b}^{\prime}=\hat{b}^{\prime} e \hat{b}^{\prime} \in E\left(B^{\prime}\right)
$$

Then, if b^{-1} is the inverse of b in \mathfrak{H}-class of B containing it and if b^{-1} is the inverse of b^{\prime} in \mathfrak{y}-class of B^{\prime} containing it,

$$
e \hat{b} \hat{b}^{\prime} e=b b^{\prime} \hat{b} \hat{b}^{\prime} b b^{\prime}=b b^{\prime} \hat{b}^{\prime} \hat{b} \hat{b}^{\prime} \hat{b} b b^{\prime}=b b^{\prime}\left(\hat{b}^{\prime} \hat{b}\right)^{2} b b^{\prime}=b b^{\prime} \hat{b}^{\prime} \hat{b} b b^{\prime}=b b^{\prime} b b^{\prime}=e^{2}=e,
$$

then e is an element of $E(B) \cdot E\left(B^{\prime}\right)$. Therefore Z is a homomorphism.
We recall that a band E is said left [respectively, right] regular iff $a x=a x a$ [resp. $x a=a x a$] for every $a, x \in E$. S. Lajos ([3], [4]) has characterized the orthogroups with left [resp. right] regular band of idempotents E. In fact he has proved the following theorem (of which, obviously, the dual holds).

Theorem 7. A semigroup S is an orthogroup with left regular band of idempotents E if and only if $\mathfrak{B}(S)$ is a regular semigroup whose S is a right identity.

The following theorem (of which the dual holds) characterizes the same class of semigroups, but pointing out the relation between E and $\mathfrak{B}(S)$.

Theorem 8. A semigroup S is an orthogroup with left regular band of idempotents E if and only if $\mathfrak{B}(S)$ is a left regular band.

Proof. Let S be an orthogroup with left regular band of idempotents E and let A, X be two bi-ideals of E. Then, if $a \in A$ and $x \in X, a x=a x a$, i.e. $A X \subseteq A X A$. Moreover, if $a, a^{\prime} \in A$ and $x \in X, a x a^{\prime}=a\left(x a^{\prime} x\right)$, then $A X A \subseteq A X$. Therefore $\mathfrak{B}(E)$ is a left regular band. Hence, from Theorem 6, it follows that $\mathfrak{B}(S)$ is a left regular band.

Conversely, if $\mathfrak{B}(S)$ is a left regular band, then $\mathfrak{B}(S)$ is a regular semigroup and $B S=B S B=B$ for every bi-ideal B of S. From this and from Theorem 7 it follows that S is an orthogroup with left regular band of idempotents E.

We recall that a band E is said left [resp. right] normal iff efg $=e g f$ [resp. $g f e=f g e]$ for every $e, f, g \in E$. Obviously a left [resp. right] normal band is left [resp. right] regular.

Theorem 9. A semigroup S is an orthogroup with left regular band of idempotents if and only if $\mathfrak{B}(S)$ is a left normal band.

Proof. If S is an orthogroup with left regular band of idempotents E, by Theorem $8, \mathfrak{B}(S)$ is a left regular band. In addition let A, X, Y be bi-ideals of S, then

$$
A X Y=A X Y X=A X A Y X \subseteq A Y X, \quad A Y X=A Y X Y=A Y A X Y \subseteq A X Y
$$

It follows that $\mathfrak{B}(S)$ is a left normal band. The converse, from Theorem 8 , is obvious.

The following characterization, by Kuroki (cf. [5]), of the orthogroups in which the band of idempotents E is a semilattice, is an immediate consequence of Theorem 9 and its dual.

Theorem 10. A semigroup S is an orthogroup with semilattice E of idempotents if and only if $\mathfrak{B}(S)$ is a semilattice.

Since, as we previously observed, if S is an orthogroup $\mathfrak{B}(S)$ is a normal band, from Theorems 8, 9, 10 and their duals we can finally obtain the following theorem.

Theorem 11. If a semigroup S is an orthogroup with the band of idempotents of type \mathfrak{P}, where \mathfrak{P} is any of the types of band classified by M. Petrich in [7], then $\mathfrak{B}(S)$ is a band of type \mathfrak{B}. In addition if the type \mathfrak{P} is that of left regular, or right regular band or semilattice, then and only then the converse holds.

References

[1] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. I, Amer. Math. Soc. (Providence, 1961).
[2] J. M. Howie, An Introduction to Semigroup Theory, Acad. Press (London, New York, 1976).
[3] S. Lajos, On the (1, 1)-ideal semigroup of a semigroup, Dept. Math., K. Marx Univ. Econom., Budapest, 9 (1978), 12-19.
[4] S. Lajos, Characterization of certain classes of semigroups, Math. Semin. Notes, Kobe Univ., 7 (1979), 605-608.
[5] N. Kuroki, On normal semigroups, Czechoslovak Math. J., 27 (1977), 43-53.
[6] F. Pastijn, Regular locally testable semigroups as semigroups of quasi-ideals, Acta Math. Acad. Sci. Hung., 36 (1980), 161-166.
[7] M. Petrich, A construction and a classification of bands, Math. Nachr., 48 (1971), 263-274.
[8] M. Petrich, The structure of completely regular semigroups, Trans. Amer. Math. Soc., 189 (1974), 211-236.
[9] O. Steinfeld, Quasi-ideals in rings and semigroups, Akadémiai Kiadó (Budapest, 1978).
[10] O. Steinfeld, On completely regular semigroups, Sem. Forum, 21 (1980), 93-94.
(Received October 14, 1983)

73100 LECCE, ITALIA

ON A PROBLEM OF KAPLANSKY

I. A. AMIN (Cairo)
Dedicated to Professor R. Wiegandt on his 50th birthday

Classes of torsion-free abelian groups having inequivalent indecomposable decompositions

In this section we construct classes of torsion-free abelian groups with the aim of enriching our knowledge of the antimonies of various indecomposable decompositions of torsion-free abelian groups of countable ranks. Jonsson's suprising discovery in this respect [8] (see also [9]) has shaken, by then, our firm belief in the role of the notion of isomorphism. Since this discovery of Jonsson, various authors published results, using the basic ideas of Jonsson, demonstrating the different aspects of such study [7]. In this section we rely heavily, as others, on the original technique introduced by Jonsson. However, the groups constructed here depend on integral parameters that can be chosen in different ways to enlighten our knowledge in this respect. Also, known results (see [7]) can be even drawn alternatively from our general setting. Our main results are

Theorem 1. For every finite cardinal m, there exist indecomposable torsion-free abelian groups A and B each of rank 2 such that $A^{m+1} \cong B^{m+1}$ while $A^{s} \not \equiv B^{s}$ for $s=1, \ldots, m$.

Theorem 2. For every finite cardinal m, there exist indecomposable torsion-free abelian groups A and B each of ω-rank, ω is the first infinite cardinal number, such that $A^{m+1} \cong B^{m+1}$ while $A^{s} \nsubseteq B^{s}$ for $s=1, \ldots, m$.

Construction

1. Let m and n be given positive integers with $n>2$, and let V be an $m n$-dimensional vector space over the field Q of rational numbers. Take $\left\{x_{i j}: i=1, \ldots, n\right.$; $j=1, \ldots, m\}$ as a basis for V. Let furthermore $P_{j} ; r_{t s}, j=1, \ldots, n, t=1, \ldots, n-1$ and $s=1, \ldots, m$, be pairwise disjoint primes and choose positive integers $a_{t s}$, $t=1, \ldots, n$ and $s=1, \ldots, m$, such that $a_{t s}$ is not divisible by $r_{t s}$ for each t, s. Consider the following subgroup of $\langle V,+\rangle$

$$
\begin{gathered}
A\left(a_{11}, \ldots, a_{n-1,1}, \ldots, a_{i m}, \ldots, a_{n-1, m} ; n, m\right)= \\
=\frac{1}{p_{i}^{\infty}} x_{i j}, \frac{1}{r_{t j}}\left(\sum_{u=1}^{m} x_{t u}+a_{t j} \sum_{u=1}^{m} x_{t+1, u}\right): i=1, \ldots, n ; j=1, \ldots, m ; t=1, \ldots, n-1 ;
\end{gathered}
$$

wherein $\langle B\rangle$ is understood to be the subgroup of $\langle V,+\rangle$ generated by a nonempty subset B of V. In the sequel, if no ambiguity may arise, we shall write $A\left(a_{t s} ; n ; m\right)$, and sometimes $A(n, m)$, to stand for the above constructed sub-
group of $\langle V,+\rangle$. If moreover $n=1$, we may take a further abbreviation by writing $A\left(a_{t} ; n\right)$, or $A(n)$, for the same group. The group $A(n, m)$ is obviously a torsionfree abelian group of rank $m n$. Furthermore, one can easily check that

$$
A\left(a_{t s} ; n, m\right)=A\left(a_{11}, \ldots, a_{n-1,1} ; n, 1\right) \oplus \ldots \oplus A\left(a_{1 m}, \ldots, a_{n-1, m} ; n, 1\right)
$$

2. In a similar fashion to that given in [2], one can prove that

$$
A\left(a_{i j}, \ldots, a_{n-1, j} ; n, 1\right)
$$

is an indecomposable torsion-free abelian group of rank n. Furthermore if in $A\left(a_{t}, n\right)$ we replace the parameters a_{1}, \ldots, a_{n-1} by parameters b_{1}, \ldots, b_{n-1} of the same type we can prove, as in [2], that $A\left(a_{t}, n\right) \cong A\left(b_{t}, n\right)$ if and only if there exist integers s_{1}, \ldots, s_{n} satisfying the following relations

$$
p_{k+1}^{s_{k+1}} a_{k} \equiv \pm p_{k}^{s_{k}} b_{k}\left(\bmod r_{k}\right), \quad k=1, \ldots, n-1
$$

3. Consider now a group $A\left(b_{t z} ; n, m\right)$ of the same type as that of $A\left(a_{t z} ; n, m\right)$, where the concerned primes are the same in both groups. We prove that $A\left(a_{t z} ; n, m\right) \cong A\left(b_{t z} ; n, m\right)$ implies that

$$
a_{t 1} a_{t 2} \ldots a_{t m} p_{k+1}^{s_{k+1}} \equiv \pm b_{t 1} b_{t 2} \ldots b_{k}^{s_{k}}\left(\bmod r_{z}\right) \quad k=1, \ldots, n-1, z=1, \ldots, m
$$

and $s_{k} \in Z$.
We first observe that an isomorphism $\psi: A\left(a_{t z} ; n, m\right) \rightarrow A\left(b_{t z} ; n, m\right)$ can be extended to an isomorphism between the injective hulls of these groups (in fact ψ is extendable to an endomorphism of V). This simply means that ψ admits multiplication by elements of Q. On the other hand it is a well known fact that the class of p-divisible abelian groups is homomorphically closed. So, one can infer that the image of $x_{i j}$ under ψ should lie in the p_{i}-divisible subgroup of $A\left(b_{t z} ; n, m\right)$. Thus, for some integers $u_{i} ; c_{1}, \ldots, c_{m}$ we have

$$
\psi\left(x_{i j}\right)=\frac{1}{p_{i}^{u_{i}}} \sum_{t=1}^{m} c_{t} x_{i t}
$$

Using the same argument for ψ^{-1}, it is not hard to see, after effecting on both sides of the last equation by ψ^{-1}, that each c_{t} is either equal to zero or a rational number of the form $d_{t} p_{i}^{v}, d_{t}, f_{t} \in \boldsymbol{Z}$. But we also know that both

$$
\frac{1}{r_{i j}}\left(\sum_{u=1}^{m} x_{i u}+b_{i j} \sum_{u=1}^{m} x_{i+1, u}\right) \text { and } \frac{1}{r_{i j}}\left(\sum_{u=1}^{m} \psi\left(x_{i u}\right)+a_{i j} \sum_{u=1}^{m} \psi\left(x_{i+1, u}\right)\right)
$$

are elements of $\operatorname{Im} \psi=A\left(b_{t s} ; n, m\right)$. So, any linear combination of such terms is again an element of $\operatorname{Im} \psi$. Thus routine calculation gives rise to congruences yielding eventually the following relations

$$
a_{t 1} a_{t 2} \ldots a_{t m} p_{t+1}^{s_{t+1}} \equiv \pm b_{t 1} b_{t 2} \ldots b_{t}^{s_{t}}\left(\bmod r_{t z}\right), \quad t=1, \ldots, n-1, z=1, \ldots, m
$$

and $s_{t}, s_{t+1} \in Z$.
This establishes the required assertion.
4. If ω is the first infinite cardinal number, we prove that the congruences derived in 3 above are sufficient to establish the isomorphism $A\left(a_{t z} ; \omega, m\right) \cong$ $\cong A\left(b_{t z} ; \omega, m\right)$. We first prove our assertion in the case for which $m=1$, and simple induction draws what is to be proven. To this end consider an ω-dimensional vector space over Q with a basis $x_{i}, y_{i}: i \in Z$ and let $p_{i}, r_{2 i}: i=1,2, \ldots$ be a set of pairwise disjoint primes. Choose positive integers $a_{2 i}$ and $b_{2 i} ; i \in Z$ such that $r_{2 i}$ does not divide neither $a_{2 i}$ nor $b_{2 i}$ for each i. Construct as above the subgroups $A\left(b_{2 i} ; \omega, 1\right), A\left(a_{2 i} b_{2 i} ; \omega, 1\right)$ of the group $\left\langle y_{i}: i \in Z\right\rangle$ and the subgroups $A\left(a_{i} ; \omega, 1\right)$, $A(1 ; \omega, 1)$ of $\left\langle x_{i}: i \in Z\right\rangle$, where $A(1 ; \omega, 1)$ stands for $A\left(\alpha_{2 i} ; \omega, 1\right)$ and $\alpha_{2 i}=1$ for each $i \in Z$. Define a linear mapping ψ of V such that $\psi\left(x_{2 n-1}\right)=x_{2 n-1}, \psi\left(x_{2 n}\right)=$ $=c_{2 n}+d_{2 n} r_{2 n} y_{2 n} y_{2 n}, \psi\left(y_{2 n-1}\right)=y_{2 n-1}$ and $\psi\left(y_{2 n}\right)=r_{2 n}^{2}+a_{2 n} y_{2 n}$, where the integers $c_{2 n}, d_{2 n}$ are chosen so that $c_{2 n} a_{2 n}=1+d_{2 n} r_{2 n}^{2}$ for each $n \in Z$. Obviously ψ is nonsingular and $\psi^{-1}\left(x_{2 n}\right)=a_{2 n} x_{2 n}-d_{2 i} r_{2 n} y_{2 n}, \psi^{-1}\left(y_{2 n}\right)=c_{2 n}-r_{2 n}^{2} x_{2 n}$. Now if F designates the free abelian group generated by the base elements of V, fairly direct computation shows that ψ maps the generators of $A\left(a_{2 i} ; \omega, 1\right) \oplus A\left(b_{2 i} ; \omega, 1\right)$ into those of $A(1 ; \omega, 1) \oplus A\left(a_{2 i} b_{2 i} ; \omega, 1\right)$; and similarly ψ^{-1} acts on the concerned generators. Thus we have

$$
A(1 ; \omega, 1) \oplus A\left(a_{2 i} b_{2 i} ; \omega, 1\right) \cong A\left(a_{2 i} ; \omega, 1\right) \oplus A\left(b_{2 i} ; \omega, 1\right)
$$

Having done this, we can relabel and replace $2 i$ by i, and so simple induction on m shows in this case that if the congruences cited in 3 above are satisfied with $t \in Z$ we should have

$$
A^{m}(1 ; \omega, 1) \oplus A\left(a_{t 1} a_{t 2} \ldots a_{t m} ; \omega, 1\right) \cong \bigoplus_{j=1}^{m} A\left(a_{t j} ; \omega, 1\right)
$$

where $t \in Z$ and $A^{m}(1 ; \omega, 1)$ means the direct sum of m copies of $A(1 ; \omega, 1)$. But since

$$
A\left(a_{t 1} a_{t 2} \ldots a_{t m} ; \omega, 1\right) \cong A\left(b_{t 1} b_{t 2} \ldots b_{t m} ; \omega, 1\right)
$$

if and only if the congruence relations given in 3 above are satisfied for each $t \in \boldsymbol{Z}$ (see [3] and [2]), we conclude that

$$
\bigoplus_{j=1}^{m} A\left(a_{t j} ; \omega, 1\right) \cong \bigoplus_{j=1}^{m} A\left(b_{t j} ; \omega, 1\right)
$$

whenever the above relations are satisfied for each $t \in Z$. Thus the prementioned relations are sufficient for

$$
A\left(a_{t z} ; \omega, n\right) \cong A\left(b_{t z} ; \omega, m\right)
$$

where ω is the first infinite cardinal number. The necessity condition for the countable cardinal case is given by 3 above.
5. It is obvious from the argument used in 4 above that $\underset{i=l}{\underset{~}{\oplus}} A\left(a_{i} ; 2,1\right) \simeq$ $\simeq \underset{i=l}{\oplus_{i}} A\left(b_{i} ; 2,1\right)$ if and only for some integers s, k,

$$
a_{1} a_{2} \ldots a_{m} p_{1}^{s} \equiv \pm b_{1} b_{2} \ldots b_{m} p_{2}^{s}(\bmod r)
$$

bearing in mind that the only primes involved here are p_{1}, p_{2} and r. It seems most likely that the assertion is true for any finite cardinal n.
6. The above results show that any of the required isomorphisms breaks down if only one of the concerned congruence relations fails to be satisfied. Now take $n=2 ; p_{1}=7, p_{2}=17, r=11, a=1$ and $n=2$. It is easy to see from our conditions that $\bigoplus_{i=1}^{m} A(1 ; 2,1)$ is not isomorphic to $\bigoplus_{i=1}^{m} A(2 ; 2,1)$ for $s \leqq 4$, yet $\bigoplus_{i=1}^{5} A(1 ; 2,1) \cong$ $\cong{ }_{i=1} A(2 ; 2,1)$. In fact rudiments of number theory will always insure, by proper choices of the concerned primes and parameters, that for any finite cardinal number m there exist primes p_{1}, p_{2}, r and integers a, b neither of them is divisible by r such that $A^{m}(a ; 2,1) \cong A^{m}(b ; 2,1)$; whilst $A^{s}(a ; 2,1) \not \not A^{s}(b ; 2,1)$ for $s=1, \ldots, m-1$. Our remarks show that this result can be extended to the case in which n is equal to the first infinite cardinal number ω. Thus by choosing appropriate concerned parameters, we see that for every given finite cardinal m, there exist ω-rank torsionfree indecomposable abelian groups C and D such that $C^{m} \cong D^{m}$; whereas $C^{s} \cong D^{s}$ for $s=1, \ldots, m-1$. These results establish Theorems 1 and 2.

On a theorem of Kaplansky

This section is mainly concerned with the indecomposable decompositions of countable rank reduced torsion-free modules over a discrete valuation ring. Theorems 3 and 7 are the most important results of this section. Theorem 3 sharpens an embedding theorem of Kaplansky for such modules. We also hint that the technique used in proving Theorem 3 can be applied to draw at once known important results. Theorem 7 gives a counter example disproving a result of the author; whilst Theorem 8 gives a modified version of this false result.

In this section R designates a PID, R_{p} is the discrete valuation ring obtained by localizing at the prime element p of R. R_{p}^{*} is the p-adic completion of R_{p}, and A^{*} is understood to be the p-adic completion of a reduced R_{p}-module A. In the following theorem we give a generalization to Kaplansky's theorem concerning finite rank reduced torsion-free R_{p}^{*}-modules [10] pp. 46-53. Theorem 3 extends on the one hand Kaplansky's theorem (see Theorems 20, 22 and 23 of [10]) to cover the countable rank case, and on the other hand it gives a computational scheme for the finite rank case.

Theorem 3. A countable rank reduced torsion-free R_{p}-module of p-rank α is a dense submodule of the direct sum of α purely indecomposable R_{p}-modules. If A is of finite rank $n=\alpha+k$, then the rank of each direct summand does not exceed $k+1$. Furthermore, the tensor product of two finite rank R-modules A and B is a dense pure submodule of a free R_{p}^{*}-module.

Proof. If B is a basic submodule of A, then $r(B)=r\left(R_{p}^{*} \otimes B\right)=r_{p}\left(R_{p}^{*} \otimes A\right)$ and $R_{p}^{*} \otimes A=R_{p}^{*} \otimes B \oplus D$, where D is the maximal divisible submodule of $R_{p}^{*} \otimes A$. But since $R_{p}^{*} \otimes B$ is free and $R_{p}^{*} \otimes M \cong M$ for any R_{p}^{*}-module M, we see that $R_{p}^{*} \oplus A$ is the direct sum of copies of R_{p}^{*} and its quotient field, a result we obtained without appealing to Kaplansky's fundamental decomposition theorem. Now flatness of A shows that the map $\psi: A \rightarrow R_{p}^{*} \otimes A, \psi(a)=1 \otimes a$ is indeed a monomorphism whose image generates the R_{p}^{*}-module $R_{p}^{*} \otimes A$. But since the equation $p x=$
$=1 \otimes a, 0 \neq a \in A$, has no solution in $R_{p}^{*} \otimes A$ if and only if the equation $p x=a$ has no solution in A (see [1]), we infer that A is embedded isomorphically into the free R_{p}^{*}-module $R_{p}^{*} \otimes A$. In fact such a monomorphism can be effected by an injection β such that $\beta(a)=c$, where $\psi(a)=c+d, c \in R_{p}^{*} \oplus A$ and $d \in D$. A further application of Lemma 4.1 of [1] shows that $\alpha(A)$ is pure in $R_{p}^{*} \otimes A$. Take a basic $\left\{e_{i}: e \in \alpha\right\}$ for $R_{p}^{*} \oplus B$ and identify A with its image under β. Since a pure R_{p}^{*} is purely indecomposable, we deduce that the pure closure A_{i} of the i-th components of A in the free decomposition of $R_{p}^{*} \otimes B$ is purely indecomposable. Thus A can be regarded as a pure submodule of $\oplus A_{i}$ as asserted. Suppose now that the p-rank α of A, consequently $R_{p}^{*} \otimes B$, is finite. Consider a p-independent set $\left\{b_{1}, \ldots, b_{\alpha}\right\}$ of $R_{p}^{*} \otimes B$ and extend it to a maximal linearly independent subset $\left\{b_{i}: i>1\right\}$ of $R_{p}^{*} \otimes B$ and then express each $b_{i}, i>\alpha$, as an $R_{p}^{*}=$ linear combination of b_{1}, \ldots, b_{m}. So, if $r(A)$ is finite and equals $\alpha+k$, fairly direct computation shows that $r\left(A_{i}\right)$ cannot exceed $k+1$ as asserted. In the general case in which α is countable, we recall that A and $R_{p}^{*} \otimes A$ have equal p-ranks. The final required result concerning $A \otimes B$ can be thus effected by using Theorem 5.13 of [1]. The proof of the theorem is complete.

Remark 4. The argument used in the first part of the proof Theorem 3 gives an implicit proof of Kaplansky's theorem on the direct decomposition of a countable rank reduced torsion-free R_{p}^{*}-module (see [10] Theorem 20, p. 48).

Remark 5. Theorem 3 shows that $\bigoplus_{i \in \alpha} A_{i} / A$ is divisible.
Remark 6. The argument used in the first part of Theorem 3 can be applied to get a direct proof of the freeness of a countable rank deduced torsion-free R_{p}^{*} module (see [10], Theorem 20).

Now we give a counter-example disproving Theorem 5.3 of the author's paper [1]. In that paper the factorization given by equation 2 is dubious.

Theorem 7. There exists a rank 3 reduced torsion-free indecomposable module over a non-complete discrete valuation ring that does not possess the exchange property.

Proof. Consider the irreducible polynomial $f(x)=x^{3}-2 x^{2}-x-3$ over Z. Thus $K=Z x /\langle f(x)\rangle$ can be regarded as a rank 3 abelian group. But since $f(x)=$ $=(x-1)(x+1)(x-2)$ in $Z /\langle 5\rangle, K / 5 K$ can be represented as the product of three fields. Let now Z_{5} be the discrete valuation ring constructed by localizing at the prime 5 . This means that localizing at 5 shows that K_{5} is a rank 3 free Z_{5}-module. Moreover, the third isomorphism theorem shows that K_{5} has exactly three maximal ideals. Now let R be the obtained by inverting one of these maximal ideals after localizing. $R / 5 R$ is a domain of order 25 that can be represented as the direct sum of two fields. Thus R is not a local ring. Also R is a rank 3 torsion-free Z_{5}-module. So, the abelian group $\langle R,+\rangle$ is quasi-isomorphic to a free module over the centre A of End $(R,+)$ [7]. The rank of this quasi-isomorphic image should be 1 or 3 . But since $\langle R,+\rangle$ cannot be quasi-isomorphic to a free Z_{5}-module, we conclude that, up to isomorphism, $A=\langle R,+,$.$\rangle . Thus End (R,+) \cong\langle R,+,$.$\rangle . Thus$ $\langle R,+\rangle$ is a rank 3 reduced torsion-free indecomposable Z_{5}-module whose endomorphism ring is not local.

However we have
Theorem 8. A finite rank reduced tonion-free R_{p}-module having a p-rank not exceeding 3 possesses the Krull-Schmidt property.

Proof. If A is such a module, the number of summands in any of its indecomposable decompositions cannot exceed 3. If the number is exactly 3, then each summand is necessarily purely indecomposable. But since any purely indecomposable module has the exchange property, we see that A has the Krull-Schmidt property. So, the only alternative to be investigated is the case in which we have two decompositions $A=B \oplus C=D \oplus E$ of A, where $r_{p}(A)=3$. So, $r_{p}(B)=r_{p}(D)=1$, say. Thus B and D have the exchange property and so $B \oplus C \cong B \oplus D \oplus K$ and $D \oplus E \cong$ $\simeq B \oplus D \oplus L$ for some modules K and L such that $C \cong D \oplus K$ and $E \cong B \oplus L$ (see [4]). But since a purely indecomposable module is cancellable, we conclude that $K \cong L$. This completes the proof.

This means that Theorem 5.6 of [1] becomes valid if we replace "AzumayaFitting" by "has the Krull-Schmidt property".

The author thanks Professor B. Warfield, Jr. for a communication concerning Theorem 7.

References

[1] I. A. Amin, On the uniqueness of decompositions of finite rank reduced torsion-free modules over a noncomplete discrete ring, I, Coll. Mat. Soc. János Bolyai, 6 (1971), 21-43.
[2] I. A. Amin, Antimonies of torsion-free modules, I, The first Arab Conference on Physics and Mathematics, Bagdad (1978).
[3] I. A. Amin, On a conjecture of Erdős, Bull. Fac. Sci. Alex. Uni. (In press, Vol. 1978).
[4] I. A. Amin, Exchange property in abelian categories and exchange rings, Proc. Con. Theory of Radicals; Eger-Hungary (1982).
[5] D. Arnold, R. Hunter and E. Walker (editors), Abelian Group Theory, Proc. 2nd New Mexico Univ., Lecture Notes in Mathematics, 616, Springer-Verlag (1976).
[6] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., (1963), 687-710.
[7] L. Fuchs, Infinite Abelian Groups, Vol. II, Academ. Press (1973).
[8] B. Jonsson, On direct decompositions of torsion-free abelian groups, Math. Scand. 5 (1957),. 230-235.
[9] B. Jonsson, On direct decomposition of torsion free abelian groups, Math. Scand, 7 (1959), 361-371.
[10] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, Michigan (1969).

STRONG APPROXIMATIONS OF RENEWAL PROCESSES AND THEIR APPLICATIONS

L. HORVÁTH (Szeged)

1. Introduction

Let $(X, Y),\left\{\left(X_{n}, Y_{n}\right), Y_{n}=\left(Y_{n}^{(1)}, \ldots, Y_{n}^{(d)}\right), n \geqq 1\right\}$ be a sequence of random vectors with values in R^{d+1}. Many authors (see, for example, the Introduction and Chapter 2 in Csörgő and Révész [8]) studied the rate of strong approximation of the partial sums $(U(t), S(t))$,

$$
U(t)=\sum_{i=1}^{[t]} X_{i}, \quad S(t)=\sum_{i=1}^{[t]} Y_{i}
$$

by a ($d+1$)-dimensional Wiener process. Horváth [13] obtained that a strong invariance principle for the partial sums of independent, indentically distributed random variables (i.i.d.r.v's) with positive expectation always implies a strong approximation for the corresponding renewal process. The renewal process, being the inverse of the partial sum process is defined as

$$
\begin{aligned}
N(t) & =\inf \{s: U(s)>t\}, \\
& =\infty, \text { if } \quad\{s: U(s)>t\}=\emptyset .
\end{aligned}
$$

First we show that Theorem 2.1 in [13] remains true if we drop the independence and identical distribution assumption on the summands. A joint approximation of $N(t)$ and $S(N(t))$ will be proved in Section 2. Partial sums indexed by a renewal process appear in the mathematical theory of risk processes and queuing processes. Gut and Janson [10] gave some other interesting examples of the use of $S(N(t))$ in the theory of chromatography, classical renewal theory, chemistry, physics, replacement policies and economics.

In the last section we consider some applications of our main theorems. We obtain that our method gives the best possible joint approximation of $U(t), S(t)$, $N(t)$ and $S(N(t))$.

We can assume without loss of generality that our probability space (Ω, \mathscr{A}, P) is so rich that every r.v. and all processes introduced later on are defined on it. Throughout this paper we use the maximum norm in R^{k} denoted by $\|x\|_{k}=\max _{1 \leq i \leq k}\left|x_{i}\right|$, $x=\left(x_{1}, \ldots, x_{k}\right)$. The transpose of a row-vector x is a column-vector denoted by x^{T}. Let $a \wedge b=\min (a, b), a \vee b=\max (a, b)$. We use the abbrevations $\xi_{T} \underline{\underline{\text { a.s. }} o} o(a(T))$ and $\xi_{T} \xlongequal{\text { a.s. }} O(b(T))$, where $\left\{\xi_{T}, a(T), b(T), T \geqq 0\right\}$ are stochastic processes, to mean that

$$
\lim _{T \rightarrow \infty} \xi_{T} / a(T)=0 \quad \text { a.s. }
$$

and

$$
P\left\{\limsup _{T \rightarrow \infty}\left|\xi_{T}\right| / b(T)=\infty\right\}=0
$$

respectively. We say that $a(T)$ is not greater than $b(T)$ almost surely $(a(T) \xlongequal{\text { a.s. }} b(T))$, if for almost all $\omega \in \Omega$ there is an integer $n_{0}=n_{0}(\omega)$ such that $a(T) \leqq b(T)$ for $T \geqq n_{0}$.

2. Strong approximations of the renewal process and the partial sums indexed by the renewal process

Several authors proved strong invariance principles for sums of random variables or random vectors under different conditions. We do not want to summarize these results in a single statement and hence we are not going to list the different sets of conditions (moment and dependence conditions) allowing such strong approximations. We will simply assume that the partial sums can be approximated by a Gaussian process and strong invariance principles for $N(t)$ and $S(N(t))$ will follow from this assumption of strong approximation.

Condition A. We can define a $(d+1)$-dimensional Wiener process

$$
\left\{W(t)=\left(W^{(1)}(t), \ldots, W^{(d+1)}(t)\right), t \geqq 0\right\}, \quad E W(t)=0, E W^{T}(t) W(s)=\Gamma \min (t, s)
$$

such that

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}\|(U(t)-\mu t, S(t)-m t)-W(t)\|_{d+1} \xlongequal{\text { a.s. }} o(r(T)) \tag{2.1}
\end{equation*}
$$

where $\Gamma=\left\{\gamma_{i, j}\right\}, 1 \leqq i, j \leqq d+1$ is a nonsingular covariance matrix, (μ, m) is a constant vector, $r(T)$ is nondecreasing, regularly varying at infinity and

$$
\begin{equation*}
r(T)=O\left((T \log \log T)^{1 / 2}\right) \tag{2.2}
\end{equation*}
$$

For the sake of simplicity we use the notation $\sigma^{2}=\gamma_{1,1}$. Condition A in the following theorem (and Condition B in Theorem 2.2 below) is meant only for the first component.

Theorem 2.1. If $\mu>0$ then Condition A implies that

$$
\sup _{0 \leqq t \leqq T}\left|\mu^{-1} t-N(t)-\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)\right| \stackrel{\text { a.s. }}{=} o(r(T)),
$$

if

$$
\begin{equation*}
(T \log \log T)^{1 / 4}(\log T)^{1 / 2}=o(r(T)) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{gathered}
\limsup _{T \rightarrow \infty}(T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leq t \leq T}\left|\mu^{-1} t-N(t)-\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)\right|= \\
=2^{1 / 4} \sigma^{3 / 2} \mu^{-7 / 4} \quad \text { a.s., }
\end{gathered}
$$

if

$$
\begin{equation*}
r(T)=O\left((T \log \log T)^{1 / 4}(\log T)^{1 / 2}\right) \tag{2.4}
\end{equation*}
$$

It is very important that the partial sums and the renewal process are approximated by the same Wiener process. It follows from this theorem that the rate of
the best joint approximation of partial sums and the renewal process is the Strassen rate.

Proof. Basically we follow the line of the proof of Theorem 2.1 in [13] but we use only our condition and the properties of the Wiener process. First we note that the regular variation of $r(T)$ implies that

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{r((1+\varepsilon) T)}{r(T)}<\infty \tag{2.5}
\end{equation*}
$$

for every $\varepsilon>0$ and by the monotonicity of $r(T)$ we get

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{r(T+\varepsilon(T))}{r(T)}<\infty \tag{2.6}
\end{equation*}
$$

for every $\varepsilon(T) \geqq 0$ such that $\varepsilon(T)=O(T)$ as $T \rightarrow \infty$. Conditions (2.1), (2.2) and the law of the iterated logarithm for the Wiener process imply that

$$
\begin{equation*}
\limsup _{T \rightarrow \infty}(2 T \log \log T)^{-1 / 2} \sup _{0 \leqq t \leqq T}|U(t)-\mu t|=\sigma \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
U(T) \leqq(1+\varepsilon) \mu T \tag{2.8}
\end{equation*}
$$

for each $\varepsilon>0$. Using the Lemma in [13], (2.5) and (2.6) we get

$$
\begin{align*}
& \sup _{0 \leqq t \leqq T}|N(t \mu)-t| \leqq \sup _{0 \leqq t \leqq N(T \mu)}\left|\mu^{-1} U(t)-t\right| \stackrel{\text { a.s. }}{\leqq} \tag{2.9}\\
& \stackrel{\text { a.s. }}{\cong} \sup _{0 \leqq t \leqq(1+\varepsilon) T}\left|\mu^{-1} U(t)-t\right| \leqq h_{\varepsilon}(T),
\end{align*}
$$

where

$$
h_{\varepsilon}(T)=(1+\varepsilon)^{1 / 2} \mu^{-1} \sigma(2 T \log \log T)^{1 / 2}
$$

Now consider the decomposition

$$
\begin{equation*}
t-N(t \mu)=\mu^{-1}(U(N(t \mu))-\mu N(t \mu))+\mu^{-1}(\mu t-U(N(t \mu))) \tag{2.10}
\end{equation*}
$$

First we approximate the first term in (2.10) by the help of (2.9), (2.6) and our condition. We get

$$
\begin{equation*}
\sup _{0 \leqq t \leq T}\left|U(N(t \mu))-\mu N(t \mu)-W^{(1)}(N(t \mu))\right| \stackrel{\text { a.s. }}{=} o(r(T)) . \tag{2.11}
\end{equation*}
$$

We estimate the random increment of the Wiener process by (2.9) and Theorem 1.2.1 of Csörgő and Révész [8]. We have for all $\varepsilon>0$

$$
\begin{gather*}
\sup _{0 \leqq t \leqq T}\left|W^{(1)}(N(t \mu))-W^{(1)}(t)\right| \stackrel{\text { a.s. }}{\cong} \sup _{0 \leqq t \leqq(1+\varepsilon) T-h_{s}(T)} \sup _{0 \leqq s \leq h_{\varepsilon}(T)}\left|W^{(1)}(t+s)-W^{(1)}(t)\right| \stackrel{\text { a.s. }}{\leqq} \tag{2.12}\\
\stackrel{\text { a.s. }}{\cong}(1+\varepsilon)^{1 / 4} 2^{1 / 4} \sigma^{3 / 2} \mu^{-1 / 2}(T \log \log T)^{1 / 4}(\log T)^{1 / 2} .
\end{gather*}
$$

We show that the second term in (2.10) is almost surely less than the rate of increments in (2.12) and we prove that this term is again $o(r(T))$. It follows from
the definition of $N(t)$ that $\sup _{0 \leq t \leq T}|\mu t-U(N(t \mu))|$ equals the largest jump of $\mu t-N(t)$ on $[0, U(N(T \mu))]$. Using again (2.8), (2.6) and Theorem 1.2.1 of [8] we obtain

$$
\begin{aligned}
& \sup _{0 \leqq t \leqq T}|\mu t-U(N(t \mu))| \stackrel{\text { a.s. }}{\leqq} \sup _{0 \leqq t \leqq(1+\varepsilon) T}\left|U(t)-\mu t-W^{(1)}(t)\right|+ \\
+ & \sup _{0 \leqq t \leqq(1+\varepsilon) T} \sup _{0 \leqq s \leqq 1}\left|W^{(1)}(t+s)-W^{(1)}(t)\right| \stackrel{\text { a.s. }}{=} o(r(T))+O\left((\log T)^{1 / 2}\right) .
\end{aligned}
$$

Hence we proved the theorem if (2.3) is satisfied and obtained in the case of (2.4) that
(2.13) $\quad \limsup _{T \rightarrow \infty}(T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leqq t \leqq T}\left|t-N(t \mu)-\frac{1}{\mu} W^{(1)}(t)\right| \stackrel{\text { a.s. }}{=}$

$$
\begin{gathered}
\stackrel{\text { a.s. }}{=} \limsup _{T \rightarrow \infty}(T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leqq t \leqq T} \frac{1}{\mu}\left|W^{(1)}(N(t \mu))-W^{(1)}(t)\right| \leqq \\
\leqq 2^{1 / 4} \sigma^{3 / 2} \mu^{-3 / 2} \quad \text { a.s. }
\end{gathered}
$$

In order to finish the proof of the second part of the theorem it is enough to show the opposite of the inequality (2.13). The approximation in (2.11) implies that the limit points of the processes $\left\{\left(2 \sigma^{2} \mu^{-2} T \log \log T\right)^{-1 / 2}(N(T t \mu)-T t), 0 \leqq t \leqq 1\right\}$ and $\left\{\left(2 \sigma^{2} T \log \log T\right)^{-1 / 2} W^{(1)}(T t), 0 \leqq t \leqq 1\right\}$ are the same as $T \rightarrow \infty$, the so-called Strassen set $\mathscr{\mathscr { L }}$. This is the set of absolutely continuous functions f (with respect to the Lebesgue measure) such that

$$
f(0)=0 \quad \text { and } \quad \int_{0}^{1}\left(f^{\prime}(t)\right)^{2} d t \leqq 1
$$

The function

$$
h_{\delta}(t)= \begin{cases}t, & 0 \leqq t \leqq 1-\delta \\ 1-\delta, & 1-\delta \leqq t \leqq 1\end{cases}
$$

is an element of \mathscr{S} for each $0<\delta<1$, and therefore there is a sequence of random variables $n_{k}=n_{k}(\omega)$ such that

$$
\lim _{k \rightarrow \infty} \sup _{0 \leq t \leq 1}\left|\left(2 \sigma^{2} \mu^{-2} n_{k} \log \log n_{k}\right)^{-1 / 2}\left(N\left(n_{k} t \mu\right)-n_{k} t\right)-h_{\delta}(t)\right|=0 \quad \text { a.s. }
$$

Using a modification of the proof of Theorem 1.2.1 (iii) in [8] we get
$\lim _{T \rightarrow \infty}(T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{1-\delta \leqq t \leq 1} \mid W^{(1)}\left(T t+h_{\delta}(t)\left(2 \sigma^{2} \mu^{-2} T \log \log T\right)^{-1 / 2}\right)-$ $-W^{(1)}(T t) \mid=(1-\delta)^{1 / 2} 2^{1 / 4} \sigma^{3 / 2} \mu^{-1 / 2} \quad$ a.s.
We obtained that

$$
\begin{gathered}
\limsup _{T \rightarrow \infty}(T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leqq t \leqq T} \frac{1}{\mu}\left|W^{(1)}(N(t \mu))-W^{(1)}(t)\right| \geqq \\
\geqq 2^{1 / 4} \sigma^{3 / 2} \mu^{-3 / 2} \quad \text { a.s. }
\end{gathered}
$$

which implies the opposite of the inequality on the right side of (2.13) and the proof of Theorem 2.1 is complete.

Condition A guarantees that the Strassen-type law of the iterated logarithm holds for the partial sums. When $\mu=0$ we have to use an other type of the law of the iterated logarithm for partial sums and we have to assume a stronger condition on the rate of approximation in (2.1).

Condrtion B. We assume that (2.1) is satisfied with rate

$$
\begin{equation*}
r(T)=o\left(T^{1 / 2}(\log T)^{-2}\right) \tag{2.14}
\end{equation*}
$$

and $r(T)$ is nondecreasing and regularly varying at infinity.
Introduce the following processes:

$$
U^{*}(t)=\sup _{0 \leqq s \cong t} U(s)
$$

and

$$
\begin{aligned}
L(t) & =\inf \left\{x: W^{(1)}(x)>t\right\} \\
& =\inf \left\{x: \sup _{0 \leqq s \cong} W^{(1)}(s)>t\right\}, \quad 0 \leqq t<\infty .
\end{aligned}
$$

The process $L(\sigma t)$ is well-known in the stochastic literature as the first passage time for the standard Wiener process (cf. Itô and McKean [16], Chapter 1.7).

Theorem 2.2. If $\mu=0$ and $\sigma>0$ then Condition \mathbf{B} implies that there is an almost surely finite random variable $t_{0}=t_{0}(\omega)$ such that

$$
L\left(t-r\left(t^{2}(\log t)^{3}\right)\right) \leqq N(t) \leqq L\left(t+r\left(t^{2}(\log t)^{3}\right)\right)
$$

if $t \geqq t_{0}$.
Proof. By the theorem of Hirsch [12] and (2.14) we get that U^{*} and the supremum of $W^{(1)}$ have the same lower and upper classes of functions, for example

$$
\begin{equation*}
U^{*}(T) \stackrel{\text { a.s. }}{\geqq} T^{1 / 2}(\log T)^{-1}(\log \log T)^{-2} \tag{2.15}
\end{equation*}
$$

Using (2.15), (2.6) and Condition B we obtain

$$
\begin{gathered}
N(t)=\inf \left\{x: U^{*}(x)>t\right\}=\inf \left\{x: 0 \leqq x \leqq t^{2}(\log t)^{3} \text { and } U^{*}(x)>t\right\} \leqq \\
\leqq \inf \left\{x: 0 \leqq x \leqq t^{2}(\log t)^{3} \text { and } W^{(1)}(x)>t+r\left(t^{2}(\log t)^{3}\right)\right\}=L\left(t+r\left(t^{2}(\log t)^{3}\right)\right)
\end{gathered}
$$

for almost all ω and all large enough t depending on ω. The second part of the inequality follows in a similar way.

Theorem 2.2 immediately implies strong laws for $N(t)$. Let \mathfrak{B} be the set of all continuous, non-decreasing, real valued functions, l, defined on $[1, \infty$) with $l(1)>0$.

Corollary 2.1. We assume that $\mu=0, \sigma>0$ and Condition B is satisfied. Then

$$
\liminf _{t \rightarrow \infty} t^{-2}(\log \log t) N(t)=\frac{1}{2} \sigma^{-2} \quad \text { a.s. }
$$

and if $l \in \mathfrak{B}$ then

$$
P\left\{N(\sigma t)>t^{2} l(t) \text { i.o. as } t \rightarrow \infty\right\}
$$

equals 1 or 0 according as $\int_{1}^{\infty} t^{-1}(l(t))^{-2} d t$ equals, or is less than ∞

$$
\begin{gathered}
P\left\{N(\sigma t)<t^{2}(l(t))^{-1 / 2} \text { i.o. as } t \rightarrow \infty\right\}= \\
= \begin{cases}1, & \text { if } \int_{0}^{\infty}(l(t))^{-1 / 2} t^{-1} \exp \left(-\frac{1}{2} \frac{1}{l(t)}\right) d t<\infty \\
0, & \text { if } \int_{0}^{\infty}(l(t))^{-1 / 2} t^{-1} \exp \left(-\frac{1}{2} \frac{1}{l(t)}\right) d t=\infty\end{cases}
\end{gathered}
$$

and

$$
1 \leqq \liminf _{t \rightarrow \infty}(N(t))^{1 / \log \log t} \leqq \limsup _{t \rightarrow \infty}(N(t))^{1 / \log \log t} \leqq e^{2} \quad \text { a.s. }
$$

Proof. By (2.14) $\lim _{t \rightarrow \infty} t^{-1} r\left(t^{2}(\log t)^{3}\right)=0$ and therefore in the light of Theorem 2.2 it is enough to determine the corresponding strong laws for $L(t)$. On the other hand, $L(\sigma t)$ is equal in distribution to the first passage time of a standard Wiener process, therefore we can use the classical theorems of Khintchine [20], Breiman [5] and Mijnheer [23] (cf. Theorems 8.2.1, 4.2.1 and 8.1.2 in [23], respectively).

Our processes $N(t)$ and $L(t)$ are continuous from the right and have finite limits from the left so it is very natural to use the Skorohod metric $\varrho_{[0, T]}$ on $\mathscr{D}[0, T]$ in our case.

Corollary 2.2.

$$
\varrho_{[0, T]}\left(T^{-2} N(t), T^{-2} L(t)\right)
$$

goes to zero in probability as $T \rightarrow \infty$.
Proof. Let $\varepsilon>0$. By Theorem 2.2 there exists a $T_{0}=T_{0}(\varepsilon)$ such that

$$
P\left\{L\left(t-r\left(T^{2}(\log T)^{3}\right)\right) \leqq N(t) \leqq L\left(t+r\left(T^{2}(\log T)^{3}\right)\right), T_{0} \leqq t \leqq T\right\}>1-\varepsilon
$$

It is easy to see that

$$
T^{-2} \sup _{0 \leqq t \leq \tau} N(t) \rightarrow 0 \text { a.s. and } T^{-2} \sup _{0 \leqq t \leqq \tau} L(t) \rightarrow 0 \quad \text { a.s. }
$$

as $T \rightarrow \infty$ for each $\tau>0$, so it is enough to show that

$$
\varrho_{[0, T]}\left(T^{-2} L(t), T^{-2} L\left(t-r\left(T^{2}(\log T)^{3}\right)\right)\right) \stackrel{\mathscr{Q}}{=} \varrho_{[0,1]}\left(L(t), L\left(t-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right)
$$

and

$$
\varrho_{[0, T]}\left(T^{-2} L(t), T^{-2} L\left(t+r\left(T^{2}(\log T)^{3}\right)\right)\right) \xlongequal{\mathscr{D}} \varrho_{[0,1]}\left(L(t), L\left(t+T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right)
$$

$(L(t)=0, t \leqq 0)$ go to zero in probability when $T \rightarrow \infty$. Let \mathscr{K} denote the following function:

$$
\mathscr{K}(t)=\left\{\begin{array}{l}
\frac{1}{2} t \quad \text { if } \quad 0 \leqq t \leqq 2 T^{-1} r\left(T^{2}(\log T)^{3}\right) \\
t-T^{-1} r\left(T^{2}(\log T)^{3}\right) \quad \text { if } \quad 2 T^{-1} r\left(T^{2}(\log T)^{3}\right)<t<1-T^{-1} \\
\left(1+r\left(T^{2}(\log T)^{3}\right)\right) t-r\left(T^{2}(\log T)^{3}\right) \quad \text { if } \quad 1-T^{-1} \leqq t \leqq 1
\end{array}\right.
$$

We obtain

$$
\begin{gathered}
\varrho_{[0,1]}\left(L(t), L\left(t-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right) \leqq \sup _{0 \leqq t \leq 1}|\mathscr{K}(t)-t|+ \\
+\sup _{0 \leqq t \leqq 1}\left|L(\mathscr{K}(t))-L\left(t-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right| \leqq T^{-1} r\left(T^{2}(\log T)^{3}\right)+ \\
+2 L\left(2 T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)+\sup _{1-1 / T \leqq t \leq 1}\left(L \left(\left(1+r\left(T^{2}(\log T)^{3}\right) t-r\left(T^{2}(\log T)^{3}\right)\right)-\right.\right. \\
\left.-L\left(t-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right) \leqq \\
\leqq T^{-1} r\left(T^{2}(\log T)^{3}\right)+2 L\left(2 T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)+L(1)- \\
-L\left(1-T^{-1}-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)
\end{gathered}
$$

for L is a nondecreasing process. $L(t)$ has stationary increments so we get

$$
\begin{gathered}
P\left\{L(1)-L\left(1-T^{-1}-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)>C \sigma^{2}\left(T^{-1}+T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)^{2}\right\} \leqq \\
\leqq\left(\frac{2}{\pi}\right)^{1 / 2} C^{-1 / 2}
\end{gathered}
$$

for every $C>0$. Condition (2.14) implies that $T^{-1} r\left(T^{2}(\log T)^{3}\right) \rightarrow 0, T \rightarrow \infty$, so we proved that $\varrho_{[0,1]}\left(L(t), L\left(t-T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right)$ goes to zero in probability, because $L(0)=0$ and L is a.s. continuous at zero. In a similar way we can check that $\varrho_{[0,1]}\left(L(t), L\left(t+T^{-1} r\left(T^{2}(\log T)^{3}\right)\right)\right)$ also goes to zero in probability.

The weak convergence of $\left\{T^{-2} N(T t), 0 \leqq t \leqq 1\right\}$ in the usual Skorohod space $\mathscr{D}[0,1]$ follows from Corollary 2.2. Kennedy [19] obtained estimates of the rate of convergence in limit theorem for $T^{-2} N(T)$. Siegmund and Yuh [27] proved a oneterm Edgeworth expansion for certain first passage distributions for random walks.

The focus of the following theorem is the vector-valued process

$$
M(t)=S(N(t))-m \mu^{-1} t, \quad 0 \leqq t<\infty, \quad \mu>0 .
$$

Gut and Janson [10] proved the weak convergence of $T^{-1 / 2} M(T t)$ to a Wiener process in the case $d=1$. Borovkov [4] obtained lower and upper bounds for the Lévy-Prohorov distance between $M(t)$ and its limiting process for a general $d \geqq 1$. Assuming that $\left\{\left(X_{i}, Y_{i}\right), i \geqq 1\right\}$ are i.i.d.r. vectors, Horváth [14] studied the rate of strong approximation of $M(t)$. The following theorem states that Condition A always implies a strong approximation for the stopped sums $M(t)$ as well. Let $\{G(t), t \geqq 0\}$ be a d-dimensional Gaussian process defined by

$$
\left\{\begin{array}{l}
G(t)=\left(G^{(1)}(t), \ldots, G^{(d)}(t)\right) \tag{2.16}\\
G^{(i)}(t)=W^{(i+1)}(t)-m_{i} \mu^{-1} W^{(1)}(t), \quad 1 \leqq i \leqq d, m=\left(m_{1} \ldots, m_{d}\right)
\end{array}\right.
$$

An easy computation shows that G has the covariance matrix $\Gamma^{*}=\left\{\gamma_{i, j}^{*}\right\}$, where

$$
\gamma_{i, j}^{*}=\gamma_{i+1, j+1}-\mu^{-1}\left(\gamma_{i+1,1} m_{j}+\gamma_{j+1,1} m_{i}\right)+m_{i} m_{j} \mu^{-2} \gamma_{1,1}, \quad 1 \leqq i, j \leqq d .
$$

Theorem 2.3. If $\mu>0$ then Condition A implies

$$
\sup _{0 \subseteq t \cong T}\left\|M(t)-G\left(\mu^{-1} t\right)\right\| \xlongequal{\text { a.s. }} o(r(T)),
$$

if $(T \log \log T)^{1 / 4}(\log T)^{1 / 2}=o(r(T))$
and

$$
\begin{aligned}
& 2^{1 / 4} \sigma \mu^{-3 / 4} \max _{1 \leqq i \leqq d}\left(\left|y_{i+1, i+1}^{1 / 2}-\sigma m_{i} \mu^{-1}\right|\right) \leqq \lim _{T \rightarrow \infty} \sup (T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \times \\
& \quad \times \sup _{0 \leqq t \leqq T}\left\|M(t)-G\left(\mu^{-1} t\right)\right\|_{d} \leqq 2^{1 / 4} \sigma \mu^{-3 / 4} \max _{1 \leqq i \leqq d}\left(y_{i+1, i+1}^{1 / 2}+\sigma m_{i} \mu^{-1}\right) \quad \text { a.s. },
\end{aligned}
$$

if

$$
\begin{equation*}
r(T)=O\left((T \log \log T)^{1 / 4}(\log T)^{1 / 2}\right) . \tag{2.18}
\end{equation*}
$$

Proof. We use the following decomposition of the i-th component of the processes:

$$
\begin{gathered}
M^{(i)}(t)-G^{(i)}\left(\mu^{-1} t\right)=S^{(i)}(N(t))-m_{i} N(t)-W^{(i+1)}(N(t))+W^{(i+1)}(N(t))- \\
-W^{(i+1)}\left(\mu^{-1} t\right)+m_{i}\left(\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)-\left(\mu^{-1} t-N(t)\right)\right)=A_{1}^{(i)}(t)+A_{2}^{(i)}(t)+A_{3}^{(i)}(t) .
\end{gathered}
$$

First we note that Theorem 2.1 and the law of the iterated logarithm for the Wiener process imply that
(2.19) $\quad \lim _{T \rightarrow \infty} \sup (T \log \log T)^{-1 / 2} \sup _{0 \leq t \leq T}\left|N(t)-\mu^{-1} t\right|=2^{1 / 2} \sigma \mu^{-3 / 2} \quad$ a.s.

Using (2.19), (2.6) and (2.1) we get

$$
\sup _{0 \leq t \leq T}\left|A_{1}^{(i)}(t)\right| \stackrel{\text { a.s. }}{=} o(r(T)) .
$$

We estimate the increments of the Wiener process by the help of Theorem 1.2.1 in [8] and get

$$
\begin{equation*}
\lim _{T \rightarrow \infty}(T \sup \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leqq t \equiv T}\left|A_{2}^{(i)}(t)\right| \leqq 2^{1 / 4} \gamma_{i+1, i+1}^{1 / 2} \sigma^{1 / 2} \mu^{-3 / 4} \quad \text { a.s. } \tag{2.20}
\end{equation*}
$$

In the same way as we proved the opposite of the inequality in (2.13) in the proof of Theorem 2.1 we can prove the opposite of (2.20) and get

$$
\lim _{T \rightarrow \infty} \sup (T \log \log T)^{-1 / 4}(\log T)^{-1 / 2} \sup _{0 \leq t \leq T}\left|A_{2}^{(i)}(t)\right|=2^{1 / 4} \gamma_{i+1, i+1}^{1 / 2} \sigma \mu^{-3 / 4} \quad \text { a.s. }
$$

We have already estimated $A_{3}^{(i)}(t)$ in Theorem 2.1 and, putting together the obtained bounds, the theorem is proved.

3. Applications

Example 1. "Collective risk theory". Collective risk theory is concerned with the random fluctuations of the total assets, the risk reserve, of an insurance company. The policyholders pay premiums regularly and at certain random times make claims to the company. We shall assume that the initial risk reserve of the company is $R_{0}>0$ and that the policyholders pay premium of a per unit time. Let $X,\left\{X_{i}, i \geqq 1\right\}$ be a sequence of i.i.d. positive r.v's with $E X=\mu>0,0<\sigma^{2}=E(X-\mu)^{2}<\infty$. The
random variable X_{i} will represent the time between the $(i-1)$ th claim and the i th claim. The number of claims in time t is $N(t)-1,0 \leqq t<\infty$. When the i th claim occurs the company pays the policyholder a positive amount Y_{i}. We assume that $Y,\left\{Y_{i}, i \geqq 1\right\}$ are i.i.d. r.v's, $m=E Y$, and $\gamma^{2}=E(Y-m)^{2}$, and the sequence $\left\{Y_{i}\right\}$ is also independent of the sequence $\left\{X_{i}\right\}$. The risk reserve at time t is $R(t)=R_{0}+$ $+a t-S(N(t)-1)$.

If we also assume that $E|X|^{p}<\infty$ and $E|Y|^{p}<\infty$ for some $p>2$ then it follows form the Komlós-Major-Tusnády theorem (cf. Theorem 2.6.3 in [8]) that Condition A is satisfied with rate $T^{1 / p}$ and $W^{(1)}$ and $W^{(2)}$ are independent. Using Theorem 2.3 we can approximate $R(t)$ with the process $D(t)=R_{0}+$ $+\left(a-\mu^{-1} m\right) t-G\left(\mu^{-1} t\right)$. If $2<p<4$ then

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}|R(t)-D(t)| \xlongequal{\text { a.s. }} o\left(T^{1 / p}\right) \tag{3.1}
\end{equation*}
$$

and if $p \geqq 4$ then

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}|R(t)-D(t)| \stackrel{\text { a.s. }}{=} O\left((T \log \log T)^{1 / 4}(\log T)^{1 / 2}\right) \tag{3.2}
\end{equation*}
$$

If we calculate the covariance function of $G\left(\mu^{-1} t\right)$ we find a representation for it in distribution by means of a standard Wiener process $\{\hat{W}(t), t \geqq 0\}$. This is

$$
\left\{G\left(\mu^{-1} t\right), t \geqq 0\right\} \xlongequal{\mathscr{D}}\left\{\left(\gamma^{2} \mu^{-1}+m^{2} \mu^{-3} \sigma^{2}\right)^{1 / 2} \hat{W}(t), t \geqq 0\right\} .
$$

This representation together with (3.1) and (3.2) not only gives an improved version of Theorem 6 of Iglehart [15] but gives a rate of the approximation of the risk reserve process.

Naturally, if we assume only that $(X, Y),\left\{\left(X_{i}, Y_{i}\right), i \geqq 1\right\}$ is a sequence of i.i.d.r. vectors, $E X=\mu>0, E|X|^{p}<\infty, E|Y|^{p}<\infty$ for some $2<p \leqq 3$ then Theorem 3 of Berkes and Philipp [3] implies that Condition A holds with rate $T^{e}, \varrho>\frac{1}{2}$ -$-\frac{p-2}{160}$. An immediate consequence of Theorem 2.3 is that

$$
\sup _{0 \leqq t \leqq T} \quad|R(t)-D(t)| \stackrel{\text { a.s. }}{=} o\left(T^{e}\right)
$$

$\varrho>1 / 2-(p-2) / 160$ and

$$
\left\{G\left(\mu^{-1} t\right), t \geqq 0\right\} \stackrel{\mathscr{D}}{=}\left\{\left(\gamma^{2} \mu^{-1}-2 \mu^{-2} m \gamma_{1,2}+m^{2} \mu^{-3} \sigma^{2}\right)^{1 / 2} \hat{W}(t), t \geqq 0\right\}
$$

where $\gamma_{1,2}=E(X-\mu)(Y-m)$ and \hat{W} is a standard Wiener process.
Example 2. (Example D in [10].) Let $X,\left\{X_{i}, i \geqq 1\right\}$ be a sequence of i.i.d.r.v's, $E X=\mu>0$. How large is the sum of the squares when the sum of X_{i} first reaches the level t ? In this example $Y=X^{2}, Y_{i}=X_{i}^{2}, i \geqq 1, m=E Y=E X^{2}$. First we have to introduce some notations. Let $\mathscr{F}(x)$ denote the distribution function of X and let $\mathscr{F}_{t}(x)$ be the empirical distribution function of $X_{1}, \ldots, X_{[t]}$ defined by

$$
\mathscr{F}_{t}(x)=\frac{1}{[t]} \#\left\{1 \leqq i \leqq[t]: X_{1}<x\right\}, \quad t \geqq 1 .
$$

The partial sums $U(t)$ and $S(t)$ can be written in the form

$$
U(t)-\mu[t]=[t] \int_{-\infty}^{\infty} x d\left(\mathscr{F}_{t}(x)-\mathscr{F}(x)\right)
$$

and

$$
\begin{equation*}
S(t)-m[t]=[t] \int_{-\infty}^{\infty} x^{2} d\left(\mathscr{F}_{t}(x)-\mathscr{F}(x)\right) . \tag{3.3}
\end{equation*}
$$

Komlós, Major and Tusnády proved (cf. Theorem 4.4.3 in [8]) that we can define a two-parameter Gaussian process $\left\{K_{t}(x), t \geqq 0,-\infty<x<\infty\right\}$ such that

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \sup _{-\infty<x<\infty}\left|[t]\left(\mathscr{F}_{t}(x)-\mathscr{F}(x)\right)-K_{t}(x)\right| \stackrel{\text { a.s. }}{=} O\left((\log T)^{2}\right) \tag{3.4}
\end{equation*}
$$

and

$$
E K_{t}(x)=0, \quad E K_{t}(x) K_{s}(y)=(t \wedge s)(\mathscr{F}(x \wedge y)-\mathscr{F}(x) \mathscr{F}(y)) .
$$

First we show that if $E|X|^{p}<\infty$ with $p>4$, then

$$
\begin{equation*}
\sup _{0 \leqq t \leqq T}\left|U(t)-\mu t-\int_{-\infty}^{\infty} x d K_{t}(x)\right| \stackrel{\text { a.s. }}{=} O\left(T^{Q}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left|S(t)-m t-\int_{-\infty}^{\infty} x^{2} d K_{t}(x)\right| \xlongequal{\text { a.s. }} O\left(T^{e}\right) \tag{3.6}
\end{equation*}
$$

for some $\varrho>\frac{2}{p}$. We prove only (3.6), the proof of (3.5) is the same. Let $x_{T}^{(1)}=-$ $-T^{1 / p+\delta}$ and $X_{T}^{(2)}=T^{1 / p+\delta}$ with some $\delta>0$. Using representation (3.3) we obtain

$$
\begin{gathered}
\sup _{0 \leqq t \leqq T}\left|U(t)-\mu t-\int_{-\infty}^{\infty} x^{2} d K_{t}(x)\right| \leqq \sup _{0 \leqq t \leqq T}[t] \int_{-\infty}^{x_{T}^{(1)}}\left|\mathscr{F}_{t}(x)-\mathscr{F}(x)\right| d x^{2}+ \\
+\sup _{0 \leqq t \leqq T}[t] \int_{x_{T}^{(2)}}^{\infty}\left|\mathscr{F}_{t}(x)-\mathscr{F}(x)\right| d x^{2}+2 T^{2 / p+\delta} \sup _{0 \leqq t \leqq T} \sup _{-\infty<x<\infty} \mid[t]\left(\mathscr{F}_{t}(x)-\right. \\
-\mathscr{F}(x))-K_{t}(x)\left|+\sup _{0 \leqq t \leqq T} \int_{-\infty}^{x_{T}^{(1)}}\right| K_{t}(x)\left|d x^{2}+\sup _{0 \leqq t \leqq T} \int_{x_{T}^{(2)}}^{\infty}\right| K_{t}(x) \mid d x^{2}= \\
=A_{1}(T)+\ldots+A_{5}(T) .
\end{gathered}
$$

By our moment condition

$$
\lim _{x \rightarrow-\infty}|x|^{p} \mathscr{F}(x)=0, \quad \lim _{x \rightarrow \infty}|x|^{p}(1-\mathscr{F}(x))=0
$$

and therefore we get by the help of Theorem of James [16] that

$$
\begin{aligned}
& \quad A_{1}(T) \stackrel{\text { a.s. }}{\leftrightarrows}(T \log \log T)^{1 / 2} \int_{-\infty}^{x_{T}^{(1)}}(\mathscr{F}(x))^{1 / 2-\delta} d x^{2} \stackrel{\text { a.s. }}{\leqq} \\
& \stackrel{\text { a.s. }}{\leftrightarrows} T^{(1 / p+\delta)(-p / 2+2+p \delta)}(T \log \log T)^{1 / 2} \xlongequal{\text { a.s. }} O\left(T^{2 / p+4 \delta+p^{\delta z}}\right) .
\end{aligned}
$$

Replacing James' law by Corollary 1.15 .2 in [8], we get

$$
A_{4}(T) \stackrel{\text { a.s. }}{=} O\left(T^{2 / p+4 \delta+p \delta^{2}}\right)
$$

A similar argument shows that

$$
A_{2}(T) \stackrel{\text { a.s. }}{=} O\left(T^{2 / p+4 \delta+p \delta^{2}}\right)
$$

and

$$
A_{5}(T) \stackrel{\text { a.s. }}{=} O\left(T^{2 / p+4 \delta+p \delta \delta}\right)
$$

An estimation of $A_{3}(T)$ follows from (3.4):

$$
A_{3}(T) \stackrel{\text { a.s. }}{=} O\left(T^{2 / p+2 \delta}\right)
$$

These estimations give the proof of (3.6), since $\delta>0$ can be taken as close to zero as we wish. The process defined by (2.13) has the form

$$
G(t)=\int_{-\infty}^{\infty} x^{2} d K_{t}(x)-\mu^{-1} m \int_{-\infty}^{\infty} x d K_{t}(x)
$$

and we can easily prove that the following distributional representation holds:

$$
\left\{G\left(\mu^{-1} t\right), t \geqq 0\right\} \xlongequal{\mathscr{D}}\left\{\tau^{1 / 2} \hat{W}(t), t \geqq 0\right\}
$$

where \hat{W} denotes a standard Wiener process and

$$
\begin{gathered}
\tau=\frac{1}{\mu}\left\{E X^{4}-m^{2}-2 \mu^{-1} m\left(E X^{3}-m \mu\right)+\mu^{-2} m^{2} \sigma^{2}\right\} \\
\mu=E X, \quad m=E X^{2}, \quad \sigma^{2}=E(X-\mu)^{2}=m-\mu^{2}
\end{gathered}
$$

Theorem 2.3 implies that in this case

$$
\sup _{0 \leqq t \leqq T}\left|M(t)-G\left(\mu^{-1} t\right)\right| \stackrel{\text { a.s. }}{=} o\left(T^{Q}\right),
$$

$\varrho>\frac{2}{p}$, if $E|X|^{p}<\infty$ with $4<p \leqq 8$ and

$$
\sup _{0 \leq t \leqq T}\left|M(t)-G\left(\mu^{-1} t\right)\right| \xlongequal{\text { a.s. }} O\left((T \log \log T)^{1 / 4}(\log T)^{1 / 2}\right)
$$

if $E|X|^{p}<\infty$, with $p>8$.
The method of proof in Example 2 always works if Y is a function of X, i.e. $\left\{\left(X_{i}, Y_{i}\right), i \geqq 1\right\}=\left\{\left(X_{i}, g\left(X_{i}\right)\right), i \geqq 1\right\}$ with some function g. This kind of connection between X and Y is very usual in renewal and reliability theory and in replacement policies (cf. [9], [8], Chapters 3 and 4.2 in [1]).

Example 3. "Renewal process based on m-dependent r.v's." Let $X,\left\{X_{i}, i \geqq 1\right\}$ be a stationary m-dependent sequence of r.v's. The nonnegative integer m will be fixed. The renewal process $N(t)$ based on m-dependent r.v's was studied by Janson [18]. Janson proved that if $E X=\mu>0$ then $t^{-1} N(t)$ goes to μ^{-1} a.s. and if
$E X^{2}<\infty$ then $t^{-1 / 2}\left(N(t)-t \mu^{-1}\right)$ has a normal limit distribution as $t \rightarrow \infty$. We show that the result of [13] can be extended to m-dependent r.v's.

We assume that $E X^{2}<\infty$ and let $\mu=E X$. Heyde and Scott [11] proved that Condition A is satisfied with the rate $(T \log \log T)^{1 / 2}$ and the variance of $W^{(1)}$ is

$$
\sigma^{2}=\operatorname{var} X_{1}+2 \sum_{i=1}^{m-1} \operatorname{cov}\left(X_{1}, X_{i+1}\right)
$$

Theorem 2.1 then gives

$$
\sup _{0 \leqq t \geqq T}\left|\mu^{-1} t-N(t)-\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)\right| \stackrel{\text { a.s. }}{=} o\left((T \log \log T)^{1 / 2}\right),
$$

which immediately implies the lav of iterated logarithm:

$$
\limsup _{T \rightarrow \infty}(T \log \log T)^{-1 / 2} \sup _{0 \leqq t \cong T}\left|\mu^{-1} t-N(t)\right|=2^{1 / 2} \sigma \mu^{-3 / 2} \text { a.s. }
$$

If we assume that $E|X|^{p}<\infty$, for some $p>2$, then Theorem 4.1 of Philipp and Stout [24] says that Conditions A and B hold with rate $T^{e}, \varrho>\frac{5}{12}+\frac{1}{6 p}$ and therefore we get from Theorems 2.1 and 2.2 that

$$
\sup _{0 \leqq t \leqq T}\left|\mu^{-1} t-N(t)-\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)\right| \xlongequal{\text { a.s. }} o\left(T^{Q}\right),
$$

if $E X=\mu>0$ and the strong laws in Corollary 2.1 hold for $N(t)$, we have the weak convergence of $N(t)$ in Corollary 2.2 when $\mu=0$.

Example 4. "Processes of runs." Let $\left\{\xi_{i}\right\}$ be a sequence of i.i.d.r.v's with distribution function \mathscr{F}. We consider only two types of runs down. We say that $\xi_{k}, \xi_{k+1}, \ldots, \xi_{k+p}$ is a run down of length p or more, if $\xi_{k}>\xi_{k+1}>\ldots>\xi_{k+p}$. The random sequence $\xi_{k}, \xi_{k+1}, \ldots, \xi_{k+q}$ is a run down of length q if $\xi_{k-1} \leqq \xi_{k}, \xi_{k}>$ $>\xi_{k+1}>\ldots>\xi_{k+q}, \xi_{k+q} \leqq \xi_{k+q+1}$. The number of runs down of length p or more in the sequence $\left\{\xi_{1}, \ldots, \xi_{n+p}\right\}$ will be denoted by $U(n)$. It is easy to see that $U(n)$ is the number of ξ_{1}, \ldots, ξ_{n} which are initial points of a run down of length p or more. We can define $S(n)$, the number of runs down of length q in ξ_{1}, \ldots, ξ_{n} in a similar way. First we introduce some notations:

$$
\begin{equation*}
\sigma^{2}=\sigma^{2}(p)=\lim _{n \rightarrow \infty} E\left(\frac{1}{n} U(n)-\mu\right)^{2} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{gather*}
m=m(q)=\lim _{n \rightarrow \infty} \frac{1}{n} E S(n) \tag{3.9}\\
\gamma=\lim _{n \rightarrow \infty} E\left(\frac{1}{n} S(n)-m\right)^{2}, \tag{3.10}\\
\gamma_{1,2}=\lim _{n \rightarrow \infty} E\left(\frac{1}{n} S(n)-m\right)\left(\frac{1}{n} U(n)-\mu\right) . \tag{3.11}
\end{gather*}
$$

Whenever \mathscr{F} is continuous, the limiting distributions of the normalized $U(n)$ and $S(n)$ do not depend on \mathscr{F}. Assuming the continuity of \mathscr{F}, Levene and Wolfowitz [22] determined the limiting expectation and variance of U and S. They obtained that

$$
\begin{aligned}
\mu(p) & =\frac{1}{(p+1)!}, \quad m(q)=\frac{q^{3}+3 q+1}{(q+3)!} \\
\sigma^{2}(p) & =\frac{1}{(p+1)!}-\frac{2 p+1}{((p+1)!)^{2}}+2 \sum_{k=p+2}^{2 p+1} \frac{1}{k!}
\end{aligned}
$$

and

$$
\gamma(q)=\frac{1}{q!(q+3)!}\left(q^{3}+3 q+1\right)\left(q^{3}+2 q^{2}+2 q-4\right)
$$

Wolfowitz [28] proved that the random variables $n^{-1 / 2}(U(n)-\mu n)$ and $n^{-1 / 2}(S(n)-m n)$ have a two-dimensional normal limit distribution as $n \rightarrow \infty$.

In addition to the number of runs, the initial points of runs are also investigated in the stochastic literature. Let $N(n)$ denote the initial point of the nth run down of length p or more. The random variable $S(N(n))$ is the number of initial points of runs down of length q in the shortest sequence which contains exactly n initial points of runs down of length p or more. Pittel [25] proved in the case $p=1$ that the finite-dimensional distributions of the sequence $\left(\frac{2}{3} n\right)^{-1 / 2}(2 n-N(n))$ converge to the corresponding finite-dimensional distributions of the Wiener process. Révész [26] proved a strong invariance principle for $\left(\frac{3}{2}\right)^{1 / 2}(N(n)-2 n)$. We show that these results follow from Theorems 2.1 and 2.3.

Introduce the sequences $\left\{\left(X_{i}, Y_{i}\right), i \geqq 1\right\}$:

$$
X_{i}=I\left\{\xi_{i}>\xi_{i+1}>\ldots>\xi_{i+p}\right\}, i \geqq 1, \quad Y_{1}=I\left\{\xi_{1}>\xi_{2}>\ldots>\xi_{q+1}, \xi_{q+1} \leqq \xi_{q+2}\right\}
$$

and

$$
Y_{i}=I\left\{\xi_{i-1} \leqq \xi_{i}, \xi_{i}>\xi_{i+1}>\ldots>\xi_{i+q}, \xi_{i+q} \leqq \xi_{i+q+1}\right\}, \quad i \geqq 2
$$

where $I\{A\}$ denotes the indicator of the event A. It is easy to see that $\mathscr{U}(t)=\sum_{i=1}^{[t]} X_{i}$, $S(t)=\sum_{i=1}^{[t]} Y_{i}$ and $N(t)=N([t])$ is the renewal process based on the sequence $\left\{X_{i}, i \geqq 1\right\}$. Theorem 4 of Kuelbs and Philipp [21] implies that Condition A holds with rate $T^{e}, 1 / 4<\varrho<1 / 2$, and we get the following result:

$$
\sup _{0 \leqq t \leq T}\left|\left(\mu^{-1} t-N(t)\right)-\mu^{-1} W^{(1)}\left(\mu^{-1} t\right)\right| \stackrel{\text { a.s. }}{=} o\left(T^{\varrho}\right), \quad 1 / 4<\varrho<1 / 2
$$

and

$$
\sup _{0 \leqq t \leqq T}\left|S(N(t))-m \mu^{-1} t-G\left(\mu^{-1} t\right)\right| \stackrel{\text { a.s. }}{=} o\left(T^{e}\right), \quad 1 / 4<\varrho<1 / 2,
$$

where G is defined by (2.13). Computing the covariance of the limiting processes we obtain representations of the Gaussian processes:

$$
\left\{\mu^{-1} W^{(1)}\left(\mu^{-1} t\right), t \geqq 0\right\} \stackrel{\mathscr{D}}{=}\left\{\sigma \mu^{-3 / 2} \hat{W}(t), t \geqq 0\right\}
$$

and

$$
\left\{G\left(\mu^{-1} t\right), t \geqq 0\right\} \xlongequal{2}\left\{(\hat{\gamma})^{1 / 2} \hat{W}(t), t \geqq 0\right\},
$$

where \hat{W} is a standard Wiener process,

$$
\hat{\gamma}=\mu^{-1}\left\{\gamma-2 \mu^{-1} \gamma_{1,2}+m^{2} \mu^{-2} \sigma^{2}\right\}
$$

and $\mu, \gamma, \gamma_{1,2}, m, \sigma$ are defined by (3.7)-(3.11).
We considered only processes of runs down but with the same method we can develop strong approximations of processes of other types of runs (runs up, runs down or up, and turning points).

Example 5. 'First passage times of lacunary trigonometric series." Let $\left\{n_{k}, k \geqq 1\right\}$ be a lacunary sequence of positive real numbers (not necessarily integers), that is, a sequence satisfying

$$
\begin{equation*}
\frac{n_{k+1}}{n_{k}} \geqq q, \quad k \geqq 1 \tag{3.12}
\end{equation*}
$$

for some $q>1$. We consider pure cosine series of the form

$$
U(t)=\sum_{k=1}^{[t]} X_{k}, \quad X_{k}=2^{1 / 2} \cos \left(2 \pi n_{k} \xi\right),
$$

where ξ is a r.v. uniformly distributed on $(0,1)$. The renewal process $N(t)$ is the first passage time of the lacunary trigonometric series $U(t)$. Theorem 3.1 of Philipp and Stout [24] says that Condition B is satisfied with rate $T^{e}, \varrho>5 / 12$ and $W^{(1)}$ is a standard Wiener process. Instead of (3.12) Berkes [2] assumed the weaker condition

$$
\begin{equation*}
\frac{n_{k+1}}{n_{k}} \geqq 1+k^{-\alpha}, \quad k \geqq 1 \tag{3.13}
\end{equation*}
$$

with some $\alpha<1 / 2$ and he proved that Condition B holds with $r(T)=T^{\ell}, \varrho=\varrho(\alpha)<$ $<1 / 2$ and $\sigma=1$. Thus, if (3.12) or (3.13) is satisfied, then Theorem 2.2 and Corollaries 2.1 and 2.2 hold for the first passage time of the lacunary trigonometric series.

Example 6. "The zeros of a random walk." Let $\xi,\left\{\xi_{k}, k \geqq 1\right\}$ be a sequence of i.i.d.r.v's taking on integer values with $P(\xi=k)=p_{k}(k= \pm 1, \pm 2, \ldots)$. We assume that

$$
\begin{equation*}
E \xi=0, \quad E \xi^{2}=\sigma^{2}<\infty \quad \text { and g.c.d. }\left\{k: p_{k}>0\right\}=1 \tag{3.14}
\end{equation*}
$$

We define the following sequence of r.v's:

$$
X_{k}= \begin{cases}1, & \text { if } \quad \sum_{i=1}^{k} \xi_{i}=0 \\ 0, & \text { if } \quad \sum_{i=1}^{k} \xi_{i} \neq 0\end{cases}
$$

The occupation time of the recurrent random walk is defined by

$$
U(t)=\#\left\{k: 0<k \leqq[t], \quad \sum_{i=1}^{k} \xi_{i}=0\right\}=\sum_{i=1}^{[t]} X_{i}=U^{*}(t)
$$

because $X_{i}, i>1$ are nonnegative r.v's. Csáki and Révész [7] proved that if $E|\zeta|^{m}<$ $<\infty$ for some $3<m<4$, then there exists a Wiener process $W^{(1)}(t), E W^{(1)}(t)=0$ and $E W^{(1)}(t) W^{(1)}(s)=\frac{1}{\sigma^{2}} \min (t, s)$ such that

$$
\sup _{0 \leqq t \leqq T}\left|U^{*}(t)-\sup _{0 \leqq s \leqq t} W^{(1)}(s)\right| \stackrel{\text { a.s. }}{=} o\left(T^{2}\right)
$$

for every $\lambda>1 / m$.
If $N(t)$ is the inverse of $\mathscr{U}(t)$ then $N(k)$ denotes the time when the random walk returns to zero at $k+1$-th times, so $0, N(1), N(2), \ldots$ are the zeros of the random walk. When we proved Theorem 2.2 and Corollaries 2.1 and 2.2 we used only that Condition B implies the strong approximation of the partial sums with the supremum of a Wiener process. Thus, under condition (3.14), Theorem 2.2 and Corollaries 2.1 and 2.2 hold for the zeros of the random walk. Corollary 2.1 gives a characterization of the upper and lower classes of the zeros, Corollary 2.2 says that $\left\{\sigma^{-2} T^{2} N(T t), 0 \leqq t \leqq 1\right\}$ converges weakly to the first passage time of the Wiener process. For the case of symmetric random walk $(P(\xi=1)=P(\xi=-1)=1 / 2)$ Chung and Hunt [6] obtained upper and lower classes for the zeros.

Acknowledgement. I thank Professor Allan Gut for sending me his re- and preprints. I am very grateful to Miklós Csörgő, Sándor Csörgó and Eric Willekens for their helpful comments on the first version of this paper.

References

[1] R. E. Barlow, F. Proschan, Mathematical Theory of Reliability, Wiley (New York, 1965).
[2] I. Berkes, An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar., 26 (1975), 209-220.
[3] I. Berkes, W. Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probability, 7 (1979), 29-54.
[4] K. A. Borovkov, Rate of convergence in the invariance principle for generalized renewal processes, Teor. Verojatnost. i Primenen., 27 (1982), 434-442 (in Russian).
[5] L. Breiman, A delicate law of the iterated logarithm for non-decreasing stable processes, Ann. Math. Statist., 39 (1968), 1818-1824.
[6] K. L. Chung, G. A. Hunt, On the zeros of $\Sigma \pm 1$, Ann. of Math., 50 (1949), 385-400.
[7] E. Csáki, P. Révész, Strong invariance for local times, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 62 (1983), 263-278.
[8] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Academic Press Akadémiai Kiadó (New York-Budapest, 1981).
[9] B. J. Flehinger, A general model for reliability analysis under various preventive maintenance policies, Ann. Math. Statist., 33 (1962), 137-156.
[10] A. Gut and S. Janson, The limiting behaviour of certain sto pped sums and some applications, Scand. J. Statist. To appear.
[11] C. C. Heyde, D. J. Scott, Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments, Ann. Probability, 1 (1973), 428437.
[12] W. M. Hirsch, A strong law for the maximum cumulative sum of independent random variables, Comm. Pure Appl. Math., 18 (1965), 109-128.
[13] L. Horváth, Strong approximation of renewal processes, Stoch. Processes and Applications, 18 (1984), 127-138.
[14] L. Horváth, Strong approximation of certain stopped sums, Statistics and Probability Letters, 2 (1984), 181-185.
[15] D. L. Iglehart, Diffusion approximations in collective risk theory, J. Appl. Prob., 6 (1969), 285-292.
[16] K. Ito, H. P. McKean, Diffusion Processes and their Sample Paths, Springer Verlag (New York-Berlin, 1965).
[17] B. R. James, A functional law of the iterated logarithm for weighted empirical distributions, Ann. Probability, 3 (1975), 762-772.
[18] S. Janson, Renewal theory for m-dependent variables, Ann. Probability, 11 (1983), 558-568.
[19] D. Kennedy, Estimates of the rates of convergence in limit theorems for the first passage times of random walks, Ann. Math. Statist., 43 (1972), 2090-2094.
[20] A. Khintchine, Zwei Satze über stochastische Prozesse mit stabilen Verteilungen, Mat. Sbornik, 3 (1938), 577-584 (in Russian).
[21] J. Kuelbs, W. Philipp, Almost sure invariance principles for partial sums of mixing B-valued random variables, Ann. Probability, 8 (1980), 1003-1036.
[22] H. Levene, J. Wolfowitz, The covariance matrix of runs up and down, Ann. Math. Statist., 15 (1944), 58-69.
[23] J. L. Mijnheer, Sample Path Properties of Stable Processes, Mathematical Centre Tracts, 59 (Amsterdam, 1975).
[24] W. Philipp, W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of Amer. Math. Soc., 161 (1975).
[25] B. G. Pittel, A process of runs and its convergence to the Brownian motion, Stoch. Process. Applications, 10 (1980), 33-48.
[26] P. Révész, Three problems on the lengths of increasing runs, Stoch. Processes and Applications, 15 (1983), 169-179.
[27] D. Siegmund, Y.-S. Yuh, Brownian approximations to first passage probabilities, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 59 (1982), 239-248.
[28] J. Wolfowitz, Asymptotic distributions of runs up and down, Ann. Math. Statist., 15 (1944), 163-172.
(Received October 17, 1983; revised February 8, 1984)
BOLYAI INSTITUTE, SZEGED UNIVERSITY
ARADI VÉRTANÚK TERE 1.
H-6720 SZEGED, HUNGARY

ON THE EXISTENCE OF CERTAIN SEMI-BOUNDED SELF-ADJOINT OPERATORS IN HILBERT SPACE

Z. SEBESTYÉN (Budapest)

Let B be a densely defined self-adjoint operator in a Hilbert space H which is bounded below by one, that is B satisfies

$$
\begin{equation*}
\|x\|^{2} \leqq(B x, x) \quad(x \in \mathscr{D}(B)) \tag{1}
\end{equation*}
$$

where $\mathscr{D}(B)$ denotes the domain of B.
It is natural to ask: given a function b defined on a subset of H with values in H, under what condition does there exist such a semi-bounded operator B which extends b ? A closely related question is treated in [2] for bounded B and yields, as a consequence, the classical Krein's extension theorem among others. The present result on extension of this type (Theorem 1) is a generalization of the known Friedrichs' extension theorem [1]. We treat also some factorization problems continuing observations of the author in [2], [3]. Our constant reference is [1].

Theorem 1. Let b be a function given on a dense subset H_{0}, in the Hilbert space H, taking values in H. There exists a semi-bounded self-adjoint operator B in H satisfying (1) which extends b if and only if

$$
\begin{equation*}
\left\|\sum_{x} c_{x} x\right\|^{2} \leqq\left(\sum_{x} c_{x} b(x), \sum_{x} c_{x} x\right) \tag{2}
\end{equation*}
$$

holds for any finite sequence $\left\{c_{x}\right\}$ of complex numbers indexed by elements of H_{0}.
Proof. The necessity of (2) is obvious, since the existence of such an extension implies

$$
\left\|\sum_{x} c_{x} x\right\|^{2} \leqq\left(B\left(\sum_{x} c_{x} x\right), \sum_{x} c_{x} x\right)=\left(\sum_{x} c_{x} B x, \sum_{x} c_{x} x\right)=\left(\sum_{x} c_{x} b(x), \sum_{x} c_{x} x\right)
$$

To prove the sufficiency assume (2) and let Y denote the set of complex valued functions of finite support on H_{0}. We introduce a semi-inner product on Y by

$$
\begin{equation*}
\left\langle\sum_{x} c_{x} \delta_{x}, \sum_{y} d_{y} \delta_{y}\right\rangle:=\left(\sum_{x} c_{x} b(x), \sum_{y} \mid d_{y} y\right), \tag{3}
\end{equation*}
$$

where $\delta_{x}=\delta_{x}\left(x^{\prime}\right)$ denotes the function defined in case $x, x^{\prime} \in H_{0}$, by 1 if $x^{\prime}=x$ and by 0 if $x^{\prime} \neq x$. After factorization of Y by the nullspace of \langle,$\rangle and comple-$ tion with respect to the norm arising from the norm inherited from the inner product on this factor space, we get a Hilbert space K. For simplicity we denote the scalar product and the image of elements of Y by the original symbols. By (3) and (2) we can get a contraction V from K into H, defining it by

$$
\begin{equation*}
V\left(\sum_{x} c_{x} \delta_{x}\right):=\sum_{x} c_{x} x \tag{4}
\end{equation*}
$$

on Y. V satisfies for any x in H

$$
\begin{equation*}
\left\|V\left(V^{*} x\right)\right\|^{2} \leqq\left\|V^{*} x\right\|^{2}=\left(V\left(V^{*} x\right), x\right) \tag{5}
\end{equation*}
$$

Its adjoint satisfies for any x in H_{0}

$$
\begin{equation*}
V^{*}(b(x))=\delta_{x} \quad(\text { in } K) \tag{6}
\end{equation*}
$$

since

$$
\left\langle V^{*}(b(x)), \sum_{y} d_{y} \delta_{y}\right\rangle=\left(b(x), V\left(\sum_{y} d_{y} \delta_{y}\right)\right)=\left(b(x), \sum_{y} d_{y} y\right)=\left\langle\delta_{x}, \sum_{y} d_{y} \delta_{y}\right\rangle
$$

holds for any $\sum_{y} d_{y} \delta_{y}$ in Y.
If $y \in H$ and $V V^{*} y=0$, then for any $x \in H_{0}$, by (6) and (4), we have

$$
0=\left(V V^{*} y, b(x)\right)=\left\langle V_{y}^{*}, V^{*}(b(x))\right\rangle=\left\langle V^{*} y, \delta_{x}\right\rangle=\left(y, V\left(\delta_{x}\right)\right)=(y, x) .
$$

This implies $y=0$, because H_{0} is (by assumption) a dense subset in H. The selfadjoint (contraction) $V V^{*}$ on H has then a densely defined inverse B which is selfadjoint (see § 119 in [1]). $B=\left(V V^{*}\right)^{-1}$ has the property (1) as a consequence of (5) and extends b, since by (6) we have $V V^{*}(b(x))=V\left(\delta_{x}\right)=x$ implying that $b(x)=$ $=\left(V V^{*}\right)^{-1} x=B x$ holds for any x in H_{0}. The proof is complete.

The next corollary is known as "Friedrichs' extension theorem" of a semibounded symmetric operator to a self-adjoint one.

Corollary 1. Let be a linear operator on a dense subset H_{0} of H, which is symmetric:

$$
\begin{equation*}
(b x, y)=(x, b y) \quad\left(x, y \in H_{0}\right) \tag{7}
\end{equation*}
$$

and bounded below by 1, i.e.
(8)

$$
\|x\|^{2} \leqq(b x, x)
$$

Then there exists a self-adjoint extension B of b with property (1).
Proof. In case b is linear, (8) is the same as (2). We remark that (7) is superfluous or exactly is a consequence of (8) (in a complex Hilbert space), since ($b x, x$) is non-negative, hence real, for any x in H_{0}.

The following two theorems are closely related to Corollary 1 in [2].
Theorem 2. Let A and C be densely defined operators in H such that the range of $\left.C\right|_{\mathscr{Q}(A)}$ is dense in H. There exists a self-adjoint operator B with property (1) and such that

$$
\begin{equation*}
A \subset B C \tag{9}
\end{equation*}
$$

if and only if $\mathscr{D}(A) \subset \mathscr{D}(C)$ and

$$
\begin{equation*}
\|C x\|^{2} \leqq(A x, C x) \quad(x \in \mathscr{D}(A)) \tag{10}
\end{equation*}
$$

Proof. The necessity of (10) follows from (9) by (1) at once. Indeed,

$$
(A x, C x)=(B(C x), C x) \geqq\|C x\|^{2}
$$

holds for any x in $\mathscr{D}(A)$.

To prove the sufficiency of property (10), by a similar argument as in the proof of Theorem 1, define a semi-inner product on $\mathscr{D}(A)$ by

$$
\begin{equation*}
\langle x, y\rangle:=(A x, C y) \quad(x, y \in \mathscr{D}(A)) . \tag{11}
\end{equation*}
$$

The so arising Hilbert space K is the completion of the quotient space $\mathscr{D}(A) / N$ with respect to the norm inherited from the inner product \langle,$\rangle on this space, where$ N is the nullspace of \langle,$\rangle in \mathscr{D}(A)$. If for any x in $\mathscr{D}(A), J x$ denotes its image in K, by (10), the map

$$
\begin{equation*}
V(J x):=C x \quad(x \in \mathscr{D}(A)) \tag{12}
\end{equation*}
$$

is a densely defined linear contraction from K into H. Its unique continuous extension, as a contraction operator of K into H, is denoted also by V. Now we have

$$
\begin{equation*}
V V^{*}(A x)=C x \quad(x \in \mathscr{D}(A)) . \tag{13}
\end{equation*}
$$

Indeed, for any x, y in $\mathscr{D}(A)$

$$
\left\langle V^{*}(A x), J y\right\rangle=(A x, V(J y))=(A x, C y)=\langle J x, J y\rangle
$$

by (11) and the definition of J hence $V V^{*}(A x)=V(J x)=C x$ holds by (12).
Now

$$
\left\|V\left(V^{*} x\right)\right\|^{2} \leqq\left\|V^{*} x\right\|^{2}=\left(V V^{*} x, x\right)
$$

holds also for any x in $\mathscr{D}(A)$. If $V V_{x}^{*}=0$, then $V_{x}^{*}=0$ and thus

$$
0=\left\langle V^{*} x, J y\right\rangle=(x, V(J y))=(x, C y)
$$

follows for any y in $\mathscr{D}(A)$ implying $x=0$, since the range of $\left.C\right|_{\mathscr{O}(A)}$ is dense in H. So $V V^{*}$ is a self-adjoint invertible operator, the inverse of which $B=\left(V V^{*}\right)^{-1}$ is the desired semi-bounded self-adjoint operator in H. It has property (1) in the same manner as before by (5) in the proof of Theorem 1 and also satisfies (9) by (13). The proof is complete.

Theorem 3. Let A and C be densely defined operators in the Hilbert space H. There exists a bounded operator B on H which is positive and satisfies (9) if and only if $\mathscr{D}(A) \subset \mathscr{D}(C)$ and

$$
\begin{equation*}
\|A x\|^{2} \leqq M(A x, C x) \tag{14}
\end{equation*}
$$

holds with some constant $M \geqq 0$ independent of x.
Proof. The necessity of (14) is a simple consequence of the positivity of B (using a Schwarz-type inequality as follows):

$$
\|A x\|^{2}=\|B(C x)\|^{2} \leqq\|B\|(B(C x), C x)=\|B\|(A x, C x)
$$

holds for any x in $\mathscr{D}(A)$, proving (14). To prove the sufficiency, we are in the position to take a Hilbert space K arising from $\mathscr{D}(A)$ by a semi-inner product given under (11), only the map V will be defined by a suitable modification as

$$
\begin{equation*}
V(J x):=A x \quad(x \in \mathscr{D}(A)) \tag{15}
\end{equation*}
$$

thus giving a continuous linear operator V from K into H. Its adjoint operator satisfies
(16)

$$
V^{*}(C x)=J x
$$

for any x in $\mathscr{D}(A)$ since by (11) for any y in $\mathscr{D}(A)$ we have

$$
\left\langle J y, V^{*}(C x)\right\rangle=(V(J y), C x)=(A y, C x)=\langle J y, J x\rangle .
$$

In consequence $B=V V^{*}$ is a suitable operator, since

$$
B(C x)=\left(V V^{*}\right)(C x)=V\left(V^{*}(C x)\right)=V(J x)=A x
$$

holds indeed by (16) and (15) for any x in $\mathscr{D}(A)$ so proving (9). The proof is ended.

References

[1] F. Riesz-B. Sz.-Nagy, Functional Analysis, Ungar (New York, 1960).
[2] Z. Sebestyén, A theorem on the existence of a positive operator, Acta Sci. Math. (Szeged), 46 (1983), 299-301.
[3] Z. Sebestyén, On ranges of adjoint operators in Hilbert space, Acta Sci. Math. (Szeged), 46 (1983), 295-298.
(Received October 19, 1983)

DEPARTMENT OF MATH. ANALYSIS II
EOUTVƠS LORÁND UNIVERSITY
MÚUEUM KÖRÚT 6-8
1088 BUDAPEST
HUNGARY

APPROXIMATION BY VILENKIN—FOURIER SUMS

S. FRIDII (Budapest)

Introduction. In this paper we deal with the connection (in different spaces) among the Vilenkin-Fourier sums, the modulus of continuity and the Lebesgueconstants (with respect to the Vilenkin-system). We give two sided estimates for an expression containing these quantities. The corresponding problem for the trigonometric system was considered by Lebesgue [7] and Oskolkov [8].

1.

Let $m:=\left(m_{k}, k \in \mathbf{N}\right)(\mathbf{N}=\{0,1, \ldots\})$ be a sequence of natural numbers, whose terms are not less than 2. Denote by $Z_{m_{k}}(k \in \mathbf{N})$ the discrete cyclic group of order m_{k}, and define G_{m} as the direct product of $Z_{m_{k}}$'s (endowed with the product topology and measure). G_{m} is a compact Abelian group with the normalized Haar measure μ. The elements of G_{m} are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)\left(0 \leqq x_{k}<m_{k}, k, x_{k} \in \mathbf{N}\right)$. Further we need the following subsets of G_{m} :

$$
I_{0}:=G_{m}, \quad I_{n+1}:=\left\{x \in G_{m} \mid x_{0}=\ldots=x_{n}=0\right\} \quad(n \in \mathbf{N})
$$

and

$$
I_{n}(x):=\left\{x+y \in G_{m} \mid y \in I_{n}\right\}
$$

(where $\dot{+}$ is the note of the group operation, and - is its inverse).
Introducing the notations

$$
M_{0}:=1, \quad M_{n+1}:=\prod_{i=0}^{n} m_{i} \quad(n \in \mathbf{N})
$$

we have $\mu\left(I_{n}\right)=\frac{1}{M_{n}}$.
We denote by $\hat{G}_{m}=\left(\psi_{n}, n \in \mathbf{N}\right)$ the character system of G_{m} ordered in the WalshPaley sense (see [11]). \hat{G}_{m} is a complete orthonormal system, and the functions ψ_{n} ($n \in \mathbf{N}$) are defined as follows. Let

$$
r_{k}(x):=\exp \frac{2 \pi i x_{k}}{m_{k}} \quad\left(x \in G_{m}, k \in \mathbf{N}\right)
$$

Each $n \in \mathbf{N}$ can be written uniquely in the form

$$
n=\sum_{k=0}^{\infty} n_{k} M_{k} \quad\left(0 \leqq n_{k}<m_{k}, n_{k} \in \mathbf{N}\right)
$$

Thus

$$
\psi_{n}=\sum_{k=0}^{\infty} r_{k_{k}^{n}}^{n_{k}} \quad(n \in \mathbf{N})
$$

$\psi_{n}(n \in \mathbf{N})$ are called Vilenkin functions, and \hat{G}_{m} forms a group for the multiplication. The Dirichlet kernels are

$$
D_{n}:=\sum_{k=0}^{n-1} \psi_{k} \quad(n \in \mathbf{N})
$$

for which it is well-known (see e.g. [10]) that

$$
D_{M_{n}}(x)= \begin{cases}M_{n}, & x \in I_{n} \tag{1}\\ 0, & x \notin I_{n} \quad(n \in \mathbf{N}) .\end{cases}
$$

$L_{k}:=\int_{G_{m}}\left|D_{k}\right| d \mu$ is the k-th Lebesgue constant with respect to $\hat{G}_{m}(k \in \mathbf{N})$. The spaces $C\left(G_{m}\right)$ (the space of continuous, complex valued functions defined on G_{m}) and $L^{p}\left(G_{m}\right)$ (with respect to the Haar-measure μ) ($1 \leqq p<\infty$) are defined in the usual way. If $f \in L^{1}\left(G_{m}\right)$, then

$$
\hat{f}(k):=\int_{G_{m}} f \bar{\psi}_{k} d \mu \quad(k \in \mathbf{N})
$$

is the k-th (so-called) Vilenkin-Fourier coefficient, and

$$
S_{k} f:=\sum_{i=0}^{k-1} \hat{f}(i) \psi_{i} \quad(k \in \mathbf{N} \backslash\{0\})
$$

is the k-th partial sum of the Vilenkin-Fourier series of f. Now we define a Hardytype space by means of a martingal maximal function. Let $f \in L^{1}\left(G_{m}\right)$, and

$$
f^{*}(x):=\sup _{n} M_{n}\left|\int_{I_{n}} \tau_{x} f d \mu\right| \quad\left(x \in G_{m}\right)
$$

where

$$
\tau_{x} f(y):=f(x+y) \quad\left(y \in G_{m}\right)
$$

It is said that f belongs to the Hardy-space $H\left(G_{m}\right)$ iff $f^{*} \in L^{1}\left(G_{m}\right)$, and its norm is defined by $\|f\|_{H}:=\left\|f^{*}\right\|_{1}$. If the sequence m is bounded, then $H\left(G_{m}\right)$ has an atomic structure [1]. We shall use the common notation $Y\left(G_{m}\right)$ for the spaces $C\left(G_{m}\right), L^{p}\left(G_{m}\right)$ $(1 \leqq p<\infty)$ and $H\left(G_{m}\right)$. It is known that $\lambda: G_{m} \rightarrow[0,1], \lambda(x):=\sum_{k=0}^{\infty} \frac{x_{k}}{M_{k+1}}$ is an almost one-to-one and measure preserving mapping. The modulus of continuity of a function $f \in Y\left(G_{m}\right)$ is defined as

$$
\omega(f, Y, \delta):=\sup _{\lambda(h)<\delta}\left\|f-\tau_{h} f\right\|_{Y} \quad(\delta>0)
$$

It is easy to see that the analogue of the nice property of the classical modulus of continuity, i.e.

$$
\omega(f, Y, \delta) \leqq\left(\left[\frac{\delta}{\delta^{\prime}}\right]+1\right) \omega\left(f, Y, \delta^{\prime}\right)
$$

fails to hold for all $f \in Y\left(G_{m}\right)$ and $\delta, \delta^{\prime}>0$. However, if we see a special case, i.e. if we assume that there exists $n \in \mathbf{N}$ such that

$$
\frac{1}{M_{n+1}}<\delta^{\prime}<\delta \leqq \frac{1}{M_{n}}
$$

then it is not hard to check that

$$
\begin{equation*}
\omega(f, Y, \delta) \leqq 2\left(\left[\frac{\delta}{\delta^{\prime}}\right]+1\right) \omega\left(f, Y, \delta^{\prime}\right) \quad\left(f \in Y\left(G_{m}\right)\right) \tag{2}
\end{equation*}
$$

(where $[a]$ is the entire part of the real number a). In this paper we deal with the expression

$$
\begin{equation*}
\frac{\left\|f-S_{k} f\right\|_{Y}}{\omega\left(f, Y, k^{-1}\right) L_{k}} \quad\left(k \in \mathbf{N}, f \in Y\left(G_{m}\right)\right) \tag{3}
\end{equation*}
$$

Trigonometric system. The analogous question for the trigonometric system was considered by Lebesgue [7]. He showed the existence of $f \in C(1)$ (the space of continuous functions with period 1) for which

$$
\limsup _{k \rightarrow \infty} \frac{\left\|f-S_{k}(f)\right\|_{c}}{\bar{\omega}(f, C, 1 / k) \tilde{L}_{k}}>0
$$

(where $S_{k}(f)$ is the k-th partial sum of the trigonometric Fourier series of f, \tilde{L}_{k} is the k-th Lebesgue constant with respect to the trigonometric system, and $\bar{\omega}$ is the classical modulus of continuity).

Oskolkov [8] improved the Lebesgue's result. He proved that there exists $f \in C(1)$ such that

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k}(f)\right\|_{C}}{\bar{\omega}(f, C, 1 / k) \tilde{L}_{k}}>0
$$

Walsh-system on [0, 1]. Gulicev [5] studied the corresponding question for the Walsh-system on $[0,1]$. He proved that for all $f \in C(1)$

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{C}}{\bar{\omega}(f, C, 1 / k) L_{k}}=0 \quad(k \in \mathbf{N})
$$

(where L_{k} is the k-th Lebesgue constant with respect to the Walsh-system and $S_{k} f$ is the k-th partial sum of the Walsh-Fourier series of f).

Throughout this paper $C>0$ will denote an absolute and $C_{p}>0$ an only on p depending constant (not necessarily the same at different occurrences).

2. Results

Vilenkin-system on G_{m}. We deal with the expression (3). First we consider the case $L^{p}\left(G_{m}\right)(1<p<\infty)$.

Theorem 1. For all sequences m and $f \in L^{p}\left(G_{m}\right)(1<p<\infty)$

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{p}}{\omega\left(f, L^{p}, 1 / k\right) L_{k}}=0
$$

The proof of this theorem is based on the fact that \hat{G}_{m} is a basis in $L^{p}\left(G_{m}\right)$ $(1<p<\infty)$ [9]. This is not true for $C\left(G_{m}\right)$, nevertheless the following theorem is valid.

Theorem 2. For all sequences m and $f \in C\left(G_{m}\right)$

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{c}}{\omega(f, c, 1 / k) L_{k}}=0
$$

This is not the case in $L^{1}\left(G_{m}\right)$, what is showed in
Theorem 3. For all sequences m there exists $f \in L^{1}\left(G_{m}\right)$ such that

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{1}}{\omega\left(f, L^{1}, 1 / k\right) L_{k}}>0 .
$$

It is known [1] that $H\left(G_{m}\right)$ separates the sets $L^{1}\left(G_{m}\right)$ and $L^{p}\left(G_{m}\right)(1<p<\infty)$. On account of this it is of interest what is the case in $H\left(G_{m}\right)$. The answer is given in

Theorem 4. For all sequences m there exists $f \in H\left(G_{m}\right)$ such that

$$
\liminf _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{H}}{\omega(f, H, 1 / k) L_{k}}>0
$$

For the proof of Theorem 4 we need a lemma, which is the extension to $H\left(G_{m}\right)$ of the following well-known Efimov's result [2]

$$
\begin{gather*}
\left\|f-S_{M_{n}} f\right\|_{p} \leqq \omega\left(f, L^{p}, M_{n}^{-1}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{p} \quad\left(f \in L^{p}\left(G_{m}\right), p \geqq 1, n \in \mathbf{N}\right), \tag{4}\\
\left\|f-S_{M_{n}} f\right\|_{C} \leqq \omega\left(f, C, M_{n}^{-1}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{C} \quad\left(f \in C\left(G_{m}\right), n \in \mathbf{N}\right) .
\end{gather*}
$$

Lemma 1. For all sequences m and $f \in H\left(G_{m}\right)$

$$
\left\|f-S_{M_{n}} f\right\|_{H} \leqq \omega\left(f, H, 1 / M_{n}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{H} \quad(n \in \mathbf{N}) .
$$

We remark that it will be clear from the proof of Lemma 1 that the above inequalities remain true, if we write $E_{M_{n}}(f, H)$ instead of $\left\|f-S_{M_{n}} f\right\|_{H}$ (where $E_{M_{n}}(f, H)$ is the distance in $H\left(G_{m}\right)$ between f and the subspace generated by $\left.\left\{\psi_{i} \mid 0 \leqq i<M_{n}\right\}\right)$.

Remarks. 1. Theorem 2 means that a result of Oskolkov's type is not valid for \hat{G}_{m}.
2. The analogue of Lebesgue's result is trivial for \hat{G}_{m}, since $\omega\left(f, Y, M_{n}^{-1}\right) \leqq$ $\leqq 2\left\|f-S_{M_{n}} f\right\|_{Y}$ (see [2] and Lemma 1) and $L_{M_{n}}=1(n \in \mathbb{N})$, consequently

$$
\limsup _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{\boldsymbol{Y}}}{\omega(f, Y, 1 / k) L_{k}} \geqq \frac{1}{2} \quad\left(k \in \mathbf{N}, f \in Y\left(G_{m}\right)\right) .
$$

We get lower estimate for "lim sup" in Remark 2. In the next theorem we deal with upper estimation.

Theorem 5. i) If the sequence m is bounded, then for all $f \in Y\left(G_{m}\right)$

$$
\limsup _{k \rightarrow \infty} \frac{\left\|f-S_{k} f\right\|_{Y}}{\omega(f, Y, 1 / k) L_{k}}<\infty
$$

ii) If the sequence m is unbounded, then there exists $f \in Y\left(G_{m}\right)$ such that

$$
\lim _{k \rightarrow \infty} \sup \frac{\left\|f-S_{k} f\right\|_{\boldsymbol{Y}}}{\omega(f, Y, 1 / k) L_{k}}=\infty
$$

Vilenkin-system on [0, 1]. Since the Vilenkin functions can be regarded even as complex valued functions defined on $[0,1]$, therefore the analogue of the statements of Theorems 1, 2, 3 are to be studied in $C(1), L^{p}(1)(1 \leqq p<\infty)$ with respect to the Vilenkin-system and $\bar{\omega}$. We denote the corresponding statements as Theorem $1^{\prime}, 2^{\prime}, 3^{\prime}$, and we shall prove that they are true.

Remarks. 1. Only the proof of Theorem 3^{\prime} is essentially different from the proof of Theorem 3.
2. Theorem 2^{\prime} was proved for the dyadic case by Gulicev in [5]. He announced Theorem 3' without proof for the dyadic case in [4].

3. Proofs

Proof of Theorem 1. Let $f \in L^{p}\left(G_{m}\right)(1<p<\infty)$. It is known [10] that there exists a sequence of natural numbers ($k_{n}, n \in \mathbf{N}$) such that $M_{n}<k_{n}<2 M_{n}(n \in \mathbf{N})$ and $\quad L_{k_{n}}>C \log M_{n} . \quad$ By (2) we have $4 \omega\left(f, L^{p}, \frac{1}{k_{n}}\right) \geqq \omega\left(f, L^{p}, \frac{1}{M_{n}}\right)$. Since \hat{G}_{m} is a basis in $L^{p}\left(G_{m}\right)(1<p<\infty)$ [9], thus there exists $C_{p}>0$ such that

$$
\left\|f-S_{k_{n}} f\right\|_{p} \leqq\left\|f-S_{M_{n}} f\right\|_{p}+\left\|S_{k_{n}}\left(f-S_{M_{n}} f\right)\right\|_{p} \leqq\left(1+C_{p}\right)\left\|f-S_{M_{n}} f\right\|_{p}
$$

From (4) we have

$$
\omega\left(f, L^{p}, \frac{1}{M_{n}}\right) \geqq\left\|f-S_{M_{n}} f\right\|_{p}
$$

Thus

$$
\frac{\left\|f-S_{k_{n}} f\right\|_{p}}{\omega\left(f, L^{p}, 1 / k_{n}\right) L_{k_{n}}} \leqq \frac{\left(1+C_{p}\right)\left\|f-S_{M_{n}} f\right\|_{p}}{1 / 4\left\|f-S_{M_{n}} f\right\| C \log M_{n}}<C_{p} \frac{1}{\log M_{n}} \quad(n \in \mathbf{N})
$$

consequently Theorem 1 is true.
Proof of Theorem 2. We follow the method of Gulicev [5] in the proof of this theorem. First we verify

Lemma 2. Let $s<n$ and $k<M_{s}(s, n, k \in \mathbf{N})$. Define q_{j} and p_{j} as

$$
\begin{gathered}
q_{j}:=M_{n}+\left(m_{n-1}-1\right) M_{n-1}+\ldots+\left(m_{n-j}-1\right) M_{n-j} \\
p_{j}:=q_{j}+k \quad(j=0,1, \ldots, n-s-1)
\end{gathered}
$$

Then for all $f \in C\left(G_{m}\right)$

$$
\frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|S_{p_{j}} f\right\|_{C} \leqq 3\|f\|_{C}+\left(\frac{M_{s}^{3}}{n-s}\right)^{1 / 2}\|f\|_{c} .
$$

Proof of Lemma 2. From the definition of the Vilenkin functions we have $D_{p_{j}}=D_{q_{j}}+\psi_{q_{j}} D_{k}$, hence

$$
\begin{aligned}
& \frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|S_{p_{j}} f\right\|_{C}=\frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|\int_{G_{m}} f(t) D_{p_{j}}(x \dot{\bullet} t) d \mu(t)\right\|_{C} \leqq \\
& \leqq \frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|\int_{G_{m}} f(t) D_{q_{j}}(x \dot{\bullet} t) d \mu(t)\right\|_{C}+ \\
& +\frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|\int_{G_{m}} f(t) \psi_{q_{j}}(x \dot{\bullet} t) D_{k}(x \div t) d \mu(t)\right\|_{c}=: \sigma_{1}+\sigma_{2} .
\end{aligned}
$$

Since $2 M_{n}=q_{j}+M_{n-j}$ and by (1) $L_{M_{i}}=1(i \in \mathbf{N})$, therefore $L_{q_{j}} \leqq 3$, consequently $\sigma_{1} \leqq 3\|f\|_{C}$.

Let us consider σ_{2}. From $k \leqq M_{s}$ it follows that D_{k} is constant on each set $I_{s}(x)\left(x \in G_{m}\right)$. The sets $I_{s}(x)\left(x \in G_{m}\right)$ decompose G_{m} into M_{s} pieces of disjoint sets denoted by $I_{n, u}\left(u=0,1, \ldots, M_{s}-1\right)$. Denote χ_{u} the characteristic function of $I_{s, u}$ and define the function K_{u} as follows:

$$
K_{u}(x):=D_{k}(x \doteq t) \quad\left(t \in I_{s, u}, u=0, \ldots, M_{s}-1\right)
$$

According to $\left|K_{u}(x)\right| \leqq M_{s}\left(x \in G_{m}, u=0, \ldots, M_{s}-1\right)$ and

$$
\psi_{q_{j}}(x-t)=\psi_{q_{j}}(x) \overline{\psi_{q_{j}}(t)} \quad\left(x, t \in G_{m}\right)
$$

we have

$$
\sigma_{2}=\frac{1}{n-s} \sum_{j=0}^{n-s-1}\left\|_{u=0}^{M_{s}-1} K_{u} \int_{G_{m}} f \chi_{u} \bar{\psi}_{q_{j}}\right\|_{C} \leqq \frac{M_{s}}{n-s} \sum_{u=0}^{M_{s}-1} \sum_{j=0}^{n-s-1}\left|\int_{G_{m}} f \chi_{u} \bar{\psi}_{q_{j}}\right|
$$

By the Cauchy-Schwarz and Bessel inequalities we obtain

$$
\begin{aligned}
& \sum_{j=0}^{n-s-1}\left|\left(f \chi_{u}\right)^{\wedge}\left(q_{j}\right)\right| \leqq \sqrt{n-s} \sum_{j=0}^{n-s-1}\left|\left(f \chi_{u}\right)^{\wedge}\left(q_{j}\right)\right|^{2} \leqq \\
& \leqq \sqrt{n-s}\left(\int_{G_{m}} f^{2} \chi_{u}\right)^{1 / 2} \leqq \sqrt{n-s} M_{s}^{-1 / 2}\|f\|_{C}
\end{aligned}
$$

whence

$$
\sigma_{2} \leqq\left(\frac{M_{s}^{3}}{n-s}\right)^{1 / 2}\|f\|_{C}
$$

The proof of Lemma 2 is complete.
Applying Lemma 2 we prove Theorem 2.
Let $f \in C\left(G_{m}\right)$ and

$$
s_{n}:=\max \left\{v \in \mathbf{N} \left\lvert\, \frac{M_{v}^{3}}{n-v} \leqq 1\right.\right\} \quad(n \in \mathbf{N})
$$

Obviously $s_{n}<n$ for all $n \in \mathbf{N}$ and the sequence ($s_{n}, n \in \mathbf{N}$) tends monotonously to $+\infty$.

There exists [10] $k<M_{s_{n}}$ (depending on n) for which

$$
\left\|D_{k}\right\|_{1}>c \log M_{s_{n}} \quad(n \in \mathbf{N})
$$

and if n is large enough, then

$$
L_{p_{j}} \geqq L_{k}-L_{q_{j}}>C \log M_{s_{n}}-3>C s_{n} \quad\left(j=0,1, \ldots, n-s_{n}-1\right) .
$$

It is clear that

$$
\left\|f-S_{p_{j}} f\right\|_{C} \leqq\left\|f-S_{M_{n}} f\right\|_{C}+\left\|S_{p_{j}}\left(f-S_{M_{n}} f\right)\right\|_{C}
$$

By $\left\|f-S_{M_{n}} f\right\|_{C} \leqq \omega\left(f, C, M_{n}^{-1}\right)$ and by the definition of s_{n} we get from Lemma 2

$$
\frac{1}{n-s_{n}} \sum_{j=0}^{n-s_{n}-1}\left\|f-S_{p_{j}} f\right\|_{C} \leqq \omega\left(f, C, M_{n}^{-1}\right)+4 \omega\left(f, C, M_{n}^{-1}\right)=5 \omega\left(f, C, M_{n}^{-1}\right)
$$

$$
(n \in \mathbf{N})
$$

Since $1<\frac{p_{j}}{M_{n}}<2$, by (2) $\omega\left(f, C, M_{n}^{-1}\right) \leqq 4 \omega\left(f, C, p_{j}^{-1}\right)$. The above estimations yield

$$
\min _{0 \leqq j \leqq n-s_{n}-1} \frac{\left\|f-S_{p_{j},} f\right\|_{C}}{\omega\left(f, C, p_{j}^{-1}\right) L_{p_{j}}} \leqq C \frac{\omega\left(f, C, M_{n}^{-1}\right)}{\omega\left(f, C, M_{n}^{-1}\right) s_{n}}=C \frac{1}{s_{n}}
$$

Theorem 2 is proved.
Proof of Theorem 3. Let $\left(A_{i}, i \in \mathbf{N}\right)$ be a sequence of positive real numbers tending monotonously to zero, and $\sum_{i=1}^{\infty} A_{i}<\infty$. Define the function f as follows:

$$
\begin{equation*}
f:=\sum_{i=0}^{\infty} A_{i+1}\left(D_{M_{i+1}}-D_{M_{i}}\right) \oplus A_{1} D_{M_{0}} \tag{5}
\end{equation*}
$$

It is obvious that f belongs to $L^{1}\left(G_{m}\right)$. Let $M_{n} \leqq k<M_{n+1}(k, n \in \mathbf{N})$, thus

$$
\left\|f-S_{k} f\right\|_{1} \geqq\left\|S_{M_{n+1}}\left(f-S_{k} f\right)\right\|_{i}=\left\|S_{M_{n+1}} f-S_{k} f\right\|_{1}=A_{n+1}\left\|D_{M_{n+1}}-D_{k}\right\|_{1}
$$

It is easy to show that $\left\|D_{M_{n+1}}-D_{k}\right\|_{1} \geqq 1$, thus by $\left\|D_{M_{n+1}}\right\|_{1}=1$ and by $\left\|D_{k}\right\|_{1} \geqq 1$ we have $\left\|D_{M_{n+1}}-D_{k}\right\|_{1} \geqq \max \left(1, L_{k}-1\right)$, i.e. $\left\|D_{M_{n+1}}-D_{k}\right\|_{1} \geqq 1 / 2 L_{k}$. Hence

$$
\left\|f-S_{k} f\right\|_{1} \geqq 1 / 2 A_{n+1} L_{k}
$$

Applying (1) and (4) we obtain

$$
\begin{gathered}
\omega\left(f, L^{1}, 1 / k\right) \leqq \omega\left(f, L^{1}, 1 / M_{n}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{1}= \\
\quad=2\left\|\sum_{i=n}^{\infty} A_{i+1}\left(D_{M_{i+1}}-D_{M_{i}}\right)\right\|_{1}<4 \sum_{i=n+1}^{\infty} A_{i}
\end{gathered}
$$

From the above estimations it follows that

$$
\frac{\left\|f-S_{k} f\right\|_{1}}{\omega\left(f, L^{1}, 1 / k\right) L_{k}}>\frac{1 / 2 A_{n+1} L_{k}}{4 \sum_{i=n+1}^{\infty} A_{i} L_{k}}=\frac{1}{8} \frac{A_{n+1}}{\sum_{i=n+1}^{\infty} A_{i}}
$$

By choosing $A_{l}:=2^{-l}(l \in \mathbf{N})$ the conditions concerning ($A_{i}, i \in \mathbf{N}$) are satisfied and

$$
\frac{\left\|f-S_{k} f\right\|_{1}}{\omega\left(f, L^{1}, 1 / k\right) L_{k}}>\frac{1}{8} \quad(k \in \mathbf{N})
$$

The proof of Theorem 3 is complete.
Proof of Lemma 1. Let $f \in H\left(G_{m}\right)$ and $\left.n \in \mathbf{N}\right)$. We have

$$
\begin{gathered}
\left\|f-S_{M_{n}} f\right\|_{H}=\left\|\int_{G_{m}}(f(x)-f(x+t)) D_{M_{n}}(t) d \mu(t)\right\|_{H}= \\
=\int_{G_{m}} \sup _{k} M_{k}\left|\int_{I_{k}(y)} \int_{G_{m}}(f(x)-f(x+t)) D_{M_{n}}(t) d \mu(t) d \mu(x)\right| d \mu(y) \leqq \\
\leqq\left.\int_{G_{m}} \sup _{k} M_{k} \int_{I_{n}} M_{n}\right|_{I_{k}(y)}(f(x)-f(x+t)) d \mu(x) \mid d \mu(t) d \mu(y) \leqq \\
\leqq \int_{I_{n}} M_{n} \int_{G_{m}} \sup _{k} M_{k}\left|\int_{I_{k}(y)}(f(x)-f(x+t)) d \mu(x)\right| d \mu(y) d \mu(t) \leqq \\
\leqq \int_{I_{n}} M_{n} \omega\left(f, H, \frac{1}{M_{n}}\right) d \mu(t)=\omega\left(f, H, \frac{1}{M_{n}}\right) .
\end{gathered}
$$

The proof of the second inequality is very easy. Since $\tau_{h}\left(S_{M_{n}} f\right)=S_{M_{n}} f\left(h \in I_{n}\right)$, therefore

$$
\begin{gathered}
\omega\left(f, H, \frac{1}{M_{n}}\right)=\sup _{\lambda(h)<1 / M_{n}}\left\|f-\tau_{h} f\right\|_{H} \leqq \sup _{\lambda(h)<1 / M_{n}}\left\|f-S_{M_{n}} f\right\|_{H}+ \\
+\sup _{\lambda(h)<1 / M_{n}}\left\|\tau_{h}\left(f-S_{M_{n}} f\right)\right\|_{H}=2\left\|f-S_{M_{n}} f\right\|_{H}
\end{gathered}
$$

which was to be proved.
Proof of Theorem 4. It is easy to see that $\left(D_{M_{n+1}}-D_{M_{n}}\right)^{*}=\left|D_{M_{n+1}}-D_{M_{n}}\right|$ consequently $\left\|D_{M_{n+1}}-D_{M_{n}}\right\|_{H}=\left\|D_{M_{n+1}}-D_{M_{n}}\right\|_{1}<2(n \in \mathbb{N})$. Let f be the function as in (5). Thus for $M_{n} \leqq k<M_{n+1}(k, n \in \mathbf{N})$ we have as above that

$$
\left\|f-S_{k} f\right\|_{H} \geqq\left\|f-S_{k} f\right\|_{1} \geqq \frac{1}{2} A_{n+1} L_{k}
$$

and by Lemma 1

$$
\begin{gathered}
\omega(f, H, 1 / k) \leqq \omega\left(f, H, \frac{1}{M_{n}}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{H}= \\
\quad=2\left\|\sum_{i=n}^{\infty} A_{i+1}\left(D_{M_{i+1}}-D_{M_{i}}\right)\right\|_{H}<4 \sum_{i=n+1}^{\infty} A_{i}
\end{gathered}
$$

Let $A_{i}:=2^{-i}(i \in \mathbf{N})$, then the conditions concerning $\left(A_{i}, i \in \mathbf{N}\right)$ are satisfied and

$$
\frac{\left\|f-S_{k} f\right\|_{H}}{\omega(f, H, 1 / k) L_{k}} \geqq \frac{\frac{1}{2} A_{n+1} L_{k}}{4 \sum_{i=n+1}^{\infty} A_{i} L_{k}} \geqq \frac{1}{8} \quad(k \in \mathbf{N})
$$

Theorem 4 is proved.
For the proof of Theorems 1^{\prime} and 2^{\prime} it is enough to observe that all the considerations used in the proof of Theorems 1 and 2 are valid in this case too. We need only to take into account the inequality $\left\|f-S_{M_{n}} f\right\|_{c}<\bar{\omega}\left(f, C, \frac{1}{M_{n}}\right)$ $(f \in C(1), n \in \mathbf{N})$ [3] and to make such changes like to write $\sum_{i=0}^{k-1} \psi_{i}(x) \psi_{i}(t)(x, t \in[0,1])$ instead of $D_{k}(x+t)\left(x, t \in G_{m}\right)$ and $\left[0, \frac{1}{M_{n}}\right]$ instead of $I_{n}(n \in \mathbf{N})$ etc.

Proof of Theorem 3^{\prime}. Let f be the same function as in (5). ($D_{M_{i}}(i \in \mathbf{N})$ are of course the Dirichlet kernels of the Vilenkin system defined on [0,1].) It is easy to see (by means of the mapping λ) that the estimation for $\left\|f-S_{k} f\right\|_{1}$ is valid in this case too, i.e.

$$
\left\|f-S_{k} f\right\|_{1} \geqq \frac{1}{2} A_{n+1} L_{k} \quad\left(k, n \in \mathbf{N}, M_{n} \leqq k<M_{n+1}\right) .
$$

This is not the case for $\bar{\omega}\left(f, L^{1}, 1 / k\right)(k \in \mathbf{N})$, because the relation $\bar{\omega}\left(f, L^{1}, 1 / M_{n}\right) \leqq$ $\leqq 2\left\|f-S_{M_{n}} f\right\|_{1}$ does not hold for all $f \in L^{1}(1)$ and $n \in \mathbf{N}$.

Let us estimate $\bar{\omega}\left(f, L^{1}, 1 / k\right)$ in the following way. It is clear that

$$
\bar{\omega}\left(f, L^{1}, 1 / k\right) \leqq \bar{\omega}\left(f, L^{1}, \frac{1}{M_{n}}\right) \leqq \bar{\omega}\left(f-S_{M_{n}} f, \frac{1}{M_{n}}\right)+\bar{\omega}\left(S_{M_{n}} f, L^{1}, \frac{1}{M_{n}}\right)
$$

Obviously

$$
\bar{\omega}\left(f-S_{M_{n}} f, L^{1}, \frac{1}{M_{n}}\right) \leqq 2\left\|f-S_{M_{n}} f\right\|_{1}<4 \sum_{i=n+1}^{\infty} A_{i}
$$

It is to be seen from the form of $S_{M_{n}} f$ that $S_{M_{n}} f$ is constant on the intervals $\left(\frac{1}{M_{i+1}}, \frac{1}{M_{i}}\right)(i=1, \ldots, n-1)$ and $\left(0, \frac{1}{M_{n}}\right)$. From this it follows that

$$
\begin{aligned}
& \bar{\omega}\left(S_{M_{n}} f, L^{1}, \frac{1}{M_{n}}\right)=\int_{0}^{1}\left|S_{M_{n}} f(x)-S_{M_{n}} f\left(x+\frac{1}{M_{n}}\right)\right| d x= \\
& \quad=\sum_{i=2}^{n}\left|S_{M_{n}} f_{\left(1 / M_{i}, 1 / M_{i-1}\right)}-S_{M_{n}} f_{\left(1 / M_{i-1}, 1 / M_{i-2}\right)}\right| \frac{1}{M_{n}}+ \\
& +\left|S_{M_{n}} f_{\left(0,1 / M_{n}\right)}-S_{M_{n}} f_{\left(1 / M_{n}, 1 / M_{n-1}\right)}\right| \frac{1}{M_{n}}+\left|S_{M_{n}} f_{\left(0,1 / M_{n}\right)}\right| \frac{1}{M_{n}},
\end{aligned}
$$

(where $S_{M_{n}} f_{\left(1 / M_{i+1}, 1 / M_{i}\right)}(i=1, \ldots, n-1), S_{M_{n}} f_{\left(0,1 / M_{n}\right)}$ are the above mentioned con-
stants). Since ($A_{i}, i \in \mathbf{N}$) is monoton, therefore

$$
S_{M_{n}} f_{\left(0,1 / M_{n}\right)}=\sum_{j=0}^{n-1} A_{j}\left(M_{j+1}-M_{j}\right)
$$

and

$$
S_{M_{n}} f_{\left(1 / M_{i}, 1 / M_{i-1}\right)}=\sum_{j=0}^{i-2} A_{j+1}\left(M_{j+1}-M_{j}\right)-A_{i} M_{i-1}
$$

Thus

$$
\begin{gathered}
\bar{\omega}\left(f, L^{1}, \frac{1}{M_{n}}\right)=\sum_{i=2}^{n}\left(A_{i-1}-A_{i}\right) M_{i-1} \frac{1}{M_{n}}+A_{n} M_{n} \frac{1}{M_{n}}+ \\
+\sum_{j=0}^{n-1} A_{j+1}\left(M_{j+1}-M_{j}\right) \frac{1}{M_{n}}=: a_{1}+a_{2}+a_{3} .
\end{gathered}
$$

From the monotonicity of $\left(A_{i}, i \in \mathbf{N}\right)$

$$
a_{1}+a_{2} \leqq \sum_{j=1}^{n} A_{j} M_{j} \frac{1}{M_{n}}
$$

on the other hand

$$
a_{3} \leqq \sum_{j=1}^{n} A_{j} M_{j} \frac{1}{M_{n}},
$$

hence

$$
\bar{\omega}\left(S_{M_{n}} f, L^{1}, \frac{1}{M_{n}}\right) \leqq 2 \sum_{j=1}^{n} A_{j} M_{j}
$$

From the above estimation we have

$$
\frac{\left\|f-S_{k} f\right\|_{1}}{\bar{\omega}\left(f, L^{1}, 1 / k\right) L_{k}} \geqq \frac{1 / 2 A_{n+1}}{4 \sum_{i=n+1}^{\infty} A_{i}+2 \sum_{j=1}^{n} A_{j} \frac{M_{j}}{M_{n}}} \geqq \frac{1 / 2 A_{n+1}}{4 \sum_{i=n+1}^{\infty} A_{i}+2 \sum_{j=1}^{n} A_{j}\left(\frac{1}{2}\right)^{n-j}}
$$

By choosing $A_{i}:=\left(\frac{3}{4}\right)^{i}(i \in \mathbf{N})$ we get

$$
\frac{\left\|f-S_{k} f\right\|_{1}}{\overline{\bar{\omega}}\left(f, L^{1}, 1 / k\right) L_{k}}>\frac{1}{48} \quad(k \in \mathbf{N})
$$

The proof of Theorem 3^{\prime} is complete.
Proof of Theorem 5. i) Let $M_{n} \leqq k<M_{n+1}(k, n \in \mathbf{N})$. Applying the convolution theorem concerning homogeneous Banach spaces (see [6]) we obtain from (4) and Lemma 2 for all $f \in Y\left(G_{m}\right)$

$$
\begin{gathered}
\left\|f-S_{k} f\right\|_{Y} \leqq\left\|f-S_{M_{n}} f\right\|_{Y}+\left\|S_{k}\left(f-S_{M_{n}} f\right)\right\|_{Y} \leqq \\
\leqq\left(1+L_{k}\right)\left\|f-S_{M_{n}} f\right\|_{Y} \leqq 2 L_{k} \omega\left(f, Y, M_{n}^{-1}\right) \\
\omega\left(f, Y, M_{n}^{-1}\right) \leqq 2 m_{n} \omega\left(f, Y, k^{-1}\right)
\end{gathered}
$$

By (2) we have
consequently

$$
\sup _{k} \frac{\left\|f-S_{k} f\right\|_{Y}}{\omega\left(f, Y, k^{-1}\right) L_{k}} \leqq \sup m_{n}<\infty .
$$

ii) Let ($A_{i}, i \in \mathbf{N}$) be a sequence of real numbers tending monotone decreasingly to zero, and $\sum_{i=0}^{\infty} A_{i}\left\|D_{M_{i}}\right\|_{Y}<\infty$. (The sequence ($A_{i}, i \in \mathbf{N}$) depends on Y.) Define the function f as follows:

$$
f:=\sum_{i=0}^{\infty} A_{i} r_{i}^{m_{i}-1} D_{M_{i}}=\sum_{i=0}^{\infty} A_{i} \bar{r}_{i} D_{M_{i}} .
$$

(\bar{r}_{i} is the complex conjugate of r_{i}.) Obviously $f \in Y\left(G_{m}\right)$.
Let

$$
d_{j}:=\left(m_{j}-1\right) M_{j} \quad(j \in \mathbf{N})
$$

then

$$
\begin{gathered}
\left\|f-S_{d_{j}} f\right\|_{Y}=\left\|f-S_{M_{j}} f\right\|_{Y}=\left\|\sum_{i=j}^{\infty} A_{i} \bar{r}_{i} D_{M_{i}}\right\|_{Y} \geqq \\
\geqq A_{j}\left\|\bar{r}_{j} D_{M_{j}}\right\|_{Y}-\sum_{i=j+1}^{\infty} A_{i}\left\|\bar{r}_{i} D_{M_{i}}\right\|_{Y}
\end{gathered}
$$

It is clear that

$$
\omega\left(f, Y, d_{j}^{-1}\right) \leqq \omega\left(S_{M_{j+1}} f, Y, d_{j}^{-1}\right)+\omega\left(f-S_{M_{j+1}} f, Y, d_{j}^{-1}\right)
$$

Furthermore the assumption

$$
\omega\left(f-S_{M_{j+1}} f, Y, d_{j}^{-1}\right) \leqq 2\left\|f-S_{M_{j+1}} f\right\|_{Y} \leqq 2 \sum_{i=j+1}^{\infty} A_{i}\left\|\bar{r}_{i} D_{M_{i}}\right\|_{Y}
$$

is trivial. From the definition of $d_{j}(j \in \mathbf{N})$ we have $\frac{1}{M_{j+1}}<d_{j}^{-1} \leqq \frac{2}{M_{j+1}}$. Since $S_{M_{j+1}} f$ is constant on every set $I_{j+1}(x)\left(j \in \mathbf{N}, x \in G_{m}\right)$, therefore

$$
\begin{gathered}
\omega\left(S_{M_{j+1}} f, Y, d_{j}^{-1}\right)=\left\|S_{M_{j+1}} f-\tau_{e_{j}} S_{M_{j+1}} f\right\|_{Y}= \\
=A_{j}\left\|\left(\bar{r}_{j}-\tau_{e_{j}} \bar{r}_{j}\right) D_{M_{j}}\right\|_{Y}, \quad(e_{j}:=\stackrel{0}{(0, \ldots, \underbrace{j-1}_{0}, \stackrel{j}{1}}, 0, \ldots) \in G_{m}) .
\end{gathered}
$$

It is easy to show that

$$
\begin{gathered}
\left\|\bar{r}_{i} D_{M_{i}}\right\|_{C}=M_{i} \text { and } \omega\left(S_{M_{j+1}} f, C, d_{j}^{-1}\right)<c A_{j} \frac{M_{j}}{m_{j}} \\
\left\|\bar{r}_{i} D_{M_{i}}\right\|_{p}=M_{i}^{1-1 / p} \quad \text { and } \quad \omega\left(S_{M_{j+1}} f, L^{p}, d_{j}^{-1}\right)<c A_{j} M_{j}^{1-1 / p} \frac{1}{m_{j}} \quad(i, j \in \mathbf{N}, 1 \leqq p) .
\end{gathered}
$$

Since $\left(\bar{r}_{i} D_{M_{i}}\right)^{*}=D_{M_{i}}$ and $\left(\left(\bar{r}_{j}-\tau_{e_{j}} \bar{r}_{j}\right) D_{M_{j}}\right)^{*}=\left|\left(\bar{r}_{j}-\tau_{e_{j}} \bar{r}_{j}\right) D_{M_{j}}\right|$, we have

$$
\left\|\bar{r}_{i} D_{M_{i}}\right\|_{H}=1 \quad \text { and } \quad \omega\left(S_{M_{j+1}} f, H, d_{j}^{-1}\right)<C A_{j} \frac{1}{m_{j}} \quad(i, j \in \mathbf{N})
$$

Let

$$
A_{i}:=\left\{\begin{array}{l}
M_{i}^{-2} M_{i}^{-1}, \quad \text { if } \quad Y\left(G_{m}\right)=C\left(G_{m}\right) \\
M_{i}^{-2}\left(M_{i}^{1-1 / p}\right)^{-1}, \quad \text { if } Y\left(G_{m}\right)=L^{p}\left(G_{m}\right) \quad(1 \leqq p<\infty) \\
M_{i}^{-2}, \quad \text { if } Y\left(G_{m}\right)=H\left(G_{m}\right) \quad(i \in \mathbf{N}),
\end{array}\right.
$$

then

$$
\left\|f-S_{d_{j}} f\right\|_{Y} \geqq \frac{1}{2} M_{j}^{-2}
$$

and

$$
\omega\left(f, Y, d_{j}^{-1}\right)<4 M_{j+1}^{-2}+C M_{j+1}^{-1} M_{j}^{-1}<C M_{j}^{-2} m_{j}^{-1} .
$$

Applying that $L_{\left(m_{j}-1\right) M_{j}} \leqq 2$ we have

$$
\frac{\| f-S_{d_{j}} \frac{f \|_{Y}}{\omega\left(f, Y, d_{j}^{-1}\right) L_{d_{j}}}>C m_{j} \quad(j \in \mathbf{N})}{}
$$

Theorem 5 is proved.

References

[1] R. R. Coifman, G. L. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.
[2] A. V. Efimov, On some approximation properties of periodic multiplicative orthonormal systems, Mat. Sb., 69 (1966), 354-370 (in Russian).
[3] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372-414.
[4] N. V. Gulicev, Estimates of norms of Walsh-Fourier sums, Dokl. Akad. Nauk. SSSR, 248 (1979), 22-24 (in Russian).
[5] N. V. Gulicev, Approximation by Walsh—Fourier sums, Analysis Math., 6 (1980), 269-280.
[6] Y. Katznelson, An introduction to harmonic analysis, J. Wiley et Sons, Inc. (New York-London-Sydney-Toronto, 1968).
[7] H. Lebesgue, Sur la représentation trigonométrique approchée des fonctions satisfaisant á une condition de Lipschitz, Bull. Soc. Math. France, 38 (1910), 184-210.
[8] K. I. Oskolkov, On the sharpness of a Lebesgue's estimate concerning the approximation of functions having prescribed modulus of continuity by Fourier sums, Trudy Mat. Inst. Steklov, 112 (1971), 337-345 (in Russian).
[9] P. Simon, Verallgemeinerte Walsh-Fourier Reihen. II, Acta Math. Acad. Sci. Hungar., 27 (1976), 329-341.
[10] N. Ya.Vilenkin, A class of complete orthonormal systems, Izv. Akad. Nauk SSSRR, Ser. Mat., 11 (1947), 363-400 (in Russian).
[11] G. N. Agaev, N. Ja. Vilenkin, G. M. Dzsafarli, A. I. Rubinstein, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Izd. "Elm" (1981) (in Russian).
(Received October 25, 1983)

INSTITUTE OF MATHEMATICS

L. EÖTVƠS UNIVERSITY

BUDAPEST, HUNGARY

DUALITY OF BANACH FUNCTION SPACES AND THE RADON—NIKODYM PROPERTY

HANG-CHIN LAI (Hsinchu)

1. Introduction. In this paper we shall study the duality of Banach function spaces. Throughout the paper, we let X be a Banach space and X^{*} its dual space. Let (Ω, Γ, μ) be a measure space with a fixed positive measure μ on the σ-field Γ of the set Ω. We consider the space $L^{p}(\Omega, X)$ of all (equivalence classes of) X-valued strongly measurable functions f on Ω such that

$$
\|f\|_{p}=\left(\int_{\Omega}\|f(t)\|^{p} d \mu(t)\right)^{1 / p}<+\infty \quad \text { for } \quad 1 \leqq p<\infty ;
$$

and the space $L^{\infty}(\Omega, X)$ of all X-valued essentially bounded strongly measurable functions f on Ω such that

$$
\|f\|_{\infty}=\operatorname{ess} \sup \{\|f(t)\| ; t \in \Omega\}<+\infty .
$$

Let q be such that $\frac{1}{p}+\frac{1}{q}=1$ for $1 \leqq p<\infty$, and consider $L^{q}\left(\Omega, X^{*}\right)$. An exact determination of the relationship between $L^{p}(\Omega, X)$ and $L^{q}\left(\Omega, X^{*}\right)$ is useful for applications. For example, if $\Omega=G$ is a locally compact group with Haar measure, then the characterization of

$$
\begin{equation*}
L^{p}(G, X)^{*} \cong L^{q}\left(G, X^{*}\right), \quad 1 \leqq p<\infty \tag{1}
\end{equation*}
$$

is useful and important in the study of multiplier problems of Banach function spaces (cf. [6], [10]).

In [3], Diestel and Uhl have shown the following
Theorem A ([3, Theorem 4.1.1]). For a finite measure space $(\Omega, \Gamma, \mu), a$ necessary and sufficient condition in order that

$$
\begin{equation*}
L^{p}(\Omega, X)^{*} \cong L^{q}\left(\Omega, X^{*}\right), \quad 1 \leqq p<\infty, \frac{1}{p}+\frac{1}{q}=1 \tag{2}
\end{equation*}
$$

holds is that X^{*} has the Radon-Nikodym property with respect to μ.
Definition. A Banach space X has the Radon-Nikodym Property (RNP) with respect to a finite measure space (Ω, Γ, μ) if for each μ-continuous vector measure $\psi: \Gamma \rightarrow X$ of bounded variation, there exists a Bochner integrable function $g: \Omega \rightarrow X$ such that $\psi(E)=\int_{E} g d \mu$ for all $E \in \Gamma$.

Many authors investigated the RNP, for examples, $[1,3,4,5,8,9]$.

The dual space X^{*} has the RNP with respect to a finite measure space if and only if X is an Asplund space.

Definition. A Banach space X is said to be an Asplund space (what Asplund [1] called a strong differentiable space) if every continuous, real-valued, convex function defined on an open subset of X is Frèchet differentiable on a dense subset G_{δ} of its domain.

In this note we shall establish the relationship (2) in a more general measure space.
2. Preliminaries. Let (Ω, Γ, μ) be a measure space, M be the set of all realvalued measurable functions on Ω and M^{+}the set of all nonnegative measurable functions on Ω.

A mapping $\varrho: M^{+} \rightarrow \bar{R}=R \cup\{+\infty\}$ is called a functional norm if for any $f, g \in M^{+}$, it satisfies the conditions:
i) $\varrho(f) \geqq 0$ and $\varrho(f)=0$ if and only if $f=0$.
ii) $\varrho(\alpha f)=\alpha \varrho(f)$ for $\alpha>0$
iii) $\varrho(f+g) \leqq \varrho(f)+\varrho(g)$
iv) $f \leqq g$ implies $\varrho(f) \leqq \varrho(g)$.

This ϱ can be extended to M by defining $\varrho(f)=\varrho(|f|)$ for all $f \in M$. Then

$$
L_{e}=L_{e}(\Omega, \Gamma, \mu) \Longrightarrow\{f \in M ; \varrho(f)<+\infty\}
$$

is a Banach space with norm ϱ called a Banach function space. The dual norm ϱ^{\prime} of the functional norm ϱ is defined by

$$
\varrho^{\prime}(g)=\sup \left\{\int_{\Omega}|f g| d \mu: \varrho(f) \leqq 1\right\} \text { for } g \in M
$$

and the dual function space is defined by

$$
L_{\varrho^{\prime}}=L_{\varrho^{\prime}}(\Omega, \Gamma, \mu)=\left\{g \in M, \varrho^{\prime}(g)<+\infty\right\}
$$

which is also a Banach space.
Obviously, all $L^{p}(\Omega, \Gamma, \mu), 1 \leqq p \leqq+\infty$ and Orlicz spaces are Banach function spaces.

A sequence $\left\{\Omega_{n}\right\}$ of measurable subsets of Ω is said to be admissible with respect to ϱ if

$$
\Omega_{n} \uparrow \Omega, \quad \mu\left(\Omega_{n}\right)<+\infty \quad \text { and } \quad \varrho\left(\chi_{\Omega_{n}}\right)<+\infty .
$$

Here and in what follows χ denotes the characteristic function.
A set $E \subset \Omega$ is called unfriendly if for any $B \subset E, B \in \Gamma$ with $\mu(B)>0$ we have $\varrho\left(\chi_{B}\right)=+\infty$.

By the definition of L_{e}, especially in $L^{p}(\Omega), 1 \leqq p<\infty$, we can assume that Γ always contains no unfriendly sets and always has an admissible sequence in ($\Omega, \Gamma, \mu)$.

A function $f \in L_{\varrho}$ has absolutely continuous norm if
a) $\lim _{n} \varrho\left(\chi_{E_{n}}\right)=0$ whenever $E_{n} \subset E, \quad E_{n} \in \Gamma$ such that $\varrho\left(\chi_{E}\right)<+\infty$ and $\lim _{n} \mu\left(E_{n}\right)^{n}=0$.
b) $\lim _{n} \varrho\left(f \chi_{\Omega-\Omega_{n}}\right)=0$ for any admissible sequence $\left\{\Omega_{n}\right\}$.

Define $L_{Q}^{a}=\left\{f \in L_{\varrho} \mid f\right.$ has absolutely continuous norm $\}$ and $L_{Q}^{\pi}=\overline{\operatorname{span}}\left\{f \in L_{\varrho} \mid f\right.$ is bounded and has support in Ω_{n} for some admissible sequence $\left.\pi=\left\{\Omega_{n}\right\}\right\}$.

It was known that (cf. Gretsky and Uhl [5] or Gretsky [4])

1) $L_{e}^{a}=\bigcap_{\pi} L_{e}^{\pi}$;
2) $\left(L_{e}^{a}\right)^{*} \cong L_{e^{\prime}}$ if and only if there exists an admissible sequence π such that $L_{Q}^{\pi}=L_{\varrho}^{a}$.

Now let $\Gamma_{0}=\left\{E \in \Gamma ; \varrho\left(\chi_{E}\right)<+\infty\right\}, \Gamma_{0}^{\prime}=\left\{E \in \Gamma, \varrho^{\prime}\left(\chi_{E}\right)<+\infty\right\}$ and $\Gamma_{00}=\Gamma_{0} \cap \Gamma_{0}^{\prime}$. Then the absence of unfriendly sets (with respect to ϱ and ϱ^{\prime}) guarantees that the σ-finite measure space Ω can be written as a countable union of sets from Γ_{00}.

We write $L_{e}(X), L_{\varrho}^{a}(X)$ and $L_{\varrho}^{\pi}(X)$ instead of $L_{\varrho}, L_{\varrho}^{a}$ and L_{Q}^{π} for the X-valued functions which are strongly measurable. The dual function space of $L_{e}(X)$ is given by

$$
L_{\varrho^{\prime}}\left(X^{*}\right)=\left\{g: \Omega \rightarrow X^{*} \text { strongly measurable and } \varrho^{\prime}(\|g\|)<\infty\right\}
$$

where

$$
\varrho^{\prime}(\|g\|)=\sup _{\varrho(\|f\|) \leqq 1}\left\{\int_{\Omega}|\langle f(t), g(t)\rangle| d \mu ; f \in L_{e}(X)\right\} .
$$

Gretsky and Uhl [5; Theorem 3.2] established the following result.
Theorem B. Let (Ω, Γ, μ) be σ-finite and $L_{\varrho}^{a}(X)=L_{\varrho}^{\pi}(X)$. Then

$$
\begin{equation*}
L_{\varrho}^{a}(X)^{*} \cong L_{\varrho^{\prime}}\left(X^{*}\right) \tag{3}
\end{equation*}
$$

under the correspondence $F \in L_{\boldsymbol{e}}^{a}(X)^{*}$ and $g \in L_{\boldsymbol{Q}^{\prime}}\left(X^{*}\right)$ given by

$$
F(f)=\int_{\Omega}\langle f(t), g(t)\rangle d \mu \text { for all } f \in L_{e}^{a}(X)
$$

if and only if each $K \in \Gamma_{00}, X^{*}$ has the RNP with respect to μ_{K} which is defined on $\Gamma \cap K$ by $\mu_{K}(E)=\mu(E \cap K)$ for all $E \in \Gamma$.

In particular, if X is reflexive, or X^{*} is separable, or μ is purely atomic, then X^{*} has the RNP and so (3) holds.

For convenience, we say that a Banach space has the wide $R N P$ if it has the property formulated in Theorem B. We give

Definition. Let (Ω, Γ, μ) be a measure space. A Banach space X is said to have the wide RNP with respect to μ if for every $K \in \Gamma$ with $\mu(K)<\infty, X$ has the RNP with respect to μ_{K} defined by $\mu_{K}(E)=\mu(K \cap E)$ for all $E \in \Gamma$.

The following problem arises: if $L_{\ell}(X)=L^{p}(\Omega, X), 1 \leqq p<\infty$, then what is the space $L_{Q^{\prime}}\left(X^{*}\right)$? Our main goal is to characterize $L_{{Q^{\prime}}^{\prime}}\left(X^{*}\right)$ to be $L^{q}\left(\Omega, X^{*}\right)$.
3. The dual space of $L^{p}(\Omega, X)$ on a measure space (Ω, Γ, μ). First we note that if $L_{\varrho}(X)=L^{p}(\Omega, X), 1 \leqq p<\infty$, then

$$
\begin{equation*}
\$=\{E \in \Gamma ; \mu(E)<\infty\}=\Gamma_{0}=\Gamma_{0}^{\prime}=\Gamma_{00} \quad \text { (cf. Sect. 2). } \tag{4}
\end{equation*}
$$

In fact $E \in \$$ if and only if $\chi_{E}: \Omega \rightarrow X$ satisfies $\left\|\chi_{E}\right\|_{p}=\varrho\left(\chi_{E}\right)<+\infty$, that is, $E \in \Gamma_{0}$. On the other hand if $\chi_{E}: \Omega \rightarrow X^{*}$ which can be written $\chi_{E}(t)=x^{*} \alpha_{E}(t)$ where
$x^{*} \in X^{*}$ and α_{E} is the scalar valued characteristic function, then, by Hölder inequality, we have

$$
\begin{gathered}
\varrho^{\prime}\left(\chi_{E}\right)=\varrho^{\prime}\left(\left\|\chi_{E}\right\|\right)=\sup \left\{\int_{\Omega}\left|\left\langle f(t), \chi_{E}(t)\right\rangle\right| d \mu ;\|f\|_{p} \leqq 1\right\}= \\
=\sup \left\{\int_{\Omega}\left\langle f(t), x^{*}>\alpha_{E}(t) d \mu:\|f\| \leqq 1\right\} \leqq\left\{\begin{array}{lll}
\left\|x^{*}\right\| \mu(E)^{1 / q} & \text { if } & 1<p<\infty \\
\left\|x^{*}\right\| \mu(E) & \text { if } & p=1 .
\end{array}\right.\right.
\end{gathered}
$$

Hence $E \in \Gamma_{0}^{\prime}$ if and only if $\mu(E)<\infty$, that is, $E \in \$$.
Further, we want to characterize the spaces $L_{e}^{a}(X)$ and $L_{e}^{\pi}(X)$ when $L_{e}(X)=$ $=L^{p}(\Omega, X)$. We give the following

Lemma 1. If $L_{Q}(X)=L^{p}(\Omega, X)$ for $1 \leqq p<\infty$, then $L_{e}^{a}(X)=L^{p}(\Omega, X)$, and so for any admissible sequence π,

$$
\begin{equation*}
L_{e}^{a}(X)=L_{e}^{\pi}(X)=L^{p}(\Omega, X) \tag{5}
\end{equation*}
$$

Proof. For any $f \in L^{p}(\Omega, X)$, there exists an admissible sequence $\pi=\left\{\Omega_{n}\right\}$ such that

$$
\left\|f \alpha_{\Omega-\Omega_{n}}\right\|_{p}=\left(\int_{\Omega-\Omega_{n}}\|f(t)\|^{p} d \mu\right)^{1 / p}<\frac{1}{n} .
$$

Then $\lim _{n} \varrho\left(f \alpha_{\Omega-\Omega_{n}}\right)=0$. On the other hand,

$$
\left\|\chi_{E}\right\|_{p}=\varrho\left(\chi_{E}\right)=\left(\int_{\Omega}\left\|x \alpha_{E}(t)\right\|^{p} d \mu\right)^{1 / p}=\|x\| \mu(E)^{1 / p}, \quad x \in X .
$$

$\varrho\left(\chi_{E}\right)<\infty$ if and only if $\mu(E)<\infty$. Thus for any sequence $\left\{E_{n}\right\}, E_{n} \subset E, \varrho\left(\chi_{E}\right)<\infty$ such that $\lim _{n} \mu\left(E_{n}\right)=0$ we have $\lim _{n} \varrho\left(\chi_{E_{n}}\right)=0$. This shows that $f \in L_{e}^{a}(X)$ and so $L_{e}^{a}(X)=L^{p}(\Omega, X)$.

Now for any admissible sequence π, (5) follows from $L_{e}^{a}(X) \subset L_{e}^{\pi}(X) \subset L_{Q}(X)=$ $=L^{p}(\Omega, X)$. Q.E.D.

Remark. For $p=\infty, L^{\infty}(\Omega, X)=L_{e}(X) \neq L_{e}^{a}(X)$ since if Ω is purely nonatomic then $L_{e}^{a}(X)=\{0\}$.

Our main result can be stated as follows.
Theorem 2. Let (Ω, Γ, μ) be a measure space and $L_{e}(X)=L^{p}(\Omega, X), 1<p<$ $<\infty$. Then

$$
\begin{equation*}
L^{p}(\Omega, X)^{*} \cong L^{q}\left(\Omega, X^{*}\right), \quad \frac{1}{p}+\frac{1}{q}=1 \tag{6}
\end{equation*}
$$

under the correspondence $F \in L^{p}(\Omega, X)^{*}$ and $g \in L^{q}\left(\Omega, X^{*}\right)$ defined by

$$
\begin{equation*}
F(f)=\int_{\Omega}\langle f, g\rangle(t) d \mu \text { for all } f \in L^{p}(\Omega, X) \tag{7}
\end{equation*}
$$

if and only if X^{*} has the wide RNP.
Proof. By Lemma 1 and Theorem B, we have only to show that

$$
L_{e^{\prime}}\left(X^{*}\right) \cong L^{q}\left(\Omega, X^{*}\right) .
$$

The Hölder inequality guarantees that every $g \in L^{q}\left(\Omega, X^{*}\right)$ defines a continuous linear functional $F \in L^{p}(\Omega, X)^{*}$ such that $\|F\| \leqq\|g\|_{q}$, while the isometry can be shown by the same argument as in [3] (cf. also [5, Theorem 3.2]).

We prove that for every $F \in L^{p}(\Omega, X)^{*}$ there corresponds a $g \in L^{q}\left(\Omega, X^{*}\right)$ such that $\|F\|=\|g\|_{q}$. It sufficies to show that F is identically equal to zero if F is restricted to the functions in $L^{p}(\Omega, X)$ not belonging to $\bigcup_{E \in \mathbb{S}} L^{p}(E, X)$ where $\$$ is the family of measurable subsets $E \subset \Omega$ with $\mu(E)<\infty$.

Let $E \in \Gamma, L^{p}(E, X)=\left\{f \in L^{p}(\Omega, X) \mid f=0\right.$ outside $\left.E\right\}$ and write $F(f)=F_{E}\left(f_{E}\right)$ as the continuous linear functional on $L^{p}(E, X)$. If $E \in \$$, then by Theorem A, there exists a unique $g_{E} \in L^{q}\left(E, X^{*}\right)$ such that $F(f)=F_{E}\left(f_{E}\right)=\int_{E}\left\langle f, g_{E}\right\rangle(t) d \mu$ for all $f \in L^{p}(E, X)$ and $\left\|g_{E}\right\|_{q}=\left\|F_{E}\right\| \leqq\|F\|$ if and only if X^{*} has the RNP with respect to μ_{E}.

Let E_{1} and E_{2} be two disjoint subsets of finite measures. Then

$$
\begin{equation*}
g_{E_{1} \cup E_{2}}=g_{E_{1}}+g_{E_{2}}, \quad\left\|g_{E_{1} \cup E_{2}}\right\|_{q}^{q}=\left\|g_{E_{1}}\right\|_{q}^{q}+\left\|g_{E_{2}}\right\|_{q}^{q} . \tag{8}
\end{equation*}
$$

Indeed, for any $f \in L^{p}\left(E_{1} \cup E_{2}, X\right)$, we have $f=f_{1}+f_{2}$ with $f_{i} \in L^{p}\left(E_{i}, X\right), i=1,2$, and so

$$
\begin{aligned}
F(f)=F\left(f_{1}\right)+F\left(f_{2}\right) & =\int_{\Omega}\left\langle f_{1}, g_{E_{1}}\right\rangle(t) d \mu+\int_{\Omega}\left\langle f_{2}, g_{E_{2}}\right\rangle(t) d \mu= \\
= & \int_{\Omega}\left\langle f, g_{E_{1}}+g_{E_{2}}\right\rangle(t) d \mu
\end{aligned}
$$

By the uniqueness of $g_{E_{1} \cup E_{2}}$ corresponding to F, we see that (8) holds.
Now let $\gamma=\sup _{E \in \mathbb{S}}\left\|g_{E}\right\|_{q}$. Since $L^{q}, 1<q<\infty$, permits an admissible sequence in Ω, we can consider a monotonously increasing sequence of sets $E_{n} \in \$$ such that $E_{0}=\lim _{n} E_{n}$ and $g(t)=\lim _{n} g_{E_{n}}(t)$. Then g is strongly measurable and, by Lebesgue dominated convergence theorem, we obtain

$$
\|g\|_{q}=\lim _{n}\left\|g_{E_{n}}\right\|_{q}=\gamma \leqq\|F\|
$$

Note that E_{0} is σ-finite. If $E \in \$$ with $E \cap E_{0}=\emptyset$ then $g_{E}=0$. Indeed, $E_{n} \subset E_{0}$
 $\left\|g_{E}\right\|_{q} \neq 0$, then $\left\|g_{E \cup E_{n}}\right\|_{q}>\gamma$ which is a contradiction. Hence for any $E \in \$$ and any $f \in L^{p}(E, X)$, there is $g_{E} \in L^{q}\left(E, X^{*}\right)$ corresponding to $F \in L^{p}(\Omega, X)^{*}$ such that

$$
F(f)=\int_{\Omega}\left\langle f, g_{E}\right\rangle(t) d \mu=\int_{\Omega}\left\langle f, g_{E \cup E_{0}}\right\rangle(t) d \mu=\int_{\Omega}\langle f, g\rangle(t) d \mu
$$

Finally, for any $f \in L^{p}(\Omega, X)$, it has absolutely continuous norm, and L^{p} permits an admissible sequence, there exist a monotonously increasing sequence of sets $\Omega_{n}, \mu\left(\Omega_{n}\right)<+\infty, \lim _{n} \Omega_{n}=\Omega_{0}$ and a sequence of functions $f_{n} \in L^{p}\left(\Omega_{n}, X\right)$ such that $f_{n} \rightarrow f$ in $L^{p}(\Omega, X)$. By the argument given above, we see that as $n \rightarrow \infty$, the equality

$$
F\left(f_{n}\right)=\int_{\Omega}\left\langle f_{n}, g_{\Omega_{n}}\right\rangle(t) d \mu=\int_{\Omega}\left\langle f_{n}, g_{\Omega_{0}}\right\rangle(t) d \mu
$$

tends to the representation of (7), and

$$
\|g\|_{q}=\lim _{n}\left\|g_{\Omega_{n}}\right\|_{q} \leqq \gamma \leqq\|F\| .
$$

The converse inequality $\|F\| \leqq\|g\|_{q}$ follows from Hölder inequality. Therefore our theorem follows from Theorem B, that is, (6) and (7) hold if and only if X^{*} has the wide RNP. Q.E.D.

If $p=1, q=\infty$ and (Ω, Γ, μ) is σ-finite, that is, $\Omega=\bigcup_{n=1}^{\infty} E_{n}, \mu\left(E_{n}\right)<+\infty$, then for any $F \in L^{1}(\Omega, X)^{*}$, by Theorem A , there is a $g_{n} \in L^{\infty}\left(E_{n}, X^{*}\right)$ such that

$$
\left.F\right|_{L^{1}\left(E_{n}, X\right)}(f)=F_{E_{n}}(f)=\int_{\Omega}\left\langle f, g_{n}\right\rangle(t) d \mu \text {, for all } f \in L^{1}\left(E_{n}, X\right)
$$

and

$$
\left\|g_{n}\right\|_{\infty}=\left\|F_{E_{n}}\right\| \leqq\|F\|
$$

if and only if X^{*} has the RNP with respect to $\mu_{E_{n}}$, and so $\|g\|_{\infty} \leqq\|F\|$. Thus if $f \in L^{1}(\Omega, X)$, then there exists a sequence $f_{n} \in L^{1}\left(E_{n}, X\right)$ with $f_{n} \rightarrow f$ in $L^{1}(\Omega, X)$ such that

$$
F\left(f_{n}\right)=\int_{E_{n}}\left\langle f_{n}, g_{n}\right\rangle(t) d \mu=\int_{\Omega}\left\langle f_{n}, g\right\rangle(t) d \mu .
$$

Since F is continuous, both sides of the equality converge to

$$
F(f)=\int_{\Omega}\langle f, g\rangle(t) d \mu \quad \text { with } \quad\|g\|_{\infty} \leqq\|F\| .
$$

It follows that $\|g\|_{\infty}=\|F\|$. Hence we obtain the following
Theorem 3. If (Ω, Γ, μ) is a σ-finite measure space, then

$$
\begin{equation*}
L^{1}(\Omega, X)^{*} \cong L^{\infty}\left(\Omega, X^{*}\right) \tag{9}
\end{equation*}
$$

under the correspondence $F \in L^{1}(\Omega, X)^{*}$ and $g \in L^{\infty}\left(\Omega, X^{*}\right)$ defined by

$$
\begin{equation*}
F(f)=\int_{\Omega}\langle f, g\rangle(t) d \mu \quad \text { for all } \quad f \in L^{1}(\Omega, X) \tag{10}
\end{equation*}
$$

if and only if X^{*} has the wide RNP.
4. The dual space of $L^{1}(\Omega, X)$ on a locally compact Hausdorff space Ω. Let Ω be a locally compact Hausdorff space and $M(\Omega)$ the space of regular Radon measures, that is, the dual space $C_{c}(\Omega)^{*}$ of $C_{c}(\Omega)$, the set of all continuous functions on Ω with compact support. Let μ be a positive Radon measure, that is,

$$
\mu(f)=\int_{\Omega} f(t) d \mu \geqq 0 \quad \text { for } \quad f(t) \geqq 0 \quad \text { in } \quad C_{c}(\Omega) .
$$

Then the space $C_{c}(\Omega, X)$ of continuous X-valued functions with compact support in Ω is dense in $L^{p}(\Omega, X), 1 \leqq p<\infty$. In this case Theorem 3 holds without σ-finite condition on Ω, we shall give a characterization of the dual space $L^{1}(\Omega, X)^{*}$.

Let $L_{\text {la...e. }}^{\infty}(\Omega, X)$ be the space of locally bounded almost everywhere X-valued functions on Ω, that is, $g \in L_{\text {1.a.e. }}^{\infty}(\Omega, X)$ is uniformly bounded outside the local null
sets in Ω. A set $E \subset \Omega$ is said to be local null if $\mu(K \cap E)=0$ for any compact subset K in Ω. The norm of $g \in_{\text {1.a.c. }}^{\infty}(\Omega, X)$ is given by

$$
\|g\|_{\infty, 1 . \text {..e }}=\sup _{K}\left[\operatorname{ess} \sup _{t \in K}\|g(t)\|\right]<\infty
$$

where the supremum is taken over all compact subsets k in Ω (see Dieudonne [2, p. 83]). Evidently, $\|g\|_{\infty, 1 . \mathrm{a} . \mathrm{e}} \leqq\|g\|_{\infty}$ and $L^{\infty}(\Omega, X) \subset L_{1 . \mathrm{a}, \mathrm{e}}^{\infty}(\Omega, X)$. Hence we have the following

Theorem 4. Let Ω be a locally compact Hausdorff space with a positive Radon measure μ. Then

$$
\begin{equation*}
L^{1}(\Omega, X)^{*} \cong L_{\text {l.a.e }}^{\infty}\left(\Omega, X^{*}\right) \tag{11}
\end{equation*}
$$

under the correspondence $F \in L^{1}(\Omega, X)^{*}$ and $g \in L_{1 . \mathrm{a} \mathrm{e}}^{\infty}\left(\Omega, X^{*}\right)$ if and only if X^{*} has the wide RNP with respect to the positive Radon measure μ.

Proof. For any $f \in C_{c}(\Omega, X)$ and $g \in L_{\text {l.a.e. }}^{\infty}\left(\Omega, X^{*}\right)$, we have

$$
\left|\int_{\Omega}\langle f, g\rangle(t) d \mu\right| \leqq\|f\|_{1}\|g\|_{\infty, 1 \mathrm{a}, \mathrm{e}} .
$$

Since $C_{c}(\Omega, X)$ is dense in $L^{1}(\Omega, X)$, it follows that g defines a bounded linear functional $F \in L^{1}(\Omega, X)^{*}$ such that $\|F\| \leqq\|g\|_{\infty, \text {,.a.e }}$.

Conversely for any $F \in L^{1}(\Omega, X)^{*}$ and any compact subset K of Ω, the restriction $\left.F\right|_{L^{1}(K, X)}=F_{K}$ corresponds to a function $g_{K} \in L^{\infty}\left(K, X^{*}\right) \subset L_{1 . \mathrm{a}, \mathrm{e} .}^{\infty}\left(K, X^{*}\right)$ such that $F(f)=\int_{\Omega}\left\langle f, g_{K}\right\rangle(t) d \mu$ for all $f \in L^{1}(K, X)$, and $\left\|g_{K}\right\|=\left\|F_{K}\right\| \leqq\|F\|$ (by Theorem 3) if and only if X^{*} has the wide RNP. Since $\overline{\bigcup_{K} L^{1}(K, \bar{X})}=L^{1}(\Omega, X)$ and $L^{1}(\Omega, X)$ permits an admissible sequence of subsets in Ω, we have

$$
\sup _{K}\|g\|_{\infty, 1 \text { 1.a.e. }} \leqq \sup _{K}\left\|g_{K}\right\|_{\infty}=\sup _{K}\left\|F_{K}\right\| \leqq\|F\|
$$

where the supremum is taken over all compact subsets of Ω. Define $g(t)=g_{K}(t)$ locally for almost every $t \in K$. Then we have $\|g\|_{\infty, 1 . a . \mathrm{e} .} \leqq\|F\|$, and so (11) holds. Q.E.D.

REMARK. It is of some importance to remark that if the locally compact Hausdorff space Ω is the union of (possibly uncountable) σ-finite subsets Ω_{α} such that
(i) if $\mu(E)<\infty$ then $E \cap \Omega_{\alpha} \neq \emptyset$ for at most a countable number of α; and
(ii) any Borel set K with $\mu\left(K \cap \Omega_{\alpha}\right)=0$ for all α implies $\mu(K)=0$.

Then $L_{1 . \mathrm{a} . \mathrm{e} .}^{\infty}\left(\Omega, X^{*}\right)=L^{\infty}\left(\Omega, X^{*}\right)$.

References

[1] E. Asplund, Frechet differentiability of convex functions, Acta Math., 121 (1968), 31-47.
[2] J. Dieudonné, Sur les espaces de Köthe, J. Analyse Math., 1 (1951), 81-115.
[3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, Amer. Math. Soc., 15, 1977.
[4] N. K. Gretsky, Representation Theorems on Banach Function Spaces, Memoirs Amer. Math. Soc., 84, 1968.
[5] N. E. Gretsky and J. J. Uhl, Jr., Bounded linear operators on Banach function spaces of vector-valued functions, Trans. Amer. Math. Soc., 167 (1972), 263-277.
[6] G. P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc., 92 (1959), 411-429.
[7] W. A. J. Luxemburg and A. C. Zaanen, Some remarks on Banach function spaces, Nederl. Akad. Wetensch., Proc. Ser. A, 59=Indag. Math., 18 (1956), 110-119.
[8] C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, Israel J. Math., 29 (1978), 408-412.
[9] E. Saab, On the Radon-Nikodym property in a class of locally convex spaces, Pacific J. Math., 75 (1978), 281-291.
[10] U. B. Tewari, M. Dutta and D. P. Vaidya, Multipliers of group algebras of vector-valued functions, Proc. Amer. Math. Soc., 81 (1981), 223-229.
(Received October 27, 1983)
INSTITUTE OF MATHEMATICS
NATIONAL TSING HUA UNIVERSITY
HSINCHU, TAIWAN

ON LINEATIONS

M. BOGNÁR and G. KERTÉSZ (Budapest)

In 1978 on the mathematical competition which is held in memoriam Miklós Schweitzer for students in Hungary the first author raised the following problem.

Let f be a superjective mapping of the hyperbolic plane onto itself such that the image of collinear points is again collinear. Prove that f must be an isometry.

To give a proof we first need to show that the map f is injective.
This can be verified by using a lemma of Nándor Simányi. Simányi was a participant of this competition.

First we say that a map $f: M \rightarrow M$ of a euclidean, hyperbolic or projective space M of arbitrary dimension into itself is a lineation of M if for each straight line e of $M f(e)$ is confined to a straight line of M.

Now the lemma of Simányi sounds as follows.
Lemma 1. Let M be the euclidean or hyperbolic plane and let $f: M \rightarrow M$ be an onto lineation of M. Then for each element Q of M the set $f^{-1}(\{Q\})$ is convex.

Proof. We argue by contradiction.
Suppose the existence of distinct points A, B, C in M such that

$$
f(A)=f(B)=Q, \quad f(C)=P \neq Q
$$

and that C lies on the segment $[A, B]$.
Let e_{1} and e_{2} be lines in M both perpendicular to $e_{P Q}$ and such that $P \in e_{1}$ and $Q \in e_{2}$ (see Fig. 1). Thus

$$
\begin{equation*}
e_{1} \cap e_{2}=\emptyset \tag{1}
\end{equation*}
$$

Fig. 1

Let $U \in e_{1} \backslash\{P\}$ and $V \in e_{2} \backslash\{Q\}$. Let $D \in f^{-1}(\{U\})$ and $G \in f^{-1}(\{V\}) . f$ is an onto map hence there exist such points D and G. Moreover the points A, B, C, D, G are pairwise distinct.

Since f is a lineation and the points P, Q, U, V are pairwise distinct we have obviously

$$
\begin{equation*}
f\left(e_{A B}\right) \subset e_{P Q} \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
f\left(e_{A G} \cup e_{B G}\right) \subset e_{2} \tag{3}\\
f\left(e_{C D}\right) \subset e_{1} . \tag{4}
\end{gather*}
$$

Further since $f(D)=U \notin e_{P Q}$ and $f(G)=V \notin e_{P Q}$ it follows by (2) that $D \notin e_{A B}$ and $G \notin e_{A B}$. However in view of the axiom of Pasch the line $e_{C D}$ intersects either the segment $[A, G]$ or that of $[B, G]$. Hence

$$
e_{C D} \cap\left(e_{A G} \cup e_{B G}\right) \neq \emptyset
$$

Let $H \in e_{C D} \cap\left(e_{A G} \cup e_{B G}\right)$. Then by (3) and (4) we have $f(H) \in e_{1} \cap e_{2}$ and this contradicts relation (1).

We turn now to the following
Lemma 2. Each onto lineation of the euclidean or hyperbolic plane is an injective map.

Proof. We argue again by contradiction.
Let $f: M \rightarrow M$ be an onto lineation of the euclidean or hyperbolic plane M and suppose the existence of two distinct points $A, B \in M$ such that $f(A)=f(B)$. Let $P=f(A)$ and let e_{1} be a line in M for which

$$
\begin{equation*}
f\left(e_{A B}\right) \subset e_{1} \tag{5}
\end{equation*}
$$

We then have obviously $P \in e_{1}$.
Let e^{\prime} be a line in M going through P and distinct from e_{1}. Let Q be a point of $e^{\prime} \backslash\{P\}$ and $C \in f^{-1}(\{Q\})$ (see Fig. 2). Then in view of (5) we find $C \notin e_{A B}$.

Fig. 2
Let D be an interior point of the angular region opposite to $\angle A C B$. Then the line $e_{C D}$ meets the segment $[A, B]$ in a point D^{\prime}. In view of Lemma 1 we have $f\left(D^{\prime}\right)=P$ and thus

$$
f\left(e_{C D}\right)=f\left(e_{C D^{\prime}}\right) \subset e_{P Q}=e^{\prime}
$$

Consequently $f(D) \in e^{\prime}$.
$f(D) \neq \boldsymbol{P}$ since otherwise by $C \in\left[D, D^{\prime}\right]$ and because of Lemma 1 there would hold $f(C)=P$ contradicting the assumption $f(C)=Q \neq P$. Hence $f(D) \in e^{\prime} \backslash\{P\}$, $D \in f^{-1}\left(e^{\wedge} \backslash\{P\}\right)$.

Thus $f^{-1}\left(e^{\prime} \backslash\{P\}\right)$ contains the interior of an angular region. Consequently it contains a nonempty open set of M.

Observe that if e_{1}^{\prime} and e_{2}^{\prime} are distinct lines going through P then the sets $f^{-1}\left(e_{1}^{\prime} \backslash\{P\}\right)$ and $f^{-1}\left(e_{2}^{\prime} \backslash\{P\}\right)$ are disjoint. For that reason, since the set of lines of M going through P and distinct from e_{1} is uncountable, there exists an uncountable family of mutually disjoint nonempty open subsets of M contradicting the fact that each family of this kind is countable.

The injectivity of f is proved.
Thereafter observe that for any bijective lineation $f: M \rightarrow M$ the map $f^{-1}: M \rightarrow M$ is obviously a lineation too. Moreover f maps each straight line e of M onto a straight line e^{\prime} of M, and distinct lines should be transformed into distinct ones.

Now in order to prove the original problem observe first that the hyperbolic plane M may be considered as the interior of a conic k lying in the real projective plane P^{2}. (Interior of k means the set of points of P^{2} that fail to lie on any tangent of k.)

Next, the bijective lineation $f: M \rightarrow M$ may be extended to a bijective lineation $\tilde{f}: P^{2} \rightarrow P^{2}$ as follows.

For $Q \in P^{2}$ let e_{1} and e_{2} be distinct straight lines going through Q and intersecting M. For $i=1,2$ let e_{i}^{\prime} be the straight line containing the set $f\left(M \cap e_{i}\right)$ and let $\tilde{f}(Q)$ be the common point of e_{1}^{\prime} and e_{2}^{\prime} (see Fig. 3). According to the Desargues' theorem $\tilde{f}: P^{2} \rightarrow P^{2}$ is uniquely defined. \tilde{f} is clearly a bijective transformation of P^{2} and $\left.\tilde{f}\right|_{M}=f$. Moreover by Desargues' theorem \tilde{f} is a lineation of P^{2}.

Fig. 3
Thus \tilde{f} transforms k onto a conic k^{\prime} and the interior M of k onto the interior M^{\prime} of k^{\prime}. However $\tilde{f}(M)=f(M)=M$. Consequently $k^{\prime}=k$ and thus \tilde{f} belongs to the group of congruences of M. The map \tilde{f} and also the map $f=\left.\tilde{f}\right|_{M}$ is a congruence of M indeed.

This is a solution of the problem in question.
Later in 1979 the first author raised the following question.
Is Lemma 2 true if we replace the euclidean or hyperbolic plane by the real projective plane?

The question was affirmatively answered by the second author. He also proved that if n is an integer bigger than 1 and M is an n-dimensional euclidean or real projective space then each onto lineation of M is injective.

First let us see the case $n=2$.
Lemma 3. Let M be the real projective plane and let $f: M \rightarrow M$ be a lineation such that $f(M)$ contains at least 4 points in general position (i.e. each triple of them is non-collinear). Then $f: M \rightarrow M$ is a bijective map.

Proof of the Lemma. We only need to show that any lineation of the real projective plane keeping fixed 4 points in general position is an identity map of the plane.

Now let $f: M \rightarrow M$ be a lineation of M keeping fixed the points A_{1}, A_{2}, A_{3} and A_{4} such that each triple of them is noncollinear. Obviously we only need to prove that each point of $e_{A_{1} A_{2}}$ is a fixpoint of f. However the set of fixpoints of the map f lying on $e_{A_{1} A_{2}}$ is apparently dense in $e_{A_{1} A_{2}}$. Moreover $f\left(e_{A_{1} A_{2}}\right) \subset e_{A_{1} A_{2}}$. Thus for proving the lemma we only need to show that for any three distinct fixpoints A, B, C of f lying on $e_{A_{1} A_{2}}$ and for each point P of $e_{A_{1} A_{2}}$ both of the relations $(A B, C P)>0$ and $(A B, C f(P))<0$ cannot hold true. $((A B, C P)$ is the cross ratio of the points $A, B, C, P)$.

Now let A, B, C be distinct fixpoints of f lying on $e_{A_{1} A_{2}}$. Let $D=A_{3}$ and let G be a fixpoint of f lying on the line $e_{B D}$ and being distinct from D and B. There exists obviously such a fixpoint.

Introducing the symbol ∞ the relations

$$
h(P)=(A B, C P) \quad\left(P \in e_{A B}\right) \quad \text { and } \quad h^{\prime}(Q)=(D B, G Q) \quad\left(Q \in e_{D B}\right)
$$

define clearly bijective maps

$$
h: e_{A B} \rightarrow R \cup\{\infty\} \quad \text { and } \quad h^{\prime}: e_{D B} \rightarrow R \cup\{\infty\} .
$$

Now let

$$
m=\left.h \circ f\right|_{e_{A B}} \circ h^{-1}: R \cup\{\infty\} \rightarrow R \cup\{\infty\}
$$

and

$$
m^{\prime}=\left.h^{\prime} \circ f\right|_{e_{D B}} \circ h^{\prime-1}: R \cup\{\infty\} \rightarrow R \cup\{\infty\} .
$$

Since A, B and C are fixpoints of f it follows

$$
\begin{equation*}
m(1)=1, \quad m(0)=0, \quad m(\infty)=\infty \tag{6}
\end{equation*}
$$

The remaining part of the proof proceeds in several steps.

Fig. 4
1° First we show that $m=m^{\prime}$.
In fact let U be the common point of $e_{A D}$ and $e_{G C}$ (see Fig. 4). U is clearly a fixpoint of f. Let $x \in R \cup\{\infty\}$ and $P=h^{-1}(x)$. Then $(A B, C P)=x$. Let Q be the
common point of $e_{U P}$ and $e_{D B}$. Then we have $(D B, G Q)=(A B, C P)$ and thus $Q=h^{-1}(x)$. By the collinearity of P, Q, U and by $f(U)=U$ we find that $U, f(P)$ and $f(Q)$ are collinear as well and thus $(A B, C f(P))=(D B, G f(Q))$. Consequently $m(x)=m^{\prime}(x)$ indeed.
2° Let us introduce the relations

$$
0=\frac{0}{a}=\frac{0}{\infty}=\frac{a}{\infty} \quad(a \in R \backslash\{0\}), \quad \infty=\frac{\infty}{a}=\frac{\infty}{0}=\frac{a}{0} \quad(a \in R \backslash\{0\}) .
$$

Let V and W be points of $e_{A B}$ where the cases $V=W=A$ and $V=W=B$ are excluded. We then have obviously

$$
\frac{(A B, C W)}{(A B, C V)}=(A B, V W)
$$

3° Let V and W be points of $e_{A B}$ where the cases $V=W=A$ and $V=W=B$ are excluded. Let Z be the common point of $e_{G V}$ and $e_{A D}$ and let S be the common point of $e_{Z W}$ and $e_{D G}$. Then $(A B, V W)=(D B, G S)$.

The statement is obviously true if $V \in e_{A B} \backslash\{A, B\}$. (See Fig. 5.)

Fig. 5
If $V=A$ then $Z=A, S=B$ and thus $(A B, V W)=0=(D B, G S)$. On the other hand if $V=B$ then $Z=D, S=D$ and thus $(A B, V W)=\infty=(D B, G S)$.
4° Let x, y be elements of $R \backslash\{0\}$ where the cases $m(x)=m(y)=0$ and $m(x)=$ $=m(y)=\infty$ are excluded. Then

$$
m\left(\frac{x}{y}\right)=\frac{m(x)}{m(y)}
$$

In fact let $P_{1}=h^{-1}(y)$ and $P_{2}=h^{-1}(x)$. Then by 2° we have

$$
\begin{equation*}
\left(A B, P_{1} P_{2}\right)=\frac{\left(A B, C P_{2}\right)}{\left(A B, C P_{1}\right)}=\frac{x}{y} . \tag{7}
\end{equation*}
$$

Let T be the common point of $e_{G P_{1}}$ and $e_{A D}$ and Q the common point of $e_{T P_{2}}$ and $e_{D B}$. Then 3° and (7) show that $(D B, G Q)=\left(A B, P_{1} P_{2}\right)=\frac{x}{y}$ and thus

$$
\begin{equation*}
Q=h^{\prime-1}\left(\frac{x}{y}\right) \tag{8}
\end{equation*}
$$

Since the case $m(x)=m(y)=0$ is excluded it follows that the case $f\left(P_{1}\right)=$ $=f\left(P_{2}\right)=B$ cannot occur. Likewise the case $f\left(P_{1}\right)=f\left(P_{2}\right)=A$ cannot occur either. Now since f is a lineation $f(T)$ must be the common point of $e_{G f\left(P_{1}\right)}$ and $e_{A D}$. Moreover $f(Q)$ is the common point of $e_{f(T) f\left(P_{2}\right)}$ and $e_{D B}$. Thus we have according to (8), $3^{\circ}, 2^{\circ}$ and 1°

$$
m\left(\frac{x}{y}\right)=(D B, G f(Q))=\left(A B, f\left(P_{1}\right) f\left(P_{2}\right)\right)=\frac{\left(A B, C f\left(P_{2}\right)\right)}{\left(A B, C f\left(P_{1}\right)\right)}=\frac{m(x)}{m(y)}
$$

as required.
5° Taking also (6) into account 4° shows that for any $y \in R \cup\{\infty\}$ we have $m\left(\frac{1}{y}\right)=\frac{1}{m(y)}$.

We are going to finish the proof of the lemma.
6° Let P be a point of $e_{A B}$ such that $(A B, C P)>0$ and $(A B, C P) \neq \infty$. Let $x=(A B, C P)$ and $y=+\sqrt{x}$. Then

$$
(A B, C f(P))=m\left(y^{2}\right)=m\left(\frac{y}{\frac{1}{y}}\right)
$$

However 5° shows that $m(y)=m\left(\frac{1}{y}\right)$ can only occur in the case $m(y)= \pm 1$ and thus in view of 4° and 5° we have

$$
(A B, C f(P))=\frac{m(y)}{\frac{1}{m(y)}}
$$

Consequently $(A B, C f(P))$ cannot be a negative real number.
The proof of Lemma 3 is complete.
And now let us formulate again the theorem of the second author.
Theorem 1. Let n be an integer bigger than 1 and let M be an n-dimensional euclidean or real projective space. Then each onto lineation of M is injective.

Proof. According to Lemmas 2 and 3 we need only consider the case $n>2$. Now suppose that the theorem is true if we decrease the integer n (at most until 2).

Let $f: M \rightarrow M$ be an onto lineation of M.
First we call a system $\left(q_{1}, \ldots, q_{k}\right)$ of points of M independent if $k \leqq n+1$ and if there is no $(k-2)$-plane of M containing all the points q_{1}, \ldots, q_{k}.

Each subsystem of an independent system of points is independent as well.
Moreover for any independent system of points $\left(q_{1}, \ldots, q_{k}\right)$ there is a unique ($k-1$)-plane of M containing all the points q_{1}, \ldots, q_{k}. We say that this plane is spanned by q_{1}, \ldots, q_{k} and we denote it by $S\left(q_{1}, \ldots, q_{k}\right)$.
7° Let $\left(p_{1}, \ldots, p_{k}\right)$ be an independent system of points in M such that the system $\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)$ is independent as well. Then

$$
f\left(S\left(p_{1}, \ldots, p_{k}\right)\right) \subset S\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)
$$

To prove this statement we proceed by induction.
If $k=1$ then the statement is obviously true. Now let $1<t \leqq n+1$ and suppose that the statement is true for $k=t-1$. Let $\left(p_{1}, \ldots, p_{t}\right)$ be an independent system of points in M such that $\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ is independent as well and let $q \in S\left(p_{1}, \ldots, p_{t}\right)$.

For $i=1, \ldots, t$ let $S_{i}=S\left(p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{t}\right)$ and

$$
S_{i}^{\prime}=S\left(f\left(p_{1}\right), \ldots, f\left(p_{i-1}\right), f\left(p_{i+1}\right), \ldots, f\left(p_{t}\right)\right)
$$

Then there is obviously an index $i(1 \leqq i \leqq t)$ and a point q^{\prime} in S_{i} such that q belongs to the line $e_{p_{i} q^{\prime}}$. (If M is a real projective space then we may select $i=1$). By the induction hypothesis $f\left(q^{\prime}\right) \in S_{i}^{\prime}$ and thus $f\left(q^{\prime}\right) \neq f\left(p_{i}\right)$. Hence $f(q)$ belongs to the line $e_{f\left(q^{\prime}\right) f\left(p_{i}\right)}$ and thus to the plane $S\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ as required.

Accordingly the statement is true for $k=t$ which completes the proof.
8° Let $\left(p_{1}, \ldots, p_{k}\right)$ be a sequence of points in M such that $\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)$ is an independent system. Then $\left(p_{1}, \ldots, p_{k}\right)$ is an independent system too.

In fact let S be the intersection of all planes of M containing the set $\left\{p_{1}, \ldots, p_{k}\right\}$. S is a plane and we may select an independent subsequence ($p_{i_{1}}, \ldots, p_{t_{t}}$) of the sequence $\left(p_{1}, \ldots, p_{k}\right)$ such that $S=S\left(p_{i_{1}}, \ldots, p_{i_{t}}\right)$. Consequently in view of 7°

$$
f(S) \subset S\left(f\left(p_{i_{1}}\right), \ldots, f\left(p_{i_{t}}\right)\right)
$$

and thus for $i=1, \ldots, k$ we have

$$
f\left(p_{i}\right) \in S\left(f\left(p_{i_{1}}\right), \ldots, f\left(p_{i_{t}}\right)\right) .
$$

Hence $t=k$ and $i_{j}=j$ for $j=1, \ldots, k$. Accordingly $\left(p_{1}, \ldots, p_{k}\right)$ is an independent system of points as required.
9° For $0 \leqq k \leqq n$ and for any plane S of dimension k the set $f(S)$ is contained in a k-plane of M.

In fact otherwise $f(S)$ would contain an independent system of points $\left(p_{1}^{\prime}, \ldots, p_{k+2}^{\prime}\right)$. Let $p_{i} \in S \cap f^{-1}\left(\left\{p_{i}^{\prime}\right\}\right)$. Then by 8° the sequence $\left(p_{1}, \ldots, p_{k+2}\right)$ would be independent as well and it would lie in S which is impossible.
10° Let $1 \leqq k \leqq n$ and let S be a k-plane of M. Suppose that $f(S)$ is confined to the union of a finite number of $(k-1)$-planes of M. Then there is a $(k+1)$-plane S^{\prime} in M such that $f\left(S^{\prime}\right)$ is confined to the union of a finite number of k-planes of M.

In fact let $f(S) \subset S_{1} \cup \ldots \cup S_{r}$ where S_{1}, \ldots, S_{r} are $(k-1)$-planes of M. Let $q^{\prime} \in M \backslash\left(S_{1} \cup \ldots \cup S_{r}\right)$. There exists obviously such a point q^{\prime}. Let $q \in f^{-1}\left(\left\{q^{\prime}\right\}\right)$. Then $q \notin S$. Let S^{\prime} be the ($k+1$)-plane containing the set $\{q\} \cup S$ and for $i=1, \ldots, r$ let S_{i}^{\prime} be the k-plane containing $\left\{q^{\prime}\right\} \cup S_{i}$. If M is a euclidean space then let $S^{\prime \prime}$ be the k-plane going through q and parallel to S and let S_{r+1}^{\prime} be a k-plane containing $f\left(S^{\prime \prime}\right)$. In view of 9° there exists such a plane S_{r+1}^{\prime}. If M is a real projective space then let S_{r+1}^{\prime} be an arbitrary k-plane. In both cases we obviously have

$$
f\left(S^{\prime}\right) \subset S_{1}^{\prime} \cup \ldots \cup S_{r+1}^{\prime}
$$

11° Let $1 \leqq k \leqq n$. Then for each k-plane S in $M f(S)$ can not be confined to the union of a finite number of $(k-1)$-planes.

Since the only n-plane of M is M itself and f is an onto map the assertion is obviously true for $k=n$. Hence according to 10° it is true for every $k(k \leqq n)$.
12° Let S be a 2-plane of M. Let S^{\prime} be a 2-plane of M containing $f(S)$ (see 9°). Then $f(S)=S^{\prime}$.

We argue again by contradiction. Suppose the existence of a point q^{\prime} in $S^{\prime} \backslash f(S)$. Let $q \in f^{-1}\left(\left\{q^{\prime}\right\}\right)$. Then $q \not \ddagger S$. Let S_{1} be the 3-plane of M containing $S \cup\{q\}$. If M is a euclidean space then let S_{2} be the 2-plane going through q and parallel to S and let S_{2}^{\prime} be a 2-plane of M containing $f\left(S_{2}\right)$. If M is a real projective space then let S_{2}^{\prime} be an arbitrary 2-plane of M.

Now in both cases $f\left(S_{1}\right)$ is clearly contained in $S^{\prime} \cup S_{2}^{\prime}$ which is impossible by 11°.

We are going to finish the proof of the theorem.
13° Let p and q be distinct points of M and let S be a 2-plane of M containing p and q. In view of $12^{\circ} f(S)$ is a 2-plane of M. Let $g: f(S) \rightarrow S$ be a bijective linear map (that means g takes each line into a line). There exists obviously such a map. Then

$$
\left.g \circ f\right|_{s}: S \rightarrow S
$$

is an onto lineation and thus according to Lemmas 2 and $3 g(f(p)) \neq g(f(q))$. Thus $f(p) \neq f(q)$.

The theorem is proved.
Now we can raise the following question.
Is Lemma 2 true if we replace the euclidean or hyperbolic plane in it by the hyperbolic space?

Since the hyperbolic space may be considered as an open ball in the euclidean 3-space where the straight lines of the hyperbolic space are the nonempty intersections of the straight lines of the euclidean space with the open ball, the following theorem of the first author gives an affirmative answer to this question.

Theorem 2. Let K be a nonempty open convex set in the euclidean n-space R^{n} where $n \geqq 2$. Let $f: K \rightarrow R^{n}$ be a mapping satisfying the following two conditions:
(a) for each straight line e of R^{n} there exists a straight line e^{\prime} of R^{n} such that

$$
f(e \cap K) \subset e^{\prime}
$$

(b) $f(K)$ is open in R^{n}.

Then the map $f: K \rightarrow f(K)$ is bijective and $f(K)$ is a convex set.
Proof. 14° Let $\left(p_{1}, \ldots, p_{k}\right)$ be an independent system of points in K such that $\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)$ is independent as well. Then

$$
f\left(S\left(p_{1}, \ldots, p_{k}\right) \cap K\right) \subset S\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)
$$

To prove this statement we proceed by induction.
If $k=1$ then the statement is obviously true.
Now let $1<t \leqq n+1$ and suppose that the statement is true for $k=t-1$. Let $\left(p_{1}, \ldots, p_{t}\right)$ be an independent system of points in K such that $\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ is independent as well and let $q \in S\left(p_{1}, \ldots, p_{t}\right) \cap K$. For $i=1, \ldots, t$ let $S_{i}=$ $=S\left(p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{t}\right)$ and $S_{i}^{\prime}=S\left(f\left(p_{1}\right), \ldots, f\left(p_{i-1}\right), f\left(p_{i+1}\right), \ldots, f\left(p_{t}\right)\right)$. Then there is obviously an index $i(1 \leqq i \leqq t)$ and a point q^{\prime} in $S_{i} \cap K$ such that q belongs
to the line $e_{p_{i} q^{\prime}}$. By the induction hypothesis $f\left(q^{\prime}\right) \in S_{i}^{\prime}$ and thus $f\left(q^{\prime}\right) \neq f\left(p_{i}\right)$. Hence $f(q)$ belongs to the line $e_{f\left(q^{\prime}\right) f\left(p_{i}\right)}$ and thus to the plane $S\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ as required.

Accordingly the statement is true for $k=t$ which completes the proof.
15° Let $\left(p_{1}, \ldots, p_{k}\right)$ be a sequence of points in K such that $\left(f\left(p_{1}\right), \ldots, f\left(p_{k}\right)\right)$ is an independent system of points. Then $\left(p_{1}, \ldots, p_{k}\right)$ is an independent system of points too.

The proof is nearly the same as that of 8° only 7° must be replaced by 14° and $f(S)$ by $f(S \cap K)$.
16° For $0 \leqq k \leqq n$ and for any k-plane S of R^{n} the set $f(S \cap K)$ is contained in a k-plane of R^{n}.

The proof is the same as that of 9°. Only $f(S)$ must be replaced by $f(S \cap K)$ and 8° by 15°.
17° For each $q \in R^{n} f^{-1}(\{q\})$ is a convex set.
We argue by contradiction. Suppose that a, b, c are points of K such that c lies on the segment $[a, b]$ and $f(a)=f(b)=q, f(c)=q^{\prime} \neq q$. Let S^{\prime} be a hyperplane of R^{n} going through q^{\prime} and missing q and let e^{\prime} be a straight line of R^{n} going through q and parallel to S^{\prime} (i.e. $e^{\prime} \cap S^{\prime}=\emptyset$). Let $q_{2}^{\prime}, \ldots, q_{n}^{\prime}$ be points of $S^{\prime} \cap f(K)$ such that the system $\left(q^{\prime}, q_{2}^{\prime}, \ldots, q_{n}^{\prime}\right)$ should be independent. Since $f(K)$ is open in R^{n} and $q^{\prime} \in f(K)$ there exists such a system. Let p_{2}, \ldots, p_{n} be points of K such that for $i=2, \ldots, n$ the relation $f\left(p_{i}\right)=q_{i}^{\prime}$ holds. In view of $15^{\circ}\left(c, p_{2}, \ldots, p_{n}\right)$ is an independent system of points.

Let $S=S\left(c, p_{2}, \ldots, p_{n}\right)$. According to 16° we have $f(S \cap K) \subset S^{\prime}$ and since $f(a)=$ $=f(b)=q \notin S^{\prime}$ it follows $\{a, b\} \cap S=\emptyset$. However $c \in S$ and thus $[a, b] \cap S \neq \emptyset, a$ and b lie on different open halfspaces of R^{n} bounded by S.

Let q^{*} be a point of $e^{\prime} \cap f(K)$ distinct from q. Since $f(K)$ is open in R^{n} and $q \in f(K)$ there exists such a q^{*}. Let $p^{*} \in f^{-1}\left(\left\{q^{*}\right\}\right)$. Then $p^{*} \neq a$ and $p^{*} \neq b$. Moreover

$$
\begin{equation*}
f\left(e_{a p^{*}} \cap K\right) \subset e^{\prime}, f\left(e_{b p^{*}} \cap K\right) \subset e^{\prime} \tag{9}
\end{equation*}
$$

By the convexity of K the segments $\left[a, p^{*}\right]$ and $\left[b, p^{*}\right]$ belong to K and thus in view of (9) we have

$$
\begin{equation*}
f\left(\left[a, p^{*}\right] \cup\left[b, p^{*}\right]\right) \subset e^{\prime} . \tag{10}
\end{equation*}
$$

However since a and b lie in different halfspaces bounded by S it follows that $\left(\left[a, p^{*}\right] \cup\left[b, p^{*}\right]\right) \cap S \neq \emptyset$ and thus (10) implies $e^{\prime} \cap S^{\prime} \neq \emptyset$ which contradicts the assumption $e^{\prime} \cap S^{\prime}=\emptyset$.

The assertion is proved.
18° Suppose the existence of distinct points $a, b \in K$ such that $f(a)=f(b)$. Then there exists a sequence p_{0}, \ldots, p_{n-2} of points of K satisfying the following three conditions.
(i) $p_{0}=b$,
(ii) $\left(a, p_{0}, \ldots, p_{n-2}\right)$ is an independent system of points in R^{n},
(iii) $\left(f\left(p_{0}\right), \ldots, f\left(p_{n-2}\right)\right)$ is an independent system of points as well.

We shall construct such a sequence by a recursive way.
The systems (a, b) and $(f(b))$ are clearly independent.

Suppose that $0<k \leqq n-2$ and the points p_{0}, \ldots, p_{k-1} of K have been taken such that $p_{0}=b$ and the systems $\left(a, p_{0}, \ldots, p_{k-1}\right)$ and $\left(f\left(p_{0}\right), \ldots, f\left(p_{k-1}\right)\right)$ should be independent. Let $S=S\left(a, p_{0}, \ldots, p_{k-1}\right)$ and let S^{\prime} be a k-plane of R^{n} containing the set $f(S \cap K)$. According to 16° there exists such an S^{\prime}. Observe that for $i=0, \ldots, k-1 f\left(p_{i}\right)$ obviously belongs to S^{\prime}. Let q_{k} be a point of $f(K) \backslash S^{\prime}$. Since $f(K)$ is nonempty and open in R^{n} there exists such a point q_{k}. The system $\left(f\left(p_{0}\right), \ldots, f\left(p_{k-1}\right), q_{k}\right)$ is then clearly independent.

Let $p_{k} \in f^{-1}\left(\left\{q_{k}\right\}\right)$. Then $p_{k} \notin S$ and thus the system (a, p_{0}, \ldots, p_{k}) is likewise independent.

The existence of a sequence $\left(p_{0}, \ldots, p_{n-2}\right)$ with the desired properties is proved.
19° Under the same assumption as in 18° and for the same sequence p_{0}, \ldots, p_{n-2} let us consider the simplex s^{n-1} with vertices $a, p_{0}, \ldots, p_{n-2}$. By the convexity of K one obviously has $s^{n-1} \subset K$.

We are going to show that

$$
f\left(s^{n-1}\right) \subset S\left(f\left(p_{0}\right), \ldots, f\left(p_{n-2}\right)\right)
$$

We proceed by induction.
For $i=1, \ldots, n-1$ let s^{i} be the simplex of R^{n} with the vertices $a, p_{0}, \ldots, p_{i-1}$ and let $S^{i-1}=S\left(f\left(p_{0}\right), \ldots, f\left(p_{i-1}\right)\right)$. Since $f(a)=f\left(p_{0}\right)$ it follows by 17° that $f\left(s^{1}\right) \subset S^{0}$.

Suppose that $1<i \leqq n-1$ and that $f\left(s^{i-1}\right) \subset S^{i-2}$ holds true.
Let $d \in s^{i}$. Then d lies on a segment $\left[d^{\prime}, p_{i-1}\right]$ where $d^{\prime} \in s^{i-1}$ and thus by the induction hypothesis $f\left(d^{\prime}\right) \in S^{i-2}$. However since the system of points $\left(f\left(p_{0}\right), \ldots, f\left(p_{i-1}\right)\right)$ is independent it follows that $f\left(p_{i-1}\right) \notin S^{i-2}$ and thus $f\left(p_{i-1}\right) \neq$ $\neq f\left(d^{\prime}\right)$. Consequently

$$
f\left(\left[d^{\prime}, p_{i-1}\right]\right) \subset f\left(e_{d^{\prime} p_{i-1}} \cap K\right) \subset e_{f\left(d^{\prime}\right) f\left(p_{i-1}\right)} \subset S^{i-1}
$$

and thus $f(d) \in S^{i-1}$ which proves $f\left(s^{i}\right) \subset S^{i-1}$.
20° We are going to prove that the map f is injective
We argue again by contradiction.
Suppose the existence of distinct points $a, b \in K$ such that $f(a)=f(b)$. Let p_{0}, \ldots, p_{n-2} be the same as in 18°. Moreover let s^{n-1} and S^{n-2} be the same as in 19°. According to 19° we have

$$
\begin{equation*}
f\left(s^{n-1}\right) \subset S^{n-2} . \tag{11}
\end{equation*}
$$

Let $S=S\left(a, p_{0}, \ldots, p_{n-2}\right)$ and let S_{0}^{\prime} be an ($n-1$)-plane of R^{n} containing $f(S \cap K)$. In view of 16° there exists such a plane and we obviously have $S^{n-2} \subset S_{0}^{\prime}$. Let S^{\prime} be a hyperplane of R^{n} distinct from S_{0}^{\prime} and containing S^{n-2}. Let $q^{\prime} \in\left(S^{\prime} \cap f(K)\right) \backslash S^{n-2}$. Since $f(K)$ is open in R^{n} and by (11) $S^{\prime} \cap f(K) \neq \emptyset$ there exists such a point q^{\prime}.

Let $q \in f^{-1}\left(\left\{q^{\prime}\right\}\right)$. Since $q^{\prime}=f(q) \notin f(S \cap K)$ it follows $q \notin S$ and thus the system of points $\left(a, p_{0}, \ldots, p_{n-2}, q\right)$ is independent. Hence we get an n-simplex s_{q}^{n} in R^{n} with the vertices $a, p_{0}, \ldots, p_{n-2}, q$ where s^{n-1} is a face of s_{q}^{n}.

For $i=0, \ldots, n-2$ let Φ_{i} be the open halfspace of R^{n} bounded by the hyperplane $S\left(a, p_{0}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n-2}, q\right)$ of R^{n} and missing the point p_{i}. Let Φ_{a}
be the open halfspace of R^{n} bounded by $S\left(p_{0}, \ldots, p_{n-2}, q\right)$ and missing the point a. Then

$$
G_{q}=\Phi_{a} \cap \Phi_{0} \cap \ldots \cap \Phi_{n-2} \cap K
$$

is obviously a nonempty open set in R^{n} and $q \notin G_{q}$.
Let $u \in G_{q}$. The straight line $e_{q u}$ meets s^{n-1} in a point u^{*} and q belongs to the segment $\left[u, u^{*}\right]$. Moreover we have $e_{q u}=e_{q u^{*}}$. Since $u^{*} \in s^{n-1}$ it follows

$$
\begin{equation*}
f\left(u^{*}\right) \in S^{n-2} \subset S^{\prime} \tag{12}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
f(q)=q^{\prime} \in S^{\prime} \backslash S^{n-2} \tag{13}
\end{equation*}
$$

and thus

$$
\begin{equation*}
f\left(e_{q u}\right)=f\left(e_{q u^{*}}\right) \subset e_{q^{\prime} f\left(u^{*}\right)} \subset S^{\prime} \tag{14}
\end{equation*}
$$

According to (12) and (13) the line $e_{q^{\prime} f\left(u^{*}\right)}$ intersects S^{n-2} in the only point $f\left(u^{*}\right)$. Moreover by (14) we have

$$
\begin{equation*}
f(u) \in e_{q^{\prime} f\left(u^{*}\right)} . \tag{15}
\end{equation*}
$$

$f(u)=f\left(u^{*}\right)$ can not occur since otherwise in view of $q \in\left[u, u^{*}\right]$ and $17^{\circ} f(q)=$ $=f\left(u^{*}\right)$ would hold and this is impossible by (12) and (13). Thus $f(u) \neq f\left(u^{*}\right)$ consequently by (15) and (14) we have $f(u) \in S^{\prime} \backslash S^{n-2}$. This yields the relation

$$
\begin{equation*}
G_{q} \subset f^{-1}\left(S^{\prime} \backslash S^{n-2}\right) \tag{16}
\end{equation*}
$$

Consequently $f^{-1}\left(S^{\prime} \backslash S^{n-2}\right)$ contains a nonempty open subset of R^{n}.
However for distinct hyperplanes S_{1}^{\prime} and S_{2}^{\prime} containing S^{n-2} the sets $S_{1}^{\prime} \backslash S^{n-2}$ and $S_{2}^{\prime} \backslash S^{n-2}$ are disjoint and thus the sets $f^{-1}\left(S_{1}^{\prime} \backslash S^{n-2}\right)$ and $f^{-1}\left(S_{2}^{\prime} \backslash S^{n-2}\right)$ are disjoint as well.

The family of hyperplanes of R^{n} containing S^{n-2} and distinct from S_{0}^{\prime} is uncountable and thus there would exist an uncountable family of mutually disjoint nonempty open sets of R^{n} contradicting the fact that each family of mutually disjoint nonempty open sets of R^{n} is countable.

The injectivity of the map f is proved.
What about the convexity of $f(K)$? First observe that the space R^{n} can be considered as $P^{n} \backslash P^{n-1}$ where for $i=n-1, n P^{i}$ is the i-dimensional real projective space. Now the bijective map $f: K \rightarrow f(K)$ may be extended to a bijective lineation $\tilde{f}: P^{n} \rightarrow P^{n}$ in the same way what we have done at the proof of the original problem.

Now let a^{\prime}, b^{\prime} be distinct points of $f(K)$ and let $a=f^{-1}\left(a^{\prime}\right), b=f^{-1}\left(b^{\prime}\right)$. Then $f([a, b]) \subset f(K) \subset P^{n} \backslash P^{n-1}$ and $f([a, b])$ is a projective segment in P^{n} with the endpoints a^{\prime}, b^{\prime}. However since $f([a, b]) \cap P^{n-1}=\emptyset f([a, b])$ is the euclidean segment in R^{n} joining a^{\prime} and b^{\prime} and thus $\left[a^{\prime}, b^{\prime}\right] \subset f(K) . f(K)$ is convex indeed. The proof of Theorem 2 is complete.

Now we can raise the following question:
Does Lemma 3 remain true if we replace number 4 by number 3 in it?
It is easy to see that the answer is negative. Or even more there exist several lineations $f: M \rightarrow M$ of the real projective plane M such that $f(M)$ consists of three noncollinear points. Each lineation of this kind clearly gives rise to a colouring of M in three colours so that no straight line contains points of all three colours.

In fact if $f(M)=\{a, b, c\}$ then let us colour the points of $f^{-1}(\{a\})$ by red those of $f^{-1}(\{b\})$ white and those of $f^{-1}(\{c\})$ blue. On the other hand each colouring of this kind corresponds obviously to a unique lineation $f: M \rightarrow M$ such that $f(M)$ consists of three noncollinear points.

Now by a colouring of a projective plane we understand in the sequel a colouring of the plane in three colours say red, white and blue so that no line contains points of all three colours.

One type of colouring say radial colouring can be obtained by colouring a point p red, say and colouring each line through p with p delated either solid white or solid blue, randomly. Another type say axial colouring is obtained by colouring the points of a line e either white or blue randomly and colouring all points not on e red. We shall call colourings of either of the above type trivial. The trivial colourings are precisely the ones on which some colour is confined to a line.

Thereafter the first author posed the following question:
Does there exist a nontrivial colouring of the real projective plane?
The question has been answered affirmatively by A. W. Hales and E. G. Straus [2]. They also proved in 1980 that the projective plane $P^{2}(F)$ over the commutative field F has no nontrivial colouring if and only if F is an algebraic extension of a finite field.

Finally we refer the reader to the paper of David S. Carter and Andrew Vogt [1]. They solved the problem of characterization of all lineations of projective or affine Desarguesian planes. However as to the hyperbolic plane the same problem is still unsolved.

References

[1] David S. Carter and Andrew Vogt, Collinearity preserving functions between Desarguesian planes, Memoirs of the American Mathematical Society, 235 (1980).
[2] A. W. Hales and E. G. Straus, Projective colorings, Pacific Journal of Mathematics, 99 (1982), 31-43.

PROPERTIES OF THE RELATIVE ENTROPY OF STATES OF VON NEUMANN ALGEBRAS

D. PETZ (Budapest)

In an operator algebra the measure of the Kullback-Leibler information was defined by Umegaki [26]. Nowadays it is quite common that a non-commutative algebra with a specified positive functional may serve as the basic object of an algebraic (or non-commutative or quantum) probability theory. In case when \mathscr{A} is a von Neumann algebra possessing a faithful normal semifinite trace τ then any normal state of \mathscr{A} can be described by a positive selfadjoint operator affiliated with \mathscr{A}. In the finite dimensional case this operator is simply the corresponding density matrix. To be more concrete, if $\varphi_{i}(a)=\tau\left(\varrho_{i} a\right)(a \in \mathscr{A}, i=1,2)$, the relative entropy of φ_{1} and φ_{2} is then defined as follows:

$$
S\left(\varphi_{1}, \varphi_{2}\right)=\varphi_{2}\left(\log \varrho_{2}-\log \varrho_{1}\right)=\tau\left(\varrho_{2}\left(\log \varrho_{2}-\log \varrho_{1}\right)\right) .
$$

We ought to note here that the relative entropies occurring in the literature differ slightly sometimes both in sign and order of the states. For example the entropy S_{B-R} in [5] is related to this one as

$$
S_{B-R}\left(\varphi_{1}, \varphi_{2}\right)=-S\left(\varphi_{2}, \varphi_{1}\right)
$$

Some properties of the relative entropy have important physical interpretations ([5], [18], [27]). We do not treat them in details but we look at the following phenomena. If \mathscr{B} is another algebra and a stochastical mapping $\alpha: \mathscr{B} \rightarrow \mathscr{A}$ carries the states ω_{1}, ω_{2} into φ_{1}, φ_{2}, respectively, then intuitively it is more difficult to make distinction between φ_{1} and φ_{2} than ω_{1} and ω_{2}, consequently it is quite natural that $S\left(\omega_{1}, \omega_{2}\right) \leqq S\left(\varphi_{1}, \varphi_{2}\right)$.

If \mathscr{A} does not have a trace then one can not compare two states by means of their densities. In an arbitrary von Neumann algebra Araki defined the relative entropy of two normal states using the relative modular operator ([2], [3]). By now all the important properties of the Kullback-Leibler relative entropy have been verified in general von Neumann algebras. Among them the convexity must have the largest literature. In this paper we do not touch this area and we refer to the recent paper [10] and the older ones [13], [14]. We prove the strong superadditivity of the relative entropy utilizing an idea of Lindblad ([16]).

Auxiliary results

In this section we prove some auxiliary results. Most of them may be known but have not succeeded in finding satisfactory references. First we look at theorems of interpolation type.

Let Δ be a positive selfadjoint operator on a Hilbert space \mathscr{H} and let $\varepsilon>0$ be fixed for a while. The domain $\mathscr{D}\left(\Delta^{t}\right)$ becomes a Hilbert space \mathscr{H}_{t} with the norm

$$
\|\xi\|_{t}=\left(\varepsilon\|\xi\|^{2}+\left\|\Delta^{t} \xi\right\|^{2}\right)^{1 / 2}
$$

for any $0 \leqq t \leqq 1$. The pair $\left(\mathscr{H}_{0}, \mathscr{H}_{1}\right)$ is a compatible couple in the sense of interpolation theory and it may be the starting point of an interpolation giving a scale of spaces $\left(\mathscr{H}_{0}, \mathscr{H}_{1}\right)_{t}(0 \leqq t \leqq 1)$. Since we use only few results of interpolation theory we do not want to introduce its complete machinery. Instead, we refer to some standard books [4], [21] and [24]. In [24] one can find the following theorem: $\left(\mathscr{H}_{0}, \mathscr{H}_{1}\right)_{t}=\mathscr{H}_{t}(1.18 .10)$. It will be used to prove

Proposition 1. Let Δ_{j} be a positive selfadjoint operator on $\mathscr{H}^{j}(j=1,2)$. If $T: \mathscr{H}^{1} \rightarrow \mathscr{H}^{2}$ is a bounded operator such that
(i) $T \mathscr{D}\left(\Delta_{1}\right) \subset \mathscr{D}\left(\Delta_{2}\right)$,
(ii) $\left\|\Delta_{2} T \xi\right\| \leqq\|T\| \cdot\left\|\Delta_{1} \xi\right\| \quad\left(\xi \in \mathscr{D}\left(\Delta_{1}\right)\right)$,
then we have for every $0 \leqq t \leqq 1$ and $\xi \in \mathscr{D}\left(\Delta_{1}^{t}\right)$

$$
\left\|\Delta_{2}^{t} T \xi\right\| \leqq\|T\| \cdot\left\|\Delta_{1}^{t} \xi\right\| .
$$

Proof. For every fixed $\varepsilon>0$ we have $\left(\mathscr{H}_{0}^{j}, \mathscr{H}_{1}^{j}\right)_{t}=\mathscr{H}_{t}^{j}(j=1,2$ and $0 \leqq t \leqq 1)$ by the above cited result. Since $\|T \xi\|_{\mathscr{H}_{0}^{2}} \leqq\|T\| \cdot\|\xi\|_{\mathscr{H}_{0}^{1}}$ and $\|T \eta\|_{\mathscr{H}_{1}^{2}} \leqq\|T\| \cdot\|\eta\|_{\mathscr{H}_{1}^{2}}$ for every $\xi \in \mathscr{H}_{0}^{1}$ and $\eta \in \mathscr{H}_{1}^{1}$ the Calderon-Lions interpolation theorem (see, for example, [4, 8.12] or [21, IX.20]) gives that

$$
\|T \xi\| \mathscr{H}_{t}^{2} \leqq\|T\|\|\xi\| \mathscr{H}_{t}^{1}
$$

holds for any $\xi \in \mathscr{D}\left(\Delta_{1}^{t}\right)=\mathscr{H}_{t}^{1}$. Equivalently,

$$
\varepsilon\|T \xi\|^{2}+\left\|\Delta_{2}^{t} T \xi\right\|^{2} \leqq\|T\|^{2}\left(\varepsilon\|\xi\|^{2}+\left\|\Delta_{1}^{t} \xi\right\|^{2}\right) .
$$

Letting $\varepsilon \rightarrow 0$ we obtain the Proposition.
Lemma 1. If Δ is a positive selfadjoint operator and $\xi \in \mathscr{D}(\Delta)$ then $\left\|\Delta^{t} \xi\right\| \leqq$ $\leqq\|\xi\|^{1-t} \cdot\|\Delta \xi\|^{t}$ for any $0 \leqq t \leqq 1$.

Proof. It is sufficient to apply the three lines theorem [7, p. 520] to the bounded analytical function $z \mapsto \Delta^{z} \xi(0 \leqq \operatorname{Re} z \leqq 1)$. (For a more elementary proof, see [17, p. 141].)

Lemma 2. Let Δ be a positive selfadjoint operator and $\xi \in \mathscr{D}(\Delta)$. Then

$$
\lim _{t \rightarrow+0} t^{-1}\left(\left\|\Delta^{t / 2} \xi\right\|^{2}-\|\xi\|^{2}\right)
$$

exists. It is finite or $-\infty$ and equals $\int_{0}^{\infty} \log \lambda d\left\langle E_{\lambda} \xi, \xi\right\rangle$ where $\int_{0}^{\infty} \lambda d E_{\lambda}$ is the spectral resolution of Δ.

Proof. By the spectral theorem

$$
t^{-1}\left(\left\|\Delta^{t / 2} \xi\right\|^{2}-\|\xi\|^{2}\right)=\int_{0}^{\infty} t^{-1}\left(\lambda^{t}-1\right) d\left\langle E_{\lambda} \xi, \xi\right\rangle .
$$

Using the monotone convergence theorem we have

$$
\int_{i}^{\infty} t^{-1}\left(\lambda^{t}-1\right) d\left\langle E_{\lambda} \xi, \xi\right\rangle \xrightarrow[t \rightarrow+0]{ } \int_{1}^{\infty} \log \lambda d\left\langle E_{\lambda} \xi, \xi\right\rangle
$$

and the limit is finite. According to the Fatou lemma

$$
\int_{0}^{1} \log \lambda d\left\langle E_{\lambda} \xi, \xi\right\rangle \geqq \limsup _{t \rightarrow+0} \int_{0}^{1} t^{-1}\left(\lambda^{t}-1\right) d\left\langle E_{\lambda} \xi, \xi\right\rangle
$$

and on the other hand $\log \lambda \leqq t^{-1}\left(\lambda^{t}-1\right)$. Hence

$$
\int_{0}^{1} t^{-1}\left(\lambda^{t}-1\right) d\left\langle E_{\lambda} \xi, \xi\right\rangle \underset{t \rightarrow+0}{ } \int_{0}^{1} \log \lambda d\left\langle E_{\lambda} \xi, \xi\right\rangle .
$$

The strong convergence of bounded operators admits an extension to selfadjoint ones. Let Δ_{n} be a selfadjoint operator ($n=1,2, \ldots, \infty$). Then $\Delta_{n} \rightarrow \Delta_{\infty}$ strongly in the generalized sense if $\left(\Delta_{n}+i \lambda I\right)^{-1} \rightarrow\left(\Delta_{\infty}+i \lambda I\right)^{-1}$ strongly for some $\lambda \in \mathbf{R} \backslash\{0\}$ ([20] VIII. 7).

Proposition 2 ([19, p. 312]). For selfadjoint operators $\Delta_{n}(n=1,2, \ldots, \infty)$ the following conditions are equivalent.
(i) $\exp \left(i t \Delta_{n}\right) \xrightarrow{\text { so }} \exp \left(i t \Delta_{\infty}\right)$ for every $t \in \mathbf{R}$.
(ii) $f\left(\Delta_{n}\right) \xrightarrow{\text { so }} f\left(\Delta_{\infty}\right)$ for every continuous bounded function f,
(iii) If $\Delta_{n}=\int_{-\infty}^{\infty} \lambda d E_{\lambda}^{n}$ is the spectral resolution then $E_{\lambda}^{n}(a, b) \xrightarrow{\text { so }} E_{\lambda}^{\infty}(a, b)$ for every $a, b \in \mathbf{R}-\sigma_{p p}\left(\Delta_{\infty}\right)$.
(iv) $\Delta_{n} \rightarrow \Delta_{\infty}$ strongly in the generalized sense.

Lemma 3. Let Δ_{n} be a positive selfadjoint operator $(n=1,2, \ldots, \infty)$ and $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$ a function such that $f(0)=0$ and f is continuous and strictly monotone increasing on $(0,+\infty)$. If $\Delta_{n} \rightarrow \Delta_{\infty}$ strongly in the generalized sense and $\operatorname{Ker} \Delta_{n} \rightarrow \operatorname{Ker} \Delta_{\infty}$ then $f\left(\Delta_{n}\right) \rightarrow f\left(\Delta_{\infty}\right)$ strongly in the generalized sense.

Proof. Let $g=f \mid(0,+\infty)$. If $0 \notin(a, b)$ then $\chi_{(a, b)} f\left(\Lambda_{n}\right)=\chi_{\left(g^{-1}(a), g^{-1}(b)\right)}\left(\Delta_{n}\right)$ and in case of $0 \in(a, b)$ we have $\chi_{(a, b)} f\left(\Delta_{n}\right)=\chi_{\left(g^{-1}(a), g^{-1}(b)\right)}\left(\Delta_{n}\right)+\operatorname{Ker} \Delta_{n}$. When $a, b \notin$ $\notin \sigma_{p p}\left(\Delta_{\infty}\right)$ then $g^{-1}(a), g^{-1}(b) \notin \sigma_{p p}\left(\Delta_{\infty}\right)$ and condition (iii) in the previous Proposition is satisfied.

The relative entropy

Throughout this section \mathscr{A} will be a von Neumann algebra with a normal faithful positive functional φ. We assume that \mathscr{A} acts on a Hilbert space \mathscr{H} and φ is given by a cyclic and separating vector ξ.

Lemma 4. Suppose that $\omega(a)=\langle a \eta, \eta\rangle$ for some $\eta \in \mathscr{H}$. Then the quadratic form $q: a \xi \mapsto \omega\left(a a^{*}\right)(a \in \mathscr{A})$ and the conjugate linear operator $S: a \xi \mapsto a^{*} \xi(a \in \mathscr{A})$ are closable. Moreover, $\Delta=S^{*} \bar{S}$ is the associated selfadjoint operator for the closure \bar{q} of q. (This means that $\mathscr{D}\left(\Delta^{1 / 2}\right)=\mathscr{D}(\bar{q})$ and $\bar{q}(\zeta)=\left\|\Delta^{1 / 2} \zeta\right\|$ for $\zeta \in \mathscr{D}(\bar{q})$).

Proof. Introducing the operator $F: a^{\prime} \xi \mapsto a^{\prime *} \xi\left(a^{\prime} \in \mathscr{A}^{\prime}\right)$ we have

$$
\left\langle S a \xi, a^{\prime} \xi\right\rangle=\left\langle F a^{\prime} \xi, a \xi\right\rangle
$$

and so $S \subset F^{*}$ and $F \subset S^{*}$. Hence S is closable and $\Delta=S^{*} \bar{S}$ is selfadjoint. Now it is easy to see that q is also closable. ([9] Theorem 1.17, p. 315.)

Let $\zeta \in \mathscr{D}(\Delta)$. Then there is a sequence $\left(a_{n} \xi\right)$ such that $a_{n} \xi \rightarrow \zeta, a_{n}^{*} \xi \rightarrow \bar{S} \zeta \in \mathscr{D}\left(S^{*}\right)$. In this case we have $\zeta \in \mathscr{D}(\bar{q})$. For $\mu \in \mathscr{D}(\bar{q}), \bar{q}(\mu)=\left\langle S^{*} \bar{S} \mu, \mu\right\rangle$ and by Theorem 2.1 on p. 322 of [9] Δ is associated to \bar{q}.

The operator $\Delta=\Delta(\omega, \varphi)$ is called relative modular operator by Araki [2]. An interesting consequence of Lemma 4 is that $\Delta(\omega, \varphi)$ does not depend on the representing vector η. In Araki's definition η is to be chosen from the natural positive cone.

The relative entropy is defined as follows:

$$
S(\omega, \varphi)=-\lim _{t \rightarrow+0} t^{-1}\left(\left\|\Delta^{t / 2} \xi\right\|^{2}-\|\xi\|^{2}\right) .
$$

This definition is essentially due to Uhlmann [25] who formulated it by means of a quadratic interpolation machinery. According to Lemma 2 it is equivalent to Araki's form

$$
S(\omega, \varphi)=-\langle\log \Delta(\omega, \varphi) \xi, \xi\rangle
$$

where the right hand side is defined via the spectral resolution of $\Delta(\omega, \varphi)$.
Theorem 1 ([3]). Let \mathscr{A}, φ and ω be as above. Then for $\lambda_{1}, \lambda_{2}>0$ we have
(i) $S\left(\lambda_{1} \omega, \lambda_{2} \varphi\right)=\lambda_{2} S(\omega, \varphi)-\lambda_{2} \varphi(1) \log \lambda_{1} / \lambda_{2}$,
(ii) $\quad S(\omega, \varphi) \geqq \varphi(1)[\log \varphi(1)-\log \omega(1)]$.

Proof. (i) is straightforward from the definition. To prove (ii) one can use Lemma 1:

$$
t^{-1}\left(\left\|\Delta^{t / 2} \xi\right\|^{2}-\|\xi\|^{2}\right) \leqq t^{-1}\left(\|\xi\|^{2(1-t)}\left\|\Delta^{1 / 2} \xi\right\|^{2 t}-\|\xi\|^{2}\right)
$$

Letting $t \rightarrow+\infty$ we obtain (ii).
The next result is due to Uhlmann ([25]). In the proof we try to exclude interpolation theory as much as we can but we need Proposition 1 very heavily. We recall that $\alpha: \mathscr{A}_{1} \rightarrow \mathscr{A}_{2}$ is a Schwarz map if $\alpha(a)^{*} \alpha(a) \leqq \alpha\left(a^{*} a\right)$ for every $a \in \mathscr{A}_{1}$.

Theorem 2 ([25]). Let \mathscr{A}_{1} and \mathscr{A}_{2} be von Neumann algebras with positive normal functionals ω_{1}, φ_{1} and ω_{2}, φ_{2}, respectively. Assume that φ_{1}, φ_{2} are faithful and
$\varphi_{1}(1)=\varphi_{2}(1)=1$. If $\alpha: \mathscr{A}_{1} \rightarrow \mathscr{A}_{2}$ is a unit preserving Schwarz map such that $\varphi_{2} \circ \alpha \leqq \varphi_{1}$ and $\omega_{2} \circ \alpha \leqq \omega_{1}$ then

$$
S\left(\omega_{2}, \varphi_{2}\right) \geqq S\left(\omega_{1}, \varphi_{1}\right)
$$

Proof. We may suppose that φ_{i} is given by a cyclic separating vector $\xi_{i} \in \mathscr{H}_{i}$ ($i=1,2$). Since

$$
\varphi_{2}\left(\alpha\left(a_{1}\right)^{*} \alpha\left(a_{1}\right)\right) \leqq \varphi_{2}\left(\alpha\left(a_{1}^{*} a_{1}\right)\right) \leqq \varphi_{1}\left(a_{1}^{*} a_{1}\right)
$$

the formula $T a_{1} \xi_{1}=\alpha\left(a_{1}\right) \xi_{2}\left(a_{1} \in \mathscr{A}_{1}\right)$ defines a contraction of \mathscr{H}_{1} into \mathscr{H}_{2}.
For the relative modular operators Δ_{1} and Δ_{2} we have $\omega_{i}\left(a_{i} a_{i}^{*}\right)=\left\|\Delta_{i}^{1 / 2} a_{i} \xi_{i}\right\|^{2}$ $\left(a_{i} \in \mathscr{A}_{i}, i=1,2\right)$. Here $\mathscr{A}_{i} \xi_{i}$ is a core for $\Delta_{i}^{1 / 2}\left(i=1,2\right.$, see [9, p. 331]). Let $\mu_{1} \in \mathscr{D}\left(\Delta_{1}^{1 / 2}\right)$. Then there is a sequence $a_{i}^{n} \xi_{1} \rightarrow \mu_{1}$ such that $\Delta_{1}^{1 / 2} a_{1}^{n} \xi_{1} \rightarrow \Delta_{1}^{1 / 2} \mu_{1}$. Since

$$
\left\|\Delta_{2}^{1 / 2} T a_{1}^{n} \xi_{1}-\Delta_{2}^{1 / 2} T a_{1}^{n} \xi_{1}\right\|^{2}=\omega_{2}\left(\alpha\left(a_{1}^{n}-a_{1}^{m}\right) \alpha\left(a_{1}^{n *}-a_{1}^{m *}\right)\right) \leqq\left\|\Delta_{1}^{1 / 2} a_{1}^{n} \xi_{1}-\Delta_{1}^{1 / 2} a_{1}^{m} \xi_{1}\right\|^{2}
$$

we obtain that $\left(\Lambda_{2}^{1 / 2} T a_{1}^{n} \xi_{1}\right)$ is a Cauchy sequence. On the other hand $T a_{1}^{n} \xi_{1} \rightarrow T \mu_{1}$ and so $T \mu_{1} \in \mathscr{D}\left(\Delta_{2}^{1 / 2}\right)$. Now we have infered that $T \mathscr{D}\left(\Delta_{1}^{1 / 2}\right) \subset \mathscr{D}\left(\Delta_{2}^{1 / 2}\right)$ and can apply Proposition 1:

$$
t^{-1}\left(\left\|\Delta_{2}^{t / 2} \xi_{2}\right\|^{2}-\left\|\xi_{2}\right\|^{2}\right) \leqq t^{-1}\left(\left\|\Delta_{1}^{t / 2} \xi_{1}\right\|^{2}-\left\|\xi_{1}\right\|^{2}\right)
$$

Taking the limit $t \rightarrow+0$ completes the proof.
Corollary 1. If $\omega_{2} \leqq \omega_{1}$ then $S\left(\omega_{2}, \varphi\right) \geqq S\left(\omega_{1}, \varphi\right)$.
Corollary 2. If \mathscr{B} is a subalgebra of \mathscr{A} and $\varphi_{0}=\varphi\left|\mathscr{B}, \quad \omega_{0}=\omega\right| \mathscr{B}$ then $S\left(\omega_{0}, \varphi_{0}\right) \leqq S(\omega, \varphi)$.

This monotonicity property of the relative entropy was proved by Araki [2] for special subalgebras.

If φ and ω are states then $S(\omega, \varphi) \geqq 0$ by (ii) in Theorem 1 . When $S(\omega, \varphi)=0$ then $S(\omega|\mathscr{B}, \varphi| \mathscr{B})=0$ for every commutative subalgebra. Hence $\varphi(a)=\omega(a)$ for every $a \in \mathscr{A}^{\text {sa }}$ as it is known from information theory ([12]). Consequently, $\varphi=\omega$. A stronger result of this type is obtained by Hiai, Ohya and Tsukada.

Theorem 3 ([8]). $\|\varphi-\omega\|^{2} \leqq 2 S(\omega, \varphi)$.

Properties of the relative entropy

Let φ, ω be faithful normal states of a von Neumann algebra \mathscr{A}. The following theorem shows how $S(\omega, \varphi)$ can be expressed by means of the unitary cocycle $[D \omega, D \varphi]_{t}([6],[22,3.1])$.

Theorem 4. Assume that $S(\omega, \varphi)<+\infty$. Then

$$
S(\omega, \varphi)=i \lim _{t \rightarrow+0} t^{-1}\left(\varphi\left([D \omega, D \varphi]_{t}\right)-1\right)
$$

Proof. $[D \omega, D \varphi]_{t}=\Delta(\omega, \varphi)^{i t} \Delta(\varphi, \varphi)^{i t}$ and we have

$$
\varphi\left([D \omega, D \varphi]_{t}\right)=\left\langle\Delta(\omega, \varphi)^{i t} \xi, \xi\right\rangle
$$

since $\Delta(\varphi, \varphi) \xi=\xi$. Let $\int_{0}^{\infty} \lambda d E_{\lambda}$ be the spectral resolution of $\Delta(\omega, \varphi)$. So

$$
\begin{gathered}
t^{-1}\left(\varphi\left([D \omega, D \varphi]_{t}\right)-1\right)=\int_{0}^{\infty} t^{-1}\left(\lambda^{i t}-1\right) d \mu(\lambda)= \\
=\int_{0}^{\infty} t^{-1}(\cos (t \log \lambda)-1) d \mu(\lambda)+i \int_{0}^{\infty} t^{-1} \sin (t \log \lambda) d \mu(\lambda)
\end{gathered}
$$

where $d \mu(\lambda)=d\left\langle E_{\lambda} \xi, \xi\right\rangle$. We take the integrals as $\int_{0}^{1}+\int_{i}^{\infty}$ and apply the dominated convergence theorem. The condition $S(\omega, \varphi)<+\infty$ is equivalent to $\int_{0}^{1}-\log \lambda d \mu(\lambda)<$ $<\infty \quad$ so $\quad \int_{0}^{1} t^{-1}(\cos (t \log \lambda)-1) d \mu(\lambda) \rightarrow 0 \quad\left(\left|t^{-1}(\cos t \log \lambda-1)\right| \leqq-\log \lambda\right) \quad$ and $\int_{0}^{1} t^{-1} \sin (t \log \lambda) d \mu(\lambda) \rightarrow \int_{0}^{1} \log \lambda d \mu(\lambda)$. On the other hand, $\int_{0}^{\infty} \lambda d \mu(\lambda)<+\infty$ and we have

$$
\int_{1}^{\infty} t^{-1}(\cos (t \log \lambda)-1) d \mu(\lambda) \rightarrow 0, \quad \int_{1}^{\infty} t^{-1} \sin (t \log \lambda) d \mu(\lambda) \rightarrow \int_{1}^{\infty} \log \lambda d \mu(\lambda)
$$

The proof is complete.
Corollary. Let $\omega_{1}, \varphi_{1}, \omega_{2}, \varphi_{2}$ be faithful normal states of \mathscr{A}_{1} and \mathscr{A}_{2}, respectively. If $S\left(\omega_{1} \otimes \omega_{2}, \varphi_{1} \otimes \varphi_{2}\right)$ is finite then

$$
S\left(\omega_{1} \otimes \omega_{2}, \varphi_{1} \otimes \varphi_{2}\right)=S\left(\omega_{1}, \varphi_{1}\right)+S\left(\omega_{2}, \varphi_{2}\right)
$$

Proof. Since $\left[D \omega_{1} \otimes \omega_{2}, D \varphi_{1} \otimes \varphi_{2}\right]_{t}=\left[D \omega_{1}, D \varphi_{1}\right]_{t} \otimes\left[D \omega_{2}, D \varphi_{2}\right]_{t}([22], 8.6)$ we can obtain the Corollary by derivation.

Let \mathscr{B} be a subalgebra of \mathscr{A}. If \mathscr{B} is invariant under the modular automorphism group of ω then Takesaki's theorem provides an ω-preserving conditional expectation E_{ω} of \mathscr{A} onto \mathscr{B} ([23], [22, 9.1]). Denote $\varphi \circ E_{\omega}$ by φ^{\prime}. With this notation we have

Theorem 5. Assume that φ, ω are faithful and $S(\omega, \varphi), S\left(\varphi^{\prime}, \varphi\right)$ are finite. Then

$$
S(\omega, \varphi)=S(\omega|\mathscr{B}, \varphi| \mathscr{B})+S\left(\varphi^{\prime}, \varphi\right)
$$

Proof By the chain rule we have

$$
\begin{equation*}
[D \omega, D \varphi]_{t}=\left[D \omega, D \varphi^{\prime}\right]_{t}\left[D \varphi^{\prime}, D \varphi\right]_{t} \tag{*}
\end{equation*}
$$

Here $\left[D \omega, D \varphi^{\prime}\right]_{t}=\left[D \omega|\mathscr{B}, D \varphi|_{B}\right]_{t} \in \mathscr{B}$ (see $[22,10.5]$) and we apply Theorem 4. Let u_{t}, v_{t}, w_{t} be the cocycles occurring in (*). Then

$$
\varphi\left(u_{t}\right)-1=\left(\left\langle v_{t} \xi, \xi\right\rangle-1\right)+\left(\left\langle w_{t} \xi, \xi\right\rangle-1\right)+\left\langle\left(w_{t}-1\right) \xi,\left(v_{t}^{*}-1\right) \xi\right\rangle .
$$

Since the last term divided by t tends to 0 as $t \rightarrow+0$ we obtain the result.

Theorem 5 generalizes Theorem 3.2 in [8] where it is assumed that $\omega \mid \mathscr{B}$ is tracial. However, for the sake of perfect comparison we should admit that our condition on the finiteness of the entropies is slightly stronger than that in [8].

Let $\mathscr{A}=\mathscr{A}_{1} \otimes \mathscr{A}_{2}$ and assume that $\omega=\omega_{1} \otimes \omega_{2}$ and $\varphi=\varphi_{12}$ are faithful normal states of \mathscr{A}. Now \mathscr{A}_{1} and \mathscr{A}_{2} are subalgebras of \mathscr{A} under the natural identifications $\mathscr{A}_{1} \cong \mathscr{A}_{2} \otimes \mathbf{C}$ and $\mathscr{A}_{2} \cong \mathbf{C} \otimes \mathscr{A}_{2}$. There exists an ω-preserving conditional expectation E_{2} of \mathscr{A} onto \mathscr{A}_{2} satisfying $E_{2}(a \otimes b)=\omega_{1}(a) 1 \otimes b\left(E_{2}\right.$ is called Fubini mapping, see [22, 9.8]). Denote $\varphi_{12} \mid \mathscr{A}_{i}$ by $\varphi_{i}(i=1,2)$. So for φ^{\prime} in Theorem 5 we have

$$
\varphi^{\prime}(a \otimes b)=\varphi\left(E_{2}(a \otimes b)\right)=\omega_{1}(a) \varphi_{2}(b)
$$

and $\varphi^{\prime}=\omega_{1} \otimes \varphi_{2}$. Theorem 5 tells us that

$$
S\left(\omega_{1} \otimes \omega_{2}, \varphi_{12}\right)=S\left(\omega_{2}, \varphi_{2}\right)+S\left(\omega_{1} \otimes \varphi_{2}, \varphi_{12}\right)
$$

provided that each entropy is finite. Therefore,

$$
S\left(\omega_{1} \otimes \omega_{2}, \varphi_{12}\right) \geqq S\left(\omega_{2}, \varphi_{2}\right)+S\left(\omega_{1}, \varphi_{1}\right)
$$

and we may call this inequality the superadditivity of the relative entropy. (When ω_{1}, ω_{2} are traces then taking the negative we obtain the usual subadditivity property, see [18, 7.2.10] and [5, p. 273]). By the same method we can deduce the strong superadditivity.

Theorem 6. Let $\mathscr{A}=\mathscr{A}_{1} \otimes \mathscr{A}_{2} \otimes \mathscr{A}_{3}$ and let φ_{123}, ω be faithful normal states of \mathscr{A}. Assume that $\omega=\omega_{1} \otimes \omega_{2} \otimes \omega_{3}$ and denote φ_{123} restricted to $\mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}$, $\mathscr{A}_{1} \otimes \mathscr{A}_{2}, \mathscr{A}_{2} \otimes \mathscr{A}_{3}$ by $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{12}, \varphi_{23}$, respectively. Then

$$
S\left(\omega, \varphi_{123}\right)+S\left(\omega_{2}, \varphi_{2}\right) \geqq S\left(\omega_{1} \otimes \omega_{2}, \varphi_{12}\right)+S\left(\omega_{2} \otimes \omega_{3}, \varphi_{23}\right)
$$

if all terms are finite.
Proof. On the one hand
$S\left(\omega, \varphi_{123}\right)=S\left(\omega_{1} \otimes \omega_{2}, \varphi_{12}\right)+S\left(\omega_{1} \otimes \omega_{2} \otimes \varphi_{3}, \varphi_{123}\right) \geqq S\left(\omega_{1} \otimes \omega_{2}, \varphi_{12}\right)+S\left(\omega_{2} \otimes \varphi_{3}, \varphi_{23}\right)$ and on the other hand

$$
S\left(\omega_{2} \otimes \varphi_{3}, \varphi_{23}\right)+S\left(\omega_{2}, \varphi_{2}\right)=S\left(\omega_{2} \otimes \omega_{3}, \varphi_{23}\right)
$$

We note that the idea of this argument is due to Lindblad [16] who proved a similar result for $\mathscr{A}_{i}=\mathscr{B}(\mathscr{H})$.

Finally, we treat some continuity property of the relative entropy. Araki proved that the relative modular operator $\Delta(\omega, \varphi)$ is a continuous function of ω and φ : If $\omega_{n} \rightarrow \omega$ and $\varphi_{n} \rightarrow \varphi$ in norm then $\Delta\left(\omega_{1}, \varphi_{n}\right) \rightarrow \Delta(\omega, \varphi)$ strongly in the generalized sense ([3]). The continuity of the relative modular operator can be used to prove the lower semicontinuity in norm of the relative entropy ([3], 3.7).

References

[1] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math., 50 (1974), 309-354.
[2] H. Araki, Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ., 11 (1976), 809-833.
[3] H. Araki, Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13 (1977), 173-192.
[4] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer (Berlin, 1976).
[5] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics II, Springer (Berlin, 1981).
[6] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. Sér. 4, 6 (1973), 133-252.
[7] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience (1958).
[8] F. Hiai, M. Ohya and M. Tsukuda, Sufficiency, KMS condition and relative entropy in von Neumann algebras, Pacific J. Math., 96 (1981), 99-109.
[9] T. Kato, Perturbation theory of linear operators, Springer (Berlin, 1966).
[10] H. Kosaki, Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity, Commun. Math. Phys., 87 (1982).
[11] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
[12] S. Kullback, Information theory and statistics, John Wiley (New York, 1959).
[13] E. H. Lieb, Some convexity and subadditivity properties of entropy, Bull. Amer. Math. Soc., 81 (1975).
[14] E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum mechanical entropy, J. Math. Phys., 14 (1973), 1938-1941.
[15] G. Lindblad, Entropy, information and quantum measurements, Commun. Math. Phys., 33 (1973), 305-322.
[16] G. Lindblad, Expectations and entropy inequalities for finite quantum systems, Commun. Math. Phys., 39 (1974), 111-119.
[17] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadó (Budapest, 1952).
[18] D. Ruelle, Statistical mechanics. Rigorous results, Benjamin (New York, 1969).
[19] I. E. Segal and R. A. Kunze, Integrals and operators, Springer (1978).
[20] B. Simon and M. Reed, Methods of modern mathematical physics: I. Functional analysis, Academic Press (New York, 1972).
[21] B. Simon and M. Reed, Methods of modern mathematical physics: II. Fourier analysis, selfadjointness, Academic Press (New York, 1975).
[22] Ş. Strătilă, Modular theory of operator algebras, Abacus Press (Tunbridge Wells, 1981).
[23] M. Takesaki, Conditional expectations in von Neumann algebras, J. Functional Anal., 9 (1972), 306-321.
[24] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland (Amsterdam, 1978).
[25] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Commun. Math. Phys., 54 (1977), 21-32.
[26] H. Umegaki, Conditional expectation in an operator algebra IV (entropy and information), Ködai Math. Sem. Rep., 14 (1962), 59-85.
[27] A. Wehrl, General properties of entropy, Rev. Modern Phys., 50 (1978), 221-260.
(Received November 15, 1983)

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REÁLTANODA U. 13-15.
H-1053, HUNGARY

ON FUNCTIONS DEFINED BY DIGITS OF REAL NUMBERS

Z. DARÓCZY, corresponding member of the Academy, A. JÁRAI (Debrecen) and I. KÁTAI (Budapest), member of the Academy

1. Introduction. Let $p>1$ be a natural number. Let \mathfrak{M}_{p} denote the set of all functions $F:[0,1) \rightarrow \mathbf{R}$ for which there exist

$$
f_{n}:\{0,1, \ldots, p-1\} \rightarrow \mathbf{R} \quad(n \in \mathbf{N})
$$

with the property

$$
\sum_{n=1}^{\infty}\left|f_{n}(k)\right|<+\infty \quad(k=0,1, \ldots, p-1)
$$

such that

$$
\begin{equation*}
F(x)=\sum_{n=1}^{\infty} f_{n}\left(\varepsilon_{n}(x)\right) \quad \text { whenever } \quad x \in[0,1) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}} \quad\left(\varepsilon_{n}(x) \in\{0,1, \ldots, p-1\}\right) \tag{1.2}
\end{equation*}
$$

is the unique p-base expansion of x. Expansion (1.2) is named unique, if numbers of the form $\frac{l}{p^{N}}$, so-called p-base rational numbers, have finite expansions (1.2). (See for example Galambos [1].) Let

$$
\mathfrak{M}_{p}^{0}=\left\{F \mid F \in \mathfrak{M}_{p}, F(0)=0\right\} .
$$

In this paper we shall study the properties of \mathfrak{M}_{p}. As the main result the following theorem will be proved:

THEOREM 1. If $p>1$ and $q>1$ are relative prime numbers and $F \in \mathfrak{M}_{p} \cap \mathfrak{M}_{q}$ then there exist $A, B \in \mathbf{R}$ such that $F(x)=A x+B$ whenever $x \in[0,1)$.
2. Reduction of the problem. Our investigations are made easier by the following two lemmas.

Lemma 1. If $F \in \mathfrak{M}_{p}$ then there exists an $\hat{F} \in \mathfrak{M}_{p}^{0}$ for which

$$
\begin{equation*}
F(x)=\hat{F}(x)+F(0) \quad \text { whenever } \quad x \in[0,1) \tag{2.1}
\end{equation*}
$$

Proof. Let $F \in \mathfrak{M}_{p}$. Then there exist functions

$$
f_{n}:\{0,1, \ldots, p-1\} \rightarrow \mathbf{R}
$$

with the property

$$
\sum_{n=1}^{\infty}\left|f_{n}(k)\right|<\infty \quad(k=0,1, \ldots, p-1)
$$

such that

$$
F(x)=\sum_{n=1}^{\infty}\left\{f_{n}\left(\varepsilon_{n}(x)\right)-f_{n}(0)\right\}+\sum_{n=1}^{\infty} f_{n}(0)
$$

where

$$
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}
$$

is the unique p-base expansion. Using $F(0)=\sum_{n=1}^{\infty} f_{n}(0)$ and writing
and

$$
\hat{f}_{n}(k):=f_{n}(k)-f_{n}(0) \quad(k=0,1, \ldots, p-1)
$$

$$
\hat{F}(x):=\sum_{n=1}^{\infty} \hat{f}_{n}\left(\varepsilon_{n}(x)\right)
$$

we get

$$
F(x)=\hat{F}(x)+F(0) \quad(x \in[0,1))
$$

and

$$
\sum_{n=1}^{\infty}\left|\hat{f}_{n}(k)\right|<\infty \quad(k=0,1, \ldots, p-1)
$$

This means that $\hat{F} \in \mathfrak{M}_{p}$ and $\hat{F}(0)=0$, i.e. $\hat{F} \in \mathfrak{M}_{p}^{0}$.
Lemma 2. $F \in \mathfrak{M}_{p}^{0}$ if and only if $F:[0,1) \rightarrow \mathbf{R}$,

$$
F(0)=0, \quad \sum_{n=1}^{\infty}\left|F\left(\frac{k}{p^{n}}\right)\right|<\infty \quad(k=0,1, \ldots, p-1)
$$

and

$$
\begin{equation*}
F(x)=F\left(\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}\right)=\sum_{n=1}^{\infty} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right) \tag{2.2}
\end{equation*}
$$

for each unique expansion

$$
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}} \quad x \in[0,1)
$$

Proof. Let $F \in \mathfrak{M}_{p}^{0}$ and $x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}$. Then by $F(0)=0$ and $F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)=$ $=f_{n}\left(\varepsilon_{n}(x)\right)$ (1.1) implies (2.2) with $\sum_{n=1}^{\infty}\left|F\left(\frac{k}{p^{n}}\right)\right|<\infty(k=0,1, \ldots, p-1)$. Conversely, if $F:[0,1) \rightarrow \mathbf{R}, F(0)=0$ and (2.2) holds then for $f_{n}(k):=F\left(\frac{k}{p^{n}}\right)(k=0,1, \ldots, p-1)$ (1.1) is satisfied and $\sum_{n=1}^{\infty}\left|f_{n}(k)\right|<\infty(k=0,1, \ldots, p-1)$. This proves that $F \in \mathfrak{M}_{p}^{0}$.

Equation (2.2) essentially says that the unique p-adic series expansion is additively transformed by F into an absolutely convergent series.
3. Elementary study of the cases $p=2$ and $q=3$. Let $F \in \mathfrak{M}_{2}^{0} \cap \mathfrak{M}_{3}^{0}$ and let \mathbf{Q}_{p} denote the set of p-base rational numbers in $[0,1)$. If $x \in(0,1)$ and $x \notin \mathbf{Q}_{2}$, then $\varepsilon_{n}(1-x)=1-\varepsilon_{n}(x)$. By Lemma 2 we have

$$
\begin{equation*}
F(x)+F(1-x)=\sum_{n=1}^{\infty}\left\{F\left(\frac{\varepsilon_{n}(x)}{2^{n}}\right)+F\left(\frac{1-\varepsilon_{n}(x)}{2^{n}}\right)\right\}=\sum_{n=1}^{\infty} F\left(\frac{1}{2^{n}}\right)=: A \tag{3.1}
\end{equation*}
$$

where $x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{2^{n}}$. There exists an $x \in(0,1)$ such that $x \notin \mathbf{Q}_{2} \cup \mathbf{Q}_{3}$ and in the expansion $x=\sum_{n=1}^{\infty} \frac{\delta_{n}(x)}{3^{n}}$ each $\delta_{n}(x)$ is 0 or 2 . Then $\delta_{n}(1-x)=2-\delta_{n}(x)$ and (3.1) implies

$$
\begin{equation*}
A=F(x)+F(1-x)=\sum_{n=1}^{\infty}\left\{F\left(\frac{\delta_{n}(x)}{3^{n}}\right)+F\left(\frac{2-\delta_{n}(x)}{3^{n}}\right)\right\}=\sum_{n=1}^{\infty} F\left(\frac{2}{3^{n}}\right) \tag{3.2}
\end{equation*}
$$

Now let $N \in \mathbf{N}$ be fixed. Then there exists an $x \in(0,1)$ for which $x \notin \mathbf{Q}_{2} \cup \mathbf{Q}_{3}$ and in the expansion $x=\sum_{n=1}^{\infty} \frac{\delta_{n}(x)}{3^{n}}$ each $\delta_{n}(x)$ is 0 or 2 if $n \neq N$, but $\delta_{N}(x)=1$. By $\delta_{n}(x)=2-\delta_{n}(1-x)$ we have $\delta_{N}(1-x)=1$. (3.1) and (3.2) imply

$$
\begin{aligned}
A=F(x)+F(1-x) & =\sum_{\substack{n=1 \\
n \neq N}}^{\infty}\left\{F\left(\frac{\delta_{n}(x)}{3^{n}}\right)+F\left(\frac{2-\delta_{n}(x)}{3^{n}}\right)\right\}+2 F\left(\frac{1}{3^{N}}\right)= \\
& =A-F\left(\frac{2}{3^{N}}\right)+2 F\left(\frac{1}{3^{N}}\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
F\left(\frac{2}{3^{N}}\right)=2 F\left(\frac{1}{3^{N}}\right) \tag{3.3}
\end{equation*}
$$

Because of $\mathbf{Q}_{2} \cap \mathbf{Q}_{3}=\{0\}$, (3.1) implies by Lemma 2 and by (3.3)

$$
\begin{equation*}
A=F\left(\frac{1}{3^{N}}\right)+F\left(\frac{3^{N}-1}{3^{N}}\right)=F\left(\frac{1}{3^{N}}\right)+F\left(\sum_{n=1}^{N} \frac{2}{3^{n}}\right)=F\left(\frac{1}{3^{N}}\right)+\sum_{n=1}^{N} 2 F\left(\frac{1}{3^{n}}\right) \tag{3.4}
\end{equation*}
$$

for any $N \in \mathbf{N}$. Putting $N=1$ we obtain $F\left(\frac{1}{3}\right)+2 F\left(\frac{1}{3}\right)=A$ i.e.

$$
\begin{equation*}
F\left(\frac{1}{3}\right)=A \tag{3.5}
\end{equation*}
$$

Using induction, we get from (3.4) by (3.5) that $F\left(\frac{1}{3^{n}}\right)=\frac{A}{3^{n}}$, i.e. by Lemma 2

$$
F(x)=F\left(\sum_{n=1}^{\infty} \frac{\delta_{n}(x)}{3^{n}}\right)=\sum_{n=1}^{\infty} F\left(\frac{\delta_{n}(x)}{3^{n}}\right)=\sum_{n=1}^{\infty} \delta_{n}(x) F\left(\frac{1}{3^{n}}\right)=\sum_{n=1}^{\infty} \frac{\delta_{n}(x) A}{3^{n}}=A x
$$

This proves that there exists $A \in \mathbf{R}$ such that $F(x)=A x$. Applying Lemma 1 we see that Theorem 1 holds for $p=2$ and $q=3$.

This proof strongly relies on equation (3.1), which in the general case $p>2$ fails to be trivially satisfied.
4. Continuity properties of $F \in \mathfrak{M}_{p}^{0}$. We shall prove the following result interesting also in itself.

Theorem 2. If $F \in \mathfrak{M}_{p}^{0}$ then F is continuous at each point $x \in[0,1) \backslash \mathbf{Q}_{p}$ and right continuous at each point $x \in \mathbf{Q}_{p}$.

Proof. Let $x \in[0,1)$ and $\varepsilon>0$. Since the series $\sum_{n=1}^{\infty} a_{n}$ defined by

$$
a_{n}:=\sum_{k=0}^{p-1}\left|F\left(\frac{k}{p^{n}}\right)\right|
$$

is absolutely convergent, there exists an $N \in \mathbf{N}$ for which $\sum_{n=N+1}^{\infty} a_{n}<\frac{\varepsilon}{2}$. Let us choose a natural number $0 \leqq j<p^{N}$ for which

$$
\frac{j}{p^{N}} \leqq x<\frac{j+1}{p^{N}} .
$$

If $\frac{j}{p^{N}} \leqq y<\frac{j+1}{p^{N}}$ then the digits in the p-base expansion of y are $\varepsilon_{n}(y)=\varepsilon_{n}\left(\frac{j}{p^{N}}\right)$ for $1 \leqq n \leqq N$. This implies $\varepsilon_{n}(x)=\varepsilon_{n}(y)$ if $n=1,2, \ldots, N$. Hence by Lemma 2

$$
\begin{aligned}
& |F(x)-F(y)|=\left|\sum_{n=1}^{\infty} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)-\sum_{n=1}^{\infty} F\left(\frac{\varepsilon_{n}(y)}{p^{n}}\right)\right| \leqq \\
& \leqq \sum_{n=N+1}^{\infty}\left|F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)-F\left(\frac{\varepsilon_{n}(y)}{p^{n}}\right)\right| \leqq 2 \sum_{n=N+1}^{\infty} a_{n}<\varepsilon
\end{aligned}
$$

whenever $\frac{j}{p^{N}} \leqq y<\frac{j+1}{p^{N}}$. This means that F is continuous at x if $\frac{j}{p^{N}}<x$ (that is, $x \notin \mathbf{Q}_{p}$), and F is right continuous at x if $\frac{j}{p^{N}}=x \in \mathbf{Q}_{p}$.

Remark. Theorem 2 is sharp in the following sense: There exists an $F \in \mathfrak{M}_{p}^{0}$ which is discontinuous at each point $x \in \mathbf{Q}_{p}, x>0$. For example, the function

$$
\begin{equation*}
F(x):=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{n^{2}} \tag{4.1}
\end{equation*}
$$

defined by the unique expansion $x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}$ has this property. This function is an element of \mathfrak{M}_{p}^{0}, hence it is enough to prove that if $x \in \mathbf{Q}_{p}, x>0$, then F is not left continuous at x. Consider therefore a positive p-adic rational number

$$
x=\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{p^{n}}+\frac{k+1}{p^{N}} \quad(k \in\{0,1, \ldots, p-2\}) .
$$

For $K>N$ put

$$
x_{K}=\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{p^{n}}+\frac{k}{p^{n}}+\sum_{n=N+1}^{K} \frac{p-1}{p^{n}} .
$$

This monotone increasing sequence converges (from the left) to x, so if F were continuous at x we would have

$$
\begin{equation*}
\lim _{K \rightarrow \infty} F\left(x_{K}\right)=F(x) . \tag{4.2}
\end{equation*}
$$

(4.1) and (4.2) together imply

$$
\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{n^{2}}+\frac{k+1}{N^{2}}=\lim _{K \rightarrow \infty}\left\{\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{n^{2}}+\frac{k}{N^{2}}+\sum_{n=N+1}^{K} \frac{p-1}{n^{2}}\right\}
$$

and from this we get

$$
\frac{1}{N^{2}}=\frac{\pi^{2}}{6}-(p-1) \sum_{n=1}^{N} \frac{1}{n^{2}}
$$

which is a contradiction.
5. The case of continuity. We shall prove the following result:

Theorem 3. If $F \in \mathfrak{M}_{p}^{0}$ is continuous on $[0,1)$, then there exists an $A \in \mathbf{R}$ such that $F(x)=A x$ whenever $x \in[0,1)$.

Proof. Let $k \in\{0,1, \ldots, p-2\}$ and let $N \in \mathbf{N}$ be fixed. Moreover, let

$$
x:=\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{p^{n}}+\frac{k+1}{p^{N}}
$$

be the unique p-base expansion, and for each $K>N$ let

$$
x_{K}:=\sum_{n=1}^{N-1} \frac{\varepsilon_{n}(x)}{p^{n}}+\frac{k}{p^{N}}+\sum_{n=N+1}^{K} \frac{p-1}{p^{n}} .
$$

Then $\lim _{K \rightarrow \infty} x_{K}=x$, hence (2.2) and the continuity of F imply

$$
\begin{gathered}
F(x)=\lim _{K \rightarrow \infty} F\left(x_{K}\right)=\lim _{K \rightarrow \infty}\left\{\sum_{n=1}^{N-1} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)+F\left(\frac{k}{p^{N}}\right)+\sum_{n=N+1}^{K} F\left(\frac{p-1}{p^{n}}\right)\right\}= \\
=\sum_{n=1}^{N-1} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)+F\left(\frac{k}{p^{N}}\right)+\sum_{n=N+1}^{\infty} F\left(\frac{p-1}{p^{n}}\right)
\end{gathered}
$$

Hence by

$$
F(x)=\sum_{n=1}^{N-1} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)+F\left(\frac{k+1}{p^{n}}\right)
$$

we have

$$
\begin{equation*}
F\left(\frac{k+1}{p^{N}}\right)=F\left(\frac{k}{p^{N}}\right)+A-\sum_{n=1}^{N} F\left(\frac{p-1}{p^{n}}\right) \tag{5.1}
\end{equation*}
$$

where $A:=\sum_{n=1}^{\infty} F\left(\frac{p-1}{p^{n}}\right)$.

Writing $k=0$ in (5.1) we get

$$
A-F\left(\frac{1}{p^{N}}\right)=\sum_{n=1}^{N} F\left(\frac{p-1}{p^{n}}\right)
$$

Putting this back into (5.1) we see that

$$
\begin{equation*}
F\left(\frac{k+1}{p^{N}}\right)=F\left(\frac{k}{p^{N}}\right)+F\left(\frac{1}{p^{N}}\right) . \tag{5.2}
\end{equation*}
$$

This implies

$$
\begin{equation*}
F\left(\frac{l}{p^{N}}\right)=l F\left(\frac{1}{p^{N}}\right) \tag{5.3}
\end{equation*}
$$

On the other hand, substituting $k=0, N=1$ in (5.1) and using (5.3) we obtain

$$
F\left(\frac{1}{p}\right)=A-F\left(\frac{p-1}{p}\right)=A-(p-1) F\left(\frac{1}{p}\right)
$$

i.e. $F\left(\frac{1}{p}\right)=\frac{A}{p}$.

Moreover, for $k=0$ (5.1) yields

$$
\begin{equation*}
F\left(\frac{1}{p^{N}}\right)=A-\sum_{n=1}^{N} F\left(\frac{p-1}{p^{n}}\right)=A-\sum_{n=1}^{N}(p-1) F\left(\frac{1}{p^{n}}\right) \tag{5.4}
\end{equation*}
$$

Using induction on N, if $F\left(\frac{1}{p^{n}}\right)=\frac{A}{p^{n}}$ for $n<N$ (this is true for $n=1$) then we get by (5.4)

$$
F\left(\frac{1}{p^{N}}\right)=A-\sum_{n=1}^{N-1}(p-1) \frac{A}{p^{n}}-(p-1) F\left(\frac{1}{p^{N}}\right)
$$

hence

$$
F\left(\frac{1}{p^{N}}\right)=\frac{A}{p^{N}}
$$

By (2.2) we now obtain

$$
F(x)=F\left(\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}\right)=\sum_{n=1}^{\infty} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x) A}{p^{n}}=A x .
$$

6. The proof of Theorem 1. Let $p>1$ and $q>1$ be relatively prime numbers and $\mathcal{F} \in \mathfrak{M}_{p} \cap \mathfrak{M}_{q}$. Then by Lemma 1 there exists an $\hat{F} \in \mathfrak{M}_{p}^{0} \cap \mathfrak{M}_{q}^{0}$ for which

$$
F(x)=\hat{F}(x)+F(0)=\hat{F}(x)+B .
$$

By Theorem $2, \hat{F}$ is continuous if $x \in[0,1) \backslash \mathbf{Q}_{p}$ or if $x \in[0,1) \backslash \mathbf{Q}_{q}$ i.e. everywhere, because of $\mathbf{Q}_{p} \cap \mathbf{Q}_{q}=\{0\}$. Hence by Theorem 3 there exists an $A \in \mathbf{R}$ for which $\hat{F}(x)=A x$, i.e.

$$
F(x)=A x+B \quad \text { whenever } \quad x \in[0,1)
$$

Remarks. (i) There arises the question whether the condition $(p, q)=1$ is necessary? In the proof we have used the fact that if $x>0$ and $x \in \mathbf{Q}_{p}$ then $x \notin \mathbf{Q}_{q}$. We shall prove that if $(p, q)=r>1$ then there exists an $F \in \mathfrak{M}_{p}^{0} \cap \mathfrak{M}_{q}^{0}$ which is not of the form $A x$. One of the simplest examples is the function

$$
F(x):=\left\{\begin{array}{lll}
x & \text { if } & 0 \leqq x<\frac{1}{r} \tag{6.1}\\
1+x & \text { if } & \frac{1}{r} \leqq x<1
\end{array}\right.
$$

Putting $s:=\frac{p}{r}$ and $t:=\frac{q}{r}$ we have here two cases:
If $x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}$ and $x<\frac{1}{r}=\frac{s}{p}$, then $\frac{\varepsilon_{n}(x)}{p^{n}}<\frac{1}{r}=\frac{s}{p}$ for each $n \in \mathbf{N}$, i.e.

$$
F(x)=x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}=\sum_{n=1}^{\infty} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right) .
$$

If, on the other hand, $x \geqq \frac{1}{r}=\frac{s}{p}$ then by $\varepsilon_{1}(x) \geqq s$ we get $\frac{\varepsilon_{1}(x)}{p} \geqq \frac{1}{r}=\frac{s}{p}$. Moreover, $\frac{\varepsilon_{n}(x)}{p^{n}}<\frac{1}{r}=\frac{s}{p}$ if $n=2,3, \ldots$, and so

$$
F(x)=1+x=1+\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}=1+\frac{\varepsilon_{1}(x)}{p}+\sum_{n=2}^{\infty} \frac{\varepsilon_{n}(x)}{p^{n}}=F\left(\frac{\varepsilon_{1}(x)}{p}\right)+\sum_{n=2}^{\infty} F\left(\frac{\varepsilon_{n}(x)}{p^{n}}\right)
$$

which implies $F \in \mathfrak{M}_{p}^{0}$. The proof of $F \in \mathfrak{M}_{q}^{0}$ is quite similar: In view of $\frac{1}{r}=\frac{t}{q}$ we have only to replace s by t and p by q.

On the basis of this example we may formulate the following result:
Theorem 4. Let $p>1$ and $q>1$ be natural numbers. Every $F \in \mathfrak{M}_{p} \cap \mathfrak{M}_{q}$ is a linear function if and only if p and q are relatively prime numbers.

Proof. If $(p, q)=1$, then F is linear by Theorem 1. If $(p, q) \neq 1$ then by the previous example there exists a nonlinear $F \in \mathfrak{M}_{p} \cap \mathfrak{M}_{q}$.
(ii) The original problem can also be formulated thus: Let $p>1, q>1, F \in \mathfrak{M}_{p}$ and $G \in \mathfrak{M}_{q}$. If $F(x)=G(x)$ for $x \in[0,1)$, what can we then say about F ? Now this formulation makes it natural to ask: what can we say if $F(x)=G(x)$ whenever $x \in S \subset[0,1)$ where S is a set having some given property?

Theorem 5. If $(p, q)=1$ and $F \in \mathfrak{M}_{p}, G \in \mathfrak{M}_{q}$ moreover S is a dense subset of $[0,1)$ and $F(x)=G(x)$ whenever $x \in S$, then there exist real numbers A and B for which

$$
F(x)=G(x)=A x+B \quad \text { whenever } \quad x \in[0,1) .
$$

Proof. By Lemma $1 \quad F(x)=\hat{F}(x)+F(0)$ and $G(x)=\hat{F}(x)+G(0) \quad$ where $\hat{F} \in \mathfrak{M}_{p}^{0}$ and $\hat{G} \in \mathfrak{M}_{q}^{0}$. By Theorem 2 the functions \hat{F} and \hat{G} are right continuous,
hence F and G are right continuous, too. This proves that

$$
F(x)=\lim _{\substack{s+x \\ s \in S}} F(s)=\lim _{\substack{s+x \\ s \in S}} G(s)=G(x)
$$

Using Theorem 1, we now get $F(x)=G(x)=A x+B$ whenever $x \in[0,1)$.

Reference

[1] J. Galambos, Representation of real numbers by infinite series, Lecture Notes in Mathematics 502. Springer Verlag (1976).
(Received November 30, 1983)
DEPARTMENT OF MATHEMATICS
L. KOSSUTH UNIVERSITY

DEBRECEN 10, HUNGARY
DEPARTMENT OF NUMERICAL
METHODS AND COMPUTER SCIENCE
OF THE L. EÖTVÖS UNIVERSITY,
BUDAPEST, HUNGARY

RANDOM GRAPHS OF BINOMIAL TYPE WITH SPARSELY-EDGED INITIAL GRAPHS

A. RUCIŃSKI (Poznań)

I. Introduction. Erdős and Rényi [1] have considered a random graph $K_{n, p}$ obtained from the complete graph K_{n} by an independent deletion of each edge with probability $1-p, p=p(n)$. They have shown that for a given balanced graph H with k vertices and l edges the function $\bar{p}=n^{-k / l}$ is such that $\operatorname{Prob}\left(K_{n, p} \supset H\right) \rightarrow 0$ if $p / \bar{p} \rightarrow 0$ and tends to one if $p / \bar{p} \rightarrow \infty$ as $n \rightarrow \infty$.

Later Schürger [7] proved a similar result dealing with a random square lattice on n vertices $L_{n, p}$. It says that for every graph H with l edges which can be embedded into a square lattice L_{n} the function $n^{-1 / l}$ is a threshold for the event $\left\{L_{n, p} \supset H\right\}$ in the above sense.

In this paper we show existential and distributional results about small subgraphs of a class of random graphs, which will follow from a general theorem proved in [6]. Moreover, in Section III the distributions of vertices by degrees are given and in Section IV the probability of connectedness and the orders of components of random graphs are considered. We will generalize and sharpen results of [2], [3] and [7].

Throughout this paper we will write $V(G), e(G), a(G)$ and $\Delta(G)$ for the set of vertices, number of edges, number of automorphisms and maximum degree of a given graph G, respectively. The notation $X_{n} \leadsto P \mathrm{Po}(\lambda)$ and $X_{n} \leadsto N(0,1)$ means that a sequence of random variables $X_{n}, n=1,2, \ldots$, has asymptotically (as $n \rightarrow \infty$) the Poisson and standard normal distribution, respectively. Moreover $E X$ denotes the expectation of a random variable X whereas $\operatorname{Var} X$ stands for its variance. For convenience we shall write $f(n) \sim g(n)$ if $f(n) / g(n) \rightarrow 1$ as $n \rightarrow \infty$. We say that an event A_{n} holds almost surely (a.s.) if $\operatorname{Prob}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.

A d-dimensional lattice $L_{n}(d), d \geqq 2$, is the graph with the vertex set $\left\{\left(x_{1}, \ldots, x_{d}\right): 0 \leqq x_{i} \leqq n-1, x_{i}\right.$ are integers $\}$ such that there is an edge between $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ if and only if $\sum_{i=1}^{d}\left|y_{i}-x_{i}\right|=1$. The graph $Q_{n}=L_{2}(n)$ is called an n-cube. We will denote by $L_{n}^{(i)}, i=3,4,6$ the triangular, square and hexagonal plane lattice on n vertices, respectively.

Let $\{\operatorname{ING}(n)\}$ be a sequence of graphs on n vertices and suppose that each edge of $\operatorname{ING}(n)$ is independently deleted with probability $1-p, p=p(n)$. Actually, we have a sequence of probability spaces $\left(\mathscr{G}_{n}, P_{n}\right)$, where \mathscr{G}_{n} is the family of all spanning subgraphs of ING (n) and for every $G \in \mathscr{G}_{n}$,

$$
P_{n}(G)=p^{e(G)}(1-p)^{e(\operatorname{ING}(n))-e(G)}
$$

Such a random graph is denoted by $\mathrm{ING}_{p}(n)$. (More correctly $\mathrm{ING}_{p}(n)=\left(\mathscr{G}_{n}, P_{n}\right)$.) It is natural to call the graph $\operatorname{ING}(n)$ the initial graph of a random graph $\mathrm{ING}_{p}(n)$.

We will say that $f(n)$ is a slow function if for every $\varepsilon>0, f(n)=o\left(n^{\varepsilon}\right)$. (In particular, $f(n)=O(1)$.) The name of sparsely-edged random graph we restrict to random graphs for which $e(\operatorname{ING}(n)) /|V(\operatorname{ING}(n))|$ is a slow function.
II. Subgraphs. First, let us recall a general theorem which was proved in [6]. For a given graph $K, V(K)=\left\{v_{1}, \ldots, v_{k}\right\}$ we call a graph F with $V(F)=\left\{s_{1}, \ldots, s_{k}\right\}$ a copy of K if the bijection $v_{i} \mapsto s_{i}, i=1, \ldots, k$, is an isomorphism between K and F. Let us denote by $b_{n}(K)$ the number of k-element sequences of vertices of ING (n) which induce in ING (n) a subgraph containing a copy of K.

Let H be a given connected graph with k vertices and l edges. A graph isomorphic to H is called a H-graph. Denote by $r H$ a sum of r disjoint H-graphs and by \mathscr{H}_{r} any other sum of $r H$-graphs. Finally, let $X_{n}=X_{n}(H)$ be the number of H-graphs contained as subgraphs in $\mathrm{ING}_{p}(n)$.

Theorem 1. Let $n \rightarrow \infty$. Then
(A) if $b_{n}(H) p^{l} \rightarrow 0$ then $\operatorname{Prob}\left(X_{n}>0\right)=o(1)$,
(B) if $b_{n}(H) p^{l} \rightarrow c>0$ and for every $r=2,3, \ldots b_{n}(r H) \sim b_{n}^{r}(H)$ whereas $b_{n}\left(\mathscr{H}_{r}\right) p^{e\left(\mathscr{H}_{r}\right)}=o(1)$ then $X_{n} \leadsto \operatorname{Po}(c / a(H))$,
(C) if $b_{n}(H) p^{l} \rightarrow \infty$ and $b_{n}(2 H) \sim b_{n}^{2}(H)$ whereas $b_{n}\left(\mathscr{H}_{2}\right) p^{e\left(\mathscr{H}_{2}\right)}=o\left(b_{n}^{2}(H) p^{2 l}\right)$ then $\operatorname{Prob}\left(X_{n}=0\right)=o(1)$,
(D) if $b_{n}(H) p^{l} \rightarrow \infty$ and for every $r=2,3, \ldots b_{n}(r H) \sim b_{n}^{r}(H)$ whereas

$$
b_{n}\left(\mathscr{H}_{r}\right) b_{n}^{r}(H) p^{e\left(\mathscr{H}_{r}\right)+r l}=o(1)
$$

then $\left(X_{n}-E X_{n}\right) /\left(\operatorname{Var} X_{n}\right)^{1 / 2} \leadsto N(0,1)$.
Now, we shall show that for random graphs with sparsely-edged initial graphs the conditions of Theorem 1 can be considerably simplified.

Let us introduce a sequence of initial graphs $\operatorname{ING}(n)$ with $V(\operatorname{ING}(n))=$ $=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $\Delta(\operatorname{ING}(n))$ is a slow function. For every connected graph H with k vertices and l edges denote by $\varrho_{i}=\varrho_{i}(H)$ the number of $(k-1)$-element sequences $\left(s_{2}, \ldots, s_{k}\right)$ of vertices of $\operatorname{ING}(n)$ which together with the vertex v_{i} as s_{1} induce a subgraph containing a copy of H in $\operatorname{ING}(n), i=1, \ldots, n$.

Theorem 2. Suppose that $\left|\left\{i: \varrho_{i}=0, i=1, \ldots, n\right\}\right|=o(n)$ and denote $\mu=p^{l} \sum_{i=1}^{n} \varrho_{i}$. Then, as $n \rightarrow \infty$,

$$
\operatorname{Prob}\left(X_{n}>0\right) \rightarrow\left\{\begin{array}{ll}
0 & \text { if } \mu \rightarrow 0, \\
1 & \text { if } \mu \rightarrow \infty,
\end{array} \quad X_{n} \leadsto \operatorname{Po}(c / a(H)) \text { if } \mu \rightarrow c>0\right.
$$

and

$$
\left(X_{n}-E X_{n}\right) /\left(\operatorname{Var} X_{n}\right)^{1 / 2} \sim N(0,1) \quad \text { if } \quad \mu \rightarrow \infty
$$

but μ is a slow function.
Proof. First, we shall show that

$$
\begin{equation*}
b_{n}(r H) \sim b_{n}^{r}(H), \quad r=2,3, \ldots \tag{1}
\end{equation*}
$$

Note that for every sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive numbers the inequality

$$
0 \leqq\left(\sum_{i=1}^{n} a_{i}\right)^{r}-\sum_{1 \leqq i_{1}<\ldots<i_{r} \leqq n} a_{i} \ldots a_{i_{r}} \leqq\binom{ r}{2}\left(\sum_{i=1}^{n} a_{i}\right)^{r-2} \sum_{i=1}^{n} a_{i}^{2}
$$

holds. In our case $b_{n}(H)=\sum_{i=1}^{n} \varrho_{i}$, so

$$
0 \leqq b_{n}^{r}(H)-b_{n}(r H) \leqq\binom{ r}{2} b_{n}^{r-2}(H) \sum_{i=1}^{n} \varrho_{i}^{2}
$$

Since H is connected, $\varrho_{i} \leqq \Delta^{k}, i=1, \ldots, n$. Therefore

$$
\sum_{i=1}^{n} \varrho_{i}^{2} / b_{n}^{2}(H) \leqq n \Delta^{2 k} /(n-o(n))^{2}=o(1)
$$

because $\Delta^{2 k}$ is a slow function. The statement (1) is proved. For every graph \mathscr{H}_{r} let us denote by v and ω the number of vertices and components of \mathscr{H}_{r}, respectively. Then

$$
b_{n}\left(\mathscr{H}_{r}\right)=O\left(n^{\omega} \Delta^{v-\omega}\right) \quad \text { and } \quad e\left(\mathscr{H}_{r}\right) \geqq l \omega+1
$$

So, if μ is a slow function then

$$
b_{n}\left(\mathscr{H}_{r}\right) p^{e\left(\mathscr{H}_{r}\right)}=O\left(f(n) n^{-1 / l}\right)
$$

where $f(n)$ is also a slow function. Thus all assumptions of Theorem 1 are fulfilled and Theorem 2 follows.

Note that now the function $\bar{p}=\left(\sum_{i=1}^{n} \varrho_{i}\right)^{-1 / l}$ is the threshold for $\left\{\mathrm{ING}_{p}(n) \supset H\right\}$ and that $\bar{p}=n^{-1 / l} f^{-1}(n)$, where $f(n)$ is a slow function (compare with mentioned results of [1] and [7]).

Examples. Let $\operatorname{ING}(n)=L_{n}(d)$. We are interested, for instance, in the distribution of d-cubes Q_{d} contained as subgraphs in a random graph $L_{n, p}(d)$. Notice that in this case

$$
b_{n}\left(Q_{d}\right) / a\left(Q_{d}\right)=(n-1)^{d}
$$

So, putting $p=c n^{-1 / 2^{d-1}}$, it follows from Theorem 2 that $X_{n}\left(Q_{d}\right) \sim \operatorname{Po}\left(c^{d 2^{d-1}}\right)$.
Now let $\operatorname{ING}(n)=Q_{n}$. Then

$$
b_{n}\left(Q_{d}\right) / a\left(Q_{d}\right)=\binom{n}{d} 2^{n-d}
$$

and putting $p=c\left(n^{d} 2^{n}\right)^{-1 / d^{d-1}}$ we obtain also that $X_{n}\left(Q_{d}\right) \sim \operatorname{Po}\left(c^{d 2^{d-1}}\right)$. In fact, we confirm a speculation on the threshold for small subgraphs of a random n-cube given by Erdős and Spencer in [2].
III. Vertex degrees. In such a general approach almost nothing is known about the parameters ϱ_{i} but in particular cases. The most obvious one is when we put $H=K_{1, l}$, the star with l edges. Then $\varrho_{i}\left(K_{1, l}\right)=\left(d_{i}\right)_{l}=d_{i}\left(d_{i}-1\right) \ldots\left(d_{i}-l+1\right)$, where d_{i} is the degree of the vertex v_{i} in ING (n). Note that a star $K_{1, l}$ corresponds to a vertex of degree l in a graph if there are no bigger stars in it. The next result deals with vertex degrees in a random graph $\mathrm{ING}_{p}(n)$ which has an almost d-regular initial graph, i.e. when $\left|\left\{i: d_{i} \neq d\right\}\right|=o(n)$ and $\Delta(\operatorname{ING}(n))=d$.

Theorem 3. Let $Y_{n}^{(l)}$ denote the number of vertices of degree l in a random graph $\operatorname{ING}_{p}(n)$ with an almost d-regular initial graph $\operatorname{ING}(n), l=1,2, \ldots$ and let $d=d(n)$
be a slow function. Then, if $p=c\left((d)_{l} n\right)^{-1 / l}$ then $Y_{n}^{(l)} \leadsto \operatorname{Po}\left(c^{l} / l!\right)$ for $l>1$ and $Y_{n}^{(1)} / 2 \leadsto \operatorname{Po}(c)$ for $l=1$; if $p=f(n)\left((d)_{l} n^{-1 / l}\right)$, where $f(n) \rightarrow \infty$ is a slow function, then $\left(Y_{n}^{(l)}-E Y_{n}^{(l)}\right) /\left(\operatorname{Var} Y_{n}^{(l)}\right)^{1 / 2} \sim N(0,1)$.

Proof. In the first case $\mu \rightarrow c^{l}$ whereas in the second one $\mu \rightarrow \infty$ and it is a slow function. Moreover $a\left(K_{1, l}\right)=l$! and for every $i>l \mu \rightarrow 0$, so $Y_{n}^{(l)}=X_{n}\left(K_{1, l}\right)$ a.s. and the statement follows from Theorem 2. (For $l=1, Y_{n}^{(1)}=2 X_{n}\left(K_{2}\right)$.)

Example. Let us return to the d-dimensional random lattice $L_{n, p}(d)$ and put $p=c n^{-d / l}$. Vertices of degree $2 d$ in $L_{n}(d)$ are called inner vertices. We can restrict ourselves only to the random variable $\bar{Y}_{n}^{(l)}$ which counts inner vertices of degree l in $L_{n, p}(d)$, because $E\left(Y_{n}^{(l)}-\bar{Y}_{n}^{(l)}\right)=o(1)$. So we have $\bar{Y}_{n}^{(l)} \sim \sim \operatorname{Po}\left(c^{c}\binom{2 d}{l}\right), l=2,3, \ldots$ $\ldots ; 2 d$. On the other hand, considering a random graph $L_{n, 1-p}(d)$ as a complement of $L_{n, p}(d)$ in $L_{n}(d)$, it is obvious that if $p=1-c n^{-d / l}$ then $\bar{Y}_{n}^{(2 d-l)} \leadsto \operatorname{Po}\left(c^{l}\binom{2 d}{l}\right)$, $l=2, \ldots, 2 d$. So, the results we have obtained are very complete, because they cover all $l=0, \ldots, 2 d$. Replacing the constant c by a slow function $f(n) \rightarrow \infty$ we change the Poisson distribution of $\bar{Y}_{n}^{(l)}$ to a standardized normal distribution. All these above results agree with our intuition that for every $l=1, \ldots, 2 d-1$ the number of vertices of degree l increases first and then decreases in the process of evolution of a random d-dimensional lattice (for the notion of evolution see [1]). For $d=2$, i.e. for the random square lattice $L_{n, p}^{(4)}$ these results were observed by Z. Palka and L. V. Quintas (a personal communication).
IV. Components and connectedness. In this section we will consider the order η_{1} of the largest and the order η_{2} of the second largest component of a random graph $\mathrm{ING}_{p}(n)$ as well as the probability of connectedness. Theorems 4-7 below cover not necessarily the same class of random graphs but all of them deal with sparsely-edged random graphs and all of them can be applied to random plane lattices.

Denote by $\Gamma^{k}(v)$ the set of vertices lying at the distance at most k from a given vertex v of ING (n) and put $B(k)=\max _{v \in V(\mathrm{ING}(n))}\left|\Gamma^{k}(v)\right|$.

Theorem 4. Suppose that $\Delta=\Delta(\operatorname{ING}(n)), p=p(n), k=k(n)$ are such that $n((\Delta-1) p)^{k}=o(1)$. Then $\eta_{1}\left(\operatorname{ING}_{p}(n)\right) \leqq B(k)$ a.s.

Proof. The probability that there is a path of length k in $\operatorname{ING}_{p}(n)$ is $O\left(n((\Delta-1) p)^{k}\right)=o(1)$. Consider the largest component S of $\mathrm{ING}_{p}(n)$ and the longest path P in it. Then $|S| \leqq B(|P|)$ but the length of P is less than k a.s. Thus the proof is complete.

Note that, in fact, the above theorem is practically useful when $\operatorname{ING}(n)$ is a sparsely-edged graph.

Corollary 1. (a) If $p=o(1 / n)$ then $\eta_{1}\left(Q_{n, p}\right)=o\left(2^{n}\right)$ a.s.
(b) If $p<1 /(2 d-1)$ then $\eta_{1}\left(L_{n, p}(d)\right)=O\left((\log n)^{d}\right)$ a.s.
(c) If $p<1 /\left(d_{i}-1\right)$ then $\eta_{1}\left(L_{n . p}^{(i)}\right)=O\left((\log n)^{2}\right)$ a.s., where $i=3,4,6$ and $d_{4}=4, d_{6}=3$.

Proof. Put $k=n / f$, where $f=f(n) \rightarrow \infty$ but $f=o(1 / n p)$. Then the assumption $d_{3}=6$, of Theorem 4 holds and

$$
\eta_{1}\left(Q_{n, p}\right) \leqq B(k)=\sum_{l=0}^{k}\binom{n}{l} \leqq k(e f)^{k}=o\left(2^{n}\right) .
$$

Let us estimate $B(k)$ in the case of $L_{n}(d)$. It is easy to show that $B(k)$ is equal to the sum over l running from 0 to k of the numbers of integer solutions $\left(x_{1}, \ldots, x_{d}\right)$ of the equation $\sum_{i=1}^{d}\left|x_{i}\right|=l$. This sum is less than $2^{d}\binom{d+k}{k}$. So, putting $k=c \log n$ (c is large enough) we arrive at Statement (b).

Finally, notice that for lattices $L_{n}^{(i)}, i=3,4,6$, if $k=k(n) \rightarrow \infty$ then $B(k)=$ $=O\left(k^{2}\right)$ and the proof of (c) follows on similar lines as (b).

Let us concentrate now on the order η_{2} of the second largest component of $\operatorname{ING}_{p}(n)$ in the case when $\operatorname{ING}(n)$ is a plane lattice.

Theorem 5. If $p>(i-2) /(i-1)$ then $\eta_{2}\left(L_{n, p}^{(i)}\right)=O\left((\log n)^{2}\right)$ a.s., $i=3,4,6$.
Proof. Note that each minimal cutset of $L_{n}^{(i)}$ has either 0 or 2 common edges with a given face and therefore edges of any minimal cutset can be ordered in such a way that any two consecutive edges belong to the same face. The probability of the existence of such sequence of $c \log n$ edges in $L_{n, 1-p}^{(i)}$ is $O\left(n((i-1)(1-p))^{c \log n}\right)=$ $=o(1)$ for c large enough. Thus our random process of deleting edges from $L_{n}^{(i)}$ can only cut out a component of $L_{n, p}^{(i)}$ of order $O\left((\log n)^{2}\right)$ a.s., $i=3,4,6$.

Let us return to the parameter η_{1} in the case when $\Delta(\operatorname{ING}(n))=O(1)$.
Theorem 6. Suppose that $\Delta=\Delta(\operatorname{ING}(n))=O(1)$ and p is fixed, i.e. p does not depend on $n, 0<p<1$. Then

$$
\lim _{n \rightarrow \infty} \eta_{1}\left(\operatorname{ING}_{p}(n)\right) / n<1 .
$$

Proof. Suppose that the above limit is equal to 1 . It means that there is a function $f=f(n) \rightarrow \infty$ such that $\eta_{1}=n-n / f$. But the probability that $\operatorname{ING}_{p}(n)$ has a connected subgraph of order $n-n / f$ is, based on the inequality (5) from [5], at most

$$
\binom{n}{n / f}\left(1-(1-p)^{\Delta}\right)^{n-n / f}=o(1)
$$

The previous result implies that a random graph $\operatorname{ING}_{p}(n)$ with small $\Delta(\operatorname{ING}(n))$ becomes connected just when $p=p(n) \rightarrow 1$. The following theorem sharpens this fact for a special class of random graphs. Denote by f_{i} the number of cutsets of ING (n) which have exactly i edges not all incident to the same vertex, $i=1,2, \ldots$.

Theorem 7. Let ING (n) be an almost d-regular plane graph with F edges in the largest inner face. Suppose that F is a slow function, d is fixed and $f_{i}=o\left(n^{i / d}\right)$, $i=1, \ldots, d$. Then for $p=1-c n^{-1 / d}$

$$
\operatorname{Prob}\left(\operatorname{ING}_{p}(n) \text { is connected }\right) \rightarrow \exp \left(-c^{d}\right) \text { as } n \rightarrow \infty .
$$

Proof. First, we will prove that besides a giant component there are only isolated vertices a.s. Similarly as in the proof of Theorem 5 it is easy to show that
the probability of disconnection of ING (n) by deleting a minimal cutset with more than d edges is $o(1)$. Thus the probability of disconnection of ING (n) in another way than isolation of a vertex of degree d is $O\left(\sum_{i=1}^{d} f_{i}(1-p)^{i}\right)=o(1)$. To complete the proof it is enough to observe that the number of such vertices in $\operatorname{ING}_{p}(n)$ is the same as the number of vertices of degree d in $\mathrm{ING}_{1-p}(n)$. So, applying Theorem 3 we arrive at the statement.

Corollary 2. Let $f=f(n) \rightarrow \infty$ as $n \rightarrow \infty$. Then

$$
\operatorname{Prob}\left(L_{n, p}^{(i)} \text { is connected }\right) \rightarrow \begin{cases}0, & \text { if } p=1-f n^{-1 / d_{i}} \\ \exp \left(-c^{d_{i}}\right), & \text { if } p=1-c n^{-1 / d_{i}} \\ 1, & \text { if } p=1-f^{-1} n^{-1 / d_{i}}\end{cases}
$$

$i=3,4,6, \quad d_{3}=6, d_{4}=4, d_{6}=3$.
Comment. The results of this section confirm (compare with [1], [2]) that in the process of evolution of a random graph $\mathrm{ING}_{p}(n)$ first (when p is small) there are only small components. Next, the largest one grows more and more and orders of others decrease. If p is large enough ($1 / 2$ for $Q_{n, p}, 1-c / \bar{n}$ for $L_{n, p}^{(4)}$) then there are only isolated vertices outside the largest component and finally (see Theorem 7) $\mathrm{ING}_{p}(n)$ becomes connected.

Remarks. Theorem 4 and 5 were proved in [3] for $L_{n, p}^{(4)}$. Let us notice that Füredi's statement (a) of Theorem 2 ([3]) can not be deduced from his proof, because the information about the order of the second largest component does not imply that we have a giant component in $L_{n, p}^{(4)}$. We have to mention also that Theorem 7 for $L_{n, p}^{(4)}$ was proved independently in [3] and [4] and the methods of proof in Section IV are mainly those of [3].

Let $v \in V(\operatorname{ING}(n))$. A simple observation that $\operatorname{ING}_{p}(n)$ is disconnected if and only if there is a component in $\mathrm{ING}_{p}(n)$ not containing v leads to a generalization of Theorem 7 over such initial graphs ING (n) that ING (n) -v is an almost d-regular plane graph. Thus, in particular, Theorem 7 can be applied to wheels $W_{n}=v \times C_{n}$. Finally, let us point out that some stronger results about the largest and the second largest component of $L_{n, p}^{(4)}$, with proofs involving percolation theory, can be found in [8].

Acknowledgement. I wish to thank the referee for drawing my attention to the paper of Grimmett and W. Kordecki and Z. Palka for valuable comments.

References

[1] P. Erdős, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Sci., 5 (1960), 17-61.
[2] P. Erdős, J. Spencer, Evolution of the n-cube, Computat. Math. 5 (1979), 33-39.
[3] Z. Füredi, On connectedness of a random graph with a small number of edges, Studia Sci. Math. Hung., 14 (1979), 419-425.
[4] V. A. Gadasin, Asymptotic characteristics of the connectedness of a planar random graph in the form of a lattice, Izv. Akad. Nauk SSSR Tech. Kib., 4 (1979), 140-149.
[5] M. V. Lomonosov, V. P. Polessky, Reliability upper bound for information networks, Prob. Inf. Trans., 7 (4) (1971), 337-339.
[6] A. Ruciński, Subgraphs of random graphs: A general approach, Annals Disc. Math., 28 (1985), 221-229.
[7] K. Schürger, On the evolution of random graphs over expanding square lattices, Acta Math. Acad. Sci. Hung., 27 (1976), 281-292.
[8] G. R. Grimmett, The largest component in a random lattice, Tech. Rap. (1983).
(Received April 29, 1983; revised January 10, 1985)
INSTITUTE OF MATHEMATICS
ADAM MICKIEWICZ UNIVERSITY
UL. MATEJKI 48/49
60-769 POZNAN
POLAND

ON DISPERSION AND MARKOV CONSTANTS

V. DROBOT (Santa Clara)

Let $\left\{x_{n}\right\}$ be a sequence of numbers, $0 \leqq x_{n} \leqq 1$. H. Niederreiter in [3] introduced a measure of denseness of such a sequence as follows. For each N let

$$
d_{N}=\sup _{0 \leqq x \leqq 1}\left\{\min _{1 \leqq n \leqq N}\left|x-x_{n}\right|\right\}
$$

and put $D\left(\left\{x_{n}\right\}\right)=\lim \sup _{N} N d_{N}$. In particular he carried out investigations of sequences of the form $x_{n}=n \vartheta(\bmod 1)$ for irrational ϑ 's. For such a ϑ he defined the dispersion constant by $D(\vartheta)=D(\{n \vartheta(\bmod 1)\})$. It turns out that $D(\vartheta)<\infty$ if and only if the continued fraction expansion of ϑ has bounded partial quotients. Moreover if ϑ_{1} and ϑ_{2} are equivalent, then $D\left(\vartheta_{1}\right)=D\left(\vartheta_{2}\right)$. (Two numbers are called equivalent if their continued fraction expansions coincide from some point on.) He also shows that if ϑ is equivalent to $\vartheta_{1}=(1+\sqrt{5}) / 2$ then $D(\vartheta)=(5+3 \sqrt{5}) / 10=$ $=1.170 \ldots$, if ϑ is equivalent to $\vartheta_{2}=\sqrt{2}$ then $D(\vartheta)=(1+\sqrt{2}) / 2=1.207 \ldots$ and if ϑ is not equivalent to either ϑ_{1} or ϑ_{2} then $D(\vartheta) \geqq 3-\sqrt{3}=1.267 \ldots$. Thus the dispersion spectrum \mathbf{D}, i.e. the set of all possible values of $D(\vartheta)$, contains gaps. Niederreiter also identifies another gap in $\mathbf{D}:((1+\sqrt{3}) / 2,(13+7 \sqrt{13}) / 26)=(1.366 \ldots, 1.470 \ldots)$. All this suggests an analogy with Lagrange (or Markov) constants and Lagrange spectrum. For each irrational ϑ the Lagrange (or Markov) constant is defined by

$$
M(\vartheta)^{-1}=\lim \inf _{n} n\|n \vartheta\|
$$

where $\|t\|$ denotes the distance from t to the nearest integer. The Lagrange spectrum \mathbf{L} is then the collection of all possible values of $M(\vartheta)$. (The set \mathbf{L} has lots of gaps like those above; for an extensive description of these see [1].) In particular Niederreiter asks whether $M\left(\vartheta_{1}\right)<M\left(\vartheta_{2}\right)$ implies $D\left(\vartheta_{1}\right)<D\left(\vartheta_{2}\right)$. The purpose of this paper is to show that this conjecture is not quite true, in fact if

$$
\begin{gathered}
\vartheta_{1}=\frac{323+\sqrt{950629}}{930}=1.3957 \ldots \\
\vartheta_{2}=\frac{96228962+\sqrt{10015935143166740}}{27494036}=7.14004 \ldots
\end{gathered}
$$

then $M\left(\vartheta_{1}\right)=9.2857 \ldots, \quad M\left(\vartheta_{2}\right)=9.2498 \ldots, \quad$ and $\quad D\left(\vartheta_{1}\right)=2.8276 \ldots, \quad D\left(\vartheta_{2}\right)=$ $=2.8394 \ldots$. The peculiar nature of the numbers ϑ_{1} and ϑ_{2} will be explained later. The constants $M(\vartheta)$ and $D(\vartheta)$ are however closely related through the following theorem.

Theorem. For every ϑ we have

$$
\begin{equation*}
\frac{1}{4}(M(\vartheta)+2) \leqq D(\vartheta) \leqq \frac{1}{4}\left(M(\vartheta)+\frac{1}{M(\vartheta)}+2\right) . \tag{1}
\end{equation*}
$$

Thus, generally at least, the values of $D(\vartheta)$ tend to increase with $M(\vartheta)$. Before proceeding with the proof we introduce some notation. For any number ϑ, its continued fraction expansion

$$
\vartheta=c_{0}(\vartheta)+\frac{1}{c_{1}(\vartheta)}+\frac{1}{c_{2}(\vartheta)}+\ldots
$$

will be denoted by

$$
\vartheta=\left[c_{0}(\vartheta), c_{1}(\vartheta), c_{2}(\vartheta), \ldots\right]=\left[c_{0}, c_{1}, c_{2}, \ldots\right] .
$$

We set

$$
\begin{gathered}
\lambda_{i}(\vartheta)=\lambda_{i}=\left[0, c_{i}, c_{i-1}, c_{i-2}, \ldots, c_{1}\right], \quad \Lambda_{i}(\vartheta)=\Lambda_{i}=\left[c_{i+1}, c_{i+2}, c_{i+3}, \ldots\right] \\
\mu_{i}(\vartheta)=\mu_{i}=\left[0, c_{i+2}, c_{i+3}, \ldots\right]=\Lambda_{i}-c_{i+1}, \quad M_{i}(\vartheta)=M_{i}=\lambda_{i}+\Lambda_{i}=\lambda_{i}+c_{i+1}+\mu_{i} .
\end{gathered}
$$

As usual we put $q_{-1}=0, p_{-1}=1, q_{0}=1, p_{0}=c_{0}$ and

$$
p_{k+1}=c_{k+1} p_{k}+p_{k-1}, \quad q_{k+1}=c_{k+1} q_{k}+q_{k-1}
$$

We also set $\delta_{k}=(-1)^{k}\left(q_{k} \vartheta-p_{k}\right)=\left|q_{k} \vartheta-p_{k}\right|$. The following are standard facts about continued fractions:

$$
c_{k+1}=\left[\frac{\delta_{k-1}}{\delta_{k}}\right], \quad q_{k} \delta_{k}=\frac{1}{M_{k}}, \quad \frac{q_{k-1}}{q_{k}}=\lambda_{k}
$$

where [.] denotes the greatest integer function. For all this see [2] chapter 3, for instance. With this notation we know that the Markov constant $M(\vartheta)$ is given by $M(\vartheta)=\lim \sup _{k} M_{k}(\vartheta)$.

The following identity will be used repeatedly

$$
\begin{equation*}
M_{i-1}=\frac{M_{i}}{\lambda_{i} \Lambda_{i}} \quad \text { or } \quad \frac{1}{M_{i-1}}=\frac{\lambda_{i} \Lambda_{i}}{M_{i}} . \tag{2}
\end{equation*}
$$

This follows immediately from

$$
\begin{aligned}
& \quad M_{i-1}=\left[0, c_{i-1}, c_{i-2}, \ldots, c_{1}\right]+c_{i}+\left[0, c_{i+1}, c_{i+2}, \ldots\right]= \\
& =\frac{1}{\left[0, c_{i}, c_{i-1}, \ldots, c_{1}\right]}+\frac{1}{c_{i+1}+\left[0, c_{i+2}, c_{i+3}, \ldots\right]}=\frac{1}{\lambda_{i}}+\frac{1}{\Lambda_{i}}=\frac{\lambda_{i}+\Lambda_{i}}{\lambda_{i} \Lambda_{i}} .
\end{aligned}
$$

For each ϑ and each i we also introduce the quadratic polynomial

$$
\psi_{i}(x, \vartheta)=\psi_{i}(x)=\frac{1}{M_{i}}\left\{-x^{2}+\left(\Lambda_{i}-\lambda_{i}-1\right) x+\Lambda_{i}\left(1+\lambda_{i}\right)\right\} .
$$

The polynomial $\psi_{i}(x)$ assumes its maximum at the point $x_{i}=\frac{1}{2}\left(\Lambda_{i}-\lambda_{i}-1\right)$ and the value at this point is given by

$$
\begin{equation*}
\psi_{i}\left(x_{i}\right)=\frac{1}{4}\left(M_{i}+\frac{1}{M_{i}}+2\right) \tag{3}
\end{equation*}
$$

as can be easily checked. If n_{i} is the integer which is closest to x_{i} then $\left|x_{i}-n_{i}\right| \leqq \frac{1}{2}$ and

$$
\begin{equation*}
\psi_{i}\left(x_{i}\right)-\frac{1}{4 M_{i}} \leqq \psi_{i}\left(n_{i}\right) \leqq \psi_{i}\left(x_{i}\right) . \tag{4}
\end{equation*}
$$

The proof of the theorem consists then in showing that

$$
\begin{equation*}
D(\vartheta)=\lim \sup _{i} \psi_{i}\left(n_{i}\right) \tag{5}
\end{equation*}
$$

for it is clear that (3), (4) and (5) imply (1).
We recollect now some facts regarding the distribution of the sequence $n \vartheta(\bmod 1)$. These results can be found in [4]. We denote $n \vartheta(\bmod 1)$ by $\{n \vartheta\}$. For each fixed n let $1 \leqq a_{n} \leqq n$ be such that $\left\{a_{n} \vartheta\right\}$ is the smallest among $\{\vartheta\},\{2 \vartheta\}, \ldots$ $\ldots,\{n \vartheta\}$ and let $1 \leqq b_{n} \leqq n$ be such that $\left\{b_{n} \vartheta\right\}$ is the largest. Put $\alpha_{n}=\left\{a_{n} \vartheta\right\}$ and $\beta_{n}=1-\left\{b_{n} \vartheta\right\}$. The interval $[0,1]$ is then divided by $\{\vartheta\},\{2 \vartheta\}, \ldots,\{n \vartheta\}$ into $(n+1)$ subintervals as follows: $n+1-a_{n}$ of them are of length $\alpha_{n}, a_{n}+b_{n}-(n+1)$ of them are of length $\alpha_{n}+\beta_{n}$ and $n+1-b_{n}$ of them are of length β_{n}. Notice also that the left-most subinterval has length α_{n} and the right-most interval haslength β_{n}. One can actually find $a_{n}, b_{n}, \alpha_{n}, \beta_{n}$ in terms of continued fraction expansion of $\vartheta=\left[c_{0}, c_{1}, c_{2}, \ldots\right]$. Given n to find a_{n} and α_{n} set

$$
\begin{equation*}
n=q_{2 m}+r q_{2 m+1}+s, \quad 0 \leqq r<c_{2 m+2}, \quad 0 \leqq s<q_{2 m+1} \tag{6}
\end{equation*}
$$

so that $q_{2 m} \leqq n<q_{2 m+2}$. One has then

$$
\begin{equation*}
a_{n}=q_{2 m}+r q_{2 m+1}, \quad \alpha_{n}=\delta_{2 m}-r \delta_{2 m+1} \tag{7}
\end{equation*}
$$

To find b_{n} and β_{n} we express n as

$$
\begin{equation*}
n=q_{2 m-1}+u q_{2 m}+v, \quad 0 \leqq u<d_{2 m+1}, \quad 0 \leqq v<q_{2 m} \tag{8}
\end{equation*}
$$

so that $q_{2 m-1} \leqq n<q_{2 m+1}$. We have then

$$
\begin{equation*}
b_{n}=q_{2 m-1}+u q_{2 m}, \quad \beta_{n}=\delta_{2 m-1}-u \delta_{2 m} . \tag{9}
\end{equation*}
$$

We are now ready to prove (5) and hence the theorem. First of all it is clear that one has $D(\vartheta)=\lim \sup _{n}(n+1) d_{n}$ since plainly $d_{n} \rightarrow 0$. The equation (5) will then follow from
and

$$
\begin{equation*}
\operatorname{Max}_{q_{k} \leqq n<q_{k+1}}(n+1) d_{n}=\operatorname{Max}_{0 \leqq b \leqq c_{k+1}} \psi_{k}(b) \tag{10}
\end{equation*}
$$

We break the proof into two cases, depending whether k is even or odd and present the detailed arguments only in the even case, the case of k being odd is completely analogous. Assume then that $k=2 m$ and $q_{2 m} \leqq n<q_{2 m+1}$. To establish (10) we show that for each n in this range one has

$$
\begin{equation*}
(n+1) d_{n} \leqq \psi_{2 m}(b) \tag{12}
\end{equation*}
$$

for some $0 \leqq b<c_{2 m+1}$, and conversely, for each such b there is a corresponding n for which the equality holds in (12). We break up the interval $\left[q_{2 m}, q_{2 m+1}\right)$ as follows

Case I. $\quad q_{2 m} \leqq n<q_{2 m-1}+q_{2 m}$.
Case II. $q_{2 m-1}+b q_{2 m} \leqq n<q_{2 m-1}+(b+1) q_{2 m}, \quad b=1,2, \ldots, c_{2 m+1}-1$.
In case I $\alpha_{n}=\delta_{2 m-1}, \beta_{n}=\delta_{2 m}$ (see (6)-(9)) and the largest value of d_{n} occurs when $x=0$ in which case $d_{n}=\delta_{2 n-1}$ or when $x=1$ in which case $d_{n}=\delta_{2 m}$ or when x is a midpoint of one of the intervals of length $\alpha_{n}+\beta_{n}$, in which case $d_{n}=\frac{1}{2}\left(\alpha_{n}+\beta_{n}\right)$. Since $\alpha_{n}<\beta_{n}$ we see that for n in this range $d_{n}=\delta_{2 m-1}$ and the largest value assumed by $(n+1) d_{n}$ is for $n+1=q_{2 m-1}+q_{2 m}$, that value being

$$
\begin{gathered}
\left(q_{2 m-1}+q_{2 m}\right) \delta_{2 m-1}=\frac{1}{M_{2 m-1}}+\frac{1}{\lambda_{2 m}} \frac{1}{M_{2 m-1}}= \\
=\frac{\lambda_{2 m} \Lambda_{2 m}}{M_{2 m}}\left(1+\frac{1}{\lambda_{2 m}}\right)=\frac{1}{M_{2 m}} \Lambda_{2 m}\left(1+\lambda_{2 m}\right)=\psi_{2 m}(0)
\end{gathered}
$$

(Equation (2) was used here to deduce the second equality.) In case II, for each fixed $1 \leqq b<c_{2 m+1}$ we get $\alpha_{n}=\delta_{2 m}, \beta_{n}=\delta_{2 m-1}-b \delta_{2 m}$. Since $b<c_{2 m+1}, \delta_{2 m-1}-$ $-b \delta_{2 m}>\delta_{2 m}$ so $\alpha_{n}<\beta_{n}$ hence $d_{n}=\beta_{n}$ and the largest value assumed by $(n+1) d_{n}$ is when $n+1=q_{2 m-1}+(b+1) q_{2 m}$, that value being

$$
\begin{gathered}
\left(q_{2 m-1}+(b+1) q_{2 m}\right)\left(\delta_{2 m-1}-b \delta_{2 m}\right)= \\
=\frac{1}{M_{2 m-1}}-b \frac{\lambda_{2 m}}{M_{2 m}}+(b+1) \frac{1}{\lambda_{2 m}} \frac{1}{M_{2 m-1}}-b(b+1) \frac{1}{M_{2 m}} .
\end{gathered}
$$

Replacing $M_{2 m-1}$ by the expression from (2) this quantity becomes

$$
\frac{1}{M_{2 m}}\left\{-b^{2}+\left(\Lambda_{2 m}-\lambda_{2 m}-1\right) b+\Lambda_{2 m}\left(1+\lambda_{2 m}\right)\right\}=\psi_{2 m}(b)
$$

Thus for $q_{2 m} \leqq n<q_{2 m+1}$,

$$
(n+1) d_{n} \leqq \psi_{2 m}(b) \text { for some } 0 \leqq b<c_{2 m+1}
$$

and for every such b there is an n for which the equality holds. To complete the proof we must show that the maximum on the right hand side of (10) does not occur for $b=c_{2 m+1}$, or what amounts to the same thing we must show (11). However $n_{2 m} \leqq x_{2 m}+\frac{1}{2}$ and $x_{2 m}=\frac{1}{2}\left(d_{2 m+1}+\mu_{2 m}-\lambda_{2 m}-1\right)$ so (11) is equivalent to $d_{2 m+1}+$ $+\mu_{2 m}-\lambda_{2 m}<2 d_{2 m+1}$ or $\mu_{2 m}-\lambda_{2 m}<d_{2 m+1}$ which is clear since $\mu_{2 m}<1, \lambda_{2 m}>0$ and $d_{2 m+1} \geqq 1$. The left inequality of (11) follows from $n_{2 m} \geqq x_{2 m}-\frac{1}{2}$ in the same way.
Thus the Theorem is proved.
The inequality (1) is actually the best possible in the sense that both

$$
\begin{equation*}
D(\vartheta)=\frac{1}{4}(M(\vartheta)+2) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
D(\vartheta)=\frac{1}{4}\left(M(\vartheta)+M(\vartheta)^{-1}+2\right) \tag{14}
\end{equation*}
$$

can occur. Indeed consider

$$
\vartheta=[\underbrace{11 \ldots 1}_{m_{1}} A \underbrace{11 \ldots 1}_{m_{2}} A \underbrace{11 \ldots 1}_{m_{3}} A \ldots], \quad A>3
$$

where $m_{1}<m_{2}<m_{3} \ldots \rightarrow \infty$. It follows from the proof of the Theorem that for A odd, $x_{i}-n_{i} \rightarrow 0$, thus (14) holds and for A even $\left|x_{i}-n_{i}\right| \rightarrow \frac{1}{2}$, thus (13) holds.

The equation (10) can be used to calculate the values of $D(\vartheta)$ for quadratic irrationalities ϑ, i.e. those ϑ 's whose continued fraction is periodic. If ϑ has a continued fraction expansion $\vartheta=\left[\overline{c_{0}, c_{1}, c_{2}, \ldots, c_{p-1}}\right]$ where the bar indicates the period, let

$$
\bar{\lambda}_{i}=\left[0, c_{i}, c_{i-1}, \ldots\right], \quad \bar{\Lambda}_{i}=\left[c_{i}, c_{i+1}, c_{i+2}, \ldots\right], \quad \bar{M}_{i}=\bar{\lambda}_{i}+\bar{\Lambda}_{i}
$$

where the sequence $c_{0}, c_{1}, \ldots, c_{p-1}$ is extended periodically in both directions. As before put

$$
\begin{gathered}
\bar{\psi}_{i}(x)=\frac{1}{\bar{M}_{i}}\left\{-x^{2}+\left(\bar{\Lambda}_{i}-\bar{\lambda}_{i}-1\right) x+\bar{\Lambda}_{i}\left(1+\bar{\lambda}_{i}\right)\right\} \\
\bar{x}_{i}=\frac{1}{2}\left(\bar{\Lambda}_{i}-\bar{\lambda}_{i}-1\right), \quad \bar{n}_{i}=\text { the integer closest to } \bar{x}_{i}
\end{gathered}
$$

It is evident that $D(\vartheta)=\operatorname{Max}_{0 \leq i \leq p-1} \bar{\psi}_{i}\left(\bar{n}_{i}\right)$. The calculation of $D(\vartheta)$ can now be easily accomplished using this identity. The numbers ϑ_{1} and ϑ_{2} mentioned at the beginning of the paper are

$$
\vartheta_{1}=[\overline{1,2,1,1,8,1,2,2,1}], \quad \vartheta_{2}=[\overline{7,7,7,9,9,9,7,7,7}]
$$

It would be interesting to find examples with shorter period and/or smaller continued fraction digits.

References

[1] T. W. Cusick, The largest gaps in the lower Markoff spectrum, Duke Math. J., 41 (1974), 453-463.
[2] J. F. Koksma, Diophantische Approximationen, Springer Verlag (Berlin, 1936).
[3] H. Niederreiter, A measure of denseness for a sequence, Colloquium on Number Theory (Budapest, 1981), North-Holland Publ. Co. (Amsterdam).
[4] N. B. Slater, Gaps and steps for the sequence $n \vartheta \bmod 1$, Proc. Cambridge Phil. Soc., 63 (1967), 1115-1123.
(Received July 21, 1983)
\square

EMBEDDING AND COMPACTNESS THEOREMS FOR IRREGULAR AND UNBOUNDED DOMAINS IN WEIGHTED SOBOLEV SPACES

S. SALERNO and M. TROISI (Salerno)

Introduction. It is well known that embedding theorems, due to Sobolev, Gagliardo, Nirenberg, and compactness theorems, due to Kondracev and Rellich, for the classical Sobolev spaces, essentially require that the domain is bounded and verifies the cone property.

Consequently, a large amount of work has been carried out by several authors to weaken these assumptions, often in the more general context of weighted spaces.

Typical results (cf. for example Avantaggiati [2], Benci and Fortunato [3], Matarasso and Troisi [8]) ensure the compactness with rather weak assumptions, fulfilled, for instance, by cusps on the domain, when the embedding is already known and using weights infinitesimal in the singular set and to the infinity. In this way, unconditional results are in particular obtained for unbounded domains which verify the cone property. For other results in this direction, but with regard only to the unboundedness of the domain, we refer to the works of Berger and Schechter [4], Edmunds and Evans [6] and to the book of Adams [1].

In this type of results, the weights often play the role of balancing irregularities of the domain. Our purpose in this work is to further investigate the correlations between irregular domains and weights. We obtain embedding and compact embedding theorems with the same exponents of the theorems of Sobolev. As a consequence, we reobtain some results of Adams [1], Benci and Fortunato [3], Berger and Schechter [4], Edmunds and Evans [6], Matarasso and Troisi [8], Muckenhoupt and Wheeden [10]. We also obtain rather precise results for a class of domains, including cusps, having simple geometrical properties. We point out that the embedding with the Sobolev exponents without weights fails also for the simplest types of cusps; in this direction, Campanato [5] obtains embedding theorems with optimal exponents, depending on the irregularity of the domain.

We take the pleasure to thank Prof. L. Carbone for the helpful discussions on the subject.

1. Notations and statement of the results

Let Ω be an open set of R^{n} and let $\left\{\Omega_{i}\right\}_{i \in N}$ be a family of bounded open sets, contained in Ω, which covers Ω and fulfils the finite intersection property, and such that every Ω_{i} verifies the cone property, with cone of height h_{i} and aperture θ, θ independent of i (see Part 3). We call "weight function" on Ω every measurable function $\sigma: \Omega \rightarrow R^{+}$a.e. positive in Ω. We set

$$
\begin{equation*}
\|u\|_{L^{p}(\Omega, \sigma)}=\left(\int_{\Omega} \sigma(x)|u(x)|^{p} d x\right)^{1 / p} . \tag{1.1}
\end{equation*}
$$

Let us point out that (1.1) defines a norm if and only if σ is a.e. positive in Ω. We denote by $L^{p}(\Omega, \sigma)$ the Banach space of the functions u defined on Ω such that $\left.u\right|_{\Omega_{i}} \in L^{p}\left(\Omega_{i}\right)$ and $\|u\|_{L^{p}(\Omega, \sigma)}$ is finite, equipped with the norm (1.1), and with $W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta)$ the Banach space of the distributions u on Ω such that $u \in L^{p_{0}}(\Omega, \alpha)$ and $D^{v} u \in L^{p_{1}}(\Omega, \beta)$ for $|v|=r$, equipped with the norm

$$
\begin{equation*}
\|u\|_{W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta)}=\|u\|_{L^{p_{\mathrm{e}(\Omega, \alpha)}}}+\sum_{|v|=r}\left\|D^{v} u\right\|_{L^{p_{1}(\Omega, \beta)}} . \tag{1.2}
\end{equation*}
$$

We also set

$$
\begin{equation*}
\left|D^{r} u\right|_{L^{p_{1}(\Omega, \beta)}}=\sum_{|v|=r}\left\|D^{v} u\right\|_{L^{p_{1}(\Omega, \beta)}}=\left(\int_{\Omega} \beta(x)\left|D^{\tau} u\right|^{\beta_{1}} d x\right)^{1 / \beta_{1}} . \tag{1.3}
\end{equation*}
$$

Let α, β, γ be weight functions and ϱ, σ, Q measurable nonnegative functions and define

$$
\begin{gather*}
N_{0}(M)=\sup _{i \geqq M}\left\{h_{i}^{\lambda_{0}}\left(\frac{q \tau}{\tau-1}, \frac{p_{0} t_{0}}{t_{0}+1}\right) \frac{\tau-1}{\tau} N_{\frac{q}{p_{0}}, t_{0}, \tau}\left(\alpha^{-1}, \gamma Q^{q}, \Omega_{i}\right)\right\}, \tag{1.5}\\
N_{1}(M)=\sup _{i \geqq M}\left\{h_{i}^{\lambda_{1}}\left(\frac{q \tau}{\tau-1}, \frac{p_{1} t_{1}}{t_{1}+1}\right) N_{\frac{q}{p_{1}}, t_{1}, \tau}\left(\beta^{-1}, \gamma Q^{q}, \Omega_{i}\right)\right\}, \tag{1.6}\\
N_{0}=N_{0}(1), \quad N_{1}=N_{1}(1),
\end{gather*}
$$

where

$$
\begin{align*}
& \lambda_{0}\left(p, p_{0}\right)=-\left\{|k| p+n\left(\frac{p}{p_{0}}-1\right)\right\} \tag{1.8}\\
& \lambda_{1}\left(p, p_{1}\right)=p(r-|k|)-n\left(\frac{p}{p_{1}}-1\right)
\end{align*}
$$

Our main results are the following:
Embedding Theorem. Let $r \in N^{+}, k$ a multiindex, $|k|<r$ and

$$
\begin{equation*}
\frac{|k|}{r} \leqq a<1, \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\tau-1}{\tau} \frac{1}{q} \geqq a\left(\frac{1}{p_{1}} \frac{t_{1}+1}{t_{1}}-\frac{r}{n}\right)+(1-a) \frac{1}{p_{0}} \frac{t_{0}+1}{t_{0}}+\frac{|k|}{n}, \tag{1.11}
\end{equation*}
$$

with

$$
\begin{equation*}
1 \leqq p_{i} \leqq q<+\infty, \quad \frac{1}{p_{i}-1} \leqq t_{i} \leqq+\infty, \quad 1<\tau \leqq+\infty . \tag{1.12}
\end{equation*}
$$

Then the following inequality holds:

$$
\begin{equation*}
\left|Q D^{k} u\right|_{L^{q}(\Omega, v)} \leqq C\left\{N_{0}\|u\|_{L^{p_{0}(\Omega, \alpha)}}+N_{0}^{1-a} N_{1}^{a}|u|_{L^{p_{0}(\Omega, \alpha)}}^{1-a}\left|D^{r} u\right|_{L^{p_{1}(\Omega, \beta)}}^{a}\right\} . \tag{1.13}
\end{equation*}
$$

Compact Embedding Theorem. With the notations and assumptions of the Embedding Theorem, suppose also that $a>0$ and

Then the operator

$$
\begin{gather*}
N_{0}+N_{1}<+\infty, \tag{1.14}\\
\lim _{M \rightarrow+\infty} N_{0}(M)=0 . \tag{1.15}
\end{gather*}
$$

is compact.

$$
u \in W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta) \rightarrow Q D^{k} u \in L^{q}(\Omega, \gamma)
$$

The sequel of the paper is organized as follows: Part 2 is devoted to the proof of the theorems stated above; Part 3 examines the decomposability of the domains, and the relation with the functions

$$
\begin{aligned}
& h(x, \theta)=\sup \{r \in(0,1] \mid \exists \text { a closed cone of vertex } x \text {, aperture } \theta \text { and height } r, \\
& \text { contained in } \Omega\}, \\
& h_{1}(x, \theta)=\sup \{r \in(0,1] \mid \exists \text { an open cone of vertex } x, \text { aperture } \theta \text { and height } r, \\
& \text { contained in } \Omega\},
\end{aligned}
$$

Moreover, we give in Theorem 3.14 an explicit formulation of embedding and compactness results in terms of $\alpha, \beta, \gamma, Q, h(x, \theta)$ for a class of domains not verifying the cone property; in Part 4 we shall show that this class includes cusps.

Part 4 applies the results obtained before to cusps, evaluating the order of magnitude of $h(x, \theta)$ for these domains. Finally, we also consider a case in which the weights "explode" on an unbounded domain of small measure.

2. Proofs

In the sequel we shall denote by C, C^{\prime} and C_{i} some constants.
Lemma 2.1. Let Ω_{h} be an open set which verifies the cone property with cone of height h and let $p, p_{0}, p_{1} \in[1,+\infty), r \in N, k \in N^{n}, a \in\left[\frac{|k|}{r}, 1\right)$ such that $|k|<r$ and

$$
\frac{1}{p} \geqq a\left(\frac{1}{p_{1}}-\frac{r}{n}\right)+\frac{1-a}{p_{0}}+\frac{|k|}{n} .
$$

Then we have

$$
\begin{align*}
& \quad \int_{\Omega_{h}}\left|D^{k} u(x)\right|^{p} d x \leqq C\left\{h^{\lambda_{0}\left(p, p_{0}\right)}\left(\int_{\Omega_{h}} \mid u(x)^{p_{0}} d x\right)^{p / p_{0}}+\right. \tag{2.1}\\
& \left.+h^{(1-a) \lambda_{0}\left(p, p_{0}\right)+a \lambda_{1}\left(p, p_{1}\right)}\left(\int_{\Omega_{h}}|u(x)|^{p_{0}} d x\right)^{(1-a) p / p_{0}}\left(\int_{\Omega_{h}}\left|D^{r} u(x)\right|^{p_{1}} d x\right)^{a p / p_{1}}\right\},
\end{align*}
$$

where the constant involved in (2.1) is independent of h.
Proof. We consider the function $y=\varphi(x)=\frac{x-x_{0}}{h}, x_{0} \in \Omega$ fixed. Clearly, $\Omega=\varphi\left(\Omega_{h}\right)$ verifies the cone property with cone of height 1 . Let $u: \Omega_{h} \rightarrow R$,
$\tilde{u}=u \circ \varphi^{-1}$. Then, by a known result (for example Adams [1] p. 106, Gagliardo [7],
C. Miranda [9]), we have

$$
\begin{equation*}
\int_{\Omega}\left|D^{k} \tilde{u}\right|^{p} d y \leqq C\left\{\left(\int_{\Omega}|\tilde{u}|^{p_{0}} d y\right)^{p / p_{0}}+\left(\int_{\Omega}|\tilde{u}|^{p_{0}} d y\right)^{(1-a) p / p_{0}}\left(\int_{\Omega}\left|D^{r} \tilde{u}\right|^{p_{1}} d y\right)^{a p / p_{1}}\right\} \tag{2.2}
\end{equation*}
$$

With easy computations, we get for every $i \in N^{n}$

$$
\begin{equation*}
\int_{\Omega}\left|D^{i} \tilde{u}(y)\right|^{p} d y=h^{|i| p-n} \int_{\Omega_{h}}\left|D^{i} u(x)\right|^{p} d x . \tag{2.3}
\end{equation*}
$$

Now, we immediately obtain our statement from (2.2), (2.3).
Proof of the Embedding Theorem. From Lemma 2.1, setting

$$
\begin{equation*}
\lambda_{0}=\lambda_{0}\left(\frac{q \tau}{\tau-1}, \frac{p_{0} t_{0}}{t_{0}+1}\right), \quad \lambda_{1}=\lambda_{1}\left(\frac{q \tau}{\tau-1}, \frac{p_{1} t_{1}}{t_{1}+1}\right) \tag{2.4}
\end{equation*}
$$

we obtain

Moreover, applying the Hölder inequality we have

$$
\begin{gather*}
\int_{\Omega} \gamma(x)\left|Q(x) D^{k} u(x)\right|^{q} d x \leqq \sum_{i=1}^{\infty} \int_{\Omega_{i}} \gamma(x)\left|Q(x) D^{k} u(x)\right|^{q} d x \leqq \tag{2.5}\\
\leqq \sum_{i=1}^{\infty}\left|\gamma Q^{q}\right|_{\tau, \Omega_{i}}\left|D^{k} u\right|^{q} \frac{q \tau}{\tau-1}, \Omega_{i} ; \\
\int_{\Omega_{i}}|u(x)|^{\frac{p t}{t+1}} d x \leqq\left(\int_{\Omega_{i}} \alpha(x)^{t} d x\right)^{\frac{1}{t+1}}\left(\int_{\Omega_{i}} \alpha(x)|u(x)|^{p} d x\right)^{\frac{t}{t+1}} .
\end{gather*}
$$

From (2.4) and (2.5) we get

$$
\begin{align*}
& \left|Q D^{k} u\right|_{L^{q}(\Omega, \gamma)} \leqq C \sum_{i=1}^{\infty}\left\{\left.h_{i}^{\left(\frac{\tau-1}{\tau}\right) \lambda_{0}}\left|\gamma Q^{q}\right|_{\tau, \Omega_{i}} \right\rvert\, \alpha^{\left.-1|q /|_{t_{0}, \Omega_{i}}^{q / p}\right\}}\right\}|u|_{L}^{q} p_{0}\left(\Omega_{i}, \alpha\right)+ \tag{2.6}\\
& +\left(\sum_{i=1}^{\infty}\{\ldots\}|u|_{L}^{q} p_{0\left(\Omega_{i}, \alpha\right)}\right)^{1-a}\left(\sum_{i=1}^{\infty}\left\{h_{i}^{\left(\frac{\tau-1}{\tau}\right)} \lambda^{\lambda_{1}}\left|\gamma Q^{q}\right|_{\tau, \Omega_{i}}\left|\beta^{-1}\right|{ }_{t_{1}, \Omega_{i}}^{\mid / p_{1}}\right\}\left|D^{r} u\right|_{L}^{q} p_{1\left(\Omega_{i}, \beta\right)}^{q}\right)^{a} .
\end{align*}
$$

Now, recalling the notations (1.5), (1.6), (1.7), formula (2.6) becomes

$$
\begin{equation*}
\left|Q D^{k} u\right|_{L_{(\Omega, \gamma)}^{q}}^{q} \leqq C\left\{N_{0} \sum_{i=1}^{\infty}\|u\|_{L^{p_{0}(\Omega, \alpha)}}^{q}+N_{0}^{1-a} N_{1}^{a} \sum_{i=1}^{\infty}\|u\|_{L^{p_{0}\left(\Omega_{i}, \alpha\right)}}^{q(1-a)}\left|D^{r} u\right|_{L^{p_{1}(\Omega, \beta)}}^{q a}\right\} . \tag{2.7}
\end{equation*}
$$

Since $q \geqq p_{0}, \underline{q} \geqq p_{1}$, our statement follows from (2.7) by the Hölder inequality.

Remark. When the terms of the sums of the right member of (2.6) are infinitesimal, the upper bound (2.6) is lower than the upper bound (1.13). This loss causes conditions non optimal in general on the weights; but in this manner we are able to obtain embedding and compactness results with the Sobolev exponents.

Proof of the Compact Embedding Theorem. We obviously have

$$
\begin{equation*}
\left|Q D^{k} u\right|_{L^{q}(\Omega, \gamma)}<C\left\{\left|Q D^{k} u\right|_{L^{q}\left(\cup_{i \leqq M} \Omega_{i}, \gamma\right)}+\left|Q D^{k} u\right|_{L^{q}\left(\mathcal{i}_{i>M} \Omega_{i}, \gamma\right)}\right\} . \tag{2.8}
\end{equation*}
$$

In our hypothesis, $\bigcup_{i \leqq M} \Omega_{i}$ verifies the cone property with cone of height $\bar{h} \min _{i<M} h_{i}$. Since $N_{0}+N_{1}<+\infty$, we have by the Embedding Theorem

$$
\begin{align*}
& \left.\left|Q D^{k} u\right|_{L^{q}(}{ }_{i \leqq M} \Omega_{i}, \gamma\right) \leqq C(M)\left\{\varepsilon\left|D^{r} u\right|_{L} \frac{p_{1} t_{1}}{t_{1}+1}\left(\cup_{i \leqq M} \Omega_{i}\right)+C(\varepsilon)\|u\|_{L}^{\frac{p_{0} t_{0}}{t_{0}+1}}\left(\bigcup_{i \leqq M}^{\left.\cup \Omega_{i}\right)}\right\},\right. \tag{2.9}\\
& \left.\left|Q D^{k} u\right|_{L^{q}(}^{i>M} \bigcup_{i>M} \Omega_{i}, \gamma\right) \leqq \delta\left|D^{r} u\right|_{\left.L^{p_{1}(} \cup_{i>M} \Omega_{i}, \beta\right)}+C(\delta) N_{0}(M)\|u\|_{L^{p_{0}}\left(\cup_{i>M} \Omega_{i}, \alpha\right)} . \tag{2.10}
\end{align*}
$$

From (2.8), (2.9) and (2.10), we obtain for every $M, \varepsilon, \delta>0$

$$
\begin{align*}
& \left|Q D^{k} u\right|_{L^{q}(\Omega, \gamma)} \leqq \delta\left|D^{r} u\right|_{L^{p_{1}(\Omega, \beta)}}+C(\delta) N_{0}(M)\|u\|_{L^{p_{0}}\left(\bigcup_{i>M} \Omega_{i}, \alpha\right)}+ \tag{2.11}\\
& \left.\quad+\varepsilon C(M)\left|D^{r} u\right|_{L}^{\frac{p_{1} t_{1}}{t_{1}+1}}(\Omega)+C(\varepsilon, M)\|u\|_{L}^{\frac{p_{0} t_{0}}{t_{0}+1}}\left(\bigcup_{i \leqq M}^{\cup} \Omega_{i}\right)\right\} .
\end{align*}
$$

Let now $\left\{u_{n}\right\}_{n \in N}$ be a sequence of functions in $W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta)$ weakly convergent to zero and

$$
\begin{equation*}
\left\|u_{n}\right\|_{W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta)} \leqq C . \tag{2.12}
\end{equation*}
$$

Since $\bigcup_{i \leq M} \Omega_{i}$ is bounded and verifies the cone property, we have the compact embedding

$$
W_{\frac{p_{1} t_{1}}{t_{1}+1}}^{r}, \frac{p_{0} t_{0}}{t_{0}+1}\left(\bigcup_{i \leqq M} \Omega_{i}\right) \rightarrow L^{\frac{p_{1} t_{1}}{t_{1}+1}}\left(\bigcup_{i \leqq M} \Omega_{i}\right)
$$

(cf. Lemma 6.6 and Theorem 6.2 of Adams [1]).
Hence

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{L}{ }^{\frac{p_{1} t_{1}}{t_{1}+1}}\left(\bigcup_{i \leqq M}^{\bigcup_{i}}\right)=0 . \tag{2.13}
\end{equation*}
$$

Using (2.12), formula (2.11) gives, for every $M, \varepsilon, \delta>0$

$$
\begin{equation*}
\left|Q D^{k} u_{n}\right|_{L^{q}(\Omega, \gamma)}<C\left\{\delta+C(\delta) N_{0}(M)+\varepsilon C(M)+C(\varepsilon, M)\left\|u_{n}\right\|_{L}^{\frac{p_{1} t_{1}}{t_{1}+1}}\left(\cup_{i \leqq M} \Omega_{i}\right)\right\} \tag{2.14}
\end{equation*}
$$

where the constant is independent of $\delta, \varepsilon, M, n$.

Choosing $\delta<\lambda$ and M such that $C(\delta) N_{0}(M)<\lambda$, as we can do by (1.15), and then ε such that $\varepsilon C(M)<\lambda$, formula (2.11) gives for every $\lambda \in R^{+}$

$$
\begin{equation*}
\left\|Q D^{k} u_{n}\right\|_{L^{q}(\Omega, \gamma)}<C\left\{\lambda+C(\lambda)\left\|u_{n}\right\|_{L} \frac{p_{1} t_{1}}{t_{1}+1}\left(\bigcup_{i \leqq M} \Omega_{i}\right)\right\} \tag{2.15}
\end{equation*}
$$

where the constant is independent of λ, n.
Finally, using (2.13), we get by (2.15) for every λ and for $n>n_{0}(\lambda)$

$$
\begin{equation*}
\left|Q D^{k} u_{n}\right|_{L^{q}(\Omega, \gamma)}<C \lambda . \tag{2.16}
\end{equation*}
$$

Then, the arbitrarity of λ implies

$$
\lim _{n \rightarrow+\infty}\left|Q D^{k} u_{n}\right|_{L^{q}(\Omega, \gamma)}=0 .
$$

3. Decomposability of domains

We shall give a decomposition of the open set Ω using a function $a(x) \in C^{0}(\bar{\Omega})$ and strictly positive on Ω; for this purpose, we introduce the following

Definition. We say that Ω has the (\mathscr{D})-property (with respect to $a(x)$) if for every $\varepsilon_{1}, \varepsilon_{2}$, with $\varepsilon_{2}>\varepsilon_{1}>0$, the open set $\Omega\left(\varepsilon_{1}, \varepsilon_{2}\right)=\left\{x \in \Omega \mid \varepsilon_{1}<a(x)<\varepsilon_{2}\right\}$ is such that $\inf _{x \in \Omega\left(\varepsilon_{1}, \varepsilon_{2}\right)} h_{\Omega}(x, \theta)>0$.

Theorem 3.1. Let $a(x) \in C^{0}(\bar{\Omega}), a(x)>0$ in Ω, Ω having the ($\left.\mathscr{D}\right)$-property. Then there exists an admissible decomposition $\left\{\Omega_{i}\right\}_{i \in N}$ of Ω. Moreover, if $a(x) \in \operatorname{Lip}(\bar{\Omega})$ and for some $\theta>0$

$$
\begin{equation*}
C_{1} a(x)<h(x, \theta)<C_{2} a(x), \quad \forall x \in \Omega, \tag{3.1}
\end{equation*}
$$

then $h_{i}=h\left(\Omega_{i}\right) \geqq C \inf _{x \in \Omega_{i}} h(\lambda, \theta)$.
Proof. We can assume, without loss of generality, that Ω is bounded, because otherwise we can work on

$$
\Omega_{\lambda}=\Omega \cap\left\{x \in R^{n} \mid \lambda_{i}<x_{i}<\lambda_{i+1}\right\}, \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in N^{n} .
$$

We define the open sets

$$
\begin{gathered}
\Omega^{+}(b)=\{x \in \Omega \mid a(x)>b\}, \quad \Omega^{-}(b)=\{x \in \Omega \mid a(x)<b\}, \\
D_{k}=\Omega^{+}\left(2^{-(k+1)}\right) \cap \Omega^{-}\left(2^{-(k-1)}\right) .
\end{gathered}
$$

Clearly, we have

$$
\begin{equation*}
\Omega=\Omega^{+}(1 / 2) \cup\left(\bigcup_{i=2}^{\infty} D_{i}\right) \tag{3.2}
\end{equation*}
$$

For $k_{1}<k_{2}$, we define

$$
\begin{equation*}
d\left(k_{1}, k_{2}\right)=d\left(\Omega^{+}\left(2^{-k_{1}}\right), \Omega^{-}\left(2^{-k_{2}}\right)\right) \tag{3.3}
\end{equation*}
$$

The continuity of $a(x)$ on $\bar{\Omega}$ bounded implies

$$
\begin{equation*}
d\left(k_{1}, k_{2}\right)>0 \tag{3.4}
\end{equation*}
$$

Finally, we define

$$
\begin{equation*}
\Omega_{i}=\bigcup_{x \in D_{i}} C_{i}(x) \tag{3.5}
\end{equation*}
$$

where $C_{i}(x)$ is an open cone contained in Ω, such that $x \in C_{i}(x)$, of height h_{i}, with

$$
\begin{equation*}
0<h_{i} \leqq C \min \left\{d(i+1, i+2), \quad \inf _{x \in D_{i}} h(x, \theta)\right\} \tag{3.6}
\end{equation*}
$$

This cone exists by the (\mathscr{D})-property; moreover, we can assume that h_{i} is a decreasing sequence. The constant C which appears in (3.6) is such that $0<C<1$ and it will be chosen in the sequel.

Clearly, the sets Ω_{i} are open, $\Omega_{i} \subset \Omega, \bigcup_{i=1}^{\infty} \Omega_{i}=\Omega$ and every Ω_{i} verifies the cone property with cone of height greater than or equal to h_{i}. We show that the family $\left\{\Omega_{i}\right\}_{i \in N}$ has the finite intersection property if C is small enough. Indeed let $y \in \Omega_{i} \cap \Omega_{i+3}$. Then

$$
y \in C_{i}\left(x_{i}\right), \quad y \in C_{i+3}\left(x_{i+3}\right), \quad \text { with } \quad x_{i} \in D_{i}, \quad x_{i+3} \in D_{i+3},
$$

which implies

$$
2^{-(i+1)}<a\left(x_{i}\right)<2^{-(i-1)}, \quad 2^{-(i+4)}<a\left(x_{i+3}\right)<2^{-(i+2)} .
$$

Then we get

$$
\begin{gather*}
d(i+1, i+2) \leqq\left|x_{i}-x_{i+3}\right| \leqq\left|x_{i}-y\right|+\left|y-x_{i+3}\right| \leqq 2\left(h_{i}+h_{i+3}\right) \leqq \tag{3.7}\\
\leqq 4 h_{i} \leqq 4 C d(i+1, i+2),
\end{gather*}
$$

which is a contradiction if $C<\frac{1}{5}$.
To prove the last part of Theorem 3.1, we denote by L the Lipschitz constant of $a(x)$; clearly, we have by (3.1)

$$
\begin{equation*}
C_{3} 2^{-i} \leqq \inf _{x \in \Omega_{i}} h(x, \theta) \leqq C_{4} 2^{-i} \tag{3.8}
\end{equation*}
$$

and so it suffices to show that we can choose in the construction above $h_{i}=C 2^{-i}$ for a suitable constant C. Let $y \in \Omega^{+}\left(2^{-(i+1)}\right), z \in \Omega^{-\left(2^{-(i+2)}\right)}$, such that $d(i+1, i+2)>\frac{1}{2} d(y, z)$. Then, by the Lipschitz property of $a(x)$

$$
\begin{equation*}
d(i+1, i+2)>\frac{1}{2}|y-z| \geqq \frac{1}{2 L}|a(y)-a(z)|>\frac{1}{2 L}\left(\frac{1}{2^{k+1}}-\frac{1}{2^{k+2}}\right)=\frac{1}{8 L} 2^{-k} \tag{3.9}
\end{equation*}
$$

Formulas (3.7) and (3.9) give $\frac{1}{8 L} 2^{-i} \leqq 4 h_{i} \leqq 4 C 2^{-i}$ which is absurd for $C<\frac{1}{40 L}$, proving the finite intersection property, and the Theorem.

In view of the applications, we shall consider the following choices of the functions $a(x)$:
(i) $\quad a(x)=d(x, \partial \Omega)$
(ii) $a(x)=d(x, S)$ for $S \subset \partial \Omega$
(iii) $a(x)=h(x, \theta)$ for some θ, when $h(x, \theta)=h_{1}(x, \theta)$.

The first function is clearly in $C^{0}(\bar{\Omega})$ (in fact, it is in $\operatorname{Lip}(\bar{\Omega})$) for every domain Ω, and so it shows that an admissible decomposition always exists for every open set Ω. Unfortunately, the values of h_{i} are far from what one expects (consider for instance Ω having the cone property).

The choice (ii) requires the (ஜூ)-property; it often gives good values of h_{i} with an appropriate choice of S, which can be considered in a sense the "singular part" of $\partial \Omega$.

For the choice (iii), we prove the following
Lemma 3.2. The function $h(x, \theta)$ is lower semicontinuous (in x).
Proof. Let $h\left(x_{0}, \theta\right)=1$; then, for every $\varepsilon>0$, there exists a cone $C\left(x_{0}, \theta, 1-\varepsilon\right) \subset \subset \Omega$, that is $\overline{C\left(x_{0}, \theta, 1-\varepsilon\right)} \subset \Omega$; let $d=d(C, \partial \Omega)>0$. Consider the cone $C(x, \theta, 1-\varepsilon)$, obtained translating the cone $C\left(x_{0}, \theta, 1-\varepsilon\right)$ with vertex in x in spite of x_{0}. If $\left|x-x_{0}\right|<d / 2$, we have

$$
d(y, C(x, \vartheta, 1-\varepsilon))<d / 2, \quad \forall y \in C(x, \theta, 1-\varepsilon)
$$

whence $C(x, \theta, 1-\varepsilon) \subset \subset \Omega$. This means that

$$
h(x, \theta) \geqq 1-\varepsilon, \quad \forall x \quad \text { with } \quad\left|x-x_{0}\right|<d / 2,
$$

from which we infer

$$
h\left(x_{0}, \theta\right) \leqq \liminf _{x \rightarrow x_{0}} h(x, \theta)
$$

Lemma 3.3. The function $h_{1}(x, \theta)$ is upper semicontinuous (in x).
Proof. Let $x_{n} \rightarrow x$ in $\Omega,\left\{C_{n}\right\}_{n \in N}$ a sequence of cones of vertex x_{n}, opening θ and height h_{n}, with $h_{n} \rightarrow h$. Passing to a subsequence, we can assume that the bisectors b_{n} of C_{n} converge to b. We show that the cone C of vertex x, height h, opening θ and bisector b is contained in Ω. Clearly, we have

$$
C=\left\{y=x+\varrho\left(b+y_{b}\right) \mid 0<\varrho<c h, y_{b} \in(b)^{\perp}, \frac{\left\|y_{b}\right\|}{\|b\|}<c(\theta)\right\}
$$

where $c(\theta)$ is a constant which depends only on the opening. Let

$$
\tilde{C}=\left\{y=x+\mu b+\varrho\left(b+y_{b}\right) \mid 0<\varrho<c h^{\prime}, \mu>0, h^{\prime}+\mu<h, \frac{\left\|y_{b}\right\|}{\|b\|}<c(\theta)\right\}
$$

be a cone of vertex $x+\mu b$ well contained in C and let $y \in \tilde{C}, y=x+\mu b+\varrho\left(b+y_{b}\right)$, $v_{n}=\left(x-x_{n}\right)+(\varrho+\mu)\left(b-b_{n}\right)$. Then $y=x_{n}+\varrho\left(b_{n}+y_{b}\right)+\left\{\mu b_{n}+v_{n}\right\}$.

We denote by P_{n} the projection on the linear space generated by b_{n}, and by Q_{n} the projection on $\left(b_{n}\right)^{\perp}$. We observe that $\varepsilon_{n}=\left\|x-x_{n}\right\|+\left\|b-b_{n}\right\| \rightarrow 0$, and get $y=x_{n}+(\varrho+\mu) b_{n}+\varrho y_{b}+P_{n} v_{n}+Q_{n} v_{n}$. Then
(i) $(\varrho+\mu) b_{n}+P_{n} v_{n}=\alpha b_{n}$,
with $0<\alpha<\varrho+\mu+C \varepsilon_{n}<h^{\prime}+\mu+C \varepsilon_{n}<h$ if $n>n_{0}$ because $h^{\prime}+\mu<h$ and $\varepsilon_{n} \rightarrow 0$;
(ii) $\frac{\left\|\varrho y_{b}+Q_{n} v_{n}\right\|}{\left\|(\varrho+\mu) b_{n}+P_{n} v_{n}\right\|}<\frac{\varrho}{\varrho+\mu} \frac{\left\|y_{b}\right\|}{\left\|b_{n}\right\|}+C \varepsilon_{n}<c(\theta)$
if $n>n_{0}$, because $\frac{\left\|y_{b}\right\|}{\left\|b_{n}\right\|}<c(\theta), \mu>0$ and $\varepsilon_{n} \rightarrow 0$.
This shows that $y \in C_{n}$, hence $\widetilde{C} \subset C_{n} \subset \Omega$ for every $\widetilde{C} \subset \subset C$, which implies $C \subset \Omega$. We deduce

$$
h_{1}\left(x_{0}, \theta\right) \geqq \max _{x \rightarrow x_{0}} \lim _{1} h_{1}(x, \theta) .
$$

By these Lemmas, if, for some $\theta, h(x, \theta)=h_{1}(x, \theta)$ and this function (continuous in Ω) can be continuously extended to $\bar{\Omega}$, the conditions of Theorem 3.1 are fulfilled.

In several cases, also for simple domains having the cone property, the functions $h(x, \theta)$ and $h_{1}(x, \theta)$ are really discontinuous in some points, but for our purposes it is enough to have a lipschitzian function $a(x)$ of the same order of magnitude of $h(x, \theta)$. We have indeed the following explicit version of the compact embedding theorem, that we state for the sake of simplicity only in the case of weights of L^{∞}-type.

Theorem 3.4. Let Ω be bounded, $a(x) \in \operatorname{Lip}(\bar{\Omega})$ and assume that, for suitable constants C_{1}, C_{2}, we have

$$
\begin{equation*}
C_{1} h_{1}(x, \theta) \leqq a(x) \leqq C_{2} h(x, \theta), \quad \forall x \in \Omega . \tag{3.10}
\end{equation*}
$$

Define $S=\{x \in \partial \Omega \mid a(x)=0\}$ and $A_{\varepsilon}=\left\{x \in \Omega \mid \varepsilon<a(x)<C_{3} \varepsilon\right\}$ and assume that

$$
\begin{align*}
& \alpha^{-1}, \beta^{-1}, \gamma, Q \in L_{\mathrm{loc}}^{\infty}(\bar{\Omega} \backslash S) \tag{3.11}\\
& \sup _{x, y \in A_{\varepsilon}}\left|\frac{\alpha(x)}{\alpha(y)}\right|<C, \quad \forall \varepsilon>0, \tag{3.12}
\end{align*}
$$

with C_{4}, β, γ, Q independent of ε,

$$
\begin{equation*}
\frac{1}{q} \geqq a\left(\frac{1}{p_{1}}-\frac{r}{n}\right)+(1-a) \frac{1}{p_{0}}+\frac{|k|}{r} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow S} \frac{h(x, \theta)^{\lambda_{0}\left(q, p_{0}\right)} \gamma(x) Q^{q}(x)}{\alpha^{q / p_{0}}(x)}=0 \tag{3.16}
\end{equation*}
$$

$$
\begin{gather*}
\frac{|k|}{r} \leqq a<1, \quad a>0 \tag{3.13}\\
1 \leqq p_{i} \leqq q<+\infty \quad \text { for } \quad i=0,1 \tag{3.14}
\end{gather*}
$$

$$
\begin{equation*}
\sup _{x \in \Omega} \frac{h(x, \theta)^{\lambda_{1}\left(q, p_{1}\right)} \gamma(x) Q^{q}(x)}{\beta^{q / p_{1}}(x)}<+\infty, \tag{3.17}
\end{equation*}
$$

where λ_{0}, λ_{1} have been defined in (1.8), (1.9).

Then the operator

$$
u \in W_{p_{0}, p_{1}}^{r}(\Omega, \alpha, \beta) \rightarrow Q D^{k} u \in L^{q}(\Omega, \gamma)
$$ is compact.

Proof. By (3.10), Ω has the (D)-property for $a(x)$. Then, we take the decomposition given by Theorem 3.1 and apply the compact embedding theorem choosing $t_{0}=t_{1}=\tau=+\infty$.

Now, our theorem follows computing $N_{0}(M)$ and $N_{1}(M)$ by (3.12), (3.16) and (3.17).

4. Examples

We show that the assumptions of Theorem 3.4 are fulfilled for the following simple bidimensional cusp

$$
\begin{equation*}
\Omega=\left\{\left(x_{1}, x_{2}\right) \in R^{2} \mid 0<x_{1}<1,-f\left(x_{1}\right)<x_{2}<f\left(x_{1}\right)\right\} \tag{4.1}
\end{equation*}
$$

with $f \in C^{2}([0,1]) ; f(0)=f^{\prime}(0)=0 ; f\left(x_{1}\right), f^{\prime}\left(x_{1}\right), f^{\prime \prime}\left(x_{1}\right) \in R^{+}$.
Proposition 4.1. Let Ω be defined by (4.1). Then there exists θ_{0} such that for every $x=\left(x_{1}, x_{2}\right) \in \Omega$ and $\theta<\theta_{0}$, we have

$$
\begin{equation*}
C_{1} f\left(x_{1}\right) \leqq h(x, \theta) \leqq C_{2} f\left(x_{1}\right) \tag{4.2}
\end{equation*}
$$

Proof. The straight line of angle θ passing for x intersects the curve $X_{2}=f\left(X_{1}\right)$ for $\bar{X}_{1} \operatorname{tg} \theta-f\left(\bar{X}_{1}\right)=x_{1} \operatorname{tg} \theta-x_{2}$. Since in our hypothesis $\frac{f(x)}{x}=o(1)$, we have for x_{1} small enough

$$
\begin{equation*}
\bar{X}_{1}<C\|x\|, \quad\left|\bar{X}_{2}\right|=\left|f\left(\bar{X}_{1}\right)\right|<C f(\|x\|) . \tag{4.3}
\end{equation*}
$$

Similar estimates hold for the curve $X_{2}=-f\left(X_{1}\right)$.
Since every cone of vertex x and opening θ obviously intersects one of the graphs $X_{2}=f\left(X_{1}\right), X_{2}=-f\left(X_{1}\right)$, we obtain by (4.3)

$$
\begin{equation*}
h(x, \theta) \leqq C \min \left(\bar{X}_{1}, \bar{X}_{2}\right) \leqq C f(\|x\|) \tag{4.4}
\end{equation*}
$$

Moreover, if we set
we have

$$
\partial_{1} \Omega=\left\{\left(x_{1}, f\left(x_{1}\right)\right)\right\}, \quad \partial_{2} \Omega=\left\{\left(x_{1},-f\left(x_{1}\right)\right)\right\}
$$

$$
d\left(x, \partial_{1} \Omega\right)+d\left(x, \partial_{2} \Omega\right) \geqq f\left(x_{1}\right) \geqq C f(\|x\|)
$$

and (4.2) is completely proved because $x_{1}<\|x\|<C x_{1}$.
By Proposition 4.1, we can apply Theorem 3.4 choosing $a(x)=f\left(x_{1}\right)$. It turns out that $S=\{0\}$, which is the expected singular point of our cusp.

Similar results also hold for general cusps (see Adams [1] p. 124) with a suitable regular function $h(x)$ of the same order of magnitude of $h(x, \theta)$.

Finally, we show in the following example that the compact embedding can hold also if the new weight is considerably bigger that the previous one, assuming the condition that this happens on a set of suitably small measure.

Proposition 4.2. Let $\Omega=R^{+} \times R^{+}, \quad q>p \geqq 1, \quad \alpha(x)=1+\left|x_{1}-x_{2}\right| x_{1}^{s}, \quad \beta(x)=$ $=1+x_{1}^{p / q}, \gamma(x)=1+x_{1}, t \geqq 1$ such that

$$
\begin{align*}
\frac{1}{q}>\frac{1}{p} & >\frac{t+1}{t}-\frac{1}{2} \tag{4.5}\\
s & >1+\frac{p}{q} \\
s & >\frac{p t}{q} \tag{4.7}
\end{align*}
$$

Then we have the compact embedding $W_{p, p}^{1}(\Omega, \alpha, \beta) \rightarrow L^{q}(\Omega, \gamma)$.
Proof. Clearly, there exists an admissible decomposition $\left\{\Omega_{i}\right\}_{i \in N}$ of Ω by squares Ω_{i} such that $C_{1} \leqq h_{i} \leqq C_{2}$ and $C_{1} \leqq \mu\left(\Omega_{i}\right) \leqq C_{2}$, for every i. Then, we can apply Theorem 1.2 with $t_{0}=t_{1}=t, \tau=+\infty$ and obtain that the stated compact embedding holds if conditions (1.14), (1.15) are fulfilled. In our case this means that

$$
\begin{gather*}
N_{0}(M)=\sup _{i>M}\left\{\left|\alpha^{-1}\right|_{i, \Omega_{i}}^{q / p}|\gamma|_{\tau, \Omega_{i}}\right\} \rightarrow 0 \quad(M \rightarrow+\infty), \tag{4.8}\\
N_{1}=\sup _{i>1}\left\{\left|\beta^{-1}\right|_{i, \Omega_{i}}^{q / p_{i}}|\gamma|_{\tau, \Omega_{i}}\right\}<+\infty \tag{4.9}
\end{gather*}
$$

Now, (4.9) is immediate and we come to the study of $N_{0}(M)$. For $\lambda>t, \lambda<\frac{s q}{p}$ we have, setting $\Omega(x, d)=\{y \in \Omega \mid\|x-y\|<d\}$,

$$
\begin{gather*}
\left|\alpha^{-1}\right|_{t, \Omega(x, d)}|\gamma|_{\tau, \Omega(x, d)}^{p / q}<C\left|\alpha^{-1} \gamma^{p / q}\right|_{t, \Omega(x, d)}< \tag{4.10}\\
<\left|\alpha^{-1} \gamma^{p / q}\right|_{t, \Omega(x, d) \backslash \Omega_{\varepsilon}}+\left|\alpha^{-1} \gamma^{p / q}\right|_{\theta, \Omega_{\varepsilon} \cap \Omega(x, d)} \mu\left(\Omega_{\varepsilon} \cap \Omega(x, d)\right)^{1 / t-1 / \theta},
\end{gather*}
$$

where

$$
\Omega_{\varepsilon}=\left\{x \in \Omega| | \alpha^{-1}(x) \gamma(x)^{p / q} \mid>\varepsilon\right\} .
$$

Then, our Proposition follows at once by (4.10) if we are able to show
(i) $\sup _{x \Omega}\left|\alpha^{-1} \gamma^{p / q}\right|_{\theta, \Omega(x, d)}<+\infty$,
(ii) $\lim _{|x| \rightarrow+\infty} \mu\left(\Omega_{\varepsilon} \cap \Omega(x, d)\right)=0, \quad \forall \varepsilon \in R^{+}$.

With regard to (i), we observe that, since $\lambda<s q / p$,

$$
\begin{equation*}
\int_{0}^{x_{1}} \frac{d x_{2}}{\left\{1+\left(x_{1}-x_{2}\right) x_{1}^{s}\right\}^{\theta}}=\int_{0}^{x_{1}} \frac{d y}{\left(1+x_{1}^{s} y\right)^{\theta}}<C \int_{0}^{x_{1}} \frac{d y}{1+x_{1}^{s \theta} y^{\theta}} . \tag{4.11}
\end{equation*}
$$

We obtain, dividing $[0,1]$ to intervals of the type $\left[\frac{i}{A^{1 / \theta}}, \frac{i+1}{A^{1 / \theta}}\right]$,

$$
\begin{equation*}
\int_{0}^{1} \frac{d y}{1+A y^{\theta}}<\sum_{0 \leqq i \leqq A^{1 / \theta}} \frac{1}{1+A\left(\frac{i}{A^{1 / \theta}}\right)^{\theta}} \frac{1}{A^{1 / \theta}}=\frac{1}{A^{1 / \theta}} \sum \frac{1}{1+i^{\theta}}<C A^{-1 / \theta} \tag{4.12}
\end{equation*}
$$

Moreover, if $x_{1}>1$

$$
\begin{equation*}
\int_{1}^{x_{1}} \frac{d y}{1+y^{\theta} x_{1}^{s \theta}}<C x_{1}^{-s \theta} \int_{1}^{\infty} \frac{d y}{y^{\theta}}<C x_{1}^{-s \theta} . \tag{4.13}
\end{equation*}
$$

By (4.12), (4.13), we get

$$
\begin{equation*}
\int_{0}^{x_{1}} \frac{d x_{2}}{\left\{1+\left(x_{1}-x_{2}\right) x_{1}^{s}\right\}^{\theta}}<C x_{1}^{-s} . \tag{4.14}
\end{equation*}
$$

Still using (4.12), we have

$$
\begin{equation*}
\int_{x_{1}}^{+\infty} \frac{d x_{2}}{\left\{1+\left(x_{2}-x_{1}\right) x_{1}^{s}\right\}^{\theta}}=\int_{0}^{+\infty} \frac{d y}{\left\{1+x_{1}^{s} y\right\}^{\theta}}<C x_{1}^{-s} \tag{4.15}
\end{equation*}
$$

By (4.14), (4.15) we obtain

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{d x_{1}}{\alpha^{\theta}(x)}<C\left(1+x_{1}\right)^{-s} \tag{4.16}
\end{equation*}
$$

It follows for x_{1} large enough (which can obviously be assumed)

$$
\begin{gathered}
\int_{\Omega\left(x_{0}, d\right)}\left(\frac{\gamma(x)^{p / q}}{\alpha(x)}\right)^{\theta} d x<\int_{x_{0,1}-d / 2}^{x_{0,1}+d / 2} \gamma(x)^{\theta p / q} \int_{0}^{+\infty} \frac{d x_{2}}{\alpha^{\theta}(x)}< \\
\quad<C \int_{x_{0,1}-d / 2}^{x_{0,1}+d / 2}\left(1+x_{1}\right)^{\theta p / q-s} d x_{1}<+\infty
\end{gathered}
$$

if $(\theta p / q)-s<0$.
Finally, (ii) follows because $s>\frac{p}{q}+1$, observing that

$$
\Omega_{\varepsilon}=\left\{x \in \Omega \left\lvert\, x_{1}-\frac{\varepsilon^{-1}\left(1+x_{1}\right)^{p / q}-1}{x_{1}^{s}}<x_{2}<x_{1}+\frac{\varepsilon^{-1}\left(1+x_{1}\right)^{p / q}-1}{x_{1}^{s}}\right.\right\} .
$$

References

[1] R. A. Adams, Sobolev spaces, Academic Press (1971).
[2] A. Avantaggiati, On compact embedding theorems in weighted Sobolev spaces, Nonlinear analysis, function spaces and applications, Proc. Spring School (Horni Bradlo, 1978).
[3] V. Benci and D. Fortunato, Some compact embedding theorems for weighted Sobolev spaces, Boll. U.M.I., (5) 13-B (1976), 832-843.
[4] M. S. Berger and M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Amer. Math. Soc., 172 (1972), 261278.
[5] S. Campanato, Il teorema di immersione di Sobolev per una classe di aperti non dotati della proprietà di cono, Ric. di Mat., II (1962), 103-122.
[6] D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Sc. Norm. Sup. di Pisa, 27, 2 (1973), 591-640.
[7] E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. di Mat., 8 (1959), 24-51.
[8] S. Matarasso and M. Troisi, Teoremi di compattezza in domini non limitati, Boll. U.M.I., (5), 18-B (1981), 517-537.
[9] C. Miranda, Su alcune disuguaglianze integrali, Atti Acc. Lincei, (8), 7 (1973), 1-14.
[10] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.
[11] L. Nirenberg, On elliptic partial differential equations, Lecture II, Ann. Sc. Norm. Sup. di Pisa, 13 (1959), p. 123- 131.
[12] G. Stampacchia, Sur des espaces de fonctions qui interviennent dans les problèmes aux limites elliptiques, Colloque sur l'Analyse Fonctionnelle (Louvain, 1960).
(Received July 26, 1983)
ISTITUTO DI MATEMATICA
FACOLTA DI SCIENZE
UNIVERSITY OF SALERNO
84100 SALERNO
ITALY

К РАСШИРЕННОМУ ИНТЕРПОЛЯЦИОННОМУ ПРОЦЕССУ ЭРМИТА-ФЕЙЕРА

Д. Л. БЕРМАН (Ленинград)

1. Введем следующие обозначения: через C обозначим множество всех функций, непрерывных в $[-1,1]$. C^{2} обозначает подмножество из C, состоящее из всех функций $f(x)$, имеющих в $[-1,1]$ непрерывные производные $f^{\prime \prime}(x)$. Δ_{1} обозначает подмножество из C, состоящее из всех функций $f(x)$, имеющих левую производную $f^{\prime}(1)$. Аналогичным образом определяется множество функций Δ_{2}. Пусть задана матрица чисел
(м) $\quad\left\{x_{k}^{(n)}\right\}, k=1,2, \ldots, n, n=1,2, \ldots,-1<x_{n}^{(n)}<x_{n-1}^{(n)}<\ldots<x_{1}^{(n)}<1$,

и пусть $H_{n}(f, x)$ - полином степени $2 n-1$, однозначно определяющийся из условий $H_{n}\left(f, x_{k}^{(n)}\right)=f\left(x_{k}^{(n)}\right), H_{n}^{\prime}\left(f, x_{k}^{(n)}\right)=0, k=1,2, \ldots, n$. Классическая теорема Л. Фейера [1] утверждает, что если n-я строчка, $\left\{x_{k}^{(n)}\right\}_{k=1}^{n}$, состоит из чисел $x_{k}^{(n)}=\cos \frac{2 k-1}{2 n} \pi, k=1,2, \ldots, n$, то для любой $f \in C$ выполняется равномерно в $[-1,1]$ соотношение $H_{n}(f, x) \rightarrow f(x), n \rightarrow \infty$. Хорошо известно, что процесс $\left\{H_{n}(f, x)\right\}$ называется интерполяционным процессом Эрмита-Фейера.

Пусть полином $H_{n}(f, x)$ построен для n-й строчки произвольной матрицы узлов вида (м). Наряду с полиномом $H_{n}(f, x)$ рассмотрим полином $F_{n}(f, x)$ степени $2 n+3$, который однозначно определяется из условий

$$
\begin{gathered}
F_{n}\left(f, x_{k}^{(n)}\right)=f\left(x_{k}^{(n)}\right) ; \quad F_{n}(f, \pm 1)=f(\pm 1), \quad F_{n}^{\prime}\left(f, x_{k}^{(n)}\right)=F_{n}^{\prime}(f, \pm 1)=0 \\
k=1,2, \ldots, n .
\end{gathered}
$$

Интерполяционный процесс $\left\{F_{n}(f, x)\right\}$ естественно называть расширенным интерполяционным прошессом Эрмита-Фейера. В [2], [3] автор изучал процесс $\left\{F_{n}(f, x)\right\}$ для случая узлов
$x_{0}^{(n+2)}=1, \quad x_{k}^{(n+2)}=\cos \frac{(2 k-1) \pi}{2 n}, \quad k=1,2, \ldots, n, \quad x_{n+1}^{(n+2)}=-1, \quad n=1,2, \ldots$.
Оказалось, что этот процесс при $f(x)=|x|$ расходится при $x=0$. Метод из [2-3] не позволил изучить поведение процесса $\left\{F_{n}(|z|, x)\right\}$ при $x \neq 0$. Поэтому этот метод был заменен другим методом, сущность которого изложена в работах [4-7]. С помощью этого метода было доказано, что процесс $\left\{F_{n}(|z|, x)\right\}$, построенный при узлах (1), расходится всюду в $(-1,1)$. Такое утверждение имеет место для $f(x)=x^{2}$ и для $f(x)=x$ при $x \neq 0$. См. [6-7]. Упомянутые

результаты были в [8] обобщены в двух направлениях. Во-первых, вместо матрицы узлов (1) рассматривается некоторый общий класс матриц узлов, включающий матрицу (1). Во-вторых, вместо функций x и x^{2} рассматривается произвольная функция из класса C^{2}. В связи с [8] возник вопрос о замене класса C^{2} более широким классом функций. Этот вопрос в случае сходимости в среднем, и был поставлен в [8]. В основе всех результатов из [8] лежит

Лемма. Пусть

$$
\begin{equation*}
\alpha_{n}(f)=\frac{1}{2} H_{n}^{\prime}(f, 1)+\frac{\omega_{n}^{\prime}(1)}{\omega_{n}(1)}\left[f(1)-H_{n}(f, 1)\right], \tag{2}
\end{equation*}
$$

где $H_{n}(f, x)$ - интерполячионный полином Эрмита-Фейера, построенный при корнях многочлена $\omega_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i}^{(n)}\right)$. Пусть матрича узлов (м) удовлетворяет условиям: 1) (м) является @-нормальной, ${ }^{1}$ 2) корни ω_{n} расположены симметрично относительно $\left.x=0 ; 3)\left|\omega_{n}^{\prime}(1)\left(\omega_{n}(1)\right)^{-1}\right|=O\left(n^{2}\right) ; 4\right)$ для любого $x \in(-1,1)$ существует такая последовательность $\left\{n_{i}\right\}$, что $\lim _{i \rightarrow \infty} \omega_{n_{i}}^{2}(x) / \omega_{n_{i}}^{2}(1)>C(x)>0$, где $C(x)$ зависит только от x. Тогда суцествует такая последовательность натуральных чисел $\left\{m_{i}\right\}$, что для любой $f \in C^{2}$ выполняется равенство

$$
\lim _{i \rightarrow \infty} \alpha_{m_{i}}(f)=a f^{\prime}(1),
$$

где константа а зависит только от матрицы узлов.
При доказательстве леммы был использован следующий известный факт: Для любой $f \in C^{2}$ существует такой многочлен $P_{n}(x)$ степени n, что всюду в $[-1,1]$
(3)

$$
\left|f^{(s)}(x)-P_{n}^{(s)}(x)\right| \leqq A\left(\frac{\sqrt{1-x^{2}}}{n}\right)^{2-s} \omega\left(f^{\prime \prime}, \frac{\sqrt{1-x^{2}}}{n}\right), \quad n \geqq 13, \quad s=0,1,2
$$

где ω — модуль непрерывности $f^{\prime \prime}(x)$.
В настоящей работе доказывается эта лемма без использования неравенств (3), что позволяет отказаться от требования, что $f \in C^{2}$. При этом лемма значительно усиливается, а стало быть усиливаются все результаты из [8].
2. Пусть n-я строчка матрицы (м) состоит из корней полинома $\omega(x)=$ $=\omega_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i}^{(n)}\right)$. Согласно Л. Фейеру [9] матрица (м) называетсяя ϱ-нормальной, если существует такое число $\varrho>0$, что всюду в $[-1,1]$ выполняется неравенство

$$
v_{k}(x)=1-\left(x-x_{k}^{(n)}\right) \omega_{n}^{\prime \prime}\left(x_{k}^{(n)}\right)\left(\omega_{n}^{\prime}\left(x_{k}^{(n)}\right)\right)^{-1}>\varrho>0, \quad k=1,2, \ldots, n, \quad n=1,2, \ldots
$$

где $\left\{x_{k}^{(n)}\right\}_{k=1}^{n}$ - корни $\omega_{n}(x)$. Л. Фейер [9] доказал, что если матрица (м) составлена из корней полиномов Якоби $J_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(x)$, где $-1 \leqq \alpha_{n}, \beta_{n}<-\gamma<0$,

[^0]$n=1,2,3, \ldots$, а γ - сколь угодно малое фиксированное число, то она ϱ-нормальная.

Среди всевозможных матриц вида (м) выделим класс матриц K. Будем говорить, что матрица (м) $\in K$, если (м) удовлетворяет следующим условиям:

1) (м) ϱ-нормальная; 2) корни полинома $\omega(x)=\prod_{i=1}^{n}\left(x-x_{i}^{(n)}\right)$ расположены симметрично относительно точки $x=0 ; 3$) для любого $x \in(-1,1)$ существует такая последовательность $\left\{n_{i}\right\}_{i=1}^{\infty}$ натуральных чисел, что выполняется неравенство

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{\omega_{n_{i}}^{2}(x)}{\omega_{n_{i}}^{2}(1)} \geqq C(x)>0, \tag{4}
\end{equation*}
$$

где $C(x)$ зависит лишь от x.
Введем числа ${ }^{2} d_{n}=\sum_{i=1}^{n}\left[l_{i}^{(n)}(1)\right]^{2}$. Известно [9], что для ϱ-нормальной матрицы выполняется всюду в $[-1,1]$ неравенство

$$
\begin{equation*}
\sum_{i=1}^{n}\left[l_{i}^{(n)}(x)\right]^{2} \leqq \frac{1}{\varrho} . \tag{5}
\end{equation*}
$$

Поэтому $d_{n} \leqq \frac{1}{\varrho}, n=1,2, \ldots$. Следовательно, имеется такая последовательность натуральных чисел $\left\{n_{i}\right\}_{i=1}^{\infty}$, что существует конечный предел

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d_{n_{i}}=d \tag{6}
\end{equation*}
$$

В нижеследующей лемме рассматривается именно такая последовательность $\left\{n_{i}\right\}_{i=1}^{\infty}$.

Лемма. Пусть линейный функиионал $\alpha_{n}(f)$ построен при матрице узлов (м) $\in К$. Пусть $\left\{n_{i}\right\}_{i=1}^{\infty}$ удовлетворяет условию (6). Тогда для любой $f \in \Delta_{1}, y д о в-$ летворяющей условию $f(1)=0$ выполняется равенство

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \alpha_{n_{i}}(f)=\frac{1+d}{2} f^{\prime}(1) \tag{7}
\end{equation*}
$$

Доказательство. Хорошо известно [9], что

$$
H_{n}(f, x)=\sum_{k=1}^{n} f\left(x_{k}^{(n)}\right)\left[l_{k}^{(n)}(x)\right]^{2} v(x)
$$

где

$$
\begin{equation*}
l_{k}(x)=l_{k}^{(n)}(x)=\frac{\omega_{n}(x)}{\left(x-x_{k}^{(n)}\right) \omega_{n}^{\prime}\left(x_{k}^{(n)}\right)} \tag{8}
\end{equation*}
$$

Стало быть,

$$
\begin{equation*}
H_{n}^{\prime}(f, 1)=\sum_{k=1}^{n} f\left(x_{k}^{(n)}\right)\left[l_{k}^{2}(1) v_{k}^{\prime}(1)+2 l_{k}(1) l_{k}^{\prime}(1) v_{k}(1)\right] . \tag{9}
\end{equation*}
$$

[^1]Очевидно, что ${ }^{3}$

$$
\begin{equation*}
l_{k}^{2}(1) v_{k}^{\prime}(1)=-\frac{\omega_{n}^{2}(1) \omega_{n}^{\prime \prime}\left(x_{k}\right)}{\left(\omega_{n}^{\prime}\left(x_{k}\right)\right)^{3}\left(1-x_{k}\right)^{2}} \tag{10}
\end{equation*}
$$

После простых вычислений, получим, что

$$
l_{k}^{\prime}(1)=-\frac{\omega_{n}(1)}{\omega_{n}^{\prime}\left(x_{k}\right)\left(1-x_{k}\right)^{2}}\left(1-\frac{\omega_{n}^{\prime}(1)}{\omega_{n}(1)}\left(1-x_{k}\right)\right) .
$$

Поэтому

$$
\begin{equation*}
2 l_{k}(1) l_{k}^{\prime}(1) v_{k}(1)=-2 \frac{\omega_{n}^{2}(1)}{\left(\omega_{n}^{\prime}\left(x_{k}\right)\right)^{2}\left(1-x_{k}\right)^{3}}\left(1-\frac{\omega_{n}^{\prime}(1)}{\omega_{n}(1)}\left(1-x_{k}\right)\right) v_{k}(1) \tag{11}
\end{equation*}
$$

Из (10) и (11) следует, что

$$
\begin{gathered}
l_{k}^{2}(1) v_{k}^{\prime}(1)+2 l_{k}(1) l_{k}^{\prime}(1) v_{k}(1)=\left(\frac{\omega^{\prime \prime}\left(x_{k}\right)}{\omega^{\prime}\left(x_{k}\right)}-\frac{2}{1-x_{k}}\right) l_{k}^{2}(1)+ \\
+2 \frac{\omega^{\prime}(1)}{\omega(1)} h_{k}(1), \quad h_{k}(x)=\left[l_{k}^{(n)}(x)\right]^{2} v_{k}(x) .
\end{gathered}
$$

Отсюда и из (9) получим, что

$$
\begin{equation*}
H_{n}^{\prime}(f, 1)=-\sum_{k=1}^{n} \frac{f\left(x_{k}\right)}{1-x_{k}} h_{k}(1)-\sum_{k=1}^{n} \frac{f\left(x_{k}\right)}{1-x_{k}} l_{k}^{2}(1)+2 \frac{\omega^{\prime}(1)}{\omega(1)} H_{n}(f, 1) . \tag{12}
\end{equation*}
$$

Из (2) и (12) вытекает, что

$$
\begin{equation*}
\alpha_{n}(f)=-\sum_{k=1}^{n} \frac{f\left(x_{k}\right) h_{k}(1)}{2\left(1-x_{k}\right)}-\sum_{k=1}^{n} \frac{f\left(x_{k}\right) l_{k}^{2}(1)}{2\left(1-x_{k}\right)}+\frac{\omega^{\prime}(1)}{\omega(1)} f(1) . \tag{13}
\end{equation*}
$$

По условию $f(1)=0$, поэтому

$$
\begin{equation*}
\alpha_{n}(f)=-\sum_{k=1}^{n} \frac{f\left(x_{k}\right) h_{k}(1)}{2\left(1-x_{k}\right)}-\sum_{k=1}^{n} \frac{f\left(x_{k}\right) l_{k}^{2}(1)}{2\left(1-x_{k}\right)} \equiv S_{1}+S_{2} . \tag{14}
\end{equation*}
$$

Очевидно, что

$$
S_{1}=\frac{1}{2} \sum_{k=1}^{n} \frac{f(1)-f\left(x_{k}\right)}{1-x_{k}} h_{k}(1) .
$$

По условию существует $f^{\prime}(1)$. Поэтому по $\varepsilon>0$ можно найти такое $\delta>0$, что

$$
\begin{equation*}
\left|\frac{f(1)-f\left(x_{k}\right)}{1-x_{k}}-f^{\prime}(1)\right|<\varepsilon, \tag{15}
\end{equation*}
$$

если $1-x_{k}<\delta$. Так как $\sum_{k=1}^{n} h_{k}(1)=1$, то

$$
\begin{equation*}
S_{1}-\frac{f^{\prime}(1)}{2}=\frac{1}{2} \sum_{k=1}^{n}\left(\frac{f(1)-f\left(x_{k}\right)}{1-x_{k}}-f^{\prime}(1)\right) h_{k}(1) . \tag{16}
\end{equation*}
$$

${ }^{3}$ Ради простоты письма иногда опускается верхний индекс n у $x_{k}^{(n)}$ и $l_{k}^{(n)}(x)$.

Из (15) и (16) вытекает, что

$$
\begin{equation*}
\left|S_{1}-\frac{f^{\prime}(1)}{2}\right| \leqq \frac{\varepsilon}{2} \sum_{1-x_{k}<\delta}\left|h_{k}(1)\right|+\frac{1}{2} \sum_{1-x_{k} \geqq \delta}\left|\frac{f(1)-f\left(x_{k}\right)}{1-x_{k}}-f^{\prime}(1)\right| h_{k}(1) . \tag{17}
\end{equation*}
$$

Согласно условию матрица узлов (м) ϱ-нормальная, поэтому $h_{k}(x) \geqq 0$, $x \in[-1,1], k=1, \ldots, n$. В частности, $h_{k}(1) \geqq 0, k=1, \ldots, n$. Поэтому из (17) получаем, что

$$
\begin{equation*}
\left|S_{1}-\frac{f^{\prime}(1)}{2}\right| \leqq \frac{\varepsilon}{2}+\frac{1}{2}\left(\frac{2\|f\|}{\delta}+\left|f^{\prime}(1)\right|\right) \sum_{1-x_{k} \geqq \delta} h_{k}(1), \tag{18}
\end{equation*}
$$

где

$$
\|f\|=\operatorname{Max}_{x \in[-1,1]}|f(x)| .
$$

Заметим, что

$$
\begin{equation*}
\sum_{1-x_{k} \geq \delta} h_{k}(1) \leqq \sum_{k=1}^{n} \frac{1-x_{k}}{\delta} h_{k}(1) \tag{19}
\end{equation*}
$$

и что для ϱ-нормальной матрицы

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(1-x_{k}^{(n)}\right) h_{k}^{(n)}(1)=0 . \tag{20}
\end{equation*}
$$

Из (19) и (20) выводим, что

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{1-x_{k}^{(n)} \geqq \delta} h_{k}^{(n)}(1)=0 . \tag{21}
\end{equation*}
$$

Из (18) и (21) получаем, что

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{1}^{(n)}=\frac{f^{\prime}(1)}{2} \tag{22}
\end{equation*}
$$

Рассмотрим теперь $S_{2}^{(n)}$. Очевидно, что

$$
S_{2}^{(n)}-\frac{f^{\prime}(1) d_{n}}{2}=-\frac{1}{2} \sum_{k=1}^{n}\left(\frac{f\left(x_{k}\right)}{1-x_{k}}+f^{\prime}(1)\right)\left[l_{k}^{(n)}(1)\right]^{2},
$$

где $d_{n}=\sum_{k=1}^{n} l_{k}^{2}(1)$. Ясно, что

$$
\begin{equation*}
\left|S_{2}^{(n)}-\frac{f^{\prime}(1) d_{n}}{2}\right| \leqq \frac{\varepsilon}{2} \sum_{k=1}^{n} l_{k}^{2}(1)+\frac{1}{2} \sum_{1-x_{k} \geqq \delta}\left|\frac{f\left(x_{k}\right)}{1-x_{k}}+f^{\prime}(1)\right| l_{k}^{2}(1) . \tag{23}
\end{equation*}
$$

Учтем теперь неравенство (5), тогда из (23) выводим, что

$$
\begin{equation*}
\left|S_{2}^{(n)}-\frac{f^{\prime}(1) d_{n}}{2}\right| \leqq \frac{\varepsilon}{2 \varrho}+\frac{1}{2}\left(\frac{\|f\|}{\delta}+\left|f^{\prime}(1)\right|\right) \sum_{1-x_{k} \geqq \delta}\left[l_{k}^{(n)}(1)\right]^{2} . \tag{24}
\end{equation*}
$$

Очевидно, что

$$
\begin{equation*}
\sum_{1-x_{k} \geqq \delta}\left[l_{k}^{(n)}(1)\right]^{2} \leqq \frac{1}{\delta} \sum_{k=1}^{n}\left(1-x_{k}^{(n)}\right)\left[l_{k}^{(n)}(1)\right]^{2} . \tag{25}
\end{equation*}
$$

Согласно Г. Грюнвальду для @-нормальных матриц [10]

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(1-x_{k}^{(n)}\right)\left[l_{k}^{(n)}(1)\right]^{2}=0 .
$$

Поэтому из (24) и (25) заключаем, что

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{2}^{(n)}=\frac{f^{\prime}(1) d}{2} \tag{26}
\end{equation*}
$$

ибо $\lim _{n \rightarrow \infty} d_{n}=d$. Из (14), (22), (26) выводим (7).
Теперь можно доказать следуюшую теорему:
Теорема. Для того чтобы расширенный интерполяиионный прочесс $\left\{F_{n}(f, x)\right\}$, построенный для четной функиии $f \in \Delta_{1}$, расходился всюду в $(-1,1)$ при любой матрице узлов из класса матриц К необходимо и достаточно, чтобы $f^{\prime}(1)$ было отлично от нуля.

Доказательство достаточности. Положим $r_{n}=r_{n}(f, x)=F_{n}(f, x)-$ $-H_{n}(f, x)$. Очевидно, что можно положить $f(1)=0$, ибо в противном случае мы бы рассматривали функцию $\varphi(x)=f(x)-f(1)$ и воспользовались бы равенством $r_{n}(f, x)=r_{n}(\varphi, x)$. По условию $f(x)$ - четная функция и корни полинома $\omega_{n}(x)$ расположены симметрично, поэтому $H_{n}(f, x)$ и $F_{n}(f, x)$ - четные полиномы. Следовательно, из определения H_{n} и F_{n} получаем, что

$$
\begin{equation*}
r_{n}(f, x)=\omega_{n}^{2}(x)\left(A_{n} x^{2}+B_{n}\right) \tag{27}
\end{equation*}
$$

где A_{n} и B_{n} определяются из системы уравнений

$$
\left\{\begin{array}{l}
\omega_{n}^{2}(1)\left(A_{n}+B_{n}\right)=f(1)-H_{n}(f, 1) \\
2 \omega_{n}(1) \omega_{n}^{\prime}(1)\left(A_{n}+B_{n}\right)+2 A_{n} \omega_{n}^{2}(1)=-H_{n}^{\prime}(f, 1) .
\end{array}\right.
$$

Отсюда и из (27), после простых вычислений, получим, что

$$
\begin{equation*}
r_{n}(f, x)=\frac{\omega_{n}^{2}(x)}{\omega_{n}^{2}(1)}\left[\alpha_{n}(f)\left(1-x^{2}\right)+f(1)-H_{n}(f, 1)\right] \tag{28}
\end{equation*}
$$

где $\alpha_{n}(f)$ определяется согласно (2). Поскольку матрица узлов (м) из класса K, то выполняется неравенство (4). Кроме того, согласно теореме Л. Фейера [9] при ϱ-нормальной матрице узлов для любой $f \in C$ выполняется равномерно в $[-1,1]$ равенство $\lim _{n \rightarrow \infty} H_{n}(f, x)=f(x)$. Поэтому из леммы и (28) вытекает, что

$$
\begin{equation*}
\varlimsup_{j \rightarrow \infty}\left|r_{n_{j}}(f, x)\right| \geqq \frac{C(x)(1+d)\left|f^{\prime}(1)\right|}{2}\left(1-x^{2}\right) \tag{29}
\end{equation*}
$$

По условию $f^{\prime}(1) \neq 0$, поэтому из (29) следует, что $\varlimsup_{j \rightarrow \infty} r_{n_{j}}(f, x) \neq 0$ при $x \in(-1,1)$. Итак, достаточность доказана.

Необходимость доказана в [8] (стр. 9). Надо только класс функций C^{2} заменить классом функций Δ_{1}.

Из теоремы, в частности, вытекает такой результат: пусть матрица узлов (м) состоит из корней ультрасферических полиномов $J_{n}^{\left(\alpha_{n}, \alpha_{n}\right)},-1<\alpha_{n} \leqq-\frac{1}{2}$,
$n=1,2, \ldots$. Пусть $f \in \Delta_{1}$, четная и $f^{\prime}(1) \neq 0$. Тогда прочесс $\left\{F_{n}(f, x)\right\}_{n=1}^{\infty}$ расходится всюду в $(-1,1)$.

Доказательство этого утверждения находится в [8]. При этом класс C^{2} следует заменить классом Δ_{1}. Лемма из этой заметки позволяет усилить и остальные теоремы из [8]. Усиление состоит в том, что класс функсий C^{2} заменяется классом функций Δ_{1}, или классом функций Δ_{2}. Одновременно с [8] была опубликована интересная статья [11] R. Bojanic. Между [8] и [11] много общего, но между ними имеется и существенное различие. В [8] рассмотрение проводится для некоторого класса матриц узлов, включающего узлы Чебышева, но при этом предполагается, что функция из класса C^{2}. В [11] рассматриваются только узлы Чебышева, но зато функция из класса Δ_{1}, или из класса Δ_{2}.

В заключение отметим, что для процесса $\left\{F_{n}(f, x)\right\}$ характерно, что концевые точки $x= \pm 1$ являются узлами интерполяции. Этому вопросу посвящено исследование Р. Вертеши [12].

Замечание. В лемме требуется, чтобы $f(x)$ удовлетворяла условию $f(1)=0$. Докажем, что это требование можно отбросить. Положим в (14) $f(x) \equiv 1$. Из определения $\alpha_{n}(f)$ следует, что в этом случае $\alpha_{n}(f)=0$. Поэтому из (14) выводим, что
(*)

$$
\frac{\omega^{\prime}(1)}{\omega(1)}=\sum_{k=1}^{n} \frac{h_{k}(1)}{2\left(1-x_{k}\right)}+\sum_{k=1}^{n} \frac{l_{k}^{2}(1)}{2\left(1-x_{k}\right)}
$$

Из (*) и (14) получаем, что

$$
\alpha_{n}(f)=\frac{1}{2} \sum_{k=1}^{n} \frac{f(1)-f\left(x_{k}\right)}{1-x_{k}} h_{k}(1)+\frac{1}{2} \sum_{k=1}^{n} \frac{f(1)-f\left(x_{k}\right)}{1-x_{k}} l_{k}^{2}(1) .
$$

Остальная часть доказательства леммы сохраняется.

Литература

[1] L. Fejér, Über Interpolation, Gött. Nachr., (1916), 66-91.
[2] Д. Л. Берман, К теории интерполяции, ДАН СССР, 163, 3 (1965), 551-554.
[3] Д. Л. Берман, К теории интерполяции функции действительного переменного, Изв. вузов., Матем., 1 (1967), 15-20.
[4] Д. Л. Берман, Исследование сходимости всевозможных вариантов расширенного интерполяционного процесса Эрмита-Фейера, Изе. вузов, Мат. 8 (1975), 97-101.
[5] Д. Л. Берман, Всюду расходящийся расширенный интерполяционный процесс ЭрмитаФейера, Изв. вузов, Матем., 9 (1975), 84 - 87.
[6] Д. Л. Берман, Исследование интерполяционного процесса Эрмита-Фейера, ДАН СССР, 187 (1969), 241-244.
[7] Д. Л. Берман, Об одном всюду расходящемся интерполяционном процессе ЭрмитаФейера, Изв. вузов, Матем., 1 (1970), 3-8.
[8] Д. Л. Берман, О расширенном интерполяционном процессе Эрмита-Фейера, Изв. вузов, Матем. 8 (1981), 5-13.
[9] L. Fejér, Lagrangesche Interpolation und die zugehörigen konjugierten Punkte, Math. Ann., 106 (1932), 1-55.
[10] G. Grünwald, On the theory of interpolation, Acta Math., 75 (1943), 219-245.
[11] R. Bojanic, Necessary and sufficient conditions for the convergence of the extended HermiteFejér interpolation process, Acta Math. Acad. Sci. Hungar., 36 (1980), 271-279.
[12] P. Vértesi, Hermite-Fejér type interpolation. IV Convergence criteria for Jacobi abscissas, Acta Math. Acad. Sci. Hungar., 39 (1982), 83--93.
(Поступило 15. 9. 1983.)
ЛЕНИНГРАД, 192238
БАССЕЙНАЯ 68, КВ. 90
CCCP

ON THE ERDŐS—STRAUS NON-AVERAGING SET PROBLEM

H. L. ABBOTT (Edmonton)

A set S of integers is said to be non-averaging if the arithmetic mean of two or more members of S does not belong to S. Denote by $f(n)$ the size of a largest non-averaging subset of $\{0,1,2, \ldots, n\}$. Straus [7] raised the problem of estimating $f(n)$ and proved (c_{1}, c_{2}, \ldots are positive absolute constants)

$$
f(n)>\exp \left(c_{1} \sqrt{\log n}\right)
$$

Erdós and Straus [5] proved that

$$
f(n)<c_{2} n^{2 / 3}
$$

and conjectured that for some c_{3}

$$
f(n)<\exp \left(c_{3} \sqrt{\log n}\right) .
$$

This conjecture was shown to be false by the author [1] who proved that

$$
\begin{equation*}
f(n)>c_{4} n^{1 / 10} . \tag{1}
\end{equation*}
$$

In this paper we obtain a further improvement on the lower bound for $f(n)$ by proving the following result:

Theorem. For some c_{5} and all sufficiently large n

$$
\begin{equation*}
f(n)>c_{5} n^{1 / 5} \tag{2}
\end{equation*}
$$

and for some c_{6} and infinitely many n

$$
\begin{equation*}
f(n)>c_{6} n^{1 / 5}(\log \log n)^{2 / 5} . \tag{3}
\end{equation*}
$$

Proof. We give the proof of (3). The proof of (2) runs along similar lines, but the technical details are simpler.

Let B be the product of the first r primes. Let p be the least prime exceeding $(\log \log B)^{1 / 30}$ and let q be the least prime exceeding p^{10}. Then, as $r \rightarrow \infty$,

$$
\begin{equation*}
p \sim(\log \log B)^{1 / 30} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
q \sim p^{10} \sim(\log \log B)^{1 / 3} . \tag{5}
\end{equation*}
$$

It follows from the prime number theorem (or a weaker result) that, for large r, p and $2 q$ do not exceed the r th prime so that B / p is an integer and $B / 2 q$ is an odd
integer. We set

$$
\begin{equation*}
n=(B / p)^{10} \tag{6}
\end{equation*}
$$

and our goal is to show that for the integers n given by (6), (3) holds.
Let $m=(B / 2 q)^{2}$ and consider the equation

$$
\begin{equation*}
a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=m . \tag{7}
\end{equation*}
$$

It is a well known theorem of Jacobi (see, for example [6], pp. 312-314) that the number of solutions of (7) in integers $a_{0}, a_{1}, a_{2}, a_{3}$ is given by $8 \sigma(m)$, where $\sigma(m)$ is the sum of the divisors of m. We shall be interested only in solutions in nonnegative integers. The number l of such solutions is easily seen to satisfy

$$
\begin{equation*}
\frac{1}{2} \sigma(m) \leqq l \leqq 4 \sigma(m) \tag{8}
\end{equation*}
$$

If we use (i) the fact that B is the product of the first r primes, (ii) the explicit expression for $\sigma(m)$ in terms of the prime factorization of m, (iii) the theorem of Mertens (see [6] pp. 351) and (iv) the relations given by (4), (5), (6) and (8) we find after some routine calculations that

$$
\begin{equation*}
c_{7} n^{1 / 5}(\log \log n)^{2 / 5}<l<c_{8} n^{1 / 5}(\log \log n)^{2 / 5} . \tag{9}
\end{equation*}
$$

We omit the details of these calculations.
We associate with a solution of (7) the lattice point $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ in R^{4} and we note that the points corresponding to solutions lie on a sphere. We also associate with a solution of (7) the number

$$
a=a_{0}+a_{1} B^{3}+a_{2} B^{6}+a_{3} B^{9} .
$$

Consider the set of l numbers obtained in this way and let S be a subset of those whose cardinality satisfies

$$
\begin{equation*}
|S|=[c l] \tag{10}
\end{equation*}
$$

where $c<\min \left(1,2 c_{8}\right)$. Note that if $a \in S$ then, since $0 \leqq a_{i} \leqq \sqrt{m}=B / 2 q$,

$$
a \leqq \frac{B}{2 q}\left(1+B^{3}+B^{6}+B^{9}\right) \sim \frac{B^{10}}{2 q} \sim \frac{1}{2}\left(\frac{B}{q}\right)^{10}<n
$$

where we used (5) and (6). Thus $S \subset\{0,1,2, \ldots, n\}$.
Next we show that S is a non-averaging set. Suppose that this is not the case. Then for some $k, 2 \leqq k<|S|$, there are $k+1$ distinct numbers $a^{(1)}, a^{(2)}, \ldots, a^{(k+1)}$ in S such that

$$
\begin{equation*}
a^{(1)}+a^{(2)}+\ldots+a^{(k)}=k a^{(k+1)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{(j)}=a_{0}^{(j)}+a_{1}^{(j)} B^{3}+a_{2}^{(j)} B^{6}+a_{3}^{(j)} B^{9} . \tag{12}
\end{equation*}
$$

and $a_{0}^{(j)}, a_{1}^{(j)}, a_{2}^{(j)}, a_{3}^{(j)}$ is a solution of (7) for $i=1,2, \ldots, k+1$. Then from (11) and (12) we get

$$
\begin{equation*}
A_{0}+A_{1} B^{3}+A_{2} B^{6}+A_{3} B^{9}=0 \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i}=k a_{i}^{(k+1)}-\sum_{j=1}^{k} a_{i}^{(j)} \tag{14}
\end{equation*}
$$

Now by (5), (9), (6), (4) and (10)

$$
\begin{gathered}
A_{0} \leqq k a_{0}^{(k+1)}<|S| \frac{B}{2 q} \sim \frac{\operatorname{cl} B}{2 p^{10}}<c c_{8} n^{1 / 5}(\log \log n)^{2 / 5} \sim \\
\sim c c_{8} \frac{B^{3}(\log \log B)^{2 / 5}}{2 p^{12}} \sim \frac{1}{2} c c_{8} B^{3}<B^{3} .
\end{gathered}
$$

Similarly, we find that $A_{0}>-B^{3}$ so that $\left|A_{0}\right|<B^{3}$. It then follows from (13) that $A_{0}=0$. The same argument shows that $A_{1}=A_{2}=A_{3}=0$. We then get from (14) that

$$
\begin{equation*}
a_{i}^{(k+1)}=\frac{1}{k} \sum_{j=1}^{k} a_{i}^{(j)} \quad \text { for } \quad i=0,1,2,3 . \tag{15}
\end{equation*}
$$

However, if $P_{1}, P_{2}, \ldots, P_{k+1}$ are the lattice points in R^{4} corresponding to the numbers $a^{(1)}, a^{(2)}, \ldots, a^{(k+1)}$ then (15) is just the assertion that P_{k+1} is the centroid of $P_{1}, P_{2}, \ldots, P_{k}$, contradicting the fact that $P_{1}, P_{2}, \ldots, P_{k+1}$ are distinct points on a sphere. Thus S is a non-averaging set. We therefore hāve

$$
f(n) \geqq|S|=[c l]>c_{2} n^{1 / 5}(\log \log n)^{2 / 5},
$$

by (9) and (10), so that (3) holds.
We remark in conclusion that many of the results of [2] and the principal result in [3] may be improved simply by using (2) instead (1). We remark also that the geometric aspects of the proof of our theorem have their roots in [4].

References

[1] H. L. Abbott, On a conjecture of Erdős and Straus on non-averaging sets of integers, Proceedings of the Fifth British Combinatorial Conference, Congressus Numerartium, XV (1975), 1-4.
[2] H. L. Abbott, Extremal problems on non-averaging and non-dividing sets of integers, Pacific Journal of Mathematics, 91 (1980), 7-12.
[3] H. L. Abbott, On non-averaging sets of integers, Acta Math. Acad. Sci. Hung., 40 (1982), 197-200.
[4] F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 331-332.
[5] P. Erdős and E. G. Straus, Non-averaging sets II, Combinatorial Theory and its Applications, Vol. II, Colloquia Mathematica Societatis János Bolyai, 4 (1970), 405-411.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford, 1960).
[7] E. G. Straus, Non-averaging sets, Proceedings of Symposia in Pure Mathematics, XIX, American Mathematical Society (1971), 215-222.

COUNTABLE ADDITIVITY OF MULTIPLICATIVE, OPERATOR-VALUED SET FUNCTIONS

W. RICKER (North Ryde)

Let X be a locally convex Hausdorff space, always assumed to be quasi-complete, with dual space X^{\prime}. The space of all continuous linear operators on X, equipped with the strong operator topology, that is, the topology of pointwise convergence on X, is denoted by $L(X)$. The identity operator is denoted by I.

An important problem in the spectral theory of linear operators is to determine when a given additive, multiplicative, $L(X)$-valued map P, defined on a σ-algebra \mathscr{M} of subsets of some set Ω and satisfying $P(\Omega)=I$, is a spectral measure, that is, to determine when P is strongly σ-additive. Of course, the multiplicativity of P means that $P(E \cap F)=P(E) P(F)$ for every $E \in \mathscr{M}$ and $F \in \mathscr{M}$. Since the dual space of $L(X)$ is the (algebraic) tensor product $X \otimes X^{\prime}$, it follows from the Orlicz-Pettis lemma that the σ-additivity of P is equivalent to the σ-additivity of each of the complex-valued set functions defined by

$$
\left\langle P x, x^{\prime}\right\rangle: E \rightarrow\left\langle P(E) x, x^{\prime}\right\rangle, \quad E \in \mathscr{M}
$$

for each $x \in X$ and $x^{\prime} \in X^{\prime}$. In [3], T. A. Gillespie showed that there is a large class of Banach spaces X, including all weakly sequentially complete and all separable spaces, such that P is σ-additive whenever there exists a total set of functionals $\Gamma \cong X^{\prime}$ such that for each $x \in X$, each of the functions $\left\langle P x, x^{\prime}\right\rangle, x^{\prime} \in \Gamma$, is σ-additive. This is a considerable simplification in practice, since the total set Γ may be substantially smaller than all of X^{\prime}. A further improvement, incorporated into this note, is to admit for the possibility of varying with respect to $x \in X$, the total set of functionals Γ such that the functions $\left\langle P x, x^{\prime}\right\rangle, x^{\prime} \in \Gamma$, are σ-additive.

Since a satisfactory spectral analysis of operators, even for those defined in Banach spaces, often requires a consideration of operators defined in locally convex spaces, it is useful to have available sufficient conditions, such as those given in [3], but valid in more general spaces X, which guarantee the strong σ-additivity of a large class of additive, multiplicative, $L(X)$-valued maps defined on σ-algebras of sets. The aim of this note is to formulate some such conditions. Most of the criteria presented are based on the special role played by the sequence spaces c_{0} and l^{∞} in the theory of vector measures.

1. By a spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of subsets of some set Ω and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$, is meant an additive, multiplicative map $P: \mathscr{M} \rightarrow L(X)$ satisfying $P(\Omega)=I$, such that the range $P(\mathscr{M})=\{P(E) ; E \in \mathscr{M}\}$, of P, is an equicontinuous part of $L(X)$ and for each $x \in X$, the set functions $\left\langle P x, x^{\prime}\right\rangle, x^{\prime} \in \Gamma(x)$, are σ-additive. It follows from a result of A. Grothendieck (see Proposition 0.5 in [6] for example) that if the space
X is metrizable, then the requirement of equicontinuity of the range of P is redundant. If X is a Banach space and there is a total subset $\Gamma \subseteq X^{\prime}$ such that $\Gamma(x)=\Gamma$ for each $x \in X$, then P is a spectral measure of class (\mathscr{M}, Γ) in the sense of N . Dunford [2], p. 324.

A locally convex space X is said to be weakly Σ-complete ([6], p. 5) if every sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of its elements such that $\left\{\left\langle x_{n}, x^{\prime}\right\rangle\right\}_{n=1}^{\infty}$ is absolutely summable for each $x^{\prime} \in X^{\prime}$, is itself summable with the sum belonging to X. Weakly sequentially complete spaces, in particular reflexive spaces, are weakly Σ-complete.

Proposition 1. Each of the following conditions is sufficient to guarantee that every spectral measure of arbitrary class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of sets and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$, is strongly σ-additive.
(i) X does not contain a closed subspace isomorphic to l^{∞}.
(ii) X is weakly Σ-complete.
(iii) X is metrizable and separable.
(iv) X has the properties that a subspace of X^{\prime} is weak-* closed if its intersection with weak-* closed, bounded subsets is weak-* closed and any continuous linear mapping from l^{∞} to X is weakly compact.

Remarks. Proposition 1 (i) is an extension of part of Theorem 1 in [3]. Furthermore, since a space X is weakly Σ-complete if and only if it does not contain a copy of c_{0} (see Theorem 4 in [7] for example), it is clear that (ii) follows from (i). Similarly (iii) follows from (i) also, since any subspace of a separable, second countable space is itself separable. Since the class of weakly sequentially complete spaces is a genuine subset of the class of weakly Σ-complete spaces (an example is discussed in [4], p. 73), it is clear that parts (ii) and (iii) of Proposition 1 are an extension of the Corollary in [3]. It is interesting to note that if in addition to being weakly Σ-complete the space X is metrizable, then part (ii) of Proposition 1 is a simple consequence of a well known result in the theory of vector measures (Theorem 0.4 of [6]). However, the multiplicativity of any spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$ makes it possible to omit the metrizability condition on X. Finally, Proposition 1 (iv) follows from Proposition 0.7 of [6]. Accordingly, to prove Proposition 1 it suffices to prove part (i). However, first some preliminary lemmas are needed.

Let P be an additive, multiplicative, $L(X)$-valued map, defined on a σ-algebra \mathscr{M} of subsets of some set Ω, such that its range $P(\mathscr{M})$ is an equicontinuous part of $L(X)$. Let $\operatorname{sim}(\mathscr{M})$ denote the vector space of all \mathscr{M}-simple functions on Ω. If $f=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}}$ is an element of $\operatorname{sim}(\mathscr{M})$, where $\alpha_{i}, 1 \leqq i \leqq n$, are complex numbers and $E_{i}, 1 \leqq i \leqq n$, are elements of \mathscr{M}, then $P(f)$ will denote the continuous operator $\sum_{i=1}^{n} \alpha_{i} P\left(E_{i}\right)$. It is well known that $P(f)$ is independent of the particular representation of f as a finite linear combination of characteristic functions of members of \mathscr{M}.

Lemma 1. The family of operators

$$
\begin{equation*}
\left\{P(f) ; f \in \operatorname{sim}(\mathscr{M}),\|f\|_{\infty} \leqq 1\right\} \tag{1}
\end{equation*}
$$

is an equicontinuous part of $L(X)$.

Proof. See the proof of Proposition 1.1 in [5], for example.
Let $x \in X$. Then $P x: E \mapsto P(E) x, E \in \mathscr{M}$, is an additive, X-valued measure. Furthermore, for each continuous seminorm q on X, the equicontinuity of $P(\mathscr{M})$ implies that

$$
\beta(q, x)=\sup \{q(P(E) x) ; E \in \mathscr{M}\}<\infty .
$$

Accordingly, the well known inequality

$$
\begin{equation*}
q(P(f) x) \leqq 4 \beta(q, x)\|f\|_{\infty}, \quad f \in \operatorname{sim}(\mathscr{M}), \tag{2}
\end{equation*}
$$

follows; see the proof of Proposition 11 in Chapter 1 of [1], for example.
If f is a bounded, \mathscr{M}-measurable function on Ω such that $0 \leqq f \leqq 1$, then there exists a sequence of \mathscr{M}-simple functions $f_{n}, n=1,2, \ldots$, satisfying $0 \leqq f_{n} \leqq 1$, $n=1,2, \ldots$, such that $f_{n} \rightarrow f$ uniformly on Ω. Since the topology of $L(X)$ is generated by the seminorms $T \mapsto q(T x), T \in L(X)$, for each $x \in X$ and each continuous seminorm q on X, it follows from (2) that $\left\{P\left(f_{n}\right)_{n=1}^{\infty}\right.$ is a Cauchy sequence in $L(X)$. Since closed, equicontinuous subsets of $L(X)$ are complete and $\left\{P\left(f_{n}\right)\right\}_{n=1}^{\infty}$ is contained in the set (1), it follows from Lemma 1 that there exists an operator $P(f) \in L(X)$ such that $P\left(f_{n}\right) \rightarrow P(f)$, in $L(X)$. It follows that the domain of the integration map $f \mapsto P(f), f \in \operatorname{sim}(\mathscr{M})$, can be extended to the space of all bounded, \mathscr{M}-measurable functions.

The following result is a simple consequence of the multiplicativity of P.
Lemma 2. Let f be a bounded, \mathscr{M}-measurable function on Ω. Then

$$
P\left(f \chi_{E}\right)=P(E) P(f)=P(f) P(E),
$$

for each $E \in \mathscr{M}$.
Proof of Proposition 1 (i). We proceed as in the proof of Theorem 1 in [3]. Let $P: \mathscr{M} \rightarrow L(X)$ be a spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of subsets of some set Ω and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$.

Suppose that P is not strongly σ-additive. Then there exists an element $x \in X$ such that the X-valued set function $P x$ is not σ-additive. Arguing as in the proof of Theorem 1, p. 42, of [3], it follows (using the totality of $\Gamma(x) \subseteq X^{\prime}$) that there exists a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ of mutually disjoint elements of \mathscr{M} such that the series $\sum_{n=1}^{\infty} P\left(\sigma_{n}\right) x$ is not convergent in X hence, not Cauchy in X. Accordingly, there exists a basic neighbourhood of zero in X of the form $U(\varepsilon, p)=\{z \in X ; p(z)<\varepsilon\}$, where $\varepsilon>0$ and p is a continuous seminorm on X, such that for every positive integer N there exist integers $m, n>N$ (with $m<n$, say) such that

$$
\sum_{i=m+1}^{n} P\left(\sigma_{i}\right) x \notin U(\varepsilon, p) .
$$

It follows that there exists a sequence of mutually disjoint elements $E_{n}, n=1,2, \ldots$, of \mathscr{M}, such that

$$
\begin{equation*}
p\left(P\left(E_{n}\right) x\right) \geqq \varepsilon, \quad n=1,2, \ldots . \tag{3}
\end{equation*}
$$

Given an element $\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ in l^{∞}, let f_{α} denote the bounded, \mathscr{M}-measurable function $\sum_{n=1}^{\infty} \alpha_{n} \chi_{E_{n}}$. Then the assignment

$$
\Phi: \alpha \mapsto P\left(f_{\alpha}\right) x, \quad \alpha \in l^{\infty},
$$

is a linear map of l^{∞} into X. It follows from (2) that the inequalities

$$
\begin{equation*}
q(\Phi \alpha) \leqq 4 \beta(q, x)\left\|f_{\alpha}\right\|_{\infty}=4 \beta(q, x)\|\alpha\|_{\infty}, \quad \alpha \in l^{\infty} \tag{4}
\end{equation*}
$$

are valid for each continuous seminorm q on X.
Fix $\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty} \in l^{\infty}$. Then it follows from (3) and Lemma 2 that

$$
\begin{equation*}
\varepsilon\left|\alpha_{n}\right| \leqq\left|\alpha_{n}\right| p\left(P\left(E_{n}\right) x\right)=p\left(\alpha_{n} P\left(E_{n}\right) x\right)=p\left(P\left(E_{n}\right) P\left(f_{\alpha}\right) x\right)=p\left(P\left(E_{n}\right) \Phi \alpha\right) \tag{5}
\end{equation*}
$$

for each $n=1,2, \ldots$. If U_{p}^{0} denotes the polar of the subset, $p^{-1}([0,1])$, of X, then it follows from the equicontinuity of $P(\mathscr{M})$ that the function

$$
p^{*}: z \mapsto \sup \left\{\left|\left\langle z, P\left(E_{n}\right)^{\prime} x^{\prime}\right\rangle\right| ; x^{\prime} \in U_{p}^{0}, n=1,2, \ldots\right\}, \quad z \in X,
$$

is a continuous seminorm on X. Furthermore, (5) implies that p^{*} satisfies the inequalities

$$
\begin{equation*}
\varepsilon\|\alpha\|_{\infty} \leqq p^{*}(\Phi \alpha), \quad \alpha \in l^{\infty} . \tag{6}
\end{equation*}
$$

It follows from (4) and (6) that the range of Φ is a closed subspace of X isomorphic to l^{∞}. This contradicts the hypothesis on the space X and hence, the proof of Proposition 1 is complete.
2. Proposition 1 gives sufficient conditions which ensure that every spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of sets and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$, is strongly σ-additive. It is just as desirable, perhaps even more so, to have available criteria which can be used to determine the strong σ-additivity of particular spectral measures of some given class ($\mathscr{M} ; \Gamma(x), x \in X)$. Propositions 2 and 3 below give two such criteria.

Let P be an additive, multiplicative, $L(X)$-valued set function defined on some σ-algebra of sets \mathscr{M}. For each $x \in X$, let $\mathscr{M}_{P}[x]$ denote the cyclic subspace of X generated by x with respect to P, that is, the closed subspace of X generated by $\{P(E) x ; E \in \mathscr{M}\}$.

Lemma 3. Let P be an additive, multiplicative, $L(X)$-valued set function with equicontinuous range, defined on some σ-algebra of sets \mathscr{M}. Let $x \in X$. If $x^{\prime} \in X^{\prime}$ is a functional such that $\left\langle P x, x^{\prime}\right\rangle$ is σ-additive, then also $\left\langle P \xi, x^{\prime}\right\rangle$ is σ-additive, for each $\xi \in \mathscr{M}_{P}[x]$.

Proof. It follows easily from the σ-additivity of $\left\langle P x, x^{\prime}\right\rangle$, that $\left\langle P \xi, x^{\prime}\right\rangle$ is σ-additive whenever ξ belongs to the linear span of $\{P(E) x ; E \in \mathscr{M}\}$.

Let $\xi \in \mathscr{M}_{P}[x]$. Then there is a net of elements $\left\{\xi_{\alpha}\right\}$ such that each ξ_{α} belongs to the linear span of $\{P(E) x ; E \in \mathscr{M}\}$ and $\xi_{\alpha} \rightarrow \xi$ in X.

It follows from the equicontinuity of $P(\mathscr{M})$ that the function q given by

$$
q(z)=\sup \left\{\left|\left\langle z, y^{\prime}\right\rangle\right| ; y^{\prime} \in\left\{P(E)^{\prime} x^{\prime} ; E \in \mathscr{M}\right\}\right\}, \quad z \in X,
$$

is a continuous seminorm on X. Let $E_{n}, n=1,2, \ldots$, be a sequence of elements from \mathscr{M} which decreases to the empty set \emptyset. Then the inequalities

$$
\begin{aligned}
\left|\left\langle P\left(E_{n}\right) \xi, x^{\prime}\right\rangle\right| & \leqq\left|\left\langle P\left(E_{n}\right)\left(\xi-\xi_{\alpha}\right), x^{\prime}\right\rangle\right|+\left|\left\langle P\left\langle E_{n}\right) \xi_{\alpha}, x^{\prime}\right\rangle\right| \leqq \\
& \leqq q\left(\xi-\xi_{\alpha}\right)+\mid\left\langle P\left(E_{n}\right) \xi_{\alpha}, x^{\prime}\right\rangle
\end{aligned}
$$

are valid for each α and $n=1,2, \ldots$. If $\varepsilon>0$, then there exists an index $\alpha(\varepsilon)$ such that $q\left(\xi-\xi_{\alpha(\varepsilon)}\right)<\varepsilon / 2$. Since $\left\langle P \xi_{\alpha(\varepsilon)}, x^{\prime}\right\rangle$ is σ-additive and $E_{n} \downarrow$, there exists N such that $\left|\left\langle P\left(E_{n}\right) \xi_{\alpha(\varepsilon)}, x^{\prime}\right\rangle\right|<\varepsilon / 2$ for each $n \geqq N$. It follows that $\left\langle P\left(E_{n}\right) \xi, x^{\prime}\right\rangle \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\left\langle P \xi, x^{\prime}\right\rangle$ is σ-additive.

Proposition 2. Let P be a spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of sets and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$. If the cyclic space $\mathscr{M}_{P}[x]$ satisfies any one of the criteria (i)-(iv) of Proposition 1 , for each $x \in X$, then P is strongly σ-additive.

Proof. Fix $x \in X$. Then $\mathscr{M}_{P}[x]$ is an invariant subspace for each operator $P(E), E \in \mathscr{M}$, and the restriction $\Gamma_{0}(x)$, of $\Gamma(x)$ to $\mathscr{M}_{P}[x]$ is a total subset of $\mathscr{M}_{P}[x]^{\prime}$. Let $\Gamma_{x}(\xi)=\Gamma_{0}(x)$ for each $\xi \in \mathscr{M}_{P}[x]$. It follows from Lemma 3 that if P^{x} denotes the restriction of P to $\mathscr{M}_{P}[x]$, then P^{x} is a spectral measure of class $\left(\mathscr{M} ; \Gamma_{x}(\xi)\right.$, $\left.\xi \in \mathscr{M}_{P}[x]\right)$ in $L\left(\mathscr{M}_{P}[x]\right)$. Proposition 1 implies that P^{x} is σ-additive. In particular, $P^{x}\left(E_{n}\right) x \rightarrow 0$ in $\mathscr{M}_{P}[x]$ whenever $E_{n}, n=1,2, \ldots$, is a sequence of sets in \mathscr{M} decreasing to \emptyset. Hence, $P\left(E_{n}\right) x \rightarrow 0$ in X. This shows that $P x$ is σ-additive for each $x \in X$, that is, P is σ-additive.

Remark. For X a Banach space, a version of Proposition 2 was proved in [3] (Theorem 2). It is worth noting that in practice, Proposition 2 has a larger range of application than Proposition 1 since the subspaces $\mathscr{M}_{P}[x], x \in X$, may be substantially smaller than all of X.

A locally convex space X is said to be essentially separable with respect to a weaker topology $\tau([6], \mathrm{p} .12)$, when any countable subset of X is contained in a linear subspace of X which is separable with respect to the given topology on X and closed with respect to τ.

Proposition 3. Let P be a spectral measure of class $(\mathscr{M} ; \Gamma(x), x \in X)$, where \mathscr{M} is a σ-algebra of sets and $\Gamma(x)$ is a total subset of X^{\prime} for each $x \in X$. Let $\Gamma_{0}(x)$ be the restriction of $\Gamma(x)$ to $\mathscr{M}_{P}[x]$, for each $x \in X$. If $\mathscr{M}_{P}[x]$ is metrizable and essentially separable with respect to the topology $\sigma\left(\mathscr{M}_{P}[x], \Gamma_{0}(x)\right)$, for each $x \in X$, then P is σ-additive.

Proof. Fix $x \in X$. In the notation of the proof of Proposition 2, P^{x} is a spectral measure of class $\left(\mathscr{M} ; \Gamma_{x}(\xi), \xi \in \mathscr{M}_{P}[x]\right)$. Accordingly, P^{x} is σ-additive by Theorem 0.3 of [6] and hence, it follows that P is σ-additive.

References

[1] J. Diestel and J. J. Uhl, Jr., Vector measures, Mathematical Surveys No. 15, Amer. Math. Soc. (Providence, 1977).
[2] N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.
[3] T. A. Gillespie, Spectral measures on spaces not containing la, Proc. Edinburgh Math. Soc., (2), 24 (1981), 41-45.
[4] T. A. Gillespie, Strongly closed bounded Boolean algebras of projections, Glasgow Math. J., 22 (1981), 73-75.
[5] W. Ricker, Extended spectral operators, J. Operator Theory, 9 (1983), 269-296.
[6] G. E. F. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc., 139 (1974).
[7] Ju. B. Tumarkin, On locally convex spaces with basis, Dokl. Akad. Nauk SSSR, 195, 12781281 ; Soviet Math. Dokl., 11 (1970), 1672-1675.
(Received November 8, 1983)
SCHOOL OF MATHEMATICS AND PHYSICS
MACQUARIE UNIVERSITY
NORTH RYDE, 2113
AUSTRALIA

STRONGLY CONVERGENT TRIGONOMETRIC SERIES AS FOURIER SERIES

N. TANOVIĆ-MILLER (Sarajevo)

A study of strong convergence of trigonometric and Fourier series was recently introduced in [8]. Its interest is justified by the fact that it lies between absolute and ordinary convergence in regard to which trigonometric and Fourier series have been thoroughly investigated.

In this paper we are concerned with the question under which conditions is an a.e. strongly convergent trigonometric series, of index $\lambda \geqq 1$, a Fourier series. We show that, if a trigonometric series is strongly convergent of index $\lambda>1$, on a set of positive measure or on a set of second category, then it is necessarily a Fourier series of a function f which belongs to L^{p} for each $p \geqq 1$, and that this result can not be improved as to conclude that $f \in L^{\infty}$. A similar statement is not true for the strong convergence of index $\lambda=1$. Namely, there are trigonometric series that are strongly convergent a.e. to a function which is not in L^{p} for $p>3 / 2$. The question whether such series are Fourier-Lebesgue or Fourier-Stieltjes series remains unsolved. We also prove several simple statements concerning the above problem and the convergence in the norm

1. Definitions and preliminaries

A real or a complex valued sequence $\left(s_{k}\right)$ is strongly C_{1} summable to a number t, of index $\lambda>0$, and we write $s_{k} \rightarrow t\left[C_{1}\right]_{\lambda}$ if

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{k}-t\right|^{\lambda}=o(1) . \tag{1.1}
\end{equation*}
$$

This definition was introduced by Hardy and Littlewood in connection with the Fourier series, see [1] and [9].

A notion of strong convergence developed with the natural extensions of the above concept of strong summability, to Cesàro methods $C_{\alpha}, \alpha \geqq 0$, and other summability methods, see [5] and [6] and the references cited there.

A real or a complex valued sequence $\left(s_{k}\right)$ is strongly convergent to a number t, of index $\lambda>0$, and we write $s_{k} \rightarrow t[I]_{\lambda}$ if

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n}\left|(k+1)\left(s_{k}-t\right)-k\left(s_{k-1}-t\right)\right|^{2}=o(1) . \tag{1.2}
\end{equation*}
$$

Here and in the other similar expressions $s_{-1}=0$.

If A and B are two convergence (summability) methods we write $A \Rightarrow B$ if $s_{k} \rightarrow t A$ implies $s_{k} \rightarrow t B$. By I we shall denote the ordinary convergence, that is $s_{k} \rightarrow t I$ if $s_{k} \rightarrow t$ in the ordinary sense.

The following properties of strong convergence $[I]_{\lambda}$ and strong summability $\left[C_{1}\right]_{\lambda}$ can be easily verified, for more general results see [5] and [6]:
(i) $[I]_{\lambda} \Rightarrow[I]_{\mu}$ and $\left[C_{1}\right]_{\lambda} \Rightarrow\left[C_{1}\right]_{\mu}$ for $\lambda>\mu>0$.
(ii) $[I]_{\lambda} \Rightarrow I \Rightarrow\left[C_{1}\right]_{\lambda} \Rightarrow C_{1}$ for $\lambda \geqq 1$.
(iii) If $\lambda \geqq 1$ then the following are equivalent:

1. $s_{k} \rightarrow t[I]_{\lambda}$,
2. $s_{k} \rightarrow t$ and

$$
\begin{equation*}
\frac{\lceil 1}{n+1} \sum_{k=0}^{n} k^{\lambda}\left|s_{k}-s_{k-1}\right|^{2}=o(1) \tag{1.3}
\end{equation*}
$$

3. $s_{k} \rightarrow t\left[C_{1}\right]_{\lambda}$ and (1.3) holds,
4. $s_{k} \rightarrow t C_{1}$ and (1.3) holds.

Statements (i), (ii) and the equivalence of 1 . and 2. in (iii) are corollaries of Theorem 1 in [6] and Theorem 5 in [5]. The equivalence of 1 . and 3. follows from (ii) and the Minkowski inequality. Moreover by (ii) clearly 3. implies 4. and from (i) it follows that 4 . implies 2 .

Our next definition contains by now the well established concept of absolute convergence of index $\lambda>0$, see [4] and [6].

A real or complex valued sequence $\left(s_{k}\right)$ is absolutely convergent to a number t, of index $\lambda>0$, and we write $s_{k} \rightarrow t|I|_{\lambda}$ if $s_{k} \rightarrow t$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{\lambda-1}\left|s_{k}-s_{k-1}\right|^{\lambda}<\infty \tag{1.4}
\end{equation*}
$$

If $\lambda=1$ then clearly (1.4) implies that $s_{k} \rightarrow t$ for some t and this is not true for $\lambda>1$, see [8].

The following statement shows the relationship between these types of convergence, see [6]:
(iv) $|I|_{\lambda} \Rightarrow[I]_{\lambda} \Rightarrow I$ for $\lambda \geqq 1$.

The absolute and strong convergence of index 1 we shall call simply the absolute and strong convergence, denoted by $|I|$ and $[I]$, respectively.

Clearly, if the above definitions are applied to sequences of real or complex valued functions on the real line, in particular to trigonometric or Fourier series, then the corrosponding statements (i) through (iv) are valued for the appropriate pointwise or uniform convergence on some subset of real line.

For $p \geqq 1$, let L^{p} denote the set of all real or complex valued functions f such that $\|f\|_{p}=\left(\frac{1}{2 \pi} \int|f|^{p}\right)^{1 / p}$ is finite, with the integral being taken over any interval
of length 2π. Let C denote the set of all continuous real or complex valued 2π periodic functions. For $f \in L^{p}, p \geqq 1$, and a point x let

$$
\Phi_{x, p}(t)=\int_{0}^{t}\left|\frac{1}{2}(f(x+u)+f(x-u))-f(x)\right|^{p} d u .
$$

Then x is called a Lebesgue point of $f \in L^{p}$ if $\Phi_{x, p}(t)=o(t)$ as $t \rightarrow 0^{+}$. By a theorem due to Lebesgue almost all points are Lebesgue points of f.

2. Strong convergence of trigonometric series; introductory results and remarks

Given a trigonometric series

$$
\begin{equation*}
a_{0} / 2+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{2.1}
\end{equation*}
$$

let $s_{n}(x)$ and $\sigma_{n}(x)$ denote the n-th partial sum and the n-th Cesàro C_{1} partial sum of (2.1) respectively. If (2.1) is a Fourier series of a function $f \in L^{1}$ we shall write $s_{n} f$ and $\sigma_{n} f$ for the corresponding partial sums s_{n} and σ_{n}.

The strong convergence $[I]_{\lambda}$ of trigonometric and Fourier series, of index $\lambda \geqq 1$ was first considered by the present author in [8]. Some results about the absolute convergence $|I|_{\lambda}$ of index $\lambda>1$ were recently obtained in [4] as a special case of more general results on absolute summability of trigonometric series. The absolute convergence $|I|_{\lambda}$ for $\lambda=1$ is just the ordinary absolute convergence in regard to which trigonometric series have been thoroughly investigated.

The results obtained in [8] already indicate that the strong convergence of trigonometric series has some of the characteristics of both absolute and ordinary convergence. Moreover, they put in a new light some of the wellknown properties of trigonometric and Fourier series, in a sense that some theorems concerning ordinary convergence can be extended to strong, but not to absolute convergence and that some statements about absolute convergence hold for strong convergence under weaker assumptions; see Theorems 5, 6 and 7, their corollaries and remarks in [8].

An obvious similarity with absolute convergence (also with absolute convergence of index $\lambda>1$, see [4]) is exhibited by the following analogies of the classical theorems due to Denjoy and Lusin, see [1] or [9]:

Theorem A. (Theorems 1 and 2 in [8].) If a trigonometric series (2.1) is [$I]_{\lambda}$ convergent of index $\lambda \geqq 1$, on a set of positive measure or on a set of second category then

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n} k^{\lambda}\left|a_{k}\right|^{\lambda}=o(1) \quad \text { and } \quad \frac{1}{n+1} \sum_{k=0}^{n} k^{\lambda}\left|b_{k}\right|^{\lambda}=o(1) \tag{2.2}
\end{equation*}
$$

that is $k a_{k} \rightarrow 0\left[C_{1}\right]_{2}$ and $k b_{k} \rightarrow 0\left[C_{1}\right]_{2}$.
Applying this to Fourier series we have:

Theorem B. (Theorem 3 in [8] is slightly improved.) Let $\lambda \geqq 1$.
i) If (2.1) is a Fourier series of a function $f \in L^{p}$ for some $p \geqq 1$, then $s_{n} f \rightarrow f[I]_{\lambda}$ at every Lebesgue point of f if and only if its coefficients satisfy (2.2).
ii) If (2.1) is a Fourier series of a function $f \in C$ then $s_{n} f \rightarrow f[I]_{\lambda}$ uniformly if and only if its coefficients satisfy (2.2).

Remark. The above statement i) differs from Theorem 3 in [8] only in the case if $f \in L^{1}$ and $f \oplus L^{p}, p>1$, and that only in the sufficiency part. Namely, from the equivalence of 1 . and 4. in (iii) and the Fejér-Lebesgue theorem it follows that $s_{n} f \rightarrow f[I]_{\lambda}$ at every Lebesgue point of f whenever (2.2) holds. The author overlooked this fact in the proof of Theorem 3 in [8], using instead the equivalence of 1 . and 3 . in (iii) and the corresponding more difficult results on $\left[C_{1}\right]_{\lambda}$ summability of Fourier series, see [8], [1] and [9]. Thus, if $f \in L^{1}$ and $f \notin L^{p}$ for $p>1$ and (2.2) holds, we were only able to conclude that $s_{n} f \rightarrow f[I]_{\lambda}$ a.e.

Due to the above mentioned similarity with the absolute convergence and the fact that an a.e. absolutely convergent trigonometric series is necessarily a Fourier series of a continuous function, it is natural to ask whether an a.e. strongly $[I]_{\lambda}$ convergent trigonometric series, of index $\lambda \geqq 1$, is a Fourier-Lebesgue series. The answer is positive for the strong convergence of index $\lambda>1$ and moreover such series are necessarily Fourier series of functions belonging to L^{p} for each $p \geqq 1$. For the strong convergence of index 1 , the question is much more difficult and we give only some partial results.

3. Strong convergence $[I]_{\lambda}$ and Fourier series

Theorem 1. If the coefficients of a trigonometric series (2.1) satisfy (2.2) for some $\lambda>1$ then (2.1) is a Fourier series of a function f which belongs to L^{p} for each $p \geqq 1$ and $a_{n} \rightarrow f[I]_{\lambda}$ at every Lebesgue point of f.

Proof. If (2.2) holds for some $\lambda>1$, that is if $k a_{k} \rightarrow 0\left[C_{1}\right]_{\lambda}$ and $k b_{k} \rightarrow 0\left[C_{1}\right]_{\lambda}$ then by (i) clearly (2.2) holds for each $q, \quad 1<q \leqq \min (\lambda, 2)$. Therefore, by partial summation:

$$
\begin{gathered}
\sum_{k=1}^{n}\left|a_{k}\right|^{q}=\sum_{k=1}^{n} \frac{1}{k^{q}} k^{q}\left|a_{k}\right|^{q}=\sum_{k=1}^{n-1}\left(\Delta \frac{1}{k^{q}}\right) \sum_{i=1}^{k} i^{q}\left|a_{i}\right|^{q}+\frac{1}{n^{q}} \sum_{i=1}^{n} i^{q}\left|a_{i}\right|^{q}= \\
=O(1) \sum_{k=1}^{n-1} \frac{1}{k^{q+1}} \sum_{i=1}^{k} i^{q}\left|a_{i}\right|^{q}+o(1)=O(1) \sum_{k=1}^{n-1} \frac{1}{k^{q}}+o(1)
\end{gathered}
$$

Here and throughout the paper, for a sequence $\left(x_{k}\right), \Delta x_{k}=x_{k}-x_{k+1}$ for $k=0,1,2, \ldots$.

Consequently $\sum\left|a_{k}\right|^{q}<\infty$ and using the same argument it follows that $\sum\left|b_{k}\right|^{q}<\infty$. By Hausdorff-Young theorem, see [1] or [9], there is a function $f \in L^{p}$, where $1 / p+1 / q=1$, such that (2.1) is the Fourier series of f. Since this is true for each $q, \quad 1<q \leqq \min (\lambda, 2)$, we have $f \in L^{p}$ for each

$$
p \geqq \min (\lambda, 2) /(\min (\lambda, 2)-1) .
$$

Thus $f \in L^{p}$ for each $p \geqq 1$.

From Theorem B we conclude moreover that $s_{n} \rightarrow f[I]_{\lambda}$ at every Lebesgue point of f.

The following result is just a simple corollary of the above Theorem 1 and Theorem A, i.e. Theorems 1 and 2 in [8]:

THEOREM 2. If a trigonometric series (2.1) is $[I]_{\lambda}$ convergent for some $\lambda>1$, on a set of positive measure or on a set of second category, then (2.1) is a Fourier series of a function f which belongs to L^{p} for each $p \geqq 1$ and $s_{n} \rightarrow f[I]_{\lambda}$ at every Lebesgue point of f.

Corollary 1. A trigonometric series (2.1) is $[1]_{\lambda}$ convergent a.e. to a function f, for some $\lambda>1$, if and only if (2.2) holds and (2.1) is a Fourier-Lebesgue series.

Proof. This is an immidiate consequence of Theorem 2 and Theorem B.
Remark 1. Theorem 2 and consequently Theorem 1, can not be improved as to conclude that $f \in L^{\infty}$. The following example shows that there is a trigonometric series which is strongly $[1]_{\lambda}$ convergent a.e. for every $\lambda \geqq 1$, so that it is a Fourier series of a function f which belongs to L^{p} for each $p \geqq 1$, but such that $f \notin L^{\infty}$. Namely it is well known that the series $\sum_{k=2}^{\infty} \frac{1}{k \log k} \cos k x$ converges a.e. to a function $f \in L^{1}$, see 7.3 in [2] Vol. 1. Since the coefficients of this series clearly satisfy (2.2) for each $\lambda \geqq 1$, by Theorem 1 we are able even to conclude that the series is strongly $[I]_{\lambda}$ convergent a.e. to a function f belonging to L^{p} for each $p \geqq 1$. However, by what was shown in 12.8 .3 , [2] Vol. 2, $f \pm L^{\infty}$.

We prove now that the above results can not be extended to strong convergence of index 1 .

Theorem 3. There are trigonometric series that are strongly convergent a.e. to a function which is not in L^{p} for $p>3 / 2$.

Proof. Consider the cosine series

$$
\begin{equation*}
a_{0} / 2+\sum_{k=1}^{\infty} a_{k} \cos k x \tag{3.1}
\end{equation*}
$$

with coefficients defined below.
Given a lacunary sequence $\left(k_{j}\right)$, that is a sequence of positive integers such that $k_{j+1} \geqq \varrho k_{j}$ for $j=1,2, \ldots$ and some $\varrho>1$, let

$$
\begin{align*}
& a_{k}=\frac{1}{j^{1 / 2} \ln (j+1)} \text { for } k=k_{j}, k_{j}+1, \ldots, k_{j}+\left[j^{1 / 2}\right] ; j=1,2, \ldots \tag{3.2}\\
& a_{k}=0 \text { otherwise. }
\end{align*}
$$

We now prove that there exists a function f such that the series (3.1) with coefficients given by (3.2), is strongly convergent to f a.e. and $f \notin L^{p}$ for $p>3 / 2$. That is we claim:

1. $s_{n} \rightarrow f[I]$ a.e. for some function f.
2. $f \notin L^{p}$ for $p>3 / 2$ where $\left(s_{n}\right)$ is the sequence of the partial sums of (3.1).

Proof of 1. By statement (iii) of Section 1 it suffices to show that

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n} k\left|s_{k}(x)-s_{k-1}(x)\right|=o(1) \tag{3.3}
\end{equation*}
$$

uniformly in x and that for some function f

$$
\begin{equation*}
s_{n}(x) \rightarrow f(x) \tag{3.4}
\end{equation*}
$$

for almost all x. For $n \geqq k_{2}$, let j_{n} be the largest integer j such that $k_{j} \leqq n$. Then from (3.2) clearly

$$
\begin{gathered}
\frac{1}{n+1} \sum_{k=0}^{n} k\left|a_{k}\right|=\frac{1}{n+1} \sum_{j=1}^{j_{n}-1} \sum_{k=k_{j}}^{k_{j+1}^{-1}} k\left|a_{k}\right|+\frac{1}{n+1} \sum_{k=k_{j_{n}}}^{n} k\left|a_{k}\right| \leqq \\
\leqq \frac{1}{n+1} \sum_{j=1}^{j_{n}-1} k_{j+1} \frac{1}{\ln (j+1)}+\frac{1}{\ln \left(j_{n}+1\right)} .
\end{gathered}
$$

By the lacunarity of the sequence $\left(k_{j}\right), k_{j+1} \leqq \frac{\varrho}{\varrho-1}\left(k_{j+1}-k_{j}\right)$ and the above inequality

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n} k\left|a_{k}\right|=o(1) . \tag{3.5}
\end{equation*}
$$

Now (3.5) clearly implies (3.3).
Next we prove that (3.4) holds for some function f. In order to see this let us write applying partial summation

$$
\begin{equation*}
s_{n}(x)=a_{0} / 2+\sum_{k=1}^{n} a_{k} \cos k x=\sum_{k=0}^{n-1} \Delta a_{k} D_{k}(x)+a_{n} D_{n}(x), \tag{3.6}
\end{equation*}
$$

where D_{n} denotes the Dirichlet kernel.
Since $a_{n} \rightarrow 0$ and $D_{k}(x)=\frac{\sin (k+1 / 2) x}{2 \sin x / 2}$ for $x \neq 0(\bmod 2 \pi)$ by (3.6) $s_{n}(x)$ converges a.e. if and only if the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \Delta a_{k} \sin (2 k+1) x \tag{3.7}
\end{equation*}
$$

converges almost everywhere.
From (3.2) clearly

$$
\sum_{k=0}^{\infty}\left|\Delta a_{k}\right|^{2}=2 \sum_{j=1}^{\infty} \frac{1}{j \ln ^{2}(j+1)}<\infty
$$

and consequently (3.7) is a Fourier series of a function $g \in L^{2}$, see 8.3.1, [2], Vol. 1. Since (3.5) clearly implies that

$$
\frac{1}{n+1} \sum_{k=0}^{n} k\left|\Delta a_{k}\right|=o(1)
$$

from Theorem B it follows that (3.7) is strongly convergent to g for almost all x. Therefore $s_{n}(x) \rightarrow f(x)$ a.e. where the function f is uniquely determined a.e. by the equation

$$
\begin{equation*}
f(x)=g(x / 2) / 2 \sin x / 2 \quad \text { a.e., } \tag{3.8}
\end{equation*}
$$

which completes the proof of 1 .
Proof of 2. Suppose, on the contrary, that $f \in L^{p}$ for some $p>3 / 2$. We may assume that $2 \geqq p>3 / 2$. By what we have seen already, (3.7) is the Fourier series of $g \in L^{2}$, converging a.e. to that function. Hence by (3.8), (3.7) is the Fourier series of $2 \sin x f(2 x)$, where f is integrable. Consequently,

$$
\begin{aligned}
\Delta a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} 2 \sin x f(2 x) \sin (2 k+1) x d x & = \\
=\frac{1}{\pi} \int_{-\pi}^{\pi}[\cos 2 k x-\cos (2 k+2) x] f(2 x) d x \text { for } k & =0,1,2, \ldots
\end{aligned}
$$

But $a_{n}-a_{0}=-\sum_{k=0}^{n-1} \Delta a_{k}$ and therefore

$$
a_{n}-a_{0}=\frac{1}{2 \pi} \int_{-2 \pi}^{2 \pi}[\cos n x-1] f(x) d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x-\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x
$$

Since $a_{n} \rightarrow 0$ and f is integrable, by the Riemann-Lebesgue lemma it follows that $a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f$. Hence

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \text { for } n=0,1,2, \ldots
$$

that is, (3.1) is the Fourier series of f.
Now by assumption $f \in L^{p}$ for some $p, 3 / 2<p \leqq 2$ and therefore by the Haus-dorff-Young theorem, the sequence of its Fourier coefficients $\left(a_{k}\right)$ must satisfy the inequality

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|^{q} \leqq\|f\|_{p}^{q}
$$

where $1 / p+1 / q=1$. This implies, by (3.2), that

$$
\sum_{j=1}^{\infty} \frac{1}{j^{q / 2} \ln ^{q}(j+1)} j^{1 / 2} \leqq\|f\|_{p}^{q}
$$

which is impossible, since the last series diverges for $q<3$. Hence $f \notin L^{p}$ for $p>3,2$.
Remark. The present author was unable to show whether the sum function of the above cosine series is integrable. The question is whether such series are Fourier-Lebesgue or Fourier-Stieltjes series at all. In view of the following results it would be sufficient to establish that $\left\|s_{n}\right\|_{1} \neq \boldsymbol{O}(1)$.

Conjecture. There are trigonometric series that are strongly convergent a.e. and are not Fourier-Lebesgue or Fourier-Stieltjes series.

Our next task is to prove several simple statements showing the relationship between the strong convergence and the ordinary convergence in the norm.

Theorem 4. i) Let (2.1) be [I] convergent a.e. to a function f. If $f \in L^{1}$ and (2.1) is the Fourier series of f then $\left\|s_{n}-f\right\|_{1}=o(1)$ as $n \rightarrow \infty$.
ii) Let (2.1) be [I] convergent a.e. Then (2.1) is a Fourier-Lebesgue series if and only if $\left\|s_{m}-s_{n}\right\|_{1}=o(1)$ as $m, n \rightarrow \infty$, and (2.1) is a Fourier-Stieltjes series if and only if $\left\|s_{n}\right\|_{1}=O(1)$ as $n \rightarrow \infty$.
iii) Let (2.1) be $[I]_{\lambda}$ convergent a.e. to a function f, for some $\lambda>1$. Then $f \in L^{p}$ for each $p \geqq 1$, (2.1) is the Fourier series of f and $\left\|s_{n}-f\right\|_{p}=o(1)$ as $n \rightarrow \infty$.

Proof. We first note that by the assumption in all three statements (2.1) is [I] convergent a.e. Therefore by Theorem A (2.2) holds for $\lambda=1$.

Now clearly,

$$
s_{n}(x)-\sigma_{n}(x)=\frac{1}{n+1} \sum_{k=1}^{n} k\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

so that by above relation

$$
\begin{equation*}
s_{n}(x)-\sigma_{n}(x)=o(1) \tag{3.9}
\end{equation*}
$$

uniformly in x.
i) If $f \in L^{1}$ and (2.1) is the Fourier series of f then from (5.5) Ch. IV in [9] it follows that $\left\|\sigma_{n}-f\right\|_{1}=o(1)$. By (3.9) clearly $\left\|s_{n}-\sigma_{n}\right\|_{1}=o(1)$ and consequently $\left\|s_{n}-f\right\|_{1}=o(1)$.
ii) Statement ii) follows in the same way from (3.9) and the well known facts that: (2.1) is a Fourier-Lebesgue series if and only if $\left\|\sigma_{m}-\sigma_{n}\right\|_{1}=o(1)$ as $m, n \rightarrow \infty$; (2.1) is a Fourier-Stieltjes series if and only if $\left\|\sigma_{n}\right\|_{1}=O(1)$, see (4.3) and (5.5) Ch. IV in [9] or Theorems 4 and 5, $\S 60$, Ch. I in [1].
iii) Although statement iii) can be regarded as a simple consequence of Theorem 2 and the well known theorem about the convergence in the norm of Fourier series of functions in $L^{p}, p>1$, one should prefer the trivial argument used above. By Theorem 2 clearly $f \in L^{p}$ for each $p \geqq 1$ and (2.1) is the Fourier series of f. Consequently from (5.12) Ch. IV in [9] or Theorem 3, §60, Ch. I in [1] it follows that $\left\|\sigma_{n}-f\right\|_{p}=o(1)$. By (3.9) clearly $\left\|s_{n}-\sigma_{n}\right\|_{p}=o(1)$ and the conclusion follows.

Remark 1. The assumption that (2.1) is [I] convergent a.e., respectively $[I]_{\lambda}$ convergent a.e. for some $\lambda>1$, in statements i) through iii) can be replaced by the assumption that the corresponding convergence holds on a set of positive measure or on a set of second category, or simply by the assumption that the coefficients satisfy (2.2) for $\lambda=1$ respectively for some $\lambda>1$.

Remark 2. There are trivial examples of Fourier series of functions in $L^{p}, p \geqq 1$, that converge to that function in the corresponding norm and whose coefficients do not satisfy (2.2).

The following cosine series with monotone coefficients illustrate this fact; $\sum_{k=1}^{\infty} \frac{1}{k} \cos k x$ and $\sum_{k=2}^{\infty} \frac{1}{\log ^{2} k} \cos k x$.

By 7.3 in [2] Vol. 1, the first series converges a.e. to a function $f \in L^{2}$, is the Fourier series of f and $\left\|s_{n}-f\right\|_{2}=o(1)$; and the second series converges a.e. to $f \in L^{1}$, is the Fourier series of f and $\left\|s_{n}-f\right\|_{1}=o(1)$. However clearly the coefficients of either series do not satisfy (2.2).

In conclusion of this paper we remark that the results presented here show that the trigonometric series which are strongly a.e. convergent of index $\lambda>1$, are quite well behaved, being the Fourier-Lebesgue series of their sums, a subclass of $\cap L^{p}$, while the situation is much more intriguing with the strong convergence $p \geqq 1$
of index 1. It is well known that there are a.e. convergent trigonometric series that are not Fourier-Lebesgue or Fourier-Stieltjes series. We have conjectured that this statement extends to strong convergence. Whether this conjecture is true is a very interesting question in view of the fact that $|I| \Rightarrow[I] \Rightarrow I$ properly and that an a.e. absolutely convergent trigonometric series is necessarily a Fourier series of a continuous function.

The work on this paper was partially supported by the Research Council of S. R. Bosna and Hercegovina.

References

[1] N. K. Bary, Trigonometričeskie Rjadi (Moscow, 1961).
[2] R. E. Edwards, Fourier Series, Modern Introduction, Vols. 1 \& 2, Holt, Rinehart and Winston Inc. (New York, 1967).
[3] G. A. Fomin, O shodimosti rjadov Furie v srednem, Mat. Sbornik, 110 (152) (1979), 251-265.
[4] I. Szalay, Ob absolutnoi summiruemosti trigonometričeskih rjadov, Mat. Zametki, 30 (1981), 823-837.
[5] N. Tanović-Miller, On strong summability, Glasnik Mat., 14 (1979), 87-97.
[6] N. Tanović-Miller, On strong summability II, Glasnik Mat., 15 (1980), 283-302.
[7] N. Tanović-Miller, On some generalizations of the Fejér-Lebesgue theorem, Boll. Un. Mat. Ital., 6 (1982), 1217-1233.
[8] N. Tanović-Miller, On strong convergenvergence of trigonometric and Fourier series, Acta Math. Hungar., 42 (1983), 35-43.
[9] A. Zygmund, Trigonometric Series, Vols. I \& II, Cambridge University Press (New York, 1959).

AN EXTREMUM PROBLEM CONCERNING ALGEBRAIC POLYNOMIALS

P. ERDŐS (Budapest), member of the Academy and A. K. VARMA (Gainesville)

Let S_{n} be the set of all polynomials whose degree does not exceed n and whose all zeros are real but lie outside $(-1,1)$. Similarly, we say $p_{n} \in Q_{n}$ if $p_{n}(x)$ is a real polynomial whose all zeros lie outside the open disk with center at the origin and radius 1 . Further we will denote by H_{n} the set of all polynomials of degree $\leqq n$ and of the form

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} a_{k} q_{n k}(x), \quad \text { with } \quad a_{k} \geqq 0, \quad k=0,1,2, \ldots, n, \tag{1.1}
\end{equation*}
$$

where $q_{n k}(x)=(1+x)^{k}(1-x)^{n-k}$. Elements of H_{n} are called polynomials with positive coefficients (in $1-x$ and $1+x$) by G. G. Lorentz.

The following inequalities for derivatives of polynomials of special type are known:

Theorem A (P. Erdós). Let $p_{n} \in S_{n}$ then

$$
\max _{-1 \leqq x \leqq 1}\left|p_{n}^{\prime}(x)\right| \leqq \frac{1}{2} \text { en } \max _{-1 \leqq x \leqq 1}\left|p_{n}(x)\right| \text {. }
$$

Further, the constant $\frac{1}{2} e$ can not be replaced by a smaller one.
Theorem B (G. G. Lorentz). Let $p_{n} \in H_{n}$ then for each $r=1,2, \ldots$ there exists a constant C_{r} for which

$$
\begin{equation*}
\max _{-1 \leqq x \leqq 1}\left|p_{n}^{(r)}(x)\right| \leqq C_{r} n^{r} \max _{-1 \leqq x \leqq 1}\left|p_{n}(x)\right| . \tag{1.2}
\end{equation*}
$$

Theorem C (J. T. Scheick). If $p_{n} \in H_{n}$ and $n \geqq 1$ then

$$
\begin{align*}
& \max _{-1 \leqq x \leqq 1}\left|p_{n}^{\prime}(x)\right| \leqq \frac{1}{2} e n \max _{-1 \leqq x \leqq 1}\left|p_{n}(x)\right|, \tag{1.3}\\
& \max _{-1 \leqq x \leqq 1}\left|p_{n}^{\prime \prime}(x)\right| \leqq e n(n-1) \max _{-1 \leqq x \leqq 1}\left|p_{n}(x)\right| . \tag{1.4}
\end{align*}
$$

Theorem D (A. K. Varma). Let $p_{n} \in S_{n}$, then we have

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)\left(p_{n}^{\prime}(x)\right)^{2} d x \leqq \frac{n(n+1)(2 n+3)}{4(2 n+1)} \int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x \tag{1.5}
\end{equation*}
$$

with equality for $p_{n}(x)=(1+x)^{n}$ or $p_{n}(x)=(1-x)^{n}$. Moreover if $p_{n}(1)=p_{n}(-1)=0$ then for $n \geqq 2$

$$
\begin{equation*}
\int_{-1}^{1}\left(p_{n}^{\prime}(x)\right)^{2} d x \leqq \frac{n(2 n+1)(n-1)}{4(2 n-3)} \int_{-1}^{1}\left(p_{n}(x)\right)^{2} d x \tag{1.6}
\end{equation*}
$$

equality holds for only $p_{n}(x)=c(1+x)(1-x)^{n-1}$ or $p_{n}(x)=c(1-x)(1+x)^{n-1}$.
It is known [2] that if $p_{n} \in S_{n}$ (or $p_{n} \in Q_{n}$) then $p_{n} \in H_{n}$ or $-p_{n} \in H_{n}$. Thus Theorem B as well Theorem C can be looked as a generalization of Theorem A. Similarly Theorem D is an extension of Theorem A in L_{2} norm for $p_{n} \in S_{n}$. The object of this paper is to extend Theorem B as well as Theorem D in L_{2} norm for $p_{n} \in H_{n}$.

Theorem 1. Let $p_{n} \in H_{n}$ then for $n \geqq 2$

$$
\begin{equation*}
\int_{-1}^{1}\left(p_{n}^{\prime}(x)\right)^{2} d x \leqq \frac{n(n-1)(2 n+1)}{4(2 n-3)} \int_{-1}^{1}\left(p_{n}(x)\right)^{2} d x \tag{1.7}
\end{equation*}
$$

equality holds iff $p_{n}(x)=c(1+x)^{n-1}(1-x)$ or $p_{n}(x)=c(1+x)(1-x)^{n-1}$.
Theorem 2. Let $p_{n} \in H_{n}$ then

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)\left(p_{n}^{\prime}(x)\right)^{2} d x \leqq \frac{n(n+1)(2 n+3)}{4(2 n+1)} \int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x \tag{1.8}
\end{equation*}
$$

with equality for $p_{n}(x)=(1+x)^{n}$ or $p_{n}(x)=(1-x)^{n}$.
Corollary. If $p_{n} \in Q_{n}$ then (1.7) and (1.8) are valid.
2. Some lemmas. For the proof of Theorem 1 and Theorem 2 we need the following lemmas.

Lemma 2.1. Let $p_{n} \in H_{n}$. Then we have

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x \geqq \frac{2(2 n+1)}{(n+1)(2 n+3)} \int_{-1}^{1} p_{n}^{2}(x) d x . \tag{2.1}
\end{equation*}
$$

Proof. From (1.1) we have

$$
\begin{equation*}
p_{n}^{2}(x)=\sum_{p+q=2 n} a_{p q}(1+x)^{p}(1-x)^{q}, \quad a_{p q} \geqq 0 . \tag{2.2}
\end{equation*}
$$

Hence we may write

$$
\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x=\sum_{p+q=2 n} a_{p q} \int_{-1}^{1}(1+x)^{p+1}(1-x)^{q+1} d x .
$$

But on using

$$
\begin{equation*}
\frac{\int_{-1}^{1}(1+x)^{p+1}(1-x)^{q+1} d x}{\int_{-1}^{1}(1+x)^{p}(1-x)^{q} d x}=\frac{4(p+1)(q+1)}{(p+q+3)(p+q+2)} \tag{2.3}
\end{equation*}
$$

and simple computation the lemma follows. Note that equality in (2.1) holds for $p_{n}^{2}(x)=(1+x)^{2 n}$ or $p_{n}^{2}(x)=(1-x)^{2 n}$.

Lemma 2.2. Let $p_{n} \in H_{n}$ and suppose that

$$
\begin{equation*}
p_{n}(1)=p_{n}(-1)=0 . \tag{2.4}
\end{equation*}
$$

Then for $n \geqq 2$ we have

$$
\begin{equation*}
\frac{\int_{-1}^{1}\left(p_{n}^{\prime}(x)^{2} d x\right.}{\int_{-1}^{1}\left(p_{n}(x)\right)^{2} d x} \leqq \frac{n(n-1)(2 n+1)}{4(2 n-3)}, \tag{2.5}
\end{equation*}
$$

equality iff $p_{n}(x)=(1+x)(1-x)^{n-1}$ or $p_{n}(x)=(1-x)(1+x)^{n-1}$.
Proof. From (1.1) and (2.4) we may write

$$
\begin{equation*}
p_{n}(x)=\sum_{k=1}^{n-1} a_{k n}(1-x)^{k}(1+x)^{n-k}, \quad a_{k n} \geqq 0, \quad 1 \leqq k \leqq n-1 . \tag{2.6}
\end{equation*}
$$

Therefore

$$
\int_{-1}^{1} p_{n}^{2}(x) d x=\sum_{j=1}^{n-1} \sum_{k=1}^{n-1} a_{k n} a_{j n} \int_{-1}^{1}(1+x)^{2 n-k-j}(1-x)^{k+j} d x
$$

On using the known formula

$$
\begin{equation*}
\int_{-1}^{1}(1-x)^{p}(1+x)^{q} d x=\frac{2^{p+q+1} \Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}, \tag{2.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{-1}^{1} p_{n}^{2}(x) d x=\sum_{j=1}^{n-1} \sum_{k=1}^{n-1} \frac{a_{k n} a_{j n} 2^{2 n+1} \Gamma(k+j+1) \Gamma(2 n-k-j+1)}{\Gamma(2 n+2)} . \tag{2.8}
\end{equation*}
$$

Next, we turn to prove that

$$
\begin{equation*}
\int_{-1}^{1}\left(p_{n}^{\prime}(x)\right)^{2} d x \leqq \frac{2^{2 n-2}(n-1)}{(2 n-3)} \sum_{j=1}^{n-1} \sum_{k=1}^{n-1} \frac{a_{k n} a_{j n} \Gamma(k+j+1) \Gamma(2 n-\dot{k}-j)}{\Gamma(2 n)} . \tag{2.9}
\end{equation*}
$$

To prove (2.9) we first note that if

$$
\begin{equation*}
q_{k n}(x)=(1-x)^{k}(1+x)^{n-k}, \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
q_{k n}^{\prime}(x)=-k(1-x)^{k-1}(1+x)^{n-k}+(n-k)(1-x)^{k}(1+x)^{n-k-1} \tag{2.11}
\end{equation*}
$$

and on using (2.7) we have
(2.12) $\quad I_{k, j}=\int_{-1}^{1} q_{k n}^{\prime}(x) q_{j n}^{\prime}(x) d x=\frac{2^{2 n-1}}{\Gamma(2 n)}[k j \Gamma(k+j-1) \Gamma(2 n-j-k+1)+$

$$
\begin{aligned}
& +(n-k)(n-j) \Gamma(k+j+1) \Gamma(2 n-k-j-1)- \\
& -((j(n-k)+k(n-j)) \Gamma(k+j) \Gamma(2 n-j-k)] .
\end{aligned}
$$

After a simple computation it can be shown that

$$
\begin{equation*}
I_{k, j}=\frac{2^{2 n-1}(n-1) \Gamma(k+j+1) \Gamma(2 n-j-k+1)}{\Gamma(2 n)} \mu_{k, j} \tag{2.13}
\end{equation*}
$$

where

$$
\mu_{k, j}=\frac{n(k+j)-2 k j-n(k-j)^{2}}{(k+j)(k+j-1)(2 n-j-k)(2 n-j-k-1)} .
$$

Next, we will show that for $k, j=1,2, \ldots, n-1$

$$
\begin{equation*}
\mu_{k, j} \leqq \frac{1}{2(2 n-3)}, \tag{2.14}
\end{equation*}
$$

equality holds only for $k=1, j=1$, or $k=n-1, j=n-1$. In (2.13) let $k+j=l$ then (2.14) is equivalent to

$$
l(l-1)(2 n-l)(2 n-l-1) \geqq(2 n-3)\left[2 n l-2 n(k-j)^{2}-4 k j\right]
$$

or

$$
l(l-1)(2 n-l)(2 n-l-1) \geqq(2 n-3)\left\{2 n l-l^{2}-(2 n-1)(k-j)^{2}\right\}
$$

or

$$
l(2 n-l)(l-2)(2 n-l-2)+(2 n-1)(2 n-3)(k-j)^{2} \geqq 0 .
$$

This proves (2.14). Now, one using (2.13) and (2.14) we have

$$
\begin{equation*}
\int_{-1}^{1} q_{k n}^{\prime}(x) q_{j n}^{\prime}(x) d x \leqq \frac{2^{2 n-2}(n-1) \Gamma(k+j+1) \Gamma(2 n-j-k+1)}{(2 n-3) \Gamma(2 n)} . \tag{2.15}
\end{equation*}
$$

Now, on using (2.15), (2.10), (2.11), we obtain (2.9). Further from (2.9) and (2.8) we have (2.5). This proves Lemma 2.2.
3. Proof of Theorem 1. Let $p_{n} \in H_{n}$. Then from (1.1) we have

$$
\begin{equation*}
p_{n}(x)=a_{0}(1+x)^{n}+a_{n}(1-x)^{n}+q_{n}(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{n}(x)=\sum_{k=1}^{n-1} a_{k}(1+x)^{n-k}(1-x)^{k}, \quad a_{k} \geqq 0 . \tag{3.2}
\end{equation*}
$$

We note that $q_{n}(1)=q_{n}(-1)=0$, therefore on using Lemma 2.2 we have

$$
\begin{equation*}
\frac{\int_{-1}^{1} q_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1} q_{n}(x)^{2} d x} \leqq \frac{n}{4} \frac{(2 n+1)(n-1)}{2 n-3}, \quad n \geqq 2 \tag{3.3}
\end{equation*}
$$

Next, from (3.1) and (3.2) we have

$$
\begin{equation*}
\int_{-1}^{1} p_{n}^{\prime}(x)^{2} d x=\frac{n^{2} 2^{2 n-1}}{2 n-1}\left(a_{0}^{2}+a_{n}^{2}\right)+\int_{-1}^{1} q_{n}^{\prime}(x)^{2} d x+ \tag{3.4}
\end{equation*}
$$

$$
+2 n \int_{-1}^{1}\left(a_{0}(1+x)^{n-1}-a_{n}(1-x)^{n-1}\right) q_{n}^{\prime}(x) d x-2 a_{0} a_{n} n^{2} \int_{-1}^{1}\left(1-x^{2}\right)^{n-1} d x
$$

By integrating by parts we obtain

$$
\begin{gather*}
\int_{-1}^{1} q_{n}^{\prime}(x)\left\{a_{0}(1+x)^{n-1}-a_{n}(1-x)^{n-1}\right\} d x= \tag{3.5}\\
=-(n-1) \int_{-1}^{1} q_{n}(x)\left\{a_{0}(1+x)^{n-2}+a_{n}(1-x)^{n-2}\right\} d x \leqq 0 .
\end{gather*}
$$

From (3.4) and (3.5) we obtain

$$
\begin{equation*}
\int_{-1}^{1} p_{n}^{\prime}(x)^{2} d x \leqq \int_{-1}^{1} q_{n}^{\prime}(x)^{2} d x+\frac{2^{2 n-1} n^{2}\left(a_{0}^{2}+a_{n}^{2}\right)}{2 n-1} \tag{3.6}
\end{equation*}
$$

Also from (3.1) it follows that

$$
\begin{equation*}
\int_{-1}^{1} p_{n}^{2}(x) d x \geqq \frac{\left(a_{0}^{2}+a_{n}^{2}\right) 2^{2 n+1}}{2 n+1}+\int_{-1}^{1} q_{n}^{2}(x) d x . \tag{3.7}
\end{equation*}
$$

Therefore by (3.6) and (3.7) we have

$$
\begin{equation*}
\frac{\int_{-1}^{1} p_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1} p_{n}^{2}(x) d x} \leqq \frac{\int_{-1}^{1} q_{n}^{\prime}(x)^{2} d x+\frac{2^{2 n-1} n^{2}\left(a_{0}^{2}+a_{n}^{2}\right)}{2 n-1}}{\int_{-1}^{1} q_{n}^{2}(x) d x+\frac{\left(a_{0}^{2}+a_{n}^{2}\right) 2^{2 n+1}}{2 n+1}} \tag{3.8}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\frac{2^{2 n-1} n^{2}\left(a_{0}^{2}+a_{n}^{2}\right)}{2 n-1}<\frac{2^{2 n+1}\left(a_{0}^{2}+a_{n}^{2}\right)}{(2 n+1)} \frac{n}{4} \frac{(2 n+1)(n-1)}{(2 n-3)} . \tag{3.9}
\end{equation*}
$$

Using (3.9) and (3.3) we obtain

$$
\frac{\int_{-1}^{1} p_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1} p_{n}^{2}(x) d x} \leqq \frac{n}{4} \frac{(2 n+1)(n-1)}{(2 n-3)}
$$

This proves Theorem 1.
4. Proof of Theorem 2. Let $p_{n} \in H_{n}$. First we write
(4.1)

$$
\frac{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x}=\frac{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1} p_{n}^{2}(x) d x} \frac{\int_{-1}^{1} p_{n}^{2}(x) d x}{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x} .
$$

On using Lemma (2.1) we obtain

$$
\begin{equation*}
\frac{\int_{-1}^{1} p_{n}^{2}(x) d x}{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{2}(x) d x} \leqq \frac{(n+1)(2 n+3)}{2(2 n+1)} \tag{4.2}
\end{equation*}
$$

equality holds for $p_{n}(x)=(1+x)^{n}$ or $p_{n}(x)=(1-x)^{n}$. Next, we will prove that for $p_{n} \in H_{n}$

$$
\begin{equation*}
\frac{\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{\prime}(x)^{2} d x}{\int_{-1}^{1} p_{n}^{2}(x) d x} \leqq \frac{n}{2}, \tag{4.3}
\end{equation*}
$$

equality holds for $p_{n}(x)=(1+x)^{k}(1-x)^{n-k} k=0,1, \ldots, n$. Let $p_{n} \in H_{n}$. Then we may write

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} a_{k n}(1-x)^{k}(1+x)^{n-k} \equiv \sum_{k=0}^{n} a_{k n} q_{k n}(x) . \tag{4.4}
\end{equation*}
$$

Following the proof of Lemma 2.2 we first note that

$$
\begin{equation*}
\int_{-1}^{1} q_{k n}^{\prime}(x) q_{j n}^{\prime}(x)\left(1-x^{2}\right) d x=\frac{2^{2 n+1} \Gamma(k+j+1) \Gamma(2 n-k-j+1)}{\Gamma(2 n+2)} \mu_{k j} \tag{4.5}
\end{equation*}
$$

where by $k+j=l$,
(4.6) $\quad \mu_{k j}=\frac{(2 n-l)(2 n-l+1) k j+\left(n^{2}-n l+k j\right) l(l+1)-l(2 n-l)(n l-2 k j)}{l(2 n-l)}=$

$$
=\frac{\frac{n}{2} l(2 n-l)-\frac{n}{2}(2 n+1)(k-j)^{2}}{l(2 n-l)} \fallingdotseq \frac{n}{2}
$$

equality holds iff $k=j, k=0,1, \ldots, n$. Therefore

$$
\begin{equation*}
\int_{-1}^{1} q_{k n}^{\prime}(x) q_{j n}^{\prime}(x)\left(1-x^{2}\right) d x \leqq 2^{2 n+1} \frac{n}{2} \frac{\Gamma(k+j+1) \Gamma(2 n-k-j+1)}{\Gamma(2 n+2)} \tag{4.7}
\end{equation*}
$$

By using (4.4), (4.7) we have

$$
\begin{gathered}
\int_{-1}^{1}\left(1-x^{2}\right) p_{n}^{\prime}(x)^{2} d x \leqq \frac{2^{2 n+1}}{\Gamma(2 n+2)} \frac{n}{2} \sum_{k=0}^{n} \sum_{j=0}^{n} a_{k n} a_{j n} \Gamma(k+j+1) \Gamma(2 n-k-j+1)= \\
=\frac{n}{2} \int_{-1}^{1} p_{n}^{2}(x) d x .
\end{gathered}
$$

This proves (4.3). Now, using (4.1)-(4.3) we have

$$
\frac{\int_{-1}^{1} p_{n}^{\prime}(x)^{2}\left(1-x^{2}\right) d x}{\int_{-1}^{1} p_{n}(x)^{2}\left(1-x^{2}\right) d x} \leqq \frac{n}{2} \frac{(n+1)(2 n+3)}{2(2 n+1)}
$$

This proves Theorem 2 as well.

References

[1] P. Erdős, Extremal properties of polynomials, Annals of Mathematics, 4 (1940), 310-313.
[2] G. G. Lorentz, Degree of Approximation by polynomials with positive coefficients, Math. Ann., 151 (1963), 239-251.
[3] J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Th., 6 (1972), 354-358.
[4] A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc., 75 (1979), 243- 250.
[5] A. K. Varma, An analogue of some inequalities of P. Erdős and P. Turán concerning algebraic polynomials satisfying certain conditions, Colloquia Mathematica Societatis János Bolyai, 19, Fourier Analysis and Approximation theory, Budapest, 1976.
(Received December 2, 1983)

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REÁLTANODA U. 13-15
H-1053, HUNGARY
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA 32611
USA

A REPRESENTATION THEORY FOR ORTHOMODULAR LATTICES BY MEANS OF CLOSURE SPACES

LUISA ITURRIOZ (Lyon)

1. Introduction

In [2] a representation theorem by means of sets and a topological representation theory for orthomodular lattices were developed, using orthogonal spaces and ordered topological spaces. A summary of these results has been reported in [4].

In the set-theoretical representation theorem the underlying set is taken as the set of all ultrafilters in the orthomodular lattice carrying an orthogonality relation.

By contrast, in the topological theorem the base set of the representation is given by the set of all proper filters in the orthomodular lattice.

Orthomodular lattices are non-distributive generalizations of Boolean algebras. The representation theorem by sets mentioned above gives, in the distributive case, the Stone representation for Boolean algebras [2, Corollary 1], as expected. But this is not the case for the topological representation. This fact naturally led to the formulation of one of the open problems stated in [2]: do there exist more "economical" underlying sets for the topological representation of an orthomodular lattice? In this paper we give an answer to this question in terms of closure spaces.

The results established here have been presented at the First Meeting on Ordered Sets and Applications, C.N.R.S., held at Villeurbanne, France, in March 1982.

2. Preliminaries

In this section we explain the terminology and notation to be adopted here. We also collect, without proof, some results which will be needed in the sequel.

An abstract system $\left(P ; 0,1, \leqq,^{\prime}\right)$ is an orthomodular ordered set if it is an orthocomplemented ordered set satisfying for all $a, b \in P$ the following conditions:

1) if $a \leqq b^{\prime}$ then the join $a \vee b$ exists in P
2) $a \leqq b$ implies $b=a \vee\left(a^{\prime} \wedge b\right)$.

We will refer to an orthomodular ordered set P, for short.
Note that if $a \leqq b$ the right hand side of 2) exists because the meet $a^{\prime} \wedge b$ exists and $\left(a^{\prime} \wedge b\right) \leqq a^{\prime}$.

In the presence of 1), the condition 2) can be replaced by $\left.2^{\prime}\right) a \leqq b$ and $a^{\prime} \wedge b=0$ imply $a=b$ [1].

Let P be an orthocomplemented ordered set. For $a, b \in P$ we say that a commutes with b, in symbols $a C b$ if $a \wedge b$ and $a \wedge b^{\prime}$ exist and a is their join, i.e. $a=(a \wedge b) \vee\left(a \wedge b^{\prime}\right)$. The center Z of P is the set of all $a \in P$ such that a commutes with p for all $p \in P$. We recall the following result

Lemma 1 [5, p. 254]. The center Z of an orthomodular ordered set P is a Boolean algebra.

An orthomodular lattice L is an orthocomplemented lattice which satisfies the orthomodular law, i.e. for all $a, b \in L$, if $a \leqq b$ and $a^{\prime} \wedge b=0$ then $a=b$.

Orthomodular lattices are generalizations of Boolean algebras. This fact is precisely described by the following result

Lemma 2 [5]. For an orthomodular ordered set P the following conditions are equivalent:
(i) P is a Boolean algebra
(ii) $P=Z$
(iii) P is a lattice and $x \wedge y=0$ implies $x \leqq y^{\prime}$.

A (0, 1)-lattice homomorphism h from an orthomodular lattice L_{1} to another L_{2} is said to be an ortho-homomorphism if $h\left(a^{\prime}\right)=(h(a))^{\prime}$ for all $a \in L_{1}$.

A closure space (X, C) is a non-empty set X and a mapping $C: P(X) \rightarrow P(X)$ satisfying the following conditions, for all $A, B \in P(X): \mathrm{C} 0) C \emptyset=\emptyset, \mathrm{C} 1) ~ A \subseteq C A$, C2) $A \subseteq B$ implies $C A \subseteq C B, \mathrm{C} 3) C C A=C A$. A subset A is closed if $C A=\bar{A}$ and A is open if $-A$ is closed. The mapping $I: P(X) \rightarrow P(X)$ defined by $I=-C-$ satisfies the properties dual of those of C above, and A is open if $I A=A$. Let $\mathrm{CO}(X, C)$ be the family of all subsets A of X which are both closed and open. If C also satisfies C4) $C(A \cup B)=C A \cup C B$ the closure operator C is said to be additive and (X, C) is a topological space.

A non-empty subset F of P is increasing if $a \in F$ and $a \leqq b$ imply $b \in F$.
A Z-filter in P is a non-empty subset F of P such that [5, p. 255]
F1) F is increasing
F2) if $a, b \in F \cap Z$ then $a \wedge b \in F$.
In particular $[a)=\{b \in L: a \leqq b\}$ is a Z-filter. A Z-filter F is said to be proper if $a \in F$ implies $a^{\prime} \notin F$. If $a \neq 0$ the Z-filter (a) is proper. The kernel of an orthohomomorphism is a proper Z-filter. If F is a proper Z-filter in an orthomodular ordered set P then $F \cap Z$ is a proper filter in Z, as a consequence of the definition.

If A is a subset of an orthomodular ordered set P we note $\langle A\rangle=\{x \in P$: there is $a \in A$ such that $a \leqq x\} .\langle A\rangle$ is the increasing set generated by A.

Lemma 3. Let $\left\{F_{i}\right\}_{i \in I}$ be a family of Z-filters in an orthomodular ordered set P. Then the Z-filter generated by $\left\{F_{i}\right\}_{i \in I}$ denoted $\left(\overline{F_{i}}\right)_{i \in I}$ is equal to $\bigcup_{i} F_{i} \cup\left\langle\bigvee_{i}\left(F_{i} \cap Z\right)\right\rangle$, where $\bigvee_{i}\left(F_{i} \cap Z\right)$ is the filter in Z generated by the family $\left\{F_{i} \cap Z\right\}_{i \in I}$ of filters in Z.

Proof. Let $G=\bigcup_{i} F_{i} \cup\left\langle\bigvee_{i}\left(F_{i} \cap Z\right)\right\rangle$. We have $F_{i} \subseteq G$, for all i. Suppose $x \in\left\langle\bigvee_{i}\left(F_{i} \cap Z\right)\right\rangle$, so that there exists $a \in \bigvee_{i}\left(F_{i} \cap Z\right)$ such that $a \leqq x$. As $a \in \bigvee_{i}\left(F_{i} \cap Z\right)$ then there are $\frac{f_{i_{1}}}{i} \in F_{i_{1}} \cap Z, \ldots, F_{i_{n}} \in F_{i_{n}}^{i} \cap Z$ such that $f_{i_{1}} \wedge f_{i_{2}} \wedge \ldots \wedge f_{i_{n}} \leqq a^{i} \leqq x$. But $f_{i_{1}} \wedge f_{i_{2}} \wedge \ldots \wedge f_{i_{n}} \in\left(\bar{F}_{i}\right)_{i \in I}$ so $x \in\left(\bar{F}_{i}\right)_{i \in I}$. It remains to show that G is a Z-filter. The condition F1) is clearly satisfied. Suppose $a, b \in G \cap Z=\bigvee_{i}\left(F_{i} \cap Z\right)$. Then there are $f_{i_{1}} \in F_{i_{1}} \cap Z, \ldots, f_{i_{n}} \in F_{i_{n}} \cap Z$, and $f_{j_{1}} \in F_{j_{1}} \cap Z, \ldots, f_{j_{m}} \in F_{j_{m}}^{i} \cap Z$ such that $f_{i_{1}} \wedge \ldots$
$\ldots \wedge f_{i_{n}} \leqq a$ and $f_{j_{1}} \wedge \ldots \wedge f_{j_{m}} \leqq b, \quad$ so that $f_{i_{1}} \wedge \ldots \wedge f_{i_{n}} \wedge f_{j_{1}} \wedge \ldots \wedge f_{j_{m}} \leqq a \wedge b$. This yields $a \wedge b \in \bigvee_{i}\left(F_{i} \cap Z\right) \subseteq G$. Thus the lemma is proved.

A Z-filter F is a Z-ultrafilter if it is proper and if it is contained in no other proper Z-filter. By Zorn's lemma every proper Z-filter in an orthomodular ordered set P is contained in a Z-ultrafilter. If M is a Z-ultrafilter in P then $M \cap Z$ is an ultrafilter in Z.

A useful characterization of Z-ultrafilters is the following
Lemma 4 [5, p. 256]. For a proper Z-filter F in an orthomodular ordered set P the following conditions are equivalent:
(i) F is a Z-ultrafilter
(ii) for every $a \in P, a \notin F$ implies $a^{\prime} \in F$.

We end the present section by recalling the following statement
Lemma 5 [5, p. 257]. The family of all Z-ultrafilters in an orthomodular ordered set P is a separating family.

3. Representation theory

Let L be a non-trivial orthomodular lattice. We now outline the construction of a representation of L by sets.

Theorem 1. Every orthomodular lattice L can be ortho-embedded in an orthomodular lattice of sets.

Proof. Let X be the family of all Z-ultrafilters in the orthomodular lattice L. We define the map $u: L \rightarrow P(X)$ in the following way: $a \mapsto u(a)=\{M \in X: a \in M\}$. The map u is an order isomorphism of L onto $\mathscr{P}=\{u(a): a \in L\}$ such that $u\left(a^{\prime}\right)=$ $=-u(a)$ [5, p. 257]. In particular $u(0)=\emptyset$ and $u(1)=X$. Hence u is an orthoisomorphism of L onto $\mathscr{P}=\{u(a): a \in L\}$. Nevertheless \mathscr{P} is not, in general, a sublattice of $P(X)$.

In order to characterize the orthomodular lattice $\mathscr{P}=\{u(a): a \in L\}$ we are going to supply X with a closure operator C.

Following [3] we define for any $A \subseteq X$ the set $C A=\cap\{u(a): A \subseteq u(a)\}$. The map $C: P(X) \rightarrow P(X)$ satisfies the axioms C 0$)-\mathrm{C} 3)$ above and the system (X, C) is a closure space. We claim that $\mathscr{P} \subseteq \operatorname{CO}(X, C)$. In fact suppose $u(a) \in \mathscr{P}$ so $C u(a)=u(a)$. Since $-u(a)=u\left(a^{\prime}\right) \in \mathscr{P}$ we infer that $C-u(a)=-I u(a)=-u(a)$, i.e. $I u(a)=u(a)$. Hence $u(a) \in \operatorname{CO}(X, C)$.

Remark 1. If G is an open set of (X, C) we have $G=-C F=$ $=-\bigcap\{u(a): F \subseteq u(a)\}=\bigcup\left\{u\left(a^{\prime}\right): u\left(a^{\prime}\right) \subseteq G\right\}$, i.e. every open set in (X, C) is a union of subsets of \mathscr{P}.

Remark 2. The family \mathscr{P} in Theorem 1 is an orthomodular lattice of clopen sets. This means that for every $A, B \in \mathscr{P}$ there exist $A \wedge B$ and $A \bigvee B$ which are clopen, i.e. that $I(A \cap B)$ and $C(A \cup B)$ are closed and open sets respectively and $A \wedge B=I(A \cap B), A \vee B=C(A \cup B)$. In addition \mathscr{P} satisfies the orthomodular law, that is, if $A \subseteq B$ and $I(-A \cap B)=\emptyset$ then $A=B$.

Using Lemma 2 we state

Corollary. If L is a Boolean algebra, then Theorem 1 gives the Stone representation.

The following facts are noted for future use.
Lemma 6. If a, b belong to the center Z of an orthomodular lattice L then $u(a \vee b)=$ $=u(a) \cup u(b), u(a \wedge b)=u(a) \cap u(b)$ and C is additive on $\{u(a): a \in Z\}$.

Lemma 7. Let L be an orthomodular lattice, and (X, C) the associated representation closure space as above. The family $C(X, C)$ of all closed sets in (X, C) satisfies the following property:
K) If $\left\{C_{i}\right\}_{1} \in \boldsymbol{I}$ is a family of closed sets in (X, C) with $\bigcap_{i} C_{i}=\emptyset$ then there exist $i_{1}, \ldots, i_{n} \in I$ such that $C_{i_{1}} \cap \ldots \cap C_{i_{n}}=\emptyset$.
Proof. Since each closed set $C_{\boldsymbol{i}}$ is a meet of subsets of \mathscr{P} it is enough to show that if $\bigcap_{i} u\left(a_{i}\right)=\emptyset$ then there exist $a_{i_{1}}, \ldots, a_{i_{n}}$ such that $u\left(a_{i_{1}}\right) \cap \ldots \cap u\left(a_{i_{n}}\right)=\emptyset$. Assume $\bigcap_{i}^{i} u\left(a_{i}\right)=\emptyset$. This means that there is no $M \in X$ such that $M \in u\left(a_{i}\right)$, for all $i \in I$, i.e. such that $\left[a_{i}\right) \subseteq M$, for all $i \in I$. Hence the Z-filter $\overline{\left(\left[a_{i}\right)\right)}$ is not proper. By Lemma 3 this means that there exists x such that

$$
x, x^{\prime} \in \bigcup_{i}\left[a_{i}\right) \cup\left\langle\bigvee_{i}\left(\left[a_{i}\right) \cap Z\right)\right\rangle .
$$

Case 1. If $x, x^{\prime} \in \bigcup_{i}\left[a_{i}\right)$ then there are a_{i}, a_{j} with $a_{i} \leqq x$ and $a_{j} \leqq x^{\prime} \leqq a_{i}^{\prime}$. We obtain $u\left(a_{i}\right) \cap u\left(a_{j}\right) \subseteq u\left(a_{i}\right) \cap u\left(a_{i}^{\prime}\right)=u\left(a_{i}\right) \cap-u\left(a_{i}\right)=\emptyset$ and the result follows.

Case 2. If $x, x^{\prime} \in\left\langle\bigvee_{i}\left(\left[a_{i}\right) \cap Z\right)\right\rangle$ there are $b, c \in \bigvee_{i}\left(\left[a_{i}\right) \cap Z\right)$ such that $b \leqq x$ and $c \leqq x^{\prime}$. Since $b, c \in \bigvee_{i}\left(\left[a_{i}\right) \cap Z\right)$ we infer that there are $b_{i_{1}} \in\left[a_{i_{1}}\right) \cap Z, \ldots, b_{i_{n}} \in\left[a_{i_{n}}\right) \cap Z$ and $c_{j_{1}} \in\left[a_{j_{1}}\right) \cap Z, \ldots, c_{j_{m}} \in\left[a_{j_{m}}\right) \cap Z$ with $b_{i_{1}} \wedge \ldots \wedge b_{i_{n}} \leqq b \leqq x$ and $c_{j_{1}} \wedge \ldots \wedge c_{j_{m}} \leqq c \leqq$ $\leqq x^{\prime} \leqq b^{\prime}$. This yields $u\left(a_{i_{1}}\right) \cap \ldots \cap u\left(a_{i_{n}}\right) \cap u\left(a_{j_{1}}\right) \cap \ldots \cap u\left(a_{j_{m}}\right) \subseteq u\left(b_{i_{1}}\right) \cap \ldots \cap u\left(b_{i_{n}}\right) \cap$ $\cap u\left(c_{j_{1}}\right) \cap \ldots \cap u\left(c_{j_{m}}\right)=u\left(b_{i_{1}} \wedge \ldots \wedge b_{i_{n}} \wedge c_{j_{1}} \wedge \ldots \wedge c_{j_{m}}\right) \subseteq u\left(b \wedge b^{\prime}\right)=u(0)=\emptyset$ which was to be proved.

Case 3. Assume $x \in \bigcup_{i}\left[a_{i}\right)$ and $x^{\prime} \in\left\langle\bigvee_{i}\left(\left[a_{i}\right) \cap Z\right)\right\rangle$. There are $a_{i_{0}} \in\left\{a_{i}\right\}$ and $b_{i_{1}} \in\left[a_{i_{1}}\right) \cap Z, \ldots, b_{i_{n}} \in\left[a_{i_{n}}\right) \cap Z$ such that $a_{i_{0}} \leqq x$ and $b_{i_{1}} \wedge \ldots \wedge b_{i_{n}} \leqq x^{\prime}$. Thus $u\left(a_{i_{0}}\right) \subseteq$ $\subseteq u(x)$ and $u\left(a_{i_{1}}\right) \cap \ldots \cap u\left(a_{i_{n}}\right) \subseteq u\left(b_{i_{1}} \wedge \ldots \wedge b_{i_{n}}\right) \subseteq u\left(x^{\prime}\right) \subseteq u\left(a_{i_{0}}^{\prime}\right)$. We obtain $u\left(a_{i_{0}}\right) \cap$ $\cap u\left(a_{i_{1}}\right) \cap \ldots \cap u\left(a_{i_{n}}\right) \subseteq u\left(a_{i_{0}}\right) \cap u\left(a_{i_{0}}^{\prime}\right)=\emptyset$. This completes the proof.

Lemma 8. Let L be an orthomodular lattice and $u: L \rightarrow \mathrm{CO}(X, C)$ the embedding considered in Theorem 1. Every clopen set A in (X, C) is a finite meet (\wedge) of members of $\mathscr{P}=\{u(a): a \in L\}$ i.e. A belongs to \mathscr{P}.

Proof. Suppose $A \in \mathrm{CO}(X, C)$. Because A is closed, $A=\bigcap_{i} A_{i}$ with $A_{1}=$ $=u\left(a_{i}\right)$. By assumption A is also open so $A=\bigcup_{j} B_{j}, B_{j}=u\left(b_{j}\right)$, by Remark 1 . Hence $\emptyset=A \cap-A=\bigcap_{i} A_{i} \cap \bigcap_{j}-B_{j} . \quad$ By Lemma 7 there are $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}$
such that $A_{i_{1}} \cap \ldots \cap A_{i_{n}} \cap-\left(B_{j_{1}} \cup \ldots \cup B_{j_{m}}\right)=\emptyset$ so $A_{i_{1}} \cap \ldots \cap A_{i_{n}} \subseteq B_{j_{1}} \cup \ldots \cup B_{j_{m}} \subseteq A \subseteq$ $\subseteq A_{i_{1}} \cap \ldots \cap A_{i_{n}}$. We infer $A=A_{i_{1}} \cap \ldots \cap A_{i_{n}}$. Thus $A=I A=I\left(u\left(a_{i_{1}}\right) \cap \ldots \cap u\left(a_{i_{n}}\right)\right)=$ $=u\left(a_{i_{1}}\right) \wedge \ldots \wedge u\left(a_{i_{n}}\right) \in \mathscr{P}$ by Remark 2. This completes the proof.

Lemma 9. Let L be an orthomodular lattice and (X, C) the closure space as above. The family $\mathrm{CO}(X, C)$ of all clopen sets in (X, C) satisfies the following property:
P) If $\left\{A_{i}\right\}_{1 \leqq i \leqq n}$ is a family of clopen sets and $A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\emptyset$ then one of the following conditions holds:
(i) there are $1 \leqq i, j \leqq n$ such that $A_{i} \cap A_{j}=\emptyset$,
(ii) there are $1 \leqq i_{0} \leqq n$ and $B_{i_{1}}, \ldots, B_{i_{p}} \in Z(\mathrm{CO}(X, C))$ such that $A_{i_{1}} \subseteq B_{i_{1}}, \ldots$, $A_{i_{p}} \subseteq B_{i_{p}}$ and $A_{i_{0}} \cap B_{i_{1}} \cap \ldots \cap B_{i_{p}}=\emptyset$.
Proof. Assume $u\left(a_{1}\right) \cap \ldots \cap u\left(a_{n}\right)=\emptyset$. This implies that there is no $M \in X$ such that $M \in u\left(a_{i}\right)$ for $1 \leqq i \leqq n$, i.e. such that $\left[a_{i}\right) \leqq M$ for all $1 \leqq i \leqq n$. Hence the Z-filter $\overline{\left(\left[a_{1}\right), \ldots,\left[a_{n}\right)\right)}$ is not proper. This means that there exists x such that $x, x^{\prime} \in \overline{\left(\left[a_{1}\right), \ldots,\left[a_{n}\right)\right)}=\bigcup_{i=1}^{n}\left[a_{i}\right) \cup\left\langle\bigvee_{i=1}^{n}\left(\left[a_{i}\right) \cap Z\right)\right\rangle$. It is straightforward to complete the proof.

The results above suggest the following definitions. An abstract closure space $S=(X, C)$ is said to be compact if the family $C(X, C)$ of all closed sets in (X, C) satisfies the property K) in Lemma 7. S is a Hausdorff closure space if for any $x, y \in X, x \neq y$, there exist open sets A, B such that $x \in A, y \in B$ and $A \cap B=\emptyset$.

Let $S=(X, C)$ be a closure space. A family $\mathscr{B} \subseteq P(X)$ is called a base for C if each closed set of (X, C) is the intersection of members of \mathscr{B}.

If L is an orthomodular lattice, the closure space $S(L)=(X, C)$ is called the dual closure space. Let $L(S(L))$ be its base, ordered by inclusion.

An abstract closure space $S=(X, C)$ is called an orthomodular closure space if 1) S is a compact Hausdorff closure space, 2) the family $L(S)$ of all clopen subsets of S, ordered by inclusion, is an orthomodular lattice and C is additive on the center $Z(L(S))$, 3) the family $L(S)$ is a base satisfying property P) (in Lemma 9).

If S is an orthomodular closure space, the operations on $L(S)$ are given by the equalities $A \wedge B=I(A \cap B), A \vee B=C(A \cup B)$ and $-A$ is the complement of A. $L(S)$ is called the dual orthomodular lattice of $S(L)$.

Summing up the results above and in view of these definitions we can formulate

Theorem 2. If L is an orthomodular lattice, $S(L)$ is an orthomodular closure space and the map $a \mapsto u(a)$ is an orthoisomorphism between L and the dual orthomodular lattice $L(S(L))$ of its dual closure space $S(L)$.

4. Duality theory

If S_{1} and S_{2} are orthomodular closure spaces a map $f: S_{1} \rightarrow S_{2}$ is called C-continuous if the inverse image of each set in $L\left(S_{2}\right)$ is in $L\left(S_{1}\right)$. A bijection $f: S_{1} \rightarrow S_{2}$ is said to be a closure isomorphism if f and f^{-1} are C-continuous.

The next theorem gives a characterization of the representation closure space of an orthomodular lattice.

Theorem 3. If S is an orthomodular closure space then $L(S)$ is an orthomodular lattice and S is closure isomorphic to $S(L(S))$.

Proof. Let $S(L(S))$ be the dual space of the orthomodular lattice $L(S)$. For each $x \in X$ define $\Phi(x)=\{A \in L(S): x \in A\}$. Clearly $\Phi(x)$ is an increasing subset of $L(S)$. Let $A, B \in \Phi(x) \cap Z(L(S))$ so $x \in A \cap B=A \wedge B$ by the additivity of C on the center; hence $\Phi(x)$ is a Z-filter in $L(S) . \Phi(x)$ is maximal since $A \notin \Phi(x)$ implies $x \notin A$, with $A \in L(S)$, that is $x \in-A$ and $-A \in L(S)$; hence $-A \in \Phi(x)$ and $\Phi: S \rightarrow S(L(S))$. To show Φ is onto let $M_{0}=\left\{A_{i}\right\}_{i \in I}$ be a Z-ultrafilter in $L(S)$ and consider $\bigcap_{A_{i} \in M_{0}} A_{i}$. We have $\bigcap_{i} A_{i} \neq \emptyset$; otherwise by compactness there are $i_{1}, \ldots, i_{n} \in I$ such that $A_{i_{1}} \cap \ldots \cap A_{i_{n}}=\emptyset$. To avoid a cumbersome notation we write $A_{1} \cap \ldots \cap A_{n}=\emptyset$. By hypothesis $L(S)$ satisfies property P). If there are $1 \leqq p, q \leqq n$ such that $A_{p} \cap A_{q}=\emptyset$ we infer $A_{p} \leqq-A_{q}$. Hence $-A_{q} \in M_{0}$ and M_{0} is not proper, a contradiction. Suppose there are $A_{k_{0}}$ and $B_{k_{1}}, \ldots, B_{k_{r}} \in Z(L(S))$ such that $A_{k_{1}} \subseteq B_{k_{1}}, \ldots, A_{k_{r}} \subseteq B_{k_{r}}$ with $A_{k_{0}} \cap B_{k_{1}} \cap \ldots \cap B_{k_{r}}=\emptyset$, i.e. $A_{k_{0}} \subseteq-B_{k_{1}} \cup \ldots$ $\ldots \cup-B_{k_{r}} \in M_{0}$. But M_{0} is an ultrafilter in $Z(L(S))$ so there is k_{s}, with $1 \leqq s \leqq r$, such that $-B_{k_{s}} \in M_{0}$ and M_{0} is not proper, an impossibility. These contradictions imply that there is $x \in \bigcap_{i} A_{i}$ so $A_{i} \in \Phi(x)$ for all i and $M_{0} \subseteq \Phi(x)$. By maximality $M_{0}=\Phi(x) . \Phi$ is one to one because S is a Hausdorff closure space and $L(S)$ is a base for C. Finally let $u: L(S) \rightarrow S(L(S))$ be as in Theorem 1. Suppose $A \in L(S)$. Then $x \in A$ means that $A \in \Phi(x)$. Since $\Phi(x)$ is a Z-ultrafilter this is equivalent to $\Phi(x) \in u(A)$. Thus $\Phi(A)=u(A)$. This implies that Φ and Φ^{-1} are C-continuous. This completes the proof.

The point of the present approach is exhibited by the following result.
Corollary. If L is a Boolean algebra, $S(L)$ becomes the Stone space of L.
Final remark. In Section 3 we may take the family $\mathscr{P}=\{u(a): a \in L\}$ as a subbase for a topology τ on X. But the topological space (X, τ) obtained in this way does not characterize, in general, the orthomodular lattice L, i.e. there exist non-ortho-isomorphic orthomodular lattices which provide the same topological space. For instance let $M O 2=\left\{0, a, b, a^{\prime}, b^{\prime}, 1\right\}$ be the orthomodular lattice with four atoms and B the Boolean algebra with four atoms. They are not ortho-isomorphic because they do not have the same number of elements. In both cases X contains four points and the associated topology τ is the discrete one. We conclude that the topological spaces are homeomorphic while the orthomodular lattices are not ortho-isomorphic.

References

[1] P. D. Finch, On orthomodular posets, J. Austral. Math. Soc., 11 (1970), 57-62.
[2] L. Iturrioz, A topological representation theory for orthomodular lattices, Proceedings of the Colloquium on Lattice Theory held in Szeged, Hungary, 1980. Colloquia Mathematica Societatis János Bolyai, 33, North-Holland Publ. (1983), 503-524.
[3] L. Iturrioz, A simple proof of a characterization of complete orthocomplemented lattices, Bulletin of the London Math. Soc., 14 (1982), 542-544.
[4] G. Kalmbach, Orthomodular lattices, Academic Press (1983).
[5] N. Zierler and M. Schlessinger, Boolean embeddings of orthomodular sets and Quantum Logic, Duke Mathematical Journal, 32 (1965), 251-262. (Reprinted in The Logicoalgebraic Approach to Quantum Mechanics, vol. I, pp. 247-262, edited by C. A. Hooker, 1975, D. Reidel Publ. Co.).
(Received December 9, 1983)

DÉPARTMENT DE MATHÉMATIQUES
UNIVERSITE CLAUDE-BERNARD, LYON I
69 € 22 VILLEURBANNE CEDEX
FRANCE

AN INDIVIDUAL ERGODIC THEOREM FOR SUPERADDITIVE PROCESSES

R. SATO (Okayama)

1. Introduction

Let T be an invertible positive operator on L_{1} of a σ-finite measure space. Under certain norm conditions on T^{n}, we shall prove an individual ergodic theorem for superadditive processes with respect to T.

2. The theorem

Let (X, \mathscr{F}, μ) be a σ-finite measure space and T a positive linear operator on $L_{\mathbf{1}}(\mu)=L_{1}(X, \mathscr{F}, \mu)$. A superadditive process (with respect to T) is a sequence $\left\{F_{n}\right\}_{n} \geqq 1$ of functions in $L_{1}(\mu)$ such that $F_{n+k} \geqq F_{n}+T^{n} F_{k}$ for all $n, k \geqq 1$. Applying Ito's theorem [6] and Akcoglu-Sucheston's theorem [2], which is a generalization of Kingman's deep theorem [8], it may be readily seen that if T is a Markovian (i.e. $\int T f d \mu=\int f d \mu$ for all $\left.f \in L_{1}(\mu)\right)$ and satisfies the L_{1}-mean ergodic theorem, then for any superadditive process $\left\{F_{n}\right\}_{n \geqq 1}$, with

$$
\sup _{n} \frac{1}{n} \int F_{n} d \mu<\infty,
$$

the pointwise limit $\lim _{n} \frac{1}{n} F_{n}$ exists a.e. on X. It is well known that this assertion does not necessarily hold if the hypothesis that T satisfies the L_{1}-mean ergodic theorem is not assumed (see e.g. [3]). On the other hand, by a theorem of Akcoglu-Chacon [1], the hypothesis may be replaced by $\|T\|_{p} \leqq 1$ for some $1<p \leqq \infty$, where $\|T\|_{p}=\|T\|_{L_{p}(\mu)}$ denotes the operator norm of T as an operator on $L_{p}(\mu)$. In this note, however, we do not assume T Markovian, nor $\|T\|_{p} \leqq 1$ for some $1<p \leqq \infty$. Instead of these conditions we assume T invertible and power bounded as an operator on $L_{1}(\mu)$ and $L_{p}(\mu)$, respectively. The theorem which we are going to prove is as follows.

Theorem. Let T be an invertible positive operator on $L_{1}(\mu)$, where μ is a σ-finite measure, such that

$$
\begin{equation*}
\sup _{-\infty<n<\infty}\left\|T^{n}\right\|_{1}=K_{1}<\infty, \tag{1}
\end{equation*}
$$

and also such that for some $1<p \leqq \infty$

$$
\begin{equation*}
\sup _{-\infty<n<\infty}\left\|T^{n}\right\|_{p}=K_{p}<\infty \tag{2}
\end{equation*}
$$

Let $\left\{F_{n}\right\}_{n \geqq 1}$ be a superadditive process in $L_{1}(\mu)$ such that

$$
\begin{equation*}
\sup _{n \geqq 1} \frac{1}{n} \int F_{n} d \mu=\gamma<\infty . \tag{3}
\end{equation*}
$$

Then $\lim _{n} \frac{1}{n} F_{n}$ exists a.e. on X.
Proof. Let LIM denote a Banach limit (see e.g. [4]), and define

$$
m(A)=\operatorname{LIM}\left(\int T^{n} l_{A} d \mu\right) \text { for } A \in \mathscr{F} \quad \text { with } \mu(A)<\infty
$$

where l_{A} denotes the indicator function of A. When $\mu(A)=\infty$, choosing a sequence $\left\{A_{i}\right\}_{i \geqq 1}$ of sets in \mathscr{F} so that $\mu\left(A_{i}\right)<\infty, A_{i} \subset A_{i+1}$ and $\lim _{i} A_{i}=A$, we define $m(A)=$ $=\lim _{i} m\left(A_{i}\right)$. It is then easily checked that m is a σ-finite measure on \mathscr{F} satisfying

$$
\frac{1}{K_{1}} \mu \leqq m \leqq K_{1} \mu .
$$

To see that T is a Markovian operator on $L_{1}(m)$, let $\mu(A)<\infty$ and $\varepsilon>0$. Take a simple function $h=\sum_{i=1}^{k} a_{i} l_{E_{i}}$ with $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$, so that $T l_{A} \geqq h$ and $\int\left(T l_{A}-h\right) d \mu<\varepsilon$. Then we obtain

$$
\begin{gathered}
m(A)=\operatorname{LIM}\left(\int T^{n} l_{A} d \mu\right)=\operatorname{LIM}\left(\int T^{n+1} l_{A} d \mu\right) \geqq \\
\geqq \operatorname{LIM}\left(\int T^{n} h d \mu\right)=\int h d m \geqq \operatorname{LIM}\left(\int T^{n+1} l_{A} d \mu-K_{1} \varepsilon\right)=m(A)-K_{1} \varepsilon .
\end{gathered}
$$

Since $\varepsilon>0$ is arbitrary, this proves that $m(A)=\int T l_{A} d m$. By an approximation argument, T is a Markovian operator on $L_{1}(m)$.

Next, let us fix an r with $1<r<p$. We shall consider T as an operator on $L_{r}(m)$. First, by the Riesz convexity theorem, T may be regarded as an operator on $L_{r}(\mu)$ satisfying

$$
\sup _{-\infty<n<\infty}\left\|T^{n}\right\|_{L_{r}(\mu)}=K_{r}<\infty
$$

Then we have

$$
\frac{1}{K_{1}} \int|f|^{r} d \mu \leqq \int|f|^{r} d m \leqq K_{1} \int|f|^{r} d \mu
$$

for any function f on X, and thus

$$
\sup _{-\infty<n<\infty}\left\|\boldsymbol{T}^{n}\right\|_{\boldsymbol{L}_{r}(m)} \leqq K_{1}^{2 / r} K_{r}
$$

Hence, by [11] (see also Remarks 3.1 in [7]), if we set

$$
f^{*}(x)=\sup _{n \geqq 1} \frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i} f(x)\right| \text { for } f \in L_{r}(m)
$$

then $f^{*} \in L_{r}(m)$. This together with standard arguments (see e.g. the proof of Corollary in [5]), shows that for any $f \in L_{r}(m)\left(=L_{r}(\mu)\right)$ the pointwise limit $\lim _{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f$ exists a.e. on X.

Lastly, to complete the proof, take any $0<f \in L_{1}(m) \cap L_{r}(m)$. Since

$$
\frac{1}{n} F_{n}=\left(\frac{1}{n} \sum_{i=0}^{n-1} T^{i} f\right) \frac{F_{n}}{\sum_{i=0}^{n-1} T^{i} f} \quad \text { on } X
$$

it is enough to show the almost everywhere convergence of $F_{n} /\left(\sum_{i=0}^{n-1} T^{i} f\right)$. Here we may assume without loss of generality that $F_{n} \geqq 0$ for all $n \geqq 1$ (see e.g. Introduction in [2]). Then we have $\sup _{n \geqq 1} \frac{1}{n} \int F_{n} d m \leqq K_{1} \gamma<\infty$, and hence by AkcogluSucheston's ratio ergodic theorem [2] for superadditive processes, the almost everywhere convergence of $F_{n} /\left(\sum_{i=0}^{n-1} T^{i} f\right)$ follows. The proof is complete.

Remark. The theorem holds even if the norm condition (2) is replaced by the following:

$$
\begin{equation*}
\sup _{n \succeq 1}\left\|\frac{1}{n} \sum_{i=0}^{n-1} T^{i}\right\|_{\infty}<\infty . \tag{4}
\end{equation*}
$$

In fact, it is known (see e.g. [9], p. 420) that if a positive operator T satisfies $\|T\|_{1} \leqq 1$ and (4), then for any $f \in L_{p}$, with $1 \leqq p<\infty$, the almost everywhere convergence of the average $\frac{1}{n} \sum_{i=0}^{n-1} T^{i} f$ follows. Using this result and the above argument, the remark may be readily checked. It should be noted here that this generalizes the corollary in [10], where T was assumed to be an operator on $L_{1}(\mu)$, with μ finite.

References

[1] M. A. Akcoglu and R. V. Chacon, A convexity theorem for positive operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1965), 328-332.
[2] M. A. Akcoglu and L. Sucheston, A ratio ergodic theorem for superadditive processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 44 (1978), 269-278.
[3] R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc., 15 (1964), 560564.
[4] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience (New York, 1958).
[5] A. Ionescu Tulcea, Ergodic properties of isometries in L^{p} space, $1<p<\infty$, Bull. Amer. Math. Soc., 70 (1964), 366-371.
[6] Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc., 16 (1965), 222-227.
[7] C. H. Kan, Ergodic properties of Lamperti operators, Canad. J. Math., 30 (1978), 12061214.
[8] J. F. C. Kingman, Subadditive processes. In: Springer Lecture Notes in Math., 539, pp. 167223. Springer (Berlin, 1976).
[9] R. Sato, An Abelian ergodic theorem, Comment. Math. Univ. Carolinae, 18 (1977), 415-422.
[10] R. Sato, On an individual ergodic theorem, Math. J. Okayama Univ., 24 (1982), 153-156.
[11] A. de la Torre, A simple proof of the maximal ergodic theorem, Canad, J. Math., 28 (1976), 1073-1075.
(Received December 20, 1983; revised July 26, 1984)

11

A DIRECT DEFINITION OF DISTRIBUTIVE EXTENSIONS OF PARTIALLY ORDERED ALGEBRAS

A. LENKEHEGYI (Szeged)

It is shown that distributive extensions of partially ordered algebras can be defined without any reference to the Priestley-spaces of the distributive lattices in question. Namely, given a partially ordered algebra

$$
\mathfrak{U}=(A ; F, \leqq)^{*}
$$

and a bounded distributive lattice

$$
\mathfrak{D}=(D ; \wedge, \vee, 0,1)
$$

let $A[D]$, the underlying set of the extension $\mathfrak{A}[\mathfrak{D}]$ consist of all functions $\xi: A \rightarrow D$ satisfying
(1) the range of ξ is finite, i.e. $|\xi(A)|$ is finite;
(2) $\xi(a) \wedge \xi(b)=\bigvee_{c \geqq a, b} \xi(c)$ for all $a, b \in A$;
(3) $\underset{a \in A}{\bigvee}(\xi(a) \backslash \underset{b>a}{\bigvee} \xi(b))=1$ in the Boolean algebra generated by \mathcal{D} (here $x \backslash y$ means $x \wedge y^{\prime}$ and the empty join is 0).
The operations are defined as follows: for any n-ary operational symbol μ from the type of $\mathfrak{A}(n>0)$, for any $\xi_{1}, \ldots, \xi_{n} \in A[D]$ let $\mu\left(\xi_{1}, \ldots, \xi_{n}\right)$ be the map $A \rightarrow D$ for which

$$
\begin{equation*}
\mu\left(\xi_{1}, \ldots, \xi_{n}\right)(a)=\underset{\substack{b_{1}, \ldots, b_{n} \in \boldsymbol{A} \\ \mu\left(b_{1}, \ldots, b_{n}\right) \geqq a}}{\vee}\left(\xi_{1}\left(b_{1}\right) \wedge \ldots \wedge \xi_{n}\left(b_{n}\right)\right) \tag{4}
\end{equation*}
$$

for any $a \in A$. If μ is 0 -ary, and takes the value $d \in A$ in \mathfrak{A}, then let μ assign in $A[D]$ the function $\xi: A \rightarrow D$ carrying d to 1 and the other elements of A to 0 . The partial order in $\mathfrak{A}[\mathfrak{D}]$ is taken componentwise, i.e. $\xi \leqq \eta$ iff $\xi(a) \leqq \eta(a)$ in \mathfrak{D} for every $a \in A$.

The definition contains that of Boolean extensions of algebras as a special case when \mathfrak{D} is Boolean and the order of \mathfrak{H} is trivial (i.e., the equality).

Remark. The idea of working out such a definition is due to A. P. Huhn. The result was announced at the Czechoslovakian Summer School, Kroměříž, 8 September, 1980.

[^2]Motivations. The notion of the extension of a (universal) algebra by a Boolean algebra was introduced in the fifties by A. L. Foster [2] (see also Grätzer [3], Burris [1]). Foster's definition is the following: let

$$
\mathfrak{U}=(A ; F)
$$

be an algebra, $\mathfrak{B}=\left(B, \wedge, \vee,{ }^{\prime}, 0,1\right)$ a Boolean algebra. For the extension $\mathfrak{H}[\mathfrak{B}]=$ $=(A[B] ; F)$ the underlying set $A[D]$ is exactly the set of all mappings $\xi: A \rightarrow B$ with the following properties:

$$
\begin{aligned}
& \left(1_{0}\right)|\xi(A)| \text { is finite; } \\
& \left(2_{0}\right) \xi(a) \wedge \xi(b)=0 \text { if } a, b \in A, a \neq b ; \\
& \left(3_{0}\right) \bigvee_{a \in A} \xi(a)=1 \text { in } \mathfrak{B} .
\end{aligned}
$$

For n-ary $(n>0)$ operations μ from the type of \mathfrak{N},

$$
\left(4_{0}\right) \mu\left(\xi_{1}, \ldots, \xi_{n}\right)(a)=\underset{\substack{b_{1}, \ldots, b_{n} \in A \\ \mu\left(b_{1}, \ldots, b_{n}\right)=a}}{ }\left(\xi_{1}\left(b_{1}\right) \wedge \ldots \wedge \xi_{n}\left(b_{n}\right)\right)
$$

$\left(a \in A, \xi_{1}, \ldots, \xi_{n} \in A[B]\right)$; the 0 -ary operations are defined just as after (4). (Note that Burris denotes this construction by $\mathfrak{M}[\mathfrak{B}]^{*}$ and he means by $\mathfrak{A}[\mathfrak{B}]$ a little bit more general notion: if \mathfrak{B} is complete, then $\left(1_{0}\right)$ is omitted and infinite joins are also allowed in (3_{0}) and (4_{0}).)

There is another possibility for introducing Boolean extensions. Namely, it is well known that every Boolean algebra can be represented as the Boolean algebra of all clopen subsets of its Stone space. The Stone space of a Boolean algebra \mathfrak{B} consists of all dual prime ideals of \mathfrak{B}, and all sets of form $\mathscr{P}_{d}=\{P \mid P$ is a dual prime of \mathfrak{B} and $d \in P\}$ (where $d \in \mathfrak{B}$ is arbitrarily fixed) and the complements of these sets give a subbase (in fact, a base) for the topology (M. H. Stone [7]). Let us denote this space by $\mathscr{S}_{\mathfrak{B}}$: then we can consider all continuous functions $f: \mathscr{S}_{\mathfrak{B}} \rightarrow \mathfrak{Q}$ (with respect to the discrete topology on \mathfrak{H}), they form a subalgebra of the power $\mathfrak{A}^{S_{\mathfrak{B}}}$, and it is isomorphic to $\mathfrak{K}[\mathfrak{B}]$. An isomorphism is given by the correspondence $f \rightarrow \xi_{f}$, where $\xi_{f} \in \mathfrak{U}[\mathfrak{B}]$ having the property

$$
\begin{equation*}
\xi_{f}(a)=f^{-1}(a) \text { for every } a \in A \tag{5}
\end{equation*}
$$

(here for any $d \in B, d$ is identified with \mathscr{P}_{d}, this identification gives the canonical representation isomorphism of \mathfrak{B} with the lattice of all clopen subsets of $\mathscr{S}_{\mathfrak{B}}$ (the latter is called the dual lattice of $\left.\mathscr{S}_{\mathfrak{B}}\right)$).

But bounded distributive lattices have also representation spaces, the so-called Priestley-spaces; these are defined in the same way as in the case of Boolean algebras with the further specification that this space is partially ordered under set inclusion. The canonical representation isomorphism is the same as mentioned at the end of the previous paragraph. (For the details consult H. A. Priestley [4], [5].)

Now, it is clear that the second definition of $\mathfrak{M}[\mathfrak{B}]$ above can be generalized to partially ordered algebras and distributive lattices by considering all continuous monotone mappings from the Priestley-space of \mathfrak{D} into \mathfrak{H} (the latter is endowed with discrete topology). (This idea seems to go back to E. T. Schmidt [6].) Then the
question naturally arises, whether one can construct a definition for distributive extension like that of Boolean extensions listed in $\left(1_{0}\right)$ - $\left(4_{0}\right)$ (i.e., a direct definition, not using representation spaces), so that the correspondence under (5) gives an isomorphism between the two constructions. We shall see that the definition in the abstract fits, even it generalizes the direct definition of Boolean extensions.

The justification of the definition. Let \mathfrak{D} be a bounded distributive (in what follows, 0, 1-distributive) lattice, ($X ; \mathscr{T}, \leqq$) its Priestley-space as defined above (with X being the set of all dual prime ideals of $\mathfrak{D}, \mathscr{T}$ being the topology mentioned and \leqq the set inclusion between elements of $X), \mathfrak{Q}$ an ordered algebra. Let us identify \mathfrak{D} with the lattice of all clopen increasing subsets of ($X ; \mathscr{T}, \leqq$). Given an arbitrary continuous monotone map $f:(X, \mathscr{T}, \leqq) \rightarrow \mathfrak{U}$, we want to construct a function $\xi_{f}: A \rightarrow D$. Of course, its values cannot be determined as the f-inverse images of the one-element sets, because these images are not increasing in general (although they are clopen), and so do not belong to \mathfrak{D}. But we get elements of \mathfrak{D} by taking the f-inverse images of increasing subsets of \mathfrak{A}; and these sets completely determine f, because for any $a \in A, f^{-1}(a)=f^{-1}([a)) \backslash f^{-1}([a) \backslash\{a\})$ (here $[x)=\{y \mid y \geqq x\}$). Furthermore, it is sufficient to know the f-inverse images of all sets of form $[t)$ since for any increasing subset A_{0} of A we have $A_{0}=\bigcup\left\{[b) \mid b \in A_{0}\right\}$. Now consider the sets $f^{-1}([a))$, there are only finitely many of them (even if A is infinite!), because the range of $f, \mathscr{R}(f)$ is finite, being f a continuous map of a compact space into a discrete, and so $f^{-1}([a))=f^{-1}([a) \cap \mathscr{R}(f))$. It is easy to see that

$$
\begin{gather*}
f^{-1}([a)) \cap f^{-1}([b))=\bigcup_{c \geqq a, b} f^{-1}([c)) \text { for every } a, b \in A \text { and } \tag{6}\\
\bigcup_{a \in A}\left(f^{-1}([a)) \backslash \bigcup_{b>a} f^{-1}([b))\right)=X .
\end{gather*}
$$

Note that the Boolean lattice of all clopen subsets of X can be viewed as Boolean algebra generated by \mathfrak{D}, introducing the operations of taking complements and assigning \emptyset and X as 0 and 1, respectively; see Priestley [5]. Define the function ξ_{f} associated with f as the map $A \rightarrow D$ satisfying

$$
\begin{equation*}
\xi_{f}(a)=f^{-1}([a)), \quad a \in A \tag{7}
\end{equation*}
$$

(7) trivially turns into (5), if \mathfrak{G} is trivially ordered and \mathfrak{D} is Boolean (lattice or algebra). With respect to (6), the remark preceding it and (7), we introduce a

Definition. The extension of \mathfrak{H} by \mathfrak{D} is the partially ordered algebra $\mathfrak{A}[\mathfrak{D}]=$ $=(A[D] ; F, \leqq)$ described in the introduction.

Theorem. The definition is correct, and the correspondence $f \mapsto \xi_{f}$ is an isomorphism between the subalgebra of \mathfrak{A} consisting of all continuous monotone maps $f:(X, \mathscr{T}, \leqq) \rightarrow \mathfrak{Q}$ and the $\mathfrak{H}[\mathfrak{D}]$ in our previous direct definition.

Proof. The joins in (2) and (3) as well as in (4) are always finite (because of (1)), so the definition is correct.

Let φ denote the correspondence $f_{\mapsto} \rightarrow \xi_{f}$. First we shall see that φ is onto. For this, let ξ be any function satisfying (1)-(3), and consider the map $f:(X, \mathscr{T}, \leqq) \rightarrow \mathfrak{Q}$ for which

$$
\begin{equation*}
f^{-1}(a)=\xi(a) \backslash \bigcup_{b>a} \xi(b), \quad a \in A . \tag{8}
\end{equation*}
$$

fis well-defined: If $a<b$, then $f^{-1}(a) \subseteq \xi(a) \backslash \xi(b), f^{-1}(b) \subseteq \xi(b)$, so $f^{-1}(a) \cap$ $\cap f^{-1}(b)=\emptyset$. If $a \| b$ and still $x \in f^{-1}(a) \cap f^{-1}(b)$, then we would also have $x \in \xi(a) \cap \xi(b)$, so by (2), for suitable element $c(c \geqq a, b), x \in \xi(c)$. But $c \neq a$ or $c \neq b$, for example, $c>a$, and then $f^{-1}(a) \subseteq \xi(a) \backslash \xi(c)$, a contradiction, because $x \in f^{-1}(a)$. Therefore, in the case of $a \neq b, f^{-1}(a) \cap f^{-1}(b)=\emptyset$ always holds.
f is defined everywhere: By (8) and (3), the sets $f^{-1}(a)$ cover X.
f is continuous: Trivial, since the $\xi(a)$'s are clopen and the union in (8) is finite.
f is monotone: From (8) we see that $\xi(a)=f^{-1}([a))$, and from this the assertion follows easily; we also see that $\xi=\xi_{f}$, proving that φ is onto.

Now let f_{1}, \ldots, f_{n} be $(X, \mathscr{T}, \leqq) \rightarrow \mathfrak{A}$ continuous monotone functions $(n>0)$, μ an n-ary operation, $f=\mu\left(f_{1}, \ldots, f_{n}\right)$. Then by the monotonicity of μ

$$
\begin{gathered}
f^{-1}([a))=\left(\mu\left(f_{1}, \ldots, f_{n}\right)\right)^{-1}([a))=\bigcup_{\mu\left(b_{1}, \ldots, b_{n}\right) \geqq a}^{\bigcup}\left(f_{1}^{-1}\left(b_{1}\right) \cap \ldots \cap f_{n}^{-1}\left(b_{n}\right)\right)= \\
=\bigcup_{\mu\left(b_{1}, \ldots, b_{n}\right) \geqq a}\left(f_{1}^{-1}\left(\left[b_{1}\right)\right) \cap \ldots \cap f_{n}^{-1}\left(\left[b_{n}\right)\right)\right) .
\end{gathered}
$$

This shows that φ preserves operations (the case of 0 -ary operations is left to the reader).

Finally, $f \leqq g$ is equivalent to $f^{-1}([a)) \subseteq g^{-1}([a))$ for every $a \in A$, i.e. $\xi_{f}(a) \leqq$ $\leqq \xi_{g}(a)$, which is $\xi_{f} \leqq \xi_{g}$, and this means that φ is an order-isomorphism, too. The proof is complete.

The remark preceding the definition establishes that we indeed generalize Foster's definition concerning Boolean extensions.

References

[1] S. Burris, Boolean powers, Algebra Universalis, 5 (1975), 341-360.
[2] A. L. Foster, Generalized Boolean theory of universal algebras, Part I, Math. Z., 58 (1953), 306-336; Part II, Math. Z., 59 (1953), 191-199.
[3] G. Grätzer, Universal Algebra, 2nd ed., Springer-Verlag (New York-Berlin, 1979).
[4] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc., 2 (1970), 186-190.
[5] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc., (3) 24 (1972), 507-530.
[6] E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Math. Forschungber. XXV (Berlin, 1969).
[7] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc., 40 (1936), 37-111.
(Received December 27, 1983)

[^3]
AN INEQUALITY FOR THE DIRICHLET DISTRIBUTION

D. MONHOR (Budapest)

1. Introduction and notations

The classical Chebyshev inequality and its generalizations (Bernstein, Kolmogorov, Rényi-Hajek inequalities etc.) are useful tools for proving weak and strong laws of large numbers. There is a considerable literature on this topic. Using different techniques, Berge [1], Lal [3], Marshal [4], Olkin [4], [5] and Pratt [5] investigated the multivariate generalization possibilities of the Chebyshev inequality. All of these inequalities are valid for wide classes of the probability measures, for example, for the class of all probability measures having second moments. However, the bounds for some important multivariate distributions seem to be of interest for the applications, especially, for the optimization problems. In this paper one such bound is given for the Dirichlet distribution. The Dirichlet distribution is defined by the following density:
if

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{\Gamma\left(v_{1}+\ldots+v_{n+1}\right)}{\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \ldots \Gamma\left(v_{n+1}\right)} x_{1}^{v_{1}-1} \ldots x_{n^{n}}^{v_{1}-1}\left(1-x_{1}-\ldots-x_{n}\right)^{v_{n+1}-1}
$$

$$
x \in\left[S_{n}\right]=\left\{x: x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \geqq 0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i} \leqq 1\right\}
$$

and $f\left(x_{1}, \ldots, x_{n}\right)=0$ otherwise. v_{1}, \ldots, v_{n+1} are positive parameters. Following Wilks [7] we use the notation $D\left(x_{1}, \ldots, x_{n} ; v_{1}, \ldots, v_{n} ; v_{n+1}\right)$ for the Dirichlet distribution function, i.e.,

$$
\begin{equation*}
D\left(x_{1}, \ldots, x_{n} ; v_{1}, \ldots, v_{n} ; v_{n+1}\right)= \tag{1}
\end{equation*}
$$

$$
=\frac{\Gamma\left(v_{1}+\ldots+v_{n+1}\right)}{\Gamma\left(v_{1}\right) \Gamma\left(v_{2}\right) \ldots \Gamma\left(v_{n+1}\right)} \int_{\substack{0 \leq y_{i} \leq x_{i}, i=1, \ldots, n \\ \sum_{i=1}^{n} y_{i} \leq 1}} y_{1}^{v_{1}-1} \ldots y_{n^{n}-1}^{v_{i}-1}\left(1-y_{1}-\ldots-y_{n}\right)^{v_{n+1}-1} d y_{1} \ldots d y_{n} .
$$

2. Some auxiliary lemmas

We make the following change of variables in (1):

$$
\begin{equation*}
y_{1}=z_{1}, y_{2}=z_{2}\left(1-z_{1}\right), \ldots, y_{n}=z_{n}\left(1-z_{1}\right) \ldots\left(1-z_{n-1}\right) . \tag{2}
\end{equation*}
$$

Lemma 1. For (2) the following relation holds:

$$
1-y_{1}-\ldots-y_{i}=\left(1-z_{1}\right) \ldots\left(1-z_{i}\right), \quad i=1, \ldots, n .
$$

Proof. When $i=1$ the statement is trivial since $1-y_{1}=1-z_{1}$. Suppose that the lemma is true for $i \leqq k$, and we prove it for $k+1$.

$$
\begin{gathered}
1-y_{1}-\ldots-y_{k+1}=\left(1-z_{1}\right) \ldots\left(1-z_{k}\right)-y_{k+1}= \\
=\left(1-z_{1}\right) \ldots\left(1-z_{k}\right)-z_{k+1}\left(1-z_{1}\right) \ldots\left(1-z_{k}\right)=\left(1-z_{1}\right) \ldots\left(1-z_{k}\right)\left(1-z_{k+1}\right)
\end{gathered}
$$

hence the lemma is proved.
Lemma 2. The change of variables (2) of the integration maps

$$
S_{n}=\left\{y: y=\left(y_{1}, \ldots, y_{n}\right), y_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} y_{i}<1\right\}
$$

onto

$$
I_{n}=\left\{z: z=\left(z_{1}, \ldots, z_{n}\right), 0<z_{i}<1, i=1, \ldots, n\right\} .
$$

Proof. If $\left(y_{1}, \ldots, y_{n}\right) \in S_{n}$, then $y_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} y_{i}<1$. This implies that $0<y_{i}<1, i=1, \ldots, n$. Thus, we have $0<z_{1}<1$ and it is easy to see that $z_{i}>0$, $i=2, \ldots, n$ by induction. We need to prove that $z_{i}<1, i=2, \ldots, n$. Indeed, otherwise there exists $k>1$ such that $z_{i}<1$, for $i<k$, and $z_{k}>1$. This fact implies the existence of such a point $y=\left(y_{1}, \ldots, y_{n}\right)$ for which we have $y_{k}>1$. This is a contradiction to $\left(y_{1}, \ldots, y_{n}\right) \in S_{n}$. Hence, $z_{i}<1, i=1, \ldots, n$. In a similar way it is easy to see that each $z \in I_{n}$ is an image. Hence the lemma is proved.

Lemma 3. The change of variables (2) of integration maps

$$
\left\{y: y=\left(y_{1}, \ldots, y_{n}\right), 0<y_{i}<x_{i}, i=1, \ldots, n, \sum_{i=1}^{n} y_{i}<1\right\}
$$

onto

$$
\begin{aligned}
& \left\{z: z=\left(z_{1}, \ldots, z_{n}\right), 0<z_{1}<x_{1}, 0<z_{i}<\right. \\
& \left.<\min \left\{\frac{x_{i}}{\left(1-z_{1}\right) \ldots\left(1-z_{i-1}\right)}, 1\right\}, i=2, \ldots, n\right\} .
\end{aligned}
$$

This is an immediate consequence of (2).

3. An inequality

Theorem.
(3)

$$
\begin{aligned}
& D\left(x_{1}, \ldots, x_{n} ; v_{1}, \ldots, v_{n} ; v_{n+1}\right)= \\
& =\frac{\Gamma\left(v_{1}+\ldots+v_{n+1}\right)}{\Gamma\left(v_{1}\right) \ldots \Gamma\left(v_{n+1}\right)} \int^{x_{1}} d z_{1} \int^{\min \left(\frac{x_{2}}{1-z_{1}}, 1\right)} d z_{2} \ldots \int_{\min \left(\frac{x_{n}}{\left(1-z_{1}\right) \ldots\left(1-z_{n-1}\right)}, 1\right.}^{\operatorname{m}} \int_{z_{1}^{v_{1}-1} \times} \times\left(1-z_{1}\right)^{v_{2}+\ldots+v_{n+1}-1} z_{2}^{v_{2}-1}\left(1-z_{2}\right)^{v_{3}+\ldots+v_{n+1}-1} \ldots z_{n^{n}}^{v_{n}-1}\left(1-z_{n}\right)^{v_{n+1}-1} d z_{n},
\end{aligned}
$$

(4)

$$
D\left(x_{1}, \ldots, x_{n} ; v_{1}, \ldots, v_{n} ; v_{n+1}\right) \geqq \frac{\Gamma\left(v_{1}+\ldots+v_{n+1}\right)}{\Gamma\left(v_{1}\right) \ldots \Gamma\left(v_{n+1}\right)} \times
$$

$$
\times B\left(x_{1} ; v_{1} ; v_{2}+\ldots+v_{n+1}\right) B\left(x_{2} ; v_{2} ; v_{3}+\ldots+v_{n+1}\right) \ldots B\left(x_{n} ; v_{n} ; v_{n+1}\right)
$$

where $B(x ; \alpha ; \beta)=\int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} d t$.

Proof. $\frac{D\left(y_{1}, \ldots, y_{n}\right)}{D\left(z_{1}, \ldots, z_{n}\right)}=\left(1-z_{1}\right)^{n-1}\left(1-z_{2}\right)^{n-2} \ldots\left(1-z_{n-1}\right)$. Using the previous lemmas the integrand is transformed into the following expression:

$$
\begin{gathered}
y_{1}^{v_{1}-1} \ldots y_{n}^{v_{n}-1}\left(1-y_{1}-\ldots-y_{n}\right)^{v_{n+1}-1} d y_{1} \ldots d y_{n}= \\
=z_{1}^{v_{1}-1}\left[z_{2}\left(1-z_{1}\right)\right]^{v_{2}-1} \ldots\left[z_{n}\left(1-z_{1}\right) \ldots\left(1-z_{n-1}\right)\right]^{v_{n}-1} \times \\
\times\left[\left(1-z_{1}\right) \ldots\left(1-z_{n}\right)\right]^{v_{n+1}-1}\left(1-z_{1}\right)^{n-1} \ldots\left(1-z_{n-1}\right) d z_{1} \ldots d z_{n}= \\
=z_{1}^{v_{1}-1}\left(1-z_{1}\right)^{v_{2}+\ldots+v_{n+1}-1} z_{2}^{v_{2}-1}\left(1-z_{2}\right)^{v_{3}+\ldots+v_{n+1}-1} \ldots z_{n^{n}}^{v_{n}-1}\left(1-z_{n}\right)^{v_{n+1}-1} d z_{1} \ldots d z_{n} .
\end{gathered}
$$

This implies (3). (4) is a consequence of (3) and of the fact that $x_{i} \leqq \frac{x_{i}}{\left(1-z_{1}\right) \ldots\left(1-z_{i-1}\right)}$, for $i=1, \ldots, n$, and $\left(z_{1}, \ldots, z_{n}\right) \in I_{n}$. The theorem is proved.

5. Concluding remarks

The Dirichlet distribution is one of the important multivariate distributions that appear in the applications, especially, in order statistics, probabilistic constrained programming models, delivery problems etc. [6]. The bound is useful, since the gamma and the beta functions are widely tabulated.

References

[1] P. O. Berge, A note on a form of Tchebycheff's theorem for two variables, Biometrika, 29 (1937), 405-406.
[2] G. L. Dirichlet, 'Sur un nouvelle methode pour la determination des integrales multiples, Comp. Rend. Acad. Sci., 8 (1839), 156-160.
[3] D. N. Lal, A note on a form of Tchebyshe T's inequality for two or more variables, Sankhyā, 15 (1955), 317-320.
[4] A. W. Marshall, I. Olkin, Multivariate Chebyshev inequalities, Ann. Math. Statist., 31 (1960), 1001-1014.
[5] I. Olkin, J. W. Pratt, A multivariate Tchebysheff's inequality, Ann. Math. Statist., 29 (1958), 226-234.
[6] A. Prékopa, P. Kelle, Reliability inventory models based on stochastic programming, Studies in applied stochastic programming I, ed. by A. Prékopa, (80), 1978.
[7] S. S. Wilks, Mathematical Statistics, J. Wiley ang Sons, Inc. (New York-London, 1962).
(Received January 9, 1984)
COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
VICTOR HUGO U. 18-22
H-1132 BUDAPEST
HUNGARY

ON THE OPTIMAL LEBESGUE CONSTANTS FOR POLYNOMIAL INTERPOLATION

P. VÉRTESI (Budapest)

1. Introduction

Let $X=\left\{x_{k n}\right\}, k=1,2, \ldots, n ; n=1,2, \ldots$, be any triangular matrix with (1.1) $\quad-1 \equiv x_{n+1, n} \leqq x_{n n}<x_{n-1, n}<\ldots<x_{2 n}<x_{1 n} \leqq x_{0 n} \equiv 1, \quad n=1,2, \ldots$.

As it is well-known, in the study of the Lagrange interpolation the behaviour of the Lebesgue functions

$$
\begin{equation*}
\lambda_{n}(X, x)=\sum_{k=1}^{n}\left|l_{k n}(X, x)\right| \tag{1.2}
\end{equation*}
$$

and the Lebesgue constants

$$
\begin{equation*}
\lambda_{n}(X)=\max _{-1 \leq x \leq 1} \lambda_{n}(X, x) \tag{1.3}
\end{equation*}
$$

is of fundamental importance. In (1.2) and (1.3), sometimes omitting the superfluous notations,

$$
l_{k n}(x)=\omega_{n}(x)\left[\omega_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right]^{-1}, \quad \omega_{n}(x)=c_{n} \prod_{k=1}^{n}\left(x-x_{k}\right) .
$$

In this paper, roughly speaking, we are going to prove the following relation: If $\gamma=0.577215 \ldots$ is the Euler constant and $\chi:=\frac{2}{\pi}\left(\gamma+\ln \frac{4}{\pi}\right)=0.521251 \ldots$, then

$$
\lambda_{n}^{*}:=\min _{X} \lambda_{n}(X)=\frac{2}{\pi} \ln n+\chi+o(1) .
$$

(For the precise formula see (3.5).)

2. Preliminary results

From our point of view, the most important results are as follows (for further references see [12]-[15]).
2.1. In 1914 G. Faber [1], in 1916 S. Bernstein [2] proved that for arbitrary X

$$
\lambda_{n}(X)>\frac{\ln n}{8 \sqrt{\pi}}, \quad n=1,2, \ldots{ }^{1}
$$

[^4]P. Erdős [3] in 1961 obtained that
\[

$$
\begin{equation*}
\frac{2}{\pi} \ln n-c_{1} \leqq \lambda_{n}^{*} \leqq \frac{2}{\pi} \ln n+c_{2} \tag{2.1}
\end{equation*}
$$

\]

(Here and later c, c_{1}, c_{2}, \ldots, const., denote absolute, positive, not necessarily different real numbers.)

In 1981 P. Erdős and P. Vértesi [4] established the Erdős conjecture on the Lebesgue function and proved as follows.

Let $\varepsilon>0$ be any given number. Then for arbitrary matrix X there exist sets H_{n} with $\left|H_{n}\right| \leqq \varepsilon$ and $\eta(\varepsilon)>0$ such that

$$
\lambda_{n}(X, x)>\eta(\varepsilon) \ln n \quad \text { if } \quad x \in[-1,1] \backslash H_{n} \quad \text { and } \quad n \geqq n_{0}(\varepsilon) .
$$

This result was sharpened by P. Vértesi [5] and [6].
2.2. Another conjecture of P. Erdős and S. Bernstein for λ_{n}^{*} was proved by T. A. Kilgore [7] and C. De Boor and A. Pinkus [8] in 1978. To formulate the result, first let us see some observations.

A simple argument shows that for $n \geqq 2, \lambda_{n}(X, x)$ is a piecewise polynomial with $\lambda_{n}(X, x) \geqq 1$ and $\lambda_{n}(X, x)=1$ iff $x=x_{k n}, 1 \leqq k \leqq n$. Between consecutive nodes, $\lambda_{n}(X, x)$ has a single maximum, in $\left(-1, x_{n n}\right)$ and $\left(x_{1 n}, 1\right)$ it is convex and monotone (see e.g. F. W. Luttmann and T. J. Rivlin [9]).

Let us denote the local maxima by

$$
\begin{equation*}
\mu_{k n}(X):=\max _{x_{k n} \leq x \leqq x_{k-1, n}} \lambda_{n}(X, x), \quad k=1,2, \ldots, n+1 ; n \geqq 3 . \tag{2.2}
\end{equation*}
$$

Another simple observation is that to obtain λ_{n}^{*}, "without loss of generality we (can) restrict our attention to those nodal configurations where $-1 \equiv x_{n n}$ and $1 \equiv x_{1 n} "$. (See Kilgore [7, p. 274].) We call these X canonical matrices.

Now the statement is:
Theorem 2.1 ([7], [8]). Let the matrix X be canonical. Then $\lambda_{n}(X, x)$ equioscillates, i.e.,

$$
\begin{equation*}
\mu_{2 n}(X)=\mu_{3 n}(X)=\ldots=\mu_{n n}(X) \tag{2.3}
\end{equation*}
$$

iff $\lambda_{n}(X)=\lambda_{n}^{*}$. Moreover, for arbitrary canonical X

$$
\begin{equation*}
\min _{2 \leqq k \leqq n} \mu_{k n}(X) \leqq \lambda_{n}^{*} \leqq \max _{2 \leqq k \leqq n} \mu_{k n}(X), \quad n \geqq 3 . \tag{2.4}
\end{equation*}
$$

Here, the above (so called) optimal matrix X^{*} (which has (2.3)) is unique.
2.3. Using the analogous result of [8] it turns out that trigonometric interpolation on $[0,2 \pi)$ at equidistant nodes is optimal.

For the corresponding Lebesgue constants $\tilde{\lambda}_{n}^{*}$, the values

$$
\begin{gather*}
\tilde{\lambda}_{2 n}^{*}=\frac{1}{n} \sum_{k=1}^{n} \cot \frac{2 k-1}{4 n} \pi, \quad n=1,2, \ldots \tag{2.5}\\
\tilde{\lambda}_{2 n+1}^{*}=\tilde{\lambda}_{2(2 n+1)}^{*}, \quad n=1,2, \ldots \tag{2.6}
\end{gather*}
$$

were obtained by H. Ehlich and K. Zeller [12, (2.4)].

The complex case, when the nodes are on the unit circle line Γ, was treated by L. Brutman [10] and L. Brutman, A. Pinkus [11]. They proved that again the case of the equidistant nodes (on Γ) is optimal and the corresponding Lebesgue constants $\bar{\lambda}_{n}^{*}$ are:

$$
\begin{equation*}
\bar{\lambda}_{n}^{*}=\bar{\lambda}_{2 n}^{*}, \quad n=1,2, \ldots \tag{2.7}
\end{equation*}
$$

(see $[10,(23)])$.
Very recently P. N. Shivakumar and R. Wong [13] further V. K. Dzjadik and V. V. Ivanov [14] obtained asymptomic expansions for the right side of (2.5). Especially, in [13] the expansion

$$
\begin{equation*}
\tilde{\lambda}_{2 n}^{*} \stackrel{A}{\sim} \frac{2}{\pi} \ln n+\chi+\frac{2}{\pi} \ln 2+\sum_{k=1}^{\infty} \frac{a_{k}}{n^{2 k}}, \quad a_{k}=\frac{(-1)^{k+1}\left(2^{2 k-1}-1\right)^{2} \pi^{2 k-1} B_{2 k}^{2}}{4^{k-1} k(2 k)!} \tag{2.8}
\end{equation*}
$$

was established as $n \rightarrow \infty$ (B_{k} are the Bernoulli numbers). Further, the error has the same sign as, and is in absolute value less than, the first term neglected (compare R. Günttner [18, Theorem 1] and (3.2)). I.e., by (2.5)-(2.8) we see that the problem of the optimal nodes and the corresponding Lebesgue constants is settled considering the trigonometric or the complex interpolation.

3. Asymptotic for λ_{n}^{*}

3.1. If $X \subset[-1,1]$, neither the optimal system, nor λ_{n}^{*} has been known. But there are some estimates for λ_{n}^{*}. The mentioned Erdős theorem (see (2.1)) gives a fairly sharp evaluation, especially if we take into account that he could not use Theorem 2.1 and its very useful relation (2.4) (see further (3.1)).

Let us remark that for arbitrary (not only for canonical) X we have (2.4). Indeed, if $1-x_{1 n}>0$, say, consider the "intermediate" matrix $z_{k n}=x_{k n}-\left(x_{1 n}+x_{n n}\right) / 2$ finally the matrix $X_{c}:=Y=\left\{y_{k n}\right\}$ where $y_{k n}=z_{k n} / z_{1 n}, 1 \leqq k \leqq n ; n=3,4, \ldots$. It is easy to see that Y is canonical, from where (2.4) holds true for Y. Moreover, by construction $\mu_{k n}(X)=\mu_{k n}(Y)$ if $2 \leqq k \leqq n$, which gives the statement.

By the above remark we can write for arbitrary X the relation

$$
\begin{equation*}
\min _{1 \leqq k \leqq n+1} \mu_{k n}(X) \leqq \min _{2 \leqq k \leqq n} \mu_{k n}(X) \leqq \lambda_{n}^{*} \leqq \max _{2 \leqq k \leqq n} \mu_{k n}(X) \leqq \max _{1 \leqq k \leqq n+1} \mu_{k n}(X) \tag{3.1}
\end{equation*}
$$

which can be used to obtain estimates for λ_{n}^{*} applying special matrices X and evaluating the differences

$$
\begin{gathered}
\delta_{n}(X):=\max _{2 \leqq k \leqq n} \mu_{k n}(X)-\min _{2 \leqq k \leqq n} \mu_{k n}(X), \\
\Delta_{n}(X):=\max _{1 \leqq k \leqq n+1} \mu_{k n}(X)-\min _{1 \leqq k \leqq n+1} \mu_{k n}(X) .
\end{gathered}
$$

3.2. Two very natural choices for the special X are the Chebyshev matrix $T=\left\{\cos \frac{2 k-1}{2 n} \pi\right\}, k=1,2, \ldots, n, n=1,2, \ldots \quad$ and the matrix of the Chebyshev extremum nodes $V=\left\{\cos \frac{k \pi}{n-1}\right\}, \quad k=0,1, \ldots, n-1, \quad n=2,3, \ldots$.

Ehlich and Zeller [12] proved that

$$
\begin{gathered}
\lambda_{n}(T)=\lambda_{n+1}(V)=\tilde{\lambda}_{2 n}^{*}, \quad n=1,3,5, \ldots, \\
\lambda_{n}(T)=\lambda_{n+1}(V)+\varrho_{n}=\tilde{\lambda}_{2 n}^{*}, \quad n=2,4,6, \ldots, \quad 0<\varrho_{n}<\frac{1}{n^{2}},
\end{gathered}
$$

from where by (2.8)

$$
\begin{equation*}
\lambda_{n}(T)=\frac{2}{\pi} \ln n+\chi+\frac{2}{\pi} \ln 2+\frac{\pi}{72 n^{2}}-\varepsilon_{n}, \quad n \geqq 1 \tag{3.2}
\end{equation*}
$$

where $0 \leqq \varepsilon_{n}<0.0088 n^{-4}$. Using analogous estimations and (3.1), Dzjadik and Ivanov [14] got the value of λ_{n}^{*} within the error 0.45 .

They had no knowledge of the paper of L. Brutman [15] written in 1978, where using a quite serious analysis of $\lambda_{n}(T, x)$, he proved that

$$
\begin{equation*}
\delta_{n}(T)<0.201 \quad \text { if } \quad n \geqq 3 \tag{3.3}
\end{equation*}
$$

from where by (3.1) we can obtain λ_{n}^{*} within the error 0.201 .
By further analysis R. Günttner [18] obtained that

$$
\begin{equation*}
\delta_{n}(T)=\frac{2}{\pi} \ln 2-\frac{4}{3 \pi}+o(1) \tag{3.4}
\end{equation*}
$$

(for a different proof see 4.4) i.e., the error can be lessened to $0.01686 \ldots$. But we can not obtain a better estimation for λ_{n}^{*} using T.

Further calculations show that for other special matrices $X, \delta_{n}(X)>\delta_{n}(T)$ (see e.g. [9] and [12]).
3.3. The main goal of this paper is to prove

Theorem 3.1. We have the relations

$$
\frac{\text { const }}{(\ln n)^{1 / 3}}>\lambda_{n}^{*}-\frac{2}{\pi} \ln n-\chi>\left\{\begin{array}{lll}
\frac{\pi}{18 n^{2}}+O\left(\frac{1}{n^{4}}\right) & \text { if } n=2 m \tag{3.5}\\
-\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right) & \text { if } & n=2 m+1
\end{array}\right.
$$

4. Proof. Properties of the matrix T

4.1. First we quote and verify some important properties of the matrix T. As it was proved by N. A. Pogodiceva [16] (see further [17, 8.2.5])

$$
\begin{equation*}
\lambda_{n}(T, x)=\frac{2}{\pi}\left|T_{n}(x)\right| \ln n+O(1), \quad-1 \leqq x \leqq 1, \quad n=1,2, \ldots \tag{4.1}
\end{equation*}
$$

uniformly in x and n. Here $T_{n}(x)=\cos n \vartheta, x=\cos \vartheta$, is the n-th Chebyshev polynomial.

Let $\quad I_{k n}=\left[\vartheta_{k-1, n}, \vartheta_{k n}\right], k=1,2, \ldots, n+1, \quad$ where $\quad \vartheta_{k}=\frac{2 k-1}{2 n} \pi, k=1,2, \ldots, n$, $\vartheta_{0}=0, \vartheta_{n+1}=\pi$. Let $t_{k}[\vartheta] \equiv t_{k n}[T, \vartheta]$ be the trigonometric polynomial coinciding
with $\lambda_{n}[\vartheta]-\lambda_{n}[T, \vartheta]:=\lambda_{n}(T, \cos \vartheta)$ on I_{k}. By virtue of the symmetry of the nodes we will examine $t_{k n}[\vartheta]$ only for $1 \leqq k \leqq m+1$ where $m=\left[\frac{n}{2}\right]$. Let $v_{k n}=\cos \xi_{k n}$ where $\xi_{k n}$ are the local maximum places of t_{k} on I_{k}. Then we have
(i) $\tau_{k}:=\frac{k-1}{n} \pi \leqq \xi_{k}, t_{k}$ is a concave function in $\left[\tau_{k}, \xi_{k}\right], 1 \leqq k \leqq m+1, \tau_{1}=$ $=\xi_{1}=0$, further $\tau_{m+1}=\xi_{m+1}=\frac{\pi}{2}$ if n is even.
(ii) $\left\{\begin{array}{l}\lambda_{n}(T)=t_{1}\left[\xi_{1}\right]>t_{2}\left[\xi_{2}\right]>\ldots>t_{m}\left[\xi_{m}\right]>t_{m+1}\left[\xi_{m+1}\right], \\ \lambda_{n}(T)=t_{1}\left[\tau_{1}\right]>t_{2}\left[\tau_{2}\right]>\ldots>t_{m}\left[\tau_{m}\right]>t_{m+1}\left[\tau_{m+1}\right] .\end{array}\right.$

Further

$$
\begin{gather*}
t_{k}\left[\tau_{k}\right]-t_{k+1}\left[\tau_{k+1}\right]=\lambda_{n}\left[\tau_{k}\right]-\lambda_{n}\left[\tau_{k+1}\right]= \tag{4.2}\\
=\frac{\cos \vartheta_{k}\left(1-\cos \vartheta_{1}\right)}{n \sin \vartheta_{k} \sin \frac{\vartheta_{2 k}}{2} \sin \frac{\vartheta_{2 k-1}}{2}}=\frac{4}{\pi} \frac{1+O\left(\frac{k^{2}}{n^{2}}\right)}{(4 k-1)(4 k-3)(2 k-1)}, \quad 1 \leqq k \leqq m
\end{gather*}
$$

if n is big enough which henceforward will be supposed.
(iii) $t_{1}^{\prime}\left[\tau_{1}\right]=0$, further

$$
\begin{equation*}
\frac{8 n}{9 \pi^{2}}\left[1+O\left(\frac{1}{n^{2}}\right)\right]=t_{2}^{\prime}\left[\tau_{2}\right]>t_{3}^{\prime}\left[\tau_{3}\right]>\ldots>t_{m+1}^{\prime}\left[\tau_{m+1}\right] \geqq 0 \tag{4.3}
\end{equation*}
$$

(see Brutman [15, Theorem 1 and Lemma 1, further (13), (15) and (17)]); in (4.2) and (4.3) we used

$$
\left\{\begin{array}{l}
\sin x=x-\eta_{1} x^{3}=x\left(1-\eta_{1} x^{2}\right), \quad 0<\eta_{1}<\frac{1}{6} \tag{4.4}\\
\cos x=1-\eta_{2} x^{2}, \quad 0<\eta_{2}<\frac{1}{2}
\end{array}\right.
$$

They will be applied later, too.
4.2. First we prove the right hand side of (3.5). If $n=2 m$, by (ii) and (3.1) $\lambda_{n}^{*} \geqq \lambda_{n}\left[\frac{\pi}{2}\right]$. But by $[15(24)], \quad \lambda_{n}\left[\frac{\pi}{2}\right]=\lambda_{m}(T)$, from where using (3.2) and $m=n / 2$

$$
\lambda_{n}^{*} \geqq \lambda_{n}\left[\frac{\pi}{2}\right]=\lambda_{m}(T)=\frac{2}{\pi} \ln \frac{n}{2}+\chi+\frac{2}{\pi} \ln 2+\frac{\pi}{72\left(\frac{n}{2}\right)^{2}}+O\left(\frac{1}{n^{4}}\right)
$$

from where we get the corresponding part of (3.5).

Let now $n=2 m+1$. Then again $\lambda_{n}^{*} \geqq \lambda_{n}\left[\xi_{m+1}\right]$. Here by [15 (26), (16) and Lemma 1]

$$
0<\lambda_{n}\left[\xi_{m+1}\right]-\lambda_{n}\left[\tau_{m+1}\right]<\frac{1}{n^{2}}
$$

where by [15 (27)]

$$
\lambda_{n}\left[\tau_{m+1}\right]=\frac{2}{2 m+1}-\sum_{k=1}^{m} \cot \frac{2 k-1}{2(2 m+1)} \pi+\frac{1}{n} \tan \frac{\pi}{4 n}:=P_{n}+R_{n} .
$$

Here $0<R_{n}<n^{-2}$.
Estimating P_{n}, we shall use the expansion

$$
\cot x=\frac{1}{x}-\sum_{r=1}^{\infty} 2^{2 r}\left|B_{2 r}\right| \frac{x^{2 r-1}}{(2 r)!}, \quad x \in(-\pi, \pi)
$$

holding uniformly in any closed subinterval, from where we get

$$
\lambda_{n}(T)=\frac{4}{\pi} \sum_{k=1}^{n} \frac{1}{2 k-1}-\frac{4}{\pi} \sum_{r=1}^{\infty} \frac{\left|B_{2 r}\right|}{(2 r)!} \frac{\pi^{2 r}}{(2 n)^{2 r}} \sum_{k=1}^{n}(2 k-1)^{2 r-1}
$$

(cf. (2.5), 3.2 or [13, (3.2) and (3.3)]). Now, using that the function $\cot x$ is monotone decreasing in $(0, \pi / 2)$, we have, using the previous two relations

$$
P_{n}=\frac{4}{\pi} \sum_{k=1}^{m} \frac{1}{2 k-1}-\frac{4}{\pi} \sum_{r=1}^{\infty} \frac{\left|B_{2 r}\right|}{(2 r)!} \frac{\pi^{2 r}}{(2 m+1)^{2 r}} \sum_{k=1}^{m}(2 k-1)^{2 r-1}>\lambda_{m}(T)
$$

Here by (3.2) and $m=(n / 2)(1-1 / n)$ further $\ln (1+x)=x-\frac{x^{2}}{2}+\ldots \quad(|x|<1)$ we get

$$
\lambda_{m}(T)=\frac{2}{\pi} \ln \left(\frac{n}{2}\left(1-\frac{1}{n}\right)\right)+\chi+\frac{2}{\pi} \ln 2+O\left(\frac{1}{n^{2}}\right)=\frac{2}{\pi} \ln n+\chi-\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)
$$

from where we get the right side of (3.5) when $n=2 m+1$. Later on we use that

$$
\begin{aligned}
P_{n} & =\frac{2}{2 m+1} \sum_{k=1}^{m+1} \cot \frac{2 k-1}{2(2 m+1)} \pi=\frac{4}{\pi} \sum_{k=1}^{m+1} \frac{1}{2 k-1}- \\
& -\frac{4}{\pi} \sum_{r=1}^{\infty} \frac{\left|B_{2 r}\right|}{(2 r)!} \frac{\pi^{2 r}}{(2 m+1)^{2 r}} \sum_{k=1}^{m+1}(2 k-1)^{2 r-1}<\lambda_{m+1}(T)
\end{aligned}
$$

(since the $(m+1)$ th term equals 0 in P_{n}).
Further, we get, as above, that

$$
\lambda_{m+1}(T)=\frac{2}{\pi} \ln n+\chi+\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)
$$

i.e. we can state that

$$
\begin{equation*}
\lambda_{n}\left[\tau_{m+1}\right]=\frac{2}{\pi} \ln n+\chi+O\left(\frac{1}{n}\right) \quad \text { if } \quad n \geqq n_{0} \tag{4.5}
\end{equation*}
$$

whatsoever is n.
4.3. To prove the left hand side is more tedious. First we prove that the local maximum points of $\lambda_{n}(T, x)$ are "close" to τ_{k}. More preciously

$$
\begin{equation*}
\xi_{k}=\tau_{k}+\delta_{k} \quad \text { with } \quad 0 \leqq \delta_{k}=O\left(\frac{1}{n \sqrt{\ln n}}\right), \quad 1 \leqq k \leqq m+1 \tag{4.6}
\end{equation*}
$$

uniformly in n and k.
Indeed, obviously $\lambda_{n}\left[\xi_{k}\right] \geqq \lambda_{n}\left[\tau_{k}\right]=\frac{2}{\pi} \ln n+O$ (1) (see (4.1)). Again by (4.1), we can suppose $n \delta_{k} \leqq \frac{\pi}{4}<1$. Now by (4.1)

$$
\begin{gathered}
\frac{2}{\pi} \ln n+O(1)=\lambda_{n}\left[\xi_{k}\right]=\frac{2}{\pi}\left|\cos n \xi_{k}\right| \ln n+O(1)= \\
=\frac{2}{\pi}\left(\cos n \delta_{k}\right) \ln n+O(1)=\frac{2}{\pi}\left(1-\frac{n^{2} \delta_{k}^{2}}{2}+\eta \frac{n^{4} \delta_{k}^{4}}{24}\right) \ln n+O(1)= \\
=\frac{2}{\pi} \ln n-\frac{n^{2} \delta_{k}^{2}}{\pi}\left(1-\eta \frac{n^{2} \delta_{k}^{2}}{12}\right) \ln n+O(1) \leqq \frac{2}{\pi} \ln n-\frac{11}{12 \pi} n^{2} \delta_{k}^{2} \ln n+O(1) \\
\quad(0<\eta<1) .
\end{gathered}
$$

By these, $n^{2} \delta_{k}^{2} \ln n=O(1)$, which gives (4.6). An important consequence of (4.3) and (4.6) is the estimation

$$
\begin{equation*}
\lambda_{n}\left[\tau_{k}\right] \leqq \lambda_{n}\left[\xi_{k}\right] \leqq \lambda_{n}\left[\tau_{k}\right]+O\left(\frac{1}{\sqrt{\ln n}}\right), \quad 1 \leqq k \leqq m+1 \tag{4.7}
\end{equation*}
$$

uniformly in n and k. This can be obtained using (i), (4.3) and (4.6) for t_{k} at τ_{k}.
4.4. By the above results we can verify (3.4). Indeed, according to (4.7), (ii), (4.2), (4.5) and (3.2)

$$
\begin{aligned}
& \delta_{n}(T)=\lambda_{n}\left[\xi_{2}\right]-\lambda_{n}\left[\xi_{m+1}\right]=\lambda_{n}\left[\tau_{2}\right]-\lambda_{n}\left[\tau_{m+1}\right]+O\left(\frac{1}{\sqrt{\ln n}}\right)=\lambda_{n}\left[\tau_{1}\right]- \\
& -\left(\lambda_{n}\left[\tau_{1}\right]-\lambda_{n}\left[\tau_{2}\right]\right)-\lambda_{n}\left[\tau_{m+1}\right]+O\left(\frac{1}{\sqrt{\ln n}}\right)=\frac{2}{\pi} \ln 2-\frac{4}{3 \pi}+O\left(\frac{1}{\sqrt{\ln n}}\right)
\end{aligned}
$$

as it was stated.

The matrix D

4.5. The main idea of the proof is to construct another matrix D, which is "close" to T, moreover, for which $\lambda_{n}\left(D_{c}\right) \approx \lambda_{n}\left[T, \tau_{m+1}\right] \approx \frac{2}{\pi} \ln n+\chi$. For this aim let

$$
\begin{equation*}
D=\left\{y_{1}, x_{2}, \ldots, x_{n-1}, y_{n}\right\}, \quad n=1,2, \ldots \tag{4.8}
\end{equation*}
$$

where $x_{k}=x_{k n}$ are the Chebyshev roots, $1 \leqq k \leqq n$,

$$
\begin{equation*}
y_{1}=-y_{n}=\cos \left(\vartheta_{1}+\psi_{n}\right) \quad \text { with } \quad 0<\psi_{n}=\frac{c}{n \ln n} \tag{4.9}
\end{equation*}
$$

where c will be determined later. Obviously

$$
\begin{equation*}
D_{n}(x):=\omega_{n}(D, x)=\frac{T_{n}(x)\left(y_{1}^{2}-x^{2}\right)}{x_{1}^{2}-x^{2}}=\left(1-\frac{x_{1}^{2}-y_{1}^{2}}{x_{1}^{2}-x^{2}}\right) T_{n}(x) \tag{4.10}
\end{equation*}
$$

from where

$$
D_{n}^{\prime}(x)=\frac{\left[T_{n}^{\prime}(x)\left(y_{1}^{2}-x^{2}\right)-2 x T_{n}(x)\right]\left(x_{1}^{2}-x^{2}\right)+2 x T_{n}(x)\left(y_{1}^{2}-x^{2}\right)}{\left(x_{1}^{2}-x^{2}\right)^{2}}
$$

which means

$$
\left\{\begin{array}{l}
D_{n}^{\prime}\left(x_{k}\right)=\frac{T_{n}^{\prime}\left(x_{k}\right)\left(y_{1}^{2}-x_{k}^{2}\right)}{x_{1}^{2}-x_{k}^{2}}=\frac{T_{n}^{\prime}\left(x_{k}\right)}{1+\frac{x_{1}^{2}-y_{1}^{2}}{y_{1}^{2}-x_{k}^{2}}}, \quad k=2,3, \ldots, n-1, \tag{4.11}\\
D_{n}^{\prime}\left(y_{1}\right)=-\frac{2 y_{1} T_{n}\left(y_{1}\right)}{x_{1}^{2}-y_{1}^{2}}, \quad D_{n}^{\prime}\left(y_{n}\right)=-\frac{2 y_{n} T_{n}\left(y_{n}\right)}{x_{1}^{2}-y_{n}^{2}} .
\end{array}\right.
$$

4.6. First we verify that

$$
\begin{equation*}
\lambda_{n}(D, x)=\lambda_{n}(T, x)+O(1)=\frac{2}{\pi}|\cos n \vartheta| \ln n+O(1) \tag{4.12}
\end{equation*}
$$

By

$$
\begin{gather*}
\cos ^{2} \alpha-\cos ^{2} \beta=\sin (\alpha+\beta) \sin (\beta-\alpha)= \tag{4.13}\\
=(\alpha+\beta)(\beta-\alpha)\left[1-\eta_{1}(\alpha+\beta)^{2}\right]\left[1-\eta_{2}(\alpha-\beta)^{2}\right], \quad 0<\eta_{1}, \eta_{2}<\frac{1}{6},
\end{gather*}
$$

we have

$$
\begin{equation*}
x_{1}^{2}-y_{1}^{2}=\left(\frac{\pi}{n}+\psi_{n}\right) \psi_{n}\left[1+O\left(\frac{1}{n^{2}}\right)\right]\left[1+O\left(\psi_{n}^{2}\right)\right]=\frac{\pi \psi_{n}}{n}\left[1+O\left(n \psi_{n}\right)\right] . \tag{4.14}
\end{equation*}
$$

Now, by (4.10), (4.11), (4.14) and $T_{n}\left(y_{1}\right)=-\sin n \psi_{n}=-n \psi_{n}\left[1+O\left(n^{2} \psi_{n}^{2}\right)\right]$,

$$
\begin{equation*}
l_{1}(D, x)=\frac{T_{n}(x)\left(y_{1}+x\right)}{\left(x_{1}-x\right)\left(x_{1}+x\right)} \frac{x_{1}^{2}-y_{1}^{2}}{2 y_{1} T_{n}\left(y_{1}\right)}=-\frac{T_{n}(x)}{\left(x_{1}-x\right)\left(x_{1}+x\right)} \frac{y_{1}+x}{2 y_{1}} \frac{\pi}{n^{2}}\left[1+O\left(n \psi_{n}\right)\right], \tag{4.15}
\end{equation*}
$$

from where we obtain $\left|l_{1}(D, x)\right|=O(1)$. Similarly, $\left|l_{n}(D, x)\right|=O(1)$, too.
Consider now $\lambda_{n}(D, x)$. By (4.10), (4.11) and using the boundedness of $\left|l_{1}(D)\right|$, $\left|l_{n}(D)\right|,\left|l_{1}(T)\right|$ and $\left|l_{n}(T)\right|$,

$$
\begin{gather*}
\pm \lambda_{n}(D, x)=\left(1+\frac{y_{1}^{2}-x_{1}^{2}}{x_{1}^{2}-x^{2}}\right) \sum_{k=2}^{n-1}\left(1+\frac{x_{1}^{2}-y_{1}^{2}}{y_{1}^{2}-x_{k}^{2}}\right)\left|l_{k}(T, x)\right| \pm \tag{4.16}\\
\pm\left(\left|l_{1}(D, x)\right|+\left|l_{n}(D, x)\right|\right)=\lambda_{n}(T, x)+\frac{y_{1}^{2}-x_{1}^{2}}{x_{1}^{2}-x^{2}} \sum_{k=2}^{n-1}\left|l_{k}(T, x)\right|+ \\
+\sum_{k=2}^{n-1} \frac{x_{1}^{2}-y_{1}^{2}}{y_{1}^{2}-x_{k}^{2}}\left|l_{k}(T, x)\right|+\frac{y_{1}^{2}-x_{1}^{2}}{x_{1}^{2}-x^{2}} \sum_{k=2}^{n-1} \frac{x_{1}^{2}-y_{1}^{2}}{y_{1}^{2}-x_{k}^{2}}\left|l_{k}(T, x)\right|+O(1):= \\
:=\lambda_{n}(T, x)+\Sigma_{1}+\Sigma_{2}+\Sigma_{3}+O(1)
\end{gather*}
$$

Here, if $\min _{1 \leqq k \leqq n}\left|\vartheta-\vartheta_{k}\right|=\left|\vartheta-\vartheta_{j}\right|$ and $x \geqq 0$, say,

$$
\begin{gathered}
\Sigma_{1}=O(1) \frac{\psi_{n}}{n} \sum_{\substack{k=2 \\
k \neq j}}^{n-1}\left|\frac{T_{n}(x) \sin \vartheta_{k}}{n\left(x_{1}-x\right)\left(x_{1}+x\right)\left(x-x_{k}\right) \mid}\right|+O(1)= \\
=O(1) \frac{\psi_{n}}{n} \sum_{k=2}^{n-1} \frac{1}{n} \frac{n^{2}}{j^{2}} \frac{k}{n} \frac{n^{2}}{(k+j)(|k-j|+1)}+O(1)= \\
=O\left(n \psi_{n}\right) \frac{1}{j^{2}} \sum_{k=2}^{n-1} \frac{k}{(k+j)(|k-j|+1)}=O\left(\frac{n \psi_{n}}{j^{2}}\right)\left(\sum_{k<j / 2}+\sum_{j / 2 \cong k<2 j}+\sum_{k>2 j}\right)+ \\
+O(1)=O\left(\frac{n \psi_{n} \ln n}{j^{2}}\right)+O(1),
\end{gathered}
$$

using $\left|x-x_{k}\right|=\left|2 \sin \frac{\vartheta-\vartheta_{k}}{2} \sin \frac{\vartheta+\vartheta_{k}}{2}\right| \sim \frac{k+j}{n} \frac{|k-j|+1}{n}(k \neq j)$ and $\left|T_{n}(x)\right|\left|x-x_{j}\right|^{-1} \sim$ $\sim\left|T_{n}^{\prime}\left(x_{j}\right)\right| \sim n^{2} j^{-1}$. By similar arguments

$$
\Sigma_{2}=O\left(\frac{n \psi_{n} \ln (j+1)}{j^{2}}\right) \quad \text { and } \quad \Sigma_{3}=O\left(\frac{n^{2} \psi_{n}^{2} \ln (j+1)}{j^{4}}\right),
$$

i.e. $\left|\Sigma_{1}\right|+\left|\Sigma_{2}\right|+\left|\Sigma_{3}\right|+O(1) \leqq K$ for a certain $K>0$. Now, if $\lambda_{n}(T, x) \leqq 2 K$, by (4.16), $\lambda_{n}(D, x) \leqq 3 K$. If $\lambda_{n}(T, x)>2 K$, by (4.16), $\lambda_{n}(T, x)-K \leqq \lambda_{n}(D, x) \leqq \lambda_{n}(T, x)+$ $+K$, which was to be proven.
4.7. According to (4.12), $\lambda_{n}\left[D, \tau_{k}\right]=\frac{2}{\pi} \ln n+O(1), 1 \leqq k \leqq n+1$, from where for the local maximum place $z_{k}=\cos \xi_{k}$ of $\lambda_{n}(D, x)$ we get

$$
\begin{equation*}
\xi_{k}=\tau_{k}+\varrho_{k} \quad \text { with } \quad\left|\varrho_{k}\right|=O\left(\frac{1}{n \sqrt{\ln n}}\right), \quad 1 \leqq k \leqq n+1, \tag{4.17}
\end{equation*}
$$

uniformly in n and k (see the corresponding argument in $4.3 ; \lambda_{n}[D, \vartheta]:=\lambda_{n}(D, \cos \vartheta)$).
4.8. To estimate the local maximum values of $\lambda_{n}(D, x)$, we prove the following. If $c>0$ is fixed,

$$
\begin{equation*}
\lambda_{n}(D, x)=\left[1-\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-x^{2}\right)}\right] \lambda_{n}(T, x)+O\left(n \psi_{n}\right) \quad \text { if } \quad n\left|\vartheta-\vartheta_{1}\right| \geqq c \tag{4.18}
\end{equation*}
$$

from where we immediately get, uniformly in n and k,

$$
\begin{equation*}
\lambda_{n}\left[D, \tau_{k+1}\right]=\left(1-\frac{4}{\pi} \frac{n \psi_{n}}{4 k^{2}-1}\right) \lambda_{n}\left[T, \tau_{k+1}\right]+O\left(n \psi_{n}\right), \quad k=0,1, \ldots, m+1 \tag{4.19}
\end{equation*}
$$

Indeed, if we verified (4.18), then by (4.13)

$$
\begin{gathered}
\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-\cos ^{2} \tau_{k+1}\right)} \lambda_{n}\left[T, \tau_{k+1}\right]=\frac{4}{\pi} \frac{n \psi_{n}}{4 k^{2}-1} \lambda_{n}\left[T, \tau_{k+1}\right]\left[1+O\left(\frac{(k+1)^{2}}{n^{2}}\right)\right]= \\
=\frac{4}{\pi} \frac{n \psi_{n}}{4 k^{2}-1} \lambda_{n}\left[T, \tau_{k+1}\right]+O\left(\frac{\psi_{n} \ln n}{n}\right), \quad k=0,1, \ldots, m+1
\end{gathered}
$$

from where we obtain (4.19).
To prove (4.18) first we compare $l_{1}(T, x)$ and $l_{1}(D, x)$. By definition

$$
\begin{equation*}
l_{1}(T, x)=\frac{T_{n}(x) \sin \vartheta_{1}}{n\left(x-x_{1}\right)}=\frac{\pi}{2 n^{2}} \frac{T_{n}(x)}{x-x_{1}}+O\left(\frac{1}{n^{2}}\right) \tag{4.20}
\end{equation*}
$$

To estimate $l_{1}(D, x)$ we write

$$
l_{1}(D, x)=\left(1-\frac{x_{1}^{2}-y_{1}^{2}}{x_{1}^{2}-x^{2}}\right) \frac{T_{n}(x)}{x-y_{1}} \frac{y_{1}^{2}-x_{1}^{2}}{2 y_{1} T_{n}\left(y_{1}\right)} .
$$

Here, if $n\left|\vartheta-\vartheta_{\mathbf{1}}\right| \geqq c$,

$$
\begin{gathered}
\frac{y_{1}^{2}-x_{1}^{2}}{\left(x-y_{1}\right) 2 y_{1} T_{n}\left(y_{1}\right)}=\frac{\pi \psi_{n}\left[1+O\left(n \psi_{n}\right)\right]}{n\left(x-x_{1}+x_{1}-y_{1}\right) 2\left(1+y_{1}-1\right) \sin n \psi_{n}}= \\
=\frac{\pi \psi_{n}\left[1+O\left(n \psi_{n}\right)\right]}{n\left(x-x_{1}\right)\left[1+O\left(n \psi_{n}\right)\right] 2\left[1+O\left(n^{-2}\right)\right] n \psi_{n}\left[1+O\left(n^{2} \psi\right)\right]}=\frac{\pi\left[1+O\left(n \psi_{n}\right)\right]}{2 n^{2}\left(x-x_{1}\right)}
\end{gathered}
$$

(see (4.14) and (4.15)), which means

$$
\begin{equation*}
l_{1}(D, x)=\left(1-\frac{x_{1}^{2}-y_{1}^{2}}{x_{1}^{2}-x^{2}}\right) l_{1}(T, x)+O\left(n \psi_{n}\right) \quad \text { if } \quad n\left|\vartheta-\vartheta_{1}\right| \geqq c . \tag{4.21}
\end{equation*}
$$

Using similar arguments for $l_{n}(T, x)$ and $l_{n}(D, x)$, we can write as follows

$$
\begin{aligned}
\lambda_{n}(D, x)= & \left(1-\frac{x_{1}^{2}-y_{1}^{2}}{x_{1}^{2}-x^{2}}\right) \sum_{k=2}^{n-1}\left|l_{k}(T, x)\right|+\left|l_{1}(D, x)\right|+\left|l_{n}(D, x)\right|+\Sigma_{2}+\Sigma_{3}= \\
& =\left(1-\frac{x_{1}^{2}-y_{1}^{2}}{x_{1}^{2}-x^{2}}\right) \lambda_{n}(T, x)+O\left(n \psi_{n}\right), \quad n\left|\vartheta-\vartheta_{1}\right| \geqq c
\end{aligned}
$$

(see (4.16) and (4.21)), from where by (4.14) we get (4.18).
4.9. Now we are ready to prove that

$$
\begin{equation*}
\lambda_{n}\left[D, \tau_{k}\right] \leqq \lambda_{n}\left[D, \xi_{k}\right] \leqq \lambda_{n}\left[D, \tau_{k}\right]+O\left(\frac{1}{\sqrt{\ln n}}\right), \quad k=1,2, \ldots, m+1 \tag{4.22}
\end{equation*}
$$

uniformly in k and n.

Here the first inequality is trivial. To obtain the second one, we write by (4.18) and (4.19)

$$
\begin{gather*}
\lambda_{n}\left(D, z_{k}\right)=\left[1-\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-z_{k}^{2}\right)}\right] \lambda_{n}\left(T, z_{k}\right)+O\left(n \psi_{n}\right)= \tag{4.23}\\
=\left[1-\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-\cos ^{2} \tau_{k}\right)}\right] \lambda_{n}\left[T, \tau_{k}\right]+\left[1-\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-\cos ^{2} \tau_{k}\right)}\right] \\
\cdot\left(\lambda_{n}\left[T, \xi_{k}\right]-\lambda_{n}\left[T, \tau_{k}\right]\right)+\left[\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-\cos ^{2} \tau_{k}\right)}-\frac{\pi \psi_{n}}{n\left(x_{1}^{2}-z_{k}^{2}\right)}\right] \lambda_{n}\left[T, \xi_{k}\right]+O\left(n \psi_{n}\right):= \\
:=\lambda_{n}\left[D, \tau_{k}\right]+J_{2}+J_{3}+O\left(n \psi_{n}\right) .
\end{gather*}
$$

First we remark that by (4.17) and (4.13)

$$
\left|J_{3}\right|=O(1) \frac{n \psi_{n}}{\sqrt{\ln n}(k+1)^{3}} \lambda_{n}\left[T, \xi_{k}\right] \leqq \frac{c_{1}}{\sqrt{\ln n}}, \quad k=1,2, \ldots, m+1 .
$$

Now if $\lambda_{n}\left[T, \xi_{k}\right] \geqq \lambda_{n}\left[T, \tau_{k}\right]$, then by (4.17) and (4.3) the difference is $O\left(\frac{1}{\sqrt{\ln n}}\right)$, from where $J_{2}=O\left(\frac{1}{\sqrt{\ln n}}\right)$ which gives (4.22). We can use the same argument whenever $0 \leqq \lambda_{n}\left[T, \tau_{k}\right]-\lambda_{n}\left[T, \xi_{k}\right] \leqq \frac{c}{\sqrt{\ln n}}, k=1,2, \ldots, m+1, n=3,4, \ldots . \quad$ On the other hand if for any fixed N there would exist an $n \geqq N$ and a k such that

$$
\lambda_{n}\left[T, \tau_{k}\right]-\lambda_{n}\left[T, \xi_{k}\right]>\frac{3 c_{1}}{\sqrt{\ln n}},
$$

then

$$
\lambda_{n}\left[D, \xi_{k}\right]<\lambda_{n}\left[D, \tau_{k}\right]-\frac{2 c_{1}}{\sqrt{\ln n}}+\frac{c_{1}}{\sqrt{\ln n}}+O\left(n \psi_{n}\right)<\lambda_{n}\left[D, \tau_{k}\right]
$$

if $N \geqq n_{0}$, a contradiction. I.e., (4.22) is proved.
4.10. Next we verify that for $k=1,2, \ldots, m$

$$
\begin{equation*}
\lambda_{n}\left[D, \tau_{k+1}\right]-\lambda_{n}\left[D, \tau_{k}\right]= \tag{4.24}
\end{equation*}
$$

$$
=\frac{4}{\pi}\left[\frac{8 n \psi_{n} \ln n}{\pi} \frac{1}{(2 k-3)(2 k-1)(2 k+1)}-\frac{1}{(4 k-3)(4 k-1)(2 k-1)}\right]+O\left(n \psi_{n}\right)
$$

uniformly in k and n.
Indeed, by the equation

$$
\left[4(k-1)^{2}-1\right]^{-1}-\left(4 k^{2}-1\right)^{-1}=4[(2 k-3)(2 k-1)(2 k+1)]^{-1},
$$

further by (4.19), (4.1) and (4.2) we can write

$$
\begin{gathered}
\lambda_{n}\left[D, \tau_{k+1}\right]-\lambda_{n}\left[D, \tau_{k}\right]=\frac{4 n \psi_{n}}{\pi}\left[\frac{1}{4(k-1)^{2}-1}-\frac{1}{4 k^{2}-1}\right] \lambda_{n}\left[T, \tau_{k+1}\right]- \\
-\left[1-\frac{4}{\pi} \frac{n \psi_{n}}{4(k-1)^{2}-1}\right]\left(\lambda_{n}\left[T, \tau_{k}\right]-\lambda_{n}\left[T, \tau_{k+1}\right]\right)+O\left(n \psi_{n}\right)= \\
=\frac{4 n \psi_{n}}{\pi} \frac{4}{(2 k-3)(2 k-1)(2 k+1)}\left[\frac{2}{\pi} \ln n+O(1)\right]-\frac{4}{\pi} \frac{1+O\left(\frac{k^{2}}{n^{2}}\right)}{(4 k-3)(4 k-1)(2 k-1)}+ \\
+O\left(\frac{n \psi_{n}}{k^{5}}\right)+O\left(n \psi_{n}\right)=\frac{4}{\pi}\left[\frac{8 n \psi_{n} \ln n}{\pi} \frac{1}{(2 k-3)(2 k-1)(2 k+1)}-\right. \\
\left.-\frac{1}{(4 k-3)(4 k-1)(2 k-1)}\right]+O(1)\left(n \psi_{n} k^{-3}+k^{-1} n^{-2}+n \psi_{n} k^{-5}+n \psi_{n}\right)
\end{gathered}
$$

which gives (4.24).
4.11. Now let $\psi_{n}=\pi /(8 n \ln n)$. Then by (4.22) and (4.24) we have for $k=1,2, \ldots, m$

$$
\begin{gather*}
\lambda_{n}\left(D, z_{k+1}\right)-\lambda_{n}\left(D, z_{k}\right)=\frac{4}{\pi}\left[\frac{1}{(2 k-3)(2 k-1)(2 k+1)}-\frac{1}{(4 k-3)(4 k-1)(2 k-1)}\right]+ \tag{4.25}\\
+O\left(\frac{1}{\sqrt{\ln n}}\right)
\end{gather*}
$$

By (4.25) we investigate $d_{k n}(D):=\lambda_{n}\left(D, z_{k+1}\right)-\lambda_{n}\left(D, z_{k}\right)$. Obviously $d_{1}(D) \approx$ $\approx-8 /(3 \pi)<0$, but for any fixed M by a simple computation we can verify $d_{k}(D)>0, k=2,3, \ldots, M$. Now let M be big enough. Then by (4.25)

$$
\begin{gathered}
d_{k}(D)=\frac{4}{\pi}\left[\frac{1}{8 k^{3}\left[1+O\left(\frac{1}{k}\right)\right]}-\frac{1}{32 k^{3}\left[1+O\left(\frac{1}{k}\right)\right]}\right]+O\left(\frac{1}{\sqrt{\ln n}}\right)= \\
=\frac{3}{8 \pi k^{3}}+O\left(\frac{1}{k^{4}}\right)+O\left(\frac{1}{\sqrt{\ln n}}\right)
\end{gathered}
$$

from where $d_{k}(D)>0$ if $M \leqq k \leqq c_{1}(\ln n)^{1 / 6}$. Thus we obtained the relations

$$
\begin{equation*}
d_{k}(D)>0 \quad \text { if } \quad 2 \leqq k \leqq c_{1}(\ln n)^{1 / 6} \tag{4.26}
\end{equation*}
$$

with a certain $c_{1}>0$ (of course, $n \geqq n_{0}$).
4.12. To complete the proof the only thing we have to prove is the relation

$$
\begin{equation*}
\lambda_{n}\left(D, z_{k+1}\right)=\frac{2}{\pi} \ln n+\chi+O\left(\frac{1}{(\ln n)^{1 / 3}}\right) \quad \text { if } \quad c_{1}(\ln n)^{1 / 6} \leqq k \leqq m \tag{4.27}
\end{equation*}
$$

considering (4.26), (4.27), finally (3.1). To this end first we remark that

$$
\lambda_{n}\left[D, \xi_{k+1}\right]=\left(\lambda_{n}\left[D, \xi_{k+1}\right]-\lambda_{n}\left[D, \tau_{k+1}\right]\right)+\left(\lambda_{n}\left[D, \tau_{k+1}\right]-\lambda_{n}\left[T, \tau_{k+1}\right]\right)+\lambda_{n}\left[T, \tau_{k+1}\right] .
$$

Here by (4.22)

$$
\begin{equation*}
\lambda_{n}\left[D, \xi_{k+1}\right]-\lambda_{n}\left[D, \tau_{k+1}\right]=O\left(\frac{1}{\sqrt{\ln n}}\right) \tag{4.28}
\end{equation*}
$$

moreover, by (4.19)

$$
\begin{equation*}
\lambda_{n}\left[D, \tau_{k+1}\right]-\lambda_{n}\left[T, \tau_{k+1}\right]=O\left(\frac{1}{(\ln n)^{1 / 3}}\right) \quad \text { if } \quad c_{1}(\ln n)^{1 / 6} \leqq k \leqq m \tag{4.29}
\end{equation*}
$$

Finally, by (4.5) and (4.2)

$$
\begin{align*}
& \lambda_{n}\left[T, \tau_{k+1}\right]=\lambda_{n}\left[T, \tau_{m+1}\right]+\sum_{j=k+1}^{m}\left(\lambda_{n}\left[T, \tau_{j}\right]-\lambda_{n}\left[T, \tau_{j+1}\right]\right)= \tag{4.30}\\
= & \frac{2}{\pi} \ln n+\chi+O\left(\frac{1}{n}\right)+\frac{4}{\pi} \sum_{j=k+1}^{m} \frac{1+O\left(\frac{j^{2}}{n^{2}}\right)}{(4 j-3)(4 j-1)(2 j-1)}= \\
= & \frac{2}{\pi} \ln n+\chi+O\left(\frac{1}{n}\right)+O\left(\frac{1}{k^{2}}\right)=\frac{2}{\pi} \ln n+\chi+O\left(\frac{1}{(\ln n)^{1 / 3}}\right)
\end{align*}
$$

if $c_{1}(\ln n)^{1 / 6} \leqq k \leqq m$, i.e. by (4.28)-(4.30) we obtain (4.27), as it was to be proven.
4.13. Let us remark that for our matrix D we have

$$
\lambda_{n}\left(D_{c}\right)=\lambda_{n}^{*}+O\left(\frac{1}{(\ln n)^{1 / 3}}\right)
$$

i.e. $D_{\boldsymbol{c}}$ has the smallest possible Lebesgue constants at least asymptoticallv.

References

[1] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. der Deutschen Math. Ver., 23 (1914), 191-200.
[2] S. Bernstein, Sur la limitation des valeurs d'une polynome, Bull. Acad. Sci. de l'USSR, 8 (1931), 1025-1050.
[3] P. Erdős, Problems and results on theory of interpolation. II, Acta Math. Acad. Sci. Hungar., 12 (1961), 235-244.
[4] P. Erdős, P. Vértesi, On the Lebesgue function of interpolation, Functional Analysis and Approximation ISNM, 60 (1981), Birkhauser Verlag, Basel, 299-309.
[5] P. Vértesi, New estimation for the Lebesgue function of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 40 (1982), 21-27.
[6] P. Vértesi, On sums of Lebesgue function type, ibid, 40 (1982), 217-227.
[7] T. A. Kilgore, A characterization of the Lagrange interpolation projections with minimal Tchebycheff norm, J. Approximation Theory, 24 (1978), 273-288.
[8] C. De Boor, A. Pinkus, Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation, ibid, 24 (1978), 289-303.
[9] F. W. Luttmann, T. J. Rivlin, Some numerical experiments in the theory of polynomial interpolation, IBM J. Res. Develop., 2 (1965), 187-191.
[10] L. Brutman, On the polynomial and rational projections in the complex plane, SIAM J. Numer. Anal., 17 (1980), 366-372.
[11] L. Brutman, A. Pinkus, On the Erdõs conjecture concerning minimal norm interpolation on the unit circle, ibid, 17 (1980), 373-375.
[12] H. Ehlich, K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 164 (1966), 105-112.
[13] P. N. Shivakumar, R. Wong, Asymptotic expansion of the Lebesgue constants associated with polynomial interpolation, Math. Comp., 39 (1982), 195-200.
[14] V. K. Dzjadik, V. V. Ivanov, On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points, Anal. Math., 9 (1983), 85-97.
[15] L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal., 15 (1978), 694-704.
[16] N. A. Pogodiceva, Certain linear processes, Doctorial dissertation, Dnepropetrovsk, 1956 (Russian).
[17] A. F. Timan, Approximation of functions of real variable, Fizmatgiz, 1960 (Russian).
[18] R. Günttner, Evaluation of Lebesgue constants, SIAM J. Numer. Anal., 17 (1980), 512-520.
(Received January 10, 1984)

[^5]
ON A CERTAIN CLASS OF COMPLETE REGULARITY

J. FERRER and V. GREGORI (Valencia)

Given two topological spaces X and E, X is said to be E-completely regular if X is homeomorphic to a subspace of E^{m} for some cardinal $m . \mathfrak{C}(E)$ represents the class of all E-completely regular spaces, and it is said to be a class of complete regularity. \mathscr{F}^{*} denotes the space consisting of three points $0,1,2$ in which the only proper open set is $\{0\}$. $C(X, E)$ is the set of all continuous functions from X to E. For other references and notations see [1].

Let T be the space consisting of the points $0,1,2$ where $\{0\}$ and $\{1,2\}$ are the only proper open subsets.

Theorem. $\mathfrak{C}(T)$ is the class of all zero-dimensional spaces.
Proof. Assume that X is zero-dimensional. For two distinct points x, y in X, the function f with values in $\{1,2\}$ and $f(x) \neq f(y)$ belongs to $C(X, T)$. Also if x is not in the closed subset F of X and G_{x} is a clopen neighbourhood of x disjoint with F, then the function g such that $g(y)=1$ if $y \in G_{x}$ and $g(y)=0$ elsewhere, belongs to $C(X, T)$ and $g(x) \notin \overline{g(F)}$. From [1, Theorem 3.8], X is T-completely regular.

Since the property of being zero-dimensional is productive and hereditary, the conclusion follows.

Lemma. If X is a zero-dimensional non-indiscrete space, then each point in X has a proper neighbourhood.

Proof. Suppose that X is the only neighbourhood of some point p. Let G be a clopen subset. If $p \in G$ then $G=X$ and if $p \notin G$ then $p \in X \sim G$ which is open, thus $G=\emptyset$.

Proposition 1. $\mathbb{C}(E)$ is the class of all zero-dimensional spaces if and only if E is a zero-dimensional, non- T_{0}, non-indiscrete space.

Proof. Obviously, E is not indiscrete. Since $E \in \mathbb{C}(E), E$ is zero-dimensional. It follows from [1, 3.11] that E is not T_{0}. Conversely, it is trivial from [1,3.5] that $\mathfrak{C}(E) \subset \mathfrak{C}(T)$. On the other hand, it suffices to show that $T \in \mathbb{C}(E)$. Since E is not T_{0}, there are two distinct points a, b in E with the same neighbourhoods. From the previous lemma, there is a proper clopen subset G such that $\{a, b\} \subset G$. The subspace $E_{1}=\{a, b, c\}$, where $c \in E \sim G$, is homeomorphic to T.

In [1, page 171], S. Mrówka says: " $\mathbb{C}(E)$ is the class of all topological spaces if and only if E contains a non-trivial (i.e., containing more than one point) T_{0}-subspace and a non-trivial indiscrete subspace."

From our Theorem, it is evident that the space T verifies all the above conditions, nevertheless $\mathbb{C}(T) \neq \mathbb{C}\left(\mathscr{F}^{*}\right)$; therefore, Mrówka's statement is not correct. In the following, we give a correct version of Mrówka's result.

Proposition 2. $\mathfrak{c}(E)$ is the class of all topological spaces if and only if E is a non- T_{0} space with a proper closed subset F such that there are two points $a \in F, b \notin F$, with the property that every neighbourhood of a is also a neighbourhood of b.

Proof. Assume that $\mathbb{C}(E)$ is the class of all topological spaces. Since \mathscr{F}^{*} is E-completely regular, from [1, Theorem 3.8], there is a finite number n and $f \in C\left(\mathscr{J}^{*}, E^{n}\right)$ which verifies $f(0) \notin \overline{f(\{1,2\})}$ and thus every neighbourhood of $f(1)$ is a neighbourhood of $f(0)$; if f_{i} is a projection of f on E such that a suitable neighbourhood of $f_{i}(0)$ does not contain $f_{i}(1)$, then $a=f_{i}(1)$ and $b=f_{i}(0)$ satisfy the conclusion. Moreover, there is $g \in C\left(\mathfrak{F}^{*}, E\right)$ which verifies $g(1) \neq g(2)$ and thus, $g(1)$ and $g(2)$ have the same neighbourhoods.

Conversely, it is sufficient to see that $\mathfrak{F}^{*} \in \mathfrak{C}(E)$. For this purpose we make use of [1, Theorem 3.8]. The functions $g_{i} \in C\left(\mathfrak{F}^{*}, E\right), i=1,2$, such that $g_{i}(1)$ and $g_{i}(2)$ are two distinct points with the same neighbourhoods and $g_{i}(0)=g_{i}(i)$, verify condition (a). The function $f \in C\left(\mathfrak{F}^{*}, E\right)$ with $f(0)=b$ and $f(1)=f(2)=a$, satisfies condition (b) of the above mentioned theorem.

Acknowledgement. We must sincerely thank Professor M. Lòpez Pellicer for his valuable help and constant stimulation.

Reference

[1] S. Mrówka, Further results on E-compact spaces. I, Acta Mathematica, 120 (1968), 161-185.
(Received January 11, 1984)
CÀTEDRA DE MATEMÀTICAS (E.T.S.I.A.)
CAMINO DE VERA 14
VALENCIA-22
SPAIN

NEW PROOFS OF A THEOREM OF KOMLÓS

M. SCHWARTZ (Columbus)

The theorem of Komlós [3] states that from an L^{1}-bounded sequence of random variables, a subsequence can be extracted so that every further subsequence converges Cesàro a.s. to the same limit. In the following, this theorem is proved in two new ways. The first proof is classical in nature, using a Kolmogorov-type maximal inequality, while the second parallels the argument given by Etemadi [2] in showing the strong law of large numbers for pairwise independent, identically distributed random variables. These are in contrast to the proof given by Komlós which uses martingale difference sequences.

We begin with some lemmas similar to those in [3]. Throughout, we are considering a probability space $(\Omega, \mathfrak{F}, P)$. For $a>0$, denote $F_{a}(x)=x I_{[-a, a]}(x)$.

Lemma 1. Suppose $\left\{X_{n}\right\}$ is a sequence of random variables satisfying $\sup _{n} E\left|X_{n}\right|<$ $<\infty$. Then there exists a subsequence $\left\{X_{n}^{0}\right\}$ such that for each further subsequence $\left\{X_{n}^{\prime}\right\}$,

$$
\begin{equation*}
\left\{F_{n}\left(X_{n}^{\prime}\right)\right\} \text { is uniformly integrable, } \tag{1}
\end{equation*}
$$

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}^{\prime}\right|>n\right)<\infty,
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}} E\left|F_{n}\left(X_{n}^{\prime}\right)\right|^{1+\varepsilon}<\infty, \text { for all } \varepsilon>0 \tag{3}
\end{equation*}
$$

Proof. For each $j \geqq 1$, there exists a subsequence $\left\{X_{j, n}\right\}$ of $\left\{X_{j-3, n}\right\}$ (taking $\left.\left\{X_{0, n}\right\}=\left\{X_{n}\right\}\right)$ and a scalar $M_{j} \geqq 0$ such that

$$
\lim _{n \rightarrow \infty} \int_{j-1<\left|X_{j, n}\right| \leqq j}\left|X_{j, n}\right| d P=M_{j} .
$$

By a diagonal argument, we can choose $\left\{X_{n}^{0}\right\}$ such that for any further subsequence $\left\{X_{n}^{\prime}\right\}$,

$$
\begin{equation*}
\frac{M_{j}}{2}<\int_{j-1<\left|X_{n}^{\prime}\right| \leqq j}\left|X_{n}^{\prime}\right| d P<M_{j}+\frac{1}{j^{2}}, \quad 1 \leqq n, \quad 1 \leqq j \leqq n^{2} . \tag{4}
\end{equation*}
$$

Since $\left\{X_{n}\right\}$ is L^{1}-bounded, we have $\sum_{j=1}^{\infty} M_{j}<\infty$. From this and (4), (1)-(3) can be readily shown.

From (1) and (2), we see the known result that $\left\{X_{n}\right\}$ has a subsequence equivalent to a uniformly integrable sequence. Denote $X_{n} \rightarrow X \sigma\left(L^{1}, L^{\infty}\right)$, if $\left\{X_{n}\right\}$ converges weakly in L^{1} to X.

Lemma 2. Suppose $X_{n} \rightarrow X \sigma\left(L^{1}, L^{\infty}\right)$ and $F_{k}\left(X_{n}\right) \rightarrow \beta_{k} \sigma\left(L^{1}, L^{\infty}\right)$, for random variables $X, \beta_{k} \in L^{1}, k \geqq 1$. Then $\beta_{k} \rightarrow X$ a.s. and in L^{1}.

Proof. We can suppose that (4) holds for all subsequences of $\left\{X_{n}\right\}$. Then,

$$
\sum_{k=1}^{\infty} E\left|\beta_{k}-\beta_{k-1}\right| \leqq \sum_{k=1}^{\infty} \varliminf_{n} E\left|F_{k}\left(X_{n}\right)-F_{k-1}\left(X_{n}\right)\right| \leqq \sum_{k=1}^{\infty}\left(M_{k}+\frac{1}{k^{2}}\right)<\infty .
$$

Hence, $\beta_{k} \rightarrow \beta$ a.s. and in L^{1} for some $\beta \in L^{1}$. From this, it can be shown that $\beta=X$ a.s.

The next lemma provides some groundwork for the maximal inequality following, and an estimate to be used later. (Cf. Révész [4].)

Lemma 3. Let $\left\{X_{n}\right\}$ be any sequence of random variables. Then there exists a subsequence $\left\{X_{n}^{0}\right\}$ of $\left\{X_{n}\right\}$, and a sequence $\left\{\beta_{n}\right\}$ of bounded random variables such that for any further subsequence $\left\{X_{n}^{\prime}\right\}$ of $\left\{X_{n}^{0}\right\}$,

$$
\begin{equation*}
F_{k}\left(X_{n}^{\prime}\right) \rightarrow \beta_{k} \sigma\left(L^{1}, L^{\infty}\right), \quad k \geqq 1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int\left(F_{n}\left(X_{n}^{\prime}\right) \beta_{n}-\beta_{n}^{2}\right) d P\right| \leqq 1, \quad \text { for all } \quad n \geqq 1 . \tag{6}
\end{equation*}
$$

Proof. For each $j \geqq 1$, there exists a subsequence $\left\{X_{j, n}\right\}$ of $\left\{X_{j-1, n}\right\}$, and a random variable $\beta_{j},\left|\beta_{j}\right| \leqq j$ a.s., such that $F_{j}\left(X_{j, n}\right) \rightarrow \beta_{j} \sigma\left(L^{1}, L^{\infty}\right)$. In particular, we choose $\left\{X_{j, n}\right\}$ to satisfy $\left|\int\left(F_{j}\left(X_{j, n}\right) \beta_{j}-\beta_{j}^{2}\right) d P\right| \leqq 1$, for all $n \geqq 1$. Letting $X_{n}^{0}=$ $=X_{n, n}$, (5) and (6) follow.

Lemma 4 (maximal inequality). Let $\left\{X_{n}\right\}$ be any sequence of random variables and let $\left\{\alpha_{n}\right\}$ be a sequence of random variables in L^{2}. Then there exists a subsequence $\left\{X_{n}^{0}\right\}$ of $\left\{X_{n}\right\}$, and a sequence $\left\{\beta_{n}\right\}$ of bounded random variables such that for any subsequence $\left\{X_{n}^{\prime}\right\}$ of $\left\{X_{n}^{0}\right\}$, and for $0<\varepsilon<\frac{\sqrt{2}}{2}, \quad 1 \leqq m<n$,

$$
P\left(\max _{m \leqq j \leqq n}\left|\sum_{i=m}^{j} \alpha_{i} Z_{i}\right|>\varepsilon\right) \leqq \frac{1}{\varepsilon^{2}}\left(2 \sum_{i=m}^{n} E\left(\alpha_{i} Z_{i}\right)^{2}+\frac{1}{2^{m}}\right),
$$

where we write $Z_{i}=F_{i}\left(X_{i}^{\prime}\right)-\beta_{i}, i \geqq 1$.
Proof. By Lemma 3, we obtain $\left\{\beta_{n}\right\}$ and can suppose (5) holds for any subsequence of $\left\{X_{n}\right\}$. In fact, we have $F_{k}\left(X_{n}\right) \rightarrow \beta_{k} \sigma\left(L^{\infty}, L^{1}\right), k \geqq 1$.

Let $X_{1}^{0}=X_{1}$, and suppose $X_{i}^{0}, i \leqq j-1$ have been chosen. By the weak convergence, we can choose X_{j}^{0} satisfying the finitely many conditions below:

$$
\begin{equation*}
\left|E\left[\alpha_{r}\left(F_{r}\left(X_{i}^{0}\right)-\beta_{r}\right) \alpha_{s}\left(F_{s}\left(X_{j}^{0}\right)-\beta_{s}\right)\right]\right|<1 /\left(48 \cdot 2^{j-1}\right) \tag{7}
\end{equation*}
$$

for $1 \leqq i \leqq j-1, r \leqq i, s \leqq j$;
(8)

$$
\left|\int_{A_{l}\left(a_{1}, \ldots, a_{t} ; b_{1}, \ldots, b_{t}\right)} \alpha_{r}\left(F_{r}\left(X_{i}^{0}\right)-\beta_{r}\right) \alpha_{s}\left(F_{s}\left(X_{j}^{0}\right)-\beta_{s}\right) d P\right|<1 /\left(48 \cdot 2^{j-1}\right),
$$

[^6]for $1 \leqq i \leqq j-1, r \leqq i, s \leqq j, 1 \leqq l \leqq j-1$, all finite sequences $\left\{a_{1}, \ldots, a_{t}\right\},\left\{b_{1}, \ldots, b_{t}\right\}$ satisfying $1 \leqq a_{1}<\ldots<a_{t} \leqq j-1,1 \leqq b_{1}<\ldots<b_{t}$, and $b_{k} \leqq a_{k}$ for $1 \leqq k \leqq t$, where
\[

$$
\begin{gathered}
A_{l}\left(a_{1}, \ldots, a_{t} ; b_{1}, \ldots, b_{t}\right)=\left\{\max _{1 \leqq u \leqq t-1}\left|\sum_{i=1}^{u} \alpha_{b_{i}}\left(F_{b_{i}}\left(X_{a_{i}}^{0}\right)-\beta_{b_{i}}\right)\right| \leqq 2^{-l / 2}\right. \\
\left.\left|\sum_{i=1}^{t} \alpha_{b_{i}}\left(F_{b_{i}}\left(X_{a_{i}}^{0}\right)-\beta_{b_{i}}\right)\right|>2^{-l / 2}\right\} \\
A_{l}\left(a_{1} ; b_{1}\right)=\left\{\left|\alpha_{b_{1}}\left(F_{b_{1}}\left(X_{a_{1}}^{0}\right)-\beta_{b_{1}}\right)\right|>2^{-l / 2}\right\}
\end{gathered}
$$
\]

Let $\left\{X_{n}^{\prime}\right\}=\left\{X_{c_{n}}^{0}\right\}$ be a subsequence of $\left\{X_{n}^{0}\right\}$; denote $Z_{n}=F_{n}\left(X_{n}^{\prime}\right)-\beta_{n}, n \geqq 1$. For $1 \leqq N \leqq m<n$, let $\varepsilon=2^{-N / 2}$ and denote

$$
A_{\varepsilon}=\left\{\max _{m \leqq j \leqq n}\left|\sum_{i=m}^{j} \alpha_{i} Z_{i}\right|>\varepsilon\right\} .
$$

We have $A_{\varepsilon}=\bigcup_{k=m}^{n} B_{k}$, where we write $B_{k}=A_{N}\left(c_{m}, \ldots, c_{k} ; m, \ldots, k\right)$. Then,

$$
\begin{gathered}
E\left(\sum_{i=m}^{n} \alpha_{i} Z_{i}\right)^{2} \geqq \int_{A_{\varepsilon}}\left(\sum_{i=m}^{n} \alpha_{i} Z_{i}\right)^{2} d P=\sum_{k=m}^{n} \int_{B_{k}}\left(\sum_{i=m}^{n} \alpha_{i} Z_{i}\right)^{2} d P \geqq \\
\geqq \sum_{k=m}^{n} \int_{B_{k}}\left(\sum_{i=m}^{k} \alpha_{i} Z_{i}\right)^{2} d P+2 \sum_{k=m}^{n} \sum_{j=k+1}^{n} \sum_{i=m}^{k} \int_{B_{k}} \alpha_{i} Z_{i} \alpha_{j} Z_{j} d P \geqq \varepsilon^{2} P\left(A_{\varepsilon}\right)-1 / 3 \cdot 2^{m},
\end{gathered}
$$

by definition of B_{k} and (8). On the other hand,

$$
\begin{aligned}
E\left(\sum_{i=m}^{n} \alpha_{i} Z_{i}\right)^{2}= & \sum_{i=m}^{n} E\left(\alpha_{i} Z_{i}\right)^{2}+2 \sum_{j=m+1}^{n} \sum_{i=m}^{j-1} E\left(\alpha_{i} Z_{i} \alpha_{j} Z_{j}\right) \leqq \\
& \leqq \sum_{i=m}^{n} E\left(\alpha_{i} Z_{i}\right)^{2}+1 / 6 \cdot 2^{m}
\end{aligned}
$$

by (7). Hence,

$$
P\left(A_{\varepsilon}\right) \leqq \frac{1}{\varepsilon^{2}}\left(\sum_{i=m}^{n} E\left(\alpha_{i} Z_{i}\right)^{2}+1 / 2 \cdot 2^{m}\right)
$$

If $2^{-(N+1) / 2}<\varepsilon<2^{-N / 2}$ for some $1 \leqq N \leqq m-1$, then we get the stated result, while if $0<\varepsilon<2^{-m / 2}$, the inequality holds trivially.

The Komlós theorem follows from Lemma 1 and the next result.
Lemma 5. Suppose $X_{n} \rightarrow X \sigma\left(L^{1}, L^{\infty}\right)$ for some random variable $X \in L^{1}$. Then there exists a subsequence $\left\{X_{n}^{0}\right\}$ of $\left\{X_{n}\right\}$ such that for each further subsequence $\left\{X_{n}^{\prime}\right\}$,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\prime} \rightarrow X \quad \text { a.s. }\left(\text { and in } L^{1}\right)
$$

Proof. We can assume (2), (3), (5) and (6) hold for subsequences of $\left\{X_{n}\right\}$. By Lemma 4, there exists a subsequence $\left\{X_{n}^{0}\right\}$ of $\left\{X_{n}\right\}$ such that for $\varepsilon>0,1 \geqq m<n$
and any further subsequence $\left\{X_{n}^{\prime}\right\}$,

$$
P\left(\max _{m \leqq j \leqq n}\left|\sum_{i=m}^{j} \frac{Z_{i}}{i}\right|>\varepsilon\right) \leqq \frac{1}{\varepsilon^{2}}\left(2 \sum_{i=m}^{n} \frac{E Z_{i}^{2}}{i^{2}}+\frac{1}{2^{m}}\right),
$$

where $Z_{i}=F_{i}\left(X_{i}^{\prime}\right)-\beta_{i}, i \geqq 1$. By (6) and (3),

$$
\sum_{i=1}^{\infty} \frac{E Z_{i}^{2}}{i^{2}} \leqq \sum_{i=1}^{\infty} \frac{E F_{i}\left(X_{i}^{\prime}\right)^{2}}{i^{2}}+2 \sum_{i=1}^{\infty} \frac{1}{i^{2}}<\infty .
$$

Consequently, $\sum_{i=1}^{\infty} \frac{Z_{i}}{i}$ converges a.s. By the Kronecker Lemma, Lemma 2 and (2), $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\prime} \rightarrow X$ a.s.

Remark. Since $\left\{X_{n}\right\}$ is uniformly integrable, we have convergence in L^{1} as well. In addition, X is the only possible limit under the given hypothesis.

Theorem 6 (Komlós). Suppose $\left\{X_{n}\right\}$ is a sequence of random variables satisfying $\sup _{n} E\left|X_{n}\right|<\infty$. Then there exists a subsequence $\left\{X_{n}^{0}\right\}$ and a random variable $\beta \in L^{1}$ such that for each further subsequence $\left\{X_{n}^{\prime}\right\}$,

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\prime} \rightarrow \beta \quad \text { a.s. } \tag{9}
\end{equation*}
$$

Proof. By Lemma 1, we can split a subsequence $\left\{X_{k_{n}}\right\}$ into $X_{k_{n}}=Y_{n}+Z_{n}$, where $Y_{n} \rightarrow Y \sigma\left(L^{1}, L^{\infty}\right)$ for some $Y \in L^{1}$, and $Z_{n} \rightarrow 0$ a.s. Applying Lemma 5 to $\left\{Y_{n}\right\}$, the result follows.

The Komlós theorem can be proved using an argument similar to that given by Etemadi [2] in proving the strong law of large numbers for pairwise independent, identically distributed random variables.

Theorem 7 (Komlós). If $\sup _{n} E\left|X_{n}\right|<\infty$, then (9) holds.
Proof. Without loss of generality, we can assume $X_{n} \geqq 0, n \geqq 1$. By Lemmas 1 , 3 and (7), we can suppose for any subsequence $\left\{X_{n}^{\prime}\right\}$

$$
\begin{gather*}
\sum_{n=1}^{\infty} P\left(X_{n}^{\prime}>n\right)<\infty, \tag{10}\\
\sum_{n=1}^{\infty} \frac{E Z_{n}^{2}}{n^{2}}<\infty \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty}\left|E\left(Z_{i} Z_{j}\right)\right|<\infty, \quad \text { where } \quad Z_{n}=F_{n}\left(X_{n}^{\prime}\right)-\beta_{n}, \quad n \geqq 1 \tag{12}
\end{equation*}
$$

Furthermore, by Lemma 2,

$$
\begin{equation*}
\beta_{k} \rightarrow \beta \text { a.s. for some } \beta \in L^{1} \tag{13}
\end{equation*}
$$

Let $\left\{X_{n}^{\prime}\right\}$ be a subsequence of $\left\{X_{n}\right\}$, and define

$$
S_{n}=\sum_{i=1}^{n} X_{n}^{\prime}, \quad S_{n}^{*}=\sum_{i=1}^{n} F_{i}\left(X_{i}^{\prime}\right), \quad T_{n}=\sum_{i=1}^{n} \beta_{i}
$$

Let $\varepsilon>0, \alpha>1$, and write $k_{n}=\left[\alpha^{n}\right], n \geqq 1$. Now, by (11) and (12),

$$
\begin{gathered}
\sum_{n=1}^{\infty} P\left(\left|S_{k_{n}}^{*}-T_{k_{n}}\right|>k_{n} \varepsilon\right) \leqq c \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} E\left(S_{k_{n}}^{*}-T_{k_{n}}\right)^{2} \leqq \\
\leqq c \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \sum_{i=1}^{k_{n}} E Z_{i}^{2}+c \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty}\left|E\left(Z_{i} Z_{j}\right)\right| \leqq c \sum_{i=1}^{\infty} \frac{E Z_{i}^{2}}{i^{2}}+c \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}}<\infty
\end{gathered}
$$

where c denotes a constant, possibly different at each appearance. By the BorelCantelli lemma,

$$
\frac{S_{k_{n}}^{*}-T_{k_{n}}}{k_{n}} \rightarrow 0 \quad \text { a.s. }
$$

By (10) and (13), $\frac{S_{k_{n}}}{k_{n}} \rightarrow \beta$ a.s. By monotonicity of $\left\{S_{n}\right\}$, we get

$$
\frac{1}{\alpha} \beta \leqq \varliminf_{n} \frac{S_{n}}{n} \leqq \varlimsup_{\boldsymbol{n}} \frac{S_{n}}{\boldsymbol{n}} \leqq \alpha \beta \quad \text { a.s. }
$$

Since this holds for all $\alpha>1$, we conclude $\frac{S_{n}}{n} \rightarrow \beta$ a.s.
Remark. With slight modifications, both proofs will work under the weaker hypothesis that $\left\{X_{n}\right\}$ contains a subsequence $\left\{Y_{n}\right\}$ such that $Y_{n} \rightarrow \mu, \int|x| d \mu(x)<\infty$. (Cf. Aldous [1].)

References

[1] D. J. Aldous, Limit theorems for subsequences of arbitrarily-dependent sequences of random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 40 (1977), 59-82.
[2] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 55 (1981), 119-122.
[3] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hung., 18 (1967), 217-229.
[4] Pál Révész, The Laws of Large Numbers, Academic Press (New York-London, 1968).
(Received January 19, 1984)

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
COLUMBUS, OH 43210
U.S. A.

A RULE OF SIGNS FOR REAL EXPONENTIAL POLYNOMIALS

J. STEINIG (Genève)

1. Introduction. A real exponential polynomial is given by $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, where λ_{i} are distinct real numbers and P_{i} are real polynomials. Some classical results provide upper bounds on $Z(f)$, the number of real zeros of f (each counted according to its multiplicity). In the particular case that the P_{i} are non-zero constants, say $P_{i}=a_{i}(i=1, \ldots, N)$, Laguerre's rule of signs [1] bounds $Z(f)$ by the number of changes of sign in the sequence a_{1}, \ldots, a_{N}. This number, which we denote by $W\left(a_{1}, \ldots, a_{N}\right)$, is defined as the number of pairs $a_{m-k}, a_{m}(k \geqq 1)$ such that $a_{m-k} a_{m}<0$ and $a_{m-v}=0$ for $v=1, \ldots, k-1$. With this notation, Laguerre's rule can be formulated as follows [2, V.77].

Theorem A (Laguerre). Let $f(x)=\sum_{i=1}^{N} a_{i} e^{\lambda_{i} x}$, where the a_{i} and λ_{i} are real, $a_{i} \neq 0 \quad(i=1, \ldots, N)$ and $\lambda_{1}<\ldots<\lambda_{N}$. Then $Z(f) \leqq W\left(a_{1}, \ldots, a_{N}\right)$, and $Z(f)$ is of the same parity as $W\left(a_{1}, \ldots, a_{N}\right)$.

In the general case we have [2, V.75]
ThEOREM B. Let $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, where P_{i} is a real polynomial of degree $n_{i}, \quad P_{i}(x) \neq 0(i=1, \ldots, N)$ and the λ_{i} are distinct real numbers. Then

$$
\begin{equation*}
Z(f) \leqq \sum_{i=1}^{N} n_{i}+N-1 \tag{1}
\end{equation*}
$$

Theorem B does not contain Theorem A, since $W\left(a_{1}, \ldots, a_{N}\right) \leqq N-1$. We will replace (1) by an estimate that implies it, and reduces to Laguerre's when each P_{i} is a constant. The proof uses Theorem A. Then we will discuss the sharpness, or possible lack of sharpness, of this bound for $Z(f)$.
2. A rule of signs. In (1), N-1 can be replaced by an expression that is equal to $W\left(a_{1}, \ldots, a_{N}\right)$ if $n_{i}=0$ and $P_{i}(x)=a_{i}$ for $i=1, \ldots, N$.

Theorem 1. Let $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, where P_{i} are real polynomials and $\lambda_{1}<\ldots$ $\ldots<\lambda_{N}$. Suppose no P_{i} is identically zero; let n_{i} be the degree and a_{i} the leading coefficient of P_{i}. Then,

$$
\begin{equation*}
Z(f) \leqq \sum_{i=1}^{N} n_{i}+W_{f} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{f}=W\left((-1)^{m_{1}} a_{1},(-1)^{m_{2}} a_{2}, \ldots,(-1)^{m_{N}} a_{N}\right) \tag{3}
\end{equation*}
$$

with $m_{k}=n_{1}+\ldots+n_{k}(1 \leqq k \leqq N)$. Moreover, both sides of (2) are of the same parity. Proof. Let
and for $2 \leqq k \leqq N$, let

$$
g_{1}(x)=e^{\lambda_{1} x}\left(e^{-\lambda_{1} x} f(x)\right)^{\left(n_{1}\right)}
$$

Then

$$
g_{k}(x)=e^{\lambda_{k} x}\left(e^{-\lambda_{k} x} g_{k-1}(x)\right)^{\left(n_{k}\right)}
$$

Then

$$
g_{N}(x)=b_{1} e^{\lambda_{1} x}+\ldots+b_{N} e^{\lambda_{N} x}
$$

where b_{1}, \ldots, b_{N} are non-zero constants, given by

$$
\begin{equation*}
b_{i}=\left(n_{i}\right)!a_{i} \prod_{\substack{j=1 \\ j \neq i}}^{N}\left(\lambda_{i}-\lambda_{j}\right)^{n_{j}} \tag{4}
\end{equation*}
$$

By Rolle's theorem, $Z(f) \leqq \sum_{i=1}^{N} n_{i}+Z\left(g_{N}\right)$, and by Laguerre's rule, $Z\left(g_{N}\right) \leqq$ $\leqq W\left(b_{1}, \ldots, b_{N}\right)$, whence

$$
Z(f) \leqq \sum_{i=1}^{N} n_{i}+W\left(b_{1}, \ldots, b_{N}\right) .
$$

Now from (4) we have

$$
\operatorname{sgn} b_{j}=(-1)^{n_{j+1}+\ldots+n_{N}} \operatorname{sgn} a_{j} \quad(1 \leqq j \leqq N-1)
$$

and $\operatorname{sgn} b_{N}=\operatorname{sgn} a_{N}$, so that on multiplying the sequence b_{1}, \ldots, b_{N} by $(-1)^{m_{N}}$ we get

$$
W\left(b_{1}, \ldots, b_{N}\right)=W\left((-1)^{m_{1}} a_{1}, \ldots,(-1)^{m_{N}} a_{N}\right)
$$

and (3) is proved. The statement concerning the parity of $Z(f)$ follows easily from [2, V.8], since $f(x) \sim a_{N} x^{N} e^{\lambda_{N} x}(x \rightarrow+\infty)$ and $f(x) \sim a_{1} x^{n_{1}} e^{\lambda_{1} x}(x \rightarrow-\infty)$.
3. Sharpness. If $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, we define $m_{k}(1 \leqq k \leqq N)$ and W_{f} as in Theorem 1, and set $d=m_{N}=\sum_{i=1}^{N} n_{i}$. The following result shows that equality can hold in (2).

ThEOREM 2. Make any choice of integers $N \geqq 1, W(0 \leqq W \leqq N-1)$ and $n_{i} \geqq 0$ $(i=1, \ldots, N)$ and of real numbers λ_{i} with $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}$. Prescribe $d+W$ real numbers x_{v}, with $x_{1} \leqq x_{2} \leqq \ldots \leqq x_{d+W}$. There exist N real polynomials $P_{i}(X) \not \equiv 0$ with $\operatorname{deg} P_{i}=n_{i}$, such that if $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, then $W_{f}=W, Z(f)=d+W_{f}$ and the real zeros of f are the x_{v}, each with a multiplicity equal to the number of its occurrences in the sequence $\left\{x_{v}\right\}_{v=1}^{d+W}$.

Proof. Consider the $d+N$ coefficients of P_{1}, \ldots, P_{N} as unknowns; let a_{i} denote the coefficient of $x^{n_{i}}$ in P_{i}. If we add to the conditions

$$
\begin{equation*}
f\left(\dot{x}_{v}\right)=0, \quad v=1, \ldots, d+W \tag{5}
\end{equation*}
$$

(modified appropriately if multiple zeros are prescribed) the $(N-1)-W$ equations

$$
\begin{equation*}
a_{i}-(-1)^{n_{i+1}} a_{i+1}=0, \quad i=1, \ldots, N-1-W \tag{6}
\end{equation*}
$$

we have a system of $d+N-1$ homogeneous linear equations for $d+N$ unknowns. We shall show that any non-trivial solution of this system is such that

$$
\begin{equation*}
a_{i} \neq 0 \text { for } i=1, \ldots, N . \tag{7}
\end{equation*}
$$

Then, the corresponding real exponential polynomial f has all the required properties. Indeed, each P_{i} has the prescribed degree n_{i}. Also, (7) implies that $W_{f}=$ $=W\left((-1)^{m_{1}} a_{1},(-1)^{m_{2}} a_{2}, \ldots,(-1)^{m_{N}} a_{N}\right)$. Then because of (6),

$$
\begin{equation*}
W_{f}=W\left((-1)^{m_{N-W}} a_{N-W}, \ldots,(-1)^{m_{N}} a_{N}\right) \leqq W . \tag{8}
\end{equation*}
$$

Finally, $Z(f) \leqq d+W_{f} \leqq d+W$ by (2) and (8), so that $Z(f)=d+W$ and $W=W_{f}$ because of (5).

To establish (7) we first observe that if $a_{i}=0$ for some i then either $P_{i}(X) \equiv 0$ or $\operatorname{deg} P_{i} \leqq n_{i}-1$. Consider now the a_{i} with $i \leqq N-W$; by (6), they are all zero if one of them is. But $a_{i}=0$ for each $i \leqq N-W$ would entail, by the preceding observation and (2), $\quad Z(f) \leqq \sum_{i=1}^{N} n_{i}-(N-W)+W_{f} \leqq d+W-1$, in contradiction with (5). Hence (7) holds for $i \leqq N-W$; the same type of argument as in (8) then yields $W_{f} \leqq W$. Consequently, if at least one a_{i} with $i>N-W$ were zero, (2) would give $Z(f) \leqq \sum_{i=1}^{N} n_{i}-1+W$, again contradicting (5). This completes the proof of (7).

In contrast to Theorem 2, we shall now show that equality can fail to hold in (2), by a margin as wide as we please. (Remember that $d+W_{f}-Z(f)$ must be even.) The notation is the same as in Theorem 2. (Theorem 2 is the case $M=0$ of Theorem 3; we treat that case separately since its proof is somewhat simpler.)

Theorem 3. Choose integers $N \geqq 1, W(0 \leqq W \leqq N-1), n_{i} \geqq 0(i=1, \ldots, N)$ and $M(M$ even, $0 \leqq M \leqq d+W)$, and reals $\lambda_{i}\left(\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}\right)$. Prescribe $d+W-M$ real numbers x_{v}, with $x_{1} \leqq x_{2} \leqq \ldots \leqq x_{d+W-M}$. There exist N real polynomials $P_{i}(x) \neq 0$ with $\operatorname{deg} P_{i}=n_{i}$ such that if $f(x)=\sum_{i=1}^{N} P_{i}(x) e^{\lambda_{i} x}$, then $W_{f}=W, Z(f)=d+W-M$ and each x_{v} is a zero of f with a multiplicity equal to the number of its occurrences in the sequence $\left\{x_{v}\right\}_{v=1}^{d+W-M}$.

Proof. We may assume $\lambda_{1}>0$. We also assume $x_{v}<x_{v+1}$ for all v (the proof goes through mutatis mutandis in case of multiple zeros). Choose some $x^{*}>x_{d+W-M}$, and consider the following system of $d+N-1$ homogeneous linear equations for the $d+N$ coefficients of the P_{i} :

$$
\begin{equation*}
f\left(x_{v}\right)=0, \quad v=1, \ldots, d+W-M, \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
a_{i}-(-1)^{n_{i+1}} a_{i+1}=0, \quad i=1, \ldots, N-1-W, \tag{10}\\
f^{(k)}\left(x^{*}\right)=0, \quad k=1, \ldots, M . \tag{11}
\end{gather*}
$$

Any non-trivial solution of this system is such that $a_{i} \neq 0$ for $1 \leqq i \leqq N$. To see this, we consider f^{\prime}. Since $\lim _{x \rightarrow-\infty} f(x)=0$, and because of (9), f^{\prime} has at least $d+W-M$ zeros on $\left(-\infty, x_{d+W}-M\right)$ [2, V.16]. With (11) it follows that $Z\left(f^{\prime}\right) \geqq d+W$.

Now $f^{\prime}(x)=\sum_{i=1}^{N} Q_{i}(x) e^{\lambda_{i} x}$ with $Q_{i}(x)=\lambda_{i} P_{i}(x)+P_{i}^{\prime}(x) ;$ since $\lambda_{i} \neq 0$, either $Q_{i}(x) \equiv P_{i}(x) \equiv 0$, or $\operatorname{deg} Q_{i}=\operatorname{deg} P_{i}$. On combining this with (2) we see that $a_{i}=0$ for all $i \leqq N-W$ would imply $Z\left(f^{\prime}\right) \leqq d-(N-W)+W_{f} \leqq d+W-1$, which is not true. Hence $a_{i} \neq 0$ for $i \leqq N-W$, by (10), and $W_{f^{\prime}} \leqq W$ (the sequence involved has at most N terms, and the first $N-W$ have the same sign). This in turn implies $a_{i} \neq 0$ for $N-W<i \leqq N$ (else $\left.Z\left(f^{\prime}\right) \leqq d-1+W\right)$. So $a_{i} \neq 0$, and $\operatorname{deg} P_{i}=n_{i}$, for each i. Also, $W_{f}=W_{f^{\prime}}\left(\lambda_{i} a_{i} \neq 0\right.$, so $\lambda_{i} a_{i}$ is the leading coefficient of Q_{i}; and $\left.\lambda_{i}>0\right)$. Then, $d+W \leqq Z\left(f^{\prime}\right) \leqq d+W_{f}$, $\leqq d+W$ gives $W_{f}=W$.

It remains to show that $Z(f)=d+W-M$. If not, then f would have at least 2 more zeros, because of the parity statement in Theorem $1\left(W=W_{f}\right.$ and M is even). But then f^{\prime} would have a zero distinct from those already enumerated, which is impossible. This concludes the proof.

References

[1] E. Laguerre, Sur la théorie des équations numériques, J. Math. pures appl. (3e série) 9 (1883), 99-146 (also in Oeuvres I, Gauthier-Villars, Paris, 1898, 3-47).
[2] G. Pólya and G. Szegố, Problems and Theorems in Analysis, Vol. II, Springer (Berlin, Heidelberg, New York, 1976).

ON THE CONVERGENCE OF EIGENFUNCTION EXPANSION IN THE NORM OF SOBOLEFF SPACES

I. JOÓ (Budapest)

1. Let $S_{k} \subset R^{n}(n \geqq 3 ; k=1, \ldots, l)$ be manifolds of dimension $\operatorname{dim} S_{k}=m_{k} \equiv$ $\leqq n-3$ having smooth projection to $R^{m_{k}}$, i.e. there exist coordinates $(\xi, y)=$ $=\left(\xi_{1}, \ldots, \xi_{m_{k}} ; y_{1}, \ldots, y_{n-m_{k}}\right)$ and functions $\varphi_{j}^{k} \in C^{1}\left(R^{\left.m_{k} \rightarrow R^{n-m_{k}}\right)}\right.$ such that

$$
S_{k}=\left\{(\xi, y) \in R^{n}: y_{j}=\varphi_{j}^{k}(\xi),\left|\nabla \varphi_{j}^{k}(\xi)\right| \leqq C_{j}^{k}\right\}, \quad S=\bigcup_{k=1}^{l} S_{k} .
$$

Let $q \in C^{\infty}\left(R^{n} \backslash S\right)$ be a real-valued function, for which

$$
\begin{equation*}
\left|D^{\alpha} q(x)\right| \leqq C[\operatorname{dist}(x, S)]^{-\tau-|\alpha|}, \quad\left(x \in R^{n}, 0 \leqq|\alpha| \leqq 1\right), \tag{1}
\end{equation*}
$$

holds, for some $\tau \geqq 0$.
Consider the Schrödinger operator $L_{0}=-\Delta+q(x) \cdot, D\left(L_{0}\right)=C_{0}^{\infty}\left(R^{n}\right)$. Such operators occur as the Hamiltonian of molecules [6-12]. E.g., in the case of Li (or H_{2}) molecule we have $n=6, m=3, x \in R^{3}, y \in R^{3}, q(x, y)=c_{1}|x|^{-1}+c_{2}|y|^{-1}+$ $+c_{3}|x-y|^{-1}, H=-\Delta+q(x, y) \cdot$. In the case of homogeneous and isotropic space the manifolds S_{k} are subspaces in R^{n}.

It is easy to see that for $\operatorname{dim} S \leqq n-3$ we have $q \in L_{\mathrm{loc}}^{2}\left(R^{n}\right)$ if $\tau<3 / 2$. Indeed, taking into account

$$
l^{-1} \sum_{k=1}^{l}\left[\operatorname{dist}\left(x, S_{k}\right)\right]^{-1} \leqq[\operatorname{dist}(x, S)]^{-1} \leqq \sum_{k=1}^{l}\left[\operatorname{dist}\left(x, S_{k}\right)\right]^{-1},
$$

it is enough to prove this for $S=S_{k}, \operatorname{dim} S=m \leqq n-3$,

$$
S=\left\{(\xi, y) \in R^{n}: y_{j}=\varphi_{j}(\xi),\left|\nabla \varphi_{j}(\xi)\right| \leqq C_{j} ; j=1, \ldots, n-m\right\}
$$

Using the coordinate transformation $(\xi, y) \rightarrow(\xi, z), z_{j}=y_{j}-\varphi_{j}(\xi)$ we have for the Jacobian $D(\xi, z) / D(\xi, y)=1$ and for any $0 \leqq \eta \in C_{0}^{\infty}\left(R^{n}\right)$

$$
\begin{equation*}
\int_{R^{n}}|q(x)|^{2} \eta(x) d x=\int_{R^{m}} d \xi \int_{R^{n-m}}|q(\xi, z+\varphi(\xi))|^{2} \eta(\xi, z+\varphi(\xi)) d z, \tag{2}
\end{equation*}
$$

where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n-m}\right) \in C^{1}\left(R^{m} \rightarrow R^{n-m}\right)$. On the other hand for any $x=(\xi, y) \in R^{n}$ and $u=(\tilde{\xi}, \varphi(\tilde{\xi})) \in S$ we have

$$
\begin{aligned}
&|y-\varphi(\xi)| \leqq|y-\varphi(\tilde{\xi})|+|\varphi(\tilde{\xi})-\varphi(\tilde{\xi})| \leqq|y-\varphi(\tilde{\xi})|+\left|\nabla \varphi\left(\xi^{*}\right)\right| \cdot|\tilde{\xi}-\xi| \leqq \\
& \leqq C(|y-\varphi(\tilde{\xi})|+|\tilde{\xi}-\xi|),
\end{aligned}
$$

hence

$$
|y-\varphi(\xi)|^{2} \leqq 2 C^{2}\left(|y-\varphi(\tilde{\xi})|^{2}+|\tilde{\xi}-\xi|^{2}\right)=2 C^{2}|x-u|^{2},
$$

i.e. $|y-\varphi(\xi)| \leqq C \operatorname{dist}(x, S)$, consequently

$$
|q(\xi, z+\varphi(\xi))| \leqq C[\operatorname{dist}((\xi, z+\varphi(\xi)), S)]^{-\tau} \leqq C|z|^{-\tau} .
$$

According to (2) we have

$$
\begin{equation*}
\int_{R^{n}}|q(x)|^{2} \eta(x) d x \leqq C \int_{R^{m}} d \xi \int_{R^{n-m}}|z|^{-2 \tau} \eta(\xi, z+\varphi(\xi)) d z<\infty \tag{3}
\end{equation*}
$$

if $2 \tau<n-m$. But we assume in this work that $m \leqq n-3$, i.e. $n-m \geqq 3$ and hence for $\tau<3 / 2$ we get $2 \tau<3 \leqq n-m$. It follows from Lemma 3 of the present work that the operator L_{0} is bounded below, i.e. $\left(L_{0} f, f\right)=(-\Delta f, f)+(g f, f)=$ $=(\nabla f, \nabla f)+(q f, f) \geqq-c(f, f)$ for every $f \in C_{0}^{\infty}\left(R^{n}\right)$ and hence, by a theorem of K . O. Friedrichs [3] the operator L_{0} has a selfadjoint extension L with $L \geqq-c I$. Denote $L=\int_{-c}^{\infty} \lambda d E_{\lambda}$ the spectral expansion of L and consider for any $f \in L_{2}\left(R^{n}\right)$ the expan$\operatorname{sion}{ }^{-c} E_{\lambda} f$.

It is proved in [5]: if $\tau=1$ and $0 \leqq s \leqq 1$, then $\left\|E_{\lambda} f-f\right\|_{H^{s}\left(R^{n}\right)} \rightarrow 0$ as $\lambda \rightarrow \infty$. $H^{s}\left(R^{n}\right)$ denotes the space of functions from $L_{2}\left(R^{n}\right)$, with the norm [6, 2.3.3]

$$
\|f\|_{H^{s}\left(R^{n}\right)}:=\left\|(I-\Delta)^{s / 2} f\right\|_{L_{2}\left(R^{n}\right)}=\left\|\left(1+\left.|\xi|\right|^{2}\right)^{s / 2} \hat{f}(\xi)\right\|_{L_{2}\left(R^{n}\right)} .
$$

Later on this theorem was extended in [4] for $\tau=1$ and $0 \leqq s \leqq 2$. The localization of E_{λ} was investigated in [8]. Our aim is to prove the following

Theorem. Suppose $\tau \in[0,3 / 2)$ and $0 \leqq s \leqq 2$ or $\tau \in[0,1 / 2)$ and $0 \leqq s<\frac{7}{2}-\tau$. Then, for any $f \in H^{s}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\left\|E_{\lambda} f-f\right\|_{H^{\delta}\left(R^{n}\right)} \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow \infty . \tag{4}
\end{equation*}
$$

It follows from Lemma 3 below - among others - taking into account the Kato-Rellich theorem [11, X.2] that the operator L_{0} is essentially selfadjoint, further $D\left(\bar{L}_{0}\right)=D(L)=H^{2}\left(R^{n}\right)$. Our theorem seems to be true for arbitrary $\tau \in[0,3 / 2)$ and $0 \leqq s<\frac{7}{2}-\tau$ but our Lemma 9 is not enough to prove this. According to the ideas of L. L. Stachó [15] this last result does not seem to be refinable, namely we can not replace $\tau=3 / 2$ or $s=\frac{7}{2}-\tau$.

The author is indebted to professor S. A. Alimov and to V. S. Serov for their valuable suggestions.
2. For the proof we need some lemmas.

Lemma 1. Let $k \geqq 3,1 \leqq p<k, 0 \leqq s<k / p$. Then for any $f \in L_{p}^{s}\left(R^{k}\right)$

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)} \equiv C\|f\|_{L_{p}^{s}\left(R^{k}\right)} \tag{5}
\end{equation*}
$$

holds.
Here and below in this work C is a constant independent of f and not necessarily the same in each occurrences.

Proof. Using the notation $I:=\left\||x|^{-s} f(x)\right\|_{\mathcal{L}_{p}\left(R^{k}\right)}^{p}$ we get by Hölder's inequality

$$
\begin{gathered}
I=\int_{R^{k}}|x|^{-s p}|f(x)|^{p} d x \leqq p \int_{\theta} d \theta \int_{0}^{\infty} r^{k-1-s p} \int_{r}^{\infty}|f|^{p-1}\left|\frac{\partial f}{\partial t}\right| d t d r= \\
=\frac{p}{k-s p} \int_{R^{k}}|x|^{-s p+1}|f|^{p-1}\left|\left(\nabla_{x} f, \frac{x}{|x|}\right)\right| d x \leqq \\
\leqq C\left(\int_{R^{k}}\left(|x|^{-s}|f(x)|\right)^{p} d x\right)^{(p-1) / p}\left(\int_{R^{k}}|\nabla f|^{p}|x|^{(-s+1) p} d x\right)^{1 / p}= \\
=C I^{(p-1) / p}\left(\int_{R^{k}}|\nabla f|^{p}|x|^{(-s+1) p} d x\right)^{1 / p}
\end{gathered}
$$

hence

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)} \leqq C\left\||x|^{(-s+1)} \nabla f(x)\right\|_{L_{p}\left(R^{k}\right)} \tag{6}
\end{equation*}
$$

If s is an integer, then iterating (6) s times we get (5).
Now define

$$
s_{0}:=\left\{\begin{array}{l}
\frac{k}{p}-1, \text { when } \frac{k}{p} \text { is an integer } \\
{\left[\frac{k}{p}\right] \text { otherwise }}
\end{array}\right.
$$

Taking into account Theorem 4.3.2/2 of Triebel [6]:
we obtain

$$
L_{p}^{s}\left(R^{k}\right)=\left(L_{p}\left(R^{k}\right), W_{p}^{s_{0}}\left(R^{k}\right)\right), \quad s=\theta s_{0}, \quad 0<\theta<1
$$

Now let $s \in\left(s_{0}, k / p\right)$. It follows from (7) that for $1 \leqq p_{0}<k / s_{0}$

$$
\begin{equation*}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p_{0}}\left(R^{k}\right)} \leqq C\|f\|_{L_{p_{0}}^{s_{0}}\left(R^{k}\right)} \tag{8}
\end{equation*}
$$

holds. On the other hand, for any $1 \leqq p_{1}<k /\left(s_{0}+1\right)$ we get from (7)
(9)

$$
\begin{aligned}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p_{1}}^{1}\left(R^{k}\right)} & \leqq C\left[\left\||x|^{-s_{0}} f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}+\left\||x|^{-s_{0}} \nabla f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}+\left\||x|^{-s_{0}-1} f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}\right] \leqq \\
& \leqq C\left[\|f\|_{L_{p_{1}}^{s_{0}\left(R^{k}\right)}}+\|f\|_{L_{p_{1}}^{s_{0}+1}\left(R^{k}\right)}\right] \leqq C\|f\|_{L_{p_{1}}^{s_{0}+1}\left(R^{k}\right)}
\end{aligned}
$$

Taking into account $\left(L_{p_{0}}, L_{p_{1}}^{1}\right)_{\delta}=L_{p}^{\delta}\left(0<\delta<1, p^{-1}=(1-\delta) p_{0}^{-1}+\delta p_{1}^{-1}\right)$ (cf. Triebel [6], 2.4.2/1) we obtain from (8) and (9) the estimate

$$
\begin{equation*}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p}^{\delta}\left(R^{k}\right)} \leqq C\|f\|_{L_{p}^{s_{0}+\delta_{\left(R^{k}\right)}}} \quad(\forall 0<\delta<1) \tag{10}
\end{equation*}
$$

Now, using (10) we prove (5) for $s_{0}<s<k / p$. Define $\delta=s-s_{0}$. It is easy to see that $\delta \in(0,1)$. Indeed, if k / p is an integer, then $\delta=s-s_{0}=\left(\frac{k}{p}-\varepsilon\right)-\left(\frac{k}{p}-1\right)=1-\varepsilon$
$\left(s=\frac{k}{p}-\varepsilon, 0<\varepsilon<1\right)$. If k / p is not an integer, then $\delta=\left(\frac{k}{p}-\varepsilon\right)-\left[\frac{k}{p}\right]<1-\varepsilon$. Consequently, from (10) we get

$$
\begin{aligned}
& \left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)}=\left\||x|^{-\delta}\left(|x|^{-s_{0}} f(x)\right)\right\|_{L_{p}\left(R^{k}\right)} \leqq \\
& \leqq C\left\||x|^{-s_{0}} f(x)\right\|_{L_{p}^{\delta}\left(R^{k}\right)} \leqq C\|f\|_{L_{p}^{s}\left(R^{k}\right)} .
\end{aligned}
$$

Lemma 1 is proved.
Lemma 2. For any natural number $k \geqq 3,0 \leqq s<3 / 2$ and $f \in C_{0}^{\infty}\left(R^{k}\right)$

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\|f\|_{H^{1}\left(R^{k}\right)}\|f\|_{H^{2}\left(R^{k}\right)} \tag{11}
\end{equation*}
$$

Proof. First we prove (11) for $s \geqq 1$. Using (6) at $p=2$ and taking into account the inequality $|x|^{-2 s+2} \leqq|x|^{-1}+1(0 \leqq 2 s-2 \leqq 1)$ we get

$$
\begin{aligned}
& \left\||x|^{-s} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\left\||x|^{-s+1} \nabla f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq \\
& \quad \leqq C\left[\left\|\left.x\right|^{-1 / 2} \nabla f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2}+\|\nabla f(x)\|_{L_{2}\left(R^{k}\right)}^{2}\right] .
\end{aligned}
$$

Hence, taking into account the following estimate (cf. [4, Lemma 1])

$$
\begin{equation*}
\left\||x|^{-1 / 2} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\|f\|_{H^{1}\left(R^{k}\right)}\|f\|_{L_{2}\left(R^{k}\right)} \quad\left(k \geqq 3, f \in C_{0}^{\infty}\left(R^{k}\right)\right) \tag{12}
\end{equation*}
$$

we obtain (11) for the case $1 \leqq s<3 / 2$. If $0 \leqq s \leqq 1$, then (11) follows from (5) immediately. Lemma 2 is proved.

Lemma 3. For any $\tau \in[0,3 / 2)$ and $\varepsilon>0$ there exists $C(\varepsilon)>0$ such that for every $f \in C_{0}^{\infty}\left(R^{n}\right)(n \geqq 3)$ the following estimate holds:

$$
\begin{equation*}
\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)}^{2} \tag{13}
\end{equation*}
$$

Proof. Using (3) for $\eta=|f|^{2}$, applying (11) for $k=n-m$ and taking into account the inequality

$$
\begin{equation*}
a b \leqq \varepsilon a^{2}+\frac{1}{4 \varepsilon} b^{2} \quad(a, b, \varepsilon>0) \tag{14}
\end{equation*}
$$

we get

$$
\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq C\|f\|_{H^{1}\left(R^{n}\right)}\|f\|_{H^{2}\left(R^{n}\right)} \leqq \frac{\varepsilon}{2}\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C(\varepsilon)\|f\|_{H^{1}\left(R^{n}\right)}^{2}
$$

Hence, taking into consideration the estimate

$$
\|f\|_{H^{1}\left(R^{n}\right)}^{2} \leqq \varepsilon_{1}\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C\left(\varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

we obtain

$$
\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \frac{\varepsilon}{2}\|f\|_{H^{2}\left(R^{n}\right)}^{2}+\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C\left(\varepsilon_{1}\right) C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)}^{2} .
$$

If we choose ε_{1} so that $\varepsilon_{1} C(\varepsilon)<1 / 2$, then (13) follows. Lemma 3 is proved.
Corollary. For any $\tau \in[0,3 / 2)$ the operator L_{0} is essentially selfadjoint and $D\left(\bar{L}_{0}\right)=D(L)=H^{2}\left(R^{n}\right)$.

Proof. From (13) we obtain for any $\varepsilon>0$ the estimate

$$
\begin{equation*}
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|(I-\Delta) f\|_{L_{2}\left(R^{n}\right)}+C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)} \tag{15}
\end{equation*}
$$

Since $I-\Delta$ is essentially selfadjoint and $D(\overline{I-\Delta})=H^{2}\left(R^{n}\right)$, the Corollary follows by Kato-Rellich's theorem [11, X.2].

Remark. For the essential selfadjointness of L_{0} it is enough to prove the estimate

$$
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{2}\left(R^{n}\right)}\|f\|_{H^{2-\delta}\left(R^{n}\right)}
$$

for some $\delta>0$, because

$$
\begin{gathered}
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}+C(\varepsilon)\|f\|_{H^{2-\delta}\left(R^{n}\right)} \leqq \\
\leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}+\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}+C\left(\varepsilon_{1}\right) C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)} .
\end{gathered}
$$

Lemma 4. For any $f \in H^{2}\left(R^{n}\right)$

$$
\begin{equation*}
\|L f\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{2}\left(R^{n}\right)} \tag{16}
\end{equation*}
$$

Proof. Using (13) we obtain for any $f \in H^{2}\left(R^{n}\right)$

$$
\begin{gathered}
\|L f\|_{L_{2}\left(R^{n}\right)}=\|-\Delta f+q f\|_{L_{2}\left(R^{n}\right)} \leqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}+\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \\
\leqq C\left[\|f\|_{H^{2}\left(R^{n}\right)}+\|f\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\|f\|_{H^{2}\left(R^{n}\right)} .
\end{gathered}
$$

Lemma 4 is proved.
Lemma 5. There exist constants $C_{1}>0$ and $C_{2}>0$ such that for every $f \in H^{2}\left(R^{n}\right)$

$$
\begin{equation*}
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq C_{1}\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C_{2}\|f\|_{L_{2}\left(R^{n}\right)}^{2} . \tag{17}
\end{equation*}
$$

Proof. Using (14), applying the Cauchy-Bunyakovsky inequality, further taking into account the identity
we obtain

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2}=\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-2(q f, \Delta f)+\|q f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

and

$$
|(q f, \Delta f)| \leqq\|q f\|_{L_{2}\left(R^{n}\right)}\|\Delta f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2!}+C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

$$
\begin{gathered}
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-2|(q f, \Delta f)|+\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq \\
\geqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-\varepsilon\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq \\
\geqq(1-\varepsilon)\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2} .
\end{gathered}
$$

Now applying (13) for some $\varepsilon_{1}>0$, it follows

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq(1-\varepsilon)\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C\left(\varepsilon, \varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2} .
$$

On the other hand

$$
\|\Delta f\|_{L_{2}\left(R^{n}\right)}=\|\Delta f-f+f\|_{L_{2}\left(R^{n}\right)} \geqq\|(\Delta-I) f\|_{L_{2}\left(R^{n}\right)}-\|f\|_{L_{2}\left(R^{n}\right)}
$$

consequently

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq\left(1-\varepsilon-\varepsilon_{1} C(\varepsilon)\right)\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C\left(\varepsilon, \varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

and hence (17) follows if we set $\varepsilon=1 / 2$ and ε_{1} is small enough. Lemma 5 is proved.

Lemma 6. There exists $\mu_{0}>0$ such that for any $\mu \geqq \mu_{0}$ and $f \in C_{0}^{\infty}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\left\|L_{\mu} f\right\|_{L_{2}\left(R^{n}\right)} \geqq C_{\mu}\|f\|_{H^{2}\left(R^{n}\right)} \quad\left(L_{\mu}:=L+\mu I\right) \tag{18}
\end{equation*}
$$

The constant C_{μ} does not depend on f.
Proof. It follows from (17) using the spectral theorem that

$$
\begin{gathered}
\|f\|_{H^{2}\left(R^{n}\right)}^{2} \leqq C_{1}\|L f\|_{L_{2}\left(R^{n}\right)}^{2}+C_{2}\|f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \\
\leqq C \int_{-C_{0}}^{\infty}\left(\lambda^{2}+1\right) d\left(E_{\lambda} f, f\right) \leqq \int_{-C_{0}}^{\infty}(\lambda+\mu)^{2} d\left(E_{\lambda} f, f\right)=C\left\|L_{\mu} f\right\|_{L_{2}\left(R^{n}\right)}^{2},
\end{gathered}
$$

if $\mu \geqq \mu_{0}$ and μ_{0} is large enough, because in this case we have $\lambda^{2}+1 \leqq(\lambda+\mu)^{2}$ ($\lambda \geqq-C_{0}, \mu \geqq \mu_{0}$). Lemma 6 is proved.

Lemma 7 [4, Lemma 6]. Let A and B be strongly positive selfadjoint operators in the Hilbert space H. Suppose that the conditions

$$
\begin{equation*}
D(B) \subset D(A) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\|A f\|_{H} \leqq C\|B f\|_{H} \quad(f \in D(B)), \tag{20}
\end{equation*}
$$

are fulfilled. Then for any $\theta \in[0,1]$ we have

$$
\begin{equation*}
\left\|A^{\theta} f\right\|_{H} \leqq C_{\theta}\left\|B^{\theta} f\right\|_{H} \quad(f \in D(B)) . \tag{21}
\end{equation*}
$$

Lemma 8. For any $\mu \geqq \mu_{0}, s \in\left[0, \frac{7}{2}-\tau\right)$ and $f \in H^{s}\left(R^{n}\right)$

$$
\begin{equation*}
\left\|L_{\mu}^{s / 2} f\right\|_{L_{2}\left(R^{n}\right)} \leqq C_{s}\|f\|_{H^{s}\left(R^{n}\right)} \tag{22}
\end{equation*}
$$

Proof. First we prove (22) for $0 \leqq s \leqq 2$. It is trivial for $s=0$ and it was proved in Lemma 4 for $s=2$. Now apply Lemma 7 for $A=L_{\mu}, B=I-\Delta, D(B)=H^{2}\left(R^{n}\right)$. We obtain:

$$
\begin{equation*}
\left\|L_{\mu}^{\theta} f\right\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{20}\left(R^{n}\right)} \quad(0 \leqq \theta \leqq 1) . \tag{23}
\end{equation*}
$$

Now let $2<s<\frac{7}{2}-\tau$. Using Lemma 1 we obtain for any $p_{0}<3 / \tau$ the estimate

$$
\begin{gather*}
\left\|L_{\mu} f\right\|_{L_{p_{0}}\left(R^{n}\right)} \leqq C\left[\|f\|_{L_{p_{0}}\left(R^{n}\right)}+\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)}+\|q f\|_{L_{p_{0}}\left(R^{n}\right)}\right] \leqq \tag{24}\\
\leqq C\left[\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)}+\|f\|_{L_{p_{0}}^{\tau}\left(R^{n}\right)}\right] \leqq C\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)} .
\end{gather*}
$$

On the other hand, using Lemma 1 once again, we obtain for any $p_{1}<3 /(\tau+1)$ and $f \in L_{p_{1}}^{3}\left(R^{n}\right)$ the estimate

$$
\begin{gather*}
\left\|\nabla L_{\mu} f\right\|_{L_{p_{1}}\left(R^{n}\right)} \leqq C\left[\|f\|_{L_{p_{1}}^{3}\left(R^{n}\right)}+\|(\nabla q) f\|_{L_{p_{1}}\left(R^{n}\right)}+\right. \tag{25}\\
+\|q \nabla f\|_{L_{p_{1}}\left(R^{n}\right)} \leqq \leqq\left[\|f\|_{L_{p_{1}}^{3}\left(R^{n}\right)}+\|f\|_{L_{p_{1}}^{1+\tau}\left(R^{n}\right)}\right] \leqq C\|f\|_{L_{p_{1}\left(R^{n}\right)}^{3}} .
\end{gather*}
$$

Using (24), (25), the equality $\left(L_{p_{0}}, L_{p_{1}}^{1}\right)_{\delta}=L_{p}^{\delta}\left(0<\delta<1, p^{-1}=(1-\delta) p_{0}^{-1}+\delta p_{1}^{-1}\right)$ of Triebel [6, 2.4.2/1] and taking into account that in our case $p<3 /(\tau+\delta)$, we obtain for any $\delta \in(0,1)$ and $f \in L_{p}^{2+\delta}\left(R^{n}\right)$ the estimate

$$
\begin{equation*}
\left\|L_{\mu} f\right\|_{L_{p}^{\delta}\left(R^{n}\right)} \leqq C\|f\|_{L_{p}^{2+\delta}\left(R^{n}\right)} \tag{26}
\end{equation*}
$$

Now we are in the position to prove (22) for $2<s<\frac{7}{2}-\tau$. Set $\delta:=s-2$. Then $\delta<\frac{7}{2}-\tau-2<\frac{3}{2}$, further we obtain from (26) that for any $f \in H^{s}\left(R^{n}\right)$ we have $L_{\mu} f \in H^{\delta}\left(R^{n}\right)$. Using (23) and then (26) we obtain

$$
\left\|L_{\mu}^{s / 2} f\right\|_{L_{2}\left(R^{n}\right)}=\left\|L_{\mu}^{\delta / 2}\left(L_{\mu} f\right)\right\|_{L_{2}\left(R^{n}\right)} \leqq C\left\|L_{\mu} f\right\|_{L_{2}^{\delta}\left(R^{n}\right)} \leqq C\|f\|_{L_{2}^{2+\delta}\left(R^{n}\right)}=C\|f\|_{H^{s}\left(R^{n}\right)} .
$$

Lemma 8 is proved.
Lemma 9. Suppose $0 \leqq s \leqq 2,0 \leqq \tau<3 / 2$ or $0 \leqq \tau<1 / 2$ and $0 \leqq s<\frac{7}{2}-\tau$. Then for any $\mu \geqq \mu_{0}$ and $g \in H^{s}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\|g\|_{H^{s}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)} . \tag{27}
\end{equation*}
$$

Proof. (27) is trivial for $s=0$ and it was proved in Lemma 6 for $s=2$. Hence, using Lemma 7 for $B=L_{\mu}, A=I-\Delta, D(A)=H^{2}\left(R^{n}\right)$, we obtain

$$
\begin{equation*}
\|g\|_{H^{s}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)} \quad(0 \leqq s \leqq 2,0 \leqq \tau<7 / 2-\tau) . \tag{28}
\end{equation*}
$$

Now suppose $0 \leqq \tau<1 / 2$ and $2<s<\frac{7}{2}-\tau$. Let $\delta:=s-2$. For any $g \in C_{0}^{\infty}\left(R^{n}\right)$ we have obviously by (28)

$$
\begin{equation*}
\|g\|_{H^{s}\left(R^{n}\right)}=\|(I-\Delta) g\|_{H^{\delta}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{\delta / 2}(I-\Delta) g\right\|_{L_{2}\left(R^{n}\right)} \leqq \tag{29}
\end{equation*}
$$

$$
\begin{gathered}
\leqq C\left[\left\|L_{\mu}^{\delta / 2} g\right\|_{L_{2}\left(R^{n}\right)}+\left\|L_{\mu}^{\delta / 2}\left(L_{\mu}-q\right) g\right\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\left[\left\|L_{\mu}^{-1}\left(L_{\mu}^{s / 2} g\right)\right\|_{L_{2}\left(R^{n}\right)}+\left\|L_{\mu}^{\delta / 2}(q g)\right\|_{L_{2}\left(R^{n}\right)}+\right. \\
\left.+\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\left[\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)}+\left\|L_{\mu}^{\delta / 2}(q g)\right\|_{L_{2}\left(R^{n}\right)}\right] .
\end{gathered}
$$

Now we estimate $\left\|L_{\mu}^{\delta / 2}(q g)\right\|_{L_{2}}$. We obtain from (3) and (5)

$$
\begin{equation*}
\|q g\|_{L_{2}\left(R^{n}\right)} \leqq C\|g\|_{H^{\tau}\left(R^{n}\right)} \quad(0 \leqq \tau<3 / 2) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g q\|_{H^{1}\left(R^{n}\right)} \leqq\|q \nabla g\|_{L_{2}}+\|\nabla q g\|_{L_{2}}+\|g q\|_{L_{2}} \leqq C\|g\|_{H^{\tau+1}\left(R^{n}\right)} \quad(0 \leqq \tau<1 / 2) . \tag{31}
\end{equation*}
$$

We apply the interpolation theorem of Stein [13]. To this suppose δ is such that $\tau+\delta<3 / 2$ and choose $\varepsilon>0$ so that $\tau(\delta)=\tau$, where $\tau(z):=z(0,5-\varepsilon)+(1,5-\varepsilon)(1-z)$. Define the operators A_{z} and T_{z} as follows:

$$
A_{z} g:=|q(x)|^{\tau(z) / \tau}(\operatorname{sgn} q(x)) g(x), \quad T_{z} g:=(I-\Delta)^{z / 2} A_{z} g .
$$

From (30) and (31) we obtain for any $g \in C_{0}^{\infty}\left(R^{n}\right)$:
and

$$
\left\|T_{z} g\right\|_{L_{2}\left(R^{n}\right)}=\left\|A_{z} g\right\|_{L_{2}\left(R^{n}\right)} \leqq C\|g\|_{H^{3 / 2-\varepsilon}\left(R^{n}\right)} \quad(\operatorname{Re} z=0)
$$

$$
\left\|T_{z} g\right\|_{L_{2}\left(R^{n}\right)} \leqq\left\|A_{z} g\right\|_{H^{1}\left(R^{n}\right)} \leqq C\|g\|_{H^{3 / 2-\varepsilon}\left(R^{n}\right)} \quad(\operatorname{Re} z=1)
$$

hence by Stein's interpolation theorem [13] we get for $z=\delta$:

$$
\left\|T_{\delta} g\right\|_{L_{2}} \leqq C\|g\|_{H^{3 / 2-\varepsilon}}, \quad\left\|A_{\delta} g\right\|_{L_{2}} \leqq C\|g\|_{H^{3 / 2-\varepsilon}}
$$

i.e. using also (14) we obtain

$$
\|q g\|_{H^{\delta}\left(R^{n}\right)} \leqq \varepsilon\|g\|_{H^{2}\left(R^{n}\right)}+C(\varepsilon)\|g\|_{L_{2}\left(R^{n}\right)}
$$

Hence and from (29) the desired estimate (27) follows. Lemma 9 is proved.
Proof of the Theorem. Using (22) and (27) we obtain for $f \in H^{s}\left(R^{n}\right)$:

$$
\begin{aligned}
\left\|f-E_{\lambda} f\right\|_{H^{s}} & =\left\|L_{\mu}^{-s / 2} L_{\mu}^{s / 2}\left(I-E_{\lambda}\right) f\right\|_{H^{s}} \leqq \\
\leqq C\left\|L_{\mu}^{s / 2}\left(I-E_{\lambda}\right) f\right\|_{L_{2}} & =C\left\|\left(I-E_{\lambda}\right)\left(L_{\mu}^{s / 2} f\right)\right\|_{L_{2}} \rightarrow 0 \quad(\lambda \rightarrow \infty) .
\end{aligned}
$$

The Theorem is proved.
Remark. If the S_{k} 's are subspaces, then we can state the Theorem for any $\tau \in[0,3 / 2)$ and $s \in\left[0, \frac{7}{2}-\tau\right)$ because in this case we can prove Lemma 9 in a more general form. This follows from the following fact: if $g(z) \in C_{0}^{\infty}\left(R^{k} \backslash\{0\}\right)$ is a function for which $\left|D^{\alpha} g(z)\right| \leqq C|z|^{-\tau-|\alpha|}(z \neq 0)$ holds, then $g \in H^{s}\left(R^{n}\right)$ for any $s<\frac{k}{2}-$ $-\tau=: \delta$. For the proof of this fact it is enough to show that $g \in H_{1}^{k-\tau}\left(R^{k}\right)$ (here H denotes the Nikol'skiir's class of functions), because taking into account the well known imbeddings $H_{1}^{k-\tau} \subset H_{2}^{\delta} \subset B_{2,2}^{\delta-\varepsilon} \subset L_{2}^{\delta-\varepsilon}$ our statement follows. We use here the notations of [14]. For the proof we must show the estimate

$$
I:=\omega_{2}^{(2)}\left(D^{\alpha} g, t\right):=\sup _{|h| \leqq t} \int_{\Omega}\left|\Delta_{h}^{2} D^{\alpha} g\right| d z=O\left(t^{s-|\alpha|}\right) \quad(\operatorname{supp} g \subset \Omega)
$$

The desired estimate follows immediately for $|z|<2 h$ and $|z| \geqq 2 h$, resp. from the following estimates:

$$
\begin{gathered}
\sup _{|h| \leqq t} \int_{\Omega^{\prime}}\left|\Delta_{h}^{2} D^{\alpha} g(z)\right| d z \leqq 4 \sup _{|h| \leqq t} \int_{\Omega^{\prime}}\left|D^{\alpha} g(z)\right| d z \leqq \\
\leqq C \sup _{|h| \leqq t} \int_{0}^{2|h|}|z|^{-\tau-|\alpha|+k-1} d z=\sup _{|h| \leqq t} O\left(|h|^{k-\tau-|\alpha|}\right)= \\
=O\left(t^{s-|\alpha|}\right), \quad \Omega^{\prime}:=\{z \in \Omega:|z|<2|h|\} ; \\
\left|\Delta_{h}^{2} D^{\alpha} g\right|=\left|\sum_{i, j=1}^{k} \frac{\partial^{2}}{\partial z_{i} \partial z_{j}}\left(D^{\alpha} g\right)\left(z^{*}\right) h_{i} h_{j}\right| \leqq \\
\leqq C \sum_{|\beta|=2}\left(D^{\alpha+\beta} g\right)\left(z^{*}\right)|h|^{2}, \quad z^{*} \in[z-h, z+h],
\end{gathered}
$$

hence

$$
\begin{gathered}
I \leqq \sup _{|h| \leqq t}|h|^{2} \sum_{|\beta|=2} \int_{\Omega^{\prime \prime}}\left|D^{\alpha+\beta} g\right| d z+O\left(t^{s-|\alpha|}\right) \leqq \\
\leqq \sup _{|h| \leqq t} \int_{2|h|}^{A}|z|^{-\tau-|\alpha|-2+k-1} d z+O\left(t^{s-|\alpha|}\right)=O\left(t^{s-|\alpha|}\right), \quad \Omega^{\prime \prime}:=\{z \in \Omega ;|z| \geqq 2|h|\} .
\end{gathered}
$$

References

[1] G. Alexits, Convergence problems of orthogonal series (Budapest, 1960).
[2] V. A. Il'in, On convergence of expansions in eigenfunctions of the Laplace operator, Uspehi Mat. Nauk, 13 (1958), 87-180.
[3] F. Riesz et B. Sz.-Nagy, Leçons d'Analyse Fonctionelle, Akadémiai Kiadó (Budapest, 1952).
[4] S. A. Alimov, I. Joó, On the convergence of eigenfunction expansions in H^{s}-norm, Acta Sci. Math. (Szeged), 48 (1985), 5-12.
[5] Š. A. Alimov, M. Barnowska, On eigenfunction expansions connected with the Schrödinger operator, Slovak Math. Journal (to appear).
[6] H. Triebel, Interpolation theory - function spaces - differential operators, VEB Deutscher Verl. d. Wissenschaften (Berlin, 1978).
[7] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press (1958).
[8] A. R. Halmuhamedov, The conditions of convergence and localization of spectral expansions, Dissertation (Moscow, 1983).
[9] V. A. Il'in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace's operator, Uspehi Mat. Nauk, 23 (1968), 61-120.
[10] S̆. A. Alimov, Fractional powers of elliptic operators and isomorphism of classes of differentiable functions, Differencial'nye Uravnenija, 8 (1972), 1609-1626.
[11] M. Reed, B. Simon, Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press (New York, 1975).
[12] M. Reed, B. Simon, Methods of modern mathematical physics IV, Analysis of operators, Academic Press (New York, 1973).
[13] A. Zygmund, Trigonometric series, I-II, Cambridge University Press (1959).
[14] S. M. Nikol'skiǐ, Approximation of functions of several variables and imbedding theorems, Nauka (Moscow, 1969), English transl., Springer-Verlag (Berlin and New York, 1974).
[15] L. L. Stachó, Zeros of Schrödinger eigenfunctions at potential singularities, Acta Math. Hung., 44 (1984), 407-408.
(Received February 2, 1984)

RE-PROXIMITIES

Á. CSÁSZÁR (Budapest), member of the Academy

1. Introduction

D. Harris [8] has introduced R-proximities in order to investigate regularclosed extensions of regular topological spaces. With a slight modification of his definition, we say that a binary relation δ on the power set $\mathfrak{P}(X)$ of X is an R-proximity iff

R1. $A \delta B$ implies $B \delta A$,
R2. $\emptyset \bar{\delta} X(\bar{\delta}$ means non- δ),
R3. $A \neq \emptyset$ implies $A \delta A$,
R4. $A \delta(B \cup C)$ iff $A \delta B$ or $A \delta C$,
R5. $\{x\} \bar{\delta} X-V$ implies the existence of W such that $\{x\} \bar{\delta} X-W, W \bar{\delta} X-V$. We omit the condition assumed in [8] $\{x\} \delta\{y\}$ implies $x=y$.

Clearly the concept of an R-proximity is a generalization of that of an Efremovič proximity (see e.g. [3], p. 63). Similarly to the case of Efremovič proximities, an R-proximity δ induces a topology on X if we put

$$
\begin{equation*}
x \in \operatorname{cl} A \quad \text { iff } \quad\{x\} \delta A \tag{1.1}
\end{equation*}
$$

This topology is always regular ([8], Lemma 1; in the present paper regularity does not include T_{1}).

Conversely, if X is a regular topological space, there are R-proximities compatible with X (i.e. such that they induce the topology of X). One of them is defined by

$$
\begin{equation*}
A \delta B \quad \text { iff } \quad \operatorname{cl} A \cap \operatorname{cl} B \neq \emptyset \tag{1.2}
\end{equation*}
$$

more generally, if Y is a regular extension of X (i.e. a regular space containing X as a dense subspace), we obtain an R-proximity on X by putting for $A, B \subset X$

$$
\begin{equation*}
A \delta B \text { iff } \mathrm{cl}_{Y} A \cap \mathrm{cl}_{Y} B \neq \emptyset \tag{1.3}
\end{equation*}
$$

([8], Lemma 2).
The purpose of the present paper is to investigate those R-proximities that are defined by (1.3); we shall call them $R E$-proximities. A special kind of $R E$-proximities is the concept of an $R C$-proximity; this is an R-proximity obtained by (1.3) from a regular-closed extension Y of X.

For technical reasons, we shall use some concepts and results from the theory of syntopogenous spaces (see [3]). We also need some results of a recent paper of K. Matolcsy [9]; the author is very thankful to him for some essential contributions to the content of this paper.

2. Local syntopogenous structures

Let δ be a relation on $\mathfrak{P}(X)$ satisfying $\mathrm{R} 1-\mathrm{R} 4$ (such a relation is called proximity in [1], basic proximity in [2]), and define, for $A, B \subset X$,

$$
\begin{equation*}
A<B \quad \text { iff } \quad A \bar{\delta} X-B \tag{2.1}
\end{equation*}
$$

Then $<$ is a symmetrical topogenous order on X, and conversely, if $<$ is a symmetrical topogenous order on X, and δ is defined for $A, B \subset X$ by

$$
\begin{equation*}
A \delta B \text { iff } A<X-B \text { does not hold, } \tag{2.2}
\end{equation*}
$$

then δ satisfies R1-R4 (which can be easily seen using the argument in [3], pp. 62-63).

The relations δ and $<$ obtained from each other with the help of (2.1) and (2.2) will be said to be associated with each other.

In particular, δ is an R-proximity iff the symmetrical topogenous order $<$ associated with δ satisfies
(2.3) $\quad\{x\}<V$ implies the existence of W such that $\{x\}<W<V$
(this is another formulation of R5). Let us agree in calling R-order a symmetrical topogenous order fulfilling (2.3).

According to the terminology of [10], a local syntopogenous structure on X is a system \mathscr{L} of topogenous orders on X satisfying

L1. For $<_{1},<_{2} \in \mathscr{L}$, there is $<\in \mathscr{L}$ such that $<_{1} \cup<_{2} \subset<$.
L2. For $<\in \mathscr{L}$, there is $<_{0} \in \mathscr{L}$ such that $\{x\}<V$ implies the existence of W with $\{x\}<{ }_{0} W<{ }_{0} V$.
(2.4) Lemma. < is an R-order iff it is a symmetrical topogenous order such that $\{<\}$ is a local syntopogenous structure.

In the following we collect some simple facts concerning local syntopogenous structures. As it has been observed in [5], pp. 2-3, the majority of concepts defined in [3] for syntopogenous spaces can be generalized for order structures (i.e. systems \mathscr{L} of topogenous orders satisfying L1), so in particular for local syntopogenous structures.
(2.5) Lemma. If \mathscr{L} is a local syntopogenous structure then so is \mathscr{L}^{t}.

Proof. Let $\mathscr{L}^{t}=\left\{<^{\prime}\right\}$. If $x \in X, V \subset X$, and $x<^{\prime} V$, then $x<V$ for some $<\in \mathscr{L}$. Let $<_{0} \in \mathscr{L}$ correspond to $<$ according to L2. Then $x<{ }_{0} W<{ }_{0} V$ for some $W \subset X$, hence $x<^{\prime} W<^{\prime} V$.
(2.6) Lemma ([10], (1.9)). If \mathscr{L} is a local syntopogenous structure then \mathscr{L}^{p} is a perfect syntopogenous structure.

Proof. For a given $<\in \mathscr{L}$, let $<_{0} \in \mathscr{L}$ be chosen according to L2. Then $A<{ }^{p} B$ implies $x<B$ for $x \in A$, hence $x<{ }_{0} C_{x}<{ }_{0} B$ for some $C_{x} \subset X$. Therefore

$$
A \ll_{0}^{p} C=\bigcup_{x \in X} C_{x}<_{0}^{p} B .
$$

(2.7) Corollary. If \mathscr{L} is a local syntopogenous structure then $\mathscr{L}^{t p}$ is a topology.
(2.8) Lemma. If $\mathscr{L}_{i}(i \in I \neq \emptyset)$ is a local syntopogenous structure on X, then so is

$$
\mathscr{L}=\bigvee_{i \in I} \mathscr{L}_{i}=\left(\bigcup_{i \in I} \mathscr{L}_{i}\right)^{g}
$$

Proof. An arbitrary order $<\in \mathscr{L}$ can be written in the form

$$
<=\left(\bigcup_{1}^{n}<_{k}\right)^{q}
$$

where $<_{k} \in \mathscr{L}_{i_{k}}, i_{k} \in I$. Choose $<_{k}^{\prime} \in \mathscr{L}_{i_{k}}$ for $<_{k}$ according to L2. Then $x<V$ implies by [3], (3.7)

$$
V=\bigcap_{1}^{n} V_{k}, \quad x<_{k} V_{k} \quad(k=1, \ldots, n),
$$

consequently $x<_{k}^{\prime} W_{k}<{ }_{k}^{\prime} V_{k}$ for suitable sets W_{k}, and finally $x<^{\prime} W<^{\prime} V$ for

$$
W=\bigcap_{1}^{n} W_{k}, \quad<^{\prime}=\left(\bigcup_{1}^{n}<_{k}^{\prime}\right)^{q} \in \mathscr{L} .
$$

(2.9) Lemma. If $f: X \rightarrow Y$ and \mathscr{L} is a local syntopogenous structure on Y then so is $f^{-1}(\mathscr{L})$ on X.

Proof. For $<,<_{0} \in \mathscr{L}$ satisfying L2, we find that $x f^{-1}(<) V$ implies $f(x)<$ $<Y-f(X-V)$, hence

$$
f(x)<{ }_{0} U<_{0} Y-f(X-V)
$$

for a suitable set $U \subset Y$. Setting $W=f^{-1}(U)$, we have

$$
f(x)<_{0} U \subset Y-f(X-W), \quad f(W) \subset U<_{0} Y-f(X-V)
$$

i.e. $x f^{-1}\left(<_{0}\right) W f^{-1}\left(<_{0}\right) V$.
(2.10) Corollary. If $\mathscr{L}_{i}(i \in I \neq \emptyset)$ is a local syntopogenous structure on X_{i} then so is $\mathscr{L}=X \mathscr{X}_{i \in I} \mathscr{L}_{i}$ on $X=X X_{i \in I}$.

By generalizing the respective definitions formulated for syntopogenous structures in [3], p. 224 and [4], p. 240, we say that a filter base r in X is compressed with respect to an order structure \mathscr{L} on X iff $<\in \mathscr{L}, A<B$ implies the existence of $R \in \mathfrak{r}$ satisfying either $R \subset B$ or $R \cap A=\emptyset$, and that \mathfrak{r} is round with respect to \mathscr{L} iff $R \in \mathfrak{r}$ implies the existence of $<\in \mathscr{L}$ and $R_{1} \in \mathfrak{r}$ such that $R_{1}<R$. It is easy to check that the statements [3] (15.47), (15.48), (15.50), (15.51), (15.52), (15.54), (15.55) and [4] (16.41) to (16.43) remain valid if we replace syntopogenous structures by arbitrary order structures.
(2.11) Lemma. If \mathscr{L} is an order structure on X and \mathfrak{s} is a round, compressed filter then \mathfrak{s} is a maximal round filter.

Proof. Let $\mathfrak{s}^{\prime} \supset \mathfrak{s}$ be a round filter and $S^{\prime} \in \mathfrak{s}^{\prime}$. Then there are $S_{1}^{\prime} \in \mathfrak{s}^{\prime}$ and $<\in \mathscr{L}$ such that $S_{1}^{\prime}<S^{\prime}$. Since $S_{1}^{\prime} \cap S \neq \emptyset$ for $S \in \mathfrak{s}$, there is $S \in \mathfrak{s}$ such that $S \subset S^{\prime}$, i.e. $S^{\prime} \in \mathfrak{s}$.
(2.12) Lemma. If \mathscr{L} is an order structure on X and \mathfrak{r}_{1} and \mathfrak{r}_{2} are round filter bases, then

$$
\mathfrak{r}=\mathfrak{r}_{1}(\cap) \mathfrak{r}_{2}=\left\{R_{1} \cap R_{2}: R_{1} \in \mathfrak{r}_{1}, R_{2} \in \mathfrak{r}_{2}\right\}
$$

is a round filter base provided its elements are non-empty.
Proof. $R_{i}^{\prime}<_{i} R_{i}, R_{i}, R_{i}^{\prime} \in \mathfrak{r}_{i},<_{i} \in \mathscr{L}(i=1,2)$ imply $<_{1} \cup<{ }_{2} \subset<$ for a suitable $<\in \mathscr{L}$, hence $R_{1}^{\prime} \cap R_{2}^{\prime}<R_{1} \cap R_{2}$.
(2.13) Corollary. If \mathscr{L} is an order structure, \mathfrak{r} is a round filter base and \mathfrak{s} is a maximal round filter then $\emptyset \not \ddagger \mathfrak{r}(\cap) \mathfrak{s}$ implies $\mathfrak{r} \subset \mathfrak{s}$. Consequently, if $\mathfrak{s \neq \mathfrak { s } ^ { \prime }}$ are maximal round filters then there are $S \in \mathfrak{s}, S^{\prime} \in \mathfrak{s}^{\prime}$ satisfying $S \cap S^{\prime}=\emptyset$.
(2.14) Lemma. If \mathscr{L} is an order structure then every round filter base is contained in a maximal round filter.

Proof. Apply the Kuratowski-Zorn lemma.
(2.15) Lemma. Let \mathscr{L} be a local syntopogenous structure on X. If \mathfrak{r} is a compressed filter base, and $x \in X$ is a cluster point of \mathfrak{r} with respect to the topology $\mathscr{L}^{t p}$, then $\mathrm{r} \rightarrow x$.

Proof. For an $\mathscr{L}^{t p}$-neighbourhood V of x, we have $x<V$ for some $<\epsilon \mathscr{L}$, hence $x<{ }_{0} W<{ }_{0} V$ for some $<_{0} \in \mathscr{L}$ and $W \subset X$. Then $R \cap W \neq \emptyset$ for $R \in \mathfrak{r}$ so that $R_{0} \subset V$ for some $R_{0} \in \mathfrak{r}$.

3. R-orders

Let δ be an R-proximity on X and $<$ the R-order associated with $\delta, \mathscr{L}=\{<\}$. We shall refer to concepts connected with the local syntopogenous structure \mathscr{L} as to concepts connected with $<$ or δ; e.g. we shall speak of $<$-round filters or δ-compressed filters, etc.

By (2.7) $\mathscr{T}=\left\{<^{p}\right\}$ is a topology; it coincides with the (classical) topology induced by δ in the sense of (1.1). In fact, for the latter $A \subset$ int B iff $\{x\} \bar{\delta} X-B$ for $x \in A$, i.e. iff $x<B$ for $x \in A$, or equivalently iff $A<{ }^{p} B$.
(3.1) Lemma ([8] Lemma 1, 3.1, 3.2). Let $<$ be an R-order on $X, \mathscr{T}=\left\{<^{p}\right\}$. Then:
(a) The topology \mathscr{T} is regular.
(b) Every <-round filter is regular.
(c) Every \mathscr{T}-neighbourhood filter is maximal $<$-round.

Proof. (c): For a \mathscr{T}-neighbourhood V of $x \in X$, we have $x<V$, hence $x<W<V$ for some W. Thus W is a \mathscr{T}-neighbourhood of x, and the neighbourhood filter \mathfrak{v} of x is <-round. If $\mathfrak{s} \supset \mathfrak{v}$ is a <-round filter, and $S \in \mathfrak{s}$, choose $S_{1}, S_{2} \in \mathfrak{s}$
such that $S_{1}<S, S_{2}<S_{1}$. Now $x \notin S_{1}$ would imply $x<X-S_{2}$, i.e. $X-S_{2} \in \mathfrak{v} \subset \mathfrak{s}$. Hence $x \in S_{1}$ and $x<S, S \in \mathfrak{v}$.
(b): If \mathfrak{s} is a <-round filter and $S \in \mathfrak{s}$, then there is $S_{1} \in \mathfrak{s}$ such that $S_{1}<S$. Hence $S_{1}<{ }^{p} S, S_{1} \subset$ int S, int $S \in \mathfrak{s}$. On the other hand, $X-S<X-S_{1}, X-S \subset$ $\subset \operatorname{int}\left(X-S_{1}\right)$, cl $S_{1} \subset S$, cl $S_{1} \in \mathfrak{s}$.
(a): By (b) and (c) the \mathscr{T}-neighbourhood filters are regular, i.e. \mathscr{T} is regular.
(3.2) Lemma. Let $\left\{<_{0}\right\}$ be a regular topology on X. Then

$$
\begin{equation*}
<=<_{0} \cap<_{0}^{c} \tag{3.3}
\end{equation*}
$$

is the finest R-order compatible with $<_{0}$. The R-proximity δ associated with $<$ is given by

$$
\begin{equation*}
A \bar{\delta} B \quad \text { iff } \quad A \cap \mathrm{cl} B=\mathrm{cl} A \cap B=\emptyset \tag{3.4}
\end{equation*}
$$

Proof. $<$ is a symmetrical topogenous order. $x<V$ implies $x<{ }_{0} V$, hence there are open sets G_{i} satisfying $x \in G_{2} \subset \mathrm{cl} G_{2} \subset G_{1} \subset \mathrm{cl} G_{1} \subset V$. Thus $x<{ }_{0} G_{1}<_{0} V$, $x<{ }_{0}^{c} G_{1}<{ }_{0}^{c} V$, i.e. $x<G_{1}<V$, and $<$ is an R-order.

By the above argument $x<{ }_{0} V$ implies $x<V$ while the converse is obvious. Hence $<$ is compatible with $<_{0}$.

If $<^{\prime}$ is an R-order (or, more generally, a symmetrical topogenous order) such that $<^{\prime p}=<_{0}$ then $<^{\prime} \subset<_{0},<^{\prime} \subset<_{0}^{c}$, hence $<^{\prime} \subset<$.

Finally $A \bar{\delta} B \Leftrightarrow A<X-B \Leftrightarrow A \subset \operatorname{int}(X-B)$ and $B \subset \operatorname{int}(X-A) \Leftrightarrow A \cap \operatorname{cl} B=B \cap$ $\cap \mathrm{cl} A=\emptyset$.
(3.5) Lemma. Let X be a regular topological space with the topology $\left\{<_{0}\right\}$. Then

$$
\begin{equation*}
<^{\prime}=<_{0}^{c}<_{0} \tag{3.6}
\end{equation*}
$$

is an R-order compatible with $<_{0}$, and

$$
\begin{equation*}
A<^{\prime} B \quad \text { iff } \quad \operatorname{cl} A \subset \operatorname{int} B \tag{3.7}
\end{equation*}
$$

hence the R-proximity δ^{\prime} associated with $<^{\prime}$ is given by

$$
\begin{equation*}
A \delta^{\prime} B \quad \text { iff } \quad \operatorname{cl} A \cap \operatorname{cl} B \neq \emptyset \tag{3.8}
\end{equation*}
$$

Proof. $<^{\prime}$ is a symmetrical topogenous order. $x<{ }_{0}^{c}<{ }_{0} V$ implies $x<{ }_{0} V$. Choose again open sets G_{i} such that

Then

$$
x \in G_{3} \subset \mathrm{cl} G_{3} \subset G_{2} \subset \mathrm{cl} G_{2} \subset G_{1} \subset V .
$$

$$
x<_{0}^{c} \mathrm{cl} G_{3}<_{0} G_{2}<_{0}^{c} \mathrm{cl} G_{2}<_{0} G_{1} \subset V,
$$

i.e.

$$
x<^{\prime} G_{2}<^{\prime} V,
$$

and $<^{\prime}$ is an R-order. Also $x<^{\prime} V \Leftrightarrow x<_{0} V$, thus $<^{\prime}$ is compatible with $<_{0}$. Finally

$$
\begin{gathered}
A<^{\prime} B \Leftrightarrow A<_{0}^{c} C<_{0} B \quad \text { for some } C \\
\Leftrightarrow \operatorname{cl} A \subset C \subset \operatorname{int} B \quad \text { for some } C \Leftrightarrow \operatorname{cl} A \subset \operatorname{int} B,
\end{gathered}
$$

hence

$$
A \bar{\delta}^{\prime} B \Leftrightarrow A<^{\prime} X-B \Leftrightarrow \operatorname{cl} A \subset \operatorname{int}(X-B) \Leftrightarrow \operatorname{cl} A \cap \operatorname{cl} B=\emptyset .
$$

Let us introduce the notation $<_{X}$ and δ_{X} for the relations $<^{\prime}$ and δ^{\prime}, respectively.
(3.9) Lemma. In a regular space X, the $<_{X}$-round filters coincide with the regular filters.

Proof. (3.1) and (3.7).
(3.10) Lemma. Let X be a regular space and $<$ a topogenous order on X. We have $<\subset<_{x}$ iff every neighbourhood filter is $<$-compressed.

Proof. The neighbourhood filter \mathfrak{v} of x is <-compressed iff $A<B, x \in \operatorname{cl} A$ implies $x \in \operatorname{int} B$. Hence all neighbourhood filters are $<$-compressed iff $A<B$ implies $\mathrm{cl} A \subset$ int B i.e. $A<_{X} B$ by (3.7).

In general, there are compatible R-orders $<$ in a regular space X that do not satisfy the condition $<\subset<_{x}$. E.g., on the real line \mathbf{R} with the usual topology,

$$
\operatorname{cl}(0,1) \cap(1,2)=(0,1) \cap \operatorname{cl}(1,2)=\emptyset
$$

but

$$
\operatorname{cl}(0,1) \cap \operatorname{cl}(1,2) \neq \emptyset
$$

so that $(0,1) \bar{\delta}(1,2)$ for the R-proximity (3.4) but $(0,1) \delta_{\mathrm{R}}(1,2)$.
On the other hand, a class of compatible R-orders coarser than $<_{X}$ is obtained from the following:
(3.11) Lemma. Let X be a regular space, $n \in \mathbf{N}$, and define $A<_{n} B$ iff there are open sets G_{1}, \ldots, G_{n} such that

$$
\operatorname{cl} A \subset G_{1} \subset \mathrm{cl} G_{1} \subset G_{2} \subset \ldots \subset G_{n} \subset \mathrm{cl} G_{n} \subset \text { int } B
$$

Then $<_{n}$ is a compatible R-order on X, and

$$
\begin{equation*}
<_{n+1} \subset<_{n} \subset<_{X} \text { for } n \in \mathbf{N} \tag{3.12}
\end{equation*}
$$

The $<_{n}$-round filters coincide with the regular filters.
Proof. Clearly $<_{n}$ is a symmetrical topogenous order. $x<_{n} V$ implies $x \in$ int V, hence there are open sets $G_{n}, \ldots, G_{1}, H_{n+1}, \ldots, H_{1}$ satisfying

$$
\begin{aligned}
& \operatorname{int} V \supset \operatorname{cl} G_{n} \supset G_{n} \supset \operatorname{cl} G_{n-1} \supset \ldots \supset G_{1} \supset \\
& \supset \operatorname{cl} H_{n+1} \supset H_{n+1} \supset \ldots \supset \operatorname{cl} H_{1} \supset H_{1} \supset \operatorname{cl}\{x\}
\end{aligned}
$$

so that $x<_{n} H_{n+1}<_{n} V$. Thus $<_{n}$ is an R-order. The same argument shows $x<_{n} V$ for every neighbourhood V of x so that $<_{n}$ is compatible with X.
(3.12) is obvious. Hence $<_{n}$-round filters are $<_{X}$-round and regular by (3.9). Conversely if \mathfrak{s} is a regular filter then $S \in \mathfrak{s}$ implies the existence of open sets $G_{i} \in \mathfrak{s}$ satisfying

$$
\operatorname{int} S \supset \operatorname{cl} G_{n} \supset G_{n} \supset \ldots \supset \mathrm{cl} G_{1} \supset G_{1} \supset \mathrm{cl} G_{0}
$$

so that $G_{0}<_{n} S$.
Observe that the R-proximity δ_{1} associated with $<_{1}$ satisfies (3.13) $A \bar{\delta}_{1} B \quad$ iff there are open sets G and H such that $\mathrm{cl} A \subset G, \operatorname{cl} B \subset H, G \cap H=\emptyset$. (3.14) Corollary. $\delta_{1}=\delta_{X}$ iff X is normal.

4. RE-orders

Let X be a regular space, and Y a regular extension of X. Then $<_{Y}$ is an R-order on Y, compatible with Y, and by (2.4) and (2.9) $<_{Y} \mid X$ is an R-order on X compatible with X. We call $R E$-order on X an R-order obtained in this way from a regular extension of X; more generally, an $R E$-order on a set X is an R-order $<$ on X such that $<=<_{Y} \mid X$ for a suitable regular topological space Y containing X, equipped with the topology $\left\{<^{p}\right\}$, as a dense subspace. An $R E$-proximity is an R-proximity associated with an $R E$-order.
(4.1) Lemma. Let Y be a regular extension of X, and δ be the RE-proximity associated with $<_{Y} \mid X$. Then, for $A, B \subset X$,

$$
\begin{equation*}
A \delta B \quad \text { iff } \quad \operatorname{cl}_{Y} A \cap \mathrm{cl}_{Y} B \neq \emptyset \tag{4.2}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
A \bar{\delta} B \text { implies } \mathrm{cl}_{X} A \bar{\delta} \mathrm{cl}_{X} B ; \tag{4.3}
\end{equation*}
$$

in particular

$$
\begin{equation*}
<_{Y} \mid X \subset<_{X} \tag{4.4}
\end{equation*}
$$

Proof. $A \bar{\delta} B$ iff $A\left(<_{Y} \mid X\right) X-B$, i.e. iff $A<_{Y}(X-B) \cup(Y-X)=Y-B$, or equivalently iff $\mathrm{cl}_{Y} A \cap \mathrm{cl}_{Y} B=\emptyset$ by (3.8).

We shall see (cf. (8.3)) that (4.3) is not sufficient for δ in order to be an $R E$ proximity.

Our next purpose is to show that the description of $R E$-orders is closely related with their round, compressed filters.
(4.5) Lemma. Let Y be a regular space, $f: X \rightarrow Y, f(X)$ dense, s a regular filter in Y. Then

$$
\begin{equation*}
f^{-1}(\mathfrak{s})=\left\{f^{-1}(S): S \in \mathfrak{s}\right\} \tag{4.6}
\end{equation*}
$$

generates in X an $f^{-1}\left(<_{Y}\right)$-round filter \mathfrak{r}, and

$$
\begin{equation*}
\{\mathrm{cl} f(R): R \in \mathfrak{r}\} \tag{4.7}
\end{equation*}
$$

is a filter base that generates \mathfrak{s}.
Proof. Clearly $f(X) \cap S \neq \emptyset$ for $S \in \mathfrak{s}$ so that (4.6) is a filter base in X. By (3.9) $S \in \mathfrak{s}$ implies $S_{1}<_{Y} S$ for some $S_{1} \in \mathfrak{s}$, whence

$$
f^{-1}\left(S_{1}\right) f^{-1}\left(<_{Y}\right) f^{-1}(S)
$$

and (4.6) generates an $f^{-1}\left(<_{Y}\right)$-round filter \mathfrak{r}.
For $S \in \mathfrak{s}$ choose an open $G \in \mathfrak{s}$ such that $G \subset c l G \subset S$. Then $f^{-1}(S) \subset R \subset X$ implies $\operatorname{cl} f(R) \supset \operatorname{cl} f\left(f^{-1}(G)\right)=\operatorname{cl}(G \cap f(X)) \supset G \in \mathfrak{s}$, hence $\operatorname{cl} f(R) \in \mathfrak{s}$. On the other hand, $S \supset \operatorname{cl} G=\operatorname{cl}(G \cap f(X))=\operatorname{cl} f\left(f^{-1}(G)\right), f^{-1}(G) \in \mathfrak{r}$.
(4.8) Lemma. Let $f: X \rightarrow Y, \delta$ be an R-proximity on Y satisfying the condition $A \bar{\delta} B$ implies $\operatorname{cl} A \bar{\delta} \mathrm{cl} B$,
$<$ the R-order associated with δ, and $f(X)$ dense in Y (always with respect to the topology induced by δ). Then, for a <-round filter \mathfrak{s} in Y, the filter base $f^{-1}(\mathfrak{s})$ generates an $f^{-1}(<)$-round filter \mathfrak{r} in X, and

$$
\begin{equation*}
\{\mathrm{cl} f(R): R \in \mathfrak{r}\} \tag{4.10}
\end{equation*}
$$

generates the filter \mathfrak{s}. Conversely if \mathfrak{r} is an $f^{-1}(<)$-round filter in X, then (4.10) generates $a<$-round filter \mathfrak{s} in Y, and $f^{-1}(\mathfrak{s})$ generates \mathfrak{r}.

Proof. By (3.1) a $<$-round filter \mathfrak{s} is regular so that $f^{-1}(\mathfrak{s})$ generates a filter \mathfrak{r} in X, and (4.10) generates \mathfrak{s} by (4.5). \mathfrak{r} is $f^{-1}(<)$-round by [4], (16.43).

For an arbitrary $f^{-1}(<)$-round filter \mathfrak{r}, the filter base (4.10) generates in Y a $<$-round filter \mathfrak{s}. In fact, suppose $\operatorname{cl} f(R) \subset S \subset Y, R \in \mathfrak{r}$, and choose $R_{1} \in \mathfrak{r}$ such that $R_{1} f^{-1}(<) R$. Then $f\left(R_{1}\right)<Y-f(X-R)$, hence by (4.9)

$$
\mathrm{cl} f\left(R_{1}\right)<Y-\operatorname{cl} f(X-R) \subset \operatorname{cl} f(R) \subset S
$$

$\mathrm{cl} f\left(R_{1}\right) \in \mathfrak{s}$. On the other hand, for the same sets $S, R, R_{1}, f^{-1}(S) \supset R \supset f^{-1}\left(\mathrm{cl} f\left(R_{1}\right)\right)$ because $\mathrm{cl} f\left(R_{1}\right) \cap f(X-R)=\emptyset$, therefore $f^{-1}(\mathfrak{s})$ generates \mathfrak{r}.
(4.11) Corollary (cf. [8], Lemma 2). Let Y be a regular extension of a topological space X, and $<=<_{Y} \mid X$. Then the $<-r o u n d$ filters \mathfrak{r} coincide with the traces in X of the regular filters \mathfrak{s} in Y, and the formulas

$$
\begin{equation*}
\mathfrak{r}=\mathfrak{s} \mid X=\{S \cap X: S \in \mathfrak{s}\} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{s}=\left\{S \subset Y: S \supset \mathrm{cl}_{Y} R \text { for some } R \in \mathrm{r}\right\} \tag{4.13}
\end{equation*}
$$

establish a bijection between these two classes of filters.
Proof. By (3.9) the regular filters in Y are precisely the $<_{Y}$-round filters, and $\delta=\delta_{Y}$ clearly satisfies (4.9).
(4.14) Lemma. Let Y be a regular extension of $X, y \in Y, \mathfrak{v}$ the neighbourhood filter of $y, \mathfrak{r}=\mathfrak{v} \mid X$, and $<=<_{Y} \mid X$. Then \mathfrak{r} is $a<-$ round, $<$-compressed filter.

Proof. By (3.10) \mathfrak{v} is $<_{Y}$-compressed, hence \mathfrak{r} is <-compressed ([3], (15.48) and (15.51)). Since \mathfrak{v} is regular in Y, \mathfrak{r} is <-round by (4.11).

5. Preregular systems of filters

The above results permit us to characterize $R E$-orders (and $R E$-proximities) with the help of suitable systems of filters. The method is similar to that followed in [9] for characterizing $R C$-proximities.
(5.1) Theorem. Let Y be a regular extension of the topological space $X,<=$ $=<_{Y} \mid X$. Denote by \Re the system of all traces in X of the neighbourhood filters of the points $y \in Y$. Then
(5.2) $x \in X$ implies that there is an $\mathfrak{r} \in \Re$ such that $x \in \cap \mathfrak{r}$,
(5.3) $R_{0} \in \mathfrak{r} \in \mathfrak{R}$ implies that there is $R_{1} \in \mathfrak{r}$ such that $R_{0} \in \mathfrak{r}^{\prime}$ whenever $\mathfrak{r}^{\prime} \in \mathfrak{R}$ and $\quad \emptyset \notin \mathfrak{r}^{\prime} \mid R_{1}$.

The system \mathfrak{R} determines $<$ in the following manner:

$$
\begin{equation*}
A<B \quad \text { iff } \quad \mathfrak{r} \in \mathfrak{R}, \quad \emptyset \notin \mathfrak{r} \mid A \quad \text { implies } \quad B \in \mathfrak{r}, \tag{5.4}
\end{equation*}
$$

or equivalently, for the R-proximity δ associated with $<$,
$A \bar{\delta} B \quad$ iff $\quad \mathfrak{r} \in \mathfrak{R}, \quad \emptyset \notin \mathfrak{r} \mid A \quad$ implies $\quad X-B \in \mathfrak{r}$.
Proof. (5.2) holds for $\mathfrak{r}=\mathfrak{v} \mid X$ if \mathfrak{v} is the neighbourhood filter of x in Y. By (4.14) every $\mathfrak{r} \in \mathfrak{R}$ is $<$-round and $<$-compressed, thus for $R_{0} \in \mathfrak{r} \in \Re$ there is $R_{1} \in \mathfrak{r}$ such that $R_{1}<R_{0}$; then (5.3) holds since $\mathfrak{r}^{\prime} \in \Re$ is $<$-compressed. (5.5) is true because, by (4.2), $A \bar{\delta} B$ iff $\mathrm{cl}_{Y} A \cap \mathrm{cl}_{Y} B=\emptyset$, and (5.4) means the same as (5.5).

We shall prove a certain converse of (5.1). For this purpose, let us say that \mathfrak{R} is a preregular system of filters on X iff \Re is a set of filters in X and satisfies (5.2) and (5.3).
(5.6) Lemma. If \mathfrak{R} is a system of filters satisfying (5.3), and $r, r^{\prime} \in \mathfrak{R}, \mathbf{r} \neq \mathbf{r}^{\prime}$, then there are $R \in \mathfrak{r}, R^{\prime} \in \mathfrak{r}^{\prime}$ such that $R \cap R^{\prime}=\emptyset$.

Proof. Suppose $R_{0} \in \mathfrak{r}-\mathrm{r}^{\prime}$ and choose $R_{1} \in \mathrm{r}$ according to (5.3). Then $\emptyset \in \mathfrak{r}^{\prime} \mid R_{1}$.
(5.7) Corollary. If \mathfrak{R} is a preregular system of filters on X then, for $x \in X$, there is a unique $\mathfrak{r} \in \mathfrak{R}$ such that $x \in \cap \mathfrak{r}$.
(5.8) Theorem. Let $\mathfrak{\Re}$ be a preregular system of filters on X, and define, for $A, B \subset X$, a relation $<$ by (5.4). Then $<i$ is an R-order on X.

Proof. Clearly $\emptyset<\emptyset$ and $X<X$, further $A^{\prime} \subset A<B \subset B^{\prime}$ implies $A^{\prime}<B^{\prime}$. If $A<B$ then $A \subset B$; in fact, $x \in A-B$ would imply $x \in \cap \mathfrak{r}$ for some $\mathfrak{r} \in \mathfrak{R}$, hence $B \notin \mathfrak{r}$, which contradicts (5.4). Thus $<$ is a semi-topogenous order on X.

If $A<B, \mathfrak{r} \in \mathfrak{R}$, and $\emptyset \notin \mathfrak{r} \mid X-B$, then $B \notin \mathfrak{r}$, hence $\emptyset \in \mathfrak{r} \mid A, X-A \in \mathfrak{r}$. Hence $<$: is symmetrical. Further $A=A_{1} \cap A_{2}, B=B_{1} \cap B_{2}, A_{i}<B_{i} \quad(i=1,2)$ implies that $B_{i} \in \mathfrak{r}$ whenever $\mathfrak{r} \in \mathfrak{R}$ and $\emptyset \notin \mathfrak{r} \mid A$, consequently in this case $B \in \mathfrak{r}$. Hence $<$ is a topogenous order.

Let $x<R_{0}$. If \mathfrak{r} is the unique filter in \mathfrak{R} that satisfies $x \in \cap \mathfrak{r}$ (cf. (5.7)) then $R_{0} \in \mathrm{r}$ by (5.4). Choose $R_{1} \in \mathrm{r}$ according to (5.3). Then $R_{1}<R_{0}$ by (5.4), and $x<R_{1}$ because $\emptyset \nsubseteq \mathfrak{r}^{\prime} \mid\{x\}, \mathfrak{r}^{\prime} \in \mathfrak{R}$ implies $\mathfrak{r}^{\prime}=\mathfrak{r}$ by (5.7).

If \Re is a preregular system of filters on X, and a relation $<$ satisfies (5.4), then we shall say that \mathfrak{R} induces the R-order $<$ as well as the R-proximity associated with $<$ (by $(5.8)<$ is an R-order in fact). Now (5.1) can be interpreted by saying that an $R E$-order is always induced by a preregular system of filters.
(5.9) Lemma. If \Re is a preregular system of filters and $<$ is the R-order induced by \mathfrak{R}, then every $\mathfrak{r} \in \mathfrak{R}$ is <-round and <-compressed.

Proof. The first statement follows from (5.3), the second one from (5.4).
(5.10) Lemma. Under the hypotheses of (5.9), if $x \in X, \mathfrak{r} \in \mathfrak{R}$, and $x \in \cap \mathfrak{x}$, then \mathfrak{r} coincides with the neighbourhood filter of x with respect to the topology $\left\{<^{p}\right\}$.

Proof. $x \ll^{p} V \Leftrightarrow x<V \Rightarrow V \in \mathrm{r}$ by (5.4). Conversely $V \in \mathfrak{r}$ implies $x<V$ because $\emptyset \notin \mathfrak{r}^{\prime} \mid\{x\}, \mathfrak{r}^{\prime} \in \Re$ cannot hold unless $\mathfrak{r}^{\prime}=\mathfrak{r}$ (cf. (5.7)).

Consider now an arbitrary preregular system $\mathfrak{\Re}$ of filters on a set X. By (5.8) \mathfrak{R} induces an R-order $<$. Let us equip X with the topology $\left\{<^{p}\right\}$ (regular by (3.1)), and denote by \mathfrak{R}^{\prime} the subset of \mathfrak{R} composed of the free filters $\mathfrak{r} \in \mathfrak{R}$. Since every $\mathfrak{r} \in \mathfrak{R}^{\prime}$ is regular ((5.9) and (3.1)), hence open, we can construct a strict extension ([6], (6.1.8)) Y of X such that the elements of $Y-X$ are in a one-to-one correspondence with the elements of \mathfrak{R}^{\prime}, and $\mathfrak{r} \in \mathfrak{R}^{\prime}$ is the trace in X of the neighbourhood filter of the corresponding point of $Y-X$. By (5.10) the elements of \Re coincide with the traces of the neighbourhood filters of the points $x \in Y$, hence (5.3) implies by a theorem of [7] that Y is a regular space, and it is a reduced extension of X, i.e. $x \in Y-X, y \in Y, x \neq y$ implies that the neighbourhood filters of x and y are distinct. It follows from (5.4) and (5.1) that $<=<_{Y} \mid X$.

Thus we have proved the following converse of (5.1):
(5.11) Theorem (K. Matolcsy). Let \mathfrak{R} be a preregular system of filters on X, and $<$ the R-order induced by \mathfrak{R}. Then $<$ is an RE-order; more precisely, there exists a regular, reduced extension Y of X (equipped with $\left\{<^{p}\right\}$) such that the filters $\mathfrak{r} \in \mathfrak{R}$ coincide with the traces in X of the neighbourhood filters of the points of Y, and $<=$ $=<_{Y} \mid X$.
(5.12) Corollary. A topogenous order is an RE-order iff it can be induced by a preregular system of filters.

Proof. (5.1) and (5.11).
Let us call, for a given preregular system \mathfrak{R} of filters on X, an extension Y of the space X equipped with $\left\{<^{p}\right\}$, where $<$ is induced by \mathfrak{R}, associated with \mathfrak{R} iff it has the properties described in (5.11) (i.e. iff Y is a reduced, regular extension of X and the trace filters of the neighbourhood filters of the points of Y coincide with the filters $\mathbf{r} \in \mathfrak{R}$).

The following proposition motivates a certain partial ordering in the class of all preregular systems of filters on X :
(5.13) Lemma. Let \mathfrak{R}_{1} and \mathfrak{R}_{2} be two preregular systems of filters on $X,<_{1}$ and $<_{2}$ the $R E$-orders induced by \mathfrak{R}_{1} and \mathfrak{R}_{2}, and Y_{1}, Y_{2} two extensions associated with \Re_{1} and \mathfrak{R}_{2}, respectively. Then the following statements are equivalent:
(a) For $\mathfrak{r}_{2} \in \mathfrak{R}_{2}$ there is $\mathfrak{r}_{1} \in \mathfrak{R}_{1}$ such that $\mathfrak{r}_{1} \subset \mathfrak{r}_{2}$.
(b) There is a continuous extension $f: Y_{2} \rightarrow Y_{1}$ of id_{X}.

Proof. (a) \Rightarrow (b): By (5.7) and (5.10) the topology $\left\{<_{1}^{p}\right\}$ is coarser than $\left\{<_{2}^{p}\right\}$, and the trace filter in X of the neighbourhood filter of every $y \in Y_{2}$ converges in Y_{1}. Since Y_{1} is regular, the existence of a continuous $f: Y_{2} \rightarrow Y_{1}, f \mid X=\mathrm{id}_{X}$ follows by [6], (6.2.2).
(b) \Rightarrow (a): If r_{2} is the trace of the neighbourhood filter of $y_{2} \in Y_{2}$ then $f\left(\mathrm{r}_{2}\right) \rightarrow$ $\rightarrow y_{1} \in Y_{1}$, i.e. $\mathfrak{r}_{1} \subset \mathfrak{r}_{2}$ for the trace \mathfrak{r}_{1} of the neighbourhood filter of y_{1}.

Let us say, for two preregular systems \mathfrak{R}_{1} and \mathfrak{R}_{2} of filters on X that \mathfrak{R}_{1} is coarser than $\mathfrak{R}_{2}, \mathfrak{R}_{2}$ is finer than \mathfrak{R}_{1} iff (5.13) (a) holds.
(5.14) Lemma. If, under the hypotheses of (5.13), both $\mathfrak{\Re}_{1}$ and \Re_{2} are finer than the other one then $\mathfrak{R}_{1}=\mathfrak{R}_{2}$. This is true iff Y_{1} and Y_{2} are equivalent extensions of X (i.e. iff there is a homeomorphism $f: Y_{2} \rightarrow Y_{1}$ such that $f \mid X=\mathrm{id}_{X}$).

Proof. If $\mathfrak{r}_{2}^{\prime} \subset \mathfrak{r}_{1} \subset \mathfrak{r}_{2}, \mathfrak{r}_{1} \in \mathfrak{R}_{1}, \mathfrak{r}_{2}, \mathfrak{r}_{2}^{\prime} \in \mathfrak{R}_{2}$, then $\mathfrak{r}_{2}^{\prime}=\mathfrak{r}_{2}$ by (5.6), hence $\mathfrak{r}_{1}=\mathfrak{r}_{2}$ and $\mathfrak{R}_{2} \subset \mathfrak{R}_{1}$. Similarly $\mathfrak{\Re}_{1} \subset \mathfrak{R}_{2}$. If Y_{1} and Y_{2} are equivalent extensions then $\Re_{1}=\Re_{2}$ by (5.13) and the statement established already. Conversely if $\mathfrak{R}_{1}=\Re_{2}$ then there are continuous mappings $f: Y_{2} \rightarrow Y_{1}$ and $g: Y_{1} \rightarrow Y_{2}$ such that $f|X=g| X=\mathrm{id}_{X}$. Now $g \circ f: Y_{2} \rightarrow Y_{2}$ is a continuous extension of id_{X}, whence it coincides with $\mathrm{id}_{Y_{2}}$ because a point $y_{2} \in Y_{2}-X$ and another point $y_{2}^{\prime} \in Y_{2}$ have distinct neighbourhood filters, consequently disjoint neighbourhoods by the regularity of Y_{2} ([6], (2.5.24)). Similarly $f \circ g=\mathrm{id}_{Y_{1}}$.
(5.15) Lemma. If $\mathfrak{\Re}_{1}$ and $\mathfrak{\Re}_{2}$ are preregular systems of filters on X and $\mathfrak{\Re}_{2}$ is finer than \Re_{1} then $<_{1} \subset<_{2}$ for the respective induced $R E$-orders.

Proof. If $A<{ }_{1} B, \mathfrak{r}_{2} \in \mathfrak{R}_{2}$, and $\emptyset \notin \mathfrak{r}_{2} \mid A$, then choose $\mathfrak{r}_{1} \in \mathfrak{R}_{1}$ such that $\mathfrak{r}_{1} \subset \mathfrak{r}_{2}$. Clearly $\emptyset \notin \mathfrak{r}_{1} \mid A$, hence $B \in \mathfrak{r}_{1} \subset \mathfrak{r}_{2}$.

The following theorem constructs compatible $R E$-orders from arbitrary sufficiently coarse compatible R-orders of a regular space X :
(5.16) Theorem. Let X be a regular space, $<a n R$-order compatible with X and satisfying $<\subset<_{x}$. Then the set \mathfrak{R} of all $<$-round, $<$-compressed filters is a preregular system of filters, and the RE-order $<^{\prime}$ induced by \mathfrak{R} satisfies $<\subset<^{\prime}$ and is compatible with $X .<$ is an RE-order iff $<=\alpha^{\prime}$.

Proof. By (3.1) and (3.10) the neighbourhood filters belong to \Re, so (5.2) is fulfilled. If $R_{0} \in \mathfrak{r} \in \mathfrak{R}$ and $R_{1}<R_{0}, R_{1} \in \mathfrak{r}$, then (5.3) holds because $\mathfrak{r}^{\prime} \in \mathfrak{R}$ is $<$-compressed. Thus \mathfrak{R} is preregular.

By (5.4) $A<B$ implies $A<^{\prime} B$. By (5.10) the $\left\{<^{\prime p}\right\}$-neighbourhood filter of $x \in X$ is the same as its neighbourhood filter in X (it is namely the unique $\mathfrak{r} \in \mathfrak{R}$ satisfying $x \in \cap \mathfrak{r}$, cf. (5.7)). Hence α^{\prime} is compatible with X.
$<=<^{\prime}$ implies that $<$ is an $R E$-order. Conversely if $<$ is an $R E$-order, then there is by (5.1) a preregular system \mathfrak{R}_{0} of filters that induces $<$. By (5.9) $\mathfrak{R}_{0} \subset \mathfrak{R}$, hence \Re_{0} is finer than \mathfrak{R}, so $<^{\prime} \subset<$ by (5.15).
(5.17) Corollary. An arbitrary RE-order $<$ is induced by the set \mathfrak{R} of all $<$-round, <-compressed filters; \mathfrak{R} is the largest preregular system of filters inducing $<$.

Proof. (5.16) and (5.9).
(5.18) Corollary. Let X be a regular space, $<$ a compatible $R E$-order, \mathfrak{R} the system of all <-round, <-compressed filters, and Y an extension associated with $\mathfrak{\Re}$. Then every reduced, regular extension Z of X such that $<={ }_{Z} \mid X$ is equivalent to a subspace Z^{\prime} of Y satisfying $X \subset Z^{\prime} \subset Y$; these subspaces Z^{\prime} constitute a non-empty ascending system in Y.

Proof. $<=<_{Y} \mid X$ by (5.17) and (5.11). An extension Z with the above properties is associated by (5.1) with a preregular system $\mathfrak{\Re}_{0}$ of filters that induces $<$; hence $\mathfrak{R}_{0} \subset \mathfrak{R}$ by (5.17). Denote by Z^{\prime} the subspace of Y composed of those points
$y \in Y$ for which the traces of their neighbourhood filters belong to \mathfrak{R}_{0}. By (5.14) the extensions Z and Z^{\prime} are equivalent. If $Z^{\prime} \subset Z^{\prime \prime} \subset Y$ then clearly

$$
<=<_{Y}\left|X \subset<_{Z^{\prime \prime}}\right| X \subset<_{Z^{\prime}} \mid X=<,
$$

hence $<_{Z^{\prime \prime}} \mid X=<$.
It is convenient to say the extensions Y described in (5.18) to be associated with the $R E$-order $<$. It can happen (see (8.8)) that some proper subspaces $Z^{\prime} \subset Y$ fulfil the condition $<=<_{Z} \mid X$.

6. $R C$-orders

According to [9], the concept of a regular-closed space in the sense of [8] can be generalized in the following way: a topological space X is said to be T_{3}-closed iff every maximal regular filter is fixed in X; for T_{3}-spaces this condition furnishes the regular-closed spaces of [8].

Let us call $R C$-orders the $R E$-orders on X that have the form $<=<_{Y} \mid X$ where Y is a T_{3}-closed, regular extension of X. An $R C$-proximity is an $R E$-proximity associated with an $R C$-order; if Y is supposed to be a T_{3}-space, we obtain the $R C$ proximities in the sense of [8].

Now we can prove the following characterization of $R C$-orders:
(6.1) Theorem. Let X be a regular space and $<$ an RE-order compatible with X. $<$ is an RC-order iff every maximal $<$-round filter is $<$-compressed. If this condition is fulfilled then all maximal <-round filters constitute a preregular system \mathfrak{R} of filters such that the extensions Y associated with $\mathfrak{\Re}$ are reduced, T_{3}-closed extensions, associated with $<$.

Proof. Let Z be a regular extension of X such that $<={ }_{Z} \mid X$. By (4.11) the $<-$ round filters coincide with the traces of the regular filters in Z, and larger $<$-round filters correspond to larger regular filters ((4.12) and (4.13)). Hence maximal $<$-round filters are traces of maximal regular filters. If Z is T_{3}-closed, the latters are fixed in Z, i.e. neighbourhood filters of points $z \in Z$. Such a filter is ${<_{Z}}_{Z}$-compressed by (3.10), and its trace is $<$-compressed by (4.14).

Suppose now that $<$ is an $R E$-order, compatible with X, with the property that every maximal <-round filter is <-compressed. Since conversely <-compressed, $<$-round filters are maximal <-round by (2.11), therefore the system \mathfrak{R} of all maximal <-round filters is the same as the system of all <-round, <-compressed filters, consequently it is a preregular system of filters inducing $<$ (see (5.17)), and an extension Y associated with \mathfrak{R} is associated with $<$ as well. If \mathfrak{s} is a maximal regular filter in Y then $\mathfrak{r}=\mathfrak{s} \mid X$ is maximal <-round by the first part of the proof, so $\mathfrak{r} \in \mathfrak{R}$, and $\mathfrak{r}=\mathfrak{v} \mid X$ for the neighbourhood filter \mathfrak{v} of some $y \in Y$. By (4.11) $\mathfrak{s}=\mathfrak{v}$, and \mathfrak{s} is fixed, Y is T_{3}-closed.

An $R E$-order need not be an $R C$-order (see (8.4)). However, the extension associated with an arbitrary $R E$-order has a property similar to but weaker than T_{3}-closedness.

For this purpose, let us say that an extension Y of a topological space X is disjunctive iff $\mathrm{cl}_{Y} A \cap \mathrm{cl}_{Y} B=\emptyset$ whenever A, B are disjoint, closed subsets of X.
(6.2) Lemma. A regular extension Y of X is disjunctive iff $<_{X}=<_{Y} \mid X$.

Proof. The equality $<_{X}=<_{Y} \mid X$ is equivalent, by (4.4), to $<_{X} \subset<_{Y} \mid X$, i.e. to the condition that $\mathrm{cl}_{X} A \cap \mathrm{cl}_{X} B=\emptyset$ implies $\mathrm{cl}_{Y} A \cap \mathrm{cl}_{Y} B=\emptyset$ ((3.8) and (4.2)).

A regular space X will be said to be D-closed iff there is no proper reduced, regular, disjunctive extension of X.
(6.3) Theorem. A regular space X is D-closed iff every $<_{X}$-compressed, regular filter is fixed.

Proof. If Y is a reduced, regular, disjunctive extension, and $y \in Y-X$, then the trace $\mathfrak{r}=\mathfrak{v} \mid X$ of the neighbourhood filter \mathfrak{v} of y is $<_{x}$-compressed, $<_{x}$-round by (6.2) and (4.14), hence $<_{X}$-compressed and regular by (3.9); but \mathfrak{r} is free because Y is a reduced, regular extension ([6], (2.5.24)).

Conversely, suppose that there is in X a free $<_{X}$-compressed, regular (i.e. $<_{X}$-round) filter \mathfrak{r}. Let \mathfrak{R} be the system of all $<_{X}$-round, $<_{X}$-compressed filters; \mathfrak{R} is preregular by (5.16). Let Y be an extension associated with \mathfrak{R}. In other words, Y is an extension associated with $<_{X}$, hence it is a proper (because $\mathfrak{r} \in \mathfrak{R}$), reduced, regular extension of X, and $<_{X}=<_{Y} \mid X$ by (5.18). By (6.2) Y is a disjunctive extension.

Now we can prove:
(6.4) Theorem. Let < be a compatible RE-order in a regular space X and Y an extension associated with $<$. Then Y is a D-closed space.

Proof. If a filter \mathfrak{s} is $<_{Y}$-compressed and regular, i.e. $<_{Y}$-round by (3.9), then $\mathfrak{r}=\mathfrak{s} \mid X$ is $<$-round by (4.11) and $<$-compressed by [3], (15.48) and (15.51)* Therefore $\mathfrak{r}=\mathfrak{v} \mid X$ for the neighbourhood filter \mathfrak{v} of some $y \in Y$. By (4.11) $\mathfrak{s}=\mathfrak{v}$ so that s is fixed and (6.3) can be applied.

Unfortunately D-closedness does not characterize the extension Y associated with $<$ because there may exist proper D-closed subspaces $Z \subset Y$ satisfying $<=$ $=<_{z} \mid X$ (see (8.8)).

It is easy to obtain all reduced, regular, disjunctive extensions of a space X :
(6.5) Theorem. Let X be a regular space and Y an extension associated with $<_{X}$. Then the reduced, regular, disjunctive extensions of X are, up to equivalence, the subspaces Z of Y such that $X \subset Z \subset Y$.

Proof. (6.2) and (5.18) show that every extension in question is equivalent to a subspace Z of Y such that $X \subset Z \subset Y$. Conversely (6.2) implies that Y itself is disjunctive and then the same is obviously true for every Z lying between X and Y.

7. $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuous mappings

Let \mathfrak{R} and \Re^{\prime} be preregular systems of filters on X and X^{\prime}, respectively, and $f: X \rightarrow X^{\prime}$. The mapping f will be said to be $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuous iff $\mathfrak{r} \in \mathfrak{R}$ implies that the filter base

$$
f(\mathfrak{r})=\{f(R): R \in \mathfrak{r}\}
$$

is finer than some filter $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}$. Thus, in the case $X=X^{\prime}, \mathfrak{R}$ is finer than \mathfrak{R}^{\prime} iff id_{X} is $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuous.

Some of our preceding results can be easily generalized for ($\mathfrak{R}, \mathfrak{R}^{\prime}$)-continuous mappings. In the following propositions \mathfrak{R} and \mathfrak{R}^{\prime} always are preregular systems on X and $X^{\prime},<$ and $<^{\prime}$ the $R E$-orders induced by \mathfrak{R} and \mathfrak{R}^{\prime}, X and X^{\prime} are equipped with the topologies $\left\{<^{p}\right\}$ and $\left\{<^{\prime p}\right\}$, respectively. $\left(<,<^{\prime}\right)$-continuity of $f: X \rightarrow X^{\prime}$ means ($\{<\},\left\{<^{\prime}\right\}$)-continuity.
(7.1) Lemma. If $f: X \rightarrow X^{\prime}$ is $\left(\Re, \Re^{\prime}\right)$-continuous then it is $\left(<,<^{\prime}\right)$-continuous.

Proof. $A \ll^{\prime} B$ implies $f^{-1}(A)<f^{-1}(B)$ since, if $\emptyset \notin \mathfrak{r} \mid f^{-1}(A)$ for some $\mathfrak{r} \in \mathfrak{R}$, then $\emptyset \notin \mathfrak{r}^{\prime} \mid A$ for an $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}$ coarser than $f(\mathfrak{r})$, hence $B \in \mathfrak{r}^{\prime}, f(R) \subset B$ for some $R \in \mathfrak{r}$, and $f^{-1}(B) \in \mathbf{r}$.

There are some partial converses of (7.1).
(7.2) Lemma. Let X be a D-closed regular space, \mathfrak{R} the system of all $<_{X}$-compressed, regular filters, and $f: X \rightarrow X^{\prime}$ continuous. Then f is $\left(\Re, \mathfrak{R}^{\prime}\right)$-continuous.

Proof. By (3.9) and (5.17) \mathfrak{R} is preregular and induces $<_{X}$. By (6.3) every $\mathrm{r} \in \mathfrak{R}$ is fixed, hence it is the neighbourhood filter of some $x \in X$ by (5.10). Hence $f(\mathfrak{r}) \rightarrow f(x)$ with respect to $\left\{<^{p}\right\}$, and $f(\mathfrak{r})$ is finer than the neighbourhood filter of $f(x)$ that belongs to \mathfrak{R}^{\prime} by (5.10) again.
(7.3) Lemma. If $f: X \rightarrow X^{\prime}$ is continuous then it is $\left(<_{X},<_{X^{\prime}}\right)$-continuous.

Proof. $\mathrm{cl}_{X} A \cap \mathrm{cl}_{X} B \neq \emptyset$ implies $\mathrm{cl}_{X^{\prime}} f(A) \cap \mathrm{cl}_{X^{\prime}} f(B) \neq \emptyset$.
Observe that $\left(<,<^{\prime}\right)$-continuity of f does not imply its $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuity in general (see (8.5)).
(7.4) Lemma. Let Y and Y^{\prime} be extensions of X and X^{\prime} associated with \Re and \mathfrak{R}^{\prime}, respectively. If $g: Y \rightarrow Y^{\prime}$ is continuous and $g(X) \subset X^{\prime}$ then $f=g \mid X$ is $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$ continuous.

Proof. Every $\mathfrak{r} \in \mathfrak{R}$ is the trace in X of the neighbourhood filter \mathfrak{v} of some $y \in Y$. Hence $f(\mathfrak{r}) \rightarrow g(y)$ in Y^{\prime} so that $f(\mathfrak{r})$ is finer than the trace \mathfrak{r}^{\prime} of the neighbourhood filter of $g(y)$; clearly $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}$.
(7.5) Lemma. Let Y and Y^{\prime} denote the same as in (7.4). If $f: X \rightarrow X^{\prime}$ is ($\left.\mathfrak{R}, \mathfrak{R}^{\prime}\right)$ continuous then there is a continuous extension $g: Y \rightarrow Y^{\prime}$ of f.

Proof. By (7.1) f is $\left(\left\{<^{p}\right\},\left\{<^{p}\right\}\right)$-continuous, and if \mathfrak{r} is the trace in X of the neighbourhood filter of some $y \in Y$, i.e. if $\mathfrak{r} \in \mathfrak{R}$, then $f(\mathfrak{r})$ is finer than some $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}$ so that $f(\mathfrak{r}) \rightarrow y^{\prime}$ for a point $y^{\prime} \in Y^{\prime}$ whose neighbourhood filter \mathfrak{v}^{\prime} satisfies $\mathfrak{r}^{\prime}=\mathfrak{v}^{\prime} \mid X^{\prime}$. Hence [6], (6.2.2) applies.

Now let \mathfrak{R} and \mathfrak{R}^{\prime} denote the systems of all <-round, <-compressed and $<^{\prime}$-round, $<^{\prime}$-compressed filters, where $<$ and $<^{\prime}$ are $R E$-orders on X and X^{\prime}, respectively (cf. (5.17)). We say that $f: X \rightarrow X^{\prime}$ is strongly $\left(<,<^{\prime}\right)$-continuous iff it is $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuous. In particular, if $X=\boldsymbol{X}^{\prime},<$ is said to be strongly finer than $<^{\prime},<^{\prime}$ strongly coarser than $<\mathrm{iff}^{\mathrm{id}}{ }_{X}$ is strongly $\left(<,<^{\prime}\right)$-continuous, i.e. iff \mathfrak{R} is finer than \mathfrak{R}^{\prime}. By (7.1) strong $\left(<,<^{\prime}\right)$-continuity implies $\left(<,<^{\prime}\right)$-con-
tinuity, and if $<$ is strongly finer than $<^{\prime}$ then $<$ is finer than $<^{\prime}$; the converses are not true (see (8.5), (8.9), (8.11)).
(7.6) Lemma. Let $\mathfrak{R}, \mathfrak{R}^{\prime}, \mathfrak{R}^{\prime \prime}$ be preregular systems of filters on $X, X^{\prime}, X^{\prime \prime}$ respectively, $f: X \rightarrow X^{\prime}, g: X^{\prime} \rightarrow X^{\prime \prime}$. If f is $\left(\mathfrak{R}, \mathfrak{R}^{\prime}\right)$-continuous and g is ($\left.\mathfrak{R}^{\prime}, \mathfrak{R}^{\prime \prime}\right)$-continuous, then $g \circ f$ is $\left(\mathfrak{R}, \mathfrak{R}^{\prime \prime}\right)$-continuous.

Proof. For $\mathfrak{r} \in \mathfrak{R}$, there are $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}, \mathfrak{r}^{\prime \prime} \in \mathfrak{R}^{\prime \prime}$ such that $f(\mathfrak{r})$ is finer than $\mathfrak{r}^{\prime}, g\left(\mathfrak{r}^{\prime}\right)$ is finer than $\mathfrak{r}^{\prime \prime}$. Then $g(f(r))$ is finer than $g\left(r^{\prime}\right)$, hence than $\mathfrak{r}^{\prime \prime}$.
(7.7) Corollary. If $<,<^{\prime},<^{\prime \prime}$ are $R E$-orders on $X, X^{\prime}, X^{\prime \prime}$ respectively, $f: X \rightarrow X^{\prime}, g: X^{\prime} \rightarrow X^{\prime \prime}$, and f is strongly $\left(<,<^{\prime}\right)$-continuous, g is strongly $\left(<^{\prime},<^{\prime \prime}\right)$ continuous, then $g \circ f$ is strongly $\left(<,<^{\prime \prime}\right)$-continuous.
(7.8) Corollary. The relation "strongly finer" is transitive.

On a regular space $X,<_{X}$ is the finest compatible $R E$-order by (4.4). However, it need not be the strongly finest one (see (8.12)).
(7.9) Lemma. Let $<_{i}(i \in I \neq \emptyset)$ be R-orders on a set X, and

$$
<=\left(\bigcup_{i \in I}<_{i}\right)^{q}
$$

Then $<$ is the coarsest R-order finer than every $<_{i}$.
Proof. Clearly

$$
\{<\}=\left(\bigvee_{i \in I}\left\{<_{i}\right\}\right)^{t}
$$

hence the statement follows from (2.4), (2.8) and (2.5).
The analogous question for $R E$-orders is more delicate.
(7.10) Lemma (K. Matolcsy). Let $\mathfrak{R}_{i}(i \in I \neq \emptyset)$ be preregular systems of filters on X. Then there is a preregular system \Re of filters that is the coarsest one of all preregular systems finer than every \mathfrak{R}_{i}.

Proof. Consider all centred systems of the form $\bigcup_{i \in I} \mathfrak{r}_{i}$ where $\mathfrak{r}_{i} \in \Re_{i}$, and let \Re denote the system of filters generated by these centred systems.

For $x \in X$, there is $\mathfrak{r}_{i} \in \mathfrak{R}_{i}(i \in I)$ such that $x \in \cap \mathfrak{r}_{i}$. Clearly $\bigcup_{i \in I} \mathfrak{r}_{i}$ is centred and generates a filter $\mathfrak{r} \in \mathfrak{R}$ with $x \in \cap \mathfrak{r}$.

Now let $\mathfrak{r} \in \mathfrak{R}$ be generated by $\bigcup_{i \in I} \mathfrak{r}_{i}, \mathfrak{r}_{i} \in \mathfrak{R}_{i}$, and $R \in \mathfrak{r}$. Then

$$
R \supset \bigcap_{k=1}^{n} R_{k}, \quad R_{k} \in \mathfrak{r}_{i_{k}}, \quad i_{k} \in I
$$

Choose $R_{k}^{\prime} \in \mathfrak{r}_{i_{k}}$ such that $\mathrm{r}^{*} \in \mathfrak{R}_{i_{k}}$, $\emptyset \notin \mathrm{r}^{*} \mid R_{k}^{\prime}$ implies $R_{k} \in \mathfrak{r}^{*}$. Then

$$
R^{\prime}=\bigcap_{k=1}^{n} R_{k}^{\prime} \in \mathrm{r}
$$

If $\mathbf{r}^{\prime \prime} \in \mathfrak{R}$ is generated by $\bigcup_{i \in I} \mathfrak{r}_{i}^{\prime \prime}, \mathfrak{r}_{i}^{\prime \prime} \in \mathfrak{R}_{i}, \emptyset \notin \mathfrak{r}^{\prime \prime} \mid R^{\prime}$, and $R^{\prime \prime} \in \mathfrak{r}_{i_{k}}^{\prime \prime}$ is arbitrary, then $R^{\prime \prime} \in \mathfrak{r}^{\prime \prime}$ so that $R^{\prime \prime} \cap R_{k}^{\prime} \supset R^{\prime \prime} \cap R^{\prime} \neq \emptyset$. Hence $\emptyset \notin \mathfrak{r}_{i_{k}}^{\prime \prime} \mid R_{k}^{\prime}$, thus $R_{k} \in \mathfrak{r}_{i_{k}}^{\prime \prime}, \bigcap_{k=1}^{n} R_{k} \in \mathfrak{r}^{\prime \prime}$, $R \in \mathfrak{r}^{\prime \prime}$. Therefore \mathfrak{R} is a preregular system of filters.

If $\mathfrak{r} \in \mathfrak{R}$ is generated by $\bigcup_{i \in I} \mathfrak{r}_{i}, \mathfrak{r}_{i} \in \mathfrak{R}_{i}$, then $\mathfrak{r}_{i} \subset \mathfrak{r}$; hence \mathfrak{R} is finer than every \mathfrak{R}_{i}.
Finally if \mathfrak{R}^{\prime} is a preregular system finer than each \mathfrak{R}_{i}, and $\mathfrak{r}^{\prime} \in \mathfrak{R}^{\prime}$, then there are $\mathfrak{r}_{i} \in \mathfrak{R}_{i}$ such that $\mathfrak{r}_{i} \subset \mathfrak{r}^{\prime}$; clearly $\bigcup_{i \in I} \mathfrak{r}_{i}$ is centred and generates a filter $\mathfrak{r} \in \mathfrak{R}$, $\mathbf{r} \subset \mathbf{r}^{\prime}$.
(7.11) Theorem (K. Matolcsy). Let $<_{1}(i \in I \neq \emptyset)$ be RE-orders on X. Then there is an $R E$-order $<$ on X finer than each $<_{i}$ and such that $<$ is strongly coarser than every $R E$-order $<$ strongly finer than each $<_{i}$.

Proof. Denote by \mathfrak{R}_{i} the system of all $<_{i}$-round, $<_{i}$-compressed filters, and consider the coarsest of all preregular systems finer than each \mathfrak{R}_{i} (cf. (7.10)). If $<$ is the $R E$-order induced by this \mathfrak{R} then it is finer than each $<_{i}$ by (5.15). If $<^{\prime}$ is an $R E$-order strongly finer than each $<_{i}$, and \mathfrak{R}^{\prime} denotes the system of all $<^{\prime}$-round, $<^{\prime}$-compressed filters, then \mathfrak{R}^{\prime} is finer than each \mathfrak{R}_{i}, thus it is finer than \mathfrak{R} and also finer than the system of all <-round, <-compressed filters (larger than \mathfrak{R}) so that $<^{\prime}$ is strongly finer than $<$.

We cannot assert that $<$ is strongly finer than each $<_{i}$; in fact it can happen that, for a family $\left\{\alpha_{i}: i \in I\right\}$ of $R E$-orders on X, there is no $R E$-order strongly finer than each $<_{i}($ see (8.10)).
(7.12) Lemma (K. Matolcsy). Under the hypotheses of (7.10), let $<_{i}$ and $<$
 every $\mathfrak{r} \in \mathfrak{R}$ is $<^{*}$-round and $<^{*}$-compressed.

Proof. If \mathfrak{r} is generated by $\bigcup_{i \in I} \mathfrak{r}_{i}, \mathfrak{r}_{i} \in \mathfrak{R}_{i}$, and $R \in \mathfrak{r}$, then $R \supset \bigcap_{k=1}^{n} R_{k}, R_{k} \in \mathfrak{r}_{i_{k}}$, $i_{k} \in I$. By (5.9) $\mathfrak{r}_{i_{k}}$ is $<_{i_{k}}$-round, hence there are $R_{k}^{\prime} \in \mathfrak{r}_{i_{k}}$ such that ${ }_{R}^{i \in 1}<_{i}^{\prime}<i_{k}, R_{k}$. Now $R^{\prime}=\bigcap_{k=1}^{n} R_{k}^{\prime} \in \mathfrak{r}$, and $R^{\prime}<^{*} R$, i.e. \mathfrak{r} is $<^{*}$-round.

For the same \mathfrak{r}, suppose $\emptyset \notin \mathrm{r} \mid A, A<^{*} B$. Then there are sets $A_{j k}, B_{j k}$ such that

$$
\begin{gathered}
A \subset \bigcup_{j=1}^{m} \bigcap_{k=1}^{n_{j}} A_{j k}, \quad \bigcup_{j=1}^{m} \bigcap_{k=1}^{n_{j}} B_{j k} \subset B, \\
A_{j k}<_{i(j, k)} B_{j k}, \quad i(j, k) \in I .
\end{gathered}
$$

Clearly there is a j such that $\emptyset \notin \mathfrak{r} \mid A_{j k}$ for each $k=1, \ldots, n_{j}$. Since $\mathfrak{r}_{i(j, k)} \subset \mathfrak{r}$, we have $\emptyset \notin \mathfrak{r}_{i(j, k)} \mid A_{j k}$, hence $B_{j k} \in \mathfrak{r}_{i(j, k)} \subset \mathfrak{r}$ because $\mathfrak{r}_{i(j, k)}$ is $<_{i(j, k)}$-compressed by (5.9). Thus $\bigcap_{k=1}^{n_{j}} B_{j k} \in \mathfrak{r}$ and $B \in \mathfrak{r}$ so that \mathfrak{r} is $<^{*}$-compressed.
(7.13) Corollary (K. Matolcsy). Under the hypotheses of (7.12), < and <* induce the same topology, namely the supremum of the topologies $\left\{<_{i}^{P}\right\}$.

Proof. $<^{*}$ induces this supremum since

$$
<^{* p}=\left(\bigcup_{i \in I}<_{i}\right)^{q p}=\left(\bigcup_{i \in I}<_{i}^{p}\right)^{q p}
$$

Now denote by \mathfrak{R}^{*} the system of all $<^{*}$-round, $<^{*}$-compressed filters; by (7.12) $\mathfrak{R} \subset \mathfrak{R}^{*}$. Consequently \mathfrak{R}^{*} is a preregular system of filters. In fact, (5.3) is valid for \mathfrak{R}^{*} because its elements are $<^{*}$-round and $<^{*}$-compressed, and (5.2) is guaranteed by $\mathfrak{R} \subset \mathfrak{R}^{*}$. Now the $\left\{<^{p}\right\}$-neighbourhood filter of $x \in X$ is by (5.10) the unique filter $\mathfrak{r} \in \mathfrak{R}$ such that $x \in \cap \mathfrak{r}$; the same r is by (5.7) the unique filter belonging to \mathfrak{R}^{*} with the same property. But r is $<^{*}$-round, $<^{*}$-compressed, hence maximal $<^{*}$-round by (2.11). By (3.1) the $\left\{<^{* p}\right\}$-neighbourhood filter of x is maximal $<^{*}$ round as well, hence it is identical with r by (2.13).

8. Counter-examples

We pointed out several times that some more or less plausible statements are not true. We give now the counter-examples necessary for this purpose.

Let X be the set of the ordinals $\leqq \omega$ and Y that of the ordinals $\leqq \omega_{1}$, both equipped with the order topology. Denote $N=X-\{\omega\}, N_{1}=Y-\left\{\omega_{1}\right\}$. Consider the product space $Z=X \times Y$, and denote by T the subspace $T=Z-\left\{\left(\omega, \omega_{1}\right)\right\}$. Thus T is the famous Tychonoff plank.
(8.1) Lemma. In T there is a single free, regular filter, namely the trace r_{0} in T of the neighbourhood filter \mathfrak{s}_{0} of $\left(\omega, \omega_{1}\right) \in \boldsymbol{Z}$.

Proof. Z is a regular space, hence 5_{0} is regular, and the same holds for r_{0} in $T ; \mathfrak{r}_{0}$ is obviously free.

Now let \mathfrak{s} be a free, regular filter in $T . Z$ is compact, hence \mathfrak{s} has a cluster point in Z which cannot be distinct from (ω, ω_{1}) since \mathfrak{s} is free. Z is compact T_{2}, hence $\mathfrak{s} \rightarrow\left(\omega, \omega_{1}\right)$. Hence $\mathfrak{r}_{0} \subset \mathfrak{s}$.

Consider $S \in \mathfrak{s}$, and let G_{i} be open and F a closed set in T such that (for the closures in T)

$$
S \supset \mathrm{cl} G_{1} \supset G_{1} \supset \mathrm{cl} G_{2} \supset G_{2} \supset \mathrm{cl} G_{3} \supset G_{3} \supset F \in \mathfrak{s} .
$$

Suppose first that $F \cap\left(N \times\left\{\omega_{1}\right\}\right)$ is infinite; say $\left(k_{n}, \omega_{1}\right) \in F, k_{n} \in N$ for $n \in N$. Then there are ordinals $\alpha_{n}<\omega_{1}$ such that $\left(k_{n}, \alpha\right) \in G_{3}$ for $\alpha_{n}<\alpha \leqq \omega_{1}$. If $\alpha_{n} \leqq$ $\beta<\omega_{1}$ for each n, then $(\omega, \alpha) \in \mathrm{cl} G_{3}$ whenever $\beta<\alpha<\omega_{1}$. For every such α there is $n_{\alpha} \in N$ such that $(n, \alpha) \in G_{2}$ for $n_{\alpha}<n \leqq \omega$. There exists a $k \in N$ such that $n_{\alpha}=k$ for uncountably many α, whence

$$
\begin{equation*}
\left(n, \omega_{1}\right) \in \mathrm{cl} G_{2} \quad \text { for } \quad k<n<\omega . \tag{8.2}
\end{equation*}
$$

We can find, for every $k<n<\omega$, a $\gamma_{n}<\omega_{1}$ such that $\gamma_{n}<\alpha \leqq \omega_{1}$ implies $(n, \alpha) \in G_{1}$, so that if $\gamma_{n} \leqq \gamma<\omega_{1}$ then $(n, \alpha) \in \mathrm{cl} G_{1}$ whenever $k<n \leqq \omega, \gamma<\alpha \leqq \omega_{1}$ (except the case $n=\omega, \alpha=\omega_{1}$). Therefore $\mathrm{cl}_{1} \in \mathfrak{r}_{0}, S \in \mathfrak{r}_{0}$ in this case.

Suppose now that $F \cap\left(N \times\left\{\omega_{1}\right\}\right)$ is finite. Then there is an $n_{0} \in N$ such that, for $n_{0}<n<\omega$, there exists $\varepsilon_{n}<\omega_{1}$ satisfying $(n, \alpha) \notin F$ for $\varepsilon_{n}<\alpha \leqq \omega_{1}$. For an ε such that $\varepsilon_{n} \leqq \varepsilon<\omega_{1}\left(n_{0}<n<\omega\right)$, we have $(n, \alpha) \ddagger F$ whenever $n_{0}<n<\omega, \varepsilon<\alpha \leqq \omega_{1}$. But $\left(\omega, \omega_{1}\right)$ is a limit point of F in Z, which is possible only if $F \cap\left(\{\omega\} \times N_{1}\right)$ is
uncountable. Hence there are uncountably many $\alpha<\omega_{1}$ and, to each of these α, an $n_{\alpha} \in N$ such that $n_{\alpha}<n \leqq \omega$ implies $(n, \alpha) \in G_{3} \subset G_{2}$. There is a $k \in N$ such that $n_{\alpha}=k$ for uncountably many α, and then (8.2) is valid. By the above reasoning this implies $S \in \mathfrak{r}_{0}$ so that $\mathfrak{s} \subset \mathfrak{r}_{0}$.
(8.3) Corollary. Consider in the space T the R-oder $<_{1}$ defined in (3.11) and the R-proximity δ_{1}, associated with $<_{1}$, given by (3.13). Then $<_{1} \subset<_{T}$ and δ_{1} satisfies (4.3), but $<_{1}$ is not an RE-order.

Proof. We know from (3.12) that $<_{1}$ is coarser than $<_{T}$ and (3.13) furnishes (4.3) for $\delta=\delta_{1}$. By (3.11) the $<_{1}$-round filters coincide with the regular filters of T. Among them there is a single which is free, namely the filter r_{0} in (8.1).

Now r_{0} is not $<_{1}$-compressed. In fact, let $A \subset N$ be the set of the even numbers and $B \subset N$ that of the odd numbers. Then $A \times\left\{\omega_{1}\right\} \bar{\delta}_{1} B \times\left\{\omega_{1}\right\}$ since $A \times Y$ and $B \times Y$ are disjoint open subsets of T. However, every element of r_{0} meets both $A \times\left\{\omega_{1}\right\}$ and $B \times\left\{\omega_{1}\right\}$.

Apply (5.16) for $X=T,<=<_{1}$. Then \mathfrak{R} consists of the neighbourhood filters only so that $<^{\prime}=<_{T}$. By (3.14) $<_{1} \neq<_{T}$, hence $<_{1}$ is not an $R E$-order.
(8.4) Corollary. The filter \mathfrak{r}_{0} is not $<_{T}$-compressed, consequently the space T is D-closed without being T_{3}-closed. The extension associated with $<_{T}$ is T itself; hence $<_{T}$ is not an RC-order.

Proof. The unique free, regular filter r_{0} in T is not $<_{T}$-compressed; in fact, $A=N \times\left\{\omega_{1}\right\}$ and $B=\{\omega\} \times N_{1}$ satisfy

$$
A \bar{\delta}_{T} B, \quad \emptyset \notin \mathrm{r}_{0}\left|A, \quad \emptyset \nsubseteq \mathrm{r}_{0}\right| B .
$$

Hence every $<_{T}$-compressed, regular filter is fixed. On the other hand, \mathfrak{r}_{0} is a free maximal regular filter.

A $<_{T}$-round, $<_{T}$-compressed filter is regular in T by (3.9), therefore none of these filters is free, and the extension associated with $<_{T}$ is T itself. By (5.18) T is the unique extension T^{\prime} of itself such that $<_{T}=<_{T} \mid T$; consequently there is no T_{3}-closed extension T^{\prime} with this property, and ${<_{T}}_{T}$ is not an $R C$-order.
(8.5) Lemma. Consider the subspace $T_{1}=X \times N_{1}$ of T, and let $f: T_{1} \rightarrow T$ denote the canonical injection. Then f is $\left(<_{T_{1}},<_{T}\right)$-continuous without being strongly ($<_{T_{1}},<_{T}$)-continuous.

Proof. f is continuous, hence its ($<_{T_{1}},<_{T}$)-continuity follows from (7.3). Let \mathfrak{R} and \Re_{1} denote the systems of all $<_{T}$-round, $<_{T}$-compressed and $<_{T_{1}}$-round, $<_{T_{1}}$-compressed filters, respectively. We know from (8.1) and (8.4) that \mathfrak{R} consists of the neighbourhood filters in $T((3.9),(3.10),(5.17),(5.10))$.

On the other hand, the trace filter $\mathfrak{r}_{1}=\mathfrak{r}_{0} \mid T_{1}$ belongs to $\mathfrak{\Re}_{1}$. In fact \mathfrak{r}_{1} is regular in T_{1}, hence $<_{T_{1}}$-round by (3.9). It is also $<_{T_{1}}$-compressed because if A and B are disjoint, closed subsets of T_{1} then $A \cap\left(\{\omega\} \times N_{1}\right)$ and $B \cap\left(\{\omega\} \times N_{1}\right)$ are disjoint, closed subsets of the space $\{\omega\} \times N_{1}$. The latter is homeomorphic to $N_{1} \subset Y$, thus, by a well-known property of N_{1}, there is a $\beta<\omega_{1}$ such that, say, $(\omega, \alpha) \notin A$ for $\beta \leqq \alpha<\omega_{1}$. For every α of this kind, there are $n_{\alpha}<\omega$ and an open neighbour-
hood U_{α} of α in N_{1} such that

$$
A \cap\left(V_{\alpha} \times U_{\alpha}\right)=\emptyset
$$

where

$$
V_{\alpha}=\left\{x \in X: n_{\alpha}<x \leqq \omega\right\} .
$$

Let G_{n} be the union of those sets U_{α} for which $n_{\alpha}=n$. The sets G_{n} constitute a countable cover of the subspace

$$
C=\left\{\alpha \in N_{1}: \beta \leqq \alpha<\omega_{1}\right\} \subset N_{1} .
$$

Since N_{1} and consequently C are countably compact, $C \subset \bigcup_{k=1}^{p} G_{n_{k}}$. For $m=\max \left\{n_{k}: k=1, \ldots, p\right\}$, we have $A \cap(D \times C)=\emptyset$, where

$$
D=\{x \in X: m<x \leqq \omega\} ;
$$

in fact, $x \in D, y \in C$ implies $y \in G_{n_{k}}$ for some k, hence $y \in U_{\alpha}$ for an α such that $n_{\alpha}=n_{k} \leqq m<x \leqq \omega$, so $x \in V_{\alpha}$. Now $D \times C$ clearly belongs to \mathfrak{r}_{1}.

If $f\left(\mathfrak{r}_{1}\right)=\mathfrak{r}_{1}$ were finer than some $\mathfrak{r} \in \mathfrak{R}$ then we would have $\mathfrak{r}_{1} \rightarrow z$ for some $z \in T$, which is impossible.
(8.6) Corollary. For the space T_{1} in (8.5), we have

$$
\begin{equation*}
<_{T_{1}}=<_{T}\left|T_{1}=<_{Z}\right| T_{1}, \tag{8.7}
\end{equation*}
$$

and Z is an extension of T_{1} associated with ${ }_{T_{1}}$.
Proof. Let A and B be disjoint, closed subsets of T_{1}. We have seen in the proof of (8.5) that $\left(\omega, \omega_{1}\right) \notin \mathrm{cl}_{\mathrm{Z}} A \cap \mathrm{cl}_{Z} B$. Consider (n, ω_{1}) for some $n \in N$, and $V=\{n\} \times N_{1} . A \cap V$ and $B \cap V$ are disjoint, closed subsets of the subspace $V \subset T_{1}$, homeomorphic to N_{1}, thus there is a $\beta<\omega_{1}$ such that, say, $(n, \alpha) \notin A$ for $\beta<\alpha \leqq$ $\leqq \omega_{1}$. Now $\left\{(n, \alpha): \beta<\alpha \leqq \omega_{1}\right\}$ is a neighbourhood of $\left(n, \omega_{1}\right)$ in Z so that $\left(n, \omega_{1}\right) \notin \mathrm{cl}_{Z} A$.

Therefore $<_{T_{1}}=<_{Z} \mid T_{1}$. Clearly

$$
<_{\mathrm{Z}}\left|T_{1 \mathrm{1}}^{\text {品 }} \subset<_{T}\right| T_{1} \subset<_{T_{1}}
$$

so that (8.7) is established.
We show that the $<_{T_{1}}$-round, $<_{T_{1}}$-compressed filters in T_{1} coincide with the traces of the neighbourhood filters in Z. From (8.7) we obtain by (4.14) that these traces are $<_{T_{1}}$-round and $<_{T_{1}}$-compressed. Conversely, a $<_{T_{1}}$-round, ${ }_{T_{1}}$-compressed filter in T_{1} is, by (2.11), maximal ${ }_{T_{1}}$-round, and by (4.11) it is the trace of a maximal regular filter in Z. Since Z is compact T_{2}, such a filter is a neighbourhood filter.
(8.8) Corollary. For the above space T_{1}, the extension Z associated with $<_{T_{1}}$ contains a proper D-closed subspace T such that $<_{T_{1}}=<_{T} \mid T_{1}$.

Proof. (8.6) and (8.4).
(8.9) Lemma. Let $<$ denote the discrete topogenous order on T. Then $<_{T} \subset<$ but $<$ is not strongly finer than $<_{T}$.

Proof. $\{<\}$ is a symmetrical topogenous structure, hence $<$ is an $R E$-ordet (the extension associated with $<$ is the Čech-Stone compactification of the discrete space T). Let r be an ultrafilter in T, finer than the filter r_{0}. Clearly \mathfrak{r} is $<$-round, $<$-compressed, but it is not finer than any $<_{T}$-round, $<_{T}$-compressed filter because the latters are, by (3.9), (8.1), (2.11) and (3.1), neighbourhood filters in T.
(8.10). Corollary. On the set T, there is no $R E$-order that would be strongly finer than any RE-order on T.

Proof. Such an $R E$-order would be finer than any $R E$-order on T, thus it would coincide with the discrete order $<$. However, the latter is not strongly finer than $<_{T}$ by (8.9).
(8.11) Lemma. Consider the subspace $T_{2}=N \times Y$ of T. Then $<_{T} \mid T_{2} \subset<_{T_{2}}$ but $<_{T_{2}}$ is not strongly finer than ${ }_{T} \mid T_{2}$.

Proof. The first assertion is obvious by (4.4). Let s be an ultrafilter in N finer than the filter base $\left\{R_{n}: n \in N\right\}, R_{n}=\{x \in N: x \geqq n\}$. Denote by \mathfrak{r} the filter in T_{2} generated by the filter base

$$
\left\{S \times V_{\alpha}: S \in \mathfrak{F}, \alpha<\omega_{1}\right\}
$$

where $V_{\alpha}=\left\{y \in Y: \alpha<y \leqq \omega_{1}\right\}$. Clearly r is regular in T_{2} because S is clopen in N, V_{α} is open in Y, and $\alpha<\beta<\omega_{1}$ implies $V_{\alpha} \supset \mathrm{cl}_{Y} V_{\beta}$. Hence \mathfrak{r} is $<_{T_{2}}-$ round by (3.9).

We show that \mathfrak{r} is $<_{T_{2}}$-compressed. In fact, let $A, B \subset T_{2}$ be disjoint, closed subsets of T_{2}. For $n \in N$, either $A \cap\left(\{n\} \times V_{\alpha_{n}}\right)$ or $B \cap\left(\{n\} \times V_{\alpha_{n}}\right)$ is empty for some $\alpha_{n}<\omega_{1}$. Let C be the set of those $n \in N$ for which this holds for $A \cap(\{n\} \times Y)$. Either C or $N-C$ belongs to s.

In the first case there is an $\alpha<\omega_{1}$ such that $\alpha_{n} \leqq \alpha$ for $n \in C$; then $C \times V_{\alpha} \in \mathfrak{r}$ does not intersect A. In the second one there is $\alpha<\omega_{1}$ such that $\alpha_{n} \leqq \alpha$ for $n \in N-C$, and then $(N-C) \times V_{\alpha}$ does not meet B.

By (2.11) and (4.11) the ${\alpha_{T}}_{T} \mid T_{2}$-round, $<_{T} \mid T_{2}$-compressed filters are traces in T_{2} of maximal regular filters in T, and the latters are by (8.1) either neighbourhood filters in T or equal to \mathfrak{r}_{0}. None of the formers is coarser than \mathfrak{r} because $\mathfrak{r} \rightarrow\left(\omega, \omega_{1}\right)$ in Z, and $\mathfrak{r}_{0} \mid T_{2}$ is not $<_{T} \mid T_{2}$-compressed. In fact, if P and Q denote the sets of the even and the odd numbers in N, respectively, then $P \times\left\{\omega_{1}\right\}$ and $Q \times\left\{\omega_{1}\right\}$ are disjoint, closed subsets of T, and each element of $\mathfrak{r}_{0} \mid T_{2}$ intersects both of them. Hence $<_{T_{2}}$ is not strongly finer than $<_{T} \mid T_{2}$.
(8.12) Corollary. In the space T_{2}, there is no compatible $R E$-order that would be strongly finer than all compatible $R E$-orders.

Proof. Such an $R E$-order would be finer than all compatible $R E$-orders, i.e. it would coincide with $<_{T_{2}}$ by (4.4). However, $<_{T_{2}}$ is not strongly finer than the compatible $R E$-order $<_{T} \mid T_{2}$.

Similar questions, answered negatively in the above examples, have been raised in [8] for $R C$-orders instead of $R E$-orders. Our results may be considered as first tentatives towards an answer, although they do not solve the problems because the order $<_{T}$ involved in them is not an $R C$-order.

References

[1] E. Čech, Topological spaces (Prague-London-New York-Sydney, 1966).
[2] K. C. Chattopadhyay, On the product of f-proximities, Proc. Amer. Math. Soc., 89 (1983), 147-154.
[3] Á. Császár, Foundations of general topology (Budapest-Oxford-London-New YorkParis, 1963).
[4] Á. Császár, Grundlagen der allgemeinen Topologie (Budapest-Leipzig, 1963).
[5] Á. Császár, Syntopogene Gruppen I, Math. Nachrichten, 39 (1969), 1-20.
[6] Á. Császár, General topology (Budapest-Bristol, 1978).
[7] D. Doičinov, Regular extensions of topological spaces, Uspehi Mat. Nauk, 35 (1980), 178-179 (in Russian).
[8] D. Harris, Regular-closed spaces and proximities, Pacific J. Math., 34 (1970), 675-685.
[9] K. Matolcsy, T_{3}-closed extensions, systems of filters, proximities, Acta Math. Hung., in print,
[10] K. Matolcsy, Compactifications for syntopogenous spaces, Studia Sci. Math. Hung., in print.
(Received February 9, 1984)

LORÁND EÖTVÖS UNIVERSITY
INSTITUTE OF MATHEMATICS
BUDAPEST, MÚZEUM KRT. $6-8$
H-1088 HUNGARY

A REMARK ON A THEOREM OF H. DABOUSSI

I. KÁTAI (Budapest), member of the Academy

1. Let $e(\alpha)=e^{2 \pi i \alpha}$. Let \mathscr{M} denote the class of complex valued multiplicative functions, and \mathscr{A} denote the class of real valued additive functions.

Let $\mathscr{F} \subseteq \mathscr{M}$ be the set of those multiplicative functions f for which $|f(n)| \leqq 1$ holds for every natural number n. Some years ago H. Daboussi has shown that for every irrational α

$$
\begin{equation*}
\frac{1}{N} \sum_{n \leqq N} f(n) e(n \alpha) \rightarrow 0 \quad(N \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

uniformly in $f \in \mathscr{F}$. Later this result has been extended and improved in [1] and [2].
An immediate consequence of Daboussi's theorem is the following result.
If α is an irrational number and $F \in \mathscr{A}$, then the sequence

$$
\begin{equation*}
\xi_{n}=F(n)+\alpha n \tag{1.2}
\end{equation*}
$$

is uniformly distributed mod 1 . Moreover, there exists a sequence $\varrho_{n}=\varrho_{n}(\alpha)>0$ monotonically tending to zero such that

$$
\sup _{F \in \mathscr{A}} \sup _{0 \leqq \gamma<\delta<1} \frac{1}{N}\left(\#\left\{n \leqq N,\left\{\xi_{n}\right\} \in[\gamma, \delta)\right\}-N(\delta-\gamma)\right) \leqq \varrho_{N} \quad(N \geqq 1) .
$$

2. We shall say that a sequence of real numbers $t(n)(n=1,2, \ldots)$ belongs to \mathscr{T} if $F(n)+t(n)(n=1,2, \ldots)$ is uniformly distributed $\bmod 1$ for every $F \in \mathscr{A}$. It would be interesting to characterize \mathscr{T}. We are unable to do this, but we can prove that

$$
\begin{equation*}
\frac{1}{N} \sum_{n \leqq N} f(n) e(t(n)) \rightarrow 0 \quad(N \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

holds uniformly for $f \in \mathscr{F}$ for a quite large set of $t(n)$.
Theorem 1. Let us assume that for every positive K there exists a finite set \mathscr{P}_{K} of primes $p_{1}<p_{2}<\ldots<p_{R}$ such that

$$
\begin{equation*}
A_{\mathscr{P}_{K}}:=\sum_{i=1}^{R} 1 / p_{i}>K, \tag{1}
\end{equation*}
$$

(2) for the sequences $\eta_{i, j}(m)=t\left(p_{i} m\right)-t\left(p_{j} m\right)$ the relation

$$
\begin{equation*}
\frac{1}{x} \sum_{m=1}^{x} e\left(\eta_{i, j}(m)\right) \rightarrow 0 \quad(x \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

holds, whenever $i \neq j, i, j \in\{1, \ldots, R\}$.

Then there exists a sequence $\varrho_{n}>0$ monotonically tending to zero such that

$$
\begin{equation*}
\sup _{f \in \mathscr{F}}\left|\frac{1}{N} \sum_{n<N} f(n) e(t(n))\right| \leqq \varrho_{n} . \tag{2.3}
\end{equation*}
$$

Theorem 2. Let us assume that for every positive K there exists a finite set $\mathscr{F}_{{ }_{k}}$ of primes $p_{1}<\ldots<p_{R}$ such that

$$
\begin{equation*}
A_{\mathscr{P}_{K}}:=\sum_{i=1}^{R} 1 / p_{i}>K, \tag{1}
\end{equation*}
$$

(2) the sequences $\eta_{i, j}(m)=t\left(p_{i} m\right)-t\left(p_{j} m\right)(m=1,2, \ldots)$ are uniformly distriluted mod 1 for every $i \neq j, i, j \in\{1, \ldots, R\}$.

Then $t \in \mathscr{T}$. Furthermore, for the discrepancy sequence

$$
D_{N}(F):=\sup _{0 \leqq \gamma<\delta<1}\left|\frac{1}{N} \#\{\{F(n)+t(n)\} \in[\gamma, \delta)\}-(\delta-\gamma)\right|
$$

we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{F \in \Omega} \sup _{F \in \Omega} D_{N}(F)=0 . \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem 1. Let c, c_{1}, c_{2}, \ldots be absolute positive constants, B, B_{1}, B_{2}, \ldots be real numbers majorized by absolute constants.

After fixing a K we put $\mathscr{P}_{K}=\mathscr{P}$, and $\omega_{\mathscr{P}}(n)=\sum_{\substack{p \mid n \\ p \in \mathscr{P}}} 1$. From the Turán-Kubilius inequality we get immediately

$$
\begin{equation*}
\sum_{n \leqq x}\left|\omega_{\mathscr{P}}(n)-A_{\mathscr{P}}\right| \leqq c_{1} x\left(A_{\mathscr{P}}\right)^{1 / 2} . \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
S(x)=S(x, f)=\sum_{n \leqq x} f(n) e(t(n)), \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
H(x)=H(x, f)=\sum_{n \leqq x} f(n) e(t(n)) \omega_{\mathscr{P}}(n) . \tag{3.3}
\end{equation*}
$$

From (3.1) we deduce

$$
\begin{equation*}
\left|H(x)-A_{\mathscr{P}} S(x)\right| \leqq c_{1} x^{\prime} \sqrt{A_{\mathscr{P}}} . \tag{3.4}
\end{equation*}
$$

Furthermore,

$$
H(x)=\sum_{\substack{p m s x \\ p \in \mathscr{B}}} \sum_{\substack{ \\p}} f(p m) e(t(p m))
$$

For $(p, m)=1$ we may write $f(p m)=f(p) f(m)$. The contribution of the pairs p, m satisfying $(p, m)>1$ can be majorized by $x \sum 1 / p_{i}^{2}$, consequently

$$
\begin{equation*}
H(x)=\sum_{m \leqq x / p_{1}} f(m) \sum_{p_{i} \leq x / m} f\left(p_{i}\right) e\left(t\left(p_{i} m\right)\right)+B_{1} x=\sum_{m \leqq x / p_{1}} f(m) \Sigma_{m}+B_{1} x . \tag{3.5}
\end{equation*}
$$

Since $(a+b)^{2} \leqq 2\left(a^{2}+b^{2}\right)$ for real a, b, using the Cauchy-inequality, we get

$$
\begin{equation*}
|H(x)|^{2} \leqq 2\left(\sum_{m \leqq x / p_{1}}|f(m)|^{2}\right)\left(\sum_{m \leqq x / p_{1}}\left|\Sigma_{m}\right|^{2}\right)+2 B_{1}^{2} x^{2}=2 U V+2 B_{1}^{2} x^{2} . \tag{3.6}
\end{equation*}
$$

We have $U \leqq x$. Furthermore,

$$
V=\sum_{m \leqq x / p_{1} p_{i}, p_{j} \leq x / m} \sum_{i} f\left(p_{i}\right) \overline{f\left(p_{j}\right)} e\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right) .
$$

The contribution of the terms $p_{i}=p_{j}$ is $\sum\left[\frac{x}{p_{i}}\right]<x A_{\mathscr{P}}$. Consequently

$$
\begin{equation*}
V \leqq x A_{\mathscr{P}}+\sum_{\substack{p_{i}, p_{j} \in \mathscr{P} \\ i \neq j}}\left|\sum_{m \leqq \min \left(\frac{x}{p_{i}}, \frac{x}{p_{j}}\right)} e\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right)\right| . \tag{3.7}
\end{equation*}
$$

Collecting our inequalities (3.4), (3.6), (3.7), we get

$$
\begin{equation*}
\frac{|S(x)|^{2} A^{2}}{x^{2}} \leqq c_{2} A_{\mathscr{P}} \sum_{p_{i}, p_{j} \in \mathscr{P}} \frac{1}{x \neq j}\left|\sum_{m \leqq \min \left(\frac{x}{p_{i}}, \frac{x}{p_{j}}\right)} e\left(t\left(p_{i} m\right)-t\left(p_{i} m\right)\right)\right| \tag{3.8}
\end{equation*}
$$

Let $B(x)=\sup _{f \in \mathscr{F}}|S(x, f)|$. Since the right hand side of (3.8) does not depend on f, it holds for $B(x)$ instead of $|S(x, f)|$ as well. Consequently

$$
\begin{equation*}
\lim \sup \left(\frac{B(x)^{2}}{x}\right) \leqq c_{2} / A_{\mathscr{F}} \tag{3.9}
\end{equation*}
$$

Since $\mathscr{P}=\mathscr{P}_{K}$ can be chosen such that $A_{\mathscr{P}}>K$ for arbitrary large K, (3.9) implies that $B(x)=o(x)(x \rightarrow \infty)$.
4. Proof of Theorem 2. Let k be an arbitrary nonzero integer. By putting $f(n)=e(k F(n)), t(n) \rightarrow k t(n)$ the conditions of Theorem 1 are satisfied. By using a quantitative form of the Weyl-criterion, for example Erdős-Turán inequality, we get our theorem immediately.
5. Some remarks. 1. Theorems 1 and 2 remain valid assuming only that p_{i}, p_{j} are coprime integers.
2. If $t \in \mathscr{T}$, then $t(n)$ is uniformly distributed mod 1. This is obvious, since the zero-function is additive.
3. There exists a $t(n)$ uniformly distributed $\bmod 1$ which does not belong to \mathscr{T}. Indeed, let $\omega(n)$ be the number of prime divisors of n. Then $\alpha \omega(n)$ is uniformly distributed mod 1 if α is an irrational number, this can be proved in several way. By putting $t(n)=\alpha \omega(n), F(n)=-\alpha \omega(n) \in \mathscr{A}$, we get that $0=F(n)+t(n)$, which cannot be uniformly distributed.
4. Let $t(n)=\alpha_{k} n^{k}+\ldots+\alpha_{1} n$ be a polynomial of n such that at least one of the coefficients $\alpha_{1}, \ldots, \alpha_{k}$ is irrational. Then the conditions of Theorems 1 and 2 hold.

References

[1] H. Daboussi, H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc., 26 (1982), 245-264.
[2] H. L. Montgomery, R. C. Vaughan, Exponential sums with multiplicative coefficients, Inventiones Math., 43 (1977), 69-82.
(Received February 14, 1984)

ON SOME FUNCTIONS DEFINED BY THE CANONICAL EXPANSION OF COMPLEX NUMBERS

S. KÖRMENDI (Budapest)

1. We shall say that a Gaussian integer $\vartheta=a+b i$ is a canonical number base if every Gaussian integer α can be represented uniquely in the form

$$
\begin{equation*}
\alpha=a_{0}+a_{1} \vartheta+\ldots+a_{r} \vartheta^{r} \tag{1.1}
\end{equation*}
$$

where $a_{j} \in A=\{0,1, \ldots, N(\vartheta)-1\}$. I. Kátai and J. Szabó proved in [1], that ϑ is a canonical number base if and only if $\operatorname{Re} \vartheta<0$ and $\operatorname{Im} \vartheta= \pm 1$. In the same paper they proved that if ϑ is a canonical number base then every complex number z can be written in the form

$$
\begin{equation*}
z=\sum_{l=-\infty}^{k} a_{l} \vartheta^{l} . \tag{1.2}
\end{equation*}
$$

These investigations have been extended for arbitrary quadratic fields by I. Kátai and B. Kovács [2], [3], and for some other algebraic fields by B. Kovács [4].

The geometrical properties of sets of complex numbers that have an expansion (1.2) with a given integer part have been considered by W. J. Gilbert [5], [6].

In their paper [7] Z. Daróczy, A. Járai and I. Kátai determined those functions for which

$$
\begin{equation*}
F\left(\sum_{k=1}^{\infty} \frac{\delta_{k}}{q^{k}}\right)=\sum_{k=1}^{\infty} F\left(\frac{\delta_{k}}{q^{k}}\right) \tag{1.3}
\end{equation*}
$$

holds for every $\delta_{k}=0,1, \ldots, q-1, k=1,2, \ldots$, where $q \geqq 2$ is an integer. Namely they proved that if F satisfies (1.3) then $F(z)=a z+b$ holds with suitable constants a, b.

Let $\vartheta=-A \pm i$ be a Gaussian number base. Let H denote the set of all complex numbers that have at least one representation in the form

$$
\begin{equation*}
z=\sum_{l=1}^{\infty} \frac{a_{l}}{\vartheta^{l}}, \quad a_{l} \in A=\{0,1, \ldots, N(\vartheta)-1\} . \tag{1.4}
\end{equation*}
$$

Theorem. Let F be a complex valued function defined on $H, F(0)=0$. Assume that

$$
\begin{equation*}
F(z)=\sum_{l=1}^{\infty} F\left(\frac{a_{l}}{\vartheta^{l}}\right) \tag{1.5}
\end{equation*}
$$

holds for every $z \in H$. Then

$$
\begin{equation*}
F(z)=c z+d \bar{z} \tag{1.6}
\end{equation*}
$$

with suitable constants c, d.

2. Proof of the theorem

Lemma 1. Under the conditions stated in Theorem we have

$$
\begin{equation*}
\sum_{l=1}^{\infty} \sum_{k=1}^{N(\vartheta)-1}\left|F\left(\frac{k}{\vartheta^{l}}\right)\right|<\infty . \tag{2.1}
\end{equation*}
$$

Proof. It is obvious that $\operatorname{Re} F(z)$ and $\operatorname{Im} F(z)$ satisfy the relation (1.5), consequently we may assume that F is a real valued function. For $k \in A$ let

$$
E_{k}=\left\{l \left\lvert\, F\left(\frac{k}{\vartheta^{l}}\right) \geqq 0\right.\right\}, \quad F_{k}=\left\{l \left\lvert\, F\left(\frac{k}{\vartheta^{l}}\right)<0\right.\right\} .
$$

Let z_{k} and w_{k} be defined by

$$
z_{k}=\sum_{l \in E_{k}} \frac{k}{\vartheta^{l}}, \quad w_{k}=\sum_{l \in F_{k}} \frac{k}{\vartheta^{l}} .
$$

Since the series represent complex numbers $z_{k}, w_{k} \in H$, therefore

$$
\sum_{l \in E_{k}} F\left(\frac{k}{\vartheta^{l}}\right)=F\left(z_{k}\right), \quad \sum_{l \in F_{k}}-F\left(\frac{k}{\vartheta^{l}}\right)=-F\left(w_{k}\right)
$$

are absolutely convergent. Making this for each k, we get (2.1) immediately.
Lemma 2. Let B and C be positive coprime integers, $D=B+C$, and $X_{0}=0$, X_{1}, \ldots, X_{D} be arbitrary complex numbers satisfying the following relations:

$$
\begin{gather*}
X_{C+n}=X_{C}+X_{n} \quad(n=0, \ldots, B) \tag{2.2}\\
X_{B+m}=X_{B}+X_{m} \quad(m=0, \ldots, C) \tag{2.3}
\end{gather*}
$$

For every integer $n \in\{1,2, \ldots, D\}$, if $n=q C-s B$ with nonnegative integers q, s, then $X_{n}=q X_{C}-s X_{B}$. Consequently $X_{n}=n X_{1}$.

Proof. First we shall prove that

$$
\begin{equation*}
X_{q C-s B}=q X_{C}-s X_{B} \tag{2.4}
\end{equation*}
$$

whenever $1 \leqq q C-s B \leqq D$. We shall prove it by induction with respect to $t(q, s)=$ $=q+s$.
(2.4) is obviously true if $t(q, s)=1$. In this case $q=1, s=0$. Let us assume that (2.2) has been proved for every q, s satisfying $t(q, s) \leqq r-1$. Let $t(q, s)=r$, $n=q C-s B$. If $n<C$, then $s \geqq 1, n+b=n_{1} \leqq D, n_{1}=q C-(s-1) B$, from (2.3) $X_{n_{1}}=X_{n}+X_{B}$.

Furthermore $t(q,(s-1))=r-1$, and so $X_{n_{1}}=q X_{C}-(s-1) X_{B}$. Consequently $X_{n}=X_{n_{1}}-X_{B}=q X_{C}-s X_{B}$, (2.4) holds.

Let $n>C$. Then $n_{1}=n-C=(q-1) C-s B$, from (2.2) and by the induction argument

$$
X_{n}=X_{C}+X_{n-c}=X_{C}+q-1, \quad X_{C}-s X_{B}=q X_{C}-s X_{B} .
$$

The case $n=C$ is obvious.

To prove the second assertion we observe that $1=\xi C-\eta B$ with suitable positive integers ξ and η. Consequently $X_{1}=\xi X_{C}-\eta X_{B}$. Furthermore $n=(n \xi) C-(n \eta) B$, and so $X_{n}=n \xi X_{C}-n \eta X_{B}=n\left(\xi X_{C}-\eta X_{B}\right)=n X_{1}$.

To prove our theorem we are looking for such complex numbers that have two different expansions of the form (1.4), and we shall derive some relations among the values $F\left(\frac{a}{\vartheta^{l}}\right)$.

The minimal polynomial of ϑ has the form $\varphi(z)=z^{2}+2 A z+A^{2}+1$, whence we deduce immediately that

$$
\begin{equation*}
\vartheta^{3}-1=-B \vartheta^{2}-C \vartheta+A^{2} \tag{2.5}
\end{equation*}
$$

with

$$
\begin{equation*}
B=2 A-1, \quad C=(A-1)^{2} \tag{2.6}
\end{equation*}
$$

From (2.5) we get

$$
\begin{equation*}
\left(-\frac{B}{\vartheta}-\frac{C}{\vartheta^{2}}+\frac{A^{2}}{\vartheta^{3}}\right) \frac{1}{1-1 / \vartheta^{3}}=1 \tag{2.7}
\end{equation*}
$$

Since

$$
\frac{1}{1-1 / \vartheta^{3}}=1+\frac{1}{\vartheta^{3}}+\frac{1}{\vartheta^{6}}+\ldots
$$

from (2.7) we get

$$
\begin{equation*}
1+\sum_{j=0}^{\infty} \frac{B}{\vartheta^{1+3 j}}+\sum_{j=0}^{\infty} \frac{C}{\vartheta^{2+3 j}}=\sum_{j=0}^{\infty} \frac{A^{2}}{\vartheta^{3+3 j}} \tag{2.8}
\end{equation*}
$$

Let us divide both sides of (2.8) by $\vartheta^{l}, l \geqq 1$. Then

$$
\begin{equation*}
\frac{1}{\vartheta^{l}}+\sum_{j=0}^{\infty} \frac{B}{\vartheta^{i+3 j+1}}+\sum_{j=0}^{\infty} \frac{C}{\vartheta^{2+3 j+l}}=\sum_{j=0}^{\infty} \frac{A^{2}}{\vartheta^{3+3 j+l}} \tag{2.9}
\end{equation*}
$$

Let $B=x-y, x, y \in A$. Then

$$
\begin{equation*}
\frac{1}{\vartheta^{l}}+\frac{x}{\vartheta^{1+l}}+\sum_{j=1}^{\infty} \frac{B}{\vartheta^{1+3 j+l}}+\sum_{j=0}^{\infty} \frac{C}{\vartheta^{2+3 j+l}}=\frac{y}{\vartheta^{1+l}}+\sum_{j=0}^{\infty} \frac{A^{2}}{\vartheta^{3+3 j+l}} \tag{2.10}
\end{equation*}
$$

Since $l, x, y, B, C, A^{2} \in A$, from (1.5) we get that

$$
\begin{equation*}
F\left(\frac{x}{\vartheta^{1+l}}\right)-F\left(\frac{y}{\vartheta^{1+l}}\right)=\mathrm{constant} \tag{2.11}
\end{equation*}
$$

for $x-y=B, x, y \in A$.
Similarly, if we put $C=u-v$ in C / ϑ^{2+l}, we get

$$
\begin{equation*}
F\left(\frac{u}{\vartheta^{2+1}}\right)-F\left(\frac{v}{\vartheta^{2+1}}\right)=\mathrm{constant} \tag{2.12}
\end{equation*}
$$

for $u-v=C, u, v \in A$.
That is

$$
\begin{equation*}
F\left(\frac{B+y}{\vartheta^{v}}\right)-F\left(\frac{y}{\vartheta^{v}}\right)=F\left(\frac{B}{\vartheta^{v}}\right) \tag{2.13}
\end{equation*}
$$

for $v \geqq 2$, and

$$
\begin{equation*}
F\left(\frac{C+v}{\vartheta^{v}}\right)-F\left(\frac{v}{\vartheta^{v}}\right)=F\left(\frac{C}{\vartheta^{v}}\right) \tag{2.14}
\end{equation*}
$$

for $v \geqq 3$.
Let us assume that $v \geqq 3$. We put $X_{n}=F\left(\frac{n}{\vartheta^{v}}\right)$. Then from (2.13) and (2.14) we get

$$
X_{B+y}=X_{B}+X_{y}, \quad X_{C+v}=X_{C}+X_{v}
$$

The condition $(B, C)=1$ obviously holds. Consequently from Lemma 2 we get $X_{n}=n X_{1}$, that is

$$
\begin{equation*}
F\left(\frac{n}{\vartheta^{v}}\right)=n F\left(\frac{1}{\vartheta^{v}}\right) \quad(v \geqq 3, n \in A) . \tag{2.15}
\end{equation*}
$$

Let

$$
\Lambda_{r}=F\left(1 / \vartheta^{r}\right), \quad S_{r}=\sum_{j=r}^{\infty} \Lambda_{j}
$$

From (2.9) we get immediately that

$$
\begin{equation*}
\Lambda_{l}+\sum_{j=0}^{\infty} B \Lambda_{1+3 j+l}+\sum_{j=0}^{\infty} C \Lambda_{2+3 j+l}=A^{2} \sum_{j=0}^{\infty} \Lambda_{3+3 j+l} \tag{2.16}
\end{equation*}
$$

whenever $l \geqq 2$. Let us consider this equation for $l=R, R+1, R+2$, and take the sum of both sides of these equations. We get immediately that $\Lambda_{R}+\Lambda_{R+1}+$ $+\Lambda_{R+2}+B S_{R+1}+C S_{R+2}=A^{2} S_{R+3}$ if $R \geqq 2$.

Since $B+C=A^{2}$, we have

$$
\Lambda_{R}+\Lambda_{R+1}+\Lambda_{R+2}+B\left(\Lambda_{R+1}+\Lambda_{R+2}\right)+C \Lambda_{R+2}=0
$$

Consequently

$$
\begin{equation*}
\Lambda_{R}+(1+B) \Lambda_{R+1}+(1+B+C) \Lambda_{R+2}=0 \tag{2.7}
\end{equation*}
$$

Observing that $1+B=2 A, 1+B+C=A^{2}+1$, we get that the characteristic polynomial of this recursion is $K(w)=\left(A^{2}+1\right) w^{2}+2 A w+1$.

The roots of $K(w)$ are $1 / \vartheta$ and $1 / \bar{\vartheta}$. Consequently $\Lambda_{R}=c(1 / \vartheta)^{R}+d(1 / \bar{\vartheta})^{R}$ ($R \geqq 2$) with suitable constants c, d. Hence we get $F(z)=c z+d \bar{z}$, if z can be expressed in the form

$$
\begin{equation*}
z=\sum_{j=2}^{\infty} \frac{a_{j}}{\vartheta^{j}} \tag{2.18}
\end{equation*}
$$

Let us consider now (2.9) for $l=1$. Let

$$
\xi=\sum_{j=0}^{\infty} \frac{B}{\vartheta^{2+3 j}}+\sum_{j=0}^{\infty} \frac{C}{\vartheta^{3+3 j}}, \quad \eta=\sum_{j=0}^{\infty} \frac{A^{2}}{\vartheta^{4+3 j}}
$$

From (2.9) we get $\frac{1}{\vartheta}+\xi=\eta$, consequently $\frac{a+1}{\vartheta}+\xi=\frac{a}{\vartheta}+\eta, a \in\left\{0, \ldots, A^{2}-1\right\}$. Since ξ and η can be expressed in the form (2.18), therefore $F(\xi)=c \xi+d \xi, F(\eta)=$
$=c \eta+d \bar{\eta}$, furthermore

$$
F\left(\frac{a+1}{\vartheta}\right)+F(\xi)=F\left(\frac{a}{\vartheta}\right)+F(\eta)
$$

we get

$$
F\left(\frac{a+1}{\vartheta}\right)-F\left(\frac{a}{\vartheta}\right)=c(\eta-\xi)+d \overline{(\eta-\xi)}=c \frac{1}{\vartheta}+d\left(\frac{1}{\vartheta}\right) .
$$

By using $F(0)=0$, this gives $F\left(\frac{a}{\vartheta}\right)=c \frac{a}{\vartheta}+d\left(\frac{\bar{a}}{\vartheta}\right)$.
So we proved that $F\left(\frac{a}{\vartheta^{v}}\right)=c\left(\frac{a}{\vartheta^{v}}\right)+d\left(\frac{\bar{a}}{\vartheta^{v}}\right)$, for every $a \in A, v \geqq 1$. Thus our theorem follows immediately.

References

[1] I. Kátai, J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. Szeged, 37 (1975), 255-260.
[2] I. Kátai, B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hung., 37 (1981), 159-164.
[3] I. Kátai, B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. Szeged, 42 (1980), 99-107.
[4] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hung., 37 (1981), 405-407.
[5] W. J. Gilbert, Geometry of radix representations, In: The Geometric Vein: Essays presented to H. S. M. Coxeter, Springer (New York, 1982), 129-139.
[6] W. J. Gilbert, Fractal geometry derived from complex bases, The Mathematical Intelligencer, 4 (1982), 78-86.
[7] Z. Daróczy, A. Járai, I. Kátai, On functions defined by digits of real numbers, Acta Math. Hung. (in print).
(Received March 8, 1984)

i. - Mar

\square

$+y_{1}$

ON THE EXPECTED TIME OF THE FIRST OCCURRENCE OF EVERY k BIT LONG PATTERNS IN THE SYMMETRIC BERNOULLI PROCESS

A. BENCZUR (Budapest)

Let $T_{k}(\omega)$ denote the first occurrence time of every k bit long sequence in the realization $\omega=\omega_{1} \omega_{2} \ldots\left(\omega_{i}=0\right.$ or $\left.1, i=1,2, \ldots\right)$ of the symmetric Bernoulli process. Using Theorem 3.1 from Shou-Yen Robert Li [1] we give an elementary proof of

$$
2^{k}(k \ln 2-\ln k) \leqq E\left(T_{k}(\omega)\right) \leqq 2^{k+2}\left(k \ln 2+c+O\left(2^{-k}\right)\right) .
$$

Let U_{k} denote the set of different zero-one sequences of length k. We say the sequence $B=b_{1} b_{2} \ldots b_{l}$ is an i-continuation of the sequence $A=a_{1} a_{2} \ldots a_{n}$, if

$$
a_{n}=b_{l-i}, a_{n-1}=b_{l-i-1}, \ldots, a_{n-(l-i)+1}=b_{1} .
$$

In the case when i is the smallest number for which B is i-continuation of A, we say B is strict i-continuation of A.

Let $H \subseteq U_{k}$ be a subset of U_{k}. We define for the sequences $A \in H$ the continuation mean of A in H by

$$
\begin{equation*}
l^{(H)}(A)=\sum_{i=1}^{k-1} 2^{-i} l_{i}^{(H)}(A) \tag{1}
\end{equation*}
$$

where $l_{i}^{(H)}(A)$ is the number of sequences in H that are strict i-continuations of A. It is easy to see that $l^{(H)}(A)$ is the expected number of the different elements of H which occur in a random, symmetric and independent continuation of A with $k-1$ bit.

In [1] Shou-Yen Robert Li gives the continuation measure $A * B$ of two patterns of series of independent, identically distributed discrete random variables. Applying it for the symmetric Bernoulli process, we get for $A, B \in U_{k}$:

$$
\begin{equation*}
A * B=\sum_{i=1}^{k-1} c_{i} 2^{k-i} \tag{2}
\end{equation*}
$$

where

$$
c_{i}=\left\{\begin{array}{l}
1, \text { if } B \text { is } i \text {-continuation of } A \\
0, \text { else } .
\end{array}\right.
$$

Lemma. Let $N^{(H)}(\omega)$ be the time of the first occurrence of an element from H, where $\omega=\omega_{1} \omega_{2} \ldots$ is a realization of the symmetric Bernoulli porocess, i.e.:

$$
N^{(H)}(\omega)=\min _{N}\left\{\omega_{N-k+1} \omega_{N-k+2} \ldots \omega_{N} \in H\right\} .
$$

Let

$$
P_{A}=P\left\{\omega_{N_{(\omega)}^{(H)}-k+1} \ldots \omega_{N_{(\omega)}^{(H)}}=A\right\}
$$

and $|H|$ be the cardinality of H. Then

$$
\begin{equation*}
2^{k} \sum_{A \in H} P_{A}\left(l^{(H)}(A)+1\right) \leqq|H| E\left(N^{(H)}(\omega)\right) \leqq 2^{k+1} \sum_{A \in H} P_{A}(l(A)+1) \tag{3}
\end{equation*}
$$

Remark. The expression $\sum_{A \in H} P_{A} l^{(H)}(A)$ has a special meaning. It is the expected number of elements from H that occur in the subsequence of $\omega: \omega_{N^{(H)}{ }^{(H+1}} \ldots \omega_{N^{(H)} \ldots} \omega_{N}{ }^{(\boldsymbol{H})_{+k-1}}$. Denoting it by $n(H)$, we get from (3):

$$
\begin{equation*}
2^{k}(n(H)+1) \leqq|H| E\left(N^{(H)}(\omega)\right) \leqq 2^{k+1}(n(H)+1) . \tag{3'}
\end{equation*}
$$

Proof. Theorem 3.1 of [1] states that for every $A \in H$

$$
\begin{equation*}
\sum_{B \in H} P_{B} B * A=E\left(N^{(H)}(\omega)\right) . \tag{4}
\end{equation*}
$$

Summing it with respect to A and exchanging the order of summation we obtain:

$$
\begin{equation*}
\sum_{B \in H} P_{B} \sum_{A \in H} B * A=|H| E\left(N^{(H)}(\omega)\right) . \tag{5}
\end{equation*}
$$

We can estimate $B * A$ by

$$
\begin{equation*}
2^{k-i} \leqq B * A \leqq 2 \cdot 2^{k-i} \tag{6}
\end{equation*}
$$

when A is strict i-continuation of B.
Let $H(B, i)$ denote the subset of H that consists of the strict i-continuations of B, obviously $|H(B, i)|=l_{i}^{(H)}(B)$. Using this notation we get

$$
\begin{equation*}
\sum_{A \in H} B * A=B * B+\sum_{i=1}^{k-1} \sum_{A \in H(B, i)} B * A . \tag{7}
\end{equation*}
$$

The term $\sum_{A \in H(B, i)} B * A$ can easily be estimated from (6):

$$
\begin{equation*}
\sum_{A \in H(B, i)} B * A \leqq l_{i}^{(H)}(B)-2^{k-i+1}=\frac{l_{i}^{(H)}(B)}{2^{t}} 2^{k+1} \tag{8}
\end{equation*}
$$

and

$$
\sum_{A \in H(B, i)} B * A \geqq \frac{l_{i}^{(H)}(B)}{2^{i}} 2^{k} .
$$

Using the trivial inequalities $2^{k} \leqq B * B<2^{k+1}$ we get from (1), (7) and (8)

$$
\begin{equation*}
2^{k}\left(1+l^{(H)}(B)\right) \leqq \sum_{A \in H} B * A \leqq 2^{k+1}\left(1+l^{(H)}(B)\right) . \tag{9}
\end{equation*}
$$

Estimating the left hand side of (5) by (9) we obtain the inequality (3) of our lemma.
Let (Ω, \mathscr{A}, P) be the probability space describing the symmetric Bernoulli process. The elements ω of Ω are the infinite binary sequences $\omega=\omega_{1} \omega_{2} \ldots$, where $\omega_{i}=0$ or $1, i=1,2, \ldots$. The first occurrence time of every element of U_{k} is defined by

$$
T_{k}(\omega)=\min \left\{T \mid \text { for every } A \in U_{k}\right.
$$

there exists $i \leqq T-k+1$ such that $\left.\omega_{i} \omega_{i+1} \ldots \omega_{i+k-1}=A\right\}$.

For the subsequence $\omega_{1} \omega_{2} \ldots \omega_{T_{k}}$ we define a set of different, disjoint subsequences

$$
\begin{aligned}
& \beta_{1}=\omega_{1} \ldots \omega_{k}, \\
& \beta_{2}=\omega_{i_{2}} \ldots \omega_{i_{2}+k-1} \\
& \vdots \\
& \beta_{s}=\omega_{i_{s}} \ldots \omega_{i_{s}+k-1} \\
& \vdots \\
& \beta_{N(\omega)}=\omega_{i_{N(\omega)}} \ldots \omega_{i_{N(\omega)+k-1}}
\end{aligned}
$$

in the following way. Let us suppose that we have already defined β_{s}. Then we choose i_{s+1} so that

$$
i_{s+1}=\min _{j \geq i_{s}+k}\left\{\omega_{j} \omega_{j+1} \ldots \omega_{j+k-1} \neq \omega_{l} \omega_{l+1} \ldots \omega_{l+k-1} \text { for every } l<i_{s}\right\}
$$

It can be easily seen that the sequence $\beta_{1}(\omega), \beta_{2}(\omega), \ldots, \beta_{N(\omega)}(\omega)$ is uniquely defined for every $\omega \in \Omega$.

Let $H_{j}(\omega)$ be the set of k-long sequences that do not occur in ω before β_{j}, and let $M_{j}(\omega)=\left|H_{j}(\omega)\right|$.

It follows from the construction of the sequence $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$, that $M_{j}(\omega)-$ $-M_{j+1}(\omega)=1+X_{j}(\omega)$, where $0 \leqq X_{j}(\omega) \leqq k-1$ and $X_{j}(\omega)$ is explicitly the number of different elements of $H_{j}(\omega)$ that occur in the subsequence $\omega_{i_{j}+1} \omega_{i_{j}+2} \ldots$ $\ldots \omega_{i_{j+1}-1}$. The last notation we need is the distance $Y_{j}(\omega)$ between β_{j} and ${ }_{i_{j}+1} \beta_{j+1}$:

$$
\begin{equation*}
Y_{j}(\omega)=i_{j+1}(\omega)-i_{j}(\omega), \quad \text { for } \quad j=1, \ldots, N(\omega) \tag{10}
\end{equation*}
$$

where $i_{1}=1$ and $i_{N(\omega)+1}=T_{k}(\omega)$.
Using our notations, we can construct $T_{k}(\omega)$ as a sum of random numbers of weakly dependent non-negative variables:

$$
\begin{equation*}
T_{k}(\omega)=\sum_{j=0}^{N(\omega)} Y_{j}(\omega) \tag{11}
\end{equation*}
$$

We shall use this form to obtain a lower and upper estimation of $E\left(T_{k}(\omega)\right)$. In order to simplify our formulae in the sequel we omit the argument ω of the random variables.

Theorem 1. We have

$$
E\left(T_{k}\right) \geqq 2^{k}(k \ln 2-\ln k-c),
$$

where c is the Euler-constant.
Proof. Taking the expectation of (11) and neglecting Y_{N} from the right side we get

$$
\begin{equation*}
E\left(T_{k}\right) \geqq E\left(\sum_{j=1}^{N-1} Y_{j}\right) \tag{12}
\end{equation*}
$$

We can calculate the expectation on the right side as the expectation of the conditional expectation with respect to H_{1}, H_{2}, \ldots and H_{l} :

$$
\begin{gather*}
E\left(\sum_{j=1}^{N-1} Y_{j}\right)=E\left[E\left(\sum_{j=1}^{N-1} Y_{j} \mid H_{1}, H_{2}, \ldots, H_{l}\right)\right]= \tag{13}\\
=E\left[E\left(\sum_{j=1}^{l-1} Y_{j} \mid H_{1}, H_{2}, \ldots, H_{l}\right)\right]+E\left[E\left(Y_{l} \mid H_{1} H_{2} \ldots H_{l}\right)\right]+E\left[E\left(\sum_{j=l+1}^{N-1} Y_{j} \mid H_{1} \ldots H_{l}\right)\right] .
\end{gather*}
$$

As $E\left(Y_{l} \mid H_{1} H_{2} \ldots H_{l}\right)=E\left(Y_{l} \mid H_{l}\right)$, and

$$
E\left[E\left(\sum_{j=1}^{l-1} Y_{j} \mid H_{1}, H_{2}, \ldots, H_{l}\right)\right]=E\left[E\left(\sum_{j=1}^{l-1} Y_{j} \mid H_{1}, H_{2}, \ldots, H_{l-1}\right)\right]
$$

it follows that

$$
\begin{equation*}
E\left(\sum_{j=1}^{N-1} Y_{j}\right)=E\left(\sum_{j=1}^{N-1} E\left(Y_{l} \mid H_{l}\right)\right) \tag{14}
\end{equation*}
$$

Let us observe that if H_{j} is given, Y_{j} is equal to the first occurrence time $N^{\left(H_{j}\right)}$ of H_{j}, then

$$
\begin{equation*}
E\left(Y_{j} \mid H_{j}=E\left(N^{\left(H_{j}\right)}\right) .\right. \tag{15}
\end{equation*}
$$

Using inequality (3^{\prime}) of the lemma, we get

$$
\begin{equation*}
E\left(Y_{j} \mid H_{j}\right) \geqq 2^{k} \frac{n\left(H_{j}\right)+1}{M_{j}^{-1}} . \tag{16}
\end{equation*}
$$

From (14) and (16) it follows that

$$
\begin{equation*}
E\left(\sum_{j=1}^{N-1} Y_{j}\right) \geqq 2^{k} E\left(\sum_{j=1}^{N-1} \frac{n\left(H_{j}\right)+1}{M_{j}}\right) \tag{17}
\end{equation*}
$$

Using simple transformations we get

$$
\begin{gather*}
E\left(\sum_{j=1}^{N-1} \frac{n\left(H_{j}\right)+1}{M_{j}}\right)=E\left(\sum_{j=1}^{N-1} \frac{X_{j}+1+n\left(H_{j}\right)-X_{j}}{M_{j}}\right)= \tag{18}\\
=\sum_{i=1}^{2^{k}} \frac{1}{i}+E\left(\sum_{j=1}^{N-1}\left(\frac{X_{j}+1}{M_{j}}-\sum_{i=M_{j+1}}^{M_{j}} \frac{1}{i}\right)\right)+E\left(\sum_{j=1}^{N-1} \frac{n\left(H_{j}\right)-X_{j}}{M_{j}}\right) .
\end{gather*}
$$

As $M_{j}-M_{j+1}=X_{j}+1$, and $0 \leqq X_{j} \leqq k-1$ the second term on the left side of
(18) has its minimal value $\ln k+0\left(k^{-1}\right)$ when $X_{j}=k-1$, for $j=1,2, \ldots, N-1$.

Using the same arguments as in the steps between (13) and (14) we get

$$
\begin{equation*}
E\left(\sum_{j=1}^{N-1} \frac{n\left(H_{j}\right)-X_{j}}{M_{j}}\right)=E\left(\sum_{j=1}^{N-1} E\left(\left.\frac{n\left(H_{j}\right)-X_{j}}{M_{j}} \right\rvert\, H_{j}\right)\right) \tag{19}
\end{equation*}
$$

As $n\left(H_{j}\right)$ and M_{j} are measurable with respect to H_{j},

$$
\begin{equation*}
E\left(\left.\frac{n\left(H_{j}\right)-X_{j}}{M_{j}} \right\rvert\, M_{j}\right)=\frac{1}{M_{j}}\left(n\left(H_{j}\right)-E\left(X_{j} \mid H_{j}\right)\right) \tag{20}
\end{equation*}
$$

It is not true that $E\left(X_{j} \mid H_{j}\right)=n\left(H_{j}\right)$, but $n\left(H_{j}\right) \geqq E\left(X_{j} \mid H_{j}\right)$, since counting X_{j} we neglect the elements of H_{j} that have occurred after β_{j} and before β_{j+1}. Combining this with (19) and (20), we get that the third term in (18) satisfies the inequality

$$
\begin{equation*}
E\left(\sum_{j=1}^{N-1} \frac{n\left(H_{j}\right)-X_{j}}{M_{j}}\right) \geqq 0 . \tag{21}
\end{equation*}
$$

As the first term in (18) is equal to $\ln 2^{k}+c+O\left(2^{-k}\right)$, from (12), (17) and (18) we get $E\left(T_{k}\right) \geqq 2^{k}\left(\ln 2^{k}-\ln k+c\right)$, and this proves Theorem 1 .

Theorem 2. $E\left(T_{k}\right) \leqq 2^{k+2}\left(\ln 2^{k}+c+O\left(2^{-k}\right)\right)$.
Proof. Starting from (11) and using the method of getting (14) and (16) we can show that

$$
\begin{equation*}
E\left(T_{k}\right) \leqq E\left(\sum_{j=1}^{N} E\left(Y_{l} \mid H_{l}\right)\right) \leqq 2^{k+1} E\left(\sum_{j=1}^{N} \frac{n\left(H_{j}\right)+1}{M_{j}}\right) . \tag{22}
\end{equation*}
$$

As the second term on the right side of (18) is less than or equal to zero, we can neglect it, and

$$
\begin{equation*}
E\left(\sum_{j=1}^{N} \frac{n\left(H_{j}\right)+1}{M_{j}}\right) \leqq \sum_{i=1}^{2^{k}} \frac{1}{i}+E\left(\sum_{j=1}^{N} \frac{n\left(H_{j}\right)-X_{j}}{M_{j}}\right) \tag{23}
\end{equation*}
$$

According to (20)

$$
\begin{equation*}
E\left(\sum_{j=1}^{N} \frac{n\left(H_{j}\right)-X_{j}}{M_{j}}\right)=E\left(\sum_{j=1}^{N} \frac{n\left(H_{j}\right)-E\left(X_{j} \mid H_{j}\right)}{M_{j}}\right) \tag{24}
\end{equation*}
$$

Let $H_{j}^{\prime}=H_{j}-H_{j+1}-\beta_{j+1}$ be the set of subsequences of the sequence $\omega_{i_{j}-k+1} \ldots$ $\ldots \omega_{i_{j}} \ldots \omega_{i_{j+k-1}}$ belonging to H_{j}. By a simple extension of the notions $l^{(H)}(A)$ and $l_{i}^{(H)}(A)$ for the case when $A \notin H$, we can investigate the difference $l_{i}^{\left(H_{j}\right)}(A)-$ $-l_{i}^{\left(H_{j}-H_{j}^{\prime}\right)}(A)$.

It follows from the structure of the set H_{j}^{\prime} that two elements of H_{j}^{\prime} cannot be the strict i-continuations of A with the same i.

So $l_{i}^{\left(H_{j}\right)}(A)-l_{i}^{\left(H_{j}-H_{j}^{\prime}\right)}(A) \leqq 1$, and

$$
\begin{equation*}
l^{\left(H_{j}\right)}(A)-l^{\left(H_{j}-H_{j}^{\prime}\right)}(A) \leqq 1 . \tag{25}
\end{equation*}
$$

As $n\left(H_{j}\right)=\sum_{A \in H_{j}} P_{A} l^{\left(H_{j}\right)}(A)$ and $E\left(X_{j} \mid H_{j}\right)=\sum_{A \in H_{j}} P_{A} l^{\left(H_{j}-H_{j}^{\prime}\right)}(A)$, we get

$$
\begin{equation*}
n\left(H_{j}\right)-E\left(X_{j} \mid H_{j}\right)=\sum_{A \in H_{j}} P_{A}\left(l^{\left(H_{j}\right)}(A)-l^{\left(H_{j}-H_{j}^{\prime}\right)}(A)\right) \leqq \sum_{A \in M_{j}} P_{A}=1 \tag{26}
\end{equation*}
$$

If we use the trivial estimation

$$
E\left(\sum_{j=1}^{N} \frac{1}{M_{j}}\right) \leqq \sum_{i=1}^{2^{k}} \frac{1}{i}
$$

from (22), (23), (24) and (26) it follows that $E\left(T_{k}\right) \leqq 2^{k+2}\left(\ln 2^{k}+c+O\left(2^{-k}\right)\right.$, which proves Theorem 2.

Acknowledgement. The author is grateful to I. Kátai and T. Móri for their helpful discussions.

Reference

[1] Shou-Yen Robert Li, A martingale approach to the study of occurrence of sequence patterns in repeated experiments, The Annals of Probability, 8 (1980), 1171-1176.
(Received March 19, 1984)
COMPUTER CENTRE OF
EƠTVOOS LORAND UNIVERSITY
BUDAPEST 1117, BOGDÁNFY ÚT 10/B

ON SOME DE LA VALLÉE POUSSIN TYPE DISCRETE LINEAR OPERATORS

O. KIS and J. SZABADOS (Budapest)

0. Introduction. We shall define a de la Vallée-Poussin type trigonometric kernel (see (3) below), and the associated trigonometric as well as algebraic approximating operator. This kernel depends on several parameters (j, k, l, and m), and depending on the relation among these parameters, the corresponding operator shows fairly good properties. For some combination of the parameters we shall determine the exact norm of the operator, for other values we give reasonable estimates for the norms (see Sections 7 and 10). We shall prove the Jackson, Timan, and Telyakowski-Gopengauz theorems with explicit constants (see Section 15), and will see that for a certain choice of the parameters our operator converges in the order of best approximation. (Compare e.g. [5], where the constant given for the Telyakowski-Gopengauz theorem is of order 10^{3}, while our constant is ~ 5.7; cf. Section 16). At the same time our operator interpolates at certain nodes, and reproduces polynomials of certain degree. For some combination of the parameters all of these good properties listed so far can be achieved with the same operator. At the end of the paper we give a constructive solution to a problem raised by G . Freud and A. Sharma [2].
1. Notations. t is a real variable, g is a real or complex valued 2π-periodic continuous function of t. The positive integers j, m and the nonnegative integers k, l are such that the number

$$
\begin{equation*}
n=\frac{1}{2}(j m+k m-k-1+l) \tag{1}
\end{equation*}
$$

is a nonnegative integer. Further let

$$
\begin{gather*}
t_{v}=\frac{2 \pi v}{j m} \quad(v=0, \pm 1, \pm 2, \ldots), \tag{2}\\
s_{j k l m}(t)=\frac{\sin \frac{j m t}{2} \sin ^{k} \frac{m t}{2} \cos ^{l} \frac{t}{2}}{j m^{k+1} \sin ^{k+1} \frac{t}{2}}, \text { if } \sin \frac{t}{2} \neq 0,
\end{gather*}
$$

$$
\begin{gather*}
s_{j k l m}(t)=\lim _{\tau \rightarrow t} s_{j k l m}(\tau)=1, \quad \text { if } \quad \sin \frac{t}{2}=0 \tag{4}\\
S_{j k l m}(g, t)=\sum_{v=0}^{j m-1} g\left(t_{v}\right) s_{j k l m}\left(t-t_{v}\right) \tag{5}
\end{gather*}
$$

2. Remarks. $S_{100 m}(g, t)$ (m odd) and $S_{101 m}(g, t)$ (m even) are ordinary interpolatory polynomials. $S_{110 m}(g, t)$ and $S_{310 m}(g, t)$ were investigated by D. Jackson [4] and J. Szabados [6], respectively.
$s_{100 m}(t)$ (m odd) is the Dirichlet kernel, $s_{110 m}(t)$ is the Fejér kernel, $s_{310 m}(t)$ is the de la Vallée-Poussin kernel, and $s_{130 m}(t)$ is the Jackson kernel.

The estimates given in this paper should be viewed as $m \rightarrow \infty$ (or $n \rightarrow \infty$), while the other parameters (j, k, l) remain fixed. We separate the indices by commas if it can be misunderstood (e.g. we write $s_{j, k+1, l, m}(t)$, but $s_{j k l m}(t)$).
3. Lemma. $S_{j k l m}(g, t)$ is a trigonometric polynomial of order at most n, and

$$
\begin{equation*}
S_{j k l m}\left(g, t_{v}\right)=g\left(t_{v}\right) \quad(v=0, \pm 1, \pm 2, \ldots) \tag{6}
\end{equation*}
$$

4. Remark. Proofs will start in Section 20, where the coefficients of $S_{j k l m}(g, t)$ will also be calculated.
5. Notations. $E_{v}^{T}(g)(v=0,1,2, \ldots)$ denotes the best approximation of g by trigonometric polynomials of order at most v in uniform metric,

$$
\begin{align*}
& L_{j k l m}(t)=\sum_{v=0}^{j m-1}\left|s_{j k l m}\left(t-t_{v}\right)\right| \tag{7}\\
& q=\frac{1}{2}(j m-k m+k-1-l)
\end{align*}
$$

6. Remark. Since j, m and n are integers, so is $q=j m-n-1$.
7. Theorem. If $q \geqq 0$, then

$$
\begin{equation*}
\left|S_{j k l m}(g, t)-g(t)\right| \leqq\left(1+L_{j k l m}(t)\right) E_{q}^{T}(g) \tag{9}
\end{equation*}
$$

is a decreasing function of k and l;

$$
\left\|L_{j 10 m}\right\|= \begin{cases}\frac{1}{j}\left(1+2 \sum_{v=1}^{(j-1) / 2} 1 / \cos \frac{v \pi}{j}\right) & \text { if } j \text { is odd } \tag{11}\\ \frac{2}{j} \sum_{v=1}^{j / 2} 1 / \cos \frac{2 v-1}{2 j} \pi & \text { if } j \text { and } m \text { are even }\end{cases}
$$

$$
\begin{equation*}
\left\|L_{j 11 m}\right\| \leqq \frac{2}{\pi} \log j+2.283 \quad \text { if } j \text { is even, } m \text { is odd } \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
\left\|L_{221 m}\right\| \leqq \frac{2}{\sqrt{3}}<1.155 \tag{14}\\
\left\|L_{332 m}\right\|=\frac{11}{9}-\frac{2}{9 m^{2}}<\frac{11}{9}<1.223
\end{gather*}
$$

8. Remarks. Let λ_{j} denote the Lebesgue constant of the Lagrange interpolation with respect to the Chebyshev nodes $\cos \frac{2 v-1}{2 j}(v=1, \ldots, j)$. It is known
[1] that

$$
\lambda_{j}=\frac{1}{j} \sum_{v=1}^{j} \cot \frac{2 v-1}{4 j} \pi \quad(j=1,2, \ldots) .
$$

This together with (11)-(12) easily yield

$$
L_{j 10 m}=\left\{\begin{array}{l}
\frac{1}{j}\left(1+2 \sum_{v=1}^{(j-1) / 2} 1 / \sin \frac{2 v-1}{2 j} \pi\right)=\lambda_{j} \quad(j=1,3, \ldots) \\
\frac{2}{j} \sum_{v=1}^{j / 2} 1 / \sin \frac{2 v-1}{2 j} \pi=\lambda_{j} \quad(j=2,4, \ldots) .
\end{array}\right.
$$

By [3]

$$
\lambda_{j}=\frac{2}{\pi} \log j+c+\alpha_{j} \quad(j=1,2, \ldots)
$$

where

$$
c=\frac{2}{\pi}\left(\gamma+\log \frac{8}{\pi}\right)=0.9625 \ldots
$$

and $\gamma=0.5772 \ldots$ is the Euler constant, $0<\alpha_{j}<\frac{\pi}{72 j^{2}}(j=1,2, \ldots)$.
For certain values of the indices, Lemma 29 will give the explicit form of the Lebesgue function $L_{j k l m}(t)$.

If j and m are odd, $k=l=0$, then in (9) $n=q=\frac{j m-1}{2}$, but $\left\|L_{j 00 m}\right\| \sim$ $\sim \frac{2}{\pi} \log (j m)$ is an unbounded function of n. If $k \geqq 1$ and $l \geqq 0$ are fixed and j is large, then n / q is close to 1 , but $\left\|L_{j k l m}\right\| \sim \frac{2}{\pi} \log j$ is relatively large.
9. Notations. The modulus of continuity of g is denoted by $\omega(g, \delta)$;

$$
\begin{equation*}
M_{j k l m}(t)=\sum_{v=0}^{j m-1}\left|\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{k}\left|\cos \frac{t-t_{v}}{2}\right|^{l} . \tag{16}
\end{equation*}
$$

(This is a decreasing function of k and l.)
10. Theorem. If $k \geqq 1, l \geqq 1$ and $q \geqq 0$, then

$$
\begin{equation*}
\left|S_{j k l m}(g, t)-g(t)\right| \leqq \omega\left(g, \frac{\pi}{j m}\right)\left\{L_{j k l m}(t)+\frac{2}{\pi} M_{j, k, l-1, m}(t)\right\} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
M_{j 20 m}(t)=j \quad \text { if } j \geqq 1 ; \tag{18}\\
M_{j 31 m}(t)<\frac{\sqrt{2}}{\sqrt{3}} j \quad \text { if } j \geqq 2 ; \tag{19}\\
M_{j 42 m}(t)=\frac{2}{3} j-\frac{j}{6 m^{2}}<\frac{2}{3} j \quad \text { if } j \geqq 2 . \tag{20}
\end{gather*}
$$

11. Corollary. (17), (14), (18) and (1) imply

$$
\begin{equation*}
\left\|S_{221 m}(g, t)-g(t)\right\| \leqq\left(\frac{2}{\sqrt{3}}+\frac{4}{\pi}\right) \omega\left(g, \frac{\pi}{n+1}\right) \tag{21}
\end{equation*}
$$

12. Remarks. The coefficient on the right hand side of (21) is less than 2.428 .

Lemma 39 will give the explicit form of $M_{j k l m}(t)$ for certain values of the indices.
(9) and the Korneičuk inequality

$$
\begin{equation*}
E_{q}^{T}(g) \leqq \omega\left(g, \frac{\pi}{q+1}\right) \tag{22}
\end{equation*}
$$

yield

$$
\left\|S_{j k l m}(g, t)-g(t)\right\| \leqq\left(1+\left\|L_{j k l m}(t)\right\|\right) \omega\left(g, \frac{\pi}{q+1}\right)
$$

Nevertheless, the estimate (17) can be more exact than this.
13. Notations. x is a variable in $[-1,1], t=\arccos x, f(x)$ is a real valued continuous function of $x ; E_{v}(f)(v=0,1,2, \ldots)$ is its best approximation by algebraic polynomials of degree at most v;

$$
\begin{equation*}
x_{v}=\cos \frac{2 \pi v}{j m} \quad(v=0, \pm 1, \pm 2, \ldots) \tag{23}
\end{equation*}
$$

14. Remark. $P_{100 m}(f, x)$ (m odd) and $P_{101 m}(f, x)$ (m even) is the Lagrange interpolating polynomial associated with the nodes $\cos \frac{2 \pi v}{m}$.
15. Theorem. $P_{j k l m}(f, x)$ is an algebraic polynomial of degree at most n, and

$$
\begin{equation*}
P_{j k l m}\left(f, x_{v}\right)=f\left(x_{v}\right) \quad(v=0, \pm 1, \pm 2, \ldots) \tag{25}
\end{equation*}
$$

If $q \geqq 0$, then

$$
\begin{equation*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq\left(1+L_{j k l m}(t)\right) E_{q}(f) \quad(|x| \leqq 1) \tag{26}
\end{equation*}
$$

If $k \geqq 1$ and $q \geqq 0$, then

$$
\begin{equation*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{\pi}{j m}\right)\left[L_{j k l m}(t)+\frac{2}{\pi} M_{j k l m}(t)\right] \quad(|x| \leqq 1) \tag{27}
\end{equation*}
$$

If $k \geqq 2$ and $q \geqq 0$, then

$$
\begin{align*}
& \left|P_{j k l m}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{j m}\right)\left[L_{j k l m}(t)+\frac{2}{\pi} M_{j, k, l+1, m}(t)\right]+ \tag{28}\\
& \quad+\omega\left(f, \frac{\pi|x|}{j^{2} m^{2}}\right)\left[L_{j k l m}(t)+\frac{2 j}{\pi^{2}} M_{j, k-1, l, m}(t)\right] \quad(|x| \leqq 1)
\end{align*}
$$

If j is odd, $k \geqq 2$ is even, and $q \geqq 0$, then

$$
\begin{gather*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{2 \pi \sqrt{1-x^{2}}}{m}\right) L_{j k l m}(t)+\omega\left(f, \frac{2 \pi^{2}|x|}{m^{2}}\right) \cdot \tag{29}\\
\cdot\left[2 L_{j k l m}(t)+\frac{2}{\pi j} M_{j, k, l+1, m}(t)\right] \quad(|x| \leqq 1) .
\end{gather*}
$$

If j or m is even, $k \geqq 2$ and $q \geqq 0$, then

$$
\begin{gather*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{j m}\right) \tag{30}\\
\cdot\left[L_{j k l m}(t)+\frac{2}{\pi} M_{j, k, l+1, m}(t)+\frac{j|x|}{\pi} M_{j, k-1, l, m}(t)\right] \quad(|x| \leqq 1) .
\end{gather*}
$$

If j is odd, $k \geqq 2$ and m are even, and $q \geqq 0$, then

$$
\begin{equation*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{2 \pi \sqrt{1-x^{2}}}{m}\right)\left[2 L_{j k l m}(t)+\left(1+\frac{|x|}{2}\right) M_{j k l m}(t)\right] \quad(|x| \leqq 1) . \tag{31}
\end{equation*}
$$

16. Corollaries. (27), (14), (18) and (1) yield

$$
\left\|P_{221 m}(f, x)-f(x)\right\| \leqq\left(\frac{2}{\sqrt{3}}+\frac{4}{\pi}\right) \omega\left(f, \frac{\pi}{n+1}\right) .
$$

(28), (15), (19), (18) and (1) give (since $M_{j k l m}(t)$ is a decreasing function of l)

$$
\begin{array}{r}
\left|P_{332 m}(f, x)-f(x)\right| \leqq\left(\frac{11}{9}+\frac{2 \sqrt{6}}{\pi}\right) \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{n+1}\right)+\left(\frac{11}{9}+\frac{18}{\pi^{2}}\right) \omega\left(f, \frac{\pi^{2}|x|}{(n+1)^{2}}\right) \\
(|x| \leqq 1) .
\end{array}
$$

(The coefficients on the right hand side are less than 2.782 and 3.047 , respectively.)
(30), (15), (19), (10) and (1) yield (since $M_{j k l m}(t)$ is a decreasing function of l)

$$
\left|P_{332 m}(f, x)-f(x)\right| \leqq\left(\frac{11}{9}+\frac{2 \sqrt{6}+9}{\pi}\right) \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{n+1}\right) \quad(|x| \leqq 1)
$$

(Here the coefficient is less than 5.647.)
17. Remarks. (26) and the Korneičuk inequality

$$
E_{q}(f) \leqq \omega\left(f, \frac{\pi}{q+1}\right)
$$

yield

$$
\left|P_{j k l m}(f, x)-f(x)\right| \leqq\left(1+L_{j k l m}(t)\right) \omega\left(f, \frac{\pi}{q+1}\right) \quad(|x| \leqq 1),
$$

but (27) may be more exact than this.

In general, for $k \geqq 2$, (28) is more precise than (27). For $k=2$ in (28) and (30), $\left\|M_{j 1 l m}\right\| \sim \frac{2}{\pi} \log (j m)$ is an unbounded function of m, while in this case in (29) and (31) the coefficients are bounded (provided j is fixed).

If $-1<x<1$ and m is large enough, then (28) is more exact than (30).

18. Notations. Let

$$
a_{v j 0 m}= \begin{cases}1, & \text { if } 0 \leqq v<j m \tag{32}\\ 0, & \text { if } \quad v<0 \text { or } v \geqq j m\end{cases}
$$

$$
a_{v j k m}= \begin{cases}\sum_{h=0}^{m-1} a_{v-h, j, k-1, m}, & \text { if } 0 \leqq v<j m+k m-k, \quad k \geqq 1, \tag{33}\\ 0, & \text { if } v<0 \text { or } v \geqq j m+k m-k, \quad k \geqq 1\end{cases}
$$

19. Lemma. We have

$$
\begin{equation*}
a_{v j k m}=\sum_{h=0}^{[v / m]}(-1)^{h}\binom{k}{h}\binom{v+k-h m}{k}, \quad \text { if } \quad 0 \leqq v<j m \tag{34}
\end{equation*}
$$

$a_{v j k m}=\sum_{h=0}^{[v / m]}(-1)^{h}\binom{k}{h}\binom{v+k-h m}{k}-\sum_{h=0}^{[v / m]-j}(-1)^{h}\binom{k}{h}\binom{v+k-h m-j m}{k}, \quad$ if $\quad v \geqq j m$.
Especially

$$
\begin{equation*}
a_{v 1 k m}=\sum_{h=0}^{[v / m]}(-1)^{h}\binom{k+1}{h}\binom{v+k-h m}{k} . \tag{36}
\end{equation*}
$$

20. Proof. We prove by mathematical induction that if $z \neq 1$ is an arbitrary complex number, then

$$
\begin{equation*}
\frac{\left(1-z^{j m}\right)\left(1-z^{m}\right)^{k}}{(1-z)^{k+1}}=\sum_{v=0}^{j m+k m-k-1} a_{v j k m} z^{v} \tag{37}
\end{equation*}
$$

For $k=0$ the statement follows from (32):

$$
\frac{1-z^{j m}}{1-z}=\sum_{v=0}^{j m-1} z^{v}=\sum_{v=0}^{j m-1} a_{v j 0 m} z^{v}
$$

If (37) holds for $k-1$ in place of k, then by (33) it holds for k, too:

$$
\begin{gathered}
\frac{\left(1-z^{j m}\right)\left(1-z^{m}\right)^{k}}{(1-z)^{k+1}}=\frac{\left(1-z^{j m}\right)\left(1-z^{m}\right)^{k-1}}{(1-z)^{k}} \frac{1-z^{m}}{1-z}=\sum_{v=0}^{j m+k m-m-k} a_{v, j, k-1, m} z^{v} \sum_{h=0}^{m-1} z^{h}= \\
=\sum_{v=0}^{k m+j m-k-1} a_{v j k m} z^{v}
\end{gathered}
$$

If $|z|<1$, then

$$
\begin{gathered}
\frac{\left(1-z^{j m}\right)\left(1-z^{m}\right)^{k}}{(1-z)^{k+1}}=\left(1-z^{j m}\right) \sum_{h=0}^{k}(-1)^{h}\binom{k}{h} z^{h m} \sum_{v=0}^{\infty}\binom{v+k}{k} z^{v}= \\
=\left(1-z^{j m}\right) \sum_{v=0}^{\infty} z^{v} \sum_{h=0}^{[v / m]}(-1)^{h}\binom{k}{h}\binom{v+k-h m}{k}=\sum_{v=0}^{j m-1} z^{v} \sum_{h=0}^{[v / m]}(-1)^{h}\binom{k}{h}\binom{v+k-h m}{k}+ \\
+\sum_{v=j m}^{\infty} z^{v}\left\{\sum_{h=0}^{[v / m]}(-1)^{h}\binom{k}{h}\binom{v+k-h m}{k}-\sum_{h=0}^{[v / m]-j}(-1)^{h}\binom{k}{h}\binom{v+k-h m-j m}{k}\right\} .
\end{gathered}
$$

This together with (37) implies (34)-(35).
Now if $|z|<1$ again, then

$$
\begin{gathered}
\left(\frac{1-z^{m}}{1-z}\right)^{k+1}=\sum_{h=0}^{k+1}(-1)^{h}\binom{k+1}{h} z^{h m} \sum_{v=0}^{\infty}\binom{v+k}{k} z^{v}= \\
=\sum_{v=0}^{\infty} z^{v} \sum_{h=0}^{[v / m]}(-1)^{h}\binom{k+1}{h}\binom{v+k-h m}{k}
\end{gathered}
$$

This and (37) yield (36).
21. Notation. Let

$$
\begin{equation*}
b_{v j k l m}=\frac{1}{2^{l} j m^{k+1}} \sum_{h=0}^{l}\binom{l}{h} a_{v+n-h, j, k, m} \quad(v=0, \pm 1, \pm 2, \ldots) . \tag{38}
\end{equation*}
$$

22. Lemma. We have

$$
\begin{equation*}
b_{v j k l m}=\frac{1}{j m}, \quad \text { if } \quad q \leqq 0 \quad \text { and } \quad-q \leqq v \leqq q \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
b_{-v, j, k, l, m}=b_{v j k l m}, \quad \text { if } \quad v>0 \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
s_{j k l m}(t)=b_{0 j k l m}+2 \sum_{v=1}^{n} b_{v j k l m} \cos v t \tag{41}
\end{equation*}
$$

23. Proof. Let $z=e^{i t}$. We get from (3)

$$
\begin{equation*}
s_{j k l m}(t)=\frac{\frac{z^{j m / 2}-z^{-j m / 2}}{2 i}\left(\frac{z^{m / 2}-z^{-m / 2}}{2 i}\right)^{k}\left(\frac{z^{1 / 2}+z^{-1 / 2}}{2}\right)^{l}}{j m^{k+1}\left(\frac{z^{1 / 2}-z^{-1 / 2}}{2 i}\right)^{k+1}} \tag{42}
\end{equation*}
$$

Hence and from (1) and (37)

$$
s_{j k l m}(t)=\frac{\left(1-z^{j m}\right)\left(1-z^{m}\right)^{k}(1+z)^{l}}{2^{l} j m^{k+1}(1-z)^{k+1} z^{n}}=\frac{\sum_{h=0}^{j m+k m-k-1} a_{h j k m} z^{h} \sum_{r=0}^{l}\binom{l}{r} z^{r}}{2^{l} j m^{k+1} z^{n}}
$$

Thus we get from (38)

$$
\begin{equation*}
s_{j k l m}(t)=\sum_{h=-n}^{n} b_{h j k l m} z^{h} \tag{43}
\end{equation*}
$$

(42) does not change if we replace t by $-t$. Hence (43) yields (39).
(43), (39) and (4) imply (41).

We obtain from (32)-(33) by mathematical induction:

$$
\begin{equation*}
a_{v j k m}=m^{k}, \quad \text { if } \quad k m-k \leqq v<j m \tag{44}
\end{equation*}
$$

If $q \geqq 0,-q \leqq v \leqq q$ and $0 \leqq h \leqq l$, then by (1) and (8) $k m-k \leqq v+n-h<j m$, and therefore (38) and (44) yield (40).
24. Proof of Lemma 3. By (5) and (41)

$$
\begin{align*}
& S_{j k l m}(g, t)=\sum_{v=0}^{j m-1} g\left(t_{v}\right)\left(b_{0 j k l m}+2 \sum_{h=1}^{n} b_{h j k l m} \cos h\left(t-t_{v}\right)\right)= \tag{45}\\
& =b_{0 j k l m} \sum_{v=0}^{j m-1} g\left(t_{v}\right)+\sum_{h=1}^{n} \cos h t\left(2 b_{h j k l m} \sum_{v=0}^{j m-1} g\left(t_{v}\right) \cos h t_{v}\right)+ \\
& \quad+\sum_{h=1}^{n} \sin h t\left(2 b_{h j k l m}^{j m-1} \sum_{v=0}^{\left.j m\left(t_{v}\right) \sin h t_{v}\right) .}\right.
\end{align*}
$$

Thus $S_{j k l m}(g, t)$ is a trigonometric polynomial of order at most n.
(2)-(4) imply

$$
s_{j k l m}\left(t_{v}\right)=\left\{\begin{array}{lll}
1, & \text { if } & (j m) \mid v, \\
0, & \text { if } & (j m) \nmid v .
\end{array}\right.
$$

This together with (5) yields (6).
25. Lemma. If $q \geqq 0$ and $y(t)$ is a trigonometric polynomial of order at most q, then

$$
\begin{equation*}
S_{j k l m}(y, t)=y(t) . \tag{46}
\end{equation*}
$$

26. Proof. If $q \geqq 0$ and

$$
\begin{equation*}
y_{r}(t)=z^{r} \quad\left(z=e^{i t}, r=0, \pm 1, \pm 2, \ldots, \pm q\right) \tag{47}
\end{equation*}
$$

then with the notation $z_{v}=e^{i t_{v}} \quad(v=0,1, \ldots, j m-1)$ we get by (5) and (43)

$$
\begin{equation*}
S_{j k l m}\left(y_{r}, t\right)=\sum_{v=0}^{j m-1} z_{v}^{r} \sum_{h=-n}^{n} b_{h j k l m}\left(\frac{z}{z_{v}}\right)^{h}=\sum_{h=-n}^{n} b_{h j k l m} z^{h} \sum_{v=0}^{j m-1} z_{v}^{r-h} . \tag{48}
\end{equation*}
$$

Now (2) yields

$$
\sum_{v=0}^{j m-1} z_{v}^{v}=\sum_{v=0}^{j m-1} z_{v}^{v}= \begin{cases}j m, & \text { if }(j m) \mid v, \tag{49}\\ 0 & \text { otherwise } .\end{cases}
$$

By (1) and (8), we have $j m-1=n+q \geqq r-h \geqq-n-q=1-j m$ in (48). Hence and by (48), (49), (40) and (47) we obtain

$$
\begin{equation*}
S_{j k l m}\left(y_{r}, t\right)=j m b_{r j k l m} z^{r}=z^{r}=y_{r}(t) . \tag{50}
\end{equation*}
$$

But any trigonometric polynomial of order at most q can be written in the form

$$
\sum_{r=-q}^{q} c_{r} y_{r}(t)
$$

where c_{r} are complex numbers. Thus the statement follows from (5) and (50).
27. Proof of (9). If y denotes the best approximating trigonometric polynomial of g of order at most q, then by (46), (5) and (7) we have

$$
\begin{gathered}
\left|S_{j k l m}(g, t)-g(t)\right|=\left|S_{j k l m}(g, t)-S_{j k l m}(y, t)+y(t)-g(t)\right|= \\
=\left|\sum_{v=0}^{j m-1}\left(g\left(t_{v}\right)-y\left(t_{v}\right)\right) s_{j k l m}\left(t-t_{v}\right)+y(t)-g(t)\right| \leqq \sum_{v=0}^{j m-1}\left|g\left(t_{v}\right)-y\left(t_{v}\right)\right| \cdot \\
\cdot\left|s_{j k l m}\left(t-t_{v}\right)\right|+|y(t)-g(t)| \leqq\left(L_{j k l m}(t)+1\right) E_{q}^{T}(g)
\end{gathered}
$$

28. Proof of the second statement of Theorem 7. Since $\left|\cos \frac{t}{2}\right| \leqq 1$ and $\left|\sin \frac{m t}{2}\right| \leqq m\left|\sin \frac{t}{2}\right|$, thus by (3), (7) and (10), $\left|s_{j k l m}(t)\right|, \quad L_{j k l m}(t)$ and $\left\|L_{j k l m}\right\|$ are decreasing functions of k and l.
29. Lemma. $L_{j k l m}(t)$ is a $\frac{2 \pi}{j m}$-periodic function. If $-\frac{2 \pi}{j m} \leqq t \leqq 0, j k$ is odd and l is even, then

$$
\begin{equation*}
L_{j k l m}(t)=m\left(b_{0 j k l m}+2 \sum_{v=1}^{[n \mid m]} b_{v m, j, k, l, m} \cos v\left(m t+\frac{\pi}{j}\right) / \cos \frac{v \pi}{j}\right) \tag{51}
\end{equation*}
$$

If j, l and m are even, k is odd then

$$
\begin{equation*}
L_{j k l m}(t)=2 m \sum_{v=1}^{[n / m+1 / 2]} b_{m(v-1 / 2), j, k, l, m} \cos \left(v-\frac{1}{2}\right)\left(m t+\frac{\pi}{j}\right) / \cos \left(v-\frac{1}{2}\right) \frac{\pi}{j} \tag{52}
\end{equation*}
$$

30. Proof. By (7) and (2)

$$
L_{j k l m}\left(t+\frac{2 \pi}{j m}\right)=\sum_{v=0}^{j m-1}\left|s_{j k l m}\left(t+\frac{2 \pi}{j m}-t_{v}\right)\right|=\sum_{v=0}^{j m-1}\left|s_{j k l m}\left(t-t_{v-1}\right)\right|=\sum_{v=-1}^{j m-2}\left|s_{j k l m}\left(t-t_{v}\right)\right| .
$$

By (41), $s_{j k l m}(t)$ is 2π-periodic, hence

$$
s_{j k l m}\left(t-t_{-1}\right)=s_{j k l m}\left(t+\frac{2 \pi}{j m}\right)=s_{j k l m}\left(t-2 \pi+\frac{2 \pi}{j m}\right)=s_{j k l m}\left(t-t_{j m-1}\right)
$$

i.e. $L_{j k l m}(t)$ is, indeed, $\frac{2 \pi}{j m}$-periodic:

$$
L_{j k l m}\left(t+\frac{2 \pi}{j m}\right)=\sum_{v=0}^{j m-1}\left|s_{j k l m}\left(t-t_{v}\right)\right|=L_{j k l m}(t)
$$

Because of (41), $s_{j k l m}(t)$ is an even function. If $j k$ is odd and l is even, then by (2)-(3)

$$
\operatorname{sgn} s_{j k l m}\left(t-t_{h j+r}\right)=\operatorname{sgn} s_{j k l m}\left(t_{h j+r}-t\right)=(-1)^{r} \quad(0 \leqq h<m, 0 \leqq r<j)
$$

when $-\frac{2 \pi}{j m}<t<0$. Hence and from (7), (43) and (2) we get

$$
\begin{gathered}
L_{j k l m}(t)=\sum_{r=0}^{j-1} \sum_{h=0}^{m-1}(-1)^{r} s_{j k l m}\left(t_{h j+r}-t\right)=\sum_{r=0}^{j-1}(-1)^{r} \sum_{h=0}^{m-1} \sum_{v=-n}^{n} b_{v j k l m}\left(\frac{z_{h j+r}}{z}\right)^{v}= \\
=\sum_{r=0}^{j-1}(-1)^{r} \sum_{v=-n}^{n} b_{v j k l m}\left(\frac{z_{r}}{z}\right)^{v} \sum_{h=0}^{m-1} z_{v}^{h j} .
\end{gathered}
$$

Here

$$
\sum_{h=0}^{m-1}\left(z_{v}^{j}\right)^{h}=\left\{\begin{array}{lc}
m, & \text { if } m \mid v \tag{53}\\
0 & \text { otherwise }
\end{array}\right.
$$

Thus by (2)

$$
L_{j k l m}(t)=m \sum_{v=-[n \mid m]}^{[n / m]} b_{m v, j, k, l, m} z^{-m v} \sum_{r=0}^{j-1}(-1)^{r} z_{v}^{m r}
$$

Here

$$
\sum_{r=0}^{j-1}\left(-z_{v}^{m}\right)^{r}=\frac{2}{1+e^{2 \pi i v / j}}=\frac{e^{-\pi i v / j}}{\cos \frac{\pi v}{j}}, \quad e^{i v(\pi / j+m t)}+e^{-i v(\pi / j+m t)}=2 \cos v\left(m t+\frac{\pi}{j}\right),
$$

i.e. (51) holds true, indeed.

If j, l and m are even, k is odd, then by (2)-(3)

$$
\operatorname{sgn} s_{j k l m}\left(t_{h j+r}-t\right)=(-1)^{h+r} \quad(0 \leqq h<m, 0 \leqq r<j)
$$

for $-\frac{2}{j m}<t<0$. Therefore

$$
\begin{gathered}
L_{j k l m}(t)=\sum_{r=0}^{j-1} \sum_{h=0}^{m-1}(-1)^{h+r} s_{j k l m}\left(t_{h j+r}-t\right)=\sum_{r=0}^{j-1}(-1)^{r} \sum_{v=-n}^{n}(-1)^{h} \sum_{h=0}^{m-1} b_{v j k l m}\left(\frac{z_{h j+r}}{z}\right)^{v}= \\
=\sum_{r=0}^{j-1}(-1)^{r} \sum_{v=-n}^{n} b_{v j k l m}\left(\frac{z_{r}}{z}\right)^{v} \sum_{h=0}^{m-1}\left(-z_{v}^{j}\right)^{h} .
\end{gathered}
$$

Here

$$
\sum_{h=0}^{m-1}\left(-z_{v}^{j}\right)^{n}= \begin{cases}m, & \text { if } 2 v / m \text { is an odd integer }, \\ 0, & \text { otherwise }\end{cases}
$$

Therefore

$$
L_{j k l m}(t)=m \sum_{v=-[n / m-1 / 2]}^{[n / m+1 / 2]} b_{m(v-1 / 2), j, k, l, m} z^{-m(v-1 / 2)} \sum_{r=0}^{j-1}\left(-z_{2 v-1}^{m / 2}\right)^{r} .
$$

Here

$$
\begin{gathered}
\left.\sum_{r=0}^{j-1}\left(-z_{2 v-1}^{m / 2}\right)\right)^{r}=\frac{2}{1+e^{(2 v-1) \pi i / j}}=\frac{e^{-(2 v-1) i \pi /(2 j)}}{\cos \frac{2 v-1}{2 j} \pi}, \\
e^{-i(v-1 / 2)(m t+\pi / j)}+e^{i(v-1 / 2)(m t+\pi / j)}=2 \cos \left(v-\frac{1}{2}\right)\left(m t+\frac{\pi}{j}\right),
\end{gathered}
$$

which proves (52).
31. Proof of (11). If j is odd, $k=1$, and $l=0$, then by (1) $n=\frac{j+1}{2} m-1$ and $\left[\frac{n}{m}\right]=\frac{j-1}{2}$. (8) shows that $q=\frac{j-1}{2} m$. Thus by (40), (51) can be written in the form

$$
\begin{equation*}
L_{j 10 m}(t)=\frac{1}{j}\left(1+2 \sum_{v=1}^{(j-1) / 2} \cos v\left(m t+\frac{\pi}{j}\right) / \cos \frac{v \pi}{j}\right) . \tag{54}
\end{equation*}
$$

Since $L_{j k l m}(t)$ is $\frac{2 \pi}{j m}$-periodic, this yields (11).
32. Proof of (12). If j and m are even, $k=1$, and $l=0$, then $n=\frac{j+1}{2} m-1$, $\left[\frac{n}{m}+\frac{1}{2}\right]=\frac{j}{2}$, and $q=\frac{j-1}{2} m$. Hence and by (40), (52) can be written in the form

$$
\begin{equation*}
L_{j 10 m}(t)=\frac{2}{j} \sum_{v=1}^{j / 2} \cos \left(v-\frac{1}{2}\right)\left(m t+\frac{\pi}{j}\right) / \cos \left(v-\frac{1}{2}\right) \frac{\pi}{j} . \tag{55}
\end{equation*}
$$

Since $L_{j k l m}(t)$ is $\frac{2 \pi}{j m}$-periodic, this implies (12).
33. Proof of (13). Let j be even, m odd and $0 \leqq t \leqq \frac{2 \pi}{j m}$. Since $L_{j k l m}(t)$ is $\frac{2 \pi}{j m}$-periodic, (7) can be written in the form

$$
\begin{equation*}
L_{j 11 m}(t)=\sum_{v=1-j m / 2}^{j m / 2}\left|s_{j 11 m}\left(t-t_{v}\right)\right| . \tag{56}
\end{equation*}
$$

In Section 28 we already mentioned that

$$
\begin{equation*}
\left|s_{j 11 m}(t)\right| \leqq\left|s_{j 01 m}(t)\right| . \tag{57}
\end{equation*}
$$

By (3),

$$
\operatorname{sgn} s_{j 01 m}\left(t-t_{v}\right)=\operatorname{sgn} s_{j 01 m}\left(t+t_{v-1}\right) \quad(v=1,2, \ldots, j m / 2)
$$

Hence

$$
\left|s_{j 01 m}\left(t-t_{v}\right)\right|+\left|s_{j 01 m}\left(t+t_{v-1}\right)\right|=\left|s_{j 01 m}\left(t-t_{v}\right)+s_{j 01 m}\left(t+t_{v-1}\right)\right| .
$$

Here by (2)

$$
s_{j 01 m}\left(t-t_{v}\right)+s_{j 01 m}\left(t+t_{v-1}\right)=s_{j 01 m}\left(t-\frac{\pi}{j m}-\frac{2 v-1}{j m} \pi\right)+s_{j 01 m}\left(t-\frac{\pi}{j m}+\frac{2 v-1}{j m} \pi\right)
$$

is the fundamental polynomial of Lagrange interpolation at $\cos \left(t-\frac{\pi}{j m}\right)$ based on the Chebyshev nodes. Its absolute value in $\left[0, \frac{2 \pi}{j m}\right]$ attains its maximum at $t=\frac{\pi}{j m}$. Hence, by (2), (3), (57) and the inequality $\cot x<1 / x(0<x<\pi / 2)$ we obtain

$$
\begin{align*}
& \left|s_{j 11 m}\left(t-t_{v}\right)\right|+\left|s_{j 11 m}\left(t+t_{v-1}\right)\right| \leqq 2\left|s_{j 01 m}\left(\frac{2 v-1}{j m} \pi\right)\right|= \tag{58}\\
& \quad=\frac{2}{j m} \cot \frac{2 v-1}{2 j m} \pi<\frac{4}{\pi} \frac{1}{2 v-1} \quad(1 \leqq v \leqq j m / 2) .
\end{align*}
$$

(3) and the inequality $\frac{\cos x}{\sin ^{2} x}<\frac{1}{x^{2}}(0<x<\pi / 2)$ yields

$$
\begin{gathered}
\left|s_{j 11 m}\left(t-t_{v}\right)\right|+\left|s_{j 11 m}\left(t+t_{v-1}\right)\right| \leqq \frac{1}{j m^{2}}\left\{\frac{\cos \frac{t_{v}-t}{2}}{\sin ^{2} \frac{t_{v}-t}{2}}+\frac{\cos \frac{t_{v-1}+t}{2}}{\sin ^{2} \frac{t_{v-1}+t}{2}}\right\} \leqq \\
\leqq \frac{4}{j m^{2}}\left\{\frac{1}{\left(t_{v}-t\right)^{2}}+\frac{1}{\left(t_{v-1}+t\right)^{2}}\right\} .
\end{gathered}
$$

For $v \geqq 2$, here the right hand side attains its maximum for $t=0$ or $t=t_{1}$. The value of this maximum is $\frac{j}{\pi^{2}}\left(\frac{1}{v^{2}}+\frac{1}{(v-1)^{2}}\right)$. This together with (56) and (58) implies

$$
\begin{gathered}
L_{j 11 m}(t) \leqq \frac{4}{\pi} \sum_{v=1}^{[j / \pi]+1} \frac{1}{2 v-1}+\frac{j}{\pi^{2}} \frac{1}{([j / \pi]+1)^{2}}+\frac{2 j}{\pi^{2}} \sum_{v=[j / \pi]+2}^{\infty} \frac{1}{v^{2}}< \\
<\frac{2}{\pi}(2+\log ([j / \pi]+1))+\frac{j}{\pi^{2}([j / \pi]+1)^{2}}+\frac{2 j}{\pi^{2}([j / \pi]+1)}<\frac{2}{\pi} \log j+ \\
\quad+\frac{2}{\pi}\left(2+\log \left(\frac{1}{\pi}+\frac{1}{2}\right)\right)+\frac{1}{2}+\frac{2}{\pi}<\frac{2}{\pi} \log j+2.283 .
\end{gathered}
$$

Since $L_{j k l m}(t)$ is $\frac{2 \pi}{j m}$-periodic, this gives (13).
34. Proof of (14). By (7), (3), (16), (11), and (20), using Cauchy-Schwarz inequality,

$$
\begin{gathered}
L_{221 m}^{2}(t)=\left\{\left.\sum_{v=0}^{2 m-1}\left|\frac{\sin m\left(t-t_{v}\right)}{2 m \cdot \sin \frac{t-t_{v}}{2}}\right|\left(\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right)^{2} \right\rvert\, \cos \frac{t-t_{v}}{2}\right)^{2} \leqq \\
\leqq \sum_{v=0}^{2 m-1}\left(\frac{\sin m\left(t-t_{v}\right)}{2 m \cdot \sin \frac{t-t_{v}}{2}}\right)^{2} \sum_{v=0}^{2 m-1}\left(\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right)^{4}\left(\cos \frac{t-t_{v}}{2}\right)^{2}= \\
=L_{1,1,0,2 m}(t) M_{242 m}(t)<\frac{4}{3}
\end{gathered}
$$

which yields the statement.
35. Proof of (15). If $j=k=3$ and $l=2$, then by (1) $n=3 m-1,\left[\frac{n}{m}\right]=2$, and by (8) $q=0$, by (40) $b_{0332 m}=\frac{1}{3 m}$. Also by (38) and (39)

$$
\begin{gathered}
b_{m 332 m}=b_{-m, 3,3,2, m}=\frac{1}{12 m^{4}}\left(a_{2 m-1,3,3, m}+2 a_{2 m-2,3,3, m}+a_{2 m-3,3,3, m}\right), \\
b_{2 m, 3,3,2, m}=b_{-2 m, 3,3,3,2, m}=\frac{1}{12 m^{4}}\left(a_{m-1,3,3, m}+2 a_{m-2,3,3, m}+a_{m-3,3,3, m}\right) .
\end{gathered}
$$

(34) gives

$$
a_{m-v, 3,3, m}=\binom{m+3-v}{3}, \quad a_{2 m-v, 3,3, m}=\binom{2 m+3-v}{3}-3 a_{m-v, 3,3, m} \quad(v=1,2,3) .
$$

These relations imply

$$
b_{m 332 m}=\frac{5}{18 m}-\frac{1}{36 m^{3}}, \quad b_{2 m, 3,3,2, m}=\frac{1}{18 m}+\frac{1}{36 m^{3}}
$$

Thus we obtain from (51)

$$
\begin{gathered}
L_{332 m}(t)=m\left(b_{0332 m}+4 b_{m 332 m} \cos \left(m t+\frac{\pi}{3}\right)-4 b_{2 m, 3,3,2, m} \cos 2\left(m t+\frac{\pi}{3}\right)\right)= \\
=\frac{1}{3}+\left(\frac{10}{9}-\frac{1}{9 m^{2}}\right) \cos \left(m t+\frac{\pi}{3}\right)-\left(\frac{2}{9}+\frac{1}{9 m^{2}}\right) \cos 2\left(m t+\frac{\pi}{3}\right) .
\end{gathered}
$$

Since

$$
L_{332 m}^{\prime}(t)=\left(\frac{4 m}{9}+\frac{2}{9 m}\right) \sin 2\left(m t+\frac{\pi}{3}\right)-\left(\frac{10 m}{9}-\frac{1}{9 m}\right) \sin \left(m t+\frac{\pi}{3}\right)
$$

and $|\sin 2 t| \leqq 2|\sin t|$, we have $L_{332 m}^{\prime}(t)>0$ if $-\frac{2 \pi}{3 m}<t<-\frac{\pi}{3 m}$, and $L_{332 m}^{\prime}(t)<0$ if $-\frac{\pi}{3 m}<t<0$. Using the $\frac{2 \pi}{3 m}$-periodicity of $\stackrel{3 m}{L_{332 m}}(t)$, we get the statement:

$$
\left\|L_{332 m}\right\|=L_{332 m}\left(-\frac{\pi}{3 m}\right)=\frac{11}{9}-\frac{2}{9 m^{2}}<\frac{11}{9}
$$

36. Proof of (17). If $q \geqq 0$, then by (5) and (46)

$$
\sum_{v=0}^{j m-1} s_{j k l m}\left(t-t_{v}\right)=S_{j k l m}(1, t)=1
$$

whence

$$
\begin{equation*}
S_{j k l m}(g, t)-g(t)=\sum_{v=0}^{j m-1}\left(g\left(t_{v}\right)-g(t)\right) s_{j k l m}\left(t-t_{v}\right) \tag{59}
\end{equation*}
$$

If $t_{h} \leqq t \leqq t_{h+1}$, then by (2), e.g. for $j m$ even, this can be written in the form

$$
\begin{equation*}
S_{j k l m}(g, t)-g(t)=\sum_{v=h+1-j m / 2}^{h+j m / 2}\left(g\left(t_{v}\right)-g(t)\right) s_{j k l m}\left(t-t_{v}\right) \tag{60}
\end{equation*}
$$

being g and $s_{j k l m} 2 \pi$-periodic functions. (The case of odd $j m$ can be treated similarly.) Therefore

$$
\begin{equation*}
\left|S_{j k l m}(g, t)-g(t)\right| \leqq \sum_{v=h+1-j m / 2}^{h+j m / 2}\left|g\left(t_{v}\right)-g(t)\right| \cdot\left|s_{j k l m}\left(t-t_{v}\right)\right| . \tag{61}
\end{equation*}
$$

Here

$$
\begin{equation*}
\left|g\left(t_{v}\right)-g(t)\right| \leqq \omega\left(\left|t_{v}-t\right|\right) \leqq \omega\left(g, \frac{\pi}{j m}\right)\left(1+\frac{j m}{\pi}\left|t_{v}-t\right|\right) . \tag{62}
\end{equation*}
$$

If t is a node, then by (6), (17) obviously holds. Otherwise by (3) we get for $k \geqq 1, l \geqq 1$

$$
\begin{gather*}
\frac{j m}{\pi}\left|t_{v}-t\right| \cdot\left|s_{j k l m}\left(t-t_{v}\right)\right|=\frac{1}{\pi}\left|\sin j m \frac{t-t_{v}}{2}\right| \cdot\left|\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{k} \tag{63}\\
\cdot\left|\cos \frac{t-t_{v}}{2}\right|^{l-1} \cdot\left|\cot \frac{t-t_{v}}{2}\right| \cdot\left|t-t_{v}\right|
\end{gather*}
$$

Here

$$
\begin{equation*}
\left|\sin j m \frac{t-t_{v}}{2}\right| \leqq 1 \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
\left|\cot \frac{t-t_{v}}{2}\right| \cdot\left|t-t_{v}\right| \leqq 2 \tag{65}
\end{equation*}
$$

It is easy to see that the summation in (7) and (16) can be taken from any integer u to $u+j m-1$. Thus (61)-(65), (7) and (16) imply (17).
37. Proof of (18). By (7), (3), (2) and (54)

$$
\begin{equation*}
L_{110 m}(t)=\sum_{v=0}^{m-1}\left(\frac{\sin m\left(\frac{t}{2}-\frac{\pi v}{m}\right)}{m \cdot \sin \left(\frac{t}{2}-\frac{\pi v}{m}\right)}\right)^{2}=1 \tag{66}
\end{equation*}
$$

(16), (2) and (66) yield

$$
\begin{gather*}
M_{j 20 m}(t)=\sum_{v=0}^{j m-1}\left(\frac{\sin m\left(\frac{t}{2}-\frac{\pi v}{j m}\right)}{m \cdot \sin \left(\frac{t}{2}-\frac{\pi v}{j m}\right)}\right)^{2}= \tag{67}\\
=\sum_{h=0}^{j-1} \sum_{v=0}^{m-1}\left(\frac{\sin m\left(\frac{t}{2}-\frac{\pi v}{m}-\frac{\pi h}{j m}\right)}{m \cdot \sin \left(\frac{t}{2}-\frac{\pi v}{m}-\frac{\pi h}{j m}\right)}\right)^{2}=\sum_{h=0}^{j-1} L_{110 m}\left(t-\frac{2 \pi h}{j m}\right)=j .
\end{gather*}
$$

38. Proof of (19). By using Cauchy-Schwarz inequality, (16), (18) and (20) give

$$
\begin{gathered}
M_{j 31 m}^{2}(t)=\left\{\sum_{v=0}^{j m-1}\left|\frac{\sin m \frac{t-t_{v}^{\prime}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{3}\left|\cos \frac{t-t_{v}}{2}\right|^{2} \leqq\right. \\
\leqq \sum_{v=0}^{j m-1}\left(\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right)^{2} \sum_{v=0}^{j m-1}\left(\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right)^{4} \cos ^{2} \frac{t-t_{v}}{2} \leqq M_{j 20 m}(t) M_{j 42 m}(t)<\frac{2}{3} j^{2},
\end{gathered}
$$

which yields the statement. (We used (20) which will be proved in the next two sections.)
39. Lemma. If k and l are even, $j \geqq k / 2 \geqq 2$, and $m \geqq \frac{k+l}{2}>l$, then

$$
\begin{equation*}
M_{j k l m}(t)=\frac{j}{2^{l} m^{k-1}} \sum_{v=0}^{l}\binom{l}{v} \sum_{h=0}^{k / 2-1}(-1)^{h}\binom{k}{h}\binom{\frac{k m+k+l}{2}-1-v-h m}{k-1} . \tag{68}
\end{equation*}
$$

40. Proof. Just like in case of (67) we get

$$
\begin{equation*}
M_{j k l m}(t)=\sum_{v=0}^{j-1} L_{1, k-1, l, m}\left(t-\frac{2 \pi v}{j m}\right) . \tag{69}
\end{equation*}
$$

By (51)

$$
\begin{equation*}
L_{1, k-1, l, m}(t)=\left(b_{0,1, k-1, l, m}+2 \sum_{h=1}^{[n / m]} b_{h m, 1, k-1, l, m} \cos h m t\right) . \tag{70}
\end{equation*}
$$

(1) shows that now $n=\frac{1}{2}(k m-k+l)$ and hence

$$
\begin{equation*}
\left[\frac{n}{m}\right]=\frac{k}{2}-1 \tag{71}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{v=0}^{j-1} \cos h m\left(t-\frac{2 \pi v}{j m}\right)=\sum_{v=0}^{j-1} \cos \left(h m t-\frac{2 \pi h v}{j}\right)=0, \tag{72}
\end{equation*}
$$

(69)-(72) imply $M_{j k l m}(t)=j m b_{0,1, k-1, l, m}$. Hence and by (38), (36) and (71) we obtain (68).
41. Proof of (20). (68) yields

$$
\begin{equation*}
M_{j 42 m}(t)=\frac{j}{4 m^{3}} \sum_{v=0}^{2}\binom{2}{v} \sum_{h=0}^{1}(-1)^{h}\binom{4}{h}\binom{2 m+2-v-h m}{3}=\frac{2 j}{3}-\frac{j}{6 m^{2}}<\frac{2 j}{3} . \tag{73}
\end{equation*}
$$

42. Notations.

$$
\begin{gather*}
p_{0}(x)=s_{j k l m}(t), \tag{74}\\
p_{v}(x)=s_{j k l m}\left(t-t_{v}\right)+s_{j k l m}\left(t+t_{v}\right), \quad 0<v<j m / 2, \tag{75}
\end{gather*}
$$

$$
\begin{equation*}
p_{j m / 2}(x)=s_{j k l m}\left(t-t_{j m / 2}\right), \quad \text { if } j m \text { is even, } \tag{76}
\end{equation*}
$$

$$
\begin{equation*}
T_{h}(x)=\cos h t \quad(h=0,1,2, \ldots) \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
g=f \circ \cos \tag{78}
\end{equation*}
$$

43. Proof of the first statement of Theorem 15. If $j m$ is even, then by (23), (5), (2), (24), and (74)-(76)

$$
\begin{equation*}
P_{j k l m}(f, x)=\sum_{v=0}^{j m-1} f\left(x_{v}\right) s_{j k l m}\left(t-t_{v}\right)=f(1) p_{0}(x)+\sum_{v=1}^{j m / 2-1} f\left(x_{v}\right) p_{v}(x)+f(-1) p_{j m / 2}(x) . \tag{79}
\end{equation*}
$$

If $j m$ is odd, then

$$
\begin{equation*}
P_{j k l m}(f, x)=f(1) p_{0}(x)+\sum_{v=1}^{(j m-1) / 2} f\left(x_{v}\right) p_{v}(x) \tag{80}
\end{equation*}
$$

We get from (41), (79) and (80) that

$$
\begin{gathered}
p_{0}(x)=b_{0 j k l m}+2 \sum_{h=1}^{n} b_{h j k l m} T_{h}(x), \\
p_{v}(x)=2 b_{0 j k l m}+4 \sum_{h=1}^{n} b_{h j k l m} \cos h t_{v} T_{h}(x), \quad 0<v<j m / 2, \\
p_{j m / 2}(x)=b_{0 j k l m}+2 \sum_{h=1}^{n}(-1)^{h} b_{h j k l m} T_{h}(x),
\end{gathered}
$$

as well as $P_{j k l m}(f, x)$ are algebraic polynomials of degree at most n, since the Chebyshev polynomial $T_{h}(x)$ is of degree h.
44. Proof of (25). This follows from (23), (24), (2) and (6).
45. Proof of (26). If $q \geqq 0$ and $w(x)$ is an algebraic polynomial of degree at most q, then $y=w \circ c o s$ is a trigonometric polynomial of order at most q, and
hence by (23), (78), and (46)

$$
P_{j k l m}(w, x)=S_{j k l m}(w \circ \cos , t)=w(\cos t)=w(x)
$$

Thus, just like in Section 27, by (79)-(80) we obtain

$$
\begin{equation*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq\left(1+\sum_{v=0}^{[j m / 2]}\left|p_{v}(x)\right|\right) E_{q}(f) \tag{81}
\end{equation*}
$$

By (75)

$$
\begin{equation*}
\left|p_{v}(x)\right| \leqq\left|s_{j k l m}\left(t-t_{v}\right)\right|+\left|s_{j k l m}\left(t+t_{v}\right)\right| \quad(0<v<j m / 2) \tag{82}
\end{equation*}
$$

(81), (82), (74), (76) and (7) imply (26).
46. Remark. In general, (81) is more exact than (26).
47. Proof of (27). Let e.g. $j m$ even (the case of odd $j m$ can be treated similarly), and $x_{h+1} \leqq x \leqq x_{h}$. Now (61) can be written in the form

$$
\begin{equation*}
\left|P_{j k l m}(f, x)-f(x)\right| \leqq \sum_{v=h+1-j m / 2}^{h+j m / 2}\left|f\left(x_{v}\right)-f(x)\right| \cdot\left|s_{j k l m}\left(t-t_{v}\right)\right| . \tag{83}
\end{equation*}
$$

Here $\left|x-x_{v}\right|=\left|\cos t-\cos t_{v}\right| \leqq 2\left|\sin \frac{t-t_{v}}{2}\right|$, and hence

$$
\begin{equation*}
\left|f(x)-f\left(x_{v}\right)\right| \leqq \omega\left(f, \frac{\pi}{j m}\right)\left(1+\frac{2 j m}{\pi}\left|\sin \frac{t_{v}-t}{2}\right|\right) \tag{84}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{2 j m}{\pi}\left|\sin \frac{t_{v}-t}{2} s_{j k l m}\left(t-t_{v}\right)\right|=\frac{2}{\pi}\left|\sin j m \frac{t-t_{v}}{2}\right|\left|\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{k} \cdot\left|\cos \frac{t-t_{v}}{2}\right|^{\prime} \tag{85}
\end{equation*}
$$

and here $\left|\sin j m \frac{t-t_{v}}{2}\right| \leqq 1$, (83)-(85), (7) and (16) yield (27).
48. Proof of (28). Since

$$
\begin{align*}
& x-x_{v}=\cos t-\cos t_{v}=\cos t-\cos \left(t_{v}-t+t\right)=\cos t\left(1-\cos \left(t_{v}-t\right)\right)+ \tag{86}\\
& +\sin t \cdot \sin \left(t_{v}-t\right)=2 \sin ^{2} \frac{t_{v}-t}{2} \cos t+2 \sin t \cdot \sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}
\end{align*}
$$

we have

$$
\begin{align*}
\left|f(x)-f\left(x_{v}\right)\right| & \leqq \omega\left(f, \frac{\pi \sin t}{j m}\right)\left(1+\frac{2 j m}{\pi}\left|\sin \frac{t_{v}-t}{2} \cdot \cos \frac{t_{v}-t}{2}\right|\right)+ \tag{87}\\
& +\omega\left(f, \frac{\pi^{2}|\cos t|}{j^{2} m^{2}}\right)\left(1+\frac{2 j^{2} m^{2}}{\pi^{2}} \sin ^{2} \frac{t_{v}-t}{2}\right)
\end{align*}
$$

Since

$$
\begin{gather*}
\frac{2 j m}{\pi}\left|\sin \frac{t_{v}-t}{2} \cdot \cos \frac{t_{v}-t}{2} \cdot s_{j k l m}\left(t-t_{v}\right)\right|=\frac{2}{\pi}\left|\frac{\sin m \frac{t_{v}-t}{2}}{m \cdot \sin \frac{t_{v}-t}{2}}\right|^{k} \tag{88}\\
\cdot\left|\cos \frac{t_{v}-t}{2}\right|^{l+1}\left|\sin j m \frac{t_{v}-t}{2}\right|
\end{gather*}
$$

and here the last factor is $\leqq 1$, further

$$
\begin{gather*}
\frac{2 j^{2} m^{2}}{\pi^{2}} \sin ^{2} \frac{t_{v}-t}{2}\left|s_{j k l m}\left(t-t_{v}\right)\right|=\frac{2 j}{\pi^{2}}\left|\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{k-1} \tag{89}\\
\cdot\left|\cos \frac{t-t_{v}}{2}\right|^{l}\left|\sin j m \frac{t-t_{v}}{2} \cdot \sin m \frac{t-t_{v}}{2}\right|
\end{gather*}
$$

and here the last two factors are $\leqq 1$, we obtain from (83), (87)-(89), (7) and (16) that (28) holds.
49. Proof of (29). Let us write (60) in the form

$$
P_{j k l m}(f, x)-f(x)=\sum_{v=1}^{j} \sum_{r=-m / 2}^{m / 2-1}\left(f\left(x_{v+h+j r}\right)-f(x)\right) s_{j k l m}\left(t_{v+h+j r}-t\right),
$$

provided m is even (the case of odd m can be treated similarly). Applying Abel transformation we get

$$
\begin{gather*}
\sum_{r=-m / 2}^{m / 2-1}\left(f\left(x_{v+h+j r}\right)-f(x)\right) s_{j k l m}\left(t_{v+h+j r}-t\right)= \tag{90}\\
\left.=\left(f\left(x_{v+h}\right)-f(x)\right)\right)_{u=0}^{m / 2-1} \sum_{j k l m}\left(t_{v+h+j u}-t\right)+\sum_{r=1}^{m / 2-1}\left(f\left(x_{v+h+j r}\right)-f\left(x_{v+h+j r-j}\right)\right) \cdot \\
\cdot \sum_{u=r}^{m / 2-1} s_{j k l m}\left(t_{v+h+j u}-t\right)+\left(f\left(x_{v+h-j}\right)-f(x)\right) \sum_{u=-m / 2}^{-1} s_{j k l m}\left(t_{v+h+j u}-t\right)+ \\
+\sum_{r=-m / 2}^{-2}\left(f\left(x_{v+h+r j}\right)-f\left(x_{v+h+j+j r}\right)\right) \sum_{u=-m / 2}^{r} s_{j k l m}\left(t_{v+h+j u}-t\right) .
\end{gather*}
$$

Since j is odd and k is even, it follows from the definition of $s_{j k l m}(t)$ that for $0 \leqq u<$ $<m / 2$

$$
\operatorname{sgn} s_{j k l m}\left(t_{v+h+j u}-t\right)=\operatorname{sgn} s_{j k l m}\left(t_{v+h-j-j u}-t\right)=(-1)^{u+v+1},
$$

and the sequences $\left|s_{j k l m}\left(t_{v+h+j u}-t\right)\right|,\left|s_{j k l m}\left(t_{v+h-j-j u}-t\right)\right|(u=0,1, \ldots, m / 2-1)$ are decreasing. Therefore

$$
\begin{equation*}
\left|\sum_{u=r}^{m / 2-1} s_{j k l m}\left(t_{v+h+j u}-t\right)\right| \leqq\left|s_{j k l m}\left(t_{v+h+j r}-t\right)\right| \quad(1 \leqq r \leqq m / 2-1), \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{u=-m / 2}^{r} s_{j k l m}\left(t_{v+h-j-j u}-t\right)\right| \leqq\left|s_{j k l m}\left(t_{v+h-j-j r}-t\right)\right| \quad(-m / 2 \leqq r \leqq-2) . \tag{92}
\end{equation*}
$$

Evidently

$$
\begin{align*}
& x_{v-j}-x_{v}=\cos t_{v-j}-\cos t_{v}=2 \sin \frac{\pi}{m} \sin \left(t_{v}-\frac{\pi}{m}\right)= \tag{93}\\
& =2 \sin \frac{\pi}{m}\left\{\sin t \cdot \cos \left(t_{v}+\frac{\pi}{m}-t\right)+\cos t \cdot \sin \left(t_{v}+\frac{\pi}{m}-t\right)\right\}= \\
& =2 \sin \frac{\pi}{m}\left\{\sin t \cdot \cos \left(t_{v}+\frac{\pi}{m}-t\right)+\cos t\left[\sin \frac{\pi}{m} \cos \left(t_{v}-t\right)+\right.\right. \\
& \left.\left.\quad+2 \cos \frac{\pi}{m} \sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}\right]\right\} .
\end{align*}
$$

Therefore

$$
\left|x_{v-j}-x_{v}\right| \leqq \frac{2 \pi}{m} \sin t+|\cos t|\left(\frac{2 \pi^{2}}{m^{2}}+\frac{4 \pi}{m} \left\lvert\, \sin \frac{t_{v}-t}{2} \cdot \cos \frac{t_{v}-t}{2}\right.\right),
$$

and

$$
\begin{equation*}
\left|f\left(x_{v-j}\right)-f\left(x_{v}\right)\right| \leqq \omega\left(f, \frac{2 \pi \sin t}{m}\right)+\omega\left(f, \frac{2 \pi^{2}|\cos t|}{m^{2}}\right)\left(2+\frac{2 m}{\pi}\left|\sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}\right|\right) \tag{94}
\end{equation*}
$$

The same holds for $\left|f\left(x_{v+j}\right)-f\left(x_{v}\right)\right|$, too.
(86) yields

$$
\left|x-x_{v+h}\right| \leqq \frac{2 \pi}{m} \sin t+\frac{2 \pi^{2}}{m^{2}}|\cos t| \quad\left(t_{h} \leqq t \leqq t_{h+1}\right),
$$

i.e.

$$
\begin{equation*}
\left|f(x)-f\left(x_{v+h}\right)\right| \leqq \omega\left(f, \frac{2 \pi}{m} \sin t\right)+\omega\left(f, \frac{2 \pi^{2}}{m^{2}}|\cos t|\right), \tag{95}
\end{equation*}
$$

and the same holds for $\left|f(x)-f\left(x_{v+h-j}\right)\right|$, too. (90)-(95), (88), (7) and (16) give (29).
50. Proof of (30). We may assume that $-1<x<1$, since for $x= \pm 1$ we have zeros on both sides of (30). From (86)

$$
\begin{equation*}
\left|f(x)-f\left(x_{v}\right)\right| \leqq \omega\left(f, \frac{\pi \sin t}{j m}\right)\left(1+\frac{2 j m}{\pi}\left|\sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}\right|+\frac{2 j m}{\pi}|\cot t| \sin ^{2} \frac{t_{v}-t}{2}\right) . \tag{96}
\end{equation*}
$$

(3) and (2) imply

$$
\begin{gather*}
\frac{2 j m}{\pi}|\cot t| \sin ^{2} \frac{t_{v}-t}{2}\left|s_{j k l m}\left(t_{v}-t\right)\right|= \tag{97}\\
=\frac{2}{\pi}\left|\frac{\sin j m t / 2}{m \cdot \sin t}\right|\left|\frac{\sin m \frac{t-t_{v}}{2}}{m \cdot \sin \frac{t-t_{v}}{2}}\right|^{k-1} \cdot\left|\cos \frac{t-t_{v}}{2}\right|^{l}|\cos t| \cdot\left|\sin m \frac{t-t_{v}}{2}\right| .
\end{gather*}
$$

Here the second factor is $\leqq j / 2$ (being $j m$ even), and the last factor is $\leqq 1$. (83), (88), (96) and (97) give (30).
51. Proof of (31). We obtain from (93)

$$
\left|x_{v-j}-x_{v}\right| \leqq \frac{2 \pi}{m} \sin t\left\{1+|\cot t|\left(\sin \frac{\pi}{m}+2\left|\sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}\right|\right)\right\}
$$

Hence
(98)

$$
\left|f\left(x_{v-j}\right)-f\left(x_{v}\right)\right| \leqq \omega\left(f, \frac{2 \pi \sin t}{m}\right)\left\{2+|\cot t|\left(\sin \frac{\pi}{m}+2 \left\lvert\, \sin \frac{t_{v}-t}{2} \cos \frac{t_{v}-t}{2}\right.\right)\right\}
$$

The same holds for $\left|f\left(x_{v+j}\right)-f\left(x_{v}\right)\right|$. (86) gives

$$
\left|x-x_{v+h}\right| \leqq \frac{2 \pi}{m} \sin t\left(1+\left|\cot t \cdot \sin \frac{t_{v+h}-t}{2}\right|\right) .
$$

Therefore

$$
\begin{equation*}
\left|f(x)-f\left(x_{v+h}\right)\right| \equiv \omega\left(f, \frac{2 \pi \sin t}{m}\right)\left(2+\left|\cot t \cdot \sin \frac{t_{v+h}-t}{2}\right|\right) . \tag{99}
\end{equation*}
$$

A similar estimate holds for $\left|f(x)-f\left(x_{v+h-j}\right)\right|$. In (98) we have

$$
\begin{equation*}
\sin \frac{\pi}{m} \leqq \sin \frac{t_{v}-t}{2} \quad\left(t+\frac{2 \pi}{m} \leqq t_{v} \leqq \pi+t\right) . \tag{100}
\end{equation*}
$$

Thus

$$
\begin{gather*}
\left|\cot t \cdot \sin \frac{t_{v}-t}{2} s_{j k l m}\left(t_{v}-t\right)\right|=\left|\frac{\sin j m t / 2}{j m \cdot \sin t} \cdot \cos t\right| \tag{101}\\
\cdot\left|\frac{\sin m \frac{t_{v}-t}{2}}{\left\lvert\, m \cdot \sin \frac{t_{v}-t}{2}\right.}\right|^{k-1} \cdot\left|\cos \frac{t_{v}-t}{2}\right|^{l}
\end{gather*}
$$

where
(102)

$$
\left|\sin \frac{j m t}{2}\right| \leqq \frac{j m}{2} \sin t
$$

(90)-(92), (98)-(102) and (7) imply (31).
52. Theorem. Let $0<\varepsilon \leqq 1, N \geqq 20 / \varepsilon^{2}$ an arbitrary integer, $f(x)$ an arbitrary continuous function in $[-1,1]$. Then there exists a polynomial $J_{N}(f, x)$ of degree at most $N(1+\varepsilon)$ which depends on $f(x)$ linearly, interpolates $f(x)$ in at least N nodes, and

$$
\begin{equation*}
\left|f(x)-J_{N}(f, x)\right| \leqq \frac{13}{\varepsilon^{2}} \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{2 N}\right) \quad(-1 \leqq x \leqq 1) \tag{103}
\end{equation*}
$$

53. Remark. Theorem 52 gives a constructive answer for a problem raised by G. Freud and A. Sharma [2]. Later the problem was solved by them [2, addendum] and by P. Vértesi [7, Theorem 2.6] without giving an estimate for the constant figuring on the right hand side of (103).
54. Proof of Theorem 52. Let $j=[5 / \varepsilon], k=3, l=0, m=2\left[\frac{N-1}{j}\right]+2$. Then by (1) the degree of the polynomial $P_{j 30 m}(f, x)$ is

$$
\begin{gathered}
n=\frac{j m}{2}+\frac{3 m}{2}-2 \leqq N-1+j+3 \frac{N-1}{j}+3-2<N+j+\frac{3 N}{j}=N\left(1+\frac{j}{N}+\frac{3}{j}\right) \leqq \\
\leqq N\left(1+\frac{5}{\varepsilon} \cdot \frac{\varepsilon^{2}}{20}+3 \frac{\varepsilon}{4}\right)=N(1+\varepsilon)
\end{gathered}
$$

(n is an integer, since m is even). (79) implies that $P_{j 30 m}(f, x)$ depends linearly on $f(x) . \operatorname{By}(25), P_{j 30 m}(f, x)$ interpolates $f(x)$ at the nodes $\cos \frac{2 \pi v}{j m}(v=0,1, \ldots, j m / 2)$, i.e. at least in

$$
\begin{equation*}
\frac{j m}{2}+1=j\left[\frac{N-1}{j}\right]+j+1 \geqq N+1 \tag{104}
\end{equation*}
$$

points. (30) yields with $J_{N}(f, x)=P_{j 30 m}(f, x)$

$$
\left|J_{N}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{j m}\right)\left(L_{j 30 m}(t)+\frac{2}{\pi} M_{j 31 m}(t)+\frac{j}{\pi} M_{j 20 m}(t)\right)
$$

(The conditions are fulfilled, since m is even, $j \geqq 5$, and hence and by (8), $q>0$.) Now (10)-(12), the first statement in Section 8, (18)-(19) and (103) give

$$
\begin{align*}
& \left|J_{N}(f, x)-f(x)\right| \leqq \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{2 N}\right)\left(1+\frac{2}{\pi} \log j+\frac{2}{\pi} \sqrt{\frac{2}{3}} j+\frac{j^{2}}{\pi}\right) \leqq \tag{105}\\
& \quad \leqq \omega\left(f, \frac{\pi \sqrt{1-x^{2}}}{2 N}\right)\left(1+\frac{2}{\pi} \log \frac{5}{\varepsilon}+\frac{10}{\pi} \sqrt{\frac{2}{3}} \cdot \frac{1}{\varepsilon}+\frac{25}{\pi \varepsilon^{2}}\right)
\end{align*}
$$

The function $\varepsilon^{2}+\frac{2}{\pi} \varepsilon^{2} \log \frac{5}{\varepsilon}+\frac{10}{\pi} \sqrt{\frac{2}{3}} \varepsilon$ has a maximum of $1+\frac{2}{\pi} \log 5+\frac{10}{\pi} \sqrt{\frac{2}{3}}$ in $(0,1]$. Therefore

$$
1+\frac{2}{\pi} \log \frac{5}{\varepsilon}+\frac{10}{\pi} \sqrt{\frac{2}{3}} \cdot \frac{1}{\varepsilon}+\frac{25}{\pi \varepsilon^{2}} \leqq\left(1+\frac{2}{\pi} \log 5+\frac{10}{\pi} \sqrt{\frac{2}{3}}+\frac{25}{\pi}\right) \cdot \frac{1}{\varepsilon^{2}}<\frac{13}{\varepsilon^{2}}
$$

which, together with (105), implies (103).

References

[1] H. Ehlich, K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 164 (1966), 105-112.
[2] G. Freud, A. Sharma, Some good sequences of interpolatory polynomials, Canad. J. Math., 26 (1974), 233-246; Addendum, ibid., 29 (1977), 1163-1166.
[3] R. Günttner, Evaluation of Lebesgue constants, SIAM J. Numer. Anal., 17 (1980), 512-520.
[4] D. Jackson, A formula of trigonometric interpolation, Rendiconti del circolo Mathematico di Palermo (1914).
[5] R. B. Saxena, A new proof of S. A. Telyakowski's theorem on the approximation of continuous functions by algebraic polynomials, Studia Sci. Math. Hung., 7 (1972), 3-9.
[6] J. Szabados, On an interpolatory analogon of the de la Vallée-Poussin means, Studia Sci. Math. Hung., 9 (1974), 187-190.
[7] P. Vértesi, Convergent interpolatory processes for arbitrary systems of nodes, Acta Math. Acad. Sci. Hungar., 33 (1979), 223-234.
(Received April 6, 1984)
TECHNICAL UNIVERSITY BUDAPEST
FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF MATHEMATICS
BUDAPEST, STOCZEK U. 2-4
H-1111
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REÁLTANODA U. 13-15
H-1053

ON THE EQUICONVERGENCE OF EIGENFUNCTION EXPANSIONS ASSOCIATED WITH ORDINARY LINEAR DIFFERENTIAL OPERATORS

V. KOMORNIK (Budapest)

The equiconvergence theorems are very useful in the spectral investigation of differential operators because many results known for the most special operators may be transferred by their application to more general ones. For the case of orthonormal bases consisting of eigenfunctions of second-order operators several results have been obtained since the beginning of this century, see e.g. [1], [2], [3], [5], [7], [8], [14], [19], [22], [23]. All these results are contained in a result of I. Joó and the author [10]. It concerns also the non-selfadjoint case i.e. when eigenfunctions of higher order are also used and when the system is not orthonormal but only a Riesz basis. (On the existence of such Riesz bases see [4], [11], [20], [21].) The proof was based on an efficient method due to V. A. Il'in (see e.g. [2]) of the constant application of some mean value formulas.

The aim of the present paper is to extend this result for differential operators of higher order. In some special cases this was already done in [15]. Our main tool will be a generalized Titchmarsh type formula derived in [12]. We note that it is not a mean value formula if the order of the differential operator is odd. In some cases a simpler expression for its coefficients was found by I. Joó [9]; these expressions are important because they make possible to obtain sharp estimates for the coefficients. We shall need several results proved in [10], [17] and [18], too.

By and large the following result will be proved: all Riesz bases (and in particular all orthonormal bases) consisting of eigenfunctions (maybe also of higher order) of some n-order linear differential operator, locally behave in the same way. Here we stress two circumstances:

- there are no assumptions on the distribution of the eigenvalues: they can be arbitrary complex numbers;
- there are no boundary conditions.

As an immediate consequence of this result we note that (for example) Carleson's theorem remains valid for "all" eigenfunction expansions.

All the preliminary results used in this paper are contained in [10], [12], [17] and [18]. All the results of the papers [12] and [17] are needed. From [18] we need the case $i=0$ of Theorem 3; for its proof it is not necessary to apply the results of the paper [16]. From [10] we use only a result of technical character (Lemma 6). For the reader's convenience we collect in Section 2 all preliminary results used in this paper.

1. Formulation of the main result

Let G be an open interval on the real line, n a natural number, $q_{s} \in H_{\text {loc }}^{n-s}(G)$ a complex function $(s=2, \ldots, n)$ and consider the differential operator

$$
L u=u^{(n)}+q_{2} u^{(n-2)}+q_{3} u^{(n-3)}+\ldots+q_{n} u
$$

defined on $H_{\mathrm{loc}}^{n}(G)$. (Recall that, by definition, $H_{\mathrm{loc}}^{k}(G)$ is the set of all complex functions $v \in L_{\mathrm{loc}}^{2}(G)$ having distributional derivatives in $L_{\mathrm{loc}}^{2}(G)$ of order up to k.)

As usual, a function $u \neq 0$ is called an eigenfunction of order 0 (of the operator L) with some eigenvalue $\lambda \in \mathbf{C}$ if $L u=\lambda u$. Furthermore, a function u is called an eigenfunction of order k (of the operator L) with some eigenvalue $\lambda \in \mathbf{C}$ $(k=1,2, \ldots)$ if the function $u^{*}:=L u-\lambda u$ is an eigenfunction of order $k-1$ with the same eigenvalue λ.

Let us now given a system $\left(u_{r}\right)_{r=1}^{\infty}$ of eigenfunctions and denote o_{r} (resp. λ_{r}) the order (resp. the eigenvalue) of u_{r}. Assume that the following three conditions are satisfied:
(C 1) $\left(u_{r}\right)$ is a Riesz basis i.e. $\left(u_{r}\right)$ is the image of an orthonormal basis under a linear topological isomorphism of $L^{2}(G)$;
(C 2) sup $o_{r}<\infty$;
(C 3) if $o_{r} \geqq 1$ then $u_{r}^{*}=u_{s}$ for some index s.
By (C 1) there exists a unique system (v_{r}) in $L^{2}(G)$ such that $\left\langle u_{r}, v_{s}\right\rangle=\delta_{r s}$ (the Kronecker symbol). Introduce the following notations:

$$
\begin{gather*}
\left|v_{r}\right|=\max \left\{|\operatorname{Im} \mu|: \mu \in \mathbf{C} \text { and } \mu^{n}=\lambda_{r}\right\}, \tag{1}\\
\sigma_{v}(f, x)=\sum_{\left|v_{r}\right|<v}\left\langle f, v_{r}\right\rangle u_{r}(x) \quad\left(v>0, f \in L^{2}(G), x \in G\right), \\
S_{v}(f, x, R)=\int_{x-R}^{x+R} \frac{\sin v(y-x)}{\pi(y-x)} f(y) d y \quad\left(v>0, f \in L^{2}(G), x \pm R \in G\right) .
\end{gather*}
$$

The aim of this paper is to prove the following result:
Theorem. To any compact subinterval K of G there exists a number $R_{0}>0$ such that

$$
\lim _{v \rightarrow \infty} \sup _{x \in K}\left|S_{v}(f, x, R)-\sigma_{v}(f, x)\right|=0
$$

whenever $f \in L^{2}(G)$ and $0<R<R_{0}$.
Remarks. (i) We note that $S_{v}(f, x, R)$ does not depend on the system $\left(u_{r}\right)$.
(ii) The conditions of the theorem are very weak. The assumptions (C 1)(C 3) are practically satisfied for almost all known Riesz bases of eigenfunctions. We emphasize that there are no assumptions on the distribution of the eigenvalues λ_{r}. Several sufficient conditions are known for the existence of orthonormal bases of eigenfunctions (see e.g. [21]), and more generally, for the existence of Riesz bases of eigenfunctions (see [4], [11], [20]).
(iii) For second-order operators several equiconvergence theorems were proved from the beginning of this century, see e.g. [1], [2], [3], [5], [7], [8], [14], [19], [22]. These results are contained in a theorem of Joó and Komornik, proved in [10] by developing an important method of V. A. Il'in [2]. This result is also slightly
stronger than the case $n=2$ of the above theorem: instead of $q_{2} \in L_{\mathrm{loc}}^{2}(G)$ it was sufficient to assume that $q_{2} \in L_{\text {loc }}^{1}(G)$.
(iv) The proof of the just mentioned result of Joó and Komornik is not applicable for the general case. However, by integrating by parts we obtain the desired estimates also in this case. On the other hand, in [12] a new method (based on a suitable generalization of the well-known Titchmarsh formula) for the spectral investigation of n-order differential operators was developed. Using this method, several results were proved, see e.g. [12]-[18]. The present paper represents a new evidence for the efficiency of this method. Some special cases of the theorem of the present paper were proved in [15].

2. Preliminary results

A) We shall need the following estimate, which is a consequence of some results of [17], [18]: putting

$$
\begin{equation*}
\left|\varrho_{r}\right|=\min \left\{|\operatorname{Re} \mu|: \mu \in \mathbf{C} \text { and } \mu^{n}=\lambda_{r}\right\}, \tag{2}
\end{equation*}
$$

to any compact intervals $K_{1} \subset G, K_{2} \subset \operatorname{int} K_{1}$ there exists a positive constant ε_{0} such that

$$
\begin{equation*}
\left\|u_{\boldsymbol{r}}\right\|_{L^{\infty}\left(K_{2}\right)} e^{\left|e_{r}\right| \varepsilon_{0}} \leqq \frac{1}{\varepsilon_{0}}\left\|u_{r}\right\|_{L^{2}\left(K_{1}\right)} \quad(r=1,2, \ldots) . \tag{3}
\end{equation*}
$$

B) In [12] we derived a generalization of the well-known Titchmarsh formula for n-order operators; the results cited in A) were proved by the use of this formula. Now we need another generalization of the Titchmarsh formula.

Denote $\omega_{1}, \ldots, \omega_{n}$ the n-th roots of unity and set $m=\left[\frac{n+1}{2}\right]$. For $0 \neq \mu \in \mathbf{C}$, $t>0$ and $-m t<y<(n-m) t$ we denote by $f_{k}(\mu, t)$ the elementary symmetric polynomial of degree $m-k$ of the variables $e^{\mu \omega_{1} t}, \ldots, e^{\mu \omega_{n} t}$ with the main coefficient $(-1)^{k}(k=m-n, \ldots, m)$ and we put

$$
F(\mu, t, y)=\sum_{k=1+[-y / t]}^{m} f_{k}(\mu, t) \sum_{p=1}^{n} \frac{\omega_{p}}{n \mu^{n-1}} e^{\mu \omega_{p}(y+k t)} .
$$

One can easily see that f_{k} and F can be continuously extended for all $\mu \in \mathbf{C}, t \geqq 0$ and $-m t \leqq y \leqq(n-m) t$. Furthermore, the extended function F has the following properties for any fixed $\mu \in \mathbf{C}$ and $t>0$:
(4) $F(\mu, t, \cdot)$ is $n-2$ times continuously differentiable in $(-m t,(n-m) t)$ and

$$
D_{3}^{i} F(\mu, t,-m t+0)=D_{3}^{i} F(\mu, t,(n-m) t-0)=0 \quad(i=0, \ldots, n-2)
$$

(5) $F(\mu, t, \cdot)$ is n times continuously differentiable in $(k t,(k+1) t)$ and $D_{3}^{n} F=$ $=\mu^{n} F(-m \leqq k \leqq n-m-1)$.
(6)

$$
-D_{3}^{n-1} F(\mu, t,(n-m) t-0)=f_{m-n}(\mu, t)
$$

$$
D_{3}^{n-1} F(\mu, t,-k t+0)-D_{3}^{n-1} F(\mu, t,-k t-0)=f_{k}(\mu, t) \quad(m-n<k<m),
$$

$$
D_{3}^{n-1} F(\mu, t,-m t+0)=f_{m}(\mu, t) .
$$

Using these properties and integrating by parts we obtain for any $u \in H_{\mathrm{loc}}^{n}(G)$ the formula

$$
\begin{equation*}
\sum_{k=m-n}^{m} f_{k}(\mu, t) u(x+k t)+\int_{x+(m-n) t}^{x+m t} F(\mu, t, x-\tau)\left[\mu^{n} u(\tau)-u^{(n)}(\tau)\right] d \tau=0 \tag{7}
\end{equation*}
$$

whenever $t>0, x+(m-n) t \in G$ and $x+m t \in G$.
C) Apply the formula (7) to the eigenfunction u_{r}. Denoting by μ_{r} an arbitrary n-th root of λ_{r}, we obtain
(8)

$$
\sum_{k=m-n}^{m} f_{k}\left(u_{r}, t\right) u_{r}(x+k t)+\int_{x+(m-n) t}^{x+m t} F\left(\mu_{r}, t, x-\tau\right)\left[\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)-u_{r}^{*}(\tau)\right] d \tau=0
$$

whenever $t>0, x+(m-n) t \in G$ and $x+m t \in G$.
For $n=2$ and $o_{r}=0$ this reduces to the Titchmarsh formula. For $n=2$ and $o_{r} \neq 0$ it was found by Joó [6]. For $o_{r}=0, n$ arbitrary (then $u_{r}^{*} \equiv 0$) the formula (8) is a special case of a more general formula derived in [12]. We note that the above simple form of the coefficients f_{k} (which has great importance to obtain some estimates in the sequel) was proved by Joó [9].

We shall frequently use two equivalent forms of the formula (8). Index the n-th roots of λ_{r} so that

$$
\operatorname{Re} \mu_{r, 1} \geqq \ldots \geqq \operatorname{Re} \mu_{r, n}
$$

and put $\mu_{r}=\mu_{r, m}, \varrho_{r}=\operatorname{Re} \mu_{r}, v_{r}=\operatorname{Im} \mu_{r}$. These notations are consistent with the former ones used in (1), (2), (3) and (8). Denote $g_{k}\left(\mu_{r}, t\right)$ and $G\left(\mu_{r}, t, y\right)$ (resp. $h_{k}\left(\mu_{r}, t\right)$ and $H\left(\mu_{r}, t, y\right)$) the functions obtained from $f_{k}\left(\mu_{r}, t\right)$ and $F\left(\mu_{r}, t, y\right)$ by dividing by $e^{\left(\mu_{r, 1}+\ldots+\mu_{r, m-1}\right) t}$ (resp. $e^{\left(\mu_{r, 1}+\ldots+\mu_{r, m}\right) t}$). Then from (8) we obtain the following two formulas:
(9)

$$
\sum_{k=m-n}^{m} g_{k}\left(\mu_{r}, t\right) u_{r}(x+k t)+\int_{x+(m-n) t}^{x+m t} G\left(\mu_{r}, t, x-\tau\right)\left[\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)-u_{r}^{*}(\tau)\right] d \tau=0,
$$

$$
\begin{equation*}
\sum_{k=m-n}^{m} h_{k}\left(\mu_{r}, t\right) u_{r}(x+k t)+\int_{x+(m-n) t}^{x+m t} H\left(\mu_{r}, t, x-\tau\right)\left[\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)-u_{r}^{*}(\tau)\right] d \tau=0 . \tag{10}
\end{equation*}
$$

D) It follows obviously from (4) that

$$
\begin{equation*}
D_{3}^{i} G\left(\mu_{r}, t,-m t+0\right)=D_{3}^{i} G\left(\mu_{r}, t,(n-m) t-0\right)=0, \tag{11}
\end{equation*}
$$

$$
D_{3}^{i} H\left(\mu_{r}, t,-m t+0\right)=D_{3}^{i} H\left(\mu_{r}, t,(n-m) t-0\right)=0 \quad(0 \leqq i \leqq n-2, r=1,2, \ldots) .
$$

The following estimates follow directly from the definition of the coefficients in the formulas (8), (9), (10); we refer to [15] and [17] for some details. In all these
estimates we assume that. $\varrho_{r} \geqq 0$ and $t>0$.
(12) $g_{k}\left(\mu_{r}, t\right), h_{k}\left(\mu_{r}, t\right), D_{2} g_{k}\left(\mu_{r}, t\right)$ and $D_{2} h_{k}\left(\mu_{r}, t\right)$ tend to 0 if $|k| \geqslant 2$ and $\left|\mu_{r}, t\right| \rightarrow \infty$.
(13) $g_{1}\left(\mu_{r}, t\right)$ and $g_{-1}\left(\mu_{r}, t\right)$ remain bounded, $D_{2} g_{1}\left(\mu_{r}, t\right), D_{2} g_{-1}\left(\mu_{r}, t\right)$ and $g_{0}\left(\mu_{r}, t\right)-e^{\mu_{r} t}$ tend to 0 if $\varrho_{r} t \rightarrow \infty$ and $\frac{\left|v_{r}\right|}{\varrho_{r}} \rightarrow \infty$.
(14) $h_{1}\left(\mu_{r}, t\right), h_{-1}\left(\mu_{r}, t\right), D_{2} h_{1}\left(\mu_{r}, t\right), D_{2} h_{-1}\left(\mu_{r}, t\right)$ and $h_{0}\left(\mu_{r}, t\right)-1$ tend to 0 if $\varrho_{r} t \rightarrow \infty$ and $\frac{\left|v_{r}\right|}{\varrho_{r}}$ remains bounded.
(15) $g_{-1}\left(\mu_{r}, t\right), g_{1}\left(\mu_{r}, t\right)$ and $h_{-1}\left(\mu_{r}, t\right)$ remain bounded, $D_{2} g_{-1}\left(\mu_{r}, t\right), D_{2} g_{1}\left(\mu_{r}, t\right)$, $g_{1}\left(\mu_{r}, t\right)+1$, for n odd $D_{2} h_{-1}\left(\mu_{r}, t\right)$ and $h_{0}\left(\mu_{r}, t\right)-1$, for n even $g_{-1}\left(\mu_{r}, t\right)+1$ tend to 0 if $\left|v_{r} t\right| \rightarrow \infty$ and $\varrho_{r} t$ remains bounded.
(16) For any real number v the fractions

$$
\frac{g_{0}\left(\mu_{r}, t\right)-g_{0}(i v, t)}{t} \text { and } \frac{h_{1}\left(\mu_{r}, t\right)-h_{1}(i v, t)}{t}
$$

remain bounded (uniformly in v) if $\varrho_{r} t$ and $\left|\mu_{r}-i v\right|$ remain bounded.

$$
\begin{equation*}
\frac{D_{3}^{i} G\left(\mu_{r}, t, y\right)}{\left|\mu_{r}\right|^{i+1-n} e^{\ell_{r}(t-|y|)}} \quad \text { and } \quad \frac{D_{3}^{i} H\left(\mu_{r}, t, y\right)}{\left|\mu_{r}\right|^{i+1-n} e^{-\varrho_{r}|y|}} \tag{17}
\end{equation*}
$$

are uniformly bounded $(i=0, \ldots, n-1, r=1,2, \ldots)$.
E) It follows from Theorem 2 in [12] that for any compact subinterval K of G there exists a constant $C>0$ such that

$$
\left\|u_{r}^{\prime}\right\|_{L^{\infty}(K)} \leqq C\left(1+\left|\mu_{r}\right|\right)\left\|u_{r}\right\|_{L^{\infty}(K)} \quad(r=1,2, \ldots) .
$$

F) Finally we recall two important properties of the Riesz bases: the generalized Bessel inequality and the generalized Parseval identity. First, there exists a constant C such that

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left|\left\langle u_{r}, w\right\rangle\right|^{2} \leqq C\|w\|_{L^{2}(G)}^{2} \quad \forall w \in L^{2}(G) \tag{18}
\end{equation*}
$$

secondly,

$$
\begin{equation*}
\langle f, w\rangle=\sum_{r=1}^{\infty}\left\langle f, v_{r}\right\rangle\left\langle u_{r}, w\right\rangle \quad \forall f, w \in L^{2}(G) . \tag{19}
\end{equation*}
$$

3. Estimation of the sum of squares of the eigenfunctions

In this section, under the conditions of the Theorem we shall prove the following strong estimate:

Proposition. To any compact subinterval K of G there exists a positive number ε such that

$$
\sup _{v \geqq 1} \sum_{\left|v-\left|v_{r}\right| \leqq \leqq\right.}\left\|u_{r}\right\|_{L^{\infty}(K)}^{2} e^{\left|\varrho_{r}\right| \varepsilon}<\infty .
$$

This result will follow from several lemmas.

Lemma 1.

$$
\sup _{v \geqq 1} \sum_{\substack{\mid v-v_{r} \leqq 1 \\ v_{r} \geq \ell_{r} \\ Q_{r} \geqq A}}\left(\frac{\left\|u_{r}\right\|_{L^{2}(K)}}{\varrho_{r}}\right)^{2}=O(1) \quad(A \rightarrow \infty) .
$$

Proof. Fix $R>0$ such that $K_{2 n R} \subset G$ where $K_{\delta}:=\{x: \operatorname{dist}(x, K) \leqq \delta\}$. For any $v \geqq 1, x \in K, R \leqq t \leqq 2 R$ and $r \in I_{v}(A):=\left\{r:\left|v-v_{r}\right| \leqq 1, v_{r} \geqq A \varrho_{r}, v_{r} \geqq A\right\}$, by the application of (9) we obtain

$$
\begin{aligned}
& -\int_{\mathbb{R}}^{2 R} e^{-i v t} g_{0}\left(\mu_{r}, t\right) d t u_{r}(x)=\sum_{\substack{m-n \leq k \leq m \\
k \neq 0}} \int_{R}^{2 R} e^{-i v t} g_{k}\left(\mu_{r}, t\right) u_{r}(x+k t) d t- \\
& \quad-\int_{R}^{2 R} e^{-i v t} \int_{x+(m-n) t}^{x+m t} G\left(\mu_{r}, t, x-\tau\right)\left[u_{r}^{*}(\tau)-\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)\right] d \tau d t .
\end{aligned}
$$

Integrating by parts and using (11) hence we obtain

$$
\begin{gathered}
-\int_{R}^{2 R} e^{-i v t} g_{0}\left(\mu_{r}, t\right) d t u_{r}(x)=\sum_{\substack{m-n \leq k \leqq m \\
k \neq 0}} g_{k}\left(\mu_{r}, 2 R\right) \int_{R}^{2 R} e^{-i v t} u_{r}(x+k t) d t- \\
\sum_{m-n \leq k \leqq m}^{k \neq 0} \int_{R} D_{2} g_{k}\left(\mu_{r}, t\right) \int_{R}^{t} e^{-i v t} u_{r}(x+k \xi) d \xi d t+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\binom{n-s}{i} \int_{R}^{2 R} e^{-i v t} \int_{x+(m-n) t}^{x+m t} D_{3}^{n-s-i+1} G\left(\mu_{r}, t, x-\tau\right) . \\
\cdot \int_{x+(m-n) t}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t- \\
\quad-\int_{R}^{2 R} e^{-i v t} \int_{x+(m-n) t}^{x+m t} D_{3} G\left(\mu_{r}, t, x-\tau\right) \int_{x+(m-n) t}^{\tau} u_{r}^{*}(\xi) d \xi d \tau d t .
\end{gathered}
$$

The following estimates will be uniform in v, x, r, t, τ when $A \rightarrow \infty$. Using the estimates (12), (13), (17), with suitably defined functions $w_{1}, w_{2}, w_{3}, w_{4} \in L^{2}(G)$ (which
depend also on $v, x, t, \tau, k, s, i)$ we obtain

$$
\begin{aligned}
& (1-o(1))\left|\frac{u_{r}(x)}{\varrho_{r}}\right| \leqq \sum_{\substack{m-n \leq k \leqq m \\
k \neq 0}} O(1)\left|\left\langle w_{1}, u_{r}\right\rangle\right|+\sum_{m-n \equiv k \leqq m} \int_{\substack{n \neq 0}}^{2 R} O(1)\left|\left\langle w_{2}, u_{r}\right\rangle\right| d t+ \\
& +\sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left|\left\langle w_{3}, u_{r}\right\rangle\right| d \tau d t+\int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left|\left\langle w_{4}, u_{r}^{*}\right\rangle\right| d \tau d t .
\end{aligned}
$$

Taking the square of this inequality, summarizing for $r \in I_{v}(A)$, using (18) and (C 3) we obtain

$$
\begin{aligned}
& \sum_{r \in I_{v}(A)}\left|\frac{u_{r}(x)}{\varrho_{r}}\right|^{2} \leqq \sum_{\substack{m \lessgtr k \leqq m \\
k \neq 0}} O(1)\left\|w_{1}\right\|_{L^{2}(G)}^{2}+\sum_{\substack{m-n \lessgtr k \leqq m \\
k \neq 0}} \int_{R}^{2 R} O(1)\left\|w_{2}\right\|_{L^{2}(G)}^{2} d t+ \\
+ & \sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left\|w_{3}\right\|_{L^{2}(G)}^{2} d \tau d t+\int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left\|w_{4}\right\|_{L^{2}(G)}^{2} d \tau d t .
\end{aligned}
$$

Furthermore, one can easily see that $\left\|w_{i}\right\|_{L^{2}(G)}^{2}=O(1), i=1,2,3,4$, therefore

$$
\sum_{r \in I_{v}(A)}\left|\frac{u_{r}(x)}{\varrho_{r}}\right|^{2}=O(1)
$$

Integrating on K, we obtain the required estimate.
Lemma 2.

$$
\sup _{v \geqq 1} \sum_{\substack{\left.v_{v}+v_{r}\right]_{1} \leq 1 \\ v_{r} \leq A_{r} \\ \ell_{r} \equiv A}}\left(\frac{\left\|u_{r}\right\|_{L^{2}(K)}}{\varrho_{r}}\right)^{2}=O(1) \quad(A \rightarrow \infty) .
$$

Proof. Quite similar to that of Lemma 1, replacing $e^{-i v t}$ by $e^{i v t}$.
Lemma 3. For any fixed $A>0$ we have

$$
\sum_{\substack{\mid v_{r}<\lambda_{r} \geq A_{r} \\ u_{r}}}\left\|u_{r}\right\|_{L^{2}(K)}^{2}=O(1) \quad(B \rightarrow \infty) .
$$

Proof. Fix $R>0$ such that $K_{2 n R} \subset G$. For any $x \in K, R \leqq t \leqq 2 R$, $r \in I(B):=\left\{r:\left|v_{r}\right|<A \varrho_{r}, \varrho_{r} \geqq B\right\}$, applying now (10), integrating by parts and using (11), we obtain

$$
\begin{gathered}
-\int_{R}^{2 R} h_{0}\left(\mu_{r}, t\right) d t u_{r}(x)=\sum_{\substack{m-n \leq k \cong m \\
k \neq 0}} h_{k}\left(\mu_{r}, 2 R\right) \int_{R}^{2 R} u_{r}(x+k t) d t- \\
-\sum_{\substack{m-n \leq k \leqq m \\
k \neq 0}} \int_{R}^{2 R} D_{2} h_{k}\left(\mu_{r}, t\right) \int_{R}^{t} u_{r}(x+k \xi) d \xi d t+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\left(\begin{array}{c}
n-s \\
i
\end{array} \int_{R}^{2 R} \int_{x+(m-n) t}^{x+m r} D_{3}^{n-s-i+1} H\left(\mu_{r}, t, x-\tau\right) \int_{x+(m-n) t}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t-\right. \\
\\
-\int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} D_{3} H\left(\mu_{r}, t, x-\tau\right) \int_{x+(m-n) t}^{\tau} u_{r}^{*}(\xi) d \xi d \tau d t .
\end{gathered}
$$

The following estimates will be uniform in x, r, t, τ when $B \rightarrow \infty$. Using the estimates (12), (14), (17) with suitably defined functions $w_{5}, w_{6}, w_{7}, w_{8} \in L^{2}(G)$ (having also the parameters x, t, τ, k, s, i) we obtain

$$
\begin{aligned}
& (1-o(1))\left|u_{r}(x)\right| \leqq \sum_{\substack{m \leq k \leqq m \\
k \neq 0}} O(1)\left|\left\langle w_{5}, u_{r}\right\rangle\right|+\sum_{\substack{m-n \leq k \leq m \\
k \neq 0}} \int_{R}^{2 R} O(1)\left|\left\langle w_{6}, u_{r}\right\rangle\right| d t+ \\
& +\sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left|\left\langle w_{7}, u_{r}\right\rangle\right| d \tau d t+\int_{R}^{2 R} \int_{x+(m-n) t}^{x+m t} O(1)\left|\left\langle w_{8}, u_{r}^{*}\right\rangle\right| d \tau d t .
\end{aligned}
$$

Furthermore we have $\left\|w_{i}\right\|_{L^{2}(G)}^{2}=O(1), i=5,6,7,8$ and the proof can be finished by the same way as in Lemma 1.

Lemma 4. For any fixed $B>0$ we have

$$
\sup _{\substack{v \geqq 1 \\ v \geq 1}} \sum_{\substack{v \in v_{r} \leq 1 \\ 0 \leq v_{r}<B \\ v_{r} \geq D}}\left\|u_{r}\right\|_{L^{2}(K)}^{2}=O(1) \quad(D \rightarrow \infty)
$$

Proof. Fix $0<R_{0}<\frac{|K|}{4}$ such that $K_{4 n R_{0}} \subset G \quad(|K|$ denotes the length of $K)$. We will show that for any fixed $0<R<R_{0}$ we have the estimate

$$
\begin{equation*}
\sum_{r \in I}\left|u_{r}(y)\right|^{2} \leqq C(1+o(1)) R \sum_{r \in \boldsymbol{I}}\left\|u_{r}\right\|_{L^{2}(K)}^{2}+O(1) \tag{20}
\end{equation*}
$$

$(D \rightarrow \infty)$ uniformly in $v \geqq 1, y \in K$ and uniformly for any finite subset I of

$$
J_{v}(D):=\left\{r:\left|v-v_{r}\right| \leqq 1,0 \leqq \varrho_{r}<B, v_{r} \geqq D\right\}
$$

(C is an absolute constant). Hence the lemma will follow easily. Indeed, integrating on K we obtain

$$
\sum_{r \in I}\left\|u_{r}\right\|_{L^{2}(K)}^{2} \leqq C|K|(1+o(1)) R \sum_{r \in I}\left\|u_{r}\right\|_{L^{2}(K)}^{2}+O(1)
$$

Choose at the beginning of the proof R so small that $C|K| R<\frac{1}{2}$. Then, being all the terms finite by the choice of I,

$$
\sum_{r \in \boldsymbol{I}}\left\|u_{r}\right\|_{L^{2}(K)}^{2}=O(1)
$$

and, being $I \subset J_{v}(D)$ arbitrary,

$$
\sum_{r \in J_{v}(D)}\left\|u_{r}\right\|_{L^{2}(K)}^{2}=O(1)
$$

as stated in the lemma.
Denote c the centre of K. We prove (20) differently in the following three cases: a) $y \geqq c$, b) $y \leqq c$ and n is even, c) $y \leqq c$ and n is odd.
a) Applying (10) with $x=y-t$ we obtain

$$
\begin{aligned}
& \quad-\int_{R}^{2 R} g_{1}\left(\mu_{r}, t\right) d t u_{r}(y)=\int_{R}^{2 R}\left(g_{0}\left(u_{r}, t\right)-g_{0}(i v, t)\right) u_{r}(y-t) d t+ \\
& +\int_{R}^{2 R} g_{0}(i v, t) u_{r}(y-t) d t+\sum_{m-n \equiv k \equiv m} g_{k}\left(\mu_{r}, 2 R\right) \int_{R}^{2 R} u_{r}(y-t+k t) d t- \\
& \quad-\sum_{m-n \leq k \leq m}^{k \neq 0,1} \int_{R}^{2 R} D_{2} g_{k}\left(\mu_{r}, t\right) \int_{R}^{t} u_{r}(y-\xi+k \xi) d \xi d t+ \\
& +\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\left(\begin{array}{c}
n-s \\
i
\end{array} \int_{R}^{2 R} \int_{y-t+(m-n) t}^{y-t+m t} D_{3}^{n-s-i+1} G\left(\mu_{r}, t, y-t-\tau\right) .\right. \\
& \cdot \int_{y-t+(m-n) t}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t- \\
& \quad-\int_{R}^{2 R} \int_{y-t+(m-n) t}^{y-t+m t} D_{3} G\left(\mu_{r}, t, y-t-\tau\right) \int_{y-t+(m-n) t}^{\tau} u_{r}^{*}(\xi) d \xi d \tau d t .
\end{aligned}
$$

The following estimates are uniform in v, y, r, t, τ when $D \rightarrow \infty$. Introducing the functions $w_{9}, \ldots, w_{13} \in L^{2}(G)$ (depending also on the parameters v, y, τ, t, k, s, i) in a suitable way, by (12), (15), (16) and (17) we have

$$
\begin{gathered}
(R-o(1))\left|u_{r}(y)\right| \leqq C R^{3 / 2}\left\|u_{r}\right\|_{L^{2}(K)}+\left|\left\langle w_{9}, u_{r}\right\rangle\right|+ \\
+\sum_{\substack{m-n \leq k \leqq m \\
k \neq 0,1}} O(1)\left|\left\langle w_{10}, u_{r}\right\rangle\right|+\sum_{\substack{m-n \leq k \leq m \\
k \neq 0,1}} \int_{R}^{2 R} O(1)\left|\left\langle w_{11}, u_{r}\right\rangle\right| d t+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{R}^{2 R} \int_{y-t+(m-n) t}^{y-t+m t} O(1)\left|\left\langle w_{12}, u_{r}\right\rangle\right| d \tau d t+\int_{R}^{2 R} \int_{y-t+(m-n) t}^{y-t+m t} O(1)\left|\left\langle w_{13}, u_{r}^{*}\right\rangle\right| d \tau d t
\end{gathered}
$$

Taking the square of both sides, summarizing for $r \in I$, taking into account that $\left\|w_{i}\right\|_{L^{2}(G)}=O(1), i=9, \ldots, 13$ and using (18) we obtain (20).
b) Applying (10) with $x=y+t$ we obtain almost the same formula as in the preceding case, with the following changes:

- $y-t$ is replaced by $y+t$ everywhere,
- instead of $g_{1}\left(\mu_{r}, t\right), g_{-1}\left(\mu_{r}, t\right)$ is placed on the left hand side.
(20) may be derived exactly by the same manner as before because $g_{-1}\left(\mu_{r}, t\right)=$ $=-1+o(1)$ by (15) (this does not remain true if n is odd).
c) We apply now (11):

$$
\begin{aligned}
& -\int_{R}^{2 R} h_{0}\left(\mu_{r}, t\right) d t u_{r}(y)=\int_{R}^{2 R}\left(h_{1}\left(\mu_{r}, t\right)-h_{1}(i v, t)\right) u_{r}(y+t) d t+ \\
& +\int_{R}^{2 R} h_{1}(i v, t) u_{r}(y+t) d t+\sum_{\substack{n \leq k \leq m \\
k \neq 0,1}} h_{k}\left(\mu_{r}, 2 R\right) \int_{R}^{2 R} u_{r}(y+k t) d t- \\
& -\sum_{\substack{m-n \leq k \leq m_{R} \\
k \neq 0,1}} \int_{R}^{2 R} D_{2} h_{k}\left(\mu_{r}, t\right) \int_{R}^{t} u_{r}(y+k \xi) d \xi d t+ \\
& +\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\binom{n-s}{i} \int_{R}^{2 R} \int_{y+(m-n) t}^{y+m t} D_{3}^{n-s-i+1} H\left(\mu_{r}, t, y-\tau\right) . \\
& \cdot \int_{y+(m-n) t}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t- \\
& -\int_{R}^{2 R} \int_{y+(m-n) t}^{y+m t} D_{3} H\left(\mu_{r}, t, y-\tau\right) \int_{y+(m-n) t}^{\tau} u_{r}^{*}(\xi) d \xi d \tau d t .
\end{aligned}
$$

Using (12), (15), (16) and (17), with obvious notation we obtain

$$
\begin{gathered}
(R-o(1))\left|u_{r}(y)\right| \leqq C R^{3 / 2}\left\|u_{r}\right\|_{L^{2}(K)}+\left|\left\langle w_{14}, u_{r}\right\rangle\right|+ \\
+\sum_{m \leq m \leq m}^{m \neq 0,1} O(1)\left|\left\langle w_{15}, u_{r}\right\rangle\right|+\sum_{\substack{m-n \leq \leqslant \leq m \\
k \neq 0,1}} \int_{R} O(1)\left|\left\langle w_{16}, u_{r}\right\rangle\right| d t+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{R}^{2 R} \int_{y+(m-n) t}^{v+m t} O(1)\left|\left\langle w_{17}, u_{r}\right\rangle\right| d \tau d t+\int_{R}^{2 R} \int_{y+(m-n) t}^{y+m t} O(1)\left|\left\langle w_{18}, u_{r}^{*}\right\rangle\right| d \tau d t .
\end{gathered}
$$

Furthermore $\left\|w_{i}\right\|_{L^{2}(G)}=O(1), i=14, \ldots, 18$ and (20) can be obtained as in Part a).

Lemma 5. For any fixed $B>0$ we have

Proof. It is quite similar to that of Lemma 4, replacing in the formulas the term $g_{0}(i v, t)$ (resp. $\left.h_{1}(i v, t)\right)$ by $g_{0}(-i v, t)$ (resp. $\left.h_{1}(-i v, t)\right)$.

Lemma 6. For any fixed $B, D>0$ we have

$$
\sum_{\left|\begin{array}{l}
e_{r} r
\end{array}<\boldsymbol{v _ { r }}\right|<\boldsymbol{D}}\left\|u_{r}\right\|_{L^{2}(K)}^{2}<\infty .
$$

Proof. We will show the existence of a constant C such that

$$
\begin{equation*}
R^{2} \sum_{r \in I}\left|u_{r}(y)\right|^{2} \leqq C R^{3} \sum_{r \in I}\left\|u_{r}\right\|_{L^{2}(K)}^{2}+C \tag{21}
\end{equation*}
$$

for any $y \in K, 0<R<\frac{|K|}{2 n}$ and for any finite subset I of $J:=\left\{r:\left|\varrho_{r}\right|<B,\left|v_{r}\right|<\boldsymbol{D}\right\}$. Indeed, then choosing R such that $C R|K| \leqq \frac{1}{2}$, integrating on K and taking into account that I (and therefore $\sum_{r \in I}\left\|u_{r}\right\|_{L^{2}(K)}^{2}$) is finite, we obtain

$$
\sum_{r \in I}\left\|u_{r}\right\|_{L^{2}(K)}^{2} \leqq \frac{2 C|K|}{R^{2}}
$$

uniformly in I; hence the lemma follows.
Denote again c the centre of K. To prove (21), we distinguish three cases: a) $y \geqq c$, b) $y \leqq c$ and $n \geqq 2$, c) $y \leqq c$ and $n=1$.

$$
\begin{aligned}
& \text { a) Apply (8) with } x=y-m t, 0<t<R \text {, then we obtain } \\
& -\int_{0}^{R} f_{m}\left(\mu_{r}, t\right) d t u_{r}(y)=\sum_{k=m-n_{0}}^{m-1} \int^{R}\left(f_{k}\left(\mu_{r}, t\right)-f_{k}(0,0)\right) u_{r}(y-m t+k t) d t+ \\
& \quad+\sum_{k=m-n}^{m-1} \int_{0}^{R} f_{k}(0,0) u_{r}(y-m t+k t) d t+ \\
& +\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\left(\begin{array}{c}
n-s \\
i
\end{array} \int_{0}^{1 R} \int_{y-n t}^{y} D_{3}^{n-s-i+1} F\left(\mu_{r}, t, y-\tau\right) \int_{y-n t}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t-\right. \\
& \quad-\int_{0}^{R} \int_{y-n t}^{y} D_{3} F\left(\mu_{r}, t, y-\tau\right) \int_{y-n t}^{s} u_{r}^{*}(\xi) d \xi d \tau d t
\end{aligned}
$$

Being f_{k}, F smooth the functions

$$
\frac{f_{k}\left(\mu_{r}, t\right)-f_{k}(0,0)}{t} \quad \text { and } \quad D_{3}^{n-s-i+1} F\left(\mu_{r}, t, y-\tau\right)
$$

are bounded for $\left|\varrho_{r}\right|<B, \quad\left|v_{r}\right|<D, 0<t<R$ and $y-n t<\tau<y$. Furthermore, $\left|f_{m}\left(\mu_{r}, t\right)\right| \equiv 1$. Therefore, introducing the functions (depending on the parameters $y, \tau, k, s, i) w_{19}, w_{20}, w_{21} \in L^{2}(G)$ in a suitable way, we obtain the estimates

$$
\begin{gathered}
R\left|u_{r}(y)\right| \leqq C_{1} R^{3 / 2}\left\|u_{r}\right\|_{L^{2}(K)}+\sum_{k=m-n}^{m-1}\left|\left\langle w_{19}, u_{r}\right\rangle\right|+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s} \int_{0}^{R} \int_{y-n t}^{y} C_{1}\left|\left\langle w_{20}, u_{r}\right\rangle\right| d \tau d t+\int_{0}^{R} \int_{y-n t}^{y} C_{1}\left|\left\langle w_{21}, u_{r}^{*}\right\rangle\right| d \tau d t
\end{gathered}
$$

and $\left\|w_{i}\right\|_{L^{2}(G)} \leqq C_{1}, i=19,20,21$ for some constant C_{1}. Hence (21) follows by the usual way.
b) Apply now (8) with $x=y+(n-m) t, 0<t<R$, then

$$
\begin{gathered}
\left.-\int_{0}^{R} f_{m-n}\left(\mu_{r}, t\right) d t u_{r}(y)=\sum_{k=m-n+1}^{m} \int_{0}^{R}\left(f_{k}\left(\mu_{r}, t\right)-f_{k}(0,0)\right) u_{r}(y+(n-m) t+k t)\right) d t+ \\
+\sum_{k=m-n+1}^{m} \int_{0}^{R} f_{k}(0,0) u_{r}(y+(n-m) t+k t) d t+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\binom{n-s}{i} \int_{0}^{R} \int_{y}^{y+n t} D_{3}^{n-s-i+1} F\left(\mu_{r}, t, y+n t-\tau\right) \int_{y}^{\tau} q_{s}^{(i)}(\xi) u_{r}(\xi) d \xi d \tau d t- \\
-\int_{0}^{R} \int_{y}^{y+n t} D_{3} F\left(\mu_{r}, t, y+n t-\tau\right) \int_{y}^{\tau} u_{r}^{*}(\xi) d \xi d \tau d t .
\end{gathered}
$$

Hence one can proceed as in the preceding case because $n \geqq 2$ implies also $\left|f_{m-n}\left(\mu_{r}, t\right)\right| \equiv 1$.
c) This case can be treated quite similarly to the case b), with a sole change: before the estimations we divide the formula written just above by $e^{\mu r_{r} t}$. Then

$$
\left|\frac{f_{m-n}\left(\mu_{r}, t\right)}{e^{\mu_{r} t}}\right| \equiv 1
$$

and the usual procedure works.
Proof of the Proposition. It follows from Lemmas $1-6$ that

$$
\sup _{v \geqq 1} \sum_{\left|v-\left|v_{r}\right|\right| \leqq 1}^{\varrho_{r} \geq 0} \left\lvert\, ~\left(\frac{\left\|u_{r}\right\|_{L^{2}(K)}}{1+\varrho_{r}}\right)^{2}<\infty .\right.
$$

If n is even then the condition $\varrho_{r} \geqslant 0$ is always satisfied. If n is odd then we have also

$$
\sup _{v \geqq 1} \sum_{\substack{\left|v-\left|v_{r}\right| \leqq \leq 1 \\ Q_{r} \geqq 0\right.}}\left(\frac{\left\|u_{r}\right\|_{L^{2}(K)}}{1-\varrho_{r}}\right)^{2}<\infty
$$

by a reflection principle described in the introduction of [17]. Therefore we have in both cases

$$
\sup _{v \geqq 1} \sum_{|v-| v_{r} \| \geqq 1}\left(\frac{\left\|u_{r}\right\|_{L^{2}\left(K_{1}\right)}}{1+\left|\varrho_{r}\right|}\right)^{2}<\infty
$$

for any compact subinterval K_{1} of G. Applying (2) (choose $K_{2}=K$) hence we obtain the proposition (with $\varepsilon=\frac{\varepsilon_{0}}{2}$ for example).

4. Proof of the Theorem

The idea of the proof is the following. Putting

$$
\delta\left(v,\left|v_{r}\right|\right)=\left\{\begin{aligned}
1 & \text { if } \quad v>\left|v_{r}\right| \\
\frac{1}{2} & \text { if } \quad v=\left|v_{r}\right| \\
0 & \text { if } \quad v<\left|v_{r}\right|
\end{aligned}\right.
$$

and

$$
w(x+t)= \begin{cases}\frac{\sin v t}{\pi t} & \text { if }|t|<R \\ 0 & \text { otherwise }\end{cases}
$$

by the application of the proposition proved in the preceding section we will show that for any compact subset K of G

$$
\begin{equation*}
\sup _{v>0} \sup _{x \in K} \sum_{r=1}^{\infty}\left|\left\langle u_{r}, w\right\rangle-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right|^{2}<\infty \tag{22}
\end{equation*}
$$

whenever R is sufficiently small ($w \in L^{2}(G)$ depends on the parameters v and R). Taking into account that

$$
\begin{gathered}
S_{v}(f, x, R)=\langle f, w\rangle=\sum_{r=1}^{\infty}\left\langle f, v_{r}\right\rangle\left\langle u_{r}, w\right\rangle \\
\sigma_{v}(f, x)=\sum_{r=1}^{\infty}\left\langle f, v_{r}\right\rangle \delta\left(v,\left|v_{r}\right|\right) u_{r}(x)-\frac{1}{2} \sum_{\left|v_{r}\right|=v}\left\langle f, v_{r}\right\rangle u_{r}(x),
\end{gathered}
$$

applying the Cauchy-Schwarz inequality, (22) and the proposition again, we obtain

$$
\sup _{v>0} \sup _{x \in K}\left|S_{v}(f, x, R)-\sigma_{v}(f, x)\right| \leqq C\|f\|_{L^{2}(G)} \quad\left(\forall f \in L^{2}(G)\right)
$$

with some constant C independent of f. Now it suffices to show that

$$
\lim _{v \rightarrow \infty} \sup _{x \in K}\left|S_{v}(f, x, R)-\sigma_{v}(f, x)\right|=0
$$

for any f from a dense subset of $L^{2}(G)$. But this last property is satisfied for any finite linear combination f of the eigenfunctions u_{r} because then f is continuously differentiable and $\sigma_{v}(f, x) \equiv f(x)$ for v sufficiently large, therefore one can apply a classical result of the theory of Fourier series (see [24], Volume 1, p. 55).

The rest of this section is devoted to the proof of the estimate (22). In the sequel we shall consider only the case $n>1$ because the case $n=1$ (then $L u=u^{\prime}$) can be easily led to the case $n=2\left(L u=u^{\prime \prime}\right)$.

Lemma 7. We have $\left|\frac{1}{R} \int_{R}^{2 R} e^{\mu t} d t\right| \rightarrow 0$ if $\mu \in \mathbf{C}, \operatorname{Re} \mu \leqq 0, R>0$ and $|\mu R| \rightarrow \infty$.

Proof. It suffices to show that

$$
\left|\frac{1}{R} \int_{R}^{2 R} e^{\mu t} d t\right| \leqq e^{R e \mu R} \min \left\{1, \frac{4}{|\operatorname{Im} \mu R|}\right\}
$$

For this, first we note that obviously

$$
\left|\frac{1}{R} \int_{R}^{2 R} e^{\mu t} d t\right| \leqq e^{\operatorname{Re} \mu R} .
$$

On the other hand, applying the theorem of Bonnet, there exist $R \leqq R_{1}$, $R_{2} \leqq 2 R$ such that

$$
\begin{aligned}
& \quad\left|\frac{1}{R} \int_{R}^{2 R} e^{\mu t} d t\right| \leqq\left|\frac{1}{R} \int_{R}^{2 R} e^{\mathrm{Re} \mu t} \cos \operatorname{Im} \mu t d t\right|+ \\
& +\left|\frac{1}{R} \int_{R}^{2 R} e^{\mathrm{Re} \mu t} \sin \operatorname{Im} \mu t d t\right|=\left|\frac{1}{R} e^{\mathrm{Re} \mu R} \int_{R}^{R_{1}} \cos \operatorname{Im} \mu t d t\right|+ \\
& \quad+\left|\frac{1}{R} e^{\mathrm{Re} \mu R} \int_{R}^{R_{1}} \sin \operatorname{Im} \mu t d t\right| \leqq \frac{4}{|\operatorname{Im} \mu R|} e^{\mathrm{Re} \mu R}
\end{aligned}
$$

Lemma 8. For any compact intervals $K_{1} \subset G, K \subset \operatorname{int} K_{1}$ there exists $R_{0}>0$ such that for any fixed $0<R<R_{0}$

$$
\begin{gathered}
\sup _{x \in K} \int_{0}^{R}\left|\frac{u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \ddot{\mu}_{r} t}{t}\right| d t \leqq \\
\leqq C \frac{\ln \left|\mu_{r}\right|}{\left|\mu_{r}\right|}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{1}\right)}\right)
\end{gathered}
$$

whenever $\left|\mu_{r}\right|$ is sufficiently targe.
Proof. We shall use the notations of Section 2. We shall assume that $\varrho_{r} \geqq 0$. The case $\varrho_{r}<0$ hence can be obtained by the reflection principle mentioned at the end of Section 3.

Putting

$$
v_{r}(y)=u_{r}(y)+\int_{x}^{y} \sum_{p=1}^{n} \frac{\omega_{p}}{n \mu_{r}^{n-1}} e^{\mu_{r} \omega_{p}(y-\tau)}\left(\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)-u_{r}^{*}(\tau)\right) d \tau
$$

one can readily verify that $v_{r} \in H_{\text {loc }}^{n}(G)$ and $v_{r}^{(n)}=\mu_{r}^{n} v_{r}$. Consequently v_{r} is a linear combination of the functions $e^{\mu_{r} \omega_{1}(y-x)}, \ldots, e^{\mu_{r} \omega_{n}(y-x)}$. By (3) we can fix $R_{0}>0$ such that $K_{4 n R_{0}} \subset K_{1}$ and

$$
\begin{equation*}
\left\|u_{r}\right\|_{L^{\infty}\left(K_{\left.4 n R_{0}\right)}\right.} e^{2 \varrho_{r} R_{0}} \leqq C\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)} \quad(r=1,2, \ldots) . \tag{23}
\end{equation*}
$$

We shall distinguish two cases: a) n is odd and $n>1$ i.e. $n=2 m-1, m \geqq 2$. b) n is even i.e. $n=2 m, m \geqq 1$.
a) For any $x \in K, 0<S<2 R_{0}$ and $0<t<S$ the determinant

$$
\left|\begin{array}{cccc}
v_{r}(x-m S) & \ldots & e^{-m \mu_{r, p} s} & \ldots \\
\vdots & \vdots & \\
v_{r}(x-2 S) & \ldots & e^{-2 \mu_{r, p} s} & \ldots \\
\left(v_{r}(x-t)+v_{r}(x+t)\right. & -2 v_{r}(x) & \left.\operatorname{ch} \mu_{r} t\right) \ldots\left(2 \operatorname{ch} \mu_{r, p} t-2 \operatorname{ch} \mu_{r} t\right) & \ldots \\
v_{r}(x+2 S) & \ldots & e^{2 \mu_{r, p} s} & \ldots \\
\vdots & & \vdots & \\
v_{r}(x+(m+1) S) & \ldots & e^{(m+1) \mu_{r, p} s} & \ldots
\end{array}\right|
$$

($p=1, \ldots, n$) vanishes. Expanding it according to the first column, with obvious notation we obtain

$$
\begin{gathered}
d\left(\mu_{r}, S\right)\left(u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t\right)=\sum_{-m \leq k \leq m+1}^{|k| \geqq 2} \mid \\
\quad+d_{k}\left(\mu_{r}, S, t\right) u_{r}(x+k S)+ \\
x+(m+1) S \\
x-m S
\end{gathered}
$$

One can easily see (cf. (4)) that

$$
D_{4}^{j} D\left(\mu_{r}, S, t,-(m+1) S\right)=D_{4}^{j} D\left(\mu_{r}, S, t, m S\right)=0, \quad j=0, \ldots, n-2
$$

Therefore the above formula implies

$$
\begin{gathered}
d\left(\mu_{r}, S\right)\left(u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t\right)=\sum_{-m \leq k \leq m+1}^{|k| \geqq 2} d_{k}\left(\mu_{r}, S, t\right) u_{r}(x+k S)+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\binom{n-s}{i}^{x+(m+1) S} \int_{x \rightarrow m}^{n-s-i} D\left(\mu_{r}, S, t, x-\tau\right) q_{s}^{(i)}(\tau) u_{r}(\tau) d \tau- \\
-\int_{x-m S}^{x+(m+1) S} D\left(\mu_{r}, S, t, x-\tau\right) u_{r}^{*}(\tau) d \tau
\end{gathered}
$$

Putting

$$
Q\left(\mu_{r}, S\right)=e^{\left((m+1) \mu_{r, 1}+\ldots+2 \mu_{r, m}-2 \mu_{r, m+1}-\ldots-m \mu_{r, n}\right) S},
$$

by the method of [17] we obtain the estimates

$$
\begin{aligned}
& \left|d_{k}\left(\mu_{r}, S, t\right)\right| \leqq C_{1}\left|Q\left(\mu_{r}, S\right)\right| \cdot\left|\mu_{r} t\right|\left(\left|e^{-\mu_{r, m-1} s}\right|+\left|e^{\left(\mu_{r, m}+\mu_{r, m+1}\right) S}\right|\right) \\
& \left|D_{4}^{j} D\left(\mu_{r}, S, t, x-\tau\right)\right| \leqq C_{1}\left|Q\left(\mu_{r}, S\right)\right| \cdot\left|\mu_{r}\right|^{j+1-n} \min \left\{1,\left|\mu_{r} t\right|\right\} e^{Q_{r} s}
\end{aligned}
$$

furthermore, being n odd there exists a constant $\alpha>0$ with

$$
\operatorname{Re} \mu_{r, m-1} \geqq \alpha\left|\mu_{r}\right| \quad \text { and } \quad \operatorname{Re} \mu_{r, m+1} \leqq-\alpha\left|\mu_{r}\right|, \quad \forall r
$$

(In the above estimates C_{1} denotes an absolute constant.) Using these estimates from the formula we obtain

$$
\begin{gathered}
\left|\frac{d\left(\mu_{r}, S\right)}{Q\left(\mu_{r}, S\right)}\right| \cdot\left|\frac{u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t}{t}\right| \leqq C_{2}\left|\mu_{r}\right| e^{-\alpha\left|\mu_{r}\right| \cdot\left\|u_{r}\right\|_{L^{\infty}\left(K_{2 n} s\right)} e^{\ell_{r} S}+} \\
\quad+\sum_{s=2}^{n} \sum_{i=0}^{n-s} C_{2}\left|\mu_{r}\right|^{2-s-i} \min \left\{\left|\mu_{r} t\right|^{-1}, 1\right\}\left\|u_{r}\right\|_{L^{\infty}\left(K_{2 n} s\right)^{e^{\ell} S}+} \\
\quad+C_{2}\left|\mu_{r}\right|^{2-n} \min \left\{\left|\mu_{r} t\right|^{-1}, 1\right\}\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{2 n} s\right)} e^{\ell^{\ell} S}
\end{gathered}
$$

with another absolute constant C_{2}.
Let us now fix $0<R<R_{0}$ arbitrarily. If $\left|\mu_{r}\right|>\frac{1}{R}$ then

$$
\int_{0}^{R} \min \left\{\left|\mu_{r} t\right|^{-1}, 1\right\} d t \leqq \int_{0}^{\left|\mu_{r}\right|^{-1}} 1 d t+\int_{\left|\mu_{r}\right|^{-1}}^{R}\left|\mu_{r} t\right|^{-1} d t=\left|\mu_{r}\right|^{-1}\left(1+\ln R+\ln \left|\mu_{r}\right|\right),
$$

therefore if $R<S<2 R$ and $\left|\mu_{r}\right|>\max \left\{1, \frac{1}{R}\right\}$ then

$$
\begin{aligned}
& \left|\frac{d\left(\mu_{r}, S\right)}{Q\left(\mu_{r}, S\right)}\right| \int_{0}^{R}\left|\frac{u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t}{t}\right| d t \leqq \\
& \quad \leqq C_{3} \frac{1+\ln \left|\mu_{r} R\right|}{\left|\mu_{r}\right|}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{4_{n} R}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{4_{n} R}\right)}\right) e^{2 Q_{r} R} .
\end{aligned}
$$

If $\left|\mu_{r}\right|$ is sufficiently large then by Lemma 7 we have

$$
\int_{R}^{2 R}\left|\frac{d\left(\mu_{r}, S\right)}{Q\left(\mu_{r}, S\right)}\right| d S>\frac{R}{2}
$$

whence

$$
\begin{aligned}
& \int_{0}^{R}\left|\frac{u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t}{t}\right| d t \leqq \\
& \equiv C_{4} \frac{\ln \left|\mu_{r}\right|}{\left|\mu_{r}\right|}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{4 n R}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{4 n R}\right)}\right) e^{2 \ell_{r} R}
\end{aligned}
$$

with some constant C_{4} depending only on R. Taking into account (23) and the condition (C 3) the Lemma follows.
b) For any $x \in K, 0<S<2 R_{0}$ and $0<t<S$ the determinant

$$
\left|\begin{array}{lll}
v_{r}(x) & \ldots 1 & \ldots \\
\left.v_{r}(x-t)+v_{r}(x+t)-2 v_{r}(x) \text { ch } \mu_{r} t\right) & \ldots\left(2 \operatorname{ch} \mu_{r, p} t-2 \operatorname{ch} \mu_{r} t\right) & \ldots \\
\left(v_{r}(x-2 S)+v_{r}(x+2 S)\right) & \ldots\left(2 \operatorname{ch~} 2 \mu_{r, p} S\right) & \ldots \\
\vdots & \vdots & \\
\left(v_{r}(x-m S)+v_{r}(x+m S)\right) & \ldots\left(2 \operatorname{ch} m \mu_{r, p} S\right) & \ldots
\end{array}\right|
$$

$(p=1, \ldots, m)$ vanishes. Expanding it according to the first column, with obvious notation we obtain the formula

$$
\begin{gathered}
d\left(\mu_{r}, S\right)\left(u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t\right)= \\
=\sum_{\substack{0 \leq k \equiv m \\
k \neq 1}} d_{k}\left(\mu_{r}, S, t\right)\left(u_{r}(x+k S)+u_{r}(x-k S)\right)+ \\
+\int_{x-m S}^{x+m S} D\left(\mu_{r}, S, t, x-\tau\right)\left(\sum_{s=2}^{n} q_{s}(\tau) u_{r}^{(n-s)}(\tau)-u_{r}^{*}(\tau)\right) d \tau .
\end{gathered}
$$

One can easily see that $D_{4}^{j} D\left(\mu_{r}, S, t, \pm m S\right)=0, j=0, \ldots, n-2$, therefore

$$
\begin{gathered}
d\left(\mu_{r}, S\right)\left(u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \text { ch } \mu_{r} t\right)= \\
=\sum_{\substack{0 \leq k \leq m \\
k \neq 1}} d_{k}\left(\mu_{r}, S, t\right)\left(u_{r}(x+k S)+u_{r}(x-k S)\right)+ \\
+\sum_{s=2}^{n} \sum_{i=0}^{n-s}(-1)^{i}\binom{n-S}{i}_{x-m S} \int_{4}^{x+m S} D_{4}^{n-s-i} D\left(\mu_{r}, S, t, x-\tau\right) q_{s}^{(i)}(\tau) u_{r}(\tau) d \tau- \\
-\int_{x-m S}^{x+m S} D\left(\mu_{r}, S, t, x-\tau\right) u_{r}^{*}(\tau) d \tau .
\end{gathered}
$$

Putting $Q\left(\mu_{r}, S\right)=e^{\left(m \mu_{r, 1}+\ldots+2 \mu_{r, m-1}\right) S}$ we have the estimates

$$
\begin{aligned}
& \left.\left|d_{k}\left(\mu_{r}, S, t\right)\right| \leqq C_{1}\left|Q\left(\mu_{r}, S\right)\right| \cdot\left|\mu_{r} t\right| \cdot \mid e^{\left(2 \mu_{r}, m\right.}-_{r, m-1}\right) S \\
& \left|D_{4}^{j} D\left(\mu_{r}, S, t, x-\tau\right)\right| \leqq C_{1}\left|Q\left(\mu_{r}, S\right)\right| \cdot\left|\mu_{r}\right|^{j+1-n} \min \left\{1,\left|\mu_{r} t\right|\right\} e^{\varrho_{r} S} .
\end{aligned}
$$

Furthermore, $d_{0}\left(\mu_{r}, S, t\right) \equiv 0$ if $m=1$ and there exists a constant $\alpha>0$ such that $\operatorname{Re} \mu_{r, m-1} \geqq \alpha\left|\mu_{r}\right|(r=1,2, \ldots)$ if $m \geqq 2$. Therefore, fixing $0<R<R_{0}$ arbitrarily, we obtain

$$
\begin{aligned}
& \left|\frac{d\left(\mu_{r}, S\right)}{Q\left(\mu_{r}, S\right)}\right| \int_{0}^{R}\left|\frac{u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t}{t}\right| d t \leqq \\
& \quad \leqq C_{2} \frac{1+\ln \left|\mu_{r} R\right|}{\left|\mu_{r}\right|}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{\text {AnR }}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{4_{n R} R}\right)}\right) e^{2_{Q_{r}} R}
\end{aligned}
$$

if $R<S<2 R$ and $\left|\mu_{r}\right|>\max \left\{1, \frac{1}{R}\right\}$ and the proof can be finished as in Part a).

Lemma 9. For any $R>0$ there exists a constant $C>0$ such that

$$
\left|\frac{2}{\pi} \int_{0}^{R} \frac{\sin v t \operatorname{ch} \mu_{r} t}{t} d t-\delta\left(v,\left|v_{r}\right|\right)\right| \equiv \frac{C e^{\left|q_{r}\right| R}}{2+\left|v-\left|v_{r}\right|\right|}
$$

for all $v>0$ and $r=1,2, \ldots$.
Proof. See [10].

Let us now prove (22). Given a compact interval $K \subset G$ arbitrarily, fix another compact interval $K_{1} \subset G$ such that $K \subset i n t K_{1}$, and then a number $R_{1}>0$ such that $0<R_{1}<R_{0}$ (R_{0} is defined as in Lemma 8), $K_{4 n R_{1}} \subset K_{1}$,

$$
\begin{equation*}
\sup _{v \geqq 1} \sum_{\left|v-\left|v_{r}\right| \leqq 1\right.}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)} e^{\left.\left|e_{r}\right| R_{1}\right)^{2}}<\infty .\right. \tag{24}
\end{equation*}
$$

This choice is possible by the proposition of Section 3.
Fix $0<R<R_{1}$ arbitrarily and fix a constant $A=A(R)>2$ such that the assertion of Lemma 8 holds true whenever $\left|\mu_{r}\right|>A$. In the sequel C denotes diverse constants independent of $v \geqq 1, x \in K$ and $r=1,2, \ldots$.

Consider first the case when $\left|\mu_{r}\right|>A$. Applying Lemmas 8 and 9 we have

$$
\begin{aligned}
& \left|\left\langle u_{r}, w\right\rangle-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right|=\left|\int_{0}^{R} \frac{\sin v t}{\pi t}\left(u_{r}(x-t)+u_{r}(x+t)\right) d t-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right| \leqq \\
& \leqq\left|\int_{0}^{R} \frac{\sin v t}{\pi t}\left(u_{r}(x-t)+u_{r}(x+t)-2 u_{r}(x) \operatorname{ch} \mu_{r} t\right) d t\right|+ \\
& \quad \quad+\left|\frac{2}{\pi} \int_{0}^{R} \frac{\sin v t \operatorname{ch} \mu_{r} t}{t} d t-\delta\left(v, \mid v_{r}\right)\right| \cdot\left|u_{r}(x)\right| \leqq \\
& \leqq C\left(\frac{\ln \left|\mu_{r}\right|}{\left|\mu_{r}\right|}+\left(2+\left|v-\left|v_{r}\right|\right|\right)^{-1}\right)\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{1}\right)}\right) e^{\left|e_{r}\right| R_{1}},
\end{aligned}
$$

for all $v \geqq 1$ and $x \in K$. Using (24) and (C 3) with any fixed $0<\varepsilon<1$ we obtain

$$
\begin{gathered}
\sum_{\left|\mu_{r}\right|>A}\left|\left\langle u_{r}, w\right\rangle-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right|^{2} \leqq \\
\leqq C \sum_{\left|u_{r}\right|>A}\left(\left(1+\left|v_{r}\right|\right)^{-2+\varepsilon}+\left(2+\left|v-\left|v_{r}\right|\right)^{-2}\right)\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)}+\left\|u_{r}^{*}\right\|_{L^{\infty}\left(K_{1}\right)}\right)^{2} e^{2\left|e_{r}\right| R_{1}} \leqq\right. \\
\leqq C \sum_{i=1}^{\infty}\left(i^{-2+\varepsilon}+(1+|v-i|)^{-2}\right) \sum_{i-1 \leqq\left|v_{r}\right|<i}\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)} e^{\left.\left|e_{r}\right| R_{1}\right)^{2} \leqq}\right. \\
\leqq C \sum_{i=1}^{\infty}\left(i^{-2+\varepsilon}+(1+|v-i|)^{-2}\right) \leqq C
\end{gathered}
$$

i.e.

$$
\begin{equation*}
\sum_{\left|\mu_{r}\right|>A}\left|\left\langle u_{r}, w\right\rangle-\delta(v,|v|) u_{r}(x)\right|^{2} \leqq C . \tag{25}
\end{equation*}
$$

Consider now the case when $\left|\mu_{\boldsymbol{r}}\right| \leqq A$. For any $v \geqq 1$ and $x \in K$, integrating by parts and taking into account that the improper integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is convergent, we obtain

$$
\begin{gathered}
\left|\left\langle u_{r}, w\right\rangle\right|=\left\lvert\, \int_{0}^{R} \frac{\sin v t}{\pi t} d t\left(u_{r}(x-R)+u_{r}(x+R)\right)+\right. \\
\left.+\int_{0}^{R} \int_{0}^{t} \frac{\sin v \xi}{\pi \xi} d \xi\left(u_{r}^{\prime}(x-t)-u_{r}^{\prime}(x+t)\right) d t \right\rvert\, \leqq C\left(\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)}+\left\|u_{r}^{\prime}\right\|_{L^{\infty}\left(K_{1}\right)}\right) .
\end{gathered}
$$

But $\left|\mu_{r}\right|$ is bounded, therefore by the result mentioned in Section 2, Part E) we can conclude that

$$
\left|\left\langle u_{r}, w\right\rangle\right| \leqq C\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)}
$$

and

$$
\left|\left\langle u_{r}, w\right\rangle-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right| \leqq C\left\|u_{r}\right\|_{L^{\infty}\left(K_{1}\right)} .
$$

Using again (24) we obtain

$$
\begin{equation*}
\sum_{\left|\mu_{r}\right| \leqq A}\left|\left\langle u_{r}, w\right\rangle-\delta\left(v,\left|v_{r}\right|\right) u_{r}(x)\right|^{2} \leqq C . \tag{26}
\end{equation*}
$$

(25) and (26) imply (22) and the proof of the Theorem is finished.

Remark. We note that in the proof of the Proposition in Section 3 we did not use the full assumption (C 1) but only its consequence (18). Thus our result remains valid for all (not necessarily complete) orthonormal systems consisting of eigenfunctions of order 0 (for example).

Open Problems. 1. It would be interesting to know whether the assumption (C 3) is necessary for the validity of the Proposition.
2. From the viewpoint of applications the Theorem proved in this paper seems to be very general and satisfactory. However, from a pure mathematical viewpoint it would be useful to enlighten whether the result remains true for the more general differential operator

$$
L u=u^{(n)}+q_{1} u^{(n-1)}+\ldots+q_{n} u, \quad q_{s} \in L_{\mathrm{loc}}^{1}(G), \quad s=1, \ldots, n .
$$

References

[1] A. Haar, Reichenentwicklungen nach Legendreschen Polynomen, Math. Annalen, 78 (1917), 121-136.
[2] B. А. Ильин, Необходимые и достаточные условия базисности и равносходимости с тригонометрическим рядом спектральных разложений 1-2, Дифференииальные уравнения, 16 (1980), 771-794, 980-1009.
[3] В. А. Ильин, И. Йо, Точная оценка разности частичных сумм разложений, отвечающих двум произвольным неотрицательным самосопряжённым расширениям двух операторов типа Штурма-Лиувилля для абсолютной непрерывной функции, Дифференциальные уравнения, 15 (1979), 1175-1193.
[4] Н. И. Ионкин, Решение одной краевой задачи теории теплопроводности с неклассическим краевым условием, Дифференциальные уравнения, 13 (1977), 293-304.
[5] ШІ. А. Исматуллаев, И. Йо, Теоремы о равносходимости, Acta Math. Hung. (to appear).
[6] I. Joó, Upper estimates for the eigenfunctions of the Schrödinger operator, Acta Sci. Math. (Szeged), 44 (1982), 87-93.
[7] И. Йо, Теорема типа равносходимости, ДАН УзССР, 4 (1983), 6-8.
[8] I. Joó, On some spectral properties of the Schrödinger øperator, Annales Univ. Sci. Budapest, Sect. Math. (to appear).
[9] I. Joó, Remarks to a paper of V. Komornik, Acta Sci. Math. (Szeged), (to appear).
[10] I. Joó, V. Komornik, On the equiconvergence of expansions by Riesz bases formed by eigenfunctions of the Schrödinger operator, Acta Sci. Math. (Szeged), (to appear).
[11] Г. М. Кесельман, О безусловной сходимости разложений по собственным функциям некоторых дифференциальных операторов, Изв. вузов СССР, Математика, 2 (1964), 82-93.
[12] V. Komornik, Upper estimates for the eigenfunctions of higher of a linear differential operator, Acta Sci. Math. (Szeged), 45 (1983), 261-271.
[13] V. Komornik, On the distribution of the eigenvalues of an orthonormal system consisting of eigenfunctions of higher order of a linear differential operator, Acta Math. Hung., 42 (1983), 171-175.
[14] V. Komornik, An equiconvergence theorem for the Schrödinger operator, Acta Math. Hung. (to appear).
[15] V. Komornik, On the equiconvergence of expansions by Riesz bases formed by eigenfunctions of a $2 n$-order linear differential operator, Acta Math. Hung. (to appear).
[16] V. Komornik, Some new estimates for the eigenfunctions of higher order of a linear differential operator, Acta Math. Hung. (to appear).
[17] V. Komornik, Local upper estimates for the eigenfunctions of a linear differential operator, Acta Sci. Math. (Szeged), (to appear).
[18] V. Komornik, Lower estimates for the eigenfunctions of a linear differential operator, Acta Math. Hung. (to appear).
[19] Б. М. Левитан, Разложсение по собственным функииям (Москва, 1950).
[20] В. П. Михайлов, О базисах Рисса в $L^{2}(0,1)$, ДАН СССР, 144, 5 (1962), 981—984.
[21] М. А. Наймарк, Линейные дифференииальные операторы (Москва, 1969).
[22] V. A. Stekloff, Sur les expressions asymptotiques de certaines fonctions définies par des équations differentielles linéaires du deuxieme ordre, et leurs applications au probleme du développement d'une fonction arbitraire en series procédant suivant les dites fonctions, Сооби. Харьков, матем. об-ва, 10 (1907-1909), 96-199.
[23] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press (1946).
[24] A. Zygmund, Trigonometric series, Cambridge University Press (1959).
(Received April 9, 1984)

LORÁND EÖTVÖS UNIVERSITY
MATHEMATICAL INSTITUTE
H-1088 BUDAPEST, MUZEUM KRT. $6-8$
HUNGARY

Instructions for authors. Manuscripts/should be typed on standard size paper (25 rows; 50 characters in each row). Mathematical symbols (except \sin , \log, etc.) will be set in italics, so use handwritten letters, or indicate them by simple underlining. The text of theorems, lemmas, corollaries are to be printed also in italics. The words THEOREM, LEMMA. COROLLARY, PROOF, REMARK, PROBLEM, etc. (or their German and French equivalents) should be typed in capital letters. Sub-headings will be set in boldface lower case; indicate them by red underlining. Other special types of symbols (such as German, Greek, script, etc.) should also be clearly identified. Mark footnotes by consecutive superscript numbers. When listing references, please follow the following pattern:
[1] G. Szegő, Orthogonal polynomials, AMS Coll, Publ. Vol. XXIII (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.
For abbreviation of names of journals follow the Mathematical Reviews. After the references give the author's affiliation.

Do not send abstract and second copy of the manuscript. Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper)

Authors obtain 100 reprints free of charge. Additional copies may be ordered from the publisher.

Periodicals of the Hungarian Academy of Sciences are sold at the following addresses:

AUSTRALIA

C.B.D. LIBRARY AND SUBSCRIPTION SERVICE

Box 4886, G.P.O., Sydney N.S.W. 2001
COSMOS BOOKSHOP, 145 Ackland Street
St. Kilda (Melbourne), Victoria 3182

AUSTRIA

GLOBUS, Höchstädtplatz 3, 1206 Wien XX

BELGIUM

OFFICE INTERNATIONAL DE LIBRAIRIF
30 Avenue Marnix, 1050 Bruxelles
LIBRAIRIE DE MONDE ENTIER
162 rue du Midi, 1000 Bruxelles

BULGARIA

HEMUS, Bulvar Ruszki 6, Sofla

CANADA

PANNONIA BOOKS, P.O. BOX 1017
Postal Station „B", Toronto, Ontario M5T 2 T8

CHINA

CNPICOR, Periodical Department, P.O. Box 50 Peking

CZECHOSLOVAKIA

MAD'ARSKÁ KULTURA, Národní třida 22
11566 Praha
PNS DOVOZ TISKU, Vinohradská 46, Prha 2
PNS DOVOZ TLAČE, Bratislava 2

DENMARK

EJNAR MUNKSGAARD, Norregade 6
1165 Copenhagen K

FEDERAL REPUBLIC OF GERMANY

KUNST UND WISSEN ERICH BIEBER
Postfach 46, 7000 Stuttgart 1

FINLAND

AKATEEMINEN KIRJAKAUPPA, P.O. Box 128
SF-00101 Helsinki 10

FRANCE

DAWSON-FRANCE S. A., B. P. 40, 91121 Palaiseau
EUROPÉRIODIQUES S. A., 31 Avenue de Versailles, 78170 La Celle St. Cloud
OFFICE INTERNATIONAL DE DOCUMENTATION ET LIBRAIRIE, 48 rue Gay-Lussac 75240 Paris Cedex 05

GERMAN DEMOCRATIC REPUBLIC

HAUS DER UNGARISCHEN KULTUR
Karl Liebknecht-Straße 9, DDR-102 Berlin
DEUTSCHE POST ZEITUNGSVERTRIEBSAMT
Straße der Pariser Kommune 3-4, DDR-104 Berlin

GREAT BRITAIN

BLACKWELLS'S PERIODICALS DIVISION
Hythe Bridge Street, Oxford OXI 2ET
BUMPUS, HALDANE AND MAXWELL LTD.
Cowper Works, Olney, Bucks MK46 4BN
COLLET'S HOLDINGS LTH. Denington Estate Wellingborough, Northants NN8 2QT
WM. DAWSON AND SONS LTD., Cannon House Folkstone, Kent CT19 5EE
H. K. LEWIS AND CO., 136 Gower Street

London WC1E 6BS

GREECE

KOSTARAKIS BROTHERS INTERNATIONAL
BROOKSELLERS, 2 Hippokratous Street, Athens-143

HOLLAND

MEULENHOFF-BRUNA B.V, Beulingstraat 2, Amsterdam MARTINUS NIJHOFF B.V.
Lange Voorhout 9-11, Den Haag
SWETS SUBSCRIPTION SERVICE
347b Heereweg, Lisse

INDIA
ALLIED PUBLISHING PRIVATE LTD., 13/14
Asaf Ali Road, New Delhi 110001
150 B-6 Mount Road, Madras 600002
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039
THE STATE TRADING CORPORATION OF INDIA LTD.,
Books Import Division, Chandralok
36 Janpath, New Delhi 110001

ITALY

INTERSCIENTIA, Via Mazzé 28, 10149 Torino
LIBRERIA COMMISSIONARIA SANSONI, Via Lamarmora
45, 50121 Firenze
SANTO VANASIA, Via M. Macchi 5820124 Milano
D. E. A., Via Lima 28, 00198 Roma

JAPAN

KINOKUNIYA BOOK-STORE CO. LTD
17-7 Shinjuku 3 chome, Shinjuku-ku, Tokyo 160-91 MARUZEN COMPANY LTD., Book Department, P.O. Boy 5030 Tokyo International, Tokyo 100-31 NAUKA LTD. IMPORT DEPARTMENT
2-30-19 Minami Ikebukuro, Toshima-ku, Tokyo 171

KOREA
CHULPNMUL, Phenjan

NORWAY

TANUM-TIDSKRIFT-SENTRALEN A.S.,
Karl Johansgatan 41-43, 1000 Oslo

POLAND

WEGIERSKI INSTYTUT KULTURY,
Marszalkowska 80, 00-517 Warszawa CKP W, ul. Towarowa 28, 00-958 Warszawa

ROUMANIA

D. E. P., Bucuresti

ILEXIM, Calea Grivitei 64-66, Buçuresti

SOVIET UNION

SOJUZPECHAT-IMPORT, Moscow
and the post offices in each town
MEZHDUNARODNAYA KNIGA, Moscow G-200

SPAIN
DIAZ DE SANTOS, Lagasca 95, Madrid 6

SWEDEN

GUMPERTS UNIVERSITETSBOKHANDEL AB
Box 346, 40125 Göteborg 1

SWITZERLAND
KARGER LIBRI AG., Petersgraben 31, 4011 Basel

USA

EBSCO SUBSCRIPTION SERVICES
P.O. Box 1943, Birmingham, Alabama 35201
F.W. FAXON COMPANY, INC.

15 Southwest Park, Westwood Mass. 02090
READ-MORE PUBLICATIONS, INC.
140 Cedar Street, New York, N.Y. 10006

YUGOSLAVIA
JUGOSLAVENSKA KNJIGA, Tarezije 27, Beograd FORUM, Vojvode Mišića 1, 21000 Novi Sad

Acta Mathematica Hungarica

VOLUME 47, NUMBERS 3-4, 1986

EDITOR-IN-CHIEF
K TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD
A. CSÁSZÁR, Z. DARÓCZY, P. ERDÓS, L. FEJES TÓTH, A. HAJNAL, I. KÁTAI, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA, A. RAPCSÁK, P. RÉVÉSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

ACTA MATHEMATICA

HUNGARICA

Acta Mathematica publishes papers on mathematics in English, German, French and Russian

Acta Mathematica is published in two volumes of four issues a year by
AKADÉMIAI KIADÓ
Publishing House of the Hungarian Academy of Sciences
H-1054 Budapest, Allkotmány u. 21.

Manuscripts and editorial correspondence should be addressed to
Acta Mathematica, H-1364 Budapest, P.O.B. 127
Orders may be placed with
KULTURA Foreign Trading Company
H-1389 Budapest P.O. Box 149
or with its representatives abroad.

Acta Mathematica is indexed in Current Contents.

CONTENTS

Aull, C. E., Extending families of discrete zero sets 281
Charatonik, J. J. and Miklos, S., Local expansions on graphs and order of a point 287
Jürgensen, H., Shyr, H. J. and Thierrin, G., Monoids with disjunctive identity and their codes 299
Deo, S. and Krishan, R., On compactly dominated spaces 313
Komjáth, P., Comparing almost-disjoint families 321
Carr, Donna M., The structure of ineffability properties of P_{2} 325
Varma, A. K. and Vértesi, P., Saturation of an iterpolatory polynomial operator 333
Kátai, I., Distribution of digits of primes in q-ary canonical form 341
Szabados, J., On the rate of convergence of a lacunary trigonometric interpolation process 361
Benczur, A. and Kátai, I., On the number of occurrences of sequence patterns 371
Juhász, I. and Yakovlev, N., A normal connected left-separated space 383
Szigeti, F., Necessary conditions for certain Sobol'ev spaces 387
Sebestyén, Z., A moment theorem for contractions on Hilbert spaces 391
Páles, Zs., Hölder-type inequalities for quasiarithmetic means 395

EXTENDING FAMILIES OF DISCRETE ZERO SETS

C. E. AULL (Blacksburg)

1. Introduction. In [2], the extending of families of disjoint zero sets of a set S to a family of disjoint zero sets of the space X were studied. Here we restrict the disjoint zero sets of S to discrete families or at least to families discrete in the unions.

Definition 1. A set S is $T C^{*}$-embedded in $X\left(D C^{*}\right.$-embedded) [$\bar{D} C^{*}$-embedded] if any family of disjoint (discrete) [discrete in their union] zero sets may be extended to a disjoint family of zero sets of X. A zero set, Z, of S is extended to a zero set $E(Z)$ of X, if $E(Z) \cap S=Z$. It is clear that for a set $S \subset X, T C^{*}$-embedding \Rightarrow $\Rightarrow \bar{D} C^{*}$-embedding $\Rightarrow D C^{*}$-embedding. Since $T C^{*}$-embedding was studied in [2], our emphasis will be on $D C^{*}$-embedding and $\bar{D} C^{*}$-embedding including with cardinality restrictions on the discrete families and relations to analogous type embeddings of cozero sets and open sets.

The following lemma proved in [1] will be useful in proving results in this paper.
Lemma A. Suppose each set of type A in S can be extended to a set of type A, and if $\left\{F_{b}\right\}$ is a disjoint family of sets of type A in S and $\left\{H_{b}\right\}$ is a disjoint family of sets of type A in X such that $F_{b} \subset H_{b}$, and the intersection of two sets of type A is of type A, then $\left\{F_{b}\right\}$ may be extended to a disjoint family of sets of type A.
2. Some cardinality restrictions. In [2] it was shown that a denumerable family (family of cardinal ω_{1}) of disjoint zero sets of a subset S may be extended to a family of disjoint zero sets of a space X if S is C^{*}-embedded (C-embedded) in X.

Definition 2 (Zenor [10]). A space X is a Z-space if given 2 disjoint closed sets of X one a zero set, they are completely separated in X.

Theorem 1. Let S be a Z-space and let $\left\{Z_{\alpha}: \alpha \in \Omega\right\}$ be a discrete family of zero sets of cardinality ω_{1}. Suppose S is C^{*}-embedded in a Tychonoff space X. Then the family $\left\{Z_{\alpha}\right\}$ may be extended disjointly to X.

Proof. For every Z_{α}, there exist disjoint zero sets H_{α} and H_{α}^{*}, of X such that $Z_{\alpha} \subset H_{\alpha}$, and $\cup\left\{Z_{\beta}: \beta \neq \alpha\right\} \subset H_{\alpha}^{*}$. Let $M_{\alpha}=H_{\alpha} \cap \bigcap_{\beta}\left\{H_{\beta}^{*}: \beta<\alpha\right\}$, then $\left\{M_{\alpha}\right\}$ is a disjoint family of zero sets of X such that $Z_{\alpha} \subset M_{\alpha}$. An application of Lemma A completes the proof.

With the continuum hypothesis, we may replace ω_{1} by c in the above proof. In the case of normal spaces, we may make the replacement without CH .

Theorem 2. Let S be normal and let $\left\{Z_{a}: a \in A,|A| \leqq c\right\}$ be a discrete family of zero sets. Then $\left\{Z_{\alpha}\right\}$ may be extended disjointly to any Tychonoff space X that S is C^{*}-embedded in.

Proof. Let $\left\{Z_{a}\right\}$ be indexed by R the real numbers. Construct a continuous function f on $B=\cup\left\{Z_{a}: a \in R\right\}$ such that $f^{-1}(a)=Z_{a}$. Then since B is closed f may be extended to S and hence to X so that there exist disjoint zero sets of $\left\{H_{a}\right\}$ of X such that $Z_{a} \subset H_{a}$. An application of Lemma A completes the proof.

If all the zero sets are regular closed, we may replace normal by metanormal (every regular closed set is C^{*}-embedded).

Corollary 2. If D is discrete and $|D| \leqq c$, then D is $T C^{*}$-embedded in any space D is C^{*}-embedded in.

Theorem 3. Let S be normal and hereditarily extremally disconnected and C^{*} embedded in X. Let $\left\{Z_{a}: a \in A:|A| \leqq c\right\}$ be a family of zero sets discrete in their union. Then $\left\{Z_{a}\right\}$ may be extended disjointly to X.

Proof. Similar to Theorem 2.
3. $D C^{*}$-embeddings. Definition 4 (Junnila [7]). A topological space X is collectionwise δ-normal $\left(C_{\delta}-N\right)$ if for every discrete family of closed sets $\left\{F_{a}\right\}$ of X, there is a disjoint family of G_{δ}-sets, $\left\{G_{a}\right\}$ such that $F_{a} \subset G_{a}$.

It is clear that we may replace $G_{\boldsymbol{\delta}}$-sets by zero sets in the above definition in a normal space.

Theorem 4. The following are equivalent for a normal space X :
(a) X is $C_{\delta}-N$,
(b) every closed set is $D C^{*}$-embedded.

Proof. (a) \rightarrow (b). If $\left\{Z_{a}\right\}$ is a discrete family of zero sets of a closed set $F,\left\{Z_{a}\right\}$ is a discrete family of closed sets of X and can be expanded to a disjoint family of zero sets of X. An application of Lemma A completes the proof.
(b) \rightarrow (a). Let F_{a} be a discrete family of closed sets. Since each F_{a} is a zero set in $\cup F_{a}$, a closed set, the result follows.

Definition 5. A set S is T_{z}-embedded ($T G$-embedded) in a space X if any disjoint family of cozero (open) sets $\left\{G_{a}\right\}$ of S may be extended to a disjoint family of cozero (open) sets of X. If $\left\{G_{a}\right\}$ is restricted to discrete families, we say S is D_{z}-embedded ($D G$-embedded) in X.

In [1], it was proved that a space is collectionwise normal iff every closed set is D_{z}-embedded ($D G$-embedded).

Corollary 4. If every closed set is D_{z}-embedded ($D G$-embedded), then every closed set is DC ${ }^{*}$-embedded.
4. $D C^{*}$-embeddings. Definition 6. A topological space X is collectionwise $\bar{\delta}$-normal $\left(C_{\bar{z}}-N\right)$ if for F_{a} closed in $X,\left\{F_{a}\right\}$ discrete in $\cup F_{a}$, there exists a disjoint family of G_{δ}-sets $\left\{G_{a}\right\}$ such that $F_{a} \subset G_{a}$.

Again, we may replace $G_{\boldsymbol{\delta}}$-set by a zero set in a normal space in the above definition.

Theorem 5. The following are equivalent for a normal space X :
(a) X is $C_{\bar{\delta}}$-normal.
(b) Every closed set of X is $\bar{D} C^{*}$-embedded in X.

Proof. The proof of (a) \rightarrow (b) is similar to that of Theorem 4. (b) \rightarrow (a). Let $\left\{F_{a}\right\}$ be a family of closed sets of X discrete in $\cup F_{a}$. Each F_{a} is open in $\cup F_{a}$. So there is a family of disjoint open sets, $\left\{G_{a}\right\}$, of $F=\overline{U F_{a}}$ by Theorem 2 of [1] such that $F_{a} \subset G_{a}$. By the normality of X, there is a family of zero sets of $F,\left\{H_{a}\right\}$, such that $F_{a} \subset H_{a} \subset G_{a}$. By (b), $\left\{H_{a}\right\}$ can be extended to a disjoint family of zero sets $\left\{Z_{a}\right\}$ such that $F_{a} \subset Z_{a}$.

In [1], it was shown that every closed set is T_{z}-embedded iff for any family of set $\left\{F_{a}\right\}$ discrete in their union such that each F_{a} is an F_{σ}-set of X. Then there exists a family of disjoint open sets $\left\{G_{a}\right\}$ such that $F_{a} \subset G_{a}$. Also from [1] if every closed set is $T G$-embedded, then every closed set is T_{z}-embedded.

Corollary 5. If every closed set of a normal space X is $T G$ - or T_{z}-embedded, then every closed set of X is $\bar{D} C^{*}$-embedded.

The following lemma might be compared with Corollary 7B of [1].
Lemma 6. The following are equivalent for a normal hereditary extremally disconnected space X and $(\mathrm{a}) \leftrightarrow(\mathrm{b})$ in normal spaces:
(a) X is $H C_{\delta}-N$ (every subset is $C_{\delta}-N$).
(b) Given a collection of subsets $\left\{F_{a}\right\}$ of X discrete in $\cup F_{a}$, there exists a disjoint family of zero sets $\left\{Z_{a}\right\}$ such that $F_{a} \subset Z_{a}$.
(c) X is $C_{\bar{\delta}}-N$.
(One might Compare (b) with McAuley's [8] equivalence of hereditary collectionwise normality.)

Proof. (b) \rightarrow (a) and (b) \rightarrow (c) are immediate. (c) \rightarrow (b). Let $\left\{F_{a}\right\}$ be discrete in $\cup F_{a}$. Each F_{a} can be extended to an open set G_{a} in $F=\overline{\cup F_{a}}$ and $\left\{G_{a}\right\}$ is disjoint. Then \bar{G}_{a} in F is closed in X and $\left\{\bar{G}_{a}\right\}$ is discrete in $\cup \bar{G}_{a}$ since \bar{G}_{a} is open in F. So (b) is satisfied.
(a) \rightarrow (c). Let $\left\{F_{a}\right\}$ be discrete in $\cup F_{a}$ and let F_{a} be closed in X. There exists a family $\left\{G_{a}\right\}$ of disjoint open sets of $F=\overline{\bigcup F_{a}}$ such that $F_{a} \subset G_{a}$ again by Theorem 2 of [1].

There exists an open set G of X such that $G \cap \overline{\cup F_{a}}=\cup G_{a}$. There exists a family of disjoint G_{δ}-sets of $G,\left\{H_{a}\right\}$, such that $F_{a} \subset H_{a}$ since G is $C_{\delta}-N$ by (a) and since $\left\{F_{a}\right\}$ is closed and discrete in G. Each H_{a} is also a G_{δ} of X.

Theorem 6. The following are equivalent for a hereditarily extremally disconnected space X.
(a) X is normal and $H_{\delta}-N$.
(b) Every subset of X is $D C^{*}$-embedded.
(c) Every subset of X is $\bar{D} C^{*}$-embedded.
(d) Every closed subset of X is $\bar{D} C^{*}$-embedded.
(e) X is normal and $C_{\bar{\delta}}-N$.

Proof. (a) \rightarrow (c). Let $\left\{Z_{a}\right\}$ be a family of zero sets of a set S, discrete in $\cup Z_{a}$. There is a family of disjoint zero sets of $X,\left\{H_{a}\right\}$, such that $Z_{a} \subset H_{a}$ by (a) and Lemma 6. An application of Lemma A completes the proof.
(c) \rightarrow (b) and (c) \rightarrow (d) are immediate. (b) \rightarrow (c). Let $\left\{Z_{a}\right\}$ be a family of zero sets of
S discrete in $M=\cup Z_{a}$. Since M is $D C^{*}$-embedded in X, there exists zero sets $\left\{H_{a}\right\}$ of X such that $Z_{a} \subset H_{a}$. An application of Lemma A completes the proof.
(d) \rightarrow (e) follows from Theorem 5.
(e) \rightarrow (a) follows from Lemma 6.

Corollary 6. Let X be hereditarily extremally disconnected. Then any of the following imply conditions (a) to (e) of Theorem 6.
(a) Every closed subset of X is $T G$-embedded.
(b) Every closed subset of X is T_{z}-embedded.
(c) Every subset of X is DG-embedded.

Proof. Theorem 6 and Theorems 4 and 5 of [1].
We note that since (a) and (c) are equivalent to HCN we only need extremally disconnected in the corollary statement in these cases.
5. Some examples and questions. Example 1. R. Fox has shown that R is not $T C^{*}$-embedded in βR. Since R is Lindelöf (hereditary Lindelöf) R is $D C^{*}$-embedded ($\bar{D} C^{*}$-embedded) in βR.

Example 2. The one point compactification X of a discrete space of cardinality greater than c, is $D C^{*}$-embedded in any product of closed intervals it is embedded in since X is compact, but is not $\bar{D} C^{*}$-embedded in such a product since Engelking [5] has shown the product has at most c disjoint zero sets.

We have thus shown that $T C^{*}$-embedding, $\bar{D} C^{*}$-embedding and $D C^{*}$-embedding are distinct properties. However Theorem 6 shows that if every set is $D C^{*}$-embedded then every set is $\bar{D} C^{*}$-embedded. So we have the following set of relations $(\mathrm{a}) \rightarrow$ (b) \rightarrow $\rightarrow(\mathrm{c}) \leftrightarrow(\mathrm{d}) \rightarrow(\mathrm{e})$ for a space X :
(a) X is perfectly normal and extremally disconnected.
(b) Every subset of X is $T C^{*}$-embedded.
(c) Every subset of X is $\bar{D} C^{*}$-embedded.
(d) Every subset of X is $D C^{*}$-embedded.
(e) X is normal and hereditary extremally disconnected.

In [2], it was shown that under the existence of measurable cardinals or the assumption of club (b) \rightarrow (a) based on work of Blair [5] and Wage [10]. The question then arises, does $(\mathrm{c}) \rightarrow(\mathrm{b})$ and does $(\mathrm{e}) \rightarrow(\mathrm{d})$, particularly if we use $\mathrm{MA}+\sim \mathrm{CH}$?
6. A mapping theorem. The following theorem can be proved by the same methods used in the proof of Theorem 2 of [1].

Theorem 7. Let $S \subset X$ and let f be continuous on X such that $f^{-1}(f(S))=S$. Iff is cozero set preserving and S is $T C^{*}$-embedded ($D C^{*}$-embedded) [$\bar{D} C^{*}$-embedded $]$ in X then $f(S)$ is $T C^{*}$-embedded ($D C^{*}$-embedded) $\left[\bar{D} C^{*}\right.$-embedded $]$ in $f(x)$.

Corollary 7. Under cozero set preserving maps, the combination normality and $C_{\bar{\delta}}-N$ (Theorem 5), and the combination hereditarily extremally disconnected, normality and $\mathrm{HC}_{\delta}-N$ (Theorem 6) are preserved.

References

[0] C. E. Aull, Embeddings extending various types of disjoint sets, Rocky Mountain J. Math., 17 (1984), 319-330
[1] C. E. Aull, Extendability and expandability (submitted for publication).
[2] C. E. Aull, Extending families of disjoint zero sets, Proc. Amer. Math. Soc., 89 (1983), 510-514.
[3] R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math., 28 (1976), 673-690.
[4] R. L. Blair and A. W. Hager, Extensions of zero-sets and of real-valued functions, Math. Z., 136 (1974), 4-52.
[5] R. Engelking, Cartesian products and dyadic spaces, Fund. Math., 57 (1965), 287-304.
[6] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand (Princeton, 1966).
[7] H. J. Junnila, Three covering properties, Surveys in general topology, Academic Press (1980), 195-245.
[8] L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc., 9 (1958), 474-477.
[9] J. C. Smith and L. L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc., 160 (1971), 437-451.
[10] M. Wage, Extremally disconnected S-spaces, Topology Proceedings, 1 (1976), 181-185.
[11] P. Zenor, A note on Z-mappings and $W Z$-mappings, Proc. Amer. Math. Soc., 23 (1969), 273275.
(Received September 17, 1982)

DEPARTMENT OF MATHEMATICS
VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
BLACKSBURG, VA 24073
USA

LOCAL EXPANSIONS ON GRAPHS AND ORDER OF A POINT

J. J. CHARATONIK and S. MIKLOS (Wrocław)

Let X and Y be metric spaces with metrics d_{X} and d_{Y}, respectively. A mapping $f: X \rightarrow Y$ of X onto Y is said to be a local expansion if it is continuous and if for every point x of X there exist an open neighborhood U of x and a constant $M>1$ such that for every two points y and z of U the inequality

$$
d_{Y}(f(y), f(z)) \geqq M d_{X}(y, z)
$$

holds.
Discussing some properties of local expansions on metric continua ([1], [6]), especially on linear graphs ([3]), we have observed that the order of a point does not decrease under a local expansion ([1], Proposition 4.2; [3], Proposition 5). Investigating this fact more carefully for linear graphs, we have discovered some reasons of it. The results are presented in this paper.

We use the concept of order of a point in a space in the sense of Menger-Urysohn (see [4], p. 274 or [7], p. 48). A point of order 1 in the space X is called an end point of X; the set of all end points of X is denoted by $E(X)$. A point of order 3 or more in the space X is called a ramification point; the set of all ramification points of X is denoted by $R(X)$. By an n-od we mean a set homeomorphic to the one-point union of n closed intervals.

We recall several properties of local expansions. All of them are easy to verify and some of these properties have already been established for local expansions $f: X \rightarrow X$ of a metric space X onto itself ([3], Properties 1-4) and they are stated here for a more general case of local expansions from one metric space onto another.

Proposition 1. Let two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be given, and let $f: X \rightarrow Y$ be a local expansion. Then
(i) fis locally one-to-one: for every point $x \in X$ and for the open neighborhood U of x as in the definition of the local expansion, the partial mapping $f \mid U: U \rightarrow f(U) \subset Y$ is one-to-one;
(ii) for every point $x \in X$ and for the open neighborhood U of x as in the definition of the local expansion, every arc $a b \subset U$ is mapped onto an arc $f(a) f(b)$ homeomorphically under f;
(iii) for each simple closed curve $S \subset X$, its image $f(S)$ does not contain end points of itself;
(iv) for each arc $a b \subset X$ no point of $a b \backslash\{a, b\}$ is mapped on an end point of $f(a b)$;
(v) if X is compact then the inverse image $f^{-1}(y)$ of every point $y \in Y$ is finite.

Definitions of notions undefined here can be found in [3] and [5].
The following example shows that a continuous image of a linear graph (even of an arc) under a local expansion need not be a linear graph.

Example 1. There is a local expansion $f:[0,1] \rightarrow K$ of $[0,1]$ onto K such that:
$1^{\circ} \mathrm{K}$ is a plane hereditarily locally connected curve metrized by a convex metric;
$2^{\circ} K$ has exactly one end point and countably many points of order 4 ; other points of K are of order 2;
$3^{\circ} f$ is a local expansion with $M=2$ for every point $x \in[0,1]$;
$4^{\circ} f^{-1}(f(x))=\{x\}$ for all $x \in[0,1]$ save a countable set

$$
\left\{\frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}, \frac{1}{16}, \frac{15}{16}, \ldots, 0,1\right\}
$$

for elements x of which we have $f^{-1}(f(x))=\{x, 1-x\}$;
$5^{\circ} \operatorname{ord}_{y} K=2 \cdot \operatorname{card} f^{-1}(y)$ for all $y \in K \backslash\{e\}$, where e is the only end point of K.

Fig. 1

Fig. 2

To construct the example consider two auxiliary functions $f_{1}, f_{2}:[0,1] \rightarrow R$, the graphs of which are pictured in Fig. 1 and Fig. 2, define a mapping f from $[0,1]$ into the plane R^{2} by

$$
\begin{equation*}
f(x)=\left(f_{1}(x), f_{2}(x)\right) \quad \text { for } \quad x \in[0,1] \tag{1}
\end{equation*}
$$

put $K=f([0,1])$, and take the length of the shortest arc in K joining its two points as a metric for K. This metric is obviously convex. The continuum K is depicted in Fig. 3.

The continuum K can also be described in some other way. Namely, let G be the graph of the function f_{2} (see Fig. 2) and let a mapping g from G into the plane R^{2} be defined by

$$
g\left(\left(x_{1}, x_{2}\right)\right)=\left\{\begin{array}{ll}
\left(x_{1}, x_{2}\right), & \text { if } \tag{2}\\
x_{1} \in\left[0, \frac{1}{2}\right] \\
\left(1-x_{1}, x_{2}\right), & \text { if }
\end{array} x_{1} \in\left[\frac{1}{2}, 1\right]\right.
$$

Then $K=g(G)$. In other words, K is obtained from G under the mapping g which is the identity on the left half of G and the symmetry with respect to the straight line $x_{1}=\frac{1}{2}$ on the right half of G.

Fig. 3
Now properties 1° and 2° of K are evident from the construction; in particular $e=(0,0)$ is the only end point of K. By the definition of the metric on K we see that any subsegment of $[0,1]$ contained in $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right]$ or in $\left[\frac{1}{4}, \frac{3}{4}\right] \backslash\left\{\frac{1}{4}, \frac{3}{4}\right\}$ is expanded twice under f, whence 3° follows. Properties 4° and 5° easily follow from the definition of f, and therefore the argumentation is complete.

Now we introduce some auxiliary notions and notations. Let X be a linear graph and let x be a point of X. We denote by $K(X, x)$ the closure of an arbitrary component of $X \backslash\{x\}$. The set $K(X, x)$ is said to be of the first kind provided that it contains a simple closed curve. Otherwise it is said to be of the second kind.

Consider an arc $x p \subset X$ and let $K(X, x ; p)$ denote the closure of the component of $X \backslash\{x\}$ that contains the point p. Then obviously $x p \subset K(X, x ; p)$. The arc $x p$ is said to be of the first kind with respect to x provided that $K(X, x ; p)$ is of the first
kind, i.e., if it contains a simple closed curve. Otherwise $x p$ is said to be of the second kind with respect to x.

Given a point x of a linear graph X, let U_{x} be an open connected neighborhood of x containing neither end points nor ramification points except, perhaps, x itself. Thus

$$
\begin{equation*}
\left(U_{x} \backslash\{x\}\right) \cap(E(X) \cup R(X))=\emptyset \tag{3}
\end{equation*}
$$

and \bar{U}_{x} is an n-od, where $n=\operatorname{ord}_{x} X$:

$$
\begin{equation*}
\bar{U}_{x}=\bigcup\left\{x p_{i}: i=1,2, \ldots, \operatorname{ord}_{x} X\right\} \tag{4}
\end{equation*}
$$

The number of the arcs $x p_{i}$ which are of the first kind with respect to x will be called the cyclic order of X at x, and it will be denoted by $c(X, x)$; the number of the arcs $x p_{i}$ which are of the second kind with respect to x will be called the tree order of X at x, and it will be denoted by $t(X, x)$. Therefore we have

$$
\begin{equation*}
c(X, x)+t(X, x)=\operatorname{ord}_{x} X \tag{5}
\end{equation*}
$$

for every point $x \in X$.
Lemma 1. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. For each point $x \in X$ let U_{x} be an open connected neighborhood of x satisfying (3) and such that $\bar{U}_{x} \subset U$, where U is an open neighborhood of x as in the definition of the local expansion f. If an arc $x p_{i}$ of (4) is of the first kind with respect to x, then its image $f\left(x p_{i}\right)$ is an arc of the first kind with respect to its end point $f(x)$.

Proof. Since $x p_{i} \subset U$, hence f maps $x p_{i}$ homeomorphically onto an $\operatorname{arc} f(x) f\left(p_{i}\right)$ (see Proposition 1 (ii)). Suppose on the contrary that $f(x) f\left(p_{i}\right)$ is of the second kind with respect to $f(x)$. Put $T=K\left(Y, f(x) ; f\left(p_{i}\right)\right)$. Thus T is a tree in Y containing the $\operatorname{arc} f(x) f\left(p_{i}\right)$. Consider two cases. If $x p_{i}$ lies on a simple closed curve S, then $f(x) f\left(p_{i}\right) \subset f(S)$, whence $f(S)$ has a nondegenerate intersection with T. We see that $T \cap f(S)$ is a tree as a subcontinuum of T, and therefore $f(S)$ contains an end point of itself, contrary to (iii) of Proposition 1. If $x p_{i}$ is contained in no simple closed curve, then, since it is of the first kind with respect to x, there exists an arc $x q$ and a simple closed curve S_{1} such that $x p_{i} \subset x q \subset x q \cup S_{1} \subset K\left(X, x ; p_{i}\right)$ and $x q \cap S_{1}=\{q\}$. Since no point of $x q \backslash\{x, q\}$ is mapped to an end point of $f(x q)$ by (iv) of Proposition 1 and since the $\operatorname{arc} f(x) f\left(p_{i}\right)$ is contained in $T \cap f(x q)$, we conclude that $f(x q) \subset T$ and, moreover, $f(x q)$ is an arc with $f(x) \neq f(q)$. Thus $f\left(S_{1}\right)$ has a nondegenerate intersection with T, which implies, as in the previous case, a contradiction with (iii) of Proposition 1. So the lemma is proved.

Since $\bar{U}_{x} \subset U$ and $f \mid U$ is one-to-one by (i) of Proposition 1, hence $f \mid \bar{U}_{x}$ is a homeomorphism, and therefore we conclude from Lemma 1 the following

Corollary 1. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. Then the cyclic order of a point is never decreased, i.e., for every point $x \in X$ we have

$$
\begin{equation*}
c(X, x) \leqq c(Y, f(x)) \tag{6}
\end{equation*}
$$

Lemma 2. Let two linear graphs T_{1} and T_{2} be given such that T_{2} contains no simple closed curve, and let $f: T_{1} \rightarrow f\left(T_{1}\right) \subset T_{2}$ be a local expansion of T_{1} into T_{2}. Then T_{1}
also contains no simple closed curve, f is an embedding, and for every arc $A \subset T_{1}$ we have

$$
\begin{equation*}
\lambda(A)<\lambda(f(A)) \tag{7}
\end{equation*}
$$

where $\lambda(A)$ and $\lambda(f(A))$ are defined by (3) of [5], p. 80.
Proof. Suppose S is a simple closed curve in T_{1}. Then $f(S)$ is a nondegenerate subcontinuum of the tree T_{2}, so it is a tree. Hence it contains an end point of itself, contrary to (iii) of Proposition 1. Further, it is known that for every $\operatorname{arc} a b \subset T_{1}$ the partial mapping $f \mid a b: a b \rightarrow f(a b)$ is a homeomorphism (see [1], Corollary 4.1), whence f is one-to-one, and thus it is an embedding because T_{1} is compact. Inequality (7) has been proved in Proposition 7 of [3] for local expansions of linear graphs onto itself (i.e., under an additional assumption $T_{1}=T_{2}$ in our notation), but the whole argumentation remains true without this assumption. So the lemma is proved.

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A continuous mapping $f: X \rightarrow Y$ of X into Y is said to be an expansive embedding provided that for every two points $y, z \in X$ we have $d_{X}(y, z)<d_{Y}(f(y), f(z))$. It is easy to verify that if f is an expansive embedding, then $f: X \rightarrow f(X) \subset Y$ is a homeomorphism.

Lemma 3. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. Further, let $K(X, x)$ and $K(Y, f(x))$ be of the second kind, and let there exist an arc $x p \subset K(X, x)$ whose image $f(x p)$ is contained in $K(Y, f(x))$. Then $f(K(X, x)) \subset$ $\subset K(Y, f(x))$, and $f \mid K(X, x): K(X, x) \rightarrow K(Y, f(x))$ is an expansive embedding.

Proof. Suppose on the contrary that there exists a point $q \in K(X, x)$ such that $f(q) \in Y \backslash K(Y, f(x))$. Note that $q \neq x$. Since $K(X, x)$ is of the second kind, it is a tree for which the point x is an end point, and we see that $x p \cap x q \subset K(X, x)$ is a nondegenerate arc, the image of which under f is contained in $K(Y, f(x))$. Consider the component of the set $x q \cap f^{-1}(K(Y, f(x)))$, i.e., the maximal subarc $x r$ of the arc $x q$ such that $f(x r) \subset K(Y, f(x))$. Since $f(q)$ is out of $K(Y, f(x))$ we see that $r \neq q$, i.e., $x r$ is a proper subarc of the arc $x q$. The set $K(Y, f(x))$ being of the second kind, the continuum $f(x r)$ is a tree for which $f(x)$ is the only boundary point. Thus we conclude from continuity of f that $f(r)=f(x)$. Since every tree has at least two end points, there is an end point w of $f(x r)$ which is distinct from $f(x)$. Let $s \in x r \cap f^{-1}(w)$. So $s \in x r \backslash\{x, r\}$ and $f(s)=w$ is an end point of $f(x r)$ contrary to (iv) of Proposition 1. The further part of the conclusion of the lemma is a straight consequence of Lemma 2. Thus the proof is complete.

Proposition 2. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. If, for a point $x \in X$, we have

$$
\begin{equation*}
\operatorname{ord}_{x} X>c(Y, f(x)), \tag{8}
\end{equation*}
$$

then, among $t(X, x)$ sets $K(X, x)$ of the second kind there exist at least $m(x)=\operatorname{ord}_{x} X-$ $-c(Y, f(x))=t(X, x)-(c(Y, f(x))-c(X, x))$ of them, say $K_{i}(X, x)$ for $i=1,2, \ldots$ $\ldots, m(x)$, such that the partial mapping $f \mid \cup\left\{K_{i}(X, x): i=1,2, \ldots, m(x)\right\}$ is an expansive embedding of $\bigcup\left\{K_{i}(X, x): i=1,2, \ldots, m(x)\right\}$ into $\bigcup\left\{K_{j}(Y, f(x))\right.$: $j=1,2, \ldots, t(Y, f(x))\}$, where all $K_{j}(Y, f(x))$ are of the second kind.

Proof. Let U be an open neighborhood of x as in the definition of the local expansion f. To simplify notation, put $n=\operatorname{ord}_{x} X, c=c(X, x)$ and $t=t(X, x)$. So
$n=c+t$ by (5). Consider an n-od at x contained in U, which is the union of n arcs $L_{k}(k=1,2, \ldots, n)$ emanating from x and disjoint out of this point. Label these arcs in such a manner that the indices $k \leqq c$ correspond to arcs of the first kind with respect to $x: L_{1}, L_{2}, \ldots, L_{c}$, while further indices correspond to arcs of the second kind with respect to $x: L_{c+1}, L_{c+2}, \ldots, L_{c+t}$.

Since $L_{k} \subset U$ for $k=1,2, \ldots, n$, it follows from (ii) of Proposition 1 that $f \mid L_{k}: L_{k} \rightarrow f\left(L_{k}\right)$ is a homeomorphism. So the image under f of every L_{k} is an $\operatorname{arc} f\left(L_{k}\right)$ having $f(x)$ as its end point. We know by Lemma 1 that for $k \leqq c$ the $\operatorname{arcs} f\left(L_{k}\right)$ are of the first kind with respect to $f(x)$. Hence every arc L_{k} for $c+1 \leqq k \leqq c+t=n$ is mapped under f onto an arc which can be either of first or of second kind with respect to $f(x)$. Since in an ord ${ }_{f(x)} Y$-od at $f(x)$ we have $c(Y, f(x))$ arcs of the first kind with respect to $f(x)$ and since $c=c(X, x)$ of them are already occupied (in the sense that they have nondegenerate intersection with the arcs $f\left(L_{k}\right)$ for $k=1,2, \ldots$ \ldots, c), hence at most $c(Y, f(x))-c$ arcs L_{k} with $k=c+1, c+2, \ldots, c+t$ can be mapped into arcs of the first kind with respect to $f(x)$ (note that $c(Y, f(x))-c \geqq 0$ by (6) of Corollary 1). Therefore it remains at least $m(x)=t-(c(Y, f(x))-c)$ $\operatorname{arcs} L_{k_{i}}$ (where $k_{i} \in\{c+1, c+2, \ldots, c+t\}$ and $i=1,2, \ldots, m(x)$) of the second kind with respect to x, and every of them is homeomorphically mapped onto an arc of the second kind with respect to $f(x)$. Observe that $m(x)>0$ by the hypothesis. Since every such arc $L_{k_{i}}$ is contained in a set $K(X, x)$ of the second kind (being the closure of a component of $X \backslash\{x\}$), we have at least $m(x)$ sets $K_{i}(X, x)$ of the second kind with $L_{k_{i}} \subset K_{i}(X, x)$ for $i=1,2, \ldots, m(x)$. Since the $\operatorname{arc} f\left(L_{k_{i}}\right)$ is of the second kind with respect to $f(x)$, it is contained in some set $K_{j}(Y, f(x))$ of the second kind, where $j \in\{1,2, \ldots, t(Y, f(x))\}$. Therefore $K_{j}(Y, f(x))$ is a tree and we conclude from Lemma 3 that $f \mid K_{i}(X, x): K_{i}(X, x) \rightarrow K_{j}(Y, f(x))$ is an expansive embedding. Thus the proof is complete.

As a consequence of Corollary 1 and of Proposition 2 we get the following
Theorem 1. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. Then for every point $x \in X$ we have

$$
\begin{equation*}
c(X, x) \leqq c(Y, f(x)) \tag{6}
\end{equation*}
$$

and either $\operatorname{ord}_{x} X \leqq c(Y, f(x))$, or - if $\operatorname{ord}_{x} X>c(Y, f(x))$ - there are $\operatorname{ord}_{x} X$ -$-c(Y, f(x))$ trees being the closures of components of $X \backslash\{x\}$ which are expansively embedded under f into the corresponding trees being the closures of some components of $Y \backslash\{f(x)\}$. Furthermore, this expansive embedding is one-to-one with respect to the trees in the sense that no two different trees $K_{i_{1}}(X, x)$ and $K_{i_{2}}(X, x)$ are embedded into the same tree $K_{j}(Y, f(x))$.

Corollary 2. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be a local expansion of X onto Y. Then for every point $x \in X$ we have

$$
\begin{equation*}
\operatorname{ord}_{x} X \leqq \operatorname{ord}_{f(x)} Y \tag{9}
\end{equation*}
$$

Indeed, if $\operatorname{ord}_{x} X \leqq c(Y, f(x))$, then (9) trivially holds by (5) applied to Y at $f(x)$. Otherwise we have (8), and by Proposition 3 there exist $m(x)$ arcs in X of the second kind with respect to x which are mapped onto corresponding arcs of the second kind with respect to $f(x)$. Thus we have the inequality $m(x) \leqq t(Y, f(x))$, i.e., $t(X, x)-(c(Y, f(x))-c(X, x)) \leqq t(Y, f(x))$, and using (5) we have (9).

Corollary 3. Let $f: X \rightarrow Y$ be a local expansion of a linear graph X onto a linear graph Y. Then

$$
\begin{equation*}
\operatorname{card} E(Y) \leqq \operatorname{card} E(X) \tag{10}
\end{equation*}
$$

Indeed, for every end point y of Y only end points of X can be in $f^{-1}(y)$, i.e., $f^{-1}(y) \subset E(X)$ for all $y \in E(Y)$ by (9), whence (10) follows.

Example 2. There exists a local expansion $f:[0,1] \rightarrow S$ of the unit interval [0,1$]$ onto the unit circumference $S=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}=1\right\}$ such that none of inequalities (6), (9) and (10) can be replaced by the corresponding equality.

Indeed, put $f(x)=\exp (2 \pi i x)$ for $x \in[0,1]$. Then f is a local expansion with the coefficient $M=2 \pi$ for all x, and none of the three inequalities mentioned above turns into equality.

Example 3. There exists a local expansion $f: X \rightarrow Y$ of a simple triod X onto a circle with a tail Y, and there are two points x and x^{\prime} of X such that for x inequality (8) is satisfied, while for x^{\prime} it is not.

To describe the example, let x_{1}, x_{2} be the cartesian rectangular coordinates of a point in the euclidean plane. Put $A=\left\{\left(x_{1}, 0\right): 0 \leqq x_{1} \leqq 1\right\}, B=\left\{\left(0, x_{2}\right): 0 \leqq x_{2} \leqq 1\right\}$ and $C=\left\{\left(0, x_{2}\right):-1 \leqq x_{2} \leqq 0\right\}$ and define $X=A \cup B \cup C$ with the natural convex metric. Further, put $D=\left\{\left(x_{1}, 0\right) ; 0 \leqq x_{1} \leqq 2\right\}, \quad S=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}+1\right)^{2}+x_{2}^{2}=1\right\}$ and define $Y=D \cup S$ with the natural convex metric. Finally define $f: X \rightarrow Y$ as follows.

$$
\begin{gathered}
f\left(\left(x_{1}, x_{2}\right)\right)= \\
=\left\{\begin{array}{lll}
\left(2 x_{1}, 0\right) & \text { if } x_{1} \in[0,1] \text { and } x_{2}=0, \text { i.e., if }\left(x_{1}, x_{2}\right) \in A \\
\left(1+\cos \pi x_{2}, \sin \pi x_{2}\right) & \text { if } x_{1}=0 \quad \text { and } x_{2} \in[-1,1], & \text { i.e., if }\left(x_{1}, x_{2}\right) \subset B \cup C .
\end{array}\right.
\end{gathered}
$$

Thus $f(A)=D$ and $f(B \cup C)=S$. We see that for all points $x \in A \backslash\{(1,0)\}$ we have (8). In particular, for $x=(0,0)$ we have ord $_{x} X=3$ and $c(Y, f(x))=2$, and for $x \in A \backslash\{(0,0),(1,0)\}$ we have $\operatorname{ord}_{x} X=2$ and $c(Y, f(x))=1$. For $x=(1,0)$ we have $\operatorname{ord}_{x} X=c(Y, f(x))=1$. If $x=(0,1)$ or $x=(0,-1)$, then $\operatorname{ord}_{x} X=1$ and $c(Y, f(x))=2$. If $x \in B \cup C \backslash\{(0,0),(0,1),(0,-1)\}$, then $\operatorname{ord}_{x} X=c(Y, f(x))=2$.

Let us consider now a particular case of $Y=X$. Under this additional assumption one can prove some further properties of expansive embeddings of the trees mentioned in the conclusion of the theorem. To show these properties we start with the mapping of the set of end points.

Proposition 3. Let $f: X \rightarrow X$ be a local expansion of a linear graph X onto itself. Then $f \mid E(X): E(X) \rightarrow E(X)$ is a one-to-one and onto mapping (i.e., f permutes the end points of $X)$.

In fact, by Proposition 6 of [3] we have $f(E(X)) \subset E(X)$. The inverse inclusion is a consequence of inequality (9), whence we see that f maps the set $E(X)$ onto itself. Since $E(X)$ is finite, the conclusion holds.

Under the assumption $Y=X$ we get from Propositions 2 and 3 the following corollary, in which notation of Proposition 2 is used.

Corollary 4. If $f: X \rightarrow X$ is a local expansion of a linear graph X onto itself, and if for a point $x \in X$ we have $\operatorname{ord}_{x} X>c(X, f(x))$, then there are at least $m(x)=$ $=\operatorname{ord}_{x} X-c(X, f(x))$ sets $K_{i}(X, x) \quad(i=1,2, \ldots, m(x))$ of the second kind such that
the partial mapping $f \mid \bigcup\left\{K_{i}(X, x): \quad i=1,2, \ldots, m(x)\right\}$ is an expansive embedding of $\bigcup\left\{K_{i}(X, x): i=1,2, \ldots, m(x)\right\}$ into $\cup\left\{K_{j}(X, f(x)): j=1,2, \ldots, t(X, f(x))\right\}$, where all $K_{j}(X, f(x))$ are of the second kind. Furthermore, for every $i=1,2, \ldots, m(x)$ and for some properly chosen $j \in\{1,2, \ldots, t(X, f(x))\}$ we have $f\left(E\left(K_{i}(X, x)\right)\right) \subset$ $\subset E\left(K_{j}(X, f(x))\right)$.

As a consequence of the above corollary we get Theorem 2 of [3], which we reformulate in the form of

Corollary 5. If $f: X \rightarrow X$ is a local expansion of a linear graph onto itself, then there exists a point $p \in X$ at which X is of the maximal order, and such that for every component of $X \backslash\{p\}$ its closure $K(X, p)$ is of the first kind.

Proof. Consider the set M of all points x of X at which $\operatorname{ord}_{x} X$ is maximal, and let P be a subset of M composed of these points p of M for which $c(X, p)$ is maximal. By inequality (9) we have $f(M) \subset M$, whence by (6) it follows $f(P) \subset P$. Suppose on the contrary that there is a point $p \in P$ having a set $K(X, p)$ of the second kind, i.e. such that $t(X, p)>0$. Note that the number $t(X, p)$ is constant for all points $p \in P$ by the definition of P. Now consider an arc $p_{0} e_{0}$ such that (a) $p_{0} \in P$, (b) $e_{0} \in E(X)$, (c) $p_{0} e_{0}$ is contained in some tree $K\left(X, p_{0}\right)$, and (d) $\lambda\left(p_{0} e_{0}\right)$ is the greatest possible for all arcs satisfying (a), (b) and (c). Let U_{0} be an open connected neighborhood of p_{0} such that $\bar{U}_{0} \subset U$, where U is an open neighborhood of p_{0} as in the definition of the local expansion f. Then $f \mid \bar{U}_{0}$ is a homeomorphism by (i) of Proposition 1, whence we conclude, using Lemma 1 , that $f\left(K\left(X, p_{0}\right)\right)$ is contained in some tree of the form $K\left(X, f\left(p_{0}\right)\right)$. Applying Lemma 2 we see that $f \mid p_{0} e_{0}$ is an expansive embedding with $\lambda\left(p_{0} e_{0}\right)<\lambda\left(f\left(p_{0}\right) f\left(e_{0}\right)\right)$ which contradicts to condition (d) of the definition of $p_{0} e_{0}$. This completes the proof.

Recall that the condition formulated in Corollary 5 is not only necessary but also sufficient for the existence of a local expansion of a linear graph onto itself (see [3], Theorem 1).

Frequently local expansions are considered together with openness of the mapping. We shall see now that not only the order ([5], Proposition 1) but also the cyclic order and the tree order of a point are invariants of open local expansions of linear graphs. We begin with the following

Lemma 4. Let X and Y be linear graphs and let $f: X \rightarrow Y$ be an open mapping of X onto Y. Then for every two points x and p of X we have

$$
K(Y, f(x) ; f(p)) \subset f(K(X, x ; p))
$$

Proof. Suppose on the contrary that there exists a point $y \in K(Y, f(x) ; f(p)) \backslash$ $\backslash f(K(X, x ; p))$. Thus $y \neq f(x)$ and since $K(Y, f(x) ; f(p)) \backslash\{f(x)\}$ is just the component of $Y \backslash\{f(x)\}$ containing the point $f(p)$, hence there exists an $\operatorname{arc} f(p) y$ in this component. Thus it does not contain $f(x)$. Let us order this arc from $f(p)$ to y. Since $f(p)$ is in $f(K(X, x ; p))$ while y is not, there exists a last point y_{0} of the $\operatorname{arc} f(p) y$ which belongs to $f(K(X, x ; p))$. Then obviously $y_{0} \neq y$. Let $q \in K(X, x ; p)$ be such that $f(q)=y_{0}$. Thus $q \neq x$. Indeed, if $q=x$, then $f(x)=y_{0} \in f(p) y$, contrary to the choice of the arc $f(p) y$. Hence $U=K(X, x ; p) \backslash\{x\}$ is an open neighborhood of q. Since f is open, $f(U)$ is an open set around y_{0}, and therefore the intersection of
$f(U)$ with the subarc $y_{0} y$ of the $\operatorname{arc} f(p) y$ is nondegenerate, contrary to the definition of y_{0}.

Taking $X=[-1,1], Y=[0,1]$ and $f: X \rightarrow Y$ defined by $f(x)=|x|$ we see that for $x=1 / 2$ and $p=1 / 3$ the inclusion in Lemma 4 cannot be replaced by equality.

Theorem 2. Let $f: X \rightarrow Y$ be an open local expansion of a linear graph X onto a metric space Y. Then:
$1^{\circ} Y$ is a linear graph;
$2^{\circ} f$ is a local homeomorphism;
3° for every point $x \in X$ we have

$$
\begin{align*}
\operatorname{ord}_{x} X & =\operatorname{ord}_{f(x)} Y \tag{11}\\
c(X, x) & =c(Y, f(x)) \tag{12}\\
t(X, x) & =t(Y, f(x)) \tag{13}
\end{align*}
$$

4° for every continuum $Q \subset Y$ the inverse image $f^{-1}(Q)$ has finitely many components, and every one of them is mapped onto the whole Q under f;
5° if a point $y \in Y$ lies in a simple closed curve Q (contained in Y), then every point of the inverse image $f^{-1}(y)$ also lies in a simple closed curve S (contained in X), and $f \mid S: S \rightarrow Q$ maps openly S onto Q;
6° for every point $x \in X$ and for a (properly chosen) point $p \in X$ the kind of an arc $x p$ is an invariant of the mapping f in the following sense. Given a point $x \in X$, let U_{x} be an open connected neighborhood of x satisfying condition (4) and such that $\bar{U}_{x} \subset U$, where U is an open neighborhood of x as in the definition of the local expansion f. If an arc $x p_{i}$ of (4) is of the first (resp. second) kind with respect to x, then its image $f\left(x p_{i}\right)$ is an arc of the first (resp. second) kind with respect to $f(x)$.

Proof. Properties 1° and 2° are known: namely the property of being a linear graph is preserved under open mappings ([7], Chapter X, Theorem 1.1, p. 182), and every open local expansion is a local homeomorphism ([1], Proposition 3.7). Let x be a point of X. To prove (11) of 3° observe that one inequality is proved in Corollary 2 as (9), and the opposite inequality is a consequence of openness of the mapping and it is proved as Corollary 7.31 of [7], p. 147. Properties (12) and (13) of 3° will be shown in the final part of the proof.

To verify 4° note that if Q is a one-point set, then the conclusion follows from (v) of Proposition 1, because f is a local expansion. So, let Q be nondegenerate. Since Y is a linear graph by 1°, it follows that Q has the non-empty interior (cf. [2], p. 54). It is known that every open mapping of a locally connected continuum is quasimonotone ([7], Chapter VIII, Corollary 8.11, p. 152) which means that for every subcontinuum Q of Y having the non-empty interior the inverse image $f^{-1}(Q)$ has finitely many components and every one of them is mapped onto Q under f. Since the linear graph X is a locally connected continuum indeed, 4° is established.

To show 5° let us take a point $y \in Q \subset Y$, where Q is a simple closed curve. Since $f^{-1}(Q)$ is an inverse set ([7], p. 137), it follows by (7.2) of [7], p. 147 that the partial mapping $f \mid f^{-1}(Q)$ is open. Since $f^{-1}(Q)$ has finitely many components by 4°, say $C_{1}, C_{2}, \ldots, C_{m}$, we conclude that every one of them is an open subset of $f^{-1}(Q)$, whence it follows that $f \mid C_{k}: C_{k} \rightarrow Q$ is open for every $k=1,2, \ldots, m$. Moreover, we have $f\left(C_{k}\right)=Q$ for every k by 4°, and we see that every component C_{k} is a linear
graph as a subcontinuum of X. Therefore (11) can be applied to the open local expansion $f \mid C_{k}$ of C_{k} onto $Q(k=1,2, \ldots, m)$, whence we have $\operatorname{ord}_{p} C_{k}=2$ for every point $p \in C_{k}$. Thus every C_{k} is a simple closed curve ([4], §51, V, Theorem 6, p. 294). Now let $x \in f^{-1}(y) \subset f^{-1}(Q)=\bigcup\left\{C_{k}: k=1,2, \ldots, m\right\}$. Then $x \in C_{k}$ for some k, and 5° follows.

One part of 6°, namely for arcs of the first kind, has been proved previously as Lemma 1 (even without openness of f). To prove the other part, for arcs of the second kind, let us take an arc $x p_{i}$ of the second kind with respect to x and observe that the set $K\left(X, x ; p_{i}\right)$ is a tree. Denote it by T. Obviously $x p_{i} \subset T$. Since $x p_{i} \subset U$, hence f maps $x p_{i}$ homeomorphically onto an arc $f(x) f\left(p_{i}\right)$ (see Proposition 1 (ii)). Suppose on the contrary that $f(x) f\left(p_{i}\right)$ is of the first kind with respect to $f(x)$, i.e. that it is contained in the closure $K=K\left(Y, f(x) ; f\left(p_{v}\right)\right)$ of the component of $Y \backslash\{f(x)\}$ containing the point $f\left(p_{i}\right)$ and such that a simple closed curve Q is contained in K. By Lemma 4 we have $K \subset f(T)$. Thus $f(T)$ contains Q. Let $y \neq f(x)$ be a point of Q, and take a point x_{1} of T such that $f\left(x_{1}\right)=y$. Thus $x_{1} \neq x$. Since the closure T of the corresponding component of $X \backslash\{x\}$ is a tree, and since $x_{1} \in T$, there is no simple closed curve in X containing x_{1}; but this contradicts 5°. Therefore 6° is established.

Now equalities (12) and (13) of 3° are immediate consequences of 6° by (11) and (5). Thus the proof of the theorem is complete.

Remark that the role of X and Y are not reversible in 5° of Theorem 2 in the sense that if $f: X \rightarrow Y$ is an open local expansion from a linear graph X onto a linear graph Y and if a point $x \in X$ lies in a simple closed curve contained in X, then $f(x)$ need not lie in anysimpleclosed curve in Y. To see this take four different points $a_{0}, a_{1}, a_{2}, a_{3}$ and join them by arcs (named edges) as follows: every a_{i} is joined by exactly one edge with a_{3-i} and by exactly two edges with a_{1-i}, where indices are considered modulo 4, and where the edges are assumed to be disjoint out of their end points. No other edges are considered, in particular there is no edge joining a_{i} with a_{i+2}. Let X be the union of all six edges. Metrize X by a convex metric assuming that the length of every edge is equal to 1 . So X is a linear graph. Note that every point of X lies in a simple closed curve. Further, let A and B be two disjoint circumferences of length 2 each and let C be a straight line segment also of length 2 joining a point p of A with a point q of B. Metrize the union $Y=A \cup B \cup C$ by the convex metric generated by lengths of arcs in A, B and C respectively. Let a mapping $f: X \rightarrow Y$ of X onto Y be defined as follows. $f\left(a_{0}\right)=f\left(a_{1}\right)=p ; f\left(a_{2}\right)=f\left(a_{3}\right)=q ; f$ expands each of thetwo edges joining a_{0} and a_{1} twice, mapping it onto A, each of the two edges joining a_{2} with a_{3} is expanded onto B, and finally the edges $a_{1} a_{2}$ and $a_{0} a_{3}$ are expanded onto C. It can be easily seen that f is an open local expansion (with the coefficient of expansion $M=2$ at each point $x \in X$), and that the interior points of $a_{1} a_{2}$ and $a_{0} a_{3}$ are mapped on some interior points of C, so their images do not belong to any simple closed curve in Y.

References

[1] J. J. Charatonik and M. Kalota, On local expansions, Fundamenta Mathematicae, 117 (1983), 187-203.
[2] J. J. Charatonik and S. Miklos, Real functions on connected metric spaces, Rendiconti di Matematica, 13 (1980), 49-58.
[3] J. J. Charatonik and S. Miklos, Local expansions on graphs, Fundamenta Mathematicae, 113 (1981), 235-252.
[4] K. Kuratowski, Topology, vol. II (New York, 1968).
[5] S. Miklos, Open local expansions on graphs, Bulletin de l'Académie Polonaise des Sciences, Serie des sciences mathematiques, 29 (1981), 79-82.
[6] I. Rosenholtz, Local expansions, derivatives and fixed points, Fundamenta Mathematicae, 91 (1976), 1-4.
[7] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications vol. 28 (1963).
(Received May 23, 1983)
INSTITUTE OF MATHEMATICS
WROCEAW UNIVERSITY
WROCEAW
POLAND

MONOIDS WITH DISJUNCTIVE IDENTITY AND THEIR CODES*

H. JÜRGENSEN (London, Ontario), H. J. SHYR (Taichung) and G. THIERRIN (London, Ontario)

1. Introduction

In this paper we prove several properties of monoids with disjunctive identity. As is well-known a disjunctive identity of a finitely generated monoid corresponds to a biprefix code, in fact a strong code in the sense of $[16,17]$. Whereas finite strong codes have been characterized completely [16, 17], little is known about infinite strong codes in general.

In this paper, several properties of strong codes in general, as well as of a special class of strong codes are proved. To a great extent, the Dyck languages are characteristic for the structure of these special strong codes. Some insight into the structure of these codes as well as that of monoids with disjunctive identity will also be gained from considering special monoid presentations, a subject which has recently received renewed interest for applications in other areas of computer science, too [3].

2. Notation and definitions

Let X be an alphabet, that is a non-empty set. X^{*} denotes the free monoid generated by X. Let $X^{+}=X^{*}=X^{*} \backslash\{1\}$.

If S is a semigroup then $S^{1}=S$ if S is a monoid, and $S^{1}=S \cup\{1\}$ otherwise with 1 acting as the identity of S^{1}. For $L \subseteq S, x \in S$, let

$$
L . . x=\left\{(u, v) \mid u, v \in S^{1}, u x v \in L\right\} .
$$

The principal congruence σ_{L} of L is defined by

$$
x \sigma_{L} y \leftrightarrow L . . x=L . . y .
$$

The residue of L is the set

$$
W(L)=\{x \mid x \in S, L . . x=\emptyset\} .
$$

L is said to be disjunctive in S if σ_{L} is the equality; it is quasidisjunctive in S if

$$
x \sigma_{L} y \rightarrow x=y \quad \text { or } \quad x, y \in W(L) .
$$

For $x \in S$ and any equivalence ϱ on S let $[x]_{\varrho}$ be the ϱ-class of x and for $M \subseteq S$ let M / ϱ be the set of ϱ-classes of elements in M; thus, in particular, $\{x\} / \varrho=[x]_{Q} . L / \sigma_{L}$

[^7]is disjunctive in S / σ_{L}. As $W(L)$ is either empty or an ideal of S the set $W(L) / \sigma_{L}$ is either empty or consists of a single element, the zero of S / σ_{L}, and $W(L) / \sigma_{L}=$ $=W\left(L / \sigma_{L}\right)$.

We shall also have to consider the congruence σ_{L}^{+}of L for $L \subseteq S$ defined by

$$
x \sigma_{L}^{+} y \leftrightarrow(\forall u, v \in S: u x v \in L \leftrightarrow u y v \in L) .
$$

Clearly σ_{L}^{+}and σ_{L} coincide on monoids. σ_{L}^{+}is the principal congruence in the sense of Dubreil (see [5]). Whereas L is always a union of σ_{L}-classes, it need not be a union of σ_{L}^{+}-classes at all.

A semigroup is said to be totally disjunctive if each singleton subset of it is disjunctive. If there is no risk of confusion we do not distinguish between a singleton set and its element notationally.

3. Monoids with disjunctive identity - basic properties

The examples one would have in mind when starting to consider monoids with disjunctive identity would be:

- groups,
- the bicyclic monoid B,
- the polycyclic monoids.

We shall prove some propositions which seem to indicate that the monoids listed are somehow characteristic for the class of monoids with disjunctive identity, and we shall later give further classes of examples.

Lemma 3.1. Let S be a semigroup with a non-zero disjunctive element. Then S has a unique [0-]minimal ideal which contains all disjunctive elements of S.

Proof. Let $\emptyset \neq L \neq\{0\}, L \subseteq S$ be disjunctive. If I is a non-zero ideal of S then $\emptyset \neq L \cap I \neq\{0\}$. Hence, if $L=\{x\}$ then x is in the intersection K of all non-zero ideals of S. Therefore $K=S^{1} \times S^{1}$ and K is the unique [0-]minimal ideal of S.

As an immediate consequence of 3.1 one observes that for x disjunctive in S either $W(x)=\emptyset$ or $W(x)=\{0\}$ if S has a zero. For $|W(x)| \leqq 1$ by disjunctivity. If $W(x) \neq \emptyset$ then $W(x)=\{0\}$ as $W(x)$ is an ideal of S.

Proposition 3.2. Let M be a monoid with disjunctive identity. Then M is a simple or 0-simple monoid.

Proof. By Lemma 3.1, the identity is in the unique [0-]minimal ideal of M. But $M 1 M=M$, so M is simple or 0 -simple.

Evidently, Proposition 3.2 generalises to monoids with quasidisjunctive identity. In that case $M / W(1)$ is a [$0-$]simple monoid. That not every simple monoid has its identity element disjunctive will be shown later in Example 6.2.

For a while we conjectured that Proposition 3.2 could be strengthened to say that a monoid with disjunctive identity is an inverse [0-]bisimple monoid. This would combined well with the following result due to B. M. Schein:

Proposition 3.3 [15]. Each non-zero element of a [0-]bisimple inverse semigroup is disjunctive. ${ }^{1}$

Semigroups with each element disjunctive, called totally disjunctive in [10], were studied to a certain extent in $[9,10]$.

The above conjecture is "settled" by the following counterexamples.
Example 3.4. Consider the Bruck-extension ($[5, \S 8.5$] and $[10]) B R(M, \theta)$ of the monoid $M=\{1,0\}$ with $10=01=00=0,11=1$ and $\theta(M)=1 . M$ is totally disjunctive, and therefore $B R(M, \theta)$ is totally disjunctive [10]. However, $B R(M, \theta)$ is not [0-]bisimple as M is not bisimple [5].

The following example shows that even a simple monoid with disjunctive identity need not be inverse.

Example 3.5. Let $X=\{x, y\}$ and consider the monoid M with the presentation $\left\langle X \mid x^{2} y=1\right\rangle$. Each element of M can be represented by a word w of the form

$$
y^{n} x y^{m_{1}} x y^{m_{2}} \ldots x y^{m_{k}} x^{l}
$$

with $n, k, l \geqq 0, m_{1}, m_{2}, \ldots, m_{k} \geqq 1$. Multiplying w by

$$
x^{l} x^{2 m_{k}-1} \ldots x^{2 m_{2}-1} x^{2 m_{1}-1} x^{2 n}
$$

from the left and by y^{l} from the right yields 1 ; hence M is simple.
The \mathscr{R} - and \mathscr{L}-classes of w are

$$
R_{w}=\left\{y^{n} x y^{m_{1}} \ldots x y^{m_{k}} x^{l} \mid l \geqq 0\right\}
$$

and

$$
L_{w}=\left\{y^{\bar{n}} x y^{m_{1}} \ldots x y^{m_{k}} x^{l} \mid \bar{n} \geqq 0\right\} ;
$$

hence M is not bisimple; in fact the \mathscr{D}-class of w is

$$
D_{w}=\left\{y^{\bar{n}} x y^{m_{1}} \ldots x y^{m_{k}} x^{l} \mid \bar{n}, l \geqq 0\right\} .
$$

M is regular, each \mathscr{D}-class containing idempotents of the form

$$
y^{\bar{n}} x y^{m_{1}} \ldots x y^{m_{k}} x^{l} \quad \text { with } \quad l=2\left(\bar{n}+m_{1}+\ldots+m_{k}\right)-k .
$$

We now show that M is not an inverse monoid and that this also obtains for the monoid X^{*} / σ_{L} where L is the set of words in X^{*} which represent the identity of M. There are surjective homomorphisms $\varphi, \varphi_{L}, \varphi_{M}$,

such that φ_{L} is given by $w \mapsto[w]_{\sigma_{L}}, \varphi_{M}$ is defined by the presentation of M, and $\varphi(m)=\varphi_{L} \varphi_{M}^{-1}(m)$. In particular, $\varphi_{M}^{-1}(1)=L$. Clearly, $y x x$ and $x y x$ denote noncommuting idempotents in M. So M is not inverse.

[^8]On the other hand $y x x$ and $x y x$ are both not in L, and from $(x)(y x x)(x y) \overline{\bar{M}} x y x \notin L$, $(x)(x y x)(x y) \overline{\bar{M}} 1 \in L$ we see that $\varphi(y x x) \neq \varphi(x y x)$. Similarly, $\varphi((x y x)(y x x)) \neq$ $\neq \varphi((y x x)(x y x))=\varphi(y x x)$. Hence X^{*} / σ_{L} is not inverse; however, 1 is disjunctive in X^{*} / σ_{L} by the construction.

Even though the disjunctivity of its identity has quite severe implications for the structure of a monoid M it turns out that this property is still weak enough to allow for the following embeddability theorem.

Proposition 3.6. Each monoid can be embedded into a bisimple monoid with a disjunctive identity.

Proof. Consider the monoid $\mathscr{M}(A)$ of $[5, \S 8.6]$, that is, A is a set with $|A|$ an infinite regular cardinal number and $\mathscr{M}(A)$ is the set of mappings ξ of A into itself such that $|\xi(A)|=|A|$ and $\left|\xi^{-1}(a)\right|<|A|$ for all $a \in \xi(A)$. Each monoid can be embedded into $\mathscr{M}(A)$ for some A, and $\mathscr{M}(A)$ is a bisimple monoid [5] with identity l, the identity mapping. It is sufficient to prove that l is disjunctive in $\mathscr{M}(A)$. Consider $\delta, \xi \in \mathscr{M}(A), \quad \delta \neq \xi, \delta(a) \neq \xi(a)$ say. Let C be a cross-section of $\xi^{-1 \xi}$ containing a. Let η be any bijection of A onto C and $\bar{a}=\eta^{-1}(a)$. Clearly $\eta \in \mathscr{M}(A)$. We now choose $\theta \in \mathscr{M}(A)$ such that $\theta \xi \eta=l$ and $\theta \xi \eta \neq l$. For $b \in \xi(A)$ let $\theta(b)=\eta^{-1} \xi^{-1}(b)$; for $b \notin \xi(A)$ let $\theta(b)=b^{\prime}$ for some $b^{\prime} \in A$ such that $b^{\prime} \neq \bar{a}$.

Clearly θ is a mapping as $\left|\eta^{-1 \xi^{-1}}(b)\right|=1$ for all $b \in \xi(A)$, and $\theta \in \mathscr{M}(A)$. For $c \in A$ obviously $\theta \xi \eta(c)=c$ and $\theta \xi \eta=\imath$. Now consider $\theta \delta \eta(\bar{a})=\theta \delta(a)$. If $\delta(a) \notin \xi(A)$ then $\theta \delta(a)=b^{\prime} \neq a$ and $\theta \delta \eta \neq l$. Otherwise $\delta(a) \neq \xi(a)$ implies that $\xi^{-1} \delta(a) \cap$ $\cap \xi^{-1} \xi(a)=\emptyset$ and thus $\bar{a}=\theta \xi \eta(a)=\eta^{-1} \xi^{-1} \xi(a) \notin \eta^{-1} \xi^{-1} \delta(a) ;$ again $\theta \delta \eta \neq l$.

It is interesting to note that $\mathscr{M}(A)$ is in fact totally disjunctive; thus each monoid can be embedded into a totally disjunctive bisimple monoid.

4. The pre-image of 1

Let M be a monoid with disjunctive identity. We decsribe the properties of languages $L \subseteq X^{*}$ for an appropriate alphabet X such that $X^{*} / \sigma_{L} \cong M$ and $L / \sigma_{L}=1$.

If \bar{M} is a submonoid of a monoid M, then \bar{M} is said to be expansion and contraction closed if it satisfies the following two conditions:

$$
\begin{align*}
& \forall x, y, m \in M(x y \in \bar{M}, m \in \bar{M} \rightarrow x m y \in \bar{M}), \tag{0}\\
& \forall x, y, m \in M(x m y \in \bar{M}, m \in \bar{M} \rightarrow x y \in \bar{M}),
\end{align*}
$$

Proposition 4.1. Let M_{1}, M_{2} be monoids, φ a homomorphism of M_{1} onto M_{2}. If M_{2} has a disjunctive identity then M_{1} has an expansion and contraction closed submonoid \bar{M}, such that $\varphi^{-1}(1)=\bar{M}$. In this case then $M_{2} \cong M_{1} / \sigma_{M}$ with $\bar{M} / \sigma_{M}=1$.

Proof. Let 1 be disjunctive in M_{2} and define $\bar{M}=\varphi^{-1}(1)$. Clearly \bar{M} is a submonoid which satisfies $\left(\mathscr{E}_{0}\right)$ and $\left(\mathscr{C}_{0}\right)$. As 1 is disjunctive in M_{2}, the congruence defined by φ is the coarsest one saturating \bar{M}. Therefore it coincides with $\sigma_{\bar{M}}$. Hence the rest of the claim.

The statement of Proposition 4.1 has a converse as follows:

Proposition 4.2. Let M be a monoid and \bar{M} a submonoid of M which is expansion and contraction closed. Then $M / \sigma_{\bar{M}}$ is a monoid with disjunctive identity.

Proof. It is sufficient to prove that \bar{M} is a $\sigma_{\bar{M}}$-class. If $(x, y) \in \bar{M} . . m$ for $x, y \in M, m \in \bar{M}$ then $x m y \in \bar{M}$ and therefore $x y \in \bar{M}$ by $\left(\mathscr{C}_{0}\right)$. This implies $(x, y) \in \bar{M} . .1$.

On the other hand, if $(x, y) \in \bar{M} \ldots 1$ for $x, y \in M$ then $x y \in \bar{M}$ and therefore $x m y \in \bar{M}$ for $m \in \bar{M}$ by $\left(\mathscr{E}_{0}\right)$. Thus $(x, y) \in \bar{M} . . m$. This proves $1 \sigma_{M} m$ for all m in \bar{M}.

The family $\mathscr{F}_{0} M$ of expansion and contraction closed submonoids of a monoid M is a complete lower semilattice with smallest element $\{1\}$ with respect to intersection. If $\left\{M_{i} \mid i \in I\right\}$ is any family of $M_{i} \in \mathscr{F}_{0} M$, then $\bar{M}=\bigcap_{i \in I} M_{i}$ is non-empty, as $1 \in M_{i}$ for all M_{i}. If $x y \in \bar{M}$ and $m \in \bar{M}$ then $x y \in M_{i}$ and $m \in M_{i}$ for all i; by (\mathscr{E}_{0}) $x m y \in M_{i}$ and therefore $x m y \in \bar{M}$. The proof for $\left(\mathscr{C}_{0}\right)$ is similar.

A submonoid \bar{M} of a monoid M is called left unitary if $\bar{m} \in \bar{M}, \bar{m} m \in M$ implies $m \in \bar{M}$. By duality one defines "right unitary". \bar{M} is unitary if it is both left and right unitary. A code is called biprefix if it is both a prefix and suffix code.

Proposition 4.3. Each $\bar{M} \in \mathscr{F}_{0} M$ is a unitary submonoid of M.
Proof. Consider $m \in M, \bar{m} \in \bar{M}$ with $\bar{m} m=1 \bar{m} m \in \bar{M}$. By (\mathscr{C}_{0}) also $1 m \in \bar{M}$. Thus \bar{M} is left unitary. Dually, $m \bar{m} \in \bar{M}$ again implies $m \in \bar{M}$, and \bar{M} is right unitary.

Corollary 4.4 (see also [6]). Each $M \in \mathscr{F}_{0} X^{*}$ is generated by the biprefix code $M^{-} \backslash\left(M^{-}\right)^{2}$ where $M^{-}=M \backslash\{1\}$.

For codes the properties $\left(\mathscr{E}_{0}\right)$ and $\left(\mathscr{C}_{0}\right)$ are expressed as follows: Let X be an alphabet, $C \subseteq X^{+}$a code. C is said to be strong $[16,17]$ if C satisfies the following two conditions:
$\left(\mathscr{E}_{1}\right)$

$$
\forall x, y, m \in X^{+}\left(x y \in C, m \in C \rightarrow x m y \in C^{+}\right),
$$

$$
\begin{equation*}
\forall x, y, m \in X^{*}\left(x m y, m \in C^{+} \rightarrow x y \in C^{*}\right) \tag{1}
\end{equation*}
$$

Every strong code is a biprefix code. However, not every biprefix code is strong; for instance $C=\{a b\}$ over $X=\{a, b\}$ is not strong but of course biprefix.

As one might intuit, strong codes are closely related to expansion and contraction closed monoids.

Proposition 4.4. Each $M \in \mathscr{F}_{0} X^{*}$ is generated by a strong code; conversely, if $C \subseteq X^{*}$ is a strong code then $C^{*} \in \mathscr{F}_{0} X^{*}$.

Finite strong codes were completely characterised in [16, 17]. Let X and $C \subseteq X^{+}$ be finite, and let alph $C=\left\{u \in X \mid X^{*} u X^{*} \cap C \neq \emptyset\right\}$. Then, if C is a strong code, $C=$ $=(\operatorname{alph} C)^{n}$ for some n. The converse is obvious. Clearly $X^{*} / \sigma_{C^{*}} \cong Z_{n}$ or Z_{n}^{0}, where Z_{n} is the cyclic group of order n and Z_{n}^{0} is Z_{n} with a zero element added, depending on whether alph $C=X$ or alph $C \neq X$.

As will be seen in the sequel, the situation is far more complicated if C is infinite.
Example 4.5. Consider the context-free grammar $G=(V, X, P, \sigma)$, where $X=\{a, b\}, \quad V=\{a, b, \sigma, \tau\} P=\{\sigma \rightarrow a \tau b, \tau \rightarrow \tau \tau, \tau \rightarrow a \tau b, \tau \rightarrow 1\}$. Clearly, $L(G)$ satis-
fies $\left(\mathscr{E}_{1}\right)$ and $\left(\mathscr{C}_{1}\right)$. So $L(G)$ is a strong code, and $L(G)^{*}$ is the Dyck language [7]. $X^{*} / \sigma_{L(G)^{*}}$ is the bicyclic monoid with $L(G)^{*} / \sigma_{L(G)^{*}}=1$. We shall call $L(G)$ the Dyck code over $\{a, b\}$.

Example 4.6. Consider $L=\left\{w\left|w \in X^{*},|w|_{a}=|w|_{b}\right\}\right.$ where $X=\{a, b\}$ and $|w|_{a}$, $\left|w_{b}\right|$ denote the number of a 's and b 's in w, respectively. L is a deterministic contextfree language. X^{*} / σ_{L} is isomorphic with Z, the infinite cyclic group, and $L / \sigma_{L}=0$, the additive identity of Z. Thus L is generated by a strong code C, which by the above results of $[16,17]$ is not finite.

That expansion and contraction closed monoids or strong codes may be arbitrarily complex seems obvious; still we postpone a more precise statement to this extent to the next chapter. However, already at this stage, we should like to mention the example of a language $L \subseteq\{a, b\}^{*}$ provided by [8] which is not context-free, but is the σ_{L}-class of 1 :

Example 4.7. Let M be the monoid generated by $X=\{a, b\}$ subject to the relation $a b^{2} a^{2} b=1$. Let L be the set of words equivalent to 1 . Then $L / \sigma_{L}=1$ and M is an infinite group [8, 20].

5. Getting closer to the Dyck languages

Example 4.5, that is the Dyck language over $X=\{a, b\}$, suggests to strengthen the expansion and contraction conditions as follows:

$$
\begin{gather*}
\forall x, y, m \in X^{+}(x y \in C, m \in C \rightarrow x m y \in C), \tag{2}\\
\forall x, y, m \in X^{*}(x m y \in C, m \in C, x y \neq 1 \rightarrow x y \in C) . \tag{2}
\end{gather*}
$$

In addition we introduce the condition of infix closure:

$$
\begin{equation*}
\forall x, y, m \in X^{*}\left(x m y \in C, x y \in C, m \in X^{+} \rightarrow m \in C\right) . \tag{I}
\end{equation*}
$$

Clearly, if C satisfies $\left(\mathscr{E}_{2}\right),\left(\mathscr{C}_{2}\right)$ then it also satisfies $\left(\mathscr{E}_{1}\right),\left(\mathscr{C}_{1}\right)$. The converse is not true in general. To see this take L as in Example 4.6. Then $a b \in C, b a \in C$ for C the code generating L, but $a(b a) b=(a b)^{2} \notin C$.

On the other hand, evidently the Dyck code over $\{a, b\}$ satisfies the conditions $\left(\mathscr{E}_{2}\right),\left(\mathscr{C}_{2}\right)$. It is slightly more difficult to see that the code of Example 3.5 satisfies (\mathscr{E}_{2}) and $\left(\mathscr{C}_{2}\right)$, too; if L is the language of that example then the code C with $C^{*}=L$ is given by $C=x L x L y$ where L can also be characterised as the set of all words w over $X=\{x, y\}$ such that $|w|_{x}=2|w|_{y}$ and $|u|_{x} \geqq 2|u|_{y}$ for all prefixes u of w. This allows one to show that $\left(\mathscr{C}_{2}\right)$ and $\left(\mathscr{E}_{2}\right)$ obtain.

With (\mathscr{E}_{2}) we associate a partial ordering $\underset{\bar{E}}{\stackrel{\zeta}{E}}$ of X^{*} with respect to $C \subseteq X^{*}$ as follows: Let $x, y \in X^{*}$. The relation $\underset{\bar{E}}{\widehat{E}}$ is the transitive closure of $\stackrel{\Sigma}{\bar{E}}^{\prime}$ where $x \overline{\widehat{E}}^{\prime} y$ if and only if
(a) $x, y \notin C$ and $x=y$
or
(b) $x=x_{1} x_{2}, x_{1}, x_{2} \in X^{+}, y=x_{1} m x_{2}$ for some $m \in C$.

Clearly,

$$
\mathscr{E}_{2} C=\left\{y \mid y \in X^{*}, x \grave{\bar{E}} y \text { for some } x \in C\right\}
$$

is the smallest subset of X^{*} which contains C and satisfies (\mathscr{E}_{2}). Let

$$
\operatorname{Min}_{E} C=\{x \mid x \in C, y \underset{\bar{E}}{\leqq} x \rightarrow y=x \text { for } y \in C\}
$$

be the set of minimal elements of C. Obviously, $\operatorname{Min}_{E} C$ is well-defined and nonempty for any $C \neq \emptyset,\{1\}$.

For instance, $\operatorname{Min}_{E} C=\{a b\}$ for the Dyck code C over $X=\{a, b\}$.
Lemma 5.1. If $C \subseteq X^{*}$ satisfies $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$, then $\mathscr{E}_{2} \operatorname{Min}_{E} C=C$.
Proof. $\mathscr{E}_{2} \operatorname{Min}_{E} C \subseteq C$ is obvious. Let $w \in C$. If $w \in \operatorname{Min}_{E} C$ then $w \in \mathscr{E}_{2} \operatorname{Min}_{E} C$. Otherwise, $w=x m y$ with $x y \in C, x, y \in X^{+}, m \in C$. But $|x y|<|w|,|m|<|w|$. By induction $x y \in \mathscr{E}_{2} \operatorname{Min}_{E} C, m \in \mathscr{E}_{2} \operatorname{Min}_{E} C$. Thus $x m y=w \in \mathscr{E}_{2} \operatorname{Min}_{E} \mathbf{C}$.

In terms of grammars, Lemma 5.1 can be expressed as follows: Let $C \subseteq X^{*}$ satisfy $\left(\mathscr{E}_{2}\right)$. Then $C=L(G)$ for the following (generalized) context-free grammar $G_{C}=(V, \Sigma, P, \sigma):$

$$
\begin{gathered}
V=\{\sigma, \tau\} \cup \Sigma, \\
P=\left\{\sigma \rightarrow w \mid w \in \operatorname{Min}_{E} C\right\} \cup\left\{\tau \rightarrow w \mid w \in \operatorname{Min}_{E} C\right\} \cup \\
\cup\left\{\sigma \rightarrow w_{1} \tau w_{2} \mid w_{1}, w_{2} \in X^{+}, w_{1} w_{2} \in \operatorname{Min}_{E} C\right\} \cup \\
\cup\left\{\tau \rightarrow w_{1} \tau w_{2} \mid w_{1}, w_{2} \in X^{+}, w_{1} w_{2} \in \operatorname{Min}_{E} C\right\} \cup\{\tau \rightarrow \tau \tau\} .
\end{gathered}
$$

G_{C} is "generalized" in that P may be infinite if $\operatorname{Min}_{E} C$ is. Clearly, if $\operatorname{Min}_{E} C$ itself is context-free, then G_{C} can be made a context-free grammar with finitely many productions, and $L\left(G_{C}\right)$ is context-free.

The construction of G_{C} shows that if C happens not to be context-free then this fact is caused by $\operatorname{Min}_{E} C$ not being context-free.

Proposition 5.2. Let $C \subseteq X^{*}$ satisfy (\mathscr{E}_{2}). If $\operatorname{Min}_{E} C$ is generated by a type i grammar, $i=0,1,2$, then also C is generated by a type i grammar.

That $\operatorname{Min}_{E} C$ for a code C satisfying $\left(\mathscr{E}_{2}\right)$ need not be context-free can be seen in the following example:

Example 5.3. Consider a subset C^{\prime} of the set $C=\left\{a^{n} b a b^{n} \mid n \geqq 2\right\}$. As C is a subset of the Dyck code, which satisfies $\left(\mathscr{E}_{2}\right)$, also $\mathscr{E}_{2} C^{\prime}$ is a code. Clearly $\operatorname{Min}_{E} \mathscr{E}_{2} C^{\prime}=C^{\prime}$ and C^{\prime} can be chosen non-contextfree. Observe that the smallest subset of $\{a, b\}^{*}$ which contains C and satisfies both $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$ is the Dyck code itself. To be slightly more specific: Let C^{\prime} be the smallest subset of $\{a, b\}^{*}$ which contains $C^{\prime} \subseteq C$ and satisfies $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$, and let

$$
k=\operatorname{gcd}\left\{n-m \mid n>m, a^{n} b a b^{n} \in C^{\prime}, a^{m} b a b^{m} \in C^{\prime}\right\}
$$

if $\left|C^{\prime}\right|>1$. In this case

$$
\operatorname{Min}_{E} \hat{C}^{\prime} \subseteq\left\{a^{k} b^{k}\right\} \cup\left\{a^{n} b a b^{n} \mid a^{n} b a b^{n} \in \hat{C}^{\prime}, n \leqq N\right\}
$$

where

$$
N=\min \left\{\bar{n} \mid \operatorname{gcd}\left\{n-m \mid \bar{n} \geqq n>m, a^{n} b a b^{n} \in C^{\prime}, a^{m} b a b^{m} \in C^{\prime}\right\}=k\right\}
$$

Thus $\operatorname{Min}_{E} \hat{C}^{\prime}$ is finite and \hat{C}^{\prime} is context-free. This is trivially true for $\left|\hat{C}^{\prime}\right|=1$ as well.
As property (\mathscr{E}_{2}) implies $\left(\mathscr{E}_{1}\right)$, by Proposition 4.4 a code satisfying $\left(\mathscr{E}_{2}\right)$ is strong and hence biprefix. However, the following proposition shows that $\left(\mathscr{E}_{2}\right)$ is still far more restrictive.

Proposition 5.4. Let C be a code over X satisfying (\mathscr{E}_{2}). Then for all $u \in X^{+}$at least one of the sets $X^{+} u \cap C$ and $u X^{+} \cap C$ is empty.

Proof. Suppose $u v \in C, w u \in C$ for some $v, w \in X^{+}$. Then, by (\mathscr{E}_{2}), $w(u v) u=$ $=(w u)(v u) \in C$, contradicting the fact that C is a prefix code.

This implies that all words of a code C satisfying $\left(\mathscr{E}_{2}\right)$ are primitive, that is, if $u^{r} \in C$ for some $u \in X^{+}, r \geqq 1$ then $r=1$. Such a code is antireflective [21], that is if $u v \in C$ then $v u \notin C$ for $u, v \in X^{+}$.

Observe that it follows from Proposition 5.4 as special cases that:
(1) the only code C over $X=\{a\}$ which satisfies $\left(\mathscr{E}_{2}\right)$ is $C=\{a\}$, and that,
(2) in a code C over $X=\{a, b\}$ satisfying (\mathscr{E}_{2}) each word begins with a and ends on b or vice versa, or $C \subseteq\{a, b\}$.

The second statement indicates that codes over $X=\{a, b\}$ and satisfying (\mathscr{E}_{2}) have a bracket structure with right and left brackets distinguished similar to the case of the Dyck code.

Proposition 5.5. Let $C \subseteq X^{*}$ be a code satisfying (\mathscr{E}_{2}), $C \Phi X$. Then C is not regular.

Proof. $C \nsubseteq X$ implies that C is infinite by $\left(\mathscr{E}_{2}\right)$. Suppose C is regular. Consider $w=x y \in C,|x|=1,|y|>0$. By $\left(\mathscr{E}_{2}\right)$, also $x^{n} y^{n} \in C$ for all $n \geqq 1$. By the pumping lemma for regular languages [7] $x^{m k+l} y^{n} \in C$ for some m, l with $m \geqq 1, l+m=n$, all k and n large enough. But then C is not a suffix code, a contradiction.

Proposition 5.6. Let $C \subseteq X^{*}$ be a strong code satisfying (\mathscr{E}_{2}). Then the group of units of $X^{*} / \sigma_{C^{*}}$ is trivial.

Proof. Let $M=X^{*} / \sigma_{C^{*}}$ and suppose that M has a non-trivial group of units. Equivalently, there are $u, v \in X^{*}$ satisfying $u, v \notin C^{*}, u v, v u \in C^{*}$. Let $|u v|$ be minimal with respect to this property. Hence $u, v, u v, v u$ do not have any proper subword in C. Therefore $u v, v u \in C$, contradicting Proposition 5.4.

As a simple interesting consequence of Proposition 5.6 we note that for a strong code C satisfying (\mathscr{E}_{2}) and such that $X^{*} / \sigma_{C^{*}}$ is bisimple or 0-bisimple, all groups of $X^{*} / \sigma_{C^{*}}$ are trivial, that is, $X^{*} / \sigma_{C^{*}}$ is aperiodic. One should also observe that the code generating the language L of Example 4.7 does not satisfy (\mathscr{E}_{2}) as the corresponding monoid X^{*} / σ_{L} is in fact a non-trivial group by [8, 20]. Similarly, for the code generating the language $\left\{w\left||w|_{a}=|w|_{b}\right\}\right.$ over the alphabet $\{a, b\}$ the condition (\mathscr{E}_{2}) does not obtain (see Example 4.6).

The following examples show that conditions $\left(\mathscr{E}_{2}\right),\left(\mathscr{C}_{2}\right)$, and (\mathscr{I}) do not imply each other. We shall then prove that $\left(\mathscr{E}_{2}\right)$ and (\mathscr{I}) are contradictory for every nontrivial code C.

Example 5.7. Consider the alphabet $X=\{a, b\}$. The code $\left\{a^{2} b^{2}, a^{3} b^{3}\right\}$ does not satisfy $\left(\mathscr{C}_{2}\right)$ not (\mathscr{I}) but satisfies $\left(\mathscr{E}_{2}\right)$. The code $\left\{a^{n} b^{n} \mid n \geqq 1\right\} \cup\left\{a^{2} b a b^{2}\right\}$ is (\mathscr{C}_{2}) but not (\mathscr{F}) nor $\left(\mathscr{E}_{2}\right)$. The code $\left\{a^{n} b^{n} \mid n \geqq 1\right\} \cup\left\{b^{2} a b a^{2}\right\}$ is (\mathscr{I}) but neither (\mathscr{C}_{2}) nor $\left(\mathscr{E}_{2}\right)$. Finally $\left\{a^{n} b^{n} \mid n \geqq 1\right\}$ is both $\left(\mathscr{C}_{2}\right)$ and (\mathscr{I}), but not $\left(\mathscr{E}_{2}\right)$.

Proposition 5.8. Let $C \subseteq X^{*}$ be a code such that $C \nsubseteq X$. Then C does not satisfy both ($\left.\mathscr{E}_{2}\right)$ and (\mathscr{I}).

Proof. By Proposition 5.4, $a^{n} \notin C$ for $a \in X, n \geqq 2$. Hence by $C \Phi X$ there is $w \in C$ such that w contains at least two different symbols from X. Suppose

$$
w=a_{1^{1}}^{n_{1}} a_{2^{2}}^{n_{2}} \ldots a_{k^{n}}^{n_{k}}, \quad a_{i} \neq a_{i+1}, k \geqq 2 .
$$

By (\mathscr{E}_{2}) we may assume that $k \geqq 4$ and $n_{1}, n_{k} \geqq 2$. Let $m, \bar{m}>0$ with $m+\bar{m}=n_{1}$. Then the word

$$
a_{1}^{m}\left(a_{1}^{n_{1}} a_{2_{2}}^{n_{2}} \ldots a_{k^{k}}^{n_{k}}\right) a_{1}^{\bar{m}} a_{2}^{n_{2}} \ldots a_{k^{k}}^{n_{k}}
$$

is in C and is equal to

$$
a_{1_{1}}^{n_{1}}\left(a_{1}^{m} a_{2^{2}}^{n_{2}} \ldots a_{k^{k}}^{n^{k}} a_{1}^{\bar{m}}\right) a_{2^{2}}^{n_{2}} \ldots a_{k^{k}}^{n_{k}}
$$

By (\mathscr{I}) this implies that

$$
a_{1}^{m} a_{2^{2}}^{n_{2}} \ldots a_{k^{k}}^{n} a_{1}^{\overline{\bar{m}}} \in C
$$

contradicting Proposition 5.4.
The essence of Proposition 5.8 is, that a code satisfying (\mathscr{F}) cannot have simple "pumping" properties. A special case is treated in the following statement; recall that $L \subseteq X^{*}$ is regular-free if no infinite subset of L is regular [18].

Proposition 5.9. A code C satisfying (\mathscr{I}) is regular-free.
Proof. Suppose C^{\prime} is an infinite regular subset of C. By the pumping lemma for regular languages there is $u=x v y \in C^{\prime}$ with $v \neq 1$ such that $x v^{n} y \in C^{\prime}$ for all $n \geqq 0$. Hence $x y \in C^{\prime}$ and by (\mathscr{I}) it follows that $v^{n} \in C$ for all $n \geqq 1$. Therefore C is not a code, a contradiction.

The combination of $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$ is also quite restrictive as can be seen from the following example: Let $C \subseteq X^{*}$ be a code satisfying $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$ where $\{a, b\} \subseteq X$. If $a^{m} b^{r}, a^{n} b^{s} \in C$ with $m, r, n, s \geqq 1$, then $\frac{m}{r}=\frac{n}{s}$. For, by (\mathscr{E}_{2}) one has $a^{m n} b^{r n}, a^{m n} b^{m s} \in C$. If $\frac{m}{r} \neq \frac{n}{s}$ then also $m s \neq n r, m s>r n$ without loss in generality, and C is not a prefix code, a contradiction. Thus, if C contains $a^{m} b^{r}$ with m chosen to be minimal then

$$
C \cap a^{*} b^{*}=\left\{a^{k m} b^{k r} \mid k \in \mathbf{N}\right\}
$$

A finite strong maximal code C over the alphabet X is always equal to X^{n} for some n. No infinite code satisfying $\left(\mathscr{E}_{2}\right)$ can be maximal neither as a code nor as a prefix code nor as a suffix code. This implies, for instance, that the Dyck code D over $X=\{a, b\}$ is not maximal; this is, of course, obvious anyway, as $D \cup\{a\}$ is a suffix code. Similarly the code

$$
C=\{b\} \cup\left\{a b^{n} a \mid n \geqq 0\right\}
$$

over $X=\{a, b\}$ which is given as an example of a maximal biprefix code in [14] cannot satisfy $\left(\mathscr{E}_{2}\right)$ as it is maximal even as a code; that $\left(\mathscr{E}_{2}\right)$ does not hold for this code can also be derived as a consequence of Proposition 5.6 as $X^{*} / \sigma_{C^{*}} \cong Z_{2}$, the cyclic group of order 2 .

There is no obvious relationship between X^{*} / σ_{C} and $X^{*} / \sigma_{C^{*}}$ even if C is a strong code. For instance, for C as in the last example, X^{*} / σ_{C} is \mathscr{J}-trivial and thus is aperiodic whereas $X^{*} / \sigma_{C^{*}}$ is a non-trivial group. However, if C satisfies $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$ then there is a closer connection.

Proposition 5.10. Let C be a code satisfying both ($\left.\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$. Then C is a $\sigma_{C^{-}}$ class and C^{+}is contained in a σ_{C}^{+}-class in X^{+} / σ_{C}^{+}, that is the class of C itself.

Proof. Suppose that $u, v \in C$ and $(x, y) \in C . . u$. If $x \neq 1 \neq y$ then $x u y \in C$ implies $x v y$ by $\left(\mathscr{C}_{2}\right)$ and $\left(\mathscr{E}_{2}\right)$. If $x=1$ or $y=1$ then $x=1=y$ as C is a prefix and suffix code and again $x u y \in C$ implies $x v y \in C$. Thus C is contained in a single $\sigma_{C^{-}}$ class which proves the first statement. For the second statement consider $c \in C$, $u \in C^{+}$and $x, y \in X^{+}$. If $x c y \in C$ then $x u y \in C$ using (\mathscr{C}_{2}) once and (\mathscr{E}_{2}) possibly several times. Conversely if $x u y \in C$ then $x c y \in C$. Hence $u \sigma_{c}^{+} c$ for all $u \in C^{+}$, $c \in C$.

From the first part of Proposition 5.10 one may expect that the properties (\mathscr{E}_{2}) and $\left(\mathscr{C}_{2}\right)$ have a formal counterpart in X^{*} / σ_{C}. This is the contents of the next proposition:

Proposition 5.11. For a finitely generated monoid M the following properties are equivalent:
(1) There is a finite alphabet X and a code $C \subseteq X^{+}$satisfying $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$ such that $X^{*} / \sigma_{C} \cong M$.
(2) There is an element $m \in M$ with the following three properties:
(a) $m m_{2}=m=m_{1} m \rightarrow m_{1}=m_{2}=1$,
(b) $m=m_{1} m_{2}$ with $m_{1} \neq 1 \neq m_{2} \rightarrow m_{1} m m_{2}=m$,
(c) $m_{1} m_{2}=m$ with $m_{1} \neq 1 \neq m_{2} \rightarrow m_{1} m_{2}=m$.

Proof. Let C be given according to property (1), and let $m=C / \sigma_{C}$ by Proposition 5.10. C being a biprefix code yields (2a), whereas (\mathscr{E}_{2}) and (\mathscr{C}_{2}) imply (2b) and (2c), respectively. Conversely, given M and $m \in M$ according to (2), let X be a set of generators of M and $\varphi: X^{*} \rightarrow M$ the homomorphism induced by the inclusion $X \subseteq M$. Consider $C=\varphi^{-1}(m)$. By (2a) C is a biprefix code, hence a code. Properties (2b) and (2c) imply (\mathscr{E}_{2}) and (\mathscr{C}_{2}), respectively.

Finally we observe, that if C is a strong code which satisfies $\left(\mathscr{E}_{2}\right)$ then C^{*} is very pure and C is a circular code [2]. A fortiori, this is true if C satisfies both $\left(\mathscr{E}_{2}\right)$ and $\left(\mathscr{C}_{2}\right)$.

6. Special monoid presentations

Let X be an alphabet (finite or infinite) and R a set of relations over X^{*}, that is, of equations of the form $u=v$ with $u, v \in X^{*}$. The pair $\langle X \mid R\rangle$ is the presentation of the monoid $M \cong X^{*} / \varrho_{R}$ where ϱ_{R} is the finest congruence on X^{*} such that $u \varrho_{R} v$ for all $u, v \in X^{*}$ with $u=v \in R$. Presentations $\langle X \mid R\rangle$ such that $u=v \in R$ implies that
$v=1$, the empty word, were called special in [1], trivial in [6], unitary in [3]. They will be referred to as special in the sequel.

The bicyclic and polycyclic monoids, the groups, the monoid $\left\langle x, y \mid x^{2} y=1\right\rangle$ of Example 3.5 and the monoid $\left\langle a, b \mid a b^{2} a^{2} b=1\right\rangle$ of [8] can serve as examples of monoids with special presentations. In general little is known about monoids that have a special presentation. From a slight generalization of Example 3.4 we shall see that there are even simple monoids which cannot be presented in this way.

Lemma 6.1. Let M be a monoid. M has a special presentation $\langle X \mid R\rangle$ and a disjunctive identity if and only if $\varrho_{R}=\sigma_{L}$ with L the ϱ_{R}-class of 1 .

Proof. By definition $\varrho_{R} \subseteq \tau \subseteq \sigma_{L}$ for all congruences τ on X^{*} such that L is a τ-class. If 1 is disjunctive in M then M has no proper congruence $\hat{\tau}$ with 1 as a $\hat{\tau}$-class and thus $\varrho_{R}=\sigma_{L}$. On the other hand, if $\varrho_{R}=\sigma_{L}$, then 1 , being the σ_{L}-class of L is disjunctive.

Using Lemma 6.1 we can find a monoid with disjunctive identity which does not have any special presentation.

Example 6.2. Consider the Bruck-extension $B R(M, \theta)$ of the monoid $M=\left\{1, z_{1}, z_{2}\right\}, z_{i} z_{j}=1 z_{i}=z_{i} 1=z_{i}$ for $i, j=1,2, \quad 11=1$ with $\theta(M)=1 . \quad B R(M, \theta)$ is a simple monoid with identity $(0,1,0)$. However

$$
\left(n, z_{1}, m\right) \sigma_{(0,1,0)}\left(n, z_{2}, m\right)
$$

for all n, m. So the identity is not disjunctive. On the other hand, as the $\sigma_{(0,1,0)}$-class of the identity is just $\{(0,1,0)\}$ it follows that for any presentation $\langle X \mid R\rangle$ of M the ϱ_{R}-class L of 1 coincides with the σ_{L}-class. Thus, $M / \sigma_{(0,1,0)}$ does not have a special presentation. In fact, $M / \sigma_{(0,1,0)}$ is the monoid considered in Example 3.4. It can be presented by

$$
\left\langle X \mid\left\{a b=1, z b=b, a z=a, z^{2}=z\right\}\right\rangle
$$

where $X=\{a, b, z\}$. Let ϱ be the congruence corresponding to this presentation. The ϱ-class of 1 is the set C^{*} where C is the smallest strong code containing the set

$$
L=\left\{a^{n} z^{i} b^{n} \mid n \geqq 1, i \geqq 0\right\} \cup\left\{a^{n} b^{n} \mid n \geqq 1\right\} .
$$

Each ϱ-class has a unique representative of the form $b^{n} a^{m}$ or $b^{n} z a^{m}$ for $n, m \geqq 0$.
Now consider the presentation $\langle X|\{u=1$ for $u \in L\}\rangle$ with its corresponding congruence ϱ^{\prime}. By construction $\varrho^{\prime} \subseteq \sigma_{C^{*}}$, and the ϱ^{\prime}-class of 1 is again C^{*}. One then computes that the set $z^{*}\left(b z^{*}\right)^{*}\left(a z^{*}\right)^{*}$ forms a cross-section through the set of ϱ^{\prime} classes. This may help in visualizing the gap between ϱ^{\prime} and $\sigma_{C^{*}}$.

Lemma 6.3. Let M be a monoid with disjunctive identity. Then there is a special presentation $\langle X \mid R\rangle$ of a monoid M^{\prime} and a surjective homomorphism $\varphi: M^{\prime} \rightarrow M$ such that $\varphi^{-1} \varphi(1)=1$.
Wh Proof. Let X be a set of generators of M and let $\psi: X^{*} \rightarrow M$ be the extension of the inclusion $X \subseteq M$. Then consider the presentation $\langle X \mid R\rangle$ with $R=\{w \mid \psi(w)=1\}$. Clearly $\varrho_{R} \subseteq \sigma_{R}$ which proves the lemma.

A monoid homomorphism with the property that $\varphi^{-1} \varphi(1)=1$ will be called identity separating. Thus the Lemmas can be combined to yield:

Proposition 6.4. Let M be a monoid with disjunctive identity. Then M is the least identity separating homomorphic image of a monoid having a special presentation.

We now proceed to characterize special presentations of simple monoids.
Let X be an alphabet (finite or infinite), and let $u, v \in X^{+}$. We say that u meets v if

$$
\begin{equation*}
v \in X^{*} u X^{*} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
u=u_{1} \bar{u}, v=\bar{u} v_{1} \text { for some } \bar{u} \in X^{+}, u_{1}, v_{1} \in X^{*} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
u=\bar{u} u_{2}, v=v_{2} \bar{u} \text { for some } \bar{u} \in X^{+}, u_{2}, v_{2} \in X^{*} \tag{3}
\end{equation*}
$$

Let $L \subseteq X^{*}$. The word u is said to meet L if u meets some $v \in L$. Finally, if $\langle X \mid R\rangle$ is a special presentation, then u is said to meet R if u meets the set $L_{R}=\{v \mid v=1 \in R\}$.

Proposition 6.5. A monoid M is simple if and only if it is the homorphic image of a monoid M^{\prime} having a special presentation $\langle X \mid R\rangle$ such that every $w \in X^{+}$meets R.

Proof. Let X be any set of generators of M, φ_{M} the surjective homomorphism of X^{*} onto M which extends the inclusion $X \subseteq M$, and let $L=\varphi_{M}^{-1}(1), R=\{w=1 \mid$ $w \in L\}$. Clearly, M is a homomorphic image of \bar{M}^{\prime} where M^{\prime} is the monoid presented by $\langle X \mid R\rangle$. Consider $w \in X^{*}$. As M is simple there are $a, b \in M$ such that $a \varphi(w) b=1$ but then $\varphi^{-1}(a) w \varphi^{-1}(b) \subseteq R$ and w meets R.

For the converse observe that each homomorphic image of a simple monoid is also a simple monoid. It will therefore suffice to prove that a monoid M having a special presentation $\langle X \mid R\rangle$ such that every w meet R is simple. Let φ_{R} be the homomorphism of X^{*} onto M given by R. Suppose M is not simple. Then there exists $m \in M$ such that $M m M$ does not contain the identity element. Choose $w \in X^{*}$ in such a way that w has minimal length and satisfies $1 £ M \varphi_{R}(w) M$. Clearly, $X^{*} w X^{*}$ does not contain a word v such that $(v=1) \in R$. As w meets R, however, there exists a relation $(v=1) \in R$ such that $w=\bar{w} u, v=u \bar{v}$ or $w=u \bar{w}, v=\bar{v} u$ for a non-empty word $u \in X^{+}$and some $\bar{w}, \bar{w} \in X^{*}$. Suppose the former (the other case being the dual). Then $\varphi_{R}(w \bar{v})=\varphi_{R}(\bar{w})$ and $|\bar{w}|<|w|$. From the minimality of w it follows that there exist $a, b \in M$ such that $1=a \varphi_{R}(\bar{w}) b=a \varphi_{R}(w) \varphi_{R}(\bar{v}) b$, a contradiction!

A special presentation $\langle X \mid R\rangle$ is called complete if every word in X^{*} meets R. Let $L=\{w \mid w=1 \in R\}$ if $\langle X \mid R\rangle$ is a special representation. A subset of X^{*} is dense, if it intersects every ideal of X^{*}. By Proposition 6.5 the gap between ϱ_{R} and σ_{L} can be narrowed down a bit.

Proposition 6.6. Let $C \subseteq X^{*}$ be a strong code with C^{*} dense. Then $X^{*} / \sigma_{C^{*}}$, the syntactic monoid of C^{*}, is the least identity separating homomorphic image of a monoid M which has a complete special presentation.

We conclude this section with a theorem relating the groups of units of X^{*} / ϱ_{R} and X^{*} / ϱ_{L} to each other.

Proposition 6.7. Let $\langle X \mid R\rangle$ be a special monoid presentation, $L=[1]_{e_{R}}$, and let G_{R}, G_{L} be the groups of units of X^{*} / ϱ_{R} and X^{*} / σ_{L}, respectively. Then $G_{R} \cong G_{L}$. To be more precise: $[u]_{\sigma_{L}} \in G_{L}$ implies $[u]_{\sigma_{L}}=[u]_{\varrho_{R}}$, and $[u]_{\varrho_{R}} \in G_{R}$ if and only if $[u]_{\sigma_{L}} \in G_{L}$.

Proof. Clearly, when passing from ϱ_{R} to σ_{L}, G_{R} is mapped into G_{L}. Now consider $u, v \in X^{*}$ such that $[u]_{\sigma_{L}},[v]_{\sigma_{L}}$, are inverses of each other in G_{L}, that is,

$$
\forall x, y \in X^{*}: x u v y \in L \leftrightarrow x v u y \in L \leftrightarrow x y \in L .
$$

Letting $x y=1$, this implies $u v, v u \in L$, hence $u v \varrho_{R} v u \varrho_{R} 1$. Thus $[u]_{e_{R}},[v]_{e_{R}}$ are units in G_{R} and inverses of each other. This proves that G_{R} is mapped onto G_{L} and that no element outside G_{R} is mapped into G_{L}. Finally consider $u, v, w \in X^{*}$ such that

$$
[u]_{\sigma_{L}}[v]_{\sigma_{L}}=[v]_{\sigma_{L}}[u]_{\sigma_{L}}=[1]_{\sigma_{L}}
$$

and

$$
[u]_{\sigma_{L}}[w]_{\sigma_{L}}=[w]_{\sigma_{L}}[u]_{\sigma_{L}}=[1]_{\sigma_{L}} .
$$

As above it follows that $u v, v u, u w, w u \in L$. That is $u v \varrho_{R} v u \varrho_{R} u w \varrho_{R} w u \varrho_{R}$ and $[u]_{\varrho_{R}}$, $[v]_{\varrho_{R}},[w]_{\varrho_{R}}$ are units in G_{R} with $[u]_{\varrho_{R}},[w]_{\varrho_{R}}$ inverses of $[u]_{\varrho_{R}}$. Therefore $[v]_{\varrho_{R}}=[w]_{\varrho_{R}}$. Thus $[v]_{\sigma_{L}}=[w]_{\sigma_{L}}$ and $[v]_{\sigma_{L}} \in G_{L}$ implies $[v]_{e_{R}}=[w]_{e_{R}} \in G_{R}$.

As an immediate consequence one has the following:
Corollary 6.8. Let $\langle X \mid R\rangle$ be a special monoid presentation of a group and let $L=[1]_{\sigma_{R}}$. Then $\sigma_{L}=\varrho_{R}$.

This corollary can be applied to Example 4.7, that is the language L corresponding to $\left\langle\{a, b\} \mid a b^{2} a^{2} b=1\right\rangle$ in order to show that the systactic monoid X^{*} / σ_{L} of L in fact coincides with the monoid having this presentation.

Finally one should note that by a result of [4] for special monoid presentations with a single relation $w=1$, there is a linear time algorithm that given input w will determine whether the group of units of the monoid presented is trivial or non-trivially finite or infinite.

The main application of Proposition 6.7 in the context of this paper should be seen in combining it with Proposition 5.6.

Corollary 6.9. Let $C \subseteq X^{*}$ be a strong code satisfying (\mathscr{E}_{2}). Then the group of units of the monoid presented by $\langle X \mid\{w=1, w \in C\}\rangle$ is trivial.

References

[1] S. I. Adjan, Defining relations and algorithmic problems for groups and semigroups, Proc. Steklov Inst. of Mathematics 85 (1966). English Translation by American Mathematical Society (Providence, Rh. I., 1967).
[2] J. Berstel, D. Perrin, Theory of codes, Academic Press (Orlando, 1985).
[3] R. V. Book, Confluent and other types of Thue systems, J. ACM, 29 (1982), 171-182.
[4] R. Book, Thue systems and the Church-Rosser property:Replacement systems, specification of formal languages and presentations of monoids. 1-38 in: L. J. Cummings (editor), Combinatorics on words. Academic Press (Toronto, 1983).
[5] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups 2 vols. American Math. Soc. (Providence, Rh. I., 1961, 1967).
[6] Y. Cochet and M. Nivat, Une généralisation des ensembles de Dyck, Israel J. Math., 9 (1971), 389-395.
[7] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and computation. Addison-Wesley Publ. Co. (Reading, Mass., 1979).
[8] M. Jantzen, On a special monoid with a single defining relation, Theoretical Comp. Sci., 16 (1981), 61-73.
[9] H. Jürgensen, G. Thierrin, Semigroups with each element disjunctive, Semigroup Forum, 21 (1980), 127-142.
[10] H. Jürgensen, Total disjunktive Bruck-Reilly-Erweiterungen und formale Sprachen. 281309 in: K. H. Hofman, H. Jürgensen, H. J. Weinert (editors), Recent developments in the algebraic, analytical and topological theory of semigroups. Lecture Notes in Math. 998, Springer-Verlag (Berlin, 1983).
[11] Е. В. Кашинщев, К проблеме равенства слов для специальних полугрупп, Izv Akad. Nauk SSSR, Ser. Mat., 42 (1978), 1401-1416.
[12] G. Lallement, Semigroups and combinatorial applications. John Wiley \& Sons (New York, 1979).
[13] A. D. Paradis, H. J., Shyr, G. Thierrin, Quasi-disjunctive languages, Soochow J. Math., 8 (1982), 151-161.
[14] Chr. Reutenauer, Biprefix codes and semisimple algebras. 451-457 in: Automata, languages, and programing, 9th Colloquium. Lecture Notes in Computer Science 140, SpringerVerlag (Berlin, 1982).
[15] B. M. Schein, A remark concerning congruences on [0-]simple inverse semigroups, Semigroup Forum, 3 (1971), 80-83.
[16] H. J. Shyr, Free monoids and languages. Lecture Notes, Dep. Mathematics, Soochow University (Taipei, 1979).
[17] H. J. Shyr, Strong codes, Soochow. J. Math. Nat. Sci., 3 (1977), 9-16.
[18] H. J. Shyr, Ordered catenation and regular free disjunctive languages, Information and Control, 46 (1980), 257-269.
[19] H. J. Shyr, G. Thierrin, Codes, languages, and MOL schemes, RAIRO, 11 (1977), 293-301.
[20] Cr. Squier, C. Wrathall, A note on representations of a certain monoid, Theoretical Comp. Sci., 17 (1982), 229-231.
[21] G. Thierrin, Hypercodes, right convex languages, and their syntactic monoids, Proc. Amer. Math. Soc., 83 (1981), 225-258.
(Received July 12, 1983; revised March 20, 1985)
DEPARTMENT OF COMPUTING SCIENCE
THE UNIVERSITY OF WESTERN ONTARIO
LONDON, ONTARIO
CANADA N6A 5B7
DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHUNG-HSING UNIVERSITY
TAICHUNG, TAIWAN

ON COMPACTLY DOMINATED SPACES

S. DEO and R. KRISHAN (Jammu)

1. Introduction

A topological space X is said to be compactly dominated (or Morita k-space) [2] if there exists a family $\left\{K_{\alpha}\right\}_{\alpha \in \Delta}$ of compact subsets of X which dominates the space X ([9], p. 14), i.e.,
(i) $X=\bigcup_{\alpha \in \Delta} K_{\alpha}$, and for each subfamily $\left\{K_{\beta} \mid \beta \in \Delta^{\prime}\right\}$ of $\left\{K_{\alpha}\right\}_{\alpha \in \Delta}{ }^{\prime}, \bigcup_{\beta \in \Delta^{\prime}} K_{\beta}$ is closed in X,
(ii) the topology of the subspace $Y=\bigcup_{\beta \in \Delta^{\prime}} K_{\beta}$ is the weak topology defined by the family of subspaces $\left\{K_{\beta}\right\}_{\beta \in \Delta^{\prime}}$.

The need for studying such spaces stems from the following considerations: Let X be a topological space for which some dimension function (for example covering dimension dim) is defined. Can we determine $\operatorname{dim} X$ if we know $\operatorname{dim} K$ for each compact subset K of X ? Particularly, we want to know under what conditions on X, if any, does there exist a compact subset K of X such that $\operatorname{dim} X=\operatorname{dim} K$? The answer to this question, of course, depends on the space X as well as the dimension function under consideration. For instance, in the case of covering dimension dim, the answer, in general, is no. To see this let us consider the Tychonoff plank $\Omega=\left[0, w_{1}\right] \times$ $\times\left[0, w_{0}\right]-\left\{\left(w_{1}, w_{0}\right)\right\}$. Any compact subset K of Ω is zero-dimensional whereas $\operatorname{dim} \Omega=1 \quad([9], \mathrm{p} .162)$. This shows that even in a locally compact space $X, \operatorname{dim} X$ may not be determined by dimensions of its compact subsets. On the otherhand let us consider the sheaf theoretic cohomological dimension $\operatorname{dim}_{L}([1],[4],[5])$ over a given ring L. For this dimension function, however, if X is any locally compact space, then $\operatorname{dim}_{L} X$ is simply $\sup _{K}\left\{\operatorname{dim}_{L} K\right\}$ where K runs over all compact subsets of X : this of course follows from the local property of $\operatorname{dim}_{L}[1]$. A locally compact space is clearly compactly generated, but if we take X to be compactly generated and consider the same sheaf theoretic cohomological dimension dim_{L}, which is known to be betterbehaved than covering dimension dim, then $\operatorname{dim}_{L} X$ need not be determined by $\operatorname{dim}_{L} K$ where K varies over all compact subsets of X. For example, consider the KnasterKuratowski space X ([8], p. 54). Then X is a one dimensional metric space and hence $\operatorname{dim}_{\mathrm{Z}} X=\operatorname{dim} X=1 . X$ is compactly generated, but there cannot exists a compact subset K of X such that $\operatorname{dim}_{\mathrm{Z}} K=1$. This is because X is totally disconnected and hence any compact subset K of X is also totally disconnected. Consequently, $\operatorname{dim}_{\mathrm{z}} K=$ $=\operatorname{dim} K=0$. This shows, by the way, that in general the weak topology sum theorem is valid neither for the covering dimension dim nor for the cohomological dimension $\operatorname{dim}_{\mathbf{z}}$. However, if the topology of X is the weak topology defined by a family of closed subsets of X in the sense of Morita ([8], p. 215), then it has been proved that the sum theorem is valid for the cohomological (for all locally paracompact spaces)
as well as the covering dimension (for normal spaces) [3]. This leads us to ask the following question: What are those spaces X whose topology is the weak topology defined by a family of compact subsets of X in the sense of Morita?

Using the terminology of Pears [9] we will call such spaces compactly dominated spaces, and the objective of this paper is to investigate various interesting topological properties of such spaces. Unless mentioned otherwise all of our spaces under consideration are assumed to be Hausdorff and so by a compact space we mean a compact Hausdorff space.

2. Examples and characterizations

A topological space X is said to be dominated by a closed covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ ([9], p. 14) if for each subset Δ^{\prime} of $\Delta, \bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ is closed in X and the subspace $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ of X has the weak topology with respect to the covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta^{\prime}}$. Thus we have the following:

Definition 2.1. A space X is said to be compactly dominated, if it is dominated by a covering consisting of compact subspaces of X.

It is clear that any space X having a locally finite covering by a family of compact subsets is a compactly dominated space. Every compact space is trivially compactly dominated. Also note that a discrete space X is dominated by the family $\{\{x\} \mid x \in X\}$ consisting of singletons and so is compactly dominated. Conversely, any space X dominated by a family consisting of finite sets must be obviously discrete. For the sake of completeness we include the proofs of the following two examples which show that the concept of compactly dominated spaces is a generalization of compact spaces as well as $C W$-complexes.

Example 2.2. $A C W$-complex is compactly dominated.
Proof. We shall prove that for any $C W$-complex K its geometric realization $|K|$ (which is also a $C W$-complex) is compactly dominated. For, let $S=\left\{S_{\alpha}\right\}$ be all cells of K. Then by definition, $|K|=\bigcup\left|S_{\alpha}\right|$ and $|K|$ has the weak topology defined by $\left\{\left|S_{\alpha}\right|\right\}$. Let $Y=\bigcup_{\beta \in \Delta}\left|S_{\beta}\right|,\left\{S_{\beta}\right\}_{\beta \in \Delta}$ is a subfamily of $\left\{S_{\alpha}\right\}$. Then Y is closed in $|K|$ since for any $\left|S_{\alpha}\right|, Y \cap\left|S_{\alpha}\right|$ is a finite union of faces of S_{α}, which is again closed in $\left|S_{\alpha}\right|$. Hence Y is closed in $|K|$. Next, let $F \subset Y$ such that $F \cap\left|S_{\beta}\right|$ is closed in $\left|S_{\beta}\right|$. For any α either $\left|S_{\alpha}\right|$ is a face of $\left|S_{\beta}\right|$ for some β or else $\left|S_{\alpha}\right|$ is disjoint from $\left|S_{\beta}\right|$. In any case $F \cap S_{\beta}$ is closed in $\left|S_{\beta}\right|$ implies that $F \cap\left|S_{\alpha}\right|$ is closed in $\left|S_{\alpha}\right|$. Hence F is closed in $|K|$. Thus $|K|$ is a compactly dominated space. Q.E.D.

Example 2.3. A locally compact paracompact space X is compactly dominated.
Proof. Since X is locally compact there exists ([6], p. 238) an open covering $\{V(x)\}_{x \in X}$ of X, where each $V(x)$ is relatively compact. Now, X being paracompact, there exists a locally finite closed covering $\left\{F_{\alpha}\right\}$ of X which refines $\{V(x)\}_{x \in X}$ and each F_{α} is compact. Therefore X is compactly dominated. Q.E.D.

Theorem 2.4. A separable topologically complete space X which is not locally compact at any of its points cannot be a compactly dominated space.

Proof. Since X is topologically complete, it is of second category by Baire's category theorem ([6], p. 299). Also, X is not locally compact at any of its points implies that any compact subset of X is nowhere dense. Suppose X is compactly dominated. Then there exists a covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ which dominates X and where each A_{α} is compact. Since X is separable, there exists a countable dense subset, say $A=\left\{x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}, \ldots\right\}$, of X. Then clearly for every $x_{i} \in A$ there exists an $\alpha_{i} \in \Delta$ such that $x_{i} \in A_{\alpha_{i}}$. Thus $A \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$. Since A is a dense subset of X we have $X=\bar{A} \subset \overline{\bigcup_{\alpha \in \Delta} A_{\alpha}}=$ $=\bigcup_{\alpha \in \Delta} A_{\alpha}$ since $\bigcup_{\alpha \in \Delta}^{\alpha \in \Delta} A_{\alpha}$ is closed in X. Therefore $X=\bigcup_{\alpha \in \Delta} A_{\alpha}$, i.e., X is the countable union of nowhere dense sets of X. This is a contradiction since X is of second category. Hence X cannot be compactly dominated. Q.E.D.

The above theorem gives us the following corollary giving various counter-examples for compactly dominated spaces.

Corollary 2.5. None of the following spaces is compactly dominated;
(i) the set P of all irrationals with the inherited subspaces topology from \mathbf{R},
(ii) the countable product \mathbf{R}^{ω} of real lines,
(iii) the space $C[0,1]$ of all real valued continuous functions on the unit interval I with the metric topology generated by the sup norm,
(iv) any infinite dimensional separable Hilbert space H.

The following result turns out to be quite interesting:
Proposition 2.6. The set \mathbf{Q} of rationals with the inherited subspace topology from \mathbf{R} is not compactly dominated.

Proof. Suppose \mathbf{Q} is compactly dominated. Therefore there is a covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ of compact subsets of \mathbf{Q} which dominates \mathbf{Q}.

Since \mathbf{Q} is countable, there is a subfamily, say $\left\{A_{\alpha_{i}}\right\}_{i=1}^{\infty}$, of the above family which covers \mathbf{Q} and dominates \mathbb{Q}. We shall show that this is not possible. For, consider any point x of Q. Consider a neighbourhood base at x of the form $B_{1}^{x} \supset B_{2}^{x} \supset \ldots$ $\ldots \supset B_{n}^{x} \supset \ldots$. Select a point $x_{1} \in B_{1}^{x}-A_{\alpha_{1}}$ (since $A_{\alpha_{1}}$ is nowhere dense). Select for each $n \geqq 1, x_{n} \in B_{n}^{x}-\left(A_{\alpha_{1}} \cup \ldots \cup A_{\alpha_{n}}\right)$ (since $A_{\alpha_{1}} \cup \ldots \cup A_{\alpha_{n}}$ is nowhere dense). So that we have a sequence $\left\langle x_{n}\right\rangle$ which converges to x. Therefore the infinite set $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not closed. But as the set $\left\{x_{n}\right\}_{n=1}^{\infty}$ is finite in each $A_{\alpha_{n}}$, it should be closed. This contradiction establishes the claimed result. Q.E.D.

Theorems 2.4 and 2.6 are essentially due to A. K. Desai (private communication).
The following proposition gives some necessary conditions for a space to be compactly dominated. However, none of them is sufficient as shown by Corollary 2.5.

Proposition 2.7. Suppose X is a compactly dominated space. Then
(i) X is paracompact,
(ii) X is a k-space.

Proof. (i) Since X is compactly dominated, there exists a covering $\left\{F_{\alpha}\right\}_{\alpha \in \Delta}$ which dominates X and where each F_{α} is compact. Since each F_{α} is compact, it is paracompact. Thus it follows from ([9], p. 65) that X is paracompact.
(ii) To show that X is k-space, it is enough to show ([6], p. 248) that X is the quotient of a locally compact space. Since X is compactly dominated there exists a
covering $\left\{F_{\alpha}\right\}_{\alpha \in \Delta}$ dominating X and where each F_{α} is compact. Let $\sum_{\alpha \in \Delta} F_{\alpha}$ denote the free union of the family $\left\{F_{\alpha}\right\}_{\alpha \in \Delta}$, where each F_{α} is compact. $\sum_{\alpha \in \Delta} F_{\alpha}$ is evidently locally compact. By ([6], p. 132) we know that X is the quotient space of the free union of its compact subspaces, i.e., $X=\sum_{\alpha \in \Delta} F_{\alpha} / \sim$. Hence X is a k-space. Q.E.D.

The above proposition shows that a σ-compact space need not be compactly dominated:

EXAMPLE 2.8. The following spaces are σ-compact, but not paracompact, and hence cannot be compactly dominated:
(i) The Arens Square ([10], p. 98).
(ii) The Double origin topology ([10], p. 92).
(iii) The nested interval topology ([10], p. 76).
(iv) The countable particular point topology ([10], p. 44).
(v) Roy's lattice space ([10], p. 143).

We note that local compactness is not necessary for compactly dominated spaces. In fact, a compactly dominated space need not be locally compact at any of its points as the following example shows.

EXAmple 2.9. Let $S^{\infty}=\bigcup_{n=1}^{\infty} S^{n}$, where $S^{1} \subset S^{2} \subset \ldots \subset S^{n} \subset \ldots$ with inductive limit topology. Then S^{∞} is a $C W$-complex and hence compactly dominated, but S^{∞} is not locally compact at any of its points.

Now we come to a characterization of spaces dominated by closed covering.
Theorem 2.10. A space X is dominated by a closed covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ if and only if X is a continuous closed image of a free union $\sum_{\alpha \in \Delta} A_{\alpha}^{\prime}$, where $A_{\alpha}^{\prime} \cong A_{\alpha}$, for every $\alpha \in \Delta$.

Proof. Suppose X is dominated by a closed covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$. For each $\alpha \in \Delta$ we pick a space A_{α}^{\prime} so that $A_{\alpha}^{\prime} \cong A_{\alpha}$. Let $h_{\alpha}: A_{\alpha}^{\prime} \rightarrow A_{\alpha}$ be a homeomorphism. Consider the space $\sum_{\alpha \in \Delta} A_{\alpha}^{\prime}$ and define a map $h: \sum_{\alpha \in \Delta} A_{\alpha}^{\prime} \rightarrow X$ so that $h \mid A_{\alpha}^{\prime}=h_{\alpha}$. Clearly h is continuous and onto. We claim that h is closed. Let F be the closed subset of the free union $\sum_{\alpha \in \Delta} A_{\alpha}^{\prime}$. Let $\Delta^{\prime}=\left\{\alpha \in \Delta \mid F \cap A_{\alpha}^{\prime} \neq \emptyset\right\}$. Then $F=\bigcup_{\alpha \in \Delta^{\prime}}\left(F \cap A_{\alpha}^{\prime}\right)$ implies that $h(F)=\bigcup_{\alpha \in \Delta^{\prime}}^{\alpha \in U^{\prime}} h\left(F \cap A_{\alpha}^{\prime}\right)=\bigcup_{\alpha \in \Delta^{\prime}} h(F) \cap A_{\alpha}$. Now $h(F) \cap A_{\alpha}=h_{\alpha}\left(F \cap A_{\alpha}^{\prime}\right)$ is closed in A_{α}, since $F \cap A_{\alpha}^{\prime}$ is closed in A_{α}^{\prime} and $h \mid A_{\alpha}^{\prime}$ is a homeomorphism. Thus we find that $h(F) \cap A_{\alpha}$ is closed in A_{α} for each $\alpha \in \Delta^{\prime}$. Since $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ is closed in X and has the weak topology defined by the covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta^{\prime}}$, it follows that $h(F)$ is closed in $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$. But $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ being closed in X implies that $h(F)$ is closed in X. Conversely, $\alpha \in \Delta^{\prime}$
suppose $v: \sum_{\alpha \in \Delta}^{\alpha \in \Delta^{\prime}} A_{\alpha}^{\prime} \rightarrow X$ is a continuous closed surjection, where $v \mid A_{\alpha}: A_{\alpha}^{\prime} \rightarrow A_{\alpha}$ is a homeomorphism. Let Δ^{\prime} be a subset of Δ. Since $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}^{\prime}$ is closed in $\sum_{\alpha \in \Delta} A_{\alpha}^{\prime}$, we find that $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}=v\left(\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}^{\prime}\right)$ is closed in X. Next we shall prove that $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ has the weak topology defined by the family $\left\{A_{\alpha} \mid \alpha \in \Delta^{\prime}\right\}$. Let G be a subset of $\bigcup_{\alpha \in \Delta^{\prime}}^{\alpha \in \Delta^{\prime}} A_{\alpha}$
such that $G \cap A_{\alpha}$ is closed in A_{α}, for every $\alpha \in \Delta^{\prime}$. Then $G=\underset{\alpha \in \Delta^{\prime}}{\bigcup}\left(G \cap A_{\alpha}\right)$. Let $G_{\alpha}^{\prime} \subset A_{\alpha}^{\prime}$ which is homeomorphic to $G \cap A_{\alpha}$. Then G_{α}^{\prime} is closed in A_{α}^{\prime}, which means $\bigcup_{\alpha \in \Delta^{\prime}} G_{\alpha}^{\prime}$ is closed in $\sum_{\alpha \in \Delta^{\prime}} A_{\alpha}^{\prime}$. Now v being closed we find that $v\left(\bigcup_{\alpha \in \Delta} G_{\alpha}^{\prime}\right)=$ $=\bigcup_{\alpha \in \Delta^{\prime}}\left(G \cap A_{\alpha}\right)=G$ must be closed in $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$. Thus $\bigcup_{\alpha \in \Delta^{\prime}} A_{\alpha}$ has the weak topology defined by the family $\left\{A_{\alpha} \mid \alpha \in \Delta^{\prime}\right\}$. Hence X is dominated by the closed covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$. Q.E.D.

The results of the following corollary are well known ([9], p. 65, 27, 34). The above theorem yields their simpler alternative proofs.

Corollary 2.11. If a space X is dominated by a closed covering $\left\{A_{\alpha} \mid \alpha \in \Delta\right\}$, where each A_{α} is paracompact (normal or perfectly normal, respectively), then X is paracompact (normal or perfectly normal, respectively).

The following corollary gives a characterization of compactly dominated spaces.
Corollary 2.12. A space X is compactly dominated if and only if X is a continuous closed image of a free union of compact spaces.

3. Natural questions

In this section we determine the behaviour of compactly dominated spaces with respect to subspaces, products and continuous images.

Theorem 3.1. (a) A closed subspace of a compactly dominated space is compactly dominated.
(b) An arbitrary subspace of a compactly dominated space need not be compactly dominated.

Proof. (a) Suppose A is a closed subspace of a compactly dominated space X. Since X is compactly dominated, there exists a covering $\left\{F_{\alpha}\right\}_{\alpha \in \Delta}$ of compact subsets, which dominate X. For every $\alpha \in \Delta, A \cap F_{\alpha}$ is clearly compact. We claim that A is dominated by the family $\left\{A \cap F_{\alpha}\right\}_{\alpha \in \Delta}$. Obviously $A=\bigcup_{\alpha \in \Delta} A \cap F_{\alpha}$ and for any $\Delta^{\prime} \subset \Delta, \quad \bigcup_{\alpha \in \Delta^{\prime}}\left(A \cap F_{\alpha}\right)=A \cap\left(\bigcup_{\alpha \in \Delta^{\prime}} F_{\alpha}\right) \quad$ is closed in $\bigcup_{\alpha \in \Delta}\left(A \cap F_{\alpha}\right)$. Further let $B \subset \bigcup_{\alpha \in \Delta^{\prime}} A \cap F_{\alpha}$ such that $B \cap\left(A \cap F_{\alpha}\right)$ is closed in $A \cap F_{\alpha}$ for every $\alpha \in \Delta^{\prime}$, then we shall show that B is closed in $\bigcup_{\alpha \in \Delta^{\prime}} A \cap F_{\alpha}$. Since $B \cap\left(A \cap F_{\alpha}\right)=B \cap F_{\alpha}$ for every $\alpha \in \Delta^{\prime}$, it follows that $B=\bigcup_{\alpha \in \Delta^{\prime}}\left(B \cap F_{\alpha}\right)$ is closed in $\bigcup_{\alpha \in \Delta^{\prime}}\left(A \cap F_{\alpha}\right)$. Hence A is compactly dominated. Q.E.D.
(b) See the following example:

Example 3.2. Consider the set \mathbf{P} (respectively \mathbf{Q}) of all irrationals (respectively rationals) with the inherited subspace topology from $\mathbf{R} . \mathbf{R}$ being locally compact and paracompact is compactly dominated by Example 2.3 whereas \mathbf{P} (respectively \mathbf{Q}) is not compactly dominated by Corollary 2.5 (respectively Proposition 2.6).

Theorem 3.3. (a) A continuous closed image of a compactly dominated space X is compactly dominated.
(b) A quotient space of a compactly dominated space, however, need not be compactly dominated.

Proof. (a) Suppose X is compactly dominated and $f: X \rightarrow Y$ is continuous closed surjection. By Corollary 2.12, X is a continuous closed image of a free union say ΣZ_{α}, of compact spaces. Let $v: \Sigma Z_{\alpha} \rightarrow X$ be such a map. Then clearly v is continuous closed surjection. Hence by Corollary 2.12 again Y must be compactly dominated. Q.E.D.
(b) See the following example:

Example 3.4. P, the set of all irrationals being metrizable is a k-space. Let $\left\{C_{\alpha}\right\}$ be the set of all compact subsets of p. Then by ([6], p. 132) $\sum_{\alpha} C_{\alpha} / \sim$ is homeomorphic to P. Here $\sum_{\alpha} C_{\alpha}$ is a compactly dominated, but by Corollary $2.5, P$ is not comcactly dominated. Hence the quotient of a compactly dominated space need not be pompactly dominated.

Remarks 3.5. We note that the quotient space of a k-space is always a k-space ([6], p. 248), but in contrast with this the quotient of a compactly dominated space need not be compactly dominated, by the above example.

Using the above theorem we now obtain another useful characterization of compactly dominated spaces.

Corollary 3.6. A space X is compactly dominated if and only if X is a continuous closed image of a locally compact paracompact space.

Proof. If X is compactly dominated, then by Corollary 2.12 it is immediate that X is a continuous closed image of a locally compact paracompact space. Conversely, a locally compact paracompact space is compactly dominated by Example 2.3, and by Theorem 3.3 a continuous closed image of such a space must be compactly dominated. Q.E.D.

Theorem 3.7. (a) Let X be a compactly dominated space. If Y is locally compact paracompact, then $X \times Y$ is compactly dominated.
(b) The product of two compactly dominated spaces need not be compactly dominated.

Proof. (a) Since X is compactly dominated, there exists a covering $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ consisting of compact subspaces of X which dominates $X . Y$ being locally compact implies there exists a covering $\left\{U_{y}\right\}$ of Y consisting of relatively compact open sets. Thus we get a covering $\left\{V_{y}\right\}$ of Y consisting of compact subspaces of Y, where $V_{y}=\bar{U}_{y}$ for every $y \in Y$. Again Y being paracompact implies there exists a locally finite closed refinement $\left\{B_{\beta}\right\}$ of $\left\{V_{y}\right\}$. Thus by ([7] Thm. 1) it follows that $X \times Y$ is dominated by the covering $\left\{A_{\alpha} \times B_{\beta}\right\}$ consisting of compact subspaces of $X \times Y$. Hence $X \times Y$ is compactly dominated. Q.E.D.
(b) See the following example:

Example 3.8. Let \mathscr{M} be the set of all maps of \mathbf{Z}^{+}into itself. Consider the family

[^9]$\left\{u_{\varphi} \mid \varphi \in \mathscr{M}\right\}$ in one-to-one correspondence with the set \mathscr{M} and the family $\left\{v_{n} \mid n \in \mathbf{Z}^{+}\right\}$. Let $V=\underset{\varphi \in \mathcal{M}}{\oplus} \mathbf{R}_{u_{\varphi}}$ and $W=\underset{n \in \mathbf{Z}^{+}}{\oplus} \mathbf{R}_{v_{n}}$. We take the finite topology on both V and W. Thus V and W having finite topology are $C W$-complexes and hence are compactly dominated. Consider $P=\left\{\left.\left(\frac{1}{\varphi(n)} u_{\varphi}, \frac{1}{\varphi(n)} v_{n}\right) \right\rvert\, \varphi \in \mathscr{M}, n \in \mathbb{Z}^{+}\right\} \subset V \times W$. We claim that $V \times W$ is not a k-space. Suppose the contrary. Then P must be closed in $V \times W$. We shall show that P is not closed in the product $V \times W$. Otherwise $C P$ (the complement of P) would be open, and since the origin $o \in C P$, there would be a basic neighbourhood $U_{1} \times U_{2}$ with $o \in U_{1} \times U_{2} \subset C P$. Since U_{1}, U_{2} are open in V and W, respectively, for each φ and each n, there would be an a_{φ} and a_{n} such that $\left\{\lambda u_{\varphi} \mid o \leqq\right.$ $\left.\leqq \lambda<a_{\varphi}\right\} \subset U_{1},\left\{\mu v_{n} \mid 0 \leqq \mu<a_{n}\right\} \subset U_{2}$. Let $\bar{\varphi} \in \mathscr{M}$ be the map $\bar{\varphi}(n)=\max \left[n, \frac{1}{a_{n}}\right]+1$ and find \bar{n} with $\bar{\varphi}(\bar{n})>\frac{1}{a_{\bar{\varphi}}}$. Then $\left(\frac{1}{\bar{\varphi}(\bar{n})} u_{\bar{\varphi}}, \frac{1}{\bar{\varphi}(\bar{n})} v_{\bar{n}}\right) \in U_{1} \times U_{2}$, but it is not in $C P$, a contradiction. Thus the product $V \times W$ is not even a k-space and hence it is not compactly dominated by Proposition 2.7.

We conlcude with the following.
Remark 3.9. The product of two continuous closed maps need not be closed. Let us consider the spaces V and W of Example 3.8. Then V and W are compactly dominated. We apply Corollary 2.12 to find $v_{1}: \sum_{\alpha \in \Delta} A_{\alpha} \rightarrow V$ and $v_{2}: \sum_{\beta \in \Delta^{\prime}} B_{\beta} \rightarrow W$ as two continuous closed surjections, where $\sum_{\alpha \in \Delta} A_{\alpha}$ and $\sum_{\beta \in \Delta^{\prime}} B_{\beta}$ are free unions of compact spaces. Then, clearly, $\sum_{(\alpha, \beta) \in \Delta \times \Delta^{\prime}}\left(A_{\alpha} \times B_{\beta}\right)$ is a free union of compact spaces. But $v_{1} \times v_{2}: \sum_{\alpha \in \Delta} A_{\alpha} \times \sum_{\beta \in \Delta^{\prime}} B_{\beta} \rightarrow V \times W$ is not closed, for, otherwise $V \times W$ would be a compactly dominated space, in contrast with Example 3.8.

References

[1] G. E. Bredon, Sheaf Theory, McGraw-Hill Book Co. (1967).
[2] S. Deo, S. Muttepawar and M. Singh, On large cohomological dimension and tautness, Journ. Aust. Math. Soc. (New Series), 37 (1984).
[3] S. Deo and R. A. Shukla, On cohomological dimension and the sum theorems, Acta Math. Hung., 43 (1984), 17-24.
[4] S. Deo, A one dimensional manifold is of cohomological dimension 2, Proc. Amer. Math. Soc., 52 (1975), 445-446.
[5] S. Deo, The cohomological dimension of an n-manifold is $n+1$, Pacific J. Math., 67 (1976), 155-160.
[6] J. Dugundji, Topology, Allyn and Bacon (1966).
[7] K. Morita, On spaces having weak topology with respect to closed coverings, Proc.Japan Acad., 29 (1953), 537-543.
[8] K. Nagami, Dimension Theory, Academic Press (1970).
[9] A. R. Pears, Dimensions Theory of General Spaces, Cambridge University Press (1975).
[10] L. A. Steen and J. A. Seebach, Jr., Counter examples in topology (Second edition), SpringerVerlag (New York-Heidelberg-Berlin, 1978).
(Received July 12, 1983; revised July 3, 1984)

INDIA

COMPARING ALMOST-DISJOINT FAMILIES

P. KOMJÁTH (Budapest)

0. Introduction

In this paper families of almost-disjoint, countably infinite sets will be considered, i.e. families of type $\mathscr{A}=\left\langle A_{\alpha}: \alpha \in \kappa\right\rangle$ where $\left|A_{\alpha}\right|=\omega$ and $\left|A_{\alpha} \cap A_{\beta}\right|$ is finite whenever $\alpha<\beta<\chi$. One of the early results in the theory of almost-disjoint sets is the following theorem of E. W. Miller [3]: if $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is a family of infinite sets and instead of almost-disjointness the stronger $\left|A_{\alpha} \cap A_{\beta}\right| \leqq n$ holds with a fixed $n<\omega$, then \mathscr{A} has the property B, i.e. there is a coloring of the union set with two colors and without a monochromatic A. This is no longer true for almostdisjoint families.

The role of property B in connection with this result is a bit misleading, because, as it was later discovered, much stronger properties hold under the Miller condition, e.g. \mathscr{A} has a transversal - a one-to-one choice function. That the transversal property really implies property B , at least for families of infinite sets, is proved in [1]. The strongest property to date gained from the Miller condition is the following: \mathscr{A} is essentially disjoint, i.e. there are finite sets $\left\langle B_{\alpha}: \alpha<x\right\rangle$ such that the sets $\left\{A_{\alpha}-B_{\alpha}: \alpha<\chi\right\}$ are disjoint (see [2]). This property is obviously stronger than any of property B and the transversal property.

As these properties are proved under a relatively mild restriction on the size of pairwise intersections, one may wonder whether one of them or any other nontrivial property at all can be recognised from the matrix $\left\{\left|A_{\alpha} \cap A_{\beta}\right|: \alpha<\beta<x\right\}$. Call two enumerated almost-disjoint families $\mathscr{A}=\left\{A_{\alpha}: \alpha<x\right\}$ and $\mathscr{B}=\left\{B_{\alpha}\right.$: $\alpha<x\}$ similar if $\left|A_{\alpha} \cap A_{\beta}\right|=\left|B_{\alpha} \cap B_{\beta}\right|$ holds whenever $\alpha<\beta<\chi$. The question therefore is: which properties are similarity-invariant? It is easy to see that property B and the transversal property are not, as we can simultaneously enlarge each set with two (or infinitely many) new elements without changing any $A_{\alpha} \cap A_{\beta}$. However, essential-disjointness is similarity-invariant. Even more is true, namely a certain monotonicity holds: if $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ and $\mathscr{B}=\left\langle B_{\alpha}: \alpha<x\right\rangle$ are both almostdisjoint families, $\left|A_{\alpha} \cap A_{\beta}\right| \leqq\left|B_{\alpha} \cap B_{\beta}\right|$ holds for $\alpha<\beta<\chi$ and B is essentially disjoint then so is \mathscr{A}. The proof of this statement is the main content of the present note. We will derive from it, as an immediate corollary, Miller's theorem.

In this paper the standard set theory notation is used.

1. The main argument

Definition 1. A system $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is almost-disjoint, if $\left|A_{\alpha} \cap A_{\beta}\right|<\omega=$ $=\left|A_{\alpha}\right|,\left|A_{\beta}\right|$ holds for $\alpha<\beta<\chi$.

Definition 2. A system $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is essentially disjoint if and only if
$\left|A_{\alpha}\right|=\omega$ for $\alpha<\chi$ and there exist finite sets $\left\{B_{\alpha}: \alpha<\chi\right\}$ such that the sets $\left\{A_{\alpha}-B_{\alpha}\right.$: $\alpha<x\}$ are pairwise disjoint.

Lemma 1. Assume $x>\omega$ regular, $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is an almost-disjoint system, and for every $\mathscr{A}^{\prime} \subset \mathscr{A}$ with $\left|\mathscr{A}^{\prime}\right|<|\mathscr{A}|, \mathscr{A}^{\prime}$ is essentially disjoint. Then \mathscr{A} is essentially disjoint if and only if

$$
\begin{equation*}
L=\left\{\alpha<\chi: \text { there is a } \beta(\alpha) \geqq \alpha \text { with }\left|A_{\beta(\alpha)} \cap \bigcup_{\xi<\alpha} A_{\xi}\right|=\omega\right\} \tag{1.1}
\end{equation*}
$$

is non-stationary.
Proof. Assume first that L is stationary. If $\left\{B_{\alpha}: \alpha<x\right\}$ witnesses essential disjointness, for $\alpha \in L\left(A_{\beta(\alpha)}-B_{\beta(\alpha)}\right) \cup \bigcup_{\xi<\alpha} A_{\xi}$ is non-empty, choose an element x_{α} from it. It is easy to see that $\beta(\alpha)$ is one-to-one on a stationary set $L^{\prime} \subset L$, for these α^{\prime} s the points $\left\{x_{\alpha}: \alpha \in L^{\prime}\right\}$ are different. If $\alpha \in L^{\prime}, x_{\alpha} \in A_{\gamma(\alpha)}$ for a suitable $\gamma(\alpha)<\alpha$, by the pressing-down lemma $\gamma(\alpha)=\gamma$ for a stationary $L^{\prime \prime} \subset L^{\prime}$. But then $\left\{x_{\alpha}\right.$: $\gamma(\alpha)=\gamma\}$ would be \varkappa different elements of A_{γ} !

Assume now that L is non-stationary. As $0 \in L$, we can choose a closed unbounded $C \subseteq x-L$ with $0 \in C$. Let $\left\{c_{\alpha}: \alpha<x\right\}$ be the monotone enumeration of C. By hypothesis, each of the systems $\left\{A_{\xi}: c_{\alpha} \leqq \xi<c_{\alpha+1}\right\}$ is essentially disjoint, let $\left\{B(\alpha, \xi): \xi \in\left[c_{\alpha}, c_{\alpha+1}\right)\right\}$ witness this. For ${ }^{\xi} \xi \in\left[c_{\alpha}, c_{\alpha+1}\right), D_{\xi}=A_{\xi} \cap\left\{\cup A_{\gamma}: \gamma<c_{\alpha}\right\}$ is finite, as $c_{\alpha} \in L$. Put, for $\xi \in\left[c_{\alpha}, c_{\alpha+1}\right), B_{\xi}=B(\alpha, \xi) \cup D_{\xi}$. Then the sets $\left\{A_{\xi}-B_{\xi}\right.$: $\xi<x\}$ are pairwise disjoint.

Lemma 2. Assume that $x>\omega$ is regular, $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is an almost-disjoint system and for every $\mathscr{A}^{\prime} \subset \mathscr{A}$ with $\left|\mathscr{A}^{\prime}\right|<|\mathscr{A}|, \mathscr{A}^{\prime}$ is essentially disjoint. Then \mathscr{A} is essentially disjoint if and only if

$$
\begin{equation*}
N=\left\{\alpha<\chi: \text { there is a } \beta(\alpha) \geqq \alpha \text { with } \sup _{\gamma<\alpha}\left|A_{\beta(\alpha)} \cap A_{\gamma}\right|=\omega\right\} \tag{1.2}
\end{equation*}
$$

is nonstationary.
Proof. As $N \subseteq L$, the only if part follows by Lemma 1.
To prove the other direction, assume that N is non-stationary, but L is stationary. Choose a closed, unbounded $C \subseteq \varkappa-N$, increasingly enumerated as $\left\{c_{\alpha}\right.$: $\alpha<\chi\}, c_{0}=0$. For every $\xi \in\left[c_{\alpha}, c_{\alpha+1}\right)$, the number

$$
\begin{equation*}
n(\xi)=\sup _{\gamma<C_{\alpha}}\left|A_{\xi} \cap A_{\gamma}\right| \tag{1.3}
\end{equation*}
$$

is finite, by the definition of N. If $c_{\alpha} \in L$ choose an element $\beta(\alpha) \geqq c_{\alpha}$ with $\left|A_{\beta(\alpha)} \cap\left(\bigcup_{\gamma<c_{\alpha}} A_{\gamma}\right)\right| \geqq n(\beta(\alpha))+1$. With a successive application of the pressing-down lemma we can find a stationary subset of $L-N$, say L^{\prime} such that the ordinals $\left\{\beta(\alpha): \alpha \in L^{\prime}\right\}$ are different, $n(\beta(\alpha))=n$, and there is a $\gamma<\chi$ such that $\left|A_{\beta(\alpha)} \cap\left(\bigcup_{\xi<\gamma} A_{\xi}\right)\right| \geqq n+1$. As the set $\left[\bigcup_{\xi<\gamma} A_{\xi}\right]^{n+1}$ has cardinality less than χ, there is an unbounded set $L^{\prime \prime} \subset L^{\prime}$ such that $A_{\beta(\alpha)} \cap\left(\bigcup_{\xi<\gamma} A_{\xi}\right)$ contains the same $(n+1)$ element set for $\alpha \in L^{\prime \prime}$. Choose $\tau, \tau^{\prime} \in L^{\prime \prime}$ with $\tau<c_{\alpha}<\tau^{\prime}$ where c_{α} is in C. Then, by (1.3) $\left|A_{\tau} \cap A_{\tau^{\prime}}\right| \leqq n$ but, as $\tau, \tau^{\prime} \in L^{\prime \prime}$, they contain the same $(n+1)$-element subset, a contradiction.

2. Applications

Lemma 3. If $\chi>\operatorname{cf}(x), \mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is a family such that every $\mathscr{A}^{\prime} \subset \mathscr{A}$ with $\left|\mathscr{A}^{\prime}\right|<|\mathscr{A}|$ is essentially disjoint, then \mathscr{A} is essentially disjoint, as well.

Proof. See [2], Proposition 5.
Theorem. Assume that $\mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ and $\mathscr{B}=\left\langle B_{\alpha}: \alpha<x\right\rangle$ are almost-disjoint systems. If $\left|A_{\alpha} \cap A_{\beta}\right| \leqq\left|B_{\alpha} \cap B_{\beta}\right|$ for $\alpha<\beta<\chi$ and \mathscr{B} is essentially disjoint then \mathscr{A} is essentially disjoint, too.

Proof. By induction on $\lambda \leqq \varkappa$ we prove that every subsystem of \mathscr{A} with cardinality $\leqq \lambda$ is essentially disjoint. For $\lambda \leqq \omega$ this follows from almost-disjointness, see Proposition 1.b in [2]. If the statement is proved for every $\lambda^{\prime}<\lambda$ and $\left\{A_{\alpha}\right.$: $\alpha \in X\}$ is a subfamily of size λ, we use Lemma 3 or Lemma 2 according to whether λ is singular or regular. If λ is regular, take $\left\{B_{\alpha}: \alpha \in X\right\}$. By re-ordering X in ordertype λ, we get two families $\mathscr{A}^{\prime}=\left\{A_{\alpha}^{\prime}: \alpha<\lambda\right\}$ and $\mathscr{B}^{\prime}=\left\{B_{\alpha}^{\prime}: \alpha<\lambda\right\}$ with the properties that \mathscr{B}^{\prime} is essentially disjoint, every subsystem of \mathscr{A}^{\prime} with cardinality less than λ is essentially disjoint and $\left|A_{\alpha}^{\prime} \cap A_{\beta}^{\prime}\right| \leqq\left|B_{\alpha}^{\prime} \cap B_{\beta}^{\prime}\right|$ for $\alpha<\beta<\lambda$. By this, if $\alpha \in N\left(\mathscr{A}^{\prime}\right)$ then $\alpha \in N\left(\mathscr{B}^{\prime}\right)$ applying (1.2). So $N\left(\mathscr{A}^{\prime}\right) \subseteq N\left(\mathscr{B}^{\prime}\right)$ and Lemma 2 gives that \mathscr{A}^{\prime} is essentially disjoint. If λ is singular, $\left\{A_{\alpha}: \alpha \in X\right\}$ is essentially disjoint by Lemma 3 .

Corollary (Miller [3], Komjáth [2]). If $n<\omega, \mathscr{A}=\left\langle A_{\alpha}: \alpha<x\right\rangle$ is an almostdisjoint system with $\left|A_{\alpha} \cap A_{\beta}\right| \leqq n$ for $\alpha<\beta<\chi$, then \mathscr{A} is essentially disjoint.

Proof. By our Theorem, it is enough to find an essentially disjoint $\left\{B_{\alpha}: \alpha<x\right\}$ with $\left|B_{\alpha} \cap B_{\beta}\right|=n(\alpha<\beta<x)$. For this, take the system $\left\{X \cup Y_{\alpha}: \alpha<x\right\}$ where $|X|=n,\left|Y_{\alpha}\right|=\omega$, and the sets $\left\{X, Y_{\alpha}: \alpha<\chi\right\}$ are all disjoint.

References

[1] G. Hoffmann, P. Komjáth, The transversal property implies property B, Periodica Math. Hung., 7 (1976), 179-181.
[2] P. Komjáth, Families close to disjoint ones, Acta Math. Hungar, 43 (1984), 199-207.
[3] E. W. Miller, On a property of families of sets, Comptes Rendus Varsovie, 30 (1937), 31-38.
(Received July 20, 1983)
DEPARTMENT OF MATHEMATICS
EÖTVÖS LORÁND UNIVERSITY
BUDAPEST, MUUZEUM KRT. 6-8.
H—1088

THE STRUCTURE OF INEFFABILITY PROPERTIES OF $P_{\chi} \lambda$

DONNA M. CARR ${ }^{1}$ (Mississauga)

Notation and basic facts

Unless we specify otherwise, x denotes an uncountable regular cardinal, and λ a cardinal $\geqq x$. For any such pair, $P_{x} \lambda$ denotes the set $\{x \subset \lambda:|x|<x\}$, and $\lambda<x$ is the cardinality of this set.

The basic combinatorial notions are defined here for $P_{\varkappa} \lambda$ as in Jech [11]. For any $x \in P_{\chi} \lambda, \hat{x}$ denotes the set $\left\{y \in P_{x} \lambda: x \subset y\right\} . X \subset P_{\chi} \lambda$ is said to be unbounded iff $\left(\forall x \in P_{\chi} \lambda\right)(X \cap \hat{x} \neq 0)$, and $I_{x \lambda}$ denotes the ideal of not unbounded subsets of $P_{x} \lambda$. In the sequel, an "ideal on $P_{\chi} \lambda$ " is always "a proper, non-principal, x-complete ideal on $P_{\chi} \lambda$ extending $I_{\varkappa \lambda}$ " unless we specify otherwise. Further, for any ideal I on $P_{\chi} \lambda$, I^{+}denotes the set $\left\{X \subset P_{\chi} \lambda: X \notin I\right\}$, and I^{*} the filter dual to I.
$C \subset P_{\chi} \lambda$ is said to be closed in $P_{\chi} \lambda$ iff $(\forall X \subset C)(X$ is a chain of length $<\chi \Rightarrow$ $\Rightarrow \cup X \in C)$, and is called a $c u b$ iff it is both closed and unbounded. Further, $S \subset P_{x} \lambda$ is said to be stationary in $P_{\chi} \lambda$ iff $S \cap C \neq 0$ for every cub $C \subset P_{\chi} \lambda$. Finally, $N S_{x \lambda}$ denotes the non-stationary ideal on $P_{\alpha} \lambda$, and $C F_{\varkappa \lambda}$ its dual.

The diagonal union $\nabla\left(X_{\alpha}: \alpha<\lambda\right)$ of a λ-sequence $\left(X_{\alpha}: \alpha<\lambda\right)$ of subsets of $P_{\chi} \lambda$ is defined by $\nabla\left(X_{\alpha}: \alpha<\lambda\right)=\left\{x \in P_{\chi} \lambda:(\exists \alpha \in x)\left(x \in X_{\alpha}\right)\right\}$, and for any ideal I on $P_{\varkappa} \lambda, \nabla I$ is the set defined by $\nabla I=\left\{X \subset P_{\chi} \lambda:\left(\exists\left(X_{\alpha}: \alpha<\lambda\right) \in^{\lambda} I\right)\left(X=\nabla\left(X_{\alpha}: \alpha<\lambda\right)\right)\right\}$. It is easy to see that ∇I is a (not necessarily proper) ideal on $P_{\varkappa} \lambda$ extending I.

An ideal I on $P_{\chi} \lambda$ is said to be normal iff $\nabla I=I$, equivalently, iff every $f: P_{\chi} \lambda \rightarrow$ λ which is regressive on a set in I^{+}(i.e. has the property $\left\{x \in P_{\chi} \lambda: f(x) \in x\right\} \in I^{+}$) is constant on a set in I^{+}. Jech proved in [11] that $N S_{x \lambda}$ is normal, and we proved in [5] that $\nabla I_{\alpha \lambda} \subset \nabla \nabla I_{\chi \lambda}=N S_{\alpha \lambda}$ and hence that $N S_{\chi \lambda}$ is the smallest normal ideal on $P_{x} \lambda$.

0. Introduction

In [11] Jech provided the following $P_{\chi} \lambda$ generalizations of Jensen's notions (see [12]) of ineffability and almost ineffability.
0.1. Definition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq x, x$ is said to be
(1) λ-ineffable iff for every $\left(A_{x}: x \in P_{x} \lambda\right)$ such that $\left(\forall x \in P_{x} \lambda\right)\left(A_{x} \subset x\right)$,

$$
(\exists A \subset \lambda)\left(H=\left\{x \in P_{x} \lambda: A_{x}=A \cap x\right\} \in N S_{x}^{+}\right),
$$

[^10]and
(2) almost λ-ineffable iff for every $\left(A_{x}: x \in P_{\chi} \lambda\right)$ such that
$$
\left(\forall x \in P_{\chi} \lambda\right)\left(A_{x} \subset x\right),(\exists A \subset \lambda)\left(H=\left\{x \in P_{x} \lambda: A_{x}=A \cap x\right\} \in I_{\chi \lambda}^{+}\right)
$$

Magidor [13] subsequently proved that x is supercompact iff x is λ-ineffable for every $\lambda \geqq \varkappa$. In 3.3 below we use our results to improve this result of Magidor by showing that x is supercompact iff x is almost λ-ineffable for every $\lambda \geqq x$.

DiPrisco and Zwicker [9] defined mild λ-ineffability, and showed that it characterizes strong compactness in the same way; i.e. that x is strongly compact iff x is mildly λ-ineffable for every $\lambda \geqq \chi$. The definition we give in 0.2 below is easily seen to be equivalent to the one given in [9].
0.2. Definition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \chi, \chi$ is said to be mildly λ-ineffable iff for any $\left(A_{x}: x \in P_{x} \lambda\right)$ such that ($\forall x \in P_{x} \lambda$) $\left(A_{x} \subset x\right),(\exists A \subset \lambda)\left(\forall x \in P_{x} \lambda\right)\left(H_{x}=\left\{y \in \hat{x}: A_{y} \cap x=A \cap x\right\} \neq 0\right)$.

We study this notion of DiPrisco and Zwicker in [7] and [8] where we find that it is a $P_{\chi} \lambda$ generalization of weak compactness in the sense of some of the latter's familiar characterizations.

Baumgartner [1], [2] showed that many small large cardinal properties can be viewed as properties of normal ideals on x. For instance, he showed in [1] that x is almost ineffable iff there is a normal ideal $\operatorname{NAIn}_{\varkappa}$ on χ such that for every $X \subset \chi$, $X \in N A I_{\imath_{\chi}^{+}}$iff for any $\left(A_{\alpha}: \alpha \in X\right)$ such that $(\forall \alpha \in X)\left(A_{\alpha} \subset \alpha\right),(\exists A \subset \chi)(H=\{\alpha \in X$: $\left.\left.A_{\alpha}=A \cap \alpha\right\} \in I_{\varkappa}^{+}\right)$where I_{\varkappa} is the ideal of size $<\chi$ subsets of \varkappa.

In Section 1 of this paper we give natural ideal-theoretic characterizations of λ-ineffability, almost λ-ineffability and mild λ-ineffability. Whereas we find that the ideals characterizting λ-ineffability and almost λ-ineffability are normal, the one characterizing mild λ-ineffability is not normal. Thus we came to regard mild λ-ineffability as an "ideal-theoretically weak" $P_{\chi} \lambda$ generalization of weak compactness, and sought an "ideal-theoretically stronger" $P_{\star} \lambda$ generalization of weak compactness between mild λ-ineffability and almost λ-ineffability. We define such a notion in Section 3 below, and study it further in Section 3 and in [8].

Our definition of this new ineffability property of $P_{x} \lambda$ was motivated by some work of Shelah [15] together with a result of our own (1.3 below). A perusal of Shelah's paper suggests the following definition together with the formulation of his result that succeeds it.
0.3. Definition. For any uncountable regular cardinal $x, X \subset \chi$ is said to have the Shelah property iff for any $\left(f_{\alpha}: \alpha \in X\right)$ such that $(\forall \alpha \in X)\left(f_{\alpha}: \alpha \rightarrow \alpha\right),(\exists f: x \rightarrow x)$ $(\forall \alpha<x)\left(\left\{\beta \in[\alpha, x) \cap X: \quad f_{\beta}|\alpha=f| \alpha\right\} \neq 0\right)$ where $[\alpha, x)=\{\beta<x: \alpha \leqq x\}$. Further, define the set $N S h_{\varkappa}$ by $N S h_{\varkappa}=\{X \subset \chi: X$ does not have the Shelah property $\}$.

Shelah proved that \varkappa is weakly compact iff \varkappa has the Shelah property, and that if x has the Shelah property, then $N S h_{\varkappa}$ is a normal ideal on x.

We conclude this section by noting that x is easily seen to have the Shelah property iff x satisfies "Baumgartner's principle" where the latter is defined in 0.4 below. This definition is easily seen to be equivalent to the version appearing in Erdős et al. [10].
0.4. Definition. An uncountable regular cardinal x is said to satisfy Baumgartner's principle iff for any χ-sequence $\left(g_{\alpha}: \alpha<\chi\right)$ of regressive functions on $\chi,(\exists f$: $\chi \rightarrow x)(\forall \alpha<x)\left(\left\{\beta \in[\alpha, x):(\forall \xi<\alpha)\left(g_{\xi}(\beta)=f(\xi)\right)\right\} \neq 0\right)$.

$$
\text { 1. The ideals } N I n_{\varkappa \lambda}, N A I n_{\varkappa \lambda} \text { and } N M I n_{x \lambda}
$$

In this section we give ideal-theoretic characterizations of λ-ineffability, almost λ-ineffability and mild λ-ineffability.
1.1. Definition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \chi$, say that $X \subset P_{\chi} \lambda$ is
(1) λ-ineffable iff for any $\left(A_{x}: x \in X\right)$ such that $(\forall x \in X)\left(A_{x} \subset x\right)$,

$$
(\exists A \subset \lambda)\left(H=\left\{x \in X: A_{x}=A \cap x\right\} \in N S_{x \lambda}^{+}\right),
$$

(2) almost λ-ineffable iff for any $\left(A_{x}: x \in X\right)$ such that $(\forall x \in X)\left(A_{x} \subset x\right)$,

$$
(\exists A \subset \lambda)\left(H=\left\{x \in X: A_{x}=A \cap x\right\} \in I_{x \lambda}^{+}\right),
$$

(3) mildly λ-ineffable iff for any $\left(A_{x}: x \in X\right)$ such that $(\forall x \in X)\left(A_{x} \subset x\right)$,

$$
(\exists A \subset \lambda)\left(\forall x \in P_{x} \lambda\right)\left(H_{x}=\left\{y \in X \cap \hat{x}: A_{y} \cap x=A \cap x\right\} \neq 0\right) .
$$

Notice that the condition given in the conclusion of (1) can be replaced by $\left(\exists H \in \mathscr{P}(X) \cap N S_{x i}^{+}\right)(\forall x, y \in H)\left(x \subset y \Rightarrow A_{x}=A_{y} \cap x\right)$. Similarly, the condition given in the conclusion of (2) can be replaced by

$$
\left(\exists H \in \mathscr{P}(X) \cap I_{\chi_{\lambda}}^{+}\right)(\forall x, y \in H)\left(x \subset y \Rightarrow A_{x}=A_{y} \cap x\right) .
$$

Now define the sets $N I n_{* \lambda}, N A I n_{\varkappa \lambda}, N M I n_{\varkappa \lambda}$ by

$$
\begin{aligned}
N I n_{* \lambda} & =\left\{X \subset P_{x} \lambda: X \text { is not } \lambda \text {-ineffable }\right\} \\
\text { NAIn }_{* \lambda} & =\left\{X \subset P_{x} \lambda: X \text { is not } \text { almost } \lambda \text {-ineffable }\right\}, \\
\text { NMIn }_{* \lambda} & =\left\{X \subset P_{x} \lambda: X \text { is not mildly } \lambda \text {-ineffable }\right\} .
\end{aligned}
$$

It is clear that $I_{\chi \lambda} \subset N M I n_{\varkappa \lambda} \subset N A I n_{\chi \lambda} \subset N I n_{\varkappa \lambda}$. Moreover, it is clear that x is λ-ineffable iff $P_{\varkappa} \lambda \notin N n_{\varkappa \lambda}, x$ is almost λ-ineffable iff $P_{\chi} \lambda \notin N A I n_{\chi \lambda}$, and x is mildly λ-ineffable iff $P_{x} \lambda \notin N M I_{x \lambda}$.

Note that easy arguments (e.g. see [7], [8]) show that if x has any one of these ineffability properties at level λ for some $\lambda \geqq \chi$, then x is weakly compact and has that ineffability property at every level $\gamma \in[\chi, \lambda]$. Moreover, it is easy to see that x is ineffable iff x is x-ineffable, that x is almost ineffable iff x is almost x-ineffable, and that x is weakly compact iff x is mildly x-ineffable.
1.2. Theorem. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \chi$,
(1) x is λ-ineffable iff $N I n_{\chi \lambda}$ is a normal ideal on $P_{\chi} \lambda$, and
(2) x is almost λ-ineffable iff $N A I n_{x \lambda}$ is a normal ideal on $P_{\varkappa} \lambda$.

Proof. We will just prove (2); (1) follows by a similar but even simpler argument. The reverse implication of (2) is clear, so it remains to prove the forward one.

The assumption that x is almost λ-ineffable guarantees that $N A I n_{\varkappa \lambda}$ is proper.

Also, it is easy to see that $I_{\varkappa \lambda} \subset N A$ n $_{\varkappa \lambda}$ and that $\left(\forall X, Y \subset P_{\kappa} \lambda\right)\left(X \subset Y \& Y \in N A I n_{x \lambda} \Rightarrow\right.$ $\Rightarrow X \in$ NAIn $_{\varkappa \lambda}$).

Now pick $\delta>\psi$ and $\left\{X_{v}: v<\delta\right\} \subset N A$ In $_{x \lambda}$. For each $v<\delta$, let ($A_{x}^{v}: x \in X_{v}$) witness $X_{v} \in N A I n_{\varkappa \lambda}$. Set $X=\cup\left\{X_{v}: v<\delta\right\}$ and suppose by way of contradiction that $X \notin N A I n_{x \lambda}$. For each $x \in X$, let $v(x)$ be the least $v<\delta$ such that $x \in X_{v}$, and set $A_{x}=A_{x}^{v(x)}$. Now let $A \subset \lambda$ be such that $H=\left\{x \in X: A_{x}=A \cap x\right\} \in I_{x \lambda}^{+}$. The $x-$ completeness of $I_{\chi \lambda}$ guarantees that $(\exists v<\delta)\left(H \cap X_{v} \in I_{\chi \lambda}^{+}\right)$. Let γ be the least ordinal $<\delta$ such that $H \cap X_{\gamma} \in I_{\chi \lambda}^{+}$. Note that $\left(\forall x \in H \cap X_{\gamma}\right)(v(x) \leqq \gamma)$. Then the minimality of γ together with the minimality of the $v(x)$'s imply that $\left\{x \in X_{\gamma}: v(x)=\gamma\right\} \in I_{x \lambda}^{+}$thus contradicting $X_{\gamma} \in N A I n_{x \lambda}$.

We next show that $N S_{x \lambda} \subset N A I n_{\varkappa \lambda}$ and then use this fact to prove that $N A I n_{x \lambda}$ is normal. Pick $X \in N S_{x \lambda}$, and (by [14]) let $f: X \rightarrow \lambda \times \lambda$ be such that ($\forall x \in X$) $(f(x) \in x \times x)$ and $(\forall \alpha, \beta<\lambda)\left(f^{-1}(\{(\alpha, \beta)\}) \in I_{\alpha \lambda}\right)$. For each $x \in X$ set $f(x)=$ $=\left(\alpha_{x}, \beta_{x}\right) \in x \times x$, and define $A_{x} \subset x$ by $A_{x}=\cup f(x)=\left\{\alpha_{x}, \beta_{x}\right\}$. Now notice that $(\forall x \in X)(\forall y \in X \cap \hat{x})\left(A_{x}=A_{y} \cap x \Rightarrow y \in f^{-1}\left(\left\{\left(\alpha_{x}, \beta_{x}\right)\right\}\right) \cup f^{-1}\left(\left\{\left(\beta_{x}, \alpha_{x}\right)\right\}\right)\right)$. Thus we have that $(\forall x \in X)\left(\left\{y \in X \cap \hat{x}: A_{x}=A_{y} \cap x\right\} \in I_{x \lambda}\right)$, so $X \in$ NAIn $_{x \lambda}$.

Now pick $X \in N A I_{\varkappa}^{+}$, , let $p: \lambda \times \lambda>\rightarrow \lambda$, and set $C_{p}=\left\{x \in P_{\chi} \lambda: p^{\prime \prime}(x \times x) \subset x\right\}$. Since C_{p} is cub in $P_{\chi} \lambda$, it follows by the previous paragraph that $X \cap C_{p} \in N A I n_{\varkappa \lambda}^{+}$. We will show that $X \cap C_{p} \notin \nabla N A I n_{x \lambda}$; it will then follow that $X \notin \nabla N A I n_{x \lambda}$. Suppose by way of contradiction that $X \cap C_{p} \in \nabla N A I n_{\varkappa \lambda}$, and let $f: X \cap C_{p} \rightarrow \lambda$ be $N A I n_{n_{\lambda}-}$ small and regressive on $X \cap C_{p}$. For each $\alpha<\lambda$, let $\left(A_{x}^{\alpha}: x \in f^{-1}(\{\alpha\})\right)$ witness $f^{-1}(\{\alpha\}) \in N A I n_{\alpha \lambda}$. Then define $\left(A_{x}: x \in C_{p} \cap X\right)$ by $A_{x}=\left\{p(\xi, f(x)): \xi \in A_{x}^{f(x)}\right\}$, and let $H \subset X \cap C_{p}$ be such that $H \in I_{\varkappa}^{+}$and $(\forall x, y \in H)\left(x \subset y \Rightarrow A_{x}=A_{y} \cap x\right)$. Notice that $A_{x}=A_{y} \cap x \Rightarrow f(x)=f(y)$. This shows that $(\exists \alpha<\lambda)(\forall x \in H)(f(x)=\alpha)$, and hence that $(\exists \alpha<\lambda)\left(H \subset f^{-1}(\{\alpha\})\right)$ thus contradicting $f^{-1}(\{\alpha\}) \in$ NAIn $_{x \lambda}$.

As an easy consequence of the preceding theorem together with the fact that $N S_{\varkappa \lambda}$ is the smallest normal ideal on $P_{\chi} \lambda$ [5], we obtain the following useful characterizations of λ-ineffable and almost λ-ineffable subsets of $P_{\chi} \lambda$.
1.3. Corollary. $X \subset P_{\chi} \lambda$ is λ-ineffable (almost λ-ineffable) iff for any (f_{x} : $x \in X)$ such that $(\forall x \in X)\left(f_{x}^{*}: x \rightarrow x\right),(\exists f: \lambda \rightarrow \lambda)\left[H=\left\{x \in X: f_{x}=f \vdash x\right\} \in N S_{\chi \lambda}^{+}\left(I_{\chi \lambda}^{+}\right)\right]$.

Proof. The reverse implications are clear. Pick $X \in I^{+}$where $I \in\left\{N I n_{\varkappa \lambda}, N A I n_{\varkappa \lambda}\right\}$ and let $\left(f_{x}: x \in X\right)$ be such that $(\forall x \in X)\left(f_{x}: x \rightarrow x\right)$. Further, let $p: \lambda \times \lambda>\lambda$ and set $C_{p}=\left\{x \in P_{\chi} \lambda: p^{\prime \prime}(x \times x) \subset x\right\}$. The normality of I together with the minimality of $N S_{\varkappa \lambda}$ guarantees that $X \cap C_{p} \in I^{+}$.

For each $x \in X \cap C_{p}$, define $A_{x} \subset x$ by $A_{x}=\left\{p\left(\xi, f_{x}(\xi)\right): \xi \in x\right\}$, and then let $H \subset X \cap C_{p}$ be such that $H \in I_{x \lambda}^{+}$and $(\forall x, y \in H)\left(x \subset y \Rightarrow A_{x}=A_{y} \cap x\right)$. Notice that $A_{x}=A_{y} \cap x$ means that $\left\{p\left(\xi, f_{x}(\xi)\right): \xi \in x\right\}=\left\{p\left(\xi, f_{y}(\xi)\right): \xi \in y\right\} \cap x$ and hence that $f_{x}=f_{y} \backslash x$. Thus define $f: \lambda \rightarrow \lambda$ by $f(\alpha)=f_{x}(\alpha)$ where x is any element of $H \cap\{\widehat{\alpha}\}$.

The ideal-theoretic characterization of mild λ-ineffability is much weaker than that given in 1.2 above for λ-ineffability and almost λ-ineffability as we now show:
1.4. Proposition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \chi, \chi$ is mildly λ-ineffable iff $N M I_{x \lambda}=I_{\varkappa \lambda}$.

Proof. It is clear that if $N M I_{\varkappa \lambda}=I_{\varkappa \lambda}$, then x is mildly λ-ineffable, and if x is
mildly λ-ineffable then $I_{\chi \lambda} \subset N M I n_{\chi \lambda}$. We show that if χ is mildly λ-ineffable, then $I_{\chi \lambda}^{+} \subset N M I n_{\chi \lambda}^{+}$. Pick $X \in I_{\chi \lambda}^{+}$and let $\left(A_{x}: x \in X\right)$ be such that $(\forall x \in X)\left(A_{x} \subset x\right)$. For each $z \in P_{x} \lambda-X$ pick $x_{z} \in X \cap \hat{z}$, and for each $z \in X$ set $x_{z}=z$. Define $A_{z}^{\prime}=A_{x_{z}} \cap z$ and let $A \subset \lambda$ be such that $\left(\forall z \in P_{\varkappa} \lambda\right)(\exists y \in \hat{z})\left(A_{y}^{\prime} \cap z=A \cap z\right)$. Then $\left(\forall z \in P_{\varkappa} \lambda\right)(\exists y \in \hat{z})$ $\left(A_{x_{y}} \cap y \cap z=A \cap z\right)$, so $\left(\forall z \in P_{x} \lambda\right)(\exists x \in X \cap \hat{z})\left(A_{x} \cap z=A \cap z\right)$.

We conclude this section with some remarks on the "projections" of the ideals studied above from $P_{\chi} \chi$ to χ.

It is easy to see that for any normal ideal I on $P_{\varkappa} \varkappa, I \uparrow \chi=\{Y \cap \chi: Y \in I\}$ is a normal ideal on x. Moreover, $(I \uparrow x)^{+}=\left\{Y \cap x: Y \in I^{+}\right\}^{\varkappa}$ and $I=\left\{Y \subset P_{\varkappa} x: Y \cap x \in I \mid x\right\}$. As an easy consequence of these facts together with 1.2 above we obtain
1.5. Proposition. For any uncountable regular cardinal $x, N I n_{\varkappa}=N I n_{\varkappa x} \nmid \chi$ and NAIn $_{\varkappa}=$ NAIn $_{\varkappa x} \backslash \chi$.

It is also easy to see that for any uncountable regular cardinal $\varkappa, I_{\chi}=I_{\chi x} \backslash \chi$ and hence that NMIn $_{x \times 1} \not x$ is not the weakly compact ideal on x. This is not surprising for as we show in [8], mild λ-ineffability is a $P_{\chi} \lambda$ generalization of weak compactness in the sense of some of its familiar characterizations. And as Baumgartner observed in [2], p. 87, these characterizations of weak compactness do not yield the weakly compact ideal; they just yield I_{\varkappa}.

In Section 2 below we define a new ineffability property of $P_{x} \lambda$ "between" mild λ-ineffability and almost λ-ineffability whose associated ideal is normal, and show that the projection of this ideal from $P_{\varkappa} \varkappa$ to \varkappa is the weakly compact ideal. We study this notion further in Section 3 below and in [8].

2. A new ineffability property of $P_{\chi} \lambda$

Motivated by Shelah's work in [15] together with out 1.3 above, we define a new ineffability property of $P_{x} \lambda$ as follows:
2.1. Definition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \varkappa$, say that $X \subset P_{\chi} \lambda$ has the λ-Shelah property iff for any $\left(f_{x}: x \in X\right)$ such that ($\forall x \in X$) $\left(f_{x}: x \rightarrow x\right),(\exists f: \lambda \rightarrow \lambda)\left(\forall x \in P_{x} \lambda\right)\left(H_{x}=\left\{y \in X \cap \hat{x}: f_{y} \backslash x=f \upharpoonleft x\right\} \neq 0\right)$.

Further, define the set $N S h_{x \lambda}$ by $N S h_{\varkappa \lambda}=\left\{X \subset P_{\chi} \lambda: X\right.$ does not have the λ-Shelah property\}, and say that x is λ-Shelah iff $P_{\varkappa} \lambda \notin N S h_{x \lambda}$.

It is clear that $I_{\chi \lambda} \subset N M I n_{x \lambda} \subset N S h_{\varkappa \lambda}$, and in view of 1.3 above, it is also clear that $N S h_{\varkappa \lambda} \subset N A I n_{\chi \lambda} \subset N I n_{\chi \lambda}$.

The main result of this section is that x is λ-Shelah iff $N S h_{x \lambda}$ is a normal ideal on $P_{x} \lambda$ (Theorem 2.3 below). We start with the following simple preliminary which was inspired by a result of Baumgartner and Laver [4].
2.2. Lemma. Suppose that $I \subseteq \mathscr{P}\left(P_{x} \lambda\right)$ is such that

$$
\begin{equation*}
\left(\forall X, Y \subset P_{\chi} \lambda\right)(X \subset Y \& Y \in I \Rightarrow X \in I) \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
(\forall X \in I)\left(\forall Y \in I_{\varkappa \lambda}\right)(X \cup Y \in I), \quad \text { and } \tag{2}\\
\nabla I \subset I . \tag{3}
\end{gather*}
$$

Then I is a χ-complete normal ideal on $P_{\chi} \lambda$.

Proof. It suffices to prove that I is χ-complete. In fact, we will show that $I^{*}=\left\{X \in P_{\varkappa} \lambda: P_{\varkappa} \lambda-X \in I\right\}$ is x-complete.

Pick $\delta<\chi$ and let $\left(X_{\alpha}: \alpha<\delta\right) \in^{\delta}\left(I^{*}\right)$. For each $\beta<\lambda$ write $\beta=\delta \gamma+\alpha$ where $\gamma \geqq 0$ and $\alpha<\delta$, and set $Y_{\beta}=X_{\alpha}$. By (3), $Y=\Delta\left(Y_{\beta}: \beta<\lambda\right)=\left\{y \in P_{\varkappa} \lambda\right.$: $\left.(\forall \beta \in y)\left(y \in Y_{\beta}\right)\right\} \in I^{*}$, so it follows by (2) that $Y \cap \hat{\delta} \in I^{*}$. Now note that $(\forall y \in Y \cap \hat{\delta})$ $\left(\delta \subset y \&(\forall \beta \in y)\left(y \in Y_{\beta}\right)\right)$. Thus $Y \cap \hat{\delta} \subset \cap\left\{X_{\alpha}: \alpha<\delta\right\}$. It now follows by (1) that $\cap\left\{X_{\alpha}: \alpha<\delta\right\} \in I^{*}$.
2.3. Theorem. For any uncountable regular cardinal \varkappa and any cardinal $\lambda \geqq \varkappa, \varkappa$ is λ-Shelah iff $N S h_{\varkappa \lambda}$ is a normal ideal on $P_{\varkappa} \lambda$.

Proof. The reverse implication is clear. Moreover, it is clear that if x is λ-Shelah, then $N S h_{\alpha \lambda}$ is proper, and that if $X \subset P_{\varkappa} \lambda$ is λ-Shelah, then every $Y \supset X$ is λ-Shelah and $X \in I_{\varkappa \lambda}^{+}$. Thus $N S h_{\varkappa \lambda}$ satisfies (1) and (2) of the preceding lemma, so we complete the proof by showing that it also satisfies (3).

Let $\left(X_{v}: v<\lambda\right) \in^{\lambda} N S h_{\varkappa \lambda}$, and for each $v<\lambda$ let $\left(f_{x}^{v}: x \in X_{v}\right)$ witness $X_{v} \in N S h_{\varkappa \lambda}$. Set $X=\nabla\left(X_{v}: v<\lambda\right)$. Suppose that $X \notin N S h_{\alpha \lambda}$; we derive the required contradiction as follows.

For each $x \in X$ let $\left(\alpha_{0}^{x}, \ldots, \alpha_{v}^{x}, \ldots,(v<\operatorname{ot}(x))\right)$ enumerate x in increasing order. Notice that in view of the fact that $I_{\chi \lambda} \subset N S h_{x \lambda}$, we may assume w.l.o.g. that $X \subset\{\widehat{0}\}$ and hence that $(\forall x \in X)\left(\alpha_{0}^{x}=0\right)$.

For each $x \in X$ pick $\gamma(x) \in x$ so that $x \in X_{\gamma(x)}$ and define $g_{x}: x \rightarrow x$ by

$$
g_{x}(\xi)=\left\{\begin{array}{llll}
\gamma(x) & \text { if } & \xi=\alpha_{v}^{x} & \text { where } \quad v=0 \quad \text { or } \quad \lim (v) \\
f_{x}^{\gamma(x)}\left(\alpha_{\mu}^{x}\right) & \text { if } & \xi=\alpha_{v}^{x} & \text { where } \quad v=\mu+1
\end{array}\right.
$$

Now let $g: \lambda \rightarrow \lambda$ be such that $\left(\forall x \in P_{x} \lambda\right)(\exists y \in X \cap \hat{x})\left(g_{y} \backslash x=g \backslash x\right)$, and set $\gamma=g(0)$. Finally, define $f: \lambda \rightarrow \lambda$ by $f(\xi)=g(\xi+1)$. We show that $\left(\forall x \in P_{\gamma} \lambda\right)\left(\exists y \in X_{\gamma} \cap \hat{x}\right)$ ($f_{y}^{\gamma}|x=f| x$) thus contradicting $X_{\gamma} \in N S h_{\varkappa \lambda}$.

Pick $x \in P_{x} \lambda$ and set $x^{\prime}=x \cup\{0\} \cup\{\xi+1: \xi \in x\}$. Now pick $y \in X \cap \hat{x}^{\prime}$ such that $g_{y}\left|x^{\prime}=g\right| x^{\prime}$. Notice that since $0 \in x^{\prime} \subset y, g_{y}(0)=\gamma$, so $\gamma(y)=\gamma$. Thus observe that for each $\xi \in x$ we have $f(\xi)=g(\xi+1)=g_{y}(\xi+1)=f_{y}(\xi)$ since $\{\xi, \xi+1\} \subset x^{\prime} \subset y$.

It is easy to see that x has the Shelah property and hence (by [15]) is weakly compact iff x is x-Shelah. Moreover, an easy argument using Theorem 2.3 above and the remark preceding 1.5 yields
2.4. Proposition. For any uncountable regular cardinal $\chi, N S h_{\varkappa}=N S h_{\varkappa \varkappa} \nmid x$.

In view of the facts that x is weakly compact iff x is mildly x-ineffable (see [7]) and x is weakly compact iff x is x-Shelah, it is clear that x is x-Shelah iff x is mildly x-ineffable. In Section 3 we will see that the λ-Shelah property and mild λ-ineffability are not equivalent for arbitrary $\lambda>\varkappa$, however.

3. λ-Shelah cardinals and supercompactness

The main result of this section is that if x is $2^{\lambda<x}$-Shelah, then x is λ-supercompact (Theorem 3.2 below). Our proof of this requires the following easy preliminary which shows that the λ-Shelah property is a $P_{\star} \lambda$ generalization of "Baumgartner's principle" (see 0.4 above).
3.1. Proposition. For any uncountable regular cardinal x and any cardinal $\lambda \geqq \chi$, $X \subset P_{\chi} \lambda$ has the λ-Shelah property iff for any λ-sequence $\left(g_{\alpha}: \alpha<\lambda\right)$ of regressive functions on $P_{\chi} \lambda,(\exists f: \lambda \rightarrow \lambda)\left(\forall x \in P_{\chi} \lambda\right)\left(E_{x}=\left\{y \in X \cap \hat{x}:(\forall \alpha \in x)\left(g_{\alpha}(y)=f(\alpha)\right)\right\} \neq 0\right)$.
3.2. Theorem. For any uncountable regular cardinal χ and any cardinal $\lambda \geqq \varkappa$, if x is $2^{\lambda<x}$-Shelah, then x is λ-supercompact.

Proof. Set $\gamma=2^{\lambda<\alpha}$ and let $\left(f_{\alpha}: \alpha<\gamma\right)$ enumerate the set of all regressive functions on $P_{x} \lambda$. For each $y \in P_{x} \lambda$ fix an element τ_{y} of y, and then for each $\alpha<\gamma$ define $g_{\alpha}: P_{x} \lambda \rightarrow \gamma$ by

$$
g_{\alpha}(y)= \begin{cases}f_{\alpha}(y \cap \lambda) & \text { if } y \cap \lambda \neq 0 \\ \tau_{y} & \text { otherwise }\end{cases}
$$

It is clear that for each $\alpha<\gamma, g_{\alpha}$ is regressive and that $f_{\alpha}=g_{\alpha} \backslash P_{\chi} \lambda$.
Now let $g: \gamma \rightarrow \gamma$ be such that $\left(\forall y \in P_{x} \gamma\right)\left(E_{y}=\left\{z \in P_{\alpha} \gamma: y \subset z \&(\forall \alpha \in y)\left(g_{\alpha}(z)=\right.\right.\right.$ $\left.=g(\alpha))\} \in I_{\chi, ~}^{+}\right)$. Notice that $g: \gamma \rightarrow \lambda$.

For each $y \in P_{x} \gamma$, set $E_{y}^{\prime}=\left\{z \cap \lambda: z \in E_{y}\right\}$. It is easy to see that:

$$
\begin{equation*}
\left(\forall y \in P_{x} \gamma\right)\left(E_{y}^{\prime} \in I_{x \lambda}^{+}\right), \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left(\forall y \in P_{x} \gamma\right)\left(E_{y}^{\prime} \subset \cap\left\{E_{\{\alpha\}}^{\prime}: \alpha \in y\right\}\right), \tag{ii}
\end{equation*}
$$

and
(iii)

$$
(\forall \alpha<\lambda)\left(E_{\{\alpha\}}^{\prime} \subset \widehat{\{\alpha\}} \cap P_{\varkappa} \lambda\right)
$$

An immediate consequence of (i)-(iii) above is that $\left\{E_{\{\alpha\}}^{\prime}: \alpha<\gamma\right\}$ generates a proper x-complete filter F in $\mathscr{P}\left(P_{x} \lambda\right)$ extending $I_{\varkappa \lambda}^{*}$. We claim that F is a normal ultrafilter.

Let $f: P_{\chi} \lambda \rightarrow \lambda$ be such that $X=\left\{x \in P_{\chi} \lambda: f(x) \in x\right\} \in F$ and let β be any ordinal $<\gamma$ such that $f_{\beta} \backslash X=f \backslash X$. Then since $E_{\{\beta\}}^{\prime} \in F$ and since $E_{\{\beta\}}^{\prime}-\{0\}=\left\{x \in P_{x} \lambda: f_{\beta}(x)=\right.$ $=g(\beta)\}$, it follows that $f^{-1}(\{g(\beta)\}) \in F$.

Pick $X \subset P_{\chi} \lambda$ and let $\chi_{X}: P_{\chi} \lambda \rightarrow\{0,1\}$ be its characteristic function. Notice that χ_{X} is regressive on $\left\{\widehat{0,1\}} \cap P_{x} \lambda \in F\right.$. An argument similar to the one used in the preceding paragraph shows that $(\exists \beta<\gamma)\left(g(\beta) \in\{0,1\} \& \chi_{X}^{-1}(\{g(\beta)\}) \in F\right)$.

An easy consequence of 1.3 and 3.2 together with fact that λ-supercompactness implies λ-ineffability (Magidor [13]) is the following improvement of Magidor's characterization [13] of supercompactness.
3.3. Corollary. x is supercompact iff x is λ-Shelah for every $\lambda \geqq \varkappa$ iff x is almost λ-ineffable for every $\lambda \geqq \chi$.

Proof. By 1.3 and 2.1 above, $N S h_{\varkappa \lambda} \subset N A I n_{\varkappa \lambda} \subset N I n_{\varkappa \lambda}$ for every $\lambda \geqq \varkappa$. The rest now follows by Magidor's result and 3.2.

We conclude this section by showing that the λ-Shelah property and mild λ-ineffability are not provably equivalent for arbitrary $\lambda>x$. Baumgartner [3] obtained a result which amounts to the same thing.
3.4. Corollary. The λ-Shelah property and mild λ-ineffability are not provably equivalent for arbitrary $\lambda>x$.

Proof. By Theorem 3.2 together with the DiPrisco-Zwicker characterization [9] of strong compactness, and Menas' result [14] that the least measurable cardinal which is a limit of strongly compact cardinals is itself strongly compact, but is not 2^{x}-supercompact.

References

[1] J. E. Baumgartner, Ineffability properties of cardinals I, in Infinite and Finite Sets, Colloquia Mathematica Societatis János Bolyai 10, North Holland (Amsterdam, 1975), 109130.
[2] J. E. Baumgartner, Ineffability properties of cardinals II, in Logic, Foundations of Mathematics and Computability Theory, D. Reidel Publishing Company (Dordrecht-Holland, 1977), 87-106.
[3] J. E. Baumgartner, Generalizing weak compactness to the (x, λ) context, handwritten notes.
[4] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic, 17 (1979), 271-288.
[5] D. M. Carr, The minimal normal filter on $P_{\kappa} \lambda$, Proc. Amer. Math. Soc., 86 (1982), 316-320.
[6] D. M. Carr, Ineffability properties of $P_{\varkappa} \lambda$, Amer. Math. Soc.Abstracts, 2 (1981), p. 486, abstract no. 789-04-75.
[7] D. M. Carr, Ineffability properties of $P_{\varkappa} \lambda$, Ph. D. dissertation, McMaster University, 1981.
[8] D. M. Carr, $P_{\varkappa} \lambda$ generalizations of weak compactness, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31 (1985), 393-401.
[9] C. A. DiPrisco and W. S. Zwicker, Flipping properties and supercompact cardinals, Fund. Math., 109 (1980), 31-36.
[10] P. Erdős, A. Hajnal, A. Máté and R. Rado, Combinatorial Set Theory: Partition relations for cardinals, Studies in Logic and Found. Math., 106, North-Holland, 1984.
[11] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
[12] R. B. Jensen and K. Kunen, Some combinatorial properties of L and V, circulated notes.
[13] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc., 42 (1974), 279-285.
[14] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic, 7 (1974), 327359.
[15] S. Shelah, Weakly compact cardinals: a combinatorial proof, J. Sym. Logic, 44 (1979), 559562.
(Received September 14, 1983)

DEPARTMENT OF MATHEMATICS
ERINDALE COLLEGE
UNIVERSITY OF TORONTO
MISSISSAUGA, ONTARIO L5L 1C6
CANADA

SATURATION OF AN INTERPOLATORY POLYNOMIAL OPERATOR

A. K. VARMA (Gainesville) and P. VÉRTESI (Budapest)*

1. Introduction. We obtain the saturation order and the saturation class for the interpolatory polynomial operator introduced by O . Kis and P. Vértesi [1].
2. Preliminary results. 2.1. As far as we know, D. L. Berman [1] and G. Freud [2] were the first ones who, answering a question of P. Butzer, proved the Jackson theorem via interpolatory polynomials of degree $\leqq c n$ (see (i)-(vi)). From that time at least a dozen papers appeared proving the Jackson, Timan or the GopengauzTeliakovskii theorem. The authors are, among others, M. Sallay, R. B. Saxena, P. Vértesi, O. Kis, A. K. Varma, T. M. Mills, A. Sharma, J. Szabados, R. Bojanic, R. DeVore, K. K. Mathur, N. Misra and H. G. Lehnhoff. (For detailed references, see [4] and [5].)
2.2. Perhaps of the simplest form is the operator found by O . Kis and P. Vértesi [1]. The aim of this paper to find the corresponding saturation order and saturation class. To be more precise, let for $n=1,2, \ldots$

$$
\begin{equation*}
t_{k n}=\frac{2 k \pi}{2 n+1}, \quad k=0, \pm 1, \pm 2, \ldots \tag{2.1}
\end{equation*}
$$

and consider the trigonometric polynomial

$$
\begin{equation*}
p_{n}(f, t)=\sum_{k=-n}^{n} f\left(t_{k n}\right) u_{k n}(t), \quad n=1,2, \ldots, \tag{2.2}
\end{equation*}
$$

for the continuous 2π-periodic f (shortly $f \in \widetilde{C}$). Here

$$
\begin{equation*}
u_{k n}(t)=4 l_{k n}^{3}(t)-3 l_{k n}^{4}(t), \quad k=0, \pm 1, \ldots, \pm n \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
l_{k n}(t)=\frac{\sin \frac{2 n+1}{2}\left(t-t_{k n}\right)}{(2 n+1) \sin \frac{t-t_{k n}}{2}}, \quad k=0, \pm 1, \ldots, \pm n \tag{2.4}
\end{equation*}
$$

are the fundamental functions of trigonometric interpolation based on (2.1). Obviously

[^11](i) $\operatorname{deg} p_{n} \leqq 4 n$,
(ii) $p_{n}\left(f, t_{k n}\right)=f\left(t_{k n}\right), \quad k=0, \pm 1, \ldots, \pm n$,
moreover, by [1], (1.2),
(iii) $\left|p_{n}(f, t)-f(t)\right| \leqq$ const. $\omega\left(f, \frac{1}{n}\right), \quad n=1,2, \ldots$
where ω is the usual modulus of continuity. ("const.", c, c_{1}, \ldots mean absolute positive numbers.)
2.3. If $g(x)$ is continuous on $[-1,1]$ (shortly $g \in C$), let us consider
\[

$$
\begin{equation*}
q_{n}(g, x)=\sum_{k=-n}^{n} g\left(\cos t_{k n}\right) u_{k n}(\arccos x), \quad n=1,2, \ldots \tag{2.5}
\end{equation*}
$$

\]

It can be seen that
(iv) q_{n} is an algebraic polynomial of degree $\leqq 4 n$,
(v) $q_{n}\left(g, \cos t_{k n}\right)=g\left(\cos t_{k n}\right), \quad k=0,1, \ldots, n$,
(vi) $\quad\left|q_{n}(g, x)-g(x)\right| \leqq$ const. $\left[\omega\left(g, \frac{\sqrt{1-x^{2}}}{n}\right)+\omega\left(g, \frac{|x|}{n^{2}}\right)\right], \quad n=1,2, \ldots$ (see [1]).
2.4. A very natural question arises: How good is the polynomial p_{n}, i.e. can the order of approximation be better than $1 / n$ (excluding the trivial functions, of course)?
3. Results. Let $\|f\|$ and $\|g\|$ be the usual maximum norm for $f \in \tilde{C}$ or $g \in C$, respectively. The saturation order and saturation class for p_{n} is contained in the following

Theorem 3.1. For the operator p_{n}

$$
\left\|p_{n}(f, t)-f(t)\right\|= \begin{cases}o\left(\frac{1}{n}\right) & \text { iff } f=\text { constant }, \tag{3.1}\\ O\left(\frac{1}{n}\right) & \text { iff } f \in \operatorname{Lip} 1 .\end{cases}
$$

For q_{n} we state
Theorem 3.2. If $\varphi(t)=g(\cos t)$, then

$$
\left\|q_{n}(g, x)-g(x)\right\|= \begin{cases}o\left(\frac{1}{n}\right) & \text { iff } \quad g=\text { constant } \tag{3.2}\\ O\left(\frac{1}{n}\right) & \text { iff }\end{cases}
$$

Remarks. a) To prove these theorems we cannot use the usual saturation arguments. The method of our "ad hoc" proof was initiated by G. Somorjai [8].
b). $\mathrm{By}(3.2)$ we get

$$
\begin{equation*}
\left\|q_{n}(h, x)-h(x)\right\|=O\left(\frac{1}{n}\right) \tag{3.3}
\end{equation*}
$$

if $h(x)=\sqrt{1-x^{2}}$ (because now $\varphi(t)=\sin t$). Considering that $h \in \operatorname{Lip} 1 / 2$ but $h \notin \operatorname{Lip}(1 / 2+\varepsilon)(\varepsilon>0)$, this estimation is better than (vi).
c). Similar saturation theorems can be proved if the corresponding interpolatory operators are based on the roots of $P_{n}^{(\alpha, \beta)}(x),\left(1-x^{2}\right) P_{n}^{(\alpha, \beta)}(x)$, etc. The main tool is in P. Erdős, P. Vértesi [9] which actually gives a correct proof for Theorem 2.4 in [6].
4. Proofs. 4.1. Proof of Theorem 3.1. If, omitting the superfluous notations, t_{j} are (one of) the nearest nodes to t, i.e.

$$
\begin{equation*}
t=t_{j}+\frac{\alpha}{2 n+1} \quad \text { where } \quad-\pi \leqq \alpha=\alpha_{n} \leqq \pi \text {, } \tag{4.1}
\end{equation*}
$$

we shall see that the operator norm has the same order as the absolute value of the j-th term. Namely,

$$
\begin{equation*}
\frac{8}{\pi^{3}} \leqq\left|u_{j}(t)\right| \leqq \sum_{k=-n}^{n}\left|u_{k}(t)\right| \leqq \text { const. } \tag{4.2}
\end{equation*}
$$

Indeed, by (2.4) and (4.1)

$$
\left|l_{j}(t)\right| \geqq \frac{\frac{2}{\pi} \frac{2 n+1}{2}\left|t-t_{j}\right|}{(2 n+1) \frac{\left|t-t_{j}\right|}{2}}=\frac{2}{\pi}
$$

moreover, by $\left|l_{k}\right| \leqq 1,\left|u_{j}\right|=\left|l_{j}\right|^{3}\left|4-3 l_{j}\right| \geqq\left|l_{j}\right|^{3} \geqq 8 / \pi^{3}$. To obtain the upper estimation, by (2.3) and (4.1)

$$
\begin{align*}
& \left|u_{k}(t)\right| \leqq 7 \frac{\sin ^{3} \frac{2 n+1}{2}\left|t-t_{k}\right|}{(2 n+1)^{3} \sin ^{3} \frac{\left|t-t_{k}\right|}{2}} \leqq \operatorname{const} \frac{|\alpha|^{3}}{n^{3}\left|t-t_{k}\right|^{3}} \leqq \tag{4.3}\\
& \quad \leqq \text { const } \frac{|\alpha|^{3}}{|j-k|^{3}} \text { if } k=j \pm 1, j \pm 2, \ldots, j \pm n
\end{align*}
$$

By (4.3) and $\left|u_{j}\right| \leqq 7$ we get (4.2), considering that

$$
\sum_{k=-n}^{n}\left|u_{k}(t)\right|=\sum_{k=j-n}^{j+n}\left|u_{k}(t)\right| .
$$

4.2. Let

$$
M_{f}(t):=\varlimsup_{y \rightarrow t}\left|\frac{f(t)-f(y)}{t-y}\right|, \quad 0 \leqq M_{f}(t) \leqq \infty, \quad f \in \widetilde{C} .
$$

Then, by [9;2.1] we have

Lemma 4.1. If $E \subset[-\pi, \pi)$ is a set such that $[-\pi, \pi) \backslash E$ is countable. Then $M_{f}:=\sup _{t \in[-\pi, \pi)} M_{f}(t)=M_{f}(E):=\sup _{t \in E} M_{f}(t)$, i.e. we have
(a) $f=$ constant iff $M_{f}(E)=0$,
(b) $f \in \operatorname{Lip} 1$ iff $M_{f}(E)<\infty$.

4.3. Now we state

Lemma 4.2. If $f \in \tilde{C}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{n\left\|p_{n}(f, t)-f(t)\right\|\right\} \geqq \text { const } \cdot M_{f} \tag{4.4}
\end{equation*}
$$

Proof of Lemma 4.2 (Parts 4.3-4.8). First we assume that $M_{f}>0$; otherwise the lemma is trivial. Let

$$
E:=\{x ; x \in[-\pi, \pi), x / \pi \text { is irrational }\} .
$$

Then by [9] we can state
Lemma 4.3. Let $x_{0} \in E$ and $\varrho>0$ be fixed. If $\left\{y_{l}\right\}$ is an infinite sequence with $y_{l} \rightarrow x_{0}, y_{l} \neq x_{0}$, then one can find infinitely many (different) nodes $t_{j_{k}, n_{k}}$ and numbers $\left\{x_{k}\right\} \subset\left\{y_{l}\right\}$ with

$$
\begin{align*}
&\left|x_{0}-t_{j_{k}, n_{k}}\right| \leqq \frac{\varrho^{2}}{n_{k}}, \quad k=1,2, \ldots, \tag{4.5}\\
& \frac{\varrho}{3 n_{k}}<\left|x_{k}-t_{j_{k}, n_{k}}\right| \leqq \frac{2 \varrho}{n_{k}}, \quad k=1,2, \ldots, x_{k} \in\left\{y_{l}\right\} \tag{4.6}
\end{align*}
$$

$i_{f} \varrho>0$ is small enough.
By Lemma 4.1 one can choose a $T_{0} \in E$ such that $M_{f}\left(T_{0}\right) \geqq \frac{M_{f}}{2}>0$. Let $0<T_{0} \leqq \frac{\pi}{2}$, say. Let $0<\varepsilon \leqq \frac{1}{2}$ be fixed. Then by definition there exists a d_{0}, $0<d_{0}<\frac{\pi}{2}$, such that

$$
\begin{equation*}
\left|\frac{f(t)-f\left(T_{0}\right)}{t-T_{0}}\right| \leqq(1+\varepsilon) M_{f}\left(T_{0}\right) \quad \text { if } \quad 0 \leqq\left|t-T_{0}\right| \leqq d_{0} \tag{4.7}
\end{equation*}
$$

Let us define the sequence $\left\{\mathscr{T}_{r}\right\}$ such that

$$
\mathscr{T}_{r} \neq T_{0}, \quad r=1,2, \ldots ; \quad \lim _{r=\infty} \mathscr{T}_{r}=T_{0}
$$

and

$$
\left|\frac{f\left(\mathscr{T}_{r}\right)-f\left(T_{0}\right)}{\mathscr{T}_{r}-T_{0}}\right| \geqq \begin{cases}(1-\varepsilon) M_{f}\left(T_{0}\right) & \text { if } \quad M_{f}<\infty, \tag{4.8}\\ \max _{\substack{-\pi \leq t \leq \pi \\\left|t-T_{0}\right| \equiv\left|\mathscr{T}_{r}-T_{0}\right|}}\left|\frac{f(t)-f\left(T_{0}\right)}{t-T_{0}}\right| & \text { if } \quad M_{f}=\infty .\end{cases}
$$

That means, in both cases

$$
\begin{equation*}
\left|\frac{f(t)-f\left(T_{0}\right)}{t-T_{0}}\right| \leqq \frac{1+\varepsilon}{1-\varepsilon}\left|\frac{f\left(\mathscr{T}_{r}\right)-f\left(T_{0}\right)}{\mathscr{T}_{r}-T_{0}}\right| \text { if } \quad\left|\mathscr{T}_{r}-T_{0}\right| \leqq\left|t-T_{0}\right| \leqq d_{0}, \quad r=1,2, \ldots . \tag{4.9}
\end{equation*}
$$

4.4. Now, using the properties of $\left\{\mathscr{T}_{r}\right\}$, and Lemma 4.3 we shall prove that

$$
\max \left\{\left|p_{n}\left(f, T_{0}\right)-f\left(T_{0}\right)\right|,\left|p_{n}\left(f, \mathscr{T}_{r}\right)-f\left(\mathscr{T}_{r}\right)\right|\right\} \geqq \frac{1}{\pi^{3}}\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{r}\right)\right|
$$

at least for proper subsequences of $\left\{\mathscr{T}_{r}\right\}$ and $\{n\}$.
4.5. Indeed, let us apply Lemma 4.3 with the cast $x_{0}=T_{0},\left\{y_{l}\right\}=\left\{\mathscr{T}_{r}\right\}$ for the set E. Then there exist $1<m_{1}<m_{2}<\ldots, j_{1}, j_{2}, \ldots \mathscr{T}_{1}<\mathscr{T}_{2}<\ldots$ (we denote the elements of the subsequence by \mathscr{T}_{k} again) such that

$$
\begin{array}{r}
\left|T_{0}-t_{j_{k}, m_{k}}\right| \leqq \frac{\varrho^{2}}{m_{k}}, \quad k=1,2, \ldots, \\
\frac{\varrho}{3 m_{k}}<\left|\mathscr{T}_{k}-t_{j_{k}, m_{k}}\right| \leqq \frac{2 \varrho}{m_{k}}, \quad k=1,2, \ldots \tag{4.11}
\end{array}
$$

By (4.10) and (4.11) it is easy to get

$$
\begin{equation*}
\frac{\varrho}{4 m_{k}}<\left|\mathscr{T}_{k}-T_{0}\right|<\frac{3 \varrho}{m_{k}} \tag{4.12}
\end{equation*}
$$

if ϱ is small enough.
Now let $i \neq j_{k}$. Then

$$
\begin{equation*}
\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)}{\mathscr{T}_{k}-t_{i}}\right| \leqq\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-T_{0}}\right|\left|\frac{\mathscr{T}_{k}-T_{0}}{\mathscr{T}_{k}-t_{i}}\right|+\left|\frac{f\left(T_{0}\right)-f\left(t_{i}\right)}{T_{0}-t_{i}}\right|\left|\frac{T_{0}-t_{i}}{\mathscr{T}_{k}-t_{i}}\right| . \tag{4.13}
\end{equation*}
$$

Here, if ϱ is small enough,

$$
\left|\frac{\mathscr{T}_{k}-T_{0}}{\mathscr{T}_{k}-t_{i}}\right| \leqq \frac{\frac{3 \varrho}{m_{k}}}{\frac{2 \pi}{2 m_{k}+1}-\frac{\varrho}{m_{k}}} \leqq \varrho
$$

and, as above,

$$
\left|\frac{T_{0}-t_{i}}{\mathscr{T}_{k}-t_{i}}\right|=\left|\frac{T_{0}-\mathscr{T}_{k}+\mathscr{T}_{k}-t_{i}}{\mathscr{T}_{k}-t_{i}}\right|=\left|1+\frac{T_{0}-\mathscr{T}_{k}}{\mathscr{T}_{k}-t_{i}}\right| \leqq 1+\varrho .
$$

Let $\left|T_{0}-t_{i}\right| \leqq d_{0}$; then using (4.9) we get from (4.13)

$$
\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)}{\mathscr{T}_{k}-\mathrm{t}_{i}}\right| \leqq\left[\varrho+(1+\varrho) \frac{1+\varepsilon}{1-\varepsilon}\right]\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-t_{0}}\right| \leqq(1+3 \varepsilon)\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-T_{0}}\right|
$$

whenever ε and ϱ are small enough.

On the other hand, if $M_{f}=\infty$, by (4.8),

$$
\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)}{\mathscr{T}_{k}^{-}-t_{i}}\right| \leqq[\varrho+(1+\varrho)]\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-T_{0}}\right| .
$$

Summarizing, we obtain

$$
\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)}{\mathscr{T}_{k}-t_{i}}\right| \leqq(1+3 \varepsilon)\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-T_{0}}\right|\left\{\begin{array}{l}
\text { whenever }\left|T_{0}-t_{i}\right| \leqq d_{0} \tag{4.14}\\
\text { or for any } i \text { if } M_{f}=\infty .
\end{array}\right.
$$

(4.14) will be used to estimate $p_{n}-f$. Indeed, with $j=j_{k}$ we can write

$$
\begin{gather*}
\left|p_{m_{k}}\left(f, \mathscr{T}_{k}\right)-f\left(\mathscr{T}_{k}\right)\right|=\left|\sum_{r=-m_{k}}^{m_{k}}\left[f\left(t_{r}\right)-f\left(\mathscr{T}_{k}\right)\right] u_{r}\left(\mathscr{T}_{k}\right)\right| \geqq \tag{4.15}\\
\geqq\left|f\left(\mathscr{T}_{k}\right)-f\left(t_{j}\right)\right| \cdot\left|u_{j}\left(\mathscr{T}_{k}\right)\right|-\sum_{\substack{0<\mid t_{i} \\
i \neq j}} \mid f\left(T_{j} \mid \leqq d_{0}\right. \\
-\sum_{\left|t_{i}-T_{0}\right|>d_{0}}\left|f\left(t_{i}\right)-f\left(\mathscr{T}_{k}\right)\right| \cdot\left|u_{i}\left(\mathscr{T}_{k}\right)\right|- \\
\quad\left|u_{i}\left(\mathscr{T}_{k}\right)\right|:=A_{1}-A_{2}-A_{3} .
\end{gather*}
$$

4.6. First we suppose that for a certain k

$$
\begin{equation*}
\left|f\left(\mathscr{T}_{k}\right)-f\left(t_{j}\right)\right| \geqq \frac{3}{4}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| . \tag{4.16}
\end{equation*}
$$

Then by (4.2) and (4.16)

$$
\begin{equation*}
A_{1} \geqq \frac{6}{\pi^{3}}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| . \tag{4.17}
\end{equation*}
$$

Moreover, using (4.3), (4.14), (4.11), (4.12) and (2.1),

$$
\begin{align*}
& A_{2} \leqq \text { const. } \sum_{\substack{0<\left|t_{i}-T_{0}\right| \leqq d_{0} \\
i \neq j}}\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)}{\mathscr{T}_{k}-t_{i}}\right| \frac{\varrho^{3}}{m_{k}^{3}\left|\mathscr{T}_{k}-t_{i}\right|^{2}} \leqq \tag{4.18}\\
& \leqq \text { const. }(1+3 \varepsilon) \sum_{\substack{0<\mid t_{i}, T_{\begin{subarray}{c}{0} }}^{i \neq j}}\end{subarray}}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| \frac{\varrho}{m_{k}\left|\mathscr{T}_{k}-T_{0}\right|} \frac{\varrho^{2}}{m_{k}^{2}\left|\mathscr{T}_{k}-t_{i}\right|^{2}} \leqq \\
& \leqq \text { const. }(1+3 \varepsilon) \varrho^{2}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| .
\end{align*}
$$

Let $0<M_{f}<\infty$. Then, by (4.3), we estimate A_{3} as follows:

$$
\begin{equation*}
A_{3} \leqq \text { const. }\|f\| \frac{\varrho^{3}}{m_{k}^{3}} \sum_{i=-m_{k}}^{m_{k}} d_{0}^{-3}=\frac{\text { const. }\|f\|}{m_{k}^{2} d_{0}^{3}} \varrho^{3} . \tag{4.19}
\end{equation*}
$$

Using (4.15)-(4.19), (4.8) and (4.12)

$$
\begin{aligned}
\left|p_{m_{k}}\left(f, \mathscr{T}_{k}\right)-f\left(\mathscr{T}_{k}\right)\right| & \geqq\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right|\left(\frac{6}{\pi^{3}}-\text { const. }(1+3 \varepsilon) \varrho^{2}-\frac{\text { const. }\|f\| \varrho^{3}}{\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| d_{0}^{3} m_{k}^{2}}\right) \geqq \\
& \geqq\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right|\left(\frac{6}{\pi^{3}}-\text { const. }(1+3 \varepsilon) \varrho^{2}-\frac{\text { const. }\|f\| \varrho^{2}}{M_{f}\left(T_{0}\right) d_{0}^{3} m_{k}}\right) \geqq \\
& \geqq \frac{1}{\pi^{3}}\left|f\left(\mathscr{F}_{k}\right)-f\left(T_{0}\right)\right|, \quad \text { if } \varrho \text { is small enough. }
\end{aligned}
$$

On the other hand, if $M_{f}=\infty$, we estimate as follows (see (4.3), (4.8) and (4.12)):

$$
\begin{align*}
& A_{3} \leqq \text { const. } \sum_{\left|t_{i}-T_{0}\right|>d_{0}} \frac{\left|f\left(\mathscr{T}_{k}\right)-f\left(t_{i}\right)\right|}{\left|\mathscr{T}_{k}-t_{i}\right|} \frac{\varrho^{3}}{m_{k}^{3}\left|\mathscr{T}_{k}-t_{i}\right|^{2}} \leqq \tag{4.20}\\
& \leqq \text { const. }(1+3 \varepsilon)\left|\frac{f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)}{\mathscr{T}_{k}-T_{0}}\right| \frac{\varrho^{3}}{m_{k}^{3}} \sum_{\left|t_{i}-T_{0}\right|>d_{0}} d_{0}^{-2} \leqq \\
& \leqq \text { const. }(1+3 \varepsilon) \frac{\varrho^{2}}{m_{k} d_{0}^{2}}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| .
\end{align*}
$$

Using these we get again

$$
\begin{equation*}
\left|p_{m_{k}}\left(f, \mathscr{T}_{k}\right)-f\left(\mathscr{T}_{k}\right)\right| \geqq \frac{1}{\pi^{3}}\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right| \tag{4.21}
\end{equation*}
$$

whenever (4.16) holds true.
4.7. Now let us suppose that (4.16) does not hold. Then obviously

$$
\begin{gather*}
\left|f\left(T_{0}\right)-f\left(t_{j}\right)\right| \geqq\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right|-\left|f\left(\mathscr{T}_{k}\right)-f\left(t_{j}\right)\right| \geqq \tag{4.22}\\
\geqq\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right|-\frac{3}{4}\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right|=\frac{1}{4}\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right| .
\end{gather*}
$$

As above

$$
\begin{equation*}
\left|p_{m_{k}}\left(f, T_{0}\right)-f\left(T_{0}\right)\right| \geqq B_{1}-B_{2}-B_{3}, \tag{4.23}
\end{equation*}
$$

where by (4.2) and (4.22)

$$
B_{1}:=\left|f\left(T_{0}\right)-f\left(t_{j}\right)\right|\left|u_{j}\left(T_{0}\right)\right| \geqq \frac{2}{\pi^{3}}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| .
$$

Further, by (4.3), (4.5), (4.8)

$$
\begin{aligned}
& B_{2}:=\sum_{\substack{\left|t_{i}-t_{0}\right| \leqq d_{0} \\
i \neq j}}\left|f\left(t_{i}\right)-f\left(T_{0}\right)\right|\left|u_{i}\left(T_{0}\right)\right| \leqq \text { const. } \sum \frac{\left|f\left(t_{i}\right)-f\left(T_{0}\right)\right|}{\left|t_{i}-T_{0}\right|} . \\
& \cdot \frac{\varrho^{6}}{m_{k}^{3}\left|t_{i}-T_{0}\right|^{2}} \leqq \text { const. } \frac{\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right|}{\left|\mathscr{T}_{k}-T_{0}\right|} \frac{\varrho}{m_{k}} \varrho^{5} \sum \frac{1}{\ldots} \frac{1}{m_{k}^{2}\left|t_{i}-T_{0}\right|^{2}} \leqq \\
& \leqq \text { const. } \varrho^{5}\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| .
\end{aligned}
$$

Finally, if $M_{f}<\infty$, as in (4.19) (see (4.3))

$$
B_{3}:=\sum_{\left|t_{i}-T_{0}\right|>d_{0}}\left|f\left(t_{i}\right)-f\left(T_{0}\right)\right|\left|u_{i}\left(T_{0}\right)\right| \leqq \frac{\text { const. }\|f\| \varrho^{5}}{m_{k}^{2} d_{0}^{3}} .
$$

If, on the other hand, $M_{f}=\infty$, we get by (4.3), (4.8), and (4.12)

$$
\begin{aligned}
B_{3} \leqq \text { const. } & \sum_{\ldots} \frac{\left|f\left(t_{i}\right)-f\left(T_{0}\right)\right|}{\left|t_{i}-T_{0}\right|} \frac{\varrho^{6}}{m_{k}^{3}\left|t_{i}-T_{0}\right|^{2}} \leqq \text { const. } \frac{\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right|}{\left|\mathscr{T}_{k}-T_{0}\right|} \frac{\varrho}{m_{k}} . \\
& \cdot \varrho^{5} \sum_{\ldots} \frac{1}{m_{k}^{2} d_{0}^{2}} \leqq \text { const. }\left|f\left(\mathscr{T}_{k}\right)-f\left(T_{0}\right)\right| \frac{\varrho^{5}}{m_{k} d_{0}^{2}} .
\end{aligned}
$$

Using these estimations we get from (4.23)

$$
\begin{equation*}
\left|p_{m_{k}}\left(f, T_{0}\right)-f\left(T_{0}\right)\right| \geqq \frac{1}{\pi^{3}}\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right| \tag{4.24}
\end{equation*}
$$

for a proper ϱ, whenever (4.16) does not hold. (4.21) and (4.24) complete the proof of 4.4.
4.8. Now using 4.4 and (4.12), we have

$$
m_{k}\left\|p_{m_{k}}(f, t)-f(t)\right\|>\frac{\varrho}{4 \pi^{3}} \frac{\left|f\left(T_{0}\right)-f\left(\mathscr{T}_{k}\right)\right|}{\left|T_{0}-\mathscr{T}_{k}\right|}, \quad k=1,2, \ldots,
$$

from where we get (4.4) by (4.8).
4.9. Now we prove Theorem 3.1. The first part of (3.1) comes from (iii), (a) and (4.4). Now let $f \in \operatorname{Lip} 1$; then by (iii), $\left\|p_{n}(f, t)-f(t)\right\| \leqq$ const. n^{-1}, on the other hand if $\left\|p_{n}(f, t)-f(t)\right\|=O\left(n^{-1}\right)$, then by (4.4) $M_{f}<\infty$, i.e. $f \in \operatorname{Lip} 1$.
4.10. Proof of Theorem 3.2. The proof can be done as before considering the relations $\varphi(t) \equiv g(\cos t)$ and $p_{n}(\varphi, t) \equiv q_{n}(g, \cos t)$.

References

[1] O. Kis, P. Vértesi, On a new interpolatory process, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 10 (1967), 117-128 (in Russian).
[2] D. L. Berman, Approximation of continuous function by Bernstein type interpolatory polynomials, $D A N, 101$ (1955), 397-400 (in Russian).
[3] G. Freud, Über eine Jacksonsches Interpolationsverfahren. On Approximation Theory, Birkhauser Verlag, Basel und Stuttgart, (1964), 227-232.
[4] H.-G. Leinhoff, A simple proof of A. F. Timan's theorem, J. Approx. Th., 38 (1983), 172-176.
[5] H.-G. Leinhoff, A new proof of Teljakowskii's theorem, ibid, 38 (1983), 177-181.
[6] T. Hermann, P. Vértesi, On an interpolatory operator and its saturation, Acta Math. Acad. Sci. Hungar., 37 (1981), 1-9.
[7] G. Freud, A. Sharma, Some good sequences of interpolatory polynomials, Canad. J. Math., 26 (1974), 233-246 and 29 (1977), 1163-1166.
[8] G. Somorjai, On a saturation problem, Acta Math. Acad. Sci. Hungar., 32 (1978), 377-388.
[9] P. Erdős, P. Vértesi, On certain saturation problems, Acta Math. Hungar. (to appear).
(Received November 8, 1983; revised May 15, 1986)
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA 32601
U.S.A.

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REÁLTANODA U. 13-15.
H-1053, HUNGARY

DISTRIBUTION OF DIGITS OF PRIMES IN q-ARY CANONICAL FORM

I. KÁTAI (Budapest), member of the Academy

1. Let $q \geqq 2$ be an integer, $\mathscr{A}_{q}=\{0,1, \ldots, q-1\}$. Every nonnegative integer can be uniquely written in the form

$$
n=\sum_{j=0}^{\infty} a_{j}(n) q^{j}, \quad a_{j}(n) \in \mathscr{A}_{q} .
$$

For an arbitrary subset \mathscr{B} of the nonnegative integers, let $A_{\mathscr{B}}(x)$ be the counting function of the elements of \mathscr{B} not exceeding x, and

$$
A_{\mathscr{B}}\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\#\left\{n \in \mathscr{B} \mid n \leqq x, a_{j_{l}}(n)=b_{l}(l=1, \ldots, r)\right\} .
$$

For the set \mathscr{P} of all primes we shall use the notation

$$
A_{\mathscr{P}}(x)=\pi(x), \quad A_{\mathscr{P}}\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\Pi\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right) .
$$

If $\mathscr{B}=\mathscr{N}_{0}$, the whole set of the nonnegative integers, then we shall write

$$
A_{\mathcal{N}_{0}}(x)=A(x), \quad A_{\mathcal{N}_{0}}\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)=A\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right) .
$$

If $x=q^{N}-1, N$ a positive integer, $0 \leqq j_{1}<j_{2}<\ldots<j_{r} \leqq N-1$, then

$$
A\left(q^{N}-1 \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\frac{q^{N}}{q^{r}}=\frac{1}{q^{r}} A\left(q^{N}-1\right)
$$

for every choice of $b_{1}, \ldots, b_{r} \in \mathscr{A}_{q}$. Let now $q^{N} \leqq x<q^{N+1}, j_{1}<j_{2}<\ldots<j_{r} \leqq N-1$, $b_{1}, b_{2}, \ldots, b_{r} \in \mathscr{A}_{q}$. Every $n \leqq x$ can be written in the form

$$
\left\{\begin{array}{l}
n=m q^{j_{r}+1}+v, \quad 0 \leqq v<q^{j_{r}+1} \tag{1.1}\\
m=0,1, \ldots,\left[\frac{x}{q^{j_{r}+1}}\right] .
\end{array}\right.
$$

If $m=\left[\frac{x}{q^{j_{r}+1}}\right]$, then the couple (m, v) gives an integer n if and only if $v \leqq\left\{\frac{x}{q^{j_{r}+1}}\right\} \times$
$\times q^{j_{r}+1}$. Since $a_{l}(n)=a_{l}(v)$ for $l \leqq j_{r}$, therefore

$$
\begin{gather*}
A\left(x \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\left(\left[\frac{x}{q^{j_{r}+1}}\right]+1\right) A\left(q^{j_{r}+1}-1 \left\lvert\, \begin{array}{l}
j_{1}, \ldots, j_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right)+O\left(q^{j_{r}-r}\right)= \tag{1.2}\\
=\frac{x}{q^{r}}+O\left(q^{j_{r}-r}\right)
\end{gather*}
$$

Here and in the sequel $[z]$ and $\{z\}$ denote the integer part and the fractional part of z, resp.

We should like to prove a similar theorem for the primes, namely that

$$
\Pi\left(x \left\lvert\, \begin{array}{ll}
0, & j_{2}, \ldots, j_{r} \tag{1.3}\\
b, & b_{2}, \ldots, b_{r}
\end{array}\right.\right)=(1+o(1)) \frac{\lambda(b)}{q^{r}} \pi(x)
$$

uniformly as $j_{2}<\ldots<j_{r}<N-c \log N, q^{N}<x, r<c_{1} \log N$, where $\lambda(b)=0$ if $(b, q)>1$ and $\lambda(b)=q / \varphi(q)$ if $(b, q)=1$.

By using the results on the exponential sums with prime variables due to I. M. Vinogradov, and some theorems on the distribution of primes in arithmetical progressions we shall get such a theorem (Theorem 1) in Section 3.

If j_{r} is a value close to N then we may hope to have a relation like

$$
\Pi\left(x \left\lvert\, \begin{array}{ll}
0, & j_{2}, \ldots, \tag{1.4}\\
b, & j_{r} \\
b, \ldots, & b_{r}
\end{array}\right.\right)=(1+o(1)) \frac{\lambda(b)}{\log x} A\left(x \left\lvert\, \begin{array}{ll}
0, & j_{2}, \ldots, j_{r} \\
b, & b_{2}, \ldots, b_{r}
\end{array}\right.\right)
$$

(see Theorem 2).
In the further sections we shall apply Theorems 1 and 2 to prove the existence of the distribution of q-additive functions on the set of primes with and without normalizing factors.
2. Lemmas. $\pi(x, k, l)$ denotes the number of primes $p, \equiv l(\bmod k), p \leqq x$. The letters c, c_{1}, c_{2}, \ldots, denote suitable positive constants, not the same at every occurrence.

Lemma 1. Let $0<\xi<1$ and

$$
S=[1-\xi, 1) \cup \bigcup_{b=1}^{q-1}\left(\left[\frac{b}{q}-\xi, \frac{b}{q}+\xi\right]\right) \cup[0, \xi] .
$$

Then

$$
\begin{equation*}
\#\left\{p \leqq x \left\lvert\,\left\{\frac{p}{q^{j+1}}\right\} \in S\right.\right\} \leqq c \xi \pi(x) \tag{2.1}
\end{equation*}
$$

uniformly for $1 \leqq j \leqq N$, where $q^{N} \leqq x$. If $\xi q^{j+1}<1$, then the left hand side of (2.1) is zero or one.

Proof. Let us fix a small $c_{1}>0$. We know that

$$
\begin{equation*}
\pi(x+y)-\pi(x) \ll y / \log x \tag{2.2}
\end{equation*}
$$

if $y \gg x^{c_{1}}$. If

$$
\begin{equation*}
\left\{\frac{p}{q^{j+1}}\right\} \in(\alpha, \alpha+\xi), \quad p \leqq x \tag{2.3}
\end{equation*}
$$

then

$$
m q^{j+1}+\alpha q^{j+1}<p<m q^{j+1}+(\alpha+\xi) q^{j+1}
$$

with a suitable integer $m=0,1, \ldots,\left[x / q^{j+1}\right]$.
Let us assume that $\xi q^{j+1}>x^{c_{1}}$. Then, by (2.2), the number of primes satisfying (2.3) is less than

$$
\sum_{m} \pi\left(m q^{j+1}+\alpha q^{j+1}+\xi q^{j+1}\right)-\pi\left(m q^{j+1}+\alpha q^{j+1}\right) \ll \frac{\xi q^{j}}{\log x} \cdot \frac{x}{q^{j}} \ll \xi \pi(x) .
$$

Let $\xi q^{j+1}<x^{c_{1}}$. For a fixed integer $b \in \mathscr{A}_{q}$ the condition

$$
\begin{equation*}
\left\{\frac{p}{q^{j+1}}\right\} \in\left[\frac{b}{q}-\xi, \frac{b}{q}+\xi\right] \tag{2.4}
\end{equation*}
$$

holds if and only if

$$
\frac{p}{q^{j+1}}=\frac{b}{q}+\theta+m, \quad|\theta| \leqq \xi, \quad m=\text { integer },
$$

i.e. if $p=b q^{j}+\theta q^{j+1}+m q^{j+1}$. Then $\theta q^{j+1}=l=$ integer, $|l|<\xi q^{j+1}$. If $\xi q^{j+1}<1$, then $l=0$, so $q^{j} \mid p$. This may occur only if $q=p, j=1$. Let us assume that $\xi q^{j+1}>1$. The number of primes satisfying (2.4) can be estimated by the so called Brun-Titchmarsh inequality

$$
\sum_{|l|<\xi q q^{j+1}} \pi\left(x, q^{j+1}, l\right) \ll \xi \pi(x)
$$

The number of primes p under the condition

$$
\left\{\frac{p}{q^{j+1}}\right\} \in[0, \xi] \cup(1-\xi, 1]
$$

can be estimated similarly, so we omit the details.
Let $\varphi_{b}(x)$ be a periodic function $\bmod 1$,

$$
\varphi_{b}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in\left(\frac{b}{q}, \frac{b+1}{q}\right) \\
\frac{1}{2} & \text { if } & x=\frac{b}{q} \quad \text { or } \frac{b+1}{q} \\
0 & \text { if } & x \in[0,1] \backslash\left[\frac{b}{q}, \frac{b+1}{q}\right]
\end{array}\right.
$$

For the sake of brevity let $e(y)=e^{2 \pi i y}$. The Fourier-expansion of $\varphi_{b}(x)$ has the following explicit form:

$$
\begin{gathered}
\varphi_{b}(x)=\sum_{m=-\infty}^{\infty} c_{m}(b) e(m x) \\
c_{0}(b)=\frac{1}{q}, \quad c_{m}(b)=-\frac{e\left(-\frac{m b}{q}\right)}{2 \pi i m}\left[e\left(-\frac{m}{q}\right)-1\right] .
\end{gathered}
$$

Let $0<\Delta<1 / 2 q$, and

$$
f_{b}(x):=\frac{1}{\Delta} \int_{-\Delta / 2}^{\Delta / 2} \varphi_{b}(x+z) d z
$$

Then the Fourier coefficients $d_{m}(b)$ in the expansion

$$
f_{b}(x)=\sum_{m=-\infty}^{\infty} d_{m}(b) e(m x)
$$

satisfy the relations

$$
\begin{equation*}
d_{0}(b)=\frac{1}{q}, \quad d_{m}(b)=e_{m}(b) \frac{e\left(\frac{m \Delta}{2}\right)-e\left(-\frac{m \Delta}{2}\right)}{2 \pi i m} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d_{m}(b)=0 \quad \text { if } \quad m \equiv 0(\bmod q), \quad m \neq 0 \tag{2}
\end{equation*}
$$

(3)

$$
\left|d_{m}(b)\right| \leqq \min \left(\frac{\Delta}{\pi m}, \frac{1}{\pi m^{2}}\right) .
$$

Furthermore, we have
a)

$$
0 \leqq f_{b}(x) \leqq 1 \quad \text { for every } x
$$

b) $\quad f_{b}(x)=1 \quad$ if $\quad x \in\left(\frac{b}{q}+\Delta, \frac{b+1}{q}-\Delta\right), \quad b \in \mathscr{A}_{q}$,
c) $\quad f_{b}(x)=0$ if $x \in[0,1] \backslash\left(\frac{b}{q}-\Delta, \frac{b+1}{q}+\Delta\right), \quad b \in \mathscr{A}_{q}$.

Let now $b_{1}, b_{2}, \ldots, b_{r} \in \mathscr{A}_{q}$,

$$
F\left(x_{1}, \ldots, x_{r}\right)=f_{b_{1}}\left(x_{1}\right) \ldots f_{b_{r}}\left(x_{r}\right)
$$

Let $1 \leqq l_{1}<l_{2}<\ldots<l_{r} \leqq N$ be integers,

$$
Q=\left[\frac{1}{q^{l_{1}+1}}, \ldots, \frac{1}{q^{l_{r}+1}}\right] .
$$

Let \mathscr{M} denote the set of the vectorials $M=\left[m_{1}, \ldots, m_{r}\right]$ with integer entries m_{j}. We shall define $t(y)$ as

$$
t(y)=F\left(\frac{y}{q^{l_{1}+1}}, \ldots, \frac{y}{q^{l_{r}+1}}\right) .
$$

Since the Fourier series of $f_{b_{j}}\left(x_{j}\right)$ are absolutely convergent, therefore

$$
\begin{equation*}
t(y)=\sum_{M} E_{M} e(M Q y) \tag{2.5}
\end{equation*}
$$

where

$$
E_{M}=d_{m_{1}}\left(b_{1}\right) \ldots d_{m_{r}}\left(b_{r}\right),
$$

$M Q$ denotes the dot product.
Let $\left(b_{0}, q\right)=1$,

$$
\begin{gather*}
\mathscr{H}\left(x, b_{0}\right)=\sum_{\substack{p \leq x \\
p \equiv b_{0}(\bmod q)}} t(p), \tag{2.6}\\
S\left(M, b_{0}\right)=\sum_{\substack{p \leq x \\
p \equiv b_{0}(\bmod q)}} e(M Q p) . \tag{2.7}
\end{gather*}
$$

From (2.5) we get

$$
\begin{equation*}
\mathscr{H}\left(x, b_{0}\right)=\frac{1}{q^{r}} \pi\left(x, q, b_{0}\right)+\sum_{M \neq 0} E_{M} S\left(M ; b_{0}\right) . \tag{2.8}
\end{equation*}
$$

Furthermore, by Lemma 1, applying it with $\xi=\Delta$, we have

$$
\Pi\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \tag{2.9}\\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\mathscr{H}\left(x, b_{0}\right)+O((r+1) \Delta \pi(x)) .
$$

Now we shall estimate the exponential sums $S\left(M, b_{0}\right)$.
Let $M Q=\frac{A}{H},(A, H)=1$. First we observe that $E_{M}=0$ in (2.4) if $H \mid q$. Indeed, from

$$
\frac{A}{H} q^{l_{r}+1}=m_{l_{r}}+m_{l_{r+1}} q^{l_{r}-l_{r-1}}+\ldots
$$

we get that q is a divisor of the left hand side, so $q \mid m_{l_{r}}, d_{m_{l_{r}}}\left(b_{r}\right)=0, E_{M}=0$.
To estimate $S\left(M, b_{0}\right)$ for relatively small H, we start from the relation

$$
\begin{equation*}
S\left(M, b_{0}\right)=\sum_{\substack{l \bmod (H, q] \\ l \equiv b_{0}(\bmod q)}} e\left(\frac{A}{H} l\right) \pi(x,[H, q], l)+O(1) . \tag{2.10}
\end{equation*}
$$

Since

$$
\pi(x, k, l)-\frac{\operatorname{li} x}{\varphi(k)} \ll x e^{-d_{1} \sqrt{\log x}}
$$

holds uniformly in $1 \leqq k \leqq(\log x)^{c_{1}}$ with an ineffective but positive constant d_{1} ([1], Ch. IV), we have

$$
\begin{equation*}
S\left(M, b_{0}\right)=\frac{\operatorname{li} x}{\varphi([H, q])} E\left(b_{0} ; H, q\right)+O\left(H x e^{-d_{1} \sqrt{\log x}}\right) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left(b_{0} ; H, q\right)=\sum_{\substack{l \bmod (H, q] \\ l \equiv b_{0}(\bmod q)}} e\left(\frac{A}{H} l\right) . \tag{2.12}
\end{equation*}
$$

Now we observe that the sum (2.12) is zero. Indeed, we put $l=b_{0}+t q, t=0,1, \ldots$ $\ldots, \frac{[H, q]}{q}-1, k=\frac{[H, q]}{q}$, and get

$$
E\left(b_{0} ; H, q\right)=\sum_{t=0}^{R-1} e\left(\frac{A}{H}\left(b_{0}+t_{q}\right)\right)=e\left(\frac{A}{H} b_{0}\right) \frac{e\left(\frac{A}{H} k q\right)-1}{e\left(\frac{A}{H} q\right)-1}=0
$$

So we have proved
Lemma 2. If c_{1} is a positive constant, $1 \leqq \boldsymbol{H} \leqq(\log x)^{c_{1}}, H+q$, then

$$
\begin{equation*}
S\left(M, b_{0}\right)=O\left(x e^{-d_{2} \sqrt{\log x}}\right) \tag{2.13}
\end{equation*}
$$

holds with a suitable positive constant d_{2}.
Remark. A somewhat weaker estimation could be obtained by using the Bar-ban-Tshudakov-Linnik theorem [3] and its generalization in the wider range $1 \leqq H \leqq x^{c}$, since H runs over the integers all prime factors of which divides q.

We shall use the following theorem of I. M. Vinogradov ([2], Theorem 2) which we state as

Lemma 3. If $1 \leqq H<x, H+q$, then

$$
\begin{equation*}
S\left(M, b_{0}\right) \ll \log ^{3} x\left[e^{-0.5 \sqrt{\log x}}+\sqrt{\frac{1}{H}+\frac{H}{x}}\right] . \tag{2.14}
\end{equation*}
$$

Lemma 4. Let ε_{0} be a sufficiently small positive constant, $y \geqq x e^{-\varepsilon_{0} \sqrt{\log x}}, \log H<$ $<\varepsilon \sqrt{\log x}$. Then

$$
\begin{equation*}
\sum_{\substack{x-y \leq p \leq x \\ p \equiv b_{0}(\bmod q)}} e\left(\frac{A}{H} p\right) \ll \frac{y \log \log H}{\sqrt{H} \log x} \tag{2.15}
\end{equation*}
$$

Lemma 4 is stated and proved in [2] (Ch. X, § 3, Lemma 4) without assuming the condition $p \equiv b_{0}(\bmod q)$. Since this little modification does not imply any important change in the proof, we omit it.
3. Now we are in a position to formulate and prove our theorems.

Theorem 1. Let $q^{N}<x<q^{N+1}, \quad 0 \leqq r<\sqrt{N}, \quad 1 \leqq l_{1}<l_{2}<\ldots<l_{r} \leqq N, \quad b_{0}, b_{1}, \ldots$ $\ldots, b_{r} \in \mathscr{A}_{q},\left(b_{0}, q\right)=1$. Then

$$
\begin{gather*}
\Pi\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\frac{1 \mathrm{i} x}{q^{r} \varphi(q)}+O\left(\frac{\operatorname{li} x}{q^{r}} e^{-d(\log x)^{1 / 2}}\right)+ \tag{3.1}\\
+O\left(\frac{x}{q^{r}}(\log x)^{3}\left(\frac{q^{l} r}{x}\right)^{1 / 2}\right)
\end{gather*}
$$

with a suitable positive constant d, uniformly in $r, l_{1}, \ldots, l_{r}, b_{1}, \ldots, b_{r}$.

Proof. Since $H \mid q_{r}^{l_{r}+1}$, therefore $1 \leqq H<q^{l_{r}+1}$, and so by Lemmas 2, 3, 4 we get

$$
S\left(M, b_{0}\right) \ll \pi(x)\left\{e^{-c_{4}(\log x)^{1 / 2}}+(\log x)^{4}\left(\frac{q^{l}}{x}\right)^{1 / 2}\right\}
$$

with a suitable positive constant c_{4}, uniformly for every M.
From (2.7), (2.8) we get

$$
\begin{align*}
& \Pi\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\frac{\operatorname{li} x}{q^{r} \varphi(q)}+O((r+1) \Delta \pi(x))+ \tag{3.2}\\
& +O\left(K \pi(x) e^{-c_{4}(\log x)^{1 / 4}}\right)+O\left(K\left(\frac{q^{l_{r}}}{x}\right)^{1 / 2} \pi(x)(\log x)^{4}\right)
\end{align*}
$$

where $K=\Sigma\left|E_{M}\right|$.
From inequality (3) in Section 2 we deduce

$$
K \leqq\left(\frac{1}{q}+2 \sum_{m=1}^{\infty} \min \left(\frac{\Delta}{\pi m}, \frac{1}{\pi m^{2}}\right)\right)^{r},
$$

whence

$$
\begin{equation*}
K \leqq\left(\frac{1}{q}+2 \Delta \log e / \Delta\right)^{r} \tag{3.3}
\end{equation*}
$$

immediately follows. Let $\Delta=e^{-2 \log q \cdot \sqrt{N}}$. Then the right hand side of (3.3) is $O\left(q^{-r}\right)$, furthermore

$$
(r+1) \Delta \pi(x) \ll \frac{\operatorname{li} x}{q} e^{-\sqrt{\log x}}
$$

This completes the proof of Theorem 1.
Let now $l_{0}=0, \quad(1 \leqq) l_{1}<l_{2}<\ldots<l_{r} \leqq N, \quad q^{N} \leqq x<q^{N+1}, \quad 2^{r}<N^{1 / 5}, \quad\left(b_{0}, q\right)=1$, $b_{0}, b_{1}, \ldots, b_{r} \in \mathscr{A}_{q}$. Let us assume that $N-l_{r}<N^{1 / 4}$ and let v be the largest integer for which $l_{v}<2 l_{v+1}-N-2 N^{1 / 4}$ is satisfied, i.e.

$$
\begin{aligned}
& l_{s} \geqq 2 l_{s+1}-N-2 N^{1 / 4} \quad(s=r, \ldots, v+1), \quad l_{r+1}:=N \\
& l_{v}<2 l_{v+1}-N-2 N^{1 / 4} .
\end{aligned}
$$

Let

$$
t=l_{v+1}-\left[\frac{1}{2} N^{1 / 4}\right]
$$

We have

$$
N-l_{s} \leqq 2 N^{1 / 4}+2\left(N-l_{s+1}\right) \quad(s \geqq v+1),
$$

whence

$$
N-l_{v+1} \leqq\left(2+2^{2}+\ldots+2^{r-v}\right) N^{1 / 4}+2^{r-v}\left(N-l_{r}\right) \ll N^{1 / 5+1 / 4}=N^{9 / 20}
$$

and so

$$
\begin{equation*}
t \geqq N-c N^{9 / 20} \tag{3.4}
\end{equation*}
$$

Let the function $\delta(u)$ be defined by

$$
\delta(u)= \begin{cases}1 & \text { if } a_{l_{s}-t}(u)=b_{s} \quad(s=v+1, \ldots, r) \\ 0 & \text { otherwise }\end{cases}
$$

The primes $p \in[1, x]$ can be written in the form

$$
\left\{\begin{array}{l}
p=u q^{t}+v \tag{3.5}\\
0 \leqq v<q^{t}, \quad u=0,1, \ldots,\left[\frac{x}{q^{t}}\right] .
\end{array}\right.
$$

The fulfilment of the conditions $a_{l_{h}}(p)=b_{h}(h=0, \ldots, v)$ depends only on the value v, consequently the condition $a_{l_{h}}(p)=b_{n}(h=0, \ldots, r)$ is equivalent with the following conditions:

$$
a_{l_{h}}(v)=b_{h} \quad(h=0, \ldots, v) \quad \text { and } \quad \delta(u)=1
$$

The number of primes p with $u=0$ or $u=\left[\frac{x}{q^{t}}\right]$ is less than $2 q^{t}$, therefore

$$
\begin{gather*}
\Pi\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\sum_{u=1}^{\left[x / q q^{t}\right]} \delta(u)\left[\Pi\left((u+1) q^{t} \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)-\right. \tag{3.6}\\
\left.-\Pi\left(u q^{t} \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)\right]+O\left(q^{t}\right) .
\end{gather*}
$$

To estimate the right hand side of (3.6), we shall use Theorem 1:
(3.7) $\left(\Pi_{r}:=\right) \Pi\left(x \left\lvert\, \begin{array}{cc}0, & l_{1}, \ldots, l_{r} \\ b_{0}, & b_{1}, \ldots, b_{r}\end{array}\right.\right)=\frac{1}{\varphi(q) q^{v}} \sum_{n \leq x / q^{t}} \delta(u)\left[\operatorname{li}\left((u+1) q^{t}\right)-\operatorname{li}\left(u q^{t}\right)\right]+$

$$
+O\left(q^{-v} \operatorname{li} x e^{-d(\log x)^{1 / 2}} \sum_{u \leqq x / q^{t}} \delta(u)\right)+O\left((\log x)^{3} \sum_{n \leqq x / q^{t}} \frac{\delta(u)\left(u q^{t}\right)^{1 / 2} q^{(1 / 2) l_{v}}}{q^{v}}\right)
$$

From (1.2) and the definition of δ we get

$$
\sum_{n \leq x / q^{t}} \delta(u) \ll x q^{v-r-t},
$$

so the first error term on the right hand side of (3.7) is less than

$$
\ll x \operatorname{li} x q^{-r-t} e^{-d(\log x)^{1 / 2}},
$$

and by taking into account (3.4),

$$
\begin{equation*}
\ll \frac{\operatorname{li} x}{q^{r}} e^{-d(\log x)^{1 / 2}} \tag{3.8}
\end{equation*}
$$

The second error term is less than

$$
\ll(\log x)^{3} x^{1 / 2} q^{(1 / 2) l_{v}-v} \sum_{n \leq x / q^{t}} \delta(u) \ll \frac{x(\log x)^{3}}{q^{r}} \frac{x^{1 / 2} q^{(1 / 2) l_{v}}}{q^{t}} \ll \frac{x(\log x)^{3}}{q^{r}} q^{(1 / 2)\left(N+l_{v}\right)-t},
$$

and by observing that

$$
\begin{equation*}
\frac{1}{2}\left(N+l_{v}\right)-t=\frac{1}{2}\left(N+l_{v}-2 l_{v+1}\right)+\left[\frac{1}{2} N^{1 / 4}\right] \leqq-\frac{1}{2} N^{1 / 4} \ll \frac{x}{q^{r}} e^{-(1 / 4)(\log x)^{1 / 4}} \tag{3.9}
\end{equation*}
$$

Since for $u \geqq 1$

$$
\begin{gathered}
\operatorname{li}\left((u+1) q^{t}\right)-\operatorname{li}\left(u q^{t}\right)=\frac{q^{t}}{\log u q^{t}}+O\left(\frac{q^{t}}{(\log x)^{2}}\right)= \\
=\frac{q^{t}}{\log x}+O\left(q^{t} \frac{\left|\log \frac{x}{q^{t} u}\right|+1}{\log ^{2} x}\right)=\frac{q^{t}}{\log x}+O\left(q^{t}(\log x)^{9 / 20-2}\right),
\end{gathered}
$$

we get

$$
\begin{align*}
\Pi_{r}=\frac{q^{t}}{\varphi(q) q^{v}} & \frac{1}{\log x} \sum_{u \leq x / q^{t}} \delta(u)+O\left(\frac{x}{q^{r}} e^{-(1 / 2)(\log x)^{1 / 4}}\right)+O\left(q^{t}\right)+ \tag{3.10}\\
& +O\left(q^{t-v}(\log x)^{9 / 20-2} \sum_{u \leqq x / q^{t}} \delta(u)\right) .
\end{align*}
$$

Arguing as in the proof of (3.5) we get

$$
\begin{gathered}
A\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)= \\
=\sum_{u=1}^{\left[x / q^{t}\right]} \delta(u)\left[A\left((u+1) q^{t} \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{v} \\
b_{0}, & b_{1}, \ldots, b_{v}
\end{array}\right.\right)-A\left(u q^{t} \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{v} \\
b_{0}, & b_{1}, \ldots, b_{v}
\end{array}\right.\right]\right)+O\left(q^{t}\right) .
\end{gathered}
$$

Since the difference just after $\delta(u)$ is exactly q^{t-v-1}, we have

$$
A\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=q^{t-v-1} \sum_{u \leq x / q t^{t}} \delta(u)+O\left(q^{t}\right) .
$$

Substituting this in the right hand side of (3.10), and taking into account that

$$
q^{t} \ll q^{N} / q^{(1 / 2) N^{1 / 4}} \quad \text { and } \quad q^{r}<2^{c r} \ll N^{c / 5}
$$

we get

$$
\begin{gather*}
\Pi\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)=\frac{q}{\varphi(q) \log x} A\left(x \left\lvert\, \begin{array}{cc}
0, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)+ \tag{3.11}\\
+O\left(\frac{x}{q^{r}}(\log x)^{9 / 20-2}\right)
\end{gather*}
$$

So we have proved the following
Theorem 2. Let $q^{N} \leqq x<q^{N+1}, r$ be a nonnegative integer, $2^{r}<N^{1 / 5}, l_{0}=0$, $(1 \leqq) l_{1}<l_{2}<\ldots<l_{r} \leqq N ; \quad b_{0}, b_{1}, \ldots, b_{r} \in \mathscr{A}_{q}, \quad\left(b_{0}, q\right)=1$. Then (3.11) holds uniformly in $l_{1}, \ldots, l_{r}, b_{1}, \ldots, b_{r}, r$.

Let

$$
\begin{gather*}
\left(\delta_{r}:=\right) \delta\left(x \left\lvert\, \begin{array}{ll}
l_{0}, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right):=\frac{1}{\operatorname{li} x} \Pi\left(x \left\lvert\, \begin{array}{cc}
l_{0}, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right)- \tag{3.12}\\
-\frac{\varepsilon\left(l_{0}\right)}{x} A\left(x \left\lvert\, \begin{array}{ll}
l_{0}, & l_{1}, \ldots, l_{r} \\
b_{0}, & b_{1}, \ldots, b_{r}
\end{array}\right.\right),
\end{gather*}
$$

where $\varepsilon(0)=q / \varphi(q)$ and $\varepsilon(l)=1$ if $l \geqq 1$.

Corollary. Let $0 \leqq l_{0}<l_{1}<\ldots<l_{r} \leqq N$. Then under the conditions of Theorem 1

$$
\begin{equation*}
\delta_{r} \ll \frac{1}{q^{r}}\left(e^{-d(\log x)^{1 / 2}}+(\log x)^{4}\left(\frac{q^{l}}{x}\right)^{1 / 2}\right), \tag{3.13}
\end{equation*}
$$

while under the conditions of Theorem 2

$$
\begin{equation*}
\delta_{r} \ll \frac{1}{q^{r}}(\log x)^{(9 / 20)-1} . \tag{3.14}
\end{equation*}
$$

4. Let f be a real valued q-additive function, i.e. such that

Let

$$
\begin{equation*}
m_{k}=\frac{1}{q} \sum_{b=0}^{q-1} f\left(b q^{k}\right), \quad \sigma_{k}^{2}=\frac{1}{q} \sum_{b=0}^{q-1} f^{2}\left(b q^{k}\right)-m_{k}^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M(x)=\sum_{k \leqq N} m_{k}, \quad D^{2}(x)=\sum_{k \leqq N} \sigma_{k}^{2}, \tag{4.2}
\end{equation*}
$$

where $q^{N} \leqq x<q^{N+1}$.
Since for $x=q^{N+1}-1, f(n)$ can be interpreted as the sum of random variables, we can prove that

$$
\frac{1}{q^{N+1}} \sum_{n=0}^{q^{N+1}-1}\left(f(n)-M\left(q^{N+1}-1\right)\right)^{2}=D^{2}\left(q^{N+1}-1\right)
$$

whence for every $x \geqq 1$

$$
\begin{equation*}
\sum_{n \leqq x}(f(n)-M(x))^{2} \leqq c x D^{2}(x) \tag{4.3}
\end{equation*}
$$

follows.
Theorem 3. We have

$$
\begin{equation*}
\sum_{p \leqq x}(f(p)-M(x))^{2} \leqq c \pi(x) D^{2}(x) \tag{4.4}
\end{equation*}
$$

with a suitable positive constant $c=c(q)$.
Proof. Let

$$
\begin{gathered}
H\left(b q^{j}\right)=f\left(b q^{j}\right)-m_{j}, \quad t_{0}(n)=H\left(a_{0}(n)\right)=f\left(a_{0}(n)\right)-m_{0}, \\
t_{1}(n)=\sum_{j=1}^{L} H\left(a_{j}(n)\right), \quad t_{2}(n)=\sum_{j=L+1}^{N} H\left(a_{j}(n)\right) .
\end{gathered}
$$

First we observe that

$$
t^{2}(n) \leqq 3\left(t_{0}^{2}(n)+t_{1}^{2}(n)+t_{2}^{2}(n)\right)
$$

We have

$$
\sum_{p \leqq x} t_{0}^{2}(p)=\sum_{(b, q)=1} H^{2}(b) \pi(x, q, b)+O\left(\sigma_{0}^{2}\right) \ll \pi(x) \sigma_{0}^{2} .
$$

Let us now consider

$$
\left(E_{i}=\right) \frac{1}{\operatorname{li} x} \sum_{p \leqq x} t_{i}^{2}(p)-\frac{1}{x} \sum_{n \leqq x} t_{i}^{2}(n)
$$

We have

$$
E_{i}=\sum_{j} \sum_{b \in \mathscr{A}_{q}} H^{2}\left(b q^{j}\right) \delta\left(x \left\lvert\, \begin{array}{l}
j \\
b
\end{array}\right.\right)+2 \sum_{j_{1}<j_{2}} \sum_{b_{1}, b_{2} \in \mathscr{A}_{q}} H\left(b_{1} q^{j_{1}}\right) H\left(b_{2} q^{j_{2}}\right) \delta\left(\begin{array}{l}
\left.\right|_{j_{1},} ^{j_{1}} j_{2} \\
b_{1}, \\
b_{2}
\end{array}\right)
$$

where j, j_{1} and j_{2} in E_{1} run over the integers in [1, L], while in $E_{2}, j, j_{1}, j_{2} \in[L+1, N]$. Let $L=N-c_{1} \log N$ with a constant so large that

$$
\delta\left(x \left\lvert\, \begin{array}{l}
j_{1}, j_{2} \\
b_{1}, b_{2}
\end{array}\right.\right) \ll(\log x)^{-2}, \quad \delta\left(x \left\lvert\, \begin{array}{l}
j \\
b
\end{array}\right.\right) \ll(\log x)^{-2}
$$

hold uniformly for $j \leqq L, j_{1}<j_{2} \leqq L$. Then

$$
E_{1} \ll(\log x)^{-2}\left(\sum_{j \leqq L} \sum_{b}\left|H\left(b q^{j}\right)\right|\right)^{2}
$$

and by Cauchy inequality,

$$
E_{1} \ll(\log x)^{-2} L\left(\sum_{v=1}^{L} \sigma_{v}^{2}\right)
$$

To estimate E_{2} we use (3.14) and get

$$
E_{2} \ll(\log x)^{9 / 20-1}\left(\sum_{L+1<j \leqq N} \sum_{b}\left|H\left(b q^{j}\right)\right|\right)^{2}
$$

whence by Cauchy inequality,

$$
E_{2} \ll(\log x)^{9 / 20-1} \log N\left(\sum_{v=L+1}^{v} \sigma_{v}^{2}\right) .
$$

Furthermore, applying (4.3) for $t_{i}(n)$ instead of $f(n)-M(x)$, we deduce immediately that

$$
\sum t_{1}^{2}(n) \ll x \sum_{v=1}^{L} \sigma_{v}^{2}, \quad \sum t_{2}^{2}(n) \ll x \sum_{v=L+1}^{N} \sigma_{v}^{2} .
$$

Collecting our previous estimations we get (4.4).
Let $s_{j}(b)$ be arbitrary complex numbers defined for $b \in \mathscr{A}_{q}, j=1,2, \ldots$ Let $N=N(x)$ be the integer satisfying the condition $q^{N} \leqq x<q^{N+1}$, and let t_{N} be a sequence of positive integers for which

$$
\begin{equation*}
\left(N-t_{N}\right) / \log N \rightarrow \infty \quad(N \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

holds. Let

$$
\begin{equation*}
S(n)=\sum_{j=1}^{t_{N}} s_{j}\left(a_{j}(n)\right) \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
E_{k}(x):=\frac{1}{\operatorname{li} x} \sum_{p \leqq x} S^{k}(p)-\frac{1}{x} \sum_{n \leqq x} S^{k}(n) \tag{4.7}
\end{equation*}
$$

$k \geqq 1$, integer.

Let the coefficients $C\left(k_{j} l_{1}, \ldots, l_{r} ; v_{1}, \ldots, v_{r}\right)$ be defined by the identity

$$
\begin{equation*}
\left(x_{1}+\ldots+x_{t_{N}}\right)^{k}=\sum_{i=1}^{k} \sum_{1 \leq l_{1}<l_{2}<\ldots<l_{1}\left(l_{1}\left(\leq t_{T_{N}}\right)\right.} C\left(k ; l_{1}, \ldots, l_{r} ; v_{1}, \ldots, v_{r}\right) x_{l_{1}}^{v_{1}+\ldots+x_{r}=k} x_{l_{r}}^{v_{r} .} \tag{4.8}
\end{equation*}
$$

Let k be fixed. From the Corollary we get

$$
\delta\left(x \left\lvert\, \begin{array}{l}
l_{1}, \ldots, l_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right) \ll(\log x)^{-H}, \quad \text { if } \quad 1 \leqq l_{1}<\ldots<l_{r} \leqq t_{N}, \quad r \leqq k,
$$

with an arbitrary large H for $x>x(H)$. Using twice the polynomial identity (4.8), we get

Since

$$
\begin{aligned}
E_{k}(x) & =\sum_{r=1}^{k} \sum_{i_{i}, v_{i}} C\left(k ; l_{1}, \ldots, l_{r} ; v_{1}, \ldots, v_{r}\right), \sum_{b_{1}, \ldots, b_{r}} \Pi s_{l_{i}^{l}}^{v_{i}}\left(b_{i}\right) \delta\left(x \left\lvert\, \begin{array}{l}
l_{1}, \ldots, l_{r} \\
b_{1}, \ldots, b_{r}
\end{array}\right.\right) \ll \\
& <(\log x)^{-H} \sum_{r} \sum_{l_{i}, v_{i}} C\left(k ; l_{1}, \ldots, l_{r} ; v_{1}, \ldots, v_{r}\right) \sum_{b_{1}, \ldots, b_{r}} \Pi| | s_{i}^{v_{i}}\left(b_{i}\right) \mid .
\end{aligned}
$$

by using (4.8) we get ${ }_{b_{1}, \ldots, b_{r}} \Pi\left|s_{l_{i}}\left(b_{i}\right)\right|^{v_{i}} \leqq \prod_{i=1}^{r}\left(\sum_{b_{i}}\left|s_{l_{i}}\left(b_{i}\right)\right|\right)^{v_{i}}$,

$$
\begin{equation*}
E_{k}(x) \ll(\log x)^{-H}\left(\sum_{i=1}^{t_{N}} \sum_{b}\left|s_{j}(b)\right|\right)^{k} . \tag{4.9}
\end{equation*}
$$

So we have proved
Lemma 5. Under the condition (4.5) the inequality (4.9) holds for every $k \geqq 1$, where the constant implied by $<$ in (4.9) may depend on k.
5. Now assume that $f\left(b q^{J}\right)$ is bounded as $j \rightarrow \infty, b \in \mathscr{A}_{q}$. We are interested in the limit of the distribution functions

$$
\begin{equation*}
G_{x}(y)=\frac{1}{x}\{n ; 0 \leqq n<x \mid f(n)<M(x)+y D(x)\} \tag{5.1}
\end{equation*}
$$

for $x \rightarrow \infty$.
Let the mutually independent random variables ξ_{0}, ξ_{1}, \ldots be defined by

$$
P\left(\xi_{j}=f\left(b q^{j}\right)\right)=\frac{1}{q} \quad\left(b \in \mathscr{A}_{q}, j=0,1,2, \ldots\right),
$$

and let $\eta_{N}=\xi_{0}+\ldots+\xi_{N-1}$. It is obvious that

$$
G_{q^{N}}(y)=H_{N}(y)=P\left(\eta_{N}<M\left(q^{N-1}\right)+y D\left(q^{N-1}\right)\right) .
$$

The condition $f\left(b q^{J}\right)=O(1)$ implies

$$
\frac{1}{\sigma_{j}^{2}} E\left(\left|\xi_{j}-m_{j}\right|^{3}\right)=O(1) \quad(j \rightarrow \infty)
$$

and so by Berry's theorem (see e.g. [4], Ch. XVI) we have

$$
\left|G_{q^{N}}(y)-\varphi(y)\right| \leqq \frac{c}{D\left(q^{N-1}\right)}
$$

where

$$
\varphi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} d t
$$

Hence we deduce that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} G_{x}(y)=\varphi(y) \tag{5.2}
\end{equation*}
$$

assuming that $D(x) \rightarrow \infty \quad(x \rightarrow \infty)$.
Let $\varepsilon_{N} \rightarrow 0, t_{N} \rightarrow \infty$, such that

$$
\begin{equation*}
N-t_{N} \rightarrow \infty, \quad N-t_{N} \leqq \varepsilon_{N} D\left(q^{N}\right), D\left(q^{N}\right)-D\left(q^{t_{N}}\right) \leqq \varepsilon_{N} D\left(q^{N}\right) \tag{5.3}
\end{equation*}
$$

Since $m_{k}=O(1)$, we have

$$
\begin{equation*}
M\left(q^{N}\right)-M\left(q^{t_{N}}\right) \ll N-t_{N} . \tag{5.4}
\end{equation*}
$$

Let $q^{N}<x<q^{N+1}$, and write the integers $n \leqq x$ in the form

$$
\begin{equation*}
n=u q^{t_{N}}+v, \quad 0 \leqq v<q^{t_{N}}, \quad u=0,1, \ldots, q^{N-t_{N}} \tag{5.5}
\end{equation*}
$$

From (5.5), (5.3) we get

$$
\left|\frac{f(n)-M(x)}{D(x)}-\frac{f(v)-M\left(q^{t_{N}}-1\right)}{D\left(q^{t_{N}}-1\right)}\right| \leqq \varrho_{N}
$$

where ϱ_{N} is a suitable sequence tending to zero. The number of integers $n \leqq x$ having a fixed residue $v\left(\bmod q^{t_{N}}\right)$ is $x / q^{t_{N}}+O(1)$. Therefore we have

$$
O\left(q^{t_{N}-M}\right)+H_{t_{N}}\left(y-\varrho_{N}\right) \leqq G_{x}(y) \leqq H_{t_{N}}\left(y+\varrho_{N}\right)+O\left(q^{t_{N}-N}\right)
$$

which implies (5.2).
So we proved
Lemma 6. If $f\left(b q^{j}\right)=O(1), D(x) \rightarrow \infty$, then (5.2) holds.
Theorem 4. Let $f\left(b q^{j}\right)$ be bounded, $D(x) \rightarrow \infty$,

$$
\begin{equation*}
F_{x}(y):=\frac{1}{\operatorname{li} x}\{p \leqq x \mid f(p)<M(x)+y D(x)\} \tag{5.6}
\end{equation*}
$$

Then there exists a sequence $x_{v}(\rightarrow \infty)$ such that

$$
\begin{equation*}
F_{x_{v}}(y) \rightarrow \varphi(y) \quad(v \rightarrow \infty) \tag{5.7}
\end{equation*}
$$

for all real numbers y. If in addition

$$
\begin{equation*}
D(x / \log x) / D(x) \rightarrow 1 \quad(x \rightarrow \infty) \tag{5.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} F_{x}(y)=\varphi(y) \tag{5.9}
\end{equation*}
$$

holds.

Proof. First we observe that there exists a suitable sequence $x_{v}(\rightarrow \infty)$ and a sequence $r_{v}(\rightarrow \infty)$ such that

$$
\begin{equation*}
D\left(z\left(x_{v}\right)\right) / D\left(x_{v}\right) \rightarrow 1 \quad(v \rightarrow \infty) \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
z\left(x_{v}\right)=x_{v} e^{-r_{v} \log \log x_{v}} \tag{5.11}
\end{equation*}
$$

Assuming the contrary, we would have

$$
D^{2}(x)-D^{2}\left(x e^{-d(\log \log x)}\right)>\alpha D^{2}(x)
$$

with suitable positive constants α, d for every large x, which gives that

$$
D^{2}(x) \geqq \beta \frac{\log x}{\log \log x} D^{2}(x / 2)
$$

with a constant $\beta>0$, but this contradicts the fact that

$$
D^{2}(x)=\sum \sigma_{v}^{2} \ll \log x
$$

Under the additional condition (5.8) we shall choose $x_{v}=v(v=1,2, \ldots)$ with an appropriate $r_{v}, r_{v} \rightarrow \infty$.

Let us assume that x_{v} and r_{v} are chosen properly, let s_{x} be the integer such that $q^{s_{x}} \leqq z(x)<q^{s_{x}+1}$. Let furthermore

$$
\begin{gathered}
f_{x}(n)=\sum_{j=1}^{s_{x}} f\left(a_{j}(n) q^{j}\right), \quad g_{x}(n)=\sum_{j=s_{x}+1}^{N} f\left(a_{j}(n) q^{j}\right)+f\left(a_{0}(n) q^{j}\right), \\
\Delta(x)=M(x)-M(z(x))+m_{0}, \quad q^{N} \leqq x<q^{N+1}
\end{gathered}
$$

Let the variable x run over the values x_{v}. We shall define

$$
R^{2}(x)=\sum_{s_{x}<l \leqq N} \sigma_{1}^{2}
$$

From (5.10) we get

$$
\begin{equation*}
R(x) / D(x) \rightarrow 0 . \tag{5.11}
\end{equation*}
$$

Let

$$
\alpha_{n}=\frac{g_{x}(n)-\Delta(x)}{D(x)}, \quad \beta_{n}=\frac{f_{x}(n)-M(z(x))}{D(x)}
$$

From (4.3) and Theorem 3 we get

$$
\begin{equation*}
\sum\left|\alpha_{n}\right|^{2} \ll x\left(\frac{R(x)}{D(x)}\right)^{2}, \quad \sum\left|\alpha_{p}\right|^{2} \ll \operatorname{li} x\left(\frac{R(x)}{D(x)}\right)^{2} \tag{5.12}
\end{equation*}
$$

From (5.12) we get

$$
\frac{1}{x} \#\left\{n \leqq x| | \alpha_{n} \mid>\varepsilon\right\} \rightarrow 0, \frac{1}{\operatorname{li}(x)} \#\left\{p \leqq x| | \alpha_{p} \mid>\varepsilon\right\} \rightarrow 0
$$

and so the quantities $\alpha_{n}+\beta_{n}=D^{-1}(x)(f(n)-M(x))(n=0, \ldots, x)$ are distributed as $\beta_{n}(n=0, \ldots, x)$ in the limit, and the same is true for $\alpha_{p}+\beta_{p}$ and β_{p}. Since $\alpha_{n}+\beta_{n}$ ($n=0, \ldots, x$) are distributed in limit according to the Gaussian law, the same is
true for $\beta_{n}(n=0, \ldots, x)$, consequently

$$
\frac{1}{x} \sum_{n \leq x} \beta_{n}^{k} \rightarrow \mu_{k} \quad(x \rightarrow \infty)
$$

for every integer $k \geqq 1$. It remains to prove only that

$$
\frac{1}{\operatorname{li} x} \sum_{p \leqq x} \beta_{p}^{k} \rightarrow \mu_{k} \quad(x \rightarrow \infty) .
$$

But this is an immediate consequence of Lemma 5. By taking

$$
s_{j}(b)=\frac{f\left(d q^{j}\right)-m_{j}}{D(x)},
$$

from (4.9) we get
if $H>2 k$.

$$
\begin{gathered}
\frac{1}{\operatorname{li} x} \sum_{p \leq x} \beta_{p}^{h}-\frac{1}{x} \sum_{n \leq x} \alpha_{n}^{k} \ll(\log x)^{-H}\left(\sum_{l} \sum\left|s_{j}(b)\right|\right)^{k} \ll \\
\ll(\log x)^{-H} N^{2 k}\left(\sum_{l} \sum_{b}\left|s_{j}(b)\right|^{2}\right)^{k / 2} \ll(\log x)^{-H+2 k}=o(1),
\end{gathered}
$$

6. In paper [6] written jointly with J. Mogyoródi we have considered the function

$$
\alpha(n)=\sum_{j=0}^{\infty} a_{j}(n)
$$

for prime n 's, and proved that under the unproved density hypothesis for the Riemann zeta function,

$$
F_{x}(y):=\frac{1}{\operatorname{li} x} \#\left\{p \leqq x \mid \alpha(p)<M_{x}+y D_{x}\right\}=\varphi(y)+O\left((\log \log x)^{-1 / 3}\right)
$$

holds, where

$$
M_{x}=\frac{q-1}{2} \frac{\log x}{\log q}, \quad D_{x}^{2}=\frac{q^{2}-1}{12} \frac{\log x}{\log q} .
$$

Theorem 4 gives immediately

$$
\lim _{x \rightarrow \infty} F_{x}(y)=\varphi(y)
$$

without the unproved hypothesis since the condition (5.8) holds.
7. H. Delange [7] investigated the existence of the limit distribution of values of real q-additive functions. Let $N_{x}(\alpha)$ denote the number of those integers $n(\leqq x)$ for which $f(n)<\alpha$. We say that $f(n)$ has a limit distribution with the distribution function $F(\alpha)$, if

$$
\frac{N_{x}(\alpha)}{x} \rightarrow F(\alpha)
$$

for all continuity points of $F(\alpha)$. H. Delange proved that the fulfilment of the follow-
ing conditions are necessary and sufficient for f to have a limit distribution:
(a) $\sum_{j=0}^{\infty} \sum_{a=1}^{q-1} f\left(a q^{j}\right)$ converges,
(b) $\sum_{j=0}^{\infty} \sum_{a=1}^{\infty} f^{2}\left(a q^{j}\right)$ converges.

Let $M_{x}(\alpha)$ denote the number of those primes $p(\leqq x)$ for which $f(p)<\alpha$. We say that $f(p)$ has a limit distribution with the distribution function $F(\alpha)$, if

$$
\begin{equation*}
\frac{M_{x}(\alpha)}{\pi(x)} \rightarrow F(\alpha) \tag{7.1}
\end{equation*}
$$

at every continuity point of $F(\alpha)$. In [8] we have proved that the fulfilment of (a), (b) implies (7.1), if q is a power of an odd prime. The proof was based on the Barban-Linnik-Tshudakov theorem [3] stating that

$$
\pi\left(x, q^{r}, l\right)=\left(1+O(\log x)^{-c}\right) \frac{\operatorname{li} x}{\varphi\left(q^{r}\right)}
$$

whenever $x \geqq\left(q^{r}\right)^{3}$.
From Theorem 3 we can deduce another proof of our theorem. Let us assume that (b) holds. This implies that the sequences

$$
m_{j}=\frac{1}{q} \sum_{a=1}^{q-1} f\left(a q^{j}\right), \quad \sigma_{j}^{2}=\frac{1}{q} \sum_{a=0}^{q-1}\left(f\left(a q^{j}\right)-m_{j}\right)^{2}
$$

tend to zero, furthermore that

$$
\sum_{j=0}^{\infty} \sigma_{j}^{2}<\infty
$$

Let L_{N} be a sequence of positive integers tending monotonically to infinity and assume that $L_{N}=O(\log \log N)$ holds. Let $q^{N} \leqq x \leqq q^{N+1}$, and

Since

$$
t_{N}(n)=\sum_{j=L_{N}+1}^{N}\left(f\left(a_{j}(n) q^{j}\right)-m_{j}\right) .
$$

and

$$
\sup _{b \in \mathscr{A}_{q}} \sup _{j \geqq L_{N}+1}\left|f\left(b q^{j}\right)-m_{j}\right| \leqq \varrho_{N}, \quad \varrho_{N} \rightarrow 0
$$

$$
\sum_{l=L_{N}}^{\infty} \sigma_{l}^{2} \leqq \varrho_{N}^{\prime}, \quad \varrho_{N}^{\prime} \rightarrow 0
$$

therefore from Theorem 3 we deduce immediately that

$$
\begin{equation*}
\sum_{p<x} t_{N}^{2}(p) \leqq \varepsilon_{N} \pi(x), \quad \varepsilon_{N} \rightarrow 0 \tag{7.2}
\end{equation*}
$$

Let

$$
h_{N}(n)=\sum_{j=0}^{L_{N}}\left(f\left(a_{j}(n) q^{j}\right)-m_{j}\right), \quad K_{r}=\sum_{j=0}^{r} m_{j}
$$

Let us consider the characteristic function

$$
\begin{equation*}
\varphi_{x}(\tau)=\frac{1}{\pi(x)} \sum_{p \leqq x} e^{i \tau\left(f(p)-K_{N}\right)} \tag{7.3}
\end{equation*}
$$

The convergence of $\varphi_{x}(\tau)$ is necessary and sufficient for the existence of the limit distribution for $f(p)-K_{N}$. Since

$$
f(p)-M_{N}=h_{N}(p)-M_{L_{N}}+t_{N}(p)
$$

from (7.2) we deduce that

$$
\varphi_{x}(\tau)=\frac{1}{\pi(x)} \sum_{p \leq x} e^{i \tau\left(h_{N}(p)-M_{L_{N}}\right)}+O(1)
$$

uniformly in $|\tau|<c$. Since $h_{N}(p)$ depends only on $p\left(\bmod q^{L_{N}}\right)$, therefore we have

$$
\varphi_{x}(\tau)=\frac{1}{\pi(x)} \sum_{l<q L_{N}} e^{i \tau\left(h_{N}(l)-M_{L_{N}}\right)} \pi\left(x, q^{L_{N}}, l\right)+o(1)
$$

and so by the prime number theorem for the arithmetical progressions we get (7.4)

$$
\varphi_{x}(\tau)=\frac{1}{\varphi(q)} e^{-\tau m_{0}}\left(\sum_{\substack{l=1 \\(l, q)=1}}^{q-1} e^{i \tau f(l)}\right) \prod_{j=1}^{L_{N}} \frac{1}{q}\left(\sum_{a=0}^{q-1} e^{i \tau f\left(a q^{j}\right)}\right) e^{-i \tau m_{j}}+o(1)=\Psi_{L_{N}}(\tau)+o(1)
$$

Condition (b) implies that $\Psi_{L_{N}}(\tau)$ converges as $L_{N} \rightarrow \infty$. Then from (7.4) $\varphi_{x}(\tau)$ has a limit as well, consequently

$$
\begin{equation*}
\lim \frac{1}{\pi(x)}\left\{p \leqq x \mid f(p)-M_{N}<\alpha\right\}=F(\alpha) \tag{7.5}
\end{equation*}
$$

exísts for every continuity point of $F(\alpha)$.
Let now assume that (a) holds, i.e. that $\sum m_{j}$ converges. Then from (7.4) we get

$$
\begin{equation*}
\tilde{\varphi}_{x}(\tau):=\frac{1}{\pi(x)} \sum_{p \leqq x} e^{i \tau f(p)}=\widetilde{\Psi}_{L_{N}}(\tau)+o(1) \tag{7.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\Psi}_{k}(\tau)=\frac{1}{\varphi(q)}\left(\sum_{\substack{l=1 \\(l, q)=1}}^{q-1} e^{i \tau f(l)}\right) \prod_{j=1}^{k} \frac{1}{q}\left(\sum_{a=0}^{q-1} e^{i \tau f\left(a q^{j}\right)}\right) \tag{7.7}
\end{equation*}
$$

The convergence of $\widetilde{\Psi}_{k}(\tau)(k \rightarrow \infty)$ is guaranteed by (a), (b), so they imply the convergence of $\tilde{\varphi}_{x}(\tau)(x \rightarrow \infty)$.

So we have proved the following
Theorem 5. Let f be a realvalued q-additive function such that (b) holds. Then (7.5) holds with a distribution function $F(\alpha)$ the characteristic function of which can be written as

$$
\varphi_{F}(\tau)=\frac{1}{\varphi(q)}\left(\sum_{\substack{l=1 \\(l, q)=1}}^{q-1} e^{i \tau f(l)}\right) e^{-i \tau m_{0}} \prod_{j=1}^{\infty} \frac{1}{q}\left(\sum_{a=0}^{q-1} e^{i \tau f\left(a q^{j}\right)}\right) e^{-i \tau m_{j}}
$$

Assume in addition that (a) holds. Then $f(p)$ has a limit distribution with the distribution function $G(\alpha)$, the characteristic function of which can be represented as

$$
\begin{equation*}
\varphi_{G}(\tau)=\frac{1}{\varphi(q)}\left(\sum_{l=1}^{q-1} e^{i \tau f(l)}\right) \prod_{j=1}^{\infty} \frac{1}{q}\left(\sum_{a=0}^{q-1} e^{i \tau f\left(a q^{j}\right)}\right) \tag{7.9}
\end{equation*}
$$

It seems probable that the fulfilment of (a) and (b) is necessary for the existence of the limit distribution of $f(p)$. Presently we can prove it under the condition $f\left(b q^{J}\right)=O(1)$.

Theorem 6. Let f be a realvalued q-additive function such that the limit distribution of $f(p)$ exists. Assume that $f\left(b q^{j}\right)$ is bounded as $j \rightarrow \infty, b \in \mathscr{A}_{q}$. Then the conditions (a), (b) hold.

Proof. Let

$$
\begin{gathered}
G(\alpha)=\lim \frac{1}{\pi(x)} \#\{p \leqq x \mid f(p)<\alpha\}, \\
m_{j}=\frac{1}{q} \sum_{a=0}^{q-1} f\left(a q^{j}\right), \quad \sigma_{j}^{2}=\frac{1}{q} \sum_{a=0}^{q-1}\left(f\left(a q^{j}\right)-m_{j}\right)^{2}, \quad D^{2}(x)=\sum_{j=0}^{N} \sigma_{j}^{2},
\end{gathered}
$$

where $N=N(x)$ is defined by $q^{N} \leqq x<q^{N+1}$. First we prove that $D(x)$ is bounded. Let us assume that $D(x) \rightarrow \infty$. The conditions of Theorem 4 are satisfied. Let x_{v} be such a sequence for which (5.8) holds. Since for all $\gamma<\alpha$,

$$
\begin{gathered}
G(\alpha)-G(\gamma)=\lim \frac{1}{\pi\left(x_{v}\right)} \#\left\{p \leqq x_{v} \mid \gamma \leqq f(p) \leqq \alpha\right\}= \\
=\lim \frac{1}{\pi\left(x_{v}\right)} \#\left\{p \leqq x_{v} \left\lvert\, \frac{\gamma-M_{N}}{D^{2}\left(x_{v}\right)} \leqq \frac{f(p)-M_{N}}{D^{2}\left(x_{v}\right)}<\frac{\alpha-M_{N}}{D^{2}\left(x_{v}\right)}\right.\right\}= \\
=\lim _{v}\left(\varphi\left(\frac{\alpha-M_{N}}{D^{2}\left(x_{v}\right)}\right)-\varphi\left(\frac{\gamma-M_{N}}{D^{2}\left(x_{v}\right)}\right)\right),
\end{gathered}
$$

and the last difference is less than $O\left(\frac{\gamma-\alpha}{D^{2}\left(x_{v}\right)}\right)$, this implies $G(\alpha)=G(\gamma)$. This cannot be satisfied, so $D(x)$ is bounded. Since $f(0)=0$, therefore $\sigma_{j}^{2}>\frac{1}{q} m_{j}^{2}$, and so

$$
\frac{1}{q} \sum_{j} \sum_{a} f^{2}\left(a q^{j}\right) \leqq \sum\left(\sigma_{j}^{2}+m_{j}^{2}\right)<\infty .
$$

Consequently condition (b) is satisfied. Then from the first assertion stated in Theorem 5 we have that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leqq x \mid f(p)-M_{x}<\alpha\right\}=F(\alpha)
$$

holds for all continuity points of $F(\alpha)$. Now we shall prove that M_{x} is bounded. Assume in the contrary that $M_{x_{v} \rightarrow \infty}$ for a suitable sequence $x_{v} \rightarrow \infty$. If α is a continuity
point of F, then

$$
F(\alpha)=\lim \frac{1}{\pi\left(x_{v}\right)} \#\left\{p \leqq x_{v} \mid f(p)<M_{x_{v}}+\alpha\right\} \geqq \underline{\lim } G\left(t_{v}+\alpha\right),
$$

where $t_{v} \leqq x_{v}$ is a sequence such that $t_{v} \rightarrow \infty$. Since $\lim _{\beta \rightarrow \infty} G(\beta)=1$, we have $F(\alpha)=1$, This is impossible. Similarly, we can get a contradiction assuming that $M_{x_{v}} \rightarrow-\infty$. So we have proved that M_{x} is bounded. Let now

$$
\beta=\varliminf_{x \rightarrow \infty} M_{x}<\varlimsup_{x \rightarrow \infty} M_{x}=\gamma
$$

Let $M_{x_{v}} \rightarrow \beta, \quad M_{y_{v}} \rightarrow \gamma$. Then

$$
G(\alpha+\beta-\varepsilon) \leqq F(\alpha) \leqq G(\alpha+\beta+\varepsilon), \quad G(\alpha+\gamma-\varepsilon) \leqq F(\alpha) \leqq G(\alpha+\gamma+\varepsilon)
$$

whenever α is a continuity point of F, and ε is an arbitrary positive number. Let $\varepsilon<\frac{\gamma-\beta}{2}$. Then $\alpha+\gamma-\varepsilon>\alpha+\beta+\varepsilon, G(\alpha+\gamma-\varepsilon) \leqq F(\alpha) \leqq G(\alpha+\beta+\varepsilon)$. From the monotony of $G, G(y)$ is constant in the interval $y \in[\alpha+\beta+\varepsilon, \alpha+\gamma-\varepsilon]$. Since the set of continuity points α of F is everywhere dense on the real line, we conclude that G is constant on the whole line. This is impossible. So $\beta=\gamma, M_{x}$ is convergent, consequently the condition (a) is satisfied. This completes the proof of Theorem 6.

References

[1] K. Prachar, Primzahlverteilung, Springer (Berlin, 1957).
[2] А. А. Карацуба, Основы аналитическай меории чисел, Наука, (Москва, 1975).
[3] M. B. Barban, Yu. V. Linnik and N. G. Tshudakov, On prime numbers in an arithmetic progression with a primepower difference, Acta Arithm., 9 (1964), 375-390.
[4] W. Feller, An introduction to probability theory and its applications (New York, 1966).
[5] M. Frechet and A. Shohat, A proof of the generalized second limit theorem in the theory of probability, Trans. Amer. Math. Soc., 33 (1931), 533-543.
[6] I. Kátai and J. Mogyoródi, On the distribution of digits, Publ. Math. Debrecen, 15 (1968), 5768.
[7] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arithm., 21 (1972), 285298.
[8] I. Kátai, A remark on q-additive and q-multiplicative functions, Colloquia Math. Soc. János Bolyai, 13. Number Theory (Debrecen, 1974), 141—151.
(Received April 5, 1984)
COMPUTING CENTRE OF THE UNIVERSITY
BUDAPEST, BOGDÁNFY U. 10/B
$\mathrm{H}-1117$

ON THE RATE OF CONVERGENCE OF A LACUNARY TRIGONOMETRIC INTERPOLATION PROCESS

J. SZABADOS (Budapest)

1. Introduction. Let $n, m \in \mathbf{N}^{+}$,

$$
\begin{equation*}
x_{k}=x_{k n}=\frac{2 \pi k}{n} \quad(k \in \mathbf{N}) . \tag{1}
\end{equation*}
$$

The problem of $(0, m)$ interpolation for the nodes (1) consists of finding trigonometric polynomials $R_{n}(f, x)$ of order at most $n-1$ to a given $f(x) \in C_{2 \pi}$ such that

$$
\begin{equation*}
R_{n}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad R_{n}^{(m)}\left(f, x_{k}\right)=0 \quad(k=0,1, \ldots, n-1) . \tag{2}
\end{equation*}
$$

It is well-known (cf. A. Sharma-A. K. Varma [1]) that this problem has a unique solution when m is odd and n is arbitrary, or m is even and n is odd. We shall investigate the rate of convergence of this process in these cases. The mentioned relation of m and n will be assumed in the sequel.
2. The rate of convergence in terms of best approximation. Let \mathscr{T}_{n} be the set of all trigonometric polynomials of order at most n, let

$$
E_{n}(f)=\inf _{T \in \mathscr{F}_{n}} \max _{x}|f(x)-T(x)| \quad\left(n \in \mathbf{N}_{0}^{+}\right)
$$

be the best approximation of an $f(x) \in C_{2 \pi}$, and let

$$
\omega_{s}(f, h)=\sup _{x,|t| \leq h}\left|\sum_{k=0}^{s}(-1)^{k}\binom{s}{k} f(x+k t)\right| \quad\left(s \in \mathbf{N}^{+}\right)
$$

be the modulus of smoothness of $f(x)$ of order s.
Theorem 1. For any $f(x) \in C_{2 \pi}$ we have
(3)

$$
\left\|f(x)-R_{n}(f, x)\right\|=O\left(n^{\frac{1+(-1)^{m}}{2}} E_{[n / 4]}(f)+n^{-m} \sum_{k=0}^{n}(k+1)^{m-1} E_{k}(f) \quad\left(m \in \mathbf{N}^{+}\right) .\right.
$$

Here and in what follows the O-signs mean a constant depending only on m.
Remarks. 1. For m odd, the estimate shows that the process is uniformly convergent for all $f(x) \in C_{2 \pi}$. This fact was established in [1]. As for error estimates, the result of P. Vértesi [2, Theorem 2.5] cannot even give $O\left(n^{-m} \log n\right)$, while (3) can reach $O\left(n^{-m}\right)$ for smooth functions (see Section 3).
2. For m even, the estimate shows that a sufficient condition for the uniform convergence is $E_{n}(f)=o\left(n^{-1}\right)$. The latter is equivalent to $\omega_{2}(f, h)=o(h)$ which, as
a sufficient condition was found in [1]. In [2, Theorem 2.3] it is shown (as a special case of a more general statement) that there exists an $f_{1}(x) \in C_{2 \pi}$ such that $\omega_{2}\left(f_{1}, h\right)=$ $=O(h)$, but $R_{2 n+1}\left(f_{1}, \pi\right)$ does not converge to $f_{1}(\pi)$. It would be interesting to strengthen this counterexample to the following

Conjecture 1. There exists an $f_{2}(x) \in \operatorname{Lip} 1$ such that $R_{2 n+1}\left(f_{2}, x\right)$ does not converge uniformly to $f_{2}(x)$ (m even).

As for the rate of convergence, Theorem 2.3 in [2] cannot give even $O\left(n \omega_{m}\left(f, \frac{1}{n}\right)\right)$, i.e. $O\left(n^{1-m}\right)$, while (3) can reach $O\left(n^{-m}\right)$ again (m odd, n even).

The proof of Theorem 1 is based on two lemmas. Denote by $\tilde{f}(x)$ the trigonometric conjugate of $f(x) \in C_{2 \pi}$.

Lemma 1. If $T(x) \in \mathscr{T}_{[n / 4]}$, then

$$
\left\|T(x)-R_{n}(T, x)\right\|=O\left(n^{-m}\right)\left\{\left\|T^{(m)}\right\|+\left\|\tilde{T}^{(m)}\right\|\right\}
$$

Proof. It follows from formulae (5) and (6) of [1] and the unique existence of R_{n} that

$$
T(x)-R_{n}(T, x)=\sum_{k=1}^{n} T^{(m)}\left(x_{k}\right)\left[-\frac{i^{m}}{n} \sum_{j=1}^{n-1} \frac{e^{i j\left(x-x_{k}\right)}+(-1)^{m} e^{i j\left(x_{k}-x\right)}}{(n-j)^{m}-(-j)^{m}}+\frac{A_{n}(x)}{n^{m+1}}\right]
$$

for any $T(x) \in \mathscr{T}_{n}$, with

$$
A_{n}(x)= \begin{cases}1-\cos n x & (m \text { even }) \\ \sin n x & (m \text { odd })\end{cases}
$$

Thus
(4)

$$
\begin{gathered}
e^{i l x}-R_{n}\left(e^{i l t}, x\right)=-\frac{(-l)^{m}}{n} \sum_{j=1}^{n-1} \frac{1}{(n-j)^{m}-(-j)^{m}}\left[e^{i j x} \sum_{k=1}^{n} e^{i(l-j) x_{k}}+(-1)^{m} e^{-i j x}\right. \\
\left.\cdot \sum_{k=1}^{n} e^{i(l+j) x_{k}}\right]=-\frac{(-l)^{m} \cdot e^{i l x}\left(1-e^{-i n x}\right)}{(n-l)^{m}-(-l)^{m}} \quad(l=0,1, \ldots, n)
\end{gathered}
$$

Now let

$$
\begin{equation*}
\frac{1}{(n-z)^{m}-(-z)^{m}}=\sum_{k=0}^{\infty} a_{k n} z^{k} \quad\left(|z|<\frac{n}{2}\right), \tag{5}
\end{equation*}
$$

then

$$
\begin{align*}
& \left|a_{k n}\right| \leqq \frac{1}{2 \pi}\left|\oint_{|z|=3 n / 8} \frac{z^{-k-1} d z}{(n-z)^{m}-(-z)^{m}}\right| \leqq \frac{\left(\frac{3 n}{8}\right)^{-k}}{n^{m}\left\{\left(\frac{5}{8}\right)^{m}-\left(\frac{3}{8}\right)^{m}\right\}} \leqq \tag{6}\\
& \leqq \frac{8^{m}\left(\frac{8}{3}\right)^{k} \cdot n^{-k-m}}{2 m 3^{m-1}}=\frac{3}{2 m} \cdot\left(\frac{8}{3 n}\right)^{k+m} \quad\left(k \in \mathbf{N}_{0}^{+}\right) .
\end{align*}
$$

We obtain from (4) and (5)
(7) $\quad e^{i l x}-R_{n}\left(e,{ }^{i l t}, x\right)=(-1)^{m+1}\left(1-e^{-i n x}\right) \sum_{k=0}^{\infty} a_{k n} i^{-k-m}\left(e^{i l x}\right)^{(k+m)} \quad(l=0,1, \ldots, n)$.

Now if $T(x) \in \mathscr{T}_{[n / 4]}$ is of the form

$$
T(x)=\frac{a_{0}}{2}+\sum_{l=1}^{[n / 4]}\left(a_{l} \cos l x+b_{l} \sin l x\right)
$$

then evidently

$$
\begin{equation*}
W(x)=T(x)+i \tilde{T}(x)=\frac{a_{0}}{2}+\sum_{l=1}^{[n / 4]}\left(a_{l}-i b_{l}\right) e^{i l x} \tag{8}
\end{equation*}
$$

Thus by the linearity of the operator R_{n} we get from (7)

$$
\begin{equation*}
W(x)-R_{n}(W, x)=(-1)^{m+1}\left(1-e^{-i n x}\right) \sum_{k=0}^{\infty} a_{k n} i^{-k-m} W^{(k+m)}(x) . \tag{9}
\end{equation*}
$$

Taking real parts on both sides of this relation, using the Bernstein-Szegő inequality and (6) we get

$$
\begin{aligned}
& \left\|T(x)-R_{n}(T, x)\right\| \leqq \frac{3}{2 m} \sum_{k=0}^{\infty}\left(\frac{8}{3 n}\right)^{k+m}\left(\frac{n}{4}\right)^{k}\left\{\left\|T^{(m)}\right\|+\left\|\tilde{T}^{(m)}\right\|\right\}= \\
= & \frac{3}{2 m}\left(\frac{8}{3 n}\right)^{m}\left\{\left\|T^{(m)}\right\|+\left\|\widetilde{T}^{(m)}\right\|\right\} \sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k} \leqq \frac{3}{m}\left(\frac{4}{n}\right)^{m}\left\{\left\|T^{(m)}\right\|+\left\|\tilde{T}^{(m)}\right\|\right\},
\end{aligned}
$$

which was to be proved.
Lemma 2. If $T_{N}(x)$ is the best approximating trigonometric polynomial of order N of $f(x) \in C_{2 \pi}$ then

$$
\begin{equation*}
\max \left\{\left\|T_{N}^{(m)}\right\|,\left\|\tilde{T}_{N}^{(m)}\right\|\right\} \leqq 2^{2 m+1} \sum_{k=0}^{N}(k+1)^{m-1} E_{k}(f) \quad\left(N \in \mathbf{N}_{0}^{+} ; m \in \mathbf{N}^{+}\right) \tag{10}
\end{equation*}
$$

Proof. Since both sides of (10) remain unchanged if we replace $f(x)$ by $f(x)+$ const., we may assume that $T_{0}(x)=0$. Let $2^{s-1} \leqq N<2^{s}$ (for $N=0$ the statement is obvious), and

$$
\begin{gathered}
V_{0}(x)=T_{1}(x), \quad V_{k}(x)=T_{2^{k}}(x)-T_{2^{k-1}}(x) \quad(k=1, \ldots, s-1) \\
V_{s}(x)=T_{N}(x)-T_{2^{s-1}}(x)
\end{gathered}
$$

Then obviously

$$
\left\|V_{0}\right\| \leqq 2 E_{0}(f), \quad\left\|V_{k}\right\| \leqq 2 E_{2^{k-1}}(f) \quad(k=1, \ldots, s),
$$

and hence by the Bernstein-Szegő inequality $\max \left\{\left\|V_{0}^{\prime}\right\|,\left\|\tilde{V}_{0}^{\prime}\right\|\right\} \leqq 2 E_{0}(f), \quad \max \left\{\left\|V_{k}^{(m)}\right\|,\left\|\tilde{V}_{k}^{(m)}\right\|\right\} \leqq 2^{k m+1} E_{2^{k-1}}(f) \quad(k=1, \ldots, s)$. Since $T_{N}(x)=\sum_{k=0}^{s} V_{k}(x)$, we get

$$
\max \left\{\left\|T_{N}^{(m)}\right\|,\left\|\tilde{T}_{N}^{(m}\right\|\right\} \leqq 2 E_{0}(f)+\sum_{k=1}^{s} 2^{k m+1} E_{2^{k-1}}(f) \leqq 2^{2 m+1} \sum_{k=0}^{N}(k+1)^{m-1} E_{k}(f)
$$

We now want to show that the order of magnitude (when $N \rightarrow \infty$) in (10) cannot be improved.

Example 1. If

$$
f_{3}(x)=\sum_{k=0}^{\infty} 3^{-k} \cos 9^{k} x
$$

then for the best approximating polynomial $T_{N}(x)$ we have

$$
\begin{equation*}
\min \left\{\left\|T_{N}^{(m)}\right\|,\left\|\tilde{T}_{N}^{(m)}\right\|\right\} \geqq \frac{1}{4 \cdot 3^{2 m-1}} \sum_{k=0}^{N}(k+1)^{m-1} E_{k}\left(f_{3}\right) \quad\left(N \in \mathbf{N}^{+}\right) \tag{11}
\end{equation*}
$$

Namely, let $9^{s} \leqq N<9^{s+1}$. It is readily seen that

$$
T_{k}(x)=\sum_{j=0}^{k} 3^{-j} \cos 9^{j} x \in \mathscr{T}_{9^{k}}
$$

is the best approximating polynomial of $f_{3}(x)$ of order at most N, and

$$
E_{9^{k}}\left(f_{3}\right)=\sum_{j=k+1}^{\infty} 3^{-j}=\frac{1}{2 \cdot 3^{k}} \quad\left(k \in \mathbf{N}_{0}^{+}\right)
$$

Hence

$$
\begin{gather*}
\sum_{k=0}^{N}(k+1)^{m-1} E_{k}\left(f_{3}\right) \leqq E_{0}\left(f_{3}\right)+\sum_{k=0}^{s} 8 \cdot 9^{k m+m-1} E_{9^{k}}\left(f_{3}\right) \leqq \tag{12}\\
\leqq \frac{3}{2}+4 \cdot 9^{m-1} \sum_{k=1}^{s}\left(3^{2 m-1}\right)^{k} \leqq 2 \cdot 3^{(2 m-1)(s+1)},
\end{gather*}
$$

while

$$
\begin{align*}
& \left\|T_{N}^{(m)}\right\| \geqq \max \left\{\left|T_{N}^{(m)}(0)\right|,\left|T_{N}^{(m)}\left(\frac{\pi}{2}\right)\right|\right\} \geqq\left|\sum_{k=0}^{s}(-3)^{(2 m-1) k}\right|= \tag{13}\\
& \quad=\left|\frac{(-3)^{(2 m-1)(s+1)}-1}{(-3)^{2 m-1}-1}\right| \geqq \frac{3^{(2 m-1)(s+1)}-1}{3^{2 m-1}+1} \geqq \frac{1}{2} \cdot 3^{(2 m-1) s}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\left\|\tilde{T}_{N}^{(m)}\right\| \geqq \frac{1}{2} \cdot 3^{(2 m-1) s} \tag{14}
\end{equation*}
$$

(12)-(14) prove (11).

Proof of Theorem 1. We shall make use of the representation

$$
\begin{equation*}
R_{n}(f, x)=\sum_{k=0}^{n-1} f\left(x_{k}\right) F_{n}\left(x-x_{k}\right) \tag{15}
\end{equation*}
$$

where

$$
F_{n}(x)=\frac{1}{n}\left\{1+2 \sum_{j=1}^{n-1} \frac{(n-j)^{m} \cos j x}{(n-j)^{m}-(-j)^{m}}\right\}
$$

and

$$
\begin{equation*}
\left\|R_{n}\right\|=\left\|\sum_{k=0}^{n-1} \mid F_{n}\left(x-x_{k}\right)\right\| \|=O\left(n^{\frac{1+(-1)^{m}}{2}}\right) \tag{16}
\end{equation*}
$$

(cf. [1], formulae (4) and (21)). Let $T(x) \in \mathscr{T}_{[n / 4]}$ be the best approximating polynomial of $f(x)$ of order at most $\left[\frac{n}{4}\right]$. Then by (15), Lemmas 1 and 2 we get

$$
\begin{gathered}
\left\|f(x)-R_{n}(f, x)\right\| \leqq\|f(x)-T(x)\|+\left\|T(x)-R_{n}(T, x)\right\|+\left\|R_{n}(T-f, x)\right\| \leqq \\
\leqq\left(1+\left\|R_{n}\right\|\right) E_{[n / 4]}(f)+O\left(n^{-m}\right) \sum_{k=0}^{n}(k+1)^{m-1} E_{k}(f) .
\end{gathered}
$$

But evidently

$$
E_{[n, 4]}(f)=O\left(n^{-m}\right) \sum_{k=0}^{n}(k+1)^{m-1} E_{k}(f),
$$

and (16) yields the statement.
3. A better estimate for odd m 's. While Theorem 1 gives an error estimate valid for any $f(x) \in C_{2 \pi}$, the best order $O\left(n^{-m}\right)$ for odd m 's can be attained only under the strong condition $\sum_{k=0}^{\infty}(k+1)^{m-1} E_{k}(f)<\infty$. G. Sunouchi [6] proved that if $f(x)$ and $\tilde{f}(x) \in C_{2 \pi}$ then

$$
\begin{equation*}
\left\|f(x)-R_{n}(f, x)\right\|=O\left(\omega_{m}\left(f, \frac{1}{n}\right)+\omega_{m}\left(\tilde{f}, \frac{1}{n}\right)\right) \quad\left(m \text { odd, } n \in \mathbf{N}^{+}\right) \tag{17}
\end{equation*}
$$

(In case $m=1$, this was proved in [4].) This result is not so general as Theorem 1, but it gives the optimal order under weaker conditions. In order to see that $f^{(m-1)}(x)$ and $\tilde{f}^{(m-1)}(x) \in \operatorname{Lip} 1$ is indeed a weaker condition than $\sum_{k=0}^{\infty}(k+1)^{m-1} E_{k}(f)<\infty$, we shall analyze the following

Example 2. There exists an $f_{4}(x)$ such that $f_{4}^{(m-1)}(x)$ and $\tilde{f}_{4}^{(m-1)}(x) \in \operatorname{Lip} 1$, but $\liminf _{n \rightarrow \infty} n^{m} E_{n}\left(f_{4}\right)>0$ (for odd m 's). Thus in this case Theorem 2 gives $O\left(n^{-m}\right)$ for the error of approximation, while Theorem 1 gives only $O\left(n^{-m} \log n\right)$.

Let

$$
F(z)=\left\{\begin{array}{cll}
(z-1)^{2 m} e^{\frac{1}{z-1}} & \text { if }|z| \leqq 1, \quad z \neq 1 \\
0 & \text { if } z=1
\end{array}\right.
$$

$F(z)$ is analytic in $|z|<1$, and

$$
F^{(m)}(z)=e^{\frac{1}{z-1}}\left(-1+\sum_{k=1}^{m} c_{k}(z-1)^{k}\right)
$$

where c_{1}, \ldots, c_{m} depend only on m. Thus

$$
\sup _{\substack{|z|=1 \\ z \neq 1}}\left|F^{(m)}(z)\right|<\infty, \text { i.e. } \quad F^{(m-1)}(z) \in \operatorname{Lip} 1 .
$$

The same is true for the real and imaginary part of $F\left(e^{i x}\right)$, i.e. for

$$
f_{4}(x)=-e^{-1 / 2}\left(2 \sin \frac{x}{2}\right)^{2 m} \cos \left(m x-\frac{1}{2} \cot \frac{x}{2}\right)
$$

and

$$
\tilde{f}_{4}(x)=-e^{-1 / 2}\left(2 \sin \frac{x}{2}\right)^{2 m} \sin \left(m x-\frac{1}{2} \cot \frac{x}{2}\right)
$$

Evidently

$$
\begin{equation*}
f_{4}^{(m+1)}(x)=-e^{-1 / 2}(-1)^{(m+1) / 2}\left(2 \sin \frac{x}{2}\right)^{-2} \cos \left(m x-\frac{1}{2} \cot \frac{x}{2}\right)+O\left(x^{-1}\right) \quad(x \rightarrow 0) \tag{18}
\end{equation*}
$$

Let $0<x_{0}<\frac{\pi}{2}$ be such that

$$
\frac{1}{2} \cot \frac{x_{0}}{2}-m x_{0}=\left(2\left[\sqrt{\frac{n}{16 \pi(m+1)}}\right]+\frac{1+(-1)^{(m-1) / 2}}{2}\right) \pi
$$

then elementary calculations yield

$$
\left|x_{0}-2 \sqrt{\frac{m+1}{n \pi}}\right|=O\left(n^{-1}\right)
$$

for sufficiently large n 's. Now if $\left|x_{0}-\xi\right| \leqq \frac{m+1}{n}$, then

$$
\left|2 \sqrt{\frac{m+1}{n \pi}}-\xi\right|=O\left(n^{-1}\right)
$$

and hence

$$
\left|\frac{1}{2} \cot \frac{x_{0}}{2}-m x_{0}-\left(\frac{1}{2} \cot \frac{\xi}{2}-m \xi\right)\right|=\frac{\sin \frac{\left|x_{0}-\xi\right|}{2}}{2 \sin \frac{x_{0}}{2} \sin \frac{\xi}{2}}+O\left(n^{-1}\right) \leqq \frac{\pi}{4}+O\left(n^{-1 / 2}\right)
$$

for sufficiently large n 's, i.e. by (18)

$$
\begin{gathered}
f_{4}^{(m+1)}(\xi)=-e^{-1 / 2}\left(2 \sin \frac{\xi}{2}\right)^{-2} \cos \left\{\frac{1}{2} \cot \frac{x_{0}}{2}-m x_{0}-\left(\frac{1}{2} \cot \frac{\xi}{2}-m \xi\right)\right\}+O\left(\xi^{-1}\right) \geqq \\
\\
\geqq \frac{n \pi}{4(m+1)} \cos \frac{\pi}{4}+O(\sqrt{n}) \geqq \frac{n}{2 m} \quad\left(\left|x_{0}-\xi\right| \geqq \frac{m+1}{n}\right)
\end{gathered}
$$

for sufficiently large n 's. By the definition of the modulus of smoothness

$$
\begin{gather*}
\omega_{m+1}\left(f_{4}, \frac{1}{n}\right) \geqq \sum_{k=0}^{m+1}(-1)^{k}\binom{s}{k} f\left(x_{0}+\frac{k}{n}\right)=n^{-m-1} f^{(m+1)}(\xi) \geqq \frac{1}{2 m n^{m}} \tag{19}\\
\left(\left|x_{0}-\xi\right| \leqq \frac{m+1}{n}\right) .
\end{gather*}
$$

On the other hand, by the generalized Bernstein inequality (see e.g. [3], p. 344),
using $E_{k}\left(f_{4}\right) \leqq c_{1} k^{-m}$, we get
$\omega_{m+1}\left(f_{4}, \frac{1}{n}\right) \leqq c_{2} n^{-m-1} \sum_{k=1}^{n}(k+1)^{m} E_{k}\left(f_{4}\right) \leqq c_{2} n^{-m-1}\left(\sum_{k=1}^{[\lambda n]} c_{1}+E_{[\lambda n]}\left(f_{4}\right) \sum_{k=1}^{n}(k+1)^{m}\right) \leqq$ $\leqq \lambda c_{2} n^{-m}+c_{3} E_{[\lambda n]}\left(f_{4}\right)$.
Thus (19) yields

$$
c_{3} E_{[\lambda n]}\left(f_{4}\right) \geqq \frac{1}{2 m n^{m}}-\frac{\lambda c_{2}}{n^{m}}>\frac{1}{4 m n^{m}}
$$

provided $\lambda=\frac{1}{4 c_{2} m}$. This proves $\liminf _{n \rightarrow \infty} n^{m} E_{n}\left(f_{4}\right)>0$.
4. The saturation problem. In case of odd m, G. Sunouchi [6] solved the saturation problem of the operator R_{n}. He proved that

$$
\left\|f(x)-R_{n}(f, x)\right\|= \begin{cases}O\left(n^{-m}\right) & \text { iff } f^{(m-1)}(x) \text { and } \tilde{f}^{(m-1)}(x) \in \operatorname{Lip} 1 \\ o\left(n^{-m}\right) & \text { iff } f(x)=\text { const. }\end{cases}
$$

We note that in case $m=1$, this was proved by V. F. Vlasov [5] and J. Szabados [4] independently.

I am unable to solve the saturation problem for m even. In this connection I propose the following

Conjecture 2. Let m be even, $f(x) \in C_{2 \pi}$. Then

$$
\begin{equation*}
\left\|f(x)-R_{2 n+1}(f, x)\right\|=O\left(n^{-m}\right) \quad \text { iff } \quad \omega_{m+1}(f, h)=O\left(h^{m+1}\right) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f(x)-R_{2 n+1}(f, x)\right\|=o\left(n^{-m}\right) \quad \text { iff } \quad f(x)=\text { const. } \tag{b}
\end{equation*}
$$

The "if" part of (a) follows from Theorem 1, but the converse is an open problem.
6. A Voronovskaya type estimate. If we assume slightly more on $f(x)$ than it is done in the saturation theorem, then we can establish a result on the behaviour of the sequence

$$
\Delta_{n}(f, x)=n^{m}\left\{f(x)-R_{n}(f, x)\right\} \quad(n=1,2, \ldots)
$$

Theorem 2. Assume that

$$
\begin{equation*}
\int_{0}^{1} \frac{\omega\left(f^{(m)}, h\right)}{h} d h<\infty \quad(m \text { odd }) \text { or } f^{(m+1)}(x) \in C_{2 \pi}(m \text { even }) . \tag{20}
\end{equation*}
$$

Then for the sequence $\Delta=\left\{\Delta_{n}(f, x)\right\}_{n=1}^{\infty}$ and $\bar{\Delta}=\left\{\Delta_{2_{n+1}}(f, x)\right\}_{n=0}^{\infty}$ the following possibilities arise:
(a) If $\frac{x}{\pi}=\frac{p}{q}((p, q)=1)$ is a rational number, then Δ and $\bar{\Delta}$ have finitely many cluster points, namely
$(-1)^{(m-1) / 2}\left[\sin \frac{r \pi}{q} f^{(m)}\left(\frac{p \pi}{q}\right)+\left(1-\cos \frac{r \pi}{q}\right) \tilde{f}^{(m)}\left(\frac{p \pi}{q}\right)\right]\left(r=\left\{\begin{array}{ll}0,2, \ldots, 2 q-2 & (p \text { even }) \\ 0,1, \ldots, 2 q-1 & (p \text { odd })\end{array}\right)\right.$
when m is odd, and

$$
\begin{equation*}
(-1)^{m / 2-1}\left[\left(1-\cos \frac{r \pi}{q}\right) f^{(m)}\left(\frac{p \pi}{q}\right)-\sin \frac{r \pi}{q} \tilde{f}^{(m)}\left(\frac{p \pi}{q}\right)\right] \quad(r=0,2, \ldots, 2 q-2) \tag{22}
\end{equation*}
$$

when m is even, respectively.
(b) If $\frac{x}{\pi}$ is irrational then any @ satisfying

$$
\begin{equation*}
\tilde{f}^{(m)}(x)-\sqrt{f^{(m)}(x)^{2}+\tilde{f}^{(m)}(x)^{2}} \leqq \varrho \leqq \tilde{f}^{(m)}(x)+\sqrt{f^{(m)}(x)^{2}+\tilde{f}^{(m)}(x)^{2}} \tag{23}
\end{equation*}
$$

will be a cluster point of Δ or $\bar{\Delta}$, and there are no other cluster points.
Proof. Let $M=m+\frac{1+(-1)^{m}}{2}$. By (20), there exist $T_{n}(x) \in \mathscr{T}_{n}$ so that

$$
\begin{equation*}
\left\|f^{(j)}(x)-T_{n}^{(j)}(x)\right\|=O\left(n^{j-M}\right) \omega\left(f^{(M)}, \frac{1}{n}\right) \quad(j=0,1, \ldots, M) \tag{24}
\end{equation*}
$$

Let first m be odd. Using the notation

$$
\begin{equation*}
V_{0}(x)=T_{1}(x), \quad V_{k}(x)=T_{2^{k}}(x)-T_{2^{k-1}}(x) \quad(k=1,2, \ldots) \tag{25}
\end{equation*}
$$

we have $f(x)=\sum_{k=1}^{\infty} V_{k}(x)$. Here

$$
\begin{equation*}
\left\|V_{k}\right\|=O\left(2^{-k m}\right) \omega\left(f^{(m)}, 2^{-k}\right) \quad(k=1,2, \ldots) \tag{26}
\end{equation*}
$$

whence

$$
\left\|\tilde{V_{k}}\right\|=O\left(k 2^{-k m}\right) \omega\left(f^{(m)}, 2^{-k}\right) \quad(k=1,2, \ldots)
$$

Thus $\sum_{k=1}^{\infty} \tilde{V}_{k}(x)$ converges uniformly, i.e. $\tilde{f}(x)=\sum_{k=1}^{\infty} \tilde{V}_{k}(x)$ exists. Moreover, by (26) and the Bernstein-Szegő inequality

$$
\left\|\tilde{V}_{k}^{(j)}\right\|=O\left(2^{k(j-m)}\right) \omega\left(f^{(m)}, 2^{-k}\right) \quad(j=1,2, \ldots, m)
$$

Therefore by (20)

$$
\begin{array}{r}
\sum_{k=1}^{s}\left\|\tilde{V}_{k}^{(j)}\right\|=O\left(\sum_{k=1}^{s} \omega\left(f^{(m)}, 2^{-k}\right)\right)=O\left(\int_{2} \frac{1}{1} \frac{\omega\left(f^{(m)}, h\right)}{h} d h\right)=O(1) \\
\quad(j=1,2, \ldots, m ; s \rightarrow \infty)
\end{array}
$$

i.e. $\tilde{f}^{(j)}(x)=\sum_{k=1}^{\infty} \tilde{V}^{(j)}(x) \quad(j=1,2, \ldots, m) \quad$ converge uniformly. Especially by (25)

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|\tilde{f}^{(m)}(x)-\tilde{T}_{2^{s}}^{(m)}(x)\right\|=0 \tag{27}
\end{equation*}
$$

Hence and by (24), using again a well-known inequality of Stečkin (cf. [3], formula 4.8 (18))
(28) $\quad\left\|T_{2^{s}}^{(m+1)}\right\|=O\left(2^{s}\right) \omega\left(f^{(m)}, 2^{-s}\right),\left\|\tilde{T}_{2^{s}}^{(m+1)}\right\|=O\left(s 2^{s}\right) \omega\left(f^{(m)}, 2^{-s}\right)=o\left(2^{s}\right)$, since (20) implies $\omega\left(f^{(m)}, \frac{1}{n}\right) \log n \rightarrow 0 \quad(n \rightarrow \infty)$.

Now if m is even, then (27)-(28) trivially hold by (24).
Now let $2^{s+2} \leqq n<2^{s+3}$. Then by (24), (9), (16), (6), (27) and (28) we get

$$
\begin{gathered}
\Delta_{n}(f, x)=n^{m}\left\{f(x)-T_{2^{s}}(x)\right\}+n^{m}\left\{T_{2^{s}}(x)-R_{n}\left(T_{2^{s}}, x\right)\right\}+n^{m} R_{n}\left(T_{2^{s}}-f, x\right)= \\
=n^{m}\left(1+\left\|R_{n}\right\|\right) O\left(n^{-M}\right) \omega\left(f^{(M)}, \frac{1}{n}\right)+ \\
+n^{m}(-1)^{m+1} \sum_{k=0}^{\infty} a_{k n} \operatorname{Re}\left\{\left(1-e^{-i n x}\right) i^{-k-m}\left[T_{2^{s}}^{(k+m)}(x)+i \tilde{T}_{2^{s}}^{(k+m)}(x)\right]\right\}= \\
=O\left(\omega\left(f^{(M)}, \frac{1}{n}\right)\right)+(-1)^{m+1} \operatorname{Re}\left\{\left(1-e^{-i n x}\right) i^{-m}\left[T_{2^{s}}^{(m)}(x)+i T_{2^{s}}^{(m)}(x)\right]\right\}+ \\
+O\left(\sum_{k=1}^{n}\left(\frac{8}{3 n}\right)^{k} 2^{s(k-1)}\right)\left[\left\|T_{2^{s}}^{(m+1)}\right\|+\left\|\tilde{T}_{2^{s}}^{(m+1)}\right\|\right]=O\left(\omega\left(f^{(M)}, \frac{1}{n}\right)\right)\left(1+\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k}\right)+ \\
+o(1) \sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k}+(-1)^{m+1} \operatorname{Re}\left\{\left(1-e^{-i n x}\right) i^{-m}\left[f^{(m)}(x)+i \tilde{f}^{(m)}(x)\right]\right\}= \\
=(-1)^{m+1} \operatorname{Re}\left\{\left(1-e^{-i n x}\right) i^{-m}\left[f^{(m)}(x)+i \tilde{f}^{(m)}(x)\right]\right\}+o(1) .
\end{gathered}
$$

Here
(29) $\quad \operatorname{Re}\{\ldots\}=\left\{\begin{array}{l}(-1)^{(m-1) / 2}\left[\sin n x f^{(m)}(x)+(1-\cos n x) \tilde{f}^{(m)}(x)\right] \quad \text { (} m \text { odd) } \\ (-1)^{m / 2}\left[(1-\cos n x) f^{(m)}(x)-\sin n x \tilde{f}^{(m)}(x)\right] \quad \text { (} m \text { even). }\end{array}\right.$

Now if $\frac{x}{\pi}=\frac{p}{q},(p, q)=1$ then, for a given r described in (21) or (22), choose a sequence $n_{1}<n_{2}<\ldots$ such that $n_{k} p \equiv r(\bmod 2 q)$. Thus $\sin n_{k} x=\sin \frac{r \pi}{q}, \cos n_{k} x=$ $=\cos \frac{r \pi}{q}$, and (21) and (22) follow from (29).

If $\frac{x}{\pi}$ is irrational, then to any given $0 \leqq \alpha<2 \pi$, there exists a sequence $n_{1}<n_{2}<\ldots$ $\ldots<n_{k}<\ldots$ such that $n_{k} x \rightarrow \alpha(k \rightarrow \infty) \bmod 2 \pi$. Being the range of the functions

$$
\begin{aligned}
\varphi_{1}(\alpha)=\sin \alpha f^{(m)}(x)+(1-\cos \alpha) \tilde{f}^{(m)}(x) & (m \text { odd }) \\
\varphi_{2}(\alpha)=(1-\cos \alpha) f^{(m)}(x)-\sin \alpha \tilde{f}^{(m)}(x) & (m \text { even })
\end{aligned}
$$

exactly the interval (23), the statement follows.
Remarks. 3. In the case when x / π is rational, Theorem 2 gives only an upper bound for the number of cluster points, since there may be equal numbers among them.
4. The only case when Δ has a limit is when $f^{(m)}(x)=\tilde{f}^{(m)}(x)=0$, and in this case the limit is 0 .

References

[1] A. Sharma-A. K. Varma, Trigonometric interpolation, Duke Math. Journal, 32 (1965), 341357.
[2] P. Vértesi, On the convergence of trigonometric ($0, M$) interpolation, Acta Math. Acad. Sci. Hungar., 22 (1971), 117-126.
[3] A. F. Timan, Theory of approximation of functions of real variables (Moscow, 1960) (in Russian).
[4] J. Szabados, On the convergence and saturation problem of the Jackson polynomials, Acta Math. Acad. Sci. Hungar., 24 (1973), 399-406.
[5] V. F. Vlasov, Constructive characterization of a class of functions, Dokl. Akad. Nauk SSSR, 142 (1962), 773-775 (in Russian).
[6] G. Sunouchi, On the approximation and saturation of periodic continuous functions by certain trigonometric interpolation polynomials, Acta Math. Acad. Sci. Hungar., 27 (1976), 323-328.
(Received May 7, 1984; revised January 3, 1985)

```
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REÁLTANODA U. 13-15.
H-1053
```


ON THE NUMBER OF OCCURRENCES OF SEQUENCE PATTERNS

A. BENCZUR (Budapest) and I. KÁTAI (Budapest), member of the Academy

1. Let $B=\{0,1\}$ and let B^{n} be the set of words over B having exactly n letters, i.e. $B^{n}=\left\{b_{1} \ldots b_{n} \mid b_{j} \in B \quad(j=1, \ldots, n)\right\}$. B^{0} denotes the empty word, $B^{*}=\bigcup_{n=0}^{\infty} B^{n}$ is the set of all words over B having finite length. In this section Greek letters denote words over B, except $\lambda: \lambda(\alpha)$ denotes the length of α.

For a word $\beta=b_{1} \ldots b_{n}$ let $(\beta)_{r}=b_{r+1} \ldots b_{n}$, and ${ }_{s}[\beta]=b_{1} \ldots b_{s}$. Consequently ${ }_{s}\left[(\beta)_{r}\right]=b_{r+1} \ldots b_{r+s}$.

Let $\beta=b_{1} \ldots b_{n}, \alpha=a_{1} \ldots a_{t}, t \leqq n$. We shall say that α occurs in β if there exists an index $s \leqq n-t$ such that $t\left[(\beta)_{s}\right]=\alpha$. We say furthermore that s is an index of occurrence of α in β. Let $s_{1}<s_{2}<\ldots<s_{l}$ be the whole set of indices of occurrences of α in β.

The combinatorial structure of the occurrence of patterns in words has been considered earlier by several authors. We mention only the paper of L. J. Guibas and A. M. Odlyzko [2] that contains further references concerning the previous investigations.

Let α be fixed and let β run over the set of all words in B^{n} randomly. There are a lot of interesting questions concerning the statistical behaviour of s_{1}, \ldots, s_{l}. The most straightforward one is the distribution of l. Our main purpose in this paper is to give an estimation with a good remainder term for l (see Theorem 1).

Definition 1. We shall say that h is a shifting index for $\alpha=a_{1} \ldots a_{t}, 1 \leqq h<t$, if $a_{h+1} \ldots a_{t}=a_{1} \ldots a_{t-h}$. Let $\mathscr{B}(\alpha)$ be the whole set of shifting indices of $\alpha: h_{1}<h_{2}<\ldots$ $\ldots<h_{s}$.

It may occur that $\mathscr{B}(\alpha)$ is empty. It is obvious furthermore that $h_{i}, h_{j} \in \mathscr{B}(\alpha)$, $h_{i}+h_{j}<t$ imply $h_{i}+h_{j} \in \mathscr{B}(\alpha)$. So, if $u=\left[t / h_{1}\right]$, then $j h_{1} \in \mathscr{B}(\alpha)$ for $j=1, \ldots, u$.

Let now $h \in \mathscr{B}(\alpha)$ such that $h_{1} \nmid h$. We shall prove that in this case $h+h_{1}>t$. Assume in the contrary that $h+h_{1} \leqq t$. Since $h_{1} \in \mathscr{B}(\alpha)$, therefore $a_{j+h_{1}}=a_{j}$ for $j=1, \ldots, t-h_{1}$, i.e. the sequence a_{j} is periodic with period h_{1}. Furthermore, since $h \in \mathscr{B}(\alpha)$, therefore $a_{j+h}=a_{j} \quad(j=1, \ldots, t-h)$. Hence we shall deduce that $h-h_{1} \in \mathscr{B}(\alpha)$, i.e. $a_{l+\left(h-h_{1}\right)}=a_{l}$ for $l=1, \ldots, t-h+h_{1}$.

The last relation is obviously true for $l=h_{1}+j, j=1,2, \ldots, t-h$, since $a_{l+h-h_{1}}=$ $=a_{h+j}=a_{j}=a_{j+h_{1}}=a_{l}$.

For $l=1,2, \ldots, h_{1}$ we can make use of the assumption $h_{1}+h<t$ in the following way: $a_{h+l}=a_{l}$ for $l=1,2, \ldots, h_{1}$, so $a_{h-h_{1}+l}=a_{h+l}=a_{l}$, which proves that the relation $a_{h+l}=a_{l}$ holds for every $l=1,2, \ldots, t-h+h_{1}$. Repeating this idea with $h-h_{1}$ instead of h several times, we conclude that there is a shifting index which is smaller than h_{1}. So we have proved the following

Lemma 1. For the set of $\mathscr{B}(\alpha)$ there are three possibilities:
(1) $\mathscr{B}(\alpha)$ is empty,
(2) $\mathscr{B}(\alpha)$ contains only elements greater than or equal to $t / 2$. Then $h_{1} \geqq t / 2$.
(3) $\mathscr{B}(\alpha)$ contains at least one element less than $t / 2$. Then $h_{1}<t / 2, j h_{1} \in \mathscr{B}(\alpha)$ for $j=1, \ldots,\left[t / h_{1}\right]$. If $h \in \mathscr{B}(\alpha), h_{1} \nmid h$, then $h+h_{1}>t$.
2. Let $\omega:=\omega_{1} \omega_{2} \ldots$ be a random infinite Bernoulli-trial, and let $\alpha=a_{1} \ldots a_{t}$ be fixed. Let A_{i} denote the event

$$
A_{i}: \omega_{i} \ldots \omega_{i+t-1}=\alpha
$$

Let furthermore $V_{r}(N)$ denote the probability of the event that among A_{1}, \ldots \ldots, A_{N-t} exactly r occur, and let

$$
\begin{equation*}
v_{r}(z)=\sum_{N} V_{r}(N) z^{N} \tag{2.1}
\end{equation*}
$$

be the generator function.
Let

$$
\begin{gather*}
Q(z)=\sum_{h}\left(\frac{z}{2}\right)^{h}+\left(\frac{z}{2}\right)^{t} \frac{1}{1-z} \tag{2.2}\\
H(z)=(1-z) Q(z) \tag{2.3}
\end{gather*}
$$

where here and in the sequel \sum_{h} denotes a summation over $h \in \mathscr{B}(\alpha)$.
There are several ways to get an explicit expression for $v_{r}(z)$. Since in [2] an outline of the deduction is given (Section 2), we state it without proof.

Lemma 2. We have

$$
\begin{gather*}
V_{r}(z)=\left(\frac{z}{2}\right)^{t} \frac{H(z)^{r-1}}{(1-z+H(z))^{r+1}} \quad(r \geqq 1), \tag{2.4}\\
V_{0}(z)=\frac{z^{t}\left\{1+\sum_{h}\left(\frac{z}{2}\right)^{h}+2^{-t}\left(\sum_{l=0}^{t-1} z^{l}\right)\right\}}{1-z+H(z)} . \tag{2.5}
\end{gather*}
$$

3. Let ζ_{N} be the random variable that counts the number of occurrences of α in a random $\omega_{1} \ldots \omega_{N}$. Since

$$
P\left(\zeta_{N}=r\right)=\left\{\begin{array}{ccl}
V_{r}(N) & \text { if } & N \geqq t, r \geqq 0 \\
1 & \text { if } & N<t, r=0 \\
0 & \text { if } & N<t, r \geqq 1
\end{array}\right.
$$

by using the formulae (2.4), (2.5), and differentiating them twice we get immediately

$$
\begin{align*}
& M\left(\zeta_{N}\right)=\left\{\begin{array}{cc}
\frac{\mid N-t+1}{2^{t}} & \text { for } \quad N \geqq t \\
0 & \text { for } \quad N<t
\end{array}\right. \tag{3.1}\\
& D^{2}\left(\zeta_{N}\right)=a \zeta_{N}+b \text { for } \quad N \geqq 2 t \tag{3.2}
\end{align*}
$$

where

$$
\begin{gather*}
a=\frac{1}{2^{t}}+\frac{1-2 t}{2^{2 t}}+\frac{2}{2^{t}} \sum_{h} \frac{1}{2^{h}}, \tag{3.3}\\
b=-t a+\left(\frac{1}{2^{t}}+\frac{1}{2^{2 t}}-\frac{2}{2^{t}} \sum_{h} \frac{h-1}{2^{h}}\right) . \tag{3.4}
\end{gather*}
$$

4. In this section we shall give an asymptotic formula for $V_{r}(N)$ with an optimal remainder term. For the sake of simplicity we shall assume that the length t of α is quite large, $t \geqq 10$. We should mention that a more general problem has been considered by D. A. Moskvin and A. G. Postnikov [1]. Namely they proved the following assertion. Let $[a, b] \subseteq[0,1]$ any interval, and let χ denote its indicator function. Let

$$
N_{n}(\zeta,[a, b])=\sum_{k=0}^{n-1} \chi\left(\left\{2^{k} \zeta\right\}\right)
$$

i.e. the number of those $k=0,1, \ldots, n-1$, for which the fractional parts $\left\{2^{k} \zeta\right\}$ belong to $[a, b]$. Then for each nonnegative integer l,

$$
\begin{gathered}
\operatorname{meas}\left(\xi: 0 \leqq \xi \leqq 1, N_{n}(\xi,[a, b])=l\right)= \\
=\frac{1}{\sigma \sqrt{2 \pi n}} \exp \left(-\frac{(l-n(b-a))^{2}}{2 n \sigma^{2}}\right)+O\left(\frac{\sqrt{\ln n}}{n}\right),
\end{gathered}
$$

uniformly in l. Here σ is defined by

$$
\sigma^{2}=\lim _{n} \frac{1}{n} \int_{0}^{1}\left(N_{n}(\xi,[a, b])-(b-a) n\right)^{2} d \xi .
$$

Our purpose now is to improve the remainder term in this special case. To carry out the proof without a cumbersome discussion we shall assume that

$$
\begin{equation*}
t \geqq 10, \quad 2^{t} \leqq \log N \tag{4.1}
\end{equation*}
$$

We shall use the Parseval formula

$$
\begin{equation*}
V_{r}(N)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} v_{r}\left(e^{i \theta}\right) e^{-i N \theta} d \theta \tag{4.2}
\end{equation*}
$$

In order to estimate the right hand side we should approximate v_{r} near $\theta=0$ quite well, and to give an upper estimation for v_{r} out of a small interval.

Let

$$
\frac{N}{2^{t+1}} \leqq r \leqq \frac{N}{2^{t-1}}
$$

Let $w=e^{i \theta}-1=z-1$, and let the coefficients $c_{0}, c_{1}, \ldots, c_{t}$ be defined by

$$
\begin{equation*}
H(1+w)=-w \sum \frac{1}{2^{h}}(1+w)^{h}+\frac{1}{2^{t}}(1+w)^{t}=c_{0}+c_{1} w+\ldots+c_{t} w^{t} \tag{4.3}
\end{equation*}
$$

So

$$
\begin{gather*}
c_{0}=1 / 2 t, \quad c_{1}=-\sum_{h} \frac{1}{2^{h}}+\frac{t}{2^{t}} \tag{4.4}\\
c_{2}=-\sum \frac{h}{2^{h}}+\frac{t(t-1)}{2^{t+1}}
\end{gather*}
$$

Lemma 3. Let the least shifting index h_{1} defined in Section 1 be not less than 2. Then

$$
\begin{equation*}
\left|\frac{H(1+w)}{w}\right| \leqq 0,47 \tag{4.6}
\end{equation*}
$$

for $|w| \geqq 8 c_{0}$, furthermore

$$
\begin{equation*}
\left|\mathscr{I}_{3}\right|=\left|\frac{1}{2 \pi} \int_{|w| \leqq 8 c_{0}} v_{r}(z) z^{-N} d \theta\right| \leqq B_{1} \cdot 0,9^{(1 / 2) N c_{0}} \tag{4.7}
\end{equation*}
$$

with a suitable absolute constant B_{1}.
The inequality (4.7) holds in the case $h_{1}=1$ as well.
Proof. Since

$$
\frac{H(1+w)}{w}=-\sum\left(\frac{z}{2}\right)^{h}+\frac{1}{w}\left(\frac{z}{2}\right)^{t}
$$

therefore

$$
\begin{equation*}
\left|\frac{H(1+w)}{w}\right| \leqq \sum \frac{1}{2^{h}}+\frac{c_{0}}{|w|} . \tag{4.8}
\end{equation*}
$$

Let us assume that $h_{1} \geqq 2$. From Lemma 1, all elements of $\mathscr{B}(\alpha)$ up to $t-h_{1}$ are multiples of h_{1}, so for $h_{1}<t / 2$

$$
\sum_{h} \frac{1}{2^{h}}<\frac{1}{2^{h_{1}}-1}+\frac{1}{2^{t-h_{1}+1}}+\ldots<\frac{1}{2^{h_{1}}-1}+\frac{1}{2^{t-h_{1}}}
$$

Here the right hand side is the largest if $h_{1}=2, t=10$. If $h_{1}>t / 2$, then

$$
\sum_{h} 1 / 2^{h}<\frac{2}{2^{t / 2}} \leqq \frac{1}{16}
$$

Then the right hand side of (4.8) is less than $1 / 3+1 / 2^{8}+1 / 8<0,47$.
Hence we have
and

$$
\left|\frac{H(z)}{H(z)-w}\right| \leqq\left|\frac{H(z)}{w}\right| \frac{1}{1-\left|\frac{H(z)}{W}\right|} \leqq \frac{0,47}{1-0,47}<0,9
$$

$$
|H(z)-w| \geqq|w|\left(1-\left|\frac{H(z)}{w}\right|\right) \geqq 0,53|w|
$$

So, by (2.4) we get
i.e. (4.7) holds.

$$
\begin{aligned}
\left|\mathscr{I}_{3}\right| & \leqq \frac{c_{0}}{2 \pi} \int_{|W| \leqq 8 c_{0}} \frac{1}{|H(z)-w|^{2}}\left|\frac{H(z)}{H(z)-w}\right|^{r-1} d \theta \leqq \\
& \leqq 0,9^{r-1} c_{0} \int_{|W|>8 c_{0}} \frac{1}{|w|^{2}} d \theta \leqq B_{1} \cdot 0,9^{(1 / 2) N c_{0}},
\end{aligned}
$$

Let us consider now the case $h_{1}=1$. Observing that

$$
\begin{gathered}
{\left[\left(\frac{z}{2}\right)-1\right] H(z)=} \\
\left(\frac{z}{2}-1\right)(1-z)\left(\sum_{l=1}^{t-1}\left(\frac{z}{2}\right)^{l}\right)+\left(\frac{z}{2}-1\right)\left(\frac{z}{2}\right)^{t}= \\
=-\left(\frac{z}{2}\right)^{t+1}+2\left(\frac{z}{2}\right)^{2}-\left(\frac{z}{2}\right) \\
\left(\frac{z}{2}-1\right)\{(1-z)+H(z)\}=-\left(\frac{z}{2}\right)^{t+1}+2\left(\frac{z}{2}\right)-1
\end{gathered}
$$

we get easily the formula

$$
v_{r}(z)=\frac{\left(\frac{z}{2}\right)^{t}(1-z / 2)^{2}}{\left[1-z+\left(\frac{z}{2}\right)^{t+1}\right]^{2}}\left[\frac{\frac{z}{2}\left(1-z+\left(\frac{z}{2}\right)^{t}\right)}{1-z+\left(\frac{z}{2}\right)^{t+1}}\right]^{r-1}
$$

Consequently

$$
\left|v_{r}(z)\right| \leqq-\frac{\frac{1}{2^{t}}\left(1+\frac{1}{2}\right)^{2}}{\left(|1-z|-\left(\frac{1}{2}\right)^{t+1}\right)^{2}}\left[\frac{\frac{1}{2}\left(|1-z|+\frac{1}{2^{t}}\right)}{|1-z|-\left(\frac{1}{2}\right)^{t+1}}\right]^{r-1} .
$$

The minimum of the right hand side is attained for $|1-z|=8 c_{0}$, so

$$
\left|v_{r}(z)\right| \leqq \frac{\frac{9}{4} c_{0}}{7,5^{2} c_{0}^{2}}\left[\frac{\frac{1}{2} \cdot 9 c_{0}}{7,5 c_{0}}\right]^{r-1}=\frac{2^{t}}{5^{2}}\left(\frac{3}{5}\right)^{r-1}
$$

hence (4.7) immediately follows.
This completes the proof of Lemma 3.
Lemma 4. For any positive integer l and any complex number w the inequalities

$$
\begin{gathered}
\left|(1+w)^{l}-1-l w\right| \leqq l(l-1)|w|^{2}(1+|w|)^{l-2} \\
\left|(1+w)^{l}-1\right| \leqq l|w|(1+|w|)^{l-1}
\end{gathered}
$$

hold.
Proof. Observing that the coefficients w^{k} of the function $(1+w)^{k}$ are positive, the left hand sides of the inequalities are not greater than $(1+|w|)^{l}-1-l|w|$,
$(1+|w|)^{l}-1$, respectively. By using the wellknown mean-value theorems, the inequalities follow immediately.

Lemma 5. The inequality

$$
\begin{equation*}
|-w+H(1+w)|^{2} \geqq|H(1+w)|^{2}+\left[1+2 \sum_{h} \frac{\cos h \theta}{2^{h}}-\frac{(2 t-1)}{2^{t}}\right]|w|^{2} \tag{4.9}
\end{equation*}
$$

holds for each real $\theta, \quad w=e^{i \theta}-1=z-1$.
Proof. We have

$$
|-w+H(1+w)|^{2}=|H(1+w)|^{2}+|w|^{2}-2 \operatorname{Re} \bar{w} H(1+w)
$$

Furthermore

$$
\operatorname{Re} \bar{w} z^{t}=\operatorname{Re}\left(z^{t-1}-z^{t}\right)=\cos (t-1) \theta-\cos t \theta=2 \sin \frac{\theta}{2} \sin \left(t-\frac{1}{2}\right) \theta
$$

and $|w|^{2}=4 \sin ^{2} \theta / 2$. Since $\left|\frac{\sin n x}{\sin x}\right| \leqq n$ for integer n, we have

$$
\left|2 \operatorname{Re} \bar{w} z^{t}\right| \leqq 4 \sin ^{2} \frac{\theta}{2} \frac{\sin (2 t-1) \theta / 2}{\sin \theta / 2} \leqq(2 t-1)|w|^{2}
$$

Observing that

$$
\begin{gathered}
-2 \operatorname{Re} \bar{w} H(1+w)=|w|^{2} 2 \operatorname{Re} \sum\left(\frac{z}{2}\right)^{h}-2 c_{0} \operatorname{Re} \bar{w} z^{t} \geqq \\
\geqq\left[2 \sum_{h} \frac{\cos h \theta}{2^{h}}-(2 t-1) c_{0}\right]|w|^{2},
\end{gathered}
$$

(4.9) immediately follows.

Let

$$
F(z):=\frac{H(z)}{1-z+H(z)}
$$

Since $|H(z)| \leqq H(1)=c_{0}$, from Lemma 5 we deduce

$$
|F(z)|^{2} \leqq \frac{c_{0}^{2}}{c_{0}^{2}+\frac{1}{2}|w|^{2}}
$$

in the interval $|w| \leqq 8 c_{0}$. Let $|w|=c_{0} \eta$. Then

$$
|F(z)|^{2} \leqq \frac{1}{1+\frac{\eta^{2}}{2}}
$$

Let M be a small positive number to be chosen later. Assume that $M \leqq|w| \leqq 8 c_{0}$.

Then

$$
\begin{gathered}
\frac{1}{|H(1+w)-w|^{2}} \leqq \frac{1}{M^{2}} \frac{|w|^{2}}{|H(1+w)-w|^{2}} \leqq \frac{2}{M^{2}}\left\{\frac{|H(1+w)-w|^{2}+|H(1+w)|^{2}}{|H(1+w)-w|^{2}}\right\} \leqq \\
\leqq \frac{2}{M^{2}}\left(1+|F(z)|^{2}\right),
\end{gathered}
$$

and so for $v_{r}(z)$ we have

$$
\begin{align*}
\left|v_{r}(z)\right| & \leqq \frac{c_{0} \cdot 2}{M^{2}}\left(|F(z)|^{r-1}+|F(z)|^{r+1} \leqq \frac{4 c_{0}}{M^{2}}|F(z)|^{r-1}<\right. \tag{4.10}\\
& <\frac{4 c_{0}}{M^{2}}\left(\frac{1}{1+\frac{\eta^{2}}{2}}\right)^{(r-1) / 2}<\frac{4 c_{0}}{M^{2}} e^{-\left(\eta^{2} / 4\right)((r-1) / 2)}
\end{align*}
$$

Let

$$
\begin{equation*}
M=\frac{(\log N)^{2}}{\left(N c_{0}\right)^{1 / 2}} \tag{4.11}
\end{equation*}
$$

From (4.11) we get immediately that

$$
\begin{equation*}
\left|\mathscr{I}_{2}\right|=\left|\frac{1}{2 \pi} \int_{M \leqq|w| \leqq 8 c_{0}} v_{r}(z) z^{-N} d z\right| \leqq \frac{B_{2} c_{0}^{3} N^{2}}{\log ^{2} N} \exp \left(-B_{3} \log ^{2} N\right), \tag{4.12}
\end{equation*}
$$

with suitable positive absolute constants B_{2}, B_{3}.
Let us assume now that $|w| \leqq M$. Let

$$
r(w)=-w \sum \frac{(1+w)^{h}-1}{2^{h}}+\frac{(1+w)^{t}-1-t w}{2^{t}}
$$

i.e.

$$
H(1+w)=c_{0}+c_{1} w+r(w)
$$

Since $(1+|w|)^{t}<2$, therefore by Lemma 4 we have

$$
\begin{equation*}
|r(w)| \leqq 3|w|^{2} . \tag{4.13}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\frac{W}{H(1+w)}=\frac{W}{c_{0}}-c_{1}\left(\frac{W}{c_{0}}\right)^{2}+O\left(\left(\frac{w}{c_{0}}\right)^{3}\right) \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{W^{2}}{H^{2}(1+w)}=\left(\frac{W}{c_{0}}\right)^{2}+O\left(\left(\frac{W}{c_{0}}\right)^{3}\right) \tag{4.15}
\end{equation*}
$$

Here and in the sequel the constants implicitly stated in the order terms are absolute, they do not depend on t.

Furthermore,

$$
\begin{aligned}
& F(z)^{-1}=1-\frac{w}{H(z)}=\exp \left(\ln \left(1-\frac{w}{H(z)}\right)\right)= \\
& \quad=\exp \left(-\frac{w}{H(z)}-\frac{1}{2} \frac{w^{2}}{H^{2}(z)}+O\left(\frac{w^{3}}{c_{0}^{3}}\right)\right)
\end{aligned}
$$

and so by (4.14), (4.15) we get

$$
F(z)^{r-1}=\exp \left((r-1) \frac{w}{c_{0}}+\left(\frac{1}{2}-c_{1}\right)(r-1)+\left(\frac{w}{c_{0}}\right)^{2}+O\left(r\left(\frac{w}{c_{0}}\right)^{3}\right)\right)
$$

Furthermore,

$$
\begin{aligned}
& z^{-N+t}=\exp ((-N+t) \log (1+w))=\exp \left([-N+t] w+\frac{N-t}{2} w^{2}+O\left(N w^{3}\right)\right) \\
& \frac{1}{(1-z+H(z))^{2}}=\frac{1}{c_{0}^{2}} \frac{1}{\left[1+\left(\frac{H(1+w)-w}{c_{0}}-1\right)\right]^{2}}=\frac{1}{c_{0}^{2}} \exp (-2 \log (1+\Lambda))
\end{aligned}
$$

with

$$
\Lambda=\frac{H(1+w)-w}{w}-1
$$

Observing that

$$
\begin{gathered}
\Lambda=\left(c_{1}-1\right) \frac{w}{c_{0}}+\frac{c_{2}}{c_{0}} w^{2}+O\left(\frac{|w|^{3}}{c_{0}}\right) \\
\Lambda^{2}=\left(c_{1}-1\right)^{2} \frac{w^{2}}{c_{0}^{2}}+O\left(\frac{|w|^{3}}{c_{0}^{2}}\right), \quad \Lambda^{3}=O\left(\left(\frac{w}{c_{0}}\right)^{3}\right),
\end{gathered}
$$

and that

$$
-2 \log (1+\Lambda)=-2 \Lambda+\Lambda^{2}+O\left(\Lambda^{3}\right)
$$

we get

$$
\frac{1}{(1-z+H(z))^{2}}=\frac{1}{c_{0}^{2}} \exp \left[2\left(1-c_{1}\right) \frac{w}{c_{0}}-\left[\frac{2 c_{2}}{c_{0}}-\frac{\left(c_{1}-1\right)^{2}}{c_{0}^{2}}\right] w^{2}+O\left(\left(\frac{w}{c_{0}}\right)^{3}\right)\right]
$$

Consequently

$$
\begin{equation*}
v_{r}(z)=\frac{1}{c_{0}} \exp \left(A_{1} w+A_{2} w^{2}+O\left(N w^{3}\right)\right) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\frac{r+1-2 c_{1}}{c_{0}}-(N-t) \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
A_{2}=\frac{N-t}{2}+\left(\frac{1}{2}-c_{1}\right) \frac{r-1}{c_{0}^{2}}-\left[\frac{2 c_{2}}{c_{0}}-\frac{\left(c_{1}-1\right)^{2}}{c_{0}^{2}}\right] . \tag{4.18}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathscr{I}_{1}:=\frac{1}{2 \pi} \int_{|w| \leqq M} v_{r}(z) z^{-N} d \theta \tag{4.19}
\end{equation*}
$$

Since

$$
w=i \theta-\frac{\theta^{2}}{2}+O\left(\theta^{3}\right), \quad w^{2}=-\theta^{2}+O\left(\theta^{3}\right), \quad w^{3}=O\left(\theta^{3}\right)
$$

we have

$$
\mathscr{I}_{1}=\frac{1}{2 \pi c_{0}} \int_{|\theta| \Im M_{1}} \exp \left(i A_{1} \theta-\left(A_{2}+\frac{A_{1}}{2}\right) \theta^{2}+O\left(D \theta^{3}\right)\right),
$$

where

$$
D=\left|A_{1}\right|+\left|A_{2}\right|+N+\left(1 / c_{0}\right)^{3},
$$

and M_{1} is defined by $\left|e^{i M_{1}}-1\right|=M$. In the range $\frac{N}{2 c_{0}} \leqq r \leqq \frac{2 N}{c_{0}}$ we have $D=O\left(N / c_{0}\right)$.
Since

$$
e^{O\left(D \theta^{3}\right)}=1+O\left(D \theta^{3}\right)
$$

we get

$$
\begin{equation*}
\mathscr{I}_{1}=R_{1}+O\left(R_{2}\right) \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}=\frac{1}{2 \pi c_{0}} \int_{-M_{1}}^{M} \exp \left(i A_{1} \theta-\left(A_{2}+\frac{A_{1}}{2}\right) \theta^{2}\right) d \theta \tag{4.21}
\end{equation*}
$$

$$
\begin{equation*}
R_{2}=\frac{N}{c_{0}^{2}} \int_{-M_{1}}^{M_{1}} \theta^{3} \exp \left(-\left(A_{2}+\frac{A_{1}}{2}\right) \theta^{2}\right) d \theta \tag{4.22}
\end{equation*}
$$

Since

$$
\int_{-\infty}^{\infty} \theta^{3} \exp \left(-E \theta^{2}\right) d \theta=\frac{1}{E^{2}} \int_{-\infty}^{\infty} u^{3} \exp \left(-u^{2}\right) d u
$$

and $A_{2}+\frac{A_{1}}{2} \gg N / c_{0}$, we get

$$
\begin{equation*}
R_{2} \ll 1 / N \tag{4.23}
\end{equation*}
$$

Let $R_{1}=R_{3}-R_{4}$, where R_{3} is defined by the right hand side of (4.21) extending the integration to the whole real line. Then

$$
\left|R_{4}\right| \leqq \frac{1}{2 \pi c_{0}} \int_{|\theta| \leqq M_{1}} \exp \left(-\left(A_{2}+\frac{A_{1}}{2}\right) \theta^{2}\right) d \theta
$$

Since for positive X and Y,

$$
\begin{gathered}
\int_{X}^{\infty} \exp \left(-Y \theta^{2}\right) d \theta=\frac{1}{\sqrt{Y}} \int_{X \sqrt{\bar{Y}}}^{\infty} e^{-v^{2}} d v \leqq \\
\leqq \frac{1}{\sqrt{Y}} \int_{X \sqrt{Y}} e^{-v^{2}} \frac{2 v}{2 X \sqrt{Y}} d v=\frac{1}{2 X Y} \int_{v^{2}=X^{2} Y}^{\infty} e^{-v^{2}} d v^{2}=\frac{1}{2 X Y} e^{-X^{2} Y},
\end{gathered}
$$

by choosing $X=M_{1}, \quad Y=A_{2}+\frac{A_{1}}{2}$, we get

$$
R_{4} \ll \frac{1}{c_{0} X Y} e^{-X^{2} Y}
$$

and so

$$
\begin{equation*}
R_{4} \ll 1 / N . \tag{4.24}
\end{equation*}
$$

Lemma 6. Let a and b be real numbers, $b>0$,

$$
L(a, b)=\int_{-\infty}^{\infty} \exp \left(i a \theta-b \theta^{2}\right) d \theta
$$

Then

$$
L(a, b)=\frac{\sqrt{\pi}}{\sqrt{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

Proof. The assertion is known. For the sake of completeness we shall prove it. Since

$$
b \theta^{2}-i a \theta=b\left(\theta-i \frac{a}{2 b}\right)^{2}+\frac{a^{2}}{4 b}
$$

we have

$$
L(a, b)=\exp \left(-\frac{a^{2}}{4 b}\right) \int_{-\infty}^{\infty} \exp \left(-b\left(\theta-i \frac{a}{2 b}\right)^{2}\right) d \theta
$$

The integral on the right hand side can be considered as the integral of $e^{-b w^{2}} d w$ taken on the line $\operatorname{Im} w=\frac{a}{2 b}$. Moving this line into $\operatorname{Im} w=0$, we get

$$
\begin{gathered}
L(a, b)=\exp \left(-\frac{a^{2}}{4 b}\right) \int_{-\infty}^{\infty} \exp \left(-b x^{2}\right) d x= \\
=\frac{1}{\sqrt{b}} \exp -\left(\frac{a^{2}}{4 b}\right) \int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x=\frac{\sqrt{\pi}}{\sqrt{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
\end{gathered}
$$

By using Lemma 6, we have

$$
R_{3}=\frac{1}{2 c_{0} \sqrt{\pi b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

where

$$
\begin{gathered}
a=A_{1}=\frac{r}{c_{0}}-N+k, \quad k=\frac{1-2 c_{1}}{c_{0}}+t, \quad b=A_{2}+\frac{A_{1}}{2}=e r+f, \\
e=\frac{1}{2 c_{0}}+\frac{1 / 2-c_{1}}{c_{0}^{2}}, \quad f=\frac{1-2 c_{1}-4 c_{2}}{2 c_{0}}+\frac{c_{1}^{2}-c_{1}+1 / 2}{c_{0}^{2}} .
\end{gathered}
$$

Let $s=\frac{r}{c_{0}}-N$. Then

$$
a^{2}=s^{2}+2 k s+k^{2}, \quad 4 b=4 e c_{0} N+4 e c_{0} s+4 f
$$

and so

$$
\frac{a^{2}}{4 b}=\frac{s^{2}}{4 e c_{0} N}+O\left(\frac{|s|^{3} c_{0}}{N^{2}}\right)+O\left(\frac{|s|}{N}\right)+O\left(\frac{1}{c_{0} N}\right)
$$

in the interval
say. Let $\eta=s N^{-1 / 2}$. Then

$$
|s| \leqq N^{1 / 2}(\log N)^{2}
$$

$$
\exp \left(-\frac{a^{2}}{4 b}\right)=\exp \left(-\frac{\eta^{2}}{4 e c_{0}}\right)\left(1+O\left(\frac{\eta^{3} c_{0}}{N^{1 / 2}}\right)+O\left(\frac{\eta}{N^{1 / 2}}\right)+O\left(\frac{1}{c_{0} N}\right)\right)
$$

Furthermore

$$
\frac{1}{\sqrt{4 b}}=\frac{1}{4 e c_{0} N^{1 / 2}}\left(1+O\left(\eta / N^{1 / 2}\right)\right)
$$

and so

$$
\frac{1}{\sqrt{4 b}} \exp \left(-\frac{a^{2}}{4 b}\right)=\frac{1}{\left(4 e c_{0} N\right)^{1 / 2}} \exp \left(-\frac{\eta^{2}}{4 e c_{0}}\right)\left(1+O\left(\frac{|\eta|+|\eta|^{4}}{c_{0} N^{1 / 2}}\right)\right)
$$

$$
\begin{equation*}
\frac{1}{c_{0} \sqrt{4 b}} \exp \left(-\frac{a^{2}}{4 b}\right)=\frac{1}{c_{0}\left(4 e c_{0} N\right)^{1 / 2}} \exp \left(-\frac{\eta^{2}}{4 e c_{0}}\right)[1+O(K)] \tag{4.26}
\end{equation*}
$$

where

$$
K=\frac{|\eta|}{N^{1 / 2}}+\frac{|\eta|^{3} c_{0}}{N^{1 / 2}}+\frac{1}{c_{0} N} .
$$

Let $K=\frac{\eta}{\sqrt{4 e c_{0}}}$. Since $e c_{0}=O\left(1 / c_{0}\right)$, therefore $|\eta| \ll \frac{K}{c_{0}^{1 / 2}}$ and so the order term in the right hand side of (4.26) is less than

$$
\ll \frac{1}{c_{0}^{1 / 2} N^{1 / 2}} \exp \left(-K^{2}\right)\left(\frac{|K|}{c_{0}^{1 / 2} N^{1 / 2}}+\frac{|K|^{3}}{c_{0}^{1 / 2} N^{1 / 2}}\right) \ll O\left(\frac{1}{N c_{0}}\right) .
$$

Consequently

$$
R_{3}=\frac{1}{\sqrt{\pi} c_{0}\left(4 e c_{0} N\right)^{1 / 2}} \exp \left(-\frac{\eta^{2}}{4 e c_{0}}\right)+O\left(\frac{1}{N c_{0}}\right)
$$

and by introducing

$$
\begin{equation*}
\sigma^{2}=2 e c_{0}^{3} \tag{4.27}
\end{equation*}
$$

we get

$$
\begin{equation*}
R_{3}=\frac{1}{\sigma \sqrt{2 \pi n}}=\exp \left(-\frac{\left(r-N c_{0}\right)^{2}}{2 N \sigma^{2}}\right)+O\left(\frac{1}{N c_{0}}\right) . \tag{4.28}
\end{equation*}
$$

Taking into account the relations (4.27), (4.24), (4.22), (4.21), (4.20), (4.19), (4.7), (4.2), we get

$$
\begin{equation*}
V_{r}(N)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(r-N c_{0}\right)^{2}}{2 N \sigma^{2}}\right)+O\left(\frac{1}{N c_{0}}\right) \tag{4.29}
\end{equation*}
$$

for every $r \in\left[\frac{c_{0}}{2} N, 2 c_{0} N\right]=S$. (4.29) is valid for the integers r out of S, moreover the
sum $\sum_{r \notin S} V_{r}(n)$, extended for all of these r 's is less than $O\left(1 / N c_{0}\right)$. To prove this, it is enough to use Čebishev-inequality,

$$
P\left(\left|\zeta_{N}-M \zeta_{N}\right| \geqq \lambda D \zeta_{N}\right) \ll 1 / \lambda^{2},
$$

and take into account (3.1), (3.2), (3.3), (3.4). Hence we get that

$$
\sum_{r \notin s} V_{r}(n) \ll 1 / \lambda^{2},
$$

with $\lambda \gg \frac{c_{0} \sqrt{N}}{\sigma}$. Since $\sigma^{2} \asymp c_{0}$, we have $1 / \lambda^{2} \ll 1 / N c_{0}$.
We have proved the following
Theorem 1. Let us assume that $t \geqq 10,2^{t} \leqq \log N$. Then

$$
V_{r}(N)=\frac{1}{\sigma \sqrt{2 \pi N}} \exp \left(-\frac{\left(r-N c_{0}\right)^{2}}{2 N \sigma^{2}}\right)+O\left(\frac{2^{t}}{N}\right)
$$

uniformly in r, where

$$
\sigma^{2}=c_{0}^{2}+\left(\frac{1}{2}-c_{1}\right) c_{0}, \quad c_{0}=\frac{1}{2^{t}}, \quad c_{1}=-\sum_{h \in \mathscr{B}(\alpha)} 2^{-h}+t c_{0} .
$$

Remarks. 1. From (4.19), (4.12), (4.7) we get

$$
V_{r}(N)=I_{1}=O\left(\exp \left(-B_{4} \log ^{2} N\right)\right)
$$

for bounded t. Approximating $F(z)$ and z^{-N} by a function of the form \exp (polynomial of θ) in the interval $|\omega| \leqq M$ we would deduce for $V_{r}(N)$ an asymptotic expansion as well.
2. The order of the second maximal term in the asymptotic expansion of $V_{r}(N)$ is $1 / N$, which shows that the order of the remainder term in N is best possible.
3. We hope to generalize our theorem such that it implies the Moskvin-Postnikov result with the improved remainder term $O(1 / n)$. The main difficulty is to construct the generator function and to estimate it on the unit circle.

Acknowledgement. We are indebted to the referee for calling our attention to the paper [2] and some other previous results.

References

[1] Д. А. Москвин, А. Г. Посников, Локальная предельная теорема для распеделения дробных долей показательной функции, Теория вероятностей и ее применения, 23 (9878), 540-547.
[2] L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and nontransitive games, Journal of Combinatorical Theory, A 30 (1981), 183-208.
(Received May 23, 1984; revised October 5, 1984)

COMPUTER CENTRE OF THE EÖTVÖS L. UNIVERSITY
BUDAPEST, BOGDÁNFY U. 10/B
$\mathrm{H}-1117$

A NORMAL CONNECTED LEFT-SEPARATED SPACE

I. JUHÁSZ (Budapest) and N. YAKOVLEV (Sverdlovsk)

Answering the question of A. V. Arhangelskii, M. G. Tkačenko [1] constructed a regular, connected, left-separated space and posed the following problem: does there exist a normal, connected, left-separated space?

Using (CH), we construct here a regular, hereditarily Lindelöf (and hence normal), connected, left-separated space.

Recall that the space X is called left-separated, if there exists a well-ordering of $X=\left\{x_{a}: \alpha<\tau\right\}$ such that for any $\alpha<\tau$ the left ray $\left\{x_{\beta}: \beta<\alpha\right\}$ is closed in X. Every ordinal is considered as the set of all preceding ordinals and cardinals are identified with the corresponding initial ordinals. We shall denote by I the unit interval $[0,1]$ in the natural topology.

If α is an ordinal, then $I^{\alpha}=\times\left\{I_{\beta}: \beta<\alpha\right\}$, where $I_{\beta}=I$ for each $\beta<\alpha$. Let B be a fixed countable base of I, let $I \in[\alpha]^{<\omega}$, i.e. I is a finite subset of α, and let $\varepsilon: I \rightarrow B$ be a function. Then we set $[\varepsilon]=\left\{f \in I^{\alpha}: \forall \beta \in I(f(\beta) \in \varepsilon(\beta))\right\}$. Clearly, $[\varepsilon]$ is an elementary open set in I^{α}, and the set $G=\{[\varepsilon]\}$ of all $[\varepsilon]$ is a base of the product topology on I^{α}. The domain of a function ε will be denoted by $\Gamma(\varepsilon)$.

Definition. (a) Let $D=\bigcup\left\{\left[\varepsilon_{n}\right]: n \in \omega\right\}$, then D is called an E-set in I^{α};
(b) Let $D=\cup\left\{\left[\varepsilon_{n}\right]: n \in \omega\right\}$ and $\Gamma\left(\varepsilon_{i}\right) \cap \Gamma\left(\varepsilon_{j}\right)=\emptyset$ if $i \neq j$, then D is called a D set in I^{α}.

If D is an E-set (or D-set) then we put $\Gamma(D)=\bigcup\left\{\Gamma\left(\varepsilon_{n}\right): n \in \omega\right\}$ where $D=\bigcup\left\{\left[\varepsilon_{n}\right]: n \in \omega\right\}$.

The next proposition is obvious.
Proposition 1. Every D-set is open and dense in I^{α}.
Let $x_{\beta} \in I_{\beta}$ and $x=\left(x_{\beta}\right)_{\beta \in \alpha} \in I^{\alpha}$, then the subspace $\sigma_{x}=\left\{y \in I^{\alpha}:\left|\left\{\beta: y_{\beta} \neq x_{\beta}\right\}\right|<\right.$ $<\omega\}$ is called the σ-product of I^{α} defined by the point x.

The following is well-known.
Proposition 2. For each $x \in I^{\alpha}, \sigma_{x}$ is a dense and connected subspace of I^{α}.
Theorem 1. Let for every $i \in \omega \quad D_{i}$ be a D-set in I^{α} and $P=\cap\left\{D_{i}: i \in \omega\right\}$. Then there exists a point $x \in I^{\alpha}$ so that $P \supseteqq \sigma_{x}$.

Proof. We can restrict our attention to the coordinates in $\Gamma=\cup\left\{\Gamma\left(D_{i}\right): i \in \omega\right\}$ and since Γ is countable, it is sufficient to prove this theorem for $\alpha=\omega$.

First we shall prove the following lemma.
Lemma. For every $i \in \omega$ let γ_{i} be an infinite family of pairwise disjoint finite sub-
sets of ω. Then there exists an infinite and disjoint subfamily $\mu \subset \cup\left\{\gamma_{i}: i \in \omega\right\}$ such that $\mu \cap \gamma_{i}$ is infinite for all $i \in \omega$.

Proof of the Lemma. Let us enumerate $\left\{\gamma_{i}: i \in \omega\right\}$ in a sequence $\lambda_{0}, \lambda_{1}, \ldots$ such that every γ_{1} occurs in this sequence infinitely many times.

Let N_{0} be an arbitrary element of λ_{0}. Suppose, that for each $i<k$ we have already chosen N_{i} so that
() $N_{i} \in \lambda_{i}$
(b) if $i<k, j<k$ and $i \neq j$, then $N_{i} \cap N_{j}=\emptyset$.

Let N_{k} be an arbitrary element of λ_{k} such that $N_{k} \cap N_{i}=\emptyset$ for every $i<k$. Such an N_{k} exists in λ_{k}, since $\cup\left\{N_{i}: i<k\right\}$ is finite and the elements of λ_{k} are disjoint. Obviously, $\mu=\left\{N_{k}: k \in \omega\right\}$ is as required.

Now let D_{i} be a D-set, $D_{i}=\cup\left\{\left[\varepsilon_{n}^{i}\right]: n \in \omega\right\}$. Let $\Gamma_{n}^{i}=\Gamma\left(\varepsilon_{n}^{i}\right)$ and $\gamma_{i}=\left\{\Gamma_{n}^{i}: n \in \omega\right\}$. According to the lemma there is a disjoint and infinite subfamily $\mu \subset \bigcup\left\{\gamma_{i}: i \in \omega\right\}$ such that $\mu \cap \gamma_{i}$ is infinite for all $i \in \omega$. Then there is a point $x \in I^{\omega}$ such that $x(j) \in \varepsilon_{n}^{i}(j)$ holds whenever $\Gamma_{n}^{i} \in \mu$ and $j \in \Gamma_{n}^{i}$.

Since $x \in\left[\varepsilon_{n}^{i}\right]$ for each $\Gamma_{n}^{i} \in \mu, x \in D_{i}$ for every $i \in \omega$ and hence $x \in \cap\left\{D_{i}\right.$: $i \in \omega\}=P$.

Now, if $y \in \sigma_{x}$, then $y(j)$ is distinct from x only for finitely many coordinates j. Therefore, for every $i \in \omega$ there is $\Gamma_{n}^{i} \in \mu \cap \gamma_{i}$ such that $x / \Gamma_{n}^{i}=y / \Gamma_{n}^{i}$. Consequently, $x \in\left[\varepsilon_{n}^{i}\right]$ implies $y \in\left[\varepsilon_{n}^{i}\right] \subset D_{i}$. Thus $y \in \cap\left\{D_{i}: i \in \omega\right\}=P$, and we have proved that $P \supseteqq \sigma_{x}$.

The following is now obvious:
Corollary. The intersection of countably many D-sets is a dense and connected subspace of I^{α}.

Theorem 2 (CH). There exists a hereditarily Lindelöf left-separated and connected space T.

Proof. We shall construct this space as a subspace of (the Σ-product of) $I^{\omega_{1}}$.
Let us consider the space $I^{\omega_{1}}$. If \mathscr{D} is the family of all the D-sets in $I^{\omega_{1}}$, then it is easy to see that $|\mathscr{D}|=c$. Since we assume (CH), we may write $\mathscr{D}=\left\{D_{\alpha}: \omega \leqq \alpha<\omega_{1}\right\}$ and it can be assumed in a standard manner that $\Gamma\left(D_{\alpha}\right) \subseteq \alpha$ for every $\alpha<\omega_{1}$.

Let \mathscr{E} be the family of all nonempty E-sets in $I^{\omega_{1}}$. Then again $|\mathscr{E}|=\mathbf{c}$, and hence $\left|\mathscr{E}^{2}\right|=$ C. Assuming (CH) we can enumerate \mathscr{E}^{2} as $\mathscr{E}^{2}=\left\{\left(U_{\alpha}, V_{\alpha}\right): \omega \leqq \alpha<\omega_{1}\right\}$ in such a way that for every $\alpha<\omega_{1} \Gamma\left(U_{\alpha}\right) \cup \Gamma\left(V_{\alpha}\right) \subseteq \alpha$.

Let $\omega \leqq \beta<\omega_{1}$ and let $P_{\beta}=\cap\left\{D_{\alpha}: \alpha<\beta\right\}$. Since for every $\alpha<\beta \quad \Gamma\left(D_{\alpha}\right) \subseteq \alpha \subset \beta$, then $Q_{\beta}=p r_{\beta} P_{\beta}$ is a dense and connected subspace of I^{β}.

For every β with $\omega \leqq \beta<\omega_{1}$ we choose a point $f_{\beta} \in I^{\omega_{1}}$ such that

1. if $U_{\beta} \cap V_{\beta}=\emptyset$, then $f_{\beta} \in P_{\beta} \backslash\left(U_{\beta} \cup V_{\beta}\right)$, and if $U_{\beta} \cap V_{\beta} \neq \emptyset$, then $f_{\beta} \in P_{\beta} \cap$ $\cap U_{\beta} \cap V_{\beta} ;$
2. $f_{\beta}(\beta)=1$;
3. $f_{\beta}(\gamma)=0$ for every $\gamma>\beta$.

This can be done, because if $U_{\beta} \cap V_{\beta}=\emptyset$, then $\left(p r_{\beta} U_{\beta}\right) \cup\left(p r_{\beta} V_{\beta}\right)$ does not cover Q_{β} (otherwise Q_{β} would not be connected).

If, on the other hand, $U_{\beta} \cap V_{\beta} \neq \emptyset$, then $\operatorname{pr}_{\beta}\left(U_{\beta} \cap V_{\beta}\right)$ is a nonempty open set in I^{β}, and therefore $\operatorname{pr}_{\beta}\left(U_{\beta} \cap V_{\beta}\right) \cap Q_{\beta} \neq \emptyset$, because Q_{β} is dense in I^{β}.

Let $T=\left\{f_{\alpha}: \omega \leqq \alpha<\omega_{1}\right\}$.
I. The space T is left-separated. Indeed, if $0\left(f_{\alpha}\right)=\left(p_{\alpha}^{-1}(1 / 2,1]\right) \cap T$, then for every $\beta<\alpha \quad 0=f_{\beta}(\alpha) \notin(1 / 2,1]$, hence $f_{\beta} \notin 0\left(f_{\alpha}\right)$.
II. The space T is hereditarily Lindelöf. Suppose the contrary, then, as is wellknown (cf. [2]), there is a right separated sequence $\left\{y_{\beta}: \beta<\omega_{1}\right\} \subseteq T$ such that if $y_{\beta}=f_{\alpha(\beta)}$ then $\beta<\beta^{\prime}$ implies $\alpha(\beta)<\alpha\left(\beta^{\prime}\right)$.

Let $\left[\varepsilon_{\beta}\right]$ be an elementary neighbourhood of y_{β} from G such that $\left[\varepsilon_{\beta}\right] \cap\left\{y_{\beta}\right.$: $\left.\beta^{\prime}>\beta\right\}=\emptyset$.

Let $\Gamma_{\beta}=\Gamma\left(\varepsilon_{\beta}\right)$. Since $\left\{\Gamma_{\beta}: \beta<\omega_{1}\right\}$ is an uncountable family of finite subsets of ω_{1}, this family contains an uncountable Δ-system [2]. Without loss of generality we may assume $\left\{\Gamma_{\beta}: \beta<\omega_{1}\right]$ to be such a family. Then for every $\beta<\omega_{1} \Gamma_{\beta}=\Gamma \cup \widetilde{\Gamma}_{\beta}$ and $\tilde{\Gamma}_{\beta} \cap \tilde{\Gamma}_{\beta^{\prime}}=\emptyset$, if $\beta \neq \beta^{\prime}$. We may also assume that for every $\beta^{\prime}, \beta<\omega_{1} \varepsilon_{\beta} / \Gamma=$ $=\varepsilon_{\beta^{\prime}} / \Gamma$.

Let for every $i \in \omega \quad \tilde{\varepsilon}_{i}: \tilde{\Gamma}_{i} \rightarrow B$ be defined as $\tilde{\varepsilon}_{i}=\varepsilon_{i} / \Gamma_{i}$. Let $D=\cup\left\{\left[\tilde{\varepsilon}_{i}\right]: i \in \omega\right\}$. Then D is a D-set in $I^{\omega_{1}}$, hence there is an $\alpha_{0}<\omega_{1}$, so that $D=D_{\alpha_{0}}$. Let $\beta \geqq \omega$ be an ordinal such that $\alpha(\beta)>\alpha_{0}$. Then $y_{\beta} \notin\left[\tilde{\varepsilon}_{n}\right]$ for every $n \in \omega$, and therefore $y_{\beta} \ddagger D=D_{\alpha_{0}}$. But according to $1, f_{\alpha(\beta)} \in P_{\alpha(\beta)}=\bigcap\left\{D_{\alpha}: \alpha<\alpha(\beta)\right\} \subseteq D_{\alpha_{0}}$, since $\alpha_{0}<\alpha(\beta)$, a contradiction. Thus T is hereditarily Lindelöf.
III. T is connected. Suppose it is not. Then, there exist open sets U and V so that $U \cap T \neq \emptyset, \quad V \cap T \neq \emptyset, \quad U \cup V \supseteqq T$ and $U \cap V \cap T=\emptyset$.

Since T is hereditarily Lindelöf and G is a base in $I^{\omega_{1}}$, we can assume that both U and V are E-sets and hence there is an $\alpha_{0}<\omega_{1}$, so that $(U, V)=\left(U_{\alpha_{0}}, V_{\alpha_{0}}\right)$.

Let us consider the point $f_{\alpha_{0}} \in T$. If $U_{\alpha_{0}} \cap V_{\alpha_{0}}=\emptyset$, then $f_{\alpha_{0}} \in P_{\alpha_{0}} \backslash\left(U_{\alpha_{0}} \cup V_{\alpha_{0}}\right) \subseteq$ $\subseteq P_{\alpha_{0}} \backslash T$ and this is impossible, hence $U_{\alpha_{0}} \cap V_{\alpha_{0}} \neq \emptyset$. But then $f_{\alpha_{0}} \in P_{\alpha_{0}} \cap U_{\alpha_{0}} \cap \overline{V_{\alpha_{0}}}$ and thus $f_{\alpha_{0}} \in U \cap V \cap T=\emptyset$, again a contradiction. Consequently, T is connected.

We conclude this note by drawing attention to the fact that the space T is hereditarily Lindelöf actually because it has a property which is a straightforward generalization of the so-called HFC property, defined for subspaces of $2^{\omega_{1}}$ in [3].

References

[1] M. G. Tkačenko, Examples of connected left-separated spaces and topological groups, Acta Math. Acad. Sci. Hungar., 38 (1981), 257-261.
[2] I. Juhász, Cardinal functions in topology, Math. Centre Tract. N34 (Amsterdam, 1971).
[3] A. Hajnal, I. Juhász, On hereditarily α-Lindelöf and α-separable spaces II, Fundamenta Math., 81 (1974), 148-158.
(Received June 14, 1984)

[^12]

NECESSARY CONDITIONS FOR CERTAIN SOBOL'EV SPACES

F. SZIGETI (Budapest)
Dedicated to K. Tandori on his $60^{\text {th }}$ birthday

Introduction

Let $] a, b[\subset \mathbf{R}$ be an open (not necessarily bounded) interval, $p \in] 1$, $\infty[$ be a real number. The following well-known result was proved by F. Riesz:

An absolutely continuous function $f:] a, b[\rightarrow \mathbf{R}$ (or \mathbf{C}) has its derivative $f^{\prime} \in L_{p}(a, b)$ if and only if, there exists a real number $K \geqq 0$ such that for any system $\left] a_{i}, b_{i}[\subset] a, b[: i=1,2, \ldots\}\right.$ of nonoverlapping bounded subintervals the inequality

$$
\sum_{i} \frac{\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|^{p}}{\left|b_{i}-a_{i}\right|^{p-1}} \leqq K
$$

holds. That is, the functions belonging to the space $W_{p}^{1}[a, b]$ can be characterized by this property.

Our main objective is to generalize this result for the multidimensional case. Our main results are the following theorem and its corollary (Theorem 2).

Theorem 1. Let $n \in \mathbf{N}, p, s \in \mathbf{R}$. Suppose that $p \in] 1, \infty\left[\right.$ and $s>1+\frac{n-1}{p}$. Let $] a_{i}, b_{i}[\subset \mathbf{R}(i=1,2, \ldots, n)$ be open (not necessarily bounded) intervals,

$$
\left.\Omega:={\underset{j=1}{n}}_{\times}\right] a_{j}, b_{j}\left[, \quad \Omega_{i}=\underset{\substack{j=1 \\ j \neq i}}{n}\right] a_{j}, b_{j}[.
$$

If $f \in W_{p}^{s}(\Omega)$, then there exist real numbers $K_{i} \geqq 0(i=1,2, \ldots, n)$, such that for any systems

$$
\left] a_{i j}, b_{i j}[\subset] a_{i}, b_{i}\left[: j=1,2, \ldots, I_{i}\right\} \quad\left(i=1,2, \ldots, n, I_{i} \in \mathbf{N}\right)\right.
$$

of nonoverlapping bounded subintervals the inequalities
hold.

$$
\sum_{j=1}^{I_{i}} \frac{\left\|f_{i, b_{i j}}-f_{i, a_{i j}}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p}}{\left|b_{i j}-a_{i j}\right|^{p-1}} \leqq K_{i} \quad(i=1,2, \ldots, n)
$$

For any $i=1,2, \ldots, n, a \in] a_{i}, b_{i}\left[, f_{i, a}: \Omega_{i} \rightarrow \mathbf{R}\right.$ (or \mathbf{C}) denotes the function $\xi_{\mapsto} \rightarrow f\left(\xi_{1}, \ldots, \xi_{i-1}, a, \xi_{i}, \ldots, \xi_{n-1}\right)$.

The following theorem will be mentioned as the most important consequence of Theorem 1.

Theorem 2. Let $n \in \mathbf{N}, p, s \in \mathbf{R}$. Suppose that $p \in] 1, \infty\left[\right.$ and $s>1+\frac{n-1}{p}$.

Let $] a_{i}, b_{i}[\subset \mathbf{R}(i=1,2, \ldots, n)$ be open (not necessarily bounded) intervals, $\Omega:=$ $\left.:={\underset{X}{j=1}}_{n}^{X}\right] a_{j}, b_{j}\left[, \quad \Omega_{i}:=\underset{\substack{j=1 \\ j \neq i}}{n}\right] a_{j}, b_{j}\left[\right.$. If $f \in W_{p}^{s}(\Omega)$, then there exist real numbers $L_{i} \geqq 0 \quad(i=1,2, \ldots, n)$ such that for any systems

$$
\left] a_{i j}, b_{i j}[\subset] a_{i}, b_{i}\left[: j=1,2, \ldots, I_{i}\right\} \quad\left(i=1,2, \ldots, n, I_{i} \in \mathbf{N}\right)\right.
$$

of nonoverlapping bounded subintervals and sets $\left\{\xi_{i j} \in \Omega_{i}, j=1,2, \ldots, I_{i}\right\}$ the inequalities

$$
\sum_{j=1}^{I_{i}} \frac{\left|f_{i, b_{i j}}\left(\xi_{i j}\right)-f_{i, a_{i j}}\left(\xi_{i j}\right)\right|^{p}}{\left|b_{i j}-a_{i j}\right|^{p-1}} \leqq L_{i} \quad(i=1,2, \ldots, n)
$$

hold.

1. In this section we survey some facts on Sobol'ev spaces.

Let $k, n \in \mathbf{N}, p \in] 1, \infty\left[, \Omega \subset \mathbf{R}^{n}\right.$ be an open subset. The Sobol'ev space $W_{p}^{k}(\Omega)$ consists of the functions $f: \Omega \rightarrow \mathbf{R}$ (or \mathbf{C}) satisfying the condition

$$
\|f\|_{W_{p}^{k}(\Omega)}:=\left(\sum_{|\alpha| \leqq k}\left\|D^{\alpha} f\right\|_{\mathcal{L}_{p}(\Omega)}\right)^{1 / p}<\infty .
$$

Let $W_{p}^{0}(\Omega):=L_{p}(\Omega)$.
Let the integer part of a real number s be denoted by $[s]$. If $s \in \mathbf{R}_{+}$, then the Sobol'ev space $W_{p}^{s}(\Omega)$ consists of the functions $f: \Omega \rightarrow \mathbf{R}$ (or \mathbf{C}) satisfying the condition

$$
\|f\|_{W_{p}^{s}(\Omega)}:=\left(\|f\|_{W_{p}^{[s]}(\Omega)}^{p}+\sum_{|\alpha|=[s]} \int_{\Omega \times \Omega} \frac{\left|D^{\alpha} f(x)-D^{\alpha} f(y)\right|^{p}}{|x-y|_{(s-[s]) p}^{n+(s)[s]}} d x d y\right)^{1 / p}<\infty .
$$

a) The Sobol'ev embedding theorem (see [1], [2]) is well-known: if $s>\frac{n}{p}$, then $W_{p}^{s}(\Omega) \subset C(\Omega)$, and the inclusion operator is continuous and linear.
b) We need a one dimensional version of the trace theorem: let $n \in \mathbf{N}, p, s \in \mathbf{R}$, $\Omega \subset \mathbf{R}^{n}$ be an open subset. Suppose that $\left.p \in\right] 1, \infty\left[, s>\frac{n-1}{p}\right.$. If $f \in W_{p}^{s}(\Omega)$, then for each $\xi \in \mathbf{R}^{n-1}, i=1,2, \ldots, n$, the function $f^{i, \xi}: \Omega^{i, \xi} \rightarrow \mathbf{R}$ (or \mathbf{C}), where

$$
\Omega^{i, \xi}=\left\{t \in \mathbf{R}:\left(\xi_{1}, \ldots, \xi_{i-1}, t, \xi_{i}, \ldots, \xi_{n-1}\right) \in \Omega\right\}
$$

and $f^{i, \xi}(t):=f\left(\xi_{1}, \ldots, \xi_{i-1}, t, \xi_{i}, \ldots, \xi_{n-1}\right)$, belongs to the space $W_{p}^{\sigma}\left(\Omega^{j, \xi}\right)$ for each $0 \leqq \sigma<s-\frac{n-1}{p} \quad$ (see [2]).
2. In this section the main results (Theorems 1 and 2) will be proved.

Proof of Theorem 1. Consider an arbitrary element $\xi \in \Omega_{i} \subset \mathbf{R}^{n-1}$. By the trace theorem b) the functions $f^{i, \xi}$ belong to the space $W_{p}^{1}\left(a_{i}, b_{i}\right)$ for each $i=1,2, \ldots$ $\ldots, n, \xi \in \Omega_{i}$, because $s-\frac{n-1}{p}>1$. Thus the functions $f^{i, \xi}$ are absolulety continuous, and

$$
f^{i, \xi}(b)-f^{i, \xi}(a)=\int_{a}^{b} \partial_{i} f^{i, \xi}
$$

Estimate the norm $\left\|f_{i, b}-f_{i, a}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}$:

$$
\begin{gathered}
\left\|f_{i, b}-f_{i, a}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p}=\left\|f^{i, \cdot}(b)-f^{i, \cdot}(a)\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p}= \\
=\left\|\int_{a}^{b} \partial_{i} f^{i, \cdot}(t) d t\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} \leqq\left(\int_{a}^{b}\left\|\partial_{i} f^{i, \cdot}(t)\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)} d t\right)^{p} \leqq \\
\leqq \int_{a}^{b}\left\|\partial_{i} f^{i, \cdot}(t)\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} d t(b-a)^{p-1} .
\end{gathered}
$$

Let $\left] a_{i j}, b_{i, j}[\subset] a_{i}, b_{i}\left[: j=1,2, \ldots, I_{i}\right\}\right.$ be a system of nonoverlapping bounded subintervals. Applying the inequality

$$
\left\|f_{i, b}-f_{i, a}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} \leqq(b-a)^{p-1} \int_{a}^{b} \| \partial_{i} f^{\left.i \cdot \cdot(t) \|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} d t, t\right)}
$$

we get

$$
\begin{aligned}
& \sum_{j=1}^{I_{i}} \frac{\left\|f_{i, b_{i j}}-f_{i, a_{i j}}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p}}{\left|b_{i j}-a_{i j}\right|^{p-1}} \leqq \sum_{j=1}^{I_{i}} \int_{a_{i j}}^{b_{i j}}\left\|\partial_{i} f^{i, \cdot}(t)\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} d t \leqq \\
& \leqq \int_{a_{i}}^{b_{i}}\left\|\partial_{i} f^{i, \cdot}(t)\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} \leqq\left\|\partial_{i} f\right\|_{W_{p}^{s-1}(\Omega)}^{p} .
\end{aligned}
$$

If $K_{i} \geqq\left\|\partial_{i} f\right\|_{W_{p}^{s-1}(\Omega)}^{p}$, then the statement of Theorem 1 is true for K_{i}.
Corollary. If $\left] a_{i j}, b_{i j}[\subset] a_{i}, b_{i}\left[j=1,2, \ldots, I_{i}\right\}(i=1,2, \ldots, n)\right.$ are systems of nonoverlapping bounded intervals, then the inequality

$$
\sum_{i=1}^{n} \sum_{j=1}^{I_{i}} \frac{\left\|f_{i, b_{i j}}-f_{i, a_{i j}}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{p} \leqq n\|f\|_{W_{p}^{s}(\Omega)}^{p} \text {. }\left.b_{i j}\right|^{p-1}}{\mid b_{i j}} \leqq n={ }^{p}
$$

holds for every $f \in W_{p}^{s}(\Omega)$.
Proof of Theorem 2. Now we combine the result of Theorem 1 with the Sobol'ev embedding theorem. Consider the spaces $W_{p}^{s-1}\left(\Omega_{i}\right)(i=1,2, \ldots, n)$. The dimension of Ω_{i} is $n-1$, thus the inequality $s-1>\frac{n-1}{p}$ shows that the condition of the Sobol'ev embedding theorem is satisfied, that is there exist real numbers $M_{i} \geqq 0(i=1,2, \ldots, n)$ such that for each $g_{i} \in W_{p}^{s-1}\left(\Omega_{i}\right)$ the inequalities

$$
\left\|g_{i}\right\|_{C\left(\Omega_{i}\right)} \leqq M_{i}\left\|g_{i}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)} \quad(i=1,2, \ldots, n)
$$

hold, thus for each $\xi_{i} \in \Omega_{i}$

$$
\left|g_{i}\left(\xi_{i}\right)\right| \leqq M_{i}\left\|g_{i}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)} \quad(i=1,2, \ldots, n)
$$

Let $\left] a_{i j}, b_{i j}[\subset] a_{i}, b_{i}\left[: j=1,2, \ldots, I_{i}\right\}\right.$ be a system of nonoverlapping bounded subintervals and $\left\{\xi_{i j} \in \Omega_{i}: j=1,2, \ldots, I_{i}\right\}$ be a set. Now

$$
\begin{gathered}
\sum_{j=1}^{I_{i}} \frac{\left|f_{i, b_{i j}}\left(\xi_{i j}\right)-f_{i, a_{i j}}\left(\xi_{i j}\right)\right|^{p}}{\left|b_{i j}-a_{i j}\right|^{p-1}} \leqq \\
\leqq M_{i}^{p} \sum_{j=1}^{I_{i}} \frac{\left\|f_{i, b_{i j}}-f_{i, a_{i j}}\right\|_{W_{p}^{s-1}\left(\Omega_{i}\right)}^{\left|b_{i j}-a_{i j}\right|^{p-1}} \leqq M_{i}^{p}\left\|\partial_{i} f\right\|_{W_{p}^{s-1}(\Omega)}^{p} .}{} .
\end{gathered}
$$

If $L_{i} \geqq M_{i}^{p}\left\|\partial_{i} f\right\|_{W_{p}^{s-1}(\Omega)}^{p}$, then the statement of Theorem 2 is true for L_{i}.
Remark. Theorems 1 and 2 give a necessary condition for a function to belong to the Sobol'ev space $W_{p}^{s}(\Omega)\left(s>1+\frac{n-1}{p}\right)$. It is very probable that Theorem 1 is also a sufficient condition.

References

[1] R. A. Adams, Sobol'ev Spaces, Academic Press (New York-San Francisco-London, 1975).
[2] O. V. Besov-V. P. Il'in and S. M. Nikol'skij, Integral representations of functions and embedding theorems, Nauka (Moscow, 1975) (in Russian).

Received June 22, 1984)

EÖTVÖS LORÁND UNIVERSITY
MATHEMATICAL INSTITUTE
BUDAPEST, MUZZEUM KRT. 6-8.
H-1088

A MOMENT THEOREM FOR CONTRACTIONS ON HILBERT SPACES

Z. SEBESTYÉN (Budapest)

Given a subset X of a Hilbert space H which spans the space H, and a function $f: \mathbf{Z} \times X \rightarrow H$, where \mathbf{Z}, as usual, stands for the set of integers, one can ask whether there exists a contraction T on the Hilbert space H such that

$$
\begin{equation*}
T_{n} x=f(n, x) \quad(n \in \mathbf{Z}, x \in X) \tag{1}
\end{equation*}
$$

holds, where T_{n} is defined for $n \in \mathbf{Z}$ as follows:

$$
T_{n}= \begin{cases}T^{n} & \text { if } \quad n \geqq 0 \\ T^{*|n|} & \text { if } \quad n<0\end{cases}
$$

For a continuous semigroup $\left\{T_{t}\right\}_{t \geq 0}$ of contractions on the Hilbert space H, with an extension $T_{-t}=T_{t}^{*}(t \geqq 0)$ to \mathbf{R}, the corresponding problem is that given a function $f: \mathbf{R} \times X \rightarrow H$, under what condition does there exist a continuous semigroup $\left\{T_{t}\right\}$ of contractions such that

$$
\begin{equation*}
T_{t} x=f(t, x) \quad(t \in \mathbf{R}, x \in X) \tag{2}
\end{equation*}
$$

The present note gives an answer to these problems. It is in connection with the preceding papers [1], [2] on this subject. [1] deals with equation (1) required for $X=\left\{x_{0}\right\}$ and $n \geqq 0$ only, i.e., the equation $T^{n} x_{0}=x_{n} \quad(n=1,2, \ldots)$, with given $\left\{x_{n}\right\}_{0}^{\infty} \subset H$; and analogously for the continuous one parameter case $T_{t}(t \geqq 0)$. On the other hand, [2] considers the case when the operators T_{n} we are seeking for are not derived from some contraction T as in (1') but rather from some unitary operator U on a Hilbert space H^{\prime} and from an operator $V: H^{\prime} \rightarrow H$ of the form $T_{n}=V U^{n} V^{*}(n \in \mathbb{Z})$; and analogously, $T_{t}=V U_{t} V^{*}(t \in \mathbf{R})$ where U_{t} is a continuous one parameter group of unitaries. (In fact, [2] treats even more general groups and $*$-semigroups.)

For unitary dilation theory we refer to Sz.-Nagy [3].
Theorem 1. There exists a contraction T satisfying (1) if and only if the function f satisfies

$$
\begin{equation*}
f(0, x)=x \quad(x \in X) \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
(f(n, x), f(m, y))=(f(n-m, x), y) \quad(m, n \in \mathbf{Z}: m n \leqq 0 ; x, y \in X) \tag{4}\\
\left\|\sum_{n, x} c_{n, x} f(n, x)\right\|^{2} \leqq \sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}(f(n-m, x), y) \tag{5}
\end{gather*}
$$

where $\left\{c_{n, x}\right\}(n \in \mathbf{Z}, x \in X)$ is an arbitrary finite double sequence of complex numbers.

Theorem 2. There exists a continuous family $\left\{T_{t}\right\}$ of contractions satisfying (2) if and only iff is continuous in its first variable and satisfies the identities (3), (4), (5) with m, n taking their values in \mathbf{R}.

Proof of Necessity. 1. Let T be a contraction on the Hilbert space H and let U be a unitary dilation on a Hilbert space K containing H as a subspace. Then for the orthogonal projection P of K onto H we have

$$
\begin{equation*}
T_{n} x=P U^{n} x \quad(n \in \mathbf{Z}, x \in H) \tag{6}
\end{equation*}
$$

where T_{n} is defined by $\left(1^{\prime}\right)$. Let further $\left\{C_{n, x}\right\}$ be a finite double sequence of complex numbers indexed by elements of the set $\mathbf{Z} \times X$. Then we have by (1) and (6), for any x, y in X,

$$
\begin{gathered}
f(0, x)=T_{0} x=x \\
(f(n, x), f(m, y))=\left(T^{n} x, T^{*|m|} y\right)=\left(T^{n+|m|} x, y\right)=\left(T^{n-m} x, y\right)= \\
=(f(n-m, x), y) \text { if } m<0, n \geqq 0, \\
(f(n, x), f(m, y))=\left(T^{*|n|} x, T^{m} y\right)=\left(T^{*(|n|+m)} x, y\right)= \\
=\left(T^{*|n-m|} x, y\right)=(f(n-m, x), y) \text { if } m \geqq 0, n<0 ;
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|\sum_{n, x} c_{n, x} f(n, x)\right\|^{2}=\left\|\sum_{n, x} c_{n, x} T_{n} x\right\|^{2}=\left\|P \sum_{n, x} c_{n, x} U^{n} x\right\|^{2} \leqq\left\|\sum_{n, x} c_{n, x} U^{n} x\right\|^{2}= \\
=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}\left(U^{n} x, U^{m} y\right)=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}\left(U^{n-m} x, y\right)= \\
=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}\left(U^{n-m} x, P y\right)=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}\left(P U^{n-m} x, y\right)= \\
=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}\left(T_{n-m} x, y\right)=\sum_{m, y} \sum_{n, x} \bar{c}_{m, y} c_{n, x}(f(n-m, x), y)
\end{gathered}
$$

2. The case of a continuous semigroup $\left\{T_{t}\right\}$ of contractions can be dealt with in a similar way by using the corresponding minimal dilation $\left\{U_{t}\right\}$.

Proof of Sufficiency. 1. Let F_{0} be the (complex) linear space of all finite double sequences $\left\{c_{n, x}\right\}(n \in \mathbf{Z}, x \in X)$ of complex numbers with the shift operation

$$
U_{0}\left\{c_{n, x}\right\}:=\left\{c_{n, x}^{\prime}\right\}, \quad \text { where } \quad c_{n, x}^{\prime}=c_{n-1, x} \quad(n \in \mathbf{Z}, x \in X)
$$

Introduce a semi-inner product $\langle.,$.$\rangle in F_{0}$ by

$$
\begin{equation*}
\left\langle\left\{c_{n, x}\right\},\left\{d_{m, y}\right\}\right\rangle:=\sum_{m, y} \sum_{n, x} \bar{d}_{m, y} c_{n, x}(f(n-m, x), y) . \tag{7}
\end{equation*}
$$

Positive semi-definiteness follows from (5). It also follows from (5) that the linear map V_{0} defined by

$$
V_{0}\left\{c_{n, x}\right\}:=\sum_{n, x} c_{n, x} f(n, x) \quad\left(\left\{c_{n, x}\right\} \in F_{0}\right)
$$

is a contraction from F_{0} into the Hilbert space H.
Denote F the Hilbert space resulting from F_{0} by factoring with respect to the null space of $\langle.,$.$\rangle and then by completing with respect to the norm inherited. At the$ same time U_{0} induces a unitary operator U on the Hilbert space F and V_{0} induces a
contraction V from F into H. In what follows the equivalence class represented by $\left\{\varepsilon_{n, x}\right\}$ is also denoted by $\left\{f_{n, x}\right\}$.

We first show that for any $x \in X$

$$
V^{*} x=\left\{d_{n, x}\right\}, \text { where } \quad d_{n, x}= \begin{cases}1 & \text { if } n=0 \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

For this let $\left\{s_{m, y}\right\} \in F$ so that (7) gives, in view of (3) and (4),

$$
\begin{aligned}
& \left\langle\left\{c_{m, y}\right\}, V^{*} x\right\rangle=\left(V\left\{c_{m, y}\right\}, x\right)=\sum_{m, y} c_{m, y}(f(m, y), x)= \\
& =\sum_{m, y} \sum_{n, x} c_{m, y} Z_{n, x}(f(m-n, y), x)=\left\langle\left\{c_{m, y}\right\},\left\{d_{n, x}\right\}\right\rangle
\end{aligned}
$$

as desired. Now we get by (8) for any x in X,

$$
\begin{gathered}
U V^{*} x=\left\{h_{n, x}\right\}, \text { where } h_{n, x}= \begin{cases}1, & \text { if } n=1, \\
0, & \text { otherwise },\end{cases} \\
U^{-1} V^{*} x=\left\{k_{n, x}\right\}, \text { where } k_{n, x}= \begin{cases}1, & \text { if } n=-1, \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

Defining $T=V U V^{*}$ we have a contraction on H satisfying (1). Indeed,

$$
\begin{gathered}
T x=V U V^{*} x=V\left\{h_{n, x}\right\}=\sum_{n, x} h_{n, x} f(n, x)=f(1, x), \\
T^{*} x=V U^{-1} V^{*} x=V\left\{k_{n, x}\right\}=\sum_{n, x} k_{n, x} f(n, x)=f(-1, x)
\end{gathered}
$$

by the definition of $\left\{h_{n, x}\right\}$ and $\left\{k_{n, x}\right\}$. We use induction on n (first for natural numbers): assuming (1) for an $n>0$ we observe that for any $y \in X$

$$
\begin{aligned}
\left(y, T^{n+1} x\right)=\left(T^{*} y, T^{n} x\right)=\left(T^{*} y, f(n, x)\right)= \\
=\left(V U^{-1} V^{*} y, f(n, x)\right)=\left(V U^{-1}\left\{d_{n, y}\right\}, f(n, x)\right)=(f(-1, y), f(n, x)) \\
\quad \quad(\text { by }(4))=(y, f(n+1, x))
\end{aligned}
$$

because this shows that (1) also holds for $n+1$.
For a negative integer n the same method applies and the proof of Theorem 1 is complete.
2. The proof of Theorem 2 is similar. We have only to add the observation that continuity in the parameter is immediate from the construction.

References

[1] Z. Sebestyén, Moment theorems for operators on Hilbert space, Acta Sci. Math. (Szeged), 44 (1982), 165-171.
[2] Z. Sebestyén, Moment problem for dilatable semigroups of operators, Acta Sci. Math. (Szeged), 45 (1983), 365-376.
[3] B. Sz.-Nagy, Extension of linear transformations in Hilbert space which extend beyond this space. Appendix to F. Riesz, B. Sz.-Nagy, Functional Analysis, Ungar (New York, 1960).
(Received June 25, 1984; revised January 28, 1985)
DEPARTMENT OF ANALYSIS
EƠTVƠS LORÁND UNIVERSITY
BUDAPEST, MÚZEUM KÖRÚT 6-8.
H-1088

HÖLDER-TYPE INEQUALITIES FOR QUASIARITHMETIC MEANS

ZS. PÁLES (Debrecen)

1. Introduction

Let $\varphi: \mathbf{R}_{+} \rightarrow \mathbf{R}$ be a continuous strictly monotonic function. Define the quasiarithmetic mean M_{φ} by the help of φ as follows:

$$
M_{\varphi}\left(x_{1}, \ldots, x_{n}\right)=\varphi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right) .
$$

In [2], L. Losonczi considered the Hölder-type inequality

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \leqq M_{\varphi}\left(x_{1}, \ldots, x_{n}\right) M_{\psi}\left(y_{1}, \ldots, y_{n}\right) . \tag{1}
\end{equation*}
$$

Assuming $\varphi, \psi: \mathbf{R}_{+} \rightarrow \mathbf{R}$ to be twice differentiable with nonvanishing first derivative, he proved that (1) is satisfied for any $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbf{R}_{+}$if and only if there exist $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ so that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \leqq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q} \leqq M_{\varphi}\left(x_{1}, \ldots, x_{n}\right) M_{\psi}\left(y_{1}, \ldots, y_{n}\right) \tag{2}
\end{equation*}
$$

holds for all values $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbf{R}_{+}$.
The aim of the present note is to prove this theorem without any differentiability assumption on φ and ψ. Our method will be completely different from Losonczi's one. An important cornerstone of the discussion is the Lemma (see below) which gives some information about nonconcave functions. I am very grateful to Prof. Gy. Szabó, since he gave me the simple but nice idea of the proof of this Lemma.

2. Results

Lemma. Let $T \subseteq \mathbf{R}$ be an interval and let $f: I \rightarrow \mathbf{R}_{+}$be a continuous strictly monotonic nonconcave function. Define the set H_{f} by

$$
H_{f}:=\left\{\left.\frac{f(x)}{f(y)} \right\rvert\, x, y \in I, \frac{f(x)+f(y)}{2}>f\left(\frac{x+y}{2}\right)\right\}
$$

Then there exists $1<\mu$ such that the interval $] 1, \mu\left[\right.$ is contained in H_{f}.

Proof. Since f is nonconcave and continuous, hence there exist $x, y \in I$ such that

$$
\begin{equation*}
\frac{f(x)+f(y)}{2}>f\left(\frac{x+y}{2}\right) . \tag{3}
\end{equation*}
$$

We may assume that $x<y$. Now consider the function

$$
g(t):=f(t)-\frac{(t-x) f(y)+(y-t) f(x)}{y-x}, \quad x \leqq t \leqq y .
$$

It is obvious that $g(x)=g(y)=0$. Further, because of (3), we have $g\left(\frac{x+y}{2}\right)<0$. Hence there exists a uniquely determined value $\left.t_{0} \in\right] x, y[$ such that

$$
\begin{array}{ll}
g\left(t_{0}\right) \leqq g(u), & \text { if } \quad x<u<t_{0}, \\
g\left(t_{0}\right)<g(v), & \text { if } \quad t_{0}<v<y . \tag{5}
\end{array}
$$

Choose $\varepsilon_{0}>0$ so that $\left[t_{0}-\varepsilon_{0}, t_{0}+\varepsilon_{0}\right] \subset[x, y]$. Then, applying (4) and (5), we get

$$
g\left(t_{0}\right)<\frac{g\left(t_{0}-\varepsilon\right)+g\left(t_{0}+\varepsilon\right)}{2}
$$

that is

$$
\begin{equation*}
f\left(t_{0}\right)<\frac{f\left(t_{0}-\varepsilon\right)+f\left(t_{0}+\varepsilon\right)}{2} \tag{6}
\end{equation*}
$$

for $0<\varepsilon<\varepsilon_{0}$, Now, (6) and the definition of H_{f} imply

$$
\begin{equation*}
\frac{f\left(t_{0}-\varepsilon\right)}{f\left(t_{0}+\varepsilon\right)} \in H_{f} \quad \text { and } \quad \frac{f\left(t_{0}+\varepsilon\right)}{f\left(t_{0}-\varepsilon\right)} \in H_{f} \tag{7}
\end{equation*}
$$

for $0<\varepsilon<\varepsilon_{0}$. Let

$$
\mu:= \begin{cases}\frac{f\left(t_{0}+\varepsilon_{0}\right)}{f\left(t_{0}-\varepsilon_{0}\right)}, & \text { if } f \text { is increasing } \\ \frac{f\left(t_{0}-\varepsilon_{0}\right)}{f\left(t_{0}+\varepsilon_{0}\right)}, & \text { if } f \text { is decreasing }\end{cases}
$$

Since f is strictly monotonic, hence $\mu>1$. Further, the continuity of f and (7) yield] $1, \mu\left[\subset H_{f}\right.$.

Theorem. Let $\varphi, \psi: \mathbf{R}_{+} \rightarrow \mathbf{R}$ be continuous strictly monotonic functions. Inequality (1) is satisfied for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbf{R}_{+}, n \in \mathbf{N}$ if and only if there exist $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ such that

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \leqq M_{\varphi}\left(x_{1}, \ldots, x_{n}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q} \leqq M_{\psi}\left(y_{1}, \ldots, y_{n}\right) \tag{9}
\end{equation*}
$$

for any x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} in \mathbf{R}_{+}.
Proof. Let P be the set of all values $p>0$ for which (8) is satisfied for any $x_{1}, \ldots, x_{n} \in \mathbf{R}_{+}, n \in \mathbf{N}$. Substituting $y_{1}=\ldots=y_{n}=1$ into (1) we easily obtain that $1 \in P$. Since, for $0<p^{\prime}<p, x_{1}, \ldots, x_{n} \in \mathbf{R}_{+}, n \in \mathbf{N}$ we have

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p^{\prime}}\right)^{1 / p^{\prime}} \leqq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}
$$

(see [1, Theorem 5, p. 15]), hence $p \in P, 0<p^{\prime}<p$ implies $p^{\prime} \in P$. Therefore P is an interval. If P were unbounded then (8) would hold for all positive p. Then, taking the limit $p \rightarrow \infty$ we would obtain

$$
\max _{1 \leqq i \leqq n} x_{i} \leqq M_{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

(see [1, Theorem 4, p. 15]). This contradiction proves that that P is bounded. Denote by p_{0} the least upper bound of P. Then, since the right hand side of (8) is a continuous function of p, we have $p_{0} \in P$. In other words, we have proved that $\left.\left.P=\right] 0, p_{0}\right]$ for some $1 \leqq p_{0}<\infty$.

Similarly, denote by Q the set of all positive values q for which (9) is satisfied. Then we obtain that $\left.Q=] 0, q_{0}\right]$ for some $1 \leqq q_{0}<\infty$.

Now we shall show that

$$
\begin{equation*}
\frac{1}{p_{0}}+\frac{1}{q_{0}} \leqq 1 \tag{10}
\end{equation*}
$$

To get a contradiction, assume that (10) is not valid. Then there exist $p_{0}<p_{1}, q_{0}<q_{1}$ such that

$$
\frac{1}{p_{1}}+\frac{1}{q_{1}}=1
$$

But then $p_{1} \notin P$ and $q_{1} \notin Q$. That is, there exist $x_{1}, \ldots, x_{n} \in \mathbf{R}_{+}$such that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p_{1}}\right)^{1 / p_{1}}>\varphi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)
$$

Let $s_{i}:=\varphi\left(x_{i}\right)$ for $i=1, \ldots, n$. Then we have

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\varphi^{-1}\left(s_{i}\right)\right]^{p_{1}}>\left[\varphi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} s_{i}\right)\right]^{p_{1}}
$$

i.e. the function $f:=\left(\varphi^{-1}\right)^{p_{1}}$ is nonconcave. Similarly, it follows from $q_{1} \notin Q$ that the function $g:=\left(\psi^{-1}\right)^{q_{1}}$ is also nonconcave.

Now, applying the Lemma, we obtain that there exist $1<\mu, v$ such that $] 1, \mu\left[\subset H_{f}\right.$ and $] 1, v\left[\subset H_{g}\right.$ is satisfied.

But then $H_{f} \cap H_{g}$ is nonvoid. Hence there exist $s_{1}, s_{2} \in \varphi\left(\mathbf{R}_{+}\right)$and $t_{1}, t_{2} \in \psi\left(\mathbf{R}_{+}\right)$ such that

$$
\begin{equation*}
\frac{f\left(s_{1}\right)}{f\left(s_{2}\right)}=\frac{g\left(t_{1}\right)}{g\left(t_{2}\right)} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f\left(s_{1}\right)+f\left(s_{2}\right)}{2}>f\left(\frac{s_{1}+s_{2}}{2}\right), \quad \frac{g\left(t_{1}\right)+g\left(t_{2}\right)}{2}>g\left(\frac{t_{1}+t_{2}}{2}\right) . \tag{12}
\end{equation*}
$$

Let $x_{i}=\varphi^{-1}\left(s_{i}\right)$ and $y_{i}=\psi^{-1}\left(t_{i}\right)$ for $i=1,2$. Then, by (11), we have

$$
\frac{x_{1}^{p_{1}}}{x_{2}^{p_{1}}}=\frac{y_{1}^{q_{1}}}{y_{2}^{q_{2}}} .
$$

Therefore

$$
\begin{equation*}
\frac{x_{1} y_{1}+x_{2} y_{2}}{2}=\left(\frac{x_{1}^{p_{1}}+x_{2}^{p_{1}}}{2}\right)^{1 / p_{1}}\left(\frac{y_{1}^{q_{1}}+y_{2}^{q_{1}}}{2}\right)^{1 / q_{1}} \tag{13}
\end{equation*}
$$

Applying (12), we obtain

$$
\frac{x_{1}^{p_{1}}+x_{2}^{p_{1}}}{2}>\left[\varphi^{-1}\left(\frac{\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)}{2}\right)\right]^{1 / p_{1}}, \frac{y_{1}^{q_{1}}+y_{2}^{q_{1}}}{2}>\left[\psi^{-1}\left(\frac{\psi\left(y_{1}\right)+\psi\left(y_{2}\right)}{2}\right)\right]^{1 / q_{1}}
$$

i.e.

$$
\begin{equation*}
\left(\frac{x_{1}^{p_{1}}+x_{2}^{p_{1}}}{2}\right)^{1 / p_{1}}>M_{\varphi}\left(x_{1}, x_{2}\right),\left(\frac{y_{1}^{q_{1}}+y_{2}^{q_{1}}}{2}\right)^{1 / q_{1}}>M_{\psi}\left(y_{1}, y_{2}\right) \tag{14}
\end{equation*}
$$

Now, inequalities (13) and (14) give the desired contradiction, since then (1) is not satisfied for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R}_{+}$.

This contradiction validates inequality (10).
If (10) is satisfied then we can find $1<p \leqq p_{0}, \quad 1<q \leqq q_{0}$ so that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

As we have proved, $p \in P, q \in Q$ therefore (8) and (9) hold.
Thus the proof of the "only if" part of the Theorem is complete. We omit the the proof of the "if" part since it is based upon the classical Hölder inequality, and is very simple.

At last we mention a somewhat generalized form of the Theorem. The proof of this result can easily be made by the same way as above.

General Theorem. Let $k \geqq 2, \varphi_{1}, \ldots, \varphi_{k}: \mathbf{R}_{+} \rightarrow \mathbf{R}$ be continuous monotonic functions. Then the inequality

$$
\frac{1}{n} \sum_{t=1}^{n} \prod_{j=1}^{k} x_{i j} \leqq \prod_{j=1}^{k} M_{\varphi_{j}}\left(x_{1 j}, \ldots, x_{n j}\right)
$$

is satisfied for all $x_{i j} \in \mathbf{R}_{+} ; i=1, \ldots, n ; j=1, \ldots, k ; n \in \mathbf{N}$ if and only if there exist
$p_{1}, \ldots, p_{k}>1$ with $\sum_{j=1}^{k} \frac{1}{p_{j}}=1$ such that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p_{j}}\right)^{1 / p_{j}} \leqq M_{\varphi_{j}}\left(x_{1}, \ldots, x_{n}\right)
$$

for any $x_{1}, \ldots, x_{n} \in \mathbf{R}_{+}, n \in \mathbf{N}$ and for each $j=1, \ldots, k$.

References

[1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge Univ. Press (Cambridge, 1952).
[2] L. Losonczi, Hölder-type inequalities. In "ISNM 64, General Inequalities 3", ed. by E. F. Beckenbach and W. Walter, Birkhäuser Verlag (Bassl, 1983), pp. 91-106.
(Received July 17, 1984)
KOSSUTH LAJOS UNIVERSITY
MATHEMATICAL INSTITUTE
DEBRECEN , Pf. 12
H-4010

\square

Instructions for authors. Manuscripts should be typed on standard size paper (25 rows; 50 characters in each row). Mathematical symbols (except \sin , \log, etc.) will be set in italics, so use handwritten letters, or indicate them by simple undertining. The text of theorems, lemmas, corollaries are to be printed also in italics. The words THEOREM, LEMMA. COROLLARY, PROOF, REMARK, PROBLEM, etc. (or their German and French equivalents) should be typed in capital letters. Sub-headings will be set in boldface lower case; indicate them by red underlining. Other special types of symbols (such as German, Greek, script, etc.) should also be clearly identified. Mark footnotes by consecutive superscript numbers. When listing references, please follow the following pattern:
[1] G. Szegõ, Orthogonal polynomials, AMS Coll, Publ. Vol. XXIII (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.
For abbreviation of names ofj ournals follow the Mathematical Reviews. After the references give the author's affiliation.

Do not send abstract and second copy of the manuscript. Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 100 reprints free of charge. Additional copies may be ordered from the publisher.

Periodicals of the Hungarian Academy of Sciences are sold at the following addresses:

AUSTRALIA

C.B.D. LIBRARY AND SUBSCRIPTION SERVICE

Box 4886, G.P.O., Sydney N.S.W. 2001
COSMOS BOOKSHOP, 145 Ackland Street
St. Kilda (Melbourne), Victoria 3182

A USTRIA

GLOBUS, Höchstädtplatz 3, 1206 Wien XX

BELGIUM

OFFICE INTERNATIONAL DE LIBRAIRIF
30 Avenue Marnix, 1050 Bruxelles
LIBRAIRIE DE MONDE ENTIER
162 rue du Midi, 1000 Bruxelles

BULGARIA

HEMUS, Bulvar Ruszki 6, Sofla

CANADA

PANNONIA BOOKS, P.O. BOX 1017
Postal Station „B", Toronto, Ontario M5T 2 T8

CHINA

CNPICOR, Periodical Department, P.O. Box 50 Peking

CZECHOSLOVAKIA

MAD'ARSKA KULTURA, Národní třida 22
11566 Praha
PNS DOVOZ TISKU, Vinohradská 46, Prha 2
PNS DOVOZ TLAČE, Bratislava 2

DENMARK

EJNAR MUNKSGAARD, Norregade 6
1165 Copenhagen K

FEDERAL REPUBLIC OF GERMANY

KUNST UND WISSEN ERICH BIEBER
Postfach 46, 7000 Stuttgart 1

FINLAND

AKATEEMINEN KIRJAKAUPPA, P.O. Box 128 SF-00101 Helsinki 10

FRANCE

D $4 W$ WON-FRANCE S. A., B. P. 40, 91121 Palaiseau
EUROPÉRIODIQUES S. A., 31 Avenue de Versailles, 78170 La Celle St. Cloud
OFFICE INTERNATIONAL DE DOCUMENTATION ET LIBRAIRIE, 48 rue Gay-Lussac 75240 Paris Cedex 05

GERMAN DEMOCRATIC REPUBLIC

HAUS DER UNGARISCHEN KULTUR
Karl Liebknecht-Straße 9. DDR-102 Berlin
DEUTSCHE POST ZEITUNGSVERTRIEBSAMT
Straße der Pariser Kommune 3-4, DDR-104 Berlin

GREAT BRITAIN

BLACKWELLS'S PERIODICALS DIVISION
Hythe Bridge Street, Oxford OXI 2ET
BUMPUS, HALDANE AND MAXWELL LTD.
Cowper Works, Olney, Bucks MK46 4BN
COLLET'S HOLDINGS LTH. Denington Estate Wellingborough, Northants NN8 2QT
WM. DAWSON AND SONS LTD., Cannon House Folkstone. Kent CT19 5EE
H. K. LEWIS AND CO., 136 Gower Street

London WC1E 6BS
GREECE
KOSTARAKIS BROTHERS INTERNATIONAL
BROOKSELLERS, 2 Hippokratous Street, Athens-143

HOLLAND

MEULENHOFF-BRUNA B.V, Beulingstraat 2, Amsterdam MARTINUS NIJHOFF B.V.
Lange Voorhout 9-11, Den Haag
SWETS SUBSCRIPTION SERVICE
347b Heereweg, Lisse

INDIA
ALLIED PUBLISHING PRIVATE LTD., 13/14
Asaf Ali Road, New Delhi 110001
150 B-6 Mount Road, Madras 600002
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039
THE STATE TRADING CORPORATION OF INDIA LTD.,
Books Import Division, Chandralok
36 Janpath, New Delhi 110001

ITALY

INTERSCIENTIA, Via Mazzé 28, 10149 Torino
LIBRERIA COMMISSIONARIA SANSONI, Via Lamarmora
45, 50121 Firenze
SANTO VANASIA, Via M. Macchi 5820124 Milano
D. E. A., Via Lima 28, 00198 Roma

JAPAN
KINOKUNIYA BOOK-STORE CO. LTD.
17-7 Shinjuku 3 chome, Shinjuku-ku, Tokyo 160-91 MARUZEN COMPANY LTD., Book Department, P.O. Boy 5050 Tokyo International, Tokyo 100-31

NAUKA LTD. IMPORT DEPARTMENT
2-30-19 Minami Ikebukuro, Toshima-ku, Tokyo 171

KOREA
CHULPNMUL, Phenjan

NORWAY

TANUM-TIDSKRIFT-SENTRALEN A.S.,
Karl Johansgatan 41-43, 1000 Oslo

POLAND
WEGIERSKI INSTYTUT KULTURY,
Marszalkowska 80, 00-517 Warszawa
CKP W, ul. Towarowa 28, 00-958 Warszawa

ROUMANIA
D. E. P., Bucuresti

ILEXIM, Calea Grivitei 64-66, Buçuresti

SOVIET UNION
SOJUZPECHAT-IMPORT, Moscow
and the post offices in each town
MEZHDUNARODNAYA KNIGA, Moscow G-200

SPAIN
DIAZ DE SANTOS, Lagasca 95, Madrid 6

SWEDEN
GUMPERTS UNIVERSITETSBOKHANDEL AB
Box 346, 40125 Göteborg 1

SWITZERLAND
KARGER LIBRI AG., Petersgraben 31, 4011 Base

USA
EBSCO SUBSCRIPTION SERVICES
P.O. Box 1943, Birmingham, Alabama 35201
F.W. FAXON COMPANY, INC.

15 Southwest Park, Westwood Mass. 02090
READ-MORE PUBLICATIONS, INC.
140 Cedar Street, New York, N.Y. 10006

YUGOSLAVIA
JUGOSLAVENSKA KNJIGA, Tarezije 27, Beograd FORUM, Vojvode Mišića 1, 21000 Novi Sad

[^0]: ${ }^{1}$ Определение ϱ-нормальной матрицы узлов дано ниже.

[^1]: ${ }^{2} l_{k}^{(n)}(x)$ - фундаментальный полином Лагранжа, который определяется согласно (8).

[^2]: * The operations in F are assumed to be isotone with respect to \leqq.

[^3]: JÓZSEF ATTILA UNIVERSITY
 BOLYAI INSTITUTE
 ARADI VÉRTANÚK TERE 1
 6720 SZEGED
 HUNGARY

[^4]: ${ }^{1}$ The minimum is attained (see Theorem 2.1).

[^5]: MATHEMATICAL INSTITUTE OF THE
 HUNGARIAN ACADEMY OF SCIENCES
 BUDAPEST, REALTANODA U. 13-15
 H-1053, HUNGARY

[^6]: tcta Mathematica Hungarica 47, 1986

[^7]: * This research was supported by grant A7877 of the Natural Sciences and Engineering Council of Canada and also by Deutsche Forschungsgemeinschaft.

[^8]: ${ }^{1}$ The definition of disjunctivity is slightly different in [15]. However, it does not matter for this case.

[^9]: Acta Mathematica Hungarica 47, 1986

[^10]: ${ }^{1}$ The results in this paper were first announced in [6], and are included in the author's Ph . D. dissertation (McMaster University, 1981) written under the direction of Donald H. Pelletier to whom the author is grateful.

[^11]: * The work was completed during the second author's visit in Gainesville, in 1983 and 1986.

[^12]: MATHEMATICAL INSTITUTE OF THE
 HUNGARIAN ACADEMY OF SCIENCES
 bUDAPEST, REÁLTANODA U. 13- 15 .
 H-1053
 URALS STATE UNIVERSITY
 SVERDLOVSK
 USSR

