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ON A PROBLEM OF A. M. ODLYZKO ON 
ALGEBRAIC UNITS OF BOUNDED DEGREE

K. GYÖRY* (Debrecen), corresponding member of the Academy

To Professor K. Tandori on his 7Oth birthday

1. Introduction

For an algebraic number field К , denote by M (K )  the maximal length 
m  of a sequence (£ j,. . .  ,£m) in К  such that — £j is a unit for all г, j  with 
1 = * < j  = m. Here we may assume without loss of generality that £\ = 0, 
£2 = 1 and £ 3 ,... ,£m are units. This can be achieved by translation and by 
multiplication by a unit. By a theorem of H. W. Lenstra Jr. [5], the number 
field К  is Euclidean for the norm provided that M (K )  exceeds the square 
root of the discriminant of К  in absolute value times a (number-geometric) 
coefficient which depends only on the signature of К . It was also proved in. 
[5] that M (K )  ^  The above-quoted theorem of Lenstra was used by
Lenstra [5], A. Leutbecher and J. Martinet [6], J.-F . Mestre [8] and others to 
give several hundred new examples of Euclidean number fields. For related 
results and further references, see e.g. [7], [1] and [9].

For given positive integer n, denote by M(n) the maximal number m of 
algebraic units £ i , . . . ,£ m of degree ^  n over Q (which can lie in different 
number fields) such that £,• — £j is a unit for all distinct i , j  with 1 ^  i , j  й  
5í m. In a letter in February 1985, A. M. Odlyzko proposed the following 
problem: What is the value of M(n) ?

Clearly, M(n)  ^  M (K )  -  1 for all algebraic number fields К  of degree n. 
In 1985, I was able to prove M (n ) < 00 only. In the proof I needed the use 
of the Thue-Siegel-Roth-Schmidt method.

T heorem. We have

( 1) M(n) < expexp{39n(n2"+1)!}.

We shall reduce the problem to n decomposable form equations. Then 
an explicit upper bound of ours for the number of solutions of such equa­
tions (cf. [2], [4] and the Lemma in Section 2) will be applied to prove the

* R esearch su p p o rted  in p a r t  by G ran t 1641 from  th e  H ungarian  N ational Foundation  
for Scientific Research.
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2 К GYŐRY

Theorem. We note that the proofs in [2] depend, among other things, on 
H. P. Schlickewei’s p-adic generalization (cf. [11]) of W. M. Schmidt’s quan­
titative Subspace Theorem [12].

Our explicit bound concerning decomposable form equations has recently 
been improved by J. H. Evertse (private communication). Using his improve­
ment, one can prove that

(2) M(n) < exp{ 36n2n+5} .

Finally, we mention that using Theorem 3 of the author [3], the existence 
of M{n) can be proved in the more general situation as well, when the ground 
ring Z is replaced by an arbitrary finitely generated and integrally closed 
integral domain over Z.

2. Proof o f the Theorem

Let К  be an algebraic number field of degree к with ring of integers Од- 
and unit group 0 *K. Let F (xo ,x \ , . . .  , x q) (q ^  1) be a decomposable form 
of degree t with coefficients in Од, i.e. a homogeneous polynomial which 
factorizes into linear factors over a finite extension G of K. Two solutions 
ж, x' of the decomposable form equation

(3) F(x0, x i , . . . , x q) 6 0 *K in i  = (i 0v , í 5) é OJ1+1

are called proportional if x' = ex for some e E 0 *K. Let d denote the degree 
of the normal closure of G over Q.

To prove our Theorem, we need the following.
Lemma. Suppose that t > 2q and that any 9 + 1 linear factors in the 

factorization of F  are linearly independent. Then equation (3) has at most

(4) (5 U f " ‘ k‘

pairwise non-proportional solutions.
P roof. This is an immediate consequence of Theorem 6 of the author

[4] . Its proof involves, among other things, an estimate of Schlickewei [10] 
for the number of solutions of 5 -unit equations. □

We note that a more general but qualitative version of the Lemma was 
proved in [3] over an arbitrary finitely generated integral domain over Z.

Remark 1. On combining the above-mentioned result of Evertse with 
the proof of Theorem 3 of [3], our Lemma can be proved with the bound

(5) ( 234t2) ?3fc.
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P roof of the T heorem. Let £ i , . . . ,£ m be algebraic units of degree 
^  n with m = M(n) such that £,- — £j is a unit for all г ф j .  If m ^  2n + 1 
then we are done. Hence assume that to > 2n + 1. Consider the number field 
К  = Q (f'i, . . . ,  £2n+i )• Its degree, denoted by k, is at most n2n+1. Each £; 
with i > 2n + 1 is of degree at most n over К . For a given positive integer q 
with 1 ^  q ^  n, consider those i with 2n -f 1 < i ^  m for which £г- is of degree 
q over K ,  and denote by M q the number of i under consideration.

For each unit £,• of degree q over K,  denote by £t-a\ . . . ,  the conjugates
of £i over К . Then for each j  witji 1 ^  j  5Í 2n + 1, £j — £ ^  is an algebraic 
unit for p — 1 There exist algebraic integers х ц , . . .  xqi in К  such that

П  ( £i — £t'P*) = £) + x u £ 4j  1 +■•• + % •
p=1

Further, this product is a unit in К . Putting

2n+l
F ( x  0, • • • j %q) — j  j  ( x 0£ j  T 2-1 £ j  + ■ • • + "Pqi) j

j=1

F  is a decomposable form of degree 2n + 1 with coefficients in Ok - For each 
£i under consideration, the corresponding tuple (1, х ц , . . . ,  xqi) is a solution 
of the equation

(6) F ( l , x i , . . . , x q) G Ok  in (1 , x u . . . , x q) e O ^ 1.

We apply now our Lemma to equation (6). Denote by d the degree of 
the normal closure over Q of the splitting field of F  over K. We have d ^  k\. 
We notice that if the units £,• and £,/ are of degree q over К  with 2n + 1 ^  
^  г, i' ^  to, i ф i then they lead to the same solution (1, x \ , . . . ,  xq) of (6) 
if and only if £i and £,/ are conjugates to each other over К . Hence, by our 
Lemma we infer that

Mq ú q ib k d f  4 'k ^  expexp{38</(rc2n+1)!}.

This implies that

M(n) 5í Mq ^  exp exp{ 39n(n2"+1)!}
9=1

which completes the proof of the Theorem. □
Remark 2 . It is clear from the proof that using our Lemma with the 

bound (5) in place of (4), we obtain estimate (2) instead of (1).

Acta Mathematica Hungarica 69, 1995
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RELATION BETWEEN BERNSTEIN- AND  
NIKOLSKII-TYPE INEQUALITIES

NGUYEN XUAN KY (Budapest)1 

Dedicated to Professor Károly Tandori on his 70th birthday

1. Introduction

In 1911, S. N. Bernstein in his doctoral dissertation [1] proved the 
inequality2

НС11с[21г] = сп\К\\С[2*]

where tn is a trigonometric polynomial of order n.
Three years later, F. Riesz [14] extended the inequality for the i p-norm, 

namely, he proved that

(!) \ К \ \ ьр[2п] ^  c(p)n\\tn\\Lp[2r] (1 ^ p < o o ) .

S. M. Nikolskii [12] proved that if 1 ^  p < q ^  oo, then

(2) IM |L,[2*] ^  c(p,q)nr 1 Ц̂пЦ̂ р^т]-

Bernstein and Nikolskii inequalities play an important role in Fourier 
analysis and approximation theory, for example in the proofs of converse 
and imbedding theorems.

Recently, inequalities of the same type have been established for various 
systems of functions.

In this paper we show a close connection between Bernstein- and 
Nikolskii-type inequalities. More exactly, we prove that inequalities of the 
second type can be deduced from that of the first type. This statement will 
be considered also for arbitrary function systems in general function spaces, 
such as symmetric spaces.

1 Research supported  by the  H ungarian  N ational Science F oundation  under G ran t No. 

T  4270.

2 T h roughou t th e  pap er, c denotes an  absolu te  co n stan t an d  c ( z , . . . )  wiU deno te  a 
co n stan t depending  only on variables specified in th e  brackets.
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6 N G U Y EN  XU AN KY

2. Main results

We use the usual notation Lp = Lp(a,b) (1 ^  p ^  oo, —oo ^  a < b ^  oo) 
for the Banach space of functions defined on (a, b) with the norm

ll/llp = ll/llLr(a,b) = { j j j  /(* )Г  da:} I1 = P < °°)’

ll/lloo =  ll/IL~(a,6) = esssup| f ( x ) \ .
x€(a,b)

The Lp space of 27r-periodic functions is denoted by Хр[27г].
Let F  = { /и}^о be a linearly independent system of functions. Let for 

n = 0 ,1 ,. . .

Fn := \ Ф„ = £  ö/tA: Ofc are real numbers
к - 0

Let {A} = {An I oo} be an increasing sequence of positive numbers tending 
to oo. We say that the system F  satisfies a Bernstein-type inequality in Lp of 
order {A}, in notation F  G i?(Xp, {A}), if F  G Xp, Д  are locally absolutely 
continuous on (a, b), f'k G Lp (к = 0, 1, . . . )  and the inequality

(3) \ K \ \ P й  с(р)Лп||Ф„||р

holds for every Ф„ G Fn (n = 0, 1, . . .) .
Suppose that for a given pair l ^ p < q ^ o o , F c L p n L 4, and

(4) ||<MI, ^  c(p, q ) \ t 1 Ф„||р (Ф„ G Fn, n = 0, 1, . . . )

then F  is said to satisfy a Nikolskii-type inequality between Lp and Lq of 
order {A}, in notation F  G iV(Xp, Iß, {A}).

In the case when the constants c{p) in (3) and c(p,q) in (4) cannot be 
replaced by j n with 7i ^  72 ^  ^  j m -* 0, we say that inequalities (3)
and (4) are sharp, and then we use the notations F  G Äsharp(Lp, {A}) and 
F  G NshaTp(L p, Lq, {A}), respectively.

One of the main results of our paper is
T heorem 1. Let -00  ^ а < b ^ 00. Let F  be a system of functions on 

(a,b). Let {A} = {An |  00} be a sequence satisfying

( 5 ) An A
>

П+1 n \ r
An ~  AП + 1

Acta Mathematica Hungarica 69, 1995
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and for which there exists a sequence {иг} of natural numbers satisfying d\ ^
;> щ/ui-1 ^  d2 > 1, such that for any n ^  1

(6.a) ^«n ^  ^“n-1 
^71—1

or

(6-b) ^«n-1 ^  ^  c^ Un~
^n — l V"n ^n —

Then
a) If  for some 1 й  p < oo, F  £ B [L P, {A}), then F  £ N (Lp, L4, {A}) 

for every p < q ^  oo.
b) Assume that the sequence {A} satisfies Conditions (5) and (6.a). If 

F  6 iVsharp(lPo, Lqo, {A}) for some pair l ^ p 0 <qoü°°> and F e 
£ B ( L Po,{  A}), then F  £ Bsharp(L Po, {A}).

Remark 1. It is easy to see that the sequence, {A} = {na } (a > 0) sat­
isfies (5). It also satisfies (6.a) (for 0 < а й  1), and (6.b) (for a ^  1) with 
{ui := 2*}.

The proof of our theorem will be based on two inequalities concerning 
the Xp-modulus of continuity of functions defined as

W(-M)p = u ( f ^ ) b P ( a , b ) sup «
0 <h^6

b-h

J  I f { x  +  h ) - f { x ) \ p dx

I
P

Lemma 1. Let f  £ Lp(a,b) (1 ^  p < oo). Let f* be the decreasing rear­
rangement of f . Then for Г  := (0, b — a)

(?) Ц /*  ̂ ) lp(I') =

P roof. In the case (a, b) = (0, 1) (7) was proved in [9] (see also [4]). 
The case of arbitrary finite intervals then can be deduced easily from that 
of (0,1). Suppose now that I  =  (a, 6) is an infinite interval. Let J  be a finite 
interval contained in I. For /  £ LP( I ) let f j ( x )  := f (x )  (x £ J), 0 (x £ I  \  
\  J). Denote by /}  the decreasing rearrangement of f j .  It is easy to see that 
for all a; £ I ', f}(x )  —> f*{x) (J  —у I). Let J' := (o, | J | ) ,

J '( t) := {x £ J': x + t £ J'}.

Acta. Mathemaiica, Hungarica 69, 1995



8 NGUYEN XUAN KY

Denote by \E  the characteristic function of the set E. Using inequality (7) 
for the (finite) interval J, by Fatou’s Lemma we have for 0 < t ^  6

^ U ^ ) lp(I) ^  HminfuK/,% ,(.,) ^  y lim infw (/},6)LP(J,) ^

= yhm jnf IIx j '(0 A^ H lp(/') = ^IIX /'(t)A i/lLP(/,)-

Hence (7) follows.

Lemma 2 . Let 1 ^  p < oo, 1 ^ u < oo. Let g 6 Lp(0,u) be non­
decreasing. Then for any 0 < x ^  |

( 8) 0(*

U

) ^ c ( p )  J
LJ{9^ ) lp( q , u )

dt + 7 7 t IIöIIlp(o,u)
( f ) p

P roof. Introduce h(y) g(uy) (у 6 (0, 1)). Using [10, (3.3)] we have 
for 0 < у ^  I

(9) h(y) -  h
l

\ )  =c«  /
“ ' ( M ) l p (0,1)

z1+p
dz.

By exchanging у = £, 2 = £ and observing that

ы
LP(0,1)

Tw(j) 0 ер(О,и)> 5 ( ö )  = “ rll^Hí-P(0,ч)
'  V 2 /  ( | ) p

we have (8) from (9).

Lemma 3 . Let {u,} be a sequence of positive numbers satisfying d\ ^ 
^  Ui/ui-i ^  d2 > 1- Let </>(i) ^  0 к  a nonincreasing function on [0,oo). Lei 
^(i) > 0 be a function defined on [l,oo) satisfying one of the following two 
conditions:

(A) rf(t)/t is nondecreasing and

( 10)
4>(ui) c  cV>(tti-i) ( . > x)

Ui  ~  U j_

(B) ip(t)/t is nonincreasing.

Acta  Mathematica  Hungarica 69, 1995
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Then for any к < l we have

i=k u*=n=ul

P roof. We prove the lemma, in the case when ip satisfies Condition A. 
The other case can be proved similarly.

By (10) we have

i=k i—k г

Then using the property of the sequence {щ} we get

N  ^  c V  r ( "‘~l ) o (»,)(», -  n,_i).
i=k U'~l

Hence, by the fact that (̂ >(f) and t/ip(t) are nonincreasing we obtain

n s c J dt ^  c
Uk'ün̂ Ul

“Ф(п + 1)
n + 1 0(«)-

P roof of T heorem 1. Let f  E Lp := Lp(a,b). Without loss of gener­
ality one can assume that d := b -  a ^  1. Let

En = £ „ ( /)  := inf II/ -  фп\\р (n = 0, 1, . . .) .

Since F  G (Lp, {A}), using Lemma 3, by a well-known technique of ap­
proximation theory (see e.g. [6, p. 59]) we can prove

( И ) (n ^ 1).

Now introduce the function

« ( < )  =  ö / , p ( 0  : =
if t £  ( лД ^ а1*

ll/llp for ^  < Í < oo.

(A: = 1, 2, . . . )

Acta Mathematica Hungarica 69, 1995
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Then, from (5) by (11) we have for 1 ^  и ^  d

(12) u ( f ,  t)p й  c{p)t J  dy ( 0 < ^ f ) .

(a) First we consider the case p < q < oo. Since ||/*|| = | | / | |p < oo and 
/* is nonincreasing, there exists 0 < Vo < oo such that f*(x) ^  1 for x ^  Vo. 
By this we have for any v ^  vq

(13) :(z )]4 d x \  = <
о

V  OO

J  [f*(x)]4dx + J  [f*(x)]qdx <

о

v

< J  [/*(*)] 4 d x  j + < j  [/*(*)] P d x

Since the last integral tends to zero when v tends to infinity, there exists 
1 < и < oo such that

r OO

( 14) q dx \ < 2 j [/*(*)]dx

1
4

.

о

We now estimate the integral on the right hand side of (14). Using (7) and
(8) one has for 0 < x ^  |

(15) П х

u

) ^  c(p) J
w ( / , i ) Lp dt +, , i  ■ 1 \ \ J  IlLp■

i1+p (f)F

By (12) and (15), using an inequality of Hardy we get (see e.g. [13, p. 186])

m l  / I л * ) ] ' • =  c( p ) <

и  и

J
о

У2

Я  i _ i
11’  P

d t )  + ^ \ \ f \ \ Lp i
2 p

£  c(p) <
U

J  [ r ^ 0 (i)]* dt
о

я I _ I 
11’  P

+  ---- i \ \ J  IlLp
2 p

Acta Mathematica Hungarica 69, 1995
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Let now /  = Ф„ £ Fn. Then by (11)

V>(<) = Ффп,Р(t) й

Consequently, by (14) and (16) we have

(17) 1* 11,  = I I* * M

<; c(p) цфг

и

J t p dt
1 _ 1_ 

и я  P

H i ll^nllp =  c (p)^n  , ||Фп||р.
2 p

Here we have used the assumption q > p.
(b) Let now q — oo. In the case when (a, b) is a finite interval, we get F  £ 

£ N ( Lp, L00, { \} )  by taking limit (q —► oo) on both sides of (17). If (a, b) is 
infinite, we can argue as follows. Let J  C (a, b) be an arbitrary finite interval. 
By (17) we have

II<M Il?(J) ^ c(p)\p 4 ||Фп||ьр(а,Ь)-

Hence, by taking limit (q —► oo), we have

l^n|lL°°(J) = c(P)^n\\<bn\\LP(a,b)-

Since J  is an arbitrary finite sub-interval of (a, 6), the last inequality implies 
that F  £ JV(LP,L°°,{A}).

We turn to the proof of the sharpness part of our theorem. Suppose that 
F  ^  Bs\ia,rp[LPo, {X}). This means by definition that F  £ B ( L Po,{p}) with 
{/x} := {/x„}, pn = I n K  and 7i ^  72 ^  ^  7 m  —► 0. It is easy to see that
the sequence {p} also satisfies conditions (5) and (6.a). Therefore repeating 
the technique used in the first part of our proof we get F  £ N  ( LPo, L40, {p}), 
which is impossible, since F  £ -/Vsharp( LPo, Lqo, {A}).

By this we have completed the proof of Theorem 1.
In the case of finite intervals, Theorem 1 can be generalized in the sense

that Lp is replaced by an arbitrary symmetric function space containing the
Ibasis function x ? . Let us describe exactly this statement. The definition 

of symmetric function spaces can be found for example in [5]. Let X  be a 
symmetric function space on (0,1) having the fundamental function <p(t) :=

Acta Mathematica Hungarica 69, 1995



12 N G U Y EN  XU AN KY

:= l|X(o,t)||jr = t p (1 = P < °°)- The Lorentz spaces LPiT (1 ^  p, r < oo), de­
fined as the collection of all measurable functions /  on (0,1), for which

\ \ f \ \ p , r  :=
I

J  [* '/*(*)]'
da; < oo

are typical examples for such spaces. Remark that Lp = LPiP.
Now we can define the classes B ( X ,  {A}), PsharpÍA, {A}), 

N ( X , L q,{  A}) and -/Vsharp( A, L4, {A}), similarly to B ( L P,{  A}),
5 sharp(Tp,{^}) Д ( Т Р,Т 9,{А}) and Nshaxp(L p,L q, {A}), respectively (Lp is 
replaced by X everywhere).

The following theorem is true.
T heorem 2 . Let X  be a symmetric function space on (0, 1) with the 

1_
fundamental function tp (1 £  p < oo). Let {A} = {An f oo} be a sequence of 
positive numbers satisfying (5) and (6.a) or (6.b). Let F  be a function sys­
tem.

(A) If F  G B [X ,  {A}), then for every p < q ^  oo, F E N  (X , Lq, {A}), 
while for q = p we have

(18) ЦФЦьр ^  c(p)(logAn)? ||# n||x  (Фга € Fn, n = 1 ,2 ,...).

(B) Assume that the sequence {A} satisfies (5) and (6.a). Then, if for 
some \ ^ p < q o % o o F  belongs to Asharp( A, Lq°, {A}) and B ( X ,  {A}) then 
F E Usharp ( A , {A}).

P roof. We use the fact that inequalities (7) and (8) remain true if one 
replaces u ( f , t ) LP by

Ц Л О х  := SUP ||X(0,l-fc)(*)Afc/(*)|| x
0 <h^t

(see e.g. [5], [9], [10]).
With this the proof of Theorem 2 in the case p < q ^  oo is similar to that 

of Theorem 1, while in the case q = p inequality ( 17) becomes to

+ \ w * n \ \ x  = с(р)(1оё АпН|Фп||;с-
2 p

Finally, the sharpness part of Theorem 2 is also clear from the proof.
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3. Application

Although inequalities of Bernstein- and Nikolskii-type have been known 
for many special function systems, as an illustration to our results, we con­
sider some examples.

1. Inequality (2) indeed can be deduced from (1) by using Theorem 1. 
We may obtain another inequality for trigonometric polynomials between Lp 
and LPfT spaces. Notice that for 1 < p ^  oo, l ^ r < p < s ^ o c w e  have

(19)

In order to get a converse inequality of (19) for trigonometric polynomi­
als we shall apply Theorem 2. Let T  be the trigonometric system. Since 
t e ( ! M »}) ( 1 S p S  oo), we have by the interpolation theorem T  £ 
£ B(Lptr,{n})  (1 й  p, г й  oo). Now, using Theorem 2 in the case p — q 
we get

(20) IWIp ^  c(logn)?||<ri||P)7. (tn £ Tn, 1 ^  p < r < oo).

2. Let Р^а'^  be the n-th orthonormal Jacobi polynomial with parame­
ters a ,ß  ^  — | .  Consider the system

J  := { PÍa’0\cos6)(l  — cos 0)y (l + cos 6) * sin2 #} .

Combining Lemma 14 and Theorem 14 of Nevai [11] we have J  £ 
£ P ( P p(0,7r), {n}). Hence, by Theorem 1, J  £ N (Lp, Lq, {n}) ( l ^ p <  
< q ^  00).

3. Let

La := {P Z (x )x ?e 2}“=0

where P “ is the n-th Laguerre polynomial with parameter a  ^  0. It follows 
from (6), (7) and (8) of [2] that La £ P ( Xp(0, 00), {n}) ( l ^ p < o o ) .  Hence 
La G A (Z P, Lq, {n}) (1 ^  p < q ^  00). This is a result of Markets [7].

Remark 2 . In general, there is no converse variant of our theorems. A 
typical example is the Walsh-system, which satisfies a Nikolskii-type inequal­
ity, but Walsh functions are not locally absolutely continuous on (0,1) (see
И)-
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ON GRÜNBAUM ’S PROBLEM ABOUT INNER  
ILLUMINATION OF CONVEX BODIES

V. SOLTAN (Chisinau)

Introduction and main results

A set F  C bdA' is called by P. Soltan [3] an (inner) illuminating set of 
a convex body К  C E d (i.e. a compact convex set with nonempty interior) 
provided for every point x G bd К  there is a point у £ F  such that x ф у 
and the open line interval ]x,y[ is contained in int К. P. Soltan (see [3], [4]) 
posed the problem on the least number of points in an illuminating set of a 
convex body in E d, and he has proved that this minimum number is at most 
d + 1, with d + 1 characterizing simplices.

Due to Grünbaum [1], an illuminating set F  of a convex body К  C E d is 
called primitive if no proper subset of F  illuminates К . Grünbaum [1] (see 
also [2], p. 423) suggested the question on the maximum number of points in 
a primitive illuminating set of convex bodies in E d. This maximum is easily 
shown to be four for d — 2 (cf. [2], p. 423). For d ^  3, even a proof for the 
existence of the maximum is lacking. Grünbaum formulated the following 
problem.

P r o b l e m  1 . Prove that any primitive illuminating set of a convex body 
in E d has at most 2d points.

We show in this paper that Problem 1 has a positive answer for the case 
d = 3. More exactly, we prove the following assertion.

T h e o r e m  1 .  Any primitive illuminating set of a convex body in E 3 has 
at most eight points, and only a convex polytope combinatorially equivalent 
to the 3-cube has a primitive illuminating set of eight points (placed at its 
vertices).

Based on Theorem 1, one can sharpen Grünbaum’s problem as follows.

P r o b l e m  1 ' .  Prove that any primitive illuminating set of a convex body 
in E d has at most 2d points, and that only a convex polytope combinatorially 
equivalent to the d-cube has a primitive illuminating set of 2d points (placed 
at its vertices).

It is easily seen that a convex polytope P  С E 3 combinatorially equiva­
lent to the 3-cube has a primitive illuminating set of eight points (placed at
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16 V. SOLTAN

its vertices), and any other primitive illuminating set of P  has at most seven 
points (since a set F  C bd P  illuminates P  from within if and only if it illu­
minates each vertex of P). Therefore Theorem 1 can be deduced from the 
following result.

T heorem 2 . If for a convex body К  С E 3 there is a primitive illuminat­
ing set of at least eight points, then К  is a convex polytope combinatorially 
equivalent to the 3-cube.

Proof o f Theorem 2

We divided the proof of Theorem 2 into a sequence of lemmas. From 
now on, a convex body К  is assumed to be three-dimensional, i.e., К  С E 3. 
By a face of К  we mean any of its two-dimensional faces, and an edge is a 
one-dimensional face of К . The abbreviations aff, conv, bd, int, rint, rbd, 
and card are used for affine hull, convex hull, boundary, interior, relative 
interior, relative boundary (taken in the affine hull), and cardinality, respec­
tively. The notations [x,y\, ]x,y[, (x,y), [x,y) mean closed line segment, 
open line interval, the Ипе passing through distinct points x , y, and the ray 
with apex x passing through у (^  x), respectively.

In the sequel F  denotes a primitive illuminating set of К . For any x £ F  
there is at least one point у £ bd К  (depending on x) illuminated by x and by 
no other point of F. Every such a point у will be called simply illuminated, 
and the set of all simply illuminated points (relative to a given set F) will 
be denoted by G. Trivially, card G ^  card F. For any point x £ bd К , let Ix 
be the set of all points in bdÄ' illuminated by x.

Lemma 1. If F  has a common point with the relative interior of a face 
(or an edge) M  of К , then M  contains no other point in F.

P roof. Let a point i f f  belong to rint M . We claim that Iz C Ix for 
any point z £ M . Indeed, since x £ rint M , there is a point w £ M  such that 
x £ ]z,w[. In this situation, for any point v £ Iz, one has }x,v[C int К , i.e., 
v £ Ix.

Now, if M  contained a point у £ F  distinct from x, then, by the above, 
F \ { y }  would be an illuminating set of К , which is impossible by the choice 
of F. Hence M  contains no other point in F. □

Lemma 2 . Any face of К  contains at most four points in F. If a face 
M  of К  contains four points in F, then M  is a convex quadrangle and the 
points lie at the vertices of M.

P roof. Assume that a face M  of К  contains at least four points in F. 
By Lemma 1, all these lie in rbd M. Enumerate by x\, Х2, £3, x4 some four of 
them according to an orientation of the relative boundary of M . By Lemma 
1, no three of these four points are collinear. Denote by y\, У2, Уз. у a simply
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illuminated points of bd К  corresponding to *1, X2, *3, x4, respectively. Triv­
ially, none of 2/1, 2/2, 2/3, y4 lies in M. Since y\ is illuminated by none of *2, 
*3, x4, the segments [a?2,2/i], [а̂ з, 2/i], [*4,yi] lie in bdA'; so do the segments 
[ari, 2/2], [а̂ з, 2/2], [2:4,2/2]- If У2 belonged to the open part N  of bd bounded 
by the segments [*2,yi], [*4,2/1], and the arc *2*3*4 of rbd M  disjoint to 
{xj}, then £1 would illuminate 2/2- If У2 belonged to [*2,yi] U [*4,1/1], say to 
]*2,yi[, then x\, 2/1, 3/2 would lie in a common face of К  and [*1,1/1] C bd A', 
which is impossible. Similarly, if 2/2 belonged to the ray [*3,1/1) with apex 
*3 passing through 2/1, but not to N,  then [*2,1/2] would lie in bd К  because 
of the inclusion [*2,2/1] C bd K. Hence i/2^JVU [*2,3/1] U [*4,2/1] U [*3,1/1).

Now consider the intervals ]*2,2/1 [, ]жз,У2[, and ]*4,yi[. By the above, 
all these lie in bd A', and ] * з ,  2/2[ intersects one of ]*2,2/i[, ]*4,yi[ • If ]*з, Уг[ 
intersected ]жг, 2/i[, then *2, *3, 3/1, 3/2 would lie in a face of K. Since *2 
illuminates i/2, the last is impossible. Hence ]*з,уг[ intersects the interval 
]*4,2/1 [. Thus *3, *4, 2/1, 2/2 belong to a face of К . In this case the segment 
[ * з ,  *4] belongs to two faces of A', and hence lies in an edge.

Similarly, each of the sets

{*1, *2, J/3, Уа\ , {*1,* 4,У2,Уз}, {*2,* 3,У1,У4}

determines a face of К. Therefore M  is a convex quadrangle with the vertices 
*1, *2, *3, *4- Note that [*1, уз], [*2, У4], [*3,yi], and [*4,y2] belong to edges 
of К .

Observe that M  contains no other point in F. Indeed, if z £ M  were 
some other point in F, then 2 would belong to the relative interior of M  or 
of one of its edges, say [* i,*2]. In both cases (see Lemma 1), the set F \  
\  {*1} also illuminates A', which is impossible. Now the proof of Lemma 2 
follows easily. □

Lemma 3 . If there is a point in G which is not extreme for К , then 
card F й  7.

P roof. Assume first that a simply illuminated point у E G lies in the 
relative interior of a face M  of К . Denote by * the point in F  illuminating 
y. Since [у , z] C bd К  for any point z E F  \  {ж}, the set F \  {*} lies in M. 
By Lemma 2, M  contains at most four points in F, i.e. card ( F \  {*}) ^  4. 
Thus card F  ^  5.

Now assume that a simply illuminated point у £ G lies in the interior of 
an edge [a, b] of K,  and let * be the point in F  simply illuminating y. If [a, 6] 
does not belong to any face of K,  then F \  {*} lies in [a,b] and, by Lemma 
1, card ( F \  {*}) ^  2, i.e., card F  ^  3.

If [a, 6] is an edge of exactly one face M  of К , then F \  {*} lies in M  and, 
by Lemma 2, there are at most four points in F \  {*}. Hence cardT ^  5.

Let [a, 6] be in two distinct faces M\, М2 of К . As above, the set F \  {*} 
lies in M\ U М2. If each of M 4, М2 contains at most three points in F \  {*}, 
then cardF  ^  7. Let M\ contain four points in F \  {*}. By Lemma 2, M\

A d a  Mathematica Hungarica 69, 1995



18 V. SOLTAN

is a convex quadrangle, and its vertices a, b belong to F \  {a;}. In this case 
М2 \  Mi contains at most two points in F \  {a:}, and hence card F  ^  7. □

Lemma 4 . If a face of К  contains four points in F, then cardF  ^ 8, 
with card F  = 8 only if К  is a convex polytope combinatorially equivalent to 
the 3-cube.

P roof. Let a face M  of К  contain four points aq, X2, X3, x4 in F, and let 
yi, 2/2, Уз, У4 be points in bd К , simply illuminated by aq, X2, x3, x4, respec­
tively. Due to the proof of Lemma 2, the face M  is a convex quadrilateral 
with the vertices aq, X2, £3, x4, and the line segments

(1) [®ъ2/з], [*2, 2/4], [*3, 2/l], [*4,2/2]

belong to edges of К .
Furthermore, there are also four faces of К , namely,

Mi = К  П aff (*i, *2,2/3,2/4), M 2 -  F  П aff (ж2, £3,2/1,2/4), 
M3 = К  П aff ( £ 3 ,  £ 4 ,  2/1,2/2), M4 = К  П aff ( x \ ,x 4, y2, 3/3)-

Assume first that aq, x2, £3, x4 do not illuminate the whole set bd К  \  
\  M. Then the set, say Z, of all points in bd K \ M  which are not illuminated 
by {xi,X2,x3,x 4} coincides with one of the sets M\ П M3, М2 П M4. Hence 
Z  is either a point or a line segment .

If Z  is a point, and a point £5 G F  illuminates Z , then x3 does not belong 
to M  (by Lemma 1) and to any of the lines spanned by segments (1). In 
this case 3:5 illuminates two of the points aq, aq, 3:3, x4. Since the other two 
vertices of M  are illuminated by at most two points of F , say x^, x?, and M  
is illuminated by x3, x3, Х7, one has cardF  ^  7.

Let Z  be a line segment. If Z is illuminated by a point of F , then, as 
above, card F  ^  7. Suppose that Z  is illuminated by two points of F , say 
Х5, x3. It is easily seen that in this case x3 and x3 illuminate the whole M, 
and hence cardF  ^  6.

Suppose now that aq, aq, x3, x4 illuminate the whole set bd К  \  M . Since 
M  is illuminated by points of F  if and only if each of the vertices aq, Х2, 
x3, x4 is illuminated by a point of F , the whole face M  is illuminated by at 
most four points of F. Thus card F й  8.

Assume that cardF  = 8, and let 3:5, x3, £7, x$ be the other points in F. 
By the above considerations, these new points belong, respectively, to the 
lines spanned by segments (1). Let

*5 6 (я ъ 2/з), x3 G (^2,2/4), x 7 G (x3, 2/1), x8 G {x4, y2)-

Since г/i , у2, 2/3, 2/4 are simply illuminated, both segments [3:5,2/1] and [a:6, 2/2] 
lie in b d F . The last is possible only if 3:5, же, 2/i, 2/2 are the respective end
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points of the edges

К  n (*i,jfe), К  П (®2 ,y4), к  n (a?3 ,y i), К  n (x4,y2),

and Z5, же, 2/1, 3/2 lie in a face of К . Hence

К  п (*1 ,й ) = [а?1,аг5], К  П (x2,t/4) =  [*2,*б],

А' П (x3, yi) = [жз, yi], К  П (x4,y2) = [x4, y2\.

Similarly, considering [Ж7, y3], [xs,t/4], we have

А'П(жь у3) = [жьуз], К  П (ж2, y4) = [ж2,у4],

А' П (ar3,yi) = [ж3,ж7], К  П (x4,y2) = [ж4,ж8].

Hence ж 5 = y3, xG =  y4, ж7 = y4, x$ = y2. Therefore /if is a convex polytope 
combinatorially equivalent to the 3-cube and F  is its vertex-set. □

The proofs of the following three assertions are similar to those of Lem­
mas 1- 3.

Lemma 5 . I f a point x £ G is simply illuminated by a point z £ F and 
belongs to the relative interior of a face (or of an edge) M  of К , then M  
contains no point in G simply illuminated by a point of F  \  {2 }. □

Lemma 6. Any face of К  contains at most four points in G correspond­
ing to distinct points in F. I f a face M  of К  contains four points in G 
corresponding to distinct points in F, then M  is a convex quadrangle and the 
points of G lie at the vertices of M . □

Lemma 7. I f a point in F is not extreme for К , then card F  ^  7. □

Lemma 8. I f a face of К  contains four points in G corresponding to 
distinct points in F, then card F  ^  8, with card F  = 8 only if К  is a convex 
polytope combinatorially equivalent to the 3-cube.

P roof. Let a face M  of К  contain four points x\,  x2, x3, x4 in G simply 
illuminated by different points У1,у2,Уз,у4 G F, respectively. Due to Lemma 
6, the face M  is a convex quadrilateral with the vertices x 4, x2, ж3, x4, and 
the sets (2) are faces of К  (see the proof of Lemma 2). In particular, the line 
segments (1) belong to edges of K . If at least one of the points y4, y2, y3, y4 
is not extreme for К , then c a rd /1 ^  7 (see Lemma 7). Assume that all 
Уъ У21 Уз, У4 are extreme points of K.  Then the segments (1) are edges of 
К . In this case, as easily seen, any point у £ bd К  not in

M  U [zi, y3] U [x2, y4\ U [ar3, y4] U [z4, y2]
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illuminates at least one of x \, X2, x3, x4. This implies (since Xi, X2, x3, x4 
are simply illuminated by yi, y2, уз, У4, respectively) that any point у E F \  
\  {yi, У2? Уз, У4}, if exists, lies in M . By Lemma 2, M  contains at most four 
points in F, and hence card F  ^  8.

Now consider the case card F  = 8. By the above, card F  = 8 implies that 
the points У5, уб, У7, ys E F  are the vertices of M, i.e.

{x i,x2,x 3,x 4} = {у5,Уб<У7,У8}-

By Lemma 4, A' is a convex polytope combinatorially equivalent to the 
3-cube. □

Lemma 9 . Let N  C F 3 be a convex body and X  be a set of at least seven 
points in bd N such that no four of them lie in a face of N . Then there are 
two points x, у G X  such that ]x, y[C int N .

P roof. Proof of the lemma is based on the following result by 
Zamfirescu [5]: if a convex body S C F 3 is neither a bounded cone nor a 
convex polytope combinatorially equivalent to the triangular prism, then 
there are two distinct extreme points x, у of S such that ]x, y[c int S.

Choose in X  any subset Y  of seven points and put P — conv Y. If P  con­
tains a pair x, у of vertices with ]x, y[C int P, then x, у E X  and ]x, y[C int N.  
Assume that P  has no such pair of vertices. Since P is not combinatorially 
equivalent to the triangular prism, it must be a bounded cone. By the hy­
pothesis, the base of P intersects int N . Then any diagonal [x, y] of this base 
satisfies the inclusion ]x, y[c int N . □

The following lemma, together with Lemmas 4 and 8, gives a final point 
in the proof of Theorem 2.

LEMMA 10. If F has at least eight points, then there is a face of К  con­
taining four points in F or four points in G corresponding to distinct points 
in F.

P roof. Assume, in order to obtain a contradiction, that no face of К  
contains four points in F  or four points in G corresponding to distinct points 
in F. Due to Lemmas 3 and 7, each point in F  U G is extreme for K . By 
Lemma 9, there is a pair of points yi,y2 £ G such that ]у1,уг[С int AC We 
will consider each of the following cases: 1) both y4, y2 belong to F, 2) y4 E 
E F  and y2 ^ F, 3) none of y\, y2 belongs to F.

1) Let yi, y2 E F. Due to the hypothesis card F  ^  8, there are some other 
six points, say X3, ...,x g , in F. Since yi, y2 illuminate each other, none of 
X 3,...,xg illuminates any of y4, y2. In other words, each of x3, . . . ,x g  is 
connected with both yi, y2 by line segments lying in bd K . Let y3 be a point 
in bd К  simply illuminated by X3.

Assume first that уз E F. Without loss of generality, one can put y3 = 
= xg. Then each of X4, X5, Xß, X7 is connected with y3 by line segments 
lying in bd A'. Suppose that X 4,...,xg are enumerated in correspondence

Acta Mathematica Hungarica 69, 1995



ON G RÜ N BA U M ’S PR O B LEM  A B O U T IN N ER  ILLUM INATION O F CO N V EX  BOD IES 2 1

with a bypass of the surface of К  around the line (2/1,2/2)• (Since each of 
* 3 ,.. . ,  же is connected with both 2/1, y2 by line segments lying in bd К , no 
four points of the form *,-, Xj, 2/1, У2 lie in a common half-plane with bound­
ary line (3/1, 2/2) -) In this case 2/3 lies in the open part of bd К  bounded by 
the segments [£4,2/1], [*4,2/2]» [*7, J/i]» [*7,2/2] such that *5, *6 lie outside it. 
Since the segment [*5,2/3] lies in bd К , it intersects the simple closed polygo- 
nial curve 2/1*42/2*72/1 - We know that all of *4, *7, 2/1, 2/2 are extreme points 
for K.  Hence [*5,2/3] intersects one of the open intervals ]*4,2/i [, ]*4,2/г[> 
]*7,2/i [, ]*7,2/2[- Let [*5,2/3] intersect e.g. ]*4,3/i[ - Then *4, *5, 2/1, Уз are 
four points in F  lying in a common face of К , which is impossible by the 
hypothesis.

Hence 2/3 0 F. As above, we suppose that 2/3 lies in the open part of bd К  
bounded by the segments [*4,2/1], [*4,2/2]» [*8, 2/i]» [*8,2/2] and not containing 
*5, *6, *7, where * 4 ,.. . ,  *8 are enumerated according to a bypass of bd К  
around the line (2/1,2/2)- Then *6 and 2/3 lie in different open parts of bd К  
determined by the closed simple polygonal curve Г = 3/1*53/2*73/1 •

Since 2/3 is simply illuminated by *3, it is connected with each of * 4 ,..., *8 
by line segments lying in bd A. As above, ]*6, 2/з[ intersects Г and contains 
none of *4, *5, *7, *8. Hence [*6, 2/3] intersects one of the open line intervals 
]*5,2/1 [, ]*5,3/2[, ]*7,2/1 [»]*7,2/2[- If [*6,2/3] intersected ]*5, 2/i[, then it would 
intersect one of ]ж4, уг [, ]ж4, y2[, and four points *4, *5, *e, 2/1 or four points 
*4, *5, *6, 2/2 of F  would lie in a common face of К , contradicting the hy­
pothesis. Similarly, [*6, 2/3] cannot intersect any of ]*s, 2/2[, [*7,3/1 [, ]*7,2/2[ ■ 
The obtained contradiction shows that the case 2/1, 3/2 £ F  is impossible.

2) 2/1 G F  an(l 2/2 ^  F. Then there are some other points * 2 ,...,* 8  G 
€ -F. Since 2/2 is illuminated by 2/1, it is simply illuminated by 2/1- Without 
loss of generality, one can assume that *8 simply illuminates 2/1 ■ Denote by 
3/2 a point in bd A  simply illuminated by x2. Under these conditions, each 
of *3, *4, *5, *6, *7 is connected with both 2/1, 2/2 by line segments lying 
in bdA', and *8 is connected with both 2/2, У2 by line segments in bdAT 
Assume also that * 3 ,... ,  *7 are enumerated in correspondence with a bypass 
of the surface of К  around the line (2/1, y2).

Suppose first that y2 G F. Since *8 illuminates 2/1, one has y2 Ф *8 (oth­
erwise 2/1 would illuminate y2, which is impossible due to the assumption that 
*2 illuminates y2 simply). Also y2 ф уг, x2. Hence y2 £ {*3,...,*7}. Let, 
for example, y2 = *7. Then y2 belongs to the open part of bdA” bounded 
by the segments [*3,2/1], [*3,2/2], [*6, 2/i], [*6,2/2] such that *4, *5 lie outside 
it. Since no face of К  contains four points in F, none of the open intervals 
]*3, 2/i[, ]*6, 2/i[ intersects at least one of the segments [*4,2/2], [^5,3/2]» and 
none of ]*з,2/г[, ]*б,2/г[ intersects both [*4,2/2], [*5,У2]- Let, for example, 
[*4,2/2] intersect ]x3,y2[ and [*5,2/2] intersect ]*6, y2[. Then *3, *4, 2/2, У2, 
and *5, *6, 2/2, У2 be in common faces of К , respectively.
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Now consider the point x$. Since no face of К  contains four points in F, 
none of the faces

Mi = А' П aff (23, x4, y2, y2), M2 = К  П aff (x5,x 6, y2, y2)

contains any of xs , y\. By the same arguments, the segment [a;8, y2] (which 
lies in bdA') cannot intersect at least one of the open intervals [23,j/i[, 
]x4,yi[, ]a?5,t/i[, ]a:e, t/i[. Therefore the open interval }x8,y2[ is disjoint to 
the simple closed polygonal curves У\Хзу'2хъу\, у\Х4у2х^у\: lying in bd K.  
Similarly, the open interval ]y2,y2[ is disjoint to the same polygonal curves. 
Moreover, the path [ms, 2/2] С [У21У2] crosses each of these polygonal curves 
at у2. Hence x8 and y2 lie in different open parts of bd К  bounded by any 
of these polygons. If [23,3/2] C bdA ', then ]x8,y2[ intersects some open side 
of any of these polygons, and thus x8 and the end points of these sides are 
at least four points of F  lying in a face of K.  If ]28,3/2[C int A', we get a 
contradiction, since y\ simply illuminates y2.

Hence y2 £ F. As above, we may suppose that y'2 lies in the open part of 
bd К  bounded by the segments [23,3/1], [23,3/2], [27,3/1], [27,3/2] and not con­
taining 24, 25, 2ß, where 2 3 ,...,2 7  are enumerated in correspondence with 
a bypass of bd A' around the line (2/1, y2). Similarly to the above, [24,3/2] 
intersects none of ]27,3/1 [, ]x?,y2[, and [xe,y2] intersects none of ]23,3/i[, 
]2з, 3/2[ (otherwise either 24, 25, 26, 27 or 23, 24, 25, 26 would lie in a face 
of K).  Hence [24,3/3] intersects one of ]23, 3/1 [, ]x8,y2[, and [x8,y2] inter­
sects one of ]27,3/1 [, ]x7,y2[. Since [25,3/3] bes in bd A', and since 25, y2 
belong to distinct open parts of bd К  determined by the closed polygonal 
curve 3/1243/2263/1, the segment [25,3/3] intersects one of the intervals ]24,3/1 [, 
]24, 3fe[, ]26, 3/l[, ]®6, 3fe[-

We observe that [25,3/3] cannot intersect ]х4,у \[и]х4,у2[ if [24,3/3] bas 
a common point with ]23,3/i[. Indeed, if [25,3/3] intersected either ]®4,3/i[ 
or ]®4,3/2[ (and thus intersected one of the intervals [23,3/1], ]хз,у2[), then 
four points 23, 24, 25, 3/1 in F  would lie in a common face of К . By the 
same arguments, [25,3/3] cannot intersect ]x4,y\[ (and hence cannot intersect 
]®з, 2/1 [) if [24,3/2] intersects ]23,з/2[. Similarly, [25,3/3] d°es по  ̂ intersect 
]2б, 3/i[U®6, y2[ if [26,3/2] bas a common point with ]x7,yi[, and [25,3/3] ^oes 
not intersect ]®6, 3/1 [ if [26,3/2] intersects ]®7, y2[.

Summing up, one has (up to symmetry) two possible cases: a) [24, y2] 
intersects ]®3, y2[, [25,3/3] intersects ]x4,y2[, and [xe,y2] intersects ]m7,3/1 [;
b) [24,3/3] intersects }хз^у2[̂  [25,3/3] intersects ]®4,з/2[, and [26,2/3] intersects 
]®7, y2[. Consider each of these cases separately.

a) Let 3/6 be a point in bdA' simply illuminated by x^. We claim that 
there is no suitable position for 3/6 in bdA'. Indeed, 3/6 cannot belong to 
the face N 1 = К  П aff (2,27,3/1, y'2), since otherwise [26,3/e] C bdA'. Simi­
larly, [27,3/6] cannot intersect ]x8,y2[. If 3/6 belonged to the face N2 = К  П 
П aff (23,24,25,3/2,3/3), then as easily seen, [2/1, 3/e] would intersect ]xg,y2[. 
Hence 3/6 may belong either to the open part P\ of bd К  bounded by the line
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segments [£6,2/2], [27,2/2] and the arc XeXr of rbdiVi which does not contain 
t/ь  or to the open part P2 of bdA' bounded by the line segments [27,2/2], 
[2/2,2/2] and the arc 173/2 on rbdJV2 which does not contain 2/1- In each case 
i/б is illuminated by 2/1, which is impossible by the hypothesis.

b) Let t/6, 2/7 be points in bdA' simply illuminated by £б, 27, respec­
tively. As in a), 2/6 can lie only in the open part Q of bd К  bounded by 
[23,2/1], [24,2/1] and the arc X3X4 of rbdiV2 which does not contain 2/2- Simi­
larly, 2/7 can belong only to the open part of bd К  bounded by [X4,2/1], [25,2/1] 
and the arc X4X5 of rbd N 2 which does not contain 2/2- Since 2/7 is not illumi­
nated by £3, one has [£3,2/7] C bd К  and hence ]£з, 2/7[fl]£4, У\[Ф 0. Therefore 
23, 24, 2/1, 2/7 he in a common face of A', and Q coincides with the interior 
of the plane triangle Д(£з, £4,2/1) C bdA'. The last is impossible since the 
point i/б 6 Q is extreme for A' (see Lemma 3).

3) None of 2/1, 2/2 belongs to F. Let x\, 22 illuminate 2/1, 2/2, respectively, 
and let 2/3 be a point in G simply illuminated by £3.

Assume first that 2/3 £ F. Without loss of generality, one can put 2/3 = 
= £g. Then each of £4, £5, £6, £7 is connected with 2/3 by line segments lying 
in bd K. Suppose that £4, . . . ,  x$ are enumerated in correspondence with a 
bypass of the surface of К  around the line (2/1,2/2)- In this case 2/3 lies in the 
open part of bdA' bounded by the segments [£4,2/1], [£4,2/2], [27,2/1], [27,2/2], 
which contains none of £5, xq. By considerations similar to the above ones, 
both segments [£5,2/3], [26,2/з] cannot intersect one of the intervals ]£4, i/i [, 
]24,2/г], ]27, í/i [, ]27, t/2[, and cannot intersect either each of]£4,i/i[, ]24,2/г[ 
or each of ]£7, j/i[, ]£7, y2[. (If, for instance, [25,2/3] intersected ]£4, í/i [ and 
[£6, 2/б] intersected ]£4, y2[ , then either £5 would illuminate 2/2 or £6 would 
illuminate 2/1.) We can consider (up to symmetry) that [£5,2/3] intersects e.g. 
]£4, 2/2[, and [£6, 2/3] intersects one of ]£7, 2/1 [, ]27, 2/г[ •

a) Let [£б,2/з] intersect ]£7, t/2[ * Consider the point £1. It cannot belong 
to any of the faces

L\ = А' П aff (£4, £5,1/2,2/3), L2 -  К  П aff (x6, £7,2/2, Уз),

because otherwise there would be four points in F  lying in a common face of 
AT. If [21,2/3] intersected ]£4, j/i [, then [21,2/2] would intersect [25,2/1] (due to 
the inclusion [21,1/2] C bdA'), and £1, £5, 2/1, у2 would lie in a common face 
of A', which is impossible by ]2/i, 2/г[С int К. Similarly, [21,2/3] cannot inter­
sect ]£7, 2/1 [. Thus £1 lies in the open part of bdA' bounded by the segments 
[24,2/1], [27,1/1] and the arcs £4£8, £7£8 of rbd Ai, rbd L2, respectively, both 
disjoint to 2/2- But in this case £1 illuminates y2, which is impossible by the 
choice of 2/2-

b) Let [хв,уз] intersect }xi,y\[. Similarly to a), £1 does not belong to 
any of the faces

Ri = К  П aff (24,25,2/2,2/3), A2 = А' П aff (£6, £7 ,2/i, 2/з),
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and [ж1,1/з] cannot intersect one of the intervals ]£4, j/i [, ]xj, y2[. If X\ be­
longed to the open part of bdA' bounded by the polygonal curve у\х^у^у\ 
and not containing з/2, then X\ would illuminate 3/2- Hence X\ belongs to 
the open part H\ of bd К  bounded by the polygonal curve У2У3Х7У2 and not 
containing у \ .

By the same arguments, X2 belongs to the open part H2 of bd К  bounded 
by the polygonal curve У1Х4У3У1 and not containing У2. Therefore both Hi 
and #2 are not open plane triangles lying in bdA'.

Let 2/5 be a point in bd A' simply illuminated by £5. If r/5 belonged to 
one of the faces R\,  A2, then 3/5 would be illuminated by both x\, X2. Since 
[г/з̂  2/5] (=  [arg, 2/5]) lies in bdA', and since Нг and Я2 are not planar trian­
gular regions in bd A', [3/3,3/5] cannot intersect any of the intervals ]x4,3/1 [, 
\хт, з/г[. Let, for example, 3/5 G H\. The last is possible only if [ar2, 2/5] C 
C bd A', because X2 does not illuminate 3/5. But in this case (since each of 
X2, 2/5 does not belong to one of the faces i?i, R2), [ar2, 2/5] passes through 
2/3, which contradicts the inclusion 3/3 G extAL

Hence 3/3 ^  F. As above, we suppose that the points X4, . . . ,  x$ are enu­
merated in correspondence with a bypass of bdA' around the line (3/1,3/2), and 
let уз be in the open part of bd К  bounded by the segments [£4,2/1], [£4,3/2], 
[£8, 3/1], [£§, 3/2], such that £5, £ß, £7 lie outside it. By considerations simi­
lar to the above ones, we conclude that each of the segments [£5,3/3], [£б,3/з], 
[£7,3/3] intersects one of the open intervals ]£4,3/1 [, ]£4,з/г[, ]£s,3/i[, ]arg,7/2[- 
Moreover, [£б, 3/3] cannot intersect ]£s, yi[ if [£5,3/3] intersects ]£4, уз-{[, where 
* = 1, 2. (If, for example, [£5,3/3] intersected ]£4,2/i [ and [£б,2/з] intersected 
]£5, У2[, then £4, £5, £ß, 3/1, 3/2, 2/3 would lie in a common face of К , which is 
impossible because of the inclusion ]з/1,3/г[С int К.)  Similarly, [£б,2/з] cannot 
intersect ]xj,yi[ if [£7,3/3] intersects ]£g, т/з_г[ , where i = 1,2.

Due to these arguments, we can conclude that up to symmetry there are 
two possibilities for positions of the segments [£5,3/3], [£б,2/з], [£7,3/3]: two 
of them, say [£5,2/3], [х6,Уз], intersect the interval ]x4,y2[ such that [£б,2/з] 
intersects ]£s, y2[, and [£7,3/3] intersects either ]£8, 3/1 [ or ]£8, з/г[ •

c) Let [£7,3/3] intersect ]£8,3/i [. We claim that a point 3/7 simply il­
luminated by £7 belongs to the open part N  of bd К  bounded by the 
polygonal curve 3/22/3̂ 82/2, not containing 3/1 and lies in the face 7\  = 
= К  П aff (£4, £5,3/2, уз). Indeed, if 3/7 belonged to the face T2 = К  П 
П afF (£7, £g, 2/1, 7/3), then [£7,3/7] C bdA', which is impossible. If 3/7 belonged 
to the open part of bd К  bounded by the polygonal curve У1У3Х4У1 and not 
containing 3/2, then, due to [£§,3/7] C bd A', 3/7 would belong to the face T2, 
which is impossible by the above. Similarly, if 3/7 belonged to the open part 
of bdA' bounded by the line segments [£4,2/1], [^8,3/2] and the boundary 
arcs £4£б£бЗ/2 and У\Х7Х8 of the faces T2 and 7\ ,  respectively, and not con­
taining 2/3, then due to the inclusion [£5,3/7] U [£8, 3/7] C bd A', we would obtain 
[£7,3/7] C bdA'. Hence 3/7 G N.  Since [£5,3/7] C bd K,  one has 3/7 G 7 i.
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Now consider the point x\.  We claim that x\ 6 N.  Since T \  still con­
tains three points in F, one has x \  ^ T \ .  If [£1,1/3] intersected ]xA, y \ [ ,  then 
x\,  £ 4 ,  y i ,  У2 would lie in a common face of К , which is impossible by 
]£i,2/i[C int К.  If £1 belonged to the face T2, then [£1, J/i] C bd K.  If £1 
belonged to the open part of bd К  bounded by the polygonal curve у \У з х Ау\ 
and not containing У2, then £1 would illuminate t/2• If [£1,2/3] intersected 
]£g, 2/2[, then £1, £g, У2, уз would lie in a common face of К  and N  would 
be a plane open triangle, which is impossible, since y-j is an extreme point of 
К  lying in N.  Hence £1 6 N.

It remains to determine the position of t/g in bd K.  Since [£1, j/s] lies 
in bdA' and cannot intersect any of the intervals ]£e, 3/2U ]£8, 2/з[ (otherwise 
[£g, 2/8 ] C bd A'), and since £1 cannot lie in T\, y$ belongs to N.  Since [£5, i/g] 
lies in bdA', y8 belongs to the face 7\ .  But in this case Ti contains four 
points У2, уз , 3/7, ys in G , which is impossible by the assumption.

d) Let [£7,2/3] intersect ]£g, з/г[ - Consider the points £1, £2. Since the 
face Vi =  К  naff (£4,£5,£ 6, 3/2?З/з) contains three points in F ,  none of £1, £2 
belongs to Vi. Similarly, the face V2 = А' П aff (£7, £g, 3/2, уз)  contains at most 
one of x \ ,  £2• Let, for example, £1 £ V2. If [£1,1/3] intersected one of the 
intervals }xA, y i { ,  ]£g, 3/1 [, then either £b  £7, 2/1, y2 or £b  £6, 3/1, 2/2 would 
lie in a common face of K.  which is impossible by ]з/ь 3/2[C int К.  Hence £1 
belongs to the open part of bdA' bounded by the segments [£4.1/1], [£g, 2/1], 
and by the boundary arcs £41/3, £gj/3 of the faces Vi, V2, respectively, and 
not containing 3/2. But in this case £1 illuminates 3/2, a contradiction. □
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MINIMAX OF THE ANGLES IN A PLANE 
CONFIGURATION OF POINTS

Bl. SENDOV (Sofia)

1. Introduction

More than half a century ago L. M. Blumenthal [1] has formulated the 
problem of finding the largest number a ( N ) such that any plane configu­
ration of N  points contains three points determining an angle ß ^  o(iV); 
О й ß ^  7Г.

It is easy to see that:

а(3)=^тг, а(4)=^тг, q(5) = 7̂r, a(6) = a(7) = a(8) = т̂г.

In [8] it is proved that:

a(9) = a(10) -  y7T, a ( l l )  = a(12) = . . .  = a(16) = 7̂T.

In this paper we shall prove that:

( 1 . 1)
1

2ti 1
for 2" < N Z 2n + 2”-2 ,

and

(1.2) a(N)  = < 1 ------^ 1 тс for T  + 2”~2 < N < 2n+1.I n + 1 J
In G. Szekeres [9] and in P. Erdos and G. Szekeres [4] it is proved that

q(2") = (1 — 1 /  n)it

and that
a (2n + 1) > (1 -  1/п)л\

P. Erdos and G. Szekeres have conjectured first in [4] that (1.2) is true for 
2n < N  ^  2n+1. After I recently conjectured (1.1) and (1.2), P. Erdos asked
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me in a personal letter if the different values of a(N )  for 2n 1 < N  ^  2” were 
at all limited in number.

To prove (1.1) and (1.2), we introduce the so called generalized plane 
configurations of points. These generalized configurations have extreme ele­
ments for which a (N ) is achieved. This is not valid for the ordinary plane 
configurations of points for more than 6 points.

The technics of the generalized plane configurations of points may be 
successfully used also in three and more dimensional spaces.

Let a m(N)  be the largest number such that in any configuration of N  
points in the m-dimensional Euclidean space there are three points deter­
mining an angle ß ^  am(N); 0 Ú ß ^  ж.

Until now very little is known for the exact values of a m(N). It is trivial 
that

a m(m +  1) =  7r / 3.
Following a conjecture of P. Erdős and Szekeres [4], L. Danzer and B. 

Grünbaum [3] proved that

c*m(2m) = tt/ 2.

The problem of determining the values of am(N)  for m > 2 is difficult 
even for small N. For example, it is possible to calculate directly that

7Г/ 3 < a 3(5) = arccos ^ < 7г /2.

One has
a 3(6) = a 3(7) = Я-/2

by H. T. Croft [2]; a simpler proof is in K. Schütte [6]. В. Grünbaum [5] 
proved a more general statement. Namely, as observed by Danzer-Grünbaum 
[3], a set determining only acute angles is strictly antipodal, and Grünbaum 
[5] showed that in R2 3 a strictly antipodal set has at most 5 elements. (X  C 
C R d is strictly antipodal if for x /  у £ X  the convex hull of X  has two 
different parallel supporting hyperpíanes, one intersecting X  in x , the other 
one in у .)

2. Generalized plane configurations of points

We shall consider sets of finite number of points on the plane in general 
position (no three points are collinear). To emphasize this, we shall use the 
notion plane configuration of points.

D efinition 2 .1. Let C =  { ci(c>i, í t ) ,  c2(o2, r2) , . . . ,  см(ом> Tm)} be a 
set of circles on the plane with centers o; and radii r,. C is a semi ordered
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set if the circles of C have disjoint circumferences and some circles may be 
inside another circles. A circle from C is of range 1 if it is not inside any 
other circle. A circle from C is of range к if the highest range of the circle 
in which it is contained is к -  1. A circle which does not contain any other 
circle is called a primitive circle. A semi ordered set of circles in which no 
three centers are collinear is called a plane configuration of circles.

In Fig. 1, a semi-ordered set of circles is given. The circles with the 
centers 01,02,03 are of range 1. The circles with the centers 04,05, Об, 07, o§ 
are of range 2 and these with centers 03,07, Og, 09, . . . ,  015 are primitive.

D efinition 2 .2 . A set V = {P, C)  = {p\,P2, ■ ■ ■ ,Pn ; ci, c2, . . . , cm] of 
a plane configuration of jV = \P\ points and a plane configuration oi M  — 
— |C| ^  N  circles is called a generalized, plane configuration of points, or 
shortly GC, if:

a) Every point of P  coincides with the center of a primitive circle of C. 
A point is of range к if it is a center of a primitive circle of range k.

b) The circles of range 1 in P  are two or more.
c) Every non primitive circle of C contains two or more circles.
It is obvious that the content of every non primitive circle from a GC 

(the points from P  and the circles from C inside this circle) is also a GC.
In Fig. 1 a GC with 10 points and 15 circles is represented. The content 

of the circle with center 01 on Fig. 1 is a GC with 7 points and 10 circles.
We may consider every plane configuration of N  ^  2 points as a GC with 

an equal number of points and circles, with all circles being primitive.
D efinition 2 .3 . Let p and q be two points in the GC V = {P, C}, o(p; q) 

be the center of the circle of the lowest range containing p and not containing 
q, and o(q;p) be the center of the circle of the lowest range containing q and
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not containing p. The generalized direction Gl)(pq) from p to q is defined as 
the direction of the vector o(p; q)o(q; p) or

GD(pg) = G(pq) = D ( o(p; 9)0(9; p ) ) .

In Fig. 1 o(p4;p2) = o\ , o(p2,p4) = o2 and GD(p2P4) = D{o2o4).
D efinition 2 .4 . Let V  = {P, C)  and V  = {P',C '}  be two GC’s with 

equal number of points. We call V  and V  equivalent, V  и  V  if there exists 
a correspondence pi «  p\ between the points P  and P' such that for every 
i , j  the directions G(pi,pj) and G (p ',p'A coincide.

For two equivalent GC’s V  and V' we shall use notation рг «  p'p i =
=  1,2

D efinition 2 .5 . Every three points p, q, r, taken in this order, define 
an angle A(p,q,r) < 7Г. We define the generalized angle GA(p,q,r) between 
these points in a GC as the angle £ [0, 7r) between the two directions G(qp) 
and G(qr). Every two lines l and l* define an angle 0 < A(l,l*) < к, mea­
sured in positive direction from l to l*.

In Fig. 1 GA(p2,P4,Ps) = A(o1o2, o4o6).
D efinition 2 .6 . A (P ) is the maximal angle in a plane configuration 

of points P. GA(F) = G A ({P,C}) is the maximal generalized angle in a 
generalized plane configuration of points V — {P,C}.

The following lemma is obvious.
Lemma 2 .1. If

V  — {P,C} faV'  = {P ',C '}, p , q , r e C  and p ' ,q ' , r 'e C '  

are the corresponding points, then

GA(p,q,r ) = GA(p',q,,r')

and
G A ({P ,C |) = G A ({P'C '} ) .

D efinition 2 .7. Let dk({P, C}) be the smallest distance between two 
centers of the circles of range к in the GC V — {P, C}. The GC V  is h- 
normal, 0 < h < if di({P ,C })  = 1 and all circles in C of range к have 
radii r(k) = h dk({P ,C }) .

Lemma 2 .2 . Let V = {P ,C} be a GC. For every 0 < h < |  there exists 
an h-normal GC V(h) equivalent to V .

P roof. It is obvious that for every three numbers t > 0, a, b, the trans­
formation of the plane

£ = tx + а, Г) = ty + 6,
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transforms a GC into an equivalent GC. Let

{ P (1),C (1)} = {P,C}  and <*!({Р(1),С (1)}) = 1 .

In the first step we take a circle с,(о,-,г,) of range 1 from C ^  and apply 
to the content of this circle the transformation

(  = h ( x -  х г) / гг + Xi, tj= h ( y -  у{) / г{ + yt,

where о,- =  (тг, г/г). This transformation does not change any generalized di­
rection determined by the points of P ^ K  If we apply this transformation to 
all circles of range 1 in we shall construct a GC

{P(2) ,C(2)} = { P (1),C (1)} = {P,C}

such that the lemma is fulfilled for к =  1 .
In step к we transform every circle C j ( o j , r j )  of range к from by the 

transformation

£ = hk(x -  x])/rj + xj,  T) = hk{y  -  yj)/rj  + yj,

where hk = hdk{{P(k\ C (^ } ) .
If m is the highest range of the circles in P, then V(h)  = { p(m),C^m)} 

is /г-normal and satisfies the conditions of the Lemma.
Lemma 2.3. If  P is a plane configuration of points and V  = {P, C} is 

an h-normal GC with the same set of points P, then for every three points 
p. q, r from P the inequalities

I A(p, q,r) -  GA(p,q.  r)| <2nh

and

hold.

A{P)  -  GA({P,C}) < 27г/г

P roof. If the two points p,q are of range 1, then by definition the gen­
eralized direction GD(pq) coincides with the direction D(pq). If p,q are of 
the same range к and are in the same circle of range к — 1 , again GD(p^) = 
= D(pq). If p , q are of different ranges, or are of the same range к but are in 
different circles of range к — 1 , then the angle between D{pq) and GD(p^) is 
not bigger than 7т/г, which completes the proof.
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D efinition 2.8.

a(N)  =  inf { A ( P ) : P  =  { p i , P 2 ,  • ■ ■ , P n } }  ,

G a ( N )  = inf [ g A ( { P , C } ) : P =  {Pu p 2, ■ ■ ■ ,Pn } }  ■

The second inf is over all possible choices of the points P  and the circles
C .

T heorem 2.1. For every natural number N , the equality

(2.3) G a ( N ) =  a ( N )  

holds.
P roof. In a GC with'circles only of range 1, the generalized angles are 

equal to the respective ordinary angles. From this fact it follows that

(2.4) G a ( N ) ^ a { N ) .

To complete the proof of (2.3), it remains to prove that

(2.5) G a ( N )  ;> a ( N ) .

Let us assume the contrary, that for a fixed natural number N , there 
exists a positive number 6 >  0  such that

(2.6) G a ( N )  <  a ( N )  -  6.

From (2.6) it follows that there exists a GC {P*,C*} such that 

GA({P*,C*}) < a ( N )  — 6,

and consequently, for every plane configuration of points P  = {pi,p2 , • • - i P n }  
we have the inequality

(2.7) GA({P*,C*}) < A(P) -  6 .

According to Lemma 2.2 and Lemma 2.3, there exists an /г-normal GC 
{P**, C**} equivalent to {P*,C*} and such that

(2.8) GA({P*,C*}) = GA({P**,C**}) > A(P) -  2nh.

But (2.8) contradicts (2.7) for small h and (2.4) is proved.
According to Theorem 2.1 we may calculate a ( N )  considering not only 

plane configurations of points but the larger set of the generalized plane con­
figurations of points. The benefit of this is that in the set of GC’s there 
exist extreme elements V*  = { P * , C * }  with |P*| = A, such that GA(F*) = 
= G a ( N )  = a ( N ) .  This is proved in Section 5.
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3. Perfect G C’s

We will need a lemma of P. Erdős and G. Szekeres [4] for the partition 
of a complete graph.

Let A'W be a complete graph of order N  (a graph with N  vertices in 
which any two vertices are joined by an edge). An even (odd) circuit of a 
graph G  is a closed circuit containing an even (odd) number of edges.

Following [4], we call a partition of G  any decomposition G  = G i  + G 2 +
. . .  + G n into subgraphs G i  with the following property: Each G i  consists of 
all vertices and some edges of G  such that each edge of G  appears in one 
and only one G; ( G i  may not contain any edge at all). A partition is called 
even, if no G i  contains an odd circuit.

In [4] and [9], the following lemma is proved:

Lemma 3.1. If = G\ +  G2 +  . . .  +  Gn is an even partition of the 
complete graph into n parts, then

N  й  2".

P roof. For the sake of completeness we repeat the proof. Since G \  con­
tains no odd circuit we can divide the vertices of in classes A  and В , 
containing N \  and N 2 vertices respectively, such that each edge of G 1 con­
nects a point of A  with a point of B .  But then G \  + G 2 + • • • +  G n induces 
an even partition G "  +  G'f + . . .  + G" of К '  = K ^ \ A  and since K '  is a com­
plete graph of order N \ ,  we conclude by induction that N \  й  2 n_1. Similarly 
N 2 ^  2 n_1, hence N  = N x + N 2 S  2n.

We shall use sometimes complex numbers to represent points in the Eu­
clidean plane E .  A direction Ö; 0 5= в < 27г, in £  is a vector from o(0,0) to 
егв on the unit circle.

D efinition 3.1. Let в be a direction and 0 ^ Л < 2т. The set of points

T(9 , Л) = { z :  z  = aet4>, a real, 0^</ з <#  + А}\  o(0,0)

is called a double sector with base в and angle A. Every double sector consists 
of two sectors (connected components), called parts of the double sector. We 
say that a set Q of points on the plane belongs to the double sector T  if every 
two points of Q determine a vector with direction in this sector.

The following lemma is obvious.
LEMMA 3.2. I f a set of points Q belongs to a double sector T with angle 

A and for three points p , q, r from Q the direction D(pq) and D(qr) are inside 
one of the parts of T , then

A(p,q,r)  > 7Г -  A.
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Lemma 3.3. L e t  V  = {P, C) be a GC, Q  Q P  a n d  e v e r y  gen er a l i z ed  d i ­
rec t ion d e t e r m i n e d  by tw o  p o i n t s  f r o m  Q  be ins ide  o n e  o f  the d i s j o i n t  double  
s e c t o r s  T ( 9 i ,  Л),Т(<?2 , A),. . .  , T ( 0 k ,  A). I f

(3.9) GA(g)^TT-A,  then  \Q\ ^  2fc.

P roof. Let К G) be the complete graph with vertices Q  and Gp, i = 
= 1 , 2 , . . . ,  к be the graph with vertices Q  and two points are joint with an 
edge in G i  if they determine a generalized direction inside the double sector 
T ( 9 i ,  A).

We assert that the decomposition К ^ к) = G \  + G2 + . . .  + Gk  is an even 
partition. In fact, if a graph G, has an odd circuit, then there shall be two 
consecutive vectors in this cycle, belonging to one of the parts of the dou­
ble sector T ( 9 { ,  A). But this, according to Lemma 3.2 contradicts the first 
inequality (3.9). Then, the second inequality (3.9) follows from Lemma 3.1.

D efinition 3.2. A non-primitive circle of range A; in a GC is called 
pe r f e c t  if it contains exactly two circles of range к + 1 and the contents of 
these two circles are equivalent as GC’s.

D efinition 3.3. A GC is called per fec t  if all its non-primitive circles 
are perfect.

Let V  =  { P , C }  be a GC. We shall represent V  with centers cq, c>2 , . . .  ,os 
of its circles of range 1 and with lines Up-,li,2i • • ■ h,k(i) passing through the 
centers Oi of the circles c;; i = 1 , 2 , . . . ,  s  and parallel to the different gener­
alized directions defined by the points of P  inside c,-.

The number of different generalized directions defined by the points of 
P  inside Cj- is k ( i ) .

In Fig. 2 a perfect GC is represented with 4 centers and respective num­
ber of lines.

Fig. 2
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Lemma 3.4. If

V { P , C }  — {o j , <?2, • • • , Os , />'д, I,',2, • • • 5 h,k(i):  * — 1» 2 , . . .  , á}  

is a perfect GC, then the number of points N  = |P | of this GC is equal to

N  — -f 2 k^  + . . .  + 2 k(s\

P roof. If a circle of range 1 has one line, then there are exactly two 
points from V  inside this circle. Let the lemma be true for к — 1 and let 
a circle of range 1 have inside itself two circles of range 2  and every one of 
these two circles have к — 1 lines and 2fc_1 points inside itself. The centers of 
the circles of range 2 define one more line for the circle of range 1 in addition 
to the к — l lines parallel to the lines of the circles of range 2. Hence, the 
circle of range 1 has к lines and 2k points from V  inside itself. The lemma 
is proved inductively.

Lemma 3.5. Let

I {P, G} {oj , O2 , . . ., Og, lfti, /г>2 , • • • , li,lt(i)i * — 1 , 2 , . . . ,  <s}

be a GC, Q — {0 1 , 0 2 , . . .  ,os} be the set of centers of the circles of range 
1 in V, A = A(Q), Pi C P  be the set of points inside the circle C{, /1; = 
=  GA(Pi), p = max{/ii,/r2, • • • ,Ps}, Pi be the smallest angle between a line 
from {/jj; j  — 1 , 2 , . . . ,  &(*)} and a line from {oíOj ; i ф j  = 1 , 2 , . . . ,  s}, and 
p  = mm{ px , p2 Then

GA(F) = max{A,/x,7T — <p}.

P roof. Let p,q,r  be three points from P,  such that GA(p, q, r) =  
= GA(F). If these three points are in different circles of range 1, then 
GA(p, 9 , r) = A. If two of these three points are in one circle of range 1 
and the third point is in another circle of range 1, then GA(p, q,r) — ж — <p. 
If the three points are in one circle of range 1, then GA(p,q,r) = p. That 
completes the proof of the lemma.

Lemma 3.6. I f l \ , l2 i • --Jk are lines incident with the center o* of the cir­
cle c* and A(li, /г+1) ^  A; i — 1 ,2 , . . . ,  к ; /fc+i =  11 , then there exist 2k points 
Q inside c* and a GC V* =  {Q,C} such that GA(F*) ^ 7Г — A.

P roof. We may assume that the radius of c* is equal to 1.
In the first step, let 0 1 ,1 , 0 ^ 2  be the points on the line l\ — l\д, such that 

l°* -  °i,i| = Io* — o]i2| = 2 - 1  and c* { = c(ojii,3 “1); i = 1 , 2 .
In the second step, let /2,,-; i — 1,2 be the lines incident respectively with 

the points 0 1 ;̂ i — 1,2 and parallel to /2 . Let 0 2 ,1 , 02,2 be the points on /2,1
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such that IOi д -  о2д| = |<>1д -  о2,2 | =  2 _2 , o2i3 , o2i4 be the points on / 2>2 such 
that |ol i2 - o 2i3| = |oi,2 -  o2,4| = 2 - 2  and c*2i = c(o2 jl-,3-2 ); i = 1 , 2 ,3,4 = 2 2.

In step к  we shall produce 2k points p, = i =  1,2,. . . , 2k and a semi 
ordered system of circles defining the GC V * such that GA(V"*) ^ 7r — A.

Lemma 3.7. Let

V — {P , C} = {oi, o2, . . . , Os, /,'д, It,2? • • • ? h,k(i)’i * — 1? 2 , . . . ,  s}

be a GC, N{; i = 1 ,2 ,. . .  ,s  be the number of points in the circle C{ — c(o, , rf) 
of range 1, X, = {<г1, /г 2, . . . ,  í,jS_ 1 } 6e t/ге lines incident with Oi and another 
center Oji j  ф i, i  = 1,2 , . . . , 5  1, t^s — Х'д, <Pt,i ~b
+ (pt’,2 + • • • + (pj',s-i = 1 and GA(F) = (1 — 2/и)ж. Then

(3.10) N i  <, 2*,(i>,

*'(0 = ( [ m i / 2] -  ! ) + + ([«Vi,2/2] -  l ) + + . . . +  ( [u<Pi,s-i/2] -  l ) +.

P roof. Let C {<p,,1 ,^ ,2 ,• • •, ¥>,>-1 } be the subset of
angles { tpi , l} f°r which the corresponding members of the sum (3.10) are not 
zero, or such that ihi,j — <Pi,l =  4 / и .  We construct [uxhi j /2]  — 1 double sectors

(3.11) T( тг(Ф,д + 2 к/и); 2л-/и);  к = 1 ,2 ,. . . ,  [wihi,j/2] -  1

with angle 27г/ и, where Ф,д G [0,7г) is the angle of direction of that line iI)Tn, 
for which f a j  was chosen as According to Lemma 3.5, for every two 
points p,p' from P, inside the circle ct, the direction GD(pp') is inside one of 
the sectors (3.11). Hence, from Lemma 3.3, there follows (3.10).

Let us consider the lines incident with the center of the circle c; and par­
allel to the direction 7r( Ф,д + 2 к / и ) \  j  =  1,2,. .  . , q ,  к  =  1,2, . .  . , [ w i f i ' j / 2 )  -  1. 
Let us rename them l * ^  1 ^ j  ^ k'(i) with j  increasing in the positive sense 
of rotation. Then, according to Lemma 3.6, the perfect GC V* = { P * , C * }  = 
= {0 1 , o2, . . .  ,os; /*д,/* 2, . . . , /**.<(,); i = 1,2, . . .  , 5 } is a GC with number of 
points not less than one in V  and GA(F*) = GA(F). In this way we prove 
the following:

Lemma 3.8. For every GCV — {P, C} there exists a perfect GC 

V* = {P*,C*} = {0 1 ,o2 , . . . , os; /*д,l*<2, • • • , liyk'(i)i * — 1 ,2 , . . . ,s},

such that |P*| ^ |P| and GA(P*) = GA(V).
Now we replace k(i) in Lemma 3.4 with k'(i) from Lemma 3.7.
Finally, from Lemma 3.8, we have:

Acta Mathematica Hungarica 69, 1995



M INIM AX O F T H E  ANGLES IN A PLA N E  C O N FIG U R A TIO N  O F PO IN TS 37

T heorem 3.1. F o r  e v e r y  n a t u ra l  N , the equa l i ty

G a ( N )  =  a ( N ) =  inf { g A( { P ,  C } ) : \P\  = JV,{P,C} p e r f e c t}

holds.

According to Theorem 3.1, to find G a ( N ) = a(JV) we have to consider 
only perfect GC’s.

Every perfect GC

V  — {P , C )  — {oj , O2 , . . ., Os, 1('д, 2) • • • 5 h,k(i)i Í — 1,2, . . . ,  s}

shall be represented by the centers of the circles of range 1 and the respective 
lines.

4. Proof of the main result

Lemma 4.1. Let

V {-f*) C} {®1 ) 1 î,l? h,2i • • • 11i,k(i)i * — 1 , 2 , . . . ,  <§}

be a perfect GC, GA(F) = (1 — 2/и)тг, [и/2] = n and 6 — u/2 — n, then 

|P | ^  2 ” for 0  S  h < 1 / 2  or 2 n ^  и < 2 n + 1

and

\ P \ ^ 2 n + 2n~ 2 for 1/2 £  6 < 1 or 2 n + l ^ u < 2 n  + 2. 

P r o o f . According to Lemma 3.4 the number of points is

S

_ N  = \P\ = 2fc(,)
i=i

and according to Lemma 3.7

MO = ([m<A',i / 2] — l) + + ([«<#,2/2] -  1)+ + . . .  + ([mvj,-,s_i / 2] -  l) + .

We shall assume that the indexing is such one that 

к { \ ) г к ( 2 ) г  . . . Z k { s )  

and we shall use induction on s.
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a) For s =  2, </>1,1 = <£>2,i =  1, then

k( 1) = k( 2) = n — 1

and
|P | = 2 ".

b) For s = 3 the angles are

</>1,1, </>1,2 = 1 -  ¥>1,1, ¥>2,1, ¥>2,2 -  1 -  <¥*2,1,

</>3,1 =  1 -  </’1,1 — </>2,1 •> </>3,2 =  </>1,1 +  / ’г д

k{l)  = ( [n</>i,i/2] -  l ) + +  ([« (1  -  </>i,i)/2] -  l )  +

е д =  ([ttV2 |1/ 2 ] - l ) + + ( [« ( 1 - ^ 2 ,0 / 2 ] - l )  + 

fc(3) = ([«(</>1,1 + ¥>2,1/ 2] -  1) +  ([и(1 -  </>1,1 -  ¥>2,1/ 2]

and

(4.12)

If

2/ и й  </>1,1 + </>2,1 ^  1 -  2/u. 

n -  2 ^  fc(l) ^  fc(2) £  fc(3),

then

(4.13)

|P | ^  3 -2 " “ 2 < 2".

Let fc(l) = n — 1. This is possible only if

6
</>1,1 ^ rc + 6

We consider two subcases:
b .l)  For 0 й  <*> < 1/2 from (4.13) it follows that </>1,1 = 2n1+1 

we have that
> 1 1 1 

<̂ 2,1 = n + 6 2n +  1 > 2n +  1 ’ 

hence n — 2 ^  A,'(2) ^  fc(3) and

|P | ^  2 n _ 1  + 2  • 2 n _ 2  = 2 ".

From (4.12)
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In this subcase the maximum is achieved if

k( 1 ) = n -  1 , k(2 ) = k(3) = n -  2 . 

b.2) For 1/2 ^  6 < 1, if k(2) = n — 2, then

|P | ^  2 n _ 1  + 2  • 2 ” ~ 2 = 2 n.

Let fc(l) = fc(2) = n — 1, then according to (4.13)

¥ 1,1 <
1

n + 1 ’ ¥>2,1 <
1

n + 1 ’

and from (4.12) we have

2
2/u ^  ¥1,1 + ¥2,1 < — ; г ■ n + 1

Hence

*(3) -  ( [u /(n  + 1)] -  l )  + ([ tt( l -  2/tt)/2] -  l )  = [tt/2] -  2 = n -  2,

and
|P | ^  2  • 2 " _1  + 2 " - 2  = 2 " + 2 "~2.

c) For s =  4w e consider two subcases:
c.l) For 0 ^  6 < 1/2 the maximum of |P | is achieved if

A:(l) = n —l, k( 2) = n — 2, fc(3) = A;(4) = n — 3

and then
|P | ^  2".

c.2) For 1/2 ^  <5 < 1 the maximum of |P | is achieved if

A:(l) = 77—1, k( 2) = fc(3) = 77 — 2, fc(4) = 77 — 3

and then
|P | = 2” + 2n _ 3  < 2 ” + 2"-2 .

Let the lemma be proved for s — 1, then for s we have two cases: 
s.l) For 0 ^  6 < 1/2 the maximum of |P | is achieved if

fc(l) = 77 — 1, k(2) = 77-2 , . . . ,  k(s — 1) = A:(s) = 77 — s + 1

Acta Mathematica Hungarica 69, 1995



40 Bl. SENDOV

and then

l-P| = 2
71 — 1 + 2 71-2 + ■ + 2

n—s+1 + 2 n—s+1 = T

s.2) For 1/2 ^  6 < 1 the maximum of |P | is achieved if

k(l)  = n -  1 , k(2 ) = n -  2 , . . . ,  k(s -  2 ) = fc(s -  1 ) = n -  s +  2 ,

fc(s) = n — s + 1

and then

|jd| _2 n ~ 1 -(- 2 n " 2 -|- 2 n _ 5 + 2  -(- 2 п _ 5 + 2  -[- 2 n~5"̂ ^

_2 -̂ _j_ 2 ^—s-bi <d 2 n -|- 2 n—̂

That completes the proof of the lemma.

D efinition 4.1. N(a)  is the largest natural number such that there 
exists a GC(V) = {P,C}  with \P\ = N { a ) and GA(V) £  a.

Obviously both functions a(N)  and N ( a ) are non-decreasing.
From Lemma 4.1 there follows:

Lemma 4.2. If  a = (1 -  2 / u)-k, then

N(a)  ^  2 " for 2 n ^  и < 2 n + 1

and
N(a)  <; 2 n + 2 n _ 2  for 2 n + l ^ u < 2 n + 2 .

Now we shall prove:

Lemma 4.3. If  a — (1 -  2/и)7г, then

(4.14) N ( a ) ^ . 2 n for 2 n ^ u < 2 n  + l 

and

(4.15) N(a)  Z 2” + 2” - 2  for 2n + 1 ^  и < 2n + 2.

P r o o f . Let У  be a GC with N  points and two circles of range 1. From 
Lemma 3.4 and Lemma 3.7, for s = 2 we have (see Fig. 3)

N = 2 “̂ / 2 -̂ 1  + 2 “̂ / 2!- 1  =  2” .
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Fig. 3.

Fig. L.

Hence (4.14) is proved.
Let У be a GC with N  points and three circles of range 1. Let the centers 

of these three circles be o\ — ( — 1 , 0 ), o2 = ( 1 , 0 ) and o3 = (o, tan J (see 
Fig. 4). Then we have

<t> 1,1 = ¥*2,1 =

¥>3,1

1

2 n + 1 ’ 

2

<pl,2 — <р2,2 — 1
1

2 n + 1 ’

2 n +  1 ’ 

and for 2 n + 1 й  и < 2 n + 2 :

¥>3,2 =  1 2n + 1

( К , д / 2 ] - 1 ) + = 0 for * = 1 ,2 ,3 , 

([u^ ,i2/ 2 ] -  l ) + = n -  1 for i = 1 , 2 ,

([«¥>3,2/2] -  1) + =  n -  2.
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According to Lemma 3.4 and Lemma 3.7, from the above equalities it 
follows that

N  = 2n_1 + 2n_1 + 2n~ 2 = 2n + 2n~2.
Hence (4.15) is also proved.

From Lemma 4.2 and Lemma 4.3, having in mind that the functions 
a(N)  and N(a)  satisfy a(N(a) )  — a , we obtain finally the following:

T heorem 4.1. If  a(N)  is the largest number such that any plane con­
figuration of N  points contains three points determining an angle ß ^  ot(N); 
0 ^  ß ^  7Г, then

a(A ) = j  1 -  2 ^г~Рт} Ж f0r 2" < N = 2" + 2 " ' 2

and

a ( N ) = \ l ------—  I tt for 2" + 2n ~ 2 < N  ^  2 n+1.
I n +  1 J

5. Existence o f extrem e G C ’s

D efinition 5.1. A GCF = {P, C]  with N  points is extreme if 

GA(V) = Ga(N)  = a(N).

In this section we shall prove the existence of an extreme GC for every 
natural number N.

D efinition 5.2. For every plane configuration of points P = {p\}p2 , 
...,p jv}  we define r(P) as the radius of the smallest circle c(o(P),r(P))  
containing P, where o(P) is the center of this circle.

The following lemma is obvious.
LEMMA 5.1. Let P be a plane configuration of points. For every number 

r' > 0  and every point o' on the plane there exists a plane configuration of 
points P' «  P such that o(P') = o' and r(p') = r' .

D efinition 5.3. For every plane configuration of points P = {pi,p2 ?
. . .  ,p/v} we define a set of segments

S ( P ) = { S 1(P) ,S2( P ) , . . . , S K(P)} ,  K  = ± N ( N -  1),

where the segments 5г(Р); г = 1 , 2 , . . . ,  A' are the intersections of the lines 
PiP2 ,PiP3 ,---,PiPK, P2PZ1 • • • iPk ~\Pk  with the circle c(o(P), 2r(P)) . The
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set { P, S(P)}  is called a complete configuration, corresponding to the con­
figuration P.

D efinition 5.4. A set {P,S}  of points P  = {p\ ,p2, • ■ • , p n } and seg­
ments S = S ( P ) U 5 ', where S' = {S/r+i, Sk +2 , • • •, Sq } are segments which 
are intersections of some lines, passing through some of the points of P  
(the points depending on the line), with the circle c(o(P),2r(P) ) , is called 
extended complete configuration. The segments S' are called additional seg­
ments.

We shall define a distance between two plane configurations of points 
using their complete configurations. This distance shall be sensitive to the 
angles defined by the points. If the distance between two configurations 
is “small” , then the difference between two respective angles shall be also 
“small” .

We shall use the Euclidean distance

p(u,n) — Y (ж“ 33v) T (Уи J/u)

between two points и and v and the Hausdorff distance [7]

S2) = max{ max min p(u, v), max min p(u, vK u£Si v£S2 u£S2 v&Si

between two segments 5 1 and 5 2 - 

D efinition 5.5. Let

{P,S} = {pu p2, . . . , p N; S u S 2, . . . , S q}

and
{P' ,S'} = {p'1,p'2 , . . . , p 'N; 5 ( , 5 ' , . . . , ^ }  

be two extended complete configurations. We define the distance

R{{P,S} , {P' , S ' } )

between these configurations in the following way

P ({P ,S } ,{P ',S '} ) =

= max< max min p(pu »' ), max min pip'-,»,) >+ 
[ l i i i N  3 lüiüN' lüjüN 3 )

+ max< max min max min r (S f iS j ) } .
l i ^ Q i < ^ Q ' 3> lZiiQ'lüjüQ
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D e f i n i t i o n  5.6. Let P  be a plane configuration of points and {P ',5 '}  
be an extended complete configuration of points. We define the distance

R(P,{P' ,S ' } )  = p ( { P ,S ( P ) } ,{ P ',S '} ) .

From the definition of the distance R between two plane configurations 
of points, there immediately follows:

L e m m a  5.2. If the distance R between two plane configurations of points 
is less than £ then for every point from the first configuration there exists a 
corresponding point from the second configuration (possibly nor unique) such 
that the distance between these two points is less than e, and for every seg­
ment from the first configuration there exists a corresponding segment from 
the second configuration (possibly not unique) such that the distance between 
these two segments is less than e.

C o r o l l a r y  5.1. If the distance R between two plane configurations of 
points P ', P" is less than e and r(P') ,r(P")  ^  1, then for every angle from 
the first configuration there exists a corresponding angle from the second con­
figuration (possibly not unique) such that the difference between these two 
angles is less than 4s.

P r o o f . A s the considered segments are longer than 2, if the Hausdorff 
distance between two segments is less than s, then the angle between these 
segments shall be less than arcsine 5Í 2е/тг. Hence, the difference between 
two corresponding angles is less than 4e.

From the argument for compactness and the finite number of points and 
segments, we obtain the following.

L e m m a  5.3. Let H(N)  be the space of all extended complete configura­
tions {P, 5} = {pi ,p2, ...,pk', S i, S2, . . . ,5 ;}  satisfying the conditions:

r (P) =  1, o(P) = (0,0), k ^ N  and l ^ ^ N { N -  1),

with metric R. Then H(N)  is a compact metric space.

Lemma 5.4. From every sequence { p (m), £(m)} • m = 1 ,2 ,3 ,... of ele­
ments of H(N)  it is a possible to choose a convergent subsequence.

We are ready to prove the existence of extreme GC’s.

T h e o r e m  5.1. For every natural N  there exists an extreme GC V — 
= {P,C} with \P\ = N .

P r o o f . For the natural number N  and every natural number m  there 
exists a plane configuration of N  points P(m) = {p(1m),i4 m), . . . ,p jT )} such
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that

(5.16) A ( P {m̂ ) < a ( N )  + ~ .
' m

According to Lemma 5.1 we may suppose that

o (p (m>) = (0 , 0 ), r ( P (m)) = l .

Let { p (m), 5 (p (m))} be the complete configuration corresponding to p (TO). 
According to Lemma 5.4 we may suppose that the sequence

{ { p (m\ S ( P (m))}}

is convergent to the extended complete configuration

{P' ,S'} = {p'1 ,p,2, . . . , p 'k; S[ ,S’2, . . . , S 'Q}, 

where К <, N , Q  ^  §JV(JV -  1 ).
Let d be the smallest distance between two points in P' . We define the 

circles C = {c,; i = 1 , 2 ,. . . , K }  of range 1 with centers o4- =  p\ and radii 
\d .

If К  — N , then the GC V* = {P ',C M} is extreme. In this case the 
extreme GC is an ordinary configuration of points.

If К  < N , then the configuration {P1, S'} is extended and groups of 
points from ( p ( m)} converge to one point p(, producing segments passing 
through the point p\. Let the sequences of points

converge to p\ , or

P (m)
ы ,т

(m) (m)
’ 2 ’ D(m) \

liin Р и ] = Pii j  = l ,2 ,...,fc (i) .

We replace the plane configuration of points p j m  ̂ with an equivalent one 
(according to Lemma 5.1), such that

» ( с '" 1) =p'i,r( ^ " > ) = i / 4 .

For simplicity we do not change the notations.
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According to Lemma 5.4 we may suppose that the sequence

{ p /m),5 (P l-m))}

is convergent. In such a way we repeat the procedure with pjm  ̂ as with p(m) 
and produce the circles C ^  of range 2 .

Here, since r ( P -m = d / 4 > 0, the limiting points of P-m' are at least 
two. Repeating this procedure, say t times, we shall produce a GC V * with 
N  points and circles C = U CG) и . . .  U

We assert that V* is extreme. In fact, the directions determined by every 
two points in have a limit as a generalized direction in V*. That means 
that the generalized angles in V * are limits of angles in F<m), and according 
to (5.16), we have

GA(F*) = a(N).
That completes the proof.

Acknowledgement. The author is indebted to the anonymous reviewer 
for several corrections and improvements of the manuscript.
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QUASI-UNIFORM COMPLETENESS IN 
TERMS OF CAUCHY NETS

Ph. SÜNDERHAUF (Darmstadt)

Introduction

In [10] and [11], a theory of completion and completeness for quasi- 
uniform spaces is developed. This paper presents completeness in terms 
of nets rather than filters. The usual way to pass from filters to nets by 
choosing arbitrary elements from the sets in the filter does not work in the 
non-symmetric case of quasi-uniformities. The reason for this is that our 
Cauchy filters do not contain sets which are arbitrarily small in an absolute 
sense, hence the resulting net need not be Cauchy.

The completion of [10] and [11] is performed in a larger category than the 
category of quasi-uniform spaces and uniformly continuous functions. Those 
quasi-uniform spaces for which the construction of the completion gives a 
quasi-uniform space again are called completable. We are able to give a 
characterisation of completability in terms of Cauchy nets. This enables us 
to give an easy proof of the fact that products of completable spaces are 
completable and products of complete spaces are complete. As a byprod­
uct we get the result that for completable spaces our notion of completeness 
coincides with the well-known concept of bicompleteness developed in [5]. 
Moreover, the completion coincides with the bicompletion in this case. (The 
results concerning bicompleteness and bicompletion may also be found in
[4].) All totally bounded spaces are shown to be completable.

1. Preliminaries and notations

A quasi-uniformity on a set X  is a filter U of binary relations (called en­
tourages) on X  such that

(a) Each element oiU  contains the diagonal A x  of X  x X .
(b) For any U £ ZV there is a V  £ U satisfying V 2 ^  U.

Here V 2 is an abbreviation for V V , where UV := { (x, y) \ 3z £ X  . x U z V y} 
is the usual relational product. (We use the notation x U у for (x,y)  £ U.) 
If U is a quasi-uniformity on X ,  then so is U~x {U~x | U £ U},  where 
U~x := { (x ,y)  \ yU x} . The pair (X, l i )  is called a quasi-uniform space.
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The coarsest uniformity (i.e. quasi-uniformity having a base of symmetric 
entourages) finer than U is denoted by U*. It is generated by the entourages 
U* := U П if-1 , where U runs over U.

We employ the notation [x]U for {y £ X  \ x V y} and analogously [A\U 
to mean U ae^M ^ = {y E X  \ 3x £ A . x U y} for any subset A of X .  This 
unusual notation is chosen because it fits nicely with the relational product:

[[x]U]V = [x]UV.

A quasi-uniformity U on a set X  induces a topology T{U)  on X  having 
as neighbourhood filter of x the set Af(x) { [x]U \ U E H} ■ From now on 
we will only consider separated spaces, i.e. spaces where the topology T(U)  
satisfies the ТЬ-axiom. This is the case if and only if the relation f)ueu ^  *s 
a partial order.

A function f  : X  —> Y  between quasi-uniform spaces (X,U)  and (У, V) 
is (quasi-) uniformly continuous if for any given entourage У £ V there is 
some U £ U such that the relation x U x' always implies f ( x )  V f(x' ) .  The 
quasi-uniform spaces form a category QUS with the uniformly continuous 
functions as morphisms.

A quasi-uniform space (X, l l )  is totally bounded if for any entourage U £ 
6  U there are finitely many sets A \ , . . . ,  An Q X  such that A\ U ••■UA„ =  I  
and Ai X Ai Q U for all г £ { 1 ,.. . ,  n}. An equivalent condition is that for 
any entourage U there is a finite set F Q X  such that X  = [F]U*.

Further information on the basic theory of quasi-uniformities may be 
found in [5].

2. Com pleteness in term s o f filters

In [10] and [11] a theory of completeness and completion for quasi-uni­
form spaces is established. In this section we summarise some of the results 
obtained there.

To be able to give a completion for all quasi-uniform spaces, the cate­
gory TQUS is introduced. Its objects are topological quasi-uniform spaces. 
These are triples (X , U , T ), where {X,U)  is a quasi-uniform space and T  is 
an additional topology, which has to satisfy certain axioms. These axioms 
ensure that T  is contained in and shares many properties with T{U).  If, for 
example, the quasi-uniformity is totally bounded, then T  has to agree with 
T(U).  The morphisms of TQUS are those uniformly continuous functions, 
which are continuous with respect to the additional topologies, too.

Any quasi-uniform space (X , U ) together with the induced topology T(U)  
yields a topological quasi-uniform space ( X , U ,T(ZY)), hence the category 
QUS may be regarded as a full subcategory of TQUS. A suitable notion 
of completeness for topological quasi-uniform spaces has been introduced in
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[10] and [11]. Moreover, a completion for all spaces has been constructed 
there.

For the case of quasi-uniform spaces, the relevant definitions are shown 
to simplify to (see also [9]):

D efinition. A filter T  on a quasi-uniform space (X , U ) is a round 
Cauchy filter if

(rd) VA (E T . 3 B  £ F . 3 U  £ U . [B]U g  A and 
(Cy) v u  e u . v a  e т .3x e a . [x]u  <e T .

The space is complete if every round Cauchy filter is the neighbourhood filter 
of a unique point.

A quasi-uniform space is called computable if the construction of its com­
pletion in TQUS stays inside the subcategory QUS. In [11] the following 
characterisation of completability is given:

D efinition. A filter T  on a quasi-uniform space (X,U)  is stable [3] if 
for any entourage U Eld, the set C\A^jr[A]U is in the filter T .

P roposition 1. A quasi-uniform space (X,H) is completable if and only 
if every round Cauchy filter on X  is stable. □

3. Com pleteness in term s o f nets

In the present paper, however, we show how to use nets rather than fil­
ters. First, we generalise a definition of [9] for Cauchy sequences. This notion 
of Cauchy sequence does also appear in [1] where it is traced back to [7].

D efinition. (See also [8].) A Cauchy net on a quasi-uniform space 
(X ,U ) is a net (х \ )Хе\  with the property that for any entourage U there is 
an index Л E A such that for all indices p and v with Л ^  p ^  и the relation 
x^ U x„ holds.

The net is said to converge strongly to a point x £ X  if it converges to x 
with respect to the topology T(U*).

The net is bi-Cauchy, if it is Cauchy with respect to the uniformity U*. 
This is the case if and only if for all entourages U £ l i  there exists some A 6  A 
such that xß U x u holds for all indices p ,v  ^  A (regardless of their order).

Remark. Let us give an intuitive explanation why T(ZV* (-convergence 
is the appropriate concept here. Convergence with respect to the topology 
T(U)  is clearly too weak in general, since we do want unique limits and we 
do not want all spaces with a least element to be complete. Therefore, a 
stronger notion has to be found. The idea is that a Cauchy net together with 
its limit point has to satisfy the Cauchy condition, too. This means that if 
x is the strong limit of a Cauchy net (хА)ЛеЛ and we enlarge the index set A

Acta Mathematica Hungarica 69, 1995



50 P h. SU N D ERH A U F

by a greatest element oo and define x ^  := x , we want the resulting net to 
remain a Cauchy net. That is the case if and only if the condition

for all entourages U there is an index A £ Л 

such that xß U x ^  whenever A ^  p

holds, i.e. the net converges to x with respect to the topology T(ZY_1). This 
together with T[U)-convergence is exactly the strong convergence defined 
above.

Lemma 2. Let (а;л)д be a Cauchy net on (X ,U ). I f  x £ X  is a T(U*)- 
cluster point of (x \ )A, then the net converges strongly to x.

P roof. Suppose an entourage U is given. Choose an entourage V  such 
that V 2 ^  U. By Cauchyness, there is some A such that for all и ^  p ^  A 
the relation xß V xu holds. As x is supposed to be a T(W*)-cluster point of 
the net, there exists an index p ^  A satisfying x V* xß. For any v ^  p one 
has now x V xß V  x„, whence x U xu. To establish the converse relation we 
choose к ^  v with x V* xK and get xv V xKV x. Therefore we have {x„ | и ^  
= A*} = [X]U*, i.e. x is indeed the strong limit of (агл)л- П

Now we prove a generalisation of Proposition 2.7 of [9].
T heorem 3. For any Cauchy net (жд)д on a quasi-uniform space (X f U ) 

there exists a round Cauchy filter F( x \ )  on X  such that the net converges 
strongly to a point x £ X  if and only if E( x \ )  is the neighbourhood filter of x. 
Conversely, if T  is a round Cauchy filter on X  then there exists a Cauchy 
net (x \ )A such that X(x \ )  = T .

P roof. We define the filter T[x \ )  to be generated by the sets

[E\]U with E \ := {xß | p ^  A},

where U ranges over U and A over the index set Л. This is obviously a base 
generating a round filter. Property (Cy) is an immediate consequence of the 
net being Cauchy: Given [E\]U in T( x \ )  and V £ U, choose an entourage W  
with W 2 Q V  and an index p ^  A such that p ^  v always implies xß W  xv. 
Then Eß C [xß]W hence [Eß]W C [xß]W2 Q [xß]V. Therefore [xß]V £ T .

Now suppose that T{x\ )  =  Al(x) holds for some point x £ X  and U £U  
and A £ A are given. Then [x]U £ N^x)  ^  T(x\ ) ,  hence there is an index p ^  
^  A such that Eß ^  [x]U holds. On the other hand, [Eß]U £ F(x\ )  ^  JC{x), 
thus we certainly have x £ [Eß]U. Combining these arguments, we get some 
v ^  p with x U* x„. Therefore, x is the strong limit of the net by Lemma 2. 
If, conversely, {x\)A converges strongly to x we show that M{x)  coincides 
with E{x\).  Suppose some neighbourhood [x]U2 £ Áí(x) is given. Then — 
by the T(Zi)-part of the strong convergence — there is an index A such that 
E\  ^  [x]U holds. Now [E\]U Ü [x]U2, hence the given neighbourhood of x is
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an element of X(x\) .  If on the other hand [E\]U2 E X(x\ )  is given, then — 
by the T(ZV_1)-part of the strong convergence — there exists an index /х ^  Л 
with Eß ^  [x]U~l . This implies x 6  [Eß]U, hence [x]U ^  [Eß]U2 ^  [E\]U2, 
therefore the set [E\]U2 is an element of Af(x).

For the second assertion of the theorem, suppose T  is some round 
Cauchy-filter. We define the index set

A =11 X X

and, for each (U,A)  E Л, we choose an element T(t/,A) £ A such that

[X(U,A)]U £ F

holds. This is possible by Cauchyness of T .
Now the main step of the proof: We have to find an order on Л such that 

the net (жд) is Cauchy. The naive order (U,A) ^  (F ,0 ) if and only if V  ^  
^  U and В Q A is not sufficient to prove Cauchyness of the resulting net. 
This is because, given an entourage, there is no way to determine an index 
(U,A) to satisfy the Cauchy condition. The problem is to find a set A E 
E X  which is small enough to ensure that the elements with greater index 
are close together. The only sets that we actually know to be elements of 
the filter are those of the form [x(u,X)W- However, these need not be small 
as it might happen that for every entourage U the set [x(u^x)]U is the whole 
space X.

The solution is to encode the desired property of points being ‘better’ for 
larger indices in the order on Л. Hence we order the set Л by

(U,A)<: (V,B ) ^  V g U  and В g [ x {UiA)]U П A.

This relation is clearly transitive, we have to prove directedness. For 
given indices (U,A)  and (F, B)  choose the entourage W  = U П F  £ U  and 
the set С = А П В  П [x(u,A)]U П [z(y,B)]F E T  to obtain the common up­
per bound (C ,W ). Cauchyness is established easily: If an entourage U 
is given, we choose the index A = (U,X)  and observe that for larger indices 
(V , B ) ^  (W, C) we have T(w,C) 6  C ^  [*(v,B)]F ^  [X(V,B)]U, i.e. the relation 
X(V,B) U X(w,C) holds.

It remains to prove the equality T  = E{x\).  If A E T,  then by roundness 
there is an entourage U £ U  and a set В E X  such that [B]U ^  A. Then for 
A = (X  X X,  В ) we have xß E В  whenever ^  A. Thus E\  Я. В , hence the 
set [E\]U, which belongs to the filter E(x\ ) ,  is a subset of A. Therefore A E 
E X(x\) .  If conversely a set A = [E\]U E E{x\ )  is given, we choose some 
index fi ^  A such that /x ^  (U,X).  Then A 3 [xß]U E X,  hence A E X.  □

Corollary 4. A quasi-uniform space is complete if and only if every 
Cauchy net strongly converges to a unique point. □
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T heorem 5. A quasi-uniform space (X ,U ) is computable if and only if 
every Cauchy net on X  is bi-Cauchy.

P roof. We use the same notations as in the proof of Theorem 3. Suppose 
that (X ,U ) is completable and (а;л)ЛеЛ is a Cauchy net on X . Then T( x \ )  
is a round Cauchy filter on X  which is stable by assumption and Proposi­
tion 1. This means that for any U 6  U we have that Плел C\veu[E\]VU is 
contained in E(x\ ) .  But as this set is a subset of П лел[^1 ^ 2 we have a ŝo 
that

(*) f ) [ E x]u e f ( x x)
A g A

for all entourages U. Now let us establish that the net is bi-Cauchy. Suppose 
an entourage U is givep. We choose V 2 Q U and an index A £ Л such that 
X ú p ú v  always implies xß V  x„ (Cauchyness) and with E\  ^  П кел^*]^  
which is possible by (*). Suppose Л ^  p,u.  Then x„ E E\  C [E^V,  hence 
there exists к ^  p satisfying хк V xv. As xß V xK holds, this gives us xß V 2 xu 
implying our goal xß U x„. Therefore the net is bi-Cauchy.

For the converse, suppose that every Cauchy net on X  is bi-Cauchy and 
that T  is a given round Cauchy filter which we have to prove to be sta­
ble. Then there exists by Theorem 3 some Cauchy net (x \ )x^A such that 
T  — E(x\ ) .  This net is bi-Cauchy by assumption. This implies that for any 
given entourage U there is some index p E Л such that Eß ^  [E\]U for all A £
G A. But from that we deduce [Eß]U Q П л е л ^ С 2 g  Плел
which means that the filter ^"(хл) is stable. Thus the space is completable
by Proposition 1. □

R emark. In light of Corollary 4, it is not too surprising that Cauchy 
nets on completable spaces are bi-Cauchy. The reason for this is that any 
Cauchy net on a completable space will remain Cauchy when regarded as 
a net on the completion. Thus the net is a strongly converging net. Since 
strong convergence is convergence with respect to the symmetrised topology, 
the net must be bi-Cauchy on the completion and also on the original space.

Corollary 6. Arbitrary products of completable spaces are completable; 
arbitrary products of complete spaces are complete.

P roof. A net on a product space is Cauchy if and only if all the coor­
dinate nets are Cauchy. Moreover, a net in the product converges strongly 
if and only if all the coordinate nets converge strongly. This implies the 
assertions. □

Corollary 7. Every uniform space is a completable quasi-uniform 
space.

P roof. It is immediate that Cauchyness and bi-Cauchyness of nets co­
incide for uniform spaces. □

These results give us also the tools to prove (cf. [4])
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Corollary 8. For computable quasi-uniform spaces the completion co­
incides with the bicompletion of [5].

P r o o f . It suffices to prove that a completable quasi-uniform space is 
complete if and only if it is bicomplete, then the universal properties of both 
completions give us the result. It is easy to see (and proved in [Proposi- 
ton 22] [11]) that the Cauchy filters in the sense of [2] and [5], which are used 
to characterise bicompleteness, coincide with the 7C-Cauchy filters. Hence a 
completable space is bicomplete if and only if any TC-Cauchy filter converges 
if and only if any bi-Cauchy net converges if and only if (by completability) 
any Cauchy net converges if and only if the space is complete. □

Remark. This result does not mean that the notions completeness and 
bicompleteness coincide. The set of natural numbers N may serve as a coun­
terexample. We choose the collection of all relations containing the usual or­
der on N as a quasi-uniformity U.  Then the sequence 1 ,2 ,3 ,... is a Cauchy 
sequence which is not bi-Cauchy, since U* is the discrete uniformity. Hence 
this space is not completable, although it is bicomplete. Note that (N,ZY_1) 
is completable and hence complete by Corollary 8 . The reason for this is 
that all Cauchy nets on this space are eventually constant. The comple­
tion of ( N in the category TQUS consists of the natural numbers 
with a top element, the quasi-uniformity generated by the order and the 
Scott-topology on this poset.

Corollary 9. Completion of uniform spaces is a special case of com­
pletion of quasi-uniform spaces.

P r o o f . Completion of uniform spaces is a special case of bicompletion 
of quasi-uniform spaces. Hence Corollaries 7 and 8  give the result. □

The proof of the following proposition is a generalisation of Theorem 2.3 
of [9]. For the result cf. also Lemma 4.5 of [3].

P r o p o s i t i o n  10. Any totally bounded space is completable.

P r o o f . Suppose (жд)д is a Cauchy net and U a given entourage. 
Choose V E U such that V 2 Q U  and — by total boundedness of X  — sets 
A \ , . . . , A n C x  with A\  U • • • U An = X  and A{ x 4 ; Í  У for all i. Now we 
can choose an index A E Л such that

(1) A ^  p ^  v always implies xß V xu (Cauchyness) and
(2) if Ai meets {xß | p A}, then (хл)л is frequently in A{ for г = 1 , . . . , n.
If we are now given indices p,u  ^  A then there is some i with ж„ E Ai.

By (2) there is an index к ^  p with x K E A{. Now (1) implies xß V x K and 
as the set A{ is F-small, we have xß V хк V x„, hence xß U x„. The converse 
relation may be proved analogously; therefore, the net is bi-Cauchy. □

Acknowledgements. My thanks go to Klaus Keimel, who spotted some 
mistakes in a draft of this paper. His comments, as well as those from Achim 
Jung and Andrea Schalk, have been helpful throughout.
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LAGRANGE INTERPOLATION  
POLYNOMIALS IN E P(D )  WITH 1 < p  < - fo e

L. ZHONG (Beijing)*

Dedicated to the memory of my supervisor Prof. Shen Xie-Chang

§1. Introduction

Let D be a Jordan domain in the complex plane C bounded by Г. For 
0 < p < oo, a kind of extension of Hardy spaces can be defined by

E P(D) = If-,  f  analytic on D and there exists a series of curves Г„ C D

tending to Г, such that sup f  \ f ( z ) \ p\dz 
П Jr n

< +oo

If Г is rectifiable and /  G E P(D), then /  has a non-tangential limit almost 
everywhere on Г. We define

ll/llp = {Jr\f(z)\P\dz\Y ■
It is well known that Faber expansion is an effective tool to construct 

approximation polynomials in E P(D) [1]. Comparing with it, we can see 
that interpolation polynomials may be constructed more directly. In 1989, 
X.C. Shen and L. Zhong [2] took the Fejér points of interior level curves as 
interpolation nodes. Under the assumption of Г G C2+s, it is shown that 
the interpolation polynomials have the same order of convergence as the 
best approximation polynomials in E P(D) for 1 < p < + oo. For 0 < p < 1, 
L. Zhong [3] proved Jackson’s theorem in E P(D) by means of interpola­
tion polynomials. When the boundary Г has some corners, L. Zhong and 
L. Y. Zhu [4] recently showed that the interpolation polynomials based on 
the roots of Faber polynomials converge in E P(D ) for 1 < p < + oo.

In this paper, the boundary Г is assumed piecewise C 2 smooth with no 
cusps. The interpolation nodes consist of geometric reflections of rotated

* Supported by the National Science Foundation of China.

0236-5294 /95 /$  4.00 ©  1995 Akadém iai K iadó, B udapest



56 L ZHONG

Fejér points on the exterior level curves. It is proved that the Lagrange 
interpolation polynomials converge in E P(D) for 1 < p < +oc. Comparing 
with [2 ], we substantially weaken the restriction on the boundary, and we 
do not need to calculate conformal maps of the domains outside the interior 
level curves. Comparing with [4], we avoid finding the roots of the Faber 
polynomials, which may be unstable for high degree. We also do not need to 
interpolate derivatives of the functions, which may happen in [4] if the Faber 
polynomials have multiple roots.

In the following part of this paper, we always assume that 1 < p < +oo 
and Г is piecewise C 2 smooth with no cusps. We denote by c positive con­
stant depending only on p and Г, which may represent different values at 
different places. The notation A x  В  means cB й A ^  cB.

§2. Construction o f interpolation nodes

Let U be the unit disk, and let Ф: C \  U —> C \  D be the conformal map 
satisfying Ф(ос) = oo and Ф'(ос) > 0.

Let Q  =  Ф (e,eJ) ( 6j G [0, 27t), j  = 1,2, . . . , / )  be the corners of Г, with 
exterior angles cejn ( 0  < aj < 2 , j  = 1 , 2 , . . . ,  l) respectively.

Then for 1 ^  |и|, |ге| ^  2, we have [5]

( 2. 1) f( ti)  -  Ф(ю)| \u — w 1( 1« oi&k I + |u — tü|) ak- l

where егвк is the nearest point to и among , j  = 1 , 2 , . . . , /} .
From elementary mathematics we know that there is a series

{ ф п  e  su ch Ih a t

( 2.2) mm
j,k

2 kn
Фп H----------“j > 7Г

(/ + 1 )n

Actually, for each n > 0, фп can be chosen among 
By (2.1), and (2.2) for 0 < r < 1, we have

{ № ” = » . 1 ....... ' ) •

(2.3) Ф ( l  +  е'(фп+2%1) - у ( е ' ( фп+̂

г
П L

;4(‘/’п + 27г ) — егвз° r «JO-l r
H— X —

П- n
ewJo °J0 _1

where el^o is the nearest point to e 
Similarly

(2.4) Ф

4(^n + ̂ ) among {el8J j  = 1 , 2 , . . . , /} .

: ю
г(фп + 2- ^ ) '

Sjo
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Ф 1 + L ) e'
-  Ф(еге*>) г(Фп+17г) _  ег'ем

Together with (2.2) and (2.3) we can find a positive constant ro sufficiently 
small and depending only on Г, such that

(2.5)

where 1 < p < oo is the maximum of the ratio of the local arclength of Г to 
the chord.

We set

( 2.6) к = 0 , 1 , . . . ,  n — 1 .

These are the so-called rotated Fejér points on the exterior level curve
Ф (M  -  1 +  7?0-

Let be the nearest point on Г to z ^ n. It follows from (2.5) that z£*n 
is not a corner. Set

(2-7) zk,n = 2z*k*n -  z l>n.

Then we obtain the geometric reflection of zf. n through Г. In this paper, the 
points {zkiH, к — 0 , 1 , . . . ,  n — 1 } are the interpolation nodes.

L e m m a  1. There exists a constant c > 0 such that for any z 6  C \  D, 
d(z,T) < c and

(2 .8 ) Ф ,Г )  ^  —  min \ z - Cj|,
4p l<?gi

the geometric reflection of z is in D.
The proof of this lemma consists of elementary calculus, we leave it to 

the end of the paper.
By Lemma 1, {^,„} C D if n is sufficiently large. For /  6  E P( D ), let 

Ln~i ( f , z )  denote the n — 1-th Lagrange interpolation polynomial to f ( z)  
based on { z , к = 0 , 1 , . . . ,  n — 1 }.

The main result of this paper is the following.
T h e o r e m . Suppose 1 < p<  oo, and Г is piecewise C 2 smooth with no 

cusps. For any f  £ E P(D), we have

(2-9) fim ||/ (z )  -  Ln- i ( f , z ) \ \  = 0.
71—►-f-OO " 11 P
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§3. Integral representation of interpolation polynomials

It is well known that for /  £ E P(D )

Ln- i ( f , z ) 1 [  Ц п (С ) -Un(z )  Ж )  dc 
27гг УГ w n (C ) C -  2

where
П — 1

WB(z) = П (2 “  Zk,n)-
k=0

By the Cauchy’s formula, for z £ D,  we have

/ ( г )  -  Ln- i ( f , z ) <М*) Г / ( C )  d(
2ттг J r u n( ( ) ( - z '

Since the Cauchy’s singular integral operator is p — p type [6 ] for p > 1, we 
have

(3 .1 )  | | / ( г ) - ! „ _ ! ( / ,  2 ) | | ^ m a x | w n ( *) |

»(*)!

/ ( 0  dC
(C )C -*

<

< c max I u)r 
-  zer

Ж < c max <Ai(2 )
Wn (C ) p г)С£Г " n ( 0

L e m m a  2 .  7/Г is piecewise C 2 smooth with no cusps, then for z £ Г we 
have

K ( 2 )| X d ”

where d = Ф'(оо).

Notice that the theorem follows easily from Lemma 2. Actually, Lemma 
2 and (3.1) imply that the interpolation polynomial operators are bounded 
uniformly. Then (2.9) holds. Furthermore, we have [4]

\ \ f ( z ) - L n- i ( f , z) \ \  i*c  min I I /  -  Q\\p-
r  d e g D S n —1
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§4. Proof of the lemmas

There is no loss of generality, and the computations are easier, if we as­
sume only one corner on Г. Furthermore, we may assume £i = 1 =  Ф(1), and 
set a — a\.

P roof of Lemma 2. Let

П— 1

u n ( z )  = П ( * - * 2,„).
k=0

There are two steps in the proof of Lemma 2. In Step I, we show

(4.1) k ( z ) | x < f \  z e r .

In Step II, we show

(4.2) ы * ) |  *  k ( * ) | ,  г е г .

Step I. As in [7], let

X(w,u)
Ф(ц/) — Ф(ц) 

d(w—u) 
V'(w)

d

и Ф w 

и = w.

Suppose

Then for I nil = 1

l°gx(w ,tt) = 5 1
ak(w)

,k
k=l

ak(w) = 7Г~ f  uk 1 log x(w,u) du = 
z7rl J\u\=l+e

= J - i
2irki J\u\=i+£

Ф'(и)
Ф(ги) -  Ф(и) w — u_

du = —[wk -  Fk о Ф(ги)]

where Fk(z) is the fc-th Faber polynomial with respect to D.
Since D is a bounded rotation domain, Fk(z) (k — 1 ,2 ,...)  are bounded 

uniformly on Г [8 ]. Therefore

(4.3) I ajb(w)| ^  - ,  |w| = 1 .
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For 2  = Ф(гп) G Г,

id* ( Z  )log------------  V'Sl------------  =
dn (wn -  (l + ^ ) ”em<̂ )

n—1 CO
= £ l o g X (ш, ( l  + £ )  „‘(*.+*5*)) =  „  £  „nm(M)( l  + 5>)

fc=0 m=l

By (4.3) we have

log
d n (w n

< ( z )_________
(l + Гй)Пе- '”^") = c-

Hence
<*>» 4/ W n -  ( i  +  - ) nein(t,n

dn V n J

Since |ге| = 1, we have

1 < (i + - )n /
n

+ 1 x 1 .

Then we have (4.1).
Step II. Since z£*n is the nearest point on Г to , it follows from (2.5) 

that zl*n is not a corner. Then the tangent of Г at ẑ *n is perpendicular to 
the segment zk ,n 4 n- Let ß(z ‘k,n)  denote the angle between the segment 
zz^*n and the tangent of Г at z£*n. By the cosine rule

\z  ~  z k,n\ — \z  ~  z k,n\ \z k,n ~  z k,n\ +  2 |z  — z^^n \ \ z k in — г ^  п \ s in /3 (z ;  к ,  n )  

and

4 ,n\2 = \z -  z*4n? + \4,„ ** '2 ± 2 \zZk,n 4 * п \ \ 4 , п  -  4 * n \ s 'm ß ( z ’>k , n )-

Then we have

(4.4) ck,n  I sinß(z~, к ,  n ) | .

Without loss of generality we prove (4.2) only for г = Ф(ег;е), 0 < f ^  7Г, 
since for г = Ф(ег<), x < t 5í 2ir, (4.2) can be shown in the same way, and 
г = 1 is the limit of both cases.
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For 0 % к й  [ j] ,  z and z\ a r e  on the C 2 smooth arc {Ф(е10): 
: 0  ^  в ^  and we know that ß( z ;k ,n ) has the same order as \z — z*k*n|, 
which implies

(4.5) \sin ß(z; к, n)\ ^  c\z -  z " n\, к

We also have

(4.6) I* -  4*n\ ü \ z -  4,n\ +  K „  -  4*n\ = 

= \z -  4,n\ +  IC -  4,n\ й  2 | г  -  < n

and by (2.3)

(4-7) K „ - C n K

Hence

(4.8)

By (2.2) we have

Ф ( 1  + ^ ) е- К + ^ ) ] _ ф ( е « К +^ ) ) <

< ^(Фп+Цг) _  I or —1

1 |2
\z  ~  z k ,n \  . < £ A ^ +Цг) - 1

n
0  —  1

е<(Фг,+ 2*г) _ I °-1 (1 + А- ) “ - 1S с-------------

Therefore
[?]
Ек=0

Z %к,п I
z -  г;к,п  I

<  С.

For z = Ф(е'‘), 0 < t ^  7Г and [ |]  < к < гс, (4.5) may not be true, but 
we have

I sinß(z; к, ra)| ^  min | c | 4 *n -  l | + j j  •

This is because the angle between the segment zk*n 1 and the tangent of Г at 
zk*n is not larger than c\z"n — 1 |, and the angle between the segments zk*n 1
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and zT  z is not larger than . If« 1L . These imply that ß(z; k , n ) is not largerK,n \zkn 1|
than

l * - l |
Ф 2Г п - 1 | +

\z k*n -  1 Г

By (4.4) and (4.6)

\Z Ä̂r,rt I
Z — Z k ,n  I

< 1 4 . «  -  ^ ;:„ i
Z — Z k ,n  I

By (2.1) and (4.7)

\^k,n ^k,n I ^   ̂ (^ ^0
O' —1

Z  -  ZT-fc.nl ( n - A  +  n | i | ) “ ’

By (2.1) |z — 1| x  \t\a. By (2.5)

(4.10) Izk*n — 1| = \zk*n -  zk,n\ + Izk,n -  1| = 1̂ zk,n -  1|

and by (2.5)

(4 .1 1 ) |г"„  - 1 | ä |4 ,„ - 1 | -  к ,  -  4 ;»| г  -р г ,„  -  ц.

These imply

к ;»  -  ii -  к »  -  ii
n — k \ a

Hence

\z -  -2rfc.nl
z — zk ,n  I

< (n — k) 2 a —1

+  C
(n — k) a —1

( n — к + |тг<|)'

a (n  — к + |ní|)

í  I nt\a \

+

mm

Evidently

V  -‘ ^ 71 ̂
(n — k) 2 a —1

s  E
(n — k)a —1

, (n — к + Iraíl) u . f—' nu
r ] < ^ < n  V '  [ f ] < * < n

<
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and

£
[?]<*<

s 2 £

(n -  к )a—l

(n — к + |n<|) a 

{ n - k f - 1

min
\nt\l

( n -  k)° 

\nt\a

Д  Г =

[f]<fc<r { n - k + \ n t \ ) a (n - k ) a + \nt\a

3=1

\nt\aj a 1 /4 2 J \nt\a xa
j 2° + \nt\2a ~  Л x2a + \nt\

Г  |П,Г 2 *Jo у2 + \nt\2a
f 0 t

~~ 1 ^-t 2a t

2a dx <

/ 0 .

Then we have
\z -  zk,r
z — z£

[£]<*<
Together with (4.9), we conclude that

u n(z) 2

< ( 2)
The proof of the inverse inequality

< { z )

-  1

k,n I
<  C.

<  C.

Wn(*)
<

is similar to the above process. But it needs the estimation of the lower 
bound of \z — zk>n |. For n sufficiently large, we shall show

(4.12) 2 -  4,п\ й  C \ Z -  Z k i n \.

For 0 ^  к й  [ |]  we can see that the right side of (4.8) is not larger than 
0.5 if n is sufficiently large, and we have (4.12).

For [f] < к < га -  1 , if the subarc zz£*n connecting z and zk n̂ with shorter 
arclength crosses (  = 1, then by (2.5) and (4.11) we have

-  < „ i  s  i | i  -
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Since

** I^k,n I

< Jfc,n| T „ |1 
3 p

й \ z - z Kn| + \zk*n -  z*kJ  ^  

< \ z -4 * n \  ^  \ z -  Zk ,n \  +  — 2 2 k ,n z k ,n  I +  2 12  ^ , n l i

then

= ö 'z ~ Zk’r'

We have

I2 _  f̂c,nl =  1г _  z fc*nl +  Iz k*n -  z k,n  I =  I* ~  +  g ^ l 1 “  Zk*n\ ^

^ N - C n l  + -
1

3~p
zz k,n S I» -  Cnl + | |г  -  C J  = f  I* -  4:J s  2|* -  *»,.

When [^] < к < n — 1 and the subarc 2 2 *̂n 
shorter arclength does not cross £ = 1 , then

connecting 2  and zkyU with

2 l + > H i
2  '

Let Г1 be the subarc of Г which begins at 1 and whose arclength equals 
and let Г2 be the subarc of Г which ends at 1 and whose arclength also equals

Then 2  and zT* are both in one of these two subarcs at the same time.4 k,n
Since both subarcs are C 2 smooth, (4.5) and (4.8) are also true as both 2 
and zl*n are on a C 2 smooth arc. We have (4.12) for n sufficiently large.

P r o o f  o f  L e m m a  1. Let 2 ** be the nearest point on Г to 2 *. By
(2.8) we know that z** ф 1. Then the segment 2 *2 ** is perpendicular to the 
tangent of Г at 2 **. Let 2 denote the geometric reflection of 2 **.

Let Ti and Г2 be two subarcs of Г defined in the proof of Lemma 2. We 
shall show Lemma 1 for 2 ** £ Г].

There exists a sufficiently small positive constant 77, such that for any 
2 I G Ti, 12 I — 1| fi 77, the angle between the two tangents of Г4 at 2 I and 1 
is not larger than

If 12 ** — 1| ^  similar to (4.10) we know that 2 * keeps at least away 
from the corner. It is easy to see that the reflection of 2 * across the smooth 
subarc is in D when 2 * is very close to Г.

If 12 ** — 1| ^  I  and z ф D, then the segment of 2 * * 2  must meet Г at 2 ф 
ф 2 **. If 2  G Id, then there is a point 2  on the subarc 2 **2 , such that the
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tangent at z is parallel to the segment of z**z. Then the angle between the 
two tangents of Ti at г and 1 is larger than j .

On the other hand, similarly to (4.11)

Hence

| z -  1| g  \ z -  2**1 + |г** -  II < I гг** I + |г** -  1 | <

й p\~z -  г**| + |г** -  1| g  pd(z*, Г) + |г** -  1| g  -|z** -  1| < r,,

a contradiction.
Finally, if г G Г2 \  Ti, we have

I г — г** I £ p - 1
/■"4 **г г

7cl
ЛИ 1г**' = P_1|l  — г* >

^  — 11 -  г*I ^  3|г** -  г*I ^  3 |г -  г**|,

again a contradiction.
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CHARACTERIZATION OF SOME 
PECULIAR TOPOLOGICAL SPACES 

VIA A -  AND £-SETS
J. DONTCHEV (Helsinki)

1. Preliminaries

Throughout this paper we consider spaces on which no separation ax­
ioms are assumed unless explicitly stated. A “space” will always mean a 
topological space. The topology of a space is denoted by r  and ( X , t ) will 
be replaced by X  if there is no chance for confusion. For A_C X  the closure, 
the interior and the boundary of A in X are denoted by A, Int A and Fr A 
respectively.

Next we recall some definitions.

D e f in it io n  1. A subset A of a space ( X , t ) is called:
(1) a preopen set [6 ] if A C Int A,
(2) a semi-open set [5] if A C Int A,
(3) a semi-preopen set [1] if A C Int A,
(4) locally closed [2] if A = U П F, where U is open and F  is closed,
(5) an A-set [8 ] if A = U П F , where U is open and F  is regular closed,
(6 ) a ß-set [9] if A = U П F , where U is open and F  is semi-closed,
(7) a t-set [9] if Int A = Int A,
(8 ) nowhere dense if Int A = 0,
(9) an NDB-set if A has nowhere dense boundary.

The complements of preopen, semi-open and semi-preopen sets are called 
preclosed, semi-closed and semi-preclosed sets, respectively. A set A is called 
regular closed if A = Int A.

A space X  is called submaximal [2] if every dense subset of X  is open. 
Recall that a space X  is called a partition space (or locally indiscrete) [7, 3] 
if every open subset of X  is closed. A space X  is extremally disconnected 
(or extremal) if the closure of each open subset of X  is open or equivalently 
iff every semi-open set is preopen.

Remark 1.1. This paper is based on [10].
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2. Л-sets, R-sets and t-sets

T h e o r e m  2.1. Every В-set is an NDB-set.
P r o o f . It is trivial to see that the intersection of two NDB-sets is an 

NDB-set. Since a f?-set is the intersection of a (semi-)open and a semi-closed 
set, it is enough to show that every semi-open and every semi-closed set is 
an NDB-set. If A is semi-open, then for some open U we have U С A C 
C Ü .  Since Ft А = А Г \  X  \  A = U Г\Х \  A C U  П X  \  U = Ft U, clearly Ft A 
is nowhere dense being a subset of the nowhere dense set Fr U. In fact it 
is obvious that every open set has nowhere dense boundary. Thus every 
semi-open (and hence every semi-closed) set is an NDB-set. □

R e m a r k  2.2. The converse is not true. For consider the space X  = 
= {a, 6 , c} with the only non-trivial open set {a}. The subset {a, 6} is an 
NDB-set but not a B-set.

In [9] Tong defines the notion of t-sets in topological spaces. The fol­
lowing result shows that the defined property coincides with the class of 
semi-closed sets.

T h e o r e m  2.3. For a subset A of a space X  the following are equivalent:
(1) A is a t-set.
(2) A is semi-closed.
(3) A is a semi-preclosed B-set.
(4) A is a semi-preclosed NDB-set.

P r o o f . (1) =>• (2). Since Int A = Int A, then Int A = Int А С А О  X  \  
\  A C Int(X \  A). Thus X  \  A is semi-open, hence A is semi-closed.

(2 ) => (3). Every semi-closed set is trivially semi-preclosed. Since A = 
= А П X ,  where A is semi-closed and X  is open, then A is a Z?-set.

(3) =>• (4). Theorem 2.1.
(4) (1). Since A is an NDB-set, then В — X  \  A is also an NDB-set. 

It is easy to see that from the identity

Int(Fr B) = Int В П Int(X \  B) = Int В  П (X  \  Int В) = Int В \  Int В,

it follows that Int В С Int В. Since В is semi-preopen, В  С Int В. Thus В  С 
С Int В  or equivalently В  = Int В. Since В = X  \  A, Int А = Int A. Thus А
is a t-set. □

T heorem 2.4. For a subset A of a space X  the following are equivalent:
(1) A is an Л -set.
(2) A is semi-open and locally closed.
(3) A is semi-preopen and locally closed.
P roof. (1) => (2). Every А-set is trivially locally closed. The second 

part is Theorem 3.1 in [8 ].
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(2) =>■ (3) is trivial.
(3) => (1). Since A is locally closed, A = U П A, where U is an open set.

Since A is semi-preopen and since trivially Int A C A, A is regular closed. 
Thus A is the intersection of an open and a regular closed set, i.e., it is an 
Л-set. □

The equivalence of conditions (1) and (2) in the previous theorem was 
first proved by Ganster and Reilly in [4].

The results in the next theorem were proved by Tong [9], Ganster and 
Reilly [4] and we list them without proof for further citation.

T heorem 2.5. For a subset A of a space X  the following are equivalent:
(1) A is open.
(2) A is preopen and locally closed.
(3) A is a preopen A-set.
(4) A is a preopen B-set. □

3. Some peculiar spaces

T heorem 3.1. For a space X  the following are equivalent:
(1 ) X is submaximal.
(2) Every subset of X  is a B-set.
(3) Every dense subset of X  is a B-set.

P roof. (1) (2). Let А С X . Since every subspace of a submaximal
space is submaximal,_tlhen A is submaximal. Since A is dense in A, A is open 
in A. Thus A = U П A, where U is open in X  and A is closed in X . Thus A 
is locally closed and hence a f?-set, since every closed set is semi-closed.

(2) => (3) is trivial.
(3) => (1). Let А С X  be dense. By (3) A — U П B, where U is open 

and В is semi-closed. Since A С B, then В  is dense. Thus Int В — Int В = 
— Int X  = X  and hence В — X . Thus A — U is open and so X  is submaxi- 
mal. □

T heorem 3.2. For a space X  the following are equivalent:
(1) X  is a partition space.
(2 ) Every В-subset is clopen.
(3) Every В-subset is closed.

P roof. (1) =>• (2). If A is a ő-set, A — U П B, where U is open and В 
is semi-closed. By (1 ) U is clopen. On the other hand В  is open by (1) and 
thus Inti? С В С В implies В = Int В = В  and thus В is clopen. Thus A 
is clopen being the intersection of two clopen sets.

(2) => (3) is trivial.
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(3) =ь (1). Every open set is a B-set by Theorem 2.5 and thus by (3) 
closed. □

T heorem 3.3. For a space X  the following are equivalent:
( 1 ) X is indiscrete.
(2) The only В-sets in the X  are the trivial ones.
(3) The only A-sets in the X  are the trivial ones.

P roof. (1) =>• (2). If A is a ß-set, then A = U П B, where U is open and 
В  is semi-closed. If А ф 0, then U ф 0 and by (1) U = X . Thus A = В and 
so Int A = Int A = Int X  = X . Hence A = X .

(2) =k (3). Every A set is a ß-set.
(3) => (1). Since by Theorem 2.5 every open set is an A set, by (3) the 

only open sets in X  are the trivial ones, i.e., X  is indiscrete. □

T heorem 3.4. For a space X  the following are equivalent:
( 1 ) X  is discrete.
(2) Every subset of X  is an A-set.

P roof. (1) => (2). By (1) every set А С X  is open and regular closed. 
Hence A is an A set.

(2) => (1). By (2) every singleton {ж} 6  X  is an A se t and by Theorem 
3.1 in [8 ] semi-open. If Int{x} = 0, then we have the contradiction {ж} C 
C Int{ж} = 0. Thus {ж} = ЬН{ж} or equivalently every singleton in X  is 
open. □

The following result was first proved by Ganster and Reilly in [4] and 
thus we present it without proof.

T heorem 3.5. For a space X  the following are equivalent:
(1) X  is extremally disconnected.
(2) Every А -subset of X  is open.
(3) The collection of all А -subsets of X  is a topology for X .
(4) The intersection of two А -sets is an A-set. □
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JACKSON ORDER OF APPROXIMATION  
BY LAGRANGE INTERPOLATION. II

G. MASTROIANNI (Naples) and J. SZABADOS* (Budapest)

In [3], we considered the problem of finding classes of functions where 
the order of Lagrange interpolation is the same as the Jackson order of ap­
proximation, for some suitably chosen systems of nodes. (For the origin of 
the problem see also the references in [3].) It turned out that for the nodes

к -  l
(  1 )  % k n  — COS t k n  1 ^ k n  — у  77, к  — 1 ,  . . . ,  TIП — 1

which are the roots of the polynomial

(2 ) u n(x) — sin(n -  l)t  sin i, x = cost

(this is the Chebyshev polynomial of second kind of degree n — 2  multiplied 
by 1 — a:2), this phenomenon occurs, provided that the function to be in­
terpolated is a piecewise polynomial. Motivated by this paper, Xin Li [4] 
generalized our result for finitely differentiable functions which are piece- 
wise analytic functions, if these pieces are analytically extended to the whole 
interval [—1 , 1].

It is the purpose of this paper to show that Xin Li’s condition of an- 
alyticity can be essentially relaxed and at the same time the proof can be 
drastically simplified.

To begin with, let

(3) -1  = as < as- 1 < . . .  < a0 — 1 (s ^  1) 

be a fixed partition of the interval [—1,1]. Further denote

I j  — [flj+i, Oj], j  = 0 ,1 ,. . .  ,5 — 1.

The restriction of a function /  6  C [ - l , l ]  to the interval I j  will be denoted 
by f \ j  . The Lagrange interpolation polynomial of /  E C[— 1,1] with respect 
to the nodes ( 1 ) is L„(/, x), and the error of interpolation is

= f ( x )  -  Ln(f ,x) .

* Research su p p o rted  by H ungarian  N ational Science Foundation  G ran t No. 1910.
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T heorem. Let r ^ 0 be a fixed integer, and (3) a fixed partition of the 
interval [ - 1 , 1]. I f f (x )  £ C r [ - l , l ]  and for f f ix)  := f \ ^  £ Cr+2(Ij), j  = 
= 0 , . . . ,  s — 1 we have

(4) u { & +2\ h )  = 0 (h > 0 , j  = 0 , . . . , s  -  1 )

(where u> is the modulus of continuity of the corresponding function on the 
corresponding interval), then

|An(/ ,x ) |  = 0
UJ,'п(ж)|

77 + 1
min 1, n mm l < j < s - l

( 1*1 ^  !)•

Introducing the usual notations

( x if x ^  0 ,
1 0  if x < 0

and x - Í 0  if x ^  0 , 
1  x if x < 0

a typical example of a function satisfying the conditions of the theorem is

S —  1
/(* )  = $(*) + ^ 2 (x ~  ßj )++1 (s ^ 2)

j = 1

where g £ C r+2 [ - l , l ]  is such that u(g(r+2\ h )  = 0 ( 1 / log l//i). If g is not 
analytic in [—1 ,1] then the above mentioned result of Xin Li does not apply 
to such functions.

The proof is divided into a series of lemmas.

Lemma 1. For the polynomial (2) we have the following estimate in the 
complex plane:

(5)

|w„(x + i3/)| ^ ( l  + Мл/ 1  -  X2)
n/2

24(2” / 2 -  1 )

1

P roof. We use the formula

if M ,M  й  1 ,

if |x| ^  1 ,г/ = ± 1 .

[z  + \Jz2 - I s) (z + \ / z 2 -  1 )” ( x e C \ [ - l , l ] )
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> 1 for the z’swhere the square root is that value for which 2  + у/z2 -  1

in question (see Xin Li [4]). By symmetry, without loss of generality we may 
assume that 0 5s x ,y  ^  1. Then an easy calculation yields

y / z 2 -  1 =  ^
\J (l -  x 2 + y2 ) 2 + Ax2y2 -  (1 -  x 2 + y2)

+

+*
1

y j ( l  -  X2 + y2 )2 + 4x2y2 + (1 -  z 2 + y2)

whence

y j z2 — 1 ^  Im y jz2 — 1 ^  \ / 1 — x2, 

z -\- у /z2 -  1 ^  z 2 +  ^ < / +  ^  1 +  y y / T ^ x 2 +

Substituting these estimates into (5), we get the statement of the lemma. 

L e m m a  2. PTe have

(
(6 ) Дп((- -  y)+,z) = О

u>.>(ж )1
\

min < 1

Vn' ( V 1 ~ 9 2) )

(M  ^  l , |y | < 1 ,/ = 1 , 2 , . . .) .

’ |z -  y \ny /l -  y2

The special case у = 0 was proved in [4], Theorem 2.1. Our proof is 
along the same lines, but since it is much simpler, we give it in full details. 
Of course, a similar estimate holds for the functions (x — y)l_.

P r o o f . Evidently

T„((- -  y)l+,x)  = ^
*к>У

U > n (x ) (xk -  y ) 1

ш'п(хк)(х -  ХкУ

whence using the residue theorem of complex integration

A»((- -  s/)+,z) dz
2 -кг Jr u n(z)(z -  x) (И>Ы ^ 1),

Acta Mathematica Hungarica 69, 1995



76 G. M A STRO IA N N I and J . SZABADOS

where Г = Ut=i

= {z = и -  i : у ^  и ^  2 }, Г2 = {z = 2  + iv : |v| й  1 },

Г3 = {z = и + i : 2  2. u^.  у}, Г4 = {г = у + iv : |u| ^  1 }.

Using Lemma 1 we get

if 2 E

if z = у + iv £ Г4.

i(2"/2 -  1)
|^п(г)| ^  -

2 ч/1 -  У2 ( i  + M V 1 -  у2') - 1

Thus

1

27тг
(* -  У)‘ 
{ z ) ( z - x )

dz = О ( max 10Jn(z)\ 1

z€ Uj=i ri
(l*Uv|Sl),

0 (2 “" /2)

and the contribution resulting from this is much less than the right hand side 
of (6 ).

Now we estimate the remaining integral. Using Lemma 1 again,

(7) ( z - У ) 1
U > n { z ) ( z  -  X )

dz <

<
ч/Г /:/ ,------- \  n /2

( l  + Vy/l -  y2j  - 1

dv.
\y  — X +  iu|

In order to estimate the integral

, ,  ( ' _________ rl_____
( l  +  V y / l  -  t /2)

-  dv, 
1

we substitute v -- — 2 == to get
n y / l - y 2

( 8 ) I  =
1

7 / \ ;+7
(W 1 -  У2) ( 1  + Й ” / 2 - 1

du 7
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< 1

( W 1 -  У2)
(h + h),

where

and

h  = t  ------------------ du ^  2  Í  ul 1 du = у,
•/о (1 + ^)"/2 -  1 -/о /

f 00 U1 f 00 , /  ИЧ-п/2
= /  ----------- гг----- du < 3 /  « (lH— ) du =

J1 (l + ^ )n/2 _ l  -  7o V n /

= 3/!-
(2 n)'

n , , 9 л = 0 ( 1 ) (П > 2 /)’
l l j = i ( n  -  2 J )

where the last integral was calculated by integration bv parts. Hence (8 ) 
gives

/
1  = 0

1
\

v ( W l  -  У2) + )

Using this estimate, as well as the inequahty \y — x + iv\ ^  max{|x — 
-  2/|, |w|}, we obtain from (7)

I/,Un{z)(z -  x)

(
О

\

Knl (ч/ 1  -  J/2) + у
min < 1 ,

I* -  Z/ly/1 -  Í/2 J

Collecting all these estimates, we get the statement of the lemma.
The next lemma can be of independent interest , since it provides an es­

timate of the error of interpolation which reflects the interpolatory property.

Lemma 3. If g 6 C ^ - l ,  1] (/ ^  1) then we have

I An(tf,z)| = О * n ( ® ) | UJ ( 1*1 ^  !)■

P roof. For an arbitrary x E [-1,1] let

\x — x,| := min lx — хЛ.
1 \<k<n 1
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(In case this definition of the index j  is not unique, take either one of the 
two possibilities.) Using mean value theorem we get

(9) |An(ff,z)| ^  ||An(0i*)|| ( N  ^  1)

where the notation || • || indicates supremum norm over the interval [—1 , 1]. 
We estimate the two factors appearing on the right hand side here separately. 

In estimating \x — Xj|, we distinguish two cases.
Case 1: \t -  tj\ ^  ^ - \ )  (see notati°ns (1)—(2)). Then, using mean 

value theorem again,

| ^ n ( z ) |  =  l ' W n ( z )  -  Un(Xj)\  =  \x -  Xj\ • | ^ ( c O s £ j ) |

^ ( 6  e  ( M j ) >  l£j  — tj\ = 4 ( n  -  1 ) )  ‘

Hence

( 10)

Case 2: 4(n-l) 2(7г—T)’ Then

x -  x j I = 0

which is the same as (1 0 ).
In estimating the second factor on the right hand side of (9), we use a 

well-known theorem of Gopengauz [2] which says that under the conditions 
of Lemma 3 there exist polynomials pn(x) of degree at most n such that

( 1 1 )  | 9 (”, | ( х ) - р !г ‘1(х ) |  = o f ( : A E Z )

(|ж| ^  1 , m — 0 , . . . ,/).

Using this with m = 1 (and without the pointwise estimate) we obtain 

IIA(,(<7)|| ^  IIg' -  p 'J  + II L'n(pn -  $)|| =

= 0 {n l~l)lj ( g {l), ^  + j! L'n(pn -  0 ) | | .
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Here applying (11) with m — 0,

71—1

\Ln(pn - g , x ) \  <; j ; | h ( * 0 - i N b
|u>w(ar)|

k= 2 'n(*fc)| ' 1̂  -

= 0 (n г г)о;
У fc=2

sin tk
COSt  — COSÍfcl

— 0 (n 1 y / \  — x2 )u> ^ logn (|x| ^  1 ).

Hence by a result of V. K. Dzyadyk [1, Theorem 2'] we get

II L 'n (Pn  -  5)11 = 0 ( n x l)u> ( g {l), ^  log n.

Substituting this as well as (10) into (9) we obtain the statement of the 
lemma.

P r o o f  o f  t h e  T h e o r e m . Let H( f , x )  be the unique Hermite interpo­
lating polynomial of degree at most (r + l)(s — 1 ) — 1 satisfying the conditions

Я(т>(/,«у) = ( m  = 0,...,r; .« -  1).

Then for the function

F(x) := f (x )  — H ( /, x) G Cr[—1,1]

we evidently have

(12) A n(F,x) = A n( f , x )  (n  £  ( r +  l ) ( e -  1)),

e C ' +2( i ,)  0.....s - l )

and
F{m)(aj) = 0  (m = 0 , . . . ,  r; j  = 1 , . . . ,  5 -  1 ). 

Thus if we define

F(x)
0

if x 6  I j ,  

if ® € [ - l , l ] \ / j
{j = 0 , . . . , s -  1 ),
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then Fj E Cr[ - l , l ]  {j = 0 , . . . , s -  1) and

(13)
s—1

H x ) =
3= 0

Moreover, define

(14)
, ч ^  f ’(m)(ai - 0 ) ( * - a j ) + + F ( " ‘)(ai+1 +  0 ) (a : -o j+1r

9 j ( x )  : =  F j { x )  +  2 ^  ----------------------------------------------------------------------------------------
TTÍ—T -f-1

0  = 0 , . . . , 5 -  1 ).

Then by calculating the left and right derivatives of gj at aj and aJ+i it is 
easy to see that

9 «” >(0 ;)  = F {m)(<4-  0 ), =  |m|(»j+l +  0 )

(m = r + l , r  + 2 ; j  = 0 , 1 ),

and therefore gj 6  C r+2 [—1,1] (j = 0 , . . . ,  s — 1). By (4)

(15) w(jjr+2|,ft) = w ( i j r+i),k) = 0 ( u ( 4 r+2),k)) = 0 ( l / l o g l / f c )

(j = 0 , . . . , 5 -  1 ),

since firjr+2 (̂a;) is constant in [—1,1] \  Ij (j = 0 , . . .  ,s  — 1). Now (14) yields

(16 ) | д п (**> *)| ^  | д п ( # » * ) |  +

y i  |F lm)(aj -  0)An((- -  а ,)^,а:)| + 1т(т )(а, +1 + 0)An ((- -  0 ,4 .1 )” ,»)!
m!

m = r + 1

( 1*1 й  1 , j  = 0 , . . . , 5 -  1 ).

Here applying Lemma 3 with and r -f 2 for g and /, respectively, we get 
from (15)

(17)

I Д „(ф ,х )| = 0  (|u;n(x )|n~ r_2)w ^ j r+2), ^  logn = 0  (|wn(* ) |n~r~2)

(j  = 0 , . . . , s -  1 ; |x| ^  1 ).
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On the other hand, applying Lemma 2 (and its analogue for (x — yfiH) 
with m and ay, aJ+i for l and y, respectively, we get

(18)

g ?  \F(™4aj -  0)An((- -  a ^ , x ) \ + \ F ^ ( a J+1 + 0)An((- -  aj+1 )”  x)|
m\

m = r -f 1

= 0
\U; l(*)|

,r + l min < 1 ,
1

nm ax1< J < s _ 1 |x — aj I 

(j  = 0 , . . . , s -  1 ; |x| ^  1 ).

Finally, (12), (13), (16)—(18) yield

I A n (/,z ) | = j A n(F,x)\ <i

5—1

^  £ | Д п(^ -,х )| = 0
3=0

I u>.n(-c)|
7r+l min < 1 ,

1

Bmax1<i<l_1 \x -  dj;|
(|x| ^  !)•

We do not know if the condition on the order of piecewise differentiability 
of the function can be further weakened. Nevertheless, if we do not insist on 
the second estimate in the theorem which gives a better estimate away from 
the singularities aj, then the following corollary holds true:

Corollary 1. Let r ^ 0 be a fixed integer, and (3) a fixed partition 
of the interval [—1,1]. I f  /(x ) E Cr[—1,1] and for f j (x)  := f  E C r+1( I j ) ,  
j  = 0 , . . . ,  s — 1 we have

u ( f \ r+l\ h )  = 0  j  (h > 0 , j  = 0 , . . . ,  a -  1 )

then

|A „ (/,x ) | = 0 ^ b M j  ( M S I ) .

This can be easily seen from the proof of the theorem. 
Another consequence (of Lemma 2) is the following
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C o r o l l a r y  2 . If f^r\ x )  is of bounded variation in [—1,1] then

| |M / , * ) | |  = 0 (n~')

This easily follows from the obvious formula

A■«(/,*) = J   ̂A„((- -  yY+, x )d f {r\ y ) .
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AN EXPLICIT ESTIMATE OF EXPONENTIAL  
SUMS ASSOCIATED WITH A CUBIC 

POLYNOMIAL
K. A. M. ATAN (Serdang)

1. Introduction

Let x = ( x i , . . . , x n) denote a vector in the space Zn where Z denotes as 
usual the ring of integers. Let q be a positive integer and /  a polynomial in 
Z[x], The exponential sum associated with this polynomial is defined as

S( f ;q)
v—> 27rt/(x)
> * ^

where the sum is over a complete set of residues x modulo q.
As a result of his proof of the Weil conjectures, Deligne [2] showed that 

if p is a prime, then

\S(f ;p)\  й ( т ~  1 ) > ” /2

where m denotes the total degree of the associated polynomial / ,  under the 
condition that the homogeneous part of /  having the highest degree is non- 
singular modulo p. Deligne’s work opens the way to estimates of the sum 
associated with any positive integer q. Loxton and Vaughan [6 ] for example 
found very precise estimate for the sum in terms of invariants associated with 
a one-variable polynomial / .  However, the general results for polynomials of 
several variables are less complete.

It can be shown that 5 ( /;  q) has a multiplicative property with respect to 
q (see for example Loxton and Smith [5]). That is if qi,q2 have no common 
factors then there exist integers m\ and m2 such that

S(f ' ,q\q2 ) = S( m 2f ,qi )  S ( m 1f , q 2).

Consequently it suffices to examine exponential sums of the form S(f '1pa).
In this paper we give an estimate for such an exponential sum with /  a 

cubic polynomial with coefficients in the ring Z.
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2. Some preliminary results

In the following discussion we will denote e27r!</p“ by epa,(t) for any inte­
ger t. Let f ( x , y )  be a polynomial with integer coefficients. Atan [8 ] adapted 
the results of Loxton and Smith [5], to show that the estimate for S( f ; pa) is 
dependent on N ( f ; p a), the number of common solutions to the congruences

f x(x,y) = 0 , f y(x,y) = 0 mod pa.

Here f x and f y denote the usual partial derivatives of /  with respect to the 
variables x and у respectively. We rewrite Atan’s assertion as follows.

T heorem 2.1. Let p be a prime and f ( x , y ) be a polynomial in Z[x,y\.  
For a > 1, let

S{ f ;pa) =  еРа( / ( х ’У))
x , y m o d  pa

and 0  = [a/2]. Then

\ S( f ;pa)\ ÜP2{a- &)N ( f ; p e ).

P roof. Define 7  = a -  0  so that 2 7  ^  a and 7  ^ 0  ^  1. Let z denote 
the pair (z, z') in Z 2 and z = u + p7 v, so that x runs through the residue 
classes modulo pa as u runs through the residue classes modulo p7 and v 
runs through the residue classes modulo p0 . By using the Taylor expansion 
of /(x )  = / ( u + p7 v) we can rewrite S ( f ; pa) as follows:

S{ f ;pa) =  X ] вРа ( Л и)) S  ePa (P7 grad / ( u ) , v )-
u m od v m o d  p®

The inner sum clearly vanishes unless both f x(u) and f y{u) are congruent 
to 0 modulo pa. Under this condition each term in the inner sum is equal to 
1. It follows then that the inner sum is equal to p2 , and hence

S( f ; pa) = P2 0  5 ^  epa ( Л и) ) , 

where the sum is taken over all x modulo p" such that

grad / ( u) = 0  mod p®.

Since there are p2('v—®) points u modulo p7 corresponding to each solution 
of the above congruences modulo p®, we have

\ S ( f ;Pa )I ÜP2e+2b ~@)N(f-,p@)
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as required.
If a is odd a slightly sharper estimate than the one in Theorem 2.1 can 

be obtained. Towards this end we define the set

Kf(  u) = { v = (v, г/) mod p: vJ f (u)  = Omod p }

where u = (u,u') and Jj  is the Jacobian matrix

Jf (u) f xx ( U ) f x y  ( U ) 
f x y i v )  f y y ( u )

Our result for this category of a is as follows.
T heorem 2.2. Let p be a prime and f (x,y)  be a polynomial in Z \x ,u  1. 

Let a  = 20 + 1 with 0  > 1. Then

И / ;Л | íj>“EIa '/ ( " ) |1/2

where the sum is taken over all u =  (u,u') modulo p® such that grad / ( u) = 
= Omod p& and, in addition, when p is odd grad / ( u) • v = Omod p0 + 1  for 
all v in K j(u).

P roof. From the proof of Theorem 2.1

S ( f ; pa) = p2 0 ^ e pa ( / ( x )),

where the sum is taken over all x = (ar,ar') modulo p7  at which / r (x) and 
/ y(x) vanish modulo p® and 7  = 0 + 1 .  Let

x = u + pe \

so that x, u and v run through the residue classes modulo p7, p® and p 
respectively. By a Taylor expansion

/(x )  = / ( u) + p® grad / ( u) • v + ip 2e v J /(u )v ‘ (mod pa)

we obtain
S ( f ; p a) = p2 0 ^ e pa ( /(u ) )G / (u),

where the sum is taken over all u modulo p® such that grad / ( u) = 0  mod p® 
and G /(u) denotes the Gaussian sum

Gf ( u ) =  S  eP Q v J / (u)v i + p_ 0 grad /(u )  ■ v V
v m od p /
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Now consider

I G / ( u ) | 2 = $ 3  eP ( ^ v J / ( u )ví _ w J / ( u )w< + P~3 * * & §rad /  ' (v -  w )V
v,w ' /

Write v = w + z and carry out the summation over w. This gives

|G /(u ) |2 = p 2 5 3  ep Q z J / ( u ) z 4 p _ e g ra d /(u ) -z ^  .
z Jy (u )= O m o d  p

If we replace here z by z + v where v is any point in Kf(  u), we get

|G /(u ) | 2 =  ep Q v J /(u )v *  + p _ e grad / (u )  • v j  |G /(u ) |2.

Hence, G /(u) is 0 unless ^v .//(u )v i + p~e  grad / ( u) • v = 0 (mod p) for all 
v in A'/(u). If p is odd, this condition is equivalent to p~ 0  grad / ( u) • v =  0 
(modp) for all v in K f ( u) and we have

I G /(u ) | 2 = p 2 |A '/(u )|.

From this, we get the estimate in the theorem. If p = 2, the condition 
for Gf ( u) to be non-zero does not simplify, but we still have |G /(u )| 
й p2 1 A /(u)| and the required estimate follows.

From the above it is seen that the estimate for S ( f ; p a) is dependent 
on the estimates of N ( f ; p e ) and K j { u). In the following section we will 
examine these two quantities. In the ensuing discussion p will always denote 
a prime and for a rational number x , ordpa; will indicate the highest power 
of p dividing x. We will set ordpx = oo if x — 0.

3. E stim ation  of N(f ;pa )

Let p be a prime and f  = ( / i , . . . ,  /„) be an n-tuple of polynomials in 
x = ( x \ , . . .  , x n) with coefficients in Z. Let iV(f;pa) denote the cardinality 
of the set

F(f;pa) = { umod pa: f(u) = Omod pa}

where a > 0 and each component of u runs through a complete set of residues 
modulo pa. The estimation of N( i ;pa) has been the topic of research of 
many authors. For example Loxton and Smith [5] showed that for a > 0 
and a one-variable polynomial f ( x )  in Z[x], N( f ; p a) ^  mpa~(a~sWe if a > 6 ,
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where m is the number of distinct zeros of /  that generate its associated 
algebraic number field К , and 6 is the highest power of p such that D(f )  = 0 
(mod ps) where D ( f ) represents the intersections of the fractional ideals of
К  generated by the numbers ^  , i ^  1 and e =  maxej with ej denoting

e'' i
the multiplicity of f j .  A similar result was obtained by Chalk and Smith [1] 
by employing Hensel’s Lemma.

In their work Loxton and Smith [5] showed that for f  = ( / i , . . .

f pna if a > n6
iV(f; p ) < \

\  (Degf)pni if q < nf)

where 6 is the highest power of p dividing the discriminant of / .  Atan [9] 
considered linear polynomials f  = ( / i , . . . ,  /„) in (x j , . . . ,  x„) with coefficients 
in the p-adic ring Zp. He showed that

iV(f;pa) S  min{pna,p(n- r)Q+rS}

where 6 is the minimum of the p-adic orders o f r x r  non-singular submatrices 
of the reduced coefficient matrix of f.

Let f  = be an re-tuple of polynomials in Zp[x] where x =
= ( x i , . . . , x n), common zeros of f  and Я,-(а) = {xG  if":ordp(x — £,) =
=  maxordp(x — A ) and ordp f(x) ^  a} where fip is a complete and alge-

j
braically closed p-adic field. Following the method of Loxton and Smith
[5] we show below that the cardinality JV(f;pa ) of the set V ( f ;pQ) = 
=  { x mod pa: f(x) = 0  mod pa } is dependent on the p-adic distance between 
a common zero £■ of f  and elements x in Ht{a).

Lemma 3.1. Let p be a prime, and f  are n-tuple of polynomials in x =  
= (x j , . . . ,  xn) with coefficients in Zp. Let £г be a common zero of f .  Then

N( f ;pa) ^  ^ p n( Q_'v,(“))

where

7 «(a) = inf ordp(x — £,).хеЯ;(а)

P roof. Consider the set Vi(f;p“) of points in y ( f ;p a) that are close 
p-adically to a common zero £, of f. That is

-  {x G F (f;p a ):ordp( x -  &) = maxordp(x -  ^ )}  .
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Then,

( 1 ) N( f ;pa) ü  ^  card v i(i;pa).
г

Consider the set

H i ( a ) =  {xG  ft” : ordp(x -  = maxordp(x — £ j )  and ordp f(x) ^  a} .

Let

(2 ) j i(a)  = inf ordp( x - £ t)x6#,(ar)

for all г. Now, for every a  ^  1, V;(f;pa) ^  Яг(а) for all i. Hence, 

card V;(f;pa) ^ cardjxm od pa :ordp(x -  £г) ^ 7i(o)} •

That is,

(3 ) card Vi{f\pa) ^  pna~nh(a)

with a ^  7 i(a) for all i. Our assertion then follows from (1), (2) and (3).
The determination of the size of 7 г(а) in the estimate above has been 

the subject of scrutiny of several researchers (see for example Loxton and 
Smith [5]). Atan [9] employed the technique of Atan and Loxton [7] as an 
extension of the p-adic technique of Koblitz [4] called the Newton polyhedron 
method described briefly below to arrive at the estimates of 7 ,(a) for certain 
polynomials of lower degrees.

If p is a prime and f (x ,  y )  = aijxtyl a polynomial with coefficients in 
fIp the completion of the algebraic closure of the field Qp of p-adic numbers, 
then the Newton polyhedron of /  is defined to be the lower convex hull of 
the set of points (i , j ,  ordp aij) in the Euclidean space where ordp denotes 
the extension of the usual additive p-adic valuation from Qp to fip, with the 
convention ordp 0  = 0 0 .

Associated with each Newton polyhedron is an indicator diagram which 
is defined as the plane graph consisting of vertices (A/rq y / v )  and edges with 
the former corresponding to the normals (A,p,i') of faces in the polyhedron 
and the latter joining adjacent vertices corresponding to normals whose faces 
share a common edge in the Newton polyhedron.

Atan and Loxton showed that (£ ,77) is a zero of /  if and only if (ordp£, 
ordp p) is a point on the indicator diagram associated with the Newton 
polyhedron of / .  Suppose (A,p) is a simple point of intersection of non­
coincident edges of the indicator diagrams associated with polynomials /
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and g in Qp[x,y\. Atan [9] showed that if (A,p) is not a vertex then there is 
a point (£,//) in fl2 at which /  and g vanish with ordp£ = A and ordp 7/ = p.

Using this information as our tool we arrive at the estimate 7 t-(a) asso­
ciated with the two-variable polynomial

(0) f (x ,  y) = ax3 -f bx2y +  cxy2 + dy3 T ex + m?/ -f n

with coefficients in the ring of p-adic integers Zp, with the property that 
c2 — 3hd, be — 9ad and b2 — 3ac are non-zero, in the following lemma.

L e m m a  3.2. Let p be a prime and (0) a polynomial in Zp[x,y] with 
non-vanishing coefficients in the homogeneous part of degree 3. Let 6 = 
= max{ordp 3a, ordp 6 , ordp c, ordp 3d}. Suppose (xo,yo) *'n with 
ordp fx(xo,yo)> ordp f y(xo,yo) ^  a . If  a > S, then there is a zero (£ ,77) of 
fx  and fy in Q2 such that ordp / r (£ -  x0, rj -  y0), ordp f y( f  -  ж0, rj -  y0) ^
^  -  6)-

P roof. Let X  = x — xo, Y  = у — yo, and h = f x , g = f y. Then

h(X,  Y ) = 3a X 2 + 2b X Y  + cY2 + hxX  + hyY  + ho,

g{X , Y) = bX 2 + 2cXF + 3dF 2 + gxX  + gyY  + g0

where lz denotes the partial derivatives of the polynomial l with respect to 
г defined at (xo,yo) and l0 = l(x0 ,y0).

Let a ,ß  be the roots of the quadratic polynomial

u(x) = (c2 — 3bd)x2 + (be — 9 ad)x + b2 — 3ac.

If а ф ß, then it can be shown that the polynomials

H(U , V) = (3a + ba)(h + ag), G(U, V) = (3a + bß)(h + ßg)

with

U = (3a + ba)X + (b + ca)Y, V = (3a + bß)X + (b + cß)Y

will have a simple intersection in the indicator diagrams associated with their 
respective Newton polyhedrons. By a theorem of Atan and Loxton [7] and 
resubstitution of variables there is a common zero (£ ,77) of h and g with 
ordp (£ -  .t 0 ) ,  ordp( p -  yo) ^  | ( a  -  S0) where So — max{ordp 3a,ordp 6 }. We 
obtain the required estimate from our hypothesis since clearly ho й  t>-

Suppose now that a = ß. Consider the linear combinations of h and g 
as follows:

(1) H ( X , Y )  = (3a + ba)(h + ag),

(2) G( X , Y)  — (3a + ba)2(cf  — bg).
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Set

U = (За + ba)X + (b + ca)Y, V — (За + Ьа)Х — ( 6  + ca)Y.

Then (1) and (2) will become

(3) H(U , V) — U2 + AU + (За + ba)(h0 + ag0),

(4) G{U, V) = BUV + CU + DV  + (За + ba)2 (ch0 -  bg0) 

where

A = 2 [(За + 0а)жо + (b + ca)yo] , В = b2 — 3ас,

С = (b2 — Зас) [(За + ba)xo — (Ь + са)уо\ ,

D = (Ь2 -  Зас) [(За + ba)x0 + ( 6  + ca)j/0] •

Now let
1Т = Б1/ + С, T = U + D/B.

Since a  is a double root of u(x) we would have

(c2 -  36d)(3a + ba) 2 = (6 2 -  3ac)(h + ca ) 2 

Hence with the substitution of T and VH in (3) and (4) we will have

(5) H (T , W)  = T 2 - ( 3 a  + ba)(ho + ag0),

(6 ) G(T, W ) = TW.

Consider the indicator diagrams associated with the polynomials (5) and
(6 ). By a method of Atan and Abdullah [10] the indicator diagrams associ­
ated with the Newton polyhedrons of these polynomials will have a simple 
intersection at the point

(A ,p)=  Q o r d p (3a + ba)(h0 + а 0 О),оо^ .

Hence by a theorem of Atan and Loxton [7], H and G will have a common 
zero (Tq, Wq) such that

ordp To = A, ordp Wq = p.

This remark and resubstitution of variables together with our hypothesis will 
lead us to our assertion as above.
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The following theorem gives the estimate for N ( f x, f y',pa) where /  is as 
in the above lemma. The proof follows from the results of Lemmas 3.1 and 
3.2, and the fact that by a theorem of Bezout (see for example [3]) f x and 
f y have at most 4 common zeros.

T heorem 3.1. Let p be a prime and (0) a polynomial in Z[x,y] with 
non-vanishing terms in its homogeneous part of degree 3. Let a > 0 and b = 
= maxjordp 3a,ordp 6 ,ordp c,ordp 3d}. Then

N { f x , f y;pa) ü  mm {p 2a,4pa+s} .

4. E stim ation  o f S( f ; pa)

Let /  be a two-variable polynomial with integer coefficients of total de­
gree m and p a prime. From the work of Deligne on Weyl’s conjecture it can 
be shown that

|5 '( /;р “ )| ^  (m -  1 f p  

under suitable conditions on / .
Let p be an odd prime and a > 1. If f (x ,  y) =  ax3 + bx2y + cx -f dy + e 

is a polynomial in Z[x,y], and 6 = max {ordp 3a, |  ordp 6 }, At an [8 ] showed 
that for this cubic polynomial

\S(f ' ,pa)\ й  m in{p2M p ¥ + « } .

In the following theorem we will consider a more general cubic polyno­
mial than the one above of the form (0) with coefficients in Z and we will 
show that b is in fact dependent on the coefficients of the dominant terms 
of / ,  provided that each term in this homogeneous portion of highest degree 
of /  is non-zero. The assertion generalizes and improves the result as stated 
immediately above especially in the determination of the value of b.

T heorem 4.1. Let p be an odd prime and a  > 1. Let (0) be a poly­
nomial in Z[ж,з/], with non-zero coefficients in its cubic segment. Let b — 
— max{ordp 3a,ordp 6 ,ordp c,ordp 3d}. Then

I S( f ; pa)\ й  m in{p2o,4 p ^ + 5} . 

P roof. In Theorem 3.1 it is shown that

N { f xJ y;pa) й  min{p2 0 ,4pe+Ä}
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where 0  = [а /2]. If а — 20, it follows from Theorem 2.1 that \ S ( f ; pa)\ ^  
^  p2(a-0 ) mjn |p 2® 5 4p0 + i} which lead us to the required estimate.

Suppose now that a = 20 + 1 with 0 ^ 1 .  We will apply the result of
Theorem 2.2 in this case. If D = (bm — се) 2 — (3am — be)(cm — 3de) is not 
divisible by p, then the congruences

f x = 3 ax2 + 2 bxy + cy2 + e, f y — bx2 + 2 cxy + 3 dy2 + m

and

IJj\ = (12ac — 4b2 )x2 + (36ad — 4bc)xy + (12W — 4c2 )?/2 = 0(mod p)

do not have a common solution. Thus, in this case each term in the sum 
E  \ K A u )\ X̂ 2 is 1. Consequently,

\S(f-,pa)\ i p aN ( f : p @)

and the required estimate follows. If D is divisible by p then there are two 
possibilities in £  |A 7(ii) |1/2. If j A '/(u ) | ^  1 then the term correspond­
ing to u is counted with weight at most pa+1/2. If j A'/ (u ) | = 2 then the 
term corresponding to u must satisfy the stronger congruence grad / ( u) = 
=  0 (mod pe+1) and hence must be counted with weight at most pa. As a 
result we would have

I S(f-,pa)\ й pa+l/2N { f \ p e ) ^  pa+1/ 2 m m{ p 2e A p@+6}

and the estimate as required follows.

5. Conclusion

In this paper we obtained explicit estimate for S( f ;pa) for a more general 
cubic polynomial /  than the one considered in an earlier work. The result 
generalizes and improves that in the previous work and give some indications 
on how the general case should be examined especially in the search for the 
most suitable discriminant analogous to the one-variable case.
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ADDITIVE GROUPS OF TRIVIAL 
NEAR-RINGS

Acta Math. Hungar.
6 9  ( 1 - 2 )  (1 9 9 5 ) , 9 5 -9 7 .

S. F E I G E L S T O C K  ( R a m a t  G a n )

Groups G in this note are not necessarily abelian, but the group opera­
tion will nevertheless be denoted by +. In order to remain consistent with 
this notation, direct products of groups will be called direct sums. The semi­
group of endomorphisms of G will be denoted by E(G). All near-rings are 
left near-rings. The additive group of a near-ring R will be denoted by Д+. 
A near-ring R, with Я+ = G, is said to be trivial if there exists a subset 
S  ^  G such that multiplication in R  is defined by

Clearly if |G| ^  2 then every near-ring R with R+ = G is trivial. In 
[1, Problem 2.16] Clay posed the problem whether or not there are other 
groups satisfying this property. Some partial results concerning this prob­
lem are obtained in this note, including an answer for abelian groups, and 
finite groups.

D e f i n i t i o n . A group G is said to be a TNR-group (trivial near-ring), 
if every near-ring Д, with R + — G, is trivial.

T h e o r e m  1 .  Let G be a group, and let <f> G E(G) such that ф ф 1 q , ф ф 
ф 0, and either (1) ф2 = ф, (2) ф2 = \ g , or (3) ф2 = 0. Then G is not а 
TNR-group.

P r o o f . Suppose that ф satisfies ( 1 ) .  Let R  = (G ,+ ,-), with multiplica­
tion in R defined by

Let x ,y ,z  G R. If (x G ker ф) V (у G ker ф) then it is readily seen that (xy)z = 
= x{yz) — 0. If (x ф ker ф) Л {уф  ker<̂ >) then (xy)z = x(yz) = ф(г), and so 
multiplication in R is associative. It is readily seen that x(y  -f z) = xy + xz 
for all x ,y ,z  G R.

C l a i m . There exists a G R which satisfies ф(а) ф 0 ,  and ф(а) ф a.
P r o o f  o f  C l a i m . Since ф ф 0  there exists a\ e R such that ф(а\) ф 

Ф 0. It may be assumed that 0(ai) = a\. Since ф ф Iq there exists a^ G R

0, if x G ker ф
x • у — <

У ф(у), otherwise.

0 2 3 6 -5 2 9 4 /9 5 /$ 4.00 (с) 1995 Akadém iai K iadó, B udapest
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such that </>(«2 ) Ф а2 - It т а У be assumed that ф(а2) = 0. Let a = a\ + 0 2 - 
Then 0(a) = a\ with а* ф 0, and <ii ф a. Let a be as in the Claim. Then 
a ■ a = ф(а), so a • а ф 0, and a • а ф a, i.e, R  is not trivial.

Suppose that ф satisfies (2). Let a £ G such that 0(a) ф 0, and 0(a) ф a. 
Let R  = (G, + ,•) with multiplication in R defined by

Let x ,y ,z  £ R. If (x ф {a,0 (a)}) V (у ф {a,0 (a)} ) then it is readily

direct computation shows that (xy)z — x(yz) in all four cases. Therefore 
multiplication is associative in R. Again x(y  + z) — xy  + xz  for all x ,y ,z  £ 
£ R. Since a ■ a = 0(a), and 0(a) ф 0, or a, it follows that R  is not trivial.

Suppose that 0 satisfies (3). Let R -  (G , +, •) with multiplication defined 
by

It is easy to see that R is a near-ring. Let a £ R  such that 0(a) ф 0. 
Since 02 = 0, it follows that а ф im0. Therefore a ■ a — 0(a) with 0(a) ф a, 
and 0(a) ф 0, which yields that R is not trivial.

C o r o l l a r y  2 .  Let G be a non-trivial semi-direct product of a group К  
by a group H . Then G is not a TNR-group.

P r o o f . The natural projection of G onto H along К  satisfies condition 
(1) of Theorem 1.

C o r o l l a r y  3 .  An abelian group G is a TNR-group if and only if\G\ ^

P r o o f . Let G be an abelian group with |G| > 2. The map 0 : G —*■ G 
defined by 0(x) — — x for all x £ G, either satisfies condition (2) of Theorem 
1, or 2 • x = 0 for all x £ i2, in which case G is the direct sum of a  copies of 
Z{2), with a  > 1. Corollary 2 implies that G is not a TNR-group. Actually 
there exists a field F with F+ = G ; choose F  to be a field extension of degree 
a of the prime field of order 2. Let a £ F, а ф 0, а ф 1. Then a • a ф 0, or a 
so F  is not a trivial near-ring.

C o r o l l a r y  4 .  Let G be a group such that G/Z{G) possesses an element 
of even order (Z(G) = the center of G). Then G is not a TNR-group.

P r o o f . There exists an element a £ G, such that а ф Z(G), but 2a £ 
£ Z{G). Conjugation by a satisfies condition (2) of Theorem 1.

0 (t/) if x = a 
x ■ у = < у if x = 0 (a) 

, 0  otherwise.

<  2 .
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C o r o l l a r y  5 .  Let G be a finite TNR-group with |G| > 2 .  Then G is 
an odd order group.

P r o o f . Let Gi — {a 6  G \ |a| = a power of 2}. Corollary 4 yields that 
(? 2  is a subgroup of G, and that G2 ^  Z(G). Since ( |Сг|, IG/G2 I) = 1, it 
follows that G is a splitting extension of G2 , [2, Theorem 15.2.2], and so 
G2 = {0} by Corollaries 2 and 3.

T h eo r em  6 . Let G be a finite group. Then G is a TNR-qroup if and 
only if |G| ^  2 .

P r o o f . Suppose that G is a finite TNR-group, with |G| > 2. Let G' be 
the commutator subgroup of G, and let p be a prime dividing \G/G'\. Since 
G is solvable by Corollary 5 and the Feit-Thompson Odd Order Theorem, 
G /G ' is non-trivial, and has a cyclic direct summand of order pk generated 
by a, with к ^  1 . Suppose there exists b £ G', with |6 | = p. Let d : G —► 
—» G/G' be the canonical epimorphism, let 7r be a projection of G /G' onto
(a), and let p : (o j —► G be the homomorphism induced by the map a 
\-^b. Then <̂ = />o7T o t? isan  endomorphism of G with ф ^  0, but ф2 = 0, 
a contradiction. Therefore p \  |G'| for every prime p dividing the order of 
G /G ', and so ( |G'|, |G /G '|) = 1. By, [2 , Theorem 15.2.2], it follows that G 
is a semi-direct sum of G' by a subgroup H of G, contradicting Corollary 2 .
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ON THE INTEGRABILITY AND  
L'-CONVERGENCE OF DOUBLE 

TRIGONOMETRIC SERIES. II
F. MÓRICZ* (Szeged)

1. Introduction

We consider double cosine series
OO OC

о -i) E E  cos jx  cos ky,
j = о k = о

double sine series

( 1.2)

OO OC
^ ^ 2  Cl J k s'm jx  sin ky, 
j = 1 k =  1

and cosine-sine series

(1-3)
OC OC

E E  Ajdjk cos jx  sin ky
Í—0 k=1

on the positive quadrant T 2 : =  [ 0 , 7г] X [ 0 , 7г] of the two-dimensional torus, 
where Ao =  1/2 and \ j  — 1 if j  ^ 1. Our basic assumption is that the real 
coefficients a3k form a null sequence of bounded variation, that is,

(1.4) djk —* 0 as j  + к —► oo

and

(1-5) E E  |Aiiejfc| < oo.
j к

* T his research was p a rtly  su p p o rted  by th e  H ungarian  N ational Foundation  for Sci­
entific Research u n d e r G ran t #  T  016393.
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We remind the reader that the differences A pqdjk are defined for all pairs of 
nonnegative integers p and q as follows:

A pqajk := Y ,  (l»* ^  °)-
i=0 i=0 \  /  \  /

Then the following recurrence relations hold: AooOjfc = ajk,

A pqQ,jk — Др—1 ,qdjk ~ ^ p —l,q^j+l,k (P = 1)?

/ \ p q d j k  =  A pq  — i d j k  ^ p , q — l®j,A:+l (Ч = !)•

The next simple obs'ervation will be useful on many occasions: If (1.4) 
is satisfied and we have A pqajk ^  0 ( j ,  к ^  0) for some p, q ^  0, then we also 
have APb9lajk ^  0  (j ,k  ^  0 ) for all pi,q i, where 0  ^  pi ^  p and 0  ^  q\ ^  q. 
Consequently, the sequences {ДРь91а^}  are nonincreasing both in j  and in 
к whenever either p\ < p от q\ < q.

Now, it is proved in [3] that, under conditions (1.4) and (1.5), series (1.1) 
converges to a function f  (x, y), say, for all (ж, у) G T2 with x ф 0, у /  0, in 
Pringsheim’s sense:

( 1 .6 ) у) E E  XjXkdjk cos j x  cos ky —+ /(ж, y) as m ,n —*oc.
j = 0 k=0

Analogously, under conditions (1.4) and (1.5), series (1.2) converges to a 
function g(x,y) for all (x ,y )  G T 2, and series (1.3) converges to a function 
h(x,y) for all (x ,y ) G T 2 with x ф 0; in Pringsheim’s sense in each case. We 
denote by smn(x, y) the rectangular partial sums of each series in (1.1)—(1.3). 

We will be concerned with the following problems:
(i) the sum of one of the series (1.1)—(1.3) is integrable on T 2 in 

Lebesgue’s sense, in sign: G T ^ T 2);
(ii) the series converges in X1-norm.
We denote by || • || the two-dimensional X1 (T 2 )-norm. Occasionally, 

II • К may stand for the one-dimensional X1(T)-norm, T := [0 , 7г]. However, 
it will be clear from the context what the case is.

2. Double cosine series

We will consider double sequences { d j k } satisfying either condition (2.1) 
or (2 .2 ), where

(2 .1 ) Д 21 djk ^  0  and Д 12djk ^  0  (j , k  ^  0 )
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(may be called convex case) and

OO 00

(2 .2 ) ^  + 1 )(& + 1 )|A 22<*jfc| < oo
j=0 k=0

(may be called quasiconvex case).
R e m a r k s , (a) Condition (2.1) is equivalent to the fact that the sequence 

{Aiiajjt} is nonincreasing both in j  and in k.
(b) Condition (1.4) together with (2.1) or (2.2) imply (1.5).
(c) Condition (1.4) and

/ \ 22ajk ^  0 (j, A; ^  0),

which is stronger than (2.1), imply (2.2). It is an open problem whether
(1.4) and (2.1) imply (2.2) or not.

The following theorem was essentially proved in [3, pp. 206-211].
T h e o r e m  1. (i) I f  {ajk} satisfies (1.4) and (2.1), then the sum f  of 

series (1.1) is in L1 (T 2 ) and (1.1) is the Fourier series of f .
(ii) If, in addition,

(2.3) amo\nm  —► 0 and aon l n n —>0 as m ,n -+ oo , 

then

(2.4) ||smn -  /II -+• 0 as m, n —> oo 

if and only if

(2.5) am„ ln m ln n —»0 as m ,n —> oc.

The first part of the next theorem is also contained in [3, Corollary 3].
T h e o r e m  2. (i) I f {ajk} satisfies (1.4) and (2.2), then the sum f  of 

series (1.1) is in l } ( T 2) and (1.1) is the Fourier series of f .
(ii) If, in addition,

OO

(2 .6 ) (In n) J ] 0  + 1 )|Д 2оо?п| —► 0  and n —>• oo
i=о

and
OO

(2.7) (In m) У + 1)|A02omfc| -> 0 as m -> oo,
к-о
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then statements (2.4) and (2.5) are equivalent.

R e m a r k s , (a) It follows from (2.2) that the single sequences { ajn-j ^  0 } 
are also quasiconvex for each n ^  0  and

CO

^ ( j  + l) |A 20ßjn| -*■ o as n -> 0 0 . 
i—о

But (2.6) requires more than this. Analogous observations hold for the single 
sequences {amk:k ^  0 }, too.

(b) If
Л20djk ^  0  and Д 02öjfc ^  0  ( j ,k  ^  0 ),

then (2.6) and (2.7) are equivalent to (2.3), respectively. So, [3, Corollary 3] 
is a particular case of Theorem 2.

(c) Theorems 1 and 2 extend Kolmogorov’s results [1] (see also [7, pp. 
109-110]) from single to double cosine series.

P r o o f  o f  P a r t  ( i i )  i n  T h e o r e m  2 .  Let

(2 .8 ) Im := {2 m, 2 m + 1 , • • •, 2 m + 1  — 1 } (m £  0 ).

Since
CO OO OO

2 m max I Aio«jn| ^  ^  2 m ^  |Д 20^п | S
m —0 ^  m m —0 j —2m

OO OOOO OO
= S  1л 20а2'п| + 2  S  lA 2oajn | й  2  ^ 2  j \A 2oajn\

j= 1 i= 2 j=i j = 1

and
cx>

IДю®0п| ^ У .  I ДгрДупI)
3=0

condition (2.6) implies [3, condition (1.13)] for p = 0 0 . Analogously, (2.7) 
implies [3, condition (1.14)] for p — 0 0 . Thus, [3, Corollary 2] applies and 
gives the wanted equivalence (2 .4 )0  (2.5).
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3. Double sine series

The following theorem was partly proved in [3, pp. 214-217]. 
T heorem 3. I f {ajk} satisfies (1.4) and

(3.1) Д на,* ^  0 1),

then the sum g of series (1.2) is in L l {T 2) if and only if

(3.2)

in which case

2 2  + 1 ) ln(fc + 1 ) < oo,
j = l  fc=i

ll^mn — q\\ * 0  as m, n —> oo; 
consequently, (1.2) is the Fourier series of g.

Remarks, (a) Under (1.4) and (3.1), condition (3.2) is equivalent to
OO OO

j=i fc=i J

(b) Conditions (1.4), (3.1) and (3.2) imply (2.5).
(c) Theorem 3 extends W. H. Young’s result [6 ] (see also [7, pp. l l l -  

l l  2 ]) from single to double sine series.
P roof of T heorem 3. The proofs of sufficiency and L1-convergence 

are already contained in the proof of [3, Theorem 5].
Necessity. By summation by parts,

m  n

(3.3) Sm,n(x,y):= ^ 2 ^ 2  ajk sin j x  sin ky -
j=1 A;=l

m  n  m

= E E  D j A i i d j k  + ^   ̂D j (ж)-Ртг(у) Aioo^-f-i
j = 1 к= 1 j = 1

n

“I" ^   ̂ ® m + l,n + l  ^ m ( ^ ) - D n ( j / ) ?
k= 1

where
m

Dm(x) := 2 2  sin jx  -----
j= 1

cos(x/2 ) — cos(m + l / 2 )x
2  sin(x/2 )

(m ^  1 )
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is the conjugate Dirichlet kernel. Following an argument similar to the one 
in [3, pp. 205-206] for the case of double cosine series, we obtain that series 
(1.2) converges in Pringsheim’s sense to the function g defined by

OO OO

g(x,y) ■= E E  D j ( X ) I-) к ( У ) A 11 ß j к
j = 1 fc= 1

for all (x , y) G T 2.
We shall use the representation

Dm(x) -  D*m{x) + -  sin mx, where D ^{x)
1 — cos mx
2 tan(x/2)

is nonnegative. It is easy to see that there exist positive constants C\ and 
C2 such that

(3.4) Ci ln(m + 1 ) ^  \\D^\\ ^  C2 ln(m + 1) (m ^  1).

Accordingly, we may write

OO  ̂ OO oc
д(х,У)= ^ 2 J 2 D * ( x )D l(y)A n ajk + ^  J ]  £  D](x)(sm ky)A u ajk+ 

j=1 k=1 j—1 k—1

+ 2  X ] '^2 (s'm jx )D l(y )A 11ajk + -  ^(sinj'x)(sinA:?/)A11aj fc := 
j=l fc=l j=i fc=i

:= g*(x, у) + 5i(^, 2/) + 5 2 (2 , 2/) + 9 з ( У ), say.

By (3.2), g3 is continuous. Clearly,

J OO OO
|5i(z, 2 / ) l  ^  2  S  E  D ](x)A n ajk .

j = 1 fc=l

By (3.4) and (3.2),

\Ы \ й  c 2 ] T J j  Д ц о ^ М ;  + 1 ) < oo.
j=l k= 1

This means <71 G T ^ T 2). Similarly, £ Сг(Т2).
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To sum up, g 6  L l (T 2) if and only if g* € /^ (T 2). By (3.4) again,
oo oo

I l 5 * | |  ^  C ^ E ^ n a ^ H j  +  l ) l n ( f c +  1 ) .
j=i k=i

This completes the proof of necessity.

4. Cosine-sine series

This type of series was not considered in [3]. We shall prove the following 
T h eo r em  4. (i) I f {ajk} satisfies (1.4),

(4.1) A2iö^ 0  ( j £ 0 , k ^ l ) ,

and

(4.2)
OO

^ ( A o iö 0/t)ln(fc + 1 ) < oo,
k=\

then the sum h of series (1.3) is in TJ(T 2) and (1.3) is the Fourier series of 
h.

(ii) If, in addition,

(4.3)

then

(4.4)

OO

(In m) ^ ( A 0 ictmfc) ln(fc + 1 ) —> 0  as to —► oo, 
k=1

Ilsmn — ЛЦ —s► 0  as m , n oo.

R e m a r k s , (a) Condition (4.1) is equivalent to the fact that the single 
sequences {Anajk'.j ^  0 } are nonincreasing for each к ^  1 .

(b) Under (1.4) and (4.1), condition (4.2) is equivalent to

E
j = 1

a o  к < 0 0 ,

and also equivalent to
OO OO

'}T 'S£2 (A n a:jk)\n(k + 1) < oo;
j—0 fc=l
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while (4.3) is equivalent to

(In m E ^mk
~k~

j = 1

0  as m —> oo,

and also equivalent to

OO OO

( Ь т ) £ £ ( Д „ а * ) Ч * + 1 ) - > о о  and m —>■ oo.
j = m  f c = l

(c) It follows from (1.4), (4.1) and (4.2) that

OO

(4.5) ^ ( A 0iamfe)ln(fc + 1) —> 0 as m oo,
k=1

in a nonincreasing way. But (4.3) requires more than this.
(d) Furthermore, under (1.4), (4.1) and (4.2), we have (1.5), the second 

limit relation in (2.3), and (2.5).'
To prove Theorem 4, we begin with an inequality due to Sidon [4] (see 

also [5]).
L e m m a . For every sequence { 6 j }  of real numbers and integer m  > 0,

У! bj F)j
j=o

2 (m + 1 ) max \bj\
05̂ 7̂71

Hence it follows immediately that

(4.6)

First, we prove a more general result than Theorem 4.
T h e o r e m  5. I f {ajk} satisfies (1.4) and

OO (
(4.7) ln(fc + 1) I |Anflofc| +

k= 1 l

then the sum h of series (1.3) is in /T (T 2) and (1.3) is the Fourier series of 
h.

OO ^
V  2 m max |Anßjfc| > < oo, 

i eIm71=0 )
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Proof of T heorem 5. By summation by parts,

m n
(4.8) smn(x ,y ):=  ^ 2 ^ 2  \ ja jk cos j x  sin ky =

j =0 k = l

— ^   ̂^   ̂D j { Kx ^ D k { y ) ^ \ \ d j k  "h ^   ̂D j ( x ) D n ( y ) A w a j )n+ i  +  

j =о k = i  j =о
n

+ E Ű m(x)Z^/c(y)z\oiUm+l,fc T aTn̂ .\^n^.\Dm{x}Dn{y)
k = l

(cf. (3.3)). Hence it follows that series (1.3) converges in Pringsheim’s sense 
to the function

oo oo
(4.9) / 4 * , r i : = £ £  D j ( x ) D k { y ) A n a j k

j = 0  k = 1

for all (x ,y)  G T 2 with x ф 0. Analogously to (3.4), there exists a constant 
C such that

(4.10) H A J J A J  ^ C T n (m + l)  ( m ^ l ) .

Now, it is plain that

M I S c £ > ( f c  + i)
k —1

oo

El D jA udjk  .
j= 0

Making use of (4.6) yields the first part of Theorem 5.
As to the second part, we refer to [2], where we proved that if the sum h 

is a cosine-sine series, with coefficients {ajk} satisfying conditions (1.4) and
(1.5), is in ^ ( T 2), then it is the Fourier series of h.

P roof of T heorem 4. By (4.1), the left-hand side in (4.7) does not 
exceed the following sums:

(4-11) ^ ln ( f c  + 1) I Anßofc + A iiapt + ^ 2  ^ п а2т,к i =
к= 1 I 771=1 J

oo I oo

= E  +  1) S A n aofc + Anaifc + 2 ^ 2 2  A i l a j k  / ^
k=1 J=1
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oo
й 3^(Aoißofc)ln(A;+ 1) < 00, 

к—1

due to (4.2). So, Theorem 5 applies and gives Part (i) as a corollary. 
It remains to prove Part (ii). By (4.8) and (4.9),

h(x, y )  -  smn( x , y )
m oo oo oo

■ Б Е  + Е Е
=0 k—n-\-l j=m+1 k=l

D j ( x ) D k( y ) A u ajk-

m

^  ' ^j(^')^7l(2/)^10®j,n+l
j =0

— У   ̂D m {x)D k{y )A Q \( lm + l,k  am +l,n-\- lD m (x)D n(y^. 
к— 1

First, by (4.1), (4.6) and (4.10), we deduce that

(4.12)
OO OO

E E  + E E
j —0 k=n+1 j—m+1 fc=l

> DjDkA\\0,jk <

oo m OO OO

J 2  H k + 1) У \ D j A n ü j k +  C ^ l n ( f c  +  1 ) А ц  a j k

fc=n-|-l 3=0 k= l j= m + 1

oo
Ú 2 C ln(fc + 1 )

k~ n -\-1
|A iia0fc| + ^ 2 i m ax|A n a 7fc| +

OO OO

+ 2 C ^  ln(fc + 1 ) ^ 2  2 i max |Anöjfc| ^  
k=l I—Iq je '

oo oo
^ 6 C ^ 2  (AoiQofc)ln(fc + 1 ) + 4C y^(A oia2i0-i ln(fc + 1 ),

k = n + l k = 1

.
provided m 2  3 , where the integer l0 is defined by the condition 2 ‘° ^  m + 
+ 1 < 2г°+1. Since 2г° - 1  > т /4, by (4.5), we conclude that the right-most 
side in (4.12) tends to zero as m ,n  —► oo.
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Second, by (4.1), (4.2), (4.6) and (4.10),

^   ̂DjDn A  10̂ 7,n+1 <
1=0

S  2 C ln (n +  1 )  ̂ |A10a0 ,n+i| + ^ 2 'm ax |A i0a?,„+i| > ^
/=о

^  6 Cao,n+i ln(n + 1 ) —* 0  as n —* оc 

(cf. (4.11) and (4.12)).
Third, analogously to the above estimates, a termwise approach gives

П

к- 1
<

n

^ C 2 ln ( m + l) '^ ( A o ia m+i'k)ln(k + l ) —* 0  as m —>■ оо,
fc=i

uniformly in n. Here we used (4.3).
Fourth, again by (4.3) and (4.10),

\\am+i,n+iDmDn\\ й  C 2om + l i„ +1 ln(m + l)ln(/i + 1) —>■ 0 as m ,u -+ oo . 

This completes the proof of Part (ii) in Theorem 4.
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TRIANGULAR MEAN VALUE THEOREMS 
AND FRÉCHET’S EQUATION

J. A. BAKER (Waterloo)*

1. Fréchet’s functional equation

Suppose that A is an additive Abelian semigroup, В  is an additive 
Abelian group and /  : A —► B. For у E A define ryf  : A —► В by

T y f (x )  = f ( x  + y) for x e A

and define A yf  : A —» В by

A yf(x )  = f ( x  A y ) -  f(x )  for x £ A.

With addition defined “pointwise”, B A — the set of all functions from A into 
В  — is an Abelian group and, for each у 6  А, ту and Ay are homomorphisms 
of B A into itself and

Ay f  = Tyf - f  for all f e B A.

If В  is a vector space then so is B A and in this case, for every у 6  А, ту and 
A y are linear operators on B A. If A — Z+ := {0,1 ,2 ,...}  we will write A 
instead of A] (in conformity with standard notation in the calculus of finite 
differences).

Let N = {1 ,2 ,3 ,...} , let Z denote the set of all integers, let R  denote 
the set of all real numbers and let C denote the set of all complex numbers. 
Also let Z+ = {0} U N.

For m 6  N and у £ A, A™ — the m-th iterate of Ay — has the property 
that, for all /  G B A, and for all x £ A,

( 1 )

тп / \ m  /  \

a t / « = p - i r - ‘ ( ™ ) / ( * + ky) = £ ( - 1)т - ‘ ( “ ) ч , л * )

* This research was supported by NSERC (Canada) Grant A7153.
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The Fréchet functional equation

(2 ) Д “ /(* ) = О

has been studied by numerous authors going back to Fréchet [9] and includ­
ing Mazur and Orlicz [15] and McKiernan [16]. In case В  satisfies a weak 
divisibility condition, the solutions of (2 ) are “generalized polynomials” in 
the sense of the following theorem of Djokovic [7].

T heorem A. Suppose that A is an Abelian semigroup, В  is an Abelian 
group, m £ Z+ and В has the property that the map b —> (m !)6  is an auto­
morphism of В . Then a function f  : A —> В has the property that

f ( x ) — 0 for all x ,y  £ A

if and only if there exists ao £ В and a^ : Ak —+ В for 1 ^  к m such that, 
if m 2  1 then a\ is additive (ai(x + y) =  ai(x) + a\(y) for all x, у £ A), if 
m 2 . 2  then ak is symmetric and multiadditive for 2  ^  к ^  m and

f(x )  = ao + ai(x) + -----(- am(x, x , . . .  ,x ) for all x £ A.

If A = R n and В — R then, under mild regularity assumptions, the so­
lutions of (2) are genuine polynomials. For example Kemperman [13] has 
proved some general results which imply the following.

T heorem B. If m £ N, /  : R" —► R, C is a subset of R" with positive 
inner Lebesgue measure, (2) holds for all x £ R ” and all у G C and f  is 
bounded on some set of positive Lebesgue measure then f  is a polynomial of 
degree at most m — 1 .

Our first aim is to generalize the following result from [2].

T heorem C. If 0 < a < b, a/b is irrational, m  6  N, /  : R —*• C, /  is 
Lebesgue integrable on an interval of length та and

K f  = АГ /  = о

then f  is almost everywhere equal to a polynomial function of degree at most 
m — 1 .

In order to obtain our desired generalization (Theorem 1 below) we will 
need an estimate (Proposition 1 below) for which, in turn, we require several 
lemmas.

Lemma 1. If A and В are additive Abelian groups, m £ N, /  : A —» В , 
у £ A and A™f - 0 then 2Afyf  — 0 and A™/-  = 0 where f~ ( x ) = f ( —x) 
for all x £ A.

Acta Mathematica Hungarica 69, 1995



TR IA N G U LA R  M EAN VALUE TH EO R EM S 113

P roof. For every x £ A,

TO / 4
0  = A™f(x -  my) = ™) /((ж  -  my) + fo/) =

A:=0 '  '

m / \

/c=o '  '
m / \

= £ ( - i ) m-<"-J', ( ”  з/(*+ л-»)) =
j = 0 v  •y /

m / \
= ( - i r E < - i r  " № и ( - » и - 1 г а д

j=o V J '

Hence, for all x £ A, we also have

m / \
о  =  Д ”  / ( - * )  =  £ ( - 1 Г - ‘ Г / < - *  -  * » )  =  Д ? Г М -  □

The next lemma is a well known assertion from the calculus of finite 
differences (see e.g. [5], page 51).

Lemma 2. Suppose that о : Z+ —► C (or any rational vector space) and 
m £ Z+ . Then Д то+1<т = 0, i.e.

TO + i , J_ i \
Y  ( - l ) m+W TO+ J/(jfc + i/) = 0 for all k £  Z+, 

if and only if a is a polynomial function of degree at most m; in fact

TTL a j / Г\ \
cr(k) = ^— /ij(fc) for all к £ Z+

j=o 3’

where po{k) = 1 and pj(k) = П^=о(^ — v ) f or J € N  and к £ Z+ .

Lemma 3. I f о : Z+ —> C, m £ Z+ , A m+1o- = 0 and | <т(&)| ^ M  for 0 ^ 
< к < m then

<r(fc)| ^  e2M (k  + m)m for all к £ Z+ .
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P roof. If j  £ Z+ then, by (1),

IД-*<r(0 )| ^  E  1  Л/ =  2 >М.
k=0

If 1 ^  j  ^  m and fc £ Z+ then

j - i
|/ij(fc)| ^  П ^  + v ) ^ { k - \ - m -  1)J ^  (k + m)m.

i/= 0

Thus, for all к £ Z+,

I ст(Аг)I E ^  —rj—(k + m)m E e2 M{k + m)m. □
]= 0  3'

Lemma 4. Suppose that F  : R  -* C, m £ Z+, A™+1F  = 0 and | F(x)| ^ 
^  M for |x| < m + 1. Then | F(x)| ^  e2M ( |x| + m )m for all x £ R.

P roof. Fix t temporarily in [0,1) and define o{k) — F(t + k) for к £ Z+. 
Then

A m+1a(k) = А ? +1 F(t + k) = 0 for all к £ Z+ 

and I cr(k)\ ^  M  for 0 ^  к ^  m. By Lemma 3,

|<j(fc)| й e2 M{k + rn)m for all к £ Z+~.

It follows that

I F(t + k)\ ^  e2M {k + m)m for 0 ^  f < 1 and к £ Z+.

For 0 ^  x £ R , if [x] denotes the integer part of x, | F(x)| = | F ( (x — [x]) + 
+[x]) I SL e2M  ( [x] + m) m ^  e2M (x  + m)m. It then follows from the second 
part of Lemma 1 that | F(x)| ^  e2 M (\x\ + m) m for all x £ R. □

For T  g  R n let

(T ) — I ^  n i j t j  : к £ N, mj £ Z and tj £ T  for 1 ^  j  ^  fc j  
'■j=l 3

be the subgroup of R n generated by F; we say that T  is substantial provided 
(T) is dense in R ” . For example, if 0 ф a, b £ R  and a/b is irrational then
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{a, b} is a substantial subset of R. It is clear that a substantial subset of R n 
must contain a basis for R n (as a real vector space) and must have at least 
n + 1 members. It follows from a theorem of Kronecker (see [4]) that there 
are substantial subsets of R 71 containing exactly n + 1 members. If n ^  2 
then 5 n _ 1  := (a: £ R n : |x| = 1} is clearly a substantial subset of R n : for

П
x =  (x i ,. .  .x n) and у = (y i , . . . ,  yn) 6  R n we let x • у = ^ xkyk and |x| =

k=\
— (x • x )2 .

P r o p o sit io n  1. Suppose that f  : R n —>■ C, /  is continuous, m £ Z+, 
T is a substantial subset of R 71 and Д™+1/  = 0 for all у £ T. Then f  has 
polynomial growth; in fact there exists A > 0  such that

I /(x ) | ^  A{\x\ + l) mn for all x £ R n.

P r o o f . Choose i/7  £ T  for 1 ^  7  ^  n such that {t/i,. . . ,  yn} is a basis 
for R n. Let L be that invertible linear transformation of R ” onto itself such 
that j/7  = T67  for 1 ^  7  ^  n where {b1?. . . ,  bn} is the standard basis for R n 
and let g(£) — f(L£) for f  £ R n. Then for 1 ^  7  ^  n and all £ £ R ” we have

k=0 '  '

nH-1 / I i \
= £ ( - 1  r + i - * / m + \ / ( ц  + к Щ )  =  Д “ +1/(Х О  =  0.

к=0  '  '

Since /  is continuous on R n, so is g. Let

M  = max { I g (x i, . . . ,  xn)| : xj £ R  and \xj\ ^  m + 1 for 1 S 3 = n } •

If n = 1 the desired conclusion follows directly from Lemma 4. So sup­
pose that n ^  2 .

Fix x2, . . . ,  x„ temporarily in [-m  -  1, m + 1] and let F(x) = g(x , x2, . . . ,  
xn) for x £ R. Then Д ™+1 F(x) = Д ^ +1д(х, x2, . . . ,  xn) — 0 for x £ R  and 
I F(x)| ^  M  for |x| ^  m + 1 so that, by Lemma 4, | F(x)| ^  e2M ( \x\ + m) m 
for all x £ R. We have thus shown that | jf(xi,x2, . . .  ,x„)| ^  e2M ( |xj| + m) m 
for xi £ R  and x2, . . . ,  xn £ [—m  — 1, m  + 1].

Next fix xx temporarily in R. If n = 2 let F(x) = </(xi,x) for x £ R  
and observe that Д™+1Т(х) = A ^+1<7(x i, x) = 0 for all x £ R  and | F(x)| ^  
й e2 M ( |xi| + m) m for \x\ Ú m  + 1; by Lemma 4,

I F(x)| ^  e2(e2 M ( |x i | -(-m) m)( |x| + m) m for x £ R.
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We have shown that if n = 2 then

| 5 (хь х2)| e4 M (|x i| + m )m(|x 2| + m )m for all Xi , x2 € R .

If n > 2 then by temporarily fixing Xi in R  and Ж3 , . . . ,  xn in [—m  — 
— 1 , m  + 1] we find, by reasoning as in the last paragraph, that

10(*i,*2 >*3,•■•,*»)! ^  e4 M (\xi\ + m )m(\x2\ + m )m

for all x i, ж2 G R  and all Ж3 , . . . ,  xn in [—m — 1, m  +  1].
By induction it follows that

I аг(ж1 , — , ж„)| ^  e2nM  ( \xj\ + m )m ^  e2nM ( |ж| + m )mn
j=i

for all x = ( x i , . . . , x n) G R n. Thus

I /(x ) | = \g(L~4x)\ ^  е2"М (|Т - 1х| + m) mn for all x f R "

and the desired conclusion is therefore evident. □
We aim to prove that, under the hypothesis of Proposition 1 , /  is a poly­

nomial function of degree at most m. In addition to Proposition 1 we will 
use some distributional ideas from [2 ].

2. A distributional interlude

Our notation and terminology is, for the most part, that of Rudin [18]. 
Let V n denote the space of all Schwartz test functions on R ” and let V'n be 
the space of Schwartz distribution on R". If и G V'n then the support of и is 
denoted by supp u.

A function /  : R" —> C is said to be locally integrable provided it is
Lebesgue measurable and / |/ (x )  \dx < + oo for every compact К  ^  R".

Jk
The space of all such functions is denoted by Ll0c(R ”)- ^or /  € -̂ Loc(R ”) 
let A f denote the regular distribution corresponding to / ;  thus Aj(ip) =

= / .  J R "
f(x)ip(x)dx for all ip G V r

Clearly ATyf(<p) — Л /(т_у</>) for all /  G L loc(R n), all у G R ” and all tp G 
G V n. For и G V'n and у G R" it is therefore natural to define туи : V n C
by

(ryu)(ip) = и(т-у<р) for (p e V n.
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(Note that Rudin would write r_y instead of ry.)
It follows that Ty u  £ V'n whenever и £ V 'n and у £ R n and ATyj  = ryA j

whenever /  6  /-[ос!®-") an<̂  У E R n- Moreover, for each у £ R n, r y is a topo­
logical automorphism of V n. For и £ V'n and j/ G R "  define A yu £ V'n by
Д yu = Ty и — и.

Let S n denote the Fréchet space of rapidly decreasing C°° functions on 
R ra and let S'n denote its dual, the space of all tempered distributions on 
R n (see [18], Chapter 7). Since V n is a linear topological subspace of S n, 
it follows that S'n is a linear topological subspace of V'n. Moreover, for each 
у £ R n,Tyu £ S'n whenever и £ S'n and the map и —► туи is a topological 
automorphism of S'n. A function /  in Lj oK(R n) will be called temperate pro­
vided Af £ S 'n; for this to hold it suffices that /  be Lebesgue measurable 
and have polynomial growth, i.e. there exist A > 0 and N  £ N such that
I /(x )| ^  A[ 1 + |x |)N for all x £ R ”.

Observe that if (1) holds for some у £ R n, some m £ N and some /  £ 
£ L loc{Kn) and if и = A j then

( 1 У ffcyt/ — 0 .

For <p £ S n denote the Fourier transform of (p by ip, i.e.

<p( 0  = (2 тг) _ п /2  f  /(х )ехр (-г^  • x)dx for ( G R " .
J R n

The delightful behaviour of the Fourier transform on S n (see [18] Chapter 7) 
allows one to, quite naturally, define the Fourier transform on S'n by duality; 
for и £ S'n one defines T u  £ S'n by Tu{p) — u(<p) for p  £ S n and T u  is called 
the Fourier transform of u. It follows that T  is a topological automorphism 
of 5 ;.

For у £ R n let ey(x) = ехр(гх • у) for all x £ R n. The following lemma 
(see [18], page 167) is crucial.

Lemma 5. I f  и £ S'n and у £ R n then Т(туи) = eyTu.

The following two lemmas may be found in [2].

Lemma 6. I f u ,v  £ V'n, F  : R n —> C is C°° and Fu = v then supp и C 
Q { x £ R ” : F(x) = 0} U supp v.

Lemma 7. If  и £ S„ then supp^u Q {0} if and only if и = Ap for some 
polynomial function p : R n —> C.
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3. Back to  F réche t’s equation

We can now prove one of the two main results of this paper. It will be 
used to deduce the mean value theorems of the last section.

T h eo rem  1. Suppose that f  : R ” —► C, /  is continuous, m £ N, T is a 
substantial subset of R n and A ™  f  = 0 for each у £  T. Then f  is a polynomial 
function of degree at most (m -  l)n. The degree of f  is at most m  -  1 if m = 
= l , 7i = l or n ^ 2  and T  = 5 n_1, where 51” - 1  is the unit sphere in R ” .

R e m a r k . If m  = 1 we have the well known fact that if a continuous 
function has sufficiently many periods then it must be constant.

P roof. By Proposition 1, /  is temperate. If и = Л/ it follows that и £ 
6  S'n and

m , ч
u =  0 for y e T .

k= 0 '  '

By Lemma 5, for each у £ T,

0 = r ( £ ( - i r - fc0r W )  = (-1 г ( Е  ( Г ) ( - 1  ) Ч ) л .

If for у £ T  we let

m

Fy(x) = X I
k=0

^ [ — ехр(гт/ • ar)] * = [l — ехр(гт/ • x)] m for x 6  R n

it follows that Fy.?7?* = 0 for all у £ T .
Suppose that x £ suppFu. By Lemma 6 ,

0 = Fy(x) = [ 1 — exp{iy • z)] m = 0 for all у £ T.

Hence у ■ x £ 2irZ for all у £ T. Since T  is substantial, z ■ x £ 2wZ for all 
г £ R n. Thus t\x \2 = (tx ) • x £ 2nZ for a ll!  £ R  and therefore x = 0. We 
have proved that suppFu Q {0}. Lemma 7 and the continuity of /  imply 
that f  is a polynomial function; by Proposition 1 its degree is at most 
(m — l)n.

Using multi-index notation ([18], page 142) we may write

/(* )  = 5Z  ( £  ’ x G Rn
Ar=0 '  |a|=A: '
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where cQ £ C for each multi index a of order |a | ^  N. We may, and do, 
assume that N  ^  m.

To prove the assertions concerning the degree of / ,  let us begin by tem­
porarily fixing у £ T  such that у ф 0 and let p(t) = f ( t y)  for í £ R. Then 
p is a polynomial function (in one real variable) of degree at most N  and 
A™P(t) = A™ f ( t y ) = 0  for all t £ R. It follows from Theorem 2.7.3 on page 
51 of [5] that

p(t) = p(0) + Aip(0 )H------h — • • • ( *- A- f l )  for all t £  R.

But A \p{t) = 0 for t £ R  and m " S k £  N. Hence the degree of p is at most 
to — 1. If n = 1 it follows that the degree of /  is at most to — 1.

Suppose m — 1 . Then A yf ( x ) = f ( x  + y) — f ( x ) = 0 for all x £ R n and 
all у 6  T,  i.e.

f ( x  + y) = f ( x )  for all x G R n and all у £ T.

Thus f ( x  + z) = f ( x)  for all x £ R n and all г £ (T ). But (T ) is dense in 
R n and /  is continuous so

f ( x  + z) = f (x)  for all r , 2 E R n

Thus /  is constant, i.e. /  has degree m — 1.
Now suppose that n ^  2 and T  = S n~l . We know that, for each у £ 5 n_1, 

the map t —> /( íy ) ,t  € R, is a real polynomial function of degree at most 
m — 1. But, for у £ S n~l and í E R.

f ( t y)  = Y i  ( Л  c°(ty )° )  = ^ (  J 2  c°ya) tk- 
k=o'\a\=k '  k -0 ^\a\=k '

Hence ^  cQya =  0 for m ^ к ^ N  and у £ S n~1. Thus ^  cQxa =  0 for
|c*|=fc |a|=A:

m — 1
m ^ к ^ N and x £ R n so that f ( x)  = E E  cax°  for all x £ R  and the

k= 0 |o|=fc
degree of /  is therefore at most m  — 1. □

It seems plausible, although we have been unable to prove, that the de­
gree of /  is at most m  —  1 in any case.

For distributions we have the following analogue.
T h eo rem  2 . Suppose that m £ N, и £ V n, T  is a substantial subset of 

R n and A™u = 0 for all у £ T . Then there exists a polynomial function p : 
R n —>■ C such that и — Ap and A™p = 0 for all у £ T.
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P roof. Choose ip £ V n such that <p(t) ^  0 for all t £ R" and JRn <p(t)dt — 
= 1. For к £ N let <pk(t) = knp(kt)  for t £ R n and let Uk = u * pk — the con­
volution of и with pk- It follows from [3] that A™Uk = 0 for all & E N and all 
у £ T. But each Uk is a C°° function and hence, by Theorem 1, a polynomial 
function of degree at most (m  — 1 )n. Also AUk —► и in V'n as к —» + oo.

Thus и is the limit of a sequence belonging to a subspace of V'n of di­
mension at most (m — 1 )n. Since every finite dimensional subspace of V'n 
is closed, и must belong to this subspace, i.e. и = Ap for some polynomial 
function p : R ” —* C of degree at most (m — 1 )n. Note finally that, for all 
у £ T, 0 = A™Ap = Адmp so that = 0. □

Theorem 1 can also be generalized as follows.
T heorem 3. Suppose m  £ N, /  £ Xloc(^")> T  is a substantial subset 

of R n and, for each у £ T,

A™ f ( x ) = 0  f or a-e- x £ R n-

Then there exists a polynomial function p : R n —► C of degree at most 
(m — l)n  such that

f {x)  = p(x) for a.e. x £ R ”

and A™p(x) = 0 for all x £ R n and all у £ T.
P roof. Let и = Л/. Then A™u = 0 for all у £ T  and, by Theorem 2, 

there exists a polynomial function p : R ” —> C such that и = Ap. □

4. Some mean value theorems and questions

In [19] Walsh proved a mean value theorem which, in geometric language, 
may be phrased as follows.

T h eo rem  D. If 2 ^  N  £ N, /  : R 2 —► R  and f  is continuous then the 
following are equivalent:

(i) the value of f  at the center of any regular N -gon is the arithmetic 
mean of its values on the vertices,

(ii) /  is a harmonic polynomial of degree at most N  -  1.
For triangles this assertion was improved by Djokovic [6 ] as follows.
T h eo r em  E . Suppose that f  : R 2 —> R  and f  is bounded on a subset of 

R 2 having positive Lebesgue measure. Then the following are equivalent:
(i) f ( x  - t , y )  + f {x + t,y) + f ( x , y  + tV3) = 3 f ( x , y  + t/y/3) for all x, у , 

t £ R,
(ii) there exist a ,b ,c,a , £ R  such that

f ( x , y) = a + bx + cy -f a(x 2 — y2) + ßxy  + ~i(x3 — 3xy2) for all x, у £ R.
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In geometric language, (i) says that for any equilaterial triangle having 
a side parallel to the “z-axis” (but of arbitary “size”), the value of /  at its 
center is the arithmetic mean of its values on the vertices. Property (ii) 
asserts that /  is a special type of harmonic polynomial of degree at most 3.

Several results related to Theorem D were proved in [1]. In particular, for 
squares with diagonals parallel to the coordinate axes we have the following.

T heorem F. If f  : R 2 -> R  and f  is bounded on a subset of R 2 having 
positive Lebesgue measure then the following are equivalent:

(i) f ( x  + t,y  + t) + f ( x  + t , y - t )  + f ( x - t , y  + t) + f ( x - t , y - t )  = 4f ( x , y )  
for all x , y , t  € R,

(ii) f (x ,  у) — p(x, y) + a(x3y — xy3) for all x, у E R  where p is a harmonic 
polynomial of degree at most 3 and a E R.

This result was (partially) generalized to higher dimensions in [2].
Theorems E and F address particular cases of the following problem. 

Given ak E R n and с*, E C for 0 ^  к ^  N, which functions /  : R ” —► C sat­
isfy the functional equation

N
(3) cjzfi^x T tö^) — 0 for x G R  and t E R?

к—о

Many papers have been written concerning variants of this problem; see
e.g. [1]-. [2], [3], [6 ], [8 ], [10], [11], [12], [13], [14] and [17]. The solutions, 
under mild regularity assumptions, are typically polynomials and, for “mean 
value equations”, the solutions are usually harmonic polynomials.

It is clear that the solution set of (3) is closed under translations (if /  
is a solution and xo G R" then x —► f ( x  + £0) is a solution, and dilations (if 
/  is a solution and p > 0  then x —» f (px)  is a solution) but not, a priori, 
closed under all isometries. In general terms, figures of arbitrary “size” and 
“position” are admitted but only those having certain “orientations”. On 
the other hand, the set of functions satisfying the mean value property (i) of 
Theorem D is obviously closed under all translations, dilations, and isome­
tries. In particular, if /  is a solution and if U: R 2 —► R 2 is an orthogonal 
linear map then x —» f (Ux)  is also a solution.

The remainder of this paper is motivated by the following problem: Given 
p > 0, which functions /  : R 2 —> C have the property that for every equilat­
eral triangle of radius p, the value of /  at its center is the arithmetic mean 
of its values on the vertices? The set of all such /  is clearly closed under all 
isometries but not, a priori, under dilations.

This question is a particular case of the following general problem about 
which little appears to be known: Given G R ra and q G C  for 0 к ^  N,
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which functions /  : R n —> C satisfy 

N
(4) ^ C fc /(x  + f/afc) = 0 for x E R" and U E (9„?

k= 0

Here 0 n denotes the group of all orthogonal linear maps of R n onto itself. 
Note how (3) and (4) are related. When cq = -  N,  Ck = 1 for 1 ^  к ^  N,  
űo = 0  and a i , . . . ,  ajv constitute the vertices of some regular geometric ob­
ject centered at 0, then (4) may be thought of as a mean value property of 
/•

5. Triangular mean value theorems

Our other main result is the following.

T heorem 4. Suppose that p > 0, /  : R 2 —> R  is continuous and, for ev­
ery equivalent triangle in R 2 of radius p, the value of f  at its center is the 
arithmetic mean of its values on the vertices. Then f  is a harmonic polyno­
mial of degree at most 2 .

Note that the relevant mean value property can be expressed as follows 
if we identify R 2 with C:

(*) f ( z  + ег<) + f ( z  + extu )  4 - / ( 2  + eltu ) — 3f (z)  for z E  C and Í 6 R

where и  — e ^ . Also note that the converse follows from Theorem D. Related 
results can be found in [14].

P roof. We may assume that p = 1; otherwise consider, instead of / ,  the 
map 2  —>■ f (pz),  z E C.

Suppose that г E R 2 and у E S 1. Consider the equilateral triangle with 
2  as a vertex and with center 2  + y. Let v\ and v2 be the other two ver­
tices of this triangle. The triangle obtained from it by reflexion in the line 
through v\ and v2 has center 2 + 2 y and vertices 2  + 3y,Vi and v2 (a picture 
is convincing). Thus

f{ z  + 3t/) + f (vi )  + f ( v2) = 3 / ( 2  + 2 y)

and
f ( z )  + f ( v  i) + f ( v2) = 3 / ( 2  + y).

It follows that

f ( z  + 3y) -  3 / ( 2  + 2y) + 3 / ( 2  + y) -  / ( 2 ) = 0
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Ay/(г )  = 0 for all г £ R 2 and all у £ S 1.

By Theorem 1, /  is a polynomial function of degree at most 2 so there 
exist a , 6 , c, q ,/3 , 7  £ R  such that

f (s ,  t) =  a + 6 s + ct + as2 + 2ßst + 7 12 for all (s, t) £ R 2.

According to Theorem D, the map (s , t ) —» a + 6s + ct -f 2/?si, being a har­
monic polynomial of degree ^  2 , satisfies our (linear) mean value property. 
Hence, if h (s ,t) = as2 + 7 f2 for (s ,t) £ R 2 then h also has our mean value 
property. In particular

0 = 3/i(0,0) = /i(l,0) + h -(a  + 7 ).

Thus 7  =  — a  and hence /  is harmonic. □
C o r o l l a r y . I f f  £ L loc(R 2) and, for a.e. z £ R 2, (*) holds for all t £ 

£ R  then there exists a harmonic polynomial p : R 2 —»■Co/ degree at most 
2 such that f ( z )  = p(z) for a.e. z £ R 2.

This can be deduced from Theorem 4 by using the same ideas that were 
used to derive Theorem 3 from Theorem 1. Distributional variants of Theo­
rem 4 (in the spirit of Theorem 2) are also clearly possible.

The mean value property of Theorem 4 can also be expressed as follows:

(5) /  ( Q )  (® + У + +)) = Q )  [/(* ) + f {y)  + /(г)]

whenever ж, у, z £ R 2 and \x — y\ = \y — z\ = \z — x\ = l where l = л/Зр. This 
observation leads to

T h eo rem  5. Suppose that V is a real inner product space of dimension 
at least 3, / > 0, /  : V  —» R, /  is continuous and (5) holds whenever x , y , z  £ 
£ V and ||x — y|| = ||г/ — z\\ = \\z — ж|| = l. Then f  is affine, i.e. x —* f (x)  — 
— / ( 0 ) is linear.

P r o o f . Suppose that the theorem is true when the dimension of V  is
3. Let g(x) = f (x)  — /(0 ) for x £ V. Given x , y  £ V  and t £ R, choose a 3 
dimensional subspace, W,  of V  containing both x and y. Since the restric­
tion of g to W  is linear, g(tx + y) = tg(x) + g(y). Since x and у are chosen 
arbitrarily, g is linear on V. It thus suffices to assume that V  = R 3.

We may apply Theorem 4 to the restriction of /  to any two dimensional 
linear manifold in R 3. In particular, for each x £ R  there exist ax(:r), 6 j(a:), 
c^z), ai (z)  and ß\(x)  in R  such that

(6 ) f (x ,  y, z) = a\(x)  + 61 (x)y + c1(x)z + ot\(x)(y2 -  z2) + zßx(x)yz
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for all у, z E R. Similarily, for each у E R  there exist real numbers a2(y), 
hiy) ,  c2(y), « 2 (y) and ß2(y) such that

(7) f (x ,  y, z) = a2(y) + b2(y)x + c2(y)z + a 2(y)(x2 -  z2) + 2ß2{y)xz 

for all x, z E R.
Put z = 0 in (6 ) and (7) and compare the resulting equations to deduce 

that, for all x, у E R,

(8 ) аг(х) + bi(x)y + a i (x)y2 = a2(t/) + b2(y)x + a 2(y)x2.

By considering the three equations obtained from (8 ) by letting у = 0, у = 1 
and у = — 1 we find that and c*i are polynomials of degree at most 2 .
The same is, of course, true of a2 ,b2 and a 2.

Compare (6 ) and (7) in light of (8 ) to deduce that, for all x , y , z  € R,

(9 ) cx{x)z -  а г(х)г2 + 2 ßßx) yz  = c2(y)z -  a 2(y)z2 + 2 ß2(y)xz.

When г = 1, (9) asserts that

( 1 0 ) ci(x) -  а а(ж) + 2 ßi(x)y  = c2(y) -  a 2(y) + 2 ß2(y)x for x , y  e  R. 

With z = -  1, (9) says that

(11) ci(x) + a ß x )  + 2ßßx)y  = cßy)  + a 2(y) + ß2(y)x for x , y  £ R.

From (10) and (11) it follows (by subtraction) that 2aßx)  = 2a 2(y) for all 
x , y  G R. Thus Qi and a 2 are constant functions and a\  = a 2, say ai(x)  = 
= a 2(y) = a for all x, у £ R.

It now follows from (10) that

c i ( x ) + 2ß1(x)y -  c2( y ) + 2ß2(y)x for all x , y  E R

and hence

ci(x) = c2 (0) + 2/?2(0)x and c2(y) = c^O) + 2ßß0)y  for all i , j £ R .

That is, ci and c2 are affine.
Now put у = z = 1 in (6 ) and (7) to deduce that

ai(x) + hi(x) + cx{x) + 2 ßßx )  = a2 (l) + b2(l )x + c2 (l) + 2 ß2(l)x

for all x E R. But ßi and b\ are polynomials of degree at most 2 and ci is 
affine. Hence ßi is a polynomial function of degree at most 2. Similarly, the
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same is true of ß2. It now follows from (6 ) that /  is a polynomial function 
of degree at most 4.

But /  is quadratic on each two dimensional subspace of R3 so /  must 
have degree at most 2. Choose a ,b ,c ,d ,a ,ß ,i ,  р,а,т G R such that

( 1 2 ) f (x ,  y, z) = a + bx + cy + dz + a x 2 + ßy 2 + 7 z2 + 2 pxy + 2 ayz  + 2 rxz

for all x , y , z  G R.
By applying Theorem 4 to the map (x,y)  —*• /(x ,t/,0 ) we find, from (12), 

that a + ß — 0. Similarly, 0  + 7  = 0  and ß + 7  = 0  so that о = ß = 7  = 0 .
Since our mean value property is linear and every affine function satisfies 

it, we deduce from (12) that if g(x, y,z)  = 2pxy + 2ayz  + 2rxz  for (ж, у, г) G 
G R 3 then g has our mean value property. But the quadratic function g 
can be orthogonally diagonalized. That is, there exist an orthonormal basis 
{61, 62, 63} for R 3 and there exists o ',/? ',7 ' G R such that

g(rb[ + sb'2 + tb'3) = a 'r 2 + ß 's2 + 7  't2

for all r , s , íG R. But the map (r, s, t ) —» g(rb[ + sb'2 + tb3) has the mean value 
property since g does and since this property is invariant under isometries. 
From the last paragraph it follows that o ' = ß' = 7 ' = 0. Thus p = a = r  = 0 
and therefore, by ( 1 2 ),

f (x ,  y, z)  = a + bx + cy + dz for all x, y, z G R 

as desired. □
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STABILITY OF SOLUTIONS 
OF GENERALIZED LOGISTIC DIFFERENCE

EQUATIONS
W. BRIDEN and S. ZHANG * (Kingston)

1. Introduction

In this paper we investigate the stability character of the generalized 
version of the logistic difference equation

( 1 ) x n+1 = axkn ( l  -  x rn ) , n — 0 , 1 , 2 , . . .

where a, к , and r are positive constants.
If we set

f(u )  = auk( 1 -  ur ),

then it is easily seen that when 0 < a < (k + r ) k^r+1 / (rkk/T) = A, f  maps 
(0 ,1 ) to (0 ,1 ).

Clearly xo £ (0,1) implies xn £ (0,1) for n = 1 ,2 ,..., and so the solutions 
are always positive and well-defined.

We shall consider the three cases:
(I) к > 1 .
(II) k =  1.
(III) 0 < к  < 1.
In Section 2 we shall establish and prove three theorems which encompass 

these three cases. For some related results see [2] and [4].
For the difference equations of the general form

(* )  x n + \ -  f ( x n )

where f(  u) is any function of u, we state the following definitions and lemmas 
which are needed in our discussion.

D e f in it io n  1 . x = c is an equilibrium of equation (*) if c = /(c).
D e f in it io n  2. Let x = c be an equilibrium of equation (*). x = c is said 

to be stable if given e > 0 , there is a 6 > 0  such that

|a:o — c| < 6 implies \xn — c| < e for all n ' t  0 .

* On leave from  A nhui University, Hefei, A nhui, 230039, C hina.
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x = c is said to be asymptotically stable if it is stable and there exists a 
> 0  such that

|®o — c| < So implies xn —*• c as n —> oo.

R e m a r k . In what follows, as a convention, when we say an equilibrium 
x = c being stable we always mean that it is asymptotically stable.

D e f in it io n  3. An equilibrium x = c of equation (*) is said to be unsta­
ble if it is not stable.

D e f in it io n  4. An equilibrium x = c is said to be semistable from above 
(from below, respectively) if there exists > 0  such that c < xo < c -f- 6o 
(c — So < Xo < c, respectively) implies xn —*• c as n —> oo; while c — bo < xq < 
< c (c < xo < c + respectively) implies \xn — c\ > £o for some £o > 0  and 
some values of n.

D e f in it io n  5. An equilibrium x = c is said to be a global attractor if 
for a given xo, xn —► c as n —*■ oo.

LEMMA 1. For equation (*) the equilibrium x = c is stable if | / '(c ) | < 1, 
and is unstable if | f'(c)  | > 1 (including the case of | f'(c ) = oo).

L em m a  2 . Let x =  c be an equilibrium of equation (* ) . If f'(c) =  1 and 
f" (c ) ф 0, then x — c is semistable. In particular, if f"(c) < 0 (including 
the case of f  "(c) =  — oo) then it is semistable from above, while if f"(c) > 0  
(including the case of f  "(c) = + oo) then it is semistable from below.

L em m a  3. Let x = c be an equilibrium of equation (*), f'(c )  = 1, and 
f"(c) = 0. Then x — c is stable if f  "'(c) < 0 (including the case of f  "'(c) = 
= — oo) while is unstable if f  "'(c) > 0  (including the case of f  "'(c) — +  oo).

LEMMA 4. Let x = c be an equilibrium of equation (*) and f'(c)  = — 1. 
Compute

D(c) = - 2 f" '(c) -  S[f"(c)] 2.

IfD (c) < 0 then x = c is stable, and if D(c) > 0 then it is unstable.
For the proofs of Lemmas 1-4 we refer to Theorems 1.18, 4.1, 4.2, and 

4.6 in [5], respectively.

2. The main results

Clearly, equation (1) always has x — 0 as an equilibrium. We look for 
the other equilibria x by setting

x — axk( 1 — xr), or ax f c + r -1  — ax~k~l + 1 = 0 .
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Now consider the function

g{u) = auk+r- '  -  auk~l + 1 .

T h en
g'{u) = auk ~ 2 [(k + r — l)wr — (k — 1)] ,

and
g"(u) = auk~3[(k +  r — l)(k  + r — 2 )uT — (к — 1 )(k — 2 )] .

C learly , g(u) h as o n ly  o n e  n o n zero  cr itica l p o in t in  [0 ,1], n a m ely

и — [(& — 1 )/(k  + r — 1 ) ] ^  = n*,

and sin ce  g"(u*) > 0 an d  <7( 0 ) =  </(1 ) =  1 , g{u*) is  th e  m in im u m  value o f  g in  
[0,1]. T h erefo re , if  g(u*) >  0 th ere  are n o  p o s it iv e  eq u ilib r ia  o f  e q u a tio n  (1 );  
i f  g(u*) =  0  th e n  u* is  th e  o n ly  p o s it iv e  eq u ilib r iu m  o f  e q u a tio n  ( 1 ); w h ile  if  
g(u*) <  0 th ere  are tw o  p o s it iv e  eq u ilib r ia  o f  e q u a tio n  ( 1 ).

W e are n ow  in a  p o s it io n  to  e s ta b lish  th e  fo llow in g  resu lts .

T h e o r e m  1. Let к >  1 in equation (1 ) .  Then
( i)  The equilibrium x — 0  is stable.

( ii)  For 0 < a < A \ = ( k - \ - r  -  [ r (*  _  1 )(*" 1) /r] , *  =  0 is
the only equilibrium and is a global attractor.

( iii)  For a =  A\, equation ( 1) has two equilibria: 0 and u*, and there exists
x G (y\k/(k +  r)] ^ r , l ĵ such that x0 G (0 , u * ) U ( í ,  1) implies xn —> 0 (as n —>

—> oo) while if xo G [u*,?], then xn decreases to x  — uш (as n —* oo). Hence, 
x = u* is semistable.

( iv )  For A\ < a < A, equation (1) has three equilibria: x = 0, x\ and X2 
with 0  < х г < u* < x2; moreover, x\ is always unstable while x 2 is stable if 
A\ < а й As = (k + r + i ) ^ _1l/r+1/  [r(k + 1 )^ _1l/r] and unstable if A3 < 
< a < A.

P r o o f , ( i)  It fo llow s im m e d ia te ly  from  L em m a  1.
( ii)  For 0 <  a < A\, it can  b e  sh ow n  th a t x =  0 is th e  o n ly  eq u ilib r iu m  

an d  th a t  for a n y  p o s it iv e  so lu tio n  ( xn) o f  e q u a tio n  ( 1 ), g{xn) >  0 so

xn > axkn ( \  -  x rn) -  x n+i, n = 1 , 2 , ----

Hence, {t„} is decreasing with nonnegative lower bound. Taking limits in 
equation (1 ) yields that xn —► 0 .

(iii) In this case equation (1) has two equilibria: x = 0 and x = u*. Since 
u* = [(& — l ) / (k  + r — 1 )] < [k/(k  + r)] 1̂ r , the maximum point of f(u) ,

f { [ k / ( k  + r ) ]1/r  ̂ > /(и*) = и*.
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On the other hand, /(1 ) = 0 < u*, so by the continuity of /  there exists an 
x in ( [k / (k  + r)] ^ r , 1  ̂ such that f ( x ) — u*. Now 

(1) If x0 G (0,u*), then g(x0) > g(u*) = 0, so

x0 > axo (l -  Xq) = X\ ,

and by iteration,

0  < . . .  < xn+i < x„ < . . .  < x3 < x2 < x\ < u*.

Hence xn —► 0 as in (i).
(2) If xo = u*, then xn = xo =  u*, n = 1 ,2 ,...
(3) If Xo G (u*,u), then u* < Xi < Xo < x, and in general,

U* < . . .  <  Xn + 1 <  Xn < . . . <  X3 <  X2 < X\ <  X o <  x.

Now taking limits in equation (1) yields that xn decreases to u*.
(4) If xo = x, then xi = /(xo) = /(x ) = u*, and thus xn -  u* for n = 

= 1-, 2 ,3, • • • •
(5) If xo G (x, 1), then x\ = /(xo) < /(x )  = u* and x„ —*■ 0 as in (i). That 

is, x = u* is semistable from above.
(iv) Since in this case g(u*) < 0, g(u) has two positive roots x\  and хг, 

0 < x\  < и* < X2 where g(x\) = g(x2) = 0. Thus equation (1) has three equi­
libria: 0 , x \, and X2 .

We note that g'(u) < 0 for и G (0, u*). Hence if x„ G (0, xi) then g(xn) > 
> g(x\)  = 0 , i.e., ax£ + r ~ 1 — ax£ _ 1  + 1 > 0  which implies x„+i < xn; whereas 
if x„ G (xb u*) then g(xn) < fif(xi) = 0 which implies xn+i > x„. Therefore, 
хг is unstable.

Now with regard to X2 we suppose that X2 = [k/(k + г)] ^ г, then we 
have

g ( j k / ( k  + r)] = a[fc/(A: +  r ) ] [ f c / ( A ;  + r) -  l] + 1  = 0,

or
a = (fc + r )(*-i)/H -i/[rJfc(*-i)/r] = A2.

From fif(x2 ) = 0 we can derive that

a(x2) = l / [ x ^ _1(l  -  x5 ) ] .

Since for X2 > u* — [(& — l ) / (k  + r — 1)]ly/r,

a'(x2) = Xj- 2  [(fc + r -  1)® 5 -  {к -  1 )] /  [x£-1 (l -  x-j) ] 2 > 0 ,
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and thus а(хг) is increasing in X2 and vice versa.
Next, we consider the following two situations:
(1) A\ < a ^  A 2 . It can be shown using an argument similar to that in 

the proof of (iii) that X2 is stable.
(2) A2 < a < A. Then we have

| / '( * 2)| = [ к - ( к  + г)Г2\ / (  1 - Г 2)

and it is easily seen that |/ '(a i2)| < 1 if and only if

и* = [(к -  1) / (к + r -  1 ) ] 1/V < x 2 < [(£ + 1 )/(k + r + 1 )] 1̂ r .

But since a(aF2) is increasing in äf2 for äf2 > u*, | / '( ^ 2 ) | < 1 if and only if

a(u*) < a < а([(& + 1 )/(k + r + 1 ) ]1/r) ,  

or

A\ = (к + r -  i)(^-1)/-+1/ [ r (fc _  i)(fc-i)A] < a <

< (k + r + l f ~ 1)/T+1/[r{k  + i f - 1»'] = A3.

Therefore, for A2 < a < А3, X2 is stable; while for A3 < a < A, | f ' ( x 2)\ > 1, 
and X2 is unstable by Lemma 1.

For a = A3 , f ' ( x 2) = — 1, and it can be verified that D(x2 ) < 0 and so 
X2 is stable by Lemma 4. □

T h eo rem  2. Let к = 1 in equation (1). Then
For 0 < а < 1, T = 0 is the only equilibrium and it is stable.
(ii) For a = 1, x = 0 is the only equilibrium and it is stable if r > 1 and 

is semistable from above if 0 < r ^  1 .
(iii) For a > 1, equation (1) has two equilibria: 0 and x G (0,1). The 0 

equilibrium is always unstable while x is stable if 1 < a ^  ( 2  + r ) / r  and is 
unstable if ( 2  + r)/r  < a < ( 1  + r ) 1 r̂+1 / r .

P r o o f , (i) For 0 < a < 1 , / '(0 ) = а < 1 and by Lemma 1, x = 0 is stable.
(ii) For a =  1, if r is 1 then x = 0 is semistable from above by Lemma 

2 : while if r > 1 then it is easy to see that / " ( 0 ) = 0  and / '" ( 0 ) < 0  and so 
x = 0 is stable by Lemma 3.

(iii) For a > 1 , x = 0 is an unstable equilibrium of equation ( 1 ) since
I m i  = « >  1 .

Now set
x  = ax( 1 — x r ) .
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This implies that x = [(a -  l ) /a ] 1 T and obviously x E (0,1). Then we have 
three cases:

(1) For 1 < a < A3 = (2 + r)/r  it is easily verified that | f ' (x)\  < 1 and 
so x is stable by Lemma 1.

(2) For A3 = ( 2  + r ) / r  < a < (1 + r) 1̂ r+1/ r  =  A, x > [(2/(2 + r ) ] 1/V and 
so I f ' (x)\  > 1. Hence x is unstable by Lemma 1.

(3) For x = A3 = (2 + r ) / r ,  f ( x )  — —1 and it can be verified that D(x) <
< 0. Thus x is stable by Lemma 4. □

T heorem 3. Let 0 < к < 1 in equation (1). Then
(i) Equation (1) has two equilibria: 0, and x E (0,1), and the 0 equilib­

rium is always unstable.
(ii) x ix stable ifO < a < A3 , unstable if A3 < a < A; and at a = A3 , x is 

stable if r ^  1 .
P roof, (i) Clearly, 0 is always an equilibrium of equation (1). In order 

to find nonzero equilibria, we solve

x = ax(l -  xr), or h(x) = axr + x 1_k -  a — 0 .

Now h(0) = —a < 0, h( 1) = 1 > 0, and h'(u) = aruT~l + (1 — k)u~k > 0
for и G (0,1), so there exists a unique x E (0,1) such that h(x) =  0; i.e., 
equation ( 1 ) has a unique equilibrium x E (0 , 1 ).

The 0 equilibrium is unstable by Lemma 1 since |/ '(0 ) | is unbounded.
(ii) If 0 < a < A3 then x < [(& + 1 )/(k + r + 1)] 1//r and it can be shown 

that I f ' (x)  I < 1, hence x is stable by Lemma 1; while if A3 < a < A, then 
x > [(к + 1 )/(k + r + 1 )] l !r which implies | / ;(Т)| > 1 and so x is unstable
by Lemma 1. If a = A3 , then x = [(к + 1 )/(k + r + 1 ) ] and so f { x )  =
= — 1. Thus we use D(x)  and Lemma 4 to determine the stability at x.

Now some computation yields:

D(x)  = [(к + r + 1 )/(k + 1)] 2^r[ - 8 k3 -  12k2r -  4kr2 -  r2-

—Qkr + 1 — 3 k4 — 3k2r2 — 6  k2 — 6  k3r],

from which it is easy to see that D(x)  < 0 if r ^  1; while if r < 1 no definite 
conclusion on the sign of D(x)  can be reached since that sign depends on the 
special values of к and r. □

3. Summary and discussion

In th e  p rev iou s sec tio n s  w e h ave  co m p le te ly  ch a ra cter ized  th e  s ta b ility  
b eh a v io u r  o f  eq u a tio n  ( 1 ) w h en  it  is con sid ered  as a  m a p p in g  o f  th e  u n it
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interval [0,1] onto itself. As the parameter a goes from 0 to A the graph of 
equation ( 1 ) increases in height.

In short, we conclude as follows:
(A) For the case of к > 1: a < A\ implies 0 is the only equilibrium at a = 

— A \ , a bifurcation occurs and a second equilibrium exists at this parameter 
value; when a > A\ there are two positive equilibria. These subcases are 
covered by Theorem 1.

The method used for к > 1 has been found to apply to the more general 
equation

(2 ) xn+l = axkn{ \  -  xrn) p, k >  1 , r ,p>  0 ,

when the mapping is from [0 , 1] onto itself.
The stability behaviour is the same as in Theorem 1 for 0 < a < A. The 

values of A\,  A2, A3 , and A are as follows:

Ai = (к + pr -  l f +pr- 1)/r[(Pr)p{k -  i)(* -i)/-],

A2 = (k + p r f + ^ - ^ / K p r Y k ^ - 1̂ ] ,

A3 = (k + pr + i f +pr- ^ r/[(pr)p(k + l f - W ]  ,

A = (jfe + pr)(k+pr'>/r/[{pr)pkk' r] .

Both equation (1) and the more general equation (2) are of the form xn+\ = 
= /(^n) with its graph starting below the line f (x )  = x and this accounts 
for the presence of two positive equilibria after bifurcation.

(B) For the case of 0 < к ^  1: equation (1) is of similar form but with 
its graph starting above the line f ( x )  = x and this accounts for the single 
positive equilibrium with its stability nature fully described in Theorems 2 
and 3. We believe that the method we used there can also be applied to 
equation (2 ) for the 0  < к ^  1 case.

For к = r — 1, equation (1) is the well known discrete logistic equation 
and chaos exists in the sense of Li and Yorké [1] when a is sufficiently large.

For к > 1 equation (1) also seems to exhibit chaos for large enough a.
One criterion for a continuous mapping /  : J —> J  to exhibit chaos is 

that there exists a point y* G J  such that f(y*) = a, f 2{y*) = b, f 3 (y*) = c 
and с й y* < a < b (see [3], p. 28).

We have found such a point y* for several values of к > 1 with a large 
enough. For instance for к — 3/2, r = 5/2, y* = A is such a point when 
a = 2 .8 .

We believe that for all к > 1 and a large enough, equation (1) will exhibit 
chaos.
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ON SIMULTANEOUS APPROXIMATION  
TO A DIFFERENTIABLE FUNCTION  

AND ITS DERIVATIVE BY PÁL-TYPE 
INTERPOLATION POLYNOMIALS

T. F. XIE and S. P. ZHOU* (Hangzhou)

1. Introduction

Let pn(x) be the Legendre polynomial of degree n with the usual nor­
malization pn(l)  = 1 , write

X

Wn(x) = -n (n  -  1 ) J  pn-i( i)  dt = ( 1  -  x 2)p'n_1(x).
- l

It is clear that pn-\{x)  has n — 1 distinct zeros (note that they are also all 
distinct zeros of W ^ x ) )

- 1  < < _ !  < < _ 2  < . . .  < x\ < 1

on the interval ( — 1,1), hence Wn(x) has n zeros

(1) -1  = xn < xn_i < . . .  < X\ = 1

which interlace the zeros of pn-\(x ) . In what follows let r ^  1. For an 
r times differentiable function f (x )  on [ - 1 , 1] (in symbol /  £ C[ 1 jj), the
Pál-type interpolating polynomial is the algebraic polynomial Qn( f , x )  of 
degree 2 n — 1 satisfying

Q n ( f , x k ) =  f ( x k), g /n( / , 4 )  = / ,( 4 )

for к = 1 , 2 , . . .  , n  where ж* = —1 . It is not difficult to verify that Qn(f ,  x) is 
uniquely determined by /(ж). Furthermore, for any polynomial q(x) of de­
gree 2n — 1 one has Qn{q,x) = q(x). Taking a further look at Qn(f ,x) ,  we 
note that the Pál-type interpolating polynomial interpolates /(ж) at the ze­
ros of Wn{ж), while Q'n(x ) interpolates / ' ( ж) at the zeros of W ^(ж). In this

* T he second nam ed a u th o r was supported  in p a r t by an NSERC Postdocto ral Fel­
lowship, C an ad a  an d  a  C R F G ran t, University of A lberta .
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sense, this kind of interpolation may have its new significance and applica­
tions.

On the convergence of Pál-type interpolating approximation, Eneduanya 
[2] showed that for /  G C |'_ 1 xj,

/(z )  -  Qn(f ,x)  = 0 (l)n~r+3/ 2 lognu>(/(r),n _1)

holds uniformly for all a: G [—1,1], where is the usual modulus of conti­
nuity of a continuous function / .  Therefore, if f  G Lip a , a  > 1/2, it follows 
that Qn(x ) converges to /(x )  uniformly on [-1,1] as n —> oo. By employing 
some new ideas, Xie [7] gave the above result an essential improvement, that 
is, for /  G С[_1Д],

(2 ) f ( x )  -  Qn{f ,x)  =
у П

holds uniformly for all x G [—1,1]. Since Wn(x) = О (л/п), the above esti­
mate implies that Qn{f ,x)  converges to /(x )  E C _̂x jj uniformly on [—1,1] 
as n —у oo.

Because the structure of Qn(x) is also related to f ' (x),  it is natural to ask 
under what conditions will Q'n( f , x )  converge to f ' (x)  uniformly on [-1,1]. 
Exactly, one could ask if the following inequality

l ' (x)  -  Q ' J f , x )  = 0 ( l ) L i t ^ » - r+4 / W, " _1)

holds for /  G Cr{_x -q and for all x G [-1,1] (corresponding to (2)). Indeed, 
Xie raised this problem to some people two years ago, but no conclusion has 
been achieved since. Very recently, in a personal communication B. Z. Li 
told Xie that he established that

f ' ( x ) - Q M x )  = O Í I K ^ Í / W , « - 1 ) ,  x G  [ - 1 , 1] ,

holds for /  G Cjr_j jj, r ^  2. This is surely a new development in this direc­
tion, however, it is not a satisfactory answer that we expected.

Let En( f ) denote, as usual, the best approximation of a continuous func­
tion f ( x )  by polynomials of degree n. In this paper we will establish that 
the following stronger estimate

f \ x ) - Q ' n( f , x )  = 0 ( l ) ^ ^ n - r+1E ,n. r. 1 { f ^ ) ,  n ^ r- ~
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holds for /  E C f j  j] and for all x E [—1,1], therefore according to Jackson 
theorem we have a complete positive answer to the above mentioned prob­
lem.

2. Preliminaries

Although Pál gave a general representation of Qn( f , x )  in [5], we now 
prefer to use the following more explicit formula here, which was established 
recently in [8 ].

For given distinct nodes

1 =  x n ^  x n —1 "C • • .  X \  1,

write u>n(x) = Щ =1(ж ~ xk)■ Also, let - 1  ^  < . . .  < x\ ^  1 denote n -
1 distinct zeros of u>'n(x). Let

Afc(z) = l2k(x)(  1 -  2 l'k(xk)(x -  x k)) -  2 X-

ч :

x l'k(t)( 1 -  2 l'k(xk)(t -  xk)) -  l'k(xk)lk(t)
t -  x k

dt, к = 1 , 2 , . . .  ,n ,

"  J ( i i )  / _ , < ( * £ ) ( ( - xj) * '

and

where

Define

5„(x) u n{x )

шп(х )
шп(Хк)(х -  x k)'

n n

Qn( f , x ) = ^ 2 f ( x k)Ak(x) + ^ 2 f \ x l ) B k(x),
k= 1 k=l

where x* = —1 . Then Qn( f , x )  is a polynomial of degree 2n — 1 satisfying 
the following conditions

Qn( f , x k) — f ( x k)i к — 1 , 2 , . . . ,  71,

Q M xt)  =  / ' ( * * ) >  fc =  i , . . . , n - i ,
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f t ( / , - i )  = £ Л г ; ) 4 ( - 1 ) + / ' ( - i ) .
k= 1

In the special case when the nodes x^, к — 1 , 2 , are the roots of 
the integrated Legendre polynomial Wn(x) we have Wn( - 1) = 0 and from 
this it follows that

Bk( — Y) = 0 for к = 1 ,...  ,n — 1. 

So (only!) in this case the polynomial

П П

Qn(f ,x)  = ^ 2 f ( x k ) A k(x) + yj T f ( x l ) B k(x),
k=l k—\

where x*n = -1  and Ak, B k, к = 1,2, . . . , n  are given above, is the unique 
polynomial of degree 2 n -  1 satisfying

Q n ( f , x k )  =  f ( x k ) ,  Q'n ( f , x k ) =  f \ x * k ) ,  к = 1 , . . .  ,n.

We now list some estimates of the Legendre polynomial p„_i(x) as fol­
lows, whose proof could be found in [6 ]:

(3) P n - l(ar) = 0(1)
п А ] / 2( х )

where A n(x) = ^ 1n x2 +

(4) 1 -  x \  ~  sin2 — , к = 2 ,3 ,...  ,n  -  1,

where the notation ank ~  bnk means that there is a positive constant M  in­
dependent of n and к such that M ~ l ú ank/bnk ^  M;

(5)
/  ^7Г \ - ! / 2

|pn-i(*fc)| ~  ( n e i n — J , к = 2 , 3 , . . . , n -  1 ;

( 6) | P n - l ( * f c ) | ~ n ^nsin
kit \  

n + l )

- 3 / 2

к = 1 , 2 , . . .  ,n  -  1 ;
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on writing x*k = COS0£,

(7 )
2k -  1 

2 n -  1
2 к

2 n — 1 X’ = 1 , 2 , . . . ,  n — 1 .

3. Lemmas

F ir s t  w e e s ta b lish  so m e  lem m a s.

L em m a  1. For к =  2 , 3 , . . .  , n  — 1 we have

№ ) |m  T O « ) I  /  1 . 2  \
k  n(n -  l ) | p n_i(a;jt)| \ | ®  -  Xk\ (1 -  x l )p l - i {xk)J  '

P r o o f . C learly  for к = 2 , 3 , . . . ,  n -  1, l'k{xk) =  0 . T h erefore

(9 ) A U x ) -  2W”(X) 
k l ) ~

W h en  x < Xk, w e see  th a t

Г  W i t  =  « * >
7 -1  t -  Xk X -  Xk

th erefore

(1 0 ) 1 Г  '*<«> «
17-1 t -  xk

+ r  J k
7-1 ( t  -

m
(t -  xk)2

<
X — Xfc

fo llow s from  |/* :(x )| ^  1 (se e  [2]). In case  x >  Xk, by a p p ly in g  th e  k n ow n  
e q u a lity  (se e  [1]: L em m a  9 .1 )

/.
1 ш

- 1 1 -  Xk
dt =  —

in  a  s im ilar  w ay  w e g et

( 11) L i - dt
x k

<

i 1 -  x l ) p l - i ( x k y

+x - x k\ (1 - X 2k ) p l - l ( X k Y

T h u s  (8 )  fo llo w s from  co m b in in g  ( 9 ) —(1 1 ) and W^(xk) =  —n(n — l)pn_i(x*.). 
L em m a  1 is p roved . □
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Lemma 2. We have

W o o l  = 24| W'n(x)\ logn.

P roof. Direct calculations lead to

Wn(l) = - n ( n -  1), |П(х)| ^ n 2, |/'/(x)| ^ n 4.

So that

W O O |  й 2 W ;o o l
n(n — 1 ) /:/U P -  /;(!) + / ;( ! ) ( !  -M O )

t -  1

<
2 |W '(x )| /  у l—I/«2 „2
n ( n -  1 ) W _! |< -  1 |

dt + fJl- l /n2

-  2 /;( l)/í(t)d í 

2 n4dt I + 4 |< ( х ) |  ^

Ú 241 H^(x)| logn. □

Similarly
Lemma 3. We have

W O O l = 241 W^(x)| logn. 

Lemma 4. For к = 1 ,2 , . . . , n — 1 u>e have

1
W ood w ool

/  2 |W n(Q ||

( i - ю  ) ( p; - i K ) )

+
y«(n- i)|x - x*i | i - ( 4 ) 2i |p'„-1(*:)|>/ ’

where II • || = max | • |.
_1=:r=1

P roof. Obviously,

B ' ( x \ =  W ' ^ X) Г  d i  I W n W W n ( * )
k[ 1 W n i x D J ^ W & x D i t - x l )  + Wn{xl)WZ(xl)(x -  x'ky

In view of that (see [4])

j :

1 ТЛ//
dt = -n (n  -  I ) - 1— -- ,'W n(x£)
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we have, in a similar way to the proof of Lemma 1, that

r m i d t  '  " ( ” - ! )  . ail^nll 
J - i t - X k  ~ \Wn(x*k)\ \x -  Xk\ ’

from which the required inequality follows if we note that Wf(x)  = — (n — 
-  l)pn_i(x) and Wn(x) = (1 -  x 2)p'n_l (x). □

Lemma 5. Let f  6  CTj jj. Then for any given xo G [—1,1] there is a
polynomial qn(x) of degree 2n — 1 and a positive constant M depending only 
upon r such that

| / (fc)( * ) - ? i fc)(*)| ^  M n~r+kE 2n-r - 1 ( f ^  )

for к = 0 , 1 , . . . ,  r and |x| ^  1 , and

/ '(*  o) = 92n-l(*o).

P r o o f . According to [3 ] ,  there is a polynomial qn{x) of degree 2n — 1 so 
that

( 1 2 )  \ f {k4 x ) - q i k]( x ) \  й  M 1 n - r + f c J E 2 „ _ r _ a ( / ( ’ - ) )
for к — 0 , 1 , . . .  , r  and |x| 5; 1 , where Mi  is a positive constant depending 
only upon r. Construct that

Яп(х) = ?„(*) + ( / '( * o) -  q'n(x0)) 1X° ^ 4  ̂ sign r 2[n/2]+i( ° ) 5

where Tm(x) is the Chebyshev polynomial of degree m of the first kind. Ev­
idently,

(13)
4 T2[l/2]+l((X Xo) / 4) 1

2 [n/2 ] + 1  ( ]

for s = 0 ,1 ,2 .. .  and |x| й  1. At the same time by a direct calculation (see 
the following Lemma 6 ) we get

(14) ^ ( 4 T 2[n/2]+1((x -  x0 )/4) s ig n r '[n/2]+1(0)) = 2 [n/2 ] + 1 ,
X  —  XQ

therefore
in(*o) = /'(*  o).
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Furthermore from (12),

\ f ' ( x 0 ) - q ' n ( x 0 )\  S  М1!Гг+1£ 2п- г- 1( / (г)),

so by the definition of qn(x) and (13) we obtain that

\ f W ( x ) - q W ( x ) \  ^  M n - r + k E 2n- r - i { f {r)) .  □

We write the proof of (14) as the following 

L e m m a  6 . For any natural number m, we have

^ m - i ( 0 ) = ( - l ) m_1(2 m - l ) .

P r o o f . It is well-known that To(x) = 1 and T\(x) = 1. Applying the 
recurrence formula

Tn(x) = 2xTn-i (x)  -  Tn- 2(x) 

for n = 3 , 4 , . . by induction we can get

T2m-i(x)  = aox2m 1 a\x2m 3 + . . .  + aTO_jx3 + ( — 1) (2m — l)a:.

Consequently,
^ m- i ( 0 ) = ( - l ) m~1(2 m - l ) .

We have completed the proof of Lemma 6  as well as Lemma 5. □

4. New result and proof

T heorem 1. Let f  e r ^ 2 ,  n 2. (r + l) /2 . Then

(15) f \ x )  -  Q'n( f , x )  = 0(1 ) n - r+lE2n- r- i  U (r))

holds uniformly for all x £ [—1 , 1], where 0 ( 1 ) depends only on r.

P r o o f . For a given point zo € [-1,1], according to Lemma 5, there is a 
polynomial qn(x) of degree 2 n — 1 such that

(16) | /<*>(*)- 9£fc)(*)| ^ M n - r+kE2n- r^ ( f ^ )
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for к = 0 , 1 , . . . ,  r and |a?| й  1 , and

(17) f ' (x  o) = q'n(x o).

Obviously, we see from the uniqueness of Qn( f , x )  that Qn(l ,x)  = 
= Ak(x) = 1 , hence

71

(18) £ > '* ( * ) - 0 .
fc=i

Then (18) implies that

71 П

(19) Q'J f , x )  =  £ ( / ( « )  -  /(* )) A't (x) + Y .  f ' K ) K ( z ) -
k= 1 k=1

Because Qn{<ln,x) — Qn(x), we deduce that

Q M X o) -  / '( * o) = Q ' n i f  -  Q n , X o )  +  q'n(xo) -  f \ x o) = Q n ( f  - Я п , х о) 

together with (17). Combining it with (19) we then have

П

Q n ( f , Xo)  -  /'(*<>) = $^(/(®fc) ~  Яп(Хк)  -  f ( x o) + 9n(*o)) ^U a;o) + 
*1=1

n

+ E ( / 'W ) - 9 '„ w ) ) « í (ío )•
fc=i

On writing

h  = (/(1) -  gn(l) -  /(*o) + 9n(*o)) 4 i(x0),

72 = ( / ( - 1 ) -  9n( —1 ) -  / ( z 0) + 9n(a:o)) ^'„(*0),
71— 1

7з = ]Р ( /(®к)  -  9n(zfc) -  / ( x 0) + 9„(*o)) А*(х0),
fc=2

fc=i

h  = ( / ' ( - ! ) -  s í( - i ) ) b ; w ,
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we have

( 20)
j = i

We are going to estimate Ij, j  = 1 ,2 ,. . . ,  5, separately.
From Lemma 2 and (16) it follows immediately that

(21) |/i| ^ 2 4 M log7 i |^ (x0) | n - rJE2n_r_1( / ( r)), 

and similarly from Lemma 3 and (16),

(2 2 ) | /2| ^  2 4 M \ o g n \ W ^ x 0) \n - rE2n- r - i { f ( r))

holds. Meanwhile, the combination of Lemma 1 and (16) yields that

MП —1

i/3| ^  х ^ пОео)!
k=2

+ -

\ п ( п  -  l)|pn-l(Zk)|

2 M

n - r+1E2n - r - i { f {r)) +

n(n -  1 ) ( 1  -  x \ ) \pn- 

By using inequalities (4) and (5) we see that

E i — -— -г = o f n 3 2̂) ,
I Pn — l ( x  к ) Ik= 2

and
П— 1

E
Д  ( 1  -  *1 )1?—d u l l '

= 0 (» 5' 2) ,

consequently,

(23)

On the other hand, applying Bernstein’s inequality together with (3) we 

p'n-\(x ) = 0 {\)n~l &- zl2{x).

h  = 0 ( i ) № M n- r+1^ 2n_r_1 ( / H ) .
у U

get
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So

(24) ||ИУ| = 0  (y/n)

due to the definition Wn(x) = (1 — x2)p'n_1(x). Then it is deduced from 
Lemma 4, (16) and (24) that

П —1

|74| s  0 ( 1 ) £ 1  w '(* „) |
к— 1

\/nn~r+2Е2П-Г-1 ( /^)
n(n -  l ) ( ( l  -  (a;*)2) \Pn-i(x*k ) \ 2 

n - ^ 1E2n. r. 1 { f ( r)) \

+

( i - ( ^ ) 2) k _ 1K ) i 3 y ’

while applying (6 ) and (7) yields that

1

71 —  1

E

71— 1

V ---------ti ( i - ( 4 ) 2) I K - i (4)I

1

= 0 (1) " f ! ! i M i i l  =  0 (1 ),
k= 1

n

n—1

t  ( 1 -  (^fc)2) |K -i(^fc ) | 3

altogether,

= 0 ( 1 ) У  n - 3 / 2 sin5/ 2 —  = 0 (n " 1/2),
n

k = \

(25) /4 = 0 (1 )K M  n - r+1E2n-T-i ( / (r)) • 
Y H

As for / 5  we have

(26) / 5  = 0 ( i)L^ (a:o)l n- r+1E2n. T̂ ( f ^ )
ni

since I W^{ —1 )| ~  n2.
Combining the estimates (20)-(23) and (25)-(26), we finally establish 

that

Q M  *0) -  / '( * 0) = 0 ( l )L^ o)l п ~ т* 1Е 2 п - г - 1  ( /<">).
у  И

Furthermore we note that in the above proof, 0(1) is independent of any 
given xq E [—1,1] so we have the desired inequality (15). Theorem 1 is com­
pleted. □
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Evidently, according to Jackson’s Theorem,

^ 2n -r- l ( / (r)) = 0 И / < " \ 1 /п )),

we thus have the following
T heorem 2. Let f  g CJ_j xj, r ^ 2. Then

f ' (x)  -  QM,x) = 0 ( 1  l /„ )

holds uniformly for all x G [—1,1], where 0(1) depends only on r.
With Wj((a:) = 0 (n 2), from Theorems 1 and 2 we obtain immediately the 

following corollaries.
Corollary 1 . Let f  e C J X ^  r ^  2 , n > (r + l ) / 2 . Then

/ '(* )  -  = O í l J n - ^ ^ a n - r - i í / W )

holds uniformly for all x 6  [—1 , 1].
Corollary 2. Lei /  G CTj ^  r 2 2. Then

f ' (x)  -  <& (/,*) -  0 ( l ) n - r+5/2u ;(/(’-),l/n ) 

ho/ds uniformly for all x G [—1,1].
Corollary 3. Let f  G f "  G Lip a, a  > 1/2. Then Q'n{f ,x)

converges to f ' (x)  uniformly on [—1 , 1].
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ON THE SUMS OF NON-NEGATIVE 
QUASI-CONTINUOUS FUNCTIONS

A. MALISZEWSKT (Bydgoszcz)

The notion of quasi-continuity for real functions of several real variables 
was introduced over sixty years ago by S. Kempisty [2], as a generalization 
of the notion of continuity, and it has been intensively studied since then. A 
comprehensive survey on this topic can be found in [4]. In [3] I proved the 
following theorem.

T h eo rem  1. Given a cliquish function / : R m —► R  and an tj > 0 we can 
find a Lebesgue function a such that the functions / / 2  + a and / / 2  — a are 
quasi-continuous, V(a)  C T>(f) and ||a|| ^  ||/ | | + rj [3, Theorem 4.2].

It follows that each cliquish function / :  R TO —* R  can be written as the 
sum of two quasi-continuous functions and we may require the summands 
to be bounded provided that /  is bounded. However it turns out we cannot 
require the summands to be non-negative or even bounded below in case /  
is non-negative. In this paper I characterize functions which are expressible 
as the sum of at most к non-negative quasi-continuous functions for each 
positive integer к and study an analogous problem concerning the sums of 
quasi-continuous functions bounded below.

First we need some notation. The real line (—0 0 , 0 0 ) is denoted by R  
and the set of positive integers by N. To the end of this article m is a 
fixed positive integer. The word function means mapping from R m into R  
unless otherwise explicitly stated. The Euclidean metric in R m will be de­
noted by g. For every set A C R m, let int A be its interior, cl A its closure, 
frA its boundary, diam A its diameter (i.e., diamA = sup{p(i,?/) : x ,y  G 
G A }) , and xa  its characteristic function. For any function /  we write ||/ || 
for sup{ |/( /) | : t G R m} ( /  need not be bounded), we denote by C(f)  the 
set of points of continuity of / ,  and we set V ( f )  = R m \ C(f).

The oscillation of a function f  on a non-empty set A C R 771 will be 
denoted by u( f ,  A) (i.e., u>(/, A) = sup{ \ f(x) -  f(y)\  : x, у G A }). Simi­
larly, the oscillation of a function f  at a point x G R 771 will be denoted by 
Ц /,ж ) (i.e., u>(f,x) = limr_ 0+ u ( f , { y  G R 7" : g(x,y) < r} ) ). We will write
M (/,x ) for maxjlimsup f ( t ) , f ( x )  j  and m ( f , x ) for m injlim inf f ( t ) , f ( x )  j .

Observe that for any function / ,  u>(f,■) — M (/, •) — m (/, •), the functions

* Supported  by a  KBN R esearch G ran t 2 1144 91 01, 1992-94.
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М (/, •) and w(/, •) are upper semicontinuous, and m(f ,  •) is lower semicon- 
tinuous.

We say that a function /  is quasi-continuous (resp. cliquish) at a point 
x E R m if for each e > 0 and each open set U Э x we can find a non-empty 
open set V  C U such that u;(/ ,  {ar} U V) < £ (resp. u ( f , V )  < e ) . We say 
that /  is quasi-continuous (resp. cliquish) if it is quasi-continuous (resp. 
cliquish) at each point x E R m. Cliquish functions are also known as point- 
wise discontinuous.

We will use the following well-known (and easy to prove) facts.

Lemma 2. (1) A function f  is quasi-continuous at a point x E R m iff 
there exists an open set H C R m such that i  E cl H and f  | ( {x} U H) is con­
tinuous at x.

(2) The limit of a uniformly convergent sequence of quasi-continuous func­
tions is quasi-continuous.

(3) For an arbitrary function f  and x E R m, the existence of a sequence 
X\, X2, . . .  € C(f) such that xn x and f ( x n) n— ? f{x)  implies quasi­
continuity of f  at x.

(4) Each quasi-continuous function is cliquish.
(5) The sum of two cliquish functions is cliquish.
(6 ) A function f  is cliquish i f f V ( f )  is of the first category.
(7) Let f  be a cliquish function which is quasi-continuous at a point x E

E R m and let A C R m be a set of first category. Then we can find a sequence 
X\,X2, . . .  & A such that x n — » x and f ( x n) — ► f (x) .  □

To simplify notation, for a given cliquish function /  and a point x E R m 
we will write LIM(/, x) for Um sup f (y).  (By Lemma 2 (6 ) this notion

y—x , y e C ( f )

is always reasonable.) For each к > 1 we will denote by Sk the family of 
aU non-negative chquish functions /  such that LIM(/, x) ^  f ( x ) / k  whenever
* e 4 f ) .

The word interval will always mean non-degenerate compact interval 
in R m, i.e., the Cartesian product of m non-degenerate compact intervals 
in R.

In the proof of the main results we will need a few lemmas. The first of 
them can be proved actually in the same way as [3, Lemma 3.4] (for к — 2).

Lemma 3. Assume that A is a nowhere dense closed set which contains 
all points of discontinuity of the quasi-continuous functions . . . , Ti'^. 
Then there exists a family of non-overlapping intervals I  = { /„ : n E N} 
such that

i) each x £ A belongs to the interior of the union of some finite subfam­
ily of I ,

ii) diam /n ^  p(/n, A) for each n E N,
iii) for each i E and each x E A there is a subfamily { Ini : l E
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G N} such that x £ cl(J;eN/ n( and 7i^| ({x} U |J ;€N i n t is continuous 
at x. □

Lemma 4. Given a к > 1, a function g £ Sk and an £ > 0 we can find 
a function g £ Sk such that В =  cl V(g)  C V(g),  g = g on В, 0 ^ g — g ^ e 
on R m \  В and g — g £ Sk-

P r o o f . Use Lemma 3 with A =  {x G R m : u(g,x)  ^  e • (1  -  1 /At) } to 
find a family of non-overlapping intervals { l n : n £ N} satisfying conditions
i) and ii) of that lemma.

For each n £ N do the following. If g = 0 on then define a n — 0 
on R m. Otherwise use that g is bounded on In and choose än xn £ int In П 
nC(jf) such that g(xn) > max{ sup{^f(x) :x  G In f)C(g)} -  l /n ,0 } . Let Un C 
C cl Un C int In be an орет neighborhood of x„ such that | g(x) -  g(xn) | < 
< r„ = min{ g(xn)/5, l /гг} for x G Un. Let a n be a continuous function 
such that a n(xn) = g(xn) — 5r„, a n = 0 outside Un and 0 ^  a n ^  g(xn) — 

5rn on l ~л .
Observe that for each x /  A

M(g,x)  -  m{g, x) < e ■ (1 -  l /k) ,

M(ff,x) _  m(g,x) < m( LIM(ff,-),x)
1 — 1 /к  £ < l — l /к  ~ 1 - 1  /к

M(g , x) — e < min

M(g — e, x) < m  ( min 

so, since g  £ Sk,

m{ LIM(<7, - ) , x ) -  M(g,x) / k
1 -  1 /к

, m(g,x)  -  e/k

j U M ( g , - ) - g / k  \ \
m i  i - i / j f c  ’5 r >

M (m ax{<7 -  £ ,0 },x) ^  m ^ m in |^ ^ ^ ’ ) ~ 9 / k
1 / k 9 b x

By a well-known theorem (see [1 , Theorem 1.7.15 (b)]), there exists a con­
tinuous function ß: R m \  A — » R  such that

max{g(x) — £, 0 } <. ß(x) й  min j  ЫМ^  j

for each x G R m \  A.
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Now define the function g by the formula

max{ a n(i),/?(x)} if x E n E N, 

g(x) otherwise.
9(x) =

Fix a m £  R m. First suppose x E A. Take a sequence yi, У2 , - ■ ■ £ C(g) 
with yn — x and limn^oo g(yn) ^  в{у)/к- For each n € N there is an /„ € 
E N with yn £ h n. Consider the sequence (aqn) . Then

ß{fyxin) ^  д(х,уп) + diám J/„ ^  2  ■ д(х,уп) ”- ^  0 ,

SO

LIM (p,x)^ lim sup^(x;n) ^  limsup оцп(х[п) ^
71—►OO 71—KX)

^  limsup(g(t/n) -  6 / / n) ^  g(x)/k = g(x)/k.
71—*00

Meanwhile LIM(fif — <7, a;) ^  0 = (^(a:) — g(x))/  A;.
Now let x 0 A. Then x E C(g), so by the above, g E Sk■ On the other 

hand,

LIM(</ - ß , x )  = LIM(í, x ) -  ß(x)  ^

^  ß(x) ■ (1  -  1 /к) + g(x)/k  -  ß(x) = (g(x) -  ß(x)) /к,

and, if x E cl Un for some n E N, then

LIM(<7 -  a „ ,x ) =  LIM(g,x) -  a n(x) Z g(xn) -  rn -  a n(x) >

> g(x) -  a n(ar) -  2 r„ >
g(x) -  a n(x) 

2
> g ( x ) - a n(x) 

к

Hence g -  g £ Sk- The other requirements are easy to prove. □
Lemma 5. Let g be a non-negative function which is continuous on some 

interval I  and к > 1. Then for each £ E (O, \\g • Xl\\/2) we can find non­
negative continuous functions «(0 , . . . ,  c* ( 0  such that a^1) + q̂ )  =  g
on I  and for i E { 1 ,...,

a) a ^ ( x )  > 0 if g(x) > 0, x E I,
b) — g/к  on fr I,
c) <*(,)(Л  D [e js f-x /ll -  e] •
P r o o f . First find pairwise disjoint non-empty open sets V i, . . . ,  Vj, C 

С I  such that g > ||<7 • x /|| _  z / k  on V\ U . . .  U Vk- Then choose arbitrary

Acta Mathematica Hungarica 69, 1995



ON T H E  SUMS O F N O N -N EG A TIV E Q U A SI-C O N TIN U O U S FU N C TIO N S 153

ж, € Vi (г £ { 1 ,... ,  A:}) and use the Tietze extension theorem to construct 
a continuous function ß such that ß = g/к  on /  \  (Vi U . . .  U V*), ß{xß) = 
— e/k  for г £ { 1 ,.. . ,  к} and e /k  й  ß ^  g/к  on Vi U . . .  U Vk- Finally, for 
г £ {1 , . . .  ,k )  define

= Í 9 -  (* -  *) • ß ( x ) if * e Vi, 

l ß(x)  otherwise.

It is easy to see that then a)-c) are fulfilled. □

Lemma 6. Assume that к > 1, the nowhere dense closed sets В C A, a 
function gE.Sk and non-negative quasi-continuous functions 
are such that g = 0 on B, V{g) C A and Z>(h^) U . . .  U V ( h ^ )  С B. 
Then we can find quasi-continuous functions such that hÍ1) +
+ . . .  + h№ — li  ̂+ .. . + li'  ̂+  g, V ( h ^ )  U ...U  V ^hW ) C A and for i £
£ { 1 , ••.,*}

i) Л(') - 7 ^  ^  0 on R m,
ii) h ( '\x )  -  h ^ \x )  > 0  if g(x) > 0 , x £ R m,

iii) h ^  -  h^  = g/к on A.

P roof. First find a family of non-overlapping intervals {/„ : n £ N} 
according to Lemma 3. Fix an n £ N.

If g = 0 on /„ then define = . . .  = = 0 on R m.
Otherwise apply Lemma 5 with e — en — min{ ||<7-X/„ll/3> 1/ra} and I  =

= and find non-negative continuous functions a.n\ . . . ,  such that 
c*n  ̂+ . . .  +  a ^  = g on In and for i £ {1 , . . .  , k }: a tn \x ) > 0  if g(x) > 0  (ж £ 
£ I n), а 1г) -  g/ к  on fr In and

( * )  a t f i l n )  D  [ e „ ,  I \g ■ X / n l l  -  £n] ■

Define for i £ { 1 ,... ,k}

ftW( l ) = T f \ x )  + (  “ ” )( l)  “ , E , - ’ * E N '
{g(x) / k  otherwise.

Then conditions i)—iii) are clearly satisfied and, by condition i) of Lemma 3, 
the functions h V ) , . . . , h ^  are continuous on R m \  A, so we need only to 
show that they are quasi-continuous on A to complete the proof.
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Take an г G { l,...,fc}  and an x E A. First suppose x G B.  By condi­
tion iii) of Lemma 3, there exists a subfamily {/„, : / G N} such that x G
6  cl(J,6N/ ni and ({x}U (J/€Nint /„,) is continuous at x. Put

Я  =  U  ( i n t  П  ( a W )  _ 1 ( ( - 2 / п , , 2 / п г ) ) ) .
/ 6 N

Then H is open and by (*), x G с1Я. Since g(x) = 0, so ({ж} U H ) is
continuous at x. Hence and by Lemma 2(1), h(*) is quasi-continuous at x.

Now let x £ B.  By the assumptions on g there is a sequence x*,X2 , . . .  G 
G C(g) such that xn n- ^ °  x and g(xn) > g(x)/k — 1/n for each n G N. Since 
the set A is nowhere dense, we may assume that each xn belongs to some
Iln. Use the condition (*) to find a yn G Iin with | a\^(yn) -  g(x)/k\  ^  £in + 
+ 1/n. Then yn x (by condition i) of Lemma 3), hSl\ y n) rLH5° h ^ \x )  
(since h ^  is continuous at x) and G C ( h ^ ) . So by Lemma 2 (3),
fii') is quasi-continuous at x. □

To the end of the article let 21 be a vector space of functions which is 
closed with respect to uniform limits and such that each function w which 
coincides with some function v G 21 on cl V(w)  is an element of 21, too.

T h eo r em  7. For each к > 1 and each function f  G 21 the following three 
conditions are equivalent:

A) there exist non-negative quasi-continuous functions h ^ \ . . . ,  h ^  such 
that f  = hÍ1) + . . .  +  h(k\

B) /  belongs to Sk,
C) there exist non-negative quasi-continuous functions h^l \ . . . , h ^  G 21 

such that f  = M1) + . . .  + h(k) and for i G { 1 ,.. . ,  k}: V ( h ^ )  C T>(f) and 
h ^ \ x )  > 0 whenever f ( x )  > 0, x G R m.

P r o o f . A) =>• B). The function /  is clearly non-negative and, by Lem­
mas 2 (4) and 2 (5), cliquish. Fix an x G X>(/). Let i G { 1 ,... ,  n} be such 
that h ^ \ x )  ^  f (x ) / k .  By Lemmas 2 (6 ) and 2 (7), there exists a sequence 
xi, X2 , .. • G C(f )  such that xn x and fiW(xn) n—̂ °  h ^ \ x ) .  Then

LIM(/, x) ^  lim sup/(x„) ^  lim sup /i^(x„) = h^l\ x )  ^  f (x) /k .

В) => C). Let /о = 0 on R m and B0 = 0. For each n G N use Lemma 4 
with £ = 2_n and g = f  — ( / 0 + . . .  + / n- i )  to find a function f n G Sk such 
that B n — cl V{ f n) C X>(/) (so Bn is nowhere dense), /  = / o + . . .  + / n o n 5 „  
(so, by assumptions on 21, f n G 21), 0 ^  /  — (/o + . . .  + f n) = 2~" on R m \  Bn 
and /  — (/o + • • • + f n) £ Sk-
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Define /ijf* = . . .  = /ijf* = 0 on R m. For each n G N use Lemma 6  with 
В = B0 U . А -  Во u .. .U 5 n, = /iff.lj (i G {1,. and g =
= and find quasi-continuous functions /iff*,. . . ,  /iff* such that /iff* + . . .  + 
+ /iff* = /о + • • • + /n, ^ (/in  *) u . . .  U Z>(/iff*) C f i0 U .. .U 5 „  and for i G 
G {1 ,... /in* -  /ifj'lj ^  0 on R m, h n \ x )  -  /ifff^x) > 0 whenever /„(x) > 
> 0 (x G R m) and /iff* — /ifff 1 — /п /fc onfioU .. .URn. Then by assumptions 
on 51, /iff* , . . . , /iff* G 21.

In this way we constructed к sequences of non-negative quasi-continuous 
functions. For i G {1, • . . ,  k}, if s > n, then

0  S ftW - fc£> S É Л = É 2'~ ' < 2 1_"
/=n+l fcn+1

on R m, so these sequences are uniformly convergent. Hence for г G { 1 ,..., k} 
the function = limn-,,» /iff* is quasi-continuous (by Lemma 2 (2)), G 
G 21 (by assumptions on 21) and T>(h^) C V( f ) .  Moreover, + . . . +  
+ Ä<*) = / .

Let x G R m be such that f ( x)  > 0. Then there is an n G N such that 
f n(x) > 0, so /i(l)(x) ^  h n \ x )  -  /ifff j(x) > 0 for i G {1 ,...,/:} .

C) => A). This implication is obvious. □
Now we will study the sums of quasi-continuous functions bounded be­

low. We get the main result as a corollary from the above theorem.
Corollary 8. For each к > 1 and each function f  G 21 the following 

three conditions are equivalent:
a) there exist quasi-continuous functions M1*,. . .  bounded below 

such that f  = h ^  -f . . .  + h^k\
b) /  is a cliquish function bounded below and

inf{LlM (/,x) -  f ( x ) / k  : x G V( f j )  > -oo,

c) there exist quasi-continuous functions M1) ,. . . ,  hW G 21 bounded below 
such that f  = h^  + . . .  + and V ( h ^ )  C 2?(/) for i G { 1 ,.. . ,  k}.

P roof, a) =s> b). Let s G R  be such that h(*) on R m for i G
G {1 ,... ,&}. Then the function /  = /  -  к ■ s can be expressed as the sum of 
к non-negative quasi-continuous functions, so for each x G X>(/), by condi­
tion B) of Theorem 7,

LlM(/, x )  -  f ( x ) / k  = LlM(7, x ) -  J(x) / k  + (к -  1) • (к -  1 ) • s.
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b) =»■ c). Let s ^  inf{LIM (/,z) -  f ( x ) / k  : x £ X>(/)} / ( 1 -  1/fc) be such 
that /  ^  s on R m. Then the function /  = /  -  s is non-negative and

LIM( / ,  x) = U M ( f , x ) - s  ^  f { x ) / k  — s /k  = f ( x ) / k

for each x £ £>(/), so by condition C) of Theorem 7, there are non-negative
quasi-continuous functions h ^ \  . . . *  £ 21 with /  = -f . . .  + Ti ' and
X>(7í^) C P ( / )  for г £ { 1 ,... ,  &}. Clearly the functions = 7^^ + s/к  ful­
fil our requirements.

c) => a). This implication is obvious. □

Example 1. For each A: £ N the function Uk'. R  —>■ R  defined by

if x /  0 , 
if x = 0

is bounded and positive, it is continuous except one point, it can be written 
as the sum of к positive quasi-continuous functions but cannot be expressed 
as the sum of less than к non-negative quasi-continuous functions.

E xample 2. The function a :R - + R ,

min{ |z |, l }  if x /  0, 
1 if x = 0,

is bounded and positive, it is continuous except one point (so it is cliquish), 
and it cannot be written as the sum of finitely many non-negative quasi- 
continuous functions. (Observe that inf{ u(x) : x £ R ) = 0.)

Example 3. For each к £ N the function u^rR —► R  defined by

f x + 1 if x £ N,
v/c(x) — \

t \x\/k 1 otherwise

is positive and discontinuous on a discrete set, it can be written as the sum 
of к quasi-continuous functions bounded below but cannot be expressed as 
the sum of less than к quasi-continuous functions bounded below.

Example 4. The function u:R  —» R,

f x + 1 if x £ N, 
v(x) -  <

( 1 otherwise,
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is positive and discontinuous on a discrete set (so it is cliquish), and it cannot 
be written as the sum of finitely many quasi-continuous functions bounded 
below. (Though inf{u(x) : x E R} > 0.)

Finally I would like to present a query. Theorem 1 implies that each 
approximately continuous function (resp. each derivative) can be written 
as the sum of two approximately continuous and quasi-continuous functions 
(resp. of two quasi-continuous derivatives). It would be of interest to know 
whether we can find summands satisfying these additional requirements in 
Theorem 7 and Corollary 8 , i.e.:

Can every approximately continuous function from Sk be represented 
as the sum of к non-negative, quasi-continuous, approximately continuous 
functions?

Can every derivative from Sk be represented as the sum of к  non-negative 
quasi-continuous derivatives?
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ON A LIMIT THEOREM FOR SOME 
MODIFIED OPERATORS

XIAOJING XIANG (Eugene)

1. Introduction

Let /  be a function defined on [0,1]. The Bernstein polynomial of order 
n of f (x )  is defined by

( 1. 1 )

where

Bn( f , x )  = /  ( -  ) pnj-(a:),
j=o

Pnj(x) = ( )a:J(l ~ x ) n 3.

A well-known result about the approximation of Bn( f ,x )  to /(x )  is that (see 
[7]) if f^2k\ x )  exists at x, then

( 1.2)

fim ti*
n —► oo

2k-l
Bn{ f , x ) - f { x ) ~  £  

i= 2

f ('Kx )Tni(x) ( 1  — x ) \  k f ( 2k\ x )
=  ( ^ ) k\

where Tni(x ) = £ " _ 0 (£  -  x) 'pnj (x ) .  Tni(x) = Bn( ( - -  x)’,x) is called the 
ith moment of Bernstein polynomial of order n. Hence we may say that
(1.2) is the moment expansion of Bn(f ,x ) .  Khan [6 ] has shown that the mo­
ment expansion holds for a class of Feller operators. Consider the modified 
Bernstein polynomials

(1.3) Pn(f,X) =  ( n  + Pn,j(x).

The approximate properties of Pn( f ,x )  have been studied by many authors; 
Kantorovich [5], Hoeffding [4], Bojanic and Shisha [2], Ditzian and Totik [3]

0236-5294/95 /$  4.00 (c) 1995 Akadém iai K iadó, B udapest



160 X IA O JIN G  XIANG

among others. But the limit result of (1.2) for Pn( f , x )  has not been seen 
in the literature except a wrong result in [10]. The goal of this article is 
to establish (1.2) for Pn( f , x ) and for the Szász-Kantorovich operator. We 
also establish a non-moment expansion for the Baskakov-Kantorovich oper­
ator. The Baskakov-Kantorovich operator and Szász-Kantorovich operator 
are defined, respectively, by (see [3, p.115])

(1.4)

and

(1.5)

where

( 1.6 )

and

K ( f i x ) = n j>2 Д 0 Л ^  bn,j(x )

S n ( f ’ x ) = sn,j(x)i

bn,j(x)  —
n -fi j  — l \  X1

J /  (1 + x)n+j

(1.7) sn,j(x )
(nxY  
~

e—  П Х
1

j  = 0 ,1 ,2 ,. . . ,  and 0 ^ ж ^ а < о о .  A probabilistic method has been used to 
prove our results. It is not only convenient but also powerful. Without using 
probabilistic methods, the following Theorem 2.3 could be difficult to prove 
by the usual analytic method.

Let Y \ , . . . , Y n be iid (independent and identically distributed) random 
variables on a probability space (£l ,P,Px) with Px(Yi = 1) = x, PX{Y\ = 
= 0) = 1 — x and 0 ^  x ^  1. Y\ is called the Bernoulli random variable. Let 
Sn = 5Z"=i and EXY  denote the expectation of the random variable Y  un­
der the probability measure Px. By using probabilistic notations, (1.3) can 
be written as

( 1 . 8 ) Pn{ f ,x ) = (n +

Similarly, (1.4) is

(1.9) B*Jf,x) = nE:
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with Sn = Z U  Y i , Y i , . . . , Y n are iid random variables with the distribution 
Px(Yi = j )  = pqi, j  = 0 , 1 , 2 , . . . ,  where 0  < p = ^  with x ^  0  and p + q =

Finally, (1.5) can be written as

( 1. 10) K U < X) =

with Sn = Y,w h e re  У),. . .  ,Yn are iid random variables with the dis­
tribution Px(Yi = j ) =  jre~x , j  = 0 , 1 , 2 , ----

2. Main results

The first result is about the modified Bernstein polynomial.

T h eo rem  2.1. If  the derivative f t 2кЦх) exists at x with x £ (0,1), then

(2.1) lim j ? „ . , ( / , . )  -  /(x )  -  - Ц  V  Í Í ^ T n,1+2( i )  i =
x(l  — x) -f—' (г + 1 )!(! -  x) ^  (г -I- 1 )!

= [x(l -  ar)]
:f W ( x )

2 kk\ '

R e m a r k . Comparing (2 .1 ) with ( 1 .2 ), T„,,(x) in (1.2) are replaced by 
Tn>t+2 (x) in (2.1). Moreover, the term with f '{x)  is included in (2.1)

(see the result in [10]), but not in (1.2) because ТпЛ(х) = 0.
The proof of the above result is based on the following lemma due to 

Bojanic and Shisha [2 ].
L em m a  2.2. Let f ( x )  be a Lebesgue integrable function on [0,1]. Then, 

for x £ [0 , 1],

x ( l - x ) [ P n - i ( f , x ) - f ( x ) ]  =

= » * { ( £ - . )  J  ( f ( x  + t) -  f(x))  dt

P roof  o f  T h eo rem  2.1. From Taylor’s formula and Lemma 2.2,

x ( l - x ) [ P n_1( f , x ) - f ( x ) \ f {t)n  F
( г + 1 )! + Rr17
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where

1*1 <

R n  — tiE x iNf g{Z)t2k dt,

ж I and <z(£) is uniformly bounded, g(£) —»• 0 as |£| —► 0. To com­
plete the proof, it suffices to show 

(2.2) Urn - ■ - 1 - , nfc+1 e ( ^ - - x)
v ’ n-oo (2к + 1)! \ n  )

ч 2fc+2

2  kk\ N 1 -  ж)] fc+i

and

(2.3) lim ukR n = 0.
71—► OO

(2.2) is a consequence of Lemma 5 in [6 ]. (2.3) follows by using the argument 
of the proof of Theorem 2 in [6 ].

For the Baskakov-Kantorovich operator, we have the following result. 

T heorem 2.3. If  the derivative f ( 2k\ x )  exists at x with x > 0,

п(ж + 1 ) ^-л1 f ^ \ x )
Urn nk \ B*(f,  x) -  f ( x )  - E

= [* (* + !)]
k f ( 2k\ x )

2  кк\

(ж) / —

where M„,i+2 (ж) = Ex { ( -  i f i )  ( yf -  *) *+1} •

Remark. We note that the above theorem is an expansion of B*(f, x) 
in terms of Мп>,'+2 (ж), which are not usual moments. To establish the above 
expansion, a crucial step is to find lim ^oo nk+1 Мп<2к+2(х )- By using the 
probabilistic method, we avoid the complicated calculation of МП}2к+2(х).

The proof of Theorem 2.3 relies on the following lemma.
Lemma 2.4. Let f ( x )  be a Lebesgue integrable function on any finite 

interval. Then, for each x > 0,

= t t ^ 6n)fc(a
k=0

1 +  X

к

[B*n( f , x ) - f ( x )] =

(/(ж  + t ) ~  /(ж)) dt.n + к — 1 1 + ж
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P roof. It can be shown that

(2-4) —  [ Ъ п , к - Л х )  -  bn, k{ x) }  =  bnJt ( x )  ( n + jfe_ 1 -  j q - )  >

(2-5) £  bn'k { x )  { n  +  k - l  ~  I + l )  = ° ’к- 0 4 '

and

( 2 .6) n f l bnA x ) ( n + k _ 1
X

1 +  X ’

Write

K n(x , t) f( t)d t ,

where
OO

K n(x,t)  = n V  ЬП1*(ж)х,* *±11(0 ,
z '  V n ’ n  -I
k=0

X(* * ± i ] ( 0  being the indicator function of ( ^ 1 ]  . By

OO

K n(x,t) = - n 6n,0 (x)x[o,o](<) + (V fc-i(*) -  &пл(а:))Х[о,
к- 1

(2.4) and (2.5) imply that

(2.7) y r — K ( f < x ) = n ' f^K - 4 - 7 - 7 ^ - )  Г  m * =n  +  k  - 1  1 + х/Уо

OO / 7 \ »— —qt;

= »Ev»w(^jDfcrT-rh)i" №+<)*•
Combining (2.6) and (2.7), the lemma follows.

P ro o f  o f  T h eo rem  2.3. From Taylor’s formula and Lemma 2.4,

^ j7 j ; [^ n ( / ,  * ) - / ( * ) ]  = n S  (f + 'í v Мп.|'+а(д) +  Дп’
1=1 ' '
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where

R n  — (( Fr
(  Sn

* ^ /
\ n  + Sn -  1 x  + 1 J  J o

g(Z)t2k dt,

|£| < I ^  — ж I and g ( £ )  is uniformly bounded, g ( £ )  —> 0 as |£| -a 0. Let 
И  01 = C for any £. To complete the proof, it remains to show

(2 .8 ) lim
1

(2 k + 1 )!
,fc+i Ex \ (  S'  , - ^ t )  ( — - * )

+  I f  1 /  \  H /

2 k+1 '

and

(2.9) 

Write

( 2 . 10)

lim nkR n = 0 .

-  x) + fV n______/ 1 n

+ S„ - 1  x + 1  (* + l ) ( b  +  l - l ) -

By strong law of large number [1, p.290], (x + 1) + 1 — —»► (x + 1 ) 2
with probability one. Let

Z„ =  —  ̂  -  X)
[(x + l ) ( | M - l - i ) ] r ó ’

From the central limit theorem, s / n (  ^  -  x) converges in distribution to 
a normal random variable with mean zero and variance x(x + 1). It follows 
that, by Slutsky’s theorem [9, p.19], Zn converges in distribution to a normal

k- 1
random variable, say Z, with mean zero and variance x(x + 1)*+1. From
(2 .1 0 ), neglecting the higher order term, we have
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This and (2k+iyßxZ 2k+2 = 2Щхк+1(х + 1)* 1 imply (2.8) if we can show

(2.11) lira ExZ^k+2 = ExZ 2k+2.
n —►OO

To this end, from the corollary in [1, p.348], it suffices to show

( 2. 12) sup Ex\Zn\r < oo, for some r > 2k -f 2.

Since Y\ — x has finite moment generating function (Yi is a geometric ran­
dom variable), Lemma 5 in [8 , p.54] implies, for some T > 0 and a > 0,
Exét(Yl~x') íí f 2ai for |f| й T. From Theorem 15 in [8 , p.52],

P ( y/n Sn — X
n 2> i )  ^  2e~ —  , if 0  ^  t й  T,

and

^  2e-'-r, if t t T .  

It follows that, from (2.19) in [1, p.282],

( v a
sn------XV n

Since the right hand side of (2.13) is independent of n, supn E x \ y / n {  ^  —  
— x) IT < oo. Hence, from (® + l)(^j»- + 1 — T) t.

sup Ex\Zn\T 22k+2 Ex
r

< OO.

To prove (2.9), for any £ > 0, there exists a 6 > 0, such that |<7(£)| < £ if 
I ^  — x\ < 6 . From (2.10) for n't. 2,
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This implies

nk\Rn\ % 2enk+1Ex — x
2k+2

+ 2 С »‘+ ' { Ц ( ^ - х ) “ +\ (

+ 2 xenkEx

Sn

Sn 2 k + l

— X +

2 x
H---- Exn

-  x
2H-1 Sn

-  X

— X

>  s

> m  +

where 1(A) denotes the indicator function of the random event A. Using the 
argument of the proof of Theorem 2 in [6 ], we can show

lim sup nk IRn\ й £i2l +̂  [x (x + l ) ] fc+1-
n —►oo 2 At!

Since e is arbitrary, (2.9) follows.
Our final result for the Szász-Kantorovich operator is the following. 
T h e o r e m  2.5. If the derivative f^2k\ x )  exists at x with x >  0, then

2 k —1

(2.14) lim n
n —►OO s*( / ,* ) - / ( * ) -  ^  X  (и Г Г )^ п’г+2(х)|  =

f^2k\ x ) x k
¥ k \

where Qn,i+2 (x ) = Ex -  x ) t+2.
The proof of Theorem 2.5 is based on the following lemma.
L e m m a  2 . 6 .  Let f (x )  be a Lebesgue integrable function on any finite 

interval. Then, for each x > 0,

(2.15)

x [ S * ( f , x ) ~  /(*)]
OO

n ^ S n ^ i x )
k=0

{ f i x  + t) -  f ix ) )  dt.

P r o o f . It is easy to check that

(2.16)

(2.17)

% [$п,к— 1 (*̂ ) *п,к(Х)}

oo

^   ̂Sn,k(%)
k = 0

=  0,
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and

oo
(2.18) П^ - Ч * ( а;)

k=0

The rest of the proof, which is the same as that of Lemma 2.4, is omitted. 
The proof of Theorem 2.5 is omitted.
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A NOTE ON STRONGLY PRIME RADICALS
J. F. WATTERS (Leicester)

1. Introduction

The main aim of this note is to present some of the details of the author’s 
example cited in [7], where it was used to show that the strongly prime rad­
ical is not left-right symmetric and given along with another example due to 
the authors for the same purpose. At the same time the opportunity is taken 
to discuss the relationship between strongly prime and the concept of nor­
mality, as defined for radicals in [4| and for classes of prime rings in [5]. It 
is shown that the class of strongly prime rings is not a normal class of prime 
rings, although it is known to be a special class of rings [2 ], and that the 
strongly prime radical is not normal, although it is special [2]. Parallel re­
marks can be made for the uniformly strongly prime rings and the uniformly 
strongly prime radical, the upper radical determined by this class. These ob­
servations vis-a-vis normality do not seem to have been made before. On the 
other hand, it is shown that in the category of rings with identity, strongly 
prime and uniformly strongly prime (see [6 ]) are Morita invariant properties 
as is semisimplicity with respect to either the strongly prime radical or the 
uniformly strongly prime radical.

The concept of a strongly prime ring was defined by Handelman and 
Lawrence [3]. A right insulator in a ring R  is a finite subset F  of R  such that 
Fr — 0, r £ R, implies r — 0. The ring R  is said to be right strongly prime if 
every non-zero ideal (two-sided) contains an insulator and the right strongly 
prime radical, sr(R), is defined to be the intersection of all the ideals I  of R 
for which R / I  is right strongly prime. The left strongly prime radical, si(R), 
is defined analogously. Groenewald and Heyman [2] have shown that sr and 
si are radicals in the Kurosh-Amitsur sense. In the original formulation R 
is said to be right strongly prime if for each non-zero a 6  R there is a finite 
subset Fa of R  such that the right annihilator of aFa is zero, in which case 
Fa is called a right insulator of a. If a common insulator can be found for 
all the non-zero elements of R, then R  is said to be uniformly strongly prime 
and the common insulator is referred to as a uniform insulator. It is known 
that R  is uniformly strongly prime if and only if there is a finite subset F  of 
R such that xFy  = 0 implies x = 0 or у — 0, from which it is seen that the
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concept is left-right symmetric. The upper radical us(R) determined by the 
class of uniformly strongly prime rings is called the us-prime radical. The 
class of uniformly strongly prime rings is known to be special and so us is a 
special radical. Proofs of these results on uniformly strongly prime rings can 
be found in [6 ].

2. The example

Example 1. Let К  be a field, X  = {X i,X 2, •••} a set of non-commuting 
indeterminates, and A = K (X ) ,  the free associative algebra with 1 on X . Let 
В  be the ideal of A generated by {X{X j , A; W+i X; — X{ | 1 ^  i, i + 2 ^  j }  
and put R = А / B. Write yi = X; + B,i  ^  1, so that R  is generated as a K- 
algebra by {y, \ i ^  1 } with угу3 -  0  and yiyi+iyi = yt for 1 ^  i and i + 2  ^  j .

A monomial in the y 's will be called irreducible if it cannot be reduced in 
degree using these relations. A number of properties of R will now be given 
and then used to establish the (negative) results already described.

P roperty 1. The only right strongly prime non-zero factor ring of R is 
R /M  = К , where M  = (yi ,y2, ■ • •)•

P roof. Suppose P  is an ideal of R and that 0 ф R / P  is right strongly 
prime. Let F  = {ft  + P, . . . , / „  + P} be an insulator in R / P  with / 1 , . . .  , f n G 
G R ■ Let m  be the largest subscript to appear on y 's in / i , . . . , / n. Then 
fkyj — 0 for all 1 ^  к ^  n, j  ^  m + 2  and so (Д  + P){yj + P) = 0, that is 
P(?/j + P) = 0. Hence yj G P  for all j  ^  to + 2. However, it is clear from 
the relations on R , if G / ,  an ideal of Д, then yi G I  also. Hence 
{j/i, У2 , ...}  Я P  and P 2 M  = (j/i, У2, ■ ■ •)• Therefore P = M  as required. 
□

P roperty 2. The set {2/1 , 3/2} is a left insulator in R.
P roof. Suppose r G R is such that ry\ = ry2 = 0. If r ft 0 then we can 

write r = £  a ßp where aß G К  and the /x’s are distinct irreducible mono­
mials in the y's. Writing y, =  ytl . . .  yik, yy^ is irreducible unless ik = 2 and 
ik- 1 = 1, in which case ууг = y4  . . .  ytk^1 = Ar/i where A = t/q . . .  yik_ 2 in ir­
reducible form and Xyi is irreducible. Thus working down by degrees, we 
see that ry\ = 0  implies r — ]T oiaA( 1  — yiyft)- In this format á monomial of 
largest degree will be of the form \ у \ у 2 so that Ху\у2У2 is both irreducible 
and uncancellable within ry2, so ry2 ф 0. Hence {yi ,y2} is a left insulator 
in R. □

P roperty 3. The element e — y\y2 is an idempotent in R and eRe is 
a domain.

P roof. It is clear that e is an idempotent. Let r , «GÄ and write ere and 
ese as linear combinations of irreducible monomials. Since e must appear
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in each monomial, the monomials will have degree ^  2  and the product of 
monomials of degree к and / from ere and ese respectively will have degree 
к + / -  2 since the only reduction comes from e2 = e. The resulting product 
when к and / are maximal cannot arise in any other way in erese and so 
ere /  0 and ese ф 0 implies erese ф 0. Thus eRe is a domain. □

P roperty 4. The ring R is a prime ring.

P roof. Let r and s be non-zero elements written as linear combina­
tions of irreducible monomials. Let Л =  ytl yi2 . . .  yik and p = yn yj2 ■ ■ ■ yn be 
monomials of largest degree in r and s respectively. If ik > j \  + 1 then Xp is 
irreducible of degree к + 1 so rs ф 0. If ik =  j \  +  1 then Ayikp is irreducible of 
degree к + / + 1 so ryiks ф 0. Finally, if ik j \  then At/^j/^+i.. .ypp  is irre­
ducible of degree к + / + (j\ — ik + 1) so ryik yik+ i . . . yp s  ф 0. Hence rRs ф 0 
and R is a prime ring. □

Recall that a radical p is called a normal radical if whenever (5, V, W,T)  
is a Morita context Vp(T)W  Q p(S). Jaegermann ([4], Theorem 1.9) has 
shown that if p is a normal radical and e is an idempotent in a ring R , then 
p(eRe) — ep(R)e. Normal special radicals are upper radicals determined by 
normal classes of prime rings, a concept introduced in [5] where it is shown 
that if V  is a normal class of prime rings and L is a left ideal of a right ideal 
of a prime ring S , then L £ V  implies S  € V.

T heorem 1. (a) The radicals si and sr are different [2].
(b) The class of right (left) strongly prime rings is not a normal class of 

prime rings.
(c) The radicals si and sr are not normal radicals.
(d) The class of uniformly strongly prime rings is not a normal class of 

prime rings.
(e) The uniformly strongly prime radical is not normal.

P roof, (a) In the example sr(R) = (t/i, j/25 • • •) from Property 1. It 
is shown in ([7], Corollary 2.2) that si(R) does not contain any insulator 
in R and so from Property 2 {г/1 , 1/2 } is not contained in si(R). Hence 
si(R) ф sr(R).

(b) From Property 3 eRe is a right and left strongly prime ring. It is 
also a left ideal of the right ideal eR of R. From Property 1 R is not a right 
strongly prime ring whilst from Property 4 R is a prime ring and so the class 
of right strongly prime rings is not normal. Dually, the result holds for left 
strongly prime.

(c) Again from Property 3, si(eRe) = sr(eRe) = 0. From Property 1 
sT(R) = (2/1 , t/2 , . . .)  so esT(R)e ф 0, in particular esr(R)e is not contained in 
sr(eRe), so the radical sT is not normal. The same can be said of si.

(d) and (e) As in (b) and (c). □
The observation (c) may also be seen from the fact that Jaegermann [4] 

shows that a supernilpotent radical is normal if and only if it is left stable 
and right hereditary whilst in [8 ] it is noted that the strongly prime radical is
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neither right (left) hereditary nor left (right) stable. I am indebted to Patrick 
Stewart for pointing this out to me as well as for suggesting that uniformly 
strongly prime could be considered in parallel with strongly prime. Similarly,
(b) follows from this observation together with the fact that in [5] it is shown 
that the upper radical determined by a normal class is a normal (ancPspecial) 
radical, so the class of strongly prime rings cannot be normal.

In contrast, it is shown in Theorem 2 below that, when working in the cat­
egory of rings with identity, strongly prime and uniformly strongly prime are 
Morita invariant, as indeed is being semisimple with respect to the strongly 
prime radical. In this case it is not possible for a ring to be strongly prime 
radical since all rings have simple images with identity, but the same can­
not be said about the us radical in the light of the example in [1] of a simple 
ring with 1 which is not a us-prime ring. Note that in [6 ] it is stated that 
us-primeness is a Morita invariant property.

T h eo rem  2. Let (5, V, W, T) be a Morita context with V W  — S and 
W V  = T, where S and T are rings with 1. If I  is an ideal of S such 
that S / I  is a (right, uniformly) strongly prime ring, then T /J ,  where J  = 
= W IV ,  is also a (right, uniformly) strongly prime ring. Furthermore, 
sr(T) = W s r(S)V and us(T) = Wus(S)V.

P r o o f . Write I s  =  ViWi and 1т =  i w j vj-  with
t fi J. Put t — t + J ф 0. Then V tW  is not contained in / ,  so there are 
v0 € Wj \ 1 й з й  m } and wo E {wí | 1 ^  i ^  n} with s = VqIwo I.  Put 
s = s + I  ф 0. Then there is a finite subset Gs of S / I  for which the 
right annihilator in S / I  is zero. Write Gs = {g + /  | g G Gs Í  5} so that 
|GS| =  |GS| < oo. Then sGsx Q I . x  E S  implies x E I. Put Ft = U, woGsv'- ^  
Q T  and suppose tFty ^  J with у E T. Then, for all 1 ^  j  й  m, twoGsv'-y 
Q J , and so sGsv'fl ^  Vo J, from which we find that sGsV^yW C / .  But then, 
from the annihilator condition, v(yW ^  I  for all j .  Hence w^v'-yWV Q J  for 
all j  and so, on summation over j ,  у 6  •/. Thus Ft is a right insulator of 
t. This deals with the right strongly prime pa£t of the result. For the uni­
formly strongly prime part we replace Gs by G and Gs by G, and observe 
that since the choice of Wo can be restricted to the finite set {wí | 1 й i й n) 
we can take, as uniform insulator, the finite set F  = Ujj W{Gv'.

Now let

S  = {I  I S / I  is a right strongly prime ring}.

Then sr(S) — П / ,  I  E S  and so sr( T ) Q П (W IV) .  However П(W IV)  = 
= W(C\I)V', one inclusion is clear, whilst if t E W I V  for all I  £ S,  then 
vtw G I for all v E V , w E W , I  E S,  so that V tW  ^  П I  and t E W (fl 
ПI)V.  Therefore sr(T) ^  Wsr (5')Vr. By symmetry, 5 r (5 ) ^  Vsr(T)W  and 
so VFsr (5)F  Q sr(T ), giving the stated equality. A similar argument can be 
used to show that Wus(S)V  = us(T). □
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C o r o l l a r y  1. In the notation of the Theorem:
(a) if S is a right strongly prime ring, then T is also a right strongly 

prime ring;
(b) if S is a uniformly strongly prime ring, then T is also a uniformly 

strongly prime ring;
(c) if sr(S) — 0, then sT(T) = 0;
(d) if us(S) = 0, then us(T) = 0.

C o r o lla r y  2. For any ring S,
(a) sr {Mn(S)) = Mn{sr(S)) [2];
(b) us(M n(S)) -  Mn(us(S)) [6 ].

P r o o f . When S  has a 1 we use the context (5, V, W, Mn{S)) where V 
and W  are the modules bf row and column vectors with n components from
S. If S does not contain 1 , then it can be embedded as an ideal in a ring S' 
with 1 . Then, for (a), sr (S) = S П sr(S'), so that

Mn (sr(S)) = Mn(S )n  M n(sr(S')) = M n(S )D (sr (M n(S '))) = sr (M n(S))

since Mn{S) is an ideal of Mn(S') and special radicals are hereditary. Anal­
ogous statements can be made for us. □

We remark that the presence of identities in both rings is crucial for The­
orem 2 and Corollary 1, since in our example the context (eRe,eR, Re, ReR) 
has all the properties except that ReR does not have an identity element. 
The ring eRe is uniformly strongly prime (and so right strongly prime), but 
ReR is right strongly prime radical (and so uniformly strongly prime radical). 
To see this note sr(ReR) = sr(R ) П ReR,  since sr being special is hereditary, 
and e £ M  = sr(R) so ReR Я: sr(R), whence sr(ReR ) = ReR.
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SHORT NOTES ON QUASI-UNIFORM
SPACES

I. UNIFORM LOCAL SYMMETRY
J. DEÁK (Budapest)1

A quasi-uniformity U on X  is locally symmetric [18] if for any U EU  and 
x E X  there is a V EU  with V~l [Vx] C Ux (Ux denotes [/[{a:}]). Equiva­
lently, there are V,W E U with W ~ l \Vx] C Ux. This is a localized version 
of the following characterization of symmetry: U is a uniformity iff for any 
U E l i  there are V, W  E U such that W ~ l о V C U. Allowing W,  but nőt V, 
depend on x , we obtain a new notion: U is uniformly locally symmetric if for 
any U EU  there is a V EH  such that for any x E X  there is a IT E l i  with 
W -'[Vx)  C Ux.

In §1, we shall recall some other notions of quasi-uniform symmetry, 
and compare them with uniform local symmetry. It will be proved that 
a mixed-symmetric, uniformly regular quasi-uniformity is uniformly locally 
symmetric, while a uniformly locally symmetric quasi-uniformity is quiet. 
Some counterexamples will also be constructed, e.g. an open-symmetric, not 
point-symmetric T2 quasi-uniformity. We shall also consider the category of 
the uniformly locally symmetric quasi-uniformities. It will be shown in §2 
that some symmetry properties are not hereditary. In §3, we shall show that 
a quasi-uniform space is uniformly locally symmetric provided that it has a 
uniformly locally symmetric sup-dense subspace. (The analogous statement 
for local symmetry is known to be false [2 1 ].)

§1. Some symmetry properties

1.1. Throughout this paper, U is a quasi-uniformity, and its fundamental 
set is denoted by А; 6ц is the quasi-proximity, and Tu the topology induced 
by U. Topological properties (open, dense, etc.) are to be understood with 
respect to Тц. The adjective doubly means ’’for U as well as for Z7_1”; a 
subset of X  is sup-dense if it is dense in the topology sup{7^, Тц-1}.

U is proximally symmetric (also known as ’’Smyth symmetric”; our ter­
minology has been taken from [24]) if 6ц is symmetric; it is closed-symmetric 
(introduced in [6 ]; the equivalence of the definitions shown in [17]; present

1 Research supported by Hungarian National Foundation for Scientific Research, Grant 
No. 2114.
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terminology from [9]), open-symmetric2 [17], respectively mixed-symmetric 
[9] if А 6ц В  implies В 6ц A for closed sets A and B,  for open sets A and В , 
respectively for A open and В  closed. Id is point-symmetric [18] if for any 
U £ Id and x £ X  there is а У £ Id with V~xx C Ux. (Equivalently: 7^-i is 
finer than Tu-)2 3 Doubly point-symmetric = doubly locally symmetric. (As­
sume that Id is doubly point-symmetric, and, for U £ Id and x £ X ,  take 
W ,V  £ Id such that W ~ 2x C Ux , Vx  C W ~l x.)

Most of the notions of symmetry are special cases of a more general one: 
Given systems a, b C exp X  (which are in some way determined by U , e.g. 
the open or the closed sets), we say that U is (a, b)-symmetric if Abu В 
implies В bu A whenever A £ a, В £ b. Denoting by o, c, and s the sys­
tems of all open sets, closed sets, and singletons, respectively and putting 
p = exp X:  proximally symmetric = (p,p)-symmetric, closed-symmetric = 
=(c, c)-symmetric, open symmetric = (o, o)-symmetric, mixed-symmetric = 
= (o, c)-symmetric, point-symmetric = (p,5 )-symmetric. It was observed in 
[9] (although not using the above terminology) that proximally symmet­
ric = (c,o)-symmetric,4 and also that a closed- or open-symmetric quasi­
uniformity is mixed-symmetric. The reason for these simple facts will be 
more clear from:

Lemma. For an arbitrary oC  exp A, (a, p)-symmetric = (a, о)-sym- 
metric and (p, a)-symmetric = (c, a)-symmetric.

P roof. 1° Assume that Id is (a,o)-symmetric, ВЬц A, A £ a. Take a 
U Eld with U2[B] П A — 0; we can assume that Ux £ о (x £ X); then U[B] £ 
£ o, U[B]bu A, AbuU[B], ÁbuB .  Hence U is (a,p)-symmetric. The con­
verse is evident.

2 ° To prove the other statement, use that АЬц В  implies Abu B. □

In particular, open-symmetric = (o, p)-symmetric and closed-symmetric 
= (p,c)-symmetric; hence both properties are stronger than mixed-symmetry. 
The statement proximally symmetric -  (c,o)-symmetric follows applying 
both parts of the lemma.

1.2. Mixed-symmetric regular quasi-uniformities are locally symmetric 
([9] Remark b )) ; we are going to prove a uniform version of this statement. 
Recall that U is uniformly regular ([1], [15]) if for any U Eld there is а У Eld 
with Vx  C Ux (x E X) .  (This property evidently implies regularity.)

2 T h e  n o tio n  open-set  symmetr ic  in troduced  in  [16] is a  m uch stronger version of open- 

sym m etry.

3 A lthough  n o t ap paren t from  the  definition, small-set symmet ry  defined in [16], [17] 

is equivalent to  th e  po in t-sym m etry  of th e  conjugate quasi-uniform ity, see [22] Lem m a 4.

4 T his follows also from  [23] Proposition  2, which s ta te s  th a t  a  quasi-proxim ity is de­

term in ed  by th e  strong inclusion betw een open sets.
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LEMMA. Id is mixed-symmetric iff for any U E Id and F E c there is a 
V  GW with V ~ l [F] C JJ[F\.

P roof. Necessity. F 6 ц  X  \  U[F], thus F 6 ц  int ( X  \  U[F]), implying 
int ( X  \  [/[F]) 6 ц  F  by the mixed-symmetry, and so V  int (X  \  [/[F])

С X \  F  for some V E Id, i.e. V ^ F ]  C U\F].

Sufficiency. Assume F 6ц G, F e e ,  G e o .  Then U[F] С X  \  G with 
some U E U. Take V E Id such that V~X[F] C Tf[F\- Now V~l [F] C X \ G ,  
V[G] C X \ F ,  G 6U F. □

Remark. A similar characterization of closed- or open-symmetry can be 
obtained replacing U[F] by U[F] (almost the same as the original definition 
in [6 ]), respectively c by p (similar to [17] Proposition 4.1).

PROPOSITION. Any mixed-symmetric uniformly regular quasi-uniformity 
is uniformly locally symmetric.

PROOF. Let U EU,  and take Z ,V  EU  such that Z2x C U x,  Vx  C Zx  
(x E X) .  For x E X  fixed, Z[Vx\  C Z 2x, thus the lemma applied to Z  and
F  = Vx  yields a W  E U with W ~ l \ Vx\ C Z 2x, implying W ~ 1[Vx] C Ux.
□

A uniformly locally symmetric quasi-uniformity is evidently uniformly 
regular (a stronger statement will be proved in 1.3), but not necessarily 
mixed-symmetric:

Example. The restriction of Sorgenfrey quasi-uniformity Uso (see Z  in 
[18] 1.1) to X  = { l/n , — 1/n: n E N} is doubly uniformly locally symmetric, 
but not mixed-symmetric. □

1.3. U is quiet [13] if for any U Eld there is a V EU  such that 
Vx E ,V ~ xy E imply xUy whenever (f_1 ,fx) is a Cauchy filter pair. 
( Cauchy means that for each U Eld there are Si E f  with 5_i X S\ C U.) 
Such a V  is said to be quiet for U. Quiet quasi-uniformities are uniformly 
regular [15] (in fact they are doubly uniformly regular, since if Id is quiet 
then so is ld~l , see [13]).

P roposition. Any uniformly locally symmetric quasi-uniformity is 
quiet.

P roof. Given U Eld, take Uq Eld with Uq C U, and then V, Wz E Id 
such that W f l \Vz] C Uqz {z E A'). We claim that V is quiet for U.

Assume that ( f—1 , f1) is a Cauchy filter pair, Vx E f1, V~xy E f-1 . Take
Si E f* such that 5_i X 5i C Wx.  Now Vx  П 5i E f1, V~xy П £_i E f-1 , so 
we can pick points z\ E Vx  П Si and z-\  E V~l y П S _ i. Then z_i Wx z\, thus 
x V z\ W ~ l z - 1 , implying x Uo z- \ .  Moreover, z_\ V y, thus Z-\ Uoy, x U y.
a
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In view of Proposition 1.2, tlre'äbove result generalizes the proposition 
of [9], which states that each mixed-symmetric uniformly regular quasi­
uniformity is quiet. Double local symmetry implies double uniform regu­
larity (see e.g. [8 ] Remark 1.3 or [17] 3.6), but it does not imply quietness 
(see e.g. [8 ] Example 1.3 b )) . Hence a (doubly) locally symmetric quasi­
uniformity may not be uniformly locally symmetric. It can also occur that 
U~x is uniformly locally symmetric, U is locally symmetric, but not uniformly 
so:

Example. Let X  — ({(0,0)} U N 2) x N, and define U by the following 
quasi-metric:5

d((0 ,0 ,n), (l,fc,n)) = 1/n (k,n  G N), 

'd((0,k,n), (1 ,k ,n))  = 1 /к  (к,п  G N).

The bitopology of U is discrete, thus U is doubly locally symmetric. U is not 
uniformly locally symmetric, since there is no W  G U with IE-1 [Уж] C Ux if 
U = {/(j), V = 1/n < £, x = (0 ,0 ,n). U~x is, however, uniformly locally
symmetric: for any 0 < £ ^  1 , IE 4 ) x C holds with suitable IE G U
depending on x , since U^Jjx contains at most two points, and Тц is discrete.
□

1.4. A mixed-symmetric regular quasi-uniformity is locally symmet­
ric ([9] Remark b)) . But there are open-symmetric, closed-symmetric 
regular quasi-uniformities that are not uniformly locally symmetric: The 
Pervin quasi-uniformity ([18] 2.2) of a non-discrete T3 space is not uniformly 
regular ([1] 8 .2 ), hence not uniformly locally symmetric, although it is (as 
all the Pervin quasi-uniformities are) open-symmetric and closed-symmetric 
([17] §4). Without separation axioms, open-symmetry and closed-symmetry 
together do not even imply point-symmetry: take a non-symmetric quasi­
uniformity on a two-point set; local symmetry does not even follow with 
T 2 : take the Pervin quasi-uniformity of a non-regular T 2 space. A closed- 
symmetric Ti quasi-uniformity is evidently point-symmetric; but there is an 
open-symmetric, not point-symmetric T 2 quasi-uniformity:

Example. Let ( X ,T )  be a non-regular T 2 space such that, except for a 
single point p, all the points have a neighbourhood base consisting of closed 
sets. (E.g. modify the usual topology on R by deleting the points 1/n (n G 
G N) from the basic neighbourhoods of 0.) Put

b = {G: G is T-open, p £ G \  G}.

6 W hen defining a  quasi-m etric  d, it will be understood th a t  d (x ,y )  =  1 for pa irs х ф  

фу n o t m entioned  in  th e  definition. N otation: 17(e) =  U(ej(d) =  { ( i ,  y) : d(x,  y)  <  e}.
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b is a base for T. It is easy to check that b is closed for finite unions and 
finite intersections. Moreover, if G E b then X  \  G E b. Now we define U 
similarly to the Pervin quasi-uniformity, substituting b for the system of all 
open sets (such quasi-uniformities were considered in [25] and [3]), i.e. let 
{Uq : G E b} be a subbase for U, where

Ug = G x G \J (X  \  G) x X.

U  is a quasi-uniformity compatible with T  ([24] 5.2 or [3] §1). As b is a lat-
71

tice, U[A] E b whenever А С X  and U is a basic entourage, i.e. U =  p) UGk,
k — \

Gk G b ([3] Lemma 2). Hence А 6ц В  iff there is a C  E b with А С С, В  П 
П C = 0 .

U is open-symmetric. Take open sets G , H  jruch that G 6ц H, and pick 
G' E b with G  C G', G' П H = 0. Now H'  = A \  G' E Ь, H с  H', H' n G  = 0, 
thus H 6ц G.

U is not point-symmetric. If p E G E b then Uq 1p = X; if p £ G  E b then 
p & G,  and Uq 1p -  X  \  G  is a 7^-closed ^-neighbourhood of p. Thus the 
Тц- i -neighbourhood filter of p has a subbase, hence a base, consisting of 
7^-closed ^-neighbourhoods of p, i.e. Тц- i  cannot be finer than Тц. □

Let us also note that an open-symmetric, closed-symmetric uniformly 
regular quasi-uniformity is not necessarily proximally symmetric: restrict the 
Sorgenfrey quasi-uniformity to {0} U {1 /п:п E N}.

1.5. Generalizing a result from [6 ], it is proved in [20] Proposition 6 (c) 
that (with the terminology used there) a mixed-symmetric uniformly regu­
lar quasi-uniformity is D-complete iff it is bicomplete. These two notions of 
completeness do not coincide in the more general class of uniformly locally 
symmetric spaces: U from Example 1.2 is uniformly locally symmetric, bi­
complete (since sup {U~l ,U) is the discrete uniformity), but not D-complete 
(the filter generated by the sequence ( l /^ )n6N is D-Cauchy, but not conver­
gent).

1.6. Some of the symmetry properties were defined in terms of 6ц\ point- 
symmetry only depends on the induced bitopology. Local symmetry is also a 
property of 6ц: U  is locally symmetric iff {x} 6ц A implies that А 6ц G  for a 
suitable Тц = Tgu -neighbourhood of x (see [18] 2.23). Uniform local symme­
try behaves differently: If U  is a uniformly locally symmetric, not proximally 
symmetric quasi-uniformity then the totally bounded quasi-uniformity com­
patible with 6ц is not uniformly locally symmetric. (Assume it is; then it is 
quiet, a contradiction, since any quiet totally bounded quasi-uniformity is a 
uniformity, see [14] Proposition 3 or [19].
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1.7. If W ~l \Yix\ C Uíx (1 ^  t £  »), W  = П Wit V  = f ) V t, U =  fj U>
t'=l t = l ! = 1

then W ~ l [Vx] C t/a;; thus it is enough to take U from a subbase in the defini­
tion of uniform local symmetry. Moreover, if f : Y  —* X  is a function, p £ У, 
and U, V, W  are entourages on X  such that W ~ x [Vf(y)] C U f { y ) then
Wq 1 [Vоу] C U0y holds with Wo = f - ' W ,  Vo = f ~ l V, U0 = f ~ l U; thus if 
(X,U)  is uniformly locally symmetric then so is (Y , f ~ xU ). This means that 
the uniformly locally symmetric quasi-uniformities form a concretely reflec­
tive subcategory in the category of quasi-uniformities. In particular, uniform 
local symmetry is productive.

§2. H eredity

Proximal symmetry, (uniform) local symmetry and point-symmetry are 
evidently hereditary properties. It is also straightforward that a closed (re­
spectively open) subspace of a closed-symmetric (respectively open-symmet­
ric) space has the same property. Moreover, a dense subspace of an open- 
symmetric space is open-symmetric ([21] Proposition 8 (b)). In the next 
example, we have a dense open subspace in a closed-symmetric space, a 
closed subspace in an open-symmetric space, and subspaces of both types in 
mixed-symmetric spaces such that the subspaces do not possess the property 
in question; the spaces are also uniformly regular.

Example (cf. the examples in [9]). Let U be the trace of the Sorgenfrey 
quasi-uniformity of R 2 on

X  = {(0,0} U { (0 ,l/n ) :n  G N} U {(1/fc, 1 /n ):k ,n  € N, к ^  n)  ; 

in other words, U = li(d), where

d((x', x"), (;у', у")) = max {у1 -  x \  у" -  x") if x1 ^  y1, x" g  y". 

Consider the following subsets of X:

Xo = X \{ ( 0 ,0 ) } ,  X 1 = X \ { ( l / k , l / n ) : k j i n } ,  Х 2 = Х 0 П Х 1.

Xo is dense open, X \  is closed, X 2 is closed in Xo, and it is dense open in 
Xi .  Put Hi = U\Xi.

U and Ho are open-symmetric. It was shown in [9] Example b) that Ho 
is open-symmetric, so if G, H are open in X , GSy H then H \  {p} iw G \ 
\  {p}, where p = (0,0). This means H 6ц G if p £ G U H. If p G G then 
p £ H , H \  {p} = Я , and H hu {p}, so H 6u G  again. Finally, if p € H then
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G \  {p} = G, and {p} 6ц G, since H (which is disjoint from G) contains a 
neighbourhood of p; hence H 6ц G.

H is closed-symmetric. Assume that A and В are closed, А 6ц В. Take 
points Xk = (x'k, x \') G A and уь & В such that d(xií ,yit) < l /к. Now either 
there is a subsequence of (xfc)fceN f°r which x"k = 1 /n  with the same n, im­
plying (0,1/n) G А П B,  or there is a subsequence with x '/ —> 0, and then 
pG A n  5 . This means that А 6ц В for any pair of disjoint closed sets. 
(Quasi-uniformities with this property are called equinormal [18].)

Hi is closed-symmetric, because X\  is closed (or see [9] Example a ) ) .
Ho is not closed-symmetric, Hi is not open-symmetric, see [9] Examples 

b) and a).
H2 is not mixed-symmetric. The sets A — {0} X { l/n :n  G N} and В — 

= X 2 \  A are open-closed in X 2 , А 6ц2 В , but В 6ц2 A. □

§3. Sym m etry properties preserved by extensions

3.1. Let (X , H ) be a subspace of the quasi-uniform space (У, V). We 
say that V is a half-extension, an extension, and a firm extension of H if 
X  is dense (= T\> dense), doubly dense, and sup-dense in Y , respectively. 
The following general question was investigated in [21]: which properties 
of quasi-uniformities are preserved by half-extensions or (firm) extensions? 
According to [21] Example 1(a), point-symmetry and local symmetry are not 
even preserved by firm extensions. We give a different example, with V quiet:

Example. On Y  = { (0,0)} U { (±l/ra,0), (0 ,1/n): n € N } , let V be the 
trace ofZ4o x Heu, where Hso is the Sorgenfrey and Heu the Euclidean quasi- 
uniformity on R. V is quiet, since quietness is hereditary and productive
[13]. X  = Y  \  {(0,0)} is sup-dense in У, V\X  is doubly locally symmet­
ric (as its bitopology is discrete), but V is not point-symmetric (the two 
neighbourhood filters of (0 , 0 ) are incomparable). □

3.2. [21] Proposition 8 (a) states that open-symmetry is preserved by 
firm extensions. We are going to prove a somewhat stronger result. Let us 
first recall some definitions and notations:

Let (X,H)  be a quasi-uniform space, Y  D X , with filters f(a) in X  (called 
trace filters) prescribed for each a G Y . We say that V is a half-extension 
inducing these trace filters if V is a half-extension, and f(a) is the trace on 
X  of the 7y-neighbourhood filter of a (a G У). For each U G H, define a 
relation 5)[/ on У as follows:

a ^ U  b iff U[A] G f(b) whenever A G f(a).
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Under certain assumptions, U E U j  will be a base for a half-extension

5W inducing the prescribed trace filters. The necessary and sufficient condi­
tions (which will not be needed here) together with historical references can 
be found in [11] 6.2. Unlike in [11], ĥ U will be regarded as not defined when 
the conditions are not satisfied.) Firm extensions are always of the form b̂ U 
([7] 3.13).

P roposition. b^U preserves open-symmetry.

P roof. Put V = 5) U. It is enough to check that if G and H are Tv- 
open and G SvH then G П X  Ьц H П X,  since then H П X  6ц G П X  by the 
open-symmetry of U, and so H 6p G.

For U E U fixed, we have to find x E G П X  and у E H П X  with x U y. 
Pick a E  G, b E  H such that a ^ U  b. As b̂ U is a half-extension inducing 
the prescribed trace filters, we have A = 5^UaC\ G ПХ E f(a), and, by the 
definition of 5^U, U[A] E f(6 ), so В = U{А} П H E f(6 ). Now any у E В  and 
some x E A will do. □

3.3. P roposition. Uniform local symmetry is preserved by firm exten­
sions.

P roof. Let V on У be a firm extension of U on X . For U E V fixed, take 
V E V with V 3 C U, and put Vo = V\X.  By the uniform local symmetry of 
U , there are Wq,Z q E U (the latter depending on x) such that

(1) Z - ' IW qx] C Pox.

Choose W  E V satisfying W3|X C Wo and W  С V. For a E Y  fixed, pick

(2) x E W_1a n  W ail X,

and choose Z E V with Z3\X C Zo (where Zo belongs to x from (2)). We 
claim that

(3) Z~l \Wa] C Ua;

hence V is uniformly locally symmetric.
Assume с E Z~ 1[Wa]. Then there is a b E Y  with a W  bZ~l c. Now 

x W  a by (2), a W  b, and there is а у E  X  with bW  y, b Z y. So x W3 y, 
x Wo у Z ~ 1 b Z~ l c. Pick z E  X  such that z V  c, z Z c. Then c Z ~ l z, у Z ~ 3 z, 
у Zq 1 z , i.e. x Wo у Zq 1 z, implying x Vo z by (1), thus x V z. Moreover, z V c  
(see the choice of z) and a V  x (by (2) and W C  U ), so A V 3 c, aU с, с E  Ua, 
proving (3). □
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Uniform localsymmetry is not preserved by (half-)extensions, not even 
by any of the constructions in [7] 3.13: Let Y  = {0} U {± l /n :n  £ N}, V = 
= Uso \ Y , X  = Y  \  {0}, U = V|X; then any of the constructions applied to U 
yields V, U is uniformly locally symmetric (Example 1.2), but V is not.
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MEAN CONVERGENCE OF HERMITE 
INTERPOLATION REVISITED

P. VÉRTESI (Budapest) and Y. XU (Eugene)*

1. Introduction

Following the solution of mean convergence of Lagrange interpolation 
based on the zeros of generalized Jacobi polynomials [6 ], mean convergence of 
Hermite interpolation has been studied in several recent papers (cf. [1,7,9,12- 
15 and the references therein]). However, most of these papers concentrated 
on the sufficient conditions for the convergence, except perhaps [6 , 7] where 
both necessary and sufficient conditions are established for Lagrange interpo­
lation and Hermite interpolation of the second order, respectively, and [13] 
where conditions that are almost necessary and sufficient are provided for 
the Hermite interpolation of higher order. In this paper we shall investigate 
the mean convergence of Hermite interpolation of higher order with extended 
nodes. We shall establish conditions that are both necessary and sufficient. 
Since the results in [6 , 7] are the prototypes of what we shall present in this 
paper, we state them in the following (cf. Theorem 1.1-1.3).

We need a few notations; their exact definitions are given in the next 
section. If tu is a Jacobi weight function, we write w £ J . For a real val­
ued function / ,  let Ln( w , f ) denote the Lagrange interpolating polynomial 
which interpolates /  at the zeros of Jacobi polynomials pn(w), w £ J . Let 
ЯП)2 (fn, / )  be the Hermite interpolating polynomial which interpolates both 
/  and its first order derivative at the zeros of pn(w). Throughout this paper 
we let (p(x) = \ / \  — x2. Then for the weighted mean convergence of Ln(w, / )  
and HU'2(w, / ) ,  we have

T heorem  1.1 [6 , Theorem 6 ]. Let 0 < p < oo, u, w £ J- Then

(i) lim И !„ (« ;,/)  —/| |  = 0 ,  V / G C  <=► (ii) и(юф) ~ р' 2 £ L1.
n —too uir

* T he first a u th o r is supported  by the  H ungarian  N ational Foundation  for Scientific 
Research G ran t No. 1910 and  No. T7570, an d  th e  second a u th o r is supported  by th e  N a­
tional Science Foundation  G ran t No. 9302721. T he work was done during  th e  first a u th o r 's  
visit in  Eugene, Oregon in 1993, and  weis com pleted during  th e  second a u th o r’s visit to  
th e  M athem atisches In s titu t, University of E rlangen-N ürnberg, supported  by th e  A lexander 
von H um boldt Foundation.
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T h eo rem  1.2 [7, Theorem 1]. Let 0 < р < оо, и, w G J. Then

(i) lim ||Я п 2 («7, / )  —/| |  = О, V/ G С 1 <=>
п — ►ОО 11

<=> (ii) <р2(х)и(х) ^  Kwp(x )

for some constant К  > 0  depending only on p, w, and u.
T h eo rem  1.3 [7, Theorems 2 and 3]. Let i = 0 or 1 be fixed. Le tO < p<  

< oo, u,w  G J , and utp~ip G Ll . Then there is a constant Ki > 0 depending 
only on p, u, and w such that

(i) V/ 6  c 1 <=>

<=> (ii) и{икр1+1) P G L1,

where En( f ) is the rate of best uniform approximation of f  by polynomials 
of degree at most n.

We should mention that these theorems are stated and proved in [6,7] 
for weight functions that are more general than Jacobi weight. The exten­
sion of these theorems to interpolation of higher order is not straightforward, 
there are new phenomena and several essential difficulties have to be over­
come. By now, the proof for the sufficient part is more or less standard, 
it uses asymptotic estimates of the fundamental polynomials which can be 
established using the method developed in [12,13], and uses the weighted 
Lp boundedness of Ln(w, /) .  An alternative method is through the proof of 
Marcinkiewicz-Zygmund inequalities [15], which can be used on more general 
weight functions but in cases prototyped by Theorem 1.2 it yields slightly 
weaker results. The necessary part, on the other hand, is more difficult. One 
of the essential ingredients requires that the weighted Lp norm of higher or­
der derivatives of orthogonal polynomials be bounded below by the Weighted 
Lp norm of the weight functions. We shall establish this lower bound for the 
Jacobi polynomials in this paper. At this point, though, it is not clear how 
to extend our proof to the generalized Jacobi weight functions. It is for this 
reason, we restrict our consideration to Jacobi weight functions here. The 
Hermite interpolation that we shall consider in this paper is defined more 
generally than Hn<2, not only in higher degree but also in that we include 
two end points of [—1,1] as possible points of interpolation. Thus, even when 
the sufficient conditions are concerned, our theorems are more general than 
many previous results.

The paper is organized as follows. In the following section we give pre­
liminaries and notations. In Section 3 we state the main results and include 
the discussions and remarks. The lemmas are stated and proved in Section 
4, and the theorems are proved in Section 5.
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2. Notations and preliminaries

Throughout this paper we denote by Пп the space of polynomials of de­
gree at most n, and by П the space of all polynomials.

2.1. Weight functions. The function w is called a Jacobi weight function
if tn(z) = ( 1  -  ® )“ ( 1  + x)P, |x| ^  1 , and w(x) = 0 , |x| > 1 , where a ,ß  > -  1 . 
We let J  denote the class of Jacobi weight functions. Sometimes we write 
w = to emphasize the parameters a  and ß. We call w a generalized
Jacobi weight function (w E G J ), if it can be written as

( 2. 1)

T + l

w(x) = ф(х) Л  \x -  ij|r ’, Г, > - 1 , - 1  = to < ti < . . .  < tT < t j +1 = 1

i= 0

for x E [—1,1], where ф is a positive continuous function in [—1,1] and the 
modulus of continuity и  of ф satisfies f 0 (u( t) / t)dt  < + oo. Furthermore, 
if w E GJ  and Г, ^  0 for 1 ^  i £  T,  we write w E G P J . When Г, = 0 for 
1 ^  i Ú к and ф — 1, the generalized Jacobi weight reduces to a Jacobi one.

2 .2 . Space of functions. For 0 < p < + oo and a non-negative measur­
able function u, the space Lvu is defined to be the set of measurable functions 
/  such that

(2-2) ll/llp.u =  ( У  \ f ( t ) \Pu( t)d t\  , 0  < p < + oo ,

is finite. Of course, when 0 < p < 1, || • || is not a norm; nevertheless, we keep 
this notation for convenience. For и = 1 this is the ordinary Lp space. We use 
the usual notation | |/>||oe> =  ess supt e [ _ 1 j] \f(t)\  for the uniform norm of /  
on [—1,1], and C for the space of continuous functions on [—1,1]. For d E N, 
we write Cd for the space of functions that have dth continuous derivative 
on [ - 1 , 1].

2.3. Orthogonal polynomials. We consider only Jacobi polynomials. Let
w E J,  w = The Jacobi polynomials pn(w) are orthonormal polyno­
mials with respect to the weight function w, i.e.,/:pn(w,x)pm(w,x)w(x)dx  = <5ntn

We should mention that our pn(w) is different from in books such as
[8 ] and [10] by a normalizing constant of order exactly y/n. It is well known

Acta Maihematica Hungarica 69, 1995



1 8 8 P. V ÉRTESI and Y. XU

that pn(w) has n distinct zeros in (-1 ,1 ). These zeros are denoted by xkn(w) 
and the following order is assumed:

(2.3) 1 > xln(u;) > X2n(w) > • ■ ■> xnn(w) > -1 .

Later, when we fix tu, we shall write xkn instead of xkn(w).
2.4. Hermite interpolation. All interpolations considered in this paper 

are based on the zeros of the Jacobi polynomial (2.3) and sometimes two end 
points of the interval [ - 1 , 1].

For w 6  J  and bounded function / ,  the Lagrange interpolating polyno­
mial, denoted by Ln(w, f ) ,  is defined by

(2.4.1)

i n  ( ® , Л  =  ’х - х ь ) -

For a given integer r ^  0, s ^  0 and m  ^  1, the Hermite interpolation that 
we shall investigate is defined to be the unique polynomial of degree N  = 
= mn  + r + 5 — 1 , denoted by Hntmr̂>s(w, / ) ,  satisfying

(2.4.2)

H n } n , T , s ( w ' f ' X k ^  = / W(xfcn), 1,

- < L , r> , / , l ) - / (i)(l), O ^ r - 1 ,

i)  = / (0 ( - i ) ,  O g f ^ - 1 ,

for /  G CM, where M  =  max{m — 1, r — 1, s — 1). If r = 0 or s = 0 then we 
have no interpolation at 1 or —1, respectively. We shall fix the integers m,r ,  
and s for the rest of the paper, and omit them from the notations. Thus, 
for example, we shall ivrité Hn(w, f )  instead of Hn m̂triS(w, f )  from now on. 
From the definition of Hn(w, f )  it is easy to see that

(2.4.3)
m —1 n

Hn(w, f )  = ^ 2 ' 2̂ f (t)(xkn)ht,k(x)+ 
t=о k= 1

+ Tf ^ f ( t \ i ) h t<0(x) + S' £ f ( t\ - I ) h  t,n+l(x )
t=0  t= 0

where = httk,n,m,r,s (again, they depend on n, m, r, and s) are the fun­
damental polynomials of interpolation, they are determined uniquely by the
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conditions

(2.4.4)

ht‘l ( xin) =  0 ^ í , / g m - l ,  l ^ k j ü n ,

< fc|J(l) =  «*./, O g t , / á r - l ,

I Ä ä + ii- i)  = «t,/, 0 Z t , l í s - l .

Using the fundamental polynomials of Lagrange interpolation, these func­
tions can be expressed as follows:

(2.4.5)
'

h t A x )
{x -  xknf

t\ $ п (* )
m —1—i

i'= 0

1 ^  к  n ,

t = 0

Í s — 1 —t
h (т, л - л 7 Л. к » ) Г (« + 1 г  у  r , , 1V-
Л‘-"+1( ) “ (  2 J \p„(tn, —1)/ í! L  ^ . n + i ^  + i ) ,

where e,-^* =  ei,t,k,n,m,r,s are constants that can be expressed using derivative 
values of pn(w) at х^п and ± 1 . Although it is difficult to find the exact 
formulae of these constants, they can be estimated from both above and 
below (cf. [2, Lemma 4.3], [12]). We have, for example,

(2.4.6) ^0  ,t,k — 1? =  C
<p{xkn{w))

where c is independent of г, к and n. These estimates are useful in our 
discussion below.

3. Main results

3.1. Statem ent o f the theorems. Let m ^  1, r ^  0, s ^  0 be fixed. 
For w E J  and /  E CM, we define the Hermite interpolating polynomial
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Hn{w ,f)  — Hn'mtrtS(w, / )  as in Section 2. The following weight function 
is important for the characterization of the mean convergence of Hn K / ) :

(3.1.1) ,(r.» Ц 1 + х)0~
m
2

When r = s = 0 we write wm instead of Wm’°^ Throughout this paper we 
let N  = mn  + r + s -  1 and M  = max{m — l , r  -  1 , 5  -  1}.

First we state two fairly general theorems, then we show some corollaries.
T heorem 3.1. Let m ^ 1, r 0, s 2! 0, L2. M  and t, 0 ^ t 5í m — 1, 

be fixed integers, т > 0 a fixed real number, 0 < p < oo, и E G J, w E J with

(3.1.2) u<p~tp G L \  «4r’V  6  L \

Then

(i) II -  /W ||ag g const. Eh£ £ ) , v / e c 1
if with a fixed constant К  > 0

(Ü) f , ( x ) : =  “< y t2 W  < к  m [—1 1].
1 '  *' ( . o f r 'W W ) ’ “
If, moreover, 1 ^  p < oo, и E GPJ and L = m — 1, then

(i*) IIff<‘> K /) -  Я 1 „  s  const. H f ,  v / e cL
implies (ii). 1

In Theorem 3.1 we had to suppose that r  > 0. The result corresponding 
to the case r  =  0  has a different character.

T h eo rem  3.2. Let m ' t l ,  r ^  0, s  ^  0, L2. M  and t, 0 ^ t й  m -  1 , 
be fixed integers, 0 < p < oo, и G GJ, w E J satisfying (3.1.2). Then

(i) II яМ (ш , / )  -  /<■> II S const. EK- f i ^ L)) ,
if

(Ü) - A  6  L \
K ’V ) P

If, moreover, и G GPJ and L = m — 1, then

( h  II я1т)к  /) -  / (Í)|| U)P  ̂ c°nst- ^  ^
implies (ii).

nL-< V /G C Z

Now we formulate some special cases which are, hopefully, more illumi­
nating. All consequences are “iff’ statements, moreover, they deal with the 
case L = m — 1 (whence, by L ^  M, m  ^  r, s).

Theorem 3.1 immediately yields
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T h e o r e m  3 . 3 .  Let m ^  r,s, L — m — l and 1 be fixed inte­
gers, r > 0 a fixed real number, 1 ^  p < oo, u,w E J  satisfying (3.1.2). Then
(i)<=»(ii).  '

From Theorem 3.2 one can deduce
T heroem 3.4. Let m ^  r,s, L = m — 1 and 0 ^ i 5= m — 1 be fixed in­

tegers, 0 < p < oo, u,w  G J  satisfying (3.1.2). Then (i) <=> (ii).

The following consequence of Theorem 3.1 is not so obvious.

T h e o r e m  3 . 5 .  Let us restrict m, r, s, L, p, и and w as in Theorem 3.2.  
Then, for every fixed 0 Ú t ^  m — 2,

( * )  Ä ,  I I я * Л  -  ' ( , ) l l = 0  V /  €  C ” -
iff

U(oP(m-l-t)+2
(b) ------- < K  in [ - 1 , 1].
v 7 Í (r is ) t \ P  “  L J[Win' V  )

First let us prove (b) => (a). Let in Theorem 3.1 r  = rt = m — 1 —1(>. 1, 
by t ^  m -  2). Then (b) =  (ii), which implies (i), where, using L -  t -  rt = 
= 0, the denominator is one (the exponent of n is zero). Then (i) implies 
( a ) .

Now we verify (a) ==> (b). Indeed, (a) means that (i*) holds with r = 
= m -  1 — t and L — m -  1. But then we have (ii), too, which is exactly (b). 
□

Using similar argument, Theorem 3.2 yields for t = m -  1

T h eo r em  3.6. Let us restrict m, r, s, L, p, и and w as in Theorem 3.4. 
Then

(ä) Urn К H ^ ~ x){w, f )  -  = o v / e r - 1
n —►OO uiV

iff

3.2. Remarks. We prove Theorems 3.1 and 3.2 mainly because of their 
generality, but since our main interest in this paper is the necessary part, we 
shall not try to give a complete list of all previous results in this field that 
may have been covered by these general theorems. Instead, in the remarks 
that follow we shall discuss the possible extensions and the things that are 
left open.

3.2.1. The careful reader may have already noticed that in Theorem 
3.1 at the part (i*) =>• (i) we have 1 p < oo (while in Theorem 3.2 we have 
0 < p < oo). The problem occurs when we use Holder inequality (see the 
proof of (5.2.7)). For t — 0 and t = 1 we do have Theorem 3.1 for all p > 0. 
Moreover, the Theorem 3.1 is stated as (i*) =>■ (ii) for every fixed t. If we
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change this a little, then we can state a theorem for 0 < p < 1 as well. For 
example, if we replace (i) in Theorem 3.1 by

O') II н п,мК  /)  -  / ЫII u,p = const- -)771 —t — T — 1

v / e r - 1 0 S i S < ,

then we have (i') о  (ii) for 0  < p < oo.
3.2.2. When r = s = 0 and m = 2 Theorem 3.5 becomes Theorem 1.2 

and Theorem 3.4 becomes Theorem 1.3. When r = s = 0 and m = 1, Theo­
rem 3.6 becomes Theorem 1.1. However, our Theorem 3.1 has a new char­
acter. This is due to the presence of r  in the theorem. It should be noted 
that this number r  does not need to be an integer. This offers us a variety of 
choices. In particular, Theorem 3.5 corresponds to the choice r  = m — t — 1. 
The closer r  gets to 0, the more restrictive condition (ii) becomes. When 
г  = 0, the condition (ii) in Theorem 3.1 is no longer enough, we need (ii) in 
Theorem 3.2.

3.2.3. Comparing Theorems 3.1 and 3.2 we see that (ii) is also the lim­
iting case of (ii). Actually, another way to describe the condition (ii) is to 
say that the weight function <p~tp(w m ^) ~pu is bounded by 1 / ( 1  -  x2)p for 
some p < 1 , which is clearly stronger than the r  = 0  case of (ii).

3.2.4. The second condition of (3.1.2), Wm’s t̂pL E L1, means

(3.2.2)
“ > - 2

2  + L -  2 r 
m

and 2  L — 2  s 
m

which put restrictions on w. For example, if r = s = 2 and L = m -  1 = 
= 1 , then we have to have a  > 0. However, if r =  s = 0, i.e., there is no 
interpolation at the end points of [—1 , 1], then these conditions become

(3.2.2')
2 + 1 

m

Since a ,ß  > — 1 and L ' t m  — 1, the above conditions are automatically sat­
isfied for all m. The restriction (3.2.2) or (3.2.2') is weaker than those known 
previously (cf. [1]).

3.2.5. The condition (ii) in Theorem 3.1 does not appear for Lagrange 
interpolation (cf. Theorem 1.1), it is observed first in [7] for m  = 2 (cf. The­
orem 1.2). It is interesting to notice that for m  ^  2 all derivatives of the 
Hermite interpolation obey this type of conditions, except the highest one 
which behaves like the Lagrange interpolation.
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3.2.6. Our theorems are proved for the interpolation based on the zeros 
of pn(w), w E  J • A natural question is whether similar theorems can be 
proved for w E  GJ. The main problem is in Lemma 4.3 below, while the 
proof of this lemma for w E  GJ seems to be merely a technical problem, we 
can prove it only for w E  J  at present. Another question that may be of 
some interests is to consider the necessary conditions for the interpolation 
process which has the interpolation conditions at ± 1  distributed on points 
near ±1. We hope to return to these questions in the near future.

4. Lemmas

Throughout this paper, we will use the symbols “const.” (sometimes c) 
to denote a generic positive constant, its value may be different at different 
occurrences, even in subsequent formulae. The value of this constant depends 
on weight functions and other fixed parameters involved. Constants that de­
pend on other parameters will be denoted differently and defined locally. The 
notation A ~  В  means |A- 15 | is const, and |A 5_1| ^  const, uniformly in 
the variables under consideration.

We prove the essential lemmas in this section. The most important one 
is perhaps Lemma 4.3, others have had their predecessors for less completed 
interpolation processes. We begin with properties of orthogonal polynomials.

4.1. For the various estimates in this subsection we refer to [10] and [8 ]. 
For x E [—1,1] we write as usual x = cos#, 0 ^  в ^  7r. For w E J  we write 
Xkn(w) = cosflbi(w), 0 ^  fc ^  n + 1, where x0,„ = 1 and xn+i in = -  1. Then 
it is known that

(4.1.1) ek+iitl(w) -  0k,n(w) ~  \

uniformly for n E No and 0 ^  к ^  n. For w (E J  we need estimates of pn(w). 
For x E  [—1,1], we let Xjn( w) be one of the closest zeros of pn(w ) to x , that 
is,

(4.1.2) |x -  xjn(u;)| = 11  -  xj(n)in(u>)| = min | x -  z fc„(u;)|.
1 Sk<n

Then the following properties of pn(w) are known: 

(4.1.3) pn(w, - x )  = ( -1  )npn(w, x),

and
jjOt+l/ 2

(4.1.4) |pn(w ,s) |  ~  (n |fl-flj,n |) +1/2, - l - M ^ x ^ l ,
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where 0  < <5 < 2. A similar estimate holds true for — — 6 (cf.
(4.1.3)). Also,

(4.1.5) p'n(w,x) = hnpn(w(a+1’0 +1\ x ) ,  hn ~ n  

and

na+5/2
(4.1.6) \p'n{w ,xkn{w )) \~

uniformly for — 1 + 6 5s Xkn(w) < 1 .
If и £ GJ, for a fixed d ^  0, we define A n(d) by

T
A n(d) = [—1 + dn~2, 1 — dn~2]\^ — dn~l , t, + dn-1].

t= 1

Let XE denote the characteristic function of a set E.

Lemma 4.1 [4, Lemma 2.2, p. 105]. Let и £ GJ. Then for each 0 < p < 
< + oo and l  > 0 there exists a ~f0 = 7o(p) > 0 such that for every R  £ 
and 0  ^  7  7 o

\\R L ,P ^  const.70 | |äxab(7) ||UiP.

4.2. Let m, r, s be fixed integers, and w £ J. Let Hn(w ,f )  be the 
Hermite interpolation defined by (2.4.2). For later use, we separate the last 
terms in the formulae (2.4.5). We define

(4.2.1)

qt,k(x ) =  ( j
1-  X Y  (  1 +  Я V  (x -  ХкпУ

%kn )  V 1 “t" %kn t\

9t,o(x) =

• tkn(X)em-l-t,t,k(X -  Xkn)m 1 \  1 ^  fc ^  П,

1 + x \ s ( pn( w , x ) \ m (x ~ 1 )*
2  ) \Pn{w, 1)

r—l—teT—l —t,t,o(® 1) )

4 t , n + i ( x ) —
1 -  x Y  (  Pn{w,x) \ m (z + 1 )

and

(4.2.2)

2 7 \ P n ( « b - l )7 i!

h t ,k =  h t ,k  -  Qt ,k , 0 ^  к ^  n + 1.

1—i , t ,n + l ( ®  1 )
- 1 - i
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Our next lemma estimates the summation of the absolute value of the fun­
damental polynomials. We define

(4.2.3) а д х );= Е ( у(:‘"))
k=о 4 n 7

and

(4.2.4) T > )
k=0 4 7

4 /t(* ) I

where if (t, к ) belongs to neither {0 ^  ^  m -  1, 1 5Í fc ^  m}, nor {0 ^  t й  
^  r -  1, к = 0}, nor {0 ^  t ^  s -  1, к = n + 1}, then we take htik and h*k as 
zero functions.

Lemma 4.2. Let L M , and let w E J be such that Wm's îpL E L1. Then 
for -1  ^  x ^  1 and 0 ^  t ú  m -  1, with 2укп — Хкп + £k+ i tn, к = 1 ,2 ,... ,n  —
- 1 ,

(4.2.5) It'b(x) ^  const.I t , d y j n )  ^

const, n L if m - t  — odd
< L

1 const. n~L (v5(I jn ))£'+ if m — t = even

and

0 ^ it ^ M.

P r o o f . The first inequalities come from (2.4.5) and relations (4.1.1)-
(4.1.6). To verify the other ones, we remark that apart from the terms к = 0 
and n + 1, they involve tedious but mainly routine calculations detailed in 
[13] and [14]. Therefore here we show how to estimate the zero- and (n + l)th  
terms. First let us consider the zero term in lt,L-

(4 .2 .6 ) i t ,L(x) ^  const. i ; L(yjn) <;
const.

If r < m, by L — t ' t L  — { r - \ ) > L  — m + l ^ O ,  relation <pL *{хо,п) = 0 
yields that At(x ) = 0. Let now r ' t m .  Again if L — t > 0, then At(a:) = 0.
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So we only have to consider the case L — t which by L 'Z . r — l ^ m  — 
gives that L = r -  l  = m -  l = t. Then, by (2.4.5) and e0 ,t,fc = 1, if x ^  0, 
say,

Afix) — I hm_ ii0 (a:)| ^  const. |/im_1,0 (i/jn)| P n ( w , y j n )

Pn{w, 1)
(1  Vjn)m —1

Further, using (2.4.5) and Part 4.1, for the first term in by
\p’n(w ,x ln)\ ~  |pn(tp ,l) |n 2, we can write |/im-i,i(i/jn)| ~  | .

The same equivalence holds true for x й  0, too. So the zero-term of the 
corresponding sum can be estimated by the first one. Finally if r > m, by 
T ^ r - l > m - l ^ í ,  T -  1 > 0 whence At(x) = 0 again.

The (n + l)th  term can be paired with the nth one. We omit the details. 
The proof of (4.2.6) is similar. □

4.3. To prove the part (i) =>• (ii) in our theorems, we have to know the 
size of the derivatives of pn(w). The difficult part is to estimate the weighted 
Lp norm of such derivatives from below, which we overcome in Lemma 4.3. 
For a ^  0, let £n(a) =  [-1  + an-2 , 1 — an~2].

Lemma 4.3. Let 0 < p < oo, Let w G J and и G GJ such
that ip~tpu E L1. Then for any fixed non-negative numbers d\ and d2 ,

(4.3.1) [ P n H ]
( t )

u,p

n*
~ t Pn И * Д „ № ) rsj

u,p ■e<wm X c ~ ^

where the equivalences ” depend on d\, d2 , and p, but they are indepen­
dent of n.

P r o o f . By Leibniz’s rule

(4.3.2) (Pn(w)) (° = 5 1  • Л  ■ ,Pnl}(w) • • -Pnm)(w)

where the summation is over аД nonnegative integers ij, гг,. . . ,  im such that 
*1 + г2 + .. • + im = t. For G J  we denote by w the weight
function

Щ)(х) = w(x)(l -  x2)‘ = (1  -  x)a+i(l + x f +t.

From (4.1.5)

(4.3.3) Pn\w) = Cnpn- t(w(t)), Cn ~  n*.

Acta M athem atica Hungarica 69, 1995



M EAN C O N V ER G EN C E O F H E R M IT E  IN TER PO LA TIO N  REV ISITED 197

From the estimate of pn(io) at (4.1.4) and the above formula, we derive the 
estimate

( « - ■ » Ш т )  (?)
2\ < / _ \  m(or+l/2)

, — 1  +  f t  ^  X  ^  1 ,

for a fixed <5, 0 < 6 < 2, where j  is defined as in (4.1.2). From Lemma 4.1,
(4.1.1), (4.1.3) and (4.1.4) we have that

(4.3.4) [ P n M ]
(0 < const.

г lPn{W)
u,p

n  m / n *rsj - t P n  И х д „ ( * )  
У u ,p

~ t P n  И Х г „ ( * )
u , p

The proof of the opposite inequality is more complicated. From (4.3.2) we 
have

b n  («О] (<)(ж) =  (m~l  f j; ( P n ( w ’ x )) * [ P n { w ,  x ) ) m  * +

+ (Pn(to, x ) )  A ( t ,  m ) p ^ \ w ,  x ) . .  . p f r - ' ^ w ,  x )

where the summation Y '  is over all nonnegative integers *1 , 12, . . . ,  i t- i  such 
that г'1 + г-2 + . . .  it- 1 = t ; here A(i, m) are integers depending on m and i 
only. Using the estimate of pn(w) at (4.1.4) and (4.3.3) we conclude that

[?” (» )] (,)w > TO!

(to -  f)!
{Pn(w^x )Y{Pn(w,x)) m — t

— const. ( n | ö - 0fc,n(w)|) ^
0+1/ 2l TO"i+1 r ^ y ^ H - D  ^ „ a y

TO! , m—t{ Р п ( ^ ,х ) ) \р п(ю,х))'

(a+l/2)m / 2\ 1
(m — f)!

. I 1 / я \ И Ф ) т  / „ 2 \
-  const. {n\e -  ек'П(ги)\)т y — J

Using (4.1.4) and (4.3.3) again we get then
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(4.3.5)

[Pn («0] (i)(a:) ^  [co(x)(n|0-0jfc,„(u;)|)] i- t  í  n ( a + l / 2 ) m  /  2  \  *

S - l  x

то!
(то — í)! (ci(a:)n| 9 — Oj>n- \ («?(!))!)* -  const. n |0  -  9j,n(w)\

where со(ж) and ci(x) are functions with co(x) ~  1 ~  ci(a;) uniformly. We
need the estimate on the zeros of pL^w). By [8 , (9.7) and (9.12)] we have 
with 0  < г) < 1

„ , x 2 A: + a  + i — 1 / 2  . . „ . , .
Ok,n-t{w(t)) = 2 n + a + ß + l  X + 1 = k = Í 1 -  *7)n >

where |Pfc,n(^(t))| = 0 (l/(& n)) uniformly in n and k. From this it readily 
follows that

9k,n{w) + ek+ iA w) . n .... \ , _(4.3.6) 2  — 9k,n—i ( w(i)) d" £k,m

where |£fciTl| = 0 ( l / (kn ))  and

(4 .3 .7 ) »*.»-'(” (■))+ W - . H . ) )  =  e w n { w )  +

where \e'k n| = 0 ( l / ( k n ) ) . For a given e > 0, we define a set of 9 as follows:

By (4.3.6) and (4.3.7), \ в  -  9 k ,n - i ( . W ( i ) ) \  > 1/n, say, if 9 E %,„(£), A: ^  fc0 
and n ^  n0- It follows from (4.3.5) that for 9 E Vj,n(^) we have

(4.3.8)

> const. I —
( a + l / 2 ) m  /  2  \  *Пг\  / £ \ ”»-* m!

(то -  f)!
— const. £

Therefore, if £ is small enough, say, e й  £o, then we have for x E [-1  + 6 , 1],

(4.3.9) [ t f  (» ) ]“ ’(*) > const. £
.  ( o r - | - l / 2 ) m  /  2  \  ^П \ v ' ' / П* x

c(6)n

9 ^
j=k о

A cta  M athem atica Hungarica 69, 1995



M EAN C O N V ER G EN C E O F H ER M ITE IN TER PO LA TIO N  REV ISITED 199

where c(S) < 1. One may prove the relation (4.3.9) for в E T)j,n(s) with 1 ^  
^  к ^  2&o as follows. By [10, (8.1.3)], we have that lim (n — =

= where j[a  ̂ is the fc-th positive root of the Bessel function of pa­
rameter a. Using [10, (1.71.5)], we have < j ^ -  Therefore, we
can show that relations analogous to (4.3.6) and (4.3.7) are valid, whence
(4.3.9) holds true for 1 ^  к ^  2k0 with possibly another e > 0. The interval 
[—1,1 — Й] can be treated similarly (cf. (4.1.3)). Let

c(6)n

Sn{e) = U  %,n(f), 7г„(е) = {x : z = cos6»,0 E <Sn(e)}.

Since tp(x) ~  j / n  and |p„(u;,x)| ~  [w(x)tp(x)) X̂2 for x E 'R-n{s)i from the 
proof of (4.3.4) and (4.3.9) we have

(4.3.10) [p” (» ) ] (4 (x) (Pt(x)wm(x) tp\x) X 6 TZn(e),

where the equivalences depend on e. By Lemma 4.1, (4.1.4), (4.1.3) and
(4.1.10) we have for any given d > 0

[?” <»)] ( 0
u,p [ Р п И ]  (0 ХДп(7о) < const.

n*
r-w»

u,p

U , p

t

rv

[Pn(w)\ (<)XAn(d)nH„(£)

V?É(x)tnm(x) 

< const

U  , p

u,p

< const. [Pn(v)] {t)X£n(d) u,p

<plw m

XAn(d)nRn(e)

[Pn(™)] (t)XA„(d)

[?” ( » ) ] w

ХДп(то)
u,p

<
u,p

u,p

The same argument works for the equivalence involving ||nV  tPn’(w)\\upi 
which proves the lemma. □

From the proof of this lemma, it is not hard to see that the following 
corollary also holds.

C o r o lla r y  4.3.1. Let the condition be the same as in Lemma 4.3. Then 
for s % t and d ^  0 ,

[ P n M ] (0 XAn(d) u,p *ХД n(d) u,p
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r*j
Пt —s

4>
t- [ P n M ] (»)

X A n ( d )
u,p

4.4. Lemma 4.3 will also help us to estimate the derivatives of the func­
tion fi™, where

(4 .4 )  Qn ( x )  =  (1 -  +  x ) ™ p n ( w , x ) =  w ^ ' ^ ( x ) p n ( w , x ) .

This function will be used in the following section to establish the necessary 
conditions of mean convergence.

Lemma 4 .4 . Let 0 < p < oo and и G GJ be such that (w (r’s)<p- i ) G
G Lx. Then for A sufficiently large,

II (fi™)(<)XMA)||UiP = const. I w(r’s)(Pn (W)) (<)X£-„(A)

l~t W(r'3)Pn{w)X£n(A)

u,p

u }p

P r o o f . By Leibniz’s rule, we have

(Í)m)(í) = (*—i)

For z G [0, 1], we have w^T,s\ x )  ^  const. (1 — z)r ~  <p2r(z). Therefore, for 
x G [0, 1] we have

> const. <P

I ( s c ) ,' ,w |  г

« ) (,)М | - É  Ö K 1 -  *)r_i « (« > ) )  “ '*
j = l

Using the fact that on [0,1 -  An 2] we have n(l -  z )1/2 ^  \/A ,  we get upon 
using Corollary 4.3.1,

||( f in )(<)X£n(A)n[o,i]||UiP ^ const. ||<p2r(p^)(t)Xf„(A)n[o,i]

E  7 7 = v  ||^ 2r(Pn (w)) (<)Xf„(A)n[o,i] 
j = i  y / A )

u,p

u,p
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Similar inequality can be established for [—1 + A /n2 ,0]. Therefore, if A is 
sufficiently large, then we obtain

||(ÍC )(V (A )IL ,p ^ Const. I) ti^r,Ŝ (p^)^X£„(A)|| UjP-

By Lemma 4.3 this implies immediately the desired result. □
4.5. Another ingredient in proving the part (i) =Ф> (ii) is the following 

spline function. Let Xk,n = xk,n{w)- For 0 ^  к ^  n we define

, л 1 f  xk+l,n -  xk ,n \m 1 (  . X -  Xk,n \ m 1
Sk,n(x ) = 7------ rcr ----------------  sin ---------------- 7Г(m -  1)! V *  J  V Sfc+i.n -  x k , n  J

x  — Xkn
•COS 7Г, X E  X k n \.

Xk+\,n xk,n

It is easy to verify that Sk,n satisfies the following properties:

**,!»(**.«) = 5l?n(x*+i,n) =  0, 0 ^ t . ^ m - 2 ,

t 1}K n )  = i ,  e* T 1)(a!*+1-») = (~ 1)m-

Moreover,

const.
nm — l—t '

Next, we define the function Sn on [—1,1]:

•s»(z) = £ ( - 1>‘”4 » w -
к= 0

From the properties of Sk,n we can easily derive properties of 5n; some of 
them are collected in the following lemma.

Lemma 4.5. The function Sn belongs to C m_1, and it satisfies 

S n \xk ,n) = 0, O ^ f c ^ n  + l, 0 ^ i ^ m - 2 ,

^ m_1)(xit,n) = (-I)""*, 0 £ * £ n  + l,

and
<

oo —

const.
0  ^  t 5Í m  — 1 .

4.6. We need two more lemmas. The first one is a special case of [6 , 
Theorem 1].
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Lemma 4.6. Let 0 < p < oo, and W  G GJ. Let U G GJ and V be 
a Jacobi weight, not necessarily integrable, such that U G Lp, UV G Lp, 
U/y/Wip G Lp, and V\/W7p G L1. Then for every bounded function f

\\Ln(W,Vf )U\ \p ü  const. I I / I U ,  1 .

The second one is a much simplified version of a theorem proved in [7, 
Theorem 4],

Lemma 4.7. Let 0 < p < oo, r ^  0. Let U G GJ and W  G J ■ Then there 
is a constant C > 0  such that

Г1 ха  (x)U(x)dx <
J - 1 W { x ) ^ { l - x ‘2y ±̂  =

<] C l i m i n f [  \pn(W ,x)\r\p'n(W ,x)\PXA(x)U{x)dx
n—►oo np J _ i

for every interval A Q [—1,1].

5. P ro o f of th e  theorem s

5.1. P roof of T heorem 3.1. (ii) =>• (i). Let R G Пуу satisfy

(5.1.1) \ fM { x ) - R M ( x ) \  g  const. EN- L( f ^ ) ,  0 ü i ^ L ,

(cf. [1] or [3]). Using triangle inequality we have

(5.1.2) | | S  const. [|| Ä )||UJ, + II«W -  /W || J  S

^  const. EN- L( f (L)) + const. II H ^ X f  -  Ä)||up.

Using Bernstein inequality (cf. [4, (1.10)]) repeatedly, which is permitted by 
the first condition of (3.1.2), we obtain

(5.1.3) II H n \ f  — -й)|| UiP ^  const.п‘| |^ - <Яп( / - Л ) | | и р.

By (2.4.3), (5.1.1), Lemma 4.1, and Lemma 4.2 we have

|| t f i i}( / -  Ä)|LiP ^  const.nfIIу>-‘Яп( / -  Д )х д „ и ||и,р ^
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^  const. П ^  £W-l( / ^ )
m—I

^ 7  ^1, т - 1ХД„И
j= 0

<
u,p

й  const.n (L ^ A T -zX /^ ) logn ||^L ‘||и)Р+ ‘(w t 's)) Ч д п И
u,p_

To evaluate the second term in the last expression we use (ii), which yields

7
L </An( ;<fa) i (CT)

<p
\  i/p

~pT~2dx ] < const. nT,

since T > 0. Therefore, we obtain that

Ä )L >p ^  const.Е „ - и / Ю ) / п ь- * - \  □

5.2. P ro o f  o f  T heorem  3.1. (i*) =>■ (ii). First let r,s < m, i.e. r + 
+ s ^  2 m -  2 .

Let fo(x) = x, Qn be defined as in 4.4, and Sn be defined as in 4.5. Then 
it is not hard to see that

П
(5.2.1) Tn(x^ — xHn(w, Sn, x̂ j — Hn(w, foSn, ж) = ^  ' (x — x ktn^hm^ i tfc(ic) =

k=i

№ (**»)]

where we have used the fact that e/o = 1. Since it is easy to verify that 

(5-2-2) ^'(Zjt.n) = w ^ ' ^ \ x k,n)Pn{w,xk,n) =

= ( - l ) fc+1 w ^ ' ^ \ x ktn)p'n(w ,xk<n) , 1 ^  к <| n,

we conclude that

(5.2.3) а д и г я а д  у -  1

The second condition in (3.1.2) implies that (a  + 3 /2 )m — 2r > — 1 and a 
similar inequality with ß  in place of a. Using this condition, (4.1.6) and
(5.2.1), it readily follows that

(5-2 -4) ]T
ZÍ I * № b .) |

m ~  n £
f c = l

(min{o,/?}4-3/2)m—2r
~  711 —m
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Therefore, by Lemma 4.4

(5-2.5) II t f ' I L S  const.n‘- ” ||(iC )(,)| | , pä

^  const. n1- m+<|| W(r's)^ - tpr̂ {w)x£n(A)\\ uy

On the other hand, from Lemma 4.5 it follows that En(g) ^  const, for g =
= 6 Í m-1) and g = f o S l r - ' l  Therefore, with L = m  -  1 by Lemma 4.1, 
Lemma 4.5, and (i*) in Theorem 3.1 we have

(5.2.6)

^  const.

< const.

II Я ' 1 II. „ á  const. II Í ’ í 4  "(•70)11 U , p  =

[fo{Hn(w ,Sn) -  Sn) + {foSn -  Hn( w J 0Sn))](t) х АпЫ <
u,p

( S n )-  Si*-») Х д „ ы  + II S .) -  5<‘»|| „ +u,p r

< const.

+ | |я ( <) К / о 5 „ ) - ( / о 5 „ Я | |ир] g

( Sn) -  ^ <-1))х д „ Ы  + const. n1_m+i+T.

Let Gn = Н\г -  SÍ* For a fixed x £ Л„(7 0), we define tp by
\x - t p\ — min |x —1,-|. Let us assume, say, Xj<n( w) й x ^  Xj - i <n(w)  < tp. By 

i
Holder inequality

Gn(*) = f  G'n(y)dy й
J X],n

(
\  i/p /  \  I/?

J  I <3^(ií) |”m(ií)<Js/ ) | y  u - i /r(y)dyj  £

£ const. H G X ,« - 1'» !*)/»1'«,

where in the second inequality we have used the fact that for у £ [х;-)П,ж], 
u(if) ~  u(x) uniformly in n and x. Using Hölder inequality again, we have

l|G»XAn(7o)IL,p ^ const- % 7 Г  ( / г К * ) ] 1_1/р^ )  ^

-  COnSt'  ̂ nijq’P ( /  J U(X)dx^  2 1/P = COIlSt- n_1/?llGnL,p5
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whence, using the definition of Gn,

II ^пХД„(7о) II u,p = Const. П- 1' 4 И ffW(lO,5n) - 5 Í  mu,p 

Thus, by (i*) and (5.2.6) we immediately obtain

(5.2.7) = const. n1-m+i+T.

If we define en(A) = [— 1 + An-2 , — 1 + 2An-2] or [1 — 2An-2 , 1 — An-2], then 
formulae (5.2.5), (5.2.7), (3.1.1), and (4.1.1) yield that

const. 2  const.n_T||w (r’sV “ íFn(u;)Xfn(A)|LiP ^

^  const. n~T II ги(г'я)Ч>~'Рп{™)Хеп{А) II u ~  . 7
Wm {хв,п)<Р*(хв,п)

where g = 1 or n. Therefore, we obtain

(5.2.8) u(xe,n)v (T- t)p(xe,n) R lS)(*e,n)] - P <
1 — X^1 X Qtn

for some constant К .
For simplicity, let T  = 1 and t\ = 0. With proper C and D, (5.2.8) can 

be written as
E  (1 -  z*n)C(l + xfcn)D|xfcn|ri ^  K,

k= l ,n

whence C 2. 0 and D 2.0. Clearly, if 1/2 ^  x ^  1 we have Ft(x ) ~  (1 — x)c 
(cf. (ii)) whence by D ^  0, Ft(x) ^  К  (1/2 й x ^  1). For - 1  ^  x ^  — 1/2, 
the argument is similar. Finally, let \x\ < 1/2. Then FAx) ~  Ы г’ whence 
by Tj 2  0 , FAx) ^  К , again.

If r -  m, say, then by | fim_i,o(l/jn)| ~  | bm-i,i(y,jn)| we can argue anal­
ogously. We omit the further details. □

5.3. P roof of T heorem 3.6. (ii) =>• (i). Let R be defined as in (5.1.1). 
Again we have (5.1.2) and (5.1.3). Using (2.4.3) and (4.2.2) we have

K ' )( / - - R ) L ,p s

< const.
n+1

m—i=even к—0
+

“ ,PJ
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W
n+1

w

m —í —o d d  k= 0  

n+ 1

+
u,p

^  E
m —t= o d d k=0

ХДп(о !— <^1 + <$2 + «Sß.
n,p

From Lemma 4.2, it is clear that Si and S 2 could be estimated similarly as 
done in 5.1, where by using (ii), we have

< const. E n ( f ^ )
nL - t

Si + S 2 ^

^  Il^-Vt'1] _1хд.м
u,p.

<

< const £ n (/(L))
ПL - t  ’

To estimate S 3 we need to use Lemma 4.6. First, we write

(5.3) S 3 (z) n v 1 Y  15 >-1хдп(<7)
ttl—i—odd u,v

where
П+1

Bi = Bi(x) := Y ( f ~  R)(l\ x kn)qik{x). 
k= 0

For simplicity, let max{r,s} ^  to. Then by (5.1.1) (/(*) — ДЬ))(±1 ) = 0. By 
the definition of qtk, (5.1.1), (4.2.1) and (2.4.6), there exist functions Ci(x), 
such that

= f i »  , ) , м ( , ) ь
tinu

fc=l w(r’*)(xkn)

and |(7t(x)| ^  const, uniformly. Using (4.1.4) we then obtain

E n - l U (L)) w ( r,s) (x )Bi(x)I ^  const.
nL wm_i(x)
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V 4 /'*/■_ \ fL{xkn)wm-l{xkn) с
' Ь  С-(ХЫ>»('.*)(!*„) 4“(”’’X)

We now apply Lemma 4.6 on the right hand side of the above inequality
with W  = w, U — V — ipLwm-i[wm ’s ]̂ \  and /  = C,
to conclude that

II —t d  II ^  * EN-L(f {L))lb  Bi\\n,p^ const.------- r ------.

We check the condition of Lemma 4.6: UV = <pL tu1̂ p E Lp is clear, 
( U/y/Wip) p = p £ L1 is the assumption (ii), Vy/wip =
= Wm’s (̂fiL £ L l is the second condition of (3.1.2), and U E Lp follows from 
the first condition of (3.1.2) if a ,ß  ^  -  1/2 and from (ii) if min{a,/3} ^  
^  — 1/2. Therefore, by (5.3) we have

<S3 ^ const. EN- L{ f (L))
r,L

which concludes the proof of this theorem. □

5 .4 . P ro o f  of  T heorem  3.2. (i*) =>• (ii). We notice that this theorem 
corresponds to the case r  = 0 in Theorem 3.1. Similarly to the proof in 5.2 
we have (again, let r, s < m)

IITj«||„  S const. (1 Я<м >(®, S.)  -  S f - l»|| „ +

+ I H ‘W . )  -  5?>||„, + ||Я<‘>(ш,/(А) -  (А «.)(,)| | . , ) .

By (i*) and Lemma 4.5, we have

II H n \ w,S n) -  S ^ ||  up й  const.n1+<-m

and
II H Í \ w ,  foSn) -  ( f0Snp  II U p ^  const. n1+i— .

Moreover, let A be a fixed interval inside (—1,1). By Lemma 4.2 with L = 
= m — 1 we have

I Hn(w, S ,jj ж)|
n+l
^  ] h-m—l,k (x ) 
k=0

<

< const. ----- T-  nm- 1 M * j n ) ) n \ x jn ))
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Therefore, by a theorem in [11, 4.8.72] we derive that

Л- 1
< const.

nm~1 ipt~1(xjn) Lv 

Hence, for x 6  A, we obtain the inequality

I Sn\ z)| ^  const, x £ A,.

Thus, by Lemma 4.5, we get

<
u,p

5 | |Я Г 1»(«.,5„)хл||ад + | |5 Г ‘)и | | „ 5

< const. +to—t ^m—t

Putting these estimates together, we have proved that (cf. (5.2.6))

lim supnm -i-1 ||Tn(i)XA|| ^  const.
П-ЮО ,y

By (5.2.1) and (5.2.4) we then conclude that

lim sup n-< (I (Í1™)(<̂ Хд II u p = const.,
n—>oo ,r

which implies, by the argument of the proofs in Lemma 4.4 and Corollary 
4.3.1,

lim sup n - t ^ ) р Г * И [ р 'п И ] ‘хд < const.
и ,p

If t > 0, we apply Lemma 4.7 with tp > 0 in place of p, s = (m — t)p, and 
U = w(r's)u to conclude

(»fr*’) <Р ХД < const.
u,p

with a constant independent of A. Since this is true for every fixed A £ 
£ (—1,1), we have proved (ii) for t > 0. However, the case t = 0 is even 
easier, since in this case there is no derivative and (i*) implies

II f 0 Hn(w, Sn) -  Я „(/, 5„)|| u p ^  const, n—m-f-1
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whence, by (5.2.1) and (5.2.4)

limsup И u ^  const.

By (4.1.4) and (4.1.3), we then have

u,p

This concludes the proof. □
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ON NOETHER!AN MODULES 
GRADED BY G-SETS

M. REFAI* (Irbid)

In troduction

Let Д be a G-graded ring and M  be a graded Д-module. One of the 
most important problems in module theory is to see whether a graded mod­
ule having a certain property has a similar property when regarded without 
grading. The idea of graded Д-modules has been extended by Nästäsescu 
in [6,7], to graded Д-modules over G-sets. That is for the case where R = 
— ф Rg is a G-graded ring, A is a left G-set and M  = ® Ma where Ma is 

Эб<3 a£A
an additive subgroup of M  and RgMa £  Mga for all g E G and a £ A. Since 
any group G is itself a G-set (G acts on itself by left translation), then any 
result on A-graded Д-modules where A is an arbitrary G-set can be applied 
directly for the elements of Д-gr (the category of all graded Д-modules).

Now, we have the following classical problem: If M  has a certain property 
in (G, A, R)-gr (the category of all left Д-modules graded by a G-set A), then 
does M  have the same property in Д-mod (the category of all Ä-modules). 
In this paper, we discuss this question for the Noetherian property. In other 
words, is the condition M  is A-graded Д-Noetherian sufficient to say that M  
is Д-Noetherian.

In general, the answer is no because it is not true for graded Д-modules. 
But if we add some extra conditions on A and G then the answer will be yes.

In Section 1, we recall a series of notations which are used in group action 
and give some results on modules graded by G-sets. For these notations and 
facts one can look in [2 ].

In Section 2, we give a positive answer for this question to the following 
cases:

1. G is a finite group and A is any G-set.
2. G is an abelian group and A is a finite G-set.
3. G = Z X F  where F  is a finite abelian group and A is a denumerable 

G-set.
The question remains open for the case where G is a finitely generated 

abelian group and A is a denumerable G-set.

* T his research was su p p o rted  in p a r t  by Y arm ouk University.
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1. Modules graded by G-sets

Let G be a group with identity e. A G-set A is a nonempty set, together 
with a left action G x A —>A of G on A given by (g,a) —► да, such that 
ea = a for all a € A and (gh)a — g(ha) for all g, h £ G, a £ A. For t £ A, 
we denote Gt — {<7 £ G\ gt — t} and Gt = {</í| g £ G } . Obviously, Gt is a 
subgroup of G and |G<| = [G:G*] (see [2], page 152).

Lemma 1.1. Let G be an abelian group and A be a G-set. I f  t E A then 
Gs = Gt for each s £ Gt.

P r o o f . Let s = gt, where g £ G, and let h £ Gt. Then hs = g(ht) = 
= gt — s and hence Gt Q Gs. On the other hand, if r £ Gs then rt = rg~xs = 
= g~l s =  t, i.e., G3 Í  Gt.

Throughout this paper, A will be a G-set and R  will be an associative
G-graded ring with unity 1, i.e., R = ® Rg where each Rg is an additive

g € G
subgroup of R and RgRh í  Rgh for all g, h £ G.

A (left) Ä-module M  is said to be an A-graded Д-module if M  = 0  Ma
a£A

where each Ma is an additive subgroup of M  and RgMa ^  Mga for all g £ G, 
a £ A. The elements of Rg (resp. Ma) are called homogeneous of dimension 
g (resp. a). For x £ M, we write xa for the component of x in Ma. An R-
submodule N  of M  is said to be an A-graded Д-submodule if N = 0  N a

a £ A
where Na = N  П Ma.

Clearly, if R  is a strongly G-graded ring ( R gR h  = R gh for all g, h £ G) 
then RgMa = Mga for all g £ G, a £ A.

P r o p o sit io n  1.2. Let M be an A-graded R-module and x £ A. Then 
Rg zs a graded subring of R and Mx is an R (gA -submodule of

g&Gx
M.

P roof. Obvious, because gx = x for all g £ Gx, i.e., R^Gx^Mx Q Mx.

P roposition 1.3. For each t £ A, M^Gtl = Afa is an A-graded
sEGt

R-submodule of M.

P roof. The relation „  defined on G by g„h iff gt = ht is an equivalence 
relation. The equivalence class determined by the element g is gGt. Let 

lieДt a set °f representatives for the equivalence classes in G. Then
one can easily show M^Gil = 0  Mgit and RM^Gt  ̂ ^  M^Gt\

ieAt
Now for each x, у £ A we have Gx = Gy or Gx П Gy = 0. So, the relation 

Í  defined on A by xSy  iff Gx = Gy is an equivalence relation. The equiva­
lence class determined by the element я £ A is Gx. Let {z,-}igA be a set of
representatives for the equivalence classes in A. Then M  = 0  M^Gx' \

>'e Д
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2. Noetherian Л-graded Д-modules

D e f in it io n  2.1. An Л-graded Л-module M  is said to be Л-graded 
Л-Noetherian if M  satisfies the ascending chain condition on Л-graded 
Л-submodules of M.

In the rest of this section, we assume M  is А -graded R-Noetherian.
P roposition 2.2. For each t G A, Af(Gi) is А -graded R-Noetherian and 

Mt is R^'l-Noetherian.
P roof. The first part follows directly from Proposition 1.3. For the sec­

ond part, let X\  ^  X 2 ^  . . .  be a chain of ß (G‘)-submodules of Mt. Then 
R X 1 Q R X 2 C . . .  is a chain of Л-graded ß-submodules of M. So, there ex­
ists n G N such that R X n = R X n + 1 =  . . . ,  and hence (R X n)t = (R X n+i)t — 
-  —  But (R X n)t = R ^ X n  =  X n implies X n = Х п+г = ----

P roposition 2.3. For A given at the end of Section 1, there exists a
finite subset I  of A  such that M  — ® M^Gx' \

ie/
P roof. Suppose not. Then there exists a denumerable subset N of A 

such that ф 0 for all j  G N. But then Af(GlD ^  M<G*') + M(Ĝ )  g
C . . .  is a chain of Л-graded Л-submodules of M  without maximum.

Corollary 2.4. M is R-Noetherian iff M(Gx) is R-Noetherian for all 
x £ A.

In the remainder of this section, we add conditions on G and Л so that 
M  is Л-Noetherian.

T h eo rem  2.5 (Theorem 4 of [3]). Let G be a finite group with iden­
tity e, and M  be a graded R-module. Then M is R-Noetherian iff M  is 
R e-Noetherian.

P roposition 2.6. Let G be a finite group. Then M is Re-Noetherian. 
Consequently, M  is R-Noetherian.

P roof. Let i G  Л. Since G is a finite group, A x is finite (see Proposition
1.3, for notations). Suppose Ar = {1,2,. . . ,n } , then = ® MgiX. By

t=i
Proposition 2.2, MgiX is ß (GsiI)-Noetherian for i = l , . . . , n .

Since r (g°ix) is a graded ring of type GgiX and GgiX is a finite group, 
then by Theorem 2.5, MgiX is -Noetherian for each i E A x. But

^ д (° 9,*)^ — л е for aii j £ i.e., MgiX is Ле-Noetherian and hence M^Gx^
is ß e-Noetherian. Therefore, M  is Ле-Noetherian by Proposition 2.3.

One can notice that if Л is a finite G-set and Gx = Gy for all x, у G Л 
then M  is Л-Noetherian. In the following proposition, we show that if Л is
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a finite G-set and G is an abelian group then M  is Ä-Noetherian. We leave 
the case where A is a finite G-set and G is an arbitrary group as an open 
question.

P r o p o sit io n  2.7. Let G be an abelian group and A be a finite G-set. 
Then M is R-Noetherian.

P r o o f . Assume A  = {1,2,. . . ,n }  and t G A. By Corollary 2.4 it is 
enough to show M (G<) is Ä-Noetherian.

Step 1 . Consider an arbitrary Ä-submodule A of M^Gt\  For each i — 
= 1 ,. . .  ,n , let Ab) be the iZ-submodule of M^Gt) generated by the elements 
Xi where x G X  and xj = 0 for all j  > i.

We show that if X  ^  Y  are two Ä-submodules of M^Gt  ̂ such that Ab) = 
= yb) for all г = 1 ,. . . ,  n, then X  = Y . Let у G Y  — 0, then у — y\ + . . .  -f ym 
where t/,- G M; and ym /  0. By induction on m, we show that у G X . If m = 
= 1, then t/ = т/i e y i 1) = j b )  С A. Assume m > 1, then ym G Y(m) —0 and 
hence m  € Gt. By assumption ym G X^m\  write ym — + . . .  -f rpx\f)
where zb) (= x  and = 0 for аД j  > m. Let r,- = (r,)Ci + . . .  + (r,-)Cj where 

(r,)Cj G RCji {т{)С]Хт ф 0 and Cjm = m for all j  = 1 , . . . ,s. Then ej G Gm 
for all j  = 1 , . . . ,  s and r,xb) = nx[^  + . . .  + r,Xm• If ^  0  for some j  < m 
then j  G Gt and hence by Lemma 1.1, Gj  = G t = G m. Thus r ,z ^  G Mj  for

P v .
all j  < m. Since £  r-jz(J) G A , then z = у -  rjX^A g у  and 2j = 0 for 

з= 1 i= 1
all j  ^  m. So, by induction 2  G A and hence у E X .  Therefore, A = У.

Step 2. To show that Af(Gi) is Я-Noetherian, let Aj С A2 ^  . . .  be a 
chain of f?-submodules of M^Gt\  Then for each i = 1 , . . . ,  n, A |^  ^  A ^  ^  
^  . . .  is a chain of А-graded i?-submodules of M^Gt\  Hence there exists mi G 
G N such that Xm] — A^ | +1 = __ Let mo = max{m,-: i — 1 , . . . ,  n}. Then
Xml =  ^mo+1 ~ • • • for each * =  1 , • ■ •, П and hence X mo = A m o+1 = . . .  , 
i.e., M W  is Ä-Noetherian.

Let G be an abelian group and A be a denumerable G-set. Let í G A 
such that G = (c)G< where (c) is an infinite cyclic subgroup of G. We denote 
G+ = {c* g: i ^  0 and# G Gt} and G~ — {c* g: i ^  0 and# G Gt}.

P r o p o sit io n  2.8. With the above notations, we have
1 . Д<с+) = Z  Rr is a graded subring of R.

reG+
°o

2. M (G г) = Afci.t is an А -graded R(g ) -submodule of M^Gt\
t'=0

P r o o f . Since (c'g)(c^h) = c,+igh G G+ for all сгд, c^h G G+, then 
r (g+)r (g+) Q R(g+\  and hence i?(G+) is a graded subring of R. Similarly,
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if clg E G+ and j  ^  0, then (c'g)(cH) = c,+H. Therefore, R(G+) M(G+t) Q 
£  Af(G+i), i.e., A/(G+ti is an А-graded ,ß(G+)-submodule of M^Gt\

P roposition 2.9. M(G+i) is А -graded R^^-Noetherian.
P r o o f . The relation „ defined on {c‘: i ^  0} by cl ^ cJ if clt = cH is an 

equivalence relation. Let {r, = cs‘ }ieI be a set of representatives for the
equivalence classes in {c‘: i ^  0}. Then Af(G+<) — 0  Mr ..t .

iei
If I  is a finite set, then Af(G+i) is Ä ^-N oetherian  and hence it is A-

graded f?(G+i-Noetherian (Gt ^  G+). Let I  = {1,2,...}  and 0 й  s* < s2 <
< . . .  . Suppose N  is an А-graded ,ß(G+)-submodule of M^G+t\  then N —
— Ф Since R N  is an А-graded -R-submodule of M^Gt\  it is finitely

ie/
generated over R. Let x i , . . .  ,x* be a homogeneous elements of N  which 
generates RN  over R. Suppose х,- E MTp ,t for i = 1 , . . . ,  к and p\ ^  ^  pk.

p* in \ ■ ' PkThen Y  MTi.t is f?lGtLNoetherian and hence Y  NTi-t is finitely generated
t'=i i=i

Pk
over R(G,h Let y i , . . . , y 3 be generators of Y  ^r,-t over R(g,K We show

i=i
{ x i,...,x jt, y i , . . . , y s} generates N  over fü(G+).

Let Z £ Nrm.t be a homogeneous element of N. If m  ^  pk, then Z  
is an fZiG,i-linear sum of y \ , . . . , y 3. Suppose m  ^  pk. Since Z E R N , 
Z = a 1X1 + . . .  + akx*. where a, E R. If a,x, ф 0, let a,- = (a,)bi.3] + . . .  + 

where bj — c 1, (cij)ьуд, ^ ^ ^  1 9 j £ Gt and bj • gjVPi t =

= cSm • t. Then c(~Sm+Sp’+nj) E Gt, i.e., bj E c(*m_Sp*) • Gt and hence 
bj ■ gj E G+ (sm — sPi > 0) for each j  = 1 ,...  Therefore, Z  is an i?(G+i- 
linear sum of x i , . . . ,  xk and hence MiG+<) is finitely generated, i.e., M^G+ii 
is А-graded f?(G+)-Noetherian.

By using the same arguments as in Propositions 2.7 and 2.8, one can
_ ° °

easily show that if R^G ) =  Y  &r and M^G ^  = Y  then Af(G is
r£G~ t= 0

А-graded R(°  i-Noetherian.
Now, consider an Ä-submodule X  of M^GtK For i E N, let be the 

А-graded $ (G+i-submodule of JVf(G+<) generated by the elements xci.t where 
x E X ,  which satisfies the following conditions:

1 . x ф Af(G and
2. x can be written as x =  xri.* + . . .  +  xTp.t + xc,.t where rj = cs>, Sj E Z 

and si < . . .  < sp < i.
OO

Suppose X * = Y  * (0- Then X*1) ^  X™  + X &  ^  . . .  ^  Jf* is a chain of 
i=l

А-graded f?iG+^-submodules of M^G+t\  and hence by Proposition 2.9, there
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exists n G N such that Х^1) + . . .  + X ^  = X*. Now, for each i — 1 , . . . ,  n 
let { x^s|: s — 1 , . . . ,  k{ where x('s) G X satisfies the above two conditions}
be a finite subset of X ^  that generates it over R^a+\  With these notations 
we have the following lemma.

L em m a  2.10. Let X  ^  Y  be R-submodules of M^Gt  ̂ such that X  П
n M (G-<) = X* = Y* and X(') = for all i = Then
X  = Y.

P roof. Let у e Y .  If у G M^G then у G X. So let у = yri.t + . . .  +
+ Угт-t where rj = cs>, si < 02 < • • • < sm and sm > 0. We proceed by in­
duction on sm.

If sm = 1, then yTm.t G X(1) =  Х<г). Let yTm.t =  + . . .  + e*i*2*l)»
a, G Ä(G+). If atx ^ l) ф 0, then let a,- =  {ai)Wl.gi + . . .  + (ai)Wt.g, where Wj = 
= cm>, mj ^  0, gj G Gt and Wj ■ g jd  = cSmt — ct for all j  = 1 , . . . ,  s. Then

к1 _
Wj G Gct = Gt- So, у  — Y  aix ^  £ M(G and hence у G X . Assume it is

t=i
true for all sm ^  n. Let sm > n. Since yTjn.t G X* = X^1) + . . .  +  X(n), then

Угт-t = а'^хсы' a** e R{G+)■
1 = 1 S=1

If ai3x (ci}t ф 0, then let d{s — 4" • • • 4" {^is)Vq.bq where Vj — c J , tj  ^
^  0, bj G Gt and Vj • bj ■ сг ■ t — cSm ■ t for all j  = 1 , . . . ,  q. Then Vj = cei G 
G cSm~lGt-, let vj = cSm~ldj; dj G Gt , j  = l , . . . , g .  Now, if ф 0 for

some к < i then a,-4x ^  = Y  iai»)vj-bjxc^t‘ Since vj ' bjCk •t = c*m-1+fc -t 
C j=i 3 1

and Y  Y  aisX{ls) £ X then
1=1 5=1

n ki

z  = y -  E E G-sx(,s)eY
1 =  1 5=1

and Z = Zc'i .* + . . .+  Zc*p.t where ег < . . .  < ep < sm. By induction у G X.
Let X be an fí(G+ ̂ -submodule of Af(G+t). For i G N U {0}, let X^) be 

the А-graded i?(G+ 1-submodule of M(G+<) generated by the elements xc,.t 
where x G X can be written as x — x rvt + . . .  + xrp.t + xci.t where rj = c*j , 
Sj G N U {0} and si < . . .  < sp < i. As before there exists n G N such that

OO

x(°) + . . .  + XÍ") = X* = £ X W .
t= 0
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By using these notations and similar argument to that used in Lemma 
2.10, one can easily show the following: If X C Y  are i?(G+)-submodules of 
M<G+i) such that X* = Y* and Х<{> = yM for all * = 0 ,1 ,. . . ,  n then X  = Y .

P roposition 2.11. M(G+i) is R(G+')-Noetherian.
P roof. Let Xi Q X 2 Q . . .  be a chain of # (G+)-submodules of M(G+<). 

Then Xj £  Xj Q . . .  is a chain of Л-graded Ä^G+)-submodules of M^G+t\  
So, by Proposition 2.9, there exists n G N such that X* = X *+ 1  = . . .  . Let
m G N such that X* = X<0) + . . .  + X<m). Then X*n+l = x £ J t + . . .  + x £ j j  
for each i G N. Now, for each j  = 0 , . . . ,  m, X„ ' £  = . . .  is a chain of
Л-graded f?(G+)-submodules of M^G+t\. Hence there exists ríj G N such that

. . Let p — max {n + nj}™_Q. Then X* = X *+1 = . . .ytr) _  y(i)^n+rij л п+п^+1

and Xp'} = Xp^j = . . .  , for all i = 0 , . . . ,  m. Therefore, Xp = Xp+J = . . .  ,Л0  _

i.e., M^G+<) is _R(G+)-Noetherian.
Similarly, M^G *) is an )-Noetherian.
P roposition 2.12. M (Gi> is R-Noetherian.
P roof. Let Xj Q X 2 ^  . . .  be a chain of й -submodules of M^Gt\  Then 

X\C\M (G *) g X 2 flM(G Q . . .  is a chain of R(g ^-submodules of Af(G_i). 
So there exists no G N such that ХПо П M^G ' ‘> =  ХП)+1щ И  = . . .  .

Since X *0 C X *Q+1 Q . . .  is a chain of Л-graded # (G+)-submodules of 
M(G+<) there exists s G N such that X ^ +s = X *o + s+ 1  = . . . .  Let X ^ +s + 
+ • • • + * £ + »  =  * £ + .•  For t = 1, . . . ,  m choose щ G N such that X ^)+s+n. = 
= XÍ;}+s+ni+l = . . .  . Let n = max {n0 + s + nj}J=l, then X n П M<G_i) =
= Х п+1 П M(G_i) = . . .  , X* = X *+1 = . . .  and X £} -  Xjifj = . . .  for all 
i = 1 , . . . ,m. By Lemma2.10, X n — Xn+j = . . . ,  i.e., M^Gt  ̂is fí-Noetherian.

P roposition 2.13. Suppose A is a denumerable G-set such that G = 
=  (c)Gt where (c) is a cyclic subgroup of G, for each t G Л. Then M  is 
R-Noetherian.

P roof. Follows directly from Proposition 2.12 and Corollary 2.4.
Corollary 2.14. Suppose R is a Z-graded ring and M  is А -graded R- 

Noetherian where A is a denumerable Z -set. Then M  is R-Noetherian.
In the rest of this section, G will be an abelian group and H Ú G  such that 

G /H  = (cH) is an infinite cyclic group. Also, M  is Л-graded Й-Noetherian 
where Л is a denumerable G-set.

For t G Л, let S = (c)Gt be a subgroup of G. Then R(s ) = ^  Й, is
sES

a graded subring of Й. For each h G H, the relation ^ defined on {c)h =
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= {clh:i G Z} by c'h^c^h  iff clht = Ght is an equivalence relation. Let 
{с*'М»ед, be a set of representatives for the equivalence classes in (c)h.
Clearly, Ah = {cs,h: i G Дд} is an 5-set with an action given by (c'g)(cs,ht) =
= cSrht where c,+s' • ht = cSr ■ ht. Also, one can easily show that =
= Ma is an Ад-graded Ä(s )-module.

a£Ah

P roposition 2.15. With the above notations, M^Ĝ  is Ah-graded R is i- 
Noetherian.

P r o o f . First, we show that, if X  is an Ад-graded i2(s )-submodule of 
then R X  П = X . Let r G R  and x be a homogeneous element

of X .  Then r = (г ) Ш1.Ь1 + . . .  + (r )Wp.bp; w{ = cm‘, mt G Z, ft,- G Я  and x G
G M s for some q G Дд. Now, if rx is a homogeneous element in ’ 

сч-ht K 1
then rx G M s for some i  G Дд. Assume (r) b x -ф 0, then it;,- • 6 ,-cs« • ht =

ce-ht
— cSt ■ h t , i.e., • 6 , G 5. Hence rx G A.

Let Ai í  A2 ü  ••• be a chain of Ад-graded Ä^-submodules of
Then ÄAi ^  ÄA2 ^  . . .  is a chain of А-graded Ä-submodules of M^Gt\  
Hence there exists n G N such that R X n = R X n+\ = . . .  , and then R X n П
П =  Ä I n+i П M (hGt) = . . . .  Therefore, An = A n+ 1  = . . .  .

P roposition 2.16. is R^-Noetherian.

P roof. Clearly, ^< ° )
(sht

But Sht — Gt by Lemma 1.1. 

Thus 5 = (c)Sht and hence by Propositions 2.13 and 2.15, is R(s -̂
Noetherian.

For h\ , /12 6  H , we have or П M^Ĝ  = 0. So the
relation £ defined on H by h\£h2 iff c'/iii = d h 2t for some i , j  G Z is an 
equivalence relation. Let A ^  be a set of representatives for the equivalence
classes in H. Then M = ® m \G! \  So, if А is a finite subset of

ueA(”)
Я , then M<Gi) is Äbs)_Noetherian and hence is Ä-Noetherian.

r(Gt)

Corollary 2.17. Let F be a finite abelian group and G — Z x F. Then 
M is R-Noetherian.

P roof. Let H = F, then G /H  — Z. By the previous discussion, M^Gt  ̂
is Ä-Noetherian for each t G A. The result follows from Corollary 2.4.

Finally, the above techniques may be extended to show that if M  is A- 
graded Ä-Noetherian where G is a finitely generated abelian group, then M  
is Ä-Noetherian. We leave this case as an open problem.
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THE VARIETY OF CH-ALGEBRAS
N. WEAVER (Santa Barbara)1

In a compact T 2 space, every ultrafilter converges to exactly one point. 
This allows us to introduce into any such space certain “limit” operations 
which really are operations (albeit infinitary) in the universal algebraic sense. 
Throwing away the topology then leaves an abstract algebra which we call a 
“CH-algebra” (for “compact HausdorfF”).

The algebraic properties of these CH-algebras relate nicely to the topo­
logical properties of the compact T 2 spaces from which they derive: ho- 
momorphisms, subalgebras, and direct products correspond to continuous 
maps, closed subspaces, and topological products. Thus it is perhaps not 
surprising that the class of CH-algebras is a variety, i.e. is closed under these 
operations.

This result is well-known to category theorists and appears in somewhat 
different language in [12], [13], [17]. However, the purely universal-algebraic 
approach offers several advantages. First of all, we are able to write down an 
explicit scheme of equations which axiomatizes the variety of CH-algebras; 
this yields a characterization of topologies presented in terms of ultrafilters. 
This result is analogous to Birkhoff’s characterization of topologies presented 
in terms of nets ([2], Theorem 7 or [10], p. 74); our theorem is narrower, 
covering only compact T 2 spaces, but our axioms are also a little simpler.

Our approach also sheds new light on some well-known theorems from 
general topology. For instance, the existence of the Stone-Cech compactifi- 
cation becomes a straightforward consequence of standard facts about free 
algebras in a variety. Thus we obtain yet another construction of this impor­
tant object; our construction has the advantage that, with trivial modifica­
tions, it also produces the Bohr compactification, etc. Finally, the universal- 
algebraic point of view advertized here also illuminates the relationship be­
tween compact T 2 spaces and Stone spaces (i.e. totally disconnected compact 
T 2 spaces).

(A universal-algebraic approach to general topology was attempted in [6 ], 
but that paper was complicated by the introduction of certain operations \ q 
which have arity a proper class and which remain partial even in the compact

1 T his m ateria l is based  up o n  work su p p o rted  under a  N ational Science Foundation  
g rad u ate  fellowship.
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T 2 case. None of our applications follow from the result of [6 ]. Operations 
were also introduced into topological spaces in [5].)

This paper continues the general program, begun in [18] and [19], of 
applying universal algebraic ideas to sets equipped with nonalgebraic struc­
ture (in this case, topology). It has benefited from comments made by John 
Coleman, Melvin Henriksen, Walter Taylor, and the referee.

Basic ideas of universal algebra, used by us with brief explanations, are 
given in full detail in [4]. Readers with a background in category theory may 
also find the chapters on algebraic and varietal categories in [8 ] and [1] of 
interest.

I.

We begin by defining CH-algebras. Let A  = (A, T) be a compact T 2 
space with underlying set A and topology T , and let I  be any nonempty set 
and U an ultrafilter over I. Then any function x : I  -* A induces an ultrafilter 
Ux over A defined by

Ux = {U  C A :x- 1(í7) G U} .

We then define an operation fin'. A 1 —► A by setting f iy fx .)  equal to the 
unique point all of whose neighbourhoods belong to Ux. (Such a point exists 
since A  is compact, and it is unique since A  is T2.) The point //,w(x ) т а У 
be described as “the limit of x with respect to U .” Of course, f i y  is an 
infinitary operation if I  is infinite.

Let A = (A ,{/;//} ) denote the abstract algebra with underlying set A 
together with all of these operations / / / / ,  for any nonempty set I  and any 
ultrafilter U over I. (In our notation, В will be the algebra arising from the 
compact T 2 space /?, etc.) We define CH-algebras to be precisely those ab­
stract algebras which are derivable from compact T2 spaces in this manner.

The notions of homomorphism, isomorphism, subalgebra, and direct 
product are fairly self-evident and can be summarized as: a map which 
commutes with the operations a 1- 1 homomorphism; a subset closed 
under the operations fiju\ and the cartesian product with the operations / / ^  
defined coordinatewise. (Strictly speaking, we have just defined the under­
lying set of a subalgebra; the actual subalgebra is this set endowed with the 
restricted operations.)

For the reader’s convenience we include proofs of the following rather 
standard propositions.

P r o p o sit io n  1. Let A  and В be compact T2 spaces and A and В the 
corresponding CH-algebras. Then a map ф : А - * В  is continuous from A  to 
В iff it is a homomorphism from A to B, and ф  is a homeomorphism of A  

into В iff it is an isomorphism of A  into B.
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P r o o f . Suppose </>: A —>■ В is continuous from A  to В and / /^ ( x )  = 
= y; to show ф is a homomorphism we need //,m(<̂ (x)) =  ф(у). But for any 
neighbourhood U of ф(у), ф~х{11) is a neighbourhood of y, hence ф~1(Н) E 
E Ux. Thus x - 1 (<£- 1(t/)) GW and so U ЕЫфох. Thus every neighbour­
hood of ф(у) is in Ифох, so by the definition of the operation f j ц  indeed
fiju{<Hx)) = Ф(У)-

Conversely, suppose ф is not continuous; we now must show ф is not a 
homomorphism. Let U be an open subset of В such that ф~г(17) is not open. 
Then there exists у E ф~1{11) such that ф~х(Н) is not a neighbourhood of 
y. Now let J  =  A; let U be any ultrafilter over A containing every neigh­
bourhood of у and also the set A -  ф~г(f7); and let x: A —► A be the identity 
map. Then /;/Д х ) = у but //,£/(<£(x)) ^ ф(у) since U £  Ыфох. Thus ф is 
not a homomorphism from A to B.

The second statement follows from the observation that, for compact T 2 
spaces, a homeomorphism is just a 1 - 1  continuous map, while an isomor­
phism of CH-algebras is by definition a 1-1 homomorphism. □

P r o p o sit io n  2 . Let A  be a compact T2 space with corresponding CH- 
algebra A . Let В be a subalgebra of A with underlying set В . Then В is a 
closed (hence compact) subset of A  and В is the CH-algebra corresponding to 
the space В which is В endowed with the induced topology. Conversely, every 
closed subset of A  underlies a subalgebra of A . (It follows that the space A  

can be recovered from the algebraic structure of A : the closed sets of A  are 
precisely those subsets which underlie subalgebras of A .)

P r o o f . Let у be any element in the closure of B. Then let I  = B; let 
U be an ultrafilter over В  which contains В П U for every neighbourhood U 
of y; and let x :B  —> В be the identity map. Then //,zv(x) = у , and since В  
is closed under operations fjju we conclude that у E B. Thus В is & closed 
subset of A.

To prove that В derives from В we must show that the operations of В 
(which are the restrictions of the operations of A) agree with the operations 
derived from B. Thus suppose that / /^ (x )  = у in the sense of B, where the 
range of x is in В  and у E  B\ we must show that / / — у in the sense of B,
i.e. every ^-neighbourhood of у is in Ux. Let Ub be such a neighbourhood, so 
Ub = U П В  for some А-neighbourhood U of y. Then U E  Ux, i.e. x - 1(t/) E  
E U. Since the range of x is contained in В , we have х - 1 (Св) = x - 1(t/), 
hence x ~1(Ub ) E  U and thus Ub EHX, as desired.

Finally, let В be any closed subset of A\ we want to show that В  is closed 
under the operations f m -  Thus fix I,U, and x: /  —»• В and suppose ///v(x) = 
= y. If у £ В  then A — В  is a neighbourhood of у , hence x -1 (A -  B) EU. 
But since x(7) C J9,x-1 (A -  B) — 0, a contradiction. This completes the 
proof. □

P r o p o sit io n  3. If  {A \}  is a collection of compact Ti spaces with corre­
sponding CH-algebras {Ал}, then Д  A \  has corresponding CH-algebra f j  A \ .
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P roof. Fix I,U ,  and x : /  —► fjA ,\ and suppose fijj(-x) — y. (Recall 
that the operations fiju are defined on П Ад coordinatewise.) We wish to 
show that the product topology on J] Ад verifies that //,zy(x) = y, i.e. if 
U is any neighbourhood of у then x~ l (U) £ U. Since U contains every su­
perset of each of its elements, it is enough to show this when V is a basic 
open set; and since U is closed under finite intersections, we may in fact as­
sume U is a subbasic open set, say U = 7Гд г(У) where 7Гд is the projection
onto A \  and V  C A \  is open. In this case x _1(17) = (хд о x )- 1(F ). Further­
more, / щ ( ъ \  ox) = хд (y) by the coordinatewise definition of the operations 
f lU  on ПАл- But V  is a neighbourhood of x\(y), so we conclude that 
(хд о x )- 1 (V) G U, hence x - 1(t/) 6  U, as desired. □

For the next proposition, recall that a congruence relation (or congru­
ence) в on a CH-algebra A is by definition an equivalence relation on A 
which is compatible with the operations in the following way:

(x(*),y(0) € 0 for all i G /  implies ( //^ (x ) ,  fiju{y)) € в.

It is a general and easily verified fact that every congruence relation deter­
mines a quotient structure which is a homomorphic image of A, and con­
versely every surjective homomorphism arises in this manner (up to isomor­
phism of the range space). An equivalent formulation of congruences is: в 
is an equivalence relation which underlies a subalgebra of A x A, i.e. (by 
Propositions 2 and 3) an equivalence relation which is a closed subset of 
A x  A.

P roposition 4. Any intersection of congruences is a congruence, hence 
the set of all congruences is a complete lattice when ordered by inclusion.

P roof. The first statement follows from the last characterization of con­
gruences, since any intersection of equivalence relations is an equivalence re­
lation and any intersection of closed subsets of A X A is a closed subset of 
A x  A. The second statement is an immediate consequence of the first. □

We can now give a fairly painless proof of the following theorem. Recall 
that a variety is a class of algebras closed under the formation of homomor­
phic images, subalgebras, and direct products.

T heorem A. (Linton [12], p. 90; see also [13], p. 153 and [17]). The 
class of CH-algebras is a variety.

P roof. We have already observed in Propositions 2 and 3 above that the 
class of CH-algebras is closed under the formation of subalgebras and direct 
products, and it is trivially closed under the formation of isomorphic images. 
Thus, we need only show that if A is a CH-algebra and в is a congruence 
relation on A, then A /0  is a CH-algebra.

Suppose A corresponds to A = (A , T ). The quotient topology T /0  is 
obviously compact, and as в is a closed subset of A X A, it follows from a
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theorem of Bourbaki ([3], § 1.10.4, Proposition 8 ) that T /0  is T 2 . We claim 
that A /9  is the CH-algebra corresponding to A/O -  (А /в ,Т /в ) .  To see this, 
fix 7,7/, and x :7  -+ A/0  and suppose / /^ (x )  = у according to the quotient 
CH-algebra structure of А /в. Now define a function x0:7 —► A in such a 
way that for each i £ / ,  xo(i) is a representative of the class х(г); it follows 
from the definition of the quotient structure that if //^ (xo ) =  yo, then г/0 is 
a representative of the class y.

Now we want to show that for any A/0-neighbourhood U of y ,x -1(i7) £ 
£ U. However U lifts to an ^-neighbourhood Uq of y0, and we know 
Xq 1 (C/q) £ U. But x ~ \U )  = Xq^ C o), s o  we are done. □

II.

We begin this section with a brief review of terms and equations.
Let X  be any set; we think of its elements as variables. Then the terms 

over X  яге all of the “words” which can be written using the elements of X 
and the operations f j ц .  More precisely, the terms over X  form the smallest 
class C such that X  С C and such that whenever 7 is a set, U is an ultrafilter 
over 7, and x  is a function from 7 into C, the formal expression / 7^7 (x) is 
also an element of C.

The class C can also be characterized “internally” via a definition by 
transfinite induction. Here we construct C in stages. At stage zero we put 
in the elements of A; at stage a  for a  an ordinal > 0 , we put in all the 
formal expressions where the range of x consists of terms already
constructed. An advantage of this method of defining C is that it allows us 
to define the order of a term as the ordinal at which it is first constructed. 
In other words, the order of an element of X  is zero, and the order of the 
term / 7/y(x) is the sup, over г £ 7, of the order of x(i) plus 1 .

Let A = ( A, { /7,77}) be a set together with some collection of operations 
fl]U\ do not assume A is a CH-algebra. Given any function ф:Х —► A (i.e. an 
assignment of values to the variables), the terms over X  can be evaluated in
an obvious way. Thus, we define the evaluation of a term t by induction 
on the order of t, setting ф(у) = ф(у) for v G X  and ф{//,w(x)) = fiy{<j>o 
о x ) .

An equation is a formal expression t\ = Í2 where Í2 and Í2 are terms. We 
say that A satisfies the equation t\ = t? if ф(и) = <̂>(f2 ) for every function 
ф:Х —> A. Birkhoff’s fundamental theorem on varieties implies that the class 
of CH-algebras is definable by equations. We will now show it is in fact 
definable by the following three equational schemes. In these, 7, J  and X  
are nonempty sets, U and V are ultrafilters over 7 and J  respectively, and x 
and у are functions x: 7 —► X  and y: J  —»• X .
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a) (triviality) If I  -  {p} and x(p) = v then / щ ( х )  = v. 
ß) (restriction) Suppose J  G ZV, V = U\j, and у = x| j .  Then f i j j ( x )  — 

-  fj,v(yj-
7 ) (iteration) For each i G /  let /, be a nonempty set with an ultrafilter 

Hi. Suppose J  = U and VC 2J satisfies

к ev iff {i-.Knii e Hi} eu.
Then

f l ,u { fl ,y ,(y \l ,) )  = /j,v(y)-
In the last axiom scheme, the union 1)1,- need not be disjoint.
T heorem В (cf. [2], Theorem 8  or [10], p. 74). An algebra A = 

= ( A, { f m } )  is a CH-algebra iff it satisfies the axiom schemes a)^y).
P roof. Consider the forward direction. Suppose A is a CH-algebra and 

let it derive from the compact T 2 space A. Choose ф: X  —» A. To verify
triviality, we must show that ^(Д гД х)) = 4>{v)‘, as ^ ( / /д (х ) )  = /щ { ф  о 
о x ) , it is enough to show that U € l h ox for any neighbourhood U of ф(у) =

— ф{г). However, since ф(а) G U, ( ^ o x )  (U) = /  EU, hence U G as
desired. _

To verify restriction, let U be a neighbourhood of f j y  (ф о у ). It is 
enough to show that U G this will establish the center equality of

5 ( / /^ (x ) )  = / ш ( ф о у )  = fjy(4> oy) =4>{fj,v( y )),

thus verifying the restriction equation. But we know that (ф о x) (U) con­
tains (ф oy) 1 (Í7), which is in V and hence in U. Thus (ф ox) (U) G ZY,
i.e. U £li~  , as desired.ф OX7

To verify iteration, let U be a closed neighbourhood of fJy(фo■y). Now
(ф о y) 1(Í7) G V, hence the set of г G /  such that (ф о у) (Í7) П / г G W, is 
a member of U. By the restriction axiom, and since U is a closed subset, we 
conclude that for each such г ,Д д ( ^ о у |д )  G U. Then another application 
of restriction yields that

/лм (Л чи Л ^°у |/.-)) € U.

To conclude we observe that in a T 2 space, the intersection of all closed 
neighbourhoods of a point is precisely that point. Thus

fw ( f i i M 4>°y\ii)) =fj,vG>° У)’
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which is enough. We have now seen that a CH-algebra must satisfy the 
axioms a) — 7 ).

For the reserve direction, suppose A satisfies axioms a) — 7 ). We begin 
by showing that the members of Sub(A) are precisely the closed sets of a 
compact topology on A.

Sub( A) is obviously closed under intersections. To show it is closed under 
finite unions, let 17, V E Sub(A) and choose 7,Z7, and x: 7 —» U U V; we must 
show that //,w(x) E U U V. Now either x~1(U) E U or x _1(F ) E U. In the 
first case, by axiom ß) with J = x~l (U), we have

f w ( x )  = fj,u{y) G U,

where f j y (  y) E U since U E Sub(A) and у (J) C U. Thus in any case 
/ / a (x ) £ U U V, hence U U V E Sub(A). Thus Sub(A) consists of the closed 
sets of a topology T.

Now let U be an ultrafilter over A and let x = / а^ Ц а ) where 1 a is the 
identity map. By the axioms /3), any member of U must contain x in its 
closure, so I  is a cluster point of U. Thus every ultrafilter over A has a 
cluster point with respect to T, so (A ,T)  is compact.

For the second part of the proof, let x: I  —» A and let U be an ultrafilter 
over I. Suppose x is a cluster point of Ux with respect to T; we will show 
that x = //,^(x). This will establish that T  is T 2 (ultrafilters have unique 
limits) and that A derives from (T ,T ).

For each К  E M, x is in the closure of x(A'),i.e. the subalgebra Sg(x(Ä')) 
generated by x(A'). However Sg(x(A')) has underlying set

j  fh',v (x| д ') : V is an ultrafilter over К  j .

(For principal ultrafilters V, the axioms ß) and a) imply that this set contains 
x(A); and by 7 ) it is closed under the operations f i y . )  It follows that for 
each К  EU  we can choose an ultrafilter Vk  over К  such that fx,VK ( x |r-) = 
= x. Let W  be an ultrafilter over U containing the sets

{K: K 0 П К  E VR-}

for all Ко E U. Then by the axioms 7 ) and a) we have

/ / , ы ( х ) =  /иу'{1кукЫк)) = x

as desired. □
See [16] for a very different axiomatization of the class of compact T 2 

spaces.
Theorem В can be used to define compact T 2 topologies in situations 

where the filter point of view is natural. Thus, for each ultrafilter U over
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a set A one may simply define its point of convergence c(U); by Theorem 
В this describes the convergence structure of a compact T 2 topology iff the 
operations

fiju(x) = c(ZVx)
satisfy axioms a) — 7 ).

Theorem В also provides us with important information on terms in the 
variety of CH-algebras. Let us say two terms t\ and i2 are equivalent if 
4>(h) = <£(f2) for any CH-algebra A and any map ф:Х —> A.

Corollary. Every term over X  is equivalent to a term of the form 
fl,u{ lx ) , where U is an ultrafilter over X  and lx  is the identity map.

P roof. As in the proof of Theorem B, the axioms ß) and a) imply that 
every element of X  is equivalent to a term of the given form; and using the 
axioms 7 ), a trivial transfinite induction on order establishes the same for 
any term. □

III.

A key observation in the following is that arbitrary T 2 spaces correspond 
to “partial CH-algebras,” meaning one still has the operation f i j j  but they 
are no longer defined everywhere; //,w(x) exists precisely if the ultrafilter Ux 
converges. One still has versions of Propositions 1-3. In particular, a map 
ф :А -* В  from one T 2 space to another is continuous iff whenever ///Д х ) is 
defined in A  and equals y, then $1,и(ф о x) is defined in В and equals ф(у).

The free CH-algebra Fx over a set X  is defined as follows. Its elements 
are the terms over X , with two terms t\ and Í2 identified if they are equiva­
lent (i.e. фС 1 ) = ф(ф,2 ) for any CH-algebra A and any map ф: X  —► A). The 
operation / / ц  on Fx is defined in the obvious way, and simply maps the 
term x to the term / /^ (x ) . Fx is a CH-algebra because it automatically 
satisfies any equation which is satisfied by all CH-algebras, and the class of 
CH-algebras is definable by equations.

It is a general and easy universal algebraic fact that free algebras possess 
a universal mapping property: any function from X  into a CH-algebra A 
extends uniquely to a homomorphism from Fx into A. Moving over to the 
topological space point of view, we see that Fx corresponds to the Stone- 
Cech compactification ß X  of the discrete set X .  That is to say, if we let ß X  
be the compact T 2 space corresponding to F x , then every map from X  into 
a compact T 2 space A  extends uniquely to a continuous map from ß X  into 
A.

(A subtlety here is the fact that Fx is a set and not a proper class. This 
follows immediately from the Corollary to Theorem B. Alternatively, we can 
observe directly that Fx is a set as follows. The closure of X  in ß X  corre­
sponds to a subalgebra of Fx] this subalgebra contains X  and hence must
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be Fx itself. Thus X  is dense in ß X ,  i.e. every element of ß X  is the limit 
of an ultrafilter over X . Hence the cardinality of ß X  is no greater than the 
cardinality of the set of ultrafilters over X.)

Once we have ß X  for X  discrete, it is easy to construct ß X  for any T 2 
space X  = (X, T). Namely, let 0 be the least congruence relation on Fx  
which contains all pairs ( f iy (x ) ,v )  for which / /^ (x )  exists and equals v 
according to the topology T  (here x maps I  into X ).  Such a congruence 
exists because the lattice of congruences is complete (Proposition 4). Now 
we define ß X  to be the compact T 2 space corresponding to Fx/0.

T heorem C. Let X ,0, and ß X  be as above. Then the natural map 
p: X  —► ß X  is continuous, and if ф:Х -* A  is any continuous map into a 
compact T2 space A  then there exists a unique continuous map <f>: ß X  —*■ A  
such that ф = фо p. I f X  is completely regular then p is a homeomorphism.

P roof, p is defined as p = тг о a where ir.Fx —> Fx/0  is the natural 
projection and о is the natural embedding of X  into Fx- Then the fact 
that p is continuous is an immediate consequence of the algebraic criterion 
for continuity described at the beginning of the section, together with the 
definition óf 0 which insures that the desired conclusion fpuip  0 x) = p(y) 
always holds.

To see that ф lifts uniquely to ßX ,  recall that we already know ф lifts 
uniquely to a continuous map фо: ß X  —► A. Since ß X  is a quotient of ß X ,  
this settles the question of uniqueness and leaves only the question of whether 
фо is compatible with the congruence 0. For this, it suffices to observe that 
< M //M X)) = <MV) whenever (//^ (x ),? ;) is one of the pairs which gener­
ate 0. Again, this is an immediate consequence of our algebraic criterion for 
continuity.

Finally, suppose X  is completely regular. Then if v E X and I ,U ,  and 
x: I  —»• X  are such that some open set U containing v is not in Ux, it follows 
that there is a continuous map ф:Х —> 1  into the unit interval such that 
ф(и) = 0  and ф(Х — U) =  1: so that

{ф о х Г х(1) = (ф о х Г 1 (ф(Х -  [/)) D х _1(Х -  U) 6  W,

lienee фщ(ф ох) = 1 ф ф{и). This shows that if f i y ( x )  ф v (perhaps be­
cause the left side is not defined), then there is a continuous map ф:Х —► I  
such that ф1у (ф ox) ф ф(и). Now every such ф lifts to ф:ß X  —*■ I ,  such that 
ф =  ф о p; it follows that fjpi(p о x) ф p(v) in every such case — otherwise, 
applying ф would yield a contradiction. Thus in generell fpu{x)  exists and 
equals v iff fiju(p 0 x) exists and equals p(v), hence p is a homeomorphism. 
□

It is interesting that the Stone-Cech compactification exists as a conse­
quence of these universal algebraic arguments; see [7] for other constructions
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and [15] for a category-theoretic approach. An advantage to our approach is 
that it also shows the existence of compactifications in any variety of topo­
logical algebras.

For instance, consider the class of compact T2 abelian groups. Given any 
such topological group Л we may replace the topology with a CH-algebra 
structure, yielding a CH-algebra A which is also an abelian group. We call 
A an abelian CH-group.

Now the group structure on A is related to its CH-algebra structure: 
the group operations are continuous. This can be asserted by means of the 
following equations:

f i y ( x ) + fiju{ У) = /ли(х + у),

= fI  Ж -* )-

Thus the class of abelian CH-groups is definable by equations (the above 
equations plus the equations for abelian groups plus the equations a)~7 )), 
and therefore it is a variety. This conclusion is not at all special to abelian 
groups, as the continuity of any algebraic operation can be asserted in the 
same manner as the above. Thus the class of CH-groups, the class of CH- 
rings, the class of CH-lattices, etc. are all also varieties.

Consequently, for any set X  there exists a free abelian CH-group over X  
with the usual universal mapping property. It consists of all terms over X  
modulo equivalence, where now terms are built up using the group opera­
tions as well as the operations fiju- And the arguments of Theorem C can 
be mimicked down to the last detail to show that for any T 2 abelian topolog­
ical group A, there exists a compact T 2 abelian group ß X  and a continuous 
homomorphism p: X  —> ß X , such that if ф: X  —» A  is any continuous homo­
morphism into a compact T 2 abelian group A, then there exists a unique 
continuous homomorphism ф: ß X  —► A  such that ф = ф о p. ß X  is in fact 
the so-called Bohr compactification and is usually constructed quite differ­
ently [9]. We emphasize that this construction is also suitable for any other 
varieties of topological algebras.

(Again, we mention the problem of showing that ß X  is a set and not a 
proper class. It is now easiest to mimic the second proof of the correspond­
ing fact for Fx ■ Thus, simply observe that the closure of p(X) in ß X  is a 
compact group containing p(X), hence it must be all of ß X  by construction. 
As before this bounds the cardinality of ß X .)

Let us observe now that the variety of CH-algebras contains no proper 
subvarieties. (This argument was given in [14].) For, any nontrivial subva­
riety V must contain a CH-algebra with more than one element. Then, by 
closure under subalgebras, V must contain a CH-algebra with exactly two 
elements. By closure under products it then contains the CH-algebra corre­
sponding to the Cantor set K, and by closure under homomorphic images it 
contains the CH-algebra corresponding to the unit interval T. Finally, every
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compact T2 space embeds in a power of X, hence by closure under products 
and subalgebras V must contain an isomorphic copy (and, by closure under 
isomorphic images, an exact copy) of every CH-algebra.

The above conclusion can be summarized as: the CH-algebra 2 which cor­
responds to the two-element discrete space generates the variety of 
CH-algebras. However, it is a standard fact from universal algebra that 
the variety generated by an algebra is precisely the class of all homomorphic 
images of subalgebras of powers of that algebra; symbolically, in this case, it 
is H S P (2). (Indeed, it is essentially trivial to check that this class is a va­
riety.) It is well-known that a compact T 2 space is totally disconnected, i.e. 
Stonean, iff it embeds in a power of the two-element discrete space. Thus 
from the above we conclude that every compact T2 space is a continuous 
image of a Stone space ([11] § 41.IX).

If the compact T 2 space is metrizable, it embeds in Хш and hence by 
the above line of reasoning is a continuous image of a closed subspace of 
(2Ш)Ш = 2ш = IC. This nearly proves the well-known fact that every compact 
metric space is a continuous image of the Cantor set; to complete the proof 
we merely observe that every nonempty closed subspace of /С is a continuous 
image, in fact a retract, of К.. This is done as follows. Consider /С as lying 
in I ;  then any nonempty closed subspace К,0 of K, is a closed subspace of I  
and hence is the complement of countably many open intervals of X. From 
each such interval J  choose a distinguished element x j  which is not in /С, 
and define a map K. —> ICq by fixing each element of K.0 , and sending x 6  /С П 
П J  to the closest element of ICq to its right if x > x j ,  to its left if x < x j .  
We leave the reader to check that this map is continuous.
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MEASURES OF NONCOMPACTNESS, 
DARBO MAPS AND DIFFERENTIAL 
EQUATIONS IN ABSTRACT SPACES

D. O’REGAN (Galway)

1. In troduction

This paper presents existence theory for initial and boundary value prob­
lems in Banach spaces. Specifically we examine the initial value problem

n  (y' ( t)  = f ( t , y ( t ) ) ,  t€ (0 ,T ]
1 j l  y{0) = a e В

and the Dirichlet boundary value problem

f l 2 4 IV ' + ZV ~ e y  = 0 < t < l
1 y(o) = a e в, 1/(1 ) - ь e в ; ß,e e R.

Throughout В  is a real Banach space with norm | • |. In case В = Я , a real 
Hilbert space, we denote its inner product by (•,•) and then |z | 2 = (x , x ) 
for x e H. Cm ( [c, d], B) is the Banach space of functions и : [c,d] —*■ В  such 
that idm) is continuous with norm

|ii|m = m ax { |u |o ,|u ,|0 , . . . , | u (m)| 0}

where |u |0 = max {| u(f)| : t G [c,d]}.
The boundary value problem (1.2) has been extensively examined; see [2, 

5, 8 , 9, 14, 16] and their references. It is well known [3, 8 ] that, in contrast 
to systems in R n, even the initial value problem may have no solution (lo­
cal) in the Banach space case when the nonlinearity /  is continuous. Various 
additional compactness conditions are needed to assure existence in the infi­
nite dimensional setting. However in [12, 13] the case when /  is continuous 
and satisfies a monotonicity type condition is discussed. This paper exam­
ines the situation when the nonlinearity /  has a splitting of the form g + h, 
with h continuous and g satisfying some compactness condition. Our results 
improve, compliment and extend the existing theory in [9, 10, 13, 19, 21]. 
We remark as well that many other boundary conditions of Sturm-Liouville
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234 D. O 'R EG A N

type could be treated; however since the strategy and ideas are similar, we 
choose as a result to omit the details. Also in section 2 the initial value prob­
lem (1.1) will be discussed with /  having the above type splitting. Again the 
results extend and compliment the theory in [3, 8 , 11, 15]. An extra feature 
of the technique here is that it yields a global as well as a local result.

The existence theory in this paper is based on a Leray-Schauder type 
nonlinear alternative [4, 7, 17]. Before we state the theorem let us recall 
some facts on measures of noncompactness [1, 7, 11, 14, 18]. Let E  be a 
Banach space and 0 ^  the bounded subsets of E. The Kuratowski measure 
of noncompactness is the map a : flß —► [0 ,oo) defined by

a(A ) = inf {£ : X  ^  U "=1A, and diam(A,) ^  £}, here X  ^  üß.

R e m a r k . This paper only uses Kuratowski’s measure of noncompact­
ness; the results however are valid for other measures of noncompactness.

For convenience we recall some properties [1, 14, 18] of a:
Let 5 ,T  £ fIß- Then
(i) a(S)  = 0 iff S  is compact;

(ii) «(5) = <*(S);
(iii) if S Я Т  then a(S)  ^  a(T);
( iv )  q ( S u T ) = m a x  { a(.s), a (T )} ;
(v) a(rS) = |r |a (5 ), r E R;

(vi) a(S  + T ) Z a ( S )  + a(T).
Let Ei and jE2 be two Banach spaces and let T  : Y  Í  E\ —► £ 2 map 

bounded sets onto bounded sets. We call T  a Darbo map if T  is continuous 
and a (T (A )) ^  koa(X), for some 0 ^  ко < 1, for all bounded sets X  Q Y . 
We now state a nonlinear alternative which combines the classical Leray- 
Schauder fixed point theory [4, 6 ] with the fixed point theory of Krasnoselski 
and Sadovskii [18, 20].

T h e o r e m  1 .1  (n o n lin ea r  a ltern a tiv e  [4, 7, 17 ]). LetC be a convex subset 
of aJfanach space E. Suppose U is a nonempty bounded open set in C and 
N  : U —» C is a Darbo map with p E U. Then either

(i) N  has a fixed point in U; or
(ii) there is point и E dU and A E (0,1) such that и = ANu  + (1 -  A)p.
To conclude the introduction we gather together two standard results 

which will be used in this paper.
T h e o r e m  1 .2  (Arzela-Ascoli theorem [11]). Suppose M  is a subset of 

C ([c ,d ] ,5 ) . Then M  is relatively compact in C([c,d],B) iff M  is bounded, 
equicontinuous and the set { f( t)  : f  E M} is relatively compact for each t E 
E [c,d].

T heorem  1.3 (Wirtinger’s inequality [10]). (i) Let H be a real Hilbert 
space and suppose и : [c, d] —> H has a continuous derivative together with
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u (c )  = u(d) =  0 . Then

7T2 J  \u(t) \ 2 dt ^  (d — c)2 J  \u'(t) \ 2 dt.

(ii)  Let H be a real Hilbert space and suppose и : [c, d] —► H has a contin­
uous derivative together with u(c) = 0 or u(d) = 0 . Then

к 2 £  |t t ( i) |‘ dt ^  4(d — c)‘
fd

J  |«'(0 Г dt.

2. Initial value problems

Consider the initial value problem

{ y ’ =  q ( t ) f ( t , y ) ,  í g ( o , t ]  
l  y(0) = a e в

/ : [ 0 , Т ] х В - * В  co n tin u o u s

(2 .3 )  q E (7 (0 , T] w ith  q > 0 on  (0 , T] and Í  q(s )ds<oo.
Jo

R e m a r k . B y  a  so lu tio n  to  (2 .1 )  w e m ean  a  fu n ctio n  у £ С ( [ 0 ,Т ] ,Л )  П
Л С 1 ((0, Г], Б) which satisfies the differential equation on (0,T] and the 
stated initial condition.

A sso c ia te d  w ith  (2 .1 )  w e h ave  th e  fa m ily  o f  p rob lem s

/  У' = t € ( 0 , r ]
( ' )a 1 1/(0 ) — a £ В

for 0  < A < 1 .
R e m a r k . For n o ta tio n a l p u rp oses let

С Й( [ 0 ,Г ] ,Б )  =  { t i G C ( [ 0 , T ] , B )  : u (0 )  =  « }  .

We begin this section by establishing an existence principle for problem
(2.1).

( 2 . 1)

with

( 2.2)

and
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236 D, O ’REG A N

T h e o r e m  2 . 1 .  Suppose (2 .2 )  and (2 .3)  are satisfied. In addition as­
sume f  has the splitting f( t ,  и) = g{t, и) + h(t, и) with g, h : [0, T] X В  —► В 
continuous together with

( 2 .5 )

' for each bounded (with respect to the supremum norm) 
íí Q C ß([0,T ],ß) and for each t G [0,T] the set

{ [  « ( ')» (* -« (• ) )*  и G is relatively compact,

( 2 .6 )

and

( 2 .7 )

' /or each r > 0 there exists ф G C(0,T] with ф > 0 on (0, T] and
f T
/ g(.s)(/>(s) ds < oo such that \z\ ^  r implies | ar)| ^  ф{ф)

Jo
f o r t e  (0 ,T)

I h(t, u) — h(t, v)| ^  K\u — u|, t G [0, T\ and u,v  G B.

Now suppose there is a constant M , independent of X, with |r/ | 0 ^  M  for each 
solution у to (2.4)a. Then (2.1) has at least one solution у G C ([0 ,T ],5 ) П
n сЦ(о,Пв).

R e m a r k , (i) If В is finite dimensional then (2.5) and (2.6) are automat­
ically satisfied.

(ii) Note (2.5) and (2.6) are satisfied if qg : [0,T] X В —► В  is completely 
continuous. To see this let fl ^  Cß([0, T], B) be bounded. Then there ex­
ists a compact set Aq ^  В such that q(s)g(s,y(s)) Q Aq for all s G [0,T] and 
у E Ü .  Fix t  e  (0,T] and notice

1

t
q(s)g(s,y(s)) ds e  со(Ло)

which is compact; here co( Ло) is the convex hull of Л0. Thus (2.5) is true. Fix 
r > 0. Then there exists a compact set A \Q  В such that q(s)g(s, y(s)) C A\ 
for all s G [0,T] and у with |?/| ^  r. Now since A\ is bounded we immediately 
have (2 .6 ).

P r o o f . Throughout let C ([0 ,T ],P) be the Banach space of functions 
и G C ([0 ,T ],5 ) with norm

|uL- — max 
1 lA [o,n

e~KQWU(t) I

where Q(t) = q(s) ds.
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Remark. |u |0 and |и|л- are equivalent since e к®̂ тЦи\0 ^ |u|A- ^ |u|0. 

Solving (2.4)л is equivalent to finding a у  £  С в ( [ 0 , Т ] , В )  which satisfies

(2 .8 ) y(t) = a + \ [  q(s)f(s,y(s)) ds =
Jo

= ( 1 - А ) а + л | а  + J  q (s ) f(s ,y (s ))d s  .

Define a mapping N  : C ß([0,T],В) —► Сй([0 ,Т ],Б) by

Ny(t) = a + Í  q(s)f(s,y(s)) ds.
J о

Thus (2.4)л (i.e (2.8)) is equivalent to the fixed point problem у = (1 -  А)а + 
+ A Ny. We claim that N  : C ß([0,T ],5) —► C ß([0 ,T ],ß) is a Darbo map. 
Suppose the claim is true, then set

и  = { u e C B{[0,T],B) : \u\K <M o + l}, C = CB{[0,T],B) ,

£ = ( С ( [ 0 ,Г ] ,В ) ,М к )

with Mo = m ax{|a|,M ) and apply Theorem 1.1 to deduce that N  has 
a fixed point i.e. (2.1) has a solution y e C ( [0 ,T ] ,ß ) .  In addition we 
have у £ C 1 ((0,T],R ) from (2.8) with A = 1 . Consequently the theorem 
is proven once we show N  : Cß([0,T],B) -> C ß([0,T ],5) is a Darbo map. 
Let Nu(t) = (a + N\u(t)) +  N 2u(t) — a = N3 u(t) + N 2u(t) — a where

Niu(t) = / q(s)g{s,u(s)) ds and N 2u(t) = a + / q(s)h(s,u(s)) ds. 
Jo Jo

Certainly N : Cb ([0,T],B) —► Cß([0,T], 5) is continuous. Now let DC 
Q Cß([0,T], В) be bounded (with respect to | • |A-). Then

JV(Í2) g  N3{Ü) + iV2(D) -  a

and this together with the properties of the measure of noncompactness 
(stated in the introduction) yields

a(iV(fi)) й a (N 3(Sl) + N2{Q) -  a) i a { N 3(Sl)) + a ( N 2(Ü)) + a ( -a ) .
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Thus

(2.9) Q{N(Ü)) ^ a ( N 3{Ü ))+ a { N 2(ü)).

We next show that N3 : Св([0,Т],В) —у Cb ([0,T],В) is completely continu­
ous. This is immediate once we show that N\ : Cb ([0,T],B) —► Co([0,T],.B) 
is completely continuous; here Со([0,Т],Б) = { u é  С ([0 ,Т ],Б) ; u(0) =  0}. 
To see this we apply the Arzela-Ascoli theorem. The boundedness of AT1(Q) 
is easy and the equicontinuity on [0 ,T] follows from (2 .6 ) and the following 
inequality (here и 6  ÍÍ and O ^ s ^ i ^ T ) :

The above together with (2.5) and the Arzela-Ascoli theorem (Theorem 1.2) 
implies that N\ is completely continuous. Consequently N3 : Cb ([0,T],B) —> 
—► Cß([0,T],J9) is completely continuous and so а (А з(0 )) = 0. Thus (2.9) 
reduces to

( 2.10) a {N(il)) £а(ЛГ 2(П)).

Also for u, v € Í1 and t 6  [0, T] we have

with ко < 1. This together with (2.10) implies

а(ЛГ(П)) ^  *0 a(ft).

Thus N  is a Darbo map and we are finished. □
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T heorem 2.2. Suppose (2.2) and (2.3) are satisfied. In addition as­
sume f  has the splitting f ( t , u ) = g(t,u) -f h(t,u) with j ,/í :[0 ,T ]x B -> B  
continuous together with (2.5) and (2.7) holding. Also suppose

( 2. 11)

there is a continuous nondecreasing function ф : [0 ,oo) —> (0 ,oo) 
and a function ф E C(0, T], ф > 0 on (0,T] and 

T
/ </>(5 )9 (5 ) ds < 0 0 , with \g(t, w)| ^  ф^)ф(\и\)

Jo
for t E (0,T] and и £ В

and

( 2. 12)

' Г00
/  r(s)ds<  /  —

Jo J la I K
dx
If ч . 7 - where L0 = sup |/i(i,0)| x + rl>{x) + L0 [о д 1 71

and r(s) = max { д(з)ф(з),д(з)}.

Then (2.1) has at least one solution у E С ([0 ,Т ],Б) П С 1 ((0 ,T ],B ) . 

Remark. Notice that (2.11) implies (2.6).

PROOF. Let у be a solution to (2.4)л. Now y(t) -  y(0) = J0‘ y'(s) ds which 
yields

(2.13) I »(*)| = la l + /  |j/'(s)| ds = 0(t).
Jo

The fact that 0'(i) — | j/'(i)| together with the differential equation yields

(2.14) 0’(t) ^  q(W(t)rl>(\y(t)\) + q(t) \h(t,y(t)) | .

In addition (2.7) yields

I h(í, u)| ^  K\u\ + I h(t, 0 )| ^  A'|u| + Lo where L0 = sup | h (i,0 ) | .
[0 ,T]

This together with (2.14) will give

<?'(*) ^  ?(*Ж 0 ^ ( 1у(0 1 ) + к я(*)\у(*)\ + q{J) L 0 ^

^  q (tM W (0 (t))  + Kq(t)9(t) + q(t)L0 ^  r(t) Щ вЦ))  + K9(t) + L0\
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since ф is nondecreasing. Consequently

dx _  Г1 e \s )  ds <
J\a\ К х  + ф(х) + Ь0 J 0 Ke(s) + ф(в(з)) + L0 =

^  / r(s)ds  ^  / r(s)ds.
Jo Jo

Let J(z) = /|* ( Kx+ ^ x]+Lo and so 6 {t) <: J~ l {jo r{s)ds) =  M. This to­
gether with (2.13) yields | j/(t)| ^  M  for t £ [0,T]. Existence of a solution to
(2.1) now follows from Theorem 2.1. □

R e m a r k , (i) If В  =  Я , a real Hilbert space, then the assumption that ф 
is nondecreasing can be deleted in Theorem 2.2. To see this suppose | y(t) | > 
> |a| for some t £ (0,T]. Then there exists (tj, t) Q (0, T) with |j/(/)| > |a| 
on (//,<) and 12/(77) I = |a|. In addition | y(s)J7 ^  \ y'{s)\ for s £ (r],t) and this 
together with the differential equation yields

| » ( * ) f  ^  12/'(^ )| ^  9 ( л Ж в ) ^ ( |у ( л ) | )  + Я 9 0 О |у ( « ) |  +q(s)L0. 

Consequently

d x  _  Г1 _______ |2/(з)|'с1з_______ <
j\a\ K x ф(х)-\-L0 Jo K\y(s)\ + ф(\у{з)\) + L0 ~

< d s

and the result follows as before.
(ii) In fact if В = Я , a real Hilbert space with inner product (•,•), then

(2 .1 1 ) and (2 .1 2 ) can be replaced by (2 .6 ) and

( 2 . 11)*

and

( 2 . 12)*

' there is a continuous function ф : [0 ,oo) —► (0 , 0 0 ) and 
a function ф £ С(0,Т], ф > 0  on (0 ,T] and 

гT
/ ф(s)q(s)ds < оо, with ( u,g(t ,u)) й ф(1)ф( |u|)

Jo
{от t £ (0, Г] and и £ В

Г°° х dx
Jo r ^ d s <  J \a \ K x 2 + ф(х) + L0x
where r  is as defined in (2 .1 2 )
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in Theorem 2.2, and existence of a solution to (2.1) is again guaranteed. To 
see this let (rj,t)  be as in Remark (i). Then the differential equation and
(2 .1 1 )* yield

( у , у ' )  й  q(t)<i>(t)il>(\y\)  +  « ( O l y | | b ( i , y ) |  ^  r ( 0  ( V ( l 2 / I )  +  K \y\2 +  Lo\y\) •

Consequently

J\a\ R x2 + ip(x) + L0x J„

and the result follows.

3. Boundary value problems

Consider the Dirichlet boundary value problem

f 3 1 x  f y "  +  ß y ' - e y  =  0 < t < l

1  '  ’ \ y ( 0 )  =  a £ B , y ( l )  =  b £ B - , ß , e £ K

with

(3.2) /  : [0,1] X B2 —► В continuous and 4i -f ß 2 ф 4 (n7r)2, n — - 1 , - 2 , . . .

and

(3.3) q E C (0 ,1) with q > 0 on q(s) ds < oo.

Throughout this section let w , r  : [0,1] —► [0, oo) be continuous functions with 
r  > 0 on [0,1] and w > 0 on (0,1). In addition assume there exists a constant 
Nq > 0 with |u|* ^  Af0 1 1 1 where

|u|^ = max « ( * )  И х ) 1/ 4 . SUP , X > .щ х )  [од] т(х)

Also we let (Сх([0 ,1],H ), |.|A) denote the Banach space of functions и E 
E C^QO, 1],5) with norm |u|*.

Remarks, (i) Note ^  |u|^ ^  ./Volulj where m = max { max[01] w(x), 
тах[0д] r (x )} .

(ii) We could of course take w = т = 1 throughout this section. However

Acta M athem atica Hungarica 69, 1995



242 D. O ’REG A N

in some cases it may be beneficial to take w ( x ) =  sin(7ra:), t ( x )  =  2 w ( x )  +  

+ (1 -  2x ) w ' ( x ) .  In this case iV0 = To see this notice for t E [0, we

have |« (í) | = I £  u'{s)ds\ ^  i|tt ' | 0 and consequently 1̂ -  ^  S \W \Q
for t £ [0, |] .  On the other hand for t G [ |,  1] we have | u(t)| 5Í (1 — t^u'lo

50 Ц1)1 = = jK lo  for * e &  !]• Thus SUP[0,1] Щ  = §M o and i t is
easy to check that sup[01] £  | |u ' | 0 since min[o,i] r (0  = 2 . Thus N0 =
_ 1

fiii) The ideas in this section can be extended to the situation when we 
have Sturm-Liouville boundary data i.e. -а \у (0 )  + ß\y'(0) = c, ai?/(l) + 
+ biy’(l)  = d. Here af + ß 2 > 0, a? + b\ > 0, aq, ß \,a \,  &i 0 and a\ß\ +
+ bltti + Oi«! > 0 .

By a solution to (3.1) we mean a function у G С 1 ([0,1], B) DC2 ((0,1), B) 
which satisfies the differential equation on (0 , 1 ) and the above stated bound­
ary condition. Associated with (3.1) we have the family of problems

(3.4)a
Í y" + ßy' - e y  = \q(t) f( t ,  у, 2/'), 0 < t < 1
1 2/(0) = a G В, г/(1) = b £ В ■ ß ,e  £ K

with 0 < A < 1.

R e m a r k . For notational purposes let Cg([0,1], В) = { и £ C1 ([0,1], В ) : 
u(0) =  a, u(l) =  6} and C o([0,1], B) = { « G C ( [ 0 ,1], B) : u(0) = 0}.

T heorem 3.1. Suppose (3.2) and (3.3) are satisfied. In addition assume 
f  has the splitting f( t ,  и, v ) = g(t, u, v) + h(t, u, v) with g , h : [0,1] X В 2 —> В 
continuous together with

(3.5)

' fo r  each bounded (with respect to the supremum norm)
Q Q Cß( [0,1], В) and for each t G [0,1] the set

I l y  q(s)g(s, u(s), u ' ( s ) )  ds : и £ is relatively compact,

(3.6)

for each r > 0  there exists ф £ C (0 ,1 ) with ф > 0  on (0 ,1) and 

I q(s)ф(s)ds < oo such that \z\ Ú r, |n| ^  r imply
Jo
\g(t,z,v)\ й  ф(ф) for t G (0,1)
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and

' -  h(t,u2 ,v2)| ^  Kipi(t)\ui -  n2| +
+  K 2p2(t)\v 1 -  V2\, t G [0,1] with Ui,u2, v i , v 2 E B. 
Here p i , p 2 G C (0 ,1) with p\,p2 > 0 on (0 ,1) and

/ pi(s)ds < oo, i = 1 , 2 . Л/so í/геге exist
Jo

(3 .7 )
constants ко <  1 an d  <  1 with

í | G(í,.s)| { A'ipi(s)u>(s) + A'2p2 (.s)r(s)} ds 5Í fc0n;(i) cmcZ 
Jo

[  I G t(Z, s)I { Ä ' ip i ( s ) w ( s )  +  A'2p 2( s ) r ( s ) }  d s <[ fc ir (t ) .
Jo
Here G (i,s) is the Green’s function associated with the problem

. y" +  ßy' -  ey =  0 ,  3 / ( 0 )  =  2/ ( 1 )  =  0 .

Now suppose there is a constant M , independent of X, with |j/^ ^  M  for each 
solution у to (3 .4 )л . Then (3 .1 )  has at least one solution у G C 1([0 ,1 ],J B ) П 

n C 2 ( ( 0 , l ) , 5 ) .

R e m a r k s , ( i)  O f cou rse w e cou ld  tak e  w — 1 and r  =  1 an d  so  (3 .7 )  
g iv es  a  co n d itio n  for K\ an d  K 2 to  sa tisfy . H ow ever con sid er th e  ca se  /3 =  0 , 
£ =  0 an d  p i =  P2 — 1. In th is  ca se  a  less restr ic tiv e  co n d itio n  o n  A'i an d  K 2 
can  b e  o b ta in ed  if  w e ta k e  w(x ) =  s in (7ra:) an d  r(x) =  2 w(x) +  (1 -  2 x)w'(x). 
H ere G(t,s) = ( 1  -  t)s i f  0 ^  s  ^  t w h ereas G(t,s) = t ( l  — s )  i f  t ^  s й  1. It 
is e a sy  to  check u sin g  in teg ra tio n  b y  p a rts  w ith  th e  fact th a t  w" =  -  ir2w an d  
r"  +  Aw" = — тг2т th a t  | G(t, s ) |  w(s) ds — an d  f* | Gt(t, s ) |  w(s) ds — 
=  to g e th e r  w ith

/  [ G ( * , s ) |r ( s ) d s  ^  and /  \Gt{t,s)\r(s) ds й
Jo К Jo К

T h u s  (3 .7 )  red u ces to  a ssu m in g  th a t  K\ + 4 A '2 <  7r2.
(ii)  If qg : [ 0 ,1] x  В 2 —► В is co m p le te ly  co n tin u o u s th e n  (3 .5 )  and (3 .6 )  

are sa tisfied .

P r o o f . S o lv in g  ( 3 .4 ) л is  eq u iva len t to  fin d in g  а  у E C g (  [0 ,1 ] , B) w hich  
sa tisfies

(3 .8 )  y'{t)-y '(ff)  + ß y ( t ) - ß a - £  f  y(s) ds = X I  g ( s ) / ( s , y ( s ) , y ' ( s ) )  ds.
Jo Jo
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Define mappings F ,T  :Cg([0, l] ,ß )  —► Co( [0,1], ß ) by

Ty(t) = y'(t) -  y'(0) + ßy{t) -  ßa -  e í  y(s) ds
Jo

and

F y(t)=  f  q(s)f{s ,y(s),y '(s))ds.
Jo

We first claim that T _1  is continuous. Let к £ Co([0, l ] , ß ) . The difference 
у of two solutions to Tz = к satisfies y" + ßy' -  ey = 0 , y(0 ) = y( 1 ) = 0  and 
consequently у =  0 since 4e + ß 2 ф 4 (n7r)2, n = — 1, —2 , . . . .  Hence T  is one 
to one. To see that T  is onto there are five cases to consider.

Case (i): 4e + ß 2 < 0. Then the equation Ty(t) = k(t) has the solution

be 2 -  a cos (£) -et
(3 .9 ) y(t) = ------  —  - -e 2 sin

sm (f)
/it \
—  I + ae 2 cos

fit

e± e 2 ',co s( f )  +

k(s) ds—+ ß.m  ( f )

■ ( ? ) / '

+/3 sin fc(s)ds

=M e 2 sm 6 2 -  /rcos(/4 1 - +

where ц = -у/~(4e -f ß2) and 7  = — ^  /isin (^).

R e m a r k . One can check directly that the у given in (3.9) satisfies 
(Ty)(t) = k(t). One way to construct the solution is to notice that у = jq + 1/2

where jq = —— a C"K2) e s i n  ( ^ )  + a e ^ ” cos ( y ) satisfies y" + ßy' — ey —
s m v 2  j

= 0 , y(0 ) =  a, y(l) = h, and y2 = 2/3 where уз satisfies y" + ßy' — ey = к, 
y'(0) =  y '(l) = 0 (of course the construction of y3 is easy using Green’s func­
tions). Consequently y(0) = 0 + a — a, y( 1) = 0 + 6 = 6 and

y'(t) -  y'(0 ) + ßy(t) -  ß a -  e ds = [уз( 0  + ßy'3 (t) -  ey3(t)] -
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-  [2/3(0) + /%з(°)- £3/з(0)] + y[(t) -  y[(Q) + ß{yi{t) -  a) -  s i  yi(s)ds =
Jo

k(t) -  /г(0 ) + 0  = k(t).

Thus T  is invertible and the continuity of T - 1  is immediate. Note as well that 
(T~1k)(s) is equal to the right hand side of (3.9) for any к G Co( [0,1], В ) .

Case (ii): 4e + ß 2 > 0 and e ф 0. Then the equation Ty(t) — k(t) has 
the solution

where S = \j4z  + ß 2 and 77 =  ̂ isinh ( |)  = 2e6sinh ( |) .

Remark. Again у = yi + У2 where y\ satisfies y" +  ßy' — ey — 0, j/(0) =  
= a, 2/(1 ) = b, and y2 = y'3 where y3 satisfies y" + ß y ' - e y  -  к, y'(0 ) = y '(l) = 
= 0 (note the Green’s function exists since e /  0 and 4e -f ß 2 ф 4(птг)2, n = 
= - 1 , - 2 , . . .) .

Thus T - 1  is continuous and (T~ 1k)(s) is equal to the right hand side of
(3.10) for any к G Co([0,1]» B) ■

Case (iii): e = 0 and ß ф 0. In this case Ty(t) = y'(t) — y'(0) + ßy{t) — 
ßa. Then the equation Ty(t) = k(t) has the solution

(3.11) y(t) =
b — ae & (a — b)e /3t 
l - e - ß  + l - e - ß  +

+ -
-ßt _

1 )
1 — e~ß f  eßsk(s)ds + e ß* Í  eßsk(s)ds.

Jo Jo
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R e m a r k . Note y\ =  ^ satisfies у" +  ßy' = 0 ,  j / ( 0 )  =  а ,

2/(1 ) = b.
Thus T~l is continuous and (T~l k)(s) is equal to the right hand side of

(3.11).
Case (iv): 4e + /32 — 0 with e ф 0. In this case Ty[t) = k{t) has the 

solution

(3.12)
—01 6t —0t

y(t) = ae 2 + (6c 2 — a)te 2 +

+- ( 1 - 0

2e2 /0
=£1

e^ ~ ( 2  + ßs)k(s) d s ----— re^~ ( 2  — /3(1 — s)) k(s) ds.

—/3t /  ÉL \  . r-
R e m a r k . Неге у = y\ + y2 where y\ — ae 2 + (6 e 2 -  а)£е 2 satisfies 

2/" + ßy' -  ey = 0 , 3/(0 ) = a, y(l) = 6 , and y2 = 3/3 where 3/3 satisfies 3/" + 
+ ßy1 - e y  = k, y’{0 ) = y \  1 ) = 0 .

Thus T _1  is continuous and (T_1fc)(s) is equal to the right hand side of
(3.12) .

Case (v): e = 0 with /3 = 0. In this case Ty(t) = y'(t) — г/'(0). Then the 
equation Ty(t) — k(t) has the solution

(3.13) y(t) = a + (b -  a)t -  t [  k(s)ds+  [  k(s)ds.
Jo Jo

R e m a r k . Note yi =  a +  ( 6  -  a)t satisfies y" — 0 ,  y ( 0 )  =  a, y( 1 )  =  6.

Thus T _ 1  is continuous and (T ~ lk)(s) is equal to the right hand side of
(3.13) .

Thus (3.4)л is equivalent (see (3.9), (3.10), (3.11), (3.12), (3.13)) to the 
fixed point problem

( 3 . 1 4 )  у = T ~ \X F y ) = ( 1  -  X)yi + XT~xFy = (1 -  X)p +  XNy

where y\ is as described in cases (i) to (v) above and N  = T ~ l F. We now 
claim that N  : C g([0 ,1 ],J3) —> Cg([0,1],1?) is a Darbo map. Suppose the 
claim is true, then set

U  =  { u £ C 1B { [ 0 , l ] , B )  : M* < M 0 +  1},

C  = Cg([0,1],5), Д = ( С 1([0,1],Д),Н*)
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with M o  — max |supj01] |?/i(<)|,MAro |,  where N0 is as described at the be­
ginning of this section. Now apply Theorem 1.1 to deduce that N  has a 
fixed point i.e. (3.1) has a solution у G С 1 ([0,1], B ) . In addition we have 
у G C 2 ((0 ,1 ),#) from (3.8) with A = 1. So it remains to show that N  is a 
Darbomap. Firstly N : Cp( [0,1], B) —> Cg([0,1],-B) is continuous. Let if Q 
Q Сд([0,1],Б) be bounded (with respect to I • ]*). Alsóiét Fu(t) = Fiu(t) + 
+  F2u(t) where Fi ,F 2 : Cg([0,1],5) -+ Co([0,1], B) are defined by

F\u(t) = / q(s)g(s,u(s),u'(s)) ds and F2u(t) = / q(s)h(s,u(s),u'(s)) ds. 
Jo  Jo

Then

F ( ü ) g F i ( Ü )  +  F 2( Q )

and consequently

(3.15) N(Q) = T~1 (F (íl)) g T ~ 1 (F 1(Q) + F2(Q)) C

£ Т - 1 (Г,((1)) + T - I (F 2 (Si)) + ( - y ,)

since if x G T _1  (F i(fl) + F2(Q)) there exist zlyz2 E Q with x(t) — 
= T ~ 1 (Fx(zi(t)) + F2 {z2(t))) and consequently x(t) = T~l (Fi (zi(<))) + 
+ T ~ l { F 2 ( z 2 { t ) ) ) -  m { t )  from (3.9), (3.10), (3.11), (3.12) and (3.13). Now
(3.15) together with the properties of the measure of noncompactness yields

a { N ( Q ) )  ^ a ( T - 1F1(Q) + r - 1F2(il) + (-j/1)) ^

Z a i T - ' F r M )  + a { T - 1F 2 ( i l ) )  +  a ( - y i ).

Thus

(3.16) a(N (fl))  ^ a lT - 'F i i f l ) )  + a ( T - 1F2(ii)).

We next show that F\ : C g([0,1], fí) —► Co([0, l] ,ß )  is completely contin­
uous. To see this we apply the Arzela-Ascoli theorem. Clearly F\(il) is 
bounded and the equicontinuity on [0,1] follows from (3.6) and the following 
inequality (here и G О and O ^ s ^ i ^ l ) ,

I Fiu(t) -  Fiu(s)| ^  [  q(z)\g(z,u(z),u '(z)) \ dz.
JS
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The above together with (3.5) and the Arzela-Ascoli theorem (Theorem 1.2) 
implies that F\ is completely continuous. In addition since T~x is contin­
uous we have T~XF\ : Cg([0,l], # ) —► C g([0 ,l],5 ) completely continuous.
Consequently a {T ~ xF\(Si)) =  0 and so (3.16) reduces to

(3.17) <*{N(Sl)) й a (T ~ 1F2(Sl)).

Now for u, v G Í2 and t 6  [0,1] we have

\ T ~ 1 F2 u ( t ) - T - 1 F 2 v ( t ) \  =

_  |y - i  Ц  q(s )h(s,u,u') ds'j — T~x ^ j  q(s)h(s,v,v') ds^j

= \ G(t,s)q(s)h(s,u,u')ds  -  / G(t,s)q(s)h(s,v,v') ds
\J 0 Jo

= I f  G(t,s)q(s) [h(s,u(s),u \s)) -  h(s,v(s),v'(s))] ds
\J 0

using (3.9), (3.10), (3.11), (3.12), (3.13) and changing the order of integration 
once; here G(t, s) is the Green’s function associated with y" + ßy' -  ey = 0, 
?/(0 ) = j/(l) = 0. Also for u,v  £ Í1 and t £ [0,1] we have

\ ( T - 1F2) 'u ( t ) - ( T ~ l F2)'v(t)\ =

=  I [  Gt(t,s)q{s) [ft(e,u(e),«'(e)) -  /i(s,i>(s),u'(s))] ds .
\J 0

The above together with (3.7) implies

I T~l F2u(t) T~l F2v(t) 
w(t) w(t)

<

“  w(j) Jo |G (í , 5 ) | | a i Pi (5 ) |u(s) -  u(ő)| + K 2p2(s)\u'(s) -  t/(s)| j ds ^

s W )  ÍlG(t’a>l { ^ l(8)l“(t w Wl"’W+

) j ds S, r, , J U'(5) -  V'(S)\ , 4+K 2p2(s)------ — ------ r(s)
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-  * { w ( i ) J o  lG( ^ s)|{  A’i^ ( 5)w(s)+

+Ä2i>2(s)r(s)} й  k o \ u  -  t?|*

where k0 is as described in (3.7). Thus

T~l F2u(t) T~xF2v{t)
(3.18)

Also

Thus

(3.19)

sup
[0.1] w(t) w(t)

й ko\u -  t>|*.

(T - 'F 2 )'u(t) (T~l F2)’v(t)

<

T{t) T{t)

W)L lG‘0.J) l { ^ W ^ ^ - ”W+
+K 2p2(s)

u'(s) -  n'(s)| 
t ( s )

r(s) j  ds ^

- I“ “ ( щ  J0 I ^  ̂  KiPi(s)w(s)+

5)г (5)} ds ) ^  fci|w -  u|*.

sup
[0 ,1]

(T~'F2)'u(t) (T~x F2)' v(t)
r(t) r(i) ^  h l«  -  »I*

Combining (3.18) and (3.19) yields

\T~l F2u -  T ~ l F2v\+ £  тах{£0 ,Ы 1« ~ 4* = k3\u -  v|* 

with k3 < 1 and this together with (3.17) yields

a(N(Q)) <: к3а(П).

Thus N  is a Darbo map and we are finished. □
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Remark. If q is continuous on [0,1], then in fact у G C 2 ([0, l] ,ß )  in 
Theorem 3.1. This follows immediately from (3.8) with Л = 1.

The above existence principle is now used to obtain two existence theo­
rems for differential equations in Banach spaces. The first considers the case 
В — H, a real Hilbert space with inner product (•,•).

Remark. For the remainder of this section let ||u ||2 = f*  |u |2 dt for ap­
propriate functions и : [0 , 1] —> Я.

We first must extend Theorem 1.3 for the problems considered in this 
section.

T heorem 3.2. Let H be a real Hilbert space and suppose и : [0,1] —> H 
has a continuous derivative together with u(0) = a G H and u (l) =  b G Я . 
Then

i2 < _L||u'n2 I ^ ( H  + 1̂ 1)
7Г2

+
7Г + \ ( + H 2).

P roof. Notice first that

|u | 2 = ( (u — a) -(- a, (u -  a) + a) = \u -  a | 2 + |a |2 -f 2 ( (u -  a) + a, a) ^

^  |u — a |2 + |a | 2 4- 2 |a||u -  a|.

Thus Holder’s inequality together with Theorem 1.3(ii), since ?i(0) — a = 0, 
implies

I  |u |2 d i^  f~  |u — a |2 dt + 2 |a| /  |u -  a| dt + - | a |2 ^
J o  J o  J o  2

^  J  \u -  a \2 dt + y/2 \a\ |u -  a|

- ° r  n ,
— I

2i t J  + l |o |2 S

Thus

(3.20)

1 ,dt j + — |ct|2.

I  |u |2 dt Si —  f  |u‘ 
Jo 71-2 Jo

1 i«7 | 2  j .  , V 2 \ a \ . .  . . . 1dt + ^ .У
7Г l

On the other hand since |u |2 Sí |u -  b\2 + |6 |2 + 2 |6 ||u -  6 | we have
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Thus

(3.21) ^ V l l  + |l*P-

Adding (3.20) and (3.21) gives the result. □
T heorem 3.3. Let В  = H and suppose (3.2) and (3.3) are satisfied. In 

addition assume f  has the splitting f ( t , u, v ) = g(t, u, v) -f h(i, u, n) with g,h : 
[0,1] X H 2 —► H continuous together with (3.5) and (3.7) being satisfied. Also 
assume g(t, и , n) = g\(t, u, v) + g2(t, u, v) with

(3.22)

(3.23)

(3.24)

(3.25)

Q1 PI1 P2  are continuous on [0 ,1 ],

Í |fli(M,p)| ^ Ao{\u \6 + \p\° + 1) for 0 ^ 6,a < 1 

( and some constant Ao,

( u,g2 ( t ,u,p)) ^ c|u|2 -f d|u||p| for constants c and d,

1
there is a function ф : [0 , oo) —> (0 , 0 0 ) such that — is

« Ф
integrable and \ f ( t ,u,p)\  ^ V’(IpI) f or ( L u) *п bounded sets

and

(3.26)
и du

ф(и) + и -f 1 = 0 0  for any constant go > 0 .

Then (3.1) has at least one solution у £ С2 ([0 ,1],Я )) if

(3.27) 60 И + ^i|c|iVo + 62 \d\xN0 + К г (  sup pi{t)] + К 2ж( supp2(0 >)
4 [0,1] '  4 [0,1] '

<  7Г

where N0 = su p ^ xj q(t) and S0 = 0  if e ^  0 , 60 = 1 if £ < 0 , <5i = 0  if c ^  0 , 
<5i = 1 if c < 0  and 62 = 0  if d ^  0 , 62 = 1 if d < 0 .

Remark. If in addition we assume

( u ,/i(i,u ,u )) ^  c0 |n | 2 + doMbl + e0 |w| for c0 ,d 0 ,e0 e R

then minor adjustments in the analysis below will show that (3 .1 ) will again 
have a C 2 ([0 ,1 ],# )) solution if (3.27) is replaced by the less restrictive 
condition

£oH + |c|TVq + + ^з|со|Яо + ^Idol71"TVq < 7Г2
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where £3 = 0 if Cq ^  0, <53 — 1 if cq < 0 and 6 4  =  0 if do ^  0, 6 4  = 1 if d0  < 0. 
R emark. If (3.22), (3.23) and

I g2(t , u, p)| <| C(t , u)|p |2 + D(t, и)

where C, D are bounded on bounded sets are satisfied, then in fact (3.25) 
and (3.26) hold with ip(z) — L 0  + L\\z \ 2  for some constants, L0 ,L \  > 0.

P r o o f . Let у be a solution to (3.4)л. Also let V(y(t ))  = y(t) -  a (l -  
- t )  - b t  and note that Р(у(0)) =  V( y(  1)) = 0. Integration by parts yields

/  ( V (y(t) ) , y"{t)) d t ~  -  I  ( y'(t) + a — b, y \ t )) dt =
J o  J o

= - | |2/'H2+ f  ( b - a , y ' ( t ) ) d t  
J o

and

Jo (V(y(t)),y'(t)) d t =  Ц - -  Ц - +  J  ( b - a , y ( t ) )  dt.

These together with the differential equation in (3.4)л yield

- | | r f  +  Г  ( b - a
J o

+ ß  ( Ц ~  ~ ^ ~ 2 ~  +  J o  ( b ~ a ' d ^ j  ~  £ Wy W2 =

= A /  q{t)( y(t), h(t, y, y') + g(t, y, y')) dt.
J o

Thus

-Ill'll2  ̂ -  £IM|2 + |a -  b| /  Iy'\dt+
J o

+ w ( M J Í L + l , _ . IJC lf l* )  +

+ supq(t) [  \y\\gi{t,y,y')\ d t+  [  \y\q{t)\h(t,y,y')\ d t -  
[0 ,1] J o  J o

- a /  q{t){y(t),92(t,y,y')) dt.
J o
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Also assumption (3.7) implies

q ( t ) \ h ( t , y ( t ) , y ' ( t ) ) \  й  K ! p x( t ) \ y ( t ) \  +  K 2P2{ t ) \ y \ t ) \  + L 0

where Lq = sup[0 г] q(t) | h(t, 0,0)| . The above together with Holder’s inequal­
ity implies that there exist constants Pq,P i , P2 and P3 with

(3 .2 8 )

lly'll2 ^ -  e||y||2 + Po + Ally'll + -РгЦуЦ + Рз /  |y||yi(<,У,y')\ dt+
J  0

+ î||y||2 supp1 + A'2||y||||y'||supp2-A [  q(y,92{t,y,y[)) dt.
[o,x] [0 ,1] J o

Now Theorem 3.2 implies that there are constants P4 and P5 with

(3.29) \\y\\ Í  P4 \\y'\\ + P5.

Also (3.23) implies

(3.30)

J o  |у| |л (*>У>у')| dt á  Ao ^ j f  \y\H 1 dt + J  \y\\y'\° d t p  J  |г/| d?j .

Now Holder’s inequality and Theorem 3.2 imply

(3.31) f 1 \y\6+1 dt ^  ||y||5+1 S -Рб||у,||в+1 + Pt and f  \y\dt ^ P8 \\y'\\ + P9
J o  J o

for some constants P6, P 7 , Pg and P9 . Also note since y{t) = a + f* y’(s) ds 
we have using Holder’s inequality that

(3.32) |#(i)| S |a |+  / V W | * S I « I  +  W -
J o

In addition Holder’s inequality and (3.32) yield

2 - / 3

(3.33) j f  Ы М ' Л Й М Г  ( j í ' l í l * * )  ! S 11/1Г(Р.о|М1 +  i ’ll)
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for some constants Рю and Рц.  Putting (3.31) and (3.32) into (3.29) and 
then putting the result with (3.29) into (3.28) yields

(3.34)

lly'll2  ̂ -  £|Ы|2 + Pn + PislWW + Pi4|bY+1 + Pxs\\yT+1 + Pie\\yT +

+Ä’i||t/||2suppi + A'2 ||t/||||2/,|| sup -  A f  q{y ,92{t,y,y')) dt 
[0 ,1] [o,i] Jo

for some constants P12 , Pi3 , Pu, P\5 and P16. Another application of The­
orem 3.2 yields

(3.35, Л  _  m i s
\  7Г 2  7Г /

S -  £|Ы 12 + г .7 +  p ,e lír t  +  * Ш Г ‘+

+ n « l l » T +1 +  « „ M l '  +  Р лА у 'Ф  ->■ f  «(<) Ы * ) ,» (* ,» .» ')>  лJo

for some constants Рц,  Pig and P19. There are eight cases to consider.
Case (i): 0 ,d ^  0 and e ^  0. Then (y(t) ,g2(t,y,y'))  ^  0 and so

(3.35), since e ^  0, becomes

Л  _  ^ 1  S U P [ O , l ] P l ( 0  _  ^ 2  S U P [ 0 | 1 ]  p2( t) \  2 <
\  7Г2 7Г J ~

й  Ат + Pislli/'H + Pi4||y'||Ä+1 + Pi5||i/T+1 + P i e W v T  + Лвllj/'IP •

Now since 0 ^  a < 1 and A'i sup[0 1 ]Pi(f) + xA' 2 sup[01] p2(t) < я-2, then 
there exists a constant Mo independent of A with

(3.36) Ily'H £ Mo

for each solution у to (3.4)д.
Case (ii): c ^  0, d ^  0 and e < 0. Notice first that since e < 0 Theorem 

3.2 implies

(3.37) ( - £ ) | r f  S Í- Й Л 2 + Note'll +  Pn
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for some constants P2o and P21• Now put (3.37) into (3.35) and use the fact 
that ( y(t), <72(*, У, у')) ^  0 to obtain

)  to l l2 S

S P2 2  + A lly 'll +  F n t o i r 1 + PiS||jT +1 + P is to T  + Pjsto'll'

for some constants P22 and P23 . Consequently (3.36) is again true since |г| + 
+ A'i sup[0il]Pi(<) + 7rA'2 sup[Oil]p2(0  < 7Г2.

Case (iii): c < 0,d ^  0 and e < 0. Then (3.35) and (3.37) yield

(3.38) / 1 + ^ _ A - ,s » p ,o |P l ( 0 , A - 2sup[Oil| M 0 \  4
\  7Г2 7Г2 7Г /

^  P22 +  A lly 'll +  i W I I * 1 +  P i5||i/ 'ir+1 + Р г в Ь Т  + АэЦг/'Ц1-

~ л  /  < l ( t ) { y ( t ) , g 2{ t , y , y ' ) )  d t .
J o

Also since (y(t) ,g2(t,y.,y')) ^  c\y\2 we have from Theorem 3.2 that

- *  /  9(0(»(0»л(*.»1У/)) dt = (~ c)sup9(i) /
•'O [0,1] vO

S H o l l y ' l l 2 + A lly 'll +  Ргь7Г

for some constants P24 and P25 - Putting this into (3.38) yields

1 + JL + ^  SUP[O,l]Pl(0 _  ^ 2  SUP[0|1] P2(0\  , 2 <
7Г2 7Г2 7Г2 ТГ J ~

í  P26 +  P a r l l y ' l l  +  P i 4 | | » / | | i + 1  +  А з Ц з / ' П ^ 1 +  P m l l i / ' i r  +  А э Цз/ 'Н 1

for some constants P26 and P27 - Consequently (3.36) is again true.
Case (iv): c ^  0,d < 0 and £ < 0. In this case (3.38) is again true. Also 

since (y(t) ,g2(t,y,y'))  ^  c%||y'| we have from Theorem 3.2 and Holder’s 
inequality that

- Л  f  q ( t ) { y ( t ) , g 2( t , y , y ' ) )  d t ^ ( - d ) N 0 Г  \y\ \y ' \  d t  í  ( - d ) N Q\\y\\\\y'\\ Í  
J o  J o

^  ( - О Д | | ^ | 2  +  р  |  +  p29
7Г

1 + “n -ТГ*
A' l suP[0 ,l]Pl K 2 sup[0il] P2 

•27Г* 7Г
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for some constants P2s and P29. Putting this into (3.38) yields

e dN0 Kxsup[0 l]Pl(t)
-L *T 0 “Г о7Г*

~ P3 0  + tally'll +  I'l-tWn'i + + Asllyi r +‘ +  A ells 'lf + f t , | | r t l

for some constants P30 and P3 1 . Consequently (3.36) is again true.
Case (v): c < 0, d < 0 and e < 0. Combining cases (iii) and (iv) will 

again yield (3.36).
Case (vi): c < 0, d ^  0 and e ^  0. Then (3.35) yields, since e ^  0, that

(3.39)
\  71-2

K 2 suP[o,i] Рг(0\  ||t/i|J s

S P . 7  + P.sllll'll +  f x 4 l l » ' H s + 1  +  P . 5 l l ! / ' i r + I  +  Р .б М Г  +  Л эП Л 1-

-A  /  q(t){y(t),92(t,y,y’)) dt.
Jo

Now using the ideas of case (iii) will again yield (3.36).
Case (vii): c ^  0,d < 0 and e ^  0. Then (3.39) is satisfied and the ideas 

of case (iv) will yield (3.36).
Case (viii): c < 0,d < 0 and e ^  0. Then (3.39) is satisfied and then 

combine the ideas of case (iii) and (iv) to again yield (3.36).

Thus in all cases there exists a constant Mq independent of A with (3.36) 
holding i.e. IIj/'H ^  M q . In addition (3.32) yields

(3.40) sup I t/(i)| \a\ + M0 = Mi
[0Д]

for any solution у to (3.4)A.
Now fix z € H with norm 1 and set r(f) = (y (f),z ). Notice |r( i) | ^  

^  |y (0 l so I r(0 )| ^  |a| and |r ( l ) | ^  |6 | and also there exists t0 (dependent 
on у and z) in [0 , 1] with |r'(io)| = |r ( l )  — r(0 )| ^  M2 where M2 = |6 | + 
-f |a|. That is \(y'(to),z) | ^  M2 for all z G H of norm 1. If y'(to) ф 0 set 
z — to obtain I y'(ío)I й  M2, which also holds if y'(to) =  0. Thus there
exists to 6  [0 , 1] with

(3.41) \ y % ) \ Z M 2.
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For t G [0,1] we have

SH «I

whenever y'(t) ф 0. This estimate, (3.25), (3.40) and (3.4)л yield

(3.42) ±  | / ( í ) | '  á  +  k lM, +  ^ ( |/( ( ) I )A „  £

s л  (ф( 1»'(()1) + 1 s'(í)I +1)
at any point t G [0,1] where y'(t) ф 0; here Jq = max { \ß\, |e|, iVo} and No — 
= sup[01j q(t). Suppose | ?/'(<)| > М2 for some t G [0,1]. From (3.41) we can 
deduce that there exists an interval (p,v)  containing t with 1/ ( 5 )! > М 2 

on (/x, ix) and |r/'(/x)| and/or |у'(хх)| equals М2 . Without loss of generality 
assume | y'(p)\ — М2 ■ By (3.42) and Holder’s inequality we have

Г |У,(0||У ,(*)Г* ^ т í ‘ i /  ,,i / „ / г , ,
A W m o o + h o i  + i -  4 19w | - Joll!' 11 s JoMo

using (3.36). Making the change of variables и = | j/'(s)| we obtain

L
И 01 и du

^  J0M0.
I М2 V’(w) + и + 1

Let IQ{z) = f a ,  ^ (tt“ + " + 1  and so | y'(t)\ <[ Iq \ J 0M0) =  M3. Consequently

(3.43) sup I з/7(^)I ^  тах{М 2 ,М з)
[04]

for any solution у to (3.4)л. The result now follows from Theorem 3.1 and 
the estimates (3.40) and (3.43). □

The final existence theorem concerns differential equations in a real Ba­
nach space.

T h eo rem  3.4. Suppose (3.2) and (3.3) are satisfied. In addition assume 
f  has the splitting f ( t , и , v) = g(t, u, v) + h(t, u, u) with g, h : [0,1] X B 2 —► В 
continuous together with (3.5) and (3.7) being satisfied. Also assume

(3.44) \g(t,u,p)\ ^  Л0 {|и |5 + |p|ö + 1 } for 0  ^  6 ,6  < 1 

and some constant Aq.
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(i) If  w chosen in (3.7) satisfies w > 0 on [0,1] then (3.1) has a solution 
У G C 2 ([0 ,1], B ) .

(ii) If  w chosen in (3.7) satisfies to(0) = 0 and/or u>(l) = 0 then (3.1) has 
a solution у 6  C 2 ([0 ,1], B) if we assume

there exist constants k2 < 1 and k3 < 1 with

í  I G(t , s)| {Kipi(s)  + K 2p2(s)} ds й k2 and 
Jo

l
jGt( i ,5 )|{Ar1pi(s) + K 2p2(s)}ds ^  k3. Here

G(t,s) is the Green’s function associated with the 
problem y" + ßy' -  ey = 0 , t/(0 ) = y(l) = 0 .

P roof. Let у be a solution to (3.4)A.Then

(3.46) y{t) = A /  G(t, s )q(s)f(s , y(a), y'(s)) ds + y^t )
Jo

(3.45) L

where y\ is the solution to y" + ßy' — ey = 0 , j/(0 ) = o, 2/(1 ) = b as described 
in Theorem 3.1. Also assumption (3.7) implies

(3.47) q(t)\h(t,y(t),y '( t)) \ ^  Kipi{t)\y(t)\ + K 2p2(t)\y'(t)\ + L 0

where Lq = sup[01] q(t)\h(t, 0 ,0 ) |. Putting (3.44) and (3.47) into (3.46) 
yields

(3.48) \y(t)\ й  \  |G (i,e)| [A'ipi(s)|i/(s)| + K 2p2(s)\y'{s)\] ds+
Jo

+Ao J  |G (i,s)|g (s) I 2/(й) | 5 + I j/'(s)|e + l] ds + Lt

where Li = sup[01] j |t / i( /) | + Lo Jo | G(t, s)| q(s) d s j. Also (3.46) implies

y \ t )  = X f  Gt{t ,s )q(s )f (s,y(s ) ,y '(s) )ds+y[( t)
Jo

and this together with (3.44) and (3.47) yields

(3.49) M i) I ^ /  |Gi(t,*)| [JSTiPi(e)|y(0| + A'2P2(0|rts)|] ds+
Jo
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+Ao J  |G t(M )|g (s) \y(s ) \ 6 + |j/'(>s)|e + l] ds + L 2

where L2 = sup[01] { | у^(<)| + L0 J j  | Gt(t, s) |i(a ) ds}.
Case (i): w > 0 on [0,1]. Now (3.48) implies

|y (0 | = Ы* /  |G (t,e)| [ K i p ^ w i s )  + K 2p2(s)r(s)] ds + Аа + 
J о

+A0 [  |£ ( М ) |Ф )  [M*(w(s) ) 5 + |í/l!(r(ő))e + ll ds S  
Jo

й  £0Ц*)М* + Ro\y\i + Ri\y\l + R2

for some constants Rq,R\  and R2; here ко is as in (3.7). Consequently

I y(*)l(3.50) sup ^  As0|y|* + Ä3|y|f + Ä4|yl! + R s
[o,i] ЩЧ

where Д3 = RA = R 5 = with p = min[0,i] w(f) > 0. Also (3.49) 
yields

|y'(<)| = | y | *  f  |G t(M )| [ A ' i P i ( 5 ) iü( s ) + A'2P2 ( s M 5 ) ]  ds + L2+
Jo

+A0 /  |Gt(í,5)|?(5) [|y|f(in(s))á + Iy |f(r(s ))e +
J 0

= *ir(i)|y|* + Яб|у|* + R7\y\l 4- As 

for some constants Re, R 2 and Ag- Consequently

✓ w l

ds <

(3.51) sup
[0,1] r (0

= ^i|y|* + Ag|y|+ + Яю|у|* + An

for some constants A9, A10 and R u . Combining (3.50) and (3.51) yields

|y|* ^  max{fc0 ,fci}|y|* + Ai2 |y|J + Ai3 |y|! + R ia

for some constants Äi2, Am and R 14. Thus there exists a constant Mo inde­
pendent of A with |y|* ^  Mq since max{&0, &i} < 1. Hence

|г/|г 5= Mqu where и — max{maxtn(i), maxr(i)}
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for each solution у to (3.4)A, and the result follows from Theorem 3.1.
Case (ii): tu(O) = 0 and/or w( 1) = 0. Then (3.48) yields

|y(0 | = lyli /  \G ( ^ s) \[K iPi(s) + k 2P2(s)} ds + L i +
Jo

+A0 [  |<?(M )|9(s)[M i + |»|J + 1] ds
Jo

and so with /г2 as in (3.45) we have

(3.52) \y\0 ^  к2 12/11 + Äi5 |j/Ii + Ämlyli + R n  

for some constants Д15, R\e and Rx7 . Similarly (3.49) yields

(3.53) ly'lo й  кз\у\х + Rxs\y\l + ÄmMi + # 2 0

for some constants f?is, Й19 and й 20. Combining (3.52) and (3.53) yields

I2/I1 ^  m a x { f t 2 , f c 3 } | y | i  +  Я 2 1 Ы 1  +  R22\y\{ +  #23

for some constants Ä2i, R 22 and Д2з- Thus there exists a constant Mo in­
dependent of A with |y|j ^  Mo for each solution у to (3.4)л, and the result 
now follows from Theorem 3.1. П
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ORDER OF ORBITS IN HOMOGENEOUS
SPACES

Y. VILLARROEL (Caracas)

The object of this paper is to study the order of orbits [4], in homoge­
neous spaces, using contact theory.

Let G be a compact, connected Lie group and H C G a closed sub­
group. Consider the homogeneous space M  — G / H , the canonical projec­
tion 7Г : G — * G / H , the canonical action a : G X M  — ► M  and the unique 
analytic manifold structure on M  under which both tv and a are analytic. 
Let К  C G be a closed subgroup and K(o) the orbit of о =  7r(H) under the 
restriction of a to K.  Put dim K(o) = n.

Let Cs,nM  be the contact bundle of order s of n-dimensional subman­
ifolds in M  and C*N the contact element of order s at x E N,  of an n- 
submanifold N С M . The canonical action a induces an action a s of G on 
Ся'пМ.  Using the isotropy subgroup Gs of G at C*K(o), i.e.:

Ge = {g <E G : a°{g,Cs0 K(o)) = Cs0 K(o)}  ,

we will construct the decreasing sequence

H = g ° d . . . d g s d g s+1 d . . .

and a corresponding decreasing sequence of Lie subalgebras 

h = g° Э . . .  D gs D g s+1 D . . .  ■

We will prove that the first index r such that gr =  gr+1, is the order of the 
orbit K(o ) [4].

In consequence the order of the orbit K(o ) depends only on the contact 
element CT0 K(o). If K(o) has order r and K\  C G is another Lie subgroup 
with dimA'i(o) = n, and Ст0+1К\(о) = С^+1К(о), then the order of the orbit 
K\{o) is r.

Moreover, we will prove that the Lie subalgebras g! coincide with the 
Lie subalgebras q' defined in [4]. This gives a geometric meaning to such 
subalgebras.

I would like to give my special recognition to Prof. János Szenthe (Eötvös 
University) for his suggestions during the elaboration of this paper.
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1. Orbits o f the contact elem ents

Let M  be a smooth (n + m)-dimensional manifold. Two imbedded sub­
manifolds N u N 2 C M, of dimension n, with n ^  m, have contact of order s 
at ж E N\ П N2 if there exist local parametrizations of N\  and N 2 , given by 
the imbeddings

f \ , h ' U  C R n — ► M,

and a local coordinate system ( У, ( x \  г/-7) ) , 1 ^  i ^  n, 1 ^  j  й  m, about 
x e M  such that / 1(0 ) = f 2(o) = x, x l 0 f j  = x \  l = 1 , 2  and the partial 
derivatives at о of (yJ 0 f i )  and (у3 о / 2), are equal up to the order s. The 
contact element of order s at x G N\  is denoted by C%.N\, and Cs,nM  denotes 
the set of all contact elements C‘N,  with x 6  N  and N  С M  an imbedded 
n-dimensional submanifold.

Let j  ^  s and consider the canonical projection

7Г* : Cs’nM  —- Cj'nM

given by CXN  I— * C3XN . Consider also for any submanifold N  С M  the 
canonical inmersion

is : N  — > Cs'nM

given by x £ N  I— *• C*N.
Moreover, there is a canonical inmersion

г1’3 : Ca+1'nM —+ C 1,n(Cs,nM),

given by
C*+1N  —  CbsNCsN.

Consider the manifold structure on Cs'nM  under which 7Г3 : Cs,nM  — * M  
is smooth.

Two submanifolds N 1 , N 2 , with dim N 1 ^  dimM , /= 1 ,2 ,  have con­
tact of order s + 1 at x G N\  iff they have contact of order s at 1  and 
Tc‘N1C sN 1 = Tc=n2C sN 2- Then we can identify the contact element Cx+l N  
with ( C * N , T c °n C s N )  belonging to the Grassmann bundle of n  planes on 
Cs'nM  [3].

Now we consider M  = G /  H , a homogeneous space with G, a connected 
Lie group and H C G a closed subgroup. The action а : G X M  — *■ M  in­
duces an action

a s :G  x Cs'nM  — > Cs’nM ,

given by a s(g,C*N)  = Cg.xg ■ N , where g ■ x denotes a(g, x) and g ■ N  the 
image of N  by ag : x 6  M  1— *• a(g,x)  6  M.
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Let К  C G be a Lie subgroup and K(o ) the orbit of the point о = ж(П) 
under the action a restricted to К . The natural action of G on the Grass- 
mann bundle GrnM , allows the identification

C).0g ■K(o) = (g- o,T0ag(T0K (o ) ) .

Suppose now that A'(o) is an imbedded submanifold, which always holds 
if if  is a closed subgroup, and put dim К  (о) = n. The following propositions 
serve to establish the fact that the orbit K [ C s0 K{o)), under the action of 
a s restricted to K,  is the submanifold CsK(o ) obtained by the inmersion 
i* : K(o) — > Cs'nM.

P roposition 1. Let К  C G be a Lie group such that K(o ) is an imbed­
ded submanifold of dimension n of M. Then P((A'(o)) is the orbit of the 
contact element C’K(o) under the action of as restricted to K.

P roof. By induction: for 5 =  1, using the identification given above, we 
have

i '(K(o)) = {c!K(o)\k e  K(o)} = {(2pr(o)|t6 В Д } .

But if fc £ AT, then Tk.0K(o) = T0ctk(T0K(o)), and

(k ■ о,Т0а к(Т0К(о)) = к • (o,T0K(o)) = k - C x0 K{o), 

in consequence,

г1 ( A'(o)) = C 1K(o)=  { k - C l0 K ( o ) \ k £ K }  = K ( C l0 K(o)).

For 5 ^ 1 , the proof is similar, using the identification

ClK(o)=(T«- в д С - ' В Д ) .  □

2. Isotropy subalgebras and the order of the orbit

Let Gs be the isotropy subgroup of G at C*AT(o), i.e.

Gs = {g € G\as{g,Cs0K(o)) = C°0 K(o)} .

Since G° is closed, it is a Lie subgroup. It can be seen that x* is equivariant
and CgK(o) is projected on Cl~l K(o). We have the decreasing sequence of 
Lie groups

H = G°D . . . D G s D Gs+1 D . . .
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and the corresponding decreasing sequence of Lie algebras, 

h = g° D . ■. D gs D g s+ 1  D . . .  .

P roposition 2. Let К  C G be a Lie subgroup and K(o) an imbedded 
submanifold of dimension n in M  — G / H . Then g £ Gs+1 if and only if

g £ G s and T0ag(Tc >K(o)CsK(o)) = Tc .K(0)CaK(o).

P roof. We consider the contact element C*+1AT(o), identified with its 
image

.1  =

The last term can be identified with (Тс>к(о)СаK(o)) £ Grn(Cs,nM),  then 
g £ Ga+1 if and only if

9 ■ (Tc-KiofK(o)) =  (Tc ,m C’K(oj) ,

i.e., g £ Gs and Тс >к(о)ад leaves invariant the subspace Tc>k(o))CsK(o).
□

Let f a C g be the inverse image of the subspace Tc>k (o)CsK{o) under the 
tangent linear map Тс*к(о)а1 given by g £ G i—» g ■ C aK(o). The following 
proposition yields a characterization of the Lie subalgebras gs.

P roposition 3. Let G be a compact Lie group and К  C G a closed Lie 
subgroup. Consider the decreasing sequence

h = a 0 D . . .  D a s D a í+ 1  D . . .  ■

of subsets defined successively as follows: Z £ a s+1 if given any X  £ f 8 there 
is a Y  belonging to the Lie algebra к of К  and a Z* £ a* such that

[Z,X] = Y  + Zm.

Then a 8 is a Lie subalgebra of g and it is the Lie algebra of Gs.
P roof. We will prove by induction that a s is a subalgebra. Obviously 

a0 = h is a subalgebra. Assume now that a* is a subalgebra. Let Z i , Z 2 £ 
£ a s+1, then for any X  £ f s there are Yi, Y2 £ к and Z i.,Z 2. £ a s such that

[Zi,X] = Y\ + Z\t and [Z2 ,X]  = Y2 + Z2..

Consequently

[fZ\ + r)Z2, X ] — £Yi + t}Y2 + ( Z \ t + r]Z2,
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belong to к -f as for any r/,£ G 9ft, since £Z\ . + f]Z2, G as holds, by the in­
ductive assumption. Moreover,

[[Zb Z2],X] = [ZU [Z2 ,X]] - [ Z 2 ,[Zb X]] = [Z 1 ,y 2 + Z2. ] - [ Z 2,y i + Z1.]

and the inductive assumption implies that G к + as and [Z\,Z \m] G
G as, in consequence [[Zi, Z2],X] G к + as.

Now, also using induction, we will see that as — gs. For s = 1, this is 
proved in [4].

Since G is a compact group and К  C G is a closed subgroup, we have 
the canonical identification

á s : G/Gs — ► G(C*K(o) ) ,

and the orbit K(o) is an imbedded submanifold of M  [1]. Moreover, by 
Proposition 1, the orbit К (CsK(o)) is equal to the submanifold C sK(o), 
which is an imbedded submanifold of G (C sK(o )). Then, using the identi­
fication of the subspace Tc>K(o)CsK ( o )  with the corresponding subspace in 
T0G/GS given by Teá s, we have

f* = №<»&«(.)) (TcSK{,)C‘K(oj) = (T 'X.)- l (Tc .K(,)C, K(o)),

with 7rs : G — > G/Gs the canonical projection.
Asume now that as = gs. Let Z  G gs+1, then Z  G gs and for any X G f s 

we have

Tens[Z,X] = Te irs —
t=o

(AdeXp t z X )  — ^ Te^s{ Adgxpi^X),
t —o

and the last term is equal to

(̂ C'*Ä’(o)a exptz(Fe7rs(X)) ) ,
t= o

with Te7rs(X) belonging to T c > ok (0) K { o ) and expiZ is contained in G s . Then
ic ,»A'(o)a exptz(^e7r(^ ) )  a curve T(f) in Тс*к(о)К(°) and there exists a 
curve 7 (t) in к such that

d_
dt

Te*.\ '[Z,X)
d_
dt тг*(7(0) = Т етг3

t= 0

d_
dt

7 (i) =  Гетгв(У),

where У G k. In consequence

Teir3[Z,X] = Тетг,(У),
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thus [ Z, X]  = Y  + Z*, with Z* G g s but, by the inductive assumption, gs = 
= a s. Hence [Z,X] G k + as.

Assume, conversely, that Z G a s+ 1  and consider X  G Tc >k (o)GsK ( o). We 
will see that

T C‘K(o)a t x p t Z ^  G T C .K ( o ) C SK ( o ) ,

thus Z G g s+1. Indeed, let Z G a s+ 1  and X  G f s+1, such that Te7r(X) = X , 
then

= Ta°exptZ{Te tt(X)) =  r e7rs (Adexpiz(A )).
Now

d_
dt Te-Ks(AdexptZ( X )) = Te7rs lim

t= o

Ad(exp(t + u)Z) -  Ad(expiZ) v--------------------------------------- A,
и

but this last term is equal to

Tej s{ Ad(exptZ)) lim
и —ю

Ad(exp uZ -  Id)----------------------A
и

Tevs(Adexptz)[Z,X],

and by the inductive assumption this is equal to TensAdexptz (Y  + Z»), with 
Y  G к and Z, G as =  g5. Then there exists a curve 7 (í) G к such that

d_
dt t —O

TeXs = {AdexptZ(X)) = Teirsj{t)  G Tc>k (o)CsK ( o). □

T heorem. Tef G be a compact Lie group, К  C G a closed Lie subgroup 
and C*K(o) the contact element of order s of the orbit K(o) of the point 
0  G G /H  under G. Consider the decreasing sequence

h = g° D . . .  D gs D g ',+1 D . . .  .

of the Lie algebras of the isotropy groups Gs at C s0 K(o). Then the order of 
the orbit K(o) is the first index r such that gr = gr+1.

P roof. Let f  C g be defined by

f  = (Г етг) - 1 = (T0K(o )) 

and consider the decreasing sequence

h = q° D . . .  D qs D qs+1 D .. ■

defined as follows: Z G qs+1 if given i G f  there is a Y  G к and Z* G qs_1 
such that [Z, X] = Y  + Z«. Then, the first index r such that qr = qr+1 is 
the order of the orbit K(o) [4].
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Now, К  C G is a closed Lie subgroup and, since G is compact, K(o) 
is an imbedded submanifold of M  — G/G°. Hence CaK(o) is an imbedded 
submanifold of G/Gs. Therefore the subspace f s defined in Proposition 4 is 
equal to the subspace f  defined above. In consequence, the Lie algebra a3 is 
equal to the Lie algebra gs of the isotropy subgroup Gs, so the first index r 
such that gr = gr+1 is the order of the orbit. □

C o r o l l a r y . The order r of the orbit of a subgroup К  depends only on 
the contact element of order r -f 1 of K(o). I f  K\ is another closed sub­
group of G with dimension of К i(o) equal to the dimension of K(o), and 
C£+1Ki(o) = CT0+lK(o), then the order of the orbit A'i(o) is r. □

Now we will find the order of the orbit for some examples, and finally 
we will give a scheme to calculate the Lie algebra of the isotropy group Ga, 
using the action of the Lie algebra g3 on T*{C^,K^ G /G 3).

E x a m p l e s . 1. Let G be group of rigid motions of the 3-dimensional 
euclidean space 3ff3 and H — 50(3) the isotropy subgroup at о £ !R3.

We represent G by {(А, ж) : A £ 50(3), x £ 9?3}, and its action on 9? 3 
is given by (А, ж) • у = Ay  + x , for (A ,z) £ G, у £ Sr.

Let {(#*), (u>))} be the Maurer-Cartan forms of G.
Consider the involutive 3-dimensional left invariant distribution D on G 

defined by the equations

в3 = o, u^ = o, wf = o,

and К  the analytic subgroup of G with Lie algebra D. 
The group К  is given by

К  = { ( ( а ‘ ) , ( ж ь ж2, х з ) )  : aj = a\ -  o,a33 = 1 ,ж3 = о} ,

and тг(А') = Sí 2 С Sí3 is the zy-plane in Sí3 ([3], p.50).
Since the Lie algebra g° of the isotropy group G’1 of the induced action 

on the space of contact elements at С^К(о) is equal to the Lie algebra g2 
therefore the order of the orbit K(o) is equal to 1 . □

2. Let G be the rigid motions group of Si3 as above and H = 50(3). 
Consider the involutive 3-dimensional left-invariant distribution D on G 

defined by the equations

в3 = o, u>l — кв1, Uj = кв2, к £ Ш, к > о.

Let К  С G be the analytic subgroup of G whose Lie algebra is D. Then 
7Г(K)  is the sphere in S?3 of radius r centered at (o, o, - r )  ([3], p.51).

The Lie algebra g° of the isotropy group G1 of the induced action on the 
space of contact elements at C^A^o) is equal to the Lie algebra g2, therefore 
the order of the orbit K(o) is equal to 1 . □
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3. Let G = 0(4). Consider the canonical action of G on Cl'2^ 4. Given 
a coordinate system x, y, z , v, let г E С] ' 2$ 4 be given by the zy-plane and 
H — 0(3) C 0(4) the isotropy subgroup at r. There is an involutive left 
invariant distribution D on G defined by the equations

в3 = в4 = о, u;] = и \  = = о,

see e.g. [6 ], [7]. Let К  С G be the maximal integral manifold of this distri­
bution through the identity element. It can be shown (see next paragraph) 
that g*=g2, consequently the order of the orbit K (r ) is equal to  1 . □

To calculate the Lie algebra of the isotropy group Gs of a contact ele­
ment X s E C3,nM,  we consider the action of the isotropy subgroup G i - 1  of 
the element X s - 1  = 7r |_ 1(X ä) on the fiber H s C C 3,nM  which projects onto 
X е-1. Also we consider the action of the Lie algebra gs on T ^ , H 3 (see [2]).

We shall study the integral curves of the fundamental vector field defined 
by gs on the manifold H 3.

Consider the following scheme which will be detailed for Example 2 and 
can be similarly used for the other examples.

Let G be the rigid motions group of -ft3 and H = 50(3),

{0 \w j; ш '+ и !  = о}

the Maurer-Cartan forms. Consider the isomorphism T0G/ H  ~  T03?3 in­
duced by the map o° : g E G i—> g • о E K3.

Identify g with TeG (h with TeH).
The forms в1 allow us to define a basis of Т*Ш3 as follows:
Given v E ToK3, consider v E g such that Te(a°)(ve) =  v and define

( 1 ) 0 \ v )  = 6e(ve).

It is clear that this definition is independent of the choice of v, since if 
t) ,« E g  and Tea°(ve) = Tea°(ue) then Tea°(ue — ve) = o, and и — v E h. In 
consequence, 0 'e(ve) = вге(ие).

The set {0‘} defines a basis of T *№.
Consider a coordinate systeln in С]'2Ш3 defined on the following open 

set:

W ’j = { C X0S  E C j’2» 3 : ¥\T 0S ,eJ\T0S  are linearly independent} , 

where the coordinates (p's,pi), s ф i , j ,  are given by the relations:

b3\T0S  = p\e'\T0S + p{e^\T0S.
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The group H acts on Cl'2$l3 and we have the map

F° : h —♦ Х ^ Я 3),

given by

(expe • X 1).

Using the coordinates defined above and expressing e in coordinates as 
£ = (£}), it is possible to prove that F° is given by

K ( p \ p 2) = (-«З + рМ ) ^  + (~ £3 - Р г4 ) ^ 2 -

It is clear that the map F° is surjective, thus the action of H on Cl'2%f3 is 
transitive; but the action of G on & 3 is transitive and in consequence the 
action of G on C 1,23? 3 is transitive.

Consider the contact element X* = C\S 0 given in coordinates as

P1 = P2 = o, i.e. XI = (o, o), (f t \T0S0 = о).

The Lie algebra of the isotropy group G1 of X* is given by

g 1 =  {£ G h : £3 = e\ = o}.

Considering the isomorphism T0G/G 1 ~  T x ^ C 1’2^ 3) defined by 

a 1 : g £ G 1—+ g ■ X} £ C1,2 R3,

and using a similar argument to (1 ), we can define a basis of forms

{ в \ в 2,в3, й 1 й 2} е т х1с ^ 3.

Also we can consider a coordinate system of C ^ C 1-2̂ 3) defined on the 
following open set:

U 1’2 = { X 2 £ C ^ 2C 1,2U3 : 0l \X2, 02 |X 2 are linearly independent},

with coordinate functions (p1, p2 , 6 1 , 6 2 , 6 4 , &з), defined by the relations

^ |X 2 = p1Ö1 |X 2 + p 2Ö2 |X 2, 

й>з|Х2 = 6 1Ö1 |X 2 + 6202|X 2, 

w2 |X 2 = ö401 |X 2 + 63Ö2 |X 2.

£  £  h F°■e у where ***•> -
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Using coordinates, we can show that the contact elements

C 2’2® 3 «-► C 1 '2(C1’2» 3)

are characterized by h2 = 64.
Let H 2 C C 2’2® 3 be the fiber of contact elements which project onto X  

then G1 acts on H 2 and we have, as above, the map

F 1 : g 1 —* * ( H 2).

Using coordinates, we can see that this map is given by

F ^ b u b M  =  e\(2 b2±  + (43 -  * . ) £ -  26, J - ) .

If bi — o, i.e. Ы3 = и 2 = о then

F 1, (hi, h2, h3) = о and g 2 = g1.
J

Moreover, if pl = o, b2 = 0 , 63 = hi = к G 3?, then F \  (bl) = o, i.e.
ej

в3 =  о, uiß =  к в 1, и 2 =  к в 2 and g2 =  g 1.

This is the case of Example 2.
With a similar procedure, we obtain Examples 1 and 3.
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ADDITIVE COMPLETION AND DISJOINT 
TRANSLATIONS

L. HABSIEGER (Talence) and I. Z. RÚZSA* (Budapest)

1. Introduction

Let A C [0, N] be a nonempty set of integers. We define the covering 
number L of A as

L = min { |B| : В C Z ,A  + В  Э { 0 ,1 ,..., /V}}.

(The implicit dependence on N  is not indicated.) Such a set В is called an 
additive complement of A. Bounds for L for arithmetically important sets 
were given in numerous papers. Obviously L ^  (N + 1 )/|Л |. For the classical 
results on additive completion see Halberstam-Roth [3].

Let now P  be a polynomial of degree d ^  2, with integral coefficients and 
positive leading coefficient, and consider (for varying N)  the sets

(1) A = An = { P ( n ) : n e N , 0 ^ P ( n ) S N } .

The best known lower bound of L for these sets is due to Cilleruelo [1] (where 
only P(n) = nk is considered, and the formulation is slightly different) and 
Habsieger [2] and it sounds as follows.

T heorem 1. For a polynomial set (1.1) we have (for a fixed polynomial 
P and N  —у oo)

х а  ( 1  + »(1 ))*(1 / а ) щ ,

where
, . s i n  7tt _  Л  7Г2 \  ,

s ( í ) - 7 í ( r r i j  =  1 + < + ( 1 “ T ) < +

* S u p ported  by H ungarian  N ational Foundation  for Scientific Research, G ran t No.
1901.
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Here we consider the covering number together with a “dual” problem. 
We define the disjoint translation number D as

D = sup { \B\ : В C [0 , N] П Z, A + b i  П A + 62 = 0

for all bi, b2 £ B, bi ф b2 } .

With r(n) = # { (a ,6 ) : a £  A, b e ß , a  + b = n } ,D  is defined by the require­
ment r(n) ^  1 and L by r(n) ^  1 for 0 й n й N.  By an obvious counting 
argument we have D ^  (2N  -f l)/\A\.  For polynomial sets we have an im­
provement, similar to Theorem 1.

T heorem 2. For a polynomial set (1.1) we have (for a fixed polynomial 
P and N  —► 0 0 )

D Ú  ( 1  +  о ( 1 ) ) а ( 1 Л 0 ц р

The similarity of the bounds suggests that there is a closer connection 
between L and D than this formal analogy; this will be explored in the next 
section.

For certain polynomials the bound of Theorem 2 is rather tight. 
T heorem 3. Let P(x) = xd with an odd integer d ^  3. We have

We can prove a somewhat weaker bound for even powers. For a general 
polynomial we cannot decide whether D JV/|A| holds.

2. Generalizations

We define the fractional covering number as follows:

N
A = min Y  \ k ,

- k=—N

where the numbers Afc are subject to the conditions Â  ^  0  and

Y  Xn~a ^  1
a£A

for all 0 ^  n ^  N.  With the additional restriction Â  = 0  or 1 we get the 
definition of L.
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We define a fractional analog of D similarly:

N
Д = max X  ék, 

k—0

where 6  ̂ ^  0  and

X  6п-а й  1

aeA,n-N^aü п

for all 0 ii n ^  2N.  Again, imposing <5̂ = 0 or 1 we get D.
The quantities Т ,£),Л ,Д  are connected in the following way.
T heorem 4. We have always

D й  A  = А й  L.

P roof. The inequalities are obvious. To prove the middle equality, con­
sider the matrix (a,j), 0 ^  i ^  2N,  0 ^  j  ú  N  with the entries

[1  if i -  j  e A,
a ij I .

1 0 otherwise.

Д is the maximum of 5Zj=o Уз under the constraints yj ^  0,

N

X  = 1 (* = 0 , . . . , 2 A).
3=0

A familiar result on linear duality yields that this is the same as the minimum 
of Yjí=oxí under the assumptions X{ ^  0 ,

2 N

X * « * ^ 1 (J =  0, — , JV).
;=o

This reduces to the definition of A with the transformation A*, = □
In the light of this result, Theorems 1 and 2 have the following common 

generalization.
T heorem 5. For a polynomial set (1.1) we have (for a fixed polynomial 

P and N  -+ oo)

A = ( l  +  o ( l) ) s ( l /d ) -^- .
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We shall determine the asymptotic behaviour of Л for a wider class of 
sequences. Let A be an infinite set of nonnegative integers. We use the same 
letter A to denote its counting function, so that

A(x) = #{a  E A, a ^  z}.

Let Л tv denote the fractional covering number of the set А П [0, N] for the 
interval [0 ,iV].

T heorem 6. Suppose that with some a E ( 0 , 1) we have A( tN) /A(N)  —► 
—► ta for all t G [0 ,1 ]  as N  —> oo. Then we have

An  = (1 + о ( 1 ) ) з ( а ) - ^ у .

We prove this result in the next section. It implies Theorems 1, 2, 5.

3. Proof of Theorem 6

As a motivation for the following argument, we mention the continuous 
analog of the problem, which concerns the convolution

h(t) = f *  g(t) = J  f(x)g(t  -  x)dx.

In the first case, we want to have h{t) 't. 1 for 0 ú  t ^  1 and minimize f  g; 
in the second case we want h(t) ^  1 , g(t) = 0  for t £ [0 , 1] and maximize f  g 
(and we assume g ^  0 in both cases). Now for the function

for x G [0,1], 
otherwise

which is the density corresponding to distribution xa, not only the results 
are equal but there is a common g that solves both problems, namely

g(t) = s (a )(l -  a)t  ".

Indeed, a change of variable yields

(3.1) Г  x“- 1^  -  x )-“ dx = /  ya~ \ l  -  y)~a dy — — 
Jo Jo S1
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Now we start the proof. Take an e > 0. We shall find an No such that

(3.2) (1 -  е) з { а ) - щ  < \ N < (1 + еН а ) - Щ

for N > N0.
For 0 ^  x ^  N,  write

A(z) = ( x /N )a A(N)  + Rn (x ), Rn  = max | i?jv(a;)|.

The convergence of A( tN) /A(N)  to ta , as any convergence of monotonic 
functions to a continuous monotonic function, must be uniform, that is, 
R n  = o(A(N))  as N  —► oo.

First we construct nonnegative reals An such that

(3.3) J > n_a ^ i
a

for all n, while An ^  (1 + e)s(a)N/A(N).  To this end we select a number 
T] > 0, depending on e (this dependence will be made explicit later). We set 
q = 7/(1 -  rj) and define

An = ß(n + r)N)~a, - g N ^ n ^ N ,

where

/J =  ( l + £ / 2 W o ) ( l - a ) ^ j .

Since

N rN rN
V  (n + T ] N ) - a < (t + T )N )~ a dt< (t + T i N ) - a dt =
_едг J-eN - 1  J—nN

N

t)N

7V1_a(l -f 1—Of
1 — a

we have

E л» < ( 1 + £/ 2)(! + < h + £М » )

if rj is so small that

(3.4) (1 + £/2 )( l +  rj)l ~a < 1 + £.
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Now we prove (3.3). We have

Y ^ K - a = ß  (n + r i N -  a)~a ^  ß ^ 2  (ri + t]N -  a)~Q,
O ^ a ^ m in  (N ,n-\-QN) О'йа'йМ

where
M  = (n + f}N)(l -  rj) й  min(N, n + gN)

will be more comfortable for the following computations.
We turn this sum into a Stieltjes integral to obtain

rM
ß Y ,  {n + rjN - a ) - °  = ß J  (n + nN  -  t)~a dA{t) =

0<a<M

r M  r M

= ß A (N )N ~ a /  (n + 77ÍV -  t)~a dta + ß  (n + rjN — t)~a dRN(t). 
Jo  J o -

After a change of variable t = (n + rjN)u, the main term becomes

ri-ч
ßA(N)N~  

if rj is so small that

rl-TJ

*a  f  u a г(1 — и )  a  d u  >  l + e/3, 
Jo

/•I-T) 1
/ ua_1(l — u) a du > — 

Jo  1
1 -f- £/3 7Г

+ e/ 2  sin 7ra

(We remind that 7r / s i n 7ra is the value of the integral from 0 to 1, as men­
tioned in (3.1).)

We use integration by parts to estimate the remainder term:

r M

\ß /  (n + 77JV -  t y a dRN(t)
I J0-

rM
RN(M)(n + rjN — M Y a + а  /  R N(t)(n + r)N -  f) “ “ “ 1 dt

Jo
= ß <

<, 2ßRN(n + T]N- M)~a = 2ßRN(r])~a(n + rjN)~a ^  

<> 2ßRNr)-3aN ~ a < e/3

if N  is so large that

Rn  < t*A(N),
£T]3a

6 ( 1  + £)s(a)(l -  a ) ’
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Hence for sufficiently large N , the required property (3.3) is established. 
To prove Л/v > (1 — e)s(a)N /A (N ), we construct nonnegative numbers 

Sn for 0 ^  n ^  jV, such that í„_a ^  1 for all n, while £  í n ^  (1 -  
— e)s(a)N /A(N ). To this end we select a number r] > 0 , depending on e 
and define

Sn = ß(n + rtN ) -a', 0  £ n £ N ,

where now

i  =  ( l - £ / ! ) » W ( l - ) ^

We suppress the details of the estimates of the calculations, which are very 
similar to the previous ones.

4. Proof o f Theorem 3

In this section P (x ) =  xk, with к odd.
First we observe that if p is a prime number such that p — 1 and к are 

relatively prime, then we have

m k =  nk mod p => m = n mod p .

Indeed, if p divides m (or n ) this claim is obvious. Let us assume that 
m k =  nk mod p, with p \  mn. Then we have mp _ 1  = np ~ 1 = 1 mod p. More­
over there exist integers и and v such that (p — l)u  -f kv =  1. Thus we get

m  = m(P-i)“+ ^  = (mk)v = (nk)v = n(p~1)u+kv = n mod p, 

and the claim is proved.
Let N  be a sufficiently large number. Let us choose a prime p with p > 

> N  * and p ~  N  * as N  goes to infinity, and such that p — 1 and к are 
relatively prime. Let us define

В {ар : 1 й  a ^  N /p } .

We clearly have

\B\ ~  N / p ~  N 1-*  .

We prove that the sets P(A) + В  are disjoint for 0 ^  P (A) N . Assume that 
A* + bi = A* + b2, with 0 ^  Р(Аг), P(A2) ^  N  and bu b2 E B. Then A* = 
=  Xk mod p , hence we have Ai =  A2 mod p. Moreover we know that |Ai — 
-  A2| ^  P - \ N )  -  N* < p, thus Ax = A2.
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5. Remarks

With some change in the proof, Theorem 6  can be extended to the cases 
a — 0  and a = 1 (we define s(a) by continuity at these numbers, so that 
*(0) = e(l) = 1).

Assume that 0 € A. In this case there are additive complements consist­
ing exclusively of nonnegative integers; let L* be the minimal cardinality of 
such a set. We can also define a fractional analog Л* of this number. We have 
obviously L й L* and Л ^  A*. We think that under the conditions of Theo­
rem 6  we have A ~  A*, though the proof in Section 3 does not immediately 
yield this.
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ON TWO VERSIONS OF ^-D ISCREPANCY  
AND GEOMETRICAL INTERPRETATION  

OF DIAPHONY
VSEVOLOD F. LEV (Tel-Aviv)

This paper concentrates on a comparison of two versions of L2- 
discrepancy: the “usual” one and the one on parallelepipeds modulo the unit 
cube. We also show that the last variant of discrepancy is closely connected 
with diaphony, and in the most important case these two characteristics of 
distribution coincide up to a multiplicative constant.

Part of the results of this paper was earlier published in preliminary form 
in [3] (Russian).

1. Notation and definitions

Let
Qs = { ж G R 5 | 0 ^  Zj < 1; j  

be the s-dimensional unit cube, or, equally,

Qs = {x g R s I o <; ж < 1}

(we reserve lower indices for coordinates of vectors and put 0  = (0 , . . . ,  0 ), 
1  =  ( 1 ....... 1 ))-

By a net S = (X ,p ) we will mean a finite weighted set of points in Qa, 
that is, a set of points in the unit cube

X  = {z<*> G Q* I k = 1,...,JV }

and a set of non-negative real weights

P = {pkZ  0 I к =

corresponding to these points. The pair (x^k\p k )  is said to be the k-th node
of the net S, and />o = pi + ---- 1- pjv will denote the sum of the weights of
the nets.

Numeration of the nodes of nets is not essential: we will not distinguish 
nets differing only by order of following their nodes.

Generally speaking, we do not impose any additional restrictions on the 
points (some of them may coincide) or on the weights (their sum may differ
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from 1). A net having the sum of its weights equal to 1 (that is, a net with 
p0 = 1 ) we will refer to as a normed one; in such a case, the system of weights 
will also be called normed. Therefore, for the normed net with N  nodes and 
with equal weights we have

Pi = • • • = Pn  -  l /A .

It should be pointed out that those “traditional” nets are included, as a 
particular case, in all of the results of this paper. In other words, none of 
the results are based on using some “exotic” weights.

By a shift of a system of points X by a vector x modulo Q 3 we will mean 
the new system of points

X + x = {{xW + x} I к = 1,...,JV }

in Qs (the inner braces denote fractional part of the vector, that is, the vector 
of fractional parts of coordinates).

By a shift of a net S  by a vector x modulo Q 3 we will mean the new net 
S + x = (X + x,p)  with the nodes

({x(fc) + x} ,pk) , k = l , . . . , N .

For 1 ^  t ^  s let Q* be some <-dimensional face of Q 3, and let ж be the 
operator of orthogonal projection of Q 3 to Q*. By the projection of S to 
Q( we will mean the new net S' -  (X' ,p)  in Q(, whose nodes (x'(k\p k )  are 
defined by x'W  = .

Let I  C {1,... ,« }  be a system of indices, S the corresponding system of 
s-dimensional hyperplanes

X,- = 1/2 ( i  6  I)

and (T : Q3 —* Q 3 the transformation of the unit cube to itself, involving sym­
metries relative to all hyperplanes from S, followed by obtaining of fractional 
parts (order of executing these operations obviously does not influence the 
result). By the image of S under the transformation о (or under symmetry 
relative to the hyperplanes of the system £) we will mean the net S' = (X ',p) 
in Q 3 whose nodes (x'(k\p k )  are defined by

И*) = <r(x(fc)),

so that

<
i e  / ,

i $ I.
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We call the net symmetric if it coincides with its image under any transfor­
mation of the described type.

For u, v E R s consider the parallelepiped

П(и, r) = { i  6 Rä I и ^ I  < »}

(the parallelepiped is non-empty only if и < v ). Let us denote its volume by 
|П(и, n)| and introduce the local discrepancy of the net S in П(п,п) by

(1) R(u, v) — ] T  Pk -  |n(u,tO |
x (fc)6 n (tt,v )  (m od Q 3)

(where the summation is extended over all points x '^  of the net S belonging 
to П(и,п) “modulo the unit cube”, that is, over those points x ^  some inte­
gral shift of which belongs to П(м, v)).  Clearly, the local discrepancy R(u, v)  
is invariant relative to shifts of П(и, v) by any integer vector.

For к 6  [1 ; oo] define the LK-discrepancy of a net S  by

(2) A t(S )= ||Ä (0 ,.)L ,

that is

D*(S ) = ( ^ J  |# (°> 7 )Г«Ь^ , « < о о ,

and
Doo(S) = sup I Ä (0,7 ) | ;

7 6 qS

we set also

(3)
DK(S)  =

DooiS) =

( [  I R(a, a + 7 )| “dad'y') 
\ J  Q ! X Q S /

l / к

sup I R(a, a + 7 )!.
a,'ye Qs

к < oo,

The value, defined by (3), is called the Weyl LK-discrepancy of the net S.
In particular, in the case of к — 2 we obtain the L2-discrepancy D2(S) 

and the Weyl L2- discrepancy D2(S),  and in the case of к — oo — the supreme 
discrepancy Doo(S) and the Weyl supreme discrepancy D ^ S ) .  The supreme 
discrepancy D ^ S )  is often called just discrepancy and is denoted by D (S );
similarly, Weyl supreme discrepancy D ^ S )  will be denoted simply by D(S).
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Let S  + a be the shift of S  by a vector a 6  Qs, and Ra be the local 
discrepancy of S + a. It is obvious from (1) that Äa(0 , 7 ) =  R ( - a , -a. + 7 ) 
and therefore, according to definitions (2) and (3),

DK(S)

that is, the Weyl .^-discrepancy DK(S)  may be considered as the LK-average 
of the “usual” /-''-discrepancies DK(S  + a) of all shifts of S by vectors a from
Qs.

2. The diaphony F2(S)  and its connection with Weyl 
L2 -discrepancy D2(S)

One more characteristic of the multidimensional net distribution unifor­
mity S = (X,p) — diaphony, denoted by F2(S)  — was introduced first by 
P. Zinterhof in 1976 (see [5]) and then considered by a number of authors 
(see, for instance, [1], [3], [4]). There are two well-known “classical” def­
initions of diaphony. We will reproduce them with some changes, caused, 
mainly, by our intention to consider (unlike the “classical” approach) the 
general case of nets with arbitrary weights.

One of the definitions uses the representation by infinite series:

where
m =  m i  • • • ms, nij  =  max ( 1 ,  \rrij\) ,  

T(m) is a trigonometric sum of the net S,  defined by

N

T(rn) = Y ,P k - e 2n,{m'x(k))
k= 1

((m ■ x(k') is the scalar product of the vectors m and x^k>), and, finally, the 
dash in the sum means that the zero vector m = 0  should be excluded from 
the sum.

Another definition is

F 2(S) = ( P k p i f l  ( l + 2 n 2B2 { { x f ] -  4 ° } ) )  -Po  
\k ,l=1 j=l
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where' B2(£) = £ 2 — £ + 1/6 is the Bernoulli polynomial of order 2 (we recall, 
that po = p\ + ---- b Pn )-

The equivalence of the two definitions mentioned above can be easily 
verified in view of the well-known expansion of B2(£) into a Fourier series:

m €  Z

1 2ir imj
m 2

We state below three exciting properties of diaphony, following almost 
immediately from the above definitions.

Statement 1. Let S + a be the shift of S by a vector a e Q. Then 
F2(S + a) = F2(S).

P roof. This follows from the “second definition” in view of { {x ^  +
+ a} -  { x ^ P  +  «}} =  { x f ^  -  x ^ } .

Statement 2. Let S'  = ж(S) be a projection of S. Then F2(S') ^ F2(S).  
P roof. We can assume that the projection ж is defined by

* ((* ъ * 2 , •••,* .)) = (0 , *2, •••,*.)•

Let V  be the trigonometric sum of the net S'. Then, obviously, 

T ((0 ,m 2 , . . . ,m s)) = T ' ( ( m 2 , . . . , m s)), 

and according to the “first definition” ,

Fo ( s )  = E '
| n » ) i

m e  Z 3 m2 ^ £ '
|T (m )|:

m £ Z 5, m i = 0
m2

= Fl(S ').

Statement 3. Let S ' = cr(S) be the image of S under some symmetry 
o. Then F2(S') = F2(S).

P roof. Again, we can consider only the particular case of the symmetry 
о defined by

o({xx, x 2, . . . , x sj) = ( { l - a q } ,  x2, . . . ,  xs) .

Let T'  be the trigonometric sum of the net S'. Then, obviously, 

T '((m i,m 2 , . . . , m s)) = T ( ( - m b m2 , . . . , ms) ) , 

and we use the first definition to complete our proof.
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Do Statements 1-3 hold for the discrepancies D2(S)  and D2(S)  instead 
of the diaphony F2(S)"l As we show later, the answer is affirmative for D2(S) 
and negative for D2(S).

Note that, unlike discrepancies, diaphony has pure analytic definitions 
which do not explain its “geometrical nature”. The following theorem1 clar­
ifies this nature by establishing a direct connection between diaphony and 
Weyl i 2-discrepancy D2(S).

T heorem 1. We have

D\\(S) 3~s + |Г ( 0 ) - 1 |

where the sum is extended over all non-zero s-dimensional integer vectors, 
and v(m) is the number of non-zero coordinates of m.

P roof. Let us consider the local discrepancy R (a ,a  + 7 ) as a function 
of a with fixed 7 , and evaluate its Fourier coefficients. If m ф 0 , then the 
corresponding coefficient is

R{m) = [  Ä (a ,a  + 7 )e -2,r,<m-a>da =
J Qs

N г= y p k  c- 2iri(we)^a  _
JxW—7 <a^r(*)

=  У  pke - 2Him^ k)) f  g —2iri(m-a>dd =
k= 1 J - K a ^ O

=  T ( —m )  I  e 27ri(m'a 'lda;

and if m  = 0 , then

R(m)  = R(0) = T(0) [  da -  [  ^  ■ ■ - 7 sda = (T(0) -  1 )7 1  • • -7 ,.
JQ^a<-f JQ3

1 T his theorem  was first proved by th e  a u th o r  in [3] (R ussian). However, we repro­
duce it here for th e  sake of com pleteness.
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Hence, using Parseval’s equality, from definition (3) we obtain:

Z>2(S) = I  ] Т ' |Г ( т ) |2 - /  e27ri<m'“><fa
Jq‘ m JO<a<~i

d')Jr

[  I T’(o) — 1 1 ----=
J  QS

+

*  r 1  I П »
= Е ' | Г И “ П /  Г  i l i  + 3 - | T ( 0 ) - l | J,

m j = l J °  \J °

and it remains to observe that the integral over ay is equal to ^=5- if my = 0 , 

and is equal to =̂=5- • otherwise.

The theorem just proved is a direct analog of the well-known Erdős-Túrán 
inequality for the metrics of L2. It shows that up to a multiplicative con­
stant and the summand measuring “unnormness” of the net, the diaphony 
of a net coincides with its Weyl L2-discrepancy. In particular, for normed 
nets we immediately obtain the following

C o r o l l a r y  1 . Let S be normed: po =  1 ; then

(2tt2 • r - 1)1, 2D2(S) й F2(S ) ^  (2tt2)s/ 2D2(S).

P r o o f . It is sufficient to use in Theorem 1 the obvious inequality 1 ^  
£  v(m)  ^  s (m ф 0 ).

C o r o l l a r y  2 .  Statements 1 - 3  hold for Weyl L2-discrepancy D2(S) in­
stead of the diaphony F2(S).

P r o o f . Follows the proof of Statements 1-3 with Theorem 1 instead of 
the “first definition” of diaphony, and (3) instead of the “second definition”. 3

3. D2 versus D2 : one-dim ensional nets

The rest of the paper investigates the correspondence between Weyl L2- 
discrepancy D2(S)  and the diaphony F2(S),  on the one hand, and “usual” 
£ 2-discrepancy D2(S), on the other hand. We will see that the question is 
not a trivial one, and even for normed nets allows a direct solution only in a 
few particular cases.

We start from the simplest of them, the case of one-dimensional normed 
nets.

In this case one of the estimates (of type D2(S) <C D2(S)) follows easily 
from
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L em m a  1. Let S be a one-dimensional normed net: s = 1, po = 1-, Then

D№ = é í F*{S)+  •

P r o o f . The identity of the lemma is a “weighted variant” of a well- 
known identity (see, for instance, [2], equality (2.27)). It can be obtained 
by means of expansion of Ä(0,q) into a Fourier series and then applying 
Parseval’s equality — the method, used in Theorem 1.

C o r o l l a r y . Let S be a one-dimensional normed net: s  = 1, />0 = 1. 
Then

D2(S) ^  D2(S).

P r o o f . According to Theorem 1, in our case

D \{S) = F2 {S) ■ (3/2ТГ2) = F f (S ) /2тг2,

and in view of Lemma 1,

D22(S) ^  F%(S)/2k2.

Is it possible to obtain an inverse estimate, that is, an estimate of 
type D2( S ) <C D2{Sy. The following example, suitable for the general s- 
dimensional case, shows that it is not the case.

E x a m p l e  1. Let S  = (X,/>) vary over a sequence of s-dimensional nets 
with the number of nodes increasing to infinity and the Weyl supreme dis­
crepancy decreasing to zero: N  —► oo, D(S)  —► 0. Set

6 = (D(S))  1/(s+0'5) _> o,
P  = { x  e  Q s I X ^ (1 -  <5)1}

(so that 6 and P  depend on S ) and consider the new net S' = (Y ,p ) with the 
same weights as S and the system of points Y , defined by

w = i * ( f c ) ;  * W * P ,
У 1 0; xW  € P.

Denote the local discrepancy of S'  by R'. It is clear that for 7  < (1 — £ ) 1  

^ ( 0 ,7 )  = E  P k - \ m  7)| £
i(*)gp

^  | P |  -  | P ( ( 1  -  6 )1 , 1 ) | - |  Я ( 0 , 7 ) |  £  -  2 D(S),
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and so for sufficiently large N

(4 ) Dl(S') Z (1 -  S)S(6S -  2D(S))2 >  S2s.
On the other hand, if a > 0  it is easily seen that

I  D(S)] а,-,а, + 7* £ [1 — <5; 1] (t = l , . . . , a ) ,

\  2D(S)  + 6 s; in any case.

It follows that

(5 ) D \(S') <  D2{S) + 6 • 62s <  62s+1

and from (4) and (5) we conclude that for no constant C is D2(5 ') ^  C Ä (S ')  
for all the nets S'.

4. J92 versus D2: sym m etric  nets. The estim ate  Ä ( S ) <  D2(S)

Another case of interest is one of symmetric nets. The subject was first 
investigated by P. Proinov [4], who proved an estimate of type D2(S) <C 
<  É>2{S) for normed symmetric nets with equal weights. Then in [3] the au­
thor obtained an inverse estimate D2(S) «С D2(S ) for all normed symmetric 
nets (with not necessarily equal weights), and also generalized Proinov’s 
proof for such nets. Below we generalize both results for arbitrary (not 
necessarily normed) symmetric nets and also make some refinements in for­
mulations and proofs; this section contains a proof of the author’s estimate 
D2(S) <C -D2(5), and the next one that of the generalized Proinov’s estimate
-D2(S) <  -D2(5'). By means of combining the two estimates with appropriate 
constants one obtains

T heorem 2. Let S be a symmetric net having all its points strictly in­
side the unit cube Qs. Then

Note that we have to require that S has no points on the faces of Qs. 
This requirement is not a casual one, and arises from the fact that in some 
sense a net having a number of its points on the faces of Q5 is not actually 
symmetric “relative to £)2” (at the same time, it may be symmetric “relative

We see, therefore, that in the case of symmetric nets the two L2- 
discrepancies Zi>2 (5’) and -D2(5) coincide up to a multiplicative constant.

(4 /5)s/ 2 £>2(S) ^  D2(S) Í  8 s/ 2D2(S).

to A ,”)-
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Let £ £ {0,1 }S, and denote by S£ the image of the net S  under the symme­
try a£ relative to all the hyperplanes Xj = 1 / 2  for which the index j  satisfies 
the condition £j = 0 :

( 6) o £ : x  •—► x ' , x'j
•{1 %j}) £j — 0 ?
X j  j £  j  — 1 •

Note that from Corollary 2 of Theorem 1 it follows that

D2(S£) = D2(S).

The main result of this section (which easily implies the discussed estimate 
of type D2(S) <  D2(S)) is

T h eo rem  3 . Let S be a net having all its points strictly inside Qs. Then

D ftS ) £  6 s Y  3 D%(Se)
«€{0 ,1}*

(here S£ varies over all nets obtained by symmetric transformations of S ).
P r o o f . Our idea is to divide the parallelepiped П ( а , е *  +  7 )  into 

“elementary parallelepipeds”, each of which entirely lies in a shift of Qs 
by some vector £ £ {0,1}*; then the local discrepancy of 5 in such elemen­
tary parallelepiped will be replaced by the local discrepancy of S£ in some 
parallelepiped with the “minimal” vertex at 0 .

Now_perform the reasoning in detail.
Let П(и,и) = П(и, u)CI Qs, and let £ vary over all vectors from {0,1}S. 

Denote the local discrepancies of the net S£ in П(и, v) and П(ы, v ) by Re(u, v) 
and R e(u,v),  respectively. It is clear that

П ( а , а  -I- 7 )  =  и £ ( П ( а , а  +  7 )  П (Q* +  e ) )  =

=  U £ ( £  +  П ( а  -  £, a  +  7  -  e ) ) .

Since £ is an integer and the parallelepipeds £ + П(а -  £, a + 7  — e) are pair­
wise disjoint, we have

R ( a , a  +  7 ) =  Y  R ( a - £ , a  +  7 -  £)■
£€{0,1 у

For 6 £ {0 ,1}S let Q(S) C Qs X Qs be the set of all pairs (01, 7 ) with the 
given integral part [a + 7 ] =  6 , that is

aj  + 7j
< 1 ; Sj = 0 ,

«i =  l.
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Obviously, if (a, 7 ) G ft(£) but e  ^ 6 does n o t  hold, then П(а — e , a  + 7  -  e) 
is empty; hence

(7) D \ (S)= /  £  R ( a  -  e,  a  + 7  -  e) j d a d ' )

= X I /  \ ^ 2 R (a -  £, а + 7 - £) I dadl  ^  X ! 2 "(Ä) X ] Д М ),
Äe{o,i}a7n(5) \ ф  )  5e{o,i}s ф

where
Щ е ) a  — e,  a  + 7  — e )  d a d ' ) .

But one can easily see that the symmetry (6 ), mapping S  to S s , also maps the 
parallelepiped П(а -  e ,  a  + 7  — e )  into another parallelepiped П(и, v ) (pos­
sibly, up to inclusion of some parts of the surfaces of П(и, v )  and Qs), such 
that for (a ,7 ) G il(<5), i^ £ w e  have

( 8)
f 1 aj I j  i fij — 0, _  f 1 a j í £j — 0?
I 0 ; Sj =  1 , Vj ~ \  a,  +  -/j -  1 ; £j =  1 .

So for all a  and 7  such that the surface of II(u,v) does not contain points of 
S e (that is, for all a  and 7 , except possibly a set of measure zero), we obtain

R ( a  -  £, а + 7  -  e )  = Л£(и, v),

and

(9) I ( S , e ) =  [  R l ( u , v ) d a d 7 ,
Jn(6)

where u, v  depend on 0 , 7  as shown in (8 ). Now set

( 10)
Í 1 -  Oj -  7jf; <5j = 0, 
l  1 -  7i5 *i = l,

and change in (9) the integration variables a, 7  to the new variables z , v .  The 
region of change of these new variables is contained (as follows from (8 ) and
(10)) in the closed unit cube Qs, and the old variables a, 7  may be expressed 
in terms of the new ones by

1 -  vj; £j = 0, ___ f Vj -  Zj\

ОIIчГ

Vj +  Zj\ £j =  1, 3 l  1 -  *j5 « ;  =  1
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It is an easy technical exercise to verify that the Jacobian of our change 
of variables is

Therefore

where

1(6

D{a, l )
D ( z , v )

,e ) £  /
J Z , V

= ( - l )

R 2(u,  v ) d z d v ,

zj ; A? — 0 ,
0 ; Sj = 1 .

The function R?s ( u , v )  in the last integral does not depend on the variables 
Z j  with indices j  under 6 j  =  1. Thus after integrating over these variables 
we obtain

where we set

1 ( 6 , e ) й  J  R 2( u , v )  d u d v  

du = П duj,

and the region of integration is defined by и G v  G Qs (while the
coordinates Uj for the indices j  under 6j — 1 are constant and equal to 0). 

For /j, G {0 ,1}S, /r ^ 6 set

ь - Г '( Vi]

Uj; fij = 0

’ji = 1
( j  =

Then it is easily seen that

(one can consider this equality as a variant of the inclusion-exclusion for­
mula), and so

вдо í 2” (‘T  /
^ s Jq‘- 'W xci‘

R?e ( 0, t } d u d v .

Now performing integration by variables Uj for the indices j  under щ  =  1, 
6j =  0, and for the variables Vj for the indices j  under fij =  0, we obtain

1(6,e) ^ 2a~^s) Y  [  Rl(Q,t)dt = 22̂ - u(8))Dl(Se),
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so that from (7)

D j ( S ) £  Y  F {S)Y 24s~‘'{S))d *(SJ = Y ,  Dl(S£) Y  22s2 - ^  =
«€{0,1}S ей8 ee{0,l}s S^e

= 4S Y  (3/2)s- ,'{e\ l / 2 ) ^ e)D l(Se) = 6 s Y  3-*'(e)£>|(5e),
£6{0,1}J ee{0,iy

which was to be proved.
As a direct corollary of the theorem we obtain the required estimate of 

type D2{S) <  D2(S ):
C o r o l l a r y . Let S be a symmetric net having all its points strictly in­

side Qs. Then
D2(S) <: 8 s/ 2D 2{S).

PROOF. For a net S of the considered type all the discrepancies D2(Se) 
pairwise coincide and are equal to D2(S); therefore, in view of the theorem,

Df tS)  <, 6 sD \(S) Y  3_t/(£) = 6S(4/3)Ŝ ( 5 )  = 8 sDj{S).
£€{0,1 У

Note . A refinement of the proof allows us to write the inequality of the 
theorem in the form

D 2,(S)S3* £
£6 {0,1 }*

In turn, this makes it possible to improve the constant of the corollary up to
6 s/2.

5. D2 versus D2: sym m etric  nets. T he estim ate  D2{S) <C D2{S)

To complete our comparison of {^-discrepancies of symmetric nets, we 
are going to obtain an inverse estimate of type D2(S)  <C D2(S). The histor­
ical aspect of the estimate was described in the previous section.

We start from the following lemma.
L em m a  2 . We have

Е * П * ч<*?,) - 1|2.me z3 fc=l j = 1

7Г
•2
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where

y ( xf ]) =  <
2 ( 1  -  x ^ ) ;  rrij  =  0 ,

1 _  e- 2rim]Xf .  TOj ф Q

P roof. The assertion of the lemma is obtained by applying Parseval’s 
equality to the function R( 0 , 7 ). If we set

hm.. — *
' - г / it; m 2

ОV

i ; m j

оII

m j V о

then the Fourier coefficients of the function are

R(m) = \  R(0 , 1 )e~2^ m^ d 1  =
J Qs

N  r r
T  P k  /  e - 2- < - ^ d 7  -  /  71  • =
j.= 1  J 7>x(*) J Qs

N s j

= i> n  Lk=i 7=1 ■/r.(*)j=i - -j 

N

s Г1

R í
е-2т«т>ЪЛъ _  TT / 7 .e-2nmi l id l i  =

- S П 2m, Cmi )6"Ь П 2m,“
fc—1 J=1

|»ж  П СтД х! Ч  ■ П &т>’
\ f c = l  j = l  /  j = l

and the rest is obvious.

T heorem 4. Let S be a symmetric net having all its points strictly in­
side Qs. Then

D2(S) Í  (5 /4 )s/2D2(S).

P roof. We use the notions of Lemma 2, and also set |m| = ( |m i |, . . . ,
|ms| ) , so that, for instance, the symbol ^

|Т71
will denote the sum over all vec-

Acta M athem atica Hungarica 69, 1995



ON TW O  VERSIO NS O F E -D ISC R EPA N C Y 2 9 5

tors £ G {Ó, l } 3 with £ j  = 0 for all j  under rrij  — 0. In view of the symmetry 
of S  we have

fc= 1 3=1

= E ^  П c™Áxf ]) П \  (ĉ (xf ))+c"ii(1-xf )) )=
k=l rriĵ O m ,= 0

N

= X > *  П  C m M  )’
k=1 rrij^O

and by Lemma 2

N

/c=l mj^O

= « - * E
7Г—2i/(m) JV

( _ l ) l/(e)€-2iri(misix(1*)-|—-+т5е,1^) _  j
^= 1  e |̂m|Ш

^ — 2̂ (771) I f

= 4 _SE ^ 2- |  E  ( - i r (£)r ( ( m ie b . . . ,m s£4)) + (T ( 0 ) - 1 )
e^|m|

<

£ 4-  £  £^ 2‘,(” ’ ( E '  • • .- A »  I2 + IT(0) -  1|2) =

=  4  8 ^  ^  ( 2 / тг2 ) " (7п) | T ( ( m i £ i , . . . , m s £ 3 ) )  | 2 / m 2 +

£б{0 ,1}3 |m|^e

+4—I T(0) -  1|2 ^ ( 2 / » 2)"<m).
m

The second summand on the right hand side may be calculated directly, 
while in the inner sum of the first summand one can execute direct summing 
over the variables mj  for the indices j  under Ej =  0. We obtain

( П )  ö | ( S ) S 4 - £ ' n  ( i  +  ^ y V
c- <r —П  ̂ '
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Y  (2/тг2)1/(т) |Т ( ( т 1£1, . . . , т в£,)) |2 /гтг2 + (5/12)s|T(0) -  l | 2 =
т

= 4_s^ '( 5 / 3 ) e-,/(e) (2/тт2)‘/(т) -Г-̂  — + (5/12)4 |Т(0) -  l | 2,
е га

where the symbol ^*т means summing over all vectors to for which nij takes 
the single integer value 0  if ej — 0 , and rrij takes all non-zero integer values 
otherwise.

Furthermore, in (11) each summand of the form | T(m)| /то2 with m ф 0 
appears precisely for one value of £, and for this value u(m)  = v(e). Hence

D2(S) й  4~s(5/3У Y !   ̂T0  ■ (5 /3 )-1,(т>(2/я-2)*'(тп)+
771

+(5/12)4| T(O) — l | 2 ^

^  3_s(5/4)s Y '  ^ - 0 -  ' (6/5*2f m) + 3- s (5/4)3| T(0) -  l | 2 ^
m

й  3 -s(5 /4 )^  Y '   ̂T 0 ^  ' (3/2тг2)1/(от)(4/5)1/(т) + | Г(0) -  1 [2) ,
m

and it remains to apply Theorem 1.
It is seen from our proof that for a normed net S  the constant of Theorem 

4 may be slightly improved: namely, if 5 is a normed symmetric net having 
all its points strictly inside Qs, then D2(S) 5í (5 / 4 )^_1^ 2£>2 (‘S')-

6 . N ets w ith  D2(S) = o(D 2(S))

We have seen so far that both one-dimensional and symmetric nets sat­
isfy D2(S) <  D2(S).  The same clearly applies to the nets S having L2- 
discrepancies D2(S  + a) of the same order of value for all a  E Qs (see the 
note at the end of Section 1). We now add one more example to this collec­
tion of nets with D2(S) <C D2(S).

As in Section 4, denote by Se the net obtained from S by means of the 
symmetry ae relative to all hyperplanes Xj = 1 / 2  with indices j  under the 
condition £j = 0 , and also denote by S'e the ^(^-dimensional net2 obtained

2 S trictly  speaking, we have no defin ition  of “O-dimensional” n e t. To avoid problem s
arising  for £ =  0 we p u t d irectly  D ^ S q ) =  (po — l ) 2 in th e  form ulae below.
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from S by means of the projection irs, defined by

: x и-» x', £j

£j

=  1,

=  0.

Lemma 3. Let S be a net having all its points strictly inside Qs. Then 
the Weyl L2-discrepancy D2(S) may be estimated by “usual” L2-discrepancies 
£>2(5 ')  of projections of S as follows:

D \(S) <, 1 2s Y  (7 /6Y (£)D l(S ’e).
£€{0,1 У

P roof. Our lemma will follow immediately from Theorem 3 and the 
inequality

( 1 2 ) D22(Se) й  2s- " (£) Y  D22(5«)’
ie { o ,i} s ,

since, assuming the inequality to be true, we obtain:

D l ( S ) £  6 s Y  3~ ^e) • 2 a_1/(e) Y  ^ 2 (^ 5) ^
e€{0 ,1}3 S~te

^12°  Y  d 2(s 's) Y 6~Hs) = 1Г  E  ( W HS)D22(S'S).
í €{0 ,1}3 e^S i€{0 ,l}s

Therefore, we need only to prove (12).
To this end, denote by Re and Ä ', respectively, the local discrepancies 

of Se and S'£, and for e, 6 G ( 0 , 1 }S set also

Ui  =
f 1 -  7ji
lo ;

0IICO

J 1 ;

0IICo

II
1 

'«-» 
CO Vj l 7 i J £j =  1

i ;

ОII

ч
ГcTII•**»

CO

1 -  7 i ; £ j  =  0 ,  6j =  1

7 j-;

т-4II

1—
IIICO

Combinatorial considerations show that for almost all 7

ä «(o, 7 ) = r {u, v) = E ( - i
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and to complete the proof, it is sufficient to observe that

Í  R 2(0 ,z)d1  = D 2(S's).
J Q  -"

Corollary. Let S be a net with all the points strictly inside Q s and 
satisfying for some constant C

D2{S'£) ^ C D 2(S) for all £ G {0,1 }s

(that is, the L2-discrepancies of the projections of S are at most of the same 
order of value as the L2-discrepancy of S itself). Then

D2(S ) <. 26S' 2CD2(S).

As one can see, we have now a large number of nets with D2(S ) <C D2(S) 
(one-dimensional ones and those with “good” shifts, symmetries or projec­
tions). Does the estimate hold for all nets? Here is a counterexample.

Example 2. Let s ^  2, and let S = (X,p)  vary over a sequence of .s- 
dimensional nets with the number of nodes increasing to infinity and the 
Weyl supreme discrepancy decreasing to zero: N  —»■ oc, D(S)  —» 0. Set

6 = (D (S ))1/2s 0, P = {x  € Qs I X ^  (1 -  6)1}

(so that 6 and P  depend on S ), and consider a new net S' = (Y,p ) with the 
same weights as S and the system of points Y,  defined by

(Jfc) = Í x (k); *(fc) t  P,
У \ ( 1 -  6 )1 ; x(fc) G P

(compare with Example 1). Denote the local discrepancy of S'  by R'. It is 
easily seen that

Ä'(0,7)| ^
f D(S); 7 t  P,

2 D(S) + SS-, 7  e PI
and therefore

(13) D2( S ' ) i  [  D 2(S)di  + 8  [  {D2(S)  + 6 2s)c?7 ^

% 8 (D 2(S) + 6 3s) <  63s.

Acta Mathematica Hungarica 69, 1995



ON TW O VERSIO NS O F T -D ISC REPA N CY 299

On the other hand if, for instance,

(14)
1 - 6  < ai < 1 - 6 / 2 ,

1/2 < a 2 , . . . , a a < 1 -  6 , 1/2 < 7 1 , . . .  , 7 S > 3/4,

then П (а ,а  + 7 ) does not contain the point (1 — <5)1, but contains the par­
allelepiped

n ( ( l - ó / 2 , l - í , . . . , l - í ) , l ) ,

of the value 0.5<5S, free of points of S'. Then local discrepancy of S'  in 
П (а ,а  + 7 ) is at least 0.5<5S -  2 D(S)  >  6s, and the volume of the region (14) 
is >  <5; therefore

(15) D22(S ' ) > 6  -6 2s = <52s+1.

From (13) and (15) we conclude that for no constant C is D2{S') ÍÍ CD 2(S') 
for all the nets S'.

7. B ehavior of D2(S) under shifts, p ro jections 
and sym m etries o f 5

Finally, we consider once again Statements 1-3 from Section 2 and Corol­
lary 2 of Theorem 1 , this time from the following point of view: are the anal­
ogous properties satisfied for the “usual” /^-discrepancy D2(S)  instead of 
the Weyl Z2-discrepancy D2(S)  and the diaphony F2(S)1 In other words, 
is the “usual” /^-discrepancy D2(S)  invariant relative to shifts and symme­
tries and non-increasing under projections of net, at least, by the order of 
value?

S t a t e m e n t  1'. For any constant C there exists an s-dimensional net S 
and a vector a £ Qs satisfying

D2(S + a) > C - D 2(S).

P roof. Suppose, on the contrary, D2(S + a) ^  CD 2(S) for all S ,a . Then 
also D2{S) ^  CD2(S + a), so

D2(S) ^  C + a) da
1/2

CD 2(S),

in contradiction to Example 1.
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STATEMENT 2'. For any constant C and s ^  2 there exist an s-dimen- 
sional net S and a projection n such that S ' =  t (5) satisfies

D2(S') > C ■ D2(S).

P roof. Suppose, on the contrary, D2(S') % CD 2(S)  for all S' = 7r(S). 
Then, in view of the corollary to Lemma 3, the following inequality is satis­
fied:

D2(S) й  26s/2CD2(S),

in contradiction to Example 2.
St a t e m e n t  3 '. For any constant C there exist an s-dimensional net S  

and a symmetry о such that S ' = o(S) satisfies

D2(S') > C ■ D2{S).

P roof. Suppose, on the contrary, D 2(S') й  CD 2(S ) for all S' = u(S).  
Then, if 5 has no points on the surface of Q s, in view of Theorem 3

D \ <; 6 s ■ C 2D \{S ) 3_I/(£) = C 28 sDj(S),
£6 {0 ,1}3

V. F . LEV: ON TW O  VERSIO NS O F ^ -D IS C R E P A N C Y

in contradiction to Example 2.
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JORDAN-VON NEUMANN THEOREM FOR 
SAWOROTNOW’S GENERALIZED HILBERT

SPACE
B. ZALAR (Maribor)1

Introduction

Jordan-von Neumann theorem was proved in 1935. The original paper 
is [10]. The precise statement is the following:

THEOREM J-N . Let X  be a real or complex normed space and sup­
pose that ||x + y | | 2 + ||x — y\\2 = 2||x | | 2 + 2||j/ | | 2 holds for all x, у G X . Then 
there exists a real (respectively complex) inner product (x.y) on X  such that 
(x,x) = \\x\\2 for all x ex.

The identity ||x + y \\2 + ||x -  y \\2 = 2||x | | 2 + 2||j/ | | 2 is called the parallel­
ogram identity. If we have a Hilbert space H  with the inner product (x, y), 
then an easy calculation shows that the norm ||x|| = у / (x, x) satisfies the 
parallelogram identity. This means that the Jordan-von Neumann theorem 
establishes a characterization of inner product spaces among normed spaces.

This result initiated a lot of subsequent research and still there are some 
open questions. One line of research was concerned with the problem which 
other properties of normed spaces characterize inner product spaces. An 
extensive collection of such results, in various directions, can be found in [39]. 
Another line, which preceded our present paper, started with the following 
observation:

If Q(x) = ||x ||2, then Q is a quadratic functional while the inner product 
is a sesquilinear form. The Jordan-von Neumann theorem then tells us that 
every positive definite quadratic functional on a real or complex vector space 
can be represented by a hermitian positive definite sesquilinear form. The 
question now arises what can be said about quadratic functionals which are 
not positive definite. More precisely, can such functional be represented by 
(in general not even hermitian) sesquilinear form? It turned out that in the 
real case the answer is no while in the complex case the answer is yes.

1 S u p ported  in  p a r t  by th e  po std o c to ra l g ran t P l-5505-0101-93 from  th e  Slovenian 
M inistry  of Science.
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Investigations of modules over more general involutive rings, such as C*- 
algebras, quaternions and function algebras for example, led several authors 
to investigate Jordan-von Neumann type theorems, usually using the alge­
braic approach. Among the positive results we mention that the represen­
tation theorem is true for modules over the following algebras: quaternions, 
octonions, any complex algebra with identity and bounded linear operators 
on a real Hilbert space. For more information the reader should consult [1],
[8 ], [12], [28-31], [33-36] and [38].

In the present paper we investigate Jordan-von Neumann type theorems 
for Saworotnow’s generalized Hilbert space which is a module over a so called 
Я ’-algebra. The difference between this investigation and previous papers 
lies in the fact that #*-algebras in general do not possess an identity element 
nor can the identity be added to them within their category. This forced 
us to develop a technique which uses the presence of sufficient number of 
projections in ^ ‘-algebras.

General ideas for this investigation were set in Debrecen in August 1993 
during the conference on functional equations. In a very relaxing and stimu­
lating atmosphere, created by the members of Debrecen’s chair of analysis, I 
get acquainted with the work of Lajos Molnár on generalized Hilbert spaces 
which together with my earlier paper [38] suggested the possibility of the re­
sult presented. Proofs were carried out during the winter of 1993/94 when I 
was partially supported by the grant from the Slovenian government.

Proper #*-algebras

#*-algebras were introduced in 1945 by Ambrose. In his pioneering pa­
per [2 ] the intention was to provide an abstract framework for the class of 
Hilbert-Schmidt operators. Later other authors studied trace-class, central­
izers, representations, characterizations and generalizations of Я ’-algebras. 
Some papers on this subject are [4], [7], [11], [14] and [26-27] where further 
references are available. In this section we recall facts about Я ’-algebras we 
use later.

D e f in it io n  1. Let A  be a complex associative algebra with an involu­
tion * and a complex Hilbert space with respect to the inner product ( , ). 
Then A  is called an H*-algebra if the following identity, which connects the 
product, the inner product and the involution of A,

( 1 ) {xy,z) = (x,zy*) = {y,x*z)

holds for all x, y, z £ A.

A  is called proper if aA — (0 ) implies a — 0 . According to [2 ], this is 
equivalent to the fact that Aa = (0) implies a = 0. From now on all Я*-
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algebras will be proper. The following result was proved in part by Ambrose 
and in part by Saworotnow.

P roposition 2. Let A be a proper H*-algebra. Then the following holds:
( 1 ) The multiplication of A  is jointly continuous.
(2 ) The involution of A  is isometric.
From [26-27] we know that the set

T(A)  = {xy  ; x , y  £ Д}

is a selfadjoint ideal of A  which is dense in A  with respect to the Hilbert 
space topology. This ideal is called a trace class of A. One can define a trace 
Tr : T(A)  —> C by Tr(xy) = (x,y*).

An element a £ A  is positive if (ax, x) 0  for all x £ A. Because of the 
//^-identity ( 1 ), this is equivalent to the fact that (x a ,x ) ^  0 for all x £ A. It 
is an elementary exercise to verify that every positive element a is selfadjoint, 
i.e. a* =  a. The following result from [26] is important in the study of the 
trace class.

P roposition 3. Let a £ T(A)  be positive. Then there is a unique ele­
ment b £ A  such that b is positive and b2 = a holds.

The element b is called a square root of a. Note that b may not be a trace 
class element. From the above we have immediately

Corollary 4. Let a,b £ A  be positive. I f  a2 — b2, then a — b.
Another useful application of Proposition 3 is the following
Corollary 5. There is an absolute value |.| : A  —» A + defined by |a| =
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P roof. From the #*-identity (1) it follows

(aa*x,x) = (a*x,a*x) = ||a*x | | 2 ^  0

for all x £ A  and so aa* is positive. Since aa* £ T (A ), we can now apply 
Proposition 3. □

Now we can define a norm on the trace class (see [26-27]) by r(a) = 
= Tr ( |a |) . The following is then true:

P roposition 6 . (1) ||a|| ^  r(a) for every a in the trace class.
(2 ) r (a 2) = ||a | | 2 for every selfadjoint a £ A.
(3) T(A)  is complete with respect to the norm t .
(4) I Tr(a)| ^  r(a) for every a £ A.

A nonzero element p £ A  is called a projection if p = p* = p2 holds. It is 
further called minimal if pAp — Cp. From [2] and [1 1 ] we need the following 
facts about projections in _ff*-algebras:
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P roposition 7. (1) There exists an approximate identity {pa} for A  
consisting of projections.

(2) Every projection is a finite sum of minimal projections pi which are 
pairwise orthogonal in the sense that ptpj = 0  for i ф j .

Saworotnow’s pre-Hilbert Л-modules and normed Л-modules

Let Л be a proper ff*-algebra. Let H be an additive group and a module 
over Л. Some authors prefer left, some prefer right modules. Both theories 
are of course equivalent. We use the left module concept. Therefore we 
assume that a biadditive mapping о : Л x H —► H is given satisfying (ab) о 
о x = a о (b о x). This mapping is called a module multiplication.

D efinition 8 . TL is called a Saworotnow’s pre-Hilbert А -module if there 
exists a mapping, called a generalized inner product, [ , ] : 77 X 77 —► Т(Л) 
satisfying the following axioms:

(i) [ж,a:] is positive for every x € TÍ.
(ii) [x,x] — 0  implies x = 0 .

(iii) [у,я] = [x,y]* holds for all x , y  E H-
(iv) [о о x, у] = a[x, у] holds for all x, у E Tt and a E Л.
If we take the #*-algebra Л = C, we get the usual inner product space. 

In general however this generalized Hilbert space has noncommutative and 
infinite-dimensional ’scalars’. Hilbert Л-modules were first defined in [21]. 
Bases for their theory were set in [9], [22-25] and [32]. Some recent papers 
on this subject are [5-6], [13] and [15-19].

Remark. The original set of axioms was richer for two more axioms. 
One was the weak form of the Cauchy-Schwarz inequality which was proved 
to be redundant and even improved to a strong form by Lajos Molnár. The 
second one required that H should be complete with respect to a suitable 
metric. We omit this axiom because we are also interested in noncomplete 
pre-Hilbert modules.

Let X  be another left module over Л. Now we give a set of axioms for a 
generalized normed space over Л.

D efinition 9. Let N  : X  —► Л be a mapping with the following prop­
erties:

(i) N(x)  is positive for every x E X .
(ii) N(x)  — 0  implies x = 0 .

(iii) N(a о x) = j aN(x)\  holds for all a E A  and x E X.
(iv) I] N(x  + y)|| ^  j] lV(a;)|| + || N ( y )|| holds for all x, у E X.
(v) If [xa ] С X  is a generalized sequence such that for all e > 0 there ex­

ists op such that for all a, ß  ^  «о we have || N (x a — ж^)|| < £, then N (x a ) 
is a Cauchy sequence in Л.
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Then ( X , N )  is called a generalized normed space.
Remarks. If 4  = C is the #*-algebra of complex numbers with the 

usual involution and absolute value, then X  is a usual complex normed space.
The notation |.| stands for the absolute value in 4  defined by Corollary

5. Note that | аА(:г)| is in general not equal to |a|jV(x) because a and N ( x )
may not commute. The notation ||a|| = y/(a,a) stands for the Hilbert space 
norm in A.  Axiom (v) represents some sort of continuity property for N.  
We could actually define a metric topology on X  by dist(x, у ) = || N(x  -  y ) ||. 
From axioms (i)-(iv) it follows that this is in fact a metric on X.  Then axiom
(v) tells us that N  maps Cauchy sequences in (A,dist) to Cauchy sequences 
in A.  In the classical normed space this is a consequence of the triangle 
inequality. Here we have the triangle inequality only for the composition of 
the norm in A  and N  rather than for N  itself and so (v) must be stated as 
a separate axiom. It is easy to see that if A  is not commutative, then the 
triangle inequality for N  itself does not hold.

Our first goal is to prove that every pre-Hilbert .Д-module TL is a normed 
4-module. This is not obvious because one must incorporate in the proof spe­
cial properties of Я ’-algebras. Since [x,x] is a positive trace class element, 
we can use Corollary 5 in order to define N : H -* A  by N(x)  — y/[x, ж]. 
From Definition 8  it easily follows that N(x) = 0 implies x = 0. Therefore it 
remains to verify (iii), (iv) and (v) from Definition 9.

Part (1) of the following lemma has a very similar proof as one of the 
results in [16]. Since the proof is short, we repeat some of the arguments for 
the sake of completeness and to illustrate a technique one often uses when 
dealing with #*-algebras without identity element.

Lemma 10. Let Li be a pre-Hilbert module over a proper H*-algebra A. 
Then we have

(1 ) I f x ,y  E H  and p £ A  is a projection, then the inequality

(р[х,у],р) +{р[у,х],р)  ^  2 ||рЛГ(лг)|| -||plV(j/)||

holds.
(2) Let a =  a* £ A. Then for every x E A  we have | (ax,x)\ ^  ( |a |x ,x) .
(3) I f  a,b £ A  are positive, then ||a -  f>||2 ^  r (a 2 -  b2).

P roof. (1) Take any real number t. Since the element [x + (tp) о y,x + 
+ (tp) о у] is positive in 4 ,  we have

0 ^  {p[x + ( tp ) oy , x  + ( tp)oy] ,p) .

Applying axioms from Definition 8 , we have

0 <; (p[x,x],p) + t ( p 2[y,x],p) +t(p[x,y]p*,p) + t 2 (p[y,y]p*,p).
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Next we use that p is a projection and the H ‘-identity (1) which results in

0  ^  (p[x,x],p) +t((p[x,y] ,p)  + {p[y,x],p)) + t 2 (p[y,y],p)

for all real t. Since [x,x] and [y,y] are positive, it follows that the middle 
term is real. Thus

(p[x,y],p) + (p[y,x],p) ^  \{p[x,y],p) + (p[y,x],p)\ ^  

й 2 \J{p[x,x],p) \J{p[y,y],p)-

If we write N ( x )  — - \ / [ x ,  ж], then N (x )* = N ( x )  since N ( x )  is positive. Hence 

( p [ x , y ] , p )  + ( p [ y , x ] , p )  ^  2 \ J  { p N ( x ) 2 , p ) y j  ( p N ( y f , p )  =

= 2\J{PN (x),pN{x)) у / {pN(y),pN(y))  =2||рЛГ(*)|| ■||рЛГ(»)||.

(2) From [26, Lemma 1] we know that a can be expressed as о = ^  Anen 
where en are pairwise orthogonal projections and An nonzero scalars. Since 
a = a*, all A„ are real numbers. The above series converges in the Hilbert 
space topology. It is also easy to verify that Xn tends to zero. If we set 
b — ^  |An|en, then this series also converges so b is well-defined. Since b2 = 
= a2 = A\ en and b is positive, it follows b = |a|.

Now we can verify in a direct way

( I®!®,x'j — ^  ] |Ап|(е„ж, x) — ^   ̂|A„| ||епж|| ,
*

I (a*,®) I = Ап(е„а;,а;)| ^  ^  1Лп1| (enX, ж)| = ( |а|ж, ж).

(3) From [26] we know that the trace can be represented also as Тг(а) = 
= 2̂ (aea,ea) where {ea} is (any) maximal family of pairwise orthogonal 
projections and a £ T(A).

The element a — 6 is self-adjoint so we have a — b = Anen where 0 ф 
Xn £ R. Using the Zorn lemma we can extend the family {e„} to a maximal 

family {ea}. If we set Xa = 0 for all ea which do not belong to the original 
family we stilj have a -  b = ^  Xaea. According to the above paragraph and
(2 ), we have

т(а2 - Ь 2) = Тт(\а2 - Ь 2\) = ( |а2 -  b2 \ea ,ea) ^  ^  ||( (a2 -  6 2 )ea , ea) | .

Acta M atkem atica Hungarica 69, 1995



JO R D A N -V O N  NEUM ANN TH EO R EM 3 0 7

If we write 2(a2 — b2) = (a + 6 )(a — b) + (a — b)(a + 6 ), we obtainI#

r(a 2 ~ К  = ^ K(a “  6 )ea ,(a  + 6 )ea ) + ((a  + b)ea,(a -  b)ea) |.

However, (a — b)ea = Xaea and so

r(a 2 -  b2) ^ | A a ((a  + b)ea ,ea) | . r

Since b is positive, we have a — b 'й a + b and therefore

r(a 2 -  b2) ^  ^  |Aa ((a  -  b)ea,ea) \ -  ^  A2 (ea ,ea).

On the other hand, using the fact that ea are pairwise orthogonal as elements 
of the Hilbert space, we get

= ^ 2 Х1 \\еа \\2 й г { а 2 - b 2). □

Remarks. The idea to express 2(a2 -  b2) as (a + b)(a — b) + (a — b)(a + 
+ 6 ) is due to Powers and Stornier. It was pointed out to me by Bojan 
Magajna.

At this point the author wishes to express his gratitute to the referee who 
discovered a mistake in the proof of the above lemma in the first version of 
the manuscript. Note also that in the sequel we use a weaker statement than 
the inequality proved in Lemma 10(3) which says that for positive elements

an and a a2 a2 implies an U! a. As noted by the referee, this weaker claim 
can be proved with more standard methods thus avoiding structure theory 
of #*-algebras. Its proof goes as follows:

Since Tr(p2) = ||p | | 2 for positive p, it follows that ||a„t| 2 = Тг(а2) —* 
—► Тг(а2) = ||а||2. As a consequence of this we also obtain that the set of left 
multiplication operators Lan is bounded in the operator norm. According to

Proposition 6  we have et2 a2 and so Z2n converge to L2a in the operator
norm. Since L2 form a norm-bounded set and continuous function calculusa  7i r*

T  I  ̂ f (T )  for selfadjoint operators is strongly continuous on compact sub­
sets of R (see for example Pedersen, Analysis Now, E 4.6.5), we obtain that 
Lan tends strongly to La. Therefore we have

(an, x y ) = (any*,x) -*■ (ay*,x) =  (a,xy ).

Since elements of the form xy  are dense in Л, it follows that an tends weakly 
to a. Finally we have

IK -  al|2 = IKII2 + llal|2 -  (ön, a)-
к
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~{а,ап) -> ||а | | 2 + ||а | | 2 -  (а, а) -  (а,а) = 0 .

Next we recall the following result from [16]. By r  we again denote the 
trace-class norm. Compare also Proposition 6 .

P r o p o sit io n  11 . Let H be a pre-Hilbert А -module. Then the strong 
Cauchy-Schwarz inequality

t ([z , 2 /] )2 ^  т([х,х])т([у,у\)

holds for all x, у £ H.
T h eo r em  12 . Let H be a pre-Hilbert А -module. I f  we define N (x ) = 

= y/[x, ж], then (7f,iV) is a normed A-module.
P r o o f . Take a £ A  and x £Tt .  Then

N(a о x f  = [flo i,flo x ] =  a[x, ao x] — а[а о x,x]* =

= a(a[a:,a;])* = a[x,x\a* = aN(x)2a* —

= ( aN( x )) • ( aN( x )) * = |aiV(x) | 2

where the last equality follows from Corollary 5. Since N(a  о x) and | aiV(x)| 
are positive, we can apply Corollary 4 in order to obtain N(a  о x) = | aN(x)\  
which proves (iii) from Definition 9.

Now fix x, у £ Li. If p £ A  is an arbitrary projection, then we have, using 
the #*-identity (1 ),

II pN(x  + y) | | 2 = (pN(x + y) ,pN(x + y)) =

= (pN(x  + y)2 ,p) = (p[x + y,x  + y],p) =

= (p[x,x],p) + (p[y,y],p) + (p[x,y],p) + (p[y,x],p).

Apply Lemma 10 in order to prove

||p(lV(x + y) | | 2 ^  ( p N { x f , p )  + ( p N ( y f , p ) +2||pJV(x)|| • ||pJV(»)|| =

= {pN{x) ,pN(x))  + (pN(y) ,pN(y))  + 2||pIV(z)|| • ||pAT(j/)|| =

=  ( ||p ^ (* ) || + ||p ^ ( í/) ||)2 -

Thus, for an arbitrary projection p £ A,

ИpN(x  + 2/)|| ^  ||рАГ(ж)|| + IIp N (j/)||
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follows. Take the approximate identity {pa} С A  consisting of projections. 
Its existence is granted by Proposition 7. Hence

lim paN(x  + y) = N(x  + y), lim paN(x)  = N(x),  lim paN(y)  = N(y).
a  a  a

If we take limits on both sides of the inequality

||paiV(z + y)\\ <; IIpaN (ж)И + ||paJV(y)||, 

we finally obtain (iv).
Now suppose that a sequence xa is such that for every e > 0 there exists 

ao such that for all a ,ß  ^  ao we have || N (x a — жд)|| < e. If a ^  a 0, then

II N (xa)\\ = II N (xa -  Xco + *a0)|| ^  £ + К N ( x ao)\\

implies that there is a constant M  such that ||lV(xa)|| ^  M  for all a ^  a0. 
Then we have for all a , ß  ^  ao, using Lemma 10 and Proposition 11,

IIN ( x a) -  N ( x ß)К2 ^  r { N ( x a)2 -  N(xß)2) =

7"( \.xai -̂a] — [xßi xß\) — г — xß] T [^a — XßiXßj'j ^

 ̂r ( [ x a , X a  -  X ß \ )  + т ( [ х а  -  X ß , X ß \ )  ^

=  ^ ' г (  [ха — Xß,<Xa  — £ /з ])  Т

+  \ / т { [ х с, -  X ß , X a  -  X ß \ )  \ J t ( [ X i1 , X ß \ )  =

=  II N ( x <*)\\ • II N ( x a  -  X ß ) \ \  + IIN (я/з)|| • II N ( x a  -  а?уз)||  ̂2M e .  □
Now we can formulate the Jordan-von Neumann type theorem for 

Saworotnow’s pre-Hilbert .4-modules. If ( X , N )  is a normed .4-module, then 
the parallelogram law is the identity

(PL) N(x  + y f  + N{x  -  y )2 = 2N ( x ) 2 + 2N ( y ) 2

which must hold for all x, у £ X . If X  — H is a Saworotnow’s module, then 
this reduces to

[x T y, x T y] + [x -  y, x -  у] = 2[x, ar] + 2[y, y]

which is trivial to verify. The rest of the paper is devoted to prove the fol­
lowing
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М а ш  T h e o r e m . Let A  be a proper H*-algebra and ( X , N )  a normed 
А -module over A . Then X  satisfies the parallelogram law (PL) if and only if 
X  is a Saworotnow’s pre-Hilbert module with respect to the generalized inner 
product [x,y] such that N (x ) 2 = [x,x] holds for all x E X .

A certain functional equation on #*-algebras

Let A be a proper if*-algebra and Г , 5 : Л - + Л а  pair of mappings sat­
isfying the identity xT(y ) = S(x)y  for all x , y  E A. Such a pair is called a 
double centralizer of A.

Observation 13. Let (T,S)  be a double centralizer on A . T h e n T a n d S  
are bounded and linear. Moreover, T(xy) = T(x)y and S(xy) = xS(y)  holds 
for all x ,y  E A.

P roof. Fix x ,y  E A. Then we have, for all z E A,

(S(x  + y) -  S(x) -  S(y))z  = (x + y)T(z) -  xT(z)  -  yT(z) = 0.

Since A  is proper, the additivity of S  follows. In a similar way we prove that 
S  is homogeneous and therefore linear. Obviously the same is true for T.  In 
order to prove that T  and S  are bounded, we use the closed graph theorem. 
Suppose that xn —» 0 and T(xn) —► yo■ Then we have for all у E A,  using 
Proposition 2,

2/2/0 = ylim T(xn) = lim (yT(xn)) = lim(5(j/)x„) = 5(y)lim xn = 0.
n  n  n  n

As above, yo — 0 follows and by the closed graph theorem T  is bounded. In 
a similar way we prove that S is bounded. Finally

z(T(xy) -  T(x)y) = zT(xy) -  zT(x)  ■ у = S(z)xy -  S(z)x ■ у = 0

implies T(xy)  = T(x)y.  In a similar way we prove S(xy) — xS(y).  □ 
Given a E A , we define a left and a right multiplication operator by 

La(b) = ab and Ra[b) = ba respectively. It is easy to compute that (La, R a) 
is a double centralizer of A. The converse is not true in general, because H*- 
algebras which are infinite dimensional do not have an identity element and 
there are double centralizers which are not of the form (La, R a).

Observation 14. Every proper H*-algebra is semiprime.
Proof. Recall that a ring 1C is called semiprime if for a E 1C condi­

tion aICa — (0) implies a = 0. Take a E A  such that aAa = (0) holds. Then 
aa*a = 0  is also true and so the #*-identity ( 1 ) implies

||a*a | | 2 = (a*a, a*a) = (aa*a,a) = 0
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and consequently a*a = 0. Finally

||az | | 2 — (ax,ax) = (a*ax,x) = 0

implies a = 0  since A  is proper. □
Lemma 15. Let S ,T  : A  —> A  be additive mappings. Then
( 1 ) S(xyx)  = xyS(x) for all x ,y  G A  implies that S is linear.
(2) T(xyx)  = T(x)yx for all x , y  € A implies that T  is linear.
(3) If  S is bounded and satisfies (1 ), then S(xy ) = xS(y ) for all x ,y  £ A .
(4) I f T  is bounded and satisfies (2), then T(xy ) = T(x)y for all x ,y  £ A .

P roof. Clearly it is sufficient to treat only (1) and (3). Take Л £ C. 
Then

S(X2xyx) = S((Xx)y(Xx)) =  XxyS(Xx).

On the other hand

S(X2xyx) — S(x(X2y)x) — X2xyS(x ) 

and so xy(S(Xx)  -  XS(x)) = 0. By replacing x with x + z, we obtain 

xy(S(Xz) — XS(z)) = —zy(S(Xx) — XS(x) ) .

If we denote A(x) = 5,(Аж) — А5(ж), then

(xyA(z))w(xyA(z))  -  ~ (zyA(x) )w(xyA(z ) )  =

= —z(yA(x)wxy)  A(z) = 0.

Since A  is semiprime, it follows xyA(z) = 0 for all x , y , z £ A .  Hence 
A(z)AA(z) = (0) implies A = 0 so S  is linear.

If S is bounded, then we can use the approximate identity pa from Propo­
sition 7. First we have

2:5 (2;) = lim xpaS(x) - lim S(xpax ) - 5(lim xpax) = S(x2).a ot a

By means of linearization we obtain xS(y)  + yS(x) = S(xy  -f yx). Again 
using the approximate identity, we obtain

25(2:) =  5 (22:) = 5 (limpa2: + xpa) = lim S(pax + xpa ) =oc ot

— limpa 5 (2:) + lim xS(pa) = S i x ) -f lim xS(pa)ot ot a
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and therefore S(x ) = limQ xS(pa). This finally gives

S ( x y )  =  lim x y S ( p a ) =  slim y S ( p a ) =  x S ( y ) .  □
a a

Lemma 16. For each nonzero у 6  A  there exists a minimal projection p 
such that pyp ф 0 .

P roof. Suppose that pyp — 0 for all minimal projections p. By taking 
adjoints we obtain py*p — 0. If we decompose у — h-\- ik where h and к are 
selfadjoint, then php = pkp = 0 follows. Consider the spectral decomposition 
h = Yin ^nen where A„ are nonzero real numbers and {en} pairwise orthog­
onal spectral projections. If h ф 0, then e\ ф 0. Since e\ is a finite sum of 
pairwise orthogonal minimal projections (see Proposition 7), there exists a 
minimal projection p satisfying pe\p = p and pen = 0  for all n > 2  (if there 
are any ). Hence php = Aip ф 0 gives a contradiction. This shows that h = 
= 0. In a similar way we establish к = 0 and finally у = 0 + 0г = 0 concludes 
the proof. □

Let E, F : A  —► A  be additive and suppose that

E(xyx) = E{x)y*x* + xF{y)x* + xyE(x),

F(xyx) = F(x)y*x* + xE(y)x* + xyF(x)

hold for all x, у G Л. Then (E ,F)  is called a Jordan *-derivation pair. This is 
a generalization of Jordan ^-derivations which were considered in [3], [29-31] 
and [38].

Example 17. Let (7 \,5 i)  and (X2 , 5г) be double centralizers. If we 
define E{x ) = T\(x*) + S%{x) and F(x) = — T%(x*) — 5i(z), then (E , F ) is 
a Jordan ^-derivation pair.

The converse is given in the following

P roposition 18. Let A  be a proper H*-algebra and (E , F ) a Jordan 
*-derivation pair acting on A. Then there exist double centralizers (T \ ,S \ ) 
and (Тг,5г) of A  such that

E(x) = Ti(x*) + S2(x), F(x) = —T2(x*) -  5x(x).

P roof. From the desired representation it easily follows that we must 
define the above mentioned mappings by

В Д  = ± ( i E ( x * )  -  E ( i x * ) ) , T 2( x )  =  i (  -  z F ( x * )  +  F ( i x * ) ) ,

S i ( x )  =  Y i ( -  F ( i x ) ~  iF (x)) > s z ( x ) = + i E ( x )) ■
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Then it is straightforward that E (x ) = T\(x*) +  5г(х) and F(x)  = — T^x*) — 
— Si(x). In a few steps we conclude the proof by showing that (Ti, 5i) and 
(J 2 , 1S2) are in fact double centralizers.

Step 1. The above four mappings satisfy the identities T\{xyx)  =  
= T\{x)yx, T2(xyx) — T2(x)yx, S\(xyx)  = xyS-i(x) and ^ (x j/x ) =  xyS2(x) 
for all x, у G Л.

The proof of all four identities is similar so we give it only for 6 2 . In 
order to simplify the writing of constants we shall consider 5(x) = 2E(ix)  + 
+ 2iE(x) = 4iS2(x). First we observe the equality —E (xyx ) =  E ( —xyx) — 
= E((ix)y (ix )) which results in

(2) 0 =  2xF(y)x* + E(x)y*x* + xyE(x)  + ixyE(ix) — iE(ix)yrx *

for all x, у G A  after the expansions of both sides. Next we compute

2E(ixyx) = £ ((1  + i)xy(l  T i)x) = E(x)y*x* + E(ix)y*x*— 

—iE(x)y*x* — iE(ix)y*x* + 2xF{y)x* + xyE(x)+

+ixyE(x)  + ixyE(ix)  + xyE{ix).

By (2) this reduces to

2E(ixyx) = E(ix)y*x* -  iE(x)y*x* + ixyE(x)  + xyE(ix) =

= i( — iE(ix)y*x* — E(x)y*x* -f xyE(x) — ixyE(ix))  

and again using (2 ) this further reduces to

2E(ixyx) = i( — 2xF(y)x* -  2E(x)y*x* — 2ixyE(ix )) .

This enables us to finally obtain

S(xyx)  = 2 E(ixyx)  + 2 iE(xyx)  =

= i( -  2xF(y)x* -  2E(x)y*x* -  2ixyE(ix)  + 2E(xyx))  =

= i(2xyE(x) — 2 ixyE(ix)) = 2 xyE(ix)  + 2 ixyE(x)  — xyS(x).

Step 2. E and F are real linear.

This follow’s immediately from Step 1, Lemma 15 and the fact that the 
involution of Л is real linear.
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Step 3. E and F  are bounded (real linear) operators.
The closed graph theorem is also true for real linear operators so take a 

sequence {жп} С Л which converges to zero such that E{xn) —► у ф 0. Be­
cause of Lemma 16 there exists a minimal projection p such that рур ф 0. 
Since p is minimal, there exist two sequences of real numbers a n and ßn such 
that pxnp = (a n + ißn)p■ Since xn —<• 0, we have a n —> 0 and ßn —► 0. Since 
F  is real linear, we have

F(pxnp) = anF(p) + ßnF(ip) -> 0.

Therefore

0 = lim F(pxnp) = Urn ( F(p)x*np + pE(xn)p + pxnE(p )) =
П П

= lim pE(xn)p = рур ф 0
П

where the third equality follows from Proposition 2 which implies that x* -> 
-» 0. This contradiction tells us that the graph of E  is closed and the bound­
edness of E  follows. In a similar way we prove that F  is bounded.

Step 4. (T i,Si) and (Т2, 5г) are double centralizers.
From Step 3 and Lemma 15 it follows that T\(xy) = T\(x)y and similarly 

for T2, S\ and S2. Applying this to the identity

E(xyx) = E(x)y*x* + xF(y)x* + xyE(x)

we obtain
S 2 ( x ) y * x *  + x y T \ ( x * )  = x T 2 ( y * ) x *  +  x S i ( y ) x * .

If we replace у by iy , we obtain

х у Т л { х * )  =  x S ß y j x *  =  S i ( x y ) x * ,

S 2 ( x ) y * x * =  x T 2 ( y * ) x * = x T 2 ( y * x * ) .

If we use the approximate identity pa, we obtain

x T U x * )  = lim x p a T i ( x * )  = lim S i ( x p a ) x *  = S i ( x ) x * .a a

Inserting x  4 - у  and x  + i y  instead of x , we easily obtain x T i ( y )  = S \ ( x ) y  

which means that (T i,S i) is a double centralizer. In a similar way we prove 
that (T2 , S 2) is also a double centralizer. □

In the proof of the main theorem we shall use a special situation of the 
above result.
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P roposition 19. Let Л, E  and F be as above and {pQ} the approximate 
identity of A  from Proposition 7. 7/lima E(pa) and lima E(ipa) exist, then 
there are unique elements a,b e  A  such that

E(x) = ax* + xb, E(x)  = — bx* — xa.

P roof. Denote by (T \ ,S \ ) and (T2 , S 2) double centralizers which repre­
sent the Jordan ^-derivation pair (E , F ). Denote

c =  lim.E(pa ), d = lim E(ipa).
a  ot

Take any x 6  A.  Then xpa -» x and since E  is bounded E(xpa) —> E(x)  
follows. Hence, using Observation 13,

E(x)  = ]im E(xpa) = lim (Ti(pax*) -(- S2(xpa)) =
a  a  4

= lim ( T ^ p ^ x *  + xS 2{pa)) = lim + S2{pa)x*) +

+ {xTi(pa) + xS2(pa)) -  {xT^Pc) + S 2(pa)x*)^j =

= ( lim Ti(pa ) + S2(pa)) X*  + X  lim (Ti(pa ) + S2{pa)) -  

- l im  (S 2(pa)x* + xTi(pa)) =

= cx* + xc -  limpaT2(x*) -  lim Si(x)pa =a a

= cx* T  xc — T2(x*) — S i (x ) = cx* T  xc T  F(x).

On the other hand we also have x — lima(—ix)(ipa) which results in 

E(x) = \ im E (( - ix ) ( ip a)) =] im(T 1 ((ipa)*(-ix)*) + S2 ( ( - ix ) ( ipa) ) ) = 

= lim (Ti((ipa)*) (ix*) -  ixS2{ipa)) =

= lim (iE{ipa)x* — ixE(ipa) + ixTi((ipa)*) — iS2{ipa)x*) =

= idx* -  ixd + г lim S2(x)(ipa)* — г lim ipaT2(x*) =
a  ot

= idx* — ixd + S2(x) + T2(x*) — idx* — ixd — F(x).

The above calculations give us

E{x) + F(x) = idx* -  ixd , E ( x ) — F(x) -  cx* + xc.
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If we define a = ~d£ ,c, b = then the desired representation follows. Now 
we have to prove the uniqueness. If and 0 2 ,6 2  are two pairs represent­
ing (E, F ) in the above sense, then E(pa) —► ai + b\ and E(pa ) —> 0 2  + 62 
which shows that a\ + b\ = a? + 6 2 . On the other hand E(ipa) —> i(6 i — ai) 
and E(ipa) —> «(62 -  ^2) imply аг -  61 = 02  -  62 and hence ai = 0 2 , &i = 62 
concludes the proof. □

Proof o f the Main Theorem

Let A  be a proper #*-algebra, ( X , N )  a normed Л-module satisfying 
the parallelogram law (PL) and a ox  the module multiplication. Define a 
mapping Q : X  —> A by Q(x) = N(x)2. Then we have

( 3 )  Q(x + y) + Q(x -  y) = 2Q(x) + 2Q(y),

(4) Q(a 0 x) = aQ(x)a*

for all гг, у G X  and a £ A.  Identity (3) follows directly from (PL) while (4) 
follows from Definition 9(iii) since

Q(a 0 x) = N(a о x)2 = | aN(x) |2 = aN(x)N(x)a* = aQ(x)a*.

Let {pa} be the approximate identity from Proposition 7 consisting of pro­
jections.

P r o o f  o f  t h e  M a i n  T h e o r e m . S t e p  1. Q ( - x ) =  Q(x) for all x e X.  
P r o o f . This follows from ( 3 ) ,  since we have

Q(x + x) + Q(x -  x) = 4Q(x),

Q(x  + ( - x ) )  + Q(x  -  ( - x ) )  = 2Q(x) + 2Q(-x) .

S t e p  2 .  For every x в X the limit l i m a  Q(pa 0  ^ )  exists and is equal to
Q(x).

P r o o f . Since {pa } is the approximate identity, (4) implies 

lim Q(pa о x) -  limpaQ(x)pa =ót a

- - limpaiV(a:) • lim N(x)pa = N ( x )2 — Q(x).a a

S t e p  3 .  For every a e  A  and x G X  the equality

Q(x + a о x) = Q(x) + Q(a o i ) f  aQ(x) + Q(x)a*
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holds.

P roof. From Step 2 and (4) it follows 

Q(x + a о x) — lim Q (pa о (ж + а о x)) — lim Q (pa о x + pa о (a о x)) =
a  v 7 a  v 7

= lim Q(pa o i  +  (paa) о a;) = lim Q ((pa + pQa) о ж) =
a  oi 4 7

= lim (pa + Pc,a)Q(x)(pa + р„а)* = a

= lim paQ{x)pa + lim paaQ(x)pa + lim paQ{x)a*pa + lim paaQ(x)a*pa =
a  a  a  ex

= Q(x) + limpaa • lim Q(x)pa -f lim paQ(x) • lim a*pa+
ex ex a  ói

+ limpaaQ(a;) • lima*pa =Oi Oi

= Q(x) + aQ(x) + Q(x)a* + aQ(x)a*.

S t e p  4 .  For all x £ X  and a £ A  the following holds:
(1) Q(x + pa ox)  ÍU! 4Q(x).
(2) Q(x -  pa о x) 0.

(3) Q(x -  pa ox)  0.

P roof. (1) From Step 3 we obtain

Q(x + Pa о x) = Q(x) + PaQ(x) + Q{x)pa +  PaQ(x)pa.

Since {pQ} is the approximate identity and taking into account Step 2, the 
result follows.

(2) Since Q(x — pa ox) is positive, we have r  (Q(x -  pa o i))  = T r(Q (z — 
— Pa о a;)) • Using Step 3, we have

t (Q(x -  pa о x)) = Tr ( N (x )N (x )) -  Tr(N(x)N(x)pa) -  

-  Tr (paN(x)N(x))  + TT(paN(x)N(x)pa) = ( N ( x ) ,N ( x ) ) ~  

~{paN(x) ,N(x ) )  -  (N (x ) ,p aN(x)) + (paN (x) ,paN(x)) .

Since {pa} is the approximate identity and the inner product of A  is contin­
uous, the result follows.

(3) This follows easily from what we just proved and Proposition 6(1).
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Step 5. For all x , y  E X  and A 6  C a sequence Q(x + (Apa) о у) con­
verges in the inner product topology.

P roof. If A = 0 there is nothing to prove so we may assume in the sequel 
that A is nonzero. Let xa = x + (Apa) о у. Since {pa} is the approximate

identity, paN (y ) Щ N(y).
Take £ > 0. There exists ao such that for all a ,ß  ^  «о we have || paN(y) — 

- p p N ( y )У 5Í щ . This implies, for a ,ß  as above,

IIN (x a -  xp ) \ \ 2 = ||JV((Ape -  Apß) о у) | | 2 =

= |A| 2 \\\(pa -pß)N(y) \  II2 = |A|2 ||po,JV(y) -  PßN (y ) \ \ 2 й e2.

Therefore, by axiom (v) from Definition 9, it follows that N ( x a) is a Cauchy 
sequence in A. Since A  is complete, it follows that N ( x a) is convergent and 
hence Q(xa) = N ( x a) 2 also converges in the Hilbert space norm.

Step 6 . Fix x, у G X. If  we define E , F  : A  —► A  by 

E(a) = Q(x + a o y )  -  Q(x -  а о у), F(a) = Q(y -  a ox)  -  Q(y + a ox),

then (E ,F)  is a Jordan *-derivation pair.
P roof. Take a,b € A  and consider

E{a)b*a* + aF(b)a* + abE(a) = (ab)(Q(x + a о y) -  Q(x — а о у)) +

+ (Q{x + a о y) -  Q(x -  а о у)) (ab)* + Q(a о у -  ab о х) -  Q(a о у + ab о х). 

If we apply Step 3, we obtain

abQ(x + floi/) + Q(x + a о y)(ab)* =

= Q(x + аот/ + а6 ож + aba о у) — Q(x + а о у) — Q(ab о x + aba о у)

and in a similar way

abQ(x - f lo j / )  + Q(x — ao y)(ab)* —

= Q(x — a o y - \ -a b o x  — aba о у) — Q(x — а о у) — Q(ab o x  — aba о у).

This yields

(5) E(a)b*a* + aF(b)a* + abE(a) = Q(a о у -  ab о х) -

—Q(a о у + ab о х) + Q(ab о х + aba оу  + х + а о у )  — Q(ab о х + aba о у)— 

—Q(x + а о у) — Q(ab о х  — а о у -\- х — aba о у)-\- 

-\-Q(x — а о у) + Q(ab ox  — aba о у).
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By the parallelogram law (PL) we have

(6 ) Q(ab o r |  aba oy- \-x  + a o y )  =

= 2Q(ab о x + aba о у) -f 2Q(x + а о у) — Q(ab о x + aba о у -  x — а о у) 

and

(7) Q(a£> o x - a o j /  + a; -  aba о y) =

— 2Q(ab о x — a о y) 2 Q(x — aba о у) — Q(ab ox  — а о у ~ x + aba о у).

By Step 1 we have Q(ab о x — а о у) — Q(a о у — ab о x) and so the application 
of (6 ) and (7) to (5) gives

(8 ) E(a)b*a* + aF(b)a* + abE(a) = Q(ab о x + aba о у) -f- 

+Q(x + а о у) — Q(a о у — ab о x) — Q(a о у -f ab о x)+

+Q (z — а о г/) + Q(ab ox  — aba о у) -  2Q(x — aba о у).

Another application of (PL) tells us that

Q(a о у + ab о х) + Q(a о у — ab о х) = 2Q(a о у) + 2 Q(ab о х),

Q(ab о х + aba о у) + Q(ab o x -  aba о у) — 2Q(ab o r)  + 2Q(aba о у), 

Q(x + а о у) + Q(x -  а о у) = 2 Q(x) + 2 Q(a о у), 

holds and so (8 ) can be rewritten as

E(a)b*a* + aF{b)a* + a6 £ (a) =

= 2Q(x) + 2Q(aba о у) — 2Q{x -  aba о у) =

= Q(x + aba о у) — Q(x — aba о у) = E(aba).

In a similar way we prove that F(a)bxa* + aE(b)a* + abF(a) = F(aba). Now 
it remains to prove that E  and F  are additive. This can be done by the 
technique discovered by Aczél a long time ago and since then used by Ratz, 
Szabó, Semrl, Vukman, Zalar and probably many others. We repeat this 
argument for the sake of completeness.

Take a, b £ Л. Then, using (PL), we have

E(a + b) = Q(x + a o y  + boy)  — Q(x — а о у — b о у) =

= Q(x + a o y - \ -b o y )  + Q(x + a o y - b o y ) ~  Q(x + а о у -  b о у ) -
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—Q(x — ao у — bo у) = 2 Q(x + а о у) + 2 Q(b о у)—

- 2  Q(x -  boy)  -  2 Q(a о у) = Q(x + а о у)+

+ (Q(x + а о у) -  2 Q(a о у)) + (2Q(6 о у) -  Q(x -  b о у)) -  

-<2(х -  boy)  = Q(x + а о у) + 2Q(x) -  <2(х -  а о у) -  2Q(x)+

+Q(x + b о у) -  Q(x - b o y )  = Е(а) + £ ( 6 )

and in a similar way we prove that F  is additive as well.
Step 7. For each pair (x,t/)G  X x X  there exist unique elements 

ax ŷ, bx,y £ A  such that

Q(x + a o y ) ~  Q(x -  а о у) = aXiVa* +  abx<y,

Q(y -  a ox) -  Q(y + o o i )  =  - b x,ya* -  aaXiV.

P roof. This follows immediately from Proposition 19 and Step 6 .

Step 8 . If we define [ , ] :  X  x X  -+ A  by [x,y\ = \a x ŷ, then [x,y] is 
a generalized inner product on X  in the sense of Definition 8  and so X  is 
a Saworotnow’s pre-Hilbert module. Moreover, [x, x] = N ( x )2 holds for all
x e x .

P roof. The additivity of [x,y] is easy to prove in a similar way as the 
additivity of E  and F  in Step 6 . From the definition of E  and F  it follows 
first that aX'X = bXiX. Hence

4[x, x] — 2ax x — ax x -f- bx x — lim ax xpa T Pabx x —or

= lim Q(x + pa о x) -  lim Q(x -  pa ox) -  4Q(x) = 4 N (x )2

where the last equality follows from Step 4. Thus [x,x] = N ( x ) 2 for all x G 
G X  and so [x,x] is positive and nonzero if x is nonzero. This verifies axioms
(i) and (ii) from Definition 8 .

Since Q maps into positive elements of A , E  and F  map into selfadjoint 
elements of A.  Therefore for all a G A

nx,yOi T пЬХ'У — (ax ŷa T abx ŷ) — bx ŷa aax ŷ

and from the uniqueness of the elements aXtV and bXtV it follows that bx>y — 
= a " L If we consider the relations

Q(x + а о у) -  Q(x -  а о у) = ах<уа* + abx<y,

Q(x -  а о у) -  Q(x + а о у) = -ЬУ)Ха* -  aaVtX,
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we obtain
2[ ®>y]  =  ax,y = bytx = ay,x =  *]

which verifies axiom (iii) from Definition 8 .
Take с E A  and consider

Cax ŷa T abx ŷC — c(̂ Q,x ŷ(L ab#,$/) "Ь (®д7,уП T П̂Д7,у)с

~(aXiy(ca)* + (ca)bXty) = cQ(x + a o y ) |  Q(x + a о y)c*~

—cQ(x — a о y) — Q[x — a о í/ ) c * — Q(x + cao y) + Q(x — cao y).

By Step 3 this equals

Q(x + a o y  + c o x  + c a o y ) ~  Q(x + а о у) -  Q(c ox  + cao y ) -  

-Q ( x  -  aoy  -\-cox — caoy) + Q(x -  aoy)  + Q(cox -  c a o y ) -  Q(x + caoy)+

+Q(x -  caoy)

and further, using the parallelogram law (PL),

Q(x + а о у) -f- Q(c о x + ca о у) — Q(x -\-aoy — с о х  — са о у)—

—Q(x — аоу-\-сох — caoy)-\-Q(x — ао у) + Q(coх -  саоу) — Q (х + са о у)+ 

+Q(x -  са о у) = 2Q(x) + 2Q(a о у) + 2Q(c о х) + 2Q(ca о у ) -  

—Q(x — саоу  + а о у  — с о х )  — Q(x  — cao у — [а о у — со х)) —

-Q {x  + са о у) + Q(x -  са о у) =

=  2 Q(x) + 2 Q(a о у) + 2 Q(c о х) + 2 Q(ca о у ) -  

—2 Q(x — са о у) — 2 Q(a о у — с о х) — Q(x + са о у) +  Q(x — cao у) =

= Q(x + са о у) + Q(x -  са о у) + 2Q(a о у) + 2Q(c о х ) -  

-Q ( x  -  cao у) -  Q[x + са о у) -  2  Q(a о у -  с о х) =

= Q(c о х + а о у) + Q(c о х -  а о у) — 2Q(c о х — а о у) =

= Q(c о х + а о у) -  Q(c о х -  а о у) = aCXiVa* + аЬсх,у.

Since the representation of Jordan *-derivation pairs is unique, it follows 
C&x — Q>cx,y and finally 2c[x,y] =  2[cx,y) concludes the proof of Main The­
orem.
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Open problems

Since we failed to produce an example of ’discontinuous’ А-norm N,  it 
is possible that there is none. Hence we have the following

P roblem 20. Is axiom (v) in Definition 9 redundant?

If the answer is positive, then it may be interesting to study

P R O B L E M  2 1 .  Let Q be an arbitrary quadratic functional (not neces­
sarily positive definite) on a Saworotnow’s pre-Hilbert module. Can Q be 
represented by a sesquilinear form?

On a Hilbert module we can define a relation i. by x _L у if and only if 
[ж, у] = 0. Then we have

P roblem 22. What axioms of the the abstract orthogonality in the sense 
of Ratz and Szabó this relation satisfy?

It is obvious that _L is symmetric, i.e. x _L у implies у .Lx.  It is also ob­
vious that -L is module homogeneous, i.e. x _L у implies (а о x) 1  (b о у) for 
all a,b E Л. More difficult question is already if x 1  у and x ,y  ф 0 imply 
that x, у are independent. This heavily depends on how we define the inde­
pendence in a Hilbert module. If we define x, у to be dependent if there exist 
a,b € Л such that a o x  + b o y  — 0  and at least one of a , 6 is nonzero, then 
it may happen that very few vectors would be independent. Another defini­
tion, much more appealing at first glimpse, arises from Molnár’s inequality 
described in Proposition 11.

D efinition 23. Let Ti be a pre-Hilbert module and x ,y  &H. Then ж,у 
are Molnár-dependent if and only if r([a;,j/ ] ) 2 = r (  [ж, ж]) г( [у, у]).

This definition is interesting for the Rätz-Szabo theory of abstract or­
thogonality because one has

Observation 24. If  ж, у are nonzero and x ± y  then x and у are 
Molnár-independent.

P r o o f . If ж,y  were Molnár-dependent, then

т([х,х])т([у,у]) = r ( 0 ) = 0 .

Since г([ж,ж]) and т([у,у]) are real numbers, this implies г([ж,ж]) = 0  

or т([г/, j/]) = 0. By Proposition 6 , r  is a norm and therefore [ж,ж] = 0 or 
[у, у] = 0. By Definition 8  axiom (ii) this is a contradiction. □

If n is an integer, we can define пж by 2ж = ж + ж, Зж = ж +  ж +  ж and so 
on. Then it is elementary that ж and nx are Molnár-dependent. There are 
however at least two problems with Definition 23.
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P R O B L E M  2 5 .  Is Molnár-dependence a transitive relation as the usual 
linear dependence?

P r o b l e m  2 6 .  Can one describe all elements which are Molnár-depen- 
dent with given x E 71?

Note that isometry of the involution in the Hilbert space norm (see 
Proposition 2 )  implies isometry of the involution in the trace norm and 
so (since [y ,x ] = [x,t/]*) Molnár-dependence is symmetric. Considering the 
paper [ 20]  of Rätz and Szabó we can observe that given two additive map­
pings A : A  —> A  and В : H —> A,  the function F :'H —► A  defined by F(x) = 
= A([x,x\)  + B(x)  is orthogonally additive in the sense that x ± у implies 
F(x + y) = F(x)  + F(y). This motivates our last

P r o b l e m  2 7 .  Is every orthogonally additive mapping F  : H —> A  of the 
form described above?
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r-CONVEX SEQUENCES AND MATRIX 
TRANSFORMATIONS

Z. U. AHMAD, MURSALEEN AND Q. A. KHAN (Aligarh)

1. Introduction

Let l0о and c be the Banach spaces of bounded and convergent sequences 
x = (Xk) with the usual norm ЦжЦ  ̂ = sup|xfc|, and let v be the space of

к
sequences of bounded variation, i.e.,

v = = ] T |x* -a:fc- 1l с  °°, (ж_ 1  = 0 )
fc= 0

Suppose that В = (В,) is a sequence of infinite complex matrices with 
Bi = (bnp( i) ) . Then ж G /oo is said to be Fg-convergent [7] to the value 
LimfLr, if

OO

lim (В{х)п = lim y ^ b np(i)xp = LimBx,
n —ЮО n—»-oo * ^

p = 0

uniformly in i = 0 , 1 , 2 , . . .  .
The space Fg of Fg-convergent sequences depends on the fixed chosen 

sequence В = (Bi). In case В = Bo = ( /)  (unit matrix), the space Fg is the
same as the space c and for В = B\ = it is same as the space c of

almost convergent sequences [1], where f?-1* = with

• s M * *L 0 , otherwise.

Let s be the space of all sequences, real or complex; and define

ek = ^0 , 0 , . . . ,  0 , 1  ( k th place) , 0 , 0 , . . . ) ,  

e = ( 1 , 1 , 1 , . . . ) ,

0 2 3 6 -5 2 9 4 /9 5 /$ 4.00 ©  1995 Akadém iai K iadó, B udapest
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and

dß = jx  G s:Bx = ( (B{x)n) exists I ,

Fß = { x E ( dß П loo) ■ lim tn(i, x ) exists uniformly in i ^  0
l  4 7 П —KX)

and is independent of г j,

where
OO

( 1 . 1 )  t n ( i , x )  =  ^  ^ h n p ( i ) x p .

p= 0

Pati and Sinha [4] defined r-convex sequences in the following manner:
r

A real sequence (xk) is said to be r-convex, r E N ,  if Ax*, ^  0 for all
r

к E  N,  where A xk is defined by

о 1
A x k = x k, A xk = A x k = xk -  xk+i

A xk = A for r E  N.

The space of all bounded r-convex sequences with r ^  2 is denoted by 
SC r, i.e.

SC r = | x  = (xk) 6  /qo-. A i t  ^  0 for all n E  N

and
5C 1 = {x E loo■ xk -  x k+\ Z 0}.

It is clear that S C 1 £  c.
It is well known (Zygmund [7]) that a bounded convex sequence (xk) is 

non-increasing. It is easy to prove the identity

r + s  r  /  s  \
Axfc = A I A x y t j , r ^ O  and s ^  0 ,

which shows that S C r C SC r~1, when r ^  2. Properties of bounded 
r-convex sequences have been investigated by Rath [5]. Also SC T C v.
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Let X  and Y  be any two sequence spaces. Let A = (ank) (n , k == 
= 0 ,1 ,2 ,...)  be an infinite matrix of complex numbers. We write Ax  =

OO

= (T„(a:)) if An{x) = ankXk converges for each n. If x 6  X  =>• Ax € Y ,
k=о

we say that A is an (X , F)-matrix or A G (X, X).
In [6 ], Stieglitz has characterized (c,Fß)~, (loo,Fß)-, and ( c,Fß)- 

matrices. These classes of matrices give directly the known characteriza­
tions as special cases depending upon the choice of the sequence of matrices
В = (.Bt).

In the present paper, we establish some necessary and sufficient condi­
tions to characterize (l \ ,Fß)-,  and ( SC r, Fß) -matrices, where

h
OO

fc= 0

2. Main results

We write

ApX — dpk'Ek 
k= 0

OO

and Qnkî F) — У ' bnpityQ'pk-
p= 0

Using (1.1), we get

OO OO OO OO

(2.1) tn(i, Та;) — У  ̂bpn(i)ApX =  ^  ] bnp(?) ^ ] &рк%к — ^  ̂Snkitŷ k
p = 0  p = 0  fc=0 fc=0

where the change of order of summation is justified by the following lemma 
(see [3]). We also give the proof of the lemma for completeness.

We denote

[i?,'(Aa;)]n = У '  bnp(i)Ap(x) = У ' bnp(i) У ' йркХк,
P  P  к

also

[(BiA)x]n Ьпр }̂^рк  ̂к •
к  P
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L em m a  2 . 1 . I f  Y l\b n p (i)\  <  oo f o r  each n an d  i, an d  if
p

sup
p,k

0 0

apj
j=k

<  00,

then for every x £ v
B{(Ax) = (ВгА)х.

P r o o f . B y  p a r tia l su m m a tio n , for x E v

(*) ^  '  d p k % k  — ^   ̂ d p k ^ X k  X k —l )  { X —i  — 0) ,

к к
oo

w h ere dpk = X] apl■ By ^he h y p o th e s is , dpk is b o u n d ed  for all p,k.  T h u s  
l=k

[Bj(Ax)] r ~ 'У , bnp{i) ^   ̂dpk(xk Xk—i) — 
p к

— ^  ^к—i) ^  ' bnp(i)dpk = [(ДгА)а;| ^
i  p

(w h ere  th e  in version  is ju stified  b y  a b so lu te  c o n v erg en ce ), s in ce

lim xk }  bnp(i)dpk -  0 .k—*oo
P

T heorem 2.2. If В = ( bnp(i)) is a sequence of infinite matrices such 
that Yl\bnP(i)\ < 0 0  f or еас/г n and i, and A = (ank) is another matrix such

p
that bnp(i)apk is of the same sign for each n ,p,k  and i, then A E (/1 , Fß) if 
and only if

( i)  sup  
I p

£  alk
k—p

< 0 0 ,

( ii)  there is a constant К  such that for m , г ^  0; sup X] 9nk{i)
k=m

Ü K ,

( iii)  a к — d m  gnk(i) exists uniformly in i for each fixed k.

P r o o f . Sufficiency. It is en o u g h  to  sh ow  th a t  under c o n d itio n s  ( i) ,  ( ii)  
an d  (ii i) ,

( 2 .2 ) lim  У ^ а пк(г)хк = У ' а кхк, u n ifo rm ly  in i,n—ЮО  ̂ J
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whenever x  — ( xk )  G l\- From the conditions, we observe that a*. 6  /<*>, 
so that Y a kxk converges absolutely for (xk) G l\. Similarly, the series 

к
Y  9 nk(i)xk also converges absolutely for each fixed i and n.

к
For a given £ > 0, let k0 G N  be such that

(2.3) Y l  1**1 <
k>k0

By (iii), we can find n0 G N  such that

(2.4) Y  [Snk(i) -  a k\ x k 
кйко

< £,

for all n > no and uniformly in i. Then

^  ' [ ä n k ( i )  Ö/jj X k < ^   ̂ &k\  %k
к к^ко

+ Y  19nk(i) -  а*I \xk\ S
k>ko

й  (2K + l)e,

for all n > n0 and uniformly in i, by (2.4), (2.3) and (ii). This proves (2.2) 
and hence the sufficiency.

Necessity. Condition (i) follows from the fact that A\l\  —► /rx>. Since 
ek G !i, the necessity of (iii) is obvious.

For fixed p and j ,  it is clear that

j
X  ► ^  '  Чркх к 

k=0

is a continuous linear functional on l\. We are given that, for all x 6  l\, it 
tends to a limit as j  —> oc (for fixed p) and hence, by the Banach-Steinhaus 
Theorem [2], this limit Apx is also a continuous linear functional on l\.

Put for i ^  0
qi(x) = sup| tn(i, Ax)\ ,

П

then qi is a continuous seminorm on /j, and (</,) is pointwise bounded on l\. 
Therefore, by another application of Banach-Steinhaus theorem, there exists 
a constant К  such that

(2.5) qi(x) й K\\x\\.
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Apply (2.5) with x = (Xk) defined by

Í 1 , к ^  m, 
\  0 , к < m.

Hence (ii) holds.
This completes the proof the theorem. 
Now, write

w  -« /V

(2-6) /nfc(0 = X  ̂ р(г)ттгт ̂ 2 /A k_ javj —
P = 0  i = i

A: 1 oo A;* A . w л л
= X ] T ^ T  X ] b n p ( i ) a pj  =  ^  Tj z [ s n j ( i ) ,

j = 1 p= o j=i

by Lemma 2.1, where A£_J- denotes the binomial coefficients.

T heorem 2.3. If  В — (bnp(i)) is a sequence of infinite matrices such 
that £|&np(0| < 00 f or each 71 an^ *» then A E (S C r , F ß ) if and only if

(i) sup
l,p

£  alk
k =p

< OO,

(ii) there exists a constant M  such that for m , i  — 0 ,1 ,2 ,...

sup
71 E  Ä ’« S M  (r ä  2),

k=m

(iii) /З!г) = lim / £ > ( 0  uniformly in i, for each k;
K n —►OO

00 f \
(iv) = lim £  /„fc (*) uniformly in i.

n~*°° k=о

For our convenience we will write ßk and ß for and respectively. 
P r o o f . Sufficiency. Suppose that conditions (i)-(iv) hold and x E SCr. 

By virtue of condition (i), it is clear that Ax is bounded. Now conditions
(iv) and (i) imply that

OO

X  ä w  (r = 2)
A:=0
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converges for all i, n. Hence if we write

hí2(0 =
l=k

then h ^ ( i )  exists, also for fixed г,п, we have

( 2 .6)

Since

,(r)
l nk 0  as к —»• oo (r ^  2 ).

(2.7)
1=0

Now

( 2.8) = E I  лп*(0 -  í l + i t t
k=0 k=0

,(Г)г,Л _  i »

= £ hnk(0 (x* - xb-l) 
k= 0

by (2.6) and boundedness of xk- Therefore,

Ё /$ (* )**
fc= 0

= Ё1Л2(*)1
k=0

(by condition (ii)) for x E S C r . Also, by (2.8)

(2.9) I™, E  /£?(•)** = E (* *  -
k=0 k = 0

By (2.7) and conditions (iii) and (iv), we have

(2-1°) Ä  Än*(i) = (*') -  E  A r)<
И /

fc-i
f(r)/

/=o

Xk =

S M||x||

*2 (0 .

0  = / » ~ 5 > -
1=0
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Therefore, (2.9) and (2.10) give

( 2 . 11)  =  =
к к  V b  о /

= ß lim xk + У^  x kßk-
k —+ oo L 'к

oo / v
Thus lim £  fnk {i)xk exists, and hence by (2.6)

" fc=o

°o к Ar~ 1
Ä »  E  E

к —0 j = l

exists. Therefore
OO

lim У ] д пк(г)хкn—►oo z—*
/c=0

exists and this implies that Ax  E Fß for x £ SC T.

Necessity. Condition (i) follows from the fact that A:SCr —*■ loo- Since 
e*;,e £ SC r , the necessity of (iii) and (iv) follows immediately.

For fixed p and j ,  it is clear that

x —►
j

^   ̂ßpfĉ -fc 
k =0

is a continuous linear functional on SC r. We are given that for all a; £ SC r , 
it tends to a limit as j  —► oo (for fixed p) as in (2 .1 1 ) and hence, by the 
Banach-Steinhaus Theorem [2], this limit Apx is also a continuous linear 
functional on SCT.

Fix r, and write, for i ^  0

Qi(x) = sup /£?(*)**
k=0

then Qi is a continuous seminorm on SC r, and (Qi) is pointwise bounded on 
S C T. Therefore, by another application of Banach-Steinhaus theorem, there 
exists a constant M,  such that

( 2 .12) Qi(x) ^  M\\x\\.
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Now apply (2.12) with x = (Xk) defined by Xk = 1 (к ^  m), 0 (к < m). Hence 
(ii) must hold.

This completes the proof of the theorem.
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MINIMAX THEOREMS WITH ONE-SIDED 
RANDOMIZATION

J. KINDLER (Darmstadt)

0. Introduction

In [9] the following generalization of a minimax theorem of Peck-Dulmage 
[18] and König [14] was derived:

T h e o r e m  A. Let Y  be a countably compact topological space and F  a 
nonvoid set of lower semicontinuous functions f  : Y  -* RU  {oo} such that 
for the arithmetic mean <p(a,ß) = | ( a  + ß) we have

( 1 )

V/1 ,/2  G F  3 /0  G F  : /0  £  tp i fu f i )  f 0(y ) Z  А М у Ш у ) )  , У €  у ) .

Then there exists a probability measure и on the Borei о -algebra B ( Y ) such 
that

(2 ) sup / fd v  — sup inf f(y)-feF J feFytY
Theorem A can be proved by applying an appropriate integral represen­

tation theorem to König’s generalization [13] of Ky Fan’s minimax theorem
[4]:

T h e o r e m  В (Ky Fan-König). Let Y  be a compact topological space and 
F a nonvoid set of lower semicontinuous functions f  : Y  —* RU  {00} such 
that for tp(a,ß) = if(a,ß)  = ^(a + ß) we have ( 1 ) as above and

(3) Vt/i, t/2 G Y  3y0 e Y  V/ £ F : f ( y 0) й  V>(/(i/i), /(i/2 )) •

Then there exists a z £ Y  such that

(4) sup f ( z )  = sup inf f(y) .
f e F  f e F y e Y

In recent years quite a lot of generalizations of Theorem B, where the 
arithmetic means in (1) and (3) were replaced by “generalized means”, have
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been published [8 ], [15], [16], [21], [22]. We shall use here a modified version 
of the main result in [12] to derive a fairly abstract version of Theorem A.

1. A general (Vs^O-minimax theorem

For the rest of the paper let У be a non void set, D an infinite convex 
subset of R  U {oc}, and F  a nonvoid set of functions /  : У —> D with

(5) in f / ( » ) € £ ,  f  £ F.
y e Y

We set D° = D П R  — {inf D} and Do = D -  {sup D} .
For functions £ : D x D -+ D we consider the following properties:
(a) £ is nondecreasing in each variable,
(b) | ( a , a )  = a, a £ D,
(c) + The functions £(-,a) and £(a, •), a  G D0 , are continuous from the 

right on D° П Do.
(c) ~ The functions £(-,a) and £(a, •), a  G D°, are continuous from the 

left on D° П Do.
(d) + a ,ß  G D П R ,a  ^  ß => £(a,/3) < о V/?,
(d) ~ a ,ß  G D П R ,a  ф ß => £(a,ß) > а  Л ß,
(e) a , oo G D =>• £(a, oo) = £(oo, a) = oo,
(f) + £(•, /?)"(a) —► ß and £(/?, •)"(«) -* ß (n —*■ oo) for all a, ß  G D П R  

with а > ß,
(f)“ £(•,ß)n(ot) -* ß  and £(ß, ■)n(a ) -»■ ß (n -> oo) for all a , ß G D П R  

with a < ß.
P r o p o sit io n  1. Let (р,ф : D х D —> D be given such that conditions (1), 

(a), (b), (f)~, and (e) are satisfied for £ = and (3), (a) ,(b), and (f)+ hold 
for £ = ф. Then

(6 ) inf maxg(y)  ^  sup inf f (y )  for all finite G C F.
y € Y  g £ G  f e F y e Y

This result has been proved in [12]. Here we need the following modifica­
tion which is also closely related to the (ф, <^)-minimax theorems of Simons 
[21]:

P r o p o sit io n  2 . Let <р,ф : D x D -* D be given such that conditions (1 ) , 
(a), (c)_ , (d)~, and (e) are satisfied for £ = and conditions (3), (a), (c)+ , 
and (d)+ hold for £ = ф. Then condition (6 ) holds.

P r o o f . 1. For a G D — {inf D} choose a strictly increasing sequence (ßn) 
i n ö H R  with ßn t a. Then tp(a,a) ^  limn_oo <p(ßn+i ,ß n) ^  И тп_оо ßn = 
= a. Hence, <p(a,a) ^  a , a G D, and similarly ф(а,а)  ^  a, a  G D. Now 
define (p*(a,ß) = <p(a,ß) Л (a  V ß) and ф*(а,ß) = ф(а,ß)  V (а Л ß), a G D ,
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ß G D. Then we have <£*(«, a) = ф*(а,а) = a , a  G D, and all assumptions 
remain valid when <p and ф are replaced by <p* and ф*. Hence, without loss 
of generality we may assume that condition (b) is satisfied for £ = <p and 
£ = ф.

2. Now, as in the proof of Example 2 in [12] it follows that £ = <p satisfies 
(f)~ and £ = ф satisfies (f)+ . Hence, Proposition 1 can be applied.

2. Main result: finitely additive version

In the sequel M ( Y ) will denote the set of all finitely additive probability 
measures on 2Y , and P(Y)  is the set of all и G M (Y)  with finite support.

P r o p o sit io n  3 . Let <p: D x D —> D be a convex function such that con­
ditions (1), (a), (d)~, and (e) with £ = <p are satisfied. Then

(7) inf max gdq й  sup inf f(y)  for all finite G C F.
q e P ( Y )  g £ G  J  f e F y e Y

P r o o f . We set /(</) = /  fdq  for f  E F ,  q £ P(Y)  and F  = { f  : /  G 
G F } .  For / ь / 2  € F  choose / 0  G F  according to (1). Then by the convexity 
of ip

(8) 7 о ( ? ) М Ш , Ш ) ,  q e P ( Y ) .

Of course, for qi,q2 G P(Y),  qo = \(q\ + 9 2 ) and ф(а,Р) = \ ( a  + ß) we have

(9) /(«>) = 0 (7 ( t t ) , / ( f t ) )>  f £ F .

Now, as every convex nondecreasing function 77: D —► D \s continuous on 
Do, the assumptions of Proposition 2 with F  replaced by F  are satisfied. 

Now we are in the position to prove the first version of our main result.

T h eo r em  1. Let £ : D x D —*■ D be a convex function such that condi­
tions (a), (d)~, and (e) are satisfied and let q : D -+ D be a strictly increasing 
convex function with inverse rj_1. Suppose that condition (1) is satisfied for

<p(ot, ß)  := ?7- 1  (£ ( 77(a), rj(ß)) У  a G D, ß  G D.

Then condition (2) is satisfied for some v G M(Y).

The special case £(a,/3) = \ ( a  + ß) and 77(a) = a  gives Korollar 3.2 in
[9].
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P roof. Step 1. The assumptions of Proposition 3 are satisfied with ip 
and F  replaced by £ and F  : = { / : =  g о f  : f  £ F}. Hence, for finite G C F 
we have

a := inf max / qdq < sup inf /  =: в. 
q e P ( Y )  g e G  J  f e F y t Y

From the convexity of g we infer f  gdq ^  g( f  gdq), q £ P ( Y ) , g £ G. Setting 
g(sup D ) = sup r](D) in case sup D ^  D we obtain

T1( inf max
g e P ( Y )  g e o

inf max 
g e P ( Y )  g e e

<

^  a <? ß ^  g (  sup inf f (y ) ) ,  
' f e F y e Y  '

i.e., condition (7) holds.
Step 2. Set f (v )  = f  fdv,  f  £ F, и £ M (Y) ,  and F  = { /  : /  £ F}. Then

M (Y)  is a compact subset of [0, l ]2 and every /  6  F  is lower semicon- 
tinuous. (Let H be the set of all functions h : Y  —> R  with finite range. 
Then, by definition, h(v) — Yltetttv({h = t}), h £ H,  and f (v )  — sup{h(v) : 
f  ^  h £ H }, /  £ F .) By Step 1 the system of closed subsets

M ( f ,  6 ) {г/ £ M (Y)  : f (v )  ^  <5}, /  £ F, 6 > 7  := sup inf f ( y )
S e F y e Y

has the finite intersection property. Hence, there exists a v £ П {M (/, 6 ) : 
f  £ F, 6 > 7 }, and we obtain supj^F J  fd v  ^  7 . The converse inequality is 
obvious.

The following example shall protect against possible misinterpretation:

E x a m p l e  1. Suppose that D — (0,oo) and f  £  F  =>• 2 / £ F. Then con­
dition (2) is satisfied for some v £ M(Y).

This follows from Theorem 1 with £(a, ß) = 2a and g(a) = a.
Unfortunately, this result is trivial, because our general assumption (5) 

together with “ /  £ F  => 2 / £ F ” implies s u p ^ ^ in f^ y  f(y)  — 0 0 ,  so con­
dition (2) holds for every v £ M (Y) .  On the other hand, condition (5) is 
indispensable. (For Y  = R, g(y) = ey, h(y) =  e-y , and F = {n-g : n £ N} U 
U {n ■ h : n £ N} we have supye^ in fy6y f ( y ) = 0 < 0 0  = supj ^ F f  f d v , v £ 
£ M(Y). )

If we try to circumvent this dilemma by taking D = [0,oo), then the 
above proof is not applicable any more because now condition (d)-  is vio­
lated.
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E x a m p l e  2 .  Let MC~(D)  denote the set of all convex functions £ : D x  
X D —> D with properties (a), (b), and (d)_ . (It is easy to verify that every 
“convex mean” £ £ M C ~(D ) automatically satisfies condition (e).) We con­
sider some examples:

For Л £ (0,1) the weighted arithmetic means

= Xa + (1 -  A)/?, a £ D, ß £ D

are affine, hence /.i \ £ M C ~ ( D ). Also the projections -Ki(a,ß) = a and 
TT2(a,ß) = ß are affine, thus their maximum

M (a,ß )  := a  V ß = -K\(a,ß) V ir2(a,ß),  a £ D, ß  £ D

is convex, and we have M  £ CM~(D).  Closely related are the weighted min- 
max means

T\(a,ß) =  Aa V ß + ( 1  -  A)a Л  ß, a £ D, ß £ D

introduced by Geraghty and Lin [7]. From the identity T\(a,ß)  = ( 1  — A)(a + 
+ /?)-(- (2A — l)a  V ß we infer that t\ is convex, affine, concave for 1 ^  A > | , 
A = ^ , | > A ^ 0  respectively. Further examples can be found in [2].

New “convex means” can also be constructed from old ones. Suppose 
that <po,<pu<p2 £ MC~(D)  and set <p(a,ß) = <po(<pi(a,ß),<p2(<*,ß)), a £ D, 
ß £ D. Then <p £ MC~(D).  In particular, the set M C ~(D ) is convex and 
maximum-stable.

3. Main result: countably additive version

A triplet (X,Y,a),  where X  and Y  are nonvoid sets and a is a function 
a : X  x Y  -^ R U  {°o}, can be interpreted as a (two-person zero-sum) game, 
where X  and Y  are the sets of (“pure”) strategies of player 1 and 2 and a 
is the pay-off function. (If player 1 chooses a strategy x £ X  and player 2 
chooses у £ Y  then player 1 receives the amount a(x,y)  from player 2 .)

There are many instances in game theory and, especially, in statistical 
decision theory, where player 2 , say, uses mixed strategies whereas player 
1 only applies pure strategies. If one is willing to admit finitely additive 
probability measures as mixed strategies, then one obtains the right-sided 
finitely-additive mixed extension (X , M(Y),  Á) with expected pay-off

( 1 0 ) A(x, I/) = J  a(x,y)o(dy), x £ X, и £ M(Y).
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Here A is well-defined if every function a(x, ■), x £ X ,  is bounded from below 
(compare Step 2  of the proof of Theorem 1 ), and the minimax relation

min sup A(x,v) = sup min A(x,v)  
кем(У) x€X xex I/ем(У)

holds iff condition (2) is satisfied for F  = {a(z, and for some v £
£ M(Y).

In classical game theory, however, mixed strategies for player 2 are count­
ably additive measures defined on some <7 -algebra В on Y.  In order that (10) 
remains well-defined, we must assume that the functions a(x, •), x £ X ,  are 
/^-measurable. Moreover, В should contain the singletons because one wants 
to embed the pure strategies into the set of mixed strategies.

In the following, let a paving V  in Y  (i.e., a nonvoid V  C 2Y) be given 
which contains

K ( F ) : =  {{ / ^ «} : /  £ F , a  £ r | ,

the system of level sets of F. Let В = B ( V  U 5 (F )) be the cr-algebra gen­
erated by V  and the set *S(F) = j{y} : у £ F  j  of singletons and let P(Y,B)  
denote the set of all (countably additive) probability measures on B.

Lemma 1. Let the paving V  Э 11(F) be countably compact (i.e., every 
countable Q c V  with the finite intersection property has nonvoid intersec­
tion). Then for every v £ M( Y)  there exists а т £ P(Y ,B) with f  f d r  ^  
^  /  fdv ,  f  e F.

P roof. Of course, Vo := V  U 5 (F ) U {0,F} and hence the lattice gen­
erated by Vo is countably compact as well (cf. [19], Lemma 1.3, 1.4 or
[10], §3). By Theorem 5 in [11] there exists a r  £ P(Y ,B) with t (A)  ^  
^  v(A), A £ V.  As /  £ F  is bounded from below, we may assume f (y)  > 0, 
у £ F . Then /„ := 2~n l{/>»2—”} T /• From 11(F) C V  we infer /  f d r  =
= limn-oo /  f ndr ^  lim„_*oo /  f ndv ^  /  fdv.

Now, by combining Theorem 1 with Lemma 1, we obtain:

T heorem 2. Let the assumptions of Theorem 1 and Lemma 1 be satis­
fied. Then condition (2) holds for some v £ P(Y, B).

If we want to apply Theorem 2 we have to find a countably compact 
paving V D Ll(F). Sometimes, a candidate for V  is

1Zo(G) { {g ^  0} : g £ G}

with appropriate G C E Y, E  C R  U {oo}.
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C o r o l l a r y  1. Let the assumptions of Theorem 1 be satisfied and let 
E c R U  {oo} and G C E Y be given such that 7Zo(G) is countably compact 
and contains 1Z(F). Then condition (2) is satisfied for some v £ P(Y,B) 
with В = B(TZ0(G) U < S ( Y ) ) .

Lemma 2 (cf. [9], Satz 4.4). Let G C [0, l]r  such that for every sequence 
(gn) in G there exists a sequence (7 „) in (0, oo) with 7 n < oo such that 
g ln 9 n attains its infimum. Then IZo(G) is countably compact.

P r o o f . Let gn G G and yn £ У with gi{yn) = 0, г ^  n £ N. For g as 
above choose y* £ У with g(y*) = m in^y  g(y). From g(yn) й  E ^ n + i 7«, 
n £ N, we infer g(y*) =  0, hence gn(y*) — 0 , n £ N.

E x a m p l e  3 (the standard situation). Let У be a topological space, C{Y) 
the set of all continuous functions /  : У —► R  and L S C (Y ) the set of all lower 
semi continuous f  : Y  —► R  U {oo}. Here

a) lZo(C(Y)) = 1Z(C(Y)) is countably compact iff У is pseudocompact,
and

b) H (L C S(Y ))  = 1Zo(L SC (Y ))  (=system of closed subsets) is count­
ably compact iff Y  is countably compact.

P r o o f , a) Apply Lemma 2 to G — C (Y ) П [0, l]y , b) is obvious.
E x a m p l e  3.1. Let Y  be endowed with a countably compact topology 

such that every /  £ F  is lower semicontinuous, and let q : D —► D be a strictly 
increasing convex function. Suppose that for some A £ (0,1) condition (1) is 
satisfied for

<p(a, ß) = T) - 1 ( Xq(a) + (1 -  X)q(ß)) , a ,/? £ R u { o o } .

Then there exists a probability measure v on the Borel ст-algebra B(Y) (resp. 
on B (B (Y )  U S(Y )) ) such that condition (2) holds.

The special case fi =  RU {oo} , 77(a) = a , and A = \  gives Theorem A. 
P r o o f . Let £ = p \  as in Example 2. Then the assumptions of Theorem 

1 are satisfied. By Example 3b) and Corollary 1 the assertion follows.

Lemma 3. Let nonvoid sets E  C R U  {0 0 } and G C E Y be given such
that

( И )

for every nondecreasing sequence (gn) in G there 

exists а у* £ У with sup gn{y*) = sup inf gn(y).
" €  N n 6 N y 6 Y

Suppose that there exists a function Ф : E  x E —*■ E  with the following prop­
erties:

(i) a £ E ,ß  £ E  => Ф(a ,ß )  ^  a V ß,
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(ii) a  £ E ,ß  £ E , a  V ß ^  0 => Ф(а,/3) ^  0, and
(iii) gi,g 2 G G => ${g\,g2) 6 G.

Then Tlo(G) is countably compact.

P r o o f . For n £ N let gn £ G and yn £ Y  with gi(yn) й  0, i й  ni be 
given. Set hi = gi and, inductively, hn = Ф(/гп _ 1  ,gn) , n  ^  2. Then hi ^  
^  /i2 = . . .  ^  hn £ G, n £ N. Hence there is a y* £ Y  with supngN hn(y*) = 
= supn6NinfyeYhn{y) ^  supngN hn(yn) й  0. Therefore, gn(y*) й  hn(y*) й  
^  0, n £ N.

Example 4 (compare [9], Satz 4.5). Suppose that the assumptions of 
Theorem 1 are satisfied. Let G C E Y be given such that the Dini-relation
(11) and one of the following conditions (i), (ii) or (iii) hold:

(i) a) E — R U {oo}, b) gi £ G,g2 G G => g\ V <72 £ G, and c) /  £ F ,a £ 
E R 4 / —a 6 G ,

(И) a) E — [0,oo], b) gi £ G, g2 G G gi + g2 G G , and c) /  £ F, a £ 
e R 4  ( f ~ a ) V O e G,

(iii) a) E = [0,1], b) gi £ G, g2 G G =$■ gi + g2 — gi • g2 6 G, and c) f  £ 
£ F ,a  E R 4  [ ( / - а )  V O] A U G .

Then condition (2) is satisfied for some и £ P (Y , В ) with В = B(1Zq(G) U 
U S (Y )) .

P r o o f . By Lemma 3, applied to Ф (а,/? ) =  a V /3 ,  а  +  /?, от a  +  ß  -  a ß ,  
respectively, conditions a) and b) imply that 1Zo(G) is countably compact, 
and 7Z(F) C Fo(G) follows from c). Hence, the assertion follows with Corol­
lary 1.

4. Concluding remark

We derived our Theorem 2 with the aid of Lemma 1. We could as well 
have used Fuchssteiner’s integral representation theorem [5], [6], say, as in 
the proof of Satz 4.4 in [9] combined with the well-known fact [1], [3], [17] 
that every tp £ P(Y,Bo), Bo a cr-algebra on Y , can be extended to a v E 
£ P(Y,B), В = В(Во U <S(T)). Other possible substitutes for our Lemma 1 
can be found in the papers [20], [23] of Pollard and Topsoe.

Note added in proof (May 23, 1995). Several applications of the present 
results can be found in my recent paper Minimax theoreöis with applications 
to convex metric spaces, Colloq. Math., 68 (1995), 179-186.
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SHORT NOTES ON QUASI-UNIFORM
SPACES

II. DOUBLY UNIFORMLY STRICT 
EXTENSIONS

J. DEAR (Budapest)*

Uniformly strict extensions were introduced in [1], called there “strict 
extensions” (see §0 for the definition). It is the aim of this note to give a 
complete description of the doubly uniformly strict extensions (cf. [6] Prob­
lem 58A): V is called a doubly uniformly strict extension of U provided that 
V is a uniformly strict extension of U, and V-1 of U~x. We shall also con­
sider the smaller class of doubly uniformly regular extensions (see §2 for the 
definition). Formally, there is only a slight difference between the two re­
sults: the filters figuring in the first one are replaced by the associated grills 
in the second one.

§0. Uniformly strict extensions

0.1. Throughout this paper X  will denote a non-empty set, U a quasi­
uniformity on A' and Y  J  X . A quasi-uniformity V on Y  is an extension of 
U if V|X = U and x is Tp-dense in Y; V is a double extension if, in addition, 
X  is -dense in Y . (The terminology was different in [4] to [9].) For a G 
G У, f1(a) denotes the trace on X  of the 7y-neighbourhood filter of a, called 
the trace filter of a; in the case of double extensions, f-1 (a) denotes the trace 
on X  of the Tv~i-neighbourhood filter of a, and (f-1(a), f^a)) is called the 
trace filter pair of a. In other words:

f (e )  =  { F 'a n  X :V  G V} (i = ±1).

V is said to be an extension (double extension) for the filters f1(a) (for the 
filter pairs ( / _1(a), ^ ( a ) ) ). We shall also use other self-explanatory expres­
sions: V induces the trace filters (filter pairs), V is compatible with them, 
etc.

Assume now that trace filters f1(a) are prescribed, and we are looking for 
extensions of U inducing them. The following conditions are necessary and 
sufficient for the existence of such an extension (cf. [1]): (i) for x G X ,  ^(ж) 
is the 7^-neighbourhood filter of ж; (ii) each trace filter is round. (A filter

* R esearch su p p o rted  by  H ungarian  N ational F oundation  for Scientific R esearch, G ran t 
No. 2114.
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f is round, if for each S  E f there are T  £ f and V £lA  such that U[T] C S.) 
There is a double extension for prescribed trace filter pairs (f-1 (a), fx(a)) iff 
the following conditions hold ([5] 6.1): (i) for x  £  X ,  (f-x (x), fx(x)) is the 
neighbourhood filter pair of x (i.e. f‘(x) is the Тц,-neighbourhood filter); 
(ii) each trace filter pair is round and Cauchy. (A filter pair (f_1, f1) is round 
if f* is £U-round (i =  ±  1), and Cauchy if for any U (Eld, S - 1 X S\ C U holds 
with suitable 5,- E f .)

When trace filters (filter pairs) are prescribed, we shall always assume 
that the above conditions are satisfied, and that the trace filters and the trace 
filter pairs are denoted by fx(a) and by (f_1(a), fx(a)) (a £ Y ), respectively. 
The same notations will be used when the trace filters (filter pairs) are not 
prescribed, but induced by a given (double) extension.

0.2. The quasi-uniformity V on У is a uniformly strict extension of U 
([1] §7; see also [6] 1.9) if for each V £ V there is a W  E V such that

(1) s1(W a П X ) c V a  (a E У), 

where
s \A )  = {a G Y : A £  f(a)}  (А С X , i = ±1).

(Note that the points in (1) are taken from У, not from У \  X .) This is a 
uniform version of the well-known notion of a strict extension of a topology 
(cf. [6] 1.9). A doubly uniformly strict double extension V (meaning that 
V-1 is also a uniformly strict extension oiU ~l ) will be called shortly a doubly 
uniformly strict extension. V is a doubly uniformly strict extension of U iff 
for each V  G V there is a W  G V  such that

(2) s \ W la П X )  C V'a  (a £ Y , i  = ±1).

Unlike in [1] to [6], we do not consider (double) extensions compatible 
with a (bi)topological extension of the induced (bi)topology, since if V is 
a uniformly strict extension of U then 7p is a strict extension of Тц ([1] 
7.1), and a strict extension of a topology is determined by the trace filters; 
hence the problem of looking for (doubly) uniformly strict extensions in a 
(bi)topological space is equivalent to the same problem with prescribed trace 
filters or filter pairs.

0.3. Let some trace filters be prescribed in (X , U ). [1] 7.4 gives a compli­
cated necessary and sufficient condition for the existence of a uniformly strict 
extension inducing these trace filters. It is not known whether the following 
much simpler necessary condition is also sufficient ([6] Problem 13): for any 
U £ U there are Uq £ U and sets S{a) G f1 (a) (a E У) such that S(a) C Ux 
whenever x £  X  and U q x  £  f1 (a), (it does not change this condition if we 
replace У by У \  X .)
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Unlike the case of strict extensions of topologies, there can exist several 
uniformly strict extensions inducing the same trace filters ([1] 7.4). A strict 
extension of a topology is always coarser than any other extension compatible 
with the same trace filters. Uniformly strict extensions behave differently: 
in the example below, there are a uniformly strict extension and a not uni­
formly strict one inducing the same trace filters such that the latter is coarser 
than the former.

Example. Let X  = N 2, Y  = и  x N, and take the discrete uniformity U 
on X . Consider the trace filters

(1) f1 ((0, fc)) = f i l {(N x {k}) \F : F  is finite} (k G N).

Define the quasi-uniformities V and V' on Y  by the following quasi-metrics:

d ((0 ,k), (n,k)) = 1/n ( f c ,neN) ,

d'((°,fc), (n,m)) = I if k, n G N, m = k, 
if k, m ,n  G N, m ф к ,

and d(x ,y ) = 1, d '(x ,y ) = 1 for pairs x ф у not mentioned in the formulas. 
d' Ú d, thus V' is coarser than V. Both are extensions compatible with the 
trace filters (1). V is a uniformly strict extension, since

s1 (U(£)(d)a П X )  = U(£)(d)a (a G Y, 0 < £ < 1).

(Here = {(a,b): d(a,b) < e}.) But V' is not uniformly strict:

s ^ U f^ d 'X 0 ,к)ПХ)  C U (1)(d')(0,k)

does not hold if 0 < e < 1 and к > 1/e. (The left hand side contains Y  \  X .)
□

0.4. [1] 6.3 gives a sufficient condition for the existence of a uniformly 
strict extension: assume that the trace filters are stable. (A filter f is stable if 
for each U e H , f] U[5] 6 f.) The construction in [1] 6.3 is equivalent to the 

sei
following one (cf. [6] 1.7, [8] 6.2, [3] 1.6): to each U £U  assign an entourage 
5)f/ on Y  defined by

a 5̂ U b iff U[5] G fX(&) whenever S G ^(a);

then { 5^U:U g 77} is a base for a uniformly strict extension ^U. The fol­
lowing simple statement will be needed in §2:
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P roposition. For stable trace filters, b̂ U is the finest uniformly strict 
extension.

P roof. Let V be a uniformly strict extension for the given trace filters. 
For V  G V, take W  G V such that sl (W 2a D X ) C Va (a G У), and put U =  
= W \X . We claim that 5̂ U С V, implying V E 5^U, V C b̂ li.

Assume a^U b. Then U[S] G fx(6) holds with S = W a H X  E fx(o). Thus 
b E sl (U[Wa П X ] ) , and U[Wa f l l ] c  W 2a П X , hence b E Va. □

§1. Doubly uniformly strict extensions

1.1. We are going to show that the doubly uniformly strict extensions 
are exactly those that can be obtained through a certain construction de­
scribed in [5]. It will then follow that any doubly uniformly strict extension 
is coarser than any other double extension inducing the same trace filter 
pairs; in particular, there can exist only one doubly uniformly strict exten­
sion for prescribed trace filter pairs.

Let us first recall some definitions and results from [5]. A C a u c h y  filter 
pair (f-1 , / 1) in (X ,li)  is weakly concentrated if for each U G li  there is a 
V E li  such that xU  у whenever V x  G f1 and V~4y G f-1 ; a family of Cauchy 
filter pairs is uniformly weakly concentrated if the above condition holds for 
each filter pair, with V  depending only on U, but not on the filter pair (cf.
[5] 7.1, 7.7 and 7.15). If trace filter pairs are prescribed then to each U E li  
we assign an entourage 4U on Y  as follows:

a 4U b iff there are A G f_x(a), В  G fx(6 ) with A X В  C U.

{4U: U G U} is always a base for a quasi-semiuniformity (=a filter consisting 
of entourages) 4U on Y  such that 4l i \X  =U  ([5] Lemma 8.5 b ) ) . 4U induces 
trace filter pairs coarser than the original ones ([5] Lemma 8.9 b); even when 
4li  is not a quasi-uniformity, we can define neighbourhood filters, hence trace 
filters, in the usual way, although the neighbourhood filters will not always 
generate a topology). If V is a double extension for the prescribed trace fil­
ter pairs then 4U С V ([5] Lemma 8.12; (double) extensions are assumed to 
be quasi-uniformities) . 4li  is a quasi-uniformity iff the .prescribed trace filter 
pairs are uniformly weakly concentrated; it is a double extension compatible 
with the given trace filter pairs iff, in addition, the trace filter pairs are min­
imal Cauchy; if so then 4U is the coarsest double extension for these trace 
filter pairs ([5] Theorem 8.13 and Lemma 7.13). A family of filter pairs satis­
fying both conditions is called uniformly concentrated. It is enough to know 
that the filter pairs (f~x(p), fx(p)) (p E Y )  are uniformly concentrated. See
[5], §7 for some equivalent formulations of the above conditions.
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Lemma. A quasi-uniformity 4U belonging to uniformly concentrated 
trace filter pairs is always a doubly uniformly strict extension.

P roof. For reasons of symmetry, it is enough to show that 4U is uni­
formly strict. Given V  G 4H, take U G U with 4U С V, and then pick W  G 4U 
such that W 2|X C U. We claim that 61(Wa П X ) C Va for each a G Y .

Assume 6G s1(VFafl X); this means that Wa П X G ^(6). Evidently, 
I T 'a n X  G f-1 (a). Now (1 Г 'а П Х ) X (WaHX) C W2|X C U, thus a 4U b, 
a V  b, b G Va. □

1.2. Lemma. I fV  is a doubly uniformly strict extension ofU  then V =  
= 4U, where 4U is taken with the trace filter pairs induced by V.

P roof*. It is enough to show that V C 4U, since the converse always 
holds (see in 1.1). Take a V  G V; we need a U G U with 4U С V. Pick W, Z  G 
G V such that

sx(W c П X) C Pc, s-1 (Z -1c П X) C W ~xc (c G У),

We claim that 4U С V  holds with U = Z\X .
Assume a 4U b, and take A G f_1(a), В  G fx(6) with A x В C U. For each 

у G B, Z~l yC\X  = U~xy D A G f-1 (a), thusa G s~x{Z~l yV\X) C W ~xy , i.e. 
у G Wa, В  C Wa, and so Wa П X G ^(6), b G 51(И/а П X) C Va, a V b. □

Remark. The proof of the above lemma, together with Lemma 1.1, 
yields that a double extension V is doubly uniformly strict iff it is uniformly 
strict, and for each V  G V there is a W  G V such that П X) C
C V ~xx (x G X).

THEOREM. There exists a doubly uniformly strict extension of a quasi­
uniformity U for prescribed trace filter pairs iff they are uniformly concen­
trated; if so then 4U is the only doubly uniformly strict extension, and it is 
the coarsest double extension compatible with the trace filter pairs.

P R O O F .  Lemmas 1 .1  and 1 . 2 ,  together with the results cited preceding 
Lemma 1 . 1 .  □

ге( U) = w(U) ([5] Lemma 8.2), thus the doubly uniformly strict exten­
sions preserve the weight. The same is false for uniformly strict extensions: 
Let X be infinite, Y  \  X  = {p}, and f1 a filter that has no countable base. 
Let {Us-S  G f) be a base for V on Y , where UsP = S Li {p} and Usx = {x} 
otherwise. Now V is a uniformly strict extension of the discrete uniformity 
U on X, but w(V) > и  = w(H).

* C on trary  to  w hat th e  reader m ight possibly expect, we do no t have to begin the  
p ro o f w ith show ing th a t  th e  trace  filter pa irs a re  uniform ly concentra ted . B u t, once th e  
lem m a is proved, i t  is clear th a t  th e  trace  filter pairs are uniform ly concentra ted , since 
th ey  are  induced  by an  extension  of th e  form
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§2. Uniformly regular extensions

2.1. A quasi-uniformity U is uniformly regular ([1], [11]) if for each U £U  
there is a V EU  such that c l1 Vx  C Ux (x E A); it is doubly uniformly reg­
ular if both U and U~x are uniformly regular, i.e. if for each U Eld there is a 
V  £ U such that cl* Fa: C Ux (i = ±  1, a: £ X ). Here cl* is the Тц,-closure; 
if an extension V is given then Cl* denotes the Ту,-closure. By a (doubly) 
uniformly regular extension we mean a (double) extension which is (dou­
bly) uniformly regular. (Double) uniform regularity is evidently a hereditary 
property ([1] 8.5), hence only (doubly) uniformly regular quasi-uniformities 
can have (doubly) uniformly regular extensions. Note that, unlike in the case 
of uniformly strict extensions, given an extension V of U, the statement that 
“V is a uniformly regular extension of U” is a property of V, and not of the 
pair (V,U). Uniformly regular extensions are uniformly strict ([1] 8.7).

For a filter f in X  sec f = { A c A : A f l S / 0 ( 5 £ f ) }  is a grill, i.e. a 
union of ultrafilters; more precisely, it is the union of the ultrafilters finer 
than f. (See e.g. [17] for more about grills.) If trace filters (filter pairs) are 
prescribed in (X ,U ) then £l1(a) is the trace grill, respectively (p_1(a), px(a)) 
the trace grill pair, of a £ Y , where p*(a) = sec f*(a). Clearly, A £ g*(a) iff 
А С X  and a £ Cl* A. Hence Cl* A can be described analogously to s*(A):

Cl* A = {a £ F : A £ 0 *(а)} (А С X , i = ±1).

For x £ X  (when f (z)  is the Ту,-neighbourhood filter of x ) , fl!(z) will also 
be called the adherence grill, and ( 0 _1(a:), 0 J(a;)) the adherence grill pair, 
of x. Compare the following assertion with the definition of uniformly strict 
extension:

Lemma. An extension V is uniformly regular iff for any V  £ V there is 
a TU £ V such that

(1) C l1 {W an  X )  C Va (a £ Y).

P r o o f . The necessity is clear from С11 (1ТаПА)С C l1 Wa. Con­
versely, assume that (1) holds, and pick Z  £ V with Z 2 C W . Now C l1 Za C 
C Va.

Indeed, if b £ C l1 Za and Q £ V, Q C Z  then there are c £ Qb П Za, x £ 
£ Qc П X . Now x £ Q2b П Z 2a C Q2b П Wa, thus Q2b П Wa П X  ф 0. The 
sets Q2b form a 7v-neighbourhood base of b, thus b £ C l1 (IFa f l l ) c  Va. 
□

Consequently, the doubly uniformly regular extensions can be character­
ized similarly to 0 .2  (2 ), with sl replaced by Cl*.

2.2. [2 ] §1 gives a complicated necessary and sufficient condition for the 
existence of a uniformly regular extension compatible with prescribed trace
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filters. It is not known whether the following simple necessary condition is 
also sufficient ([6 ] Problem 13): for any U G U there are Uq G U and sets 
S(a) G fx(a) (a G У) such that S(a) C Ux whenever x G X  and Uqx G 0 х(а) 
(cf. the similar condition in 0.3). There can exist different uniformly regular 
extensions inducing the same trace filters ([2] 4.7). Observe also that V in 
Example 0.3 is uniformly regular.

Assume that there are uniformly regular extensions for prescribed trace 
filters. Then there is a finest uniformly regular extension V ([1] 8.9) as well 
as a finest uniformly strict extension W ([1] 7.11). In the example below, 
V ф W (this answers [6 ] Problems 16 and 17).

E x a m p l e  (cf. [8 ] Example 6.2). Let Y  = R 2, X  = Y \  ({0} x ( R \

\ { 0} ) ) ,  Z  — Hsox U eu, where liso is the Sorgenfrey, and Ueu the Eu­
clidean quasi-uniformity on R. Z  is a product of uniformly regular quasi­
uniformities, so it has the same property ([1] 8 .6 ). Thus U = Z \X  has uni­
formly regular extensions if we consider the trace filters induced by Z. But 
the finest uniformly strict extension W is not uniformly regular:

The trace filters are stable, thus W = 5̂ U by Proposition 0.4. An en­
tourage U G U is defined by

Ux = (\x ',x ' + 1] X \x" -  \ ,x "  + 1]) П X  (x  = (x ',x ") G X ) .

If W were uniformly regular then there would exist a Co G U such that

(1) Cl1 ( 5)t/0a n  X )  C 5)Ua (a G У).

This is, however, impossible, since if a = (0,a") £ Y  \  X  and \a"\ is small 
enough then 5̂ Uoa П X  contains ]0,e[x {0} for some £ > 0, thus x = (0,0) 
belongs to the left hand side of ( 1 ), although a 5̂ U x does not hold. □

2.3. It should be found out which of the results known for uniformly 
regular extensions hold more generally for uniformly strict extensions. As 
an illustration, let us consider the following two very similar assertions:
(i) ([16] 6.4) a uniformly regular extension of a totally bounded quasi- 
uniformity is totally bounded; (ii) ([14] Lemma 1) a uniformly regular exten­
sion of a Cauchy bounded quasi-uniformity is Cauchy bounded. (A quasi­
uniformity is Cauchy bounded [13] if any ultrafilter is the second member 
of a Cauchy filter pair. Recall for comparison that a quasi-uniformity is to­
tally bounded iff each ultrafilter forms a Cauchy filter pair with itself, see
[12] Proposition 3.14 (b).) We are going to show that (i) remains valid for 
uniformly strict extensions, while (ii) does not.

PROPOSITION. A uniformly strict extension of a totally bounded quasi­
uniformity is totally bounded.
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P r o o f . All the filters are stable in a totally bounded space ([1] 4.5), thus 
blU is the finest uniformly strict extension (Proposition 0.4). If U is totally 
bounded then so is 5̂ U ([8 ] Proposition 6.5), hence so are all the extensions 
coarser than b̂ U. □

E x a m p l e . Let S =  { - l / n : n  E N ), T =  { l/n :n  e N},

X =  ( 5 x { 0 , 2 ) )  UT2, F  = XU {pn: n E N},

and let ^(pn) be generated by the cofinite subsets of T  X { 1/(2n — 1), l/2n} . 
With the quasi-metric d on X  defined by

d((x', x"), (y1, y"))
’ { y '- x 'l  if* "  =  y",

■ — x' if either x" — 0, y" = 1/2n, n E N,
, or x" = 2 , y" = 1/(2n -  1), n £ N,

consider the quasi-uniformity U = U(d), which is Cauchy bounded, since each 
ultrafilter forms a Cauchy filter pair with a filter containing either S  X {0} or 
S X {2}. The trace filters are round and stable, so b̂ U is a uniformly strict 
extension. But it is not even precompact: a 5lU^)pn does not hold for any 
® Ф Pn • Cl

§3. Doubly uniformly regular extensions

3.1. A doubly uniformly regular extension is doubly uniformly strict, 
so, in order to obtain a complete description of them, it is enough to find 
a necessary and sufficient condition for 4U to be doubly uniformly regular 
(cf. Theorem 1.2). We begin with some definitions, and characterization of 
double uniform regularity.

A filter pair (f-1 ,)1) in (X ,U ) is convergent if there is an x G X  such 
that f  Тцх-converges to x (i = ±  1 ); it is fixed if one of the filters is fixed, i.e. 
if П f- 1  U П f1 Ф 0- The ultrafilter fixed at x will be denoted by x. Extending 
the definition given earlier for filter pairs, we say that a family Я of pairs of 
systems of subsets of X  is uniformly weakly concentrated if for any U £U  
there is a Uo G U such that x ,y  £ X ,  (a-1 , a1) G Ä, Uqx E a1, Uq у G a-1 
imply x U y.

P r o p o s it io n . The following conditions are equivalent for a quasi­
uniformity:

(i) it is doubly uniformly regular;
(ii) the fixed Cauchy filter pairs are uniformly weakly concentrated;

(iii) the convergent filter pairs are uniformly weakly concentrated;
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(iv) the convergent ultrafilter pairs are uniformly weakly concentrated;
(v) the adherence grill pairs are uniformly weakly concentrated.

P roof, (i) &  (ii). According to [7] Proposition 1.1, a quasi-uniformity 
is uniformly regular iff those Cauchy filter pairs are uniformly weakly con­
centrated in which the first member is fixed. So we have only to observe 
that the union of two uniformly weakly concentrated families has the same 
property.

(ii) => (iii). Given U e l l ,  take V  G U with V 2 C U, and then Uo for V 
according to (ii). Assume that ( f 1,^)  converges to z, and Uox G f1, U ^ y  G 
G f-1 . Now ( f—1, ir) is a fixed Cauchy filter pair, Uqz G z , Uff^y G f-1 , thus 
z V  у . Analogously, x V z, and so xU  у.

(iii) => (ii). Let ( f—1, f1) be a fixed Cauchy filter pair, x G p |f - 1  U Q f1. 
Then either (ж, f1) or (f_1 , i )  is a convergent filter pair finer than (f-1 ,)1) .

(iii) => (iv). Evident.
(iv) =>- (v). Given U G ZV, the entourage Uo furnished by (iv) will also do 

in (v), since if Uox G 0 x(z), Uff^y G 0_1(2) then there is an ultrafilter pair 
(и_1 ,иг) converging to г such that Uqx G u1, U ^'y  G u_1.

(v) => (iii). If ( f—1, f1) converges to 2  then f  C ß '(2)- Cl
3.2. T heorem. There is a doubly uniformly regular extension for pre­

scribed trace filter pairs iff they are minimal Cauchy, and the trace grill pairs 
are uniformly weakly concentrated ( equivalently: the (ultra)filter pairs finer 
than trace filter pairs are uniformly weakly concentrated);  if so then 4U is 
the only doubly uniformly regular extension.

P roof. The equivalence of the conditions given with grills, filters,and 
ultrafilters follows easily, in the same way as in the proof of Proposition 3.1. 
The last assertion is a consequence of Theorem 1.2.

Necessity. Assume that V is a doubly uniformly regular extension. Given 
U G U, take a V  G V with V \X  = U, and then a Vq € V (for V) according to
(iii) in Proposition 3.1. Put Uo = Vo\X. Let (f-1 , f1) be a filter pair finer 
than a trace filter pair, and denote by the filter in Y  generated by f . Now 
( f)—1, f)1) is convergent in (У, V). Assume that x ,y  G X , Uox G f1, U ^ y  G 
G f-1 . Then Vqx G f)1, V̂ "1^ G f)-1 , thus x V y ,x U y .  The trace filter pairs 
are minimal Cauchy by Theorem 1.2.

Sufficiency. By Theorem 1.2, 4U is a double extension for the prescribed 
trace filter pairs. We show that (iii) from Proposition 3.1 holds for 4U. Let 
V  G 4U. Take U G U with 4U С V, and then Uo E li  such that xU  у whenever 
( f—1, f1) is a filter pair finer than a trace filter pair, Uox G f1, U ^4y G f-1 . 
Choose W  G 4U such that W 3\X  C Uo- We claim that if (f)-1 ,^ 1) is a con­
vergent filter pair in (У, V), Wa G f)1, W ~xb G ()- 1  then a V b.
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A = W  ' а ПЛ '  e f Ч 0)' В = И'b П Л’ G f 1{b), so it is enough to check 
that A x В C U, since then a 4Ub. Let (6-1 .?1) be the 4ZV-envelope of 

5 i.e. the finest one of the round filter pairs coarser than •
If (f)-1 ,^ 1) converges to c then so does (б-1.?1) , thus (f-1 ,^ )  defined by 
f1 = t '\X  is finer than a trace filter pair. ( f' is a proper filter in X , since X  is 
doubly dense.) Wa G I)1 implies W 2a G t 1 so for each i f d  and г G I V 2a П 
П X  G f1 we have x W 3 x, x Uq Z, i.e. Uqx G f1. Analogously, Uq 1\j G f-1 
(у G jB), thus x U y, A x В С U. □

R e m a r k s , a) It follows from Proposition 3.1 that if U is known to be 
doubly uniformly regular then in the theorem it is enough to consider the 
trace grill pairs of the points in У \  X .

b) AU is uniformly regular iff the trace filter pairs are minimal Cauchy 
and the pairs (f_1(a),£i1(a)) are uniformly weakly concentrated.

c) The part of [6] Problem 58A concerning doubly uniformly regular com­
patible extensions in a bitopological space remains open in the case when the 
subspace is not doubly dense.

3.3. A quasi-uniformity is quiet [10] if the Cauchy filter pairs are uni­
formly weakly concentrated. (Quiet spaces are doubly uniformly regular.) It 
was mentioned in [15] §5 that a doubly uniformly regular extension of a quiet 
quasi-uniformity is quiet. More generally, a doubly strict extension of a quiet 
quasi-uniformity is quiet, since if?Y is quiet then so is AU by [7] Theorem 2.2.
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ADDENDUM TO “A FLEXIBLE MINIMAX
THEOREM”

S. SIMONS (Santa Barbara)

All references are to the author’s paper [1] “A flexible minimax theo­
rem”, which appeared recently in this journal. The author is very grateful 
to Professor Heinz König for pointing out a weakness in Theorem 1. In fact, 
Theorem 1 is true even if condition (1.2) is not assumed. Furthermore, an 
examination of the later parts of the paper reveals that the inductive argu­
ment used in Theorem 1 is repeated almost verbatim, in both Theorem 8 and 
Theorem 9. This is clearly uneconomical. On the other hand, by changing 
one word in Theorem 1 it is possible to strengthen the result tremendously, 
and the strengthened result enables much shorter proofs of Theorem 8 and 
Theorem 9. Here are the details — the only change between the original and 
the new statement of Theorem 1 is the replacement of the word “finite” by 
“good” in just one place. We follow the same notation as in [1].

D e f i n i t i o n . We shall write /» for sup^ inf у / .  We say that a subset W  
of X  is good if W  is finite and, for all x E A , f l jx  П LE(W , f *) ф 0.

N e w  T h e o r e m  1 . Let Y  be a topological space, and В be a nonempty 
subset of К  such that inf В — /». Suppose that, for all ß  E В and good subsets 
W  of X  (with the convention LE(Q),fm) = Y ),

(1.1) for all x 6 X , ß I x is closed and compact,

(1.2) {ß ]x r \L E (W ,ß )} j is pseudoconnected 

and,

(1.3)
Vxo,xj G X , 3x E X  such that (5̂ xq and ß \x \ are joined by ß \x  П LE(W ,ß). 

Then
min sup /  -  sup min /.

Y x  x  Y
P r o o f . Let x E X .  If p E R  and p > /« then p > min/(a; ,y) ,  from 

which p\x ф 0. From (1.1) and the finite intersection property, / , |z ф 0. 
Thus 0 is good. We now prove by induction that all finite subsets of X  are 
good. So suppose that n ^  1 and

(1.4) W  С X  and card W  ^  n — 1 =í> W  is good.
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Let V  С X  and cardF = n. Let xq £ F  and set W  := F\{xo}- From the 
induction hypothesis (1.4), W  is good. Let Xi £ X  be arbitrary. Let ß £ В 
be arbitrary. From (1.3), there exists x £ X  such that ßjxo and ß jx i are 
joined by ßjx  П LE(W ,ß). Equivalently,

ß jx0 П LE (W ,ß) and ß jx \ П L E (W ,ß ) are joined by ß jx  П LE(W ,ß).

From (1.2), ßjxo П ßjx\ П LE(W ,ß) ф 0, that is to say, ßjxi П L E (V ,ß ) ф 0. 
Since this holds for all ß E B, from (1.1) and the finite intersection property 
again, f*jx  1 П LE(V,f*) ф 0. Since this is valid for all x\ G X , V  is good. 
This completes the inductive step of the proof that all finite subsets of X  are 
good. It now follows from (1.1) and the finite intersection property for a third 
time that L E (X , /„) ф 0. This completes the proof of the New Theorem 1.

N ew P roof of T heorem 8. If W  is good, x e X  and ß e В then 

ßjx  П LE{W ,ß) D J*jx D L E (W J m) ф 0.

Thus (5.2) is satisfied with Z  := LE(W ,ß). From Lemma 5, (1.3) is satisfied. 
The result follows from the New Theorem 1.

New P roof of T heorem 9-(9.1). If W  is good, x £ X  and ß  € В 
then there exists у £ f* jxr\LE (W ,f*). Since у £ ТЕ(1У,/*) C L E (W ,ß ) and 
f(x ,y )  й  f* < ßi (4.3) is satisfied with Z LE(W ,ß). From Lemma 4, (1.3) 
is satisfied. The result follows from the New Theorem 1.

N ew P roof of T heorem 9-(9.2). If W  is good, x E X  and ß £ В 
then

U jx  П LE(W ,ß) D / J x  П L E (W ,f.)  ф 0,

thus (6.2) is satisfied with Z  := LE (W ,ß) and a := / ,  < ß. From Lemma 6,
(1.3) is satisfied. The result follows from the New Theorem 1.
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