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A THEOREM OF PICARD TYPE

M. NILIMURA (Tokyo)

Let R be a hyperbolic Riemann surface, let g(a) be the Green function for R with
pole at a fixed point aOchosen arbitrarily in R, and put R(ot)—{a: g(i)>a} for any
0e>0. In this note we assume the following conditions (1) and (2):

(1) Theclosure R (a) of R (a) is compact for any 0e>0.
2 6] 2?(a)doc<°®°, where 5(a) denotes the first Betti number of R(oi).

The classical Picard theorem on exceptional values is well-known. E. F. Colling-
wood and M. L. Cartwright have shown the following theorem of Picard type (see [1],
p. 139): If /(z) is meromorphic in {|z|< 1}, then every point of {|z= 1} belongs
eitherto P or to F'. Here P denotes the set of points ewfor which the complement of
the range of/(z) contains at most two values, and F' denotes the derived set of points
ew at which/(z) has the angular limit.

In this note we shall give a theorem on Green’s lines. As an application we shall
obtain an extension of Collingwood—Cartwright’s theorem to a class of hyperbolic
Riemann surfaces satisfying (1) and (2).

For the definitions concerning Green’s lines we refer to [5] and henceforth consi-
der Green’s lines issuing from a0. Let h(a) be the conjugate harmonic function of
g(a). We map the union R’ of {a0} and all the Green’s lines onto a subregion of
{|z|< 1} by z=tp(a)=e~eM~,hM. The infimum ofg(a) over every Green’s line, which
does not terminate at a point of Z={a,,: grad g(a,,) =0}, n=1, 2, . is equal
to zero by (1). Itis seen from the proof of Theorem 1(H. Wldom) of[3] that g(an—

n J B(pi)daL for a,,dZ. The total length of the slits of tp(R") is hence finite by (2).

Let R* denote the Martin compactification of R, let <;=/(«) denote a function
meromorphic on R, and put A—R*—R. At a point e® of {|z|=1}f)d<p(R’), where
d denotes boundary, let there be the tangent line to dip(R’) and a sector region A (ei0),
included in tp(R’), having vertex at eie and bisected by the radius /e drawn to eie
If <p™(Ae) terminates at a pointp on A, then we denote by S(p) the set of <p~r(J1(ei0)
forall A(e') at eie. Iff tends uniformly to some limit inside any 5E S(p), then we say
that/has angular limit at p.

F (f) denotes the set of pointsp on A such that/has angular limitatp. F ‘(f) deno-
tes the derived set of F(f). P (f) denotes the set of pointsp on A such that every value

of m LLP°} is taken by/ infinitely often in every neighborhood of p with two pos-
sible exceptions.

i* Acta Mathematica Hungarica 45, 195,



4 M. NUMURA

Theorem. | f £—f(a) isafunction meromorphic on R, andif, for any r-neighbor-
hood U(p, r) of a point p on A, AC\U(p,r) is o f positive harmonic measure, then
either pfP(J) or pfF'(f).

Proof. Suppose that p$P (f), and chooseany r'> 0. Then thereisa U(p,r
@] such that/does not take three distinct values in RP\U(p, r/ By Theorem
7 of [3], radial paths ending at almost all points of {I"l =1}INM0¢)(/?0 are mapped by
(p~xto Green's lines in R' terminating at almost all points of A with respect to har-
monic measure. Therefore there are two Green’s lines L,, and Le-, with distinct
coordinates 0 and 6', terminating at points of AT)U(p, r/ 0<r2<i\. Itis possible
to form a simply connected, rectangle-shaped region G in {|z|< 1}, bounded by parts
of the radial paths (p(Le) and <p(Le.), and arcs of {|z|=r0, 0-=ro<I1} and {|z|= 1}
such that 9 1(G—Af), where M denotes the set of the slits of cp(R"), isincluded in
U(p, M. Let G' be a component of G—M. G'is a simply connected region, and the
length of dG'is finite.

We map G' onto {|w|-=I} by a univalent holomorphic function w="(z). Now
fo(p~loil/~1(w) does not take three distinct values in  {|w|<I}. We may assume that
it does not take the values 0,1 and °°in {{w]<1}. Let Hbe the inverse ofthe modulaf
function for the halfplane. We consider the function

H*{0 =

where 10 is a number which is not real. Put HO(w)=H*ofo(p~1oij/~1w). Then
[i70(w)|< Lin {jw|< 1}. Bythe monodromy theorem, HOis one-valued.

Itis easy to see the following results from page 5 of [4]: At almost all points e,eof
{|z| = I}ndG’, there are sector regions A(ew), included in G', having vertex at ei0
and bisected by the radius drawn to eie Atthe point ei0 of {{w = 1} corresponding
to eie, under the homeomorphism o fthe frontiers included by ¢_1(iv), there is a sector
regionéin {|wl|-=1} suchthat i[/(A(eiQ)czAw, having vertex at eie’ and bisected by
the radius drawn to ew.

By applying Fatou—Lindeldf’s theorem to Ha, it is seen that Haoi]/(z) tends
uniformly to limits inside A(ei®®) and A(ew®), 0*9ad*', in G', and that both Le, and
Le,, terminate at points of AMU(p, rd. Thusthere is apointp',p'?+p, on AC)U(p,rd
such that H*of tends uniformly to a limit inside any SdS(p'). Thus /=
—(H*)~1oH*of has the angular limit at a point, different from p, on AfJU(p, r').
The assertion of the Theorem is proved.

Corollary 1. | ffisafunction meromorphic on R andfor every p on A andfor
any r>0, AOU(p, r) isofpositive harmonic measure, then thepoints o fP (f) and F (f)
are everywhere dense on A.

Corollary 2. | f underthe hypothesis of Corollary 1, P(f) is empty, then thepoints
o f F(f) are everywhere dense on A.

As an application of Corollary 2 we obtain an extension of Corollary 22.1 of [1].

Acta Mathematica Hungarica 45, 1985
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STRONG POROSITY FEATURES OF TYPICAL
CONTINUOUS FUNCTIONS

A. BRUCKNER* and J. HAUSSERMANN (Santa Barbara)

1. Introduction

In 1931 Banach [1] and Mazurkiewicz [12] proved independently that the “typical
continuous function” is nowhere differentiable. (Here, and in the sequel, we use the
term “typical continuous function” to mean that the set of functions which exhibit
the property we are discussing is residual in the complete metric space W[O,1]).
Shortly thereafter, Marcinkiewicz [11] and Jarnik [7] [8] [9] used the Baire Category
Theorem to show that typical continuous functions exhibit a great deal of pathology
with respect to differentiation properties. More recently, other authors have obtained
a number of similar results: negative ones, showing that the typical continuous func-
tion is nowhere differentiable with respect to some generalized derivative; and positive
ones, showing that it is differentiable in certain senses. (See [2] for a summary of such
results.)

In the present work we show that if X is a u-compact subset of €, then the graph
of the typical continuous function intersects the graph of each member of X in a
“very thin” set. We show that this implies some of the known negative results, men-
tioned above, (as well as some new negative results), and we also observe that the
result clarifies some of the known positive results.

2. Main results

We mentioned in the Introduction that typical continuous functions agree with
function in a (Fcompact subset of  on “very thin” sets. Our main result is Theorem
2.5 below which makes this idea precise. We begin with a definition:

Definition 2.1. A set EQR is called bilaterally strongly porous (bsp) at a point
y0 provided p+(E,y0=p_(E,y0Q=1 where p+(E,y0Q is the right-porosity of
E at Jo:

p+(E, j Q=Ii% 14 " where /.(E, x, h+) is the length of the largest open inter-

valin EeC\(x, x+h). We define p~(E, y0 similarly.

E isbspifi'isbsp atall its members. (When working in [0, 1], we require strong
one-sided porosity at the endpoints.)

* This author was supported in part by an NSF grant.
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8 A. BRUCKNER AND J. HAUSSERMANN

The first two lemmas require some notation. Let n be a positive integer, (iA2),
and let 0<(5n< — Define sets Akfor given x and kd{\,2, 3,4} by:

A . _
onz tond 22 I+ido+
A * S 1y A A1l
2n X 2n2]]?' A41M &y 2nZ nl

The next three lemmas are variants of results found in Goffman and Pedrick [6],
which are suitable for our purposes.

Lemma 2.2. Let a be a modulus of continuity, 1/2>e=»0, n a positive integer,
(ne&2). Then there exists (5,£, and t]J>0 suchthat

(a) there exists /€#, with ||/j| S=£ so thatfor every n€|0, 1—-J and every

gd'A with 1l/— there exists &€{1,2} such that |g(x)—g(y)|xr(|x—y|) for
all yEAk; and

(b) there exists /6", with [|/||e, so thatfor every xd Ij and every gdjd

with 11/—g\\<4 there exists kd{3,4} such that \g(x)—g(>j|= (Jx—v() for all
yEAK.

Proof. Choose <5£Y, such that o(6n~-~. Let er + For

part (a):
Let/be the polygonal function on [0, 1] with slopes #s/<5, so that 0S/(x)Ss,

/(1) = 0, and all but (possibly) the first segment have length /e 2+<5;j. Fix XgJO, l—'J '

Case 1. (>/(/)) is on the same segment as (x,/(x)) for every ydAk. Then,
for every y£AIt

VE(X)-f(Y)\ =+ \x-y\ >~ <) 1*-y\ A Q)" 2c(Ix—yl)

since \x-y\"r5n.

Case 2: Case 1 does not hold so that (y,f(y)) is on an adjacent segment to
(x,/(x)) for every yd A.,. Then, for every ydA2,

V) -Fy)\ A [[(F+E)-16»

An-a(6,,) Sn

sn  onpS 2 fH(x-iD)

Acta Mathematica Hungarica 45, 1985



STRONG POROSITY FEATURES OF TYPICAL CONTINUOUS FUNCTIONS 9

= ~=|x—y|=4,. So, for xE[O 1——] there exists k€{l, 2} such that

for every Y4 |fX)—f(D)|=20(]x—y).

Let g€% with | f—g|l<#n. Then, for x¢ [0, l—l] there exists k€ {1, 2} such
that for every ycA4, »

8@~ 80| = )~/ )] ~20 = 20(x—3)—0 (5] =
=20 (x—yD—o(x—y) = a(Jx—y).

To prove (b) take f'to be like fexcept that f(0)=0 and all but (possibly) the last
segment have length }e2+6;. The rest of the argument is analogous to that for (a).

LEMMA 2.3. Let o, n be as in 2.2 and let
= {feglaa,,e[o, ,1—1] so that VxE(O, 1—%] 3ke{1, 2} such that

IfG)—=fO) = a(x—yD Vyedu}

and

= {fe(ma,,e(o, %} so that Y x¢ [%, 1] 3ke{3,4} such that

fG)—fO) = o (Ix—y) Vyed,).
Then E} and E? contain dense open subsets of C.
The proof of both results is the same as that given by Goffman and Pedrick [6].

LEMMA 2.4. Let o be a modulus of continuity and % (c) denote the corresponding
equicontinuous family of functions. The set of functions & in € such that if f€& and
g€%(0), then {x: f(x)=g(x)} is bilaterally strongly porous, is residual in €.

PROOF. Let E? and E2 be as in 2.3, &= () E!, and &= () E2. Then &' and

n=2 n=2
&? areresidual subsets of ¥. We show that for f€6* and g€% (o), H={t: f(t)=g(1)}N
N[0, 1) has right porosity one at all of its members.

Let xc H, N a positive integer so that x¢ [0, 1 ~%], and B={y: ) —fO)=
>o(|]x—y[)}. Then BS H° since g€%(c). For n=N, fe 1 implies either:
Case 1: A, C B infinitely often, (for ), where Al—[x—i- "’x+2n] o E( )

On
7y 10 implies

oy ) 1

(ref) 503

p+(Hx)—l Mz] 2n = lim 2"6 e = 12
2n 2n

or

Acta Mathematica Hungarica 45, 1985



10 A. BRUCKNER AND J. HAUSSERMANN

Case 2: A *B infinitely often, (for n).
Then we obtain

P+, x) S lim (I As) = I

This shows that H has right porosity one at all of its members. Similarly, one can
show that for ftS 2and gt*ifi), {/=g}f)(0, 1] has left porosity one at all of its
members.

Take $=£*(JIE2 Then S'is a residual subset of 'if, and for ftS and gt/3(0),

{/=gé' is bsp. . o :
ecause of Ascoli’s Theorem, the following is an immediate consequence of 2.4.

Theorem 2.5. Let XK be a o-compact subset o f'S. The set offunctions 3? in (i such
thatif ftF and gt>K then {x:f(x)=g(x)} is bilaterally strongly porous, is residual
in

Obviously, 2.5 is valid if we assume merely that XX is contained in a cr-compact
subset of €.

3. Consequences of Theorem 2.5

Theorem 2.5 has a number of consequences; some are entirely new and others
provide alternate proofs of known results.

Theorem* 3.1. Let SEjj be the class o f Lipschitzfunctions oforder a on [0, 1]. The
set offunctions F in § such that ifft 2P and gt SEathen {x:f(x) =g(x)} is bilaterally
strongly porous, is residual in §.

We note that 3.1 extends a recent result of Thomson’s [14]. There, the author
obtained the corresponding result for the class of constant functions.

Observe that an immediate consequence of Theorem 3.1 is that a typical conti-
nuous function cannot agree with a function having a bounded derivative except on a
bilaterally strongly porous set. What may be a bit more surprising is that we can
replace the term “bounded” by the term “finite” even though the class of functions
with finite derivatives is not relatively compact.

Theorem 3.2. Let A denote the class of differentiable functions on [0, 1], (with
finite one-sided derivatives at the endpoints). The set offunctions S' in  such that if
ft XX and gtA, then (x: f(x) =g(x)} is bilaterally strongly porous, is residual in €.

Proof. Let F be as in 3.1. Take ft &, gtA, and assume {x:f (X)=gX)} is
not bsp. Then there exists X,, {X.}*=1 with xnt {f =g}, n=0, 1,2, ... such that

X,,--X0, lim —ﬂ);461‘<1, and lim i\on"’\— We can assume p=0,
[T y Xn- X

x0=0, f (x0=0, and x,,;0. There exists a positive integer k, (k-=2), so that

P+(K},0)<”-. Since P+({*j} °) K_K 1 , there exists J such that (*) for every

* Bernt Oksendal has observed that 3.1 exhibits a contrast between typical behavior in our
sense and in the sense of Brownian motion. In the latter sense, the typical function is Lipschitz a for

every a<—.
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ja/ thereexistsxnsothat xnd[I/k3+1, I/kJ]. Sincex,,\, we can choose a subsequence
{v,}Q {*.} such that

c/l -1 - 1 ==
- T RIS 1.2, 3, ..
and M, i=1,2,3,... for some 0.

Consider the continuous function F obtained by joining sucessive points
and (x,,HLf(x,,i#)) byline segments for *= 1,2,3,.... Then Fis a
Lipschitz function. To see this, observe that the greatest possible slope of any

segement of F occurs when x,,=-j- and x,,.tizﬁC (where (x,., f(x,,)) and
KJ
(x«n-vf(xni+Y) are endpoints of that segment and j=J+ 2i—1). Then,

W)+ (5,41 _
K—1
kJ+

11 1 1k*#+
MIkJ+kHD) k-1 mEt s 3Me

(since ks2). Thus, FEJS?. We also claim p+({x,},0)< 1

The largest “gaps” in {x,J occur when X«=JJ and xmlH=~"]+3, where j=

=J+2i—2. Thus,
J. 1

_ Xxm~xn,+ - kj ~ kJ+_3 K3 1
P+E'K,l56'ﬂ1 = ilﬁ Xt lim K3 1
kJ

This implies {2/(?) = F(i)} is not bsp, giving us a contradiction and completing the
proof.
Theorem 3.2 sheds some light on a number oftheorems concerning nowhere gene-
ralized differentiabfil(ity\o_fft%/pi;:al continuous functions. To see this, suppose X0£[0,1],
X X

x,,—»0, and r%l_rl’] = —mexists and is finite. It is easy to construct a differenti-

able function g such t’ﬁat f(x,,) =g(x,,) for all n=0, 1, 2, .... By Theorem 3.2., for
typical /, the sequence {xk\ must be bilaterally strongly porous at x0. In particular,
we have the following general result.

Theorem 33. Let F= {Fx:x£[0, 1J} be a system of paths [5]. If for each
x€[0, 1], Exis not bilaterally strongly porous at x, then the class o ffunctions which are
nowhere E differentiable is a residual subset of €. In particular, the'typical continuous
function is nowhere unilaterally approximately differentiable, nowhere unilaterally
preponderantly differentiable, and nowhere qualitatively differentiable.

Theorems 3.2 and 3.3 also clarify certain positive theorems. The remarkable
results of Marcinkiewicz [11], Jarnik [9], and Scholz [13] may seem a bit less remar-
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12 A. BRUCKNER AND J. HAUSSERMANN

kable once one sees that the relevant paths are bilaterally strongly porous. Consider,
further, the following positive result of Laczkovich [10]: Let/be measurable on the
measurable set //~[0, 1] with A (//)>0. Then either

(i) there exists a perfect PQH such that f\P is infinitely differentiable on
P (with finite derivatives) such that (/[P)W=0 for n sufficiently large, or

(ii) for every c>0 there exists a perfect PQH suchthat ).(P)>/.(H)— and
f\P is infinitely differentiable with finite derivatives (/. denotes Lebesgue measure).

Since (ii) implies approximate differentiability on a large set, option (i) must
hold, (for all H), for the typical continuous/ and P must be bilaterally strongly
porous.

Finally we note thatin [3] one finds a study of the manner in which the graph of a
typical continuous / intersects straight lines. In particular, “most” such intersections
are nowhere dense perfect sets. Theorem 3.2 (or 2.5 or 3.1) shows that all such inter-
sections are bilaterally strongly porous.

4. Convex boundaries

Let/ be a bounded function on [0, 1] and let H be the convex hull of the graph
of/. The boundary of H can be decomposed into the graphs of two functions hxand
/22, of which A is convex and /2is concave. These functions are differentiable except,
perhaps, on some denumerable sets. Even if/is well-behaved, say a Lipschitz function,
the infinite exceptional sets of nondifferentiability may exist. Surprisingly, for typical
continuous/ the functions hl and h., have finite derivatives everywhere on (0, 1)
and infinite derivatives at 0Oand at 1

Theorem 4.1. The set offunctions in for which hxand h2 have the properties
listed below is residual in @.
(i) h[ and If exist and are continuous on (0, 1);
(@ii) Ai(0)y=—", Iz[(h="°°, 1T{0)= ", A'(l)=—00;
(iii) h[ and If are unbounded Cantor-likefunctions;
(iv) the Cantor-like sets ofsupport are bilaterally strongly porous in (0. 1).

Proof. Lemma 4.5 of [3] states: there exists a residual set of functions/in $such
that for every open rational interval 1Q [0, 1], the slopes ofthe lines that support the
graph of/in / from above at more than one point form a dense set in R, and the same
holds for the lines that support the graph of/in /from below at more than one point.

Define 2 to be the intersection of this residual set of functions and PP from 3.2.
Let fAPP and h, be the concave upper boundary of the convex hull of the graph off.
We show properties (i) through (iv) hold for lu.

By the referred lemma, the slopes ofthe lines that support/from above on (0, 1)
at more than one point form adense subset of R. A segment of each such line must be
in the upper boundary of the convex hull of the graph off. No two such segments can
abut, otherwise an entire interval of slopes is missed. Thus, h2must be differentiable
— a concave function is right and left differentiable everywhere; if the unilateral
derivates disagree at a point an entire interval of slopes will be missed. Thus, since
h2is concave and h2exists, If is continuous on (0, 1). This proves (i).

Since the upper right derivate of/ at zero is infinite and the lower left derivate of
/at one is negative-infinite,/z2(0) = °° and h'f1)=—"°, proving (ii).
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STRONG POROSITY FEATURES OF TYPICAL CONTINUOUS FUNCTIONS 13

It is clear that h; is constant on every interval IC (0, )\ {x: hy(x)=f(x)}.
Since {x: hy(x)=f(x)} is nowhere dense, (iii) is shown, and since {x: hy(x)=1(x)}
is actually bsp in (0, 1), (iv) is proved.

One can similarly show #, satisfies properties (i) through (iv), completing the
proof.

5. Concluding remarks

The results in Section 3 indicate that any path relative to which a typical conti-
nuous f has a finite derivative must be bilaterally strongly porous. (The term *“finite”
cannot be dropped from this statement, since the typical f does have infinite unilatral
derivatives on uncountable sets.)

We view a set 4 which is bilaterally strongly porous at a point x, as being very
thin at x, because 4 has huge gaps near x,. This view is a bit misleading, however,
because it is possible that both 4 and ~ A4 are bilaterally strongly porous at x,. It is
therefore somewhat misleading to assert that the typical f is nowhere differentiable
except with respect to “very thin” paths. Indeed, the complements of these paths may
also be “very thin”. For example, Scholz’s result [13] shows that the typical continuous
s almost everywhere essentially differentiable to an arbitrary preassigned measurable
function! And Zajiéek’s recent results [15] show that for every continuous f the extreme
derivates are essential derived numbers except on some first category set. They may
be infinite, of course.)

On the other hand, the sets of relative differentiability of a typical continuous f
are “genuinely very thin”: If /|4 is differentiable, then A4 is bilaterally strongly porous
at every point of 4 — in particular A4 is a nowhere dense null set.
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REGULARITY PROPERTIES OF POLYNOMIALS ON
GROUPS

L. SZEKELYHIDI (Debrecen)

1. Introduction

Polynomials play an important role in the theory of linear functional equations.
In general cases all solutions of linear functional equations are polynomials ([1], [2],
[4], [6], [7], [8], [10], [11]). In this paper we deal with regularity properties of polyno-
mials on groups. Our results can be used to characterize regular solutions of general
linear functional equations on commutative topological groups and also extend some
classical results concerning the wellknown Cauchy-, Pexider-, Fréchet-, and square-
norm-equations ([1], [2], [5], [6], [9]). We note that similar results can be obtained for
exponential polynomials but these results will be treated elsewhere.

Let G be an abelian group, X a complex linear space and /: G—X a function.
For all yEG we define the difference operator Ayonf by the equation

Ayf(x) =f(x+y)-f(x)
whenever x€G. Further for all positive integer n and for yt, ...,) h+1€G let
LW YHOF) = Y JX)
whenever X£G. Especially, if yi=-..=y,,+i=y then we use the notation
A"Hf(x) = Ayi....n+1/(x)
for all xEG. The function/is called a polynomial of degree at most n, if

K ... /(*)=0
whenever x,y15...,yn+1€G.

Let u be a positive integer and A: G"-*X a function. The function A is called
n-additive ifitisahomomorphism of G into Xin each variable. For the sake of brevity
we use the notation G°=G and we call constant functions from Gto X 0-additive.

If A: G"-*X is «-additive, then we use the notation

Aw (y) = A(uu ..., u,)

whenever ul~...—un=y. It is easy to prove that for any A: G"'-*X /r-additive,
symmetric function the equality
for k —n
4,...... 4<y‘ ................................... ﬂ) for k> n

holds, whenever x,y, yt, ...,ynEG.
It is wellknown ([3]), that the function /: G-*X is a polynomial of degree at
most « if and only if there exist Ak: Gk-*X /[c-additive, symmetric functions
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16 L. SZEKELYHIDI

(k=0, ..., n) such that
I(*)= 2AP(X)

holds for all x£G. Further this expression for/ is unique in the sense that the AK’s
different from zero are uniquely determined.

2. Zeros of polynomials

Theorem 2.1. Let G be a topological abelian group which is generated by any
neighborhood o f the zero and let X be a complex linear space. | f apolynomialp : G—X
vanishes on a nonvoid open set, then it vanishes everywhere.

n
Proof. Let p(x)=2 AK)(X) where Ak: Gk-*X is a L-additive, symmetric

function (k~0, ..., n). Obviously, itis enough to prove that An=0. As any translate
of a polynomial is a polynomial again, we may suppose that p vanishes on the neigh-
borhood U of the zero. Then we choose a neighborhood V of the zero such that for
all x,yl19 ..., yndV wehave x+yk+...+ynEU. We obtain

A(yi> eee>yYm)y = . ynp(x) = -iy 2 (-1)',-fp(x+yil+ ...+yil) = 0

whenever x,yk, ..., ynEV, that is, A, vanishes on Vs. Using the n-additivity of An
and the fact that V" generates G", our statement follows.

Theorem 2.2. Let G be a locally compact abelian group which is generated by any
neighborhood o f the zero and let Xbe a complex linear space. | fapolynomial p: G-+X
vanishes on a measurable set o fpositive measure, then it vanishes everywhere.

Proof. Using the same notations as in the preceding theorem we show that
A()=0. Let KczG be a compact set with positive Haar-measure /AT>0 suchthat
p vanishes on K. It is wellknown that the function x-~).(KC\K—C\... MK—x) is
continuous on G, and as its value is positive at the zero, we have that there is a neigh-
borhood UczG of the zero for which y€ U implies X{KC\K—yC\... C\K—ny)>0.
That is, for all yEU there exists an x£K suchthat x+ky£K for k=\, 2, ..., n.
Then we have

Ainy) = -*App(x) = -iy 4 (-1)n~kp(x+ky) =0,

whenever y£ U. This means that the polynomial A f}vanishes on U, and hence by the
preceding theorem it vanishes everywhere.
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REGULARITY PROPERTIES OF POLYNOMIALS ON GROUPS 17

3. Boundedness of polynomials

Theorem 3.1. Let G be an abelian group and let Xbe a locally convex topological
linear space. | f apolynomial p: G—X isbounded on G, then it is constant.

Proof. Using the same notations as in Theorem 2.1, we show that =0 for
n>0. From the expression

A(Ji, —,Yun) = J]An. = Tl os (-1) pO+Tetesm+yik

which holds for all x,ylt ..., y,,€G we see that A, is bounded. On the other hand,
for 0 the n-additivity of Animplies

A (my) = m"A,€(y)

for all yEG and for any positive integer m. Suppose, that A, (xdAO for some
x0dG. We choose a balanced and absorbing neighborhood W a X ofthe zero such
that Alf (xQ $W As Afreis bounded, there is a real a for which

mnAf,n)(xQ = Alf (mx0Q"alV
for all positive integers m. Then am-"<1 for some m, and we have
Alf (xQ = m~nAln) (mx0Q£Ecnn~nW c W,

which is a contradiction, hence the theorem is proved.

4. Continuity of polynomials
Theorem 4.1. Let Gbe a topological abelian group and let X be a topological linear

space. | fapolynomial ofdegree n p: G-+X is continuous, then there are Ak: Gk-"X
continuous, symmetric, k-additive functions (k=0, 1 ..., n), such that p(x)=

= 2 AK(x) holdsfor xzG.
Jt=0
Proof. This is a consequence of the formula
A, (yi, ....y,) =— An...yp(x)

which is valid for all polynomials p: G-*X ofthe form

P(x) = 2 0A[k) 0 (x, yIf ..., ¥,,€G).

Theorem 4.2. Let G be a topological abelian group which is generated by any
neighborhood o f the zero, and let X be a topological linear space. |f a polynomial
p : G-~X is continuous at apoint, then it is continuous on G.
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18 L. SZEKELYHIDI

Proof. Using the notations of Theorem 2.1, it is obvious from the formula

Al —=T) =y MP0) = g 2 s (-!)'HP(A+Ti’+ -+JiD

that Anis continuous at the point (0,..., 0). It is enough to show, that A, is conti-
nuous on Gn, and we may suppose nél. First we prove that for all k=\, 2, ..., n
and xk+l, ..., x,EG the function (gt, ..., gk)-~An(gu ...,gk, xk+1, ..., x,) is con-
tinuous at the zero. Let WczX be aneighborhood ofthezero and t/cG be a neigh-
borhood of the zero for which An(U, ..., U)czW. As G is generated by U, there
exists a positive integer N, suchthat xk+1, ...,x nENU. Further there exists a neigh-
borhood V(~G of the zero such that Nn~kVczU. Let gi, -mm£€F, then
N"~kgi, ...,gkfU and

nn(gibeee>sk>xk+l>e0enyy) =

1 _
Nn-k A.(n~kgt, ga.  mgi,yiki)+ -..+Fw+l)> VIO + me+J&0)

where yP, ..., yt £U (i=k+1, ..., ri). Bythe /r-additivity of A,, this latter element of
X can be expressed as asum of N n~kterms, each ofthem belonging to N"~kW, and
hence it belongs to W, and our first statement follows.

Now let xIt ...,x,fG be arbitrary, then for all ¢gI5..., g,,€G the difference
A,,(x1+gl, ..., xn+g,,)—A,,(xi, ..., X,) can be expressed as a sum each term of which
belongs to an arbitrary given neighborhood of the zero of X whenever g1, ...,gn
is chosen from an appropriate neighborhood of the zero of G by the statement proved
above. This implies the continuity of A, at (xr, %5)-

Theorem 4.3. Let Gbe a topological abelian group which is generated by any neigh-
borhood o f the zero and let X be a locally convex topological linear space. | f a poly-
nomial p: G—X is bounded on a nonvoid open set, then it is continuous.

Proof. Using the notations of Theorem 2.1, one can see that Anis bounded on a
neighborhood of the zero in Gn. Let i/cG be a neighborhood of the zero for which
An(U, ..., U) is bounded in X. It is enough to prove that A/ is continuous at the
zero. Supposing the contrary there exists a balanced and absorbing neighborhood
WczX ofthe zero such that every neighborhood of zero in G contains an element z
for which X On the other hand, there exists a positive integer N with the

property An(U, ..., U)<zNW. Let be an integer and let VczG be a
neighborhood of the zero for which mVczU and z£V suchthat An)(z)$W Then
mzZU, and hence A('Hmz)(iNW, but Ajf (mz)=m"Ajf (z) Em"W. On the other
hand, mnWz>NW, which is a contradiction and our theorem is proved.

5. Measurability of polynomials
Theorem 5.1. Let Gbe a locally compact abelian group which is generated by any
neighborhood o f the zero and let X be a locally convex topological linear space. | f a po-
lynomial p: G-+X is bounded on a measurable set ofpositive measure, then it is con-
tinuous.
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Proof. By the conditions p is bounded on a compact set KczG with XK=>0.
Let UczGbe a neighborhood of the zero, for which x£ U implies KC\K—jcfl...
... TA—x"Q. Then there exists ydG suchthat y,y+x, ..., y+nxEK. Using the
notations of Theorem 2.1 we have

N<SM=+N1py) = r - kp{y+kx\

and this means that A jf is bounded on U. Then by Theorem 4.3, our statement fol-
lows.

Theorem 5.2. Let G be a locally compact abelian group which is generated by any
neighborhood of the zero and let X be a locally convex and locally bounded topological
linear space. | fapolynomial p: G-+X is measurable on a measurable set o fpositive
measure, then it is continuous.

Proof. By the conditions p is measurable on some compact set K with JIK>0.
Let Wa X beabounded, balanced and absorbing neighborhood ofthezero and let

A,= (X pX)ENLYINK (n=1,2,...).

As |J nW=X, it follows I_'l:JlA,,=K, and A,,cAntl implies lim 1A, =JKK

n=1
Finally we have that p is bounded on some measurable set of positive measure, and
by Theorem 5.1 our statement follows.
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REGULARITY PROPERTIES OF EXPONENTIAL
POLYNOMIALS ON GROUPS

L. SZEKELYHIDI (Debrecen)

1. Introduction

In a recent paper [13] we have studied regularity properties of polynomials on
groups. The results extend some classical theorems and can be applied in the theory
of functional equations [1], [8], [9], [10]. Besides polynomials, another important class
for the applications is the class of exponential polynomials. The present paper is devo-
ted to the study of regularity properties of exponential polynomials on Abelian
groups.

Concerning polynomials we shall use the same notations and terminology as in
[13]. Concerning exponential polynomials one can find further investigations and
results in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

If G is an Abelian group, then every homomorphism of G into the multiplicative
group of nonzero complex numbers is called an exponential. If H is a complex vec-

torspace and a function f: G—~H can be expressed in the form f= 3 m;p;, where
i=1

pi: G—~H is a polynomial and m;: G—C is an exponential, then f is called an expo-
nential polynomial. If further |m;|=1 and p; is constant for all i, then f is called a
trigonometric polynomial.

As in the case of polynomials, here we shall also use difference operators on G.
Concerning the notations and definitions see [13].

We shall often use the following two lemmas which can be proved easily by
induction:

LEMMA 1.1. Let G be an Abelian group, H a complex vectorspace, m: G—~C an
exponential, p: G—~H afunction and f=mp. Then for all x, y¢G we have

AVf(x) = m(x) ’é:" (]Z] (m)—1)N*4kp(x+ (N—k)y).

LEMMA 1.2. Let G be an Abelian group, H a complex vectorspace, A: G—~H an
n-additive symmetric function, q: G—~H a polynomial of degree at most n—1, and
f=m(A™+q). Then for all ycG there exists a polynomial q,: G—H of degree at
most n—1 such that for all xcG we have

A fx) = m@)[(m () —1)"4? (x) +4,(x)]

(Here A™ denotes the diagonalization of A4, that is the homogeneous polynomial of
degree n generated by the n-additive symmetric function 4.)

Acta Mathematica Hungarica 45, 1985



22 L. SZEKELYHIDI

2. Zeros of exponential polynomials

Theorem 2.1. Let G be an Abelian group, H a complex vectorspace, mp. G-C w
n

exponential and pp. G-*H a polynomial (/=1, If 2 miPi~0, then p,=0
(=1, ..,70. i=1

Proof. We prove the statement by induction on w. Itis trivial for n=1, hence we
suppose that it is proved for n*k—L Assume that n=k”2, and let Pi=A\n)+<?,
where Ap is an «-additive symmetric function with diagonalization Af'k
and ¢gp. G-+H is a polynomial of degree at most 1 (i=2,...,«). Further
suppose that pt is of degree N. Obviously, it is enough to show that Al"2=0. Let
yEG suchthat m2(y)?+mi(y). By Lemma 1.2 we have

"YHPI(O+ 2 mix)ml (-1 (m ,0)0 ) _L- INATH)(0)+ gos(:)] = 0

where gl>: G—H is a polynomial of degree at most n,—1. Then we obtain the
equality

2, milmt(y)miy)-1- iy +IAF>(x)+aiy(x)] =0,

and by our assumption it follows for /=2,..., n and xEG
(mi(y) m1(y)~1—\)N+Aw (x)+ quy(x) = O.

Here qity is of degree at most w—1, and by «72(>)m1( y)~1" 1the firstterm for i=2
is of degree n2, hence our statement follows.

We remark that by the above theorem the representation of exponential poly-
nomials with different exponentials is unique. In the topological case the above theo-
rem has two generalizations concerning the zeros of exponential polynomials. Here
we cite only the results, each ofthem is proved in [11].

Theorem 2.2. Let G be a topological Abelian group which is generated by any
neighborhood o f zero and let H be a complex vectorspace. | f an exponential polynomial
f: G-+H vanishes on some nonvoid open set, then it vanishes everywhere.

Theorem 2.3. Let G be a locally compact Abelian group which is generated by any
neighborhood o f zero and let H be a complex vectorspace. | f an exponential polynomial
f: G-+H vanishes on a measurable set of positive measure, then it vanishes every-
where.

3. Boundedness of exponential polynomials
Theorem 3.1. Let G be an Abelian group, H a locally convex topological vector-
space, and f: G-»H an exponential polynomial. | ff is bounded, then it is a trigono-
metric polynomial.

-
Proof. Let f= i2_i mtPb where mp, G—C is an exponential, T Ty for
iAj, pi'. G-*H is a polynomial and p® 0 (i,j=\, ..., ri). We prove by induction
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onn. Let 2—1 and f=mp be bounded. If p is of degree zero, that is constant, then
m is bounded. Indeed, otherwise there would exist a sequence {r,}cG for which
[7726¢) |= 2. On the other hand, if W(zH is a balanced neighborhood of zero and
p$W, then there is an a>0 for which m(x,,)pfocV (n=1,2...). As [2ZI72x}1|" 1,
hence np=nm(x)~Im(x"p£aW. Forn  wehave ar2-1<I1, and hence p*an*WaWw,
which is a contradiction. That is, 72 is bounded. If at a point x0EG, [m(x0|# 1,
then |&(xQ| or \m(—x,)| is greater than 1, and hence m(nxQ or m(—x0
has arbitrary great absolute value, contradicting the boundedness of m. Suppose
now that we have proved our statement whenever p is of degree at most N —1,
and letp be ofdegree A sl. Then there exists yEG suchthat p{x+y)*-p (x), that is
Ayp is not identically zero, and it is a polynomial of degree at most A—L
Further, for xd G

m{x)Ayp{x) —m (y)-1Im(x+y)p(x +y)-m (x)p(x)

is valid, which implies that mAyp is bounded. Hence by induction jwj= 1 and this
implies that p is also bounded. Then p is constant by the results of [13].

Now suppose that we have proved the theorem for »— 1 and let nll2. Let
Pi~A[n)+gh where Ap Grf-»H is mr-additive and symmetric with diagonalization
A[n) and gp G—H is a polynomial of degree at most —1 (2=2, ...,Tr). It is
enough to prove that \mA=\ and AR? is constant. Let yEG such that T2(y)"
~T72i(y). If A denotes the degree of pt, then by our assumptions and by Lemma 1.1
we have

2 MA)[MO) O)L- i) AR +diiy()] =

N+ T2\
=2 { k J»Ly)-1-i) "N (*+ ("+ 1- ©B)))-

Here gqUy: G—H is a polynomial of degree at most m—1 (i—2,...,t) and
/: G-+H is a bounded function. By induction it follows that (772 (y)7721(y)_1—)iv#l
A\w) O implies |Td=1 and A-u) is bounded. As the condition surely holds for
i—2, our theorem is proved.

4. Continuity of exponential polynomials

Lemma 4.1. Let G be a topological Abelian group, H a locally convex topological
n
vectorspace and f: G-+H a continuous exponential polynomial. Then f =2 Pi*h

i=
where pp G-*H is a continuous polynomial and mp G—C is a continuous exponen-
tial o= 1, ..., 72).

Proof. Using the notation of Theorem 3.1, we can prove similarly, with the only
difference in the case »=1. Let f —mp be continuous, where p: G-*H is a poly-
nomial, p~O, and m: G-+C is an exponential. Ifp is of degree 0, that is constant,
then we show that m is continuous at zero. Obviously 72()= 1, and if m were not
continuous at zero, then we could find an e>0 and a sequence {Xx,,}cG with Xx,,-»0
and In(m,)—1]=T8 Let WczH be a balanced neighborhood of zero with p\W .
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As x—m(x)p is continuous, hence m(x,,)p—pdvW, whenever uis large enough.
On the other hand, e\m(x,,)—I|_1S | hence epdsfV and pd W, whichis impossible.
That is, m is continuous at zero, and by the exponential property it follows its con-
tinuity everywhere. The remaining parts can be proved in the same way as in
Theorem 3.1.

Theorem 4.2. Let G be a topological Abelian group, which is generated by any
neighborhood o fzero, H a locally convex topological vectorspace, f: G-+H an expo-
nential polynomial. 1 ff is continuous on some nonvoid open set, then it is continuous on
G. Iff is bounded on some nonvoid open set, then it can be expressed in theform f=

1l
—iglmiYiPi> where yp. G-+C is an exponential with [yf=1, mp G—C is a con-
tinuous exponential and pp G->-H is a continuous polynomial (7=1,..., n).

Proof. We use the notations of Theorem 3.1 supposing that/is continuous on
the neighborhood t/c G ofzero. We prove the statement by induction on n. First let
f=mp, and suppose that p is of degree O, that is constant. Then m is continuous on
u, and its exponential property implies its continuity everywhere. Suppose that we
have proved our statement for all p of degree at most N—1 and let the degree ofp
be N>-1 Let FcG beaneighborhood of zero for which V+ VczU. As G is gene-
rated by V, it iseasyto see, that there existsayd V forwhich Ayp is notidentically zero
on V. On the other hand, the degree of Ayp is at most N—1 and in the equation

mO)AYp(x) = m(y)~X{x+y)—+(x)

the right hand side is continuous on V, hence by induction we have the continuity of
m. Then, of course, p is continuous on u, and hence on G by [13].

Returning to the original statement of the theorem we suppose that it is valid
for T—L Then for all xd G we have

Pi(x)+ 12:n2mi(*)mi(x)_1Pi(rl) = “iM'VW -

We show that for example m2and p2are continuous. If pxis of degree N, then by
Lemmas 1.1 and 1.2 we obtain for all x,ydG

2 mE)[(*hO)  GO1- )*+VH) ) +ayO)] =

= [ D(»b(>)_1- 1) iV+L T7d I/ (x+(A+I-Ic)j;).

Here 77 is the degree of ph Ap. G"—4 is n;-additive and symmetric, and qi>y. G-+
-+H is a polynomial of degree at most 7—1 (7=2, ...,n). Let VaG be a neigh-
borhood of zero for which x,yd V implies x+ (N+ 1—k)yd U (k=0,1,..., N+ 1).
Then the right hand side of the above equation is continuous on V for all fixed yd V.
As T+AT2, there exists yd V such that m2(y)m1(y)~1—I~0. Indeed, supposing
the contrary the exponential property of mx and m2 together with the fact that V
generates G would imply mx*=m2. Returning to the above equation, choosing
yd V with this property, the coefficient of m2 on the left hand side is different from
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zero, hence by induction, m2 and its coefficient are continuous on G. As is of
degree at most h2—1, hence A2is continuous. Now we can apply our argument for
the function

E P1UL+(Pr-A")T2
L1ib

and hence the first statement of the theorem is proved.

For the proof ofthe second part we assume that/is bounded on U, and we prove
by induction again. The case n= 1 means that f=mp is bounded on U. Here we
prove by induction on the degree of p. As above, it is enough to show, that if the
exponential m: G->-C has the property that the function x—m(x)h is bounded on
U for some nonzero ltdll, then m—py, where y: G+C is an exponential with
M=1, and p: G+C is a continuous exponential. Let Wc.H be a balanced and
absorbing neighborhood ofzero for which h$W, and let a>0 be such that m(x) h€ctlvV
for all xEG. If mis unbounded on U, then there exists xEU with |m(x)|>a and
hence am(x)~1WczW, further h€ocm(x)~1Wc:W, which is a contradiction. Let
p=\m\ and y=m\m\~1 Obviously =1 and p>0, further vy, p: G-+C are
exponentials. If A=Inp, then A is additive and bounded on U, hence by [13] it is
continuous. Finally m=yexpA which was to be proved in the case n=1 From
now on the proof continues just like in the case of the first statement.

5. Measurability of exponential polynomials

Theorem 5.1. Let G be a locally compact Abelian group which is generated by any
neighborhood o f zero, H a locally convex and locally bounded topological vectorspace,
f: G-+H an exponential polynomial. | ff ismeasurable on some measurable set ofposi-
tive measure, then it is continuous. | ff is bounded on some measurable set of positive

n
measure, then it can be expressed in the form f—2}lu_|,be where mh yt, pL are
1=
the same as in Theorem 4.2,

Proot. Using the notations 0f4.2, let KaG be a compact set with 0 and /'
measurable on K (A denotes a Haar-measure on G). Using the local boundedness of I |
we may assume that / is bounded on K. First let n—1 and f —mp, where p is
constant. By the same method as above we obtain that mis bounded on K, and hence
on K+K too, but this latter set by the Steinhaus theorem has a nonvoid interior.
By theorem 4.2. m=py, where p,y; G—C are exponentials, p is continuous
and |y|=1. Thusy is measurable on K. Let s>0 be arbitrary. It is wellknown, that
there exists a neighborhood UczG ofzero suchthat

I W(x+Y)- YO)ldk (y) < eXK
K
for xdU. On the other hand,

IK*)-11 = /IK*)-1|200 = f \y(x+y)-y(y)\dX(y)<E
K K.
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whenever x£ U, thatis, y is continuous at zero. But this implies the continuity ofy,
and of m everywhere.

Now let p be of degree iV>1 and suppose that the first statement is proved if
71=1 and p is of degree at most N—1. Let UcG be a neighborhood of zero for
which yEU implies 1{KC\ (A—y))>0. Let y£ U bean element, for which Ayp is not
constant. These choises are possible in view of Steinhaus theorem and the fact that U
generates G. By the identity

m(x)Ayp(x) = m(y)-¥(x+y)-f(x)

we see that mAyp is measurable on the set KI'\(K—y) of positive measure, and
hence by induction we have our statement for n=\. From this step the proof con-
tinues just like in Theorem 4.2.

The second statement of our theorem can be proved similarly, and even in the
case 7i=1 the above proof works literally except the measurability ofy, but in this
case it is not needed.

References

[1] Aczél, J., Lectures on Functional Equations and Their Applications, Academic Press (New York
and London, 1966).

[2] P. M. Anselone, J. Korevaar, Translation invariant subspaces of finite dimension, Proc. Amer.
Math. Soc., 15 (1964), 747—752.

[3] F. W. Carroll, A difference property for polynomials and exponential polynomials on abelian
locally compact groups, Trans. Amer. Math. Soc., 114 (1965), 147—155.

[4] M. Engert, Finite dimensional translation invariant subspaces, Pacific J. Math., 32 (1970),

333—343.

[5] P. G. Laird, On characterization of exponential polynomials, Pacific J. Math., 80 (1979),
503—507.

[6] M. A. McKieman, General solution of quadratic functional equations, Aequationes Math,
(1970).

[71 M. A. McKieman, Measurable solutions of quadratic functional equations, Collog. Math.,
35 (1976), 97.

[8] R. C. Penney, A. L. Rukhin, D ’Alembert’s functional equation on groups, Proc. Amer. Math.
Soc,. 77 (1979), 73— 80.

[9] A. L. Rukhin, Thesolution of functionalequations of d’Alembert’s type for commutative groups,
Mimeograph Series 79—23, Dept, of Statistics, Purdue University, 1979.

[10] L. Székelyhidi, Functional equations on Abelian groups, Acta Math. Acad. Sei. Hungar., 37
(1981), 235—243.

[11] L. Székelyhidi, On the zeros of exponential polynomials, C. R. Math. Rep. Acad. Sei. Canada,
Vol. IV (1982), 189— 194.

[12] L. Székelyhidi, Notes on exponential polynomials, Pacific J. Math., 103 (1982), 583—587.

[13] L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hung., 45 (1985),
15—19.

(Received September 24, 1982)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, PF. 12

Acta Mathematica Hungarica 45, 1985



Acta Math. Hung.
45(1—2) (1985), 27—32.

ON «-CONTINUITY IN TOPOLOGICAL SPACES

I. L. REILLY* and M. K. VAMANAMURTHY (Auckland)

1. Introduction

Let S be a subset of a topological space (X, ST). We denote the closure of S and
the interior of S with respect to 9~by STcl S and ST int S respectively, although we
may suppress the ST when there is no possibility of confusion.

Definition 1 A subset S of (X, ST) is called
(i) an a-setif Sc.T int (3 cl{STint 5)),

(ii) a semi-open setif Sc.STcl (ST int S),

(iii) a preopen setif ScSl int {STcl S).

These three concepts were introduced by Njastad [5], Levine [1], and Mashhour
et al [3], respectively. Njastad used the term B-set for a semi-open set. Any open set in
(X, ST) is an a-set, and each s-set is semi-open and preopen, but the separate converses
are false. Theorem 3 below shows that a subset of (X, ST) is an a-set if and only ifit is
semi-open and preopen.

Following Njastad [5] we denote the family of all a-sets in (X, ST) by ST*, rather
than by the notation a(X) of [2] and [4]. The families of all semi-open sets and of all
preopen sets in (X, 3I) are denoted by SO (X) and PO (X) respectively. Njastad
[5, Proposition 2] proved that STXis a topology on X. It is unusual for either SO (X) or
PO (X) to be atopology on X. For example, Njastad [5, Corollary to Proposition 7]
has shown that SO (X) is a topology on X ifand only if (X, Si) is extremally discon-
nected. The complement of an a-set in (X, SP) is called an a-closed set. Semi-closed
and preclosed sets in X are similarly defined.

The concepts of a-continuity and a-open mapping have recently been introduced
by Mashhour et al. [4].

Definition 2. A function /: (X, .T)"(Y, &J) is called

(i) a-continuous if the inverse image of each open set in (Y, °U) is an a-set in
Y ™),
(if) a-open ifthe image of each open setin (X, ST) is an a-set in (X, %).

One purpose of this paper is to show that the distinction made in [4] between the
concepts of a-continuity and continuity, and between the notions of a-open mapping
and open mapping, must be interpreted very strictly. Indeed, we observe (in Theorem
1 below) that if the domain space of an a-continuousmapping/isretopologizedin an
obvious way, then the mapping/ is simply a continuous mapping. Furthermore, as
Theorem 2 indicates, if the codomain space of an a-open mapping g is retopologized
appropriately, then the mapping g is simply an open mapping. These observations

* The first author acknowledges the support of the University of Auckland Research Fund.
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put these notions of a-continuity and a-open mappings into a more natural setting,
and enable us to provide immediate proofs of many of the results in [4]. In Section
4, we give factorization results for these classes of mappings, and Section 5 relates
these classes to the a-irresolute mappings of [2].

2. a-continuity

Here we examine the relationship between the concepts of continuous mappings
and a-continuous mappings.

Theorem 1 The mapping f : (X, S~)->-(Y, 6l) is a-continuous if and only if
f: {X, S"*)-*(Y, 1)) is continuous.

Proof. We have /: (X, Y)—Y, W) is a-continuous if and only if f~ x(B)"S*
for all thatis if and only if f: (X, Y*)—Y, LL)) is continuous. O

The observation of Mashhour et al. [4] that continuity implies a-continuity is
simply a reflection ofthe fact that S'd IT*in the lattice of topologies on X. They show
by example [4, Example 1.4] that if one takes the topology on X as fixed, then the
notions of continuity and a-continuity are distinct. Theorem 1indicates that these
concepts are the same if one is willing to change the topology on X inthe appropriate
manner. Then [4, Example 14] can be regarded as the statement that the set
C((X,Y),Y) of continuous functions from (X,Y) to Y is a proper subset of
C((X, S™), Y), and this is not surprising.

Proposition 1. I fA isasubset of(X, Y) then
YcIT &lFcyY 3 Y cl(Y int(STclA)).

Proof, (i) S'cl A is Y closed and hence S'* closed, and Ads'cl A so that
Yacl Aa3~ cl A

(i) We use the fact that a set B in (X,S') isS™ closed if and only if
S'cl(S"int(S'cIB))dB. If we take B=S* cl A then AdB so that
S'cl(S"int(S~cl A))dS~ cl (S"int (S~cl))c5 since B is S~* closed. O

The following examples show that the inclusions in Proposition 1 are proper.
If A is a non-empty S~ closed set with empty S' interior, then cl (int (cl A))=0"
r/iS*cl A. On the other hand, if (X, S") is the reals with the usual topology and

T=[I,2Ju{-*-: %€n|, then cl(int (cl 1))=[1, 2]dA so that A is S"* closed and

A=S"*cl A, while we have S'cl A—A U{0}.

From Proposition 1 we can obtain equivalences for parts (iv) and (v) of Theorem
11. of [4].

Proposition 2. 1ff'. (Y, Y)—Y, dl) isamapping, then

(iv) f(S cl(Yint(S'cl A)))dWclf(A) foreach AdX
ifandonly if

(iv)' f(S* cl A)ddl clf(A) for each AdX.

Proof, (iv)' implies (iv) since by Proposition 1

f(S~cl(S"int(S'clA))) d f (S™*clA).
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Conversely, to show that (iv) implies (iv)’, let AcX, C=% clf(4) and
B=f"1(C). Then by (iv) f(J¢cl(Z int (7 cl B)))C% cl f(B)c% cl C=C. Hence
T cl (7 int (7 ¢l B))cf~1(C)=B, so that Bis I closed. Now AcCf~(f(4))c
cf~1(C)=B, so that J*clAcZ *cl B=B. Thus we have that f(J*clA)C
cf(BYcC=%cl f(A) asrequired. [J

The following result can be proved in a similar way.

PrOPOSITION 3. If f: (X, ) ~(Y, %) is a mapping, then

(V) T (7 int (T clf~A(M)))cf (U cl M) for each MCY,
ifand onlyif

Y Tl fA(M)Cf (U cl M) foreach MCY. O

Propositions 2 and 3 reveal that Theorem 1.1 of Mashhour et al. [4] is a restate-
ment of the standard equivalent characterizations of the continuity of the mapping
I AX T~ (X U)-

Lemma 1.1 and Theorem 1.3 of [4] raise the question of when 7% A equals
(7 |A)* for a subset 4 of (X, 7). We observe that Lemma 1.1 is no longer true
for A¢ PO (X). If (X, 7) is the space of Example 1.4 of [4], and A={b, ¢} then
T int A=0 so A¢ PO (X). Let B={a,b). Then Bca(X) but BNA={b}¢a(A).
We have that 7 |4 is indiscrete so that (74)* isindiscrete, while 7|4 is the discrete
topology on A.

Lemma 1.2 of [4] follows immediately from the observation that 7 #1is a topology
and the definition of subspace topology. Using our Theorem 1, Theorem 1.4 of [4]
can be regarded as part of the standard result of the preservation of continuity under
the piecewise definition of maps. There is a similar result if the family {U;:i€I} of
[4, Theorem 1.4] is a locally-finite collection of 7 * closed sets.

3. o-open and ¢-closed mappings

The relationship between the notions of a-open mapping and open mapping is
given by the following result whose proof is an immediate consequence of the defi-
nitions.

Tueorem 2. The function f: (X, 7)—~(Y, %) is an a-open mapping if and only if
(X, 7)~(Y,U*) isan open mapping. [J

The fact that % c%* implies that each open mapping is an ¢-open mapping.
If we take the topology on Y as fixed, then a distinction can be made as in [4, Example
2.3] between the notions of a-open mapping and open mapping. Theorem 2 above
indicates that conceptually there is no distinction if one is willing to retopologize the
codomain in a suitable fashion.

Exactly similar comments apply to the class of a-closed mappings introduced and
studied in [4], since f: (X, 7)—(Y,%) is a-closed if and only if f: (X,7)—
—(Y, %% is closed. :

Definition 2.2 of [4]is simply that of the 7 closure of a subset in (X, 7). This
observation together with Theorem 2 above indicates that Theorems 2.1, 2.2 and 2.3
of [4] provide restatements of the basic characterizations and properties of open and
closed mappings.
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4. Comparisons

In this section we provide ‘factorizations’ of the notions of a-continuity and
a-open (a-closed) mappings. The following classes of mappings were introduced in
[1] and [3].

Definition 3. A function /: (X, <llis called
(i) semi-continuous (abbreviated as s.c.) if the inverse image of each open set

in Yis semi-open in X,

(if) semi-open ifthe image of each open setin X is semi-open in Y,

(iii) precontinuous (abbreviated as p.c.) if the inverse image of each open set in
Y is preopen in X,

(iv) preopen ifthe image of each open setin X is preopen in Y.

Our “factorizations’ depend on the next result that &x= SO (X) MPO (X).

Theorem 3. A subset S ofa topological space (X, .T) is an @setifand only if S
is semi-open andpreopen.

Proof. One implication, namely ~"acSO (X)fi PO (X), is clear since closure
and interior respect inclusion.

Conversely, let S be semi-open and preopen. Then since S is semi-open we have
Sccl(intS), so that cl Sc cl(cl (int S))=cl (int S), and hence int(cl S)c
cint (cl (int S)). But since S is preopen, Scint (cl S) so that Scint (cl (int S)),
thatis Sisan ocset O

Mashhour et al. [4, Theorem 3.1] have given an alternative proof of the following
characterization ofa-continuity.

Corollary 1 The function f\ (X, .T)-+(Y, W is a-continuous if and only if
it is semi-continuous and precontinuous.

Proof. That/ is a-continuous implies/ is s.c. and/ is p.c. follows immediately
from the definitions, as observed in [4].

Conversely, let/be s.c. and p.c., and let Fbe an open setin Y. Then / -1(F)€
6SO (A)M PO (X), so that / -1(K)E~'aby Theorem 3, and hence/is s-continuous.

Corollary 2. Thefunctionf : (X, ST)-*(Y, "¥) isy-open ifandonly if it is semi-
open and preopen.

Proof. One implication is immediate from the definitions, see [4].

Conversely, let/be semi-open and preopen, and let U be an open setin X. Then
[(tHESO (Y)MPO (YY), so by Theorem 3,/([/)E"#*, and hence/is a-open. O

We have the analogous result for the class of a-closed mappings, / : (X,
-*(Y, U is a-closed if and only ifit is semi-closed and preclosed.

5. a-irresolute mappings

The class of a-irresolute mappings was introduced by Maheshwari and Tha-
kur [2].

Definition 4. A function / : (X, (Y, °U is a-irresolute if the inverse image
of every a-set in Yis an a-set in X.
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An alternative characterization of a-irresolute mappings is available immedia-
tely from the definition. We have that / : (Z, 2T)-*(Y, °U) is a-irresolute if and only
if /o (X, IXX)-*(Y, W is continuous. It is clear that/ is a-irresolute implies that/
is a-continuous. Example 1 shows that the converse is false.

Example 1L Let X—{a b, c,d} and Y={x,y,z}, and define topologies
X —{f),X, {a}, {b,c}, {a, b, c}\ and ®={0, Y, &}}. We define f:X-*Y by
f(a)=x, f(b)=y, f{c)=f(d)=z. Notethat 2Ir'X=9~ and %*—{$, X, {&} {a. y), {a, z}}.
Then/ is a-continuous, but not a-irresolute since /~]({x, y}) = {a, b}$Xx.

We observe that Theorem 3.2 of [4] shows that if/ is preopen as well as a-con-
tinuous then/ is a-irresolute. Our next example shows that this implication is not an
equivalence.

Example 2. Let (X, ,X) and (F, dl) be defined asin Example 1. Then we have that
PO (F)="lix. We define h: Z—F by h(a)=h(d)=z, h(b)=h(c)=x. Then h'is
a-irresolute, but Itis not preopen since h({a})={z) is not preopen in F.

Thus our next result is an improvement of Theorem 3.3 of Mashhour et al.[4].

Proposition 4. If f : (X, 5")—F, d/f is a-irresolute and g: (Y, "U—Z,Y,
is s-continuous, then gof: (X, .X)-"(Z, iX) is a-continuous. O

Definition 5. The function / : (X, ST) —(F, ul) is called

(i) irresolute if the inverse image of each semi-open set in Fis semi-open in X,

(i) pre-irresolute if the inverse image of each preopen set in Fis preopen in X.

We observe immediately that if/is irresolute then it is semi-continuous, and iff
is pre-irresolute then it is precontinuous. In Example 1, SO (X)="YU{{a, d}, {b,cd}}
and SO (Y)=4aJ so that the functionf is semi-continuous but not irresolute since
[ -1{a, _YHESO (X). In Example 3 below the function j is precontinuous but not
pre-irresolute.

In Theorem 3.4 of [4] it is shown that if/ is a-open in addition to being precon-
tinuous then/is pre-irresolute. Example 1 shows that the converse is false. There we
have that PO (Z)="r U{{6}, {c} {a b}, {a c} {a b, d} :{a c, Jf} and PO(F)=

The function/is pre-irresolute but it is not a-open since f({b, ¢))={y, r}tV.

Corresponding to Proposition 4 we have the following results, the proofs of
which are straightforward.

Proposition 5. Let f : (X,. T)*(Y, W and g: (F, %)-(Z,I).

(i) Iff isirresolute and g issemi-continuous theng o f is semi-continuous.
(i) 1ff ispre-irresolute andg isprecontinuous then gof isprecontinuous. O
Our next result relates these classes of ‘irresolute’ mappings.

Proposition 6. If f: (X, d~)-+(Y, °ll) is irresolute and pre-irresolute thenf is
a-irresolute.

Proof. Let Vbe an a-setin F. By Theorem 3, V =SO (F)fIPO (F). Sincelis
irresolute and FESO (F) we have / -1(F)6SO (Z). Similarly,/is pre-irresolute and
F6PO(F) implies / “/L~"PO (Z). Hence /- JK)ESO (Z)PIPO (X)=2T\ so
that/ is a-irresolute.

That the converse of Proposition 6 is false is shown by the following example.

Acta Malhematica Hungarlca 45, 19%



32 I.L REILLY AND M. K. VAMANAMURTHY: ON «-CONTINUITY IN TOPOLOGICAL SPACES

Example 3. Let (7, °J and (X, ST) be as in Example 1, and define the function
ji (7, °U)-*(X, ,iT) by j(x)=b, j(y)=c, and j(z) =d. Then/is a-irresolute. But/ is
notirresolute since j _1({a, d}) = {z}$SO (7), nor is/ pre-irresolute since j~\{c}) =
= {y}iPO(7).
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ON HYPERSURFACES OF FINSLER SPACES
CHARACTERIZED BY THE RELATION Mak=eha}

B. N. PRASAD (Gorakhpur)

The relation between induced and intrinsic connection parameters of a Finsler
hypersurface and the heridity properties of special Finsler spaces depends, to a large
extent, upon a tensor M8 ([1], f14], [15]). Some properties of Finsler hypersurfaces
with Mx?=0 have been studied by Brown [1]. In this paper we shall study those
Finsler hypersurfaces for which Mx3=ghx3 where q is a scalar function and hx3 are
the components of an angular metric tensor. In a hypersurface of a oreducible
Finsler space Md3is of this form. It has been shown that the hypersurfaces of some
special Finsler spaces are Finsler spaces of the same type if the hypersurfaces are
characterized by the relation Ma3—ghxR.

1. Fundamental formulae

Let Fnbe an n-dimensional Finsler space equipped with metric function F(x, x).
Let Fn_1 be a hypersurface of Fngiven by the equation x‘~x'(u*)*. Suppose that
the functions x'(u”) are at least of class C2and the matrix whose elements are

o
toi.e.
(11 X‘= Baiix.

Il gijipc, /1) denotes the metric tensor of Fnthen the induced metric tensor on Fn” is
given by
(-2 g%i(u, U) = gijix, x)BXB8.

At each point of the hypersurface a unit normal vector N'(x, x) is defined by
13) (@ dgijx, x)NI(x, x)B{ =0, (b) gtd(x, X)N“(x, X)NJ(x, x) = 1.
If (Ni, Bf) are the vectors dual to the vectors (N\ BX) then we have

f(a) Bf(x x) = gd‘(u, u)gij(x, x) Bj,

1(b) Nt(x, x) = gij(x, X)Nj (x, x),

(15 g"B”Bj, = giJ- N ‘Nj.

! is of rank n—L The element of support x' of F,, is to be taken tangential

(14)

* Throughout this paper the Latin indices /7 1/, k, ... vary from 1 to n while Greek indices
a, 8,:,0 ... vary from 1to n—1
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If T%(x, x) denotes the Cartan’s connection parameter of F,, then the induced con-
nection parameter 6*(n, i) of F,,_1 is given by

(1.6) N*(u, U) = Bf(BA+r%BjB"

where = (ﬂx*);. If Ay and Cijk denote the angular metric tensor and (h)hv the

torsion tensor of Fnthen from (1.1) and (1.2) it follows that the corresponding ten-
sors of Fn_xwill be given by

.7 (@ K,, =hijBiBj, (b) Cdy= CikBxBjB¥.
If P4 is the intrinsic connection parameter of Fn_xthen [14]
(1.8 tRB-F % = Avn,
(1-9) A R = g;iABRI = (M Qi+ MB7Qr—MRnfij,,) —
“ {Mit Cn+ M&E CR—M &k CRn) B 00,
where
(1.10) @ M@ —CikNkB%B j, (b) Q3= N"BR+r"BiB"r

and 0 denote the contraction with the element of support u".

2. Finsler hypersurfaces with M a3—ghX¢

A Finsler space Fnis said to be a c-reducible [4] Finsler space ifits (h)hv torsion
tensor Cijk is of the form

2.1) Cijk — - (Cihjk+Cjhki+ Ckhij)

where C;= Clikg'k is the torsion vector. From (1.1) and (1.3) it follows that

(2.2) hijN'Ww =1, hijBINJ=0

The relations (1.7)a, (1.10)a, (2.1) and (2.2)lead to M xB—ghaB where q:n_JF"iC’A"
Hence we have the following

Proposition 1. In a hypersurface of a c-reducible Finsler space, Mx3=ghxR.
A semi c-reducible Finsler space is characterized by the relation [9]

(23) cijk = -~T (Cihjk+ Cj hki+Ckhu) +-" C iCICk
where C2=giiCiCj and p+qg=1I (pcj*O). From (1.7)a, (1.10)a, (2.2) and (2.3) we

get
4 _ Pd L I YPT T

* MaB differ from those in the paper [1] by a factor F.
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where p=CiN‘and Lx=C; . Now if Mal= Q3 then

Since the rank of the matrix hx3is n—2, from (2.4) it follows that either n= 3 or
=—"~£- If g=- Po/f then (2.4) leads to either p=0 or La=0. Hence we have
n+ n+
the following

Proposition 2. In a hypersurface of a semi c-reducible Finster space F,, if Mai=
= shXthen either the dimension ofthe enveloping space is three or Q is tangential to the
hypersurface or Q is normal to the hypersurface.

Corollary. | f Cfis tangential to the hypersurface of a semi c-reducible Finsler
space then M x3=0.
Now we establish the following

Theorem 1 |f the hypersurface ofa Finsler space is characterized by the relation
Mx3= Bhx3 then the induced and intrinsic connections o f the hypersurface are identical if
and only if either g=0 or Qx0=0.

Proof. From (1.9) it follows that if Mx3= Q? and then
hRn"zO~ C3Wi20) —O0,
from which we have either g=0 or
(2-5) ~ C XnQm-+hxRQ40+ hxnQRO--hRNQX0 = 0.

Contracting (2.5) with lixwe get Qim=0 which in view of (2.5) leads to 3a0=0.
Conversely, if Mxf= QP and either 0=Q or Q,,=0 then from (1.9) we get
djj,,=0. This proves the theorem.

3. Heredity property of some special Finsler spaces

The hypersurface of a c-reducible Finsler space is a c-reducible Finsler space
[15]. Similarly the hypersurface of a semi c-reducible Finsler space is a semi c-redu-
cible Finsler space [16]. Thus the c-reducibility and semi c-reducibility properties of
a Finsler space are heredity properties. In the following we shall study the heredity
properties of Landsberg space. S3-like and S4-like Finsler spaces and the Finsler
spaces depending upon T-tensor.

A Finsler space is said to be a Berwald’s affinely connected space ([13], p. 81)
ifits Cartan’s and Berwald ’s connection parameters are equal and they are functions
of coordinate only. A Landsberg space is characterized by the relation PX~0
([11], [12]), where P)k= C)kUx\

Differentiating (1.6) with respect to iig and using the relation [J] 08
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we get

AC*X Ar*1
(3.1) -jfi- =

This gives the following

Proposition 3. In the hypersurface of a Berwalds affinely connected space the
induced connection parameter is independent of the directional argument if and only
if either MxB=0 or Qxg=0.

Contracting (3.1) with id and using the relations (1.1) and Al

p. 81) we get

A 2MIQ"B4P'hjB\Bf

This relation gives the following
Theorem 2. | f the hypersurface o f a Landsberg space is characterized by the rela-
lion =nhyp then 'D'r!éim vanishes ifandonly i f either n=0 or fil0=0.

Since in a hypersurface. = AT n’, we have by virtue of Theorems land 2,

Theorem 3. | f the induced and intrinsic connection parameters o f a hypersurface o f
a Landsberg space are identical and Mal=gh¥ then the hypersurface is a Landsberg
space.

A Finsler space F,(n=4) is called S3-like [3] if the »-curvature tensor SMKkis of
the form

(3-2) F~Shijk = k{ntj hik—hknhjf,

where the scalar K is called the »-curvature and it is a function of coordinate only. It
is well known [6] that SMk of a 3-dimensional Finsler space is of the form (3.2).
Since we have to discuss the S3-likeness of a hypersurface of F,, we consider wnis5.
Contraction of (3.2) with g'k gives F2Shi=k(n—2)hh] where ShJ=ShiJkgk is a v-
Ricci tensor. Again contracting this with ghJ we get k=F25/(n—1)(M—2) where
S= Shighl is a tascalar curvature. Thus a S3-like Finsler space is characterized by the
relation
5

(3.3 Shijk _D(n—=) IIrik Mk
The Gauss equation for the »-curvature tensor is given by [17]
(3.4) SX¥t5 = ShijkBZBRBJIBk+ M LLIV M>xaMR4.

If S denotes the »-scalar curvature of Fn 1, i.e. S= SXY*Ilgk, then from (1.5),
(2.2), (3.3) and (3.4) it follows that

(3.5) S=/r2-S+M

1—1
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where M=M2M4—MgM?E. The relations (1.7)a, (3.3), (3.4) and (3.5) lead to

S
(n—2)(n—3)

M
D=3 Cenliss—anhes)-

(36) Saﬂmi = (hamhﬂa—hﬂq haz6)+Mar,Mﬂ6_Ma6Mﬁn_

This relation gives the following

THEOREM 4. A hypersurface of an S3-like Finsler space is an S3-like Finsler space
if and only if
M

(37) ManMﬂﬁ_MadMﬂy, = —(n—_m (hw,hﬁﬁ_hﬂthﬁ)'

Now if M,z=0h,s then M=¢*(n—2)(n—3) and (3.7) holds identically. Thus

THOREM 5. A hypersurface of an S3-like Finsler space is an S3-like Finsler space
provided the hypersurface is characterized by the relation M 5= oh,.

The v-curvature tensor Sy, of any four dimensional Finsler space is written in
the form [8]

(3.8) F? Spiji = hyy Mg+ hyg My — hyy M ;— hy; My,

where M;; is a symmetric tensor and satisfies MOJ:O. Matsumoto and Shibata [9]
introduced the concept of S4-likeness. A Finsler space F,(n=5) is called S4-like if
Shiji 1s of the form (3.8). Thus in order to introduce the S4-like hypersurface of F, we

take n=6. Matsumoto and Shimada [10] have obtained the value of Af;; in terms
of the v-Ricci tensor and the v-scalar curvature in the form

=35 (S ).
Mu= g P 3=n v

Thus an S4-like Finsler space is characterized by the relation

S
(3.9 S = g o g (hijhu— hy b} +——3 (i Siac+ i Suy— s S — hij Sy
From (1.5), (2.2), (3.4) and (3.9) we get
n—4 ” 1 S L
(3.10) Sa,’ = aﬂ,m)gﬂa == _3 ShlBgB,‘I’_"‘_“j (m_ S‘J NINJ) hm"}_ Qa,,,
(3.11) 5= 8,8"=S—2S;NN+M

where Q,,=M§jM,,—M: M, and M=M2M§j—M5M:. From (1.7)a, (3.4), (3.9),
(3.10) and (3.11) it follows that

"
(n—3)(n—4)

+ Ngs Say— Pas Spy— Mgy Sas) + Qapna

(3.12) Saﬂn& = (hﬂ,, ha& hﬂ‘; ,,,)'{“ (h,,,,,Sﬂ,;-i-
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where

Q&P — M, (gh,s —Iliis hart) ~

Hence we have the following

Theorem 6. A hypersurface o f an S4-like Finsler space is an S4-like Finsler space
ifandonlyif Qal,s=0.

Now if Mx3=Qid} then Qal=Q@(n—3)ha}, M=par(n—2)(n—3) which give
Q¥=Q Hence we have the following

Theorem 7. A hypersurface o f an S4-like Finsler space is an S4-like Finsler space
provided the hypersurface is characterized by the relation = ohyfi.
The '-tensor in a Finsler space F,, is defined as [5]

where /rare the covariant components ofthe unit vector in the direction ofan element
of support x“and [t stands for u-covariant differentation. If Thijk vanishes identically
then F,,is said to satisfy the '-condition [7]. Furthermore Ikeda [2] introduced a spe-
cial form of '-tensor given by

(3.13) Thijk (v hikP hijhik 1 hkkhfj),

where A(x, x) is a scalar function. 1f a I'-tensor of a Finsler space F,, is of the form
(3.13) then we shall say that Fnis a -reducible Finsler space. It is well known [2]
that every c-reducible Finsler space is I'-reducible.

If DS denotes the '-tensor of F,, _k then we have by (1.5) and (1.10) (a)

(3.14) Td¥o = THKB/MR B{B\+ F(MX3MrS+ M wMBs+ MaM ).
The following theorems are direct consequences of (3.14).

Theorem 8. | f the hypersurface of a Finsler space satisfying the T-condition is
characterized by the relation Ma3= ghX? then the hypersurface is T-reducible.

Theorem 9. The hypersurface o f a T-reducible Finsler space is T-reducible pro-
vided that the hypersurface is characterized by the relation Mx3= QhaR.
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ON ALMOST NILPOTENT RINGS

A. D. SANDS (Dundee)

Our object here is to answer two questions left open in [1]. We recall from [1]
that oq, og, d3are defined respectively to be the classes of all rings R such that every
non-zero subring, left ideal, ideal ofR strictly contains a power of R. It is shown there
that

i1?7a2g £03¢

where 8 denotes the lower Baer radical, the lower radical generated by oq and
Bv the Andrunakievic antisimple radical. We show here that R=£’al and that

The example given for this second result contradicts Theorem 3 of [1]
and we point out a possible error in the proofthere of Lemma 3. Further we prove
that i?a3is an A-radical.

Theorem 1. o is the class o f all nilpotent rings. jSfoq is equal to the lower Baer
radical &.

Proof. Since it is clear that every nilpotent ring belongs to oq to prove the Theo-
rem it is sufficient to show that each ring R in ogis nilpotent.

Suppose first that R contains a non-zero nilpotent element a. Let S be the subr-
ing generated by a. Then the elements of S are the polynomials in a with integer
coefficients and zero constant term. Thus a”’=0 implies Sm=0. Since REoq there
exists nsuch that RnczS. Therefore Rnm=0 and so R is nilpotent.

Suppose next that R contains a non-zero element a with non-zero right annihi-
lator. As above it follows that S has non-zero right annihilator in R and so R" has
this property also. From this it follows that R has non-zero right annihilator. Hence
R contains a non-zero nilpotent element and so R is nilpotent.

Finally we may suppose that each non-zero element of R has zero right anni-
hilator. Let afR, aAO and let The the subring generated by al Then, for some inte-
gern, RnaT. Let m be an odd integer, m~n. Then a"fR" and so T. It follows
that amis equal to a polynomial in a2with integer coefficients and zero constant term.
Using the fact that a has zero right annihilator we see that there exist polynomials in
a of the following type

ka bk2uA-b... 4-ksaA = 0,

where each term ka, ktaf‘ is non-zero, 1</2<...</s and s*2. Amongst all such
expressions assume that we have chosen one with the smallest value of s. Let b—
=Krat~x+...+ksa*>1 Then it follows that b~O from the choice above and the
fact that a has zero right annihilator. For any rER, a(kr+br)=0 and so kr+br=0.
In particular b2——kb. Let U be the subring generated by b. Then U=Zb. Letp bea
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prime not dividing k. Then either pb=0 or RqgczpU for some integer g. In the second
bg=ptb for some integer tand so (pt—(—k)q~D)b =0. In each case b has finite order
with respect to addition and so U is a finite ring without non-zero nilpotent elements.
It follows from the Wedderburn—Artin Theorem that U is a direct sum of fields.
This gives U2=U which is impossible with UQR and Rdal. It follows that I? is
nilpotent.

We now give the example which shows that JS?a2" fR43. In [1] a ring W is used
which is defined to be the set of all rational numbers m/n where m is an even and n
is an odd integer. It is shown that Wda2 but that W$ . LetI? denote the 2X2
matrix ring with entries from W. We shall show that Rda3 but that R 4J8%2. The
statements Wdoc2, Rd.4Po:2 contradict Theorem 3 of [1]. The present author cannot
follow the assertion MnQP in the last line of the proof of Lemma 3. This assertion
is true if P is an ideal rather than a left ideal. So the remarks after Theorem 3 in [1]
about ifa, and =Sfa3(which is misprinted as £Par on p.14, line 20) are true because of
Theorem 1 and this fact.

Let A be a non-zero ideal of R and let a occur as an entry in a matrix of A. Let
rEjj denote the matrix with r in position (i,j) and all other entries zero. Then it is
clear that 4aEw belongs to A for all i,jd {1, 2}. Let Au denote the set of entries
occurring in position (i,j) of matrices in A. Then each Awu is an ideal of W and so
Aii) W"u for some integer Mu. Let Tn>Wy+1 for all i,j. Then, from the above, it
follows that Rm™ A. It follows that Rdoc3. Now suppose that Rd&a2. In [1] it is

shown that jSa?is superniipotent; hence R contains a non-zero ideal A ina2. Let L be
the set of matrices in A whose second columns are zero. Then L is a non-zero left
ideal of A. No power of A has the property that every matrix in it has second column
equal to zero. Hence no power of A is contained in L. This contradicts Ada2. There-
fore RQJifaa. Thus jSfa2X"Sfa3 and so a2Xas3.

An example has been given in [5] to show that S£a3is strictly contained in Bv.
This question was raised first in [3].

It is shown in [1] that jS?a2is left hereditary. The above example shows that JEx2
is not left strong. We now present further results of this type for these radicals. The
notations used in the next result may be found in [2].

Theorem 2. £7a3 is an N-radical.

Proof. Let (R, V, W, S) be a Morita context such that VsW=0=>s=0 and
such that R is in the semi-simple class of the radical SEa3. We need to show that S is
also semi-simple. If not then S contains a non-zero ideal A in a3. Since DAmcan
properly contain no power of A we have NMAnm=0. Let B=VAW, then B is a non-
zero ideal of R. Let A be a non-zero ideal of B. WKV—0 implies VWKVW=0,
which implies A3=0. Since Baf£fa3, R and B are semi-prime rings and so KAO
implies K3#0. Hence WKV is a non-zero ideal of A. Since Adoc3 there exists an
integer nsuch that A"czWKYV. Then

B"+2= (VAW)M2 - VAWV (AWV)m-xAWVAW d"VAWVANWVAW Q

g VAWVWKVWVAW g VAWKVAW g K.
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If no power of B is strictly contained in K then we must have 0"K=B"+2=B"+3=
=...=Bm=.... Let KEK. Then WKVEWBmMV=W (VAW)mVQAm for all m. Hence
WkV=0 and so VWkVW=0. Since R and VW are semiprime rings it follows that
k=0. This contradiction implies that K properly contains some power of B. Hence
B£a3. This contradicts the fact that R is semisimple. Therefore S is semisimple. It
follows from Theorem 10 of [2] that jE?a3is a normal radical. Since R<zERtx3it follows
that SRa3is a supemilpotent normal radical and so an TV-radical [4].

In [1] it was shown that i?a3is hereditary. From Theorem 2 it follows that SCa3
is left and right hereditary and leftand right strong.

Having seen that og” a2 a3it is natural to consider the class dual to a2, i.e. the

class a2 defined using right ideals instead of left ideals. One has dually ax$a2%a3
and so the question arise as to whether a2=a2 or jS?a2= 2i?a2. We have not been
able to settle these questions. In Lemma 1 of [1] itis shown that a2is left hereditary and
so, dually, a2is right hereditary. We now show that the dual results hold also.

Lemma, a, isright hereditary and aZ2is left hereditary.

Proot. Clearly we need only prove one of these results. Let REoc2 and let L be
a non-zero left ideal of a right ideal A of R. Then L+RL is a non-zero left ideal of
R and so there exists n such that RnczL+RL. Then Ami<AR"<=A(L+RL)Q
QALAML. Since DRm=0 and this implies C\Am=0, some power of A is strictly
contained in L. Hence A€ a2. Thus a2is right hereditary.

It follows that the radicals =82 and jS?a2are each left and right hereditary. We
have also seen that JS?a3is left and right hereditary. It should be noted that the class
aditself is neither left nor right hereditary. We sawthat the 2x2 matrix ring R with
entries from W belongs to a3. However the leftideal L of R consisting of all matrices
of R whose second columns are zero belongs to JE?3 but not to a3 For if A is the
subset of L whose entries in position (1,1) are zero then A is anon-zero ideal of Land
bnpA for any n. Similarly by using rows one can show that a3is not right heredi-
tary.
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(r, r)-FREE BORDISMS, CHARACTERISTIC
NUMBERS AND STATIONARY POTNT SETS

S. S. KHARE* (Shillong)

Introduction

C. N. Lee and Wasserman [7] developed the notion of characteristic numbers for
G-manifolds and proved their G-bordism invariance. In [2] we defined characteristic
numbers for an unoriented singular G-bordism and proved their invariance with
regard to singular G-bordism. The case of oriented singular G-bordism is considered
in [3] and [4]. One of our primary aims in this paper is to develop these notions for
(', T)-free singular bordisms, 'cI™ being families of subgroups in a finite group
G. (For definition see [6]). In [2] wetackled this problem for some special pairs of fa-
milies (for so called “almost adjacent” pairs). In an eifort to consider more general
pairs of families, we get an analogue of Stong’s result [6, Proposition 2] for finite
abelian groups in 83. In this section we prove that if (if, 0) is a G-manifold with
stationary point free induced action ofthe subgroup G2,then (M n, 0) is a G-boundary,
G a finite abelian group. Lastly in &this analogue has been used to show that if the
fixed point set F of G2in M" is nonempty and if F has an equivariant trivial normal
bundle in M", then (M n, 0) is a G-boundary.

The author wishes to thank Dr. P. Jothilingam and Dr. R. Tandon for several
helpful discussions and Dr. Kalyan Mukherjea for this helpful comments. | am
indebted to Prof. R. E. Stong for his invaluable suggestions.

Characteristic numbers for an almost adjacent pair (I", ')

Let G be a finite group and Xbe a G-space. Let h* be an equivariant cohomology
theory and /* be the associated equivariant homology theory [1] given by h* —H*A
and = where A is a functor from the category of G-spaces and G-maps to the
category of topological spaces and continuous maps, H* is the singular cohomology
theory and //* is the associated singular homology theory. Let

<> h*(X; ©) B h*(X; G) -

be the Kronecker pairing.
Suppose for each compact G-manifold W there exists a class [W,dW]€
<Uu(W.dW\ G) such that
a) [WxUW,.dwWxUdWZ=[WLdW,]+[W2 dIF]
and
b) d*[IV,dW]=[dIV].
Such an element [W, d W]Crh{W. dW; G] is called a topological class of W.

* The author was partially supported by D. A. E. grant.
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46 S. S. KHARE

Following Stong [5], a family I" in G, is a collection ' of subgroups of G such
that (i) #6 ' implies that all the subgroups of H also belong to I (ii) LU I implies
that gHQ"ZT, \'gdG. Let f'c f be families in G such that each member of
F—I" ismaximal in G. Such a pair (', ") is called a pair of almost adjacent families.

For any subgroup if of G let K= % , N bemg the normalizer of H in G. Let FH(X)

be the set of x£ X suchthat hx=x, VhdH. Consider the action of K on FH(X) by
(gH)x=gx. Let EK be the total space ofthe universal Atbundle. For a pair (I, ')
of almost adjacent families, consider the equivariant cohomology and equivariant

homology
h*(X- G) = 0 H*((EKXF,,(X)/K- Z2
H

K{X\ C) — 0 H*((EKxFn (X)/K\ Z2,

the summation is over the set of all representatives of the conjugacy classes of sub-
groups Hin T —I'". Let X be a G-space and [Mn dM", 9 6,f] be an element of
(I, r')-free bordism group xn(G; I, I'") (X) [5]. Then

AIM" G) « 0 0 H*(Fh(M")/K-, Z2,
H k=0

where Fki(M") is the union of ~-dimensional submanifolds in FH(M"). We define
a topological class [M,dM] of M" in /r*(/IndMn;G) to be 0 0 ak

where okdHK(FAM")/K', Z2 is the fundamental class of Ff(M")/K. Let
udh*(XxB(0, G),,; G). Let zMn: M"-»B(0, G),, be the tangent map.

Definition 2.1. We define the wu-characteristic number of an (I", I'")-free element
(N/ndM" (p, 0,f) by ((/XrmnY(un), [M,dM])ez2.
Regarding the bordism invariance, we establish

Theorem 2.2. \ M, dM", 9 0,f]1Exn(G\ I, ") (X) iszero if and only if all the
n-characteristic numbers (corresponding to the theory h*) ofthe (I", F’)-free element
(M",dM", ip, d ,f) are zero.

Proof. The G-equivariantmap/: M"AX gives A'-equivariant map /: Fjf,(M")-»
Fh(X). Let
v FffIM™) - F,,(B(0, KOn-K)

be the normal map. In fact the image of vk will be contained in F,',(B(0, N),, B the
union of path components of pELFH(B(0, N),,"k) for which the fibre (y'~Rp at p
contains no trivial //-representation, y"~k being the universal real W-vector bundle.
Let ak: FA(M")-*EK be the cover of the classifying map for/~-bundle F,,(M")—
-*(Fh(Mn)/K. Letfk bethe map obtained from ak X (/X k) on passing to quotients.
This gives the map

4:*(G; I, IHY(X)-0 07 XK{(EKX{FH(X)XF'H(B(0, N),,_R}/K)
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defined by
nAM™, OM", 9, 0. 1) = & & [FEOM/K, fi.

We know that 7 is an isomorphism [5] and thus [M", dM", ¢, 0, f] is zero if and only
if [FE(M™)/K, fH] is zero, Yk and H. Next the group h* (XxB(0, G),; G) is iso-
morphic to

57 k€__f_30 [H*((EKX{Fu(X) X Fy (B0, N),_)))/K: Zy)® H*(BO,; Zy)].

n
Also (fXtu)*=@B @ (fHEXH)* where tf: Fk(M")/K— B0, is the tangent map.
H k=0

Thus the u-characteristic number
{(f X tpm) * (), [M, OM]) = <§IB k@o (X)) * (1), 61119 k@o ol

where uy! is given by u=¢ @ ufl. This together with the fact that |M", dIM™", ¢, 0, f]
H k=0
is zero if and only if [F& (M™)/K, fi] is zero gives the theorem.

An analogue of Stong’s result and characteristic numbers for
a more general pair of families

So far we confined ourselves to a pair of almost adjacent families. In an effort to
get rid of almost adjacent families as much as possible, we come across an analogue
of Stong’s result [6, Proposition 2] for general groups. For this let G be a finite abelian
group and I7 be the family of all subgroups of G. Let I'"cI" be families in G such
that there exists an element a in G of order 2 such that

(1) HEI'=[HU {a}er,

(2) a¢ H, YHeD —TI,

(3) the intersection S of all the members of I'—I""is in I'—I"". We call such
a pair of families an admissible pair with respect to a€G.

ExAMPLE 3.1. Let G be a finite abelian group of even order given by G*XH,
where H is a finite group of odd order and G2= >< (Zyi)m. Let Fk—{U>< V:Visa
subgroup of H and U is a subgroup of G2 not contammg ZE=Th ), L=k=y.
where t, ..., t, generate (Zy)r, y,= Z’n} It is simple to see that (I'y.q, ) is

an admissible pair with respect to t,‘ﬂl Here by I', ., we mean the family of all
subgroups of G.

THEOREM 3.2. If (I, I'’) is an admissible pair of families in G with respect to a,
then a (I, I'')-free element in »,(G; I, I'’) is zero as an element of x (G; I1, I'").

PROOF. It is enough to show that the homomorphism i,: %, (G; I, ")~
—%,4(G; II, I'") induced from the inclusion i: (I, I'")—(I1, I'’) is the constant homo-
morphism. Let [M, 0] be an element of %, (G I, I'’). Let F be the closed submanifold

Acta Mathematica Hungarica 45, 1985



48 S. S. KHARE

of M consisting of all points of M fixed by S, S being the intersection of all the mem-
bers of T—". Let v be the normal bundle of the imbedding of F in the interior of
M and let D(v) be its disc bundle with the action 0* of G on D(v) induced by the real
vector bundle maps covering the action 0 on F. Since F is the fixed point set of S,
a$Ff, MHAT —" and no point of F is fixed by the subgroup [5U{a}] generated by
>SU{tf}, a will act freely on F and hence on D(v). Let F'—Ffia] and D'(y)—
= Z>(v)/[a]. Since G is abelian, the actions 0 and 0* on -Fand Z)(v) induce actions 0'
and 0* on F' and D'(y), respectively. Consider the quotient maps qy: D(y)*-D'(v)
and q,: F-+F' which are equivariant and double covers over Z>'(v) and F', respec-
tively. Let C\ and C2be the mapping cylinders of gx and g2and dy and 2 be the
induced actions on Cyand C2, respectively. We have the following commutative diag-
ram

Q — D'(v)
1 Y
C2-~ F'

where a: Cx—C: is the map induced from v': D'(v)—F' by going to mapping
cylinder. It is simple to seethat dC2~ F and the action ¢, on a~'(dC2 is isomorphic
to the action 0* on D(v). Consider W= Mx][0, 1]JU CX¥~ where ~ is the equivalence
relation obtained by identifying D (v) X {1} with a_1(0C2. Let the action 0 of G on
IFbegivenby &\MnXI=6XIl and 0|C:i=i/*. TakeFtobe

(amx 1) UMx{1}- (a (V) X{1})°) U(r)ey= (orHdcj)«)

where o is the interior operator. Clearly Vis (I'", I'')-free and dW is isomorphic to
M UV by identifying dVwithdM. This shows that [M, 0] iszero in %*(G; M,I"").

Theorem 3.3. Let I be afamily in afinite abelian group G such that there exists an
element ain Goforder 2 with [a] (fT", [a] being the subgroup o f G generated by a. Then
the homomorphism x*(G; IN)-*->£*((?; M) induced grom the inclusion i: k”-I is
the zero homomorphism.

Proot. Let [M, OJ£%*((?; ). Since [, awill act freely on M and therefore
the quotient map q: M-*Mj[a\ will be a double cover over Mfci], Let C be the mapp-
ing cylinder of the double cover with the induced action ¢ of G on C. Clearly the
boundary dC is isomorphic to M with i#|0C=0. Consider W=Mx[0, hUC/~
where ~ is the equivalence relation obtained by identifying M X {1} with dC. Let the
action 0 of Gon W be given by 0|M xI=0X | and 0\C=d¢. Clearly d(H/,0) =
=(M, 0). This shows that [M, Q] is zero in %*(G; ).

Let G be a finite abelian group and P be the family of all proper subgroups of
G. Suppose ' is another family in G such that there exists a chain of families
M=rTac...clr+1=P with ([;+1,I,) being an admissible pair of families with
respect to an element ah i=1, ..., r. By repeated application of Theorem 3.2 one
concludes that the homomorphism /*: %*(G; FI,r')-<-x*(G; If P) induced by the
inclusion j : (IL, I'-+(M, P) is a monomorphism. Therefore we can give charac-
teristic numbers for an (17, I Tree element, since (J1, P) is an almost adjacent
pair. Tn this case we define equivariant homology and cohomology as h¥{X; G)=
=HfiIFGX)\ Z2 and h*(X,G)=H*(Fc(X); 23, for a G-space X, Fa(X) being
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the fixed points set of X under G. Thus corresponding to the equivariant homology
and cohomology defined as above, using Theorems 2.2 and 3.2, one gets the following -

THEOREM 3.4. An (II, I")-free element in x,.(G; II, I') is zero if and only if all the
characteristic numbers are zero.

Special cases. We will consider two cases G=Z5 and G= >< (Z,i)" X H, Hbeing
any finite abehan group of odd order and each element of H commutmg with each
element of >< (Z,i)m.

i=1
~ Casel: G=Z5=[t, ..., t;]. Let I''={U:U is a subgroup of Z not containing
Zi=[t,, ..., t;], 1=i=k}. Itis easy to see that (I';;,, I';) is an admissible pair with

respect to t;4; and I'clyc...cI'y=P. Therefore by repeated applications of
Theorem 3.2 one infers that the homomorphism

jl*: X*(Z’é, Ha FI) i %*(Z’é; H, P)

induced from the inclusion j,: (I1, I'y))—~(II, P) is an injection. Also [#,]¢ T, there-
fore by Theorem 3.3 the homomorphism

Jax: x*(Z’g; ) - %*(Zg; I, I,)

induced from the inclusion j,: (I1,®)—(I1,I;) is a monomorphism. Thus
Jut %4 (ZE; IT) >, (ZE; 1T, P) is a monomorphism, j: (I, o) —(I1, P). Let us define
the equivariant homology and cohomology as follows: h,(X, Z’2‘)=H*(FZ§(X ); Zy)
and h*(X; Z§) = H*(Fz(X); Z,), where H, and H* are singular homology and
cohomology, respectively. Using the monomorhism of

Ju: %4 (ZE; ) - %, (Z%; 1T, P)
and Theorem 2.2 for the almost adjacent pair (I, P), one immediately gets

THEOREM 3.5. A II-free element in %,(G; IT) is zero if and only if all its charac-
teristic numbers (corresponding to the theories h* and h, defined as above) are zero.

Case II: G is a finite abelian group of even order given by G2 X H where H.is a
finite group of odd order and G? is the 2-group >< (Zyi):. Let P be the family
of all subgroups of G of the type UXV where V'is a subgroup of H and U is a sub-
group of G? not containing Gy=(Zy)", y,= _Z;ni. Let (Z,)"- be generated by {#},
1=k=y,

THEOREM 3.6. The following sequence is exact:
0 - x,(G; IM) 2 »,(G; I, P)2% %,(G; P) — 0.

ProoOF. By Example 3.1, (I'y., [,) is an admissible pair with respect to ;. 4,
I1=k=y,. Therefore by repeated application of Theorem 3.2, one infers that the
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homomorphism
Oiy*’ =<2, N, I']) - xJG; N, P)

is a monomorphism, j\: (A, A)—4, P). Since [fiKA, using Theorem 3.3 we get
on)** A(G; n)-*NG; A, J\) to be monomorphism, y2: (A, <p)*(, I',). Thus the
inclusion /: (N1, (p)-*(MN. P) induces monomorphism:*. This completes the poof of
the Theorem.

Corollary 3.7. Let (M ™ 9) be a G-manifold and the induced action o f the sub-
group G2be stationarypointfree. Then (M n, 9) bounds as a G-manifold.

The stationary point set FGM n)

Asin Case Il of 83, let G= GZXF be a finite abelian group of even order where
A is an odd order group and G2= i)_(l(Zg/)"} Let us denote the subgroup (Z2” by

by G,, yr= I2_r| nte bet R be the field of real numbers and GL(R,j) be the set of all

isomorphisms ofthe vector space  onto itself, - = 1,2. Any irreducible real represen-
tation of G will be either one dimensional or two dimensional. Let gj: G-+GL(R,j)
be any nontrivial irreducible realr-dimensional representation of G,j=I, 2.

Theorem 4.1. Ker gj contains a subgroup o f G isomorphic to (Z,)"-1

Proot. It is simple to see that the image (qj/G.) is either the trivial subgroup or is
the subgroup consisting of just two elements, namely the identity element and the
isomorphism 9: Rj-*rj given by O0(x)—(—I)x, for every vfR-'. Therefore
Ker (Q/G2 is either G2itself or is isomorphic to (Z2)a-1.

Let (Mn, 9) be aclosed G-manifold and F=F(if M") be thel_?tationary point set

of M under the subgroup G2. Consider the decomposition F= IJ FI where F1 is the

/-dimensional component. Let D(v;) be the normal disc bundle of Flin M" with the
induced action 9,. Let N be the family of all subgroups of G and P be the family of
subgroups of G ofthe type U XV where Lis a subgroup of H and U isasubgroup of
& not containing G2.

Definition 4.2. F is said to have an equivariant trivial normal bundle in M niif
G/G2acts trivially on F and there exists some positive dimensional real G-representa-
tions (L, op) such that in xjG. Ji, P) [D(v,), d] = [TTL_0(W17), 9] where D(Hj)
is the unit disc of LLI,

Given a real representation q: G->-GL(R,j) of G one gets a 7-dimensional
vector space RJ over R with the action ¢: GxRJ*RJ given by i/ffg, X) =g(g)(x).
We say (RJ, #/) a representation space of G or by abuse of language, a representation
of G Let {(Vk, iMjisfcSm be the finite set of all nonisomorphic nontrivial
irreducible real representations of G. Let Z + be the set ofnonnegative integers. Given
anymap /. {1, ..., m}-*Z,+ one has areal representation (V (f), d(/)) of Ggiven by

V(f)= ® (Vk kY ® where (VK, ow o is the direct sum of f(k) copies of (VK, ¢ «.
Letus denote the unit disc and unit sphere of V (f) by D(/) and A(/), respectively.
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Theorem 4.3. | f F has an equivariant trivial normal bundle in (M", B) then it is the
boundary of some manifold and (Mn, B) itself is the boundary of some G-manifold
(N, B).

Proof. Since F has an equivariant trivial normal bundle in M ", we have
[D(v)), O)\=[FI[D(Wi), (p\ for some positive dimensional real representations
(W, <H) of G. Also (W, )=(V(f), i//(f)) for some map f: {L, ..., m}-~Z+.
Therefore [D(v,), B,] = [FI][D(f) h(Y,)] Let xt(G; M)"xXC; 4, P) be the
homomorphism induced by the inclusion j: (M, ®)—(MN,P). We have

hW ng]= 1[[0D (v3). 0] = ljo[F 1D (f), d(h\.

Therefore from Theorem 3.6, one gets

(d*h)[Mn 0} = ), 30 [FII[D(f), PLL\ :1:20 IF[S(fd, #LLU\ = O

in x*(G; P). Therefore there exists a P-free G-manifold (D, if) such that

(1) m.rp= 0, (FIXEH, W)

Since each (LU, (pi) is a positive dimensional real representation of G, there
exists a member k(l) in the set {1, ..., m) such that f{k(l))x(). By Theorem 4.1
there exists a subgroup HW) of G isomorphic to (Z2'V-i fixing Muy Let us fix some
B, 0SB~n. Let Ak(%) be the largest subset of {1, ..., m} such that Hk{ft) fixes Vh
JEAK(p)- Let AK[) be the disjoint union of BK(%) and Ck(?) where BK([%) consists of all
JEAK() such that Vj is one dimensional and Ck(®) consists of all jJd Ak(®) such that Vj is
two dimensional. Let

21 FU)+ 02 2f(j) = A{l,R)dZ\

j (BK(®) j(ek®)
Since fB(k(R))A0 and AkR) contains k(R), A(, §) cannot be zero. From (1) we get

@) FH@®M  2) = FIKW(Y (Fx (E(), D().

Suppose FH(®)(D)—F* and Z24S¢;Z be the complement of Hk(®) in (Z2>. Then
from (2) we have

(dF%, r\Z6P) = \J (FIX(S*,» -\ @)

where a is the antipodal involution. Since D is P-free, F* will have stationary point
free action of Z2jS. Therefore [dF*, q\Z2R] is zero in a*(Z24, I'r) so that

©) =0

CD 1=0
in XHZ24, Tj) where J\ isthe family in Z2 consisting of only trivial subgroup of
Z243. We know that ji*(Z2, I,)) is the free x*-module with generators {[S"”, a], nEZ +).
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Therefore (3) gives [F~]=0, since A(BR,R)"*0. By varying R, one concludes that
[FA]=0, B = 0 Hence [F]=0 in x*. Also

JAM”, Q1= 2 JVHI[D(®), o (M =Q

By Theorem 3.6, j¥ is a monomorphism and therefore one infers that [Mn (] is
zero in %*(G; IM). This completes the proof ofthe Theorem.

Combining Corollary 3.7 and Theorem 4.3, one infers that the fixed point data
of the subgroup G, determines the equivariant bordism class ofa G-manifold (M", 9).
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ON SUNS AND COSUNS IN FINITE DIMENSIONAL
NORMED REAL VECTOR SPACES

L. HETZELT* (Erlangen—Nurnberg)

0. Introduction

We are concerned with some “dual” aspects between best approximation and
best coapproximation in finite dimensional normed real vector spaces which are
especially apparent in the plane.

In the first section we study the asymptotic behavior of Leibniz planes. Section 2
deals with so-called cosuns of best coapproximation, the counterparts of suns in
the theory of best approximation. We show that in strictly convex spaces every
existence set of best coapproximation is already a cosun. This is done by using
a structural property shared by the metric projection and the metric coprojection as
well. The asymptotic behavior of Leibniz planes plays an essential part in the descrip-
tion of cochebychev sets. We interpret the respective results of Westphal [22] on
cochebychev sets in smooth Ip-spaces from a geometrical point of view and give a
complete description ofall cochebychev sets in a strictly convex plane.

In Section 3 we sharpen a known result of Busemann [3] on the “symmetry” of
Birkhoflf-orthogonality in the plane and show that the sun and cosun are just dual no-
tions in the plane. The duality permits to give an intrinsic characterization of the
important variants of suns in the plane. We show that a closed subset of the plane is
a sun iff for each element of the plane its elements of best approximation are a non-
empty contractible subset. More precisely, this subset is the compact part of an angle.
We further study selection properties of the metric projection for a sun in the plane.
In particular we show that there are always ray selections of the metric projection and
any such ray selection is strongly contractive with respect to the dual *norm.

As to the notation we denote by X a finite dimensional normed real vector space
(of dimension nywithnorm | . ||, its dual space is X'. For real numbers we use small
Greek letters, for the set of strictly positive (negative) real numbers R+ (R_). The
closed ball centered at x with radius q is denoted by B(x, q); B(x, g) denotes its
interior. For KQ X the distance function is given by d(., K) and the metric projec-
tion by PK. For the boundary of K we write dK, for its convex hull co K. We call
K norm-convex if for any two points in K there exists a metrical midpoint in K [18].
The closed segment between x,y£X is given by [x,y]. We repeatedly use the semi-
inner product (s.i.p.) defined by the Gateaux differential of || . ||22 on XXX, i.e.

[*+8yl12-1[x|

A X, YEX.

* The paper contains parts of the authors doctoral dissertation.
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For its basic properties see [10]. We always use orthogonality in the sense of Birkhoff,
e.g.

It is easy to see that
xty<*(y,4"~0 and (-y, x)s”0.

xI_y o [x+Ny|l & [x|l, Vi€R.

1. The asymptotic behavior of Leibniz planes

Following Busemann [8]and Gruber [12]wecall E(x, y) = {zC X: |[|x—2\ = |ly —|[}
the Leibniz plane determined by x,yEX, x”y. The plane is symmetric about
(x+y)/2. We call Ex(x,y) = {zEX: \x—z\\<\\y—z||} the open Leibniz halfspace
containing X.

One should be cautious not to overvalue the term “plane”. For n”3 each Leibniz
plane is truly “flat” if and only if the space is Euclidean, Mann [17]. Furthermore, to
each segment parallel to x—y in gB(0, 1) there corresponds a 2-dimensional solid
angle in E(x,y), thus E(x, y) might have interior points.

Kalisch and Straus [14] study Leibniz planes in connection with their investiga-
tions of determining sets (a set K is determining if each x£X is uniquely determined
by its set of distances {|[x—K||:fcEK}). We shall be concerned with the asymptotic
behavior of Leibniz planes.

Blaschke ([5], p. 157) calls

SG(x) = dB(0, DM[B(O, 1)+ Rx), *EX\{0},

the shadow-boundary for x. If it does not contain a segment parallel to x, we call
SG(x) strict. The upper rim, resp. the lower rim of SG(x) is given by

SG°(x) = {ziSG(x): z+R#x3$SG(x)},
o SGu(x) = {zESG(x): z-R +x”" SG(X)}.
With SG(x) we associate the shadow-cone
SK(x) = ALSJo I-SG(X)
with its upper, resp. lower rim

SK°(x) = U aSG(x), resp. SKux) = U 2.5Gu(x).
ASO ASO

See Figure 1for a typical Leibniz plane and its shadow-cone in a smooth, 3-dimensio-
nal Ip-space. SK(x) separates X into two parts, the upper, resp. lower halsfpace of the
shadow-cone

SK+(x) = SK\x)+ R+Xx, resp. SK~(x) = SKu(x)- R+x.

Using s.i.p., we have the following description of these sets.
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A Leibniz plane (above)
with its corresponding
shadow-cone (below)

Lemma 1.1.

SK+(x) = {zeX: (-X, z)s< 0),
SK(x) —{z£X: (x,z)s& 0 and (—x, z)s” 0},
SK~{x) = {zeX: (x, 2)s< 0}
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A first, but rather coarse statement about the asymptotic behavior of Leibniz
plane is

Proposition 1.2. E(X,y) g C(X+5£+(x-y))MC(y+5£ “(x-y)).

It follows that the shadow-cone is the limit (with respect to the Hausdorif dis-
tance) of a family of Leibniz planes.

Proposition 1.3. lim E(?.x, 0)=SK(x).

Proof. Let ||X||=1. By a simple geometric reasoning we have
rﬁq@%’k@d@’ SKO(X)+ A = A
z(_<$ﬁﬁ(x0)dgz' SKu(x)) A

and
Clearly,
CSK- (X) MC(Ax+ SK+ (AX)) = CSK~ (X) fl (Ax+CSK +(x)) 3 SK(x),

where the left hand side converges (with respect to the Hausdorif distance) to SK(x).
Thus £(Ax, 0) converges to SK(x) for AOQ. O
We always have

dEx(X, y) g C(y+SK+(x-y)).

But under which conditions do dEx(x,y) and y-t-5£°(x—y) approach each other?
This is just a geometric way to look at property (5) given by Bruck and Reich in [7].

Let y=0. If SG(X) is not strict, the upper rim of £(x, 0) touches SK°(x). Thus
let us suppose for the rest of this section that 56°(x) is strict. Then £(x, 0) contains
no solid angle and SK(x)= SKO(x) = SKu(x). Furthermore E(x, 0) lies strictly bet-

ween SK(x) and x+S£(x). For zESK(x)C\E(0, 1) let
s0= dB{0, Dn(R+x+2), resp. s,=dB(O, DfI(R_x+2z).

We define the positive function Cxon SK(x) C\B(Q, 1) via

the so-called chord ratio associated with x. This ratio gives a faithful image of the
behavior of E(x, 0) between SK(x) and x+ 5A(x). Thus E(x, 0) is strictly bounded

away from 0 and +«=on SK(x)C)B(Q, 1). Indeed, it is the behavior of C(z) on
5A(X)MN£(0, 1) for YZ|-*I, which determines the asymptotic behavior of E(x, 0).
Proposition L4. Let the norm be twice continuously differentiable on SG(x) and
let
XTH(u)x >0, Vvm656 (x),
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where H(u) is the Hessian o f the norm at u. Then

I—Itjﬁll Cx(z) = 1

ZESK (x)nS(0,1)

i.e., the chord ratio asymptotically equals 1

Proof. Let WnESK(X)M\B(0, N, |u.—1 and Jf, /.“£rR suchthat u,,+A+x
and un+I~x belong to gB(0, 1). We have

-+ n X .

For sufficiently large nwe can write the Taylor series expansion of this equation up to
the second order term as

(R X TH !+ O TP) = 6702 " ae I * + QkkN2>

where the first order term vanishes since unzSK(x). Multiplying with ||i/,||2and tak-
ing the limit, we have that the chord ratio asymptotically equals one. O

Thus a “reasonable” curvature behavior of the unit sphere at SG(x) gives a
Euclidean asymptotic behavior of E(x, 0), i.e. E(x, 0) converges “uniformly” to
(x/2) + SK(x). This is quite plausible because from a great distance a point with posi-
tive curvature looks like “being Euclidean”.

In general it is rather difficult to relate the strictboundedness of Cxon SK(x) (T
nU(0, 1) to curvature relations on SG(x). In the plane however we can compute Cx
in this manner.

Let SK(x)=Ru with |m|—L1 and let us orient the unit circle so that it has the
same orientation at n as the ray u—R+x. Take e as the Euclidean normal at wu to
SK(x) which points in the direction given by the orientation of DB(0, 1) at u. Let
m_(m+) be the slope ofthe left (right) halftangent line T_(T+) to aB(0, Datnand m
the slope of SK(x) in the Cartesian system whose origin is n with the “x-axis” given
by e and the “y-axis” given by —u. For 0<n< 1 let (s +(/.)) bethe outpoints of
An+R+x (lu—R+x) with dB(0, 1). Furthermore, let r_(X) {r+{/)) be the radius of

Fig 2
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the Euclidean circle which passes through s_(A) (V; (A))and u and which is tangent
to T_(TH. Then the chord ratio is given asymptotically as follows by using a
suitable Taylor series expansion ([13]).

Proposition 15. (i)Ifm_~0 or T+770, then

m+|m
Hm Cx (Xu) = m—{mll\

with anatural interpretation given for the singular cases.
@ii) If m_ —m+=0, then

- Cpe o MA) _
fim Sx(x) = i r+($)l)’ e =Em oy

From here we can obtain a complete description of the asymptotic behavior of a
Leibniz line in the plane, given E(x, y) for some pair (x,y). Ifa supporting line paral-
lel to x—y at the unitcircleis not a halftangent line, E(X, y) converges asymptotically
to z+SK(x—y) strictly between x +SK(x—y) and y+SK(x—y). Ifthissupporting
line is a halftangent line, but not a tangent line, the respective asymptotes of E(X, y)
are given by x+ X (x—y) and y+ 5/ (x—y). If the supporting line is a tangent
line, the asymptotic behavior of E(s, y) is determined by the curvature relations in
the support point. Ifthe curvature exists and is not zero, (x+y)/2+ SK(x—y) gives
the asymptote of E(x, y). Even if the curvature does not exist, but instead the lower
and the upper curvatures from the right and from the left are different from 0 and
+ “, the minimal distance of E(x,y) from x +SK(x—y) and y+SK(x—y)
remains always positive.
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2. Existence sets of best coapproximation

For KQX, x£X we define
BK(x) = {ze X : \\z-k\I sS||x-fc||, VKEK}.
BK(x) is compact and convex. A geometric interpretation of this definition is given by
BK(x) = {zEX\{x}: KQ CEJx, 2)}U {x}.
BKis an upper semi-continuous projection. For each x£X, x is an extremal point of
BK(x). The metric coprojection from X to K (see [20]) is given by
RK(x) = BK(x)INK.

The elements of RK(x) are called the elements o f best coapproximation of x in K. Of
course, TtK(x) may be void. We call K an existence set of best coapproximation, if
RK(x) is never void. We speak of A as a cochebyshev set, if \RK(x)\= 1 \/xEX.

Proposition 2.1. An existence set of best coapproximation is closed and norm-
convex.

Proof. Let K be an existence set of best coapproximation. Of course, k£ K\K
cannot have an element of best coapproximation in K. Thus K has to be closed.
Now let k, k'EK, k?+k' and let z be a metrical midpointto k and k'in X, i.e.

\\k-k"\ = ||fc-z]|-H|z-fc'|].
Then each KCERK(z) is a metrical midpointto k and k' belongingto K. O

However for 1 é 3, all closed norm-convex sets are existence sets of best coap-
proximation if and only if the space is Euclidean. This is an easy consequence of the
theorem of Kakutani (see [13]).

For xEX we define fK(x, .)EC(K) as
fK(x,k) = Wx-k\\, VkEK.

{/k(x,.): XEX} supplied with the order of C(K) is a partially ordered set satisfying
the descending chain condition. Thus there are minimal elements in it. Following
Beauzamy and Maurey [2], we call xEX minimal in the weak sense, if f K(x,.) is mi-
nimal. If K is determining, X supplied with the partial order

y tsKx 0 yEBK{X)

is order-isomorphicto {fK(x,.): x(LX). An xf_Xis called minimal (with respectto A)
if BK(X)={x}([2]). Let us denote the set of minimal elements (in the weak sense) by
min (A) (Min (A)). We have min (TQQMin (K). If K is determining, min (K)
equals Min (K). We call ([2]) K optimal (in the restricted sense), if min (K)f K
(Min (K) ¢ k). Since foreach x£X there exists some y*Min (K), suchthat y'=Kx,
we have

Proposition 2.2. K is an existence set o f best coapproximation if and only if K is
optimal in the restricted sense.
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In anon strictly convex space there are optimal sets which are not existence sets of
best coapproximation. In a strictly convex space, however, the optimal sets are just the
existence sets of best coapproximation. Especially optimal sets are convex in strictly
convex spaces.

To give another interpretation of existence sets of best coapproximation let us
recall the definition ofa quasi-nonexpansive mapping. T is said to be quasi-nonexpan-
sive if

WTx-p\\  ||x-p]|
forall x£ X and each fixed point p of T. Clearly an existence set of best coapproxima-
tion is the fixed point set of a quasi-nonexpansive mapping. Conversely we have
(see [13)).

Proposition 2.3. Let K be thefixed point set of a quasi-nonexpansive mapping. I f
K is determining, then K is an existence set o f best coapproximation.

Hence in a strictly convex space the optimal sets are just the fixed point sets of
quasi-nonexpansive mappings.
The Browder approximation region for K and x is given by

AK(X) —{zEX: (x—z, z—k)s (O}
(see [s]) or taking the geometrical viewpoint

AK(x) = {z€*\{x}: K Q C(z+ Sls-+(x-z))yU{x}.
we have
dk(x) = Bk(X).

We say that /fis a cosun if Ak(X)ITK”0, \fx $K. Thus A"is a cosun if for each x$ K
there is some kEK suchthat KC\(k+ SK +Hx—kj)=V). From this characterization
we see the analogy with the notion ofa sun (Vlasov [21]).

Proposition 2.4. K is a cosun if and only if ).I+(\ —X)RK is surjective for all
A>1,

Proof. The fact that a cosun fulfills the surjectivity condition is easy to see. Thus
let us prove the other direction. Let XEX\K. For Té2 there exists (x,n, kMERK
with

X - MX,, +(I-m)km.

We have xm—km=0. Since KmERK(X), let us suppose that {Ln} converges to some
kK@ RK(x). Let <590, 0- We have

WO-k\W = lim Wkm-k\\ S lim [[(1-<5)xm#&e-/c]| - [|(L ~«5Ho+<5x-fc]

forall KEK. O

For each A>1, //+(1 —.)RK has the interesting property of being outward
directed in case K is an existence set of best coapproximation. By that we mean, given
a kCEK, for each x£ X\K and yERK(x) the vector Ax+ (1—)y has its endpoint in
the complement of the tangent cone to B (kO, ||[x—&J) at x. If X is strictly convex,
we know that 27+(1 —X)RK is upper semi-continuous, compact- and convex-valued.
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Thus we can use Theorem 3.14 in ([16], p. 47) to conclude
(AT+(1 =2 R) (B ko, [ x—kol)) 2 B(ko, [|x— kol

This means that A7+(l1—2A)Rg is surjective, from which we obtain via proposi-
tion 2.4.

THEOREM 2.5. Let X be strictly convex. Then an optimal set is a cosun.
From Theorem 2.5 we can conclude quite easily a result of Beauzamy (see [3]).

COROLLARY 2.6. In a strictly convex, smooth finite dimensional vector space, the
optimal sets are just the contractive ray retracts of the space. The unique contractive ray
retraction is given by

X > Ry(x) = Ax(x) N K.

Since |Rk(x)|=1 for a cochebyshev set, we can use the same argument leading to
Theorem 2.5 to prove

PROPOSITION 2.7. Every cochebyshev set is a cosun.

For an elementary proof see Westphal [22].
Let as call x€0B(0, 1) non-rigid, if there exists some /4=>0 such that

[—4x, x] S Bcsx+(x) (x).

Thus x is non-rigid if and only if E£(0, x), which belongs to SK *(x) is strictly bounded
away from SK°(x), a question we discussed in section 1.

We call X non-rigid, if every x€0B(0, 1) is non-rigid. A non-rigid space has to be
strictly convex. Also

PRrOPOSITION 2.8. If X is non-rigid, every cochebyshey set is an affine subspace.

PRrOOF. Let K be a non trivial cochebyshev set containing the origin. Since X is
strictly convex, K has to be convex. Let x be in the linear hull of K, but x¢ K, and
suppose x€0B(0, 1) and Rg(x)=0. Thereis a A=>0 satisfying — Ax€Bg(x). Thus
By (—/x) S Bg(x) and, consequently, Rx(—Ax)=Rg(x). Since K is a cosun, K belongs
to SK(x). Butthen x would have to belong to SK(x), too. [J

The results of Westphal [22] as well as those of Bruck and Reich [7] show that
smooth /,-spaces are non-rigid.

It is easy to see that in strictly convex and smooth spaces, the linear cochebyshev
sets are exactly the subspaces admitting a linear contraction (see [2]). From this we
obtain the following theorem of Westphal [22].

THEOREM 2.9. The following statements are equivalent in a smooth I ,-space.
(i) K is cochebyshev

(i1) K is the translate of the range of a contractive linear projection

(iii) Kis is the translate of a subspace which is an [,-space.

The equivalence of (ii) and (iii) is just the famous result of Ando [1] about the
intrinsic characterization of the ranges of linear contractions in /,-spaces.

In general normed spaces it seems hopeless to give a complete description of all
cochebyshev sets. But we have succeeded in doing so for a strictly convex plane by
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using the detailed study of the asymptotic behavior of Leibniz lines in Section 1 (see
[13]).

Theorem 2.10. In astrictly convexplane a cochebyshev set, being not a single point,
is a parallel strip whose direction meets gB{0, 1) in apoint o fsmoothness. This parallel
strip is not a line if and only if the point o f smoothness is extreme and the chord ratio
belonging to it is not strictly bounded awayfrom o or +».

The meaning of a parallel strip and its direction is evident.

In a non strictly convex plane the situation becomes more complicated. Let L
be a norm-segment with respect to the/«, -norm joining(—L, 0) and (1,0). Then

LU{(E f): |u|3Ele+1|, fs-1}U {«,4): Ms-K-IlI, £s 1}
is a cochebyshev setin 1|L.

3. Suns and cosuns in the plane

In this section X will be a two-dimensional space. Via the quadratic and skew-
symmetric form

Q(x,y) =ilifz-té» *=(£i,Q, Y= (hi, haiX
we define, following Karlowitz [15], the dual *norm
N1* = sup{R(x,y): y€5(0,1)}, XEX.

All entities referring to this norm are supplied with a B *(0, 1)isjustthe dual unit
ball rotated by 90°. According to Busemann [9], dB*(0, 1) is the homothetic to a solu-
tion of the Minkowskian isoperimetric problem in X. He pointed out that

X Lyo y_ I’ Vx, yEX
More generally, we show

Proposition 3.1.
<x 0 &0 o (y,x)* SO, Vx y€EX.
Proof. Let x and y be linearly independent. We have

Q(X+L1y, y +p(x +Ay))

bt yIE =S\ p (et Xy

and

Q(x y)/ighly +P(x+2y)l, X> o,
W= Q(x, y)/inf [ly+/ix]].

For 2>0 the ray y+R+(x+ Ay) lines in the interior of the angle with the sides
y+R+y and y+R+x. If (X, y)s=0, then y+Rx istangentto 5(0, 1)aty, thus

d(0, y+R(x+y)) Yl = d(0, y+RX).
If <x,y)s>0, then
d(0, y+Rx) = [ly+/ioX|
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with pty<0. Thus y+R(x+4y) cuts the interior of the segment [0, y+ u,x], e.g.,
d(0, y+R(x+2y)) < [y+pox]| = d(0, y+Rx).

Thus we always get
Ix+AyI*/lx* =1 or (y,x);=0. O

The cone of decrease C(x, y) for x,y€X 1is given by
C(x, y) = {z€X: (x—z, y—x), <0}.

Clearly, C(x,y) is the open convex tangent cone of B(y,|x—y|) at x. We recall
that K is a sun if for each x¢ K there exists some k€K satisfying C(k, x) N K=0.
Using Proposition 3.1 we get

ProrosITION 3.2. C*(0, x)=SK*(x).
PROOF.
C*(0, x) = {z€X: (—z, x)s <0} = C{z€X: (—2,x); =0} =
= C{zeX: (x, —2), =0} = {z€X: (x,—z); < O}=
={—z€X: {x, 2); <0} =—SK~(x) =SK+(x). O

Thus the best coapproximation in the plane is closely related to the best approxi-
mation in the plane. Indeed,

PROPOSITION 3.3. K is a cosun with respect to | .| if and only if K is a sun with
respect to || . ||I*.

This reinterpretation of the cone of decrease as the upper halfspace of the sha-
dow-cone with respect to some ““dual” norm is a strictly 2-dimensional phenomenon.
For n=3 this can be done if and only if the space is Euclidean. Nevertheless part
of the cones of decrease may allow such a reinterpretation. Take for example a
3-dimensional /.. -space. The cones of decrease which can be interpreted as SK * in the
I,-norm are just the cones defined by vectors pointing strictly into the interior of the
faces of the /..-norm.

We shall use the duality between suns and cosuns in the plane to give the follow-
ing intrinsic characterization.

PROPOSITION 3.4. The suns in the plane are exactly the closed, *norm-convex
subsets.

PROOF. “="’: Since a sun is a *cosun, it is *norm-convex by Proposition 2.1.

“«": Gruber [12] has shown that the closed, norm-convex subsets of the plane
are the contractive ray retracts of the plane, and, consequently, cosuns. (A proof
using best approximation methods is given in [13].) O

To fully appreciate this proposition one should be able to construct all closed,
norm-convex sets in the plane. The structure of a compact, norm-convex set in the
plane is given by (see [12])

PROPOSITION 3.5. Let K be compact. K is norm-convex if and only if K is obtained
from co (K) by cutting out a countable number of disjoint subsets each of them bordered
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by a closed segment S in co (K) and a normsegmentjoining the two endpoints of S
in K.

The structure of unbounded suns can be obtained by using the following locali-
zation principle.

Let K be norm-convex and closed and P a parallelogram whose sides are parallel
to linesthrough the origin cutting gB(0, 1) in extreme points. Then {KflmP: m£EN}
gives an increasing sequence of compact, norm-convex sets converging to K.

Another elementary description of suns is that pointed out by Berens in [4].

Proposition 3.6. K is a sun if and only if /L+(I —A)PK is surjectivefor all
16 (0, 1).

We can considerably weaken this proposition in the plane. For KQ X, x(fX\K
and ufdB(0, 1) we let x(K, u)=x—d(x, K)u and W(K, x, y=C(x(K, u), x).
Evidently, W(K,x, u) is the interior of the convex tangent cone of B(x, d(x, Kj)
with vertex at x(K, u). Therefore the boundary of this tangent cone is a line or an
angle with vertex at x(K, u). Let us orient aB(0, 1) counterclockwise. Then we are
able to orient dW(K, x, ) correspondingly and we can speak of the left fright) side
OWIK, x, u) (dWr(K, x, n)) of dW(K, x, u). Let

S(K, x) = {ufdB(0, 1): KDW(K, x, n) = 0}.
S(K, x) - {ufl)B(0,1): PK(x) g dW(K, x, u}.

Ofcourse,

With a proof similar to that of Proposition 3.6 (see Berens [4]), we get

Lemma 3.7. If H+ (1 —N)PKis surjective for some AE£(0, 1), then S(K, X) Y%
for all xs K.

Also we have

Lemma 3.8. Let XEX\K, ufS(K, x) and kEPk(x). Then k and x(k, u) belong
to one face of B{x, d(x, K)).

If S(K, x)"0, there are at most three different tangent cones of B(x, d(x, K)),
which contain /\(x). More precisely:

(1) IfPK(x) doesnot belong to any proper face of B(x, d(x, K)), then 'PK(x)\=1
and S(K, x) = {(x—PK(x))/||x —PKX)|I}. There is only one tangent cone of
B(x, d(x, K)) which contains PK(x), namely the one with vertex at PK(x).

(2) Ifa face of B(x, d(x, K)) contains elements of PK(x), then x(K, 1) belongs to
this face for all uf S(K, x). If x(K, u) isinterior to this face, dW(K, x, u) is the line
generated by PK(x), e-g-, Pu(x) belongscompletely to this face. S(K, X) is the corres-
ponding antipodal face of B (0, 1). The tangent cones of B(X, d(x, Kj) containing
PK(x) are the halfplane bordered by the line generated by PK(x) and the two tangent
cones having their vertex at the endpoints of the corresponding face of B{x, d(x, Kj),
respectively.

(3) The linear hull of FK(x) may be two-dimensional, but only if the face of
B(x, d(x, AT)) containing elements of PK(X) is joint by another face of B(x, d(x, K))
containing elements of PK(x). Then there is exactly one tangent cone of B (x,f(x, AT)
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containing Pk (x), namely the one given by these two faces of B(x, d(x, K)). The two
faces touch in x(K, u) and S(X, x)={u}.

LemMmA 3.9. If AI+(1—2) Px is surjective for some L€(0, 1), then for all xcX
we have that Px(x) is contractible.

PRrROOF. Let x€ X\ K. By Lemma 3.7 we know that S(K, x)#0. For |Px(x)|=1
nothing is left to show. Thus let p, be the first and p, the last point of a face of
B(x, d(x, K)) containing more than one element of Px(x). Let k, and k, be elements
of Pg(x) in this face with no other element of Pg(x) lying in between. We set
x'=(k,+ky)/2. Let u equal (p—pJ/lx—p.ll. Suppose ki, k,€OW;(K, x, u). Let
v, =(pa—Pe)/|Pa—Pp.l and let v, be the unit vector in direction of IW,(K, x, u). It
may happen that v,=—v,. Let u’€dB(0,1). If u’ lies beyond u and in front of
—uon dB(0, 1), but u’#u, then k€ W(K, x’, u"). If u’ lies beyond —u and in front
of u on 0B(0, 1), but u’' —u, then k,¢ W(K, x’, v). Thus S(K, x")=0 contradict-
ing our assumption. We conclude that the intersection of Pg(x) with a face of
B(x, d(x, K)) is a segment.

If P(x) belongs to two faces of B(x,d(x, K)) touching each other, then
S(K, x)={v} and x(X,v) is the point of contact of these faces. According to our
assumption there is some (y, k,)€ Px such that x=Ay+(1—2)k,. Thus P,(x)S
C P (). Consequently there is only one tangent cone of B(y, d(y, K)) containing
Px(y) namely the one which contains the two faces of B(y, d(y, K)) containing Pg(x).

This tangent cone has to coincide with W(K, x, v). Thus we have yex+R_ v, i.e.,
ky=x(k, v). Thus the vertex of OW(X, x, v) belongs to Pg(x). O

We conclude that for a sun Pg(x) is a single point, a segment or the compact
connected part of an angle.

It is quite easy to see that A7+(1—2) Pk is outward directed for all A€(0, 1) in
the sense we have defined it in Section 2. Just as in Section 2, replacing convexity by
contractibility, we see that A7+(1—2) Px has to be surjective for all A€(0, 1), if it
is surjective for some A€(0, 1). Thus we get

THEOREM 3.9. The following statements are equivalent in the plane.
(i) K is a sun
(ii) AI+(1—2)Px is surjective for some 2.€(0, 1)
(iii) P (x) is contractible for all x€X.
From this we can derive an intrinsic description of other variants of suns in the
plane. Recall that K is a strict sun, if for each x€X and all k€ Px(x) we have K[
NC(k, x)=0.

PROPOSITION 3.10. The following statements are equivalent in the plane.
() K is a strict sun
(ii) K is *norm-convex and if there is a segment in its boundary which is parallel to
a face of B(0, 1), then the line generated by this segment has to support K.
Also Kis a Chebyshev set, if |Px(x)|=1 for all x€K.

PROPOSITION 3.11. The following statements are equivalent in the plane.

(i) K is a chebyshev set

(ii) K is *norm-convex and it contains no segments in its boundary, which are
parallel to a proper face of B(0, 1).
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Having given a complete description of suns let us now take a close look at
selection properties of PK. We call

Pk(x) = {kePK(X): k+R+(x—k) £ PA(x)}

the set of sun-points of x (with respect to K). Evidently, A' is a sun if and only if
PE{x)"<d for all x<BEX\K.

Let K be a sun- Then P|(x) contains one element or equals PK(x). Since the
set-valued map P£ is continuous, we obtain using Michael’s selection theorem [19]
at least one continuous selection of P£. Accounting for the special properties of
Pk(x) we can even construct continuous ray selections of P£. It is easy to see that any
ray selection of PKin the plane has to be continuous.

There are ray selections. Indeed, one such selection SKof P£ is given by

SK(x) —right endpoint of PE(x), x8 K.

We recall that P|(x) is a possibly trivial segment in dB(x, d(x, K)). Thus by the orien-
tation of ()B(x, d(x, K)) it makes senseto speak of the left and the right endpoint of
P|(x). Using the contractibility of PK(x) it is not hard to see that SKpossesses the ray
property. We could have chosen

SK(x) = left endpoint of P|(x), x$K,

as well. These two selections are in some way “extreme”. Indeed one can determine
selections “in between”. In case that Pf(x) is a single point we always have to set
SK(x)=Px(x). But if PE(X) is a non-trivial segment, we look at the largest segment,
halfline or line L containing P£(x) which belongs to dK. The line G generated by L
supports K. Suppose L is a segment. Let m be the midpoint of the smallest circle
containing L in its boundary lying on the same side of Gas K. Set ~(r)=[T, x]flL.
IfL is a halfline or a line we can use this definition as well by selecting m at infinity. We
will not go into the details.

Let us recall that a mapping S: X—X is called orthogonal to K, if S is a selec-
tion of AK(see Brack [16]). Using the interpretation of a cone of decrease as S K +set
we see that a ray selection of PKis orthogonal to Alwith respect to the *norm.

~ Theorem 3.12. Each ray retraction S in X orthogonal to S(X) is strongly contrac-
e e I1S'6a)-5"(xa112 A (xj-Xg, S(xJ—S(x2),, VxI?2x2AX.
Proof. Suppose x1*x2 and 5'(x)?iS(x9. Let
P(x) = {gdX": g(¥) - |lginz - \W\[M  xeX.
It is known (see [10]) that
(y, X)s= max (g(y): gEF(xj\ vy, xEX
C= <(xx- S(x)))- (x2- S(x3), SCQ)- S(x2)s.
@0} For S(x1)-S(x2)€SA“(x2-S(x2) and S(x2)-S(xadeSA-(x1-S'(xD)
we have
¢ g(xi—S(x))—g(x2—S(xg)) VgEP(S(xi)-S(x2).
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Thus
CcS-(x,-S(x,), M*i)-5 (x2)s- <x2- S(x2, S(x,)- SK()sis 0.

(2) Let S(X)- S(x2ESK~(x2- S(x2) and 5(xa)-5(xn€"(x1-S (xD).
There exists go£F (s (x~~ SMN) with go (X1 —5'(x1))=0. Thus

c= go(*i- S(xj))- <x2- S(xa), 5(x)-S (x2))s=
— (x2—=S(Q, S(xJ-S(xJ). S 0.

(3) Analogously for S(xj)—S (x” SK(x2—S(x"i) and S(x") —S(x")ESK~X
X(xx—S(xD) we obtain c”O.

(4) Let Nix™A—LiXACSAXj—5,(x))M5'A’(xe—"(x3)). There exist gf
€F(S(xj) —S(xf), /=1,2, satisfying

gi(xi~s(xt)) = 0, i=12.

If Xj—S(xx) is parallel to x2- 5(x9 we can choose gl=gs and conclude csO.
Therefore let us suppose that Xx—£(xx) is not parallel to x2—S(x"). Then the lines
SPX+ R(xi- S(xi)) and S(x2+R(x:—S (xd)) have a unique cutpoint s given by

S(Xj) + S(xi—S(XX) = S (Xa)+ T(x2—S'(x3).

Suppose that gl(x2—S(x2)>0 and g2(x1~ S'(x1))<0. Then the uniquely deter-
mined $and Tare given by

O=-\\S (x2- S(xi)|[/g2(x1- 5 (xx))
and

t = Isxj)- S(X||fgx(x2 S(x2).

Since § and x are positive, we conclude S(x)=S(s)= S(x*) contradicting our
assumption. Thus let gx(xz—S(x2))*0. We have

C= gx(xi- S (Xx))- gx(x2- s(Xa)) = -gi(x2-S(x2) " 0.

In the case g2(XI—SCxj*feO we argue analogously. O
Applying this theorem to best approximation in the plane we get

Theorem 3.13. Let K be a sun in the normedplane. There exist ray selections o f PK
and any such selection is strongly contractive with respect to the *norm.

From the point of view of best approximation a normed plane is “almost”
a Euclidean plane.
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DISTRIBUTION STATISTIQUE DE L’ORDRE D’UN
ELEMENT DU GROUPE SYMETRIQUE

J. L. NICOLAS (Limoges)

1. Introduction

Soit S, le groupe des permutations de n objets. P. Erd8s et P. Turdn ont dé-
montré: (cf. [5])

) lim Prob { log (ordre de 6)—(1/2) log®n

(1/V3)log¥2n

n-—»co

= x} = D (x)

avece

(p(x) = % f e—12 4t

en mettant sur S, la mesure d’équiprobabilité. P. Erdds et P. Turan annoncent qu’il
est possible d’obtenir un terme d’erreur dans la formule (1).
Pour chaque permutation ¢€S,, nous désignerons par

m<np<..<n
les différentes longueurs de cycles de o, et par my, ..., m, leur multiplicité, de telle

sorte que
> myn = 1

1=i=k

La démonstration de (1) est basée d’abord sur le résultat (cf. [4]): excepté
o(n!) permutations, tous les éléments o€ S, vérifient:

ordre de ¢
NyNy... 1,

lIA
(S

¥} exp(—3logn (loglogn)*) =

et ensuite sur la distribution des valeurs de la fonction

flo)= 2 logn

1=i=k
a ’aide de sa fonction caractéristique.
Par la suite, M. R. Best [1] et J. D. Bovey [2] ont redémontré la loi limite vérifiée
par f, par des méthodes plus élémentaires.
Nous allons démontrer le théoréme suivant, qui améliore (2):

THEOREME 1. Si l'on enléve de S, un ensemble de O(n!/Vlogn) permutations,
celles qui restent vérifient:

log (ordre de 0) = f(0)—log nlog log n+ 0 (log n log log log n).
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La démonstration du théoréeme 1repose sur I’idée suivante, fournie par P. Erdés:
dans une permutation aléatoire, la moitié des cycles est de longueur paire, un tiers des
cycles est de longueur multiple de 3, etc... et le nombre de cycles étant environ log n,
la contribution des nombres premiers p~logn dans la différence /(<r)—
—log(ordre de oj est approximativement:

odoqn 9P, =179 n(°glogn+ O(N)-

La contribution des nombres premiers /?=»log n est négligeable. La proposition
1 permet d’évaluer tres précisément le nombre de <£S,, qui ont exactement./ cycles
de longueur multiple de o et je remercie M. Szalay, qui m’a signalé la référence [11].
La proposition 2, qui m’a été suggérée par A. Odlyzko, majore le nombre de oCSn
pour lesquelles nrn2..nk est divisible par une puissance assez grande d’un produit
de nombres premiers.

Nous montrerons ensuite :

Théoréme 2. Ona uniformémenten X£ R:

Prob{/ (1/ti)los?»™ * *} =

La démonstration du théoréme 2 reprend les calculs originaux de P. Erdds et
P. Taran. En fait un calcul similaire a été fait dans [10], pour étudier une fonction
voisine de f, définie sur I’ensemble F*n)[X] des polyndmes unitaires de degré n sur un
corps fini.

On déduit immédiatement des théorémes let 2:

Théoreme 3. On a uniformément en xCR:

prob flog (ordre de 0) - (1/2) log2n+log nloglogn < J = d(x)+o0 (loé 10¢ 10é n1
1 (1//3)log32n J I /logn ]°

Nous conjecturons que I’on peut supprimer le log log log n dans le reste du
théoreme 1, et du théoréme 3.

Notations. Nous écrirons, pour simplifier

[ —logn; 12=loglogn; 13= loglog log n.
Pour 1 et pour odSn fixé, nous poserons: N(v)= 2 | le nombre de lon-
1=

Vint
gueurs distinctes de cycles de a multiples de v. La lettre p, indicée ou non désignera

toujours un nombre premier. Enfin nous noterons [x] la partie entiere de x.
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II. Démonstration du théoréme 1

Enongons d’abord quelques lemmes:

LEMME 1. Soit x=0. Ona:
pour u=x:

et pour 0<=v=x:

DEMONSTRATION. Elle est facile (cf. [8], p. 149).

r

LEMME 2. Soit 1=v,<vy,<...<v, avec 2 v;=n. Le nombre de permutations de
i=1
S, ayant au moins un cycle de longueur v,, un cycle de longueur v, ..., un cycle de
longueur v, est = n!/(v1Vy...7,).

DEMONSTRATION. Il y a

n!
vl v!(n—v—vs—...—v)!

facons de choisir r parties de {1, 2, ..., n} de cardinal v, ..., v,. Dans chacune de
ces parties on doit avoir une permutation circulaire ce qui donne (v;—1)!...(v,—1)!
choix possibles. Dans ce qui reste, n’importe quelle permutation marche, il y en a

(n—v,—...—v,)!. Cette démonstration est voisine de celle de la formule de Cauchy
(cf B2, p- 75)

LeMME 3. Soit A réel vérifiant 0<A<1. On a:

lo
pngx pf"'p
gﬁ’i—l’ =logx+0(); 3 1‘;%,” = log x+0O(1).
Si x=2 etsi A=2, ona:
ZrE e

DEMONSTRATION. Soit 0(x)= > logp la fonction de CebySev. On a, par
P=Xx

I'intégrale de Stieltjes
logp * Fdo@®)] 0(x) 00

it pl xl t}.+1

dt
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etcomme 0(t)=0(t), cette quantité est:

Jc

O{xr~x+(f) Arxdt) = 0(x1-¥(i-X)).
Pour évaluer 2X (log p)p~km on procede de méme en remplagant O(x) par

y(x) = R%Sx log P’ la seconde fonction de Cebysev. L’estimation de pzsx (log P)IP est

classique (cf. [9], ch. 22).
De méme, soit tz(x)—2S L on a:
pSx

Y T n(x)~1 , Y*' An(l) »

pixP J tX - XX +J AL
Or on sait que 7i(?) =(3/2)(i/log t) pour tout t, donc

p2f>< log x )I ktﬂ(dttk_(logxﬁx*_l '

Lemme 4. Soit 20~ ft>i, c)2=n. Si I’on enléve de S,, un nombre de permutations
=3n! (2.+JL-), lespermutations restantes ont la propriété suivante: les cycles de
longueur >fflj sont uniques et les cycles de longueur “col, ont une multiplicité éto 2.

Démonstration. Ce lemme est le lemme 111 de [4].

Proposition 1. Soit:

¢j = (UnnCard{<7¢S,; 2 mi= j}

ISiS’fC
<

la probabilité qu’une permutation de Snait exactement j cycles dont les longueurs sont
multiples de a. Alors, si l’'onpose r=[n/a], on a:

k=j 1m X \JJ

ou s(r, K) désigne le nombre de Stirling de lére espece, et on a la majoration, pour
ré2

G=er"x" - (] +H)
ou y désigne la constante d’Euler, et H—1+ ! ety
Démonstration. D’aprés la formule 0.27, p. 183 de [11], on a:
. (x-)/a +r'

2 _CjX] =
j=0 > E
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et d’aprés la définition des nombres de Stirling de premiére espéce, le deuxiéme
membre ci-dessus est égal a: (cf. [3], t.2, p. 48)

2 ]S(l‘ k)lﬁ_u =_1_ Z’ Mjé')(’;)xj(a_l)k_j=

k
=k=r r!ofke=r o

= 3o 3 el

Ce qui nous donne la premiére formule de la proposition.
On utilise ensuite la majoration :

k—1
Is(n,k)[<g€l B!(1+ T 11) £

Cette majoration peut étre démontrée par récurrence en utilisant la formule:

Is(n+1, k+1)| = |s(n, k)|+nl|s(n, k+1)|.

On obtient alors:
k

g ks 1 (r—1

) R 1 1
J k%?!(k—l)z § j!(k—j)!(a-nf(l“?)

et en posant i=k—j,

HI—1 r—j H(1—1/a)
y rjlod ,g:, i! Gi+J)-

La sommation est majorée par:

é, (H—(IZM)— (i+)) = (H(1—1/0)+j) exp (H(1 — 1/)).

Compte tenu de ce que
1 I
H= 1+5+'"+—r—1 =vy+logr

on obtient le résultat annoncé.

COROLLAIRE. Si l'on enléve de S, un nombre de permutations O(n!/(log n)?),
celles restantes ont la propriété: Pour tout a=I/I3, le nombre de cycles dont la lon-

log n )0'3
= :

gueur est multiple de o est los : +0 (

DEMONSTRATION. Fixons d’abord o. On pose, avec les notations de la propo-
sition précédente, x= HJu, jo=x—x*, j=x+x*+1. On choisira #=0,8. Le nombre
de permutations a enlever, c’est-a-dire celles qui ont moins de j, (ou plus de j,) cycles
dont la longueur est multiple de o, vaut:

S 2erp-1 (2’ X! > e ]
= c'+ Cc; = e"r_ L ‘,—+ s,
2t 2 =5, (G—1)!

i=h . i=), Jodg.d}
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et, par le lemme 1,
—  (©Yr1=rN-

Jolog (ex/jO 1+0(xu 2

Or on a:

0i—1) log (eX/(\—2)) = X -A-X % 1+0 (X 1L+ D

Ce qui nous donne:
S = O rMexp (x—5eu 1)

pour un certain 6>0. On remarque ensuite que
N P +
R ] logr+0(1)

etdonc ex—O0(rvx). Enfin, comme r=[u/a], on a: x=(l/a)(/+0(/2); comme
aS//If, on voit que x&/f/2 pour n assez grand, et donc

5=0 (exp (- SI\w) = O(I-3
en choisissant n=0,8.

En faisant le méme raisonnement pour tous les a=///|, on obtient qu’excepté
O(n!//2 permutations, le nombre de cycles dont la longueur est multiple de a est
compris entre Xx—xu et x+xu+1, ce qui achéve la démonstration du corollaire.

Pour démontrer le théoréme 1, nous allons construire des sous-ensembles S”cz

c5,, ..., Ditl)c5®, toustelsque Card(5,- 5M)=Q(ni/17).

Construction de On utilise le lemme 4 avec oo =[/log/i] et co2=4+0n a
bien:

IM-bl/Wwi2! = o(i/ 17)
etles (iIE5” ont la propriété
Pj: -=1f7 =nij=1 et (n;» YI=mtS L).

On désignera par A0 le nombre entier tel que nko*Yl<nko+L La propriété Pk
s’écrit alors:

O: @~ i» kO=mt 12 et (fO<ié 1=>w;=1).

Construction de 5*2). On utilise le corollaire de la proposition 1 Les 5'2
auront la propriété Pket la propriété P2:

P2:Vass//l|, Y W,=//a+0(//a)08
a{

Minoration dans le théoréme. 1 Nous allons montrer que pour aC5,2), on a:

f(p) —og (ordre de a) s //2+0(//3.
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On remarque d’abord que, a cause de PX,
A u"':“-zAk 1+AZ im,—I):N(a)+<\)[ip—l).
Ie(l(lan;:c OQ!I 1 I#\ﬁ(O Ci

On a donc, par P2 et si as///f:

©)) N (@) = (//a) + 0(//a)08
On a ensuite :

/(a) - log (ordre de <) = log (nl...nK)- log (p.p.c. m(/il5 ..., V) &

g 9P (LA P)-Y).

Cette derniére somme vaut :

IN+ 1°a"B-) =ik+
ps%/tlI P O{IV a|f33 )) tk+o(U3
par le lemme 3.

Construction de SjfK On remarque d’abord, en faisant a=1 dans la formule
(3), que I’on a pour tout aCSE> lapropriété P,:

P2: k =iV(l) = logn+0(log )08

En fait, on aurait pu obtenir P2 a partir des résultats de Goncarov [7], comme |’ont
fait P. Erd6s et P. Turan [5].
On impose ensuite les propriétés suivantes :

P3: Va S (logn)3 N (ci) ~ 1,
P3: V as (log n)32 N (a) S 4,
P3 -YY, IlI1=Y¥S I, VaSj, N(a) S IJy.
Fixons as///| et y0S//a. Avec les notations de la proposition 1, on a r*n/2,

H=1+..+- - =y+log/LUlog/?
et le nombre de of Snpour lesquelles jV (a)S/0 est majoré par:

B EG wa 7

par le lemme 1, a condition que /0S 2 et y0S/.

Pour  onfait j o=2. Lenombre de aGCS,, qui font exceptions & P3est majoré
par

M2 ¢ 2N
J-Jo ] |u|

n\o(r- 2__a“2 = O(?M)).
(- 2,522 = O(2)
Pour Eg on raisonne de méme avec /,,=5.
Pour P&, on fixey, et a, avec j~a” /32 (Pour a>/32 onapar P3, 7V(a)a
s4 M1jy). On choisit jo—ljy. On a bien 1/«Sj0*| et on remarque que j0=I2-

Acta Mathematica Hungarica 45, 1985



76 J. L. NICOLAS

Le nombre d’exceptions est donc:

Commeily aauplus I valeurs de y et 732valeurs de o le nombre d’exceptions a P£ est
négligeable.

Proposition 2. Soit n assez grand, mél, t=2, tm~l/2, Le nombre de
a pour lesquelles il existe m nombres premiers <... , avec y=p%
tels que N(pj)"t, ..., N{pm=st est majorépar:

Démonstration. Fixons d’abord Pi,...,pm. Comme imé(l/2)logn, par lapro-
priété P2si a est telle que chacun de ces ptdivisent au moins la longueur de t cycles
distincts, on peut trouver P cycles de <, de longueurs ..< Vvl avec t"p,"
Stm et Vj=H/log n tels que P=p\...p\n divise v*.-v,,. Le nombre de telles 0 est
donc majoré d’apres le lemme ., par:

ni n!
V..V, w

—lyiog«Sv.«,<...
pfv,v2..vw

On peut mettre 1/P en facteurs dans la derniére somme, a condition de multiplier
+t—I\" . i
(u tt I\{. La fonction Tr(n) est définie par:

T2(n) = (%n 1

pour r”3
T.(w) = 2 T-1(d).
Il s’ensuit que:

—- ! {4e2logn)i<m tm _n! <30logn\
~ P t J (vormym1 -~ Pi—PLE t ]

en minorant mtpar }/2nuuue~u et en majorant p+t par 2p et4e2par 30.
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Maintenant, on fait varier les nombres premiers p,, ..., p,,. Ona:

TR, W A
yém<2~-<nm Pi...pm  m! gy . mgy ') T \Umyt~tlogy
d’apreés le lemme 3, ce qui achéve la démonstration.

Construction de SP. On va imposer aux o€S{® la condition suivante; avec
co=18 exp (60/e)

Bivt 2=138l; m=Cad{pel; N(p=1t} = c2"lfly.

Fixons d’abord ¢; on applique la proposition 2, avec y=logn, m=[co27*l/l]+1.
Le nombre d’exceptions est allors majoré par:

n12-c2 ™"l = O (n!1-?)
et on fait ensuite varier 7.
Construction de S{®. La condition supplémentaire imposée est

PNy B =gi=TL Vs!2=is=l;,
m; = Card{p = y; N(p) > 60Is/y} = 36-2"*y/l,.

On fixe d’abord y et s, on applique la proposition 2 avec t=[60Is/y]+1 et m=
=[36-2"y/l,]+1, et on termine comme précédemment.

Démonstration de la majoration dans le théoréme. Soit o€ S®, nous devons
majorer f(o)—log (ordre de o). Cette quantité est d’abord majorée par:

7
Zafepi@ = 21
NGH=2 "
ol les sommes partielles 7 portent sur les couples (p, a), p premier, a=1 vérifiant
N(pH)=2et:
i=1 p=P
=2 pr=1lk
=3 a="1 et I <p=
i=4 a=1 et l<p=PB
i=135 a=2.ets < p=13
i=6 a=2, p=l e P2<p'=pP
=L a=2, D=1 ¢t PA=pr=1

Par la propriété P;, la somme 7; est vide.
Par Py, on a:

1

T, 0 zﬂJro[zo:sl"o% = U, +0(lly),
o=l p”

par le lemme 3.
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Dans T0le nombre de termes est O (13fi), et par P3, on a:

t 5 —

Dans T6, en utilisant P3, on a:

Te”™ 2 bge 2 4'S 12/2v(0 = 0(0-
p~Il a~3/2/log P

Dans P7, onremarque que a vaut exactement 2 et comme N(pgsN (p), on constate
que T7Tt. On a ensuite:

T\= ﬁ%ﬁg

D ’aprés P3, N(p)”I2 et par la propriété P4,

Qogp)N(p) s 3%5%,5 n ()

Pas 3/2 2 = 0(1).
t=2

Pour évaluer T3, choisissonsy, 1/1%=yLLl/2 et considérons

WY—y<fT2y0 °g p)lp) =h y<ﬁA2y n (p)

Nous allons montrer que pour tout y, W=0(l). Il en résultera que T3=0(lI3 ce
qui achévera la démonstration du théoreme. Par la propriété P3, on a N(p)sll2y.
Ensuite, par P5,

120/( 'y 1)+ g 60/(s+ 1) _
ms = 0(1/12.
2 LL"p)BS Y  y-Ppkry s=2 Yy S ( ]3

Pour supprimer le «/3»> dans le reste du théoréme 1, il faudrait pouvoir montrer
que:
T3 = 2113+0(l).

I11. Démonstration du théoreme 2

Nous utiliserons la notation suivante pour les séries entiéres:

nZ:0<<nzn<< rgO bh,,z"

signifie : pour tout néo, \ané bn.
Lemme 5. On a.

m=22 fil £ 1z I z m=1 M
Lemme 6. Ona:
“ log2m m 1. 1 “ logm
_g____z _I0g3 ______ « 2—2 _g
nN=2 m 3 1-2 m=2 m
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Lemme 7. Soit ci>0 et une suite de coefficients ak vérifiant \ak\*a/k pour 1iS&iS
=n. On pose:

eXp(Z«kZK = 1+ 2 bkZk:

ks =

Alors, on a, pour [€AH bkl s ae4*- L

Lemme : . Soit /i=s3 et tCR, vérifiant [4=/log n. On pose:

— N LS 2_1 _ S, -
h(z) = P 1210gs/2n fog? I—z  6log3n |0931_Z)} }fioemt

Alorson a, e0=el=1, et

nEePc T X - iiH i)
etpour 2"m”"n,

e

ou les O sous entendent des constantes explicites.

~La démonstration des lemmes 5 a 8 se trouve dans [10]. Sous une forme un peu
moins précise, ces lemmes figuraient dans [5)].

Lemme 9. On apour tout x réel et m entier & 1,

ex—1—ix—...— (XY |
(m —1)! m\
La démonstration est facile, et se trouve par exemple dans [6], p. 512.
Lemme 10. Soit a un nombre réel vérifiant O ~aS 1/6. Soit ak une suite de coeffi-
cients vérifiant \ak\*a/k?2 pour k1. Onpose:

exp (ﬁélaktk) =1 +k%\| bk tk-
Alors on apour 1:
\bk\ 2a/k2

Démonstration. ON pose:

y(2) = exp (S%I azkffigd = l+t%I VK*K-

On a évidemment \bk\*uk pour tout /c”l. D’autre part, y vérifie I’équation diffé-

rentielle :
| =ay(2zk~1k)
d’ou I’'on déduit, pour n*O

(n+hu,+1= —3- ;.. 2 auj/(n-j+.).
n+l j=i
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Montrons par récurrence sur n, que I’'on a u,,"2a/n?. La relation est vérifiée
pour n—1, puisque uk=a. Supposons la vérifiée jusqu’a m (n”l) et montrons la
pour 75+1. On a:

a 2a2

(Wl At (n-j+i)

a 1
o ne 12222 e e gt o |)2(|(n++r#41» |
r on a:

ce qui donne:

(n+ D2, +17 aH—l%2+ 2,4a2” 2a lorsque a S 1/6.

Remarque. Cette condition as 1/6 n’est pas indispensable. En utilisant les mé-
thodes de I’analyse complexe, H. Delange peut démontrer que pour tout a fixé, le
coefficient uk ci-dessus vérifie uk~ae‘’k2

Lemme 11. Soit nx<nz~=..<-nk les longueurs distinctes des cycles de adsS,,.
La valeur moyenne de f(a)=_ Z ) log nt vérifie:
isis

«!<rezs,, Noe = —ﬁf—logz« +0(i).

Deémonstration. Rappelons d’abord le résultat classique: soit k, Isfcsn;
je nombre de permutations de S,, qui n’ont aucun cycle de longueurj est:

[n/t

]
n Z (-1YU-\).

Lorsque k= 1, c’est le probléme des chapeaux (cf. [3], p. 10). Il s’ensuit que, le nombre
d(n, K) de permutations qui ont au moins un cycle de longueur Kk Vérifie:

ir{1-zk)-din"k)- nllk

On remarque ensuite que I’on a:
M= = 2o (logk)d(n,k) = .2, —f—+0(1) =
= /-~-dx +0(l) =ylog2n+0(l).

| ére étape. Avec la notation du lemme 11, on pose:
Fn(x) = Prob {f(p) —Mn< x log32n).
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On associe a la distribution de probabilités Fnsa fonction caractéristique, définie par
I’intégrale de Stieltjes:

+ oo

agn(t)= f e“xdFn(x).
On a, d’aprés [5], p. 313:

@) B0 = exp +CoefT. de z" dans expDn(z, v
avec

t= ?(logn)~32
et

AO, 1) = JZzélog{l+0 “r- D(1- e~zW)}
2éne étape. P. Erdés et P. Taran ont montré que pour t fixé,

5) lim () = exp (- 126).
En vue d’une estimation du terme d’erreur dans (5), nous supposerons que |i|a
&l ]/logn, ou Bestune constante assez petite. Les majorations qui suivent,y compris
les «O» seront valides pour [f\*R }logn et n=sn0, ot nOest une constante absolue.
On écrit comme dans [5]:
D,,(z, ©) = [i{(z)+ 02(z) + [i3(2) + U4(z)

avec

K(Z)= log j T2 IogZJIy

=2t J 2

n fm—1 logj I T2log2j 1,y
@) - 24 Vy- e

* (%) = -

=1 i —

j=2 r=2
On a, par le lemme 9, avec la notation <k:
" 't3log3j ] IR \t\3 Zj

KD 22 6 <« =eogua2 |
Et, P. Erd6s et P. Tdran donnent:
. r2 * zl
U4(Z) « C4_|_O_é__|;| 4]—2
et
B, N
llog W j%4 -
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On remarque que la condition: n>exp(104t2 est assurée en choisissant /?7<10 2
On peut donc écrire:

(6) Dn(z, © = Ih(z)+_% af)zJd
avec 10

n (1
@ yiogn U'2 7|(l)291n}

3tneétape. Compte tenu de (6), et en observant que les puissances de z d’exposant
-n n’interviennent pas, (4) devient:

— f itM,, } "
=exp 4 log22ni aCoeff. de z" dans

1 i jiie g LA Pbnfvl.
N E PR SR
On utilise alors les lemmes 5 et 6, et avec la définition de la fonction h dans le lemme
8, on obtient: <

8) (0 - exp{,~ " " }*Coeff. de z* dans h@exp{ & aj2z]
avec
|052>| s @ 'j_ZJ(rogn+ 4yfo|\él3/ér?J’
pour 2SyS/i.
dareétape. On pose:

exP(2 «jJ2) =1+2"

©) 0=23J- flogn J j=2
c(t| + t3))
a= log32n -

(On impose a /1 d’étre assez petit de fagon a avoir a s 1/3)

exp(I::22, a(("OJ—Q: 1+ 2 b"z’,

j= 2
(L+i~07)(1+ 5 bflzj)= 1+2 bjzj.
j=2 J=2 J=2

On aura alors, pour 2SySn,
|afIL bj.
Il reste a estimer bj. D’aprés le lemme 7, on aura:
bj2 s él,saja~ls 2aya-1
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et d’apres le Iémmé 10, en choisisant 1/6¢(2),
WA 20(2>|i|,
1log nf
Il s’ensuit que :
J . "

bjrbp + bfr+ z 4c

(CR . ”
r=2 Mognr-(j-r)l
On coupe la somme en deux, suivant que rsy/2 ou non. On a:

afmieSU- 1y - = 0D

et
a 4 . .
M-Mj-2 r2(j-r) y 2, A==,
On a donc, pour 2SyS«:
u)3>= Oﬁ L

Mog n )
d’ou I'on déduit:
(10) af) =0(r23) (2=j=n)
et
H .
") Mog n "1 yiogi

5e étape. Compte tenu de (9), et avec les notations du lemme 8, (8) devient:

9.(0 = exP{|QBV"}(e» +2 «fe.-j+ea»!).

83

Le méme calcul que dans [10] donne, en tenant compte du lemme 8, de (10) et de (11):

(12
9.(0 = exp (—26)+ (exp (—t248))0O f—,
(i

+Op|>> .
] 0gn k yiogn ) )
6e etape. On pose:

Sa fonction caractéristique vaut:
+®
(pt) — J e‘xdF(x) = e~1b
et I'on a la formule (cf. [Fel], p. 538):

03) W) -FOovsi 1 f PrO<PO g g 24;(0)
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valable pour tout x réel et tout T>0. On choisit T=R /log n avec R assez petit.
Le méme calcul que dans [10] permet de déduire des formules (12) et (13) que I’on
a, uniformément en X:

14) F..(x)- F(x) = 0(1//logn).

La démonstration du théoréeme 2 découle alors de (14), puisque l’on a:

'/(0-)-(1/2) log2n
(1//3)log3/2n

Prob

=X} = Fn(y)

avec
y = x/I'3 +((1/2) log2n—Mn)/log3d2n = x/\3 +0 (log_3/2 1)

par le lemme 11.
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ON AN INTERPOLATIONAL PROCESS WITH
APPLICATIONS TO FOURIER SERIES

R. GUNTTNER (Osnabriick)

1 Let SJg] denote the trigonometrical polynomial of degree at most n that
interpolates the function g of period 2nat m=2n+\ equidistant nodes

) = THIIF 0 =021, £2,...).

Following Kis-Névai [7] we consider the polynomials

2

which for k=1 and k=2 were first introduced by S. N. Bernstein [1]. If not noted
otherwise we take' m>k so that the arguments of S,,[g] in (2) lie within a period of
length 27t

In [7] the expressions

[5».,[g1(0-g (0! -
(3) Mkn(t) esi%rt)n ck, = Slipc M kn(0,

ar=Cconst. 03 (« . #)

were investigated. Similarly, we define

_ fo,[9](0-g(01 5 _ A
@ A0 = Lstp, 1 T ak,= sup RKAY)
m
where gCLipMI means \g(x)—g{y)\"M\x—y\ for all x, Without loss of

generality we can choose t=0 in (1)—(4). Similarly to Theorem 1in [7] we have
iu -0 = RKAt) = Rkn\t+~ y

Therefore it suffices to study Rknfor 0~t*n/m only. Sc[g] can be written in the
form

(5) -w §kﬂ[g](t): i:z_ﬁgossip),
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where
'«»-a M CW +V M -
(6) L2 . 1.. mt t
dn(t) — —;—Z cos |t——msm2—eosec—2.
Let finally
<Ti(t)= ._2_n si(0 (}=—n,-n+
(7) .

ffi(0 = }_iSj(O O= »2,..., «).
We get from [3] as a special case

i=—n
To complete the proofin [3] we first verify

n
Theorem 1L 5= sSup .2 KO* M-
_F]

-oo<f<oo I=

In [4] it was shown that

don= ~In m+C+eon, 0 < son< ~j~rn2’ C:=* (7+1In7 ):=0%9625"-»

(y=0,5772... denotes Euler’s constant).
Now let k= 1 Asa main result of this paper we prove

Theorem 2. For 0*t*n/m, n>0, we have

2i—1 1 - )
h ' " ) 4 I\t er;l ‘")] + ( + ( !)l)<<_«

1 2/-1
ut 2 Sin(2j - 1) (£-/1,Ct9 " T+ rB,

Now the same methods as in [5] can be used to estimate €n. We first notice that
(8) Bi,= <5+0(l), $>1 +1(Y2 -In (I+j/2)) = 1,16960....

It is somewhat difficult to get a precise upper bound. We show

Theorem 3. dAn=<5+ eln, 6= 1,16 968..., £In<1/n2 (SGcoincides with the constant
c in [5]).
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We mention that 510=1, 5U=1, <&2=1,058..., ¢13=1,080..., &4=1,100....
For k> 1 we get

Theorem 4. &,=>1,36- IT/IZ_ , 0k Zn 2), (@2 1)
As a corollary we can conclude that kK —1 is the best choice for k.

2. It is natural to extend some of the results obtained in Section 1 to Fourier
sums and Bernstein—Rogosinski means of Fourier sums. We denote by 5,,[g] the
nth partial sum of the trigonometric Fourier series of g£C2n, which may be repre-
sented in the form

9) S,[91(*)=i / g(t)Dn(x—t)dt, Dn{z)="-dn(z).

Similarly to (2) and (3) we have

(io) sugl(*) =je2 ()W (x+"-n),

Mkn(x) = sup I$‘Jg](*)'g(*)|

It is well known that Mkndoes not depend on x thus Mkn(x)=Mkn(0)=Mkn. This
is valid also for

_ 1*9*, [g]W-gWI
(1) RGO = QE?_linle

m

As pointed out in [7] we have for k=0, 1, 2,...

(12) Mfens —/ Mikn(t)dt, Rinll~ f Rkn(t)dt
s 7o
From this we get

*
Theorem 5. Ron=i f \Dn(t)\dt.
n -1
It is known that

| f \D,,()\dt = Ufinin + o(l).
Finally we state

Theorem 6. RIn*y+yn, y= 111 261 y,,<l/n2

We mention that R10=0,5, 0,893, R12S 0,989, i?13* 1,022, J?14 1,043.
In the following sections we will prove the results.
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3. Proof of Theorem 1. Since the proof for n=0 is easy we may assume n=>0.
We start with (5) and [7] (23). By Abel transformation we obtain from (7)

(13) s*n[g](0-g(0= 2 {g(0-gtt+i)H (0+

HAO—aO<BOHA(ID)—e(D}i0+2
Let k=0. In [3] it was proved that

(14) Ron(O & __2_tI \dn(t-t,)\.
It is known from [2] that for i'=(1/2)(f0+fi) v7ehave

2 n‘dn(t'—ti)\ = sup 2 |

i—— —oo<f<oo i=Z—n

Thus in order to verify Theorem 1 it suffices to construct a function gC LipMI such
that

083) swlgm -g (t')="- & Kv-ti)l
We choose a 2s-periodic function g, g(t') = Miz/m, and for —si”*n

i2Mn/m, i=0 —2,—4,... and i=135, ..
0, i=-1,-3,-5,... and i=2,4,6, ..

(g is linear in the remaining intervals). By virtue of (13) and Lemma 2 in [7] this
yields

AFTT A ™MT s
sonfg](0-9g(0 =-—{2.2 k(01+1}=-~{2 2 Kk (Ol-i}-
1] i=—n i—n
bl01
Now applying [7] (11) and (9) we get (15) which was to be proved.

4. Proof of Theorem 2. Let k=1, «>0. From (13) we immediately get for
gCLipMI, OLULWn/T,

~ 2Mn N 2n \
(16)  Ne,[g](0-g(0! " E\%?WM+Mt0Aty+M)€ﬁ tWe.

From [7] (37) we conclude that
)] ):Z_HK(OJ.: 2 k(0I-M 0l=,4-*i(0—y-iyd.ct-n).
Further we infer from al)+al=lI

(18) «. (O +fé-"Y«"» :|7|~»_(B)(2<_/\)+/\_
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Now (17) and (18) can be used to transform (16) to

(19) |51B{g](0-g(O1 7 +

O”tSn/m. Let us now construct a 2n-periodic function g€Lip”l such that equa-
lity holds in (16) and (19). We can choose a piecewise linear function g satisfying

2Mn for i —0, —2,—4, ...
" ( n—h
g (6) —),
4Mk for i=—1,—3 -5 ..
m
s<,)
M |-~--2tj for i=1,35, ..
g(u) = I~ n

M k—m—ZIJ for =246, ..,

Now starting with (13) and [1], Lemma 2, it is easy to verify that equality holds in
(16) and (19). Using 1/2 —ffl=a0—1/2 this yields

(20) Rin(t) = 1 -A (ao(0-1)-(-1Y U (/-7r).

From [7] (34) we see that

A TR Y 4'-4r S

The first part of Theorem 2 now follows from this and (20). To prove the second part
it is useful to introduce some abbreviations, RIn=1+ a+ B,

(2 o4 IW 44 r 4 -4 -1wld
22 M = (-Ae=(=1)") 4 (t-A)-
From d.(t):mirrﬁ—;l\li cos it it follows that

4 "4 4 *)-4 -4 4 -

4 JJ[ co!'j('+4 1 *)-co884 214 ")]

2 gin7 | B hsin 2l

m
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thus we have

(23)
H .2 ijn\
sine '
Using
>JS|n|—2—'m = e L —f COS in—C0oS— n
m o jn | mi’
sma=
m
25in*Jn—, even
2m
e s — f-a= 2i
Daxu I ow
and’ Esm —4sm n cos-l we obtain
2m 7 72m’
1 /5 ~ A
4, . 2ijn ~Ttan2"’ J=246 -
(24) 4sm——#—]—
Tctgé* ¢=135--
Let n be even. From
.. n .11 2v 1 n
3|n\(/2v—1){ ————— ]) ctg ——"A—sin ZV( —————— l)—tan
. N(n 11 2v—1 . 1s(n I 2v—1 =
=sm(2v—l)|——/l)ctg —m—l—ﬂ m lg2v-1 sn
and by virtue of (21), (23) and (24) we get
i 2v—1
(25) «(0 ——f \}_E.SII’](ZV—].){ ————— / jlctg————rﬁ———n (n even).

Let n be odd. The same methods now yield

) X

4 4, . 7 1 2v—1 2 1
a(f s nty=1 sin(2v I)le tJctg o A 4— tsmvk Sltan
But for odd «we have

Iy fm/ .11 m t 2 ( 11
i(,) +j moosT ‘2 S "AT "+ |
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It follows that

tin

soe-h (0 —,

if we consider tan (mr/(2m))LLI1 and

() ﬁ n )1 0
sinny— ll- cos Ini4- 53— S cosEn|4 vf)l

\ 2 2m)1
It can easily be checked that R(t)=0, for n even. Thus we conclude from (25) and
(26) -

[i£i]
(27) Ru () £l+‘3{i 2 sin(y—) —/)ctgh— (n=12,3,..).

y=1

To get a lower bound we proceed like this. Let n be even in (23) and (24). Estimating
in the following manner

_(n )1 ATt ,TU0 )1 2v+|715,)
- Im- )2 ton35-+Sm<2v+A U “'J2 “gmom Ao
i (25 + 50T uBR T whsi2 e (0 ) FtPE e x

= sin(2v+|)’\-/jct92vn41rlm, OSISH, 1S2v+lsn,

we get from (21), (23) and (24)
4 ig . ... .(n | 2j—1 2 (n. ) mt

“O* 7 - - h —7'sn"b H w?
4—2_ is'm(ﬂ—— \tan7—l—
t \m )

We simply have for 0,
(N M I 1

~'ﬁ |S|nn(,ﬁr~// tanffyr n
mt ot 1
[>» = (on ) m’COS-E' SeCZ——’—"h-.
By the same methods we obtain for n odd,
nH
- . - _ _. - Ry RIT - '_. _/\_
a(i) S - tj% sin(2/ l)\rrn |5 ctyg — —ti4 . tsln\lm |)Itan2m,

L1 mt t
A R —_ —_
n(o 2 COS—xS€C— >

Thus we have proved the second part of Theorem 2.

Acta Mathematica Hungarica 45, 1985



92 R. GUNTTNER

5. Proof of Theorem 3. By Theorem 2 and the well known series expanonsi

sin x= 2 awx' we transform RIn(t) to

(28)

mi " n m 2 LTZJ‘ n(2j— )v j
Yo 20 YA E TR e

The sum in brackets can be interpreted as a Riemann sum of f v(x)=xvctg jc with
step h=2n/m. Thus the same methods as in [5] can be used to prove Theorem 3 and
the first statement of (8). In addition we remark that the final substitution z=mtf2,
OstSn/m, leads to an expression of the form

(29) Km(0 =f(z) +fn(z), 08z =y,

/,,(z2)=0 /,,(z2)<1/n2 Unfortunately/ does not reach its maximum at the mid-

point z="7r/4, resp. t=n/(2m), thus complicating the evaluation of ~IB=supRIn(i).
Simply substituting t=n/(2m) in Theorem 2 yields

7

t X —
M S) n QL om sm (2j — 3—ctg———r—ﬁ——n+rn.
Now sin Xctg 2x=sinx |y ctgx—y tan xj=cos x —y secX, thus
&
Y] @ 140 Feosxdx—L J secxdx = 14 {tfl —in (I + M)).

which proves the second statement of (8).
6. Proof of Theorems 4—6. For k=2 consider a piecewise linear function g,

g Wmi - , satisfying

i2MnIm, i=13,5 .. and i=0, —2, —4, ..
N Y~[4Mn/T, i=2,4,6,... and i=-1,-3,-5, .. |1 n
Applying (13) and [7] Lemma 2 we get
'\fn” 1+2J K #
i;*0,1

As shown in [7] (44) we have

i701
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Finally it suffices to mention that

which follows easily from (6) and [7] (41).
To prove the second part of Theorem 4 we let K be odd. From (2) we immedia-
tely get for £<ELIPm1,

It is easy to construct a function g such that equality holds (m>k). Evaluating the
last sum as in the proof of Theorem 2 in [6] we get

Similarly we can obtain for k even,

([g](0)-8(0)I = () [*-29. V. mi(2)-

As it can be shown by induction, the expression
W V- 12,3 ..
as a function of v is monotonously increasing, thus

3
MN—n 27 K=39

which completes the proof of Theorem 4.
By virtue of (12), (14) and (9) we easily deduce Theorem 5, integrating (28), resp.
(29) we obtain Theorem 6.
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ON THE MAXIMUM RANK OF
A TENSOR PRODUCT

P. PAMFILOS (lIraklion)

1. Introduction

The tensor product V—\k® \2<S>.. gMnofthe real vector spaces Vx, V2, ..., Vm
of dimensions wy, n2, respectively, contains some special elements called
decomposable tensors of the form:

vi8x2®, ... ®, v,, with VizVvi, for i—z1,2,..., m.

In general each tensor  V has a representation as a sum of such elements:

t— I2_I Vi ®V2°® ee g VH*
The minimal k for which / has such a representation is called the rank of t and is
denoted by r(t). The maximum value of r(t) for all t(zV is called the maximum rank
of Vand is denoted by r(uw, n2, ..., nm. No general method for the computation of
either r(t) or r(nx, n2 ..., /2,) is known. In the case of a product V= VX®V2 oftwo
spaces, tensors t can be identified with matrices and r(t) coincides with the usual rank
of the corresponding matrix. Also r{nx, ud=min (nx, n2.

In the case of a product V—Vx® V2® V3 of three vector spaces the situation is
radically different. Some lower bounds for the rank r(t) ofatensor can be found, but
such simple tensors as the one that performs the matrix multiplication are ofunknown
rank ([1], [3]). Some of the numbers r(nx, n2, n3 for small values of nx, n2, n3have
been calculated. The computations involved are quite formidable and remain unpub-
lished. It has been asserted e.g. that

r2,2,2)=3, r(3,33=5 1r334)=s, r33,5=6¢ or 7

See [2] and the references given therein. Several results bearing to special triples of
integers are also known ([2], [3]), e.g.

r(m, n,2) = min (2m, 2n, m+[n/2], n+[m/z]),
r(m, n, mn—k) = mn—k2+r(k, k, k2—X).

It is conjectured ([2]) that r(m, n, nm—k)—mn—[k/2], for m, n*k. There are also
some inequalities ([2],[3]) such as:

r(n,n, 3 é 2«, r(m,np)» m+[p/2]n, if m~" n,
r(n, n,p) = (p+Hn/2, 2mn,p)S mnp/(m+n+p—).
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I could not find in the literature analogous results for products of more than three
spaces. In this note | generalize the last inequality for an arbitrary tensor product and
prove that

r(nx, n2, nm s=nin2..nJ(n1+n2+...+nm-m +1).

The principal role in my proof is played by the manifold My of decomposable ele-
ments of V discussed in §2, and a certain construction, which imitates the Stiefel
manifold Sk(R") of A-frames in R" and is discussed in §3. For general definitions,
elementary facts and notations | refer to Marcus [4], Brickell and Clark [5], and
Hirsch [s ].

2. The manifold My of decomposable tensors

Without affecting the generality we can suppose that each Vt carries an inner
product The linear isometries of this inner product constitute the orthogo-
nal group O(Vi), isomorphic to O(/?), the group of orthogonal n;Xu; matrices. On
Vwe can then define an inner product:

m
(VI®...®vmwi®...<g>wn) = _IJI Vi, W
1=

for all decomposable tensors. For the remaining tensors the product is defined by
linear extension. Let now My denote the set of decomposable tensors of length 1with
respect to ...). Itis easy to see that My is identical with the set of tensors vx® ...
L.®rmwith |bl =|M = ...=|»=1 The group product

G=0(VD)XO(VIX...XO(VJ
operates on Vin anatural way viathe tensor product of linear maps
(A, As, ..., AJ(MO®...<8)v] = (AlV)®...® (Amvd

for all decomposable tensors. For the remaining tensors the definition is extended
linearly. Obviously this action is transitive on the set My. Using orthogonal coordi-
nates in each Vt one can easily calculate the isotropy group on an element vL®...
.. ® WEMYy. This group is isomorphic to the group of matrices

Co= {?0(c ¥l fi=+1 fori=1 .., mer.sm=Ij.

Then according to well known theorems ([5], Proposition 13.3.1, p. 250) J1/, is a C*-
differentiable submanifold of V of dimension

dim (Mj) = dim (G)-dim (GO = ni(ni—I)/2+Ha(nj*~)/2 + ...+nm(nm—)/2 -
—«1 - 1)(«2—2)12 —..~(NM 1)(nm- 2)/2 = nx+n2+... +nm m.
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3. The restricted Stiefel manifold S, (M)

Let M be a submanifold of a real finite dimensional vector space W; for simpli-
city take W=R". For fixed k=n let S,(M) denote the set of linear k-frames
(ey, .., &) of R* with e;e M for i=1,2, ..., k. We call S,(M) the restricted Stiefel
manifold of M. For M=R", S;,(R") is the well known Stiefel manifold of k-frames of
R" ([5], p- 92). Mapping each frame (e, ..., ¢) of R" to the nXk matrix whose co-
lumns are the coordinates of e, ..., ¢, we see that S, (R") is diffeomorphic to the
open subset of (R")*=<R"™ of nXk matrices of rank k. Similarly S,(M) can be
identified with an open subset of M XM X...XM (k times) which is a submanifold
of (R"*, namely

S (M) = (MXMX...X M) NSy (R").

Hence S,(M) carries the structure of an open submanifold of MXMX...XM
(k times), and is of dimension mk, where m=dim (M).

4. Proof of the inequality

Let M, be as in §2, the submanifold of decomposable tensors of V. For a fixed
k=nyn,...n, consider the map

Pt Sc(M)XR* -V
pk((el, ceny ek), ()&1, ey lk)) = llel+}.232+...+lmem

for each k-frame (ey, ..., ¢,) of elements of M;. Obviously p, is a C*=-differentiable
map. Would k coincide with (s, ..., n,) then p, should be surjective. But higher
dimensional manifolds cannot be covered by lower dimensional ones via differenti-
able maps ([6], Proposition 1.2, p. 69). Hence we should have

dim (S; (M) X R¥) = dim (V), k(ny+ny+...+n,—m)+k = nyn,...n,,

which proves the stated inequality.
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IN FRECHET SPACES

DINH QUANG LUU (Hanoi)

0. Introduction

The measure amarts in Banach spaces were considered in [3]. The extensions of
Bochner integrals and of Banach space-valued amarts to the Fréchet space case are
natural [5, s]. Therefore, one can study the measure amarts in Fréchet spaces. The
Riesz decomposition, stability properties and convergence of amarts in Fréchet spa-
ces are considered in Section 2. For terminologies and notations we refer to Section 1

1. Terminologies and notations

Throughout the paper, let £ be a Fréchet space, U(E) a fundamental countable
family of closed absolutely convex sets which forms a Gneighborhood base for E, E'
the topological dual of E and (Q, si, y) a probability space. Given £/£U(E), the
polar U° and the continuous seminorm pv ( ¢) associated with U are defined as

°={efE'; |<x, )] = 1, £T}

pv(m) = inf {E=>0; G1VEL},
respectively.

We shall denote by i(E£)=9M(i, si, E) the class of all E-valued measures on
si. Given pELU(E), f/£ {/(£), the semivariation (or the total variation, resp.) semi-
norm Sv(p) (or Vu(ju), resp.) is defined by

Su(p) = sup {\(i, e)\(B); efw],

and

W(p) = sup {jZZE’E(KAJ'))l (A))B=1en(Q)},

where n(i1) denotes the set of all measurable finite partitions of (2

By S(E)=S(Q, si, E) (or V(E)= V(£2, si, E), resp.) we mean the space of
all ~-equivalence classes (or F-equivalence classes, resp.) of ~-bounded (or F-boun-
ded. resp.) measures in SI(E). Thus, the proof of the following property will be omit-
ted since the argument is analogous to that contained in [7] for 1}(E) and 1} {£}.

Property L1 Both S(E) and V(E) are Fréchet spaces.

Let LL(E)=LYQ, si, E) be the space of all Bochner integrable functions
/: Q-+E. Thus every /E£T(£) is Pettis integrable and if we identify f with the
measure pf, given by

pfisi~E; Pf(A) = Jfdy (AE£si)
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then according to [5], LXE) can be regarded as a closed (hence by Property 1.1,
Fréchet) subspace of V(E) with

vucCh) = w(ji,)= f Pu@@)dy {fdLfE), UeU(E)).

The following result can be established as in the Banach space case

Property 12. Let S(E), UEU(E) and fEL x(Q, (3, E) for some sub a-field
fflasd. Then

@ Su(h) —Vu(p) > Pu(fi) —Su (p) —4Pu(p),
where Pv(n) =sup {Pu(y(A)); A£si}.
@) PV(J) = 1/0y) ~ SOJ) = Sa(nf)  4Pu(nf).

2. The Riesz decomposition stability and convergence of amarts

Hereafter, we shall fix an increasing sequence (s/n) of sub er-fields with E=
= and sé=c—T). Put

S((sd,), E) = fieSN(E) = S(stn, E)I

L{(sd.,), E) = {(/,>; fE1INe = LXQ,sin, E)}.
T=the set of all bounded stopping times. Given z£ T, E) and (/,,>€
& («>,£), let

s/x={A€si; AC\{z = n}es/,,, (nEN)},
hd si*-* E: nx(A) = 2N hj(AM{t=j}.

U Q- E:fx) =f @ (©€{z=j}), jEN.

It is easily checked that for each TET, six is a sub crfield of si; SZ4E) —
—S{Q,six,E) and ffL\(E)=L 1(Q, séx, E). Furthermore, if a, TA" with itSt
then s/xezsi,,.

Definition 2.1. Let (g,,)i S((sfn), E). Call (u,,) a martingale, if for all m~n£EN,
one has UTIELT\s/K=Ai,,.

It is easily checked that, if this occurs then for all z,a£T if a”z then n,iX=
—Pa\rfx=Px and the element /rt(i2) does not depend upon the choice of z£T.

Call (%) an amart if the net {/rT(fi)} converges. Clearly, every martingale is an
amart.

The following result is fundamental in the theory of measure amarts. A result
very closed to this was proved by Edgar and Sucheston [s]

Theorem?2.2. Let (un£ E). Then thefollowing conditions are equivalent:
(1) (un) is an amart.
2 )I(mlgg_&s&di,,tl- ft)=0 (Ue U(E)).
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(3) (/i,,) has a Riesz decomposition: p,,=tx,,+Bn (nfN), where (a,,) is a martin-
gale and (/?,) apotential, i.e.
lim~(jS2 = 0.

(4) There is afinitely additive measure p,,: X-+E such that each n=LhK\& £
dSn(E) and
hmSb(pz-9,,2 =0 (ueu(E)).

Proof. (I --2) Let (g,,) be an amart in S((s/n), E), then by definition the net
(/ir(R)} converges, hence is Cauchy in E. Thus if UEU(E) and e>0 are given, one
can choose some T(e)£I' such that if xIf o#d T with ris aT=x(c) then

(2.1) Pv(pai(Q)-pTIQ))"el4.

Now let o,xdT with ¢ a n d Adsdt. Define xx—x\ al=cr on A and
Ti=<Ti—m on AG=12\A for some ni>max (t, a). Then as it has been noted in [4],
di, tieT and djs xi1~ x(e). Hence by (2.1), one has

Pv{ha(A)-pt{A)) = pv(pai{)-jiX(R)) s= e/4.
Consequently, by Property 1.2, we get
(2.2 sup Sv(p,tZ-patd4 sup PI(*z-pt)re.

This proves (2).
(2-<-3) Fix [IdT and let e>0 be given. Choose x(e)*rj such that (2.2) holds.
Therefore, if ¢~ €S (i), one has

3 *4J1,,,) = 3b(e)(E*M*)-TX(r) =
4 SI@(pat®)- ga)+ 5#9(fidzM- /itE) -2 2e.

This means that the net is S-Cauchy in S(E). Consequently, by Property
11, thereis an element (a,) in JJ Sn(E) such that
ueT

2.3) SA- lim u = <, Of6N).

This implies that (a,,) is a martingale and
“.) = l2 Oij(AM ¢ =)}) (Adstffi.
=1
Now put B,,=pn—an(ndN). Itis easy to check that by (2) and (2.3), (,,) is a poten-

tial, i.e.
hm Sb(R) = 0 (UdU(E))

which proves (3).
(3-*-4). Define £ by

H«,(A) = a,,(A) (Afsd,,; nEN).

Obviously, p satisfies all assertions of (4). Finally, since (4->-1) is trivial, the proof of
the theorem is completed.
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Note that every paper concerning the vector amarts contains a version of the
above theorem. But the main idea was contained first in [4].
The following result is due to Bellow [1].

Theorem 4. Let Ebe a Banach space and (fn) an amart in E). Suppose
that sup£1||/J)<°°. Then (/,} isuniformly bounded in the Pettis norm, i.e.
I

sup sup flcly <°°.
rerxw,1 1

We note that the above result can be generalized as follows:

Theorem 2.3. Let E be a Frédiét space and UEU(E). Suppose that
€S((jdH, E) is an amart. Then

niv)
A . .
(2.9 %19 Pl (pr) j % pu(Bj)+ 2 (Ilmmlnf Pff (pm) + 1),
where n(U) =inf {icdN; sup PJ(pr—&<,n” I}<
Proof. Let UEU(E) and (//,,)ES((sd,,), E) an amart. We shall show first that
(2.5) P{j(pM = sup{Pv(po.(A))\ A£Z} LUIinManf (pm.
Indeed, let AfZ then A”siniA) for some n(A)EN. Thusif m”~n(A), one has

Pu(poo(A)) —P u(pm(A))+Pu(pm(A)-p,,(A)) = Pc(pmA))+ Pv(pm(A)-p,,tn(A)).
This with Theorem 2.2 yields

Pv(px(A)) BliminfPv (/(,,,(A)) +limsup PL(<.(A)-p,, >A)) s
—Hn}niana(fiJ + Iinh?up PUbT-p~,T) = Ii%ianGQiJ
which implies (2.5), hence
(2 .6) pv(P~r) = pvo ~) =liminfPS(pm (TEN).
Now define

n(U) =inf{kEN; supPh(dz~I"\t) - 1}

It follows from Theorem 2.2 (4) and Property 1.2 that «((/)<°°. Let xET and
A£sdz, then

= 2 tj(An fe = ),

Prvn(u)(A)= _=2_«m Pj(An {&=)p + nn(V)(AMT{r S n(CHY).
Consequently, J

fit(4) = j"nz(U)|«ﬂ'4n{T = y})+fit\,h(to(4)—/(r(+0(4l'l{T*l nEND.
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But by (2.6), e
PEV"(U) (.uoon:Vn(U))’ Pﬁ(v) (aun(U)) = hn}nlnf P?/' (um)’

and Theorem 2.2 with tVn(U), n(U)=n(U) implies
Py(p.(4) = Z(IU) Pl (1) +(Py (ttee, evacwy (A + 1) +(Py (tew, nry (D) +1) =
J=n

=, 2, T +(P" D (oo, evan) + ) +(PY () +1) =
Jj=n
= > Ph(u)+2(liminf Py (u,)+1).

J=n)
This proves (2.4) and the theorem.
In what follows we shall need the following result which is interesting in itself.

LEMMA 2.4. A Fréchet space E is nuclear if and only if S(E)=V(E) for every
probability space (Q. L, y).

PRrOOF. (=) Let E be a nuclear Fréchet space. Then by ([9], 4.1.5) for each U¢
€U(E) there is some CEU(E) and a finite positive Radon measure ¢ on C° such
that

Q2.7 Py@) = [[(x, e)|do(e) (x€E).
co
Let pc S(E) and {(4;)%_,€n(Q). Applying (2.7) to each u(4;) we get
Pz 2 [l Olde@ = [ 2 1), eldoe) =
Jj=1 Jj=1co e Y e

= p(CYsup{ 3 Gu(4), o) e€C?} =

= ¢(C°) sup {|(u, €)|(2); ecC’} = @(C°)Sc(w).
Hence,

23 Vo) = @ (C%) Sc ().

This shows that S(E)=V(E) and the S-topology is stronger than the F-topology.
Thus, in view of Property 1.2 S(E)=V(E). The proof of the necessity condition
is completed. We shall see in the next theorem that S(E)= V(E) is also a sufficiency
condition under which E must be nuclear.

THEOREM 2.5. Let E be a Fréchet space. Then the following conditions are equiva-
lent: :

(1) Eisnuclear.

(2) Every potential in L({s,), E) is of class (B).

(3) Every potential is Bochner bounded.

PROOF. (1)~(2) Let E be a nuclear space and (f,) a potential in L({,), E).
Consequently, (f,) is Pettis bounded. Therefore, it follows from Theorem 2.3 that
{(f,» is Pettis uniformly bounded. Thus, applying (2.8) to each u, (t€T), the Pettis
uniform boundedness of {f;) implies the Bochner uniform boundedness of (f), i.e.
{f,y is of class (B). This proves (2).
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(2—3) is trivial.

(3—1). Suppose that E fails to be nuclear. Consequently, by ([9], 4.2.4) there is a
summable sequence (x,,) in E which fails to be absolutely summable, i.e.
ZPv(xn)—°° for some UEU(E). Therefore, one can suppose that Pv

/E 1
(nEN) and one can choose nNK<uW -<uw<...*nk-<.. suchthat

(@ nk+2tsnk+l (KEN)
and

) . "z Pu(Xj) =xk=«k (KkiN).
=rk+r
In the proofwe shall use only Property (b). Property (a) will be needed in the sequel.

For each KEN, let (ak_=Heri€a([0, 1]) with
MA.]) =Pv(xplek («*+1=j = n*>keN),

where y is the Lebesgue measure on &[o,n-
Define

fk=J"1z( ZKXjlAb'JPAXj) (keN), o-(U,U,....fo=stk (kiN).
="%+1

We shall show that (/t) is a potential which fails to be Bochner bounded.
Indeed, let TET. Define

r=inf{n; y§r=n}) >0}, f=max{m y{r=u}) >}
We have

fftdy = f z z' axjlBxIPulqj)dy — z z Ay(B DIPU(X)),

t= tj = nt+ i=ij= « I

where \ J=’\iJ.D{t=t}c4/(nt+IS./SnH0. But since y(BKJ)"P v(qg)<xk

(nt+ 1Sy'S/it+i) by ([9], 1.36) the net {dey} converges to 0. Equivalently,
(fK) is a potential.
Finally, since

ni(+ st
Pv(fk)dy = Z  «kPv(xj)y(A J)IPV(X]j) = 21 nirn =

0 I vieHd o= fsel

clearly, (/*) cannot be Bochner bounded. This contradicts (3). The theorem is

proved. ) o N
Note that the above example shows at the same time the sufficiency condition of

Lemma 2.4.
» . 2.6. Every uniform potential (f,,) in L{(-séf, E),

(2.9) %%ri(g Pu(frydy = 0 (UEU(E)),

converges strongly a.s. to 0, where E is an arbitrary Fréchet space.
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Proof By (2.9) and by definition, as a sequence of real-valued functions, (Pv(ff))
is a uniform potential. Hence by [2] or [3], (Pv(/,)) converges strongly to 0, as.
(UEU(E)). But we note that since U(E) is countable then (/,) itself converges
strongly a.s. to 0in E. This completes the proof.

Note that the proof of the main result ([s], Theorem 4) given by Egghe was
mostly devoted to showing that a uniform potential in a nuclear Fréchet space con-
verges strongly to 0, a.s. But as we have seen that it is easy even for uniform poten-
tials in Fréchet spaces.

Corottary 2.7. Let E be a Fréchet space. Then the following conditions are
equivalent:

(1) Eisnuclear.

(2) Every potential is uniform.

(3) Everypotential converges strongly to 0, a.s.

(4) Every Bochner-convergent potential converges strongly to 0, a.s.

Proof. (1-L2) It follows from definition of potentials and Lemma 2.4.

(2—3) follows from Lemma 2.6.

(3—4) s trivial.

(4—1). Suppose that E is not nuclear. Take (x,,), UEU(E), nl<m<... asin
the proof of (3—1) in Theorem 2.5.

Define fj(to)=xJ/A j/Pu(x:;j), (nk+ 1"jSnk+1, KEN),
dj = <r-(/i,/2,:.,fj) o'€N).

It is easily seen that the same proof of (3—1) in Theorem 2.5 implies
(1) (ff is potential,
(2) f Pc(fj)dy=a*“1Pc(xj)- o as jt°s
a

and

(3) It follows from property (a) of (nk) and definition of (f) that (ff cannot
converge strongly, a.s.

The proof of the corollary is completed.
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SYNTOPOGENOUS SPACES WITH PREORDER. IV
(REGULARITY, NORMALITY)

K. MATOLCSY (Debrecen)

In the fourth part of the series ([s —[10]) the notions of a regularly, completely
regularly and normally preordered syntopogenous spaces will be introduced. The
theory developed here has three different sources: the separation axioms (5;) of topo-
logical spaces that originate from (7)) without the assumption of (I'Q (7=1, 2, 3, n, 4;
see e.g. [5], ch. 2.5), their extension to syntopogenous spaces ([11], [¢]), finally the
notion of (strongly) regularly [12], (monotonically) completely regularly [14] and
normally [13] ordered topological spaces.

0. Introduction

A preorderedspace (E, s) is apair consisting ofa set E and a reflexive and tran-
sitive relation & on £ called preorder. Its graph is G(=) = {(x, y)EEX E: xSy}.
A preorder S is called an order iff xSy, yXx imply x=y. is linear iff either
xSy or yllx holds for every x,yEE. Xi~E is increasing (decreasing) iff xXy
{y=x) and xdX imply ydX. For an arbitrary XcE, i(X)={yEE: xSy, x (1]
and d(X)={y£E: yLUxEX} are the smallest of all increasing and decreasing sets
respectively, which contain X. A mapping/ of the preordered space (E, =s) into
another one (£", X) is said to be preorder preserving (inversing) iff xXy implies
[(x)s'1(>")(/(_r="f(x)). The product of the preordered spaces (£,, Sj) {JEIX-LL is
a preordered space (E, s), where E= X Ej, and (xj)S (r} is equivalent to
Xj™jVj for each j£J.

The terminology and the notations concerning syntopogenous spaces will be taken
over from the monograph [4]. A local syntopogenous structure [11] is an order family
on a set E such that
(L -= <'EX, implies for some
(L2) for < there exists so that xEE, x<5 imply x<'C<bB

for some CczE.

A preordered (local) syntopogenous space is a triplet (E, X, s), where E is
a set, EE is a (local) syntopogenous structure and is a preorder on E (cf. [1]—3],
[s 10]). If sd is an order family on E, we write G(sd) = N{(7(<): -=€«s/}, where
G(<)={(x,y)EEXE: x<E—y is false}. The preordered syntopogenous space
(E, X, =s) (or shortly EE) is said to be increasing (decreasing) iff G (*)cz G(X)
(G(=) 1czGED) ([e].cf. [1}—[2]). BEu(EH]) denotes the finest of all increasing (decreas—
ing) syntopogenous structures coarser than EE (see [2]). (E, EE c) is called “-convex,
where “is an arbltrary elementary operation ([4], p. 69), iff Y~(¥*yY"){ ([s], f.
[1]—[2] for "="orp. (E, EE x) is symmetrizable [s] iff there exists a symmetrical
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'-convex syntopogenous structure 90on (£, s) such that 90<9 <9(®.(E 9, g) is

called continuous iff, for there is <x€ 9 such that A<B implies i(A)<ti(B)
and d(A)<1d(B) (see [9]). If -9 and M are order families on E, we use the order
family -=2€7}, where < x< 2 is the topogenous order defined
by

A(<!'<2B iff A<zC<rB for some Cc£

(see [o]).

(E, , =8) is TO-preordered iff C(Y*)1 C (~9=C (&) [10], 1)-/?reordered
iff C(¥Y9=C

("©=C(") [2], and T,-prerdered iff G(9u9 Io=G(9) [10]

1. Regularly preordered spaces

(L1) Lemma. Let (E,9, 9) be apreordered syntopogenous space and consider
the following conditions:
(Sj) 9 U~ 9 Ich;
(SJ 9 “<(9W9 Io)b and 9'< (9 9 u:)b
(9 9 (9W QP and 91< (919
Then (S3=>(52=>(S1).

Proof. (S3)=>(S2 is trivial. =>(Si): 9 U< (99 Ob<9ldy, 9 c< 99 wWhc<
<9 vua::anmD) 6§)M3 (cf. [+, ( 1)7 (th)us 9 mtg<9 N? 9ldb and (,cb<9)Lkb=
—9th O
(E,9,s) will be said to be St-preordered (/=1,2,3), if it satisfies condition
(Sj). An S3-preordered space will be called regularly preordered.

L2k enare.. (121) In a discretely ordered syntopogenous space (E,9, =)
we have 9 W9 Ic~ 9 9 ¢ and the latter is equivalent to the order family 9 Nlintroduced
in [11]. Thus (E, 9, — is A;-preordered iff [E, 9] is an 5)-space in the sense of [11].

(1.2.2) Let r be the classical topology associated with the topology 9 on (E. =).
Then (E,9,9) is Si-preordered iff, for arbitrary points x,y£E, the condition

(*) xfV and y$V for anincreasing r-open K c£ is equivalent to the following
one:
(**) ydW and W for a decreasing r-open WczE. (E,9, s=) is S2-preordered
iffeither (*) or (**) implies,
(***) x£ W', V'DW'—0 for an increasing r-open V’czE and a decreasing
r-open W'dE.
(E, 9, s) is £s-preordered iff it is “strongly” regularly preordered in the sense
of McCartan [12].
(1.2.3) In respect of (SJ™ (S 2 9>(S3 one can refer to [5], p. 95, 97. O

(1.3) Theorem (cf. [11], (1.3)). | f a space isboth TO- and St -preordered, then it is
Ti-preordered (/=1, 2). For topogenous spaces the converse is also true.

Proof. Suppose (E,9, 9) is T0-and 5)-preordered. Then

GOOY=G (9 =G(9,d) = G(9K)
th
us G(*) = G(9YDG (9 =G (9Y = G(9K),
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iAe(.: ;Et?i/éy ari]sa Tx-preordered. If (E, is TO-and S*-preordered, then Sfu<

Cflc < (CflCfucyc _ (Cflyucyb _ {CfuccCflcy _
therefore

CYwWw’o=G(&Eflgh ¢ G(SE' V™ = G(.rynG (Mg = G(=9),

thus (F, 5%, is in fact T2-preordered (cf. [1], 3.3, [10], (1.2)).

Conversely, assume that  is a topogenous structure on a preordered space
(F, ™). Then STu~2Tu and 3r~3ru (see [2], 3.1, 3.2; [s], (1.7)). If (E, N s
Tx- or T2-preordered, then it is TO-preordered, too. Letnow (E, ¥, ~) be Tx-preor-
dered. Then G()=G(*")=G (*'G, thus

apub™ goub _ g-lctb _ gt ry-lch
by [10], (0.1). If (E,2I, &) is »-preordered, then

G(STuSrld = G(=S) ¢ G(I9YnG (J 0,
therefore
yp<dub  @udfleyp  @~ucMab . GHicip™ (Bfu 6Py

and similarly ¥ k<(YwY 0, hence
_ Olcc~ yyuaj-lcyc _ “apuaplcyb _ yspllpucy

(1.4) Exampre. [11], (1.4) shows that, in general, the implication (I'H="(5;) is
nottrue. O

We shall say that a (local) syntopogenous structure  spans the preordered syn-
topogenous space (E, <8\ s) iff (5"Cis also a local syntopogenous structure), - <
AE/>  u and

If B\is a syntopology, then’ if* Efup, 82I £21p ([2], 3.1, 3.2), thus in this case
Y0spans {E, £f, *) iff SAp~yu and ~ @p-*

(1.5) Theorem. A preordered syntopogenous space is regularly preordered iff
there exists a local syntopogenous structure spanning it.

Proot. Let ®abe a local syntopogenous structure spanning the preordered syn-
topogenous space (E,¥Y,*). For there exists < e¢~0 with < C</p
Choose for <' in accordance with (F2), and suppose -=EY'
such that <"C<i and -=,cC<a- Then A<B implies x<B for every x£A.
If x<"Cx<"B, then we have thus x(<!<”)[ for each xEA, ie.
N(<x<!YB, therefore -=C(<i<z)p- This means £2“<(.9?°90Qp. The proof of
£2'< (E2I£2w)p is analogous, hence (E, £2, w) is regularly preordered.

Conversely, let (E,£2 s) be regularly preordered. It will be verified that
£0=£2uE2Ic is a local syntopogenous structure spanning (F, £2,s). It is easy to see
that £0 satisfies (LI). After this assume <££2U) -<€"£2l. Select "££2*, for which
<C«<f, and suppose <:££2U) <r<f2 with <iC(<2-m p by (S3. Finally put
=iU<2C <3N and < UAC AN . Then x£E, x(< <'GB implies x " xX<x
<)XC<’@ for some X, CcF, hence r<.f<.@<iC« '¢s for a suitable YaE,
therefore x(<3<3)X(<3<3)B, thus (L2) is also satisfied by £0. It can be similarly
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shown that iff=SflifMis also a local syntopogenous structure. From (S3 we get
<ifu<iff and iff<ifl<9ap, thatis spans (E,if, f). O

Considering the discrete order —of E, the above theorem yields a generalization
of [11], (1.10):

(L6) coronrary. The syntopogenous space [E, if) is regular iff there exists a
symmetrical local syntopogenous structure ifiion E such that if3<if < iff.

Proot. If [E, if) is regular, then (E, if, =) is regularly ordered, thus by ifu®
~ if1~if, we have if' <if<i f pand if'c<if<if'cp whereif isalocal syntopogenous
structure such that i f cis also of this type. Then clearly i f sis also a local syntopo-
genous structure on E, and if's~ {ifUifY < if< ifp<ifg therefore ifi=if’s
satisfies the condition. Conversely, if ifliis a symmetrical local syntopogenous
structure such that if{if<iff, then it spans (E,if, =), thus it is regularly
ordered and [E, if) isregular. O

Another particular case of (1.5) is the following one:

(L.7) Coronrary (cf. [15], Th. 3.2). Let (E,if, f) be a p-convex regularly
preordered syntopological space. Then there exists a local syntopogenous structure
ifOon E such that i ff is also a local syntopogenous structure,

(1.7.1) if~iffp

and

(1.7.2) G(S)cG(™,).

If (E,if, a) is Tn-preordered, then ifncan be chosen so that
(1.7.3) G (M) - G(iff).

Proof. As we showed inthe proof of (1.5), if(= ifuiflcisalocal syntopogenous
structure spanning (E, if, f). Because of that if is perfect, we have iff ~if* and
ifff-ifl Thus

if A {ifuV ifly = (ifuUifly p~ {iff Uiffpgp~ {SOUifffp~ iffp

(see[4],(8.18),(8.48)). Since ifuis increasing, and ifa< ifu we get G (s)cG (i"“)c
cG(y,). If (E, if, &) is TO-preordered, then it is also T2-preordered by (1.1) and
(1.3) . Thus G{")=G{ifufu)=G{iff). O

2. On afalse lemma of Singal and Sunder Lai

I cannot prove the converse of (1.7) (i.e. that (1.7.1)—(1.7.2) imply that {E, if, s)
is regularly preordered), and my conjecture is that this implication is in fact impos-
sible. In any case, it is sure that (1.7.1)—(1.7.2) do not imply that ifOspans {E, if, s).

(2.1) Exampte. On the real line R there exists an order  a topology if and
a topogenous structure ifnsuch that Sffp=ff G(*)=G(T0, but iff ~ Ur"is not
true (i.e.  does not span (R, if, *)).
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Let Q be the set of the rational numbers, and, for x, yeR, define
(2:1.1) x =y iff either x=y€Q or x=y4Q.

Let 7 denote the topology on R, in which a set V'R is open iff ¥ Q is open in
the natural topology of Q. Putting

(2.1.2) A<(B iff AcB, and there exists ¢=0 such that (x—e¢, <)\ QB for any
X€A,

a topogenous structure Z,={=,} can be determined on R (for the verification of
<oC <g, in the case of A<B, consider C=AU {y€Q: Ix€ 4, x—¢/2<y}; then
A<,C<,B). Itis easy to show that

(2.1.3) A<§B iff AcB, and there exists ¢=>0 such that (—eo, x+¢&)CB for each
XEANQ.

VcR is JgP-open iff, for each x€ VN Q, there is ¢=0 with (x—¢, x+e)NQCV,
that is ¥ Q is open in the natural topology of Q, thus J3?=7. The equality
G(=)=G(7,) is also obvious. (7 is also P-convex by [8], (2.12), (2.5).)

Now if xcR—Q, then [x, =) is increasing .7 -open, but x<,[x, =) is impos-
sible, therefore 7“< 7 is not true. [J

I should like to call the attention of the reader to an error in a paper of Singal—
Sunder Lal ([15], Lemma 3.1). To my knowledge, in this respect correction was not
yet published. The quoted lemma deals with local proximity preordered spaces
(X, 0*, =) defined as follows:

(1) There exists a relation § on 2¥ (so-called PR-proximity) such that (i):
AOB=>A+#0#B; (ii): AUBICoASC or BOC, and ASBUC<A0B or AéC;
(iii): AN B=0=>A6B; (iv): x€X, {x}3B=3CcX: {x}6C and X—C3B.

(2) o0 generates 0%, i.e. A6™B iff from every finite covering 4 and B of 4 and B
respectively, sets 4,64, By B can be chosen such that 4,68, and B,d4,.

(3) 6 generates =, i.e. x=y iff {x}d{y}. The topology r(6*) of this space is
defined so that VcX is open iff {x}0*X—¥ for any x€V. Denoting by D(A) the
intersection of all decreasing r(6*)-closed sets containing 4 C X, Lemma 3.1 of [15]
states

D(A)=N{BcX: X—B3A).

If this were true, then, for any increasing 7(5*)-open set ¥, we would have
V=X-D(X-V)=X—N{BC X: X—B3X—V}=
=U{Cc X: C3x—V}={xcX: {x}6x—V},

which means that each increasing r(6*)-open set is open in the topology induced by
8. Example (2.1) shows that in general this is not valid (in fact, let us consider the
correspondences Jy<8, Ig—06* and 7 <r(6*) defined in the usual way).

Since the cited lemma is used essentially in the proof of Theorem 3.1 of [15]
(which states that r(6*) is always regularly preordered), this latter is probably also
incorrect.
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3. Completely regularly preordered spaces
A preordered syntopogenous space (E, if, s) will be said completely regularly
preordered iff there exists a syntopogenous structure spanning it.

(3.1) Lemma. Any completely regularly preordered syntopogenous space is regu-
larlypreordered.

Proof. See (15) O

(3.2) Exampie. A discretely ordered syntopogenous space (E, if, =) is comple-
tely regularly ordered iff it is symmetrizable.

In this case ifuriflNif, therefore, if ifli spans (E, if, =), then if$<if <iff
and iff <if <iff", hence iff <-if<iff<iff”. Since any syntopogenous structure
on (E, =) is '-convex, if is symmetrizable. The converse is trivial. O

There is an important class of preordered syntopogenous spaces (E, if', w), in
which the following condition is satisfied:

(‘) Cp'uprcpfpu and cprip”r Cf'pl

(see [s], (5.3); [9], (3.5)). This is shown by the next theorem, too: 1

(3.3) Theorem. A p-convex preordered syntopological space (E, if, s) iscomple-
tely regularly preordered iff there exists a symmetrical '-convex syntopogenous struc-
ture if' satisfying (m) on (E, &) such that if ~if™.

Proof Suppose that there exists such a structure if'. Then if*—f'" spans
E}E Jif, =9). In fact, if'<if, hence ifi<ifuand iff=ifuc~if'l< fl (cf [¢] 18))
n the other hand ifu~if'pu~if’up®iff, and ifl~ifpl~ifnp~if>p= b (C

[], (18)).

Conversely, if (E, if, ~) is completely regularly preordered, then mo<if" <iff
and iff<,ifl<iffp (consequently iff~ify~ifu and iffpriflprifl) for a
suitable syntopogenous structure if0. ifl is increasing by [s], (1.1.1), therefore
if'=iff is “convex on (E, =) (see [s], (2.12)). We have

if ~(ifuVvifhp~{iff VvV iff")" = Viff)" ~iff" = if'p
(cf. [4], (8.99) and (8.107)). if" fulfils (¢), because if«<if’g and
tf""u~ ifu~iff < if'«* < .f'
(see [s], (1.7)), furthermore similarly iff <if’uc~if'l thus
ifpl~ifi~iffp < ,f'lp< if'p\ O
(3.4) corotrary. Any p-convex completely regularly preordered syntopological
space is symmetrizable. O

(3.5) Coroltary. Any symmetrizable linearly preordered syntopological space is
completely regularly preordered (and "-convex, too).

Proof. [9], (16), (35) |
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(3.6) ExampLE. There exists a completely regularly preordered topological space,
which fails to be symmetrizable.

Let (R, =) be the naturally ordered real line, QCR be the set of the rationals.
Define a relation < for 4, BCR by A<B iff, for any x¢ A, there exists e=>0 with
{x}U((x—e, x+&)NQ) c B. It is easy to show that ={<} is a topology on
(R, =), which is not P-convex (and even not locally convex), thus it cannot be
symmetrizable (cf. [3], (5.3)).

If ¥ is an increasing 7 -open set, and x€ V, then W={x}U((x—¢, x+e)NQ)
cV for some &=>0, therefore (x—¢, )=i(W)c V. This shows T *<F’. Since
S is increasing and S <7 is trivial, we get J“~ 7. The equivalence 7'~ P
is analogous, consequently the topogenous structure J,=5° spans (R,7,=). O

(3.7) PROBLEM. Find symmetrizable, but non completely regularly preordered
syntopogenous (particularly syntopological) spaces. (Such a space cannot be both
linearly preordered and syntopological by (3.5). This problem is in a close conntecion
with the study of property (@), too.) [J

As the following theorem shows, the class of completely regularly preordered
syntopogenous spaces is an extension of that of Priestley’s monotonically comple-
tely regular spaces [14]:

(3.8) THEOREM. A preordered syntopogenous space (E,S’, =) is completely
regularly preordered iff, for each <€%"* (<€SY), there exists an (&, #°)-continuous
Sfunctional family ¢ such that whenever x<V, then a preorder inversing (preserving)
Sfunction fE@ can be found with the properties f(E)C[0,1], f(x)=0 and f(y)=1
for ycE—V.

In this case, denoting by @ the set of all (¥, F5)-continuous ordering families con-
kw’sting of preorder inversing functions, 9y is the finest syntopogenous structure spanning

B =)

REMARK. The comparison of this theorem with [8], (4.8) makes more clear both
the similarity and the difference existing between the notions of symmetrizability
and completely regular preorderedness.

PrOOF. We use the terminology of ch. 12 of [4]. It is easy to see that an ordering
family ¢ is (&, #*)-continuous and consists of preorder inversing functions if, and
only if, —@p={—f:fc¢} is (¥, #5)-continuous and consists of preorder preserving
functions (cf. [8], (4.9)).

Let @ denote the set of all (¥, #%)-continuous ordering families of preorder
inversing functions. We show that under our conditions %, spans (E,¥, =). In
fact, % is increasing on (E, =) by [8], (1.5), (1.1.6), and any @€ @ is (¥, F)-conti-
nuous, therefore 5 <. (see [4], (12.33)), consequently %, < &*. In view of the above
said, we have

SB=(VL)y=NFHK=V S,=V % =5%,
PED PED PED yey

where ¥ denotes the set of all (<, .#°)-continuous ordering families consisting of preor-
der preserving functions. Applying again [8], (1.5), (1.1.6), [4], (12.33), we obtain
S LS, thus FE<S! is also valid. If <€, and ¢ is the functional family deter-
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mined by the condition, then, for any c>o, there exists suchthat
) Y(Dc <@

for each fEcp. Denote by cp' the set of all bounded, preorder inversing functions on
(E, S), which have property (+) forevery e>0. Itcan be easily shown that ¢p'is an
ordering family, thus cp£ ®. Because ofthe choice of g < C thatis 9"‘< iff.
In the same manner ¥ 1<£/®=£/Ep.

Conversely, suppose that (E, Y, &) is completely regularly preordered, and let
£f0be a syntopogenous structure spanning it. Denoting by @0 the set of all (SfO, NE
continuous ordering families, holds ([s ], (1.11)). On the basis ofEf0<£f"' < £f
and < STI< ST, the mequallty SEE< Sf holds, thus each oS is (£?$, Jf)-,
(Y®J 9-, and {ST,./*-continuous. Because of STk ST"the structure SDis increasing,
hence every cpt ®0consists of preorder inversing functions (see [s ], (1.6)). For < 6Y",
there exists < 0€™o with < C Using theorem (12.41) of [4], an ordering family
EQ0 can be chosen such that <0C-=”,i, which means < C<J,i- Thus, for
x<V, there is f(z(p with f(E)cz[O0, 1],/(x)=0 and f(y) =1 for yEE—V. Turning
to Y@and ST1from Sfaand STU respectively, the remaining part of the condition can
be verified.

We showed that if (E, ST, s) is completely regularly preordered, then spans
it. From the above consideration it follows also ®0c @, hence Sla< ¥ holds.

Remark. With a slight modification of the proof one can see that in the above
theorem XX=S &b, J & or XX can be written instead of ./', provided ST is perfect,
simple or topological, respectively. O

In order to show an example for completely regularly preordered spaces, let us
recall that a syntopogenous structure ST on a set E is locally compact, if there is an
order < dSf such that, for each x£E, an .¥-compact set Kx<zE can be found with
the property x<Kx (see [11]).

(3.9) Theorem (cf. [11], (2.6)). Any locally compact, continuous, Sz-preordercd
syntopological space is completely regularly preordered.

First of all let us consider the following lemma:

(310) Lemma. Let (E, ST, = be a locally compact, continuous, Sz-preordered
syntopological space, and < (¥ “(<sY"). There exist <'(¥ *“ and -T’yST1such that,
if Ke<Vfor an ST-compactset KO, then there is an LA-compact set K with theproperty
I(KO<'i(K)<"cX<'V {d(KO<"d(K)<'cX<"V).

Proof. Choose <fsTu with and <fSTu ~4STI with <XxcC
C(<X.0b (see (S9). Suppose <3:€¥Yu <3€.Y! for which <2C<3 <4C-<32
Since an order <s££fl can be selected suchthat <2PC <s- Inview of the
local compactness there is such that xdE implies x<OKx for a suitable
compact KxczE. Assume <{f ST, <3C and <0C<[2 Let us choose the
required orders <'€¥* <"cSTI so that, on the one hand < 1Ui(<i)C</ (see
[9], (245)) and on the other hand <iC <"2

f KO< 'V, where KOis ¥ -compact, then there exist sets F, J, XcE such that

(3.10.2) Ao <1F<i1/<1Ar<1K
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We show that
(310.2) there exists a compact K — J with i(Ky) <" i(K).

In fact, in view of the choice of —=,, <;, for each x€E, there is H,cE such that
x<{H,<{K,. If H denotes the union of the finite number of the sets H, covering
K,, then joining the corresponding sets K., we obtain a set K’ such that

(3.10.3) K, c H<3K’ and® K’ is compact.

If K’cJ, then the verification of (3.10.2) is finished, because from i(<;)C <" and
Ky<iK’ the inequality i(Ky)<"i(K’) follows. Therefore let us suppose K’ d-J, and
put J'’=K'—J, F'=K’'—F. If x€K, is fixed, then

(3.10.4) X <gA,, <3°B,, <s°E—y

for any y€ F’ by (3.10.1). Because of (3.10.1) again, there exists a closed set .S such
that E—Jc ScE—F, thus SNK’ is closed in &|K’, for which J/cSNK’'cCF'.
(3.10.4) yields that (E—B,,)N K’ is a neighbourhood of any y€F’ in &#|K’, there-
fore J’ is covered by a finite subsystem of the sets E—B,,. Denoting by E— B, and
E—A, the union of the corresponding sets E—B,, and E—A,,, respectively, we
obtain

xX<qA,<i*B.C E—J =(E—-K)UJ.

Taking a set C, for each x€ K, such that x<;C,<;4,, and denoting by C, 4 and
B the union of the finite number of the sets C, covering K,, and the corresponding
sets 4, and B,, respectively, we have

(3.10.5) K, C C<yA~<iB c (E—=K)UJ.

Further on let 4 be the #-closure of 4. It is easy to show that K=K’ A is also
compact in &. Owing to (3.10.5) AC B, thus KcJ. Since from (3.10.3) and (3.10.5)
we get Ko<iK’ and Ky,<{ACA, it is obvious that K,<;iK, hence i(Ky)<'i(K).
After the verification of (3.10.2), let K be the compact set determined there. For
a fixed ye E—X and for every k€K, k<,V;,<:;*E—y issues from (3.10.1). There-
fore a set ¥, can be found such that K< V,,<;°E—y. Applying this for any y€ E—X,
we obtain E—X<,”E—K, hence E— X< E—K. Put E—X<"W<"E—K. Then
by [8], (1.2) d(W)cE—K, consequently i(K)\CE—d(W)CE—W—-W<"°X,
that is
(3.10.6) i(Ky<"X.

Finally, on the basis of the choice of <’, X<’V holds, thus (3.10.2), (3.10.6) give
the proof of the first part of the lemma. The other part is the dual of the first one. [

The proof of the theorem will be continued with a construction of an order
[<”¢, <] for any <'€&*, <"€&" as follows: Define, for A4, BCE, the relations
I(<™,'<)rand D(=<", <”) so that

(3.11.1) A(<", <’)B iff either 4 =0, or B=E, or AcCi(K)<"X <5,
where K is compact, and dually
(3.11.2) AD(<'*, <")B iffeither A=0, or B=E, or Acd(K) <X <" B,
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where K is compact. Itisobvious that 7(<"c «=) and £>(<'c, <") are semi-topo-
genous orders on E.

(312) Lemma. Under the conditions of (3.10)—(3.11) consider the topogenous
order

(3.12.1) [<"c, =1 = (/(<"*, <0UD(<'c, <yy.

Then the order family
(3.12.2) = {[<"c, < <"€m?"}

/s a syntopogenous structure spanning (E, Y, =).

Proof. If <, and  «=", then there exist <d-97y, such
that U<:C and U<aC<" ltisclear that

/(<r, <i)u/(<G<)c /(<'¢<0
D «¢<3UD(<;(<3CcU(<C<0,
[ <lv[d, <]c [t

and
thus

by [4], (3.25).

After this suppose m<w€& We prove [<"c, =]C|[<ic <62 for
suitable <CEY u, In fact, for <'£Y 1 let us choose in
accordance with (3.10), and select for in the same manner.

If Al(<m, <1 A, then Aczi(K)-<'B for some compact set JT, thus K<B. By
(3.10) i(K)<ii(K")<icX<[B, where K' is compact. Because of K<[i(K") and
(3.10) we have

Ac i(K) <2CY<: i(K) "X "B ,

therefore, if <IU <4C --36 39" and then

(3.12.3) /(<"c, <") C /(<3¢ <3)2

Dually to the above reasoning, choose <4 for and similarly
<sN ', for <4 in accordance with (3.10), further consider <:U<s C
C and <IU<sC<I€7" Then

(3.12.4) Z>(<'c, <")CD(<;c <e)2

Assuming <aU "éC"gin" <3U<eC f r o m (3.123), (3.12.4) and [4],
(2.16), (3.53) the inequality [<"c, <'] C[<?¢ <02 follows, thus 9’+ is in fact a syn-
topogenous structure.

If then 7(<"e O C<' and 7>(<'c, <")cc < cc=
besides 7(<"c <')OC <"cc=mw' and D(<'e, <")C thus
(3.12.5) [<"¢g<]C and [<"c, <=IcC
In view of the compactness of the one point sets and (3.10), for <'s W
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there exist Aif", <1, < ffifx such that

(3.12.6)
<'C/(-=?, <r C[<r, =IF and <" C/)(</, <DPC [<;*," o

hence by (3.12.5), (3.12.6) i f+ spans (E, if, ). O
Thus theorem (3.9) is proved. O

4. Normally preordered spaces

A preordered syntopogenous space (E, if, s) will be called normallypreordered
iff ifuif"<if"iflc

(4.1) Remarks. A discretely ordered syntopogenous space (E, if, =) is nor-
mally ordered iff [E, if] isnormal in the sense of [11] (see also [s ]). A preordered topo-

logical space is normally preordered iff its “classical” associated is normally pre-
ordered in the sense of Nachbin ([13], p. 28; see also e.g. [7], [12], [15]). O

The following theorem is a common generalization of [¢], (2.20) (see also [11],
(1.14)) and [15], Th. 3.4

(4.2) Theorem. The preordered syntopogenous space (E, if, s) is normally pre-
orderediffiflcif" isasyntopogenous structure on E. Then this is thefinest ofall synto-
pogenous structures iftion E such that ifn<,ifu and iff <ifl

Proof. Assume that (E, if, s) is normally preordered. Then ifXif" is
obviously directed, moreover if'cif"<,ifldif" 1<.iflciflcif"if"<,iflcif"iflcifu<
< (if,cif"fi, thus iflcif" is a syntopogenous structure.

Conversely, if ifXif" is a syntopogenous structure, then iflcif"<.(iflci fwy<,
<.iflcif"iflcif" <,if"iflc, thatis (E,if,ff) is normally preordered.

Finally, if if(iis a syntopogenous structure on E such that if(<if" and iff< ifl,
then ifu< iff<iffcifi< ificif". O

Theorem 1 of [13] can be generalized as follows:

(4.3) Theorem. The preordered syntopogenous space (E, if, ff) is normally pre-
ordered iff, for every -ffif", <"difl, there exists an (if, J')-continuous functional

family @on E such that A</cC<"fi implies f(E)c.[0, 1], /(x)=0, f(y)= 1for any
xfA, ydE—B, wheref is a suitable preorder preservingfunction of <p

Proof. Let (E, if, s) be normally preordered. Then ifA=iflcif" is a syntopo-
genous structure on E, and iff=if"ciflis decreasing,because iff <ifl By[4],(12.41),
for any < 6ifU, there exists an (iff .//continuous ordering family gon E such that
A<B implies f(E)cz\0, 1], f(x) =0, f(y)= 1 for each xfA, yiE - B, where /€<?.
Because of [s], (1.6)/is preorder preserving, and owing to

iff~ HOV iff < ifuVifi<if
@is (iff,,/)-, (iff, J 9- and (if, ./'/continuous.
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Conversely, assume <-fiif*, <T¥Tiifl, and let @ be a functional family on E
satisfying the condition of the theorem. Suppose that (0 is the family of the preorder
preserving functions of 9 Then both g and —qp={—+:/E<p(} are No «?)-, and
afortiori (if, J)-continuous, thus ifv <if and iffAKif. From this Sf%< ifland
if-Vo< ifuby [s],(1.5). Regarding [s], (4.9),wehave i f-~ i f~ . In view ofthe assump-
tion concerning <p the inequality is valid, hence

{<G"} < < N 2.<
With respect to the arbitrary choice of <' and we get
ifuif' = (ifwiflc < (iflif"gc=ifuiflc
that is (E, if, ~) is normally preordered. O

It is well-known that in order that a normal topological space be completely
regular the condition (5)) is necessary and sufficient (see [5], (4.2.5)). The following
theorem gives such a condition for normally preordered syntopogenous spaces
(cf. [11], (1.17)).

(4.4) Theorem. A normally preordered syntopogenous space (E, if, s=) is com-
pletely regularly preordered iff the following condition is satisfied:

(P) if" < iflp and ifl< ifup
In this case iflcif" is thefinest ofall syntopogenous structures spanning (E,if, ff).

(4.5) Lemma (cf. [11], (1.15), (2.7)). Conditiori (P) is weaker than (S3 and stronger
than (Sj). If (E, if, ff) iseitherperfect or compact, then (P) and (Sj) are equivalent.

Prooft. If (E, if, is S3 (i.e. regularly) preordered, then if" < (SfuEfly < Sflgp
and ifl<(SfISfuy < ifup. if (E, if, ff) has the property (P), then Sfub<Sflcpb=

=ifld and
Cldo» Cluopcb _ (Agdc _ Clude _ Clibee _ ~>«6

thus Sfub~ ifld (cf. [4], (5.22), (5.33), (5.17)).
Let now (E,if, ) be perfect and St-preordered. Then if"~£fuwp and ifl~
~iflp by [s], (1.7). From here

Cu ~ Clidb _ Clecpep _ Clpop” ylep

~ (fib _ (flbcc _ (flchc™ Clbe _ Cluoopep _ (Bupp” (Bup

(4], (5.33), (5.17)).

Finally assume that (E, if, s) is a compact Sx-preordered space. For -=£if"
choose < ffifu with < C<i- Suppose -""fifl such that <IC-=:h and put
<3£ifl, where Then x< B implies for some Cc E. If
yEE—C, then y<ZE—x, thus y"3W"sE—x. Because of ifu<.if, ifi<.if and
[4], (15.93), a finite number of the sets W covers E—B, therefore E—B<3E—X,
that is x<3B. If A<B, then we get B for any x£EA, thus AfffB. hence
-eC-"3". The proof of iff <,if"g is dual. O

and
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ProOF OF (4.4). If (E, ¥, =) is completely regularly preordered, then it has
(S,), thus satisfies (P) (see (3.1), (4.5)).

Conversely, assume that (E, ¥, =) has property (P). We verify that 9
spans (E, ¥, =). In fact, if <€ then there exists <;€#* so that < C<},
further an order <,€%" can be selected such that <, C <§P. If A<B, then A<, C<,
< B for a suitable CcE. Thus A<§ C, which means x<§C, ie. x(<§<,)B for
any x€A, hence A(<§<;)?B. This shows F*<L(FL*F*)P. The proof of F'<
L (S S =(L* ¥ is analogous. These give that S F* spans (E, %, =) by
(4.2). If ¥, is another syntopogenous structure spanning (E, &, =), then from (4.2)
it follows that %, <%*“%". O

(4.6) EXAMPLE. Any symmetrical preordered syntopogenous space is normally
preordered and has property (P), thus it is completely regularly preordered.

This statement is an immediate consequence of [8], (1.8). [J
Now we prove the theorem corresponding to [11], (2.8) (cf. [13], th. 4):

(4.7) THEOREM. Any compact S,-preordered syntopogenous space is normally
preordered.

ProOF. Let (E, ¥, =) be compact S,-preordered, and suppose <€%4, <'€ ¥
Assume ' =69, <C<i, and <,€&%, =i€F"* are such that <;C(=3<)",
finally <;€9%, <ic&', for which <,C <2 and <,C<j2 If 4<°C<B, then
there is XCE with A<’°C<,X<,B, therefore x<,C,,<;*E—y for each x€C,
YEE—X. Fromthis x<3A,,<3Cyy<s°Byy<sE—y. Put S={<*}. Then A<*C
and x<*4,, for any xcC, thus from [4], (15.93) it follows that a finite number
of the sets A, covers 4, hence there are sets 4,, C,, B, such that

AC Ay <3Cy<5° By <s"E—y.

Since E—~B**E—X and y<*E—B, foreach y€E—X, the set E—B is covered by
a finite number of the sets E—B,. Denoting by E—B’, E—A4" and E—C’ the
union of the corresponding sets £—B,, E—A, and E—C, respectively, we have

A e B,

therefore in view of the arbitrary choice of <=, <’, we obtain F* L LS S, that
is (E, ¥, =) is normally preordered. [J

(4.8) THEOREM. A compact preordered syntopogenous space (E, ¥, =) is comple-
tely regularly preordered iff it is Sy-preordered. In this case (disregarding equivalences)
S S is the unique syntopogenous structure spanning (E, L, =).

ProOOF. Any completely regularly preordered space is S,-preordered. Conversely,
every compact S,-preordered space is normally preordered, and since it is S, -preor-
dered, it has property (P), so that it is completely regularly preordered.

Further on suppose that %, is a syntopogenous structure spanning the compact
S,-preordered space (E, %, =). If <€%* and <'€¢%'! are arbitrary, then there
exists <g€F, such that < € <P, and there is <% with <;C <2. Putting
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A< C<B, we have x<oCx<o2? for each xEC and a suitable set CxcE. If we
denote by C the_union ofthe finite number ofthe sets Cxcovering A (see[4], (15.93)),
then /1cC < 0D, Thus fflcStu The inequality in the opposite direction fol-
lows from (4.4). O
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BEMERKUNGEN ZU EINER ARBEIT VON
INGHAM UBER DIE VERTEILUNG DER
PRIMZAHLEN

W. DETTE, J. MEIER (Lohne) and J. PINTZ (Budapest)

1. Einleitung

Riemann [9] vermutete in 1859, dal

(1.1 fur x>2.

Im Jahre 1914 bewies Littlewood [5] jedoch, daB die Funktion T(m)—x unendlich
viele Zeichenwechsel hat. Sein Beweis war ein reiner Existenzbeweis und erlaubte
nicht, ein X0 so zu bestimmen, dal n(x)—i x>0 fir mindestens ein x<XO0.
Weiterhin war es nicht mdglich, fir die Anzahl V(y) der ZeichenWechsel von
n(x)—i x im Intervall [2, y] eine Abschétzung (weder effektiv noch ineffektiv) nach
unten zu geben.

Eine obere Schranke fiir den ersten ZeichenWechsel konnte Skewes [11] im
Jahre 1955 angeben:
(1.2 X0< exps 7,705

(wobei exps X=exp X —ex, exp,+1 X=eXp expvx).
Uber die Anzahl der Zeichenwechsel bewies Ingham [2] im Jahre 1936:
Sei

(13 9= sup (Req),
«e)=0

und es existiere eine Nullstelle 0 mit

(14) Rego= 9,

dann gilt:

Satz A (Ingham). Falls eine Nullstelle der £-Funktion existiert, die (1.4) erfllt,
dann hat t(x)—ix mindestens einen Zeichenwechsel in allen Intervallen der From

(15 [y,Dy\ fur y=>YD0,
wobei Z>>1 eine absolute Konstante ist.

Daraus folgt unmittelbar
Satz B (Ingham). Unter derselben Annahme wie in Satz A gilt:

(16)
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Die Methode von Ingham erlaubte es jedoch nicht, die Konstante D effektiv
anzugeben: falls 0> 1/2, hangt D

(i) von o —i/2,

(if) von der Verteilung der Nullstellen ,,nahe* der Geraden <=0,

(iii) von wobei y'=min {y>Oj(o +iy)=0 }und y*=min {y>y"\C(0 +iy) —

=0} (mino=0°)
ab;
falls 0= 1/2, liegt der Grund der Ineffektivitat in der Verwendung eines Satzes
von Bohl aus der Theorie der diophantischen Approximation:

satz (Bohl). Fir beliebige reelle xI, ,xN und O<e<I|/2 existiert ein L=
=L(e, XX, ..., XN, so dakfir alle N ein nEN, né L existiert, fir welche
(1.7) l(ra+ mynr S £

gilt, wobei |U|=min {x—x], 1 —x+[x]}.

Ziel unserer Arbeit ist es, fir den Fall, daB die Riemannsche Vermutung wahr
ist (womit inshesondere die Annahme der Sitze A and B erfillt ist), eine effektive
Form von Satz B zu beweisen. Darliber hinaus zeigen wir einen zum Satz A dhnlichen,
aber viel schwacheren, jedoch effektiven Satz. Aufierdem diskutieren wir noch das
Problem der Effektivierbarkeit von Satz A.

Wir zeigen

satz 1. Unter Annahme der Riemannschen Vermutung gilt

(1) V(y) > exp”1107 log>> 10- es7 logy
fur j=-exp37,707.

satz 2. Unter Annahme der Riemannschen Vermutung hat n{x)—i.v mindestens
einen Zeichenwechsel im Intervall
(1.9) b>™-% y]
fir j>exps 7,707.
Wir weisen darauf hin, daB es mit komplizierteren Methoden mdglich ist, Satz 2
?Lécrgﬂohne Annahme zu beweisen; allerdings mit einer kleineren Konstanten als
Dal die Ineffektivitat von Satz A sehr eigenartig ist, zeigt der folgende

satz 3. Falls die Riemannsche Vermutung wahr ist und die Imaginarteile der ersten
69 Nullstellen mit positivem Imaginérteil iber dem rationalen Zahlkérper unabhangig
sind, dann kann man in endlich vielen Rechenschritten effektive Wertefiir D und YOim
Satz A angeben; jedoch kann man die Anzahl H der dazu notigen Rechensch/itte
nicht im voraus abschétzen.

Maoglicherweise flihrt dieseloe Methode auch im Falle der linearen Abhangig-
keit der Imaginarteile der Nullstellen in endlich vielen Rechenschritten zu effektiven
Werten von D und YO; dies kdnnen wir aber nicht garantieren.

Zu der in Satz 3 erwahnten Anzahl H der nétigen Rechenschritte ist zu bemer-
ken, dal sie sich mit dem in &beschrittenen Weg als so grof3 erweist, dal} eine Berech-

Acta Mathematica Hunganca 45, 1985



BEMERKUNGEN ZU EINER ARBEIT VON INGHAM 123

nung von D und Y, mit heute zur Verfiigung stehenden Computern nicht mog-
lich ist: wir zeigen dort, daB H=10"; aber hochstwahrscheinlich gilt sogar H=10".

Eine obere Abschitzung fiir H konnen wir nicht beweisen; aus heuristischen
Griinden ist es jedoch wahrscheinlich, daB etwa 10'° Schritte geniigen, um D,
und etwa 10'° Schritte geniigen, um auch Y, effektiv zu bestimmen. Vermutlich
erhilt man D—=exp 101 bzw. max {D, Y,}<=exp 10°.

Im Zusammenhang mit Satz B bemerken wir, daB das erste, ohne unbewiesene
Annahme giiltige Ergebnis im Jahre 1962 von S. Knapowski [4] erreicht wurde.
Er zeigte:

(1.10) V(y) =e¥log,y fir y=exp;35

(wobei log; y=logy, log,.; y=loglog,y).
Das beste effektive Ergebnis

1 Viog y

(1.11) B s vy

furt y =exp; 3,57

stammt von den Autoren [1], [7].
Das beste ineffektive Ergebnis

—n _logy -
Vv 11
(112) (y) =10 (10g2 y)3 fiir y= Y1

wurde von dem letztgenannten Autor [8] bewiesen.
Beim Beweis von (1.10), (1.11) und (1.12) spielt die Turansche Methode eine
entscheidende Rolle.

2. Beweis von Satz 1 und Satz 2

Im folgenden verwenden wir die folgenden Bezeichnungen:

(Ao(x) =y@)—x= 2 logp—x, 4,(x)=n(x)-lix= 2 1-lix,
p=x p=x

@.1) JAz(x) =I(x)—lix = Zln(xl/")——li Xy Ax) = fAO(I) dt,

v=1"V
|AK(X)=A°(5), P L LA PR )
Vx Vx
i 3 i e : :
Se1 weiter A=500, B=3600, =200 C=exp 102, Q=7+1y bezeichne eine

beliebige nicht triviale Nullstelle von {(s). Weiterhin verwenden wir die folgenden
numerischen Ergebnisse:

22) 20,0033,
7=0
sin (yo) ])’]]
@3) _———( ~ ) 10262 bzw. =—1,0262,
I7éA 7 A
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falls fur alle \y\</1 gilt
(2.9 \Wa>Yr\ A bzw. |yo)+ | =£

(2.5) N(A)= 2 1= 269

Zu (2.2) vergleiche Rosser [10]; (2.3)—(2.5) wurde von Skewes ausgerechnet [11].
thi den folgenden Hilfssétzen setzen wir voraus, dafl die Riemannsche Vermutung
wabhr ist.

Hilfssatz 1. Fur gré! gilt:
(2.6)

* X2 Ye+1 r T ~ vl —2n
2n(2n—1)
Flr den Beweis siehe Ingham [3], Seite 73, Theorem 28.
Hitfssatz 2. Fir T*x22, x"C qgilt:

ve+i
2.7) f «KOdt-Z-+ . abx
2 |yl<r e(e+i)
B ow o is. (2.7) folgt aus (2.6), falls wir 4-(0)=log 23r, ~-(—1)= 1,98505...
(siehe Walther [13]) und
(2.8) 2 l«4log A

10<K SJSi+4

(vergleiche von Mangoldt [6]) beriicksichtigen.
Aus Hilfssatz 2 und (2.2) folgt

Htifssatz 3. Fir x"C gilt:

\A(O\s X;éz‘
Hilfssatz 4. Fur x"C gilt:
1
KMI = VXMQ("JII'ﬁ—f ),

Beweis. Aus Hilfssatz 2 folgt

2.9)
. i K+}/x
Lox+Y)-0i0) fZ—i— 3 2||lﬂ 1 g fe<Ul jix.

Analog erhélt man die untere Abschétzung.
Aus Hilfssatz 4 folgt zusammen mit (2.8)

B(x)
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Hilfssatz 5. Flr x£2C gilt:

[/10)[ N 20 ¥x log2x.
Hilfssatz 6. FUr x£1 gilt:

/\Ou) A(x) , r nln 1®g£+2

(2.10) A2 logx  mlog2x  J t2log31
AR) 2y,
210922 log 2 '

Fir den Beweis vergleiche Ingham [3], Seite 64.
Aus den Hilfssatzen 3und 6 folgt unter Verwendung der trivialen Abschatzung
|[d(x)|Sx2logx (fir rSC)

Hitfssatz 7. Fir xéC 10 gilt:
- 5 _4
(2.1 Um log ‘FogZTF 10 logx
Hitfssatz 8. FUr X&C10 givr.-
(2.12) [d2()I = 21 ¥x log2x, |dj(x)j € 22)xlog2x.

Beweis. (2.12) folgt unmittelbar aus den Hilfssétzen 5und 7 unter Verwendung
von

0S a2x)-na1(x) — A_—rc(X 8 -2-+Vxlogx ~ vy«
Y. S vl A g

Hilfssatz 9. Fir x~C 10 gilt:

X A X 3X
log X V\) log X" Tbg2x"
Beweis. (2.13) ergibt sich aus (2.12) und

(2.13)

. 2x
(2.14) logx log2x lix log x ¥ log2x
Hitfssatz 10. Fir xéC 20 gllt
. _ »5 A YX
(2.15) 420x)-d10x)- 20 N T e

Beweis. (2.15) folgt aus (2.13) unter Verwendung von
2 —n(xly) < Y¥x logx.
*83 V

Aus den Hilfssatzen 7 und 10 folgt
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Hilfssatz 11. Fir x é C 100 gilt:

¥Yx AQ(X)

(2.16) N0+ 100x logX

s8 Mgiixs 8.10-. Ié\gx
was gleichbedeutend ist mit:
(2.17) IzIi(x)-~(x)+ 1| ~ 8-10-5.

Hilfssatz 12. Fir x=-1 gilt:
i(x+0)+i/'(x—0) =% _7 key A . .
e 283 740)-ylog -]

Fir einen Beweis vergleiche Ingham [3], Seite 77, Theorem 29.
Aus den Hilfssatzen 11 und 12 folgt

Hilfssatz 13. Fir x ~ C 100 gilt:

X' "
(2.19) d*(x) + Zd ~6'+ 1 A 10-
Daraus ergibt sich unter Verwendung von (2.2) und 1—_ of
B iy ~
Hiltfssatz 14. Fir xfeC 100 gilt:
(2.20) AUX)+Z " +i 0,0234.
B
Wir setzen nun
(2.21) G(v) =
( ) f_ iy
Aus Hilfssatz 14 folgt, dalR dx(x) in einem Intervall
(2.22) [e°], ea] c [exp 105 Y]
mindestens einen Zeichenwechsel hat, falls wir zeigen kdnnen, daf
(2.23) GMZG(V) = 1,0234. und atm},naZG(v) < —1,0234.
Dazu verwenden wir eine Idee von Ingham und betrachten
.u’
AB " T
s '
(2.24) - y
sinT
|<u>: I / "
T
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Die letzte Gleichung folgt unter Verwendung von

(2.25) o ot ehucu 71 10 T B4
Mit partieller Integration folgt nun leicht:
u\2
(2.26) / Si“MT ehfAdU
~2
Lu 2® oon?
/i\y . Sn:12 T ,ib)\,ijnn ddu Sn;z du
I 2 J as (21
A 4 A 4 5
“¥ 6w +IyfAR - Bly\ m

-AB

Obige Abschatzung gilt analog fir J , und somit erhalten wir unter Verwendung
von (2.2)
(2.27) 104

(2.23) folgt also, falls wir zeigen kdnnen, daf}

(2.28) max  /(co) = 1,0235, min I (to) <-1,0235.
Aus (2.3) folgt fur ein oo, das (2.4) erfillt;

(2.29) /(co) >1,0262 bzw. <-1,0262.

Im folgenden suchen wir nun solche Werte nv, fur die
(2.30) 7i<a, V=1 ...,wm)

erfiilltist, denn dann ist (2.29) mit den Werten

(2.31) 0= nv+ij bzw. nv—I|

gegeben.
Um (2.30) zu sichern, bendétigen wir die folgende Verallgemeinerung des Dir-
ichletschen Approximationssatzes (vergleiche Titchmarsh [12], Seite 153).
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Hilfssatz 15. Seien q=I und M natirliche Zahlen; xIt ...,xN beliebige reelle
Zahlen. Dann gibt es natlrliche Zahlen nYmit:

(2.32) 17 «j-=n2< ...< nM= MgN
so dalRfir ISvsM, 17i*N gilt:
(2.33) WnvXiV\ A A
Falls wir nun
(2.34) q=B; x,=-£ (i=1,..., N(A) —N),
(2-35) M=PO08" " 1]
wahlen, so erhalten wir natirliche Zahlen
(2.36) 17 nx<...< nM” logy—B—1 mit
(2.37) /(nv—j) < -1,0262 < 1,0262 < I(nv+n).
Also hat Al(x)=n(x)—li x mindestens einen Zeichenwechsel im Intervall
(2.38) [e"v-B-i, ev+B+] ¢ [exp 105y], (L1105~ v~ M).

Daher folgt fir y >exp37,707:

(2.39) AYs>s wo([°w ©°]-1110,)>

=tisW 106~ 10' “ '108"

Falls wir den urspringlichen Dirichletschen Approximationssatz (vergleiche Tit-
chmarsh [12], Seite 152) verwenden, erhalten wir die Existenz eines i mit

(2-40) " logp—08] ,

so daB (2.30) mit v=1 erflllt ist. Daher hat Al(x) =Tt(x) —]ix mindestens einen
Zeichenwechsel im Intervall

(2.41) [e"i-B~\ e»l4+B+1] ¢ b 10"%7, y] fir y > exp37,707.

3. Bemerkungen

Aus dem Beweis der Satze 1und 2 ist ersichtlich, wie der Bohlsche Approxi-
mationssatz Zum Ergebnis von Ingham flihrt. Um die weiteren Bemerkungen beziig-
lich der Effektivierbarkeit des Satzes A von Ingham verstandlich zu machen, geben
wir den folgenden Beweis fiir den Satz von Bohl :
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Wir teilen den N-dimensionalen Einheitswiirfel mod 1 auf in k" kleinere,
abgeschlossene Wiirfel W, ..., Wi~ mit der Seitenlidnge 1/k, wobei k die kleinste
ganze Zahl =g 'ist. Sei #~ die Menge derjenigen Wiirfel, die mindestens einen der
Punkte nx enthalten (x=(x,, ..., xy)). Dann gibt es eine Zahl L(s, x), so daB alle
W;e#" mindestens einen Punkt nx mit n=L(e, x) enthalten. Da aus dem Dirich-
letschen Approximationssatz folgt, daB fiir beliebige H=0 der Punkt 0=
=(0, ..., 0)€{nx};_y, ist auch —mx€{nx}r,. Also existiert ein Wiirfel W, mit
—mx€W;, der mindestens einen Punkt nx mit n= L(e, x) enthélt. Dann gilt:

3.1) [(n+m)x)| = [nx;—(—mx)|| = ]— = (i =1, .2 N).

BEMERKUNG 1. Es ist nicht moglich, L (e, x) mit einer Funktion, die von ¢ und N
abhingt, nach oben abzuschitzen:

fiir alle e<1/2 und N=1 gilt mit kleinem n und x,=#, X, ..., Xy beliebig
3.2 L(g, X1y ..., X8) =

Die obige Bemerkung zeigt die Schwierigkeiten, die bei einer eventuellen Effek-
tivierung von Satz 1 auftreten konnen. Insbesondere mufl man beriicksichtigen, daB
auBer dem obigen trivialen Beispiel noch andere, kompliziertere Beispiele existieren,
die zeigen, daBl L(e, x) beliebig groB sein kann.

Andererseits ist der obige Beweis des Bohlschen Satzes doch gewissermaBen
konstruktiv, und so ergibt sich die folgende

BEMERKUNG 2. Falls wir bei gegebenen ¢, x die Menge % =% (e, x) kennen, so

kann man in endlich vielen Schritten eine Zahl L (g, X) bestimmen. Die Anzahl der
dazu notwendigen Rechenschritte kann man jedoch nicht im voraus abschitzen.

Falls die Zahlen X, ..., xy (iiber dem rationalen Zahlkorper) linear unabhingig
sind, dann enthélt %" nach dem Kroneckerschen Satz (vergleiche Titchmarsh [12],
Seite 153) alle Wiirfel W, (i=1, ..., k™); wir haben also

BEMERKUNG 3. Falls die Zahlen x,, ..., xy linear unabhingig sind, so kann man
eine Zahl L(e, x,, ..., xy) in endlich vielen Schritten bestimmen.

Damit haben wir das in der Einleitung erwihnte interessante Phianomen, daB
die Konstante im Satz A ineffektiv ist, aber unter der genannten Zusatzannahme
kann man sie in endlich vielen Schritten bestimmen.

Nun gilt

(33) 3 ¥ b s

0<y<7y9 IQI

wie sich durch explizite Berechnung ergibt. Beriicksichtigt man dieses Ergebnis so
ergibt sich Satz 3. Dabei ist zu bemerken, da aufgrund der Tatsache, dal wir
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714, B0 mit beliebiger Genauigkeit berechnen kénnen, es keine Schwierigkeiten
gibt, falls wir N&herungswerte flr yl5..., y@0 verwenden*.

Da nun
(3.9) 2 |2=i_lhi W - Fi > fir N=1,..»68
gilt, mul man ein mindestens 69 dimensionales diophantisches Problem lésen.
AuRerdem mufl man, nach (2.30) und (2.31) s<1/4 (also 5) setzen (ansonsten

erhélt man etwas vollig Triviales). Aus diesen beiden Uberlegungen ergibt sich, daf
die Anzahl der Wirfel und damit die Anzahl der notwendigen Schritte bestimmt
groRer ist als

(3.5 560> 1048
Fur praktische Berechnung ist diese Anzahl natiirlich schon zu groR.
(35 gibt nur eine absolute Mindestzahl fiir die Anzahl der Schritte an, die sich

bei der Wahl des tatsachlich notwendigen e natirlich wesentlich erhthen wird.
Eine Verbesserung kann eintreten, wenn man N etwas grofer wahlt und damit
auch

groBer its. Z. B. erhdlt man fir V=100

3.7)

wobei e<

sein mufl. Wahlt man nun e=l—1 , so erhalt man fur die Anzahl der
in diesem Falle ndétigen Schritte mindestens
(3.8) Litoo > 1010413

Orientierungshalber wollen wir nun einige Uberlegungen fiir eine Abschitzung
der Anzahl der Schritte nach oben durchfthren.

Falls ein Punkt Pt mit einer Wahrscheinlichkeit von /M in einen der M Wiirfel
fallt und die Verteilung von P;und Pj fir i,j unabhéngig ist, so enthalten alle Wiirfel

* Nehmen wir an, daB y1; ..., yl0linear unabhéngig sind, und sei ;/= (yX, ..., ¥0) ein Ndhe-

rungsvektor mit v —y,|-=I/n. Weiterhin sei £ eine feste positive Zahl, e=1/9k, kgN und (T'Vc
(v=1,...,(3~is~1)NY das fruher beschriebene Wurfelsystem modi, wobei die Seitenlange der
Wirfel Ve (/=0, 1, 2) ist. L(e, x) sei definiert wie im Beweis des Satzes von Bohl.

Falls n?-[(L(£, y)+2)s_1], dann enthalten alle Wirfel N?" mindestens einen Punkt der Reihe

{my'Y~Ju da en”~L(e,y) und \mmv—myw<s. So erhalten wir nach endlich vielen Schritten eine

natirrliche Zahl nOund einen Naherungsvektor / mit |yv—ywW< I/n0, so daB alle Wurfel A& mind-
estens einen Punkt der Reihe {m/Jtond enthalten (dabei wissen wir nicht, ob /;0~[(L(e, y)-r2)c_1]

oder nicht). Dann enthalten alle Wiirfel mindestens einen Punkt der Reihe {my}u~ol. Auf diese
Weise erhalten wir die effektive Abschatzung L (I/k, y)-=cn0.
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nach cAflogM (ol) Schritten mit einer Wahrscheinlichkeit

4 \cM logM
6-_|

Das sagt natiirlich nichts fiir die spezielle Punktfolge n %2"”—,

mindestens einen Punkt.

2n)|’ wenn-
gleich (3.9) xyahrscheinlich fiir fast alle Folgen nx, x£R10 bewiesen werden kann.
Das heilst aber, da man gute Chancen hat, daR

b
(3.10) (m 2 ﬁ)l , Jam

ist. Damit existierte dann zu allen Punkten x€R 10 ein n<101® mit

(3.12) (i = 1, ..,100).

Falls man also fiir die Werte yt Ndherungswerte y* hat, die mit einer Genauig-
keit von 112 Dezimalen mit yt Gibereinstimmen, dann ist fir »x 101®

(3.12) \nyt~ny,\ < 103
Damit folgt aus (3.11)

(3.13)

Ebenso kann man nun die Rollen von y; und yf vertauschen, d.h. (3.10) annehmen
und auf (3.13) mit y(schliefzen.

Falls man nun also annimmt, da man Né&herungswerte y* fir yt mit einer
Genauigkeit von 10-112 in weniger als 1010 Schritten finden kann, was maglich zu
sein scheint, so haben wir Chancen, mit etwa 10uo Schritten den Wert der Konstanten
D im Satz A von Ingham anzugeben (6<exp 101®).

Falls wir auch noch YO effektiv angeben mdchten, dann miiten wir eine Zahl
explizit bestimmen, fur die

(3.19) (ZM_ <fg i=1 .. 100
n
Statt (3.7) missen wir dann

loo

(3.15) 22

voraussetzen, also £=1/22 wahlen.
Daher sind dann wahrscheinlich etwa 10140 Rechenschritte nétig, und man erhélt
wahrscheinlich max (2), ¥,,}<exp 10140
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ON DISTRIBUTIVE PAIRS IN LATTICES

S. MAEDA (Matsuyama)

1. Introduction

The concept of modular pairs in lattices has been well-investigated in the litera-
ture, especiallyin [3] and [4]. Alattice L is modular if and only if every pair ofelements
of L is join-modular (or equivalently, every pair is meet-modular), while in some
non-modular lattices, interesting characterizations of modular pairs are given. For
instance, in an affine matroid lattice, a pair of lines is meet-modular if and only if
they are not parallel ([3], §17); in the lattice of closed subspaces of a topological
vector space, a pair is join-modular if and only if their linear sum is closed ([3],
831).

)In this paper, we consider two new concepts, distributive pairs and semidistri-
butive pairs in lattices. A lattice L is distributive if and only if every pair of elements
of L is join-distributive (or equivalently, every pair is meet-distributive). Any join-
(meet-)distributive pair is join-(meet-)semidistributive and any join-(meet-)semidis-
tributive pair is join-(meet-)modular. Moreover, it will be shown that a lattice is
distributive if every pair of elements is join-(meet-)semidistributive and that in a mo-
gulgr lattice or in an atomistic lattice, any join-semidistributive pair is join-distri-

utive.

In the last section, interesting examples of distributive pairs are given. It is well-
known that the congruence lattice of a lattice is distributive, while it was proved in [1]
and [5] that the congruence lattice C(S) of a join-semilattice S is distributive if and
only if any two non-comparable elements in S have no lower bound in S. In this
paper, we give a necessary and sufficient condition for a pair in C(S) to be join-
(meet-)distributive. Moreover, we prove a remarkable property of C(.S) that any meet-
modular pair in C(S) is meet-distributive.

2. Distributive pairs and semidistributive pairs

Definition. Let L be a lattice. A pair of elements a, bf L is called join-distri-
butive (resp. meet-distributive), denoted by (a, bjDj (resp. (a, b) />,,), when

la\l b)Ax —{aAx)M{bAx) for every Xx£L
(resp. (aAb)\/x = (aVx)A(hVx) for every x£L).
(a, b) is called join-modular (resp. meet-modular), denoted by (a, b)Mj (resp.

(a,b)Mn), when
cisb implies cA(aVvb) = (cAa)Mb

(resp. ¢Si implies cU(aAb)=(cYa)Ab).
(@,b)Mj (resp. (a,b)M,) coincides with (a,b)M™* (resp. (a,b)M) in [3].
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Lemma 1. (i) (a, b)Dj is equivalent to thefollowing condition:

(1) If xSa\lb then there exist ax,b x€.L such that ajSi, bxwb and ax\/bx=x.
(i) {a, b)Mj is equivalent to thefollowing condition.

(2) 1f bax"aMb then thereexists axEL suchthat axSa and ax\lb = x.

Proof, (i) {a b)Dj implies (1) by putting ax=aAx and bx=bAx. Conversely,
if we assume (1), then, putting y=(a\lb) Ax, there exist ax, bx such that ax"a,
bx*b and afjbx—y. Then, since ab we have ax“aAx and bxSbAX,
whence

(a\jb)Ax = aflbx” (aAx)V (bAx) ii (aVb)Ax.

(i) (a,b)Mj implies (2) by putting ax=xAa. Conversely, if we assume (2),
then since b~cA(a\lb)*a\lb, there exists axsuchthat a,éii and ax\1lb—cA{a\lb).
Then, axScAa, and hence

cA(ayYb) = axMb & (cAa)Vb * cA(aVh).

Definition. A pair of elements a, bEL is called join-semidistributive, denoted
by (a, b)SDj, when it satisfies the following condition:

(3) If xSaMb then there exists axdL such that ax"a and axLL x"axYb
(hence, x f b=axVh).
It is easy to verify that

aSbh =(a b)Dj(o(b, a)Dj) =>(a, b)SDj = (a, b)Mj
and that (3) is equivalent to
{(afb)Ax}\/b —(aAx)Vb for every x£EL.

Remark that conditions (1), (2) and (3) can be available for elements of a join-semi*
lattice. 0

The definition of a meet-semidistributive pair (a, b)SDmcan be given by the dual
way.

Lemma 2.1f {a,b)SDj andif (b,a)Mj for any axSa, then (a, b)Dj.

Proof. If xLLlaYb, then there exists axEL suchthat ax*a and axS x " a xVb.
By (b,aM | and Lemma 1, there exists bx"b suchthat bxf ax—x.

It follows from this lemma that (a, b)SD j<=>@ b)Dj in a mo-
dular lattice. While, in the lattice given by the figure, both (a, b)SDj
and (b, a)SDj hold, but (a, b)Dj does not hold.

Theorem 3. For an element s of a lattice L, thefollowing three statements are
equivalent.

(a) sis astandardelement, thatis, (s,x)Dj for every XEL (see [2]).

(R) (& x)SDj and (x, s)SDj for every x£L.

() (s,x)Mj and{x, s)SDj for every x£L.
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Proof. The implications (a)=>(/?)=>(y) are evident. It follows from Lemma 2
that (y)=>(a).

Corollary. L is distributive if (a, b)SDj for every a, bEL.

(This result was shown in [6], p. 33.)

Proposition 4. (i) If (a b)Dj and (adb, c)Dj then {a,bdc)Dj for any a'€
€[q, adc\.

(i) If (a, b)Dj then (a',b")Dj for any af[a, a¥b] and bf[b, adb].

(iii) 1f (ax, b)Dj and (az, b)Dj then (ait\a2,b)DJ.

Proof, (i) Let x*a'VhVc. Since a'MbMc=afbMc and since (a\/b,c)Dj,
there exist dSaWb and c”c such that d4cx—x. Since (a,b)Dj, there exist
axSa and bx"b such that afloA—d. Then, ax*a’', bfJcl*bV c and alV(hlVci)=x.

(i) Let (a,b)Dj and bf[b, aVb], Since b'"*aWb, we have {a\'b, b")Dj.
Hence, it follows from (i) that (a', b')Dj for any af[a, aVb']=[a, aVb].

(iii) Let x*(alAaV)yYb. Since x*afJb and (al,b)Dj, there exist cl*al
and bx"b such that cIVftl=x. Since c”x”a.fJb and (a2 b)Dj, there exist
c2*a?2 and b2ub suchthat c2db2=cl. Then c¢2*c lAa2*alAa2, bxVb2Sb and
c2l(b1Vvbl=x.

It follows from (i) and (iii) of this proposition that if sxand s2are standard ele-
ments then so are sjVM2 and sxAs2 (cf. [2], p. 143).

Proposition 5. (i) If (g, b)SDj and (adb, c)SDj then (a\bdc)SDj for any
af[a, afc\.

(i) If (3 b)SDj then (@', b")SDj for any af[a, aMb], bf[b, awb].

(iii) 1f (ax,b)SDj and(a2b)SDj then (axAa2, b)SDj.

Proof. These statements can be proved similarly to Proposition 4.

Lemma 6. Thefollowing statement (=) implies (a, b)SDj.
(*) Ifx*aVb andif x and a are non-comparable then xSbh.

Proof. Let xSaVh. We put ax=x if x=a and put ax=a if xéa. Then,
Gjia and a”x”ajdb. If x and a are non-comparable, then we have xsb by
(*). Hence, any lower bound axof {a, x) has the desired property.

Lemma 7. Let p be an atom of a lattice L with 0. The following statements are
equivalent.

(@ (p,b)SDj.
(B) If x*pdb then either x*p or xSh.

Proof. (a)=>(/i). If xSpfb, then by (a) there exists px*p such that
axSpavh. Sincep is an atom, pxis eitherp or 0. px—p implies x*p, and px—0
implies x"b.

(R)=%. If x*pWb and if x and p are non-comparable, then xsh by (B).
Hence, it follows from Lemma 6 that (p, b)SDj.

Remark. If p is an atom, then it is easy to verify that (p, ‘If bAx LU
ApWb then either x"p or x=h".
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Theorem 8. Letp and g be atoms o f a lattice L with 0. Thefollowing three state-
ments are equivalent.

(a i _
IB% Ep ngDJ and (q,p)SDj.
(y) If 0<x<p4q then either x=p or x—q.

Prooft. (A)=>(/?) is evident. 0?)=>(y). Let 0<x<pVq. Since (p,q)SDj, we have
xAp or x=q by Lemma 7. If x>p, then since (q,p)SDj, we would have x"q
by Lemma 7, and then x*pMq, a contradiction.

(Y)=>(ot). Let xSpM qg. By (y), x is one ofthe four elements O,p, g, pY q. Hence,
it is easy to verify that there exist px~p and gx=q suchthat plJgl~x.

We remark that the above arguments from Lemma 2 can be available for join-
semilattices, except (iii) of Lemma 4. By the dual way, we can obtain dual results
about meet-distributive pairs and meet-semidistributive pairs, and they can be avai-
lable for meet-semilattices.

3. Join-distributive pairs in atomistic lattices

Let L be an atomistic lattice (see [3]), and denote by Q the set of all atoms of L.
For every aZL, we put

Q(a) = {p£Q; p*a) (U(0)=0)

The mapping a-<-Q(a) ofL into the complete lattice of subsets of Q is order-preserv-
ing and Q(Aaagd= CxQ(aX) whenever Aaax exists. Moreover, this mapping is
one-to-one since L is atomistic.

Theorem 9. Let aand b be elements o f an atomistic lattice L. ThefollowingJour
statements are equivalent.

(a) (a,b)Dj.

(B) (a,b)SDj. (4 (b,a)SDj.

() Q(adb)=Q(a)[JQ(b).

Prooft. Evidently, (a) implies (B) and (/?) (/9)=>(y). It is evident that Q(a\lb)z>
Dfi(a)uQ(b). If pjQ(ayb), then by (a,b)SDj, there exists ax*a such that
a“p”afJb. Since p is an atom, a, is either 0 or p. ax=0 implies psb and
ax—p implies p*a. Hence, p£Q(a)UQ(b) Similarly, (B") implies (y).

(V)=>-(@. Let x*aVb. Putting ar=aAx and bx=bAx, we have af/b"x
If p isan atom with pSx, then since pfQ(a'Jb) —Q(a) U Q(b), we have p=ax or
p~bx, whence pSaf!bx. Therefore, x =aflb1 since L is atomistic.

4. Distributive pairs in congruence lattice of semilattices

Let S be a join-semilattice. A congruence relation 0 of S is an equivalence rela-
tion having the following property:

If xI=y1(0) and x2~y2(0) then x1Vx2=y1Vya(0).

The set of all congruence relations of S, denoted by C(S), forms a complete
lattice, where

X = y(As6£ *>x = y(09
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for every a. Moreover, n=y (03v02 if and only if there exist w, ui,..., u,,£S such
that u0=x, u,,=y and ui_1=ui(0j where O'=0Xor 0'=02 (see [5]). The greatest
congruence lis given by x=y(1) forevery x,yES. If J isa proper ideal of S, then
there is a congruence relation 6(J) with two equivalence classes J and S—J. (If
J—S, then 0(J)= 1) It is evident that 0(J) is a dual-atom of C(S) for any proper
ideal /, and it can be verified by the following lemma that every dual-atom has such
a form and that C(S) is dual-atomistic (cf. [5], Theorem 1).

Lemma 10. Let J be anidealof S, andlet 06 C(S). Ifweput
J = {x6S; x "y =z(0), z£J),

thenJisanidealof Sand 070(J). If J=(a) (a6S), then J={xdS; xda=a(0)}.

Proof, (i) It is easy to verify that J is an ideal. If x=x'(0) and X£J, then since
xSy=z(0) with z£/, we have x'"x'dy=xdy—y=z(0), whence xfJ. Hence,
070(J).

Let /=(«]m If xd a=a(0) then evidently x£J. Conversely, if xSy=z(0) and
z£/, then since z*a, we have xda=xdzda=xdyd a=yda=zd a=a(0).

Lemma 11. 1T Jx(afA) are ideals of S and if me/570, then AxiA0(Jj)S
A0 (M a6nil).

Proof. Assume x=y(Ax0(JXY), thatis, x=y(0(Jj)) for every a. If x,y€/a
for every a, then x=y(0(MaX]) since x,y€i)xJIx. If otherwise, x,y6S—I} for
some REA, and hence x=y (0(Ma/g) since x,y6A—I141.

Theorem 12. Let S be ajoin-semilattice and let 0,, 02be congruence relations o f
S. Thefollowing seven statements are equivalent.

(@ (0X 0d)Dmin C(S).

(R) (01S0jSD min C(S). (Bj (02,0DSDm in C(S).

() (0i, 02Mmin C(S). (yj (02, 00Mmin C(S).

(< If J is a proper ideal of S and if 0XA02=0(J), then either (L ((/) or
070(J).

(@) IfJIxandJ2are ideals of S andif 01S0(/]), 02S0(/2 and ./xI /20, then
either 0x*0(Jxf]J2 or 02°0(/j C\JD.

Proof. Since the dual ofthe lattice C(S) is atomistic, it follows from Theorem 9
that the four statements (a), (/?), (%] and (<& are equivalent. The implications (%)=>
=>(y), (Bj=>(yj are evident.

(Y)=>(g). Let f, J, be ideals, and let 01s0(/0), 02=0(72 and JXC\J2"A).
If 0xjRO(Ixr\J2, then there exist u, VES suchthat u=v(0¥, urJxP\J2 and vjJxIl
MJ2. Putting ¢=02A0(IxC\Jj, we have OxA02"tth, since 0XA02"0(JXNA0(I"s
40(/12f1/2 by Lemma 11 Hence, by (y), we have (cbd 0)A02—hd(0,A02=dn.
We shall show 02°0(/1ry2- Let x=y(023. We have vdx=vdy(d) since
vdx=vdy(03 and nVx, vdyjJxi)J2. Moreover, since udx=vdx(0¥ and
udy=vdy(0%, we have udx=udy(fd 0j. Therefore, udx=udy (0(IxC\J2),
since udx=udy(02 and (dpd0x/102=p"0(IxMJID. If xfIxC\J2, then since
wW\/x€NMM/2, we have udydJxC\J2, whence y£JxIM/2. Thus, we obtain x=
=y(0(/rM/3), and therefore @0 (1X\12.
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Similarly we can prove (y')=>).
(e)=>(<H5). Let/ be a proper ideal such that 0X102=0(/). We put

A= {xeS; xAy = Z(Qi), £ (= 1 2).

Then, it follows from Lemma 10 that A and J2are ideals with OX*0(A) and 02=
S0(/2. Since Jt2/, we have AT1/2=)/" 0, and hence, by (¢, we have either
670 (AMA) or 020(AM/2- Assuming 0]350(Al/2, we shall prove J=J1
If x£J1, then x*y=r(Br) with z£/. Since y=z(0(A MA)) and z*JczJxC\J2,
we have y6/1T/2c:/2, whence y*y'=z'(6]) with ZGJ. We have yVzVz's
zVzZ'(0i), and since y'VzVz'=zVz'(02, we have yVzVz'=yVy'VzVz'=y'V
VzVz'=zVz'(02. Hence, yVzVz'=zVz'(0(/)) since 01A02=0(J). Since zW zfJ,
we obtain xSySyMzM zfJ- Therefore, /1=/, whence 0170 (/D=0(/). Simi-
larly, if 0a”O(AMA) then 02=S0(/).

Coroltary 13. (01, 0QMm implies (02, 0j)Mm that is, C(S) is M-symmetric in
the sense of[ 3].

Corollary 14. Let A and J2be proper ideals of S. The following statements are
equivalent.

(@ (0(A), OW)Dr

(D) (0(Js1), e(J.2)SDm. (Bj (0(/2, 6(3))SDm

(?) (0(A), 6(A)Mn. (/) (0(/2, O(/i))Mm

(9 0(/DN0(/2) has three equivalence classes,

() /jC/j or [r3/2 or /1M/2=0.

Proof. The equivalence of ((5) and (e) is easily verified. The rest is equivalent to
(e) by Theorem 12.

Coroltary 15. Thefollowing statements are equivalent.

(@) CfS) w distributive,

i) C(S) is modular.

@) (0(A), 6(J2)Dmfor anyproper ideals A and J2.

(8" (0(A), 0(J9)Mmfor any proper ideals A and J2.

() 1ftwo elements of S are non-comparable then they have no lower bound in S.
(d) Iftwo idealsfand J20fS are not disjoint then JiczJ2 or J1z7J2.

Proof. The equivalence of (7) and (6) is easily verified. The implications (a)=>
=>(R)=>(%n) and {a)=>{aj=>{Bj are trivial, (B") implies (& by Corollary 14, and
(< implies (a) by Theorem 12.

The last corollary was partially proved in [1] and [5].

Theorem 16. Let S be ajoin-semilattice and 0I5 02 be congruence relations of S.
Thefollowing three statements are equivalent.

() (0, d2Dj in C(S).

(B) 1f A:=y(0: V02 then there exist ufS (/=0, 1, ..., n) such that x=u0"
S«is...g«n="V7 and 4 !=M(") where 0'=02 or o'=02.

(7) If x=y(0fl0.j) and x"y then there exist u*S (i=0, 1, ..., n) such thaf
uo=x, u,,=y, LSy and h_i1=ni(o') where 0'=01 or 0'=02.
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Proof. (@=>(). Let x=y(91Vv9"). We put ¢d—0((x\/y]). Then, we have
a=aVy (90 A®D), whence x=x\/y((91AD)Y(02A¢)) by (a). Hence, there
exist vt (i=0,1, ..., n) suchthat v0=x, v,,=x\ly, vi_1=vi[Ef\I>) where 0'=9+
or 9'=9Z Since Vi=vn=x\ly(}li), we have e aMy. Putting n0=a, nf* aVejV...
...Vvi, we obtain u0*ul1*..Su,,=xWy and w_1=Mi(0.

(?)=>(y) is evident. (y)=>(a). It suffices to show that (Or®92Ad " (s1Ad)V
V(02A<0 for every p£C(S). Let A=y((0xX\/B"Ad), and we shall show A=y
((OMA)V(92A0)). We may assume A”My. By (y), there exist utES such that

uo= a, N,=y, ui=y and where s'= or Or o'=02. Taking mVva
instead of n;, we may assume that x"w éy for every i. Since x=y(¢), we
have w=x\w=yd Ui=y($). Hence, Ag), and therefore a-=

=y ((01A)\!(B2AcD)). This completes the proof.

Let L be a lattice. A lattice-congruence relation 9 of L is an equivalence relation
having the following property: If a,=y,(0) (/= 1,2) then a" a" y, W2(0) and
xXAx2=yxAy/19). We denote by Cn(L) the set of all lattice-congruence relations of
L. CO(L) is a sublattice of C(L).

Corollary 17. If 9X 020Ca(L) then (6X 02Dj in C(L). Especially, CO(L)
is a distributive lattice.

Proof. If 9X 92£CQ(L), then the statement (y) of Theorem 16 is satisfied by
taking wAy instead of w,

Remark that for 6X 926CO(L), (9x,9"D m does not necessarily hold. (Seethe
example below.)

Q) 1 Example. Let L be the Boolean lattice with four elements
{I,a b, 0} C(L) has three dual-atoms 0a=6((a]), 9b=
=9((b]), Ho=0((0]), and since aAObz=0, we have
CL) = iea, eb, 80, eaA90, B,,ABO, a
(and CO(L)= (1, 9a, %, O}).

In C(L), there are six non-comparable pairs:
(0a: ), (0a, 00, (9, 09, (9a, IbA90, (9b, 9aA90),
(9aA60, 9bA0Q. It is easy to verify the following facts.

(1) All the pairs except (92, 9b) are meet-distributive.

(2) (93, 9 and (0aA9Q 9bA90) are join-distributive, but the other non-compa-
rable pairs are not.

(3) (0Q 09, (90, 9, (9aA90, 9 and (ChA90, 93 arejoin-semidistributive.

(4) (9,, 00 and (Ob, 09 are join-modular but not join-semidistributive.

(5) (93, ObA9g and (9b, 0aA99 are not join-modular.
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1 STUDY ON THE RELATIONS OF TWO
N-DIMENSIONAL UNIFIED FIELD THEORIES*

KYUNG TAE CHUNG (Seoul) and DAE HO CHEOI (Cheongju)

1. Introduction

In Appendix Il to his last book, “The meaning of relativity”, Einstein proposed
a new unified field theory that would include both gravitation and electromagnetism.
Although the intent of this theory is physical, its exposition is mainly geometrical.
Characterizing Einstein’s unified field theory as a set of geometrical postulates in a
4-dimensional generalized Riemannian space X4 (i.e., space-time), Hlavaty [7] gave
the mathematical foundation of the 4-dimensional unified field theory (4—g—UFT)
for the first time. Since then the geometrical consequences of these postulates are
developed very far.

4-dimensional *g-unified field theory (4—*g—UFT), which is more useful for
physical applications than the usual 4 —g —UFT, was introduced in Chung’s paper
[1], and many consequences of this theory have been obtained so far by him. Recently,
he found relations between two Einstein’s 4-dimensional unified field theories and
obtained /7-dimensional representations of the unified field tensor *gAs (Chung—
Han [4]).

The purpose of the present paper is to find the relations of two /7-dimensional
unified field theories, n—g—UFT and n—*g—UFT. This paper contains five
chapters. Chapter 2 introduces some preliminaries, and Chapter 3 is devqted to the
derivation of n-dimensional recurrence relations. In the fourth chapter we deal with
the representations of the tensor defined by (2.7), and finally in the last chapter,
we prove that two u-dimensional unified field theories, n—g—UFT and rnt—*g—
—UFT, are identical so far as their classification of classes is concerned.

2. Preliminary results
In this chapter we introduce the basic algebraic postulates of two n-dimensional
unified field theories at first, and then some preliminaries without proofs.
A. Two /7-dimensional unified field theories. In the usual Einstein’s n-dimensio-

nal unified field theory (n—g—UFT), the generalized n-dimensional Riemannian
space X,,, referred to a real coordinate transformation for which

2.1 ~ 0,

* This paper was prepared with the 1982-Research Grant of the Ministry of Education, Repub-
lic of Korea.
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is endowed with a real non-symmetric tensor gdlwhich may be split into its symmetric
part hXl and skew-symmetric part kXf*:

2.2) gan= hXIHkX.

Here the matrices (gXI) and (hAl) are assumedto be of rank n. Therefore we may
define a unique tensor /ZA~—AA by

(2.3) hAtih» = él,
and the tensors hXl and h will serve for raising and loweringindices of tensors in X,,
in the usual manner in n—g—UFT.

On the other hand, u-dimensional *g-unified field theory (u—*g—UFT) in
the same space Xnis based upon the basic real tensor *glx defined by
(2.9) g™V "= ga*g= K-

It may also be decomposed into its symmetric part *zAsand skew-symmetric part
*KXv:

(2.5) *PU = *hXH*kX
Since Det (*AA)ré0 (Hlavaty [1], p. 41), we may define a unique tensor *hXi by
(2.6) *hXFhX = 6;.

In n—*g—UFT we use both *hXMland *h'vas tensors for raising and lowering indices
of all tensor quantities in X, in the usual manner. Then we may define new tensors
*g”, *kXB, and *kxv by

2.7 *g* = *g**Aidi. 4 = *k\ = *k°"*KXx,
respectively, so that
(2.8 *gdl = *hXli+*4l.
B. Some preliminaries. This section is a collection of notations and basic results

which are needed in our subsequent considerations.
In what follows, the following densities, scalars, and tensors are frequently
used:

(2.9)a S= Det (@), f)£ Det(A”, 17D et (k/h;
(2.9)b g= 91), k£ LW;
(2.9)c O = dx, PV = (»-'VV (P=h2,..);
(2.9 d
nrp= En rprp+i- «n EMNi -BpPp+i- BnkxiPimmk xpBphxp+>Bp+1...h * " (o — o, 1,2, ...);
(2.9)e KpE kK .k K #f 2(})( X (P=0,1,2,..).
* Throughout the present paper, Greek and Roman indices are used for the holonomic and
nonholonomic components of tensor, resp. Both indices take the values 1,2,..., n unless otherwise
stated.
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Here Eat andenotes the «-dimensional contravariant indicator. It should be remar-
ked that the corresponding starred quantities can be similarly defined as in (2.9) just
by putting to all quantities in (2.9).

It has been shown that the following relations hold in Xn (Chung—Lee [2]):

(2.10) Mp=pl(n-p)Wp (p=0,1,2,...).
As direct consequences of (2.10), we have

(2.11D)a MO=n'i), M,,=n!f;

(2.10)b KO=K0=1 K,=k, if n is even;'
(21Nhc Mp=Kp=0, if p is odd;
211h)d 3=92 K,

P o p?0 pl(n-p)]
(2.11)e g= ZKp=Kn.
P=o

It has also been shown (Chung—Han [4]) that the «-dimensional representations
of the tensors *hiv and *kXare

2122 = —*2 (KAKA+ KA-A+ -+ KAMKA +KTA),
S p=o

(212)b  *ksy= 3 2 éij— DA KEP-* KX+ ...+ Kp- A k X, +Kp-ilkx").
P=

An eigenvector aB of kX which satisfies
(2.13) (MhXIH+-kXNa = 0 (M is an arbitrary scalar)

is called a basic vector of X,,, and the corresponding eigenvalue of kXl a basic scalar
of X,,. It has also been shown in Chung—Lee [2] that the basic scalars M satisfy

(2.14)a Mn+K2M n~2+...+Kn_2M 2+Kn= 0, if n is even;
(2.14)b M(Mn 1+K2Mn-3+...+Kn 3M2+Kn 1)) = 0, if n is odd.

Hlavaty [1]'also proved that the nonholonomic components of the tensors
(PkA, {pPk)x, and (pk;¥ are given by

(2.15)a (kI = Mpsk,
(2.15)b Akxi= Mphxi, (p=0.1,2 ..)
(2.15)c Okxi = Mphxi.
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3. «-Dimensional recurrence relations in X,,

In this chapter we derive several powerful recurrence relations in X,, using the
concept of basic scalars.

Agreement (3.1). In this and in what follows, we use the following notation:

0, if n s even,

1) 1 if « is odd

Furthermore, the index/is assumed to take the values O, 2, 4, ..., «—a in our sub-
sequent considerations.

Now, we are ready to derive an important «-dimensional recurrence relation
which holds in X,,.

Theorem (3.2). (Main recurrence relation). We have
(3.2a (,H)kA+ AX'+p- JfcA+ ... +f(c,,_(r_Aff+HpH2K,.v+ /r,, ['rHpAv= 0,
which may be condensed to

(3.2)b ;c% K /n+p~fkxv = °,
=0
where p—0, 1, 2, ....
Proof. Let l\){l be a basic scalar. Then, in virtue of (2.14), we have

(3.3) "z KFM"~f = 0.
/=0 *
Multiplying 6x to both sides of (3.7) and making use of (2.15)a, we have

(3.4)a 2. 3Cin-fkd =0,

whose holonomic form may be given by

(3.4)b }'_ZgK/ n~f)k f = 0.
Our recurrence relation (3.2) follows from (3.4)b by multiplying (QA/ to both sides
of (3.4)b.

As a variation of (3.2), we may easily have the following useful recurrence rela-
tion:
(3.5 /=0 =0 (P=1>2"3>)e

For an arbitrary symmetric tensor Xa/l, introduce the following abbreviations:

(36) e okasv (p=012 )
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We then have
(3.7) XaMM xail, (EkAXXl= Xm (p,q=0,12 ..).

The following variations of our main recurrence relation (3.2) are needed in the
proof of Theorem (4.2).

Theorem (3.3). (Variations of recurrence relation). The tensor Pnﬂ satisfies

n-a (n+p—H)
(3.8)a /£_0Kf Xa,, =0 (p= 1,2,..),
which is equivalent to
na  (fi+f)
(3.8)b /2:0 Kf =0.

Proof. The relation (3.8)a follows from (3.2) in virtue of (3.6). The relation
(3.8) b is a useful variation of (3.8)a. It may be obtained from (3.8)a, putting p=a
and noting that Kn+1=0.

4. The tensor in Xn

In this chapter we derive useful representations of the unified field tensor *gX3
in X,,, using the recurrence relations obtained in the previous chapter.

Theorem (4.1). Another n-dimensional representations of the unifiedfield tensor
*g¥ may be given by

(4.1)a W= —MR SK/nta- z-J>k¥,
S /=0
(4.1)b *=—="2 2K /na-1- kX
S f=o
Proof. Using (2.9)e and (2.11)b, ¢, (2.12) may be written as
(4.2)a
1 . .
if n is even,
o= 4
if nis odd;
-g
(4.2)b
1 . .
if n is even,
*K= l%
if n is odd.
g

The expressions (4.1) are condensed forms of (4.2).
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Theorem (4.2). The n-dimemional representations o f the tensor *hXl in X,, may be
given by

4.3) *h} =

Proof. In order to prove (4.3), consider a symmetrictensor XXluniquely defined
by
(4.4) *hAX Al = &j.

Substituting (4.1)a into (4.4), we have

(4.5)a = gol.

f-o
Multiplying hm to both sides of (4.5)a, we have in virtue of (3.6) and of the tensor
(nr<r= A/ £.iv being symmetric

N+ %2 —2F)
(4.5)b 2 Kf =gK,,,
which is equivalent to ]
n-f<r-4 (nto—=2—)

(4.5)C N Kf XL ~\~Kn+a-2”(oy &h(i>n~*

/=0
On the other hand, multiplying £k f to both sides of (4.5)b and making use of
(3.7), we have
nto—2 (a4
(4.6)a 2, Kf = 9@ -
- - 9"@ - - H -
Substitution for Xafl into left side of (4.6)a from the recurrence relation (3.8)b gives

n-f<r—4 (n+o0—=2—)

(4.6)b /2=o Kf x»8 -~ ,+1 =1 |,

in virtue 0£(2.1 )b, c. Now, subtracting (4.6)b from (4.5)c, we finally have (4.3) in
virtue of Kn+a=g in X,, and (2.6).

Theorem (4.3). The n-dimensional representation of the tensor *k> in Xn may be
given by
@n *K = kXI-™ kXl.

Proot. In order to prove (4.7), start with the obvious equations

(4.9) g8 = gHkel=>*hxahilR,
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Substituting from (4.1)b and (4.3) into (4.8) and rearranging the range of summa-
tions, we have

4.9 grkB = =

= 2B "AX/+TE AN - A+
/=0

/=0

+n2 6°7H(-ff 10N+ {(N-2) ¢ THDfe,+ (M- TR3RA} =

"R(K -2 K [+ 24K/+Y  — +
7=0

+ (X,,_ff4-21Cn ff 2~ + X n < 2fcAl+
+ {(X2-2) (" TR + (- rrsionl -

= "7:|O' (U/+4-n:1+ (" -1 /)N - (7 - B-247-<1-D@ +

+Kn' k X3+H{(K2-2y-"+ » KX+ *-°+ 4 3.

On the other hand, in virtue of the recurrence relation (3.5), the last term of
(4.9) may be reduced to

(4.10) (K2-2Y m°+»kXb<t°+3 KN =
= (K*- t)(n+ " HkXB- (Kjne° HDkXH K jn-° +DkAl+ ... + Kn-a- 22 k XI+K,,..aw kKX =
=-("-°+»Kn,,-(KY*-°-»kx, +...+Kn,,a_bl kn,,+Kn_ ™ k)X =
= -(Kjn'- DkAt+ K jn- - dkXI+ ...+ Kn_e-iw kXI+ K,,-a-J IkXI+ K n- akX]) -
- (Ki(r"- DM+ ...+ Kn-, M 4 X3+ K, ™kAl) =

=n g \K f+2-Kf+y na- 1- f)kXBH K n-<,-2-Kn-.Y JkXi+Kn- akxli-

7
Substitution of (4.10) into (4.9) finally proves our assertion (4.7) since K,,-,,—9.

Remark (4.4). The representation (4.3) for *hX is coincident with Chung’s
4-dimensional result ((3.1a), Chung [1], p. 1304). However, the representation (4.7)
for *kXi obtained in the present paper is more refined and useful than Chung’s previous
lengthy result for 4-dimensional case ((3.1)b, Chung [1], p. 1304):

(4.11)a Ho@=j{ (1- KK I[\+ j A ~kx,+
+~ ft {OCaK* +2eaRy® k ~ +eddS )}
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where

4.10)b X= sgn KBk X).

The coincidence of (4.7) and (4.11) follows from

(4 12)a tfj E0* = xl) (kaukX+ kaXk' I+ /¢ VkRI),
(412)b Y1 eaBU = x (kcJBkXv+ kaxkwil + kiavk (3,

which may be verified by using (2.10) (Hlavaty, [7], p. s) and the skew-symmetry of
kI'\ Here eQ®¢denotes 4-dimensional covariant indicator.

5. Relations between n—g—UFT and n—*g—UFT

In this chapter, we investigate the relations between two u-dimensional unified
field theories as an application of the results obtained in the previous chapter.

D efinition {gi\) The tensor Qt;}i g]t E:gg_—UUFFTT is said to befong to

(1) thefirst class if
(2) the second class with jthcategory if

i k2j 700, K%j+2 = K2j+i. — Kn-a= 0,
| *K2J * 0, *Kv+2 = *K2J+H = *Kn~. = 0,
- ... Ku= K, =...= _En-_,aZO
(3) the thirdclass if j R ey

Theorem (5.2). We have
(5.1) ki =k

Proof. Using (4.1)b and (4.3) and rearranging the range of summation, we have
(5.2) g*kf = g*k**hxX = /ZO X" — »[>*«»

= 2 KE((r- L-vkov- (- atl-f)kf) =

11
—~
N

K /na~1~f)kxv+Kn a_2kx")—

-( 2 ¢+ C-'+Dfc/) =

~7 A L)V 0 HV )+ O A

- -~ 2 *K/ ™a+l~n kx +Kn_a_2kx\
/=0
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On the other hand, in virtue of the recurrence relation (3.5) for the case p=1, the
first term of the right-hand side of (5.2) may be reduced to

(5:3)

Substituting (5.3) into (5.2) and noting that K,,-a=g, we have (5.1).

We finally have the following two theorems, which are direct results of (2.9)e,
(5.1), and Definition (5.1).

Theorem (53) We have
(5.4) Kp=Kp (p=0,1,2,...).

Theorem (5.4). The classification ofthe tensorfield kkpin n—g —UFT is identical
to that o f the tensorfield *kik in n—*g—UFT.

In addition to the relation stated in Theorem (5.4), the following theorem (Chung
[%], p. 1307) gives the complete relationships between two n-dimensional unified field
theories.

Theorem (5.5). The signature o f the tensor h{Lin n—g—UFT is identical to that
ofthe tensor *h)fl in n—*g—UFT.

Remark (5.6). The relation in Theorem (5.4) is coincident with Chung’s previous
result for 4-dimensional case (Theorem (3.6), Chung-—Yang [3], p. 48).
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CONDITIONS FOR INCLUSION BETWEEN
NORLUND SUMMABILITY METHODS

D. BORWEIN and B. THORPE (London, Canada)l

1. Introduction
M
Let p= {/>}.00 denote a sequence of complex numbers, let P,,=*2:0Pk and let
p(z)= 2 pnzn. A sequence {j,.},,a0is Norlund summable (N,p) to / if 0 for
n=0

HED and lim 2 pmwsJPn=l. We use the same notation with other letters in
n-*-“ v=0

place ofp, P. It is well known that necessary and sufficient conditions for (N, p) to be

regular (i.e., finite limit preserving) are

(@ V2:0IiP\A=OfIPj) and (b) pn=o(Pn),

cf. Theorem 16 of [2] where Hardy considers the special case p,,SO so that (a) is
automatically satisfied. In this paper we make a contribution to the solution of an
open problem raised by Theorem 19 of [2] and mentioned explicitly on page 91 of

[2]. In particular, we consider the question whether the condition 2 \K\=0{\QnY

alone is necessary and sufficient for (N,p) to imply (N, g) when Pn—O(l) \Qn\-»~e,
both (N, p) and (N, ) are regular, the sequence {k,,},/Obeing obtained from the gene-
rating function k(z)=q(z)/p(z). We can solve the problem completely for p(z)
a polynomial, and for a wide class of functions p(z) with algebraic and logarithmic
singularities on |z|=1, but the general case leads to delicate questions that escape
our analysis.

2. The main problem

In Theorem 19 of [2], under the hypotheses that (N, p) and (N, q) are both regu-
lar, Hardy shows that the two conditions

@ 2 kP = 00Qn),
® K = 0(Q.),

1Supported in part by the Natural Sciences and Engineering Research Council of Canada,
Grant A-2983.
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are necessary and sufficient for (N, p) to imply (N, gqf. Following his argument (for
the case p,,=0, gn=0) itis not difficult to verify that (B) may be omitted in the cases
@i |P,J— (i) Pn—0(\) and Qn=0(1). In the remaining case, P,,=0(\) and

it is natural to conjecture that (A) alone is necessary and sufficient for
(N, p)to imply (N, g). To deal with this problem we consider regular Nérlund methods
(N,p) with Pn=0(l). It is easy to see from the regularity conditions that this is

equivalant to considering sequences {>} with nA=O |/><°°, p(1)"0 and P,?+0
for nsO.
Given IPnj<°°, Po™O and p(1)"0, the little Norlund method (Z,p) is

n=0
defined as follows:
.

sn I(z,p) if hm V2:,0 Pn-ySv = ~(1)-

This method is regular, and equivalentto (N, p) when (N, p) is regular and Pn= O (1).
In this case (A) is equivalent to

©) Vi:Orfcw = 0QQJ)

provided (N, q) is regular. A simple direct argument shows that, provided (Z, p) is
defined and (N, q) is regular, (B) and (C) are necessary and sufficient for (Z, p) to

imply (N, q). _ _
In Section 3 we prove that the conjecture is true when p(z) has no zeros on
|zl=1, and in Sections 4 and 5 we investigate what happens when p(z) has zeros on

jzj=1 and when (N, q) is the Cesaro method (C, a) respectively.

3. The case p(z)* 0 for |z]=1

Before considering this case we show that (C) does imply that (B) holds in the
(C, ® sense for every &=0. In fact we prove slightly more.

Theorem 1. Suppose that (Z, p) is defined, (N, q) is regular and

@ K =0(\Qn).
Then

0 (Z 0.

iin
Proof. Consider the identity

an h B [HP\/ Ir _
v TN v=0 T & 0]

8 Since Hardy only considers Norlund methods with » ,s10, ?,,£0 his conditions have to be
modified in the obvious way.
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The first term on the right-hand side tends to 0 by the regularity of (¥, g). By-the
Weierstrass M-test, the series on the right-hand side is absolutely and uniformly
convergent with respect to » since

by (1) and the regularity of (¥, ¢), and so the second term on the right-hand side
tends to O (by taking the limit as n—<~ inside the sum). This completes the proof.

COROLLARY. Under the hypotheses of Theorem 1,
k,

n

-0 (G0
for every 6=0.
PROOF. Let r—Zp,, .8, where s,=k,/0,. Then, by (1), s(z2)= Z’s bt

analytlc in |z]<1, and ( 1—2)s(z2)=(1—2)t(z)/p(z2)~0 as z—1 through real values

|z]<1, since 7,0 and p(1)=0. It follows that s,—~0 (Abel) and the result
is now a consequence of Théoréme VI’ (sequence versmn) of [5] or Theorems 70
and 92 of [2].

We give an example to show that we cannot replace 6=0 by 6=0 in the
corollary. Let {p,}, {g,} be defined from the generating functions p(z)=1+z,
g(2)=(1—2z»"1 so that k(z)=[(1+2)(1 —2z)]7% Then Q(z)=(1-2)"¢(z) and so
0(—2)=k(z), ie., Q,=(—1)"k,. It is clear that the hypotheses of Theorem 1 hold,
but that in this case k,/Q,=(—1)"-0 (C, ) for all §=0 whereas k,/Q,+0 as
n—oo. We remark that this example does not satisfy (C) and so is not a counterex-
ample to the conjecture.

If p(z) has no zeros on |z|=1, we can use Theorem 1 together with the following
tauberian result to establish the conjecture in this case.

THEOREM 2. Let (Z, p) be defined. Then (Z, p) sums no bounded divergent sequence
if and only if p(z2)#0 for |z|=1.

Proor. For the sufficiency of the condition we first observe that p(z) has only
a finite number of zeros in |z|<1 (otherwise they would accumulate on the boun-
dary). Let these be at the points z=z; with multiplicity 4; (i=1, 2, . l) Then,

by Theorem 1 of [7], we have that s,—~0 (Z,p) if and only if s,=17,+ 2‘ i@z
where {,} converges to 0 and f;(n) is a polynomial in z of degree (1;—1). By Lemma
2 of [8], {Zf(n)z "azo is unbounded unless f;(n)=0 (i=1,2, ..., 7). Hence the

only sequences summable (Z, p) are convergent or unbounded.
To prove the necessity of the condition suppose p(B)=0, |f|=1, fs%1. Since

we are assuming >, |pn| <<=, p(z2)= > p,z" converges for |z|=1 and so p(f)=
n=0 n=0

3 We use M to denote a positive constant, independent of the variables, that may be different
at each occurrence.
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= r'120=}0Pnr3n:® It is now easy to see that the bounded divergent sequence {R~n} is
summable to 0 (Z, p), and the result follows.

Corollary. Suppose that (Z, p) is defined, p(z)?+0 for \2A\=1, (N, q) is regular
and (C) holds. Then (Z,p) implies (TV, Q).

Proof. By the remarks at the end of Section 2 it is sufficient to show that (B)
holds. Since (C) implies that (1) holds, Theorem 1 gives that the bounded sequence
{kJQ,,} issummable (Z, p) to 0, and Theorem 2 shows that it must converge to 0, i.e.
(B) must hold.

4. The case where p(z) may have zeros on \z\= 1

A summability method based on a regular, normal (i.e., lower triangular with
non-zero diagonal) sequence to sequence matrix A=(ark is said to be perfect if

2 a,av=0 (v=0, 1,...) together with 2 la,|< °0 implies a,=0 (n=0, 1, ...).

See [4] and [9] for some basic properties. For the methods (TV/p) and (Z, p) we have
anv equal to pn-JP nand p,,_.v respectively. It is clear that neither (N,p) nor (Z, p)
is perfect ifp(z) has azeroin |z|<| (since, ifp(w)=0 with 0<|w|<I, then a,=
=Pnwn is a non-zero term of an absolutely convergent series that satisfies the con-
ditions for perfectness of (TV, p), and likewise with a,=w" for (Z,p)). This obser-
vation also settles an undecided question mentioned on page 707 of [4]. Hill asks
whether the N6rlund method (N,p) with generating function p(z)=(l +az)(I —z)~2
is perfect for a> 1. Since p(z) has a zero at z= —I/a which is in [z|<Il, (N,p)
cannot be perfect.

Theorem 3. Suppose that (Z, p) is perfect, (TV, q) is regular and (C) holds. Then
(Z, p) implies (TV, ).

Proof. This follows directly from Theorem Il. 8 of [9] with (Z,p) = A, (IVq)=B,
and the observation that (C) is necessary and sufficient for every sequence summable
to 0 (Z,p) to be bounded (TV, q).

The remainder of this section is devoted to finding examples of perfect (Z, p)
methods. We introduce the notation {c,} for the coefficients of the generating func-
tion c(z)=1/p(z). It follows from Theorem 8 of [4] that when (Z, p) is defined then
c,= 0(1) is a sufficient condition for it to be perfect.

Lemma I If p(z)—1~" where /bll, [j§=1, 2>0, then (Z, p) is perfect.

Proof. We have p,,=A~'-~18~n where A~x~1="t * ]J is defined from the
relation

(2 (1-zY= ,12 AnX-1zn,
=0
sothat 2 w1 pa=Il and p(1)"0. Supposethat 2 \an< o and n2=V*nPn—v=O
n=0 n=0
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(v=0, 1, ...)» This can be written as

g«.a&'F—=BV7 =0,
and using the notation for fractional differences (see [1]) this is equivalent to
Alaww-)=0 (v=0,1 ..).

If AEN, then an inductive argument (as on page 706 of [4]) shows that av=0 (v=
=0,1 ..) If IE(N,N+I) for MEN, then

A"+i-*(Ax@-')) = AN+L(0cJ-) = 0

by the absolute convergence of the double series involved, and so the result follows
from the integer case. Thus (Z, p) is perfect.
The following lemma is a special case of Theorem 5 of [4].

Lemma 2. //(Z, m), (Z, ) are perfect and p(z)=m(z)I(z), then (Z,p) is perfect.

Lemma 3. If 2 \Yn\<®° and r(z)"0 for \r\wl, then(Z,r) is perfect.

Proof. By the Wiener—Levy theorem (page 246 of [12]), Ur(z)= 2 where
7= 0

@ 3 oo

2\tn\<°°- Suppose 2 whl<0° and 2 a,r, s=0 (s=o,1,...). Then, for
7= 0 7=0 =s

vSO,

0 2 's-v 2 r%:Vr:l»szzv

the interchange of order of summation being legitimate because the double series
involved is absolutely convergent. Hence (Z, r) is perfect.

As an immediate consequence of Lemmas 1 and 2 we see that, if (Z, r) is perfect
and p(z2)= fl (1-2-) * r(z) where Bt*l, B\=I, A>0 (/=0, 1 ..., n), then
i= v Pi’
(Z, p) is perfect. Thus Theorem 3 holds for such a (Z, p) method.

Lemmad. If p(z)={I-j* logM—yjj where /IMI, |]=1 0<A<l

and g£R, then (Z, p) isperfect.
» oo I g=0, thisisa case of Lemma 1. Suppose g”~0. Then we have

p,~Mn_a-1(lognYR~n

by page 93 of [6]. (Although Littlewood gives this formula only for 7.<0 we can
establish the result in our case by using backward induction and the differential equa-

p1<a)>Po=T and p(1)~0. Moreover, c(z)=

tion on page 93 of [6].) Hence 200
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:N(*):(l_}) ‘(-flog so that again by Littlewood’s result

c,,~Mnsa 1(logn)

Hence c,,—0(1), and so (Z, p) is perfect by Theorem 8 of [4].

By using Lemma 2, we see that if p(z) is any finite product of functions of the
form ofthose in Lemmas 1and 4, then (Z, p) is perfect and Theorem 3 holds for such
a (Z,p) method. In view of the results above, it would be of interest to know whether
every (Z,p) method with p(z) having no zeros inside the unit circle is perfect. A likely
candidate for a counterexample can be obtained by considering generalized Laguerre
polynomials. Let

p(z) ={1-j) exP('alV ) f°r =1
so that
p,,?" — Zj (1)~ (14 cos (2fn +0)

by (8.22.1) of [10]; where 0 is a constant depending only on a. Thus, if a< —3/2, then
nz:\OPn\< 005 pO: 1 and p(l)’\o. However, in this case (8.22.3) of [10] gives
c,K' = L~"“-A—1)~ Mn_(@2_(4exp (2|/n),

and this leads us to suspect that (Z,p) need not be perfect but we are unable to
prove it.

Theorem 4. Suppose that (Z, r) isperfect and that

H)=M I~v) (1 x) (JlogL i) ) wA® Ki<1’ veN

0=1,2, ...,m), B"I, dq =1, 2i>0, "€R Ei-l 2, ..., W). Suppose that (N,q)
7 regular and that © holds. Then (z, p) implies (N, q).

Note that, by Lemma 3, sufficient conditions for (Z, r) to be perfect are that
oo and that r(z)*0 for |z|sl.

Proof of Theorem 4. Let i(2)= JJi/l ------- nd i(2)=p(z)/.s(z). Then

K(z)s(z)t(z)—q(z) Define 1(z)=k(z)s(z) so that 1(z2)t(z)=q(z). By Lemmas 1,
2 and 4, (Z, 0 is perfect and

2 M= 2 12 K-n\ » 2 2 \K-, 4= 0(\Qn)
v=0 v=0 1#=0 =0 V= 14

by (Q. Thus, by Theorem 3, (Z, /) implies (N, g). Similarly, using the corollary to

Theorem 2 in place of Theorem 3, we get that (Z,s) implies (N, g). Since p(z)=

=s(2)t(z), by Corollary 3 of [7], we see that w,—0 (Z, p) if and only if wn=an+bn

where an-+0 (Z,s) and bn—0 (Z, t). Hence, by the above, it is easy to see that

(Z,p) implies (N,q).
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5. The case (N, q)—(C, a)

Although we cannot settle the general case with an arbitrary regular (N, q)
method, consideration of the special case when (N, q) is the Cesaro method (C, a)

leads to some interesting questions on the summability of the power series 2 c,,zn
WE

0
on its circle of convergence. The Cesdro method (C, a) for a=— 1 is the Norlund
method (N, g) with gn=A%-1 where this is defined by (2). For (N, g) to be regular
andQ,,-»°° we have to consider a>0. Inthis case k(z) -\ —z)~fp(z)=(\ —2)~*c(2)
so that kn= C%-1 where we use the notation for Cesdro sums (see for example, page
96 of [2] with ¢, replacing a,,). For the question under consideration, Hardy’s Theo-
rem 19 becomes: if (N,p) is regular, Pn=0(1) and a>0, then the conditions

(3) vl:o icrll=o (N,

4) Cri= o(n%

are necessary and sufficient for (N, p) to imply (C, a) (where p(z)c(z) =1). The probl-
em is to show that (4) follows from (3) and the other hypotheses.

Theorem 5 If(N,p) isregular, Pn=0(1), a>o0, then (3) issufficientfor (N, p) to
imply (C, ot+0) for every 5>o0.

Proof. By the corollary to Theorem 1, CL~YA*-»0 (C, 5), i.e.,, ¢,~>0 (C, S)X
X(C, 1), the iterated Cesaro method, and by page 23 of [5] or Ch. 11 of [2] this is
equivalent to ¢,—0 (C, a+0d), i.e.,, (4) with a replaced by (@c+ <. Also, (3) implies
that (3) holds with a replaced by (a+<5), since (3) is exactly the condition for the
series /12_10 cn t0 be strongly bounded [C, a]r (see page 488 of [11]). Hence, by Hardy’s
result, (N,p) implies (C, a+<5).

We are unable to decide whether we can take <5=0 in Theorem 5. It is clear
that (3) alone does not imply (4) (consider C*~l=na if n=2s(s=0, 1, ...) and
0 otherwise) but we have been unable to construct an example with the c,’s satisfying
the further hypotheses that c(z)p(z)—1, (N,p) regular and Pn=0(1). We can,
however, make the following simplification.

Theorem 6. If(N,p) isregular, Pn=0(1), a>0. then(3) and
©) ¢, = o(ri)
are necessary andsufficientfor (N,p) to imply (C, a).

Proof. By the remarks before Theorem 5 it is enough to show that, under the
other hypotheses of the theorem, (4) is equivalent so (5). Now (4) says that cn—0
(C, a), and so by the limitation theorem for (C, a) (Theorem 46 of [2]) (5) must hold.

Conversely, by the convergence of 2 \Pn\ an” the regularity of (N,p), we see that
=0
p(z) is continuous at z= 1 and p(z)-*p(1)"0 as z—1 in any manner from within
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the unit circle. Also, (3) implies that 2 c,z"is convergent for |z]<l and, by the
-0

continuity of n2 cnzn=I/p(z) at z—I, we have that c,z'—l/p(l) as z— in
=0 =0

any manner from within the unit circle. Hence, by a result of Dienes (cf. Théoreme

XXVI of [5] or Theorem 9.23 of [12]), (5) implies that 2 cnis summable (C, a). By

the remarks at the bottom of page 102 of [2], ¢,—0 (C a) i.e., (4) holds, and this
proves the result.

If we only require an implication from (N,p) to Ceséro summability of some
positive order then we have a more complete result, cf. [3].

Theorem 7. Suppose that (N,p) is regular and Pn=0(1). In order that (N, p)
should imply Cesaro summability o f some positive order it is necessary and sufficient
that c,,=0(ny) for some y>0.

Proof. To show that the condition is necessary, suppose (N, p) implies (C, a)
for a>0. Then 2 c,, I/p(l) (N,p) and so 2 c,,=l/p(l) (C, a). Hence, by the
limitation theorem for (C,a), ¢,=o(rf) and so the condition holds.

For the sufficiency part, cn=0(ny) implies that 3 crz" is convergent for
|z|<l and that c,,=o(n§ for <5>y. Hence, by Dienes’theorem, as in the proof of
Theorem 6, /12=0 c,= I/p(l) (C,S). Thus, c,,=o(nd and, by Il of [11], /120 cn~

=1/p(\) [Q\<5+1],, and so (3) and (5) hold with s replaced by <5+1. Therefore,
by Theorem 6, (N, p) implies (C, 6 +1).
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A NOTE ON AN ARTICLE BY ARTIKIS

M. H. ALAMATSAZ (Isfahan)

1. Introduction

Let p>0 and assume that @(¢) is the characteristic function (ch. f.) of a ran-
dom variable (r.v.) Z=XUY? where X is some r.v. and U is a uniform r.v. on (0, 1)
independent of X. Obviously, @ is of the form

1
¢(t) S0P f lﬁ(ut)u"_ldu, —oo< f <oo,
0

where  is some ch. f. When p=1, Z satisfies Khintchine’s characterization of

unimodality and hence it is unimodal. Generally, r.v.’s of the form Z=XUY? are

referred to as p-unimodal or p-star unimodal (see, e.g., Olshen and Savage, 1970).
It may be noted that &(¢) also takes the form

M o) =—5—r f Y@ du, —e<t<eo.

{IIIP &

Observe here that the right hand side of (1) has been expressed by Lukacs [3], p. 321
T

as (p/t?) f W (u)uP~' du; —eo<t=oo. Clearly, the expression in this form requires

0
some clarifications for 7<0 because in this case 7? and »”~* are not uniquely defined
in general. Further, his assumption that p=1 is not necessary and ®(7) is a ch.f.
for every positive real p.

In this note we shall characterize ®(¢) for which /(¢) is a certain power of ®@(7)
itself. Further, we shall prove that @(¢) and hence  (¢) in this case are self-decompo-
sable and therefore unimodal. The first part of the problem was solved for p=1 by
Shanbhag [5] and, using essentially Shanbhag’s techniques, for p=1 by Artikis [2].
We also use Shanbhag’s technique but for minor simplifications.

2. The characterization

Let &(¢t) be a ch.f. given by (1) and let d=sup{bcR*: ®(r)#0 for all
t€(—b,b)} and d=< if ®(¢)=0 forall t€R.

TueoREM 1. Let ®(t) in (1) be non-degenerate. Then y(t)=(®(1))?+r—1/p
Sfor all tc(—d, d) if and only if

g y N
2) <D(t)—{1+15(y)ut+c|t| [l+i9 ] ]} , —oo<1[<eco,
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where y=r—1, 1<ré3, c¢s0, |0|é1l, p real,

0 if y=1
tan(ny/2) r/y 1

Proof. Let ~ (0= (d(0)(p+r_L/p for all tE(-d,d). Then,

and hence for t£(0, rf) we have
3) tPO'(t)+ ptP~"(t) = P(P{t)JP+'-DIPtp-I.

The case r=1 implies that tp<P({)=0 and since 1°0 we have ®(/)= 1 But this
is not possible because <P(t) is non-degenerate and hence r?+ 1. Rewriting (3) as

and integrating on both sides, it follows that
P =g +kad-rrpl(r-0
where Kr is a constant independent of t with Re (ArJsO. Similarly, we can see that
@0 = (I +kalir 1) p/(r 1) for te(-d,0)

where K2 is a constant with Re (/QsO.
Obviously, the form of ®(r) implies that ® (/)"0 for all real t and thus d=°°.
Since lim 0(t) =1 we have that 1 Further, because a non-degenerate ch.f. can

not be of the form 1+o0(t2 as t—O, from the form of ®(r) we have that r~"3.
Hence, 1<r”3 and we can write

(4)

Now, define @,,(0=[0(t/mW(r ~".Evidently, lim 0,,,(t)=0%*(t) is given by

d*(0 =

From the well-known continuity theorem (cf. [3], p. 48), it follows that ®*(r) is a
ch. f. Clearly, this is the ch. f. of a stable distribution with characteristic exponent
r—L Using a characterization of stable distributions (cf. [3], p. 136), we can see that
@ (0 has the form given in (2).
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The converse is immediate by the fact that if

h(®) = {i5(?)#t+01t|7 [1+i9 "'l’t('?) }

we have h’(t)=%h(t), and then
4O = p1(@ o0} = p - LW O(-+HHO) P4 p(1+h(0) 7 =

= (1 +h(t))_(”+7)/” i (q)(t))(pw—l)/p'
2p—1
rp—1

COROLLARY 1. Let f(¢) be some ch. f. and ® in (1) be nondegenerate. Then, ®(t)=
=(f@)P~* and Y()=(f@)) for all tc(—d,d) if and only if p=2 and

As a simple modification of this theorem [r = ] we have

@) = {1 +el? [1 o i()l—;ltan (ny/Z)]}_l

where y=p/(p—1), ¢=0, [0|=1.

The technique we have used here, except for minor simplifications, is basically
that of Shanbhag [5]. In his paper, Shanbhag proves the theorem for the special case
when p=1. Artikis [2] following Shanbhag’s exact line of proof generalizes the
result for p=1 assuming implicitly that d= <. His paper contains two theorems. The
second of these is as stated above a direct corollary for p=1 and d=-< of our
Theorem 1. (Incidentally we also refine his argument.) Furthermore, his first theorem
is our Corollary 1 with the implicit aSSumptlon that d=

Obviously, @(¢) (and hence ¥(t)) given by (2) is the chf. of an infinitely divi-
sible r.v. Then, as a direct consequence of the followmg theorem, it follows that in
fact @(¢) is self-decomposable (i.e., @(z)/P(At) is a ch.f. for all 1€(0, 1)) for all
p>0 and hence by Yamazato ([6]) unimodal for all p>0.

THEOREM 2. Let i, (t) be the ch.f. of stable distributions of the form given in
Theorem 1, i.e.,
to(y) }

) = exp (=8t — el (110 202
Then

) 8,0)= [ (Ia(0) dF ()

with F as some self-decomposable distribution function on [0, =) is the c.h.f. of a
self-decomposable distribution.

PROOF. &, is a ch.f. because , is infinitely divisible. Let £(s), Re(s)=0, denote
the Laplace—Stieltjes transform (L. S. T.) of F and put s=id()ut+clt|’

(1+i0 ml)t(l’J)J' Then we have @,(t)=¢(s) and @,(At)=E(A%) for all A€(0, 1).
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Hence,
(6) *i(o I<MA» =
for every AE(0, 1).

Self-decomposability of F implies that the right hand side of (6) is the L. S. T.
of some distribution Fx. Thus the left hand side of (6) is of the form of (5) with F
replaced by Fxand hence is a ch.f. Therefore, (\{t) is self-decomposable.

If we take F in Theorem 2 to be a gamma distribution with L. S. T. £(i)=
=(1+s)~py, then the ch.f. ®L(t) in Theorem 2 coincides with 4>(t) given by (2).

Therefore, <P(t) (and hence is self-decomposable and so unimodal. It may be
worth mentioning that in this case when p=0=0 and p/y—a,
&i(0 =g +cNy~a a>o, ©,2]

Hence, the ch.f. (1 + [i|*)-1, y6(0,2] proved by Linnik and Laha (cf. [3], p. 96—7) to
be unimodal is a special case of @, (t) which more specifically has been shown to be
self-decomposable above.

Generally, mixtures of self-decomposable distributions are not necessarily self-
decomposable even if the mixing distribution is also self-decomposable (see [1]).
It follows, however, from Theorem 2 that

Corollary 2. Power mixture of all strictly stable ch.f.s are self-decomposable
when the mixing distribution is self-decomposable with support on [0, °°).

(E.g., variance mixtures of normal (0, a9 distributions are self-decomposable
when the mixing r.v. <is a self-decomposable r.v.)

From what we have seen we have that besides 1-unimodal distributions the class
of p-unimodal distributions (in Olshen—Savage sense) given in Theorem 1is also
unimodal (in the usual sense).
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1. If/ is a monotonic, real-valued multiplicative function then f(n)=nk if
f(m) 90 forany N (see [1], [4]). Similarly to the theorems proved for additive func-
tions in [2] it is easy to show, that to any function g(n) there exists a “rare” set A =
= {a,}I, suchthat an>g(n) and if/is monotonic on A, then f(n) =nk if /(/M O
for any afA.

Let us consider the case when /is a complex-valued multiplicative function. If
I/l is monotonic on the same suitable “rare” set A, we get \f(n)\=nk, since |/| is
a real-valued multiplicative function. Making stronger assumptions we can prove the
following.

Theorem. To any real-valuedfunction g{n) there exists aset A = {a,,}i, such that
a,,>g(ri), andif at least two of the functions Re/, Im/ and \f\ are monotonic on A,
then f(n)=nk except the casesa) Im/=0 andb) /(«)=0for all afA alll0.

2. To prove the theorem first we introduce the notations f :=Re/ and /2:=
:=Im/; further /6 O denotesthat /(n)eO for all nEN.

For every triplet (m, s,j) of natural numbers choose a prime w,3>max (m, s)
(different primes for different indices). Let A* be the set of all numbers ot the form
mwngj or swirsjmLet Asbe the set of numbers that can be written as a product of diffe-

rent primes of the form w2sj. Finally we put A= (J ASUA*. It is easy to see that if
the set is sufficiently rare, this set A willséétisfy our requirement a,,>g(n).

Proposition 1. Let B be a set and suppose {bj}j=lc:B, where for any iA-j
(bh bj)—1 and . JJt bjfB for any finite non-empty set McN. Then thefollowing
es

assertions hold:
(i) Jfffa)”~ 0 for any aEBj aéa0, then limarc/(h;)=0.

(i) 7/r(a) =0 if (a)=0) for any aEB, a£a0, then ({arc/(h,)},” j)'c{0, T}
where (M)' denotes the set o f cluster points ofM.

For the proof of Proposition 1 see [3, Proposition 2].

Lemma 1L Let i=1 or 2. If /;(a)é0 (/(0)=0) for all adA, séa0, then
r—o (/=)

Prooft. Let us assume that there exists an y0such that f(sQ< 0 (f(s0>0).

ii*
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a) Incase r=1 using Proposition 1 (R:—A9
Iigno%rcf(wlhl) =0, SO IiJm (%I’C/(sOV\Lbj) = arc/(.so,

which is a contradiction, namely sOWUgi£A, too.

b) Incase i=2, Proposition 1gives for the sequence (bj)=(w1sj) the property
({arc/(in;)}*=1y¥c{0, a}. If Oe({arc/(")}"=ly, then we have a subsequence (bX
with Iir&%c f(b X=Q and then we work with the sequence (bJX) instead of the origi-

nal (bj). If L narc/(6)=n, we work with the sequence (b2;-ib2) instead of the
original (bj). Thus we get lim arcf(s0bj)—arcf(s0Q, which is a contradiction.

Lemma 1 implies

corotiary LLeti=1 or2 Iff ismonotoniconA, then f=0 orf=0.

Further we can show.

coreriary 2. Let i=1 or2. 1ff~0 (f*O) (for examplefxor/ 2is monotonic
on A), then in case i=1, limarc/(c,)=0 andin caseof i=2, limarcf(cj)=0 or

/2=0, whenever (cj) is a sequence ofpairwise coprime numbers.

» oo« This follows for i=1 from Lemma 1and Proposition 1(5:=N). For
i=2, Lemma 1 and Proposition 1 imply ({arc/(cj)}~=1)'c:{0,n} and /2€0 or
f2=0. Now let us assume the existence of an xOwith f2(xd A0 and a subsequence
lc: }=1 with limarc/(cj)=n. Thenas (c,,c.)=1 for /7*5, we have (x0,c,)=1
for jsj0. Thus

Iirlergorcf(xoqv) = n+arcf(x0,
which implies

sgnfs(x0CjJ = -sgn ft(xQ
for v>vO0, a contradiction. O
L.n»a 2. | ffXismonotonic on A, then f x=0.
» .00+ |fthere exists an a£A, suchthat /1(a)>0, then using Corollary 1, we

have fi*O. Thus we shall prove the existence ofan a€A with f(a)>0.

There exist a}*A (J=\, 2, ..., 9) pairwise relatively prime numbers, such that
JL:i]\Aaj€A forany A/c{l,2, ...,.9} (seeA)). If

y Sarcf(aj) mod2n (j=1,2, ....9),
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then we can easily verify that

)}1 = arcf(ajak) si He mod2n (1isj < 9),
y ™ arcf[la,aka,) — mod2n (17~ j<kK<s”"9),

y = arcf(ajakasa) € W- modin (ldj<l:<s</S9)

is not possible at the same time.
(We have either
a) =elementswitharcfla)= n/2
b) S4 elements with arcf(a)=3n/2
or
c) S3 elements with n/2<arc/(a)<3n/2.
Cases a) and b) can be settled trivially. In case ¢) we can distinguish further
c/(i) there are a', a" with n/2-=arc/(a")*n=rarc/(c")<3n/2,
c/(ii) there are a', a", a" with

y <arcfa') = arcf(a") Warca™) sin
c/(iii) there are a', a", a"" with
n=arc/(a') » arcfla") siarc/ (0O <y-,
and simple considerations yield the assertion.) O
For/2, Corollary 1gives

Lemma 3. | f f 2is monotonic on A, then /20 or / Z-0.

Lemma4.//|/j ismonotonic on A, thenwith the exception ofthefunctions described
in b) ofthe theorem, we have \f(n)\=nk

Proof, a) If|/| is monotonically increasing on A, let s=m+ 1m So
V(0| |('wmmHij)| = \f(Inwmm+Lj)\ sS [/((rn+ Dwmim+1jJ)j =
= 1/(«i + DI/(wrrpmi,J)|.

Using that |[/(Hmrati=)|?i0O for jszjO, we get \AT)WAT + 1)| for all m<EN,
i.e. |/(in)|=mtby Erdos’ theorem [1].
b) If J/] is monotonically decreasing, the proofis similar. O

3. Proof of the Theorem. We shall distinguish the following cases; 1. Both |/|
and f are monotonic on A. 1/a) Both \f\and f are monotonically increasing on A.
Using Lemma 4 we have \f(n)\=nk further Corollary 2 implies ]|n|arc/(u’ms1) =
=0 forany (m,s)6N2 Let 5=Tu+1 So

[iK , mHLj) S f((m +1) wamk),
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mkwikn, m+1j cos [arcf(m ) + arc/(wram+l, )] =S
S (m+ I*iv*, mixjcos [arc/(m +1)+arc/(w mm+M)].
Dividing by H*ra+i,j for j>—-00 we obtain
/i (m) = mkcos arc/(m) & (m-fi)kG@arc/(m + 1) =/(m +1),

consequently/ xis monotonically increasing. So both/ and |/| are monotonic. Now
we can use the theorem proved in [3], according to which if/ denotes acomplex-valued
multiplicative function and at least two of the functions Re/ Im/ and |/| are
monotonic on a set A having upper density one, then f(ri)=nk except the cases
a) /(u)=0 for all aEA, a”a0 and b) Im/=0.

The other cases I/b), c), d) and Il/a), b), ¢), d), when |/| and / are monotonic or
I/l and/2are monotonic can be treated similarly.

I11/a) Both of/xandf, are monotonically increasing on A.

Using Lemmas 2 and 3, fi=0, further /*60 or f%=0.

(i) If/xé 0 and / 2=0, then \f\is monotonically increasing on Atoo. So we can
use 1/a).

(i) If /x€ 0 and 12 =0, then —n/2&arc/(n)é 0 (mod 2q), so arcf\A is mo-
notonically increasing. Thus for every ,rfOEN there exists ivild>x0 and so
arc/(xOw) = arc/(x0 + arc/(w @), consequently arc/(x09=0. So / is real-
valued, contradicting the theorem.

I1I/b) If both j\ and / a are monotonically decreasing, then similarly to 1ll/a)
we have two possibilities.

(i) Iffx=Q and /2 =0, then I/l is monotonically decreasing too, so we have the
case 1/b).

(i) If /x€0 and /2 =0, then —n/2& arc/(«)€ 0 (mod 2m) and atc/|n is
monotonically decreasing. By Corollary 2 1liniarcf(cj)~0 or /,=0 whenever

(e) is a sequence of pairwise coprime numbers. This implies/ 2= 0, which was excluded
by the formulation of the theorem. The other two cases Il1/c), d) lead to case | and
Il respectively, by considering 1// O
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ON THE CONVERGENCE OF HERMITE—FEJER
INTERPOLATION

T. HERMAN (Budapest)

1. Introduction

We give a convergence estimation for the Hermite—Fejér operator sequence
based on the roots of the orthogonal polynomials generated by the weight

2. Notations and preliminary results

2.1. For an arbitrary fEC[—1,1] we construct the uniquely defined Hermite—
Fejér interpolatory polynomials Hn(f,X,x) of degree 2«—1 satisfying

2.1
Hn(f, X, xkn =/(**.,,), Hn(f X,xkl =0 (=12 ....,n, n=1,2,...)

where X stands for the matrix
(2.2) 1 < F o<, <FF o<xIf,,<1 MW=1,2,.0).

As it is well known we have the representation

2.3) H{/ X X)= Z 10, )W) 11 (9

where 1k(x) —lkn(X, x) are the fundamental polynomials of Lagrange interpolation
and Wk(x) =wkIn(X, x) are appropriate linear functions (k=\, 2, ..., n).

2.2. If for any *€[—1,1] % ,,(1,")Eo >0 (k=1,2,...,n; n=12, ...) then
the matrix X is called Q-normal. This definition was introduced by L. Fejér [7].

Concerning ~-normal matrices G. Grunwald proved the following important
theorem [s]:

Theorem A. | X is 0-normal then {H,,(J, X, x)} uniformly tends to f(x)£ C[—1,1]
in[-1, 1]

2.3. The case X"'By—{jNrd}(x, —1) i.e. when the nodes are the cor-
responding roots of the n-th Jacobi polynomial P f'fn(x) was investigated by several
authors (see e.g. [1], [2], [3]). In [1] G. Szeg6 proved
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Theorem B. The necessary and sufficient condition thatfor any /£c [—1, 1]

Km nH ,, (f 9-1(*)Il = o

isthat —l"a, /?<o.
In [2] P. Vértesi proved

Theorem C. For every continuousfunctionf{x) we have

(2.4) HR(FX AM\x ) -f(x)\ =

(xE[-1, 1]).

Here the O sign depends on aand ; y=max (a, B, —I/2).
2.4. Letus consider the weight function

p@a B; %) = X2+ (1-*> (a B> -1, [*| =S1)

and denote the corresponding orthogonal system by One can prove
(see Lascenov [4])
=P fR\l-2x2

\iM W = xPf+B>(I1-2x29 (nN=o9,1,..)

(2.5)
from where the roots {yff’}=Y of {/*"*(X)} are

siny Off” (n=2T; k=1,2,..., T),

(26) ybio = -y{B>
n=21+L K=0,1,.., T),

0(%t0 = - B(a.lO (k = 1,2,..., T)

where x ff’=cos Off’ (k=1,2,...,n) and O ff’=0.

2.5. If X is ¢ normal then the root sit,, of vkt,,(x) is outside of [—1, 1]. The points
{%,,} are the conjugatepoints. By this definition we can formulate two problems raised
by P. Taran [9].

1 Construct a matrix X for which the set {j*,} is dense in [—L 1] and
lim \Hn(f, X) —H1 =0 if /<EC[-1, 1]

2. Construct a weight-function p(x) vanishing and continuous for a certain
ME(—L, 1) such that for the corresponding matrix P lim \\H ff P)—\ =0 if ff
Cl-I, 1

These questions were solved by J. Baldzs [10]. He proved that the matrix Y satis-
fies both 1., and 2. A more general result is due to P. Vértesi [5]:
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THEOREM D. The necessary and sufficient condition that for any f€C[—1,1]

lim | H, (£, ¥, x)—-f(x)]| = O
is that the relations
2.7 —1<o,p<=0 and p—oa =05
hold.
3. The main resuit

3.1. The aim of this paper is to give a convergence estimation for the system of

nodes Y (see Theorem C).
Let x=sin /2 (—n=0=mn) and let O0<e be an arbitrary small fixed number.

With these notations we want to prove the following

THEOREM. Let f€ C[—1,1]. Then
() if 0=0=¢ then

11,0797 =0 (s lr—y)+ine-0p¢ 3oz 1)),
(i) if e=0=n—¢ then
|H, (.Y, )—f(x)| =0 [w(f; x—;D+[n@O—0)F élw(f; %] 11—2]
(iii) if n—e=0=n then
H, (£, Y, )—f()] = O(o2(f; [x—y;D)+[n(6—0)]* ¥

where y=max (x, —1/2), y; denotes the nearest root to x and the O sign depends on
o, B and | f].

REMARK 1. Evidently similar statements are true for —n=0=0 as well.
2. The estimation reflects the interpolatory property of H,(f, x).

3. If feLipn (0<=n<1) then e.g. (ii) may be reduced to the following
(1)’ if e=0=n—¢ then

|H, (£, Y, x)—f(x)| = 0(n™").

I.e. the estimation is, in a certain sense, the best possible.
4. If 20+1=0 i.e. when Y corresponds to the roots of the ultraspherical poly-
nomials we get the estimation of Theorem C when o= p.

4. Proof
4.1. First we verify the following useful relation

LemMA 4.1. Let w be a not identically O modulus of continuity. Then

@ mo(3) ) = o[ 2-6) )
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Proof. Evidently

1
J w(i)iy_Li/i~I.

2

4.2)

S5
s DN

N e

Let s=s,, be defined by

S = max max @
Jsisn

If yisO then obviously s=n and the statement of the Lemma is trivial. If s"n/2
then by (4.2) we again get our statement. Hence we suppose that y<0 and 17s=in/2.
If s<cl where cxis a constant satisfying

(4.3)
then

12y

w - * «

Now we deal with the case CjSiSn/2. Then using (4.3) and the fact that both co(t)
and ty are monotonic functions we get

where c2= Y lsy
-y U

4.2. We shall use the following lemma of P. Vértesi [¢ , Lemma 3.2].

Lemma 4.2. We have
4.9 (cos0)|~|cosO—€o0s ej\0J«-*IH"~\0-Oj\ej*-4*n4* (a, B> —1)
uniformly in Q£ [o, /—€] where cos o ( is the nearest root to coso .

4.3. Using [1] we have

(4.5) A - e th) ([‘.:Q |,..., r)
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with 0<cs=cs(a, B), ca=es(a, B), OE*)=Q 0+1)=n. Further
(4.6) pABX)=i-iypri-x), p<r«(l)=

O(0-*-iBn-ifz) if figes, i

4.7 (cos o)1
0(na) if
fc-a-3/2na+2 jf 0 < ot s [I~B
“8) (n-k+ 18w, (5 ERek o
P AR)(XKY" a—B+(a+ B+2)A
(49) PY'RX ky L-xf

(see [1], (4.1.3), (4.1.1), (7.32.5), (8.9.2), (8.9.9), (4.21.7) and (4.5.1)).
By (2.5) and a simple computation we have

(4.10)
Pr(1—ad o oo
ayK ‘,‘(Xlﬁ)?x-n) M=2m; t==%1, £2, ..., £m),
*) — *ﬂﬂ(1~2’\a - . — L.
h..,(Y*) = 4THO *|*|)(*-1) (@a=2m+1; k=+1, £2, ..., 4ni),
.G 2x9 (n is odd, K =o).
n,,(1)

(Here and later on if n is even then the corresponding parameters of Pm, Pmand xkn
are (a, B); for odd n they are (a+ 1, B) ) Further

(4-11) vkt (Y ,x) =
1+fZZil2a+ | 2"+ 1)— (8=1,2,...; fc= %1, £2, ..., £bi),
—1 X L J~ YkJ
1 (n is odd, K =o).

In the following sometimes we shall use the above relations without reference.
4.4, Now we turn to the proof of our Theorem. First let nbe even, n=2m.

4.4.1. Let O<iz™o”rand —rl2 <ot < 0 where fland are constants. Then
Y*(y)| = 0(1) and by (2.6), (4.8) and (4.10)

(4.12) %09~ Oy prxmz 3= OF" ¢ 279
SO
(4.13) 2 = 0{PI1(Y-2x%
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If 0<i/=6Sji and /2 » —&<n then it follows from (2.6) and (4.11) that I()\=

=°((srr=r)) soby(4'9
(4.14) 2 WkX)il(X)\ =

=0 (ii(l-2*%) 2 AT ")Y=0o (M- 2X%).

Hence by (4.13) and (4.14) we have
(4.15) 2 \b(x)1!(x)1=0(A(1-2xY)
where O 0jSo 1t

4.42. Nowlet e*B”n and |0*|<e/2. Then we may write

2 1A=

=

- A -2*) 2 r[MHTCL)32 /(). A A(x)+ f(xI 1 by k) > (M)}
n<ok<-
where

@19 AW = ENEIS T

But by (4.11)
o1 FE(x)-H( k) 1(*)-1(-n) 1
L (x-n)a (*tm2 J

V I-.vl )ykL X~Yk X+YK J
Evidently 171=0(1) and

_ UMD L MR L A (-n
BT = o((y2+[2«+1])( W2-y I\ YK\X-yK\ YK\x+yK\)).

of(yf+lza+ 1) (1+-"))

S0 using again (2.6), (4.5) and (4.8) we get
(4.17)

\k\\I
O-—\m
: AMX)\ =0 P*(1-2x) 2 \rﬁ\i‘:l 8‘5

+ 22+ 1)1 1+- .
. T
M-T -1

Acta Mathematica Hungarlca 45, 19S5



HERM1TE—FEJER INTERPOLATION 173

4.4.3. Now we turn to the proof of (i) so let Ows”e.
(A) First we deal with the case \Ok\<2e and 4j™k\. Then jvk(x)\=0(1) so by

(4.4) and (4.10)

(4.18)
, 2 Mx)\ = 0(lcD(\yk-x\)li(x)) = O\(/o i -2x*)Za>(\yk)r; 1 -U
ijs\k\ K Y k ~ T K Y yk)

(B) Ifj/2”\k\sAj then Wk(x)j= O(I) and so similarly as above
(4.19) I 2 N(*)| = 0((o(\yk-x\)Pk(x)) =

=oltn(x-y?+P?,(I-2x3i 2 co(x-yk) 'E){(_yk))

SiS|t|S4j
~( ="0\io(.Ix-yj\) ')ZrEq)'y N )

=0 O(r—2)+[n(0 —Q]>]S_2I wi-M)
i=

Vil J 1
(C) If |AY/R2 and kMO then |x[>cs/n. Then

12 4()| =
w*r

=o(p2(1-2x2 2 aj(x-y,) {1+~ flza+1|+20S+1)Ts il}x

X (YkPmXIM (x - y*))“3 = 0 (" (1-2 i2)ffI(i)X

M_ kra K1 1 fears 1
M2a+2 + |28+ 11 M2*+1 X + *1)-
2a-f2 . H . Wwa-fa
_ i1 LW T2a+ 1| fi 1UM
o F2(1- 2x2)0j(x) X21m) + L
v lez»
= O M (1- ol Xeat RetHA @D | g (/i+/2+/3,
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Applying Lemmas 4.1 and 4.2 we get

(4.20) .
Ix= 0 Fl(rlnzxaz iit‘? iv)m')p_i = o I[m(0
If o=— 1/2 then
h=of[/.q ( 1 ) J:OB(I—2r>(i)«*):o4,).

If a= —1/2then /2=0 so we have to deal only with the case of a< —1/2. Then
applying again Lemmas 4.1 and 4.2

= ( )=°h<e-w ,1%“L?
As J3=0Uj) we get
(4.21) 2. M*N\=o([T(B-B;)p 2 <»(4-) I"-»).
I*Nf
(D) To prove (i) we have to give an estimation in the case of 2e<|0*|<n; as well.
Now, similarly to 4.4.1
£ =o0(g(i-2" e ) =

= 0{PL\-2x%
By Lemma 4.2

oMz if 0Sr—L
oLl lm-- -

4.4.4. Now we prove (ii). Let e*B”*n —E We may write

Plil-2x2 = O([T(0- 0,)]9
and with this we proved (i).

m

2 = 2 "k+ 2 ak+ 2 K= SXx+s2+s3
k=1
If we apply 4.4,1 and 4.4.2 with t]=s and uy—e/2 then we get
N =01 2W)
i.e. by Lemma 4.2
4.22) ISY = o([m (0-0J)]«]-).
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If e/2<0k< n—s/2 then [tf(X)|=0(l) so
(4.23)

Is.] = o( 2 = =
[;<Ok<sa-|
* 2

If k—/270k*n then VK(X)=OIi[MW ~~j | so

= (m+1-/c)an+s

(4.24) IS3=0 M (1-:2x93 2 {/E+ Tl m2/5+4

A—20T1.<4

= <9(P: (1-2x9) = ° (— 0O/ YEi-
From (4.22)—(4.24) we get (ii).

4.4.5. Finally we prove (iii). Let n—E*O4n.
If %K< e/2 then by (4.15) and by (4.17)

(4.25) 12 Mx)\ =o(n;(i-2*>){i+M [-(i).4).
If s/27ekSn 25 then K(x)[=0(1), /|(x)=0O| A -j s0
(4.26) 2 KON =0 (M (1- 2x2).

Let us use the notations K=m+ \—k and J=m+| —. If 0<Onand 2K'éJ then
. [j 2—k 2\
k(x)i=Q[- gz | so

g (- VIDKCY ()1 =

. W (J2-K * 22K 2 K253 My
0\P|(l—zx32k,\J m2 1 K2 m®+H (J2-Ka: j

N

Opra—2x?
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Applying Lemma 4.1 for (o(\rT) we have

Q) I I .

If 3/2AK~2J then WK(\=0(l) so

K2ZH3
-JNKN2J “JAKA2J ®(x ¥4 nN2B+H (X—yKY -
KAJ
\K2-J A\
= Olca(r—2|) +—  qfed) jz6+3 ( ,
m® é~J,;KAZJ-(IQ m2 ) (K233g, )1
But
2 @®,. .. . o G
?SKSZJ (.lh p u )W h y - - (Trﬂl LIJ

so by Lemma 4.2

(4.28) A= 0i®(|x-j..[) + [m(0-0.2

) -
-S5kS2J =i \m

If 2J<K then |p*(X¥|=0(1) hence

(K2-J2\ KB+ ( m2 12

(4.29) L2 SO = 0N (- 210 i \k 20 2) ] -

-0 ?ia-2x>)
a m2x W H o =°(™"W 1“1l iM
From (4.25)—(4.29) (iii) already follows.
4.5, For odd n, following P. Veértesi [5], using (4.10) and the corresponding for

mulae for the Jacobi polynomials and roots, it is easy to see that

W i(F 9= 0 @l 9 6 20 (ko)
~6j,2n
and |o>n+(F; m)=0(1). So this case can be considered as the above one. This
proves our Theorem for each n.
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ON THE DISTRIBUTION OF / mod 1

A. BALOG (Budapest)

1. Introduction

This paper is devoted to the following results.

Theorem 1 Let 1/3<0<1, 0<eSc(0), 0~w<I befixed real numbers and
I~a~qg, (a. gq)= 1integers. If x”~ 1 and

(1.1) X-Va4+si«s j =£112
then
12) @{p ™ x, p=a(q), UB—n| < A} = 2An(X, g, )+ 0(Ax1~c-\-j{1H9Y/2+%F).
The implied constant depends at most on eand 6.
Theorem2.Let 1/3<0<1, 0<e, 0én><1l befixed real numbers. If x~\ and

(13 x-30£- 1/2
then
(1.9 #{p~x, [IP>Fw|| < A) S jd7t(x) + 0(Jc1+2+).

The implied constant depends at most on s and 0.
An easy consequence of Theorem 2 is .

0
Corollary 1 Let 2/55 0< 1, 0<s, Ostr<I| befixed real numbers. There are
infinitely many primes p with
(15) IP9-w|| < jp-ft-®)mh.

#m Theorem 2 has also a”-analogue which can be proved i the same manner. But
tkllce(lras)qlt is a little bit more complicated as we have to change the right hand side
of (1.4) into

(1.6) 2An(x, q a)-"-A--—---- i ------ + 0 (N 1HN H),
<p(9) 10—

(where the implied constant depends at most on r and 6). Thisimplies that Corollary 1
remains true even if we confine ourselves to primes in a given arithmetic progression.

We prove these theorems in two steps, first we transform a sum over primes into
bilinear forms, and then we estimate the resulting forms by analytic methods. The
most convenient way of doing this is to use Vaughan’s method. Theorem 1 can, in
fact, be proved in this way (see the previous paper of the author [1] where the history
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of the problem and its connections to other problems can also be found), but the
proof of Theorem 2 requires some new ideas. The key argument is the sieve identity
method due to Harman [4] and Heath—Brown [5]. The main advantage of this meth-
od is that we can control the signs of coefficients in the occurring bilinear forms.
Thus we can omit some “bad” subsums at the expense of getting only a lower bound
instead of an asymptotic formula.

The essence ofthe sieve identity method is the repeated application of the Bush-
tab identity

@7 S(V,z) =S(V,z") z"‘%<z

(We use the standard sieve notations, see e.g. [3].) However we do not utilize (1.7)
explicitly as the resulting combinatorial decomposition can be obtained directly
from Richert’s fundamental identity. The arguments go through with any function
F(6, z) in place of S(4>, z) if it satisfies a recursion similar to (1.7). For example let
N be a finite set of integers and let F($>, z) denote the number of elements of T,
having only prime factors less than z. We have

H<€ z) =F(V, z0 _z"pz<z' m p,p).

This means, one can prove the following theorem (P(n) denotes the largest prime fac-
tor of n).

Theorem 3. Let 1/3<0<1, 0<8, 0”w<I| befixed real numbers. If xSI,

z>2 and N
£UHBNA A 12
then
{n —x, P(n) =z, he—w| < A} =

=2d# (n p(n) Wz} + O(Ax1- cx<-1+€)' 243¥).
The implied constant depends at most on e and o.
This implies

Corollary 2. Let 1/280<1, O<e, 07vf<l be fixed real numbers. There
isa K(e)>0 with theproperty: Forany KK (e fixed real number there are infinitely
many numbers n with P (n)"\ogKn and \\ne—x|

The main tool in estimating bilinear forms is the Approximate Functional Equa-
tion of the zeta function. We can use it for a reflection argument which allows us to
change a special Dirichlet series into an other one with shorter length.

In our theorems x-1/4 is a critical limit for getting asymptotic results but for
getting lower bounds x- a0 is only a practical limit. Below the calculations
of Section s become very clumsy.

Of course, we can get non-trivial results for 071/3 as well, but we cannot get
an error term as good as ;c(1Hl)a We do not prove these weaker results because we
wish to maintarn the error term x(1+e,/2, since this is the same one that the Riemann
Hypothesis would imply. The aim of this paper is to show a new field in which the
Riemann Hypothesis can be repleaced by elementary methods.
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There is a quite interesting feature of Theorem 1 If g=xs, no asymptotic for-
mula is known for n(x, g, a), because it depends strongly on the existence of Siegel
zeros. (1.2) shows that the irregularities of p=a(q), \\pe—w||<d} are
parallel to the irregularities of n(x, g, a).

wiedagement. I would like to thank Dr. G. Harman for sending me his
unpubllshed manuscripts and for his helpful suggestions.

| would also like to express my gratitude to Professor H. E. Richert who sugges-
ted me the use of his fundamental identity. This made possible a remarkably simpli-
fication.
2. Notations

First we list the conditions assumed throughout the paper.
2.1 Osw<l, 0<zlISy, O<SS£(0)

(0, iv, A and e are real numbers) and

(2.2) 1Man g (@ <7)=1
(a and g are integers).
We define
_ — % I Ino—H| <A

In other words &®(n) is the characteristic function of integers n to which a number of
type integer+ ivcorresponds between n°—A and ne+A.

We will use amand b,,as general coefficients of linear or bilinear forms. They may
be arbitrary complex numbers satisfying

(2.9) am<cmn h,<cnn for all /> 0.

m~M indicates the inequality M "m<2M.

We will use the standard sieve notations. For a given finite set of integers * we
define  as the set of integers from  divisible by d, e\ as the number of elements
of  and S(¥j, z) as the number of integers from Vi not divisible by primes less than
z. We will use the product

(2.5) P(z) = pl'<lz P

(note that in the introduction P(ri) had different meaning). p(n) denotes the smallest
prime factor of n. We have always

(2s) 20=2.
Clearly S(<#,20 =\<&\
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For our purpose we take
27) .0/={nSx, n=a(q), [ne—w| < A},

(2.8) ={mSx, n=a(}

From Section 7 on, we will use si and M only in the special case a=q=1
Concerning the analytic arguments used in Section 3 we refer the reader to [s],
[7] and for the sieve results see [3].

3. Estimation of bilinear forms

Lemma 1. Under (2.1)—(2.4) we have

1 tn%"x aaba®(Tn) = 2A m%g()'( ar+ ONMx'-"+ x«™ A
m=a(@ = ag)

whenever

(3.2 A~IxliecM <c AXI~ZE or A-X2E<cM < Axl~1c

or

(33) bn=1 for all n and M <k Axr~bE

Proof. As the proof contains quite a few standard technical steps, first we give
an outline, and will present the proof only briefly because the same techniques were
given in details in [1].

For the sake of simplicity we can assume that a=q = 1. We estimate the sum

S= 2 2 4a,Adc(tn)

ni~Af

mm
where
(34
1 if there is an integer m with /0" < m+ W21 If "1+ —j
<M¥*)

0 otherwise
and U=x°/A. Taking
L(S,w)= 2 (c+w)s, A(s)= 2 at¥~\
fc~x° m~M

(AMKd) o

B(s)= 2 bnn 5 H(s) =

from the Perron formula we get

1h+IT
S= oonf f LG wW)A(-05)B(-0s)H(s)ds + O(AxI- 0.

12T
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The correct definition of U, T, L, A, B and H will be given later on. The main
part of the integral is between 1/2—ix? and 1/2+ix? — this constitutes the main
term of S. This follows from the special shape of L(s, w); we know its asymptotic
behaviour when |¢|=x?. We have the approximate functional equation

L(-]2—+it, w) = X(%+it) > =1 0(1)
It|
ko

provided x*=[t|>x% Here y(s) is the weight function occuring in the functional
equation of zeta. This has the property |x(1/2+it)|=1. Taking

et ks £
L(—z——{—tt, w) 2% |K[3+lt, w)‘

Finally we use classical mean value theorems to estimate the integral
T

I= _f K (%m w]A (—g——i()t)B(—%—-iOtJ

By the Cauchy—Schwarz inequality
T " T i T 1/2 - 1/2 o 1+0)/2
- 2)1/2 2 = 1+6\1/2 Briside il
1:(_[ KAL) (_{ |B2) <<(T+x9 M) (M+)1/3(T+ M] (M) x*

and, of course, we can change the roles of 4 and B. Collecting these estimates we get

K(s,w) = J e¥™wk—s we get
1 X

A —
x0

dt.

|S —mainterm| << Ax'~*+

9

](T+ M)]ll :

(This has the required size exactly when M satisfies the given conditions.) When
b,=1 for all n, we have the fourth power moment estimation for B(s). By the
Cauchy—Schwarz inequality

1—-6

+ UxU+0/2+2 min [(T+£A,i][T+ x) (T+ L
X M

I = ( fT |K|4)1/4( fT IB]4)1/4( fT IA[2)1/2 < T(T+ M2 xA+0/2+e
=t T _T

and we get the same conclusion.

The above argument becomes more complicated in details for two reasons. First
S is not exactly the bilinear form we want to investigate; second the reflection of
L(s, w)into K(s, w) requires an additional average argument.

Now we give the detailed proof. First we consider the case of (3.2). Observe that
the condition mn=a(g) can be dropped, because the orthogonality of characters
gives

(3.5) 2 anb,®(mn) = (q) Zx() 2 8n)(m)byy (m) D(mn).
() s
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If (3.1) is proved for a—q—1 then (3.5) proves the general result. Writing
am= max (0, Re am)—max (0, —Re am) + i max (0, Ima,,,)—i max (0, —m am)

(and similarly with b,) we can assume that am=0 and b,,”o. An easy splitting up
argument shows that it is enough to prove

(3.6) mg‘M aTbH®(Tn) = 2A n%M aTbn+0(Ax?~*e+ x a+B)P+9
Jtj-c mi*<ar2 xl<Tn<xr

where

(3.7 max (M, X (14€)/2) ~ XT < X2= X, X2—Xr= —

Xxand x2 are halves of integers.
We define @u(n) by (3.4) and taking Uj—xf/A, j= 1, 2 we have

(3.8) d2(n) = d(n) = dux(n) for xx<n<x2
Since
(~)'=1+0(-,x j . U2

whenever xx<Tn<x2, itisenough to prove

(3.9 2 aTh,,du(Tn) — 2 ambn(mn)e+0(Ax1~ie+ x (1+e)l2+t)
mA~"M U Xl;g~Af 2
where
(3.10) q |
We can assume that
(3.12) xt~ ~S A sS12
—the case of /4cxfu_9)2 follows from the monotonicity in A.
Take
Lysw)= 2 (ktW)-S, v sysv .
Ky KLLI3Y
cs)= 2 amb,(>m) s= " cfi_s>
(312) m-~Af i /< x2

A(5) = (.4)44) , T'= XB(y5<t X ).

We start with the Perron integral

. 1hHT
(3.13) Doy =j-r f  Ly(s, wynesH(s)ds+0(RJ

1/2-iT
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where xSy~ 2xm and
(3.14) R,,= 2 mn |,
6X,°
31 i 4_4) +"’ II*(I4)

log- KW log- K+ w

It is easy to show that
wi+0 e
(3.15) 2 cnK « — = Axl~iz
X,<N<x2

and forevery x "y SIxi we get

n 12+ir
(3.16) 2 dmfbjipM = — @f Ly(s, w)C(- Os)H(s) ds + O(dx1“ ).

m~M Lo
X% mn<x9

Applying the Perron formula, the mean value theorem of Dirichlet polynomials and

H(s) = A + o (s_iit/-2).  H{s)«ztj ,
(3.17)
<o - (i
LJs, w) = —s 0 (xfe9
for s-= §+ it, v = Tq= nN-4 v =~ 2%19
we can get
;2 +ITo
(3.18) —_— J Ly(s, w)C(—Os)H(s) ds
2W VS-;ro
77 2 amb,,(innf+0(AxI1 <92),
X<mn<x,
and
(3.19) Z =Ty 2 1,,A0«n)B+
X, -Cmn-cx. X, <mn<x,

O (dA*+7s-/ [1,(y +%w)C (4 - No)|dt)

forall ny  =3ny9.
Now it remains to prove

(3200 4* J' f |My+«7,w)c (-y —io/)| dtdy « dx1 4E-fx<l+€)2+6c.
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We can shorten Ly(s, w) by using the approximate functional equation of
((:?, w) (see Chudakov [2]). We have

(3.21)
Ly(y+it, W =x(y +1ii) 2 ei*ikwk-1i+“+ 0 (y-1%+ y'P21*+y-U*21%)
<K
where x v =t [/ 2 n y and [MI/2+/7)|=1. (/is the weight function

occuring in the functional equation ofthe Riemann zeta function.) We get uniformly
for

t
1 Voo \| o (W
(322 — f \Ly(f+itw)\d,*z f |~ [I+,7,vvj|*-+0(I)
*1 t
4nxre
where
Kv(s,w= 2 eiknk~s.
3
Taking
3.23 A(s)= 2 -5, B(s)y= 2  b,n~
(3.23) (s) m/\Mamn 5, (s) X N ,,N~S
W M
and using the Perron formula again we get
(3.24) c(-|—wt} =
A r i i
) j XNIHe/2HE |
=Ts A(“F - i9'+2) n K7-dz+0 S
—iT
JH1+H@B2)+E
« XAHgf2 /N (i-,Ne + it)«(t—,e,+/,§r dx 1
1+ |t T

for Ty~ (™ T. Substituting (3.22) and (3.24) into the left hand side of (3.20) and using
the mean-value theorem of Dirichlet polynomials we get

AV [l ) (0 )
(3.25) ye | JoWLy{j+ b w)c ( /0, dt d-
s 70
; ) dtdi
[ ] |4af; ®'+ le_r_l?,_i_
r Yy inZc (1 7 @ ., )| dtdvdr
| JJ,. MT"Mr-'aln ™M U
X + + F~12A102x 1 +le
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where F=M or F—xJM. (3.20) follows from (3.25) if M satisfies (3.2). The first
part of the proof is finished.

The case of (3.3) is quite similar, we indicate only the changes. In this case we
retain the condition mn=a(q), and so the new definition of C(:s) is

(326) C(S) = 2 om(mn) S-
xl~<mz<)xt
mn=a(q
Instead of (3.23) we have
(3.27) A(s, X) = n%Vlc';rr‘\/(m)m~s &S, X) = nél X(n) n~*
and instead of (3.24) we have
(3.28)
(1+0)12 . . dr Ill+(*/|)+«
« 2 —|Ot+|z,y)Jl+H+ e ]

<p(q) X(<l) —T

After that, the argument runs parallel to the one given above, but at the end we have
to use

(3.29) %9 § W (4 + 70 di < 4T logagr

which is a simple consequence of the fourth power moment estimate for JS?(1/2+ T, /)
with primitive characters, see Montgomery [6]. The lemma is proved.
4. Auxiliary results
In order to prove our theorems we will compare S(.sf, X2 and 2AS(;M, x12).
This comparison will be based on sieve identities. This is the reason why we are
interested in proving formulae of type

4.2) 2 anS(s/mzj =2A 2 amS(BmzJ+ O Ax'-"+ x/N'**2¥),
m~M m~Af

The wider the range of M and zmare the stronger theorems we get. Since

42) 2oanS(simz- o am

Inrt
d (MmPEM)y=1
an
43) 2 amS{Mmznm -
m-M .
AL
(mn,P('m?)zl
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Lemma 1 implicitly contains results of type (4.1). It seems to be a problem that m
and n are not entirely independent of each other in (4.2) and (4.3) but this does not

cause any confusion.
In this section we write Lemma 1into the (4.1) form.

Lemma 2. Under (2.1), (2.2) and (2.4) we have
(4.9) 2 ams(s/m, z0 = 2d 2 amS{dSm z0Q+ O (dx1- £+ ™ 1+e2+9t)

for M<szAxx~xu.

Proof. This is a trivial consequence of Lemma 1 in case of (3.3) coupled with
(4.2) and (4.3). (We recall that z0=2.)

Lemma 3. Under (2.1), (2.2) and (2.4)for
(4.5) A~xxTe<sc M CAXx~F or A~XW cM<s: AxXx~X
andfor any JVSI, z,,s2 we have

(4-6) 2 ambnS{sfmn, zm) =
=V
=2A 2 ambnS{®m,zJ +0(AXX-C+ X" N +%),

Proof. We can assume (as we did in the proof of Lemma 1) that «,,,="0,
and znmSr whenever an™0. Denoting the least prime greater than zmby pmwe
have

@7 S&, zj = S(tf,pJ.

We divide the ra-s into disjoint classes Jix, ..., = having the following
properties: If m~Jij for some j*r then

(4-8) Cj ==Pm < Cj+i S 0(1 + * - (5/4)f).
The Cj-s can be chosen in such a way that
(4.9) r« aWz2g

Of course, some of the Jtj-s may be empty.
If the interval Cj+i) contains only one prime then

2 .amb,,S(s/tmg*y) = 2_..ambns(sdmn, Cj) =
yu N
- 2 2 a,b,®(kTn) 2 . aTcld(T)
W, gl T
(mn,P(CR) = (fé,ki‘j)i%:f nql-aé)

ci = 2 b,
=i

(MHCh-1

where
(4.10)
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and similarly

ﬁya,,b,,S(@rm zj = ﬁxl and

/\
(mPRIf}-
and Lemma 1with (5/2)e in place of e gives

(4.11) 2" ambnS(dm zj
&\
= 2A ra% ambnS{Bmm, z j + O(dx1* (F2E+ x (I+°>2+<H2H).

If the interval [£m C;+i) contains more than one prime then

(4.12) Cyfe* (4.
Forsuchan  we have
2 ambnS(s/mzj = E% k2 aTh, ®(TNK)LL
me T j mnk” x
n*N

n~N mnk = a(q)
(mn, P2m»=1 (fc,P(2m)S= |

S 2 2 atb,®(TnK)=2A Z 2 aAt+

mdJtj mnk~x mdJlj m tikAx
mpmy=1 P m Pmy=1 CREHL
D> = 1 f] = ] = "y ", =
(ﬂxP{U))Zl (”JS(")))):'

+ O(dx1~(52&+ x(L+e,/2+<H/24)
by using Lemma 1with (5/2)e in place ofe. Similarly we have
2 ambnS{.s/m, z,) sr

mdalj

mJV

> anh,+ O(Xm_s 2+ X (L+e)/2+<L/29).

mnk”x

S 2d1
mg“ mnk=a(q)

m, Pnﬁ . JZI 0 =
. ((ﬂ,P(g\Tl)l:l NeRG+D)=!
Trivially

2d MN2d oA «Tb,,.
9 9
(TP 21 ﬁﬁnl?’%él

The difference between the left and the right hand side is less than

(4.13) 2d 7. amK+2A am,, «
Ay Y

P
tJm_;Rk’lx-H mnpksx

«AXIH 2 — 2 ~«dx>LN z —o
mizij m CSp-=Cl+le milij w

189
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This shows that (4.11) with the added error term (4.13) is valid for these kind of j-s.
Summing over all the j-s we get (in view of (4.9))

”;M amhnS(s/mzj = 2A W@ am, S(SSm, 2+
FoIdX B (g2t ck<UBE Y |

which proves the lemma.

5. The sieve identities

We start with the Richert’s Fundamental Identity. As its proof is very short we
present it here for the sake of completeness. We note that from now on /(n) and op(ri)
differ from their standard arithmetic meanings.

Lemma 4. Let /(d) and cp(d) be arbitraryfunctions with
(5.2) X = I
We define /(d) as
(5.2 Z(1)=0, z(d) = d> 1
We have for any z"2

(5.3) 2 Hd<p(d) = 2 H@)x(d)g>(d)+ 2h(d)x(d) 2 P()<P(dt).
dIP(2) dP(2) d\P(2) AP(p(d))

Proof. d\P(2) and t\P(p(d)) imply that (d, o = 1 and dt\P(z). Collecting the
terms 6=dt we get for the second sum on the right hand side of (5.3)

(5.4) 2 idd)/(d) 2 hid9(dt)- 2 h)<P®) 2 X().
d\P(2) t\P(p(d)) t\P(z) S=it

t\P(p(d))

Take S=pl..pr where /?!>..>pr. 5—dt and t\P(p(d)) are simultaneously
satisfied iff d=p1...pJ for some j=r. Using (5.1) and (5.2) we arrive at

(5.5) Sgdt X(d) = _21 x(Pi---Pj) = 1~X(8)-
i\p(.pm !
Itis also true for S=1 (5.4) and (5.5) give (5.3), and this completes the proof.

Lemma 5. Under (2.1), (2.2) and (2.4) we have

(5.6) 2 amS(sdm,z) = 271 2 amS(&m, z)+0(Ax1l~c+ x"eh3d" )
for
(5.7) M<sdx1"3 2<zS AX1~-3\ x-13*Ia a 5]
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Proor. We can assume that a,,=0 whenever m has a prime factor less than z.
Let € be a finite set and y>1 be a real number. We apply Lemma 4 with

s g e it d=w,
58) o@D = F aultul D=1y S L7
In this case we have
d

it idi= and ——<1y,
(5.9) d p@ ~’

otherwise.
The well-known identity (the sieve of Erathostenes)

S(¢, 2) = dl%)#(d)l‘gal
coupled with (5.3) gives
(5.10) 2 S, )= 5 3 aup(d)S(Gpas 20)+
m~M m~M d:lii(;)

s > ,u(d)S(€as P(A)).
m~M  d|P()
d=y, d<yp(d)
(We remember that zy=2.) As a,, =0 implies p(m)=z>p(d), after collecting the
md=n terms (5.10) will have the shape

(5.11) 2 A S(€,. 2= 1 S 2)+ o .. 5%, pin)).
m~M n<2My My=n<2My2
We turn to the proof of (5.6). If M=A4-2x5* then (5.6) immediately follows from
. Lemma 3. Next we can assume M<A4—%x"¢ and so y=(42x%%)/M=>1.
First we use (5.11) for ¥=.7. The condition on z and the definition of y ensure

that 2Myz<Ax'—3% and thus after an easy splitting up argument Lemmas 2 and
3 are applicable with 1.01¢ in place of &. This leads to

ZamS(me,Z)sz Z b"S(.(/’?",ZO)-l-

m~M n<2My
+24 3 ¢,S(#,, p()+O0(Ax' =t 4 x5O+,
My=n<2My2

Finally using (5.11) again (for 4 =%) we get (5.6) which proves the lemma.

6. Proof of Theorem 1

Now we are in a position to prove Theorem 1. Clearly we have

(6.1 #{p =x, p=a(q), |pP°—wl < 4} = S(«, x)+0(x*72).

The Bushtab identity (1.7) with z"=A43x'~%"¢ gives

(6.2) S(H, xV?) = S(L,2)— > ) S(,,p)-
Z=p<xl/2
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Lemma 5 with M=1 and ax~ 1settles the first term. Since d&x"1/4+31t implies
that the interval [z\ x12) can be covered by intervals of type [M, 2M) where M satis-
fies the condition (4.5) given in Lemma 3 with 1.0le in place of e, an easy splitting up
argument gives

(63) S N, x112) —2AS(!% , z')-2A S(A['))+0(3f-4X(l+9)'2+86t)

z'*|5<xJ/2
Using the Bushtab identity again we get
(6.4) S(j/, x19 = 2AS(3S, x12 + Q(dx1 + x(I+el2+H) =

= 2d7i(x, g, a) + O (dx1~c+ x(1+9)/2+25¢).
(6.1) and (6.4) prove Theorem 1

7. Combinatorial decomposition

The considerations of the previous section were based on the fact that the inter-
vals

(7.0) (1,d3x), (d"\ d2), (A~2 Ax)

were overlapping (omitting some unimportant factors). However this does not happen
when A is small. In the case d-=x~14 there are gaps between the intervals of (7.1).

We will give such a combinatorial decomposition of S(s2, x12) that most of the
constituents can be estimated by our lemmas. It will be satisfactory provided all the
“bad” subsums belonging to the gaps have only non-negative coefficients.

For the sake of simplicity we confine ourselves to the case a=q=1 As we are
satisfied with an error term like o(Ax/log x), we will take a as a sufficiently small
fixed positive number and we will use our lemmas with 0.01e in place of e.

As Theorem 1has already been proved we can assume that

(7.2) X-Us+* A Bx-1/4+*

Our goal with the following curious definitions is to ensure that some sums of
the form 2d S(4>d>P(d)) can be separated into the form 2m Zn SfamniPIm)) where

m has the acceptable size (7.1).
Definition of 2P. First we define the sequence Qj by

(7.3) 0,<-<00 = *1?2 Q‘|=2Qj
and we choose s by
(7.4) j dxleS Bs< d3xI~E

2?is the set of sequences (Px, Pr) including the empty sequence where
and all the P—s are Q—s.
Note that

(7.5) s = log x.
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Definition of “Bad” N umbers. We say that a real number p is badif
(76) AXlc< P”™ A~-xxe or dX1-'< PN A~XE or Axle<P.
We say that P is good if it is not bad.

Definition of (F0. Let R be a fixed integer si. is the set of sequences
(Px, ..., PR£tP satisfying the following conditions

(7.7) all subproducts of Px...Pr are bad (except 1),
(7.8) N-nNy-n/<Ax>* forall j~[r/2],

(7.9) rn 2771,

(7.10) Px, ..., Pr differ from each other whenever r is even.

(Note that the empty sequence is in F0)

Definition of “Belonging”. \We say that a square free number d belongs to the
sequence (Px, ...,Pn if d=pl..pr and

(7.11) Pi- Pi< 2Pj (j=t,...r).

d= 1 belongs to the empty sequence. We say that d belongs to the set 3k iffd belongs
to a sequence contained by Sk. We indicate these facts by </€(/1. ..., P,) or df g,
respectively.

Note that d belongs to SP iff d is square free and all the prime factors of d are
between Qsand g 0(or d=1). If d belongs to 3P then there is exactly one sequence in
SPsuch that d belongs to it.

For a given finite set of integers # we apply Lemma 4 with cp(d)=\%\, z=
=Q0=x12and
(7.12) if d—d0dx, doi& o dKP(Qs),

otherwise.

We compute x(d). As in the case p(d)<Qs we have clearly x(d/p(d))=x(d). It is
enough to investigate the case d"SP. x(d) differs from zero iff

(7.13) p() but d$0>o,

(7.14) de&>0 but -~yito-

For d£(P], Pn (7.13) is valid whenever (P,, ...,Fr_J satisfies the conditions
(7.7 —7.10) and (Px, Pr) does not satisfy at least one of them. (7.14) is valid
whenever (Px, ...,P 1) satisfies the conditions (7.7)—(7.10) and (PIt ...,F1 ] fails
(7.10). We need the following definitions.

Definition of 3X. Fxis the set of sequences (PX, ..., F)€~ not satisfying (7.7),
satisfying (7.10) and the subsequence (PX, ..., Pr-i) satisfies (7.7)—(7.10).
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Definition Or 2m-P2is the set of sequences (Px, ..., P2*SP satisfying (7.7),
not satisfying (7.8) and the subsequence (P, ..., P2 i) satisfies (7.7)—(7.10).

Definition of 2. £ is the set of sequences (Px, ..., P2 satisfying (7.7)
and the subsequence (PI5 ..., P 2R i) satisfies (7.7)—(7.10).

Definition of 8t 3 is the set of sequences (Pu ..., P2)€"* not satisfying (7.10)
and the subsequence (Px, ..., P2~i) satisfies (7.7)—(7.10).

Definition of Pa.  is the set ofsequences (PX, ..., PZ+)€~ satisfying (7.7)—
(7.10) and the subsequence (PX, ..., P2) does not satisfy (7.10).

Note that these sets are not all disjoint but 0=and ZFbare disjoint from the others.
It is easy to check that (7.13) is valid for some d iff J<EPU ... U  and (7.14) is valid
for somét/iff cpdA. Thus we have

1 if dE&jU~2U~3UN4,
(7.15) m = -1 Iif d$.&5,
0 otherwise.

By applying Lemma 4, (5.3) gives our main decomposition:

(7.16) S(V,RQ0 = 2 P(d)S(%,QJ+ 2 P(d)S(Vd, p(d))+

" dig 0. uge” (o PO
Using this for and omitting some non-negative terms, we get

(7.17) S(sd,x") s 2 p()S(s/d. Q9+ <§#im S (s/d, p{d)).

We are going to show that Lemmas 5 and 3 are applicable for the first and the
second sum respectively. This is clear for the first sum since <%<d 3x1-£ by (7.4) and
d*Axx~c by (7.8). This is why we need the condition (7.8). When (PI5..., Pn£3il,
Px..,Pr has at least one good subproduct. As (P,, ..., Pr_r) satisfies (7.7)i.e. Pr...Pr_x
has only bad subproducts, Pris always a factor of any good subproduct of Pt...Pr.
PX, ..., Pr_1 are all different because of (7.10) is true for (Px, ..., Pr_ X in case r
isodd, and for (Px, ..., Pr) incase riseven. If Pr=P, xthen Pr-x isalways a factor
of any good subproduct of P\...Pr since otherwise PL1..Pr-1 would posses a good
subproduct contradicting (PIx ..., Pr-Ya0>0. Thus any sequence (PX, ..., PN£~X
can be divided into two disjoint subsequences say JI and JP where JPASP, Pr
isin Ji, the product of the constituents of Ji is good and all the constituents of Ji
differ from the constituents of JP. Thus we have

(7.18) 2  p(d)S(vdp(d) = (.-1)" 2 2 S(%,,n,
d€PIt...,Pr)
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and Lemma 3is applicable. As |*i|dog2Rx by (7.5) from (7.17) we get
(7.19) s(si, x'1*)~2A 2 n(d)S(Md,Q9+

+2A02 MdA)S(AD, W) +° (T + A +)/2+) =

= 2AS(%,x'/*)-2A 2 S(M>(<)+0i-"N+ x < I+«/24] |
dea>2u...Uas uog X )

At the end ofthis section we show that some terms of the last sum are negligable.
From now on we have to assume that

(720) 0-001

(which is obviously satisfied by A~x~371). If dé0>2U...U"5 d=pl.pr and
pl..pr_1pr2>xépr...p, then S{&sd,p(d))~ 1 By (7.8) either d=plpl or 3 and
pX...pr- r<Ax"~*_ The contributions of d<xl1~c (and also d>x) are trivial. Thus
for rd and pl.pr>xl-e we have pr>A~x. But from (7.7) we also have prS
SA~1xc as pl>p2>p3>d_IxE implies pl>p2>p3>AX1-e and so d pxpPpa>
=d 6x3 3E>x by (7.2). The contribution ofthe terms i/i*U ... U5, dp(d)>x is less
than

(7.22) «X* 4 2 1+ 2 1«
P2-=pj-=* _ A
_fepisa
ex
Lt S{Bp.P) « jogx -

In the last step we were using the following consequence of Selberg’s upper bound
sieve:

(7.22)
whenever dp(d)*x and /2(</)>x°-00L Of course, the implied constant in (7.21) is
independent of e.

As d £ U0 implies that there is at least one pair of prime divisors pj, pJ+
of d with Pj*pj+1<Pj<2Pj by (7.20), (7.22) and (7.5) we have

(7.23) 2  S(.%,p(dj)«

d ’)25 logx Wd

dogxiilcjsTaasj p) U*e.diddp) log2x '

Finally we consider the case dp(d)”x, p(d)>xnMl and there exists a divisor t
of d with xc*tAx c+2 for a fixed ¢50.001. We can write d=puv where x'd
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Ni)Sictk p(u)>p or u=1 The contribution of this part is less than

I 1 X

(7.24) logx™ d logn

2 V2 MZ b«

sx ,, 1, 1 ex I' 5 11 ex
w5t v U o x )t Pt gy

Writing (7.21), (7.23) and (7.24) into (7.19) we get our most important inequality
(7.25) S(rf, x12 1.99An(x)-2A dzza S(MdR(@) + 0 (x (I+e>12+)

whenever 1/274 a*-®33 and where 3) is the set of d-s satisfying d=pl..p2 with
the following conditions:

(7.26) r"\R, AX S pZ<...< Pi< x12

(7.27) AX N tN A~x or AX<tsA~2 or Ax<t
for all t\pi—p2r, 1,

(7.28) Pi---Pij-iP32—Ax for j <,

(7.29) Pi---PZ-iP2*> Ax for rjiR,

(7.30) pl..p2r 1px2~ x for r"R.

8. Proof of Theorem 2

Our starting point is (7.25). We will use the following sharper form of (7.22)
(see Theorem 3.6 of [3]):

(8.D sNe ,Mrf))s-n_~ _+0(_£ _)

whenever dp(d)*x, p(d)>x000L

We will show that for A*x~31° S' is a relatively small set — combining this
with (8.1) gives that the sum in (7.25) is small enough. It would be, of course, more
desirable to find a direct treatment for investigating the sum itself without determin-
ing the possible choices of d.

We choose R=3. As § has a monotonic property with respect to A, for
Arx~31° we have ®c®* where S* is the set of pxp2, PiPZPiPi and PxPuP3PePuP
satisfying the conditions (7.26)—(7.30) with A=x~310 and R=3. We have

Of v+
(8.2) S(tf, 12 & 1.98dr(0)- 2, 100 VoN+Q (x(149)2+9)

whenever 1/2sd sx _3/10.

First we consider the d-s having six prime factors. From Pi>... >pe*x 01 we
have PiPzPa”"x03 but as prp2» is bad we have PiPzPs"x0* From this
PiP2P3PiPb>x*'6 but as PxPoPuPuPs is also bad we have PiPtPzPiP”x31l This
contradicts p lprp3p 2" x 07showing that 3)* has no elements having six prime factors.
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Next we consider the d-s having four prime factors. A treatment similar to the
one above shows that 2* has no elements having four prime factors with p,>x%%.
For all p,p,psp,€9* we have
(8.3) XVLisipy =i <= pyi= x08

As p, ps s ps is bad we distinguish two cases

(8.4) P1P2P3Ps = X*7
or
(8.5) P1P2P3Ps = X%,

(8.4) implies that p,p,>x%* thus p,>x%%.p, p,2=x"" implies p,p,p,=x%® and thus
PsPs=x"* which implies

(8.6) PsDs = X3,

It is easy to check that (8.3), (8.4) and (8.6) imply (7.26)—(7.30). Similarly we can get
that (8.3),

8.7 p1pe = x%3
and
(8.8) P1P2P3ps” = X*7

are necessary and-sufficient for the satisfaction of (7.26)—(7.30) and (8.5).

We can consider the case d=p,p,in a similar manner, and we can conclude that
(7.26)—(7.30) are satisfied iff one of the following three cases holds:

(8.9) M= p, < p = x03

(8.10) p1ps* = x*7

or

(8.11) X904 = ) < 05 Sand XL = igli8)
(8.12) p1p: = X",

(8.13) PPt =x

or

(8.11), (8.10) and

(8.14) - P1P2 = x"'s.

Using the elementary facts that

1 1 i e
x“<éx"; x°‘<§'§x” plogp o log x f?
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we get

(8.15) S(jt, xI12 a

sh ~ 2fI"W -~2f/11

where the two dimensional integral is taken over the regions

3 7 n >
. _/\ -
(8.16) Tl' 0 as 10° 20 Y Sa,
5 7 1 v
T2: f "~as 10° 10 «SBSY-j,
2 7 @
T 20 2 Ba O“*

and the four dimensional integral is taken over the regions

. 3 [ A
(8.17) T 50- - - 70 Iskna,
. 7oatB o 7 Bty
30 3 Y=B 2 Y,
3 .1 7 a 3
5 20 6. 16-JsBs w~*
' 7 a+B . 7 e+R+y
30 3 20 ______ r LI 6__ 71
f1l . 3 7 _a 3
6 4" 10 30-~3 20
T 7 ah/? J7
20 2 10
1 3 3 \
7 47777100 20 10
' 7  n+0 _ 3 )
20 2 10 10 oc——ySiSy.

over Ti, T2and T3
integrals over T4, T5, T6and T7can be estimated by increasing the ranges into paral-

lelepiped. Easy numerical calculations give Theorem 2.
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CONSTRUCTION OF MINIMAL SUFFICIENT
OR PAIRWISE SUFFICIENT a-FIELD

F. GONDOCS and GY. MICHALETZKY (Budapest)

1. Introduction

The notion of sufficiency is one of the fundamental concepts in the mathematical
statistics. In the dominated case the class of sufficient subfields has very nice proper-
ties, in particular there exists a minimal sufficient u-field, whereas this does not hold
for arbitrary statistical spaces. In order to preserve this property, generalizations of
domination have been introduced. These are the notion of compactness introduced by
T. S. Pitcher [16], the notion of coherent statistical space due to M. Hasegawa and
M. D. Perlmann [10], the notion of weakly dominated class of measures defined by
D. Mussmann [14]. These properties are practically the same.

In this paper we consider a condition of topological nature which is also equi-
valent to these notions and which enables us to construct the minimal sufficient a-
field. Furthermore, it turns out that this condition is equivalentto a pair of conditions
one of which is quite intuitive and implies the existence of minimal sufficient <r-field,
while the other is less suggestive but implies that — roughly speaking — a cr-field
containing another sufficient <r-field is also sufficient.

2. The uniform structure

Let i2be a set, si a field consisting of some subsets of £2 Let P be a nonnegative,
finitely additive set function defined on si, such that P(fl)= 1. The members of si
can be divided into P-equivalence classes. Denote the equivalence class of an event
A £si by the symbol A, and the set of equivalence classes by the symbol 21 As the
field si is a Boolean algebra of subsets, the space 21 can be regarded as a Boolean
algebra, too. Moreover, by means of the set function P defined on si we can define
a function on the set 21in a natural way; this will be also denoted by P.

On this space one can define a metric as follows: q(A, B) =P(A sB), where
A mB denotes the symmetric difference of the events A and B, i.e. A*B=(A\B) +
+(B\A).

The following proposition is true:

Proposition 1 The space 2t is metrically complete if and only if the space 21 as
a Boolean algebra is a-complete and thefunction P is o-additive on the space 2L

Proof. Suppose that 21 is metrically complete. Let (An),,fNbe an increasing se-
quence of equivalence classes. We will show that there exists an equivalence class
A such that A= V A,,, and P(A)=lim P(A,,). The sequence A, is a Cauchy

sequence. For, if i/=sup P(A,,) and s>0 is an arbitrary positive number, then there
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exists a number ngsuch that P(A,J)x | —. For every pair of indices we
have

e(An A4,) = P(1moAT) = P(A,\AJ & d-P (A < e.

Since 9Lis metrically complete, there exists an equivalence class A suchthat 4 (A, A,)—
-*0, i.e. P(A0A,)—P(A\A,,) +P(A,\A)-*-0. The sequence A, increases, So
P(A,,\A) 0 for every nEN. This means that A,~=A in the Boole-algebra 91, and
P(A,)"P(A) for every nEN. On the other hand P(A)sP(A\A,)+P(AK; letting

ntend to infinity we get P(A)*d. Summing up, P(A)—d and so Azr@\ﬂ/\lﬂ”_
The converse is a well-known measure theoretic fact. See Halmos [9]. O

Remark. Asthe Boolean algebra 9i satisfies the countable chain condition, since
P(Q)=1 the Boolean algebra 91 is complete if it is u-complete.

Let (fi, .w., AP) bea statistical space, i.e. Q is a set, sd is a cr-field (for simplicity)
consisting of subsets of i2, P is a family of radditive (for simplicity) probability
measures defined on sd. Furthermore, since it is irrevelant from the point of view of
the notions to be introduced whether the class of measures SPis closed under linear
convex combinations or not, we suppose to simplify the description that if (P,)i=lt
aP, (chi=l....,cR, c,s0 *=1, Ict=1 then 1c{P"3P. First we will define
the equivalence classes, then a uniform structure on these equivalence classes, as in
the case of a single measure P.

Let Ar(SP)={AEs/: P(A)=0 for every PS2P}. We say that the events A and
B belong to the same equivalence class if AoBSIV(SP). Denote by 91 the set of
equivalence classes; this can be made into a Boole-algebra. A<B means A\BE
SAV(P). Now every PESP defines a semi-metric on the space 91 — in the same
manner as above —, denote this by gp. The uniform structure induced by these semi-
metrics will bejlenoted by aJ. (cf. Cséaszar [5].) l.e., for every P/ and e>0 let
Y(?,9={(1,1): QA /?)-=«}; these generate the uniform neighborhood-base of
the uniform structure aJ.

The fundamental assumption of this paper is the following:

The space 91 with the uniform structure Wis complete. (Shortly, 91is A-complete.)

Precisely, this means that if ([-);e/c91 is a generalized Cauchy sequence
(Cauchy net) for every semi-metric gP, PS.SP, then there exists an event Af_sd, such
that A; converges to A for every semi-metric oP. This condition implies that the space
91 has very beautiful and useful properties.

First we prove that this property is a generalization of the domination. This is a
simple consequence of the following assertion.

Proposition 2. Denote by SP' the closure o f IP in the total variation norm-topology.
Then APand SP' induce the same uniform structure on the set 9t.

Proof. First observe that obviously Ji(SP) —JA(AP"). Consider a measure PEAP'
and a number e>0. There exists a measure Q'SP for which Var \P—Q\"e/2. In
this case

{(4 B):A W, Q(A B)<yjc {(A B): A Bell, P(A, B)< e}

This yields the required assertion. O
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Consider now the dominated case. It is well-known (cf. Halmos—Savage [8])
that in this case there exists a countable subfamily (P);.nCZ and a sequence of
nonnegative real numbers (¢;);cn for which X¢;=1, such that the measure P*:
=g/c; P, dominates the family 2. P* belongs to #’, and every element of P’
absolutely continuous with respect to P*. Obviously ¢, and 2’ induce the same uni-
form structure. Using Proposmon 2 we conclude that the space 2 is metrizable.
Perhaps it is worth mentioning that the condition (Q, o, 2) is dominated is the same
as A is metrizable.

Examine the properties of 2 under our fundamental assumption.

PROPOSITION 3. If W is U-complete then W is a complete Boole-algebra.

PrROOF. Let (A4));c;c2 be an increasing generalized sequence of equivalence
classes. Then — as we have seen in the proof of Proposition 1 — this is a Cauchy
sequence for every semi-metric gp, s0 it is a %-Cauchy sequence. From the assump-
tion it follows that there exists an equivalence class 4 such that 4; converges to 4 in
every semi-metric @p. So P(A4;\A4)=0 forevery i€/ and P€Z, and P(A\A4;)—~O0.
This means 4= V 4. O

From the proof of this proposition easily follows that if 2 is Z-complete then
every measure belonging to 2 is continuous for the lattice operations sup, inf, taken
for arbitrary — not necessarily finite or countable — many members of 2[. Namely
the following proposition can be easily proved.

PROPOSITION 4. Suppose that N is U-complete. If B is a subset closed for
finite union, then

P(\ A)=sup P(A).
A€B AcB

Outline of the proof. Since for every pair of equivalence classes 4, B belonging to
9B the union AV B belongs to B, the set B is a generalized sequence for the lattice
relation <. Slmllarly, as we have seen before it is a Cauchy sequence for every semi-
metric ¢,. So, using the assumptlon this generalized sequence is convergent to an

equivalence class, which is exactly \/ A.
Acs
Similarly, as we have seen before, the measure of the latter equals sup P(4). O
ics

Let P€Z. Obviously A (Z)cA(P), so one can construct the factor Boolean-
algebra N (P|P)=N'(P)|N (P).

CoROLLARY 1. If W is U-complete, then for every probability measure PcP
N (P|?) is a principal ideal in 2.

PrOOF. A" (P|#) is a subset of U closed under finite union, so the preceding
proposition assures

PL VY A= s P =
A€ N (P|P) AcH(P|2)

Thus 4°(P|#) contains a maximal element, it is a principal ideal.

We can reformulate this corollary using the o-field o7 instead of the Boolean-
algebra 2.
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Corollary 2. ITH is °Ucomplete, thenfor every PAAP there exists aset APsuch
that P(APD= 1 andif

(*)  BczAp is any measurable set with AA-measure zero then BA JAAA), i.e. Q(B)=
=0 for everyprobability measure Q belonging to thefamily AA

A statistical space having property (*) will be called “parcellable”. The set Ap or the
equivalence class Apis called the parcel of the measure P.

We already have seen two consequences of "-completeness, namely, the Boo-
lean algebra 21 is complete and the measures PASA are continuous with respect to the
sup, inf operations. Moreover, these properties imply the uniform completeness.
Precisely, the following proposition holds.

Proposition 5. 21 is dJ-complete if andonly i f
() 21 is complete as a Boolean algebra and
(i) 2L is a parcellable.

Proof. The ~-completeness implies (i) and (ii) by Propositions 3 and 4. Now we
prove the converse assertion.

Let (A;)ied be a generalised ~-Cauchy sequence from 2L Then for every P A",
(AiAA®iIIl is a Op-Cauchy sequence, consequently it has a op limit; denote this
by Bp.

Since P (Q\Ap=0, we may suppose that Bpc.Ap. This Bpis “mod Jf(SA)"
unlquely determined and BpAAg=BgAAp, for every pair P, QASA Let B=
= sup Bp. This exists, since the Boole-algebra 21 is complete. In this case

I))
BAAqg = sI,Dqu (BPAAQ = sup (BA Ag) = BQ
» pPC»

for every QAAA This means that Q (B\Bg)=0, so the generalised sequence
converges to the equivalence class B in the uniform structure ). Thus 2Lis A-com-
plete.

The properties examined above are closely related to other ones having been
introduced to assure the existence of minimal sufficient or pairwise sufficient c-field in
a statistical space.

Namely E. Hasegawa and M. D. Perlmann [10] have introduced the notion of
coherent statistical space. If (gPPé& is a class of random variables such that Os
=gP" 1 then this class is called to be

(i) finitely coherent if for every finite subsystem (P,)i=1.... nczAA there exists
a function gPl.... i suchthat gPl....P=gA Prae. (/=1,

(ii) coherent if there exists a function g such that g=gPP-a.e. for every PAAA

The statistical space (Q, sd, ?/) is said to be coherent if every finitely coherent
class of random variables is coherent. They have shown that this is a generalization
of the domination. On the other hand, the statistical space (12, sd, A®) is coherent if
the elements of AAare discrete measures and the ex-field sd contains every subset of Q.

D. Mussmann [14] examined the notion of weakly dominated statistical space.
The statistical space (Q, sd, AP) is weakly dominated if there exists a localizable mea-
sure Afor which JK(X)c:. A'(*>. (A measure Ais said to be localizable if every AA-sd
— for which JT(A)AO — has a subset Ba A with positive finite measure, and the
lattice structure of the space L°°(Q, sd, A is complete.)
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E. Siebert [17] proved that a statistical space is weakly dominated if and only if
it is coherent. He has introduced a notion similar to weak domination, the notion of
majorized statistical space. A statistical space is said to be majorized if there exists
a measure 2 on (Q, ) for which A/ (A)cA(#), and the Radon—Nikodym
derivate dP exists for every PEZ.

These notions are in a close connection with the notion of uniform completeness
and the existence of parcels.

PROPOSITION 6. If the statistical space (2, o/, P) is majorized then it is parcel-
lable.

PRrROOF. Let A be a measure which majorizes the measure family #. Denote by
f, the Radon—Nikodym derivative dP/dA. Let A,=(f,=>0). If Bc4,, BEo/ and

P(B)=0 then
[ LAl =6,
B

consequently A(B)=0, so BEA'(#). Thus A, is the parcel belonging to the mea-
sure P,

PROPOSITION 7. The statistical space (R, £, P) is weakly dominated if and only
if W is U-complete.

Proor. We shall show that the #-completeness is the same as to be coherent.

Suppose first that 2 is %-complete. Let (g,)pc» be a class of random variables,
0<g,,<1 having the property that for every ﬁmte subsystem (Pl .a= the
functions (g,)i=1,...» have “common version™. Since 2 is parcellable we can con-
sider the parcels A,,, PcZ. On theevent 4, the measure P dominates the class 2 so
for every Q€2 gox4,=8pXa, Q-ae. ¢ A -

Consider the function g,: 4,—~R. Its inverse mapping determines a o-homo-
morphism 7%, from B — the Borel subsets of the real line — into the principal ideal
generated by A of the Boolean algebra 2. Since

80XA,XAq = 8pXa,Xao MOd(A)
we have h,(B)Adpy=ho(B)A\A, for every Be%. Define now a g-homomorphism
h: Z-U as follows:
h(B) =\ h,(B) Be.
€

(This exists since 2 is complete as a Boolean algebra.) The homomorphism /4 can be
induced by means of a function g: Q—~R. (cf. R. Sikorski [18].)

Then, since h(B)/\A =H (B) for every B€%#, Pc? we have g=g, P-ae.
forevery P€Z. Thus (2, .sa( .@) is coherent.

Conversely, suppose that (Q, &, 2) is coherent. Let B A be a subclass closed
under finite union. In the factor Boolean algebra /A '(P|#)(=«/A(P)) it has
supremum i.e. there exists an event B,c/ for which P(B\B,)=0 for every Be®B
and P(B,)= sup P(B). Consider the family of random variables (yp)pes. Let

(P)i-y, ....s=?. In this case Q=-;i=Z;P,~ belongs to 2, and yp, =y, Pi-a.c.

(i=1, ..., n). Thus, using our assumption, there exists a function g for which g=yz,
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P-a.e. for every PpPP. Obviously P(Bpo(g=1])) = 0, consequently

(pl)= s

Be»
which means that 9l is complete as a Boolean algebra, and P(g= I):fs_up P(B).
1e»
Applying this for B~J/"(P\3P) we get that 21is parcellable. O

Lemma 1. Let PTasi be a a-ffieldfor which In this case the fac-
tor Boole-algebra PFIIi(PP) is a subset of the uniform space 21. The closure of
this set (in the °U-uniform structure) can be obtained in the following way:

I/-closure \3FI'V{03\="3"1Ji(03 where PA= U &&m>jT(P)).
pc»

Proof. Let (4)rac )J1 (PA) be anet, which converges to an equivalence class
A. We have to prove APPFjJi(3P). For every PfPL the net (A(nl is a Cauchy
net in the semi-metric gp, consequently there exists a Btp!F for which P(BpoA() —.
At the same time we knowthat P(A0A()-*0. Thus P(AoBp=0, i.e. APa(3T, XX (P))
for every PPPP.

Conversely, let ApIFIAi((P). For every PPBP there exists a Bf& for which
P(AoBp—0. This means that an arbitrary ~-neighborhood of A intersects the set
IF1Jf(®P), thus A belongs to the closure ofthis set. O

Lemma 2. Suppose that 2f is parcellable. Let fejj/ be a o-field such that
Ji(PP)ciS' andfor every measure PpSP the parcel Ap belongs to In this case
I/-closure [PRJr"EP)\={Af OMANAR.T/Ir(PAfor every PPPA).

Proof. Since Apis the parcel of the measure P we have

o {NpWNNAp<P&IAT(C>)} = o (N A (PP))1y(GA).
- {ApWN1\ApPPP) /T FP for every PP&} =

= 11 {APLWATApP LK(PP)) =
PC»

= PIEI: , Al(PA)IST(PP)\ = ~-closure [,/ (P)]. O
>
It can occur that the space 21 is not *-complete. But if we extend simultaneously
the space Q and the cr-field si we can achieve the uniform completeness. Namely, the
following lemma holds.

Lemma 3. Let (Q, si, 3P) be a statistical space. There exists two other statistical
spaces (Q1,sl1, PAY, (a0,s/0, “0) suc* that — roughly speaking — (120, s10, PAfi
is, isomorphic to (Q, si, PA), and (QI,s11,3PY) is a uniformly complete extension o f
C%SI,,, FR). Precisely, denote by 21x, 210 the corresponding sT(PPQ equiva-
lence classes of the e-fieldsslx, si0. Then there exists a measurable mapping f: Qx—(20
and a Boolean algebra isomorphism g: 21—2t0 suchthat

(i) PPAgPog-1

(i) f isonto, measurable, *o="i0~\ andif PXQXP3PX

then PX=Q Xon the whole e-field slx,
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(iii) the set N, is complete under the uniform structure %, determined by the mea-
sures belonging to 2,.

ProOF. Consider the space 21 with the uniform structure %.

If 2 is not #-complete then we can take its %-completion, that is a uniform
space — denote this by 2, — which is complete, and in which 21 is everywhere dense.
Since the Boolean algebra operations of 2 are uniformly continuous, these can be
extended to 2. Furthermore, it can be easily checked that 2[; will be a Boolean
algebra with these extended operations. Similarly, each function P€Z is uniformly
continuous, so each has a continuous and hence uniformly continuous extension,
which is a nonnegative, o-additive (since finitely additive and continuous) function
defined on the Boolean algebra 2I,. Thus these extensions are measures on the Boole
algebra 2I,. Denote their family by 22,. We choose the spaces ©,, 2, as the spaces of
the Stone representations of the Boolean algebras 20, 21, , i.e. 2, 2, will be isomorphic
to the o-field generated by the clopen subsets of ©,, 2, modulo the sets of the first
category. Denote 7, <, the o-fields generated by the clopen subsets of the space
Q,, Q,, and let A, A the ideal of the sets of the first category. In this case W,=
=L/ Ny, W,=ot,/N;. The Boolean algebras 2, 2, are isomorphic. Denote this
isomorphism by g: A —-A,. Since g1 (W) =AA,, there exists a measurable func-
tion f: Q,—~Q, inducing the imbedding. (See Sikorski [18].) Define the measure
family 2, on A, by means of the isomorphism g, and %, and %, on the o-fields .7,
and & in such a way that the measure of an event from &, or .2/ be equal to the
measure of its equivalence class (mod .4; and mod ./;, respectively). In this case
No=N(Py), N1 =A"(P,). The second part of (ii) is an immediate consequence of the
fact that 2 is dense in ;. O

3. Sufficiency

We begin this part with some well-known considerations. Let (£, &/, #) be
a statistical space. A o-field is called sufficient if for every 4€.<Z the conditional
expectations E,(x4|#) have a common version (cf. P. R. Halmos—L. J. Savage [8]).
A subfield #FC.o/ is said to be pairwise sufficient if it is sufficient for every pair of
measures belonging to the class 2.

The sufficiency of a o-field Z is equivalent to the sufficiency of the o-field gene-
rated by & and A7(2). It is easily seen that a o-field  is pairwise sufficient if and
only if the o-field () o(F, /' (P))=F is pairwise sufficient.

Pe? .

On the other hand, if % and %, are two sufficient ¢-fields but they do not neces-
sarily contain 4 (2) then it can occur that the o-field %%, is not sufficient. For
these reasons we will suppose without explicitly mentioning that if we say “# is a
sufficient (or pairwise sufficient) o-field”, then /" (2?)C Z. (L.e., we are speaking only
about Z-complete sufficient o-fields.) In this case we may form the factor Boole
algebra F/A(#) which is a subset of the Boole algebra 2. Denote by S
(or S(Q, o, P)) the set of sufficient o-fields and by V (or V(R, o, 2)) the set of
pairwise sufficient o-fields. The following lemma will connect the notion of the suffi-
ciency and that of the uniform structure.

LEMMA 4. If F is a sufficient o-field, then F | A (2P) is a closed subset of W in the
topology induced by the uniform structure .

Acta Mathematica Hungarica 45, 1985



208 F. GONDOCS AND G. MICHALETZKY

¢ .00 Let (ADilzlciS'jXK (S) be a generalized sequence which converges to an
equivalence class J1A3!. Since S' is a sufficient tr-field, there exists arandom variable
which is a common version of the conditional probabilities Ep(xfEE) for every PEX-
Denote this random variable by E(xal"O- We will prove that the event
{E(Xa\Sr) = I}ESr determines the same equivalence class as A, implying AE S'*(S).

Since the generalized sequence (A} lel converges, it is a Cauchy sequence for
every semi-metric gp. Since AfS”, and S' isa cr-field, by Proposition 1there exists
an event BpE$E such that P(AioBp-*0 for every PES. On the other hand,
P(A,0A)-*-0, thus P(AoBp=0. This implies that P({E(XA&)=1}°Bp=0.
Thus P(Aw{E(xa\")= I})-*-0. This was to be proved. O

We have seen that the uniform completeness is equivalent to the properties that
3l is parcellable and it is complete as a Boolean algebra. We examine further the
consequences of these properties.

.......... ». Let (12 si, EE) be a statistical space, EEasi be a sufficient
afleld Suppose that EEPK (EE) |sparcellable In this case 31 isparcellable, too.

¢+ o o . According to our assumption, for every PES’ there exists an equivalence
class APE 3ERK (B9 for which P (Af)=1 and

Np = MAEEENK(0>): P(A) = 1}

where the A is taken in the Boolean algebra IFHK(09. Let AE_si be an event for
which P(A) =1 Suppose that . Since EEis sufficient the random variable
E(Xa\") exists. Let B={E(xa|*) = 1} In this case BES', §<AP and P(B)=1
Using the definition of Ap we have B = Af and consequently A=AP. Thus

AP =\{AEH: P(A) =\). O

,,,,,,, P Let (Q, si, EE) be a statistical space and let EEczsi be a sufficient
0- fleld" Then |f fo EEDK (B is afamily of equivalence classesfor which A=
—\JAIi exists in the Boolean algebra 31, we have JIEQ')K(EE). In particular, if 31 is

ia
complete as a Boolean algebra, then 1E/>K (EE) is a complete subalgebra o fthis space.

o0 Since S' is sufficient the random variable E(xa\&) exists. Let B=
—{E(Xa\")~ }» Then B-"A. Since AifS' and P(Ai\A)=0 for every PEEE
consequently P(A\B)=0. On the other hand, if CEEE and P(AAC ) =0 for
every PEE" then P(A\C)=0, consequently P(B\C)=0. Thus —\J At

where the supremumjs taken in the Boolean algebra S'/K (EE). Recalling B<A
this proves that B=A. O

In the sequel we shall deal with the existence of minimal pairwise sufficient or
minimal sufficient cr-field. A cr-field S'fV is said to be minimal if for every (ABX
we have EHicz(§8 where the bar denotes the same asin Lemma 1. A cr-field S'ES is
said to be minimal if for every (AES we have EEcz(S. (Notice that if (SES then

by Lemmas land 4.)

Let P, QEEE. Consider the generalized Radon—Nikodym decomposition

(i.e. the Lebesgue-decomposition and the Radon—Nikodym derivative of the abso-
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lutely continuous part) of the measure P with respect to Q. According to this there
exists a set N with Q-measure zero and a random variable X such that for every A€o/
we have
P(4) = [ XdQ+P(ANN).
ANN

PrOPOSITION 10. If F€Y" then the above random variable X can be chosen to be
F measurable and the set N to belong to .

PROOF. Since # is sufficient with respect to the class of measures (1/2(P+Q),0)
the Radon—Nikodym derivative Y= i

d(1/2(P+0Q))
surable (cf. . P. R. Halmos—L. J. Savage [8]). Let N=(Y=2) and

can be chosen to be %-mea-

P
349 i on the set O\ N,

0 onthe set N. O

Suppose now that 2 is parcellable. For every P, Q¢Z take such a version of the
generalized Radon—Nikodym derivative dP/dQ whlch vanishes off the set Ay. This
can be done since Q(Q\ A4y)=0. Denote by Z,, the o-field generated by this
Radon—Nikodym derivate and the ideal /4" (2). Let
(%) Fo = 0(Ag, Fp,05 P, QEP).

THEOROM 1. If W is parcellable, then Z, is a minimal pairwise sufficient c-algebra.

Proor. First we show that &, is pairwise sufficient. Let Py, P;€Z2. Denote

=1/2(P,+ P;). Since Ay€%, and the Radon—Nikodym derivatives have %,
measurable versions we have that for every A¢€.o/

EQ(XA[’Q;O) = Erl(XAl Fo|) Pjae.
Eo(ralFo) = €2F(XA'|=9°~0) Py-ace.

Now let ¥cV. We shall show that 4,€%. Since % is pairwise sufficient, in view
of Proposition 10 for every  Q¢Z there exists an event B,€% for which
O(B,0(A,\Ap))=0 and another B,t% for which Q(B,o(4,NAy))=0. Con-
sequently

A, = (4,49 U(4,NAx)Ea(%, /(Q))

Thus A4,£%. On the other hand, on the set 4, the measure Q dominates the class of
measures 2, so on this event the ideal A~ (Q) is the same as the ideal A" (2). Con-

sequently — since AQE? we have %, Qc:g ‘Summing up, FC¥%. O

Observe that #,=%, does not necessatily hold. Denote '#, =%, . According to
Lemma 2, we have

F, = {A€ A|ANA,E Fo| N (P) for every PEP).
THEOREM 2. If W is U-complete, then F; is the minimal sufficient o-field.

14 Acta Mathematica Hungarica 45, 1985



210 F. GONDOCS AND G. MICHALETZKY

Proof. It is enough to show that S' is a sufficient cr-field since it is minimal
pairwise sufficient (by Theorem 1) and obviously every sufficient cr-field is pairwise
sufficient. Let ACsi. Denote

p\xp={Bz*ujrm\B"x,}.

Since the conditional expectation EffiyfS'f is unique “mod Ar (38)" on the event Ap
consequently the inverse mapping of E fy fS 'fmdp->R determines a homomorp-
hism hp: 38-+S"\z (where 38 denotes the Borel subsets of the real line). In this case
hp(B)NAQ=hQ(B")AAp for every BE38, P, Qc38. Let h(B)= V hp(B).

Since S'JjV (38) is */-closed and (hp(B))Pig>converges to h(B) in the *-uniform
structure we have h(B)EAYAr(S> Consequently there exists an S'x measurable
random variable X: £2-»R which induces just this homomorphism. On the other
hand h(B)AAp=hp(B) for every Bf38 PC38 so X isthe common version of the
conditional expectations Ep(yniSf). Thus S\ is a sufficient cr-field. O

Corollary 3. Just as we have proved that 3EXis a sufficient cr-field, it can be shown
— under the assumption that 91 is °U-complete — that if 48is a a-field which contains
the o-field S\ andfor which 32/J,r (38) is a °ll-closed subset of 91 then *8is a sufficient
afield.

Thus a cr-field sufficient if and only if it contains the cr-field 3-Land its factor
algebra— mod Ji(38) —is ~-closed. Observe that the assumption of this corollary
can be weakened, since we used the "-ciosedness to imply the lattice completeness
when we defined the homomorphism h.

Thus a cr-field *8is sufficient if and only if it contains the cr-field ifi, and its factor
lattice 8I.Ar(38) is complete as a Boolean algebra. In the dominated case this means
that a cr-field is sufficient if and only if it contains the minimal sufficient cr-field. This
is well-known.

Corollary 4. If (8i)til is an arbitrary — not necessarily countable — sequence

of sufficient a-fields then the a-field 8= is also a sufficient a-field.
izi

Proof. Since ific”; for every /E/, ific <8 On the other hand, f#)K (38)=
= M 8i/Ar(SY, the sets 82JT(0f) are ~-closed, thus their intersection is also 3/-do-
ni

sed. This was to be proved. O

Remark. We will use the notation of Lemma 3. Suppose that 91 is not ~-com-
plete. According to Lemma 3 there exists a uniformly complete extension 91Xof the
space 91 which can be regarded as the equivalence classes of a suitable statistical
space (Q1,ja/l, 38f). Here the measures PC38 are in a one-to-one correspondence
with measures PC 38 established by the mappings g and /.

Given a sufficient cr-field denote

*+={AZst{ Aeg(3P/(38))},

S' ={A3 s4x\ thereexistsBEifi: f~ 1(B)=A}

0 = ~ -closure (S'l.Ar(38i)), <8—{A3sex. M13L,.
and S' are automatically sufficient cr-fields for the statistical space (QO, 5/0, 38f
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and (Q, f(), 2,|f (), respectively. We will show that & is also a sufficient
o-field for (Q,, <, ?).

Let A€, be an arbltrary event, and consider another event B¢¥. There exist
two . generalized  sequences (A,),E 1€y, (B)jcscY,, for which ( FUA))icr

converges to the equivalence class F LY g (B ) s converges to B. Bemg Z sufficient,
the fol]owme equatlon holds

f E(ts-14y|F)dP = / XAs-1ap dP
s-1B; i)
whele E(xs- 14y|F) is the common version of the conditional expectations
Ep(Xf 1(“].97) First take the limit with respect to the index j€J. Since P(Bof~1(B)))
converges to zero for every P€2,, and E(f~1(4,)|F) are bounded (ic]), we get

fE(Xf'l(A,-)lg:) dP = fo-l(Ai)dP-

The random variables E(y;- 1(,,)]97) form a stochastically Cauchy convergent
sequence for every P¢#,. For, if ¢>0 then

P(IEGLr -1yl )= E(r-104pp| F)| = €) =
= P(E(ts-14p — 15- 1)l |F) = &) = P(f (4D f ~(4p))e.

Consequently for every P€2, there is an & -measurable random variable X,-which
is the stochastic limit of the sequence E(y,- 1(,4)]./') under the measure P. ® is a
U, ~closed subset of the %, -complete space 2, , consequently it is also %;-complete.
Thus G NA"(P) is a principal ideal — see Corollary 1 — for every P€#;, and so
there is a %-measurable event B; such that P(B p=1, and if B€¥ and BCB;,
P(B)=0 then BeN(P,). Consequently, each X isunique mod A(%,) on this event
Similarly, if P, Qc%, then the restriction of these measures to the o-field ¢ are
absolutely continuous on the event B,(1Bg with respect to the other one, thus
X;# X5) N BN BaC N (Py).

We may define homomorphisms %, from the Borel subsets of the real line into
F |/ (2,) using the restriction of the 1andom variables X to the set A; as in the proof
of Theorem 1. Let h(B)= sup h,(B) for every BeZ. (The sup is taken in the lattice

®.) Observe that A(B)€®. Thus there exists a %-measurable random variable X for
which P(X#X,)=0 for every Pc2,. This is the required conditional expectation. [J

. The converse of this assertion is not true. Namely, if ¢ is a sufficient o-field of
(Q,, o, P ) then the o-field

= {A€ o/ |there exists a BEY for which g(d) = f(B)}

is not necessarily sufficient in the statistical space (@, &, 2).
Denoting by % the minimal sufficient o-field of (Q;, <4, 2;) — this always
exists —, the following assertion is true.

PROPOSITION 11. There exists a minimal pairwise sufficient o-field in the statistical
space (R, &£, P) if and only if the o-field F ={Ac | there exists a BEF, for which
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g(A)=f(B}} is pairwise sufficient. In this case this J* is the minimal pairwise suffi-
cienta-jield.

We omit the proof of this proposition. Observe that the er-field J5'is—roughly
speaking — the intersection of the tr-field  and srf.

We have seen in Proposition 9 that if the Boole-algebra 21 is complete and J5
is a sufficient er-field then the Boole-algebra AFIJfffi?) is also complete. In addition
to this, the Boole-algebra completeness of 21 has also other consequences, namely in
this case an assertion similar to Corollary 3 of Theorem 2 holds.

More precisely, let J5'and  be two tr-fields, such that oVfficzIF and
the factor algebras tWj.WiP) and are complete. In this case if S' is a suffi-
cient tr-field, then ~is also sufficient. The proof of this assertion is tedious and will be
the subject of another paper.
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LARGE DEVIATION RESULTS FOR WAITING
TIMES IN REPEATED EXPERIMENTS

T. F. MORI (Budapest)

1. Introduction

Let Z,,Z,, ... be a sequence of independent, identically distributed random
variables with a finite set of possible values Z. Let 4; (i=1, 2, ..., r) be finite sequen-
ces of length k over X and denote by 7; the waiting time until 4; occurs as a run in the
process Z,, Z,, .... '

We shall prove a large deviation type result on the asymptotic independence and
exponentiality of the stopping times ;. The method of proof is a refinement of the
reasoning applied in Mori and Székely [6], where a limit theorem is proved for the
waiting time for pure runs (homogenous patterns) of arbitrary events by reducing the
joint distribution problem to the asymptotic exponentiality of the minimum waiting
time.

Our results verify the observation that the limit behaviour of extremals of wait-
ing times for runs can be computed in the same way as extremals of independent
exponentially distributed random variables. For example, if #» urns are given and
balls are placed at random in these urns one after another till there is at least one ball
in every urn, then the number of balls needed has a double exponential limit distri-
bution as » tends to infinity (Erd8s and Rényi [1]). The same limiting behaviour is
found for the maximum of n independent, exponentially distributed random variables
(with expectation n). A great number of papers is devoted to the systematic study of
similar problems in more general situations; here we refer only to Ivanov and Novi-
kov [3] and the handbook of Kolchin, Sevast’yanov and Chistyakov [4].

2. Results

In order to formulate our results we need first some definitions and notations.

Our calculations are facilitated by the leading number algorithm described in the
paper of Li [5]. Let A=(ay, a,, ..., ;) and B=(b,, b,, ..., b) be two sequences
over X. For every pair of indices (z, j) write

s _{P(Z:b,-)'1 if 1=i=k, 1=j=10D andioa;=b;,
5710 otherwise.
Then define
A ‘*B = 611522"‘5kk+521632"‘6k,k—1+"'+5k1'

This quantity describes the overlapping between 4 and'B, and for any finite collec-
tion of sequences of possible outcomes it provides a method to compute either the
expected waiting time till one of them is observed in'a run of experiments, or the
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probability for each sequence to the first to appear. E.g. the expected waiting time for
a single sequence A is exactly A* A,
For A=(al, ak) let P(A) deEote the probability of obtaining A in k succes-

sive independent trials, i.e. P(T)= £ P(Zt=afi
I=X

Consider the sequences Ar,A2 ..., Ar£Zk and the related stopping times
rl t2, ..., tr defined in the Introduction. Denote

w Aj *Aj
Isi'st aj At *At e
Theorem 1. L€t x15 X2, ..., Xr be arbitrary positive numbers. Then

b=K2 PW, c-
i=1

(t=rr) exp(-'1r5rI,|*9®

- Pi,m ], <,)exp(i X)s (-££) exp(cd *)
ifb~ 1/8.

Let us specialize our result to obtain some wellknown theorems. For applications
we must be sure that cis small enough. This trivially holds if the sequences At are pure
runs of different outcomes, so the urn model described in the Introduction is an impor-
tant field of immediate application. As an example we prove

Ar*Ar

coronrary 1. (i) Let | consist of n equally probable outcomes and denote by
vm(n, k) the waiting time until pure runs o f length not less than k (c> 1) are observed
for all but m elements of Z. Let m befixed, kK may vary with n. Thenfor every real
numbery
m |
lim P(n~kvm—ogn < v) = e~e~yj>37re~3y.

(ii) Trying N experiments we denote by £N(n, k) the number ofthose elements of Z
for which we have not observed a run o flength not less than k. I fnandN tend to infinity
such that n exp (—n~kN)-+X>0, then the limit distribution of £N(n, k) is Poissonian
with expectation L

The two parts of Corollary lare equivalent and they are usually proved by means
of generating functions (cf. Ivanov and Novikov [3]), or by using general theorems on
Poisson approximation such as Theorem 1 of Sevast'yanov [7].

The requirement ¢—0 is met also in the case when r is fixed and A1,.A2, ..., Ar
are starting sequences of length k of given infinite sequences over Z not Containing
each other. Thus let Ai—ail,ai2 ...), i=1,2,r be infinite sequences over Z
such that for every pair of indices (/,/), iAf and nonnegative integer m, Aj"

ai,m+2, =)o | et Ai(k) stand for the starting subsequence of length k of At
and denote by zfk) the corresponding waiting time. Let nt be defined as ,°(d;(m))
if Atis a pure periodic sequence with period m (i.e. mis the smallest integer for which
aij=aijm>j —1>2, ...), otherwise let 7;=0.
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Corollary 2. We have
lim P(PAI(K)ri(k) > yit i=12 ..., =-exp(- #%ﬁl~“)n)

for arbitrary positive numbers yr,y2, ..., yrm

3. Remarks

1 Theorem lasserts that the waiting times T;divided by their expectation behave
approximately like independent, exponentially distributed random variables, at least
in the domain «

1) Zxiroib-)

) i2:|x, = o(c

The first relation here is for the exponentiality while the second one implies the
independence. Our theorem is sharp in the sense that neither (1) nor (2) can be weake-
ned. We give three simple examples to show this.

(i) Let x denote the waiting time until a given outcome of probability p occurs in
repeated experiments. Then E(x)=I/p and by Theorem 1 P(x>~n)enp-*1 if p-*0
and rip2-*0. Let np2*k>0, then

P(x > n)erp = exp (nlog (1 —p )+ np) —exp (—HA+0(1)).

(i) In the following example we consider the waiting time for a /c-run of a given
outcome with (fixed) probability p. A detailed discussion of this case is given in
Feller [2], XII1. 7. 1t is shown there that

I-pz
PN =04 1 —kz')qznia
where g=1—p and z=\+qpk+(k+V)qd X+ O(kspH) as k>
Since
— 1~Pk
E(X)=p x+p 2+..+ .
(¥)=p x+p P aph

Theorem 1 asserts that
P(x > nyexp[jzp-k ") “m1

if k-*00 and nkp2k~*0. Suppose conversely nkp2k-*X>0, then by a short calcula-
tion we obtain

P(x > n)exp nj ~z~" exp (qpkn) -

~exp (<" +Yy)aP2n\~exp(—q2X).
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(iii) The necessity of condition (2) is verified below. Tossing a coin we consider
two competing sequence: a pure head run of length 2k and a run of k heads followed
by k tails. Denote the corresponding waiting times by rx and +2, resp. Then
E(r)=22+1—2, E()=22 b—kI~Z+2 c=2~k and from Theorem 31 of
Li [5] £(a) = (24+1—224+1)/(3 «2Xk—2k—2) where a=min (rx,r2. Our Theorem 1
asserts that

142 -%« - - e ons > 24 ~«P (3 7)
if x=0(2K. Now let x=X2k (2>0), then Lemma 3 in the proof of our Theorem 1
implies
P(2_2ta > Xx) exp
2. Our results can be generalized by allowing the sequences Ax, A2, ..., Ar to
have differrent lengths kx, k2, ..., kr. In this case b should be defined as
(Igll%xr kt) igll P(Ai). Ifrisfixed and we are not interested in large deviations, then the

same proofas in Mori—Székely [6] shows that conditions ¢-*0 and _y'| ktP{A") —0
1=

are sufficient for the asymptotic independence and exponentiality of the waiting times
. When e-bO, the joint distribution is approximately of Marshall—Olkin type.

3. An open problem. The following question is beyond our reach. Tossing a coin
let us denote by T the number of experiments tried until every possible head-and-tail
pattern of length Kk appears as a connected subsequence of the outcomes. Describe the
limit behaviour of Tor at least of E(t). Theorem 1does not apply to this case, because

% X
b=k i P(AY = K, i Aj *A; = k2k hence c~2——l

Theorem 3.1 of Li [5] offers a method for computing the exact value of E(t), since the
maximal waiting time can be expressed in terms of the partial minimums. This sieve
formula, however, seems to be hardly evaluable even for small values of k.

4. Proofs

The proof of Theorem 1will be based on a sequence of elementary lemmas. The
first one is perhaps not new. It asserts that, roughly speaking, a nearly memoryless
distribution is nearly expgnential.
-bludljo)torlr s ya Msnlp.%- - ybélMsyrnoo oaoqqusS ;-

Lemma L1 Let cube a nonnegative random variable. Suppose

XXP(<x > x+y) S. P(a > jc)P(a > y) é x2P@ > x+vy)

for arbitrary positive x, y, where 0 *x 1" [*x 2=  Then there exists a positive num-
ber Xsuch that
(3) ¢ XE(a) bl x2
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and
4 e = P(a=>x) = xpe
hold for every positive x. '

PrOOF. Denote G(x)=P(o=x). It is easy to see that

#"G(mx) = G(x)" = % G(mx),
hence
PP G (%1- x] =-G(x)"" = xDPugtG (—'IZ:— x]

for every positive integers m, n. Thus

ARG
x;/y G(y)lly v x}/}’

lIA

where x, y can be arbitrary positive numbers. From this it follows that G(x)/* con-
verges, as X -—oo, to a positive limit e~*(1=0). Then (4) obviously holds (hence
2=0), and integrating this inequality from 0 to - = with respect to x one obtains (3).

In the sequel we often refer to the following basic inequality. Let 0<=x,=
x;=...=x, and denote a= min 7;. Then

1=i=r

[IA

(5) Py =X et = Xo)i= Pl = X)B@E . ==X — %00 e = X, —Xp) =
= P(Ty > X135 5005 T = X)+ DP (0 =% 2k F 1)K
XP(ty = X—Xg—k+1, ..., T, = x,—X,—k+ 1).

In words, the probability of the event that the sequence 4;is not observed as a run up
to time x; (i=1, 2, ..., r) can be majorized by interrupting and then recommencing
the observation at the time x, (which is the earliest of all x;’s). The error of this esti-
mate does not exceed the probability of the event that there is ‘a run A; beginning
before x, and ending after x,. From this explanation inequality (5) appears immedi-
ately.

LEMMA 2. We have

Pla=x—k+1) 1

o =155 U b=1/4

A

PROOF. Let us abbreviate the fraction on the left side by 7(x). Clearly 7(x)=1
for x<k. Substituting x;=x,=...=x,=x and x,=k—1 into (5) we obtain
t(x) = 1+bt(x)t(x—k+1).

By induction it follows that 7(x) is less than the smaller root of-the equation
t=1+bt2, thus

2 5%l
1+y1—4b ~ 1-2b

if b=1/4, but this holds by supposition.

t(x) <
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Lemma 3. We have

-4b

© op("T=3V) s p(s88) * *)e‘ a4

and

7 exp(-tSt)s ot nbr4 *sTIG5Cexp(TTr)
Proof. The substitution x0=x, X1—X2=---—Xxr=y turns inequality (5) into

Px> x+y)SP(a> x)P(a>j) "
S P(a > x-f-y)+ bP(a =>x—fc+ )P(x > y—fc+ 1).

Applying Lemma 2 we find kmeeting the conditions of Lemma 1 with

-4b
«1=1, <<3_=:‘_| ap2®) 4, Y 1-5b
Thus Lemma 1 gives

iexexp (—xo—)x) ~ P~ j ex = x2exp ((L —xjx),

E{a)
which is just the assertion of (6).
On the other hand, Theorem 3.1 of Li [5] says that

g Pj(Ay*A,)=E(a) (i=1,2,..., r),

=i

where pj=P(a=Tj). Dividing by and summing it from i=1 to r we obtain
Is£ (i) iti Ai*Aj jli,Jfoj AAi*Aai~_ l+c

Now (7) follows from (6) by easy computation.
Lemma 4. We have

P(rx< Xy—fc+1,..., r < xr—ft+ 1) 1
P(tx< xI9 ..., Tr< Xxn) “ 1—b

Proof. Denote by trthe supremum in xfs of the left side. By Lemma 2, tiw
_[&rbr e From (5) we have
PGy > xy—fc+ 1, ..., rr = xr—fc+1) S
S P(a > xx—fc+ NP(T2> x2—xI5 ..., T = xr—Xi),
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further
P(tl> AJ, ..., Tr>Xr) £ P{dL > X)P(T2> x2—*i, ..., Tr> Xr-X j)-
—bP(a >mxi—+ 1)P(T2=x2— k+1, ..., r> xg—%+1)S
N (1—2b)P(a > xg—k+1)P(r2> x2—xq, ..., ir> xr—Xj)—
—b/r_IP(of >xrx—/c+1)P(12>x2—I5 ..., T, > x r—Al).

Hence frs(l -2 ft—PIr_1) 1, thus tris less than the smaller solution of the equation
/(1 —=2b—bt)=\, ie.

ir<ér(i_2b_((1~2b)_abph)- 74T if * -1/8-
Now we are in position to verify our main result.
Proof of Theorem 1 Denote yi=XiE(ri))=Xi(Ai*Ai. Without loss of gene-

rality we may assume y 1~y 2=-.-=yr- Firstwe show that
m ( I~7fc)r~' A P(TI m>Yy,) t
W v 1—6b J "PiXirNy)P{ar>Yb-Yn)---Pur>Yr-Yr-g

where a;=min (Tr, Tr+l, ..., ).
Startlng from the basic inequality (5) we can write

P(g>yX ...,Tr>yn >SYNDP(12>ya-Tib =~N1-1N)-
—PGd =  —c+ 1)P(12=y2Ji-fc+1, ..., T> M-Y1—c+l) S
S(I-btnr_i)P(ai >Pi)F(r2>y2-y 1, ....,rr>yr-y -

Applying Lemma 2 we obtain
» 4 b 1-7b
1 (i_2b)(i_46) ~ 1—6b’
and gli_?] follows by induction. ) ) )
e terms of the denominator in (8) can be estimated by Lemma 3 in the follow-
ing way.

f <«» yo-y,-0=r (g 1 =%*)
where
j—tA *A] ~((Ai* Ay*i—Ai-1* Ai-l)xi-1)’
hence
(©)] exp(—Y~5h Z) - 1)exp (z,) S exp (czi.
This calculation remains valid also for i=1 by defining x0=yo=0. Since zx+

+22+ ...+zr=x1+x2+ ...+xr, we can complete the proof by combining (8) and
(9).
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Proof of Corollary 1 The event (vm(n, k)>z} occurs ifand only if more than

m of the events A ~ {t,=z} (/=1,2, r) occur; so we can apply the well-known
identity (cf. Feller [2], IV. 5)
(10) P(yAn,K)>2)=T 1c-iy p'+w)5,Hmt
where
$ = z P{AhAh...AA

{.e. S, is the sum of probabilities of simultaneous occurrence for every /-tuple of
events. Moreover, if summation on the right side of (10) is taken from 0 to 2s, resp.
2sT 1, we obtain an upper, resp. lower estimate for the probability P(vm(n, /c)>z).
Hence the limit of the left side of (10) can be evaluated by taking limit by terms on
the right side.

In our case z=nk{\ogn+y) and by Theorem 1

(1mM8Ji+v1~PT ) (J+m+1)exP(-04-m+ 1) (logn+y))~

“jemes Y @0 (- OF M)
Thus

hm P(n~4m logn- Y)» I-2 o(j+ml DjlmA M -(j +m+1)y),
from which Part (i) follows by easy calculation.
To prove Part (ii) we observe that P(t;N(n, k)*m) =P (vm(n, K)\w/V).

Proof of Corollary 2. This assertion will follow from Theorem 1 if we show
that ~—, c>0 and

P(AIK)(AiI(K)*AiIK) - (1-9 )1
as K °°. Introducing the notations
Fm« = max {P{Z - a): ci@}, pmin=min~fZ <) <€T}
we can write b krpke thus lim b—0. On the other hand, if the length of maximal

overlapping between Aj(k) and At(k) does not exceed k—m (i.e. for t=1,2, ..., m
one can find u, I=*ulk—j suchthat &Jt+uAaiu), then

Aj (K)*Ai(k) 3=P(Mi(/c))_L(Fmex+ A  + -—-bFS,«) <
< (MM *AUE)PX(: -p T0)-1-

Since the infinite sequences Aj and At do not contain each other as a tail, k-+°°
implies m—°°, thus c-+0. In a similar way one can see that for large k, A”k)
overlaps itselfat length k —m (m>o fixed) ifand only if m is a multiple of the period
of”,. Hence

Ai(K)*Ai(k) ~P{At(k))~HI + nt+ nf+ ...),

completing the proof.
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ON THE DIRICHLET KERNELS AND
A HARDY SPACE WITH RESPECT TO THE
VILENKIN SYSTEM

S. FRIDLI and P. SIMON (Budapest)

1 Introduction. Given a so-called Vilenkin system, first we prove some inequa-
lities for the Direchlet kernels with respect to this system. Furthermore we shall show
a Hardy type estimation for the Vilenkin—Fourier coefficients. Our goal is to inves-
tigate the role of the boundedness of the sequence which generates the Vilenkin sys-
tem.

2. In this section we introduce some definitions and notations. Let m—
=(m0, m1, ..., mk, ...) be a sequence of natural numbers, mk*2 (fcEN:={0, 1, ...})
and denote Znk (kgN) the mktb discrete cyclic group where Z,,kis represented by
{0, 1, ..., mk—1}. If we define Gmas the complete direct product of Znt’s then Gmis
a compact Abelian group with Haar measure 1 The elements of Gmare of the form
(X0, XX, ..., xk, ...) (xkEZnk kEN) and the topology of Gmis completely determined
by the sets

L= {(x0,X!, ...,xk, ...)JEGm: xs=0 (j=0,..,n-1)}

(hEN*:=NY{0}, % :=(?,,,). Let us denote the cosets of 7)s by 7,(X):=x+7,
(XEGmn€N). Furthermore let

In(x, { (>0, ylt .06 /,,(X): v,, = Kk}

(XEGmk=0, 1, ...,mn—1, N). It is well-known [s] that the characters of Gm
form a complete orthonormal system Gmin LI1(Gn). The elements of G, can be ob-
tained as follows. Define the sequence (Mk, kEN) as M0:= 1, Mk+L:=mkM k (kf N),
then all nfN have a unique representation of the following form

n= kZ_On KMk (nk= 0, 1, ..., mk-1, k€N).

rn(x) = exp N (ns N; X = (Xo, XU **®)€(?,,,, i:=/-1)
then the elements of Gmare nothing but the functions [s ]

o N

(4/,, nEN) s the so-called Vilenkin system.
The Fourier coefficients of a function / ¢ L1(Gm) with respect to Gmare denoted

by f(k) (kEN) and let Snf:= f(;Of(k)4'k (UEN). The kernels of Dirichlet type are
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n-1
of the form D,,:= "~ 'Ik(nEN). It is known [s] that
=0
(*cl,>
") xiGman EN)

For an x=(x0, xt, ...)EGm we shall write bl:= ky , furthermore let jc:=

=0 Mk+
:=(xa, xu ...)EGm, where xk:=min [xk, mk-x k} (fcEN).

The concept of the Hardy space [4] can be defined in various manners, e.g. by a
maximal function /* :=5L|1_§> SMI'\ (fA LI(Gm), saying that/ belongs to the Hardy

space if f *EL1(Gn). This definition is suitable if the sequence m is bounded. In this
case a good property ofthe space {/€ T4GJ: f*c L I(Gm}is the atomic structure [4].
To the definition of our space of Hardy type for an arbitrary m, first we give the con-
cept of the atoms [7]. Aset icG,,, is called an interval if for some xEGmand nEN,
/ is of the form /= ngU I,,(x, K} where V is obtained from Zm by dyadic partition.

(The sets i/x, U2, m.c Z,,n are obtained by means of such a partition if

Ua= {0, ..., [« /*- 1] 1}, wme={[[tBLb 1 W - 1} ..

etc.; [ ] denotes the entire part.) We define the atoms as follows: the function

a(LL°°(Gn) is called an atom; if either a= 1 or there exists an interval / for which

suppac/, |u|*|/|-i and _fa=0 hold. (/| denotesthe Haar measure of I.) Now we
i

can define the space H(GJ as the set of all functions /=  n«- where as are

atoms and for the coefficients A we have 2" Na<0°. H(G,,)is a Banach space with
1=0
respect to the norm IJ(LI,::insz_ [7K].

(The infimum is taken over all decompositions /= i2=o/,a;.) It is known [7] that ||/]|
is equivalent to ||/**||i (ftL'iGJ), where f**(x) := sup l/|_11/ /| (Xs G,,, XEl and
| is interval). Since by(l) !

f*{x) = sup |/,,(x)|—l|/ é*)ll (xeGJ,

79!

therefore and thus H(Gmc:{f*LHGm): f*£L'(G,,,)}. Moreover these
spaces coincide if the sequence m is bounded.
C>0 will denote an absolute, although not always the same, constant.

3. Firstwe are concerned with the functions Dn (n£N).
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THEOREM 1. If n= 5’ m MEN and x€ G, N0} then
k=0

) 10,9)|=min . "1}

where jEN is determined by the condition x€I;\1I ;.
5 . )
1) [D,(x)|=min {n, -T}
(i) D,()] B

We remark that these two estimations can be essentially different from each other

if m is not bounded. However, for a bounded m, l—;—l- is equivalent to |T£l It is evident

. - mbl . SR,
that in the bounded case (i.e. for bounded m’s) we have —4——=

1 SR |

from which

follows

COROLLARY 1. If m is bounded then for neN and x€G,\{0}

|D,(x)| = C,, min {n, I?ll}
is true, where C,,=>0 depends only on m.

This is a known result [8]. Next we show that the boundedness of m in the preced-
ing estimation is necessary.

THEOREM 2. If the sequence m is not bounded then sup |D,(x)|-|x|=<-, where the
supremum is taken over all x€G,, and neN.

Let us denote by L, :=||D,|; (n€N) the n-th Lebesgue constant with respect to
the system G,,. It is well-known [8] that L,=O(logn) (n—<c). In the next theorem
we shall show a stronger estimation, namely

THEOREM 3. For all m we have

/ sup le| = 0(10g n) (n —»oo)

0=k=n
From Theorem 3 there follow some corollaries for multiple Vilenkin series by the
application of a paper of F. Moricz [6]. (The d-multiple (d=1, 2, ...) characters are
defined as Yy(X):= ]] P, ) (N=(Ny, ..., NJENS, X=(x, ..., xXD)eGY)-

Furthermore let S f the N th rectangular partial sum of f€ L'(GY%) with respect to
the system (¥, NEN") )

COROLLARY 2. For feL2(GY) set

5 S@
Pt IS¥f1 :
vend JLog (N+2)

where Log (N+2):=log (N, +2)-...-log (Ny+2). Then | fll2=C|flls-
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226 S. FRIDLI AND P. SIMON

COROLLARY 3. If f€L2(G4) and ayis the N-th (NeN?) Fourier coefficient of f
with respect to the d-multiple Vilenkin system then the rectangular partial sums S{f
converge almost everywhere, provided that

> lay[*Log (N+2) <=
NeN4

The statements of the above corollaries for the bounded case can be found in a
work of J. D. Chen [3]. (His proof for Corollary 2 is correct only for bounded 77’s.)
For d=1 Corollaries 2 and 3 are well-known [8], [9] (Corollary 2 only in the bounded
case).

: Further we investigate the space H(G,,). First we shall prove a Hardy type inequa-
Tity for the Vilenkin—Fourier coefficients. This claims that for a function f¢ H(G,,)

the quantity S’ k~f (k)| is finite, more precisely the following theorem is true.
k=1

THEOREM 4. There exists an absolute constant C=0 such that

Sk WI=CIf] (FEHG)

For the bounded case Theorem 4 was proved by J. A. Chao [2]. The proof is
based only on the atomic structure of H(G,,) and the next theorem shows that, in
general, this property cannot be replaced by the integrability of /™.

THEOREM 5. If lim sup m= oo then there exists an fe L*(G,,) such that f*cL(G,,)
and 3 k71|f (k)| =<.
k=1

This statement gives a negative answer to a question of J. A. Chao, i.e. that an
atomic structure for the space {f¢L'(G,): f*€L'(G,)} cannot be available, if the
sequence m is not bounded. Thus H(G,)={f€ L*(G,,): f*€L'(G,,)} is true if and only
if m is bounded.

In [7] we showed on some operators that these mappings are bounded from
H(G,) into L'(G,,), for example in the bounded case (and only in this case) the maxi-
mal operator of the (C, 1)-means of the partial sums forms such a mapping. It is of
interest that, on the contrary, the maximal operator of the so-called strong (C, 1)-
means is not (H, LY)-bounded, namely if

of i=sup SIS (fEL(G)

then the following theorem is true.

THEOREM 6. For all sequences m

sup{llaflls: fEH(Gy), IIfIl =1} =oo
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If @, (n€N) denotes the function @, :=r,- D), , then the a,’s are atoms and

” oan”l =

N g T e o T
=—— anlly = —— ;
2M, =1 TN e e T T ] Dl

Thus Theorem 6 is a simple consequence of the next lemma.

LEMMA. There exist absolute constants C,>=0 and C,=0 such that

2 C,logn é—:l- Dlp=Cylogn (m=2:31").
k=1

The right side of the lemma follows immediately from the above mentioned rela-
tion L,=O0(logn) (n—<=), the left side is a special case of a well-known result of
S. V. Bockariev [1]. Since the proof of the general Bockariev’s theorem is rather
complicated we shall show the lemma in a simple way.

3. Proofs. PROOF OF THEOREM 1. The statement of Theorem 1 is a simple con-
sequence of the following identity [8]:

co m—1 co
3 D,=¥,3 5 1Dy, (n= ZmMgN).
k=0 j=mny —mn; k=0

Indeed, if x€I\J;, for some jEN then by (1) we get Dy, (X)=0 (k=>j) therefore

J ny — J=
DuI =| > i S Y| = kg:(m,‘—l)Mk-l—an,-<(nj+1)M,-.

s=my —n,

On the other hand, it follows from x€I;\I;;, that <|x[_i and thus

Mj+1 Mi
|D,(x)| = | Since ||D,||.=n (n€N), this completes the proof of (i).
To the proof of (ii) we use again (3), i.e.,
"j
1D, = M+ M| 2 (ry
if — as above — x€7I;\/,,,. Furthermore we have
% ‘exp ___27U’1:l,- e B sin ___m:;x,-
. S| = 4 = J =
Isg’; (ry ) I 27ix; ' e REIE 4 Y
exp ——=L—1 sin
mj mj
1 & 1 _ m;
S SRR e
sin sin
15 n
from which |D,(x)|=M;+ M’fl = Mf“ é—%- follows.
2% X; | %]

This completes the proof of Theorem 1.
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Proof of Theorem 2. Let X<EGM{0} be given and denote by JEN the same
index as in Theorem 1 Then by (1) and (3) we have for all n£N

24 = Bue 2 GO i 2 @I

j-1
2:00n*-1)Mk> M j\2 (ri(x))4- Mj,

_ K
i.e.
O

sinm
Since Sgl(rj(x))s\: sin-TCx thus for A -t?] and Xj :=»ij— it follows
that

sin n[>nr1ijy'/2\ .
i(rj(x)y\ = . 0 h,‘l'

Furthermore if x i elected then bl A—A8 o= """ 5 o e
urthermore s S0 selected then bl "grio=—Gia gy

From this we get by (4)

IAIX)]> 2\ [n fl *)’
which gives our statement.
We remark that on the basis of the above proof we obtain a lower bound for
Cmin Corollary 1
Proofof Theorem 3. L&t N= 2 «~Mkr N be given and choose such that

*=0
Ms*n< Ms+1. Then

f sup \Dk\= f sup \Dk\+ f sup \DK\=:Jx+J2.

For Jx it follows evidently that ./, = 1 Furthermore let us write J., in the

Ms+l
following form:

2= 2 1 9P \Dh=m2 I3
7—OJA\fj+1OLIJK—n J;m
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By Theorem 1 the following estimation is true for J,; (j=0, ..., s—1):

hj =

= Clogm;.

For j=s itisnecessary to give a finer estimation, namely by (1) and (3) for x€ I\ 7,
we get

m,—1

sup D@l = sup |3 S (n(9))Dy,(®)] =
0=k=n 0=k=n k,

t=0v=m.—k,

= sup |3 M, S ()

0=k=n v=m,—k,

where k= Zs’ k,M€{0, ..., n}. Therefore
=0

s—1 kg
sup D)) = 3 (m— )M+ M, sup | 3 (r, ()] <
0=k=n t=0 0=k=n v=1
s o T
sin 228
< M+M; sup u
0=t=n, . T
in
ms
and thus
.o TR
sin
mv
Jos =14+ M sup d
I:\’s+1 0=t=n_ sin s
mS
Consequently
o Xt
m—1 sin 1
Jog <1+ 2 su .
s x=1 0=t=n, .
sin
mS
and we need only to prove that
.« XL
5 g sin —
2 sup ——— = Clog(n,+1).
ms x=1 0§1§_'ls Sin X

s
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: m
To this end let q:=[ “], then we have
2n,
sin A sin -
1t m 1 [mef2] m
S =2— s 5. —
Mg x=1 0=t=n, X Mg x=1 o0=t=n, sin X
mg my
S TXD 2 Xt
gl sin 5 1 i sin e
=1 2 sup ———+4— > sup ———| =
Mg x=10=t=n, S . Ms x=g+10=t=n it X
£ s
.. XN,
1 mst [T 1 Mt q
ik 7 2 e mauw P fagmesc €
= T = :
e Voo i
. s ms
It is known [5] that
oo ToXTly
| my—1 [SiD—
—F% = Clog(ng+1).
mg x=1 .. X
sin

s

Furthermore for x€{g+1, ..., [my/2]} the elementary estimation already used above

1 _ my
. = 2x
sin
is true, accordingly ’
1 b2l g 1 [md2 [m,/2]
—_— = Clog—— = Clog(n,+1).
Mg x=g+1 sinﬂ 2 x%l X = q By

s

Summarizing the above facts we get
s—1
Jy = C( 3 logm;+log(n,+1)) = Clogn,M, = Clogn,
=0

which completes the proof of Theorem 3.
Proor oF THEOREM 4. Let f¢ H(G,,) be given, then by the definition of our Hardy

space the function f can be represented as f= >’ A;a;, where a;’s are atoms and
i=0
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S’ |A;]<ee. Therefore

i=0
S kTR = Sk S ha@| = 24 3 kA,
k=1 k=1 i=0 i=0 k=1

thus it is enough to prove that sup > k~'|d(k)| <o, where the supremum is taken

k=1
over all atoms a€ H(G,,). To this end let a€ H(G,,) be an atom and 7 denote such an
interval for which |a|<|I|™%, supp ac! and f a=0. (We may assume evidently

I
that a#1.) Define néN and y€G,, such that 7c1,(y) holds and » is maximal.
Since ¥, (k=0, ..., M,—1) is constant on I,(») thus d(k)=0 (k=O, ..., M,—1),
therefore

- o M, ,1~1

ZkMNaml=_2 k7@l = 2 kTa+ 2' kAR =: 2+ 22

k=1 k=M, k % M,y
Applying the Cauchy—Buniakowski inequality we get for 2*

Srs( 5 laGope( Z kr=c Nl < ¢,

n+1 n+l n+1

Let us write X' in the form

Mot |d(jMy+ K)|
25 g kg(') M, +k

and observe that |a(jM,+k)|=|a(iM,)| (j=1, ..., m,—1,k=0, ..., M,—1). From
this it follows that

3="5 M) S i =

mt [aGM)

= J
If the function 4 is defined on Z,, as

ARy :=m, [ a (keZ,),
I,(.k)

then 4(jM,)is the j-th (j=1, ..., m,—1) Fourier coefficient 4(j) of A with respect
to the (discrete trigonometric) system

2nikt

n

e.(t) = exp (t€Zy,, kK =0y .., my—1).

b e
Let us define a, b€{0, ..., m,—1} so that I=J I,(», k) and let c:=a+ b2a].
k=a
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Then supp A<z{a, b), A A(k) 0 and \A(k)\" r- — (k£ {a,Z)) Moreover

\a(jM, )\ = 2 A(K) {eXp er:’kj —exp—zmcj\

\k~cj (b-a)j m_ _ . b-a)j
we 2 — MWI—=""sc " wb-a -

from which we can establish the desired estimation in the following way (for the idea
see [4]):
Y @M\ " g \AQG)\ + g

7=1 J j=1 3 jA"mijb—a jantjb —a

e ey DV WAL TCHC By a2 SC

The proof of Theorem 4 is thus complete.

Proof of Theorem 5. Without loss of generality we may assume that mn*6
(6EN). Let Ak\=[mK2\+ I (kOA) and define the functions f k asfollows:

Mk+L  xE1k(o, 1)
fk(x) := ~MkH x€N1(0, dt) (xEGm, fcEN).
0 otherwise

It is easy to see that the supports offks, resp./*’s are disjoint and ||/Jli=||/**|li=2

(A€N). Therefore for the function f'-=k:20K fk (Aa‘c>0(£(=3N),kg0 the rela-
tion ||/]]i = |/*[li=2 2_0 istrue. On the other hand
y /WI -y y  LUQM+s)

*=1 K k=0j= s=0  jMk+S

where for fixed Aand s we have

\F(IMK+9\ = \2 0% tft(jMk+s)\ = KK\TKGMk+S\ = Ak\j f krfl =
K

2nij 2nijAk _2nij[mJ2v L
exp i exp K = K 1 —exp mk = 2Ak sin nj%rkJZ] C2k,
if Ak*j=1 (mod 2). Thus
k2=Ik~1\M\A*207lsOJKA)$<rT7 02_K72:(1n"02ni<o\ozm k.

] =12) =1(2)
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Since lim sup m=c we can choose a sequence of indices (n,, k¢N) such that

22 1
= m"k<oo. Define
A E— for some kEN .
A Bamy, o . ; (JEN).
0 otherwise

Then 2.0, k=1f (k)| =, aswas stated.
k=1

PROOF OF THE LEMMA. As it was already mentioned, it remains to show only
the left side of (2). First of all we observe that it is enough to prove

1
M kZ'Lk>C]og]M (meN,j=1,...,m,—1).
For such a j and n we get
Y.

i,
ka;z; L= jM fZ[ il = _]M [ 2D+

L8 N L

1 n—1 M n
+—=— 3 [ I IDd=idtd,.
SR A o

1990f Tell, ..o JM:} then k= Z"'k,.M,- and k,=j, therefore by (1) and (3)
i=0
for x€IlNI.;.(5=0; .sisn—1)

D=3 S Carm)=m,| 3 Ly 7S | =

0 v=m,—k, v=my,—k

= Ms(lg‘l (r, ()| -1).

From this it follows that

M, iM,, k,
Zibl=M3 [ (Z0r-1)=

’s\la+l L L Il\Is+l
= nxks X
M, 45 1,—1 ]M: m,—~1m.—1 m,
= kzb; mg Z x £ B m2 kZ P 2 Mn’
= s lsin i et
] ’nS
whereas
sin
m,—1m,—1 [m,/2] [m/2x] [m,/2] 2
s mgx xk s m
Mt e = Cm; =Cm;2 > x—=Clogm
s s 2
x=1 k=1 . X X k=1 Mg x=1
sin
m
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Thisimplies .
1 M
—_— D,| = Clogm,—1,
M, 1.\[”1";1” : i
Bic)
. I 2 |D,| = Clogm, (s=0, ..., n—1),
M,. In\I +1 =

if the m's are large enough. It is not hard to see that this estimation holds for all
myg's, therefore 4,=Clog M,,.
2° In the same manner as above we get

pois nxk
1 M m,—1 m
A, = — D m:1 e - A
. JMn 1;\}/:“ k§l kl ]Mn kz " xz' sin X
n
sin axk
m,—1 J [mn/2] J. k
R i - ——IECZ',LZSmE——IE
x=1 =1 . X x=1 JX k=1 n
sin
" m X m”/]
= e &2 sz][ /HXk =C [22 m;2xmix2—1 = Clogj—1.
X= 1 Jx x=[m,/2]j]

These inequalities prove our statement.
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CORRECTIONS TO “COMPLETE CONVERGENCE
AND CONVERGENCE RATES FOR RANDOMLY
INDEXED PARTIAL SUMS WITH
AN APPLICATION TO SOME FIRST PASSAGE TIMES”

A. GUT (Uppsaia)

In Section 5 of my paper [1] it is claimed that by using obvious modifications”
of previous proofs and the corresponding results in the classical case “one can obtain
results”, which are then given as Theorems 5.1 and 5.2. However, whereas the clas-
sical results corresponding to the results in the earlier sections are valid without
restrictions on &, this is no longer the case in Section 5 and the latter results therefore
have to be modified slightly. The corrected results are presented below.

THEOREM 5.1. a) Let r=>2. Suppose that EX,=0, EX}=0% and E|Xi| -
(log* [Xy))""P< . If

.1) > nCD-2P(|N,— Nn| > né) <o forall & >0,
n=1
where N is a positive random variable, such that P(N=A)=1 for some A=0, then
(5.2 S’ n®/D-2p(|Sy | > eV N,log* N,) <=, e>0c)r—2.
n=1

b) Let r=2. Suppose that EX,=0 and EXE< . If (5.1) holds with N as above,
then (5.2) holds for all ¢=0.

c) Let r=2. Suppose that EX}=06%<c and EX,=0.If (5.1) holds with
P(N=B)=1 for some B=0, then

(5.3) 2 n@=2p(|Sy | >eVnlogn) <e, &=>0cy(r—2)B.
n=1
THEOREM 5.2. a) Suppose that EX,=0, EX{=0% and that
log™ | X
2
£ log* log* |X;| oy
If
(5.4) 2% (.= Nn) = b} <o far all 50,

where N is a positive random variable, such that P(N=A)=1 for some A>=0, then
(5.5) > -,11- P(|Sy,| = e VN,log*log* N,) <=, &> 2.
n=1
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However, if (5.4) holds with P(AsN~SB)=I for 0 then EXf=
=4g2<00 and EXr=o imply that (5.5) holdsfor £>erJ|z E.

b) Suppose that EX*=<r2~z°° and EXx=0. If (5.4) holds with P(N"B)=1
for some B>, then

(5.6) - <SSl > e 1°glogm) < e>o0jlB.

Remarrk. A minor change should also be made in Theorem 2.1, namely that the
assumption should be “If, for some 6> 0, (2.1) holds (with e replaced by (5" and
the conclusion should be that “(2.2) holds for all e>0". As a consequence some e
have to be replaced with 6 in an obvious way.

Finally, as a consequence of the above facts, the formulas in part C on page
231 (which furthermore should have been numbered as (5.7)—(5.9)) are valid for all

ext/2/i-3 fff2 and o”2p~r,respectively, and formulas (5.8) and (5.9) in D should
have been called (5.10) and (5.11).
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3-CLOSED EXTENSIONS, SYSTEMS OF
FILTERS, PROXIMITIES

K. MATOLCSY (Debrecen)

0. Preliminaries

A space X having some topological property P is said to be P-closed if it is
closed in any topological space possessing P that contains X as a subspace (or equi-
valently, if it has no proper extension with the property P). Tf P = “to be 7V’ then
we get the well-known JT-closed spaces. Another important particular case of this
notion is P =*“to be '3" (where T3—regular+ M. T"-closed spaces were studied
firstly by B. Banaschewski [2] and generalized by C. T. Scarborough—A. H. Stone
[13].

From the point of view of the study of these spaces it is important to know all
regular and T3extensions of a space. D. Doicinov [s] characterized them by means
of systems 91 of filters such that
(1) any neighbourhood filter is in 91, and
(2) if RexeXR then there exists Ryex, for which r~91, o A{/?:3(Mr" imply
Rex".

_ Yisaregular extension of X iff it is a strict extension ([4], p. 215) and the system
9l ={oy(y)(M{-Y): € ¥} satisfies (1)—2), where uy(>) is the neighbourhood filter
of y£Y.

Starting out from a counterexample of H. Herrlich ([10], S. 20), D. Harris [9]
described the class of all Tj-spaces which have a  -closed extension. This method
is based on R- and /(C-proximities. Following essentially the terminology of [9], by
an R-proximity on a set X we shall mean a symmetrical relation b on ¢(Y) such that

(@) 05A for every AdX,

(b) AdA for every A%y,

() Ab{B\JC} ifand only if A6B or ASC,

(d) x€X, x<A implies x</?<T for some BdX, where E<F means
EbX-F.

A filter r in X is said to be round iff Rex implies R*R for some R}et. An
/(-proximity 5is called an RC-proximity iff

(e) N<2% ([ (THMr implies Ber for any maximal round filter r.

We say that an /A-proximity is separated, if

(F) x,yeX, X9ty imply x5y.

Any regular (I3 topology can be induced by a (separated) /(-proximity $as follows:

FdX isclosed iff xSF implies xeF,
or equivalently

VdX is open iff xeV implies x<K
The main result of Harris is that there exists a one-to-one correspondence between
the T|-closed extensions and compatible separated /(C-proximities of a T"-space.
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238 K. MATOLCSY

1. F-reduced extensions

Let ¥ be a topological space and uy(x) be the neighbourhood filter of Xx£ Y.
Y is said to be an S2-space iff x, yEY, oy(x)*oy(y) implies 060y(x)(n)oy(y)
(see e.g. [4]). Thus Y is T2iffitis TOand S2. Fis an Ss- (or a regular) space if whene-
ver xEX, FezY isclosed and x$F, then x and Fean be separated by disjoint open
sets. Analogously Fis T3if and only if it is Tnand regular.

If X is a subspace of F then F is called reduced with respect to X iff x£Y,
YEY—X, x @y imply ny(x)*uny(y) (see [4]). Fissaidto be S2reduced with respect
to X iff x€Y, yEY—X, uy(x)?ipy(y) imply 060y(X)(I'r>r(y) (see [5]). Fis
T2-reduced with respect to X iff it is reduced and ~-reduced, thatis xE Y, yE Y—X,
XpEy imply O£r>y(x)(IMOr(y) (see [7] and [11]).

The above “reduced separation axioms” express that F satisfies the corres-
ponding separation axiom as far as it is possible in spite of the unfavourable separa-
tion properties of X.

We shall say that F is S3-reduced (or regular-reduced) with respect to X iff, for
any xE F—X (x£Z) and any closed set Fc F such that x(fF, x and F (x and
F—X) can be separated by disjoint open sets in F. F is T3-reduced with respect to
X iff it is reduced and  -reduced. It is obvious that a regular space (T3-space) is
regular-reduced (Fs-reduced) with respect to each of its subspaces.

(1.1) Lemma. Any S3-reduced (Tn-reduced) space is also S2-reduced (T 2-redu-
ced) with respect to the same subspace.

Proof. If y6 F and x£Y—X suchthat py(x)~»y(y) then x£ {y} or y${x}.
In the first case x and F= {y} can be separated by disjoint open sets. In the second

one assume F={}. Then xEF—X, thus y and x have disjoint neighbourhoods
even if ydX. If Fis T3-reduced with respectto Athen y£Y, x£Y—X, x*y imply
Uy(x)"Vy(y), therefore the above train of thought can be applied. O

If A is a dense subspace of a topological space F then F is called an extension
of X. Y is a regular-reduced (T3-reduced) extension of X iff it is regular-reduced
(Fs—reduced) with respect to X.

(1.2) Theorem. A regular-reduced (T 3-reduced) extension Y ofa regular (T3-)
space X is always regular (a T3-space) .

Proof. Suppose that X is regular. If F is closed in F and x i F, then in the
case XEF—X, x and F can be separated by disjoint open sets. If xEX then there
are disjoint open sets V,Wc:Y such that xEF and F—XczW. The set FDF
is closed in X, therefore there exist open sets VO, WO of X, for which x£V0, FClXcz
cWu, VQrivVo=0. If are open sets in F such that VO—V]C\X and Wi=
=WI1C\X, then YIMW, =0 because of the density of X in F. Thus FfjF, and
1FUW are disjoint open sets containing x and F, respectively. If, in addition, X is
FO, and F is reduced, then Fis also Fo ([4], (6.1.16)). O

In order to characterize regular-reduced extensions let us introduce the following
notion:

Denoting always by 91 the family of all neighbourhood filters of a given topo-
logical space X, a system S of filters in X will be said regular iff
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(R1) anyfilter in <5 is regular,
and

(R2) if re9AUS then, for every FE€r, there exists WEX such that s6<2 implies
either or X—W Es.

<3=0 always satisfies these axioms, thus it will be called the trivial regular
system in X.

Let ¥ be an extension of the topological space X. Then 3(x) = ry(x)(IM{X}
(xf_Y) is an open filter in X, and it is called the trace filter of this extension corres-
ponding to x. We denote the system {s(p)\ pdY—X} by <Qy. If xEX then s(x)=
ux(x) is obvious. Y is said to be a strict extension of X. if the sets s(G)=
—{xE Y: Gds(x)}, where Gis open in X, form an open base in Y (cf. [4], ch. 6.1.b).

1.3) Theorem. The extension Y of the topological space X is regular-reduced
iff thefollowing conditions are satisfied:

(1.3.1) Y isastrict extensionof X.
(1.3.2) The system <ZY is regular in X.

Proof. If Y=X then Sy=0, and the theorem is trivial. Let ¥ be a proper
regular-reduced extension of X. Suppose that V¢ Y is an open neighbourhood of
X£ Y. We show x€s(G)cV for some open set G of X. If xEVf)X then there exist
open sets VL,W1czY such that x*V,, {Y—¥)—XczWj and ¥1MLL=0. Assume
G=V)VIf)X. Then G is open in X and x£s(G). Observe s(G)(~)X=GdV.
On the other hand, if p£s(G)—X and p$V, then L{C\Xan(p). Therefore GE£s(p)
implies W=Vi n\W1Z)GnW1=Gr)WLr\X£s(p), which is impossible, hence s(G)c
cF. In the other case, when XEV—X, we have open sets Vx,Wxc:Y such that
XEVX, Y-VczWi and WMLWL,=0. Supposing G=VxC\X, we get xf s{G) and
s(G)dY-s(X-G)=GYaVYdY-W xec F (cf. [4], (6.1.9)(a)).

We show that <ZY has the properties (RI)—(R2). s(p) is an open filter in X
for any pdY—X. If Gfs(p) is open then F=Y—s(G) is closed in ¥, and pfiF,
thus p£V, FczW, VIMW~0, where_F and W are open in ¥. From here pfVcz VYcz
c:Y—Wds(G), consequently Fn=VYC\X is a closed set in X, for which FOEs(p)
and F0<zs(G)r\X=G, hence s(x) is a regular filter in X. In order to see (R2) put
t£9lU<3y. Then r=s(x) for some x£Y. If F£s(x) and GcF is an open set
of s(x) in X, then Y—s(G) is closed in ¥, and does not contain X. In this case
there are open sets U, U'in ¥ suchthat x£U, (Y—s(G))—Xc:U' and UflU'=Q
Then W=ur[X"5{x) and Y-s(.X-W)=WYaO YaY-U"'as(G)\JXas(y)UX so
that pFY—X, X —Wi$(p) imply FE£s(p) (cf. [4], (6.1.9)(a)).

Conversely, let us assume (1.3.1)—(1.3.2), and prove that ¥ is regular-reduced.
Firstly suppose p£Y—X and let F be a closed set in ¥, p$ F. Then there exists an
open F£s(p) such that s(V)dY—F, and there is W”(p), for which either
V(Is(q) or X—Vds>(q) whenever qGY—X. In view of the regularity of s(p),

an open set U of Xcan be chosen such that UEs(p), UxcVT\W. We show s(U)Ycz
dY—F In fact, s(U)Yf)X=s(U)r\Xx=UxdVds(V). At the same time qf

£s(U)y—X implies 0?i.s(1/)n.s(S")=s(i/n»S") for each S£s(q), hence
From this X—U$s(q), and afortiori X—W8.s(q). We get F£s(q), that is gEs(V).

Thus s(U)Yczs(V)czY-F, so that s(U) and Y—s(U)r are disjoint open sets
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separating p and F. Let now x be a point of X, F be a closed set of Y, x $F. Then
choose V, Wazex(x)=s(x) in the same way as in the above train of thought, and
let UEvx(x) be open in X, UczVCIW. A similar consideration gives that s(U)

and Y—s(U)r separate x and F—X. O

(1.4) Corontary (Doicinov [8]). The extension Y of the topological space
X isregular iff Y isastrict extension of X andthesystem 91={s(v): yEF} satisfies
condition (2).

Proot. If the condition is satisfied then X is regular and Syhas (R1)—(R2),
thus Y is also regular by (1.2) and (1.3). Conversely, if Y is regular then it is regular-
-reduced with respect to X, therefore it is a strict extension and ®yis regular. Since
in this case the subspace X is also regular, any filter r£31 is regular. If REx then
one can choose Rffx such that Res or X —Rffs whenever s£3y. Put Rfx,
R$c:intxR and R3=R1C\R2- Itis easy to check that r'€9i, O|{/1s}(M)r" implies
Rex'. 0O

We say that a regular system <3 of filters in X isfree regular, if any filter s€S
is a free filter, i.e. Ds—0. Now (1.3) can be completed as follows:

(1.5) cororrary. The extension Y of the topological space X is T3-reduced
iff it is strict, the system Sy isfree regular, and z(p)Xs(q) whenever p, ge Y—X,
pP"q.

Proof. If Y is T3-reduced, peY—X, and XEX is such that xe C]s(p), then
s(p)ax>x(x), because s(p) is an open filter. For any WEvx(x), X—W cannot be
in s(p), thus ux(x)cs(p) by (R2), i.e. s(x)=ux(x)=s(p). Then the system
{vG): GE€s(p)=s(x)} is a neighbourhood base for p as well as for x, thus p=x
because Fis reduced, but this is a contradiction. Similarly, for p,qFY—X, i{p)=s(q)
implies p=q. Conversely, if the conditions are satisfied, then pFY—X, y£Y, pXy

implies s(p)Xs(y), hence F is reduced by [4], (6.1.17). The remaining part of the
proofis contained in (1.3). O

(1.6) Exampres. Let X be the natural topological space of the rational numbers
and Fbe the real line with the topology in which FcF is open iff, for any xdV,
there exists e>0 such that {x}U((x—e, x+€)C\X)ciV. Then Fis T3, but Fis
not a T3-reduced extension (in fact, it is not strict).

Let X be the real line with the deleted sequence topology of Yu. Smirnov (for
X?£0, ux(x) isthe natural one, and the sets (—e, &)—{l/m: w=I,2,...} form a base
for ux(0). Suppose Y=XU{p), p$X, s(/))={Scl: (x, >=°)c5 for some x£F},
and let F be topologized by the strict extension of the topology of X corresponding
to s(p). Then Fis lN-reduced, but not T3 (in fact, X is not regular (see (1.2)). O

2. Comparison of F3-reduced extensions

Let F and Z be two extensions of the topological space X. As it is usual, Fis
said to be a finer extension of X than Z (Z ~ F) iffthere exists a continuous surjec-
tion /: F—Z fixing X (i.e. /(x)=x for any X£F). They are called equivalent
(Z=Y) iff, in addition, / is a homeomorphism. The sign = reflects that we do not
distinguish equivalent extensions.
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In order to show that in the set of all r 3-reduced extensions of a given space
X the above order can be characterized by means of the systems of the trace filters
corresponding to the imaginary points, let us consider two systems ®I5 ®2 of filters
in X. We shall say that ®2isfiner than 0! (®>S® 2 iff, for any s2i ®2, there exists
Sxi®'! such that SjCs,, and conversely, for any 3x6®!, there is s2i® 2 such
that SxC:s2.

(2.1) Theorem. Let X be an arbitrary topological space.

(2.1.1) There exists a one-to-one correspondence between the T3-reduced extensions
Y of X and thefree regular systems ® offiltersin X. Y and ® correspond to
each other iff <s= ®y.

(21.2) If Y and Z are two T3reduced extensions of X, then zA=Y iff
®z"® r holds.

(2.1.3) Y and Z are equivalent iffeach of them isfiner than the other.
For the verification of the theorem we need three lemmas.

(2.2) Lemma. Let ® be afree regular system offilters in X and si®. Then
s has no cluster point. If s'i®, sXz', then 0is(f!)s".

Proof. If xiX then x$S for some Sis, and FcS for a suitable closed
Fis, thus X—F is a neighbourhood of x. If s'i®, s”™s' and e.g. sets', then,
for Fis—s', there exists IFis with X—WEs' by (R2). O

(2.3) Lemma. Let Y be arbitrary, and Z be a T3-reduced extension of X
such that ®zs£y. Then ZtXY.

Proof. The definition of ®zsi®r shows that ®z=0 is equivalent to ®r=0,
that is Z=X<=>Y=X, thus in this case one can consider the identity / of X. There-
fore we can assume ®z#0 and ®y”0. Put f(x)—x for each xiX. If piF—X,
then define f(p)=:q, where gq£Z—X is such that sz(g)asY(p). From (2.2) it
issues that there exists a unique point g*"Z —X with this property, hence by this
definition a mapping f\Y-+Z can be obtained such that \X=idx. If qfZ—X
then there is a point piT—X with sz(qg)czsY(p), thus f(p)=qg, consequently
/is a surjection./is continuous. Indeed, if yEY then, for each t/ioz(/(y)), there
exists Pi DyCr) suchthat f(P)dU. In order to see this, put Fisz(/(p)), sz(V)czU.
Since sz(/(p))i9lUO0z, there is W£Esz(f(y)) for which either Fis or X—IFis
whenever sif z, finally an open set G in X can be selected such that Gisz(/(>?)
and GcFflJF Owing to the choice of f(y), GEsr(y) is always true, thus the set
sy(G) is an open neighbourhood of y in Y (see [4], (6.1.9)(b)). Choose P=s{G).
If XiPITX then XxiGcF, thus Fip*(x)=sz(x), ie f(x)=x£sz(V)czU. If
XiP-X then sz(/(x))i®z by /(x)iZ—X. Gis7(x) implies IFisy(x). In this
case X—Fisr(/(x))c:sz(x) cannot hold, hence Fisz(/(x)), thatis f(x)Esz(V)a
cU. O

(24) Lemma. If ®x and ®2 are two systems offilters in X satisfying (R2)
then and ®24S 1 imply ®i=®2-

Proof. In fact, if Sji®! then there exists s2i® 2 suchthat SxCtSa, and there
exists sii®, such that s2csj. Thus SxCsj, therefore X—JFisx whenever
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WE€s[. By (R2) this means sjcsj, i.e. si=sl; hence sl=s2, and SiCSa.
SaCiSj is similar. O

Proof of (21). (2.1.1) is an immediate consequence of (1.5). (2.1.2): Suppose
Zsf, and let/be a continuous surjection of ¥ onto Z fixing X. Then f(Y —X)=
=Z-X. In fact, if p£Y—X, f(p)EX, then f(vy(p))-+f(p) in Z, and a fortiori
sr(p)=/(sr(™))*(p)> which cannot be true by (2.2), thus f(Y-X)(zz—X. Con-
versely, if q£Z—X then there exists >€Y with f(y) =q, hence y$.X by f(X)=X,
therefore Z —Xczf(Y—X). Finally it is easy to verify that if f(p)=q for some
PEY—X, qEZ—X, then sz(g)<zsr(p) issues from fAX=idx. If <Zz"<BY then
(2.3) gives ZsY. (2.1.3) follows from (1.5) and (2.4), because two reduced strict
extensions of X with the same family of trace filters are always equivalent. O

3. General 7Vclosed spaces

As K. Csészar [7] did in connection with HA-closed spaces, we generalize the
notion of T3-closedness for arbitrary topological spaces.

An arbitrary space X will be said to be T3-closed iff it is closed in every topo-
logical space Y that contains X as a subspace and is T3-reduced with respect to X.

(3.1) Theorem. For a topological space X, thefollowing statements are equi-
valent:

(3.1.1) X is T3-closed.

(3.1.2) X has no proper Ts-reduced extension.

(3.1.3) There does not exist any non-trivial free regular system offilters in X

(3.1.4) (cf. [10], S. 2). In X every regularfilter has a cluster point (that is Y is
an R(i)-space).

(3.1.5) In X every maximal regularfilter has a cluster point.

(3.1.6) (cf. [10], S. 2a). If 3B (2B) is an open (closed) covering of X such that
each M(z51 (W(XB) lies in the union of afinite subsystem of SB (33), then a finite
number o f the elements of 33 covers X.

First of all we prove a lemma:
(3.2) Lemma. Let X be a topological space.

(3.2.1) Any regularfilter can be included in a maximal regularfilter.
(3.2.2) If s is a regular filter and s* is a maximal regular filter then either
0£s(fl)s* or scs*.

Proof. (3.2.1): The set of all regular filters (ordered by the set theoretical inclu-
sion) satisfies the condition of the Kuratowski—Zorn lemma.

(3.2.2) If 08s(D)s* then s(fl)s* is also a regular filter finer than both s and
s*, thus scs((T)s*=s*. O

Proof of] 3.1). (3.1.1)-e>(3.1.2): If ¥ is a proper Fa-reduced extension of X
then XxY=XY, therefore X is not closed in Y. Conversely, if ¥Yis a space T3
-reduced with respect to X and X is not closed in ¥, then X Yis a proper T3-reduced
extension of X.
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(3.1.2) ~(3.1.3) is clear by (1.5).
(3.1.3) «=>(3.14): If s is a regular filter without cluster points then it is free, and
it is easy to show that the system {s} is free regular. The converse follows from (2.2).
(3.1.4) v=»(315) in view of (3.2.1).
(3.1.4) 0(3.1.6): If s is a regular filter without cluster points then let g and f
be an open and a closed base for s, and suppose B= {X—F: F£f}, 9B= {X—G: Gd
dg} Since Mg= MNf—0, Bis an open and A5is a closed covering of X respectively.
Any element of B(9B) is contained in an element of %(9B), but X cannot be covered
by a finite subsystem of B Conversely, if B(9B) is an open (closed) covering of X
satisfying the condition written in (3.1.6), but X cannot be covered by a finite number
of elements of 93, then the complements of the finite unions of the elements of B
form a closed filter base f. In the same manner we get an open filter base from 9B.
They are equivalent, i.e. generate the same filter in X, which is a free regular filter.
This cannot have a cluster point. O

(3.3) Corollary. Let us denote by 9i* the system of all maximal regularfilters
in a regular space X. Then we have 9lc9l*. X is T,-closed iff 91= 91*

Proof. Any neighbourhood filter in X is regular. Every ux(x) can be included
in a maximal regular filter r(x). XxCR for any Rdt(x), otherwise there is a closed
Fdt(x) with X —Fdvx(x), which contradicts ux(x)cr(x). Thus r(x)cox(x)
is also true because r(x) is open. These show 9lc91*. If X is T3-closed then every
rE91* has a cluster point x, and in this case r=nx(x) by (3.2.2). Conversely, if
91= 91* then every r€91* converges in X, therefore X is T3-closed. O

4. Tj-closecf extensions

By a T3-closure of an arbitrary topological space X we shall mean a T3-closed,
T3-reduced extension of X. A space will be said to be T3-closable, if it has at least
one T3-closure. This definition is similar to that of a generalized absolute closure
(in other words ordinary H-closed extension) given by C. T. Liu [11] (and also K.
Csaszar [7]) in connection with the property P = “to be TZ’. A Tj-space is T3-clo-
sable iffit is RC-regular in the sense of Harris [9].

A free regular system S of filters on the topological space X will be called
maximal iff ScS"' implies S=®' for any free regular system S' of filters in X.

4.1) Theorem. A T3-reduced extension Y of a topological space X is T3-
-closed iff the correspondingfree regular system Sy offilters is maximal in X.

Proof. Suppose that Y is T3-closed. We show that, if S is a free regular system
of filters in X, and SrcS, then Sy=S. In fact, assume s'€® —®y and put
5(5')= {Ec ¥: s(.S)c F forsome .STs}. sis)~® for any sds' and i(5Dflj(>S2=
=i(5inSJfj(s") for every SI5 S2ds\ thus s(s') is obviously an open filter in Y.
If Sdz' is open in X, then there exists such that either Sds or X —
for any sGS, in particular for every s(p) (pdY—X). Suppose S2ds' is open and

It is easy to show that 5(S2yC5(5), which means that s(s') is regular
in Y. s(s") has a cluster point xdY. Because of 5(g,)(IM){/1'}=5", we have 0$s'(D)r
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for some r£91UOy. Then s'Ar£91US, but this contradicts (2.2), therefore
0 —0y=0.

Conversely, let 0 r be maximal free regular. If 7 is not F3-closed then there
exists a regular filter r' in Y without a cluster point. Put s'—,(M{A}. Then s
is a regular filter without a cluster point in X, and what is more: 0£s'(Pi)s for any
SEQy. Thus 0 =0yU{s} consists of free regular filters. Assume r£9tUO0y,
FEr. There exists Vfx such that FEs or 7 —Fy€s for each s60r, and a set
F2r can be chosen with 7 —F2<&s. Putting W—VIC\V2, we have either F€s
or X—FCs for any s£0. If r=s' then, for every F€s\ there is an open Fgr'
in 7 with Rtl XczV. Assume Rlei' is open in 7, R\cR, finally put W= RxCIXds'".
Ifs60y, say s=s(p) for some pdY—X, then X—W~"sip) implies p*R\aR, thus
VEs(p). We proved that 0 is a free regular system of filters in X, which contra-
dicts the condition of the maximally of 0r. This means that 7 is F3-closed. O

(4.2) Theorem. A topological space X is T3-closable iff there is at least one
maximal free regular system offilters in X. In this case there exists an order iso-
morphism between the ordered set of all T3-closures and all maximal free regular
systems offilters of X. Two T3-closures are equivalent iff each one of them isfiner
than the other.

Proof. (2.1) and (4.1). O

Remark. A T3-closed space is always F3-closable. Then the unique maximal
free regular system of filters is the trivial one 0=0 (see. (3.1.3)). O

C. T. Scarborough—A. H. Stone observed that, if the topology of a space X
can be obtained as the supremum of an H(i) and an R(i) topology then it can be
embedded into an 7?(/)-space ([13], th. 3.20). We can extend this theorem for arbit-
rary topological spaces X as follows:

Let us denote by 0* the system of all maximal regular filters without cluster
points in X, and consider the strict extension a7 of X in which 0ax=0*, and the
correspondence existing between the points p£aX—X and the filters s(p)€0*
is one-to-one. (For F3-spaces this construction is due to P. Alexandroff [1]).

(4.3) Theorem. The space y.X is always T3-closed.

Proof. Let r be a regular filter in a7. Then r(M){7}=s is also a regular filter
in X. Ifs has a cluster point x in X, then x is a cluster point of r in aX. If s has no
cluster point in X then scs(p) for some pE£xX—X (see (3.2.1)), and p is a cluster
point ofrinyX O

We mention some open questions in connection with <xX (see also problem
Il of Harris [9] and cf. A. Cséaszar [6]).

(4.4) Problem. Look for necessary and sufficient conditions under which ocX
is a F.-closure of X. (Such a trivial condition is that y.X be Fj-reduced with respect
to X, i.e. 0* satisfy (R2).)

(4.5) Probiem. Does there exist a F3-closure 7 of a space X such that Y f ¥.X1
(This question is motivated by the evident property of aX that aXs.Y implies
aX=Y for any T3-reduced extension 7 of X.)
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(4.6) Problem. Does there exist a space X with a finest r3-closure different
from aXx1

It is well-known that in the partially ordered set of the r2-compactifications
of a Tychonoff space any non-empty subset has a least upper bound. As the following
theorem shows, in order that the partially ordered set of all  -closures of an arbit-

rary space have this property, it is necessary and sufficient that the space have a
finest T3-closure.

(4.7) Theorem. |f a non-empty subset of all Ta-closures of an arbitrary topo-
logical space has an upper bound, then it has a least upper bound, too.

(4.8) Lemma. Let ®x and 32 be two free regular systems offilters on a topo-

logical space X. If ©2 is maximal and, for any 0.6<32, there exists sx63 L such
that slcs2, then SI"S 2

Proof. It is sufficient to show that, for every there exists sab®2 such
that stcs2. Suppose that s~Si issuchthat §cfs2 for any s6®2. Then Sj$32
isevident. It will be shown that the system S 2U {st} is free regular, which contradicts
the maximality of 3 2. In fact, this system consists of free regular filters. Suppose
56Si- There exists such that either 56s or X —S16s for each s6©i-
If 56s26®2 and s6®i, scs2 then 5%s implies X—5x6s, hence X —S16s2.
On the other hand, put 56s26®2, and assume either 56s or X—SI1£s whenever
s6®2, where 572. One can choose 506sj with 506s2. Applying again (R2)
for Sx, we can find a set 506s, such that X —S06s2. Let us consider 52= 511
M(A—51)6s2. Then, for any s*6S2U {s,}, either 56s* or X—SZXs*. Finally,
if 0 is a neighbourhood filter in X then, for any F6», there exist sets Wx, IF%6d
such that X —fii6sl5 and either F6sa or X—\as2 for any s26<32. Put W=
=WIf\W2 in t= Then F$s* implies X—IF6s* for every s*6<S2U{sl}. O

Proof of (4.7). Let Z; (/6/F0) and Y be fa-closures of X such that Y
for any i6/. If 3; and 3 are the corresponding free regular systems of filters in
X, we have 3,73 foreach if£l. Denote by 3 +the system of all filters in X which
can be generated by a centred system of the form U 50 where s;62- for any

i€l
idl. If s63 then there exists s;6S; (i£l) such that sfczs, and s-is unique in
3; with this property by (2.2). Let r(s) denote the filter generated by |J st, then
eer
r(s)cs.
The elements of 3 + are free regular filters. In order to show that S + satisfies
(R2), suppose r691m®+. If F6r=0A(x) for some xdX, then there exists JF6r

such that (for a fixed index 6/) either F6s or X~Wds whenever s65f. If
s+6S+ and s+ is generated by the centred system 1J st (5;63-, i'67), then F$s+

ier

implies F6sf, thus X —W"sic:s+ After this suppose that r6S+ and r is gene-

rated by t(Js"s"Sj, i'67). If F6r then there are indices 2\ /2 ..., inEl, filters
a

n
Sj630 and sets Vi*Sj (j=U 2, ,n) such that f) VjCzV Assume ftfZsj
=1

(j=1, 2, ..., n), and for any s€<5ljt either f}6s or X —WjZs. Then IF=T1
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If s+f£4 and s+ is generated by .(€J/s— (s idl), then F$s+ implies
i

for at least one index ij, thus X—K aX —B$£sfics+, i.e. X—Wds+.

We showed that <3+ is free regular, hence there exists a T3-reduced extension
Z + of X such that ®Z+=S+. Using the filters r(s) (sd0), it is easy to verify by
(4.8) that Oi*S +~S, thus 3;=3 +=~ for any idl- Since Z+ is the conti-
nuous image of the T3-closed space Y, it is a T3-closure of X (see (3.1.4) and [13].
th. 3.6).

Finally letY ' be a T3-closure of Z suchthat ZtSY ' foreach idl. Put S'=Sr,.
If s'd<5' then there exists sf 3; with S;Cs' (idl), and the filter generated by
UI S; is contained in s'. Thus S+g S' by (4,8), thatis Z+sF. O
il

5. On AC-proximities

The method followed in the previous chapter and the close connection existing
between the T3-closures and the compatible separated 7?C-proximities of a T3-space
[9] motivates to characterize jRC-proximities by systems of filters. Our basic theorem
is the following one (cf. [12], (6.16)):

(5.1) Theorem. A system 91 o ffilters inaset X is the system of all maximal
roundfiltersfor a suitable RC-proximity on X if and only if it satisfies thefollowing
conditions:

(A) Forany xdX, thereexists r£9i suchthat xd Mr.

(B) If Rdxdfil then there is R fx such that, for each r'69l, either Rdf or
X —Rxdx'.

(C) 9l is maximal with respect to the property (B).

Proof. Let S be an .RC-proximity on X and 91 be the family of all maximal
round filters for <& Then 91 satisfies (A) by [9], 3.2. If Rdxd*R and is such
that RXR, then either Rdf or X—Rfif whenever r£9? (see axiom (g)).
Finally suppose that 9lc 9T, where 9T is a system of filters satisfying (B). Then
any filter in 91' is round by (e). Suppose r'£9T. r' is contained in a maximal round
filter r£91 ([9], 3.3). We show r'=r. In fact, if Rdx—x' and R fx, then neither
Rdx' nor X—R fx', which contradicts r, r£9?" and (B).

Conversely, assume that 91 is a system of filters fulfilling (A)—(C). Define a
relation $on  (X) by letting

AOB-t> there exists r£91 suchthat O([r(M){N1} and 0~ r((T){5}.
If we denote ASX—B by A<B, then
(5.1.1) 4<J»0(r(D){d} implies Bdx whenever r£9L

It is easy to see that ¢ is symmetrical, and it satisfies (a)—(c). From (B) it follows
that

(5.1.2) if REr£9l then there exists R fx with R,<R.

If xdX, x<A, then Adx, where xGflr, r£9t (see (A)). Suppose Bdx, B<A
and Cdx, C<B. Then xdC implies x<B<A, thus (d) is also satisfied, i.e. 5
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is an J1-proximity. Any filter r£91 is round in $by (5.1.2), thus it is contained in a
maximal round filter r'. For any REXx', there exists JIxér' such that A~J1. In
view of 0$r(M){/1x} we have REx by (5.1.1), i.e. r=r', thus any filter in J1 is
maximal round. Finally let x' be a maximal round filter in Q If r'|3i then O€r((T)r'
forany r£91 (see [9], 3.4), therefore from the roundness of r' and from the property
(B) of 9L it issues that the system J1 U {r'| also satisfies (B), which contradicts (C).
We verified that 91 is exactly the family of all maximal round filters in d, thus 6 fulfils
axiom (e), too (see (5.1.1)), i.e. it is an /IC-proximity. O

From (5.1) and axiom (e) one can deduce:

(5.2) Corolrary. There exists a one-to-one correspondence between the systems
offilters satisfying (A)—(C) and the RC-proximities on a set X. O

Let &<and <& be two JIC-proximities on a set X. Usually, & is said to befiner than
<hiff AS2B implies AbxB. We shall say that | is stronglyfiner than dis if in 02every
maximal round filter contains a filter which is maximal round in &. For Efremovich
proximities ([12], Definition (1.7)) these notions are equivalent.

(5.3) Lemma. If & isstronglyfiner than bt then <« isfiner than <u, but the
conversefails to be true in general.

Proof. If ABIB then there exists a maximal round filter r in b2 such that os
$r(M{N} and 0$r(M){N} by axiom (e). If tjczr is a maximal round filter in

then 0$r1(M){N} and 0$r:i(MN){N} implies AbyB by (e). Let us now consider
a T3-space X that is T3-closed but not compact (see [3]). Then there exists a unique
separated J1IC-proximity bxcompatible with the topology of X, for which any maximal
round filter agrees with some neighbourhood filter ([9], Theorem F and 3.2, 3.4).
Denote by <& the discrete proximity of X (Ab2B<=>AlBA0). Then b2 is obviously
an J1IC-proximity finer than <8, however b2is not strongly finer than d1? because
there exists a non-convergent ultrafilter in X, and it is maximal round in b2, O

(5.4) Lemma. Let X bearegular space. A system 3 offiltersin X is maximal
free regular iffit is the system of all maximal round filters without cluster pointsfor
a compatible RC-proximity on X. If Sx and 3: are two maximal free regular
systems on X then S>S 3: iff, for the corresponding compatible RC-proximities,
b2 is stronglyfiner than &X

Proof. If 6 is a compatible JIC-proximity on X then denoting by 91 the family
of all maximal round filters, 91=91US, where 3 consists of the free elements of
al (see [9], 3.2). 9 satisfies (A)—(C), thus 3 is obviously free regular (cf. [9], 3.1).
If 3" is a free regular system on X such that ScS"', then 91c9AUS' =91, Itis
easy to show that 91' satisfies (B), hence 91=91" by (C). Since 3'M91 =0, we have
3 =3", ie 3 is maximal free regular. Conversely, if 3 is a maximal free regular
system on X then one can show that 9=9US fulfils (A) and (B). Let 91' be a
system of filters in X satisfying (B) and 91c9l'. If we denote by S' the set of all
free elements of 91, then S' is free regular, and from S'M91=0 the inclusion
ScS' follows, thus S=S' and 91=91, i.e. 91 satisfies (C), and it is the set of all
maximal round filters of an J1IC-proximity Oon X. 6 is compatible, because \
iff r€91, x6Mr implies VEX. Butsuchan r€9l is in 91, thus it is the neighbourhood
filter of x (see [9], 3.4).

Acta Matnematica Hungarica 45, 1985



248 K. MATOLCSY

Let Sis 32 be maximal free regular systems in X, and X <& be the corresponding
compatible HC-proximities on X. Denoting by 9xand 912the systems of all maximal
round filters in $Xand <% respectively, we have 9?;=91U 3; (/=1,2). If
then S2is evidently strongly finer than SL Conversely, if S2is strongly finer than &X
then,for s2€32, there exists r1691: suchthat rxcs2. rxcannot be a neighbourhood
filter in X because s2 has no cluster point, therefore rxs Sxe From this ©ié o2
follows by (4.8). O

Harris theory of HC-proximities and T3-closures can be completed as follows:

(5.5) Theorem. Let X be a regular T3-closable space. There exists an order
isomorphism between the set of all T3-closures of X and thefamily of all compatible
RC-proximities partially ordered by the relation of the strongfineness.

Proof. (42) and (54) |
In view of this theorem, Problem | of Harris [9] can be formulated as follows:

(5.6) Probiem. Is the converse of (5.3) true for compatible HC-proximities?

It would be easy to state the theorem corresponding to (4.7) for compatible
HC-proximities on a regular space, however the statement in question is true under
more general conditions, too.

(5.7) Theorem. |fanon-emptyfamily ofRC-proximitiesonaset X has an upper
bound, then it has a least upper bound (with respect to the relation of the strongfine-
ness), whose topology is the supremum o f the corresponding topologies.

Proof. Let &, S be HC-proximities on X such that $is strongly finer than
§ for any idlxtt. Denote by 91 and 91 the set of all maximal round filters in er
and <Srespectively. We define a system 91+ of filters as follows: put r+€9i+ if and
only if r+ can be generated by a centred system of the form (Jr;, where r;£91;

iti
for any /£/. Similarly to the train of thought followed in the proof of (4.7), one
can show that 91+ satisfies (A)—(B), and

(5.7.1) for any r£91, there exists r+691+ suchthat r+cr.

In order to see (C) suppose that 91' is a system fulfilling (B) and 9?+c:9I". If rOf
691'—9t+ then O€ro(iT)r for every xd9L In fact, one can find a filter r+691'
such that r+cr. From r0, r+£9?', ros*r+ and (B) we get 0€91lo(M)r+cro(Mr.
Let us consider the system 3 = 91U{r0}, which is properly larger than 91 If R”xffil
then there exist sets R1,R 26x such that either Rdx' or X —Rfx' for each r'€9?
and X —R2dr0. Putting R’=R1DR2, we have R'dr, and either Rd"X—R'd?,
for every If LOdx() then a set R'dx0 can be chosen for which either R,,dt' or
X—R'dx" whenever r'£9l". Jh $3£3 implies 35 9?, hence r+c3 for some r +£91+c:9?'.
Since i20dr+, X—R'dx+ consequently X —R'd$. Thus we showed that 3 fulfils
(B), but this contradicts the maximality of 91 Hence 9I—9i+=0, that is 97+ is
also maximal with respect to the property (B). From (5.1) it follows that there exists
an jRC-proximity &+ on X such that the maximal round filters in S+are exactly the
elements of 91+. It is evident that t)+ is strongly finer than < for each /¢ /. Suppose
that 5' is another UC-proximity strongly finer than every § (idl). Tfr' is a maximal
round filter in d' then there is r;£9t; for which r,c:r', and the centred system
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Iili; generates a filter t+ct'. Since r+£4+, r+ is maximal round in <&, i.e. &'

is strongly finer than <.
In the topology of &+ the neighbourhood filter of xdX is the element r+ of [ +
for which x£(Tr+. This filter is generated by the centred system IJr,-, where

i er
r/4 ; and x€ MNr{forany /£/. Butthis r,€[,; is identical with the neighbourhood
filter of x in the topology of & (/£/), thus the last statement is also proved. O

A mapping / of an jRC-proximity space (A, S) into an AC-prcximity space
(Y, S") will be called strongly equicontinuous iff, for any maximal round filter r in
(X, S), the filter generated by the filter base f(x)={f(R): i?€r} contains a filter
r', which is maximal round in (Y, S"). If X--Y then idx is strongly equicontinuous
if and only if S is strongly finer than S'. The strong equicontinuity of/ implies its
equicontinuity (i.e. ASB=>f(A) S'f(B)), as it can be shown analogously to (5.3).

Since in absolutely closed i?C-proximity spaces the maximal round filters agree
with the neighbourhood filters, the following lemma can be verified easily:

(5.8) ...~ .. A mapping between two absolutely closed RC-proximity spaces is
continuous iff it is strongly equicontinuous. O

Let now X* be a T3-closure of a regular space X and/ be a mapping of X into
a 7o-closed T3-space Y. Denote by S the compatible .RC-proximity on X corres-
ponding to X* and let S' be the unique compatible RC-proximity on Y. The following
theorem answers problem Il of Harris [9].

(59) +veoren. In order that f have a unique continuous extension onto X*
it is necessary and sufficient that it be strongly equicontinuous with respectto S and S'.

» o0 |/ is strongly equicontinuous then, for any point xEX*, /(s(x)) is
convergent in Y, where s (X) is the trace of the neighbourhood filter of x in X* (see
(5.4) and (5.5)), thus/is continuous and it has a unique continuous extension onto
X* by [4], (6.2.2) and (6.2.3). Conversely, if g is a continuous extension of/ onto
X* then g is strongly equicontinuous with respect to S*and S', where S* is the unique
compatible RC-proximity of X* (see (5.8)), and from (5.4) and (5.5) it follows that
/ is also strongly equicontinuous with respect to $and S'. O

Using (5.4)—(5.5), one can show that the canonical injection of an RC-proxi-
mity space into its absolutely closed ideal space is strongly equicontinuous, thus
from (5.8) and (5.9) we get our final theorem:

(5.10) + veorem In the category of all separated RC-proximity spaces and their
strongly equicontinuous mappings the subcategory of the absolutely closed spaces is
epireflective. O
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ON BIRECURRENT AFFINE MOTIONS
IN A FINSLER MANIFOLD

P. N. PANDEY (Allahabad)

1. introduction

K. Takano and T. Imai studied affine motions generated by recurrent and
birecurrent vector fields in a non-Riemannian manifold of recurrent curvature
[10, 11]. Most of the results obtained by K. Takano [10] were extended to Finsler
manifolds of recurrent curvature (recurrent Finsler manifolds) by R. B. Misra [3],
R. B. Misra and F. M. Meher [4], F. M. Meher [2] and A. Kumar [1]. The results
obtained by these authors were some necessary consequences of the above types of
affine motions in special type of Finsler manifolds and could not throw any light on
the behaviour of these results in a general Finsler manifold as well as on the suffi-
cient conditions for the above vector fields to generate an alfine motion- The present
author [8] obtained a necessary and sufficient condition for a recurrent vector field
to generate an affine motion in a general Finsler manifold. However, the problem to
find the necessary and sufficient condition for a birecurrent vector field to generate
an alfine motion in a general Finsler manifold remained untouched. In the present
paper, the author solves this problem and from the necessary sufficient condition
for a birecurrent vector field to generate an affine motion the author deduces the
same necessary and sufficient condition for a recurrent vector field to generate an
affine motion as obtained earlier. The author also finds out the integrability condi-
tion. The rest of the paper is devoted to the study of affine motions generated by the
above vector fields in some special Finsler manifolds and almost all of the results
obtained by the above authors [1,2,3,4] are generalized. The notation of the present
paper differs from that of H. Rund [9].

2. Preliminaries

Let Fnbe an n-dimensional Finsler manifold of class at least C7 equipped with
a metric function F 1satisfying the requisite conditions [9], corresponding symmetric
metric tensor g and the Berwald’s connection G. The coefficients of Berwald’s
connection G, denoted by G)k, satisfy

(2.1) a) G)k=Gki, b) Gjkxk= G, c) dkG' = G),

where dk stands for partial differentiation with respect to xk The partial derivatives
bhGJk of the connection coefficients G)k constitute a tensor, say G)kh, symmetric

1 All the geometric objects_are supposed to be functions of the line elements (x*, x) unless
stated otherwise. The indices I,j,k,... take positive integral values from 1 to n.
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in its lower indices and satisfy
(2.2 Gjkhxh= 0.

The covariant operator 8k for Berwald’s connection G commutes with the differen-
tial operator bj according to

(2.3) (dj<k-<%kd j)n = C)wTL-C".KITr]
(2.4) {AnA k- A KAUTL = H sk TL- H jkh TH- (g, M) HIk,

where H)kh constitute Berwald’s curvature tensor. This tensor is skew-symmetric
in its first two lower indices and positively homogeneous of degree zero in je's.
The tensor H jk appearing above satisfies

(2.5 a) H)khxh = Hjk, b) \H ) k=H)kh c) Ndp=0[7],

where y;—gijXJ and are components of the metric tensor g The tensor H)k
and the deviation tensor Hj are related by

(2.6) a) Hijkxk=H]j, b) \(dkH)-djH S = H)k.
Let us consider an infinitesimal transformation
2.7 X = xl+evl(x)

generated by a ccntravariant vector field v‘(xj), e being an infinitesimal constant.
The Lie derivatives of an arbitrary tensor field Tj and connection coefficients Gjk
with respect to the infinitesimal transformation (2.7) are given by [12], Ch. VII. §5, as

(2.8) SeTj = Wser Tj—Tfa$rv,+ T, anjir +(drTj) Vrxs,
(2.9) £eG)k = Bj Sgkvi+ Hinjkvm+G)kr<rfx°.

An infinitesimal transformation is an affine motion if and only if [9, 12]
(2.10) £2Gk = 0.

A vector field v* is said to be recurrent or birecurrent according as it satisfies
[10, 11]

(2.11) 3tkvl = gkj
or
(2.12 Hik»,

where Lkand gjk are components of a non-zero covariant vector field and a non-zero
covariant tensor field of order 2, respectively.

A Finsler manifold is said to be a Berwald manifold, Landsberg manifold,
recurrent manifold and birecurrent manifold if it admits

(2.13) Gjkh — 0,
(2.14) yiG)kh= 0,
(2.15) %Hkn— SAjK>  Hikh ~ o,
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and
(2.16) ®i®mH)k = ai,H)kh, Hjkh" Q,
respectively. Amand a,mare components of a non-zero covariant vector and covariant

tensor field of order 2; and are called recurrence vector and recurrence tensor resp-
ectively.

3. Birecurrent affine motion

Let us consider an infinitesimal transformation generated by a birecurrent
vector field vi(xi) characterized by (2.12). In view of (2.9), the Lie derivative of
G)kis given by
(3.1 SEGJk =

If the vector field v* generates an affine motion, then the Lie derivative of G)k vanishes
and hence

(3.2 - 0
Transvecting (3.2) by xk and using the equations (2.2) and (2.5a), we have
(3.3) »,, XW+Hi.jv'" = 0.

Transvecting (3.3) by yt and using (2.5c), we find at least one of the following con-
ditions
(34) a) nkk=0, b) yt¥=0.

Equation (3.4b) can not be true, for partial differentiation of (3.4b) with respect
to x* gives (dj-ydv~gij v‘=02 which means v‘=0. Therefore condition (3.4a)
necessarily holds. Thus, if the birecurrent vector field v* characterized by (2.12)
generates an affine motion, then condition (3.4a) is necessary. Conversely, suppose
that the recurrence tensor njk of a birecurrent vector field v* characterized by (2.12)
satisfies (3.4a) and this vector field generates an infinitesimal transformation. The
Lie derivative of G'k with respect to this transformation is given by (3.1). Trans-
vecting (3.1) by xkand using (2.1b), (2.2), (2.5a) and (3.4a), we get

(3.5 W =Hijvm
Differentiating (3.4a) partially with respect to xm we get
(3.6) xkdmJk+nJm= 0.

Differentiating (2.12) partially with respect to xmand using the commutation formula
exhibited by (2.3), we have

(3.7) Aj(GLirun + G iiir-G AN i i = gTu)k®;
which, after transvection with xk, gives
(3.8) Ghjrxk@kif = xkdmjkv*.

24jyi=gij [9]
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From (3.6) and (3.8) we have
(3.9) A Tnt+ CTlrxkd ko' = 0.

Since the tensor Ghjr is symmetric in its lower indices, the equation (3.9) shows
that the recurrence tensor nJm is symmetric. Taking skew-symmetric part of (2.12),
using the commutation formula exhibited by (2.4) and the symmetric property of
the tensor yjk, we have

(3.10) H jkhvh = 0.

Transvecting the Bianchi identity [9] H)kh-fHIhj+HjXk= 0 by dland using (3.10),
we have

(3.11) (HLhj+HIjk)» = 0.

In view of the skew-symmetric property of the curvature tensor H)kin its first
two lower indices, (3.11) becomes

(3.12) H ffff = H 1Jkvh.
Transvecting (3.12) by xJ and using (2.5a), (2.5b) and (2.6a), we have
(3.13) 2HKkvh = DkHi,vh.

Transvecting (3.13) by ytand using (2.5¢), we have

(3.14) yAH tf =0.

Transvecting (2.5¢) by xk and using (2.6a), we get y;#j=0. Differentiating this
partially with respect to xkand using dk)>i=gik [9], we get

(3.15) yAH j+gikH} = o.

Transvecting (3.15) by vj and using (3.14), we get glkHjvj=0; which, after trans-
vection with gkm (the associate of gfj), in view of gkmgik=0T, gives Hhvh—0. Con-
sequently, the equation (3.13) reduces to

(3.16) H %vh= 0.
In view of (3.16), equation (3.5) becomes
(3.17) w =o.

Differentiating (3.17) partially with respect to xk and using the commutative pro-

perty of the operators <€and bk, we find (2.10). Thus, the infinitesimal transfor-
mation considered is an affine motion. This leads to:

Theorem 3.1. The necessary and sufficient condition for a birecurrent vector
field V' characterized by (2.12) to generate an affine motion in a Finsler manifold
is given by (3.4a).

If the recurrence tensor \iJk of a birecurrent vector field V' generating an affine
motion is independent of the x”s, then partial differentiation of (3.4a) with respect
to xmgives nJm—0; a contradiction. Thus, we have:
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Corottary 3.1. The recurrence tensor of a birecurrent vector field generating
an affine motion can not be independent of the x’s.

We have already seen in the above discussion that whenever the recurrence
tensor pX satisfies (3.4a), we get (3.9), which shows that the recurrence tensor is
necessarily symmetric. Thus, we conclude:

Theorem 3.2. If a birecurrent vector field generates an affine motion, then its
recurrence tensor is symmetric. In other words, a birecurrent vector field with non-
-symmetric recurrence tensor can not generate an affine motion in a Finsler manifold.

Now we shall find out some special Finsler manifolds which do not admit any
birecurrent affine motion. Th this context we propose the following:

Theorem 3.3. A Landsberg manifold does not admit any affine motion generated
by a birecurrent vector field.

Proof. Let us consider a Landsberg manifold characterized by (2.14). If it
admits an affine motion generated by a birecurrent vector field v* characterized by
(2.12) , we have (3.4a), from which we may deduce (3.9). Transvecting (3.9) by yt and
using (2.14), we get y ff pJk—0. This implies njk=0 for yffAO, a contradiction.

Since every Berwald manifold is a Landsberg manifold, in view of Theorem
3.3, we have:

Corollary 3.2. A Berwald manifold does not admit any affine motion generated
by a birecurrent vectorfield.

Theorem 3.4. A non-flat Finsler manifold of scalar curvature does not admit
any affine motion generated by a birecurrent vector field.

Proof. Let us consider a non-flat Finsler manifold of scalar curvature charac-
terized by [9]

(3.18) H1 = F2R(0)-ilfi,

where R is the Riemannian curvature, Ii—xk and lj=gijl*. If this manifold ad-

mits an affine motion generated by a birecurrent vector field v* characterized by
(2.12) ,then we have (3.4a) and (3.3); which imply Hjndvm=0. Transvecting H injvm—O0
by xJ and using (2.6a), we get Hi,vm=0. Transvecting (3.18) by vJ and using
HjvJ=0, we have

(3.19) d-1jvH 1= 0,

since RAO for a non-flat manifold. In view of | the equation (3.19) may
be rewritten as

(3.20) vi—(ljvlIF)xi = 0.

Differentiating (3.20) partially with respect to xmwe get

(3.21) xibm(lj vfiF)+{lj vaF)din= 0.
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Since Fis positively homogeneous of degree one in x"s, /* is positively homogeneous
of degree zero in the i'\s and so is the vector I}. Hence IjVJF is positively homoge-
neous of degree —1 in the xns. Therefore xndm(ljVj/F) = —f-vf/F. In view of
this result, the contraction of indices in (3.21) yields (n—I)IjV¥F=0; which implies
ljVIF=0. In view ofthis, (3.20) reduces to F=0, but the vector field vl is non-zero.
This completes the proof.

Let us consider a recurrent Finsler manifold characterized by (2.15). If the

curvature scalar A=——p H\ is non-vanishing, then we have the identities [6]
(322 XmH)kh+)kH hjh+ 5 Hkrh —0,

and

(3.23) H) G[nr = LW, G)nr.

If this manifold admits an affine motion generated by a birecurrent vector field
vlcharacterized by (2.12). then we have (3.9) and (3.16). Transvecting (3.22) by xI'
and using (2.5a), we get

(3.24) AmHjk+ AH hj +AjHkm= 0.

The transvection of (3.24) by vm in view of (3.16) and the skew-symmetric property
of H[min the indices k and m, gives ),mvm=0, since H}k" 0. Thus the birecurrent
vector field vl is orthogonal to the recurrence vector I m. Again, the transvection
of (3.16) by xk gives HI,vh=0. Differentiating Hj,vh—0 covariantly with respect
to x| and using the fact that the deviation tensor L, is recurrent in a recurrent
Finsler manifold, we have

(3.25) Wd,& =0.
Transvecting (3.23) with 3S,vk and using (3.25), we get
(3.26) H'GLr*v« = 0.

The transvection of (3.9) by H§, in view of (3.26), gives Hpnjm—0. If Det ~ 0,
then Hj,iijm=0 implies H,J=0; which, in view of (2.5b) and (2.6b), gives Hjkh—0,
a contradiction. Hence Det fijm=0. This leads to:

Theorem 3.5. If a birecurrent vector field v characterized by (2.12) generates
an affine motion in a recurrent Finsler manifold, then the recurrence vector is ortho-
gonal to the vectorfield v and Det jiJn=0.

If the Finsler manifold under consideration is birecurrent characterized by
(2.16), then we have the identity [9]

(3.27) almH)k+alH ‘T}+anllT= 0.

If it admits an affine motion generated by a birecurrent vector field v' characterized
by (2.12), then we have (3.16). Transvecting (3.27) by vmand using (3.16), we get
almvm=0 since H-xk"0. This leads to:

Theorem 3.6. Ifa birecurrent Finsler manifold admits an affine motion generated
by a birecurrent vector field vl characterized by (2.12), then almvm=0.
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4. Recurrent affine motion

Let us consider a recurrent vector field characterized by (2.11). The covariant
differentiation of (2.11) shows that the vector field v* is birecurrent with the recurrence
tensor 3SjHk+ i.e

4.1 &j 3okvl = {RBj uk+ Hjurn'.

In view of Theorem 3.1, the necessary and sufficient condition for the above vector
field to generate an affine motion is given by

4.2) {@9jHk+HjHK) xk = 0.

Differentiating (4.2) partially with respect to xmand using the commutation formula
exhibited by (2.3), we get

(4.3) AjH m+HjHM+ x k(@ESjdmk+ nkdmBj + Hjdnk) = 0.

Differentiating (2.11) partially with respect to xmand using the commutation for-
mula exhibited by (2.3), we get

4.4 G'mrvr = (Hmfik)v .

Transvecting (4.4) by xkand using (2.2), we get

(4.5) x*dmpk = 0.

In view of (4.5), (4.3) may be written as

(4.6) @jHm+HjHm+iidmHj = 0,

where U=/xkxk Thus, we see that (4.2) implies (4.6). Transvecting (4.4) by xmwe get
4.7 xmdmlik = 0.

The transvection of (4.6) by xm in view of (4.7), gives (4.2). Therefore the condition
(4.6) implies (4.2). Thus the conditions (4.2) and (4.6) are equivalent. This leads to:

Theorem 4.1. The necessary and sufficient conditionfor a recurrent vector field
vl characterized by (2.11) to generate an affine motion in a Finsler manifold is given
by (4.6).

From (4.4) it is clear that the tensor gk is symmetric, i.e.

(4.8) bTuk = gkLiT-
In view of this result, (4.6) shows that the tensor 3&jukis symmetric, i.e.
4.9 ®jHk = @kHj.

Differentiating (4.6) covariantly with respect ot xk and then taking skew-symmetric
part with respect to the indices j and k, we have

(4.10) prH jkn+(driimH &k = 0;
to find this result we have utilized the commutation formulae (2.3) and (2.4), equation
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(4.6) and the symmetric property of the tensor dngkand « -« WThis is an integrability
condition for (4.6). In view of (4.8), this integrability condition may be rewritten as

(4]:]) UrH; KT+ ¢ TUNH; ;K= Q
The transvection of (4.11) by xm in view of (2.5a), gives
4.12) yrHjk = 0;

which after partial differentiation with respect to xm in view of (2.5b), gives (4.11).
Thus, the conditions (4.11) and (4.12) are equivalent. Therefore we may conclude
that the integrability conditionfor (4.6) is (4.12).
If the recurrent vector field vl characterized by (2.11) generates an affine
motion, then
&Gk = LW Nk+Bjhk)v + Hmkvmt+ Gkr@svrxs = 0;

which after transvection with xk, in view of (2.2), (2.5a) and (4.2), gives

(4.13) Hinjvm= 0.

Differentiating (4.13) partially with respect to xkand using (2.5b), we get
(4.14) Higkwm= 0.

Also, in view of (2.4) and (4.9), the skew-symmetric part of (4.1) is given by
(4.15) H)knvm = 0.

We know that the tensor Hjk satisfies the identity [9]

(4.16) %TH k+®kH "+ L, L, T= 0.

Transvecting (4.16) by vmand using (2.11) and (4.13), we have

(4.17) vm@nmH)k = 0.

Thus, we conclude:

Theorem 4.2. Conditions (4.13), (4.14), (4.15) and (4.17) are the necessary
consequences o f an affine motion generated by a recurrent vector field vl in a Finsler
manifold.

From this theorem it is clear that if a recurrent vector field v generates an
affine motion in a general Finsler manifold, we have (4.13); which, after contraction
of the indices / and/, yields H T,b1=0. Thus, we have:

Corollary 4.1 If a Finsler manifold admits an affine motion generated by a
recurrent vector field v\ then necessarily Hinivm={).

Let the Finsler manifold considered be recurrent which is characterized by
(2.15). Transvecting (2.15) by xhand using (2.5a), we get

(4.18) JH)k = kmHjk.

Transvecting (4.18) by vmand using (4.17), we have  rm=0; for H]k—0 will
imply Hjkil=0, a contradiction. Thus, we have:
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Corottary 4.2. If a recurrent vector field v* generates an affine motion in a
recurrent Finsler manifold, then the recurrence vector is orthogonal to the vectorfield Vv'.

If the Finsler manifold considered is birecurrent, the results obtained after
transvection of (2.16) by xhand covariant differentiation of (4.17) with respect to
x* imply almvm=0. Thus, we have:

Corottary 4.3. If a recurrent vector field v* generates an affine motion in a
bireccurent Finsler manifold with recurrence tensor atm, then almvm=D0.

Corollary 4.1 generalizes Theorem 2.1 of R. B. Misra and F. M. Meher [4] and
Theorem 5.1 of R. B. Misra [3]. From (4.12) and (4.13), it is clear that the condition
prH'kv‘=Hjkvrukxk is trivially true. This represents a generalization of Theorem
31 of R. B. Misra and F. M. Meher [4]. These authors also established that the
processes of covariant differentiation commute for xh&hv‘ in a recurrent Finsler
manifold admitting an affine motion generated by a recurrent vector field v* charac-
terized by (Theorem 3.2, [4])

(4.19) Mkv* = -A*A

Writing the commutation formula (2.4) for &hv‘ and then using (2.11), (4.10) and
(4.15), we have (Hij88k—Ex3Sfi£dko'=0; which shows that the processes of covariant
differentiation commute for hv* in a general Finsler manifold admitting an affine
motion generated by any recurrent vector field IA This generalizes the above theorem
of R. B. Misra and F. M. Meher.

They also proved that in a recurrent Finsler manifold admitting an affine motion
generated by a recurrent vector field v* characterized by (4.19), there exists a scalar
point function a satisfying

(4.20) £ k(oxh@hwvt) = 0,
and it is connected with the recurrence vector Jir by
(4.21) &KN+J1(ok-TK) = 0,

where J1=Jkxb, <k—(l ko)jo-~Bdk\og s. In view of Theorem 4.1 and the fact that
the recurrence vector is at most a point function [3, 6], the condition

(4.22) =0

holds good. Transvecting (4.22) by xmwe get &U1—/T=0, and hence (4.21) may
be written as Jlak—0. This implies ok=0, for J1—0, after partial differentiation
with respect to xm gives )m=0, a contradiction. Thus we see that the vector field
ok vanishes identically. Due to unawareness of this fact F. M. Meher devoted his
paper [2] to the study of the vector field ok.
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NOTE ON A PROBLEM OF KATALl

P. HOFFMAN (Waterloo)

Suppose the set £cN={1,2, 3, ..} has the following property: all /: N-»-R
satisfying f(ab)=f(a)+f(b) for which f(E)czZ must actually map all N into Z.
Katai has conjectured that any XEN must be expressible in the form ¢x'; for
some XEE and I£ Z. This follows immediately from the proposition below by
writing 9(x) in the form R0(xj +/29(x2 +....

The countably generated free abelian group

®Z = {(xx,x2, ..)|Xjiz; B/ with x;=0 forall i>/}

imder coordinatewise addition admits a uniqgue homomorphism 9: N*®Z of
monoids [(i.e. 9(ab)=9(a)+0(b)] for which O(pk=(0, O, 1,0, ...), zero except
in the ktb coordinate, where pkis the kth prime.

Proposition. For E as above, O(E) generates ®Z as an abelian group.

Proof. Assuming not, we can construct a commutative diagram as follows

N
\V4
J "
®Z Fl
project | roject
®Z/G R/Z

where G is the subgroup generated by 9(E). First let a be any non-zero homomorph-
ism, which exists since Gis proper and R/Z is an injective abelian group contain-
ing elements of all orders. Next let § be any homomorphism which makes the square
commute, using the fact that ®Z is free. But now f:=£°9 clearly contiadicts the
assumption on E.

Notes, i) The converse of Katai’s conjecture is obviously true, ii) The analo-
gous but easier question where we assume f(E)=0 =>/(N)=0 and deduce the
same result except that the exponents /; may be rational was proved by Wolke [1].
His proof may be reformulated as above.
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IDEAL EXTENSIONS OF RINGS

M. PETRICH (Burnaby)

1. Introduction and summary

A ring R is an extension of a ring A by aring B if R has an ideal | for which:
IsiA, R/IsiB. With the usual identification of A with / and B with R/T, the exten-
sion problem is as follows: given rings A and B, construct all rings R having A as an
ideal and such that R/A=B. A solution to this problem was given by Everett [1];
this is an analogue of the Schreier theorem for group extensions and is referred
to as “Everett’s theorem”. As in the group case, one chooses a system of represen-
tatives of the cosets of A in R, and makes them act on A multiplicatively, hence
every representative induces a bitranslation of A. Everett’s theorem is, however,
quite involved in view of the long list of ring postulates the extension ring has to
satisfy; in addition, because of having chosen representatives in different cosets,
two “factor systems”, one for addition and one for multiplication, have to be intro-
duced. The additive group of the extension ring R is an abelian group extension of
the additive group of A by the additive group of B, and hence follows the Schreier
group extension theory.

Two extensions R and R' of a ring A are equivalent if there exists an T-iso-
morphism of R onto R' (i.e,, leaves A elementwise fixed) which maps the cosets
of A in R onto the cosets of A in R". Given rings A and B, a function 0 of B onto
a set of permutable bitranslations of A(6: b-+6b£12(A)) and two functions [,],(,):
BXB-+A, on R=AxB define an addition and multiplication by

(@, @)+ (B, b) = (a+B+[a, b], a+bh),
(a, @)(B, b) — (<xR+a6b+Qal + (a, b), ab).

If the three functions satisfy certain conditions, R is an extension of A by B where
A is identified with {(0, a)|a*4} and B with the quotient RJA; the ring R is an
Everett sum of A and B. Conversely, every extension of A by B is equivalent to an
extension of this form.

For a full discussion of ring extensions and of Everett’s theorem consult Rédei
([5], 88 52-54).

Section 2 contains a discussion of the extension problem for rings including
the relevant definitions. Material concerning the translational hull of rings is exposed
in Section 3. Everett sums are constructed in Section 3 and a new proof of Everett’s
theorem is given including an equivalence criterion for Everett sums. Strict, pure
and essential extensions as well as the character of an arbitrary extension are discussed
in Section 5. Extensions of rings A for which the annihilator SI(A) is trivial are
treated in Section 6; this case admits simpler constructions and stronger statements
including several ramifications. Extensions of semiprime atomic rings are treated in
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Section 7 from the point of view of finding conditions on such rings which insure
that they admit only direct sum extensions with certain other rings. Several problems
on the subject make up the concluding Section 8.

Some of the results here were announced in [3].

2. The problem

For a rigorous treatment of ring extensions, we must consider an extension of
aring A by aring B as a triple {{=R, &) rather than as a single ring. Formally, we
proceed as follows. In the entire paper, A and B standfor arbitrary rings unless
specified otherwise.

berimiion 2.1, 4 triple (o, R, ¢ is an {ideal) extension of A by B if

() R isaring,
(ii) qis an isomorphism of A onto an ideal | of R,
(iii) ¢ is a homomorphism of R onto B with kernel I.

In other words, an extension of A by B is a short exact sequence
0-—-«A-RAL+ B—-0.

It is essential to have a criterion for distinguishing extensions of A by B, or for
considering two such extensions as “equal”. For this we need the following concept.

e 2.2, TWO extensions (>R, ) and {&', R, ) of A by B are
equlvalent if there exists an isomorphism %ofR onto R’ maklng the following diagram
commutative:

In such a case, we call x an equivalence isomorphism.

In order to obtain an overview of all ideal extensions of A by B, up to equiva-
lence, we may use the following strategy.

(i) We construct a special type of extension of A by B by means of an Everett
sum (the analogue of a Schreier product for groups).

(i) Next we show that every extension of A by B is equivalent to an Everett sum.

(iii) We establish a criterion for equivalence of Everett sums.

The first part of this program is the direct part of the Everett theorem; the
second part is the converse of the Everett theorem. The direct part is quite involved;
the amorphous mass of various conditions can be put into relative order by the
construction of the translational hull of A.
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3. The translational hull

We introduce here the relevant concepts and establish a few of their properties.

- 3.1 Let R be any ring. A transformation A (respectively g) on R
is a Ieft (respectlvely right) translation of R if Ais written as a left (respectively right)
operator and satisfies

Axp) = (HJy, Alx+y) = Ax+ Ay, 3
(respectively  (xy)Q=x(yo), (x+y)o=xp+>£>) for all a,yER. Moreover, the
pair (5, g) is linked if
X(Ay) = (xg)y (a ytR),

and is then called a bitranslation of R. The set Q(R) of all bitranslations of R with
the operations of addition and multiplication defined by

(L e)+(A', ) = (A+T, ata), (A ofa,s’) = (A, BO)

is the translational hull of R. We will often denote (A, @£ Q (R) by a single letter 0
and consider it as a double operator, that is

oA = S, a0 = xq (XER).
Note that A+A' and g+ g is the usual addition in an abelian group, that is,
(F+A)x = Ax+A'%, A(p+ eO = xg+xq' (a£R),
and the compositions A9 and qq' are defined by
(AAX = AAX), x(ad’) —(xa)d (aER).

Easy verification shows that 12(R) is closed under its operations and that it is ac-
tually a ring. There is an important part of £2(R) which we now define.

b erimition 3.2 FOrany reR, the functions Xrand Q given by
A(X) = rx, XQr—xr (XER),

are the inner left, respectively right, translations of R induced by r; the pair nr=
=(/r, en is the inner bitranslation of R induced by r. The set M(K) of all inner
bitranslations of R is the inner part of Q(R).

Note that w is the zero of the ring Q(R). Simple verification shows that for
any r,sER, 6£Q{R), we have

07T 710, 7tre 71rQ,  7ir~\=-71s — [T +§,

which implies that n(R) is an ideal of Q(R). One sees just as easily that the mapping
7i\rr7ir (r*R) is a homomorphism of R with kernel

3L(R) = {rEi?rx = xr —0 forall x£R},
called the annihilator of R.

.. 33. The mapping n above is the canonical homomorphism of R
onto n(R) The annihilator 31(i?) is trivial if 31(i?)=0.
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Thus the canonical homomorphism n is an isomorphism if and only if R has
trivial annihilator. This is a relatively mild restriction on the ring R and we will
see that many statements concerning extensions of R simplify considerably in the
case 31(i?)=0. There is one more concept we need in this context.

Definition 3.4. Two bitranslations 0 and 0' of R are permutable if
0 (8x)0' = 0(x0"), (0x)0 = TixQ) (XER).

A nonempty set S of bitranslations is permutable if any two bitranslations in S are
permutable.
Ifwe write 0=(A g, 0'=(A, q), then the above condition becomes
a0q = X(xa'), (ax)a= A'(xg) (xiR).
Note that any two inner bitranslations are permutable. We will need the following
simple results.

Lemma 3.5. Let if be an isomorphism of a ring R onto a ring S. Define a
mapping
(aoa) - (Lg) ((X, Q)eQ(R))
Is = [A(S™ DY, sq= [(sif~XYQJ\f (s£S).

Then if isan isomorphismof Q(R) onto Q(S), said to be induced by if. Moreover,
for any rER, nr\f-n

where

Proof. The straightforward verification is omitted.

Lemma 3.6. Let R bearing and (a, q), (a7 g)EI2(R). Then (kr)o'~?.(rg")£
€31(R) for all rER.

Proof. The simple verification is omitted.

4, Everett sums

We again fix two rings A and B. Elements of A (respectively B) will be denoted
by lower case Greek (respectively Latin) letters; O is the zero of any ring.

Construction 4.1 Let (0; [,],(»)) be a triple of functions
0: B £2(A), with 0:a”O4g [,]: BxB - A (,): BXB - A
satisfying the following conditions for all a, RdA, a, b, 2B\
() 0°=70; [0, a]=(a, 0)= (0, G)=0;
9 &5 R T O
(iv) Cadb- e sb=Teah)\
() [a b]+[a+b, c]=[a, b+ c\+[b, c];
(i) [a,b]=[b,a];
(vii) (ab, ¢) —(a, bc)—sa(b,c) —(a, b)Qc;

(viii) (a, ¢) + (b, c)—a+b, ¢) =[a, b]ec—ac, be]-,
(iX) (a b)+ (a, c)—@a, b4-c) —0“b, c]—{ab, ac).
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Let R=AXB be the Cartesian product of A and B with operations:
(A) (a, @+ (B, b)=(a+r +[a b], a+h),
(M) (a, a)(B, b) = (sG+d+ QaB + (a, b), ab).
Define two mappings as follows:
(: a—(a, 0) (a£A), iB: (a, a) —a ((a, a)€R).

Denote the triple (@ R, i) by E(9; [,]1.(,)) and call it an Everettsumof A and B.

Theorem 4.2. The Everett sum (@R, iB)=E(9; [,].(,)) is an extension of
A by B.

Proof. Associativity of addition is equivalent to item (v). The identity for
addition is (0,0), and (—a—a, —a], —a) is the additive inverse of (a, a). Com-
mutativity of addition is equivalent to item (vi). Hence R is an abelian group under
addition.

Associativity of multiplication is verified as follows:

[(a a)CB b)I(y, ¢) = (@S+ adb+ 9aB +(a, b> ab)(y, ¢) =
= (@Sy+ (a9y +(9aB)y + (a, by + (y.B)0e+ (xOp)Bc+ {8 )xC+ (a, b)OCE
+0'by+ (ab, c), abc),
(a, a)[Q3 b)(y, )] = (a a)(By + R6c+ oy + (b, ¢, be) =
= (<xBy+x (RO0 + a (Shy) + a(b, c>+alkc+ 0° (By) + 9a(39) + 9° (Oby) +9a(b, c>+
+ (a, be), abc).

Using the properties of bitranslations, including item (ii), the equality of the above
expressions is equivalent to the equality

(a, b)y + (a, b)9c+ (ab, e)+ tx&Oc+ 9ay =
= a{b, c)+ 9a(b, c)+(a, be)+ <dx+ 9adby;
equivalently
((ab, ¢)—(a, be)) + a(9h9c—0k) —{x(b, c) =
= (9a(b, c)—(a, b)9Q + (0ad%b—9a)y —(a, b)y;
and using items (iv) and (vii) this is equivalent to
acg,,c)-«(b, ¢) = n{py-(a, b)y

which holds in view of the definition of an inner bitranslation nx. Therefore the
multiplication is associative.
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For the right distributive law, we write
[(a @)+ (B, b)I(y, c) = (a+B+[a b), a+b)(y, c) =
"+ B+ [a b))y + (+ R +[a b])9c+ Batby+(a+b, ), (a+b)c) =
—(ay + By +[a, b]ly + 6&c+R0c+ [a, b]0c+ Gatby+(a+b, ¢), ac+hc),
(a, a)(y, O+ (B, b)(y, c) = (sy+ a%kc+Qy+(a, ), ac) +
+ (By +Rdc+eby + (b, ), bc) = (ay+asc+0y+ (a, ¢) +
+Ry +ROc+ 9by + (b, ¢)+(ac, bc), ac+bc).
The equality of these two expressions is thus equivalent to
(a, b)y + [a, b]JOc+eat+by+ (a+b, ¢) = 9ay+ Oby+(a, ¢)+(b, c)+(ac, bc)
which can be written as
[a, b]ly+ [a, b]6c = (6a+Bb—Batv)y +((a, c)+(b, c)—(a+ b, c)+ (ac, bc).
Using items (iii) and (viii), this is equivalent to
[a, b]y + [a, b]sc = nia>ny + [a, b]sc

which evidently holds. The arguments for the left distributive law are analogous.
This makes R a ring. Using parts of item (i), we see that @ is an isomorphism
of A onto the ring /={(a, 0>)\ocfA}. It follows at once that | is an ideal of R. From
(A) and (M) above it is clear that ij/ is a homomorphism of R onto B with kernel 1.
Therefore ((p, R, ij/) is an extension of A by B.
The above theorem completes the first part of our program. For the second
part, we first introduce the following construction.

Construction 4.3. Let (£, R, g) be an extension of A by B. Let 1=A£, and
<: B-+R be any function satisfying: aij is the identity mapping on B, Or=0. Using
the notation in 3.5, we define the functions 6, [, Jand (, }by:

B:a- 0“= (aJ,)~1 (a€B),
[a, b] = (acr+bo—(@+h)a)*~1 (a, bEB),
(a, b) = ((@o)(b<1)—(ab)a)*-1 (a, bEB).

The function a “chooses” one element in each coset of I, and in / it “chooses”
the zero. It is called a choicefunction.

Theorem 4.4. The functions 9, [,],(, ) defined in Construction 4.3 satisfy
conditions in Construction 4.1, and the extension (f R, n) isequivalentto E(6, [,],(, ))
by the equivalence isomorphism

X:r—md a) (rER),

where a=(r+1)r] and <=(r—aa)c~n.
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Proof. For any afB, we have naa*£2(1), so that 3.5 gives 0aCQ(A). Hence
B maps B into Q(A). Further, for any a, bEB, we get

(aa+bcr—(a+b)a)t] = a+b—(@+b) =0

since af] is the identity mapping on B. Thus aa+bo—(a+b)a(Ll which implies
that [a, b\EA. A similar argument shows that also (a, b)EA.

The condition 0tr=0 implies that condition 4.1 (i) is fulfilled. Since inner
bitranslations of R are permutable, condition 4.1 (ii) also holds. For any a,bER,
we get by Lemma 3.5,

A Td 0 i*faa +ha—(a+b)a\l)» A(ao +bo— + a,pl

since aa+ba—(@a+b)atl. This verifies condition 4.1 (iii); 4.1 (iv) follows similarly.
Instead of verifying the remaining conditions in Construction 4.1, we let E=
=AxB with operations (A) and (M) in 41 and show that / given above is an
isomorphism of R onto E. This will imply that E itself is a ring. The remaining
conditions in 41 will then follow from ring axioms without much effort.
Let r,sdR and r/=(a a), sy=(R, b). Since r—aa”L we have that / maps
R into AXB. Further,

(r+s)+Nil = ((r+/)+ @+ N)g= (r+Dri+(s+1)iz= a+Db,
(r+s—@+b)a)*~r = (r+s—aa—ba+[a b =
= (r— —ba)t~1+[a b] = a+B+[a b]

and x is additive; one shows similarly that (rs+I)ri=ab. Note that by Lemma 3.5,
we have

(@b = (r-acTt)?-1(mHN"-1= ((r—aa)(ba))"~1
and analogously
Qi = ((aa)(s-ba))"-\
Using this, we obtain
(rs-iafya)/;-1= (rs-(ao)(ba) + (a, b)£)E_1 = (rs-(a<r)(bcr))E-1+ (a, b) =
= ((r—aa)(s—bo) +r(ba) + (aa)s—2(aa)(bo))I;~1+(a, b) =
= (r—aa)E~1(s-ba)c;~1+ (r(ba)+(aa)s —2(aa)(ba))t~1+ (a) =
= al+ulb+ 0al +(a, b)

and x is also multiplicative.
If rx=(0,0), then (r+Drj=0 so r£/ and thus a=r*_1=0. Hence r=0,
and the kernel of / is trivial. Let ©r,a)EAXB. Then for r=aa+af, we have
(r+D)r/ = (aa+ ™ D] - a, (r—aa)E-1=a”"-1 = g

so that (a, a)=r/. Therefore / is an isomorphism of R onto E. So £ is a ring. Now
a simple inspection of the various parts of the proof of Theorem 4.2 easily gives
that the conditions 4.1 (v)—(ix) all hold.

For any aCA. we have

rX = («fE— 0)= (a 0) = axp
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and for rER, rx=(oc,a), we obtain

xp=(@adp=a=m
This proves that the diagram
A-N~* E

is commutative. As a consequence, we have that the extensions (£, R, ) and
EO; [, 1 (,)) are equivalent.

The third part of our program provides the form of all equivalence isomorphisms
between two Everett sums thereby giving necessary and sufficient conditions for
their equivalence.

Theorem 4.5. Let ({,R, f)=E(0; [,].<,> and (£, R', r\')=E(0"; >0
be Everett sums of A and B. Let £: B-*A be any function satisfying 0£=0, and
for all a,bEB,

(0 0'a-0a=*eG
(i) [a,bY-[a,b]=aC + CK-(fl+b)i:,
(iii) (@, b)'-(a,b) =0°(bO+(a0O0b+(aO(bl;)-(abK.

Then x defined by:
X- (@ a) —(a—ak, a) ((@,a)EAXB)

is an equivalence isomorphism of R onto R'. Conversely, every equivalence iso-

morphism of R onto R' is of thisform for some function £ satisfying the above
conditions.

Proof. Necessity. Let £ and x be as in the statement of the theorem. It is clear
that x is a permutation of the set AXB
Additivity of x follows by straightforward verification using condition (ii).
Using conditions (i) and (iii), we obtain
(a a)x(B, b)x = («-«£, a)(R-bC, b) = («0-a(b£)-(a£)X «O(lO +
+0'°(R-bO +(«-a00'b+ (a, b), ab) = (a/?-a(b£)-(a£)/?+(aO(K) +
+ (Ba+ WO (8- bO+ (amaO (Bb+ nK)+ O«(bE) + (af) Ob+ (af) (bE)- (ab) £+
+(a, b), ab) = (ocl-oc(bC)-(aORB +(ad(bO +0°R-0°(bt;) + (aOR-(aO(bO +
+0b-(a0Bb+ P O-(a0 (b0 +0albC) + (a00b+(aO(bO-(ab)!; + (a, b), ab) =
= (a/1+ Oa/?+ a06+ (9, h)—(ah)£, ab) = (o3+ 0al+<x0b+ (a, b), nh)x =
= ((a a)(B, 6))x
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and x is an isomorphism. It is immediate that the diagram
A R’

is commutative. Thus x is an equivalence isomorphism.

Sufficiency. Let x'B-*R' be an equivalence isomorphism. Commutativity of
the above diagram immediately implies that

(x,a)x = ((<xa)y.a) ((a, a)£E)

for some function y:AxB-*A satisfying (o, O)y=a for all a£A. Further, letting
ai=-(0, a)y, we get
(& a)x =((a 0)+ (0 a)x = (a 0)*+ (0, a)x = (a 0)+((0, a)y, a) = (a-aC, a),
and 0£=0.
It remains to verify conditions (i)—iii). Indeed,
(0*a, 0) = (0°a, 0)x = ((0, a)(a, 0))* = (0, a)*(or, O)* =
= (-aC, «)(a, 0) = (-(a0a + 6'0a, 0)

which gives (0'a—0s)a=Asfa. An analogous argument shows that a(s'a- B @ —(xga"
Hence 0a—0“=7rd? which verifies condition (i). Straightforward computation
shows that additivity of x implies condition (ii). Finally, using condition (i) and
reversing the verification in the proof of necessity above that x is a homomorphism,
we see that condition (iii) holds as well.

We have thus completed the program announced in Section II. In summaiy,
we have the following result.

Theorem 4.6 [1]. Every Everett sum of rings A and B is an ideal extension
of A by B. Conversely, every ideal extension of A by B is equivalent to some
Everett sum. Theorem 4.5 gives a criterionfor the equivalence o f Everett sums.

The usual embedding of a ring R into a ring E with an identity is an extension
of R by the ring Z of integers with

[m,i\=(mn)=0, Onr—rO"'—nr (m,nf£Z, rER).

5. Some invariants of an extension

Let 3%=(C, R,rj) be an extension of A by B. We have seen in Construction
4.3 that a function B: B-"Q(A) can be defined if a choice function a:B-*R is

given. Now let
v=vN Q(A) —Q(A)/n(A)

be the natural homomorphism. Then conditions 4.1 (iii) and (iv) imply that the com-
position Ov: B-+Q(A)Iti(A) is a homomorphism. Let o': B -R be another choice

Acta Mathematica Hungarica 45, 1985



272 M. PETRICH

function and 6': B-»Q(A) be the corresponding mapping. Then letting I=AE,
we obtain for any adB,

Oa~g'a= (Ma\) T 1-blal)~TF1=b'.-NaT bLL A)

since aa—aa'"l. It follows that dv=0'v, and we may introduce the following
concept.

Definition 5.1. With the above notation, the homomorphism
X = X(M) =6vA: B ==Q(A)/n(A)

is the character of the extension 35 of A by B.

By Theorem 4.5, we see that two equivalent extensions have the same character.
We may thus speak of the character of the equivalence class.

Let Ol=(£, R, tj) be an extension of A by B. Let | —A£ so that 7is an ideal
of R. Define a function t= (72 7) by «: r “mmr=nt (rPR). It follows easily
that t: ?—£2(7) is a homomorphism. Note that x\j=n, the canonical homomor-
phism n: I-»Q(l). We have seen that £ is an isomorphism of Q(A) onto £2(7).
Let  be the isomorphism of W#(A)/M(A) onto £(7)/1(7) induced by < Then
we have the following simple result.

Lemma 5.2. With the above notation, the following diagram

0-—-»A— R-——-p——-B— »0

12(7) QA

vi\ [ yn
Q{NjI)  £2(A)N(A)
is commutative.
» oo+ Let rER. Then rga—£l and
od ~xr= (nmenrn)\, = Tr™ _rea(/)

and the diagram commutes.
It is convenient to introduce the following concepts.

Definition 5.3. With the notation as above, the image T(R:7) of R under
the homomorphism x(R: 7) is the type of the extension (A, The extension Ol is
strictif TE17(/) forall rPR\ it ispureif Tr677(7) implies r£7.

The type 7X7? 7) is thus a ring of permutable bitranslations of 7 containing
77(7). In fact, T(R:1)=M(I) if and only if the extension is strict.

»rososicion D4 With the notation as above, thefollowing is true.

() PA is a strict extension if and only if yPAP) W the zero homomorphism, or
equivalently, B: B-*T1(A).

(i) PA is a pure extension ifandonly if x(&) isamonomorphism, or equivalently
6aen(A) implies a=0.
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Proof, (i) Using Lemma 5.2, we obtain

& is a strict extension oT: R-*-Q()otvj:R—0=n(1)o%: B-~0=I1(A)o
09: B-»M(A).

(i) Assume that St is a pure extension and let b/=T(T). Then b—nq for
some rER andthus rr]x=M(A). By Lemmab5.2, weget rTVj=n(l) sothat TrE77(7).
Since the extension is pure, we must have r£7 and thus b=rrj=0. Consequently
Xis a monomorphism.

Next assume that x is a monomorphism and let 0“C11(A). It follows that
ax=0 which yields a=0 since y is one-to-one.

Suppose next that 6a0.11(A) implies that a=0 and let zfOli(l)- Then /s(xv/)=0
which by Lemma 5.2 gives (rrj)(Ovf) =0. This implies that OnOM(A) which by
hypothesis yields ri\=0. But then rOIl and the extension is pure.

Definition 5.5. Continuing with the same notation, the set 2IR(7)= {rE7?|n=
~ir=0 for all i0J) is the annihilator of 7in R. Also let

S(R: 1) = {rORKhonil)}.

If we call R an extension of any of its ideals, we have the following result.

Proposition 56. Both 2IR(7) and S=S(R: I) are ideals of R and S=I+
+ 5itK(/). Moreover, S is the greatest strict extension of | containedin R, and R
is apure extension of S.

Proof. Clearly 2IK(7) is an ideal of R; S is the complete inverse image of
M(1) under the homomorphism z(R: 7), and is thus an ideal of R. Obviously 1+
+3IR(/)gS"” If so.s, then 7564 (/) so ns=nt for some i0J: but then s=i+
+(s—i)01+4IR(l). Hence SQI+HR(Il), and the equality prevails. It follows from
the definition of S that it is the greatest strict extension of 7 contained in R. Let
rOR besuchthat zr(R: S)OII(S). Then Tr(R: S)=ns for some inner bitranslation
nsof S. But then 7s|/=7q for some inner bitranslation nt of 7. Hence zr(R: S)\I=ni
which implies that rOS. Consequently R is a pure extension of S.

We can represent the situation in the preceding proposition by the following
diagram:

R

SI=S(R: 1
/ \
7 SIK(7) = kert(72: 7)
\ /

21(7)

|
(0)

Letting (@ R, ®)=E(8; [,].(,)) be an Everett sum of the rings A and B
and 1=A(p, we obtain

5= S(R: 1) = {(a a)OR\0°0II(A)}, 21*(/) = {(a, a)67?/0fi= Tr_B},
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since %'a=Ti(®'0 ifand only if =Tt} x. Setting P={a(B\sa( A(A)}, we obtain
an ideal of B for which S=Pij~\ and R is a strict extension if and only if P=B,
R is a pure extension ifand only if P=(0).

In particular, every extension of A by a simple ring B is either strict or pure.

6. The case 31(A)—0

We will now see that in the case 3L(A)=0 most results in the theory of exten-
sions of A by B simplify considerably. The first target is the Everret theorem. To
this end, we first consider the situation in the general setting where 3I1(A)=0 need
not hold.

Lemma 6.1. Let x- B—£2(/1)/M(A) be a homomorphism. Let 0: B-+Q(A),
with 0: a-*0a, be anyfunctionfor which 0°= 7o and Ov=x- Also suppose given two
functions [,],(,): BXB-+A satisfying conditions 4.1 (iii) and (iv), respectively.
Then all other conditions in Construction 4.1 hold modulo the annihi/ator 3104).

Proof. By hypothesis 0°=no; also for any a(B,
0] —0s#0°—6“= 0° = 7D
and similarly 7r\j0>= #a(>= #0. This verifies the assertion for condition 4.1 (i).

Condition 4.1 (ii) follows from Lemma 3.6. Verification for conditions (v)—(ix) is
straightforward; as a sample, we check (viii). For any a, b, c, (LB we have

LLhc>+ Mpe)y—Tkarb,c) = 0“0G Bac+B™BC- Bke- B°+bBC- (<atix,

LRHOG 7W c¢] - YaM6C-U aCM = (Ba+ 6b- B athBC-(B°C+ BbC-0° cHo)
where in the second equality we have used Lemma 3.5. A simple inspection shows
that the two expressions are equal. It now suffices to point out that 31(A) is the
kernel of n:A  Q(A).

This lemma says that if the two functions satisfy conditions 4.1 (iii) and (iv),
then the remaining conditions are “very close” to being satisfied. For the case when
31(A)=0, the remaining conditions will be satisfied, and we may define [,] and

(,) by 4.1 (iii) and (iv) because in that case n is one-to-one. We do this in the next
result.

Theorem 6.2. For the rings A and B with 31(A)=0, let x- B—Q(A)/n(A)
be a homomorphism and 0: B—Q(A), with 0: a-*6* be any function for which
0°= 7o and Ov—y- Define thefunctions [, ] and (,) by the requirements:

4y abl= 0“+0b-0 a+b, WAL = BaBb-€°b (a, bEBY.

Then E(;[,]1.(,)) isan Everett sum of A and B, which we denote by E(6; ).
Conversely, every extension of A by B is equivalent to some E(O; y). Moreover,
E(6; x) ard E(0',x") areequivalentifandonlyif y=y"

Proof. Since the annihilator of A is the kernel of n, the latter is one-to-one,

so [,] and (,) are unambiguously defined. Conditions 4.1 (iii) and (iv) follow by
the definition of [, ] and (, ) and 0°=wo by the requirement on 0; the rest of the
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conditions in Construction 4.1 follow directly from Lemma 6.1. Now Theorem 4.2
gives the direct part. This together with Theorem 4.2 gives the converse.

Clearly -/XE(O- y))= X, and we have noted above that equivalent extensions
have the same character. Conversely, consider the extensions E(6; y) and E{0', y).

Let £ be defined by the requirement: na? = B'a—8a (adB).

Note that 6'a—0aEM(A) since Ov~0'v and that nai uniquely gives a£. Hence
£:5—A and clearly 0O£=0. Let a,bEB. Then

Ba,0V-*la,h} = 0°+ 0'-0"+b-(0“+ (- B ath) =
= {0'a-0°) + (8'b-0 B-(0'°+b-B° +B§ = Tai+ ItH- n (a+h)i
and thus Condition 4.5 (ii) holds. Further, using Lemma 3.5, we get
no“BC>+ n(a()6b+ n(a()(l0 ~ n(abK =
Ba(B'b- B”) + (0'a- 0°)Bb+(B'a- 0°)(B'b- By - (0'd- B =
(8“0'b-B'ad)-(BaBb-0 &y = Llab)-UabY
and condition 4.5 (iii) is satisfied as well. Thus by Theorem 4.5, the two extensions

E(0; y) and E(0";y) are equivalent.
Another kind of extension is provided by the following concept.

Definition 6.3. An ideal / of a ring R is large if | has a nonzero intersection
with every nonzero ideal of R. An extension &?=(£, R, rj) of A by B is an essential
extension if s a large ideal of R.

Proposition 6.4. Let R, i) be an extension of A by B, and consider
thefollowing conditions.

(i) &? is an essential extension.
(i) z(R: 1) is a monomorphism, where I=AE£.
(iii) &? is apure extension.

Then (i) implies (i) if 'J1(A) =0. The implications (ii)=>(iii) and (iii)=>(i) always hold.

Prooft, (i) implies (ii). Let K be the kernel of t—t(R:1), and let rEK(~)I,
idl. Then /7=1rr=#0/=0 and similarly />=0. Hence r£21(/)=0 and AT)/=0.
Since the extension is essential, we get K=0. Therefore T is a monomorphism.

(ii) implies (iii). Let rdR be such that i'dTKI). Then tr=ni—zl for some
idl, and since T is one-to-one, we get r=idIm Thus the extension is pure.

(iii) implies (i). Let K be an ideal of R for which 1MN)K~0 and let kdK, idl-
Then zki=kidir\K=0 and similarly ixk=0. Thus zk—n0dn(l) and the hypothe-
sis implies that kdl- But then kdI(~)K=0. Hence K—0 and the extension is
essential.

There is a kind of essential extension of particular interest.

Definition 6.5 Let (E, R, rj) be an essential extension of A by B. Then 0L
is a maximal essential extension if for any essential extension 01'=(f, R', rj') of A
by B such that R R\ we have R=R".

For these extensions, we have the following statement.
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Theorem 6.6. Let 0t=(", R, q)=E(0; [,],(,)) be an essential extension of
A by B and assume that dI(/4)=0. Then the following conditions are equivalent.

(i) 01 is a maximal essential extension.

(@ii) x(R: 1) maps R onto (2(1), where I=AEL

(iii) 9 maps B onto (2(A).

Proof, (i) implies (ii). By Proposition 6.4, x=x(R :1) is an isomorphism of
R onto T=T(R:/). The diagram

TLXUr JL" B

obviously commutes which gives that x is an equivalence isomorphism for the exten-
sions Si and (£1, T, x-17). We can build an overring R'=R{J((2(1)\T) of R in
which | is an ideal in the usual way. In order to prove that x maps R onto (2(1), it
thus suffices to show that R'—R. The hypothesis implies that I is a large ideal of R.
Hence it suffices to show that | is also large in R'. By the construction of R’, this is
equivalent to showing that M(1) is large in (2(1) which we now proceed to do.

Let / be an ideal of Q(l) and let 0~(A, £5)€/. We assume that XA A since
the case gA @ can be treated symmetrically. There exists a£l such that XaAO.
Since 21(/)=0, either (Xa)b” 0 or b(Xa)Tx0 for some bEl. In the first case,
(XXab A0 and in the second case b(noa=(bo)a=--b(Xa)A-0 and thus in either case
(X, pynaAw,. Hence (A o)na(.7M)M(1) which shows that M(1) is large in (2(2).

(i) implies (i). Let '%'=(£, R', f) be an essential extension of A by B such
that RQR'. Letting I=A", x=x(R: I), x'=x(R': /), we obtain the commutative
diagram

R -2~ (2(1)

where iis the inclusion mapping and by Proposition 6.4, x is an isomorphism and x'
a monomorphism. For any r'dR', we get r'x'x~1=r(R whence r'x'=rx. Since
T'|a=T, it follows that r'=r. Thus R=R"' and Si is a maximal essential extension.

The equivalence of items (ii) and (iii) follows easily from Lemma 5.2.

The (external) direct sum of the rings A and B is usually denoted by A@B.
Strictly speaking, a direct sum of A and B is a triple of the form (g R, i/0 where R
is a ring, (p: A-»R and ¢: B-~R are monomorphisms, and the triple satisfies a
universality condition. The Cartesian product A® B with coordinatewise opera-
tions, together with monomorphisms

ip:a—@0), y: a—(0,a) (dEA, a(B)
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satisfies the conditions for a direct sum. We will denote by Ay B thetriple (g, R, &),
where R and crare defined as above on Ay.B and

< (@, a) —a ((a, a)EAxB).

Then A®B is an extension of A by B, which we will refer to as the direct sum of
A and B. To simplify the notation, we will denote by A® B also the ring alone.
In the latter context, both A and B are said to be direct summands of A®B.

We now derive some consequences of the above results.

Corollary 6.7. Let £%=(£, R,rj) be an extension of A by B, let |—Ap,
and x=z{R\ I), and assume that 91(J1)= 0. Then the following statements hold.

(i) 3Xis astrict extension ifandonly if 01 isequivalent to the direct sum A ® B.

(i) 1f 91 isapure extension, then OL is equivalent to the extension (Et, T(R : I),
T-b/).

(iii) a1 is a maximal essential extension if and only if T is an isomorphism in
which case 0t is equivalent to (*r, Q(l), x~rn\).

Proof, (i) Let OL be a strict extension. By Proposition 5.4, i(0t) is the zero
homomorphism. Evidently ~/(AdB) is also the zero homomorphism, which by
Theorem 6.2 gives that 01 and A®B are equivalent. The converse is trivial.

(ii) We have seen this in the proof of Theorem 6.6.

(iii) Let 01 be a maximal essential extension. Then T is a monomorphism by
Proposition 6.4 and an epimorphism by Theorem 6.6. It follows from part (ii) that
Ol is equivalent to (fx, 12(/), x~x0). The converse also follows from Proposition
6.4 and Theorem 6.6.

Corollary 6.8 Let 4f(J1)=0. The set of equivalence classes of extensions of
A by B is in one-to-one correspondence with homomorphismsfrom B into /i (A)/M(A).
In this correspondence, all strict extensions correspond to the zero homomorphism,
the classes of pure extensions to monomorphism and maximal essential extensions to
isomorphisms.

Proof. The first statement follows directly from Theorem 6.2. The remaining
assertions follow easily from Proposition 5.4 and Corollary 6.7.

The first statement of Corollary 6.8 was noted by Mac Lane [2]. A further in-
teresting property of the extensions under consideration here is the following.

Proposition 6.9. Let 91(1)=0 and £%=(£, R, ) be an extension of A by
B. Then 01 is equivalent to an extension 0t'=\g, R', of A by B where R'
is a subdirect product o f the type of Ot and B.

Proof. Let I=AE£, x=x(R: 1) and T=T(R:Il). Define x- r—r, rq) (rER).
Then x is a homomorphism of R into the direct sum T@B. If r%=(n0, 0), then
nr=n0 and r£l. Since ¥ (A)=0, it follows that r=0. Thus the kernel of x is tri-
vial and x is a monomorphism. Let R'—Rx- Then R' is a subdirect product of T
and B. Let

a—(n,, 0) (@ER), f: () - rmj (rER).

Easy inspection shows that is a monomorphism, f is a homomorphism of R’
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onto B, and the diagram

commutes. Hence the extensions (£, R, g) and (£', R', 1) are equivalent.

If we disregard the equivalence of extensions of a ring A, with 340 =0, and
a ring B, we may say that all extensions of A by B can be embedded into £2(A) ® B.
We now give a new proof of a well known result.

Theorem 6.10 [6]. A ring A has the property that for every ring B, every
extension of A by B isequivalent to A®B if and only if A has an identity.

Proof. Necessity. Form an extension of A by 12(A), with 0: £2(A)-+£2(A)
the identity mapping, and both functions [, ] and (,) identically equal to zero.
In this extension t%=E(6; L, ], (,)), denoting by i the identity of 12(A), we have
that (0, i) is the identity of the ring. By hypothesis, M is equivalent to the direct sum
A®Q(A). Hence the latter ring has an identity. Since A is a homomorphic image
of the ring A ® £2(A), it must itself have an identity.

Sufficiency. Let 4?=(£, R, tj) be an extension of A by B. The presence of
identity in A implies that 91(~)=0 and also that £2(A)=I1(A). Hence Proposition
6.9 applies so 1%is equivalent to an extension £%=(>*',R',ri") where R'is a sub-
direct product of M(A) and B since IM(A) must be the type of ffl. In view of the
isomorphism of A and M(A), we may assume that R'QA®B and is a subdirect
product. For any (a, a)EA®B, we have (B, a)ER' for some REA, and thus

(a, @) = (ct-B, 0)+ (B, a)

shows that R'=A®B. Therefore 0l is equivalent to the direct sum A®B, as

required.
A variant of the preceding result for strict extensions follows.

Theorem 6.11. A ring A has the property thatfor every ring B, every strict
extension of A by B isequivalent to A® B if and only if 41(A)=0.

Proof. Necessity. Form an extension of A by H(A), with o: M(A)-*£2(A)
the inclusion mapping, and both functions [,],(,) identically equal to zero. By
hypothesis, this extension E(0; [,],(,)) isequivalent to the direct sum Ad17(A).
Then A®IJ(A) can be regarded as the Everett sum with all these functions iden-
tically equal to zero. Theorem 4.5 provides a function £: 1J(A)-*A satisfying #0=0
and conditions (i)—(iii). Condition (i) becomes na=n,,”, and conditions (ii) and
(iii) imply that £ is a homomorphism. The equation nx=nm for all aEA means
that the mapping (n is the identity transformation on M (A). It then follows that £ is
a monomorphism of M(A) into A.

Let C="M(A)C- For any a, B(LA, we obtain

(IxE)O, = (maB, = (fmE)af = (n«E)(nRC) = (nanp)C = TBE
and analogously R(nff)=nlla,. Hence Cis an ideal of A. Let a€CI51(J1). Then
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X=TtRC for some REA and nx=>K. It follows that

so that k= /JpE=n0C=0. Thus CPI9I(T)=0. Also,forany a£A, we have na=n,,
and hence

a- a,E+(@- nag)EC+9t(A),

proving that A=C+§I(A). Butthen /1= C®21(/).
Let dMH(C). Then for any cEC and a£4l(A), we have d(c+ci)=dc+da=0
and similarly (c+a)d=0. It follows that d€4t(A), which shows that 91(C)=0.
Now set D=4I(A) so that D2—0. Let B be the ring whose additive group
is (Z, +) and for which B2=0. Fixany dED and let

BT=0, [m,n =0, (m n)=mnd (m,nEB).

Conditions (i)—(ix) in Construction 4.1 are verified easily. We thus obtain a strict
extension St=E(6;[,] (,)) of C®D by B. By hypothesis, this extension is
equivalent to the direct sum of C®D and B. Thus Construction 4.3 provides a
function C:B-~C®D such that, among other conditions, (m-nX=(m, ri) and
Of=0. Flence

0 =0o=(nNC=(3B=d

Since dED is arbitrary, it follows that D=0. Butthen A=C and therefore 4 (/1)=0,
as required.

Sufficiency. This is the content of part (i) in Corollary 6.7.

7. Extensions of semiprime atomic rings

We have seen in Corollary 6.8 that for given rings A and B with ¥1(4)=0,
all extensions of A by B are determined, up to equivalence, by homomorphisms
X: B-+Q(A)/n(A). For example, the zero homomorphism corresponds to the class
of strict extensions, and any such is equivalent to the direct sum A®B. There
exist rings A and B with the property that there exists only the zero homomorphism
from B into £2(A)/INM(A), which means that any extension of A by B is equivalent
to their direct sum. This situation occurs when, for instance, the additive group of
B is torsion and the additive group of £2(A)/T(A) is torsion free. We consider
below an example of such a situation and of a related one.

In order to economize with space, we refer to [4] for details concerning the
concepts and statements needed here and present below only the bare minimum.

Let A be a semiprime (no nonzero nilpotent ideals) atomic (generated by its
minimal right ideals) ring. According to ([4], 11.6.1), A is a direct sum A= ® AX

nen
of simple atomic rings. By ([4], II. 1.9), for each AEA, An” r[/n(), where (t/A\K)
is a pair of dual vector spaces over a division ring Ax and is the ring of
all linear transformations on V, offinite rank having an adjointin Ux. Each * W(\®
is a regular ring by ([4], 1.3.6) which implies that A is a regular ring and in particular
91(T)= 0. In addition

M(AX - sFrvivxt [7(A) a o FVX(VX\
A

Xz
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and in view of ([4], 11.5.10), Q(A)sz f] 2(AX. Further, ([4], 1.7.14) yields

(235" (fj))=4g'ujivx) where the latter is the ring of all linear transformations on
K having an adjoint in Ux. Combining the last two statements, we obtain Q(A) =
— I Yux(¥n which finally yields

Xen

(3 Q(A)/n(A)  n_&x(K)/ O

We will analyse now the ring figuring on the right hand side of (1). The first
part of our discussion will provide necessary and sufficient conditions for the addi-
tive group of this ring to be torsion free, the second part deals with a related type
of situation.

We denote by ch R the characteristic of a ring R.

Lemma 7.1. Let (1), V) be a pair of dual infinite dimensional vector spaces
over adivising ring A andlet R = £X(V)ItFv(V).

(i) ch A=0 ifandonly if the additive group of R is torsionfree.

(ii) if ch A=p, aprime, then ch R=p.

Proof. Assume first that the additive group of R is not torsion free. Then
there exists af£Cv (V) with the properties: a$£fi(V) and na””v(V) for some
natural number n. Then dim Va is infinite, so there exists an infinite linearly ordered
set xx,x2 xs, ... of vectors in V such that the set {xa, x2, ...} is linearly inde-
pendent. On the other hand, the set {xfnci), xfina),...} is linearly dependent
since dim k(na)<oo. Hence there exist scalars 0x, 62, ..., Sk in A, not all equal
to zero, for which -

a1(x1(na)) + O2(*20»e))-K"+<5*(**(na)) = 0.

(/i8i)(xa) + (B (x20) +...+ (N6 H(xta) = O.

Since the set {xra, X2, ..., xka) is linearly independent, we must have ndt=0, for
i=1,2,.., k. Thus there exists 6fA suchthat 6*O, n6—0, n>0. Since then
(n)6i=0, we must have nl—0 and thus ch A~ 0. This gives the direct impli-
cation in part (i).

Suppose next that ch A—p. For adJtv(V) and rEF, we have

v(pa) = (pv)a = (pl)jva = Ova =0

so that pa=0. Since p is prime, ch dL(V) is either equal to p or to /; the latter
would contradict the hypothesis on V. Hence ch ££u(V)=p and thus chi? is equal
to either p or /, the latter is again impossible in view of infinite dimensionality of V
Therefore ch R=p which establishes part (ii).

If chAMO, then chA=p for some primep and thus, by the above, chi?=/>,
which evidently shows that the additive group of R is torsion. This proves the re-
verse implication in part (i).

It follows that

Lemma 7.2. Let (Ux,\X) be a pair of dual vector spaces over a division ring
AXA(:A. Then the additive group of R= ff LEUX(VX)/ ® is torsion free

xen
ifandonly if ch Ax—0 whenever dim \>is |nf|n|te
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Proof. Assume that there exists pdA such that ch AR~p”"O and dim W
is infinite. Then pIR—0 since eh JB17)=0 as in the proof of Lemma 7.1. Letting
al=IR and saa=0q for IAp, we obtain an element (as) in M *nn(¥x) for which

AEN

(em)+ ® ~UuJK) A @ ~uAK), p((@a)+ o *,n0(t0) = o ~ulK)
OEN AEN AEN aen
and the additive group of R is not torsion free.
Conversely, assume that chdA=0 whenever dim \k is infinite. Let (ax)d
€ M &un(K) be such that n(ax)d ¢ g f°r some natural number n. Hence

nglen—osil for all AdJT except for Aaenfinite number, say Aj, 5, ..., Ak for which
naxt&ux (YA, 1=1,2,...,*. Hence axfeUx(yx) and nax.d*ux(VX). If
dimvXiree, then we have axfi3Fv>(Vx) automatically, otherwise the hypothesis
insures that chAX=0 and Lemma 7.1 (i) yields saa€”ea(If), i=I, 2
]S:onsequently (A5)E o 3'0AYA which shows that the additive group of R is torsion
ree. JEN

A nonzero idempotent of a ring R is primitive if it is minimal relative to the
partial order of nonzero idempotents of R defined by: eé/»e=e/=<? We can
now prove the first principal result of this section.

Theorem 7.3. Let A= b Ax, where Ax are simple atomic rings. The additive

group of Q(A)/n(A) is torsion free if and only if ch eAxe=0 whenever e is a pri-
mitive idempotent of Ax and the ring Ax has no identity element.

s oo IN view of (1), we may consider the ring [JSEMi(W)/ o 3'MAYA

s nen nen
instead of 12(A)/TT(A). By ([4], 1.3.18), for any primitive idempotent e of 3'MAYA
we have Ax"e”Uj(We and thus Ax“eAxe. We have AxSE&tJi(Mx) and the
latter ring has an identity element if and only if dim \k<°°. These considerations
reduce the hypotheses in the statement of the theorem to those of Lemma 7.2 whence
follows the desired conclusion.

Note that in the above theorem, if e is a primitive idempotent in Ax, then eAxe=
—eAe and Ax—AeA so the hypothesis of the theorem can be stated in these terms.

Corollary 7.4. If A is a ring satisfying the conditions in Theorem 7.3 and
B is a ring whose additive group is torsion, then any extension of A by B is equivalent
to their direct sum.

Proof. We pointed out at the outset of this section that 2104)=0. The asser-
tion now follows by Theorem 7.3 and Corollary 6.8.

The socle of a ring R is the subring of R generated by its minimal right ideals.
If R has no minimal right ideals, the socle is set to be equal to 0. Hence atomic
rings are precisely those which coincide with their socle.

Corollary 7.5. Let R be a ring with thefollowing properties:
(i) thesocle S of R issemiprime and is an ideal of R,
(if) the additive group of R/S is torsion,
(iii) 5 satisfies the conditions o f Theorem 7.3.
Then R= S®R/S.
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We now consider another type of condition on the additive group of Q(A)/11(A).
Denote by | the division of integers.

Lemma 7.6. Let (Ux, V) be a pair of dual vector spaces over a division ring
AX?.£/1, and let n be a natural number. The ring R= ]JE£NK(Vj)/ ® "~ UX(W)
acn en

has no nonzero elements whose additive order divides n if and only if ch AX\n whene-
ver chd”~O and dim \k is infinite.

Proof. Assume that there exists p£A suchthat ch A*O, dim W is infinite
and ch AB\n. Let aB=IB and ax=0x if I"p. Then (ay + qof‘mx(yk) is a non-

zero element of R since dim\,, is infinite. Further, n(ax)£© dRyL(Wx) since
ch AR\n. Hence (aA+ ® 4dM(VX) is a nonzero element of R whose additive order
A6

divides n.

Conversely, assume that ch AX\n whenever cli Ax*0 and dim K is infinite.
Let (vﬂ)6 I'I &vjyd and |/|(|/| )€® There exists f, a2, ..., Xk such
that naxf" Ux(VX) for i=1, .,n and nax= if If dim P,
we have axfLEijx (W) ="' U<(Vx). Suppose that dimp”( is infinite. If chdA=0,
then Lemma 7.1 (i) gives that the additive group of STV, (Vx.)/*v. (W) is torsion
free, so we must have axfdFVx (). If ch Ax.A0, then the hypothesis in conjunc-
tion with Lemma 7.1 (ii) gives that ch £TV. (VY/ITU (VX¥)=chAXr We also have

that ch Ax =p for some prime p, and the hypothesis yields that p\n. Since p is
prime, (n,p)~ 1 and there exist integers vand t such that ns+pt=1 In the di-
vision ring Ax., we thus have nsIXi=IX since ch Ak =p. Consequently

aX = s{nax)<idFvx(Vxf

This shows that (ax)6 ® (W), which proves the assertion.
A6

We can now easily derive the desired result.
Theorem 7.7. Let A= ® AX, where Ax are simple atomic rings, and let n

_fen, -
be a natural number. The ring W(A)/M(A) has no nonzero elements whose additive
order divides n if and only if ch eAxe\n whenever e is a primitive) idempotent of
Ax. cheAxeA0 and the ring Ax does not have an identity element.

Proof. The argument here goes along the same lines as in the proof of Theorem
7.3 now using Lemma 7.6 instead of Lemma 7.2. The details are omitted.

Corollary 7.8. If A s a ring satisfying the conditions in Theorem 1.1 and B
is a ring whose characteristic divides n, then any extension of A by B is equivalent
to their direct sum.

Proof. See the argument in the proof of Corollary 7.4.
Corollary 7.9. Let R be a ring with thefollowing properties:
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(i) thesocle S of R issemiprime and is an ideal of R,
(if) ch R/S\n,
(iif) S satisfies the conditions o f Theorem 7.7.

Then R=S®R/S.
8. Problems

Many questions may be asked concerning Everett sums of two rings, strict,
pure and essential extensions of rings. The following is a modest sample of such
queries.

Probtem 1 When is an Everett sum E(B; [,].,(,)) an essential extension?
By Proposition 6.4, every pure extension is essential, so the sought condition is at
most as strong as the one in Proposition 5.4 (ii).

Probtem 2. What are necessary and sufficient conditions on a ring A in order
that every essential extension of A be pure? In view of Proposition 6.4, a sufficient
condition is $1(J)—0. Is this condition also necessary? Theorem 6.11 can be inter-
preted as a dual to the sought result.

Probtem 3. How far can the results of Section 6 be carried without the hypo-
thesis 21(J1()=0? In the present formulation, probably not much, but appropriate
modifications may produce some interesting results.

Probtem 4. We may say that the rings A and B are incompatible if every ex-
tension of A by B is equivalent to their direct sum. Theorems 6.10, 6.11, and Corolla-
ries 7.4 and 7.8 provide some pairs of incompatible rings. Find other criteria insuring
that two rings A and B be incompatible.
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A NOTE ON ARCS IN HYPERSPACES

A. K. MISRA (Nsukka)

Introduction

Given a metric space X, a metric can be defined on the set of all non-
empty closed subsets of X in a fairly natural way ([4], 80.1). This metric was first
defined by Hausdorff, and the resulting space called a hyperspace of X. Later, the
same ideas were extended to the non-metric setting by defining suitable topologies
on the set f'Jf(X) for any topological space X. Among the various topologies, the
Vietoris topology (8§ 1 below) is in a sense the most reasonable extension of the
original metric hyperspace topology. Broadly speaking, the term ‘hyperspace of X’
is used, at least in this note, for any subfamily of fif(X) to which all singleton sub-
sets of X belong and that has the relativized Vietoris topology.

One early and basic result in the hyperspace theory is the arcwise connectedness
of the hyperspacees 4iif(X) and 4>(X) of a metric continuum X (see [4], §1.10 and
81.14). Here 4>{X) is the family of all subcontinua of X. This result was proved for
general continua by McWaters [2] in 1967, by using Koch’s arc theorem for partially
ordered topological spaces. In this note, we prove a general arc theorem for hyper-
spaces by straight set-topological approach and from it deduce arewise connected-
ness of Mif(X) and €{X). in case X is a continuum.

1. Preliminaries

All topological spaces in this note are assumed to be Hausdorff spaces. For any
space X, ¢>i£{X) stands for the collection of all non-empty closed subsets of X. The
subcollection of all compact and connected subsets is denoted by f(X). For any
finite collection {C/, i/2, ..., H,} of non-empty open subsets of X, the subset
{FeV&iX): FQU1UU2U .. UUn and for /=1,2, ...,n} of ~S£\X)
is denoted by (Ux, t/2, .

The family of all subsets of fiiE{X) of the above form is a base for a topology
on 'llISP(2). This topology is called the Vietoris topology of the finite topology and
the resulting space and its subspace 4>(X) are called the hyperspaces of X. More
generally any subspace XX{X) of the hyperspace €i£(X) that includes the collection
of all singletons may be referred as a hyperspace of X.

While most of the terminology and notations are standard, it may be mentioned
that in what follows an arc is a compact, connected, linearly ordered (not necessarily
metric) topological space and we carefully use the symbols and c for subsets
and proper subsets respectively.

Suppose A and B, Ac.B, are two members of a subfamily if of fEf{X). then
a subcollection of if that is linearly ordered by inclusion relation Q, has A and B
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as members and is such that each member contains A and is contained in B is called
a chain from A to B in if. Any such chain is contained in a maximal chain of
the same type. In case such a chain is an arc under its order topology, it is called an
order arc from A to B in if.

2. Results

First we state and prove two lemmas.

Lemma 2.1. For any topological space X and any maximal chain 6 from A
to B in if, ifi=@iR{X), the subspace topology on <6is larger than the order topology.

Proof. We need only to show that for any F in A d FezB, the half-open
intervals [A, F)={E~: AMEdF) and (F, B\—{E4Y> A*=EdF) are open in
the subspace topology of @. First, let E be any member of [A, F). Then there is an
x in F—E and as for any member S of (X—{})M@, FiZS cannot be true, we
have: E£(X—{xtyD'tfQIA, F). Similarly, for any member G of {F,B], G—F
is non-empty and we have: GE£(X—F, X) N~ Q (F, B].

Lemma 2.2. Let X be a topological space and if a subfamily of if (X).
Thenfor any A, B in if, AdB, each maximal chainfrom A to B inif isa closed
subset of if.

Proof. Let” be a maximal chain from A io Binif and suppose Fisin if—f.
Then, there exists an E in f such that (a) A%F or (b) FQ™"B or (c) AdFdB
and E%F%E. In case (a) there isan x in A—F and (X—{x})M1T is a neigh-
borhood of F disjoint from &. In case (b), (X—B, X)C\if is such a neighborhood
of F. Finally, in case (c) if zE E— then {X—{z}, X—E)C\IT is a neighborhood
of Fdisjoint from f.

Now we present the main theorems and corollaries.

Theorem 2.3. Let X be a topological space and if a compact, Hausdorff sub-
space of fif(X). Thenfor any A,B in if, AdB, any maximal chain f from
A to B in if is a compact ordered subspace. Consequently, if in addition f is
order-dense (that isforany R, T in RdT, thereisan if in suchthat RdSd
dT) then f isanorder-arcfrom A to B in if.

Proof. By Lemma 2.2, is a compact, Hausdorff subspéce of if. By Lemma
2.1, the subspace topology on f is larger than the order topology and therefore in
view of the fact that the order topology is always Hausdorff and compact Hausdorff
topologies are minimal Hausdorff, the two topologies on f must be the same. Thus
" is a compact, ordered subspace of if. For the last part it need be only noted that
the stated condition on f makes it connected also.

Theorem 2.4. Let X be a topological space and A, B members of f>if{X)
such that AdB. Then there is an order-arcfrom A to B in fSf(X) ifand only
if A, B belong to a compact Hausdorjforder-dense subspace if of fi£{X).

Proof. Iff isan order-arc from A to B in f>if(X) then » itself may be taken
as if. Conversely, ifthere is an if having the stated properties then by Theorem 23.,
there is an order-arc from A to B in if and hence in fif(X).
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Corollary 25, Let X be a topological space, a subcollection of FJf(X)
and A, B two members of Pf. If A, B belong to a compact Hausdorff order-dense
subspace if of 0* such that if has a member C containing both A and B, then
there is an arcfrom A to B in if.

Proof. By Theorem 2.4, there is an order-arc sd from A to C in if and an
order-arc 3dfrom B to Cin if. The collection sdS\33 is a non-empty, closed subset
of both sd and 33, consequently has a common infimum, say D, in both sdand 33
Now the subarcs [A, D] and [B, D] of sd and 33 respectively, together provide
an arc (under a modified linear order) from A to B in if and hence in S3.

Corottary 2.6. ([2], 83). If X is a compact and connected space, then f(X)
is arcwise connected.

Proof. The space f(X) is compact ([3], Proposition 4.13.5) and X itself is a
member of f(X). Consequently, in view of the fact that f(X) is order-dense ([1],
p. 173), we get, by Corollary 2.5, that tf(X) is arcwise connected.

Corottary 2.7. ([2], 83). If X is a compact and connected space, then fif (X)
is arcwise connected.

Proof. The space 4>if(X) is compact ([3], Theorem 4.2) but is not order-dense
if X has more than one point. Therefore, we need to work with suitable subcollec-
tions of flif(X). For this, given A in fif(X ), consider the collection i f ofall members
Fo$@if(X) suchthat AMFQ X and each component of F has points of A. Clearly,
X belongs to if and £fQ~(X) ifand only if A is in <if(X). We show that if satisfies
the conditions of Theorem 2.4, in order to first conclude that there is an order-arc
from A to X in fiiflX). From this, in view of the proof of Corollary 2.5, it will
follow that €if(X) is arcwise connected.

if isa closed, hence compact, subset of @if(X): If EPGIE(X) —if then either
A%E or Ac.E and there is a component K of E disjoint from A. In the first case,
there is an x in A—E and (X—{x}) is a neighborhood of E disjoint from if.
In the second case, E is not connected between A and K ([1], p. 170), hence there
exists a closed subset D"PK of E such that E—DI3A is also closed. Now, X
being normal, there are disjoint open subsets U and V of X such that DQU and
E—D "V, and then the neighborhood (U, V) of E is disjoint from if.

if is order-dense: Given R, T in if, RaT, let xET—R and U be an open
set containing R such that x(fCI(t/)- Suppose K is the component of T to which
X belongs, then as AC\K is non-empty, Rf]K is also non-empty. Let ydRDK
and V stand for the set UC\K. Then, Vis a non-empty proper open subset of the
continuum K and hence for the component C of C\(V) to which y belongs, we have
cnr-kK)~0 ([4], Theorem 20.1). Now, if S=R(JC then S”if and RczS<"T.
This completes the proof.

For any A in fif(X), let if (A) and JI(A) be respectively the collection of all
those members of €if(X) that are contained in A and the collection of all those that
contain A. Then, obviously 33(A)— (A, Ji(B)*JI(A) whenever B belongs
to JI(AI), and Jt(A) is contained in each neighborhood {lj- K, e, K) of X to
which A belongs. These observations coupled with the fact that the order-arc
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from A to JSfin %?£f(X) obtained above is contained in Ji(A) (in Jt(A) M*E(X) if A
is in (X)) lead us to the following corollaries.

Corollary 28. If X is a compact and connected space and A is a closed
non-empty subset then the subspaces ,M(A) and M{A)C\E(X) of €dE(X) are
arcwise connected. In case A is in (i(X) then Of(A) is also arcwise connected.

Corollary 2.9. ([2],84). If X is a compact and connected space then the
hyperspaces €fE(X) and (X) are locally arcwise connected at X.
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THE CESARO- DENJOY- PETTIS
SCALE OF INTEGRATION

B. K. PAL and S. N. MUKHOPADHYAY (Burdwan)

1. Intr oduction

In an earlier paper [5] we have introduced a scale of Cesaro—Denjoy—Bochner
integration. In the present paper we introduce a scale of Cesaro—Denjoy—Pettis
integrals, the CnD*P integrals, such that the strength of the integral is increased
with«, the COD*P integral being the special Denjoy—Pettis integral introduced
in [6].

2. Definition and terminologies

Throughout the paper, R is the real line, X is a real Banach space, || ¢| its norm
X* its conjugate space. The definition of Peano derivative and of AC,,G* for rea
function are as in [2]. We shall frequently refer to the CnD integral of [7] and to the
CnP integral of [3] for real valued functions. These integrals, viz. the CnD integral
and the CrP integral are equivalent (see [8]). The Lebesgue—Bochner integral and
the Lebesgue—Pettis integral will be denoted by LB and LP respectively. Unless
otherwise stated, function will mean an U-valued function defined on an interval

[a b].

Definition 21 Let F:[a, ff]—X and let ££\a, b]. Let u be a positive integer.
If there are constants , a2,..., @™ X depending on £ such that

- = o((t-09 (t- ©

for all x*fX*, then a, is called the weak Peano derivative of F at £ oforder n
and is denoted by (E). Itiseasily seen that if Ffaif) exists then (f) {Irk~
LLh) exists. In particular Fffo(E) is the weak derivative of F at £ For convenience
we shall write Ffc to mean F. It is clear that if the strong Peano derivative F(0)
(cf. [5]) exists at a point ~ then FY) also exists at £ and FM(t;) = F(i)(2).

Definition 22. Let F: [a,b]—X and let n be a positive integer. If there are
functions Fj\[a, i]—X; /=1,2,..., n suchthat
X* "F(t)~F(O-0~OFAOQO -"Ff0----- N-Fn(o] =

=o((/-a® (/-0

for almost all ££[a, ff] for each x*CX* (the exceptional set of measure zero may
vary with x*), then F, is said to be the pseudo derivative of F on [a, ff] of order
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n and is denoted by DRF. It is easily seen that DRF (1"ksri) exists if DPF exists
and that if P} exists a.e. in [a, b] then DRFexists in [a, bjand DPF= Ffy

D efinition 2.3. Let n*O. A function F: [a,b\"X is called weakly AC,GM
on \a,b\ if F¥) existsin [a,b] and ifthe real function x*F is AC,,G* [2] for each
X*ex*.

Since |x*F|=S||x*||||F|| it is easy to verify that strong AC,,G* defined in [5]
implies weak AC,, G*

3. Preliminary results
Theorem 3.1. Let F be weakly AC,G* in [ab] and let DPHF exist in
[a, b]. If DPHIF—O0 in [a b) then Fyy is constant.

Proof. Let x*€X* be arbitrary. Then x*F is a real valued AC,,Gt function-
Since x*DPHIF=0, (x*T)(,+p=0 a.e. So by [2; Theorem 16coupled with Lemma 2]
(x*P){) is constant. But since Ffn) exists in [a b]. (x*F)M=x*Fj“). Hence
x*Fft) is constant. Let ££[u, b]. Then x*(F~(")—F{)(a))=0. Since x* is arbit-
rary, the theorem is proved.

Theorem 3.2. If F{f,né 1, existsin [a b], then F*f are strongly measurable
for k=1,2, ..., n

Proof. Since F is weakly continuous, it is strongly measurable (cf. [6] or [4*
p. 73]). Since Ffi) exists in [a b\, for each tE[a, b] and each X*€-iT*

limy " 5 [F(t+h)—F(] = x* Ffi (1).

Taking any sequence {hr} which converges to 0 we get a sequence of strongly mea-
surable functions {-I[F (i + /in-F (0]j Which converges to Ffa (t) weakly every-
where. So, by ([4; p. 74, Theorem 3.5.4], Ffa is strongly measurable. Thus the theo-

rem is true for /i=Il. Suppose that it is true for n=m—\. Then since F$) is
strongly measurable for k=0, 1, —1 and since by the existence of we
have
itW-1
limx* {F(/+A)-F(0-W ft (fl- (m—1)! = x*F?m){H)

for each t£[a, b\ and each x*, applying similar argument as above, F * is strongly
measurable. The proof is thus complete by induction.

Definition 3.3. A function f:[a. b]—X is said to be C,D*P (Cesaro—
Denjoy—~Pettis) integrable if there is a weakly ACnG* function F: [a,b]-*X such
that DR+IF exists in [a, b] and DP+IF =f on [a, b\. Then Ffa(t) is called an indefinite
CnD*P integral of f and Ffifb) —Ffcy(a) is its definite C,D*P integral in [a,b]
and is denoted by b

(C,.D*P) f f(t)dt.
a
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The definite integral of an integrable function is unique by Theorem 3.1. Clearly
by Theorem 3.2 an indefinite CnD*P integral is strongly measurable. It can be veri-
fied that the class of all C,,2)*P integrable functions in [a, b] is a linear space and the
C,,D*P integral is a linear operator from this linear space to X, and this operator
is additive on abutting intervals. In [6] we have defined the D*P integral (cf [9]) of
a function /: [a, b\—X to be F(b)—F(a) if there exists a weakly ACG*. function
F:[a, h]—X such that D),F=f on [a b\. Clearly if/ is D*P integrable in [a,b\
then/is COZ>*P integrable and the integrals are equal.

Theorem 3.4. Thefunction f is C,,D*P integrable over [a,b] if and only if
there is afunction F: [a b\—X such that H°) exists in [a, b] and x*Fft) is an
indefinite C,,D integral of x*f for each x*£X*. Further, we have

b
x'{FM) (b)- F& (a)) = (c,,D) f x*f{i)dt.

Proof. Let/ be C,D*P integrable. Then there is a weakly AG,6™ function
F:\ci, l—X suchthat Dp+lF—f in [a b]. So, for each x*£X*, x*F is ACnG*
and (x*P)(,*1)=x*/ a.e. and since (x*F)(n)=x*F{f so by the definition of C,,D
integral we see that x*Ffr) is an indefinite C,,D integral of x* f and

b
X*F?n) ) —*FfB(a) - (C, D) f x*f(t) dt.

Conversely, if exists and x*F” is an indefinite C,,D integral of x*f
for each x*€X* then since (x*F)M=x*F", x*F is ACnG*. Also since (x*F)({)
is an indefinite C,Dintegral of x* fwe have (x*F)(mL)=x*fa.e. and hence D', +1F =f
This completes the proof.

Theorem 35. Iff is CnDtP intagrab/e then f is weakly measurable.

Proof. By Theorem 3.4, for arbitrary x*€X*, the real valued function x*f
is CnD integrable and hence is C,,P integrable and so x*f is measurable [1]. Hence,
X* being arbitrary, / is weakly measurable.

Theorem 3.6. If f is LP integrable then f is COD*P integrable and the

integrals are equal. t

Proof. Let x*£X* be arbitrary and F(t)=J f(E)dE. Then x*f is Lebesgue

integrable with indefinite integral x*F. So x*f is Cop integrable with COP integral
x*F. Since FQ=F the resuir follows by Theorem 34.

Theorem 3.7. A C,_ID*F integrablefunction f is CnDxP integrable and the
integrals are equal.

Proof. Let/be C, 1F+F integrable in [ab]. Let F be weakly AC,, 1G*
and DpF=f in [a, b]. Since It:is weakly continuous, it is LB integrable [6] and hence

FF-integrable. Let G(t)=J F. Since DpF exists, for each x*£X* there is Fx*c
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cla, b] of measure zero such that for £E£EEX*

X*Lf(o—fO - f’:ir'lﬁ pPio ]J=o((t—an) 0-0.

Hence since F is LF-integrable,

x* [g(o- G (0o-(t-& F(o- 2 -1ji)4 DpFtt)\ = o((r-and) o- a

Hence DR+HIG=DpF. It can be shown that, since F(' X exists, (x*G)(n)=
—(x*F)(+ D)=x*F°n D) and hence GM)=F( _1) and that, since F is weakly
ACn"G*, G is weakly AC,,G*. Thus/is C,D*P integrable. Since G%)=F( _J
the result follows.

Theorem 3.8. A C,Df B integrablefunction is C,D, P integrable.

This is obvious since strongly ACnG* implies weakly AC,,G* and existence of
strong Peano derivative implies the existence of weak Peano derivative.

Theorem 3.9. | ff is C,D+P integrable and F(t)=(CnD,,P) Jf then F is

Cn_I D¥P integrable in [r, b].

Proof. Iff is C,D,P integrable then by Theorem 3.4 there is <P:[ab]-+X
such that fbfn) exists in [a b] and (x*®)(,) is an indefinite C,,D integral of x*f
for each x*£X*. Hence @, 1( existsin [a /;] and (x*®)(,,*]) is an indefinite Cn_tD

integral of x*F(i)= J x*f for each x*£X*. Hence Fis C,,_1D+F integrable by
Theorem 3.4.

4. Integration by parts

Theorem 4.1. Letf be C,D, P integrable and let F=J f. If G [a ii]—R
is such that G(M is absolutely continuous, then fG is CnD*P iantegrable in[a b] and

h

b
(CrDfP) f fG = [FGle-(Cn_ID*P)f FG".

Proof. We shall first prove the theorem for n=1 Let ®: [a,b]*X be such
that =F and Dp>=f and & isweakly ACXG*. Since @ is weakly conti-
nuous and G(1) is continuous so 4>3Q) is weakly continuous and so by Lemma
4.1 of [6] it is LB integrable and so LP integrable. Now let

4>(f) = i>(0G(a- f D<ACbKL)AL
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and x*E£X* be arbitrary. Then
(xX*«0u> = (Xx*P\DC+x*P0a)-x*dCa) - (x*P)(HC = x*(PI1)0) = x*FG.
Therefore 4l)=FG and also (cf. [1])
(**¥%) = x*FG’+ Gx*f (ae) = x*(FG'+fG) (ae.)
So, = FG'+fG. Now since @ is weakly ACXG* and since

4
x* 4)(a = x* D) G (0- f x* D) GW(f) dt

by Theorem 12 of [5], ® is weakly /tQG*. Hence FG'+fG is CXD*P integrable
and
h

[«% i=(CAIO f (FG'+fG).

Now by Theorem 3.9, Fis COZ)*F integrable and so FG' is COD*F integrable by
[6] and this completes the proof for n=1

Now we assume the theorem for n=m—1 and prove it for n=m. The theorem
will then follow by induction. Let @®: [a b]-*X be such that ®&\'T)= F and D”+1d=/
and @ is weakly ACmG*. Since @ is weakly continuous and G(m) is continuous so
®C(N) is LB integrable [6] and so LP integrable for r=1, 2, ..., m. Setting

L1 3
£ = »(@Qg (&+?(—1)‘t,a [ (q-ty-~(tyow (1)t
we get for arbitrary x*£X*
M (wt 1 S
x*u{a —x*ep(ag(a+g (-ir(rd Ty-/ « - or- Ix*¢p (o g<(0 dt.

By Theorem 12 of [5] (x*4f\ m=x*(FG) for all x* i.e. » M=FG and (x*4% mH)=
=x*(FGW+fG) a.e. for all x* i.e. =FGm +fG and 4>is weakly ACmG+.
Hence FG@)+fG is CmD, P integrable and

(FG) () = . (FGW+G).

Now by Theorem 3.9, Fis Ct_xO*P integrable and since (G)(" 1)=(G)cn) is
absolutely continuous, FG(D) is C, £*P integrable and hence by Theorem 3.7,
it is C,,,D£P integrable. So we have

[FGla= (CrDP) f b F()GW(t)dt + (CmD,P) f b f(t)G (t)dt,

a a

completing the proof.
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5. Examples

Example 5.1. There exists a COD*P integrable function which is not LP
integrable.

Let/be an everywhere finite real valued function on [0, 1] which is D* integrable
but not /.-integrable and let F(t) be its indefinite integral with F(0)=0. Let { }Jéw>
be fixed. Define g: [0. 1]—2 by g(/) = {c,f{t)}, /€[0, 1] and G: [0, 1]—2 by
G{t)— {cnP(N}, /€[0, 1]. Now, if x*€/Z, then there exists a sequence {d,}&/2
such that

x*g(t)=f(t)Xcndn= Af(t)

where Xcnd,,=A. Since /(/) is not L-integrable so x*g(t) is not /-integrable. So
g is not LP integrable. On the other hand/(/) being D* integrable x*g(t) is D* in-
tegrable and

« i S
berg(Ddt= 3 AT dt = ATf(1dt = AF(0 = F(0Zend, = x*G(O.

Since G *—G, by Theorem 3.4, g(t) is CnDrP integrable on [0,1].

Example 5.2. For each 0 there exists a C,,2*P integrable function which
isnot C,,_1Z)*/> integrable.

Letf be a real valued finite function in [0, 1] which is C,P integrable but not
C,MP integrable. Then there is a real valued function @ in [0, 1] such that ®is
ACnG* and @(,)(/) is the indefinite integral of /(/). We may suppose ®(n)(0) =0.
Let {rr}t4 m Define the function g and 'Fon [0, 1] with values in /2such that

g()={cr(t)}, /€[L,:] Y ()= {od©Ob /€[0,1].
Then the strong Peano derivative *R0 exists at each point where @0 exists and
‘Pt) = {erd((>} for i=1,2, ... ;i+ 1. Let Then there is a sequence {dr}-L2

such that
x*g(t) =f(t)Zcrdr = Af(i).

Since/(/) is not P integrable so x*g(/) is not C,, 2P integrable. Hence by Theo-
rem 3.4, g(t) is not C,,_17>*P integrable.
Again since/(/) is C,,P integrable, we see x+g(7) is G,P integrable on [0, 1] and
i { i
(1; x*g(t) dt —OJ Af(t)dt = Ag f(t)dt = A®dM)(0 = TerdY £K = x* T (n)(c)-

So, by Theorem 3.4 g(t) is CnD*P integrable on [0, 1].
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ON 3-TORSION FREE RINGS IN WHICH
EVERY CUBE COMMUTES WITH EACH OTHER

Y. KOBAYASHI (Tokushima)

In this note rings are associative and have an identity element 1. The set of all
positive integers is denoted by N. For two elements x and y of a ring the commu-
tator xy—yx is denoted by [x y].

Let nbe in N. Awtar [3] proved that an n!-torsion free ring satisfying the iden-
tity [x",yn]=0 is commutative, and asked if an «-torsion free ring with [xnj"]=0
is commutative. The answer is yes when n=2. Abu-Khuzam and Yaqub [1], [2]
showed that such a ring is commutative if certain conditions are added. Bell [4]
showed that the answer is negative for «=3. In fact, we have

Example. Let *=|[o gd|a>"€GF(4)]. Then S is a 3-torsion free non-

commutative ring satisfying [x8 y3=0.

A ring R is called a P,,-ring if R satisfies the identity [xnyn\=0 and every
commutator in R is «-torsion free, that is, n[x,>]=0 implies [x, y]=0 for any
X, YZR. The purpose of this note is to show that the ring S in the example is, essen-
tially, the only non-commutative P 3-ring.

In what follows, R is a P3-ring. Let x,yER. The equations [x3y3]=
= [x3 (I1+y)3=0 yield 3[x3y+yZ=0. Since every commutator in R is 3-torsion
free, we get

@) [x3y +/] = 0.

Substituting 1+x for x in (1) we obtain

@ [X+x2y+yq = 0.

Again substituting 1+y fory and next 1+x for x in (2), we have the identity
©) 4[x, y] = 0.

Conversely, as is easily seen, a ring satisfying the identities [x3 y3=4[x, y]=0
is a P;krings. Therefore we see that a homomorphic image of a P3-ring is again a
P&rmg, and that a ring is a P3-ring if and only if each of its subdirectly irreducible
factors is a P3-ring. Now the following theorem, the main result of this note, charac-
terizes P3-rings.

Theorem. Let R bearing. R isaParing ifandonlyif R is either a commu-
tative ring or a subdirect product o fa commutative ring and copies o f the ring S given
in Example.
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The proof of the theorem will be carried out stage by stage. It suffices to show
that a subdirectly irreducible P3-ring is either commutative or isomorphic to S.
The following easy, known result will be used frequently. Let x and y be elements
of a ring.

() If [x, [x,>]|=0, then [x",y] = nxn~I[xy] for all n*N.

Let x and y be in R. Assume xy=0. Since [x3y3]—0, we have y‘xJ—0 for
all integers is 3 and y's3. Then, using (1) and (2) we can get yx=0. Thus we
have

(1) For x,ytR, xy=0 implies yx=0.

Let N denote the set of all nilpotent elements of R, D the commutator ideal of
R and Z the center of R. Let a btN. By double induction on nilpotency indices
of a and b using (2), it is easily proved that [a b]=0. It is known that for a ring
with [x3 y3=0 the nilpotent elements form an ideal and the commutator ideal is
nil (see Kezlan [6] or Lihtman [7]). Thus we obtain

(1) N is a commutative ideal and DczN. Therefore ™2 and D1 are in Z.

Let xtR and atN. Note that a‘tZ for any is 2 by (lll). Hence by (1)
we have [x3 a]—O. Moreover, we find from (2) that

4) [x+x2 a] = 0.

Therefore we have [Xx, a]= —{x3 u]=[x4, a]=x3x, a]. Thus we get
(IV) (1—x3[x, u]=0 for any xtR and atN.

By (Il) there is no distinction between left and right zero-divisors in R. Let A
denote the set of all zero divisors of R. For a subset T of R the left (=right) annihila-
tor of Tin R forms a two-sided ideal of R and is denoted by Ann(T). Let us assume
that R is subdirectly irreducible. H denotes the heart (the smallest nonzero ideal)
of R. Clearly Ann(H)("A. Conversely, let atA. Then Ann (a) is a nonzero ideal
of R and contains H. This implies aEAnn(#). Thus we find that A—Ann (4)
is a two-sided ideal of R. Let atA and btN. Then 1—a3(fT. Hence by (IV)
we have [a, h]=0. Let x€R. Since xafA, we have xba=xab=bxa. These are
summarized as

(V) If R is subdirectly irreducible, then (i) A is an ideal of R, (ii) [a, ft]=0
for any atA and btN, and (iii) [x, b] is in Ann (A) for any xtR and btN.

Next we shall prove
(V1) Let R be subdirectly irreducible. I f Ann(T)czZ, then R is commutative.

Assume that Ann(Z)c:Z. Let xtR and atN. Since [x aJtArm(A) by
(iii) in (V), we have [X, [X, a]]=0. Hence by (I) and (3) we obtain |x\ a]=4x3[X, a]=
=0. Thus by (4) we get [x, a]=0. Lety be in R. Since [x,y]tN by (iii), we have
[x, Ix,v]]=0. Hence, again by (I) and (3) we find [x4 y]=4x3[x y]=0. Now
using (2) repeatedly, we can show [x, >]=0.

Now we claim
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(VIl) Let R be subdirectly irreducible. If R is not commutative, then R/A =
NG F{4).

Indeed, assume that R is not commutative. Then by (I11), AAO andso Ann(J1)c
zA. Since Ann(T) annihilates A, we find Ann(J1)cA. Moreover, (I11) implies
that R/A is a commutative domain. There are XER and Ann(d), such that
b—x, a]A0 by (VI), so |—xs£A due to (IV). If 1—x£A, then [x,a]=0, a
contradiction. So we find I+x+x2A. We have 2a—0, because 26A by (3).
Hence by (4) we find [x,b\=\x,[x, a\\=[x2 a]=[x, a\=b. Lety be an arbitrary
element of R\A. If [y,b]JAQ, then 1+y+yZ2A for the same reason as above.
Furthermore we have

0= 1+X+x2—H1+y +y) = (x—y)(I+x+y) = (Xx—y)(y—x3 (mod A).
It follows that y=x (mod A) or y=x2(mod A). Thus we get

) [y, ] = [x bl = b

If [y,é]=0, then [xy,b]=[x,b]Jy—by. Since by is nonzero, it must be equal to
b by (5). It follows that 1—y£A. This proves our claim.

By (5), Rb=DbR is a nonzero two-sided ideal of R, so it contains H. Therefore
there is an element z of R such that zb is a nonzero element of H. Since z$A, we
have 1—z3EA by (VII). Hence, b=z3% is contained in H. Thus we obtain

(VI 1f R is subdirectly irreducible, then [x,a] is in H for any x£R and
a*Ann(A).

Next we strengthen (V1) as follows.
(IX) Let R be subdirectly irreducible. If Haz, then R is commutative.

Assume that HaZzZ. It sufficesto show Ann(dl)cZ. Let xEi? and a6Ann (A).
Since [x,a]eH by (VIII), we see [x,a]6Z and [X, [x, a]]=0. By (I) and (3) we
find [x4 a]=4x3[x, a]=0. Thus we conclude [x,a]=0 by (4).

Now we shall finish the proof of the theorem. Assume that R is subdirectly
irreducible and non-commutative. If AN?+0, then AN is a nonzero ideal contained
in Z by (ii) in (V). So, H is also contained in Z and R must be commutative by (IX),
a contradiction. Therefore we have AN=NA=0. Let x€R and a,b£A. Since
[x, a] and [x, bl are in N by (1I1), we have [x, a]b=a[x,b\=0. It followsthat [x, ab]=
=0. This means that ab£Z and the ideal A2is contained in Z. Thus, for the same
reason as above we find A2=Q, that is, A-Ann(A). Now, choose an element x
in R so that the residue class of x modulo A is a primitive element of R/A (= GF(4)).
Let a be a nonzero element of A. If [x, a]=0, then Ra= {0, a, xa, x2a} forms a
two-sided nonzero ideal of R contained in Z. Again this is impossible. Therefore,
[x,a]*0 and we have [Xx, [x,a]]=[x, a] by (5), that is, [x, [x,a]—a]=0. But,
what we have just proved shows
(6) [x, a] = a

This means that for any nonzero element a of A, Ra=aR forms a two-sided ideal
of R of order 4. Since R is subdirectly irreducible, we conclude A=H=Ra=aR —
= {0, a, xa, xZ). We have 2=0, otherwise 2 is a central nonzero element of A
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and this is impossible. We can choose x so that jt3=1 holds. Indeed if y3=1+&
with b (9£0)EA, then xe=(l +b)2= 1; take x2for x. Then {0, 1, jc xZ} is a sub-
field of R isomorphic to GF(4). Moreover, by (6) we have ax=(x+l)a=x2a. It
is now clear that R”S, where S is the ring S in the example.

The proof of the Theorem is complete.

Remark. Let nEN. Ifnhas a divisor of the form 1+pr+p2r+ ... +ps, where
r and s are positive integers and p is a prime not dividing n, then there exists a non-
commutative P,-ring (see [5, Remark 3]). We believe that similar results to our
theorem in this note should hold for general  -rings.
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A LOSYNSKI—KHARSHILADZE THEOREM FOR
MUNTZ POLYNOMIALS

D. J. NEWMAN (Philadelphia) and B. SHEKHTMAN (Los Angeles)

In this note C(A) always denotes the space of continuous functions on the
unit circle and C[Q1 denotes the space of continuous real valued functions on the
interval [0,1]; z denotes the variable in A and t denotes the variable in [0, 1].

Let {AHLO be an increasing sequence of integers; A=0. The positive solu-
tion of the Littlewood conjecture implies that for any choice of linear bounded
projections g, C(A)-*C(A) with range gn=span (zL}"=0,

1911 3=0(1) log n.

This result prompted the second author to conjecture (cf. [4]) that for any
sequence of linear bounded projections pn: Clon]—C[0n with range pn=
= span {JT}"=0 we have ||pni|-»°°.

This conjecture turned out to be false in general. In this paper we indicate
some sequences {X} for which the conjecture is true and some for which it is false.

A sequence {A-}is called lacunary if ~j+1 1 for all j.

Theorem 1 Let {A} be a lacunary sequence, then there exists a sequence of
projections p,,: QQi]~C[0jl] with range p,,=span {Pj}’=o su°h that lIAII=0(1).

Proof. Denote by F=span {/ri}jLO Then V is the space of analytic func-
tions on |z|*l whose power series include only powers of zA<(cf. [1]). Moreover
{t\j} forms a Schauder basis for V. Hence there exists a sequence of projections
Qn: V-+V with range = span {m}>=> such that [|OJ=0(1). Because of the
minimality of the system {/A}, the space V is isomorphic to cO (cf. [1]) and thus
(cf. [3]) it is complemented in CIQjl]. Let P be a projection from C[01] onto V.
Then the projections pn—Q,,P are the desired projections.

Remark. Similar results are true for Lp[0, 1 (/?>1) spaces, and for arbit-
rary sequences (&) with XfR and A-*°°. Namely if {A}is a lacunary sequence
then there exists a sequence of projections p,,:Lp-*Lp with range p,,=
= span g(ar"=o such that |jp,1=0¢1). Proof follows from 17 and is exactly the
same as in Theorem 1

Theorem 2. Let A,Sn+o(logn). Then for every sequence of projections p,,
from C[0i] into with range /?,,=span {/g§}’=o, lipJ-"°°-

Proof. Let C[_P#l be the space of even periodic functions with period
2n. It is sufficient to prove that for any projections p,, with range pn=
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= span {cos*/0})-0 we have ||p,.||-> Every such projection has a representation

0,,X)(0)= 2 ifjn)(x)cosxj0
J=0
where and fj*Xcosxi0)=46ij. On the other hand, the same projec-
tion looks like
(Pnx)(0) = Zi IR (x)cosjO
j=o

where the linear functionals I8 are linear combinations of the functionals / ().
Using an inequality of Sidon [2] and usual arguments of functional analysis
we get

(i) WPNWACZE 4\ -

TheAprobIem is reduced to estimating the norms ||/jn)||. Define z!(0)=cosAl0=

=z cosR- Then lizill=!s On the other hand there are at most Axelements

in this sum and so for at least one index vxwe get |*4F|)|é—'|AI.—.

It follows from the definition of I8 that /»")(zi) = flii)- Therefore jjn,| =Kf
We can now choose numbers a}, ai such that the polynomial

A2
z2(0) = aj cosAO+alecs'12# = _z_ears cos jd
I

has norm 1 and the coefficient of cos (vLO) is zero. Then the polynomial z2(0) has
at most A22—1 monomials and so for at least one index V2

izl —wW?I1— .

Continuing in the same way, we define inductively a polynomial
. m+l +
Zm-i(0) = Z D) cos¥ 0 = 'Zl a"+1c°sy0
J=| J:

suchthat |zm+l|=1 and all the coefficients a(™+) (=1  m) are zero. Then
the polynomial zm+l has at most Am+l—m monomials and so there exists an index
vmtl such that

il 1l s k&
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Using inequality (1) we obtain

WIACT -bLj~CminM2 , \ T
An-V j+1i j 1 k

An— k+1

In n—n (A,—n) Inn—nlnn
— o(Inn) ~ 1 o(lnn)

The authors wish to express their gratitude to Professor J. M. Anderson for
helpful discussion of the original conjecture. We are also grateful to the referee for
the useful remarks.

References

[1] V. I. Guraniiand V. I. Macaev, Lacunary power series in the spaces C and Lp, lzv. Akad. Nauk
SSSR. Ser. Mat., 30 (1966), 3— 14.

[2] S. Sidon, On Furier coefficients, J. London Math. Soc., 13 (1938), 181—183.

[3] A. Sobezyk, Projections on Minkowski and Banach spaces, Duke Math. J., 8 (1941), 78—106.

[4] Problems Ouvert, Theorie des functions (Montreal, 1981), 4—5.

(Received February 10, 1983)

DEPARTMENT OF MATHEMATICS
TEMPLE UNIVERSITY
PHILADELPHIA, PA 19122

USA

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1113

USA

Acta Mathematica Hungarica 45, 1985






Acta Math. Hung.
45(3—4) (1985), 305—310.

ON "M-INCREASING ELEMENTS IN
SEMIGROUPS

F. CATINO (Lecce) and F. MIGLIORINI (Siena) *

Introduction

There are several works on increasing elements in semigroups; here we generalize
the notion of increasing elemen«., by introducing “-increasing (or quasi-increasing)
elements.

In §1 a we determine several general properties of «tincreasing elements.
Some semigroups (as periodic, and completely regular semigroups) contain no
(/<increasing elements. In 8§ I.b some sufficient conditions are given in order that
A-increasing elements exist in a semigroup, in particular in a regular semigroup,
by means of Green’s relations.

In 82. minimal subsets relative to ~-increasing elements are defined, their
existence is proven, and a “reduction” theorem is given for those subsets.

In §3. at first we consider unsolved problems about increasing elements: some
of them are solved by means of Szép’s decompositions, DL(S) and DR(S) or by
I"-decomposition of S. At last (§3.c) we prove both a necessary condition so that
a semigroup, which is a semilattice of subsemigroups, have increasing elements
and a result on left separative semigroups.

We use the standard notation of the algebraic theory of semigroups.

81.
a) Let 5 be a semigroup.

Definition 11 An element a of a subset TQS such that aT=T[Ta=T]
is said a left [right] quasi-increasing (or g-increasing) element, relative to T, if there
exists a subset T'czT with aT'=T[T'a=T].

A left [right] increasing element is left [right] ~-increasing too. It is easy to
give examples of semigroups which contain “-increasing elements but no increasing
elements.

The bicyclic semigroup, LL(p, g), has both increasing and «/-increasing elements.

Theorem 1.2. NO element of S can be both left and right g-increasing.

Proot. If ais both a left and a right «/-increasing element of S, there exist
subsets T'czT, V'czV such that af£TC\V, aT=aT'—T, Va—V'a=V. Since
V'a=V, there exist vt, v2dV' suchthat a=ria, vl=v2a. Let yZT; since aT'=T,

* This work was performed in the sphere of activity of G.N.S.A.G.A. (C.N.R. — ITALY).

Acta Mathematica Hungarica 45, 1985
Akadémiai Kiad6, Budapest



306 F. CATINO AND F. MIGLIORINI

there exists y'$_T' suchthat y =ay'. Therefore vly=vlay'=ay'=y, hence v2T=
=v2aT'=vIiT'=T', andalso T'—v2T—2aT—vxT=T, a contradiction.

Corottary 1.3. If S iscommutative, no elementof S isleft [right] g-increasing.

The proofs of the following Propositions 1.4, 1.5, 1.6 are not difficult and we
omit them.

Proposition 1.4. A left [right] cancellable element of S is not a left [right]
g-increasing element.

Therefore a group has no "-increasing elements.

Proposition 1.5, An idempotent element of S is not a left [right] g-increasing
element.

Proposition 1.6. If T is a subset of S, the set 1@ [r(m] of the left [right]
g-increasing elements relative to T (if TAYT{)] LL, is a subsemigroupof S.

Proposition 1.7. Let a be a left [right] g-increasing element of S. Then:
i) a" is a left [right] g-increasing elementof S («s N).
ii) agenerates an infinite cyclic semigroup.

Proof, i) It follows from Proposition 1.6. ii) A finite cyclic semigroup contains
an idempotent, which can not be a “-increasing element, by Proposition 15.

Corotrary 1.8. Periodic semigroups contain no left [right] g-increasing elements.

Theorem 1.9. A completely regular (c. r.) element of S is not a left [right]
g-increasing element of S.

Proof. Let a£S be completely regular and suppose that there exist subsets
T'aTQS such that aET, aT'~aT=T. Ifdisthe identity of the belass Haand
a-1 is the inverse element of a in Ha, then we have:

aT' = a~naT'=a~1T= a~'aT= aa~'T=adT =aT’ = T;
dT =aaT'=aT'=T; a=a-la(lLa~1T=a&aT' =T.

Therefore & is a left ~-increasing element of S, in contradiction with Proposition 1.5.
By Theorem 1.9, a completely regular semigroup contains no left [right] ~-incre-
asing elements, and this generalizes a result about increasing elements in a c.r.
semigroup ([2]; Theorem 1(a)).
The following results are of “Ljapin type” (for increasing elements). If SI'1
[S [1] is the set of the right [left] ~-increasing elements in S and &' [ri is the set of the
elements which are not ~-increasing then S is the disjoint union of S[r], .91 and
One can give examples of semigroups S in which either or 5™ or both
and S[1] are not subsemigroups.

Theorem 1.10. If Srs is a subsemigroup of S, then has no left g-incre-
asing elements.

Proof. Let az5[r] be a left ~-increasing element for S[r]; then there exist
z, 2's S[r] such that a=az, z=az'. Because a€5Wi there exist T,T'QS, T'cT
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such that a£T, T=T'a=Ta, hence, for every tET, t=t'a(t'ET'), it holds tz—
—{t'a)z=t'a—t. Therefore T'=Tz=T'az'=Tz'—Taz' —Tz=T, a contradiction.
The dual result of Theorem 1.10 holds for 5 [1h

b) Sufficient conditions in order that a semigroup S contain left [right] "-in-
creasing elements are determined by Theorems 11.3.2 and 11.3.3 in [s].

The following theorems give other sufficient conditions by means of the Green’s
relations in a regular semigroup. Let SP be the minimum inverse semigroup con-
gruence on a regular semigroup S, while i is the identity mapping on S.

Theorem 1.11. Let S be a regular, not orthodox semigroup, such that STQ
TT)M™=i. Then S contains left and right g-increasing elements.

Proof. From [1], Theorem B, S contains a copy of the bicyclic semigroup

Remark. Let S be the semigroup consisting of all nondecreasing unbounded
sequences f:n-*fn of natural numbers N under the composition of functions.
S has an identity (i: n-*ri), but no other units; therefore S contains no increasing
elements. It is proved in [1] that S is regular, but not orthodox; moreover
and ifC\Td=i. Hence, by Theorem 1.11, S contains left and right ~-increasing
elements.

Theorem 1.12. Let S be a regular semigroup. If there exist two distinct Q>
-related idempotents, then S contains left and right g-increasing elements.

Proof. By [1], Proposition, S contains a copy of T(p, q).

8.

In a semigroup S, let a be a left increasing element relative to the subset TQS,
that is aT and there esists a subset T'czT suchthat aT'=aT—T. (1)

Definition 2.1. A subset T' in (1) is said minimal for a with respect to T if
a(T'—x)T+T, for every x£T".

Proposition 2.2. Let a be a left g-increasing element relative to TQ S. Then
there exists a subset M minimal for a with respect to T.

Proof. Let aT'—T, aT=T, with T'aT. Let us consider the relation nin I
defined by xXy if ax=ay {x, yTT).

It is evident that A is an equivalence in T; let /A be the quotient set. In each
equivalence class [X]EI/A there is some element of T'. Let us choose a representa-
tive tf T' in every class [xjie7 and let M ={ti)iil. It is clear that M~ T'czT,
aM=T, and M is minimal for a with respect to T.

Of course the duals of Definition 21 and Proposition 2.2 hold. However
minimal subsets M above considered are not absolutely minimal.

Theorem 2.3 (Reduction theorem). Let {a}gN be a sequence of left g-in-
creasing elements of S such that af TfS. aiT=aiM=T (Mc T), with M mini-

Acta Mathematica Hungarica 45, 1985



308 F. CAT]NO AND F. MIGLIORINI

malfor a, with respect to T, for every N. Then, if

Mbl = M, M>= {nr€l/(-D/a>1a, 2..algeM} (i 2),
2 have:

) M(+1)cM ().
2) r=al+iai...a1 Af(+1).
3) M(i+1> is minimalfor ai+lai...al with respectto T.

Proof. By induction on iEN. For i=1, JI/@Qf Mw. But MA"T, hence,
if tET—M, since T=aiMil\ there exists an element suchthat t=alm;
SO and Because axM=T, we have axAf@= M, hence
a2alM™=a2M =T.

At last, Mbl is minimal for a2ax. In fact, if mEM(2), 6j(M @ —in) does not
contain afh{fM), since M is minimal for ax, hence aj(M@—m)c:M. Therefore
a2al(M™)—tn)=a2(M—aIlm)Ti S, because M is minimal for a2- Suppose the thesis
is true for (r—1), then it holds for i. In fact, M (i+)gM (i> Since MA"T, there
exists an element tdT—M; because, by induction, T=aiai_1l...axM(i), there
exists such that aiai_1...alIm0=t$M, hence ™0$ M{i+1> Therefore
M(+)cM w. By definition of M(+l) and because T=alai_1...a1M"\ we
have aiai_1...a1M (;+1)= M, hence al+lai...alM (i+1)=ai+xM —T. At last, JId+i)
is minimal for ai+lflJeee*le In fact, if mMmEA/(i+l), aiai_l...alm$aiai_1...al
(M (;+1)—in) (because M (i) is minimal for alai*1...a"), hence aiai_1...al(M 9+1>
—T)*M and ai+lai..al(M<+>—in)* I, because M is minimal for ai+l.
This completes the proof.

We remark that Theorem 2.3 generalizes an analogous theorem for increasing
elements (Theorem 1.2 in [7]).

83.

a) Let 5 be a semigroup with increasing elements. A problem in [s] was if
among the minimal subsets relative to a left increasing element a of S there must
be a subsemigroup.

The answer is negative.

In fact, let S=aM, with M minimal for a, M subsemigroup of Sythen S con-
tains a copy of the bicyclic semigroup #(p,q), by Theorem 11 in [¢], hence S con-
tains idempotents; but there are semigroups with left increasing elements which
have no idempotents (as Teissier semigroup, [3], vi, 3.14).

Therefore we can divide the set C of semigroups with left increasing elements
into two classes, Cx and C2:if St Cj, there exists some left increasing element
atS suchthat S=aM, where M(?+S) is minimal for aand M is a subsemigroup
of S; while C2—C—Cx. For the class Cxthe “Ljapin type” results hold which
\_/ve[e]proved in [s]. For the class C, we know only general results, as those proved
in 2]

b) Let O1(S)={S} £k(S)=4{b} /=0, 1, ..., 5 be the left and the right,
respectively, Szép’s decompositions of a semigroup S (see [4]).

An open problem, from [4], was the following: if S isregular, 5:=7)1UDs and
Dx= SxUSf. The problem is solved by means of the -decomposition of S.
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Theorem 3.1. Let S be a regular semigroup. Then:

i) =210 G 7i0) and Zx= S USs(~0) if and only if S contains an identity
1 and 1 is not A-primitive.

ii) //1$S, then T=i50U52, SsgE»iUZ)2.

Proof. From properties of I'-decomposition of a regular semigroup (see [5]).
As regards the relation between increasing elements and invertible elements in a
semigroup S, the following theorem holds.

Theorem 3.2. If S contains no left [right] identity, then left [right] increasing
elements are exactly right [left] invertible elements of S.

Proof. It is easy to prove that, if As” o, S contains a left identity. On the
other hand right invertible elements of S are exactly the elements in S, US:iU S/
Now s5=10, hence the theorem holds.

c) Let A be a semilattice I\of subsemigroups Sx, i.e.

@) S=USa SanSB=9 (a* B), SxSRQSxB, WV« R&.

Let a be a left increasing element of S and let such that a£Sx. Because
aS=S, one proves that <xa=a (2) for every afj¥. Hence °lJhas a last element,
a=max W

If aS'=S, with S'czS, let us put Si=S&C\S'. We have aSi—Sg (3),
because of (1) and (2). If Ss contains no left increasing elements (for itself), then
S8=Sa follows from (3), therefore a is a completely regular element (because a
must be in the last component of DL(Ss)). But this is a contradiction, since a is
a left increasing element of S.

At last, we have proven the following theorem.

Theorem 3.3. Let S be a semilattice °Y of subsemigroups, according to (1).
Then a necessary condition, in order that S contain left [right] increasing elements,
is thefollowing:

1) °¥ has a last element, d=maxY, and the left [right] increasing elements lie in Ss.
2) Sd contains left [right] increasing elementsfor itself.

Several corollaries follow from Theorem 3.3, as, for example, the result that
separative semigroups contain no left [right] increasing elements, in consequence
of Theorem 11.6.4 in [s]. But now we generalize this last result by a direct proof.
We recall the definition: a semigroup S is said left [right] separative if, for every

y€ S,
(x~ =xy and y2—yx) implies x =y

[(x2 —yx and y2=xy) implies x =y].

Theorem 34. If S is a left [right] separative semigroup, then S contains no
left [right] g-increasing elements.

Proof. Let aES be a left ~-increasing element, and let T',TQS, T'czT
such that af£T and aT'=aT=T. Then a2T=T. Let xE£T such that a2x=a.
We have:

a2=aXa = a(axa), (axa)- = ax(ax)a = (axa)a,
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hence a=axa, because S is left separative. Therefore (xad2=x(a2x)a2=(xd~)a,
a2=(axa)a=a(xad\ hence a=xa2 Then a£a2SC\Sa2 therefore a is completely
regular (from Theorem 1V, 1.2 of [¢]), a contradiction for Theorem 1..
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THEIR APPLICATIONS IN MULTIOBJECTIVE
OPTIMIZATION

DINH THE LUC (Budapest)

1. Theorems of the alternative

An important technique for proving the existence of Lagrange or Kuhn—Tucker
multipliers in optimization problems is to apply an appropriate theorem of the
alternative, sometime called transposition theorem (see e.g., Avriel [1], Rockafellar
[2]). In recent years these types of theorems have been developed and used in vector
optimization (e.g., Borwein [3], Lehmann and Oettli [4]). In this section we give
some general theorems of the alternative in finite dimensional spaces.

Let A and B be linear mappings from R" into Rkand Rm respectively. Let M
be a convex cone in Rk, N be a convex cone in Rm We say that a vector AERK is
nontrivial on M if (A x)*0 for some x£M. The following seperation lemmas
are needed:

Lemma 1.1 Suppose that H is a subspace in Rk The following conditions
are equivalent:

() 9Mn M=0.

(if) There exists a vector AEM* which is nontrivial on M such that (A h)=0,
for all hd H.

Here ri M is the relative interior of M and M*= {y£ Rk: (y, x)s0 for each
xa M).

Proor. It is oObvious that (ii) implies (i). If (i) holds then in virtue of the sepa-
ration theorem (Theorem 11.2 in [2]), there exists a hyperplane containing H and
generating an open half-space which contains ri M. Let Abe a vector which is ortho-
gonal to the hyperplane and belongs to the open half-space containing ri M, then
(A x)=-0 for all xari M and (A h)=0 for every haH. Thus Asatisfies (ii) and
the proof is complete.

Lemma 1.2. Assume that M1 and M2 are convex cones in Rk If mi1Mri M2
is empty, then there exists Xa(—M") MMf' which is nontrivial on MxUMZ2. If in
addition Mx is closed then A is nontrivial on M2m

Proor. The proof of this lemma follows immediately from the separation
theorem (Theorem 11.3 in [2]).

Remark 1.1. The inverse of this lemma can be stated as follows: If there exists
a vector Afrom (—M*)IMMZ such that it is nontrivial on M 2, then the intersection
of M1with ri Mz is empty.

corottary 11 (Lehmann and Oettli’s theorem [4].) Let MIt Mz be non-
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empty convex cones with int M2 nonempty. Then exactly one of the following two
systems (1) and (2 ) has a solution:

XEMT, X6 int Mr.
2)Ye-m*, Yem*, yXO.

The proof of this corollary is immediate from Lemma 1.2 and Remark 1.1.

Theorem L1.1. For B and N as mentioned above andfor an arbittrary vector
b in R", thefollowing statements are equivalent:

(i) (b,z)"0 for every zERN with Bz'eN,
(i) b belongs to the closure cl B'(N*) of B'(N*), where B'(N*)={xER": x =
—B'y', yEN*}. (The sign “ *” standsfor transposition.)

Proor. (i)=>-(). Let b=\\m B'y\, yfN*. If zeR" with Bz'eN then

(y{,Bz) = (BYyt,z) O
Consequently (b, z)£0.
Conversely, if b does not belong to cl B'(N*), we can separate the compact
set {b} and the closed convex cone cl B'(N*) by some vector zERn, i.e.,

(1) (b, z><0, (X,2) =0

for each x£cl B'(N*). The last relation shows that (B'y',z)g0 for each yEN*.
Hence Bz'eN**=c\N. From this and (1) it follows that (i) does not hold. The
theorem is proved.

rRemark 1.2. If B'(N*) is closed then (i) is equivalent to the following:

(HO there exists a vector pEN* such that b=B'p'. Moreover, if the inequality
in (i) is strict for some zeR" with Bz'eN, then p is nontrivial on N.

Coroltary 1.2 (Farkas’ theorem [1]). Let B and b be as in Theorem 1.1.
Then (b, z)» 0 holdsfor all vectors z satisfying Bz'~0 if and only if there exists
a vector XER+ such that b=B'x".

Proof. Set N=R+ to derive at once Farkas’ theorem from Remark 1.2.

Theorem 1.2. For A, B,M and N as above, either
(i) there exists a vector zeR" such that

(2 Az'eriM and BZz'£ti N,
or
(i) there exist kEM* and pEN* such that
(3) A'F+B'p'=0
and (a,p) isnontrivial on M XN, but never both.

Proof. The proof of this theorem presented in [7] uses Lemmas 1.1 and 1.2
and admits to know when Ais nontrivial on M and p is nontrivial on N. Here we
give another proof which is very simple by exploiting only Lemma 1.1. First note
that if (ii) holds then obviously (i) does not hold. Suppose now (ii) does not hold,
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i.e., ri(MxN)C\H=Ne where H={(Az', Bzn~RkxR m.z£Rn) is a linear subspace.
By Lemma 1.1 there exists a vector (A fi)e(MxN)*=M=*XN=* such that it is non-
trivial on M x N and ((A fi),h)=0 for all nhH. Thus NIAr+ysr=0 for all
z£Rn, therefore A*x+B'y'=0. The proofis complete.

Theorem 1.3. For A, B, M and N defined as above, if A is closed
then either
(i) there exists a vector zERn such that

(6) Azfin M and BzfiN,
or

(ii) there exist which is nontrivial on M such that
) SATIfid B'(N®),

but never both.

Proof. If there exists a vector zERn which satisfies (s) then (7) is obviously
impossible. Now, suppose that there is no z£Rn satisfying (s). It means that the
cone A(B-1(TV)={yERk:y =Az' where zfRn with BzfiN} has an empty inter-
section with ri M. In virtue of Lemma 1.2, there exists a vector AEM* which is
nontrivial on M and satisfies (Aj)=0 for all j€E~(B _1(7V)). That is AAz'*O
for all zERn with BzfiN. Theorem 11 yields —Afificl B'(N*) completing the
proof.

Remark 13 If int M is nonempty then the assumption on the closedness of
A(B~I(N)) can be omitted. Indeed, A(iU1(A)) flint M —Q implies ¢M (5_1(/1)N
flint M=0 and the proof of the previous theorem is still fair.

Remark 14. Many classical theorems of the alternative can be derived from
Theorems 1.1, 1.2 and 1.3 by setting A, B, m and N in special forms. We refer the
interested readers to [7].

2. Optimality conditions in multiobjective optimization

In this section we are dealing with the general multiobjective programming
problem introduced and studied in [s ]. Using the theorems of the alternative obtained
in the previous section we shall derive optimality conditions for our problem. For,
let/ and g be vector functions defined and continuously differentiable on some open
set DaR", with values in Rk and respectively Rm Let Jcf) denote the set of
all xdD satisfying the constraint g(x)d —N. Remember that program (P) is as
follows: IP) Find x*£X suchthat /(x*)6M T1{/(x): XEX\M), i.e., there isno x£X
such that f(x*)—f(x)£M \0.

A point x*£X is said to be a local solution to problem (P) if there exists a
neighbourhood U of x* in Rnso that /(x*)EMin [/(x): XEXC\ U\M].

For the sake of simplicity in what follows it is assumed in that the interior of
M and N is nonempty.

We say that a Clcurve @ (—s, e)-+D is admissible relative to the given con-
straint g provided
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@ -"-/(<p(0)€-intM for all i£(—e, e),
(b) there is a number § 0«5<e such that g(/?(/))Y€—N for all t€[0, H.

rRemark 2.1. 1fX*isa local solution to problem (P) then there is no admissible
curve passing through x*, i.e., (p(0)—x* but in general the inverse fails.

Theorem 2.1 (First-order necessary condition). Let x* be a local solution to
problem (P). Then there exist vectors XMEM* and p*£EN* such that

(8) X*Df(x*)+p*Dg(x*) = o.
(9) * g * =
(10) a*, pPHao.

Proof. Define N*(x*)={pEN*:(p, g(x*))=0}. If JV*(x*)= {0}, take p*=0;
we shall prove that there is a vector X*cM* which satisfies X*Df(x*)=0 and X*AOQ.
Indeed, the assumption N*(x*) = {0} assures that (p, g(x*))<0 for every pEN*, pAO.
The set K={pdN=*: || =1} is compact, hence there exists a positive e such that
(p, g(x*))<e for all pfK. Bythe continuity ofg at x* one can find a neighbourhood
UczD of x* such that (ji, g(x))< —e/2 for every xEU and p£K. In this way if
xs U then (p, g(x))<0 for every pEN*\0. Hence g(x)£ —i N**. Notice that
N** coincides with the closure of N, therefore —i N**cz—N and so g(X)(E—N
for all xd U. Thus we may consider /(x*)G Min [/(x): XEU\M]. It is known that
Df(x*) is a linear mapping from Rnto Rk We claim that the image of Df(x*) has
an empty intersection with int M. For suppose the opposite; then there exists a
vector z£R"™ such that £>/(x*)z's int M. Consider the curve <p(t): (—£, €)-*-
which is given by relation q>(t)=x*—tz. For sufficiently small e, <p(t)€U,

-jff(<P(0) = Df(v(0) V(0 = Di(g>()m—2)€ - int M

for all te(—£, €. This shows that <p(t) is an admissible curve passing through x*
and x* can not be a local solution to problem (P). Thus we have Im (E>/(x*)) (T
flint M=0. Lemma 2.1 is applied for the subspace Im (Df(x*j) and the cone
M in Rkto obtain a vector A*EM*, A*"0 sothat (j,2*)=0 foreach yGIm (Df(x*)).
Denoting Df(x*)=A, we have (x*, Az')=o0 for all z£R", therefore A*A=0.
By this it remains to prove the theorem by supposing N*(x*)A {0}. Observe first
that if N**(x*)={0} then N—{ } So it may be assumed that N**(x*)A { }
Denoting Dg(x*)=B, we assert that for every vector z£R" satisfying Bz'E
€ —i N**(x*), we can not have Az'E —int M. If this is true, or equivalently,
there isno zERn suchthat Bz'£ —ri N**(x*) and Az'c —int M, then by Theorem
1.2 there exist vectors A*dM* and p*t(N** (x*))* = N*(x*) which satisfy:

(11) A'X*+B'p*' =0 and (A* p*) AO.
Since p*EN*(x*)czN*, hence (11) gives (s) and (10), and besides, (g(x*), p*)=0
that is (9). In this way, to finish the proofwe need only to verify that if zd R" with

Bz'E —ri N**(x*), then Az'$ —int M. Assume this is wrong, i.e., for some vector
zZRn one has Bz’(i—i N**(x*) and Az'E —int M. Construct a curve cp(t)
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defined by the relation g>(t)=x*+tz. We state that for sufficiently small positive §
(12) g{<p(t))€-N for all /£[0, O.

It is not difficult to see that the above relation holds if the following assertion holds:
for every [ICEK, there exists a neighbourhood V of pOand a positive d such that

(13) (9(<P(0), < 0 forall nevDK, /€[0,5).
For this, consider the expansion of g(<p(t)) at t=0,
(14) 9(<p(0) = g(x*) +tBz' +o(t2),

where o(tz)/t tends to 0 while t tends to 0 due to the differentiability of g. Suppose
on the contrary that (13) is not true, i.e., there is a sequence {/i,} converging to /t
in K and a sequence {t} /,=-(), converging to 0 such that

(15) (g(<P(‘d), /h) = 0.

It is clear that fiEN*(x*), otherwise in view of (g(x*),p.)<0 we would get the
contradiction between (14) and (15) when tt tends to 0. Further, as int N is non-
empty, so is int N**(x*). (N*(x*)czN*, therefore N**(x*)raN**=clN). From
Bz'E —int N**(x) and /ifivV*(x*), /1" o, it follows that there exists a neighbourhood
F of /l and a positive e such that (Bz\ _y)<—s forall = VC\K. Taking in count
(14) and (15) we have

heH@igh H>> 2<fR) H) +iEz, vl w) =0

for i large enough. Thus —c+ (o(tiz)/ti, Hi)=0 for i large enough. This contradicts
the convergence of o(/ir)//; to o when i runs to °°, and relation (12) is proved.
Furthermore, from the continuous differentiability off(x) at x* and from the assump-
tion Df(x*)zE —int M, it follows that

(16) ~ f(<p(0) = Di<p(0) (0 = DA(P(O)ze - int M,

for t small enough. Combine (16) with (12) to get the admissibility of the curve <p(t)
passing through x*. This contradicts the assumption of the theorem and the proof
is complete.

Corollary 2.1 (Smale’s theorem [5]). Suppose that x* is a local solution to
problem Min [f(x): x"D, g(x)SO|.R+]. Then there exist a nonnegative vector A
and nonnegative numbers ft+, ..., p* such that

I*Df(x*)+ZptDgi(x*) =0, N¥g,(x*)=0, i=1 ..,m

Proof. This theorem is immediate from Theorem 2.1 by setting M —Rk,
N=R™ .

It should be remarked here that in the above necessary condition there is no
guarantee that A*\O0.

The remainder of this section is concerning a regularity condition, called cons-
traint qualification which is able to ensure that A*is nonzero.

Define C(x*)={z€/?": Dg(x*)zE£ —(N*(x*))*}.
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Definition 2.1. A vector z”0 is called a feasible direction vector from x*
if there exists a positive number 6 such that g(x*+az)E —N for all i, 0 S a<i.

Remark 2.2. Ifzis a feasible direction vector from x* then z belongs to C(x*).

Recall that the closed cone of tangents to a nonempty set AcR" at the point
x€A, denoted by S(A, x), is defined as S(A, x)={zERn: there exists a sequence
of vectors {x"cA converging to x and a sequence of nonnegative numbers {/}
such that the sequence {(xr—x)} converges to z}. (See Lemma 3.5 in [1]).

Lemma 2.1. Suppose that x* is a local solution to problem (P), then
Df(x)*(S(X, x*))[M(—int M) = 0.

Proof. Suppose the above intersection is nonempty, that is, there exists a
sequence {x,} converging to x and a sequence of nonnegative numbers {?} so that

ZES(X, x*), z =Ilim?2(x;—x), Df(x*)z£ —int M.
By the differentiability assumption we have

h(7(*.)-1(**)) = A1) (XEx*)+ (], (x X))
where r(tf(x,—x*)) tends to 0 as itends to «». Hence for i large enough

h (f(xd int M.

This contradicts the assumption that x* is a local solution to problem (P) and the
proofis complete.

Theorem 2.2. Let x* be a local solution to problem (P) and suppose that
{[Dg(x*)]_y": VEN*(x*)} is closed and

Df(x*) (C(x*)) = Df(x*)(S(X, x’)).

Then there exist vectors ?*£M, A*"0 and p*dN* such that (s) and (9) are satisfied.

Proof. Suppose that x*is a local solution to problem (P). In virtue of Lemma
2.1, the set

DF(x*)(C (x*))(—int M) = DF(x*)(S{X, x*))fl(—int M)

is empty. It means that if some vector zf R" satisfies Dg(x*)zE —(A*(x*))*, then
Df(x*)z$ - int M. The cone [Dg(x*)]'(/V*(x*)) is closed, therefore we can apply
Theorem 13 to obtain vectors A*M* and pE(N*(x*))** = N*(x*) such that
A¥D/(x*) +ft*Dg(x*)=Q, X* is nontrivial on M. Since p*£EN*(x*), relation (9)
holds immediately and the proof is complete.

Now we are going to discuss a sufficient optimality condition for a convex
multiobjective programming problem. In addition to the assumptions made on f
and g and D we require also that D is a convex set,/ is an AZ-convex function and g
is an A-concave function on D. We need some preliminary results about convex
functions.
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Lemma 2.2 (Theorem 25.1 in [2]). Let h be a convex function from D into
R1 Suppose that h is differentiable at xED, then

h(x) +Dh(x)(y—x)" S h(x)
for all y£D.

Lemma 2.3. Every local optimal solution to program (P) is its global optimal
solution.

Proof. In virtue of the assumptions made above, it is abvious that Xis a convex
set. Suppose that x is a local solution to problem (P) and that it is not a global solu-
tion. This means that there exists another point y in X such that

(17) [« -1(> 1M \0.

Consider the point z=tx+ (1—t)y, with t being in [0, 1]. By the convexity of X the
point z is in X and by the M-convexity off we have

(18) tf(x) +(I-t)f(y)-f(z2)EM..
Consider the dilference betweenfix) andf(z):
Ax)-f(z) = Q)@ )—L-1)f(y) + If(x) +([-)f(y)-I\z).

From (17) and (18) it follows that f(x)—(z)£M \0 if txO.
This contradicts the local optimality of x when t tends to 1. The proofis finished.

Theorem 2.3 (Sufficient condition). Assumef g and D are as above, and there
exist vectors x*f D, A*M*, p*£N* satisfying:

(19) g(X*)E-TV,
(20) ADF(x*) +ff Dg(x*) = O,
(21) g*g(x*) = o,

{*, z) isstrictly positivefor each zEM, zXO-
Then x* is a global solution to problem (P).

Proof. First we prove that x* is a solution to the following scalar programming
problem
mm L*fix) st g(x)d—N, x£D.

Indeed, as p.*EN* we have p*g(x)SO for every xfD with g(x)E—V Hence
(22) A*AX)i=A*/(x)+/t*g(X)

forall xED with g(xjs —I\V
Applying Lemma 2.2 to the scalar functions ?*f and p*g and using (22) we
obtain

(23) AX/(X) £ I*F(x*) + 2. *Df(x*) (x-x*y+g*g(x*) + p*Dg(x*)(x-x*y.
Rearranging yields
Af{x) £ X*fix*)+p*g (x*)+ [A*Df(x*)+p*Dg (x*)] (x—x)'
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and by (20), (21) we have x*f{x) F r o m the assumption on X* it follows
that s belongs to the interior of M*. Now our theorem is immediate from Lemma
6.0 iN[6]

Remark 2.3. The previous theorem can be proved directly by using Lemma 2.3
without using the results from scalar programming.

Remark 2.4. The assumption (A% z)=-0 for each zEM, z"O is important.
Ifwerequire only &% M*, A* 0 then Theorem 2.3 may be false. For this, consider
the following.

Example 2.1. Let b =¢rer1:0<i<23, M=R%. Set f(t)=(t, o). D R- and
delete g. Clearly
Df(1) =

Taking X*= (0, 1)6M*, a* 0 we have A*D/(1)=0; however, the point 1 is not
solution to the problem Min ff(t)\ tED\R2.

3. Duality under differentiability assumptions

In this section we study duality theory for multiobjective programming under
differentiability assumptions. For the sake of simplicity it is assumed that M —R\
and N—R'l. Suppose also f and g are differentiable functions from an open set
UcR" into Rk and Rm respectively. Consider the following two programs called
primal and dual:

(P) Min[/(x): xEU, g(x)e-R"+],
(D) Max [®(x,Y): (X,Y)EF].

where ®(x, y)=f(x)+e(y, g(x)) and V(ZUXR'+, e=(l, ..., D€Rk

Theorem 3.1. I X* solves problem (») and if (X,y)EY implies the minimum
condition

@ & (x,Wi?Muwfd(x,y): xEU],
then (x*,y*)EV with y* satisfying (y*, g(x*)) =0 solves problem (D).

Proor. As yER™I and g(x*)d—R'l we have (y,9(x*))so, forevery y-~R".
Therefore
f(x*)-fix*) - e(y,g (x9)) - Ax*)- &%, y)fM\ 0

for all yER™. Since x*£U, f(x*)—a£M\0 for all aginf [<f>(x y): xEU]. Con-
sider the following programming problem:

2 Sup [fnf [4>(\vy): *E£/]: y6/?'?].
We prove that (x*, y*) solves this problem. Indeed, (x*, y*)EV therefore
d(x*, y*)EMin [D(x, y*): xEU].
Moreover, Ax*) —®(x*y*)—® (x*,y)EM\0, for each yf R" . Hence (x*,y*)
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solves (2). Now if (x,y)EV then (1) holds and by (2) the value @ (x,y) can not
be greater than f(x*). Thus /(x*)=d(x*, > is an optimal value of problem (D).

Remark 3.1. In virtue of Theorem 2.1 we see that if x* solves problem (P)
then there exists X*£R\ and R+ suchthat

©) X*Df(x*)+y*Dg (x*) = 0, (y*, g(x*)) = 0.

If X*X-0 and the minimum condition is satisfied then the pair (x*,y*) solves the
problem

4 Max [P(Xx, ¥): (X, SEV XR+, X*DxP(x, y) = 0],

where Dx is the derivative with respect to the variable x. Indeed, without loss of
generality we may assume that (X* e)—1 Now consider

V= {(x, y)EUy,R"; : X*oxP{x, y) = O}
We show that (x*, y*€V. Indeed
X*Ox® (x\ y*) = X*[Df(x*) +eDx (y*, g(x*)>] =
- ARES/(X*)+ <& e)DX(y*, g(x*)> - X*Df(x*)+y*Dg(x*) - 0
by (3). Now the remark is immediate from Theorem 3.1.

Theorem 3.2. If in addition to the assumption made at the beginning of this
section we require that f is R¥-convex, g is R"”’-concave, U is convex and (x*, y*)
solves thefollowing program:

Max [®(x, y): (X, Ms UXR+],
and satisfies XOx® (x,y)~0 for some /.£int Rk, then x* solves problem (P).
Proof. We begin by showing that

©) g(x*)€-R”.
For, suppose that (5) is not true. Then we could choose yER™ such that
e[y, 9(x*))-(y*, g(x*)>]€Af\.
This contradicts the optimality of (x* y*). Moreover, (y*, g(x*))=~0 because
() <J*, g(x*)) - o

would imply @ (x*,y*/2)-® (x*,y*)EM\O. Furthermore, XUX®(x*, y*)=0 im-
plies

(7) X*Df(x*) +p*Dg(x*) = 0,

with X*=X, p*={X e)y*. Combine (5), (s) and (7) and then apply Theorem 2.3
to complete the proof.
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Theorem 3.3. If the assumptions in the previous theorem hold and (x*y*)
solves problem (4) with A*Eint R+ and g(x*)£ —R™, then x* solves problem (P).

Proof. In view of Theorem 2.3 and by (7), in order to prove Theorem 3.3 it
suffices only to remark that {y*, g(x*)}=o.
The proof is complete.
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A NOTE ON THE APPROXIMATION IN
C2n BY LINEAR POLYNOMIAL OPERATORS

R. GUNTTNER (Osnabriick)

1. Let Hnbe the set of all trigonometric polynomials of degree at most n and

H* the class of all linear operators T :C2n*H,, We define for g£ C2,
En(g) = T|trg|f max [r[g]1(xX)-g(X)], M =1,2,..).

Jackson [2] proved his classical theorem

1) Ef(g) LLC,,co{g, C,, bounded,

m=2n+\. From Korneicuk [s] and [7] it is known that C,isasymptotically not less
than 1.

To get an upper bound for C, it is natural to examine some suitable linear ope-
rators. For example Kis and Nevai [5] investigated

@) Stafgl0 =~ 1S ,[d(/+-"«),

where £,[g] denotes the trigonometrical interpolation polynomial of g£C2v at
m—2n+1 equidistant nodes, and

(3) skid) =+ i s[d\t+hz2L",

where S, [g] denotes the nth partial sum of the trigonometric Fourier series. In [3]
and [4] Kis has investigated the analogue of Sknif m~2n. Kis and Nevai [5] conc-
lude that among these operators the Bernstein—Rogosinski means Sm seem to be
the best ones. If we write

(@) \Su [g](0-g (01 S Clnmo (g, ,

then we can assume C,,sCIM In [5] (49) it is shown that it is possible to choose

clnsuch that
nit

(5) Cm——“]?&, UuWw t. — BSE%)H( [9..[9]CO-g(OI
o /N const.

Acta Mathematica Hutigarica 45, 1985
Akadémiai Kiad6, Budapest



322 R. GUNTTNER

Furthermore it is cited (Theorem 6(51), Theorem 7) that

©) My Minars 1+ S g =1,
n O ns
but this is not correct. Apart from the upper bound being 1 1531... the basic esti-
mations [5](33) and [5](40) used in proof of () are false.
We point out this and then state
Theorem 1

/m

(7) mr fiiln(i)dt = 1+ —J_ isin —————— 2 an——@—]l; n even,
n K m

nim
v f  MiIn{t)dt =

21 . kn kn__ n "= )* .
Ifgir'(’g‘r'fn_th I:EE“ m m f22 K S‘Hﬁ rn

Using Riemann sums it is obvious that for we have
m I Winydt me = oot 0 P30 B0 Nl - 1 1660,
na 1k ' 0 1 |

Moreover we prove

Theorem 2. % f S}Hn(t)dt<c, n=0,1,2,..., more precisely

0
i 11, 1 It
(8) mn  m r“'h‘) n even,
I
m P (o 3t oy

mn m( 2n AE
Remarks, (i) It is shown in the proof that in (8) equality holds by adding

a term of order O i—V ).

(if) To get an upper bound for G, in (1), n small, we evaluate
nim

ca-v / Min(t)dt
Lo

by Theorem 1 Apart from C*= 1 we obtain (rounded):

> 11 12 Ls U, .2 6 i1 15 19 10111112
C* 11058 1107 1121 111321 53 1114211145 8 1.150 1151 11.1521 1.154
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2. Proof of Theorem 1

We start with (34) in [5], n>0. Throughout this paper we can assume t=0.
(34) can be written as

la, (0= 1+dn +3)+1 [dn n+i)- d, a-*)].

But for even i, 0 % it can be shown that

_ 1 mt
_FCOSZ— {u4 N " A b cdNsr ”+t)}’ o_

in contrast to the proof of (36) in [5].
Now to prove Theorem 1 we rewrite (34) in [5], «>0,

0=y +j {0 B *+ *) - <4(f- 0]+ (i-s)}e
Using [5](37) and (11) we conclude
L, (0 = T+ a(t) +i?(0,

)

B{i) =-[\-(-\Y ]d n{t-n).

Let n be even. Then B=0 and by the aid of [1](23) and (24) we get

“<>=jH t5n[® -u(ar')cg(«-«-sr]-

The first part of Theorem 1 now follows from
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In the same way we get, for n odd,
@ O=H7 TIRHEMd@H™
-g sm[2,(4.-))]ta,,[2,".]1},

which implies by (10) the first two sums in the second part of Theorem 1 But now
we have to take into account in (9), for n odd,

/KO = d,,(t—) = — =t I]’)c05|(t—n) % (—)‘cos it.

By integrating we |mmed|ately obtain the remaining expression in Theorem 1, for n
odd

mm{

3. Proof of Theorem 2

Using the abbreviations

sinx .
%)==~ ¢, - h~I,

/*(X)<o, 0<x<n/2), we obtain, for any n, 2,

JHE > 4 - = )

*7 n-)«<*+{4/(£)-]

since /'(n/2)=-41/n2
Similarly we get, noticing that g'(x)>-0, g"(x) >0, 0<x<n/4 (4 even)

® §7 dx+{H A)-J aw 4

al4 al4

Lwéngx'bhoz”%)*
UG Y (0 D 9

al4
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since ¢ =4 Ij » Thus using Theorem 1this yields Theorem 2 (« even).

Note that in both cases by the trapezoid-rule we could reach equality by taking
into account a term of order O(If). Now let n be odd. We proceed in the following
manner:

1 kn
—tan
k=1 K m
Tt
-1t 12 mijj

B /. ,W*+{|-«(&)--Ftrm 'LL*r~ (> i)t * ' WiC1

irl4 . | _ |1 (tr/4)—(N/4) rﬂf&
fg(gdx-~ —+ {ygl—o— M I g()«x|]- f g(x)dx A
2 my  (-nr2eom) I (./4)414)

N4
lF N2 ()7 (T -D)-7*(1)-

Thus we conclude by (11), (10) and (12)

m §m 1 #sin?2 . 1 f tani . 117/, 3y
ny iJ t nJ t mn m2: 27t)

But since B(t)=d.,,(t—) & —-cos, 0S/a-U it follows that
m m

n/m

Now from (9) we obtain Theorem 2 (/ odd).
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ALMOST /-PARACONTACT CONNECTIONS

A. BUCK! and A. MIERNOWSKI (Lublin)

In this paper we determine the general family of almost r-paracontact connec-
tions on a manifold M and give the conditions for an almost r-paracontact connec-
tion to be symmetric. Moreover, we deal with curvature tensors of such connections.

1. An almost r-paracontact connection on a manifold M

Definition 11 [1]. If, on a manifold M, there exist a tensor field tp of the
type (1, 1), r vector fields £I5 ..., £r and r 1-forms 3, ..., tf such that

(LD nl%) =¢. i,j =h -r

(12 <PQ=0, i=1 ..,r

(13 lfop—o, i—1,..,r

(19 = —

where the summation convention is employed on repeated indices, then the struc-
gur{eMX:(<p, £(i), i=1, r is said to be an almost r-paracontact structure

If, moreover, there exists a positive definite Riemannian metric g on M, such
that:

L5 rf{X)=g(X, £)), i=1, ..., r, for any vector field X,
(L6) g(cpX, tpY)-g(X, Y) — fi(X)ni(Y) for any vector fields X, Y

then 1 =(<p, Cm, 40\ g) i=1, ...,r is called an almost r-paracontact metric struc-
ture on M. The metric g is called compatible Riemannian metric.

Definition 1.2. Suppose that on a manifold M there is given an almost r-para-
contact structure X=(rp, C(i), »(@)) i=1, ...,r. A linear connection ' on a mani-
fold M given by its covariant derivative | is said to be an almost r-paracontact
or simply X-connection if and only if

(1.7)

(18)
for every vector field X.
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328 A. BUCKI AND A. MIERNOWSKI

Remark J From (1.7) and (1.8) it follows that
(1.9) \KE,=0, i=1,..r.
If, moreover, for an almost r-paracontact metric structure I1=((p, £(i), ti{\ g)
i=1,...,r, a Y-connection I satisfies
(1.10) VXg = 0
then this connection is called a metric 1-connection.

Now, suppose that on a manifold M with an almost r-paracontact structure
1 there is given a linear connection I" by its covariant derivative V. We are going

to find an almost r-paracontact connection t given by Vin the form
(1.11) VX= VX+5X

where Yis a tensor field of the type (1, 2) and S5AK)=5'(T, Y). From (1.11) we
have
(112 VXY =VXY+SX(Y)

and for pwe have

(VE<P)Y= VH(epY) —pk Y = V* (<pY) + (Sx @)Y - p(V*Y)-
-(@>Sx)Y = (Vx(p)Y+(Sx0o(p-(poSx)Y

or
(1.13) VX @ = Vx(p+Sxocp—cpoSX .
For ylwe have
(yxnr)Y=X(r,i(Y))-idi(yxY) = IT(i|'(y))-iil(Vx Y )-(ifoSz)Y = (VAij - ijfoSX)Y
or
(1.14) Vxrj‘= Vxrf-yfoSx, i= 1 ..r

Since t is a Y-connection then because of (1.7), (1.8) and (1.9) the formulas (1.12),
(1.13) and (1.14) become

0.15) VxSt =-Sx(zd, i= 1, r,
(1.16) SIX<p = (poSx- S x o<,
(1.17) Vxrj‘= tfoSx, i=1, ..., I

From (1.16) and because of (1.4) we have

(Mx<P)°(P = cpoSx0ip-Sx + "iSiSx" )
and on account of (1.15) we have

Sx-(poSxo> =-(Vx(Pop—""xZi-

Because of

(1.18) (poVx (p+Vxcpo(p =-VW ® XZi
the above identity is of the form

(1.19) Sx—{poSxo<p = (poVX(p+ y Xri'®Ni.
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ALMOST r-PARACONTACT CONNECTIONS 329

Now we introduce the following tensor fields of the type (2, 2

(1.20) A =y (1d® Jd-<p<gxp),
(121) B = |-(1d®Id + qp<g)p),
(1.22) C = +@reGSLbld ghre —nS & S0)

The operations AB, AS, ASX are expressed locally as follows: AKB'A A§S‘]
AftSki, respectively.
We have the following relations

(1.23) A+B = Ild®Id, AA=A-\C, BB=B-\C,
AB=BA=AC=CA=BC=CB=CC=\C.

Let us put

(1.24) F—A+C,

(1.25) H=B-C.

From (1.23) we have

(1.26) F+H = Idigild, HH=H, FF=F, FH=HF =0

Now the equation (1.19) may be written in the form

(1.27) ASX = y<poYx<p+y

Operating with C on (1.27) and because of (1.23) we have
CSX=+4d-(ldsH' @ +yl cf Id—VES SNSC)(PW FvxhgM =
=y W ° 4 SONLA®Yi +h* RPONKG) - n'OW ° €0 <P)(Zi) Zj +
+4¢(Z)) \&if Zj("x4)) (- (YXN)(Z)) MK(Zi) hIRIK) =

= (S BREE) (Zd + Vxtl1e Zi)
and because of

(1-28) (VX<P)(Z,)+<P(VxZ.) =0
we obtain
(1.29) CSX=y (-4,®Vi {i+4j(VxW4,®{j + V. ,ii'®E)).

The equation (1.27) is equivalent to the following

(L30) (1+C)5X= = £(PoVXP+VxtI®I;i- £ r li®VXZ,+ TAI(VXZi)rii®Zj-
Now we need the following

Lemma 11 [2]. If F is a projection operator i.e. FF=F and H=\d_- F is
such that HH=H and FH—HF—O0, then all solutions of the equation Fx—y are
oftheform x=y+Hw where w is arbitrary.
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330 A. BUCKI AND A. MIERNOWSKI

Hence, and from (1.26) the solution of (1.30) is
(L3)  Sx = \(poVXP+ "™XMi® M-\ fli® xMNi+\ni*x i)' N®Nj+ HPx

where Px is a tensor field of the type (1, 1) such that Px(Y)=P(X, Y) for an ar-
bitrary tensor field P of the type (1, 2) on a manifold M. Now we can state the follow-

ing
Theorem 11 The general family of the almost r-paracontact connections on a

manifold M with an almost r-paracontact structure 2 =(<p, £(i), i=1, .., r
is given by

(1.32)

VX —v *+ \<PoWx ip+ VXt N E ,i-\f® W x i+ \r]iiyxgriit * j+HPx
where V is the covariant derivative with respect to an arbitrary initial connection
I on M.

Corollary 11 If the initial connection I is a 2-connection, then the general
family ofan almost r-paracontact connections is given by

(1.33) VX= VX+HPX

Px being arbitrary tensorfield of the type (1, 1).

Now, suppose that on M there is given an almost r-paracontact metric struc-
ture 2—o £(j), Ai),g) /—1L1, ...,r and a Riemannian connection I" given by V,
associated with g. Then, from (1.5) and (1.6) we have
(1-34) gift, Z))=StJ, i,j=1 ..r
(1.35) g(<pX, Y) = g(X, Y

for any vector fields X, Y. From (1.34) we obtain

(1-36) g(Vzc- CjHg(c,-. Vz~) = o,
or
(1.37) 4J(VzQ) +f(VzZj) = 0.

From (1.5) we have

fi(VYX) +(VYfi)X= g(VYX, Q +g(X, V.c,),
or
(1.38) (Vy/)(T) - g(X, VrQ.
From (1.6) we have

g(VTipX), cpY)+g(cpX, V,(<pY)) = g(Vz X, Y) +g{X, VZT)-
-2 (vzf) (X)fi(n - 2 n00 (VZify(y)- 2 rifvyx)f (¥)- 2 AX)f (VZy)
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ALMOST r-PARACONTACT CONNECTIONS 331

and making use of (1.5) we obtain
(1.39) 9(Vz (MO, <pY) + g{cpX, Vz ((pYi)-g((p*(y2X), Y )~

~g(X, v2(VzY)) + 2i (V2[)(X)TF(Y) + ZI (Vzvi)(YW (X) = 0.

For the tensor field g and a connection V given by (1.11) we have

(1.40) (Vzg)(2f, Y) = ~g{Sz{X), Y)-g (X, Sz(Y]).

Now, consider a [ -connection V given by (1.11), where Sx is given by (1.31)
with Px—0. Then, using (1.35), (1.37) and (1.39) we obtain

wzg)(z, Y)=-\g(<p(Vz<p)X, Y)+ Xrii(X)g(VzZ, Y)-Wziti(X)g(ii, Y) —
\g (X, {epz(p)Y)+\r]i{Y)g{X,VzQ -VW W giX, Zi)-
SIACV ZZJW W gtf,, Y ) -\r i(VzA)ri(Y)g(X, Q =
=-\g{cpVz{cpX)-<p*Vz X, Y)~\g{x, <plzi<pY)-q>"Vjr)-
-T % <yzth) ()H(Y)-\ 2 (V7 -
1Z A (V ZiW (Ori(Y)-\Zri vz () di {nigx) =

= - 1 «(Vz (<>, + TgR2 M- Tsfa* vz0?>lO) +
+}g(z,’\sz)~|2i’(Vz‘-[) bl (y)-\2I V(Y )ud™*)-

-T %_”n‘(W (W (v zN)+»?2)(vz?)),
or g

(1.41) Vzg - 0.
Hence we get

Theorem 1.2. If on a manifold M there is an almost r-paracontact metric
structure Y~ (yp, i(i), g) i=1, .., r and a Riemannian connection " given by

V induced by the metric g, then the connection f givenby V oftheform:
(1.42) V* = WX+ |9>0WKQ+V X i® M -[i; iI®VXNM+ |» [J(VXN)TI® A

is metric Z-connection on M, i.e. V(p=0, W]I=0, V£i=0, Vg=0.
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332 A. BUCKI AND A. MIERNOWSKI

2. The torsion tensor of a '-connection and normality of
an almost r-paracontact structure ' on M

For an almost r-paracontact structure Z=(cp, c(i), iv> on M we
have defined in [1] the following tensor fields
(2.1) N(X, ¥) = NV(X, Y)—2dni{X,
(2.2) N‘(X,Y) = (ocntfYy -"rytfX,
2.3) Nt(X) =-(ocil(p)X,
2.4) N{(X) = ~(a(in)X

where is the Nijenhuis tensor field for @ and rx denotes the Lie derivative with
respect to a vector field X. If on M there is given a linear connection I" by its cova-
riant derivative V with the torsion tensor field T, then the above identities may be
written as follows

(2.5) N(X, Y) = cpT(X, V) + cpT{cpX, Y) - T(X, Y)- T(cpX, cpY)+

+ (V*cpY- (Vya) cpX+ (V,*q)Y - (ytYep) X-4i(X)V YLi+r,i(Y)VXSI,
(2.6)

N>(X, Y) = (Vx4)cpY-(VVYth) X - (V Yty cpX+(yvXri)Y +rlincpX, Y) +r, T (X, cpY),

2.7 k(X) = (Vi(cp)X-(¥xcp)b-VVXE,+cpT(X, c,) - T(cpX, Q,
(2-8) Nj(X) = X).
Now, suppose that a given connection I is almost r-paracontact. Then we have
(2.10) N“(X, Y) = r/(T(cpX, Y) +T(X, cpY)),
(2.11) Nt(X) = cpT(X, Q - T(cpX, Q,
(2.12) Ni(X) = tnzi,X).
Moreover, since 4x(t],(Y))=r,(yxY) we have
2 dt]‘(xl Y) = X(ri‘(y))_y(rl‘(x))-ri‘[x’ Y] = r"(l—' -4 yX_[X’ Y])x
or
(2.13) 2dr]' =t]'oT, i=1 .. r
We have the following projection operators
(2.14) a= b —Id—
where a projects on the distribution determined by the vector fields ..., £r and
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ALMOST r-PARACONTACT CONNECTIONS 333

b projects on the distribution defined by r= ... =rf=0. They have the following
properties

(2.15) at+b=1d, aa=a bb=Db ab—ba=0

and moreover

(2.16) m=Db ap=@Ea=0. bep=(b=(

From (1.21), (1.22) and (2.14) we have H =\ (b®b + (p&(p), or

(2.17) ep®(p = 2H—b®b.

Now we express the torsion tensor field T of the connection I by means of the tensor

field N and the operator H. Since Tx(Tx(Y)=T(X,Y)) is a tensor field of the
type (1, 1), then from (2.17) we have

(2.18) (PTYP=2HTY-b T Yb
and for any vector field X we have
(2.19) g>T(Y, (pX) = 2HxTy-bT (Y, bX).

From (2.18) we have
<plvy = IHTYY (p—bT"Y (b
or on account of (2.16) we obtain

(2 20) (pTAb =2HTvyd> bT'Y4>
Making use of (2.20) we have
HyT X (p-HXTW<P~(bTvX(p)Y+x{bTvY(p)X = \(fpTvXb)Y-\((pTVY¥b)X.

Hence
(2.21) bTvX(p)Y=\{q>TbY<p)X-\{cpTbx(p) YXHYTvX(p-H xT&(p

and using (2.19) we have
(222)  (bTvX(P)Y =\ (bTbXb) Y -\{bThYb)X-H Y(TbX- T<p) + Hx(T,, - TpY<P.
We may write (2.9) in the following way
N(X, ¥) = - TXY —H{aTyY(p)Y-(bTXQY+ (PXE)Y (PTy<pX
Using (2.19) and (2 22) we obtain
N(X, Y) =—TxY-(aTvX@Y -\ (bToXb)Y +\(bThvb)X-
- (bTxb) Y+ (bTyb)X+ Hy (ThX- TuXc®- Hx(Thy- TV (p)+ 2Hy Tx- 2HXTY =
=-TxY-@TvXY - (bThXb)Y - (bTxb)Y - (bTbx) Y+
+ Hy (T2X+bX—T 2~ (p) —Jix (T2y+by—T (py(p)
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or
(2.23) N(X,Y)=-(aTx)Y-(aT,x<p)Y-(bTx+bX)(Y+bY) +
+ HY(T2X+bx —TvX(p) —H x (T 2Y+bY—T,,Yq>).

From (2.9) we have
(2.24) aN (X, Y)=—(aTx)Y-(aT vX<p)Y.
Since a+b =1d, then from (2.23) and (2.24) we obtain

ObTx+bX) (Y +bY) = —bN (X, Y)+HY(T2X+bx —T9Xcp)-H x (T 2Y+bY- T qY<p),
or
(2.25) Tx+bX(Y +bY) = —bN(X, Y) +aTx+bx(Y+bY) +

+ HY(T2X+bX —TvX(p) —H x (T 2Y+bY —TvY <p).

From (2.13) and (2.14) we have

(2.26) aoT = 2dri‘0"i.

Now, inserting instead of X and -yF+2-aY instead of I into (2.25)
and making use of the following identity 2H1 x HY=TXTY and (2.26) we
obtain

(2.27) T(X, Y) =—i-bN(X+aX, Y+aY)+2drti(X, Y){,+

+ HY(TX—3 bX — T+.ipX(p) —H x (T Y-+.bY—T=+.4Y(p).
Now consider the connection I given by
(£28) VX = VX-H (TX_£ bX- T svX<).

In virtue of Corollary 11 this connection is also an almost r-paracontact connection.
The torsion tensor field T of this connection is

(2.29) T(X, Y) = 2dri‘(X, Y)*-\bN (X +aX, Y+aY).

Hence we obtained

Theorem 2.1. On a manifold M with an almost r-paracontact structure X =
—(<Pi i)>il() 1==1, there exists a X-connection with the torsion tensor field

given by (2.29).
We also have

Theorem 2.2. A tensor field T of the type (1,2) with T(X, Y)= —T(Y, X)
is the torsion tensor fieldof an almost r-paracontact connection if and only if it satisfies

the relations (2.9) and (2.13).

Proof. If the tensor field T satisfies the relations (2.9) and (2.13) then it satis-
fies the relation (2.27), since this relation was obtained using only (2.9) and (2.13).
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There exists an almost r-paracontact connection V with its torsion tensor field f
given by (2.29).
Consider the connection

(2.30) + H(TX-2bX —T 2 vx<)
which is an almost r-paracontact connection whose torsion tensor field is exactly T.
We also have

Theorem 2.3. On a manifold M with an almost r-paracontact structure 1=
~(<p, £(), rjdi) i—\, r there exists a symmetric 1-connection if and only if the
following conditions are satisfied:

(@) all 1-forms f areI closed.
(i) 1 is normal, i.e. N=o.

Proof. Suppose that there exists a symmetric X-connection on M. Then, on
account of (2.9) and (2.13) the conditions (i) and (ii) are satisfied. Conversely, if
(i) and (ii) are satisfied, then according to Theorem 2.1 there exists a symmetric
X-connection on M.

Now, in virtue of Theorem 7 from [1] we have

Theorem 2.4. On a manifold M with an almost r-paracontact structure 1=
=(p £(3} ij@> i=1,..., r there exists a symmetric 1-connection " if and only if
IE,.E\|1=0, (s«Ne =0 for XeD+(or D~), YED~(orD+ i,j=1,...,r and the
distributions D+ D~, D+©D°, D~®D*® are integrable, where D+= {X; cpX=X},
D-={X;cpX=-X}, D°={X;(pX=0}

3. The curvature tensor field of an almost r-paracontact connection

Now we give some properties of the curvature tensor field of an almost r-para-
contact connection on a manifold M. The curvature tensor field of a linear connec-
tion I" is defined by the formula

(3.1) Rxy —VXVy-V yVx-V B>, .

If the connection I is an almost r-paracontact connection, then we obtain the follow-
ing properties of the curvature tensor field RXY

fR XYZ = i?(VXVWWZ —WWVYZ —V[y]Z) = X Y fW -Y X fW -iX YW iZ).
Hence
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Hence we get
(3.4) Rxy°<P = (poRxr-

On account of (3.3), (3.4) and (1.4) we have
(3.5) <poRXYo(p = Rxr.
From (1.20), (1.21), (1.22), (1.24) and (1.25) we have
(3.6) Fp=\((p-cp3, Hp = S+
Hence, and because of (3.5) we have
FRXyZ = FcpRXY (pZ = —(Id —tpMpRxytpZ = y (Id H@3RXyZ —y *r(O*r)<A

and because of (3.3) we get
(3.7) ~ FRxr =0.
Now
HRXZ = H(pRXy(pZ = y (P+ (QIRXyZ—

=\{\d + op)opRY<pZ = [(1d +tp*RXYZ - RXYZ +\t, i{RXyZ)"i.

Because of (3.3) we have
(3.8) HRxy = RXy.
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UBER EINE KENNZEICHNUNG DER
ALTERNIERENDEN GRUPPE VOM GRADE 5

G. HEIMBECK (Wii-zburg)

In [2], S. 160— 165 hat Liineburg eine Kennzeichnung der alternierenden Gruppe
91- bewiesen, die nach semen Angaben aufdie Diplomarbeit von Assion zurlickgeht.
Dieser Kennzeichnungssatz kann folgendermalien ausgesprochen werden.

satz (Assion). G sei eine endliche Gruppe mit einer Konjugiertenklasse {1 von
Untergruppen der Ordnung 3, diefolgende Eigenschaften hat:

(El) Das Erzeugnis von je zwei Untergruppen aus $ ist isomorph zu einer Unter-
gruppe von SI5.

(E2) A erzeugt G.
(E3) Esgibt A, 564 mit (A, A)= 8i5.
Dann ist G isomorph zu 2I5.

Ich will zeigen, daB sich der in [2] angegebene Beweis fir diesen Satz ganz
erheblich vereinfachen laRt. Die SchluBweise in Teil b) des Liineburgschen Beweises
([2], S. 163, Mitte) liefert namlich in Verbindung mit simplen Zusatziiberlegungen
ein Resultat, das den Satz von Assion als Spezialfall enthélt. Uberdies zeigt der
unten formulierte Satz, daR die Voraussetzung der Endlichkeit der Gruppe G im
Satz von Assion Uberflussig ist.

Satz. Jede Gruppe G, die eine Konjugiertenklasse 1 von Untergruppen der
Ordnung 3 mit den Eigenschaften (EI) und (E2) besitzt, ist isomorph zu 2I5oder zu
Z3 oder zum Erzeugnis der Streckungen eines affinen Raumes passender Dimension
Uber GF(4).

Beweis. Ehe wir in die Detailliberlegungen eintreten, wollen wir darauf hin-
weisen, dall (El) gleichwertig mit der folgenden Aussage ist: Das Erzeugnis von je
zwei verschiedenen Untergruppen aus $ ist isomorph zu 914 oder zu 3t5.

a) Bei beliebig vorgegebenen A, BfSx gilt:

1) Jede Untergruppe der Ordnung 3von (A, B) gehort zu 4.
2) Jedes Cdd, das (A, B) normalisiert, gehort zu (A, B).

Beweis. 1) Wegen (EI) ist jede Untergruppe der Ordnung 3 von (A, B) in
(A, B) zu A konjugiert und darum Mitglied von #. 2) Weil die Anzahl der Unter-
gruppen der Ordnung 3 von (A, B) kein Vielfaches von 3 ist, gibt es eine Unter-
gruppe D”(A, B) der Ordnung 3, die von C normalisiert wird. Nach 1) gilt DdS\.
(El) liefert jetzt C=D.
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b) Vorgelegt seien A, B, CEA wit (A, C), (8, C)=214. Man wéhle Erzeugende
a,b,c fur A, B, C mit o(ac)=o(bc)=2. Dann gilt:

1) {A,B) K6"C~(A,B).
2) (A,B) m~C~N((A, B)' oder o(ab)=2

Beweis. Aus &c€)ss2l4und o(vc) = 2 folgto(s-1c)= 5. Nach al) ist (& 1c)€A
und folglich (ia,b~1c> gemaR (EI) isomorph zu einer Untergruppe vcn 2I6.
Daher gilt o:-=o(av-1cy0¢ 1,2, 3,5}. Wir gehen jetzt diese vier denkbaren Félle
der Reihe nach durch und Uberzeugen uns jeweils vcn der Glltigkeit der Behauptung.
Dabei diirfen wir natlirlich AvB annehmen. Aulerdem machen wir uns die in
jedem Falle giltige Inklusion (A, B)sN ((A, £)") zunutze.

0 = | ist unmoglich, denn sonst ware ac=a(ba”r), im Widerspruch zu o(ac)—
Die Beziehung (ab~1c)2—ab~I1cab~I1c—ab~la~1c~Ib~1c=ab~la~lbc2="[a~\ i]c_1
zeigt erstens, dal die Behauptung im Falle o—2 zutreffend ist. Dann ist namlich
c=[u-1, b]d(a, b). Zweitens erhdlt man bei 0=3 c~lba~1=(ab~1c)~1=(ab~1c)2=
=[a-1, b]Jc~x und daraus (&G )c=[d-1,b]. Da auBerdem (a~lb}c=ab~1 gilt,
normalisiert ¢ die Untergruppe K:=(a~1b, ab*1). Bei o(ab)v3 folgt aus (ab)3=
=(aba)(bab)=(ab~)(a~1b)~Lab~)~1(a~1b)dK zunédchst ab£K und dann a= (a~1b)

b —a{a~Ib)dK, Also gilt K=(a,b). a2) liefert jetzt cd(a,b). Im Falle
o(ab)=3 ist (a, b)=Sl4 und K=(a b)’, unsere Behauptung also ebenfalls zutref-
fend. Im letzten Falle o0=5 gilt {a,b~1)*2I5 Deutet man a,b_1lc als
Dreierzyklen wvon 2I5, so sieht man, dall abdca involutorisch ist. Deshalb
gilt 1=ab~caab~Ica=c~1bab~Ilcac~lbab~1lca=c~1(bab~la~1lb~1c~lab~la~1c)c=
=([h_1, a~gb~Lb~l)*c)c und dann {bat)cd(a, b). Da auBerdem (a~lb)c=ab~1
ist, bleibt die Untergruppe K:=(ba-\ a~1b) beim Transfermieren mit ¢ innerhalb
von (a,b). Im Falle o(ab)*2 folgt aus (ab)2=aba~la~lb=ba-la~1bEK zunéchst
abdK und dann — ahnlich wie oben — K—{a,b). Da (a, b) endlich ist, wird
(a, b) von c¢ normalisiert. Mit a2) folgt cd(a, b). Bei o{ah)—2 ist (a, b)=:214,
unsere Behauptung also wiederum richtig.

c) Sind A, BdS\ verschieden, so gibt es htchstens eine zu 215 isomorphe Unter-
gruppe von G, die A und B enthalt.

Beweis. H, KAG seien zu 2I5 isomorphe Untergruppen mit A, B"H, K
Weil A und B verschieden sind, gibt es eine Untergruppe C~H der Ordnung 3 mit
(A, C), (B, C)si2ldund (A, B, C)=H. Da Cin H zu A konjugiert ist, gilt CEA.
Ebenso findet man ein £>€A mit (A, D), (B, D)s;2(4 und (A,B,D)=K. Wir
fuhren jetzt die Annahme H 'K zum Widerspruch. Aus A<(A, B)"HI\K<
<A~2r5 folgt mit (EI) (A, U)==214. Da aulerdem (A, C), (A, Z>)=s2l4 gilt, gibt
es Erzeugende a,b,c,d fir A,B,C,D mit o(ab)—o(ac)~o(ad)=2. Wegen
{A, B, C)"415 und (B, C)=9l4 normalisiert A die Gruppe (B, C)' nicht. IDar-
aufhin ist nach b2) o(bc)=2. Ebenso folgt o(bd)=2 Da C und D wegen HAVK
verschieden sind, ist (C, D) geméafR (El) isomorph zu 214 oder zu 2I5.

1 Fall: (C, i))=2i4. Weil die Produkte ac, ad, bc, bd involutorisch sind, gil
(ab~)(c~M) = acbd=c~la~1d~1b~1=(c~1d)(ab~1, d.h. ab~x und c~xd sind ver-
tauschbar. Da auBerdem (ab-1), (c~4) verschieden sind und (ab~V) zu A gehort,
folgt mit (EI) (c~M)"S\ und daraus mit al) o{c~ld)S.2. Wegen CvD qgilt
o{c~M)=2 und folglich o(cd)=3. b2) liefert jetzt A, BAN((C, D)). Demnach
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normalisiert (A, B, D)—H die Vierergruppe (C, D)'. Weil sich H durch Elemente
der Ordnung 5 erzeugen 18Rt und diese (C, D)' zentralisieren, operiert H auf (C, D)’
trivial. Dies steht im Widerspruch zu (c~ld)a= cd~lAc~xd.

2. Fall: (C,D)"415. Mit bl) folgt A, Bs.(C, D). Dies fihrt zu H,K*(C,D)
und damit zum Widerspruch H=K.
d) Gibt es Untergruppen A, BCA mit (A, B)s:9i6, so ist G—(A,B).

Beweis. Wegen (E2) braucht man nur zu zeigen, daB (A, B) ein beliebig
vorgegebenes CCH enthélt. Man darfsich C*A, B und wegen bl) etwa (A, C)=
AS15 vorstellen. Sodann fixiere man ein BCA mit D~(A,C) und (A, D), (C,
ss914. Wegen c) genligtes, Dd(A, B) zu beweisen. Dabei darf man natirlich B /D
und wegen bl) (B, D)"9i5 unterstellen. Nun wéhle man ein 2IrcA mit E*(A, B)
und (A E), {B, 0)s:314. Wiederum darf D "E angenommen werden. Im Falle
(D, £)s 214 folgt mit bl) zundchst E~(B,D) und daraus mit ¢) D~(B, D)=
=(A,B). Analog folgt im Falle (D,£)"9i5 zunéchst As(D,E) und dann OS
—A E)=(A, B).

e) Enthalt A wenigstens zwei Untergruppen und gilt (A, B) =54 fiir je zwei
verschiedene A, BCA, so ist G isomorph zum Erzeugnis der Streckungen eines
affinen Raumes passender Dimension Uber GF(4).

Beweis. Zundchst begriinden wir
(*) (A, B)' ist normalin G fur alle A BfR.

Andernfalls gibt es Untergruppen A, BCA so, dafl (A, B)' nicht normal in G ist.
A und B sind dann jedenfalls verschieden. AuBerdem gibt es wegen (E2) ein CCH,
das (A, B)' nicht normalisiert. Danach Voraussetzung (A, 14 gilt, liegt C
aullerhalb von (A, B). Wegen (A, C), (B, C)si5l4 konnen wir Erzeugende a,b,c
fur A, B, C mit o(ac)=o(bc)—2 fixieren. Nach b2) ist o(ab)—2. Zur Gewinnung
eines Widerspruchs betrachten wir jetzt (a, b,c). Wegen (abc)-=abcabc=
=b~la~la~1c~1c~Ib~1=b~lach~1=b~1c~la~1b~1=chba=cb~1a gehdrt cb~r und
dann auch c zu (abc, bc). Also erzeugen die beiden Elemente abc, bc zusammen
(a,b,c). AuRerdem ist (abc)i—(cb~1a)2=cb~lach~la=cb~1c~la~1b~la=ccbbaa—
—~1b~la~1—(abc)~1, damit (abc)6=1 und dann o(abc)=15, weil abcA | wegen
C”" (A B) gilt. Daneben hat man o(bc)=2, o((abc)(bc))—3. Da eine Gruppe H
mit den Erzeugenden jox, x2 und den Relationen xf=x|=(x1x23=| z. B. nach
[1], S. 140, 19.9 isomorph zu 915ist, ist (a, b, ¢) ein nichttriviales homomorphes
Bild der einfachen Gruppe 915, also isomorph zu 2I5. ab-1, b~Ic haben beide die
Ordnung 3, ihr Produkt (ab~X(b~1c)=abc hat, wie oben Uberlegt, die Ordnung 5.
(ab-1), (b~xc) sind also zwei Untergruppen aus A mit einem zu 2I5 isomorphen
Erzeugnis, entgegen der Voraussetzung.

JICA  sei beliebig gewahlt. Das Erzeugnis V des Untergruppensystems
{(A, B)'|BcA —{/T}} ist nach (*) normal in G. Da AV samtliche Mitglieder von A
aufnimmt, konnen wir mit (E2) AV—G schlieBen. Als Erzeugnis paarweise frem-
der, normaler Vierergruppen ist V eine Gruppe vom Exponenten 2, auBerdem A{\)
wegen |A|>1. Wir fixieren ein Erzeugendes adA von A und betrachten den von
a in V bewirkten Automorphismus a: V-*V mit x":=xa. Bei beliebig fixiertem
BCA—A} qilt xx“x“2=1 auf (A,B). Demnach ist |+ a +a2 der Nullendo-
morphismus von V. Nun sieht man, dal K:={a a2 a3 0} mit den vom Endo-
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morphismenring End V tibernommenen Rechenoperationen ein zu GF(4) isomorpher
Kdorper ist. V ist in natlirlicher Weise ein A'-Vektorraum. ~x bezeichne die zum Vek-
tor x£V gehorige Translation. Die Zuordnung arx-+actx (e£{+ 1,0}) liefert
offenkundig einen Isomorphismus von G auf das Erzeugnis der Streckungen des
zum A'-Vektorraum V gehorigen affinen Raumes.
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7VCLOSED SPACES

A. CSASZAR (Budapest), member of the Academy

1. Introduction

As it is well-known, a Hausdorff space X is said to be //-closed iffitis a closed
subspace in every Hausdorffspace Fd Z, or equivalently, iff X has no proper Haus-
dorff extension. This concept can be generalized (by keeping invariant its character-
istic properties) for arbitrary topological spaces X (see e.g. [2]).

For this purpose, let us recall the following definitions. If X is a subspace of
the topological space F, we say that Fis reduced with respect to X iff XEF, yEY —X,

implies that at least one of the points x and y has a neighbourhood not con-
taining the other one. F is said to be strongly reduced iff {} is closed for y£Y—X.
Y is 7)-reduced (T"-reduced) iff xEF, yEY—X, x”*y implies that both x and y
have neighbourhoods not containing the other one (x and y have disjoint neigh-
bourhoods). Fis a r;-space (i=0, 1) iff X is 7) and Fis reduced (if /=0) or 7\-
reduced (if i=1) with respect to X. The same is true for i—2 provided F is an
extension of X (i.e. X is dense in F).

Now an arbitrary topological space X is said to be H-closed iff it has no proper
T2-reduced extension. For a 7”-space X, this coincides with the classical definition.

Similarly, letus agree in calling a space X 7\-closed iff X has no proper 7\-reduced
extension. If X is a 7j-space itself, this condition means that X has no proper ex-
tension that is a 7)-space, or that X is closed in every 7j-space containing it. Howe-
ver, it is easy to see (2.3) that Tl-spaces with this property are finite (and discrete);
on the other hand, if we drop the condition to be 7j, there are many examples of
Ti-closed spaces (2.5, 2.6, 2.7).

Our purpose is to study the properties of 7\-closed spaces and of 7\-closed
extensions of arbitrary spaces.

We shall need some fundamental facts of extension theory. Let F be an exten-
sion of the space X, and pB Y. Then the neighbourhood filter o(p) ofp has a trace

v(p) \X={YTX: Vet>@)}

in X that is an open filter in X (i.e. it is generated by a filter base consisting of open
sets); in particular, if pEX, then v(p)\X coincides with the neighbourhood filter
in X of the point p. Conversely, if X is an arbitrary topological space, YzdX is a
set, and we assign to each point pEY—X an open filter s(p) in X, then there are
(in general several) topologies on F such that X is a dense subspace of F and s(p)
coincides with the trace in X of the neighbourhood filter in F of any p£Y—X.
Among these topologies, there are a coarsest one and a finest one. The latter, called
the loose extension of X with respect to the filter system {s(p): pdY—X), is obtained
by taking, for xEX, the neighbourhoods in X of x for the elements of a neighbour-
hood base of x in F, and for p$ Y—X, the sets AU{p} (SE£s(p)) for the elements
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of a neighbourhood base ofp. In order to obtain the coarsest topology on Y furnish-
ing the given trace filters s(p), let us denote by s(x) the neighbourhood filter in X
of the point x£X, and put

s(G) = {yEY: G&s(y)}

for any open subset GczX. Now the sets s(G) constitute a base for the topology
we are looking for; it is called the strict extension of X with respect to the system
{*00: P1Y-X}.

In a space X, an ultraopen filter is a maximal open filter (i.e. an open filter s
such that if s' is an open filter containing s then s'=s). By the Kuratowski—Zorn
lemma, every open filter s is contained in an ultraopen filter. An open filter s is
ultraopen iff, for every open subset GczX, either G or X —G is contained in s.
Two distinct ultraopen filters contain disjoint elements.

Afilter s in X is said to befixed orfree according to whether fls?i0 or Ds=0,
respectively.

2. Characterization of 7\-closed spaces

The following theorem gives simple characterizations of Tx-closed spaces:
Theorem 2.1. Foratopological space X, thefollowing statements are equivalent:

(@ X is Tx-closed,

(b) In X every openfilter isfixed,

(©) In X every ultraopenfilter isfixed,
(d) In X there is afinite dense subset.

Proof. (a)=>(b): Suppose s is a free, open filter in X. Set Y=XiJ {/;}, p$X,
and consider the loose extension of X corresponding to the trace filter s(p)=s.
This is a proper Tx-reduced extension of X.
(b) =>(c): obvious.
(©) =>(d): Suppose there is no finite, dense subset in X. Then the complements
of the closures of the finite subsets generate a free open filter that is contained in a
free ultraopen filter.
(d) =>(@): Let The an extension of X, p£Y—X. The trace in X of the neigh-
bourhood filter of p is an open filter in X. If FczX is a finite, dense subset, then
s|F isafilterin F, and clearly D(s|T")7i0. Hence every neighbourhood ofp contains
any point M(sjF) sothat Y cannot be a Tx-reduced extension of X. O

Corollary 2.2. Everyfinite space is Tx-closed. O

Corollary 2.3. A Tx-space is Tx-closed iff it isfinite (and discrete). O
Corollary 2.4. Every extension ofa Tx-closed space is Tx-closed.

Proof. 21 (d). O

Theorem 2.5. A space is Tx-closed iff it is an extension of a finite space. O

By 2.1, a space is Tx-closed iff its density (i.e. the smallest cardinality of a dense
subset) is finite. Let us call elementary Tx-closedspace a Tx-closed space with density
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1 The space T={0, 1}, where the open setsin T are 0, {0}, T is an elementary In-
closed space.

Theorem 2.6. |If Xt is an elementary f-closed space for i£f, then X —" X t
is an elementary Ti-closed space as well.

Proof. If xfXt is chosen such that {xj= Xi, then (a)=xfX satisfies
K}=Xm O

In particular, any power of the space T is an elementary in-closed TO-space.
Further examples of elementary Tx-closed spaces are obtained from

Theorem 2.7. Let X be an arbitrary topological space, Y=XU {p}, p£X,
and define the open subsets of Y tobe 0 andthe sets G\j\p) where G is open in
X. Then Y isan elementary 7\-closed space containing X as a closed subspace and
reduced with respect to X. O

3. Operations on 7\-closed spaces

We look for invariance of Tx-closedness for usual operations on spaces.
Theorem 3.1. A continuous image ofa Ij -closed space is 7j -closed.

Proof. If FaX is finite and dense, f: X —Y is continuous and surjective,
then f(F) isdense in ¥ (2.1(d)). O

Lemma 3.2. If Y is Tx-closed, and fA\X-*Y is surjective, then the inverse
image topology on X is 7)-closed.

Proof. If F'czY is finite and dense, and FaX is a finite set such that f(F)=F"',
then Fis dense with respect to the inverse image topology. O

We recall that the TO-reflection of a space X is the quotient space ¥ obtained
from the equivalence relation for which x andy are equivalent ifftheir neighbourhood
filters coincide; then X has the inverse image topology with respect to ¥ and the
canonical surjection.

Theorem 3.3. A space is Tx-closed iff its TO-reflection is Tx-closed.
Proof. 3.1,3.2. O
The following statements are easily obtained from 2.1 (d):

Mn
Theorem 3.4. |f X=\th and each of the subspaces Xt is f -closed then
X is Tx-closed as well. O

n
Theorem 3.5. |If is Tud6ésedfor /=1, then X ""1)( iis T~-dosed.

n
Proof. If Fta Xt is finite and dense then so is F- X 'n X- O
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Theorem 3.6. In a Tx-closed space every open subspace and every regularly
closed subspace is Tud6sed.

Proof. Let Fbe finite and dense in X, GczX open. Then FOG is dense in
G so that G is Tx-closed, and Gis 7j-closed by 2.4. O

4. Structure of 7j-closed spaces

We show that Ti-closed spaces have a rather simple structure.
Let X be a Tx-closed space and s an ultraopen filter in X. By 2.1 (c) the set
K= fls is nonempty. A set K of this type will be called a kernel set in X.

Lemma 4.1. Let s be an ultraopenfilter in a topological space X, and xiK —
= Ds. Then 5 coincides with the neighbourhood filter of x, hence K= {. If
yiX —K then x (t{y}, hence KF {y}=0.

Proof. Every Sis is aneighbourhood of x. Conversely, if Gis an open neigh-
bourhood of /1, then xCGns for every Sis, hence Gis. For zi_K, the neigh-
bourhood filters of .r and z both coincide with s so that zf {x}, hence Kcz{x} and

{3} =Kc {1
If yiX —K then there is 5€s suchthat y $S, hence x(£E{y}, and A"M{y}=0. O

Lemma 4.2. Let sXs' be ultraopen filters in a topological space X, AFDs.
K'= Os'. Then KOK'=0.
Proof. There are Sis and S'is' such that 5D5'=0. Hence. KFK'=Q
and, by 4.1, yiK" implies
KMK'—/my} = 0. O
Lemma 4.3. In a Tx-closed space, afinite set is dense iff it meets every kernel set.

Proof. Suppose Fis a finite, dense set in X. By 4.1, FFK”Q for every kernel
set K. Conversely, if Fis finite and -FfIAVfi for every kernel set K, then F is dense
because every open set <770 is contained in an ultraopen filter s, and for K= Ds
we have Q'FFKclG. O

Theorem 4.4. In a 7j-closed space of density n, there are n kernel sets K(
(/=1, ...,n). For I*i*n, 1 iXj, KiP\Kj=D and X=\J1Aj-.

Proof. By 4.2 two distinct kernel sets are disjoint. Hence if F={xn, ..., xn}
is dense in X, then it can meet n kernel sets at most, and the number of all kernel

sets is finite and ~n by 4.3. On the other hand, if Kx, ..., Km are the kernel sets
and y;EX;, then {yx, ..., yn} is dense by 4.3 so that mSn.

For two distinct kernel sets Aj and Kj, we have K;CGAj=0 by 4.2. Finally
KI (/=1, ..., n) implies by 4.3

"=QW =04 O
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The kernel sets can be characterized by the property formulated in 4.3:

Theorem 4.5. In a Tiddsed space X, let Ax, ..., A, be pairwise disjoint
subsets with the property that afinite subset FaX is dense iff P A0 for i=
—1, ..., n. Then n is the density of X and the sets At coincide with the kernel
setsof X.

Proof. Clearly n is the smallest cardinality of a dense subset of X so that n
is the density of X. Let KX, Kn be the distinct kernel sets of X (4.4).

Suppose a set Atdoes not meet any set Kj (/= 1, ..., n). Then choosing yfiKj,
the set {>i, is dense and does not meet At, contrarily to the hypothesis.
Hence every At meets at least one Kj. Similarly every Kj meets at least one A,.

If AIDKj*OMAIDK", j*k, then choose points ysdKs for s=I,...,n
in such a manner that

yrAtOKj, ykeAiC\KK.

Since two of the points ysbelong to At, there must exist an Ahthat contains no ys.
This contradicts the hypothesis because {y\, is dense. Hence every A-
meets precisely one Kj. Similarly every Kj meets precisely one Ah and the numera-
tion can be chosen in such a way that AtnKjr0 iff i=j.

If Kj—At"0, we can again choose points ysEKs (s=1,..., ri) in such a man-
ner that no one of them belong to At; this is impossible so that Kta At. Similarly
AiCzKi. Hence Ai=Ki for /=1, ...,n. O

The following statements show that every Tx-closed space can be obtained
from elementary Tx-closed spaces with the help of some simple operations.

Lemma 4.6. If s is an ultraopen filter in a topological space X, ¥ ¢X, and
every element of s meets Y, then s|Y is an ultraopen filter in the subspace Y.

Proof. s|Y is an open filter in ¥. If CcY is open in ¥ and for
every S£s, then G=HDY, H open in X, and for SEs. Hence #£s,
and G€sly. Consequently s|y is ultraopenin ¥. O

Lemma 4.7. Let X bea Tx-closed space, K, ..., Knits kernel sets, and \*m-<n,
m n
Y—lf-K.-, 2= mgth.

Then Y and Z are Tx-closed subspaces, their kernel sets are K1,...,Km and
Km+, ..., K,,, respectively, and

YNK)Y=0 (m+1SiSn), Zi)Ki=0 (ISiS m).
Proof. The last statements follow from 4.2. If xfK t (i=1, ..., m) then by 4.1

V=1p = [t

so that {xx, ...,xn} isdense in Yand Yis 7)-closed by 2.1. We show that KX, ..., Km
are the kernel sets of V.
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In fact, fix i"m, and lets be an ultraopen filter in X suchthat Kt—Ds. Then
by 4.6 s|F is ultraopen in Y and Kt=C\(s|F). Hence K, .... Km are all kernel
sets in Y and there is no further kernel set because the above set {xI5  xm} is
dense in Y (4.3, 4.4). By symmetry, Z is 7\-closed with the kernel sets KmXi, ...

Lemma 4.8. Suppose X is a topological space, X=YUZ, Y and Z are
7)-closed, closed subspaces with kernel sets Kx, ..., Km and KnXl, ..., K,,, respect-
ively. Assume

KimY=0 (m+1=i=n), KiHZ=0 (LSis

Then X is Tx-closed and its kernel sets are Kx, , Kn.

Proof. Let s be an ultraopen filter in X. Either each element of 5 meets Y or
each S£s meets Z, say 5MYT"0 for S£s. Then by 4.6 s\Y is ultraopen in Y.
and I ($\Y)=Ki for some Is/Am . Hence the open set X—Z tj Kt meets each
element SE£s sothat X —Z£s and

Zi(~]s~ 0, iTs = (T(s|T) = K;.

Similarly we obtain that Ds—K, for some m+I=iSn provided every S€£€s
meets Z.

By 3.4, X is I) -closed and its kernel sets coincide with some sets Kt. Moreover,
every Ktis a kernel set in X. In fact, if iSm, x£EKt, then by 4.1 {v} whenever
yEKj, j=m, jYi, and the same is true if yEK]j, j=s?n+ 1 because then {yjcZ,
x$Z. Therefore, by 4.3, Kt must occur among the kernel sets of X. A similar argu-
ment applies for ISOT+1. O

Theorem 49. If X is af -closed space with the kernel sets Kr, ..., Kn, and
Y{=Ki, then F is an elementary Tud&sed, closed subspace with kernel set Kit
and AMYj=0for izj.

Conversely, if X is a topological space, X=[i|j Yt, Yt is an elementary Tx

closed, closed subspace with kernel set K;. and KtMYj=0 for i/-j, then X is
7) -closed and its kernel sets are K,, ..., K,,.

Proof. The first part is contained in 4.7, and the second one is obtained from
4.8 by an easy induction. O

In a 7)-closed TO-space, the situation is very simple:

Theorem 4.10. If X is a Tx-closed TO-space then the kerne! sets are singletons
£} (i=1, ...,n), and F~{xx, ..., X,,} is the unique discrete, dense subset of X.

Proof. By 4.1, the kernel sets are singletons, and the subspace F is discrete.
By 4.3, Fis dense in X.

Let D be a discrete, dense subset of X. If D is finite, then Dz)F by 4.3. But
xED —F would imply xf {x;} for some xfF which is impossible because D is
discrete. Hence D=F.
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If D is infinite then there are three distinct points x, vfD and xfi F such that
X, yd {x-}. Select open sets Uand V such that

UC\D = {x}, VvDD= {5}
Then xfiUCIV and t/f)FM£=0 which contradicts the hypothesis that D is
dense. O

In order to formulate the following theorem, let us recall [1] that a space X
is said to be an S’,-space (S2-space) iff, for x, yBX, whenever x has a neighbourhood
not containing y, y has a neighbourhood not containing x (x and y have disjoint
neighbourhoods).

Theorem 4.11. An Sj-space X is Tuddsed iff it is the topological sum of a
finite number o f indiscrete spaces.

Proof. Let Kr, .... Kn be the kernel sets of X. Each A) is closed. In fact, if
XEKh y€X—Kj, then by 41 x${y} so that y*x}=K(. By 44 X—\IJ Aj,

the sets Aj are pairwise disjoint and closed, and each subspace Aj is indiscrete.
The converse is obvious. O

4.11 can be deduced also from 3.3. and 2.3.

5. 7j-closed extensions

By 2.7 every topological space can be embedded in a Tj-closed one. However,
the question of the existence of Xj-closed extensions is more delicate.

In view of the fact [2] that every space has a X2-reduced //-closed extension,
one would expect that every space has a 7j-reduced 7)-closed extension. This is
far from being true:

Lemma 5.1. If Y isa Tx-closed space, strongly reduced with respect to a sub-
space I c f, then X is Tx-closed as well.

Proof. Let FcY be finite and dense. Since XC)F—X=&, necessarily X c
<z¥nx. 0O

For a space that is not Tj-closed, we cannot expect therefore more than the
existence of (reduced) Tj-closed extensions. But such an extension does not always
exist.

Lemma 5.2. Let X be a topological space, x, yEX. Then x£ {y} iff the neigh-
bourhoodfilter of y converges to x. O

Theorem 53. Let X be a topological space. The following statements are
equivalent:

(@ X hasa Tj-closed extension.
(b) There is in X afinite number of open filters whose limit points cover X.
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(c) There is in X a finite number o ffilter bases whose limit points cover X.
(d) There isin X afinite number o f ultraopenfilters whose limit point cover X.
(e) In X there arefinitely many ultraopenfilters only.

Proof. (a)=>(b): Let ¥ be a Ij-closed extension of X, FcY finite and dense.
By 5.2 every x£X isthe limit point of the neighbourhood filter o(y) of some y£F.
Then o(p)|X is an open filter in X that converges to x.

(b) =>(c): obvious.

(c) =>(d): Let rls ...,r,, be filter bases in X such that, for x£X, there is a
r;such that xt-*x. Define

5~{Sc X:intS z/?%r}.

Then siis an open filter such that xt-*x implies s;-»x. Let s- be an ultraopen
filter containing s;. Then st-*x implies 5--*x.

(d) =>(e): Let sj, .... s, be ultraopen filters whose limit points cover X. If:
were an ultraopen filter distinct from each s;, then there would exist an open set
Gds suchthat G$Sj for 1=1, .., n. Now a point xEG cannot be limit point of
any Sj. Hence there is no further ultraopen filter in X.

(e) =»(a): Let sI5..., s,, be the ultraopen filters in X, lwTwn, and suppos
that sj, ...,s,, are free, sm+l, ...;s,, are fixed (if every ultraopen filter is fixed
then X itselfis a Tx-closed improper extension by 4.1). Define

r=XU{Pi,-,P.)

where the points p& X are pairwise distinct, and equip Y with the strict extension
of X with respect to the trace filters s(pi)=si. Then ¥is a reduced extension of
X because the filters s; are free and any two of them contain disjoint open elements
Gj€Sj, GjESj so that s(GX® and s(Gj) are disjoint neighbourhoods of pt and
Pj, respectively.

If XjiflSj for m +1Isi'*n then

F= {px ....pmxm+l, ... X,

is dense in Y. In fact, the sets s(G), where 0~ G cb is open, constitute a base in
Y and each G belongs to some s,; if issm+1 then xfGas(G), if ism then
Pfs(G). O

Let us say that a space is T}-closable iff it has a 7j-closed extension. The condi-
tion 5.3 (e) shows that this is a rather peculiar class of spaces. An example of a
7j -closable space that is not Tj-closed is an infinite set X in which the proper closed
subsets are all finite subsets. Then the family of all non-empty open subsets consti-
tutes a free open filter that is clearly the only ultraopen filter in X.

In the class of S2-spaces there are no proper 7j-closable spaces:

Lemma 5.4. A Tx-closable S2-spaceis 7j-closed.

ﬁroof. Let sI5..., s, be the ultraopen filters in the A2-space X. Then by 5.3,
X:(f At where At denotes the set of the limit points of s,. Select xfA t from the
non-empty sets Atand define ¥ to be the set of these points xr. Since X is an S2-
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space, any Xx€At has the same neighbourhood filter as xt so that J1;cr{a-}. Hence
Fisdense in X. O

In the part (e)=>(a) of the proof of 5.3, we have constructed, for a given Tx-
closable space X, a reduced 7j-closed extension Y. Let us call a space Y obtained in
this way a standard Tx-closed extension of X; in other words, a standard Tx-closed
extension of Xis a strict extension Y such that the trace filters in X of the neighbour-
hood filters of the points of Y—X are the distinct free ultraopen filters in X. Hence
We can say:

Corollary 55. For an arbitrary Tx-closable space X, there exist standard
Tx-closed extensions. | f Y is an extension of this kind, then Y—X s finite, p, qC
£Y—X, pXq implies that p and g have disjoint neighbourhoods in Y, finally
x"X, pdY—X implies that p has a neighbourhood not containing, x O

If Y is a standard Tx-closed extension of X and Z is another extension of X,
then, obviously, Z is a standard Tx-closed extension iflf Y and Z are equivalent in
the usual sense (i. e. there is a homeomorphism from Y onto Z that keeps fixed
every point of X).

Our next purpose is to show that all possible Tx-closed extensions of a 7\-clo-
sable space can be obtained with the help of its standard Tx-closed extensions.

Lemma 5.6. Let Y be an extension of a topological space X and s an ultra-
openfilter in X. Then there is a unique ultraopenfilter s' in Y such that s=s'|X;
s' is generated by the collection ofall open sets G'czY such that G'flIXEs.

Proof. The sets G' described in the statement clearly constitute a filter base
that generates an open filter s' in Y. If HczY is open and S'OHYO for every
S"€s' then AM)XM5'70 for every S£s, hence AMXEG and //€s'. Therefore
s'is ultraopen in Y. Clearly s'|X=s.

If s"+tis' is an ultraopen filter in Y then there are disjoint sets S'Es', S"ds"
so that and s"|AVs. O

Lemma 5.7. Let Y be a standard Tx-closed extension of the Tx-closable space
X and let us denote by Y and Y ’ the topologies of X and Y, respectively. Let
Y be another topology on Y suchthat Y" toois an extension of Y and the trace
in X ofthe ST"-neighbourhoodfilter ofany p£Y—X coincides with the trace of the
Y'-neighbourhoodfilter of p. IfY™ is Tx-closedthen Y" =Y "

Proof. For yEY, letus denote by s(jj the trace in X ofthe '-neighbourhood
filter of y. By hypothesis s(y) is also the trace of the ~""-neighbourhood filter ofy.
For an open subset GcrX, we denote again

s(G) = {y€Y: G6s(y)}.

We know that Y ' is coarser then Y™ because Y ' is a strict extension. Now let
G" be .A"-open. It is enough to show that G" is '"'-open as well.

If pEG"—X then the ~"-open set G=G"(~)X belongs to s(p). Since Y-X
is (finite and) ~"-discrete, there is a .“open set H such that s(H) —X= {/>}. Then
Y(Gn#)=(Gn/HU{p}cG" sothat p is a "-interior point of G".
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Let xEG=G"[~)X and suppose Q£s(G)—G". Then gXX—X and s(G)
belongs by 5.6 to the Y '-ultraopen filter s' such that $'\X~s(q). There is again
a .Fopen set H such that

s(H)-X= {a} HEXq), S(A6*,

hence fis'ez {g}. On the other hand fls'~ 0 because ST’ is Tx-closed, hence IMo'—
={q). The filter s' is .F"-open so that there exists a ,5"-ultraopen filter s"r>s'.
Clearly
s"\Xz>9"\X=s(q),
further
ns"c=ns'= {q},

consequently fls"= {ry} because Ds'Vfi owing to the Tx-closedness of 9~".
G£s(q) implies that every element of s" meets G and, afortiori, G", so that G"ds",
in contradiction to the hypothesis q$G". Thus we have shown s(G)czG" so that
X is a M “-interior point of G". O

Lemma 5.8. Let Y be a standard Tr-closed extension of the T1-closable space
X and Z an arbitrary Tiidésed extension of X. Then there is a topological embedding
f: Y~Z such that f\X=1idx so that Z contains a standard Tud6sed extension of
X as a subspace.

Proof. Define f(x)=x for x£X. If p£Y—X, then (with the notations of
5.7) sip) is ultraopen in X, hence by 5.5 there is a unique ultraopen filter s'(p) in Z
such that s'(p)\X=s(p); since Z is Jj-closed, fls'(p)~0, so that we can select
a point from this intersection. Define f(p) to be this point.

Then f(p)EZ—X for pXY—X because s(p) is free. If p,qEZ—X, p"q,
then 5(p)yis(q), consequently s'ip)” s'(q) so that s\p) and s'(g) contain disjoint
elements, and f{p)9ifiq). Therefore f.Y-+Z is injective.

Consider f{{Y) as a (dense) subspace of Z. An ultraopen filter s in /(I") is the
trace in/(F) of a unique ultraopen filter s' in Z (5.6). Clearly s\X=s"\X and this
is an ultraopen filter in X (4.6). Either s\X is fixed and then so is o, or s|F=s(p)
for some pXY—X and then o' is the unique ultraopen filter in Z such that ©X=s{p),
i.e o'—s(p). In this case

/(P)EM(0'|AT)) = Mo.

Hence fij) is 7\-closed by 2.1 (c).

Thus /(F) is an extension of X. By 4.1 s'ip) is the neighbourhood filter of fip)
in Z whenever pXY—X, its trace in /(F) is the neighbourhood filter of fip) in /(F),
and the latter filter has for trace in X the filter sip). Hence ifwe consider on F the
inverse image topology obtained from /(F) and f we get an extension of X such
that the trace of the neighbourhood filter of p£Y—X coincides with sip). By 3.2
this extension is 7\-closed. Therefore this is, by 5.7, the topology of Fas a standard
7\-closed extension, and /: F—£(F) is a homeomorphism, /(F) is a standard Tu-
ddsed extension as well. O

Hence we obtain:

Theorem 5.9. The TL-closed extensions ofa 7\-closable space X commde with
the extensions o fits standard Tx-closed extensions. o o, f
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Proof. By 5.8 every Tj-closed extension is an extension of a standard 7j -closed
extension. Conversely an extension of a Tx-closed extension is a I",-closed extension
by 24. O

We can now show that the properties listed in 5.5 are characteristic for standard
7j-closed extensions:

Theorem 5.10. Let Z be a Tx-dosed extension of a space X such that p, gf
dZ—X, p*qg impliesthat p and g have disjoint neighbourhoods, and XE X, p£Z —X
implies that p has a neighbourhood not containing x. Then Z is a standard Ti-
désed extension of X.

Proof. By 5.9 there is a subspace Y such that IcfcZ and Y isa standard
Tx-closed extension of X. If p£.Z—Y then the trace filter in X of the neighbourhood
filter ofp, denoted by s(p), is a free open filter in X, and is contained in a free ultra-
open filter that coincides with s(q) for some q(: Y - X. This contradicts the hypothe-
sisthat s(p) and s(g) contain disjoint elements. Hence Z~Y. O

6. Tj-closable spaces

We conclude with some properties of 7~-closable spaces.
Theorem 6.1. A Tl-c/osable space is H-closed.

Proor. It suffices to show [2] that every ultraopen filter is convergent in a Ji-
closable space X.

Let sx, ..., s, be the ultraopen filters in X (5.3 (¢)). There is, for a given /, an
open set GCs,- such that G$Sj for jzi. If x6G, then x is limit point of some
Sj (5.3 (d)) which can happen for j=i only. Hence sf—~. O

Ti-closable spaces have invariance properties similar to those of 7j-closed
spaces.

Theorem 6.2. Every extension ofa Ti-closable space is 7j -closable.

Proof. By 5.3the number of ultraopen filters is finite in the given space. By
4.6and 5.6the number of ultraopen filters in an extension is the same. |

Theorem 6.3. A continuous image ofa 7j -closable space is Tx-closable.

Proor. Let f:X —Y be continuous and surjective, and r,, ...,r,, filter bases
in X such that their limit points cover X (5.3. (¢)). If €Y, y=f(x), tt-*x then
[(r)-1(.Y) so that /(rX, ...,/(r,) have a similar property in Y. O

Lemma 6.4. Jf f: X—Y is surjective and Y is a 7\-closable space then the
inverse image topology on X is T -closable.

Proor. L€t rx ..., r, be filter bases in Y whose limit points cover Y. If xEX
and r;—(x) then f~ 1y)—x. O

Theorem 65. A space is Ti-closable iff its Ta-reflection is Tx-closable. O

Acta Mathematicc Hungarica 45, 1985



352 A. CSASZAR: 7i-CLOSED SPACES

Theorem 6.6. IT X=1JXt and each subspace X{ is Tx-closable then X is
[

7\ -closable.
Proor. Select a finite number of filter bases in each 'X( whose limit points cover
Xi. O
I‘I
Theorem 6.7. If X—)} Xi and each X£is Tr-closable then X is T"-closable.

n

Proor. Choose a 7,-closed extension Y] of Xt and consider Y=X|Yt. O

Lemma 6.8. Let Y bean open subspace ofa topological space X. Every ultra-
openfiter s in Y generates an ultraopenfilter s' in X such that s'|F=s.

Proot,s' IS an open filter in X because v is open, ff GCcAris open and s 'n c ry0
for every S fs' then, in particular,

SAG =5 I\“E0

for 56s sothat GCiX£s, and G'6s'. Hence s'is ultraopen in A. The trace s'|F3S
is an ultraopen filter in F, hence s'|F=s. O

Theorem 6.9. Every open and every regularly closed subspace of a Tx-closable
space is 7, -closable. [oh

Proor. According to 6.8, if YcX is open, then the number of ultraopen filters
in F is not larger than the number of ultraopen filters in X. Hence if X is Tx-closable
then sois F, and the same holds for F by 6.2. O
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ALMOST SUBIDEMPOTENT RADICALS
AND A GENERALIZATION OF A THEOREM
OF JACOBSON

G. TZINTZIS (Thessaloniki)

The purpose of this paper is twofold: to study almost subidempotent radical
properties and from this study to give a new proof and also a generalization of the
famous theory of Jacobson [19] stating that the Jacobson radical of a Noetherian
ring is transfinitely nilpotent, moreover, as a corollary another approach to the fa-
mous and unsolved problem of Kéthe [24] is obtained.

By the term almost subidempotent radical we mean a radical property with
idempotent radical rings. Following V. A. Andrunakievic [2] a hereditary almost
subidempotent radical property is simply called subidempotent. The notion of
transfinitely nilpotent ring was first discussed by R. Baer [7] and is a generalization
of the nilpotent ring. The ring R is said to be transfinitely nilpotent if there exists
an ordinal number r such that R'=0. We recall that the power Rr is defined as
follows: If r is a nonlimit ordinal number then Rr=Rr~1R, while if r is a limit
ordinal number then Rr—1TI1 Rh

b<r
The following second symbol for powers of rings with ordinal numbers as
indices is known: If ris a nonlimit ordinal number then Rr=H while if ris

a limit ordinal number then R,= f] Rc (G. Krause and T. H. Lenegan [25]).

c<r
Throughout this paper all rings considered will be associative. The terminology
and basic results of radical theory can be found in [10], [1], [2]. Y

First we examine for some almost subidempotent radical property N, the class
T(N) of all radical properties Y with YAN and Y(R)n=N(R) VR, for some
ordinal number n depending on Y and R.

In what follows we apply the results of Section 1to trivial almost subidempotent
radical property A={{0}} and we prove that in the corresponding class [({0})
there exists the radical property 7{0which coincides with the radical property of
B. J. Gardner [13]. We continue applying, in general, to almost subidempotent
radical properties N with AN B—{0} where B is the R. Baer’s [7] radical property.
Further, we apply to almost subidempotent radical properties N with NP> B”"Q.

In the last part ofthis paper the above mentioned theorem of Jacobson is proved
with a different proof. Finally, we give an equivalent statement for the nonexistence
of simple prime nil-rings and hence another approach to the famous and unsolved
problem of K&the [24].
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1. Transfinitely nilpotent ciosure of an almost subidempotent
radical property

Let A be an almost subidempotent radical property. Evidently, if for the ring
R it holds Rn=0, for some ordinal number n, then R is an A-semisimple ring.
If we denote £={A|A2=.A, R A-semisimple} and Z —{R\R2=0} then it is
easily proved that A coincides with the upper radical property determined by the

class EUZ.
Also, let S(N) be the class of all radical properties 5 with

(1) 55 A
and
2 Is —N

where Is is the class of all idempotent 5-radical rings. It is clear that 5(A) N0
since A€5(A). Even if 5 is the upper radical property determined by the class
E then 5£5(TV) holds since on the right hand we have 5é A and on the other
7S=A. Indeed, if the idempotent and 5-radical ring R is not A-radical, then the
ring R/N(R)yx0 will be an idempotent and A-semisimple ring, that is, R/N(R)£E,
a contradiction.

Now let T(N) be the subclass of 5(A) as follows: '(A)= {[F(E5(A),
yAE T}, where n is an ordinal number depending on R such that Rn is an idempotent
ring.

Evidently, from (2) we have N(R,,)—R,, and since in general N(R)QRn
holds we have N(R)=Rn 'iRfT. Finally, from (1) it is implied

3) T(R)n= N(R) VR-

At this point we can observe that (1) and (3) imply (2). Obviously, it is T(N)"0
since ACOA). Also, the class T(N) contains all the hereditary radical properties
of 5(A). With the following example we will show that there exist almost subidem-
potent radical properties A for which the corresponding classes T(N) contain non-
hereditary radicals also.

Exampte 1.1. Let A be the upper radical property determined by the class
EUZ where E?-Q and E={A\A simplering, €A, A'EZ(p) \jp}. It is obvious
that A is an almost subidempotent radical. Now, let 5 be the upper radical property
determined by the class EU {2Z). We have 5&A since if R is an A-radical ring
then R cannot be mapped homomorphically on a ring of the class E and, as idem-
potent, cannot be mapped homomorphically on a nonzero ideal of the ring 2Z
(Y. L. Lee [26]). Now we suppose that there exists an 5-radical ring R for which
the idempotent ideal Rr for some ordinal number n, is not 5-radical. Then Rn,
as an idempotent ring, can be mapped homomorphically on a simple ling with
identity of the class E, that is, there exists an ideal 1 of RKsuch that RJI"A"E.
The ideal lis also an ideal of R. Indeed, if 1* is the ideal of R generated by 1then if
/c1* is supposed then I*=Rn must hold and consequently by the Andruna-
kievic lemma [1] R"—*3QIczRK a contradiction. The ring R/J contains the
ideal RJI=A which must be a direct summand of R/I (N. Divinsky [10] p. 145).
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Thus, if we suppose the ring isomorphism R/I=RJI®K/I then R/K UJ/l

siRJIsiAME, a contradiction, since we have supposed R to be an 5-radical ring.
Consequently SdT(N). However, the radical property S is not hereditary since
the ring Z of rational integers is 5-radical and contains the 5-semisimple ideals
2meZ, TWwl

It is now natural to ask: For which almost subidempotent radical properties
N do the corresponding classes T(N) contain a radical which contains every other
radical of this class?

Lemma 12. Iffor the almost subidempotent radical property N the corres-
ponding class T(N) contains a maximal radical property T then T coincides with
the upper radical property determined by the class E= {A/T(A)\A2=A, A N-semi-
simple}u {RjT(R)\R S-radical, N{R)aRn 'in) where S is the upper radical pro-
perty determined by the class E= {A/T(A)\A2—A, A N-semisimple}.

Proof. Let 5be the upper radical property determined by the class E. Evidently,
X &Il holds since each admissible subring of every ring of the class E is a T-semi-
simple ring (Y. L. Lee [26]). Now, if we suppose R to be an 5-radical ring with
N(R)czR,, \bK then, since obviously 55=5 holds, R will be an 5-radical ring which
can be mapped homomorphically on the nonzero ring R/T(R)EE, a contra-
diction. Indeed, we have R/T(R)&0 because we have supposed N(R)czRn, Vin
Consequently, SET(N) and since I" is a maximal radical property of T(N), T=S
must hold.

As usual, let L denote the lower radical operator.

Lemma 1.3. Let N be an almost subidempotent radical property and RO a ring
suchthat L(N{j {RO})(TA(*V)=0 holds, where K(N)={R\Rnl)N(R)yit}. If R is
an N-semisimple and L(NU {R()-radica/ ring then there exists an ordinal number n.
depending on R, such that Rn=0 holds.

Proof, indeed, if Rn*0, where Rn is an idempotent ring for some ordinal
number T depending on R, then we would have N(R)=0c:Rx=sREK(N)=>RE
€L(AU {/27ohMNA) = 0, a contradiction.

Proposition 14. If N is an almost subidempotent radical property then the
following statements are equivalent:

(@) In the class T(N) there exists a radical property TN which contains every
other radical property o f this class.

(b) There exists a class of rings E= {A/B\A2=A, A N-semisimple, O"A/B
N-semisimple}U {R/C\R S-radical, REK(N), OyR/C N-semisimple}, where S is
the upper radical property determined by E={A/B\A2=A, A N-semisimple, OyA/B
N-semisimple) such that L(N\J {?})NA'(AN?£0 holdsfor every ideal RO of a ring
of the class E with (/?,)*=0.

(c) L3ivU {2V /Mn/t (7V)= 0 holds, where {R\iLJ} is the class of all rings
with (R;)r =0 and L (AU {R))MK(N) =0.

Proof. (a)=>(b). By Lemma 1.2, TN must coincide with the upper radical
property determined by theclass E= {AITN(A)\AZ—A A TV-semisimple) LW{R/TN(R)\R
5-radical, N(R)czR”yn} where 5 is the upper radical property determined
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by the class E= {A/TN(A)\AS—A, A A-semisimple}. Now if TOsO is an ideal of
a ring of the class E such that (R0,,=0, for some ordinal number n depending on
ROand LOf)K(N) =Q where /,,= L(AU{2,}), then evidently Lt (R)AR VAEA(A)
must hold. Consequently, if we denote 5,, the upper radical property determined by
the class EO= {A/LO(A)\A2—A, A A-semisimple} U {R/LO(R)\REK(N), R 5,-radical}
where SOis the upper radical property determined by the class EO—{AILO(A)\A*
=A, A A-semisimple], then SOET(N) must hold. Indeed, on the one hand we have
5,,"A, since each admissible subring of a ring of the class E, is an LO-semisimple
ring and consequently A-semisimple, on the other hand if R is an 50radical ring
and REK(N) then R will also be an 5,,-radical ring and it can be mapped homo-
morphically on the nonzero ring R/LO(R)*.£0, a contradiction. However, 5, /V
holds since the ring ROis an /,-radical ring and consequently an 5,,-radical ring,
and also is a TV-semisimple, a result which contradicts the fact that TN contains
every other radical property of the class T(N).

(b) =s(c). If we suppose that L(AU {A[/'€/})NN'(A) 0 holds, where {A,|/£/}
is the class of all rings with (AnH=0 and /(AU {/2DM11(40=0 then Oy"RfK(N)
must exist, which is an /.,-radical, where /.,=--/(AU{A;jA/}). In this case it
follows that an admissible subring ROAOQ of a ring of the class E must exist such
that RO is an /.,,-radical ring. Indeed, if R is not an 5-radical ring then it can be
mapped homomorphicaliy onto an admissible subring RO/A) of a ring of the class
E, which must be an /,,-radical ring, while if R is an 5-radical ring then an ideal C
of R must exist such that Oy"R/C=RnfE and /.,-radical ring. Consequently,
a ring of the class E must have an admissible subring ROy0 of first degree over
AU {Rili*l}. Evidently, ROmust be an homomorphic image of a ring of the class
{A;|rE}, suppose Ria since R'nis TV-semisimple. By assumption on the class {Al/€/}
we have / (AU {, D fIA(A)=0.

However, since R'0is anonzero /(AU {P-J)-radica! ring and also an admissible
subring of some ring MaE we have /(AU {Ad)(A/)=TWO0 (N. Divinsky and
A. Sulinski [11]) and by Lemma 1.3 Xn1—0 must hold and thus by (b) /(AU {A }HN
C)K(N)z=L(NU {3f})n A(TV)ti0 a contradiction.

(©) =>(@). Evidently, in this case LO(R)y"R i RfK(N) must hold, where /, =
= /(AU {dAir€/}). Consequently, if we construct the class E= {AILO(A)\A2=A, A
TV-semisimple} U {/?//.,,(A)|A 5-radical, REK(N)} where S is the upper radical
property determined by the class E= {A/LO(A)\A2=A, A TV-semisimple} then for
every ideal ROof a ring of the class E, with (R(K=0, /(AU {2, ) NAT(TT)"0 must
hold. Indeed, if /(AU {ADNAI(TVM= 0 holds then RO must be an /.,,-radical ring,
a contradiction. Also, for the upper radical property' 5 determined by the class
E, 5€ T(N) holds, since evidently we have TVS5 and if R is an 5-radical ring and
5|multaneously R£K(N) then R can be mapped onto the nonzero ring ////,,(A)6E.
a contradiction.

Finally, we will show that 5 contains every other radical property of the class
/(A). In fact, if there exists a radical YET(N) such that Y5 then a ring M€E
must exist with Y(M)= RnM). Consequently, an ordinal number >xmust exist such
that (RU,,=(Y(R,,))ZN(RO=0 and thus L(TVU{ADMAf(A)SO must hold.
Now, if Risan /(AU {A,})-radical and RyK(N), then since As Y and Ruis a
Y-radical ring, R will be a Y-radical ring which contradicts the fact that YN K(N) —0.

Proposition 1.5. Iffor the annost subidempotent radical property N one of
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the statements of Proposition 1.4 holds then the radical property TN coincides with
the upper radical property determined by a class E and with the lower radical pro-
perty determined by the class N U{}?|/€Y} as it is defined in Proposition 1.4.

Proof. The first part has already been established. Thus, we need only show
that Tn=L(NU {Rfidl}). Evidently, since L(N(J {RINi£I})nK(N) =9 it is implied
that L(NU {RiNi£I})*TN. On the other hand we have RK—N(R), for some ordinal
number n depending on R, \'RETN. Consequently, for the ring R/N(R) the
conditions (R/N(R)),,=0 and R/N(R)ETn hold, from which L(NU {R/N(R)})f)
PiIK(N)QTnP\K(N)=Q follows. Therefore, R/N(R)*REL(N(J {5,//e/}) must
hold for some /£/, which implies that REL(NU {Rfic/}), JRETN, that is 7"=
SL(NU {RMQO}).

2. Almost subidempotent radical properties N with N (TB = {0}

Let N be the trivial almost subidempotent radical property i.e. N(R)=0, R.
If RnAO is aring with (R,)K=0, for some ordinal number n depending on RO,
and L(NiJ{50)M/f(A0=T{?.DMNA({0)-0 then Rfta Ru must obviously hold.
Likewise, if we have YO then 5".c \jn>2 must hold. In what follows we
shall show that the additive group (RJRf)+ \Jn>2 is torsion and divisible. Indeed,
ifat first RJRB, n>2 were a nondivisiblep-ring then the radical property /-({50p
would contain all the 5-radical p-rings (B. J. Gardner [15], Lemma 3.1) which
contradicts the fact that the class of all 5-radical p-rings contains nonzero
idempotent rings, that is, rings from the class A'({0}), as the following example
shows:

Example 2.1 (G. Koéthe [24]). K is a ring generated by a set (ny, X2, X3, ...
..oy X,y ...} having the following properties:

PX,, = 0, Vn, XiXj=XjXi, V({,j), xf=0 xi=xu..,x*+1=X,, ...

Consequently, if 505JJ is a torsion ring then it must be divisible since otherwise as
the ring-direct sum of p-components it could be mapped onto a nondivisible nil-
potent p-ring, a contradiction.

Finally, if Ro/R§ is not a torsion-ring then T(RfRID*"RfR" and

—af_
T (Ro/RG)

is a nilpotent torsion-free and L({jR0})-radical ring. Consequently, the radical class
L({R0O}) will contain the nontorsion ring R/R-:-'-0. Indeed, since Rk*Rk+1=0
for some positive integer k, if R/R2 were a torsion ring, then for any elements
XT, X2, ..., xkdR, denoting the orders of their cosets with respect to R~by nk, n2, ...,
..., nk, respectively, we would have (wn2... nk(x1x2mxR*R 2k=0, whence,
R would be a torsion ring, a contradiction. Thus E({5,,}) contains the nonzero
torsion-free zeroring

RIR-
T(RIR-)
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which must be divisible, since otherwise it would have the zeroring on A/pA”Q,
for some prime p among its homomorphic images, a contradiction. Hence the zeror-
ing on the group of rational numbers Q belongs to Z.({fi0}), so Z.({i?0}) contains
all rings in B which have divisible torsion-free additive groups (B. J. Gardner [14],
Theorem), a contradiction since some of them are idempotents, as the following
example shows:

Exampte 2.2 (N. Divinsky [10], Example 3, p. 19). Let A be the Zassenhaus
algebra over Q with basis set {xo0<a<lI}, where a are rational numbers, and
the multiplication of the basic elements is defined as follows:

xaxb=xath if a+b<I| and xaxb=0 if a+b" 1

Now, since fiOfi;j, Vw>2, is a torsion and divisible ring, it must be a zeroring
(L. Fuchs [12]. Theorem 120.3, p. 288), that is, /?g=5fig=»fig=fi;;=>fig=0. Thus,
we can formulate the following:

Lemma 2.3. fio”O is a ring with (fiQk=0, for some ordinal number n de-
pending on fi0, and L ({fiG) NA({0)=0, ifandonly if fiO is a zeroring with
RZ=®(©Z(p*“), np" 0.
p pp
Proof. The converse is obvious.
Proposition 2.4. In the corresponding class 7°({0}) o fthe almost subidempotent

radical property 7V={{(}}. there exists the radical property THi) and it coincides
with Gardner's radical

fIf = {/i|lr-02(02Z H ), np "0y,
Proof. Indeed, P
L ({filfi- - 0 (e z(p-)).N,s8=0} = L(Dp)=DP
P PP
(B. J. Gardner, [13]), and since TPTA({O})= 0 by Propositions 1.4and 1.5 T{O}=0D r

is implied.

Now, let, in general, N be an almost subidempotent radical property with
NP\B= {0}. In the same way as above, it is proved that if fi0*"0 is a ring with
(fig~=0 for some ordinal number n depending on fi0, and L (N U{PCH)IN A'(7V)=0,
then fiOis a zeroiing with fig'=® (® Z(p*“)), 0.

The converse is not true m é)enepal. Indeed, as we will show later, there exists
an N with L(7VU{Z(p~)})nfi(iV)?i0 for some or for all p. Also, for each fig
<EL(VU{ZO~)|p€P*}), where P*={p[L(MJ{Z(/;*)}))NK(N)=0}, it is easy to
prove that fi2is an idempotent ideal, (fi/fid+* ® (® Z(p*)), np"0, and that

N(R)=R2 if RSK(N) while A (fi)cfi2 if Ré)K(N) There are many almost
subidempotent radical properties jV~{0} with 7Vf]fi={0]. Instances of such are
the radical-semisimple classes K,,, uS2 (R. Wiegandt [40], E. P. Armendariz [6],
B. J. Gardner and P. N. Stewart [16], P. N. Stewart [35], F. Szész [38]) the von Neu-
mann regular class V (J. von Neumann [30], B. Brown and N. H. McCoy [9]), the
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strongly regular class SV (R. F. Arens and L. Kaplansky [5]), the weakly regular
class W (B. Brown and N. H. McCoy [8]), the complementary radicals of super-
nilpotent radical properties. B', N\ J\ J,,, G', Ng, ST, D', F' (V. A. Andrunakievic
[2]), the radical /1 of de la Rosa [33], and the two radicals R and S of F. A. Szész
[36], [37]

The relationship among them is as follows:

Proposition 2.5. If N is a subidempotent radical property with N=kW, then
in its corresponding class T(N), the radical

TN={R/N{R))+- 0 (0 Z(p~)), ~ 0 Vp}

exists.
Proof. Suppose that 0?+REL(NU {Z(p°°)|VpHnK{N)*V>. Without loss of
generality we can assume that R is an A-semisirnple ring. Then DP(R) but

DP(R)c-R since 0jiRn"D,,(R). Consequently, since R/DRR)"0, DP(R)cz
czU”R must exist such that N(R/DP(R))= UIDR(R)ti Q. Now if DP(R)* is the
set of all two-sided annihilators of DP(R) in U, it is well known that (DP(R)*fr\
flZ)p(R)—O (V. A. Andrunakievic [4], Lemma 12), since we have supposed that
N/AIW. Thus, {Dp{R)*)2 is isomorphic to an ideal of U/DP(R) and consequently
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an TV-radical ring. Simultaneously, (DP(R)*)Zas an ideal of the TV-semisimple ring
R. must be TV-semisimple and this leads to (EP(A)*)2=0, that is, DP(R)*=£)p(R).
On the other hand, we have U-+-DPR)+® S since DP(R)+ is a divisible
group. So, if T(S) +0, where T(S) is the torsion part of S, then T(S)DPR)=
=DPRR)T(S)=0=>T(S)QDP(R)*=>DR(R)czDP(K)* holds, a contradiction. Finally,
if T(S)=0 then U/DRR) is torsion-free and, as IP-radical, is a hereditarily
idempotent ring. Thus, it is easy to show that S=(U/DP(R))+ is divisible,
whence DP(R)S=SDPRR)=0"S"D RAR)*=>DP(R)cD PR)* holds, a contra-
diction. Consequently, XMW {Z(p“)|Vp}nA(/V)=0, whence by Propositions
1.4 and 15 we have
TN={RY{R/N(R))+a © (0 Z(p-)), npLLUQ Vp}
p %
Corollary 2.6. For the almost subidempotent radical properties Kn, «s2,
SV, V, W in the corresponding classes T(K,,), n2s2, T(SV), T(V), T(W) there
exist the following radical properties:
Tk= {R\(R/KnR)+s 0 (0 Z(p~)), np=£0, Vp}, n " 2
rsv = {N(1/5T (R))+aso (0 Z(p*)), n,S O, Vp}
P "p
Ty = {n@mE)+- 0 (© Z(p~)), n,is0, Vp},
p"p

Tw = {R\(RIW(R))+as © (0 Z(p-)), npa Q V/;},
respectively. Y

Coroltary 2.7. If Y’tYiIW holds for a complementary radical Y' of a super-
nilpotent radical property Y, then in the corresponding class T(Y) there exists the
radical property

Ty = {R{R/Y'(R))+as 0 ('@'SZ(p—)), np”™ 0, Vp}
p

For the radical properties F'*D '"tF'sG"' we do not know if they are contai-
ned in W For the other radical properties J'AN 'AB'"*A”~R~*S and TV Propo-
sition 2.5 does not work, since we have W<J' (N. Jacobson [20], Example, p. 237)
and NgpW (J. C. Robson [32]). Flowever, for the rad;cal R, with the following
example due to C. Hopkins [18], and in which we have changed the coefficients of
y, it is shewn that 7"(R)={7?}.

Example 2.8. Let A be the set of all ax+by, where a€Qp= |— |lp,/m)=1]
and 6€Z(p“). The addition is defined in the usual way, but multiplication is as
follows: (ax+by)(cx +dy)=acx + (c b)’y, where m\\ﬁ b§=nb if c=Ebe.

It is easy to show that the coefficient —*b is uniquely determined. So, the ring

A contains nonzero right annihilators, since (ax+by)y=0, and a right unity, since
(ax+ by)x=ax+by. Also, Z(p°°)*={by\bfZ,(p%}*A and Ajls" Qp hold.
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Evidently, AEL(5U {Z(p*“)}), since Qpis an 5-radical ring, and simultaneously
AfzK(R). Indeed, A is not an 5-radical ring, since it has nonzero right annihilators,
but is an idempotent ring. Consequently, we have AfL(R U{Z(>*)})MN5(5)"0,
VIL

3. Almost subidempotent radical properties N with N M5 » {0}

At first, it is easy to prove the following:

Proposition 3.1. If Y is a radical property then the class 1Y of all idempotent
Y-radical rings is an almost subidempotent radical property.

Proof. The class | of all idempotent rings is an almost subidempotent radical
class and, evidently, the class IC\Y=ly is the same.

Corollary 3.2. For every weakly supernilpotent radical property Y, /M12M
70} holds.

Proof. Indeed, every idempotent 5-radical ring is an 1Y-radical ring. The
rings in Examples 2.1 and 2.2 are idempotent 5-radicals.

Corollary 3.3. The almost subidempotent radical 1Y, where Y is a weakly
supernilpotent radical property, is not subidempotent.

Proof. Evidently, every idempotent 5-radical ring contains nonzero nilpotent
ideals.

Consequently, from the known weakly supernilpotent radical properties
B, N, L, 4 (G. Tzintzis [39]), L2(L. C. A. van Leeuwen and G. A. P. Heyman [28]),
Bv, P, Ne, J, Jv, Nv, {NgI& JB, G, IF, D, F, there arise the non subidempotent
almost subidempotent radical properties 1B, IN, IL, Iv, IL, IBp IP, IN, 1j, 1Jp
Is , ftygv, 1jB, IG, la-, ID, IF, respectively, some of which may coincide. The rela-
tionship among them is as follows:
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Moreover, as for the difference among them we can say the following: /*<//
([10], Example 12), hv<I1JB ([27], Corollary 9), IJb<Ilg ([10], Example 11),

<Ir ([10], Example 8), Jr<lo (Matrix ring nXn, n=2, over a division ring),
/D</F (a nonfield division ring), IN¢ 13 ([10], Example 8), IN< INy (matrix
ring nXn, n”s2 over a division ring), </ (matrix ring «Xu, nS2 over
a division ring), /() -</D([10], Example 8), IP<IG ([10], Example 11), IjpIP
([10], Example 12).

Proposition 3.4. For the almost subidempotent radical property 1Yv, where
Y is a supernilpotent radical property, in the corresponding class T(ly) there exists
the radical T,r and it coincides with Y<

Proof. Evidently, T(1Y) holds, since Yv is a hereditary radical property.
Now, if there exists a radical class 3 such that 3£T(IYv) and then there
must exist a ring 0XR£3 and R”Y” which may be subdirectly irreducible with
F-semisimple heart H. However, R,,Z)HXO0 =1Y (R) holds for every ordinal number
n, which contradicts that Rt 3.

Corollary 3.5. For the almost subidempotent radical properties I1Bv, IN ,/, ,
I(spv, LiB, la, Isr, Id, h, in the corresponding classes T(IY?, where Y=B<¥€ N,r f,Ao.
(Ng& JB, G, &, D, F, respectively, there exist the radicals T,Y and they coincide
with Y.

Observation 3.6. For the other almost subidempotent radical properties,
except Ip, if some of their classes T(IY), Y=B, L, N. J, L.,. ¥, Ng, have the radical
property TjYthen it is evident that YATIr must hold since Y is hereditary. Howe-
ver, for the nonhereditary Jenkin’s radical property P, if in the class T(IP) there
exists the radical Tlpthen Tip< P holds.

Indeed, we have TlpsiP. since otherwise T,p must contain a prime simple
ring, which contradicts T1pMK(P)=0. On the other hand, there exists a P-radical
ring R which is subdirectly irreducible with idempotent heart H such that RW=H,
where mis the first limit ordinal number (L. C. A van Leeuwen and G. A. P. Heyman

[27] p. 445).

4. On a theorem of N. Jacobson and a problem of G. Kéthe

In 1945, N. Jacobson ([19], Theorem 10, p. 306) proved the famous theorem
which we have mentioned at the beginning of this paper. The proofis based on the
quasi-regularity notion and on the finitely generated left (right) ideals, as modules,
of a Noetherian ring. The first natural question is whether there exists an ordinal
number T such that J(R)T=0, for every Noetherian ring R. There exist examples
of commutative local Noetherian domains where such T cannot be finite ([10], Ex-
ample 10). However, it was known that for every commutative Noetherian ring R,
J(R)a—0 ([41], p. 215) holds. Thus, the following assertion arises, which is usually
referred to as Jacobson’s conjecture: “if R is a Noetherian ring then J(R)°3=0".
But, in 1965 I. N. Herstein [17] with an example and A. V. Jategaonkar [21] later
with another showed that the conjecture is not true. Later A. V. Jategaonkar [22]
showed that for every ordinal number x there exists a local p.l.i-domain R with
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J(R)z#0. With the following, changing /(4 with J(R)a, we will show the Jacob-
son’s theorem with a different proof.

Proposition 4.1. If R is a Noetherian ring then J(R)a—0, for some ordinal
number a depending on R.

Proof. Suppose R is a Noetherian ring. Then /j(/?)=0 holds. Indeed, if
[,(/?)70 then for every ascending chain AlcA 2c:...czAkc ...c/j(R) of right
(left) ideals of Ij(R) if A*QA2"mmm"AkQ...QIj(R) is the corresponding ascend-
ing chain of right (left) ideals of R, where Ak=\AKWR=AkKR+AKk; \/k=1, 2, ...,
there exists an integer K such that Ak=Ak+1=...QIj(R). If we have Ak=1j(R)
then 1j(R)2=(Ak)2QAkc:1j(R) which means that fj(R) is not an idempotent
ideal, a contradiction. Thus, we must have Akalj(R). If now, Ak is not a maximal
right ideal of 1j(R) then there exist distinguished right ideals of Ij(R) such that
AkczBl1c:B2cz...c:Bnc:... alj(R) and if 4fSAfg...gj;s...g/J(A) is the
corresponding ascending chain of right ideals of R then there exists an integer n
such that B*—B*+l=...—czIj(R). If again B* is not a maximal right ideal of
Ij(R) then there exists a new ascending chain B*cCl1lcC 2c...cC ,,c...czlj(R)
of right ideals of Ij(R) and so on. Consequently, after a finite number of such steps,
there must exist a right ideal M of Jj(R) such that M*c:1j(R) be a maximal right
ideal. But this result contradicts that Ij(R) is a /-radical ring. Now, since Jd T(lj),
there exists an ordinal number n depending on R, such that J(R),,=1j(R)=0.

The proof of Proposition 4.1 leads to the following generalization.

Proposition 4.2, If the ring R has the A. C. C. on two-sided ideals, then for
every almost subidempotent radical property Y~P, where P is Jenkin's radical
property, andfor every Jr T(Y) there exists an ordinal number n depending both
on R and Y such that Y(R)n=0.

Proof. Firstly, we have K(/1)=0. Indeed, if we use the proof of Proposition
4.1, changing only right ideals with two-sided ideals, then it is implied that there
exists a maximal ideal M* of Y(R), a contradiction, since we have supposed Y"P.
Now, if YET(Y) then evidently there exists an ordinal number n depending both
on Rand Y suchthat Y (R\=Y{R)=0.

Corollary 4.3. If the ring R has the A. C. C. on two-sided ideals then there
exists an ordinal number n depending on R such that BgR)n=0.

Proof. Indeed, we have IB,=P und TBv=Bv (Corollary 3.5).

Observation 4.4. In the class of all rings with A. C. C. on two-sided ideals,
Corollary 4.3 does not work if we replace the V. A. Andrunakievid’s [3] antisimple
radical property Bv with the Jacobson’s [19] radical property J. Indeed, for the
Sasiada’s [34] prime simple ring A we have An=AT1+0 for every ordinal number n.

Finally, the following corollary approaches the famous and unsolved problem
of Kdthe, for the nonexistence of a simple prime nil-ring.

Corollary 4.5. In the class of all rings R with A. C. C. on two-sided ideals
thefollowing statements are equivalent:
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(1) N(R),,=0, for some ordinal number n depending on R.
(2) N(A)=0, for everyprime simple ring A.

Proof. (1)=>(2) is obvious. Conversely, if (2) holds then we have In"Ns P,

whence, since NET(In), by Proposition 4.2 (1) follows.
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ENTIRE FUNCTIONS BOUNDED OUTSIDE
A FINITE AREA

A. EDRE1 (Syracuse)* and P. ERDOS (Budapest), member of the Academy

Dedicated To G. Pélya and G. Szeg6 with respect and affection

0. Introduction

Letf(z) be an entire function. Consider the (open) set of the z-plane defined by

@ {z: \f{z)\ > B) 0B> 0),
and let
2 /41/001 > B)

denote its area (that is its 2-dimensional Lebesgue measure).
Question. When is it possible that

(3) n{\f{2)\ +
for some suitable B (0-=i< + °°)?
Our answer is contained in
Theorem 1. Let f(z) be entire, transcendental and such that

€] Ilmigg Ioglo?olé)?M() <2 (nl(r) = Imla:é [(2)]).
Consider, in the z-plane, the set ofpoints
(5) Er={z R<p 2R logl(z)]>} (M} (R>0)
where
* 25
(6) n*) =7~f log” (Rci0)id0

is the characteristic o f Nevanlinna.
Then, the open set ER has a 2-dimensional Lebesgue measure p(ER) which

satisfies the condition
@ P(ER) &> 0, R > R0(0)),
provided S>0 has been chosen small enough.
7/(4) is replaced by
|liminfio8ioeioeMW
(®) Feo log I

* The research of the first author was supported in part by a grant from the National Science
Foundation.
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368 A. EDREI AND P. ERDOS

we may only assert that (7) holds if R is restricted to the values {Rj}j'=l of some
suitable, increasing, unbounded sequence.

As an immediate consequence of Theorem 1, we find.

Corollary 1.1. Any entire function f(z) satisfying the condition (8) cannot
satisfy (3) for anyfixed positive B.

To verify that Theorem 1is sharp, we establish the

Properties of a special function. The entirefunction CD(F), introduced below,

is such that
lim logloglogM(®) = 2

© 1091 RIM O = 2 M) = may o).
It satisfies the condition
(10) r(l@(r)! >£) < +o0,
for some suitablefinite B.

Our function ®(r) shows that the assertions of Theorem 1 no longer hold if,

in (4) and (8), the symbols <2 are replaced by =2.
The function <R is initially introduced as an integral:

(11) Mz) =JL y«P(«P(gJ°80,))J)C (Rez ef

where the contour of integration I is the boundary of the open set

(12 Q= jF = X+1iy: X »e2 x (Ioa()_2< y < mo&)—z .
The orientation on I" is the one that always leaves Q on the right-hand side.

By modifying I, in (11), we verify that <Pz) may be continued throughout the
complex plane and is therefore an entire function.

The properties of ®(r), which may have some independent interest, are sum-
marized in our

Theorem 2. The entire function ®(r) is realfor real values of z and has the
following properties.

I. There exists some constant Bt such that

13) <@_A}ZS (z0h0)
remains boundedfor
(14) z$S = {z=x+iy: x =0, —<>>-=: 1}

Il. The expression

z
)  (1og [2))2
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remains boundedfor
(16) |z| >me, zeS, z<iQ.
IIl. The expression
17 {<E(z)-exp (exp ((zlog 2)2} ~ ~ g
remains boundedfor zf Q.

Our construction of <P(z), and our proof of Theorem 2, are straightforward
adaptations of a similar construction and a similar proof given by Poélya and Szeg6
[3; pp. 115—116, ex. 158, 159, 160].

It follows from Theorem 2 that

log log M (r)

(18) im i log - 1

which implies (9), and is clearly more precise. From assertions | and Il of Theorem 2
we deduce the existence of a bound B (0<5< + °°) such that \o (r)\»B (z(J Q).
As to the area of Q, our definition (12) implies that it is equal to

da K

(19) <r(logcn2 -2

We have thus established the second property (stated above as (10)) of our special
function <J>(2).

1. Proof of Theorem |

We take for granted the following wellknown results of Nevanlinna’s theory [2].

I. The characteristic T(r), introduced in (6), is a continuous, increasing function
of r>0 and

(LI) + (r - *+ coy,

provided f(z) does not reduce to a polynomial.
Il. The functions T(r) and log M(r) are connected by the double inequality
[2; p. 24]

(1.2) T(r) ~ logM(r) s T, (0<r<).

In particular

(1.3) ylo8 1/(y)er(n).

Let C/(r)=1 be a continuous, nondecreasing unbounded function of r>0.
A well-known fundamental result of E. Borel implies the following: given e>0,
it is possible to find R0= RO(e) such that if
1.4) RO-cR~r~2R, rt~"R),
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370 A. EDREL AND P. ERDOS

then

(1.5) U\r + eu(r).

{log u (N} *£

The exceptional set s1(R) is a measurable subset of the interval [i?, 2R] and
its Lebesgue linear measure / (<? (Rj) is such that

(1.6) R 0 (R “m+ )

The consequences of Borel’s lemma stated in (1.4), (1.5) and (1.6) are found in
a paper of Edrei and Fuchs [1; p. 341].

In the following proof we apply (1.5) with U(r) replaced by T(r) and always
take R large enough to imply

1.7 A7) < logi/(A)>I-
Hence, taking

(logro-)}~”
we deduce from (1.2), (1.5) and (1.7)
(1.8) log M (r) < 3e r(r){log "' (r)}1+£,
provided
(1.9) rEDR= {rr R < r < 2R, r~sS~R)} (R >R0.

In view of (1.7), the one-dimensional set DR has Lebesgue measure

(1.10) A0 ,)> 1.
Introduce the set of values of 0 defined by
(1.11) N(r) - {0: log\f(reie)\ >\T(R), 0 < 0 < 29},

for every r>0, A(r) is an open subset of the interval (0, 2n). Denote by /.(A(r))
the one-dimensional Lebesgue measure of A(r). The definition of n(ER), as a two-
dimensional Lebesgue measure, and Fubini’s theorem yield

2R 2R

(1.12) i(Er) = f | rdrdo = J rdr JdOo= J rA(A(r))dr,
R A(r) R

where the double integral in (1.12) is extended to all points z —rew£ER.
By (1.9) and (1.12)

(1.13) 0(E*)S fri(A(r))dr.
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To complete the proof we note that the definition of T(r) (in (6)) and (1.11)
imply

i
T(r) =i JlogM (r)dO
+ 1 -
0 27 1 2TWM

Hence, in view of (1.8), (1.9) and the increasing character of T(r), we find
J T(r)y<~ T(r) (logF(r))1+‘NJ1(I)) (reDR, r > 10,

A(/1(f?)) > e_1(logl(r))_1 c (reDR, r > 10,
which used in (1.13) yields
fi(ER) ~ ¢c“1 / r(logr~)}-1“*dr ~ e-1/){log r(2A)}-1"eADH),
Ar
and finally by (1.10)

(1.14) n(EK) > \e-41*{logT(2R)}-i-* (R > RO(e)).

Up to this point we have not selected e>0, nor have we used (4) or the weaker
assumption (8).

Assume for instance that (8) holds. Then, if is small enough,
(1.15) log T(r) ™~ log log M (r) < r2™-"),
as r—+ °° by values of a suitable increasing, unbounded sequence which we may
write as {2Rj}y=1. Take, in (1.14), rj=e, R =Rj and note that since (1.15) now
implies

(log T(2Rj))14+c- (2 R jf~  (j > ),

we obtain
(1-16) fi(ER) > (e-V8R~ (R = Rj, j > ).
This proves that, under the assumption (8), (7) holds with R=Rj, y>/0.

The validity of (7) under the assumption (4) is obvious because then (1.16)

holds for all sufficiently large values of R and not only for R=Rj. The proof of
the Theorem is now complete.

2. Contours of integration

Let a be a positive variable and y a positive parameter which is restricted by
the conditions

Assume that y is fixed and consider, in the complex plane, the analytic arc
described by

(2.2) Q<r; y) = (T+h(<r; y), tlx;y) = 2afi757U(ry (e a<+°°).
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We denote by Lf or,y) the arc described by £(a;y) as a~a< + °°, by
L_(oc;y) the symmetrical arc described by a —it and by V(or,y) the vertical
segment

(2.3) V(a; y) = [z = X+ iy:x =a, —r(a; y) =J = 1(oc; y)}-

Denoting, as usual, opposite arcs by L and —L, we consider systematically
contours of integration

(24) C(a; y)=-L_(a; y)+ L(a; y)+L+(@; y) Se, ~ y=s

All the points z$ C(a; y) fall in two disjoint open regions. One of them:
(2.5) Acr,y)= {z = X+iy, XXX, -T(x;y)<Yy< 7(rYy)}

has a finite area. (This fact is an obvious consequence of (19)).
The other one, which contains the whole negative axis, will be denoted by

J(cc; y).
3. The function <P(z) is entire

Consider in the half-plane Re zS 2 the analytic function
(3.1) F(z) = exp(e(@oB)?) (loge = 1),

where the branch of log z is determined by its value at c.
We shall first verify that for any y€[3/4, 5/4]

4-00

(3-2) tOFOIWY /R | gE da< +
an a

This follows at once from

(3.3) da 1 (ff “m+ '», y fixed)
and from the elementary estimates contained in
Lemma 3.1. If (e2;y)3/44yS5/4) then
(3.4) F(Q= exp "e(Tos™):e"r"! 1+ (ReC=<9S € co= co(aYy)),

where, in the error term,
0 <A =absolute const., \co(a, y)l =71.

Moreover, if aSao0>e2 and if a0 is large enough, then

my . 3
(35) \F @ 2a (log a)2!| S &P lam a, 4 4)
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Proof. An elementary evaluation shows that (2.1) and (2.2) imply

(3.6) (C1og C)3= (ff log <2+ iny + g {co—colxy), [co|SI).

In (3.6), and throughout the paper, we denote by co a complex quantity, which
may depend on all the parameters of the problem, but is always of modulus s i.
The symbol co, as well as A (our symbol for positive absolute constants), may assume
different values at each occurrence.

We note that, with this convention,

3.7) eu= 1l+coue,ul
Ic is obvious that (3.6) and (3.7) yield (3.4). Observing that
o . « . A (3 5 )
Re el l1+ _I_é_dé_:]][lcos( r)+ioga < 21 It -y-4°a=4

we deduce (3.5) from (3.4).

This completes the proof of Lemma 3.1.

Now the integrals in (3.2) are clearly convergent by (3.3) and (3.4). Noticing
that the contour r, which appears in the definition (11) of ®(r). coincides with
C(e2; 1) defined in (2.4), we may rewrite

(3.8) b (*)=~1 f (Rez<4

This shows that </>(z) is a function holomorphic in the half-plane
3.9) Re z < e2

The fact that C(e2; 1) has the real axis for axis of symmetry, and that F(z) is
real for real z, shows that @ (r) is real foi real z.
By Cauchy’s theorem, under the restriction (3.9), we may replace the represen-
tation (3.8) by
1

(3.10) o (r) = "FQRG @ e
2ni cji) Z~z

and let a—+ °°. This step is certainly justified because F(z) is holomorphic throu-
ghout Rez&2. The form (3.10) shows that our original function, given by (3.8),
may be continued throughout Rez<a. Hence &(r) is in fact an entire function.

4. Proof of assertions | and Il of Theorem 2

If zEd(e2; 1)» Cauchy’s theorem and (3.5) show that we may use the represen-
tation

(4.1) <P(z)=d~r f ~r~dz,

2nl C(e2;3/4) £ 2

instead of (3.8).
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Using in (4.1) the identity

1 |
42 Cz ~ oy @70
and writing
<43) B< = ~ w /Pla:- B*= ~ 2 ct=c('>t)-
we find

QF(0
(4.4) o o |
QN T e+ F W (Z€J(e2; 1)

To complete the proof of assertions | and Il of Theorem 2, there only remains
to estimate the integral in (4.4). It is clear that its modulus cannot exceed

(4.5) / icm oK i,

where (\(z) denotes the shortest distance between z and the contour C,.
If z$ s, an inspection of (12) and (14) shows that

(4.6) &(z)>(9/10),
and hence (4.4) yields

Assertion | of Theorem 2 is now obvious. To obtain assertion Il of Theorem 2
it suffices to replace, in the previous proof, the inequality (4.6) by another one,
valid under the restrictions (16).

If
Rez=1z>e2x 1 vy 2x (logx)2’
we have
(4 7) _ m max 3n
: <S(2) — 2X(!OgX)2 x-1sasx+1 80Togtr)2
1 3
-y (- x(logx)2  4(x—1) (log(x—1))2) ’
n W
(4.8) <(2) 10x (logx)2 (x & x0> e2+ 1)

provided xo is chosen large enough. Using (4.8) in (4.5) and returning to (4.4) we
find, for some suitable constant [ ,>0,

h(z)- uy-+-f-+ JHlogx)2 (*€d(x0, 1)).
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Hence the expression (15) remains bounded for
(4.9) \zZ\~Ax 0+ 1, z£S, =z$£2.

Since <P(z) is entire it is also bounded in the disk \z\~x0+ 1 This enables us to
replace the restrictions (4.9) by the less restrictive conditions (16). The proof of
assertion Il of Theorem 2 is now complete.

5. Proof of assertion Il of Theorem 2

We first confine z to an open rectangle
(5.1) 01 = jz = x+iy: e2—I < *< e2

Let H be the contour of integration formed by the boundary of 01, taken in
the positive sense. A first application of Cauchy’s theorem yields

(5.2) S Jf AE—z clc = exp (exp ((z log 2)2),
and consequently
(5.3) @ (z)- exp (exp ((z log 2)2) = f

ri

where T x is the contour formed by the juxtaposition of —b_r(e2; 1), three sides
of 01, and L +(e2; 1).
It is obvious that the integral in (5.3) yields the analytic continuation of the
left-hand side of (5.3) throughout the open region (of finite area) enclosed by I x.
In particular (5.3) is valid for all points z- £2. A new application of Cauchy’s
theorem and (3.5) enable us to replace (5.3) by

(5.4)
4>(z)-exp(exp((zlogz)d = dc  |c2= C™?2;jj, zER].

We now repeat the argument in 84: from (4.2) and (5.4) we see that, instead
of (4.4), we obtain

(5.5) o(@z)—exp (exp((zlogz)2) = A +A + frrnr-dcCc  (zER).

The constants Bi and 02 are again given by (4.3) because, by Cauchy’s theorem
and (3.5), the values of the relevant integrals are not affected when the contour of
integration CLis replaced by C2.

To complete the proof of assertion Il of Theorem 2 we need a lower bound
for the distance € (z) between z and C2. As in (4.7), we find

s, . . I G/4)T | n
2 j-isjsj+i l2ff(log <r)-J  2x(logx)"
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provided r&e2+1, z£Q. Hence, if xt is choosen large enough

(5.6) K00 (x — —e2+1).

10x (log x)2

Using (5.6) in (5.5) we complete the proof of assertion Ill of Theorem 2 by
the arguments which led to the proof of assertion II.
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EXTENDING COMPATIBLE PROXIMITIES

M. BOGNAR (Budapest)

In 1930 F. Hausdorff [4] showed that a compatible metric defined on a closed
subset of a metrizable space X can be extended to a compatible metric on X. R. H.
Bing [1] rediscovered this result in 1947.

In 1978 L. Ury [5] proved that for any completely regular topological space
(X, .X) every compatible uniformity on each closed subset of X can be extended to
a compatible uniformity on (X, X ) iff X is collectionwise normal.

Our aim is to prove the following theorem.

Let (X, X) be a completely regular topological space. Then every compatible
proximity on each closed subset of X can be extended to a compatible proximity on
X iff X isnormal.

First observe that a proximity X defined on a set X is said to be compatible
with the topological space (X, X ) if X isinduced by X (cf. [2] p. 124). (In the sequel
we shall use the notions and notations of [2].)

For any closed subset S of a topological space (X. X) we say that Ais strongly
P-embedded in X if for every proximity X x defined on the set S and compatible with
(s, x\s) there is a proximity X defined on the set X compatible with (X, X) and
suchthat X 1=X\s.

According to this terminology we can reformulate our theorem as follows.

For any completely regular topological space (X, X) every closed subset of
X is strongly P-embedded in X iff X is normal.

Proof. Suppose that X is not a normal topology and let A and B be disjoint
closed subsets of X without disjoint neighbourhoods. Let S=,4U.B. Let Xxbe the

finest proximity defined on s and inducing X\S. Then AXx8 holds since A and B
can be separated by a continuous function. Namely, the function /: S *R defined

if pdA

|f pEB
is continuous on (S, X\S).

This proximity X x cannot be extended to a proximity X defined on X and in-
ducing (X, X).

In fact suppose that X is a proximity defined on the set X and inducing (X, X).
Then AXB since otherwise A and B would have disjoint neighbourhoods in (X, X))
contradicting the assumption. However AXB and AXx8 imply X xXX\s which
proves the first part of the theorem.

Now suppose that X is normal and let S be a closed subset of X.
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Let be a proximity defined on s and inducing the topology 3T\s. Let ®x
be the set of all bounded proximally continuous functions and @ the set of all
bounded continuous extensions to (X, 1X) of them. Then &dy=2PX (see [2] p. 171)
and sSPo\s=& ™ (see |2] p. 168). Thus we have only to show that 3re=3r.

Since each element of @& is a continuous function with respect to 3r and
is the coarsest topology on X for which all /£ ® are continuous we need only to
show that ST is coarser than 3~ i.e. that for each puXx and for each open IT neigh-
bourhood Vv ofp in X, V is a 2rdoneighbourhood ofp as well.

We have to consider two particular cases.

1. p£S. Then KIS isa.T\s neighbourhood ofp and thusit is a -proximal

neighbourhood of {/?}, i.e. {p} 0>Xxs —(KT5). Hence there is an fx£ ®d, separating
{/?} and s —(FOS), i.e. for which fx(p)=0 and fx(S—FDS)c{1}. Now let
/H(Jf-K)US-R be defined by f*x\s=fx and f(I1-F )c {1} /* is clearly well
defined. Since f*\s=fx is continuous with respect to £T\S and f*\X —V is conti-
nuous with respect to 3r\X—Vv; moreover since both s and X —v are closed
sets in (X, 2T\ it follows that f* is a bounded continuous function on
((X—V)US,&~\(X—V)UsS). However 3r is a normal topology and (X —V)US
is a closed set. Consequently according to the Tietze—Urysohn extension theorem
there is an /£ ® such that f\(X—v)us=f* (see [3] p. 97). Hence f(p)= 0 and
f(X —V)cz{ 1} and thus the ¥ neighbourhood

V'={qgeX: \f(q)-f(p)\ < 1}
of p lies in v. Kis a 3re neighbourhood of p indeed.

2. p$sS. Let /: X -\ be a continuous function for which f(p)=0 and
f((X—F)US)c{l). Since v—s is an open neighbourhood of p and is com-
pletely regular, such a function exists. Moreover/|5 is a constant function and thus
/156 ®1m Hence AP . However the neighbourhood

v' = fax- \f(p)~f(q)\ < i}

ofp is contained in v and thus Kbecomes a ,T® neighbourhood of p in this particular
case too.

The proof of the theorem is complete.
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MULTIPLICATIVE FUNCTIONS WITH
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. KATAI (Budapest), member of the Academy

1. Introduction This paper is a continuation of [1], [2], [3], [4]. The notations
n*, LT stated in [3] will be preserved here. We should like to determine all/, gdM *
that satisfy

(LD y \g(n+ K)-f(jt)\
n

This problem has been solved completely in [3] for K=2 or K= odd (see
Theorem 4). Recalling the previous results we may assume that f(p)=0 and g (p)=0
ifp\K and f(p)~0, gip)~0 if (p, K)=1. ([3], Theorem 1).

In [4] we determined all the solutions of (1.1) for every K under the additional
condition

(1.2 [g(n)] 1, ()] S 1 if (n,K)= 1.
Our purpose is to give the solutions without the assumption (1.2).

Theorem 1. Let f gd_M* satisfy (1.1) with a positive integer K. Assume that
f(n)=g(n)=0 if (n, K)>\, f(n)£0, g(n)£0 if (n, K)—\. Then

(a) /, gd LT, or

(b) /(n) = nsF(n), g(n) = nsG{n), OsR es< 1
(1.3) G(n+ K) = F(n) (Vn€EW).

Conversely, if (@) or (b) holds with F, Gd-M* then (1.1) is true.

Remark. The solutions of (1.3) have been completely determined in [4] Theo-
rem 1.

2. Proof. It is enough to prove that if fdLT, gd.LT, then |/(n)|= |n(wn).
Indeed, using the notation h(n)=\f(n)\ = \g(n)\, from (1.1) we get immediately

A \h(n+ K)-h(n)\

and this by hd.LT implies h(n)=na, 0écr<l. Consequently, condition (1.2) holds
and this case has been treated in [4].
Since |g(n+ AT)-/(n)|s||lg(n+ A:)|-|/(n)|l, we may assume that g(n)sO0,

o) Acta Mathematica Hungarica 45, 1985
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Let ¢ be an arbitrary positive integer such that (C, A)=1, ¢c—I—Xg, (q, K)—\,
(A+l, A)=1, where all the prime factors of Adivide K. We shall prove that
(2.1) A(A+1) = #(C).

By using (1.1) several times we get

2 Ig(C)/((A+1)etf)- g(C)g((A+1)ea + A)lI< oo,
2-"g((A+DeCiV+AC)-/((A+1)eCiV+AAp)i
2 J?2Y(e)/(A+DCN+KX)-f(e)g((A+ Dcn+ a (At D) <~,

2 4 le)gAml)g(ca+A)-/(e) g(A+d/ (cjv)| <

N iV

Collecting these relations we get

2 4 |g(C)(A+D)I(e)-I(e)g(A+D)/(CIW I

Since /$ 3 hence (2.1) follows immediately.

We are almost ready now. Let X—K* be composed from the prime factors of
K and contain each primefactor of K at least on the first power. Let ¢ —1+K=*g,
(a,K)=1 Then (a+1, K)= 1 obviously holds, so from (2.1) we get

(2.2) H(l+K*g) = H(K*+ 1).

Let v be a positive integer coprime to K. Since (1+A*)\= 1+vA*+...= 1+ gK*,
(a,K)= 1, we getimmediately that A((1 + A*))=#(l + k*)= 1 Let n=\ (modK)
be an arbitrary positive integer. Since it can be written as n= \+K*pg, (g, K)=1
for a suitably chosen K*, therefore H(n)= 1. Since for every m comprime to
K, = 1 (mod K) and H is multiplicative, we get H(T)~K)= 1. Since H(m) >0,
we get H(m)= 1. So we have proved that H(n)= 1 for every n coprime to K.

By this the proof of our theorem has been completed.

References

[1]—[4] 1. Katai, Multiplicative functions with regularity properties. I—I1V., Acta Math. Hung.,
42 (1983), 295—308 ; 43 (1984), 105— 130, 259—212; 44 (1984), 125—132.

(Received April 20, 1983)

EOTVOS LORAND UNIVERSITY
MATHEMATICAL INSTITUTE
BUDAPEST, MUZEUM KRT. 6—8
H-1088

Acta Mathematica Hungarica 45, 1985



Acta Math. Hung.
45(3—4) (1985), 381—391.

DIVERGENCE OF TRIGONOMETRIC
LACUNARY INTERPOLATION

P. NEVAI!1 (Columbus) and P. VERTESI2 (Budapest)

1. Introduction and preliminary results

1.1. In their papers [1], [2] and [3] J. Balazs, J. Surdnyi and P. TUran investi-
gated the so called (o0, 2) algebraic interpolator polynomials.

For the unique trigonometric polynomials Rn(f,x) of order n having the
property that for a fixed integer M s2

(1.2) R, (f xkn) = f(xk); AM)(/,xkn)= Rkn, K= 0,1, ..., u-1,

(where /£(?(=/ is continuous and 2n-periodic),

(1.2) xkn = ------ , k=01, 1,

and Rk, are given real numbers), explicit formulae were found by O. Kis [4] (M —2)

and later by A. Sharma and A. K. Varma [5] (M=s2).

1.2. From now on we assume that Mm=2,4,6, ... and n=1,3,5, .... We
guote the following result.

Theorem 11 ([4], [5]). The trigonometric polynomials Rn(f, x) given by

(1.3) Rn(f,x) = 2 f(xk,)F,(x-xJ+ 2 Bk,Gn(x-xk, n= 13,5, ..,
=0 k=0

satisfy conditions (1.1), provided thatfor afixed even M

(1.4) F-(*)_ mw11+“O0  (n-jYy-j* J°
and
0,) 0.« =W r » [ ~ 4 |~ 1 . » = ..3,5.......

1.3. Let us suppose that the function coM(t) satisfies the conditions

1 This author’s research was supported by the National Science Foundation under grant no.
MCS 81—01720.
2 The paper was written during the author’s visit at Ohio State University in 1982/83.
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382 P. NEVAI AND P. VERTESI

0) % W >0 for />0, wm(0)=0, oIM(T)xoM() if >/, o)M(t) is conti-
nuous for {:0,
u

(ii) Y\ is monotonically increasing for /é o,
R>Ai(0

(iii)  lim -=0
r-+0 wM(/)

Sometimes we will suppose that for an arbitrary fixed x —1,2, ...,

QY A2u6(y) =o 20"

For example com(t) = t* (0<a<M ) fulfils all the conditions.
Let us denote by c(a>M the class of all /€<? for which coM(/, i)Sa(/)ctiM(/).
If all the Rkn are zero, i.e.

(1-6) <, (I>*) = AL/, x) 1= 2 0f(x K, )F ., (x-xkn)
k=
we have the following result

Theorem 12 ([4], [5], [6]). If fEC(coM) where coM(t) now satisfies (i), (ii) and
(iv) then

1.7) K if, x)-Ax)| = O(n) (1), n= 1,35 —

on the other hand, if coM(t) fulfils (i), (ii) and (iii) then there exists an fEC(m M)
and a sequence [nfi such that

(1.8 \Rnif, J}-/001> ncoMm~ J, n= nin2

gHere llgll= 0,r\na

12 t|g(x)|; throughout the theorem we supposed that M is a fixed

even number.)

1.4, If we consider the trigonometric interpolatory polynomials Ln(f x) based
on the nodes (1.2) we know that for a suitable Ln(g, x) do not converge
uniformly to g(x) on [0, 2n) when n—-°°. On the other hand, J. Marcinkiewicz [10]
proved the following proposition.

Theorem 1.3. For any ff_C we have

2t
lim £ \Ln(f x)-f(x)\pdx = 0, D>o.
0
Therefore, as P. Tdran suggested in connection with the algebraic case, we may
hope that considering mean convergence we obtain better convergence result. Our
expectations seem to be even more reasonable if we remark that for any /€<?

24 2rc

(1.8) lim f R3m+1(f x)dx = f f(x)dx
0 0

if M is even.
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DIVERGENCE OF TRIGONOMETRIC LACUNARY INTERPOLATION 383

(In order to see (1.8), we consider (1.3) and (1.4) from where

n—1 n—

a Riemann sum, which, of course, tends to the corresponding integral. Actually,
the analogous relations for the algebraic case were found very recently by A. K.
Varma [7].)

2. New results

2.1. We intend to prove the following. Let p(x)*0 be a summable weight
function, p(x)~<x>0 on a set Pa[0,2n) of positive measure and let com satisfy
(i), (ii) and (iii). As above, M =2, 4,6,..., n= 13,5, ....

Theorem 2.1. For any given y>0 there exist afunction g~ _C(o>.,) and a sequ-
ence {n} such that when i-+°° and

n= nr, N2 ....

2.2. Thus, by Theorems 1.2 and 2.1, we can state the rather unusual fact, that
for the function class c(a>M) the necessary and sufficient condition for the uniform
and mean convergence generally is the same: one has to assume that ¢%(0o —o (0 -
(For the algebraic case, see P. Vértesi [12]).

2.3. Let cp,:=nMwMXI/n). By (iii), Hrpnm,: 00. Now Theorem 21 can be
obtained from the next statement.

Theorem 2.2. Let {eH be any sequence o fpositive numpers such that H%mnajj:
= 0° and lim v*n=°°. Then there exist a function hfC(<oM), sets //,,c|0, 2n)

and a sequence {/?} such that

2.2 \H,\ = Zl1—e,,, n = nn, N2, ...,
and
(2.3) V2,,(/?, x) —h(x)\ > £%ncoM for any n—mun,n,,..

Now to get Theorem 2.1, let e,.—|JP}/2. Again by Theorem 2.2 we have

Theorem 2.3. If lim = lim <snejj= <© and lim ¢,= 0, then

(2.4) lim " Vi— > |1 adhmosdt emeapywiteaee im [, 2n)).

Here we used the previous notations.
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384 P. NEVAI AND P. VERTESI

Indeed, if we consider the set #= Tl fU#,,,) then for \J Hn. we
i=1 \k =i k—i
have and \T{\~2n-e, SO \H\= 2n. Moreover if xeH then
x£Ti for any i, i.e. x*Hm. for infinitely many nij, where {m,}c:{a,}. Then, by
(2.3) we get (2.4).

3. Proofs

3.1. Proof of Theorem 2.2. First we prove our main lemma which states that
. . . . 11X . R
the polynomial F,,(x) behaves like the function sin More precisely, ifc, ,c2, ...
are absolute positive constants, we state

Lemma 3.1. There exist absolute positive constants C«, €3 and ci such thatfor
any even M we have {with 0/0=1)

(3.1) = Frix) - 7 % -S A 2 hA_ n= 135,
Slnn—

Proof of Lemma 3.1. Using [5], (25) and (26), we have

3.2) I'n{x) = AL{x)+A2{x)+ A 3{x),
where

(3.3) = M ftr g)—S?J(’

2n —1
sin—-——X
(3.4) _ 41
I'"w = I+J * siX) = 2M .
wo( ) " Sm%
(3.9)
Afx) = [I+2 2 h~J  :jcosjxj where o<li(y)Si if y>o

and h(y) is decreasing.

3.3. First we consider the term Al(x). By formulas (10) and (21) in [4],

(3.6) A.(x) = ism n,= / sinntcot td't | cos I/IX\l.
My 2n  2n )

First we claim that

t 7= Mot boie Tt s
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DIVERGENCE OF TRIGONOMETRIC LACUNARY INTERPOLATION 385

bdeed, if sin//))(/cot)§/>0 and — <§/(< (/+ I)yK, then by Lemmas 7 and 8 and
formulas (32), (33) and (36) from [4]

m'(fM v K

On the other hand, if sinn % cot;(—<0 an d:;l—l———-;(—< (/+ 1):—, then

again by Lemmas 7 and 8 and formulas (32), (33) and (36) in [4]. [f sin //X—cotX—:O,

we can use similar arguments. Subsequently we will need the ralations

(3.8) ™ (T) <5’ 1- 27
Let us remark that
1 1in X . X X sin |
(3.9) Mx)=_1T cosnT /(y l sm” T cotT —————nXJ’
sinfn
1 n2 . x (n) 3 . X 1 _2 n sin nx
M 4 Sm™ 2 J\7 2 L. X 2
sim’™y
3.4 By (3.4) we have
| (2/i—i)cos£n-_—I .\/—sir‘?'/—l-_—1 xcot)'fE
(311) A'2(x) = oMn X
siny
(3.12)
@I —2 stn 201 ysih F + M —1) cos 2=l xcos X
ATCD = - 4Mn B 3 X -
Sin-y
2//-1
in—-— x .
------------------- — -— " x cot—cos —
sinT
0
Sin-y
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386 P. NEVAI AND P. VERTESI

3.5. Consider now As(x) and A's(x). By (3.5) and the Abel’s inequality we
have for certain s andt, 1Si, t~n,

1 . 1
*\1 = i '
(3.13) Ms(M)1= =i yni) sin jx Mn 1S 229 s
., 2s- 1
i1 sin —-— x
2 2 jsinjx
Mn j=1 Mn .X
s,n2
(3.14)

1
|/|3(I'IF)| Mn 2” a('/\7)y1GH-h_ Mn xggg%(_12j2:ifcos‘]x

. 2/—1
sin — ———X
2 Bcosjx
j=i ! Mn .
Sin-

that is they have terms similar to those in (3.11) and (3.12), respectively.

3.6. Consider now the term cosn ~ J in A'~x). By (3.7) and (3.8),
it 2K _ g AKLLr Ar=l 2, . u—i, then
2n
A w }4fc " K n
— = Z (=1 — A —1s ——-u.
721 - TP Am ey it am

On the other hand, the sum of the absolute values of all the remaining terms of
A{(x), ~(x) and AE(X) is less than, say, 5/; M if sr'n;— -cn 1 with a sui-
table c. But this can be attained if we assume that c5n~1Sx~2n —cR1~1 Therefore
we proved that for the function F' —A[+A'z+A'3 we have the relation

(3.15) No(-dira )N
2—kn érs _(_‘!{(3_'*_12_7_[ and c9sk ~ n —Ci0 where c7,c8,c9 ana c10 are suitable
constants.
3.7. Using analogous argument for the term —’"\-Zg-sin n— YEX—\I in A'{(x)
on the intervals (4k+1)(2n)~1n~x~(2k+\)nn~1, one can prove (for sake of

simplicity with the above constants) that

(3.16) M 22 =S (_ Dk+1F"(x) WL
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. + + . .. . . L
i i/écﬁ__l_n LU x <ik?-| 7 and c,altS(i-c1 Using similar arguments we can

also prove, again with the same constants, for sake of simplicity,
(3.17) N (-1)*+1F,,'(G9 ™ -grn

iF (4-k+—3) 2k and c9ék”~n —cl0,

(3.18) £ naS (- 1Y+1F :(x) =-grnz

if (k1 U- s anci oafegn-c10. Moreover, by (3.2)—3.5) and
n 2n

(3.8), obviously
(3.19) [F»W| S for any x.

3.8. Let,e.g., c9Sl:ogii-c 10 beeven.Then Fi2koRn~)= F,(2(ko+ 1)*n-1)=0,
Fn(x) is monotone increasing in [2koau-1, (4&+1)sa(2n)-1], is monotone de-
creasing in [(4ko+ 3)7(2n)'"", 2 (ko+ 1)an_1], |F'(x)|~n in these intervals (see
(3.15) and (3.17)). Moreover, Fn(x) is concave in [(4kO-f )jr(2n)_1, (4ko+ 3) w(2n)-1]
(see (3.16) and (3.18)). Summarizing these facts and considering that |Fn(x)| is
bounded (see (3.19)), we obtain (3.1) for the interval [2kosin-1, 2 (ko+1)m-1]. We
can argue in this way for the other values of k to obtain Lemma 3.1, considering
that the constants do not depend on k and n. Finally, remarking that F(x)= F (—x)
(see (3.2)—(3.4)), we can state (3.1) for F(—x), too,

3.9. Now we can prove another statement.

Lemma 3.2. Let be a sequence of positive numbers and [an, bn]cz[0, 2n]
arbitrary intervals. Then there exist sets S”~cfO, 27i) of measure \S,\“"2n—q,, —

4c
_______ — bn+ an such that
n

(3.20) 2\F , (x-xkmy\~» [+ A~ n ]-~ whenever x£Sn.
£ \Pn ehn)
First we construct the sets S,,. Let Skn= jx; lr—m\|=i~-j. If

\sH [0,29)\ur \[oN J\[an-~-, &+T J\[2T~7T"2n]"

then obviously |S,,|*27i —jn—4can_1—b,, +an, moreover, if x£S, and xkf[an,b,”
then can-1”" |jc—e*|s27t—c4n- 1, i.e. by (3.1) we get that

\Fn(x -x K\ ™ -~.sm — s cnt],JM.
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Considering that the interval [a,, b,] contains at least {(bn~an)n 21”1 nodes, we
obtain (3.20).

3.10. The remaining part is a proper modification of [6], 3.12. Let us consider
the intervals [0, h,] and the corresponding sets S;,. Then obviously \S, \*2n—rn—

4
-————E—Hon. Later we use that
n

(3.21) (—D*sin 1— ~ = (—iy sinn .

3.11. Now we define the function g,,(x) as follows (see e.g. [8]).

(-1f if xkE[O,bn],
(3.22) gn (xk) 0 if m*([0,b,.], «=01 .., n—1

gax.) = gn) = gO=1

If gnCO~gnCA+i) then in IX-At+i] let g,(x) be that Hermite interpolating
polynomial of degree 2M —1 which is equal to g,(*j<) or g,(xt+l) at the end-

points, respectively, further gn(x>)=g"(xt)= ... =g (M~1)(*;)=0, i=k, Ar+l. Then
it can be proved that (O. Kis, [13], (30))

(3.23)

gn(*) = g,,(*t) ji~ (2A4T-2)1t [ (r-t2"“1*1, o~ =1 N WK+1= 2k.

Let us consider some further properties of g,,(a). First, if g,,0t*)=gn(**+1), then
gn(x)=g.,(xk for x£[xk, x*+1]. Moreover

(3.24) co(g<>1t Dnil+it, /=0, 1, ... Al-1, bp>0
because
(3.25) d, = nun (xk+1l-x R =

By formula 3.3(1) in [9] we obtain from (3.24)

(3.26) coM(gn, t) S DnMtM
i.e. g,,(r)€C(oM. Moreover,
(3.27) |0,.(A) S !

which means for any x

K(g,>*)I= 2 \F -xk\ 22
(9,>*)1= 2 \Fn{xxky 22
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(see (3.19)). On the other hand, by (3.20)—(3.22) and (3.1) we get

*)| = K2zlgn(xk)F,,(x-xk) = | kn(-I)kFAx-xk)\é

2
xke o, ]

é 2 \F,,(X-XK\™N -~ -\~ T1r . n
XKao,bn) M L2n°J
if
Now we assume that b, = Alc12t],, u,=cMr, and w,= 1 ie. we have with
a proper c12

(3.28) \R,,{g.,.x)\>if,n

if xEsn.
Later we shall use that for any fixed N

(3.29) IR,,(gN,x)-gN(*)DE I S =
Indeed, by [9], 4.8(18), [L{M)|Sc nMtoM(T,,, n ¥ from where we get by (3.26)
[l s cnMOM(i/,,-g M+ g,, -) s cnM [ligjv-CfJ+CUM (g.v, 1)] s c(rv).
Here T, is an arbitrary trigonometric polynomial of degree S h, U,, is the best appro-

ximating trigonometric polynomial of degree —1 togNin uniform norm, (¢ may
depend on Af). Then by (3.19), Un(x)= R,(U,, x) (when Bgk= UM)(xk)) and

2 |C,,(v—rt)|sc/il M (see (1.1) and [5], (27)),
175(9Jv.x)-gjv(x:)| S Ru(@Vx)- U, (X)[+\U..(x) - gN(*)| =5

S WRL(ON-U, )V 2V I MIICA(*-**)[be(iV)n-MS

S ¢(N)(nn~M+nr~m+n~M = cl(N)nl~-M

as stated.
3.12. Let us define the sequence {1, 3, ..} as follows (see (i)—(iii)
and lim (pnel = °¢),
3.30
(3.30) &1
1) 1 1

(3.31) i=k+1 270 jl_ nk Ll"uén k)\'

j-1
(3.32) P -2,3,4 ..

i=1
(3.33)  wm «"W(Jlri)« «44) _ L2, _0<4d<1n
(3.34) <p»,A > 3D('h-i) := 3 max dWw), ft= 2, 3....

Acta Mathematica Hungarica 45, 1985



390 P. NEVAI AND P. VERTESI

Let
(3.35) /O) =2 thi @7)gnA*):-

First we prove f€ Cc{ooM. Obviously

% (/>0 _i2=| aim (— ) Jmfeli>0 = I2:|+ i=j+|>
ie. if n™j< ta«rl we can wiite
—2DtM(oM | 2DcoM({t)
(see (3.26), (3.32) and (ii)).
Further by (3.27) and (3.33)
(1) (1) 2m fi) 2M
2 bIM1— 10iM(gK, 0 S 2M_ 2 1 — —-7— - ®Mm(O
= vn,-/ f=j+1 vu;y 1—9 \nJ+1J Y—q
which means that /<=<?(coM), indeed.
3.13. Now we prove Theorem 2.2. Let <S,. Then
(3.36) %Lk, %)-1() - 2% S(;ﬂ) [5,,k(gni, *)- g, (*)] s
= (/‘nﬁ?) -0 I-i;]l’ «Kn Q‘/-i_“ Itf,Jg,.i,x)-0,,i1(X)|-
- -J- YW N2 - _
i:gﬂ gu‘],/) (0P %)! i2:k°’m ¥ )j ()l
Here by (3.29) and (3.30)
@37) 2 % (1) K(9..7)- .00\ - 2 % \(/J;)/ TR
by (3.19), (3.27) and (3.31)
338> J , «*W «a -*) - J .« D FE»><(E)e

by (327) and (3.33)

(3.39) 21;°>m (%7;) IgnC*)l = Lo co,
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Considering now (3.28) and (3.36)—(3.39) we get

O(n*-i) 2n 2
RLK(F *)-/(*)! = »k% (!'.k), Prk- - (@‘k Mnk nkl

Here, by tin= cMen, we get, using (3.34) and limgjn= .
o0 b Rk=jCr M

Further, by 3.10 and b,,= Mc123n,
[S,)] '€ 2n-(2 + McL)i)nis 2, —,

with a proper c. Now, if h=3¢c~2Mm~2% and S,,=H,, we obtain Theorem 2.2.
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ON THE MODULUS OF CONTINUITY WITH
RESPECT TO FUNCTIONS DEFINED ON
VILENKIN GROUPS

S. FRIDLI (Budapest)

Introduction

In this paper we generalize a theorem of Rubinstein [2]. By the usual definition
the modulus of continuity of a function defined on a Vilenkin group (Gnm) can be
represented by a sequence of real numbers. Rubinstein [2] characterized the sequen-
ces which turn to be the modulus of continuity of a function in C(Gn), L1(Gn),
L2(Gm). Now we prove his conjecture, namely the theorem is true for Lp(G,,)
@ °°) too.

§1-

Let m:=(mk,kE£N) be a sequence for which {0, 1, ...} and mk~2
(kd N) hold and denote by z,,.k (k£ N) the cyclic group of order rnk. Define the group
Gmas the direct product of znkKs (k€ N). Then Gmis a compact Abelian group with
the Haar measure y satisfying //</,,))= 1

Further we need the following subsets of Gm:
In+1 {x = (x0, xx, ..., xk, ...)EGMxX;= 0, iis n} (n€N, Jo:= GJ.

1,, form a basis for neighbourhoods of the zero element of Gm, therefore the topology
of Gmis completely determined by /,,’s. Obviously 1,, are subgroups of Gmand

/.3 AT3..3 /,=).. (neEN).

If we introduce the notations

Mn+1:= M T, (n€EN), M0:= 1
i=0

then it is clear that )
M N

Let us denote by C(Gm and Lp(Gm) (1 °°) the usual set of complex valued
functions defined on Gm, i.e. fdC (G m iff/is continuous on G, and thus
i = sup |[/(x)]
x EGm

furthermore f£Lp(Gn) iff/is measurable with respect to the Haar measure p and

i, =( /21N PP)1P< --
Gm
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The modulus of continuity is usually defined as the sequence of numbers

«/.(/):= sup sup \f(x+ h)~f(x)\ (fdC(GJ),
e/n *€GW

<D= sup [/(.+*) -1 (FELp(G])  (n€N),

(where + denotes the group operation on Gm). It is clear that nEN)
(gdc(Gj) and (< (/), n€EN) (fdLp(GmM 1=p< o») monotonously decrease to
zero. The following theorem shows that this property of a sequence characterizes
the modulus of continuity.

Theorem. Let (co,, ndN) be a sequence of real numbers monotonously
decreasing to zero. Then there exist gdC(G,,) andfor all p€[l, °°) an fdL p(Gm)
such that a>p(f) = an(g) = con (»£N).

First we remark that the cases C(G,,) and LI(Gm), L2(G,,) were proved by
Rubinstein in [2]. In this paper we give a complete proof for Lp(Gm (1=/?<°°).
We observe that in the meantime Rubinstein announced the above Theorem in [4]
and proved it for the dyadic case.

Letus denote by (i//,,, nEN) the character-system of Gmendowed with the so called
Walsh— Paley order (see e.g. [3]), and define En(/) (ndN, fdC(Gm) and Ef'1(f)
(fdLp(Gm, ndN) as the distance in C(Gn) and in Lp(Gm), respectively, between
/and the subspace generated by i< M,) (UPN).

By a known result of Efimov [2]

E.(/) Sco(/)s 2E,(/) (/€cC(Gm)nm
Enp)if) S e>i">if) =2£,»(/) (fonGJ) (n€EN),

and thus we have from Theorem the following

Corollary. For all (En, ndN) monotonously decreasing to zero there exist
gdC(Gm andfor all pd[1, °°) an fdLp(Gm for which

\En~ E,(9)S E, and \E n~EipH f)~En (n€N)
hold.

§2.
Proof of Theorem. Let 1=p~~ ?° be fixed and introduce the notations
L1(Gm) := {gdLp(GJ\ g|/0/(+1 = const., i/N},
Ei(g):=g(x) (gdLg(GJ, xdJt\li+1, i€EN)

(where g\A is the restriction of g to the set A). The foliowhig identity is easy to see,
but it will be very useful for us. If gdLp(Gm such that (Ft(g), ¥N) s
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increasing, then
a) »p’<g>=«r<si*, )= n 'y 1>

= 21I>\(g-Fk(g))\xlic\p  (km .
Here Xik denotes the characteristic function of the set Ik.
In order to prove the theorem we need the following lemma.

Lemma. There exists a sequence of functions fnEL%(Gm) (nE£N) having the
followingproperties:

(i) (Fi(fn), f€N) is increasing and Fo(fn)=0,

to)k k S n
* <»(/,)={0 k™~ n (km.

Proof of Lemma. Let nfN be given and x,+1 an arbitrary real number.
Define x,:=jg,+1 (i~ri). We shall prove the existence of X f R (nSiGN), for which
X, xn”...~x0 and

pu lip
| 1
(2 (M, M|1+1j]']1 0k (k =Sw).

This statement is trivial for k=n, further it will be verified inductively. Assume
that the numbers
xn+l SX,, & ...s Xj+1

satisfy (2) for j+\~kSn, and let

11 -

(Mi Mil+1)J (XjH xiR).
From the assumption we have that rj(xJ+1)=toj+1. Furthermore, the continuity
and monotonicity of r and lim r (x)= + 0° imply the existence of x.Sx +1 such

that rj(xJ=coj, which proves our statement.

If we define f,dL$(Gm) by means of F;(/,):=x,—xo0 (iEN), then in view of
(1) f,, satisfies (i), and (ii), as stated.

Let (f,,, nEN) be a sequence in Lp(Gm) having the properties (i), (ii)) of Lemma
for any n€N. We observe that by (af }(fn)= coo (n€N) and by (1) we have

(3) IVrb—2~ 1,p(c0 and (<<">(/,) So* (k,nm .

Since the well-known M. Riesz condition concerning the compactness in Lp ([0, 1])
can be transferred to LP(Gm) (I™p<°°), therefore it follows from (3), that there
exist a sequence of indices v and a function f£L p(Gm such that lim||/— v(n)||p=0.

By Iilr_1|1 o)[p>(fr)=wk we have that o)kp) (f)=cok (kEN), consequently/is the de-
sired function. The proof of Theorem is complete.
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UBER DIE MITTEL VON ORTHOGONALEN
FUNKTIONEN. Il

K. TANDORI (Szeged), Mitglied der Akademie

1. In einer vorigen Arbeit [3] haben wir die Konvergenzverhaltnisse der Mittel

T
T~2It<:’ik(Pk(x) (n = 1,2,...)

betrachtet, wobei 2= {AHBE° eine Folge mit
0<l,SIl,+q1 (n=1,2,..), A, (n °°9),

a—{akiT eine reelle Zahlenfolge und <= {&fo(.x)}r ein im Intervall (0,1) orthonor-
miertes Funktionensystem sind. In dieser Arbeit werden wir diese Betrachtungen
weiterfuhren.

Die folgenden Satze bleiben giltig fir in einem beliebigen nichtatomischen
Mallraum vom MaR 1 orthonormierte FunktionenSysteme; nur einfachkeitshalber
beschranken wir uns aufdas Intervall (0, 1).

Fur 1 00 bezeichnen wir mit Q(Kj die Klasse der in (0, 1) orthonormierten
Funktionensysteme @ fur die

WK(x)\MK (*6(0, 1); k= 1,2,...)

besteht. s2(°°) ist also die Klasse aller in (0, 1) orthonormierten Funktionensysteme;
im Falle <p£fi(1) gilt aber

(9]l —1 (G£E@ 1) fast Gberall; k= 1,2, ..).

Es ist klar, daB
Q(Aj) g R(K2 ~).

Wir werden die folgenden Satze beweisen.

Satz |. Fir jedes K (1 °=) gibt es eine Klasse ™M (K. /) von Folgen a
mitfolgenden Eigenschaften. Ist af M (K, X), so gilt

(1) ~T 2 ak<Pk(x) - 0 (n

furjedes tp£Q(K) fast Gberallin (0,1). 1st aber a$M (K,n), so gibtesein <P£Q(K)
derart, dal die Folge

(2) {

in (0, 1)fast uberall divergiert.

-L- 2 ak®K(x)\
An =1 Ju=1

i* Acta Mathematica Hungarica 45, 1985
Akadémiai Kiad6, Budapest



398 K. TANDORI
Offensichtlich haben wir
M(XUKJ 3 M{lr, KJ (1s Kt< K2 o00).

Es gilt aber der folgende Satz.
Satz Il. Firjedes 1< K< °° gilt M(K, X)=M (I, A.

Bemerkung |. Man kann zeigen, dal} fir jede Folge Amit den besagten Eigen-
schaften M (00,/1)uM (1,A) (M (00,49)cM (1, ) ist.

Bemerkung Il. Aus den Satzen I—IIl erhalten wir folgendes. Gibt es ein
<p£Q(K) mit einem K (1 fir welches (1) in einem Menge von positivem
MaR nicht erfillt ist, so gibt es ein <££R(l) derart, daR die Folge (2) in (0, 1) fast
Uberall divergiert. Gilt aber (1) fur jedes <®» B (1) in einer Menge von positivem
MalR (diese Menge kann von cp abhéngen), so besteht (1) fir jedes <pd (J Q (K)

in (0, 1) fast tberall.
Fur ein K (Isfeoo) und fir eine Folge a setzen wir

Nach den Definitionen gilt

fur jede Folge a. Man kann aber auch die umgekehrte Ungleichung zeigen.

Satz Ill. Firjedes K (1 gibt es eine nur von K abhangige positive
Zahl C(K) derart, daR

ll; K;kWAC{K)\W\a; 1; Al
furjede Folge a besteht. Weiterhin gilt
C(K) = O(K).

Bemerkung Ill. Fir K=-°° ist diese Behauptung nicht richtig.

Satz IV. Es seien und ad M (K, #). Giltfir eine Folge b

\bk\w \ak\ (fc= 1,2,...),
so ist bdM (K, /.).
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Bemerkung IV. Aus dem Satz IV ergibt sich folgendes. Es sei [i*|&la*|
(k=1,2,...). Gilt (I) fur jedes cp£Q(K) (fur ein 1 in einer Menge von
positivem Mass (die Menge kann von < abhangen), so gilt

A2 bk<Pk) - O @ o)
An *=1

fur jedes g>£Q(K) fast Uberall in (0, 1). Gibt es aber ein <p£Q(K) derart, daB die
obige Relation in einer Menge von positivem Mass nicht erfillt ist, so gibt es ein
<>f Q (K) derart, dal? (2) in (0, 1) fast Uberall divergiert.

Satz V. Es sei Ist a(-M (K, a), so gibt es eine monoton wachsende,
ins Unendliche strebende Folge p.= {pk}* von positiven Zahlen mit gafM (K, X).
Ist aber a$ n), so gibt es eine monoton abnehmende, zu O strebende Folge

g.— {gK}i von positiven Zahlen mit pa@{M (-o, a).

Bemerkung V. Die zweite Behauptung des Satzes V ist im Falle Isk < “
im allgemeinen nicht richtig.

2. Zum Beweis der Satze haben wir gewisse Bezeichnungen vorauszuschicken.
Fur eine in (0,1) definierte Funktion /(x) und fir ein Intervall 1 —(a,b)
setzen wir
*€/),
f(i; x) = (“£1)
sonst,

und fur eine Menge H (Q (0, 1)) sei //(/) jene Menge, die aus Il unter der Trans-
formation y = (b—a)x+a hervorgeht.
Die Menge H nennen wir einfach, wenn sie die Vereinigung endlichvieler Inter-

valle ist.
Fur eine Folge a und fur positive ganze Zahlen VIs N2 (N1~AN 2 setzen wir

U(fVi, V3 = {0, ..., 0, UVl *, U2 0, ..}, n(iVi, °) {0, ..., 0, aNI, Hhai*...}.

Weiterhin seien fiir ein K (1 °°), fr eine Folge a und fir positive ganze Zahlen
NItN, (N AN j

Ir (1 - 212
lb; K; a; NItN2l= sup \J max -y- dx\ >

ll; K; A; NIt ~p = su b S [J /! 2" ak<Pk(*)\2dx%1/2 (=°°\
T 4>iQF()K)I/ r§)§)/,V'b| k=1 )y )

Offensichtlich gilt folgendes fur beliebige Folgen a, b, fir beliebige positive ganze
Zahlen V,, Nz fiir jede reelle Zahl ¢ und fur alle K, K t, K., (1 biK, Aj, K27s
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S00; K MK 2:
lle; K; 4, 1, HI = I« K; A,
Uem;, K; &; Ny VI = |c|lla; K; & Y VY,
b+ b; K- & NY HI = Il K; 9 NY HI+ 1& K; 9; Ny HI,
(1K, NY; A, NY HI = Ua(ly Ny; JT: 9; Ny VY,
lo; a; Ny ny =|la(l, N2; K; & Y V],
lle; Kr; & NY VI =la; *2; & NY VY,
lle; J1; S Y VI Ela; K; & Ny M2+ 1,
lla; Y & VX1, VI~ la; K & Ny 1V,
lim |la; ¥ & Ny VI = |la; K; 9 ny HI,

iV2-*-00

lle; Y S Y HI S |la; K; & 1Y iVI+Ua; Y 4; V2+1, HI,

i1 N 1Va ; 1 Nt
o2~ —lle; ¥ 4 1, 1IVI = -y- ™ |efd.
*=1 | Xt i lefd
3. Zum Beweis der Satze bendtigen wir gewisse Hilfssatze. Es sei rk(x)=

=sign sin 2knx die Ate Rademachersche Funktion (A=l, 2, ..).

Hitfssatz |. Giltfur die Folge a

l 11
Hm — 2 akrk(x) = 0
“ K t=i

in einer Menge E(Q(0, 1)) von positivem MaR, so besteht
lim ~- = 0.
Beweis des Hilfssatzes |. ES seien
gN(x) = sup lleakrk(x))/ gr=12,..),

e=»0 beliebig. Dann gibt es eine positive ganze Zahl M0 und eine meRbare Menge
Ek(QE) von positivem MaR derart, dafl3

gA,,0) = £2 (x~Ej)
ist. In diesem Fall gilt aber

2, aKFK(X)) = gNt(x) w B (mEEK; N = MO, NO+1, ..),

MO3gnSiv
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und daraus folgt

©) j dx*e2mesEl (N = NO, NO+I, ..).

Auf Grund eines bekannten Satzes (s. zB. [4], S. 213) gibt es einen Index &—fcoCH)
mit

)] E/(\fc:2fco ) dx Syniesf] kgkﬁal (N = K, fcotl. see)
Es sei weiterhin Nnein Index mit
fi *0-i ”
5 -2
®) 2, ise
Aus (3), (4) und (5) ergibt sich:
Y r™~x g ! iJs
==J/ dx+1/ f O e*»*(*)] dx < 2e/mes A,

fur Asmax (AQ, kO, M); dh. es ist

-X- 2 al =8 (N Srmax(AQ, kO, AD».
nar k—kO
Da

Xk2 al— (NANO

An k~1

mit einem Index NOgilt, besteht auch
-i 2 al 3 92 (AS max (A0, kQ) A0, AD»
Av k=1

flr ein beliebiges £>0.
Damit haben wir Hilfssatz | bewiesen.
Aus dem Hilfssatz | folgt unmittelbar:

Hirfssatz Il. Giltflir die Folge a
AL e
S0 besteht
lJJ_- 2°KIK(x)-KO (n

) Al k
fast tberall in (0, ).
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Hitfssatz IIl. ESsei @ = {®n(a)}r eine Folge von melRbaren undfast Uberall
endlichen Funktionen. Gilt
LRI -C0)

fast Uberall in (0, 1), so ist die Folge

n, 22 (M=
mit gewissen Vorzeichen in (0, 1)fast Uberall divergent.

Bemerkung VI. Diesen Hilfssatz werden wir nur im Falle anwenden, dal &
in (0,1) gleichméRig beschrankt ist, und diese spezielle Aussage lieRe sich auch
einfacher beweisen; vollstandigkeitshalber beweisen wir den Hilfssatz dennoch in
der allgemeinen Fassung.

Beweis des H ilfssatzes |ll. ISt die FOlge {F,,(X)}f in (0, l) fast Uberall di-
vergent, so trifft die Behauptung zu.
Im entgegengesetzten Fall gibt es meRbare, disjunkte Mengen £j, E2(Q (0, 1))
derart, daR
mes £j+mes E2= 1,

lim F..(x) =f(x) (x€ED), , Hn \Frfx)-F,, I)\=ft(x) (xEE2)
mit gewissen Funktionen f (x) ?£0 (*££j), /,(x)>0 (xCE2 erflllt sind. Es seien

ERI) = {x€Ey. \Mx)\ > 1}, El(m) =\x€Er:-L * s \f(x)\ > -1}

(m=23..),

E2{1) = {xeE2: f2(x) > 1}, E2{m) = S/2x)>-1]1] (m=23 ..).
Wir werden eine Indexfolge (1=JVI< ...< Ank...) und eine Mengenfolge
{Hn}7 meBbarer Teilmengen von (0, 1) derart angeben, daB fiir jedes m (=1, 2, ...)

(i) Hmg )Qi (1 00u E200), mesHmS %

(@) IFKmH(X)| & Y21 (XFEj(fi)\Hm; g =1,..., m),

(i) ~—2 17001 = 1/8/1 (xe(ELR)OE2(R)\Hm; /i = 1, ..., m),

(iv)

max IF,»-F1x)| " V21 @ee2(fi)\Hm A= 1,2, .., m)

erfullt werden.
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Essei JVj=l. Da

I\Il’S‘H ntIF,,, (x)- Fnix)| > 1 (xEE2(1))

ist, gibt es eine ganze Zahl N2 (=-jVj) und meRbare Mengen HKA"E"I)),
AT WD ~NO)) mit
mesH*5 1/2, mesH** " 1/2, \FNIx)\ ss 1/72 (XEFX()\"*),

2 |®. ()] —1/8-2  (XE(E,(1)\,*)U(F2A1)\H**)),

AR FXX)-F RGO\~ 172 (x€A(1\AT).

Essei EM=#A*ua**. Dann sind (i)—(iv) fur jWk 2, Ax im Falle m= 1 offen-
sichtlich erfilit.
Es sei m,, eine positive ganze Zahl. Wir nehmen an, daB die Indizes 1=7VX ...
... <Wnotl und die melRbaren Mengen A1; ...,4 L schon derart definiert wurden,
dal (iy—(iv) im Falle m—1, ..., mO erfillt sind.
Da
sup  |Fn.(xX)—Fnix)| s /i (xEE2B); u = 1,.., mO+l)

gilt, gibt es eine ganze Zahl Nms#(>Nno+l) und melbare Mengen

AM+x00 g EM , H**+1(w) g £2(/i) (/i = 1, ..., mO+I)
mit

mes H*BH(ji) s 1/2(m0+1)3 mes H**+1(y) £ 1/2(wo+ N3 O = 1, ..., mO+I),
Fyo ()1 —V2/t  (x*EL(fi)\H*liH(p); L= 1,..., mO+I),

i Nmo+1
S 21 |#t(®)| s Bl
X + 2 *1
(*E((FXOMN\A*CEX(N))UF2(/\A~+); [i = 1, ..., m+1),
max \F2(x)-F,, )\szll2n  (X*E2(R)\H**+1(R); u= 1, ..., mO+1).
vmo+X-=""is *,2s)vm0+2
Es sei

\ *
prx A ;E+1(/£)/ \}e

Es ist offensichtlich, dass (i)—(iv) fir N,,0H, NnB+2 Hno+l auch im Falle m—
=m0+ 1 erfllt werden.

"0+l n
ATOHX= U A:0+101) U
=X /

Die Folgen {At}~, {A..}* mit den geforderten Eigenschaften erhalten wir durch
Induktion.
Wir setzen

D (*)= x> ikx) = (- Drax(x) (X€(0, 1); A2r+x< ks A2+3; 1 = 0, 1,...).
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Es sei
&,(*) = )A:IZ:I ik(x) (n= 1,2,.),
und
MI"= (n Ex@OQ}I\HA, M>=((J E,(B))\Hm (m = 1,2,..).
Auf Grund der Definitionen sind
mes (lim = mes £j, mes(Um = mesE..

Firjedes r(=0, 1, ...) und flr jedes x£(0, 1) besteht
"2r+3 1 Nr+

1
GrrAx) = 2" Q- 2 D=
| N2.*3 J A
: +
(10 gig gz A3 ot
i 2 1y N2r+2
= Ly xeiW + 3957 Aa Aareg g PR

So erhalten wir, auf Grund von (ii), (iii)

Ig*3,43(x)l - 2°"T-2 8~ - 4N (*€ap)\ly *+1; N=1, 2r + 2),

sign gN2r+5(x) = (- Drsign FvS+3(x) (XEEX(p)\H Ir+8; g= 1, ..., 2r+2)
furjedes r(—0, 1, ...)» Daraus folgt, daB die Folge {gHX)}r inder Menge Em M & 2

divergiert. Nach obigen divergiert also die Folge {g,,(x:)}r fast Gberall in £j.
Firjedes r(=0, 1, ...) und furjedes x£(0, 1) besteht weiterhin

max lan(.v)-gni(x)| S
A2r #2<nl—n2—":r +3
n* 1
max - =
n2r4l<nl—n2—n2r +3 }l(r k=N, r+|+| q]((x) Jm k—N|r i+l MX) *NSr+2 2 \Nk)\
max _|£|_ '« | "I 1
-1 K(Xx)- = !
U [ PV SR ALY 39--“:\/,%1” Fyorap 11 N2
g8 g pt IF204) - Rz B

Daraus ergibt sich, auf Grund von (iii)—(iv),
- 1 2 1
g AREOEQTTY 2 — =

A22r 4210 Oofi

(xeE2(fi)\H,r+a; fl=1,..., 2r+ 2),
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was nach sich zieht, daR die Folge {g,,(x)}f in der Menge hm ME\., divergiert.

Nach obigen divergiert die Folge {g,,(x)}r fast Uberall in E,.
Damit haben wir Hilfssatz I11 bewiesen.
Aus den Hilfssétze 11 und Il folgt der

Hitfssatz IV. Giltfiir eine Folge a
4i'"+ -0
K t=i

so gibt es ein System 4»Gfi(l) derart, daf die Folge (2) in (0, 1) fast Uberall diver-
giert.

Hilfssatz V. Es sei Giltflr eine Folge a Nl_i*(g0 lla; K; A, N; °°||=0,
dann besteht (1) fiir jedes (pEQ(K) in (0, 1) fast Uberall.
Beweis des Hilfssatzes V. Essei (pE£2(K). Wirsetzen

Fn(x) = su'\Pi—’\ 2ak@k{x)\ (A=12 ..).
nN v, k=I /
Dann gilt
(6) Fn(x) s Fn+l(x) (x€(0, 1); N —1,2, ..).
Auf Grund der Definition von | *; K; A N. HI haben wir

{f EN(X)dx}12 Wil K\ A N, HI-
0

Daraus imd aus (6) folgt N“_”l M(x) =0 fast dberall in (0, 1), also gilt (1) in (0, 1)
fast Uberall.

Hilfssatz VI. Es seien 1 eine Folge und Nk, N2 (N AN f positive
ganze Zahlen. Dann gibt es ein System £C2(K) von Treppenfunktionen dm(x), ...

hAX) mit

f max ir-1 ak>d§<(x)))2dx S % lla(l, A2; K; &; NIt AZj2

J NImnsNt\X n jt=x

Beweis des Hilfssatzes VI. Der Hilfssatz soll nur im Falle |la(l, N); K; 1;
Ai, 1y >0 bewiesen werden.

Fall K= 1 Auf Grund der Definition von | *; K; A Nk, JTY gibt es System
£(1) von Funktionen dr(x), ...,ij/Ni(x) mit

[ max i-i- 2 akgk(X)\ dx > —11«1, N2; K; A Nu 1y2

Man kann leicht erreichen, dall diese Funktionen dK(x), ..., PpkAX) Treppen-
funktionen seien.
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Fall 1-'1"<co. Auf Grund der Definition von | *; K; A; NIf A2 gibt es ein
System @£(2(K) von Funktionen ¢1( x ) , gNi(x) mit

7) L foymax f-rs 2 <06(4) dx > Jladl, iVo; Ar A A, AZJ2-0

€= lIn(l, A); K; A; Nu Nt||24).

Es seien (k(x) (k=1,...,A ) Treppenfunktionen mit
1 .
(/) A*)- (M2(x<y (k=1..A)
und
(8) ka MI S |<At(X)| (x€0, 1); k=1, A).
Wir setzen

1
A, = (_1; <PiX)(Pj(x)dx (i,j =1 Ad9.

Es werde a (O«=f<1) so gewahlt, daB die Ungleichungen

9) I—1—eMa(l —<¥)aS A2

(10) L-u)(l —a2 f NmaxN (— O «*%(*)) dx

S I NBRX {an =Y %% () dx—y

erfiillt werden. Wir teilen das Intervall (1—a2 1) in A2(A2—1) paarweise disjunkte
Intervalle /> (i,j=1, N2; i“j) gleicher Lange. 1st A genligend klein
so gelten die Abschétzungen

o f) ,/ maxf},—,fkgl; ) dx > [ n/mﬁ)s\/ﬁl,&:l ) rf*-

A2(A2- 1) S
a0 Aafe ) ag, o K2
F g, o
(13) «k,kM 1-a2 (k—1, Ad.
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Wir setzen
U -~r) (xe(0,1-a2),
Y N*2az N~ a* 1- *- ~ N ke
few
ARG ) signdtIY [-a 2 (XENI'K 2™ 1S N2y 17 k)
0 sonst
k=1, ..., 1.

Offensichtlich bilden die Treppenfunktionen o¢x(x)y (k= 1, ... /12 ein ortho-
gonales System in (0, 1), weiterhin gelten auf Grund von (8), (12), (13) und der
Definition der Funktionen ¢« (x) die folgenden Ungleichungen:

(14 [ft(*)] S K (x€(0, 1); k=1, N2,

KI%\IZ’Y,',IZ 1ak$k(x)€ dx £r J m/(z—’ k2 «}eW dx =

= (1- Ha& V\E@M% 2 “tftW; dx,

1 12
(16) J pk(x)dx s J \fil(x)dx = (1 —a2akd = (1 —a22 (k= 1,..., iVa).
[0} [0}
Es sei endlich
K (rAT) (x€(07 1% G))
VieW) : L, (k =1,...,A2,

,ner( n) < *Q - D)

wobei mEcderart bestimmt ist, dal die Funktionen dx(x) normiert sind; dh. es gilt

1
an (l—a)él ipl(x)dx+mka =1 (k =1, ..., N2.
Auf Grund von (9), (16) und (17) folgt:

on = ) 1-1-a220 T g =1 N,
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Die Funktionen ijsi(x),..., gpu2(x) sind offensichtlich Treppenfunktionen, und aus
(14) erhalten wir 1A= {Nt(X)}i€i2(A); weiterhin gilt

; . i
g] Ni -t Ni (,‘Al’l KqJK(X)\\ dx s [ Nlngag(m{k— o adeK(x)\ dx =

= (1-fl) é Nra“ {¥\ 2_ akifk(. » dx.

Daraus erhalten wir
§ B foly  00) ox S lle(l, Wi IT st W22 i

=ylle(l, Nfr x; &, iM5 N2

auf Grund von (7), (10), (11) und (15).
Damit haben wir Hilfssatz VI bewiesen.

Hirtfssatz VII. Es seien 1-=/T<*, a eine Folge und N eine positive ganze
Zahl mit

[la(l, N); K; 1T; 1, Al|2s 128A2|§rr11?n>N N_%i tf.

Dann gibt es ein System VW= {i/k(x)}k(LQ() von Treppenfunktionen mit folgender
Eigenschaft. Es gilt

BV~ [ 2,k k() A yAlIBd,iV); K- A LN\ (XEE),

funsn /

wobei E(Q(Q, 1)) eine einfache Menge ist,fiir die nies Es I/10 besteht.

Beweis des Hilfssatzes VII. Wir gebrauchen eine Idee von B. S. Kasin [1]
(s. noch [2]). Ohne Beschrénkung der Allgemeinheit kénnen wir

l«(l, O; K- A 1, AlI2= 4
voraussetzen. Durch Anwendung des Hilfssatzes VI bekommen wir ein System
= {k(x)}£fi(K) von Treppenfunktionen mit
(18) . max (2- 2 akk(x)\ dx >4;la(l, N); K A 