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Acta Math. Hungar.
68 (1-2) (1995), 1-6.
ON THE INTEGRAL OF THE LEBESGUE
FUNCTION OF INTERPOLATION. Il

P. ERDOS, member of the Academy, J. SZABADOS and P. VERTESI (Budapest)1

To Professor K. Tandori on his seventieth birthday

Let
(1) xk=costk {k=1,....n+ 1;00 1< ... <tn+i * X
be an arbitrary system of nodes of interpolation, and let

n+l

\n(x) := Ik ()1
k=i

(where Ik{x) are the fundamental functions of Lagrange interpolation) be the
corresponding Lebesgue function. In [1], we gave a lower estimate for the
integral of the Lebesgue function with respect to an arbitrary set of nodes
(1) over a fixed interval [a, b] C [-1,1], for n’s sufficiently large depending on
the interval [a, 6]. In this paper we extend this result to intervals depending
on n, and for all n’s (Theorem 1). The method of proof is the same as in [1],
with a slight modification. We also prove that, apart form a multiplicative
constant, our result is best possible. (In fact, Theorem 2 is slightly stronger
than that, since it estimates the maximum of the Lebesgue function in the
interval in question.)

T heorem 1. There exists an absolute constant ¢ > 0 such that for an
arbitrary system of nodes (1) and arbitrary intervals [an,bn] ~ [, 1] we
have

fbr.
/[ Xn(x)dx ™ c(bn-an)log (n(an-/?,) +2) (a, = cosam = cos/3n).
Jdn

P roof. Assume first that

log (n(an—/?,,) + 2) log2
n(an- R n) 20

1 Research supported by Hungarian National Science Foundation Grant No. 1910
(second and third authors) and No. T7570 (third author).
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P. ERDOS, J. SZABADOS and P. VERTES!

Then n(an —Bn) < c\ with an absolute constant C\ > 0, and the statement
of the theorem trivially holds, since An(x) ~ 1 (jar] ™ 1). So from now on we
assume that

log (n(an- Bn)+ 2) < log2

(2) Rn) 207

Also, without loss of generality we may assume that

an s S s N
@) i L

namely

Or
COS COS&, — bn 6n-

[Bn,an] can be considered as the union of subintervals obtained by consider-
ing the partition points tk G [Bn,an]. Among'these subintervals, let [<$,,7,]
be of maximal length. (If there are no f*’s in [/3n,an], then let yn = an,
Sn = n.) We distinguish two cases.

Case 1: In - Sn> §b *blU°n-Pn)+2). Then let

37n + 27n + 31,
S S

co dn:= co

and

Pn(x) := I (x - zk),
Zke[endn)

a polynomial formed from the roots of the Chebyshev polynomial

n
Tn(x) := cos(u arccos x) = 2”7 1 (& —2ZK).
k=1
Since in this case there exists an absolute constant c2 > 0 and

a set Hn C [cn, dn\ such that

\Tn(y)\r\ (y 6 HI)

and

\Hn\ = "2(Tm ~n)?

Mathematica Hungarica 68, 1995



ON THE INTEGRAL OF THE LEBESGUE FUNCTION OF INTERPOLATION. Il 3

where \Hn\ denotes the measure of the set obtained from Hn by projecting

it to the unit circle. Thus, if \Hn\ denotes the ordinary measure of the set
Hn, then we get

(4)

Mn{ﬁ —;XWn{s'mf?n  c2sh “—2»/('In —6n) ~ l—ocli—zizi/i\ log (n(anr: Bn) + 2}_

Now denoting Cn = cos7,, Dn = cos<$n we obtain for x G [1,1]\
\ (®“m ™"t %k G[cn,dn] and ¥y G Hn
Y- X« dn sin 1
X - Zk Dn cn  2cosdL  sin (MxA- - = V2

provided 7,, —bn is smaller than a properly chosen absolute constant. (If
this fails to hold, then the statement of the theorem reduces to that of [1].)
Hence

Tn(x)l -
Elnidn] Y xdaen
n(1lp<6n)
=2ip(inl « Yl A =\pagyp -21 MG <
ZkE[cndn)
: . loK(n(gn-gnH-2) 2 _
= IPn(y)\ *21 > u(on  Bn) T§|pn(|0|,
since evidently, there are at least z*’s in the interval [cn,dn]. Hence
using the reproducing property of Lagrange interpolation we get
Mn+1
\Pn(y)\ » - \Ww\ = doin  Bn) \pn{y)\K(y) (yeH n),

since by construction, there are no x's in the interval (Cn, Dn). Thus

kn(y) = n(an—&n)/2 » 2 sina. (y £ Hn).
Hence and by (4)
M
LoKindy ™ 7 Mdy ® Gy ar

a4cia Mathematica Hungarica 68, 1995



4 P ERDOS, J SZABADOS and P VERTESI

S¢2
> :(bn - I - B 2) ~
2 cos  log gbn an)log(n(an n) + 2)

N c(bn- an)log(n(an- Bn)+ 2).

Case 2: In - 6n » mbl ~ -p n)+2) _Then by (2)> ~ 1 ?which

means that there are at least two XKk's in [an, 6n], one of them in [an,y 6],
say. Thus the sums appearing in the inequality

bn 1 Axk
{ Jn(x)dx I>é A A Y K —xr
an<Xm<ant n xm<xk”bn

(where Axj := xj —Xxj+1) are certainly not empty. This inequality is taken
from [1]; its proof is the same as therein. Now let

Ifm := [xm + t(Dn—cCn), xm + (f + 1){Dn—cn)) (¢t —0,...,sn)

where by (3)

bn an sinBn an- Bn u(on  Rn)

AN

2(Dn-C n) SSnor In- K = “GgfRan=an) + 2) °

Then Itm C [an,bn] (t = 0, ...,.sn), and each Itm contains at least one Xk.
Thus

E VY AK > e Y % AxK >
XT<XKSHTI XK~ Xm tLOxk€Itm§l§ §m Dn—Cn _Ot—Jf~1x ft,,
[*n/Z] >»/2]
P 4 JETTT Ay E MT= Cog”

X|cEItm"It+I

A celog-m—g(rg‘(gl_ /3”)7+~35 = c7log(n(an-/?,) + 2).

Therefore

/ £ A
Xn(x)dx N~ —log(n(an- n)) 2] NxmZ

H / / @x»"Thn
Z c(bn- an)log(n(a,, - Rn) + 2),

and Theorem 1 is proved.

Acta Maihematica Hungarica 68, 1995



ON THE INTEGRAL OF THE LEBESGUE FUNCTION OF INTERPOLATION Il 5

T heorem 2. Given an arbitrary interval [an,bn] S [—L,1], there exists
system of nodes (1) such that

max An(z) = 0(log(n(a,, - Bn)+ 2)).
an<x<bn

P roof. Since the proof is a routine calculation, we give only a sketch.
Let (1) be the roots of the polynomial (x —Z0)Tn(x), where zo - costo is a
nearest point to the interval [an,bn] such that |Tn(20)] = 1. (Ifan- Bn~

N 7r/n, then Zg £ [an, bn]; otherwise only |ro - an™m| ™ ~ is guaranteed.)
Denoting by /o(t) the fundamental function of Lagrange interpolation asso-
ciated with the point zo, evidently |[/o(k)| = |Tn(x)1 1, so this part can be
omitted when estimating the Lebesgue function. For the fundamental poly-
nomials belonging to the Chebyshev abscissas Zk = costk (k —I,...,ra) we
have

(x - z0)Tn(x)

L@l 1oz 2k - 20y - 200

Without loss of generality we may assume that, with the notation x = cost,
0N tinto”™ 2. Then an easy calculation yields

Vg

| anVv if [t- tkI£
Ik(x) \ nsin sin 7kt (k=1
101 Il - %] 7~

Now
Y \hi\ =O E wiira +of) =)
A 2
(if t ™ to/'.i; otherwise this sum does not appear at all). Further
E bh\=m) Yy . IUIH)-
li-ifclrj(fo-i) [i-i*|7|(to-i) Sln 2
= O(log(u(0 - <)) = 0 (log(u(an- Bn)) +2),

by t 6 [Bn,an] and the definition of to-
The remaining two sums, namely those extended for |<o —tkl= ~(fo —tk)
and tk ™ 34~* are entirely similar to the ones considered above.

Acta Mathematica Hungarica 68, 1995
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ON THE CONNECTION
BETWEEN QUASI POWER-MONOTONE
AND QUASI GEOMETRICAL SEQUENCES

WITH APPLICATION TO INTEGRABILITY
THEOREMS FOR POWER SERIES

L. LEINDLER, member of the Academy and J. NEMETH* (Szeged)

Dedicated to Professor Karoly Tandori on his seventieth birthday

1. Introduction

Recently Mazhar [5] generalized partly and slightly one of our theorems
[4]. The purpose of the present note is to continue the generalization by one
step further, and expose the features of the sequences appearing in our new
theorem.

It is well known that several papers have been devoted to studying inte-
grability theorems for power series; we refer to the references in [4].

In [4] we proved a theorem generalizing most of the results known up
to that time. Before recalling our theorem we present some notions and
notations:

® = d(p) (p ™ 1) denotes the set of all nonnegative functions f(u) hav-
ing the properties: <p(u)/u is nondecreasing and <p(u)/up is nonincreasing on
0, 00).

( tb): ®d(p) denotes the set of all functions (1) whose inverse functions
belong to @.

P = P(A) denotes the set of all nonnegative nondecreasing functions
p{u) with p(u2) ~ Rp(u) (n £ (0,00)).

N = A(i],$2) denotes the collection of all nonnegative functions A(t)
defined on [0,1] having the following properties:

(1.1) (1)i62A$, 0<61<62< oo

holds for any <t<j,k=12,..., where
JK? := min

* This research was partially supported by the Hungarian National Foundation for
Scientific Research under Grant #234.

0236-5294/95/$4.00 (c) 1995 Akadémiai Kiad6, Budapest



8 L LEINDLER and J NEMETH

and

max

(It clearly holds for any quasi-monotone function.)

We shall say that a sequence 7 = {7n} of positive terms is quasi [} -power-
monotone increasing (decreasing) if there exists a constant K —K(, 7) ~ 1
such that

(1.2) AV37,, >mBim (nfB37,, ™ KmRjm)

holds for any n ™~ m. Here and in the sequel, K and K\ denote positive
constants, not necessarily the same at each occurrence. If (1.2) holds with
B = 0 then we omit the attribute “/3-power”; and if (1.2) holds with K =
= 1 then we neglect the attribute “quasi”. In brief, sometimes, we shall call
these sequences quasi B-increasing (quasi B-decreasing), etc.

Furthermore we shall say that a sequence 7 = {7,,} of positive terms is
quasi geometrically increasing (decreasing) if there exist a natural number y,
and a constant K = K(7)” 1 such that

(1.3) 7ntx ™ 27n and 7,, N Kr/n+l (7n+M”™ Jpn  and 7.+ < A'gn)

hold for all natural numbers n.
Finally a sequence {7n} will be called bounded by blocks if the inequalities

(1.4) 0lfE>g7nga2rg, 0<O0i~"R<®
hold for any 2k ~ n ~ 2fc+l, k —1,2..., where

TW := min(72*,72+i) and = max(72fg 7 2k+i).

Our theorem mentioned above reads as follows:

Theorem A. Let A(t) be a positive nonincreasing function on the inter-
val 0 < / < 1 such that

.y h2<AA(—)A 1
2z ()
and let {cvn} be a positive increasing sequence with
(ie) ARaT
n—1

Acta Mathematica Hungarica 68, 1995



QUASI POWER-MONOTONE AND QUASI GEOMETRICAL SEQUENCES 9
Suppose that p(u) 6 P, that rj(u) denotes either afunction of ® or afunction
o/®, and that
1.1 F(x) ="~ c¢nxn, 0" x< 1
n—0

Then, under the condition

('-8) ch> -M n_'rj\iﬁX(l;’n)p{n)?] (M > 0),
we have
NA - )rj(\FO)\) p(\F(x)\) € 1(0,1)
if and only if
0’ [~y n
(1.9) - oo_
x4 o P <

This theorem was generahzed by Mazhar [5] in the following form:

THEOREM B. Let X(t) be a positive function such that t~°X(t) is nonin-
creasing for some h £ (0, 1] and

(1.10) A n~2p(n) ™ K\ k~Ip{k),
n—k M b

where p G P. Then under conditions (1.6), (1.7) and (1.8),
Al - X)TJOAFOOV)p(\F(x)\) Ef(0,I)
if and only if

@ y \ 5 T
(111 Z AN 20 (Zid)" (SidD <

for r](u) = <p(u) or TJ(u) —(n) with p(u) = 1.

Comparing our theorem to that of Mazhar it is easy to see that t~sX(t) is
nonincreasing for any $> 0, whenever A(t) is noniiicreasing, but the converse
is not necessarily true; thus Theorem B slightly generalizes Theorem A, but

only if rj(u) —<p(u) or p(x) = 1 and 7M1 = (n).

Acta Mathematica Hungarica 68, 1995



10 L. LEINDLER and J NEMETH

2. Theorems

First we prove the following theorem which slightly generalizes both The-
orems A and B, but in this proof we shall use some results of Theorems 2
and 3 to be proved later in this work.

T heorem 1. Letp(u) be afunction belonging to the class P and let {on}
be a positive increasing sequence with (1.6). Let A(t) be a function of A such
that the sequence

(2.1) N = A(i) n~xp(n)

is quasi 3 -power-monotone decreasing with some positive B. Furthermore, let
fj(u) denote either a function of ® or a function of ®, and let F(x) be given
m (1.7). Then, under.condition (1.8), AL —)r/(|F (i)]) p(|fr(x)]) £ L(0,1)
if and only if (1.9) holds.

Recently in [2] and [3] it turned out that the quasi power-monotone se-
guences appearing in Theorem 1 and the quasi geometrically monotone se-
guences are closely interlinked; furthermore that these sequences have been
appearing in the generalizations of several classical results, sometimes only
implicitly.

We shall prove shortly that if a sequence 7 is, e.g., quasi /3-power mono-
tone increasing with a negative /3, then the sequence {72"} is quasi geomet-
rically increasing. It is clear that the converse of this assertion cannot be
true since the 2”-th terms of the sequence do not determine the behavior
of the other terms of the sequence {7«}. Therefore a relevant question is
the following: What additional assumption on the sequence {7«} along with
the assertion that {72"} is quasi geometrically increasing will imply that
the whole sequence {7,5} should be quasi /3-power-monotone increasing with
some negative /3? We shall verify that a fitting very mild sufficient condition
is the boundedness by blocks.

We would like to point out that if the sequence {7,,} is either quasi
/3-power-monotone increasing or decreasing, then condition (1.4), i.e. the
boundedness by blocks, is always fulfilled.

Taking into consideration all of these remarks we can formulate two fur-
ther results as follows.

T heorem 2. If a positive sequence {7n} is quasi B-power-monotone in-
creasing (decreasing) with a certain negative (positive) exponent B8, then the
sequence {'/2n} is quasi geometrically increasing (decreasing).

Theorem 3. If a positive sequence {7n} is bounded by blocks and its
partial sequence {727} is quasi geometrically increasing (decreasing), then
the whole sequence {7,,} is quasi B-power-monotone increasing (decreasing)
with a certain negative (positive) exponent /3.

Acta Mathematica Hungarica 68, 1995



QUASI POWER-MONOTONE AND QUASI GEOMETRICAL SEQUENCES 11

The following corollary is an immediate consequence of Theorems 2 and
3.

Corollary 1. A positive sequence {7,,} bounded by blocks is B-power-
monotone increasing (decreasing) with a certain negative (positive) exponent
B if and only if the sequence {72"} is quasi geometrically increasing (decreas-
ing).

Corollary 1 and Lemma 3, by (1.4), easily imply Corollary 2.

Corollary 2. A positive sequence {*n} bemnded by blocks is B-power-
monotone increasing (decreasing) with a certain negative (positive) exponent
B if and only if the inequality

m 0o

holds for any natural number m.

Consult S. Aljancic [1] for related results.

It is quite obvious that if we extended the given definitions from se-
guences to functions according to the sense, then analogous theorems and
corollaries for functions would be also valid.

It is also easy to see that similar results with 8 —0 do not hold, see e.g.
the constant sequence 7 = 1.

According to these results, it is easy to see that the assumptions of The-
orem A, or B, one by one, imply the presumptions of Theorem 1. Namely
if t~8X(t) [6 > 0) is nonicreasing, which implies boundedness by blocks and
property (1.1), and the sequence {7,,} given in (2.1) fulfils condition (1.10),
then the sequence {7,,} is quasi /3-power-monotone decreasing with some
positive /3. Thus, our Theorem 1 generalizes both Theorems A and B.

3. Lemmas

We require the following lemmas.
Lemma 1. If £ ® andp £ P, then

holds.
Furthermore if if & @, then the following inequalities are valid:

(3.2) ®fa + b) ~ d(a) + d(b),

Acta Mathematica Hungarica 68, 1995



12 L. LEINDLER and J NEMETH

andforany 0< k 1

(3.3) P(kx) P KLUph{x).

Inequality (3.1) immediately follows from results of Mulholland [6] (see
Theorem 1 and Remark (2.34)) and from the properties of the functions <p(u)
and p{u). The validity of inequalities (3.2) and (3.3) can easily be derived
from the definition of ip(u).

Lemma 2. Ifp(u) £ P then for any integer r there exists a constant Cr
such that for any numbersa > 0,8 > 0

(3.4) ap(B) < Crap(a)+ Brp(R)

holds.

This inequality is implicitly proved in Lemma 13 of (8] (see statement
(2.38)).

Lemma 3 ([2]). For any positive sequence 7 = {7,,} the inequalities

©
(3.5) Tnikim (m=1,2,...; K~ 1),
or

(3.6) n Kim (m=1,2,...;K~1

71—1

hold if and only if the sequence 7 is quasi geometrically decreasing or increas-
ing, respectively.

Lemma 4. If a positive sequence {cn} is quasi geometrically increasing
(decreasing), then there exists a positive e such that the sequence {cn2~ne}
({cn2"£}) is also quasi geometrically increasing (decreasing).

P roof. Assuming that the sequence {cn} is quasi geometrically increas-
ing, according to the definition there exist a natural p and a constant K =
= A'(c) ™ 1such that
(3.7 cn+l N 2c,, and cnin Kent+l

hold for all n.
Now let £ := (2p)~I and p\ := 2p. Then, by (3.7),

ORI —Cn+fi = 4c,,

Acta Mathematica Hungarica 68, 1995



QUASI POWER-MONOTONE AND QUASI GEOMETRICAL SEQUENCES 13

and thus

(3.8) crtiM 2-<n+wx £ 4cn2-ns2~1 = 2cn2~nE,
furthermore

(3.9) cn2~ne N Kenti2~ne = K2En+12-(n+I~

hold. Inequalities (3.8) and (3.9) imply that the sequence {cn2~n£} is also
quasi geometrically increasing, since the requirements of the definition given
in (1.3) are satisfied with /ij and K2e in place of p and K, respectively.
The decreasing case could be proved similarly.
The following lemma is a slight generalization of Lemma of [4].

Lemma 5. Let A(i), p(u) and g(u) be defined as in our Theorem 1 and
let

@
(3.10) f(x) := "2/a™xk with ~"0,0Mx<1
k=0
Then
(3.11) A - x)v{f(x))p(f(x)) G1(0,1)
if and only if
(3.12) (~) n~2v(An)p(n) < oo,
n=I
or equivalently
(3.13) n~2ri(An)p{An) < oo,
n=I
where
n
An —~ N e
k=0

Proof. We follow the line of the proof of the Lemma in [4] with the
required changes.

First we show that (3.12) and (3.13) are equivalent. It is easy to verify
that (3.12) implies (3.13). Namely, (3.12) implies the existence of a natural
number t such that for all n(" 2)

(3.14) An " n\

Acta Mathematica Hungarica 68, 1995



14 L LEINDLER and J NEMETH

so the implication (3.12) -3 (3.13) is obvious. In order to show that (3.13)
also implies (3.'2) we use Lemma 2. Using (3.4) and considering ri(u)/up j
and p(u) £ P we obtain for any integer r that

(3.15) y N(n) M 2A(n)(n) =
MN—
i Af-'j n~21(An)p(rI{AN) + Y A n~2nl/Tp(n) ~
n—1 71=1 !
n ~nrp(n).
71=1 v =1

By (3.13) and Lemma 4 it is easy to verify that
(3.16) Y Af—n~-2ndTp(n) < oo

for all sufficiently large values of r. So, by (3.13) (3.15) and (3.16) we have
(3.12).

Now we prove the equivalence of (3.11) and (3.13). Set y = 1—xX. Since
(I —L)n is an increasing sequence, we have for NynNA(nN2):

7 n . \ Kk , 1471 n

I(i-y)™ Ylakr~y~r= E, 1_%) - (1_mn ,ak = 4An-
(i-y) k=0a y k_eaM _ W) \ —y)kzzY) al n

\

Using this and (1.1) we obtain

V al ) oanamnian ™ Y samotney [~ e s
Aly Vv n~=2rj(An)p(An) K rj(An)p(An) | ~ My)dy #
n=y N n—l1 n+l
N [*l/n
AT ARY L AU - y))p (- y))dy A
n=2 n+i

NA+ K J[o Al - X)rj(f{x)) p(f(x))dx.

This proves that (3.13) follows from (3.10). To prove the inverse statement
of the equivalence we consider the following estimations:

(3.17) J/ AL - X)ri(f(x))p(f(x))dx =
0

Acta Mathemaiica Hungarica 68, 1995



QUASI POWER-MONOTONE AND QUASI GEOMETRICAL SEQUENCES 15

*1/71

=Y /[, b(yMf(l-y))p{fCL-y))dy=

n=12n+T
oo fl/il / oo \' ] oo \
X] N a@p(xror 1= )0 1- 0)*)~ =
"sir 'A:=0 7  At=0 7
00 ri/7r | °° /
~NE . mmE i1 o, , re1 WE
n=17n+l 4=0 4 k=0

‘@b + )-Y 5" (-*)M £ (-= L

Since i ™~ (I - jg M~ aa-n2 forn=1,2..., we have
vk oo’ (_|+|) , u K
(318) ( —|rr) SE ““Nr s
ch =0 k nj \% 7
Q / 1 \nj"0+d ()
=£ I1- "r+r2 51 nk=2 2 rwr-
j=0 ~ k=nj i—1

Henceforth we split the proof into two parts. If 1/(rr) = +(n) then we use
Lemma 1 By (3.1) we get:

RTINS ®
(3.19) ()@' H_WMQE K Y 2~IAAni)p(Ani).
i—1 i—1 r=1

Hence and from (3.17), (3.18) and (3.19) we get that

rl ™ li\ 00
I AL - x)ip(f)) p(F(x))ydx U i vV I -+ 2V 2 -V (4W 4) E
n=i W
@ @ /,4
=KY 2~Y XI[~) n~2p(Ani)p(Ani) E
21 71=1
(00 (e0]
EAV 2- r2V l'{ (nr)_2~(+m)p(A,N E
2_1 71_

EKY n(-) rc_V(Hn)p(HR).
71=1

Ncra Mathematica Hungarica 68, 1995



16 L LEINDLER and J NEMETH

If r](u) = d(n) the proof runs similarly hut we use the following inequality

(3.20) b (M2~rtAmNp (Y 2 ~TAni\ ~
i=1 'z '
00 oo ( -\t 00
NATN2~pN(Ani)p (N2~[-) ©AN 2~*®D(AR{)p(n)
Z£1 Zl Z1

instead of (3.19). Inequality (3.20) is just an easy consequence of Lemma 1
(see (3.2) and (3.3)) and (3.14). Thus the proof of Lemma 5 is complete.

4. Proof of the theorems

00
Proof of Theorem 1. Let A{X) = Y akxkfor0™ x < 1withno=20
k=0
and
M k~xr® N
ak o aqrpo)m "
First we consider the case r/(u) —<p(u). We show that the coefficients ak
satisfy condition (3.12). Using the inequality

(€)] 00/ 0O
(4.1) An<PUIn) ~ TN ~"2 Albl y N2 At
n=I n=I 'n k—n

vv_hich)w Ids for any Xn > 0 and an ” 0 (see inequality (8) of [7]), with A, =
—Al n3n~2p(n and the inequality

A n 2Pin) ~ AA K rp{K),

which follows from the assumption that the sequence {7,,} given in (2.1) is
quasi /1-power-monotone decreasing with some positive 3 (see e.g. Corollary
2). we have

2p A(1)n p(n)<p(Knan) ~

SKt((KMr + ')nl:rl\(X\ " PN A@m)p(ny S T >
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QUASI POWER-MONOTONE AND QUASI GEOMETRICAL SEQUENCES 17

Hereby we proved that the coefficients of the function A(x) satisfy condition
(3.12), so by Lemma 5

(4.2) \(1-x)y{A(x))p{A(x)) €£(0,1).

By (1.8) the coefficients an + cn are positive, thus the function

A(x) + F(x) = ™ (an+ cn)xn
n=0

has the property
(4.3) Al - xX)<p(A(X) + F(x))p( A(x) + F(x)) G£(0,1)
if and only if

00 I A
(4.4) £ Au r ~ 2K 5> £+ K)Yp{n) < A

n=l 'n' k=0

If (1 —)<p(|F()]) p( |[F(X)]) g L(0,1), then this and (4.2) imply (4.3),
(see e.g. (4.5) below) which implies (4.4). But by (1.8) we have

YW\ ~ 2anT cn,

whence, by (3.12) and (4.4), (1.9) follows.
If (1.9) holds, then this implies (4.4), because from (3.1) immediately
follows that

(4.5) <pla + b)p(a + b) ~ K(ip(a)p(a) + <p(b)p(b)), @ > 0, b > 0.
But (4.4) yields (4.3). By (4.2) and (4.3)
Al - x)<3(F()N/9(IF (x)) € £(0,1)
follows obviously.
Thus Theorem 1 is proved for rj(u) = The proof for rj(u) = d(n)
runs similarly. To prove (3.12) we use Lemma 1 (see (3.2)), thus
0] /I 1\ n °° * /I 1\ n

ANAY) NP E 0 - £ s Au)n2n4d S a0 -

=0n=2m+
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18 L. LEINDLER and J NEMETH

« « Ip2m)i k T — < 00.
k=1A(|/2 )02p(2*) fiar

From this point the proof runs on the same line as before. The proof of
Theorem 1 is thus complete.

We shall detail only the proofs of the decreasing cases of Theorems 2 and
3, the increasing cases would run likewise.

Proof of Theorem 2. Since the sequence is quasi /3-power-monotone
decreasing with a positive /3, therefore, by (1.2),

(4.6) 2(m+N 72m+, A A2m72m

holds for arbitrary natural numbers m and p. If p is large enough, e.g. if
N3 > 2K, then (4.6) implies that

4.7) T2mex A ~72m
holds for any m. The inequality

(4.8) 72mHl = KI2m

obviously follows from (4.6). Thus, (4.7) and (4.8) show that the sequence
{7 2n} is quasi geometrically decreasing.

This completes the proof of Theorem 2.

P roof of Theorem 3. Since the sequence {72"} is quasi geometrically
decreasing, therefore, by Lemmas 3 and 4 there exists a positive e such that

00

27e72n ~ A'02mET72

n=m

holds for any m. Hence, since the sequence 7 is bounded by blocks, thus, by
(1.4) an elementary calculation shows that if n m then

(4.9) n*7n = Ar{oq, a2, A0)m£7/m

holds with a constant K depending on 01,02 and Ao
Finally, setting § := e and K K{a\, 02, A'0), (4.9) verifies that the
sequence {7,,} is quasi /3-power-monotone decreasing with a positive /3.
The proof of Theorem 3 is complete.
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ASYMPTOTICS FOR DIRECTED RANDOM
WALKS IN RANDOM ENVIRONMENTS

LAJOS HORVATH (Salt Lake City) and QI-MAN SHAO (Singapore)

Dedicated to Professor Karoly Tandori for his seventieth birthday

1. Introduction

Random walks in random environments have received much attention
from mathematical physicists as well as probabilists in recent years. Buffet
and Hannigan [4] points out that directed random walks in random envi-
ronments are mainly used as “models for the motion of electrons in crystals
with impurities. The presence of the defects perturbs the normal hopping
behaviour of the electrons from one ion of the crystal to the next, thus
modifying the transport properties of the medium. Because the nature and
location of the defects can only be controlled in a statistical sense, their ef-
fect is best taken into account by treating the transition rates of the walk
as random variables.” Let {X(i),0 5 ( < oo} denote the position of the
integer-valued random walk at time t. Following Aslangul et al. [1]3] and
Buffet and Hannigan [4], we assume that X(t) is a pure birth process and
Pn(t), the probability that at time t the random walk is in state n, satisfies

(1.1) P,.,(t) = -wnPn(t) + w,,_iPn_i(i), 1”7 n < oo,
(1.2) P'(i) = -woPo(t),

where w = {rer, 0 N i < oo} are independent, identically distributed non-
negative random variables. We also assume that the process X(t) starts its
random walk from state 0.

Using holding times, Buffet and Hannigan [4] gave a simple representa-
tion for X(t). Let 8O = 0 and S(n) denote the time of the nth jump of
the random walk. The holding times are defined by Tj = S(j -f 1) —S(j),
07 j < oo. Itis well known (cf. Feller [10], Cinlar [6] and Buffet and Han-
nigan [4]) that {Tj,0 ~ j < oo} are conditionally independent, exponential
r.v.’s with parameters {fUj,0 i1 j < oo}, i.e. we have

0236-5294/95/$ 4.00 © 1995 Akadémiai Kiaddé, Budapest



22 L. HORVATH and QI-MAN SHAO

forall 1< k< ooand 0™ w < riz < ... <\ It follows from the definition
of the holding times that

(1.4) X(t) = max{n :S(n)~t}.

Since X(t) is the inverse of S(n), the properties of the partial sums can be
used to get asymptotic properties of X(t).

In Section 2 we study the rate of convergence in the strong law for
X(t) and in Section 3 we obtain approximations for X(t) using suitable
constructed Wiener processes.

2. The rate of convergence in the strong laws of large
numbers

Horvath and Shao [13] obtained the necessary and sufficient condition
for the law of large numbers.

T heorem 2.1. (i) If Ew”1< o0, then

for almost all realizations of w.
(ii) If there is a positive constant ¢ such that

(2.2)

for almost all realizations of w, then Ewffl < oo and ¢ = Ew”1.
The main result of this section is the rate of convergence in (2.1).

Theorem 2.2 (i) Let 1™ v < 2
If Ewqu < 00, then

(2.3)

for almost all realizations of w.
If there is a positive constant ¢ such that

(2.4)
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ASYMPTOTICS FOR DIRECTED RANDOM WALKS 23

for almost all realizations of w, then EwOv < oo and ¢ = (EwO0 )
(if) 1f Ewg2 < oo,then

. X(t) - t/Ewql
(2.5) Pw <lim sup ® Mt =1

t—eo (Nog logi)172

for almost all realizations ofw.
(iii) If there is a constant b such that

. \X(t)-bt\
(2.6) Pw <lim sup =1
t—oe  (tlog\ogt)1/2

for almost all realizations of w, then Ew02 < oo and b= Ev)0l.

The first part of Theorem 2.2 generalizes the Marcinkiewicz-Zygmund
strong law of large numbers to directed random walks in random environ-
ments. Assuming that 1~ v < 2, then X(t)/t goes to (Ew”1) 1 Pw-a.s. and
the rate of convergence is o(p/*-1) if and only if Ew” < o0o. The second
part says that the law of the iterated logarithm holds for X(t) if and only if
Ewqg 2 < oo0.

The proof of Theorem 2.2 is based on the following lemma.

Lemma 2.1. (i) We assume that EwIfl < oo with some 0 < v < 2. Let
b- 0, if0<o< landb= Ew”l ifl”™v <2 Then

2.7 ( lim S(n) —nb

—t00

for almost all realizations of w.
(i) Lei 0 < wn < 2. Ifthere is a constant 0 ™ ¢ < 00 such that

S(n) —nc
(2.8) (n) =1
r]]./Il

/or almost all realizations of w, then EwOu < o0o. A/so, ¢ = EwO0lI, if
l1gv<2.
(iii) 7/Ew02 < o0, then there is a constant ¢ such that

. S(n) —nEw011
(2.9) Pw <lim sup =1
(nlog logrc)1/ 2
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24 L HORVATH and QI-MAN SHAO

for almost all realizations of w.
(iv) If there is a r.v. c(w), depending only on the environment w and a
constant b such that

S(n) —nhl

210, Pw <lim sup 172 < c(w)

o (nloglogn

for almost all realizations of w, then Ewti2 < oo and b= EwOI.

Proof, (i) and (iii). It is proven in Horvath and Shao [13].
(iii) The strong approximation of S(n) in Section 3 (cf. Lemma 3.1) im-
plies that

211,
s(n)— x wl
. O<r<n—
/W limsup 1 = 2/ >= 1 Pw-as.
X wt 2\og\og X wi 2)
o'rxn—t 6l‘r”(Tr—|1 /

The law of the iterated logarithm for partial sums of i.i.d.r.v.’s yields

X wtl- nEwO1

. oM \2
(2.12) P limsup = (war 1\,\0_} = 1
n-+00 (2n log log n)

Putting together (2.11) and (2.12) we get immediately (2.9).
(iv) It is easy to see that (2.10) implies

IS(n) —nb\

(2.13) P <liFGuR 6=d\ =1

]
n-+oo  (Nloglog n)

with some constant d. Since S(n) is a sum of i.i.d.r.v.’s, (2.13) holds if and
only if ETg < 0o and b= £T0. If F denotes the distribution function of wo,
then we have

roo

(2.14) P{TO>t}= [/ e-txdF(x),
Jo

and therefore elementary calculations show that ET0= EwOland ETq < 00
if and only if Ewg 2 < o0.
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ASYMPTOTICS FOR DIRECTED RANDOM WALKS 25

Proof of Theorem 2.2. (i) It follows from (1.4) that
(2.15) X(t) =n, if S(n) g << S(n+ 1),
and therefore we have

n- S(n+ 1)/Eiv01 ~ X(t) —tjEwgl ~ n- S(n)/Ew0l
S*tf(n + 1) = pT" = BULN)

if S(n) ~ t < S(n+ 1). Lemma 2.1 gives

(2.17) lim S(n)/n = Ew01 Pw-a.s.,

and therefore (2.3) follows from (2.7) and (2.16).
Since 1™ v < 2, (2.14) implies that

(2.18) limX(<)/l<=¢c Pw-a.s.,
and therefore Lemma 1 of Buffet and Hannigan [4] gives
(2.19) nI|_rfnOo S(n)/n = : Pw-a.s.

According to Lemma 2.1, if (2.19) holds, then ¢ = I/Ew”~1 Using again
(2.15) we obtain

(2.20) limsup IS(n) - NnEw0 1Yn 1™ ~

11X(t) - t/Ew0”
t4v

N AN
S iimsupS ;'/P)— I'imsupE/’\O =0 Pw-a.s.
n—oo 77 t—foo

Now Lemma 2.1 implies that Ew”" < oo.
(i) and (iii). Putting together (2.15) and Lemma 2.1(iii) and (iv) we get
the last two statements in Theorem 2.2.
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26 L. HORVATH and QI-MAN SHAO

3. Gaussian approximations for X(t)

Let
(3.1) p(h)= ~ wijl
1
and
(3.2) p[t) = fi(i) + w~I(t- i), iGtNi+1

be the broken line connecting the points { (r,/x(r)),1 ™ i < oo}. We also
define

(3.3) S(x)y = » Tj, 1" x < 00,

(3.4) r2(t) = wj 2
0<?'gi-l

and

(3.5) 72= Ew~2.

We say that {I'(<),0 E t < oo} is a Wiener process, if I" is an almost surely
continuous Gaussian process with covariance i?r(f) = 0 and £T (f)r(s) =
—min(l,s).

Lemma 3.1. Assume that EwqU< 0o for some o » 2. Then for almost

all realizations of w we can define a Wiener process {Tw(/), 0 E t < oo} such
that

for almost all realizations of w.

Proof. Let
W-Zu
3.7) fio —<W — £ p < 00
|1<i<00
We show that
(3.8) P(Mo)=1.
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The moment condition EwOu < oo implies
(3.9) P{w~"' >i'>v i.0.}=0

and therefore it suffices to establish that

(3.10) ]j - H{w"1A” "} < o0 as.
It is easy to see that
(3nn E . E =
= Eit) =
=E E EVTo-07T<Hsj

=E E Nom({(i-Doxls|/}s

I"j<oo 00

=2 £ W7-2Z{(j - )VU- < tol” JUr}) ~
1<7<o0 J
£2 yi(»;%i{(i-i)'<% 1Sj,,"[)E24""
I<1<00

which implies (3.10).
Now (3.8) yields

(3.12) A EAT?[i2< 00, if w 6 fiO-

17 i< 00

We can write (3.12) as

(3.13) E £ ! < oo, if w 6ilo.

Wi
1£11< 00

27
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28 L HORVATH and QI-MAN SHAO

Hence by Theorem 1.4 of Shao [18] (cf. also Einmahl [9]) for all w E Slo we
can find a Wiener process {Tw(i), 0 is t < 00) such that

(3.14) Pw\ lim max \S(k) —/i{k) - T'(T2(k))\/nI» = 0>= 1,
if w Giio- Observing that S(x) —S(k),n(x) —[i(k), \i kK x < k+ | and

max sup Ifi(K) —u{x)\/ral/" = max — /nl" = o(1) a.s.,
X"k~AnkNz<k+1 X~k

Lemma 3.1 follows immediately from (3.14).
Hanson and Russo [11] obtained the following result for the increments
of a Wiener process {I'(<),0 ~ t < oo}

Lemma 3.2. Assume that b(T) Z0,a(T) > 0 and a(T) + b(T) —» 00 as
T —*00. Then

(3.15)
llinsup sup sup N<+*)-I' )l
r-oc o~ §T)oa(T) (2a(T) (log ™ TYT) + loglog (b(T) +a(T))))

YR

is 1 a.s.

The proofs of the approximations of X(t) require some elementary results
on fi{t). Let

A(M) = sup sup li(f +s)- n(t) - sEwg 1l
oA-IT 0"s™u(T)
Lemma 3.3. (i) // Ew”2< 00 and 0 < u(T) is T, then
(3.16) A(T) =0o(Tr/2)+ 0 ~(u(T) (log 7 ~ j+ loglogt)) 1
(ii) If EwgV< oo for some 0 > 2 and 0 < u(T) ~ T, then

(u(T) (log ' + loglogr))
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Proof. Let

if 2n Mk <2 n+\

where F* is the distribution function of wOl. Major [16] constructed a
Wiener process {T(i),0 ~ t < 00} such that

(3.18) 1[93/)\(” £ w-"-kEw~-Ttfik)) o(»1/2),
where
(3.19) q2W = m

a<i<k-i

It follows from the definition of of that

(3.20) lint of —var Wg 1.

k —*00

It is easy to see that

(3.21) sup sup  \T(q2(t +s)) - T(g2(t)\ ~
ogtgT ousgu(T)
n sup sup IF(<+ s) —T(i)],
0gtgq2(2T) OgsgCu(T)
where C — sup erf. Now (3.16) follows immediately from Lemma 3.2.
I"i<oo

If Ewg¥ < 00 for some u > 2, then by Komlés, Major and Tusnady [14],
[15] and Major [17], there is a Wiener process {I(<),0 i1 t < 00} such that

(322) max ¢ 1 KEWOL1- (var w0 )IoT(A) % ofn VM
\<k<n
< A1
Thus Lemma 3.2 implies (3.17).

After these preliminary results we are ready to get some approximations
for X{t). Let /r_1(t) denote the inverse of /(<) and

er2 = Ewq2/ (Ewql)3.
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T heorem 3.1. Assume that Ew02 < oo. Then for almost all realiza-
tions of w we can define a Wiener process {fw(i),0 ~ t < oo} such that

(3.23)

Tw{ lim (TloglogT) 12 sup (X(t)-fi 1{t))/a- fw(f) - 0 =1
'T— o<t<T

for almost all realizations of w and for all e > 0 we have

(324)  lim Tw{t 12 sup (X(t)-p xV)/(7- fw( >N1=0
* J

o<i<t

for almost all realizations of w.

Proof. The strong law of large numbers gives
(3.25) r2(r) - 723 &' o(x), as X —»00.

If Tw is the Wiener process of Lemma 3.1, then by Lemma 3.2 and (3.25) we
have

3.26) Tw<_lim (TloglogT) 12 2(f)) - Lw(729)]| = 0
(3.26) W<(TT;1)( oglogT) 172 sup |rw(r2(f)) - Lw(72<)

=1 Tw-a.s.
Using Lemma 3.1, (2.1) of Theorem 2.1 and (3.26) we get
(3.27)
Twi_ll_diJrrBO(TloglogT)"llzos\%Jgpr 5(//_1(<)) - t- rw(72/_1(<) | = o]j =
=1 Tw-as.
By the law of the iterated logarithm we have

(3.28) sup \p(t) —tEw”l & 0((T\og\ogT)19),
oMAT

and therefore Lemma of Horvath [12] implies

(3.29) sup \p-1(t)-t/Ew~1\ = 0((TloglogT)1/2).
olt"T
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Lemma 3.2 yields that

(3.30) Tw{limsup (Tloglog T) 1/4(logr)_1/2 sup |Tw(7V 1(i)) -

AN T—o o<tk
Ewol) <001 =1 Tw-a.s.

Let
(3.31) tw(t) = —Y(EW~1)1,2TW(7 2t/E Wh

It is easy to see that Fw is a Wiener process. Putting together (3.27) and
(3.30) we obtain

(3.32) Pw lim (TloglogT) xt2 sup S(n \t)) - t—
T->°0 oataT

rw(t) =0>=1 Tw-a.s.
(rws!)

Hence by Theorem 3.1 of Csérg6, Horvath and Steinebach [8] (cf. also Chap-

ter 2 in Cs6rgé and Horvath [7]), there is a Wiener process {rw(t),0 ~ t <
< 00} such that

(3.33)

Pw<1%im (TloglogT)-1/2 sup fw(i) =0y =

1
o<t<T (Ewo1)172

=1 Tw-a.s.
The law of the iterated logarithm yields

(3.34)

Twi limsup (2T loglog T)-1/2 sup |fw(/)] = 1>=1 Tw-as,,
{ T~co 0A%T )

and therefore (3.29) and (3.33) imply

(3.35)

Tw <limsup (Tloglog T)-1/2 sup |JA'(<) - /r 1(i)] < oc >= 1 Tw-as.

7 —00 0<t<T
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32 L. HORVATH and QI-MAN SHAO

Lemma 3.3 and (3.35) yield that

(3.36) Pwi lim T-1/2 sup |’\(X(t) - fi~a(t)—
NT—e0 outuT

~{X(t) - Ewg'l =0>=1 Pw-as.

Combining (3.33) and (3.36) we get immediately (3.23).
Since Tw is almost surely continuous, (3.25) and the scale transformation
of the Wiener process imply

(3.37 lim Pwi T 12 sup Irw(r2(<)- Tw(72<)| > £>=
'—eo ( olitdT )

—0 Pw-a.s.

for all £ > 0. Hence similarly to (3.27) we have

3.38) lim Pw\T-1/2 sup_|S(r-1(<)) - t- rw(72i 1(0)|>£f=0

(3.38) Jim by IS(T-16) (721_1(0) | > £
Pw-a.s.

for all £ > 0. Putting together (3.37), (3.38) and (3.30) we get that

3.39) Ilim Pw\t 112 su .
(3:39) T-00 | o<t<pT FEws 19 /2

fw(t) > E}:
=0 Pw-a.s.

for all £ > 0, where f w is defined by (3.31). Theorem 4.1 of Csdrg6, Horvath,

and Steinebach [8] gives that the Wiener process {Tw(i), 0 ™ t < oo} of (3.33)
also satisfies

3.40 lim Pw{t X2 sup M(X(t)) -t fw(o > E—
(340) lim Pw{t X2 sup M(X(1)) Cw ™=

=0 Pw-a.s.
for all £ > 0. Now (3.24) follows from (3.40) and (3.36).

Acta Mathematica Hungarica 68, 1995



ASYMPTOTICS FOR DIRECTED RANDOM WALKS 33

The law of the iterated logarithm for directed random walks follows im-
mediately from Theorem 3.1. If Ewg2 < 00, then

(3.41) Pwjlimsup (2TloglogT)-1/2 sup IX(t) —/i_1(t)] = aj =1

A T~*00 ogtrT

for almost all realizations of w. Also, it is clear from Theorem 3.1 that
{T-1/2(X(Tt) - /i_1(T<)) I<7,0 ~ i~ 1} converges weakly to a Wiener pro-
cess for almost all realizations of w. Thus we have

3.42 lim / d(.r),
( ) t—lw@ W atu?2 ()

where @ is the standard normal distribution function and

lim Pw<T X2 sup jX(t) —fi 1(t)\/a i x

>= H(x),
Troo { OUtAT J

for almost all realizations of w, where

H(x)=~ Y AAT exp(-*22k+ 1)2/(8x2)).
OFKioD

We note that (3.42) was also proven by Buffet and Hannigan [4] under much
stronger moment condition than Ew. 2 < o0.

Assuming stronger moment condition one can improve on the rates of
approximation in Theorem 3.1.

THEOREM 3.2. Assume that Ewql < oo for some 2 < n < 0o. Then for
almost all realizations of w we can define a Wiener process { fw(f),0 " t <
< 00} such that

(3.43)
Pwiltli_mOOT_l’\(log T)—1/20 sup (X (t) —p~1(t)) /o —Fw(<)| = o} =

for almost all realizations of w, if2 < v < 4 and

Pw{lim sup (T log log T")-1™(log T)-1/2

* T—o0

sup i))/la-rw(i) <00}=1
0<i<T

for almost all realizations of w, if4 ~ v < oo0.
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P roof. We follow the proof of (3.23). The Marcinkiewicz-Zygmund law
of large numbers (cf. Chow and Teicher [5], p. 125) and the law of iterated
logarithm yield

|'0(22/"), if 2<v<4
(3.44)

\ O((x\og\ogx)1/2) if 47 un< oo,
as X —moo. Let

TVYW(logT)1/2 if 2<@z<4
(3.45) rv(T)
(TloglogT)l/4(logT)12, if 47i/<oo.

First we assume that 2 < i>< 4. If Tw is the Wiener process defined in
Lemma 3.1, then by Lemma 3.2 and (3.45) we have

(3.46) Pw< lim sup |rw(r2(i)) - rw(7X)|/r,, (N =01=1 Pw-as.
{rr°°onT

1
J

Using Lemma 3.1, (3.30) and (3.47) we obtain that

(3.47)PW< lim sup ) - 1 fw(0 /bIT) =0} =

ct<T .EW-ITIZ

1 Pw-a.s.,

where Lw is defined in (3.31). Applying again Theorem 3.1 of Csorgé,
Horvéath, and Steinebach [8] (cf. also Chapter 2 in Csérgé and Horvath [7])

we can define a Wiener process {Fw(/), 0 ™ t < oo} such that
(3.48) Pw lim sup Tw<) MT) =0
T-*°0<i<T (Ew~If 2

=1 Pw-a.s.

Similarly to (3.36) one can easily establish that

(3.49)

PJ lim T~I"v sup \fi(X(t)) -»{»-"(t)) -{X(t)-fi-\t))Ewia:1\=0} =

A Jup- (X(1)) -»{»-"(1)) -{X (1) ) }:]

=1 Pw-a.s.
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Now (3.43) follows immediately from (3.49) and (3.50).
Similar arguments work, if 4 ~ v < oo. The probabilities in (3.47)-(3.50)
should be replaced by

Pw <Himsup sup [rw(r2(t)) - rw(72t)] /ra(T) <oc>=1 Pw-as.,

T—co 0<t<
Pw\ lim sup sup IT4T) <00 =
T—o00 o<t<T

1 Pw a.s.,

T—00 o<t<T

Pw<limsup sup p{x(t)) -t - YI\:UElV\I(O Ir4(T) < 00j =
wq

1 a.s.

and

Pjlimsup sup In(X(t))-n(p 1(t))-(X(t)-n 1(t)) Ewo 1\/ra(T)< 00 >=
1 T->00 0<t<T

Pw a.s.,

and we get immediately (3.44).

Theorem 3.2 implies, for example, Chung’s law of iterated logarithm for
directed random walks in random environments. If EwqU < oo for some
2 < v < 00, then

fw {liminf T-1/2(log lo P1/25u \ X (t)-,-\t)\ =anr-} =
{TO (log log P) p (1) ) »_}>

—1 Pw-a.s.
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INTERPOLATION BETWEEN CONTINUOUS
PARAMETER MARTINGALE SPACES:
THE REAL METHOD

F. WEISZ1 (Budapest)

To Professor K. Tandori on his seventieth birthday

1. Introduction

It is well known that interpolation spaces of Lp spaces are Lorentz spaces
and that interpolation spaces of Lorentz spaces are Lorentz spaces, too. More
exactly (see e.g. Bergh, Lofstrom [2]),

ARSDILpiw Jgg— Lpa = T -

where 0< 0< 1, 0< po < pi ~ oc and 0 < gxq U oo. In [10] and [19] Fef-
ferman, Riviere and Sagher have identified the intermediate spaces between
the classical Hardy spaces; they have shown that

1 1-6 6

(1) » o 1o
P Po Pi

where 0 <6 < 1, 0<po<p\”™oo 0<q,q” o0, and Tip,g= Lris if 1 <
< p ™ oo (1) is proved between the classical "HPoM and BM O in Hanks [13]
and Bennett, Sharpley [1]:

1- 6

1
(2 (HPom,BMO)eg= U -
P Po

where, again, O<0<1,0<po<°0 and 0< qo,6 = °0-
These results were shown for the discrete parameter martingale H* spaces
defined by the maximal function by Janson and Jones [14] and Milman [17],

but for 1~ poi only. This will be generalized for martingale Hp spaces gen-
erated by quadratic variation. Recall that b #11. (1) and (2) were also
verified in the discrete time for martingale Hp spaces defined by conditional

1 This research was partly supported by the Hungarian Scientific Research Funds No.

F4189.

0236-5294/95/$4.00 © 1995 Akadémiai Kiadd, Budapest



38 F. WEISZ

guadratic variation (see Weisz [21], [22]). In this paper these results will be
extended to continuous parameter martingale spaces.

2. Basic facts of interpolation theory

For a measurable function / the non-increasing rearrangement is intro-
duced by

70 = infly : P({x :\f(x)\ > y}) ™ t}.

The Lorentz space Lp/] is defined as follows: for 0 < p < 0¢,0 < q< 00

while for 0 < p ™ &)
/1IU =<

Set
Lria := Lpg(tt,A,P) := {/ :||/]|Pt < oo}.

One can show that Lpp = Lp and Lpis the weak Lp space (0 < p i 00).

The basic definitions and theorems of interpolation theory in the real
method are given shortly. For the details see Bennett, Sharpley [1] or Bergh,
Lofstrom [2]. Suppose that To and A\ are quasi-normed spaces embed-
ded continuously in a topological vector space A. The interpolation spaces
between To and A\ are defined by the means of an interpolating function
K(t,/, TO.A\). If/ GTO+ Al, define

K(t /, TO,Ti) == inf  {ll/ollg0+ fll/ilui }

where the infimum is taken over all choices of /o and [, such that /o G To,

f\ GA\ and / = /o + f\. The interpolation space (Ao,A\)gq is defined as
the space of all functions / in TO+ A\ such that

/e nA L~
WilvoAlg, := (yo [rA~~To.TOj'yj <®o

where 0 < B < land 0 < g~ oo. We use the conventions (To,Ti)0?= To
and (To, Ti)j = A\ foreach 0 < g~ oo.
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INTERPOLATION BETWEEN CONTINUOUS PARAMETER MARTINGALE SPACES 39

Suppose that Bo and B\ are also quasi-normed spaces embedded contin-
uously in a topological vector space B. A map

T :Ao+ A\ —*Bo + B\

is said to be quasilinear from (Ao, A4) to (Bo,B\) if for given a E Ao + A\
and a; G A- with a0 + ai = a there exist 6r E Bi satisfying

Ta - bo + hi

and
\bl\e, = KMu\\a, (Ki>*° i=0.1).

Theorem A (Riviere, Sagher [19]). If 0<q# oo, 05 8" landT is
a quasilinear map from (Ao,Aj) to (Bg,Bi) then

T : (A0, Al )gq — * (B0, B\ )gq

and ITc |(BOB|)GH - K 1—6A’i|H|(Nb'Al'B‘H

The reiteration theorem below is one of the most important general re-
sults in interpolation theory. It says that the interpolation space of two
interpolation spaces is also an interpolation space of the original spaces.

Theorem B (Reiteration theorem; Bergh, Lo6fstrom [2]). Suppose that
0”NB <0i M1 0< ,q\ 00 and X, = (AQ,Ai)ey. (i = 0,1). If 0<
<1< land0< g” oo then

(Xo,Xi)vg - (Ao,Ai)Qji
where.
0= (1- rj)0o+ u0].
If, in addition, Ao and Aj are complete and {)<Bo = B\=p < \ then

((A0,AI) ,(AQAI) ) = (A0, A\)
where
1 1-V n
Y @ Qi'

T heorem C (Wolff [27]). Let A\, A2, A3 and A4 be quasi-Banach spaces
satisfying A\ MA4 C A2TTA3. Suppose that

M = (Ai, A3)dba, A3 = (A2, A" r
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40 F WEISZ

forany 0< b, < land 0 < g, r £1 00. Then

A2 - (A\, A4 o As - (Ai, ANBr
where
Neo Q_ )
1+ dap’ L- G+ dop

The result about Lorentz spaces mentioned in the Introduction is stated
as follows.

T heorem D (Bergh, Lofstrom [2]). Suppose that 0 < 7 < 1 and 0 <
< Po-Pi-, €014, q T 00. Ifpo / p, then

i 1- 4 1fl

(Lpo,od, A~ P9 p o Pt

In particular,

R Pp = Lo

Furthermore, for 0 < p < oo,

(Lp.q0, LPt4l )dq = Lptg, —= - H-----.

3. Preliminaries and notations of martingale theory

Let (£1,A, P) be a probability measure space and T —(Tt,t £ R+) a non-
decreasing family of sub-o-algebras of A. The o-algebra TteR+Tt is denoted
by o and it is supposed that T = A,

With the family [Tt,] G R+) the following families (Tt+,t GR+) and
(Tt-,t GR+) of (r-algebras are associated:

Tt+ := Tt- ;= W<tTs.

For t = 0 we set TO- := To- In this paper it is assumed that the family
(Tt,t GR+) is right-continuous (i.e. Tt —Tt+ for every t) and that every
set F which belongs to the P-completion of the u-algebra Too with P(F) = 0
belongs to TO.

A real stochastic process X is a mapping from (R+ x Ii) into R such
that, for every t GR+, 1 Xt(w) = X(t,u) is A-measurable. A stochastic
process X is adapted if the preceding mapping is Tt measurable for every
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t. A process X is regular if X is adapted and all functions t X(t,u>)
have left and right limit for every n E fi. We use the notation Xt (Xt+)
for the left (right) limit at a point t. If these functions are right-continuous
(left-continuous) then X is called right-continuous (left-continuous).

A subset of R+ Xif is called well-measurable (or optional) if it belongs
to the ir-algebra Q which is generated by the real regular right-continuous
processes. We say that a real process is well-measurable or optional when it
is (/-measurable. The cr-algebra of subsets of R + x fi, which is generated by
the adapted continuous real processes is called the ir-algebra of predictable
sets and will be denoted by V m A process which is P-measurable is called
predictable.

A mapping v : fi —>R+ U{00} is a stopping time if, for every t E
E R+, the subset {~ ™ t) of fi belongs to Tt- It is well-known (see e.g.
Metivier [15]) that v is a stopping time if and only if I[0t/] is predictable or,
equivalently, if and only if {o < t) E J-t for every t. The graph of u is defined
by

M := {(t,ui) :t —v{uj) < 00,t GR+,u/ E il}.

For a stopping time o one has [ E Q. If [v] EV then the stopping time is
called predictable.
To every stopping time v we associate two cr-algebras and Tv-\

Xv {FEF®O:f'n{i'*<}ET]j,iE R+}
and Tv- is generated by
{Fn{r<i}:FEf(,iE R+}UTq

Note that for a constant stopping time o(1> = t we have Tv- Ttand Tv- =
—_ % 3

tet us denote the expectation operator by E, the conditional expecta-
tion operator relative to Tt, Tt~, Tv and Tv- by Et, Et~, FA and Eu~,
respectively. For the space Lp(CI,A,P) let us use the shorter notation Lp
and suppose that for / E L\ one has EqJ = 0.

A stochastic process X is a martingale when X is an adapted process
with E|X/| < 00 (/ E R+) and EsXt = Xs for every s < t. For simplicity
we always suppose for a martingale X that Xo = 0. Of course, the theorems
that are to be proved later hold without this condition, too. A martingale
X is said to be Lv-bounded if

sup ||Xf|| < 00.
te R+

An adapted process X is a local martingale if there exists an increas-
ing sequence of stopping times vn such that 1Hnn tovn = 00 a.e. and
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the processes XiAn are all uniformly integrable martingales (n E N). We
can suppose that a martingale or a local martingale is regular and right-
continuous (see Meyer [16] p. 291). A local martingale is said to be locally
Lp-bounded if there exists an increasing sequence of stopping times vn such
that linin-,.~ vn = 00 a.e. and the processes XfA,n are i p-bounded martin-
gales (n EN).

The following definitions will be used for a local martingale X:

AXt:=Xt-X t- (Ao = 0),

X = suplwl, XN sup \Xt\
<s <eK+

If X is a locally Z2-bounded local martingale then there exists a unique pre-
dictable, right-continuous and increasing process {X) such that X2 —(X)
is a local martingale vanishing at 0 (see Dellacherie and Meyer [9]). (X) is
called the sharp bracket or the conditional quadratic variation of X . More-
over, if X is a local martingale then there exists a unique right-continuous
and increasing process [X] such that X2 —[X] is a local martingale and

N[X]4= |AX42 ([X]0 = 0). This process is called the square bracket or the
quadratic variation of A'.

Let us introduce Hardy Lorentz spaces for 0 < p,q  00; denote by h\j?,
Hp]g and H*q the spaces of local martingales for which

-YIU =1P -ai, < 00,

*llg> H INe 1/2] o < 0

and
'P.9

respectively.
A local martingale X is in the space Vris if and only if there exists an
adapted, left-continuous and increasing process A such that

X,| N~ At,  Adqy.— sup At E Lpyg,

i6R +
Endow this space with the following quasi-norm:
\WX\\Vpq := inf IHoollp™ (0 < p i1 00)

where the infimum is taken over all predictable processes having the property
above.
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If, in the previous definition, we replace the inequality |W| is At by

[x-f,n
then the local martingale is in QPi4. We define the QP9 quasi-norm by
imieM := irfii“ooiu (o < v ”™ 00)

where the infimum is taken over all predictable processes again.
It is clear that the infima taken in VRg and QF9 norms can be attained.

Indeed, for every K £ N let A” be aleft-continuous process having the above
property such that [[M”||p9 — ||X|["*>p? as kK —mo0. Set

At:= inf AR (t£ R+).

It is obvious that the process A is adapted, left-continuous, increasing and a
majorant of X and

The proof is similar for Qe spaces.

Note that in case p = q the usual definitions of Hardy spaces # o = MO»
Hp%) i w5 =5, Pep vp and QAP Qp are obtained.

It is a well-known statement in the martingale theory that if X £
£ //*, Hp,Hp (p ™ 1) then there exists X oo such that Xt —aX” a.e. and in
L\ as t —vo00. Moreover, the Burkholder-Davis-Gundy inequality says that
/lj ~ 7/~ and H* ~ Hi) ~ Lpfor p > 1where ~ denotes the equivalence of
the spaces (see e.g. Dellacherie and Meyer [9] or Weisz [25]). Moreover, by
Doob’s inequality, 7/~ = Loo

It was proved by Dellacherie, Meyer [9] and Pratelli [18] that the dual
of resp. is BMO.J resp. BMO2 (see also Weisz [25]), where BMO~

resp. BMOPdenote those martingales X closed on the right by X~ £ Lv for
which

y lbmo- := SWP {EtlXoo0-Xt-\p)l/p <00 (1= P < 00)
fER +

resp.

Mpvop  swp (EtiXoo - Xtp)p <00 (1= P < 00).
i€R +

Acta Mathematica Hungarica 68, 1995



44 F WEISZ

In [23] we introduced the sharp functions

%9 2 Ur © )
= sup W i < r< o0
GR+ «. (W o00-W i)
and
= SUP Etqix )e (0 < r < 00).
<6R+

Denote the operators X y*xP and X w» xP by tP and tP, respectively.
The following result, which is a generalization of an inequality due to
Fefferman, Stein [11] and Garsia [12], is verified in Weisz [23].

Theorem E. The L™ resp. LT norm of tP(X) is equivalent to the
BMO?2 resp. HP norm of X and, moreover, the resp. L, norm of TP(X)
is equivalent to the BMOJ resp. hP norm of X .

4. Interpolation of martingale spaces

In this section the interpolation spaces between martingale Hardy spaces,
between Hardy and BMO and, moreover, between Lp and BMO spaces are
identified.

First a new decomposition theorem for martingales is given. The proofs
of the following two theorems are based on the atomic decomposition given
in Weisz [25].

Theorem 1. Let X £ Hp,y>0andfix0<p ™ 1 Then X can be
decomposed into the sum of two martingales Y and Z such that

WYW\HOQU 4V
and

ilp

|z||Ho S e p(7 (xfT dP

Proof. Choose N 6 Z such that 2N 1< y ~ 2/, Let us consider the
following predictable stopping times for all k £ Z:

vk = inf{t £ R+ : (X)]12~ 2*}.

Acta Mathematica Hungarica 68, 1995



INTERPOLATION BETWEEN CONTINUOUS PARAMETER MARTINGALE SPACES 45

Note that inf0 = o00. Set

N
ILkat
k=—¢
and
Zf y" pkat
k-N+1
where
Pk 1= 2k3P(vk f 00 P/P
and
, 1
Pk

It was proved in Theorem 1 of [25] that Xt —Yt Zt for all t £ R+ and
Y = X”N+!. By the definition of 'n+i we get that

T)"2= S2«H ady

which proves the first inequality of the theorem.
On the other hand, the inequality

oo oo
iizr()s Y. w =cP £ (2Y -p((v>"az2*)
fe=/v A=NAHL

follows from Theorem 1 in [25]. By Abel rearrangement, we obtain

iz “Cp| (A>"2dP SCP| (XYizdP.
7¢007 2"} {(x)N4y)

The proof of the theorem is complete. O
By the help of Theorem 2 in [25], the following result can be proved
similarly.

T heorem 2. A result analogous to Theorem 1 holds if we replace Hp
resp. (X) by Vp resp. A or by Qp resp. B where A resp. B is the adapted,
left-continuous and non-decreasing least majorant process of X resp. of

W /2.

The interpolation spaces between these three martingale Hardy spaces
can be identified in the following way.
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Theorem 3. //0 <B< L 0<po=1and0< qg~” oc then

1 i-8B
Hpo->Hoo)g ,, — Hp,q 1 - — =
{Hp )9 p,q 5 Po

where H denotes one of the spaces H”, V and Q. (Note that Veo= Fco and
Qoo = 10-)

We are going to show the theorem for ffé spaces only. The main step in
ihe proof is the following result.

Lemma 1. //0 < p0~ 1 then

riP 1/po
( M (X)ro

where M = (A")"2.

Proof. Choose y in Theorem 1 such that, for a fixed t £ [0,1], y —

—M(tp°). For this y let us denote the two martingales in Theorem 1 by Y4
and ZI. By the definition of the functional K,

ru, x, S, ) S\ a ﬂm

By Theorem 1 we get that

1/po fo _ \ 1ipo
l/\]JNQ)S \%g Mpo dP 1 =C M(x)Rodx \
On the other hand,
iP0 \ po
LI\¥%{)EC LI (P°)iiC M (x) P dx

which shows the lemma. O
The next lemma, which is due to Riviere and Sagher ([19] Theorem 8)
will also be used in the proof of Theorem 3.

Lemma 2. Let f ~ 0 be a non-increasing function on (0,00) and 0 <
<g”oc 0<s<gqg Then

dt\ 1/9

< Cas 71
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Proof of Theorem 3. By the definition of interpolation spaces and
by Lemma 1

I ZtP0 \u/po .1
]n I\IQZIPQ I;il cﬂa %’ I I

~ CJo t{1~e)4P° (j JQ M(x)Pod x y IP° j .

Applying now Lemma 2 we conclude
MI™<55 =c7 COMI™—=amp

To prove the converse consider the sublinear operator T : X M. Ob-

serve that T : HQ —* and T : HRo — * LR are bounded. Therefore, by
Theorems A and D,

N ("po’N0O)gq T (NPo> q~ LpA
is bounded, too, that is to say A" £ (HPo, H™,)e g implies

X o —\m M's c\\x\\{l—l&tl—l:‘i)e(J|

The proof of Theorem 3 is complete if 0 < g < o0. With a fine modification
of the previous proof the theorem can be shown in case q = 00, too. O

Applying the reiteration theorem we get the following result, which can
be found in Weisz [21] for discrete time.

Corollary 1. Suppose that 0 < j < 1 and 0 < po,Pi,qo,qi,q » 00. If
Po £+ pi then

“ PO40 5 HPI i APIQi L=1-1+a
, iQu)rhe iQi P Po P
In particular,
HR,HPX P= Hpi v
P Po PI'
Furthermore, for 0 < p < 00,
. . 1 _ 1-V+1
{HpW prql)vxq— leql 4 40 q\
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where H denotes again one efthe spaces H®, V and Q.

This result was proved by Fefferman, Riviere, Sagher [10] and by Janson,
Jones [14] in the classical case.

The interpolation spaces between Hp and BMO2 are to be identified. In
the classical case this is due to Hanks [13].

T heorem 4. //O<0<1, 0<</”00 and 0 < r < 00 then

1-6
(tf<\ BMO2L| = /i<>, i

Proof. It is simple to see that

12
HMBMOa = P (M I[W 00-W t])
teh+
= sup
(ER +
Thus
scmi(hsu», =om

To see the converse consider the operator Tu for a fixed 0 < n<r. By

Theorem E the operator Tu is bounded from IIP to Lr and from BMO2 to
Loo. Using Theorem A we get that

Tj> : (fl<>, BM02)*9 — (Lr,100)fl, = Lo

is bounded as well. Henceforth, by Theorem E, one can see that X 6
€ (Hr\ BMO2)0p implies

I1X]IHo S C pp © (X)I1,S C PIIV Il 548 BV

which proves the theorem for p = g, namely,

1 1=

(A«,BM02)p= A<, p— ;

Applying the reiteration theorem we can prove the theorem with a usual
argument (cf. Hanks [13] or Weisz [21]). O
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Considering continuous parameter continuous martingales, only, we

proved in [25] that Hp ~ A* (0 < p < 00) and BMO2 ~ BMO”, so, in
this case,

(A;,BM02).,p= 9;, i =
where 0 < B < land 0 < r < 00. This result will be extended later.
As a further application of the reiteration theorem we get the following

Corollary 2. 1f0<0<1l,0<po<o00 ando < go,q”~ 00 then

(%>BM(L| " #%H’ P - Po

The following result can be proved with the duality theorem (cf. Bergh,
Lofstrom [2]) in the same way as in the discrete case (see Weisz [21]). For
p = q it is due to Pratelli [18].

Theorem 5. Thi dual of Hp]g is HY, , where 1< p < 00, 1~ g < 00,
1/p+ 1/p'=1and l/qg+ \/q" = 1.

Let us turn to martingale Hardy spaces defined by quadratic variation
and maximal function and prove similar interpolation theorems for them.

T heorem 6. //0 <B< 1land 0< g” 00 then

(3) (a|],aH)HE, = am,, £ =i-é>
and
(4) (A7, 9729= 9*9, i =

We remark that H® = Loy and that A~ is not equivalent to a4 . So
the results of Theorem 6 are two different statements. (4) was proved by
Fefferman, Riviere, Sagher [10] in the classical case and by Milman [17] and
Janson, Jones [14] in the discrete martingale case.

Since the proofs of (3) and (4) are similar, we verify the first one only.
As we have seen in Theorem 3, this statement follows from the next lemma.

Lemma 3. One has
S(x) dx
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whm 4 := [X]'lr.

Proof. First we need some new definitions. Considering a regular pro-
cess X we use the notation Vx,t for the variation of the mapping s F»Xs
on the interval [0,i] (t GR+ Uoo). To be locally integrable, for an optional
process A of finite variation it is necessary and sufficient that there exists a
unique predictable process B of finite variation (and which is increasing if
A is increasing) such that A - B is a local martingale vanishing at 0. B is
called the the predictable compensator of A (see Dellacherie, Meyer [9]).

For a fixed t consider the following two stopping times:

n:=inf{s GR+ :[X]02 > S(t)},
T:=inf{sGR+ :Vrs” S(1)}
where the process R denotes the predictable compensator of AXvh,,y Recall

that the graph of a stopping time is introduced in Section 3. So An,,1[,.] - R
is a local martingale. Set

W = Xii- (AX/n - R)

and
Y:=WT~, Z =X —Y.

Since R is predictable, r is a predictable stopping time and so Y is indeed a
local martingale (see Dellacherie, Meyer [9] or Weisz [25]).
It is easy to see that

(5) laavijkj.ao —2|4X1/|11/<00.

By inequality (12) in Weisz [25] we obtain

(6) Vr,ao = 2Boo

where B is the predictable compensator of |4Xr,|1|(,]. This yields that the
local martingale 4X,,1[,,] —R has finite variation. Consequently, the contin-
uous part of AXA[,,] —R is zero (for the definition and result see Metivier

[15]). The continuous part of X is denoted by Xe. It is proved in Metivier
[15] (p. 122) that, in this case,

m. =[*rp + - AX.1— +78.)2  (»e r+)
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Since [AQ is continuous in u1 we have

I2E (I-ru- +Y 1OXP)"2+ (Y |AA PJ2E
U SU

s<u

=w'Z-+E =w 'll- v,

s<u
As [E]"2 = [VF]172, by the definitions of v and T we get that
Pil? s myoa _ + s 2S(ij.
Hence
rij[¥]1~2jloo = 2t~ (0 = 2 jo E(*)<**e
We have for the square bracket of Z that
@) [Z]32~ [A - ANT' ]2+ [ANYH - Al Jf.
Since AA'jH[I/] —A4 is of finite variation, we have
[ANELIM - Al "2~ Aga”~-A oo ™ bgAY1m 00 + Vfi.co-
By the convexity lemma (see Dellacherie, Meyer [9]) and (5) and (6),
N1 A00Mj = 2|-Boo 1 = 2P 1AA,,|I[/<00 ) j — Kf AXi/ljjjCc- Il 1+
Henceforth

(8) I[AA,IM-~ t/2]|]174||AAil<00||1g

N4 [X~AdP U4 | ~S(x)dx.
7IfVIH2>S«)f Jo

On the other hand, by the definitions of n and r.

ANIT-H/2 ..
- A o m*jjdp+1
Jif<oo} FH{H+oa i {romdf
/ [X]2 dr + P({v = oo}n{r < 00})5(/).
Jyiilo/2>s(<)}

Acta Mathematica Hungarica 68, 1995



52 F. WEISZ
By Markov’s inequality
P(t < 00)S(t) = S(t)P(Vr,o” 5(0) N Hvr.odlli

and this is estimated in (8) by  S(x) dx. Taking into account (7) and (8)
we finished the proof of the lemma. O
Applying the reiteration theorem we get

Corollary 3. Suppose that 0 < 0< 1, 1< p0O<Pi S 00 amlo0 <
< rlo,rli,g”™ oo orpo- = 1 Then

o 1 b-0 6
(Hpo™o" Hpi,qije,q ~ H> P pPo P\
In particular,
. . _ JL
= =1- +
(A«,, Hpi)v,P = Hpi Poﬂ o

Furthermore, for 1< p < 0o,

1 1-—-7 H—O
>Hp,qo >Hp,qi )gq,q ~ Pp,qi y © i
H*.
Observe that
c#n 1 1-0 . 0
p Po Pi
and
Il _1-0 0
c if,,, - = + -
p Po Pi
follow for all 0 < po < P\ = oo in this case, too.
We remark that ~ aP and A* ~ A" ~ for 1< p < oo. From

Corollary 3 and Theorem D we get immediately the following result.
Corollary 4. For1<p< oo and 0< g” oo we have the equivalence
Holg ~ Hg ~ Lpg

Analogously to Theorem 4 and Corollary 2 the following result can be
formulated.

T heorem 7. Suppose that 0 < B < 1, | < po < 00 and 0 < g0,q » 00 or
Po = go = 1¢ Then
o 9 o 1-0
(HVL’HBMO )1’! - ﬂl/ln p Po
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An analogous result was proved for the discrete time by Janson and Jones
[14] with the complex method.

Observe again that

(A5 ,BMO02)B1CA1|,, No= A

holds for every o < po < 0o.

Note that Theorems 6 and 7 cannot be extended to po < 1 (cf. Janson,
Jones [14]).

Applying Theorems 7 and C we obtain
Corollary 5. //0<#<l,0<po<o0 and 0< <ou4” oo then

(9) (LFO90,BM0J),i9= Lm,

Proof. By Theorem 7 and Corollary 4,

, . 1 1—8
("POIOBMOj )y = Lptg, _—
P Po

where 1< p0< 0o and 0 < go ™ oo. We are going to apply Wolff’s theorem.
Set Ai = Lropo for any 0 < pQ% 1, A2 = LPugi for any 1< px< 00, As =

= bPg for any pi < p < 0o and A4+ = BMOJe+ By Theorem D we can apply
Theorem C and so we get (9) for 1 < p < 00. Let us apply again Wolff’s
theorem. Now set A\ = Lrouo for any 0 < po < 1, A2 —Lpg for any po <
<p”™ 1 A3= TPbgi for any 1 < pi < 00 and A2 = BMO2. Applying (9) to
1 < p < 00 together with Theorems C and D we obtain (9) for all 0 < p < 00.
The proof is complete. O

This theorem can be found in the dyadic case in Schipp, Wade, Simon,
Pal [20] for 22 and BMO2 with the complex method.
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OF MULTIPLE FOURIER SERIES
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Dedicated to Professor Karoly Tandori on his 70th birthday

81. Introduction

Let m ~ 2 be an integer, Zm the set of lattice points in Rm and
\J
(D Y In
nEZm

an m-dimensional series. There exist many different definitions of conver-
gence of the series (1). For instance, let

Y e Y . G

[niiT  \nm\U>
for natural

Sr—) "dn

[n[~r
forr > 0 and
sn= Y Y ak
n \kmWN T

for n E Zm M[0,+o0)m. If the finite limits lim Su —a, lim Sr = a or
- - - .I r 0 -
lim Sy = a exist then the series (1) is called convergent to a cubi-

1m|n n ?—k x>
cally, spherically or in Pringsheim sense, respectively. One can also define
the convergence with respect to hyperbolic crosses, simplexes, etc. All these
definitions have one thing in common. Namely, the partial sums are taken
with respect to sets U C Zm which possess the following properties:

1. U is symmetric with respect to each coordinate hyperplane.

2. If K £ U then all lattice parallelepipeds

[ [min(0, kj), max(0, kj)] MZm ™ U
j=1
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56 M I DYACHENKO

So, let us introduce the following

Definition 1 Let U C Zm be bounded. Then U £ As iff for every

m

K £ U we have [k, |AY] NZm Q U.
3=1

Definition 2. We will say that the series (1) n-converges to a iff for
every £ > 0 there exists N such that for every set V £ A3 which contains the
ball {n£ Zm:|n| is A} we have

X0

nEyU

It is clear, that if the series (1) u-converges to a then it converges to the
same number in Pringsheim’s sense, cubically, spherically, etc. At the same
time the double numerical series ]T an with a0™ = A1, ct\k = - A1, for

n£z?2
kK= 1,2,... and an = 0 otherwise converges in Pringsheim’s sense, but does
not u-converge.

Definition 2 was introduced by F. G. Arutunian [1], [2] in connection
with the problems of representation of functions by multiple trigonomet-
ric series. In [3] the use of the notion of u-convergence in the theory of
multiple Fourier series was observed. Namely, it was stated there that the
Fourier series of functions of m variables with bounded variation in the
sense of Hardy u-converge at every point. So the results of G. Hardy [4],
K. Chandrasekharan and S. Minakhisundaram [5], B. I. Golubov [6],
V. N. Temlyakov [7] about different types of convergence of those series were
generalized. In [8] the smoothness conditions in Lp-spaces (1 © p is 00) suf-
ficient for the u-convergence of Fourier series in Tp-metric were found and it
was proved that those results cannot be improved (the corresponding theo-
rems will be formulated below).

The purpose of the present paper is to give the best possible estimate for
the rate of u-convergence of Fourier series in Tp-metric where 1~ p ~ 00.

We need some notations. All the functions below are supposed to be 2x-
periodical with respect to each variable. Let Tm = [, #)m, 1fi p ii oc and
f(x) € I p(Tm), where LT ) = C{Tm). Then

tv
liwii, = il iip= i/(*IM* it 1~p<oo,

i )@%\f(xx\,

Acta Maihemaiica Hungarica 68, 1995



u-CONVERGENCE OF MULTIPLE FOURIER SERIES 57

and if ffis a natural number then define the fc-th difference of the function
/ at a point x with step t as

K
AK(f,x,t) = 5~ (-1 )rCkf(x + rt),
r—o0

and the modulus of smoothness of order k in the space Lp(Tm) as

Uk(fJ)p= sup  BAK{f,x,t)\\
te R m:\t\US

Definition 3. Let 1~ p i1 00, u(<5) the modulus of smoothness of order
v, where v is a positive integer, and Hp(Tm) = {f(x) 6 Lp(Tm): for every
K > n we have uk(f,S) = 0(w(£)) when ¢ —a+0}. If we change O to o0 in
this definition we will denote the corresponding class by hp(Tm). For nxs) =

= Sa the classes Hp (Tm) and hp(Tm) are denoted by Hp(Tm) and hp(Tm),
respectively.

More information about the Nikolskii classes Hp(Tm) can be found in

[9]. In [8] there is a brief survey of the results about the convergence in
Pringsheim’s sense and spherical convergence in Xp-metrics. We have also
proved there the following results. Here and below we denote

r(m,jo) = (- 1)|1/2 —I/p].

Theorem A. Let TON 2, 1 p it oo, p 2, and the function f(x) 6
hp mp\ T m). Then the Fourier series of f(x) n-converges in Lp(Tm)-metric.

Theorem B. Let m”~ 2and 1 p ™ oo, p ¢ 2. Then there exists
a function f(x) 6 Ap*1,p(TT) such that its Fourier series n-diverges in
Lp(Tm)-metric.

In Section 2 the following result will be proved.

Theorem 1. Let o™ 2, 1S P= °>P®d2 and assume that the mod-

ulus of smoothness u (ft) of order q is such that Iirllo s1/--pv = 0. Further let
6=

f(x) £ Hp(Tm). Then for every set U £ Az we have the estimate

f-Su(f)\\<C(p,m,q) sup u}(N~1)Nr(mp\
NAN(U)

where N(U) = max{ u: (u,..., /) 6 1/},

Su(f) = Su(f,x)= J2ak(fVkx
keu
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58 M 1. DYACHENKO

and {ak(f)} keZm is the sequence of Fourier coefficients of f with respect to
the multiple trigonometric system

Here and below we will denote by C positive absolute constants (which
need not be the same in different cases), by C(m) positive constants which
depend only on the dimension m, etc.

In Section 3 the final character of Theorem 1 will be established. Namely,
the following theorem is true.

Theorem 2. Letm~ 2, I"p”~oo,p/2, and assume that the mod-

ulus of smoothness u(s) is such that !im 0 = 0. Then there exist an
f(x) € and a sequence of A3-sets Un such that N(Un) — ao when
n — oo and

f-SUN(F)\\>C(f) sup u(N-")Nr
NAN(Un)

for every n.

We will give the proof only for p = aoand p = 1. The proof for other p
uses practically the same considerations. The proof required the refinement
of the methods of [8].

This article was written while the author visited Uppsala University. He
expresses his gratitude to Swedish colleagues for their help.

82. Proof of Theorem 1

At first we introduce some more notations.
If X, y GRm then we will say that x ~ y (x > y), iff Xj ™ yj (Xj > yj) for

j —1,..., m. Furthermore, let xy —_thijji and if 1) ~ m, let x(j) =
= (x\,..., Xj-1,Xj+1,..., xm) 6 Rm~>J<. [a] will denote the integer part of a.
By a we will also denote the vector with all coordinates equal to a.

For functions f(x) EL(Tm), 1 # j ~ m and w= 1,2,... denote by
W(v,j,f) the de la Vallée-Poussin’s mean of the Fourier series of f(x) of
order 2™ with respect to the j -th variable, that is

W(u,j,f) = 20> _i(j,f) - az»-\_i(j./),

27-1
where

vrg o) M fF(x+(0,—,0,ij,0,— ,0)) Kr(tj)dt]

T
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and
1 sin2 T
KAt) .
r+ 12sin2\t
is the Fejér kernel. Then let I'(1,j,f) = and
F(rd.f) = W(rJJ)-W(r - for r=2,3,—
For n —(ni,. Tm) G Zm (0. oo)m denote
G(n,f) = F(no1,M(ram_ 1,7 - 1 , I(n 1,/)...).
Further, let
2¢, ifa~o.
Bn= LW 2- \ 2n>)» where 2- 0. ifa<0
j=1 | |
For every set n E As denote
W = Tu(f,x) = Y G(n,f)(x)

nA: Bn iDY™N0

where the quantities Su(f) = Su(f, x) were defined in the introduction (see
Theorem 1).
We need some auxiliary results.

Lemma 1. Under the previous notations for every kK E U we have
W(Tu) = ak(f).
Proof. As U is symmetric it is sufficient to consider the case Kk ~ 0.

Let n\,...,nm be the least natural numbers for which kj < zl‘ls—l for j =
=1,..., m. Then Kk EBn-1MU ™ 0. So we have

( \
aAnr) = ak YLG(I,/) | + ak Y 6(7,51
)

-y:max (-yj—(rij+ 1)) ~o
I<j<m

Zak(W(nm,m,W (nm-i,m - L. W(nA1,f) ... +(=ak(f),
and the lemma is proved.

Acta Mathematica Hungarica 68, 1995



60 M |. DYACHENKO

Corollary 1. Ifp E[l,00], f(x) ELp(Tm) and U E Az then the esti-
mate

NI G(n.,f)-Su(G(n,f)

n~l: Bn=nt/~0

holds.

Proof. From Lemma 1 we have Su(f - w) = 0. So
I su(\Wp: If-m +m- Suif-Tul - su(ru)p i
alll -l ] Tu- Surun YOI

+ £ G(nJ)-Su{G(nJd))

n>1:Rn_int/?0

Lemma 2. Leim ™ 2, p ¢ 2, iMs) the modulus of smoothness of some
order g and f(x) E Hp(Tm). Then for every n EZm M (0,+00)m we have

IG'(n,)]] ~ C(m,p,q)u(2~1/”~), where v(n) = max nj.

P roof. We point out that the norms of the one-dimensional de la Vallée-
-Poussin’s operators are uniformly bounded and that these operators with
respect to different variables can be transposed. Therefore for k f- j we have
) T(njJ,T(nkk,f)) = Y(nkk,r(rij,j,f)).

Moreover [9, p. 192-193] for n3 > 1 we have
3) IL(J, 5. 1Ip= KW(njJJ)-W (nJ- I,j,/)]IpG
AIW(Nnj,jd) -f\\p+ |Imn, - 1,/,/) -f\\pi C(p)E2nd-2j(f)p G
n C(m,p,q)oj(2~r>)

where EKj(f)p is the best approximation of /(.x) by trigonometric polyno-
mials of order at most K with respect to the j-th variable in the metric of
Lp(Tm). If nj —1 then the estimate (3) is evident. Now the statement of
Lemma 2 follows from (2) and (3).

Further for U E As let

Fu={n~1Bn\MNMU 0} and D(U) = max{r:(r,..., r) EFir}.
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Corottary 2. Let f(x) satisfy the conditions of Theorem 1 Then we
have

If - Tulin=C(p,m,q) SUP u(N~1)NTmp> for every U £ As.
NAN(U)

P roof. Using Lemma 2 and the above mentioned theorem from the book
of Nikolskii [9, pp. 192-193] we get (for brevity D(U) is denoted by D)

i-ravwea -y oean o+ B oGS

7:'y~D —1 7:max(7j—bp )~ O

f-W(D - I,m,W(D- I,m - S 1,1,1) ee9)

+C(m,p,q) Y N (2~"bl) N
7: max7j

1

£C(m,p,q)\u/>{z ~d ) + supu;(2-s)2sr(m}p) Y 2~I'o)r{rnp) 1 ~

S>D 71118 /
1
<AC(m,p,q)  sup  w({V-~1)jVr(mp>

NZN(U)

and this was to be proved.

Lemma 3. Let 1 E pg oc, U £ A3 and for some n £ Zm, V ¢

g N [—2b,2n] . Then

3=l

[|[<4llp-Lp”™ C(T,p,9)2(nl+ +M7_Mn)1p-N(r/(n)-~(n)+ 1)I€_11,
where f(n) = min n>.

P roof. Without loss of generality we may suppose that i/(n) —nm and
£(n) = n\. Forp= 1and p —00 the norm ||5i/||/ _* coincides with the
norm of the Dirichlet kernel Dir(x) = ~ tmgc in the space L{Tm). Further,

net'
in [10] the author deduced from a result of A. A. Judin and V. A. Judin [11]

that if the bounded set U g Zm M (0,00)m, the intersection of U with every
line parallel to the coordinate axes is either an integer interval or empty; Pr
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and P2 are the numbers of points of the projections of U on two different
coordinate hyperplanes and Pi £ P then we have

nagr~rct”™ (In™ +1).

This is the estimate of our lemma for p = 1 and p —00. For p = 2 the
uniform boundedness of the norms of Sy is trivial and for other p we should
only apply the interpolation theorem of M. Riesz [12, p. 144].

Now we begin the direct proof of Theorem 1. Let U E A3. For every
transportation a —(o\,..., am) of the numbers {1,..., m} we denote Fa =

={nEFu-nai *n.2 ™nom}. Then

) E 1c(n.f)~ suen.f)
=
<E E ic(nn-suiem.n) _
0 nEFcr ’

We can estimate all V,, in the same way, so we deal only with W =
We have

N(U) V2(Un\)

5 N E E - E G(nJ)-Su{G(nJd))
A ] Tim-Am 1
Let
Am —Am(ff, Tim—) —
= mininm” nm_i: Su (g ((tii,..., nNTOi, nm), W)

(M, ..., M=y, dm), /) A

It is clear that if (w,..., nm_i) ~ (n[,..., then
(6) Am(i7,nb ...,7im_i) "\ m(U,n[,..., fm_j)~ N(U)~ 1
Taking under consideration that \m(U, w, ..., nTOi) = “m-i we get from

the estimate (6) that for fixed nb ..., nNTO 2 and for every ram_i E [nm_2,
pm-i(U, ni, me, V -r)] the following estimates hold:

(1) AN(IZTh,...,nTO 1) E Am(U)Til, ses, Min—=2Im=t(ni, . .., Im-2)) =
= Vm-3(ni)ee+?Tim-2).
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In many cases below we will write ADinstead of Xm(U, w, ..., nm-\), um

instead of vm(U, »1, ..., nm-\) etc., for brevity. Sometimes we will omit U
in subsequent formulas. Taking into account that for fixed n we have

Su(G(nJ)) =suUn{G(n,f)), where Un=UNu [~2n>2],

J=1
and using Lemmas 2 and 3 we get for fixed w,..., rem_i
Tm
n G(n,f)~ Su(G(n,f)) <
Tim— —2
I'm
I A A R T T TR
Tim—
xlirq 1 | I, V111 m m—111 11 , 21
5 A 2% ( 1+ -+ 7lm- 1112“ p 12 mT ~ 12_pl(NT _ w + i)l1-21 <;

Tim—

N C(p,m,g)ENN 2H ni+-+nm-i- AXm ) |r-A (Ao- m + 1)I1 pl,

where £jv_ i = En(U)-i — sup Then (see (5))
k~ZN(U)-i

1] Vi sc(p,maq)eN-i 2., IR R NI
M=1 Tim —1—Tim—2

«Am—Ul + D1 pl.

Using (6) and (7) and taking into account that for fixed rai,...,nm 2 and
nm-1< we have

A—nm_] (m DAm(ni,..s,nm_2 2?1 )"
NRm I Am(ui, ..., 271) —7
and that for m > 2
An- ui+ 1~ (m- DAmM- nmi - (m- 3)nm.ii- @+ 1/
AN(m- DAm- nm!- (m- 2)ni + m- 2,
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we get the following estimate (for m = 2 see (11) below with JR instead of i/2)

V-t / \ I b
9)
nm—_1— 2
ee I I I 21
N Y] 2=?1?2~plfffc —(m —2)ni + (m —2)) 11 pl~
k—k o

N C(m,p,q)'2-2\2~p\k {ko —{m - 2)n\ A+ (m —2))\I *1,

where (see (7))

ko ~(m- Dvm-i - vm-1= (rn- 2)i/m_i.
So (see (8))
A m2
Qo) vi~ C(jom,9)~-1 1T 2b ... £ 2|(nm_2-(m-2),m-1) |i-i]| .
-m:l nm—2—m —3
. [1—21
-+ DL orl
As for (nb...,nm_2) ~ (ni,..., im_3) we have i/m-i(ni,...,nm_2)
N vm-\{n\,..., ’m_2) and as for every fixed nj,..., nT_3 and every nm_2 G

G ["m—35Km-2("1 ?e¢? "m—3)] we have

Vm—i(til >eee)Hm_2) ~ Un—i (ilj, ,7Im_3, Hm_2(iii,...,nm-3)) ~
N VM2(N11eee? 3)?
we can estimate the inner sum in (10) in the same way as in (9). If we repeat
the previous considerations we finally get
)V cpamgyen o V] Ly 1
n=1
=C(m,p,q)eN-1-

From Corollaries 1,2 and from (4) and (11) we get the statement of Theo-
rem 1
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u-CONVERGENCE OF MULTIPLE FOURIER SERIES 65
83. The proof of Theorem 2 for p= oc and p —1

At first we fix m ™ 2. Let {£r}"o sequence of Rudin-Shapiro
signs [13] and let itk = [~2f] for k = 1,2,... . Then let

VK m—1
Qk{x) = Ao ei(n(m)x(m)+(2k—(ni+...+nm))xm) |-| £nj )
n(m)=0 =1
m-\ (W L \ m- 1
l’y' |-| E _4«Inj(Xj—Xm) I = éjlg Xm g PVK(Xj ~ Xm),
j=1 \*ij=0 7-1

where P7(i) is the corresponding Rudin Shapiro polynomial. It is well known
[13] that

Halloo=V7TT for 7=0,1,....
So for all kK we have

(12) 10007 C (m )2 fev

Now define the function

(13) f(x) = (2-7) 2~k* Q kr(x),
—1

where kr < kr+x for r —1,2 are such that

LP(V"+ﬂ < -
J -

) (V2 M

/
and

m—
w(Y U 20V £ C(oj) sup u(k~1)k 2
fo2hr

Then (see (12)) the series (13) converges uniformly. The spectra of the poly-
nomials Qk(x) with different k's do not intersect, so for every n £ Zm the
Fourier coefficient an(f) either coincides with the corresponding coefficient

of the polynomial n (2~ki(n3 2~khn")~5~Qkr(n)(x), or is equal to zero. Now
we check that f(x) £ H%(Tm). Let Kk be a natural number and k > k\.

Then there exists r such that kr < k ™ kr+\. Since u(S) is the modulus of
smoothness we get for sufficiently large v by usual arguments that

/ r o0 \
wm,(/,2~%) ~C(m) 2-h'J«(2"Kk)2fc"+ ~ w(V~M
7=1 7=r+l
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E C(m,u) (2~KIw (V fo) 25/ +w (Y 7~ 1)) ~ C(m,uj)u(2~K).

So /(*) €EHE(Tm).
Further let

N
tnH )-8 ,e”ent for iV=0,1,..., where £+ —max(£7,0),
"V=0

then TjN(t) = ~(P(t) + Dj~(t)), where Par(?®) is the Rudin-Shapiro polyno-
mial and Diy(t) is the Dirichlet kernel. Now we have

(14) HnHL(T) = _ HCN|e(r)) ~ C "™N- N2) ~ CN.
Define for r = 1,2,... the sets

Vi —{n £ Zm:|ni| + ... + IMiml < '"T}
and
ly =VvrUu{n6 Zm:Inil+ ... + \nm\—2kr and

e\M=1 for j=1,....m —I}.

Then Vr,\VF 6 A3 for every r,N(Vr) ~ N(V?) ~ 2fr and (see (14))

1%(/)-%()IL =

2_for ™1 E pi(i (x, -Im)+-+»m-1 (*m_| -®m)) >

2r(t)=0:

NC{m)u(2 K1 2kr 2 ~ C(m,u) sup g(Ar X)A;mz_l
AT

This is equivalent to the statement of Theorem 2 for p = oo.
Now we construct an example for p = 1. The Fejér’s kernel is

o meo {1 g

r+1 =T+ 1
k=—r
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u-CONVERGENCE OF MULTIPLE FOURIER SERIES 67
It is well known that |JAV||I(T) = 1for all r- Further, let

0o

(15) [(*) = £ * (2-K)blX),
=
where
2k _ _ _ _
Fk{x) = Y Nj - N- ginixi  ei(2k+ -(ni+...+nm-i))xm _
n(m=Q Ver 1
m—1 m—1
= eddix T il -z,
7=1 J:|

= [~21f] and the numbers kr were defined above. It is easy to check that

the series (15) converges in L\(Tm) metric and f(x) G ffp(Tm).
Now denote

Vr={n6 Zm:0 ~ n(fh) ~ 2ufor, nm = 2fer+l - (ni + ... + nm-i) and
E\nj-iflkhk=1, 1=j = TO—I},
where {Er}*L0 % ~ie sequence of Rudin-Shapiro signs. Let

Rr(x) = Y an{Fkr)e'nx for r —1,2.....
ngv;

Notice that (for brevity we denote Wkr by u(r))

(16) Rr(x) = £2YI'DXme¥(r)%4p ——{u \)xm) X
m-1/l I p(0) Kr)
»|| Uf-MlI E + E
i=]\ \rij =—y(r) 7j=—/(r)

=€) M (\vr(x
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68 M. I. DYACHENKO

where £(x) is a real function and A',(r) is the corresponding Fejér operator.
Then we have

)
(17) B\WUT) = Kv(r) ReY e»ye™
L(T)
k (O ~
i) HD)
“(n
IV (Y] £nj cos Tljt -C.
L)
Now let
u(r)
Qr(t) — Y] £ncosnt,
rj=0
then since ||0r]|c() = C2 ?kr, we get
(18) WKIAN(Qr)\We(T)iC 22 .
Moreover,
(W) [[AVw (0 ) ][lj(T1aC 2.

So (see (18) and (19)) we have

C\2lkr & @A, (r) (0Nl L2(ry ~ QA (r)On)]] LN ~v(r)(0r)| c(T) =

= £ WN1/(r)(0r)|| L(T)24fcr
and

(20) IAYF(Or)|| L(T) ~ C272kr.
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u-CONVERGENCE OF MULTIPLE FOURIER SERIES 69

From (17) and (20) we get that

HAAur) = Ca~  t
and so (see (16))
(21) AN ~ C(m)227(m- 1).
Finally, let
Wr —{n € Zm:|na| + ... + \nm\ < 2fcr+1},
Wr- Wru{n Gzm:lllllt «mt \nm\: 2kr+l and [[111],. . [nm)) GW}.

Now the required statement follows from (15) and (21) the same manner as
for p = oo.
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THE CESARO OPERATOR ON THE BANACH
ALGEBRA OF L(R2) MULTIPLIERS. 11l
(EVEN-ODD CASE)

DANG VU GIANG* and FERENC MORICZ * (Szeged)

Dedicated to Karoly Tandori on his 70th birthday

1. Introduction

We make a consistent use of the notations occurring in [3,4], where we
studied the case of odd and even multipliers for L(R2). We summarize briefly
the basic concepts.

Let / be a complex-valued function defined on R2 := (—00,00) X
x(—00,00). If/ GL(R?2), then its double Fourier transform is defined by

(1.1) 2(*»):= J J f(t,v)e-*xt+vr)dzdTi, (x,y)e R2.

For simplicity, we omitted the norming factor (4712)-1.
If f(x, y) is even in x and odd in vy:

f(X,y) - f(X,-y): f(~xiy) : -f{-X,-y), (X,y) E R+’

where R™. := [0,00) x [0, 00), then (1.1) becomes a cosine-sine Fourier trans-
form:

(1.2) J(x,y) =-41ijy al(**)cos sinwdfcty.

Let Abe a measurable function on R2. We say that Ais a multiplier for
L(R2) (or simply, an L(R2) multiplier) if for every / GL(R?2) there exists a
function g G L(R2) such that

AXYIT{XY) = g(xy),  (Xy) e R2

As it is well known (see, e.g. [9, p. 94]), a necessary and sufficient condition
for a measurable function Ato be a multiplier for L(R2) is that there exists

* Research partially supported by the Hungarian National Foundation for Scientific

Research under Grant #234.

0236-5294/95/$4.00 (c) 1995 Akadémiai Kiad6, Budapest



72 D. V GIANG and F. MORICZ

a finite Borel measure /non R2 such that Jlis the Fourier-Stieltjes transform
of f1\

s Ay =] ) (x,y) €K\

Hence it follows immediately that if Ais a multiplier for £ (R 2), then we may
assume without loss of generality that Ais bounded and continuous (even
uniformly) on R2.

If A(x,y) is even in x and odd in t/, then the measure /i associated with A
according to (1.3) is also even in the first and odd in the second component,
i.e. for any Borel sets D,E £ R+ we have

N(DXE)=-ti{Dx(-E)) =p((-D)XE) = -//((-9) x (-E)).

In particular, y vanishes along the a;-axis:
(1.4) li({x,0):xED}) =0, D QR+,

Furthermore, in this case (1.3) goes into

R. Fefferman [5] introduced a new kind of Hardy space as follows
mh(Rx R) := {f e L(R2):H1f,H 2f, and e L(R2)},

where the Hilbert transforms are defined by

(Hif)*(x,y) :
{H2f)A(X,y) :

- i(sign x)/(x,y),

- «(sign y)f(x,y),

and
(HiH2f)A(x,y) := —sign(Xy)J(X,y), (x.y)€R2.

As it is well known, for almost all (x, y) ER2 we have
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CESARO OPERATOR ON L(R2) MULTIPLIERS 73

and
(L8) HHarix.y) — =377 3™ frix + wy + v)-Fx + uy-v)-
-f(x -u,y +v)+f(x-u,y- V)J\%—J——q\;\{.

We note that definition of the ordinary Hardy space 7f(R2) relies on the
notion of Riesz transforms. (See, e.g., [10, pp. 223-224].) Among others, in
[2] we proved the strict inclusion 7f(R x R) C 7f(R2).

Finally, we agree to write F £ ZA(R2) if there exists a function / £
£ T(R2) such that

(1.9) F(x,y) = f(x,y), (x,y) £R2

In other words, LA(R 2) is the space of the double Fourier transforms on R 2.
If we have / £ 7f(R x R) in (1.9), then we write F £ 7f(R x R).

2. Main results

Let /1 be a locally integrable function on R2. As usual, we define the
Cesaro mean of 11by

/(2.1) a\l—tu,v)q:——1 /[u ;V\(x,y)dxdy, u, v aoO0.
uv Jo Jo
If Ais continuous on R 2, then we define additionally

LT \(x,00dx, u/ o
uJo

(TA(n,0) :

crA(0, B : } A(0,y)dy, v &0,
v Jo

aA(0,0) := A(0,0);

in which case aAis also continuous on R 2.
The main results of the present paper are summarized in Theorems 1, 2
and Corollary 1 below.

T heorem 1. If\(x,y) is a multiplier for T(R2), even in x and odd in
y, then
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74 D V GIANG and F. MORICZ

(i) crfl is also a multiplier for L(YL2),
(ii) A £ LA(R?2) if and only if

(2.2) 1i({(0,ff):»ef:}) =0, Eg R+,

where p is the finite Borel measure on R 2 associated with A by (1.3).

We note that condition (2.2) can be rephrased to say that the measure
p is continuous on the y-axis.

Theorem 2. Let A(X,y) be a multiplier for T(R2), even in x and odd
iny, and let

(2.3) f(x.y) ap(z.y)

f(X,-y) = -f(-X,y) = f{-X,-y) = f(X,y), {va)£R2-1
where p is the finite Borel measure on R2 associated with A by (1.3). Then

2 X% /f°°

(2.4) HXF{X,y) - - dp(Z.1) g dy ~ Clix],
/| 4 €0 Jy

(2.5) o Haf(x,y)\ dxdy g C\\pl

and

(2.6) .
/| 4 Xjo ayiz \\y-v\J \%

*12 ryl2
2oz iz % V(R D) g
X Jo Jo y2 - TP 4

where ||p|| denotes the total variation of the measure p over R+.

Here and in the sequel, by C,Ci, Cz,... we denote positive absolute con-
stants.

It is plain that condition (2.7) below implies the fulfillment of condition
(2.2). Now, it turns out from the proof of Theorem 1 that then we have

of = f (cf. (4.6)). The following corollary hinges on this equality.
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Corollary 1 If\(x,y) is a multiplier for L(R2), even in x and odd
iny, then cr\ &77(R XR) if and only if

@2.7) -f 1 aptry e L(RY) (inx.
X\D +

R

We note that in the case of multipliers for L(R), analogous results were
proved in [1] and [6]. The above Theorems 1, 2 and Corollary 1 can be
considered as a kind of mixture of those results.

3. Auxiliary results

The first two of them are related to the (improper) Riemann-Stieltjes
integral.

Lemma 1 (see [1]). If f(x) is a continuous and bounded function, while
p is a finite positive Borel measure on R+, then

(3.1 J e =J  f(X)do(X) +H(O)p{O}).

Lemma 2 (see [3]). Iff(x,y) is a continuous and bounded function, while
p is a finite positive Borel measure on R |, then

(3.2) Jj 2f(xy)dp(x.y) f(x,y)dp(x,y)+

co

[ oo+ fQY)AOY) +H(O0.0p{(0.0}y

We emphasize that, under the conditions of Lemmas 1 and 2, the inte-
grals on the left-hand side of (3.1) and (3.2) can be equally considered to
be Lebesgue-Stieltjes integrals and (improper) Riemann-Stieltjes integrals,
since in these cases they coincide. (See, e.g., [8, Chs. 1 and 2].)

The third lemma is due to de Leeuw [7] and states that if a function A
is a multiplier for L(R2), then Arestricted to R is a multiplier for T(R). In
particular, what we need is the following

Lemma 3. If\(x,y) is a multiplier for L(R 2), then the marginal func-
tions A(-,0) and A(0Q, ¢) are multipliers for L(R).

Analysing the proof of [1, Theorem 1] yields the following
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Lemma 4. If]i is an odd finite Borel measure on R, then there exists a
function h G?f(R) such that

1- QB .
f dn(rj) = h(v), v ER.

>

4. Proof of Theorem 1

Without, loss of generality, we may assume that the finite Borel measure
fi associated with S1by (1.3) is positive on Rij.. We claim that the function
/ defined in (2.4) belongs to L{R2). In fact, f(x,y) ~ 0 and by Fubini’s
theorem

(4.1) [l I(4)« , =T 1 W r r 4<1-=
J Yoisro ST 30 30
o0 00
| dfiE,Ti) A p(R+).
mOJ-*0

By the evenness of f(x,y) in x and oddness in r/, hence we get / E L(R2).

In order to reveal the connection between / and <tA we start with the
representation (1.2). Fix u,v,s,e > 0. By (2.4) and Fubini’s theorem,
roo rc

(4.2) f(x,y) cos ux sin vy dx dy

Jes  Je

r

J  cos nx dx r sinvy dy =

n tv

roo 100 (sin uf —sin us )(cos VI) —cos ve)

ALY
Js Je ufvt) afi("v)

By Lebesgue’s dominated convergence theorem, hence it follows that

F?u,v) TR S'”_”f.---l-afgj,l?ﬁ.

Now, by Lemma 2 and (1.4),
(4.3)

fu) =4 | sin uf l_\;‘[):’swolfi((,,\,)~ o _\%BWJ d/u(0,7?)
. o
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On the other hand, by (1.5) and (2.1),

4i tu rv rr

(4.4) cr\(u,v) = -——- / dx dy cos sinyild[i(£, v)
uv Jo Jo J Jr*
4
"I 1 dir(E ) 1 cosxAdx [ smyrjdy —
uw Jg Jr* Jo Jo

_-4* £ f sinlcos vi/—1

w J IR . dn(”rj).
Comparing (4.3) and (4.4) yields
(4.5) ©(uv) = fuv) + [, — O 0, 7.

N Y|

This and Lemma 4 give that crA(w, v) is a multiplier for L(R2), and state-
ment (i) is proved.
It is plain that if condition (2.2) is satisfied, then we have

(4.6) aA(u,v) —f(u,v), (mu)gR?2

which is the sufficiency part in statement (ii).
Fix v and let 1 —»00 in (4.5). As a result, we get

o= [ L5 6 7).

NI T

Since this is true for all v GR+, we conclude that condition (2.2) must be
satisfied. (Remember that /r is positive.) This completes the proof of the
necessity part in statement (ii).

5. Proofof Theorem 2

The proof is a combination of certain parts from the proofs of [3, Theo-
rem 1] and [4, Theorem 2]. If the reader feels that the presentation below is
too concise, we suggest to consult the corresponding parts of [3,4].

Again, we may assume that the finite Borel measure /n associated with A
by (1.3) is positive. Then the function / defined by (2.3) is nonnegative and
nonincreasing in each variable on R 2.
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Proof of (2.4). By (1.6),

;5.1)

THVy) = L TV uY T Y gy 2 i 2, say,
+0 JX12

By (2.3),

i gy fx+u [ dn(£,ri)
FI " Iy v
whence, by Fubini’s theorem.

(5.2) J J J h(x,y)\ dxdy =
=rA"Tdx r rr A
Y-0 u Jiu J0 dy>’x-r/ Jy LL!'V
rMdu f°° f°° dn{£,Ti) fi+u dx dvi
J—'G- : Ju o JRax((-u.2u) JE yu
/ du dy(t*V) _ | du~ 2R,
7u t 0" Jo

Keeping (2.3) in mind, we decompose /2 as follows

f(x - uy) | < /(« - Xx,y) du =:
x12 U Jxr2 X
| 0 re°d”r,) LT fhitEvg) Ex+£du
+
¢ 0.y in  JmCtx(x—£,x/2) 3 Jy Ix
/mX [C
«i X/i I 1n + .
"o Jy

By (4.1)

v

(5.4) | | \ai (x,y)\ dxdy:LJ dxdy | —— du” (In3)/x(R+)
J . / T2 I3xf2 A~
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and, by the substitutions x := and s Ut
(5.5) ] J Mas(x,y)\dxdy =

0oQ 700
: d* r dy
o/4+0 Ol Jo Vv x |/ Jo

In@(~+1)
Collecting (5.1) (5.5) yields
(5.6) \*1hf(x,y) - az(x,y)l dxdy £ Cru(K2).

Ri

Next, we rely on the estimates

(5.7) orT ~ -7Infr~2T) ~ ® t=x/2.
X-Z Z \x~U (x-2)
Setting
(5.8) as _ i %X/ZJ/’OO dfi(Zrj)
X Jo

it follows easily that

\o2- 04|< 1" 1/ _ « U +_ «_ V4l
Jo ay I(x-£) X(x-2Z)\ v

By Fubini’s theorem,

(5-9) J J Jot2(x,y) - aAx,y)\ dxdy ~

| | _
O/ /\n 4 .2 dx " dys
(x-2) ® -0 b
W d

t

, X:=£f£t.
t(t- 1)

EN(RIYh + 2]
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Combining (5.6), and (5.9) results in (2.4).

P roof of (2.5). By (1.7),
(5.10) THaf(x,y) =

ol y-v)- f(x, Y+V)
I}fZ dv := /3 + l4, say.
*0 Jyl2

By (2.3),

h=T—2h T fytvwt'ri
J—0 " Jx Jy—v

whence, similarly to (5.2), we get

(5.11) J J 31500y dxdy A 2/i(R+).

We proceed to decompose l4 as follows (see (2.3))

Lo 1(kx + %y dvs Y TOGYEY) f FOGV-Y) gy =
V2 Vv vz I’ y
- dlieN) r n d//(£,7]) ﬁyw dv
=m5+
0 Jmax(y-r),y/2) » o ~
s e s n y/,2bl (™~ _\'m T 4+ (b2) dp(Z,v)
- 0 Y-v) tv X W2 W
roo roo”™ Ay + A d/I(E, T)) _
0 VY
y/2 72 \ d/i(E, 1))
05 + /" In
I I o V- MV
@

In fY+ v\ dn((,7]) _
Ix Jdyrz 'V 2y ) Eri

—ios5 + ab + #7, say.
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Similarly to (5.4) and (5.5), we derive that

(5.13) J J Jasx,y)dxdy ~ (n3)/(R:
and
) . In((a + 1)/2)

5.14 : N ds.
(5.14) 4/ 4/rij«r(a,2/)| daidy )4/112
Finally, it is not difficult to check that
(5.15) J J Jae(x,y)\dx dy

= N dy -

4-0 4—0 &7  Jo 427Z)  U/2- 2
oo dt

4 L /A~ b{w?*)d,=4R*)I| t2-r

Combining (5.10)—5.15) gives (2.5).
Proof of (26) By (18),

(5.16) irrH,H2f(x,y) =

( [x/12 ry/2 rx/2 rco rco ry/2
(4/—0 4/—0 4/—0 4/y/2 J/x/2 4/-0
du dv

{I(x+uny+v)- f(x+u l/-v)- f(x-ny+v)+/0k- ny-v)} N
—: /oo + F6i + /1o + Fn, say.
Siep (i). By (2.3),

r /2 du du rx+u rv+v dp{Z,rj)
00 4-0 u 4-0 v Jx-u Jy-v tv

whence (cf. (5.2))

(5.17) J JjFoo(s,y)| dxdy =
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=r*r*rnr* [ dn(in)

30N N a2 I2v Ix—u Jy—u in
ft+u ri+v
Locimn Losoran®
ax(n-if,2u) ax()j-v,2v)
dv{z,il) _
in nM IO -

Step (ii). We decompose 70i as follows (cf. (5.12))

x/2 Too du d

P i wy vy~ fcouy +yp

=0 Jy/2 n v
( fx/2 ry rx/2 /+00'j du d
ff(x+u,y— v) - f(x - u,y - v\ G

[0 2 30y J

rx>2 du ry dv rx+u r°° dn({, )
=:Bi +
J—0 N gyi2 N Ix—u Jy—v

ldu ree dv XY T gnfj n)

Uiy Vv Ja—m Ju—y 1IN

G s 0 dfi(i,n) fx2du iy dv
= Ri .
xi2 L I 5\wx-(\ u dmax(y-r),y/2) v
rX 1100 o ) txs2 du fyeri dv

xi2 Lo N Juwe-in U dy v

r3x/2 roo Mi~n)

¥2- 12 in

It is easy to see that

r,2du loo dv Fx+u F°° dp(£,i7)
J—=0 N «lyl2 N Ix—u dytV in
r3X/2 ree dp(E,r]) fxI2 du erry dv _

Jx/2  J3y/2 v J\x-(\ u Jy/2 V
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dn(Z,v)
fr

Hence, by integration by substitutions,

(5.19) dx dy =

Similarly to (5.14) and (5.15), we obtain

+ bl

Combining (5.18)-(5.21) yields

(5.22) dx dy ii C$n(K2).
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Step (iii). We decompose /1o as follows (cf. (5.18))

_ oo V du dv
(5.23) o =/ {f(x +u,y+v)~ f(x + u,y-v)}
Jx/2J>O
{ rx ryl2 roo ry/rH du dv

[ +/ / S{f(x - u,y+ v) = f(x - u r)}
Jlel/2 J->0 Jx J-*0 J

=+ [T el TREI T iyevmz.yy |

Jx/2 N~ J—=0 N JIJx—ulJy—v yAY,
reo du fytedv i°° fy+v dp(Z,y)

x Nioe NouxayV  Zy

"s3y2 MZM T du Ms2 dv
— R4+ J'I‘O +
imax(r-i,if2) ~ Jy—H »

+/ 2Cy)<(£7a|' 3‘1 fy!z dv
yi2

Zy Ix Ay G

y¥B ydij) 2 + £
QR e a iz

Y-0 Yy2 X-Z1J \M-y\J Zy

s Y200y N M) e+ A sy
JxI2 B2 2\y-y\J %y

It is easy to see that

du fy>2dv [°° fy+V dp(Z,y)
w2 NaR) A Jx+u dy—v Zy

Similarly to (5.19) and (5.21), we have

(5.24) JJ s sy dx ay N CARHK

(5.25) \]\]JBG(x,y)\dxdy"C7p(R2),

while the quantity

rx/2 r3y/l2 [ x + [\ dp(Z.y)
6B a=Il,L hb ) ha_w ™
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will be estimated later on.
Step (iv). By definition,

(5.27) n =

=/ " {f(x+uy+v) - f(x +uy- v)-F(x - uy-+Hi)+

Ix/2 Jyl2

. . dud
+f(x-y,y-v)}-;---v_ 7|+72+73+74} .

First, similarly to (5.4), we have

(5.28) / dxdy - (in3)2*(R+)-

Second, we decompose as follows (cf. (5.12))

N
( roo roo fOO dv

du
520) 72 f -
529 Jr/2Jy/2 Jr/ZJy Jreruwy-v) - o

reedu ry dvor°® r°° dp(zr))
+
Ixi2 N Jyi2 x Jx+u Jy—r

fee du je° dv i°° j°° dn(E,
X2 N Jy X JIx+uJv—y

— T MZyv) [t~xdu jy dv
J3X2J+0 EY IX/I2 u Jiax(y—)y/2) v

j°° jeedp{z, i /*"* du fy+>dv _
+

P2 3 —0 tv  ax/i2 o~ Jy v
1o ry/2
2(| - dp(Z,v)
=LnL ‘4 "oy w *
+ T y+ »l'h_ dp(Z_T]) = 721 +722, Say.
73r/2 Jyiz \ X 27

Similarly to (5.14) and (5.20), we derive that

(5.30) J J 2i72i(*.y)| dxdy =
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dBZri) [\ (2(£-*)"

=JJ Mtn)d 'l [ IR TR b
and
(5.31) J J 3 722(z.t1)| dxdy
3T e ot ou AT u
oJ+o t3 Jo V X J ixlo
: il/i N C9/i(R™).
= 1 dsS|In("r) . (R
Collecting (5.29)—5.31) gives
(5.32) J J 3-i2(xy)\ dxdy ~ ClioM(R+).
Third, we decompose as follows (cf. (5.3))
73 = - .
ree ree dfi(zn) ¢ du M~ydv_
J—=0Jzyl2 £7  JImax(x—£,x/2) 7 Jyl2 W
d/i{t, ) fxH du M-ydv _
oYyl2 i? Jx T2 T
2(rj-y)\ dn(ST))
- C i -T M tv
say.

iz Jowrz  \ * J \ Yy J tV
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Similarly to (5.5) and (5.30), we get

(5.34) J732(i,ii)|

7-07-0 i4 Jo \ * Jo \ S

87

=/ L  h(sra)*jThTi * ©"

while the quantity
(5.35) B J T A7 - 2N

will be estimated later on.
Fourth, we decompose as follows

{ /sl yy yi yoo yoo yy yoo y00

0L L e, 4L Lol

du dv
J(x - v,y - v)..l.J ----- ; -=: 741 + 742 + 743 + 744,

(5.37) r —r — /°° r
Ix/2 N «All2 N JIx—u Jy—v
= r dv

O N A A

re/2  [1yl2

-rnn"w "W

dn(i,il)_Jr

+(1,,2) +

rr; ¢
2 /9" \y-va' Iv

+(Lii2)2 ice v« (on) 7411 + 7412 + 7413 + 7414,
Jx/2Jdy2  id
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fx du I*° dv I*° I° dp(Z,ri)

(5.38) 142
ez ™ Jy V Ix—uJv—y tV
re° I’ood/i(t,V) l* du [y+r>dv
030 tv  Jmeax@esHo) ™ v~
rx/2
J-+0

the symmetric counterpart of (5.38):

(5.39)
/My uiw -U
Jx/2 JrO \y v tVv
sy K E’f-i-t-\df'-ft--‘f-)- =1 7431 + 7432 + 7433 + 7434,
Jx/23yl2 VX 3 tv
and
(5.40) dfi(t,v)
tv
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{ HZ ryr2 rxiz r@  roc ry/2 r@ roQ
+ [+ 1+ [

Jo J"O J->0 Jyr2 JIx/2J—=0 JIx/2Jyi2]

+ N ly + dv{f,v
w1 In 1 Y JI- ty  —:7441 + 7442 +y7443+ 74&45 )say

It is easy to see that

7014 + 7420 + 7434 + 7000 = — (O HEM In (YE_m du(” )
JIxiz Jyrz \* [\ 2y | £7?

whence

G-41) J J 3 7414(~,2) + 74242;, 1) + 74342, 1) + 7444(2;, Y)\ dxdy

dy
/N\?
r2

[ @y ) m 26D N
07»0 ¥ 4 dt S Ci2/i(R+)-

/.

Analogously,

7413 + 7423 + 7433 + 7443
y2-v 2] tv

whence

69 3 2L Y+ 7R, ATRE, Y+ 7BY | ey

— %
—l |. Wt'ti\] bl (2¢,+ D) A /e (iTTi) dt = CI3MR#);
and

— 2 dfi(t,r])
7422-'4-42_.0 C (A ) |n(a+t) Ittvr
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whence

(5.43) J 33 022, y) + 7442(3, 20) dx dy =

Y T 4 4 ¢ -l Y (m?)*-

=) L (v In(*r) - diR)
Finally, the quantities

/2. 100y 4 £\ dfi(2ri)

(5.44) 7412 + 7432 —(In2) T J In
0 Jy/2 \X-U tv
and
(5.45)
xzowylz x4 g Y: \ dB(i,ri)
TAL+ TA21+ TA3L+ T441=3 T In A ) In
y2-v J tv

will be estimated in the next step.
Step (v). Combining (5.26), (5.35), and (5.44) yields

(5.46) 85471 a2 +az =/ / U(fr|) |'(]”D Mf\;")

Taking into account (5.16), (5.17), (5.22)-(5.28), (5.32)-(5.46) results into
the following:

i . X + £ Y \ dp(ET])
.47) | [ iHIHA(x,y)- T fln ( In
J Jr2 Jso Jyy2z W\ X -U \Wy-2Z\J tv
y2 \ dp{Zri)

dx dy A Cis/i(R+).
g P> Ne h Y -T]2) B

We rely again on estimate (5.7) and similarly to (5.8) and (5.9), to obtain
the following:

dli(Z,y)
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® re 2 b ( y \d™~TjH)

dx dy ~
PO Jyf2x \\y-v\J
< J [ axay M2l )
JR2 Jro Jyla{x-1f Wy ~y\J y
i f » |i#

J Jr2 y J2i (x-n2 Jo WYy-y\

ILM | (i d ( =) d

and
2\ dli(E,r])
yla x~1  \\y-y\J Yy
dx dy =
\Wy-yly y d
dxdy [N M_Inf * 1< (>))

Y-0 Jyr2x(x-0 Viss—71/" 'y
dy
+ 1% *(®-0

ds

ro° ‘2
=JL MGWF<rT)1 In(irhr)iis Qi

From the last two inequalities it follows immediately that

5.48
(5.48) // /7»/2 \x~U \\y-y\J  bi

xJo J/2 V[SI E e i CXMR+).
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We proceed analogously in the case of the last term occurring in
integrand in (5.47):

Y2\ dB((,T))
n an 'C - x-Umwn \y2-v2] tv

Fr 2t M2)\NMAY) gy
JMO JMo X~Z \Y - T/ V

rr r+t fylx -~ Y\ MA,v)
n dx dy_ | ’
J Jr2 Jl Il (x-02 \y2-v2
=/ [in (-/4 ) dy-=
J Jr2 \% hi (r-o0 hr,, W -V 27

S L M it 731 Em « ScO¢

and

da: dy =

— o §2 \d/i(t,ri)
- / / dxdyrm»Nij. * - )
J Jr2 Y-o Y-0o ar(*-0 \y -TJ

=J/€r\ V. J4 @ -O nhr, \y2-r1) )

4L, MI) 47 e

Collecting the last two inequalities yields

« "o C C - Ne i M P -
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dx dy » C2ip(R+).
Combining (5.47)-(5.49) gives (2.6). This completes the proof of Theorem 2

6. Proof of Corollary 1

By (2.4), we have H\f GF(R2) if and only if

2 fx 2 P°dn(Z,T,) _. .
Gi/(R+) (in x and y),
xJo Jo
or equivalently, by Fubini’s theorem
2 [*/* feedii(bv) dy =

JR¥ yx Jo jy v oJ XJo jR+ N1 Jo

2 2/ )
=-/ [ dli(™Mi) GI(R+) (in ),
x40 R+

which is equivalent to (2.7).
By (2.5), we have A2/ G Z(R2) without any additional condition.
Now, we prove that under condition (2.7) we also have A142/ G X(R2)

Indeed, by Fubini’s theorem,

belongs to L(R +) in X, provided condition (2.7) is satisfied. Furthermore,

Acta Mathematica Hungarica 68, 1995



94 D V GIANG and F MORICZ

dt

also belongs to L(R+) in x, provided (2.7) holds. Combining (6.1) and (6.2)
with (2.6) shows that we also have A142/ E L(R2). This completes the
proof of Corollary 1

7. Extension to L, T2) multipliers

For a complex-valued function / E L| T 2), periodic in each variable, its
double Fourier series

(7.1) J2Y Hj"kV {jx+ky)
U,Kez2

is defined by

i =" 33 my)e~ifiknods, (e z2

Here and in the sequel,
T2:=TXx T, T:=(-7r,71], Z2:=2Zx Z, Z -2,-1,0,1,2,..

If f(x,y) is even in x and odd in 2, then (7.1) becomes a cosine-sine
series:

27 (04 ) sin*j/+ 4 f(j, k)cosjx sinky =:
k=1 = AH
=:2 K) cosjx sin ky,
(€22

where p0= 1and pj = 2forj = 1,2 ,..furthermore,

(7.2) I(y'A)=n/ [ LW, p)cosj(,smkpdrdrj, (j,kK)E 2\,
a J JT2

T+ :=[0,dand Z+ := {0,1,2,...}.
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The definition of the three conjugate series associated with (7.1) is the
following:

() E E(-Bg0)2(kv Uiy

(conjugate with respect to x),

(7.4) EE < wsign 0f(j k)elrxriyn
(,Kez2

(conjugate with respect to y), and
() EECERSgIuyfy

(conjugate with respect to x and y). The corresponding conjugate functions
are defined by

~fAro = ax ~ V':Zl
(7.6) o) = PV 1 B
1 f(x+Uy)~f(x- uy "
T7™0 2tan(w/2)
(7.7) TO)(x,i1):= PV fz\mnz(/\;/;’; dv.
} _. f(x-U,y-v) L
(78 (IYx.y)=:E(p.V) /T2 atan(n/2)tan(n/2) 4 4

1 r

f(x+uy+v)~f(x+u,y-v)~ f(x -u,y +v) + f(x—u,y—v)4d
4tan (tt/2) tan (v/2) )

dr

R. Fefferman [5] introduced the following new kind of Hardy space:

H(T XT):={/€ L(T2) : / (° %4 and 7T@>GL(T2)}.
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It is well known that if / GH(T x T), then the conjugate series (7.3)—7.5)
are the Fourier series of the conjugate functions (7.6)—7.8), respectively.

The definition of the customary Hardy space Ti(T2) relies on the notion
of the periodic Riesz transforms (see, e.g. [10, p. 283]). Again we have the
strict inclusion 7f(T XT) C 7f(T2) (see [2]).

Let A:= {\(j,k):(j,k) £ Z2} be a double sequence of complex numbers.

We say that Ais a multiplier for X(T2) if for every / G X(T2) there exists a
function g G L(T2) such that

Al KEGL k) =93, k), .k GZ2.

As it is well known (see, e.g. [10, p. 259]), a double sequence Ais a multiplier
for T(T2) if and only if there exists a finite Borel measure /x on T 2 such that

(7.9) \(j, k)= JL J \] dp(z,ridt  (j,k) GZ2.

It follows immediately that if Ais a multiplier for L(T 2), then Ais bounded;
furthermore, if A(j,k) is even inj and odd in k, then the periodic measure
/X associated with A by (7.9) is also even in the first and odd in the second
component, and

(7.10) A(), k)= =2 1 1 cos sinkr/dfiit, rj), (j,k) E Z\
K J Jtz

(cf. (7.2)). Motivated by the double Fourier-Stieltjes series

E E \(j,kytix+ky) = NN pA(), k) cosjx sin ky

(foez2 (-T2

of the measure /x, we form the arithmetic means

l - -
TAM) ey EOEOPJHJ,k), (m, n) GZ2.

The following results are the counterparts of Theorems 1, 2 and Corollary
1 for L(T 2) multipliers, or equivalently, for double Fourier-Stieltjes series.

T heorem 3. If A(j,k) is a multiplier for L(T2), even inj and odd in
k, then the double series

(7.11) T\(m,n) cos mx sin ny
(m,n)ez™
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(i) is also a Fourier-Stieltjes series of some finite Borel measure on T 2;
(ii) is a Fourier series of some function in L(T2) if and only if

(7.12) n({(0,y):ye £}) =0, EQT+,

where p is the finite Borel measure on T 2 associated with X by (7.9).

T heorem 4. Let X(j,k) be a multiplier for L(T 2), even inj and odd in
k, and let

M N
(7.13) f(z,y) ' V)
L Jy tv ’
f(xi—y) = = f{~xi-y) = - [(*,y), (x.y) e €2,

where p is the finite Borel measure on T 2 associated with X by (7.9). Then

2 /2 rd f,v .
JL vrew so 2eg 2P gxay ~ e,

J J 2\l (,2\ x*y)\dxdy = Cbl 1

and
) y \ MZ,v)
V[\I]T'{ xJof ny/Z In \y-v\J V

AT »T "\n(_V%_ ) drETH dxdy ~ CLix,
xJo J  \Y2~T) V

where ||/i|| denotes the total variation of the measure p over T+.

Corollary 2. If X(j,k) is a multiplier for L(T 2), even inj and odd in
k, then the double series (7.11) and its conjugate series

E E 1x(m,n) sSinmxsinm,
(Mn)EZ™_

-E E TX(m, n)cos mx cosny,
(mn)ez2™

- E E T A(m, n) sin mx cos ny
(m,n)€z~
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are all Fourier series of some functions in L(T2) if and only if

(7.1-9) dn(t,ri)e L(T+) (in x),

where ft is the finite Borel measure on T 2 associated with A by (7.9).

We point out that condition (7.14) implies (7.12), under which we have

TA(m,rc) = /(m, @), (m,n)G Z+,

where / is defined in (7.13).
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REPRESENTATION OF FUNCTIONS
OF BESOV CLASS ON MANIFOLDS

BY ALGEBRAIC POLYNOMIALS
S. M. NIKOLSKII (Moscow)*

Devoted to Professor Karok/ Tandori on his 70th birthday with great respect and pleasure

This note is a generalization of my recent results [4], [5], [6]

Results concerning the class BT(I") are carried over to the Besov class
s;0().

We consider the ra-dimensional Euclidean space Rn 3x —(Xj,... ,Xn)
and an m-dimensional (1 5/ m i n) manifold ' C Rn.

By definition, a point x° £ I if it is possible to cover x° by a rectangle
A which, after some renumbering of coordinates is of the form

A= {x:\—\<a, i—1,....m;, \Xj —X|<B j=m+1,.,n}

with projection

A= (x1wi- Xol <a i-—1,.., m}, x' = (*i,...,xm)

where
(D X = ijPj(x") = 43j(XX%, ..., xm), x'cttc A1 (j =m+ 1,...;ra)

are continuously differentiable functions which describe the intersection 7 =
= TMNA (7 is part of I).

If it is possible to achieve fi = A', then x° is an inner point of . Oth-
erwise fl can only be an essential part of A'. Then z° is a boundary point
of I In such a case we assume fl to have Lipschitz boundary in Rm 3
3 (xi,..., xm) or (for m = 1) fi can be a segment. Such conditions on I are
called B-conditions (see [4], [6]).

We assume I is bounded and closed. Therefore it is possible to represent
it as a finite sum:

@) r- (J7z= @7

i=1

* This work is sponsored by the Russian Fund of Fundamental Investigations (93—
011-197).
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100 S M. NIKOL SKIlI

We write " G CKk, if the functions i/)j(x") have continuous derivatives of or-
der k.

We consider functions / defined on I or on G b I, belonging to the
class BpQ(G) (r >0, 1~ p, 0 00, Bpoo = Hp), and approximate them
by algebraic polynomials

Pn(x)= ™ akxk K= (Kr kn), i gl X =X
\K\-gN 3=1
of degree iV.

Note the following assertion.

Assertion A. Let e (1 > r) be bounded, closed, with boundary
points satisfying Condition B and G 3 I an open set in Rn Then any func-

tion f ¢ £I0(IM) can be continued to a function f(x) £ Bp& p (G) finite in
G such that

||/(Z)|Iq%- i < zo0p

where c is a constant independent (here and later) of the sets indicated (see
For functions f(x) given on I we introduce the XP(I") norm:

WK (ml/(Bidr)  * 1=P=0
and
/(*)lLe.(r) = su)?evrrai|/(x)|,

where dT is the element of I
If f(x) is defined on 7, then3

3) [7="F (Xb ..., xT,0T+1(X"),...,pn(x")) = F(x'), x1Gft,

ilp
/W IUpM \F(x")\pX {x")dx"

1/2
X(x') = D(xn,. e >Xjm)\
D(x1,. m1Xm) /

JNlic<a Maihematica Hungarica 68, 1995



REPRESENTATION OF FUNCTIONS OF BESOV CLASS ON MANIFOLDS 101

We consider an open cube in Rn:

Aa= {x:|xj|*a,j=1,....n} (T=rcpha.)
and its transform defined by the equations Xj = acosipj, j = 1 or,
shortly
x = acosyj, | GAal A, 3
x's Il U3 =v', A*= (0,7 x x (0, x) .
—————— Wo.......
n times

The Lp(7) norm in terms of can be written as follows:

wroowl) = (Y |16 asvp (7~ =

= i~J \f (acosipi,...,acos<?n,ijm+i(acos<p'),...,il>n(acos<p,))\p x
i/p'
XXi(y/) dy?L
The differential d I is of the form
4 dr = xi(ip) dip".

We do not go into details.
For functions /(x) defined on Aa we introduce a new norm:

(5) [l(acos<y?)ill, (r)= sup [I/{acos(<£>+ a)]["p(r)

where the supremum is taken over all vectors a = (or,...,an). An impor-
tant property of this form is:

11/(a coS(v>+ a)[lILp(r)= |||[/(a cos<n>|im 1)

for any a = (ab ...,an).
Let us write

6) EnN(f)Lp(F) = INf|||/(acos<yj) - Piv(acos9)|||Mr),

where the inf is taken over all algebraic polynomials of a given degree N.
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102 S. M NIKOL’SKII

Theorem 1. Let the manifold satisfy the conditions of Assertion A and
let f £ MP(IN) (1 Ep.0 ~ oc). It is possible to continue f from I to Aa

until the following property of the extended function f(x), x £ Aa:

(7)

1B (D = TH{reosv>)||;+ A c[ILTeMT),
Ielip* = Nmlle, (A2 A* = [T X .-_3\-/-‘X[ ),
n times
" 00 1/0
@) ||/Ne (M = inf E """ 1lkfacos¥)|[®p(r) ~ C2||/]|e;0(r),

<=0

where the inf is taken over all

0o

9) f(x)= 5> s(x),
s=0

where gs(x) arc algebraic polynomials of degree 2s, arid the convergence of
the infinite series is meant in the metric ||| « |||/ (D).

Moreover, we have the equivalency

(19) 17pB(IM) ~ 2-®pe(Ti

IS0 ™ o ™ 118"

i.e.

{

(see (32) below).

P roof. We write
cosi1* —ii, il*C O4*, ttC Aa.

The set fais open and ' = ' C [Aa, therefore there are open sets
ifi 5P'2-fft such that

FCillcThecn2cn2C03c n3c Aa-

Using Assertion A one can continue every / £ /3p0 (") from / to Aa such
that the extended function f(x), x £ [a satisfies the following properties:

Acta Mathematica Hungarica 68, 1995



REPRESENTATION OF FUNCTIONS OF BESOV CLASS ON MANIFOLDS 103

(11) f(x)e z/«V (Aa), 110011 r+n=a g c||/|lsr (D),
*p0 P (0a)
f(x) =0, if Aa) fii.

The transformation x = acos ip is differentiable on both sides of 113, in-
finitely map_é/ntwes, therefore (see [1, §21]) the function f (acosip) of ip be-

longs to BpQ p (L) and

(12) [|[/(acos¥>)|| r+n™ Aci|l/(®)]] r+n A
Bps P (L) Boe p (03
But

Hetrsig: 0 b )il

f(x) =0, Xe fa\ fil,
therefore we can write

[|/(a cos<| r+n-m A C2 I ren-m
50 P (4. VR P (09)
instead of (12).
Since
[(«cosip) = 0, IpE O*\ fi,

we can consider / (acosip) to belong to the class Bpr&p of periodic (of
period 27t) functions with the estimate

(13) /(«COS¥>)|| r+r=m ~ c||/]|Srs(r).

It is known that the norm of the function f (a cosip) of the class -0p.@ p
can be written in the following equivalent form:

(Y , 28(, +~p)0|l<s(a cos vs)|®

s=0

where the inf is taken over all representations of (9) of / (converging in
e 11*). (See [2, 5.6(6)] for the class Bp&(Rn) determined by functions of

exponential type.) For the periodic one dimensional case see [7].
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S. M. NIKOL’SKII
Now we have to apply an inequality for trigonometric polynomials (see
[5], [6,2.1])

(15) |Iks(acos<@)|[|IM r)~ c2 Kk ]|?,(acosy>)||p., IMlIp* = IM IiPA?)-

Now (13), (14), (15) imply

I/e
inf (]T 2sr0[|&(acos</>)[II?pry 1+ = cHAtee(n)
and (8) is obtained.
Let us now determine
PA acosip) = gi(a cosip).

Then —  JilipGiy

I1/(a cos<p) —P2»(acosv?)|||Lp(N™ 1Q||?.Il|-.

i>s
Therefore (see (6))
| \ /& | o \ /0
(16) E 2drer 4 ! pn S £2"ell|l/l-I>2]]e n
\s=0 =
©\ 1/0 /oo X I/®
S (E 2'9 EI ~co N 2sr0|]|9s(acos™)|||fp(r)
,$=0 \i>s 45=0

(see [2, (5.6) (20)]).
Note now the inequality [6, 3.27]

I1/(Gcos <P)||p* ™ c|||/(acosv=>)|||bp(r),

which is used below:

(17) |I/(acosy>)||p. ~ cl||/(acos¥)[jLp(r)= c” LL,

s=0
Acta Mathematica Hungarica 68, 1995



REPRESENTATION OF FUNCTIONS OF BESOV CLASS ON MANIFOLDS 105

00 \ 1/©"' /00 \ 1/©
=ry 2-"-2"||,.|[ISr, £ 2~"9' £ piglesmen
=0 450 450
1/0 1 1
= CcA 2Srelllos(«COSM PP, -+ — = 1.

Finally from (16), (17) we shall have

/00 \ V®
1U/O0cosV)|lp. + Y ,2"sLY /)!,, (D S
vs=0
110
Ne N 2-e||M« cosg)m?\/m
\s=0

or
(18)

1ne (M) A ClU112BY (I)-

To prove the converse inequality let us take a function / with the finite
sum

110
(19) st U oseEAR) Yy < @

V6-0

and let P2s be an algebraic polynomial of degree 2s for which

”U . AH|||.p(f): 2E2’(f)Lp(’-)'
Then (19) implies
l="lllpirk B oo

Therefore the series
[ = " O, g = P2, gs = P2*- P2,-i, s= 1,2,...

converges to / in the metric ||| « |||/,p(r).
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106 S. M. NIKOL'SKII

We have
1/0
~ 290 (l|9Aaco8”)|(|®p(r) n
450
0 1/0
S||!» ]|+ 2"0 (|||F2, - NU+UL/- e v - <
\Ss=1
1/0
S. I E2. (F) iy

vs=0

Note that qo belongs to the finite dimensional space of polynomials of
first degree, therefore the norms

are equivalent.
Inequality (19) says

(20) 1/|128;0(N) ~ Qll/His pe(r)-

(18) and (20) imply (10).
Theorem 2 (converse). Let T £ Ck (kK > 1),

(e]e]

(22) f(x) = ]Tgs@), x£ Oa,
50
foc \ 1/0
(22) K = inf I~ 2sr0|||9s(acosyj)|||®p(r)j

where the inf is taken over all representations (9) of f(x) by algebraic poly-
nomials gs(x) of degree 2s.
Then f £ 200 (") and

(23) |I7]l8;0() ™ cK.

P roof. Let us take a function /(z), x £ A awhich has the representation
(9), for which

0o

(24) N 2sre||(/s(a cosy?)|||0p(r)< oo.
9
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REPRESENTATION OF FUNCTIONS OF BESOV CLASS ON MANIFOLDS 107

Let also 7 be one of the pieces determined in (1). We wish to use (see
(2), (3)) the definition

\ilp
Al F(x") X{x")dx"'\
xj ,kh

of the Zp(7)-norm of the difference of / of order k on 27 along 7 with step
h > 0. Here fIXt,his the set of points i * g H whose distance to the boundary
fi along X is greater than kh.

For any algebraic polynomial of degree N the following Bernstein type
inequality holds (see [4], [6, 4.14]):

(hiV)<l||Fiv(acos(R)|l[Lp(7)
(25) K,n(Pnr)7|M,) ~ (sin & )

AMc—1+ 2+ + K,
where s (0 < S< n/2) depends on 7. Such a number exists because ' = ' C

C fAa-
We also have the inequality

(26) A*, />(N7ip@7) = clll/(acos™MIILp(7)-
Now let f(x) be a function from Theorem 2,

27) by ||| [Lo]r],

(28) 14 b K(/),111M 7 -

Then using (25) where Pgj = gs, N = 2s and (26) where / = g9 we obtain
(see (17))

i) = EL6 1)

1/0
= ~lks(acos9)|||[Lp(N™ (J]2sr0A

AV E k() E

h2s<l h2*>|
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108 S. M NIKOL’SKH

N
nk(f, 2~n) i c2~kNY,.ithit [y [

s=0 s=N

Further (see [2,5.6 (16), (17), (18)]) for k > r

r\ 00]
(30) \\J\\b@w = / rl-@nk(f,t)@dt~cxY 2TNQUK{f,2~N)&"
JO N=0
£c2]T 2(r'fiV0 Iy 28kxs) +c2y rne&e (Y xs) =cJl 2%$rBx
N=0 450 N=0 \s—N s—0

It follows from (29), (30) that

1/0
B;@1 =\W\bR) + 11/11"W = c3 (57 2sr0Af
5=0
and (see (21))
v / \ e
= £ WWMBObI ~c (Y rr&x®)
i=1 \s=0 /
Therefore
1/0
(31) AR A R A I - cK.
k=0

Theorem 2 is proved. Since K = ||/||2s () the inequalities (7), (8), (31)
and the equivalence (10) imply

(32) 1ao(r) ~ 28;8(r) ~ B;e(m) (reckk=>n).
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ON HERMITE FUNCTIONS. 11
I. JOO (Budapest)

Dedicated to Professor Karoly Tandori on his 70th birthday

The aim of this paper is to improve the results of [1], [2] in some sense.
This will be applied later to obtain Alexits type saturation theorems like
[10] [12]. First we introduce some notations. Denote

Xi >X2>...>Xn

the zeros of the Hermite-polynomial

dn -*2
INe ) = (- Ifes2f e
and let
o Hn(x) _
)= i - sk K= )

be the fundamental polynomials of Lagrange interpolation. If / is a contin-
uous function on R and bounded on R then in [1] a sharp estimation for
Ifix) - Ln(f,x)\ was proved, where

Ln(f,x) = ~ f (x K)IKX).
k=1

If / is a uniformly continuous function on R then in [2], Theorem 9, Theorem
10 and Theorem 11 a sharp estimation was proved for [f(x) —Ln(f,x)|.

For a function / : R —»R we shall use a special form of modulus of
continuity w(f,s) (see e.g. [3], [4]):

w(f,6):= sup \e~(x+t)2/2f(x + t) —e~x2/2f(X)\\ + || T(bX)e~x212f (x)\\,

where
fbl, if\xX\<1

) 11, ifpg> 1

0236-5294/95/$ 4.00 (c) 1995 Akadémiai Kiadé, Budapest



112 1. JOO

and Ye«Ydenotes the sup-norm in C(R). If/ € C(R) and
lim e-x2/2f(x) = 0
[x|—+e0
then
lim w(f,S) = 0.
6—0+
We prove the following
Theorem. Iff £ C(R) ande-~x2/2f(x) is uniformly bounded on R, then

e-*2/2|f (x)-Ln+l(f,x)\ = 0{\)nIl*w (/,-)=) (*ER),

where 0 (1) does not depend on x, n and f.
For the proof we need a lemma.

Lemma. Iff E C(R) and e~x2l2f{x) is uniformly bounded on R, then
there exist polynomials pn of degree U n such that

e~*2/2|f(x) - pn(x)l = 0 (Nw (V, .

P roof. See [3], Theorem 1 and [4], Theorem A.
P roof of the Theorem. Using the Lemma we obtain

(1) e-*2"2\f(x)-L n+I(f,x)\ S

Ne~xe/2\F{x)-pn(x)\ +e-xe/2\Ln+i(pn- f,x)\ =
=0 (1w (/, + 0 (x> (/, M=) e-x222£  e*H2\Ik{x)\.

Without loss of generality we may assume that x ~ 0. Using [8], (6.1) and
(6.2) we obtain

e~xz/2 -\Hn(x)\ 1
(2) e-x22£V *[2|/f1(z)| Y )\JIon{xK) = )

=1 \/2nn\ K= 1 X — Xk
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ON HERMI1TE FUNCTIONS 11 n3

where ¢gn(xk) = xk —xk+\. Since x ™ 0 and the zeros are symmetrical with
respect to the origin, xk = - zn_fg therefore dgn{xk) x dn(xn_x), n

- \XII'—f-—xn_k[and then it is enough to estimate

e~ 2\Hn(x)\ \Afc - xk+l
3
®) vz nn\ | E \x - xk\
We know [9],
(4) xk- Xk+1 X n_1/6 ¢A 1/3, 1~ AN

Using this we obtain from (3)

€ XA "Wn(-TI V12 y*
| W i<fc<f I* —®*r

Denote ko the index 1/ ko i | for which \x - xk\is minimal. By the known

inequality [7]
n

e~x2 M2 eTUl(x) <;1 (ig R),
k=1

finitely many members of the sum (1) can be estimated by 0(1). Hence it is
enough to estimate in (5)

(6) € Xz Hn™M\ -2 oyt k~1/6

fc/foo,fooH

Here
[x - XK\ c\xlo - xK\x n~1/e(KAL3 + ... + K=1/3) X - .5/

We know from [5] that e-*2/2)Hn(x)|\/2nn! = 0 (I)n_1/12. Thus we obtain
from (6)

® E [@B/M=EFE + E + E

lgfcrn/2 ” I-ik-iko/2 K0/2" kin3K0/2 3fc0/2gfcgn/2

Ic/fco, fcoxl fc/fco,fcoit
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Here
-1/6 i
E /1,213 n2/31 E 1,213 7 0(]_)|-|'/6
lAKv_KO/Z I KO I |nggf_CO/2 l"l<0
and
n-1/® 1/6
E E . oon
3k0/2K"AN/2 1273 * (] | 3k0/2kiAn/2 ~0
Finally
-,-1/6
E K-1« E !
KO/2MK"N3KO0/2 17°2/3 ~0 | KO/2Mkin3K0/2 ~0 & ~01
Kpk$ ,Ao=tl KpK{$ ,A;0+1

XK~0 1/6log(foo + 1).

Here the logarithmic term can be eliminated by two ways in cases x E

Uylhi4-1—@2n+ 1) _1/6tA and %~ \/2n+ 1—(2n -f |)_1/6H55where 0 <
< 6 < 2/3 is fixed.

a) XM \/2n + 1- (2n -Fi)_1/6+s. Then by [9]
e~X2/2-\Hn(X)\ = 0(l)n-1/S(2n + 1)(-1/6+5)(-1/4) = 0(1),-1/12 .n-6/4
y/5nn\

and then r&a154log(fc0+ 1) = 0(1) eliminates the logarithm.
b) x A yan+ 1- (2n+ 1246+6 “ye hnow from [g| that y/'In+ 1-

-i! x n-1/6, hence by (4)
@ AT T -~ xA~AT ~x N -6 A*r&A|).
I+

Consequently for x ~ \/2n + 1—£gm */6 (Eo > 0 is small)
TrY6+5 Ec(M2n+ 1- x) xy/hiT” - xko x fod/3 «n~1/6,

i. e., fcjf E cnA foo ~ ¢n34/2, and this implies by 36/2 < 1that f0 '*oglfcoT

+ 1) N cnl6. If x A~ \/[2n + 1- £oft-1/6 then f0 = 1, hence fc” 6log(fcO +
+ 1) =0 (2).
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Summarizing our estimates we obtain
9) e-*22jy * /2]/f(z)] = 0(l)n16.
fc=i

Now we prove the sharpness of the upper estimate in (9). Let x* be such
that x* > 0 and | IIn{x*)\ x e*r92/2~ 1 . Then

n

1 I«(a-*
PR GEAN RS RN V- 2 )Kf(i )
k=1 ' A
g 11
VT SA
=

>C—'r§_"l|n_2.e(l’)2/2v‘n”1/1iﬂ'u6 e N X 16,

Je= Co

where 1/2 < < 1is an absolute constant.
Using (9) we obtain from (1)

e r2/2|f(x) ~ Ln+i(x)\ = 0 (1) N

The Theorem is proved.

Remark. The estimate in the Theorem is sharp, namely there exist

functions {/,,} and real numbers {yn} such that fn £ C(R). e~x2Lofn(x) is
uniformly bounded on R and

e y"/2\fn(yn) - Ln+i(fn,yn\ ~ cnl/éw (jn,

This can be proved similarly as in [1], Satz 4, but we have to make some
simple modifications, e. g. fn(xk) := e**/2sign Ik(yn), yn 'm=x*, and we can
extend the definition of fn such that |/n(a;)| ™ e*212 for all x.
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THE DIMENSION OF A CLOSED SUBSET
OF Rn AND RELATED FUNCTION SPACES

H. TRIEBEL and H. WINKELVOR (Jena)

Dedicated to Professor Karoly Tandori on his seventieth birthday

1. Introduction

Let F ¢ O be a closed subset of Rawith empty interior. There are sev-
eral proposals what should be called the dimension of F, globally and locally.
Besides the classical Hausdorff dimension there exist nearby but, in general,
not identical definitions, better adapted to the needs of measure theory, see
[14] and also [9] and [7]: Ch.Il,l. One aim of our paper is to contribute to
this field of research by introducing two types of a dimension of F, the distri-
butional dimension and the cascade dimension. The first notion is connected
with the question whether there exist non-trivial singular distributions with
a support on F and belonging to some function spaces of Besov type on
R”. The second notion is related to the e-entropy and e-capacity of F and
its neighbourhood and is connected with atomic representations of function
spaces. Our approach is intimately linked with function spaces on R™ and
on F. Hence, the second aim of this paper is to introduce some function
spaces of Besov type on F. In that sense this note might be considered as
a direct continuation of our paper [13]. On the other hand function spaces
on (closed) subsets of R” have been studied extensively by A. Jonsson and
H. Wallin, see [5], [6], [7], [8] and [15]. Our approach is closely related to this
work and should also be seen in the context of the theory developed there.

The paper has two sections. Section 2 deals with function spaces on R"
and on F and related problems: dimension, extension, duality. In Section 3
we introduce two notion of dimensions. Our main results are Theorems 2.3
and 3.3.

All unimportant positive constants are denoted by c, occasionally with
additional subscripts within the same formula or the same step of the proof.
Furthermore, (k.l/m) refers to formula (m) in subsection k.l, whereas (j)
means formula (j) in the same subsection. Similarly we refer to remarks,
theorems etc.
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118 H. TRIEBEL and H. WINKELVOR

2. Function spaces

2.1. Besov spaces on Rn. Since this paper is a direct continuation of
[13], we restrict the definitions to the bare minimum, necessary to make this
paper self-contained, independently readable. We take over some material
from [13].

Let R” be the euclidean n-space. The Schwartz space 5'(Rrg and its
dual space .S'fR'") of all complex-valued tempered distributions have the
usual meaning here. Furthermore, LP(R”) with 0 < p ~ oo, is the usual
guasi-Banach space with respect to Lebesgue measure, quasi-normed by
I « ILP(R™)]||. Let f £ 5(Rn) be such that

(1) slippy c{}GR": W< 2} and f(x) —1lifjaj ™ 1
let fj(x) = —f(2~3+1x) for each j £ N (natural numbers) and put
fo = ip. Then, since 1= N(z) f°rah x £ Rn, the form a dyadic

resolution of unity. Let / and f be the Fourier transform and its inverse,

respectively, of / £ 5'(Rr@. Then for any / £ S'(Rn), [fjf]j is an entire
analytic function on R".

Definition 1. Letse R.0<p”™ ooand 0< g” oo. Then Bpg(Kn) is
the collection of all / £ 5'(Rn) such that

(2) I/ 15p9(Rn) N2 (M) -k p(R™)

(with the usual modification if g = 00) is finite.

Remark 1. Systematic treatments of the theory of these spaces may be
found in [11] and [12]. In particular, B*q(Rn) is a quasi-Banach space which

is independent of the function f £ S(Rn) chosen according to (1), in the
sense of equivalent quasi-norms. This justifies our omission of the subscript
f in (2) in what follows. Ifp ~ 1and g~ 1, Bp9(R™) is a Banach space.

Remark 2. Of peculiar interest for us will be the Holder spaces
CARN) = Ra) with 0 < s - [s] + {s}, where [5(]£ NO= {0} UN and
0 < {0} < 1, with the equivalent norm

(3) JVICYR™) =

Daf (x) - D af(y)\

= £ WDaf ILoojR")|| + 7 M

WgW al=M e
where the supremum is taken over all x £ Rnand y £ Rn with x/ .
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THE DIMENSION OF A CLOSED SUBSET OF Rn 119

Atoms in Rn. We follow [13]. We adapt the atoms introduced by Frazier
and Jawerth in [2], [3] and [4] to our later purposes. Let NO = {0} UN, and
let Zn be the lattice of all points in R” with integer-valued components. Let
b > 0 be given, v GNo and kK GZn. Then Q,k denotes a cube in R'1with
sides parallel to the axes, centered at xvk GR" with

(4) \xuk —2~vk\ U b2~u

and with side-length 2-". If Q is a cube in Rn and if r > 0, then rQ is
the cube in R™ concentric with Q arid with side-length r times the side-
length of Q. We always tacitly assume in the sequel, that d > 0 is chosen
in dependence on b such that for all choices 1 G No and all choices of the
centres xuk in (4)

(5) U d™ k= Rn*
kEz-

Recall that C'RR') with 0 < a $ N may be normed by (3). Let C°(R”)
be the space of all complex-valued bounded continuous functions on Rn
equipped with the Loo-norm. If ¢ GR then we put ¢+ = max(c,0). Further-
more, we use the abbreviation

with 0 < p ™ oo.

Definition 2. Let 0 p”~ooands (jp. Let 0< a0 N. Then a(x)
is called an (s,p)-atom (or more precisely (5,p)Catom) if

@) supp a C dQvk for some n GNo and some K GZ”
and
(8) aerfR ™) with [la(2-l/ ¢) | Gr(Rn)|| ™ 2-¥(s_p).

Remark 3. The number d has the above meaning, see (5) and is as-
sumed to be fixed throughout this paper. The reason for the normalizing
factor in (8) is that there exists a constant c such that for all these atoms

(9) IH 7~ 9(R™) ~c

In other words, atoms are normalized smooth building blocks.

Remark 4. The above definition is adapted to our later needs, where we
carry over this definition from Rn to closed sets in Rra Then the Whitney
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120 H. TRIEBEL and H. WINKELVOR

extension plays a decisive role. This explains why we used Ca with 0 < a »
~ N. In case of Rn one would otherwise prefer CK, the space of all / £ C°
with Daf £ Cnif |a| is A". Doing so the normalizing condition in (8) can be
re-written as

(10) IDaa(x)\ < 2~ ~p)27°Y, |a] K.
This is the usual way to introduce atoms, see the above mentioned papers

by Frazier and Jawerth or [12]: 1.9.2, 3.2.2.

Definition 3. LetO<p ooand0 < g” oo. Then bpyis the collection
of all sequences A= { A : A £ C, mE NOand kK £ Znj such that

@ /
) b 2,68 1M1

(with the usual modifications if p and/or q is infinite) is finite.

If the atom a(x) is supported by dQuk in the sense of (7) then we write
alk(x), hence
(12) suppet® CdQki v€ NO and KE£ Zn.

Recall the abbreviation (6).

Theorem. Let0<p”~o00,0<qg”o0c ands> ap. Leta> s anda £
£ N.

(i) Let A£ bpg and a,k(x) with m £ NO, K £ Z" be (s,p)a-atoms in the
sense of Definition 2 with (12). Then

00
(in £ £ ™kK[x)
n=okezn

converges in S'(Rn).
(i) / G5'(Rn) belongs to Bs (Rn) if and only if it can be represented as

(14) [ = Y] Alnaiffc(x), convergence in AMR"™),

n=okezn

where a,,k(x) are (s,p)a-atorns in the sense of Definition 2 with (12) and
A£ bpg. Furthermore,

(15) inf ||A 1bp,A
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THE DIMENSION OF A CLOSED SUBSET OF R 121

where the infimum is taken over all admissible representations (14), is an
equivalent quasi-norm in Bpg(Rn).

Remark 5. This theorem is at least in principle covered by the work of
Frazier and Jawerth, see [2], [3] and [4]. Our formulation is different and, as
we hope, more handsome, even on R", and we switched from requirements
like (10) to their counterparts (8). We used this modification in [13] to study
intrinsic atomic characterizations of Bpq spaces in non-smooth domains. In
the present paper we are interested in corresponding characterizations for
spaces of Besov type on closed subsets of Rn.

Remark 6. In [13] we gave atomic characterizations of all spaces B* ,
s GR, on Rn and on domains. If s ™ ov (see (6)), then the atoms auk on
R"™ with v GN are required to have vanishing moments up to order [op —
—s]. In the same paper one can also find analogous atomic characterizations
of the spaces Fpg, 0 < p < oc, 0<gq” 0o, s GR. on R” and on bounded
non-smooth domains.

2.2. The spaces Ca(F). Throughout this paper F ¢ O is a closed subset
of R n with empty interior:

Q) FdO intF=0 (that means Rn\F = Rn).

Let C°(F) be the space of all complex-valued bounded continuous functions
on F equipped with the Loo-norm. Of course, C°(F) is the restriction to F
of C°(Rn) introduced preceding Definition 2.1/2. For the definition of the
Lipschitz spaces Lip(a, F) with a > 0 we refer to [10]: pp.173 and 176 and
[7]: 2.3. If a > 1 then one needs in general the jet-version characterized by
{fU)} where Kk GN with Kk < 0 ™~ k+ 1, normed in a way described
there. The advantage of this definition is that Whitney’s extension method
leads to linear extension operators.

We prefer here the following modification. For ¢ 6 R, [c] denotes the
largest integer not greater than c.

Definition 1. Let 0 < 0 £ N. Then Ca{F) is the space of all functions
/ GC°(F) for which there exists a corresponding jet { G Lip(a, F)

with f° = /.

Remark 1. Of course Ca(F) is normed via Lip(<r, F). Now we have the
advantage that the so-defined spaces Ca(F) are continuously embedded into
C°(F). Of course they are restrictions of the corresponding spaces on R”,
(2) C°(F) =C°(Rn)\F = BOOQ(RNn)\F,

where the latter equality holds since o £ N, see Remark 2.1/2. This modifi-
cation paves the way to an atomic characterization of function spaces on F.
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122 H. TRIEBEL and H WINKELVOR
Atoms on F. To introduce atoms on F with (1) we again rely on the

cubes Q,.k, see 2.1. Of course only cubes with dQuk NMF ~ 0 are of interest.
If Quk is such a cube we additionally assume

3) xv'k GF,
that means Q,,k is centered at F. Let, for brevity,
4 Fv={x GRn:T v GF}, v GNO.

Definition 2. Let 4> 0,0<r ~N. Then a(x) is called a ay-atom on
F if

(5) aeCT(F) with [la(2_"¢) |CT(F")|| ™ 2~va
and
(6) suppaCFfl dQvk for some n GNO and kK G Zn with (3).

Remark 2. The analogue of this definition in [13] looks more compli-
cated. But our situation here is somewhat simpler. The same holds for
Definition 2.1/2 and its analogue in the mentioned paper.

Next we modify Definition 2.1/3 in an obvious way. Let now
@) N={Kk :\uWkGC, i/G NO, k GZn, xvk GF},

and let YlkEzn I°r Hke(l y £ NO be the sum over kK G Zn with xuk GF.

Definition 3. Let 0 < p ” 00,0 < g~ oc. Then bpg(F) is the collection
of all sequences Agiven by (7) such that

(o / uF
E E |A,fdP

1"=0 ' k£zZn

(with the usual modification if p and/or q is infinite) is finite.

Remark 3. See also [13]: Definition 3.4/1 for a similar construction for
bounded (non-smooth) domains instead of F.

We are interested in atomic representations

oo E

(9) /| =E E KK<ivk(.*)
v=okezn
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THE DIMENSION OF A CLOSED SUBSET OF R" 123

of function spaces on F of Besov type, where in analogy to (2.1/12) the
subscripts v, K indicate that auk has a support in F MdQvk in the sense of (6).

Let a,k{x) be aT-atoms with r > €, r ~ N and with (6). Let £
E booociF). Then it follows easily that (9) converges in C°(F).

PROPOSITION. LetO<a N andleta< T N. Thenf EC°(F) be-
longs to Ca(F) if and only if it can be represented by (9), convergence in
C°(F), with AE hoooo(-T) and oT-atoms avk{x). Furthermore,

(10) inf[|A |60000(F )],

where the infimum is taken over all admissible representations (9), is an
equivalent norm in Ca{F).

Proof. Step 1 Let / be given by (9) with AE 60000(F) and ar-atoms
a,,k(xX). By the above mentioned Whitney extension method and the mul-
tiplication with an appropriate cut-off function each atom a,k(x) can be
extended individually to a corresponding atom b/{x) on R” in the sense of
Definition 2.1/2. See [13]: 3.5 for the details of this construction. Let for
v £ENu K EZ" with dQ,k MF =0, A = 0and buk- 0. By Theorem 2.1
the (non-linearly) extended function

0o

ext/ - X! ~vkKk{x)
i/=0
belongs to R”) = CXRn). Hence, by restriction, / E C°{F).

Step 2. Let / ECa(F). Then by Whitney’s extension method we find an
ext/ E(™(R') = f2000(Rn) with ext/ |F = /. Using again Theorem 2.1
we obtain an atomic representation of ext/ which, by restriction, yields the
representation (9) with A E 60000(F). Since all these procedures are norm-
preserving (besides unimportant constants) we have that (10) is an equivalent
norm.

Remark 4. The proof is surprisingly simple. But we used two rather
deep ingredients: Whitney’s extension method, now non-linear because of
our definition of CqF), and the knowledge of the atomic representations in
R n covered by Theorem 2.1. In particular, the main assertion of the above
proposition, the independence of the chosen value of r, is induced by that
theorem.

2.3. The spaces Bfg(F). Again F ¢ 0 denotes a closed subset of
with empty interior, see (2.2/1). Encouraged by Proposition 2.2 and in anal-
ogy to [13] we are going to introduce function spaces of Besov type on F,
always considered as subspaces of C°(F). We have to circumvent the prob-
lem of the (local or global) dimension of F which is quite clear if one looks

Acta Mathematica Hungarica 68, 1995



124 H. TRIEBEL and H WINKELVOR

at Definition 2.1/2 and Theorem 2.1 on the one hand and Definition 2.2/2
on the other hand. In 2.4 we add a discussion about this subject.
We rely again on atomic representations

00 il F
(1) /= "2 Kkavk(x),
i/=oi;ezn
now with ay-atoms am(x) and A£ bpg(F).

Definition. Let0<p”~ oo, 0<g”ooanda>0. Leta+ ~<r~N.
Then Bpg(F) is the collection of all / £ C°(F) which can be represented by
(1) with A£ bpg(F) and oy-atoms aPk(x) on F.

Remark 1. As we mentioned above, under the conditions of the defini-
tion, (1) converges always in C°(F). Furthermore, it turns out that Bpg(F)
is independent of the chosen r in the sense of equivalent quasi-norms. This
justifies our omission of an additional index r in the definition of Bpg(F).

Remark 2. By Proposition 2.2 we have
2 C°{F) = Boooa{F)

where 0 < a ™ N. Now we extend (2) to a £ N. Then we have the full scale
of Hélder-Zygmund spaces on F.

Theorem. Let0O<p”~oo0, 0<qg”™ ooanda>0.
(i) Leta+j <71 ~N. Let

3) /1~ , (71 ]| = inf BA 1bpg(F)\,

where the infimum is taken over all representations (1) of f £ C°(F) with
A£ bpq(F). Then (3) is a quasi-norm (norm ifp ~ 1 and gq't. \) and Bpg(F)
equipped with (3) is a quasi-Banach space (Banach space if p~ 1 and g »
~ 1), Furthermore, Bpg(F) is independent of T in the sense of equivalent
quasi-norms.

(i) Lets=0T Then Bpg(F) is the restriction of Bpg(Rn) to F,

4) B;q(F)= BB (Kn)\F.
(iii) Let0O <0 £ N. Then

(5) C*(F) = Bvooo(F),

where Ca(F) has the same meaning as in 2.2.

P roof. Part (iii) is covered by the above remarks.
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THE DIMENSION OF A CLOSED SUBSET OF R 125

Let auk(x) be a oy-atom on F in the sense of Definition 2.2/2. Using
again Whitney’s extension method combined with the multiplication by an
appropriate cut-off function we can extend auk(%) to an (s,p)T-atom on R”.
For the details of this individual extension we refer to [13]: 3.5. Now both
(i) and (ii) follow in the same way as in [13]: 3.5 and in the proof of Propo-
sition 2.2.

Remark 3. The proof makes clear that this part of our paper is the
direct continuation of the relevant parts of [13].

2.4. The dimension problem. Let O<p”oo0, 0<qg” oc and s >
> and let F = R; with 0 ~ d < n, interpreted in the usual way as a

subspace of R”. By the known trace theorem, see [11]: 2.7.2, and the above
considerations we have

(1) Bpg(Rn)\F = Bsg(Rd) = B;q(F)
with
(2) 0 <a—s _n Sd____fj_.

P P

In other words, a, sometimes called differential dimension, is invariant, but
neither are the smoothness s, nor, of course, the dimension. This sheds some
light on our approach in 2.3 and makes clear why we used the letter B instead
of B so far. Only in the case p = oo the above problem does not occur. If
one wishes to introduce Besov spaces Bpg on arbitrary closed subsets F of
R” with (2.2/1) then one must first clarify what is meant by its, maybe
fractional, dimension d, locally or globally, and define Sd via (2). We return
to this problem later on looking for adequate notions of dimensions. For that
purpose duality taken as a guide is shortly discussed in 2.6.

2.5. The extension problem. Let again F / 0 be a closed subset
of Rn with empty interior. With a > 0 and s = a + j we have (2.3/4).
Of course, the restriction operator from R* (Rn) onto Bp (F) is linear and
bounded. On the other hand, the extensions constructed so far are non-linear
for at least two reasons. Firstly our definition of Ca(F) destroys the linearity
of Whitney’s extension method, at least in general. Secondly to ensure that
atoms on F are extended to atoms on Rn one needs cut-off functions which
are individual, see [13]: 3.5 for details. But it would be desirable to have
linear and bounded extension operators in connection with (2.3/4). We start
with a preparation.

P roposition. Let 0<p ™ 00, 0<g” 00 and s >
(i)
(1) BpaiF(Rn) = {g e B pq(Rn) : <?F = 0}
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126 IIl. TRIEBEL and H. WINKELVOR

is a closed subspace of Bpg(R n).
(ii) Leto = 5—j. Then Bpg{F) is isomorphic to the factor space

(2) Bpq(R™) IBpgF(Rn).

Proof. Part (i) follows immediately from R*?(Rn) ¢ C°(Rn), see [11]:
2.7.1. Now (ii) is a consequence of Theorem 2.3.
Extension operator. Assume that Bp F(R n)is a complemented subspace,

that means that there exists a linear and bounded projection operator P from
Bpg(R™ ) onto BpgF(Rn). Then

3 ext : fe Bpg(F) ~ (id- P)g, g6 Bpa(R"), g\F =/

may serve as a linear bounded extension operator we are looking for. Un-
fortunately it is unlikely that, in general, Bpg”~(Rn) is a complemented sub-
space. See [1]: VII, p.157, where the Lindenstrauss-Tzafriri result is quoted.
It states that Hilbert spaces are the only Banach spaces such that any closed
subspace is complemented. On the other hand in case of Hilbert spaces we
have even orthogonal projections.

Theorem. Leta > 0. Then
(4) H°(F) = BI2(F)

is a Hilbert space (equivalent norm) and there exists a linear and bounded
extension operator from Tta(F) into

(5) Hs(Rn)= Bl2(Rn) with 5—<T ~«

P roof. The proof is obvious by what has been said preceding the theo-
rem.

2.6. Duality. Interpreted as the usual S —S' pairing we have
1) (IN(R™))" = i£;,(R™),
where s ER, 1 p <00, 0< g< oo with ¢ = (x>ifO<(/"™I| and otherwise

) 1,1 0,1

p pt g q

This can be complemented if p = oo and/or q = oo, or p < 1, see [11]: 2.11.
There might be a temptation to introduce spaces on the above closed set F
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THE DIMENSION OF A CLOSED SUBSET OF Rn 127

(see (2.2/ 1)) with negative smoothness s or negative differential dimension
a via duality. However, at least at the first glance there is no natural coun-
terpart of S'(Rn). We refer in this context to the papers by Jonsson and
Wallin, especially [8]. We shall not follow this path.

We are going to use duality as a vehicle to deal with the dimension prob-
lem. For that purpose we assume that Bp(/F(Rn) is defined via (2.5/1)
whenever the trace on F makes sense. For example, if 1~ p ~ oc and F =
= Rdwith 0 ~ d < n, then this is the case if S> (n- d)/p. Let, in addition,
p ™ 1, such that (1) is applicable. Then by standard arguments the dual
space of the factor space in (2.5/2) may be identified with

3) {/eB;,;,(R") :/(¥>) = oifpe £(Rn) with ~\f = o}.

Since F has an empty interior it is clear that the space in (3) consists exclu-
sively of singular distributions (with the exception of Gdistribution). Look-
ing for the largest non-trivial spaces one arrives via embedding arguments at
p' ~ g = oo, that means the spaces

(4) CrF(Rn) = {/ GCTRnN) : f{<p) = 0if ip GS(Rn) with <p\F = ()},

where CT(Rn) = RJooo(R"), now with r ~ 0. Searching for the largest T
for which CT,HR @ is non-trivial means that one looks for the most massive
parts of F, being able to carry such a non-trivial singular distribution. To
illustrate the situation we deal first with the case F = R”™. Here Sn d is the
A-distribution in Rn . Furthermore, x = (xd,xn~d) with xd GRd, G
GRn-d.

Proposition. Let F = Kd with 0tSd < n.
(i) Let / GS'(Rn). Then

(5) f(ip) = o for all <*"G.S'(R'D) with tp\F =0
if and only if
(6) f = fd®bn~d with fdeS\R d).

(i) C_"+YF(R?) is non-trivial if and only if
@) 7N d

Proof. Step 1. We prove (i). The “only if’ part is clear. Assume that
we have / G5'(R™) with (5). Let <p(x) = ip(xd)p(xn~d). For fixed &

(3] VA U(V) =f(H)
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belongs to 5'(R"™ d) and it holds
9) supp ftp = {0} in Rn~d.

Hence, /¢ is a finite linear combination of 6n~d and some of its derivatives.
Since /(7)) = 0 if 740) = 0 it follows easily

(10) U = cil)sn~d,

and fd(ip) = c(VO belongs to 5'(R ).
Step 2. We prove (ii). Let / be given by (6). Let tpd and .J EN,
be the same functions as in 2.1 with R™ and R”_d respectively. We have

(11) vd(2~Jm)fd - Id in S*(Rd) if j - 00

and

(12
(L) ¥t YEoo(Rn) 20 (1 (5=34)1) [r00(Rd)

with ¢ ¢ 0. Her we used d= d(2 #+1 ). Now (7) follows from the

counterpart of (2.1/2) with p —q = 00. We tacitly used a replacement of the
annuli in 2.1 by cubes, see [11]: 2.5.4, which, in particular, covers also the
“if’” part of (ii).

3. Dimensions

3.1. The distributional dimension. By (2.6/7) the dimension d of
F = Rd can be characterized by asking under which conditions C (R'D
is non-trivial. We take this observation as a starting point of a correspond-
ing definition. However, for more general sets F a structural result of type
(2.6/6) cannot be expected.

Definition. Let F ¢ %be a closed subset of R" with empty interior.
Then the distributional dimension of F is

(1) dimd(F) = sup {7 : C-n+7,F(Rn) is non-trivial} .
Remark 1. We defined CT,F(Rn) in (2.6/4). Of course
(2) 0" dimd(F) ~ n
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since 6 C ”(Rn) and since CE(|R n) with e > 0 consists of continuous func-
tions. Furthermore,

3 dimD(Rd)=d
by Proposition 2.6. Thus, any (smooth) d-dimensional surface in Rn has also

the distributional dimension d, as it should be.

Remark 2. The distributional dimension is local by nature: One has
to look for the most massive part of F\ the other parts are without any
influence. This is in contrast to the F-entropy or £-capacity.

Remark 3. If F is sufficiently regular then dimd (F) coincides with the
Hausdorff dimension and also with the uniform metric dimension, see [14].

3.2. The cascade dimension. The question is how to calculate
dimjr)(F), which may be fractional. For that purpose we introduce a more
geometrical dimension which is closely connected with the £-entropy and e-
capacity of sets, but now in an adapted localized version. See also [9].

Definition. Let F ¢ 0 be a closed subset of Rn with empty interior,
(i) Let7 > 0and 27 GN. Then a sequence of points

{xJKk£ Rn with j =J,... and k= 1,..., 27"--7"}
is called a 7-cascade (with respect to F) if
@ 2-j. 1 ~ dist (xjk, F) < 2~j

for all admissible j and k;

(2) dist(xM*i+1'm) " ¢ 12~j
and
(3) dist(®J*1,*itfca) ~ ci2"j

for some cj > 0 and all admissible j, k, m, k\ and & with k\ /
4) dist (xJTo N Q@2-N

for some @ > 0, all admissible j , k and

(5) | =27(fc—1) + 1,..., 27&
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130 H. TRIEBEL and H WINKELVOR
(ii) The cascade dimension of F is
(6) dimc(T) = sup{7 : there exists a 7-cascade}.

Remark 1. One can replace the supremum in (6) by the maximum. In
each layer

(7) {ieR": 231~ diet(x, F) ~ 2~J}

we have by (3) the usual procedure of the e-capacity with e ~ 2_J. But the
allowed density of the points is getting larger and larger if j —»00. By (4)
the 27 points x7+Lr with (5) are subordinated to xTk. In other words, any

point xik is the spring of 27 points xJ+1, with (5), where all these points
keep maximal distances by (2) and (3).

Remark 2. To get afeeling what is going on one can again consider F =
Rd, 0~ d < n. Looking for 7-cascades there is no contribution “orthogonal”
to Rif and there are 7 —d contributions “parallel” to R (i. In other words
whether one finds a 7-cascade depends on the question whether one finds in

each layer (7) “parallel” to F sufficiently many points satisfying (3) and (4).
In any case

(8) 05 dimcfT) fi n.

Indeed: choose a point x F and connect it with a point on F that min-
imizes its distance from F. OIl that line one constructs easily a 0-cascade.
This proves the left-hand side of (8).As for the right-hand side we obtain a
much sharper result in the next subsection.

Remark 3. Instead of points with controlled distances one might use
disjoint balls of a given radius e and ask how densely they can be packed.
Then one is near to constructions suggested in [9]: p. 179.

3.3. The main theorem. All notations have the previous meaning, in
particular the two types of dimensions we introduced in the preceding two
subsections.

Theorem. Let F ¢ 0 be a closed set in Rn with empty interior. Then
(D 0~ dimen-T) ~ dimd(F) S n-

Proof. Step 1. By (3.1/2) and the left-hand side of (3.2/8) we must
prove the middle part of (1).

Step 2. Let 7 = dimc(F) and let {x"'k} be a corresponding 7-cascade.
We are going to construct a non-trivial distribution / £ C~mH+1'F{R") in the
sense of Definition 3.1 by means of an atomic representation. Since we are
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now concerned with negative smoothness indices some of the atoms in this
representation are required to have vanishing moments up to a certain order,
say L't 0. See also Remark 2.1/5, Remark 2.1/6 and the papers mentioned
there. Details will be given in due course.

Let {Qj,k} be a related sequence of disjoint cubes centered at x“\k and
with side-length gq2~3 for some sufficiently small ¢ > 0. Let ip be a C°°
function in R"™ which has a support in a cube centered at the origin with
side-length g such that

(2) J p(x)dx = 1, J XxMp(x)dx =0 if 0< |3~ L

for some L 6 N. Then

(3) y>NX) = 2™M-"My> (Y (X-X1K))

are located in the above cubes Qj,k- This corresponds to (2.1/12) and
(2.1/10) with j = i/, p = oo and s = —n + 7 besides some constants. Let

Xj+i,i be the 27 subordinated points with respect to x“k in the sense of
(3.2/4) and (3.2/5). We put

2<k
4 4k (X) = -<Pj,k(X) + Y Vi+U(X)-
[=24'([c—2)+1
Thus we have
(5) J xMaiik{x)dx = 0 if 0~ \B\ ~ L,

now with /3 = 0 included. We claim that if we chose L sufficiently large,
L~Nn—7,

6 f =00 +Yal9

is the distribution we are looking for. Firstly, by (3)-(6) and the theory of
atomic representations of distributions in F_n+'y(Rn) developed in [2], [3],
[4], see also [13], we have

(7 /[ € C_n+Y(Rn).

In particular, (6) converges in 5'(Rn). Let jo > J and

(8) fo =4JA)+ Y Y al*(x)-
jfijo k
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All terms cancel each other with the exception of terms with j = jo. This
proves

9 supp/ CF and J fP(x)dx = 2~1J,

the first by fO—/ in 5'(Rn), the second by (2)-(4). By the last assertion,
/ is not trivial. Finally, let ¢ E 5(Rn) with ¢(x) = 0 on F. Then we have

(TO) K®) — b /1o{®) = by  +0(x)(x) dx = 0,

the latter again by (2)-(4) and ¢(x) = 0( dist(x, F)j. Hence, / E
E C~n+1,F(R") in the sense of Definition 3.1. The proof is complete.

3.4. Besov spaces B™q(F). If s stands for smoothness then (2.4/1)
and (2.4/2) suggest how B*g{F) and Bpq(F) might be related. However the,
say, distributional dimension of F reflects the most massive part of F. So it
seems to be reasonable to introduce a dimension at each point x E F.

Definition, (local distributional dimension). Let F ¢ O be a closed set
in R” with empty interior. Then
@ d(x) = infdimE>(F MNR), x EF,

where the infimum is taken over all balls B centered at x.
Remark. We have

2 d(x) = liindime>{y : yEF, WX —\ i1 e}.
Besov spaces. Let <r>0, O<p”o00 and 0< g” 00. Then
3 B«*\F) = Bpq(F) with s(x) =0 F ~

is at least reasonable. It coincides with R*?(F), defined in the usual way if
F is a smooth d-dimensional surface, see also (2.4/1) and (2.4/2). But now
the smoothness s(x) may vary from point to point.

Added in proof (December 1, 199j). Let dim#.F be the Hausdorff di-
mension of an arbitrary set F in R". We obtained recently the following
result:

Theorem. Let F be a Borel set (or, more generally, a Suslin set) in Rn
with empty interior. Then dim# F = dime F.

A proof will be published elsewhere.
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ON A RESTRICTION PROBLEM
OF DE LEEUW TYPE FOR LAGUERRE
MULTIPLIERS

G. GASPERL1 (Evanston) and W. TREBELS (Darmstadt)

Dedicated to Professor Karoly Tandori on the occasion of his 70th birthday

1. Introduction

In 1965 K. de Leeuw [3] proved among other things in the Fourier trans-
form setting:

If a continuous function m(£i,...,£n) on Rn generates a bounded trans-
formation on Lp(R"), 1< p < oo, then its trace m ( £ = m(£i,...,

0,...,0), K < n, generates a bounded transformation on Lp(TIK).

The purpose of this paper is to discuss the analogous question: suppose
{TK}Keblo generates a bounded transformation with respect to a Laguerre
function expansion of order a on some Xp-space, does it also generate a cor-
responding bounded map with respect to a Laguerre function expansion of
order B ? To become more precise let us first introduce some notation. Con-
sider the Lebesgue spaces

Lib) = 1/ W™ =1 \f(x)e-x/2\pAdx" <ool |,
1 fop < oo,
C@-= ﬁ /: Illlllwb), = es§>soup If (x)e~x/2\ < OOJ} , P = 00,

where 7 > —1. Let T“(z), a > —1, n £ No, denote the classical Laguerre
polynomials (see Szeg6 [15, p. 100]) and set

o n+o) Mn+a+1
K(x) =0 4 A X La(0) = Anp no) F(n+ 1)r(a+ 1)

1 The work of this author was supported in part by the National Science Foundation
under grant DMS-9103177.

0236-—5294/95/$ 4.00 © 1995 Akadémiai Kiadé, Budapest



136 G. GASPER and W TREBELS

Associate to / its formal Laguerre series

(e]e]

A*)~ (F(a+ 1)) - v . 1° (k)HLkx),
=0

where the Fourier-Laguerre coefficients of / are defined by
(1 fain - f f(X)R"M(x)xae xdx

(if the integrals exist). A sequence m —{m”}fceN. is called a (bounded)
multiplier from LvR%)' into L\ﬁko)i notation m £ Map;'gyo, if

<c
k=0

)

Fuy)

for all polynomials / ; the smallest constant C for which this holds is called

the multiplier norm }|m||MR(7:| I For the sake of simplicity we write Mpfy :=
Maf-y,'y if 7 = Sand, if additionally p = g, Ma-y = 'y,

We are mainly interested in the question: when is Mpfa continuously
embedded in MR'&:

The Plancherel theory immediately yields

> = M2&a= M>d, a,B > -1.

A combination of sufficient multiplier conditions with necessary ones in-
dicates which results are to be expected. To this end, define the fractional
difference operator As of order ¢ by

00
Abmk = Y I Aj S~Imk+]

i=0

(whenever the series converges), the classes wbvdis, 1S 4 = °°? > 0, of
weak bounded variation (see [5]) of bounded sequences which have finite
norm s, where

s

IHL« := sup [TTfd + sup \(k + 1)8A 6mk\ q < 0o,
K

nleno0
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IHIo0A = sup|mfd+ sup \(k + )6A5mJ, q- oc.

N 6N O

Observing the duality (see [14])

(2) AIE*>7_\fPeIx;cup'—7Pr/p ’ —<7< p(a + l) _l’ 1< P < oc,

where \fp-\- Ijp" —1, we may restrict ourselves to the case 1< p < 2. The
Corollary 1.2 b) in [14] gives the embedding

(3) M%.QC™ wbvplS s = (2a+ 2/3)(l/p - 1/2), a > -1/3,
when (2a + 2)(I/p —1/2) > 1/2. Theorem 5 in [5] gives the first embedding
in
wbVpi'gCwbib:C" Mp.R,
whereas the last one follows from Corollaries 1.2 and 4.5 in [14] provided s >

> max{(2/3 + 2)(1fp—1/2), 1), B > —1. Hence, choosing 7 = a in (2), we
obtain

P roposition 1.1. Let 1< p < 00 and a be such that (2a + 2/3)[I/p —
—1/2] > 1. Then
M*.a —1 <N <a—2/3.

In the same way we can derive a result for M p,?-multipliers. The neces-
sary condition in [6, Corollary 1.3] can easily be extended in the sense of [6,
Corollary 2.5 b)] to

( 2n \ 1/wa
sup|(fc + T fmk\ +sup (N \(k+ I f+sAsmA?/K] N C'HtUg™
k n \k=n J

where a > - 1/3, /g = 1/lp- al(ot+ 1), 1<p<qg<2 (a+ 11A/q-
—1/2) > 1/4, and s = (2a + 2/3)(I/<? - 1/2) > 0. Using this and the suf-
ficient condition for MS.~-multipliers given in [4, Corollary 1.2], which is

proved only for B B 0, we obtain
C, Mfij,
0ONMNRB<a- 2/3, (a+2/3)(I/g-1/2) >1, 1< <2.

In this context let us mention that the same technique yields for 1 <
<p,q<|

(4)
M*.aC* M«Q, (2a+ 2/3)(I/p - 1/2) > max{(2/5 + 2)(I/g - 1/2), 1}.
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138 G GASPER and W TREBELS

This embedding is in so far interesting as it allows to go from p, 1< p < 2,
toqgp, 1< qg< 2, connected with a loss in the size of B if g < p or a gain
inBifl<p<g<2;eg.

Mj~rcC”N MBb, 1087~ 2 , or M2/IC*M &%, 3/27~97"2

Improvements of (4) can be expected by better necessary conditions
and/or better sufficient conditions; but this technique cannot give something
like

M1./iC* @@+ )(I1/p- 1/2) > (B + (/<7 —1/2), 1<M < 2,

which is suggested by (4) when choosing “large” a with p near 2 since then
the number 4(1/p —1/2)/3, which describes the smoothness gap between
the necessary conditions and the sufficient conditions in [14, Corollary 1.2],
is “negligible”.

Concerning the general problem “When does AC*

hold?”’, we mention results in Stempak and Trebels [14, Corollary 4.3]: For
1< p < oc there holds

-1 - Bprz2 <s<p- 1+Bp/2, -1 <B<DO0,
L pp/2+S - " o8 1 <e<p- 1, 0A R,

which for ¢ = 0 contains half of Kanjin’s [9] result and for ¢ = p/4 —1/2
Thangavelu’s [16]. In particular, there holds for -1 < < a. 1< p < 00,

(5) MR-R - MR-, Rp/2+8p(l/p-1/2) - MI-,cp/2+Rp(I/p-1/2) °
@3+ 2)|llp —1/2) < 1

These results are based on Kanjin’s [9] transplantation theorem and its
weighted version in [14]. The latter gives further insight into our problem in
so far as it implies that the restriction 8 < a —2/3 in Proposition 1.1 is not
sharp.

To this end we first note that the following extension of Corollary 4.4 in
[14] holds

wbv2,.C > Mp.ap/2+ri(p/l2_ IV 0 ~ 1, 1<P=2, s>l/p.

(For the proof observe that for a —O0 the parameter 7 = r/(p/2—1), 0 in p »
~ 1, is admissible in [14, Theorem 1.1] and then follow the argumentation of
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[14. Corollary 4.4].) This combined with (3) yields for s = (2a + 2/3)(1/p —
- 12)> 1Ip

Ma;aC+ M*.ap/2+p/l2_ T, 1<Pn 2, «> @+ 1)/(6- 3p).
Thus, by interpolation with change of measure,
M a-ap/2+6° pl/2- 1 ™Ne Na- ap/2, a > (p+ 1)/(6 —3p).

Since (5) gives
MR- ap/2+8p(1/p-1/2) — VR:R
we arrive at

Prososition 1.2. Let 1<pii 2anda > (p+ 1)/(6 - 3p). Then

Mpa(rm g, (23+2)(l/p- 1/2) <1 -1<3<a.

The first restriction on R is equivalent to B < (2p - 2)/(2 —p). This
combined with the restriction on a gives a —8 > (7 —5p)/(6 —3p), the latter
being decreasing in p and taking the value 2/3 at p = 1. Hence Proposition
1.2 is an improvement of the previous one for all 1 < p < 2 provided (p -f
+ 1)/(6 - 3p) < a”™ (2p—2)1(2 —p). For big 4 's, Proposition 1.1 is certainly
better. If in the transplantation theorem in [14] higher exponents could be
allowed in the power weight — which is possible in the Jacobi expansion
case as shown by Muckenhoupt [12] — the technique just used would give
the embedding when —1< R <a, 1<p < 2,and a > (p-f 1)/(6 —3p).

Summarizing, it is reasonable to

Conjecture. MIfaC_* | <R<a 1! piiQit

Apart from the above fragmentary results, so far we can only prove the
conjecture in the extreme case when q —oc and /370; the latter restriction
arises from the fact that we have to make use of the twisted Laguerre convo-
lution (see [7]) which is proved till now only for Laguerre polynomials L%(x)
with a ~ 0. Our main result is

Theorem 1.3. Ifl Sp S oo, then
Mp'.~C* 0NR < a.

Remarks. 1) One could speculate that an interpolation argument ap-
plied to

MB\R > M%a=M*aCi MR.R = MRMR, R <a,
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could give the open case M%;aC> Mf.R, 1< p < 2. In this respect we men-
tion a result of Zafran [17, p. 1412] for the Fourier transform pointed out to

us by A. Seeger:

Denote by MP(R) the set of bounded Fourier midtipliers on Lp(R) and
by M A(R) the set of Fourier transforms of bounded measures on R. Then
MP(R), 1< p < 2, is not an interpolation space with respect to the pair

(MAR), L°°(R)).

Thus de Leeuw’s result mentioned at the beginning cannot be proved by
interpolation.

2) It is perhaps amazing to note that the wbv-classes do not play only an
auxiliary role in dealing with the above formulated general problem. In the
framework of one-dimensional Fourier transforms/series this was shown by
Muckenhoupt, Wheeden, and Wo-Sang Young [13]. That this phenomenon
also occurs in the framework of Laguerre expansions can be seen from the
following two theorems.

Theorem 1.4. Ifa> - 1 a d)O, then
wbv2AC+ Ma.a+l.

In the case —1 < a < 0 the multiplier operator is defined only on the subspace
{fe i®%(atl,ml =C>N

Theorem 1.5. Ifa > -1, then
MI,a+iC-, wbvzp.
A combination of these two results leads to
(6) = MRB-B+H = whv2A, a,B>-1,
and a combination with [14, (19)] gives

M~Ay, a0, (2a+2)/(a+1)<p”2.

2. Proof of Theorem 1.3

Theorem 1.3 is an immediate consequence of the combination of the fol-
lowing two theorems.
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Theorem 2.1. Letf £ Lp® witha > —lwhen 1~p<ooanda ™0
when p —o0. Then there exists a function g £ LRMy —1 < < a, with

g(x) ~ (FU3 + 1))-1]1T fa(b)LR(x), \g\r ' CLI/Hr(L(
k=0 3

Proof. First let 1~ p < oo and, without loss of generality, let / be
a polynomial (these are dense in 7 /7). We recall the projection formula

(3.31) in Askey and Fitch [2]

{elle]

1
= T{a_R)J (y-x)a-B-\-yLa{y)dy, Hd<B<a.

Then the following computgmpns are justified.

P \ /P
MILp =C Y"fQ(k)LR(x)e%(’2 xRdx 1
,kzzo
roo roo 00 \ !/p
(/ [ (y-xr-B-1e-y'"£f°W k tRexpl2dx I <
Jo J* k=0
P \ 1/P
P [ FC A h (k)Lk(Xt)Xa-B+B/pe~x(t-\/2) ehrj dt

icl (-1~ u
after a substitution and application of the integral Minkowski inequality.
Additional substitutions lead to

roo
tp <C sa-R-\s+ if/?-<ilp
*(« Jo

\ &/p
g " fARILK(y)e=yizy(o-BMge~ys/ 2s+1) 5 | o 4

roo (e P \ilp
~CJ + i)~(«+i)pi J Y.Uk)li(y)e-'12 ras/| ds,

K

where we used the inequality Nip'e—y«2(s+l) ~ C((s + 1)/s) “/ p.
Since —1 < B < a it is easily seen that the outer integration only gives a
bounded contribution.
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If/ 6 then |(fc+ 1) w2 fa{k)I ~ C||/||b. by [10, Lemma 1] and,

therefore, the Abel-Poisson means of an arbitrary f E LIE{a) can rePre~
sented by

Prf(x)= (La+1))-18,rkblk)Wlx), Onr<i1, x"O,

K
and, by the convolution theorem in Gérlich and Markett [7, p. 169],

<cC 0~Mr<1, ano.

Jw(a) @)

A slight modification of the argument in the case 1 £ p < oo shows that

llor <
n C\PTH\\ WA oo
" Ry SN L
By the weak* compactness there exists a function g E with gp(k) =

= }Q(k) and \\g\\[i\i(m) N liminffc™oo ||</rd |L(v\lio) for a suitable sequence —»
—>1 ; hence also the assertion in the case p —oo.

T heorem 2.2. Fora ”~ 0 there holds

i) Mlifa= ME£™ = \p~y, 1<pi oo,

i) MizL = J10®@=im = {mfao: | P(m)|,, =0(1), r- 1"1

tc/iere Pr(m)(x) - (F(a+ 1)) 1 rkmkL9%(x).

P roof. The first equalities in i) and ii) are the standard duality state-
ments. Let us briefly indicate the second equalities (which are also more or
less standard).

If m = {Tk}keNo are the Fourier-Laguerre coefficients of an LRy
function, 1< p ™ o0, or in the case p = 1of a bounded measure with respect
to the weight e~x/2xa, then Young’s inequality in Gorlich and Markett [7] (or
a slight extension of it to measures in the case p = 1) shows that m E Ma-£°m

Conversely, associate formally to a sequence m = {m”~} an operator Tm
by

[e]e]
@) Tmf(x) ~ (F'(a + 1)) -1J] mkfa{k)LUXx).
k=0
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Then, essentially in the notation of Gorlich and Markett [7],

Tm(Prf)(x) = Pr(m)*f(x)= J/mOT?(Pr(m)(y))f(y)e-yy"ﬂdy,
0

where T is the Laguerre translation operator. If ||/|| p< = 1then
w(a)

WTm(Prf)\\Lad S IHIMP"eo||M||L,’ ~C\m\\ p.ico ,
w(a) Mc-,a Lw(a)
and hence, by the converse of Holder’s inequality,

P [ Tx(pr(m)(y))e~yl2yal/pf(y)e~y/z2yal/p'dy
\\f\\Lf’P@=i "o

= [r;(A(m))|lt, E£C[Im]|
w(a) Ma,a
for x 70, 0 r < 1 In particular, for i = Owe obtain

N
\Pr(m)\\Lp c\im\ IWPCD>OAr< 1.
iVi;’a

w(a)

Now weak* compactness gives the desired converse embedding.

3. Proofof Theorems 1.4 and 1.5

The proof relies heavily on the Parseval formula

1 00 roo

8 H:T LEA‘Ih(*)r= |/
(®) r( +I*|a ) n
and its extension

U T A Bx\Axfa(k)\2' | [ D A
A

which is a consequence of the formula

(10) NAa(*0 = C«,al«+a(*)

(see e.g. the proof of Lemma 2.1 in [6]). For the proof of Theorem 1.4 we
further need the following discrete analog of the p = 2 case of a weighted
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Hardy inequality in Muckenhoupt [11] whose proof can at once be read off
from [11] by replacing the integrals there by sums and using the fact that

alll a +b lla+b”-b""7

when a, b~ 0; see also the extensions in [1, Section 4].

Lemma 3.1. Let e non-negative sequences (if vk =
= 0 we set —QJ. Then
00 K 00 N 00
»> £ |£ djilKACsuprE WKE T )EM V
k=0 j=0 N k=N k=0 j=0
00 00 2 N 00 00
b) £ I£ ajl KM"Csup™E WKKE»L )EK I4.
k=0 j=k k=0 k=N j—o

Proof of Theorem 1.4. Using (9) and the operator Tm defined in (7),
we obtain

A (mkfa(k))

Since
(11) A (mkfa(k)) - mkAfQk) + fa(k + )Amt

we first observe that

00 00 .
NArVd2A/«(M!I'SIM[Bo£2U1MA (M 24C ||m t||/]|2)<iti).
k=0 k=0

To dominate the term containing Araj we deduce from (8) that for a ™ 0
the Fourier-Laguerre coefficients tend to zero as Kk — 0o. Hence

o 00
£ nl ‘l/(((‘+ l)ATM42:£ nlr llAqu2| £ A~ LU - 1.
k=0 (SO j=k+1

In order to apply Lemma 3.1 b), we choose Wk — JIE+1|4 T*2 and \K —
= T£+1, and observe that when M £ N, 2M 1 ii N < 2m, we have that

(£"*§T)aC(V+|r£ £ Er)ayR s

j=0 k=21
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M
SC(N+ )_ar (2))Q <1 * cunam
j=o

uniformly in N ifa > 0. Then Lemma 3.1 b) gives

ST G L e

j=o

by (9). Thus there remains to consider the case —1 < a < 0. For the same
choice of Wk and vk one easily obtains

co N

(X AX **1) =¢ci™ a1

k=N k—o0
Now assume that /(0) = 0. Then we have

AN oA+l la(fe+l)Am, 2=~ A “+1]Am,]2 A A Ja(j) <
k=0 k=0 j=0

= ClHm i,

where the last estimate follows by Lemma 3.1 a); thus Theorem 1.4 is estab-
lished.

The proof of Theorem 1.5 is essentially contained in [6]. As in [6], con-
sider a monotone decreasing C°°-function d(x) with

N ifoO<x<?2
dx) =\ n

W itxra 0 PRI = ek

Then the dr(k) are the Fourier-Laguerre coefficients of an T/ (a+lyfunction

@9 with norm [Ip(E2, € (z1)ar2 and
w(a+

2+1 2
Y, = X At+1 Ib(Tkdr(k)) 2"
k=2 k-2

2.+2

NT A g+ N\A(TKOr(K)\2 A"CW\T TDM1L2 N

w(a+1)
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S Ll | T |i| 2
a,a'l-l V\Kal'l-l) a; a-f-1

This immediately leads to

1/2

\m\ =C\mw2 |

uniformly in r, since by [6, (10)] there holds [m| ~ C|[wV2 E thus
Theorem 1.5 is established. '

Remark. 3) (Added on August 10, 1994 ) The characterization (6) can
easily be extended to

1] M7ra+, =wova, a>-1 [ [ il

In the case a < | —1 the multiplier operator is defined only on the subspace
{/ €LI@H) :fa(k) = 0,0 k< (I- 1- a)/2}.

The necessity part carries over immediately (see also [6]). The sufficiency
part will be proved by induction. Thus suppose that (12) is true for | =
—1,..., nand a’s as indicated. Then, as in the case n = 1, by (9)

Tmf(x)e~x12 2xa+n+ldx ~ Y ,Ak+n+l AnA(mkfa(k)) <
K=0

NCj2A a+n+1 IAn{mhAfa(k))
k=0

00
+C Y , Aksns1 t\n{fa(k+1)AmKk) I+ 11

k=0
By the assumption and (10)

0o

s ciHiL,.,, I > r "+ g"/,+.(*)) <
k=0
roo
ICIHIifc, /
*Jo
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on account of the embedding properties of the tnhu-spaces [5]. Analogously
Il can be estimated by

anf ~fak+ 1)\ 2

00
nicigessnAamty 1A nE g ey 17077

By the Leibniz formula for differences there holds

An-J 1 <

£CEI + 1) ksl

3=0

=C  (j+«k+ )7-"-11A0fa(k + 1)].
3=0

Hence we have to dominate forj = 0, ..., n

I1,:= Y , Ak=n~1+2] \ArM k + 1)
k=0

Ifa > nthen g —a —2j+n+ 1< 1forallj =0,...,n,Ala(c+ 1) =
AJ+1/<(*)>and we can apply [8, Theorem 346] repeatedly to obtain

1j ~CY,Ar n~1+2j\(k+ 1)AJ+1/ 0@ + 1)| 2 «
/c=0
00
~ E ~ r +2+1|AN/ QA D |2£
k=0
AemenT 4fne|An+Va(H 1) [27°C | |/(z)e-*/2] 2 gx
fco J0

Since I {(fc+ 1)AT*}|~ " C||T||wwbn+i, this gives the assertion for the
weight g'"+1 in the case a > n.

Ifa<n ado,..., n then some G > 1. For the application of [8, The-
orem 346] one needs G ¢ 1; this is guaranteed by the hypothesisa ¢ 0,..., n

(in the case of an additional weight xnJrl). For the j for which G > 1 we
have to use the representation

K

Arfa(k + 1) = - E A'+1/*(*)" if 0)= o,
t=0
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i.e., the first (j + 1) Fourier Laguerre coefficients have to vanish to ensure
this representation. But 0 * jg jo, where jo is choosen in such a way that
Jo > 1and QO+i < 1, hence jO= [(w- a)/2] (with respect to the additional
weight an+1); here we used the standard notation for [a], a £ R, to be the
greatest integer ™ a. Hence the condition that the first [(n —o0)/2] + 1
Fourier- Laguerre coefficients have to vanish is needed if the additional weight
is £n+1. A repeated application of [8, Theorem 346] with appropriate ¢ > 1
or ¢ < 1 now gives the assertion.
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ON COMPLETENESS
OF NONDETERMINISTIC AUTOMATA

F. GECSEG, member of the Academy and B. IMREH (Szeged)

To Professor K. Tandori on his 10th birthday

1. Introduction

Representations of automata by products have been intensively studied
since the beginning of the sixties. Two types of representations have been in
the foreground of research, namely, homomorphic and isomorphic represen-
tations. A central problem in the area of products is to characterize those
systems of automata which are complete in the sense that every automa-
ton is a homomorphic or isomorphic image of a subautomaton of a product
of automata from them. Such systems are called homomorphically, respec-
tively, isomorphically complete. The first necessary and sufficient conditions
for homomorphic completeness were given in [7]. In [1], it is shown that from
the point of view of homomorphic representation the product is equivalent
to one of its special forms in which the feed-back length is at most two. Iso-
morphic completeness was first studied in [3]. Isomorphic representations
of special classes of automata are investigated in [5] and [6]. The mono-
graph [2] gives a systematic summary of results concerning a special product
hierarchy. All studies mentioned above concern deterministic automata. To-
gether with the spread of parallel computation the practical importance of
nondeterministic automata is increasing. This is our main motivation to in-
troduce the concept of the product of nondeterministic automata and study
homomorphic and isomorphic representations by such products.

2. Notions and notations

First we introduce some basic concepts on the line of relational systems
(cf. [4]).

By a nondeterministic automaton we mean a couple 21 = (X, A) where
X, A are nonempty finite sets and for every x 6 X, x is realized as a binary*

* Research supported by the Hungarian National Foundation for Scientific Research,
Grants 2035 and 2575.

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



152 F. GECSEG and B. IMREH

relation x2L on A. The elements of A are also called states. For any a 6
E r EI, we denote by ax2 the set {a : & E N&ax,20}. If ax” is a
one-element, set {a}, then we simply write axa = & Let 2L = {X,A) and
23 = (X,B) be nondeterministic automata. *8is called a subautomaton of 21
if B Q A and x® is the restriction of x2L.to B for all x £ X . A mapping p of
A into B is called a homomorphism of 2L into 23 if p(ax”) = /x(a)x® holds
for all a £ A and x E X. If, in addition, g is an onto mapping, then 23 is a
homomorphic image of 2L In particular, if 23 is a homomorphic image of 21
under a homomorphism p and p is one-to-one, then we call p an isomorphism
and we also say that 21 and 23 are isomorphic.

Now let us consider the nondeterministic automata 2L = (X,A), 2j =
= (XnAj),j=1,...,n, and let ®be a family of mappings below

ip Al X ... X Anx X =X\ x ... x Xn, j=1,...ra.

It is said that 21 is the general product of 2ly with respect to @ if the follow-
ing conditions are satisfied:

UM = UUA"

2 for any (ab ...,a,,), (bb...,bn) Ei, xE X, {a\,..., an)xa(6], ...
bn) if and only if ajX-3bj holds with Xj = <fj(ai,..., an,x) for all j G

e {l,

For the general product above we use the notation

2t=n a g ¢)
j=i

Let K be a system of nondeterministic automata. /Cis isomorphically
complete with respect to the general product if for any nondeterministic
automaton 21, there exist automata 2ly 6 /C,j = 1,..., n, such that 2t is iso-
morphic to a subautomaton of a general product of 2ty,j = 1,...,n. Itis
said that K is homomorphically complete with respect to the general prod-
uct if for any nondeterministic automaton 21, there are 2y G/C,j = 1,..., n,
such that 2Lis a homomorphic image of a subautomaton of a general product
of 2j,j = 1,...,n.

The proofs of the following results can be given in a straightforward way.

Statement 1. 7/21 = W=1" Ne ¢) and = T1]Ep %Ne>$?)> *=
= 1,.... @ then 20 is isomorphic to a general product 2L, X ... X2li, X ... X
X 2lni x ... x 21,,(J1, ®).

STATEMENT 2. 7/2lj is a homomorphic (isomorphic) image of a subau-
tomaton of 23j, j = 1,...,ra, then every general product M~ x D) is
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a homomorphic (isomorphic) image of a subautomaton of a general product
nr=i *0-

STATEMENT 3. If (t is a homomorphic (isomorphic) image of a subau-
tomaton of 23 and 23 is a homomorphic (isomorphic) image of a subautoma-
ton of 21, then € is a homomorphic (isomorphic) image of a subautomaton
of 41

3. Isomorphic completeness

We need a special two-state nondeterministic automaton. To each binary
relation on {0,1} let us assign a symbol and let R denote the set of these
symbols. Define the nondeterministic automaton S = (R. {0,1}) such that
for any p e R, p® is the corresponding binary relation.

Now we are ready to characterize isomorphically complete systems. The
next theorem gives necessary and sufficient conditions for a system of non-
deterministic automata to be isomorphically complete with respect to the
general product.

THEOREM 1. A system K of nondeterministic automata is isomorphi-
cally complete with respect to the general product if and only if 1C contains
(not necessarily distinct) nondeterministic automata 2lr = (XT,Ar), 2Is =
= (XSAYS) for which there, exist ar ¢ br GAT) xr,yr,zr GXTand as ¢ bs G
G As, xs,ys,zs GXs such that

{ar,br} Carxr , {ar,br} = bryr , )ar,br}o arzr “ {hr}
{as,bs} A asxfs, {as,bs} Qbsyf% {&s,bs} Méaszfs- {as}.

Proof. Let us assume that ICis isomorphically complete with respect
to the general product. Then there exist 2l G/C,j = 1,..., n, such that D
is isomorphic to a subautomaton of a general product 21 = L, =1 2lj(A, ®).
Let p denote a suitable isomorphism and let

/i(0) = (a0i,...,6on) and p(l)= (ay,...,aln).
Denote by M the set {m : 11/ m ~ n&aom ¢ flim}. Obviously, M ¢ 0.

By the definition of X), there is an x GR with O™® = {0,1}. Since p is an
isomorphism,

(ROlLee)BONYE A { (Ugi, ..., UO)2("IL o' BIN)} »

But then {fom,aim} £ Romx*m holds with xm - <Mmn(eQi,..., aOn,x) for all
m G M. In a similar way we obtain that for any m G M, there exists a ym G
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£ Xm with {«om)«im} A aiTYTT- By the definition of £5 there isa 2 £ R
with 02® = 1. Since /i is an isomorphism,

{MO)MI)} nMO)** = Mi)-

Thus aim G aQre*m with zm = (pm(a<n, ¢+, «On,z) for all m £ M. Then
there exists at least one index r £ M such that {a0Or,air} MaoTz~r = {air}.
Similarly, we obtain that there is an index s £ M with {aos,«is} Maoszfs =
= {a0s}. But then the conditions of Theorem 1 are satisfied by 2lr and 2ls,
and so, the necessity is proved.

In order to prove the sufficiency let 2Ir = (Xr, Ar), 2Is = (Xa,/18) £ K
satisfy the conditions with ar,br,xr,yr,zr and as, bs, xs, ys, zs, respectively.
Let X = {uo,..., M3} and define the general product (2Ir x 2Ir X215 X 2Is x
X2 (1',®) as follows. For any (ai,...,a5) £ Ar x Ar X As X As x Ar, let

(xT if g = aT,
VM®1, s++, ®5, ttl) — 1, *me, ®5, MB) {Lyr otherwise (t 1,7,
] fzr ifa, = ar, .
Vi(al,... ,a5,M2) = < . (i =1,2),
I yT otherwise
xs ifaj = as, )
(=34,

ys otherwise

(zs ifaj = as,

4>j(ai,...,ab,ui) (i —3.,4),

\ .
lys otherwise
(L, oo, ®, MD) = %i "B(®L, *ee,®5, M) —Xr (t 1,2, 3),

and define @ arbitrarily in all other cases.
Now let us consider the subautomaton 21 of the above defined general
product which is determined by

A —{(flIr,6r,68,65,07),(6r,ar, 6s,0s,6r) }.

It is easy to prove that for any a £ A and V C A, there exists an x £ X with
V —az*3.

For the sake of simplicity, let us denote the elements of A by 0 and
1. Now let £ = (X, {ci,... ,cm}) be an arbitrary nondeterministic automa-
ton. We show that £ is isomorphic to a subautomaton of a general product
212~ 1(X, ®). For this reason we define a matrix. Consider all m-dimensional
column vectors with components 0,1. Leave out that one for which each com-
ponent is 1 and order the rest in lexicographically increasing order. Let Q
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denote the matrix formed by these column vectors. Then Q is a matrix of
type m x (2m- 1) over {0,1}. Since each m-dimensional unit vector occurs
in Q as a column vector, the row vectors of Q are pairwise different. More-

over, let us observe that for any nonempty subset V of the set {I,...,m},
there exists an index Kk E {I,...,2m—1} such that for all r E {I,...,m},
r EV if and only if gTk = 0. Let us define the one-to-one mapping /r of
{ci,...,cm} onto the set of the row vectors of Q by /r(cr) = (qtr, ...,

i=1,..., m Let B denote the set {/r(cr) :r= 1,..., m}. Then B C A2™1,
Now define the general product 212t 1(A',®) as follows. Let (ai,...,

02m—+) EA2™M1, x EX, j E{Il,...,2m—1} be arbitrary elements.
If(eti,...,a2m j) ™~ B then let ~ («i,..., 02T7-b x) be an arbitrarily fixed
element of X.
If (6b...,ii2» 2) E B then there is an i E {I,...,m) with /r(cr) =

= (aj,... ,a2n_i). Let cpkE = {crl, ... ,c,s}. Then 0 ~ s ~ m. For each
i =1,...,2m—1, let Vj = {g”j,..., qgisj}. From our assumption on 21, it
follows that there exists an Xj E X with Vj = qgijxJ. Let

TN »4i2Th—11%) —

Since the vectors //(cr), i = 1,..., m, are pairwise different, the mappings
<tji, j = 1,..., 210—1, are well-defined.

Let us consider the system IB = (X, B) where t® is the restriction of
X to B for all x EX. Then 23 is a subautomaton of 2i2m_1(A, ®).
We prove that U is an isomorphism of (Eonto 23. Let r,r E{1,..., m}and x E
E X be arbitrary. Let us suppose that cpkcer. Then, by the definition of the
mappings ifij, j = 1,..., 2m—1, qijxJqrj is valid for all j E {1,.... 2m- 1}.
By the definition of the general product, this yields [1(c{)x" 2
and so, /r(crpk®/mu(cr).

Conversely, let us assume that ~(cj)i®/x(cr) is valid for some i,r E
£ {1,..., m}and x E X . Then qgijX~grj holds with Xj = <pj(qn,..., g%m\i 5)
for all j E {I,...,2m—1}. Let W = CiXC. If W —O0 then, by the def-
inition of ifj, we get qijxj = 0 contradicting qijxJqT. Now let us sup-
pose that W —{cjj,..., cis} where 1~ s U m. By the definition of the
mappings <fj, j = 1,..., 20- 1, qtIxfqltd is valid for all t E {1,...,s}, j E
E{1,..., 2m—1}. On the other hand, by the observation on Q, there exists

akE{l,..., 2m—1} such that gk = 0 if | E {«i,..., is} and gik = 1 other-
wise. Thus, by the definition of ipk, gikxfgik if and only if / E {ij,..., %).
But then, by gticX"grici we have r E {ii,...,ts}. Therefore, cpkEcr, and so,

fi is an isomorphism of € onto 23. This, by Statements 1, 2 and 3, ends the
proof of Theorem 1.
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4. Homomorphic completeness

In order to give a sufficient condition for a system of nondeterministic
automata to be homomorphically complete, we need some preparation.

Lemma 1. Let 21 = (X, A) be a nondeterministic automaton which, has
three (not necessarily different) states «o, «i, a\ and two input words p =
= x2...xk and q = y2...yR (x2,...,xK,y2,...,yk2 6 X ) such that the
following conditions are fulfilled:

(1) @ o

(2) for each subset V of {ax,a'j}, there is an x € X satisfying cox'3 = V,

(3) (iixf+1 = ai+l,i = 1 - 2, = a0, a'j/MHl = a'+l, j =
=1,...,k2-2 and adk_xyf2 - a0, /or some a2, se* a2, eee>af2-i e A-

Then ao, aj,..., ,aX,..., dk x and p,q can be given in such a way
that they satisfy conditions (1)-(3), the elements of the sequences uq, «1,...,
aki_i and «o0-a\,..., a2 j are pairwise distinct and one of the following three
conditions holds:

(@) kukz > 1 and {ab ...,aki~i} M{«I,—,

(b) k1> 1 and k2 = 1,

(c) ki,kz2 > 1land/or someiandj (1 <i< A;1~j <Kk2), {ax,...,
at x}N{ai,...,a' j}=0,a =a',a+l = a'+l,...,afd i = at , andqg=
= 220 oyj%i+\ mmmxkl.

Proof. At least ax / ao or af ¢ ao holds. Without loss of general-
ity we may assume that ai ¢ ao- Then A > 1. If aj = a/ for some j and
/[ with 1~ j < 1™ &, where a%, = a0, then let us take the word p' =
= X2... XjXi+1... xkl for p and the states ao,a\,..., aj, a/+i,..,,akl-1 for
a0, ax,..., afcj-i. Ifao, aj,..., aj,a/+x,... ,a”™_x has two elements which are
equal, then repeat the above process for this sequence and p'. Finally we ar-
rive at a sequence with pairwise different members. Thus we may suppose
that the elements of {ao, al7..., a”,_x} are pairwise distinct. If a\ = ao then
we may suppose that g —e where e denotes the empty word over X . So we
have case (b).

Next let a\ ¢ ao. Apply the above process to ao,af{,..., al2 x and
g The members of the resulting sequence are different. Therefore, we
may assume that the elements of a0,a\, ..., g~ _x are pairwise distinct. If
{ax,..., akl-i} {a’j,...,a'k 1} = 0, then we have case (a). In the opposite
case there are integers i and j with 1< i< k\iand 1#ij < kzor 17 i< k\
and 1< j < k2 such that ar= a' and {a\,... ,ar x) N{a'x,... ,a* x) = ~
i > 1 then taking and g = yz2...yjXi+i.. .xk for
a\,..., @k jand qwe have case (c). Ifi = 1then let us take a'j,..., ak® xand
p' —Y «mmAR- 1 f°r aii eee1ak\—= and p. Moreover, let us take a'-,..., af2 1
and yj+j ... yki for a\,..., dk _xand g. Then we again have case (c), which
ends the proof of Lemma 1.
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Lemma 2. Let 2L = (X, A) be a nondeterministic automaton satisfying
the conditions of Lemma 1. Then there exists a general power of 21 which
has a subautomaton 23 = (Y, B) such that the following conditions are satis-
fied:

(i) B = {&o, bi, ..., bk-r} U{b[,..., Bk_r} for an integer k > 1,

(i) 6i o b\,

(iii) for each subset VV of {b\,b[}, there exists some y £ Y such that bys —
=V,

(iv) Byb - bi+i, i = B ryb = b0, Bys = Hi+l,i=1
2 and Bk “y® = bo under a fixedy EY.

Proof. Take states ao,ai,..., afcj-i,a\,...,a’2 1 and words p =
= Xo mmxXki-\, A= ¥ eee M- 1 satisfying the conclusions of Lemma 1. First
form the single-factor power 2li = ({x},/1) - 21({x},®*) given in the fol-
lowing way: ipi(ai,x) = X,-+i, i = - 1, y>l(ao,x) = x\, where x\
is an input signal of 2L with aoxf = a\. (By (2) of Lemma 1, there is
such an xj.) Finally, in all other cases y¥* is given arbitrarily. It is ob-

vious that (ao, 0i,..., afcj-i} forms a fci-state cycle of 2li. Let us de-
note by 2lj = (x, {Bo><+++, —}) this cyclic subautomaton. Similarly, tak-
ing ao,a\,..., a. j we can define a single-factor power = ({x},n) =

= 21({x},®/) which has a A~™-state cyclic subautomaton 2F, = ({.r}, {a0, a\,

with a[x+2 = a'+l {modt2y *= 0,— ,f2- 1, where ao = a0. (In
case (b) 212 is a single-state automaton.) Then the direct product of 2tj and
212 has a subautomaton which is isomorphic to the /r-state cyclic automaton
€= ({x},CQ)withC ={0,1,....,.k —1}and rxE=r+ 1(mod K) (0 ™ r < K),
where K is the least common multiple of k\ and /r2.

Finally, take the product 23 = (¥, B) = (i x 2)(¥1P) with M= X U{?/}
where y is a new symbol. Let x\,y\ E A" be inputs with aox™ = a\ and
alyi = a\. By (2) of Lemma 1, there exist such xi and y\. To define ® we
distinguish three cases depending on 21

First let us assume that 21 satisfies (a) of Lemma 1. Then for all (r,a) E
GC x A let

(1) ((r,a),x) =x, foral x £,

' x\ ifa—ao, 0 < rand r= 0 (modki),
xs+i ifa—asand 11 s ™ k\—1,

(2) ®((r,a),y) . _
W\ ifa—ao, 0 < rand r = 0 (mod /2),

.ys4l ifa=dsand 1~ s u f—1,

(3) y2((r, a),x) = x, forall x £ X,

(4) ipe is given arbitrarily in all other cases.
Let br  (7,0r (modtij)) ~ 0,1,...,k —1 and br —(r,ar N —
= 1,..., K—1, where dQ= ao-
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Suppose that (b) of Lemma 1 holds for 2. Then k = k\ > 1. Now for all
(r,a) £ C X A let

(1)  ((r,a),k) = x forall x £,

f£s+i ifa—asand 17" s < K,
(2) w{(r.a)y) = " ifa= a0,
(3) Br((r, a),s1) = x for all x £ X,

(4) <2is given arbitrarily in all other cases.
Let br = (r,ar), r=0,1,..., i—land = (r,ao0)?r=1,...,t—1
Finally let us assume that 21 satisfies (c) of Lemma 1 with 1 < r ™ k\
and 15;j < &. In this case for all (r,a) £ C X A, let
(1) tp\((r,a),x) = x, forall x £ Y,
"x\ ifa=ao, 0 <randr=0 (mod fcj),
rs+i ifa—asand 1 s 5 k\—1,
ifa=a0,0<rand r=0 (modé&rn),
.ys+x ifa= asand 11 s <j,
(3) 2((r,a),x) =x, forall x £ X,
(4) y2is given arbitrarily in all other cases.
Let br = (r,ar (modfcl)), r = 0,1,..., A—1 and Br = (r,a'T (modfc2)), r =
= 1,000 *_ 1-
For all three cases above, let us denote by 23 the subautomaton of 18
formed by {60,&i,... , } U Obviously, 23 satisfies the con-

ditions of Lemma 2. Finally, by Statements 1, 2 and 3, 23 is isomorphic to a
subautomaton of a power of 21.

Lemma 3. Every two-state nondeterministic automaton is a homomor-
phic image of a subautomaton of a general power of 23, where 23 is the au-
tomaton given in Lemma 2.

(2) ip2((r,a),y)

Proof. Let 3= (X, {0,1}) be an arbitrary nondeterministic two-state
automaton. Take the k-th general power £ = (X, C) = (23 X ... X23)(X, ®)
of 18 given in the following way. Let C be the subset of C consisting of all
elements ¢ = (co,..-,ck-i) for which there exists an i (0 ™ *5i k —1) such

that g is equal to 6; or b\ if j —i = | (modfc). Observe that c; = bo- Let
p :C -> {0, 1} be the mapping given as follows: p(co,..., ck-i) —1ifg =
= 6j forj = i+ 1 (mod K), where i is the integer given for (co,..., ck~i) in

the definition of C, and p(co,..., Cfc_i) = 0in all other cases. (Observe, that
p(cO, ..., ck~1) = Oifand only ifcj = b\ forj = i+ 1 (mod K).) Moreover, let
r :{&, b\} —{0,1} be the mapping given by r(&i) = 1 and T(b[) —0. Now
take an arbitrary ¢ = (co,...,ck-i) £ C and ani £ X. Let p(c)xa =V
and t~x(V') = V. Let i be the integer for which cr= bo- Then <pi(c,x) = y
where y is the symbol of 23 for which boy® = V, and x) = yforallj ¢i.
In all other cases ®is defined arbitrarily. Denote by £' the subautomaton of
£ determined by C .
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We show that under the above choice of @, p is a homomorphism of €
onto 2L For this take an arbitrary r £ {0,1} and ¢ = (00, ***,ck-\) £ c
with p(c) = r. Let i be the integer for which c; = bo- Moreover, take a sym-

bol x £ X. Assume that s £ rx5L Then thereisac' = (og ..., £ cxc'
satisfying the following conditions:
(Del=r r>

111 (modky 1) 1and G —bi,
(24 b}/ (mod/c) ifj diand g —6J

where o - b0- Therefore, ¢(r_I} {modk) = h0, c\ - «~x(s) £ {bx,b\} and ¢' £
£ C". Thus, ¢' £ /r_1(s). Furthermore, it can be seen in a similar way that

for every ¢' £ cx~', we have si(c’) £ ra:a, which ends the proof of Lemma 3.
Using Statements 1, 2 and 3 and Theorem 1, from Lemmas 1, 2 and 3
we obtain

T heorem 2. Assume that a system K of nondeterministic automata has
an automaton 21 which satisfies the conditions of Lemma 1. Then K is ho-
momorphically complete with respect to the general product.
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1. Introduction

In this paper, a distance d on a set S means any non-negative valued
function defined on S x S such that d(s,t) = 0 iffs = t. For E C S we write

(1.i) d(E, t) = inf d(s,t).

If there is a unique 5* £ E satisfying d(s*,t) = d(E,t), it is called the d-
projection of t onto E. Even if the d-projection does not exist, it may hap-
pen that every sequence {sn} C E with d(sn,t) -> d(E,t) converges to a
unique s* £ S, in a suitable topology; this s* will be called the generalized
d-projection of t to E.

Minimization problems as above occur in many different contexts. This
author’s main motivation has been inference via maximum entropy and re-
lated methods. Such methods have been widely and successfully applied in
quite diverse areas, cf., e.g., the collection [5].

A typical example is a linear inverse problem when an unknown positive
valued function s(:r) defined on a set X has to be inferred from the knowledge
of certain integrals

(1-2)

where p is a given measure; it is also assumed that in the absence of the
information (1.2), s = t would be inferred, where t(x) is a given function on
X . E.g. s may be a probability density function on the real line, the available
knowledge consisting in its first k - 1 moments. Then p is the Lebesgue
measure, and the equations (1.2) hold with w(x) = ad-1,i = 1,..., k, b\ = 1,
and bris the known moment of order i —1, i = 2,..., k. The “prior guess”

* This work was supported by Hungarian National Foundation for Scientific Research,
Grant 1906, and it was completed while the author was visiting professor at NTT Kanaya
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may be the standard Gaussian density t(x) = (2m) 2exp (—yj. Another

example, in X-ray tomography, is when X is the examined two-dimensional
domain, and (assuming, as an approximation, that there are k distinct X-
rays whose paths are represented by thin rectangles) a, is the characteristic
function of the path of the i’th ray, p is the Lebesgue measure, and a possible
choice for the “prior guess” t is a constant. For such problems, a natural
method of inference is to take the d-projection of t onto the set of functions
satisfying the constraints (1.2), for a suitable distance d.

To motivate what distances we will be interested in for positive valued
functions, consider first the discrete version of the above problem. Then an
unknown vector s = (si,..., sn) with positive components should be inferred
from the knowledge that

(1.3) a,s=hi, i=

when a vector t is also given as “prior guess”. A favored method is to take
the I-projection of t onto the set E of vectors satisfying the constraints (1.3),
i.e., d-projection with d(s,t) = /(s||t), where

(1.4)

is the Kullback-Leibler distance or I-divergence. Some other distances have
also been used in this context. In the most common case when the compo-
nents of t are equal, and the constraints (1.3) include Y Isj —1? minimizing
(1.4) is equivalent to maximizing H(s) = —"SjlogSj, the entropy of s.
This is why inference by d-projection is sometimes referred to as maximum
entropy type method, even if d is different from (1.4).

This author has studied inference methods of this type axiomatically in
[10]. It was shown that the /-projection is distinguished in several respects.
Two classes of distances were also characterized as possible alternatives, by
postulating (different) natural desiderata on the resulting projections. The
distances in both families are determined by strictly convex, differentiable
functions / on the open interval (0,00), satisfying

(1.5) /(1) =/'(1) =0, L!—I__.rg/'(«) = -00,
as follows:
(1.6)
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1.7) *I(M) = £>/(«/, <))
where
(1.8) Af(u,v) = f(u) - f(v) - f'"(V)(u-v)~"™o.

The only common member of these two classes is the /-divergence (1.4) (up
to a constant factor), with f(u) = ulogu - n+ 1.

While in [10] attention was restricted to vectors with strictly positive
components, here we will permit zero components, too. Also, we will not
insist on the condition limu_,0/'(«) = —o00, the condition making sure that
projections onto sets determined by linear constraints (cf. (1.3)) always be
vectors with positive components, if the set contains any such vector. To
deal with zeros, we adopt the understandings

(L9)  /(0) = lim /@9, /'(0) = lim Of Q) = u lim '(v),

and if /(0) = oo, we set A/(u,0) —oo for n > 0 and 0 for n = 0.

Remark. The conditions /(1) = /'(1) = 0 are essential for (1.6) only,
to make Dj a distance, but not for (1.7). On the other hand, adopting those
conditions also for (1.7) does not restrict generality, since to any differentiable
convex function / there exists another, say /, satisfying /(1) = /'(1) = 0 and
such that always Bj(s,t) = Bj(s, t). This follows from the fact that if / and

/ differ only by a linear function of n then Af(u,v) = Aj(u,v) for every
n and v. Notice also that if the distance Df were considered for probabil-
ity distributions only (i.e., vectors whose components have sum 1) then the
condition /*(1) = 0 could be dropped also for (1.7).

The class of distances D j, called /- divergences, was first introduced by
Csiszéar [6], for probability distributions (without any assumptions on / other
than convexity), and independently by Ali and Silvey [1]; cf. also Csiszar
[7]. 1t includes many distances used in statistics, such as (in addition to
/-divergence) the reversed /-divergence d(s,t) = /(t||s) (with f(u) = u -
—Ilog n —1), the Hellinger distance
(1.10) Ae(8,1) =" ("~ -07 )2 (I(«)= (v"r-1)2
i=1
and the \ 2 distance

n
(1.11) X2(s,t) = M(sj -tjfltj  (J(«) = («- 1)2).
i=i
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For a thorough treatment of /-divergences and their applications in statistics
cf. Liese and Vajda [15].

The distances Bf will be referred to as Bregman distances. They repre-
sent a subclass of the distances introduced by Bregman [4]. Among them,
particularly those defined by the following functions fa deserve interest:

ua —au ‘a —1 ifa>1lora<?o

(112

Notice that a —2 gives squared Euclidean distance, a = 1gives I-divergence,
and o = 0 the distance of Itakura and Saito [11]. Those Bregman distances
with / satisfying (1.5) that lead to scale-invariant inference for Unear inverse
problems were characterized in [10] as those defined by the functions fa with
a i 1, up to a constant factor.

It is interesting to note that the distances Dj and Bj have applications
also in the theory of means. Namely Ben-Tal, Charnes and Teboulle [2] sug-
gested to consider (1.6) resp. (1.7) with sj = ... = sn= n, and to minimize
for u; they called the minimizer an entropic mean of the numbers t\,..., tn.
Thus entropic means are defined by Dj- resp. ~-projections onto the half-
line {s :si = ... = sn > 0}. In [2], a large variety of means known in the
literature was shown to be entropic; in particular, arithmetic mean arises
from reversed /-divergence and geometric mean from /-divergence.

In this paper, we will be interested primarily in projections onto con-
vex sets of non-negative valued functions. Motivated by the previous dis-
cussion, we will concentrate on projections with respect to distances which
are generalized versions of those in (1.6), (1.7). The results of Jones [12] and
Jones and Byrne [13] provide important theoretical support for preferring the
distances analogous to (1.7), that they called projective distortions. These
were axiomatically characterized by an orthogonality property of projections,
analogous to that of Euclidean projections.

Given a crfinite measure space (X,T,/x), the /-divergences and Bregman
distances of non-negative (['-measurable) functions 3(k) and t(x) are defined

by

(1.13)

(1.14)
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where A/ is defined by (1.8). Here / is any differentiable, strictly convex
function on (0,00) satisfying

(1.15) I(1) = I"(1) = 0.

Then Dftfl and Bf:[ are distances, considering p-a.e. equal functions as iden-
tical (cf. the remark after (1.9)). The /-divergence / Ms||i) is the special case
of both (1-13) and (1.14) when f(u) = ulogu —u -fi 1. Let us notice that,

introducing a measure n < p with ~ = t(x), the /-divergence (1.13) can be
represented as

(1.16)  Df~(s,t) = Bftl/ (y, |g + L lim /'(n)) s(x)p(dx).

f
{*:*(«)=0}
This identity follows using (1.15) and (1.9). /?/,, (|, 1) is well defined because
Lix) is well defined r'-a.e.

Usually, /-divergences (and, in particular, /-divergence) are defined as
distances between measures rather than functions. The /-divergence of ar-
bitrary finite measures v, p on (X,<T) can be defined by taking any cr-finite
measure Jiwdtli v <CA, p <C Aand letting

Df(v.p) = ), s=—,t—,
or, equivalently, by
anv) Df(v,p) = J f dH+ (jim /'(ti))~ 1)

where v = va + vs is the decomposition of p into absolutely continuous and
singular components with respect to p, cf. Csiszar [6], [7], or Liese and Vajda

[15]. In particular, if o <Cp then Df(v,p) is given by setting s — t—1
in (1.13), i.e., by
(1.18) Jj B(s) - J f(s(x)) p(dx),

with s —jjj. In this paper, we will consider the integral (1.18) also when p

is not a finite measure and/or (1.15) does not hold, although in that case it
does not represent a distance. The integral (1.18) is sometimes called the /-
entropy of s (with respect to p)\ if its minimum subject to given constraints,
such as in (1.2), is attained for a function s*, this s* is called the “best
entropy estimate”, cf. Borwein and Lewis [3], Teboulle and Vajda [17].
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As in the discrete case, among distances between non-negative func-
tions or between measures, the /-divergence is of primary importance. /-
projections for probability measures were studied in Csiszar [8]. Unlike in
the discrete case, the /-projection may fail to exist even onto a set of measures
defined by specified values of a finite number of integrals; for sets of functions,
this means that the /-projection may fail to exist even onto a set of functions
defined by constraints of form (1.2). On the other hand, it was shown in [8]
that the generalized /-projection to a convex set of measures always exists
(in non-trivial cases), without attaching any particular significance to that
result. The significance of the concept of generalized /-projection was first
recognized by Topspe [18] (who called it “center of attraction™). Csiszar [9]
proved a conditional limit theorem associated with large deviations, show-
ing that generalized /-projection (in the context of probability measures) has
the same probabilistic significance as regular /-projection.

Our aim here is to extend results available for /-projections to Df- and
5/-projections, in the general setting. One of the main results will be that
generalized projections onto convex sets of functions exist under very general
conditions.

2. Existence of generalized projections

Let / be a strictly convex, differentiable function on (0,0c). Recall the
understandings (1.9). In most but not all cases the condition (1.15) will also
be assumed, cf. below.

Given a <r-finite measure space (X, A,/r), let S denote the set of non-
negative finite valued A-measurable functions on X . We will consider the
distances Df<Ys,t), BjiR(s,t) and the integrals Jf,B(s), defined by (1.13),
(1.14) , (1.18), for functions s,t in S. In particular, at this point we do not
require integrability of these functions. The indices / and /i will be omit-
ted when this does not cause ambiguity. The condition (1.15) is assumed
when dealing with the /-divergences D(s,t) = Djif(s,t) and the Bregman
distances B(s,t) = Bftl(s,t) (although for the latter it is irrelevant, cf. the
remark after (1.9)) but not when dealing with J(s) —Jj,{s). In particular,
the integrand of (1.18) need not be positive, and the integral may be un-
defined for some s £ 5; in that case we set J(s) = +00. Notice that when
/z(X) = oo and s G Zi(/i), a necessary condition for the finiteness of J(s)
is /(0) = 0; thus, to obtain meaningful results for that case, the condition
(1.15) has to be abandoned.

In the sequel, for subsets of X defined by relations involving functions
on X we will use a shorthand notation such as {s ~ A’} or {|s —i| ~ e},

etc., meaning {x:s(x) ™ A} or \ x: |a(a;) —/(ar)| fekete.
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Convergence in measure and a weakened version of this concept will be
useful tools in this section. A sequence {s,,} of (measurable) functions on X

is said to converge in /r-measure to a function t, denoted by sn-4 t, if
(2.1) lim p("™{lan- t\ >e} =0 foral £>0.

We will say that {s,,} converges loosely in p- measure to t, denoted by sn-4 t,
if for every A GA’ with p(A) < oo

(2.2) lim p(AN{|sn—f| >e}) =0 forall e>0.

Further, {sn} will be said to be a Cauchy sequence loosely in ~-measure if
for every A 6 X with p(A) < oo

(2.3) lim [I(AM{|sm—5,| >£j)=0 foral £>0.

Notice that such a sequence has a subsequence converging /r-a.e. to some
function t (and then it follows that sn-4 t).

Lemma 1. To every e > 0 and K > 0 there exists 7 > 0 (depending on
f but not on p) such that for every s,t in S and every set C 6 X on which
either s or t is upper bounded by K, we have

(2.4) p(cn{|s-i|] 4e}) ~7B(s,t).

Further, to every K > 0 there exists £ > 0 (depending on f but not on p)
such that for every C ¢ (i ™ A}

(2.5) pCA s~ L)) < if LASK.

Corollary. For asequence {sn} C S such that either B(sn,t) —0 or
B(t,sn) —»0, we have sn~%t, and if t satisfies

(2.6) Jim p({t*.K}) =0,

then sn-4 t, as well. Moreover, ift satisfies (2.6) and B(s,t) < 00 for some
s GS then s also satisfies (2.6).

Remarks, (i) In general, 4t t does not imply sn4- t, even if (2.6)
holds (supposing, of course, that p(X) —00). A trivial counterexample is
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obtained by taking a sequence of sets A\ C A2 C m.., each of finite measure
and with UAn = X, letting sn be the characteristic function of Tn,and t = 1

(i) In general, B(sn,t) —»0 does not imply sn-[] t. To see this, take s, t
with B(s,t) < 00, and let sn be equal to t on An and to s on the complement

of An, where the sets An are as in (i). Then B(s,t) —0, but sn t does
not hold if [s —q > = c» for some £ > 0. It depends on the choice

of / whether the last condition is compatible wit B(s,t) < c». One easily
sees that it is, e.g., in the cases / = fa,a ™ 1, cf. (1.12).

P roof. Since / is differentiable and strictly convex, f is continuous and
strictly increasing. From the identity

(2.7) 4 f(u,v)= JI (I'(E) - f{v)) df,

\%

or by looking at the graph of /, one sees that [ f(u, v) decreases if the larger
of n and v is decreased. Hence the minimum of the two positive numbers
minu<A Af(u,u + e) and min,<AAj(v + £, v) is a lower bound to Af{u,v)

subject to |u —u| N £ min(u,v) ™ K. Denoting this lower bound by it
follows for C as in the hypothesis that

B(s,t) |I Af(s(x),t{x))n(dx) 'V ¢cn {n- i ~e}).
Jen{le-t|Ee} 7 4 '

this proves (2.4).
If L ~ 3A" ie, IL N 2K, (2.7) and the monotonicity of /* imply for
uzZL,vEK that

AI(«, YN ] im0 -t (v)) dzZ*\L(f'(2K)-1"(K)).

It follows that

B(s,t)™ J[c . Af(s(x),t(x))n(dx) ~

=j(/m2A") - - (x) u(C r\{StiL})

proving (2.5).
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To prove the Corollary, take any A £ X with p(A) < oo. Given any
7> 0, let K be so large that p(A M{i > A'}) < 1, and apply (2.4) to C =
= AN {t ~ K}. It follows that

NAN{bn- & ~e}) ~u(c N{ls,,- 4~ r}) +u{AN{t > A} ~
N TB(sn,t) +

This proves that B(sn,t) —0 implies (2.2), i.e., sn£ t. Since in the last
step B(sn,t) could be replaced by B(t, sn), the same result follows also when
B(t,sn) -* 0. Under hypothesis (2.6), the last argument works also for A —

—X . It gives then (2.1), i.e., sn— t.
The last assertion of the Corollary follows from (2.5).

We will write for any E C 5, in accordance with (1.1),

(28) B(E\) = inf D(E,t) = inf D{s,), J(E) = inf J(s).

If there exists s* £ E with B(s*,t) = B(E,t) resp. D(s*,t) = D(E,t), and
this s* is unique (considering /i-a.e. functions as identical), it will be called
the B- resp. D-projection of t onto E. Even for nice convex sets E, such
as those defined by constraints of the type (1.2), these projections may not
exist. We will show, however, that the generalized projections in the sense
of the following definition always exist, under very weak hypotheses. The
related problem of minimizing J(s) subject to n£ E also be considered, but
no specific terminology will be introduced for that problem. Notice that the
latter differs from the D-projection problem with t = 1 only in the lack of
assuming (1.15).

Definition 1. Given E C S and i £ 5, a sequence {sn} ¢ E is B-,
D- or J-minimizing sequence if B(sn,t), D(sn,t) or J(sn) converges to the
corresponding infimum in (2.8). If there is an s* £ S such that every B-
resp. D-minimizing sequence converges to s* loosely in //-measure, this s* is
called the generalized B- resp. D-projection of t to E. Here B,D,J always
means BftR, D J  when the short notation may cause ambiguity, the
full notation will be used.

Lemma 2. If the generalized B- or D-projection of t to E exists, it is
unique (up to p-a.e. equality), satisfies

(2.9) B{s*,t)UB{E,t) resp. D{s*t) it D(E,t),

and the B- resp. D-projection oft onto E exists iff s* £ E (in which case
the projection equals the generalized projection s*).
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P roof. The uniqueness of s* is obvious from the definition. As a min-
imizing sequence {s,,} converging to s* loosely in ~-measure has a subse-
guence that converges to s* /i-a.e., (2.9) follows by applying Fatou’s lemma
to that subsequence. If s* £ E, it follows from (2.8) and (2.9) that the min-

imum of B(s,t) subject to s £ E is attained for s = s*. On the other hand,
if that minimum is attained for some s € E then, applying the definition of
generalized projections to the trivial minimizing sequence {s,,} with sn= s,
n—1,2,..., we obtain that s* = s.

Remark. The ./-analogue of (2.9) can not be asserted in general: from
the convergence of a /-minimizing sequence {sn} C E to some s* £ S one
can not conclude J(s*) U J(E), lacking the non-negativity of the integrand
needed for Fatou’s lemma. Of course, this problem does not occur if /i is a
fjpite measure and f(u) is bounded below (as, e.g., the most commonly used
/C(§ —Wiog n).

Theorem 1. Let E be a convex subset of S, andt £ S.
(a) If B(E,t) is finite, there exists s* £ S such that

(2.10) B(s,t) ~ B(E,t) + B(s,s*) forevery s £ E.
(b) If D(E,t) isfinite, there exists s* £ S such that
(2.11) D(s,t) ~ D(E,t) + Bju(y,~*) for every s EE,
where the measure v < p is defined by = t.
(c) If J(E) is finite, there exists s* £ S such that
(2.12) J(s) ~ J(E) + B(s,s*) forevery sfE.

Corollary. Under the hypotheses of the Theorem,

(&) The generalized B-projection of t to E exists and equals the s* in
(2.10).

(b) Every D-minimizing sequence satisfies 5nl{t>0} ~ s*>where s* = ts*
withs* in (2.11), and 1{*>0} the characteristic function of the set {t > 0}.
In particular, ift > 0 p-a.e., or if f satisfies the condition

(2.13) Jim () - oc,

the generalized D-projection of t to E exists, and equals s*.
(c) Every J-minimizing sequence satisfies sn  s*, for s* in (2.12).

Remarks. For the /-divergence /(s||t) in the role of B(s,t) and D(s,t)
(corresponding to f(u) = ulogu —un + 1) resp. for the negative entropy
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I(s) = Jslog5dixin the role of J(s) (corresponding to f(u) = ulogu), the
results of Theorem 1 were established by Topspe [18]. Previously, Csiszar [8]
proved the /-divergence special case of (2.10) when s* £ E, i.e., when the /-
projection existed, and gave sufficient conditions for that existence. Both in
[8] and [18], the terminology of measures rather than functions was used, and
attention was restricted to probability measures, i.e., in the present termi-
nology, to probability density rather than arbitrary non-negative functions.
The proof below uses the ideas of [8] and [18]. A similar approach was used
by Schroeder [16] to establish the existence of b-projection under certain
conditions and to prove the inequality (2.10) in that case. An inequality
equivalent to (2.12) appears in Teboulle and Vajda [17], again for the case
when the minimum of J(s) subject to s £ E is attained.
Proof, (a) The proof relies upon the identity

(2.14)
aB(s,t) + (1- a)B{s',t) = B(as + (1 - a)s',t) + aB(s,as + (1 - a)™) +

+(1 —a)b(s,as+ (1 - a)s').

This holds for every s,s' in S and 0 < a < 1, as can be checked by simple
algebra using the definitions (1.14) and (1.8).
Now let {s,,} be a B-minimizing sequence such that B(sn,t) is finite for

each n. Applying (2.14) to s = 5m, s' = sn, a = | vyields
B(sm,t) + B(sn,t) =

26 A1 TBI ,an+Sn +|5(sn,$mTSn

This implies, in particular, that B ~ maxnb5(s,,,f) for all m,n
and that

(2.15) lim B =0

771,71—KX)

(the latter because b (Sm+,t) ~ B(E,t), since £ E by the convexity
of E).

\)Ne claim that {s,,} is a Cauchy sequence loosely in //-measure. To prove
this, take any A £ A with //(A) < oo. Given any r) > 0, first pick K so
large that //(A D{t > A'}) < 1] then use (2.5) with s = Sj~&* and C =
= ATM{t i# K} to get that for a sufficiently large L we have for every m,n
(AT {t» K,-mTsn~ /}) q v/, and consequently

(2.16) C(AM [~UpWUT/]) £2,.
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Next we use the bound (2.4) with s = smt = Sm , and C —A T
M{Smc n L}, now L playing the role of K. It follows that for a suit-
able 7 > 0 (depending on £ and L) u{AlN {sfs "~ L, [t~ | e}) »
N 7B (sm, 8nja"), and thus, on account of (2.16),

(2.17) iItA T{[sm- s,| ~ 2e}) ~ 7B Asm,Sm”  j + 21

Since 1/ > 0 has been arbitrary, (2.15) and (2.17) give (2.3), establishing our
claim.

Since {s,,} is a Cauchy sequence loosely in //-measure, it has an a.e.-
convergent subsequence, say snk —»s*, //-a.e. To prove that this s* satisfies
(2.10), pick any s 6 E such that B(s,t) is finite, and apply (2.14) to this s
and s' = snk. Bound the right hand side replacing the first term by B(E,t)
and the last term by 0. Thus, after rearranging, we obtain that

(2.18)
B(s,t) ~ B(E,t) - -— ~(B(snkit) - B(E,1)) + B(s,as + (I - a)srk)).

Letting a = otk go to 0 sufficiently slowly, the second term on the right will go
to 0. As srk —»s* a.e. implies, by Fatou’slemma, that liminf~oo B[s, a”s -f
+ (1 - ak)snk) ™ B(s,s*), the inequality (2.10) follows from (2.18).

(b) Using the representation (1.16) of D(s,t) and the identity (2.14), one
gets the following analogue of (2.14) for /-divergences:

(2.19)  hfillaD(s,t) + (L —a)D(s",t) = D(as + (1 —a)s',t) +

—a)s' Ls' + (1 —a)s"\
Bty as + (1 —a)s + (1 —a)Bf s' as + ( a)s
\J" t )

(notice that dividing by t is permissible when the underlying measure is v
since, by definition, t > 0 v-a.e.). Starting with (2.19) instead of (2.14),
one sees exactly as in (a) above that for a J1-minimizing sequence such that
D(sn,t) is finite for all n (i) the sequence {~ } is Cauchy loosely in i/-measure
and (ii) if s* is the limit of a ma.e. convergent subsequence {~p} then this
s* satisfies (2.11).

(c) The proof is identical to that of (a), starting now with the following
(easily checked) analogue of (2.14):

(2.20)
aJ(s)+ (1- a)d(s') = J(as + (L —a)s") + aB(s,as + (L - a)s') +

+(1 - a)B(s',as + (1 - a)s"),
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which holds whenever J(s) and J(s') are finite.

Parts (a) and (c) of the Corollary follow immediately from (2.10) and
(2.12), by the Corollary of Lemma 1. For part (b), notice that (2.11) implies
Bju(j,?) —0,and hence ~ s* by the Corollary of Lemma 1. To prove

that snl{t>0) s* where s* = is*, we have to verify (2.2) for every A £
£ X with p(A) < oo, for snl{t>0} and s* in the roles of sn and t. Clearly,
attention may be restricted to sets A C {t > 0}. Given such an A, let Ax =

= AN{t ~ K}. Then v(Ak) ™ JT'/r(J1) < oo, thus on account of ~ ~ s* we
have (ax M {|*-5*|>-~}) —»0 and consequently

vIindk M{Js, - 551> e}) —»0 as n —>o0.
Since v(ax) <00 and  —: is positive on Ta, it follows that also

(2.21) plak M{]s,, - s*| >e}) —=0 as n —o00.

As this holds for every K, and p(A\ a x) —0 as K —» 00, (2.21) implies
the assertion snlrt>cq~> 5* If t > 0 /t-a.e., the latter means the same as

sn” s* Under the condition (2.13), D(sn,t) < 00 implies sn = 0 /x-a.e.
on {t = 0} cf. (1.16). Since s* = is* also vanishes on {f = 0}, in this case
5,,l{f>0 5* is again equivalent to sn-£ 5* Thus, in both cases, 5* is the
generalized J1-projection of t onto E.

Remark. The generalized J1-projection to a convex set E C S with
D(E,t) < 00 does not always exist if /'(«) < 00, even if E is defined
by constraints of the type (1.2). A trivial counterexample when several (not
p-a.e. equal) functions s £ E achieve 0(5,i) = 0(0,t) is given by E =
z {5:/{<=0}s(x)n(dx) = bj, where 6 is a positive constant. Then 0(5, i) =
= 0(0,t) for every s £ E such that 5=t on {t > 0}.

In our definition of generalized projections, the convergence of minimizing
sequences has been required in a very weak sense, viz. loosely in p-measure.
This enabled us to prove the existence of generalized projections under the
weakest concievable hypotheses. Still, in many cases of interest, convergence
in a stronger sense can be established. Some simple general results in that
direction will be given in Theorem 2, also including the convergence of J-
minimizing sequences. We send forward

Lemma 3. Suppose that p is a finite measure.
(@) Iff satisfies the condition

(2.22) &R(f'(Kv) - f'(v)) >0 forsome K >1
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then for every t £ Xi(/i) and r > 0, the functions s £ S in the “Bregman
ball” {s:B(s,t) 1A r} are uniformly integrable.

(b) If f does not satisfy (2.22), and u is not atomic, there exists t £
£ E£i(/i) to which non-integrable functions sn £ S can be found with
B(sn,t) -> 0.

Remark. Condition (2.22) is stronger than (2.13) but among the func-
tions fa, cf. (1.12), either condition holds for those with a ™ 1.

Proof, (a) Given t £ b\(y), define t £ L\(B) by t(x) = max(t(x),l).
It suffices to prove that to any e > 0 there exists M > 0 such that

s

(2.23) | sdfi < ¢ if B(s,t)~r.

Now, notice that (2.22) implies that for M equal to a sufficiently large
power of K, inf, ~ (f'{Mv) —f(v)) will be as large as desired. In particular,

there exists M > 2 such that

f -fvw)y Y fdl o ve |

With such an M, (2.7) implies that for u > Mv,v "~ 1

n/mr >t >r

It follows that

B(s,t) > | Af[s(x),t(x)) n(dx) ~

J{s>Mt}

~No Aj(s(x),t(x)) g,(dx) > - _ s(x)fi(dx)

{s>Mt}

establishing (2.23).

(b) If (2.22) does not hold, for arbitrarily large K there exists r; 2 1such
that f'(Kv) - f'(v) is arbitrarily small. Thus for some sequence of numbers
vnh ~ 1 (and then necessarily vn —»00)

f(nvn)-/'(«,,) W —n> n=1,2,...

Then from (2.7)

rnvn

(2.24) Aj(nvnvn)= /  (/*(0 - f'(vn)) df, i vn.
Mh
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Let t € S be a function whose range is a subset of {iq, v/,...}, and let s(x) =
—nvn if fIX) —uvn. Since p is non-atomic, such t and s exist with t £ Lfip),
s £ Lfip), and then (2.24) shows that B(s,t) < 00. Finally, let sn(x) equal
fix) or s(x) according as t(x) equals vm with m ~ n or with m > n, respec-
tively. Then B(sn,t) —0, while neither sn is integrable.

T heorem 2. Under the hypotheses of Theorem 1:

(a) Ift satisfies condition (2.6) then every B-minimizing sequence con-
verges in p-measure. Ifp is afinite measure, t 6 Lfip), and f satisfies con-
dition (2.22), then every B-minimizing sequence converges in Lfip) norm.

(b) Ift £ L\(p) and f satisfies condition (2.13) then every D-minimizing
sequence converges in Lfip) norm.

(c) If p is a finite measure and f satisfies condition (2.13) then every
J-minimizing sequence converges in Lfip) norm.

Proof, (@) A JB-minimizing sequence satisfies B(sn,s*) —»0, by (2.10).
Since B(s*,t) ~ B{E,t) < 00 by Lemma 2, the Corollary of Lemma 1 gives
that if t satisfies (2.6) then so does also s*. But then B(sn,s*) —a0 im-

plies sn  s* again by the Corollary of Lemma 1. The last assertion follows
from Lemma 3, since convergence in measure plus uniform integrability imply
convergence in Lfip) norm.

(b) Without any loss of generality, a H-minimizing sequence can be as-
sumed to satisfy D(sn,t) < 00 for all n. Then (2.13) implies that sn = 0
p-a.e. on the set {t = 0}, and

(2.25) D(snt) = J /(A ) do,

with v < p, = t, by the definition (1.13) of D(s,t). Under the hypothesis
t £ Lfip), v is a finite measure. Thus Bjfu(~, 5%) —0 (implied by (2.11))

gives by the Corollary of Lemma 1 that »~ —s*. As u is a finite measure,
it follows from (2.13) and the uniform boundedness of the integrals (2.25)
that ~ is uniformly u-integrable. Hence ~ —ms* also in Z/i(u)-norm. Since
/1 —5*Ido — J |sn —s™*l dp, where s* = is*, this means the same as sn —»
—»s* in L\{p) norm.

(c) If p is a finite measure, each /-minimizing sequence satisfies sn-/, s*,
by the Corollary of Theorem 1. As in (b), the finiteness of p, the condition
(2.13), and the uniform boundedness of the integrals J(sn) = f f(sn)dp im-
ply that the functions sn are uniformly integrable (although / is now not
assumed to satisfy (1.15), by convexity and the condition (2.13) it must be
bounded from below). Hence it follows that sn —s* also in Lfip) norm.

Remarks. In assertion (a) of Theorem 2, the condition (2.22) for L\-
convergence of 5-minimizing sequences can not be relaxed in general. As
Lemma 3 shows, in the trivial case E = S there exist t £ Lfip) and a B-
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minimizing sequence {sn} (in this case, simply a sequence with 5(.s,,,f) —*0)
such that neither sn is integrable. In assertions (b) and (c), the condition
(2.13) can not be relaxed either. Notice finally that if i is a bounded func-
tion and a finite measure, then already condition (2.13) suffices for the
uniform integrability of “Bregman balls” and hence for the Li-convergence
of 5-minimizing sequences.

3. Projections and generalized projections

We proceed to use the terminology introduced before. In particular, S
denotes the set of non-negative finite valued JT-measurable functions on X,
and the symbols B and D are shorthands for 544 and DjiR, cf. (1.13), (1.14).
In this section, the convex function / is always assumed to satisfy (1.15), and
E will always denote a convex subset of S, unless stated otherwise.

We have seen in Section 2 that the generalized B- resp. 5-projection of
t £ S to the convex set E C S always exists, except for trivial cases. A ques-
tion of the interest is, however, whether the B- resp. 5-projection exists.
By Lemma 2, this is the same question whether the generalized projection
s* belongs to E. A sufficient condition for the latter, by the very definition
of generalized projections, is the closedness of E for loose convergence in /x
measure. If the minimizing sequences are known to converge in some stronger
sense, closedness of E (or of its intersection with a 5-ball resp. 5-ball of
center t and radius larger than B (E,t) resp., D (E,t)) suffices. In particular,
using Theorem 2, the closedness of E MLi(p) in L\{[i) norm is sufficient for
the existence of 5-projection if / satisfies (2.13), resp. for the existence of 5-
projection if p is a finite measure and / satisfies (2.22), whenever t £ Li(/x)
and D(E,t), resp. B(E,t) is finite.

In the literature, the usual way to derive sufficient conditions for the ex-
istence of projections onto a set E is by compactness arguments, introducing
a topology in which E is compact and the distance to be minimized is a
lower semicontinuous function on E. The last mentioned sufficient condi-
tions for the existence of 5- and 5-projections can be obtained also by this
method, cf. Teboulle and Vajda [17] for 5-projections (they actually con-
sidered integrals J(s), with / satisfying (2.13), but rewriting their result for
5-divergences is just a matter of translation). In Theorem 3 we will also
offer a sufficient condition for the existence of 5-projection that does not re-
quire Lj(/x) closedness; we will give a proof that relies on Theorem 1 and
some Orlicz space theory.

As hinted to in the Introduction, the projection problem occurs in prac-
tice mostly for sets of functions defined by equality constraints on certain
integrals, cf. (1.2). Sometimes one has inequality rather than equality con-
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straints. Thus, consider subsets of S of form
(3.2) a-y(x)s(x)fi(dx) 1 by,

where " is any index set, the s7 are given (measurable) functions on X , and
the by are given constants. The set (3.1) may contain functions s £ S with
f ansdf1 = —o0, but none with f aysdp undefined. Of course, sets defined
by equality constraints can also be represented in the form (3.1), since a
constraint J aySdp = by is equivalent to a pair of constraint J a7sdp ™ by,
[ (—a7)s dfi 5 —hy.

Theorem 3. Let E beagiven by (3.1) and lett £ S be such that B(E,t)
resp. D(E,t) is finite.

(i) Ifeach ay £ S, the B-projection oft onto E always exists, and the
D-projection exists if t > 0 p-a.e., or if f satisfies (2.13).

(i) If each Wy is bounded below, and t 6 L\(p), the D-projection of t
onto E exists if f satisfies (2.13), and the B-projection exists if p is afinite
measure and f satisfies (2.22).

(iii) 1f each ay satisfies

(3.2) j f*(Xly )tdp < oo forevery N>0

where f* denotes the convex conjugate of f and a~ = max(0,—a7), the D-
projection of t onto E exists provided t £ Lfip) and f satisfies (2.13).

Corollary. For a set E defined as in (3.1) but with equality (rather
than inequality) constraints, assertion (ii) will hold if the hypothesis of lower
boundedness of the functions ay is replaced by boundedness, and (iii) will hold

if in the hypothesis (3.2), a~ is changed to |a7|.
Remark. The convex conjugate of a convex function / is the convex
function f*(v) = SLLJJp(uu —/(«)). Under our assumptions on / (including

(2.13)), /* is finite valued and differentiable on (0,0c) (we are not interested
in f*(v) for v < 0) and is given by

(3.3) |y =
Jo
In particular,
(3.4) f*(v) =ev- 1 if /(u) = nlogn —wT 1
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Proof, (i) If (sny C E converges loosely in //-measure, it has a subse-
guence such that srk —s' /i-a.e. The hypothesis a7 ~ 0 implies by Fatou’s
lemma that

/ ans'dp N liminf / a7s,,td/i,
K-t00 Y

thus s' E E. This means that E is closed for loose convergence in //-measure,
and the assertion follows by the previous discussion.

(ii) If {sn} C EM\ L\{p) converges to some s' in L\(p) norm, writing a7 =
= a+ —a~ we obtain, since a~ is bounded by hypothesis, that J sna~ dp —*
—=m Js'a~dp. On the other hand, Ja+s'dp liminf,,-k» J a+sndp as
above, therefore s' E E MLi(p). Thus E Mii(//) is closed in L\(p) norm,
and the assertion follows by the previous discussion.

(iii) We assume, without restricting generality, that // is a finite measure
and t = 1; the case of arbitrary // and t £ L\(//) reduces to this replacing
/l by v, where A~ = i, and giving the role of 5 to f. Thus we consider a

sequence {sn} C E with
(3.5) D(sn,1) = J f(sn)dfi D(E, 1),

known to converge in //-measure (and even in Zu(//) norm, by Theorem 2)
to the generalized /~-projection 5% of / = 1to E; our goal is to show that
s* GE.

We need the following facts from the theory of Orlicz spaces, cf. Kras-
noselskii and Rutitskii [14]. Given a strictly convex function M(u) on (0, cto)
with

(3.6) hm --—----- =0 IMygzc---—--- = 00,

the Orlicz class Lm = Tm(r) is the set of all (measurable) functions u(x) on
X such that

(3.7) p(L,M) =J m (\u(x)jp(dx) < oo.

The Orlicz space M and its (not necessarily proper) subspace Em consist
of those functions n for which Xu £ Lm for some A > 0, respectively for all
A> 0. M is a Banach space with the Orlicz norm

(3.8) WM = inf j (I + />(Au,M)).

Acta Mathematica Hungarica 68, 1995



GENERALIZED PROJECTIONS FOR NON-NEGATIVE FUNCTIONS 179

Moreover, setting N = M*, one can consider on )M the ~gr-weak topology:
un —»u Egr-weakly iff f unvdfi — f uvd/i for all v £ Ejf. The result we
need is the following:

[14], Theorem 14.6: If a sequence {un} C I*M is bounded in Orlicz norm
and converges in /x-measure to some function u, then n £ M and un —au
Eff-weakly.

We will apply this theorem to the sequence {s,,} C E in (3.5), with the
choice M(u) —/(1 + u). Notice that this M satisfies the conditions (3.6).
Further, the sequence {s,,} is bounded in Orlicz norm, since by (3.7) and

(3.8)
ALY = 2 (1 +P ("2"-7)) - 2+ 2] [ (1 +-2-) A =
= 2+ 1)~ (A) + 4 f(smydn

(in the last step we have used the convexity of /). It follows by the above
theorem that sn —» s* -Egr-weakly.

Since M(u) = /(1 + w), its convex conjugate N(v) equals f*(v) —v. No-
tice that N = M* always satisfies the conditions (3.6) if M does. Thus for
any function v(x) in S, the integrability of N(v) = f*(v) —v is equivalent
to that of f*(v). It follows that the hypothesis (3.2) (with t —1) means
exactly that a~ £ Ejg. Hence the £]v-weak convergence sn — s* implies

f sna~ dfi —=* J s*a~ d/x; after having established this, the proof is completed
as previously.

The Corollary is immediate since an equality constraint can be regarded
as two inequality constraints, one with a7 and the other with —a7.

Comments. Part (i) of Theorem 3 is very general as far as /,y and
t are concerned, but it involves a very restrictive hypothesis on the func-
tions a+y. Since that hypothesis can not be non-trivially met by both a7 and
—a7, part (i) has no counterpart for sets defined by equality constraints as
in the Corollary. Part (ii) involves a considerable restriction on the under-
lying /, but only a weaker hypothesis on the functions a7, which is often
met in practice. As hinted to before, this part of Theorem 3 is not new, al-
though for 2?-projections, our hypothesis on / is weaker than under which a
similar result had been proved previously (Schroeder [16]). Part (iii) further
relaxes the hypothesis on the functions a7, but at present it is available for
/~-projection only. Of course, a H-projection counterpart of (iii) does hold

for certain functions /. E.g., for f(u) = (|/]— )2, cf. (1.12) with a = 2, we

have f*(v) = \* + v. In this case B(s,t) equals the squared Xr(/x) distance
of s and i, and the conditions (3.8) are obviously sufficient for the existence
of the H-projection of any t £ //r(m) onto E. The difficulty we encountered
when trying to prove the B counterpart of assertion (iii) was that, without
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an additional condition on /, or on t (such as its boundedness), we were un-
able to prove the Orlicz norm boundedness of fi-minimizing sequences, and
suspect that this may not be true in general.

For the case of /-divergence, i.e., f(u) = ulogn —n + 1, when f*(v) is
given by (3.4), condition (3.2) requires (omitting the irrelevant constant) that
for each a7, the integral of te Xat be finite for every /1> 0. The corresponding
condition for equality constraints (cf. the Corollary) is the finiteness of the
integrals J dit, for every A> 0, which means the same as the finite-
ness of f <eAdi dnfor every AE R. In the perhaps most important case when
t(x) is a probability density function with respect to //, the last integral as
a function of Ais known as the moment generating function of a7, for the
probability distribution with //-density t(x). It has been well known that for
a set E of probability densities determined by a finite number of equality
constraints as in (1.2), the /-projection onto E of the density t surely exists
if the functions involved in the constraints have everywhere finite moment
generating functions for the distribution with density t. It appears new that
the same is true also for any number of constraints (providing there exists
any s E£ with /(s||f) < oo).

As an example, consider probability distributions on a Banach space X,
with a common dominating measure /r, and let E be the set of the den-
sity functions of those among them whose expectation (in the Pettis integral
sense) exists and equals a given 6 £ A'. Then E is determined by the linear
constraints

\] s(x)9(x)n(dx) = 0(6), 0 £ A™,

in addition to f s(x)/u(dx) = 1, where X* denotes the dual of X . Our suffi-
cient condition for the existence of the /-projection onto this set E of a given
density t(x) with 1(E,t) < oo is that f e”&*h(x)/i(dx) be finite for all 0 £
6 A* and A£ R. Since with 0 £ A also A0 £ A'*, the sufficient condition
is actually the finiteness of f ee (xh(x)/j,(dx) for all 0 £ X*. Notice that this
is weaker than the finiteness of the moment generating function of |laj| for
all A> 0, which is the well known condition often used in such problems.

Although generalized B- and H-projections (to convex sets E C S) prac-
tically always exist, satisfactory conditions for their belonging to E, i.e.,
for the existence of projections, were obtained only subject to the condi-
tion (2.13) on / (for /~-projection) or the stronger condition (2.22) (for B-
projections). Without those, good sufficient conditions for the existence of
projections, of the general flavor as above (i.e., not involving topological hy-
potheses on X an on the functions a7 in the constraints) apparently can
not be given. A very thorough study of a class of minimization problems
that includes D- and /f-projections onto sets determined by finitely many
equality constraints, has been carried out by Borwein and Lewis [3], under
compactness and continuity hypotheses. Their approach very much differs
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from ours, heavily relying upon convex analysis, particularly on advanced
duality techniques.

Theorem 4 below will shed some light on the problem, and it fits nicely
into our framework, not requiring tools beyond standard measure theory.
This theorem is not stated expficitly in Borwein and Lewis [3] but related
results are (though inequality constraints are not considered). The author
could not determine to what extent can the assertion be considered new; it
will be offered here at least for the simple proof.

We consider the //-projection problem for E C S defined by (3.1), with
t £ L\(p),t > 0 p-a.e. As in the proof of Theorem 3, we assume without
restricting generality that p is a finite measure and t = 1. Recall from the
Introduction that /-divergences are most naturally looked at as distances of
measures rather than of functions. Thus Df.B(s. 1) — equal to the integral

(1.18) - is the /-divergence Dj(v,p) ofthe measure v < p with ~ = s from

the measure p. Hence, minimizing Dj”(s, 1) subject to s £ E is equivalent
to minimizing Dj(n,p) subject to u £ F, v <Cp, where F is the set of finite
measures // on (A, A) satisfying

v
(3.9) \] a-y(x)f(dx) M 67, TET.

Dropping the constraint n <Cp would not change the problem if (2.13) held,
since then Dj(v,p) would be infinite when i/ /I, but now we are dealing
with the “bad” case, lim”~oo f'(v) < oo. Then it often happens that the min-
imum without the condition v < p is attained for some v <4Lp. Interesting
examples, involving the function /0(w) of (1.12), are given in [3]. It should
be noted that our restriction to finite measures, meaning in our case restric-
tion to functions s £ L\{p), is harmless: although the set E may contain
functions s ™ Lfip), for them Dj(s, 1) = oo thus they can be disregarded.

More valuable information can be obtained under topological regularity
hypotheses only. We send forward the simple

Lemma 4. Let X be a compact metric space, and let the set of measures
F be defined by continuous functions al, cf. (3.9). Then, providing there ex-
ists v £ F with Df(i/,p) < oo, the minimum of Df(t/,p) subject to v £ F
is always attained, and the p-absolutely continuous component v* of a min-
imizing v* is uniquely determined. If " is finite, there exists a minimizing
measure v* whose p-singular component is concentrated on afinite subset of
X, consisting of no more points than the cardinality of I plus 1.

Proof. The hypothesis implies that for any finite M, the set F I
M{u:v[X) ~ M} is compact in the weak* topology of measures. Since
Df(o,p) is a lower semicontinuous function of u in that topology (cf., e.g.,
[15]), the existence of a minimizing v* follows. With the decomposition v* =
= K + us into absolutely continuous and singular components with respect
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to /i, it is seen from the definition (1.17) of Df(v,p), using the strict con-
vexity of /, that v* must be unique. We henceforth assume that v*(X) > 0,
else there is nothing left to prove.

If v* minimizes Dj(v,p) subject to v GF, and Us is any measure satis-

fying
(3.10) Vs{X) = vs(X), | aidvs=1 aydu*, 7GI

then v' = v* + Vs also belongs to F, and if Vs is /i-singular then (1.17) gives
that Df(v'iH) = thus v' also minimizes subject to n G
G F. Actually, if (3.10) holds then Vs must be ~-singular. Otherwise, using
the inequality

(3.11) f(u+ 1) < f(u) + (lig V)t if t>0,

an obvious consequence of the strict convexity of /, from (1.17) the contra-
diction Df(v',fi) < would follow.

Suppose now that ' = {1,..., k}. Consider the continuous map T: X —y
— defined by

(3.12) T(X) = (Ji(X),...,/*(*)).

The vector with components (J a7 du*) /n*(X), 7 = 1,..., A belongs to
the convex hull of T(X), hence by Caratheodory’s theorem it can be rep-
resented as the convex combination YlajT(xj) of at most A+ 1 points
T(x1),... ,T(xi), | ™ A+ 1. It follows that the measure Vs = X™=i ajt/s(X)e6X
satisfies (3.10), where Sx denotes the unit mass at x. Thus, by the previous
paragraph, v' = v* + v* attains the minimum of D](v, /i) subject to v 6 F,
completing the proof of the lemma.

For Theorem 4 we need the following hypotheses (required also in Bor-
wein and Lewis [3]):

(i) X is a compact metric space, and a7,q GI are continuous functions
on X,

(ii) Iis finite: T = {1,..., K},

(iii) there exists so GE which is bounded and bounded away from O,

(iv) Supp(®) = X.
Here E denotes the subset of S defined by (3.1); also, F will denote as be-
fore the set of (finite) measures on X satisfying the constraints (3.9). The
support Supp(zz) of a (finite) measure n on the compact set X is the small-
est compact K C X with v(K) = v(X). Notice that Hypothesis (iv) does
not restrict generality, as one could always redefine X to equal Supp(/z). In-
stead of Hypothesis (iii), it would suffice to postulate the existence of a /i-a.e.
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positive so € E. It is not hard to see that this formally weaker assumption,
which is the “primal constraint qualification” in [3], is actually equivalent to
Hypothesis (iii).

Theorem 4. Under Hypotheses (i)-(iv), DjtB(E, 1) = infs6£ 1)
is equal to the minimum of Dj(v, p) subject to n 6 F. Denoting by v* the
p-absohuely continuous component of a v* attaining that minimum, the gen-

eralized Df”-projection oft —1 to E is equal to

Proof. We know by Lemma 4 that the minimum of Df(i/,p) subject
to v E F is attained for some i>* As discussed in the paragraph containing
(3.9), then

(3.13) Df (v*,p)UDF(E,I).

To show that here the equality holds, and equals the generalized Djif3-

projection of t = 1to E (which we know to exist, by the Corollary of Theo-
rem 1), it suffices to find a sequence {s,,} C E such that

(3.14) Dfs(sn,1)  Df(v*,p),

These functions sn will be obtained as densities of measure vn <C p, satisfying
(3.9) and approximating is*. By Lemma 4, we may assume that Supp(z/*) =
= {X],...,xi}. We first smooth is*, replacing the point masses at

by measures having constant ~-density in the balls Bjn of radius pn —0
about the points xj, j = 1,..., /. The resulting smoothed version of is* <p
is 0* < p with

d< Ly 1
3.15
( ) dpP dp p(Bjn) B

this is well defined, since the balls Bjn have positive /x-measure, by Hypoth-
esis (iv). Since is* does not necessarily satisfy the constraints (3.9), it will be
replaced by

(3-16) Vn — (1 &n)vn -f- £EnVOnNi
with en —0 specified later, and with measures ison <Cp having the following
two properties:

(i) for a suitable constant M, the functions sno = satisfy fa < s,,0 <

< M, for all sufficiently large n;
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(if) denoting by vq the measure with = sq, for sq in Hypothesis (iii),
we have

(3.17) T((I - £nK +SVOn) =T ((1- £n)v* + En\0) ;

here T is the natural extension of the point map (3.12) to measures on X . No-
tice that (3.17) guarantees that vn defined by (3.16) satisfies the constraints
(3.9), whereas (i) is a technical condition.

Assuming that measures von with properties (i), (ii) can be found, the
proof is completed as follows: Set sn = then, as vn satisfies (3.9), we

have sn 6 E. It is clear from (3.15), (3.16) that sn-J (actually, sn —»

—y N pointwise, except for the set {xi,... ,Xj} = Supp(i/f)). To prove the

remaining part of our claim (3.14), notice that by Jensen’s inequality and
(3.11) we have

(3.18) f,R{sn>1) <

ra-em o (1) A+017 1)) *

-\-sn \] f(sno)d{j,.

The last bracket is equal to Df(v*,n), and J f(sn0)d/i is bounded, by prop-
erty (i) above. Thus, (3.18), compared with (3.13), establishes the desired
result.

To complete the proof of Theorem 4, we have to verify that measures LL
with the properties (i) and (ii) do exist. Now, (3.17) can be written as

(3.19) T(@/on) - Thl = - T(u¥)),

where T(v*) —T(v*) —=0 as n —» 00, because the radius of the balls Bjn
about the points xj, j = 1,...,/ goes to 0 as n —»00, cf. (3.15). Thus,
letting en —m0 sufficiently slowly, the right hand side of (3.19) will go to 0.
This means that T(uo,,) is required to equal an element of an arbitrarily small
neighbourhood of T(i‘0), within the affine hull of C C the image under
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T of the set of all measures on X . Thus the possibility of finding v8n with
the desired properties is an immediate consequence of the following facts:
(i) denoting by Cm the image under T of the set of measures v < u with

M < M, C is contained in the closure of the union of these sets Cm

(this follows by Hypothesis (iv)) and (ii) each Cm is a relatively open subset
of the affine hull of C (because to any u GCm and v G Cm, there exists
e > 0 such that u + e(u —v) GCm)-
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FUNCTIONAL EQUATIONS ON CONVEX
SETS

Z DAROCZY, member of the Academy and GY. MAKSA (Debrecen)*

Dedicated to Professor K. Tandori on the occasion of his seventieth birthday

1. Throughout the paper X denotes a real or complex linear space. For a
convex absorbing balanced set K C X let p denote the Minkowski functional
of K, i.e.

p(x)=1Inf > 0: WGKI, xs X
It is well-known that the function p : X -* [0, +00[ is a seminorm on X and
(1.1) {zGX :p(xX) <1} CK C{x GX :p(x) U}
(Rudin [s], Yosida [10], Larsen [5]).

If a ¢ ]0,1] is fixed, K is a convex subset of X and / : K — C then
define the Jensen difference on K generated by / with the weight a by
(1.2) Jaif(x,y) = f(ax + (1 - a)y) - af(x) - (1- a)/(y), x,yeK.

In the case a —| the function Jaj : K XK —»C is the well-known symmet-

ric Jensen difference (Kuczma [4], Aczél [1], Hardy-Littlewood-Pdlya [3]).
In the following let a @  In this case one can ask the following:

Probrem. Which are those functions /1 : K — ¢ for which the Jensen
difference Jaj is symmetric, i.e.,

(1-3) Jot,f(%iy) = Ja,f{yix)
for all x, y E k. Since a ¢ 1, (1.3) can be written in the form
(1.4) f(x)+ | flotx + (1-a)y) - - I((1-a)x+ay) - f(y) =0

for all x,y Gk. This provides the reason for introducing the following no-
tion.

* This work was supported by the National Science Foundation, Grant No. 1652.
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Definition. Let K ¢ X be convex. The function / : K —C is of
degree n on K if there exist functions /, : K —R and different numbers
0N Al< 1, i=1,...,n+ 1such that

n+l
(1.5) f(x)+A2Fi(\iX-\-(I1-Xi)y)=0
i=1

holds for all x, y E K. The vector (A1?..., An+i) is called the parameter of /.

It is clear that the function / : K —C satisfying the functional equation
(1.4) (or (1.3)) is a function of degree 2 on K with the parameter (a, I -a ,o0).

The main purpose of this paper is to find all solutions of the functional
equation (1.4) and, in addition, to present some general results on functions
of degree n.

2. In this section let K denote a convex absorbing balanced subset of X
and let p be the Minkowski functional of K.

Theorem 1 Letf : K —=C be afunction of degree n on KO := K
with the parameter (Aj,..., An+l) (The A s are different numbers from the
interval [0,1[, i=1,...,n+ \.) Let

(2.1) A=maxjl—+ i=12,...,n+1
1 1—A
and K\ = Pk GX :p(x) < . Then for all s s li\ the difference function

x A sf(x) :=f(x +s)- f{x) (xe R\

is of degree (n - 1) on the (convex absorbing balanced) set h\ C Ao with the
parameter [ # |,

Proof. Since / is of degree n, (1.5) holds with some functions [ ,...,
fn+:1 : K —c. Let x,y,s £ R\. Then, because of the inequalities

p(x+») A p{x) +pf{s) <~ " =J<iu,

we get i + sG Ko. Write x + s instead of x in (1.5).
Thus we have

M1
(2.2) f(x +s)+  fF(Xjx+ (@a- \j)y + As) =o.
2=1
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On the other hand

+1 -a ) +
pl\y + . nAana/) n P(Y) 1 APAL+ +

whence by (1.1), y + A™ s Gko- Write y i 7 ts instead of y in (1.5).
We obtain

n+! / n \
23)  f(x) + A2 fi (AE+ (L~ KY+ (1 _ 5 =o.
21

Subtracting (2.3) from (2.2) we have

f{x +s)~ f(x) + 22 Fi(\x + (1L —A)y + As)
=1L

—Ffi MAIX+ 1)y + (1 —A)y—A s~ =0
This can be written in the form
Asf{X)+ Y2 (Aas~ A( n)~ 1 _) h(ae+ (1- Ay = o,
that is, with the notation

y\9 .= (A\s- A(l )fi on Kx (t=1,...,n)

we get

Asf(x) + 22giS{Kx + (I-Xi)y) - O.

=1

This imphes that Asf is a function of degree (n —1) on R\ with the param-
eter (Ai,..., A,) for all s GK\. O
The next two corollaries follow easily from Theorem 1.

Corollary 1 Let f be a function of degree n on Kgq = K with the
(Ai,.. ,,A

Ke—{1 ﬂ)@} (/=1,2,..., n+1).
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Then Kn)i CKnC ¢«C K\ C K and

4;+7M =o0

for all x,s £ Kn+1.

Throughout the remainder of this paper for all positive homogeneous
functions p : X —»[0,+00[ (i.e. p(tx) —tp(x) holds for all t E [0,+00[ and
x EX) and for all 0 < r~ +oc we shall use the following notations:

B(r) = {a:G 1l :p(x) <r}

and
An(r) = {(x,y) EX XX :x,x+vy,...,x+(n+ 1)y £ B(r)} (n£N).

Corollary 2. Let f be afunction of degree n on K. Then there exists
0 < r < 1such that B(r) C K and

(2.4) AJ+7(*) =0
for all (x,y) E An(r).

3. Corollary 2 provides the reason for introducing the following

Definition. Let 0<r + 00, and p : X —»[0,+00[ a positive homo-
geneous function. The function / : B{r) —C is a local polynomial of degree
non B(r) if (2.4) holds for all (x,y) £ An(r).

A similar concept was introduced by Székelyhidi in [9].
Following the ideas of Székelyhidi [7] we prove the following extension
theorem.

Theorem 2. Letp : X —[0,+00[ be a positive homogeneous function,
p/ o,0<r” Too and f : B(r) —»c a local polynomial of degree n on
B(r). Then there exists a function F : X —c such that

(3.1) Ay+lf(x) =0
for all x,y EX and
F\B(r) = /.

P roof. The proofis based on Zorn’s lemma. Let T denote the set of all
functions ip with the following properties:

a)/ C(p
b) the domain of gis the set B(r) for some o < r”~ + 00,
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c) the range of ipis a subset of C,

d) AE+V(x) = o for all (x,y) £ A,(r).

Since / £T,T (p 0. The set T is partially ordered with the obvious
inclusion of functions: for £ T, p C b if ®Pis an extension of ip. More-
over, if ;qC T is an ordered subset then |J %0 GT . Thus, by Zorn’s lemma,
there exists a maximal element F £ T. Let B(R) be the domain of F and

suppose that R < + oo. Forz £ B (" R) define

n+i1—k \
n+i1 /'
Since p =*p(*) < «x1lp £ [ therefore axl=*z £
£ B(R), k=1,..,,B f 1, thus F is well defined. Furthermore, 2 £ B(R)

implies tatfo, Ary) G An(R) hence the identity F(z) = F(z) —Anf 1F(0)
which is proved in [7] and F £ F provide that F C F. If Ok, y) £ A,, (aj*-R)
then yi £ A,(A), kK= 1,...,n+ 1 and x+ (n+ 1)y £

£ B (¢ a) thus, as it is proved in [7], we have that A"+1F(a:) = 0. Conse-

quently, F £ T and F CF. Sincep ¢ 0, B(R) C B (™p-R) therefore F  F
which is a contradiction. O

4. In connection with the functional equation (3.9) it is well-known
(Djokovic [2], Székelyhidi [s]) that a function F : X —»C satisfies (3.1) if
and only if there exist *-additive symmetric functions

Ak : Xk~ C (k=0,1,....,m; X°:=X)
such that

F(x) = Y [ At(x), xeX
k=0

where Ak is the diagonalization of Ak (J/lo is a constant function). This
implies the following

THEOREM 3. Let p : X —»[0,+00[ be a positive homogeneous func-
tion, 0<r< +o00 andf : B(r) —=C a local polynomial of degree n on
B(r). Then there exist k-additive symmetric functions, Ak : Xk—=+C (k =
=o0,1,..., N) such that

n

Im =E g*m
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for all x £ .s(r) (A% is the diagonalization of Ah, k = 0,..., n).

5. Now we return to the investigation of the functional equation (1.4).
First we prove the following

Theorem 4. Letp : X —»[0,+00[ be a positive homogeneous function
and0 < r ™ + o0o. Suppose that At : Xe—»C is an |-additive and symmet-
ric function (£ = 0,1,2) and define the function f on B(r) by
(5.1) F(x) := A2x,x) + A2(x) + A0, X £ B(r).

Then f is a solution of (1.4) on B{r) if and only if

) A2(aa;,y) = aA20x y) for allx,y £ X, and
(b) Ai(ax) = aA\(x) for all x £ X.

Proof. Substituting / in (1.4) an easy calculation shows that
(5.3) A2{ax,y) - A2(ay,y)- adz2(i, x) + aA2(y,y)+
AAfiax) - aTi(z) - [Afiay) - aAfiy)] = A2(ay,x)- AZ{ax,x)
for all x,y £ B(r). With the substitution y = 0 this implies
(5.4) Az (oix, X) —aA2(2;,x) + Ai(az) - aTi(x) =0

for all x £ B(r). Writing f instead of x in (5.4), multiplying by 4 the equa-
tion so obtained and subtracting this equation from (5.4) we get that

(5.5) Afiax) = aA\(x), x £ B(r)
and
(5.6) T2(ax,x) = afl2(x,ar), x £ B(r).

Let x £ X. If p(x) = 0 then, because of x £ B(r), (5.5) and (5.6) hold.
If p(x) > 0 then there exists a rational number g > 0 such that g <

Therefore
p(gx) = gp(x) < r

thus gx £ B(r) which implies that Afiagx) - a/ix(px) and Az(apXx,px) =
= aT2(px,px), whence (5.2) (b) and

(5.7) T2(ax,x) = aA2(x,x), X£X
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follow. According to the equations (5.5), (5.6) and (5.3) we have
(5.8) A2{ax,y) = A2(ay,x) = A2(x,ay)

for all x,y £ B(r). Let x,y £ X for which p(x) >0and p(y) > 0and let
g > o be a rational number so that

Then p(gx) = gp(x) < r and p{gy) = gp(y) < r therefore
A2(agx,gy) = A2(gx,agy)

which implies (5.8). If p(x) = p(y) —O0 then (5.8) holds since x,y £ B(r). If

p(x) =0, p(y) > 0 (or p(x) > 0. p(y) - 0) then A2(ax,gy) = A2(x,agy) (or
A2(agx,y) = A2(gx,ay)) implies (5.8). Finally, define the functions a and b
on X by

a(x) - A2(ax,x) and b(x) = A2(x, x),
respectively. Then, by [5.8] and [H)l

2A2(ax,y) = a(x +y)- a(x)- a{y) = a(b(x +y)- b(x)~Db[y)) = aZ2A2(x,y)

for all x,y E X. O

THEOREM ). Let K | X be a convex absorbing balanced set, p its
Minkowski functional and suppose that g : K —C is a solution of the func-
tional equation (1.4). If there exists 0 < r < 1 such that g(x) = 0 for all
x £ B(r) ¢ K then g(x) = 0for all x £ K.

Proof. Without loss of generality we may assume that 0 < a < Let

rk = min q_-l— rk_i,1j< AE N. We show that g(x) = 0 for all x £ B(rk)

and for all Kk £ N. This will be proved by induction on k. For kK = 1 the
statement is obviously true. Suppose that the statement is true for k and let
x £ B(rk+1). Then

p(ax) </\q(l- a)X) = (1- a)p(X) <(1- a)rk+l =

=T« {(F AT 1" a| £r°

Therefore g(ax) = g((1—a)x) = 0. This and (1.4) with y = 0 imply that
(2a —1)g(x) —0, that is, g(x) = 0. Thus g(x) = 0 for all x £ B(rk) and
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K £ N. Since r* = 1 we have that g(x) = 0 for all x £ B(1) NK.
According to the inclusions (1.1) now it is enough to prove that g(x) = 0 if

x £ Kandp(x) = 1. Lety = 0in (1.4). Then g(ax) —ag(x) 2g((l -a)x) -
—1 —a)g(x), p(ax) = ap(x) = a < 1and p((1 —a)x) = 1 —a)p(x) = 1—
—a < 1 imply that (2a —1)g(x) = o, that is, g(x) =o. O

6. Our previous results allow us to formulate the following theorem which
gives the solution of the problem raised in the first section.

Theorem 6. Let a £ ]0,1[ be fixed, a ¢ |. Suppose that K C X is
a convex absorbing balanced s'et. For the function f : K —» C, Jaj is a

symmetric Jensen difference if and only if there exist A : Xe—=*C (£ =
= o,1,2) i-additive functions for which Ai is symmetric,

((a) A2(ax,y) = aA2(x,y) foralx,y £X

(0-b 1(b) Ai(ax) = aA\{x)  for all x £ X
and

(6.2) F(x) = A2(x,x) + Ai(X) + AO
forallr K

P roof. If the Jensen difference Jaj is symmetric then / satisfies (1.4).
This implies that / is a function of degree 2. Therefore, by Corollary 2
of Theorem 1, there exists 0 < r < 1 so that B{r) C K and / is a local
polynomial of degree 2 on B(r). Thus Theorem 3 implies the existence of

f-additive functions A( : Xe —aC (£ = 0,1,2) such that A2 is symmetric
and

(6.3) f(x) = A2(x,x) + Afix) + A0

for all x £ B(r). It follows from Theorem 4 that / satisfies (1.4) on B(r) if
and only if (6.1) (a) and (b) hold. Define the function g on K by

g(x) = f(x) - A2(x,x)- Ai(x) - Ao, X £ K.

Obviously g is a solution of (1.4) on K and g(x) = 0if x £ B(r) C K. There-
fore Theorem 5 implies that g(x) = 0 for all x £ K, that is, / has the form
(6.2).

The converse follows from Theorem 4.

Remark. (6.1) (a) and (b) are obviously satisfied by A\ and A2 if a is
a rational number.
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ON IMBEDDING OF FUNCTION CLASSES
Hﬁ,,qllNTO CLASSES E¢ gip)

A. I. AGANIN and M. K. POTAPOV (Moscow)*

To Professor K. Tandori on his seventieth birthday

1. The imbedding theory of function classes starts from the articles of
E. Titchmarsh, G. Hardy and J. Littlewood. In 1927 the latter obtained
the first theorem of imbedding of Lipschitz classes from Lebesgue spaces Lp
into Lg, 17 p < g< oo. The general theory of imbedding of spaces of dif-
ferentiable functions of several variables was initiated by Sobolev. Further
development of this theory is due to Nikol’skii, who created the theory of
imbedding A -classes and applied methods of approximation theory. Ul’ianov
found necessary and sufficient conditions for the imbedding HE C Lgas well
as sufficient conditions for the imbedding Hpl C A4"2, 1~ p < q < 00. These
results were further developed by others.

The present paper deals with imbedding theorems for periodic functions
of a single variable. We give necessary and sufficient conditions for imbedding
H1  classes into E”2i42(A) classes.

We give the necessary definitions. A function ¢(b) is called a *-function,
if o({) is continuous, nondecreasing, and concave on [0;27r], ®(0) = 0. We
define the indices of a A-function 1) as

a = lim lim N
t—H0 ¥>(<) <>-10 on)

It is clear that the inequalities \ ~ acp ~ @pU2 hold for all (*-functions
OH).

The quasi-normed Lorentz space Adr (0 < g < 00) is defined as the set
of 27r-periodic measurable functions f(x) for which the quasi-norm

2r
no=~ °n)
/1 = ®H)7 [ [ (x)dx
I Jo

is finite, where f*(x) is a nonincreasing function on (o ;2] equimeasurable
with |/(i)| (for the definition of f*(x) see [1], p. 213).

* Research partially supported by Grant No. NCJOOO from the International Science
Foundation and Grant No. 93-011-00240 RFFY.
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The quasi-normed Lorentz space Apq (0 < p,q < 00) is defined as the set
of 27r-periodic measurable functions f(x) for which the quasi-norm

|
y

Ipu
is finite. i
Notice that if g > 1and the ~-function 1) = , then the Lorentz space
Adn coincides with Lebesgue space Lg, and if p> 1, g > 0and the ~-function

ip(t) = flﬁ, then Adpsgi coincides with Lpg (see [2]).
If f(x) 6 A", 0< g < oo, xjift) is a *-function, then

L/mr(®M) = sup \F(x + h)-F(x)\\ S G [0;274]
oup

oilihis w,q

is called the modulus of continuity of f(x).
Let 1IS) be a nondecreasing, continuous function on [0;27r] such that

o) = o, and
ué + T~ ui(S) Fu(r)) as ONeNrjné + 71N 2k

Such functions are called moduli of continuity.
If we have a modulus of continuity u>(S), a *-function i{>(t) and 0 < g <
< 00, then let H”q be the set of functions f(x) G Adxg for which

np,u{6\/) = o {u;()}, as 6-* +o.
If f(x) GN™)9, 0< g< oo and is a (M-function, then

EM)d,a=1inf[|/-rn|d

is called the best approximation of f(x) by trigonometric polinomials Tn{x)
of degree at most n —1, n GN, in the space Adr.
If we have a «*-function ip(t), a sequence of positive numbers J1= {An}"Li
such that A, 1Owhen nf oo (i.e. A,”™ An+j, nGN, im An=10),and 0 <
n—»-poo

< g < 0o, then Epn{A) is the set of functions f(x) G Adxufor which

En(Nd,5= 0{ A}
Our main result is the following
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Proposition. Let 0<q\ <oc, 1" «< oo, and let the ip-functions

4 (0 and ¢2(*) be such that 1< an2 £ N\2< 5 RN < 2. Let u(fj) be
a modulus of continuity, A= {An}"Li a sequence of positive numbers such
that \nj, 0 when n f oo. Then for the imbedding C EN2JR(A) it is
necessary and sufficient that

A2
R 0{An}.
i k=n 4 W

This proposition is a consequence of Theorems 1 and 2 below.
We note that earlier Zhainibekova [7] proved a theorem which is a special

case of our proposition, when 4 (o = *15, 4 (t) = th, gh=p g2=q1<p<
< qgq<oo.

2. In the proof of the proposition we need the following lemmas.
Lemma 1 [8]. For any function f(t) E4(0; 21-) we have

sup dt, 0 e (0:24
|£]=0

Lemma 2 [8]. 7/40 is a p-function then f(t)/t is nondecreasing on
(0;2rq and

A¥1 4 %) M VAR + AN) 0N g MR gt g = T
Lemma 3 [4]. If > 1for ap-function 4*) then for allp >0

iH=°Ki

n—k
Lemma 4 [6]. i/a®, > 1/or a p-function 4 0 then for allp > 0

K

Lemma 5 [4]. Te*40 an(t 40 p-functions and let > [+ . Then

XtA
XN T
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LEMMA 6 [3]. Let b(t) be a ip-function, B~ <2, 0 < q < oo. Then for
all functions f[t) s Adpg

Ci(™q)lm q WAV Q0 can9)i;.2

where the functional ||/||* is defined as

2r dt
o5 m m ? -tr

Lemma 7 [4]. Let p{t) and ifit) be p-functions and let av > *. Then
for the function

(o, t=o
1 le (°;2n}
there exists a p-function o i(t) such that a@j > 1 and
Ciip,if)®x{t) G 0(i) » C2{p,D)®\LL).

Lemma 8 [4]. Let ip(t) be a p-function and 1~ g < oo. Then for any
fi'C) £

neN .

Lemma 9 [5]. Letip\(t) and fait) be p-functions such thatl < a”2iL

A Rfo < Rl E 2, gi >0and> 0 and let u\{6) andeX IS) bemoduli
of continuity.
a) If
. o2
E O (E)wi (£) < 00
- . ~ W
then HP\T C N1"2R and for any f(x) £ A, g
¥2>92 —
L]
"2 (7 r O 1
A C{p\,h2,9\,82) .+
{d\, ) Vi gq: VEI . A L 1m )
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b) if

/ 00

(i)
Vv
\n=k Vi LWl
then H7uqi C H”"2,42 and f°r any e
) i 92
2 (Yw ™0 (1) I«
AV-2,92 = C(P1, 2, A1,4U2) 1 ~2 ai
¥i LW

c) Moreover if Ripl < 2, then conditions a) and b) are necessary.

Lemma 10 [9]. Let wy(&) be a modulus of continuity. Then there exists
a concave modulus of continuity u>\(6) such that

u(S) o oji(S) 5 21j(6), 0~ 6~ 2.

Lemma 11 [6]. Let 0 < g< oo and /ei ~(i) be a ip-function such that
1<ay "B*<2 Lein”™ /i™ 0 6e integers, DUYx) — Yf, cos kx. Then
k=R

a>1 SC(d .-y +Lb(~L _) ;

b) sup h-M K .
4€(0;21r] ~ " Nr=nT1

Lemma 12 [6] Leiq >O,

N, 1~ g< oo

P=\
{0 o<qg” 1,

and let ip(t) be a p-function. Then for any f(x) £

n £ N.

Lemma 13 [8]. Let f(x) and g(x) be 2iv-periodic measurable functions.
Then
it FZm

[ t(yg(tydta [ tx(t)g*(t)dt.
Jo Jo
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Lemma 14 [6]. Let0< g\~ g2< 0 and let df1) be a ip-function. Then
for any f(x) GAy,g

1W1* |, = 04>91>«r)11/1ndl

holds true. In particular, it follows that A% C A*i®.

The following two lemmas are proved by standard methods, therefore we
will formulate them without the proofs.

Lemma 15. Let q> 0 and let i/)(t) be a p-function such that 1 < ay, »
AN Rg, < 2. Letf(x) G f(x) ~ Y akcoskx, where ak » 0, K GN. Then
k=1

En(f) gy Z C(@.¥)® ne N.

Lemma 16. Let g> 0 and let ip(t) be a p-function such that 1< a* »
5Ry, < 2. Let f(x) e APY f(x) ~ IZ—I ak cos kx, where ak » 0, KG N. If

there exists r > o such that an mn~T {, then

En(f)q,,g” C(ip,q)ntp az2n, n GN.

The proofs of Lemmas 15 and 16 repeat almost word for word the proofs
of the analogous lemmas for the space Lp, 1< p < oo, and, therefore, are
omitted.

Lemma 17 [8]. Letq > 0 and let g(T) be a p-function such that 1 < ay, i
i By, < 2. Let f(x) e Agpn, f(X) ~ ™ + IZ-I( akcos kx + bksin kx), Sn(x) =
n—1 -
N+ Y (akcos kx + bksin kx). Then
=1
Wf-SnW*qiC(ih,q)En(f)™*q, ne N.

Lemma 18 [8]. Let g> 0 and let gy(k) be a p-function such that 1<
<ay, ™ Ry, <2 Letf(x) GNdgn, f(x) ~ kY—I akcos kx, where ak | 0, when

K| 0o. Then
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Lemma 19. Let g> 0 and let rp(t) be a <p-function such that 1< ay, »

N Ry, <2. Letf(x)s 10K) ~ ;o Rfccos kx, where &% j 0, when K j oo.
Then !

%1()*, rew,){ (1)

ATTT= 77 n ' J

Proof. Using Lemmas 18, 17, ¢ and part a) of Lemma 11, we obtain

i:t<"ql(".)‘l*-IX: ) (M)MI+E (M)m 1=

777=717

n—
[(*) - Sn(®) + an ~2 cos ma; w C(ih,g)l 11/ - 5,,[|">0+
777=1 7/7_9
n—
E cosmx
Applying Lemma 16,
%]()Y,,.9” c(d.a) [-] o | 1adal “c(o.p)ne  J an

Hence

ELIN*, re(n,)(F; arpc (1) .w»-1}".

Lemma is proved.

Lemma 20. Let u>(6) be a modulus of continuity such that n(6) ¢ 0(<5),
let {An3-=1 be a sequence of positive numbers such that Xn [ 0 when n| oo,
let ifi(t) and m{t) he p-functions such that 1 < ay,2 n Ry,2 < ay,, ™ By, " 2,
and let g > 0. If

H C

then there exists a nondecreasing sequence of integers and a se-
quence of positive numbers {Bn}™=1 such that
1) Bnj 0 as n f oo;

2) Bn<n (E) ,ne N;
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3) {\], »m>-«}' £ CNE*l), It Nf gc{\l

4) ionferr N nferi > 2nfc kK e N;
5) E/taf -NCr(® M E -UM )

n=n/- \ yi'n/ ! 71=71*

- C2{rpi,rp2,q)\ak, K GN;
NW Iz2TM 1) X2 m\ i C(chm p2,8)X%, nk it N < nk+i.
n=N Ll )
P roof. Using Lemma 10, we will suppose further that u(<5) is concave.
Then "p- 1 when 6 +0. If pp- ~ C when i j +o, then we have o< =

= O(S), but this contradicts the conditions of the lemma. Hence ~p j 00
when &! +0. Letno =0, n\ = 1 Ifn\ < n2< ... < nkhave been chosen, we

define mk+1 to be the smallest integer N for which Nui (jj) > 2nkw ,l.e.

nyj (i) » 2nk (~), When nk * n < mk+l and mk+lu > 2nku
Owing to the fact that

A Too (S 1+0)

such an integer mk+i exists. We note that mk+1 > 2nk. Indeed, if nk U n U
2 nk, then due to the monotonicity of w(6), we have

HW A 2nku
nk
and, consequently, n ¢ mk+\. If
1 1
U
nk
then we set nk+i = mk+\. Ifu>¢Pk+l) > >then we take nk+1 to be
the smallest integer N for which
124
=r
It is clear that in this case
|
k+1 ~ TTlh+ 272/~ U
nks 1 nk
" >N (—), N n < nk+1.
2 {n k/) =
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We set

*) Bx=w(l), Bn=u , Nk < n” n*+i, ke N.
nk 1

Since d(6) | +0, as 6] +0, (*) implies that Bn [ 0 as n ] oo. Therefore,
parts 1), 2) and 4) of the lemma are proved. Notice that Mk+iw (  i* >

> 2y ,KGN. Hence forn/_i < V5 n/, 1s N we have
v i— rik N
E +dv E S
71=1 le=1 n=n*_i+1 Ti—Tii—1-]-1
k=1 4 T n=l 4 7 n=l
1\ \P1
Sew (v [ g PIM(— <
ip'
set;, ;_iu; Ng <
) ety 1|1§| EIXZS 9 N
~ cig) NI

Thus part 3) is proved. Let nk » N < rik+1, ks N. If kti = nik+1, then,
using Lemmas 2 and 3 we obtain

" " 1hMiMi) =
n=n L VL n
14
E w>Ll foil;) \j< (L DWE*+.-1)
= N LU n VA ()
. b\ 1
A
Xn:N/\ «/ . « M 1T_t;(:(d.‘)Z,,q)dDr
= C(rh,q) NC(Mag) .
(x)
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If nb+\ > rrik+i then using Lemma 5 we obtain

E—lfMU»(h) o _1\ nk=|=1LIJ

t=iV n n=1 N1 LW

<

(B)

AOObuM) <

i C(Vi,V29)A fetl A C(M1,72,q)XHN.

Hence we proved that part s) of the lemma is true. Using (A) and (B) we
obtain

E T ﬁ:E E MDOMiY 1,

rL—Tife M |) ) i=fc n=nr MI) n
(W i) 2
S C(e!,2,0) ~ _
i=fc N (|)

Applying Lemma 2 we have

u 1,\\9
'B,<h(k)Y 1 Mil "1 >
nI:Enk M (1) i=%+| ’n:T!|E_|+| X1)
00 9 1
a E suysw
i=fc+i L u
fe) (1)
[=fc+i N (I)

a - - Ey
= Ci(Vh,9)" (I) (I) - CiiVh ) >
i=fc A\ (I) q]].”.l
N C2(01>2,8) 5_/\ (Mlu\l/l)l)g .)}- C3(®1,8)KK.
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Thus part 5) of the lemma is proved. Lemma 20 is completely proved.

3. THEOREM 1. Let 0< 91 <00, 1" ¢g2< 00, and let ipi(t) and ip2(t) be
ip-functions such that 1 < a”2 i1 By,2 < a” ™ Rt ii 2. Letuj(S) be a modulus
of continuity, A= a sequence of positive numbers such that \nj. 0
asnloo. If

(1) q)r |.|.| n = 0{Afc},

then H;ugi C Eq2Y(A), and for any f(x) £ A", g>

mlég

(2y Exk(Ip2R # C(Mu tp2,qu g2)1 1T (/in) -

1«

Proof. Let f(x) £ tf* ,and let condition (1) be satisfied. Using Lem-
mas s and 9 we obtain

Ek(f)y,242 » C("2,92)" 2% (/i ~ ~

92 @

®? (n / L
A CiV'h 42,91,92 K X ] (n) (/) n) . <
Yil= .
92
H 92
M X i) &

AC(tii,%2,91,92)< X !
t=lc. * (i)

q A C(V»i,2,9b92)AjK.

Hence we see that /(ar) G EX42(X), and (2) holds. Theorem 1 is proved.

4. Theorem 2. Lei 0< 91,92 < o0, and let Vh(i) and be ip-
functions such that 1 < o2 " Ry,2 < N RN < 2. Lei w(E) 6e a modulus

of continuity, A= {Ari}” a sequence of positive numbers such that A, j O
asnloo, and let Cey.2n2(A). T/len

92

1
- = 0{A.}.
@) E - {A}
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208 A | AGANIN and M. K. POTAPOV

P roof. We suppose that C EN242(A) holds but condition (3) is
not satisfied. Then there exists an increasing sequence of integers {r,}*
such that

f 00 . 2
(4) Jv Z(r)W(r) i>AtXr71
[k=r, V'l (e)

where A{ j oo as i | oo.

Using Lemma 10, without loss of generality we assume that u(6) is a
concave modulus of continuity. Notice that without loss of generality we
may assume that

_ 2 M eM e)
(45) Z Vi LW cfc<0°”

since otherwise, using Lemma 9, there exists a function g(x) in 4~  which

does not belong to 1292 and to EG<A\) £ A"2ii2.
Since dx(t) and ¢2(E\ are <E-functions,

iM eM e)
Z ~(e)

(oM o 2 (EM £
> [ leM e a rc@) ¢ )
(n)

(5)

Due to (4) and (5), we distinguish the following two cases:
a) There exists a sequence of positive integers such that

(6) Lo(i) (*) > DiXr
*(4)

where D{ f oo as i | oo.
b) Foralln~ 1

W
(T) . < cXxn.
IM)
Let the modulus of continuity oj(E) satisfy the condition

() 0i(S) = O(f)) as 6. +O0.
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Then we have Case a). Indeed, as ui(b) ¢ O, is decreasing due to Lemma
10, therefore C\b ~ u(s) » C™. From here, applying Lemmas 2 and 3 we
obtain

E te (e)
92 92
M e)
=n xo1(e) K =02 k—
=c@2a2 ML gcip, ) 2EM O
n™io LW te LLI
Hence and from (5),
C(q2) te (e M e) <
te (e)
SE M eM e) 1AC(¢)2L|2) M eM e)
te (e) K ' te (i)

We obtained that condition (4) is equivalent to condition (s ) in the case (s ).
We will show that in case (s), if condition (4) or (s) is satisfied then
Hcpx/ 1 he. there exists an increasing sequence of positive inte-

gers bl ~ 1, ni = 1 such that

where Dt j oo asi| oo, then there exists f(x) G , which does not be-
long to the class E¢2"2(A). Without loss of generabty we assume that

w =1 ni+i > 2nr, and DI+i >24, i GN.
We will consider the series

n m 1 .
== A —r-ZT 2 [cos riix + ... + cos(2wy, —I)x] .

@1 nlte (£)

f(x)
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210 A. I. AGANIN and M. K POTAPOV

We obtain

Q@Bnx + ... + cos(2n, —I)x <

00
D: 2 o7l =
< (1)
1 1 1 i
mA'5S - 7T\T ,dP < &©
N n,<h (;j) » A (i) =i

i.e. our series is finite, therefore the sum of the series is a continuous function
f(x). Then f(x) G We will show that f(x) G qgi. Let

1, 14 qgi < oo;
V=
9i, 0< ft ~ 1.

Let fi- » n < 2@, rc N. Then using Lemma 11 we have

)

N E ! D- Icosrijx + ... + cos(2n, - 1)z|| A
A C(Ni20)E -Dj 2 enjipl
J=* \nj (%)
_I\p
A e
1=1 '
y o-\ < C("bgi)a-g
2LMU3 = «p r o
J=

Let 2n, ™ n < nl+1, i GN. Then using Lemma 11 we have

10 LIy SEL (), S
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0 \'
< £ D cos rijx + COS(2 rij 1)%‘\795
j=«+1
np Uu*+i . uj = P, ui oo
N« j=i+l n‘+l

Using Lemma 12 and the estimates (9) and (10), as g i n < 2w, r£ N, we
have

;@S P If£ e--d(Nn,,l

k=1
t—1 /2ny —1 m 1—1 \
OAbih)
£ £ N1 ()* 0+ £ r-'"eEKn?, +
J=1\ foy k=2n3 )
+£ oy (9 o 9f —
k—n,
ry f 2ny—1
Em
£
D
+ <
k=m

< C(ijgi)

t E £ E
) - - P< W |
) mte.¥)+e, o bﬁ)
1

!
i=i
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Using Lemma 12 and the estimates (9) and (1), as 2n, » n < n!+1,i EN,
we have

C c(o
Ui\ &4 n
A
Cvaioh Y-l fany—
>i,9i E E
=i Vv
nd+l -1 2n,-1
+E o+ E
k=2n1 k=nt
+E AWM [ —
k=2n,

~4 «J+1-1

PAAE N )+

194 E *4BAE FY S

fc=n, K—2r{

- c(0,9i) tE (,\ E

k=rij

i -5
< COPTD B (A ypBe)+EM*+pN <

Hence /(x) E gi. Using Lemma 9 and (4') we have f(x) E 17252 We
will show that /(x) 0 E”202(\). By virtue of Lemma 15,

2n,—l
En,(Nh2,@2 » C{h2,92)d2 Y ak =
k—nt
= C(th2,82)h2 [ - D; *em =

«hMIT-J

= C(qu,uz)--?fﬁhl.'m 2[>C(d2,q2)D2At, D2]| 00 as it 0o,
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This contradicts C E2/12(\). Hence (4) is not true, therefore in case
(¢) the theorem is proved.
Consider case (s), when ux6) / 0(<5). Without loss of generality we

assume that u>(€) is a concave modulus of continuity. Hence | oo as
S 1 +0. From the sequence {n,}” we will choose a subsequence {m , }*
so that mi = 1, and if mi, m2,..., m" have been chosen, then we define
mk+l to be the smallest of the integers N G {wi}"i for which N4 (») >

> 2mku Then mu (A) < 2mky (A-), m G{nt}, mk” m < mk+l

and mk+lu N> 2mkus Owing to the fact that foo 6j0
such an integer mre+1 exists. Since u(<5) J0 as SJ +0, then mu (A) »
N oamku MAN as mk ™ m N 2mk, therefore from the obtained inequalities

it follows that mk+l > 2mk. If n A AAjj , then we set mk+: =
mk+l. Ifn A 1then we define mk+\ to be the smallest num-
ber N such that N G{w}, N > m'fc+l, for whichn (") < AA_~mThus in
this case »»(A) » (A-) asm G{n-} mk™ m < mk+l and un ) <
< W A_"N As u>6) | 0 when 6J0, such mk+i exists. Besides, we ob-
tain that mk+\y j > 2T "A-" and mk+1 > 2mk. We set B\ = u(1),

Bn=w(" 7), mk<n” mk+, KGN. Hence BJ0O as n| oo, Bnktl <
< I Bmk, I g N. We will consider the series

I(a;) === " 7 [cos mkx + ... + cosczmk- 1)x].
s=imAi(4)

By virtue of Lemma 11, we have

E _ Bmklicosmkx + ...-(- cosemk—D)x| <
(D
@®
AW PL9i0)- £ -Bm wrkd\ (—
(4) ‘m k
(e0) @O / 1 \P
= C(<D|/|qi)Y,1K k' S C(d1,91) *B\ -]T1 (-kZT) ~C(dp1,a1)BA.
k= k=1" :
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Hence the series converges in norm to a function f(x) G /1"b?1. We will show
that f(x) GA™ . Letm, » n<2m;, i GN. Using Lemma 11 we have

EE(N*,AS EE,(/k, oA

= £ | T7T B"blcosmjx + --- + cos{2mj - 1)z][| , <
<
°° [ 1\p
n AC(Pr,A1)B ",
s =0
Let 2m; in < mi+i, i GN. Using Lemma 11 we have
**</)+,.,, s El S
1 . . . !
£ E —Y 5mj|| cosmjar + ... + cosmj —D)x||* 9| £
P /\
i=iti 7
AN C(tpi,gi) ~ - 1 ' Bm mrijipx (— )] <
jot+i

%}( i C(tpi,qi)Bf +im
0

Let mi ™ n < 2m;, r GN. According to Lemma 12 we obtain

5=

,r1W W i,9i0)
91

fe=i
1 2mj—1 mj+i-1
+ E
J=1 \ k=rrij k—2m,

+E :

K=TT
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-_ - 9I){g(8k lm]+BmJ+1lnFj+].)+K ’BT,Y\ i

< C(®n Q) IE Tiljad <
n | TO
{i=i L
A i P\ P
< C(|I3|,q|)_'/I3 (_1 \ ‘W . /\é- /_1 <
n \Tm =/ YA W
vs=0
N CQi:qi /1 , = C("™>igiw (- ).
n \n

Let 2mi ™ n < w!+x, r EN. Applying Lemma 12 we obtain

AAC (b 1) T A px
WL /N - R EilﬁlEM A

U
b2 i) il /2m}-\ mj+i-1 \
w ?2i0) i
+ +
>Igl \k—Em'j k—?lE‘ﬁj /
2mt—
1
+E k'KV)*,, +E s
Ir=rg; k=2mx )
< C(onp)) E

E No |, eK + B™M+i -K «) + < ek . +» '< J+1J =

< Cipvapl) L N +n )
n E, [b ( 3) i el
. P
< Wbol) I TOM;
I *J .= 4 Lu S
< | 1\ /1
C(Cb; ﬂ.l)a; i}l en = C(V>)i,9i)q_w
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216 A 1. AGANIN and M K POTAPOV

Hence f(x) E . Due to Lemma 9 and condition (4'), we obtain that

f(x) E1"2,92- We will show that f(x) ¢ Eq2<4X\). By virtue to Lemma 15
we have

if we suppose = nJx but {Djt} C {A} and therefore Djtj oo as it oo.
Hence f(x) ¢ EdRi%(A), and H$iqi £ EdP92(A), i.e. (4) is not true, therefore
in this case the theorem is proved.

Consider case (7). As we noticed in this case w(6) ® 0(6). By virtue of
Lemma 20, there exists an increasing sequence of positive integers {nk}”.r
such that rik Too, and a decreasing sequence of positive numbers {Bn}n=1
which possesses all properties of Lemma 20. Then rik+\ > 2n*, K EN. We
will show that there exists a subsequence {sk} C {ujt} such that

(")

We suppose that this condition is not satisfied, i.e. there exists a constant
C such that for all n*, K E N,

Then due to (6) there exists a set of pairs of positive integers (n”, nfct+i)
and a subsequence {r-} C {r«} such that nk, < r[ < njt.+i and

A"joo as ij oo

where {A-} C {A}.
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On the other hand we have

£ (itiMi21= fMiMil)2i+

+ £ i - "ok 4 =c'a’ +cd4*. SC2aS-
"=<<*,+l )9\ -ﬁ:-S ) Cc a C a
This contradicts (12). Hence (11) is proved.
Consider the series (no = 0)
00 1

n
f(x) R 7—vBnkJ[cos(nfci + 1)z + ... + cos nkx\ .
k=i nkd

We will show that the series converges in norm to a function f(x) £ Nl
Using Lemma 11,

E Bl'kllﬂﬁ\_i+ 1)2;+ oot @i ~ A
(i)

NC(ML9) N "— nkN (— 11 <
-\»*fc (i) I %
00 / 1\P
We will show that this function belongs to the class . Let nk~1< n~"

~ nk. Then, applying Lemma 11 we obtain

BrICOS(Nii + 1k + ...+ GBHjx|~ J ~
SE ¢

SC(*,.)E Bn, erijipi (—\ | <
|=k\n.=.*(i)
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[ 1\
£ ((Pe<)KnE bll IOsc(b,4i)K =C(J1,«<)Y-

Further, according to Lemma 12, we have

n / C(tMi) i
(i HLCUMD TR o em o <
%=1

p

< C{®n91) S3 A S » . » =
AL
G)'
Hence we proved that f(x) G . By virtue of Lemma 9 and condition

(4') we have /(x) G A~2)92. We will prove that /(x) £ E202\). Applying
Lemma 19 to the function f(x) we obtain

(13) £ ,No **«(*,11)e
25, 4

where an are coefficients of the Fourier series f(x). Further,

n=«fe kb b i+l

n=l 2 J
nk+ 1'42 J e+ 1 <
N - > - — -</-
2 ( 1 1 2 nk 2 - 29 +1v92\|/’\fc 2

ffl
Applying Lemma 4 we obtain

E -n22.1 N -< 2-
n=n* 1+| W VTlfel
Using Lemma 20 and the obtained estimates, we can write
£ «?*?G) -
n=t% \Y
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= E 2d) "Bl- E 1)m *

Mn— n=sk+\ —

0 Mr / 1\ M+1 I\

2o 5 an2 [-) mi~1- 11 an*¥ || vl ]:
m=jfetln=nm_1+| «=" i

92

= E > E tf(i)-"-1
Skl A (). S ESLLIU L
1 92

nJk+H . Z|.92_1 S
K 7
nK+1A (0, M), Rl W

92

B

Bnjic+i * (AT

rc{42) Y C(rp2,02)
mejkel  * () (=10
oo (B . () 92 “ 92
=C(q2) Y c(q2) i
™=k A (I) M I)
i (sir) -
-C(V>2,92) >
n(4T)
b ,q2) b Emi s iMooyl
q = q )TTI—Jk TI—Myn —1-f1 n(l y n
_Chl (1) " (i cteg2) MMIH M) >

Mi) Min)
\ T, (BkKor™M)y 1
=CNg’fcti'n:ﬁ,\_!ﬂ(—ﬁ/wlf)/ v
C(@A" - CLUBIAML A Clo1, ,02)s £3° MTTITY 2.1,
n-SK
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220 A | AGANIN and M K POTAPOV

By LE[\\ )

+C($1,02,92) v N
n=ndk-i +I ! M] |

-C(h2,u2)Xgx » C(th1,h2,52) "@ ‘A AVVI nr

s 1)1

~C{¢2,82) \\ = £(01,02,92) m Y1 ’ V')PZV')F R
e 1] n

-C(PbD2,P)\K-C(h2,R\Y%KT C(dhb p2,12)TK\% -C (*,02,bl N2k =
= {C(pbh2,42)Tk - C(01,02,bl)

Using this estimate and (13) we obtain
£g(/w =(agb*,bl N -c(*,*,«))n|.

where Tk j oo as Af This contradicts the assumption C E™Mq(X).
Thus Theorem 2 is completely proved.
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AN APPROXIMATION TO INFINITELY
DIVISIBLE LAWS

S. CSORGO* (Ann Arbor)

Tandori Karoly professzor hetvenedik szilletésnapjara, tanitvanyt tisztelettel

1. The approximation

One question Professor Tandori asked at my doctoral defense on Febru-
ary 2, 1972, was about infinite divisibility. Since he was satisfied, my answer
probably included that, according to Lévy’s formula ([9], p. 84), a distribu-
tion on the real line R is infinitely divisible if and only if its characteristic
function t £ R, is given by

ft)=exp|iW - 2+

where i is the imaginary unit, 9 GR and a ~ 0 are constants, the func-
tion L(-) is left-continuous and non-decreasing on (-00,0) with L(-00) = 0
and the function R(-) is right-continuous and non-decreasing on (0,00) with
R(00) = 0, such that

\] xz2dL(x) + \] x2dR(x) < oo for every s > 0.

Little did | think at the time that | should be able to answer the question
somewhat more thoroughly twenty-three years later. | hope he will like a

few late details here.
For a given quadruple (9, a, L(-), R(-)) with the described properties,
let Fek,L,R{") denote the corresponding distribution function, so that ip(t) =

* Partially supported by the National Science Foundation of the U.S.A., Grant DMS-
9208067.

0236-5294/95/$4.00 © 1995 Akadémiai Kiadé, Budapest

\] (c1
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= JN ettxdFeldLtii(x), ig R. Consider the inverse functions

= inf{x < 0:L(x) > u}
and
Pr(u) := infla; < 0 : —R(—x) > n}, 0< un < oo,

where the infimum of the empty set is taken to be zero. These are non-

decreasing, non-positive, right-continuous functions on the half-line (0, 00)
such that

co r oo
/ ifi(u)du + / iDft(u)du < oo for every e > 0.

Let Y\,Y2,... be independent exponentially distributed random variables
with mean 1, so that P{Yk > x] = e~x, x> 0, K EN, and consider the
corresponding partial sums Sn := Yi + eee-)-Yn, N EN. Let Z be a stan-

dard normal random variable, let {5~}~" and {5~ }~ be distribu-
tionally equivalent copies of the sequence {«Sn}” such that the sequences

{ =1 an”™ Z are independent. Now consider

(1.2) =Y, dPm~AM) - / " iPM(u)du, nEN, M =L,R,
j=1 Ji
and the problem of approximating Fe”~”~”i-) by the distribution functions

K:™LR(X):=P{VnL)+°Z- ViR)+e- eL+0Riix}, XEK, n,mEN,

where

(1.3) 6M = M@)o ®M*) g5, M = LR
1+ "m(s) 1+ Vm(s)

More precisely, we are interested in seeing how fast the Lévy distances
Dnim{L, R) between FAMLR(-) and Foc,I,r (-), defined as

inf\£>0 "7 (x-e)-e” FerLR(X) I FE™ r(x+¢e)+£
forall x ER],

go to zero as n,m —yoo. As it turns out, this depends upon how fast the
functions @ (y) and iPr(u) approach zero as n —»00.

Acta Mathematica Hungarica 68, 1995
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For M = L and M = R and any a > 0 consider

1.4) vM{a) := flrszu)du, so that |*>m(a)] |0 and
vm{d) 1 0 as a] oo,
and for a fixed 1/2 ~ dm ~ 2efe 2)/2 choose a finite &V > 0 so that

(1.5)
‘dvf{a*m) = 0 if pm{a) —O0 for some a > 0 and

w{di/l) <~Ife and HD/{H’M)| A QG/d\A ¢M(a)<0 for all a >O

and, with log standing for the natural logarithm, for all af.a*M define

wM(a) .=
WIM)(«) = T S e
w2M\ a) = 5 Idm(a)llog % Y i) > vy 2
w3aVl)(a) := ItM °)| log ifM i <1< /21log 1

where, since ¢2m » 2ele_21/2, the second inequality in the specification of
wsM\ a) is satisfied because % (a) < |™a/(a)| if e-ee/2/dm "~ e_e/2. While

it is understood that w\f(a) := 0 if gom{u) = 0, since otherwise 2w~M\a) f

i 17MAi(a)| log (1/17n/(a)]) + % (fD)log (1/ na/(a)), it is clear that wm{o) —
—*0 as a —#woo, M = L, R. Finally, setting

rP{Snin a} + 2wM(a), if ¢gm(-) ® 0 on (0, 00),
| 0, if dm(") = 0 on (0, 00)

(1-6)

for M = L, R and a ™ aM, the main result is the following.

Theorem. If ai“.a*L and ag f. aR, then Dnt(L,R) f r[blab)+
+ru?\ay) for every n,m E N.

It will be also clear from the proof (and will be followed in bracketed
phrases) that in the case when ¢m(n) < 0 for all n > 0, if n)m(a) = w[M\a)
for all and »m(em) f e-2/e for some am/Im > 0, then the choice
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aw = wax(0m,0/J1) is permissible, while if lirfa) = w2 \a) for all a ™ am
and \pm(am)\ < 1, vM(4M) < 1 and the product ym (am )\dom(am)\ 1 e-~2
for some #ig/,ag/ > 0, then again we may take @M - Tax(ig/,am), M =
= L,R. The constant df enters the threshold &M as in (1.5) only if the case

wm(u) = wsM\a) cannot be excluded for M —L or M = R.

To use the theorem, one will choose two positive sequences {a”™ :n G
GN}and {a :nGN}suchthat imsup”™”™ OnFjn< 1, M =L, R, and
obtain Dnm(L, R) (an) + (affl) for all nand m such thata”™ ~

~Naband a ™ aR. For an = a[L*or an = a\?\ the limsup condition is to
force the gamma probabilities

go to zero as n —>o00. This convergence is the fastest if an = a for some a
alL or a4 ™ aR, in which case an expansion of the incomplete gamma function
([8], p. 135) yields

n N

(1.7) P{Sn~a} = \{ ~ AEA (n+ (0 -F2) +ee(n + K < . NGN

On the other hand, wm(«n) -* 0 fast for M = L or M —R if an —»oc fast as
n —»00. For the fastest possible sequence an = rra, the elementary Lemma
3.1 in [7] gives

(1.8) P{Sn ™ Ta} e " "2 whenever 0<r<1 nGN.

In a concrete situation a trade-off between the opposing tendencies has to be
found.

If the limiting infinitely divisible distribution function is
absolutely continuous with density fe,a,LLR(") f°r which Ke<«lL R m—

:= sup{fe,a,L,R(x) *x 6 R} < 00, then by the theorem and a well-known in-
equality connecting the Kolmogorov and Levy distances, for any two positive

sequences {aJL*:n GN} and {a,,R™:n GN} as above,
(1.9) JRIKT 1 r(X)- FooLr(x)\ i
< 1+ KO L] \riL){afL)) + rffl(affl)

for all n and m such that 2 a} and a“1] 2 | Rm
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Another general corollary is for the case when the Lévy measure of the
underlying infinitely divisible distribution is finite, i.e. in our terminology,
both L(0-) < oo and A(0+) > - o0o. In this case, db{-) is zero on the half-
line [Z/(0—, 00) and ¢ *) is zero on the half-line [ —i?(0+),00), and the
theorem and (1.7) together yield

[1(C-)11 | [-AO0+)]"

forall n,mGR.
n\ ml

(110 Dnm{L:R) =

A result of the type of the theorem, though somewhat different in na-
ture, was first proved by Hall [10] for the approximation of stable laws. A
closer version was derived among other results in [2]. Stable laws are con-
sidered among the illustrative examples in Section 3, following the proof.
The theorem above improves the main result in [3], where a special integra-
bility condition was assumed on the functions ¢ and cn, restricting (1.1).
The approach here differs from that in [3] in the realization that there is
no point insisting on the deterministic centering / ” ¢ggm(n)<im instead of the

present /j5" dm{n)<im in V n in (1.2), M = Z,A, and in the associated
use of moment generating functions, rather than just moments, resulting in
faster rates of approximation and no restriction on L(-) and R(-). As ex-
plained in [3], these approximations are made possible by a probabilistic
representation of a random variable with a given, arbitrary infinitely divisi-
ble distribution, obtained in [1]. The sums X)j=i ®b{ Sj1) ~ 0 in and

— ®H(SjR)) = 0 in —VmR™are to be viewed as the asymptotic contri-
butions of fixed numbers, n and m, of the smallest and the largest terms in a
sum of independent and identically distributed random variables in the do-
main of partial attraction of the infinitely divisible law given by the quadru-
ple (8, a,L(-), R(-)). (For a recent discussion of such domains the reader is

referred to [4].) Thus and —V ~ themselves are centered versions of
these asymptotic contributions, presently with random centerings. This is
why such approximations were called “extreme-sum approximations” in [3].

2. Proof of the theorem

On the same probability space (il,A,P) where the random variables
vn,m == \Vernie, a, L,R) +aZ- V"™ +9- 91+ O are defined, and

expressed in terms of the same independent sequences {S »
and Z, for a given quadruple (O,cr, L, R) let V V(9,e,L,R) := VI +0Z -
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Vr + 0—01 + 9r, where for the independent left-continuous Poisson processes

NM(u) =1 {SkM <u}, 0~n<oo M=L,R,
k=l

with unit intensity, where /{<} is the indicator function,

ree i M)
Vm = / (M [u-N M(u)] hdm{n) + / nigpm(n) +pm (1), ™M = L,R.

Then by Theorem 3 in [1], the distribution function of the variable V =
= V(9,cr,L,R) is the function FealLR{) to be estimated. Since

Dnm{L,R) n rfl\aL)+ r£\aR)ifP{\V-Vnm\>rM\al)+ r(*\aR)} /i
%riL)(aL) + rm\aR), the inequality claimed in the theorem will follow if we

show that P{ IVm - | > FI™N&)} ~ rim=(a) holds for all n £ N and @~
N aM, for both M = L and M = R. Dropping the indices in (1.4)—1.6), i.e.

setting v2(a) := /& d2(u) du, for some 1/2 ~ d U 2eV-2)12 choosing a* > 0
so that

rgf{a*) —0 if d(a) = 0 for some a > 0 and

2.1
v(a*) » and |™>@%) i ..Vfijd if ®fa) < 0 for all a > 0,

and for a ~ a*, with the same convention that w(a) = 0 if ¢o(a) = 0, defining
(2-2)
uq(a) := yflv(a)y/log”j, if yj\ log™~ ~j~n,

w(a) m= w2(a) := §1d(a)| log ,.{a\d@)\, if logp] >~ nN

(r03(a)  d Id(a)\ log if sj\ bgnry > 1> (Xf?‘))l,

for a non-decreasing, non-positive, right-continuous function dx-) on (0,00),
for which v(a) < oo for all a > 0, we have to show that for all n GN and
a”cr,

(2.3) P{1A.| > r.,(0)} ™ r.,(a),

where
fP{Sn ™ «} + 2w(a), if ¢(-) ¢ 0,

to, if &) = 0,

rn(a) :=
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and, using that the jump-points of the Poisson process N(u) :=
= I{ < u}m0”™ un< oo, hit the possible discontinuity points of dx-)
with probability zero,

o _ /o*1
A, = | [u—iVW)] <iom + [ w. 1o+
JSi J1

£ ~GI+ T dm)(m=
j=1 71

[ A|I f 7SJ+| 1

g Yt e IR R R AR

+ [ U(2d(n) V() - X] AN+ / P{n)(1n =
n j=1

oo rsn rsn

[ [u- V()] ap(n) + 1 iidA(n)-f | d()cm —nd(s m) + (1)
Jsn J1 -

roo

= J/Sn [n- ATU] #(«) + ~(S,,)[Sn- n]

almost surely. (Throughout the usual convention jf mm<ldy:= /(cd] '*' »
applies for all 0 < ¢ < d < 0o. The integral on the half-line (54,00) exists
almost surely as an improper Riemann integral by (1.1), i.e. by the fact that
v(a) < oo for all a > 0.)

If p(n) —O for all n > 0, there is in fact nothing to prove. (And here we
have P{|A,| > 0} = 0 since An=0.) If d¢(-) ~ 0 on (0,00), two cases are
distinguished. The trivial case is when ¢(a*) —0 and hence ¢ (r?) = 0 for all
v N a*. In this case, P{|A,,| > rn(a)} » P{Sn ™ a} + P{|A,,| > rn(a),Sn >
> a} = P{Sn~ a) and w(a) = 0 for all a ™ a*, and so (2.3) follows with
rn(a) = P{Sn " a}.

For the non-trivial case, suppose that d(y) < 0 for all v> 0. Fix nG
GN and a ”~ a*, and put gn{x) := xn~1e~x/(n —1)!, g > 0, for the density
function of Sn. By the definition of rn(a) in (2.3) and by Markov’s inequality
we have

(2.4) P{IAn|>rn(a)} 1 P{Snii a} + P{ An£ 2u>(@), Sn> a} +
+P{- An”" 2w(a),Sn> a} £
S P{SnS a} +e-2sw*E (esA4{Sn> a}) +e~2tw* E(e~tAd{Sn>a}) =
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= P{Sniua} + e V@ osip(v) _ 1 _ dv >gn(x) dx+

[ - a
re 2G| mr p —1+ tifi(v)~di~gn(x) dx

for every s > 0 and every t > 0, where the last equation for the restricted
moment generating functions follows by a slight modification of the first part
of the proof of Theorem 4 in [1]. Actually, the slight modification is just the
trivial one to account for the restrictive presence of the indicators. Indeed,
that taken for granted and setting

ro rSn
A* := [ [v- N(\] drp(v) + / vdrp(v)+
Jsn J1

+ ip(v)dv-(n-1)ip(Sn)+ ih{l),

Theorem 4 in [1] directly gives (replacing the it there by u) that for all u GR.

Euxp(v) _ | _ qu{y) dv + ut \-
p(v)-\
£(e“n: {5">"}) = r L‘I r r e 1+m
fn fl+x ih(v) é3(v) 1
+u ip(v)dv+u dv-nu dv \gn{x)dx =
J\+x Jx 1+rVv) Jm H f W J
00 f roo 71 A
[ “exp< | o) —1—uifi(v) dv ¥ uxp() T u / on{x)dx,

where the second equation is by straightforward algebra. Hence for

rn roo /-S,,
A* - S e (o Tus AT{0)] V@) + /()
+3iw)dv - I’m\'_))'y(]):
R ] snisE)s nASn) = A,

Jsn

we clearly obtain

ﬂ%@ —] ng ewpy) _ i _ dvAjgn(x) dx,
Ut R,
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proving (2.4), where the integrals on the right may or may not be finite at
this stage.

To estimate the integrands there, we use the inequality that if ¢ ~ 0 is a
constant, then eu—1 —un » ecu2/2 for all —e0 < u ~ c¢. For the first integral
in (2.4), we have —o0 < sij>(v) < 0 for all v a, so that

’2
esilp) _ I _ —d2(y), v~ a forevery S>0.

For the second, since the negative function d(-) is non-decreasing, we ob-
viously have 0 < —ti/>(v) = tip(v)\  \d(y)\1\d(a)\ 51 1 whenever 0 < t is
N /InM>(a)] and v N a, so that

e-Lly) N MN2(i)7 v'ta forevery 0<t< ——7.
2 0 (a)l

Hence, moving down g to a in the integrals in both exponents, from (2.4) we
obtain

(2.5) P{ 1AM > rn(a)} *
S P{Sn~™ a} + exp|—v2(a) - 2suj(g)| + exp|™- v2(a) - 2iu;(a)|

foralls >0and 0 <t 1| ™>(@)
Using (2.2), for all choices of a ~ a* for which w(a) = we have

11/7 n(a) 1
w2 a) > 0\/0 T 10§ -57-4
LDl |

Also, for all a ~ a* for which w(a) = w3(a) the choice of a* in (2.1) forces

4 — > eee/2/d > ee/d > since

= 1 >
v@ ~ \dp@\

v(a) < Ipfa)\ and d ™ -.

This implies that Alog x> y/e/2/d or, what is of course the same, y/e/2/
/ (clogx) < 1and, consequently, ~ /2x/ (dlogx) < agf/log x So,

1/|_JL<|/eX X
d\21log¥ d 2 logg ~ yiogx
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whenever y := 1/\d(a)\ < % since the function y/\ogy, y > 0, is increas-
ing on the half-line [e, 00) and y —1/\p(a)\ > e by the choice of a* and
the upper bound on d. But by (2.2) the inequality y = 1Ad(a)\ < l/v(a) =
—X is equivalent to w(a) = rn3(a). Thus, if a ~ a* and w(a) —LLB(a), then

\[® M bgy < dx/\/k>gD or, what is the same,

F 1 o
V2I~llogA that is, wi(a) < Ws(a).

(We see that We(a) > uqg(a) whenever v(a) < 1, |™>@)] < 1 and w(a) =
= W(a).) For reference purposes the foregoing may be summarized by saying
that whenever a ™ a*,

(2.6) if w(a) = Wj(a), then Wj(a) > uq(a), j = 2,3.

Consider the convex function fa(s) := y vz(a) - 2sw(a), s > 0. Then

fa(-) is negative on the interval (0,4w(a)/vz2(a)) and takes its minimum at
s* = 2w(a)/vz(a). Hence, choosing s = s, and using (2.6) twice, the second
term of the bound in (2.5) is

2w2(a)) 2wi(q) 1

=e -elo
v2(a) J vHa) J Xp g <

exp{ [l (m$)} = exp
< v(a) ™ uqg(a) is u>(a).

The inequality before the last holds since v(a) ™ e~2/e for all a » a* by (2.1).
The convex function ha(t) := y- u2(a) —2tw(a), t > 0, is also negative on
the interval (O, [4in(a)]/[eu2(6)]) and takes its minimum at the point 1» :=

:= [2w(a)]/[eu2(a)]. However, here we also have to satisfy the constraint 0 <
<t N ™>(<x)|. So, choosing to := min{l/|~(a)|, <»}, the third term of the
bound in (2.5) becomes expjha)™)}. Let a ~ a*. If w(a) = w\(a), so that

2 1
0<U-= uq(a) <
evz(a) u(a) [0 (a)f

we have (whenever v(a) i e-2/e as above)
exp{ ha(i0)} = exp{/ia(i*)} = exp]j

= expj{logm - 2log v_(lél')jl = v(a) ™ uqg(a) = w(a).
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If w(a) = uij(a), j = 2,3, then by (2.6) again,

2 Wj(a) 2w(a) _ /2 \JI°~ 1
* et;2(0) evz(a) Ve u(a) @) ~ ’

Hence if tn(a) = wz(a), then (whenever v(a) < 1, |*(a)| < 1and n(a)|~@)| »

exp{ha(U)} =exp{/la(l/|*(a)))} =

[e v2(a) 2wz(a)\ 1 f 2re2(a)’|
exXP\2 \£2(a) NV@)! J < v(a) \dp(a)\ J

= 4S) e - logiwikli} =we) - «200) = “w
by the choice of a*, while if w(a) = ws(a), then
exp{ ha(tc)Jd = exp{Na(l/|™()|)} =

e v2(a) 2w3(

2ip(@ WS b "M -iS ) -

€62 IV>(«)|d ~ eel2 1D@)\ A d1V(0)! by No0OL = ws(a) = w(a)

since 2d N | and |-0(a)] N 1/eedf2n by the choice of a*. Therefore, the in-
equality exp{ ha(te)J < w(a) holds for all a ™ a*.

Thus if a ~ a*, then the bound in (2.5) is less than P{Sn ™ a} + 2w(a) =
= rn(a). This fact establishes (2.3) in the non-trivial case, and hence the
theorem. (The collection of bracketed phrases also establishes the remark
concerning the choice of the thresholds.)

3. Examples

The first three examples show, in particular, that all three versions of the
rate function provided by the three branches of n>g/(-), M = L,R, defined be-
tween (1.5) and (1.6), may in fact occur. For simplicity of exposition, we deal
with spectrally one-sided infinitely divisible distributions, that is, we choose
L(-) = 0, with the exception of the stable and compound Poisson examples.
The last four examples are of interest in their own right, the negative bino-
mial being weird enough to deserve attention in any case. In Examples 2-4,
the threshold remark beneath the theorem is used without further notice.
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Example 1. If L—0 and ¢n(n) = —e u, n >0, then wi(a) = Q
Vfi(a) —e~a/\/2 and wr(d) —wW*R\a) —dae~a for all a> 0 for vr(u)/
MXI>ft(@\ = 1/>/2 < 1. Regardless of 8 ER and a ~ 0, for the corresponding
Levy distance the theorem and (1.8), with an = (2 —\/3) n, give

3d(2 —\/3)n maxI~p-, f - logy”)

oral n>
Prn(0RIZ ep{(2 —\/3)n} 2 Vi3

and each fixed 1/2 ~ d 5l 2e(e 2)/2 = 2.86419 .... Ford = 2ee 2)/2this holds
for all n ~ 6 and for d = 1/2 the inequality is true for all n ~ 30.

Example 2. Ifl = 0and *a(n) = - \/ile~W2, then u?a(a) = 0, r>a(a) =
=\/a + le_a/2and req(a) = w”™ (a) = 2~In/ae~ar2log (eal[a2+ a] 1/i2) for
all a™ 2/(e —2) = 2.78442... , say. Regardless of dER and a 0, for the
corresponding Levy distance the theorem and (1.8), with an= (3 —y/b)n/2,

give
23w e

L>,,n(0,-R) 1
23/2eXp |2~ /1nd yjs=&n yjl + ~fi-n
3.35
forall n>5>
3 —n/5

Example 3: Stable laws. Let Fa”iV¥(-) be the distribution function of
a non-normal stable law with exponent 0 < a < 2, given by its characteristic
function

/ ettxdFQR<TIXX) =
exp{i(,;"i —rj\t\a[1—iR sgn(i) tan(a7r/2)] }, ifa ¢ 1,
exp{i(i - N\afl + iR sgn(i)~log|f]] }, ifa=1,

with skewness, scale and location parameters -4~ /37~ 1,i/>0 and (£ R,
where sgn(f) is the sign function, t ER. In Lévy’s canonical form at the
beginning of the paper, this is given by some B = B(a, B, 1/,C), <= 0 and

L(-) and R(-) functions such that ¢gm(n) — ~ cmu~Xa>u > 0, where c\j =
= fjvi(a,B,rj,Q = 0 are some constants, M = L,R, such that c™(a, 1,€,() =
= 0 and c/,(a, > 0 for every —4 ~ 8 < 1, while ca(a, —,1),() = 0 and

ca(a,/3,r/,C) > 0 for every -1 < B i 1; cf. [9], [1], [4]. Setting Ka,RiVX:=
;= sup{fa,f;,c(x) :x GR) < oo for the corresponding density function
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fapo,n,d-) 'm=KR3IA4<(-) and ™ = #(<*/?,%,0 :=0- sL+ 6R, wheresL and sR
are given through (1.3), let = P{Vdl) - + ?f x}, a GR,

where, in the present situation V» 11 of (1.2), for M = L,R and n GN, is
given by

yw _ -emE]=i (“'M)"1a+ (mu ifa 1,

-CMs:"=1 ( + CMIog\élvl)i> ifa = 1.

Elementary calculation shows that ng/(o) = -y/o/(2”a) cma (2 a)/(2a), a >
> 0, and

M@;Wfi(@ :'“;JMl log! a cM\fa/(2- a) ~2al(z-2)

forall a> a,

if CM > 0, where, putting p:=a/(2 -a), % := (2/(pc)) log(l/(cMy/p))

and % :=1/(2p2), the threshold may be chosen as =

= max(ppc” edp/e, a” ), where is the smallest positive number such that
a”™um+ I'ml°ga for all a ™ a%, M = L,R. Picking now any r G(0,1) in
(1.8) and letting MM := Tax(@wm/T, n™ ), where n\j is the smallest n EN
for which exp{ —1 - T)2n/2} ~ w[M\rn), M = L,R, the inequality in (1.9)
gives that for all n't. ML and m ™ nR,

SUP Fa,BVe(x) - Fal3,4,dX)1 » 3[f + [«r(rn) + WR\rm)J .

Neglecting thresholds and constants, the qualitative meaning of this is that

li-nm 1 4

r 4 v/logn Alog m\
- F«/n<(@Z)| =0 cL—j-j- +cn _ L,
CR V Tla 2 a2/

as n,m —*oo.

Improving Theorem 2.2 in [2], the latter rate has also been established in
Remark 1.3 of Janssen and Mason [11] by completely different methods.

EXAMPLE 4: Limiting St. Petersburg distributions. In a classical St.
Petersburg game, a player gains 2k ducats with probability 2~k, Kk £ N.
As determined in [5], the class {(?7(-) : 1/2 < 7 S I} of all possible non-
degenerate subsequential limiting types of distribution functions for the cu-
mulative gains of a player in a sequence of independent St. Petersburg games,
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under any deterministic centering and norming, is described by the family of
infinitely divisible characteristic functions

ettxdG-y(x) —exp t GR,

where, with Log standing for the logarithm to the base 2 and. for any y GR,
with [J denoting the greatest integer not greater than r/, having a fractional
part (y) =y- [V,

o 72 0

= H 7214k~ 1J.724A~ L°g7
je k=0 '
and
Ayfar) = —7 2-LLo«bx)J, z>0,
so that ~7(w) := ~Mi7(u) = —2_ Wos(W4")J/-y?n > 0. Hence by lengthier but

elementary and quite delicate computation through (1.2) and (1.3),

= - N = -
WE) VTR0 g

—Log5n +

where 6(s) = 1+ (Logs) - 2ogs\ s > 0, and it can be seen in similarly ele-
mentary fashion that 0 ~ s(s) 1 1- (1 + loglog2)/log2 = 0.08607... for all
s > 0. (The function S(-) plays a special role in the theory of the St. Peters-
burg game, described in [6], and the present example has some motivational
value at some point there.) Also, since 1/u ™ N (u)| < 2/u for all u > 0, for

the corresponding u7(a) := /&° 07(u)du we obtain I/y/a ™ v~(a) < y/2/yla
for every a> 0 and 1/2 < 7 ~ 1. Thus we have v-y(a) < e~2/e if a N a* :=
= 2e4/e = 8.71168... and sfa/2 < u7(a)/|~7(u)| ~ y/Ua, so

WR”Ma) = tinNia) = viajyjlog [I/t?7()] < ~ M®)

foralla> land all 1/2 < 7 ~ 1. Since the densities g7(-) = G”\(-) exist and it
can be shown that supl/2<7<1sup{g7(x) :x GR} is 1/2, forany 0 <r < 1
in (1.8), finally (1.9) yields

sup sup IP{ isr} - G7(z)] < C(t)'™B_n forall n~ ra*(),
i <7gi Vn
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where the bound is a trivial upper bound for 3wi(tti) with
C(t) 9n/e/(27)/2 and n*(T):= [ max (2ed4/elr, n*(r))],  where
[&] := minffc Gl 1k~ z}, X >0, and ﬂ>>[[) := minjfc G
rexp{—1 —r)2k} ~ wi(Tk)} . Here, rounding up, C(l) = 5.24620 is un-
achievable, and we get C(0.707) = 6.23929, n*(0.707) = 13; C(0.8) =
= 5.86543, T~(0.8) = 53; G(0.9) = 5.52998, n*(0.9) = 376; C(0.95) =
= 5.38249, n*(0.95) = 2107; C(0.99) = 5.27263, n*(0.99) = 86 177 and
C(0.999) = 5.24883, n*(0.999) = 13297 850.

Example 5: Compound Poisson laws. Let N\, xi, X ., mmmbe indepen-
dent random variables such that N\ has the Poisson distribution on the
integers {0, 1,2,...} with mean A> 0 and X%, X ., .. mhave the same distri-
bution function G(z) := P{X i1 z}, x GR. Then Lévy’s canonical form of
the characteristic function of the infinitely divisible compound Poisson dis-
tribution function r 3 (x) = P{ Ylk=i Xk » x], x £ R, is given by a = 0
and, with G_(-) denoting the left-continuous version of G(-),

U 0d6(x), LX) = AG_(2), X <0,

0 |t ®

R(x) = A[G(X) - I], x> 0.

Hence, letting denote the right-continuous version of the left-con-
tinuous generalized inverse G_1(s) := inf{z GR :G(z) ™~ s}, 0 <s < 1, the
usual quantile function, pertaining to G(-), we have

G;1n), ifo<un< AG_(0),

Db(1n)
0, ifurAG_(0),

and

; -G-*(1-f), if0o<u<A1l-G(0)]

I>r(u) .

0, if u ™ A[1-G(0)].

For the Levy distance Orm>m(A,G) between and its approximation
Flg ®) P { XnL"- +0ag- 01+ Or 2}, z GR, given by the

present db(-) and 04(-) through (1.2) and (1.3), by (1.10) we obtain

[AG-O)In —[AM1—G(O)}]

D \,G) »
nm(\,G) o

forall n, m GN.

The Poisson law itself, with mean A is the special case when G(z), z GR,
degenerates at the point z = 1 and B\ 0Ay = AJ2 for the corresponding
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guantity. In this case, b{n) = 0 and iPr(u) = —I{u < A} for all n > 0,
and enjoyable calculation shows that - Vn”™ + O\ + Or = YIj=11{Sj < A} +
-f (A—Sn)I{Sn < A} for every n GN. If Dn{A) denotes the Levy distance
between the distribution function Fn™\{-) of the latter random variable and
the Poisson distribution function F\(x) := e~X Afdfc!, x GR, of N\,
with an empty sum understood as zero as above, then the result reduces to
the inequality Dn(A) ~ An/n! for all n 6 N. Furthermore, if D*(A) is the
Lévy distance between F\(-) and F*x(x) := 1{Sj <A}Ili},i E
GR, then a trivial extra step based on the triangle inequality for a Levy
distance yields Z&(A) ~ 2 An/n\ for all n GN.

EXAMPLE 6: Negative binomial distributions. For a fixed order f 6 N
and success probability 0 < p < 1, consider the negative binomial distribu-
tion function

F(p(x):=P{Ve(p)ix} I))'k" X GR,

where g := 1—p. As is well known, it is infinitely divisible and it is a routine
exercise to show that the Lévy form of the characteristic function is

where
gm
Ofp= £+ 1"y" -omev - and Rtp(x) =£Y' — + ~"ogp, x> 0.
F Tfl+ mi ALom
z m—1
So, noting that — logp = | gm/m,
S G oo, Aol
=Vh,» =-£ kI\lo§7 -1 E ~ M< log7 - ~ f -
k=1 A " m=1 " m=| A

u>0,

thus d,p{u) = 0 for all 1~ - flogp. Evaluating (1.2) and (1.3) with this,
the result is

= - VMRth) + 9%,p+ sRlp

Acta Mathematica Hungarica 68, 1995



AN APPROXIMATION TO INFINITELY DIVISIBLE LAWS 237
00 m oy qn

j=1k=1 m=Kk-|-I m=k

A q _
+ZE./ * Izj m - S- q3| E A |m a4 S .« E’\Iﬁfl | ::<+Tp + fi'-.
k=1 L m=k m=k-\-1 m—k

(Note that P{Wn*p = 1} = P{£ + TIP=1t) = pe= P{V((p) = 1}.) If now
Dn{t,p) is the Levy distance between Fe,p(-) and P{ WnP”~ <} and D*(£,p)

is the Levy distance between iv,p(-) and P{(. + TnP”~ <}, then (1.10) and
an extra step as above yield

Dn(kp) 1 and K (kP)i1 2 forall n GN.

If | —1, this is of course a result for the approximation of the geometric
distribution function F\q(x) —pJle I1=i9fc 1, i ER.

I thank my daughter Zsuzsi for checking the numerical calculations in
this section.
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To Professor K. Tandori on his seventieth birthday

1. Introduction. Let ¢ be a binary operation on R” satisfying the
following conditions:

(1) 0 is commutative and associative;

(2) a0 b= a+ 6 whenever a,6 € Rn and 6is a scalar multiple of g;

(3) (Aa) 0 (Ab) = A(a Ob) whenever a,b £ Rnand A is a rotation of Rn
(that is, an orthogonal transformation with determinant 1).

D’Alembert proved in 1769 that if n = 3 and 0 is continuous, then (1),
(2) and (3) imply that aOb = a+ b holds for every a, 6 £ R3. D’Alembert
used this result to demonstrate that the resultant of forces is obtained by
the vectorial sum of the components. (See [1], Chapters 1 and 8. For more
on the history of the problem or on d’Alembert’s work in particular, we refer
to [3] and [5].)

In this note our first aim is to give a complete description of all operations
on Rn (n ™ 3) that satisfy (1), (2) and (3). As a corollary we show that, for
n ~ 3, any operation satisfying (1), (2) and (3) must also satisfy the following
condition:

(3*) (Aa) 0 (Ab) = A(a 0 b) whenever a,b £ Rn and A is an orthogonal
transformation of R”.

We shall also prove that, again for n ~ 3, the condition of continuity in
d’Alembert’s theorem can be replaced by the following weaker condition:

(4) there is a s > 0 such that the set (a0 b:|a] = |6] < é} is not every-
where dense in R”.

In the plane the situation is different. We shall prove that for n = 2 the
conditions (1), (2) and (3) do not imply (3*). Moreover, on R2 there are
noncontinuous operations satisfying (1), (2), (3*) and (4). As we shall see,
among those operations on R 2 that satisfy (1), (2) and (3*), condition (4) is
equivalent to the triangle inequality [a0 6] |a| + |6], and we shall describe
all operations satisfying these conditions.

* Research supported by the Hungarian National Foundation for Scientific Research,
grant No. 2114.

0236-5294/95/$ 4.00 © 1995 Akadémiai Kiadé, Budapest
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2. The case n” 3. Let / be an automorphism of R as an addi-
tive group; that is, let / be a bijection of R onto itself satisfying Cauchy’s
functional equation f(x +y) = f(x) + f(y) (x,y GR). For every unit vec-
tor u GR"™ and x £ R we define p(xn) = f(x) mu. Since / is odd, we have
f(—x) m(—u) = f(x) m, and thus the definition of ¢ makes sense. Clearly, ¢
is a bijection of R onto itself. We shall say that the operation

©) a0 b= dx(c(a) + (b))
is generated by the automorphism /.

Theorem 1. Every operation generated by an automorphism of R sat-
isfies conditions (1), (2), and (3*). Conversely, ifn ~ 3 and the operation ©

satisfies conditions (1), (2), (3), then O is generated by an automorphism of
R.

Proof. Let © be an operation on R7 generated by an automorphism /
of R. It is clear that © satisfies condition (1). If a —xu, b= yu (UGR~,
ul = 1, x, y GR), then

a®©b=g-1(f(x)u + f(y)u) = d-21(f(x + y)u) =
= @-1(p{{x + y)u)) = (x+y)u- a+h,
proving (2). Let A be an orthogonal transformation of R*. We prove that ¢

and A commute. Indeed, if a= xu (u GR", |u = 1, XGR), then \Au\ = 1
and Aa = x(Au). Thus

A(d(a)) —A{ f{x)u) = f(x) mAu = d(Aa).
Therefore
(Aa) B(Ab) = & 1((Aa) + d(Ab)) =
= ¢-"(A(d(a)) +A{d(b))) =d~1(A(d(a) + d(b})) =
= ¢~1(A(db(a ©6))) = «Tl((A(a ¢ b))) =A(a®b),

and hence (3*) holds.

Now suppose n 3 and let © be an operation on R 7 satisfying (1), (2)
and (3). First we show that a© b is always a linear combination of a and
b. We may assume that a and b are linearly independent, since otherwise
the statement follows from (2). We may also suppose that a and b belong
to the subspace V = {(*1,... ,xn) :Xi=0@# I~ n)}. Let A(Xj,...,xn) =
= (—aq, -X2,X3,.. then A is a rotation such that Ax — —x if and only
ifx GV. Letc=a®©h Then, by (3), (—a) © (-6) = Ac and hence it follows
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from (1) and (2) that c©Ac = ap&® (—a) 0 (—6) = 0. Thus, using (1) and
(2) again, we obtain Ac — —c. Thus V, so that c is a linear combination
of a and 6, as we stated.

Let the perpendicular unit vectors uo and vo be fixed. Then ug0 (xv0)
is a linear combination of no and vO for every i ER, and hence there are
functions a,B : R —R such that w, 0 (xvg) = a(x)uo + B(x)vo for every x £
£ R. Then a(x) ¢ 0, because w, 0 (xuo) = Rvo implies, by (2), ug= (B —
- x)vo, which is impossible. We define f(x) = B(x)/a(x) (x £ R). Then, by
(3) ,n0 (xv)=a(x)(u+ f(x)v) holds whenever n and v are perpendicular
unit vectors and x £ R. (We remark that the definition of the function / is
due to G. Darboux, who gave an independent proof of d’Alembert’s theorem
in [4]. Darboux also proved, using a geometric argument, that / satisfies
Cauchy’s functional equation. See also [6], pp. 4-6.) The function / is odd.
Indeed,

a(-x)(u + f(-x)v) = O ((-x)v) =n® (x(-v)) =a(x)(u+f(x)(-v)),

and hence a(-x) = a(x) and f(-x) = - f(x).

We show that / is injective. First note that, by (1) and (2), —<a ¢ b) —
—(—a)Q(-b) for every a,b £ Rn. Suppose that x\¢px2 and f(x\) =
= f(x2) = y. If n and v are perpendicular unit vectors, then n0 (XV) =
= a(xnN(n+ yv) (r = 1,2) and thus, by (2),

(ti - x2)v= (M (zia)) 0 (- (np (z2u))) =
= (U0 (xin)) + (- 0 (x2v))) = (a(zi) - a(x2)) (U0 (yv)).

Since X\ ¢ x2, we have (x\ —x2)v ¢ 0 and hence a(xi) —a(x2) ¢ 0. Let
B —{x\ —x2)1{a(x\) - «(~2)); then Bv = n0 (j/v), (B - y)v —u, which is
impossible.

Let n and v be unit vectors with n ¢ + v, and let x,y £ R. Since n »
~ 3, there is a unit vector w that is perpendicular to both n and v. Then

w d (xu) = a(x)(u? + f(x)u), and hence (U>0 (xu)) © (yv) is a linear com-
bination of w0 f(x)u and v. Let

(w© (xu)) © (yv) - X(w+ f(x)u) + jIV
and, similarly,
(W (yv)) ©(iii) = \"(w + f(y)v) + n'u,

where J1, A £ R. Since the left hand sides are equal, this implies A'= A
fi* = Af(x), and thus

w0 ((xu) d (yv)) = Aw+ f(x)u + f(y)v).
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On the other hand, if (xu)® (yv)=rr, where r6 R, r Q r £ Rn and
|z] = 1, then r is perpendicular to w and hence

w® ((xu) ®(yv)) = a(r)(w + f(r)z).

This gives a(r) = land f(r)z = f(x)u + f(y)v. That is, for every x,y £ R
and hnearly independent unit vectors u,v £ Rn, we have

(6) f(r)z = f(xX)u + f(y)v. (xu)®(yv) =rz, r 0, \2A=1).

We show that /(R) = R. Let nand v beas above. Then, by (6),
[/(|(xu)® (yw)\) 1= If(x)u + f(y)v\ for every x,y £ R. With x = y this
gives If(x) I mu-f = |/(\(xu) ® Okn)|) |, and hence |f(x)| Wu + w belongs
to a (|/]) , the range of |/|. If v runs through all unit vectors different from
+w, then |u + v| runs through the interval (0,2), and hence (0,2|/(x)|) C
C R(\f\) for every x £ R. This gives-R(|/|]) = [0,00), since /(0) = 0 and
f(x) 0 for x d 0. As / is an odd function, we have /(R) = a(|/|) U

u(- R(\f\)) = R Thus / is a bijection of R onto itself.

Let gp(xn) = f(x)u (i £ R, ti ER”, |u] = 1). Since / is odd, this defini-
tion makes sense. Also, ¢ is a bijection of Rn onto itself. If u] = |v| = 1,
v £u and X,y 6 R, then we have, by (6),

d( (xu) @ (yv)) - f(x)u + f(y)v = d(xun) + D(yy).

This proves (5) if a and b are linearly independent.

Now we prove that / is additive. Let x\, X2,y 6 R\ {0} and let u,«E Rn,
lu=|n=1vd £u Then x\u and ("2) ® (yv) are linearly independent,
and hence

(xiu) © ((x2u) ® (yv)) = ~x(p(xx) + d((x2n) © (yv))) =
= x(dp(xru) + d(xzmn) + dyn)) = d~x(f(xi)u + f(x2)u+ f(y)v).
On the other hand,
(Ok1+x2m) © (yv) = d~x(((x! + x2)u) +(yn)) =
= Ox(f(x1+ X2)u+ f(y)v).
This gives f(x1+ x2) = f(xi) + f(x2) for every xr,x2 ¢ 0, and thus / is ad-

ditive.
If a and b are scalar multiples of each other, say a = xu, b = yu, then

d((xn) © (yv)) =d((x +y)u) = f(x +y)u =
= (f(x) + f(y)) U= d(xn) + d(yn),
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and hence (5) holds in this case as well. Therefore, O is generated by /, and
the proof is complete. O

Corollary 2. If Q is a binary operation on R” (n ~ 3) and ¥0 sat-
isfies (1), (2), and (3), then 0 also satisfies (3*).

Theorem 3. Ifn” 3 and 0 is a binary operation on Rn that satisfies
(1), (2), (3) and (4), then a0 b= a+ b holds for every a,b GRn.

Proof. By Theorem 1, 0 is generated by an automorphism / of R. We
show that / is linear. Let e and u be unit vectors enclosing an acute angle,
and let v denote the reflection of n about the line of e. Then for every x > 0
we have

(xu) 0 (xv) = ¢ 1(f(x)u + f(x)v) =
= 9> (f(x)\u + u| *e) =/ _1(f(x)\u + w)) -e.

The function f~1 is also additive. If / -1 is not linear, then its range over
any interval is dense in R. Let x > 0 be fixed, and let n run through all unit
vectors enclosing an acute angle with e. Then f(x)\u + v| runs through a
non-degenerate interval, and hence the set of numbers f~1 (f(x)\u + u|) is
dense in R. Therefore the set of vectors (xu) 0 (xv) is dense in the line {Ae :
AGR}, and, rotating the vector e it follows that the set {a ©6 :|a| = |6| = x}
is everywhere dense in Rn. Since x > 0 was arbitrary, this contradicts (4),
and hence / -1 and / must be linear. If f(x) = \x for every r GR for some
0/ AGR, then tb(n) = Xufor every m GRn,and a©b= (Aa+ A6)/A=alb
for every a,5 GRn. O

3. The case n = 2. In the sequel we shall identify R2 with the set C
of complex numbers. We shall use the notation e(x) —e2vtx (x GR). Let U
denote the circle group {n GC :|u| = |}, and let x be a bijection of U onto
itself. Ifr GR, r ~ 0 and n G U then we define

d(rn) = r\(u).

Clearly, this a bijection of C onto iteself. If the binary operation 0 is defined
by

a0 b= d-~r(d(a) + db)) (a,beC),
then we say that 0 is generated by the bijection \-

Lemma 4. If the operation 0 is generated by the bijection x then 0 sat-
isfies (1) and the triangle inequality [a0 B ~ |a] + |b]. If\ is odd, that is
X(—u) = —x{u) for every ueU, then 0 also satisfies (2).

Proof. It is clear that o is commutative and associative. The triangle
inequality follows from \dy(r)\ = \2\ (z GC). If x is odd then d(rn) —rx(u)
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holds forevery r £ R and n £ U. Indeed, if r ~ 0 then this is the definition of
(rn). If r < 0 then we have q(rn) = p[(—F)(—1)) = (—)x(—m) = rx(n),
as we stated. Now, if 6is a scalar multiple of a then a —ru and b = su where
r.a £ R and n £ U. Therefore

d@ + 6) = ((r + s)u) = (r + s)x{u) = r\(u) + sx(u) = d(a) + d(b),

and hence (2) holds. O

T heorem 5. There exists an operation on R 2 that satisfies (1), (2), and
(3), but does not satisfy (3*).

Proof. Let
X(e(x)) = ée(x) if are [0,1/4)11 [1/2,3/4)
I-e(ar) ifae [1/4,1/2) U[3/4,1);
then x is a bijection of U onto itself such that x(-u )= ~\(u) (u€ U). If®

denotes the operation generated by x, then ® satisfies (1) and (2) by Lemma
4,

Let p denote the (unique) rotation invariant normalized Borel measure
on U. it is clear that for every a,b £ C the function 1 u~1((ua) 0 (ub))
is bounded and measurable on U. We dehne

ah6= J/ -1 ((ua) ® (ub)) dp(u)  (Gif C).
u

It is easy to check that 0 also satisfies (1) and (2). By the invariance of p
we have

(iv)0 (i;6)= .J/ n 1{(uva) 0 (uvb)) dp(u) =
u
= VJ (un)_1((uva) O {uvb)) dp{u) =
u

= vJ/ u_1({ua) 0 (ub)) dp(u) —v(a 0 b)
u

for every v £ U and hence 0 satisfies (3), too.

We show that (3*) fails for O. Let ¢p(rn) = rx(u) for r6 R and un £ U.
Let a and b be perpendicular vectors. Then, by the definition of x, we have
either (a) = a and qb) = —bor ¢fa) = —a and q(b) = b, and hence

a0 6=¢1(0(a) + d(b)) = p~r( £ (6- a)) = (6 - a).
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Since ua and ub are also perpendicular for every u £ U, this implies
rr1((ua) @ (ub)) = w1 (+ (ub- ua)) = +(b- a).
If {1 £ U :u~l((ua) o (ub)) = b—a} = V, then
a©b=n(V)(b—a)+ n(U\ V)( —(b—a)) = Ab- a),

where J1is real. Now suppose that (3*) holds for ®. Let a and b be perpen-
dicular unit vectors and let A denote the reflection about the line of a + b.
Then Aa = band Ab = a, so that Aa© Ab = b0 a = X(b—a) and A(a©h) =
= A(1(6 —a)) = A(a —h). If these vectors are equal then A= 0, a©6 =0
and b = —a, which is impossible. O

The rest of the paper will be devoted to the characterization of those
operations that are generated by an automorphism of U. A map x\U —U
is said to be an automorphism of U if \ is a bijection of U onto itself and
x(uv) = x(n)x(”) holds for every u,v £ U.

Theorem 6. If the operation © is generated by an automorphism of U,
then 0 satisfies (1), (2), (3*) with n = 2, as well as the triangle inequality
[a©Bh ™ Jal + 16| (a, bGR2).

PROOF. Let © be generated by the automorphism x- Then x is odd and
hence, by Lemma 4, 0 satisfies (1), (2) and the triangle inequality.

Let O2 denote the set of isometries of the plane leaving the origin fixed.
A map belongs to O: if it is a rotation about the origin, or a reflection about
a line going through the origin. We prove that if A £ O2 then poAod~1£
£ O2- Indeed, if A is rotation, then Az - ¢z (z £ C) for some ¢ £ U and
hence

P(A(d Xru))) =d(A(rx r(n))) = d(rex r(n)) =
= &X(cx-V)) = X(c)ru.
Therefore o A o ~r is the rotation 2 x(c)ze If Ais a reflection then Az =

=cz (z £ C), where c 6 U and z denotes the complex conjugate of 2. Since
X(@) = x(1/u) = I/x(u) = X(u) f°r every n £ U, we have

A T) - A () =cHroe) =
={rocdi) =r(c-1U) =XOm
Therefore, in this case, o A o ¢~1 is also a reflection.

Acta Matkematica Hungarica 68, 1995



246 M. LACZKOVICH

Now let A £ O2 be arbitrary, and put B = doAod 1£ O2- Then for
every a, 6 £ C we have

(Aa) ® (Ab) = d~*(dp(Aa) + d(Ab)) = 0“1 (B(d(a)) +5(0(6))) =
= -1 (B(d(a) + 0(6))) = 0-1 (B(dp(a 0 6))) = A(a ¢ 6)

which proves (3%). O

We remark that if the automorphism \ is not continuous, then the gen-
erated operation ® is not continuous either. Indeed, if £ U then 1® n =
= 0-1 (x(1) + x(M) = & (1 + x(u)) and hence |1 ® u| = 11+ x(n)|* This
implies that |1 ® u| is not a continuous function of n £ U. In this way we
have constructed noncontinuous operations satisfying (1), (2), (3*), (4) and
even the triangle inequality.

Our next theorem shows that the automorphisms of U generate all op-
erations satisfying (1), (2), (3*) and (4).

Theorem 7. Let Q be a binary operation defined on R 2 and suppose
that 0 satisfies (1), (2), and (3*) with n = 2. Then the following are equiv-
alent.

(i) ® is generated by an automorphism of U;

(i) |a©6| " |a] + |6]| for every a,b£ R2;

(Hi) there is a s > 0 such that the set {a©6:|a] = |6] < 6} is not every-
where dense in R 2.

P roof. We have already proved (i) => (ii). Since (ii) => (iii) is obvi-
ous, we only have to prove (iii) => (i).

Let © be a binary operation defined on R2 and satisfying (1), (2), (3*),
and (iii). Leta,6,c £ R2,|a| = 16/=|c] = 1and a+ 6= rc, where r ~ 0. Let
A denote the reflection about the line of c. Then it follows from (3*) that,
for every t £ R, (ta) ® (tb) is parallel to c; moreover, (ta) 0 (tb) = sc, where
s £ R only depends on t and on the angle of a and 6. If the angle between a
and 6is 2x (0 is x i zr/2), then we denote H(t,x) = s/2, where (ta)® (th) =
=sc, s £ R. It easily follows from (1) and (2) that, for every fixed x, the
function t  H(t,x) is additive. If this function is not linear then its range
on the interval (0,6) is dense in R for every S> 0. This implies that the
set of points {(ta) © (tb):0 < t < 6} is dense in the line {Ac : A£ R}. Thus,
rotating a and 6 simultaneously, it follows that the set {u©v :|u| = |v| <
< 6} is everywhere dense in R2, contradicting (iii). Therefore t 3»H(t,x)
is linear for every x £ [0,zr/2]; that is, there exists a function h : [0, &/ 2] —&
—R such that H(t,x) = h(x) <t for every t £ R and x £ [0, %/2]. Clearly,
6(0) = 1 and h(172) = 0. We extend h to R as follows: we put h(n —x) =
- -h(x) (x £ [0,72]), h(-x) = h(x) (x £ [0,%]), and from [-;r,#] we extend
h periodically. Following a well-known argument due to d’Alembert (see [1]
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pp. 4-5), we find
(7) h(x+y)+ h(x-y) = 2h()hy) (x.YE R).

Strictly speaking, this argument only proves (7) if 0 ~ y ~ x U #/ 2; however,
using the extension of h, it is easy to check that it holds also for every x,y £
£ R. This implies h(x) —2h2(x/2) —1 ~ —1 and hence h ~ —1 everywhere.
On the other hand, h(x + (&/2)) + h(x - (& 2)) = 0, and thus |h(x)] ~ 1
for every x.

Next we prove that 0 satisfies (ii). If |a] = |6 = i, then it follows from
the definition of H and h that |a0 6| = |2h(X)t\ S 21 = |a| + |6| (where the
angle between a and 6is 2x). Now let a, b £ R 2 be arbitrary, and put c= a0
0 b. To prove (ii) we may assume ¢/ 0. Let a' and b' denote the reflections
of a and b about the line of c. Then, as we saw above, |a0 a'\ ~ 2|al and
b O b\ ~ 2\b\. Also, we have a10 bn = ¢ by (3*) and thus, using (2) and (1)
we obtain

2c=(a06)+ (@' 0b)=(@a0hb)0 (0'0b") =
=(@a00)0 (60 &=(00)+ (60 6,

since (a Oa') and (6 O 6") are also scalar multiples of c. This gives 2|c| ™ \aO
Oa'l+ 1606 ™ 2|al + 26|, proving (ii).

Since the function h satisfies the functional equation (7), and not every
value of h is +1, it follows from a theorem of J. A. Baker that there are
constants p £ R and Kk £ C such that the function G(x) —h(x) + k(h(x +
+p) - h(x- p)) has the following properties: G(x +y) = G(x)G(y) for every
X,y £ R, and h(x) = (G(a:) + G(—x)) /2 for every x £ R (see Theorem 2 and
its proof in[2], pp. 412-413, or Theorem 16 and its proofin [1], Chapter13,
pp. 220-222). As his bounded and periodic mod 2>k so is G.Since H¢g 0, we
have G ¢ 0 and hence, taking into account that G is bounded, it follows that
|G| = 1. Thus, there is a function g : R —»R such that G(2xx) —e(g(x))
for every x £ R. Since G is periodic mod 2n, g may be taken as periodic mod
1. Also, G(x +y) = G(X)G(y) implies g(x + y) = g(x) + g(y) (mod 1); that
is, we may consider g as a group homomorphism from the additive group R
into the torus T = R/Z. Since g(—x) — —g(x), we have

h[2-KX) = = = cos (27ra(x))

(x £ R).

Since —1 = h(n) —cos (2xgi(l1/2)), we have g(1/2) = 1/2, and hence
4(1/4)= 1/4 or 3/4. We may assume that 5(1/4) = 1/4, since otherwise
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we replace g by 1—g. We define x (e(x)) —e{d(x)) (x 6 H)- Our aim is to
prove that \ is an automorphism of U and that ® is generated by x-

First we show that g(x) = 0 implies x GZ. Since a®b=0 <=> b=
= - a, it follows from the definition of H and h that h(x) = 0 if and only
if x = (w/2) + kir (k GZ). This implies that if h(x) = —1 then 2h2(x/2) =
= h(x) + 1= 0 and thus x/2 = (zr/2) + kx, x = (2k + 1)77. Now, ifg(x) = 0
then g(x-\-(I'2)) =1/2, and h(2x(x + (1/2))) = cos (2xg(x + (1/2))) =
= cosT= —1 Thus 2n(x + (1/2)) = (2k + 1)7r and hence x € Z. Since g
is additive, this implies that g is injective on [0,1).

Our next aim is to show that if c and d are perpendicular vectors with
[c| = |d|, then

(8) (cos (277%(2)) m) ® (sin (2xg(x)) md) = (cosz2xx) mc+ (sin2xx) md
for every x GR~ Suppose first 0 » x ™ 1/4, and let n and v be unit vectors

such that n+ v = rc and v —n = sd with r,s > 0, and the angle between n
and v is Axx. It is easy to see that

9) V = cosZloc s (c/|c|) + sin 2nx m(d/\d\).
Now
(Iclu/2) 0 (|0 /2) = \c\h(2xx) m(c/\c\) = cos (2xg(x)) uc,
and, using 5(1/4) = 1/4,
(-lclu/2) d (1®/2) = \c\h(2x((1/4) - ) *(d\d\) =
= cos (2x(g(l/A) - g(x))) md = sin (27E5(2)) «d.
This gives, by (1) and (2),
(cos (2xg(x)) mc) O (sin (2775(2)) -d) = [c|t>,

and thus (8) follows frpm (9).

Next let 1/4 ~ x U 1/2, 2 = (1/2) —x". Then we have cos (2xg(x)) =
= —o0s (2xg(x")) and sin (2775(2)) = sin (2775(2") * Since 0 ™ 2'~ 1/4, we
may apply (8) with x' in place of x and —e in place of c. This proves (8)
for /47~ 27~ 1/2. If 1/2 N x< 1, x = x"+ (1/2), then cos (2775(2)) = -
cos (2775(2") and sin (2775(2)) = —sin (2775(2")). Since 07~2:'~ 1/2, we
may apply (8) with x' in place of zr, and obtain that (8) is valid for every
x G[0,1). Since 5 is periodic mod 1, (8) is true for every x.
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Let x ER, xdn, n+ (1/2) (n £ Z), and put y = cot (2irg(x)) and 2 =
= cosec (2ng(x)). Then we have

(10) (ya) © 6 = z((cos 27raz)a + (sin 2kx)b)
and
(11) I(ya) 0 6| = |z| *[a]

whenever a and s are perpendicular vectors with |a] = |¢|. Indeed, applying
(¢) for c = za and d = zb we obtain (10), while (11) is obvious from (10).

The set {cot (2rTg(x)) :x ER} is dense in R. Indeed, as g is injec-
tive on [o,1), there is an x for which g(x) is irrational (that is, an ele-
ment of T of infinite order). Then {g(nx) :n £ Zj is dense in T and hence
{cot (2irg(nx)) :n £ Z} is dense in R. By (11) this implies that if a and b
are perpendicular vectors with |a] = || then |(ya) ©6| = \Jy2+ 1 *|a| holds
for a set of y s everywhere dense in R. On the other hand, the function
y 1 *1(ya) o blis continuous. Indeed, if \, % € R then

[(22«) ©B\ = [(22 - W)a© ((22a) 0 b) \» \(y2- yi)a\ + \(y\a) 0 ]|
by (ii), and hence

10,168 (fa)eg) .- 1

This implies that |(ya) ® b = y/y2+ 1e]a| holds for every y ER whenever
a and b are perpendicular vectors with ja| = [fg.

Next we show that g is surjective. Let w E T be arbitrary; we prove
that w Eg(R). We may assume that w ¢ 0,1/2,1/4,3/4, as these values
belong to the range of g. We fix the perpendicular unit vectors a, 6, and
put y —cot(27rw) and r = cosec(27rw). Let z~I((ya) 0 6) = Xa + fib. Since
I(ya) © 6| = |z||]a| = |z|, we have Ao+ y2= 1 and hence A= c0sS27rx, u =
= sin27ra: for some x ER. Since w ¢ 0,1/2,1/4,3/4, it follows that y i
®0, ApO, fip0, and thus x b n, n+ (1/2) (n EZ). Let a(x) = w\ and
cot(27rwi) = 2/, cosec(27T«;i) = z\. Then, by (10),

(

y\a O6 = 2 m((cos 2irx)a + (Sin27rx)6) = z\ mAa + fib).
Thus we may apply (2) and obtain

(21- Y)a= ((21) e6) o (- ((ya)es) =
= ((222) ©6) + (- ((ya) o 6)) = (zi - z) *(Aa + fib).
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Since a and b are linearly independent and Ad 0, // ¢ O, this gives y\ —y

and z\ = 2; that is, cot(27TUJi) = cot(27rzn) and cosec(27ru?i) = cosec(27ru;).

This implies w - w\ - g(x) £ </(R), and this is what we wanted to show.
We have proved that g is a bijection between [0,1) and T. This implies

that \{e{x)) = e{g{x)) (x ER) defines an automorphism of U. In order to
complete the proof of the theorem, we have to show that ® is generated by
X. Let o[r me{x)) = r «e(g{x)) {r.x £ R). We prove first that (5) holds if

a and b are perpendicular. Let a = r me{w) and b—s ee[w (1/4)). Since
g is surjective, there exists an x4E R such that

=Yoo = cos (2ug{x)), . = sin (2mg(x)).
Y yc + sE
Let c= \/r2+ s2me(w) and d = y/r2 s2me(w + (1/4)). Then, by (8), we
have
adb= y/r2+ s2(cos2-Kx+ isin2irx) e(w) = y/r2+ s2 me(w + x),
and hence
Ppla®b) —yrz +s2ee[g(w + &)) = (r + is)e(g(w)) .
On the other hand,
d(a) + qb) = r me(g(w)) + s me(g(w) + g(1/4)) = (r + is)e(g(w)),

and hence (5) holds.

Finally, if the vectors a and s are not perpendicular, then we can choose
a vector c perpendicular to a such that a ® c is parallel to b. Indeed, there
is X GR such that cos(27ra;) =a + sin(27ra;) «(ia) is parallel to b. Since a and

b are not perpendicular, we have cos(27ra;) 0, and hence cos (21-<(2:)) & O.
Now, applying (s) with ¢\ = a/ cos (27r(a;)) and d\ = {ia)/ cos (2irg{x)), we
obtain that a ®c is parallel to b, where ¢ = tan (21T4(X)) =ia).

If b= y{a®c) then, using the fact that a and c are perpendicular, we
obtain

d{b) = yp{a ®c) = y(d{a) + dfc)) = dya) + dfyc) = b({ya)®{yc)).
This gives
a®b=ao {ya) ©{yc) = (1 +y)a) ®{yc) = p~1(df{2 + y)a) + dfyc)) =
= @-1{®{a) + B(ya) + Pfyc)) = dp~x(h{a) + d{b)).
Therefore (5) holds for every a, b E R2, and the proof is complete. O
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SIDON-TYPE INEQUALITIES
FOR LEGENDRE POLYNOMIALS

F. SCHIPP and L SZILI (Budapest)*

Dedicated to Professor Karoly Tandori on his 70-th birthday

1. Introduction

S. Sidon [17] proved an inequality for the linear combinations of trigono-
metric Dirichlet kernels in 1939, named after him. Let Dn denote the n-th
Dirichlet kernel, i.e.

l LA}
-+ cos kx (n GN :={0,1,2,...}, XG[-7r,7r]).
fc=i

(1) Dn(x) =

Then the inequality in question is
N

£ 'anDn UC max \d& (N GP :={1,2,...}),
71—0 1 O<n<N

(2) N

where (an,n G N) is an arbitrary sequence of real numbers, C > 0is an abso-
lute constant and ||  ||j denotes the T1(0,7r)-norm. (Throughout this paper,
C will denote absolute and Cp positive constants depending only on p, not
necessarily the same in different occurrences.)

A generalization of (2) was given by R. Bojanic and V. Stanojevic [3] in
the form

N 1/p

1
(3) N 'y~anDn " cp (N GP),
71=0 1

where l<p”~ooand Cp—O~ ™ asp —»1, and Cp—0(1) as p —moo.

It is easy to see that (3) does not hold for p = 1. Indeed, if ak = 1 and
an- 0 (n”~ N - 1) then the left side of (3) is of order (log iV)/iV while the
right side is of order I/N as N —»00.

* This research is supported by the Hungarian National Science Foundation under
Grant 2085.
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It is known that the trigonometric system is a basis in Lp(—r,7r) if 1<
<p < oo. Ifp=1then there exists a function in LI{—r,7r) such that its
Fourier series does not converge in Xr(—r, 7r)-norm. Sidon-type inequali-
ties can be used to investigate L1-convergence of trigonometric series. For
example, if the difference sequence fa™ = ab —a”™-i (K£ N, a_i = Q) of
(a,,, n £ N) satisfies

2mtl-|

(@) E ZTI 2m E IMCD
m=0 y —
for some p > 1 then the cosine series

() y + E afecos kx
k=1

is a Fourier series of an even function / £ £*(—r, 7r). Moreover, if in addition
Rfclog Kk —0 as Kk —»00, then the series (5) converges in Xx(—, 7r)-norm to /.

In order to obtain a more general condition for L1-convergence, we need
a sharper upper estimation in (3). In this direction compare the results of
M. Buntinas and N. Tanovic-Miller [4] and F. Schipp [14]. The best possible
rearrangement invariant upper and lower estimation was given by S. Fridii
6]

A similar inequality was proved for the Walsh system by F. Mdricz and
F. Schipp [7] and for some other systems (UDMD systems, Ciesielski system)
by F. Schipp [15].

The aim of this paper is to give similar inequalities and conditions for
norm-convergence with respect to the Legendre system.

2. Results

The mean convergence of Jacobi -Fourier series with respect to several
weight functions has been investigated by H. Pollard [10], [11], [12], B. Muck-
enhoupt [8], R. R. Askey [1], L. Colzani [4], G. M. Wing [20], and others.
B. Muckenhoupt proved a general theorem for the orthonormal Jacobi poly-
nomials p'n'~ (n £ N) with a > —1, /3> —1 and with respect to the weight
function Qa,b(x) 1 —™Ma(l + x)b (x £ (—1,1)). His result (see [8], Theo-
rem 1, 2) for the Legendre polynomials pn := and for a = b is of the
following form.
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Let a E R be fixed,

@&{x) := 1 - x2a (xe (-1,1)),

and for 1 Up < oo denote Lpa the set of measurable functions in (—1,1) for
which

H/1U = (Y i \f(x)\Poa{x)dx"J  <oo.

Denote Snf (n E N) the n-th partial sum of the Legendre-Fourier series
of the function / & Lpa.

Theorem A. Ifl<p<o00and\p —1<a< ~p—1then

jji“ M ~ Snf\\p,a = °-
Moreover, if a does not satisfy this condition, then there exists a function in

bpa such that Snf does not converge in Lpa-norm.

Following the method of Muckenhoupt (see [s]) one can show that such a
positive result is not true forp = 1 In this paper we give a sufficient condition
for the Xga-norm convergence of Legendre series in the critical case p = 1. To
this end we prove a Sidon-type inequality for the Legendre-Dirichlet kernels

n

(6) D'n(x) := YAPK(D)PK(x)  (—1= Xt~ 1, raeN).
k=0

We prove the following inequality.

Theorem 1. Lété e (0,1),te (-1 +0,1-6), 1<p<o0, anda > - |.
Then for any sequence of real numbers (an,n E N) we have

where CVA > 0 depends only on p and a.

From (7) we get a Sidon-type inequality for the even kernels

n

(8) buxyi- £(—1)W *) (*£[-1,1], BEN).
k=0
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Theorem 2. For any sequence (an,n 6 N) of real numbers, and for 1<
<pisoo a> —° N £P we have

where the constant Cpa > 0 depends only on p and a.

This theorem can be used to deduce a coefficient condition for the con-
vergence in L-norm of the even Legendre series

00

(10 Y anP2n(x)
n—o

which is the analogue of the corresponding result with respect to the cosine
series mentioned above.

Theorem 3. Letl<p” 00, a> — A and suppose a* log A—»0 as Kk —
—moo and

00 / am+1-1

Y 2™ 2'm 5] \ak+ ak+l
m=0 v k—2m

Then the series (10) converges in L~-norm. Moreover, if a ~ 0, then the
series in (10) is a Legendre-Fourier series of an even function f £ La.

3. Proofs

Proof of Theorem 1. Since the L™-norm decreases in a, we may
assume that

3 <a< 1
4 4
This implies 4a + 1< 0 and > 1- The p-adic mean increases in p,
therefore it can be assumed thatl
< <
PP 4a
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To prove Theorem 1 we need the following weighted form of the
HausdorfF-Young inequality. Denote

(I9atpn) — j  f(x)pn(x)Qa(x)dx  (ne N)

the n-th Legendre-Fourier coefficient of fga- If 1~ p ~ 2, and q is the con-
jugate index to p, i.e. I/p + 1/qg —1, then

1/9

(12 ~2\(fQa,Pr, i Cl|/||Al
\n—Q

wherea = pa- "N
Indeed, let the operator T be defined by

Tf := ((fRa,Pn),n GN) .

Since by the well-known estimation

(13) \pn(x)\ " —-—14 = P_1/4(x) (x G(-1,1), NGN)
1—xz)"

(see [19], pp. 131 and 128) we have

\TfWtoc 1= sup \(fQa,Pn)\ i | \fi.x)\Qa-1/i{x)dx=Wf\\l IA.
nEN y_|1

By the Parseval formula we get

WTf\\p = AJ</?a,Tn)|2j = (M3Jf(x)Ba(x)\2dx'j = [|/||22a

Applying the Riesz-Thorin interpolation theorem with weight functions (see
[2], Corollary 5.5.2) we obtain

lip
WTRN4 7 C (/  \F(x)\pw(x)dx A (172,

where
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1 1-0 0 1-0 0<0<1),

w = B\L 9a-1/4 = 9"

a=2al(l-0)+pQ(a- = pa -

i.e. (12) is true.
Fix N E P, $G(0,1), i E (-1 + K1 —s), and the sequence (an,n E N).
First let N ~ 2/6. Fort e (-1 + 6,1 - O we have by (13) that

(1- x2)1/ADO(x)\ £ (1 - *2)1/4£ | Pro(i)| |pfe(®)] » eyl

A=0
forall nm N and -1 % x ~ 1. Consequently,

N N
ylanbn =1 AunDIlix) Q(x)dx 7
n=o l,a N J-r 71=0

CalN

forallp”™ land a> - |. Thus (7) is proved for N ™ 2/6.
Let now N > 2/6. Set g := sign(J2n=o0anDh)- Then

N N
(14) a-Dn J 2 anDn(x) 1 g(x)ea(x)dx.

71—0 la 71—0
We shall use the notations

In m=M t) = [-1,1] M[i —N ~\t + /171,
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= In{i) [-1,1]1\V In,

g(x), forx £ In
Gn (x) := Gn,i(x) :=
0, for x GlIn,

Gn(x) := GnAx) = 9(x)- Gn(x)  (xG(-1,1)).

By (14) we have

| fl
Y janltn +
(15) noab ijQ n=0 —
N N\ yl _ _/\
+j 1 L an Dh(x)GN(x)ga(x)dx = :~ + £
n=0 J_1
To estimate first we write

® =g abiry -

Denote xa the characteristic function of the set A C R. Since N > 2/6, we
have In C (—1 + <5/2,1—6/2), therefore

(i
Ba-1/4(*) < (X£In, ne N).

Consequently, we have by (13) that

11 Dh(x)GN(x)ga(x)dx <;

= \] A 1 ife(i)K 1 _x2)1/4]ife(a) |~ XIN{X)Ba-1/4{x)dx W

1A

a™ XiA*)e-i/4(x)d*Z fil/dg1/a-« 1+ XiN{X)dx

< _ C
«l/2-a = «5/4
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forallnit N and a> — Thus from (16) we have

(17)
forallp”™ land a> -
Now we turn to the estimation of in (15). We need the Christoffel-
Darboux formula with respect to the Legendre polynomials (see [19], p. 122)
n+1 Pn(t)pn+1 - Pn+\(t
D\(x)= " p k(t)pk(x) = N n(t)pn+1(x) tn (Hpn{x)
k0 /(2n + 1)(2n + 3) X —
(x £ (-1,1), n£ N).
Set
hN(x) o= < for x € JN
0, for x 6 ljy.

Using these notations we have
(18) J Dn(x)GN{x)Qa(x)dx =

n+1

yi(2n + (2n + 3) (Pn(t){hNea,Pn+1) - Pn+I{t){hNQa,Pn)) m

By (13) and Holder’s inequality we obtain from (18) that
N

E 2=1iE
n-0

“n/  Dh(x)GN(x)Qa(X) dx <

1/P 1/9

N
( X lnnea, Py
\n=0

xa (Xlanie)

Applying inequality (12) we get
/ N a
$N(Nnlf0o,*»r.)91 N HbllPa>
10
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wherea = pa- -m¢ > —1 Let

e Inn

V)

n r

s, — a1
W= g [« W

By definition

( f Qa(x)dx\ 1/p <
IHMlp,a <
\h N I*- t\p) =

1/P ilp

. paan) & _
“© UK X- A (/,

< dx \I/IOJrf:r ] M)()dx u

) 1/p
dx P <, @ dul
(L \x —t\p N Up)

2 _ _"Ny-rt/P £ 2 , ,,K

p

Since

(p- i)ip
and a > —1 we have
ITMU S

Consequently,

N \ */p
Cyla / 1
E 2% JsJ* \ N Ew d

71=0 !
The proof of Theorem 1is complete. O

Proof Theorem 2. It is well known that the orthonormal Legendre
polynomials (p,,,n £ N) satisfy the relations

P2fc+1(0)= O,

(19) A+ 1 ()
*(0) = (-1)* ' k£
P2*(0) = (-1) 2 o KEW
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(see [19], p. 120). We will prove that

lim (—1) P2fc(0)
—B0

mé

More precisely, there exists a positive real number C such that for every
KEP

(20) f-(-)w o) SE,

For the proof of (20) we use Stirling’s formula, which states that for all K £ P
there exists a number 0™ £ (0,1) such that

k \k
K\ = V2nk (- | ei2fc
(see [13] p. 392). From this and (19) there follows that

(-uw )= 2 kK2 VT 4K

It is easy to see that

Qk <1

and there exists a positive real number C such that for all \R\ ~ 1/4 we have
1+ -elfx- 1 <Cx (0< x< 1.

Estimate (20) is proved.
Consider the Legendre-Dirichlet kernels at the point t = 0, i.e.

n

Dn(x) = J 2 PW ResX)-

Using Theorem 1 we have that for every sequence (an,n £ N) of real num-
bers,p> 1, and N £ P

, lp
(21 = Cpa I_g'X/
71=0 l,a V  n=0
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where the constant Cvsa > 0 depends only on p and a. Let

(22) D2n(x) := D2n(x) - yj~*"D~"x) =
= ib2fe(0) - pafc(z) =: It (*2kP2k{x
k=0 Vo k=0

(xe [-1,1], ne N).

Set g := sign t>n Applying Holder’s inequality, (22), (20), and (12) we get
by a > - 1that

I-~nllia = \] \Aon{x)\Qa(x)dx = J AE okP2k{x)* g(x)Ra(x) =

1/p 1/«
= ~(*2k{9Pa,P2K) I SKifcM E17,bl I UCPa
K=0 \K=0 \k=0
Consequently,
N N N
(23) A'Ynr2n = E! B IIN2n||lisa= CPaE! B
n=0 |,a n-° n=0

From (21), (22), and (23) we have

1 N

N E anD2n
n=0 l,a
N
N ' on-D2l
ra=0 la

The proof of Theorem 2 is complete. O

Proof of T heorem 3. First we prove that
(24) [I-"2nllla = Cal°g(n + 2) (n £ N).
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264 F. SCHIPP and L. SZILI

Observe that by (13) and by the Christoffel-Darboux formula we have

\D°2n(x)\ i a -inZ)JM (-1 <x<1),
C
In°n00 I A < (| —a2)1m (-1 <x< 1, x 0.
Thus
( fl/n [-1/2

(25) |I£>2nllla = C \ \D2n(X)\Qa(x)dx+ \DP2n{X)\@(x) dx +
\J0 Jit/n

£ AD2n{X)\QAx)dxj<.Ca(I+J~ ~T+] Sa-\V4{x)dx\ i

n Calog(n + 2).

Since by (22) and (23)
D 2n " C

we have that (25) implies (24).
To prove the convergence of (10) we use Abel transformation:

M M
EsM = 2~ o6n"2n= X/ Bn(-1) P2n=
TN n=N
M
=£ (-1)4. - nj, 3 =
n=N

M-1
= £ (-1)n(a, + a,+i)D;, + (-1)MaMB ¥ - (-1)% vD "~ _2-
=N

=1

Denote

A :3{(

Acta Mathematica Hungarica 68,
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SIDON-TYPE INEQUALITIES FOR LEGENDRE POLYNOMIALS 265
Define m0, mi € N by the relations
2mP~i < N < 2n?, 2mi < M 5 2mi+l
and take the decomposition
AVM = Awni2'D + "2np2m +

Then
IE M | " I"7V.2molllia + YA2™o,2mi llia+

d"[[*4.2ml n/jjza + Now\ (1~ 2800110 + \ak\ n~27v—2lli,a-

By our assumption and by (24) the last two terms tend to 0 if N,M —oo0.
To estimate the remainder terms we use inequality (9). Thus

mi—1 2m+1_1
@og 1 = E E (- 1)n(an + an+1)D2n <
70 n=2m

00 2m+1_i \ ilp

Uc Y, 2m 12~ E At ATTHL —e "mo
m=mo n—2m

we get that ,,, -~ 0, as m o - 00. Similarly, applying (9) again
for the first term we have
/ 2m0-1 \ *p
A «-111,,,EC2~ 2-"" 1°»n
n=2no-
which tends to 0 if N —»00. The same argument shows that the third term

tends to O.
Denote the X),a-norm limit of (10) by /, i.e.

N

(26) im ~ ~QP2n f
— »00 71:0 I’a

0.
Since a”Owe get for Kk ~ N that

- :
{(fIP2K)1 = (~ a np2n - f,P21}j
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266 F SCHIPP and L. SZILI

A lwlle anP2n - f
n=0 |’a

The right side tends to 0 by (26) as TV—o00. Consequently we have
{fP2k) = ak  (are N).

In a similar way we get
(/>P2*+i) =0 (A £ N).

The proof of Theorem 3 is complete. O
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RESONANCE PRINCIPLES WITH
APPLICATIONS TO MEAN ERGODIC
THEOREMS AND PROJECTION OPERATORS

D. NASRI-ROUDSARI, R. J. NESSEL and R. ZELER (Aachen)

Dedicated to Professor Tandori on the occasion of his seventieth birthday, in high esteem.

It is the purpose of this paper to discuss several extensions of previous
(cf. [7]) quantitative uniform boundedness principles. Indeed, motivated by
recent work of O. V. Davydov [5; 6] and S. P. Zhou [16; 17], the present
treatment particularly contributes to situations where the (abstract) moduli
of continuity, determining generalized Lipschitz classes, do not possess any
additional properties. While the main resonance principle is given in Section
1, Section 2 then reconsiders and extends some of the previous results on the

condensation of singularities. In Section 3 further applications are worked
out in connection with the mean ergodic theorem and the approximation by
trigonometric projection operators.

1. Resonance in b-complete spaces

Let ¥ be a linear space over, e. g., the field R (set of real numbers),
equipped with a family of seminorms {|«|p:p E [0, 00)} where |/| = oo for
some/ EY,p E [0, 00) may still be possible. The space (Y, || ) is called fa

complete (boundedly complete), if for each sequence (/,,)n6N C Y with (N
being the set of natural numbers)

sup |/nL < 00 and dm |fm- fn\ —O0 for each p E [0, 00)

n€N,p6[0,00) m,n-*o00
there exists an element / 6 ¥ such that

lim \fn- /1=0 for each p E [0, 00).

M.—t-00

Let ¥* be the class of non-negative functionals T on ¥ which are sublinear
(i.e, T(f+g)"Tf+ Tg and T(af) = \a\Tf for all f,g EY,a E R) and
bounded, i. e., there exist K = Kr < 00 and r = rj G[0,00) such that for
ah/ GY

(1.1) TfUK :zﬁ]mg.

0236-5294/95/$4.00 © 1995 Akadémiai Kiadd, Budapest



270 D. NASRI-ROUDSARI, R. J. NESSEL and R. ZELER

Theorem 1. For a b-complete space (¥,|¢|p) let (Tn)nEN C Y*,
(/in)nEN C ¥ be such that (case M = 0o being included)

(1.2) sup \hn\p ~ C < oo,
nE£N,p€[0,00)
(1.3) lim sup |/i,]9 =0 for each p G0, 00),
n —»00 g€[0,p]
(1.4) lim sup \hn\p i 6 for each n GN,
(1.5) limsup Tnhn M > 0,
n—o00

where (£,,)npN C R is a strictly positive sequence tending to zero. Then for
each e > 0 there exists an element fo = foJEE ¥ such that

(1.6) sup |[/o|p”~C + g,
pE[0,00)
1.7) limsupTn/0 "™ M.

71— »00

P roof. Since each Tn is bounded, there exist constants 1 0 Kn U Kn+\
and rn ™ rn+l G [0,00) such that (cf. (1.1))

(1-8) Tnf 1 Knm]\f\q.

Now one may successively construct sequences (n*)fogN C N, (pk)kEti ¢
C [0,00) and (0/t)AN C {—1,1} as follows: After having determined 0 = pi <
< P2< ... <Pk-1 as well as ni < ri2< ... < n*_i (for a suitable n\ GN,
cf. (1.11; 12)) and 1= 0i,02,...,0*_1b one TaY choose pk > max {

ric j } such that (cf. (1.4))

(1.9) \hn\v A 2£r> forall 1~ j ~fc- |,p ~ ple

Having pk and using (1.3; 5) as well as the fact that (<5,) tends to zero, for
a given e > 0 one may now select 'k > k-1 such that

1.10 Kk, Sup S 2-*g,
(10 <0
(1.11) 6rki 2-78,

1
M —— if M < 00
(1.12) TIKK K™ MK = < K

K if M = o0
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RESONANCE PRINCIPLES WITH APPLICATIONS 271

Since each Tn is sublinear, one also has that forall /,g 6 Y,n£ N

(1.13) max{Tny +q),Tn{f-g)}Z+[Tn(f+g)+-Tn{f-g)] |

- A +0)-(F-0)) —roe

Hence it is possible to choose Bk G {—i1,1} such that

Tk JE I + @khrk j ~ Tnkhiifg
ki=i

thus in view of (1.12)

(1.14) Tnk j ¥ 10jhw, 1 = Aik.
=1

Given p G0, oc), let Kk GN be such that Pk }i P < Pk+i- Then for k i I * m
(cf. (1.10))

era ana f jgﬂ lp= igﬂ%?tpl 141-

~NE K-~eS E 2-~=2-1
I=/+i I=/+i

so that (£"Li 9jhn /) is a Cauchy sequence. Moreover, by (1.2; 9-11) it
follows that for each m GN

e+
ALQhTi - E 14 pT14p+ E ¥ Ip=
1=1 p =i i=fc+i
jt-i
=E 2 +C+E gp 141=
j=i C' I=*+1 9e[§;8 !

AL
N ! _—
jE—2|£+C+]£_HK- 2-nnC +e.
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272 D. NASRI-ROUDSARI, R. J. NESSEL and R. ZELER

Therefore, since (Y, | *|p) is b-complete, the element /o := Qjhnj is well-
defined in ¥ and satisfies (1.6). Furthermore, Tn GY¥* and (1.8; 10; 14)
imply (1.7) since (note that rrk < Pk+i)

( k \ 00
Y 1 @jhn] | — Tnkh,® ~
J = N R |
a 00
t Mk- ~ sup_lhnj\g"M k- "2 2~3e =
j-k+1 , ]=
IM ——2 fce if M < oo,
| K —2~ke if M —oo0. O

Let us mention that the elegant argument around (1.13) is due to Davy-
dov (cf. [5]). Note that Theorem 1 for the particular case in=0,neN,
subsumes the result already given in [7] (see also the literature cited there).
The present more general condition (1.4) was suggested by work of Zhou (see
[16; 17]), but one should also consult the material presented in [13, p. 15ff]
(and the literature cited there).

It would be nice to have Theorem 1 for e = 0 as well (compare with the
treatment given in [5; 6]). Obviously, it holds true if M —oo (simply sub-
stitute /o by Cfo/(C + £)). Moreover, it is also valid if 6n = 0 for all n GN.
Indeed, one may then select pk, n* such that

(1-9%) for all p~ipk,
J=l

(1-10+) Knk x sup IhnA < 2~k

?€[0,pf

k+ 2

Now it is readily verified that the candidate

Qhn]

satisfies (1.6; 7) fore = 0.
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RESONANCE PRINCIPLES WITH APPLICATIONS 273
2. General applications

As already mentioned, the aim of this section is to reconsider and extend
some of the previous quantitative resonance principles. Indeed, when Theo-
rem 1lis applied to questions concerning the sharpness of error bounds, asser-
tion (1.6) guarantees the counterexample /o to belong to certain smoothness
(Lipschitz) classes. In concrete applications (e. g., in approximation theory,
numerical analysis) the smoothness of elements is often measured in terms
of a given family of bounded functionals (e. g., moduli of continuity of func-
tions, K-functionals). In these cases it is therefore useful to work with reso-
nance principles which in fact reflect this particular structure. Several such
guantitative resonance principles have been developed during the last years.
However, since the smoothness classes were described by abstract moduli of
continuity which had to satisfy some additional condition (cf. (2.9)), not all
classes could be examined. In this connection Theorem 1 now enables one
to extend these results to all cases.

To this end, for a Banach space X let X* be the corresponding class
of non-negative, sublinear functionals ' on I which are bounded, thus
(cf. (1.1))

2N rf;r. = (]7III~ °e,
@h) e o#%x J\\X )

Let n be an abstract modulus of continuity, i. e., a function, continuous on
[0, 00) such that

0= w(o) <cj(s) MW(s+t) Nu;s)+ u(t) forall s, t > o.

Then the following inequality holds true (cf. [14, p. 99]):

(2.2) “ E*) < Z(f) forall 0< s/t

Theorem 2. Let X be a Banach space and (Tn)nEN, {St :t > 0} C X*.
Suppose that (4>n)n€N is a sequence of strictly positive numbers tending to
zero, o{t) a strictly positive function on (0,00) and ui(t) an (arbitrary) ab-
stract modulus of continuity. Moreover, assume that there exist (hn)neN C X
such that

(2.3) [pary* ~ C\ for all n GN,

(2.4) Sthn’\szm{ e g foralln GN,t> 0,

(2.5) Sthn it 6n— for all n 6 N,t > 0 with o(t) < gn,
Li®n)
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274 D NASRI-ROUDSARI, R J NESSEL and R. ZELER

(2.6) limsup T,/i,, ~ M > 0,

where (Bn)neN and (£,,),,eN are (suitable) strictly positive sequences with (6n)

tending to zero. Then for each £ > 0 there exists an element GX
such that
(2.7) stfw ~ (2c2+ e)u(a(t))  forallt> o,
(2.8) lim sup > M
n~o0 U®PI) -

Ifn additionally satisfies (e. g., w(t) = t or u concave (cf. [14, p. 97]))

(2.2%) Ago < s forall0< s/t

then one may indeed replace (2.7) by
(2.7%) StU 1 (C2+ e)oj(cr(t)) forallt>0.

Proof. To apply Theorem 1, set ¥ = X and ([p] being the largest in-
teger strictly smaller than p)

\WA\X P=0,
sup | st sa(t) Glp for p G(0,1],
\fip={
| Stf
S :
up ][uz(cr(i)) <r(t) Glp P> 1,
where | ¢| := 0, if there does not exist any t > 0 with a(t) Glp, or if Ip= 0.

Obviously, (¥, I+1) is well-defined (in the sense, considered in Section 1) and
X* C Y*. To show that (¥, |<|p) is b-complete, given a Cauchy sequence
(/,,) with sup{|/,,Jp:n GN,p G[0, 00)} < oo, there exists an element / G X

such that IV —/nlo = W/ ~ /nlix tends to zero, since X is a Banach space.
Moreover, for each p > 0 and rj > 0 there exists no = no(f/,p) £ N such that
[/m —fn\p < Vfor all m,n ~ no- Consequently, since St GX* (cf. (2.1)), one
obtains that for n ~ no and for each t > 0 with a(t) Glp

Sth-Tp) g hmsup StU-fm) , St(fm-fp) <
Lj(a(t)) m-*00 w(<r(i)) u(a(t))
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RESONANCE PRINCIPLES WITH APPLICATIONS 275

UMO)
Hence I/ - fn\p = Vi and (¥, | m|p) is b-complete. Let us apply Theorem 1 to
hn —A~(@n)hn.  Tn— wn)'

Then (2.6) in fact coincides with (1.5). In view of (2.2) and (2.4) it follows
that

Udn) < |

if d, ™ cr(t),
sthn . u@()
mc2
u(a(t)) Nen) _g(Q 42 if a(t) i @,
G((r(®)  on "

and indeed Sthn/uj[ij(t)) ~ C2, if satisfies (2.2*). Therefore, since
(L®n)) CRis bounded, (2.3) first of all implies (1.2) with C = max{2C2,
max,,eN Clo;(®n)}. However, since u>(®,,) tends to zero, one may assume
maxn6N C\wi(dn) ~ 2C2 (without loss of generahty). Thus (1.2) with con-
stant C = 2C2, and by the same reasoning the constant even reduces to
C —C2, if u) satisfies (2.2*). Concerning (1.3), for p = 0 one has by (2.3)
that
|h,,|0 = <*>(Pn)||Mx = Ciu($n) = o(l) (n -+ 00).

Moreover, in view of (2.4) for each a(t) £ Ip

Sthn _ un(en) i o ~Ndbn)

Z = o(l (n —y00),
u@®) = 2u@®) " Cn ) - 0
thus (1.3). Finally, (1.4) follows from (2.5) and the fact that (Pp)péM tends
to zero. Indeed,

Sthr
\K\p= su <
P *Tri P" LW
for p large enough, thus a(t) small enough such that a(t) ~ gn. Obviously,
the present assertions (2.7; 7*; 8) then follow by Theorem 1. O
To deal with arbitrary moduli of continuity, condition (2.5) (see [16; 17])

is added in comparison with the treatment in [7]. On the other hand, if u is
a modulus of continuity additionally satisfying

u(t) .

(2.9) B

00,
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then Theorem 2 indeed reduces to the corresponding result, already given in
[7]. This is a consequence of the fact that (2.4) together with (2.9) implies
(2.5). To this end, in view of (2.9), thus t/u>(t) = o(l), for each n £ N there

exists n > 0 such that

t <

w() = \M on)

for all t ~ gn.

By (2.4) this implies that for a(t) ~ gn

<r(t)

Sthn i Czu(e(t)) o Lo

. v(<r(t))
n C2y/n(dn) L)

thus (2.5) with Sn = C2-V\n>(®Pn). Note that if there exists a > 0 such that
a(t) > aforall t > 0, then (2.5) is trivially satisfied for gn = a,n £ N.
As a consequence of Theorem 2 one may now establish the following

(extended version of a) theorem by Davydov (see [5]).

Theorem 3. Let X be a Banach space and (Tn)n€N, {St :

t>0}C

C X*. Suppose that for each r > 0 there exists a constant Br < 0o such that
INI*. S Br for all t ~ r. Moreover, assume that there exist (h,,)neN C X

such that (C > 0)

(2.10) Sthn i C < 0o for n!'1fiEN ,i> 0,

(2.11) lim Whn\x =

(2.12) lim sup 5i/iR 5 6n for all n £ N,
i-+0+

(2.13) limsup T,/i,, ~ M > 0,

N —too

where (in) ,N c R. is a strictly positive sequence tending to zero.
each £ > 0 there exists an element /o = fo,s E X such that

(2.14) StfolC + e forall t > 0,

(2.15) limsup T,,/Jo ~ M.

N —»00

P roof. Let us apply Theorem 2 to (cf. (2.11))

L= HYlIX Ao = Il Ujt) = t,
hn — in —\\hn\\x Tn, St = St/\\St\\x ,,
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where, without loss of generality, it is assumed that hn¢ 0,St p 0 for all n £
£ N,< > 0, respectively. Then (2.13) in fact coincides with (2.6). Obviously,
one has (2.3) with C\ = 1, and (2.4) follows with C2 = 1 since (cf. (2.10))

Wy Wnlha- 1

Sth < HA<IIX*Hn||x
Sthn —
C _a(t)

, My Wna' n

Concerning (2.5), in view of (2.12), for each n £ N there exists rn > 0 such
that Sthn ~ 2bn for all 0 < t © r,,. On the other hand, by assumption, there
exists BTh such that ||5<||;t* = BTn for all t ™ rn. Therefore, setting gn =
= C/2BTn, if t > 0 is such that a(t) ~ gn, thus ||5<||™-, ~ 2BTn, one neces-
sarily concludes t < rn, hence Sthn ii 26n. Consequently, for all t > 0 with

o-(0 ~ Qn

Sthn '
Sfhn — 1'W .SIAn s
C or c Udwp,,)

and (2.5) is established. An application of Theorem 2 to the present quan-
tities then shows that for each e > 0 there exists /o = /or € X such that
(cf. (2.7%))

i# - =A/oS(i+iM<’(<) =(1+£+ 4 L

thus (2.14) for e = e/C, as well as (cf. (2.8))

limsup TnfO = limsup -yj'Om™ M. O

n—00 THMD ~ (o n)

Let us mention that, instead of using Theorem 2, a proof of Theorem 3
could also be given directly via Theorem 1 as applied to Y = X and

| \\f\\X forp = 0,

P \ Si/PFf for p > 0.

Therefore the remark at the end of Section 1 shows that Theorem 3 holds true
even for e = 0, if (2.12) is satisfied for 6n —0, n £ N. In that case Theorem
3 indeed reduces to the result given in [5].

Let us conclude this section with a consequence (see [6]) of Theorem 3,
useful in connection with concrete applications (cf. Section 3.1).
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Corollary 1. Let X be a Banach space and (Tn)neN C X* be such that

(2.16) lim sup HTnlljf* = oo.

71—»00

Moreover, let Z := {/ EX :limsup”oo Tnf < oo} be dense in X . Then
there exists an element fo E X such that

(2.17) supTn/0<oc,

ngN

(2.18) limsupTnf0 > 0.

71— » 00

Proof. Once Theorem 3 is established, one may follow the argument
given in [6]. Nevertheless, let us outline the proof for the sake of complete-
ness. To this end, if there exists foEZ such that lim supn_#0Tnfo > 0, then
the assertion follows in view of the definition of Z. Thus suppose that

(2.19) lim Tnf = 0 forall / E Z.

71— »00

In view of (2.16) and the definition of ||TM|*~. (cf. (2.1)), for each n EN
there exist nn jn EN, fjn E X satisfying

H/jIxSl,  Tj.fi, 2«.

Since Z is dense in X, one may assume fjn E Z. For gn := fjn/n E Z it then
follows that

(2-20) Hifrlix = Tinon z 1

On the other hand, by (2.19) for each n E N there exists N :—Nn E N such
that Tkgn ~ 1 for all Kk ~ N. For the remaining Kk < N, however, one either
has Tkgn ~ 1, if ||Tf|jx. < n, or

Tkon %okn m=n@{74gin : j <N, \Tj\xt >n).
Thus for hn := g,,/max{l,K,,} E Z one obtains
(2.21) Tkhn U 1 for all k,n EN.

With the aid of (/in)n6N one can now select a sequence (T*n) as follows: If

kn N 1, set kn = jn (cf. (2.20)); otherwise there exists kn E N with |[Tfc,|| > n
and Tkngn = Thus, in both cases it follows that

(2.22) Tknhn Z 1.
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An application of Theorem 3to St = Tnfor I/n £t<1/(n —1) (f>0,nE

EN) and to T,, = Tkn for n E N then delivers (2.17; 18), since (2.10-13) are
satisfied for C —M —1 (cf. (2.19-22) and note that hn E Z). O

3. Applications to mean ergodic theorems and projection
operators

3.1. Mean ergodic theorems. Let A be a (real) Banach space and T
a mapping of A" into itself which is linear and bounded, thus T £ [X] with

Mpr] = sup {WTHf\\x :\\f\\x ~ 1} < oo (cf. (2.1)). Let | be the identity

operator and P:=N U {0}. For a > 0 consider the Cesaro (C, a)-means of
the sequence (Tn)neP C [AY, given by

ma(T\=— 2~ 1\ "(ra rpi pa_o(oT 1)..(ftLA- 1)
Jo n-

Fora ~ 1it is awell-known fact (see [4], cf. [3] and the literature cited there)
that for operators T E [AT] with the property

(3.1) WTn\[X] n K < 00 forallnEP
there holds true the mean ergodic theorem

(3.2) lim K (T)/- P\ =0  forall/ EXQ,

where Ao := N(I —T) ® R(l —T) is the direct sum of the kernel N (I —T)
and the closure R(l - T) of the range of | —T and where P is the bounded

linear projection of A0 onto N(I - T), parallel to R(I - T). In [2; 3] the
convergence assertion (3.2) was then equipped with rates. Indeed, with the
aid of the projection P and the restriction TO of T to A'o one may introduce
the operator A via

(3.3) Af=g on D(A) := N{1- TO)® R(l - TO),
where g E Ao is uniquely determined by (/ —P)f = (7 —To)g and Pg = 0.
It follows that D(A) is a linear subspace which is dense in Ao, and that A is

a closed linear operator of D(A) into Ao- Consider the K-functional

A'(,1) := K(/, -A0, D(A)) := inf [u/- gix + tWAQ\X].
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Then for a ~ 1 and for each T £ [X] satisfying (3.1) there holds true the
direct approximation theorem

(3.4) K< (T)/ - PR\ x WBaK (7, X0, D(AY |,

where the constant Ba is independent of / £ Xo,n £ P (see [3]). Moreover,
it was essentially shown in [3; 9] that for / £ Xo (n —00)

(35) MNe )/ -Pf\x =0 («(i)) « A(/.jij) =0 («(i)).

where n is an arbitrary modulus of continuity. In this connection an appli-
cation of Corollary 1 now delivers the following result on the sharpness of
(3.4), quite parallel to the treatment given in [6] for the approximation by
semigroups of operators.

Corollary 2. Let X be a Banach space and T £ [X] satisfy (3.1). Sup-
pose A as defined via (3.3) is unbounded. Then fora ~ 1 and for each modu-
lus of continuity n there exists a counterexample fw £ X g such that (n —#0o0)

O n
\< (T)f,,-pfdx
qDO

Proof. Since Xo C X is a closed linear subspace, Xo is a Banach space,
too. Setting

Tap o AN PR E X0 E N,

one obviously has Tn £ x 4. It is essentially shown in s; 10] that (even un-
der the weaker condition | c*™L(T")|| = o(n)) the assumption, A being

unbounded, is equivalent to

limsup <{T) - PI[* > 0,

n—Kkx> o]

which implies

_ _ K(T)-P
lim sup ||Tn| y* = limsup "ol oo,
0 Nn—oo

N—too
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Moreover, in view of (3.4), for each / £ D(A)
WK (T)f-Pf\\x 4B j~&af-,

and therefore by (2.2) for each / £ D(A)

limsupTnf ~ limsupbal|N/||™— ~ 2Ba\\Af\\x < 00.
n—o0 M— [ 1) kd 1)

An)

Since D(A) is dense in Xo, it follows that Z = {/ £ Xo :limsup,~," Tnf <
< o0} is dense in Xo- Hence an application of Corollary 1 establishes the
assertion. O

The sharpness of the error bound (3.4) is discussed in Corollary 2 under
the assumption that A is unbounded. If, however, A is bounded, then indeed
D(A) = X and therefore (cf. [2])

Ho*{T)f- P\x = 0Q ) for each / £ X
as well as
W< (T)f-Pf\\x 20 (M\ ifandonly if ftN(I-T).

Let us finally mention that analoguous results also hold true for the Abel
means (1 - r) (cf. [2; 3; 8; 10]).

3.2. Trigonometric projection operators. The material of this subsec-
tion originates in work of P. 0. Runck, J. Szabados and P. Vértesi [12]
on the approximation by sequences (P,,)neP C [CW] of trigonometric pro-
jection operators, thus in particular Pntn = tn for all tn £ n, the set of
trigonometric polynomials of degree less than or equal to n. Here C-i* is
the space of all continuous, 27r-periodic functions /, endowed with the usual

norm ||/|[c := maxI€R |/(a;)|. Moreover, for r £ P let C~J C Crk be the
space of r-times continuously differentiable functions / with norm ||/|| (r>:=

:= max0<j<r ||/~ ||c <« Consider the Lipschitz classes (0 < a ™ 1)

Lipa:={/ £CZr:LL/,t) - O(ta),t-» 0+ },

u{f, t):

sup {1/(* +n) - /@D Qr :jul K id.
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In these terms it was shown in [12] (see also [15]) that for each (abstract)
modulus of continuity n satisfying (2.9) there exists a counterexample fw 6

Gd fj such that
| ]
)30,

JfJJ BRI -
lim sup ar . 0.
n—to0

This result was then extended to the case uj(t) = t by S. P. Zhou [16; 17].
Here we would like to reconsider the latter case in the light of Theorem 1.

Corollary 3. Letr £ P and (P,,)n€P C [C2™ be a sequence of trigono-
metric projection operators such that for all f £ UER,NEP

(3.6) P UM g = CINUG + O)()

C2n

Then there exists a counterexample /0 6 Cé?t such that

(3.7) fo]6 Lip 1,

(3:8) lim sup ------ rinfe - 4" >0
-

m—*0 log

Proof. Setting Y = {/ £ C™J :/”~ £ Lip 1}, one has by a theorem of
Hardy-Littlewood (cf. [1, p. 366]) that

Y = j/ £CZ :there exists g (= y(r+l)) £ such that

Ve

f(r\x) = /(r)(-—T) 4- | g(u)du for all a € r |,
J—T N

where Lfj is the space of measurable, 27r-periodic functions, essentially
bounded on R. Introducing the seminorms

(a p- 0

/1P := | T T
esssup < f(r+1\x) W\ £ Ip :=
I plt 27 [p]} L.

Ada Mathematica Hungarica 68, 1995



RESONANCE PRINCIPLES WITH APPLICATIONS 283

it follows that (¥, I+] ) is b-complete (cf. [7]). Indeed, consider a Cauchy
sequence (/,,) CY with |/n| ~ B for all n GN,p G[0,00). Since CifJ and
Te°°(/p) are Banach spaces, there exist / Gcffj and a measurable function g
on [, 7], continued 27r-periodically, such that

lim ¥/- /1 4y 0 and lim esssup f1*+1,M - 9(x) = 0.
ne n-ro  xelp

Using esssupx6é/p /ilr+1*a:)] i B for all p > 0 and n GN, one also obtains
esssup”g” [<(K)| 1 B for all p > 0, and thus g G Since /,, GY, it then
follows by Lebesgue’s dominated convergence theorem that

- = |i N[\~ i =
[ (D(-7r)+ J[_n g(u)du n'-'%’ N~Tr) + AJ%J_nf(r+l\u)du
= Un Ur\x) = f{rx),

thus / GY, and Y is b-complete. To apply Theorem 1, consider the (nor-
malized) error functionals Tn GY*, given by

Tnf = Il\ogNn Pir)f ~ f{r on

in connection with the testelements (r GP,2 ™~ n GN, see [16; 17])

[n233  cos - k)X - cos Mn + K)x -

hn(x) = n~I "2 K K c "
k=[mILl (n —k)r (n+ k)T

It was already shown in [16] that these trigonometric polynomials indeed
possess the properties (M > 0)

(3.9) _ ~ncml foroUj ~r,

Car
3.10 +)
(3.10) Ay oo €2

Am'13 if m %A U

3.11 *)| A
(3.11) 4 r+1)(*)| Aon—'C -
(3.12) \] hn\x)Dn(x)dx ~ Mn Mogn,

Acta Mathematica Hungarica 68, 1995



284 D. NASRI-ROUDSARI, R. J. NESSEL and R. ZELER

where Dn(x) := 1+ 2 Ylk=i cos kx is the n-th Dirichlet kernel. Therefore
conditions (1.2-4) are satisfied in view of (3.9-11). Concerning (1.5) we fol-
low the argument, given in [12], and use the Faber-Marcinkiewicz-Berman
identity (cf. [11, p. 97]) to deduce

~\] Pn){hn(—+U))('U)du:A\] h~\u)D n(u)du.

Since Pn\hn(-+ u))(-u) is continuous, there exists a point un where
\Pn\hn(- + «))(—u)| attains its maximum so that (3.12) implies

IP~{hn(. + un)) s > Pr){hn(-+ un))(-un) >
f Pbr)(hn(- + u))(-u)du= ~ J* h£\u)D n(u)du Z

Therefore in view of (3.6; 9)

Ci
Tnhn > P~ {hn(-+ un "M -
log n {hn(-+ un))(x) o ] o logn’
thus (1.5). An application of Theorem 1 then delivers the assertions (3.7; 8).
O

Let us mention that, in contrast to [12], one cannot directly work with
hn(m+ un) as resonance elements, since on the one hand the estimate (3.11)
is used to establish (1.3; 4), on the other hand nothing is known about the
location of the points un. Therefore it seems that condition (3.6) has to be
added to the argument in [16; 17], too.
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SPLINE ORTHOGONAL SYSTEMS
AND FRACTAL FUNCTIONS

Z CIESIELSKI (Sopot)

To Professor K. Tandori on his 70th birthday

1. Introduction. In recent years more and more attention is paid
in mathematical papers to fractal functions and to fractal sets. There
are various definitions of those objects. We assume that a compact set
A ¢ Rd+l is fractal, by definition, if its box (entropy) dimension dim(,(A") /
¢®j forj =0,1,...,d+ 1 and 0< dim™A") <d+ 1 At the same time
the function / :1d —»A, / = [0,1], is fractal, by definition, if its graph
rf= {(t,/(t)) :t £1d} has box dimension satisfying the inequalities
d < dimf,(rj) < d+ 1. For the definitions and properties of lower dinilA")
and upper dimb(A") box (-counting) dimension we refer to [6]. In case
ding.(A-) = dimb(A) by definition dinii,(A) is the common value. However
for the sake of completeness we recall one of the equivalent definitions of
the box dimension of a given A C Rd. For given 6 > 0 we consider the fam-
ily Q") of closed cubes generated by the d-fold Cartesian product of the
mesh {i6,i £ Z}. Denote the number of cubes from Q(f>) intersecting K by
N(K;6). Now,

PG NKAS)  imT K ) —tim ing 9N (K 6)

dim(,(A") = limsup
logy =0t og |

In these definitions one can restrict considerations to 6 = T. asj —* 00. The
relation between box dimension and the graph of a function satisfying Holder
condition is known for years. In particular, it is not hard to see that the
Holder condition with some a, 0< a n 1, i.e.

(1.2) [/(t)-/(t")] for t,t'£/d,
implies that
(1.2) dimh(Tf) < d+ 1—a.

Our aim is to describe some classes of functions /, e.g. subclasses satis-
fying (1.1), for which the box dimension exists and the equality takes place
in (1.2). The Holder classes, as it was shown in [2], can be characterized by
means of the coefficients of the spline orthogonal expansions, and it seems
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natural to apply this tool to solve our problem. For simplicity, the result is
presented here in case d = 1. The extension to d > 1 is possible with essen-
tially no new ideas (cf. [3]).

In Section 2 we describe the construction of the orthogonal spline system
on I —[0,1] and recall some of its essential properties. Senction 3 contains
the main result on Hélder subclasses for which we have (1.2) and

(1.3) dim,,(rf)> d+ 17(3.

2. The orthogonal spline systems. The orthogonal Haar functions
over /, normalized in the maximum norm, can be defined by means of the
function sign(t). Define

sign (t+ 1) - sign(t- 1)
MO =

sign (<+ 1) +sign(t-]) _slgn(i) for teR

and

|\/|<):*1(2‘(F-|H F)) where j= 1,...,2 A=0,1,....

The Haar orthogonal system on | with respect to the Lebesgue measure is
complete and it is denoted by

2.1 H:={l hjtk j = k=0,1,.}.

This is an orthogonal system of spline functions of order 1i.e. of degree 0.
We note also that

i-1 £

supp hjtk ok ok

The Haar functions are not continuous. Performing integration on (2.1) over
[0,9 and then completing the result with a constant function, after normal-
ization in the max norm, we obtain the Faber-Schauder basis

(2.2) S ={1 j=1..,2%tk=0,1,...}.
Again
. 0-1) ¢
SUpp Sjtk ok . 2k
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The Franklin orthogonal system is obtained now from (2.2) by apply-
ing the Gramm-Schmidt orthogonalization procedure and then normalizing
them in the max norm

(2.3) T :={lo,fifjkij=1,..2% A=01,.},

where /o = 1and /i(i) = 2t —1. This time supp fhk = I but instead we have
exponential estmimates for the Franklin functions [1]. The Franklin functions
are splines of order 2.

The three step procedure of integration, orthogonalization and normal-
ization used above to the Haar system can now be applied to the Franklin
system to obtain an orthogonal spline system of order 3. Repeating this
procedure r —1 times we get the orthogonal system of splines of order r

(2.4) F{T)-={/Iz(i)rl...lflr)sfj,rk)'j =1,...,2fc A= 0,1,...} ,
where the first r functions j see /jr'j are the Legendre orthogonal poly-
nomials on | normalized in the max norm. Clearly = H and =T.

It is convenient to introduce the following notation for the partial sums
of the Fourier expansion of / 6 LP(1) with respect to JCO for j ™ O:

(2-5) Pif=£ Qif>
i=—l
with
(2.6) <?2_,/= -£ {f,fIT)flr)and O i/=E (/,/< &))4 2,
i=2-r k=1
The family of projection operators {Pj,j = - 1,0,1,...} acting on LF(l),

1~ p ™ oo, is bounded uniformly in j and p. For this and other properties
of JFG) we refer to [2] and [4].

3. Box dimension of functions given by spline series. The first
theorem is related to the charcterization by spline basis expansions of func-
tions satisfying Holder condition.

Theorem 3.1. Letr 1, 0<a ™1,

(3.2) limsup (2Q@max la™cl) < oo,
j k
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and let

(3-3) E E “>41-
i K

Then

(3.4) dinib(rj) U 2 —a.

Proof. Forr > 1and a < 1 condition (3.2) implies that / satisfies (1.1)
and consequently (1.2). In case r > 1 and a —1 condition (3.2) implies that
fdreach0<e< 1

YO -/(01 g sfi- i"l1“* for M "e/,

whence (3.4) follows as well. It remains the Haar case r = 1. Now,

00 00
I/ - pj-ifh-ii) = Z IBSHI~(/) » Z ™o I°Pfd=c¢ *2-~aj-
i=j i— - -

On the other hand introducing Ihk = supp hy/t we note that
1/ - Pj-1f\\L°°(l) = mf XII/ - PJ-I/lILoo(/j B,
and for each kK, 1™ Kk ™ 2J, we have

- »pj- -3 1y >
I/h* //J,* Loo(lj k)

where Osc(/; J) = {sup |/(i) - /(&) :t,s EJ} and iV (rf,J;6) is the num-
ber of squares, with sides of size 6, over J which cover the part of the graph
I/ lying over this interval. It now follows that

u/-p,-,N11,(0)r pbra(r/,/;1).

This in combination with the previous inequality completes the proof.

The next theorem gives sufficient conditions on the coefficients aj™ in
(3.3) for the estimate from below for the lower box dimension of I'/ with /
given by (3.3).
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Theorem 3.5. Letr”™ 1, 0< R~ 1 and let

(3.6) liminf Y > 0.

Then for f for which (3.3) converges uniformly on I we have
(3.7). dmb(Tf)~2-R.

Proof. For the proof let us introduce the local spline operators

ity = Kj(t,s)f(syas, t G/,
Kj(t,s) = Y2 ¥ Nj,m(t)N]Im(s),
where
m (jn + 1) fy-i

Nim(t) — 2 207t 2 7
Here [<o, ¢+, tr\/(+)] denotes the divided difference of order r of the function

/ taken at the point t0,..,,trand t+ = max(i,0). The functions (Nj>m) form
a partition of unity. The kernel Kj is positive and the LP(1) norms of the

cerresponding operators Tj are all equal to 1. Moreover, for 1~ j ~ 2k we
have

[ \m-TjNe\dtE § Y, Ni™F) [ \f(s)~Ff()\Nj,m(s)dsdtr

K-TAT<K 1

Nisup||/(s)-1(i)|l :t,se A Y Osc(/;4 m).
\m—k\<r

Now,
Osc(/;/dmy~ lyv(r/,/,)m1).

Consequently,

) - FRGE *(7 g) =g)*az.i).
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Applying the basic properties of the system we obtain

5E 'Mis cuw SCI/-0, JIH)s

£ C|[/- TjMi,,, £ ,

and this completes the proof.

Remarks. It follows from the proofs that Theorems 3.1 and 3.5 hold for
the Faber-Schauder S as well.

COMMENTS. For discussion on related topics we refer to the recent pa-
pers [7] and [5]. The results presented here can be used to calculate the box
dimension for some particular functions: Using the Haar system one can find
the box dimention 2 —a of the graph of the particular Weierstrass function

£ — sin(2ir2n), 0O0<a< 1
j=o

The Haar system can be applied to calculate the box dimension of the
graph of functions given by similar Rademacher series. With the help of the
Franklin system one can prove that the graph of almost every trajectory of

the fractional Brownian motion with exponent 0 < B ii 2 has the box dimen-
sion equal to 2—  The fractional Brownian motion is the Gaussian stochas-

tic process (X(t),tE 1) with mean zero and such that E\X(t) —X(s)|2=
= 1I- sf.
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1. Introduction. In [2] T. M. Flett defined a very useful extension of
absolute Cesdro summability. According to his definition we shall say that
a series an is summable \C,a.,~f\k, where k ~ 1,a > - 1, 7 ™ 0, if the

series  nlk+k~1\0% - a'"_1\k is convergent, tr'" being the nth Cesédro mean

of order a of the series ~0° an
Among others, he proved the following result.

Theorem. Letr » A> 1 7”o0,a>7—1 R a+ 1/k —1/r. Then
if Eo°°«n is summable |C,a,7|t it is summable |C,/?,7|r and with r"

( )Vr ( )
(1.9) {L nreiTi} .

Ifk=1, (1.1) holds when r ~ 1,7~ 0,a >7—1, B>a + 1/k - 1/r.

This theorem is a very important result, also in itself, moreover it has
turned out that inequality (1.1) is crucial in the proofs of theorems concern-
ing strong approximation of orthogonal series having approximation order
ox(1/rc7) (see e.g. G. Sunouchi [12], and [5], [6], [7]). Recently we intended
to generalize that, this can be done, in our view and experience, only if pre-
viously we can generalize the Theorem by the same way, that is, if in the
Theorem we can replace the factor nl by a suitable factor 7 (n).

This was our motivation for generalizing this important result of Flett.
Naturally, having found the method for such an extension, we used it for
generalizing some further interesting theorems of Flett [2], see e.g. [8] and
[9]. In [8] we introduced the newly generalized notion of absolute Ceséro
summability, i.e. the definition of |C, a, 7(i)| ~-summability, where 7(t) is
a positive nondecreasing function defined for 1 ~ t < oo. We say that the

* This research was partially supported by the Hungarian National Foundation for
Scientific Research under Grant # 234.

0236-5294/95/S4.00 © 1995 Akadémiai Kiadé, Budapest



296 L LEINDLER
series £ ~ a nis summable |C, a,7(i)|tif the series

0o

SAT (hy)knk~1\en - °n-1vk1
1

or briefly
NT(n fn-1TE*

71=1

is convergent.
Among others in [8] we proved the following theorems which will be used
in the course of the proofs of our results to be presented in this work.

Theorem A. Letr~k>1a> —1 B" a+ Uk —1r, and 7(t) be
a non-decreasing positive function defined for 1 ~ t < oo so that with some
c>1

1.2 limsu < Ca+l.
(1.2) <_>>(I)p 7(0
If the series
@
(1.3) x>,

71=0

is summable |C ,a,7(/)|k, then it is summable |C,/3,7(f)|r and

(i-4) {$~"7(rc)r-V nfj = .

If Kk —1, f/re result holds when r~ I, /?>a + | —1/r and (1.2) is satisfied.

If we keep r = k, then the factor 7 (70) on the left-hand side of (1.4) can
be replaced by another factor p(n) as follows.

T heorem B. Letk”™ 1, a> —1,6>0, 8 ~a—6, and 8 > —1, fur-
thermore let p(t) be a positive monotone, and 7(f) a non-decreasing positive
function defined for 1~ t < oo, so that

: L 7(CQ A 7(g<) atl
(1.5) C6lim sup < lim inf Umsup <C
t—oo  P(t) t% 7(0 t—oo  7(0

ic k Mathematica Hungarica 68, 1995
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with some C > 1. If series (1.3) is summable \C,a,~/(t)\ k, then it is
summable |C, B,p(t)\ k and

(1.6) Ali(n)fm_1Tn[E” A ‘A7 (n)fm"1r"|<.

In the case of strict inequality 8 > a —6 we can prove a consistency
result for r < k, too.

Theorem C. Letk>r 1.a> -1 6>0, and 8 > max(a - 6 —1).
If p(t) is a positive monotone, and 7(t) is a positive non-decreasing func-
tion defined for 1~ t < oo, furthermore they satisfy (1.5) and series (1.3) is
summable |C,a,7 (<)|f then (1.3) is also summable \C,R,p(t)\r and

Using these results we intend to generalize some theorems pertaining to
generalized absolute Cesaro summability of orthogonal series. One of the
first results of this type is due to K. Tandori [14] who investigated the abso-
lute |C, l|-summability. His result was extended to |C, g|-summability by us
[4], and a certain part of ours to |C,a,7 |Cby 1. Szalay [13].

We shall not cite these theorems to be generalized here, because Theorem
1 and the sufficiency part of Theorem 2 to be proved in our present paper
in the special case 7(f) = t1 with appropriate 7 will reduce to the relevant
theorems of I. Szalay, which in turn contain our results in the special case 7 =
= 0 and k = 1. Furthermore one of our theorems in the case a = 1 embodies
Tandori’s theorem. The necessity part of Theorem 2 and Theorem 3 were
proved only in the special case k = 1and 7(f) = 1 by us [4].

Before formulating our new theorems we recall some further notations
and definitions.

Let {(*,,0k)} be an orthonormal system on the interval (0,1). We shall
consider real orthogonal series

00
(1.8) 2”7~ cnys,,(x)  with <@

71—0

It is well known that the partial sums sn(x) of (1.8) converge in the L2
norm to a square-integrable function f(x). The (C,a)-means of (1.8) will be
denoted by (T"'(K), i.e.

sl K )sk(x),

<(x) sin :f:o
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where Afg) := (”+a).
A sequence 7 = {7,} of positive terms will be called quasi B-power-

monotone increasing (decreasing) if there exists a constant K —K (B,j) t 1
such that

(1.9) KnOgntm Ogm (nf37,, < KmO0gm)

holds for any n't m.

Furthermore we shall say that a sequence 7 = {7, of positive terms is
quasi geometrically increasing (decreasing) if there exist a natural number p
and a constant K = K{7) t. 1such that

(1.10) M+t 2jnand 7,, N AT, +i (Tn+MA ~Tn and 7,+1 ™ KT,)

hold for all natural numbers n.
An orthonormal system {xn(”~)} will be called Haar-type, or briefly H-
type, if for every x 6 (0, 1)

Xn(x)Xm(x) = 0 with 2k< m, n ~ 2fctl, md n, kK —0,1,...

holds true.

2. Theorems. Using the notations and definitions introduced above we
can formulate our results.

Theorem 1. Let us assume thata > "~ , I~ k™ 2 and 7(t) is a positive

nondecreasing function on [l,00) such that the sequence (7(u)} is quasi g-
power-monotone decreasing with some q > —1. Then the condition

00 r 2ml tk/i2
(2.1) ETCNn*] E cn <0°
m=0 ra=2m+| 1

is necessary and sufficient for series (1.8) to be summable |C,a,7(i)|t for
every orthonormal system {<y3,,0K} almost everywhere (a.e.) in (0, 1).

The following corollaries can be proved using Theorem 1 and Theorems
A, B and C, respectively.

Corollary |.A. Under the assumptions of Theorem 1 with the ad-
ditional premises: rt k> l1land 8t a+ 1/k- 1/r; orrt. K—1 and

B >a+ 1—1r; series (1.8) is also summable \C, B,q(t)\r a.e. in (0,1).
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Corollary I.B. Leta > 1/2, 17 K/\2, 0<6< < 1, R'Z.a- 6 and
B > —1, furthermore let 7(f) and p,{t) be positive nondecreasing functions
on [1,00). If the function 7(t) has the added property

(2.2)] r|l6la) 76 =c7 forsome C > 1,

and the sequence {//(n)} is quasi rj-power-monotone decreasing with some
1j > $—7, then condition (2.1) implies the \C,B,p{t)\k-summability of series
(1.8) a.e. in (0, 1).

Corottary ILC. Leta>1/2, \ir<kU2,0<4a<7<1andR >
> max(a —6, —1). If the functions 7 (t) and p(t) have the same properties as
in Corollary 1.B, then condition (2.1) implies the \C, R, p(t)\ r-summability
of series (1.8) a.e. in (0, 1).

Theorem 2. Let1” k” 2 and let™(t) be the same function as in The-
orem 1. Then the conditions

04] 2ml yk/2
(2.3) £ 72m'mvVv4 g < oo, ifa= 1/2;
=0 *=2m+l !
and
()] o 2mtd  xT02
(2.4) 72200 V2-A< £ 1l <00, if- 1<ac<12;
=0 Ti=22m+l J

are sufficient for series (1.8) to be summable |C,a, 7(<)| k a-emm (04)- If the
sequence of the coefficients \cn\ is monotone then conditions (2.3) and (2.4)
are also necessary that series (1.8) for every orthonormal system {p n(x)}

be summable |C,a,7(0|* aemin (0, 1).

We remark that the necessity of conditions (2.3) and (2.4) in the special
case 7(<) = i7 was not proved in the paper of I. Szalay [13]. Now we shall
prove this part by using an almost hidden lemma of L. Csernyak and L.
Leindler [1].

From this theorem and Theorems A, B and C we can deduce the following
corollaries.

Corollary 2.A. Under the assumptions of Theorem 2 with the ad-
ditional premises: 1~ k> 1 andf ~ a+ 1/k —1/r; orr ™~ k= 1 and
R >aA1- 1r; series (1.8) is summable |C,/?,7(i)] a.e. in (0,1).

Corollary 2.B. Let1*"k”"2,6>0,0r"7<1 -1 <an1/2,8 >
>a —6 andf > —1. Ifthe functions 7 (t) and p(t) have the same properties
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as in Corollary 1.B, then if a = 1/2 condition (2.3), and if 1< a < 1/2
conditon (2.4) imply the \C,R, p(i)| k-summability of series (1.8) a.e. in
0, 1.

Corollary 2C. Let 1" r< ki 2,6>0,0~r7<1 -1 <amn l/2
and B > max(a —6, —1). If the functions 7 (f) and /i(i) haue i/re same prop-
erties as in Corollary 1.B, then in the case a = 1/2 condition (2.3), and
if -1 < a < 1/2 then condition (2.4) imply the \C,R,p(t)\ -summability of
series (1.8) a.e. in (0,1).

In [4], among others, we also proved a further theorem pertaining to
Haar-type systems in connection with |C, a]-summability. As far as we know

nobody extended our A-type result to |C, a, 7|fcsummability. Now we shall

generalize this theorem to |C, a, 7(1)|~-summability directly. Our general
¢ -type result reads as follows:

Theorem 3. Let 1™ k™ 2 and let 7(i) be the same function as in The-
orem 1. Then the conditions

(2.5) < 00
and
00 , 2m+] \ k/2
(2.6) j2 12mk2m™ i-ani4 y , . <°°
m=0 4=2TM 41

are necessary and sufficient that series (1.8) for every Haar-type system
{X,,(k)} be summable \C,a,")(t)\k a.e. in (0,1) for any a ~ 1—£ and
for any —1 < a <1 — respectively.

Theorem 3 in the special case 7(1) = 1and Kk = 1 reduces to our theorem
proved in [4].

Finally we mention that analogous corollaries as in connection with The-
orems 1 and 2 were stated can be proved using Theorem 3 and Theorems A,
B and C, as well.

3. Lemmas. Before formulating the lemmas required in the proofs we
present some further notions, notations and some elementary facts.

A function 't(x) defined on (0,1) is called a step function if there is a
partition of this interval by a finite set of points 0 = xq < < ... < Xn—
= 1 such that (x) has a constant value on each subinterval {xk-\, Xk). At
the points Xk the function may be defined arbitrarily.

The nth Rademacher function is rn(x) := sgnsin 2nivx.

p(E) will denote the Lebesgue measure of E.
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If I := (u,v) is a finite interval and h(x) is a function defined on (0,1),
then
if u<sx<v,
h(x,/) :=
0, otherwise.

It is clear that J”h(x, )dx —p (/) /3 h(x)dx.
A set E is called a simple set if it is the union of finite intervals.
We can find the following facts in A. Zygmund [15] (see p. 77):

(3.1) O<ci(a) © = c2(°0 Nl a>-1, :
(3.2) >0 (m~0, a>-1),
and
(3.3) AN+l > Atf (m~ 0, a > 0),
where c”a) and c2(a) are independent of m.
We define
i)y At voL
ﬁ@l Hf) (nA1l—)(n Al+a)
From (3.1), (3.2) and (3.3) it clearly follows
34)  0<di(a T ljaﬁ_ sidsism ™* i;{)a v

and
sgn LU = sgna

forany n —1,2,...; v —0,1,...; a > —1, where di(a) and d2(a) are inde-
pendent of 71

K, A'i, A2, ... will denote positive constants depending only on the pa-
rameters concerned in the particular problem in which it appears. The con-
stants are not necessarily the same at any two occurrences.

Lemma 1 ([4]). Let {4, (x)} be a system of step functions defined on
(0,1). Denote Js{n) (n = 1,2,...; s —1,2,...,sn) the intervals on which
Rn(x) is constant. Iffor every m > n

/ sgn Rm(x)dx =0 (s=1,...,sn),
Jj.(n)
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then for any sequence of numbers d\,...,djy there exists a set Ek of subin-
tervals such that for any x £ Ek

N
N dfR((x) A \diy-KRN-K(x)\
1=\

and
. - k- 1))
li{EknJa(N -k - 1)) = ki
hold for any k = 0,1,..., N —1;5s = 1,2,..., sjv-fc-i; and Ji(0) := (0, 1).

Lemma 2 ([15], p. 213). //E~=0cn < 00 and f(x) ~ E”ocn(8a) <
given by the Riesz-Fischer theorem, then

C» | 1/2 1

(35) ASof = | V(¥)de= (n

where A and B are absolute constants.

» 1/2

-0

Lemma 3 ([1]). For an arbitrary sequence {c,,} let the sets Endm be de-
fined by

n+m

Enm - N GrTvx)

Then ENYT1are simple sets with p(En”r) ~ A2/4, where A is given by (3.5)
in Lemma 2.

Lemma 4. By means of the coefficients cn of series (1.8) we can con-
struct an orthonormal Haar-type system {xn(s)} °f siep functions with the
following properties: For any natural number s the interval (0,1) can be par-
titioned into subintervals Jp (1 ~ p S ps) such that on any Jp every Xn{x)
(n=20,1,...,2s) is constant. These intervals Jp := (up,vp) are decomposed

into 2s subintervals 1k{s, Jp) := (WK\v kY (k = 1,2,..., 2s), using the quan-
tities Cs := |X/n=2s+ticn| »
K

P6S):=0 and /Mis):=C72£ 4 +n (fe= 1,2,..., 25),

71—1

by the following definitions:

(3.7) u{k) := up+ fl(@p)p[d 1 and = up+ p(Ip)p[s\
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The functions \ 2s+k(%) (s = 1,2,... and k = 1,2,..., 2s) are defined as fol-
lows:

S

3-8 2°+ =
(3-6) T o A

Jra(x;lk(s,Jp)).
This lemma is proved in [4] implicitly (see pp. 247-249).
Lemma 5 ([10]). For any positive sequence 7 := {7,,} the inequality

00

Y anoi K-/m o (m o= 1,2,...,k N1

77771

holds if and only if the sequence 7 is quasi geometrically decreasing.

Lemma 6 ([11]). If a positive sequence {7n} is quasi R -power-monotone
decreasing with a certain positive exponent 8 then the sequence {72"} is quasi
geometrically decreasing.

This lemma is just a part of a theorem proved in [11], and Lemma 5 is
also just a part of a lemma of [10].

4. Proofs. Proof of Theorem 1 First we prove the sufficiency
of condition (2.1). We may suppose, without loss of generality, that c0 =
= ci = 0. Taking into account (3.1) and (3.4), furthermore using Holder’s
inequality, we get

00 -1
Xn(n)V-1/ |<+1(x)-<(x)] dx »
n=I Jo
00 2m+! , nk/2
S A £ y . I 1< (A -<+1(*)]2«M S
m=0 n=2n| '
[o]e] ) zrnti
I e N A IR R R R ,
m=0 ‘m=2m+1 «° } d
0o 2m+l s n v k12
V(AW )M +(AS) 4+) > °
m=1 n=2m+1 %=0 ‘
00 X 22m+1 n u k2
N A3y i(2m)k2mk/2< y E n2a~2(n+ 1- n 2a~ +
m=1 A71=2m+1 1/=0 '
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2m+1+1
+K3Y i(2m)k2m2 E i~zaC?'| E L+ E > N
m—\ n=2m+2

This estimation holds for any a > —L1
Ifa>1/2and n(£) min(2°+1, n), m{v) max(2m+l + 1,i/), then an
elementary consideration shows that

1] P

QO ( 2m+l m n(t)
N AAN T (2myfemfc2l v v Yy n-2-2(n+i-rH2“-Vc2
m=1 An=2m+ 1 (=0 i/=2e+]
00 2m+1 m n(t) .fcl2
S ABE17(2")22-"<1+2*) E I S
m=I1 2 n=2m+| t=0 ,=2*+] n
00 ( m 2<+] 2T +r1 N ki2
AK5Y \i(2m)22~m{l+2a)Y 12 wv2°2 Y (« +i-")2a_2] N
m=1~" £=0 j/=2(+I n—m(v)
s ( m 2<+1 y A2
SAGEI7(2")22-2mE E S
m=| ~ A=0 1=2i+1 "
00 X 2<+l 4y k/2 o0
i K 7Y 2(k{ Y c2) E "N 2m)fc2_fem
C=0 I1=2*+1 Ttii

Since the sequence {'y(rr)} is quasi //-power-monotone decreasing with
1> — 1, the sequence {7(n)n-1} is £-power-monotone decreasing with a
positive e. Namely if = e —1 (e > 0), then (n) = ne7(n)n_1, whence
everything is clear. Now if we apply Lemma 6 with e and 7(n)n_1 in places
of B and 7,,, respectively, we get that the sequence {7(2'")2*“n} is quasi geo-
metrically decreasing and therefore the sequence { (7 (2MN2_IM~} is also quasi
geometrically decreasing (see definition (1.10)). Thus, by Lemma 5,

(4.3) Y 1(2m)k2~km < K 1{2i)k2~KI.

m—t
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Using this and (4.2) we have

°° .S \*/2
44> E.s"Ei«2)(Ed) o
e=0 \= 2+i 7
The estimation of N2 is very easy. Namely, a > 1/2, thus
0° , 2m+4 y jfe/2
(4.5) E r= E 72m+t)ikm172-"0 £ cU S
m=1 47i=2m+ |
a r 2m+4 4kl2
- Ai,, E £ <:
m- 1 ‘n=2m+|

Now collecting the results (4.1), (4.4) and (4.5), by Beppo Levi’s theo-
rem, we have proved the sufficiency of condition (2.1).
To prove the necessity of (2.1) let us consider the series

00

(4-6) IrerrXn(x),

71=0

where the functions Xn(%) are given in Lemma 4 by (3.8). Denote c1''(a)
the nth (C, a)-means of series (4.6). Let us assume that series (1.8) for any
orthonormal system is summable |C, a,l(t)\k a.e. in (0,1). Then series (4.6)

is also summable |C,a, 7 (01 a-e- in (0, 1), consequently

A (N ) knk- 1\-0r+1(x)-a1{x)\k < 00

71=1

a.e. in (0,1).

Let e > 0 to be given later. Owing to the previous statement we can
apply Egorov’s theorem which conveys that there exist a measurable set E
with fi(E) » 1—e and a positive constant M such that for every x GE

[e]e]

- <Ok < M.
Therefore
© .
(4-7) £/ T()*n* A*Mi+i(x)-we{x)\kdx it Mu(E).
n2Je
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Let m and n be integers such that 2m < n ~ 2m+1. Then we define

2/+i
R((x;m,n):= L$cvXv(x) (£E=0,1,..., m- 1),
</=2<+]
Rm(x; m, n) La ¢c™Xu{x),

</=2m+1|
Rm+i(x\m,n) := (n L x)_len+ixn+i(a:).

These functions Re(x; m,n) (£ = 0,1,..., m + 1) satisfy all of the assump-
tions of Lemma 1. Thus we can use Lemma 1 with N = m+ 1and Kk = 3.
The compatible set Ek will be denoted by E3(71,n). Then we have

@ -
(4.8)
n=23+1 E
00 2m+] K
/\Z Z /\n)‘/' :I./I £6 c/XJ(*)+ (Ni+l) ~An+IXn+li*) dx =
m=3 n=2m+1 Je I»=0

00 2m+1 .,m+l

K
= Z Z 7(«)fc«fc_1/ Z Al(a:;m,n) dx ~

m=3n=2m+ |

00 2m+1

N7 Z TkE1/ jilm 2(z;m n) |tz

m=2n=9511 T JErE3(m,n)

00 2m+1 /-
“E E (7
W E 3(

m=3n=2m+I m,n)

- WRmA{x\m,n)\kd x J .
JE3{T n)\EnE3(T,n)/

By Lemmas 1 and 4, keeping in mind (3.6), (3.7), (3.8) and that {yn(x)} is
of A -type, we get

(4.9) jfom_2(a:;m, n)[*dx
LE3(m,n)
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Pm-1

=E 2¥HEE / o s

o=l JEE3(m,n)nl,(m-2,Js) |Cm-2+-

2m-2 Pm—2
i £ £ 2-V (i,(m-2.1)) =
-1 P=1
2m -2 Pm—2
=2"4E +J Cm-2 £ /I(dp)c™_2+1C-22
1= p=l
_ A4 . . . "
=2 £ (ifc!) i di(0)2-"*c*_2,
i/=2m -2 + i

where éi(a)(> 0) depends only on a. If Kk < 2 then the second integral in
(4.8) can be estimated easily using Holder’s inequality. Namely

(4.10) Ji Rm-2(2;m, m)jkdx ~
B - LE3(T,n)\E3(T.n)M\E

m -|

' a)£l-h - mkCh 2,
i,=2m 2+1

where ™ («)(> 0) also depends only on a.

. /c(\\ 228
By (4.9) and (4.10), choosing £ < y £yj] , we have
00 2m+l

Ji E £ 7(»)'»*-,2-"*C*_2(il(0)-.«0)el-i)a
m=3n=2m+I

0o

£ N 7@2mto6 _ 22-fe lil(a)=: J2,
m=3

which, by (4.7) and (4.8), implies (2.1) for 1~ ft< 2. If A= 2 we can es-
timate Ji in (4.10) using the definitions of the functions Xp(x)- Namely if
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2m~2< v ™ 2m 1 then |c,,Xi/(z)] » Cm_2 and ~N A'(a)2~m for n >
> 2m and 2m~2 < i/ ~ 2m_1, which is the case in our case. Thus, since the
system {xn(a)} is of H-type,

IAm_2(x;m,n)| S K(a)2~mCm- 2,
whence
Ji N A2(a)2 2rC/~.2UE3(T,)r) \ Ea(m,n) MA) ~

M K 2(q)2~2mCm_2%

Hence and from (4.9), choosing £ < ~k”a) * we obtain that J ~ J2 for
= 2 also holds, and this shows, by (4.7) and (4.8), that (2.1) is fulfilled in
the case k = 2, too.

Herewith we have verified the necessity of condition (2.1) for any 1
N kN 2, and this completes the proof of Theorem 1.

Proof of Corollary |LA. By Theorem A and Theorem 1 we have
only to show that the presumption of Theorem 1 that the sequence {7 (7}
is quasi //-power-monotone decreasing with some I7> —1, implies assumption
(1.2) of Theorem A. As we have proved in the course of the proof of Theo-

rem 1, the cited property of the sequence {7(7)} dictates that the sequence

{7(27)2- "} is quasi geometrically decreasing. Therefore, by definition, there
exist a natural number 4 and a constant K ~ 1 such that

(4.11) 7(27+M)2~(H) A AT(27)2~n and  7(2n+1)2-(n+l) A AT (27)2- 7.

It is easy to see that we may assume without loss of generality that /i is as
large as we want. Let us assume that 28 > A'Y*". Then, using (4.11) and
the monotonicity of the function 7 (t), we have for any t G [2n_1,2"]

(4.12) 7(72*4) < 7(27+7) < 2AT(2*+™) < 2M(1+a)

7(2"-1) - 7(27)
Setting C 2M (4.12) clearly yields (1.2). Therefore we can apply both
Theorem 1 and Theorem A, and thus Corollary I.A is proved.

Proof of Corollary |.B. In the proof the crucial point is to verify
that under the assumptions of Corollary 1.B conditions (1.5) of Theorem B
are satisfied. Since a > 1/2 and 0 < 7 < 1 thus C7 < Ca+l is trivial. It
remains to prove that there exists C > 1 such that

413 Csli < C7
(4.13) s Imsc%) )
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holds.
Ifd4=2r+e6-7 (> 0) then rf'~An) —nfN(n)nf+s~1. i.e. the sequence
{li(/i)ne+i~"y} is £-power-monotone decreasing with a positive e. Thus, by

Lemma 6, the sequence {"(2n)2ne+s~"} is quasi geometrically decreasing.
Following a consideration made in the proof of Corollary I.A we get that

H{zn+1) S K21~s~ey(2n)

and
Hzn+fi) i N2~ - s~e(2n),

whence for any t 6 [2n_1,2n]

(414) am <i6UZ!< KV-6-*.
ym' [(«) = M27-") = 2

follows. If /r is so large that 2LE > A'2'1 1 5 £, then (4.14) with C := 2M
implies (4.13). This shows that we can apply again both Theorem 1 and
Theorem B, and then the statement of Corollary I.B is an immediate conse-
guence of (1.6).

Proof of Corollary |.C. Since we have already verified in the proof
of Corollary 1.B that under the assumptions of Corollary I.C conditions of
(1.5) hold, therefore the statement of Corollary 1.C is an obvious consequence
of (1.7), namely both Theorem C and Theorem 1 are applicable.

Proof of Theorem 2. The proofs of the cases a = 1/2 and —1 < a <
< 1/2 are alike therefore we shall only prove the sufficiency of condition (2.3);
and show that if the coefficients |cn| are monotone, then condition (2.4) is
also necessary. But we suggest the reader to consult page 254 of our paper
[4] for a little trick appearing in the proof of sufficiency of (2.4).

In the proof of the sufficiency of (2.3) we can follow the argument of
Theorem 1 to the end of estimation (4.1), the difference will appear in the
estimations of and ™ 2-

Ifa = 1/2, furthermore n(£) and m(v) have the same meaning as in (4.2),
we get, by (4.2), that

(4.15) <
00 , m 2i+1 2m+1 Y K/ 2
ANASN b 2m)22" m(1+20)X Ty v2el Y («+i-")2a_2| N
771=1 A e=0 V=21 +1 n-m(v) '
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In the proof of Theorem 1 we have already verified that the sequence
{I(2m)k2~km} is quasi geometrically decreasing. This, by definition (1.10),
clearly implies that the sequence {mk”~”(2m)kz ~krn} is also quasi geometri-
cally decreasing. Therefore, by Lemma 5,

mk/27 (2m)f2"bn ~ K i k/2~i(z e)ke ~ek,
m=e

thus, by (4.15),

K2
(4.16)

The estimation of runs exactly as in (4.5) and we get for a —1/2 as well

(04] ( 2ml  u¥2
N\
™ " i

This, furthermore (4.1) and (4.16) convey the sufficiency of condition (2.3)
regarding Beppo Levi’s theorem.

In order to prove the necessity of condition (2.4) for monotone coefficients
we assume that {cn} is a positive nonincreasing sequence and consider the
following Rademacher series:

(4.17) cnrn{x).
n=0

Let a*“(x) denote the nth (C,a) mean of series (4.17).

Let a be an arbitrary number with - <a <1/2 and e < Az+2-3, where
A denotes the constant appearing in Lemma 3. Let us assume that series
(4.17) is summable |C,a,7(f)| k a.e. in (0,1). Thus, by Egorov’s theorem,
there exist a measurable set E with fi(E) ~ 1—£ and a positive constant M
such that for every x £ E

00

AT (n)fnfe 1< +1(2)-CT*(x)|E< M.

71=1
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Hence, using Lemma 3 and (3.1), we obtain that

w r
(4.18) I17(N)V 1/ [6-+1(x) —cr(ox)| kd x A
n=1 JE
® £ on R
AR T(RP*-LN2-3M1%2-%{ £ (43)4 + (4+i) 22
n=l **i/=0 } =
(e/0]

n=1

£*(* Aa T)E 7Y

n=2
00 2m+1
~K(k,A,a,1)Y ,I(2mk2mk(*-a) E
771=0 TI=2m + 1

Ation.a T)E T(F2ni(b“)2(mH) (b D2mev £

=0
- §mee k/2
E-A-(*A0T) £ T y2*d> £ 4
m=0 n=2m+1+| '

where K(k,A) and K(k,A,a,7) are positive constants depending only on
the parameters in the brackets.

The result given by (4.18) clearly shows the necessity of condition (2.4)
for monotone coefficients.

Herewith we have finished the proof of Theorem 2.

The proofs of Corollaries 2.A, 2.B and 2.C run alike as those of Corol-
laries LA, I.B and |.C, therefore we omit them.

Proof of Theorem 3. First we prove the sufficiency of conditions (2.5)
and (2.6). We may assume again that c0 = Q. —0. Furthermore let n(i) :=

= min(2%1,n) and m(v) max(2m+ 1,i/). An elementary calculation
shows that

00 j
(4.19) E 7(rc)v "1 / [<r+i(z)-ff“(z)[*da: »

=AE Zgl hv- |Im CE iU e

m=0n=2m+ | '7—’6)(970 l1,/=241
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d“ *Icn+l I Jo — XJ +>@

If K = 2 then we easily get that

(4.20) Y,2i ng ¢ Vo 2{]2I xJxfdxi

n=2mt+|
2mti
A3~ 7(n 2m@-2a) X cn.
m=0 n=2m-+I
what is exactly the same sum which appears in (2.5) for a = |, and in (2.6)

for 1< a < Nk=2).If 1™ A< 2 then we set Jn := {xIxni™) ® 0}. Since
the system {xn(#)} is of A-type we have

(4.21) }O \xn{x)\kdx = J[ [xn(*)|kdx ~

\ k2
Jj xI{x)dx~ AIn) 2

i L dt)

Using this, Holders’s inequality, (3.1) and (3.4), we obtain

2m+1
(422) X"2x KaX T(WM(’G([LE@)J]) X | NIW ») @22 ~
@ /| Fm+1 nki2 i/ £mm nJ-ki2
AAX I(2mf2mfe(l-a)-1) X et f X M}'I )}
m=0 m=2m+l Mra=21 o
r 2m+l y fc/2
"PAXT(nfenG L) X (

It is easy to see that for a —1—\ this last sum is the same which appears
in (2.5), and ifa < 1- £ then it is the sum emerging in (2.6).

Next we estimate the sum ~ 1? too. Since the system (xni”™)} is °f
¢ -type and (4.21) holds, thus we easily get for any 1~ k < 2 that

(4.23)
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S A2 g 7(2”)1:2’“ > £ E rE R ‘/_U"WIVXS

n=2m+1 fcO i/=241 *o
AL 00 2mHl
a2€ I(2m)k2m~ e E |C,|W)Q;©t E \L(n }\k #
m=0 fcO i/=2<+1 n=m(v)
00 m ., 2/+1 yfoz 2m+1
Stf2f£ 7(QR“)V><-1>£1 £ A Y, b 1-
I’FFO fG) /Y:Z\El. n n=m(is)

313

This estimation holds for k = 2, too, namely then L1x~xfdx —1, therefore

the first line of the estimation gives the final inequality after changing

the

order of the summations. If 2( < n ~ 2i+I(t = 0,1,..., m —2) then by (3.4)

21 2m+l
(4.24) E E  n~(@@tDk(n- v)@@-hiv »
n=m(l/) n=2m+]l

< A227 +2to(1-2A\

v

and ifaom 1< v i n” 2m+l then

2mH 2mH
(4.25) 14 20k K\a-mak B (n+ 1 MNanice A"
1—(V) n=m(iz)
Thus, (4.3), (4.23), (4.24) and (4.25) yield
£,s
00 / m—2 m y
dKs E 72mAmADI E Cri2 xmm(l~2%&)+ E Ck,22~amk \
m —0 fcO fem -1 >

7

= Asj E....E 7emim + E. c&/272manitt Qi) 1§

ST = CH 21 {2m)kem(k(I- a)-"
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Hence, by (4.19), (4.20) and (4.22), we can see that conditions (2.5) and (2.6)
are indeed sufficient that series (1.8) for every Haar-type system be summable
IC, (I - £),7(0L and |C ,a,7(i)|twith -1 <a < 1- respectively.

In order to show that condition (2.5) implies the |C, a, 7(f)| fesumma-
bility for any a ~ 1- j we can apply Theorem A with r = kand R = a *
N 1- r. Thus we get that series (1.8) for any A -type system {xnW} is
also summable |C,a,7(f)|kifa ™~ 1- £ and condition (2.5) is fulfilled.

Next we prove the necessity of (2.5). Let us consider series (4.6) where
the functions Xn{x) are given in Lemma 4 by (3.8). This system is of H-
type. Therefore if we repeat the proof of necessity of (2.1) word for word,
the necessity of condition (2.5) will be proved, namely the assumption a >
> | is not used in the proof. Another argument for the proofis the following
one: If series (4.6) is summable |C,a,~i(t)\k (a ~ 1 —£), then by Theorem
A it is summable \C,B,"){t)\k for any B ~ a, and if 8 ~  then the sum

is finite by Theorem 1, i.e. condition (2.5) is necessary for any a ~ 1 —j.

Finally we prove the necessity of (2.6). Consider again series (4.6) and
use the notations introduced in the proof of necessity of (2.1). Now we use
Lemma 1 with N = m + 1 and k = 0, furthermore the result of (4.7). The
compatible set Eq will be denoted by Eo(m, n). Then we have

0o

(4.26) S A2 1{n)knk=l [ \an+i(x)-a”(x)\kdx
n—o Je
o 2m+l-l Ao
= 52 5 2 7(n)ln fc_1 [/ LfycvXAXx) + -7 A -cn+iXn+i(:r dX>
m=1 n=2m XxE'i/=0 An+1
y ST
> ~2 ey(2m)kam(k~1) ) o ton+lXn+l {x)  dX >
m—1 n—gdn ‘jﬂqu)r\E f]f!r)|
00 |, A
£ 2 7(2my*2mfc 1) £ \
m=1 n—2m " JEo(n,m)

IXn+l (~)  dx >
- LEqg(n,m)—Eo(n,m)r\E jﬁ(ll ™)
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00 rr+1-1 .
a £ 1(2”7 ) 2"< -10) y / dx-

I n=2m JEo(n,m)

2m+1—1
X] (AS i) lc"+ixn+i(a;) OX >

f
JEo(n,m)—Eo(n,m)r\E n=a2m

where at the final step we used the fact that the system {xn(a:)} is of H
type. Similar reasoning as we have made in (4.9) and (4.10) gives that

Ui+i) ~n+rXn+lfa) dx >

(4.27) /
JEo(n,m)

A el(a)k(n +1)~ak\en+i\k\xn+i{x)\kdx ~
JEq(n,m)

Pm p

-dx >

£el(a) (» + 1I " *|c«+]|* £
( ) (» | « | f)‘:ff)!Eo(m,n)r\ln+l_2m(m,Jp) len+i|

Pm
A ei(a)k(n+ ir*C * A~ 24V (/,+1-2-»(m, JR) =
p:
Pm
=2-126,(0)*»+ 1) - ‘C*£ p@U1)4 +.C-2=
P=1

= 2~1e,(a)fo(tt + 1)=*/E4nc: 41

and

(4.28)
r 2m+1-1
X (An+1) _1nner Xn+loeo  (fIF N €7 (a)2-micaC*

JEo(n,T)—Eo(n,T)M\E n=am

where ei(a) and er(a) depend only on a.
Collecting inequalities (4.26), (4.27) and (4.28) we have

omr1—1
Sa £ 7(2)2m<*1>j £ 2-1lel(c)‘(n + 1M “*C*-rc;+1-
m-—1 Tr=2n
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-eek(a)2~mkaC kn

N 1{2m)ken - 1)2-mkaCk{2-lek{a) - eeR(a)),

m—1

whence the necessity of (2.6) follows clearly if £ 14 2 2ei(a)fe2(0)"
The proof of Theorem 3 is thus complete.
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THE MEAN ERGODIC THEOREM
FOR COSINE OPERATOR FUNCTIONS
WITH OPTIMAL AND NON-OPTIMAL

RATES

P. L BUTZER and A. GESSINGER (Aachen)

Dedicated to Professor Karoly Tandori on the occasion of his 70 th birthday,
in great respect

1. Introduction and statements of main results

Let C —{C(t),t E R} be a cosine operator function, thus a family of
bounded, linear operators mapping the Banach space A (with norm ||.|_y)
into itself, satisfying the d’Alembert functional equation C(s + 1)+ C(t —s) =
= 2C(t)C{s) for all s,t E R with C(0) = /, the identity operator on X, to-
gether with the strong continuity property lim/j o ||C(t + h)f —C(t)f\\x —0
all / E X,tE R. The (infinitesimal) generator A of C is defined by Af =
= sﬁ@g 2h~2[C(h)f —/] for those elements / E X for which this strong limit

exists, namely for / E D(A). The cosine operator function with C(t) = /,
all t £ R, is called trivial.

The following result was essentially established by J.A. Goldstein et al
[15]:

Let {C(f);t £ R} be an equibounded family of cosine operator functions
on the Banach space X . Then C is strongly Ceséaro-ergodic, i.e.,

t U

(C,D-limC(i)/ = sllm E(t)f := s-lim-~ / [/ C(v)fdvdu = Pf
t—00 t-+0° 1 g g

for each f 6 Ao, where P is the linear, bounded projection of Ao onto the
kernel N{A) := {/ G D(A);Af = 9} parallel to R{A), the closure of the

range R(A). Here, Ao = -B(A) ¢ iV(A), the direct sum being well defined as

R(A) MN(A) = {0}. Ao is a closed subspace of X . If X is reflexive, then
A0= A

In this paper we shall also be concerned with the strong Abel-limit of C,
i.e.,

00

(A) I|m C(t)f = s- | P02, A)f —s-lim A, e-XuC(u)fdu.
a-*ot A—0t /
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318 P L BUTZER and A. GESSINGER

A particular case of our general results will turn out to be the mean er-
godic theorem for the Cesaro and Abel limits of {C(i);f € R} below. It
will turn out that our results are also valid for not-necessarily equibounded
operators C(t). In fact, we shall work with the class of those C(t) which
have a certain rate of growth at infinity for which their means E(t)f

21~2 f* J*“ C(v)f dv du are equibounded. Thus

Definition 1.1. Let X be an arbitrary Banach space. Let Cm,Cé and

C'lj be those sets of cosine operator functions given by, M being some con-
stant,

CM = {C:|IC()lIm = 0 (\tf),\\ - 00, \E(OW[X] g m ) ,
C# = {C;|IC(Ollm = o(|<[2),[i| - oo, [ECIU[r] ~
CM := {c; (0, 00) C p(A), /120012, AN[X] Z m ] ,

where p{A) is the resolvent set of the generator A.

It is clear that CM C CR1 for R < 2. It will be shown in Lemma 4.2 that

also CB1 C Cm is valid.
It will be seen that strong Cesaro (respectively Abel) ergodicity is valid

on the set CBA{respectively Cm )- The set CMwill be needed for the discussion
of rates of convergence for the Cesaro operator.

Theorem 1.1. Let C ¢ CRB, having generator A, with Xgq= R(A) ®
0 N(A). The following three assertions are equivalent for any f € X :
(i) (C, D-limC(t)/ = ffi,
<D

(if) (%mC(t)/ =92,

f exO.
In ?Hll%sl instance, the strong limits are equal with t/i = g2 —Pf, where P is a
bounded linear projector of Xqg onto N(A).
If, in addition, for any f E X the set {\2R (\2,A)f;\ > o3 is condition-
ally weakly sequentially compact or, more strongly, if X is reflexive, then
X0 = X, so that convergence in (i) and (ii) is valid on all of X .

This theorem will be deduced as a particular case of the following one
dealing with the optimal and non-optimal rates of approximation of the
Cesaro and Abel means to Pf. For this purpose, let us denote the re-
strictions of C(t),A, and D{A) to Xo by Co(<) := C(t)\Xo, Ao := N Ix0>an”
D(Aq) := D(A) MXo. Then Co := {Co(i);t E R} forms a cosine operator
function having generator Ao with iV(Ao) = X(A). Further, the resolvent
A(J1,A0) is given by R(\,A0) = R(A,A)|Xa.
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Further, an operator B, roughly the inverse of the generator A, will be
needed.

Definition 1.2. Let Cg,Xo, Ao, D(Aqg) and P be given as above. The
operator B with domain D(B) := R(A0) ® X(A) C Xo and range R(B) :=
:= D(Ao) MN(P) is defined by Bf —g, where g £ D(A0) is uniquely deter-
mined by / = Ag + Pf and the side condition Pg = B.

The operator B is linear, closed with D(B) = Xo, and B = A-1 on
R(A0) M-D(Ao) (see Remark 3.1). Whereas the generator A is the second
derivative of C(t)f at t = 0, the operator B will turn out to be the right-hand
derivative of \R (\2, A)[P - I]f at A= 0 (see Corollary 4.1).

Theorem 1.2. LetC E CRBA satisfy the assumptions of Theorem 1.1.
a) The following three assertions are equivalent for any f EX :
(i) WE{t)f-Pf\\x = 0(I"'2) (]i]->00),
(i) 1A2R(A2,A)/ - Pf\\x = 0(A2) (A - 04),
(iii) / EN(B) = N(A), ie, Pf =f,
b) The following three assertions are equivalent for 0 < a ~ 2 and any
feX:
(i) WE(H)f - Pf\\x = 0( [t| “) (]i] —moo0) if in addition C ECM, i.e.,
C is equibounded.
(i) nA20(A2,A)/ - PTfI* = 0(A®) (A- 0+),
(iii) K (A2,/; Xo, D(B)) = 0(AQ (AO0+).
c) If, in particular, a = 2, then the assertions (i)—(ii) of b) are also
equivalent to:

(iv) [ E D(B)X® := {/ E X0;3{/,,},,6N C D(B) with ||/n|lG(B) "
~'M and nlierl [I1,, —f\\x = 0}, the relative comvletion of D(B) with respect
to X 0. Here WA\D(B) := ||/]|x + \\Bf\\x..

(iv)* / ED(B) when Xo is reflexive.

d) The assertions of part b) are sharp provided C E CM with /3= 0, B
is unbounded, and a E (0,2), i.e., there exist elements fa,fa E Xo satisfying

. (=o(\tra)
() \E(t)fa - Pfa\\x S . (W-00),
(#°(m )
(i) |JAIS(V, A)f - Pf\\x { = (A 0+).

Above, the A'-functional, which is a measure of smoothness in a Banach
space setting, is defined in this special case for / E X, AER by

(AL A(AL X D(B)) = b 1 -Mix + AUBAL*}-
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This is known to be a bounded, continuous, monotone, )%ublinear functional

on X for AGR; it tends to zero for A—0 iff / GD(B) .

Parts a) to c¢) of Theorem 1.2 reveal that the processes E(t)f and
\2R{\2, A)f are saturated on A% with orders 0(t~2) for \\ —»00 and 0 ( A2)
for A—0+, and that their saturation (or Favard) classes are both charac-
terized as the completion of D(B) relative to Xo- These are Theorems 3.2

x|

and 4.2. In fact, it is also true, that there exist elements /2,/£ G D(B) 0 for
which the critical orders 0{t~2) and 0(A2) are actually attained, together
with IE(t)h - Pfiwx ®°(i-2)for |i| - oo, and ||A20(A2, A)/Z- Pfi\\x &
® o(A2) for A—»0+. This is the substance of parts a) of Theorems 3.4 and
4.4,

Assertion b) of Theorem 1.2 is concerned with non-saturated (or non-
optimal) approximation; The processes E (t)f and A2A(A2, A)f approximate
Pf with the rates O (]i|]-Of) and 0(A™) for 0 < a < 2 iff the associated K-
functional is of order O(A") for A—»0+. Parts a)-c) of Theorem 1.2 are the
counterparts of the corresponding results for classical semigroup operators
due to Butzer-Dickmeis [4]. Observe that the mean ergodic theorem with
rates for the classical discrete case, thus for {T"}n€N, was first considered in
Butzer-Westphal [8], as is also mentioned by Krengel [18] p. 84.

S.-Y. Shaw [28] recently established parts a) and c) of Theorem 1.2 for
equibounded cosine operator functions as an application of rather general
theorems [26] on nets of operators (which also cover, as applications, tensor
product semigroups as well as n-times integrated semigroups). He did not
consider non-optimal approximation (i.e., part b)), nor the sharpness of the
results (i.e., part d)), nor did he consider any concrete examples.

In Section 5, the various results are applied to the particular cosine op-
erator function which is the solution of the wave equation (dz2/dt2)w(t,x) =
= (d2/dx2)w(t,x) under the initial conditions

w(0, x) = /(as), (d/dt)w(t,xne_o = 0

on several typical Banach spaces. In this respect, let X(R) be the space
UCB(K) := {/ : R —C ;/ uniformly continuous and bounded on R) with

norm ||/||tfCB(R) = sup”™R I/(x)]|. For the solution C(t)f(x) = (1/2) [/(as +
+ i)+ f(x - )],/ GA(R), it will turn out that the generator A = (d/dx)2,
with domain D(A) := X2(R) := {/ GUCB{R);f,f" GUCB(R)}, and for
B, which is roughly A-1, we have D(B) := A-2(R) := {/ GUCB(R); f =
—g" + c,g GA2(R),cGC).

In this respect, one of the basic results of approximation theory is the
characterization of the A -functional for the concrete couple (A(R), A 2(R))
(or more generally for (X(R),Xr(R)),r GN) in terms of the modulus of
continuity. It reads (cf. [3], p. 192 f. or [2]) that for a G (0,2] (see also
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Lemma 2.5 here),

A'(f2,/;X (R),X 2R)) = 0{ta)  (i- 0+)o

<A I* +0- 2/(*) + f(x - DIb(R) = ° (ta) ~

V. fE£X2R) . provided additionally a = 2.

One of our specific ergodic applications is the following theorem. It is
the counterpart of the foregoing characterization of the A'-functional, now
for the couple (A'b(R),D(B)) —(A'd(R), X-2(R)), with t —o00. It answers
in part a conjecture raised in [7], [8] (see also [2]).

Theorem 1.3. Foranyf £ Xo(R),a 6 (0,2], one has fort —00,
(1.3)
K(r\f- AoR),X-2(R))=0(Fa)”"

t un

fzJ J [f(x+ v)+ f(x~ v)\dvdu R“—T)o |_|_|\] ﬁU)dj

0o

= o (t~a) <
JfO(R) . ..
O/ GA-2(R) provided additionally a = 2.

Now let us look at the famous Gauss-Weierstrass semigroup (see Sec-
tion 2)

(1.4) \W{t)f]{x)= J f(x - u)exp(-uz2/4t)du,

R

which solves the heat equation (d/dt)w(t,x) = (d2/dx2)w(t,x) for w(0,x) =
= /(x) £ X(R). It is known to have the same (semigroup) generator A.
Hence D(A) = A2(R) and also D(B) = A-2(R). Using the mean ergodic
theory for semigroup operators as developed in [4], a further application of
our general theorems will be the following particular mean ergodic theorem
for t —»00 of the semigroup {fU(i),t > 0} :
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Theorem 1.4. Foranyf £ Xo(R),a £ (0,2] one has for t —»oc,

t R
\jw(u)f(x)T4- \imF J f(u)du =0 (ral2)
-R X(R)
t u R
AL [Fx+v) (- WHUT=M 2 N 3 f(uydu
00 -R X(R)
= o (t~a).

Thus (1.3) turns out to be a substitute for the classical modulus of con-
tinuity Uz (tJ\X{R)) = supO<htt If(x + h)~ 2f(x) + f(x - h)||X(R) in the
instance of ergodic theory for specific examples.

Note that all the integrals appearing in this paper, except those of the
definition of the Xp-norms, may be interpreted as strong Riemann integrals
(cf. [16] p. 62 ff.).

2. Preliminary results

The follwing well-known preliminary results will be needed:

(2.1) The generator A is closed, with D(A) = A';
(2.2) C(t)f £ D(A) with AC(t)f = C(t)Af (/ £D(A); t£R);

For g E(t)f := (2/t2) /0'C(v)fdvdu = (2/i2) JNt - u)C(u)fdu one
has

(23)  g£ D(A),Ag = (2/t2)[C()f- 1  (/£A,t£R,thO)

The theorem of Da Prato-Giusti-Fattorini-Sova (cf. [24], pp. 356-362;
[13] I, pp. 63-67; [29], pp. 27-36) reads:

The operator U generates a cosine operator function C on a Banach space
A" iff U is closed, with D(U) = X, and there exist constants M ~ 1, u ~ 0
such that for each /1> u, A2 £ p(U), the resolvent set of U,

AR(WUY) <M M (m £ NO).

X hew)™

Thus the resolvent R(A2, A) = (J12/ - A) 1 of A exists for all /1> u.

(2.4) dxX
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In this event,
(2.5) \WC(LWL[x]iA M e (te R),
00)
(2.6) XR(X2, A)f —j e~XuC(u)f du (A>u;feX),
0

i.e., XR(\2,A)f is the Laplace transform of C(t)f and so, in particular, a
holomorphic function of A> 0.

(2.7) sshrn E(t)f = f (feX).

(2.8) sA-_IiTOAZﬂ,(AZ,II)/ =/ (/ £ X).

(2.9) C(-t) = C(1), E(-t) = E(t)  (f>0),
(2.10) R(A2, A)Af = A2R(A2, A)f - f (f e D(A)),
(2.11) AR(X2,A)f = XoR(X2,A)f - f (I £ X).

Property (2.9) allows one to prove all results concerning E(t) only for the
case t > 0. The negative case follows directly by the substitution t —m —t.
Further, we need a basic connection between cosine operator functions
and (C'o)-semigroups, which are families of strongly continuous bounded op-
erators T = {T(t),t ~ 0}, satisfying the functional equation T(t + 5) =
= T()T(s), t,s ™~ 0 with T(0) = I. Their (infinitesimal) generator Al is
defined by A'f —ﬁ_l;m h~1[T(h)f —/], for those elements / 6 X for which

this strong limit exists, namely for / e D(A') (see e.g. [3] p. 9).

Lemma 2.1. LetC be a cosine operator function with generator A. Then
A generates a (Co)-semigroup T = {T(t),t ~ 0} given by

T(t)f = \]Dexp (-s2/4t)C(s)f ds.

0

For a proof see e.g. [13] I, Remark 5.11. Note that the converse is not
generally true, i.e., there exists a Banach space and an operator A such that
A is the generator of a (Co)-semigroup, but of no cosine operator function
(see [21]).

The operator norms of C and T of Lemma 2.1 are also connected, i.e.,
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Lemma 2.2. Let A be the generator of a cosine operator function C.

a) /1|CM|[yl = o(]i|27) for KI —mo0, 7 > 0, then A generates a (Co)-
semigroup T with [|[T()I||[;r] = o(F).

b) //||C (DILy]l = 0(|i|27) for |i] -* oo, 7 ™ 0, then A generates a (Co)-
semigroup T with [|T(i)]|*] = 0(V).

Proof, a) First of all, by the definition of the Gamma function,

(2.12) \] s21exp(-s2/4t)ds = T ~7 + N 47]7+2.
0

Now let e > 0 be arbitrary. We have to show that there exists a r = T{e) <
< 00 such that t 1|T@®)|[Y] < e for all t ~ r. By hypothesis there exists

for e := 4~'y~1/2£y/n/T(~/ + 1/2) > 0 a T < oo such that i-27 ||C(i)||pq <
< | forall t 2 r. On the other hand, by (2.5) there exist M ~ l,w ~ 0
such that ||C(i)|| » Meumr for t < f. Hence, by Lemma 2.1 and (2.12), for

t~r = (2Mebm/T)N7 < 00,

Ve

I
1r(0/ i exp(-s2/it)ds\\F\\x +
\ J+23v 3
v
+— T— 1 s2'vexp(~s2/4t)ds\\f\\x
r+iy/x J

<My X +IWX =£\Ax-

This proves part a). The proof of part b) is now clear. O

Lemma 2.3. LetC be a cosine operator function as in Lemma 2.2 b), A
being its generator. Then (0,00) C p(A), i.e., \2R(\2,A) exists for A> 0.

Proof. In view of Lemma 2.2 b), A generates a (Co)-seinigroup with
[ITM|[X] = Aft7, for 1 = r- Hence, u® := lim*-~log ||T()||[[xX] b = So
(0, 00) C p(A) (see e.g. [12] Theorem VIII1.1.11 p. 622). O

Lemma 2.4. For/ gl,1é R,i/0 one has

t U Vo ow

E(t)f - f = (2/t2) C(x)fdxdwdvdu =
J H |
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t U
= AJJ (1 —u/t)2C(v)f dvdu,
00

Le., E()f - f £ R(A).

PROOF. The right hand side of this equation follows by a double partial
integration, the other by (2.3). O

Lemma 2.5. For the K -functional one has for A—=0+

0(A) o / €D(B)X
o(A) ~feN(B).

K{X,f-,X,D(B))

Further, D(B) = D(B) provided X is reflexive.

For a proof see [1], p. 15. Thus the /L-functional is saturated.
Since we also want to study the sharpness of approximation processes,
we need the following recent theorem of O.V. Davydov (c.f. [9], [10]).

Theorem 2.1. Let X be a Banach space and X + be the set of all
non-negative, sublinear, real-valued functionals S on X for which the norm
[I5[]x+ := sup{Sf;f £ X, Ly ~ 1} is bounded. Further, let {5'n},,6N C

C X + with limsup ||5'n||*+ = 0o, and let \f £ X; lim Snf = 0) be dense
—KX) ' '

in X. Then there exists an element /o G X satisfying sup 5,,/0 ™ 1 and
n€N

limsup Snfo = 1.
71— »CtO

This theorem answers a conjecture of Butzer-Dickmeis raised in [5] con-
cerning the sharpness of non-saturated approximation of semigroup opera-
tors. Davydov makes use of deep results on the uniform boundedness prin-
ciple with rates due to Dickmeis-Nessel-van Wickeren [11] (see also the lit-
erature cited there). For very recent extensions of these results see [23].

3. Ergodic theorems for the Ceséaro operator

Lemma 3.1. LetC £ Cm, having the generator A. Then N(A)f] R(A)—
= {*}

Proof. For any / £ N(A), Af = B. Hence, by (2.9), \2R(X2, A)f -
- } —0. On the other hand, for f £ R(A) there exists g £ D(A) such
that / = Ag. Hence, by (2.9), |[A2A(A2, A)f\\x = \WeR(Xz2,A)Ag\\x =
= A2KA2f (A2, A)g - N A(M + 1) UL —»0, for A—0+. Moreover,
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as the operator A2R(X2, A) is equibounded by M, then E\—Ii(r)n XeR(X2,A)f —
-vO+

= 9 for all / GR(A) by the Banach-Steinhaus theorem. Hence f = 9 for all
/ EN(A)nR{A). O
Lemma 3.1 will enable us to define the direct sum of N(A) and R(A) of a

C E Cm having generator A as well as the projection P of Xo = R(A) 0 N(A)
onto N(A).

Lemma 3.2. Let C ECm, and Co, Xo, A0, D(A0) and P be given as in
Definition 1.2. Then

a) Xo is a Banach space with norm |.|]|*0 = |.||*;X = Xo if,in ad-
dition, for any f E X the set {X2R(X2,A)/; X > 0} is conditionally weakly
segentially compact (valid if X is reflexive).

b) P is linear, closed and bounded.

c) PAOf = 9,all f 6 D(A0), AOPf = 9, all f E XO0.

d) PCo(t)f = Co(t)Pf = Pf, all f £ X0,t GR.

e) PE(t)f = E(t)Pf = Pf, all f GX0,t GR.

P roof. Parts a) and c) are easy, see [16], p. 520 and Lemma 2.2. Part
b) follows by the closed graph theorem. Regarding d), for / E Xo and t G
GR arbitrary, by (2.3), PCo(t)f - Pf —P[Aqi2E{t)f] = 9. Again by (2.3)
and (2.2), Co(t)Pf —Pf = t2E(t)[AoPf] = 9 for / G Xo- Part €) is a conse-
guence of d). O

Since Co is a cosine operator function on Xo having generator Ao, and
N(Ao) = N(A), R(X,Aq) = J1(A,A)|™o, one can write C instead of Co and
A instead of Aqifit is clear one works with the space Xo, and no misunder-
standings are possible.

Now to the mean ergodic theorem for the Cesaro operator E(t).

Theorem 3.1. Let C G CBA with generator A, Xqg and P being defined

as in Lemma 3.2. The limit ﬁIIi%E(t)f exists iff f G Xo- If so, this limit

equals Pf.
Proof. Let / GN(A) ® R(A). Then / = Ag + Pf, some g G D(A).
Hence, by (2.2), (2.3) and Lemma 3.2 b), W\E(t)f —Pf\\x = [I-*UM/lIx —

= 2<-2 \C(t)g —g\\x , which tends to zero for t —»00 by the hypotheses.
Now by the Banach-Steinhaus theorem this holds for every / G A'o, not-
ing E(t) is equibounded. Conversely, let the limit exist for / E X, denoting
it by g By (2.3), BAE(t)f\\ 5 2r 2(|IC)|IP] + D||/||x, which tends to
zero for t —»00. Hence Ag = 9 and g G N(A), since A is closed. On the

other hand, E(t)f ~—f GR(A) by Lemma 2.4, so t si—_l»iogn{£(<)/ —/} =
=g-f =:hf ).Thusf:g—he N(A) ® a):Xo,ande:g.
O

Lemma 3.3. The operator B of Definition 1.2 has for any n G N the
properties
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a) B is linear, closed, D(B) = Xq;

b) N(B) = N(A);

c) i) PBnf = B (f e D(BN);
ii) BnPf =& (/ £ X0);

d) i) AnBnf = f - Pf (fED(BnN));
ii) BhAnf = f - Pf (/ GD(A%)).

Proof, a) That B is linear and closed follows readily. Further, D(B) =
= N(A) 0 R(A0) C N(A) 0 R{A) - AO0. Conversely, let / G Xqg By
Lemma 2.4, | —E(t)f + Pf G R(A0) 0 N(A). So, by Theorem 3.1, / G
GR{Aq)®N(A) = D{B).

b) If / GN(B) has the representation / = Ag + Pf with g G D(A) N
MN(P), then B = Bf = g; thus / = As + Pf = P/, and so / G N(A).
Conversely if / G./V(A), then /| = Pf = As + Pf and we have / G O(P)
with Bf = 9.

c)i). Let/ GP(5); then PBf = PB(Ag + P/) = Pg —9. Now let
i) be valid for all m ~ n, i.e. PBmf = Ofor all f GD(Bm). Let/ G
GP(Pn+l), then PBn+1f = PB(Bnf) = 9, the assertion for n -f 1. As to ii),
let / GXO0,s0 Pf GN(A). Hence BnPf = Bn(A9 + Pf) = Bn~x(B(A9 +
+ Pf)) = Bn-'9 =09

Concerning d), i), again by induction let / GD(B). So ABf = AB(Ag +
APf) —Ag =/ —Pf. Now let i) be valid for n, and take / GD(Bn+i) C
D{B). Then An+1Bn+1f = AAnBnB(Ag + Pf) = AAnBng = A(g - Pg) =
= Ag —f —Pf as g GD(Bn). The proof of d) ii) also follows by induction.
O

Remark 3.1. The operators A and B are connected. Indeed, let / G
GN(P)( = R{A)). Taken = 1in part c¢) of Lemma 3.3. Then ABf =/, all
/ GD{B) MN(P) = R{Aq), and BAf =/, all / GD(A0)NMN(P) = R(B).
Thus B —A~I on R(Ao) fl D(AO0).

Lemma 3.4. Let C GCm. Then there exist constants M\, M2 ~ 0 such
that

a) WC(HOW[X] » Mi(\tf + 1) (t GR);
W LIC(OlIN s M2 (\tf) (*] a 1).
Proof, a) For such a given C there are T> 0 and T > 0 with

[IC@)||[x] = eNilil'3for all |i| ~ T. On the other hand, in view of (2.5), there
arem ™~ 0and M~ 1such that, for all |i| ™ r, ||[CO)|[] » Mexp(u;T) =
:= Ns. This yields [|C(i))||p™ ™ 7Vi[fl0+ M3, IGR, establishing part a) with
Mi := max{Ni,N3}. b) If [t| ~ 1, N 1,50 by a), ||IC)|I[X] = Mi (VT +
+ 1) N 2MX\\B =: M2\t\R. O
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Lemma 3.5. Let C E CR1. One has
a) |lE(<)/ - e £ (M+ [IC[[lag) [I/]]x (/

b) »£(<)/- Pf\\x £ 2 + 1) \Bf)\x (il > 1,/ e D(B))
if, in addition, CECM, 0™ R < 2;

t
c)WBG(H)f\x U A J \]JWz\\G(w)f—f\\x dwdu  (fEXo),

00
where G(t)f =/ —E(t)f + Pf, Jor ( GR, / E Xo, is an approximation
process on Xo with range in D(B);
d) If§—_l_i$ t2[E(t)f —Pf] exists, then f E D{B), and the limit equals

-2 Bf.
Proof. Part a) is trivial. Concerning b), let / E D(B), |i| > 1. Then

/ = Ag + Pf with g E D(Aq) NMN(P). Hence by Lemma 3.2 d), b), as Bf =
= 9i

NE(t)f - PFfI* = NE(t)Agll* = 2T 2| C(t)g -a\\x #
G2 r2\tF(M " +1)\BFf\\x .

As to c¢), by Lemma 2.4, if f EXo, t ~ 0, G(t)f = Pf - Af*JQ(L - uft)2
C(v)fdvdu, so that G(t)f EN(A) 0 R(Ao) = D(B).
Hence by Lemmas 3.3 and 3.2, noting that P is closed,

\BG(t)f]I":B Pf-Aj \]‘(l y) C(v)fdvdu

o0 X

t
\T (l-y)2(C(v)f-PC(v)f)dvdu
0

0 X

I iA-j(c (v)f-pf)ydv dU

0 L 0
> JJJJ
(C(v)f —Pf) dvdx dwdu

0000 X

X
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where the last step followed by a double integration by parts. A further
computation gives, noting the definition of G(t),

tu W X
00 L oo
t U
=Ajj w2 ~2Jj C(v)fdvdx-Pf dwdu=
00 00

=N
- WG{w)f - f\\x dw du.
00

Concerning d), let / £ XOmThen,

t U
t2[E(1)f - Pf] = 2\] J C(v)(f - Pf)dvdu £ X0,
0o

by Lemma 3.2 d). As the limit in part d) exists,

t n
(3.1) C(v)(f- Pf)dvdu g
0o

say, where g £ X g, Xo being closed. Let us show that g £ D(A) with Ag =
= 2Pf - 2/ and Pg = 9. Set tp:= f —Pf. Then, in view of d’Alembert’s

functional equation, and partial integration,

t U

2h~2[C(h)-1T J i C(v)<pdvdu
00

o] 2CICH)-2CH) o =
v ] Tt 1)C(u)§och+_gh(t—w—h)0(u)ipdu—
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I
—2J (f —u)C(u)<pdi

t-\-h t

=h" j (t—m+ h)C(u)ipdu —J (t —u —h)C(u)ipdu +
Lt t—h

A\-h2 - wewipdu s C(u)ipdu
| r

li(t) + hit) + hit),

say. Integrating both integrals of 1\(t) by parts,

t-\-h un
h2h(t) = -h \] C(v)ipdv+ J J C(v)ifdvdu+
0] t (o]
t U
\-hJ C(v)<pdv—J J C(v)<pdvdu.
t-h o

The two remaining integrals vanish for t —»00 as they are the Cauchy con-
ditions for §_I4|0no1 t2E(t)ip, which exists. Thus hit) —»B as t —o00, all h > 0.
As to hit), since C(u) —C(—u), and by partial integration, hzh(t)
= 2 uC{wipdu - 2 hh C{v)ipdv- h C(v)ipdvdu  which is inde-

pendent of t.
Finally to hit). Here h2hit) = —hjihCiu)tpdu = —2h  Ciu)tpdu,

also independent of t.
Returning to (3.1), it therefore follows that 2h-2\C{h) —i] g/2 equals

2h-2 \]a\]ACiv)ipdvdu— oh"!
o0

= —Fih)ip— —C(0)tp = —tp,

for h — 0 by (2.7). Thusg £ D(A) with Ag —- 2<p= 2(P/ —{). Further, P

being closed, and noting P2f = Pf,2 JQC (u)P (/—Pf) dvdu = 9. Hence
Pg=9and/ = Pf—Ag/2,sothat/ £ DiB), Bf = —g/2. This completes
the proof. O

Acta Mathematical Hungarica 68, 1995



THE MEAN ERGODIC THEOREM FOR COSINE OPERATOR FUNCTIONS 331

Theorem 3.2. LetCeCR®, having generator A. Further, let B,P and
X0 be defined as in Definition 1.2 and let a G (0,2]. There hold for f G Xo :

a) If, in addition C 6 C'h,8 G [0,2), then there exists a constant ca GR
such that

WE (t)f-Pf\\x ~ CIK {\tf-2,f;X0,D(B)) GcfiRK (r\f-X o,D{B))

b) If\E (t)f-Pf\\x =0{\t\-a),then
K (t~\f-X0,D{B)) ==0(|iP) (li| —»oc);

c) IE(t)f - PfA\\x = 0(r2) (t-*oo0) ifff e N(B)= N(A).
Proof, a) For / G Xo, arbitrary g GD(B), one has fort > 1,
XIE(0L/ - sill* + 15(<)« - FilS

and the standard X-functional methods (cf. [2]) then imply by both inequal-
ities of Lemma 3.5 a) b), the assertion of a) with cj := max{Af' + [|[P||"0],

2M' + 2}
b) Let / GXo, E{t)f having the given rate. By Lemma 3.5 c),

K{r\f-Xo,D(Bj) ~ I/ - G(t)f\x + [ 2IBG()f\\ x <
t un

HNE()f- PA\X + r4d J n2|G()f- Ml x dvdu = Ifit) + Ifit)
00

say. Now I\{t) = Oft "), for t —soc. As to /2(f), one has by definition of
G(t) and partial integration, fort ~ r ~ 1, and r chosen so that

(3.2) WE(t)f-PI\Xx iM-Ta (pr),

00
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say. By Lemma 3.5 a), noting thatt 3t “andt 4™t "fortéi,

Ja(0 i « J(t- a)«2[M+[P[M ]I, du <

ar- (m + |[|P||Nel) WNn-m(tj - j) £

Er- (M« [Plllag) (i -3 ) I/* =0 (0 -

Part b) now follows from (3.2), noting

[2(<)NTAM J(t - u)u2-adu=0(TI a).
0
Now to part c). The inverse part follows for / € N(B) by Lemma 3.5 b).

The direct part follows by Lemma 3.5 d), with / 6 D(B) and —2Bf —s,
ie, feN(B). O

Corollary 3.1. Inparticular, ifB = 0, i.e., C is equibounded, then
WE(t)f-Pf\\x = 0{\t\-a) # K{r\f-Xo,D(B)) =0 (KO

(N

i.e., assertions (i) and (iii) of Theorem 1.2 b) are equivalent.

Remark. Note that the limit of Lemma 3.5 is connected with the
Voronovskaja-type condition for the process {E(t); t € R}. Thus by Lemma
3.3 d)i) and (2.3),

t U
t2(E(t)f - Pf) + 2Bf = C(v)ABfdvdu + 2Bf = 2C(t)Bf
4010
(f £D(B);t £ R).

Thus such a condition would hold iff C(t)g —ms for t — o0 for all g £ R(B) —
—D(AQ) MN(P), a fact which is not true for the cosine operator of transla-
tions. So this is an example of a process that saturates but does not satisfy
a true Voronovskaja-type condition.

Now we wish to discuss the sharpness of the approximation processes
above, for which we need an additional theorem. The analogue for semi-
groups T is due to M. Lin (cf. [19],[20], see also [27]).
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Theorem 3.3. Let C be a cosine operator function, having generator
A, satisfying |Ilim t~2||C(i)I1n} = 0- Then the following five assertions are
t|—oo

equivalent:
a) There exists a bounded linear operator P : X0 — Xo such that
Nim NE(t) —P|| = 0, i.e., C is uniformly Ceséaro-ergodic;

b) There exists a projection P on N(A) such that lim | A2R(X2,A) —

A-+0+

- P\ = 0, i.e., Cis uniformly Abel-ergodic;

c) R(A) = R(A), i.e.,, R(A) is closed;
d) X = R(A) ® N(A), hence Xg= X ;
e) The operator B is defined on X and bounded.

Proof. By Lemma 2.2, A generates a (Co)-semigroup T = {T(t);t »
~ 0} with hm t~1 ||r(i)|[]lw = 0. Now we can use the results of M. Lin for

T, which dehver the equivalence of b), ¢) and d). That e) implies d) is clear
by definition of B. The other direction is a consegence of the closed graph
theorem, noting B is closed. We now prove the equivalence of a) and e).
Let C be uniformly Cesaro ergodic. Then there exists a t < oo such that

00

IE(i) —P||[*d < 1 Hence (E(t) - P —/) 1= - ~ (E(t)- P)k exists in

[Xo0]. Now for any / = Ag + Pf ED(B), Bf = g with Pg = B, we have by
Lemma 2.4,

t UV w
(E(t)-P-1)g = E(t)g-9 = 2t-2, ;, /4 C(x)AgdxdeVdu:
0000
t UV w
— Jew Pf)dx dw dv du.
0000

Thus

H*/1* - Mix A

< (E(t)-P-1) 1 M‘AJt\TI\TC(x)\\f- Pfl\x dxdwdvdu”

0o0o0O

S (E()-p-h:11[440+M ix.])
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i.e., B is bounded.
Conversely, if B is bounded, then by the closedness we have D(B) =

—D(B) = Xo- So for arbitrary / = Ag+ Pf £ D(B) = X0, with |[/||* = 1,
by Lemma 3.2 e),

WE(O)F-PF\x = U ()(/--P)||*N <M *]|, = s

= Wev)ipa+ 0 PH™ -

which tends to zero as t — 00. So we have uniform convergence in Xo- O
Now we can prove the sharpness of the processes above.

Theorem 3.4. LetC £ECM be non-tri\QaI, B as in Definition 1.2. Then
q
a) There exists an element fo £ D(B)  such that
=0 (t~2)
) b}
{o°( )

b) If8 —Q B is unbounded and a £ (o0,2), then there exists fa £ Xo
satisfying

m m - Phh (<'oo).

=0 (t~a)
mea/.-W x| ;! (i-*00).

P roof, a) Let us assume that in particular forevery / £ D(B), |E(t)f —

—p f\\x = °(r2) for i = 00. Thus by Theorem 3.2 c) we have / £ N(B) =
= N(A), so that D{B) = X (5). Hence 5 = 0, the null operator, which is
bounded. By Theorem 3.3 we have X = D(B) = N(A) and so A = 0. This
yields C(t) = I, for all t £ R. This is a contradiction, C being non-trivial.
b) This case will be proved with Theorem 2.1. Since B is unbounded
we have, in view of Theorem 3.3, limsup || E(t) —P|| > 0. Now we de-
|i|—»CO

fine for / £ XO,n£ N Snf ;= sup | E(t)f- P/|| [x,//|]a £ X0+, Hence,

limsup lISnY o+ = oo. Further, if / £ D(B), we have, by Lemma 3.5 b),

Snf  2(M' + 1) ||5/||x sup [t|“-2, which tends to zero, as h —»00. So
n—1Kt"n

D(B) C Z := (/ £ Ao lim Snf = il, i.e., Z is dense in Xo, as D(B) =

— Xo- Now we obtain, by Theorem 2.1: There exists fa £ Xo with

sup Snfa ~ 1 and limsup5,,/a = 1. Thus we have for arbitrary t £ R,
nEN n —-00
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(E(t)fa —Pfal = sup Snfa ~ 1 It remains to show that c
nEN

:= limsup E(t)fa - Pfa| Y|/|a = 1 Therefore, let us assume that ¢ < 1
t—00

Then for any e > 0 there exists ar = 1(e) such that || E(t)fa- Pfa|™)i" »
Uc+eallt” 1 The particular choice So — delivers for any n E N
with n > r(eo) + 1, Snfa = ¢+ £0 = This is a contradiction to
limsup IE(t)fa - Pfallx\t\a = 1. Hence, V\E(t)fa- Pfal\x ¢ o(|f|_a).
n—B0

O

4. Ergodic theorems for the resolvent operator

Lemma 4.1. Let C e Cm with generator A, A2 e p{A), and P, Xo be
given as in Definition 1.2. Then

(4.1)  XR(Xz,A)f - Pf = XeR(X2,A)[f- Pf]  (feXO)

Proof. Since /1J0° e~Xtdt = 1, (2.6) and Lemma 3.2 d) yield

XoR(X2,A)f - Pf = XJ e~Xt[C(t)f —Pf] dt =
0
00
= AJ e~XC(t)[f- Pf]ldt. O
0
Lemma 4.2. Let C be a cosine operator function with generator A and

(0, 00) C p(A). IfE(t) is equibounded by M, so is X2R(X2, A) for X > 0 with
the same bound M. In particular, C\j C Cm -

Proof. Let ||[E(t)||pr] M. By (2.6) and double partial integration we
obtain

00

XoR(X2,A)f = XJ e~XC (t)f dt Xs—lim\Te~XtC{t)fdt =
R—m

t t=R\
=slim  Xesxt 1C()fdv+ — - E(0)f +
—>00
0 t=0 J
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+A3\] e~Xij E (t)fdt.

0]

The first term vanishes in view of Lemma 3.4 and the equiboundedness of
E(t), since Mta~oo e~XRR1 = 0 for A7 > 0. Hence ||A2f?(A2,A)/™ 7

n Wk fo°° e_Aidf = f r(3)H/lljf = M WR\x- That Cm C CM now
follows by Lemma 2.3. O

Theorem 4.1. Let C ECm, A being the generator of C with resolvent
R(X,A), A> 0. Further, let B,P,X0 be given as in Definition 1.2. Then

a) s-lim XeR(X2, A)f = g exists ifff E XO0; if so, the limit equals Pf.
b) Umt\\R(X\A)f- X~2Pf + Bf\\x = 0 (f ED(B)).

Proof, a) The first implication follows by an argument similar to that
applied in Theorem 3.1 a), using the Banach-Steinhaus theorem.
As to the other direction, by (2.11), X2R(X2, A)f ED(A), with

IAX2R(X2, A)\\ x = KMda (A2, A)f - A2|| x i (M + DA2||/[|I* (] EX),

which tends to zero for A—0+. Hence Ag —B and g E N(A). On the other
hand, by (2.11); X2R(X2,A)f - f E R(A), so that s-lim [XxR(X2,A)f - f] =

=g- f=-hER(A). Thus/ Glo an(i Pf = 9-

b) Let / = Ag + Pf E D(B) with g E D{Aqg) MN(P). Then, in view
of (4.1), (2.9), noting Bf = g and Pg = B, R(X2,A)f —A-2Pf + Bf =
= R{X2,A)[f-Pf] + Bf = R(X2,A)Ag +g = X2R(X2,A)g - Pg, which tends
to zero for A—»0+ by part a). O

Now to the counterpart of Lemma 3.5 for the resolvent operator
X2R(X2, A).

LEMMA 4.3. Under the assumptions of Theorem 4.1 one has for X > 0:

a) [|A2A(A2, AYF- PRV AM+ [[F[I[Xa])  HW-  BA;
b) 1RO )/- rivx 1 AV +D-1LBlljr (/6 p(B));
¢) IIfIG(A)/|Ix S A-2[|G (A)/- fl\x

where G(X)f f —X2R(X2,A)f + P f, f E Xo, is an approximation process
on X g with range in D(B);

d) If s-lim (R(X2,A)f —X~2P f) exists, then f E D(B), and the limit
equals Bf.

P roof. Part a) is trivial. Concerning b), if/ ED(B), then/ - Pf = Ag
with g E D(AQ) MN(A). So by (4.1), (2.9),
WX2R(X2,A)f - pf\\x = ||JA24(A2,A)N15||X = WX [X2R(X2,A)g-g]\\x I
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~ PAM + 1)[|B/||X .

As to c), (2.11) gives G(X)f = - AR(X2,A)f + Pf ER(Ag)0 N(A), and in
view of Lemma 3.3 c)ii) and d)ii), (2.11) again,

WBG(X)f\\x = W\BAR(X2,A)f- BPf\\x =
= WR(X2,A)f-PR(X2,A)f\\x <
I A2KXR(X2,A)f - PR\ x + /12 ||[P[/ - XeR(X2,A)f}\x =
= X-2\\XeR(X2, A) f-Pf\\x,
which reduces to assertion c). Concerning d), assume that the limit equals
g, and show that g E D{A) with Ag = - / + Pf and Pg = B. Setting ip —
= f-Pf, then, by (4.1),

Ah[R(X2,A)f —X~2P/] =

= A_l/TZ\] e-Xt(C{t + h ) -2C{t) + C{t-h))pdt =

e/\
Xh2

where Ah —2h~2\C(h) —I]. Now the term with the curly brackets tends

strongly to 0 .g —8B for A—»0+ by assumption. The last two terms can be
combined as, which in turn

1 o-a(h—) _ QA(IH)
vy S C(u)<pdu —2(h —u)] C(u)pdu
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for A— 0+ by L’Hospital’s rule. By (2.3) the latter term equals —E(h)f,
which tends to —f for h —0 by (2.7). Thus

As-lim [R(\2,A)f - \-2Pf] = -if,
so that Ag = —ip= Pf —f with g 6 D(Ao). Since P is closed, (4.1) now
yields
Pg = s-lim P[R(\2,A)f - k||| = slim~ PAR(Xz2,A)f = 8.

The proof now follows as in Lemma 3.5 d). O
Note that part d) is the converse of Theorem 4.1 b), so that we now have

Corollary 4.1. For f £ Xo one has

s-lim [h ~2Pf - R(AL; A)f) exists iff f e D(B).

In this event, the limit equals Bf.

Remark 4.1. Now, for/ 6 D(B), the limit above may be interpreted as
the strong right hand derivative of the operator \R(X2, A)[P —I\f at b= 0,
namely by (4.1),

s-lim (\~2Pf - R(\2;A)f) =

s-lim
A—»0+ d\

A=o0

since XR(X2,A)[P —I]f —»8 for A—m0+ in view of Lemma 4.3 b). Hence,

(4.2) Bf= — XR(X2,A)(Pf—f) (/ e D{B)).

A=0

If, on the other hand, s-lim XR(X2, A)(Pf - f) exists, then by the same argu-

A—»0+

mentation as in the proof of Lemma 4.3 d) we obtain that this limit belongs
to N(A). Thus, if N(A) = {#}, it tends to zero. This indicates the following

Corollary 4.2. IfN{A) = {8}, then

00

(43) ~XR(Xz,A)f s-lim J —te~XtC (t)f dt exists iff f E D{B).
\-0 A—.0+

0
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In this event the derivate equals —Bf, and, if the integral below belongs to
X0,

00

(4.4) Bf = I tC{t)fdt.

Proof. Since N(A) = {0}, Pf = B. Thus, if "AA(A2, A)/|XQ exists,
so does also s-lim AA(A2, A)f, and this limit equals 0, by Remark 4.1. Hence,

A—0+

JMR(X2,A)f o 0= s-lim R(A2, A)f, and the existence of this limit implies,

by Corollary 4.1, / £ D(B). Now by the holomorphy of the Laplace trans-
form, we obtain by (2.6),

d
XR(X2, A)f pp= slim — IXR(X2, A)f]. =
ax <R2A) 2D e ax U e Al

0o

= s-lim — f e MC(t)fdt slimJ -te~XC(t)fdt =
A—>o+ dX J A0+
0 0

= J tCc{t)f dt. O

0]

Lemma 4.3 yields the following counterpart of Theorem 3.2, the proof
being fully analogous to the latter.

Theorem 4.2. LetC £ Cm, the generator of C being A, and its resolvent
R(X,A) for A> 0. Further, let B,P and X g be defined as in Definition 1.2.
Leta £ (0,2]. There hold for any f £ Xo:

a) WGeR(Xz2, A)f - Pf\\x = 0(X°) o K{X2J-Xo0,D(B)) = 0(Xa)
(A- 0+);

b) ||A2R(A2,1)/- Pf\\x = 0(A2) (A->0+)&feN (A).

Comparing the assertions of Theorems 3.2 ¢) and 4.2 b) one obtains The-
orem 1.2 a).

THEOREM 4.3. Under the assumptions of Theorem 1.2 the following as-
sertions are equivalent for any f £ Xo:
i) WE(t)f-Pf\\x =0(t-2) (|*|-00);
i) JA(A2, A)f - PfU* = 0(A2) (A- 0+);
iii) Pf = /;
iv) / £ N(A).
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Now we can prove the sharpness of the error bounds of the process
X2R(X2,A)f for A-» O+.
THEOREM 4.4. LetC E Cm be non-trivial, B as in Definition 1.2. Then,

a) There exists an element f2 ED(B) such that

WGeR(X2,A)f2 - P2\ ( = 0(A2) (A- 0+).
{T°(A)

b) If B is unbounded and a E (0,2), then there exists fa E Xo satisfying
WeR(Xz2,A)fa- Pfa\x | = (A- 0+).

Proof. Part a) is proved similarly to that of Theorem 3.4 a). Part b)
will again be established with Theorem 2.1. Since B is unbounded, in view of
Theorem 3.3, limsup ||A2i?(A2,A) - PILY, > 0. Now forany / 6 X0,n EN

/' —»00 10

we define

Snf:= sup ||A2a(A2 A)f - PA\[X] X~a E XO0+.

Hence, lim sup ||5n||nm:o+ =@ The result now follows by an argumentation
71—*00
similar to that in the proof of Theorem 3.4 b). O
Thus assertion d) ii) of Theorem 1.2 is valid provided just C ECm -
Observe that the condition "B unbounded” is no restriction concerning

sharpness of optimal rates.

5. Applications

5.1. The wave equation in X2k Let X2t be one of the Banach spaces

cw = {/ : R - ¢ ;/ continuous, 27r-periodic} with norm ||/||[c3r :=

= = - - H _ H H N

: mgl[()?z)r(r] I/(x)| or : i/ :R —»C; / is 27r-periodic, ||/||Igt <0 )0 1
* ) UP

N p < 00, with norm HIIMp = (1279 J |/(x)|pdx> ;and let C(t) be

defined by

(5.1) (C()F) (x) := MFf(x+1t)+f(x-t)] (/ EX2n; x,t ER).
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Then it is known that (cf. [30]) C = {C(t);t GR} G  with |[|C(OlI[xZd = 1,

and generator A = dz2/dx2 having domain

{/ GC2Kf" GC2k (X2k—C2t)
{/ elLb;/,S"e ac2dkf" giU Ne . = x8§)),

D(A) = X | :=

where J1C2. := {/ :R —C;/ absolutely continuous, 21 periodic}. Further,
the kernel N(A) = {/ G X2xkf constant}, the point spectrum PRx(A) =
= {-k2'k GN}, the eigenfunctions associated with —k2 G Pa(A) are given
by ci s'm(kx) + Qcos(kx), Kk GN, ci,C2 G C, |ci| + |c21d¢ O; they build a fun-
damental set in X 2k

Observe that C(t) given by (5.1) is the unique solution of the wave equa-
tion

(5.2) =

with initial conditions w(0,x) —f(x) GX Wk (d/dt)w(t, x)\t=0 = 0.
By Fejér’s theorem,

n XK

=rfs E Ne ) +1 1 /mn. </e a- 2:)
kF—=n !
KO :

where f(k) := (1/27r) J f(u)e tkudu. Since the integral belongs to N(A),

the sum to R(A),X2k= R(A) ® N(A), valid here also for the nonreflex-
ive C2k bWk Thus X2k- Xo, and Pf = (/279 f*nf(u)du for / G
G X2k It is easy to check that the resolvent R(A2, T) is given by, noting
(N12- A)R(A2,A)f = f and R(JR,A)(A2- A)f =1,

(5.3) NOA2,A)f(z) = Y, (“-STI)
leGZ

or

(5.4) ALA2,1)](x) =

Ne \I e~4 u~X)f(u)du+ \ \]a e A*_ u)f{u) du = X J e~xwu~x\f(u) du,

X —co —CO

the singular integral of Picard.
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The operator B of Definition 1.2 may be represented via

(5.5) Bf(x) = s-lim ¥  (--—-1— - f(k)eikx.
VA v 00 + Y *V

The right hand side exists for every / G X2, and we obtain |.S/||jf =
WFf\x~ be., B % bounded. Thus, by Theorem 3.3 we have even X2 =
R(A) 0 N(A), i.e., every / GA'Zr has a representation of the form /(x) —

= g'(x)-|-c, where 5 G and ¢ = /(0) = (I/2x) f f(u)du. So this cosine

—T
operator function is uniformly Cesaro and Abel ergodic, i.e., the limits in the

following theorems also hold in the uniform operator topology.
As applications of Theorems 1.1 and 1.2 we have

T heorem 5.1. For every f G X2+ one has

t
lim \] I [f(x + V) + f(x —t)] dvdu —
o0

[e]e]

=slim- / e x™M(u) du = [ f(u)du.
Ato+ 2 ] 2. J

—00 —

The ergodic theorems with rates for this example read

T heorem 5.2. For every f G X2 one has throughout,
a) The following four_assertions are equivalent:

0 NE(F) \}I j}” [f(x + V)+ f(x - V)] dv du—

du =0o(lr2) (t| -» oo),

X2*

(i) N\(If) == ~/ e Aux/(M)du-~ If(u)du = 0(X2)
XoT
(A -0+),
(iii) /(x) = > 3 f(u)du for (almost) all x G [T,¥],
(iv) /(x) = c/oirw(almost) all x G [—#,Tr].
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b) The following assertions are equivalent

(i) Nt(f) = 0(t~2 (lil - o00),
(i) N\(IT) = 0(A%)  (A- 0+).

Theorem 5.2 tells us that we have saturation for the cosine operator func-
tion (5.1) for every / £ Xzir, so that the saturation class is the whole space
X 2K not just a subspace of X 2n.

In order to give an explicit representation of the operator B, let us first
consider the operator B* defined on X 2y

B*f(x):= \IJ f(v)dvdu — \]f(u)du~ n JJ f(v) dvdu.

O O —T —r 0

It can readily be shown that B*f(x) is 27r-periodic, and that

=f ( x ) \]7f(u)du (1 £ X2v).

— 1

Further, B*f""(x) = f(x) - /(0), all / £ X2 = D(A). Thus also B*f £ X\T.
Let us now see that the operator B, defined as follows, is the right form:

(5.6) Bf(x) := B' [f(x) - Pf(x)} - PB*[f(x) - Pf(x)\ (/ £ Xair).
Indeed, so that f(x) = Ag*{x) + Pf(x) holds for g* £ X Zr but not necessar-
ily J-71Sr(u)du - °’one has f(x) - Pf(x) = 9*"(x), yielding
Bf(x) = B*g*"(x) - PB*g*"(x) =
= 9%(x) - <0 - P[g*(x) - g*(0)] = g*{x) - Pg*(x),
since Pg*{0) = ¢g*{0) as g*(0) £ N(A). Further, Pg* = P(Bf)(x) —
= Pg*(x) —P2g*(x) = 9. Thus the correct g is g(x) := g*(x) —Pg*(x).

The operator B now takes on the concrete form

2 X "
[3.1] Bf(x)=\]><r f(v)dvdu -/ i(v)dv- | \]T\] f(v) dvdu—

—r —m 0

T .

—mT 0 0

The operator B can also be evaluted in terms of another limit, noting
Theorem 4.1 and (5.4).
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Theorem 5.3. For all f £ Xi«k we have

00

Bf(x) = —s-lim L Je-"-\fin)dn

A0+ e » Iw

—00 —r

5.2. The wave equation in X(R). Let X(R) be one of the Banach
spaces UCB(R) := {/ : R == C; / uniformly continuous and bounded on
R} with norm H/HtfcBjn) := sup |/(x)], or

LP{R) := {/ :R —C; ||/||LPR) < 00}, 17 p< 00,
with norm

1P (R) :: \f(x)\pdx

and let C(t) be defined by
(5.8) (c(t)f) {xy:=rpf(x + vy +r(x-tj\ (/ £ X(R); x.t £R).

Then it is known that (cf.[22])C = {C(f);f £ R} £ G®with ||C)II[t/CB(R)] =
= [|IC()||[ti(R] = L and generator A = d2/dx2, having domain

"{feUCB(R);f",f"eUCB(R)},

1 X(R) = UCB{R)
D(T) = X2(R) :=
1 {/ £Z"(R);/,r GACIloc(R),/" £ Lr(r)? ,
{ X(R) = Lp(R),
where TCioc(R) R —»C; / locally absolutely continuous}. Further,
the kernel

{/ £ X(R); ! constant}, X(R) = UCB(R)
{Oh X(R) = Lp{R).
Thus we have P = 0 if X(R) = Lp(R), 1™ p < oo.

Note that (5.8) is now the solution of the wave equation (5.2) for
w(0,a:) = f(x) £ X2(R) and (d/dt)w(t,x)]i=0 = 0.

To represent P in the UCB( R)-case, we define Pr/ := JMRf(u)du
for R > 0. These operators are linear and bounded by 1, with Pr/ =/ for
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/ GN(A). Now let / GR(A), i.e., there exists a g G UCB2(R) such that
/ = ¢". Hence,

g'{R) - g'(-R) < 2 HfflIr/cBjR)
2R = 2R

Pr/ = Png"

and so %-Iim Pr/ = 0forany/ GR(A). Thus forany / = g"-fh GR(A) 0
—>m

0 N(A) we have s-lim Pr/ = h. Now, by the the Banach-Steinhaus theorem,

this convergence holds for all / GA(A) 0 N (A) = X0. If we now define the
operator P by

R

(5.9) P/ =slimPr/ = lim ~ | f(u)du,
R —00 H—400 Zri J
-R

we obtain the linear projector from Xo onto N(A).
In these cases, the operator B of Definition 1.2 is unbounded, because

for the particular function f(x) = we have / G X(R) and there exists
no g GA'2(R) such that f —g" —c\, ¢\ GC (ci = 0, if X(R) = Lp{R)).
In fact, such a g would look like g(x) = xarctanx - ~log(l + x2) + Qy +

+ CX+ Q,ci as above, @,c3 arbitrary constants in C, but for no choice of
Ci,C2,C3 would g belong to X(R). Hence / ™ P(A) 0 7V(A), which equals X
iff B is bounded, by Theorem 3.3.

Again the resolvent of A is given as in (5.4), i.e.,

(5.10) AP(A2, A)f(x) = A J e-A-*1f(u)du.

—00

Since the operator B in this case is the inverse of the second derivate on
R{A) MD(A), one could write

{/ GX(R);/ - g"+¢c,gGX2R),c GC},
X(R) = UCB{R)
*{/ GX(R);/ =9",9 GXa(R)},
X(R) = Lp(R).

D(B) :=X~2(R) :=
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Further let,

{/ GX(R); 3{™nIngN C X2(R),f= s-Hmjn+ c} ,
X(R) = UCB(R)
XafR) =+ £/ GX(R);3{fifnInEN C X 2(R),/ = s-Hmgn} ,
X(R) = £1(R)
J(R), X(R) = ip(R), 1< p < oo.
As an application of Theorem 1.1 we now have

Theorem 5.4. Letf 6 XO(R) be arbitrary. Then

s-lim ~ \] \I [f(x +v) + f{x - v)] dvdu = z_l;glz—\] e" AU-x\f(u)du.
0 —o00

This limit vanishes if X(R) = Lp(R), 1 p < 00, and equals

R
lifpm /, f(u)du

provided A'(R) = UCB(R).

Introducing the notations

Nt(f) :=

t
\ \] \]J[f(x +v) + f(x - v)] dvdu

00 LP(R)

A(R) = XP(R), 1<.p< o0
t U R
J i X+ +I- Vdvdu-  ~ j f(Yu
0 0 -R UCB(R)

X(R) = £fCR(R),
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00
J e-\\u-x\f(u)du , X(R) = Lp(R), 1" p< 00
LP(R)
Nx(If) := 00 R
| I f(n)
—o0 —R

ucB(R)

X(R) = UCB(R),
we have as an application of Theorem 1.2,

Theorem 5.5. Letf GX(R) be arbitrary.
a) The following three assertions are equivalent:
(i) Nt(f) = o(t-i) (I<| “m00),
(i) N\(If) —o(A2) (A -> 0+),
(iii) f(x) = cfor (almost) allx £ R andc= 0 ifx(R) = 7T(R),1 ~
~ p < oo.
b) The following three assertions are equivalent for a G(0,2] :
(i) Nt(f) = 0 (]<r®) (i]- o00),
(if) N\(1f) —0(A™) (A-+0+),
(iii) K(t~2,/; XO0(R), X_2(R)) = 0(|<P) (It| - o00).
c) 7/, in particular, a = 2, then the assertions (i)-(iii) of b) are also
equivalent to
5y *O(R)

(iv) feX~2R) " ifX{R)=UCB{R)orL{R),
(iV)* | GX-2(R), i.e., f = g" with g GX2(R), ifX(R) = Lp(R),I <
< p < oo.

By Theorems 3.4 and 4.4 we have, concerning the sharpness,

Theorem 5.6. For every a G(0,2] there exist elements fa,f*a £ ~(R)
such that

a) Nt(fa) 4= 0(I<ra) (Ifl —00)

Further, in the XP(R) cases we can use Corollary 4.2 to compute B. We
have

Theorem 5.7. Forany f G7T(R),1 ™~ p < oo can the operator B of
Definition 1.2 be represented as the one dimensional Newtonian potential (cf.

[i7], [3i];

Bf(x) =i J \x-u\f(u)du,

— 00
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where this integral exists in i p(R) iff E>:= {f Eip(R);/ =¢",9,0"' E
EAC(R),g" ELp(R)} C D(B) (with V —D(B) in the case p = 1).

Proof. Since N(A) = {0}, by Corollary 4.2,/ 6 D(B) iff

00

s-lim / te C(t)f dt
slm ot 1C()

exists. Further, if /| GZ5/ = g" a.e., we have by partial integration,

Joot F(x + t) FF{x - 1)

(5.11) J tC(t)f dt = dt

[e]e] X

=\ j(u-x)f(u)du+t J (x-u)f(u) du

00 X

JAU~xg"(urdudr\ J (x ~ u)v'(u)du -

[e]e] X

ya

- éR!L%RQ\R)-Izjl g\u)du + \ lim Rg\-R) + JI g'(tt) du = g(x),

since g,9',9" E Lp(R) and g,9" E AC(R), so that xg'(x) tends to zero for
x —»00. If not, we would have, by L’Hospitals rule, 0 = lim”~oo xg(x)/x —
—Ilim~oo xg'(x) + g(x) ¢ 0, which is a contradiction. On the other hand,
(5.11) equals \ |u —x\f(u) du. O

In his well known paper (see [25], cf. also [6], pp. 397 ff.) M. Riesz
introduced the integrals of fractional order a > 2 (actually in the space Rm)

1 °0

laf(x) = Raf(x) := [ A9 nlC_1dum

For these integrals he stated that (d2/dx:2)laf(x) = —Ila~2f(x), and
I°f(x) = f(x), without giving precise conditions upon / for the formula’s
validity. Now in Theorem 5.7 we found a necessary (and sufficient in the
i 1(R)-case) condition upon / E Lp(R) for which this assertion holds in the
case a = 2, namely / = g" with g,g" EAC(R), notingg — —I2fm
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Theorem 5.7 was also established by K. Yosida [31] using methods ap-
plied to the Gauss-Weierstrass semigroup operator W(t)f of (1.4) in the
Banach space C'oo(R), which is the completion of the set of all continuous
functions / : R —R, having compact support. This space may also be al-
lowed here. Our proof of Theorem 5.7 is a direct application of Corollary 4.2
to the cosine operator function of translations, which is much more simple.

Now to some final facts. The proof of Theorem 1.3 is a direct conse-
guence of Corollary 3.1. In fact, it is even possible to show that one also has

saturation in Theorem 1.3 with saturation class X_2(R)y " Theorem 1.4

follows when one combines Corollary 3.1 with an application of the mean
ergodic theory for the semigroup {W(t);t > 0} found in [4], namely that

] ]
llW(u)fdu-hm’\’\ f(u)du =0(r-) (t—»00)

-R X(R)
O A'(F3,/X0RY), X=H(R)) - 0(t~a).

Here again it is also possible to show that the saturation phenomenon
holds for the Cesaro means {(1/i) JAW(u)fdu;t > 0} as well as the Abel

means {AJ™e~XuW(u)f du; A> 0}.
—— _XO(R
Ultimately, can one characterize the relative completion X - 2(R) ®

for X(R) = UCB(R)? This would put Theorem 1.3 in a more concrete
----- V(R)
form. In this respect one has that X 2(R) = {/ e UCJ3(R);/, /" €

G ACloc(R), /"™ G T°°(R)} if X(R) = UCB(R), and A2»)*~ = {/ G
GTLR);/ GAC(R),/" GIVHF(R)}, if A(R) = Ta(R), a result which
is known at least for the spaces CW,LIv CCR(R+), TR +) (cf. [6], pp.

XO0(R
373,386 ff., [3], p. 110). Our conjecture is that X~2(R) ® {/ G
G UCBo(R);f = ¢g" + ¢,g,tf Gi°°(R),c G CZ} for A(R) = UCB{R).
— LI(R)
Further, probably NTLR)) | ={/GilR);/=fi"5G fLR)}.
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1. Introduction

1.1. As usual N,R,C denote the set of natural, real, complex numbers,
respectively, No —N U{0}. V is the set of primes, a general element of which
is denoted by p. TT(X) denotes the number of primes up to x.

1.2. Let ¢ £ A, ¢ ™ 2 be fixed, e = {0,1,...,q - 1}. The g-ary expan-
sion of n 6 No is defined by

00

(1.2). n= ~ctj(n)gd, aj(n) EE

J=0

The right hand side of (1.1) is clearly a finite sum, since a,j(n) = 0 for q3 > n.
A function / : Ng—»R is said to be g-additive if /(0) = 0 and

(1.2) f(n) = J2f{aj(n)J)-
j=o
A special g-additive function is a(n) := aj(n)i the sum of digit function.

Let Aqg be the set of g-additive functions.

1.3. The letters n,L are preserved for denoting N =
We shall write furthermore e(y) instead of e2my.

1.4. Let P{x) be an arbitrary polynomial with integer coefficients, the
leading term of which is positive. Let r — deg P(x).

1.5. Let

Tx ok o= - J1 bSk), <rl = - - mb
9 6ef q b€E
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N
miX) X]mK> p2x)= v ,ai
k—0 k- 0

Theorem. Let f £ Aq such that f(bgi) —0(1) asj —»o00, 5£ £, /ur-
thermore that ~P~j/3 —»00 (X —*00). Let P(x) be a polynomial defined
as in 1.4. Then, as x —»00,

INe )) - m (")

0 (xr)" <7 HY)

and
f(P(n)) -M(xr)
D(xr) Yy),
where @ is the normal distribution function.

The proof is based upon theorems of I. M. Vinogradov and L. K. Hua
for trigonometric sums. We shall use furthermore a known theorem due to
Erddés and Taran for the discrepancy of sequences mod 1.

A simplified version of our argument was used earlier in the paper [3] of
the first named author.

2. Lemmata
2.1. Lemma 1 (Hua [1], Theorem 10). Let0 < Q ~ c\(k)LT and
S = Y, e(f(P))
px
p=t (modQ)
in which

f(y) = AYk+ aiy*1+ ... + ak, (h,g) = L

Suppose that LT < g 1 xkL~T. For arbitrary To > 0, when T/ 26k(T0+ T\ +
+ 1), we always have

IS 1T ™ c2(k)xL~BQ-1.
where o2(h) is a suitable constant which depends only on k.
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Lemma 2 ([1], Lemma 6.2). Let
S5i=11]e(/()>

and let f be the same polynomial as in Lemma 1. Let To, To, T2 be arbitrary
positive numbers,

Tr 2f(r0+ r3) + 2kn + 23% 2

Suppose that
LT<g<, xk-L~T.
Then, we have
S\ <Cx L T
The constant standing implicity in <C may depend on 73, Ta.
Lemma 2 is due to I. M. Vinogradov [4].

2.2. The discrepancy Dm of the real numbers x\, ..., xm mod 1is de-
fined by

{r n?g ll(/3)

where the supremum is taken for all intervals [a,8) Q [0,1]. Let &1 :=
M

= £ e(mxi).

1=1

Lemma 3 (P. Erdos-P. Taran [2]). We have

for any positive integer K. ¢ is an absolute constant.

2.3. Let0O<£f£< land

6=1
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Let P be the polynomial defined in the theorem,

Lemma 4. Lete > 0 befixed, Ne < j < rN —Ne, Aan arbitrary positive
constant. Then, uniformly inj, we have

Ej <CEr(K) + xL~x, Fj < £x + xL~x.

P roof. This follows easily from the Lemmas 1, 2 and 3. U is the union
of g + 1 subintervals, its measure is 2g€. Let K —Lx+1 and apply Lemma

3 for the sequences xn = (n = 1,..., DK]). The conditions of Lemmas

1, 2 clearly hold for the polynomials /(n) = nRIn). Using the appropriate
estimates we obtain the inequalities stated in Lemma 4.

3. For an arbitrary sequence of integers (1 5i)/i < ... < lh and
bh GE, let
(3.1) Si ;=A™ N bl) = Hm” * lai}(P(n)) =ht j=1,...,h},
(32)E2:= [ (x = I{pn x lai}(P{p)) =bJ, j =1,...,h}

LEMMA 5. Assume that
(3.3) N1/3*h<h<---<lhurN-N 123
Let A be an abitrary constant. Then
Ei = 4- + O(x mL~x) (x -=>00)
and
S2= - +o0 (X-L x) (x -> 00),

uniformly in lj subject to (3.3) and bj G 15. T/re implicit constants in the
error terms may depend on the polynomial P, on h, and on A
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4. Proof of Lemma 5

For b € E let (%) be a function periodic mod 1, defined explicitly in
[0, 1] by
"1
<fb(x) := < 1/2 _ 6 64,-1
0 otherwise.
Its Fourier expansion ~ cm(b)e(mx) can be given explicitly:

co(b)=1/q, cm(b) = ;:ir‘;)

Let 0 < A < 28, and consider the function

ni2

16(5) :=,ci.L // <Ha + r)clr= ~  dm(6)e(ma:).

By simple computations we obtain:

1 e (BAT_e
4.1 = = ' :
(4.1) do(b) ] dm(6) = cm(b) m ¥ 2 imi 2 N
(4.2) dm(6) = 0if m= 0 (modqg) and m /0,
furthermore
(4.3) dm(b)\ ~ min Lo
' "TIm 1 Anm* /[’
It is clear that 0  //>(z) ~ 1 for every >, and that
1 ifxG 1+aAaM1_4j
(4.4) fb(x) =
0 if* G[oA] M [|- A*ti + A .
Let 6i,...,bh€ E, (1 ~)/i </2< ... < lh be arbitrary integers,
(4-5) F(*i,....*1) = /6 (*:).../ b(xg),
(4.6) =~ 2 2

gli+ 1 glh +1
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Let V gh+1 be a vector, A4 the whole set of vectors M

qi+i'
= [mi,..., m/] with integer entries rrij. Let VM = (Am,Hm) = 1
It is clear that
(4.7) t(y) = "~TMe(MVy),
M
where
(4.8) Tm —dmi(b\) ... dmh(bh).

Let A = £ (see Lemma 4). It is clear that

(4.9) S,-£Ef(P(»)) Sn.+ .-.+F,.

and

(4.9) £2- £<Ne )) =El + ees+ Eih.

pbx
Furthermore,
(4.10) E<( =E TVE e(k:pQ)
" <t "~ M

and

(4.10) o) = N
Eme) =E  E e(|"Fp)

We shall check that Lemmas 1 and 2 can be applied to the polynomials

ji”"P(y) on the right hand side of (4.10), (4.11).

We can omit those M for which there is a j such that g\rrij, mj ¢ 0, since
dmj(bj) = 0 implies Tm = 0. Let g = pjl.. .p®s. Assume that qf rag. Then

I mh for some t. Thus

HM(mh+ glh~lh-Imh-i + ... + mig,’-il) = AMq‘h+1,

and p[ret 144/. Thus there exists an A > 0 depending only on g, such that
Hm ~ gq@- We can prove similarly that Hm ~ g”s holds if g\ ms and

ms+i = ... = mh= 0.
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Then Lemmas 1 and 2 can be applied to the polynomials f(y) = jf~P{y)
if M ¢ 0. The leading coefficient of / is a rational number, the denominator
of which belongs to the interval (LT,xT/LT) if x > z0(r)?f°r every choice of
r. Consequently the exponential sums are bounded by O(x m uniformly

for all choices of Ix,. ..,Ih under (3.3) and for h i , ,bh+ tqis an arbitrary
constant. Hence we obtain that

=747 (g T O£ 1)

E2 = A +0 (*' E o lTml) s 0 (£ ED)
MO 4

4 4 i=1 7
The main terms come from the choice M = 0. From (4.3) we obtain
£ N ! ! £(2 +21ogl/A)\
+
° T wAm.. 0gl/A)

Let £= A = L A where Ai is a large constant. From the above relations
and from Lemma 4 the assertion of Lemma 5 immediately follows.

5. Completion of the proofof the Theorem
Let A=[AV3],B =rN - A

B

fi{P(n)) = £  aicp(n)rq9).
=A

Then fi[F(n)) = f(P(n)) -\-0(N 179). Let furthermore

B B
M\(xr) — 22 Mki D\{xr) = 2 2 al-
k=A k—A

Thus
Mx{xr) - M(xr) = 0(N1/3), D2{xr)- D\(xr)= 0(N1/3).
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From the condition stated for /, we obtain that

f(P(n)) - M(xr) fi{P{n)) - M x{xr)
Tl<X D (xr) Dx(x")

0 as X —»o0o.

Consequently, it is enough to prove that

h{P(n)) - Mi(xr)

- 1*

5.1 ;

(5.1) n< X DA{xr) < uD(y),
fi(P(p)) -Mr(xr)

5.2 < X <y \ d(y),

:2) O Di(xr)

as x —» 00.
By using the Frechet-Shohat theorem, (5.1), (5.2) are valid, if all the
moments

and

M x)

; pESx(\_ - >

converge to the corresponding moment of the normal law. Instead of com-
puting the moments we compare them with

k(X) 1:: fl(()- Mi(xr)

nsSxr

From Lemma 5 immediately follows that for each fixed integer k(”~ 0),
ofc(x) - Cfc(x) —m0, bk(x)- Cfc(x) —»0 as x —>00.
The quantities

fi{n) - Mi{xr)

Or (x1) n=1,...,[xr]

are distributed in limit according to ®. This directly follows from known the-
orems for the sums of independent random variables. Moreover the moment
Cfc(x) converges to the fcth moment of &, for every « = 0,1,... .

Since lim a*(x) = lim 6fc(x) = lim ck(x) = f xkcio, our theorem is
true X —KX> X —t00 X—HK0
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