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ON A PROBLEM OF A. M. ODLYZKO ON
ALGEBRAIC UNITS OF BOUNDED DEGREE

K. GYORY* (Debrecen), corresponding member of the Academy

To Professor K. Tandori on his 70th birthday

1. Introduction

For an algebraic number field K, denote by M(K) the maximal length
m of a sequence (ey,...,6n,)in K such that e; —¢; is a unit for all 7, j with
1 £i< j < m. Here we may assume without loss of generality that £y = 0,
€2 =1 and €3,...,&,, are units. This can be achieved by translation and by
multiplication by a unit. By a theorem of H. W. Lenstra Jr. [5], the number
field K is Euclidean for the norm provided that M(K') exceeds the square
root of the discriminant of K in absolute value times a (number-geometric)
coefficient which depends only on the signature of K. It was also proved in.
[5] that M(K) £ 2lK:Ql, The above-quoted theorem of Lenstra was used by
Lenstra [5], A. Leutbecher and J. Martinet [6], J.-F. Mestre [8] and others to
give several hundred new examples of Euclidean number fields. For related
results and further references, see e.g. (7], [1] and [9].

For given positive integer n, denote by M(n) the maximal number m of
algebraic units ¢q,...,&,, of degree £ n over Q (which can lie in different
number fields) such that ¢; — ¢; is a unit for all distinct 7,5 with 1 < 4,5 <
< m. In a letter in February 1985, A. M. Odlyzko proposed the following
problem: What is the value of M(n)?

Clearly, M(n) 2 M(K) — 1 for all algebraic number fields K of degree n.
In 1985, I was able to prove M(n) < co only. In the proof I needed the use
of the Thue-Siegel-Roth-Schmidt method.

THEOREM. We have
(1) M(n) < expexp{39n(n®"t1)!}.

We shall reduce the problem to n decomposable form equations. Then
an explicit upper bound of ours for the number of solutions of such equa-
tions (cf. [2], [4] and the Lemma in Section 2) will be applied to prove the

" Research supported in p&l‘t by Grant 1641 from the Hungarian National Foundation
g
for Scientific Research.
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2 K. GYORY

Theorem. We note that the proofs in [2] depend, among other things, on
H. P. Schlickewei’s p-adic generalization (cf. [11]) of W. M. Schmidt’s quan-
titative Subspace Theorem [12].

Our explicit bound concerning decomposable form equations has recently
been improved by J. H. Evertse (private communication). Using his improve-
ment, one can prove that

(2) M(n) < exp{36n°"t°}.

Finally, we mention that using Theorem 3 of the author [3], the existence
of M(n) can be proved in the more general situation as well, when the ground
ring Z is replaced by an arbitrary finitely generated and integrally closed
integral domain over Z.

2. Proof of the Theorem

Let K be an algebraic number field of degree k with ring of integers Ok
and unit group Oj. Let F(zo,z;,...,24) (¢ 2 1) be a decomposable form
of degree t with coefficients in Ok, i.e. a homogeneous polynomial which
factorizes into linear factors over a finite extension G of K. Two solutions
z, 2’ of the decomposable form equation

(3) F(zo,21,...,2,) € 0% in z=(z0,...,2,) € O

are called proportional if 2’ = ez for some ¢ € OF%. Let d denote the degree
of the normal closure of G over Q.
To prove our Theorem, we need the following.

LEMMA. Suppose that t > 2q and that any q + 1 linear factors in the
factorization of F are linearly independent. Then equation (3) has at most

(4) (5kd)? K

pairwise non-proportional solutions.

Proor. This is an immediate consequence of Theorem 6 of the author
[4]. Tts proof involves, among other things, an estimate of Schlickewei [10]
for the number of solutions of S-unit equations. 0O

We note that a more general but qualitative version of the Lemma was
proved in 3] over an arbitrary finitely generated integral domain over Z.

REMARK 1. On combining the above-mentioned result of Evertse with
the proof of Theorem 3 of [3], our Lemma can be proved with the bound

(5) (242)".
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Proor ofF THE THEOREM. Let €q,...,¢,, be algebraic units of degree
< n with m = M(n) such that ¢; — ¢; is a unit for all i # j. f m < 2n 41
then we are done. Hence assume that m > 2n+ 1. Consider the number field
K = Q(e1,...,69n41). Its degree, denoted by k, is at most n?"*!. Fach ¢;
with 2 > 2n + 1 is of degree at most n over K. For a given positive integer ¢
with 1 £ ¢ < n, consider those 7 with 2n +1 < 7 £ m for which ¢; is of degree
g over K, and denote by M, the number of i under consideration.
(1) (9)

For each unit ¢; of degree g over K, denote by ¢;"/,...,¢;

the conjugates

of ¢; over K. Then for each j with 1< j<2n 41, ¢; - sgp) is an algebraic
unit for p = 1,...,q. There exist algebraic integers zy;,...%, in K such that

q
H(Ej — Egp)) — Eg- + :clie;’-_l S o
p=1

Further, this product is a unit in K. Putting

2n+1
F(Io,l‘l,...,.’tq) = H (1‘08; +.’l)18§_1 +...+ (L‘q),
3=1

F'is a decomposable form of degree 2n + 1 with coefficients in Og. For each
¢; under consideration, the corresponding tuple (1, zy;,...,24) is a solution
of the equation

(6) FCL 81505038, ) €O 1 (1,z1,...,xq)602‘f1.

We apply now our Lemma to equation (6). Denote by d the degree of
the normal closure over Q of the splitting field of F' over K. We have d < k!.
We notice that if the units ¢; and ¢; are of degree ¢ over K with 2n 4+ 1 <
Si4,9" Sm,i# ¢, then they lead to the same solution (1,z4,...,2,) of (6)
if and only if ¢; and €; are conjugates to each other over K. Hence, by our
Lemma we infer that

M, £ q(5kal)237qd'k6 < expexp{38¢(n*"t1)!}.
This implies that
M(n) < ZM < expexp{39n(n®"t!)!}
g=1

which completes the proof of the Theorem. 0O

REMARK 2. It is clear from the proof that using our Lemma with the
bound (5) in place of (4), we obtain estimate (2) instead of (1).
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Dedicated to Professor Kdroly Tandori on his 70th birthday

1. Introduction

In 1911, S. N. Bernstein in his doctoral dissertation [1] proved the
inequality?

Itnllopn S enlltallogn

where t,, is a trigonometric polynomial of order n.
Three years later, F. Riesz [14] extended the inequality for the LP-norm,
namely, he proved that

(1) 0]l oar) < e(P)nlltnllLopar (1 P < 00).

S. M. Nikolskii [12] proved that if 1 £ p < ¢ £ o0, then

1.1
(2) ”tn”Lq[Zr] < o(p,q)ne q”tn”LP[21r]'

Bernstein and Nikolskii inequalities play an important role in Fourier
analysis and approximation theory, for example in the proofs of converse
and imbedding theorems.

Recently, inequalities of the same type have been established for various
systems of functions.

In this paper we show a close connection between Bernstein- and
Nikolskii-type inequalities. More exactly, we prove that inequalities of the
second type can be deduced from that of the first type. This statement will
be considered also for arbitrary function systems in general function spaces,
such as symmetric spaces.

! Research supported by the Hungarian National Science Foundation under Grant No.
T 4270.

2 Throughout the paper, ¢ denotes an absolute constant and c(z,...) will denote a
constant depending only on variables specified in the brackets.
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6 NGUYEN XUAN KY
2. Main results

We use the usual notation L? = LP(a,b) (

1S pS o0, —00 Sa<b o)
for the Banach space of functions defined on (a,b) wi

ith the norm

: :
WM=HNHWM={/IKMVM} {12 55000
e = Wy = essupl £

z€(a,b

The L, space of 27-periodic functions is denoted by LP[27].
Let F = {fn},—, be alinearly independent system of functions. Let for
A= 11%5) SE

B, i= {Qn = Zakfk: «j. are real numbers} :

k=0

Let {A} = {A, ] o0} be an increasing sequence of positive numbers tending
to 0o. We say that the system F' satisfies a Bernstein-type inequality in LP of
order {A}, in notation F € B(L?,{A}), if F € LP, fi are locally absolutely

continuous on (a,b), fi € L? (k=0,1,...) and the inequality
(3) 12211, £ e(p)Anl|®all,

holds for every ®, € F, (n =0,1,...).
Suppose that for a given pair 1 < p< ¢ < oo, FC LPN LY, and

11
(4) 10nll, < e(p, AR *[|®nll, (®n € Fnyn=0,1,...)

then F is said to satisfy a Nikolskii-type inequality between LP and L? of
order {A}, in notation F € N(LP,L?,{}}).

In the case when the constants ¢(p) in (3) and ¢(p,q) in (4) cannot be
replaced by v, with 3 272, 2 ... 2 v, — 0, we say that inequalities (3)
and (4) are sharp, and then we use the notations F € Bgparp(L?,{A}) and
F € Nharp(LP, L7, {)\}), respectively.

One of the main results of our paper is

THEOREM 1. Let —o0 £ a < b< 0. Let F be a system of functions on
(a,b). Let {\} = {\, 1 oo} be a sequence satisfying

i} c
n+1 nAn

1
(5) /\_ - 2 An £~ /\n+1

Acta Mathematica Hungarica 69, 1995



RELATION BETWEEN BERNSTEIN- AND NIKOLSKII-TYPE INEQUALITIES 7

and for which there ezists a sequence {u;} of natural numbers satisfying dy 2
2 u;i/ui—y 2 dy > 1, such that for any n 2 1

A A

6. L tad
( a) Up — Up—1
or

’\u u ’\u
(6b) n—1 é A n § c n—1

Up—1 Up Up—1
Then

a) If for some 1 <p< oo, F € B(LP,{\}), then F € N(LP,L?%,{\})
for every p < q £ .

b) Assume that the sequence {\} satisfies Conditions (5) and (6.a). If
F € Neharp(LPo, L%, {A}) for some pair 1<py<gSoc, and F €
€ B(LP,{\}), then F € Bgharp( L?,{\}).

REMARK 1. It is easy to see that the sequence, {A} = {n®} (a > 0) sat-
isfies (5). It also satisfies (6.a) (for 0 < a £ 1), and (6.b) (for a 2 1) with

{u; := 2}
The proof of our theorem will be based on two inequalities concerning
the LP-modulus of continuity of functions defined as

0<h<$

b—h
w(f,8), = w(f,6)pp(ap) = sup { / | f(z +h) - z)|pda:}

a

LEMMA 1. Let f € L?(a,b) (1 £ p < 00). Let f* be the decreasing rear-
rangement of f. Then for I' := (0,b — a)

(7) wW(f*50) ey S TW(f,8) L (ap)-

Proor. In the case (a,b) = (0,1) (7) was proved in [9] (see also [4]).
The case of arbitrary finite intervals then can be deduced easily from that
of (0,1). Suppose now that I = (a,b) is an infinite interval. Let J be a finite
interval contained in I. For f € LP(I) let f;(z):= f(z) (zx € J),0 (z €I\
\ /). Denote by fj the decreasing rearrangement of f;. It is easy to see that
forall z € I', f3(z) — f*(z) (J = I). Let J' := (o,]J]),

J'(t)={zeJ:z+te ]}

Acta Mathematica Hungarica 69, 1995



8 NGUYEN XUAN KY

Denote by xg the characteristic function of the set E. Using inequality (7)
for the (finite) interval J, by Fatou’s Lemma we have for 0 < t < §

et "
W(f,8)p(r) 2 liminfw(f, 6 )Leg) 2 Eh.rln_f?f‘”'(fJ’&)LP(J’) 2

To

| . %
z 7llgn_f?f”XJ’(t)Ath”Lp(p) g _“XI’(t)Atf IILp(II)'

-

Hence (7) follows.

LEMMA 2. Let 1Sp<

1fu<oo. Let g€ LP(0,u) be non-
decreasing. Then for any 0 < x § -

[ w(g,t) s 0,u 1
(8) g@)gdm/' 18+ —lgliaony
P

8
—_—~
e
N

ProoF. Introduce h(y) := g(uy) (y € (0,1)). Using [10, (3.3)] we have
for0<y< %

9) h(y)—h( )<c )/w(hzw(m

5

By exchanging y = £, z = £ and observing that

urP

t 1 u |
w h,— = —U.)(g,t) ay GlE é — g |lY u
(M) oy = 340000 9(5) T

we have (8) from (9).

LEMMA 3. Let {u;} be a sequence of positive numbers satisfying dy 2
> ui/ui—y 2 dy > 1. Let ¢(t) 2 0 be a nonincreasing function on [0,00). Let
Y(t) > 0 be a function defined on [1,00) satisfying one of the following two
conditions:

(A) ¥(t)/t is nondecreasing and

Uq Ui-1

(10) ug) ¢ 21 (5,

(B) ¥(t)/t is nonincreasing.

Acta Mathematica Hungarica 69, 1995



RELATION BETWEEN BERNSTEIN- AND NIKOLSKII-TYPE INEQUALITIES 9

Then for any k < | we have

l

v e Y At ym),

i=k upSnluyy

Proor. We prove the lemma in the case when v satisfies Condition A.
The other case can be proved similarly.
By (10) we have

’ L p(ui )
Ni= ) p(u)d(u) S e ) ———Lo(u)u;.
i=k i=k

Then using the property of the sequence {u;} we get

l

Wsey ¥

il

¢(u = u,'_l).

Hence, by the fact that ¢(¢) and t/v(t) are nonincreasing we obtain

[ ¥() Yt ),
N§6/7¢( 6 L wEL Pt

ukfnfu,

ProOOF OoF THEOREM 1. Let f € L? := LP(a,b). Without loss of gener-
ality one can assume that d :=b—a 2 1. Let

En=En(f)yi= jinf |If = ull, (n=0,1,...)

Since F' € (L?,{\A}), using Lemma 3, by a well-known technique of ap-
proximation theory (see e.g. [6, p. 59]) we can prove

1 1 & Akga
— < e >

Now introduce the function

B ifte (5l | (*k=12..)

a(t) = apult) i= {

I fll, for /\1—1 < 1< 00

Acta Mathematica Hungarica 69, 1995



10 NGUYEN XUAN KY

Then, from (5) by (11) we have for 1 S u < d

u

(12) (0, et [ Way (0<r<3).

(a) First we consider the case p < ¢ < oo. Since [|f*||, = || f]|, < o and

f* is nonincreasing, there exists 0 < vg < oo such that f* ( ) £ 1 for z 2 vp.
By this we have for any v 2 v

(13) {T[f"(m)]qdz}_ {/ *(z)] dz+7 }-g

0 0

c {/v[f*(z)]qdz}i {7[f*(r)]pdz};-

0 v

Since the last integral tends to zero when v tends to infinity, there exists
1 £ u < oo such that

(14) {/[f*(z)]qdz} <9 /[f"(z)]qu .
0

0

We now estimate the integral on the right hand side of (14). Using (7) and
(8) one has for 0 < z < %

(15) £(x) < el(p) / i{j“du( 11l

T 12‘l
By (12) and (15), using an inequality of Hardy we get (see e.g. [13, p. 186])

(16) / /()] gc(p){ / [tl‘% / i;ﬁ”dy] dt} 2 £z, <
0 p

0

|-

1

< e(p) { / [t'%w)]"dt} .18

0

'GI“‘

IlfllL,,

Acta Mathematica Hungarica 69, 1995



RELATION BETWEEN BERNSTEIN- AND NIKOLSKII-TYPE INEQUALITIES 11

Let now f = &, € F,,. Then by (11)

[@alls, (3 <t <o0)

9(t) = Ponp(t) £ ;
0 (0 <1< 5 ).

Consequently, by (14) and (16) we have

(17) 1@l = 1€l

Q =

< c(p)2al, / cRad o+

A
An

o
q

ol L

U

1_ L
[®nll, £ c()Ar *||®nll,,-

1
P

Here we have used the assumption ¢ > p.

(b) Let now ¢ = oo. In the case when (a,b) is a finite interval, we get I’ €
€ N(LP,L>,{\}) by taking limit (¢ — o) on both sides of (17). If (a,b) is
infinite, we can argue as follows. Let J C (a,b) be an arbitrary finite interval.
By (17) we have

ii
1®nllLagsy S c(PIAP™ (| @nllLo(a )

Hence, by taking limit (¢ — o), we have

:
||‘I’n||L°°(J) 5 C(P)/\5||‘I’n||Lp(a,b)-

Since J is an arbitrary finite sub-interval of (a,b), the last inequality implies
that F € N(LP,L>,{\}).

We turn to the proof of the sharpness part of our theorem. Suppose that
F ¢ Bgharp( L™, {A}). This means by definition that F' € B( Lo, {u}) with
{1} = {pn} tn = mAnand 11 2922 ... 2 7 — 0. It is easy to see that
the sequence {u} also satisfies conditions (5) and (6.a). Therefore repeating
the technique used in the first part of our proof we get ' € N (L7, L%, {u}),
which is impossible, since F' € Neparp( L7, L%, {A}).

By this we have completed the proof of Theorem 1.

In the case of finite intervals, Theorem 1 can be generalized in the sense
that LP is replaced by an arbitrary symmetric function space containing the
basis function z7. Let us describe exactly this statement. The definition
of symmetric function spaces can be found for example in [5]. Let X be a
symmetric function space on (0,1) having the fundamental function ¢(t) :=

Acta Mathematica Hungarica 69, 1995



12 NGUYEN XUAN KY

=[xl = tr (1 £ p< ). The Lorentz spaces Ly, (1 < p, 7 < 00), de-
fined as the collection of all measurable functions f on (0,1), for which

1 '
£l = {/[x%f*(z)]fdf} <

0

are typical examples for such spaces. Remark that L? = Ly, .

Now we can define the classes B(X,{\}), Bshap(X,{A}),
N(X,L9,{)}) and Ngap(X,L9,{)}), similarly to B(LP,{\}),
Bsharp( LP,{7}) ,N (LP,L?,{\}) and Ngparp( L?, L?,{A}), respectively (L? is
replaced by X everywhere).

The following theorem is true.

THEOREM 2. Let X be a symmetric function space on (0,1) with the

fundamental function 15 (1L p< o). Let {2} = {A, ] oo} be a sequence of
positive numbers satisfying (5) and (6.2) or (6.b). Let F be a function sys-
tem.

(A) If F € B(X,{\}), then for every p< ¢ < oo, F € N(X,L%,{}\}),

while for ¢ = p we have

(18) (1@l < e(p)(log An)7(|®nllx (B € Fry n=1,2,...).

(B) Assume that the sequence {\} satisfies (5) and (6.a). Then, if for
some 1 < p < qo £ 0o F belongs to Nenarp (X, L%, {\}) and B(X,{\}) then
F € Bsharp(Xa {/\}) .

PrOOF. We use the fact that inequalities (7) and (8) remain true if one
replaces w(f,t);, by

w(f,t)x == Oilzgt”)((o,l—h)(I)Ahf(z)” X

(see e.g. [5], [9], [10]).
With this the proof of Theorem 2 in the case p < ¢ £ oo is similar to that
of Theorem 1, while in the case ¢ = p inequality (17) becomes to

1@xll, = ll®zll,

1
= 1 1
< o(p)l|®nllx /t Yty + < [I®allx S c(p)(log An)? ||l x-
: .
Finally, the sharpness part of Theorem 2 is also clear from the proof.

Acta Mathematica Hungarica 69, 1995



RELATION BETWEEN BERNSTEIN- AND NIKOLSKII-TYPE INEQUALITIES 13

3. Application

Although inequalities of Bernstein- and Nikolskii-type have been known
for many special function systems, as an illustration to our results, we con-
sider some examples.

1. Inequality (2) indeed can be deduced from (1) by using Theorem 1.
We may obtain another inequality for trigonometric polynomials between L?
and L, , spaces. Notice that for 1 < p < 00,1 <7 < p< s < oo we have

(19) ” 2 ”p,s g ” ] “p g “ i “p,r'

In order to get a converse inequality of (19) for trigonometric polynomi-
als we shall apply Theorem 2. Let T be the trigonometric system. Since
T € (L”,{n}) (1£p< ), we have by the interpolation theorem T €
€ B(Ly,,{n}) (1<p, r£o0). Now, using Theorem 2 in the case p = ¢
we get

1
(20) lItall, £ c(logn)?itall,, (tn € Tn, 1S p <7< 00).

2. Let P,(f”ﬁ ) be the n-th orthonormal Jacobi polynomial with parame-
ters a,3 2 — 1. Consider the system

I o= {P,(,a'ﬂ)(cosé')(l — cos 0)%(1 + cos 0)§ sin? 6} .

Combining Lemma 14 and Theorem 14 of Nevai [11] we have J €
€ B(L?(0,r),{n}). Hence, by Theorem 1, J € N(LP,L%,{n}) (1<p<
< q £ ).

3. Let

R — { P:(z)x%e_%}:;o

where P2 is the n-th Laguerre polynomial with parameter a 2 0. It follows
from (6), (7) and (8) of [2] that L, € B(LP(0,00),{n}) (1 < p < o). Hence
Lo € N(LP,L?,{n}) (1 £ p < ¢ £ 00). This is a result of Markett [7].

REMARK 2. In general, there is no converse variant of our theorems. A
typical example is the Walsh-system, which satisfies a Nikolskii-type inequal-
ity, but Walsh functions are not locally absolutely continuous on (0,1) (see

3]

Acta Mathematica Hungarica 69, 1995
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ON GRUNBAUM’S PROBLEM ABOUT INNER
ILLUMINATION OF CONVEX BODIES

V. SOLTAN (Chisinau)

Introduction and main results

A set F'C bd K is called by P. Soltan [3] an (inner) illuminating set of
a convex body K C E? (i.e. a compact convex set with nonempty interior)
provided for every point z € bd K there is a point y € F such that = #y
and the open line interval |z, y[ is contained in int K. P. Soltan (see [3], [4])
posed the problem on the least number of points in an illuminating set of a
convex body in E?, and he has proved that this minimum number is at most
d + 1, with d + 1 characterizing simplices.

Due to Griinbaum [1], an illuminating set F of a convex body K C E%is
called primitive if no proper subset of F' illuminates K. Griinbaum [1] (see
also [2], p. 423) suggested the question on the maximum number of points in
a primitive illuminating set of convex bodies in E?. This maximum is easily
shown to be four for d = 2 (cf. [2], p. 423). For d 2 3, even a proof for the
existence of the maximum is lacking. Griinbaum formulated the following
problem.

PrROBLEM 1. Prove that any primitive illuminating set of a convex body
in E4 has at most 2¢ points.

We show in this paper that Problem 1 has a positive answer for the case
d = 3. More exactly, we prove the following assertion.

THEOREM 1. Any primitive illuminating set of a conver body in E® has
at most eight points, and only a convez polytope combinatorially equivalent
to the 3-cube has a primitive illuminating set of eight points (placed at its
vertices).

Based on Theorem 1, one can sharpen Griinbaum’s problem as follows.

PRrOBLEM 1’. Prove that any primitive illuminating set of a convex body
in E4 has at most 2¢ points, and that only a convex polytope combinatorially
equivalent to the d-cube has a primitive illuminating set of 2¢ points (placed
at its vertices).

It is easily seen that a convex polytope P C E® combinatorially equiva-
lent to the 3-cube has a primitive illuminating set of eight points (placed at
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16 V. SOLTAN

its vertices), and any other primitive illuminating set of P has at most seven
points (since a set F' C bd P illuminates P from within if and only if it illu-
minates each vertex of P). Therefore Theorem 1 can be deduced from the
following result.

THEOREM 2. If for a convex body K C E? there is a primitive illuminat-
ing set of at least eight points, then K is a convex polytope combinatorially
equivalent to the 3-cube.

Proof of Theorem 2

We divided the proof of Theorem 2 into a sequence of lemmas. From
now on, a convex body K is assumed to be three-dimensional, i.e., K C E3.
By a face of K we mean any of its two-dimensional faces, and an edge is a
one-dimensional face of K. The abbreviations aff, conv, bd, int, rint, rbd,
and card are used for affine hull, convex hull, boundary, interior, relative
interior, relative boundary (taken in the affine hull), and cardinality, respec-
tively. The notations [z,y], ]z,y[, (z,y), [z,y) mean closed line segment,
open line interval, the line passing through distinct points z, y, and the ray
with apex z passing through y (# z), respectively.

In the sequel F' denotes a primitive illuminating set of K. For any z € F
there is at least one point y € bd K (depending on z) illuminated by z and by
no other point of F. Every such a point y will be called simply illuminated,
and the set of all simply illuminated points (relative to a given set F') will
be denoted by G. Trivially, card G 2 card F. For any point z € bd K, let I,
be the set of all points in bd K illuminated by z.

LEMMA 1. If F has a common point with the relative interior of a face
(or an edge) M of K, then M contains no other point in F.

PRroOOF. Let a point z € F belong to rint M. We claim that I, C I, for
any point 2 € M. Indeed, since z € rint M, there is a point w € M such that
z € |z,w[. In this situation, for any point v € I,, one has ]z, v[C int K, i.e.,
v € I.

Now, if M contained a point y € F distinct from z, then, by the above,
F\ {y} would be an illuminating set of K, which is impossible by the choice
of F. Hence M contains no other point in F. O

LEMMA 2. Any face of K contains at most four points in F. If a face
M of K contains four points in F, then M is a convex quadrangle and the
points lie at the vertices of M.

PROOF. Assume that a face M of K contains at least four points in F.
By Lemma 1, all these lie in rbd M. Enumerate by z1, z2, 23, 24 some four of
them according to an orientation of the relative boundary of M. By Lemma
1, no three of these four points are collinear. Denote by y1, ¥2, ¥3, y4 simply
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ON GRUNBAUM’S PROBLEM ABOUT INNER ILLUMINATION OF CONVEX BODIES 17

illuminated points of bd K corresponding to 1, &9, 3, 24, respectively. Triv-
ially, none of yy, y2, y3, y4 lies in M. Since y, is illuminated by none of z,,
r3, T4, the segments [z, y1], (23, ¥1], [24, ¥1] lie in bd K'; so do the segments
[z1,Y2], [23,92], [z4,y2]. If y2 belonged to the open part N of bd K bounded
by the segments [z2, 1], [z4,91], and the arc zoz3z4 of rbd M disjoint to
{21}, then 2, would illuminate y,. If y, belonged to [z4,y1] U [z4,¥1], say to
22,11, then 21, y1, y2 would lie in a common face of K and [zq,y;] C bd K,
which is impossible. Similarly, if y, belonged to the ray [z3,y;) with apex
x3 passing through y;, but not to N, then [z;,y,] would lie in bd K because
of the inclusion [z3,y;] C bd K. Hence yo € N U [z2,11] U [z4, 11] U [z3, 11).

Now consider the intervals |zo, 91, |23, y2[, and Jz4,y1[. By the above,
all these lie in bd K, and ]23, y,[ intersects one of |24, y1(, |24, v1[. If |23, %2
intersected |zg,y1[, then zo, z3, y1, y2 would lie in a face of K. Since z,
illuminates y,, the last is impossible. Hence ]z3,y;[ intersects the interval
|24, y1[. Thus z3, 4, y1, y2 belong to a face of K. In this case the segment
(23, z4] belongs to two faces of K, and hence lies in an edge.

Similarly, each of the sets

{zl, T2, Y3, y4}, {$1, T4,Y2, ya}, {wz,zs, Y1, Il/4}

determines a face of K. Therefore M is a convex quadrangle with the vertices
:cfl ,I;:g, x3, r4. Note that [zq,ys3], [z2,v4], [z3,¥1], and [z4, y2] belong to edges
of K.

Observe that M contains no other point in F. Indeed, if 2 € M were
some other point in F, then 2z would belong to the relative interior of M or
of one of its edges, say [z;,22]. In both cases (see Lemma 1), the set F\
\ {21} also illuminates K, which is impossible. Now the proof of Lemma 2
follows easily. O

LEMMA 3. If there is a point in G which is not extreme for K, then
card F £ 7.

PROOF. Assume first that a simply illuminated point y € G lies in the
relative interior of a face M of K. Denote by z the point in F illuminating
y. Since [y,z] C bd K for any point z € F'\ {z}, the set F'\ {z} lies in M.
By Lemma 2, M contains at most four points in F, i.e. card (F\ {z}) < 4.
Thus card F £ 5.

Now assume that a simply illuminated point y € G lies in the interior of
an edge [a,b] of K, and let z be the point in F simply illuminating y. If [a, b]
does not belong to any face of K, then F'\ {z} lies in [a,b] and, by Lemma
1, card (F \ {z}) £ 2,i.e., card F < 3.

If [a,b] is an edge of exactly one face M of K, then F'\ {z} lies in M and,
by Lemma 2, there are at most four points in F'\ {z}. Hence card F < 5.

Let [a,b] be in two distinct faces My, My of K. As above, the set F'\ {z}
lies in My U Mj. If each of M;, M, contains at most three points in F'\ {z},
then card F < 7. Let M; contain four points in F'\ {z}. By Lemma 2, M,
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18 V. SOLTAN

is a convex quadrangle, and its vertices a,b belong to F'\ {z}. In this case
M, \ M, contains at most two points in F'\ {z}, and hence card F £ 7. O

LEMMA 4. If a face of K contains four points in F, then card F < 8,
with card F = 8 only if K is a convez polytope combinatorially equivalent to
the 3-cube.

PRoOOF. Let a face M of K contain four points z1, 29, 23, 4 in F, and let
Y1, Y2, Y3, Ya be points in bd K, simply illuminated by z,, z, z3, 24, respec-
tively. Due to the proof of Lemma 2, the face M is a convex quadrilateral
with the vertices 1, 9, *3, 24, and the line segments

(1) (21, 93], [Z2,v4)s [Z3, 0], [1'4, yz]

belong to edges of K.
Furthermore, there are also four faces of K, namely,

@ My = K naff (21,22,y3,y4), Mz = K Naff (29, 23,y1,Y4),
M3 = K Naff (z3,24,%1,92), M4 = K Naff (21,24, y2,y3)-

Assume first that z;, =9, 23, 4 do not illuminate the whole set bd K \
\ M. Then the set, say Z, of all points in bd K\ M which are not illuminated
by {z1,%2, 3,24} coincides with one of the sets M; N M3, M, N My. Hence
Z is either a point or a line segment.

If Z is a point, and a point z5 € F illuminates Z, then z5 does not belong
to M (by Lemma 1) and to any of the lines spanned by segments (1). In
this case z5 illuminates two of the points z1, 29, 3, z4. Since the other two
vertices of M are illuminated by at most two points of F, say zg, 7, and M
is illuminated by x5, ¢, 27, one has card F < 7.

Let Z be a line segment. If Z is illuminated by a point of F', then, as
above, card F' £ 7. Suppose that Z is illuminated by two points of F, say
rs, zg. It is easily seen that in this case z5 and zg illuminate the whole M,
and hence card F' < 6.

Suppose now that z1, z9, 23, ¥4 illuminate the whole set bd K\ M. Since
M is illuminated by points of F' if and only if each of the vertices z;, z3,
T3, T4 is illuminated by a point of F', the whole face M is illuminated by at
most four points of F. Thus card F < 8.

Assume that card F' = 8, and let x5, z¢, 27, g be the other points in F.
By the above considerations, these new points belong, respectively, to the
lines spanned by segments (1). Let

z5 € (21,¥3), T6 € (T2,Y4), T7 € (T3,Y1), 8 € (24, y2).

Since y1, Y2, ¥3, Y4 are simply illuminated, both segments [z5,¥;1] and [zg, ¥2)
lie in bd K. The last is possible only if =5, zg, y1, y, are the respective end
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ON GRUNBAUM’'S PROBLEM ABOUT INNER ILLUMINATION OF CONVEX BODIES 19

points of the edges

Kn (x13y3>a Kn ($23y4>7 Kn (zB,yl)a Kn (374,?12),

and x5, zg, Y1, Y2 lie in a face of K. Hence

KN (z1,y3) = [21,25], K N(x2,ys) = [T2,T6],
K N (.’L‘g, yl) = [.’l‘3, yl.]$ Kn <.’E4, y2> = [.’t4, Z/z]

Similarly, considering [z7, y3], [*s, y4], we have

Kn <zl7 y3) E= [z17y3]7 Kn (3)2, y4) = [$2»y4]’
KN {(z3, ) = [z3,27]), KN {z4,y2) = [24, T5).

Hence x5 = y3, ¢ = Y4, 7 = Y1, 3 = y2. Therefore K is a convex polytope
combinatorially equivalent to the 3-cube and F is its vertex-set. O

The proofs of the following three assertions are similar to those of Lem-
mas 1-3.

LEMMA 5. If a point x € G is simply illuminated by a point z € F' and
belongs to the relative interior of a face (or of an edge) M of K, then M
contains no point in G simply illuminated by a point of F\{z}. O

LEMMA 6. Any face of K contains at most four points in G correspond-
ing to distinct points in F. If a face M of K contains four points in G
corresponding to distinct points in F', then M is a convex quadrangle and the
points of G lie at the vertices of M. O

LEMMA 7. If a point in F is not extreme for K, thencard F £ 7. 0O

LEMMA 8. If a face of K contains four points in G corresponding to
distinct points in F, then card F < 8, with card F = 8 only if K is a conver
polytope combinatorially equivalent to the 3-cube.

PRroOOF. Let a face M of K contain four points z1, 24, 3, 24 in GG simply
illuminated by different points yy,y2,y3,ys4 € F, respectively. Due to Lemma
6, the face M is a convex quadrilateral with the vertices z, z,, z3, 24, and
the sets (2) are faces of K (see the proof of Lemma 2). In particular, the line
segments (1) belong to edges of K. If at least one of the points y1, y2, y3, ¥4
is not extreme for K, then card F < 7 (see Lemma 7). Assume that all
Y1, Y2, Y3, Ys are extreme points of K. Then the segments (1) are edges of
K. In this case, as easily seen, any point y € bd K not in

M U [21,y3] U [22,y4) U [23, 41] U [24, ¥2]
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20 V. SOLTAN

illuminates at least one of 1, 3, z3, z4. This implies (since z, z;, 23, 74
are simply illuminated by y1, ¥, ¥3, Y4, respectively) that any point y € F'\
\ {v1,¥2, Y3, ¥4}, if exists, lies in M. By Lemma 2, M contains at most four
points in F, and hence card F < 8.

Now consider the case card F' = 8. By the above, card F' = 8 implies that
the points ys, ye, y7,ys € F are the vertices of M, i.e.

{-"?1, T2,T3, $4} = {ys, Ye, Y7, ys}-

By Lemma 4, K is a convex polytope combinatorially equivalent to the
3-cube. O

LEMMA 9. Let N C E3 be a convez body and X be a set of at least seven
points in bd N such that no four of them lie in a face of N. Then there are
two points x,y € X such that |z, y[C int N.

Proor. Proof of the lemma is based on the following result by
Zamfirescu [5]: if a convex body S C E? is neither a bounded cone nor a
convex polytope combinatorially equivalent to the triangular prism, then
there are two distinct extreme points z, y of S such that ]z, y[C int S.

Choose in X any subset Y of seven points and put P = convY. If P con-
tains a pair z, y of vertices with ]z, y[C int P, then z,y € X and ]z, y[C int N.
Assume that P has no such pair of vertices. Since P is not combinatorially
equivalent to the triangular prism, it must be a bounded cone. By the hy-
pothesis, the base of P intersects int N. Then any diagonal [z, y] of this base
satisfies the inclusion Jz,y[C int N. O

The following lemma, together with Lemmas 4 and 8, gives a final point
in the proof of Theorem 2.

LEMMA 10. If F has at least eight points, then there is a face of K con-
taining four points in F or four points in G corresponding to distinct points
in F.

PROOF. Assume, in order to obtain a contradiction, that no face of K
contains four points in F or four points in G corresponding to distinct points
in F. Due to Lemmas 3 and 7, each point in F'U G is extreme for K. By
Lemma 9, there is a pair of points y;,y; € G such that ]y, yo[C int K. We
will consider each of the following cases: 1) both y;, y, belong to F, 2) y; €
€ F and y2 ¢ F, 3) none of y;, y; belongs to F.

1) Let y1,y2 € F. Due to the hypothesis card F' 2 8, there are some other
six points, say zs,..., g, in F. Since y;, y7 illuminate each other, none of
r3,...,zg illuminates any of y;, yo. In other words, each of z3,...,zg is
connected with both y;, y; by line segments lying in bd K. Let y3 be a point
in bd K simply illuminated by z3.

Assume first that y3 € F. Without loss of generality, one can put y3 =
= 2g. Then each of z4, z5, z¢, x7 is connected with y3 by line segments
lying in bd K. Suppose that z4,...,zg are enumerated in correspondence
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ON GRUNBAUM’S PROBLEM ABOUT INNER ILLUMINATION OF CONVEX BODIES 21

with a bypass of the surface of K around the line (y1,y2). (Since each of
z3,...,zg is connected with both y;, y2 by line segments lying in bd K, no
four points of the form z;, z;, y1, y; lie in a common half-plane with bound-
ary line (y1,2).) In this case y3 lies in the open part of bd K bounded by
the segments [z4, 11], [z4, ¥2], [27, 1], [%7, y2] such that z5, z¢ lie outside it.
Since the segment [z5,ys] lies in bd K, it intersects the simple closed polygo-
nial curve y; x4y227y1. We know that all of x4, 27, 31, ¥2 are extreme points
for K. Hence [z5,ys] intersects one of the open intervals |z4,y1(, |24, 2/,
127,91, Jz7, y2[ . Let [zs5,ys] intersect e.g. |z4,91[. Then z4, 5, y1, y3 are
four points in F' lying in a common face of K, which is impossible by the
hypothesis.

Hence y3 ¢ F. As above, we suppose that ys lies in the open part of bd K
bounded by the segments [z4, 41], [24, ¥2], (s, ¥1], [2s, 2] and not containing
Ts, Tg, T7, Where z4,...,2g are enumerated according to a bypass of bd K
around the line (y;,y;). Then zg and y3 lie in different open parts of bd K
determined by the closed simple polygonal curve I' = y, 25922791 .

Since y3 is simply illuminated by z3, it is connected with each of z4,...,zs
by line segments lying in bd K. As above, ]zg, y3[ intersects I' and contains
none of x4, =5, z7, zg. Hence [zg, y3] intersects one of the open line intervals
lzs,v1l, l2s, v2[ s ]2z, m1[, Jo7, y2[ . If [z6, y3] intersected ]z, yy[, then it would
intersect one of Jz4, y1[, ]z4, ¥2[, and four points z4, 5, ze, Y1 or four points
T4, Ts, Tg, y2 of F would lie in a common face of K, contradicting the hy-
pothesis. Similarly, [z¢,y3] cannot intersect any of |zs, y2[ , 27, n1[, |Z7, ¥2 -
The obtained contradiction shows that the case y;, yo € F is impossible.

2) y1 € F and yo € F. Then there are some other points zo,...,28 €
€ F. Since y; is illuminated by y, it is simply illuminated by y;. Without
loss of generality, one can assume that zg simply illuminates y;. Denote by
Y5 a point in bd K simply illuminated by z5. Under these conditions, each
of z3, x4, ©5, ¢, ¢7 is connected with both y;, y; by line segments lying
in bd K, and zg is connected with both y,, ¥} by line segments in bd K.
Assume also that z3,...,27 are enumerated in correspondence with a bypass
of the surface of K around the line (y;,y3).

Suppose first that y; € F. Since zg illuminates y;, one has y) # zg (oth-
erwise y; would illuminate y5, which is impossible due to the assumption that
zy illuminates y) simply). Also y} # y1, zo. Hence 9} € {z3,...,27}. Let,
for example, y5 = z7. Then y)} belongs to the open part of bd K bounded
by the segments [z3,y1], [z3, ¥2], [z6, ¥1], [Z6, y2] such that z4, z5 lie outside
it. Since no face of K contains four points in F, none of the open intervals
|z3,y1(, ]z6, y1[ intersects at least one of the segments (4, ¥5], [z5,y5], and
none of 3, ys[, |, y2[ intersects both [z4,y}], [z5,y5]. Let, for example,
[1?4, y2] intersect ]503,3/2[ and [175, y2] intersect izﬁa y2[ Then T3, T4, Y2, yév
and x5, 6, Y2, ¥, lie in common faces of K, respectively.
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Now consider the point zg. Since no face of K contains four points in F,
none of the faces

Ml =K N aff(x3,:1:4, Y2, y;)v M2 =K N aﬂ(x5, Te, y2’y;)

contains any of zg, y;. By the same arguments, the segment [zg, y5] (which
lies in bd K') cannot intersect at least one of the open intervals ]z, y[,
lza, [, ]zs, v1[, Jze, y1[. Therefore the open interval |zg, y5[ is disjoint to
the simple closed polygonal curves yyz3yhzeyr, y124y425y1, lying in bd K.
Similarly, the open interval |y, 5[ is disjoint to the same polygonal curves.
Moreover, the path [zs, y5] U [y5, y2] crosses each of these polygonal curves
at yy. Hence xg and y; lie in different open parts of bd K bounded by any
of these polygons. If [zg,y2] C bd K, then ]zg, y;[ intersects some open side
of any of these polygons, and thus zg and the end points of these sides are
at least four points of F' lying in a face of K. If ]zg, y2[C int K, we get a
contradiction, since y; simply illuminates ys,.

Hence y} ¢ F. As above, we may suppose that yj lies in the open part of
bd K bounded by the segments [z3,y1], [3,¥2], [7, 1], [27, y2] and not con-
taining z4, =5, T¢, where z3,..., 27 are enumerated in correspondence with
a bypass of bd K around the line (y;,y,). Similarly to the above, [z4, y5]
intersects none of |z7,y1[, Jz7,y2[, and [z¢,y)] intersects none of |zz, yi[,
|z3, y2[ (otherwise either z4, x5, x¢, T7 OF 23, 4, 5, ¢ Would lie in a face
of K). Hence [z4,y5] intersects one of |zs, y1[, |z3,y2[, and [zs, y5] inter-
sects one of Jz7,y1[, |z7,y2[. Since [z5,y)] lies in bd K, and since x5, yj
belong to distinct open parts of bd K determined by the closed polygonal
curve Yy, T4Y2TeY;, the segment [z5, y5] intersects one of the intervals |z4, y1],
]1‘4, y2[ ’ ]7:6’ yl[ ’ ]IE(;, yZ[ >

We observe that [z5,y}] cannot intersect |a4,y1[U )24, yo[ if [24,9)] has
a common point with |z3,y;[. Indeed, if [z5,y5] intersected either |z4,yi|
or |z4, o[ (and thus intersected one of the intervals |z, v1[, |23, y2[ ), then
four points z3, x4, x5, y; in F would lie in a common face of K. By the
same arguments, [z5,y5] cannot intersect |24, y;[ (and hence cannot intersect
lzs, y1[) if [z4,y5] intersects |zs, yo[. Similarly, [zs5,y5] does not intersect
|z, y1[ Uzs, y2[ if [z6, ¥4 has a common point with Jz7, %[, and [z5,y5] does
not intersect |zg, yy[ if (26, y5] intersects |z7, yol.

Summing up, one has (up to symmetry) two possible cases: a) [z4, y5]
intersects |x3,y2[, [¢s5, y5] intersects |z4,yo[, and [ze, yy] intersects |z7,y1[;
b) [z4,y5) intersects |xs, y2[, [¢5,y5] intersects |z4, y2[, and [zg, y5] intersects
Jz7,y2[. Consider each of these cases separately.

a) Let yg be a point in bd K simply illuminated by zg. We claim that
there is no suitable position for yg in bd K. Indeed, y¢ cannot belong to
the face Ny = K Naff(z x7,v1,v5), since otherwise [zg,ys] C bd K. Simi-
larly, [z7,ys] cannot intersect |zg, y2[. If ye belonged to the face Ny = K N
N aff (23, 24, 25,92, ¥5), then as easily seen, [y1,ys] would intersect ]zg, yof .
Hence yg may belong either to the open part P; of bd K bounded by the line
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segments (g, ¥2|, [¢7,y2] and the arc zgz7 of rbd Ny which does not contain
Y1, or to the open part P; of bd K bounded by the line segments [z7,y3],
[y2,y5) and the arc z7y} on rbd N, which does not contain y;. In each case
ye is illuminated by y;, which is impossible by the hypothesis.

b) Let yg, y7 be points in bd K simply illuminated by z¢, x7, respec-
tively. As in a), ys can lie only in the open part @) of bd K bounded by
[z3,%1], [24,%1] and the arc z3z4 of rbd Ny which does not contain y,. Simi-
larly, y7 can belong only to the open part of bd K bounded by [z4,v1], [z5,v1]
and the arc 2425 of rbd N, which does not contain y;. Since y7 is not illumi-
nated by z3, one has [z3,y7] C bd K and hence |23, y7[N]z4, y1[# 0. Therefore
z3, T4, Y1, Y7 lie in a common face of A, and ¢ coincides with the interior
of the plane triangle A(z3,z4,%;) C bd K. The last is impossible since the
point ys € () is extreme for K (see Lemma 3).

3) None of y, y; belongs to F. Let 21, x5 illuminate y;, o, respectively,
and let y3 be a point in G simply illuminated by z3.

Assume first that y; € F.. Without loss of generality, one can put y3 =
= xg. Then each of z4, 5, g, x7 is connected with y3 by line segments lying
in bd K. Suppose that z4,...,23 are enumerated in correspondence with a
bypass of the surface of K around the line (y;,y2). In this case y3 lies in the
open part of bd K bounded by the segments [z4,91], [24,¥2], [27, 01], [27, ¥2],
which contains none of z5, z¢. By considerations similar to the above ones,
both segments [z5, y3], [z6, y3] cannot intersect one of the intervals Jz4, y;[,
14, y2], J27,%1[, |27, y2[, and cannot intersect either each of Jz4, ¥1[, |24, y2[
or each of Jz7,y1[, Jz7, y2[. (If, for instance, [z5,ys] intersected ]z, y;[ and
(6, ys] intersected |z4,yo[, then either z5 would illuminate y, or z¢ would
illuminate y;.) We can consider (up to symmetry) that [z5, y3] intersects e.g.
x4, y2[, and [z6, y3] intersects one of Jz7, y1[, Jz7, yo| -

a) Let [zg,ys3] intersect ]z7,y;[. Consider the point z;. It cannot belong
to any of the faces

Ll =KnN aff(174,$5,y2, y3)a L2 =KnN aﬂ(me,x7, Yo, y3)7

because otherwise there would be four points in F' lying in a common face of
K. If [z1,ys3] intersected ]z4,y1[, then [21,y2] would intersect [z5,y;] (due to
the inclusion [z1,y2] C bd K), and 24, 5, y1, y2 would lie in a common face
of K, which is impossible by ]y;,y2[C int K. Similarly, [zq, y3] cannot inter-
sect Jz7,y1[. Thus z; lies in the open part of bd K bounded by the segments
(z4,91], [x7, 1] and the arcs z42g, 2728 of rbd Ly, rbd L, respectively, both
disjoint to yo. But in this case z; illuminates ys, which is impossible by the
choice of ys,.

b) Let [zg, y3] intersect |z7,y;[. Similarly to a), z; does not belong to
any of the faces

Rl =Kn aff(zu;, xSay27y3)a R2 =K n~aﬁ‘($67z77y11y3)7
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and [z1,y3] cannot intersect one of the intervals |z4, y1[, Jz7,y2[. If 21 be-
longed to the open part of bd K bounded by the polygonal curve y;z4y3y;
and not containing y,, then z; would illuminate y,. Hence z; belongs to
the open part H; of bd K bounded by the polygonal curve ysys3z7y2 and not
containing yj.

By the same arguments, z, belongs to the open part H; of bd K bounded
by the polygonal curve y;24y3y1 and not containing y,. Therefore both H,
and H, are not open plane triangles lying in bd K.

Let ys be a point in bd K simply illuminated by z5. If y5 belonged to
one of the faces Ry, Ry, then ys would be illuminated by both z;, 5. Since
(y3,ys] (= [zs,ys]) lies in bd K, and since Hy and H, are not planar trian-
gular regions in bd K, [ys, ys] cannot intersect any of the intervals |z4,9[,
Jz7,y2[. Let, for example, ys € Hy. The last is possible only if [z2,y5] C
C bd K, because x5 does not illuminate ys. But in this case (since each of
T, ys does not belong to one of the faces Ry, R;), [x2,ys] passes through
y3, which contradicts the inclusion y3 € extK.

Hence y3 ¢ F. As above, we suppose that the points z4,...,7g are enu-
merated in correspondence with a bypass of bd K around the line (y;,2), and
let y3 be in the open part of bd K bounded by the segments [z4,91], [24,¥2],
[zs, 1], [zs, ¥2], such that x5, 6, z7 lie outside it. By considerations simi-
lar to the above ones, we conclude that each of the segments [z5,y3], [zs, ¥3],
[27,y3] intersects one of the open intervals Jz4, y1[, J24, y2[, |28, 11[, 28, 2| -
Moreover, [z¢, y3] cannot intersect |5, y;[ if [z5, y3] intersects |z4, y3—;[, where
i = 1,2. (If, for example, [z5,y3] intersected |4, y1[ and [z¢, y3] intersected
|zs,y2[ , then z4, x5, z6, y1, Y2, Y3 would lie in a common face of K, which is
impossible because of the inclusion ]y, y2[C int K.) Similarly, [ze, y3] cannot
intersect |z7, yi[ if [z7, y3] intersects ]zg, y3—i[ , where i = 1, 2.

Due to these arguments, we can conclude that up to symmetry there are
two possibilities for positions of the segments [zs,y3], [6, y3], [27,y3): two
of them, say [zs,y3], [z6, 3], intersect the interval |z4, yo[ such that [z, ys3)]
intersects |zs, y2[ , and [z7, y3] intersects either ]zg, y1[ or |zs, y2 .

c) Let [z7,ys] intersect ]zs,y:1[. We claim that a point y7 simply il-
luminated by z7 belongs to the open part N of bd K bounded by the
polygonal curve y,y3zsyz, not containing y; and lies in the face T) =
= K Naff (z4,25,92,y3). Indeed, if y; belonged to the face T, = KN
Naff (z7, s, ¥1,93), then [z7,y7] C bd K, which is impossible. If y7 belonged
to the open part of bd K bounded by the polygonal curve y;y3z4y; and not
containing y,, then, due to [zg,y7] C bd K, y; would belong to the face T,
which is impossible by the above. Similarly, if y7 belonged to the open part
of bd K bounded by the line segments [z4,y;], [2s,y:] and the boundary
arcs 47526y and y;x7zg of the faces Ty and T}, respectively, and not con-
taining y3, then due to the inclusion [z5, y7]U[zs,y7] C bd K, we would obtain
[z7,y7] C bd K. Hence y; € N. Since [z5,y7] C bd K, one has y; € T}.
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Now consider the point ;. We claim that z; € N. Since T still con-
tains three points in F, one has z1 ¢ T;. If [z1, y3] intersected |z4,y;[, then
r1, T4, Y1, Y2 would lie in a common face of K, which is impossible by
|z1,y1[C int K. If z; belonged to the face T,, then [z;,1] C bd K. If x4
belonged to the open part of bd K bounded by the polygonal curve y,ysz4y;
and not containing y,, then z; would illuminate y,. If [z1,ys] intersected
|zs, y2[ , then 2y, zg, Y2, y3 would lie in a common face of K and N would
be a plane open triangle, which is impossible, since y7 is an extreme point of
K lying in N. Hence z; € N.

It remains to determine the position of yg in bd K. Since [z1,ys] lies
in bd K and cannot intersect any of the intervals |zg, y3[, |zs, y3[ (otherwise
[zs,ys] C bd K), and since z, cannot lie in T}, ys belongs to N. Since [z, ys]
lies in bd K, ys belongs to the face T7. But in this case T; contains four
points y2, Y3, y7, ys in G, which is impossible by the assumption.

d) Let [27,ys] intersect |zg,yo[. Consider the points z;, z;. Since the
face Vi = K Naff (24,25, 26, y2,y3) contains three points in F, none of z, z,
belongs to V;. Similarly, the face V, = K Naff (z7,zs,y2, y3) contains at most
one of z1, ;. Let, for example, 2y € V,. If [z1,y3] intersected one of the
intervals |z4, 91[, |28, ¥1[, then either zq, z7, y1, y2 or z1, T¢, ¥1, y2 wWould
lie in a common face of K, which is impossible by ]y;,y2[C int K. Hence z;
belongs to the open part of bd K" bounded by the segments [z4,11], [zs, 11],
and by the boundary arcs z4ys3, zgys of the faces Vj, V3, respectively, and
not containing y,. But in this case z; illuminates y;, a contradiction. O
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MINIMAX OF THE ANGLES IN A PLANE
CONFIGURATION OF POINTS

Bl. SENDOV (Sofia)

1. Introduction

More than half a century ago L. M. Blumenthal [1] has formulated the
problem of finding the largest number a(N) such that any plane configu-

ration of N points contains three points determining an angle 3 2 a(N);
D& =
It is easy to see that:

a(3) = éw, a(4) = %7[‘, a(5) = gw, al8) = a(7) =a(8) = gﬂ'.

In [8] it is proved that:
5 3
a(9) = a(10) = = of11) =a(l12) = ... = a(lb) = e

In this paper we shall prove that:

(1.1) a(N):{l— }7r for "< N L9 42v2

2n+1
and
{1:2) (1(N):{1—%_H}7r for %490 % ¢ NS,

In G. Szekeres [9] and in P. Erdés and G. Szekeres [4] it is proved that
a2)=(1-1/n)r

and that
a(2"+1)>(1-1/n)r.

P. Erd6s and G. Szekeres have conjectured first in [4] that (1.2) is true for
2" < N < 2"+t After I recently conjectured (1.1) and (1.2), P. Erdés asked
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28 Bl. SENDOV

me in a personal letter if the different values of a(N) for 2"~! < N < 2™ were
at all limited in number.

To prove (1.1) and (1.2), we introduce the so called generalized plane
configurations of points. These generalized configurations have extreme ele-
ments for which a(N) is achieved. This is not valid for the ordinary plane
configurations of points for more than 6 points.

The technics of the generalized plane configurations of points may be
successfully used also in three and more dimensional spaces.

Let a,,(N) be the largest number such that in any configuration of N
points in the m-dimensional Euclidean space there are three points deter-
mining an angle 8 2 a,(N); 0 < 3 < .

Until now very little is known for the exact values of a,,(N). It is trivial
that

am(m+1)=m/3.

Following a conjecture of P. Erdés and Szekeres [4], L. Danzer and B.
Griinbaum [3] proved that

ol 2" ) = ]2

The problem of determining the values of a,,(N) for m > 2 is difficult
even for small N. For example, it is possible to calculate directly that

Il
7/3 < as(5) = arccos 7 <m/2.

One has
a3(6) = az(7) = m/2

by H. T. Croft [2]; a simpler proof is in K. Schiitte [6]. B. Griinbaum [5]
proved a more general statement. Namely, as observed by Danzer—Griinbaum
[3], a set determining only acute angles is strictly antipodal, and Griinbaum
[5] showed that in R a strictly antipodal set has at most 5 elements. (X C
C RY is strictly antipodal if for z # y € X the convex hull of X has two
different parallel supporting hyperplanes, one intersecting X in z, the other
one in y.)

2. Generalized plane configurations of points

We shall consider sets of finite number of points on the plane in general
position (no three points are collinear). To emphasize this, we shall use the
notion plane configuration of points.

DEFINITION 2.1. Let C = {cl(ol,rl),q(oz,rg),...,cM(oM,rM)} be a
set of circles on the plane with centers o; and radii ;. C is a semi ordered
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set if the circles of C' have disjoint circumferences and some circles may be
inside another circles. A circle from C is of range 1 if it is not inside any
other circle. A circle from C is of range k if the highest range of the circle
in which it is contained is k — 1. A circle which does not contain any other
circle is called a primitive circle. A semi ordered set of circles in which no
three centers are collinear is called a plane configuration of circles.

Fig. 1

In Fig. 1, a semi-ordered set of circles is given. The circles with the
centers 01, 02,03 are of range 1. The circles with the centers o4, 05, 0g, 07, 08
are of range 2 and these with centers 03,07, 08,09, ..., 015 are primitive.

DEFINITION 2.2. A set V = {P,C} = {p1,p2,...,PN; €1,C2,...,Cpr} Of
a plane configuration of N = |P| points and a plane configuration of M =
= |C| 2 N circles is called a generalized plane configuration of points, or
shortly GC, if:

a) Every point of P coincides with the center of a primitive circle of C.
A point is of range k if it is a center of a primitive circle of range k.

b) The circles of range 1 in P are two or more.

c¢) Every non primitive circle of C' contains two or more circles.

It is obvious that the content of every non primitive circle from a GC
(the points from P and the circles from C inside this circle) is also a GC.

In Fig. 1 a GC with 10 points and 15 circles is represented. The content
of the circle with center o, on Fig. 1is a GC with 7 points and 10 circles.

We may consider every plane configuration of N 2 2 points as a GC with
an equal number of points and circles, with all circles being primitive.

DEFINITION 2.3. Let p and ¢ be two points in the GCV = {P,C}, o(p; q)
be the center of the circle of the lowest range containing p and not containing
g, and o(g; p) be the center of the circle of the lowest range containing ¢ and
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not containing p. The generalized direction GD(pq) from p to ¢ is defined as
the direction of the vector o(p; q)o(g; p) or

GD(pq) = G(pq) = D(o(p; 9)o(g;p)).

In Fig. 1 o(pa4;p2) = 01, 0(p2; pa) = 02 and GD(p2ps) = D(0201).
DEFINITION 2.4. Let V = {P,C} and V' = {P',C'} be two GC’s with

equal number of points. We call V and V' equivalent, V ~ V' if there exists
a correspondence p; = p. between the points P and P’ such that for every
i,j the directions G(p;, p;) and G(p}, p};) coincide.

For two equivalent GC’s V and V' we shall use notation p; = pl; i =

=1,2,...,N.

DEFINITION 2.5. Every three points p,q,r, taken in this order, define
an angle A(p,q,r) < . We define the generalized angle GA(p, q,r) between
these points in a GC as the angle € [0,7) between the two directions G(gp)
and G(gr). Every two lines [ and [* define an angle 0 < A(/,[*) < 7, mea-
sured in positive direction from [ to [*.

In Flg 1 GA(pg,]L;,pg) = A(0102,0406).

DEFINITION 2.6. A(P) is the maximal angle in a plane configuration
of points P. GA(V) = GA({P,C}) is the maximal generalized angle in a
generalized plane configuration of points V = {P,C}.

The following lemma is obvious.

LemMma 2.1. If
V={PC}=V'={P,C"Y, pqreC and p,¢,7 e’
are the corresponding points, then
GA(p,q,7) = GA(p',¢',7")

and

GA({P,C}) = GA({P'C"}).

DEFINITION 2.7. Let dk({P,C}) be the smallest distance between two
centers of the circles of range k in the GC V = {P,C}. The GC V is h-
normal, 0 < h < %, if d;({P,C}) =1 and all circles in C' of range k have
radii 7(k) = hdy ({P,C}).

LEMMA 2.2. Let V = {P,C} be a GC. For every 0 < h < } there exists
an h-normal GC V(h) equivalent to V.

Proorv. It is obvious that for every three numbers ¢t > 0, a, b, the trans-
formation of the plane

E=tz+a, n=ty+b,
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transforms a GC into an equivalent GC. Let
{PW,cMY = {P,C} and d;({PV,cM}) =1.

In the first step we take a circle ¢;(o;,7;) of range 1 from C(!) and apply
to the content of this circle the transformation

E=h(z—z)/rit+zi, n=h(y—y)/rit+ ¥,

where o; = (z;,¥;). This transformation does not change any generalized di-
rection determined by the points of P(!). If we apply this transformation to
all circles of range 1 in C(1), we shall construct a GC

{P(2),C(2)} = {P(l),C(I)} ={P,C}

such that the lemma is fulfilled for k£ = 1.
In step k we transform every circle ¢;(o;,7;) of range k from C¥) by the
transformation

€ =hi(z —z;)/rj+ x5, n=he(y—y;)/ri+y;,

where 0j(z;,y;), hi = hdi({PPW,C}).
If m is the highest range of the circles in P, then V(h) = {P("‘),C(m)}

is h-normal and satisfies the conditions of the Lemma.

LEMMA 2.3. If P is a plane configuration of points and V = {P,C} is
an h-normal GC with the same set of points P, then for every three points
P, q,r from P the inequalities

| A(p,q,r) — GA(p.q.7)| < 27h

and

jA(P) " GA({P.C})' < 27h

hold.

PRroor. If the two points p, ¢ are of range 1, then by definition the gen-
eralized direction GD(pq) coincides with the direction D(pq). If p,q are of
the same range k and are in the same circle of range k — 1, again GD(pq) =
= D(pq). If p,q are of different ranges, or are of the same range k but are in
different circles of range k — 1, then the angle between D(pq) and GD(pq) is
not bigger than 7h, which completes the proof.
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DEFINITION 2.8.
a(N)= inf{A(P):P = {pl,pg,...,pN}},
Ga(N) = inf{GA({P,C}): P = {p1,p2,.-..on } |-

The second inf is over all possible choices of the points P and the circles

c.

THEOREM 2.1. For every natural number N, the equality
(2.3) Ga(N) = a(N)
holds.

ProoF. In a GC with ‘circles only of range 1, the generalized angles are
equal to the respective ordinary angles. From this fact it follows that

(2.4) Ga(N) £ a(N).
To complete the proof of (2.3), it remains to prove that
(2.5) Ga(N) 2 a(N).

Let us assume the contrary, that for a fixed natural number N, there
exists a positive number é > 0 such that

(2.6) Ga(N)< a(N)-é.
From (2.6) it follows that there exists a GC {P*,C*} such that
GA({P*,C*}) < a(N) -4,

and consequently, for every plane configuration of points P = {p1,p2,...,pn}
we have the inequality
(2.7) GA({P*,C*}) < A(P)- 6.

According to Lemma 2.2 and Lemma 2.3, there exists an h-normal GC
{P**,C**} equivalent to {P*,C*} and such that

(2.8) GA({P*,C*}) = GA({P™,C*™"}) > A(P) - 2rh.

But (2.8) contradicts (2.7) for small h and (2.4) is proved.

According to Theorem 2.1 we may calculate a(N) considering not only
plane configurations of points but the larger set of the generalized plane con-
figurations of points. The benefit of this is that in the set of GC’s there
exist extreme elements V* = { P*,C*} with |P*| = N, such that GA(V*) =
= Ga(N) = a(N). This is proved in Section 5.

Acta Mathematica Hungarica 69, 1995



MINIMAX OF THE ANGLES IN A PLANE CONFIGURATION OF POINTS 33

3. Perfect GC’s

We will need a lemma of P. Erdés and G. Szekeres [4] for the partition
of a complete graph.

Let K™) be a complete graph of order N (a graph with N vertices in
which any two vertices are joined by an edge). An even (odd) circuit of a
graph G is a closed circuit containing an even (odd) number of edges.

Following [4], we call a partition of G any decomposition G = Gy + G2 +
...+ G, into subgraphs G; with the following property: Each G; consists of
all vertices and some edges of GG such that each edge of G appears in one
and only one G; (G; may not contain any edge at all). A partition is called
even, if no (G; contains an odd circuit.

In [4] and [9], the following lemma is proved:

LemMA 3.1. If KN) = Gy + G2+ ...+ G, is an even partition of the
complete graph into n parts, then

N <o,

PRrOOF. For the sake of completeness we repeat the proof. Since G; con-
tains no odd circuit we can divide the vertices of K™) in classes A and B,
containing Ny and N; vertices respectively, such that each edge of G con-
nects a point of A with a point of B. But then G; + G2 + ...+ G,, induces
an even partition G5 + G4+ ...+ Gl of K' = K(N)IA and since K’ is a com-
plete graph of order Ny, we conclude by induction that Ny < 2"~!, Similarly
Ny £271 hence N = N; + N, £ 27,

We shall use sometimes complex numbers to represent points in the Eu-
clidean plane E. A direction 8; 0 < 6 < 27, in FE is a vector from 0(0,0) to
¢'? on the unit circle.

DEFINITION 3.1. Let 8 be a direction and 0 £ A < 27. The set of points
T(0,\) = {z:2=ae'®, a real, 0L p<8+A}\0(0,0)

is called a double sector with base # and angle A\. Every double sector consists
of two sectors (connected components), called parts of the double sector. We
say that a set () of points on the plane belongs to the double sector T if every
two points of ) determine a vector with direction in this sector.

‘The following lemma is obvious.

LEMMA 3.2. If a set of points Q belongs to a double sector T with angle
A and for three points p,q,r from @ the direction D(pq) and D(qr) are inside
one of the parts of T, then
A(p,q,v) > 1T — A
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LEMMA 3.3. Let V ={P,C} be a GC, @ € P and every generalized di-
rection determined by two poznts from @ be inside one of the disjoint double

sectors T(61,A),T(02,),...,T(0k,A). If
(3.9) GA(Q) St — ), then |Q|<2F

Proofr. Let K(®) be the complete graph with vertices @ and G;; i =
=1,2,...,k be the graph with vertices ¢ and two points are joint with an
edge in G; if they determine a generalized direction inside the double sector
T(0;, A).

We assert that the decomposition K¥) = Gy + G5 4 ...+ Gk is an even
partition. In fact, if a graph G; has an odd circuit, then there shall be two
consecutive vectors in this cycle, belonging to one of the parts of the dou-
ble sector T'(6;,A). But this, according to Lemma 3.2 contradicts the first
inequality (3.9). Then, the second inequality (3.9) follows from Lemma 3.1.

DEFINITION 3.2. A non-primitive circle of range k in a GC is called
perfect if it contains exactly two circles of range k + 1 and the contents of
these two circles are equivalent as GC’s.

DEFINITION 3.3. A GC is called perfect if all its non-primitive circles
are perfect.

Let V = {P,C} be a GC. We shall represent V' with centers 03,03,...,0;
of its circles of range 1 and with lines /;1,0; 2,...,[; x(;) passing through the
centers o; of the circles ¢;; ¢ = 1,2,...,s and parallel to the different gener-
alized directions defined by the points of P inside c;.

The number of different generalized directions defined by the points of
P inside ¢; is k(2).

In Fig. 2 a perfect GC is represented with 4 centers and respective num-
ber of lines.
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LemMMA 3.4. If
V={P,C}={01,02,..-,08 L3, i, s linyi $=1,2,...,8}
is a perfect GC, then the number of points N = | P| of this GC is equal to
N=oM L oMy & oM

Proor. If a circle of range 1 has one line, then there are exactly two
points from V inside this circle. Let the lemma be true for £ — 1 and let
a circle of range 1 have inside itself two circles of range 2 and every one of
these two circles have k — 1 lines and 25~ points inside itself. The centers of
the circles of range 2 define one more line for the circle of range 1 in addition
to the k — 1 lines parallel to the lines of the circles of range 2. Hence, the
circle of range 1 has k lines and 2* points from V inside itself. The lemma
is proved inductively.

LEMMA 3.5. Let
V= {PaC} = {013027"-303; li,lali,%"'?li,k(i); 1= 192,-"’5}

be a GC, Q = {01,02,...,05} be the set of centers of the circles of range
1inV, A=A(Q), P; CP be the set of points inside the circle ¢;, p; =
= GA(P;), p = max{puy,a,..., s}, @; be the smallest angle between a line
from {l;j; 1 =1,2,...,k(i)} and a line from {0;0;; i # j = 1,2,...,s}, and
¢ = min{¢1,¢2,...,¢s}. Then

GA(V) = max{\, u, 7 — ¢}.

Proor. Let p,q,r be three points from P, such that GA(p,q,r)=
= GA(V). If these three points are in different circles of range 1, then
GA(p,q,7) = A. If two of these three points are in one circle of range 1
and the third point is in another circle of range 1, then GA(p,q,7) = 7 — ¢.
If the three points are in one circle of range 1, then GA(p,q,r) = p. That
completes the proof of the lemma.

LEMMA 3.6. Ifly,ls,. ..l are lines incident with the center o* of the cir-
cle ¢* and A(l;,liy1) 2 X; i =1,2,...,k; lx41 = 1y, then there exist 25 points
Q inside ¢* and a GC V* = {Q,C} such that GA(V*) S — A,

PrOOF. We may assume that the radius of ¢* is equal to 1.

In the first step, let 01 1,01 2 be the points on the line l; = I; 1, such that
IO* = 01'1| = IO* = 01_2' =21 and CI,i = C(Ol’i,3-l); =1, 2.

In the second step, let I3 ;; ¢ = 1,2 be the lines incident respectively with
the points 0y ;; 7 = 1,2 and parallel to l;. Let 01,022 be the points on 5
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such that |01,1 - 02‘1| = |01,1 = 02,2| :.2_2’02'3’02v4 be the points on 12,2 such

that |0y 9 — 023] = 012 — 02.4] =272 and 3= o3 ni=1,234=2"
In step k we shall produce 2* points p; = ok ;; i = 1,2,...,2* and a semi

ordered system of circles defining the GC V* such that GA(V*) <7 — A.

LEMMA 3.7. Let
V = {P,C} = {01,02,...,03; li,17li,27---ali,k(i); 2 = 1,2,...,8}

be a GC, N;; 1 ='1,2,...,s be the number of points in the circle ¢; = ¢(o0;,7;)
of range 1, L; = {t;1,ti2,...,ti s—1} be the lines incident with o; and another
center o;; g # i NP5 = A(ti,jati,j-i-l); J=12,...,8-1, tis =tin, pig+
+@iz+ ...+ pis—1 =1 and GA(V) = (1 —-2/u)r. Then

(3.10) N; S 2K,
K(i) = (lupin/2] - 1), + ([upiz/2]-1) L ...+ ([upis-1/2] = 1) ..

PROOF. Let {9;1,%i2,...,Viq} C {®i1,9i2,...,Pis—1} be the subset of
angles {¢; ;} for which the corresponding members of the sum (3.10) are not
zero, or such that ¥; j = i 2 4/u. We construct [u®; ; /2] — 1 double sectors

(3.11) T(7(¥;; + 2k/u);2n/u); k=1,2,...,[u;;/2] - 1

with angle 27 /u, where ¥; ; € [0,7) is the angle of direction of that line t; ,,,,
for which ; ; was chosen as ¢; . According to Lemma 3.5, for every two
points p,p’ from P, inside the circle ¢;, the direction GD(pp’) is inside one of
the sectors (3.11). Hence, from Lemma 3.3, there follows (3.10).

Let us consider the lines incident with the center of the circle ¢; and par-
allel to the direction 7(¥; ; 4+ 2k/u); j = 1,2,...,¢,k = 1,2,...,[uyy; ;/2) — 1.
Let us rename them [;, 1 < j < k(i) with j increasing in the positive sense
of rotation. Then, according to Lemma 3.6, the perfect GC V* = {P*,C*} =
= 013095 =+ 40} lf‘l,lfz,...,lzk,m; i=1,2,...,8} is a GC with number of
points not less than one in V and GA(V*) = GA(V). In this way we prove
the following:

LEMMA 3.8. For every GCV = {P,C} there ezists a perfect GC
V* ={P*, 0"} = 101,02, ,0 l:,l’l:,zv""l:,k'(i); 2k ) A

such that |P*| 2 |P| and GA(V*) = GA(V).

Now we replace k(i) in Lemma 3.4 with &(7) from Lemma 3.7.
Finally, from Lemma 3.8, we have:
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THEOREM 3.1. For every natural N, the equality
Ga(N) = a(N) = inf{GA({P,C}) :|P| = N,{P,C} perfect}

holds.
According to Theorem 3.1, to find Ga(N) = a(N) we have to consider
only perfect GC’s.
Every perfect GC
V= {P’C} = {01,025"'708; li,l$li,2,' '-7li,k(i); 1= 172" . 53‘}

shall be represented by the centers of the circles of range 1 and the respective
lines.

4. Proof of the main result

LEMMA 4.1. Let
V = {P,C} = {01,00,--,05; litslizy- s liiiys = 1,2,...,8)
be a perfect GC, GA(V) = (1 —-2/u)r, [u/2] =n and § = u/2 — n, then
|[P|<£2" for 0£6<1/2 or 2nSu<2n+1
and
|P|S2" +2"% for 1/256<1 or 2n+1Su<2n+2.

Proo¥F. According to Lemma 3.4 the number of points is
s .
= |Pl=3 2
=1

and according to Lemma 3.7
k(i) = ([upin/2] = 1) , + ([upi2/2] = Dy + ..o+ ([ugis-1/2] - 1) .
We shall assume that the indexing is such one that
K1) 2 k(2) 2 ... 2 k(s)
and we shall use induction on s.
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a) For s =2, ¢17 = ¢p21 =1, then
k(1) =k(2)=n—1
and
|P| =%,
b) For s = 3 the angles are
P11, P12 =1—911, P21, P22 = 1 — 21,
w31 =1—p11—¥21, P32 =¥1,1+ P21

and

K1) = ([wpra/2 - 1), + ([u(l - @r0)/2] 1)

( !
K(2) = ([wpaa/2 = 1), + ([u(1 - e20)/2] -1)
K3) = ([uera+ /2] =1)  + ([0l = era = paa/2] - 1)
and
(4.12) 2/u L P11+ p20 S 1-2/u.
If
n—22 k(1) 2 k(2) 2 K3),
then

1Pl €£3- P2 3"
Let k(1) = n — 1. This is possible only if

)
n+6

(4.13) P11 S

We consider two subcases:
b.1) For 0 < é < 1/2 from (4.13) it follows that ¢; 1 = z7t. From (4.12)

we have that
1 1 1

= - b g ”
“n+d 2n41° 2n+41
hence n — 2 2 k(2) 2 k(3) and

¥2,1

|P| £ 2% 4+2.27%% = 2",
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In this subcase the maximum is achieved if
k(1)=n-1, k(2)=k(3)=n-2
b.2) For 1/2 < 6 < 1, if k(2) = n — 2, then
|P| £ 2% 42.272 = 2",
Let k(1) = k(2) = n — 1, then according to (4.13)

1

i
Pl <==—=; P21 < n—+1’

n+1

and from (4.12) we have

2
2/u < —,
/U_‘Pl,1+‘r°2,1<n+1

Hence
k(3) = ([u/(n+ 1] - 1)+ + ([u(1 —2/u)/2] - 1)+ = [u/2]-2=n—2,

and
lPI é 9. 2n—1 + 2n—2 = 9n 4 2n—-2.

¢) For s = 4 we consider two subcases:
c.1) For 0 £ 6 < 1/2 the maximum of | P| is achieved if

k(1)=n—-1, k@)=n-2, k@) =k(@d)=n—-3

and then
[Pl & 2°.

c.2) For 1/2 £ 6 < 1 the maximum of | P| is achieved if
k(1)=n-1, k2)=k8)=n-2, k(4)=n-3

and then
| Pl Ph 407 ¢ 9 4. 9972,

Let the lemma be proved for s — 1, then for s we have two cases:
s.1) For 0 < 6 < 1/2 the maximum of |P| is achieved if

k1)=n-1, k2)=n-2,...,ks-1)=k(s)=n-s+1
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and then
|P| é 2n—l + 271—2 + L + 2'n—s+l + 2n—s+1 - 271.

s.2) For 1/2 £ § < 1 the maximum of | P| is achieved if
kl)=n-1,k2)=n-2,...;k(s=2)=k(s—1)=n—-842,
k(s)=n-s+1
and then

|P| - 2n—l '3 2n—2 oo ib 2n—s+2 & 2n—s+2 J 2n-s+1 -

= 211. + 2n—s+1 é 271. + 27?.-—2.

That completes the proof of the lemma.

DEFINITION 4.1. N(a) is the largest natural number such that there
exists a GC(V) = {P,C} with |P| = N(a) and GA(V) £ a.

Obviously both functions a(N) and N(a) are non-decreasing.

From Lemma 4.1 there follows:

LEMMA 4.2. If a = (1 -2/u)x, then
N(a)£2" for 2nSu<2n+1

and
N@)<2"+2" %2 for 2n+1<u<2n+2.
Now we shall prove:

LEMMA 4.3. If a = (1 — 2/u)7, then

(4.14) N(a)22" for 2nSu<2n+1
and
(4.15) N(@)22"4+2"2 for 2n+1ZLu<2n+2.

Proor. Let V be a GC with N points and two circles of range 1. From
Lemma 3.4 and Lemma 3.7, for s = 2 we have (see Fig. 3)

N — 2[“/2]—1 + 2[11./2]—1 P 27),.
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Fig. 4

Hence (4.14) is praved.

41

Let V be a GC with N points and three circles of range 1. Let the centers
of these three circles be 0; = (—1,0), 02 = (1,0) and o3 = (O,tan 5;%) (see

Fig. 4). Then we have

P11 = P21 =

B 2 iy 2
9’3.1—27“_1» ©3,2 = m+ 1

and for 2n 4+ 1< u < 2n 4+ 2:
([upin/2] - 1)+ =0 for 1=1,2.3,

([ugpi2/2] - 1)+ =n-1 for i=1,2,

([U993,2/2] e ].) + =n-2.
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According to Lemma 3.4 and Lemma 3.7, from the above equalities it
follows that

N — 2n—1 + 271—1 + 271—2 - 271, + 271—2.
Hence (4.15) is also proved.

From Lemma 4.2 and Lemma 4.3, having in mind that the functions
a(N) and N(a) satisfy a( N(a)) = @, we obtain finally the following:

THEOREM 4.1. If a(N) is the largest number such that any plane con-
figuration of N points contains three points determining an angle 3 2 (N );
0< B <, then

2
a(N):{1—2n+1}7r Jor e N S 90 Jghe

and

1
n+1

a(N):{l— }71' for 2" +2"2 < N L2,

5. Existence of extreme GC’s
DEeFINITION 5.1. A GCV = {P,C} with N points is eztreme if
GA(V) =Ga(N) = a(N).
In this section we shall prove the existence of an extreme GC for every

natural number N.

DEFINITION 5.2. For every plane configuration of points P = {py, ps,
..,pN} we define r(P) as the radius of the smallest circle ¢(o(P),r(P))
containing P, where o( P) is the center of this circle.
The following lemma is obvious.

LEMMA 5.1. Let P be a plane configuration of points. For every number
" > 0 and every point o' on the plane there exists a plane configuration of
points P' a~ P such that o(P') = o' and r(p') = r'.

DEFINITION 5.3. For every plane configuration of points P = {p;, p,
...,pN} we define a set of segments

S(P) = {$1(P),5x(P),.... Sk(P)}, K = sN(N 1),

where the segments S;(P); 1 = 1,2,..., K are the intersections of the lines
P1D2,P1P3, -, PAPK , P2P3s - - -, Pk—1PK With the circle ¢(o(P),2r(P)). The
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set {P, S(P)} is called a complete configuration, corresponding to the con-
figuration P.

DEFINITION 5.4. A set {P,S} of points P = {py,ps,...,pn} and seg-
ments 5 = S(P)U S’, where 5" = {Sk+41,5Kk+2,...,90} are segments which
are intersections of some lines, passing through some of the points of P
(the points depending on the line), with the circle ¢(o(P),2r(P)), is called
ertended complete configuration. The segments S’ are called additional seg-
ments.

We shall define a distance between two plane configurations of points
using their complete configurations. This distance shall be sensitive to the
angles defined by the points. If the distance between two configurations
is “small”, then the difference between two respective angles shall be also
“small”.

We shall use the Euclidean distance

p(1,0) = y/(@u — 20 + (0 - w)?
between two points u and v and the Hausdorff distance [7]

r(S1,S2) = max{max min p(u, v), max min p(u,v)}

between two segments S and 5.

DEFINITION 5.5. Let

{va} = {pl’p27"'apN; S],SZ,H-,SQ}

and
{F .8} = (D105 - csP; 5158%5:+:55)

be two extended complete configurations. We define the distance
R({P, 8} 1P, S’}
between these configurations in the following way

R({P,S},{P',5"}) =

. / . /
= max4{ max min iyP:;), Mmax min o PDi) ¢+
{1§1§N1§j§N’p(p“p‘7)’1§i§N’1§j__<_Np(p”pJ)}

X mi 5,8 i 81 55) ¢ s
e 255, 0 25 2,
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DEFINITION 5.6. Let P be a plane configuration of points and {P’, 5’}
be an extended complete configuration of points. We define the distance

B(B {7, 5]) = B {2500 (P50 )

From the definition of the distance R between two plane configurations
of points, there immediately follows:

LEMMA 5.2. If the distance R between two plane configurations of points
is less than ¢ then for every point from the first configuration there exists a
corresponding point from the second configuration (possibly nor unique) such
that the distance between these two points is less than ¢, and for every seg-
ment from the first configuration there exists a corresponding segment from
the second configuration (possibly not unique) such that the distance between
these two segments is less than ¢. '

COROLLARY 5.1. If the distance R between two plane configurations of
points P', P" is less than ¢ and r(P'),r(P") 2 1, then for every angle from
the first configuration there ezxists a corresponding angle from the second con-

ﬁguratzon (possibly not unique) such that the difference between these two
angles is less than 4e.

PROOF. As the considered segments are longer than 2, if the Hausdorff
distance between two segments is less than ¢, then the angle between these
segments shall be less than arcsine < 2¢/m. Hence, the difference between
two corresponding angles is less than 4e.

From the argument for compactness and the finite number of points and
segments, we obtain the following.

LEMMA 5.3. Let H(N) be the space of all extended complete configura-
tions {P,S} = {p1,p2,---,Pk; S1,52,...,51} satisfying the conditions:

f(P)=1, ofP)=(0,0), k<N and lgéN(N—l),

with metric R. Then H(N) is a compact metric space.

LEMMA 5.4. From every sequence {P(’"),S(’")} ;ym=1,2,3,... of ele-
ments of H(N) it is a possible to choose a convergent subsequence.

We are ready to prove the existence of extreme GC'’s.

THEOREM 5.1. For every natural N there ezists an extreme GC V =
= {P,C} with |P| =

ProoF. For the natural number N and every natural number m there
exists a plane configuration of N points P(™) = { pgm), p(zm), 1 pg\',n)} such
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that
(5.16) A(P™) < a(N)+ .
According to Lemma 5.1 we may suppose that

o P = (0,0}, #[PM)) 1.

Let {P(m), S (P(m))} be the complete configuration corresponding to P(™).
According to Lemma 5.4 we may suppose that the sequence

{{Ptm, s(Pm)}}
is convergent to the extended complete configuration
{P" 5,} = {p,lap,2’ s ’p;ﬂ Si’ Sé’ wi‘e ety S,Q}7

where K S N, Q S IN(N -1).

Let d be the smallest distance between two points in P’. We define the
circles C) = {¢;; 1 =1,2,..., K} of range 1 with centers o; = p! and radii
id
3d.

If K =N, then the GC V* = {P/,C(1} is extreme. In this case the
extreme GC is an ordinary configuration of points.

If K < N, then the configuration {P’, S’} is extended and groups of

points from {P(m)} converge to one point p!, producing segments passing
through the point p!. Let the sequences of points

= (ot ot ils ]

converge to p/, or

lim p() gy 7 =120, k(1)

m—00 4

We replace the plane configuration of points Pi(m) with an equivalent one
(according to Lemma 5.1), such that

o( /™Y =pt, r(P™) = dja.

For simplicity we do not change the notations.
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According to Lemma 5.4 we may suppose that the sequence
L siEmi)

is convergent. In such a way we repeat the procedure with Pf"” as with P(™)
and produce the circles C(?) of range 2.

Here, since T(B(m)) =d/4 > 0, the limiting points of Pz-(m) are at least

two. Repeating this procedure, say t times, we shall produce a GC V* with
N points and circles C = CWuCc@uy ...uc®,

We assert that V'™ is extreme. In fact, the directions determined by every
two points in P("™) have a limit as a generalized direction in V*. That means

that the generalized angles in V* are limits of angles in P(™), and according
to (5.16), we have

GA(V*) = a(N).
That completes the proof.
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QUASI-UNIFORM COMPLETENESS IN
TERMS OF CAUCHY NETS

Ph. SUNDERHAUF (Darmstadt)

Introduction

In [10] and [11], a theory of completion and completeness for quasi-
uniform spaces is developed. This paper presents completeness in terms
of nets rather than filters. The usual way to pass from filters to nets by
choosing arbitrary elements from the sets in the filter does not work in the
non-symmetric case of quasi-uniformities. The reason for this is that our
Cauchy filters do not contain sets which are arbitrarily small in an absolute
sense, hence the resulting net need not be Cauchy.

The completion of [10] and [11] is performed in a larger category than the
category of quasi-uniform spaces and uniformly continuous functions. Those
quasi-uniform spaces for which the construction of the completion gives a
quasi-uniform space again are called completable. We are able to give a
characterisation of completability in terms of Cauchy nets. This enables us
to give an easy proof of the fact that products of completable spaces are
completable and products of complete spaces are complete. As a byprod-
uct we get the result that for completable spaces our notion of completeness
coincides with the well-known concept of bicompleteness developed in [5].
Moreover, the completion coincides with the bicompletion in this case. (The
results concerning bicompleteness and bicompletion may also be found in
[4].) All totally bounded spaces are shown to be completable.

1. Preliminaries and notations

A quasi-uniformity on a set X is a filter U of binary relations (called en-
tourages) on X such that

(a) Each element of ¢ contains the diagonal Ay of X x X.

(b) For any U € U there is a V € U satisfying V2 C U.
Here V2 is an abbreviation for VV, where UV := {(z,y)| 3z € X .2 U2V y}
is the usual relational product. (We use the notation z U y for (z,y) € U.)
If U is a quasi-uniformity on X, then so is U~ := {U~' | U € U}, where
Ut = {(z,9)] yUz}. The pair (X,U) is called a quasi-uniform space.
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The coarsest uniformity (i.e. quasi-uniformity having a base of symmetric
entourages) finer than I/ is denoted by U*. It is generated by the entourages
U*:=UNU™!, where U runs over 4.

We employ the notation [z]U for {y € X | U y} and analogously [A]U
to mean |J,c4[a]U = {y € X | 32 € A.z Uy} for any subset A of X. This
unusual notation is chosen because it fits nicely with the relational product:

[[z]U]V = [z]UV.

A quasi-uniformity &/ on a set X induces a topology 7 (i) on X having
as neighbourhood filter of z the set N'(z) := {[z]U | U € U }. From now on
we will only consider separated spaces, i.e. spaces where the topology 7 (i)
satisfies the Tp-axiom. This is the case if and only if the relation (¢, U is
a partial order.

A function f: X — Y between quasi-uniform spaces (X,) and (Y,V)
is (quasi-) uniformly continuous if for any given entourage V € V there is
some U € U such that the relation z U 2’ always implies f(z)V f(z'). The
quasi-uniform spaces form a category QUS with the uniformly continuous
functions as morphisms.

A quasi-uniform space (X,U) is totally bounded if for any entourage U €
€ U there are finitely many sets Ay,..., A, & X such that A;U ---UA, = X
and A; x A; C U for all i € {1,...,n}. An equivalent condition is that for
any entourage U there is a finite set F' C X such that X = [F|U*.

Further information on the basic theory of quasi-uniformities may be
found in [5].

2. Completeness in terms of filters

In [10] and [11] a theory of completeness and completion for quasi-uni-
form spaces is established. In this section we summarise some of the results
obtained there.

To be able to give a completion for all quasi-uniform spaces, the cate-
gory TQUS is introduced. Its objects are topological quasi-uniform spaces.
These are triples (X,U,7), where (X,U) is a quasi-uniform space and 7 is
an additional topology, which has to satisfy certain axioms. These axioms
ensure that 7 is contained in and shares many properties with 7 (). If, for
example, the quasi-uniformity is totally bounded, then 7 has to agree with
T7(U). The morphisms of TQUS are those uniformly continuous functions,
which are continuous with respect to the additional topologies, too.

Any quasi-uniform space (X, ) together with the induced topology 7 (i)
yields a topological quasi-uniform space (X U, T(U )) , hence the category
QUS may be regarded as a full subcategory of TQUS. A suitable notion
of completeness for topological quasi-uniform spaces has been introduced in
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(10] and [11]. Moreover, a completion for all spaces has been constructed
there.

For the case of quasi-uniform spaces, the relevant definitions are shown
to simplify to (see also [9]):

DEFINITION. A filter F on a quasi-uniform space (X,U) is a round
Cauchy filter if
(rd)VAe F.ABe F.AUEU.[BJUC A and
(Cy)VU eU .NAe F.3z e A.[z]U € F.
The space is complete if every round Cauchy filter is the neighbourhood filter
of a unique point.

A quasi-uniform space is called completable if the construction of its com-
pletion in TQUS stays inside the subcategory QUS. In [11] the following
characterisation of completability is given:

DEFINITION. A filter F on a quasi-uniform space (X,U) is stable [3] if
for any entourage U € U, the set ()¢ r[A]U is in the filter F.

ProprosITION 1. A quasi-uniform space (X,U) is completable if and only
if every round Cauchy filter on X is stable. 0O

3. Completeness in terms of nets

In the present paper, however, we show how to use nets rather than fil-
ters. First, we generalise a definition of [9] for Cauchy sequences. This notion
of Cauchy sequence does also appear in [1] where it is traced back to [7].

DEFINITION. (See also [8].) A Cauchy net on a quasi-uniform space
(X,U) is anet (z))yc, With the property that for any entourage U there is
an index A € A such that for all indices g and v with A £ u < v the relation
x, Uz, holds.

The net is said to converge strongly to a point = € X if it converges to z
with respect to the topology 7(U*).

The net is bi-Cauchy, if it is Cauchy with respect to the uniformity 4*.
This is the case if and only if for all entourages U € U there exists some A € A
such that z, U z, holds for all indices u,» 2 A (regardless of their order).

REMARK. Let us give an intuitive explanation why 7 (U4*)-convergence
is the appropriate concept here. Convergence with respect to the topology
T(U) is clearly too weak in general, since we do want unique limits and we
do not want all spaces with a least element to be complete. Therefore, a
stronger notion has to be found. The idea is that a Cauchy net together with
its limit point has to satisfy the Cauchy condition, too. This means that if
z is the strong limit of a Cauchy net (z)),c, and we enlarge the index set A
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by a greatest element oo and define z, := z, we want the resulting net to
remain a Cauchy net. That is the case if and only if the condition

for all entourages U there is an index A € A

such that z, U =, whenever A < p

holds, i.e. the net converges to z., with respect to the topology 7 (4 ~'). This
together with 7 (U)-convergence is exactly the strong convergence defined
above.

LEMMA 2. Let (z)), be a Cauchy net on (X,U). If z € X is a T(U*)-
cluster point of (x)),, then the net converges strongly to .

PRrROOF. Suppose an entourage U is given. Choose an entourage V such
that V2 C U. By Cauchyness, there is some A such that for all v > u > A
the relation z, V z, holds. As z is supposed to be a 7 (U*)-cluster point of
the net, there exists an index p 2 A satisfying ¢ V*z,. For any v 2 p one
has now 2V 2,V z,, whence z U z,. To establish the converse relation we
choose k 2 v with 2 V* 2, and get 2, V 2,V 2. Therefore we have {z, | v 2
2 p} € [z]U*, i.e. z is indeed the strong limit of (zy),. O

Now we prove a generalisation of Proposition 2.7 of [9].

THEOREM 3. For any Cauchy net (z), on a quasi-uniform space (X,U)
there ezxists a round Cauchy filter F(z)) on X such that the net converges
strongly to a point x € X if and only if () is the neighbourhood filter of x.
Conversely, if F is a round Cauchy filter on X then there exists a Cauchy
net (zy), such that F(zy) = F.

Proor. We define the filter F(2)) to be generated by the sets
[E\]U with Byi=d2, | g2 A}

where U ranges over I/ and A over the index set A. This is obviously a base
generating a round filter. Property (Cy) is an immediate consequence of the
net being Cauchy: Given [E,|U in F(z,)and V € U, choose an entourage W
with W2 C V and an index p = A such that g < v always implies z, W z,,.
Then E, C [z,]W hence [E W C [z,]W? C [2,]V. Therefore [z,]V € F.
Now suppose that F(z)) = N(z) holds for some point z € X and U € U
and X € A are given. Then [z]U € N(z) € F(z)), hence there is an index p 2
2 A such that E, C [2]U holds. On the other hand, [E,)U € F(z)) € N(z),
thus we certainly have z € [E,]U. Combining these arguments, we get some
v 2 p with 2 U* z,,. Therefore, z is the strong limit of the net by Lemma 2.
If, conversely, (z)), converges strongly to z we show that A'(z) coincides
with F(z)). Suppose some neighbourhood [z]U? € N(z) is given. Then —
by the 7(U)-part of the strong convergence — there is an index X such that
E) C [2]U holds. Now [E)\]U < [z]U?, hence the given neighbourhood of z is
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an element of F(z,). If on the other hand [E\]U? € F(z,) is given, then —
by the 7(U~!)-part of the strong convergence — there exists an index p 2 A
with E, C [z]U~!. This implies = € [E,]U, hence [z]U C [E,|JU? C [E\]U?,
therefore the set [E,]U? is an element of N (z).

For the second assertion of the theorem, suppose F is some round
Cauchy-filter. We define the index set

A=UXxF
and, for each (U, A) € A, we choose an element z(;; 4y € A such that
[JI(U‘A)]U € .7‘-

holds. This is possible by Cauchyness of F.

Now the main step of the proof: We have to find an order on A such that
the net (z)) is Cauchy. The naive order (U,A) £ (V,B) if and only if V C
C U and B € A is not sufficient to prove Cauchvness of the resulting net.
This is because, given an entourage, there is no way to determine an index
(U,A) to satlsfy the Cauchy condition. The problem is to find a set A €
€ F which is small enough to ensure that the elements with greater index
are close together. The only sets that we actually know to be elements of
the filter are those of the form [z(y x)|U. However, these need not be small
as it might happen that for every entourage U the set [z(y,x)]U is the whole
space X.

The solution is to encode the desired property of points being ‘better’ for
larger indices in the order on A. Hence we order the set A by

(U,A) < (V,B) &L

VEU and BE[zwallUnA

This relation is clearly transitive, we have to prove directedness. For
given indices (U, A) and (V, B) choose the entourage W = UNV € Y and
the set C'= AN BN [zy4]UN[zwp)|V €F to obtain the common up-
per bound (C,W). Cauchyness is established easily: If an entourage U
is given, we choose the index A = (U, X ) and observe that for larger indices
(V,B) £ (W,C) we have z(w,c) € C € [xv,p)]V € [2(v,p)]U, i.e. the relation
*T(V,B) Ux(w‘c) holds.

It remains to prove the equality = F(z)). If A € F, then by roundness
there is an entourage U € U and a set B € F such that [B]JU € A. Then for
A= (X x X, B) we have z, € B whenever u > X. Thus E) C B, hence the
set [E\]U, which belongs to the filter F(z)), is a subset of A. “Therefore A S
€ F(zy). If conversely a set A =[E\|U € F(z)) is given, we choose some
index p 2 A such that u 2 (U, X). Then A 2 [¢,]U € F,hence Aec F. O

COROLLARY 4. A quasi-uniform space is complete if and only if every
Cauchy net strongly converges to a unique point. a
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THEOREM 5. A quasi-uniform space (X,U) is completable if and only if
every Cauchy net on X is bi-Cauchy.

ProoF. We use the same notations as in the proof of Theorem 3. Suppose
that (X, ) is completable and (z)),¢, is a Cauchy net on X. Then F(z,)
is a round Cauchy filter on X which is stable by assumption and Proposi-
tion 1. This means that for any U € & we have that (N cp Ny eu[EAIVU is
contained in F(zy). But as this set is a subset of (¢, [E)]U? we have also
that

(%) N [EA]UE F(z))

A€EA

for all entourages U. Now let us establish that the net is bi-Cauchy. Suppose
an entourage U is given. We choose V2 C U and an index A € A such that
A £ p £ v always implies 2z, V 2, (Cauchyness) and with Ey & (.ca[Ex]V
which is possible by (x). Suppose A < p,v. Then z, € E) C [E,]V, hence
there exists k 2 p satisfying . V z,. As z, V z, holds, this gives us z, Vizg,
implying our goal z, U z,. Therefore the net is bi-Cauchy.

For the converse, suppose that every Cauchy net on X is bi-Cauchy and
that F is a given round Cauchy filter which we have to prove to be sta-
ble. Then there exists by Theorem 3 some Cauchy net (z)),c, such that
F = F(a)). This net is bi-Cauchy by assumption. This implies that for any
given entourage U there is some index p € A such that £, C [E\]U forall A €
€ A. But from that we deduce [E,]U € NycalEAJU? € Naea NveulEAIVU?,
which means that the filter 7(z)) is stable. Thus the space is completable
by Proposition 1. O

REMARK. In light of Corollary 4, it is not too surprising that Cauchy
nets on completable spaces are bi-Cauchy. The reason for this is that any
Cauchy net on a completable space will remain Cauchy when regarded as
a net on the completion. Thus the net is a strongly converging net. Since
strong convergence is convergence with respect to the symmetrised topology,
the net must be bi-Cauchy on the completion and also on the original space.

COROLLARY 6. Arbitrary products of completable spaces are completable;
arbitrary products of complete spaces are complete.

ProOOF. A net on a product space is Cauchy if and only if all the coor-
dinate nets are Cauchy. Moreover, a net in the product converges strongly
if and only if all the coordinate nets converge strongly. This implies the
assertions. O

CorOLLARY 7. Every uniform space is a completable quasi-uniform

space.

Proor. It is immediate that Cauchyness and bi-Cauchyness of nets co-
incide for uniform spaces. a

These results give us also the tools to prove (cf. [4])
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COROLLARY 8. For completable quasi-uniform spaces the completion co-
incides with the bicompletion of [5].

Proor. It suffices to prove that a completable quasi-uniform space is
complete if and only if it is bicomplete, then the universal properties of both
completions give us the result. It is easy to see (and proved in [Proposi-
ton 22][11]) that the Cauchy filters in the sense of [2] and [5], which are used
to characterise bicompleteness, coincide with the &/*-Cauchy filters. Hence a
completable space is bicomplete if and only if any &*-Cauchy filter converges
if and only if any bi-Cauchy net converges if and only if (by completability)
any Cauchy net converges if and only if the space is complete. O

REMARK. This result does not mean that the notions completeness and
bicompleteness coincide. The set of natural numbers N may serve as a coun-
terexample. We choose the collection of all relations containing the usual or-
der on N as a quasi-uniformity &. Then the sequence 1,2,3,...is a Cauchy
sequence which is not bi-Cauchy, since U* is the discrete uniformity. Hence
this space is not completable, although it is bicomplete. Note that (N,2/~!)
is completable and hence complete by Corollary 8. The reason for this is
that all Cauchy nets on this space are eventually constant. The comple-
tion of (IN,U, T(U)) in the category TQUS consists of the natural numbers
with a top element, the quasi-uniformity generated by the order and the
Scott-topology on this poset.

COROLLARY 9. Completion of uniform spaces is a special case of com-
pletion of quasi-uniform spaces.

Proor. Completion of uniform spaces is a special case of bicompletion
of quasi-uniform spaces. Hence Corollaries 7 and 8 give the result. O

The proof of the following proposition is a generalisation of Theorem 2.3
of [9]. For the result cf. also Lemma 4.5 of [3].

PRrRoPOSITION 10. Any totally bounded space is completable.

PROOF. Suppose (z)), is a Cauchy net and U a given entourage.
Choose V € U such that V2 C U and — by total boundedness of X — sets
Ay,..., A, € X with 4, U - “UA, = X and A; x A; SV for all i. Now we
can choose an index A € A such that

(1) A £ p £ v always implies 2, Vz, (Cauchyness) and

(2) if A; meets {z, | p 2 A}, then (z)), is frequentlyin A4; fori=1,...,n

If we are now given indices u,v 2 A then there is some ¢ with z, € A;.
By (2) there is an index & 2 p with z, € A;. Now (1) implies z, V z, and
as the set A; is V-small, we have z,Vz,Vz, hence , U z,. The converse
relation may be proved analogously, therefore, the net is bi-Cauchy. O
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LAGRANGE INTERPOLATION
POLYNOMIALS IN E?(D) WITH 1 < p < 400

L. ZHONG (Beijing)*

Dedicated to the memory of my supervisor Prof. Shen Xie-Chang

§1. Introduction

Let D be a Jordan domain in the complex plane C bounded by I'. For
0 < p < 00, a kind of extension of Hardy spaces can be defined by

EA D)= {f f analytic on D and there exists a series of curves I';, C D

tending to I', such that sup/ | f(2)|"|dz| < +oo}.
n |

If T' is rectifiable and f € EP(D), then f has a non-tangential limit almost
everywhere on I'. We define

Ill, = {/F|f(z)|p|dz|}1;.

It is well known that Faber expansion is an effective tool to construct
approximation polynomials in EP(D) [1]. Comparing with it, we can see
that interpolation polynomials may be constructed more directly. In 1989,
X.C. Shen and L. Zhong [2] took the Fejér points of interior level curves as
interpolation nodes. Under the assumption of I' € C?*¢_ it is shown that
the interpolation polynomials have the same order of convergence as the
best approximation polynomials in EP(D)for 1 < p< 4+ o0. For 0 < p < 1,
L. Zhong [3] proved Jackson’s theorem in E?(D) by means of interpola-
tion polynomials. When the boundary I' has some corners, L. Zhong and
L. Y. Zhu [4] recently showed that the interpolation polynomials based on
the roots of Faber polynomials converge in EP(D) for 1 < p < + cc.

In this paper, the boundary I' is assumed piecewise C? smooth with no
cusps. The interpolation nodes consist of geometric reflections of rotated

* Supported by the National Science Foundation of China.
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Fejér points on the exterior level curves. It is proved that the Lagrange
interpolation polynomials converge in EP(D) for 1 < p < +00. Comparing
with [2], we substantially weaken the restriction on the boundary, and we
do not need to calculate conformal maps of the domains outside the interior
level curves. Comparing with [4], we avoid finding the roots of the Faber
polynomials, which may be unstable for high degree. We also do not need to
interpolate derivatives of the functions, which may happen in [4] if the Faber
polynomials have multiple roots.

In the following part of this paper, we always assume that 1 < p < +o00
and T is piecewise C'? smooth with no cusps. We denote by ¢ positive con-
stant depending only on p and I', which may represent different values at
different places. The notation A < B means ¢cB £ A < ¢B.

§2. Construction of interpolation nodes

Let U be the unit disk, and let ¥:C\ U — C\ D be the conformal map
satisfying ¥(o0) = oo and ¥’(o0) > 0.

Let ¢; = U(e's) (0j €[0,27), 5 =1,2,. ..,l) be the corners of I', with
exterior angles o;m (0 < o; < 2,5 =1,2,...,1) respectively.

Then for 1 £ |ul, |w| £ 2, we have [5]

(2.1) | W(u) - U(w)] = |u—w|(Ju - %] + |u—w])**

where €% is the nearest point to u among {e'%7, j = 1,2,...,1}.
From elementary mathematics we know that there is a series

{¢n € [0, 27")} such that

2k
bnt 8,
n

™

(L + 1)n'

(2.2) min >
. ni

2m

Actually, for each n > 0, ¢,, can be chosen among {(T+1L)n’ =015 ,l}.
By (2.1), and (2.2) for 0 < r < 1, we have

(2.3) ‘\Il [(1 + Z) ei(¢"+%7”)] -v (ei(¢"+2‘?))‘ =
n
" 1[ ei($nt2E2) _ iy | 4 []"JO-’ o T|ei(ont22) _ ity =l
n n n
where €0 is the nearest point to el(@nt5E) among {e'% j = 1,2,...,1}.
Similarly
AW 2k7
(2.4) ‘q; [(1 + ;) (i(nt2 )} = Cio| =
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= ‘\1: [(1 " %) ei(¢"+"7")] — (i)

x o (o3
e’(d’"'*'%T’r --e’gJo 70

~
—~

Together with (2.2) and (2.3) we can find a positive constant ry sufficiently
small and depending only on T', such that

(2.5) |¢ [(1 + %) ef(¢n+"“‘7")] i (ei(¢n+&';—"))'

<l [+ D)

A

where 1 < p < 0o is the maximum of the ratio of the local arclength of I' to
the chord.
We set

(26)  #, =V [(1+%) AR, B lm= L

These are the so-called rotated Fejér points on the exterior level curve
¥ (lw=142).

Let 237, be the nearest point on I' to 2 . It follows from (2.5) that z%
is not a corner. Set
(2.7) Zkon = 225 — 2%

YTL'

Then we obtain the geometric reflection of 2 | through I'. In this paper, the
points {2k, k = 0,1,...,n — 1} are the interpolation nodes.

LEMMA 1. There ezists a constant ¢ > 0 such that for any z € C\ D,
d(z,T) < ¢ and

1
2 < — mi :
(2.8) d(z,T) s 4p 1%1]1,21 |z = ¢l

the geometric reflection of z is in D.

The proof of this lemma consists of elementary calculus, we leave it to
the end of the paper.

By Lemma 1, {2,} C D if n is sufficiently large. For f € EP(D), let
Ly—1(f,2) denote the n — 1-th Lagrange interpolation polynomial to f(z)
based on {z;,,k=0,1,...,n—1}.

The main result of this paper is the following.

THEOREM. Suppose 1 < p < 0o, and T is piecewise C? smooth with no
cusps. For any f € EP(D), we have

(2.9) 1 £(2) = Lnoa(£,2)]], = 0.

lim
n—+40o
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§3. Integral representation of interpolation polynomials

It is well known that for f € EP(D)

4 L wn(€) — wn(2) f(<)
Loa(f,2) = 2m/F e e

where
wpl2) = H(z — Zkp)-

By the Cauchy’s formula, for z € D, we have

wn(2) f(§) d¢
271 Fwn(C) sz'

f(Z) = Ln—l(fvz) =

Since the Cauchy’s singular integral operator is p — p type [6] for p > 1, we
have

f(¢) d¢
(3.1) ”f(z)_L"‘I(f’ ”PS_;meaIXI | rwa(() (-2 pg
f(¢ wn (2
= |l a)) S e 0% | ()

LEMMA 2. IfT is piecewise C* smooth with no cusps, then for z € T' we
have

lwn(z)| =d"

where d = ¥'(0).

Notice that the theorem follows easily from Lemma 2. Actually, Lemma
2 and (3.1) imply that the interpolation polynomial operators are bounded
uniformly. Then (2.9) holds. Furthermore, we have [4]

”f(Z) = Ln—l(f’z)”p é c i IIllIl ”f Q”
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84. Proof of the lemmas
There is no loss of generality, and the computations are easier, if we as-

sume only one corner on I'. Furthermore, we may assume ¢(; = 1 = ¥(1), and
set o = .

PROOF OF LEMMA 2. Let
n—1
wn(2) = [ (2= 21,).

k=0
There are two steps in the proof of Lemma 2. In Step I, we show
(4.1) |wn(2)| < d", zeT.
In Step II, we show
(4.2) Iwn(z)l = Iw;(z)l , z€Tl.

Step 1. As in [7], let

W (w)—W(u) ” W
X(’LU, ’U,) - Id(w—u) #
‘I’_‘({ﬂl W =
Suppose
e apl\w
log x(w,u) = 3 2L
k=1
Then for |w| =1
1 k-1
ap(w) = — u* " log x(w, u) du =
) 278 Jju|=14« )

. il SR o i s
 2mki /|u|=1+su [\p(w)_ V(u) w—u] du = k[w Fi o ¥(w)]

where Fj.(z) is the k-th Faber polynomial with respect to D.
Since D is a bounded rotation domain, Fx(z) (k = 1,2,...) are bounded
uniformly on I' [8]. Therefore

(43) |ax(w)| € =, Jw| = 1.

c
k’
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For z = ¥(w) €T,

wn(2)

dr (w" = (1 + %)nei"‘b") -

log

= :Z;;l)logx (w, (1 + 2_0) ei(¢n+yi1)) 3 io: flnm(w)(l N %)—nm

m=1

By (4.3) we have

wh(2)
1 ~ : <e.
%8 gr (wr — (1+ 22)"e—indn) | = i
Hence
w;(w) n ( ro)n mne
o e = [ 4 2
dn T n

Since |w| = 1, we have

1= (1 i T—O)n _1< ‘w”— (1 + T—O)ne"w"
n n

Then we have (4.1).

<(1+2) +1

e—inmq&,, .

=

Step II. Since z}, is the nearest point on I' to 2, it follows from (2.5)
that 2% is not a corner. Then the tangent of I' at 2% is perpendicular to
the segment 24,25 . Let B(z;k,n) denote the angle between the segment

22y, and the tangent of I' at 27 . By the cosine rule

|2 = 2iml” = |2 = 25" + 2k = 200" F 202 = 20 25,0 — 2| sin B(2; K, m)

and

2
|Z_Z;,n|

Then we have

& zk,n|2 _ _ 4|Z:,n i z;::‘:knl |z S Z;Tnl

2!

(4.4)

|z — zzvn |z — 2 n

|2 |sinﬂ(z;k,n)|.

= 2= 7P+ 128 = 2l £ 202 — 2l 125, — 2 sin B2 K, ).

Without loss of generality we prove (4.2) only for z = (e*),0<t<m,
since for z = ¥(e'), 7 < t £ 2w, (4.2) can be shown in the same way, and

z = 1 is the limit of both cases.
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For 0 < k< [2], 2 and 2, are on the C? smooth arc {¥(e):
10565 37"} and we know that B(z;k,n) has the same order as |z — 2% |,
which implies

(4.5) |sin B(z; k,n)| S elz = 25l, k=0,1,..., [.’25]
We also have
(46) |2—an|<|z_2kn|+lzkn z;fnlz

= W . _* SQ %
lz zk,n'_*_lcnellr,llc zk,n' = |2 zk,n'

and by (2.3)

(47) |, -2 & | [( ) i(én+2 )] g (o )‘ .
55‘ i(dnt+2kz) _ 4|
n

Hence

iy :—z{i:;_l < Elei(entt®) g

By (2.2) we have

£ el(‘ﬁn‘f’%’:) — é c

n

nO(

Therefore

For z = ¥(e'), 0 <t £ 7 and [1‘-] < k < n, (4.5) may not be true, but
we have

|sin B(z; k,n)| £ min {clz;‘n -1 + I—llll,l}.
Zkon

This is because the angle between the segment 2% 1 and the tangent of F at
Zkm is not larger than c[z}%, ol
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* . z—1 . . :
and 2} 2z is not larger than E,T—JTI These imply that 3(z;k,n) is not larger
than

elzpy = 1| + o
kn

By (4.4) and (4.6)

0 2 2T — T - -1
|Z Zk,’n.lz = 1 g C| k,n *k,nl z;xn _ 1| + mln |f~‘ I ’1 ]
ERE |z — 23 | ¥ i = 1

By (2.1) and (4.7)

|Z%n — Zim] <. (- k)*1

ERE :c(n—k+n|t|)a.

By (2.1) |z — 1] < |t|*. By (2.5)
5

(4.10) |2k = U £ 2k = 2kl + 12kn = U S l2kn — 1
and by (2.5)

e e 5 * * xx > 3 *
(4.11) |2k = U Z 1250 = 1 = |2k = 2kl 2 7120 = 11

These imply

m=k\%
|z;::;—1|x|z;,n—1|x( )

n
Hence
|2 = 2k m)? _alw n ==
l,z—zl,’;n|2 - n“(n—k+|nt|)°‘
a-1 o
Evidently

IIA

(’Il _ k)2a—1 (n il k)a—l
Z 7L°‘(n—l<,'+|nt|)CY§ E no ¢

[3]<k<n [2]<k<n
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and

(n - lc)"—1 , |nt|®
)3 (n—k+hnw“mm{02~mml}§

[%](k(n

a—l o

Z |nt]
- - t
[2]<k<n (n k+|m|) (=" + il =

(3] n
tﬂ'al [] tOI a—1
=3 “’l—hx/ ABUET
3% 4 |nt| 1

1 [t H 0 t=0
= —/ —lﬂmdy= { us
a Jo y2+|nt| 2= t;éO.

|z—zk,n|2
2

Then we have

o

[%]<k<n

|z — 2k n
Together with (4.9), we conclude that

wn(2) 4

wi(2)

A
o

The proof of the inverse inequality

wn(2)

A
o

is similar to the above process. But it needs the estimation of the lower
bound of |z — z ,|. For n sufficiently large, we shall show

(4.12) |2~ 2l € ez = 2.

n

For 0 £ k < [%] we can see that the right side of (4.8) is not larger than
0.5 if n is sufficiently large, and we have (4 12).

For [ ] < k < n—1,if the subarc zz,c ", connecting z and z , with shorter
arclength crosses ( = 1, then by (2.5) and (4.11) we have

1
IZ:n an|_—p|1_zkn|
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Since

lZ = Zl::nl § |Z i zky‘fl' i |ZZT71 ik z;,nl g

> %
ZZk’n

1
< [z = 2kl + 317 = 2l

1 1
Slz=zknl+ =1 =255 S |2 = 2kn| + —
Sz = ol + ol = 0l S l7 =2kl 4 5

then

3
&~ B §§z—zk,n.

We have

1
|Z - z;,nl g |Z - ZI:Tnl F |ZZ,*n o 2;,n| g |Z - z;fnl 1 5'1 i z;:‘n .S_

< % 1 T < X% 1 x* % M f * % < 2 —
= |Z - Zk,nl * 3; ZZkm| = 'Z . zk,nl + 3'2 - zk,nl _ 3|Z _ zk,n' = |Z zk.n|'

P—
When [2] < k < n— 1 and the subarc z2§%, connecting z and z, with
shorter arclength does not cross ( = 1, then

I
i}

xx
lzk n

|+

Let T'; be the subarc of I' which begins at 1 and whose arclength equals BiCl
and let I'y be the subarc of I' which ends at 1 and whose arclength also equals

g{—'. Then z and z;*, are both in one of these two subarcs at the same time.

Since both subarcs are C'? smooth, (4.5) and (4.8) are also true as both 2
and z3, areon a 2 smooth arc. We have (4.12) for n sufficiently large.

Proor or LEMMA 1. Let z** be the nearest point on I' to z*. By
(2.8) we know that 2** # 1. Then the segment z*2™* is perpendicular to the
tangent of I' at 2**. Let z denote the geometric reflection of z**.

Let I'; and I'y be two subarcs of I' defined in the proof of Lemma 2. We
shall show Lemma 1 for 2** € I';.

There exists a sufficiently small positive constant 7, such that for any
21 € I'y, |21 — 1] £ 7, the angle between the two tangents of I'y at z1 and 1

is not larger than 7.

If [2** — 1] 2 7, similar to (4.10) we know that z* keeps at least 352 away
from the corner. It is easy to see that the reflection of 2* across the smooth
subarc is in D when 2* is very close to T'.

If [z — 1| £ 7 and 2z ¢ D, then the segment of 2**2 must meet I' at Z #
# z**. If Z € I'y, then there is a point Z on the subarc 2**Z, such that the
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tangent at Z is parallel to the segment of 2**2. Then the angle between the

two tangents of I'y at Z and 1 is larger than 7.
On the other hand, similarly to (4.11)

|z —1]| £ %lz" - 1.
Hence
Z=1 £ =2+ |™ -1 £ B2 +]|e™ 1] £

~ *x K’k * * % 4 XK
Splz -2+ 12" = 1| £ pd(2*,T) + |2 —1I§§|2 —~1j <5,

a contradiction.
Finally, if Z € T'y \ Ty, we have

pmm——
-2l @ 27 12" 27 L =2 2
=p =P =P =

3 "
2 —|1=2z" 2 3|z" - 2%| 2 3|z - 2™,
4p

again a contradiction.
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CHARACTERIZATION OF SOME
PECULIAR TOPOLOGICAL SPACES
VIA A- AND B-SETS

J. DONTCHEV (Helsinki)

1. Preliminaries

Throughout this paper we consider spaces on which no separation ax-
ioms are assumed unless explicitly stated. A “space” will always mean a
topological space. The topology of a space is denoted by 7 and (X, 7) will
be replaced by X if there is no chance for confusion. For A C X the closure,

the interior and the boundary of A in X are denoted by A, Int A and Fr A
respectively.

Next we recall some definitions.

DEFINITION 1. A subset A of a space (X,7) is called:

(1) a preopen set [6] if A C Int A,

(2) a semi-open set [5]if A C Int A,

(3) a semi-preopen set [1] if A C Int A,

(4) locally closed [2] if A= U N F, where U is open and F is closed,
(5) an A-set [8] if A= U N F, where U is open and F is regular closed,
(6) a B-set [9]if A=U N F, where U is open and F is semi-closed,

(7) a t-set [9] if Int A = Int A,

(8) nowhere dense if Int A = 0,

(9) an NDB-set if A has nowhere dense boundary.

The complements of preopen, semi-open and semi-preopen sets are called
preclosed, semi-closed and semi-preclosed sets, respectively. A set A is called
regular closed if A = Int A.

A space X is called submaximal [2] if every dense subset of X is open.
Recall that a space X is called a partition space (or locally indiscrete) [7, 3]
if every open subset of X is closed. A space X is extremally disconnected
(or extremal) if the closure of each open subset of X is open or equivalently
iff every semi-open set is preopen.

REMARK 1.1. This paper is based on [10].
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68 J. DONTCHEV

2. A-sets, B-sets and t-sets

THEOREM 2.1. Every B-set is an NDB-set.

PRrROOF. It is trivial to see that the intersection of two NDB-sets is an
NDB-set. Since a B-set is the intersection of a (semi-)open and a semi-closed
set, it is enough to show that every semi-open and every semi-closed set is
an NDB-set. If A is semi-open, then for some open U we have U C A C
CU. SinceFrA=ANX\A=UNX\ACUNX\U = FrU, clearly Fr A
is nowhere dense being a subset of the nowhere dense set FrU. In fact it
is obvious that every open set has nowhere dense boundary. Thus every
semi-open (and hence every semi-closed) set is an NDB-set. O

REMARK 2.2. The converse is not true. For consider the space X =
= {a,b,c} with the only non-trivial open set {a}. The subset {a,b} is an
NDB-set but not a B-set.

In [9] Tong defines the notion of t-sets in topological spaces. The fol-
lowing result shows that the defined property coincides with the class of
semi-closed sets.

THEOREM 2.3. For a subset A of a space X the following are equivalent:
(1) A is a t-set.

(2) A is semi-closed.

(3) A is a semi-preclosed B-set.

(4) A is a semi-preclosed NDB-set.

PROOF. (1) = (2). Since Int A= Int A, then Int A= Int AC A& X \

\ A CInt(X \ A). Thus X \ A is semi-open, hence A is semi-closed.

(2) = (3). Every semi-closed set is trivially semi-preclosed. Since A =
= AN X, where A is semi-closed and X is open, then A is a B-set.

(3) = (4). Theorem 2.1.

(4) = (1). Since A is an NDB-set, then B = X \ A is also an NDB-set.
It is easy to see that from the identity

Int(FrB) =Int BN Int(X \ B)=Int BN (X \ Int B) = Int B \ Int B,

it follows that Int B C Int B. Since B is semi-preopen, B C Int B. Thus B C
C Int B or equivalently B = Int B. Since B = X \ A, Int A = Int A. Thus A
isatset. O

THEOREM 2.4. For a subset A of a space X the following are equivalent:
(1) A is an A-set.

(2) A is semi-open and locally closed.

(3) A is semi-preopen and locally closed.

ProoOF. (1) = (2). Every A-set is trivially locally closed. The second
part is Theorem 3.1 in [8].
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(2) = (3) is trivial.
(3) = (1). Since A is locally closed, A = U N A, where U is an open set.

Since A is semi-preopen and since trivially Int A C A, A is regular closed.
Thus A is the intersection of an open and a regular closed set, i.e., it is an
A-set. O

The equivalence of conditions (1) and (2) in the previous theorem was
first proved by Ganster and Reilly in [4].

The results in the next theorem were proved by Tong [9], Ganster and
Reilly [4] and we list them without proof for further citation.

THEOREM 2.5. For a subset A of a space X the following are equivalent:
(1) A is open.

(2) A is preopen and locally closed.

(3) A is a preopen A-set.

(4) A is a preopen B-set. O

3. Some peculiar spaces

THEOREM 3.1. For a space X the following are equivalent:
(1) X is submazimal.

(2) Every subset of X is a B-set.

(3) Every dense subset of X is a B-set.

ProorF. (1) = (2). Let A C X. Since every subspace of a submaximal
space is submaximal, then A is submaximal. Since A is dense in A, A is open
in A. Thus A = UN A, where U is open in X and 4 is closed in X Thus A
is locally closed and hence a B-set, since every closed set is semi-closed.

(2) = (3) is trivial.

(3)=> (1). Let AC X be dense. By (3) A=UnN B, where U is open
and B is semi-closed. Since A C B, then B is dense. Thus Int B = Int B =
=Int X = X and hence B = X. Thus A = U is open and so X is submaxi-
mal. a

THEOREM 3.2. For a space X the following are equivalent:
(1) X is a partition space.

(2) Every B-subset is clopen.

(3) Every B-subset is closed.

Proor. (1) = (2). If Ais a B-set, A= U N B, where U is open and B
is semi-closed. By (1) U is clopen. On the other hand B is open by (1) and

thus Int B C B C B implies B = Int B = B and thus B is clopen. Thus A
is clopen being the intersection of two clopen sets.

(2) = (3) is trivial.
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(3) = (1). Every open set is a B-set by Theorem 2.5 and thus by (3)
closed. 0O

THEOREM 3.3. For a space X the following are equivalent:
(1) X is indiscrete.

(2) The only B-sets in the X are the trivial ones.

(3) The only A-sets in the X are the trivial ones.

PRrooOF. (1) = (2). If Ais a B-set, then A = U N B, where U is open and
B is semi-closed. If A # (), then U # 0 and by (1) U = X. Thus A = B and
soIntA= IntA= IntX = X. Hence A = X,

(2) = (3). Every A-set is a B-set.

(3) = (1). Since by Theorem 2.5 every open set is an A-set, by (3) the
only open sets in X are the trivial ones, i.e., X is indiscrete. a

THEOREM 3.4. For a space X the following are equivalent:
(1) X is discrete.
(2) Every subset of X is an A-set.

ProoF. (1) = (2). By (1) every set A C X is open and regular closed.
Hence A is an A-set.

(2) = (1). By (2) every singleton {z} € X is an A-set and by Theorem
3.1 in [8] semi-open. If Int{z} = @, then we have the contradiction {z} C
C Int{z} = 0. Thus {z} = Int{z} or equivalently every singleton in X is
open. O

The following result was first proved by Ganster and Reilly in [4] and
thus we present it without proof.

THEOREM 3.5. For a space X the following are equivalent:
(1) X is extremally disconnected.

(2) Every A-subset of X is open.

(3) The collection of all A-subsets of X is a topology for X .
(4) The intersection of two A-sets is an A-set. O
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JACKSON ORDER OF APPROXIMATION
BY LAGRANGE INTERPOLATION. II

G. MASTROIANNI (Naples) and J. SZABADOS™ (Budapest)

In [3], we considered the problem of finding classes of functions where
the order of Lagrange interpolation is the same as the Jackson order of ap-
proximation, for some suitably chosen systems of nodes. (For the origin of
the problem see also the references in [3].) It turned out that for the nodes

k-1
n—1

(1) Thn = CO8 TR, Tk = T, k=1,....n

which are the roots of the polynomial
(2) wp(z) =sin(n — 1)tsint, z = cost

(this is the Chebyshev polynomial of second kind of degree n — 2 multiplied
by 1 — z?), this phenomenon occurs, provided that the function to be in-
terpolated is a piecewise polynomial. Motivated by this paper, Xin Li [4]
generalized our result for finitely differentiable functions which are piece-
wise analytic functions, if these pieces are analytically extended to the whole
interval [-1,1].

It is the purpose of this paper to show that Xin Li’s condition of an-
alyticity can be essentially relaxed and at the same time the proof can be
drastically simplified.

To begin with, let

(3) =l =0, €0y < ;s 005=1 (SZ].)
be a fixed partition of the interval [—1, 1]. Further denote
I = (o1, ), j=0,1,...,8— 1.

The restriction of a function f € C[—1,1] to the interval I; will be denoted
by f| I The Lagrange interpolation polynomial of f € C[—1,1] with respect

to the nodes (1) is L,(f,z), and the error of interpolation is
An(f,z) = f(z) = Ln(f, ).

* Research supported by Hungarian National Science Foundation Grant No. 1910.
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THEOREM. Letr 2 0 be a fized integer, and (3) a fized partition of the
interval [-1,1]. If f(z) € C"[-1,1] and for fj(z):= f|; € (I, 4=

=0,...,8—1 we have

(4) w(f}’“),h):o( : ) (h>0,j=0,...,s—1)

log %

(where w is the modulus of continuity of the corresponding function on the
corresponding interval), then

|An(f,2)| =0 (l“;'i(ﬁ)' ) min (1 : ) (Il € 1).

"nminygi<,_q |z — ajf

Introducing the usual notations

. z{x if 220, _ o _{0 if 220,
5 0 if z<0 5 z if z<0

]

a typical example of a function satisfying the conditions of the theorem is

s—1

fl@)=g(@)+) (z-a)' (522

i=1

where g € C™*2[—1,1] is such that w(g("t?) k) = O(1/log1/h). If g is not
analytic in [—1,1] then the above mentioned result of Xin Li does not apply
to such functions.

The proof is divided into a series of lemmas.

LEMMA 1. For the polynomial (2) we have the following estimate in the
complez plane:

©
Wr=a (14 vi=a) " -] i kel s

(a2 — 1) if |z S 1,y= =1

|wn(z +iy)| 2

Proor. We use the formula
@plz) = %\/22 -1 [(z + V22 - 1)_n —(z+ V22 - 1)"] (ze C\[-1,1])
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where the square root is that value for which (z + V2% - 1| > 1 for the 2’s

in question (see Xin Li [4]). By symmetry, without loss of generality we may
assume that 0 £ 2,y £ 1. Then an easy calculation yields

: V=22 4 92) 4 dz2y? — (1- 22 4 42)
VeEk=1l= +

2

\/(1 — 22 + y2)® + 422y? + (1 — 22 + ¢2)

+1 5 ,

whence

I\/z2—1’ > ,Im \/zz—ll > \/1—1’2,
lz-{-\/zz—l’zgxz-}-<y+\/1—x2)2g1+y\/1—z2+y2.

Substituting these estimates into (5), we get the statement of the lemma.

LEMMA 2. We have

|wa(2))| . { 1 }

Ay -—yl,a: =10 min < 1,

(C=vh2) wt (vieg?)" e~ ylny/T—
(Jz| £ 1,ly < 1,1 =1,2,...).

The special case y = 0 was proved in [4], Theorem 2.1. Our proof is
along the same lines, but since it is much simpler, we give it in full details.

Of course, a similar estimate holds for the functions (z — y)l__
Proor. Evidently

I
LTl 2 57 ElBIBR= 00

5, wnl@k)(@ — 2k)

whence using the residue theorem of complex integration

An((=e) = B Lo s (lal ol S )
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where I' = Ji_, T},
I1={z=u—-i: ySus?2}, To={2=2+iv: |v| 1},
li={z=u+i:2Z2u2y}, Ty={z=y+iv: |v| £1}.

Using Lemma 1 we get

Lign/2 _ 1) if ze Ui, Ty,
‘wn(z)i ; 1 n/2 )

5\/1—y2[(1+|v|\/1——y2) —1] if z=y+iveTly.
Thus

1 —y) -
o / S ol /0 dz| =0 max |wn(z)| H | =00
2me |, T wn(z)(2 — z) e f T
(=], 1yl £ 1),
and the contribution resulting from this is much less than the right hand side
of (6).
Now we estimate the remaining integral. Using Lemma 1 again,
(z—y)

7) / —————dz| £
" (-2 | =

4 1 l

= 5 / :/2 dv.
=g <8 [(1+v\/1—y2) fl]ly—x+iv|
In order to estimate the integral
1 !
j :/ = /2 dv,
0 (1+v\/1—y2) -1
3 —t u
we substitute v = o to get
1 n l—y2 l
(8) I= 1 / +/2_du §
(s b arT

Acta Mathematica Hungarica 69, 1995



JACKSON ORDER OF APPROXIMATION BY LAGRANGE INTERPOLATION. II 7

1
§ 1+1 (Il +12)7
(T=47)

where

1 I 1

11:/ u/2 duS?/ W Vdu = !

8. 4 =1 0 :

and

_gn_ @) 0(1) (n>2l),

Miey(n-25)

where the last integral was calculated by integration by parts. Hence (8)
gives

1
(nm) I+1

Using this estimate, as well as the inequality |y — z + iv| 2 max{|z —
— y|,|v|}, we obtain from (7)

(z—y) '
/r, 2"

Collecting all these estimates, we get the statement of the lemma.
The next lemma can be of independent interest, since it provides an es-
timate of the error of interpolation which reflects the interpolatory property.

LEMMA 3. Ifg € C'[-1,1] (I 2 1) then we have

|An(g,2)| = 0 ('—“’,f,—”'w (o) o n) (12 < 1).

I=0

1

. 1
7 mm{l, }
nl( l—y2>-H nlz — yl/1-y?

e= 0

Proo¥r. For an arbitrary z € [-1,1] let

T —T;|:= min |z — x|.
| J| l§k§n‘ k|
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(In case this definition of the index j is not unique, take either one of the
two possibilities.) Using mean value theorem we get

(9) |An(g,2)| S|z -zl [ An(g.2)]| (Il £1)

where the notation || - || indicates supremum norm over the interval [—1,1].
We estimate the two factors appearing on the right hand side here separately.
In estimating |z — a:J|, we distinguish two cases.
Case 1: |t—t;| £ ) (see the notations (1)-(2)). Then, using mean

value theorem again,

|wn(:v)| = |‘wn(z) — wn(:vj)| = |z - z;| - [w;(coséj)|

((gj € (t,t;), 16 —t;] < h) '

wn(z) )

Then

Hence

(10) o= 21 =0

Case 2: gy < |t — 15| £ 75

|x_zj|:0<ﬂﬂ)=0(|&(il>,
n n

which is the same as (10).

In estimating the second factor on the right hand side of (9), we use a
well-known theorem of Gopengauz [2] which says that under the conditions
of Lemma 3 there exist polynomials p,(z) of degree at most n such that

11) |g")(z) -

n

| (\/l—ﬂ)l_m (“) \/1—1:2)
= ——— w|gW,——

(el S 1y 98 = 0004 5)s

Using this with m = 1 (and without the pointwise estimate) we obtain

AL £ llg’ = Poll + || Ln(pn — 9)| =
1
= O(nl—l)w (g(l)’ ;> & “ L (pn — g)”
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Here applying (11) with m = 0,

[wn(a)]

O le -zl

nl- 1 sin tj
( >|wn |Z|cost—costk|
V1 -2?)w ( O —) logn (l=] £ 1),

| La(pr - 9,2 §an$k ~ g(zx)|
k=2 Iw

Hence by a result of V. K. Dzyadyk [1, Theorem 2'] we get

| Z4toa = 9l = 0o (50, 2 ) g .

Substituting this as well as (10) into (9) we obtain the statement of the
lemma.

PRrOOF OF THE THEOREM. Let H(f,z) be the unique Hermite interpo-
lating polynomial of degree at most (r 4+ 1)(s — 1) — 1 satisfying the conditions

H™(f,a;)= f™(a;) (m=0,...,r;j=1,...,5—-1).
Then for the function
F(z) := f(z) - H(f,z) € C"[-1,1]
we evidently have
(12) An(F,z) = An(fiz)  (n2(r+1)(s—1)),
Pl eC™¥(L) (i=0,...,8-1)

and

F(m)(aj)ZO =00t T2 Lysons 8= 1)
Thus if we define

Fj(x)::{F(:c) if zel,

0 if ze[-1,1)\I b =1y g8 1),
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then F; € C"[-1,1] (j=0,...,5—1) and

s—1
(13) F(z)=Y  Fi(z):
7=0
Moreover, define
(14)
w2 FlmNg; -0 —a;)" + Fm)(q. 0 . \M
gi(z):= Fij(z)+ ) (3 =008 =)y, + 5 + 0o = ajpalt

m=r+1

m!

(7 =005 558 1)

Then by calculating the left and right derivatives of g; at a; and a4, it is
easy to see that

9" (aj) = F™(a; = 0), g/ (aj1) = F™ (a41+0)
(m=r+1,r¥2]=0,...;8—1);
and therefore g; € C™?[-1,1] (j=0,...,s—1). By (4)
(15)  w(g k) = w(E*,h) = 0(w(f]*?, b)) = 0(1/ log1/h)
[§ D ng= 1),
since g](-r+2)(x) is constant in [-1,1]\I; (7 =0,...,s—1). Now (14) yields
(16) IAn(Fjvz)l < |An(gj717)|+
2™ (a5 = 0)An((- — a))T, 2)|[+|F™ (a1 + 0)An((- — aj41)7, 2)|

L
m=r+1

m!
2] S 1, § =20, 048 =1)

Here applying Lemma 3 with g; and r 4+ 2 for g and [, respectively, we get
from (15)

(17)
800038 = 0 (Jan(@)| 720 (47, ) g = 0 ([~

(j-:O,...,S—l; |(L‘I§1)
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On the other hand, applying Lemma 2 (and its analogue for (z — y)™)
with m and a;, a;4; for [ and y, respectively, we get

(18)
TZ” [FU™ (a; — 0)An((- = a))F, 2)|+[F™(aj1 + 0)An((- — aj41)7, 2)|
m! E
m=r+1

wn (T 1
=) | n 1)| min < 1,
n't nmax; <<, |z — a;]

(1=0,:..58=1; e} & 1)

Finally, (12), (13), (16)—(18) yield

s—1
<Y ladE, g =0 (lf{iﬁ)')mm{l, 1 }

=0 R MaX;<i<s—1 |z — aj

(lz] £ 1).

We do not know if the condition on the order of piecewise differentiability
of the function can be further weakened. Nevertheless, if we do not insist on
the second estimate in the theorem which gives a better estimate away from
the singularities a;, then the following corollary holds true:

COoROLLARY 1. Let r 2 0 be a fized integer, and (3) a fized partition
of the interval [-1,1]. If f(z) € C"[~1,1] and for f;(z):= f|; € C™*(I;),

7=0,...,8—1 we have

1
log %

w(f}’”“’,h):o( ) (h>0,j=0,...,s—1)

then

|Anf,2)] =0 ("2’1&?') (la] < 1).

This can be easily seen from the proof of the theorem.
Another consequence (of Lemma 2) is the following
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COROLLARY 2. If f")(z) is of bounded variation in [—1,1] then

1
At =06 [ 14wl

This easily follows from the obvious formula

1
An(fia)= [ Aal= 92 ),

-1
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AN EXPLICIT ESTIMATE OF EXPONENTIAL
SUMS ASSOCIATED WITH A CUBIC
POLYNOMIAL

K. A. M. ATAN (Serdang)

1. Introduction

Let x = (#1,...,2,) denote a vector in the space Z" where Z denotes as
usual the ring of integers. Let ¢ be a positive integer and f a polynomial in
Z[x]. The exponential sum associated with this polynomial is defined as

S(f;<1)=zeh_'£(:l

where the sum is over a complete set of residues x modulo g.
As a result of his proof of the Weil conjectures, Deligne [2] showed that
if p is a prime, then

IS(ﬁP)l <(m- 1)npn/2

where m denotes the total degree of the associated polynomial f, under the
condition that the homogeneous part of f having the highest degree is non-
singular modulo p. Deligne’s work opens the way to estimates of the sum
associated with any positive integer ¢. Loxton and Vaughan [6] for example
found very precise estimate for the sum in terms of invariants associated with
a one-variable polynomial f. However, the general results for polynomials of
several variables are less complete.

It can be shown that S( f; ¢) has a multiplicative property with respect to
q (see for example Loxton and Smith [5]). That is if ¢;,¢2 have no common
factors then there exist integers my and msy such that

S(fiqrqz2) = S(maf,q1) S(maf,q2).

Consequently it suffices to examine exponential sums of the form S(f;p*).
In this paper we give an estimate for such an exponential sum with f a
cubic polynomial with coefficients in the ring Z.

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



84 K. A. M. ATAN
2. Some preliminary results

In the following discussion we will denote €2™*/P* by e,a(t) for any inte-
ger t. Let f(x,y) be a polynomial with integer coefficients. Atan [8] adapted
the results of Loxton and Smith [5], to show that the estimate for S( f;p®) is
dependent on N( f;p®), the number of common solutions to the congruences

fz(z,9) =0, fy(z,y)=0 mod p°.

Here f, and f, denote the usual partial derivatives of f with respect to the
variables z and y respectively. We rewrite Atan’s assertion as follows.

THEOREM. 2.1. Let p be a prime and f(z,y) be a polynomial in Z[z,y].
For a > 1, let

S(fip)= Y. ep(fl2,y))

z,ymod p*
and © = [a/2]. Then
| S(f;p*)| £ P**~OIN(f;p°).

PRrROOF. Define 7y = @ — © so that 2y 2 a and 7 2 © 2 1. Let z denote
the pair (z,2') in Z% and z = u + p"v, so that x runs through the residue
classes modulo p® as u runs through the residue classes modulo p” and v
runs through the residue classes modulo p®. By using the Taylor expansion
of f(x) = f(u+ p v) we can rewrite S(f;p®) as follows:

S(fip*)= Y, ea(f(w) D epm(p’grad f(u)-v).

umod p7 vmod p®
The inner sum clearly vanishes unless both f,(u) and f,(u) are congruent

to 0 modulo p®. Under this condition each term in the inner sum is equal to
1. Tt follows then that the inner sum is equal to p?®, and hence

S(fip7) =90 Y epn(f(w),
where the sum is taken over all x modulo p® such that
grad f(u)=0 mod p°.

Since there are p?("=®) points u modulo p” corresponding to each solution
of the above congruences modulo p®, we have

| S(f;pa)l § p2®+2(’v—®)N(f;p®)
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as required.
If a is odd a slightly sharper estimate than the one in Theorem 2.1 can
be obtained. Towards this end we define the set

K¢(u) = {v = (v,v")mod p: vJs(u) = 0mod p}

where u = (u, ') and Jy is the Jacobian matrix

=[5 7]

Our result for this category of « is as follows.

THEOREM 2.2. Let p be a prime and f(z,y) be a polynomial in Z[z,y].
Let a =20 + 1 with © 2 1. Then

|S(F;7)| S Y | Kp(w)|

where the sum is taken over all u = (u,u') modulo p® such that grad f(u) =
= 0mod p® and, in addition, when p is odd grad f(u)-v = 0mod p®t! for
all v in K¢(u).

Proo¥. From the proof of Theorem 2.1
S(£;p*) =" epe(f(x)),

where the sum is taken over all x = (z,2’) modulo p” at which f;(x) and
fy(x) vanish modulo p® and y = © + 1. Let

x=u+p®v

so that x, u and v run through the residue classes modulo p”, p® and p
respectively. By a Taylor expansion

£%) = F(w)+ p° grad f(w) v+ 3p*°vIg (V' (mod )
we obtain
S(f;p*) =" ) epa(f(0)) Gy(u),

where the sum is taken over all u modulo p® such that grad f(u) = 0mod p®
and Gs(u) denotes the Gaussian sum

Gys(u) = Z €y (%va(u)vt +p~®grad f(u) -v) X

vmod p
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Now consider

65" = 6 (5vJstuy! —wi a4 grad (v = w)).

v,w

Write v = w + z and carry out the summation over w. This gives

GP = Y e (et + O g s a).

zJs(u)=0mod p

If we replace here z by z + v where v is any point in Ks(u), we get

|Gf(u)|2 =g, (%va(u)vt +p_® grad f(u) -v) |Gf(u)|2.

Hence, G¢(u) is 0 unless 2v.J (u)vt 4+ p=©grad f(u)-v =0 (mod p) for all
v in K(u). If p is odd, this condition is equivalent to p=® grad f(u)-v=10
(mod p) for all v in K¢(u) and we have

|G(w)|? = p?| Ks(u)|.

From this, we get the estimate in the theorem. If p =2, the condition
for G¢(u) to be non-zero does not simplify, but we still have |G'f(u)|2 <
< p2| Kf(u)| and the required estimate follows.

From the above it is seen that the estimate for S(f;p®) is dependent
on the estimates of N(f;p®) and K¢(u). In the following section we will
examine these two quantities. In the ensuing discussion p will always denote
a prime and for a rational number z, ord, 2 will indicate the highest power
of p dividing z. We will set ord, z = oc if z = 0.

3. Estimation of N(f;p*)

Let p be a prime and f = (f,..., f,) be an n-tuple of polynomials in
x = (2y,...,2,) with coefficients in Z. Let N(f;p®) denote the cardinality
of the set

V(£;p*) = {umod p*: f(u) = 0mod p*}
where @ > 0 and each component of u runs through a complete set of residues

modulo p®. The estimation of N(f;p®) has been the topic of research of
many authors. For example Loxton and Smith [5] showed that for a > 0

and a one-variable polynomial f(z)in Z[z], N(f;p®) < mp*~(@=8)/¢if a > 6,
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where m is the number of distinct zeros &; of f that generate its associated
algebraic number field K, and 6 is the highest power of p such that D(f) =0

(mod p®) where D(f) represents the intersections of the fractional ideals of

K generated by the numbers L;),,(Ql, i 2 1 and e = maxe; with e; denoting
g J

the multiplicity of £;. A similar result was obtained by Chalk and Smith [1]

by employing Hensel’s Lemma.
In their work Loxton and Smith [5] showed that for f = (fi,..., f.),

" if a 2 né

N(f;p®) <
(97 = {(Degf)pn5 if @ < né

where é is the highest power of p dividing the discriminant of f. Atan [9]
considered linear polynomials f = (fy,..., f,)in (zq,...,2,) with coefficients
in the p-adic ring Z,. He showed that

N(f;p*) < min{p",pln=7*+7¢}

where ¢ is the minimum of the p-adic orders of r X r non-singular submatrices
of the reduced coefficient matrix of f.

Let f=(fi,...,fs) be an n-tuple of polynomials in Z,[x] where x =
= (z1,...,2y), & common zeros of f and H;(a)= {x € Qp:ordy(x - &) =
= mjaxord,,(x - §;) and ord, f(x) 2 a} where 2, is a complete and alge-
braically closed p-adic field. Following the method of Loxton and Smith
[5] we show below that the cardinality N(f;p*) of the set V(f;p®) =
= {xmod p*:f(x) = 0 mod p>} is dependent on the p-adic distance between
a common zero §; of f and elements x in H;(a).

LEMMA 3.1. Let p be a prime, and f an n-tuple of polynomials in x =
= (Z1,...,T,) with coefficients in Z,. Let §; be a common zero of f. Then

N(g:po) < 3 prlem@)

where

; = inf d,(x - &;).
(@)= _nf ordy(x—£)

ProoF. Consider the set V;(f;p®) of points in V(f;p*) that are close
p-adically to a common zero §; of f. That is

Vi(f; p) — {x € V(f;p®):ord,(x — §;) = maxord,(x — £]-)}.
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Then,

(1) N(f;p*) £ ) card Vi(f;p%).

1

Consider the set

Hi(e)={x€ Q7:ordy(x — §;) = maxord,(x — §;) and ord, f(x) 2 alt.
j

Let

(2) Yla) = inf ordy(x~£)

for all i. Now, for every a 2 1, Vi(f;p*) € H;(«) for all i. Hence,
card V;(f;p*) £ card{xmod p®:ord,(x — ;) 2 vi(a)}.

That is,

(3) card Vi(f;p) < pro=(*)

with & 2 v;(«) for all . Our assertion then follows from (1), (2) and (3).

The determination of the size of v;(«) in the estimate above has been
the subject of scrutiny of several researchers (see for example Loxton and
Smith [5]). Atan [9] employed the technique of Atan and Loxton [7] as an
extension of the p-adic technique of Koblitz [4] called the Newton polyhedron
method described briefly below to arrive at the estimates of 4;(«) for certain
polynomials of lower degrees. "

If p is a prime and f(z,y) = Y a;j2'y’ a polynomial with coefficients in
Q, the completion of the algebraic closure of the field , of p-adic numbers,
then the Newton polyhedron of f is defined to be the lower convex hull of
the set of points (¢, j, ord, a;;) in the Euclidean space where ord, denotes
the extension of the usual additive p-adic valuation from @, to Q,, with the
convention ord, 0 = oo.

Associated with each Newton polyhedron is an indicator diagram which
is defined as the plane graph consisting of vertices (A/v, p/v) and edges with
the former corresponding to the normals (A, u,v) of faces in the polyhedron
and the latter joining adjacent vertices corresponding to normals whose faces
share a common edge in the Newton polyhedron.

Atan and Loxton showed that (£,7) is a zero of f if and only if (ord, &,
ord, n) is a point on the indicator diagram associated with the Newton
polyhedron of f. Suppose (A,p) is a simple point of intersection of non-
coincident edges of the indicator diagrams associated with polynomials f
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and g in Qp[z,y]. Atan [9] showed that if (A, ) is not a vertex then there is
a point (£,7) in Q% at which f and g vanish with ord, £ = A and ord, n = p.

Using this information as our tool we arrive at the estimate v;(«) asso-
ciated with the two-variable polynomial

(0) f(z,y) = az® + b2’y + cxy® + dy® + ex + my + n
with coefficients in the ring of p-adic integers Z,, with the property that

¢? — 3bd, be — 9ad and b? — 3ac are non-zero, in the following lemma.

LEMMA 3.2. Let p be a prime and (0) a polynomial in Z,[x,y] with
non-vanishing coefficients in the homogeneous part of degree 3. Let 6 =
= max{ord, 3a, ord, b, ord, ¢, ord, 3d}. Suppose (zo,yo) is in Qg with
ord, fo(wo,y0), ord, fy(zo,%0) 2 a. If a > &, then there is a zero (€,n) of
fr and f, in Q% such that ordy, fz(§€ — xo,n — yo), ord, fy(€ — xo,n— yo) 2

2 Ha-19).
ProOF. Let X =z —29,Y =y -y, and h = f, g = f,. Then
R(X,Y)=3aX?+2bXY 4 ¢Y? + h, X + h,Y + ho,
g(X.Y) = X% 4 2:XY 4+ 3dY*+ 9:X +9,Y + 90

where [, denotes the partial derivatives of the polynomial [ with respect to
z defined at (zg,yo) and lp = I(zo, Yo)-
Let a, 3 be the roots of the quadratic polynomial

u(z) = (¢ = 3bd)z? + (be — 9ad)z + b* — 3ac.
If a # 3, then it can be shown that the polynomials
H(U,V) = (3a+ ba)(h+ag), G(U,V)=(3a+ bB)(h+ Bg)
with
U=Ba+ba)X 4+ (b+ca)yY, V=3a+b3)X+ (b+ch)Y

will have a simple intersection in the indicator diagrams associated with their
respective Newton polyhedrons. By a theorem of Atan and Loxton [7] and
resubstitution of variables there is a common zero (§,7) of h and g with
ord, (£ — x¢), ord,(n—yo) 2 3(a — &) where 6y = max{ord, 3a,ord, b}. We
obtain the required estimate from our hypothesis since clearly éy < 4.

Suppose now that a = 3. Consider the linear combinations of h and ¢
as follows:

(1) H(X,Y)=(3a+ba)h+ ag),
(2) G(X.Y) = (3a + ba)*(cf - bg).
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Set
U=3a+ba)X +(b+ca)Y, V =(3a+ba)X —(b+ ca)Y.
Then (1) and (2) will become

(3) H(U,V) = U?+ AU + (3a + ba)(ho + ago),
(4) G(U,V) = BUV + CU + DV + (3a + ba)*(cho — bgo)
where

A =2[(3a + ba)zo + (b+ ca)y], B =0b*-3ac,
C = (b* = 3ac)[(3a + ba)zg — (b + ca)yo] ,
D = (b* - 3ac)[(3a + ba)zo + (b + ca)yo] -

Now let
W=BV+C, T=UH+D/B.

Since « is a double root of u(z) we would have
(2 = 3bd)(3a + ba)? = (b% — 3ac)(b + ca)?
Hence with the substitution of 7" and W in (3) and (4) we will have
(5) H(T,W)=T? - (3a+ ba)(ho + ago),
(6) G(T,W)=TW.

Consider the indicator diagrams associated with the polynomials (5) and
(6). By a method of Atan and Abdullah [10] the indicator diagrams associ-
ated with the Newton polyhedrons of these polynomials will have a simple

intersection at the point

(A ) = (%ord,, (3a + ba)(ho + ago),oo) .

Hence by a theorem of Atan and Loxton 7], H and G will have a common

zero (Tp, Wy) such that

ord, To = A, ord, Wy = p.

This remark and resubstitution of variables together with our hypothesis will

lead us to our assertion as above.
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The following theorem gives the estimate for N(f,, f,;p*) where f is as
in the above lemma. The proof follows from the results of Lemmas 3.1 and
3.2, and the fact that by a theorem of Bezout (see for example [3]) f, and
fy have at most 4 common zeros.

THEOREM 3.1. Let p be a prime and (0) a polynomial in Z[z,y] with
non-vanishing terms in its homogeneous part of degree 3. Let o > 0 and é =
= max{ord, 3a,ord, b,ord, c,ord, 3d}. Then

N(fz, fy;p*) £ min{p**,4p°+*}.

4. Estimation of S(f;p?)

Let f be a two-variable polynomial with integer coefficients of total de-
gree m and p a prime. From the work of Deligne on Weyl’s conjecture it can
be shown that

|S(f;p%)] € (m—-1)%p

under suitable conditions on f.

Let p be an odd prime and a > 1. If f(z,y) = az® 4 ba?y 4+ cx + dy + €
is a polynomial in Z[z,y], and § = max {ord, 3a,3ord, b}, Atan [8] showed
that for this cubic polynomial

|S(f:p7)] < min {p**, 4pF 48}

In the following theorem we will consider a more general cubic polyno-
mial than the one above of the form (0) with coefficients in Z and we will
show that ¢ is in fact dependent on the coefficients of the dominant terms
of f, provided that each term in this homogeneous portion of highest degree
of f is non-zero. The assertion generalizes and improves the result as stated
immediately above especially in the determination of the value of 4.

THEOREM 4.1. Let p be an odd prime and o > 1. Let (0) be a poly-
nomial in Z[z,y|, with non-zero coefficients in its cubic segment. Let § =
= max{ord, 3a,ord, b,ord, c,ord, 3d}. Then

Proor. In Theorem 3.1 it is shown that

N(fos fy;p®) £ min{p?®,4p®+¢}
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where © = [a/2]. If @ = 20, it follows from Theorem 2.1 that |S(f;p°‘)| <
< p#@=®) min{p?®,4p®+} which lead us to the required estimate.
Suppose now that o = 20 + 1 with © 2 1. We will apply the result of

Theorem 2.2 in this case. If D = (bm — ce)* — (3am — be)(cm — 3de) is not
divisible by p, then the congruences

fo = 3az? + 2bzy + cy® + e, = bz? + 2czy + 3dy? + m
and
|Jf| = (12ac — 4b*)z* + (36ad — 4bc)zy + (12bd — 4c*)y* = 0(mod p)

do not have a common solution. Thus, in this case each term in the sum
> | Ky(u)| V2461, Consequently,

|S(f;p%)] £ P°N(f:p°)

and the required estimate follows. If D is divisible by p then there are two
possibilities in ) |Kf(u)|1/2. If | K¢(u)| £1 then the term correspond-
ing to u is counted with weight at most prHia, |Kf(u)| = 2 then the
term corresponding to u must satisfy the stronger congruence grad f(u) =

= 0 (mod p®*!) and hence must be counted with weight at most p*. As a
result we would have

| S(f;p%)| € p* 42N (f:p%) € p°* 1 min{p™®, 4p%°}

and the estimate as required follows.

5. Conclusion

In this paper we obtained explicit estimate for S( f;p*) for a more general
cubic polynomial f than the one considered in an earlier work. The result
generalizes and improves that in the previous work and give some indications
on how the general case should be examined especially in the search for the
most suitable discriminant analogous to the one-variable case.
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ADDITIVE GROUPS OF TRIVIAL
NEAR-RINGS

S. FEIGELSTOCK (Ramat Gan)

Groups G in this note are not necessarily abelian, but the group opera-
tion will nevertheless be denoted by +. In order to remain consistent with
this notation, direct products of groups will be called direct sums. The semi-
group of endomorphisms of G' will be denoted by E(G). All near-rings are
left near-rings. The additive group of a near-ring R will be denoted by R*.
A near-ring R, with Rt = G, is said to be trivial if there exists a subset
S € G such that multiplication in R is defined by

{y, ifzes
Toy=

0, otherwise.

Clearly if |G| £ 2 then every near-ring R with Rt = G is trivial. In
(1, Problem 2.16] Clay posed the problem whether or not there are other
groups satisfying this property. Some partial results concerning this prob-
lem are obtained in this note, including an answer for abelian groups, and
finite groups.

DEFINITION. A group G is said to be a TNR-group (trivial near-ring),
if every near-ring R, with Rt = G, is trivial.

THEOREM 1. Let G be a group, and let ¢ € E(G) such that ¢ # 1g, ¢ #
# 0, and either (1) ¢* = ¢, (2) ¢? = 1g, or (3) ¢> =0. Then G is not a
TNR-group.

PROOF. Suppose that ¢ satisfies (1). Let R = (G, +,+), with multiplica-
tion in R defined by

{ 0, if z € ker¢
-y =
o(y), otherwise.

Let z,y,2 € R. If (2 € ker¢) V(y € ker ¢) then it is readily seen that (zy)z =
=z(y2) =0. If (2 ¢ kerp) A (y & ker ) then (zy)z = z(yz) = #(2), and so
multiplication in R is associative. It is readily seen that z(y + 2) = zy + 22
for all z,y,z € R.

CraiM. There exists a € R which satisfies ¢(a) # 0, and ¢(a) # a.

ProoF oF CLAIM. Since ¢ # 0 there exists a; € R such that ¢(a;) #
# 0. It may be assumed that ¢(a;) = a;. Since ¢ # 1 there exists a; € R
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96 S. FEIGELSTOCK

such that ¢(ag) # ay. It may be assumed that ¢(az) = 0. Let a = ay + az.
Then ¢(a) = a; with a; # 0, and a; # a. Let a be as in the Claim. Then
a-a=¢a),soa-a#0,and a-a # a,i.e, Ris not trivial.

Suppose that ¢ satisfies (2). Let a € G such that ¢(a) # 0, and ¢(a) # a.
Let R = (G, +,-) with multiplication in R defined by

oy) ifr=a
e if z = ¢(a)
0 otherwise.

Let z,y,2 € R. If (¢ ¢ {a,¢(a)})V (y & {a,é(a)}) then it is readily
seen that (zy)z = 2(yz) =0. If (z € {a,é(a)}) A (y € {a,é(a)}) then a
direct computation shows that (2y)z = z(yz) in all four cases. Therefore
multiplication is associative in R. Again z(y+ 2) = 2y + z2 for all z,y,2 €
€ R. Since a-a = ¢(a), and ¢(a) # 0, or a, it follows that R is not trivial.

Suppose that ¢ satisfies (3). Let R = (G, +,-) with multiplication defined
by

{0 ifz € ime¢
Toy= e
o(y) ifz & im ¢.

It is easy to see that R is a near-ring. Let a € R such that ¢(a) # 0.
Since ¢? = 0, it follows that a ¢ im ¢. Therefore a - a = ¢(a) with ¢(a) # a,
and ¢(a) # 0, which yields that R is not trivial.

COROLLARY 2. Let G be a non-trivial semi-direct product of a group K
by a group H. Then G is not a TNR-group.

Proor. The natural projection of G onto H along K satisfies condition
(1) of Theorem 1.

COROLLARY 3. An abelian group G is a TNR-group if and only if |G| £
2.

PRrROOF. Let G be an abelian group with |G| > 2. The map ¢ : G — G
defined by ¢(z) = — z for all z € G, either satisfies condition (2) of Theorem
l,or2-2 =0 for all z € R, in which case G is the direct sum of a copies of
Z(2), with a > 1. Corollary 2 implies that G is not a TNR-group. Actually
there exists a field F' with F* = G; choose F to be a field extension of degree
« of the prime field of order 2. Let a € F,a #0,a # 1. Thena-a # 0,0r a
so F'is not a trivial near-ring.

A

COROLLARY 4. Let G be a group such that G |Z(G) possesses an element
of even order (Z(G) = the center of G). Then G is not a TNR-group.

PRrRoOOF. There exists an element a € GG, such that a ¢ Z(G), but 2a €
€ Z(G). Conjugation by a satisfies condition (2) of Theorem 1.
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COROLLARY 5. Let G be a finite TNR-group with |G| > 2. Then G is
an odd order group.

Proo¥F. Let G, = {a € G | |a| = a power of 2}. Corollary 4 yields that
G is a subgroup of G, and that G £ Z(G). Since (|G2|,|G/G2|) =1, it
follows that G is a splitting extension of G5, [2, Theorem 15.2.2], and so
G2 = {0} by Corollaries 2 and 3.

THEOREM 6. Let G be a finite group. Then G is a TNR-group if and
only if |G| £ 2. ‘

ProOF. Suppose that G is a finite TNR-group, with |G| > 2. Let G’ be
the commutator subgroup of G, and let p be a prime dividing |G/G’|. Since
G is solvable by Corollary 5 and the Feit-Thompson Odd Order Theorem,
G/G'" is non-trivial, and has a cyclic direct summand of order p* generated
by @, with k 2 1. Suppose there exists b € G’, with |b| = p. Let ¥ : G —
— G/G" be the canonical epimorphism, let = be a projection of G/G' onto
(@), and let p : (@) — G be the homomorphism induced by the map @ —
+b. Then ¢ = pom o is an endomorphism of G with ¢ # 0, but ¢* =0,
a contradiction. Therefore p{|G’| for every prime p dividing the order of
G/G', and so (|G'|,|G/G'|) = 1. By, [2, Theorem 15.2.2], it follows that G
is a semi-direct sum of G’ by a subgroup H of GG, contradicting Corollary 2.
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ON THE INTEGRABILITY AND
L'-CONVERGENCE OF DOUBLE
TRIGONOMETRIC SERIES. II

F. MORICZ"* (Szeged)

1. Introduction
We consider double cosine series
(1.1) sz\j/\kajk cos jz cos ky,
7=0 k=0

double sine series

o0 oC
(1.2) ZZajk sin jz sin ky,

=1 k=1
and cosine-sine series

oC o0
(1.3) ZZ/\jajkcosjzsinky

3=0 k=1
on the positive quadrant T? := [0, 7] X [0, 7] of the two-dimensional torus,
where \g = 1/2 and A; = 1if j 2 1. Our basic assumption is that the real
coefficients a;; form a null sequence of bounded variation, that is,
(1.4) ajr—0 as j+k—o o0

and

(1.5) Y3 1Ana < .
A

* This research was partly supported by the Hungarian National Foundation for Sci-
entific Research under Grant # T 016393.
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100 F. MORICZ

We remind the reader that the differences A, a; are defined for all pairs of
nonnegative integers p and ¢ as follows:

=§:§q;( V(D) (Yasrians Gik20)

1=0 [=

Then the following recurrence relations hold: Aggajr = aji,

quajk = Ap—lvqajk - Ap—l,qaj+l,k (pe 1),
Apg@jk = Apg-1ajk — Apg-1ajk+1 (g2 1).

The next simple observation will be useful on many occasions: If (1.4)
is satisfied and we have A,,a;x 2 0 (j,k 2 0) for some p,q = 0, then we also
have Ay, g, @k 2 0 (j,k 2 0) for all py,q;, where 0 S py Spand 0 < ¢4 £ g
Consequently, the sequences {A,, ; a;i} are nonincreasing both in j and in
k whenever either p; < p or ¢; < q.

Now, it is proved in [3] that, under conditions (1.42 and (1.5), series (1.1)
converges to a function f(z,y), say, for all (z,y) € T* with z # 0, y # 0, in
Pringsheim’s sense:

m

(1:8) 3mn(z,¥) sz\ Akajk cos jz cosky — f(z,y) as m,n — oo.

i=0k

Analogously, under condmons (1.4) and (1 5), series (1.2) converges to a
function g(z,y) for all (Zx y) € T?, and series (1.3) converges to a function
h(z,y) for all (z,y) with = # 0 in Pringsheim’s sense in each case. We
denote by smn(:L’ Y) the rectangular partial sums of each series in (1.1)-(1.3).

We will be concerned with the following problems:

(i) the sum of one of the series (1.1)-(1.3) is integrable on T? in
Lebesgue’s sense, in sign: € L!(T?);

(i) the series converges in L!-norm.

We denote by ||-|| the two-dimensional L!(T?)-norm. Occasionally,
|| - || may stand for the one-dimensional L'(T)-norm, T := [0, 7]. However,
it will be clear from the context what the case is.

2. Double cosine series

We will consider double sequences {a;i} satisfying either condition (2.1)
or (2.2), where

(2.1) Agajr 2 0 and Aqak 20 (5,k20)
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(may be called convex case) and

o0

o0
(2.2) Y D G+ 1)k +1)|Apaj < 0o

7=0 k=0

(may be called quasiconvex case).

REMARKS. (a) Condition (2.1) is equivalent to the fact that the sequence
{A11a;;} is nonincreasing both in j and in k.

(b) Condition (1.4) together with (2.1) or (2.2) imply (1.5).

(c¢) Condition (1.4) and

A22‘1.7'1‘: i 0 (]’k 2 O)a

which is stronger than (2.1), imply (2.2). It is an open problem whether
(1.4) and (2.1) imply (2.2) or not.

The following theorem was essentially proved in [3, pp. 206-211].

THeOREM 1. (i) If {a;r} satisfies (1.4) and (2.1), then the sum f of
series (1.1) is in L (T?) and (1.1) is the Fourier series of f.

(ii) If, in addition,

(2.3) amolnm — 0 and ag,lnn—0 as m,n — oo,
then
(2.4) |$mn — fll =0 as m,n — oo

if and only if
(2.5) ampInmlnn -0 as m,n— oo.

The first part of the next theorem is also contained in [3, Corollary 3].

THEOREM 2. (i) If {a;i} satisfies (1.4) and (2.2), then the sum f of
series (1.1) is in L'(T?) and (1.1) is the Fourier series of f.
(ii) If, in addition,

(2.6) (Inn) Y (i + 1)|Azajn| = 0 and n— oo
3=0

and

(2.7) (Inm) E(k + 1)|Aozamk| = 0 as m — oo,
k=0
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then statements (2.4) and (2.5) are equivalent.

REMARKS. (a) It follows from (2.2) that the single sequences {a;,:j 2 0}
are also quasiconvex for each n 2 0 and

Z(j + 1)|Agajn| = 0 as n — oo.
7=0

But (2.6) requires more than this. Analogous observations hold for the single
sequences {a,x:k = 0}, too.

(b) If
Agoajr 20 and Ageajx 20 (j,k20),

then (2.6) and (2.7) are equivalent to (2.3), respectively. So, [3, Corollary 3]
is a particular case of Theorem 2.

(c) Theorems 1 and 2 extend Kolmogorov’s results [1] (see also [7, pp.
109-110]) from single to double cosine series.

Proor OF PART (ii) IN THEOREM 2. Let
(2.8) Iy, :={2™,2"+1,...,.2"t1 1} (m 20).
Since

Z 2™ max|Asoajn| < Z gm Z |Ag0a;n| £
m=0

j=am

Z |Azoajn| +2 ZZ |Az20an| < QZJIA%"M'

=2 1=t
and
o0
|Aroton] £ ) |As0ajn,
J=0

condition (2.6) implies [3, condition (1.13)] for p = co. Analogously, (2.7)
implies [3, condition (1.14)] for p = co. Thus, [3, Corollary 2] applies and
gives the wanted equivalence (2.4)< (2.5).
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3. Double sine series

The following theorem was partly proved in (3, pp. 214-217].
TueOREM 3. If {a;x} satisfies (1.4) and

(3.1) Anajx 20 (G,k2 1),

then the sum g of series (1.2) is in L'(T?) if and only if

(3.2) Z Z Aqyaj;)In(j 4 1)In(k 4+ 1) < o0,

=1 k=1

in which case
|Smn — g|| = 0 as m,n — oo;

consequently, (1.2) is the Fourier series of g.

REMARKS. (a) Under (1.4) and (3.1), condition (3.2) is equivalent to
S
1=1 k=1 ]

(b) Conditions (1.4), (3.1) and (3.2) imply (2.5).
(c) Theorem 3 extends W. H. Young’s result [6] (see also 7, pp. 111-
112]) from single to double sine series.

Proor oF THEOREM 3. The proofs of sufficiency and L!-convergence
are already contained in the proof of [3, Theorem 5].

Necessity. By summation by parts,

(3.3) Sonl®:Y) ZZaJk sin jz sin ky =

J=1 k=1

m m
= Z Dj(z)Dr(y)Anajx + Z Dj(z)Dn(y)A10a5,n+1+
i=1 k=1 j=1

+ bm(x)bk(y)A01am+l,k + am+1,n+lbm(z)bn(y)’

where

s~ . _ cos(z/2)— cos(m+1/2)x
a Zsm]x B 2sin(z/2) (

1A\V4

1)
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is the conjugate Dirichlet kernel. Following an argument similar to the one

in [3, pp. 205-206] for the case of double cosine series, we obtain that series
(1.2) converges in Pringsheim’s sense to the function g defined by

9(z,y) Zzﬁj(x)bk(y)Allajk
7=1 k=1

for all (z,y) € T%
We shall use the representation

1 — cosmz

D(z) = D5(z) + % sinmz, where D7 (z):= W

is nonnegative. It is easy to see that there exist positive constants C'; and
Cy such that

(3.4) Ciln(m+ 1) < ||D5|| € Coln(m+1) (m 2 1).

Accordingly, we may write

N | —

o ] o0 oC
Z ;(z)Di(y)Anaz + Z Z z)(sinky)Aqra;k+
1 k=1 =1t k=1

Mg

J

(sinjz)(sin ky)Anajk 1=

.“E',Tg
M8

,T
Il
-

1 oo 00 e o
+5 > (sinjz)Di(y)Anaje +

7=1 k=1 j=1

=9"(z,y)+ q1(z,y) + g2(z,y) + g3(z,y), say.

By (3.2), g3 is continuous. Clearly,

ZZ Anajk.

g=1 k=1

l91(z,y)| £

N =

By (3.4) and (3.2),

lgrll £ C2 )" (Anaje)In(j + 1) <
j=1 k=1

This means g; € L'(T?). Similarly, g, € L1(T?).
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To sum up, g € L(T?) if and only if g~ € L!(T?). By (3.4) again,
o0 o0
llg™[l 2 C1 ZZ (Anajr)In(j + 1)In(k + 1).
=1 k=1

This completes the proof of necessity.

4. Cosine-sine series

This type of series was not considered in [3]. We shall prove the following
THEOREM 4. (i) If {a;r} satisfies (1.4),

(4.1) Anajx 20 (j20,k21),

and

(4.2) > (Aoraor) In(k + 1) < o0,
k=1

then the sum h of series (1.3) is in L'(T?) and (1.3) is the Fourier series of
h.
(ii) If, in addition,

(4.3) (Inm z Ao1tmi)In(k+1) =0 as m — oo,
k=1

then

(4.4) [$mn — hl| = 0 as m,n — oo.

REMARKS. (a) Condition (4.1) is equivalent to the fact that the single
sequences {Ajja;i:j = 0} are nonincreasing for each k > 1.
(b) Under (1.4) and (4.1), condition (4.2) is equivalent to

o0
P
— k
J=1
and also equivalent to
(o ol o]
N (Anajk)In(k +1) <
7=0 k=1
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while (4.3) is equivalent to
S -
(lnm)Z—k— —0 as m— oo,

J=1

and also equivalent to

(Inm) Z Z(A]](I,J‘k)ln(k +1)— 00 and m — oo.

j=m k=1

(c) It follows from (1.4), (4.1) and (4.2) that

o0
(4.5) Z(Amamk)ln(k +1)—0 as m — oo,
k=1

in a nonincreasing way. But (4.3) requires more than this.

(d) Furthermore, under (1.4), (4.1) and (4.2), we have (1.5), the second
limit relation in (2.3), and (2.5).

To prove Theorem 4, we begin with an inequality due to Sidon [4] (see
also [5]).

LEMMA. For every sequence {b;} of real numbers and integer m > 0,

> b;D;

<9 1 bil.
2 <2(m+ )Oglggnljl

Hence it follows immediately that

(4.6) D b;D;|| <4 {|bol +y 2m %%lejl} :
J=0 m=0 e

First, we prove a more general result than Theorem 4.
THEOREM 5. If {ajr} satisfies (1.4) and

47) ) In(k+1) {|A11a0k| b ].rreu;XIAnajkl} < o0,
k=1 m=0 m

then the sum h of series (1.3) is in L'(T?) and (1.3) is the Fourier series of
h.
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PROOF OF THEOREM 5. By summation by parts,

m n
(4.8) Srul s y ZZ/\jajk cos jsinky =

3=0 k=1

n

Dj(z)Di(y)Anajk + > Dj(x)Dn(y)A10a;n41+
k=1 7=0

M-

<
1
o

ia Dm(z)bk(y)AmamH_k =+ am+1,n+1Dm(:L‘)]~)n(y)
k=1

(cf. (3.3)). Hence it follows that series (1.3) converges in Pringsheim’s sense
to the function

(4.9) h(z,y):= Y Y Dj(x)Dr(y)Anaj

j=0.k=1

for all (z,y) € T? with = # 0. Analogously to (3.4), there exists a constant
C such that

(4.10) | Dol | D] £ Cln(m 4+ 1) (m 2 1).

Now, it is plain that

Al £ CY In(k+1)||Y DjAna

k=1 =0

Making use of (4.6) yields the first part of Theorem 5.

As to the second part, we refer to [2], where we proved that if the sum h
is a cosine-sine series, with coefficients {a;x} satisfying conditions (1.4) and
(1.5), is in L'(T?), then it is the Fourier series of h.

Proor oF THEOREM 4. By (4.1), the left-hand side in (4.7) does not
exceed the following sums:

00 o0
(411) ZIH(’C + 1) {A]]aok -+ All(l]k + Z 2mA11a2m,k} g’

k=1 m=1

< Y in(k+1) ¢ Anaok + Anare +2 Y Apaje § <
k=1

i=1
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<3 z Agragr)In(k 4 1) <

due to (4.2). So, Theorem 5 applies and gives Part (i) as a corollary.
It remains to prove Part (ii). By (4.8) and (4.9),

7=0 k=n+1 j=m+1 k=1

h(z,y) — sSmn(2,9) = {Z > =2 Z}Dj(z)bk(y)Auajk—

o
=Y Dj(2) Dn(y)A10a; 41—

=0

n

= Z Dm(m)bk(y)AOlam-}-l,k == am+1,n+1Dm($)ﬁn(y)-
k=1

First, by (4.1), (4.6) and (4.10), we deduce that

(4.12) Yoy o+ Y Z D;DiApaji| £

7=0 k=n+1 j=m+1 k=1

[e e} m [o.¢] [e.o]
<C Y W(k+1) Y DjAna|+CY I(k+1)| Y DjAnak
k=n+1 7=0 k=1 j=m+1

< QC Z ln(k + 1) {|A11aok| + ZQI maxlAna]k|}

k=n+1

+202h’1 k+1 22 max|A11aJk| <
k=1 I=lp

<6C Z (Aoraor)In(k + 1) + 4C Z(Amazlo_l LIn(k + 1),
k=n+1 k=1

provided m > 3, where the integer Iy is defined by the condition 2% <'m+

+1 < 20+, Since 2lo~1 > m/4, by (4.5), we conclude that the right-most
side in (4.12) tends to zero as m,n — oc.
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Second, by (4.1), (4.2), (4.6) and (4.10),

m
Y DiDaAiotjnia| <

i=0

o0
< 2CIn(n+1) {[Aroto | + ) 2 max|Aroaynia| ¢ <
=9 y
<6Cappnt1ln(n+1)—0 as n—

(cf. (4.11) and (4.12)).
Third, analogously to the above estimates, a termwise approach gives

n
Z Dy, DiAo1m41,k
k=1

A

< C?In(m + I)Z(A01am+1,k)ln(k +1)—0 as m — oo,
k=1

uniformly in n. Here we used (4.3).
Fourth, again by (4.3) and (4.10),

||am+1,n+1Dmbn|| < Clapprpprln(m+1)In(n+1) -0 as m,n — oo.

This completes the proof of Part (ii) in Theorem 4.
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TRIANGULAR MEAN VALUE THEOREMS
AND FRECHET’S EQUATION

J. A. BAKER (Waterloo)*

1. Fréchet’s functional equation

Suppose that A is an additive Abelian semigroup, B is an additive

Abelian group and f: A — B. For y € A define 7,f : A — B by

wf(z)=f(z+y) for z€ A

and define A,f: A — B by

Ayf(z) = f(z+y) - f(z) for z€A.

With addition defined “pointwise”, BA — the set of all functions from A into
B — is an Abelian group and, for each y € A, 7, and A, are homomorphisms

of B4 into itself and
Ayf=rf—f forall feBA

If B is a vector space then so is B4 and in this case, for every y € A, 1, and
A, are linear operators on BA. If A =2Z%1:={0,1,2,...} we will write A
instead of A; (in conformity with standard notation in the calculus of finite
differences).

Let N = {1,2,3,...}, let Z denote the set of all integers, let R denote
the set of all real numbers and let C denote the set of all complex numbers.
Also let Z* = {0} UN.

For m € N and y € A,AT' — the m-th iterate of A, — has the property

that, for all f € B4, and for all z € A,

(1) Amf(x)—Z( e "( )iGe+ k) = i L

* This research was supported by NSERC (Canada) Grant A7153.
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112 J. A. BAKER

The Fréchet functional equation
(2) Ajf(z)=0

has been studied by numerous authors going back to Fréchet [9] and includ-
ing Mazur and Orlicz [15] and McKiernan [16]. In case B satisfies a weak
divisibility condition, the solutions of (2) are “generalized polynomials” in
the sense of the following theorem of Djokovi¢ [7].

THEOREM A. Suppose that A is an Abelian semigroup, B is an Abelian
group, m € Z* and B has the property that the map b — (m!)b is an auto-
morphism of B. Then a function f : A — B has the property that

A;"Hf(a:) =10 forall z,ye A

if and only if there exists ag € B and ay : A* — B for 1 £ k £ m such that,
if m 21 then a; is additive (a1(z + y) = a1(z) + a1(y) for all z,y € A), zf
m 2 2 then ay is symmetric and multiadditive for 2 < k < m and

f(z)=ao+a1(z)+ -+ an(z,z,...,2) forall z € A.

If A=R"™ and B = R then, under mild regularity assumptions, the so-
lutions of (2) are genuine polynomials. For example Kemperman [13] has
proved some general results which imply the following.

THEOREM B. If me N, f:R"™ — R, C is a subset of R™ with positive
inner Lebesque measure, (2) holds for all x € R"™ and all y € C and f is
bounded on some set of positive Lebesque measure then f is a polynomial of
degree at most m — 1.

Our first aim is to generalize the following result from [2].
THEOREM C. If0 < a< b, a/b is irrational, me N, f: R —- C, f is
Lebesgue integrable on an interval of length ma and
AT f=Apf=0
then f is almost everywhere equal to a polynomial function of degree at most
m — 1.

In order to obtain our desired generalization (Theorem 1 below) we will
need an estimate (Proposition 1 below) for which, in turn, we require several
lemmas.

LEmMA 1. If A and B are additive Abelian groups, m € N, f : A — B,
y€A and AT f =0 then AT, f =0 and AT f~ =0 where f~(z) = f(-2)
for all z € A.
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ProoF. For every z € A,

=Y 0T (T;)f(z ti(-y) = (CU"A%f).

Hence, for all z € A, we also have

m

0= A" f(-2)= Y (-1 (’Z) f(=o —ky)= APf(2). O

k=0
The next lemma is a well known assertion from the calculus of finite
differences (see e.g. [5], page 51).

LEMMA 2. Suppose that o : Z+ — C (or any rational vector space) and
m € Z1. Then A™*lo =0, i.e.

m+1 +1
3 (~1ymH- (m )f(k-l— v)=0 forall keZ",

v=0

if and only if o is a polynomial function of degree at most m; in fact

o(k) = Z i ;(0) (k) forall keZ*
J=0 ’

where po(k) = 1 and p;(k) = j;l k—v)forjeEN and k € Z*.
J v=0

LEMMA 3. Ifo:Zt - C,me€ Z+,Am+la:0and|a(k)| <M for0 <
<k £ m then

|o(k)| £ EM(k+m)™ forall keZ*.
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Proor. If j € Z* then, by (1),

7 j y .
|A%a(0)] < kz_:_o (i)M =2'M.

If1<j<mandke€Z" then

Jj=1
k)| € [Tk +v) S (ktm =1) < (k+m)™.
v=0

Thus, for all k € Zt,

~ 2 M
lo(k)| < E T(k—}—m)’" <eEM(k+m)™. O
j=0 '

LEMMA 4. Suppose that F: R — C, m € Z%, A;”“F =0 and|F(z)| <
< M for |z| < m+ 1. Then |F(z)| < e2M(|z|+ m)™ for all z € R.

PRroOF. Fix t temporarily in [0,1) and define o(k) = F(t+ k) for k € Z*.
Then

A™g(k)= AT F(t+k)=0 forall keZ*
and | (k)| £ M for 0 £ k £ m. By Lemma 3,
|o(k)| < eM(k+m)™ forall ke Z*
It follows that
|F(t+ k)| SeM(k+m)" for 0St<1 and keZ™.

For 0 < z € R, if [2] denotes the integer part of z, | F(z)| = | F((z - [z]) +
+[z])| £ M ([z]+ m)™ £ e?M(z + m)™. It then follows from the second
part of Lemma 1 that IF(:L')I <eM(|z|+m)" forallze R. O

For T C R" let

k
(T)—_-{ijtj: k €N, ijZandt]'ETforléjgk}
i=1
be the subgroup of R" generated by T'; we say that T is substantial provided

(T) is dense in R™. For example, if 0 # a,b € R and a/b is irrational then
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{a,b} is a substantial subset of R. It is clear that a substantial subset of R"
must contain a basis for R™ (as a real vector space) and must have at least
n + 1 members. It follows from a theorem of Kronecker (see [4]) that there
are substantial subsets of R" containing exactly n + 1 members. If n > 2
then S"~!:= {z € R": |z| = 1} is clearly a substantial subset of R™ : for

2= (Bry. .. 2p) A0d Y= (s 00) ER® we let 2-9= Zxkyk and |z| =
k=1
1
= (z+2)%,
PRroPOSITION 1. Suppose that f:R"™ — C, f is continuous, m € Z™,
T is a substantial subset of R"™ and A;”“f =0 for all ye T. Then f has
polynomial growth; in fact there exists A > 0 such that

|f(1')|§A(Tl‘|+1)mn for all z € R™.

Proor. Choose y, € T for 1 £ v £ n such that {y1,...,ys} is a basis
for R". Let L be that invertible linear transformation of R" onto itself such
that y, = Lb, for 1 £ 4 < n where {b,...,b,} is the standard basis for R"
and let g(§) = f(L&) for € € R"™. Then for 1 £ 4 £ n and all £ € R™ we have

sy m+1—k m+1
Aptige) = ) (-1t ( k )g(s+kbw)=
k=0

m+1 + 1
=) (—1)’"“"‘(’” g )f(L€+kwa) = APFLf(LE) = .
k=0

Since f is continuous on R", so is g. Let
M= max{|g(x1,...,zn)| :z; € Rand |zj|Em+1forl<j<n}.

If n = 1 the desired conclusion follows directly from Lemma 4. So sup-
pose that n 2 2.

Fix z3,...,2, temporarily in [-m — 1,m + 1] and let F(z) = g(z, 2o, ...,
z,) for z € R. Then AT F(z) = Ag'l‘“g(z,xg,...,zn) =0 for z € R and
|F(z‘)| < M for |z] £ m + 1 so that, by Lemma 4, | F(z)| < e2M (|z|+m)™
for all z € R. We have thus shown that | g(z1,22,...,2,)| £ €M (|z1|+m)™
for z; € R and z3,...,2, € [-m — 1,m + 1].

Next fix 2, temporarily in R. If n =2 let F(z) = g(z1,z) for z € R
and observe that AT F(z) = AZ’;Hg(ml,x) =0forall z € Rand | F(z)| £
< e?M(|z1| +m)™ for |z| £ m + 1; by Lemma 4,

| F(z)| < (M (|z1] + m)™)(|z]+m)™ for z€R.
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We have shown that if n» = 2 then
|g(z1,22)| £ e*M(|z1] +m)™ (o] + m)™ forall zy,2, €R.

If n > 2 then by temporarily fixing z; in R and z3,...,2, in [-m —
—1,m + 1] we find, by reasoning as in the last paragraph, that

|g($1,$2,x3,---,wn)| = 64M(|"1’1| +m)m(|x2| +m)m

for all z1,22 € R and all z3,...,2, in [-m — 1,m + 1].
By induction it follows that

n
|§(@1y< s 8n)| S eanH (lzj| + m)™ £ "M (|z| + m) ™"

g=1
for all z = (z1,...,2,) € R™. Thus
| f(2)| = |g(L72)| £ "M (|L7 2| + m)™ forall ze€R"

and the desired conclusion is therefore evident. O

We aim to prove that, under the hypothesis of Proposition 1, f is a poly-
nomial function of degree at most m. In addition to Proposition 1 we will
use some distributional ideas from [2].

2. A distributional interlude

Our notation and terminology is, for the most part, that of Rudin [18].
Let D,, denote the space of all Schwartz test functions on R" and let D], be
the space of Schwartz distribution on R™. If u € D/, then the support of u is
denoted by supp u.

A function f:R"™ — C is said to be locally integrable provided it is

Lebesgue measurable and / | f(z)|dm < + oo for every compact K € R".
i

The space of all such functions is denoted by L} .(R"). For f € L{ .(R")
let A; denote the regular distribution corresponding to f; thus Af(yp) =

= f(z)p(z)dz for all ¢ € D,,.

R

Clearly A, ¢(p) = Ag(T_yp) for all f € L] (R"),all y€ R" and all p €
€ D,. For u € D), and y € R" it is therefore natural to define 7,u : D, — C
by

(ryu)(®) = u(T—yp) for ¢ € Dy.
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(Note that Rudin would write 7_, instead of 7,.)

It follows that 7,u € D;, whenever u € D;, and y € R" and A, ; = 1yA;
whenever f € Lj  (R")and y € R™. Moreover, for each y € R", 7 is a topo-
logical automorphism of D!,. For u € D!, and y € R" define A u € D! by
Bali= Tt~ 1,

Let Sn denote the Fréchet space of rapidly decreasing C'® functions on
R™ and let §;, denote its dual, the space of all tempered distributions on
R™ (see [18], Chapter 7). Since D, is a linear topological subspace of S,
it follows that S} is a linear topological subspace of D! . Moreover, for each
y € R",7yu € §) whenever u € ] and the map u — ryu is a topological
automorphism of §,. A function fin L} _(R") will be called temperate pro-
vided Ay € 5; for “this to hold it suffices that f be Lebesgue measurable
and have polynomial growth, i.e. there exist A > 0 and N € N such that
| f(z)| < A( 1+|x|) for all z € R™.

Observe that if (1) holds for some y € R", some m € N and some f €
L} . (R™) and if u = A then

(1) N é(—l)m-k@)%u = 0.

For ¢ € S, denote the Fourier transform of ¢ by &, i.e.
#6)=@r)" [ fe)exp(-ig-2)dz for € e R
Rn

The delightful behaviour of the Fourier transform on §,, (see [18] Chapter 7)
allows one to, quite naturally, define the Fourier transform on &/, by duality;
for u € S;, one defines Fu € S}, by Fu(yp) = u(®) for ¢ € S, and Fu is called
the Fourier transform of u. It follows that F is a topological automorphism
of §).

For y € R" let ey(z) = exp(iz - y) for all z € R". The following lemma
(see [18], page 167) is crucial.

LEMMA 5. Ifu € S}, and y € R™ then F(tyu) = e, Fu.
The following two lemmas may be found in [2].

LEMMA 6. Ifu,v€ D), F:R" — C is C* and Fu = v then suppu C
C{zeR": F(z) =0} U suppw.

LEMMA 7. Ifu € S], then supp Fu € {0} if and only if u = A, for some
polynomial function p: R" — C.
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3. Back to Fréchet’s equation

We can now prove one of the two main results of this paper. It will be
used to deduce the mean value theorems of the last section.

THEOREM 1. Suppose that f : R" — C, f is continuous, m € N, T is a
substantial subset of R" and A} f = 0 for each y € T. Then f is a polynomial

function of degree at most (m — 1)n. The degree of f is at most m— 1 if m =
=1,n=10rn>2and T = S™ 1, where S"~1 is the unit sphere in R™.

REMARK. If m =1 we have the well known fact that if a continuous
function has sufficiently many periods then it must be constant.

Proor. By Proposition 1, f is temperate. If u = Ay it follows that u €
€ S, and

m
Z o s (Zj) Tkyu=0 for yeT.
k=0

By Lemma 5, for each y € T,

0= f(ki(—1)m—’°(’:)fkyu) = (—1)'”(\2 (T:)(—l)keky)}_u.
=0

If for y € T we let

m

Fy(a) = Z (T) [ — exp(iy - z)] k= [1—exp(iy-2)]™ for z€R"

k=0

it follows that Fy,Fu =0 forall y € T.
Suppose that € supp Fu. By Lemma 6,

0=Fy(z)=[1—exp(iy-z)]" =0 forall yeT.

Hence y -z € 2rZ for all y € T. Since T is substantial, 2 -z € 27Z for all

z € R". Thus t|z|> = (tz) -z € 2rZ for all t € R and therefore z = 0. We
have proved that supp Fu € {0}. Lemma 7 and the continuity of f imply
that f is a polynomial function; by Proposition 1 its degree is at most
(m—1)n.

Using multi-index notation ([18], page 142) we may write

f(x)=§:(z (), sem

k=0 " |a|=k
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where ¢, € C for each multi index a of order |a| £ N. We may, and do,
assume that N 2 m.

To prove the assertions concerning the degree of f, let us begin by tem-
porarily fixing y € T such that y # 0 and let p(t) = f(ty) for t € R. Then
p is a polynomial function (in one real variable) of degree at most N and
AT'P(t) = A} f(ty) = 0 for all t € R. It follows from Theorem 2.7.3 on page
51 of [5] that

N
p(t) = p(0)+ Ap(0)t+-- -+ AlTp'(o)t(t—l)---(t—N+l) forall t€R.

But A¥p(t) = 0for t € R and m < k € N. Hence the degree of p is at most
m — 1. If n = 1 it follows that the degree of f is at most m — 1.

Suppose m = 1. Then A, f(z) = f(z +y)— f(z) =0 for all z € R" and
alyeT,ie.

fl(z+y)=f(z) forall zeR" andall yeT.

Thus f(z + 2) = f(z) for all z € R™ and all z € (T). But (T') is dense in
R™ and f is continuous so

f(z+2)= f(z) forall z,z€eR"

Thus f is constant, i.e. f has degree m — 1.

Now suppose that n 2 2 and T = §"~1. We know that, for each y € S,
the map t — f(ty),t € R, is a real polynomial function of degree at most
m—1. But, fory € S" ' and t € R,

N N

=3 (3 eattrr) = 32 (5 )
k=0 " |of=k =0 "la|=k
Hence Z cay® =0for m k<N and y € 5" 1. Thus Z 6 8% =1 fop
|o|=k |a|=k
m-—1
m < k<N and z € R" so that f(z) = Z an.’l‘a for all z € R and the
k=0 |a|=k
degree of f is therefore at most m — 1. O

It seems plausible, although we have been unable to prove, that the de-
gree of f is at most m — 1 in any case.
For distributions we have the following analogue.

THEOREM 2. Suppose that m € N, u € D!, T is a substantial subset of
R™ and AJ'u =0 for all y € T. Then there erists a polynomial function p :
R" — C such that w= A, and AT'p =0 for all y € T.
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ProoF. Choose ¢ € D,, such that ¢(t) 2 0 forall t € R™ and [, ¢(t)dt =
= 1. For k € N let pr(t) = k™"p(kt) for t € R™ and let ux = u * ¢ — the con-
volution of u with ¢x. It follows from [3] that AT'uj = 0 for all k¥ € N and all
y € T. But each uy is a C* function and hence, by Theorem 1, a polynomial
function of degree at most (m — 1)n. Also A,, — uin D), as k — + oo.

Thus u is the limit of a sequence belonging to a subspace of D), of di-
mension at most (m — 1)n. Since every finite dimensional subspace of D,
is closed, u must belong to this subspace, i.e. u = A, for some polynomial
function p: R™ — C of degree at most (m — 1)n. Note finally that, for all
yeT,0=ATA, = AAvynp so that Af'lp=0. O

Theorem 1 can also be generalized as follows.

THEOREM 3. Suppose m € N, f € Ll (R"), T is a substantial subset
of R™ and, for each y € T,

.

Ay f(z)=0 for a.e. z€R"

Then there exists a polynomial function p:R™ — C of degree at most
(m — 1)n such that

f(z)=p(z) for ae. z€R"

and A7'p(z) =0 for allz € R" and ally € T.

ProoF. Let u = Ay. Then AT'u =0 for all y € T and, by Theorem 2,
there exists a polynomial function p : R"™ — (' such that v = A,. O

4. Some mean value theorems and questions

In [19] Walsh proved a mean value theorem which, in éeometric language,
may be phrased as follows.

THeEoOREM D. If2< N €N, f:R? = R and f is continuous then the
following are equivalent:

(i) the value of f at the center of any regular N -gon is the arithmetic
mean of its values on the vertices,

(ii) f is @ harmonic polynomial of degree at most N — 1.

For triangles this assertion was improved by Djokovi¢ [6] as follows.

THEOREM E. Suppose that f : R? — R and f is bounded on a subset of
R? having positive Lebesque measure. Then the following are equivalent:

(i) f(ff—t,y)+f($+t,y)+f(x,y+t\/§) = 3f(:1:,y+t/\/§) forall z,y,
teR,

(ii) there ezist a,b,c,a,(3,7 € R such that
f(z,y) = a+ bz +cy + a(z? — y?) + Bzy + v(2® - 32y®) for all z,y € R.
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In geometric language, (i) says that for any equilaterial triangle having
a side parallel to the “z-axis” (but of arbitary “size”), the value of f at its
center is the arithmetic mean of its values on the vertices. Property (ii)
asserts that f is a special type of harmonic polynomial of degree at most 3.
Several results related to Theorem D were proved in [1]. In particular, for
squares with diagonals parallel to the coordinate axes we have the following.

TuEOREM F. If f : R? = R and f is bounded on a subset of R* having
positive Lebesque measure then the following are equivalent:

() Sz +ty+ 0+ fa+ty— 1)+ f(z—ty+0)+ [(a—Ly—1) = 4f(2,9)
for all z,y,t € R,

(i) f(z,y) = p(z,y) + a(z3y — zy?) for all z,y € R where p is a harmonic
polynomial of degree at most 3 and a € R.

This result was (partially) generalized to higher dimensions in [2].

Theorems E and F address particular cases of the following problem.
Given ar € R" and ¢, € C for 0 £ k £ N, which functions f : R" — C sat-
isfy the functional equation

N
(3) chf(:v +tax) =0 for z€R" and teR?
k=0

Many papers have been written concerning variants of this problem; see
e.g. [1], [2], [3], [6], [8], [10], [11], [12], [13], [14] and [17]. The solutions,
under mild regularily assumptions, are typically polynomials and, for “mean
value equations”, the solutions are usually harmonic polynomials.

It is clear that the solution set of (3) is closed under translations (if f
is a solution and z¢p € R" then ¢ — f(z + 2¢) is a solution, and dilations (if
f is a solution and p > 0 then # — f(pz) is a solution) but not, a priori,
closed under all isometries. In general terms, figures of arbitrary “size” and
“position” are admitted but only those having certain “orientations”. On
the other hand, the set of functions satisfying the mean value property (i) of
Theorem D is obviously closed under all translations, dilations, and isome-
tries. In particular, if f is a solution and if U: R? — R? is an orthogonal
linear map then z — f(Uz) is also a solution.

The remainder of this paper is motivated by the following problem: Given
p > 0, which functions f : R? — C have the property that for every equilat-
eral triangle of radius p, the value of f at its center is the arithmetic mean
of its values on the vertices? The set of all such f is clearly closed under all
isometries but not, a priori, under dilations.

This question is a particular case of the following general problem about
which little appears to be known: Given ax € R and e, e Cfor0S k< N,
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which functions f : R" — C satisfy

N
(4) Y cf(x+Uar)=0 for z€R" and U € Oy?
k=0

Here O,, denotes the group of all orthogonal linear maps of R"™ onto itself.
Note how (3) and (4) are related. When ¢g= — N, ¢ty =1for 1< k<N,
ap = 0 and aq,...,ayn constitute the vertices of some regular geometric ob-
ject centered at 0, then (4) may be thought of as a mean value property of

b

5. Triangular mean value theorems

Our other main result is the following.

THEOREM 4. Suppose that p > 0, f : R? — R is continuous and, for ev-
ery equivalent triangle in R? of radius p, the value of f at its center is the
arithmetic mean of its values on the vertices. Then f is a harmonic polyno-
mial of degree at most 2.

Note that the relevant mean value property can be expressed as follows
if we identify R? with C:

(*) f(z+€t)+ f(z+€'w)+ f(z+€'T)=3f(z) for zeC and teR

where w = e”5*. Also note that the converse follows from Theorem D. Related
results can be found in [14].

Proor. We may assume that p = 1; otherwise consider, instead of f, the
map z — f(pz), z € C.

Suppose that z € R? and y € S!. Consider the equilateral triangle with
z as a vertex and with center z + y. Let v; and v, be the other two ver-
tices of this triangle. The triangle obtained from it by reflexion in the line
through v, and v; has center z + 2y and vertices z + 3y, v; and v, (a picture
is convincing). Thus

f(z+3y) + f(v1) + f(v2) = 3f(2 + 2y)

and

f(2) + f(v1) + f(v2) = 3f(2 + y).
It follows that

f(z4+3y)—3f(2+2y)+3f(2+y) - f(2) =0

Acta Mathematica Hungarica 69, 1995



TRIANGULAR MEAN VALUE THEOREMS 123

or

A%f(z)=0 forall z€R’ andall ye S

By Theorem 1, f is a polynomial function of degree at most 2 so there
exist a,b,c,a, 3,7 € R such that

f(s,t)=a+bs+ect+ as? + 2p3st + 7t2 for all (s,t)€ R2,

According to Theorem D, the map (s,t) — a + bs + ct + 23st, being a har-
monic polynomial of degree < 2, satisfies our (linear) mean value property.
Hence, if h(s,t) = as? 4+ t* for (s,t) € R? then h also has our mean value
property. In particular

0 = 3h(0,0) = h(1,0) + h (-%?) +h (_%__\g_g) - g(a+7).

Thus ¥ = — a and hence f is harmonic. O

CoroLLARY. If f € L} (R?) and, for a.e. z € R?, (%) holds for all t €

€ R then there exists a harmonic polynomial p : R? — C of degree at most
2 such that f(z) = p(z) for a.e. z € R?.

This can be deduced from Theorem 4 by using the same ideas that were
used to derive Theorem 3 from Theorem 1. Distributional variants of Theo-
rem 4 (in the spirit of Theorem 2) are also clearly possible.

The mean value property of Theorem 4 can also be expressed as follows:

o 1((3)ervta) = (3) @+ s+ )

whenever z,y,2 € R and |z — y| = |y — z| = |z — 2| = | where [ = v/3p. This
observation leads to

THEOREM 5. Suppose that V is a real inner product space of dimension
at least 3,1 >0, f:V — R, f is continuous and (5) holds whenever z,y,z €
€V and |~ y|= ly - 2= ||z - al| = L. Then  is affine, i.e. = — f(z) ~
— f(0) is linear.

PRroOOF. Suppose that the theorem is true when the dimension of V is
3. Let g(z) = f(z)— f(0) for z € V. Given z,y € V and t € R, choose a 3
dimensional subspace, W, of V' containing both # and y. Since the restric-
tion of g to W is linear, g(tz + y) = tg(z) 4+ g(y). Since z and y are chosen
arbitrarily, ¢ is linear on V. It thus suffices to assume that V = R3.

We may apply Theorem 4 to the restriction of f to any two dimensional

linear manifold in R3. In particular, for each = € R there exist a;(z), by(z),
c1(z), ai(z) and B1(z) in R such that

(6)  f(z,9,2) = ar1(x) + bi(2)y + e1(z)2 + a1 (2)(y? — 2%) + 281 (2)y>
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for all y, 2 € R. Similarily, for each y € R there exist real numbers a3(y),
ba(y), ca(y), az(y) and Ba(y) such that

() f(z,9,2) = az(y) + b2(y)x + c2(y)z + az(y)(a? — 2%) + 2B(y)z 2
for all z,z € R.

Put z = 0in (6) and (7) and compare the resulting equations to deduce
that, for all z,y € R,

(8) ar(z) + bi(z)y + 1 (2)y® = as(y) + ba(y)z + aa(y)z?.
By considering the three equations obtained from (8) by letting y =0,y =1
and y = — 1 we find that a;,b; and @, are polynomials of degree at most 2.

The same is, of course, true of a;, by and as.
Compare (6) and (7) in light of (8) to deduce that, for all z,y,2 € R,

(9) e1(2)z — aq(2)22 + 281 (2)y2z = ca(y)z — aa(y)2* + 2B2(y)z2.

When 2z = 1, (9) asserts that
(10) ci(x) — ar(x) + 261(2)y = ca(y) — a2(y) + 2B2(y)z for z,y € R.
With z = — 1, (9) says that
(11)  c(z)+ ar(z) +2B1(x)y = c1(y) + a2(y) + B2(y)z for z,y € R.
From (10) and (11) it follows (by subtraction) that 2a;(z) = 2a,(y) for all
z,y € R. Thus a; and a, are constant functions and a; = ag, say ai(z) =

=ay(y)=aforal z,y € R.
It now follows from (10) that

c1(z) +261(x)y = ca(y) + 2682(y)z forall z,yeR
and hence
c1(7) = ¢2(0) + 262(0)z  and cz(y) = ¢1(0) + 231(0)y forall z,y € R.

That is, ¢; and ¢, are affine.
Now put y = z =1 in (6) and (7) to deduce that

al(.r) + bl(l‘) + Cl(.Z') + 2,31(1‘) = a.z(].) + bg(l).’l) + 62(1) + 2,@2(1)1‘

for all z € R. But a; and b; are polynomials of degree at most 2 and ¢; is
affine. Hence 31 is a polynomial function of degree at most 2. Similarly, the
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same is true of (5. It now follows from (6) that f is a polynomial function
of degree at most 4.

But f is quadratic on each two dimensional subspace of R? so f must
have degree at most 2. Choose a,b,c,d,a,/3,7.p,0,7 € R such that

(12) f(z,y,z2)=a+bx+cy+dz+ az? + ﬂy2 + 7z2 + 2pzy + 20y2z + 2722

for all z,y,z € R. _

By applying Theorem 4 to the map (z.y) — f(z,y,0) we find, from (12),
that @ + 8 = 0. Similarly, a+y=0and S +y=0sothata =8 =7 = 0.

Since our mean value property is linear and every affine function satisfies
it, we deduce from (12) that if g(z,y,2) = 2pzy + 20y2z + 2722 for (2,y,2) €
€ R3 then g has our mean value property. But the quadratic function g
can be orthogonally diagonalized. That is, there exist an orthonormal basis
{6}, 5,05} for R? and there exists o/, #',7' € R such that

g(rb + sbhy + tbh) = a'r? + §'s® + 't?

forall r,s,t € R. But the map (r,s,t) — g(rb] + sby +tb%) has the mean value
property since g does and since this property is invariant under isometries.
From the last paragraph it follows that o' = ' = 9" =0. Thusp=0=7=0
and therefore, by (12),

f(z,y,2)=a+bz+cy+dzforal z,y,2 € R

as desired. O
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STABILITY OF SOLUTIONS
OF GENERALIZED LOGISTIC DIFFERENCE
EQUATIONS

W. BRIDEN and S. ZHANG * (Kingston)

1. Introduction

In this paper we investigate the stability character of the generalized
version of the logistic difference equation

.

(1) Top1 =azk(1-27), n=0,1,2,...

where a, k, and r are positive constants.
If we set
Hlu)= auk(l —u"),

then it is easily seen that when 0 < a < (k + r)k/r“/(rkk/’) = A, f maps
(0,1) to (0,1).

Clearly z¢ € (0,1) implies z,, € (0,1) for n = 1,2,.. ., and so the solutions
are always positive and well-defined.

We shall consider the three cases:

) k> 1.

dly k=1,

(II) 0<k<1.

In Section 2 we shall establish and prove three theorems which encompass
these three cases. For some related results see [2] and [4].

For the difference equations of the general form

(%) Tnt1 = f(an)

where f(u)is any function of u, we state the following definitions and lemmas
which are needed in our discussion.

DEFINITION 1. z = ¢ is an equilibrium of equation (*) if ¢ = f(¢).

DEFINITION 2. Let = ¢ be an equilibrium of equation (*). z = ¢ is said
to be stable if given £ > 0, there is a § > 0 such that

|zo —¢| < & implies |z, —¢|<e forall n20.
* On leave from Anhui University, Hefei, Anhui, 230039, China.
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x = ¢ is said to be asymptotically stable if it is stable and there exists a
69 > 0 such that

|zo — ¢| < éo implies z, — ¢ as n — oo.

REMARK. In what follows, as a convention, when we say an equilibrium
r = ¢ being stable we always mean that it is asymptotically stable.

DEFINITION 3. An equilibrium 2 = ¢ of equation (x) is said to be unsta-
ble if it is not stable.

DEFINITION 4. An equilibrium z = ¢ is said to be semistable from above
(from below, respectively) if there exists 6o > 0 such that ¢ < 2o < c+ b
(¢ —éo < zg < c, respectively) implies z, — ¢ as n — oo; while ¢ — g < zp <
< ¢ (e < xg < e+ b, respectively) implies |z, — ¢| > ¢o for some g9 > 0 and
some values of n.

DEFINITION 5. An equilibrium z = ¢ is said to be a global attractor if
for a given zg,2,, — ¢ as n — oo.

LEMMA 1. For equation (x) the equilibrium x = c is stable if | f’(c)l <1,
and is unstable if | f'(c)| > 1 (including the case of | f'(c) = o).

LEMMA 2. Let z = ¢ be an equilibrium of equation (). If f'(¢) =1 and
f"(c) # 0, then z = ¢ is semistable. In particular, if f"(c) <0 (including
the case of f"(c) = — o0) then it is semistable from above, while if f"(c) > 0
(including the case of f"(c) = 4 o0) then it is semistable from below.

LEMMA 3. Let z = ¢ be an equilibrium of equation (%), f'(c) =1, and
f"(c) = 0. Then x = c is stable if f"(c) < 0 (including the case of f"'(c) =
= — 00) while is unstable if f"'(¢) > 0 (including the case of f"'(c) = + ).

LEMMA 4. Let ¢ = ¢ be an equilibrium of equation () and f'(¢) = — 1.
Compute

D(e) = ~2{"(c) - 3[1"(c)] .
If D(¢) < 0 then x = ¢ is stable, and if D(c) > 0 then it is unstable.

For the proofs of Lemmas 1-4 we refer to Theorems 1.18, 4.1, 4.2, and
4.6 in [5], respectively.

2. The main results

Clearly, equation (1) always has 7 = 0 as an equilibrium. We look for
the other equilibria T by setting

T—az"(1-7"), or ax*t" ' —az *14+1=0.
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Now consider the function
g(u) = au**+™! —quF1 41,

Then
d(u) = auk"2[(k‘ +r—1u" - (k-1)],
and
g"(w) = au*2[(k+r—1)(k+r - 20" - (k- 1)(k-2)].

Clearly, g(u) has only one nonzero critical point in [0,1], namely
u=[(k-=1)/(k+r-1)] Ur = u”,

and since ¢”(u*) > 0 and ¢g(0) = ¢g(1) = 1, g(u™) is the minimum value of g in
[0,1]. Therefore, if g(u*) > 0 there are no positive equilibria of equation (1);
if g(u*) = 0 then u* is the only positive equilibrium of equation (1); while if
g(u*) < 0 there are two positive equilibria of equation (1).

We are now in a position to establish the following results.

THEOREM 1. Let k > 1 in equation (1). Then
(i) The equilibrium T = 0 is stable.

(ii) For0<a< Ay =(k+r- 1)(k"1)/(r+1)/[r(k - 1)(k_1)/r] s Bl 3
the only equilibrium and is a global attractor.

(iii) For a = Ay, equation (1) has two equilibria: 0 and u*, and there ezxists
z € ([k/(k +7)] l/r, 1) such that zp € (0,u*)U(Z,1) impliesz, — 0 (asn —
— o0) while if xo € [u*, 7], then z,, decreases to T = u* (asn — o0 ). Hence,
T = u* s semistable.

(iv) For Ay < a < A, equation (1) has three equilibria: 7 = 0, T, and T,
with 0 < T7 < u* < Ty; moreover, T, is always unstable while T, is stable if
Ai<alAs=(k+r+ 1)(k"1)/r+1/[r(k — 1)(k'1)/r] and unstable if Az <
<a<A.

Proor. (i) It follows immediately from Lemma 1.
(ii) For 0 < @ < Ay, it can be shown that T =0 is the only equilibrium
and that for any positive solution (z,) of equation (1), g(z,) > 0 so

zn>azt(1-20) = 2041, n=12,....
Hence, {z,} is decreasing with nonnegative lower bound. Taking limits in

equation (1) yields that z,, — 0.
(iii) In this case equation (1) has two equilibria: 7 = 0 and 7 = u*. Since

= [(k-1)/(k+r- 1)] MY 2 [k/(k+ r)] l/r, the maximum point of f(u),
P/ Ge+0]7) > Sy = w
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On the other hand, f(1) = 0 < u*, so by the continuity of f there exists an
T in ([k/(k +7)] l/r, 1) such that f(Z) = u*. Now
(1) If zo € (0,u*), then g(zo) > g(u*) =0, so

o > a:tg(l —w(,) = 23,
and by iteration,
0<€is . il €Bn <o 3L By LTy LU,

Hence z, — 0 as in (i).
(2) M 25= 9" then &, = Zo=W", = 12,...
(3) If ¢ € (u*,u), then u* < 21 < 29 < Z, and in general,

B € Bl S C s X PP LM < P 2.

Now taking limits in equation (1) yields that z, decreases to u*.

(4) If zp = B, then 21 = f(zo) = f(2) = u*, and thus z,, =u"* for n=
- T

(5)If zg € (Z,1), then z; = f(20) < f(Z) = v* and z, — 0 asin (i). That
is, T = u* is semistable from above.

(iv) Since in this case g(u*) < 0, g(u) has two positive roots z; and 75,
0 < 7; < u* < To where ¢(71) = g(T2) = 0. Thus equation (1) has three equi-
libria: 0, Zy, and ;.

We note that ¢’(u) < 0 for u € (0,u*). Hence if z,, € (0,Z1) then g(z,) >
> g(a:l) =0, i.e., azkt™=1 — azk=1 4 1 > 0 which implies 2,41 < z,; whereas
if z,, € (zl,u ) then g(zn) & g(zl) = 0 which implies z,,4; > z,. Therefore,
T is unstable.

Now with regard to 7o we suppose that T, = [k/(k: + r)] I/T, then we
have

g([k/Ge+ ] 7) = alk/ e+ m)] Y [hj (k1) 1] +1 =0,

or
a=(k+ r)(k_l)/r“/[rk(k_l)/'] = A,.

From ¢(Z;) = 0 we can derive that

Since for T, > u* = [(k—1)/(k + r - 1)] l/r’

d(T2) =75 2 [(k+r - 1)75 — (k- 1)] /[z57( ’T;)]2>0

Acta Mathematica Hungarica 69, 1995



GENERALIZED LOGISTIC DIFFERENCE EQUATIONS 131

and thus a(73) is increasing in T and vice versa.

Next, we consider the following two situations:

(1) Ay < a £ Ajy. It can be shown using an argument similar to that in
the proof of (iii) that T, is stable.

(2) A2 < a < A. Then we have

| 7(@2)| = |[k - (k+r)a5] (1 - 75)],

and it is easily seen that |f’(?c‘2)| < 1if and only if

= [(k=1)/(k+r-1)]" < < [(k+1)/(k+r+1)]"".

But since a(7;) is increasing in T for 7 > u*, | f(z;)| < 1 if and only if

a(u*) < a < a([(k +1)/(k+7+1)] ‘/T),
:(k+r )(k 1/T+1/[ kl/r]<a<
< (k414 1)* D g 1)FD/7) = 4,

Therefore, for A; < a < Az, Ty is stable; while for A3 < a < A, |f z2)| >l
and 7, is unstable by Lemma 1.

For a = A3z, f'(Z2) = —1, and it can be verified that D(Z;) < 0 and so
Z; is stable by Lemma 4. O

THEOREM 2. Let k =1 in equation (1). Then
For 0 < a < 1,7 =0 is the only equilibrium and it is stable.
(ii) For a =1, T = 0 is the only equilibrium and it is stable if r > 1 and
is semistable from above if 0 < r < 1.
(iii) For a > 1, equation (1) has two equilibria: 0 and T € (0,1). The 0
equilibrium is always unstable while T is stable if 1 < a < (2+7)/r and is
unstable if (24 7)/r < a < (1+ )™+,

PROOF. (i) For0 < a < 1, f'(0) = a < 1 and by Lemma 1, T = 0 is stable.

(ii) For a = 1, if £ 1 then 7 = 0 is semistable from above by Lemma
2: while if » > 1 then it is easy to see that f”(0) = 0 and f"”’(0) < 0 and so
T = 0 is stable by Lemma 3.

(iii) For @ > 1, 7 =0 is an unstable equilibrium of equation (1) since
[P0 = e L

Now set
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This implies that 7 = [(a — 1)/a] Y7 and obviously 7 € (0,1). Then we have
three cases:

(1) For 1 < a < A3 = (24 r)/r it is easily verified that |f’(f)| <1 and
so T is stable by Lemma 1.

(2)For A3 =(2+7r)/r<a<(1+ r)I/H'l/r =A,7> [(2/(2+71)] YT and
so | /()| > 1. Hence T is unstable by Lemma 1.

(3) ForT = A3 = (2+r)/r, f'(z) = —1 and it can be verified that D(Z) <
< 0. Thus 7 is stable by Lemma 4. 0O

THEOREM 3. Let 0 < k < 1 in equation (1). Then

(i) Equation (1) has two equilibria: 0, and T € (0,1), and the 0 equilib-
rium is always unstable.

(ii) T ix stable if 0 < a < Az, unstable if A3 < a < A; andata = A3, T is
stable if r 2 1.

Proor. (i) Clearly, 0 is always an equilibrium of equation (1). In order
to find nonzero equilibria, we solve

T=aF(1-%), or KZF)=aF +7 F-a=0.

Now h(0) = —a < 0, R(1) =1 > 0, and h'(u) = aru""! + (1 — k)u™% > 0
for u € (0,1), so there exists a unique 7 € (0,1) such that h(Z) = 0; i.e.,
equation (1) has a unique equilibrium Z € (0,1).

The 0 equilibrium is unstable by Lemma 1 since | f'(0)| is unbounded.

({i)If0<a< Az thenZ < [(k+1)/(k+ 1+ 1)] /" and it can be shown
that |f’(f)| < 1, hence 7 is stable by Lemma 1; while if A3 < a < A, then
> [(k+1)/(k+r+1) Y7 which implies | f(Z)| > 1 and so T is unstable

by Lemma 1. If a = A3, then = [(k+1)/(k+r+ 1)] " and so f!(7) =
= — 1. Thus we use D(7) and Lemma 4 to determine the stability at Z.
Now some computation yields:

D@) = [(k+r+1)/(k+ 1) [-8k% - 12k%r — dkr? — 1P
—6kr + 1 — 3k* — 3k%r? — 6k? — 6K°r],

from which it is easy to see that D(Z) < 0 if r 2 1; while if 7 < 1 no definite
conclusion on the sign of D(Z) can be reached since that sign depends on the
special values of k and r. 0O

3. Summary and discussion

In the previous sections we have completely characterized the stability
behaviour of equation (1) when it is considered as a mapping of the unit
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interval [0,1] onto itself. As the parameter a goes from 0 to A the graph of
equation (1) increases in height.

In short, we conclude as follows:

(A) For the case of k > 1: a < Ay implies 0 is the only equilibrium at a =
= A, a bifurcation occurs and a second equilibrium exists at this parameter
value; when a > A; there are two positive equilibria. These subcases are
covered by Theorem 1.

The method used for £ > 1 has been found to apply to the more general
equation

(2) Tatr = azk(1-20)?, k>1, rp>0,

when the mapping is from [0, 1] onto itself.
The stability behaviour is the same as in Theorem 1 for 0 < @ < A. The
values of Ay, Ag, Az, and A are as follows:

Av = (k + pr = DI rp(k - 1+,
&y =k +pT)(k+pr—1)/r/[(pr)pk(k—l)/r] :
Az = (k+pr+ H)FP=0/7 1 [(pryp(k + 1)*D7]
A= (k+pr) 0 [ [(pryPkHT].

Both equation (1) and the more general equation (2) are of the form z,4 =
= f(z,) with its graph starting below the line f(z) = z and this accounts
for the presence of two positive equilibria after bifurcation.

(B) For the case of 0 < k £ 1: equation (1) is of similar form but with
its graph starting above the line f(z) =z and this accounts for the single
positive equilibrium with its stability nature fully described in Theorems 2
and 3. We believe that the method we used there can also be applied to
equation (2) for the 0 < k £ 1 case.

For k = r = 1, equation (1) is the well known discrete logistic equation
and chaos exists in the sense of Li and Yorke [1] when a is sufficiently large.

For k > 1 equation (1) also seems to exhibit chaos for large enough a.

One criterion for a continuous mapping f: J — J to exhibit chaos is
that there exists a point y* € J such that f(y*) = a, f2(y*) =0, f3(v*)=c
and ¢ £ y* < a < b (see [3], p. 28).

We have found such a point y* for several values of k£ > 1 with a large
enough. For instance for k = 3/2, r = 5/2, y* = .4 is such a point when
a=238.

We believe that for all ¥ > 1 and a large enough, equation (1) will exhibit
chaos.
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ON SIMULTANEOUS APPROXIMATION

TO A DIFFERENTIABLE FUNCTION

AND ITS DERIVATIVE BY PAL-TYPE
INTERPOLATION POLYNOMIALS

T. F. XIE and S. P. ZHOU* (Hangzhou)

1. Introduction

Let pn(z) be the Legendre polynomial of degree n with the usual nor-
malization p,(1) = 1, write

Wa(z) = —n(n - 1) / proa(t)dt = (1 - 22)p,_y (2).
=1

It is clear that p,_i(z) has n — 1 distinct zeros (note that they are also all
distinct zeros of W (z))

~l€we ¢ LT 5% .81
on the interval (—1,1), hence W, (z) has n zeros
(1) =1 = Tp < Bpog L e <81 =01

which interlace the zeros of p,_q(z). In what follows let » 2 1. For an

r times differentiable function f(z) on [-1,1] (in symbol f E_—C'[’_1 1]), the

Pal-type interpolating polynomial is the algebraic polynomial Q,(f,z) of
degree 2n — 1 satisfying

Qn(fazk) = f(mk)v Q:,,(f,iEZ) = f’(:l);:)

for k = 1,2,...,n where 2}, = —1. It is not difficult to verify that Q,(f,2) is
uniquely determined by f(z). Furthermore, for any polynomial ¢(z) of de-
gree < 2n — 1 one has Q,(¢,z) = ¢(z). Taking a further look at Q,(f,z), we
note that the Pal-type interpolating polynomial interpolates f(z) at the ze-
ros of Wy,(z), while Q),(z) interpolates f'(z) at the zeros of W/ (z). In this

* The second named author was supported in part by an NSERC Postdoctoral Fel-
lowship, Canada and a CRF Grant, University of Alberta.
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136 T. F. XIE and S. P. ZHOU

sense, this kind of interpolation may have its new significance and applica-
tions.

On the convergence of Pal-type interpolating approximation, Eneduanya
[2] showed that for f € C_, ),

f(z) = Qnu(f,z) = O)n~"+3 2 lognw ( £V, n71)

holds uniformly for all z € [—1,1], where w( f,t) is the usual modulus of conti-
nuity of a continuous function f. Therefore, if f' € Lip a, a > 1/2, it follows
that Q,(z) converges to f(z) uniformly on [—1,1] as n — co. By employing
some new ideas, Xie [7] gave the above result an essential improvement, that

is, for f € C7

(-11]
@ -t = o 0,00

holds uniformly for all € [~1,1]. Since W,(z) = O (v/n), the above esti-
mate implies that @, (f,z) converges to f(z) € C[1—1,1] uniformly on [—1,1]
as n — 0.

Because the structure of @, (z) is also related to f(z), it is natural to ask
under what conditions will Q. (f,z) converge to f’(z) uniformly on [-1,1].
Exactly, one could ask if the following inequality

(IE)-—Q (f, )_0(1)| \n/(_)l -r+1 (f(r),n—l)

holds for f € C[_, ;; and for all z € [-1,1] (corresponding to (2)). Indeed,

Xie raised this problem to some people two years ago, but no conclusion has
been achieved since. Very recently, in a personal communication B. Z. Li
told Xie that he established that

f(z) = @u(f,2) = O()n ™" w(f,n71), 2 €[-1,1],

holds for f € C[T—l.ll’ r 2 2. This is surely a new development in this direc-
tion, however, it is not a satisfactory answer that we expected.

Let E,(f) denote, as usual, the best approximation of a continuous func-
tion f(z) by polynomials of degree n. In this paper we will establish that
the following stronger estimate

Wa(2)|

F(&) - () = oy Tl B (49), s ot

z
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holds for f € C[_, ;) and for all z € [=1,1], therefore according to Jackson
theorem we have a complete positive answer to the above mentioned prob-
lem.

2. Preliminaries

Although Pal gave a general representation of @,(f,z) in [5], we now
prefer to use the following more explicit formula here, which was established
recently in [8].

For given distinct nodes

—1§5n<5n_1<...<51§1,

write wn(z) = [[f=;(z — Zk). Also,let -1 < Z:_; < ... <%} £ 1denote n—
1 distinct zeros of w) (). Let

wn ()
Wi (k)

A(z) = [i(2)(1 - 20(@p)(z — Tx)) - 2

[ HOO -GN B UENO

=i t— T

> !
Bdmz‘%“)/ sl b k=1,0.,n1,

wn(Z}) Jo1 wr(ZE)(t - 73)

d
an wn(z)
Bn(:l:): w/ (_1)1
where
_ wn(z)
o) = G -2
Define

Qu(frz) =Y f@)Ak(z) + Y f'(31)Bi(2),
k=1 k=1

where 77 = —1. Then @n(f,a:) is a polynomial of degree 2n — 1 satisfying
the following conditions

Qn(f-3x) = f(Br), k=1,2,...,n,
Q.(f,71)=f(&), k=1,...,n—1,
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138 T. F. XIE and S. P. ZHOU

and
_ n-1
Qu(f,=1) =Y F(E)BU-1) + f(-1).
k=1
In the special case when the nodes zy, k = 1,2,...,n, are the roots of

the integrated Legendre polynomial Wy (z) we have W,(—1) = 0 and from
this it follows that

Bi(-1)=0 for k=1,...,8~1.

So (only!) in this case the polynomial

Qn(f,2) =Y flz)Ak(z) + Y f(z})Bi(z),
k=1 k=1

where 2z = —1 and A, By, k =1,2,...,n are given above, is the unique
polynomial of degree 2n — 1 satisfying

Qn(fszk) = f(zk)v Qiz(fvxZ) = fl(z‘;c)’ k=1,...,n.

We now list some estimates of the Legendre polynomial p,_i(z) as fol-
lows, whose proof could be found in [6]:

1
3 Pr-1(z) = O(1)— 75—,
where A, (z) = @—!—:—2;
(4) 1—xi~sin2%’r, k=2,3,...,n—-1,

where the notation a,x ~ b,, means that there is a positive constant M in-
dependent of n and k such that M~ < a,x/box £ M;

' kr —1/2

(5) | pr—1(zk)| ~ (nsmn+1> D =98 el
" .k \ 72

(6) Ip:z—l(xk), ~ n? (n51nn+1) s k=120 .. m=1;
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ON SIMULTANEOUS APPROXIMATION 139
on writing z} = cos 4},

2k -1 2k

(7) 5y 1" =

3. Lemmas

First we establish some lemmas.

LEMMA 1. For k =2,3,...,n — 1 we have
Wi (z)| 1 2
8 Al(z | ( - ) :
(8) I I ~ n(n - 1)|pn 1(1rk)| |z —z|  (1- zZ)PZq(xk)
Proor. Clearly for k = 2,3,...,n — 1, [, (zx) = 0. Therefore
2W)(z) /” (1)
9 (z)= —-—= . dt.
) (z) Wi(zk) Joa t =z

When z < zj, we see that

T l/ T
[0 g ), b,
-1t — Tk T — Tk 1(t-—zk)
therefore

A0
1
(10) ‘/1 t— $k
follows from |lx(z)| <1 (see [2]). In case z > z4, by applying the known
equality (see [1]: Lemma 9.1)

b 1
P e 2\ 2 ’
-1t — (1~ xk)Pn_l(zk)

in a similar way we get

() ’ 2 1
dt + :
—1t— Tk |z -zl (1= 2f)p;_q(2k)

<_2
= o = x|

(11)

Thus (8) follows from combining (9)-(11) and W/ (zx) = —n(n — 1)pp—1(zk).
Lemma 1 is proved. O
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LEMMA 2. We have
| Al (z)| £ 24|W}(z)| logn.
Proor. Direct calculations lead to

W.(1) = -n(n-1), [li(z)] Sn® [[(2)] $n'.

So that
2AWo(2)] | = 6(t) = 1) + {(D)(L = L))
/ < n ey ’ ’
| A1(2)| < Py /_1 — 20, (1)l (t) dt
2|W’(2})| /wl—l/n2 n? 1
<40 —dt+/ 2ntdt | +4|Wi(z)| £
= mn=1) \J4 It ~ 1 1-1/n2 | ( )| -
< 24| W, (z)| logn. O
Similarly

LEMMA 3. We have
| A (z)| £ 24| W) ()] logn.

LEMMA 4. For k =1,2,...,n — 1 we have

B & e e )

_ ( AYWa@) 1 )
n(n—1lz =Gl " [1- @) [Phaa(p)] )

where || - || = max |-|.
-1£z<1
Proor. Obviously,
W.le) |* W, (t) W (z)W/(z)
B’($)= r * "’7- * dt+ * :tn *YS
E Wh(zz) Jog Wi(ep)(t - z3) W (zp )Wy (zp)(z — =)

In view of that (see [4])

L wi(t) 1
—2dt=-n(n-1 )
/_1 t— ( )Wn(m,"c‘)
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ON SIMULTANEOUS APPROXIMATION 141

we have, in a similar way to the proof of Lemma 1, that

L) g e ) AW
—1t—2 P |Wn($2)| |Zl:—:l‘k|’
from which the required inequality follows if we note that W) (z) = — (n —

— 1)pa-i1(z) and Wa(3) = (1 - 22)p,_y(z). O
LEMMA 5. Let f € C{_I’I]. Then for any given zo € [—1,1] there is a

polynomial q,(z) of degree 2n — 1 and a positive constant M depending only
upon r such that

| £®(2) - ¢f(2)] £ Mn~"+* Bypp1 (1)
Jork=0,1,...,r ond |2| £ 1, and

f'(%0) = ggn—1(0)-

PRrROOF. According to [3], there is a polynomial g,(z) of degree 2n — 1 so
that

(12) | FB(2) - §F(2)| £ Min~™+* Egpya (£

for k =0,1,...,r and |z| £ 1, where M, is a positive constant depending
only upon r. Construct that

Torn -z i y
(o) = 1) + (o) - Toz0) T2 gy

where T),(z) is the Chebyshev polynomial of degree m of the first kind. Ev-
idently,

(13) 4T3 4 (= = 20)/4)

2n/2] + 1 =G

for s =0,1,2... and |z| £ 1. At the same time by a direct calculation (see
the following Lemma 6) we get

d

(14) = (4Typyaa (& = 20)/4) sign Ty a(0)) | =2[n/2] 41,

=0
therefore
@n(z0) = f'(z0).
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Furthermore from (12),

| f’(l'()) - 6:1(3:0)‘ g Mln—r+lE2n—r—1 ( f(r)) ’
so by the definition of ¢,(z) and (13) we obtain that
|f(k)($) = qs;k)(l’)l S Mn By (f(r)) . 0O

We write the proof of (14) as the following

LEMMA 6. For any natural number m, we have
Tym-1(0) = (-1)"7(2m - 1).

Proorvr. It is well-known that Tp(z) = 1 and Ti(z) = 1. Applying the
recurrence formula

Talz) = 25To-1(2) — Tr-a(2)
for n = 3,4,..., by induction we can get
Tom-1(2) = agz®™ ! + a;27™ 3 4 ... + ap12® + (1)1 (2m - 1)z.

Consequently,
Tjm-1(0) = (=1)" 7 (2m - 1).

We have completed the proof of Lemma 6 as well as Lemma 5. O

4. New result and proof

THEOREM 1. Let f € C'[T_m], r22,n2(r+1)/2. Then

W/
(15)  f(2)-Qu(fi2) = om%n”“&n-r-x Fid

holds uniformly for all x € [—1,1], where O(1) depends only on r.

Proor. For a given point zg € [—1,1], according to Lemma 5, there is a
polynomial g,(z) of degree 2n — 1 such that

(16) | fB)(2) - ¢ (2)| £ Mn =" Epn_p_1 ()
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for k=0,1,...,r and |z| £ 1, and

(17) f'(z0) = g, (o).

Obv1ously, we see from the uniqueness of Q,(f,z) that Q.(1,z)=
= Y r_; Ak(z) = 1, hence

(18) > A(z) =
k=1

Then (18) implies that

n

(19)  Qu(fix) =) _(f(zk) - f(2)) Ak(z) + Y f'(z})Bi(=).
k=1

k=1
Because Q,(qn,z) = qn(z), we deduce that
Qn(f120) = f'(20) = Qu(f = @n, 20) + d(20) = f'(20) = Qn(f = gn, o)

together with (17). Combining it with (19) we then have

n

Qn(f,20) = f'(w0) = Y (f(2k) = gn(w) = f(20) + gn(20)) Al(z0)+

k=1
+Z "(2%) = an(2})) Bi(o).

On writing

I = (f(1) = gu(1) = f(z0) + gn(20)) A} (x0),
I = (f(-1) — ga(=1) = f(20) + gn(20)) Ar(20),

n—1
Iy = (f(zk) = gn(ak) = f(20) + gn(w0)) Ai(0),
k=2 h
n-1
Iy =) (f'(z}) - gn(z})) Bi(zo),
k=1

I = (f'(=1) = gn(=1)) By(20),

Acta Mathematica Hungarica 69, 1995



144 T.F. XIE and S. P. ZHOU

we have
5
(20) Qn(fr0) = f(o) = Y_ 1.
g=1

We are going to estimate I;, 7 = 1,2,...,5, separately.
From Lemma 2 and (16) it follows immediately that

(21) || € 24M logn| W, (z0)|n™" Ezner—1(f™),
and similarly from Lemma 3 and (16),
(22) |I2| < 24M logn| Wy(z0)| n™" Eznr—1 ()

holds. Meanwhile, the combination of Lemma 1 and (16) yields that

n—1 M
Tal < U —-r+1 o (r)
15l = kz=:2| Wa(zo)| (n(n = 1)|pn-1(z)| Tl

2M
+
n(n —1)(1 = 2})| pn-1(z)|

3n_"'EjZn—r—l (f(r)) ) :

By using inequalities (4) and (5) we see that

Z—l_ = 0(n¥?),

and
n—1
= O( n5/2) ,
k=2 l—xk ,pn l(zk)|3
consequently,
WI
(23) I = 0(1)|_"(—$0)‘n—f+1 Bt (f(r)) }

N

On the other hand, applying Bernstein’s inequality together with (3) we
get

Proa(z) = O(1)n~ A% (2).
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So

(24) [Wall = O (V)

due to the definition Wy(z) = (1 — 2?)p/,_,(z). Then it is deduced from
Lemma 4, (16) and (24) that

-1 7 =T .
n ’ \/”—zn % 2E2n—r 1 (f(r))

n-—r+’l E2n—r—l (f(r)) )
(1= @)%) |Proa(ap)]”

while applying (6) and (7) yields that

n—1 n—1
i} sin(km/n
*\2 1] w2 l)z ( / ) = 0(1)7
k=1 (1 = (”k) ) Ipn—l(xk)l k=1
= 1 E /2 502 KT /
= =0(1) ) n~%25in%? =O(n_1 Y
et (- (”1:)2) lp;z—l(x}:)l k=1
altogether,
w! ~
(25) Iy = O(I)Ll\/(%)‘n—rﬂf?zn-r_l(f(r))-

As for Is we have

l n(zO),

(26) = 0(1) =" Eg_py(£7)

since | W, (=1)| ~ n?.
Combining the estimates (20)-(23) and (25)—(26), we finally establish
that '

Q.(f,z0) — f(z0) = 0(1)| ‘/_o)l

_T*1E2n—r—l(f(r)) 2

Furthermore we note that in the above proof, O(1) is independent of any
given zg € [—1,1] so we have the desired inequality (15). Theorem 1 is com-
pleted. O
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Evidently, according to Jackson’s Theorem,

E2n—r—l (f(r)) = O(w(f(r)’ l/n)) )
we thus have the following
THEOREM 2. Let f € C[’_m], r 2 2. Then
|WI(“’ | $1 (
o = n" r)
f'(z) = Qn(f,2) = 0(1) o w(f",1/n)
holds uniformly for all z € [—1,1], where O(1) depends only on r.

With W/(z) = O(n?), from Theorems 1 and 2 we obtain immediately the
following corollaries.

COROLLARY 1. Let f € C[’_m], r22,n2(r+1)/2. Then

f'(z) - QL(f,z) = O "+%2Ey, ., (f1)

holds uniformly for all z € [—1,1].
COROLLARY 2. Let f € C[’_1 P’ 2 2. Then

() = Qu(f,2) = O(1)n™ 2w (£, 1/n)
holds uniformly for all z € [-1,1].

COROLLARY 3. Let f € C[ p f" € Lip @, a>1/2. Then Qi(f,)
converges to f'(z) uniformly on [-1,1].
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ON THE SUMS OF NON-NEGATIVE
QUASI-CONTINUOUS FUNCTIONS

A. MALISZEWSKI"* (Bydgoszcz)

The notion of quasi-continuity for real functions of several real variables
was introduced over sixty years ago by S. Kempisty [2], as a generalization
of the notion of continuity, and it has been intensively studied since then. A
comprehensive survey on this topic can be found in [4]. In [3] I proved the
following theorem.

THEOREM 1. Given a cliquish function f:R™ — R and an n > 0 we can
find a Lebesgue function o such that the functions f/2+ a and f/2 — a are
quasi-continuous, D(a) C D(f) and ||a|| £ ||f|| + 7 [3, Theorem 4.2].

It follows that each cliquish function f:R™ — R can be written as the
sum of two quasi-continuous functions and we may require the summands
to be bounded provided that f is bounded. However it turns out we cannot
require the summands to be non-negative or even bounded below in case f
is non-negative. In this paper I characterize functions which are expressible
as the sum of at most k non-negative quasi-continuous functions for each
positive integer k and study an analogous problem concerning the sums of
quasi-continuous functions bounded below.

First we need some notation. The real line (—o00,00) is denoted by R
and the set of positive integers by N. To the end of this article m is a
fixed positive integer. The word function means mapping from R™ into R
unless otherwise explicitly stated. The Euclidean metric in R™ will be de-
noted by p. For every set A C R™, let int A be its interior, cl A its closure,
fr A its boundary, diam A its diameter (i.e., diam A = sup{ o(z,y):z,y €
€ A}), and x4 its characteristic function. For any function f we write || f]|
for sup{|f(t)|: t € R™} (f need not be bounded), we denote by C(f) the
set of points of continuity of f, and we set D(f) = R™ \ C(f).

The oscillation of a function f on a non-empty set A C R™ will be
denoted by w(f,A) (i.e., w(f,A) = sup{|f(z) - f(y)| : 2,y € A}). Simi-
larly, the oscillation of a function f at a point x € R™ will be denoted by
w(f,z) (e, w(f,z) = lim,_o+ w( f,{y € R™ : o(z,y) < 7}) ). We will write

M(f,z) for max{lim sup f(t),f(z)} and m(f,z) for min{lign inf f(t),f(x)}.
t—zx — ¥
Observe that for any function f, w(f,-)= M(f,-)— m(f,-), the functions

* Supported by a KBN Research Grant 2 1144 91 01, 1992-94.
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M(f,-) and w(f,-) are upper semicontinuous, and m(f,-) is lower semicon-
tinuous.

We say that a function f is quasi-continuous (resp. cliquish) at a point
z € R™ if for each ¢ > 0 and each open set U 5 z we can find a non-empty
open set V C U such that w(f,{z}UV) < ¢ (resp. w(f,V)<¢). We say
that f is quasi-continuous (resp. cliquish) if it is quasi-continuous (resp.
cliquish) at each point z € R™. Cliquish functions are also known as point-
wise discontinuous.

We will use the following well-known (and easy to prove) facts.

LeEMMA 2. (1) A function f is quasi-continuous at a point x € R™ iff
there exists an open set H C R™ such that z € clH and f| ({z}UH) is con-
tinuous at z.

(2) The limit of a uniformly convergent sequence of quasi-continuous func-
tions is quasi-continuous.

(3) For an arbitrary function f and x € R™, the ezistence of a sequence
T1,,... € C(f) such that z, ==z and f(z,) == f(z) implies quasi-
continuity of f at x.

(4) Each quasi-continuous function is cliquish.

(5) The sum of two cliquish functions is cliquish.

(6) A function f is cliquish off D(f) is of the first category.

(7) Let f be a cliquish function which is quasi-continuous at a point x €
€ R™ and let A C R™ be a set of first category. Then we can find a sequence

z1,22,... ¢ A such that z, =% 2 and flza) = fle). O

To simplify notation, for a given cliquish function f and a point z € R™

we will write LIM(f,z) for limsup f(y). (By Lemma 2 (6) this notion
y—z,y€C(f)

is always reasonable.) For each k > 1 we will denote by S the family of

all non-negative cliquish functions f such that LIM(f,z) 2 f(z)/k whenever
z € D(f).

The word interval will always mean non-degenerate compact interval
in R™, i.e., the Cartesian product of m non-degenerate compact intervals
in R.

In the proof of the main results we will need a few lemmas. The first of
them can be proved actually in the same way as [3, Lemma 3.4] (for k = 2).

LEMMA 3. Assume that A is a nowhere dense closed set which contains
all points of discontinuity of the quasi-continuous functions Tzﬂ),...,h :
Then there exists a family of non-overlapping intervals I = {In '€ N}
such that

i) each x & A belongs to the interior of the union of some finite subfam-
ily of Z,

ii) diam I,, £ o(I,,A) for each n € N,

iii) for each i € {1,...,k} and each = € A there is a subfamily {1, :1 €
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€ N} such that z € ey In, and E(i)| ({2} U Ujenint Iy,) is continuous
atz. O

LEMMA 4. Given a k > 1, a function g € S and an € > 0 we can find
a function § € Sk, such that B = c1D(g) C D(g9),g=gon B,0Sg—G=<¢
on R™\ B and g — G € Sk.

Proor. Use Lemma 3 with A= {z € R™:w(g,z) 2 ¢-(1-1/k)} to
find a family of non-overlapping intervals {In :n € N} satisfying conditions
i) and ii) of that lemma.

For each n € N do the following. If ¢ =0 on [,, then define a, =0
on R™. Otherwise use that g is bounded on I, and choose &n 2, € int [, N
NC(g) such that g(z,) > max{sup{g(z):z € [,NC(g)} —1/n,0}. Let U, C
C cU, C int I, be an open*neighborhood of z, such that |g(z) - g(zn)l <
< 7, = min{g(z,)/5,1/n} for 2 € U,. Let a, be a continuous function
such that a,(z,) = g(z,) — 57», a, = 0 outside U, and 0 £ a, £ g(z,) —
— 57, on U,.

Observe that for each z ¢ A

M(g,z) - m(g,z)<e-(1-1/k),

M(g,z) m(g,z) _ m(LIM(g,"), )

-1k <1-yk=" 1-1k

m( LIM(g,-),2) — M(g,2)/k
1—1/k

M(g—-e,z)< m(min{ml(g_:'l)/;g/k,g},z),

so, since g € Sk,

M(g,z)—6<min{ ,m(g,x)—g/k},

M (max{g — ¢,0},z) < m(min{ml(g_"l)/;g/k,g},z).

By a well-known theorem (see [1, Theorem 1.7.15 (b)]), there exists a con-
tinuous function :R™ \ A — R such that
LIM(g,z) — g(x)/k
o) gt )

max{g(z) —¢,0} < A(z) £ min{

for each z € R™ \ A.
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Now define the function § by the formula

" max{an(:c),ﬂ(:c)} ifzel,, neN,
9(z) =

g(z) otherwise.

Fix an z € R™. First suppose = € A. Take a sequence y1,¥s,... € C(g)

with y, =" z and limu—o0 9(¥n) Z g(y)/k. For each n € N there is an I, €
€ N with y, € I;,,. Consider the sequence (4171,,)- Then

o(z,21,) € o(z,yn) + diam I, £ 2- g(z,9,) = 0,
SO

TIM(g,2) 2 limsupg(ay,) > limsup oy, (21,) 2

n—oo n—oo

2 limsup(g(yn) — 6/1n) Z g(x)/k = g(z)/k.

n—oo

Meanwhile LIM(g — g,z) 2 0 = (g(z) — g(«))/ k.
Now let z ¢ A. Then z € C(g), so by the above, § € Sx. On the other
hand,

LIM(g - 8,2) = LIM(g,2) - B(z) 2
2 B(z)- (1 -1/k)+ g(z)/k - B(z) = (9(z) - B(z)) /k,
and, if z € clU, for some n € N, then

LIM(g — ay,z) = LIM(g,2) — an(z) 2 g(2n) = Tn — an(z) >

> g(z) — an(z) — 21, > g(z) “2%(90) > 9(2) — an(2)

i k
Hence g — g € Sk. The other requirements are easy to prove. O
LEMMA 5. Let g be a non-negative function which is continuous on some

interval I and k > 1. Then for each € € (0,||g - x1||/2) we can find non-
negative continuous functions oM, ... .a® such that a4+ ...+ a¥ =g
on I and for i€ {1,...,k}

a) a(z)>0ifg(z)>0,z€l,

b) al) = g/k on fr1,

c) a(I) > [e,llg - xzll - €] -

Proor. First find pairwise disjoint non-empty open sets Vj,..., Vi C
C I such that ¢ > ||g-x1|| —€/k on V3 U ...U V. Then choose arbitrary
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x; €V; (i e {l,...,k}) and use the Tietze extension theorem to construct
a continuous function S such that 3 =g/k on I\ (V1 U ...UVi), B(2;) =
=¢/k for i€ {1,...,k} and e/k £ B < g/k on V1U ...UVi. Finally, for
i€ {1,...,k} define

L0y 2 (9@ —(k=1)-A(z) HzeV,
- {ﬂ(:c) otherwise.

It is easy to see that then a)-—c) are fulfilled. O

LEMMA 6. Assume that k > 1, the nowhere dense closed sets B C A, a
function g € Sk and non-negative quasi-continuous functions E(l),...,ﬁ(k)
are such that g =0 on B, D(g) C A and D(E(l)) U ...UD(E(k)) C B.
Then we can find quasi-continuous functions hV, ... h(%) such that h(!) +
+o4h® =24 472 g D(RW) U . UuD(A®) C Aand forie
E 4 Lisus gk}

i) Al — ) >0 on BR,

it) hO(2) - B7(z) > 0 if g(z) > 0, = € R™,

iii) ) — )—g/k on A.

Proor. First find a family of non-overlapping intervals {I n e N}
according to Lemma 3. Fix an n € N.

If g = 0 on I, then define a;) = ...:a,(1k) = (.of R™,
Otherwise apply Lemma 5 with ¢ = ¢, = min{||g- xz,||//3,1/n} and I =

= I, and find non-negative continuous functions a(l) aslk) such that
9’—{— +a(k) =gon I, and fori € {1,...,k}: a(') x)>01fg(:c)>0(:c€
€ I,), al! —g/kon fr I, and

(%) ol (1) D [ens |9 X1, ]| — €n] -
Define for i € {1,...,k}

. —i (1) :
h(z) = A )(z) 4 ]on (2) fzel,,neN,
(z)/k otherwise.

Then conditions i)-iii) are clearly satisfied and, by condition i) of Lemma 3,
the functions h(1),... A(¥) are continuous on R™ \ A, so we need only to
show that they are quasi-continuous on A to complete the proof.
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Take an ¢ € {1,...,k} and an z € A. First suppose z € B. By condi-
tion iii) of Lemma 3, there exists a subfamily {Im e N} such that z €

€ cUjen In, and ﬁ(i)l ({z}U Ujenint I,) is continuous at z. Put

H = | (int I, 0 (o) 7 ((~2/m1,2/m))).

leEN

Then H is open and by (x), z € ¢l H. Since g(z) = 0, so k)| ({z} U H) is
continuous at z. Hence and by Lemma 2 (1), h(?) is quasi-continuous at z.
Now let z ¢ B. By the assumptions on g there is a sequence z1,z2,... €
€ C(g) such that z, — z and g(z,) > g(z)/k — 1/n for each n € N. Since
the set A is nowhere dense, we may assume that each z, belongs to some
I;,,. Use the condition (*) to find a y, € I;,, with |a§:)(yn) —g(z)/k| Ser, +

+1/n. Then y, == z (by condition i) of Lemma 3), h()(y,) =" h()(z)
(since £ is continuous at z) and y1,92,... € C(h(i)) . So by Lemma 2 (3),
h() is quasi-continuous at z. O

To the end of the article let 2 be a vector space of functions which is
closed with respect to uniform limits and such that each function w which

coincides with some function v € 2 on cl D(w) is an element of A, too.

THEOREM 7. For each k > 1 and each function f € 2 the following three
conditions are equivalent:

A) there exist non-negative quasi-continuous functions R, ... A such
that f = h(W 4+ ...+ h(k),

B) f belongs to Sk,

C) there ezxist non-negative quasi-continuous functions h(), . .. AR e
such that f = hW) + ...+ h*) and for i € {1,...,k}: D(AY)) C D(f) and
R (z) > 0 whenever f(z) >0, z € R™.

Proor. A) = B). The function f is clearly non-negative and, by Lem-
mas 2 (4) and 2 (5); cliquish. Fix an z € D(f). Let i € {1,...,n} be such
that h()(z) > f(z)/k. By Lemmas 2 (6) and 2 (7), there exists a sequence
q,23,... € C(f) such that z, “=5° 2 and h()(z,) =° h()(z). Then

LIM(f,z) 2 limsup f(z,) 2 limsup h)(z,) = hO(z) 2 f(z)/k.

n—oo n—00

B) = C). Let fo =0 on R™ and By = (). For each n € N use Lemma 4
withe=2""and g=f—(fo+ ...+ fa_1) to find a function f, € S such
that B, = cID(f,) C D(f) (so By, is nowhere dense), f = fo+ ...+ f, on B,
(so, by assumptionson &4, f, €A),0< f—(fo+ ...+ fn) £27"on R™\ B,
and f — (fo+ -+ fu) € Sk
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Define hgl) B — h(()k) =0 on R™. For each n € N use Lemma 6 with
B=ByU...UB,_1,A=BoU...UB,, B =b®_ (i€ {1,...,k}) and g =

= fn, and find quasi-continuous functions hg), " .,hﬁf) such that hg) + ...+
+29 = ot .t £, D(AP) U ...UD(RY)) C BoU ...UB, and fori €
(=R i P A — hgll 20onR™, hg)(z) - hf:ll(x) > 0 whenever f,(z) >
>0(z € R™)and hf:) — hf:)_l = fp/kon BoU ...UB,. Then by assumptions
on U, hg), - .,hslk) € 2.

In this way we constructed k sequences of non-negative quasi-continuous
functions. For i € {1,...,k},if s > n, then

s

VAT =308} RS 3 P 2E
I=n+1 I=n+1

on R™, so these sequences are uniformly convergent. Hence for i € {1,...,k}
the function A(®) = lim,_ hg{) is quasi-continuous (by Lemma 2 (2)) SR e
€ A (by assumptions on ) and D(A()) C D(f). Moreover, A1) + ...+

Let z € R™ be such that f(z) > 0. Then there is an n € N such that
fa(z) > 0,50 BO(z) > B)(2) = A (z) > 0 fori € {1,...,k}.

C) = A). This implication is obvious. O

Now we will study the sums of quasi-continuous functions bounded be-
low. We get the main result as a corollary from the above theorem.

COROLLARY 8. For each k > 1 and each function f € U the following
three conditions are equivalent:

a) there ezist quasi-continuous functions hV, ... A% bounded below

such that f = AV 4 ... 4+ A(F),
b) f is a cliquish function bounded below and

inf { LIM(f,z) — f(z)/k:2 € D(f)} > —oo,
c) there ezist quasi-continuous functions h(V), ... h(¥) € A bounded below
such that f = KV + ...+ h¥) and D(hY)) c D(f) forie {1,...,k}.

PROOF. a) = b). Let s€ R be such that A() > s on R™ for i€

€ {1,...,k}. Then the function f = f — k- s can be expressed as the sum of
k non-negative quasi-continuous functions, so for each z € D(f), by condi-
tion B) of Theorem 7,

IIM(f,2) - f(z)/k = TIM(F,2) - F(a)/k + (k=1)-s 2 (k= 1)-s.
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b) = c). Let s < inf{ LIM(f,z) — f(z)/k : = € D(f)} /(1 —1/k) be such
that f > s on R™. Then the function f = f — s is non-negative and

LM (7, z) = TIM(f,2) - s 2 f(z)/k - s/k = F()/k

for each = € D(f), so by condition C) of Theorem 7, there are non-negative
quasi-continuous functions —E(l),. E( ) € U with f = ’(1) : .}+ 2" and
D(ﬁ(l)) C D(f) fori € {1,...,k}. Clearly the functions h( ) = )+ s/k ful-

fil our requirements.
¢) = a). This implication is obvious. O

ExampPLE 1. For each £ € N the function ux: R — R defined by

1/k ifx#0,
Uk(IE):{l/ if 7é0
ife=

is bounded and positive, it is continuous except one point, it can be written
as the sum of k positive quasi-continuous functions but cannot be expressed
as the sum of less than k¥ non-negative quasi-continuous functions.

EXAMPLE 2. The function u: R — R,

i {min{|:c|, 17 Hafl,

1 if @ =10,

is bounded and positive, it is continuous except one point (so it is cliquish),
and it cannot be written as the sum of finitely many non-negative quasi-
continuous functions. (Observe that inf{u(z):z € R§ =10

ExaMPLE 3. For each k£ € N the function vx: R — R defined by

{:v 41 if z € N,
() |z|/k +1 otherwise

is positive and discontinuous on a discrete set, it can be written as the sum
of k quasi-continuous functions bounded below but cannot be expressed as
the sum of less than & quasi-continuous functions bounded below.

EXAMPLE 4. The function v: R — R,

r+1 ifzeN,
v(x)-{

otherwise,
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is positive and discontinuous on a discrete set (so it is cliquish), and it cannot
be written as the sum of finitely many quasi-continuous functions bounded
below. (Though inf{u(z):z€ R} >0.)

Finally I would like to present a query. Theorem 1 implies that each
approximately continuous function (resp. each derivative) can be written
as the sum of two approximately continuous and quasi-continuous functions
(resp. of two quasi-continuous derivatives). It would be of interest to know
whether we can find summands satisfying these additional requirements in
Theorem 7 and Corollary 8, i.e.:

Can every approximately continuous function from S; be represented
as the sum of k£ non-negative, quasi-continuous, approximately continuous
functions?

Can every derivative from Sy be represented as the sum of k£ non-negative
quasi-continuous derivatives?
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ON A LIMIT THEOREM FOR SOME
MODIFIED OPERATORS

XIAOJING XIANG (Eugene)

1. Introduction

Let f be a function defined on [0,1]. The Bernstein polynomial of order
n of f(z) is defined by

(1.1) E I ( )pm(z

where
n i 5 —.
o) = ()21 =2y

A well-known result about the approximation of B, (f,z) to f(z) is that (see
[7]) if f?¥)(2) exists at z, then

(1.2)

'n,—o

R g 2(1 - 2)\* 9 (a
f()m,(z)}:<(1 ))f (z)

where Tri(z) = Y7 o (£ - z) 'pn,j(z). Toi(z) = Bo((- = 2)',2) is called the
ith moment of Bernstein polynomial of order n. Hence we may say that
(1.2) is the moment expansion of B,(f,z). Khan [6] has shown that the mo-
ment expansion holds for a class of Feller operators. Consider the modified
Bernstein polynomials

2
(13) Pi(fi)= (04 1)) ( [ rw dt) Pri(z).
7=0 n+1

The approximate properties of P,(f,z) have been studied by many authors;
Kantorovich [5], Hoeffding [4], Bojanic and Shisha [2], Ditzian and Totik [3]
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among others. But the limit result of (1.2) for P,(f,z) has not been seen
in the literature except a wrong result in [10]. The goal of this article is
to establish (1.2) for P,(f,z) and for the Szasz—Kantorovich operator. We
also establish a non-moment expansion for the Baskakov-Kantorovich oper-
ator. The Baskakov—Kantorovich operator and Szasz—Kantorovich operator
are defined, respectively, by (see 3, p.115])

o (4
(1.4) Bi(fir)=nY ( /, f(t)dt) b ()
=0 n
and
o (i
(1.5) Sifie)=nY. ( /. f(t)dt) g (),
7=0 n
where
. Bt 3=l z?
(1-6) Bus() = ( j )(1+z)”+"
and
(1.7) sngle) = (njx!)J £y

7=0,1,2,...,and 0 £ 2 £ a < 00. A probabilistic method has been used to
prove our results. It is not only convenient but also powerful. Without using
probabilistic methods, the following Theorem 2.3 could be difficult to prove
by the usual analytic method.

Let Y7,...,Y, be iid (independent and identically distributed) random
variables on a probability space (Q,F, P,) with P.(Y1 =1)==2, P,(Y1 =
=0)=1-zand 0 <z < 1. Y] is called the Bernoulli random variable. Let
St ?:1 Y; and E,Y denote the expectation of the random variable Y un-
der the probability measure P,. By using probabilistic notations, (1.3) can
be written as

Snt1

(1.8) Po(f,z) = (n + 1)E, (/_5:“ f(t)dt) ,

n+1
Similarly, (1.4) is

Sn+1

(19) B;(f,z) = nE ( L dt) ,
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with §, = ;‘zl‘Y,-, Y1,...,Y, areiid random variables with the distribution
Bli=ji=9¢,]=0,1,2,.. .,where 0 < p= 7 withz 2 0and p+¢=
= 1.

Finally, (1.5) can be written as

Spt1

(1.10) Sn(fr2) = nEy (/S i

n

f(t)dt) ;

with S, = 3, Y;, where Y;,...,Y, are iid random variables with the dis-
tribution Pp(Y; = j) = e, j=0,1,2,....

2. Main results

The first result is about the modified Bernstein polynomial.

THEOREM 2.1. If the derivative f(?*)(z) ezists at & with z € (0,1), then

2k—1 1) =
(2.1) lim n* {Pn_l(f,x) flz) - I) Z (2+(1)), m+2(z)}
(2k)
- s _z)]kak,;,m>.

REMARK. Comparing (2.1) with (1.2), T, ;(z) in (1.2) are replaced by
z(l—”_xyTn,Hz(x) in (2.1). Moreover, the term with f’(z) is included in (2.1)

(see the result in [10]), but not in (1.2) because T}, ;(z) = 0

The proof of the above result is based on the following lemma due to
Bojanic and Shisha [2].

LEMMA 2.2. Let f(x) be a Lebesgue integrable function on [0, 1]. Then :
for z € [0,1],

#(1~2)| Poy(fy2) ~ flz)] =

= o, {(57 -r) /OE#—r(f(z-i-t)—f(z)) dt}.

PRrooF oF THEOREM 2.1. From Taylor’s formula and Lemma 2.2,

(0 i+2
21 2) [ Pas(f.2) - ()] Z(’:ﬁ’ (3-2) +rn
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where

Sn_g
R, =nE, (i i z) / T at,
n 0

€] < |32 — z| and g(€) is uniformly bounded, g(¢) — 0 as |¢| — 0. To com-
plete the proof, it suffices to show

2k+2
(2.2) lim ——-1——nk+1E S _ z = L[ar(l - z)] i
n—oo (2k 4+ 1)! n 2k k!
and
(2.3) lim_ n*R, = 0.

(2.2) is a consequence of Lemma 5 in [6]. (2.3) follows by using the argument
of the proof of Theorem 2 in [6].

For the Baskakov-Kantorovich operator, we have the following result.

THEOREM 2.3. If the derivative f(2k)(x) exists at x with v > 0,

, 2k-1 (4)
Tim ot {B,:(f,w)—f(x)— Linal oy (fijf)),Mnm(z)} -
i=1 d
(2k) (&

ohere Maisa(a) = B { (efi=r - 0) (- )™},

REMARK. We note that the above theorem is an expansion of B(f,z)
in terms of M, ;4(), which are not usual moments. To establish the above

expansion, a crucial step is to find lim,_ ., n**t! M, ox42(z). By using the
probabilistic method, we avoid the complicated calculation of My, 2x4+2(z).

The proof of Theorem 2.3 relies on the following lemma.

LEMMA 2.4. Let f(z) be a Lebesque integrable function on any finite
interval. Then, for each x > 0,

m[BS(f,x)—f(w)] =
=nY bni(z) (n+112— i I-T—z) /();_r(f(z+t)—f(x)) dt.
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ProoF. It can be shown that

x k x
A4 T | On,k- — Op = 0Op = s
@4) g lbra(@) ~ bur(e)] = b ’k(x)(n+k—1 1+x)
- k z
(2.5) > i) (- 1+w) =1,
and
i k z k T
o) nkzz:ob"’k(x)(n+k—l_l+x> (E_x):uz'
Write

B(f,z) = /0 " Ka(z,0f(2) dt,
where

Ifn(l', t) =0 Z bn,k(x)x(%‘k_ﬁ_l](t),

k=0

X(iyk_-r_l](t) being the indicator function of (£ k ﬁ”—] By

T

Ky (z,t) = —nbn,O(x)X[0,0](t) +n Z (bn,k—l(x) = bn,k(x)) X[Q,%P
k=1

(2.4) and (2.5) imply that

5(f,2) —annk(z)( _1—1ix)/0%f(t)dt=

(27) 5

= k T a2
=n;bn,k(z)(n+k_ g 1+z)/0 f(z +t)dt

Combining (2.6) and (2.7), the lemma follows.
Proor or THEOREM 2.3. From Taylor’s formula and Lemma 2.4,

[B:L(f’x) ‘T) _nzf (x) n,i+2(x)+Rna

T
41 (14 1)
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where

Sn z s 2k

€] < I%l —z| and g(¢) is uniformly bounded, g(§) — 0 as |{] — 0. Let
lg(¢)| £ C for any €. To complete the proof, it remains to show

k+1
) 1 k+1 Sn d ) Sn ’ o
Las) S0 2k + 1) Ex{(n+sn—1 el L U -

- Eklﬁxlﬂ.l(x ' 1)k—1
and
(2.9) n]irrgo n*R, = 0.
Write
(2.10) S z (-2)+ %

ntSn—1 z+1 (z+1)(m+1-1)

By strong law of large number [1, p.290], (z +1) (22 +1-1) - (z + 1)
with probability one. Let

JAS-a)
(41 (5 +1- 1)

i, =

From the central limit theorem, y/n(22 — z) converges in distribution to

a normal random variable with mean zero and variance z(z + 1). It follows
that, by Slutsky’s theorem [9, p.19], Z,, converges in distribution to a normal

- ks
random variable, say Z, with mean zero and variance z(z + l)ﬁ—i. From
(2.10), neglecting the higher order term, we have

' 1 " s, 5 s, 2k+1 é
LT E’”{(n+5n—1 Y 8 5

2k+2
Ao T
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This and (2k—}H)TEIsz+2 = gh=a tl(z 4 1)¥~1 imply (2.8) if we can show

(2.11) ln, E 2342 = Baa™?,

n—oo

To this end, from the corollary in [1, p.348], it suffices to show

(2.12) sup E;|Z,|" < 0o, for some r > 2k + 2.

Since Y; — z has finite moment generating function (Y; is a geometric ran-
dom variable), Lemma 5 in [8, p.54] implies, for some T > 0 and a > 0,

E et1-2) < 29t for [t| £ T. From Theorem 15 in [8, p.52],
1S;

n
— -z

P(ﬁ

at2
gt)gze-%, if 0<t<T,

and

i

;t)§2e-z, if t>T.

n
—_

r(va
It follows that, from (2.19) in [1, p.282],
o oaSo [ o (-)
n 0 n

& g . B4
§2/ e_Tdt+2/ e~ 7! dt < oo.
0

r

=
>t)dt§

Since the right hand side of (2.13) is independent of n, sup, Exl\/ﬁ(%ﬂ -
- z) |T < 0. Hence, from (z + 1)(%—L +1-1) > =1

(s

To prove (2.9), for any ¢ > 0, there exists a § > 0, such that |g(£)| < ¢ if
|%L — 2| < 6. From (2.10) for n > 2,

r

sup E,|Z,|" £ IR E, < 0.

s z S ¢
w - - — -2 =
(n+5n—1 x+1)(n ) -
2k+-2 2k+1
- 2
S2E,|—-=z +—xEx§ﬁ—a:
n n n
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This implies

. 2k+2 2k+1
n*|R,| £ 2en**1E, (—— - x) + 2zen*E,
n

+2cnk+l{Er{(%_$)”‘”,( )}

where I(A) denotes the indicator function of the random event A. Using the
argument of the proof of Theorem 2 in [6], we can show

Sn
— -z
n

Sn

2k+1
il
n

— -z

e(2k + 1)!

T LR

lim sup n*|R,| £
n—oo

Since ¢ is arbitrary, (2.9) follows.
Our final result for the Szasz—Kantorovich operator is the following.

THEOREM 2.5. If the derivative f*%)(z) exists at z with z > 0, then

2k-1

(2'14) n{r&nk{sz(fz)_f(z)— g z (i-{-l)'
=1 ’

f(i)(l‘) f(2k)(x)zk
niral®) 0= Tk

where Q i+2(z) = E; (%’L - x)i+2.
The proof of Theorem 2.5 is based on the following lemma.

LEMMA 2.6. Let f(z) be a Lebesgue integrable function on any finite
interval. Then, for each = > 0,

(2.15)

k_g

Sx(f,x)— f(z)) =noosn - -z ’ (fz+1t)— f(z)) dt
d 2ot (<) |

ProoF. It is easy to check that

(2.16) z[snp—1(2) — snilz)] = snilz) (g - x) ]
o k

(2.17) an‘k(z)(——z> =0,
k=0 -

Acta Mathematica Hungarica 69, 1995



ON A LIMIT THEOREM FOR SOME MODIFIED OPERATORS 167

and

(2.18) ngsn,k(x) (% - w)2 =z,

The rest of the proof, which is the same as that of Lemma 2.4, is omitted.
The proof of Theorem 2.5 is omitted.
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A NOTE ON STRONGLY PRIME RADICALS

J. F. WATTERS (Leicester)

1. Introduction

The main aim of this note is to present some of the details of the author’s
example cited in [7], where it was used to show that the strongly prime rad-
ical is not left-right symmetric and given along with another example due to
the authors for the same purpose. At the same time the opportunity is taken
to discuss the relationship between strongly prime and the concept of nor-
mality, as defined for radicals in [4] and for classes of prime rings in [5]. It
is shown that the class of strongly prime rings is not a normal class of prime
rings, although it is known to be a special class of rings [2], and that the
strongly prime radical is not normal, although it is special [2]. Parallel re-
marks can be made for the uniformly strongly prime rings and the uniformly
strongly prime radical, the upper radical determined by this class. These ob-
servations vis-a-vis normality do not seem to have been made before. On the
other hand, it is shown that in the category of rings with identity, strongly
prime and uniformly strongly prime (see [6]) are Morita invariant properties
as is semisimplicity with respect to either the strongly prime radical or the
uniformly strongly prime radical.

The concept of a strongly prime ring was defined by Handelman and
Lawrence [3]. A right insulator in a ring R is a finite subset F of R such that
Fr =0,r € R, implies »r = 0. The ring R is said to be right strongly prime if
every non-zero ideal (two-sided) contains an insulator and the right strongly
prime radical, s,(R), is defined to be the intersection of all the ideals I of R
for which R/I is right strongly prime. The left strongly prime radical, s;(R),
is defined analogously. Groenewald and Heyman [2] have shown that s, and
s; are radicals in the Kurosh-Amitsur sense. In the original formulation R
is said to be right strongly prime if for each non-zero a € R there is a finite
subset F, of R such that the right annihilator of aF, is zero, in which case
F, is called a right insulator of a. If a common insulator can be found for
all the non-zero elements of R, then R is said to be uniformly strongly prime
and the common insulator is referred to as a uniform insulator. It is known
that R is uniformly strongly prime if and only if there is a finite subset F' of
R such that 2 Fy = 0 implies # = 0 or y = 0, from which it is seen that the
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concept is left-right symmetric. The upper radical us(R) determined by the
class of uniformly strongly prime rings is called the us-prime radical. The
class of uniformly strongly prime rings is known to be special and so us is a
special radical. Proofs of these results on uniformly strongly prime rings can
be found in [6].

2. The example

ExaMPLE 1. Let K be afield, X = {X,, X»,...} a set of non-commuting
indeterminates, and A = K (X), the free associative algebra with 1 on X . Let
B be the ideal of A generated by {X;X;, X;Xit1X; — X; | 154,14+ 2 £ 5}
and put R = A/B. Write y; = X; + B,t 2 1, so that R is generated as a K-
algebra by {y; |+ 2 1} with y;y; = 0 and y;y;41y;i = yifor 1 Siand 142 < 5.

A monomial in the y’s will be called irreducible if it cannot be reduced in
degree using these relations. A number of properties of R will now be given
and then used to establish the (negative) results already described.

PRrOPERTY 1. The only right strongly prime non-zero factor ring of R is
R/M = K, where M = (y1,¥2,-..)

PRrOOF. Suppose P is an ideal of R and that 0 # R/P is right strongly
prime. Let F = {fi+ P,..., fo + P} be an insulator in R/P With fi .« <5 fa €
€ R. Let m be the largest subscript to appear on y’s in fi1,..., f,. Then
fryj=0forall 1< k<n, j2m+2and so (fk+P)(y]+P)—0 that is
F(y; + P)=0. Hence y; € P for all j 2 m+ 2. However, it is clear from
the relations on R, if y;41 € I, an ideal of R, then y; € I also. Hence
{v1,92,...} S Pand P2 M = (yl,yg,...). Therefore P = M as required.
a

PROPERTY 2. The set {y1,y2} is a left insulator in R.

ProorF. Suppose r € R is such that ry; = ryo = 0. If r # 0 then we can
write 7 = Y o, u where a, € K and the p’s are distinct irreducible mono-
mials in the y’s. Writing 4 = y;, ...¥;,, py1 is irreducible unless 75 = 2 and
tk—1 = 1, in which case py; = ¥;, ... ¥i,_, = Ayp where A=y;, ...y;, _, inir-
reducible form and Ay, is irreducible. Thus working down by degrees, we
see that ry; = 0 implies 7 = Y axA(1 — y1y2). In this format & monomial of
largest degree will be of the form Ay ys so that Ay;ysy, is both irreducible
and uncancellable within 7y;, so rys # 0. Hence {y;,y2} is a left insulator
inR. O

PrOPERTY 3. The element e = y,y2 is an idempotent in R and eRe is
a domain.

ProoOF. It is clear that e is an idempotent. Let r,s € R and write ere and
ese as linear combinations of irreducible monomials. Since e must appear
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in each monomial, the monomials will have degree = 2 and the product of
monomials of degree k and [ from ere and ese respectively will have degree
k + 1 — 2 since the only reduction comes from e? = e. The resulting product
when k£ and [ are maximal cannot arise in any other way in erese and so
ere # 0 and ese # 0 implies erese # 0. Thus eRe is a domain. O

ProPERTY 4. The ring R is a prime ring.

ProoOF. Let r and s be non-zero elements written as linear combina-
tions of irreducible monomials. Let A = y;, 9, ... %, and p = y;, 9, - ..y;, be
monomials of largest degree in r and s respectively. If i > j; + 1 then Ap is
irreducible of degree k+1so rs # 0. If i = j; + 1 then Ay;, p is irreducible of
degree k + 1+ 1 so ry;, s # 0. Finally, if ¢x < 71 then Ay;, ¥i,+1...9j, 4 is irre-
ducible of degree k + 1+ (j1 — ik + 1) s0 7y, Yi, 41 --Y;; s # 0. Hence rRs # 0
and R is a prime ring. O

Recall that a radical p is called a normal radical if whenever (S,V,W,T)
is a Morita context Vp(T)W C p(S). Jaegermann ([4], Theorem 1.9) has
shown that if p is a normal radical and e is an idempotent in a ring R, then
p(eRe) = ep(R)e. Normal special radicals are upper radicals determined by
normal classes of prime rings, a concept introduced in [5] where it is shown
that if P is a normal class of prime rings and L is a left ideal of a right ideal
of a prime ring S, then L € P implies S € P.

THEOREM 1. (a) The radicals s; and s, are different [2].

(b) The class of right (left) strongly prime rings is not a normal class of
prime rings.

(c¢) The radicals s; and s, are not normal radicals.

(d) The class of uniformly strongly prime rings is not a normal class of
prime rings.

(e) The uniformly strongly prime radical is not normal.

Proor. (a) In the example s.(R) = (v1,¥z,...) from Property 1. It
is shown in ([7], Corollary 2.2) that s;(R) does not contain any insulator
in R and so from Property 2 {y;,y2} is not contained in s;(R). Hence
si(R) # s, (R).

(b) From Property 3 eRe is a right and left strongly prime ring. It is
also a left ideal of the right ideal eR of R. From Property 1 R is not a right
strongly prime ring whilst from Property 4 R is a prime ring and so the class
of right strongly prime rings is not normal. Dually, the result holds for left
strongly prime.

(c) Again from Property 3, s/(eRe) = s.(eRe) =0. From Property 1
$:(R) = (y1,Y2,...) so es,(R)e # 0, in particular es,(R)e is not contained in
sr(eRe), so the radical s, is not normal. The same can be said of s;.

(d) and (e) Asin (b) and (c). O

The observation (c) may also be seen from the fact that Jaegermann [4]
shows that a supernilpotent radical is normal if and only if it is left stable
and right hereditary whilst in [8] it is noted that the strongly prime radical is
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neither right (left) hereditary nor left (right) stable. I am indebted to Patrick
Stewart for pointing this out to me as well as for suggesting that uniformly
strongly prime could be considered in parallel with strongly prime. Similarly,
(b) follows from this observation together with the fact that in [5] it is shown
that the upper radical determined by a normal class is a normal (and“special)
radical, so the class of strongly prime rings cannot be normal.

In contrast, it is shown in Theorem 2 below that, when working in the cat-
egory of rings with identity, strongly prime and uniformly strongly prime are
Morita invariant, as indeed is being semisimple with respect to the strongly
prime radical. In this case it is not possible for a ring to be strongly prime
radical since all rings have simple images with identity, but the same can-
not be said about the us radical in the light of the example in [1] of a simple
ring with 1 which is not a us-prime ring. Note that in [6] it is stated that
us-primeness is a Morita invariant property.

THEOREM 2. Let (S,V,W,T) be a Morita contert with VW =5 and
WV =T, where S and T are rings with 1. If I is an ideal of S such
that S/I is a (right, uniformly) strongly prime ring, then T/J, where J =
= WIV, is also a (right, uniformly) strongly prime ring. Furthermore,
8:(T)=Ws,(S)V and us(T) = Wus(S)V.

Proor. Write 15 = > 7 viw; and 17 = 7, wiv;. Let t €T with
tgJ. Putt=t+J#0. Then VtW is not contamed in I, so there are
vo € {v} | 1 £j<m}and wo € {w; | 1S i< n} with s =votwo ¢ I. Put
S=s8+1#0. Then there is a finite subset G, of S/I for which the
right annihilator in S/I is zero. Write G, = {g+1 | g € G, € S} so that
|G| = |G| < 0. Then sG,z € I,z € S implies ¢ € I. Put F; = U; woG,sv} ©
C T and suppose tFy;y € J with y € T. Then, forall 1 £ j < m, twoGsviy &
C J, and so sGsv;y C voJ, from which we find that sGsv;yW C I. But then,
from the annihilator condition, v;yW C I for all j. Hence wviyWV < J for
all j and so, on summation over j, y € J. Thus F; is a right insulator of
t. This deals with the right strongly prime part of the result. For the uni-
formly strongly prime part we replace G, by G and G, by G, and observe
that since the choice of wg can be restricted to the finite set {w2 'S 15 u})
we can take, as uniform insulator, the finite set F' = U; ; wing.

Now let

S ={I| S/I is a right strongly prime ring}.

Then s,(5)= NI, I €S and so s.(T) S N(WIV). However N(WIV) =
= W(NI)V; one mclusmn is clear, whilst if ¢t € WIV for all I € S, then
vtwe [ for all veV, we W, T €S, so that VIiW C NI and t € W(N
NI)V. Therefore sT(T) C Ws,(S)V. By symmetry, s,(S) S Vs, (T)W and
s0 Ws,(S)V C s,(T), giving the stated equality. A similar argument can be
used to show that Wus(S)V = us(T). O
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COROLLARY 1. In the notation of the Theorem:

(a) of S is a right strongly prime ring, then T is also a right strongly
prime ring;

(b) if S is a uniformly strongly prime ring, then T is also a uniformly
strongly prime ring;

(c) #f 3,(S5) =0, then s, (T) = 0;

(d) of us(S) =0, then us(T) = 0.

COROLLARY 2. For any ring S,
(a) s;(Mn(S)) = Ma(s,.(5)) [2];
(b) us(Mn(S)) = Mn(us(S5)) [6].

Proor. When S has a 1 we use the context (S, V,W, Mn(S)) where V
and W are the modules bf row and column vectors with n components from
S. If § does not contain 1, then it can be embedded as an ideal in a ring S’
with 1. Then, for (a), s,.(5) = SN s.(5’), so that

My (3r(5)) = Mn(S)N Mp(3:(5")) = Mn(S)N (87 ( Mn(S"))) = sr(Mn(5))

since M,(.S)is an ideal of M,(S’) and special radicals are hereditary. Anal-
ogous statements can be made for us. 0O

We remark that the presence of identities in both rings is crucial for The-
orem 2 and Corollary 1, since in our example the context (eRe,eR, Re, ReR)
has all the properties except that ReR does not have an identity element.
The ring eRe is uniformly strongly prime (and so right strongly prime), but
ReR is right strongly prime radical (and so uniformly strongly prime radical).
To see this note s,(ReR) = s,(R)N ReR, since s, being special is hereditary,
and e € M = 5,(R) so ReR C s.(R), whence s,(ReR) = ReR.
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SHORT NOTES ON QUASI-UNIFORM
SPACES
I. UNIFORM LOCAL SYMMETRY

(Budapest)’

A quasi-uniformity & on X is locally symmetric [18]if for any U € U and
¢ € X there is a V € Y with V~1[Vz] C Uz (Uz denotes U[{z}]). Equiva-
lently, there are V,W € U with W~1[Vz] C Uz. This is a localized version
of the following characterization of symmetry: i is a uniformity iff for any
U € U there are V,W € U such that W=1oV C U. Allowing W, but not V,
depend on z, we obtain a new notion: U is uniformly locally symmetric if for
any U € U there is a V € U such that for any = € X there is a W € U with
W-1[Vz] C Ux.

In §1, we shall recall some other notions of quasi-uniform symmetry,
and compare them with uniform local symmetry. It will be proved that
a mixed-symmetric, uniformly regular quasi-uniformity is uniformly locally
symmetric, while a uniformly locally symmetric quasi-uniformity is quiet.
Some counterexamples will also be constructed, e.g. an open-symmetric, not
point-symmetric 7 quasi-uniformity. We shall also consider the category of
the uniformly locally symmetric quasi-uniformities. It will be shown in §2
that some symmetry properties are not hereditary. In §3, we shall show that
a quasi-uniform space is uniformly locally symmetric provided that it has a
uniformly locally symmetric sup-dense subspace. (The analogous statement
for local symmetry is known to be false [21].)

§1. Some symmetry properties

1.1. Throughout this paper, i/ is a quasi-uniformity, and its fundamental
set is denoted by X; & is the quasi-proximity, and 7z the topology induced
by U. Topological properties (open, dense, etc.) are to be understood with
respect to Tyy. The adjective doubly means "for U as well as for 4~1”; a
subset of X is sup-dense if it is dense in the topology sup{7y, 7-1}.

U is prozimally symmetric (also known as ”Smyth symmetric”; our ter-
minology has been taken from [24]) if &, is symmetric; it is closed-symmetric

(introduced in [6]; the equivalence of the definitions shown in [17]; present

1 Research supported by Hungarian National Foundation for Scientific Research, Grant
No. 2114.
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terminology from [9]), open-symmetric* [17], respectively mized-symmetric
[9] if Aéy B implies B éy A for closed sets A and B, for open sets A and B,
respectively for A open and B closed. U is point-symmetric [18] if for any
U€elU and z € X thereisa V €Y with V=1z C Uz. (Equivalently: 7;;-1 is
finer than 7;;.)2> Doubly point-symmetric = doubly locally symmetric. (As-
sume ‘that &/ is doubly point-symmetric, and, for U € 4 and z € X, take
W,V € U such that W2z C Uz, Va C W™1z.)

Most of the notions of symmetry are special cases of a more general one:
Given systems a,b C exp X (which are in some way determined by U, e.g.
the open or the closed sets), we say that U is (a,b)-symmetric if Aéy B
implies B dyy A whenever A € a, B € b. Denoting by o, ¢, and s the sys-
tems of all open sets, closed sets, and singletons, respectively and putting
p = exp X: proximally symmetric = (p,p)-symmetric, closed-symmetric =
=(c,c)-symmetric, open symmetric = (0,0)-symmetric, mixed-symmetric =
=(0,¢)-symmetric, point-symmetric = (p,s)-symmetric. It was observed in
[9] (although not usin§ the above terminology) that proximally symmet-
ric = (c,0)-symmetric,” and also that a closed- or open-symmetric quasi-
uniformity is mixed-symmetric. The reason for these simple facts will be
more clear from:

LEMMA. For an arbitrary a C exp X, (a,p)-symmetric = (a,0)-sym-
metric and (p,a)-symmetric = (c,a)-symmetric.

PrOOF. 1° Assume that U is (a,o0)-symmetric, By A, A€a. Take a
U € U with U[B]N A = (); we can assume that Uz € o (¢ € X); then U[B] €
€ o, U[B)éu A, Aby U[B)], Aéy B. Hence U is (a,p)-symmetric. The con-
verse is evident.

2° To prove the other statement, use that Aby B implies Ay B. O

In particular, open-symmetric = (o0,p)-symmetric and closed-symmetric
= (p,c)-symmetric; hence both properties are stronger than mixed-symmetry.
The statement proximally symmetric = (c,0)-symmetric follows applying
both parts of the lemma.

1.2. Mixed-symmetric regular quasi-uniformities are locally symmetric
([9] Remark b)) ; we are going to prove a uniform version of this statement.
Recall that U is uniformly regular ([1], [15]) if for any U € U thereisa V e U

with Vz C Uz (¢ € X). (This property evidently implies regularity.)

2 The notion open-set symmetric introduced in [16] is a much stronger version of open-
symmetry.

3 Although not apparent from the definition, small-set symmetry defined in [16], [17]
is equivalent to the point-symmetry of the conjugate quasi-uniformity, see [22] Lemma 4.

4 This follows also from [23] Proposition 2, which states that a quasi-proximity is de-

termined by the strong inclusion between open sets.
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LEMMA. U is mized-symmetric iff for any U € U and F € ¢ there is a
V € U with V-I[F] C U[F).

PROOF. Necessity. F &y X \ U[F], thus F & int (X \ U[F]), implying
int (X \ U[F]) 6y F by the mixed-symmetry, and so V[int (X\ U[F])} C
C X\ F for some V € U, i.e. V7I[F] C U[F].

Sufficiency. Assume Féy G, F €c, G €0. Then U[F]C X \ G with
some U € U. Take V € U such that V='[F] C U[F]. Now V-![F] C X \ G,
VIGlc X\ F,G8yF. O

REMARK. A similar characterization of closed- or open-symmetry can be
obtained replacing U[F] by U[F] (almost the same as the original definition
in [6]), respectively ¢ by p (similar to [17] Proposition 4.1).

PROPOSITION. Any mized-symmetric uniformly reqular quasi-uniformity
is uniformly locally symmetric.

PrOOF. Let U € U, and take Z,V € U such that Z2z C Uz, Vz C Zz
(z € X). For z € X fixed, Z[Vz| C Z%z, thus the lemma applied to Z and

F =Vz yields a W € Y with W1 [V;] C Z%z, implying W=[Vz] C Ux.
O

A uniformly locally symmetric quasi-uniformity is evidently uniformly
regular (a stronger statement will be proved in 1.3), but not necessarily
mixed-symmetric:

EXAMPLE. The restriction of Sorgenfrey quasi-uniformity Us, (see Z in
(18] 1.1) to X = {1/n,—1/n:n € N} is doubly uniformly locally symmetric,
but not mixed-symmetric. O

1.3. U is quiet [13] if for any U € U there is a V € U such that
Vz e f,V-ly € ! imply 2Uy whenever (f~!,f!) is a Cauchy filter pair.
(Cauchy means that for each U € U there are S; € f with S_; x §; C U.)
Such a V is said to be quiet for U. Quiet quasi-uniformities are uniformly

regular [15] (in fact they are doubly uniformly regular, since if & is quiet
then so is U1, see [13]).

ProrosITION. Any uniformly locally symmetric quasi-uniformity is
quiet.

ProOF. Given U € U, take Ug € U with U C U, and then V,W, e U
such that W;1[Vz] C Upz (z € X). We claim that V is quiet for U.

Assume that (f~1,f!) is a Cauchy filter pair, Va € f!, V=1y € f~1. Take
S; € f* such that §_; x S C Wz. Now Van S, € f1, V-lyn S_; € f1, so
we can pick points z; € VaNS;and z_; € V-'yNS_;. Then z_y W, z1, thus
zV 2y W1 z_q, implying z Uy 2_;. Moreover, z_1 V y, thus 2_; Upy, 2 U y.
0O
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In view of Proposition 1.2, thie above result generalizes the proposition
of [9], which states that each mixed-symmetric uniformly regular quasi-
uniformity is quiet. Double local symmetry implies double uniform regu-
larity (see e.g. [8] Remark 1.3 or [17] 3.6), but it does not imply quietness
(see e.g. (8] Example 1.3 b)) Hence a (doubly) locally symmetric quasi-
uniformity may not be uniformly locally symmetric. It can also occur that
U~ is uniformly locally symmetric, I is locally symmetric, but not uniformly
so:

ExaMPLE. Let X = ({(0,0)} UN?) x N, and define by the following
quasi-metric:®

d((0,0,n), (1,k,n)) =1/n (k,n € N),
d((0,k,n), (1,k,n)) =1/k (k,n € N).

The bitopology of U is discrete, thus I is doubly locally symmetric. ¢ is not
uniformly locally symmetric, since there is no W € U with W=1[Vz] C Uz if
U=Upuy,V=Uge,1/n<e,z=(0,0,n). U' is, however, uniformly locally

symmetric: for any 0 < ¢ £ 1, W[U(:)lx] C U('E)lw holds with suitable W € U

depending on z, since U(;)la: contains at most two points, and 7z, is discrete.
a

1.4. A mixed-symmetric regular quasi-uniformity is locally symmet-
ric ([9] Remark b)). But there are open-symmetric, closed-symmetric
regular quasi-uniformities that are not uniformly locally symmetric: The
Pervin quasi-uniformity ([18] 2.2) of a non-discrete T3 space is not uniformly
regular ([1] 8.2), hence not uniformly locally symmetric, although it is (as
all the Pervin quasi-uniformities are) open-symmetric and closed-symmetric
([17] §4). Without separation axioms, open-symmetry and closed-symmetry
together do not even imply point-symmetry: take a non-symmetric quasi-
uniformity on a two-point set; local symmetry does not even follow with
T,: take the Pervin quasi-uniformity of a non-regular Ty space. A closed-
symmetric T quasi-uniformity is evidently point-symmetric; but there is an
open-symmetric, not point-symmetric Ty quasi-uniformity:

ExaMPLE. Let (X,7) be a non-regular T space such that, except for a
single point p, all the points have a neighbourhood base consisting of closed
sets. (E.g. modify the usual topology on R by deleting the points 1/n (n €

€ N) from the basic neighbourhoods of 0.) Put
b= {G: Gis T-open, p ¢ G\ G}.

5 When defining a quasi-metric d, it will be understood that d(z,y) =1 for pairs = #
# y not mentioned in the definition. Notation: U,y = U,y(d) = {(z,y) : d(z,y) < e}.
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b is a base for 7. It is easy to check that b is closed for finite unions and
finite intersections. Moreover, if G € b then X \ G € b. Now we define i
similarly to the Pervin quasi-uniformity, substituting b for the system of all
open sets (such quasi-uniformities were considered in [25] and [3]), i.e. let
{UgG: G € b} be a subbase for &, where

Us=GxGU(X\G)xX.

U is a quasi-uniformity compatible with 7" ([24] 5.2 or [3] §1). As b is a lat-
tice, U[A] € b whenever A C X and U is a basic entourage, i.e. U = [ Ug,,
k=1

Gr € b ([3] Lemma 2). Hence Aéy B iff thereis a C € b with AC C, Bn
nc =40

U is open-symmetric. Take open sets G, H such that G 6, H, and pick
G'ebwithGCG',G'NH =0. Now H' = X\G’Eb HCH, A NG =0,
thus H 6y G.

U is not pomt symmetric. If p € G € b then UG p=X;ifpg G € b then
p & G, and UG p=X\Gisa Ty closed Tu-neighbourhood of p. Thus the
Ty-1-neighbourhood filter of p has a subbase, hence a base, consisting of
Tu-closed Ty-neighbourhoods of p, i.e. T~1 cannot be finer than 7. O

Let us also note that an open-symmetric, closed-symmetric uniformly
regular quasi-uniformity is not necessarily proximally symmetric: restrict the
Sorgenfrey quasi-uniformity to {0} U {1/n:n € N}.

1.5. Generalizing a result from [6], it is proved in [20] Proposition 6(c)
that (with the terminology used there) a mixed-symmetric uniformly regu-
lar quasi-uniformity is D-complete iff it is bicomplete. These two notions of
completeness do not coincide in the more general class of uniformly locally
symmetric spaces: U from Example 1.2 is uniformly locally symmetric, bi-
complete (since sup {#~1,U} is the discrete uniformity) but not D-complete
(the filter generated by the sequence (1/n), .y is D-Cauchy, but not conver-
gent).

1.6. Some of the symmetry properties were defined in terms of &,; point-
symmetry only depends on the induced bitopology. Local symmetry is also a
property of &,: U is locally symmetric iff {2} 6;y A implies that A 6y G for a
suitable 7y = Tj,, -neighbourhood of z (see [18] 2.23). Uniform local symme-
try behaves differently: If & is a uniformly locally symmetric, not proximally
symmetric quasi-uniformity then the totally bounded quasi-uniformity com-
patible with &, is not uniformly locally symmetric. (Assume it is; then it is
quiet, a contradiction, since any quiet totally bounded quasi-uniformity is a
uniformity, see [14] Proposition 3 or [19].
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1.7. W Viglc Uiz (1€isn), W= (N W,,V= NV, U= NU;

1=1 1=1 1=l
then W~1[Vz] C Ux; thus it is enough to take U from a subbase in the defini-
tion of uniform local symmetry. Moreover, if f:Y — X is a function, y € Y,
and U, V, W are entourages on X such that W[V f(y)] C Uf(y) then

W5 [Voy] C Upy holds with Wo = f~'W, Vo = f~'V, Uy = f~'U; thus if
(X,U) is uniformly locally symmetric then so is (Y, f~'%). This means that
the uniformly locally symmetric quasi-uniformities form a concretely reflec-

tive subcategory in the category of quasi-uniformities. In particular, uniform
local symmetry is productive.

§2. Heredity

Proximal symmetry, (uniform) local symmetry and point-symmetry are
evidently hereditary properties. It is also straightforward that a closed (re-
spectively open) subspace of a closed-symmetric (respectively open-symmet-
ric) space has the same property. Moreover, a dense subspace of an open-

symmetric space is open-symmetric ([21] Proposition 8(b)). In the next
example, we have a dense open subspace in a closed-symmetric space, a
closed subspace in an open-symmetric space, and subspaces of both types in
mixed-symmetric spaces such that the subspaces do not possess the property
in question; the spaces are also uniformly regular.

EXAMPLE (cf. the examples in [9]). Let U be the trace of the Sorgenfrey
quasi-uniformity of R? on

X = {(0,0} u{(0,1/n):n e N} U{(1/k,1/n):k,n €N, k2n};

in other words, U = U(d), where
d((xl’ xll)’ (yl’ yl/)) — max {yl oy xl, yll e xll} lf 1:/ § yl, z” g yll.
Consider the following subsets of X:

Xo=X\{(0,00}, X1 =X\ {(1/k,1/n): k #n}, X;=XoNX;.
Xy is dense open, X is closed, X5 is closed in Xg, and it is dense open in
X, Put I, = U] X,

U and Uy are open-symmetric. It was shown in [9] Example b) that U
is open-symmetric, so if G, H are open in X, Gy H then H \ {p}éu G\

\ {p}, where p = (0,0). This means H@G if pgGUH. If pe G then
p¢ H, H\ {p} = H, and H éy {p}, so H 6y G again. Finally, if p € H then
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G\ {p} = G, and {p}éy G, since H (which is disjoint from G) contains a
neighbourhood of p; hence H 8y, G.

U 1is closed-symmetric. Assume that A and B are closed, A éy B. Take
points z; = (z},z)) € A and y; € B such that d(zy,yx) < 1/k. Now either
there is a subsequence of (), for which z} = 1/n with the same n, im-
plying (0,1/n) € AN B, or there is a subsequence with z} — 0, and then
p€ AN B. This means that Aéy B for any pair of disjoint closed sets.
(Quasi-uniformities with this property are called equinormal [18].)

Uy is closed-symmetric, because Xy is closed (or see [9] Example a)).

Uo is not closed-symmetric, Uy is not open-symmetric, see [9] Examples
b) and a).

U, is not mized-symmetric. The sets A = {0} x {1/n:n € N} and B =
= X3 \ A are open-closed in X3, A6y, B, but BEM2 A. O

§3. Symmetry properties preserved by extensions

3.1. Let (X,U) be a subspace of the quasi-uniform space (Y,V). We
say that V is a half-extension, an extension, and a firm extension of U if
X is dense (= 7y dense), doubly dense, and sup-dense in Y, respectively.
The following general question was investigated in [21]: which properties
of quasi-uniformities are preserved by half-extensions or (firm) extensions?
According to [21] Example 1(a), point-symmetry and local symmetry are not
even preserved by firm extensions. We give a different example, with V quiet:

EXAMPLE. OnY = {(0,0)} U {(£1/n,0), (0,1/n):n € N},let V be the
trace of Uso X Uey , where Uy, is the Sorgenfrey and U, the Euclidean quasi-
uniformity on R. V is quiet, since quietness is hereditary and productive
[13]. X =Y\ {(0,0)} is sup-dense in Y, V|X is doubly locally symmet-
ric (as its bitopology is discrete), but V is not point-symmetric (the two
neighbourhood filters of (0,0) are incomparable). g

3.2. [21] Proposition 8(a) states that open-symmetry is preserved by
firm extensions. We are going to prove a somewhat stronger result. Let us
first recall some definitions and notations:

Let (X,U) be a quasi-uniform space, Y D X, with filters f(a) in X (called
trace filters) prescribed for each a € Y. We say that V is a half-extension
inducing these trace filters if V is a half-extension, and f(a) is the trace on
X of the 7y-neighbourhood filter of @ (a € Y). For each U € U, define a

relation U on Y as follows:

a®Ub iff U[A] € f(b) whenever A € f(a).
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Under certain assumptions, {5)U: Ue U} will be a base for a half-extension

51U inducing the prescribed trace filters. The necessary and sufficient condi-
tions (which will not be needed here) together with historical references can
be found in [11] 6.2. Unlike in [11], ®)¥ will be regarded as not defined when
the conditions are not satisfied.) Firm extensions are always of the form 5/

([7] 3.13).
PROPOSITION. )Y preserves open-symmetry.

Proor. Put V =% Y. It is enough to check that if G and H are Ty-
open and G éyH then GN X 6y HN X, since then H N X 6y GN X by the
open-symmetry of &, and so H éy G.

For U € U fixed, we have to find z€ GN X and y€ HN X with 2 U y.
Pick a € G, b€ H such that a®Ub. As U is a half-extension inducing
the prescribed trace filters, we have A = 9UanG N X € f(a), and, by the
definition of U, U[A] € f(b),so B = U{A}N H € f(b). Now any y € B and
some ¢ € A will do. O

3.3. ProOPOSITION. Uniform local symmetry is preserved by firm exten-
sions.

PRroOF. Let YV on Y be a firm extension of i/ on X. For U € V fixed, take
V € V with V2 C U, and put V5 = V|X. By the uniform local symmetry of
U, there are Wy, Zg € U (the latter depending on z) such that

(1) Z5 [Woz] C Voz.
Choose W € V satisfying W3|X C Wy and W C V. For a € Y fixed, pick
(2) zeWlanWan X,

and choose Z € V with Z3|X C Z, (where Z, belongs to z from (2)). We
claim that

(3) Z"'Wa] C Ug;

hence V is uniformly locally symmetric.

Assume ¢ € Z~1[Wa]. Then there is a be Y with aWbZ 'c. Now
tWa by (2), aWb, and there is a y € X with bWy, bZy. So W3y,
cWoyZ-16Z 'ec. Pick z € X suchthat 2Ve¢,2Z¢c. TheneZ~ 1z, yZ 32,
Y ZO'1 z,i.e. 2 Woy ZO'1 z, implying z Vo z by (1), thus z V z. Moreover, zV ¢
(see the choice of z) and aV z (by (2)and W C V),s0 AV3¢c,aUc,c€ Ua,
proving (3). O
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Uniform localsymmetry is not preserved by (half-)extensions, not even
by any of the constructions in [7] 3.13: Let Y = {0} U {£1/n:n € N}, V =
=Us Y, X =Y \ {0}, 4 = V|X; then any of the constructions applied to
yields V, U is uniformly locally symmetric (Example 1.2), but V is not.
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MEAN CONVERGENCE OF HERMITE
INTERPOLATION REVISITED

P. VERTESI (Budapest) and Y. XU (Eugene)*

1. Introduction

Following the solution of mean convergence of Lagrange interpolation
based on the zeros of generalized Jacobi polynomials [6], mean convergence of
Hermite interpolation has been studied in several recent papers (cf. [1,7,9,12—-
15 and the references therein]). However, most of these papers concentrated
on the sufficient conditions for the convergence, except perhaps [6, 7] where
both necessary and sufficient conditions are established for Lagrange interpo-
lation and Hermite interpolation of the second order, respectively, and [13]
where conditions that are almost necessary and sufficient are provided for
the Hermite interpolation of higher order. In this paper we shall investigate
the mean convergence of Hermite interpolation of higher order with extended
nodes. We shall establish conditions that are both necessary and sufficient.
Since the results in [6, 7] are the prototypes of what we shall present in this
paper, we state them in the following (cf. Theorem 1.1-1.3).

We need a few notations; their exact definitions are given in the next
section. If w is a Jacobi weight function, we write w € J. For a real val-
ued function f, let L,(w, f) denote the Lagrange interpolating polynomial
which interpolates f at the zeros of Jacobi polynomials p,(w), w € J. Let
Hp 2(w, f) be the Hermite interpolating polynomial which interpolates both
f and its first order derivative at the zeros of p,(w). Throughout this paper
we let p(z) = V1 — z2. Then for the weighted mean convergence of L,(w, f)
and H,(w, f), we have

THEOREM 1.1 [6, Theorem 6]. Let 0 < p < 0o, u,w € J. Then
(i) lim |[La(w,f) - f||,, =0, VfEC <= (i) w(wp)™?eL
n—00 P

* The first author is supported by the Hungarian National Foundation for Scientific
Research Grant No. 1910 and No. T7570, and the second author is supported by the Na-
tional Science Foundation Grant No. 9302721. The work was done during the first author’s
visit in Eugene, Oregon in 1993, and was completed during the second author’s visit to
the Mathematisches Institut, University of Erlangen-Niirnberg, supported by the Alexander
von Humboldt Foundation.
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THEOREM 1.2 [7, Theorem 1]. Let 0 < p < 0o, u,w € J. Then
(1) nll»nc}o “ Hn,Z(wvf) - f”u,p = 07 Vf € Cl —
= (i) ¢*()u(z) < KwP(z)

for some constant K > 0 depending only on p, w, and u.

THEOREM 1.3 [7, Theorems 2 and 3]. Let: =0 or1 be fired. Let0 < p <
< o0, u,w € J, and up™? € L'. Then there is a constant K; > 0 depending
only on p, u, and w such that

K;
~Eon-a(f'), VfEC' <=

nl-t

B [Ew )= 19, <
= (i) w(we't) " e Ll

where Ey,(f) is the rate of best uniform approzimation of f by polynomials
of degree at most n.

We should mention that these theorems are stated and proved in [6,7]
for weight functions that are more general than Jacobi weight. The exten-
sion of these theorems to interpolation of higher order is not straightforward,
there are new phenomena and several essential difficulties have to be over-
come. By now, the proof for the sufficient part is more or less standard,
it uses asymptotic estimates of the fundamental polynomials which can be
established using the method developed in [12,13], and uses the weighted
L? boundedness of L,(w, f). An alternative method is through the proof of
Marcinkiewicz-Zygmund inequalities [15], which can be used on more general
weight functions but in cases prototyped by Theorem 1.2 it yields slightly
weaker results. The necessary part, on the other hand, is more difficult. One
of the essential ingredients requires that the weighted LP norm of higher or-
der derivatives of orthogonal polynomials be bounded below by the weighted
L? norm of the weight functions. We shall establish this lower bound for the
Jacobi polynomials in this paper. At this point, though, it is not clear how
to extend our proof to the generalized Jacobi weight functions. It is for this
reason, we restrict our consideration to Jacobi weight functions here. The
Hermite interpolation that we shall consider in this paper is defined more
generally than H, 2, not only in higher degree but also in that we include
two end points of [—1, 1] as possible points of interpolation. Thus, even when
the sufficient conditions are concerned, our theorems are more general than
many previous results.

The paper is organized as follows. In the following section we give pre-
liminaries and notations. In Section 3 we state the main results and include
the discussions and remarks. The lemmas are stated and proved in Section
4, and the theorems are proved in Section 5.
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2. Notations and preliminaries

Throughout this paper we denote by II,, the space of polynomials of de-
gree at most n, and by Il the space of all polynomials.

2.1. Weight functions. The function w is called a Jacobi weight function
if w(z) = (1-2)*(142), |2| £1,and w(z) =0, |z| > 1, where @, f > — 1.
We let J denote the class of Jacobi weight functions. Sometimes we write

w = w(®P) to emphasize the parameters a and 3. We call w a generalized
Jacobi weight function (w € GJ), if it can be written as

(2.1)
T+1
B
w@)=p@) [[le-t", Ti>-1, -l=to<ti<..<tr<trp=1
1L

for z € [—1,1], where ¢ is a positive continuous function in [—1,1] and the

modulus of continuity w of v satisfies fol (w(t)/t)dt < + co. Furthermore,
ifweGJand T; 20 for 1 £i < T, we write we GPJ. When T; = 0 for
1< i<k and ¢ =1, the generalized Jacobi weight reduces to a Jacobi one.

2.2. Space of functions. For 0 < p < + 0o and a non-negative measur-

able function u, the space L% is defined to be the set of measurable functions
f such that

1 1/p
(2.2) ||f||,,,u=(]_ llf(t)l"u(t)dt) . 0<p< 4,

is finite. Of course, when 0 < p < 1, || - ||, is not a norm; nevertheless, we keep
this notation for convenience. For u = 1 this is the ordinary L? space. We use
the usual notation ||f||,, = ess sup,e[_1,1) | f(2)| for the uniform norm of f
on [—1,1], and C for the space of continuous functions on [-1,1]. For d € N,
we write C? for the space of functions that have dth continuous derivative
on [-1,1].

2.3. Orthogonal polynomials. We consider only Jacobi polynomials. Let

w € J, w=w®Pf, The Jacobi polynomials pn(w) are orthonormal polyno-
mials with respect to the weight function w, i.e.,

1
/1 Pa(W, Z)pm(w; 2)w(z)de = b, p.

We should mention that our p,(w) is different from P,(la’ﬂ ) in books such as
8] and [10] by a normalizing constant of order exactly v/n. It is well known
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that p,(w) has n distinct zeros in (—1,1). These zeros are denoted by z, (w)
and the following order is assumed:

(2.3) 1> z1p(w) > Top(w) > + -+ > Tpp(w) > —1.

Later, when we fix w, we shall write z, instead of zy,(w).

2.4. Hermite interpolation. All interpolations considered in this paper
are based on the zeros of the Jacobi polynomial (2.3) and sometimes two end
points of the interval [-1, 1].

For w € J and bounded function f, the Lagrange interpolating polyno-
mial, denoted by L,(w, f), is defined by

(2.4.1)

Low, £) = 3 F(2kn(0)) len(0),  Lin(10,2) = Ll 22D)

- P> k) (T — )’

For a given integer r 2 0, s 2 0 and m 2 1, the Hermite interpolation that
we shall investigate is defined to be the unique polynomial of degree N =
=mn+r+ s— 1, denoted by H, n ,s(w, f), satisfying

HY  (w, f,zkm) = fO(2rn), 0St<m—1, 1<k,
(242) { HY, . (w,f,1)=f91), 0gt<r-1,

H7(:,2n,r,s(w7f’ -1)= f(t)(_l)v 0£tLs—1,

for f € CM, where M = max{m — 1,7 —1,s—1}. If r = 0 or s = 0 then we
have no interpolation at 1 or —1, respectively. We shall fix the integers m,r,
and s for the rest of the paper, and omit them from the notations. Thus,
for example, we shall write H,(w, f) instead of Hy p rs(w, f) from now on.
From the definition of H,(w, f) it is easy to see that

m—1 n

(2.4.3) Hufw, )= Z Z f(t)(xkn)ht,k(z)+

t=0 k=1
r—1 s—1
+ 3 fOMhio(z) + D FO(=1)hensa ()
t=0 t=0

where hy x = Rt knmrs (again, they depend on n, m, r, and s) are the fun-
‘damental polynomials of interpolation, they are determined uniquely by the
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conditions

W) (@jn) = Bebkj, 0St,1Sm—1, 1<kj<n,
(2.4.4) (I)(l)—étl, 0stI<r—1,

517)1+1( =& 02ti5s-1.

Using the fundamental polynomials of Lagrange interpolation, these func-
tions can be expressed as follows:

(2.4.5)
( m—1-—t
-z \" [ 14z \’(z- .’l:/m) i
hew(z) = £ (2 € k(T — Thp
0= (17m) (Tag) T o) 3 cinsle =70
18 k5n,
{ feds s (W, _ltr 1-t
i) = (5) (Re3) S g e
Pnlw, i=0
1-2\"{ pu(w,z) (:c+1)“ 5
bengi(2) = ) palw,—1) Z €it,n+1 -73+1),
L b

where €; ¢ k = €; ¢ kn,m,r,s are constants that can be expressed using derivative
values of p,(w) at zx, and +1. Although it is difficult to find the exact
formulae of these constants, they can be estimated from both above and
below (cf. [2, Lemma 4.3], [12]). We have, for example,

n
(2.4.6) egr=1 eupSc|l———],
; ¢ (2kn(w))

where ¢ is independent of i, k and n. These estimates are useful in our
discussion below.

3. Main results

3.1. Statement of the theorems. Let m 2 1, » > 0, s 2 0 be fixed.
"For we J and f € CM, we define the Hermite interpolating polynomial
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H,(w, f)= Hpmrs(w, f) as in Section 2. The following weight function
is important for the characterization of the mean convergence of H,(w, f):

(el W) i= (- o) E 4 2] T

When r = s = 0 we write w,, instead of ws,?'o). Throughout this paper we
let N=mn+r+s—1and M = max{m—-1,r—1,s - 1}.
First we state two fairly general theorems, then we show some corollaries.
THEOREM 3.1. Let m21,7r20,820, L2 M andt, 0St<m—1,
be fized integers, T > 0 a fized real number, 0 < p < o0, u € GJ, w € J with

(3.1.2) well, wldelell
Then
En-(f1)

(i) ||H,(lt)(w,f) - f(t)” e < const. s Vf e cE
if with a fized constant K > 0
T+2
B} Bl —ETE) o 1 1,
() (@)e!(2))”

If, moreover, 1 < p< oo, u € GPJ and L = m — 1, then

(L)
@) | HP(w, f) - f(t)“um < const. M‘i YFecr

L-t—7 ?
) n

implies (ii).

In Theorem 3.1 we had to suppose that 7 > 0. The result corresponding
to the case 7 = 0 has a different character.

THEOREM 3.2. Let m21,r20,s20, L2 M andt, 0 St<m-1,
be fized integers, 0 < p < 00, ueGJ wEJsatzsfymg (312) "Then

Ex_ [ 05
@ || EO(w, ) - f9] ., < const.%l, VS ek

if
o S 1
(i) (at (”) )7 €L,
If, moreover, u € GPJ and L = m — 1, then
(L)
() || Hr(.T)(W,f)—f(t)“u < const. “f l

L—-t ?
implies (ii).

¥ e g™

Now we formulate some special cases which are, hopefully, more illumi-
nating. All consequences are “iff” statements, moreover, they deal with the
case L = m — 1 (whence, by L 2 M, m 2 r,s).

Theorem 3.1 immediately yields
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THEOREM 3.3. Letm 2r,s, L=m—1and 0Lt < m—1 be fized inte-
gers, T > 0 a fized real number, 1 < p < 00, u,w € J satisfying (3.1.2). Then
(i) <= (ii).

From Theorem 3.2 one can deduce

THEROEM 3.4. Let m2r,s, L=m—1and 0t < m—1 be fired in-

tegers, 0 < p < 0o, u,w € J satisfying (3.1.2). Then (i) <= (ﬁ).
The following consequence of Theorem 3.1 is not so obvious.

THEOREM 3.5. Let us restrictm, r, s, L, p, uw and w as in Theorem 3.2.
Then, for every fired 0 St < m — 2,

(a) lim ||HO(w, f) - fO||,, =0 Vfecm

n—o00 u,p
iff
u(pp(m—l—t)+2
(B) =y
(wm™et)

First let us prove (b) => (a). Let in Theorem3.17 =17, =m—-1-#(2 1,
by t £ m —2). Then (b) = (ii), which implies (i), where, using L —t — 1; =
= 0, the denominator is one (the exponent of n is zero). Then (i) implies
(a).

Now we verify (a) => (b). Indeed, (a) means that (i*) holds with 7 =

=m-—1~-tand L =m — 1. But then we have (ii), too, which is exactly (b).
a

<K in[-1,1].

Using similar argument, Theorem 3.2 yields for t = m — 1

THEOREM 3.6. Let us restrict m, r, s, L, p, u and w as in Theorem 3.4.
Then
(8) lim || B (w, ) - fm ||, =0 Vfecm!
ioff
~ u
(b) ————— € L.
(wgv")wm_l) 4

3.2. Remarks. We prove Theorems 3.1 and 3.2 mainly because of their
generality, but since our main interest in this paper is the necessary part, we
shall not try to give a complete list of all previous results in this field that
may have been covered by these general theorems. Instead, in the remarks
that follow we shall discuss the possible extensions and the things that are
left open.

3.2.1. The careful reader may have already noticed that in Theorem
3.1 at the part (i*) = (i) we have 1 £ p < oo (while in Theorem 3.2 we have
0 < p < o0). The problem occurs when we use Holder inequality (see the
proof of (5.2.7)). For t = 0 and ¢t = 1 we do have Theorem 3.1 for all p > 0.
Moreover, the Theorem 3.1 is stated as (i*) = (ii) for every fixed t. If we
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change this a little, then we can state a theorem for 0 < p < 1 as well. For
example, if we replace (i) in Theorem 3.1 by

EN—m-l(f(m—l))

pm—t—1-1 ?

@) B (w0, )= 1D, < const.
VfeC™t 05,

then we have (i’) ¢ (ii) for 0 < p < oo.

3.2.2. When r = s =0 and m = 2 Theorem 3.5 becomes Theorem 1.2
and Theorem 3.4 becomes Theorem 1.3. When r = s = 0 and m = 1, Theo-
rem 3.6 becomes Theorem 1.1. However, our Theorem 3.1 has a new char-
acter. This is due to the presence of 7 in the theorem. It should be noted

that this number 7 does not need to be an integer. This offers us a variety of
choices. In particular, Theorem 3.5 corresponds to the choice 7 = m — ¢ — 1.

The closer 7 gets to 0, the more restrictive condition (ii) becomes. When
7 = 0, the condition (ii) in Theorem 3.1 is no longer enough, we need (ii) in
Theorem 3.2.

3.2.3. Comparing Theorems 3.1 and 3.2 we see that (H) is also the lim-
iting case of (ii). Actually, another way to describe the condition (ii) is to

say that the weight function (p“”(ws,’;")) “Pu is bounded by 1/(1 — z?)” for
some p < 1, which is clearly stronger than the 7 = 0 case of (ii).

3.2.4. The second condition of (3.1.2), wI ol € [', means

1 24L-2r 1 24+L-2s
2. L £ Sl Y WL
(3.2.2) a>-g = , and (> 5 -

b

which put restrictions on w. For example, if r=s3s=2and L=m-1=
=1, then we have to have a > 0. However, if r = s = 0, i.e., there is no
interpolation at the end points of [—1,1], then these conditions become

1 2+41L
(3.2.2) G e R

2 m

Since a,# > — 1 and L 2 m — 1, the above conditions are automatically sat-
isfied for all m. The restriction (3.2.2) or (3.2.2’) is weaker than those known
previously (cf. [1]).

3.2.5. The condition (ii) in Theorem 3.1 does not appear for Lagrange
interpolation (cf. Theorem 1.1), it is observed first in [7] for m = 2 (cf. The-
orem 1.2). It is interesting to notice that for m 2 2 all derivatives of the
Hermite interpolation obey this type of conditions, except the highest one
~ which behaves like the Lagrange interpolation.
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3.2.6. Our theorems are proved for the interpolation based on the zeros
of pp(w), w € J. A natural question is whether similar theorems can be
proved for w € GJ. The main problem is in Lemma 4.3 below, while the
proof of this lemma for w € GJ seems to be merely a technical problem, we
can prove it only for w € J at present. Another question that may be of
some interests is to consider the necessary conditions for the interpolation
process which has the interpolation conditions at +1 distributed on points
near 1. We hope to return to these questions in the near future.

4. Lemmas

Throughout this paper, we will use the symbols “const.” (sometimes c)
to denote a generic positive constant, its value may be different at different
occurrences, even in subsequent formulae. The value of this constant depends
on weight functions and other fixed parameters involved. Constants that de-
pend on other parameters will be denoted differently and defined locally. The
notation A ~ B means |A~!B| < const. and |[AB~!| < const. uniformly in
the variables under consideration.

We prove the essential lemmas in this section. The most important one
is perhaps Lemma 4.3, others have had their predecessors for less completed
interpolation processes. We begin with properties of orthogonal polynomials.

4.1. For the various estimates in this subsection we refer to [10] and [8].
For z € [—1,1] we write as usual z = cosf, 0 < 8 < 7. For w € J we write
Tin(w) = cosOkn(w),0 S kS n+1, where 29, = 1 and zp41, = — 1. Then
it is known that

(4.1.1) iz}~ Bl v %

uniformly for n € Ng and 0 £ k£ £ n. For w € J we need estimates of p,(w).

For z € [-1,1], we let z;,(w) be one of the closest zeros of p,(w) to z, that
is,

(4.1.2) |:1: - :cjn('w)| = |- xj(n),n(w)l = ér}cign |2 — zkn(w)|.

Then the following properties of p,(w) are known:

(4.1.3) pn(w, =) = (-1)"pa(w, z),
and
notl/2
| (4.1.4) | pn(w, )| ~ (n|0—0~,n|)]_a—+l—/§-, ~-1+6Lz <1,

Acta Mathematica Hungarica 69, 1995



194 P. VERTESI and Y. XU

where 0 < § < 2. A similar estimate holds true for —1 Sz <1-46 (cf.
(4.1.3)). Also,

(4.1.5) Po(w,z) = hppa(w@tHAHD) ) b~
and

not5/2
(416) |p'n(w,:ckn(w))| ~ W,

uniformly for -1+ é £ zgn(w) < 1.
If u € GJ, for a fixed d 2 0, we define A,(d) by

T
Ap(d)=[-14+dn"2%,1- dn_z]\ U[t,- —dn™t, t; + dn7].
1=1
Let xg denote the characteristic function of a set E.

LEMMA 4.1 [4, Lemma 2.2, p. 105]. Let u € GJ. Then for each 0 < p <
< 4 00 and € > 0 there ezists a yo = Yo(p) > 0 such that for every R € I,
and 0 < v < o

“R”u,p g conSt"Yo “ RXAH('Y)“u,p'

4.2. Let m, r, s be fixed integers, and w € J. Let H,(w, f) be the
Hermite interpolation defined by (2.4.2). For later use, we separate the last
terms in the formulae (2.4.5). We define
(4.2.1)

[ -2\ [/ 142 \°(z -z
Qt,k(-’t) = ( ' n) .
1—zk, 14 2k, t!

R (em—t—sap(t—2p)™ " 12 kS n,

= (52)" (B el iy

pn(wal) !
1-z\" ( po(w,z) \" (z+ l)t P
n = s—1—t,t,n 1 )
and
_ (422) h:,k = hth — Qt,k, 0 § k g n+ B 2
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Our next lemma estimates the summation of the absolute value of the fun-
damental polynomials. We define

n+l1 L—-t

(4.2.3) Zi1(2) = z (ﬂff—")) Iht.k(z)l
k=0

and
n+1 L-t

(4.2.4) Tle)= ) (f(”;ﬂ) | B (2)],
k=0

where if (,k) belongs to neither {0 <t <m—-1,1Sk<m},nor {0t <
Sr—1Lk=0},nor {0<t<s~—1,k=n+1},then we take oy and A}, as
zero functions.

LEMMA 4.2. Let L 2 M, and let w € J be such that wsrr.’s)cpl‘ € L. Then
for—-1£z2<1and0 <t < m—1, with 2ygn = Tkn + Th41n, k= 1,2,...,0—
-

(4.2.5) T, (@) £ const.Tr p{gim) <
. const.n~L [(go(xjn)) Llogn + (wl*)(2jn)) _1] if m—t=odd
B const. Tl_L[((P((L']’n)) by lﬁ;fﬂ(wg’s)(z,‘n)) ‘1] if m —t = even,
and
(4:26) Tiy(z) € const. T3y (gyn) € “op [so(xjn>L + 2B (207
0< k<M.

PRrooF. The first inequalities come from (2.4.5) and relations (4.1.1)-
(4.1.6). To verify the other ones, we remark that apart from the terms k = 0
and n + 1, they involve tedious but mainly routine calculations detailed in
[13] and [14]. Therefore here we show how to estimate the zero- and (n + 1)th
terms. First let us consider the zero term in 7, .

fr<m,by L-t2L—(r—1)>L—-m+120, relation pt~*(zg,) =10
~yields that A4(z) = 0. Let now r 2 m. Again if L —t > 0, then A,(z) = 0.
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So we only have to consider the case L =t whichby L2r—-12m—-121
gives that L =r—1=m—1=1. Then, by (2.4.5) and eg¢ s =1, if z 2 0,
say,

m

Pn(®, Yjn) (1 = gin)™
in ¢

Ay(z) = |hm—1,0(1?)| < const.|hm_1'0(yjn)| ~ o
n b]

Further, using (2.4.5) and Part 4.1, for the first term in Z,,,_y ;m—1(y;n), by
| P (w, z1n)| ~ | Pa(w,1)|n?, we can write |hm—1,1(¥jn)| ~ | hm-1,0(¥jn)|-
The same equivalence holds true for < 0, too. So the zero-term of the
corresponding sum can be estimated by the first one. Finally if » > m, by
L2r—-1>m-12t,L-1>0 whence A;(z) = 0 again.
The (n + 1)th term can be paired with the nth one. We omit the details.
The proof of (4.2.6) is similar. O

4.3. To prove the part (i) = (ii) in our theorems, we have to know the
size of the derivatives of p,(w). The difficult part is to estimate the weighted
LP norm of such derivatives from below, which we overcome in Lemma 4.3.
For a 20, let £,(a) = [-14+an~%,1-an"?].

LEMMA 4.3. Let 0 <p<oo, 0St<m. Let we J and u € GJ such
that ¢~ %u € L'. Then for any fired non-negative numbers dy and da,

(4.3.1) '“[p;"(w)] (t)XA,,(dl) T “ [ (w)] (t)XE,,(dz) S
m () .
~N N —=Pp \W XA" d Xgn d )
ot (d1) - w,, (d2) b=

where the equivalences “~ 7 depend on dy, d2, and p, but they are indepen-
dent of n.

PRrOOF. By Leibniz’s rule

@32 ()Y = ¥ ). ()

P

where the summation is over all nonnegative integers ¢1,%3,...,%, such that
i1+ 424 ...+ iy = t. For w(®d € J we denote by w(y) = wg’)’m the weight
function

wiy() = w(z)(1 - 2% = (1-2)"(1+ o)+
From (4.1.5)
(4.33) PP (w) = Cppuit(wgy), Cn~ ',
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From the estimate of p,(w) at (4.1.4) and the above formula, we derive the
estimate

2\ ¢ m(a+1/2)
|Grewa) ¥ e (%) (2) y U iEaE L

for a fixed 0, 0 < 6 < 2, where j is defined as in (4.1.2). From Lemma 4.1,
(4.1.1), (4.1.3) and (4.1.4) we have that

(4.3.4) H [P} (w)] (t)”u g < const.

_pn

t

n t
JP;"(W)XA,,(dl)

n
JPT("))X&.M,)

u,p | u,p

The proof of the opposite inequality is more complicated. From (4.3.2) we
have

m!

[ ()] @) = g5 (P, 2)  (alew ) ™+
+(pn(w,2)) ™" t+lz A(t,m)pi)(w, z)...pl=)(w, z)

where the summation ' is over all nonnegative integers iy,4s,...,7;_1 such
that ¢; + 42+ ...4:—1 = t; here A(t,m) are integers depending on m and ¢
only. Using the estimate of p,(w) at (4.1.4) and (4.3.3) we conclude that

|[p(w)] Pl = = il =T | (P, 2)) (pn,2)) ™| -

. [(nw o) (2) °+1/2]m_t+1 [(;)‘““’”“‘" (7)] _

m'

(m t)! l(p:‘(w’z))t(Pn(w,a:)) m'tl _

(a+1/2)m /2 ¢
——const.(n|0—49k,n(w)|)m_t+l (g—) (%—-) .

Using (4.1.4) and (4.3.3) again we get then
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(4.3.5)

@]9 2 e oo -t (3 (%)

m! ;
X [m (cl(z)n| 60— 0j,n_1(w(1))|) — const. nl 60— 0j,n(w)l] :

where cg(z) and ¢q(z) are functions with ¢o(z) ~ 1 ~ ¢y(z) uniformly. We
need the estimate on the zeros of psf)(w). By [8, (9.7) and (9.12)] we have
with0< <1

2% +a+t—1/2
2n+a+pF+1

Ok n—t(w(r)) = T+ pra(wey), 1Sk S (1—n)n,

where |pk,n(w(t))| = 0(1/(kn)) uniformly in n and k. From this it readily
follows that

O, +6 n
(436) - (w) 2 e (w) = 0k,n-1('w(1)) + €kn,

where |ex n| = O(1/(kn)) and

O 6 e
(43.7) kn—1(w(1)) +2 k+1,n—-1(w(1)) ol el

where e} | = O(1/(kn)). For a given ¢ > 0, we define a set of 6 as follows:

Tin(e) = {85 0= < 0= 8(w)| £ 2}

By (4.3.6) and (4.3.7), |0 — Ok n_1(wry)| > 1/n, say, if 6 € njn(e), k 2 ko
and n 2 ng. It follows from (4.3.5) that for 6 € 7);,(¢) we have

(4.3.8)
] @2 comse (1) () () [ty conste]:

Therefore, if € is small enough, say, ¢ < €g, then we have for z € [-1 + §,1],

) p\@t1/2m pant o
(4.3.9) l[p;"(w)] (z)' 2 const.€ (;) (7) g BB U Nin(€)s
| s i=ho

Acta Mathematica Hungarica 69, 1995



MEAN CONVERGENCE OF HERMITE INTERPOLATION REVISITED 199

where ¢(§) < 1. One may prove the relation (4.3.9) for 6 € 7; ,(¢) with 1 £
< k £ 2kg as follows. By [10, (8.1.3)], we have that Lim (n —t)0kn—t(w(r)) =
n—oo

= j,(caH) where j,(f) is the k-th positive root of the Bessel function of pa-

rameter a. Using [10, (1.71.5)], we have j,(c+)1 < ],(caH) < j,(‘a). Therefore, we
can show that relations analogous to (4.3.6) and (4.3.7) are valid, whence
(4.3.9) holds true for 1 £ k < 2k with possibly another ¢ > 0. The interval
[~1,1 — é] can be treated similarly (cf. (4.1.3)). Let

c(6)n

)= U minle), Rale) = {12 = cosd, 0 € Su(e)}.
Jj=ko

Since p(z) ~ j/n and | po(w,z)| ~ (w(z)p(z)) Mforz e Rn(€), from the
proof of (4.3.4) and (4.3.9) we have

nt

(43.10) |(p(@)) @) ~ s ~ PRl € Rale),

where the equivalences depend on ¢. By Lemma 4.1, (4.1.4), (4.1.3) and
(4.1.10) we have for any given d > 0

t

mn 77 n
| oz n @]~ [ler)] Oxanm]|, S const. | —=—xann) e
N nt LU ” n
otwn, An(d) - gpt(:t)wm(z)XA"(d)nR"(s) »
~ [ Er ) Oxananrao], < const. | 2] “xanal, <

< ot 510 o, ~ 701,

The same argument works for the equivalence involving ||n'o~"pm(w )||up,
which proves the lemma. O

From the proof of this lemma, it is not hard to see that the following
corollary also holds.

COROLLARY 4.3.1. Let the condition be the same as in Lemma 4.3. Then
fors<tandd 20,

| (e ’XA,.(‘”“,,,,, ~ [[[Pa(w) [pn(w)]m_tXA"(d)”u,p -
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it
t
¥

=3 [PT("’)] (S)XA,,(d)

u‘p

4.4. Lemma 4.3 will also help us to estimate the derivatives of the func-
tion Q', where

L

44) Q)= (1-2)7(1+2)mpa(w,2) = vl ™) (2)pa(w, 2).

This function will be used in the following section to establish the necessary
conditions of mean convergence.

LEMMA 4.4. Let 0 < p < 0o and u € GJ be such that (w(™)p=t)Pu €
€ L. Then for A sufficiently large,

@) xenall,, 2 const. ”w(ns)(pg(w)) (t)xg"m““ P

t
ol

~

Pr (W)Xen(4)
u,p

ProoF. By Leibniz’s rule, we have
t
m t rs)) () (. m (t=7)
@9 =3 (£) () D () 2.

For z € [0, 1], we have w(™¥)(z) £ const.(1 — z)" ~ ¢?"(z). Therefore, for
z € [0,1] we have

(M) D(z)]| 2

2 const. [l HCOROEDY C) (1= 2)™ (P} (w)) H'} .

Using the fact that on [0,1 — An~?] we have n(1 — ar:)l/2 > /A, we get upon
using Corollary 4.3.1,
||(Q?)(')Xs,,(A)n[o,1]||u,p 2 const. [”9°2T(P:zn)(t)X€n(A)n[0,1]” wp™

_zt: 1 "«)zr(pzl(w))(‘)Xen(A)”["J]”u'p]'

i=1 (\/Z)j
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Similar inequality can be established for [—1 + A/n?,0]. Therefore, if A is
sufficiently large, then we obtain

1@ xeuml o 2 const. | w2 xeniall,

u,p =
By Lemma 4.3 this implies immediately the desired result. O

4.5. Another ingredient in proving the part (i) = (ii) is the following
spline function. Let zj, = 2k ,(w). For 0 £ k < n we define

=7, -1
1 Tk+1n — Tkyn = . T — Tkmn m
Sgle) = ; sin ————— .
(m-1)! w Thtin — Zkn

T—ZTkn
1008 ————"—7, T € [Tht1,ns Thin)-
Tk+1mn — Tk

It is easy to verify that si , satisfies the following properties:

8 (2hm) = 8 (Th41,0) =0, 0t Em -2,

sem (@kn) =1, 507 (@kern) = (<D™
Moreover,
t const.
I‘s}c,zz(x)l é pm—1-1° 0 § t é m-1, z¢€ [zk+1,na$k,n]-

Next, we define the function S, on [-1,1]:

n

Sn(z) =Y (1) stn(c).

k=0

From the properties of s, we can easily derive properties of S,; some of
them are collected in the following lemma.

LEMMA 4.5. The function S, belongs to C™~!, and it satisfies
$O(zxn) =0, 0Sk<n+1, 0<t<m-2,
Sz ) =(-1)", 0Sk<n+1,

and

“ S,(f)” . const.

o0 = pm-1-t 2

0st<m-—-1.

4.6. We need two more lemmas. The first one is a special case of [6,
Theorem 1].
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LEMMA 4.6. Let 0<p< oo, and W e GJ. Let UeGJ and V be
a Jacobi weight, not necessarily integrable, such that U € LP, UV € LP,
U/VWe € L, and V/We € LY. Then for every bounded function f

”LN(W, Vf)U”p < const. || flloy 72 1

The second one is a much simplified version of a theorem proved in [7,
Theorem 4],

LEMMA 4.7. Let0<p<oo,720. Let U € GJ and W € J. Then there
is a constant C' > 0 such that

/1 )‘(A(x)U(:c)da: <

AW (@) T (1 a) W T
1 ‘
< Climint = [ |po(W,2)|"[,(W,2)"Xa (2)0 (2)de
n—0oo np =

for every interval A € [-1,1].

5. Proof of the theorems

5.1. ProoFr oF THEOREM 3.1. (ii) = (i). Let R € Il y satisfy

L-:
G:11) /0 - O] $ const.(A2) T By ps), 0551,
(cf. [1] or [3]). Using triangle inequality we have
(5.1.2)|| HO(f) - f(‘)Hum < const. [”H,(f)(f - R)“u,p + || R® - f(t)nu,p] =
< const. EN_L(f(L)) n~ (=t 4 const. H HO(f - R)“u’p.

Using Bernstein inequality (cf. [4, (1.10)]) repeatedly, which is permitted by
the first condition of (3.1.2), we obtain

(5.13)  [[HO(f - B, S const.n|| o™ Ha(f = B, ,-

By (2.4.3), (5.1.1), Lemma 4.1, and Lemma 4.2 we have

||H,(f)(f -R)|,, S const.ntllcp_tHn(f— R)XAn(a)” <

uwmp — wp =
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m~1

@t Z Zim-1XAn(0)

1=0

< const.n'(L't)EN_L(f(L)) <

u,p

< anmtnr*”*)EN_L(f“J)PognnwL—ﬂum-+H¢*‘Cw$”0‘4xAnw)

u,p]

To evaluate the second term in the last expression we use (ii), which yields

1/p 1/p
/ et <K / @ P 2y < const.n”,
An(o) (gotwg’s))p An(o)

since 7 > 0. Therefore, we obtain that
“ Hr(;t)(f— R)“up % COnst.EN_L(f(L))/nL—t—f_ O

5.2. ProoF oF THEOREM 3.1. (i*) = (ii). First let r,s < m, ie. r+
+s<2m-2.

Let fo(z) = z, Q, be defined as in 4.4, and S, be defined as in 4.5. Then
it is not hard to see that

n

(5.2.1) Tn() := 2Ho(w, Sp; 2) — Hn(w, foSn;2) = D (2 = Thn)hm-1,4(2) =
k=1

Qp(z) (1)
& (m-1) 'Z [Q’(:rkn)]m’

where we have used the fact that e;p = 1. Since it is easy to verify that
(5.2.2) V() = wmm) (20 )Pl (w, 2k n) =
= (=D [0lF ™ (i) (w, 20)]

we conclude that

1 QO
(5.2.3) Tn(z) = - - 1)('35)Z |, (zkn)l

1SksEn,

The second condition in (3 1.2) implies that (e +3/2)m —2r > —1 and a
similar inequality with A in place of a. Using this condition, (4.1.6) and
(5.2.1), it readily follows that

5 nl—m.

n (k) (min{a,8}+3/2)m-2r

= 1
5.24 e — LU
( ) kzzl |Q§,(zkn)|m i ;
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Therefore, by Lemma 4.4

(5.2.5) ||’];1(‘)||u > const.n!'” ™| ( Q’")(t)“

u p =
2 const. n! "™+ || w"o~tpm (w)xe, )|

On the other hand, from Lemma 4.5 it follows that E,(g) < const. for g =

= "1 and i = foS,(lm_l). Therefore, with L = m — 1 by Lemma 4.1,
Lemma 4.5, and (i*) in Theorem 3.1 we have

(5.2.6) 17O, £ const. | Txan(o)l .

| [fo( Hn(w,Sn) = S1) + (JoSn = Ha(w, Jo51)) ] xanw)|,

/\

< const.

< const. [”(H,(L“l)(w, )= S1) XAn(70)

+ | B (w, 5a) - SSJ’II +
- u,p
| EO W, fo52) - (oS, <

< const. ”(II,(I‘—I)(w, Su) = 5S¢ Xantw) L-mttr

+ const.n
u’p

Let G, = H,(f—l)(w,Sn) — SV, For a fixed z € An(70), we define t, by
|z —t,| = min|z —t;|. Let us assume, say, z;,(w) £ = < z;_12(w) < t,. By

Holder inequality

T

Gu(z)= [ Ghlv)dy <

Tjn

" i s .. 1/q
< ( [ |G;(y)|”u(y)dy) ( / u—qu(y)dy) <

< const. [|G4ll, ,u™ P (z)n'/4,

where in the second inequality we have used the fact that for y € [z, 2],
u(y) ~ u(z) uniformly in n and z. Using Holder inequality again, we have

(A BN
“GTLXAn(’Yo)” < const. e - (/1 [u(z)]’ 1h’da:) =
G2y ( 0 s
g const. / u(:c)d:t 2HF é const.n q”Gn”u,zﬁ
i
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whence, using the definition of G,

| Gaxan ol up S const. n‘llq” HO(w,S5,) - S,(,t)”u'p.

Thus, by (i*) and (5.2.6) we immediately obtain

(5.2.7) || 7;(:)” up < const. p!™mHT,

If we define e,(A) = [-1+ An~2,—1+24An"?]or [1 —24n~2,1 — An~?], then
formulae (5.2.5), (5.2.7), (3.1.1), and (4.1.1) yield that

const. 2> const.n_T” w(r”)w-tl’?(“’)anM)“ u,p 2

(w(@ o)X (@em)) /P

wg’S)(J’Q.n)‘Pt(xa,n)

2 const.n”"|| 0™ PR (w)Xen(a)l|  , ~ PP (2on)

where ¢ = 1 or n. Therefore, we obtain

K

ey
1 &2y

(528) u(zp,n)‘p(‘r—t)p(za,ﬂ) [wsr:'s)(zem)] i é

for some constant K.

For simplicity, let 7= 1 and ¢, = 0. With proper C and D, (5.2.8) can
be written as

3 (1= k)’ (1 + 2kn)Plral ™ £ K,
k=1,n

whence C' 2 0 and D 2 0. Clearly, if 1/2 £ z £ 1 we have Fy(z) ~ (1 - a:)c
(cf. (ii)) whence by D 20, Fy(z) £ K (1/2£2<1). For-1Lz £ -1/2,
the argument is similar. Finally, let |z| < 1/2. Then Fi(z) ~ |av|r1 whence
by I'y 2 0, Fy(z) £ K, again.

If r = m, say, then by Ihm_l,o(yjn)| ~ |hm_1'1(yjn)| we can argue anal-
ogously. We omit the further details.

5.3. PROOF OF THEOREM 3.6. (ii) = (i). Let R be defined as in (5.1.1).
Again we have (5.1.2) and (5.1.3). Using (2.4.3) and (4.2.2) we have

] ;
w,p
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m—i=even k=0
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n+1
Z Z l f R y )(zk zleAn(a) i
m—1=odd k=0
n+1 )
+n' > Y- DY)k Xan@)|| =81+ 82+ S5
m—i=odd | k=0

u,p

From Lemma 4.2, it is clear that S; and S, could be estimated similarly as
done in 5.1, where by using (ii), we have

S$1+8: <
X s lo ny| _ ha) 1=
< const. (f ) [H wi 1|| i HSO t[w'sn, )] lXA,.(a) ] <
u'p
E. (f(L)
< const.lLf_-t—).
n

To estimate S3 we need to use Lemma 4.6. First, we write

(5.3) Sa(z) = nt

™" Y |BilXan0)

m—i=odd

where
n+1

B; = Bi(z) := Z(f = B (@kn)gir (o).

For simplicity, let max{r,s} < m. Then by (5.1.1) (f() — R())(£1) = 0. By
the definition of g4, (5.1.1), (4.2.1) and (2.4.6), there exist functions C;(z),

such that
m=l(w & w(rs)
Bi(a) = B i!n)L ®) g1 (79
L (L) 2 'n, —1\Zkn
'Zci(xkn)(P Vg {0 )ekn(w,l‘),
k=1 w(™) (2kn)

and | Cy(z)| £ const. uniformly. Using (4.1.4) we then obtain

En_r(fB) wms)(z) .

| Bi(z)| £ const. 1 il
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" L ()01 (25
.;Ci(zkn)‘f’ (Qﬁ(’?s)(zkn() k )fkn(w,z).

We now apply Lemma 4.6 on the right hand side of the above inequality
with W = w, U = wm)ul/Pp=ty-1 V= plw, 4 [wi,:")] ! and f=C;

to conclude that -
" En_r(f*"
le™Bill,, £ const.—n(+).
We check the condition of Lemma 4.6: UV = ol~tul/P € LP is clear,
(UIVWp)? = u(ws,:")cpt) Pe L' is the assumption (i), V. we=
= wg”)go[’ € L! is the second condition of (3.1.2), and U € L” follows from

the first condition of (3.1.2) if @, < —1/2 and from (ﬁ) if min{a, 3} 2
2 — 1/2. Therefore, by (5.3) we have

En_r( fD)

83 £ const. —Mg—f—),
n

which concludes the proof of this theorem. O

5.4. PROOF OF THEOREM 3.2. (i*) = (ii). We notice that this theorem
corresponds to the case 7 = 0 in Theorem 3.1. Similarly to the proof in 5.2
we have (again, let 7,5 < m)

HT,S’)”W < const. (”H,(f_l)(w,sn) - S,(f_l)“ .,
HEOw, 82~ SONL,, + | EO@w, fo5a) ~ (fo5w) ]l )-
By (i*) and Lemma 4.5, we have

| HO(w, S,) - S,(f)” " < const.p*tt—™

and
” H'(lt)(w’ foSn) - (fOSn)(t)““,p < const. pite—m,

Moreover, let A be a fixed interval inside (—1,1). By Lemma 4.2 with L =
=m — 1 we have

n+1

I Hn(wv Snv III)I = E hm—l,k(x)
k=0

S

1 -1, 1 .
< const. per [(<p(1:jn))m 1+ ﬁrgl_n(wgm)(zjn)) 1] .
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Therefore, by a theorem in [11, 4.8.72] we derive that

| H{D(w, §,,2)| <

,nt—l
W o1z )

Hence, for z € A, we obtain the inequality

< const.

[(‘P(zjn))m—1 + lo%(wgﬁ)(zjn)) —1] _

|H,(lt'1)(w,5n;x)| < const. %, z € A.
Thus, by Lemma 4.5, we get
| (ESDw,50) - $¢-D)xa]| <

< |EE D (w, Sa)xall,, + | SEVxall,, €

gconst.[ ! - : ]
n

m—t npm—t
Putting these estimates together, we have proved that (cf. (5.2.6))

lim sup ™1 “ ’Z;(t)XA “ . < const.
n—00 :

By (5.2.1) and (5.2.4) we then conclude that

lim sup n ¢ || () x| up S const.,
n—0o ‘

which implies, by the argument of the proofs in Lemma 4.4 and Corollary
4.3.1,

lim sup n~* |
n—o00

w(Tv’)pg"t(w)[p;(w)] tXAHup < const.

If t >0, we apply Lemma 4.7 with tp > 0 in place of p, s = (m — t)p, and
U = w("®)y to conclude

(w8 7o xa

< const.
u’p

with a constant independent of A. Since this is true for every fixed A €
€ (—1,1), we have proved (ii) for ¢ > 0. However, the case ¢t = 0 is even
easier, since in this case there is no derivative and (i*) implies

” fOHn(wa Sn) i Hn(f, Sn)” u,p § const. n—m+l )
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whence, by (5.2.1) and (5.2.4)

lim sup || w(™?)pm . , S const.
n—00 ’

By (4.1.4) and (4.1.3), we then have
const. > ||w("’)pf(w)”u,p e “ w(r'S)pT(w)XAn(‘lo)“u,p i
o ” w(r’S)wl_mXAn(’Yo)”u,p ~ “ l/w(r‘S)“ u,p”

This concludes the proof. O
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ON NOETHERIAN MODULES
GRADED BY G-SETS

M. REFATI* (Irbid)

Introduction

Let R be a G-graded ring and M be a graded R-module. One of the
most important problems in module theory is to see whether a graded mod-
ule having a certain property has a similar property when regarded without
grading. The idea of graded R-modules has been extended by Nastasescu
in [6,7], to graded R-modules over G-sets. That is for the case where R =

= EBG R, is a G-graded ring, A is a left G-set and M = @ M, where M, is
9€ a€A

an additive subgroup of M and RyM, € M,, for all g € G and a € A. Since
any group G is itself a G-set (G acts on itself by left translation), then any
result on A-graded R-modules where A is an arbitrary G-set can be applied
directly for the elements of R-gr (the category of all graded R-modules).

Now, we have the following classical problem: If M has a certain property
in (G, A, R)-gr (the category of all left R-modules graded by a G-set A), then
does M have the same property in R-mod (the category of all R-modules).
In this paper, we discuss this question for the Noetherian property. In other
words, is the condition M is A-graded R-Noetherian sufficient to say that M
is R-Noetherian.

In general, the answer is no because it is not true for graded R-modules.
But if we add some extra conditions on A and G then the answer will be yes.

In Section 1, we recall a series of notations which are used in group action
and give some results on modules graded by G-sets. For these notations and
facts one can look in [2].

In Section 2, we give a positive answer for this question to the following
cases:

1. G is a finite group and A is any G-set.

2. G is an abelian group and A is a finite G-set.

3. G = Z x F where F is a finite abelian group and A is a denumerable
G-set.

The question remains open for the case where G is a finitely generated
abelian group and A is a denumerable G-set.

* This research was supported in part by Yarmouk University.

0236-5294/95/$4.00 © 1995 Akadémiai Kiadé, Budapest



212 M. REFAI
1. Modules graded by G-sets

Let G be a group with identity e. A G-set A is a nonempty set, together
with a left action G x A — A of G on A given by (g,a) — ga, such that
ea = a for all a € A and (gh)a = g(ha) for all g,h€ G,a€ A. Forte A,
we denote G; = {g € G| gt =t} and Gt = {gtlg € G}. Obviously, G is a
subgroup of G and |Gt| = [G: G¢] (see [2], page 152).

LEMMA 1.1. Let G be an abelian group and A be a G-set. If t € A then
Gs = Gy for each s € Gt.

PRrOOF. Let s = gt, where g € G, and let h € G;. Then hs = g(ht) =
= gt = s and hence G; C G,. On the other hand, if r € G, then rt = rg~1s =
=g =k e, Gy & Ge

Throughout this paper, A will be a G-set and R will be an associative

G-graded ring with unity 1, i.e.,, R = (BG R, where each R, is an additive
g€

subgroup of R and RyRy & Ry, for all g,h € G.

A (left) R-module M is said to be an A-graded R-module if M = GBA M,

a€
where each M, is an additive subgroup of M and R,M, € M, forall g € G,
a € A. The elements of R, (resp. M,) are called homogeneous of dimension
g (resp. a). For z € M, we write z, for the component of z in M,. An R-
submodule N of M is said to be an A-graded R-submodule if N = @ N,

a€A
where N, = NN M,.
Clearly, if R is a strongly G-graded ring (R Ry = Ry, for all g,h € G)
then RyM, = My, for all g € G, a € A.

PROPOSITION 1.2. Let M be an A-graded R-module and x € A. Then

R(G=) = )% R, is a graded subring of R and M, is an R(®=)-submodule of
9€G,
M.

PRroOF. Obvious, because gz = z for all g € G, i.e., RCIM, C M,.
PROPOSITION 1.3. For each t € A, M(Gt) = > M, is an A-graded
s€Gt
R-submodule of M.

PRrOOF. The relation . defined on G by g.h iff gt = ht is an equivalence
relation. The equivalence class determined by the element g is gG:. Let
{gi}ica, be a set of representatives for the equivalence classes in G. Then
one can easily show MG = @ Mg, and RM(GY) C M(Gt),

1€EA:

Now for each z,y € A we have Gz = Gy or Gz NGy = (. So, the relation
£ defined on A by z€y iff Gz = Gy is an equivalence relation. The equiva-
lence class determined by the element z € A is Gz. Let {z;};c5 be a set of

representatives for the equivalence classes in A. Then M = @ M(CG=),
1€EA
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2. Noetherian A-graded R-modules

DEFINITION 2.1. An A-graded R-module M is said to be A-graded

R-Noetherian if M satisfies the ascending chain condition on A-graded
R-submodules of M.

In the rest of this section, we assume M is A-graded R-Noetherian.

PROPOSITION 2.2. For eacht € A, M(GY) is A-graded R-Noetherian and
M, is R(GY)_Noetherian.

Proor. The first part follows directly from Proposition 1.3. For the sec-

ond part, let Xl € X, € ... be a chain of R(GY)_submodules of M;. Then
RX; S RX,C ...isa cham of A-graded R-submodules of M. So, there ex-
ists n € N such that RX; = RXpyy = ..., and hence (RX,), = (RX,,H)t —

= ... But (BRX;), = RICIX, =X implies Xy = X 41 =

ProrosiTiON 2.3. For A given at the end of Section 1, there exists a
finite subset I of A such that M = (BI M(G=i),
1€
ProoOF. Suppose not. Then there exists a denumerable subset N of A
such that M(G%5) £ 0 for all j € N. But then M(G21) C M(Gz1) 4 p(Ge2) C
C ...is a chain of A-graded R-submodules of M without maximum.

COROLLARY 2.4. M is R-Noetherian iff M(G%) is R-Noetherian for all
x € A.

In the remainder of this section, we add conditions on G and A so that
M is R-Noetherian.

THEOREM 2.5 (Theorem 4 of [3]). Let G be a finite group with iden-
tity e, and M be a graded R-module. Then M is R-Noetherian iff M 1is
R.-Noetherian.

PROPOSITION 2.6. Let G be a finite group. Then M is R.-Noetherian.
Consequently, M is R-Noetherian.

PRroOF. Let z € A. Since G is a finite group, A, is finite (see Propos1t10n
1.3, for notations). Suppose A, = {1,2,...,n}, then M(G?) = EB M,,.. By
1=1

Proposition 2.2, M, is R(Gg-")-Noetherian for 2 =11, ouiil
Since R(%si=) is a graded ring of type Gy,» and G, is a finite group,
then by Theorem 2.5, My, is (R(Gg-")) -Noetherian for each i € A;. But
" :

(R(Gg-")) = R, forall : € A;, i.e., My, is R.-Noetherian and hence M(Gz)
is Re—Noeteheria.n. Therefore, M is R.-Noetherian by Proposition 2.3.

One can notice that if A is a finite G-set and G, = G, for all z,y € A
‘then M is R-Noetherian. In the following proposition, we show that if A is
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a finite G-set and G is an abelian group then M is R-Noetherian. We leave
the case where A is a finite G-set and G is an arbitrary group as an open
question.

PROPOSITION 2.7. Let G be an abelian group and A be a finite G-set.
Then M is R-Noetherian.

ProOF. Assume A = {1,2,...,n} and t € A. By Corollary 2.4 it is
enough to show M (%) is R-Noetherian.

Step 1. Consider an arbitrary R-submodule X of M(G"). For each i =

=1,...,n,let X() be the R-submodule of M(5?) generated by the elements
z; where z € X and z; = 0 for all j > 2.

We show that if X CY are two R-submodules of M(G?) such that X () =
=YW@ foralli=1,...,n,then X =Y. Let y€ Y =0, then y = 9y + ... 4 ymm
where y; € M; and y,, # 0. By induction on m, we show that y € X. If m =
=1,theny =9 € Y() = X() C X. Assume m > 1, then y,, € Y™ —0 and

hence m € Gt. By assumption yn,, € X (™), write yp, = 7'1:55,1,) +...+ rpa:(p)
where z(9) € X and z(i) =0forall j > m. Let r = (), +. ..+(r,)cs where
(ri)e, € Re;, (ri),, o # 0 and c;m =m forall j=1,...,s. Then ¢; € Gy,
forall]_l sandr;x()zr-m()-{- +r,—x$n). If:c )7£0forsomej<m
then j € Gt and hence by Lemma 1.1, G; = G; = Gp,. Thus riz () € M; for

all j < m. Since Z r;zU) € X, then 2z =y — E r;z() €Y and 2; = 0 for

=1 3=l
all 7 2 m. So, by induction z € X and hence y € X. Therefore, X =Y.
Step 2. To show that M(GY) is R-Noetherian, let X; CX,C ...bea

chain of R-submodules of M(GY), Then for each i = 1,...,n, Xl(i) __C_ Xéi) C
C ...is a chain of A-graded R-submodules of M(G?). Hence there exists m; €

€ N such that X,(,;? = X,(,2+1 = .... Let mp = max{m;:i=1,...,n}. Then
X,(n?, —Xr(nz+l = ... foreach i =1,...,n and hence X,,, = Xpno41= «.0

i.e., M(GY is R-Noetherian.

Let G be an abelian group and A be a denumerable G-set. Let t € A
such that G = (c)G; where (c) is an infinite cyclic subgroup of G. We denote
Gt = {c'g:i20andg € G;} and G~ = {c'g:i < 0andg € Gy}

ProrosiTioON 2.8. With the above notations, we have

1. R(GY) = > R, is a graded subring of R.

reG+
2. MG = S° M, is an A-graded R(CY)-submodule of M(GY,
1=0
PROOF. Since (c'g)(c’h) =c'tighe Gt for all ¢'g, ¢h € G*, then
_ R(GT)R(GY) C R(GY) and hence R(G") is a graded subring of R. Similarly,
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if ¢ig € G* and j 2 0, then (c'g)(cit) = ¢™*+it. Therefore, R(GT)M(G*1) C
C MG*) je., MG is an A-graded R(G")-submodule of M(GY).

ProposITION 2.9. M(G*) is A_graded R(G*)-Noetherian.

PROOF. The relation . defined on {c':i > 0} by ¢’ ~ ¢/ if ¢t = ¢/t is an
equivalence relation. Let {r; = ¢%},.; be a set of representatives for the
equivalence classes in {c‘:i > 0}. Then MG = EBI M, .

1€

If I is a finite set, then M(G*?) is R(Gt).Noetherian and hence it is A-
graded R(G")-Noetherian (G; € Gt). Let I ={1,2,...} and 0 < s, < 8, <
< .... Suppose N is an A-graded R(G*)_submodule of M(G*1) then N =
= 'GEBI N,.t. Since RN is an A-graded R-submodule of M (Gt), it is finitely

generated over R. Let zi,...,2; be a homogeneous elements of N which
generates RN over R. Suppose z; € M, fori=1,...,kandp; £ ... < py.

Pk Pk
Then Y M, is R(Gt)-Noetherian and hence 3 N,.. is finitely generated
i=1

ks P
over R(°)). Let yi,...,y, be generators of Y. N,.. over R(G). We show
i=1
{z1,...,Zky ¥1,...,Yys} generates N over R(G*),

Let Z € N,,,.: be a homogeneous element of N. If m < py, then Z
is an R(%)-linear sum of w,...,y,. Suppose m > px. Since Z € RN,
Z =a121+ ...+ agzy where a; € R. If a;z; # 0, let a; = (ai)bl~g1 +...+
(a‘)bz-yz where b; = c™, (ai)b,--g,- € Ry,.4;, nj € Z, g; € Gy and b; - gjrp, -t =
=¢*m.t. Then c(~sm+sntn;) € Gy, ie., bj€ c(sm=sp:) -Gy and hence
b;j-g; € Gt (8 — sp; > 0) for each j = 1,...,£. Therefore, Z is an R(G*).
linear sum of zq,...,z; and hence M(G*Y) jg finitely generated, i.e., M(G*1)
is A-graded R(G*)_Noetherian.

By using the same arguments as in Propositions 2.7 and 2.8, one can

00
easily show that if RC7) = ¥ R, and MGt = ¥ M ,, then M(G7Y) is
r€G— 1=0
A-graded R(G7)-Noetherian. _

Now, consider an R-submodule X of M(G!). For i € N, let X() be the
A-graded R(G*)-submodule of M(G*?) generated by the elements z i, where
z € X, which satisfies the following conditions:

1. z @ MG and

2. z can be written as 2 = z,, 4+ ...+ Trpt + Teiq Whererj =c¢%,5; €2
and 8p < ... <8 <L

Suppose X* = 3~ X(). Then X € XMW 4 X&) C ... € X*is a chain of

=1

~ A-graded R(G*)-submodules of M (G*1) and hence by Proposition 2.9, there

Acta Mathematica Hungarica 69, 1995



216 M. REFAI

exists n € N such that X(0) 4+ ... 4+ X = X* Now, for each i =1,...,n
let {x(") s=1,...,k where z("¥) ¢ X satisfies the above two conditions}

be a finite subset of X () that generates it over R(G*). With these notations
we have the following lemma.

LEMMA 2.10. Let X Y be R-submodules of M(GY) such that X n
AMGED)=ynME) X*=Y*and X) =Y foralli=1,...,n. Then
A=Y,

ProOF. Let y€ Y. If y € M(C7Y) then y € X. So let y = Yrpt+ oot

+ Yrn-t Where 7 = ¢%, 81 < 83 < ...< 8, and s, > 0. We proceed by in-
duction on 8,,.

(1%1)

If s,, = 1, then y, . LeYM) =xO), Letyrmtzalz( )+ ARt
a; € RGN, If a;z (l') # 0, then let a; = (a;),, ., +---+ (a,)ws_g’ where w; =
= e, o5 = 0, g, € G: and w; - gjet = ¢*mt = ct for all j =1,...,s. Then
k " -
w; € G = Gt. So, y — 21 a;z(1) € M(G7Y and hence y € X. Assume it is
i=1
true for all s,, < n. Let s, > n. Since y,,,.+ € X* = XD 4 ..+ X® then

Yrmt = Z Zau gst); a;s € R(G+)-
1=1 s=1
If a,,:c(’s) £0, then let ais = (a,,)u1 g et (&) b where v; = b, L2
20,b;€Gyand vj-bj-c t—c""tfora.ll]—l /il Thenv,—cie
€ c*™ Gy, let v; = ¢*™'d;; d; € Gy, j=1,...,9. Now, if a;sz! e ) #0 for

(is) (is) — tm—1+k
some k < i then a;,z , = E (a,,)v] b; 2. Since v; . bjck -1 = em~1+k.4

n ki )
and 3 Y, aisz(®) € X then
t1=12s=1

n ki

Z = y—ZZag,z“’) €Y

1=1 s=1

and Z = Zee1.4+ ...+ Zeep. Where e; < ... < €, < 8yp. By induction y € X.
Let X be an R(G*)-submodule of M(G*), For i € N U {0}, let X be

the A-graded R(GY) _submodule of M(G*) generated by the elements z.i,
where z € X can be written as * = x4 + ...+ Zr,.t + &y Where rj = %,
sj € NU{0} and sy < ... < s, < i. As before there exists n € N such that

XO 4. 4 X0 = X" = 3 X0,
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By using these notations and similar argument to that used in Lemma
2.10, one can easily show the following: If X C Y are R(G*)_submodules of
M(G*1) sych that X* = Y*and X&) = YO forall i = 0,1, ..;nthen X =Y.

ProrosiTioN 2.11. M(G*Y) is R(GY)_Noetherian.

PROOF. Let X; € X, C ... be a chain of R(6*)-submodules of M(G*1),
Then X; € X3 € ... is a chain of A-graded R(G*)-submodules of M(G*?),

So, by Proposition 2.9, there exists n € N such that X; = X, = .... Let
m € N such that X3 = X 4+ ...+ X{™). Then Xz,; = X9, + ...+ x{7)

for each i € N. Now, for each j = 0,...,m, X,(lj) < Xﬂl C ...1is a chain of
A-graded R(G")-submodules of M(G*%). Hence there exists n; € N such that

X,&an . X,(ﬂnjﬂ = .... Let p=max{n+n;}7_,. Then X; =X, = ...
and X,(,') = X;;)_l = ...,forallt=0,...,m. Therefore, X, = X431 = ...,

i.e., M(G*Y) is R(G*) Noetherian.

Similarly, M(¢™%) is an R(G7)-Noetherian.

ProposITION 2.12. M(G) is R-Noetherian.

Proor. Let X; C X, C ... be a chain of R-submodules of M(G"), Then
X;nMG™) C X,n MG C .. .is achain of R(G)-submodules of M(G™1),
So there exists ng € N such that X, N MG = X, ., n MG = |

Since X € X; ., € ... is a chain of A-graded R(G")-submodules of

M(G*1) there exists s € N such that X7 . = X5 ., = .... Let X,(l‘l’)” -
+.. .+X,(l:,'ﬂza = X,(,L)H. Fori=1,...,m choose n; € N such that X,(:o)_l,s+m =
= Xi:])ﬂ_,_m_‘_l = .... Let n = max{no+ s+ nj};":l., then Xn NMGTY) =
=XpnNMCE 0= . Xi=Xz,=.. ad X =xY, = .. forall
i=1,...,m. By Lemma2.10, X, = Xp41 = ..., i.e., M(G!) is R-Noetherian.

ProprosiTiON 2.13. Suppose A is a denumerable G-set such that G =
= (c)Gy where (c) is a cyclic subgroup of G, for each t € A. Then M is
R-Noetherian.

Proor. Follows directly from Proposition 2.12 and Corollary 2.4.

COROLLARY 2.14. Suppose R is a Z-graded ring and M is A-graded R-
Noetherian where A is a denumerable Z-set. Then M is R-Noetherian.

In the rest of this section, G will be an abelian group and H < G such that
G/H = (cH) is an infinite cyclic group. Also, M is A-graded R-Noetherian
where A is a denumerable G-set.

For t € A, let § = (c)G; be a subgroup of G. Then R(S) = ¥ R, is
s€S
a graded subring of R. For each h € H, the relation . defined on (c)h =
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= {c'h:i € Z} by c'h.c’h iff ¢'ht = c’ht is an equivalence relation. Let
{c*h}ica, be a set of representatives for the equivalence classes in (c)h.

Clearly, Ay = {c®h:i € Ay} is an S-set with an action given by (c'g)(c*ht) =
= ¢ ht where ¢t% . ht = ¢ - ht. Also, one can easily show that M((gt) =

= Y M, is an Aj-graded R(5)-module.
a€Ay

PROPOSITION 2.15. With the above notations, M((f)t) is Ap-graded R(S)-

Noetherian.

Proov¥. First, we show that, if X is an Ap-graded R(5)-submodule of
M ((,f')t), then RX N M ((St) = X. Let 7 € R and 2 be a homogeneous element
of X. Then r =(7),, 4, + ...-i-(r)wp,bp; wi=c™,m;€Z,b;€Hand ze€

EM, for some ¢ € Ap. Now, if rz is a homogeneous element in M((,f';t)
c9-ht

then rz € M;  forsome £ € Aj. Assume (r), ;& # 0, then w;-b;c® -ht =

1+b1

l_h
= c¢% - ht, i.e.c, wt,- -b; € S. Hence rz € X.
Let X; € X, € ... be a chain of Aj-graded R(5)-submodules of M((gt).

Then RX; € RX, € ... is a chain of A-graded R-submodules of M(Gt),
Hence there exists n € N such that RX, = RX,,4; = ..., and then RX, N

B M((,fﬁ” = RX,y N M;LGt) = .+« s Therefore, X, = Xoji = asvs

PropoSITION 2.16. M((,gt) is R(S)-Noetherian.

(She)
Proor. Clearly, () = (M{")™™. But Sy =G, by Lemma 1.1.
Thus S = (¢)Sk: and hence by Propositions 2.13 and 2.15, M) is RS-

, (h)
Noetherian.

For hy,he € H, we have M((hGlt)) = M((,it)) or M((hGlt)) n M((gt)) = 0. So the

relation & defined on H by hiEhy iff ¢hyt = chyt for some i,j € Z is an
equivalence relation. Let A(F) be a set of representatives for the equivalence

classes in H. Then M(G = G}( )M((St). So, if A(H) is a finite subset of
ue A(H

H, then M(G% is R(5)_-Noetherian and hence is R-Noetherian.

COROLLARY 2.17. Let F be a finite abelian group and G = Z X F'. Then
M is R-Noetherian.

PRrROOF. Let H = F, then G/H = Z. By the previous discussion, M(GY)
is R-Noetherian for each ¢t € A. The result follows from Corollary 2.4.

Finally, the above techniques may be extended to show that if M is A-
graded R-Noetherian where G is a finitely generated abelian group, then M
is R-Noetherian. We leave this case as an open problem.
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THE VARIETY OF CH-ALGEBRAS

N. WEAVER (Santa Barbara)®

In a compact T, space, every ultrafilter converges to exactly one point.
This allows us to introduce into any such space certain “limit” operations
which really are operations (albeit infinitary) in the universal algebraic sense.
Throwing away the topology then leaves an abstract algebra which we call a
“CH-algebra” (for “compact Hausdorff”).

The algebraic properties of these CH-algebras relate nicely to the topo-
logical properties of the compact T, spaces from which they derive: ho-
momorphisms, subalgebras, and direct products correspond to continuous
maps, closed subspaces, and topological products. Thus it is perhaps not
surprising that the class of CH-algebras is a variety, i.e. is closed under these
operations.

This result is well-known to category theorists and appears in somewhat
different language in [12], [13], [17]. However, the purely universal-algebraic
approach offers several advantages. First of all, we are able to write down an
explicit scheme of equations which axiomatizes the variety of CH-algebras;
this yields a characterization of topologies presented in terms of ultrafilters.
This result is analogous to Birkhoff’s characterization of topologies presented
in terms of nets ([2], Theorem 7 or [10], p. 74); our theorem is narrower,
covering only compact T, spaces, but our axioms are also a little simpler.

Our approach also sheds new light on some well-known theorems from
general topology. For instance, the existence of the Stone-Cech compactifi-
cation becomes a straightforward consequence of standard facts about free
algebras in a variety. Thus we obtain yet another construction of this impor-
tant object; our construction has the advantage that, with trivial modifica-
tions, it also produces the Bohr compactification, etc. Finally, the universal-
algebraic point of view advertized here also illuminates the relationship be-
tween compact T spaces and Stone spaces (i.e. totally disconnected compact
T, spaces).

(A universal-algebraic approach to general topology was attempted in [6],
but that paper was complicated by the introduction of certain operations Ap
which have arity a proper class and which remain partial even in the compact

! This material is based upon work supported under a National Science Foundation
graduate fellowship.
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T, case. None of our applications follow from the result of [6]. Operations
were also introduced into topological spaces in [5].)

This paper continues the general program, begun in [18] and [19], of
applying universal algebraic ideas to sets equipped with nonalgebraic struc-
ture (in this case, topology). It has benefited from comments made by John
Coleman, Melvin Henriksen, Walter Taylor, and the referee.

Basic ideas of universal algebra, used by us with brief explanations, are
given in full detail in [4]. Readers with a background in category theory may
also find the chapters on algebraic and varietal categories in [8] and [1] of
interest.

I.

We begin by defining CH-algebras. Let A = (A,7) be a compact T,
space with underlying set A and topology 7, and let I be any nonempty set
and U an ultrafilter over I. Then any function z: I — A induces an ultrafilter
Uy over A defined by

={0c A (iU},

We then define an operation frz: AT — A by setting f14(x) equal to the
unique point all of whose neighbourhoods belong to Uy. (Such a point exists
since A is compact, and it is unique since A is T3.) The point f7z(x) may
be described as “the limit of x with respect to #.” Of course, fry is an
infinitary operation if I is infinite.

Let A = (A,{fiu}) denote the abstract algebra with underlying set A
together with all of these operations fry, for any nonempty set I and any
ultrafilter & over I. (In our notation, B will be the algebra arising from the
compact T3 space B, etc.) We define CH-algebras to be precisely those ab-
stract algebras which are derivable from compact T spaces in this manner.

The notions of homomorphism, isomorphism, subalgebra, and direct
product are fairly self-evident and can be summarized as: a map which
commutes with the operations f;z; a 1-1 homomorphism; a subset closed
under the operations fz/; and the cartesian product with the operations frz
defined coordinatewise. (Strictly speaking, we have just defined the under-
lying set of a subalgebra; the actual subalgebra is this set endowed with the
restricted operations.)

For the reader’s convenience we include proofs of the following rather
standard propositions.

ProrosiTION 1. Let A and B be compact T, spaces and A and B the
corresponding CH-algebras. Then a map ¢: A — B is continuous from A to
B iff it is a homomorphism from A to B, and ¢ is a homeomorphism of A
into B iff it is an isomorphism of A into B.
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PROOF. Suppose ¢: A — B is continuous from A to B and fru(x)=
= y; to show ¢ is a homomorphism we need flu(qﬁ(x)) = ¢(y). But for any
neighbourhood U of ¢(y), $~1(U) is a neighbourhood of y, hence ¢=(U) €
€ Ux. Thus x~1(¢71(U)) €U and so U € Upox. Thus every neighbour-
hood of ¢(y) is in Ugox, so by the definition of the operation f;;; indeed
fru(é(x)) = ¢(y).

Conversely, suppose ¢ is not continuous; we now must show ¢ is not a
homomorphism. Let U be an open subset of B such that ¢~1(U) is not open.
Then there exists y € ¢~}(U) such that ¢~}(U) is not a neighbourhood of
y. Now let I = A; let U be any ultrafilter over A containing every neigh-
bourhood of y and also the set A —¢~1(U); and let x: A — A be the identity
map. Then fru(x)=y but fru(¢(x)) # ¢(y) since U & Upox. Thus ¢ is
not a homomorphism from A to B.

The second statement follows from the observation that, for compact T
spaces, a homeomorphism is just a 1-1 continuous map, while an isomor-
phism of CH-algebras is by definition a 1-1 homomorphism. 0O

ProrosITION 2. Let A be a compact T, space with corresponding CH-
algebra A. Let B be a subalgebra of A with underlying set B. Then B is a
closed (hence compact) subset of A and B is the CH-algebra corresponding to
the space B which is B endowed with the induced topology. Conversely, every
closed subset of A underlies a subalgebra of A. (It follows that the space A
can be recovered from the algebraic structure of A: the closed sets of A are
precisely those subsets which underlie subalgebras of A.)

Proor. Let y be any element in the closure of B. Then let I = B; let
U be an ultrafilter over B which contains B N U for every neighbourhood U
of y; and let x: B — B be the identity map. Then f7;(x) = y, and since B
is closed under operations frz; we conclude that y € B. Thus B is a closed
subset of A.

To prove that B derives from B we must show that the operations of B
(which are the restrictions of the operations of A) agree with the operations
derived from B. Thus suppose that fry(x) = y in the sense of B, where the
range of x is in B and y € B; we must show that fy;(x) = y in the sense of B,
i.e. every B-neighbourhood of y is in Ux. Let Up be such a neighbourhood, so
Ug = U N B for some A-neighbourhood U of y. Then U € Uy, i.e. x }(U) €
€ U. Since the range of x is contained in B, we have x~1(Ug) = x~1(U),
hence x~1(Up) € U and thus Ug € Uy, as desired.

Finally, let B be any closed subset of A; we want to show that B is closed
under the operations f7z;. Thus fix I,U, and x: I — B and suppose f1(x) =
=y. f y¢ B then A — B is a neighbourhood of y, hence x~1(A — B) € U.
But since x(I) C B,x"!(A — B) =0, a contradiction. This completes the
proof. O

ProrosITION 3. If{A\} is a collection of compact T, spaces with corre-
~sponding CH-algebras { A\ }, then [] A\ has corresponding CH-algebra [] A.,.
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Proor. Fix I,U, and x:I — [] A, and suppose fry(x)=1y. (Recal
that the operations fry are defined on [][ A\ coordinatewise.) We wish to
show that the product topology on [[.Aj verifies that fry(x) =y, ie. if
U is any neighbourhood of y then x~1(U) € U. Since U contains every su-
perset of each of its elements, it is enough to show this when U is a basic
open set; and since U is closed under finite intersections, we may in fact as-
sume U is a subbasic open set, say U = 7r;1(V) where ) is the projection
onto Ay and V C A, is open. In this case x"1(U) = (m) 0 x) (V). Further-
more, fru(myox) = m\(y) by the coordinatewise definition of the operations
fru on [[Ax. But V is a neighbourhood of m)(y), so we conclude that
(myox)"Y(V) € U, hence x(U) € U, as desired. O

For the next proposition, recall that a congruence relation (or congru-

ence) 0 on a CH-algebra A is by definition an equivalence relation on A
which is compatible with the operations fyz in the following way:

(x(),y(i)) € 6 for all i € I implies ( fru(x), fru(y)) € 6.

It is a general and easily verified fact that every congruence relation deter-
mines a quotient structure which is a homomorphic image of A, and con-
versely every surjective homomorphism arises in this manner (up to isomor-
phism of the range space). An equivalent formulation of congruences is: 6
is an equivalence relation which underlies a subalgebra of A X A, i.e. (by
Propositions 2 and 3) an equivalence relation which is a closed subset of

A X A.

PROPOSITION 4. Any intersection of congruences is a congruence, hence
the set of all congruences is a complete lattice when ordered by inclusion.

ProoF. The first statement follows from the last characterization of con-
gruences, since any intersection of equivalence relations is an equivalence re-
lation and any intersection of closed subsets of A X A is a closed subset of
A X A. The second statement is an immediate consequence of the first. O

We can now give a fairly painless proof of the following theorem. Recall
that a variety is a class of algebras closed under the formation of homomor-
phic images, subalgebras, and direct products.

THEOREM A. (Linton [12], p. 90; see also [13], p. 153 and [17]). The
class of CH-algebras is a variety.

PRrooOF. We have already observed in Propositions 2 and 3 above that the
class of CH-algebras is closed under the formation of subalgebras and direct
products, and it is trivially closed under the formation of isomorphic images.
Thus, we need only show that if A is a CH-algebra and # is a congruence
relation on A, then A /6 is a CH-algebra. ,

Suppose A corresponds to A = (A,7). The quotient topology 7/6 is

“obviously compact, and as 8 is a closed subset of A x A, it follows from a
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theorem of Bourbaki ([3], § 1.10.4, Proposition 8) that 7 /6 is T,. We claim
that A /6 is the CH-algebra corresponding to A/0 = (A4/6,7 /). To see this,
fix I,U, and x: I — A/6 and suppose fy(x) = y according to the quotient
CH-algebra structure of A/6. Now define a function xo:I — A in such a
way that for each i € I, xo(7) is a representative of the class x(¢); it follows
from the definition of the quotient structure that if f;;,(x¢) = yo, then yo is
a representative of the class y.
Now we want to show that for any .A/#-neighbourhood U of y,x~1(U) €
€ U. However U lifts to an .A neighbourhood Uy of 3o, and we know
x5 (Vo) € U. But x~1(U) = x5 (Uy), so we are done. [J

II.

We begin this section with a brief review of terms and equations.

Let X be any set; we think of its elements as variables. Then the terms
over X are all of the “words” which can be written using the elements of X
and the operations frz;. More precisely, the terms over X form the smallest
class C such that X C C and such that whenever I is a set, i is an ultrafilter
over I, and x is a function from I into C the formal expression fjz/(x) is
also an element of C.

The class C can also be characterized “internally” via a definition by
transfinite induction. Here we construct C in stages. At stage zero we put
in the elements of X; at stage a for @ an ordinal > 0, we put in all the
formal expressions frz(x) where the range of x consists of terms already
constructed. An advantage of this method of defining C is that it allows us
to define the order of a term as the ordinal at which it is first constructed.
In other words, the order of an element of X is zero, and the order of the
term fyz(x) is the sup, over ¢ € I, of the order of x(7) plus 1.

Let A = (A, {fr ,u}) be a set together with some collection of operations
fru; do not assume A is a CH-algebra. Given any function ¢: X — A (i.e. an
assignment of values to the variables), the terms over X can be evaluated in

an obvious way. Thus, we define the evaluation %(t) of a term ¢ by induction

on the order of t, setting gb(v) = ¢(v) for v € X and g(fl,u(x)) = fl,u(ao
ox).

An equation is a formal expression t; = 73 where 1, and t, are terms. We
say that A satisfies the equation ¢} =t if qS(tl) = ¢(t2) for every function
¢: X — A. Birkhoff’s fundamental theorem on varieties implies that the class
of CH-algebras is definable by equations. We will now show it is in fact
definable by the following three equational schemes. In these, I, J and X
are nonempty sets, 4 and V are ultrafilters over I and J respectively, and x
and y are functions x:/ — X and y:J — X.
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a) (triviality) If I = {p} and x(p ) = v then fru(x) = .
) (restriction) Suppose J € U, V =U|y, and y = x|;. Then fry(x)=
= fav(y)-
7) (iteration) For each i € I let I; be a nonempty set with an ultrafilter
U;. Suppose J = U T; and V C 27 satisfies

KeVv iff {&#KnLel}el.

Then
fIyu(fI-‘.U.' (YII.)) = fov(y)-
In the last axiom scheme, the union UI; need not be disjoint.
THEOREM B (cf. [2], Theorem 8 or [10], p. 74). An algebra A =
= (A,{fI,u}) is a CH-algebra iff it satisfies the axiom schemes a)—y).

Proor. Consider the forward direction. Suppose A is a CH-algebra and
let it derive from the compact T, space A. Choose ¢: X — A. To verify

triviality, we must show that ¢( fru(x)) = ¢(v); as &( fru(x)) = fru(9o
0x), it is enough to show that U € U, _for any neighbourhood U of ¢(v) =

= ¢(v). However, since ¢(v) € U, (50 x) _l(U) =1 €U, hence U € Zl~°x as
desired.

To verify restriction, let U be a neighbourhood of fsy( qSoy) It is
enough to show that U € U~ox this will establish the center equality of

S(fru(x)) = fru(dox) = frv(doy) = o(fav(¥)),

T o : =~ =1,
thus verifying the restriction equation. But we know that (¢ox) (U) con-

tains (aoy) —I(U), which is in V and hence in /. Thus (aox) —1(U) €U,
ie. UE€ UZOX, as desired.

To verify iteration, let U be a closed neighbourhood of f, I,v($° y) . Now

(¢o0y) _I(U) € V, hence the set of i € I such that (o y) —l(U) NI el is
a member of . By the restriction axiom, and since U is a closed subset, we

conclude that for each such 1, fr, u, (5 oy]| 1,.) € U. Then another application
of restriction yields that

flll(fli.ui($°5’|l.')) eU.

To conclude we observe that in a T, space, the intersection of all closed
neighbourhoods of a point is precisely that point. Thus

fI,u(fI.',U.'(EOYh.-)) = fJ.V(;;O}’) ;
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which is enough. We have now seen that a CH-algebra must satisfy the
axioms a) — 7).

For the reserve direction, suppose A satisfies axioms a) — 7). We begin
by showing that the members of Sub(A) are precisely the closed sets of a
compact topology on A.

Sub(A) is obviously closed under intersections. To show it is closed under
finite unions, let U,V € Sub(A) and choose I,U, and x: I — U UV; we must
show that frz/(x) € UUV. Now either x 1 (U) € U or x~ (V) € Y. In the
first case, by axiom ) with J = 2=1(U), we have

fru(x) = fruly) €U,

where fry(y) €U since U € Sub(A) and y(J) C U. Thus in any case
fru(x) € UUV, hence UUV € Sub(A). Thus Sub(A) consists of the closed
sets of a topology 7.

Now let U be an ultrafilter over A and let z = f47/(14) where 14 is the
identity map. By the axioms (), any member of & must contain z in its
closure, so z is a cluster point of . Thus every ultrafilter over A has a
cluster point with respect to 7, so (A,7) is compact.

For the second part of the proof, let x: I — A and let &/ be an ultrafilter
over I. Suppose z is a cluster point of U, with respect to 7; we will show
that z = fy(x). This will establish that 7 is T, (ultrafilters have unique
limits) and that A derives from (A, 7).

Foreach K € U, z is in the closure of x(K), i.e. the subalgebra Sg(x(K))
generated by x(K). However Sg(x(K)) has underlying set

{ frv(x|k):V is an ultrafilter over K }

(For principal ultrafilters V, the axioms ) and «) imply that this set contains
x(K); and by ) it is closed under the operations frz.) It follows that for
each K € U we can choose an ultrafilter Vi over K such that fk v, (x|x) =
= z. Let Y’ be an ultrafilter over & containing the sets

{K:KoN K € Vi}
for all Ko € . Then by the axioms v) and a) we have

fru(x) = fu,u'(fK,vK(XIK)) =

as desired. O

See [16] for a very different axiomatization of the class of compact T3
spaces.

Theorem B can be used to define compact T, topologies in situations
~ where the filter point of view is natural. Thus, for each ultrafilter & over
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a set A one may simply define its point of convergence ¢(i); by Theorem
B this describes the convergence structure of a compact T topology iff the

operations
fru(x) = c(Ux)

satisfy axioms a) — 7).
Theorem B also provides us with important information on terms in the
variety of CH-algebras. Let us say two terms t; and t; are equivalent if

E(tl) = z(tg) for any CH-algebra A and any map ¢: X — A.

COROLLARY. Every term over X is equivalent to a term of the form
fru(lx), where U is an ultrafilter over X and 1x is the identity map.

PRrOOF. As in the proof of Theorem B, the axioms 3) and «) imply that
every element of X is equivalent to a term of the given form; and using the
axioms v), a trivial transfinite induction on order establishes the same for
any term. 0O

III.

A key observation in the following is that arbitrary T spaces correspond
to “partial CH-algebras,” meaning one still has the operation f;;; but they
are no longer defined everywhere; f7(x) exists precisely if the ultrafilter 2y
converges. One still has versions of Propositions 1-3. In particular, a map
¢: A — B from one T, space to another is continuous iff whenever f7/(x) is
defined in A and equals y, then f7z(¢ ox) is defined in B and equals ¢(y).

The free CH-algebra Fx over a set X is defined as follows. Its elements
are the terms over X, with two terms ¢, and ¢, identified if they are equiva-
lent (i.e. @(t1) = @(t2) for any CH-algebra A and any map ¢: X — A). The
operation fry on Fx is defined in the obvious way, and simply maps the
term x to the term fry(x). Fx is a CH-algebra because it automatically
satisfies any equation which is satisfied by all CH-algebras, and the class of
CH-algebras is definable by equations.

It is a general and easy universal algebraic fact that free algebras possess
a universal mapping property: any function from X into a CH-algebra A
extends uniquely to a homomorphism from Fyx into A. Moving over to the
topological space point of view, we see that Fx corresponds to the Stone-
Cech compactification AX of the discrete set X. That is to say, if we let X
be the compact T, space corresponding to Fx, then every map from X into
a compact T, space A extends uniquely to a continuous map from X into
A.

(A subtlety here is the fact that Fx is a set and not a proper class. This
follows immediately from the Corollary to Theorem B. Alternatively, we can
observe directly that Fx is a set as follows. The closure of X in X corre-

“sponds to a subalgebra of Fx; this subalgebra contains X and hence must
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be Fx itself. Thus X is dense in X, i.e. every element of 8X is the limit
of an ultrafilter over X. Hence the cardinality of X is no greater than the
cardinality of the set of ultrafilters over X.)

Once we have X for X discrete, it is easy to construct X for any T,
space X = (X,7). Namely, let § be the least congruence relation on Fy
which contains all pairs (frz(x),v) for which frz(x) exists and equals v
according to the topology 7 (here x maps I into X). Such a congruence
exists because the lattice of congruences is complete (Proposition 4). Now
we define S to be the compact T; space corresponding to Fx /6.

TueoreM C. Let X,0, and BX be as above. Then the natural map
p: X — BX is continuous, and if ¢: X — A is any continuous map into a
compact T, space A then there exists a unique continuous map 5: X — A
such that ¢ = pop. If X' is completely regular then p is a homeomorphism.

PROOF. p is defined as p = m oo where 7: Fx — Fx /0 is the natural
projection and o is the natural embedding of X into Fx. Then the fact
that p is continuous is an immediate consequence of the algebraic criterion
for continuity described at the beginning of the section, together with the
definition of § which insures that the desired conclusion frz(pox) = p(y)
always holds.

To see that ¢ lifts uniquely to SX, recall that we already know ¢ lifts
uniquely to a continuous map ¢o: FX — A. Since X is a quotient of X,
this settles the question of uniqueness and leaves only the question of whether
¢o is compatible with the congruence . For this, it suffices to observe that
¢o( f1u(x)) = do(v) whenever ( f1z/(x),v) is one of the pairs which gener-
ate 6. Again, this is an immediate consequence of our algebraic criterion for
continuity.

Finally, suppose X" is completely regular. Then if v € X and I,U, and
x:] — X are such that some open set U containing v is not in Uy, it follows
that there is a continuous map ¢: X — 7 into the unit interval such that

#(v) =0 and ¢(X — U) = 1: so that
(o)1) = (gox)H($(X - V)) DxH(X -V)el,

hence fry(pox)=13%# ¢(v). This shows that if f;y(x)# v (perhaps be-
cause the left side is not defined), then there is a continuous map ¢: X' — T
such that fr(¢ox) # @(v). Now every such ¢ lifts to 5: BX — T, such that
¢=2do p; it follows that f7,,(p o x) # p(v) in every such case — otherwise,

applying 5 would yield a contradiction. Thus in general f7;/(x) exists and
equals v iff frz(p o x) exists and equals p(v), hence p is a homeomorphism.
O

It is interesting that the Stone-Cech compactification exists as a conse-
“quence of these universal algebraic arguments; see [7] for other constructions
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and [15] for a category-theoretic approach. An advantage to our approach is
that it also shows the existence of compactifications in any variety of topo-
logical algebras.

For instance, consider the class of compact T, abelian groups. Given any
such topological group A we may replace the topology with a CH-algebra
structure, yielding a CH-algebra A which is also an abelian group. We call
A an abelian CH-group.

Now the group structure on A is related to its CH-algebra structure:
the group operations are continuous. This can be asserted by means of the
following equations:

fru(x) + fru(y) = fru(x+y),
= fru(x) = fru(—x).

Thus the class of abelian CH-groups is definable by equations (the above
equations plus the equations for abelian groups plus the equations a)-7)),
and therefore it is a variety. This conclusion is not at all special to abelian
groups, as the continuity of any algebraic operation can be asserted in the
same manner as the above. Thus the class of CH-groups, the class of CH-
rings, the class of CH-lattices, etc. are all also varieties.

Consequently, for any set X there exists a free abelian CH-group over X
with the usual universal mapping property. It consists of all terms over X
modulo equivalence, where now terms are built up using the group opera-
tions as well as the operations frz. And the arguments of Theorem C can
be mimicked down to the last detail to show that for any T, abelian topolog-
ical group X, there exists a compact T, abelian group SX" and a continuous
homomorphism p: X — X, such that if ¢: X — A is any continuous homo-
morphism into a compact T; abelian group .A, then there exists a unique

continuous homomorphism ¢ BX — A such that ¢ = ¢>o p. BAX is in fact
the so-called Bohr compactification and is usually constructed quite differ-
ently [9]. We emphasize that this construction is also suitable for any other
varieties of topological algebras.

(Again, we mention the problem of showing that A& is a set and not a
proper class. It is now easiest to mimic the second proof of the correspond-
ing fact for Fx. Thus, simply observe that the closure of p(X’) in S is a
compact group containing p(X’), hence it must be all of X by construction.
As before this bounds the cardinality of SX'.)

Let us observe now that the variety of CH-algebras contains no proper
subvarieties. (This argument was given in [14].) For, any nontrivial subva-
riety V must contain a CH-algebra with more than one element. Then, by
closure under subalgebras, V must contain a CH-algebra with exactly two
elements. By closure under products it then contains the CH-algebra corre-
sponding to the Cantor set K, and by closure under homomorphic images it
~ contains the CH-algebra corresponding to the unit interval Z. Finally, every
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compact T, space embeds in a power of Z, hence by closure under products
and subalgebras ¥ must contain an isomorphic copy (and, by closure under
isomorphic images, an exact copy) of every CH-algebra.

The above conclusion can be summarized as: the CH-algebra 2 which cor-
responds to the two-element discrete space generates the variety of
CH-algebras. However, it is a standard fact from universal algebra that
the variety generated by an algebra is precisely the class of all homomorphic
images of subalgebras of powers of that algebra; symbolically, in this case, it
is HSP(2). (Indeed, it is essentially trivial to check that this class is a va-
riety.) It is well-known that a compact T, space is totally disconnected, i.e.
Stonean, iff it embeds in a power of the two-element discrete space. Thus
from the above we conclude that every compact T, space is a continuous
image of a Stone space ([11] § 41.IX).

If the compact T, space is metrizable, it embeds in Z% and hence by
the above line of reasoning is a continuous image of a closed subspace of
(2¢¥)¥ = 2% = K. This nearly proves the well-known fact that every compact
metric space is a continuous image of the Cantor set; to complete the proof
we merely observe that every nonempty closed subspace of K is a continuous
image, in fact a retract, of K. This is done as follows. Consider K as lying
in Z; then any nonempty closed subspace Kg of K is a closed subspace of 7
and hence is the complement of countably many open intervals of Z. From
each such interval J choose a distinguished element z; which is not in K,
and define a map K — Ky by fixing each element of Ky, and sending z € K N
N J to the closest element of Kg to its right if z > z;, to its left if z < 2.
We leave the reader to check that this map is continuous.
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MEASURES OF NONCOMPACTNESS,
DARBO MAPS AND DIFFERENTIAL
EQUATIONS IN ABSTRACT SPACES

D. O’REGAN (Galway)

1. Introduction

This paper presents existence theory for initial and boundary value prob-
lems in Banach spaces. Specifically we examine the initial value problem

¥'(t) = f(t,9(t)), te(0,T]
(1) {y(0)=a€B

and the Dirichlet boundary value problem

(1.2) ¥+ 8y —ey = f(t,y,9), 0<t<1
' y(0)=a€ B, y(l)=be B;B,e€R.

Throughout B is a real Banach space with norm | - |. In case B = H, a real
Hilbert space, we denote its inner product by (-,-) and then |z|® = (z,z)
for z € H. C™([c,d], B) is the Banach space of functions u : [¢,d] — B such
that «(™) is continuous with norm

(1], = max {[ulg, [#]os -, | 4] }

where |v]y = max {|v(?)| : t € [c,d]}.
The boundary value problem (1.2) has been extensively examined; see [2,
5, 8,9, 14, 16] and their references. It is well known [3, 8] that, in contrast
to systems in R", even the initial value problem may have no solution (lo-
cal) in the Banach space case when the nonlinearity f is continuous. Various
additional compactness conditions are needed to assure existence in the infi-
nite dimensional setting. However in [12, 13] the case when f is continuous
and satisfies a monotonicity type condition is discussed. This paper exam-
ines the situation when the nonlinearity f has a splitting of the form g + A,
with h continuous and g satisfying some compactness condition. Our results
improve, compliment and extend the existing theory in [9, 10, 13, 19, 21].
We remark as well that many other boundary conditions of Sturm L10uv1lle
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type could be treated; however since the strategy and ideas are similar, we
choose as a result to omit the details. Also in section 2 the initial value prob-
lem (1.1) will be discussed with f having the above type splitting. Again the
results extend and compliment the theory in [3, 8, 11, 15]. An extra feature
of the technique here is that it yields a global as well as a local result.

The existence theory in this paper is based on a Leray—Schauder type
nonlinear alternative [4, 7, 17]. Before we state the theorem let us recall
some facts on measures of noncompactness [1, 7, 11, 14, 18]. Let E be a
Banach space and Qg the bounded subsets of E. The Kuratowski measure
of noncompaciness is the map a : Qg — [0,00) defined by

o(X)=inf {6 : X C U, X; and diam(X;) <6}, here X C Qp.

REMARK. This paper only uses Kuratowski’s measure of noncompact-
ness; the results however are valid for other measures of noncompactness.

For convenience we recall some properties [1, 14, 18] of a:

Let S,T € Qg. Then

(i) a(S) = 0 iff S is compact;

(ii) a(5) = o(S5);

(iii) if § € T then a(S) £ o(T);
(iv) a(SUT) = max {a(s),a(T)};
(V) a(r§) = |r|a(S), r € R;
(vi)a(S+T) £ aS)+ aT).

Let E; and E; be two Banach spaces and let 7:Y C E; — E; map
bounded sets onto bounded sets. We call T' a Darbo map if T is continuous
and a(T(X)) £ koa(X), for some 0 £ kg < 1, for all bounded sets X C Y.
We now state a nonlinear alternative which combines the classical Leray—
Schauder fixed point theory [4, 6] with the fixed point theory of Krasnoselski
and Sadovskii [18, 20].

THEOREM 1.1 (nonlinear alternative [4, 7, 17]). Let C' be a convez subset
of a_Banach space E. Suppose U is a nonempty bounded open set in C and
N :U — C is a Darbo map with p € U. Then either

(i) N has a fized point in U; or

(ii) there is point u € QU and X € (0,1) such that u = ANu+ (1 - A)p.

To conclude the introduction we gather together two standard results
which will be used in this paper.

THEOREM 1.2 (Arzela-Ascoli theorem [11]). Suppose M is a subset of
C([e,d), B). Then M is relatively compact in C([c,d], B) iff M is bounded,
equicontinuous and the set {f(t): f € M} is relatively compact for each t €
€ [e,d].

THEOREM 1.3 (Wirtinger’s inequality [10]). (i) Let H be a real Hilbert
space and suppose u : [c,d] — H has a continuous derivative together with
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u(c) = u(d) = 0. Then

) |
1r2/d|u(t)|2dt§(d—c)2/ |o'()|? dt.

(ii) Let H be a real Hilbert space and suppose u : [c,d] — H has a contin-
uous derivative together with u(c) = 0 or u(d) = 0. Then

2 /dlu(t)|2dt < 4(d—c)2/d |u'(t)|? dt.

2. Initial value problems

Consider the initial value problem

(2.1) { Z'(;) i(ta)fe(t}}y), t e (0,T]
with
(2:2) f:[0,T] x B — B continuous
and

i
(2.3) q € C(0,T] with ¢ > 0 on (0,77] and / q(8) ds < o0.
0

REMARK. By a solution to (2.1) we mean a function y € C([0,7],B) N

NC((0,7],B) which satisfies the differential equation on (0,7] and the
stated initial condition.
Associated with (2.1) we have the family of problems

:‘/I = Aq(t).f(t’ y)’ te (07T]
245 \rO et s

for0< A< 1.
REMARK. For notational purposes let

Cs([0,T),B) = {u € C([0,T),B) : u(0)=a}.

We begin this section by establishing an existence principle for problem
{2<1):
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THEOREM 2.1. Suppose (2.2) and (2.3) are satisfied. In addition as-
sume f has the splitting f(t,u) = g(t,u) + h(t,u) with g,h:[0,T] x B — B
continuous together with

for each bounded (with respect to the supremum norm)

Q C Cs([0,T],B) and for each t € [0,T] the set

(2.5) t
{/ q(s)g(s,u(s)) ds: ue Q} is relatively compact,
0

for each r > 0 there exists ¢ € C(0,T] with ¢ > 0 on (0,T] and

(2.6) /0 * de)b(e) ds < oo such that |3 < » implies |48, )| <40
fort € (0,T)

and

(2.7) | h(t,u) — h(t,v)| £ K|u—v|,t€[0,T] and u,v € B.

Now suppose there is a constant M, independent of A, with |y|, £ M for each
solution y to (2.4),. Then (2.1) has at least one solution y € C'([0,T],B) N
nC((0,T),B).

REMARK. (i) If B is finite dimensional then (2.5) and (2.6) are automat-
ically satisfied.

(ii) Note (2.5) and (2.6) are satisfied if gg : [0,7] X B — B is completely
continuous. To see this let @ C Cg([0,T],B) be bounded. Then there ex-
ists a compact set Ag C B such that g(s)g(s,y(s)) € Ao for all s € [0,T] and
y € Q. Fix t € (0,T] and notice

7 || aa(s9(9) ds € w40

which is compact; here co(Ag) is the convex hull of Ag. Thus (2.5) is true. Fix
r > 0. Then there exists a compact set A; B such that ¢(s)g(s,y(s)) S A1

for all s € [0,7] and y with |y| £ r. Now since A4; is bounded we immediately
have (2.6).

Proor. Throughout let C([0,7],B) be the Banach space of functions
u € C([O,T],B) with norm

.
lulg = I[gg)](le QWty(t)|

‘where Q(t) = fot q(8)ds.
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REMARK. |u|, and |u| are equivalent since e 59T |u|y < |u|g £ |ul,.

Solving (2.4), is equivalent to finding a y € C([0,T], B) which satisfies

(2.8) ) =a+ A [ g(s)f(s,(s)) ds =

t

=(1=Na+2A [a+/0 q(s)f (s, 9(s)) ds] :

Define a mapping N : C([0,7],B) — Cg([0,T],B) by

i
Ny(t)=a+/0 q(s)f (s, 9(s)) ds.

Thus (2.4), (i.e (2.8)) is equivalent to the fixed point problem y = (1 - X)a +

+ ANy. We claim that N : Cg([0,T),B) — Cg([0,T], B) is a Darbo map.
Suppose the claim is true, then set

U={ueCp([0,T],B) : |u|lx < Mo+1}, C =Cs([0,T],B),
E= (C([OaT]’B)’| g |K)

with My = max{|a], M} and apply Theorem 1.1 to deduce that N has
a fixed point i.e. (2.1) has a solution y € C([0,7],B). In addition we
have y € C*((0,7T],B) from (2.8) with A = 1. Consequently the theorem
is proven once we show N : C([0,7],B) — Cp([0,T],B) is a Darbo map.
Let Nu(t) = (a+ Nyu(t)) + Nou(t) — a = Nau(t) + Nou(t) — a where

Nyu(t) = /ot a(s)g(s,u(s)) ds and Nou(t)=a+ /Ot q(8)h(s,u(s)) ds.

Certainly N : Cg([0,T],B) — Cg([0,T], B) is continuous. Now let Q C
C C5([0,T), B) be bounded (with respect to | - |5 ). Then

N(Q) € N3(?) + N2o(Q?) - a

and this together with the properties of the measure of noncompactness
(stated in the introduction) yields

a(N(R)) € a(Ns() + No(®) - a) € a( No(Q) +a(Na(®)) + a(-a).
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Thus
(2.9) a(N(@)) £ a(Ns(@)) +a(No(Q)).

We next show that N3 : CB([O,T],B) — Cg([0,T), B) is completely continu-
ous. This is immediate once we show that Ny : Cs([0,T],B) — Co([0,T],B)
is completely continuous; here Co([0,7],B) = {u € C([0,T],B); u(0) = 0}.
To see this we apply the Arzela—Ascoli theorem. The boundedness of N;(2)

is easy and the equicontinuity on [0, 7] follows from (2.6) and the following
inequality (hereu € Qand 0 S s <t < T):

| N1u(t) — Nqu(s)| £ / a(2) |9(z,u(2))| dz.

The above together with (2.5) and the Arzela-Ascoli theorem (Theorem 1.2)
implies that Ny is completely continuous. Consequently N3 : CB([O,T L B) —

— Cg([0,T],B) is completely continuous and so o( N3(2)) = 0. Thus (2.9)
reduces to

(2.10) a(N(Q) < a(Nx(®).

Also for u,v € Q2 and t € [0,7] we have

|Nou — Nov|p = I[E,ai;]( ds

[ S—

IIA

—KQ(t) /O t q(s) [h(s,u(s)) — h(s,v(s))

K max
[0,T]

IIA

t " o
KA [ g(s)eK MK u(s) - ()]

S

< Ju—vlg max e~KQO[KQ() _ 1] ‘ _

=|u— vIK[l —'e_KQ(T)] = kolu — v|g,
with ko < 1. This together with (2.10) implies
a(N(2)) £ koa(R).

‘Thus N is a Darbo map and we are finished. O

Acta Mathematica Hungarica 69, 1995



MEASURES OF NONCOMPACTNESS 239

THEOREM 2.2. Suppose (2.2) and (2.3) are satisfied. In addition as-
sume f has the splitting f(t,u) = g(t,u) + h(t,u) with g,h:[0,T]x B — B
continuous together with (2.5) and (2.7) holding. Also suppose

there is a continuous nondecreasing function 1 : [0,00) — (0,00)

and a function ¢ € C(0,T], ¢ > 0 on (0,T] and

2.11 T :
FIN [ saterds < o, with (e, < o0 (1u)
fort € (0,T] and u € B
and
/T r(s)ds < ” e where Lo = sup | h(t,0)|
(2.12) 0 lof Kz +9(z)+ Lo o1

and r(s) = max { g(s)(s),q(s)}.

Then (2.1) has at least one solution y € C([0,T],B) N C'((0,T],B).
REMARK. Notice that (2.11) implies (2.6).

PROOF. Let y be a solution to (2.4),. Now y(t) —y(0) = f(: y'(8) ds which
yields

t .

(2.13) 0l Slal+ [ 5/)] ds = 000

The fact that 6'(t) = |y(t)| together with the differential equation yields
(2.14) 8'(t) < g% (ly(D)]) + a(t) [a(t,3(1)) |-

In addition (2.7) yields

|h(t,w)| £ Klu|+ |h(,0)| £ K|u|+ Lo where Lo = sup |h(t,0)|.
[0,7]

This together with (2.14) will give

0'(t) < q(t)¢(®)¥ (ly(M)]) + Kq(®)|y(t)] + a(t)Lo <
< q()¢(t)p(8(1)) + Kaq(t)8(t) +q(t)Lo < () [¥(6(t)) + K6(t) + Lo
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since v is nondecreasing. Consequently

/“t) dz t 0'(s)ds
|

of Kz+9(z)+ Lo Jo KO(s)+¢(6(s)) + Lo =
t i
< ds £ ds.
_/Or(s) s_/o r(s)ds

Let J(2) = [% korityrr; and so () £ J1(fy r(s)ds)= M. This to-
gether with (2.13) yields |y(t)| £ M for t € [0,T]. Existence of a solution to
(2.1) now follows from Theorem 2.1. O

REMARK. (i) If B = H, areal Hilbert space, then the assumption that ¢
is nondecreasing can be deleted in Theorem 2.2. To see this suppose ly(t)| >
> |a| for some t € (0,T]. Then there exists (,t) € (0,T) with Iy(t)| > |a|
on (n,t) and | y(n)| = |a|. In addition |y(sZJ' < |¥/(s)] for s € (n,t) and this
together with the differential equation yields

ly(s)|" £ [¥/(s)] £ a(s)d(s)¢(1y(s)]) + Ka(s)|y(s)] + a(s) Lo
Consequently

174N

/|y(t>| di N /t ly(s)|" ds
W Kz+d()+ Lo Jo K|y(s)| +¢(ly(s)l) + Lo

< /nt r(s)ds £ /OT r(s)ds

and the result follows as before.
(ii) In fact if B = H, a real Hilbert space with inner product (-,-), then
(2.11) and (2.12) can be replaced by (2.6) and

there is a continuous function ¢ : [0,00) — (0,00) and
a function ¢ € C(0,T], ¢ > 0 on (0,77 and

2.11) T
( ) /0 #(s)q(s) ds < oo, with (u,g(t,u)) < ¢(t)¢(|u|)
for t € (0,T) and u € B
and
T = zdx
(2.12)* /0 P} /,a, K22 + 9(z) + Loz

where 7 is as defined in (2.12)
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in Theorem 2.2, and existence of a solution to (2.1) is again guaranteed. To

see this let (7,t) be as in Remark (i). Then the differential equation and
(2.11)* yield

(v, ) < aOSEB (1) + aOlyl|h(t, )] < (1) ((1u1) + Kyl + Lolyl) -

Consequently

ly(®)l zdx t
&
-/lal K22 4 y(z) 4 Loz = /,, nis)de

and the result follows.

3. Boundary value problems

Consider the Dirichlet boundary value problem

(3.1} {1’""‘ﬁy'—€y =qt)f(t,y,9), 0<t<1
' y(0)=a€B,y(1)=be B;B,c€R

with
(3.2) f:[0,1] x B2 — B continuous and 4¢ + 3% # 4(n7)?, n = —1,-2,...

and
1
(3.3) q € C(0,1) with ¢ > 0on (0,1) and / q(s)ds < .
0

Throughout this section let w, 7 : [0,1] — [0,00) be continuous functions with

7> 0o0n[0,1] and w > 0 on (0,1). In addition assume there exists a constant
No > 0 with |u|, £ No|u|, where

|u|*=ma.x{sup'u(z)| su k) }

[0,1] w(z) ,[0.1] (z)

Also we let (C1([0,1],B),|.|,) denote the Banach space of functions u €
€ C'([0, 1], B) with norm |ul,.

REMARKS. (i) Note |ln|11 < |ul, £ No|u|, where m = max { max(o yj w(z),
max[g 1] m(z)}.
(ii) We could of course take w = 7 = 1 throughout this section. However
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in some cases it may be beneficial to take w(z) = sin(7z), 7(z) = 2w(z) +
+ (1 -2z)w'(z). In this case No = 3. To see this notice for ¢ € [0, 1] we

have |u(t)| = |f0t u'(8) ds| £ t|u'|, and consequently j%(%l < % < 'l
for t € [0,1]. On the other hand for ¢ € [},1] we have [u(t)] £ (1 = t)]u'],
s0 l::((tt))| < (l_t)lu)l" < 3lw'|o for t € [3,1]. Thus suppg ;) %}%l < 1|u'|y and it is

sin(t

easy to check that supyy J"T’g%l < 1|u'|y since ming 1) 7(¢) = 2. Thus Ng =
1

%iii) The ideas in this section can be extended to the situation when we
have Sturm-Liouville boundary data i.e. —a;y(0)+ £1y'(0) = ¢, a1y(1) +
+b1y'(1) = d. Here o2 + 32 > 0, a? + b2 > 0, a1, f1,a1, by 2 0 and a1 3y +
+ bjoy + ajaq > 0.

By a solution to (3.1) we mean a function y € C*([0, 1], B) N C?((0,1), B)
which satisfies the differential equation on (0, 1) and the above stated bound-
ary condition. Associated with (3.1) we have the family of problems

{ V' + 8y —ey=x(t)f(t,y,9), 0<t<1

(3.4), y(0)=a€B,y(l)=be B; B,e€R

with 0 < A < 1.

REMARK. For notational purposes let C§([0,1], B) ={u € C*([0,1], B) :
u(0) = a,u(1) = b} and Co([0,1], B) = {u € C([0,1], B) : u(0) = 0}.

THEOREM 3.1. Suppose (3.2) and (3.3) are satisfied. In addition assume
f has the splitting f(t,u,v) = g(t,u,v) + h(t,u,v) with g,h :[0,1] x B* — B

continuous together with

for each bounded (with respect to the supremum norm)
Q C C3([0,1), B) and for each t € [0,1] the set

(3.5) ,
{/ q(s)g(s,u(s),u'(s)) ds: u € Q} is relatively compact,
0

for each r > 0 there ezists ¢ € C(0,1) with ¢ > 0 on (0,1) and
1
(3.6) / q(8)¢(s)ds < oo such that |z| £ r, |v| £ r imply
0
|9(t,2,0)| £ ¢(t) for t € (0,1)
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and
f q(t)l h(t’uhvl) i h(tau%vZ)l g Klpl(t)lul a u2|+
;o K2p2(t)|’l)1 i 'UZI, te [O$ 1] with uy, u2,v1,v2 € B.
Here py,p2 € C(0,1) with py,p2 > 0 on (0,1) and
1
/ pi(8)ds < 00, i = 1,2. Also there erist
0
tants ko < 1 and ky < 1 with
3.7) | constants ko nd ky wi

/01 | G(t, )| { Kip1(s)w(s) + Kapa(s)7(s)} ds £ kow(t) and

1
/ | Gi(t, 8)| { Kipr(s)w(s) + Kapa(s)7(s)} ds < kar(t).

0
Here G(t,s) is the Green’s function associated with the problem
(" + By —ey=0,y(0) =y(1) = 0.

Now suppose there is a constant M, independent of X, with |y|; £ M for each
solution y to (3.4)y. Then (3.1) has at least one solution y € C1([0,1],B) N
nc?((0,1),B).

REMARKS. (i) Of course we could take w =1 and 7 =1 and so (3.7)
gives a condition for K, and K to satisfy. However consider the case # = 0,
€ =0 and p; = p2 = 1. In this case a less restrictive condition on K; and K,
can be obtained if we take w(z) = sin(rz) and 7(z) = 2w(z) + (1 - 2z)w'(z).
Here G(t,s) = (1 —1t)sif 0 £ s £t whereas G(t,s) =t(1-s)ift s 1. It
is easy to check using integration by parts with the fact that w” = — 72w and
™ + 4w" = — n27 that fol |G(t, s)| w(s)ds = %(;l and [ |Gi(t,8)|w(s)ds =
= IS) together with

i 4w(t) 1 47(t)
/ |G(t,s)|(s)ds £ —~ and / |Gu(t,8)| 7(s)ds £ —5
0 0

ol
Thus (3.7) reduces to assuming that K; + 4K, < 72.

(ii) If gg : [0,1) x B*> — B is completely continuous then (3.5) and (3.6)
are satisfied.

PROOF. Solving (3.4), is equivalent to finding a y € C}([0,1], B) which
satisfies

(3.8) ¥/(t) - '(0) + By(t) ~ Ba—e / y(s)ds = A / a(5)f (5,3(5),4/(s)) ds.
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Define mappings F, T : C5([0,1], B) — Co([0,1],B) by

Ty(t) = /() - ¥ (0) + ful) ~ ¢ | L

and
t
Fy(t) = /(; a(s)f(s,y(s),¥'(9)) ds.

We first claim that T~! is continuous. Let k € Co([0,1], B). The difference
y of two solutions to T'z = k satisfies ¥ + 8y’ — ey = 0, y(0) = y(1) = 0 and

consequently y = 0 since 4¢ + 3% # 4(n7r)2, n= —1,-2,.... Hence T is one
to one. To see that T is onto there are five cases to consider.
Case (i): 4¢ + 3% < 0. Then the equation T'y(t) = k(t) has the solution

bes — acos (§) =z ut —pt ut
(3.9) y(t) = ———#—ze 2 sin (?) + ae™2 cos (?) -

sin (%)
(£32) (52 [ o)
+0 sin (%ﬁ) ] k(s)ds—

A Y- S _
—(—-ﬂ 2-:“ )e—éﬂ—sin (—l;—t)/t e%[—ucos (___lt(12 3))-}-

where p = \/—(4e + 32) and y = — (@’_12;&3) psin (§).

REMARK. One can check directly that the y given in (3.9) satisfies
(Ty)(t) = k(t). One way to construct the solution is to notice that y = y; + o

be —acos% =Bt

where y; = €2 sin (‘;l) +ae:2& cos (%5) satisfies y" + By’ — ey =

sin %
=0, y(0)=a, y(1) = b, and y, = y; where y3 satisfies y"’ + By’ —ey =k,
¥'(0) = y'(1) = 0 (of course the construction of y3 is easy using Green’s func-
tions). Consequently y(0)=04+a=a,y(1)=0+b=">band

t

y() - (0) + By(t) - fa— ¢ / o)l = T B = i) =
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- —[95(0) + By5(0) — ey3(0)] + w1 () — ¥1(0) + B(wi(t) — a) — 6/0 h1(s)ds =
= k(t) — k(0) + 0 = k(2).

Thus T is invertible and the continuity of 7-! is immediate. Note as well that
(T~ 'k)(s) is equal to the right hand side of (3.9) for any k € Co([0,1], B).

Case (ii): 4c+ 3 >0 and € # 0. Then the equation Ty(t) = k(t) has
the solution

B8 5 '
be? — a cosh (-—) —Bt ((St) —pt (6t)
3.10 1) 2/¢~2 sinh [ — ) +ae™* cosh{ — ) +
(3.10) o(*) sinh (£) 2 2

4 (62 2_7?[32) e sinh (——-——6(12_ t)) ‘/:e%[— 4 cosh (%8) g2
+3sinh (62—8> ]k(s) ds+

- L i o _
+ (6 p ) e“?ls_ sinh (ﬁ) / epT[— 6 cosh (6(1 8)) +
2n 2) J; 2

e (2222 e

where § = y/4¢ + 32 and n = (52—'2'-9-2—) d sinh (%) = 2¢6 sinh (%)

REMARK. Again y = y; + y, where y; satisfies y” + Sy’ —ey =0, y(0) =
= a,y(1) = b, and y, = y5 where y; satisfies y"" + By’ —ey = k, y'(0) = ¢'(1) =
= 0 (note the Green’s function exists since ¢ # 0 and 4¢ + 82 # 4(nx)*, n =
= —-1,-2,...).

Thus 7! is continuous and (7~1k)(s) is equal to the right hand side of
(3.10) for any k € Co([0,1], B).

Case (iii): € =0 and 8 # 0. In this case Ty(t) = y'(t) — ¥'(0) + By(t) -
Ba. Then the equation T'y(t) = k(t) has the solution

b—ae P (a—b)e P! 5
1—e8 1—eh

(3.11) y(t) =

—B(.—Bt _ 1 t
Pk ok / Pok(s) ds + e~ Pt / P k(s) ds.
e 0 0
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REMARK. Note y; = bl‘_“:__: + ggl—f‘);;f" satisfies ¥’ + By’ = 0, y(0) = q,
y(1) =b.

Thus T~! is continuous and (T~k)(s) is equal to the right hand side of
{8.L1),

Case (iv): 4e+ % =0 with € # 0. In this case Ty(t) = k() has the
solution

(3.12) y(t) = ae T + (be? — a)teF 4
—=B(t-1) _ t . =gt 1 & ,
+ 02D [y poreras - T [ ¥ (201 ) ko).
2e? 0 ¢

REMARK. Here y = y; + y2 where y; = ae F + (be% - a)t‘e'_"izé£ satisfies
v'+ By —ey =0, y(0) = a, y(1) = b, and y, = y3 where y3 satisfies y" +
+ B8y —ey=k, y'(0)=19y'(1)=0.

Thus T~ is continuous and (T~'k)(s) is equal to the right hand side of
(3.12).

Case (v): € = 0 with 3 = 0. In this case T'y(t) = y'(t) — ¥'(0). Then the
equation T'y(t) = k(t) has the solution

(3.13) yt)=a+(b-a)t- t/ol k(s)ds + /Ot k(s)ds.

REMARK. Note y; = a + (b — a)t satisfies y”’ = 0, y(0) = a,y(1) = b.

Thus T-! is continuous and (T~'k)(s) is equal to the right hand side of
(3.13).

Thus (3.4), is equivalent (see (3.9), (3.10), (3.11), (3.12), (3.13)) to the
fixed point problem

(3.14) y=T 'AFy)=1 =Ny + \T'Fy=(1-A)p+ ANy
where y; is as described in cases (i) to (v) above and N = T-1F. We now

claim that N : C§([0,1],B) — C}([0,1], B) is a Darbo map. Suppose the

claim is true, then set
U ={ueCg([0,1],B) : |ul, < Mo+ 1},

C =ck([0,1],B), E=(c'([0,1},B),]-,)

Acta Mathematica Hungarica 69, 1995



MEASURES OF NONCOMPACTNESS 247

with My = max {SUP[O,l] | % (t)| " MNO}, where Ny is as described at the be-

ginning of this section. Now apply Theorem 1.1 to deduce that N has a
fixed point i.e. (3.1) has a solution y € C!([0,1], B). In addition we have
y € C?((0,1), B) from (3.8) with A = 1. So it remains to show that N is a
Darbo map. Firstly N : C}([0,1], B) — C§([0,1], B) is continuous. Let 2 €
C C§([0,1], B) be bounded (with respect to| - |,). Alsolet Fu(t) = Fiu(t)+
+ Fu(t) where Fy, F, : C§([0,1], B) — Co([0,1], B) are defined by

Fu(t) = /Ot q(s)g(s,u(s),u'(s)) ds and Fru(t) = /ot q(s)h(s,u(s),u'(s)) ds.

Then
F(Q) € () + F(Q)

and consequently
(3.15) N@) =T (F(Q)) ST (R(Q)+F(Q)
CTHFR((Q) + T (F(Q) + (-un)

since if z €T '(F(Q)+ F>(Q)) there exist 21,220 € 2 with z(t) =
= 7-1 (Fl(zl(t)) + FQ(Zg(t))) and consequently z(t) = T! (Fl(zl(t))) +
+ T (Fa(22(1))) = y1(t) from (3.9), (3.10), (3.11), (3.12) and (3.13). Now
(3.15) together with the properties of the measure of noncompactness yields

«(N(Q) £ (T R (Q) + T F(Q) + (—u1)) <
La(T'F(Q) + (T F(Q) + a(-w1).
Thus
(3.16) a(N(Q) £ a(TR(Q)) +a( T F(Q)).
We next show that Fy : C}([0,1], B) — Co([0,1],B) is completely contin-
uous. To see this we apply the Arzela-Ascoli theorem. Clearly F;(Q) is

bounded and the equicontinuity on [0, 1] follows from (3.6) and the following
inequality (hereu € Qand 0 < s <t < 1),

| Fru(t) — Fru(s)| £ /; 9(2) |9(2,u(2),'(2))| dz.
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The above together with (3. 5) and the Arzela—Ascoli theorem (Theorem 1.2)
implies that F} is completely continuous. In addition since 7! is contin-
uous we have T~ F; : C§([0,1],B) — C%([0,1],B) completely continuous.

Consequently a(T~1F;(2)) = 0 and so (3.16) reduces to
{(3.17) a(N(Q)) £ a(T'F(Q)).
Now for u,v € Q and t € [0, 1] we have

IT-Iqu(t) — =t sz(t)l =

= 'T"l (/0‘ q(s)h(s,u,u’) ds) — 7 (/Ot q(s)h(s,v,v") ds) =

1 1
= / G(t,s)q(s)h(s,u,u’)ds—/ G(t,8)q(s)h(s,v,v")ds| =
0 0

1
= l/o G(t,3)q(s) [h(s,u(s),u'(s)) — h(s,v(s),?'(s))] ds

using (3.9), (3.10), (3.11), (3.12), (3.13) and changing the order of integration
once; here G(t,s) is the Green’s function associated with y" + Ay’ — ey = 0,
y(0) = y(1) = 0. Also for u,v € @ and ¢ € [0,1] we have

(T ) u(t) = (T Fp) o(t)] =

1
= /0 Gelt, 9)(s) [h(s,u(s),u/(s)) — h(s,v(s),v/(s))] ds]

The above together with (3.7) implies

‘ T 1Fu(t) T 1Fo(t) <

w(t) w(t) |7
s / |G(t, s)] {Klpl(s)lu(s) — v(s)| + Kapa(s)|u'(s) — v'(s)] } ds <
| u(s) = v(s)|
g—/ 1G(t,5)| {Kp()————(s) )
+K2P2(3)|L(3)T(—S;)¢NT(8)} ds <
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< Ju- ( (t)/ |G(t, )| { Kupi()w(s)+

+Kopal(e)r(s)) ds) £ k=gl

where ko is as described in (3.7). Thus

(3.18) sup
[0.1]

é k0|u - ’UI*.

T_ng’U.(t) & T‘ngv(t) ‘
w(t)

Also

(T7'R)'u(t)  (T71Fy)v(t)
7(t) 7(t)

< 2 [ et {xme) L,

v(9) - (e)_
e )} ds

s

+ Kopa(s)

q
<tu-ol, (w75 [ 16469 {Eim(opu(o)+

T |
+Kopa(s)7(8)} ds) < kilu - v,.
Thus

(T7'R)u(t)  (T'Fy)v(t)
7(1) 7(t)

Combining (3.18) and (3.19) yields

(3.19) sup

§ kllu - ’UI*.
[0.1]

IT~'Fyu — T~ Fpo|, £ max{ko, k1}|u — v|, = kalu — v,
with k3 < 1 and this together with (3.17) yields
a(N(Q)) £ ksa(Q).
~ Thus N is a Darbo map and we are finished. 0O
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REMARK. If ¢ is continuous on [0, 1], then in fact y € C%([0,1],B) in
Theorem 3.1. This follows immediately from (3.8) with A = 1.

The above existence principle is now used to obtain two existence theo-
rems for differential equations in Banach spaces. The first considers the case
B = H, a real Hilbert space with inner product (-,-).

REMARK. For the remainder of this section let ||u||* = fol |u|? dt for ap-
propriate functions u : [0,1] — H.

We first must extend Theorem 1.3 for the problems considered in this
section.

THEOREM 3.2. Let H be a real Hilbert space and suppose u : [0,1] — H
has a continuous derivative together with u(0) =a € H and u(1)=b€ H.

Then \/_( )
1, 2 V2(la] + 18]
llul® £ p”"'" i

ProOF. Notice first that

1
'l + 5 (laf® +10f%).

lu? = ((u—-a)+a,(u—a)+a) = |u—a[2+|a|2+2((u—a)+a,a) <
< |u—af® +|a|* + 2|alju - a.

Thus Holder’s inequality together with Theorem 1.3(ii), since u(0) — a = 0,
implies

1 1 1
2 2 2 1
/2 uf? dt < / |u—a|2dt+2|a|/2 (G|l
0 0 0 2

1 1 ‘;‘
= /2 |u— af* dt + v2]al (/QIU—alzdt> +%Ial2 -
0 0

1
1 2
/2 |u'|2dt> o l|a|"*’.
0 2

2

4(1-0)® 3 4(1-0
§ (‘2 ) /2 Iul(2dt+\/§lal (2 )
2 0 x4
Thus
1 1
3 1 /2 V2|al 1
\ gt g — / 2 dt + Y212 1) + 2l
G20)  [Tpuldes 5 [7 P s 28 + Gl
On the other hand since |u|* < |u — b]* + |b]* + 2|b||u — b] we have

/1|u|2dt< 1/1|’|2dt+\/§|b| N 12 dt % Ligp2
1 :7r2%u 7r2%|u +§||
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Thus
. I V2[b| 1.
2 Ty S 2 ! Z1nl2
(3.21) /2 Juf? dt < rz/% o dt -+ V2 ) 4 2

Adding (3.20) and (3.21) gives the result. O

THEOREM 3.3. Let B = H and suppose (3.2) and (3.3) are satisfied. In
addition assume f has the splitting f(t,u,v) = g(t,u,v) + h(t,u,v) with g,h :
[0,1]x H? — H continuous together with (3.5) and (3.7) being satisfied. Also
assume g(t,u,v) = g1(¢,u,v) + g2(t, u,v) with

(3.22) q,p1,p2 are continuous on [0, 1],
283 |91(t,u, )| < Aoflul’ +1pl” +1} for 0 6,0 < 1
' and some constant Ag,
(3.24) (u,gg(t,u,p)) 2 c|u|2 + d|u||p| for constants ¢ and d,
1

there is a function 1 : [0,00) — (0,00) such that — is
(3.25)

integrable and If(t,u,p)l < ¥(|pl) for (t,u) in bounded sets
and

o0

(3.26) o = o0 for any constant qo > 0.

o Y@ +u+l

Then (3.1) has at least one solution y € C*([0,1],H)) if
(3.27) bole| + 61|c|No + b2|d|xr No + K, ( sup pl(t)) + Kom ( sup pg(t)) <’
[0,1] [0,1]

where No = supjg,)¢q(t) and éo=01ife 20,8 =1ife <0,6, =0ifc 20,
01=1ifc<0andé=01ifd20,8,=11ifd<0.

REMARK. If in addition we assume
(u, h(t,u, v)) = c0|u|2 + dolu||p| + eo|u| for co,dp,e0 € R
then minor adjustments in the analysis below will show that (3.1) will again
have a C%([0,1],H)) solution if (3.27) is replaced by the less restrictive
condition

(S()IEI + 61|CINO + 62ld|7l'N0 4+ 63|C0|N0 + 64|d0[7rN0 < 72
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where (53“0if(‘0>0 63 = 1if ¢g < 0 and 64—Olfdo>0 64—11fd0<0
REMARK. If (3.22),(3.23) and

|ga(t, u,p)| < C(t,u)lp* + D(t,u)

where C, D are bounded on bounded sets are satisfied, then in fact (3.25)
and (3.26) hold with ¥(z) = Lo + L1|z|2 for some constants, Lo, L; > 0.

ProOF. Let y be a solution to (3.4),. Also let V(y(t)) = y(t) —a(1 -
—t) — bt and note that V(y(0)) = V(y(1)) = 0. Integration by parts yields
1 1
[ ) oy a=- [ (o +a-byo)d=
0 0
1
— a2 —
=P+ [ (- a) a
and : R ’
/U (V(y(2),y' (1)) dt = % - % + /0 (b—a,y(t)) dt

These together with the differential equation in (3.4), yield

~|lvI* + /01 (b—a,y'(t)) dt+

2 b2 1
+8 ('7' 2 '7' + [ (b= awo) dt) - elll” =

_,\/ y(t),h(t,y,9") + 9(t,y,y")) dt.

Thus

1
WIS el +la=b [ 1o1de+

2_ b2 1
+ (““'—2"—|+|b—a|/ wldt) +

0

1 1
+?u1;q(t)/ |yl 91(t, v, 9] alt+/0 lylg(t)| h(t, ¥, v")| dt-
0,1 0

._,\/0 q(t)(y(t),gz(t,%yl)) dt
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Also assumption (3.7) implies

a®)|h(t,y1),¥'@®))| £ Kipi(8)|y(8)| + Kapa(t)| ¥'(2)] + Lo

where Lo = supg ) q(t)| h(t,0,0)|. The above together with Hélder’s inequal-
ity implies that there exist constants Py, Py, P, and P; with

(3.28)

1
111" £ — ellyll® + Po+ Plly'll + Pallyll + Ps/O lyl|91(t, v, 9")| dt+

1
+ Ky Iyl sup pa + Kallylllly]| suppz — A / oy, 0a(t,9,4")) dt.
[0,1] [0,1] 0

Now Theorem 3.2 implies that there are constants P, and Ps with
(3.29) llyll £ Pally'll + Ps.

Also (3.23) implies

(3.30)

1 . 1 1 1
/0|y|l91(t,y,y’)|dt§Ao(/0 Iyl‘s+1dt+/0 lylly’l”dt+/0 Iyldt>-

Now Holder’s inequality and Theorem 3.2 imply
Lo 5 541 .
331) [ Wl de< ol S Rl I+ Prand [ lulaeS R+ P
0

for some constants Pg, P7, Pg and Py. Also note since y(t) = a + fot y'(s)ds
we have using Hoélder’s inequality that

(3.32) |y(t)| < la] + / |¥/(s)] ds < Ja] + ¥l

In addition Holder’s inequality and (3.32) yield

2=

1 1 2 2
(3.33) /Olylly'ladt§lly'l|" (/0 Iylmdt) <Y1 (Prolly'll + Prr)
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for some constants Pjo and P;;. Putting (3.31) and (3.32) into (3.29) and
then putting the result with (3.29) into (3.28) yields

(3.34)
)
1V17 € —ellyll® + Pra+ Pually'l| + Pually'I” + Pusl|¥]I7F + Prelly']|” +

1
+Kulyll? sup o1 + Kallgllly/)| suppz — A / alh it 3y} o
[0,1] [0,1] 0

for some constants Py, P13, P14, P15 and Pjg. Another application of The-
orem 3.2 yields

K4 Supyo, pl(t) KzsuP 2 p2(t) '
(3.35) (1 - U G L o] ) ly'll* <

T2 T
6
< —ellyl® + Pir + Puslly']| + Pually' "'+

1
3
+Pis||y'|I”* + Prslly/|I” + Proll¥l|? - /\/0 q()( (1), 92(t,9,9")) dt

for some constants Py7, Pijg and Py9. There are eight cases to consider.
Case (i): ¢20,d20 and € 20. Then (y(t),gg(t,y,y’)) 20 and so
(3.35), since € 2 0, becomes

Kysuppp(t)  KasuppyP2(t) 2 o
L= 2 i - ”y ” =

5 4 3
< Prr+ Puslly'll + PuallyI” + Pisllg'I” + Peslly'll” + Prolly/II*.

Now since 0 < 6,0 <1 and Kjsuppq pi(t) + 7Kz supjgqyp2(t) < 72, then
there exists a constant My independent of A with

(3.36) vl £ Mo

for each solution y to (3.4),.
Case (ii): ¢ 2 0,d 2 0 and ¢ < 0. Notice first that since ¢ < 0 Theorem
3.2 implies

() (ool < C211E + Pollyl + P
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for some constants Pyo and P;;. Now put (3.37) into (3.35) and use the fact
that (y(t),92(2,,%')) 2 0 to obtain

B
+7r2 w2 T

( € 5 K, SuPjo,1] P1 - K, SUP[o,1] p2) “y1”2 Z

5 o o 3
< P+ Poally/|| + Pually' I + Puslly/I”* + Puslly/|I” + Prolly'|1?
for some constants Ppy and Pa3. Consequently (3.36) is again true since || +

+ Ky suppp 1) p1(t) + mKasuppo 5y pa(t) < 72
Case (iil): ¢ < 0,d 20 and € < 0. Then (3.35) and (3.37) yield

(3.38)

o 3
< Py + Poslly/ll + Pually'lI”*" + Puslly/ """ + Puslly'll” + Prslly'||>—

_,\/ (1), 92(t, 9,9')) dt.

Also since (y(t),gg(t, Y, y')) > c|y|* we have from Theorem 3.2 that

e  Kisuppym(t) Ky Sllp[o 11 P2(t)
R -

T2

-3 [ a0 ute)9u(tv.9)) e S (~¢ )supa(h / P dt <

—c)N,
< EWop 2 4 Pyl + Pas

for some constants P4 and Pps. Putting this into (3.38) yields

€ N Kisu t Ko su pa(t
(1+_2+c o p[0,1]1’1() 2 SUP[g 1] P2 ))”,l

T2 T2 T
3
< Pas + Pylly/]l + Pually'| + Pus|l'[7 + Puslly' " + Prolly'|?

for some constants Pyg and Py7. Consequently (3.36) is again true.
Case (iv): ¢ 2 0,d < 0 and € < 0. In this case (3.38) is again true. Also

since (y(t),92(t,y,9)) 2 d|y||ly’'| we have from Theorem 3.2 and Holder’s
inequality that

1 1
% / a0 (¥(0), 92(t,9,1) dt < (~d)No / lwlly/| dt < (~d)Nolyllly]| <

—d)N, 3
< EOT0y12 + Pusly/ I + Pas
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for some constants Pyg and Pyg. Putting this into (3.38) yields

e dNy Kyisupgqpi(t) Kasupgypa(t)
T I
™ ™ ™ ™

3
< Py + Poa|ly|| + Pl + Puslly' I + Prslly'|l” + Paally'|l?

for some constants P3p and Ps;. Consequently (3.36) is again true.

Case (v): ¢<0,d <0 and € < 0. Combining cases (iii) and (iv) will
again yield (3.36).

Case (vi): ¢ < 0,d 2 0 and ¢ 2 0. Then (3.35) yields, since ¢ 2 0, that

K1 su t K, su t
(3.39) (1 _ & Plo,1) P1(%) __ Kasupp,) pa( )) ||y'||2 <

T2 T
5 3
< Pz + Piglly|| + Pually'|” + Puslly' " + Prslly'|l” + Prslly'||2 -

1
—A/ q(t)( (), g2(t, y,y")) dt.
0

Now using the ideas of case (iii) will again yield (3.36).

Case (vii): ¢ 2 0,d < 0 and £ 2 0. Then (3.39) is satisfied and the ideas
of case (iv) will yield (3.36).

Case (viii): ¢<0,d <0 and € 2 0. Then (3.39) is satisfied and then
combine the ideas of case (iii) and (iv) to again yield (3.36).

Thus in all cases there exists a constant My independent of A with (3.36)
holding i.e. ||3’|| £ Mo. In addition (3.32) yields

(3.40) ?ufi ly(2)| £ lal + Mo = My
0,1

for any solution y to (3.4),.

Now fix z € H with norm 1 and set r(t) = (y(t),z). Notice |r(t)| <
< |y(t)] so [r(0)| £ |a| and |7(1)| £ [b] and also there exists to (dependent
on y and z) in [0,1] with |7(to)| = |7(1) - 7(0)| £ M; where M = | +
+ |a|. That is [(y'(to),2)| £ M; for all 2 € H of norm 1. If y/(to) # 0 set
z = £l t6 obtain |v'(to)| £ M3, which also holds if y'(to) = 0. Thus there

y'(to
exists to € [0,1] with

(341)  [Y(to)] S M.
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For t € [0,1] we have
) ! "
(y (t)’?/ (t)) "
+y(8)|' = £t < |60
whenever y'(t) # 0. This estimate, (3.25),(3.40) and (3.4), yield

(3.42) + |y ()] £ 181|9'(8)] + lelM1 + p(|y'(2)]) No £
ST (Rl +v'(1)] +1)

at any point ¢ € [0, 1] where y/(t) # 0; here Jo = max {|B|,|e|, No} and No =
= supjo,y) ¢(t). Suppose |y'(t)] > M, for some ¢ € [0,1]. From (3.41) we can
deduce that there exists an interval (p,v) containing t with |y/(s)| > M,
on (p,v) and |y'(u)| and/or |y'(v)| equals M,. Without loss of generality
assume |y'(p)| = M,. By (3.42) and Holder’s inequality we have

/‘ ly'()||v'(1)]" dt
w (Y @) +|v'(@®)] +1

t
< Jo / |¥/(s)] ds < Jolly/|l < JoMo
m

using (3.36). Making the change of variables u = |y'(s)| we obtain

ly'(8)] wdu
—— < Jo M.
/M2 YP(u)+u+1~ A

Let Io(2) = [y, Wﬁ% and so |y/(t)| £ I (JoMo) = M3. Consequently

(3.43) suply'(t)| < max{M,, M3}
[0,1]

for any solution y to (3.4),. The result now follows from Theorem 3.1 and
the estimates (3.40) and (3.43). O

The final existence theorem concerns differential equations in a real Ba-
nach space.

THEOREM 3.4. Suppose (3.2) and (3.3) are satisfied. In addition assume
f has the splitting f(t,u,v) = g(t,u,v) + h(t,u,v) with g,h:[0,1]x B> - B
continuous together with (3.5) and (3.7) being satisfied. Also assume

(3.44) { lg(t,u,p)| € Ao{lul’ + [pl® + 1} for0 6,60 < 1

and some constant Agp.
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(i) If w chosen in (3.7) satisfies w > 0 on [0, 1] then (3.1) has a solution
y € C%([0,1],B).

(ii) If w chosen in (3.7) satisfies w(0) = 0 and/or w(1) = 0 then (3.1) has
a solution y € C*([0,1], B) if we assume

[ there exist constants ko < 1 and k3 < 1 with

1
/0 |G(t,8)| {K1p1(s) + K2pa(s)} ds £ ky and
(3.45)

s 3

A
/0 |Gu(t, 8)| {K1pr(5) + Kapa(s)} ds < ks. Here

G(t,s) is the Green’s function associated with the
| problem y" + By’ — ey =0, y(0) = y(1) = 0.

PRrOOF. Let y be a solution to (3.4),.Then

(346)  y(t)=A / G(t, 8)q(5) (5, (s),¥/(s)) ds + w(t)

where y; is the solution to ¥’ + By’ — ey = 0, y(0) = a,y(1) = b as described
in Theorem 3.1. Also assumption (3.7) implies

(347)  q(t) |h(t,y(0),.¥(0)| £ KEap(0)]y(0)] + Kapa()|¥'(1)] + Lo

where Lo = supjq q(t)|h(t,0,0)|. Putting (3.44) and (3.47) into (3.46)
yields '

1
(3.48) |u(t)| £ /0 |G(t,9)| [K1pa(8)|u(s)| + Kapa(s)|y'(s)|] ds+
1
+o [ |G(ta)a [|9)]” + ¥/ +1] ds-+ L

0

where Ly = supg ] {|y1(t)| + Lo fol |G(t, )| q(s) ds}. Also (3.46) implies
1
V()= [ Gt (o) (5,9(e),(5) ds+ (0

and this together with (3.44) and (3.47) yields

((3.49) |y (1)] < /o |Gi(t, 8)| [K1p1(s)| y(s)| + Kapa(s)|¥/(s)]] ds+
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1
/]
+o [ 1Git,9)]a(0) |99 + 4] +1] ds + L
0

where L = suppgy {ly{(t)| + Lo fol | Ge(t, )| q(s) ds}.
Case (i): w > 0 on [0,1]. Now (3.48) implies

1
ly(t)] < |y|*/0 |G(t,5)| [K1pr(s)w(s) + Kapa(s)(s)] ds + L1+

1
+Ao [ 16(6,9)]ats) [l (w(6) "+l () +1] ds <

< kow(t)|yl, + Rolyl’ + Ralyl’ + Ra

for some constants Rg, Ry and Rj; here kg is as in (3.7). Consequently

(3.50) | l < kolyl, + Ralyl’ + Ralyl’ + Rs

y(t)
“w(t)
where R3 = %1,124 =B Ry = 2 with p = minpqw(t) > 0. Also (3.49)
yields

1
|v'(t)] £ |yl*/0 |Gi(t, )| [ K1ipr(s)w(s) + Kapa(s)(s)] ds + Lo+

1
+A0/0 |Gu(t, 5)| q(s) [Iyli(w(s))5 + 1yl (r(s)) " + 1] ds <

< kir(t)|yl, + Re|y|i s R7|y|£ + Rs

for some constants Rg, R7 and Rg. Consequently

|y( ly@) .
7(t)

for some constants Rg, R1g and Ry;. Combining (3.50) and (3.51) yields

(3.51) < kilyl, + Rolyl; + Ruolyl] + Run

|y, € max{ko,k1}|yl, + Rizlyl’ + Ruslyl’ + Ria

for some constants Rq9, R13 and Ry4. Thus there exists a constant My inde-
pendent of A with |y|, £ My since max{ko,k;} < 1. Hence

lyl; £ Moy where u—max{r[na.l}](w(t) r[ré:ﬁ(‘r(t)}

Acta Mathematica Hungarica 69, 1995



260 D. O'REGAN

for each solution y to (3.4),, and the result follows from Theorem 3.1.
Case (ii): w(0) = 0 and/or w(1) = 0. Then (3.48) yields

1
ly(t)] £ |y|1/0 |G(t,8)| [ Kip1(s) + Kapa(s)] ds + Ly+

1
+ao [ 160, a(o) 1ol + 1ol + 1] s
and so with k; as in (3.45) we have

(3.52) lylo £ kalyl, + Ruslyl’ + Ruslyl? + Riz

for some constants Rys, Rie and Ry7. Similarly (3.49) yields

(3.53) 1¥'lo £ kalyl, + Rislylt + Ruolyl? + Rao

for some constants Ryg, Ryg and Rzo. Combining (3.52) and (3.53) yields

lyl; £ max{kq, ks}|yl, + R21|ylf + Rnlylf + Ro3

for some constants Ry;, R22 and Rp3. Thus there exists a constant M in-
dependent of A with |y|; £ Mo for each solution y to (3.4),, and the result
now follows from Theorem 3.1. O
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ORDER OF ORBITS IN HOMOGENEOUS
SPACES

Y. VILLARROEL (Caracas)

The object of this paper is to study the order of orbits [4], in homoge-
neous spaces, using contact theory.

Let G' be a compact, connected Lie group and H C G a closed sub-
group. Consider the homogeneous space M = G/H, the canonical projec-
tion 7 : G — G/ H, the canonical action a: G x M — M and the unique
analytic manifold structure-on M under which both 7 and a are analytic.
Let K C G be a closed subgroup and K(o) the orbit of 0 = 7(H ) under the
restriction of o to K. Put dim K(o) = n.

Let C*™M be the contact bundle of order s of n-dimensional subman-
ifolds in M and CZN the contact element of order s at z € N, of an n-
submanifold N C M. The canonical action a induces an action a® of G' on
C*™M. Using the isotropy subgroup G*® of G at C;K (o), i.e.:

G°={g€G:a*(g,C:K(0)) = C:K (o)},
we will construct the decreasing sequence
H=0G"D ... 2G5 3 ..o

and a corresponding decreasing sequence of Lie subalgebras

e TR § s I b, S

h=g
We will prove that the first index r such that g" = g"*!, is the order of the
orbit K (o) [4].

In consequence the order of the orbit K (o) depends only on the contact
element C] K(0). If K(0) has order r and K; C G is another Lie subgroup
with dim K1(0) = n, and CT*' K;(0) = C"*1 K(0), then the order of the orbit
Ki(o) is r. .

Moreover, we will prove that the Lie subalgebras g' coincide with the
Lie subalgebras q' defined in [4]. This gives a geometric meaning to such
subalgebras.

I would like to give my special recognition to Prof. Janos Szenthe (E6tvos
University) for his suggestions during the elaboration of this paper.

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



264 Y. VILLARROEL

1. Orbits of the contact elements

Let M be a smooth (n + m)-dimensional manifold. Two imbedded sub-
manifolds N1, N, C M, of dimension n, with n £ m, have contact of order s
at * € N1 N N, if there exist local parametrizations of N; and N5 , given by
the imbeddings

f17f2:UC Rn o M’
and a local coordinate system (V,(z',3’)), 1<i<n, 1< ;< m, about

z € M such that fi(o) = fa(0) ==z, ¢'o f{ =2, 1=1,2 and the partial
derivatives at o of (3’ o f1) and (3’ o f3), are equal up to the order s. The
contact element of order s at z € N is denoted by C2N, and C*"M denotes
the set of all contact elements CZN, with 2 € N and N C M an imbedded
n-dimensional submanifold.

Let j £ s and consider the canonical projection

™ :C"M — CP"M

given by C3N +— CLN. Consider also for any submanifold N C M the
canonical inmersion

i*:N—C"M
given by z € N — C:N.

Moreover, there is a canonical inmersion
il,s . Cs+1,nM Cl,n(cs,nM)’

given by
C:HN — Cé;NCSN.

Consider the manifold structure on C*"M under which 7} : C*"M — M
is smooth.

Two submanifolds Ny, N,, with dim N; £ dim M, [ = 1,2, have con-
tact of order s +1 at z € N; iff they have contact of order s at z and
Tesn, C° Ny = Tegn,C® No. Then we can identify the contact element CatLN
with (C2N,TcsnC?N) belonging to the Grassmann bundle of 7 planes on
C*"M [3].

Now we consider M = G/H, a homogeneous space with G, a connected
Lie group and H C G a closed subgroup. The action a: G X M — M in-
duces an action

o’ :GxC"M — C°*"M,

given by o’(g,C;N) = C; g+ N, where g -z denotes a(g,z) and g- N the
image of N by ag: 2 € M — a(g,z) € M.
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Let K C G be a Lie subgroup and K (o) the orbit of the point o = 7(H)
under the action « restricted to K. The natural action of G on the Grass-
mann bundle Gr™ M, allows the identification

Cgl,og -K(0) = (90, Toay(ToK(0)).

Suppose now that K(o) is an imbedded submanifold, which always holds
if K is a closed subgroup, and put dim K (o) = n. The following propositions

serve to establish the fact that the orbit K (C2K (o)), under the action of

a’® restricted to K, is the submanifold C*K(o) obtained by the inmersion
i*: K(o) — C*"M.
ProposITION 1. Let K C G be a Lie group such that K(o) is an imbed-

ded submanifold of dimension n of M. Then i°((K (o)) is the orbit of the
contact element C K (o) under the action of o® restricted to K.

Proor. By induction: for s = 1, using the identification given above, we
have

i'(K(0)) = {CLK(o)lk € K(0)} = {(TK(o)lk € K(0)}.
But if k € K, then T}.,K(0) = Toak(ToK(o)) , and
(k- o0, Toax(T,K(0)) = k- (0,T,K(0)) = k-CLK(o),
in consequence,
i'(K(0)) =C'K(0)= {k-ClK(o)lk € K} = K(C}K(0)).
For s 2 1, the proof is similar, using the identification

CiK(0) = (Tps-1(,)C* ' K(0)). O

2. Isotropy subalgebras and the order of the orbit
Let G* be the isotropy subgroup of G at C3K(o), i.e.
G* = {g € Gle*(9,C3K(0)) = C;K(0)}.

Since G” is closed, it is a Lie subgroup. It can be seen that 77 is equivariant

and C2K (o) is projected on C2~'K(0). We have the decreasing sequence of
Lie groups

B=0"5 ... 0@ 368"y, .«
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and the corresponding decreasing sequence of Lie algebras,
h=g’D . og* g o ok .

ProOPOSITION 2. Let K C G be a Lie subgroup and K(o) an imbedded
submanifold of dimensionn in M = G/H. Then g € G**! if and only if

g€eG® and Toag(Tch(o)C"K(o)) = TC‘;K(O)C’K(O).

ProOF. We consider the contact element C:*! K (o), identified with its
image

i"*(C* K (0)) = Cig(s)C K (0).
The last term can be identified with (Tcsk(,)C*K(0)) € Gr™(C*"M), then
g € G*t1 if and only if
9+ (Tosk())C°K(0)) = (Tesk(o)C K (0)),

ie., g € G* and Tgsk (o)) leaves invariant the subspace Tgsk(o))C°K(0).
O
Let f° C g be the inverse image of the subspace T¢sk (,)C*° K (0) under the

tangent linear map Tosk (o) given by g € G — g- CoK (0). The following
proposition yields a characterization of the Lie subalgebras g°.

ProrosITION 3. Let G be a compact Lie group and K C G a closed Lie
subgroup. Consider the decreasing sequence

h=a> ...0a*>a*tl > ...

of subsets defined successively as follows: Z € a**! if given any X € £° there
is a 'Y belonging to the Lie algebra k of K and a Z, € a® such that

[2,X]=Y + Z,.

Then a® is a Lie subalgebra of g and it is the Lie algebra of G*.
ProoF. We will prove by induction that a® is a subalgebra. Obviously

a’ = h is a subalgebra. Assume now that a® is a subalgebra. Let Z;,Z, €
€ a*t1, then for any X € f° there are Y3,Y, € k and Z;,, Z, € a® such that
[Z1,X]=Y1+ 71, and [Z3, X]=Y2+ Zs,.

Consequently
[£Z) + 22, X] = EY1 + Y2 + €21, + 022,
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belong to k + a® for any 7,£ € R, since €7y, + nZ;, € a® holds, by the in-
ductive assumption. Moreover,

[[21,23), X] = [ 21,22, X]] = [22,(21,X]] = [Z1, Y2+ Z2.] - [Z2, Y1 + Z1.]

and the inductive assumption implies that [Z;,Y;] € k + a® and [Z;,Z;,] €
€ a®, in consequence [[Zl, Z«_;],X] € k+a’.

Now, also using induction, we will see that a® = g®. For s = 1, this is
proved in [4].

Since G is a compact group and K C G is a closed subgroup, we have
the canonical identification

a°:G/G* — G(C:K(0)),

and the orbit K (o) is an imbedded submanifold of M [1]. Moreover, by
Proposition 1, the orbit K (C’K(o)) is equal to the submanifold C*K(o0),
which is an imbedded submanifold of G(C*K(0)). Then, using the identi-
fication of the subspace Tsk (,)C°K(0) with the corresponding subspace in
T,G/G* given by T.a*, we have

£ = (Teadyk() ~ (Tesk(o)CK(0)) = (Tems) ™ (Tosx(o)C* K (0))

with 75 : G — G//G? the canonical projection.
Asume now that a® = g*. Let Z € g*t!, then Z € g* and for any X € f*
we have

Tex 2. X =Tix; i d
dt t=o0

T (AdepizX) =

t=o0

Teﬂ'a(AdexptZX)a

and the last term is equal to

d
d—t- (TC;K(o)aexp tZ ( TCWS(X)) ) ’
t=o

with T.ms(X') belonging to Ts k(o) K (0) and exptZ is contained in G°. Then

TC;K(o)a:xptz(Te"(X)) is a curve I'(t) in Teosx(o)K(0) and there exists a
curve 7(t) in k such that

Tems| [Z, X] =

00 =Tn g 0 =Ta)

t=o

where Y € k. In consequence
Tex I, X = Tam(Y),
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thus [Z,X] =Y + Z., with Z, € g° but, by the inductive assumption, g°* =
= a®. Hence [Z,X] € k+ a’.
Assume, conversely, that Z € a**! and consider X € Tgsx(0)C*K(0). We
will see that
Tosk (o) @exptzX € Tcsk(0)C° K (0),

thus Z € g**+!. Indeed, let Z € a**! and X € f*+1, such that T.7(X) = X,
then

Tody:zX = Talyy1z(Ten(X)) = Temy( Adexpiz(X)).

Now
T X Z)—- Ad tZ
:t Te"s(AdexptZ( )) = Texs im L) u) (exptZ) » &
t=o0 U—0

but this last term is equal to

d Z -
T.rs( Ad(exptZ)) - lim ol it

u—0 U

X = Teﬂ's(AdexptZ)[Zv X]’

and by the inductive assumption this is equal to Tem;Adexpiz(Y + Z.), with
Y € k and Z, € a® = g°. Then there exists a curve y(¢) € k such that

d
= Toxy = (Adexptz(X)) = Tems¥(t) € Tosk(0)C°K(0). O

t=o

THEOREM. Let G be a compact Lie group, K C G a closed Lie subgroup
and C2K (o) the contact element of order s of the orbit K(o) of the point
0 € G/H under G. Consider the decreasing sequence

R s O 1 B gl OO

of the Lie algebras of the isotropy groups G* at C:K (o). Then the order of
the orbit K (o) is the first indez r such that g" = g™t'.

Proor. Let f C g be defined by
f=(Tx) =T E)
and consider the decreasing sequence
h=q"S ...34" 24" Je.
defined as follows: Z € q**! if given X € f thereis a Y € k and Z, € q*~!

such that [Z, X] =Y + Z.. Then, the first index r such that q" = q"*! is
the order of the orbit K (o) [4].
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Now, K C G is a closed Lie subgroup and, since G is compact, K (o)
is an imbedded submanifold of M = G/G°. Hence C*K (o) is an imbedded
submanifold of G/G?. Therefore the subspace f* defined in Proposition 4 is
equal to the subspace f defined above. In consequence, the Lie algebra a® is
equal to the Lie algebra g* of the isotropy subgroup G?*, so the first index r
such that g" = g"t! is the order of the orbit. O

COROLLARY. The order r of the orbit of a subgroup K depends only on
the contact element of order r + 1 of K(o). If K, is another closed sub-
group of G with dimension of Ki(o0) equal to the dimension of K(o), and
Cr*t1K1(0) = CI*1 K (o), then the order of the orbit Ki(0) isT. O

Now we will find the order of the orbit for some examples, and finally
we will give a scheme to calculate the Lie algebra of the isotropy group G?,
using the action of the Lie algebra g* on T"(Cé,K(o)G/G’).

ExaMpLES. 1. Let G be group of rigid motions of the 3-dimensional
euclidean space R and H = SO(3) the isotropy subgroup at o € ®°.

We represent G by {(4,z): A€ 50(3), z € %3;, and its action on R3
is given by (A,2) -y = Ay + z, for (A,z) € G,y € ®°.

Let {(6'),(w;)} be the Maurer-Cartan forms of G.

Consider the involutive 3-dimensional left invariant distribution D on G
defined by the equations

B =0 wiz=o wd=o,

and K the analytic subgroup of G with Lie algebra D.

The group K is given by

K= {((a;)v(zl’z2’$3)) : a;13 = a:;’, = O,Gg = 1,23 = 0} ’

and 7(K) = R? C ®2 is the zy-plane in R ([3], p.50).

Since the Lie algebra g° of the isotropy group G' of the induced action
on the space of contact elements at C! K (o) is equal to the Lie algebra g2
therefore the order of the orbit K (o) is equal to 1. O

2. Let G be the rigid motions group of R* as above and H = SO(3).
Consider the involutive 3-dimensional left-invariant distribution D on G
defined by the equations

P=o wiz=k, 2=k* keR k>o

Let K C G be the analytic subgroup of G whose Lie algebra is D. Then
m(K) is the sphere in R of radius r centered at (0,0,—1) ([3], p.51).

The Lie algebra g° of the isotropy group G! of the induced action on the
space of contact elements at C'1 K (o) is equal to the Lie algebra g?, therefore
the order of the orbit K (o) is equal to 1. O
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8. Let G = O(4). Consider the canonical action of G on Co*R4. Given
a coordinate system z, y, 2, v, let 7 € C2*R* be given by the zy-plane and

H = 0(3) C O(4) the isotropy subgroup at r. There is an involutive left
invariant distribution D on G defined by the equations

3 _ pd _ e 2 2_
0—0 = o, W3—-W4— = 4—

see e.g. [6], [7]. Let K C G be the maximal integral manifold of this distri-
bution through the identity element. It can be shown (see next paragraph)
that g!=g?, consequently the order of the orbit K(r) is equal to 1. O

To calculate the Lie algebra of the isotropy group G* of a contact ele-
ment X* € C*" M, we consider the action of the isotropy subgroup G*~1 of
the element X*1 =73_,(X?) on the fiber H* C C*"M which projects onto
X*=1. Also we consider the action of the Lie algebra g* on T, H?* (see [2]).

We shall study the integral curves of the fundamental vector field defined
by g* on the manifold H°.

Consider the following scheme which will be detailed for Example 2 and
can be similarly used for the other examples.

Let G be the rigid motions group of 2 and H = SO(3),

(6,0} W +w! =0}

) ]’

the Maurer-Cartan forms. Consider the isomorphism 7,G/H ~ T, %3 in-
duced by the map a®°: g € G+ g-0 € R°.

Identify g with 7.G (h with T.H).

The forms 6* allow us to define a basis of T®> as follows:

Given ¥ € T,R®, consider v € g such that T (a®)(ve) = ¥ and define

(1) éi(f’) = 0e(ve).
It is clear that this definition is independent of the choice of v, since if

v,u € g and T.a’(ve) = T.a®(u.) then Tea®(ue — ve) = o, andu—-veh In
consequence, 6. (v.) = 6%(ue).

The set {#'} defines a basis of T*R5.

Consider a coordinate system in Cr*®3 defined on the following open
set:

U = ={ClS e ClHR’: 6'|T,5,6°|T,S are linearly independent },
where the coordinates (pf,, pﬁ), s # 1,j, are given by the relations:
@°|T,S = p:0'|T,S + pl&|T,S.

Acta Mathematica Hungarica 69, 1995



ORDER OF ORBITS IN HOMOGENEOUS SPACES 271
The group H acts on Ca*®3 and we have the map
F°:h — X(CI®?),
given by

e € h+— F°; where F2(X')= 4

Sl . x1
= (expe - X7).

Using the coordinates defined above and expressing ¢ in coordinates as
e = (€}), it is possible to prove that F is given by

a 7}
Ofosd BN ] 2.1 Sy S, (% |
Fe(p,p)"( €3+p€2)ap1 +( €3 pe?)apg'

It is clear that the map F? is surjective, thus the action of H on CaR3 is
transitive; but the action of G on R2 is transitive and in consequence the
action of G on C12R3 is transitive.

Consider the contact element X} = C1S, given in coordinates as

pl=p’=o0, ie X!=(0,0), (F|T.S,= o).
The Lie algebra of the isotropy group G' of X! is given by
gl={eeh: el=¢=0}.
Considering the isomorphism 7,G/G! ~ Tx: (C12R3) defined by
al:geGw— g- X! e CVIR3,
and using a similar argument to (1), we can define a basis of forms
(8,82, 5° 04,52 € T, C129°,
Also we can consider a coordinate system of C;{';‘:(Cl'zéﬁ") defined on the
following open set:
e [ Xhe C;:Cl'zﬂa : 0'1X?, 6% X? are linearly independent }
with coordinate functions (p', p?, by, by, by, b3), defined by the relations
B|X? = p'8'| X2 + p*8%| X2,
@31 X% = 5,0 X2 + b,67| X2,
@2 X% = by0'|X? + ba8?| X2
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Using coordinates, we can show that the contact elements
C2’2%3 o Cl,2(Cl,2§e3)

are characterized by by = by.
Let H? C C%2R3 be the fiber of contact elements which project onto X2,
then G! acts on H? and we have, as above, the map

F':g' — X(H?).
Using coordinates, we can see that this map is given by

1 . 0 0 0
Fiei) (b1, b2, b3) = 62(2b2(,}.—bl + (b3 — bl)a—b2 - 2b26_b3)'

If b; = o, i.e. w} = w? = o then

2
Fel;(bl,bg,bs) =o0 and g :gl.

Moreover, if p* = 0, by = 0, b3 = by = k € R, then F:,-‘(b‘) = o, i.e.
J

=0 wi=k#, WE=k#® and g?=g'.

This is the case of Example 2.

With a similar procedure, we obtain Examples 1 and 3.
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ADDITIVE COMPLETION AND DISJOINT
TRANSLATIONS

L. HABSIEGER (Talence) and I. Z. RUZSA* (Budapest)

1. Introduction

Let A C [0,N] be a nonempty set of integers. We define the covering
number L of A as

L:min{|B|:BCZ,A+B:){0,1,...,N}}.

(The implicit dependence on N is not indicated.) Such a set B is called an
additive complement of A. Bounds for L for arithmetically important sets
were given in numerous papers. Obviously L 2 (N + 1)/|A|. For the classical
results on additive completion see Halberstam—Roth [3].

Let now P be a polynomial of degree d 2 2, with integral coefficients and
positive leading coefficient, and consider (for varying N) the sets

(1) A=An={P(n):neN,0L P(n) S N}.

The best known lower bound of L for these sets is due to Cilleruelo [1] (where

only P(n) = n* is considered, and the formulation is slightly different) and
Habsieger [2] and it sounds as follows.

THEOREM 1. For a polynomial set (1.1) we have (for a fized polynomial
P and N — x)

L2 (1+o(1)s(1/d)
where
s(t) = ;r-ts(’—i‘%)z 1444 (1—%2>t2+... ;

* Supported by Hungarian National Foundation for Scientific Research, Grant No.
1901.
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Here we consider the covering number together with a “dual” problem.
We define the disjoint translation number D as

D=sup{|B|:BC[0,NJNZ,A+bNA+b;=0
for all bl,bze B,b1 :,ébz}.

With r(n) = #{(a,b):a € A,b € B,a+b = n}, D is defined by the require-
ment 7(n) £ 1 and L by r(n) 2 1 for 0 < n £ N. By an obvious counting
argument we have D < (2N + 1)/|A|. For polynomial sets we have an im-
provement, similar to Theorem 1.

THEOREM 2. For a polynomial set (1.1) we have (for a fized polynomial
Pand N - )

D<(1 +o(1))s(1/d)lN7|.

The similarity of the bounds suggests that there is a closer connection
between L and D than this formal analogy; this will be explored in the next
section.

For certain polynomials the bound of Theorem 2 is rather tight.

THEOREM 3. Let P(z) = z? with an odd integer d > 3. We have
N
Dz (1+40(1)) —.

|A]

We can prove a somewhat weaker bound for even powers. For a general
polynomial we cannot decide whether D > N/|A| holds.

2. Generalizations

We define the fractional covering number as follows:

N
A = min Z Ak
. k=-N
where the numbers \j are subject to the conditions Ax = 0 and

Y Ana2l

a€A

for all 0 £ n £ N. With the additional restriction Ay = 0 or 1 we get the
definition of L.
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We define a fractional analog of D similarly:

N
A= ma.xZ&k,
k=0

where §; 2 0 and

>, fnasl

aEA,n—N§a§n

for all 0 £ n £ 2N. Again, imposing é; = 0 or 1 we get D.
The quantities L, D,A, A are connected in the following way.

THEOREM 4. We have always
DS&A=AS L.

PRroOOF. The inequalities are obvious. To prove the middle equality, con-
sider the matrix (a;;), 0 < i < 2N, 0 < j £ N with the entries

{ 1 ifi—j€A,
Qi; =
0 otherwise.

A is the maximum of E;V:o y; under the constraints y; 2 0,

N
Y @i e ¥ (=050 20)

7=0

A familiar result on linear duality yields that this is the same as the minimum

of 2N z; under the assumptions z; > 0,

N
Yot gl el
1=0

This reduces to the definition of A with the transformation Ay = zy_x. O
In the light of this result, Theorems 1 and 2 have the following common
generalization.

THEOREM 5. For a polynomial set (1.1) we have (for a fized polynomial
Pand N - )

A= (1+0(1)) s(l/d)le.
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We shall determine the asymptotic behaviour of A for a wider class of
sequences. Let A be an infinite set of nonnegative integers. We use the same
letter A to denote its counting function, so that

A(z) = #{a€ Aya £ z}.

Let Ax denote the fractional covering number of the set AN [0, N] for the
interval [0, N].

THEOREM 6. Suppose that with some a € (0,1) we have A(tN)/A(N)—
— t* for allt € [0,1] as N — oo. Then we have

it

Av=(1+ o(l))s(a)A(N).

We prove this result in the next section. It implies Theorems 1, 2, 5.

3. Proof of Theorem 6

As a motivation for the following argument, we mention the continuous
analog of the problem, which concerns the convolution

Be) = frg(t) = / f(@)g(t - 2)dz.

In the first case, we want to have A(t) 2 1 for 0 £ ¢ < 1 and minimize [ g;
in the second case we want h(t) £ 1, g(t) = 0 for t ¢ [0,1] and maximize [ g
(and we assume g 2 0 in both cases). Now for the function

a-1
f(z) = {a:c for z € [0,1],

0 otherwise

which is the density corresponding to distribution %, not only the results
are equal but there is a common g that solves both problems, namely

g(t) = s(a)(1 — a)t™.
Indeed, a change of variable yields

™

t 1
{3.1) /(; e Yt —z)%dz = /0 y* 11 -y)%dy =

sin T’
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Now we start the proof. Take an £ > 0. We shall find an Ng such that

(3.2) (1- 5)s(a)Agv) <Ay < (14 e)s(a)Aé\;V)

for N > Np.
For 0 £ z £ N, write

A(z) = (/N)*A(N) + Rn(z), Ry =max|Rn(z)|.

The convergence of A(tN)/A(N) to t*, as any convergence of monotonic
functions to a continuous monotonic function, must be uniform, that is,
RN = o( A(N)) as N — co.

First we construct nonnegative reals A, such that

(3.3) Y e 2

for all n, while 7 A, £ (1+¢)s(a)N/A(N). To this end we select a number
n > 0, depending on ¢ (this dependence will be made explicit later). We set
0 =n(1—mn) and define

’\nzﬂ(n+77N)_a1 _QNgngN,

where
Na
B=(14+¢/2)s(a)(1- a)A(N)'
Since
N N N
Z(n+nN)“"</ (t+nN)‘°dt</ (t+nN)*dt =
—oN —-eN-1 -nN
- 1 Nl—a(l % )l—a
1 —a n b
we have

Z A< (14+¢/2)(1+ n)l_as(a)% <(1+ e)s(a)Agv)
if n is so small that

(3.4) (14+¢/2)Q+7)'""<1+e.
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Now we prove (3.3). We have
ZAn_azﬂ Z (n+9N—-a)™* 20 E (n+nN —-a)™?,

0§a§ min(N,n+oN) OgagM

where

M =(n+nN)(1-n)< min(N,n+ oN)

will be more comfortable for the following computations.
We turn this sum into a Stieltjes integral to obtain

M
BY (m+nN-a) =4[ (n+nN-1)""dA(t)=
0<a<M B

M M
= ﬁA(N)N“"/ (n+nN —t)""dt* + ﬂ/ (n+nN —t)"*dRn(1).
0 0—
After a change of variable t = (n 4+ 7N )u, the main term becomes
1-n
ﬂA(N)N—"a/ u* Y1 — u) % du > 14+¢/3,
0

if 7 is so small that

14¢/3
1+¢/2sinma’

1-n
/ w11 - u)"%du >
0

(We remind that 7/ sinma is the value of the integral from 0 to 1, as men-
tioned in (3.1).)
We use integration by parts to estimate the remainder term:

‘ﬂ Oil (n+nN —-t)"° dRN(t)l =

M
=5 }RN(M)(n +9N - M)™® + a/o Rn(t)(n + N — t)™! dtl <

< 28Rn(n+ 0N — M) = 28RN(n)"*(n+qN)™® £
< 28RN N~* < ¢/3
if N is so large that

S 67]3&
T 6(1+¢e)s(a)(l-a)

Ry < pA(N), 1
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Hence for sufficiently large N, the required property (3.3) is established.

To prove Ay > (1 —¢)s(a)N/A(N), we construct nonnegative numbers
6p for 0 S n <N, such that ) é,_, 1 for all n, while } 46, 2 (1-
—¢)s(a)N/A(N). To this end we select a number 7 > 0, depending on ¢
and define

6= B(n+N)*, 0<n<N,
where now

NO
A(N)

We suppress the details of the estimates of the calculations, which are very
similar to the previous ones.

B=(1-¢/2)s(a)(1-a)

4. Proof of Theorem 3

In this section P(z) = z*, with k odd.
First we observe that if p is a prime number such that p — 1 and k are
relatively prime, then we have

mF = n* mod p => m = n mod p.

Indeed, if p divides m (or n) this claim is obvious. Let us assume that
m* = n* mod p, with p{ mn. Then we have mP~1 = n?~! = 1 mod p. More-
over there exist integers « and v such that (p — 1)u + kv = 1. Thus we get

v

m = mp- vtk - (mk) = (nk)v = pP—Dutky = mod P,

and the claim is proved.
Let N be a sufficiently large number. Let us choose a prime p with p >

> N% and pr~ N% as N goes to infinity, and such that p —1 and k are
relatively prime. Let us define

B:={ap:1Za< N/p}.
We clearly have
Bl ~ N/p~ N7k,

We prove that the sets P(A)+ B are disjoint for 0 £ P(A) £ N. Assume that
AF +b; = M + by, with 0 < P()\;), P(A\2) £ N and by,by € B. Then M =
= /\’5 mod p, hence we have A\; = A, mod p. Moreover we know that |\, —
—Xg| £ P7Y(N) = N¥ < p, thus A = Aq.
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5. Remarks

With some change in the proof, Theorem 6 can be extended to the cases
a =0 and a =1 (we define s(a) by continuity at these numbers, so that
#0) =s(l)= 1)

Assume that 0 € A. In this case there are additive complements consist-
ing exclusively of nonnegative integers; let L* be the minimal cardinality of
such a set. We can also define a fractional analog A* of this number. We have
obviously L £ L* and A £ A*. We think that under the conditions of Theo-
rem 6 we have A ~ A*, though the proof in Section 3 does not immediately
yield this.
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ON TWO VERSIONS OF L:-DISCREPANCY
AND GEOMETRICAL INTERPRETATION
OF DIAPHONY

VSEVOLOD F. LEV (Tel-Aviv)

This paper concentrates on a comparison of two versions of L2-
discrepancy: the “usual” one and the one on parallelepipeds modulo the unit
cube. We also show that the last variant of discrepancy is closely connected
with diaphony, and in the most important case these two characteristics of
distribution coincide up to a multiplicative constant.

Part of the results of this paper was earlier published in preliminary form
in [3] (Russian).

1. Notation and definitions

Let
Q'={zeR|0S2;<l J=1u,8}

be the s-dimensional unit cube, or, equally,
Q={zeR'|052<1)

(we reserve lower indices for coordinates of vectors and put 0 = (0,...,0),
1 ={)sesnsl))

By a net S = (X, p) we will mean a finite weighted set of points in Q?,
that is, a set of points in the unit cube

X={z®WeQ’|k=1,...,N}
and a set of non-negative real weights
p={pr20|k=1,...,N}

corresponding to these points. The pair (2(¥), py) is said to be the k-th node
of the net S, and po = p1 + -+ pn will denote the sum of the weights of
the nets.

Numeration of the nodes of nets is not essential: we will not distinguish
nets differing only by order of following their nodes.

Generally speaking, we do not impose any additional restrictions on the
points (some of them may coincide) or on the weights (their sum may differ
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from 1). A net having the sum of its weights equal to 1 (that is, a net with
po = 1) we will refer to as a normed one; in such a case, the system of weights
will also be called normed. Therefore, for the normed net with N nodes and
with equal weights we have

PI:"':PNZI/N-

It should be pointed out that those “traditional” nets are included, as a
particular case, in all of the results of this paper. In other words, none of
the results are based on using some “exotic” weights.

By a shift of a system of points X by a vector z modulo Q* we will mean
the new system of points

X+z={{z®+2}|k=1,...,N}

in Q? (the inner braces denote fractional part of the vector, that is, the vector
of fractional parts of coordinates).

By a shift of a net S by a vector £ modulo Q® we will mean the new net
S+ z = (X + z,p) with the nodes

({x(k)+:c},pk), '

For 1 £t £ s let Q! be some ¢-dimensional face of Q®, and let 7 be the
operator of orthogonal projection of Q°* to Q!. By the projection of S to
Q' we will mean the new net ' = (X', p) in Q!, whose nodes (z'(¥), p;.) are
defined by z/(F) = ﬂ(x(k)) .

Let I C {1,...,8} be a system of indices, ¥ the corresponding system of
s-dimensional hyperplanes

;=112 (1€l

and o : Q°* — Q° the transformation of the unit cube to itself, involving sym-
metries relative to all hyperplanes from ¥, followed by obtaining of fractional
parts (order of executing these operations obviously does nat influence the
result). By the image of S under the transformation o (or under symmetry
relative to the hyperplanes of the system ¥) we will mean the net §’ = (X', p)

in Q* whose nodes (z'(¥), p;) are defined by
2'® = o(®),

so that
k .
L0 {1*‘”5)}; 1€,
: :c,(k); 1 ¢ 1.
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We call the net symmetric if it coincides with its image under any transfor-
mation of the described type.
For u,v € R® consider the parallelepiped

H(u,v)={c€R’ |uSz < v}

(the parallelepiped is non-empty only if u < v). Let us denote its volume by
|T(u,v)| and introduce the local discrepancy of the net S in II(u,v) by

(1) Blu,v)= Z Pk — |H(u,v)|

z(F)ell(u,v) (mod Q)

(where the summation is extended over all points ¥} of the net § belonging

to I(u,v) “modulo the unit cube”, that is, over those points z(¥) some inte-
gral shift of which belongs to II(u,v)). Clearly, the local discrepancy R(u,v)
is invariant relative to shifts of II(u, v) by any integer vector.

For k € [1; ] define the L*-discrepancy of a net S by

(2) D«(5) = || R(0,")] .,

that is
l/ﬁ
DN(S)=(/ IR(O,v)I"dv) gy
Qs

Deo(S) = sup |R(0,7)|;
vEQS

and

we set also

ity 1/k
DAS)= (/ | R(er, o + 7)|"dad7) ; K < 00,
Q*xQs

Deo(S) = sup
a,7eQ?®

R(a,a+7)|.

The value, defined by (3), is called the Weyl L*-discrepancy of the net §.
In particular, in the case of Kk = 2 we obtain the L2-discrepancy D(S)

and the Weyl L?-discrepancy 132(5'), and in the case of Kk = co — the supreme

discrepancy D..(S) and the Weyl supreme discrepancy 1300(5) The supreme
discrepancy Do, (95) is often called Just discrepancy and is denoted by D(S );

similarly, Weyl supreme discrepancy DOO(S ) will be denoted simply by D(S ;8
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Let S 4+ a be the shift of S by a vector a € Q®, and R, be the local
discrepancy of § + a. It is obvious from (1) that R,(0,7) = R(—a,—a +7)
and therefore, according to definitions (2) and (3),

Du($) = (/Q | Du(S +a)| "da)l/K ;

that is, the Weyl L*-discrepancy I~),;(S ) may be considered as the L*-average
of the “usual” L*-discrepancies D, (.S + «) of all shifts of S by vectors a from
Q.

2. The diaphony F3(5) and its connection with Weyl
L*-discrepancy D,(5)

One more characteristic of the multidimensional net distribution unifor-
mity S = (X,p) — diaphony, denoted by F3(S) — was introduced first by
P. Zinterhof in 1976 (see [5]) and then considered by a number of authors
(see, for instance, [1], [3], [4]). There are two well-known “classical” def-
initions of diaphony. We will reproduce them with some changes, caused,
mainly, by our intention to consider (unlike the “classical” approach) the
general case of nets with arbitrary weights.

One of the definitions uses the representation by infinite series:

2\ 1/2
F(5) = (Z, |T_(mm7)|_> )

mezZs

where
m=m - Ms, Mm;=max(1,|mjl),

T(m) is a trigonometric sum of the net 5, defined by
L : k
T(m) = Zpk . eZm(m-x( ))
k=1

((m - (M) is the scalar product of the vectors m and z(*)), and, finally, the
dash in the sum means that the zero vector m = 0 should be excluded from
the sum.

Another definition is

N s 1/2

k=1 =1
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where' By(£) = €2 — £ 4+ 1/6 is the Bernoulli polynomial of order 2 (we recall,
that po = p1 + -+ + pn)-

The equivalence of the two definitions mentioned above can be easily
verified in view of the well-known expansion of B;(§) into a Fourier series:

1 ¢ 1 im
By(§) = ﬁz mezw %
mezZ

We state below three exciting properties of diaphony, following almost
immediately from the above definitions.

STATEMENT 1. Let S+ a be the shift of S by a vector a € Q. Then
Fz(S + a) = F2(S)

Proor. This follows from the “second definition” in view of {{zg-k) +
ra}— (e + )} = (o) 20,

STATEMENT 2. Let S’ = n(.5) be a projection of S. Then F5(S5') £ Fy(S).

Proor. We can assume that the projection 7 is defined by

w((zl,xz,...,zs)) = (0,095 05 2y Bp)s
Let T’ be the trigonometric sum of the net $’. Then, obviously,
T((O, mo, ...,ms)) — T'((mg,...,ms)),
and according to the “first definition”,
2 ’ |T(m)|2> i |T(m)|2 20t
F}(8)=)_ st 3 B 1L
mezZ* meZ*, m1=0

STATEMENT 3. Let S’ = 0(S) be the image of S under some symmetry
0. Then F5(S") = F,(S).

PRrOOF. Again, we can consider only the particular case of the symmetry
o defined by

a((zl,zg,...,ms)) = ({1 - =1}, $2,...,.’E3) :
Let 7' be the trigonometric sum of the net §’. Then, obviously,
T'((my,ma,...,ms)) = T((=m1,ma,...,ms)),
and we use the first definition to complete our proof.
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Do Statements 1-3 hold for the discrepancies Dy(S) and Dy(5) instead

of the diaphony F3(5)? As we show later, the answer is affirmative for D(S)
and negative for Dy(S).

Note that, unlike discrepancies, diaphony has pure analytic definitions
which do not explain its “geometrical nature”. The following theorem! clar-
ifies this nature by establishing a direct connection between diaphony and

Weyl L2-discrepancy Ds(S).

THEOREM 1. We have

" v |T(m)|? v(m)
D%(S)=3"<E —IT(W)I (%) +|T(0)—1|2),

meZ*®

where the sum is extended over all non-zero s-dimensional integer vectors,
and v(m) is the number of non-zero coordinates of m.

ProoF. Let us consider the local discrepancy R(a,a + 7v) as a function
of a with fixed v, and evaluate its Fourier coefficients. If m # 0, then the
corresponding coefficient is

R(m) = / R(a,a 4 y)e?mimalgq =
QS

N .
- Zpk/ e—2m(m-a)da =

k=1 (M) —y<agz(®)

N
- Zpke—%ri(m-z("))/ e—21ri(m-a)da =
—v<a<0

and if m = 0, then
R(m) = R(0) = T(0) do — / Y1+ 7sda = (T(0) = 1)y1 -+ 7.
0Sa<y Q*

! This theorem was first proved by the author in [3] (Russian). However, we repro-
duce it here for the sake of completeness.
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Hence, using Parseval’s equality, from definition (3) we obtain:

Bs)= [ Xrem)- | [ éniodia

+/Q’ |T(0) — 1|43 -+ -42dy =

= Z’lT(m)|2ﬁ/l /‘YJ e2™mi% day;
i=1/0 o !

m
and it remains to observe that the integral over a; is equal to 32 if m; = 0,
J

2
dy+

2
dv; +37°|T(0) - 1|7,

and is equal to — - =2» otherwise.
32 2m2

The theorem jlist proved is a direct analog of the well-known Erdés-Turén

inequality for the metrics of L2. It shows that up to a multiplicative con-
stant and the summand measuring “unnormness” of the net, the diaphony
of a net coincides with its Weyl L2-discrepancy. In particular, for normed
nets we immediately obtain the following

COROLLARY 1. Let S be normed: py = 1; then

1/2

(222312 Dy(8) < Fy(S) € (2n2)*Dy(S).

ProoF. It is sufficient to use in Theorem 1 the obvious inequality 1 <
<y(m)< s (m#0).

COROLLARY 2. Statements 1-3 hold for Weyl L?*-discrepancy 132(5) in-
stead of the diaphony F3(S).

PRroOF. Follows the proof of Statements 1-3 with Theorem 1 instead of
the “first definition” of diaphony, and (3) instead of the “second definition”.

3. D, versus D,: one-dimensional nets

The rest of the paper investigates the correspondence between Weyl L2-
discrepancy D(S) and the diaphony F3(S), on the one hand, and “usual”
L?-discrepancy Dy(S), on the other hand. We will see that the question is
not a trivial one, and even for normed nets allows a direct solution only in a
few particular cases.

We start from the simplest of them, the case of one-dimensional normed
nets.

In this case one of the estimates (of type Da(S) < Da(S)) follows easily
from
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LEMMA 1. Let S be a one-dimensional normed net: s =1, po = 1. Then

N 2
1 1
D3(8) = WF:?(SH (E prz®) — 5) ;
k=1

ProoF. The identity of the lemma is a “weighted variant” of a well-
known identity (see, for instance, [2], equality (2.27)). It can be obtained
by means of expansion of R(0,7) into a Fourier series and then applying
Parseval’s equality — the method, used in Theorem 1.

COROLLARY. Let S be a one-dimensional normed net: s =1, po = 1.
Then

Dy(5) £ Dy(S).
ProOF. According to Theorem 1, in our case
D3($) =37 F}(5) - (3/2x*) = F(S)/2x?,
and in view of Lemma 1,
D3(S) 2 F3(5)/2r*.

Is it possible to obtain an inverse estimate, that is, an estimate of
type Dy(S) < D2(S)? The following example, suitable for the general s-
dimensional case, shows that it is not the case.

ExaMpPLE 1. Let § = (X, p) vary over a sequence of s-dimensional nets
with the number of nodes increasing to infinity and the Weyl supreme dis-

crepancy decreasing to zero: N — 0o, D(S) — 0. Set
5= (B(S)/**9 —,
P={z€Q’|z2(1-6)1}

(so that 6 and P depend on S) and consider the new net S’ = (Y, p) with the
same weights as S and the system of points Y, defined by

,y(k) _ z(k)’ z(k) ¢ 7
0; z® e P,

Denote the local discrepancy of S’ by R’. It is clear that for v < (1 — )1

RI(O, 7) Z Z Pk — IR(O, 7)| Z
z(K)epP

2 |P| - |R((1-6)1,1)| - | R(0,7)| 2 §° - 2D($),
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and so for sufficiently large N
(4) Dj(8') 2 (1-8)°(8° - 2D(5))* > 6*.
On the other hand, if @ > 0 it is easily seen that

b(S); ai,o; +1i g[1-6;1 (¢=1,...,s),

Rl(a,a+19) £ { N
2D(S)+ 6°; in any case.

It follows that
(5) D3(S') < D*(S) + 6 - 6% < 6%+

and from (4) and (5) we conclude that for no constant C is Dy(S") < C'Dy(S")
for all the nets S’.

4. D, versus Ds: symmetric nets. The estimate bQ(S) < Do(S)

Another case of interest is one of symmetric nets. The subject was first
investigated by P. Proinov [4], who proved an estimate of type D,(5) <
< Dy(S) for normed symmetric nets with equal weights. Then in [3] the au-
thor obtained an inverse estimate Dy(S) < Dy(S) for all normed symmetric
nets (with not necessarily equal weights), and also generalized Proinov’s
proof for such nets. Below we generalize both results for arbitrary (not

necessarily normed) symmetric nets and also make some refinements in for-
mulations and proofs; this section contains a proof of the author’s estimate

D(8) < Dy(S), and the next one that of the generalized Proinov’s estimate
Dy(S) < Do(S). By means of combining the two estimates with appropriate
constants one obtains

THEOREM 2. Let S be a symmetric net having all its points strictly in-
side the unit cube Q°. Then

(4/5)°/2D4(S) € Dy(S) £ 8°2Dy(S).

Note that we have to require that S has no points on the faces of Q°.
This requirement is not a casual one, and arises from the fact that in some
sense a net having a number of its points on the faces of Q° is not actually
symmetric “relative to Dy” (at the same time, it may be symmetric “relative
to D2”).

We see, therefore, that in the case of symmetric nets the two L2-
discrepancies D3(S) and Dy(S) coincide up to a multiplicative constant.
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Let ¢ € {0,1}°, and denote by S, the image of the net S under the symme-
try o, relative to all the hyperplanes z; = 1/2 for which the index j satisfies
the condition ¢; = 0:

{1-z;}; € =0,

z;; gj =1

(6) Oc:T T, zg-:{

Note that from Corollary 2 of Theorem 1 it follows that
Dy(8:) = Da(S).

The main result of this section (which easily implies the discussed estimate
of type D2(5) < Dy(S5)) is
THEOREM 3. Let S be a net having all its points strictly inside Q®. Then

Dis)se° Y 37Dj(S.)
c€{0,1}°

(here S. varies over all nets obtained by symmetric transformations of S).

ProoF. Our idea is to divide the parallelepiped II(a,a+7v) into
“elementary parallelepipeds”, each of which entirely lies in a shift of Q°
by some vector ¢ € {0,1}"; then the local discrepancy of S in such elemen-
tary parallelepiped will be replaced by the local discrepancy of S in some
parallelepiped with the “minimal” vertex at 0.

Now perform the reasoning in detail.

Let II(u,v) = II(u,v) N Q?®, and let ¢ vary over all vectors from {0,1}".
Denote the local discrepancies of the net S, in II(u,v) and II(u,v) by Re(u,v)

and R, (u,v), respectively. It is clear that
(e, a+7) = U:(l(e,a +7)N(Q +¢)) =
=U.(e+I(a—¢, at+y—¢)).

Since ¢ is an integer and the parallelepipeds ¢ + II(a — €, + 7y — €) are pair-
wise disjoint, we have

R(a,a+7) = z R(a—¢,a+7 —e¢).
e€{0,1}°

For 6 € {0,1}° let (&) C Q® x Q® be the set of all pairs (a,v) with the
given integral part [a + 7] = 6, that is

<1l; 6;=0,
e {;1; el
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Obviously, if (a,7) € Q(6) but ¢ < 6 does not hold, then Il(a — &, + 7 —¢)
is empty; hence

2
m  Dys)= | Y Ra-ca+y-c)| dody=
C!,’YEQ" EE{O,I}’

2
— E /(;(5) (Zﬁ(a—e,a+7—s)) dady £ Z 2"(5)21(6,5),

se{0,1}* e<§ se{o0,1}* )

where

1(,6) = - Rla—-¢, a+v—¢) dady.

But one can easily see that the symmetry (6), mapping S to S, also maps the
parallelepiped II(a —€,a 4+ 7 — ¢) into another parallelepiped II(u,v) (pos-
sibly, up to inclusion of some parts of the surfaces of II(u,v) and Q?®), such
that for (a,7) € Q(8), 6§ 2 ¢ we have

l—aj—7;; 6;,=0 1-aj; gr=10
8 i i — Y5y Y ) B ) J )
®  w={, =1, YT lejty-l g=1

So for all & and v such that the surface of II(u,v) does not contain points of
Se (that is, for all @ and 7, except possibly a set of measure zero), we obtain

R(a—¢c,a 47 —¢€) = Re(u,v),

and
9) Ay / R(u, v)dady,
Q(5)

where u, v depend on a, 7 as shown in (8). Now set

{1—0‘1—71'; §; =0,
Z =

10

and change in (9) the integration variables «,~ to the new variables z,v. The
region of change of these new variables is contained (as follows from (8) and

(10)) in the closed unit cube Q°, and the old variables a,y may be expressed
in terms of the new ones by

PR 1-v;; ¢€;=0, [ o =0
4 v + 2j; €j:1, i s 6]' 1y,
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It is an easy technical exercise to verify that the Jacobian of our change
of variables is

D(a’7) s—v(e)
— = =(-1 .
D(z,v) =
Therefore
I(é,¢) £ / R?(u,v)dzdv,
2z,vEQ?*
where
z;; 6;=0,
21l 4=
) g ==L

The function R?(u,v) in the last integral does not depend on the variables
z; with indices j under §; = 1. Thus after integrating over these variables
we obtain

I(6,6) £ / R%(u,v) dudv

du = H duj,

6;=0

where we set

and the region of integration is defined by u € Q*=©), v € Q* (while the
coordinates u; for the indices j under §; = 1 are constant and equal to 0).
For p € {0,1}°, p 2 & set

uj; p; =0 .
t]:{ . P (]21,...,3).
Vi, Hj =

Then it is easily seen that

Re(u,v) =Y (-1)" "W R,(0,1)

n2é

(one can consider this equality as a variant of the inclusion-exclusion for-
mula), and so

I(6,6) £ 209 Z / R?(0, t)dudv.

s—v(6) xQ*

Now performing integration by variables u; for the indices j under p; =1,
6; = 0, and for the variables v; for the indices j under u; = 0, we obtain

I(,) S 27O Y / R2(0,0)dt = 2= 3(s,),

u2b
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so that from (7)

Di(s)s ) 2O 2% Opis)= Y Di(s)Y 22 =

se{o0,1}* e<é e€{0,1}° 62¢e
=4 3 (3/2rC0/2r9Dis) =6 Y 8 Di(S.),
e€{0,1}° e€{0,1}*

which was to be proved.
As a direct corollary of the theorem we obtain the required estimate of

type Da(S) < Do(S):

COROLLARY. Let S be a symmetric net having all its points strictly in-
side Q°. Then

Dy(85) £ 8*/2Dy(8).

PRrooF. For a net S of the considered type all the discrepancies Dy(S.)
pairwise coincide and are equal to D2(S); therefore, in view of the theorem,

D($)£6°D3(S) Y. 37 =6°(4/3)°D3(S) = 8°D3(S).
ee{0,1}*

NOTE. A refinement of the proof allows us to write the inequality of the
theorem in the form

Di(5)s3 ) Di(S.).

e€{0,1}*°

In turn, this makes it possible to improve the constant of the corollary up to
ez,

5. D, versus Dy: symmetric nets. The estimate Dy(8) < Dy(8)

To complete our comparison of L2-discrepancies of symmetric nets, we

are going to obtain an inverse estimate of type Dy($) < D3($). The histor-
ical aspect of the estimate was described in the previous section.
We start from the following lemma.

LEMMA 2. We have

2 g = 2m) | - (k) A
D3(8) =47 Y T | e [T emy () - 1],
k=1 ;=1

mezZ*
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where

) 2(1 - a:(k)) m; =0,
Cm,(xj )= *)
75 my#0.

PRroOF. The assertion of the lemma is obtained by applying Parseval’s
equality to the function R(0,7). If we set

1— e—27rim]1'

—i/m; m; <0,
bin: =« 13 m; =0,
i/m;  m; >0,

then the Fourier coefficients of the function are

R(m) = / R(0,7)e~m Mgy =
Qs

6_27ri(m"7)d7 = / 71 . .736_27"'(7""'7)(17 —

k=1 v>z(k)
N s 1
k=1 3=1
N s s
1 (k) 1
= 2o ] 1 oem (257)m, = 11 5t
k=1 =17 j=1

1
= 27m ZpkHCmJ(.’II( ) r_[ myo

k=1 J =1

and the rest is obvious.

THEOREM 4. Let S be a symmetric net having all its points strictly in-
side Q°. Then

Dy(8) < (5/4)7*Dy($).
PRroOOF. We use the notions of Lemma 2, and also set |m| = (|m1|, fues
|ms|), so that, for instance, the symbol 3 will denote the sum over all vec-

e<|m|
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tors ¢ € {0,1}° with ¢; = 0 for all j under m; = 0. In view of the symmetry
of § we have

N s
Z Pk H Cm_,(z_(jk)) =
k=1 3=1

Il
(1=
)

e

%

3

P
e

x
N
—
BN | =

k
(ch(zg-k)) 4 (L= zg. ))) =

k=1 m;#0 m;=0

N
> pe [T em, ("),

k=1 m;#0

and by Lemma 2

—21/( m)

D%(S)=4"Z 'Zpk H cmj(z(k)) ‘2

k= m;#0

|zpk Z (1) v(e) —21r1(m1¢1$1 " |2 .

k=1 eS|m|

7['—2" (m)

=4SZ

—2u( m)
=4y 1= | ;I( 1)"OT ((maey, ..., mat,)) + (T(0) - 1)|
L e<|m
—2v(m)
47y - ;2 QV(m)( ;’I T ((maen, ..., mues)) |* + | T(0) - 1|2) =

=47 3 Y @/ T ((men,.. mee,) [P /mis

€€{0,1}" |m|2e
+47°|T(0) - 1| Z —(2/x3)"™,

The second summand on the right hand side may be calculated directly,
while in the inner sum of the first summand one can execute direct summing
over the variables m; for the indices j under ¢; = 0. We obtain

(11) i) <4 Y I (1 +2ﬁ ?) :

e ¢&;=0
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.Z*(2/1r2)"(m) IT((ma€1, ..., m4es)) |2 /m? + (5/12)°| T(0) — 1|2 =

2
- 4—32/(5/3)3—11(6) Z* (2/”2)y(m)lT(mL2)| + (5/12)"'T(0) - 1|2’

where the symbol Y, means summing over all vectors m for which m; takes
the single integer value 0 if ¢; = 0, and m; takes all non-zero integer values
otherwise.

Furthermore, in (11) each summand of the form |T(m)| /m? withm # 0
appears precisely for one value of ¢, and for this value »(m) = v(e). Hence

D2(S) < 47%(5/3)° Z l | (5/3)—v(m)(2/ 2)"("‘)

+(5/12)’|T(0) -1)*g
<37°(5/4)° Z l - (6/57%)"™ +37%(5/4)"| T(0) - 1|* £

<3 (Y ‘iin_"—")'— 32 ™ a5y 4| T(0) - 1),

and it remains to apply Theorem 1.
It is seen from our proof that for a normed net S the constant of Theorem
4 may be slightly improved: namely, if S is a normed symmetric net having

all its points strictly inside Q°, then Dy(S) < (5/4)(3_1)/2E2(5).

6. Nets with D3(5) = o( Dy(S5))

We have seen so far that both one-dimensional and symmetric nets sat-
isfy Dy(S) < D2(S). The same clearly applies to the nets § having L2-
discrepancies Dy(.S + a) of the same order of value for all a € Q® (see the
note at the end of Section 1). We now add one more example to this collec-
tion of nets with Dy(S) < Do(5).

As in Section 4, denote by S. the net obtained from S by means of the
symmetry o, relative to all hyperplanes z; = 1/2 with indices j under the
condition ¢; = 0, and also denote by S. the v(¢)-dimensional net? obtained

2 Strictly speaking, we have no definition of “O-dimensional” net. To avoid problems
arising for £ =0 we put directly D}(S() = (po — 1)? in the formulae below.
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from S by means of the projection 7., defined by
] 4 {:EJ'; g =1,
TeiTH T, ;=
0; ¢=

LEMMA 3. Let S be a net having all its points strictly inside Q°. Then
the Weyl L2-discrepancy Do(S) may be estimated by “usual” L*-discrepancies
D4(S?) of projections of S as follows:

DRSS Y (reHniEl.

c€{0,1}°

Proor. Our lemma will follow immediately from Theorem 3 and the
inequality

(12) Di(S) <279} Di(Sp),

5€{0,1}°, 62¢

since, assuming the inequality to be true, we obtain:

Dis)s6* Y, 37227y Di(Sp) <

e€{0,1}*° §2¢
<12 )0 Di(sp Yy 67 =120 Y (7/6))Di(Sp).
se{0,1}* ) §e{o0,1}*

Therefore, we need only to prove (12).

To this end, denote by R. and R., respectively, the local discrepancies
of S. and SZ, and for ¢,6 € {0,1}° set also

u'={1—7j; ;=0 1)':{1; ;=0
4 0; gl * : o Bye=1’
1 g;=0,0;=0
zj:{l—'yj; E;=0,0;=1.
Vi gs=1,8=1

Combinatorial considerations show that for almost all 7

R.(0,7) = R(u,v) = ) _ (-1 R(0, 2),

62¢
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and to complete the proof, it is sufficient to observe that
/ R*(0, 2)dy = D2(S%).

COROLLARY. Let S be a net with all the points strictly inside Q°® and
satisfying for some constant C

Dy(8!) SCDy(8)  forall e€{0,1}°

(that is, the L2-discrepancies of the projections of S are at most of the same
order of value as the L?-discrepancy of S itself). Then

Dy(S) £ 26°/2C Dy(S).

As one can see, we have now a large number of nets with Dz(S ) < DQ(S )
(one-dimensional ones and those with “good” shifts, symmetries or projec-
tions). Does the estimate hold for all nets? Here is a counterexample.

EXAMPLE 2. Let s 2 2, and let S = (X,p) vary over a sequence of s-
dimensional nets with the number of nodes increasing to infinity and the

Weyl supreme discrepancy decreasing to zero: N — oo, E(S) — 0. Set
§=(D($)"* =0, P={eeQ’|a2(1-61}

(so that § and P depend on S), and consider a new net S’ = (Y, p) with the
same weights as § and the system of points Y, defined by

k) _ m(k), (k) ¢ ieds
(1-6)1; z®WePp

(compare with Example 1). Denote the local discrepancy of S’ by R'. It is
easily seen that

D(S); &P,
| R'(0,7)] £ { -
2D(S)+ 6% ~vye€P
and therefore
(13) D3(8") £ / I)'~’(S)d~,+8/ (D¥(8) + 6%)dy £
Y¢€P ~EP

< 8(D*(8) + 6%) <« 6%.
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On the other hand if, for instance,

l-6<ap<1-4/2,
(14)

L1/2 < Ggyove ity €148, 1J2 € YryerssVe 3[4,

then II(a, a + ) does not contain the point (1 — é)1, but contains the par-
allelepiped

M((1-6/2,1-86,...,1-6),1),

of the value 0.56°, free of points of S’. Then local discrepancy of S’ in

(e, +7) is at least 0.586° — 2D(S) > &°, and the volume of the region (14)
is > 0; therefore

(15) D}(5") > - 6% = 6>+

From (13) and (15) we conclude that for no constant C is Dy(5") £ CDy(S")
for all the nets §'.

7. Behavior of D,(S) under shifts, projections
and symmetries of 5

Finally, we consider once again Statements 1-3 from Section 2 and Corol-
lary 2 of Theorem 1, this time from the following point of view: are the anal-
ogous properties satisfied for the “usual” L2-discrepancy D;(S) instead of
the Weyl L2-discrepancy D,(S) and the diaphony F(S)? In other words,
is the “usual” L2-discrepancy Dj(S) invariant relative to shifts and symme-

tries and non-increasing under projections of net, at least, by the order of
value?

STATEMENT 1’. For any constant C' there exists an s-dimensional net S
and a vector o € Q® satisfying

D2(S + a) p-SX G D2(S).

PROOF. Suppose, on the contrary, Dy(S+a) £ CD,(S) for all S,a. Then
also D(S) £ CDy(S + a), so

~

1/2
Dy(S) S C (/Q D(S + a) da) = CDy(S),

in contradiction to Example 1.
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STATEMENT 2/. For any constant C and s 2 2 there exist an s-dimen-
sional net S and a projection 7 such that S’ = n(S) satisfies

Dy(8") > €+ Di(5).

PROOF. Suppose, on the contrary, Ds(S’) £ CDy(S) for all S’ = =(S5).
Then, in view of the corollary to Lemma 3, the following inequality is satis-

fied:
Dy(8) < 26°2C Dy(S),

in contradiction to Example 2.

STATEMENT 3'. For any constant C there ezist an s-dimensional net S
and a symmetry o such that " = o(S) satisfies

DQ(SI) B G Dz(S)

PROOF. Suppose, on the contrary, Dy(5’) £ CDy(S) for all §" = a(S).
Then, if S has no points on the surface of Q?, in view of Theorem 3

Di<e6°-C*DY(S) ) 37 < C?8DY(S),
e€{0,1}°

in contradiction to Example 2.
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JORDAN-VON NEUMANN THEOREM FOR
SAWOROTNOW’S GENERALIZED HILBERT
SPACE

B. ZALAR (Maribor)*

Introduction

Jordan-von Neumann theorem was proved in 1935. The original paper
is [10]. The precise statement is the following:

THEOREM J-N. Let X' be a real or complex normed space and sup-
pose that ||z + y|* + ||z — y||*> = 2||z||* + 2||y||* holds for all z,y € X. Then
there ezists a real (respectively complez) inner product (z,y) on X' such that
(z,z) = ||z||* for all z € X.

The identity ||z + y||* + ||z — y||* = 2||z||* + 2||y||? is called the parallel-
ogram identity. If we have a Hilbert space H with the inner product (z,y),
then an easy calculation shows that the norm ||z|| = \/(z,z) satisfies the
parallelogram identity. This means that the Jordan—von Neumann theorem
establishes a characterization of inner product spaces among normed spaces.

This result initiated a lot of subsequent research and still there are some
open questions. One line of research was concerned with the problem which
other properties of normed spaces characterize inner product spaces. An
extensive collection of such results, in various directions, can be found in [39].
Another line, which preceded our present paper, started with the following
observation:

If Q(z) = ||z|)%, then Q is a quadratic functional while the inner product
is a sesquilinear form. The Jordan—-von Neumann theorem then tells us that
every positive definite quadratic functional on a real or complex vector space
can be represented by a hermitian positive definite sesquilinear form. The
question now arises what can be said about quadratic functionals which are
not positive definite. More precisely, can such functional be represented by
(in general not even hermitian) sesquilinear form? It turned out that in the
real case the answer is no while in the complex case the answer is yes.

! Supported in part by the postdoctoral grant P1-5505-0101-93 from the Slovenian
Ministry of Science.
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Investigations of modules over more general involutive rings, such as C*-
algebras, quaternions and function algebras for example, led several authors
to investigate Jordan—von Neumann type theorems, usually using the alge-
braic approach. Among the positive results we mention that the represen-
tation theorem is true for modules over the following algebras: quaternions,
octonions, any complex algebra with identity and bounded linear operators
on a real Hilbert space. For more information the reader should consult [1],
(8], [12], [28-31], [33-36] and [38].

In the present paper we investigate Jordan—von Neumann type theorems
for Saworotnow’s generalized Hilbert space which is a module over a so called
H*-algebra. The difference between this investigation and previous papers
lies in the fact that H*-algebras in general do not possess an identity element
nor can the identity be added to them within their category. This forced
us to develop a technique which uses the presence of sufficient number of
projections in H *-algebras.

General ideas for this investigation were set in Debrecen in August 1993
during the conference on functional equations. In a very relaxing and stimu-
lating atmosphere, created by the members of Debrecen’s chair of analysis, I
get acquainted with the work of Lajos Molnar on generalized Hilbert spaces
which together with my earlier paper [38] suggested the possibility of the re-
sult presented. Proofs were carried out during the winter of 1993/94 when I
was partially supported by the grant from the Slovenian government.

Proper H*-algebras

H*-algebras were introduced in 1945 by Ambrose. In his pioneering pa-
per [2] the intention was to provide an abstract framework for the class of
Hilbert—Schmidt operators. Later other authors studied trace-class, central-
izers, representations, characterizations and generalizations of H*-algebras.
Some papers on this subject are [4], [7], [11], [14] and [26-27] where further
references are available. In this section we recall facts about H*-algebras we
use later.

DEFINITION 1. Let A be a complex associative algebra with an involu-
tion * and a complex Hilbert space with respect to the inner product (, ).
Then A is called an H*-algebra if the following identity, which connects the
product, the inner product and the involution of A,

(1) (zy,2) = (z,2y") = (y,2"2)

holds for all z,y,z € A.

A is called proper if aA = (0) implies @ = 0. According to [2], this is
equivalent to the fact that .Aa = (0) implies ¢ = 0. From now on all H*-
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algebras will be proper. The following result was proved in part by Ambrose
and in part by Saworotnow.

PROPOSITION 2. Let A be a proper H*-algebra. Then the following holds:
(1) The multiplication of A is jointly continuous.
(2) The involution of A is isometric.

From [26-27] we know that the set
T(A) = {zy; z,y € A}

is a selfadjoint ideal of A which is dense in A with respect to the Hilbert
space topology. This ideal is called a trace class of A. One can define a trace
Tr: T(A) — C by Tr(zy) = (z,y").

An element a € A is positive if (az,z) 2 0 for all z € A. Because of the
H*-identity (1), this is equivalent to the fact that (za,z) 2 0 for all z € A. Tt
is an elementary exercise to verify that every positive element a is selfadjoint,
i.e. a* = a. The following result from [26] is important in the study of the
trace class.

ProrosiTION 3. Let a € T(A) be positive. Then there is a unique ele-
ment b € A such that b is positive and b* = a holds.

The element b is called a square root of a. Note that b may not be a trace
class element. From the above we have immediately

COROLLARY 4. Let a,b € A be positive. If a* = b?, then a = b.
Another useful application of Proposition 3 is the following
COROLLARY 5. There is an absolute value |.| : A — A" defined by |a| =

= +aa*.

Proo¥r. From the H*-identity (1) it follows
(aa*z,z) = (a*z,a*z) = ||a"z|* 2 0

for all z € A and so aa* is positive. Since aa* € 7(A), we can now apply
Proposition 3. 3

Now we can define a norm on the trace class (see [26-27]) by 7(a) =
= Tr(|a|). The following is then true:

ProrosITION 6. (1) ||a|| £ 7(a) for every a in the trace class.
(2) v{a*) = ||a||2 for every selfadjoint a € A.

3) T(A) is complete with respect to the norm 7.

(4) | Tr(a)| £ 7(a) for every a € A.

A nonzero element p € A is called a projection if p = p* = p? holds. It is
further called minimal if pAp = Cp. From [2] and [11] we need the following
facts about projections in H*-algebras:
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PropPOSITION 7. (1) There ezists an approrimate identity {p,} for A
consisting of projections.

(2) Every projection is a finite sum of minimal projections p; which are
pairwise orthogonal in the sense that p;p; = 0 for i # j.

Saworotnow’s pre-Hilbert .A-modules and normed .A-modules

Let A be a proper H*-algebra. Let H be an additive group and a module
over A. Some authors prefer left, some prefer right modules. Both theories
are of course equivalent. We use the left module concept. Therefore we
assume that a biadditive mapping o : A X H — H is given satisfying (ab) o
oz =ao(boz). This mapping is called a module multiplication.

DEFINITION 8. H is called a Saworotnow’s pre-Hilbert A-module if there
exists a mapping, called a generalized inner product, [, ] : H X H — T(A)
satisfying the following axioms:

(i) [z,z] is positive for every z € H.

(ii) [¢,z] = 0 implies z = 0.

(iii) [y,z] = [z,y]" holds for all z,y € H.
(iv) [ao z,y] = a[z,y] holds for all z,y € H and a € A.

If we take the H*-algebra A = C, we get the usual inner product space.
In general however this generalized Hilbert space has noncommutative and
infinite-dimensional ’scalars’. Hilbert .A-modules were first defined in [21].
Bases for their theory were set in [9], [22-25] and [32]. Some recent papers
on this subject are [5-6], [13] and [15-19].

REMARK. The original set of axioms was richer for two more axioms.
One was the weak form of the Cauchy-Schwarz inequality which was proved
to be redundant and even improved to a strong form by Lajos Molnar. The
second one required that H should be complete with respect to a suitable
metric. We omit this axiom because we are also interested in noncomplete
pre-Hilbert modules.

Let X’ be another left module over A. Now we give a set of axioms for a
generalized normed space over A.

DEFINITION 9. Let N : X — A be a mapping with the following prop-
erties:
(i) N(z) is positive for every z € X.
(ii) N(z) = 0 implies z = 0.
(iii) N(aoz) = |aN(z)| holds for all a € A and z € X.
(iv) ||[N(z + y)|| £ ||N(2)|| + || N(v)|| holds for all z,y € X.
(v) If {zo} C X is a generalized sequence such that for all ¢ > 0 there ex-
ists ag such that for all o, 8 2 ag we have || N(z4 — z)|| < ¢, then N(z4)
is a Cauchy sequence in A.
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Then (X, N) is called a generalized normed space.

REMARKS. If A = C is the H*-algebra of complex numbers with the
usual involution and absolute value, then X’ is a usual complex normed space.
The notation |.| stands for the absolute value in A defined by Corollary
5. Note that |aN(z)| is in general not equal to |a|N(z) because a and N(z)

may not commute. The notation ||a|| = 1/(a, a) stands for the Hilbert space
norm in A. Axiom (v) represents some sort of continuity property for N.
We could actually define a metric topology on & by dist(z,y) = || N(z - y)||.
From axioms (i)—(iv) it follows that this is in fact a metric on A'. Then axiom
(v) tells us that N maps Cauchy sequences in (X, dist) to Cauchy sequences
in A. In the classical normed space this is a consequence of the triangle
inequality. Here we have the triangle inequality only for the composition of
the norm in A and N rather than for N itself and so (v) must be stated as
a separate axiom. It is easy to see that if A is not commutative, then the
triangle inequality for N itself does not hold.

Our first goal is to prove that every pre-Hilbert .A-module H is a normed
A-module. This is not obvious because one must incorporate in the proof spe-
cial properties of H*-algebras. Since [z,z] is a positive trace class element,
we can use Corollary 5 in order to define N : H — A by N(z) = +/[z,z].
From Definition 8 it easily follows that N(z) = 0 implies z = 0. Therefore it
remains to verify (iii), (iv) and (v) from Definition 9.

Part (1) of the following lemma has a very similar proof as one of the
results in [16]. Since the proof is short, we repeat some of the arguments for
the sake of completeness and to illustrate a technique one often uses when
dealing with H*-algebras without identity element.

LEMMA 10. Let H be a pre-Hilbert module over a proper H*-algebra A.
Then we have
(1) If z,y € H and p € A is a projection, then the inequality

(plz,y),p) + (ply,2],p) < 2||pN(2)| - || PN ()|

holds.
(2) Let a = a* € A. Then for every z € A we have |(az,:1:)| X {|elz®) -

(3) If a,b € A are positive, then ||a — b||* < 7(a? — b?).

ProOF. (1) Take any real number ¢. Since the element [z + (tp) o y,z +
+ (tp) o y] is positive in A, we have

0= (ple+(tp)oy,z+ (tp) o y],p).

Applying axioms from Definition 8, we have
0 £ (ple,2],p) + t{Ply, 2], p) + t{ple,ylp", p) + t*(ply, ylp*, p)-
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Next we use that p is a projection and the H*-identity (1) which results in

0 < (plz,z],p) +t ((plz,y),p) + (ply,z],p)) + t*(ply, v}, p)

for all real ¢. Since [z,z] and [y,y] are positive, it follows that the middle
term is real. Thus

(plz,l,p) + (ply, 2], p) < |(plz,9],p) + (ply,2],p)| <

= 2\/(p[z,z],p) \/(p[y, yl,p)-

If we write N(z) = y/[z,z], then N(z)" = N(z)since N(z)is positive. Hence

(plz, u1,p) + (ply, 2, p) < 2¢/(pN ()%, p) /(PN (v)%,p) =

= 2\/(pN(2),pN(2)) {/(pN (1).2N () = 2|[pN(2)] - | N ).

(2) From [26, Lemma 1] we know that @ can be expressed as a = ) Anen
where e,, are pairwise orthogonal projections and A, nonzero scalars. Since
a = a*, all A\, are real numbers. The above series converges in the Hilbert
space topology. It is also easy to verify that A, tends to zero. If we set
b= Y"|Anlen, then this series also converges so b is well-defined. Since 4% =
— 2 _ 2 . o, . . oY
=a* = Y Ale, and b is positive, it follows b = |a|.

Now we can verify in a direct way

(lale,2) =Y IAal(enz, ) = [Anl llenz|l?,
|<ax,z>| =3 Mntenz,2)| £ 3 all(ens, 2| = (lalz,2).

(3) From [26] we know that the trace can be represented also as Tr(a) =
= Y (ae,,e,) where {e,} is (any) maximal family of pairwise orthogonal
projections and a € T(A).

The element a — b is self-adjoint so we have a — b= ) A\ e, where 0 #
An € R. Using the Zorn lemma we can extend the family {e, } to a maximal
family {ey}. If we set A, = 0 for all e, which do not belong to the original
family we stil} have a — b= Y Aye,. According to the above paragraph and
(2), we have

T(a® —b%) = Tr (|a® - %) = Z (la® = b|eqr€q) 2 Z [[{(a® = b*)eq, €a) |
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If we write 2(a? — b?) = (a + b)(a — b) + (a — b)(a + b), we olg'tajn

r(a? —82) > -;- 3 1{(@ = b)eas (a+ b)ea) + { (@ + ey (a — blea) |-
However, (a — b)e, = Ayeq and so

v(a? - b?) 2 Z |Aa{(a+b)eas€a) |-,

Since b is positive, we have a — b < a + b and therefore

r(a? — b%) 2 Z [Aa((a - b)eq,eq) | = Zx\i(ea,ea).

On the other hand, using the fact that e, are pairwise orthogonal as elements
of the Hilbert space, we get

la =81 = |3 Auea

REMARKS. The idea to express 2(a® — b?) as (a + b)(a —b) + (a —b)(a +
+b) is due to Powers and Stormer. It was pointed out to me by Bojan
Magajna. ;

At this point the author wishes to express his gratitute to the referee who
discovered a mistake in the proof of the above lemma in the first version of
the manuscript. Note also that in the sequel we use a weaker statement than
the inequality proved in Lemma 10(3) which says that for positive elements

a, and a a2 5 o? implies a, — a. As noted by the referee, this weaker claim
can be proved with more standard methods thus avoiding structure theory
of H*-algebras. Its proof goes as follows:

Since Tr(p?) = ||p||* for positive p, it follows that ||a,}|* = Tr(a2) —
— Tr(a?) = ||a/|*. As a consequence of this we also obtain that the set of left
multiplication operators L,, is bounded in the operator norm. According to

ait Il :
Proposition 6 we have a2 = a? and so L2 converge to L2 in the operator

norm. Since L? form a norm-bounded set and continuous function calculus
T +— f(T) for selfadjoint operators is strongly continuous on compact sub-
sets of R (see for example Pedersen, Analysis Now, E 4.6.5), we obtain that
L,, tends strongly to L,. Therefore we have

2
= Aleal® £ 7(a* - b%). O

(an,zy) = (a,y", z) — (ay",z) = (a,zy).

Since elements of the form zy are dense in A, it follows that a, tends weakly
to a. Finally we have

2 2
llan — all* = llaa|l* + llall® - (an, a)-
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~(aya) — llall* + llal - (a,a) ~ (a,a) = 0.

Next we recall the following result from [16]. By 7 we again denote the
trace-class norm. Compare also Proposition 6.

PRrROPOSITION 11. Let H be a pre-Hilbert A-module. Then the strong
Cauchy—Schwarz inequality

(le,9)* £ 7([2,2)) 7 ([y, ¥])

holds for all z,y € 'H.

THEOREM 12. Let H be a pre-Hilbert A-module. If we define N(z)=
= /[z,z], then (H, N) is a normed A-module.

Proor. Take a € A and z € H. Then
N(aoz)?=[aoz,a0z]=alz,a0z]=alaoz,a]" =
= a(a[z,2])" = afz,z)a* = aN(z)2a* =
= (aN(2)) - (aN(2))" = [aN()|?

where the last equality follows from Corollary 5. Since N(aoz) and |aN (z)l
are positive, we can apply Corollary 4 in order to obtain N(aoz) = |aN (:v)|
which proves (iii) from Definition 9.

Now fix z,y € H. If p € A is an arbitrary projection, then we have, using
the H*-identity (1),

|pN(z + y)||* = (pN(2 + y),pN (e +y)) =
= (pN(z +v)%,p) = (plz + v,z + 9},p) =
= (plz,2],p) + (ply,9],p) + (ple, 9], p) + (ply, 2], p).
Apply Lemma 10 in order to prove
lp(V (@ +9)]|* < (pN(2),p) + (pN (@), 0) +2[[pN ()] - [PV W)]| =
= (pN(2),pN(z)) + (PN (9),pN(v)) +2||pN(2)| - [|pN (v)|| =
= (lpN @) +[[pN @)])*-
Thus, for an arbitrary projection p € A,
IpN (@ + )| £ ||pN ()] + [[pN (W)l
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follows. Take the approximate identity {p,} C .A consisting of projections.
Its existence is granted by Proposition 7. Hence

limpeN(z +y) = N(z +y), limpaN(z)= N(z), limpaN(y)= N(y).
If we take limits on both sides of the inequality
| PN (z + 9)|| £ || PaN(@)|| + || PN ()|,
we finally obtain (iv).

Now suppose that a sequence z, is such that for every ¢ > 0 there exists
ag such that for all a,3 2 ag we have || N(zo — )| < e. If @ 2 ag, then

[N Gl = ¥ 2aq + 200)| £ + [ N(za0)|

implies that there is a constant M such that ” N(zo)|| £ M for all & 2 ag.
Then we have for all a, 3 2 agp, using Lemma 10 and Proposition 11,

“N(za) - N(zﬁ)uz s T(N(l'a)2 = N(Ig)2) =
= 7([2as 2] = [28,25]) = T([2as 2o — 2g] + [£a — 25, 26]) <

L 7([2ar 2o — 2g]) + 7([2a — 2p,26]) <

< Vrllaral) y/r(lze = 220~ 24 +

+y/7([2a — 26, 2o — 25]) /7 ([25, 26]) =
= || N(zo)|| - || N(za — zp)|| + || N(2p)|| || N (za — zp)]|| £ 2Me. a

Now we can formulate the Jordan-von Neumann type theorem for
Saworotnow’s pre-Hilbert A-modules. If (X, N) is a normed .A4-module, then
the parallelogram law is the identity

(PL) N(z +y)*+ N(z — y)* = 2N(z)* + 2N (y)?

which must hold for all z,y € X. If ¥ = H is a Saworotnow’s module, then
this reduces to

[x+y,z+y]+[w—y,z—y] :2[z,z]+2[y,y]

which is trivial to verify. The rest of the paper is devoted to prove the fol-
lowing
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MAIN THEOREM. Let A be a proper H*-algebra and (X,N) a normed
A-module over A. Then X satisfies the parallelogram law (PL) if and only if
X is a Saworotnow’s pre-Hilbert module with respect to the generalized inner

product [z,y) such that N(z)? = [z,z] holds for all z € X.

A certain functional equation on H*-algebras

Let A be a proper H*-algebra and T, S : A — A a pair of mappings sat-
isfying the identity z7'(y) = S(z)y for all z,y € A. Such a pair is called a
double centralizer of A.

OBSERVATION 13. Let(T,S) be a double centralizer on A. ThenT and S
are bounded and linear. Moreover, T(zy) = T(z)y and S(zy) = zS(y) holds
for all z,y € A.

Proor. Fix z,y € A. Then we have, for all z € A,
(52 +1) - 5(z) - 5¥)z = (¢ +y)T(2) - #1(z) - yI(z) = 0.

Since A is proper, the additivity of S follows. In a similar way we prove that
S is homogeneous and therefore linear. Obviously the same is true for 7. In
order to prove that 7" and S are bounded, we use the closed graph theorem.
Suppose that z, — 0 and T(z,) — yo. Then we have for all y € A, using
Proposition 2,

yyo = ylim T(z,) = lim (yT(z,)) = lim($(y)za) = S(y)limz, = 0.

As above, yo = 0 follows and by the closed graph theorem 7T is bounded. In
a similar way we prove that S is bounded. Finally

A(T(ey) - T(2)y) = #T(ay) - 2T(x) -y = S(z)ay - S(z)z-y =0

implies T'(zy) = T(z)y. In a similar way we prove S(zy) = 2zS(y). 0O

Given a € A, we define a left and a right multiplication operator by
Ly(b) = ab and R,(b) = ba respectively. It is easy to compute that (Lqg, R,)
is a double centralizer of A. The converse is not true in general, because H*-
algebras which are infinite dimensional do not have an identity element and
there are double centralizers which are not of the form (Lg, Rg).

OBSERVATION 14. Fvery proper H*-algebra is semiprime.

PRroOF. Recall that a ring K is called semiprime if for a € K condi-
tion aKa = (0) implies a = 0. Take a € A such that a.Aa = (0) holds. Then
aa*a = 0 is also true and so the H*-identity (1) implies

la*a||® = (a*a,a%a) = (aa*a,a) = 0
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and consequently a*a = 0. Finally
laz|?* = (az,az) = (a*az,z) =0

implies @ = 0 since A is proper. O

LEMMA 15. Let S,T : A — A be additive mappings. Then

(1) S(zyz) = zyS(z) for all z,y € A implies that S is linear.

(2) T(zyz) = T(z)yz for all z,y € A implies that T is linear.

(3) If S is bounded and satisfies (1), then S(zy) = 25 (y) for all z,y € A.
(4) If T 1s bounded and satisfies (2), then T(zy) = T(z)y for all z,y € A.

Proor. Clearly it is sufficient to treat only (1) and (3). Take A € C.
Then

S(Nzyz) = S((Az)y(Az)) = AzyS(Az).
On the other hand
S(A%zyz) = S(z(\2y)z) = AzyS(z)
and so zy(S(Az) — AS(z)) = 0. By replacing z with z + 2, we obtain
zy(S(Az) — AS(2)) = —zy(S(Az) — AS(z)).
If we denote A(z) = §(Az)— AS(z), then
(zyA(2)) w(zyA(z)) = —(2yA(z)) w(zyA(z)) =
= —z(yA(z)wzy) A(z) = 0.

Since A is semiprime, it follows zyA(z) =0 for all z,y,2 € A. Hence
A(2)AA(z) = (0) implies A = 0 so § is linear.

If S is bounded, then we can use the approximate identity p, from Propo-
sition 7. First we have

#8(x) = licr!n TPa8(2) = lim Bzpyz) = S(lién zpaz) = S(z2).

By means of linearization we obtain zS5(y) + yS(z) = S(zy + yz). Again
using the approximate identity, we obtain

25(e) = 5(22) = S(lim paz + 2ps) = lim S(paz + Tpa) =
= li;npaS(z) + lién tS5(pa) = S(x) +lim2S(pa)
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and therefore S(z) = lim, 25(po). This finally gives
5(ey) = limzyS(p) = 2limyS(po) = 25(y). O

LEMMA 16. For each nonzero y € A there exists a minimal projection p
such that pyp # 0.

PROOF. Suppose that pyp = 0 for all minimal projections p. By taking
adjoints we obtain py*p = 0. If we decompose y = h + 1k where h and k are
selfadjoint, then php = pkp = 0 follows. Consider the spectral decomposition
h = 3, Ane, where X, are nonzero real numbers and {e,} pairwise orthog-
onal spectral projections. If A # 0, then e; # 0. Since ey is a finite sum of
pairwise orthogonal minimal projections (see Proposition 7), there exists a
minimal projection p satisfying pe;p = p and pe, = 0 for all n > 2 (if there
are any ). Hence php = A;p # 0 gives a contradiction. This shows that h =
= 0. In a similar way we establish ¥ = 0 and finally y = 0+ 0¢ = 0 concludes
the proof. O

Let E,F : A — A be additive and suppose that

E(zyz) = E(e)y"s" + 2F(3)e" + yE(2),
F(zyz) = F(z)y"z" + zE(y)z" + zyF(z)
hold for all z,y € A. Then (E, F) is called a Jordan *-derivation pair. This is

a generalization of Jordan *-derivations which were considered in [3], [29-31]
and [38].

ExaMPLE 17. Let (71,5:1) and (73,52) be double centralizers. If we
define E(z) = Ty(z*) + S2(2) and F(z) = — Ty(z*) — Si(z), then (E, F) is
a Jordan x-derivation pair.

The converse is given in the following

ProposITION 18. Let A be a proper H*-algebra and (E,F) a Jordan

x-derivation pair acting on A. Then there exist double centralizers (Ty,S57)
and (T, S;) of A such that

E(z) = Ti(z*) + $2(z),  F(z) = -Ty(z*) - 5:1().

Proor. From the desired representation it easily follows that we must
define the above mentioned mappings by

Ty(z) = 5:(iBGa") - B(iz"),  To(e) = 5( — iF(") + F(iz™),

S1() = 5o~ F(i2) —iF(@)),  5x(e) = o=( Bi) +iE(z)).
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Then it is straightforward that E(z) = T1(2*)+ S2(2) and F(z) = —Ta(z*) —

— S1(z). In a few steps we conclude the proof by showing that (77, 57) and
(T3, 52) are in fact double centralizers.

STEP 1. The above four mappings satisfy the identities Ty(zyz)=
= Ti(z)yz, Ta(zyz) = To(z)yz, Si(zyz) = zyS1(z) and Sy(zyz) = zySa (<)
for all z,y € A.

The proof of all four identities is similar so we give it only for S3. In
order to simplify the writing of constants we shall consider S(z) = 2E(iz) +
+ 21E(z) = 4153(z). First we observe the equality —E(zyz) = E(-zyz) =
= E((iz)y(iz)) which results in
(2) 0=2zF(y)z*+ E(z)y*z" + zyE(z)+ izyE(iz) — iE(iz)y"z*
for all z,y € A after the expansions of both sides. Next we compute

2E(izyz) = E((1 +i)zy(1 4+ 1)z) = E(2)y*z™ + E(iz)y*z*—
—iE(2)y*s* — iE(iz)y* 2™ + 2z F(y)a™ + 2y E(z)+
+izyE(z) + izyE(iz) + zyE(iz).
By (2) this reduces to
2E(izyz) = E(iz)y*z* — iE(z)y*c" + izyE(z) + zyE(iz) =
=i( —iE(iz)y*z* — E(z)y*z* + zyE(z) — izyE(iz))
and again using (2) this further reduces to
2E(izyz) = i( — 2z F(y)z* — 2E(z)y*2* — 2izyE(iz)).
This enables us to finally obtain
S(zyz) = 2E(izyx) + 24E(zyz) =
=i( — 2zF(y)z* — 2E(z)y*z* — 2izyE(iz) + 2E(zyz)) =
= i(2zyE(z) — 2izyE(iz)) = 2zyE(iz) 4 2izyE(z) = zyS(z).

STEP 2. F and F are real linear.

This follows immediately from Step 1, Lemma 15 and the fact that the
involution of A is real linear.
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STEP 3. E and F are bounded (real linear) operators.

The closed graph theorem is also true for real linear operators so take a
sequence {z,} C A which converges to zero such that E(z,) — y # 0. Be-
cause of Lemma 16 there exists a minimal projection p such that pyp # 0.
Since p is minimal, there exist two sequences of real numbers a,, and 3, such
that pz,p = (o, + i3,)p. Since z, — 0, we have a, — 0 and 3, — 0. Since
F is real linear, we have

Therefore

0 = lim F(pz,p) = lim (F(p)z;p + pE(za)p + pznE(p)) =
= lim pE(z,)p = pyp # 0

where the third equality follows from Proposition 2 which implies that 2}, —
— 0. This contradiction tells us that the graph of E is closed and the bound-
edness of F follows. In a similar way we prove that F' is bounded.

StEP 4. (T1,S51) and (T3, S2) are double centralizers.

From Step 3 and Lemma 15 it follows that 77(zy) = T1(z)y and similarly
for T,, S7 and S,. Applying this to the identity

E(zyz) = E(z)y"z" + zF(y)z" + 2y E(z)
we obtain
Sa(z)y"z™ + zyTi(z7) = 2To(y")z™ + 251 (y)™.
If we replace y by iy, we obtain
zyTy(z*) = 28i{y)e® = Si(zy)e";
Sale)y'e" = 2Dy’ )e” = 2 Thly'z").
If we use the approximate identity p,, we obtain

w2 ) = licryn 2paTilE") = li;n Si(zps)e” = Sulz)z".

Inserting = + y and z + iy instead of z, we easily obtain z71(y) = Si(z)y
which means that (77, 57) is a double centralizer. In a similar way we prove
that (7%, 52) is also a double centralizer. O

In the proof of the main theorem we shall use a special situation of the
above result.
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PRropPosSITION 19. Let A, E and F be as above and {p, } the approzimate
identity of A from Proposition 7. Iflim, E(p,) and lim, E(ipy) ezist, then
there are unique elements a,b € A such that

E(z) = az™ + zb, F(z) = —bz™ — za.

Proor. Denote by (T3,5;) and (7%, S;) double centralizers which repre-
sent the Jordan x-derivation pair (E, F'). Denote

¢ = lim E(p,), d= ligln E(ipy)-

Take any z € A. Then zp, — ¢ and since E is bounded E(zp,) — E(z)
follows. Hence, using Observation 13,

E(z) = ljén E(zp,) = lign (Ty(paz™) + Sa(zpa)) =
= lim (Ty(pa)2” + 253(pa)) = lim ((T1(pa)o” + Sa(pa)e”) +

+(2Ti(pa) + 252(pa)) = (2T1(pa) + Sz(pa)z*)) =
= (lim Ty(pa) + S2(pa)) &™ + 2 lim (T1(pa) + S2(pa)) —
~lim (8(pa)e” + 2Ti(p)) =
=cz" +xc— li;npaTg(x*) - ligl Silz)p, =
= cz* + zc — To(z*) — S1(z) = ca* + zc + F(z).
On the other hand we also have z = lim,(—iz)(¢ps) Which results in
E(z) = lim E((~iz)(ipa)) = lim (T1((ipa)"(~iz)") + S2((~iz)(ipa))) =
= lim (T3 ((ipa)") (iz") — izS2(ipa)) =
= lim (iE(ipa)s” — iz E(ipa) + i2Ti ((ipa)") — iSa(ipa)e”) =
=ide” —izd + iligl Sa(z)(1pa)™ — ilicryn ipaTo(z™) =
= tde™ — izd + S2(z) + To(z*) = ide* — izd — F(z).
The above calculations give us
E(z)+ F(z) = idz™ — izd, E(z) - F(z) = cz™ + zc.
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If we define a = ‘—dz'f‘—c, b= i'%‘"—c, then the desired representation follows. Now
we have to prove the uniqueness. If a1,b, and ay, b, are two pairs represent-
ing (E,F) in the above sense, then E(p,) — a1 + by and E(py) — az + by
which shows that a; + b; = a; + bz. On the other hand E(ipy) — (b1 — ay)
and E(ips) — t(by — ap) imply a; — by = az — bz and hence a; = a3, by = b,
concludes the proof. O

Proof of the Main Theorem

Let A be a proper H*-algebra, (X', N) a normed .A-module satisfying
the parallelogram law (PL) and @ oz the module multiplication. Define a
mapping Q : X — A by Q(z) = N(z)?. Then we have

(3) Q(z +y) + Qz —y) = 2Q(z) + 2Q(v),
(4) Q(ao2) = aQ(a)a"
for all z,y € X and a € A. Identity (3) follows directly from (PL) while (4)

follows from Definition 9(iii) since
Q(aoz)=N(aoz)’ = |aN(z)|2 =aN(z)N(z)a" = aQ(z)a".

Let {p,} be the approximate identity from Proposition 7 consisting of pro-
jections.

PROOF OF THE MAIN THEOREM. STEP 1. Q(—x) = Q(z) forallz € X.
Proor. This follows from (3), since we have

Q(z + )+ Q(z — z) = 4Q(),
Q(z +(-2)) +Q(z — (—2)) =2Q(z)+2Q(-=).

STEP 2. For every x € X the limit lim, Q(p, 0 *) exists and is equal to
Q(z).

PRrOOF. Since {p,} is the approximate identity, (4) implies
lim Q(py 0 ) = lim poQ(2)pa =
= lim o N(2)- lim Na)pa = N (2" = Q).
STEP 3. For every a € A and x € X the equality

Q(z +aoz)=Q(z) + Qaoz) +aQ(z) + Q(z)a
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holds.
Proor. From Step 2 and (4) it follows

Q(z +aoxz) =li(£nQ(pao(:c+aoz)) = lignQ(paox-i-PaO(aoz)) =
= lim Q(pa 0z + (paa) 0 2) = im Q((pa + pat) 0 7) =
= lim(pa + Pa@)Q(e)(Pa + Pat)” =
= lim p,Q(2)pa + lim paaQ(2)po + lim paQ(2)a”pe + lim paaQ(z)a"py =
= Q(z) +lim pya - lim Q(2)py + lim poQ(2) - lim a”pa+
+1im poaQ(z) - lim a"ps =
= Q(z) + aQ(z) + Q(z)a” + aQ(z)a.

STEP 4. For all z € X and a € A the following holds:

(1) Q(z + pa 0 2) W 4Q(2).

(2) Q(z — po o) 5 0.

(3) Q(z — pa o) Wo.

Proor. (1) From Step 3 we obtain
Q(z +pa0z) = Q(z) + paQ(2) + Q(2)Pa + Pal(2)Pa-
Since {p,} is the approximate identity and taking into account Step 2, the
result follows.

(2) Since Q(z — pa 0 z) is positive, we have 7(Q(z — p,0z)) = Tr (Q(z -
— pa 0 z)). Using Step 3, we have

7(Q(z — pa o)) = Tr (N(z)N(z)) — Tr(N(z)N(z)pa)-
—Tr (poN(2)N(2)) + Tr(pa N(2)N(2)pa) = ( N(z), N(z)) -
—(pO,N(x),N(z)) - (N(z),paN(z)) ;) (paN(l‘),paN(z')) .

Since {p,} is the approximate identity and the inner product of A is contin-
uous, the result follows.
(3) This follows easily from what we just proved and Proposition 6(1).
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STEP 5. For all z,y € X and X € C a sequence Q(z + (Apy) 0 y) con-
verges in the inner product topology.

PRroOF. If A = 0 there is nothing to prove so we may assume in the sequel
that A is nonzero. Let zo = 2 4 (Apy) o y. Since {po} is the approximate

identity, poN(y) I N(y).

Take ¢ > 0. There exists ag such that for all ,3 = ag we have || PaN(y)—
— p,gN(y)H < ﬁ[ This implies, for a, 3 as above,

IN (20 = 26)[|* = [|N ((Apa = Apg) 0 9) ||* =

= AP || (e — pa)N@)|||” = IAP]| PaN (9) = BN (9)]| S €2

Therefore, by axiom (v) from Definition 9, it follows that N(z,) is a Cauchy
sequence in A. Since A is complete, it follows that N(z,) is convergent and

hence Q(zo) = N(z4)? also converges in the Hilbert space norm.
STEP 6. Firz,y € X. If we define E,F : A — A by

E(a)=Q(z+aoy)—Q(z—aoy), Fla)=Q(y—aoz)-Q(y+aoxz),
then (E, F) is a Jordan *-derivation pair.
Proor. Take a,b € A and consider

E(a)b*a* 4 aF(b)a* + abE(a) = (ab)(Q(z +aoy)— Q(z —aoy))+
+(Q(z+aoy)—Q(z —aoy))(ab)"+Q(aoy—aboz)—Q(aoy+aboz).
If we apply Step 3, we obtain

abQ(z+aoy)+ Q(z+aoy)(adb)” =
=Q(z+aoy+aboz+abaoy)—Q(z+aoy)— Q(aboz + abaoy)
and in a similar way
abQ(z —aoy)+ Q(z —aoy)(ab)" =
=Q(z—aoy+aboz—abaoy)—Q(x—aoy)— Q(aboz —abaoy).
This yields
(5) E(a)b*a* + aF(b)a™ + abE(a) = Q(aoy —abozx) —
—Q(aoy+aboz)+ Qaboz +abaoy+z+aoy)—Q(aboz + abaoy)—
—Q(zr+aoy)—Q(abozr —aoy+z—abaoy)+
+Q(z —aoy)+ Q(aboz — abao y).
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By the parallelogram law (PL) we have

(6) Q(aboz +abaoy+z+aoy)=
=2Q(aboz +abaoy)+2Q(z+aoy)— Q(abozx +abaoy—z—aoy)

and

(7) Q(aboz —aoy+az—abaoy) =
=2Q(aboz —aoy)+2Q(z —abaoy)— Q(aboz —aoy—z +abaoy).

By Step 1 we have Q(aboz —aoy) = Q(aoy— abozx)and so the application
of (6) and (7) to (5) gives

(8) E(a)b™a™ + aF(b)a™ 4+ abE(a) = Q(abo z + abao y) +
+Q(z+aoy)—Q(aoy—aboz)—Q(aoy+ abozx)+
+Q(z —aoy)+ Q(aboxz — abao y)— 2Q(z — aba o y).
Another application of (PL) tells us that

Qaoy+aboz)+Q(aoy—aboz)=2Q(aoy)+2Q(abo z),
Q(aboz 4 abaoy) + Q(aboz — abaoy) = 2Q(abo z) + 2Q(aba o y),
Q(z+aoy)+Q(z—aoy)=2Q(z)+2Q(aoy),

holds and so (8) can be rewritten as
E(a)b*a™ + aF(b)a”™ + abE(a) =

=2Q(z)+ 2Q(abaoy) — 2Q(z — abao y) =

=Q(z + abaoy)— Q(z — aba o y) = E(aba).
In a similar way we prove that F(a)b*a* + aE(b)a* + abF(a) = F(aba). Now
it remains to prove that E and F' are additive. This can be done by the
technique discovered by Aczél a long time ago and since then used by Rétz,
Szabo, Semrl, Vukman, Zalar and probably many others. We repeat this

argument for the sake of completeness.
Take a,b € A. Then, using (PL), we have

E(a+b)=Q(z+aoy+boy)—Q(z—aoy—boy)=
=Q(z+aoy+boy)+Q(z+aoy—boy)—Q(z+aoy—boy)—
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~Q(z—aoy—boy)=2Q(z +aoy)+2Q(boy)-
~2Q(z ~boy) - 2Q(a0y) = Q(z +aoy)+

+(Q(e +aoy)—2Q(a0y)) + (2Q(boy) — Q(z — boy)) -

—Q(z—boy) = Q(z +a0y)+2Q(z) - Qz — aoy) - 2Q()+
+Q(z +boy) - Q(z —boy) = E(a) + E(b)

and in a similar way we prove that F is additive as well.

STEP 7. For each pair (z,y) € X X X' there ezxist unique elements
g,ysbzy € A such that

Q(z+aoy)—Q(z—aoy) = ayya” + abyy,
Qy—aoz)—Q(y+aoz)=—byya* — aasy.

Proor. This follows immediately from Proposition 19 and Step 6.
SteP 8. If we define [, ]|: X x X — A by [z,y] = }asy, then [z,y] is

a generalized inner product on X in the sense of Definition 8 and so X is

a Saworotnow’s pre-Hilbert module. Moreover, [z,z] = N(z)* holds for all
zE &,

ProoF. The additivity of [z,y] is easy to prove in a similar way as the
additivity of £ and F in Step 6. From the definition of E and F it follows
first that a; ;, = b; ;. Hence

4[177 :L‘] = zaz,x =az gzt b:r:,a: = hgn a:c,z:pz I pab:r:,:c =
=lim Q(z + pa 0 ) — lim Q(z — po 0 z) = 4Q(z) = 4N(z)’

where the last equality follows from Step 4. Thus [z,z] = N(z)? for all z €
€ X and so [z, z] is positive and nonzero if z is nonzero. This verifies axioms
(i) and (ii) from Definition 8.

Since ) maps into positive elements of A, E and F map into selfadjoint
elements of A. Therefore for all a € A

*

* * * * *
Gz 0" + absy = (ag 40" + 8byy)" = bx,ya + aa; ,

and from the uniqueness of the elements a,, and b, it follows that b, =
= aj,. If we consider the relations

Q(r+aoy)—Q(z—aoy)=azya" + absy,
Q(z—-aoy)—Q(z+aoy)=—bya" —aay,
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we obtain
2[z,y] = az,y = by = a; , = 2y, z]"

which verifies axiom (iii) from Definition 8.
Take ¢ € A and consider

cazya* + abr yc* = c(azya* + abzy) + (azya* + aby y)c*—
—(azy(ca)* + (ca)byy) = cQ(z +aoy)+Q(z +aoy)c —
—cQ(z—aoy)—Q(z—aoy)c"—Q(z+caoy)+Q(z —caoy).

By Step 3 this equals

Q(z+aoy+coztcaoy)-Q(z+aoy)—Q(coz+caoy)-
—Q(z—aoy+cox—caoy)+Q(z—aoy)+Q(coz—caoy)—Q(z+caoy)+
+Q(z —caoy)

and further, using the parallelogram law (PL),

Q(z+aoy)+Q(coxz+caoy)—Q(z+aoy—coz—caoy)—
—Q(r—aoy+cox—caoy)+Q(z—aoy)+Q(coz—caoy)—Q(z+caoy)+
+Q(z - caoy) = 2Q() + 2Q(a 0 y) +2Q(c0 2) +2Q(ca 0 y)-
—Q(z —caoy+aoy—coz)—Q(z—caoy—(aoy—coz))—
—Q(z+caoy)+ Q(z —caoy) =
=2Q(z)+2Q(aoy) +2Q(coz) +2Q(caoy)-
~2Q(z - caoy) — 2Q(aoy - cox) - Q(z +caoy) + Q(z — caoy) =
= Q(z +caoy)+Q(z — caoy) +2Q(aoy) + 2Q(co z)-
—Q(z—caoy)—Q(r+caoy)—2Q(aoy—coz)=
= Q(cor+aoy)+Q(cos—aoy)—2Q(cos—aoy)=
=Q(coz+aoy)—Q(coz —aoy) = acya" + abes,y.

Since the representation of Jordan *-derivation pairs is unique, it follows

CQzy = Qe y and finally 2¢[z, y] = 2[cz,y] concludes the proof of Main The-
orem.
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Open problems

Since we failed to produce an example of ’discontinuous’ A-norm N, it
is possible that there is none. Hence we have the following

PRrROBLEM 20. Is aziom (v) in Definition 9 redundant?
If the answer is positive, then it may be interesting to study

PROBLEM 21. Let ) be an arbitrary quadratic functional (not neces-
sarily positive definite) on a Saworotnow’s pre-Hilbert module. Can @ be
represented by a sesquilinear form?

On a Hilbert module we can define a relation L by z L y if and only if
[z,y] = 0. Then we have

PrOBLEM 22. What azioms of the the abstract orthogonality in the sense
of Rditz and Szabé this relation satisfy?

It is obvious that L is symmetric, i.e. L y implies y L z. It is also ob-
vious that L is module homogeneous, i.e. L y implies (a0 2z) L (bo y) for
all a,b € A. More difficult question is already if z L y and z,y # 0 imply
that z,y are independent. This heavily depends on how we define the inde-
pendence in a Hilbert module. If we define z,y to be dependent if there exist
a,b € A such that aoz + boy = 0 and at least one of a,b is nonzero, then
it may happen that very few vectors would be independent. Another defini-
tion, much more appealing at first glimpse, arises from Molnar’s inequality
described in Proposition 11.

DEFINITION 23. Let H be a pre-Hilbert module and z,y € H. Then z,y
are Molndr-dependent if and only if 7([z,9])* = 7([z,z]) 7([9,]) -

This definition is interesting for the Rédtz—Szabé theory of abstract or-
thogonality because one has

OBSERVATION 24. If z,y are nonzero and z Ly then x and y are
Molndr-independent.

Proor. If z,y were Molnar-dependent, then

T([f'«‘,m])T([y,y]) =7{0) =1

Since 7([z,z]) and 7([y,y]) are real numbers, this implies 7([z,z]) =0
or 7([y,y]) = 0. By Proposition 6, 7 is a norm and therefore [z,2] = 0 or
[y,y] = 0. By Definition 8 axiom (ii) this is a contradiction. O

If n is an integer, we can define nz by 2z =z + 2,3z =z 4+ + = and so
on. Then it is elementary that # and nz are Molnar-dependent. There are
however at least two problems with Definition 23.
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PROBLEM 25. Is Molndr-dependence a transitive relation as the usual
linear dependence?

ProBLEM 26. Can one describe all elements which are Molndr-depen-
dent with given x € H?

Note that isometry of the involution in the Hilbert space norm (see
Proposition 2) implies isometry of the involution in the trace norm and
so (since [y,z] = [z,y]") Molnar-dependence is symmetric. Considering the
paper [20] of Rétz and Szab6 we can observe that given two additive map-
pings A: A — Aand B : H — A, the function F : H — A defined by F(z) =
= A([z,2]) + B(z) is orthogonally additive in the sense that & L y implies
F(z +y) = F(z)+ F(y). This motivates our last

PROBLEM 27. Is every orthogonally additive mapping F : H — A of the
form described above?
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r-CONVEX SEQUENCES AND MATRIX
TRANSFORMATIONS

Z. U. AHMAD, MURSALEEN AND Q. A. KHAN (Aligarh)

1. Introduction

Let I and ¢ be the Banach spaces of bounded and convergent sequences
¢ = (z}) with the usual norm ||z||,, = sup|zx|, and let v be the space of
k

sequences of bounded variation, i.e.,

= {z:”x]l = le" - ZTk-1| <00, (2o1= 0)}

k=0

Suppose that B = (B;) is a sequence of infinite complex matrices with

B; = (bnp(i)). Then « € Iy is said to be Fp-convergent [7] to the value
Lim Bz, if

o0
7L1er()10 (B), = nango pz_;bnp(z)xp = Lim Bz,

uniformly in ¢ =0,1,2,....
The space F of Fg-convergent sequences depends on the fixed chosen
sequence B = (B;). In case B = By = (I) (unit matrix), the space Fg is the

same as the space ¢ and for B = B; = (B,(l)), it is same as the space ¢ of

almost convergent sequences [1], where BY = (bsll,)(z)) with

1

1 . .
b<l>(i)={m» B2 0K

> () otherwise.
Let s be the space of all sequences, real or complex; and define
oy (0,0,...,0,1 (k' place) ,0,0,...),
e =(1,1,1,...),
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dg = {:c € s:Bz = ((Biz),) exists},

and
Fg = {x € (dgNlx) :nanéotn(i,z) exists uniformly in ¢ > 0
and is independent of i},
where
(1.1) it ) = i brp(2)zp.

p=0

Pati and Sinha [4] defined r-convex sequences in the following manner:
- A real sequence (zy) is said to be r-convex, r € N, if Az 2 0 for all
T
k € N, where A z; is defined by

0 1
ALy = T, Az = Az = zf — T4

r r—1
Awk:A(A xk>, for r€ N.

The space of all bounded 7-convex sequences with 7 2 2 is denoted by

30T, 1.6
SCTz{:v:(zk)Eloo:AzkzO for all nEN}

and
SC' = {z € lp: 2 — 2}y 2 0}.

It is clear that SC! C c.
It is well known (Zygmund [7]) that a bounded convex sequence (zj) is
non-increasing. It is easy to prove the identity

T+s 4

Azk:A(ixk),rgo and s20,

which shows that SC™ C SC™1, when r 2 2. Properties of bounded
r-convex sequences have been investigated by Rath [5]. Also SC™ C v.
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Let X and Y be any two sequence spaces. Let A= (ank) (n,k=
=10,1,2....) be an inﬁnite matrix of complex numbers. We write Az =

= (Ax(a)] if An(x)= E ankr) converges foreach n. fz € X = Az €Y,

we say that A is an (X, Y) matrix or A € (X,Y).

In (6], Stieglitz has characterized (c,Fs)-, (lw,F5)-, and (&, Fg)-
matrices. These classes of matrices give djrectly the known characteriza-
tions as special cases depending upon the choice of the sequence of matrices

= (B.)

In the present paper, we establish some necessary and sufficient condi-

tions to characterize (11, FB) -, and (SC’, FB) -matrices, where

I = {z:iw < oo}.

k=0

2. Main results

We write

Az = Z apkrr  and  gn(i) = anp 1)apk.

p=0
Using (1.1), we get
o0 oo oo
(2:1) (i;48) = Z bpu(t)Ape = Z bypli) Z Gpkdy = Zgnk(i)xk
p=0 p=0 k=0 k=0

where the change of order of summation is justified by the following lemma
(see [3]). We also give the proof of the lemma for completeness.
We denote

By(Az)], anp( JAy(z) = Z%( )Zapkzk,

also

[(B,-A)a:] "= E Z bnp(2)aprzi.
k p
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LEMMA 2.1. If Z|bnp(i)| < oo for each n and i, and if
P

o0
sup Z apj < o0,
Pk j=k

then for every x € v
Bi(Az) = (B;A)z.

Proor. By partial summation, for z € v

(*) Zapklik = Z dpk(xk - T-1) (1:_1 == 0)’
k k
o0
where dpr, = Y ap. By the hypothesis, dpx is bounded for all p, k. Thus
1=k
[Bi(A2)], =D bup(i) ) dpi(ek = Th1) =
P k

=Y (2k — Tk-1) Y bup(i)dpk = [(BiA)z] ,
k P
(where the inversion is justified by absolute convergence), since
Jlim Y bap(i)doi = 0.
P
THEOREM 2.2. If B = (b,,(i)) is a sequence of infinite matrices such

that 3| byy(i)| < 0o for each n and i, and A = (ank) is another matriz such
3

that b,p,(i)ayk is of the same sign for each n,p,k and i, then A € (11, FB) if
and only tf

) 00
(i) sup [ 30 ai
Lp |k=p

< 00,

o .
kz gnk(z)
(iii) ax = lim gni(i) exists uniformly in i for each ﬁzet-i_k.

n—oo

(ii) there is a constant K such that for m,i 2 0; sup

n

s K,

ProoF. Sufficiency. It is enough to show that under conditions (i), (ii)
and (iii),

(2:2] nl-l-»n;o zk:gnk(i)a:k = ;ak:pk, uniformly in 1,
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whenever z = (zx) € l;. From the conditions, we observe that aj € I,
so that ) ajzp converges absolutely for (zx) € l;. Similarly, the series
k

Y gnk(?)zy also converges absolutely for each fixed ¢ and n.
k

For a given € > 0, let kg € N be such that

(2.3) Z |zk| < €.

k>kg
By (iii), we can find no € N such that
(2.4) Z [gnk(?) — ax] 2| < ¢,
k<ko
for all n > ng and uniformly in . Then

D [ 9nk(6) — k] i

k

<UD [9nk(6) — ex) @k| + D | gni(i) — ol |2k| £

k<ko k>ko

< (2K + 1),
for all » > ng and uniformly in 7, by (2.4), (2.3) and (ii). This proves (2.2)
and hence the sufficiency.

Necessity. Condition (i) follows from the fact that A:l; — . Since
ex € ly, the necessity of (iii) is obvious.
For fixed p and 7, it is clear that

g
T — Zapka:k
k=0

is a continuous linear functional on /;. We are given that, for all = € [y, it
tends to a limit as j — oo (for fixed p) and hence, by the Banach-Steinhaus
Theorem [2], this limit A,z is also a continuous linear functional on ;.

Put for: 2 0

gi(x) = sup|tn(i, Az)|,
n
then ¢; is a continuous seminorm on /;, and (g¢;) is pointwise bounded on /.

Therefore, by another application of Banach—-Steinhaus theorem, there exists
a constant K such that

(2.5) ¢i(z) < K|l
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Apply (2.5) with 2 = (z) defined by

Hence (ii) holds.
This completes the proof the theorem.

Now, write
(2.6) el E bup(8) oy k, : Z Ay lay =
p=0
k Ar_l (o) Ak—
= Z : anp(’)am Z - ljgm i),
j=1 p=0

by Lemma 2.1, where A’,;:} denotes the binomial coefficients.

THEOREM 2.3. If B = (bnp(i)) is a sequence of infinite matrices such
that 3| bnp(i)| < 0o for each n and i, then A € (SC”,Fg) if and only if
P

00
(i) sup | 30 aw| < oo,
lp k=p

(ii) there exists a constant M such that for m,i =0,1,2,..

Zf 0)

k=m

sup sM (rz22),

(iii) ﬂ,(cr) = lim fi’,;)(z) uniformly in i, for each k;
n—oo
o0
(iv) B = lim 3 fr(;)(z) uniformly in 1.
For our convenience we will write 3 and ( for ﬂ,(:) and (") respectively.
FRrOOF. Sufficiency. Suppose that conditions (i)—(iv) hold and z € SC".

By virtue of condition (i), it is clear that Az is bounded. Now conditions
(iv) and (i) imply that

Y 1R6 (22
k=0
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converges for all ¢, n. Hence if we write
R =Y £596)
I=k

then h( % (1) exists, also for fixed ¢, n, we have

(2.6) hgfk) —0 as k—oo (r22).
Since
k-1
(27) B06) = Q) - Y £90).
=0
Now

(28) > 1)@m= 3 [F0) ~ KGa ()] 21 =
k=0

k=0
=S WD) @k - zr1)
k=0
by (2.6) and boundedness of z;. Therefore,

"’( i)ex| < E|h<”(i)| 2k — 21| £ M|2)|

(by condition (ii)) for z € SC". Also, by (2.8)

(2.9) lim 3~ fQ)ar = 3 (o — k1) lim AE().
k=0 k=0

By (2.7) and conditions (iii) and (iv), we have

k-1
1) Jim K6 = im KO0~ 3 tim A0 =53 A
=0

=0
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Therefore, (2.9) and (2.10) give

k-1
(2.11) lim 3" £z =Y (ak - 251) (ﬁ -, ﬂl) -
K K

=0

= f lim =i + Xk: Tk P

o0
Thus lim )] f,(,?(z)zk exists, and hence by (2.6)
" k=0

o k Ar—l.

Jim 0D gni(0)a

k=0 j=1
exists. Therefore
oo
lim Y gui(i)ex
k=0

exists and this implies that Az € Fg for x € SC".

Necessity. Condition (i) follows from the fact that A: SC™ — l,. Since
er,e € SC™, the necessity of (iii) and (iv) follows immediately.
For fixed p and j, it is clear that

J
X = E Apk Tk
k=0

is a continuous linear functional on SC”. We are given that for all z € SC”,
it tends to a limit as j — oo (for fixed p) as in (2.11) and hence, by the
Banach-Steinhaus Theorem [2], this limit A,z is also a continuous linear
functional on SC”.

Fix r, and write, for : 2 0

o0

PO

k=0

b

Qi(z) = aup

then Q; is a continuous seminorm on SC”, and (Q;) is pointwise bounded on
SCT. Therefore, by another application of Banach—-Steinhaus theorem, there
exists a constant M, such that

(2.12) Qilx) < Mle].
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Now apply (2.12) with = (2 ) defined by zx = 1 (k 2 m), 0 (k < m). Hence
(ii) must hold.
This completes the proof of the theorem.
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MINIMAX THEOREMS WITH ONE-SIDED
RANDOMIZATION

J. KINDLER (Darmstadt)

0. Introduction

In [9] the following generalization of a minimax theorem of Peck—Dulmage
(18] and Konig [14] was derived:

THEOREM A. Let Y be a countably compact topological space and F a
nonvoid set of lower semicontinuous functions f : Y — R U {00} such that
for the arithmetic mean ¢(a,3) = 1(a + ) we have

(1)
Vi h€FIREF: fo2e(fi,fa) (ie, foly) 2 ¢(fi(y), o)),y € Y).

Then there erists a probability measure v on the Borel o-algebra B(Y') such
that

(2) sup/fdu = sup inf f(y).

feF fEFyeY

Theorem A can be proved by applying an appropriate integral represen-
tation theorem to Konig’s generalization [13] of Ky Fan’s minimax theorem
[4]:

THEOREM B (Ky Fan—Konig). Let Y be a compact topological space and
F a nonvoid set of lower semicontinuous functions f:Y — R U {oo} such

that for o(a,B) = P(a,p) = %(a + B) we have (1) as above and

(3) Vyi,y2 €Y yo € Y Vf € F : f(yo) < % (f(w1), f(32)) -
Then there ezxists a z € Y such that
(4) sup f(z) = sup inf f(y).

feF fEFyeY

In recent years quite a lot of generalizations of Theorem B, where the
arithmetic means in (1) and (3) were replaced by “generalized means”, have
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been published [8], [15], [16], [21], [22]. We shall use here a modified version
of the main result in [12] to derive a fairly abstract version of Theorem A.

1. A general (¢, p)-minimax theorem

For the rest of the paper let Y be a nonvoid set, D an infinite convex
subset of R U {oc}, and F' a nonvoid set of functions f:Y — D with

(5) gg{, fly)eD; felk

We set D° = DN R — {inf D} and Dy = D — {sup D}.

For functions £ : D x D — D we consider the following properties:

(a) £ is nondecreasing in each variable,

(b) &(a,a)=a, a €D,

(c)* The functions &(-, @) and &(a, ), a € Dy, are continuous from the
rlght on D° N Dy.

The functions £(-,a) and &(a,-), @ € DY, are continuous from the

left on D° N Dy.

()t e, € DNR,a# = {(a,f) < aV}p,

()~ e, e DNR,a# = &(a,3)>aNp,

(e) @00 € D = E(a,00) = £(00,a) = o0,

(£ €(-,B)"(a) — B and £(B,-"(a) — B (n — o0) for all @, 8 € DN R
with a > 3,

()~ &(-,8)"(a) — B and &(B3,-)"(a) = B (n — o) forall o, € DNR
with a < 8

PROPOSITION 1. Let p,%: D x D — D be given such that conditions (1),
(a), (b), (f)~, and (e) are satisfied for € = ¢ and (3), (a) ,(b), and (f)* hold
for € = 1. Then

(6) mf maxg(y) < sup inf f(y) for all finite G C F.
feFyey

This result has been proved in [12]. Here we need the following modifica-
tion which is also closely related to the (%, ¢)-minimax theorems of Simons
[21]:

PROPOSITION 2. Let ¢, : D x D — D be given such that conditions (1),

(a), (¢)=, (d)~, and (e) are satisfied for &€ = ¢ and conditions (3), (a), (¢)*,
and (d)* hold for £ = . Then condition (6) holds.

PRrOOF. 1. For a € D — {inf D} choose a strictly increasing sequence (3,)

in DNR with 8, T a. Then ¢(a,a) 2 limy— oo P(Brt1,0n) 2 liMpoo B =
= a. Hence, ¢(a,a) 2 o, a € D, and similarly ¥(o,a) £ @, a € D. Now

define ¢.(a,8) = ¢(a,B) A (aV B) and ¥*(a,B) = Y(a,B)V (A B), @ € D,
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B € D. Then we have p.(a,a) = ¥*(a,a) = a, a € D, and all assumptions
remain valid when ¢ and 1 are replaced by ¢, and ¥*. Hence, without loss
of generality we may assume that condition (b) is satisfied for £ = ¢ and
§£=1.

2. Now, as in the proof of Example 2 in [12] it follows that £ = ¢ satisfies
(f)~ and & = 9 satisfies (f)*. Hence, Proposition 1 can be applied.

2. Main result: finitely additive version

In the sequel M(Y) will denote the set of all finitely additive probability
measures on 2¥, and P(Y) is the set of all v € M(Y') with finite support.

ProrosiTION 3. Let ¢ : D x D — D be a convez function such that con-
ditions (1), (a), (d)~, and (e) with £ = ¢ are satisfied. Then

7 inf max dg < sup inf or all finite G C F.
(7) Bk iy = fegyeyf(y) f fi

Proor. We set f(q)= [fdgfor feF, geP(Y)and F={f:f€
€ F}. For fy, f, € F choose fy € F according to (1). Then by the convexity
of ¢

(8) fo(9) 2 ¢(f(a), fa(9)), g€ P(Y).
Of course, for ¢;,4, € P(Y), ¢ = %(ql +¢2) and ¢(e,B) = %(a + ) we have

(9) ](qo) = ¢(7(¢I1)»}(¢I2)), f € F.

Now, as every convex nondecreasing function n: D — D is continuous on
Dy, the assumptions of Proposition 2 with F' replaced by F' are satisfied.
Now we are in the position to prove the first version of our main result.

THEOREM 1. Let £ : D X D — D be a convez function such that condi-
tions (a), (d)~, and (e) are satisfied and let ) : D — D be a strictly increasing
convez function with inverse n='. Suppose that condition (1) is satisfied for

¢(a,B) :=n"" (f(n(a),n(ﬂ))), a€eD, BeD.

Then condition (2) is satisfied for some v € M(Y).

The special case &(a,3) = 2(a + ) and n(a) = a gives Korollar 3.2 in
[9].
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Proor. Step 1. The assumptions of Proposition 3 are satisfied with ¢
and F replaced by £ and F := {f :=no f: f € F}. Hence, for finite G C F
we have

a:= inf max [ gdg < supinf f =: 5.
g€P(Y) g€G = felgyeyf p

From the convexity of n we infer [ gdg 2 n([ gdg), ¢ € P(Y), g € G. Setting
n(sup D) = supn(D) in case sup D ¢ D we obtain

n(qel}I’I(Y)I;leag . q) qel}’l(y)rgleagn(/g q) &

B < n(SUP inf f(y)),

fEF yeY

A
IIA

a

i.e., condition (7) holds. Ry

Step 2. Set f(v)= [fdv, fe F,ve€ M(Y),and F = {f: f € F}. Then
M(Y) is a compact subset of [0,1]2Y and every f € F is lower semicon-
tinuous. (Let H be the set of all functions h:Y — R with finite range.
Then, by definition, h(v) = ) ,cqtv({h =t}), h € H,and f(v) = sup{h(v):
fZheH}, feF.) By Step 1 the system of closed subsets

M(f,8):={ve M(Y): J(v) S8}, f€F, 6>7:= supinf f(y)
feFyeY

has the finite intersection property. Hence, there exists a v € N {M(f,9):
f€F, 6>~} and we obtain sup;cp [ fdv < 7. The converse inequality is
obvious.

The following example shall protect against possible misinterpretation:

EXAMPLE 1. Suppose that D = (0,00) and f € F = 2f € F. Then con-
dition (2) is satisfied for some v € M(Y).

This follows from Theorem 1 with &(a, ) = 2a and n(a) = a.

Unfortunately, this result is trivial, because our general assumption (5)
together with “f € F' = 2f € F” implies supcp infyey f(y) = 00, so con-
dition (2) holds for every v € M(Y). On the other hand, condition (5) is
indispensable. (ForY =R, g(y)=¢¥,h(y)=e¢Y,and F={n-g:n € N} U
U {n-h:n € N} we have sup;cpinfyey f(y) =0 < 00 = supsep [ fdv, v €
e M(Y).)

If we try to circumvent this dilemma by taking D = [0,00), then the

above proof is not applicable any more because now condition (d)~ is vio-
lated.
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EXAMPLE 2. Let MC~(D) denote the set of all convex functions £ : D x
x D — D with properties (a), (b), and (d)~. (It is easy to verify that every
“convex mean” £ € M C~(D) automatically satisfies condition (e).) We con-
sider some examples:

For A € (0,1) the weighted arithmetic means
pr(a, f)=Aa+(1-A)3, a€D,pBeD

are affine, hence py € MC~(D). Also the projections m(e,) = a and
72(a, ) = B are affine, thus their maximum

M(a,B):=aVp=m(a,B8)Vra,B), a€D, €D

is convex, and we have M € C M~ (D). Closely related are the weighted min-
maxr means

m(a,8)=AaVp+(1-ANaApB, a€D,BeED

introduced by Geraghty and Lin [7]. From the identity m\(a,8) = (1= A)(a+
+ )+ (2X = 1)aV 3 we infer that 7 is convex, affine, concave for 1 2 A > 7,
A= %, % > A 2 0 respectively. Further examples can be found in [2].

New “convex means” can also be constructed from old ones. Suppose
that Y0, P1,$2 € MC—(D) and set (P(a,ﬁ) = 990(991((1»[3)»902(01,5)) y & € D,
B €D. Then ¢ € MC~(D). In particular, the set MC~(D) is convex and
maximum-stable.

3. Main result: countably additive version

A triplet (X,Y,a), where X and Y are nonvoid sets and a is a function
a: X xY — RU{oo}, can be interpreted as a (two-person zero-sum) game,
where X and Y are the sets of (“pure”) strategies of player 1 and 2 and a
is the pay-off function. (If player 1 chooses a strategy ¢ € X and player 2
chooses y € Y then player 1 receives the amount a(z,y) from player 2.)

There are many instances in game theory and, especially, in statistical
decision theory, where player 2, say, uses mixed strategies whereas player
1 only applies pure strategies. If one is willing to admit finitely additive
probability measures as mixed strategies, then one obtains the right-sided
finitely-additive mized eztension (X, M(Y), A) with expected pay-off

(10) Awv) = [ale.pu(dy), € X, ve M)
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Here A is well-defined if every function a(z,-}, z € X, is bounded from below
(compare Step 2 of the proof of Theorem 1), and the minimax relation

min sup A(z,v)= sup min A(z,v)
VEM(Y) z€X z€X vEM(Y)

holds iff condition (2) is satisfied for F' = {a(z,'): € X} and for some v €
€EMY).

In classical game theory, however, mixed strategies for player 2 are count-
ably additive measures defined on some o-algebra B on Y. In order that (10)
remains well-defined, we must assume that the functions a(z,-), z € X, are
B-measurable. Moreover, B should contain the singletons because one wants
to embed the pure strategies into the set of mixed strategies.

In the following, let a paving P in Y (i.e., a nonvoid P C 2¥) be given
which contains

RLF) s= {{f§a}: fEF,aGR},

the system of level sets of F. Let B=B(PUS(Y)) be the o-algebra gen-

erated by P and the set S(Y) = {{y} tYE Y} of singletons and let P(Y,B)
denote the set of all (countably additive) probability measures on B.

LEMMA 1. Let the paving P D R(F) be countably compact (i.e., every
countable Q C P with the finite intersection property has nonvoid intersec-
tion). Then for every v € M(Y) there ezists a T € P(Y,B) with [ fdr <
< [fdv, feF.

Proor. Of course, Pp:= PUS(Y)U {0,Y} and hence the lattice gen-
erated by Py is countably compact as well (cf. [19], Lemma 1.3, 1.4 or
[10], §3). By Theorem 5 in [11] there exists a 7 € P(Y,B) with 7(4) 2
> v(A), A€ P. As f € F is bounded from below, we may assume f(y) >0,
y €Y. Then f, := 2" "% 1{fsiz-n} T f. From R(F) C P weinfer [ fdr =

t=1

= lmy, o0 | fudr S limy o f fude S § fdu.
Now, by combining Theorem 1 with Lemma 1, we obtain:

THEOREM 2. Let the assumptions of Theorem 1 and Lemma 1 be satis-
fied. Then condition (2) holds for some v € P(Y, B).

If we want to apply Theorem 2 we have to find a countably compact
paving P D R(F'). Sometimes, a candidate for P is

Ro(G):= {{g £0}:9 € G}

with appropriate G C EY, E C RU {o0}.
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COROLLARY 1. Let the assumptions of Theorem 1 be satisfied and let
E CRU{oo} and G C EY be given such that Ro(G) is countably compact
and contains R(F). Then condition (2) is satisfied for some v € P(Y,B)

with B = B(Ro(G)US(Y)).

LEMMA 2 (cf. [9], Satz 4.4). Let G C [0,1]* such that for every sequence
(gn) in G there ezists a sequence (7,) in (0,00) with Y ne i Yn < 00 such that
g:= 3021 Tngn attains its infimum. Then Ro(G) is countably compact.

Proor. Let g, € G and y, € Y with g;(y,) =0,i<n € N. For g as
above choose y* € Y with g(y*) = minyey g(y). From g(yn) £ 322,11 %>
n € N, we infer g(y*) = 0, hence g,(y*) =0, n € N.

EXAMPLE 3 (the standard situation). Let Y be a topological space, C(Y')

the set of all continuous functions f : Y — R and LSC(Y') the set of all lower
semicontinuous f:Y — R U {oo}. Here

a) Ro(C(Y)) = R(C(Y)) is countably compact iff Y is pseudocompact,
an

b) R(LCS(Y)) = Ro(LSC(Y)) (=system of closed subsets) is count-
ably compact iff Y is countably compact.

PROOF. a) Apply Lemma 2 to G = C(Y)N[0,1]¥, b) is obvious.

EXAMPLE 3.1. Let Y be endowed with a countably compact topology
such that every f € F is lower semicontinuous, and let » : D — D be a strictly
increasing convex function. Suppose that for some A € (0,1) condition (1) is
satisfied for

o(a,B)=n""(An(e)+ (1= Mn(B)) , a,B € RU{co}.

Then there exists a probability measure v on the Borel o-algebra B(Y') (resp.
on B(B(Y)US(Y)) ) such that condition (2) holds.

The special case D = RU {00}, n(e@) = a, and A = 1 gives Theorem A.
Proor. Let £ = pu) as in Example 2. Then the assumptions of Theorem
1 are satisfied. By Example 3b) and Corollary 1 the assertion follows.

LEMMA 3. Let nonvoid sets E C RU {00} and G C EY be given such
that

for every nondecreasing sequence (g,) in G there
L) exists a y* € Y with sup g,(y*) = sup inf g,(y).
neN n€EN yeY
Suppose that there ezists a function ® : E x E — E with the following prop-
erties:

(i)a€e E, e E= ®(a,f) 2 aVp,
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(i) a€ E,f€ E,aVB<0= ®a,B) <0, and
(iii) 91,92 € G = ®(g1,92) € G.

Then Ro(G) is countably compact.

ProoOF. For n € N let g, € G and y, € Y with ¢i(y,) £0, ¢ £ n, be
given. Set h; = g, and, inductively, h, = ®(h,—1,9,), n 2 2. Then hy £
Shy<...Lh, €G,n € N. Hence there is a y* € Y with sup,cn An(y*) =
= suppen infyey An(y) € suppen hn(yn) £ 0. Therefore, g, (y*) < hn(y*) <
<0,n€N.

EXAMPLE 4 (compare [9], Satz 4.5). Suppose that the assumptions of
Theorem 1 are satisfied. Let G C EY be given such that the Dini-relation
(11) and one of the following conditions (i), (ii) or (iii) hold:

(i)a) E=RU{x}, b)g1 €G,00€G=>q1Vg2€G,andc) f€ F,a €
€ER=> f-a€Qq,

(i) a) E=[0,00], b) 1 €G,92€G=>9g1+92€G, and ¢) fe Fa €
ER=(f-a)V0EQG,

(lll) a) E = [0,1], b) a1 EG,g2€G=>gl+g2—g1'g2 € G, and C) fE
€FLaeR=[(f-a)VO] ALEG.

Then condition (2)is satisfied for some v € P(Y, B) with B = B(Ro(G)U
uSs(Y)).

ProoOF. By Lemma 3, applied to ®(a,8) =aV 3, a+ B,0or a+ 3 - af,
respectively, conditions a) and b) imply that Ro(G) is countably compact,
and R(F) C Ro(G) follows from c). Hence, the assertion follows with Corol-
lary 1.

4. Concluding remark

We derived our Theorem 2 with the aid of Lemma 1. We could as well
have used Fuchssteiner’s integral representation theorem [5], [6], say, as in
the proof of Satz 4.4 in [9] combined with the well-known fact [1], [3], [17]
that every vy € P(Y,By), Bo a o-algebra on Y, can be extended to a v €
€ P(Y,B), B=B(BoUS(Y)). Other possible substitutes for our Lemma 1
can be found in the papers [20], [23] of Pollard and Topsoe.

Note added in proof (May 23, 1995). Several applications of the present
results can be found in my recent paper Minimax theoretms with applications
to convex metric spaces, Collog. Math., 68 (1995), 179-186.
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SHORT NOTES ON QUASI-UNIFORM
SPACES

II. DOUBLY UNIFORMLY STRICT
EXTENSIONS

(Budapest)*

Uniformly strict extensions were introduced in [1], called there “strict
extensions” (see §0 for the definition). It is the aim of this note to give a
complete description of the doubly uniformly strict extensions (cf. [6] Prob-
lem 58A): V is called a doubly uniformly strict extension of U provided that
VY is a uniformly strict extension of ¢, and V! of #~!. We shall also con-
sider the smaller class of doubly uniformly regular extensions (see §2 for the
definition). Formally, there is only a slight difference between the two re-
sults: the filters figuring in the first one are replaced by the associated grills
in the second one.

§0. Uniformly strict extensions

0.1. Throughout this paper X will denote a non-empty set, 4 a quasi-
uniformity on X and Y D X. A quasi-uniformity V on Y is an eztension of
Uif V|X =U and z is Ty-dense in Y; V is a double extension if, in addition,
X is Ty-1-dense in Y. (The terminology was different in [4] to [9].) For a €
€ Y, f!(a) denotes the trace on X of the 7y-neighbourhood filter of a, called
the trace filter of a; in the case of double extensions, f~!(a) denotes the trace
on X of the 7y-1-neighbourhood filter of a, and (f~!(a),f!(a)) is called the
trace filter pair of a. In other words:

fia) = {Vian X:V €V} (i = £1).

V is said to be an extension (double extension) for the filters f!(a) (for the
filter pairs ( f~'(a), f!(a)) ). We shall also use other self-explanatory expres-
sions: V induces the trace filters (filter pairs), V is compatible with them,
etc.

Assume now that trace filters f'(a) are prescribed, and we are looking for
extensions of / inducing them. The following conditions are necessary and
sufficient for the existence of such an extension (cf. [1]): (i) for z € X, f(z)
is the 7-neighbourhood filter of z; (ii) each trace filter is round. (A filter

* Research supported by Hungarian National Foundation for Scientific Research, Grant
No. 2114.
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f is round if for each S € f there are T' € f and U € U such that U[T] C S.)
There is a double extension for prescribed trace filter pairs (f~!(a), f*(a)) iff
the following conditions hold ([5] 6.1): (i) for z € X, (f~(z), f'(z)) is the
neighbourhood filter pair of z (i.e. f{(z) is the 7 -neighbourhood filter);
(i) each trace filter pair is round and Cauchy. (A filter pair (7, f') is round
if ' is U'-round (i = % 1), and Cauchy if for any U € U, S_1 x S1 C U holds
with suitable S; € f'.)

When trace filters (filter pairs) are prescribed, we shall always assume
that the above conditions are satisfied, and that the trace filters and the trace
filter pairs are denoted by f!(a) and by (f'(a), f'(a)) (a € Y), respectively.
The same notations will be used when the trace filters (filter pairs) are not
prescribed, but induced by a given (double) extension.

0.2. The quasi-uniformity V on Y is a uniformly strict extension of U
([1] 87; see also [6] 1.9) if for each V € V there is a W € V such that

(1) s'WanX)cVa (a€Y),

where

s(A)={a€eY:A€ef(a)} (ACX,i==1).

(Note that the points in (1) are taken from Y, not from Y \ X.) This is a
uniform version of the well-known notion of a strict extension of a topology
(cf. [6] 1.9). A doubly uniformly strict double extension V (meaning that
V-1 is also a uniformly strict extension of /~1) will be called shortly a doubly
uniformly strict extension. V is a doubly uniformly strict extension of U iff
for each V € V there is a W € V such that

(2) s(WanX)CV'a (a€Y,i==1).

Unlike in [1] to [6], we do not consider (double) extensions compatible
with a (bi)topological extension of the induced (bi)topology, since if V is
a uniformly strict extension of &/ then 7y is a strict extension of Ty ([1]
7.1), and a strict extension of a topology is determined by the trace filters;
hence the problem of looking for (doubly) uniformly strict extensions in a
(bi)topological space is equivalent to the same problem with prescribed trace
filters or filter pairs.

0.3. Let some trace filters be prescribed in (X,U). [1] 7.4 gives a compli-
cated necessary and sufficient condition for the existence of a uniformly strict
extension inducing these trace filters. It is not known whether the following
much simpler necessary condition is also sufficient ([6] Problem 13): for any
U € U there are Uy € U and sets S(a) € f'(a) (a € Y) such that S(a) C Uz
whenever z € X and Upz € f'(a). (It does not change this condition if we

replace Y by Y \ X.)
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Unlike the case of strict extensions of topologies, there can exist several
uniformly strict extensions inducing the same trace filters ([1] 7.4). A strict
extension of a topology is always coarser than any other extension compatible

with the same trace filters. Uniformly strict extensions behave differently:
in the example below, there are a uniformly strict extension and a not uni-
formly strict one inducing the same trace filters such that the latter is coarser
than the former.

EXAMPLE. Let X = N% Y = w x N, and take the discrete uniformity &
on X. Consider the trace filters

(1) P«mm)zﬁ%(Nx{H)\RF mﬁmw}(keN)
Define the quasi-uniformities V and V' on Y by the following quasi-metrics:
d((0,k), (n,k)) =1/n (k,n € N),

, _f1/n ifk,neN, m=k,
d'((0,k), (n,m)) = {1/k if k,m,n € N, m # k,

and d(z,y) =1, d'(z,y) = 1 for pairs z # y not mentioned in the formulas.
d' £ d, thus V' is coarser than V. Both are extensions compatible with the
trace filters (1). V is a uniformly strict extension, since

st (U(E)(d)aﬂ X) = U(E)(d)a (a€eY,0<e< ).
Here U, (d) = {(a,b):d(a,b) < €}.) But V' is not uniformly strict:
(¢)
s' (Ute)(d)(0,k) N X) C Ug)(d')(0, k)

does not hold if 0 < ¢ < 1 and k£ > 1/¢. (The left hand side contains Y \ X.)
a

0.4. [1] 6.3 gives a sufficient condition for the existence of a uniformly
strict extension: assume that the trace filters are stable. (A filter f is stable if
for each U € U, (| U[S] € f.) The construction in [1] 6.3 is equivalent to the

Sef

following one (cf. [6] 1.7, [8] 6.2, [3] 1.6): to each U € U assign an entourage
5)U on Y defined by

a®Ub iff U[S] €f(b) whenever 5§ € fi(a);

then {5)U :U €U} is a base for a uniformly strict extension *U. The fol-
lowing simple statement will be needed in §2:
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PROPOSITION. For stable trace filters, U is the finest uniformly strict
extension.

PRroOOF. Let V be a uniformly strict extension for the given trace filters.
For V € V, take W € V such that s!(W?2an X)C Va (a€Y), and put U =
= W|X. We claim that U C V, implying V € YU, V C SU.

Assume a®) U b. Then U[S] € f'(b) holds with § = Wan X € f!(a). Thus
be s'(U[Wan X)), and U[Wan X]C W2an X, hence b€ Va. O

§1. Doubly uniformly strict extensions

1.1. We are going to show that the doubly uniformly strict extensions
are exactly those that can be obtained through a certain construction de-
scribed in [5]. It will then follow that any doubly uniformly strict extension
is coarser than any other double extension inducing the same trace filter
pairs; in particular, there can exist only one doubly uniformly strict exten-
sion for prescribed trace filter pairs.

Let us first recall some definitions and results from [5]. A Cauchy filter
pair (71, f1) in (X,U) is weakly concentrated if for each U € U there is a
V € U such that z U y whenever Vz € f! and V~ly € §~1; a family of Cauchy
filter pairs is uniformly weakly concentrated if the above condition holds for
each filter pair, with V depending only on U, but not on the filter pair (cf.
[5] 7.1, 7.7 and 7.15). If trace filter pairs are prescribed then to each U € U
we assign an entourage U/ on Y as follows:

a®Ub iff thereare A€ f '(a),B€f(b) with AxBCU.

{*U:U € U} is always a base for a quasi-semiuniformity (=a filter consisting
of entourages) *U on Y such that 4%/|X = ([5] Lemma 8.5 b)). “U induces
trace filter pairs coarser than the original ones ([5] Lemma 8.9 b); even when
4U is not a quasi-uniformity, we can define neighbourhood filters, hence trace
filters, in the usual way, although the neighbourhood filters will not always
generate a topology). If V is a double extension for the prescribed trace fil-
ter pairs then % C V ([5] Lemma 8.12; (double) extensions are assumed to
be quasi-uniformities) . 4 is a quasi-uniformity iff the prescribed trace filter
pairs are uniformly weakly concentrated; it is a double extension compatible
with the given trace filter pairs iff, in addition, the trace filter pairs are min-
imal Cauchy; if so then %Y is the coarsest double extension for these trace
filter pairs ([5] Theorem 8.13 and Lemma 7.13). A family of filter pairs satis-
fying both conditions is called uniformly concentrated. It is enough to know
that the filter pairs (f~(p), f'(p)) (p € Y) are uniformly concentrated. See
[5], §7 for some equivalent formulations of the above conditions.
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LEMMA. A quasi-uniformity ‘U belonging to uniformly concentrated
trace filter pairs is always a doubly uniformly strict extension.

Proor. For reasons of symmetry, it is enough to show that 4 is uni-
formly strict. Given V € ‘U, take U € U with *U C V, and then pick W € U
such that W2|X C U. We claim that s!(Wan X) C Va for each a €Y.

Assume b € s!(Wan X); this means that Wan X € f}(b). Evidently,
W-lanX € f~'(a). Now (W-lanX)x (WanX)C W% X C U, thus a*U b,
aVbbeVa O

1.2. LEMMA. IfV is a doubly uniformly strict extension of U then V =
= U, where U is taken with the trace filter pairs induced by V.

PrROOF*. It is enough to show that V C U, since the converse always
holds (see in 1.1). Takea V € V; we need a U € U with ‘U C V. Pick W,Z €
€ V such that

s'WenX)c Ve, sHZlenX)Cc Wl (ceY),

We claim that U C V holds with U = Z|X.

Assume a*U b, and take A € f~!(a), B € f'(b) with A x B C U. For each
YEB,Z7'ynX =U"lyDd A€ f(a), thusa € s"Y(Z 'ynX) C Wy, i.e.
y € Wa, BC Wa,and so Wan X € f1(b), b€ s!}(WanX)C Va,aVb O

REMARK. The proof of the above lemma, together with Lemma 1.1,
yields that a double extension V is doubly uniformly strict iff it is uniformly
strict, and for each V € V there is a W € V such that s"}(W™lznX) C
CV-lz (z € X).

THEOREM. There exists a doubly uniformly strict extension of a quasi-
uniformity U for prescribed trace filter pairs iff they are uniformly concen-
trated; if so then *U is the only doubly uniformly strict extension, and it is
the coarsest double extension compatible with the trace filter pairs.

Proor. Lemmas 1.1 and 1.2, together with the results cited preceding
Lemma 1.1. O

w(4U) = w(U) ([5] Lemma 8.2), thus the doubly uniformly strict exten-
sions preserve the weight. The same is false for uniformly strict extensions:
Let X be infinite, Y \ X = {p}, and f! a filter that has no countable base.
Let {Us: S € f} be a base for V on Y, where Usp = SU {p} and Usz = {z}
otherwise. Now V is a uniformly strict extension of the discrete uniformity

U on X, but w(V) > w = w(l).

* Contrary to what the reader might possibly expect, we do not have to begin the
proof with showing that the trace filter pairs are uniformly concentrated. But, once the
lemma is proved, it is clear that the trace filter pairs are uniformly concentrated, since
they are induced by an extension of the form *U.
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§2. Uniformly regular extensions

2.1. A quasi-uniformity U is uniformly regular ([1], [11])if for each U € U
there is a V € U such that cl! Vz C Uz (z € X) it is doubly uniformly reg-
ular if both & and U~ are uniformly regular, i.e. if for each U € U there is a
V €U suchthatcl' Ve C Uz (i= £ 1, z € X). Here cl® is the Ty.-closure;
if an extension V is given then Cl® denotes the 7-closure. By a (doubly)
uniformly regular extension we mean a (double) extension which is (dou-
bly) uniformly regular. (Double) uniform regularity is evidently a hereditary
property ([1] 8.5), hence only (doubly) uniformly regular quasi-uniformities
can have (doubly) uniformly regular extensions. Note that, unlike in the case
of uniformly strict extensions, given an extension V of U, the statement that
“Y is a uniformly regular extension of 4” is a property of V, and not of the
pair (V,U). Uniformly regular extensions are uniformly strict ([1] 8.7).

For a filter f in X sec f= {AC X:ANS#Q(S€f)} is a grill, ie. a
union of ultrafilters; more precisely, it is the union of the ultrafilters finer
than f. (See e.g. [17] for more about grills.) If trace filters (filter pairs) are
prescribed in (X,U) then g'(a) is the trace grill, respectively (g~'(a), ), @ Y(a))
the trace grill pair, of a € Y, where g'(a) = sec fi(a). Clearly, A€ g (a) iff
AC X and a € C1' A. Hence Cl' A can be described analogously to s*(A):

Cl' A={a€Y:A€cg(a)} (ACX,i==l).

For z € X (when fi(z) is the Zi- neighbourhood filter of z), g'(z) will also

be called the adherence grill, and (a7Y(z), g'(z)) the adherence grill pair,
of z. Compare the following assertion with the definition of uniformly strict
extension:

LEMMA. An extension V is uniformly regular iff for any V € V there is
a W €V such that

(1) Cl!(WanX)cVa (a€Y).

PROOF. The necessity is clear from Cl' (Wan X)C Cl1* Wa. Con-
versely, assume that (1) holds, and pick Z € V with Z2 C W. Now Cl' Za C
Cc Va.

Indeed, if b€ Cl! Zaand Q € V, Q C Z then there arec € QbN Za, z €
€EQeNX. Now z € Q%0N Z%a C Q*bN Wa, thus Q*bNWan X # 0. The
sets Q2b form a 7Ty-neighbourhood base of b, thus b € Cl' (Wan X) C Va.
a

Consequently, the doubly umformly regular extensions can be character-
ized similarly to 0.2 (2), with s' replaced by Cl*.

2.2. [2] §1 gives a complicated necessary and sufficient condition for the
existence of a uniformly regular extension compatible with prescribed trace
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filters. It is not known whether the following simple necessary condition is
also sufficient ([6] Problem 13): for any U € U there are Uy € U and sets
S(a) € f'(a) (a € Y) such that S(a) C Uz whenever z € X and Uz € g'(a)
(cf. the similar condition in 0.3). There can exist different uniformly regular
extensions inducing the same trace filters ([2] 4.7). Observe also that V in
Example 0.3 is uniformly regular.

Assume that there are uniformly regular extensions for prescribed trace
filters. Then there is a finest uniformly regular extension V ([1] 8.9) as well
as a finest uniformly strict extension W ([1] 7.11). In the example below,
V # W (this answers [6] Problems 16 and 17).

EXAMPLE (cf. [8] Example 6.2). Let Y =R?, X =Y\ ({0} x (R\

\{0})), 2 = Uso X Uey, where Us, is the Sorgenfrey, and U, the Eu-

clidean quasi-uniformity on R. Z is a product of uniformly regular quasi-
uniformities, so it has the same property ([1] 8.6). Thus & = Z|X has uni-
formly regular extensions if we consider the trace filters induced by Z. But
the finest uniformly strict extension W is not uniformly regular:

The trace filters are stable, thus W = ®) by Proposition 0.4. An en-
tourage U € U is defined by

Uz = ([«",«' +1] x[z"-L,z"+1)) nX (2 =(<',2") € X).

If W were uniformly regular then there would exist a Uy € U such that
(1) Cl' (Poan X) ca (a€Y).

This is, however, impossible, since if a = (0,a¢”) € Y \ X and |a”| is small
enough then 3 Upa N X contains ]0,e[x{0} for some ¢ > 0, thus z = (0,0)
belongs to the left hand side of (1), although a® U = does not hold. O

2.3. It should be found out which of the results known for uniformly
regular extensions hold more generally for uniformly strict extensions. As
an illustration, let us consider the following two very similar assertions:
(i) ([16] 6.4) a uniformly regular extension of a totally bounded quasi-
uniformity is totally bounded; (ii) ([14] Lemma 1) a uniformly regular exten-
sion of a Cauchy bounded quasi-uniformity is Cauchy bounded. (A quasi-
uniformity is Cauchy bounded [13] if any ultrafilter is the second member
of a Cauchy filter pair. Recall for comparison that a quasi-uniformity is to-
tally bounded iff each ultrafilter forms a Cauchy filter pair with itself, see
(12] Proposition 3.14 (b).) We are going to show that (i) remains valid for
uniformly strict extensions, while (ii) does not.

PROPOSITION. A uniformly strict extension of a totally bounded quasi-
uniformity is totally bounded.
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Proor. All the filters are stable in a totally bounded space ([1] 4.5), thus
50U is the finest uniformly strict extension (Proposition 0.4). If I/ is totally
bounded then so is U ([8] Proposition 6.5), hence so are all the extensions
coarser than YU. O

EXAMPLE. Let § = {-1/n:n€ N}, T = {1/n:n € N},
X=(8%x{0,2}) UT? Y =XU{pu:n€N},

and let f1(p,) be generated by the cofinite subsets of T x { 1/(2n—1), 1/2n}.
With the quasi-metric d on X defined by

|yl e zl| if z’l — y”,
d((z',2"),(y',y") = -2’ if either z” = 0, y” = 1/2n, n € N,
orz'=29y"=1/(2n~1),n €N,

consider the quasi-uniformity & = U(d), which is Cauchy bounded, since each
ultrafilter forms a Cauchy filter pair with a filter containing either S x {0} or
S x {2}. The trace filters are round and stable, so 9 is a uniformly strict
extension. But it is not even precompact: as)U(l)pn does not hold for any

a#p.. O

§3. Doubly uniformly regular extensions

3.1. A doubly uniformly regular extension is doubly uniformly strict,
so, in order to obtain a complete description of them, it is enough to find
a necessary and sufficient condition for *% to be doubly uniformly regular
(cf. Theorem 1.2). We begin with some definitions, and characterization of
double uniform regularity.

A filter pair (f~1,f') in (X,U) is convergent if there is an z € X such
that §* T;,-converges to x (i = =+ 1); it is fized if one of the filters is fixed, i.e.
if U N # 0. The ultrafilter fixed at z will be denoted by . Extending
the definition given earlier for filter pairs, we say that a family & of pairs of
systems of subsets of X is uniformly weakly concentrated if for any U € U
there is a Up € U such that z,y € X, (a™',a!) € &, Upz €al, Uy yEa!
imply 2 U y.

ProPOSITION. The following conditions are equivalent for a quasi-
uniformity:
(i) it is doubly uniformly regular;
(ii) the fized Cauchy filter pairs are uniformly weakly concentrated;
(iii) the convergent filter pairs are uniformly weakly concentrated;
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(iv) the convergent ultrafilter pairs are uniformly weakly concentrated;
(v) the adherence grill pairs are uniformly weakly concentrated.

ProoF. (i) & (ii). According to [7] Proposition 1.1, a quasi-uniformity
is uniformly regular iff those Cauchy filter pairs are uniformly weakly con-
centrated in which the first member is fixed. So we have only to observe
that the union of two uniformly weakly concentrated families has the same
property.

(ii) = (iii). Given U € U, take V € Y with V2 C U, and then Up for V
according to (ii). Assume that (f~1,!) converges to z, and Upz € f!, Uy 'y €
€ f~1. Now (f‘l,fz) is a fixed Cauchy filter pair, Upz € z, Uo-ly € f~1, thus
2V y. Analogously, z V z, and so z U y.

(iii) = (ii). Let (f~!,f') be a fixed Cauchy filter pair, z € f~* U Nf.
Then either (&,f') or (f7,&) is a convergent filter pair finer than (f~1,§).

(iii) = (iv). Evident.

(iv) = (v). Given U € U, the entourage Uy furnished by (iv) will also do
in (v), since if Upz € g'(z), Uy 'y € g7(z) then there is an ultrafilter pair
(u=!,u!) converging to z such that Upz € ul, Uy'y € u™?

(v) = (iii). If (f~',f') converges to z then f' C g'(z). O

3.2. THEOREM. There is a doubly uniformly reqular extension for pre-
scribed trace filter pairs iff they are minimal Cauchy, and the trace grill pairs
are uniformly weakly concentrated (equivalently: the (ultra)filter pairs finer
than trace filter pairs are uniformly weakly concentrated); if so then *U 1is
the only doubly uniformly regular extension.

ProoF. The equivalence of the conditions given with grills, filters ,and
ultrafilters follows easily, in the same way as in the proof of Proposition 3.1.
The last assertion is a consequence of Theorem 1.2.

Necessity. Assume that V is a doubly uniformly regular extension. Given
UelU,takeaV €V with V|X = U, and then a V; € V (for V) according to
(iii) in Proposition 3.1. Put Up = Vo|X. Let (f~', ') be a filter pair finer
than a trace filter pair, and denote by b* the filter in Y generated by f'. Now
(b' ,0 ) is convergent in (Y V). Assume that z,y € X, Upz € f!, U0 y €

€ f~1. Then Vpz € b, VO y € b1, thus 2V y, x Uy. The trace filter pairs
are minimal Cauchy by Theorem 1.2.

Sufficiency. By Theorem 1.2, U is a double extension for the prescribed
trace filter pairs. We show that (111) from Proposition 3.1 holds for *U. Let
V € 4U. Take U € U with *U C V, and then Uy € U such that z Uy whenever
(f71,') is a filter pair finer than a trace filter pair, Upz € f!, Uy'y € f~1.
Choose W € U such that W3|X C U. We claim that if (h~*,p) is a con-
vergent filter pair in (Y,V), Wa € h', W=1b € h~! then aV b.
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A=W-lan X € §Ya), B=Wbn X € f(b), so it is enough to check
that A x B C U, since then a*Ub. Let (&7'.£') be the ‘U-envelope of
(h1,h1), i.e. the finest one of the round filter pairs coarser than (h~1,p?).
If (h=1,h) converges to ¢ then so does (&~1,¢!), thus (f~*,f') defined by

ft = £'| X is finer than a trace filter pair. ( ' is a proper filter in X, since X is
doubly dense.) Wa € h! implies 1W2a € £! so for each z € A and z € W2an
NX €f' we have a W3z, 2Upz, ie. Uor € f!. Analogously, U(;'ly €f!
(y€ B),thusz Uy, AxBcCU. O

REMARKS. a) It follows from Proposition 3.1 that if & is known to be
doubly uniformly regular then in the theorem it is enough to consider the
trace grill pairs of the points in ¥\ X.

b) U is uniformly regular iff the trace filter pairs are minimal Cauchy
and the pairs (f~!(a),a'(a)) are uniformly weakly concentrated.

¢) The part of [6] Problem 58 A concerning doubly uniformly regular com-
patible extensions in a bitopological space remains open in the case when the
subspace is not doubly dense.

3.3. A quasi-uniformity is quiet [10] if the Cauchy filter pairs are uni-
formly weakly concentrated. (Quiet spaces are doubly uniformly regular.) It
was mentioned in [15] §5 that a doubly uniformly regular extension of a quiet
quasi-uniformity is quiet. More generally, a doubly strict extension of a quiet
quasi-uniformity is quiet, since if ¢/ is quiet then so is % by [7] Theorem 2.2.
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ADDENDUM TO “A FLEXIBLE MINIMAX
THEOREM”

S. SIMONS (Santa Barbara)

All references are to the author’s paper [1] “A flexible minimax theo-
rem”, which appeared recently in this journal. The author is very grateful
to Professor Heinz Konig for pointing out a weakness in Theorem 1. In fact,
Theorem 1 is true even if condition (1.2) is not assumed. Furthermore, an
examination of the later parts of the paper reveals that the inductive argu-
ment used in Theorem 1 is repeated almost verbatim, in both Theorem 8 and
Theorem 9. This is clearly uneconomical. On the other hand, by changing
one word in Theorem 1 it is possible to strengthen the result tremendously,
and the strengthened result enables much shorter proofs of Theorem 8 and
Theorem 9. Here are the details — the only change between the original and
the new statement of Theorem 1 is the replacement of the word “finite” by
“good” in just one place. We follow the same notation as in [1].

DEFINITION. We shall write f, for supy infy f. We say that a subset W
of X is good if W is finite and, for all z € X, fu|z N LE(W, f,) # 0.

NEw THEOREM 1. Let Y be a topological space, and B be a nonempty
subset of R such that inf B = f,. Suppose that, for all 3 € B and good subsets
W of X (with the convention LE(0, f.) =Y ),

{1.1) for all z € X, B|z is closed and compact,
11.2) {B]zn LE(W,ﬂ)}zeX is pseudoconnected
and,

(1.3)
Vzo,z1 € X,3z € X such that B|zo and S|z, are joined by §|z N LE(W, ).
Then

min su = sup min f.
i pr g ¥

Proor. Let z € X. If p€ R and g > f. then g > min f(z,Y), from
which p|z # 0. From (1.1) and the finite intersection property, f.|z # 0.

Thus () is good. We now prove by induction that all finite subsets of X are
good. So suppose that n 2 1 and

(1.4) W C X and card W £ n— 1= W is good.
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Let V C X and cardV = n. Let zo € V and set W := V\{zo}. From the
induction hypothesis (1.4), W is good. Let z; € X be arbitrary. Let 3 € B
be arbitrary. From (1.3), there exists z € X such that $|zo and S|z, are

joined by 3|z N LE(W, ). Equivalently,
B|zo N LE(W, ) and 3|z, N LE(W, ) are joined by 3|z N LE(W, 3).

From (1.2), B|zo N 3|z N LE(W,3) # 0, that is to say, 8]z, N LE(V,3) # 0.
Since this holds for all 3 € B, from (1.1) and the finite intersection property
again, f.|z1 N LE(V, f.) # 0. Since this is valid for all z; € X, V is good.
This completes the inductive step of the proof that all finite subsets of X are

good. It now follows from (1.1) and the finite intersection property for a third
time that LE(X, f.) # 0. This completes the proof of the New Theorem 1.

NEw Proofr oF THEOREM 8. If W is good, z € X and 8 € B then

Blzn LE(W,8) D fi]a N LE(W, f.) # 0.

Thus (5.2) is satisfied with Z := LE(W, 3). From Lemma 5, (1.3) is satisfied.

The result follows from the New Theorem 1.

NEw Proor oF THEOREM 9-(9.1). If W is good, z € X and g € B
then there exists y € f.|tNLE(W, f.). Since y € LE(W, f.) C LE(W,f3) and

f(z,y) £ f. < B, (4.3) is satisfied with Z := LE(W, ). From Lemma 4, (1.3)
is satisfied. The result follows from the New Theorem 1.

New PRroofF oF THEOREM 9-(9.2). If W is good, 2 € X and B € B
then

foJe N LEW,5) D fo]z N LE(W, f.) # 0,

thus (6.2) is satisfied with Z := LE(W,3) and a := f, < . From Lemma 6,
(1.3) is satisfied. The result follows from the New Theorem 1.
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