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TO POLO G ICAL C O M PL E X IT Y  OF G R A P H S  
A N D  T H E IR  SP A N N IN G  T R E E S

R. NAHUM and S. ZAFRANY (Haifa)

Introduction

Let A" be a perfect Polish space. Let G = (V,E)  be a simple graph 
such that V Я X .  Let E  = { (x,y) \ { x , y j  G E j . We call G analytic if 
E  is an analytic subset of the perfect Polish space A x A . Similarly, G 
is cr-analytic if E  belongs to the <r-algebra generated by all the analytic 
subsets of X  X X . Having assigned this topological complexity to G, one may 
ask questions concerning the topological complexity of objects related to G. 
In this paper we study spanning trees. The basic question is: Given the 
topological complexity of G , how simple can a spanning tree of G be?

By Zorn’s Lemma, it is easy to show that every forest F  in a connected 
simple graph G can be extended into a spanning tree of G , but the proof is 
not constructive. In Section 1 we show that if G is analytic, F  is cr-analytic, 
V(F) is analytic, and F  has countably many connectivity components, then 
F  can be extended into a <j-analytic spanning tree of G (Theorem 1.2).

In Section 2 we study weighted graphs. A weighted graph is a triple W  = 
= (G1 w, A) such that G =  (V,E)  is a simple graph, Л is an ordinal, and 
w : E —у A. For every ß < A, let G@ be the subgraph of G consisting of all 
edges и G E  such that w( u) =  ß. Here we are looking for a spanning tree 
of G whose “total weight” is as small as possible. This makes a clear sense 
in case that G and Л are finite. In the infinite case, Ron Aharoni [2] gave 
the definition: T  is a minimal spanning tree of W  if T  is a spanning tree of 
G and if we replace one edge in T  by a lighter edge, then T  stops being a 
spanning tree. First, we prove a purely combinatorial fact: every connected 
weighted graph has a minimal spanning tree (Theorem 2.2). Then we prove 
a topological version of this fact: Let W  =  (G, w, A) be a connected weighted 
graph where G is an analytic graph, A is a countable ordinal, and for every 
ß G A, the graph G@ is analytic and has countably many components. Then 
W  has a cr-analytic minimal spanning tree (Theorem 2.4).

In Section 3 we show that Theorem 2.4 is optimal. First, we show that 
an analytic minimal spanning tree for W  does not always exists. Second, we 
show that if G13 has uncountably many components for some ß G A or A is
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2 R. NAHUM  an d  S. ZA FRA N Y

uncountable then a и-analytic minimal spanning tree for W  does not always 
exist. Finally, we list some open problems.

0. Prelim inaries

A graph G is a pair of sets (V,E)  such that E  С [F]2 — {{x,t/} | x , y  G 
G F } . Elements of F  are called vertices and elements of E  are called edges. 
We also denote F  by V(G), and E  by E(G0- A path in G is a finite sequence 
p = (zo, x i , . . .  , xn) of distinct vertices of G such tha t {x,-,x;+i} G E(<j ) for 
every i < n. A graph G  is connected if for every u, v 6 V(G)  there is a path 
p = z„_i, v ) in G. This is an equivalence relation on V(G'), and
its equivalence classes are called connectivity components, or components, 
for short. A cycle in G is a path p =  (xo, x i , . . . ,  xn) such that n ^  2 and 
{xra, Xo} G TJ(G'). A forest is a graph with no cycles. A tree is a connected 
forest. A graph G' =  (V ', E') is a subgraph of a graph G = (F, E ) if V  Q V  
and E ' Q E . We also say that G extends G'. If V  =  F  then G' is a spanning 
subgraph of G. If, in addition, G' is a tree then G' is a spanning tree of G. 
By a simple use of Zorn’s Lemma one gets the following theorem.

T heorem  0.1. Let F  be a forest in a connected graph G. Then F  can 
be extended into a spanning tree o f G.

Let X  be a perfect Polish space, i.e., a perfect separable complete metric 
space. A set В  Q X  is called Borel if В  belongs to the ст-algebra generated 
by all the open subsets of A; В  is analytic if В  is a set, i.e., В  is a 
continuous image of some Borel subset of some perfect Polish space; В  is 
co-analytic if В  is a. IlJ set, i.e., X  — В  is а set. We call В a-analytic if 
В  belongs to the <7-algebra generated by all the analytic subsets of X .

Let R  and R* be binary relations. We say tha t R* uniformizes R  if 
R* £ R , R* is a function, and dom(i2) = dom(f?*). The axiom of choice 
implies th a t any binary relation can be uniformized by some function, but 
it does not specify the function. In particular, if R  ^  X x X ,  we would like 
R* to have a not much greater topological complexity than R. This is true 
in some cases. For example, The Kondo-Addison Uniformization Theorem 
asserts th a t if R is a II [ relation then it can be uniformized by а П \ relation 
(see Kondo [4] and Addison [1]). Another theorem which we use in this paper 
is:

T heorem 0.2. Let X , Y  be two perfect Polish spaces.
(i) Every analytic relation R  ^  X  x Y  can be uniformized by a a-analytic 

relation.
(ii) There is a Borel relation R Q X  x Y  such that R  cannot be uniformized 

by an analytic relation and dom (R) =  X  (Indeed, R can be chosen to be T a).

Acta M athem atica  Hungarica 66, 1995
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For a proof of this theorem and for more extensive and detailed discussion 
of this subject see Kuratowski [5] and Moschovakis [8].

1. Spanning trees in analytic graphs

Let X  be a perfect Polish space. Every graph G = (У, E) in this paper is 
such that V  ^  X .  Let Ё = { (x, y) | {x , y} £ E } • We call G Borel, analytic, 
or (7-analytic if E is a Borel, analytic, or а -analytic subset of the perfect 
Polish space X x X ,  respectively. Note that if G = {V,E)  is an analytic 
connected graph then V  = { x \ Зу : (x ,y) £ Ё} is also an analytic subset 
of X.

L emma 1.1. Let G be an analytic connected graph, and let To be a o - 
analytic tree in G such that V(To) is analytic. Then T0 can be extended into 
a о -analytic spanning tree T  of G.

P roof . For every n £ N, define by induction two analytic sets Vn ^  X  
and R n 2  X  x X . Let Vo = V(Tb). For every n £ N, let

kn+i — Vn U j x  (3y)[?/ £ Vn A {x , y} £ E(G)] j ,

Rn = {(x,y)  I {x,y}  £ E(G), x £ Vn+1, у £ Vn}.

By Theorem 0.2(i), each R n can be uniformized by a cr-analytic relation 
R*n Q Rn. For every n , define a ст-analytic relation En:

En = { (x,y)  I (x,y)  £ Ä* Л x ^  Vn} . 

Let T be the subgraph of G whose edges are:

E(T) = E(T0) U ( | J  { {x, у} I (x, y)E  En }
KnE N

Then T is а -analytic and extends To. It is left to show that T  is a spanning 
tree of G.

1. T has no cycles: Suppose that (xo, x \ , . . . ,  Xk) is a cycle in T. Since To 
is a tree, one of the edges in the cycle does not belong to E(To). Therefore, 
without loss of generality, we may assume that (xo,xjt) £ Eno for some no £ 
£ N. Hence, x0 £ Vno+1 -  Vno and x*, £ Vno. This implies that (x0, x i) ^  Eno 
(since T *0 is a function), (xo, xj) ^  En for every n ф no (since xo £ V„04.i — 
-  Vno), and {x0,xi} ^ E(T0) (since x0 0 Vno 2  V0 = V(T0)). Hence, it 
must be that (x i , xq) £ Eni, for some n\ £ N. Then n\ > no, since n\ ^  щ
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4 R. N A H U M  and  S. Z A FR A N Y

implies that x0 G Vni ^  V„0, in contradiction to x0 £ Vno. Continuing like 
this, we get no < n\ < щ < • • • < n* such tha t (xj,Xj_1) G ЕП], for every 
0 < j  й  к. In particular, (xk,Xk-i)  G Enk, which implies x* ^ Vnk. But 
nk > n0 implies that Xk ^ V„0. This contradicts Xk G Vno.

2. T  is connected and it spans G: From the connectivity of G it follows 
that V(G) = UneN ^n* Let x G V(G) and n G N . Call n the rank of x if n is 
the least such that x G Vn. By induction on the rank of x G V(G), we show 
that there is a path in T from x to some r G Vo- This is obvious for n — 0. If 
x is of rank n +  1 then (x, у) G R n for some у G Vn. Hence, (x, y') G R * for 
some y' G Vn. But x $ Vn, hence (x , y ') G E n, so {x,y'}  G E(T). The rank 
of y' must be ra, hence by the induction hypothesis there is a path (y' , . . . ,  r) 
in T  where r G Vo- Then (x, y' , . . . ,  r) is a path in T  from x to r.

This argument shows that V(T) = V(G), and that T  is connected (since 
Vo =  V(To) and To is a tree). □

T heorem 1.2. Let G be an analytic connected graph. Let F  be a o- 
analytic forest in G such that V (T) is analytic and F  has countably many 
components. Then F  can be extended into a о -analytic spanning tree o f G.

P roof . By Theorem 0.1 G has a spanning tree T  which extends F. 
Choose r G V(T), and for every component V(T) of F, choose pT to be the 
shortest path in T  from r to V(T). There is only one such path, since T  
is a tree that extends F. Let E (jP) and V(T) be the sets of all edges and 
vertices, respectively, that belong to one of those paths. There are at most 
countably many such paths and each path is finite, hence E(T) and V(T) 
are countable sets.

Now let To be the subgraph of G whose edges are Е(Тэ) =  E(T) U E(T). 
Then V(To) = V(T) U V(F).  Obviously, To is a <r-analytic tree in G such 
that V(To) is analytic. By Lemma 1.1, To can be extended into a cr-analytic 
spanning tree T of G. But Tq extends F,  therefore, T also extends F.  □

2. M inim al spanning trees in analytic weighted graphs

Our main goal in this paper is to prove the topological analog of the 
next purely combinatorial theorem. For simplicity, we divide the task to  two 
parts. First, we prove the purely combinatorial theorem. Second, we prove 
the topological version thereof by going through the first proof and by taking 
care of the topological complexity part.

D efinition 2.1. (i) A weighted graph is a triple W  = (G ,w, A), where 
G is a graph, Л is an ordinal, and w : E(C) —► Л is a weight function (where 
A is viewed as the set of all ordinals a < A).

(ii) Let G = (V, E) be a graph, and let ti,t)G [V]2. We denote by G (u / v ) 
the graph whose edges are (Е (0) — {u}) U {u}.

Acta  Maihematica Hungarica 66, 1995
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(iii) Let W  = (&,лу, Л) be a weighted graph. A minimal spanning tree of 
W  is a spanning tree T  of G such that for every v G E(G) — E(T) and и G 
€ E(T), if T(u/v ) is a spanning tree of G then w(u) й w(v).  Especially, if 
G and Л are finite, then a minimal spanning tree is one whose total weight 
is smallest. Similarly a maximal spanning tree is defined.

(iv) Let W  = (G, w, A) be a weighted graph. For every ß  G A, we denote 
by Gß and G& the subgraphs of G whose edges are:

E(G/?) =  {«G  E(G) I w(ti) ^  ß },

E{Gß) = { и G E(G) I w (u) = ß} .

We denote by Cß the collection of all components of Gß where each compo
nent is viewed as subgraph of Gß, and for every a  G ß and К  G Cß let

Ca IК  = { #  G Ca I if  is a subgraph of К } .

T heorem 2.2. Let W  = (G, w, A) be a connected weighted graph. Then 
W  has a minimal spanning tree.

P ro o f . By transfinite induction on ß G A, we construct a spanning tree 
Tk  for every К  G Cß such that if a < ß and H G Ca\K then I #  is a subtree of 
Tk . First, let /3 = 0 and let К  G Co- By Theorem 0.1, К  has a spanning tree 
Tk . Next, suppose ß — a -f 1 and let К  G Cß. By the induction hypothesis,
there is a spanning tree Tu for every H G Ca \K.  Let Fa — U {Тн  I H  G 
G Ca\ K } . Every H i , H 2 G Ca\K  are vertex-disjoint, hence, Тя, and Тя2 are
vertex-disjoint. Therefore, Fa is a forest in К . By Theorem 0.1, Fa can be 
extended into a spanning tree Tk  of К . Finally, suppose that ß is a limit 
ordinal and let К  G Cß. For every a < ß, let Fa be as above. Then Fa is 
a forest in К , and if a < a' < ß  then the induction hypothesis implies that 
Fa is a subforest of Fai. Hence F  = (Ja</? Fa is a forest in К . By Theorem 
0.1, F  can be extended to a spanning tree Tk  of К .

Now, for every ß  G A let Fß = (J { Тк \ К  G Cß]. Then Fß is a forest in 
Gß, and if a < ß  then Fa is a subforest of Fß (it follows from the way the 
Tk 's were constructed). Hence F  =  IJ/?<A Fß is a forest in G. By Theorem 
0.1, F  can be extended into a spanning tree T  of G.

We claim that T  is a minimal spanning tree of W.  For suppose that v G 
E E(£?) — E(T), и G E(T), and T(u/v)  is a spanning tree of G. We need 
to show that w(u) fi w(u). Let a  = w(v) and ß  =  w (u). Assume that a < 
< ß toward a contradiction. Let H G Ca be such that v G E(H).  Then 
Тц Q Fa Q T .  Therefore Tf j (u/v) ^  Fa(u/v ) ^  T(u/v) .  Hence Tu{u/v)  is 
a forest in H. But u,v  £ Е(Тя) (since w(u) =  ß > a and v £ T),  which 
implies that Tfj (u/v) =  Th U {u} Э Тн- A contradiction to the fact that Тн  
is a spanning tree of H . □

A cta  Mathematica Hungarica 66, 1995



6 R . NAH U M  and  S. ZA FR A N Y

Before we turn to the topological version of the last theorem, we prove a 
lemma that seems to be a converse of it.

Lemma 2.3. Let W  = (G, w, A) be a connected weighted graph and let T  
be a minimal spanning tree o f W . Then for every ß £ A and every К  £ Cß, 
T  П К is a spanning tree o f К .

P roof . Toward a contradiction, assume that there are ß £ A and К  £ 
£ Cß such th a t T  — T  П К  is not a spanning tree of К . Then there is an edge
v = {a;o,£i} 6 E(A') — E(T) such that T  U {n} is still a forest. However, 
T  U {u} has a cycle that contains the edge v. Let c = (xo, x \ , . . . ,  x n) be this 
cycle. For convenience, denote хп+\ — xq. Let 1 ^  j  ^  n be the least such 
that £ E(A'). There is such a j  for otherwise c is a cycle in К
and therefore c is a cycle in (T  U {n}) П К  =  TU {u}, but T  U {n} is a forest 
— a contradiction.

Clearly, T[{x j ,Xj+i } / v ) is a spanning tree of G. Now, {a;j,£j+i} ^ 
^  E(Ä') while X j \ ( K )  (since {xj_i,Xj} £ E(A’)). Therefore, {x j , xj+i} ^ 
^  E(Gß) Hence w( {xj,  Xj+i}) > ß, while w(u) ^  ß. A contradiction to the 
minimality of T.  □

Now we proceed to the topological version of Theorem 2.2. The proof 
of Theorem 2.2 can be described in terms of a greedy algorithm. The way 
we constructed T  was straightforward without any special obstructions. But 
in order to obtain a ст-analytic T, one cannot use a greedy procedure. The 
choice of Tjc for every К  £ Cß cannot be arbitrary and has to be made 
according to Theorem 1.2.

T heorem 2.4. Let W  = (G ,w, A) be a connected weighted graph where 
G is an analytic graph, A is a countable ordinal, and for every ß  £ A, the 
graph G& is analytic and has countably many components. Then W  has a 
cr-analytic minimal spanning tree.

P roof . For every ß  £ A we have the following facts.

E Gß -  Ua^ßGa.

2. Gß is an analytic graph (by Fact 1).
3. Cß is countable (by Fact 1).
4. For every a < ß and К  £ Cß, Ca\Lv is countable (by Fact 3).
5. For every К  £ Cß, IC is an analytic graph. The proof is: For every 

n £ N, define by induction a set En С X  x X  as follows: Eq =  {и} where 
и £ E{K)  is arbitrary, and

En+i — E {Gß) D { {x, у} I 3z : {y, z} £ Enj .

Then E(A') =  U„6N An and, by Fact 2, A' is analytic.

A cta  Mathematica  Hungarica 66, 1995
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We follow the proof of Theorem 2.2. For every К  E C/?, we construct a a- 
analytic spanning tree Tk  using the same transfinite induction as in Theorem 
2.2. First, let ß  = 0 and let К  E Co- By Fact 5 and Theorem 1.2, К  has a 
ст-analyti'c spanning tree Tk - Next, suppose that ß  = a + 1 and let К  E Cß. 
By the induction hypothesis, every H E Ca\K  has a ст-analytic spanning tree 
Th - Therefore, by Fact 4, Fa = \J {Т н  \ H E Ca\K } is a ст-analytic forest in 
К  with countably many components and ~V(Fa) is analytic, since V(-Fa ) = 
= U { V(7tf) I H E Ca\K]  and, by Fact 5, V(Тн)  =  V(Я ) is analytic for
every H E Ca\K.  Therefore, by Fact 5 and Theorem 1.2, Fa can be extended 
into a а -analytic spanning tree Tk  of К .

Finally, suppose ß is a limit ordinal and let К  E Cß. For every a < ß, Fa 
is a ст-analytic forest in К  with countably many components and V(Fa) is 
analytic. Therefore, F  = \Ja<ß Fa is a ст-analytic forest in К  with countably 
many components and V(-F) is analytic (since ß is countable). Therefore by 
Fact 5 and Theorem 1.2, F  can be extended into a cr-analytic spanning tree 
Tk  of K. This finishes the construction of the ст-analytic trees Tk -

For every ß E A, by Fact 3, Fß = (J { Т к \ К  E Cß] is a ст-analytic forest 
in G/j with countably many components and, by Fact 5, \ {Fß)  is analytic. 
Let F  = U/3£\Fß.  Then F  is a ст-analytic forest in G with countably 
many components and \ { F )  is analytic (since Л is countable). Therefore 
by Theorem 1.2, F  can be extended into a ст-analytic spanning tree T  of G. 
By Theorem 2.2, Г is a minimal spanning tree of W.  □

R emark 2.5. Theorem 2.2 does not hold for maximal spanning trees as 
the following simple counterexample shows (Fig. 1). However, Theorem 2.4 
is still true for a maximal spanning tree if Л is a finite ordinal: define W  =  
= (G, w7, A) where w'(u) = A — w(u) — 1 for every v E E(G), then a minimal 
spanning tree of W  is a maximal spanning tree of W .

Fig. 1
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3. O ptim ality

In this section we show that Theorem 2.4 is optimal. First, we show that 
an analytic minimal spanning tree of W  does not always exists. Second, we 
show that if has uncountably many components for some ß  G Л or Л is 
uncountable, then a <7-analytic minimal spanning tree of W  does not always 
exist.

T heorem 3.1. Let X  be a perfect Polish space. There is a Borel con
nected graph G = (X, E ) that has no analytic spanning tree.

P r o o f . Let xq g X  and let A, В  Q X  be two disjoint perfect Polish 
subspaces such that xo ^  A U B. Let R  ^  A x  В  be as in Theorem 0.2(ii). 
Define G to be the graph whose edges are:

E(G) = { {ж, у) I (x = x0 and у £ A) or (ж, у) G R} ■

Then G is a Borel connected graph (in fact, G is E a) such that V^G) = X  
(since dom(Ä) = A). We claim that G does not have an analytic spanning 
tree. Suppose, for contradiction, th a t T  is an analytic spanning tree of G. 
For every b GN, define by induction an analytic set R n Q X x X  as follows:

Ro = { (ж,ж0) I x £ B }  ,

R n+1 = { (ж, у) I 3z : (y, z) E R n}-

Let R* = (Jn€N Ä2n+i • Then R* is analytic and we leave it to the reader to 
check that R* uniformizes R. A contradiction to Theorem 0.2(ii). □

Now, let W  = (G,w.  A) where G is the graph defined in Theorem 3.1 
and w is a constant function. Then W  satisfies the conditions of Theorem 
2.4, but from Theorem 3.1, W  has no analytic minimal spanning tree.

Let C be the Cantor space, that is: C = { x \ x : N —>■ {0,1}} with the 
metric d(x , y ) = lx(n) ~ У(п ) |*2- ”-1 . Clearly, C is a perfect Polish
space. For every ж, у E C define ж ~  у iff x and у differ in at most finitely 
many coordinates. Clearly, this is an equivalence relation with uncountably 
many equivalence classes. The following two well-known theorems are needed 
(see Moschovakis [8]).

T heorem 3.2 (Vitali). If a set A Q C contains exactly one element 
from each equivalence class of ~  , then A is not measurable.

T heorem 3.3. Every analytic subset of C is measurable. Therefore, 
every a-analytic set is measurable.

T heorem 3.4. There is a Borel graph G = (C ,E ) and a Borel forest 
F = (С , E') in G with uncountably many components such that F  cannot be 
extended into a a-analytic spanning tree of G.

Acta M athematica  Hungarica 66, 1995
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P r o o f . Define F  =  (C ,E' )  to be the graph such th a t {x,y}  E E'  iff 
there is n  6 N such that

(i) For every г < n , x(i) =  y(i) = 0.
(ii) x (n ) = 0 and y(n) = 1.

(iii) For every i > n, x{i) =  y(i).
Then F  is a Borel forest (in fact F  is Ta). The components of F are the 
same as the equivalence classes of ~  . Therefore, F  has uncountably many 
components. Now, define G =  (C , E)  to be the graph whose edges are:

E  = E ' U { { 0 , у } \ 0 ф у е с } .

Then G is a Borel connected graph (in fact G is F„) and F  is a forest in 
G. We claim that F  cannot be extended into a cr-analytic spanning tree of 
G. Assume by contradiction that T  is a cr-analytic spanning tree of G tha t 
extends F.  Let

A = {0} U { x E С I {x, 0} E E (T)  and x 96 0} .

For every x E C, let F[x] be the set of vertices of the component-tree of 
F  to which x belongs. Clearly, А П F[0] =  {0}. If x £ F[0] then there is 
a path (xo,. . . ,  x„, 0) in T  such that xq =  x. Clearly, хг- E F[x] for every 
г ^  n. Therefore, x„ E А П f  [x] (since {х„,б} E E(T)). We claim that 
А П F[x] = {xn}. For if there is x„ ф у E А  П F[x] then there is a path 
(x„, г/a, • • •, yn, y) in F  and (xn, y i , . . . , y n,y,  0) would be a cycle in the tree 
T.

Therefore, A is the same as in Theorem 3.2. Hence, A is not measurable. 
But A is cr-analytic (since T  is), therefore A is measurable. A contradiction. 
□

Now, let W  = (G ,w , A) where G is the graph defined in Theorem 3.4 
and w(u) = 0 if v E E(F), w(u) = 1 if v £ E (F). Then W  satisfies all the 
conditions of Theorem 2.4 except the condition that G0 has countably many 
components for each ß  E A (since G° has uncountably many components). 
But from Theorem 3.4, W  has no ст-analytic minimal spanning tree, since 
every minimal spanning tree T  must extend F : otherwise, suppose that и E 
E E(F) — E(T). Then E(T) U {u} has a cycle. Let v be an edge in this cycle 
such that v ^ E(F) (since F  is a forest). It is easy to see that T( v /u ) is a 
spanning tree. But w(w) = 0 < w(v) = 1. A contradiction to  the minimality 
of T.

Finally, let W  = (G, w, Л) where G is as in Theorem 3.4, A = 2^° +  1, 
w(u) = 2^° iff v 0 E(F) and w( и) = w(u) iff и and v belong to the same 
component-tree of F . Then W  satisfies all the conditions of Theorem 2.4 
except the condition that A is countable. But from Theorem 3.4, W  has no 
c-analytic minimal spanning tree, since every minimal spanning tree T  must 
extend F : let To be a component-tree of F . It is easy to see that Tq E Cß0
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for some ßo £ A. By Lemma 2.3 T П To is a spanning tree of To. But To is a 
tree, hence T П To = To- Therefore To Q T .

Problem s. 1. Suppose G = ( X , E )  is a co-analytic connected graph. 
Does G have a <7-analytic spanning tree?

2. Suppose G = ( X , E )  is a co-analytic (or even Borel) connected graph. 
Does G have a co-analytic spanning tree?

3. A graph G is said to be regular if all of its vertices have the same 
degree. Let G  be a regular connected graph. Andersen and Thomassen [3] 
used the axiom of choice to show that G  has a regular spanning tree. One 
may ask: If G — {X,E)  is analytic (or even Borel), does G have a er-analytic 
regular spanning tree?
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ON TH E CO N TR O LLA BILITY  OF A ST R IN G  
W IT H  R E ST R A IN E D  CONTROLS

I. JOÓ and N. V. SU (Budapest)

I. Introduction

Consider a string along the segment [0,1] fixed at the two ends 0 and 1 
and controlled at some point 0 < a < 1 with a function u(t). If we denote 
by y(x , t ) the distance of the point x of the string from the equilibrium state 
at time t , then we have the equation

( l /а ) p(x)ytt = yxx + ö(x -  a)u(t), ж е (0, 1), / > 0

with boundary condition

(1/b) 2/(0 ,0  = y( l , t ) ,  t >  0

and with initial conditions

( 2 ) y(x,0) =  yo(x), yt{x,0) =  yi(x).

Here p G C 2[0,1] is the linear density of the substance, p(x) > 0 (0 ^  x 1), 
the control u(-) e Пт C Z2(0,T) belongs to some subset {It  in the space 
L2(0,T).

The control problem of this system was investigated by many authors; see 
e.g. [1], [2], [3], [4]. For the controllability (investigated by A. G. Butkovskii 
[2]) the question is to find conditions for the position of the point 0 < a < 1 
that for any initial conditions

У(х, 0) = yo{x), yt(x, 0) = yi(x)

given in some function space, the string can be relaxed in a finite time 
T  < oo, i.e. the control u(-) can be given such that

y{x,T) = yt( x , T ) = 0.

The reachable movement states question (investigated in [3], [5], [6] in recent 
years) refers to the structure of the reachability set Da(T ) := I (y(-,T),

0236-5 2 9 4 /9 5 /$  4.00 ©  1995 Akadém iai K iadó , B udapest



12 X. JO Ó  and N. V. SU

yt ( ;T) )  :u(t) runs over some space of controls j. Many interesting results
were obtained by using the method of Riesz’s bases. It should be noted that 
until now the authors investigated this problem only in the case when the 
controls u(-) run over the full space of controls. In this paper we shall be 
concerned with the controllability of the above system in the case when the 
controls belong only to some subset of the space of controls. We emphasize 
that for investigating this system we will use the so called discretization 
method. This method can be seen in some previous papers [7], [8], [9].

II. D efinitions, notations

We need the following notations and definitions.

D efinition 1. We say that у £ Z2([0 ,1] x [0,T]) is a solution of (1 /a)- 
(1/b) if for any z  £ C 2([0 ,1] X [0,T]) such that 2(0,f) =  z ( l , t )  — 0 (0 й t ^  
ú  T),  z(- ,T)  = zt( - ,T ) =  0 the equation

1 T//о 0
y(pzt : ) dx dt

holds.
As we know (see I. Joó [6]) for every y0 £ H l(0,1), y\ £ Z2(0,1), p £ 

£ C 2(0 ,1), p > 0 and any control u(-) £ L2(0,T)  the system ( l /а), (1/b),
OO

(2) has a unique solution y (x , t ) = ^  cn{t)vn(x ); this sum converges in
n=l

Z2((0,1) X (0 ,T )), further the series can be differentiated term by term. 
Moreover

— £71,0 cos \J Ant 4" 0
sin

y/^n
+

i
vn(a) J  u(t ) sin у/Лn(t -  t )

V K
dr

where
OO OO

Уо{х) = c„i0i7n(x), yi(x) = c'n 0vn(x).
71=1 71 =  1

Here {u„} are the solutions of the boundary value problem

vn(x ) +  \ np{x)vn(x) = 0, v„(0) =  u„(l) = 0.
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Define the following reachability set:

Da(T):=  { (y(.,T ), yt ( ; T ) ) : u e L \ 0 , T ) }

and the corresponding set in /2:

Ba(t):= { [ ^ K c n(T) + ic'n(T )y .u E  X2(0,T )} .

From I. Joó [6] and M. Horváth [5] we know that there exists

( y ( ; T ) , y t(. ,T)) ~  ( y / K c n(T) + ic'n(T ))

which is an isomorphism between /2 and H 1(0,1) © I 2(0,1) for every a and 
T. So instead of investigating this system in H 1(0,1) © L2(0,1) we can do it 
in 12 and as we shall see later this gives us many advantages in our work.

D efinition 2. For a given controlled set í l j  C L2(0,T)  we define

Da{ T , n T) := { ( y ( ; T ) , y , ( ; T ) )  G H \ 0,1) © L \ 0,1): u G Dr }, 

Ba(T, SlT) := { ( Ancn(T) + icn{Tj) ~  г G I2: « G ÍÍ,}, 

Sa(T,ÍÍT) := {(2/0, 2/1) 6 Н г(0,1) © X2(0, 1): for every e > 0

there exists и G £1т such that Ы ; Т ) М ; Т ) ) < £ }■
and

Sa(Qoo) U Sa(T,QT).
T>  0

R e m a r k . The set S a(T , fij)  is an approximately null-controllability set 
in Я 1(0, 1) © T2(0 ,1) after time T  under controls и G D r, 5a(íl0o) is an 
approximately null-controllability set after unbounded time.

We say that the system ( l /a ) - ( l /b )  is approximately locally controllable 
(ALC) if

(0,0) G int 5a(ííoo)
and approximately globally controllable (AGC) if

Я 1(0, 1)© Х 2(0, 1) sSeíííoo).
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14 I. JO Ó  and N . V. SU

III. D iscrete-tim e system s

In what follows we will show some properties about the controllability of 
discrete-time systems (see N. K. Son [10] and N. V. Su [9]). Consider the 
discrete-time system

(A,  B,  ÍÍ): xn+i =  A x n + Bun, x n G X , un G íí C U,

where X , U are Hilbert spaces; A G L ( X , X ) ,  В  G L ( U, X ); Í) is an arbitrary 
subset in U for which 0 G Í2.

Let Un = U x U x . . . x U ,  where the direct product is taken n times, 
and let us consider the operator Fn:Un —+ X  defined by

Fn («<">) =  An~1Buo + An~2Bu\ + . . .  + Bun- 1

where =  (uo, щ , . . . ,  m„_ i ) G Un. Clearly,

Fn(Un) = A n~l BU + An~2BU  + . . . +  BU,

and
F„(ÍT) =  A n~1 BÍ1 + An~2BQ  + . . .  + BÜ,

where íl" =  Í1 X Í1 X . . .X Í Í  (Here the direct product is also taken n times.) 
We define the approximate controllability set as

and

S„(il) := {x G X : - A nx G Fn(ii")}

S( ü )  := U Sn(ii).
П— 1

We remark tha t

Sn(Q) := |x  G X:  for every e > 0 there exists и^  G ÍÍ"

such that ЛПХ + ,Р„(и("))|| < £}

and

5 ( í í ) : = < x GX: for every £ > 0  there exists n and

<(”) G ÍÍ” such that Anx +  Fr; ( u (n)) || < £| .
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DEFINITION 3. We say the system (A,B,  D) is approximately locally 
controllable (ALC) if

0 G int 5(D)

and approximately globally controllable (AGL) if

X  =  5(D).

Let further
5n(D) = { x e X : - A nx € Fn{ün)}

and
^ OO ^
5(D) = U Sn(Q).

П=1

We say that the system (A,B,  D) is locally controllable (LC) if

0 G int 5(D)

and globally controllable (GC) if X  =  5(D).
We denote the spectrum of the operator A by cr(A).

Assumption 1. a (A) c  { A g C: |A| =  1} , ||A|| ^  1.
Now we are in position to state the following theorem.

T heorem 1. Consider the system (A,B,Sl)  with the condition that D 
is convex and 0 G D. Assume that Assumption 1 is fulfilled. The system 
(A ,P ,D ) is AGC if and only if

(a) there is no eigenvector x* of A*, A*x* = Аж*, A > 0, such that 
(x*, BVL) ^  0,

(b) there is no eigenvector x* of A*, A*x* = Аж*, A is complex, such that 
(x * ,Ж 2) =  0.

P ro o f . Necessity. Assume that the system (A,B,  D) is AGC. In order 
to prove the conditions (a) and (b), we assume the contrary: let us suppose 
there exists A > 0 such that A*x* = Аж* and

(ж*, jBD) ^  0

or there exists complex A such that A*x* = Аж* and

(х*,ВП) = 0.

We show that both cases lead to a contradiction. We can assume, without 
loss of generality, that ||ж*|| = 1. Let xq be a point in X  such that (ж*,жо) =

Acta Maikematica Hungarica 66, 1995



16 I. JO Ó  and N. V SU

= 1. Then for any 6 > 0 and any trajectory {x„} of (A,B,Q)  steered from 
xo we have, in both cases,

(x*, xn+1) = (x*,An(6x„)> +  <x*, An~1B u 0) + . . .  + ( x \  Bun- i )  =
П П

= 6Xn( x \ x 0) +  X ! An- ,'(x* ,J0ííi_1) =  6 \ n + п~{( х \ В Щ - 1)-
i=i t=i

Since IЛI = 1 for all A G cr(A) (from Assumption 1) it follows from the above 
equality that

Il*n+i|| ^  I(**,x„+i)| £ <5|A|n =  6 for all n.

Thus, in any 26 neighbourhood of the origin there exists a point 6x0 which 
cannot be steered to the 6/2-neighbourhood of the origin. This means that 
the system is not AGC, a contradiction.

Sufficiency. Assume that for the system (А, В , О) the conditions (a) and 
(b) are fulfilled. We will first show that

5(fi) = A.

Assume the contrary: there exists a point z G X  for which г ^  S(Q,). Since 
a point 2 is a compact set and S(i l )  is a closed, convex set (because of the 
convexity of ÍÍ), we have by the Separation Theorem that there exists a 
hiperspace which separates the point 2 and the set 5(ii), that is there exist 
a  G R  and /* G X*  such that

(3) S ( n ) C  { x  e X : f * { x ) ^ a }

and

(4) f * ( z ) > a.

Consider the following space:

I ° = { i G l :  /*(*) =  0}.

As we known X °  is a subspace of X  and codimX0 = 1. Therefore

X  = X° ® X 1

(here ® denotes direct sum) and dimX1 =  1. Let P : X - ^  X 1 be the 
projection on X 1 along X°. Let B \:U  —*• X 1 be defined as

B\U — Р В и, и G U.

A d a  Mathematica Hungarica 66, 1995



ON T H E  C O N TR O LL A B ILITY  OF A ST R IN G 17

For x = x° + x1, where x  £ X , x° £ X ° , x 1 £ A' 1 we define Ai: A' 1 —+ A-1 
as PA — AiP,  that is P A x  =  AiPx for all x £ A". Clearly, A\ and P i are 
linear, bounded operators. Consider the following system:

(Ai ,Bi ,Q):  x*+1 =  A xx \  + B xun, x* £ А'1, м„ £ О C f .

We show that the system (A i,P i,f í)  is LC. Assume the contrary. Then by 
Theorem 2.2 of [11], either there exists a non-zero eigenvector /  of A^ with 
an eigenvalue A > 0 supporting В iíí, or there exists a non-zero eigenvector 
/  of A\  with a complex eigenvalue А ф 0 orthogonal to В i Í7. We show that 
both cases lead to a contradiction. Note first that

( f , B lU) = (/, PBu)  = (P*f, Bu)

and
A \ P * f )  =  ( PA) * f  = {A\P)* f  = P*A*J = \ (P*f ) .

Since P  is onto, ||P * /|| ^  a | | / | |  for some a  > 0 (see Theorem 4.15 of [12].) 
Consequently, under the above hypothesis, P* f  is a non-zero eigenvector of 
A* supporting, in the first case, or orthogonal, in the second case, to BSl. 
This contradicts conditions (a) and (b). So the system (A i,J9i,íl) is LC. 
Since ||A|| < 1 (by Assumption 1), the system (A i,f? i,íl)  is GC, too (see 
Lemma 1 of [13]). It means that for this system (A i,P i,f i)  S(£l) = X 1. 
This contradicts (3) and (4), and shows that 5(íí) = X . So for an arbitrary 
x £ A and for any e > 0 there exist n £ N  and у £ Sn(Q) such that

I k - 2/11 й

Since у £ 5„(íí) there exist щ,  щ , . . . ,  un- \  £ ÍÍ such tha t

II Any + A n 1 Bu  о + A71 2 В u\ +  P u n_ 1II ^  .

By Assumption 1 we have

||A"x + A”" 1 Bu0 + An~2Bu\ +  . . .  + P u n_! II =

= IIAnx -  Any + A ny + An~1Bu0 +  A n~2Bu\ + . . .  + Bun_x\\ ^  

й  К An(x -  y) + A ny +  A71' 1 Bu0 +  A n~2Bux + . . .  +  Bun- X || ^

^  ||А |П |х -  y\\ + IIA ny + An~1Bu0 +  A n~2Bu\ + . . .  +  Pt»„_1|| ^

This means that the system (A ,P ,0 ) is AGC. This completes the proof of 
Theorem 1.
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P roposition 1. Assume that for the system  (A, P , fi) Assumption 1 is 
fulfilled. Then the system (A, B , íí) is AGC if and only if it is ALC.

P roof. The necessity of the Proposition is immediate. Assume that the 
system (A, 5 ,  fi) is ALC. Since 0 £ in tS (ii), S(fl) contains some ball B ß.
Taking a number N  such tha t < 1 for an arbitrary x £ X  and for any 
e > 0, we have that

A ^ (~ )  £ Вц for Лг =  0, 1,2, ----

Since £ 5(D), we can find uj £ ÍÍ, г = 1 ,2 , . . . ,  щ  such that

An' ( ^ ) + A ni- 1Bu\ + . . . +  Bu1ni <
N '

Analogously, using the fact th a t A k(jj) £ S(Q)  for all к, we can write the 
inequalities

Л"2(АП1( Ю )  + А п* -1В и21 + . . .  + Ви2П2

and

AnN ^дпг+тъ+...+n»-! + AnN~l B u ^  + . . . +  Bu%N

where u\ £ Í2, j  = П2, газ,. . . ,  njy, i = 1,2 , к =  2,3, ...,1V. De
note p =  n\ +  n2 + . . .  + пдг. Applying the operators Ap_ni, Ap-ni_n2, 
, . . . ,  Ap-ni_n2_”-_"JV- :1, in turn , to each of the above inequalities, except 
the last one, and summing then up, we obtain

II Apx + Ap~1B u\ + . . . +  A p~ni B u lni + Ap~ni- 'B u \  + . . .  + Ap~n1 “”2 B u2n2 + 

+ . . . +  A71* “ 1 B v?  + . . . +  Bu%\\ й е .

This means that the system (A, B, Í2) is AGC. The proof is complete.
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IV. Discretization

In this part we introduce the discretization method. We will show that 
the above system described by ( l /а), (1/b ) and (2) is equivalent with some 
discrete-time system in the sense of the controllability.

Let SI C U L2(0,T). An u(-) G SI is an admissible control if SI has the 
T > o  '  w

following properties:
(a) SI П L2(0,1) is convex; denote SI := SI П L2(0,1),
(b) 0 G fi,
(c) if и(-) G SI then «,■(•) G L2(0,1) defined by u ,(0) =  u(i + 0), 0  G [0,1] 

is such that мг G SI for each г G N.
Let us return to the system ( l /а), (1/b) and (2). It is easy to see that

V K c n(T)  +  ic'n(T) = — ic71,0 e iy/Xn'T

From this we have

y /K c n(T  +  1) + ic'n{T + 1) = cn>0\ /A ^ - lV^ ( r+1>-

~lCn,0 -  e
-tVÄ^(r+i)

T + l

ivn{a) J  u(t ) . е-«лА^(Г+1-г) dr

— p ~ i y / X n  ( r  /Т —iy/ X n ’T    • / —г\/X n - T  — e К П)о у лпе гсп, 0е

ÍVM  J  * )  + ■'»«(«» <T +
0 0

1
- e (yfK.cn{T) + ic ^ T )) +  ivn(a) J u(T +  r)e  t) dr.
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Consider the following discrete-time system in /2 as follows. Let

/ е-«\АГ

A :=

\

-iVK

00X 00

be an 00 X 00 diagonal m atrix. Clearly, A  £ L(l2, /2)- Let

В  =

/ ß i \  
#2

V ; / l X o o

be an l X 00 column vector, where Bn: L2(0,1) —> C,

1

B nu(-) — ivn(a) J  n =  l , 2, . . . .

It is easy to see that В: \ / X^ ( 0 , 1) /2 and I? £ L( Z2( 0 ,1), /2) . Consider
the  discrete-time system

(A, B,  ÍI)

%n-f-i — A x n -f- Bun

xn (x n, x n, £n, ■ • •) £ 12 ? C L (0, 1),

л e L(i2, i 2), в  £ x(l2(o, i),/2),
Ö is a convex set in T 2(0, 1), 0 £ Í7.

For this system we have clearly

<r(A)c {Л:Л £ C , |A| = 1} and ||Л|| ^  1,

th a t is Assumption 1 is fulfilled for the system (A, B, fi). Consider the system 
( l /а ) , (1/b) and (2). Assume th a t the control set ÍÍ satisfies properties (a), 
(b) and (c).

T heorem 2. The system ( l /а),  (1/b) and (2) is AG C  or ALC if and 
only if the system  (A , B, Ö) is AG C  or ALC.
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P roof. For the system (A, B,Sl) we denote the reachability set by 

Д ^:={0}, R{ := A k~1BÜ + Ak~2BŰ + . . .  + BÜ for к ^  1.

It suffices to show that

RÍ = Ba(k, ilk).

Let p  G Ba(k, ilfc), then there exists u(-) 6 f in  T2(0,&) such that

P  =  ( \ Л ^ с п (А:) +  * < 4 ( Л ) )  .

Defining a control sequence it; G fi, i =  1 ,2 , . . . ,  by u ,(0 ) = и(г — 1 +  0 ), 
0  G [0,1], we can easily show that

P =  ( y /\^ c n(k -  1) +  ic'n(k -  1)) )  _x +

+ L ,  (a ) / „ ( * - >  + r y - ^ U r
\  0

— Ak * Bii\ Аk 2 B112 T • • • T Büki

thus p  G Rf.  Conversely, let p  G Rf,  then there exists a control sequence 
Щ G D, i — 1 ,2 ,. . . ,  к such that

p  = Ak~l Bu\ + Ak~2Bu2 + . . .  + Bilk-

Taking u(t) = Ui(t -  (i — 1)) for i — 1 Ű t < i, i = 1,2, . . . , k  we have 
u(-) G Í1 П X2(0, к ) and

P =  (y /K cn (k )  +  « £ (* )) n=1- 

Hence, p  G Ba(k,Qk). The proof is complete.
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V . Main results

Applying the discretization method we obtain the following results.

T heorem 3. Consider the system ( l /а ) ,  (1/b) and (2). Assume that 
the control set ÍÍ satisfies properties (a), (b) and (c). Then the system (1/a) ,  
(1/b)  and (2) is AGC if and only if there is no s/A f such that

vn(a) J  u(t ) ■ e T) dr = 0 for all u(-) E Q.
о

P roof . First we describe the system ( l /а ) ,  (1/b) and (2) as in Section 
IV. We obtain an equivalent system (A, f í , S Í). We note that the operator
A has only complex eigenvalues, n =  1 ,2 ,__  The corresponding
eigenvectors are 1 X oo vectors of the form

/ ° \
0

1 ‘
0

w

Thus from Theorems 1 and 2, we obtain Theorem 3 immediately.

R emark. The condition

vn e T^u(T)dr = 0 for all u(-) E Q

can be simply checked in many cases.

Corollary 1. If p(x) = 1 and a is rational number then the
system ( l /а), (1/b ) and (2) with restrained controls ( u(-) E fl) is never AG C  
(so never ALC).

P roof . Since p(x) = 1, vn(a) = sin(n7ra) = s in^n7r ^ .  Therefore 
vn(a) = 0 if q\n. Thus Corollary 1 is immediate from Theorem 3.

Corollary 2 (see I. Joó [6]). If p(x)  =  1 and the controls u(-) E 
E F2(0,T) run over the whole space L2(0,T),  then
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(a) if a = & is rational, the system ( l /а ), (1/b) and (2) is not AGC;
(b) if a is irrational, the system ( l /а ) , (1/b) and (2) is AGC.
P roof, (a) Immediate from Corollary 1.
(b) If a is irrational, then vn(a) ф 0 for all n £ N . Thus the condition

lj  е- *\/^"(1_т)и(г) dr = 0 for all u ( - ) e X 2(0 ,l )  
о

is equivalent to the condition =  0 for all t <E [0,1]. From Theorem
3 we obtain that the system ( l /а), (1/b) and (2) is AGC (see I. Joó [6] and 
M. Horváth [5]).

References

[1] A. Bogmér, A string equation with special boundary conditions, Acta Math. Hangar.,
53 (1989), 367-376.

[2] A. G. Butkovskii, Application of some results of number theory to the problem of
finite control and of controllability in distributed systems (in Russian), Doki. 
Akad. Nauk SSSR, 227 (1976), 309-311.

[3] I. Joó, On the vibration of a string, Studio Sei. Math. Hung., 22 (1987), 1-9.
[4] D. L. Russel, Non-harmonic Fourier series in the control theory of distributed param

eter systems, J. Math. Anal. Appl., 18 (1967), 542-560.
[5] M. Horváth, Vibrating strings with free ends, Acta Math. Hangar., 51 (1988), 171-

180.
[6] I. Joó, On the reachability set of string, Acta Math. Hangar., 49 (1987), 203-211.
[7] N. K. Son and N. V. Su, Linear periodic control systems: Controllability with re

strained controls, Appl. Math. Optim., 14 (1986), 173-185.
[8] N. V. Su, Null-controllability of infinite-dimensional discrete-time system with re

strained control, Probl. Contr. Inf. Theory, 20 (1991), 215-232.
[9] N. V. Su, Controllability of discrete-time systems with restrained controls in infinite

dimensional spaces (in Hungarian) PhD. dissertation (1991).
[10] N. K. Son, Controllability of linear discrete-time systems with retrained controls in

Banach spaces, Contr. Cyber., 1 (1982), 5-17.
[11] N. K. Son, A note on the null-controllability of linear discrete-time system, JOTA.
[12] W. Rudin, Functional Analysis, McGraw-Hill (New York, 1973).
[13] N. K. Son, N. V. Chau and N. V. Su, On the global null-controllability of linear

discrete-time systems with restrained controls in Banach-space, Inst. Math. 
Hanoi Reprint 20 (1984).

(Received December If ,  1992)

D E P A R T M E N T  O F  A NA LY SIS
L. E Ö T V Ö S  U N I V E R S I T Y
H —1088 B U D A P E S T  M Ú Z E U M  K R T .  6 - 8

Acta M athematica  Hungarica 66, 1995





Acta Math. Hvngar. 
66 (1 -2 )  (1995), 25-50.

W E IG H T E D  (0.2)-IN TE R PO L A T IO N  
ON TH E ROOTS OF JA C O BI PO LYNO M IALS

I. JOÓ and L. SZILI1 (Budapest)

1. Introduction

Weighted (0, 2)-interpolation means the following problem. Let (a, b) be 
a finite or infinite open interval,

(1) — ос ^  a < хП'П < • • • < x i<n < b ^  + oo (n E N)

distinct fundamental points and w E C2(a, b) a weight function. Determine 
a polynomial R n of lowest possible degree satisfying the conditions

( ^ )  k,n) — Ук,т ( w R n ) ( Хк>п) — Ук,п — 1? 2 ,  • • • ,  71, п  E  N ) ,

where ук<п and y " n are arbitrarily given real numbers.
P. Túrán suggested to study this problem and it was investigated firstly 

by J. Balázs. In [1] he proved that if the fundamental points (1) are the roots
of the ultraspherical polynomial P (a > — 1), and the weight function is

w(x) = (l -  x 2) ^  (жЕ [ - 1, 1]),

then generally there does not exist any polynomial of degree fí 2n — 1 satis
fying the requirements (2). But he could show that if n is even then under 
the condition

П

Rn(0) = Ук,п1к,п(0)’
k= 1

where lk,n represent the Lagrange-fundamental polynomials corresponding 
to the nodal points ж there exists a unique polynomial of degree ^  2n (if 
n is odd then the uniqueness is not true.) He gave the explicit form of this 
polynomial and proved the following convergence theorem.

1 T h is  a u th o r’s research was su p p o rte d  by th e  H ungarian  N a tio n a l Scientific R esearch  
F ou n d a tio n  G ran t No. 384/324/0413.

0236—52 9 4 /9 5 /$ 4 .00 (c) 1995 A kadém iai Kiadó, B u d ap est



2 6 I. JO Ó  and  L. SZILI

T heorem A. Let a > 0. Suppose that the differentiable function f  : 
[—1,1] —* R  satisfies the condition f  £ Ырд, |  < p. ^  1. Further let

a—3
Ук,п = f ( x k,n), y'k,n = о {y/n) (1 -  x ln)  2 (к = 1 ,2 ,...,та).

Then the sequence of weighted (0^-in terpolation polynomials R n (n = 
=  2 ,4 ,...)  converges uniformly to f  in [—1 + e, 1 — e\, where e £ (0,1) is 
an arbitrarily fixed number.

In [6] J. Prasad extended the result of J. Balázs to the case when the 
nodes of interpolation are the roots of Jacobi polynomials Р^а’ (0 < |a | ^  
^  ^) (see also [7] and [8]). In [10] L. Szili investigated this problem in the 
case when (a, b) =  (—oo,+oo), the fundamental points (1) are the roots of
Hermite polynomials and the weight function is w(x)  = exp (x £ R).

In this paper we want to study some analogous problems in the case when 
the fundamental points are the roots of Jacobi polynomials and the weight 
function is

, . . o + l 3+1
w(x) = (1 -  x) 2 (1 +  x) 2 (x £ [ - 1, 1]; a,/3 > -  1).

Section 2 contains the results. Section 3 provides the proofs of Theorems 
1 and 2. We collected the tools for proving the convergence theorem in 
Section 4. Finally, we prove Theorem 3 in Section 5.

2. Results

Let P1“’̂  (o,/3 > — 1; n £ N) be the Jacobi polynomial of degree n 
with the normalization

^ " Л п =  ( n* a)

where an ~  bn means that \an\ — 0(bn) and \bn\ = 0 (a n).
These polynomials are orthogonal over the interval [—1,1] with respect 

to the weight function

fK*) =  ( l - * r ( l  +  z f  ( * € ( - 1 , 1 ) ) .

Denote by Xk,n (A; = 1,2 n £ N) the roots of Pn°'^  in decreasing order
and let /*,„ represent the Lagrange-fundamental polynomials corresponding
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to the nodal points xk,n, he.

(3) lk,n(X) =
P t ß)(x)

Pna’0) (Xk,n)(x -  Xk,n)
(k  =  1,2,- • •, n; n  e N).

The following theorems are true.
T heorem 1. I f  a ,ß > — l, the nodal points xk,n are the roots o f the 

Jacobi polynomial Р^а' ^ \х)  and the weight function is

(4) S±1
w(x) — (1 -  x) 2 (1 + x) 2 (же [ - 1, 1])

then there does not exist —in general— a polynomial Rn o f degree ^  2n — 1 
satisfying the conditions (2).

T heorem 2. L e t a , ß >  - 1 ,

, сЧ  ,, ,  л ,2 r \ , Pna'ß\ x )  f J lk,n{i){ak,nt + bk,n) -  t'knft)
(5) A k,„0)  = < « , ,»  + , X

where

( 6)

and

(7)

Р Г Р) (**,„) 

öfc.ra •*-&,?! T hk n — 1к}П(хк^ ,  &kln — — 

p ^ ’ß){x)

t x k n̂ 

W"{xk,n)

dt,

B k,n{x) =
2w(xk<n)P^a,ß) (x k<n)

2w(xk,ny  

Jo
I dt

(k =  1 ,2 , . . . ,  щ n e N).  

If n is a such number that Р$У'3\ 0) ф 0 then

( 8)

It 10

Rn(x) =  ^  ] Ук,п.Ак , п { х )  4" ^   ̂ Ук , п В к , п ( х )
fc=l k=l

is the uniquely determined polynomial of degree 5Í 2n satisfying the require
ments

(9)
— yk,nt i^xRn) (•£/:,n) Ук,п1
n

Än(0) = X > ,n /U ° ) >  
k=l

where yk n̂ and y'f n are arbitrary real numbers.
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Remark 1. If и is a such number that Pia,ß\ 0) = 0 (for example if 
a  = ß and n is an arbitrary odd number) then there are infinitely many 
polynomials of degree ^  2n satisfying (9). Indeed, in these cases for every 
real number c the polynomials

П П

Rn{x)  =  Ук,пАк,п(х) +  У к ,п В к ,п (Х )  +  cP^a'ß\ x )
k= 1 fc= l

satisfy (9).
Corollary 1. Let n be a natural number satisfying the condition

Pn°'ß\ 0) Ф 0. I f S is an arbitrary polynomial of degree ^  2n then for all 
i E R

n n
S(x) =  ^  S{xk)n)Ak,n(x) +  (w S )" (xk,n)Bh,n(x) +  CnP^ ’̂ i x ) ,

A:=l k=1

where

C'n = p (c ,ß )( ч ~~ X] •
l Ul \  k=1 /

We introduce the following notations: naß  denotes an odd number if 
a -  ß = 41 +  2 ( l e  Z), an even number if а  -  ß = 4/ (/ G Z) and an arbitrary 
natural number otherwise;

( 10) {min(o,/3), if m in(a,/l) < — |  
~ b  if rnin(a,/3) ^

T heorem 3. Let f  : [—1,1] —> R  be a continuously differentiable func
tion, a ,ß  > — 1 and e G (0,1) a fixed number. If

Ук,п f ( x k,n)-i Уk,n — ö ( l ) ^ ( l  X ) 2 (1 f  I/c,n) 2 i 2 „

(к = 1, 2 n),

then the sequence of the weighted (0 ,2)-interpolation polynomials R ria ß{f \ x)  
satisfying (9) obeys the estimate

№ )  -  Rna Á f \  x)\ = 0 (i)  u { f -  -— ) +2 n,ot,ß
log naß
„2(7+1)
n a,ß

(x G [-1 +  e; 1 — £]),
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where w (/'; S) is the modulus of continuity of f  and О does not depend on
na,ß and x.

3. Existence and uniqueness o f the interpolation polynom ials

P roof of T heorem 1. Let n 6 N and j  e  { 1 ,2 ,...n }  be fixed natural 
numbers and choose yk,n, Укп (к = 1 ,2 , . . . ,  n) such that

( И )  Ук,п =  0 ,  y'k}n =  6 k ,j  ( к  =  l , 2 , . . . , n ) ,

where 6k,j denotes the Kronecker symbol.
For the proof of the theorem assume that there exists a polynonial R n of 

degree й 2n — 1 satisfying the requirements (2). Then R n has the following 
form

Rn(x) = P ^ \ x ) Q n. x{x),

where Qn-1 is a polynomial of degree ^  n — 1.
It is known (see [9], (4.2.1)) that the polynomial satisfies the

differential equation

(12) (1 -  х2) Р ^ У ( х )  + [ ( ß - a ) - ( a  +  ß  +  2)x] P ^ ’ ( x) +

+n(n + a + ß  + l ) p ( a,ß\ x )  -  0,

thus

( w P ^ ) " ( x k,n) = (1 -  хк,п) ^ { 1  +  x fci„ X  

X [(1 -  x l n)P^ ' \ xk,n) + {ß - a - ( a  + ß + 2)хк,п}Р^ У(хк,п) =  0,

which proves that

(13) {wP(a’V ) " ( x k,n) = 0 ( k =  l , 2 , . . . , n ;  n € N ) .

Using these relations and (11) we obtain

(wRn)"(xk,n) =  2w(xk,n)p (a ß '> (xk,n)Q'n_x{xk,n) = 0

for к = 1,2, . .  . j  — 1 , j  + 1 , . . . , »; from which it follows that Q'n_x(x)  =  0 for 
all x G R , contradicting (11). This completes the proof of Theorem 1. □
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We seek the interpolation polynomials R n of degree ^  2n satisfying the 
conditions (2) in the form

P n (x )  — ^  '  Ук,п-^к,п(х  ̂ " F  ^  ^  yk,n^k,n{^)i  
k= 1 k= 1

where the so called fundamental polynomials o f the first kind satisfy the 
requirements

(14) Ak,n(xi^n') — (mA k,n) (xi n) — 0 (l к = 1,2 . . . ,  n; n G N)

and the so called fundamental polynomials o f the second kind obey the 
requirements

(15) — ö, (wßk}n) (^г\п) =  &k,i ( L к — l , 2,...,Tl).

Lemma 1. For every a, ß  > — 1 the fundamental polynomials (5) of first 
kind are of degree In  and satisfy conditions (14).

P roo f . Fix the number k. The polynomials Ak<n are of degree 2n, 
indeed, and it is easy to see that they satisfy the first requirements of (14). 
For the proof of the second conditions of (14) firstly suppose that Xi<n ф х куП 
(i = 1 ,2 , . . . ,  n). In this case we have

(теТ^тг) (*Гг,п) —

— 2тс(хг')71) [/^)П(^г,п)] 2lп(хг'?п) Pk*'ß)\ x i ,n )

Рп {хк,п)(х^п Хк п)
lk,n(xi,n) ~  О-

If x iiTl = хк,п then

( ) (#/c?n) —

W (̂ Ai,n) "h (.Tk,n ̂ k,n^k,n  ) 4“ 4“ k,n )(lk,n •>

so from (6) we get

{wAk^n) (^/c,n) — 4/д. n(̂ Ar,n) (^A:,n) 4“ •

From the differential equation (12) it follows

lk ,n(Xk,n)
Pna,l3) (xk,n) _  ß - a - ( g  + ß +  2)хк,п

2Pn°'ß) {хк}П) 2( l ~ Xl,n)
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thus
^  (•£/:,n) P ^{,Xk,n)lk,n(Xk,n) =  0 

and this completes the  proof of Lem ma 1. □

Lemma 2. For every a ,ß  > — 1 the fundamental polynomials (7) of 
second kind are of degree 2n and satisfy conditions (15).

P r o o f . Fix the  num ber k. The polynomials B k,n are of degree 2n, 
indeed, and they satisfy the  first conditions of (15). Using (13) and

( W Вk,n ) (з-г,«)
2w{xk,n)Pia'ß) ( Хк>п)

+2

j (w P £ * ’/J))"(z,-,n) J 1к,п(г)^+
w \ x i tn)Pla'0\ x i}n) +  w(xiin)P^a'ß) (жг,п ) |  /* ,„ (x t> )  j

we obtain that the polynomials В к<п satisfy the second conditions of (15), 
too. □

P roof of T heorem 2. From Lemmas 1 and 2 it follows that the 
polynomial

П П

R n ( x )  — ^  ~~y У к , п А к , п { х ) +  ^   ̂ У к , п ^ ^ , п { х )  
к= 1 fc=l

satisfies the conditions (9). Suppose that the polynomial R n also obeys (9). 
Then for к = 1 ,2 , . . . ,  n we have

Rn^XkjTi') P n (* £ fc ,n )  — 0} ( t c ( P n Р ? г ) )  (*^A:,n) — d ,

P n(0) -  R n(0) = 0.

Hence it follows that

R n(x) -  R n(x) = P[a'ß\ x ) H n{x),

where the polynomial Hn is of degree й  n. By our condition Р ^ ,(3\ 0) ф О 
so Hn(0) = 0.

For the second derivative we get

(w{Rn -  R n))"(xk,n) = 2ю(хк,п)р(а’0У(хк,пМ х к,п) = 0,

i.e. Н'п(хк<п) =  0 (k =  1 ,2 , . . . ,  n) and this means that Hn(x) is constant. 
Since Hn(0) = 0 thus R n(x) = R n(x) for all x and this completes the proof 
of Theorem 2. □
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P roof of C orollary 1. Let S(x)  be an arbitrary polynomial of degree 
^  2n and consider the polynomial

П  П

U(x) =  S ( x ) -  X  S(xk,n)Ak,n{x) -  X  (wS)" (xk,n)Bk,n(x)-
к=1 k=1

By Lemmas 1 and 2 we have

U(Xk,n) = 0 (k = 1, 2, . . . ,  n),

i.e. the polynomial U is of the form

U(x) = P ^ \ x ) H n{x),

where the polynomial Hn is of degree ^  n.
Using (13) we obtain

(wU)" (xk,n) =  0 = 2w{xk,n)Pia,ß)\xk,n)H'n{xkin) (к = 1 ,2 ,... n ), 

thus Hn(x ) = Cn (constant). Hence

П П
CnP^a,ß\ x )  = S{x) -  X  S{xk,n)Ak,n(x ) -  X  (w Sy  (х к,п)Вк,п(х )•

k=l к=1

The value of Cn follows from the above relations. □

4. E stim ates with respect to the fundam ental polynomials
Ak,n and Bk n

Firstly we mention some basic relations with respect to the Jacobi poly
nomials which will be used later.

For the roots of the Jacobi polynomial P„ we have the asymptotical 
relation

k2
(16) 1 -  x l,n ~  ~ 2  (k = l , 2 , . . . , n ;  h G N )

(see [5], Lemma 2 or [9], (8.9.1));

(17) p W \ x ) =  (-1  y p M { - x )
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(see [9], (4.13)); 

(18)
na+2 
ka+!

(xk,n ^  0)

(see [9], (8.9.2)) and for every £ £ (0,1)

(19) = О ( x £ [ - l + e , l - e ] - , a , ß >  -  1)

(see [9], (7.32.5).
The Jacobi polynomial satisfies the relation

( 20) Г  н ал* )Jo
dt = О

1
гЗ/2 (n е N; a , ß  > -  1)

for all x £ [—1 +  e; 1 — e] where e £ (0, 1) is a fixed number.
For the proof of (20) we integrate the differential equation (12)

Г  p t ß\ t ) d t  =
Jo

1
- ( 1  -n(n +  a + ß  + 1) +  (a  +  ß)

■[(/3 -  a )  -  (a  + ß)x] Pia’ß\ x )  + Р ^ У(0) + (ß -  a ) P ^ \ 0)

Applying this identity, (19) and

I l * a'ß)\ x ) \ = 0 { y / n )  (*G[-l + e,l-e])
(see [9], (8.9.5)) we obtain the estimate (20).

We shall also use the following statement. Let e £ (0,1) be a fixed number 
and x £ [—1 +  £, 1 — e\. Suppose that x k,n & [О,#] if x > 0 and хк)П 0  [a?,0] 
if x < 0. Then

( 21)
Pia'ß\ t )
t Xk,n

dt

where О does not depend on n , к and x. 
Integration by parts gives

Г  P (n ' ß){
JO t *fc,'

(0 dt =
Jo Pja'ß\ u )du

t  ~  Xk,n 1

x
Jo p j a'ß\u )du

(< -  %k,n)2
dt =

JX p (a’P)(uy u rx f t  p (a'ß\ u)du

x  -  Xk,n
+ fJo (t -  Xk,nf

dt.
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Using (20) we get 

Pia'ß\ t )fЛ) I ®k,n
dt = 0 (1) +

1 f x
pi* ] _ «v *»3/2 |*  -  x k,n\ И3/2 У-оо (t -  Хк,„У

=  0 ( 1 ) (n 3 /2  | X - X M | ) '

dt

Thus the inequality (21) is proved.
Lemma  3 . Lei e G (0 ,1 )  6e a ./need number and a , ß  > — 1. Then the 

Lebesgue function of the second kind polynomials satisfies the inequality

(22) = ° ( ^ U i )
к=1 ' П ‘

for all x G [—1 + £, 1 — £], where 7 is the number defined in (10) and О does 
not depend on x and n.

PROOF. If x =  Xk,n for а 1 5Í к ^  n then (22) is obvious. Suppose that 
x  G [0,1 — £]. Let / = 1 ,2 , . . . ,  n be the index for which

•*-/+1,71 < X <£. Х1'П.

From (7) we get

(23)

where

E d -
a—3

%k,n) 2
/3-3 .

(1 T %k,n) 2 1£fc,n('
k= 1

i^OOl ^ 1 1/
2 ,k= 1 ( 1 - 4 , г)2\ Р ^ У(хк}Г101 l-fo

|а1“лМ|
2 ( e  + E  + E  + E

\fceAi *ед2 А:ед3

A! := {it G N 1 1 -  1 й  x k,n <0
A 2 := jrit G N  1%l,n ^  :,n 4 “ 5

IJo
dt
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A 3 := {k £ N I 0 ^  xk,n ^  x/,„ },

Д 4 := jfc G N I -  1 + I  < x k,n < 0 } ,

Л 5 := jfc G N  I -  1 < xfc,n ^  -  1 + I  } . 

Applying (16), (18), (19) and (21) we have for all a,ß  > — 1

(24) E г* r í J‘a>ui

~  x l , n f \ pn ' 0 )\ x k,n) \ 2 [Jo t %k,n

Í
if а  > 0

A;2" -1 J = 0(1) < if a = 0,
7 1V а4-1) J if — 1 < a

dt

а < 0.
It is known that

(25) , \l2 ~ P \
|Х/)П %к,п I ~  2Tl*

(see [5], Lemma 2), thus using (18), (19), (21), (25) and Cauchy’s inequality 
we have for the second term of (23)

fce a2
I f\J о

Pia'ß\ t )
t %k,n

dt

= 0(1> i E
v h e  A  .

n2a+4 Xy

\Pba’ßY(Xk,n)\

1 " k2a+3

Г  p t ’ß)(t,
Jo t

Р Г р>(<) dt

t ,  I*2 -  ' 2lk*l
° ( 1)„2a+4Ц е *4“+4)

4 fc=i 7
Y,2 = <A 1

n3/ 2

for all a,/? > — 1.
Let us consider the third term of (23), i.e. suppose that 0 ^  xk,n ^  %l,n- 

Firstly we prove that

(27) | j T / fcl„(0<ft =  0 ( l ) / ^ ( ^ )  +2)  (k  e  A 3).
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Suppose th a t к ф l. Then

f x  f x k + l,n f x k —l , n  [ x

/  М * ) *  =  /  M 0 * +  /  M 0 * +  /  i k M dt-
Jo Jo Jxk+l.n J xk—l.n

Using (18), (21) and (25) we have

(28)
Ü f xk+l,n

[ h -'
(t) dt

- 0 ( 1)

and

(29)

кП3/2| ^ “^)'(®Л,п)| |®fc+i,n -  ® fc.nl

lk,n(t)di

= 0 (1)1
Ct+|N

n  V n ,

Since ([9], (4.5.2)) for x ф у we have

71 —1

X

where

and

ЛУ

X

j=0 «j

2-q-/? Г(п +  1)Г(п +  а  + /? + !)
2n +  a  +  /3 Г(гс +  а)Г(га + /1)

>(y)  -  
ж -  У

2«+ß+i Y( j  +  a  +  l ) r ( j  +  /? +  1) 
2j + a  +  ß  +  1 r ( j  +  l ) T( j  + a + ß + l ) ’

П —1
E T « ^ [ ^ r V ) ] 2 =
j=0

2 ~a~^ Г(п +  1)Г(п + a +  /? + !)
2n + a  +  ß  Г(п +  a )T (n  + ß)

х[Р̂\х)Р̂\х)-  р £ Г ( х )р !?Л (х )] ,
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therefore for every t £ [—1,1] we get

Pia -ß\ t )
PÍ°'0)'(Xk,n)(t -  Xfc,n )

2n +  a + ß  Г(тг +  а)Г (п  + ß)
* - a~ß Г(п +  1)Г(п + a + ß +  1) p W \ Xk<n) P t ß)\ x k , n)

X

71 — 1
X E

3= 0 nj

The Jacobi polynomials satisfy the identity

(2n +  а  +  ß)( l  — x 2)p (a’̂ '  (x) =

= -n [ ( 2 n  +  a  +  /?)ж +  ß  -  а] P[a'ß\ x )  + 2(n + a )(n  +  ß ) P ^ i \ x )  

(see [9], (4.5.7)) thus

* < « .0 )7 - .  t  -  ___2 n  +  Q +  /? _  2 \ p ( a , 0 ) ' /  )
" -1 ( * M ) -  2 ( п  +  а ) ( п  +  / ? Г

so we obtain that

Ы  '  ~  -  **,»)

(га + а )(п  +  /3) Г(тг +  а)Г(п + ß)
2— 0-1 Г(п +  1)Г(п +  «  +  /? +  ! ) ( ! -  x l n )[Pba'ß)\ x k,n ) \ :

í " o 4 '

Using the relations

3 J
(j  — 1 ,2 , . . . ,  n — 1),

Г ( т  +  а  + 1)Г(ш +  /? +  1)
Г ( т  -f 1 )Г (т  +  а  +  ß  +  1)
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where the constant c does not depend on m, we conclude that

Г х к + l,n

JXk-l'fl
П— 1

= 0 (1)- J 2 j \ P *ja,l3\xk,n)\
( !  -  X l , n ) \ p na 'ß)\ x k , n ) \ 2 j = 0

Since in this case \xk,n\ < 1 — §, thus

I i f  =  о  ( 4 , )

Г +‘ ” / f  •«(()*
•*х к - 1 , п

( j  =  l , 2, . . . , n -  1).
\ V J  /

By (19) and (25) we get

j * k+l n p{°ß)(t ) dt = О ^

from which it follows that

(30)
f x k + l , n

I lk,n(t)
Jxk-l,n

dt = 0(1) n
Î Ar—l,n Лг-f-l ,7г I

(жЛ,п)|

=  0( 1)
1 2c*+4'

П \П  J 0 ( 1) l ( - )
n \TlJ

The inequalities (28)-(30) prove (27) for к ф l. It is easy to see that (27) 
also holds for к = /, too.

Applying (16), (18), (19) and (27) we conclude that for all x £ [—1 +
+ £,! — £] and a , ß > — 1

(31) 1(a>ß)/

2 * £ 3 (* -  Xl , n f \ Pna'ß)\ x k,n)\

Р Г ’м)(х)|
I j Í ' m o * |  = o ( í ) .

Similarly to (24) and (26) we obtain by (18)

(32)

E
2 (! -  ^ ,„ ) 2| р па’/3)'(х м )Г
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and

(33)
\ P ^ ß\ x ) \ у ___________t_________

keAb (! _  x l,n) I Pn (x^.«)|

r  Pja'ß)(t)
Jo t x k,r,

dt

1
~r? ’ 
log

if ß  > 0

o a X ^ ,  if /? =  0,
д а т у ,  if —1 < /3 < 0.

Combining (23), (24), (26), (31), (32) and (33) gives (22) and this com
pletes the proof of Lemma 3 for x £ [0,1 — e]. For x £ [—1 + e,0] the proof 
is similar. □

To estimate of the Lebesgue function of the fundamental polynomials (5) 
we need some other representation of these polynomials.

Lemma 4. The fundamental polynomials of first kind (5) can be written 
in the form

Ak,n(x } — :,n(x ) T &k,n~
Pia'ß\ x )

P [n ' ß),(Xk,n)
í h,n{t)

Jo
dt-\-

, [~Xk,n + l ( ß - a - ( ß  + a + 2)x]Pjß'ß\ x )
+ --------------- -----------------  nv------- ------------------- lk ,n(x ) +

(f -  Xk,n)pn 'ß)

+
[2xk<n -  (ß -  g) ]p ja’ß\ x )

2(1 ~ x l M a'ß) (Xk’n)

1 — X 2

lk,n(0 ) +
( 1 - x 2)P<a’ßy(x) 

2(1 -  x l,n)Pna’ß y (Xk,n)
~1к,п(̂ Х̂)

>(«./*)

2 ( l - * 2 ,n)
4 n ( X )

( x )

2(f -  x l }J P n a’ß)\ x k,n)

(e./8)

ffc,n(°) +

+
n(n + a  + ß  + 1 )PA 4 x )

(o./3) I  lk,n{t)
Jo2 ( l - x l n) P ^ > ( x k ,n )

(k = 1 ,2 , . . . ,  n; n £ N; a , ß >  — 1).

df

P roof . Using (6) we obtain that

Pjß'ß\ x ) Гх h,n(t)(ak,nt + 6fc,n) — ffc,n( 0

PÍű,/3)'(x fc,n) do t -  xk,n
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Pl“'ß\ x )

~  ak'n Plaß)\ * k,n )
f lk,n{t)dt +

Jo

+■
Pn ß\ x ) [ T lk,n(t)(ak,nx k,n +  bk^n) ^  n(l)

Aa’ßY
( x k,n)

f t x  k,r\
dt — J\ -(- J 2

Since

„ ,  ̂ P ^ ß)  (x k,n) (ß  -  a) -  (a  +  ß  + 2 )zfc>n
= ~--(^ßy:—  ------------------- --------------------

we have

2 Р Г 'Р> (**,„)

■h

2 ( 1 - 4 * )

эК/3)(ж)

2 ( l - x{ M a’ß)\xk,n)

Lx \ ( ß  °) ( q  +  ß  + 2)x k,n] lk ,n (t)  2(1 x l,n )^ ,n (0

 ̂ 3'k,n
dt

ä ( i - « U i Ä ( 4
- Г - * — *
,n ) do t  x k,n

X I  ( o  + ß  +  2)(l x k ,n) lk ,n( t ) 2(1 х к,пУк,п№)Р

+ 2 ( t 2 -  l)/£f„(i) -  [(ß -  a) -  ( a  + ß  + 2 )1] /*,„(!)} dt = 

(« +  /? +  2 ) P t ß\ x )

2(1 -  * i M aJ,)\ x k,n)
t  h ,n { t)  dt-

J о

Pia ß \ x )

(1 - 4 - ) p » (**.«)

+ -
F i“ ,/3)(x)

(! -  4 п ) Р"а,/3),(жм )
” A:,n (0 ) “f~

+ -
P (na ß \ x )

( !  -  x k ,n)p n ' ß)\ x k,n)
f  lk,n(t)dt+

J 0
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+ -
Pi“'ß)(x)

X í
2(1 -  xl,n)PÍa,P)\ xk,n)

* - 2(1 -  t*)ltin( t ) - [ ( ß - a ) - ( a  + ß  + 2 )*]/*,„(<)
dl

 ̂ ®k,n
From (3) and (12) we get

(1 -  ж2)(ж -  xktTl)l'i'n(x) + 2(1 -  ж2)4 >п(ж)+

+(* -  *fc,n)[/? -  a  -  (a  + /3 + 2)ж] /*,„(*)+

+ (/? -  a  -  (a + ß  + 2)x)lk>n(x) + (x -  xk<n)n(n + a + ß + 1 )/*,„ 

Thus integration by parts provides

d2 = -
(q + /3 +  2)Р1а’/3)(т)

2(1
f  h,n(ß) d i -

Jo

P t ’ß)(x)

(1 -  x l,n)Pna’ß)'(Xk,n)

+ ■
(ж)

(1 -  xl,n)Pna,ß)\ xk,n)

(ж Т х k ,n ß к,п(х )Р

•£fc,n̂ fc,n(0)T

эК/0)
+

(ж)

(l-*fc,n)-p"“’/í),(*fc,»)
Í  h,n(t) dt-\- 

J о

+
PÍa,/3)(x) p(a’ß)( ж!

(l-*Xn(*)~ "
2 ( l - 4 n) ^ V M )

+
(! -  xl,n)pn ' ß)\ x k,n)

?(«./?)

х1к,п(х }

+ Р Г " ( х )

2(1 - x l M a,ß)\ x k,n) 

P ^ ’ß\ x )

2(1 -  xlJPna'ß)\ xk,n 

P̂ a'ß)(x) Г  l
(1 -  X\l,n)pna,ß)\xk,n) do

[ß -  а -  (а +  ß  + 2)ж] 1к,п(х)-

2 \ p ( a , ß ) '  - S &  a )^fc,n(0) +
2(1 — Xk,n)P™ {xk,n)

(ж) = 0.

“lfc,n(°) +

n(t) dt-\-
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+

+

(g  + ß + 2 )P ia'ß)(x)

2( i - 4 „  ) р ^ у ы , п)

n(n +  a  + ß + 1 )Pna,ß\ x )

í  lk,n(t)dt-\- 
J 0

(!  -  xk,n)Pnaß)\ x k,n)

- [ ~ +  \ {ß  -  a -  ( a  +  ß + 2 )x] p j a'0\x )

+

( l ~ Xl,n)Pna'ß)\ Xk,,»)

(^fc,n -  |(/3 -  q )) p la,/3)(x)

( i - 4 n) ^ a,/J)' ( ^ )

í  lk,n(t) dt =J 0

^fc,n(a ;) +

^fc,n(0) +

I ^  x2)Pn ’ß\ x ) у , ч
2(1 -  4 . ) * ! “ j , ,W )

+

2(1

n(n  +  a  + ß +  1 ) p ia,ß\x )

lfc,n(0)+

2(1  -

í  lk<n(t)dt.
J о

Using

(x -  Xk,n)Pna,ß) (ж) -  Pna'ß\ x )/' , ч _  у- ~K,nj +
lk,n\x ) p(a,ß)' {x k,n)(x Хк п )

we obtain our statement. □

Lemma 5. Let e £ (0,1) be a fixed number and a,  ß  > — 1. The Lebesgue 
function of  the fundamental polynomials of first kind (5) obeys the estimate

(З5) ] P |  A ktn{x)\ = 0 (n )  (x £ [—1 +  £, 1 — e]),
*:=1

where О does not depend on n and x.

P r o o f . It is known (see [3], (2.34)) that

(36) 1 +  x
1 4" xk,n

/3+1
*2»  й 1

(|x| < 1 ; a ,ß  > - 1 ).
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This implies

m E ‘U x ) = o w L ( ^ b ) °  (££) 'Ux)=0(1)
(x G [—1 -T £, 1 — £]).

An easy calculation shows that

w"(xk>n)
2w(xk<n) =  0 ( 1)

, u - * U
2 ч2 / >

thus by Lemma 3 we obtain for a , ß  > — 1

(38) l®*,*
(*)!

/t=i >(«,/») (хк}П) I If dt = О
n2(7+1) / ’

where 7 is the number defined in ( 10).
From the Cauchy inequality, (16), (18) and (37) we have for a , ß  > -  1

f q m  V 4 I ~  Xk'n + U ß ~ a ) ~ ( a  + ß  +  2 )x \ I  Pna 'ß \ x ) \  I ,  !
(39> E ------------M j i F M -------------|M x)| =k= 1

= 0 ( 1)1 С<“л (х)|

Similarly,

(«0 t

E
ifei С1 -  *2,n)2| p»“’i) ,(a!*,n)|2 ifc

=  о ( л /п )•

fc=i
( * f c .n - 5 ( ^ - a ) ) i>n°,,/,)(* )f

(1
= O (V n)

for all a , ß  > -  1 and

(41) E
Ar=l

(1 -  x ^ P ^ ’̂ V )
2( l - 4 n) P ^ )'(afJb,n)

ü , ln[(2n + о +  /3)2 +  /3 -  a] Pn',!i>(x) + 2(n +  a)(n +
= E

Aa’ß)i

k = \ 2(2n + a  +  /?)(! -  *I>n)| Р10,/?)' ( ^ , п)|
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•|fjfc,nOoi = o ( y / n )  y
f e ( i - 4 n ) l p«a,/3)W ) l

0 ( y / n ) Ep ( l - x l n )2\P t ’ß)\ x k,n) \2 t i

(a ,ß  > - 1 ).

From (37), (16), (18) and (19) it follows that

Y llri(x ) = 0 ( n )

(41)
1 "  1 -  r 2
l  У  — \ - l l n { X)  =  
2 ^ i  1 - 4 «

0(1)1 Y' l2 (*) + V  [pj ,/?)(aQ] = 0 (1).
Ож*,гг|^1- |

Let us consider the next term:

j (a,ß)

E Р Г " ' ( х ) = E  + E  ■
l*rfe,n|^2 la:rA:,n|̂ >2k = 1 2 (1  -  x l , n ) p(n ' ß ) \ X Kn )

Using (3), (16), (17), (18), (19) and |P Ía ’̂ '(0 ) | = О (0 г )  we obtain

(42) E
k* ,n l> 2

Pia ß \ x ) P ia’ßY(0)xk,n + Piaß)(0)

2(1 -  xl,n)Pna'ß)‘(x k,n) xl ,nP (n ' ß)\ x k<n)

=  0 (1) E
ifc  (! -  4 « ) 1 р”а’/3),(ж^ ) Г

0 ( 1)

for all a: G [—1 +  £, 1 — £] and a , /3 > —1.
Since |/^n(0)| = 0(n), by (17), (18) and (19) we have

(43) E P(n ' ß\ x )

= 0(00 E

2(4 -  ^i,„)4?i " ,/3K(a;fc,n) 

1

ifcí I PÍ",/3),(^fc,n)|

* U ° )

= ° ( n )
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for all x E [—1 + £ ,! — £] and a ,ß  > — 1. Combining (42) and (43) we get

(44) E
k=l

Pia'ß\ x )
2(1 -  *l,n)rtaJ,)\ x k,n)

- U  0) 0(n)

for all z E [—1 + £, 1 — e] and a ,ß  > — 1. 
Finally, similarly to the proof of (22)

(45) ra( n +  Q +  ß  +  1) ^
:>(«>/?)

(* ) | I Í  lk,n(t)
\Jo

dt =  0 (и)

for all z E [—1 +  £, 1 — £] and a ,ß  > — 1.
From the relations (37)-(45) we get the inequality (35). □

5. Proof o f  the convergence theorem

Firstly we prove the following statement. Denote naß  an odd number if 
a  — ß = Al + 2 (/E  Z), an even number if a  — ß = 4/ (/ E Z) and an arbitrary 
natural number otherwise. Then there exist n0 E N and c > 0 such that

(«) И ”'«(0)| > (п„л > no).
y/na,ß

It is known (see [9], Theorem 8.21.8) that

P^a,/3)(0) =  n ~ H 0cos(N^  + 7 ) + 0(n~%),

where

k0 = it 2 ^sin  0 N — n + a  + ß + 1
7 =

7Г
2 '

Since for every naii5 we have

c°s (^1 + 7) Ф 0,

we obtain the inequahty (46).
We remark that for these naß  the interpolation polynomials R Ha ß are 

uniquely determined by the conditions (9) and we can also use Corollary 1 
in these cases.
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In the following we denote the index naiß briefly by n.
For the proof of the Theorem 4 we also use the following result of I.E. 

Gopengauz (see [2]): if /  € C 1[—1,1] then for every n ^  9 there exists a 
polynomial pn(x ) of degree at most n such that

\ f (j\ x )  -  p ^ ( x ) \  = 0 (1) ^ ^ ^ ^  W( ^ ’ 2n )

(x  G [ - 1, 1]; j  = 0, 1),

and

(47) | r f W | = 0 ( l ) ( - ^ U ( / ' ; i ) )  (* € [ -1 ,1 ] ) .

For n ^  6 a fixed integer let pm  be the polynomial of approximation to /  
guaranteed by the above theorem. Applying Lemma 5 we obtain that for 
every x £ [— 1 +  £, 1 — e]

(48) \ f ( x )  -  R n( f ; x ) \  ^  \ f ( x ) - p 2 n(x) \  + \p2 n(x)  -  R n( f ; x ) \  ^
П

^  I /(a-) -  P2 n(x)\  +  ^  I f { x kln) -  P2n{Xk,n)\ I A kin(x)\  + 
k= 1

n
+ J I 4  -  (wP2n)"{xk,n) I I Bk,n(x)\ + \CnP t ' ß\ x ) \  ^

k= 1

+  'У ' I Ук'П {w P2n) (a(/:,n)| I-0fc,n(a))| +
fc=l

+ \CnPjla,ß)(x) \ .

We have

^   ̂1 Ук,п (w P2n) (жА;,гг) | | (^ ) | —
/c=l

=  0 ( 1) ^   ̂ I k,n)P2n(% k,n^\ | -®A:,n(*̂ ) | ~b
k= 1

^  ^  I w  ( x k,n)P2n(Xk,n)  I I Bk,n(x )\ “ I "

к— 1
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"b I W( x k,n)P2n(x k ,n)Bk ,n(x ) 1 +  I y fc ,n -® * ,n (a :) |
fc=l fc=l

+  Ĉ1 + U2 + U3 +  U4 . 

Since |p2n(®)| is bounded and

£=iw"(x) =  (1 — x) 2 (1 -f- x) 2 x

x Г а 2 _ 1 (1 +  х)2 - 2 а  + 1 / 3 +1
4 2 2

thus from Lemma 3 we obtain

(1 _  x V  -  * r

(49) lf1 = 0 ( l ) ^ ( l - x fcin) af a( l  +  * fc>n) ^ | 5 fcfn(ic)| = 0 ( - 1 j ^ I T) ,
fc=i '

where 7 is the number defined in (10).
The polynomial p2n(x) is also bounded and

v Q -f- 1 . .
и/(ж) = ------— (1 — x ) i-i 3+1 /3 -1-1 <1+1 3-1

2 (1 + ж) 2

so similarly to the proof of (22) we have

П
(50) U2 = 0 ( l ) J 2 ( l - X k , n ) ^ ( l  + Xk,n)S f l \B ktn(x)\ =

k=1

for all x  G [-1 + e, 1 — e\ and a ,ß  > — 1. 
For U3  we get

(51)

 ̂ у Ar,71

=  0  («*> ( / ' ;  ^ ) )  £  (! -  ^ .n ) f  (1 + *M )f  I B k A x)\ =
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= О
^ ( г Ш 7 Г Т ,

(* ) |
>(ow9) ( f̂c,n)|

for all х G [— 1 +  £, 1 — e] and a , ß  > — 1.
By the condition of the theorem we have

IУк,пI =  0 (1) ^(1 — £fc,n) 2 (1 + Xk,n) 2 ^  ; 2n ^  ’

thus

(52) Vt  =  0 (1 ) (o> ( / ' ;  i ) )  .

From (49)-(52) we obtain 

(53)

I ŷ ktTi ~ (wP2n) ( f̂c.n)! I Bk,n(x )\ = 0 (1 ) fw ( f  ; — ^ ,
k= 1 \  V /  /

where 7 is the number defined in (10).
Finally, we consider the term  |C„Pia ’̂ ^(x)|. From Corollary 1 we get

\CnPia'ß\x ) \  =
>(or,/3)

(*)|
Aa’ß)

( 0) |
P2n(0) ^  ]P2n(x k,n)lk,n(®)

k=1

Using (19) and (46) we obtain that

\CnP ^ ß\x ) \  = 0 ( 1 ) P2n(0) ^  yP2n{xk,n)lk,n(®)
к- l

0 ( 1)
n /  n \

[ P 2 n ( ° )  -  P 2 n (x k,n)\  /*,„(0) +  P2n(0)  ( 1 -  5 ^  /*,„(0) J 
)c=l '  k=1 '

for all n = nQß  > no-
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In [4] I. Joó proved that

= о ( 1 ) Ё ^ ^ о ° ) =

= o(i)E

k= 1 k= 1

^ ’ß)ln\ 1 2

J k.n

[ Р Г д,(0)]

1 ( !  -  Xl,n ) \Xk,n\ \Pna 'ß)\ x k,n ) [
0 ( 1)

log га \  
тг2(т+1) J ’

where 7 is the number defined in (10). 
From

[P2n(0 ) -  P2n(xk,n)\ /jfe,n(0 ) ^  I * m I  |P2n(6 ,n)|lfc,n(0 ) =
fc=l fc=l

= o ( i ) ^ k . P U o )  =  0(1) £  T % U „ ( 0 )  = 0 (1 )  ( - ^ j )
A:=l

we obtain that

| С . ^ “Л И = 0 (1) ( ^ 5) ,

which proves our theorem. □
We wish to express our thanks to J. Balázs for his helpful remarks.
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ON PO W E R  SUM S OF CO M PLEX N U M B E R S  
W H O SE SUM  IS 0

G. HARCOS (Budapest)

In tro d u c tio n . Let z4, . . .  , z n be complex numbers, sv =  z% + . . .  + 
+ z", and put M n = inf max \s„\, where the infimum is taken over systems

min \zj\ = 1 and si = 0. The determination of M n, which is clearly a
1 =3 = П
minimum by Weierstrass’ theorem, is raised by P. Túrán in his posthumous 
book [1]. Simple examples show M2m = 2, M3m_i ^  3, M6m_3 ^  3 ([2]) and 
by a note of [2] Mn = 0(1) for the outstanding case n = 6m + 1. M. Szalay 
has proved the lower bound 1 + (log 2 -  o(l)) /  log n for Mn ([2]). It is known 
that M2 = 2, M3 = 3, M4 = 2, 1.9219 < M5 < 2.2321 and 1.7936 < M6 ^  
й  1.9968 ([2]). We shall prove

T heorem 1. Mn < 2 + g£!/ 2+°(1) .

We also improve the lower bound:

In Section 3 we obtain some numerical estimates for Mn (6 ^  n Ú 19). 
The lower bounds are deduced as in [2], the upper ones are gained by direct 
computing of examples \zj\ — 1 (j  =  1, . . . ,  n). A detailed calculation is given 
for the cases n = 6,7.

1. To prove Theorem 1 we can assume n is odd, since M2m ^  2 by the 
result of [2]. Let n = 2m — 1 (m ^  2) and consider the system

where i2 = —1, tp = 2ir/(n + 2) and a ^  1 is to be chosen later. Clearly 
min \z,\ = 1 and we shall see that si = 0 holds for a suitable a. For 1 <

1 =j = n
< и < n we obtain

!<^<n

T heorem 2. 1 + й  M n (n ^  1024).

for 1 ^  j  ^  m  — 1 
1) for m ^  j  ^  n

0236—5 2 9 4 /9 5 /$  4.00 (c) 1995 A kadém iai K iadó, B udapest
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771 —  1 771 — 1
= {av -  1) Y ,  e'fi'ju +  5 3  e*iál/ = («" -  !) 5 3  eV’jV “  1 -

4̂>tmv _

3=1 Ogjgn+i 
3*0,m 3=1

= e*mvil2 -  1)

í.e.,

S./ = (a" -  1)

sin íp(m — l)i//2 
sin (fiu/2

siny?(m — l)u/2

— 2 cos ipmv/2

sin <pu/2

With the notation A =  ^ = 2(п+2) we ^ave

— 2 cos ípmv/2

ip(m — 1 )  7Г „ . , штп 7Г .—-------- - = ---- ЗА and =  -  -  А,2 2 2 2 ’

so

ы  = К  - 1)
sin (^i/ — ЗХи) 

sin 2Ar<
-  2 cos (§" - л")

which yields

Ы  =
, „ . 4±cos3Ai/ .
(a -  1) —:———  T 2 smAi/ v ’ sin 2 \v  T

|S„| =

Thus

±  sin 3Xu
(a -  1)—:———  ± 2 cos Xu v ’ sin 2\v

according as и = 1 or 3 (mod 4), 

according as v = 2 or 4 (mod 4).

( 1 ) Si/ =
|(«'/ - 1) i ^ - 2sinA^l if^ iso d d  
|(а " “ 1)Й § &  + 2со8Л,/1 if V is even.

Now define v' — n +  2 — u, then Xu = к /2 — Xu' and (1) gives

K - l ) S Í ^  + 2 cosA^

» V
( 2 ) \ Sp\  =

if и is odd 

if и is even.

Denoting min{i/, u'} by к and noting that v and u' are of opposite parity, we 
get by (1) and (2)

(3) •Si/ =
if « is  odd

!(«■' -  iJÜSfiS + 2cos A«| if is even.
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(3) shows that si = 0 holds if a is chosen such that a  — 1 = 2s1c0sIt '" " • 
Clearly

о \ . о \
a  =  l + — -----( l  +  o(l)) =  1 +  (л-2 + o(l)) / n 2 =

= ехр{(тг2 + o( 1) ) / r2},

i.e.,

(4) a n = exp j  ( 7Г2 + o(l)) /n  j  = 1 + (x 2 + o(l)) /n .

Suppose first that к is even. Since к < (n -f 2)/2, 0 < А к < x/4, we can 
observe that cos Ak, sin 2Ak and sin ЗАк are positive. Thus we can omit the 
sign of absolute-value in (3) and deduce by (4)

, . . „ sin ЗАк Л _ .3 37t2/2  +  o( 1)
К  ^  (a -  1) . + 2 cos Ак < (a  -  1 )- + 2 = 2 H------------------ .sin2AK 2 n

Secondly, assume к to be odd. If к = 1 then v = 1 and su =  0. Therefore we 
only have to deal with the case к ^  3. (3), (4) and 0 < Ak < 7t/4  yield

, _ an — 1 (x 2 +  o (l)) /n
Is J  5Í ———---- 1- 2 sin Ak  < ----------;——----------- 1- 2 sin Ak  ^

sin 2Ak sin 2Ak

< ( l 2  +  ° ( l ) ) / n , (тГ2 +  0 (1 ) ) /п  _ 7Г JT2 + o ( l )  ,
“r  « -j- ------- —К — ---------------  “r

7Г

• 2Ak n + 2 n + 2 2 k n +  2
-к.

This gives for 3 ^  к ^  (n +  2)/12 and all large enough n

. 7Г2 +  o il) x 10 4
к |  = — 6 + П < Т  + Н  =  2'

and for (n + 2)/T2 < к and all large enough n

7Г2 + o(l) 7Г 4 _
 ̂ ^  -  2(n +  2) / 12 +  2 < 2

The results gained in the even and in the odd cases imply Theorem 1. □
R emark. One would expect that a similar good or perhaps a better 

estimate can be obtained for M n by the system

2< =  {
a  +  ev*J" for 1 ^  j  m  -  1 
e¥>«(l+1) for m  ^  j  ^  n
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where the complex a is chosen such that si = 0. However, this is not so, 
since — by similar calculation as above — for any fixed and even и

n 2i/ + o(l)s J  = 24-------------- as n —>• oo.

2 . To prove Theorem 2 we use the fact (see [2]) that the unique positive 
root R n of the polynomial (of degree [n/2])

2 j 2 +---+njn=n 2<i/<r,

furnishes a lower bound for Mn (the j v' s are nonnegative integers). Using 
the formula

E -r-r 1 / X\Jv _  ( x + n —C+r')
(see [3]) we easily get for any positive integer к < n/2

2k—1
а д  =  - 1 + £ Г '  +  ’* - г - 1) ( ± £ +

r = 0
n — r r\

-2k
+ (2k — 1)! .

' Л +...+njn=n-2k
E П

2 к

s - i  + E
r=0

ж + n — r — 1Д (—x)r 
n — r r\

Now let n ^  1024, e =  1 < x ^  1 + ^  and к = [§], then

Fn(x) й  -  1 + ж + n — 2k — 1 
n — 2k

2k (x+n—r— / чг( n-r ) ( - x )Ê  ix+n—2k—1\ r  f
0 V n—2k )

We have

( x +  n — 2k — ]Д ( П\ г ^  x — 1
{  n - u  ) <exp( E  — <

< exp e)
log(n — 2k) + 1 

log n } < e1-*,
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and for any 0 ^  r  ^  2к

Y <  V n-r ) <  V n )
— /x+n—2k—1\ — (x+n—2k—1\ 

V n—2k ) V n—2к )
Й П 7 < “ Р E

x  — 1
<

I j=n-2A:+l

< е х р | ц Ь  E  j6 j=n-2k+l J
< exp{log n — log(n — 2k) 

log n }< exp Ш ’
i.e.,

Thus

/X+7l — r —1\
V n—r )
ix+n—2k—\\ 
V n—2k )

- 1 < exp
(  log 71)  1 <  l o g n eXP ( l o g n )  '

2k
(“ *>Fn(x)  + 1 <  ex- £ l  Y ,  4

! ^  log n
exp

2fc+l
< < e~x + +{2k +  1)! log n

exp

< e1-e 1 22k+l

e ' ( (2k +  1) / 3) 2k+1 ' l° g n  

6

+  ;------ exp 1 +

\ b g  n j  J'

Ш < 
0

<

<

I - / 1 6 6 \
< e  ( ё  +  Й Т Т  +  t o F i J

/ 1  7 \  __ 20
( ~ ^  i ) < € + ;-----\  e log n J  log n

<

- e  20 -e  £ -e - e< e +  ;------ <  e £ +  -  < e e + ее £,
e

since n ^  1024 implies e <  1. Finally

Fn( x ) < - 1  +  e-£ ( l  +  e) <  - 1  +  e_£e£ = 0.

Now 0 íí Fn(M n), hence

1 + 1 —5 5 /lo g „  =  1 + l - £ <  □
log n log n -

R em a r k . A similar argum ent leads to  the  result

l - o ( l )
Rn — 1 + log n
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3. Finally we consider systems of type

*j=exp(y?jO (1 = J = TO)

zJ+m =  exp(-<y3ji) ( l ^ j ^ r n )
if n = 2m,

zi = 1

zj+1 = exp fa j i )  > if n — 2m — 1

zj+m = exp(-(pji)  ( l ^ j ^ m - 1) ,

where the <fj are real numbers. If su =  z \  + . . .  +  z„ and sx = 0 then max |s„|
lgi/^n

provides an upper estimate for M n.
First we deal with the case n =  6 in detail. If

(5) (z -  z i)  . .  . (z  -  z6) =  z6 + aiz5 + . . .  + a5z + a6

then a6 = 1, a,2 =  04 =  a and 03 =  ß with some real a  and ß  and the 
condition si = 0 implies a\ — аъ — 0. It is easy to verify that the numbers 
Aj = 2 cos <pj (j  = 1 ,2 ,3), which lie in the interval [—2; 2], are real roots of 
the equation

(6) A3 + (a  — 3)A + /3 =  0.

Conversely, if we choose the real a  and ß such tha t (6) has three roots in 
[—2; 2] and define ав to be 1, ax =  05 to be 0, a2 =  <14 to be a  and a3 to be 
ß then the numbers Z \ , .. ,,Zq determined by (5) lie on the unit circle \z\ = 1 
and they satisfy sx =  0.

Calculating the power sums in terms of a and ß  by the Newton-Girard 
formulae we get

52 =  — 2a, 53 = —3/3, 54 = 2a2 — 4a, 55 = 5a/3, 5б = 3/32 — 2a3 + 6a 2 — 6.

It seems to be convenient to put a  =  1 — £ and ß — |(1  +£), where 0 ^  £ й  | ,  
since then

max lsj/1 = 2(1 — e2)

and

|s6| =  2(1 -  e2) -  ^r(25e3 -  19s2 -  63e + 6).
ZD

It can be checked that 25e3 — 19e2 — 63e +  6 has the only real root £ = 
= 0.092951... in the interval [0; 2/5] and this e determines an a  =
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= 0.907048 . . .  and a ß — 0.437180 . . .  such that (6) has three roots in [—2; 2]. 
Thus the inequality

M6 ^  2(1 - E 2) = 1.982720...

follows. □
Secondly, let n = 7. If Z\  = 1 and

(7) (z -  zx)(z -  z2) .. . (z  -  z7) = z7 + aiz6 + . . .  +  a6z + a7

then «7 = —1, (12 = —a, as = a and аз =  —ß, a^ — ß with some real a  and 
ß and the condition si = 0 implies a\ = — 0. It is easy to verify tha t the
numbers Aj = 2 cos (pj (j  =  1,2,3), which lie in the interval [—2; 2], are real 
roots of the equation

(8) A3 + A2 — (a  +  2)A — (a  -f- /3 + 1) = 0.

Conversely, if we choose the real a  and ß  such that (8) has three roots in 
[—2; 2] and define a7 to be — 1, a\ = a6 to  be 0, a2 as —a , as as а , аз as — ß 
and finally а4 as ß  then the numbers z\ — 1, z%,.. . ,z7 determined by (7) lie 
on the unit circle \z\ = 1 and they satisfy Sj = 0.

It is convenient to put ß — 2а/3. Calculating the power sums in terms 
of a by the Newton-Girard formulae we get

«2 =  s3 = 2 a, .  2 8s4 = 2a* -  - a , •55 — 5a,

„ 4 8 , /  13 2 2 3\
s6 = 2a3 -  - a 2, s7 = 7 í 1 -  — a + - a 3 ) ,

which yields that for 9/10 is a < 1

/ 1 3  2
max |s„| = 2a  and |s7| =  7 ( 1  — —a 2 + - a 3

It can be checked that 2a =  7 (l — ^ a 2 +  | a 3) has the only real root 
а  = 0.947181... in the interval [0; 9/10] and this a  determines a ß  = 
= 0.631454... such that (8) has three roots in [—2; 2]. Thus the inequal
ity

M 7 S  2a = 1.894363...

holds. □
Further on we indicate for comparison the lower bounds R n of Section 2. 

The upper bounds are derived from systems described above. We have the 
following inequalities for M n (6 й  n ^  19):
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1.793610.

1.719907.

1.662581..

1.618555..

1.583255 ..

1.554267..

1.529965 ..

1.982720... 

■ й М 7 й  1.894363...

, ^ M 8 ^  1.999796...

1.790782...

. S Мю ^  1.973688...

. ^  М и  ^  2.119011...

I V3 

I Ч>А

' V\ 
V2 ' 

V3 ■ 

„ V4 ■

' Vi 
V2

< V3 

V4

у ъ

' Vi 
V2

< V3 

V4

. Ч>Ь

- й м  12 й  1.998574...

' Vi 
V2 

V3 

I  V4

Vb 

[ Ve

33.987585. 
73.303745. 

109.097547. 
142.118198.

38.430487. 
67.220086. 

134.114614. 
167.022740.

32.074778
57.616740
91.887543

117.618984
152.425330

44.038349.
70.364417.
96.533487.

125.493345.
149.374899.

26.280566. 
52.020428. 
76.396810. 

102.127160. 
129.177757. 
154.877600.
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1.509245..

1.491331..

1.475659..

1.4618007.

1.449458..

. ^  Mi3 ^  2.126728 . . .

’ f x = 19.191938...° 
2 = 39.803824...° 

f3  — 88.675687...° 
<̂4 = 117.904497...° 
f 5 = 142.222650...° 

. <pe = 167.789878...°

. ^  M 14 ^  1.828905...

’ f i  = 9.069892...°
f 2 = 31.062936...° 
f 3 = 52.885792...° 

. f 4 = 98.672340...° 
¥>s = 121.786322...° 
f e  = 142.291313...° 

, f 7 = 168.191278...°

. S M15 ^  1.967363...

> i  = 21.810490...° 
¥>2 = 40.279274...° 
¥>з = 61.823098...° 

< f4  = 105.380928...° 
fb  = 125.044087...° 
f e  = 146.843332.. ° 

. ¥>7 = 170.714120...°

.. ^  Mie S 2

. ^  Mi7 g  1.948290...

'<¥>i= 19.331397...° 
¥>2 = 39.866743 . . .° 
¥>з = 58.023924.. ° 
¥>4 = 75.955699...° 
¥>s = 114.414529...° 
f e  = 133.645456...° 
¥>7 = 153.498174...° 
f 8 = 170.045331.. °

Acta  Mathematica Hungarica 66, 1995



60 G. HARCOS: ON P O W E R  SUMS O F  C O M PL E X  N U M B E R S

1.438363... ^  M18 ^  2

1.428328 . . .<, M19<, 1.888063 .. .

' ¥>i 
V?2

4>4 

< <̂5
<y?6 
<̂7 
</>8
V9

18.409141.. .°
37.223032.. .°
52.895537.. .°
70.133067.. .°
88.133122.. .°

123.294802.. °
139.974654.. .°
156.231133.. .°
172.269165.. .°
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G ENERAL RESULTS O N STR O N G  
A PPR O X IM A T IO N  B Y  CESÄRO  M E A N S  

OF N EG A TIV E O R D E R
L. LEINDLER (Szeged), member of the Academy

1. In tro d u c tio n . Let {ipn(x)} be an orthonormal system on a finite 
interval (a,b). We shall consider real orthogonal series

oo oo

(1.1) ^ C n(pn(x) with £ c £ < o o .
71=0 71=0

It is well known that the partial sums sn(x) of any such series converge in 
the L2 norm to a square-integrable function f(x) .

The following theorem, proved in [3], provides a very good quantitative 
estimate for the pointwise approximation of f ( x )  by the arithmetic means of

Let 0 < 7 < 1. If

( 1 .2 )

OO

E c " n 2 7

then

n= 0

—г г  E  “  /(* )  = °*(n 7)

almost everywhere (a.e.) in (a,b).
This result was extended by G. Sunouchi [18] to strong approximation 

as follows:
T heorem A. Let 0 < 7  < 1 and a > 0. If  (1.2) holds and 0 < p < 7 -1 , 

then

(1.3) £^_2l-* (*)-/oor
fc=o

1/p
Ox(n 7)

a.e. in (a,b), where A" := (n^a).
In [5] we generalized this result in such a way that we replaced the 

partial sums in (1.3) by Cesäro means of negative order and the external

0 2 3 6 -5 2 9 4 /9 5 /$ 4.00 ©  1995 A kadém iai K iadó, B u dapest
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Cesäro means by a general summation. We consider a regular summation 
method Tn determined by a triangular matrix ||anfcMn|| (a nk ^  0 and An := 
:= £fc=o ank), i.e. if Sjt tends to  s, then

1 71
r- = = ^ E &пк$к S.

k= 0

In the sequel К, К г will denote positive constants, not necessarily the same 
ones, furthermore K{.) denotes constants depending only on those parame
ters indicated. Our generalization reads as follows:

T heorem B. Suppose that 0 < 7 < 1 and 0 < p < 7 -1 , furthermore 
that there exists a number p > 1 such that

PP
P -  1

=  2,

and with this p for any 0 < 6 < 1 and 2m < n "й 2TO+1

m

E
min(2̂ '*‘1 ,n)

• y .  о  +  í r '1-*»-1 .
is=2l — l

^  K n~6An.

Then, (1.2) implies, for arbitrary

d > 1 P -  1
p p

that

(1.4)

holds a.e.
( 1.1).

at 1(z)|Pj =
in (a, 6), where cr%(x) denotes the n-th

ox(n 7)

(C,a)-means of series

After several articles have dealt with strong approximation (see e.g. [4], 
[6]—[10], [16]), in a joint paper with A. Meir [15], we proved a very general 
result which includes almost all of the theorems proved previously and gave 
some new consequences, as well.

In order to recall this joint result we present some definitions and nota
tions, furthermore some assumptions to be kept throughout this paper.
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Let a {а^(ш)}, к = 0 ,1 , . . .  denote a sequence of non-negative func
tions defined for 0 ^  ш < oo, satisfying

=  L
k=0

We shall assume that the linear transformation of real sequences x := {ar^} 
given by

OO

Аш(х) := ^ 2  <*к{и)хк, w -> oo 
fc=o

is regular [2, p.49]. Let 7? := rj(t) and g(t) denote non-decreasing positive 
functions defined for 0 5Í i < oo, furthermore let p := {p m}, m — 0, 1, . . .  
denote a fixed, increasing sequence of integers with po = 0. We shall assume 
that there exist positive integers N  and h so that

(1.5)

( 1.6) 

(1.7)

Mm+l — N Цт 1 

V(Vm+1) ^  Nr)(Hn), 

Vil^m+h)  =  2  7/(/7m ) ,

m  = 1, 2, . . . ,  

m — 1, 2, . . . ,  

m — 1,2, ___

For r > 1, и  > 0 and m — 1 ,2 ,. . .  we define

( 1.8) P m { u , r ) : =  i

1 Mm-fl 1
----- ( ai,(uj))r

1 /r

In terms of the quantities introduced above we formulate our result 
proved in [15].

T heorem C. Let p > 0. Suppose that there exist r > 1 and a constant 
K(r,p , T]) such that for any и  > 0

(1.9) Y l  VmPm(u,r)r){pm) p <: К(г,р,г])(д(ш)/г](ш))р.
m—0

If

OO

(1.10) £ ^ H 2 < o c
n = l
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then

( 1 . 11)

{oo 'j ! / p

-  f ( x ) \P > =  Ох (д{ш)/т](ш))

k=0 J
a.e. in (a,b) for  any increasing sequence v  := {^} of positive integers.

If, in addition, for every fixed m,

pm(u>,r) = о((д(и)/т](и))р) , as и  -*■ oo,

/Леи í/ге Ox m (1.11) can be replaced by ox .
Theorem C gives estimates for the pointwise approximation of f ( x ) by 

a large family of HausdorfF transformations and [J, / ] - transformations. Be
cause of the generality of Theorem C it is really not easy to realize how many 
well-known summation methods are included in this theorem. We refer to 
[15] for some examples. Here we present only three known and frequently 
used methods, namely the Cesäro, the Riesz and the generalized Abel trans
formations. We also mention that the corollaries to be recalled here were 
proved before appearing Theorem C individually, as well. Corollaries C.l 
and C.2 were proved in [16], and C.3 in [6 ].

Corollary  C .l. Let p  > 0, a  > 0. I f  0 < 7  < p~l and (1.2) holds, 
then

( 1. 12) / 0 0 Г
k=0

1 / p

ox(n  7)

a.e. in (a,b) for any increasing sequence { } .
Corollary  C.2. Let p > 0, ß > 0. I f  0 < py < ß  and (1.2) holds, then

{ n 1/p
(n  +  l)~e Y ^ ( k  +  1)^_1|в„л(яг) -  f ( x ) \p l =  ох(тГ7)

/г=0 J
a.e. in (a,b) for  any {ok}-

Corollary  C.3. Let q be a non-negative integer and p > 0. 7 /0  < 7  < 
< p~l and ( 1.2) holds, then

| ( 1  -  <)i+l E  ( 4 J  * ) i ‘ |»4 W  -  / И " }  =  »4(1  -  0 7
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a.e. in (a,b) for any {fk}.
We mention that Corollary C.3 is an extension of a result of L. Rempulska 

[17] to strong means.
Comparing the theorem of Sunouchi and Corollary C .l, we see that 

among the assumptions of Corollary C .l the restriction 7 < 1 does not 
appear. This is a great advantage of Corollary C .l. But if we consider 
Theorem В in the special case a nu = A °z l ,  then (1.4) has the advantage 
regarding (1.12) that in (1.4) we can approximate the function f(x )  by Cesaro 
means of negative order, although then among the conditions the restriction 
7 < 1 appeared again. So it is natural to ask whether in the general case, 
or only in the Cesaro case, if we want to approximate the function f ( x ) by 
Cesaro means of negative order, then the restriction 7 < 1 can be omitted.

We have so far proved only that in the special case rj(t) = V  with the 
restriction 7 < 1 the function f ( x )  can be approximated by Cesaro means of 
negative order for the same class of summations given in Theorem C.

The main tool of the proof was the following Proposition proved recently 
in [11]. This reads as follows:

P roposition . If p > 0, 0 < 7 < 1  and d > m a x ( l /2 ,(p — 1 )/p), then 
( 1 .2 ) implies

£  К  V ; * ) - / ( z ) r |l ”  k=n+ 1 J

1 /p
= ox(n 7)

a.e. in (a,b) for any increasing sequence и {ok}, where 

< ( ^ x ) ■= J ä Y , An-ks^ x )-
n k=0

Using the notations introduced above we formulate the result proved in 
[12], and mention that it is the most general result in this field.

T heorem D. Let p > 0, d > m ax(l/2 , (p — 1 )/p) and 0 < 7  < 1. Sup
pose that there exist r > 1 and a constant K (r ,p )  such that for any u> >  0

OO

(ПЗ) 1*тРт(и,г)р,-1Р ^  К(г,р)(д(ш)/и 'у) р.
m=0

If (1.2) holds, then

(1.14)

{00 'J ! / p

-  / ( z ) |P j  = Ox(g(u)/u 'y)
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a .e .  in  (a ,b ) f o r  a n y  in c re a s in g  sequ en ce  и  :=  {iqt} o f  p o s i t iv e  in te g e rs .
If, in  a d d it io n , f o r  e v e r y  f ix e d  m ,

(1 -1 5 ) p m ( u , r )  =  о ( ( д ( ш ) / и 1 ) р ) , a s  и  - *  ос ,

th e n  the O x in  (1 .1 4 )  can be re p la c e d  by ox .

W e point o u t th a t the m o st  im portant sp ec ia l case o f  T heorem  D , in our 
v iew , is when b o th  (1 .13) and  (1 .1 5 ) are sa tisfied  with д(из) =  1. In th is case  
w e get that

(1.16) Tw(/,p ,d ,i / ;z )  =  ох(ы-7 )

h old s a.e. in (a ,  b ).
We want to  p oin t out a g a in  th a t T heorem  C , contrary to  T heorem s A , В 

an d  D , does n o t  claim  th e e x tr a  restriction  7  <  1. T his is  a  great advantage  
o f  th is th eorem , b u t it does n o t  allow ap p rox im atin g  w ith  Cesaro m eans o f  
n egative order.

T he com m on  kernel o f  th e  proofs o f T h eo rem  A , В an d  D is based on a 
very  in teresting  result o f T . M . F lett [1] an d  a  useful lem m a  o f G. Sunouchi
[18]. U n fortun ately , S un ou ch i’s lem m a requires th e assu m p tion  0 <  7  <  1, 
furtherm ore th e  F le t t ’s resu lt works on ly  i f  т/(тг) has th e  form  o f n7 ; e .g . if 
77( 71) =  7i7 , 7  >  0 .

Recently w e  ([13]) gen eralized  F le tt’s resu lt replacing th e factors n 1 by 
m ore general factors 7 ( 77). H av in g  this gen era liza tion  o f  F le t t ’s result (here  
Lem m a 4) an d  after ex ten d in g  th e  lem m a o f  Sunouchi b y  sim ilar w ay in th e  
present paper (h ere L em m a 6 ) we shall b e  ready to  generalize T heorem  D , 
an d  in a certa in  range o f  th e  functions q f t )  our new  resu lt will generalize  
Theorem  C rep lacin g  th e p a r tia l sums by C esaro  m eans.

2. The m ain result. B efore  form ulating our result w e recall a defin ition  
and define th re e  properties o f  th e  function  7 ( t )  which w ill replace essentia lly  
th e  function r / ( t )  used a b ove.

A sequence { 7 n} o f p o s it iv e  num bers is  said to  b e q u a s i g e o m e tr ic a lly  
in crea sin g  (d e c re a s in g )  if  th er e  exist n a tu ra l num bers p ,  v  and a real num ber 
К  ^  1 such th a t  7 „+ii ^  2 7 n and 7 „ ^  К 7 „+ i ( l n+ ß ^  ^7 « and 7 „+ i ^  
^  K- j n)  h o ld  for all n atu ra l num bers n  ^  1/ .

We shall say  th a t th e  fu n ctio n  7 ( t )  h a s th e  fo llow ing properties:
Pi: the sequence {7(2")} is quasi geometrically increasing;
P2: th e  seq u en ce { 7 ( 2 " )2 _ n } is quasi geom etrica lly  decreasing;

Р Р'Г: th e  seq u en ce { 7 ( 2 ra) ( 2 n(1_r)/rp} is  q uasi geom etrica lly  decreasing w ith  
som e r  >  1 a n d  p  >  0 .

In term s o f  th e  q u an tities  and p rop erties introduced  above we are ready  
to  state our first theorem .
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T heorem 1. L e t p  >  0, d  >  max (1 /2 , (p  — 1 ) / p )  a n d  le t  7 (/) be a 
p o s i t iv e  n o n -d e c re a s in g  fu n c t io n  d e fin ed  f o r  0 ^  /  <  0 0  w ith  p r o p e r t ie s  P\ 
a n d  P 2 . I f  th ere  e x is t  r  >  1 a n d  a c o n s ta n t K ( r , p )  su c h  th a t f o r  a n y  и  >  0

(2.1) /W m ( w ,r b ( / i m) P й K(r ,p) (g(u>) / l (u) )P,
m —0

th e n

OO

(2.2) ^ c 27(n)2 <00
71—  1

im p lie s  th a t

(2.3)

{
OO

^ajt(w )|< T f_1(i/;ar) -  / ( x ) |? 
k=o

h o ld s  a .e . in  (a , 6 ) /o r  a n y  in c re a s in g  seq u en ce  v  :=
If, in  a d d itio n , f o r  e v e r y  f ix e d  m ,

(2.4) P m ( u ,  r )  =  o  ((g(ui)/y(u))p) , as

th en  th e  O x in  (2.3) can  be re p la c e d  by ox .

It is easy  to  see  th a t T heorem  1 in th e  special 
<  7  <  1 reduces to  T heorem  D; and if  p ( t )  =  7 ( t )  then  a ll o f  the con d ition s  
of T heorem  C are satisfied  under th e  assum ptions o f  T h eorem  1. T his m eans  
that T heorem  1 is a  slight im provem ent o f  T heorem  D; b u t it is only p a rtly  a 
generalization  o f T heorem  C , n am ely  we claim  m ore a b o u t 7 (f) in T h eorem  
1 than  w hat g( t )  has to  satisfy  in T heorem  C.

In order to help  th e  com parison  o f th e new  and know n results w e shall 
follow th e  structure o f  th e  paper [15].

3. Lemmas. To prove our th eorem s and their consequences we need  five  
known lem m as and th ree new on es to  be proved in th is p aper.

L e m m a  1 [8 ]. L e t  6 >  0 a n d  {bn } be a n  a rb itra ry  se q u e n c e  o f  p o s i t iv e  
n u m b ers . S u p p o se  th a t f o r  a n y  o r th o n o r m a l s y s te m  the c o n d it io n

00 / 0 0  \  ^

2  6n Í J2 Ck ) < 00
71=1 \k = n  /

1 / p

=  О х ( д ( ш) / ' у ( ш) )

W k }  o f  p o s it iv e  in te g e r s .

LÜ — > OO,

case 7 ( t )  =  V  w ith  0 <
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im p l ie s  th a t the se q u e n c e  { s „ ( x ) }  p o s s e s s e s  a p r o p e r ty  P ,  th e n  a n y  su b se 
q u e n c e  { ^ „ ( я ) }  a ls o  p o s se s se s  p r o p e r ty  P .

L emma 2 [2]. L e t  (а * ,(п )} , th e  co e ff ic ien ts  o f  a regu lar H a u s d o r f f  tr a n s 
f o r m a t io n ,  be g iv e n  by

a * ( n ) : =  Jo  ( f c )***1 - * ) " " * # * ) * ’

w h e r e  (f>{t) G L r ( 0 ,1 )  fo r  so m e  r  >  1. Then

(3.1) Y j  l Q f c ( n ) r  =  K ( r ) ( n  +  l ) 1 r .
k = 0

L emma 3 [15]. L et the c o e ff ic ie n ts  o f  a re g u la r  [ J ,^ - tr a n s fo r 
m a t io n ,  be g iv e n  by

ak̂  :~~k\ j

w h e re  4>(t) G L r ( 0,1)  f o r  s o m e  r  > 1. T h en  f o r  £ =  0 , 1 , . . .

(3 .2 )  Е К И Г  ^  А» ( ( 1  +  о ; Г 1е - ^ 1+- ) ) г- 1.
k=e

Before form u latin g  th e  n e x t  lem m a w e recall som e defin itions and n ota 
tio n s.

Let к  ^  1, a  >  — 1 a n d  7 (f) be a  p o sitive  n on-decreasin g  function  
defined for 1 ^  t  <  0 0 . W e s a y  th a t a n um erica l series Y l^ L o a n *s sum m able

|C ,  a , 7 ( i ) | fe i f  th e  series 7 ( n ) ^ n _ 1 1 гп | is con vergen t, where r" :=
:=  n(cr“ — & n - i )  and d en o tes  the n th  Cesäro m ean  o f order a  o f  the  
series Y h a n- It is well k now n  th a t if a  >  0 th en  r “ =  a(<т“ -1  — <7“ ).

Lemma 4 [13]. L e t г ^  к  > 1, a  > — 1, /3 ^ a  + к ~ г — r _1, a n d  7 (i) he 
a n o n -d e c re a s in g  p o s itiv e  f u n c t io n  d e f in e d  f o r  1 й  t  <  00 so  th a t w ith  so m e  
C  >  1

(3 .3 )  lim  sup <  C a+ 1 .
t —ю о  T v V
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T h en  i f  th e  s e r ie s  Y ^ = o a n su m m a b le  [C, a , 7( /) |fc, i t  is  su m m a b le  
I C , ß , i ( t ) \  , fu r th e r m o r e

! o° 1 l / r (  o°
^ 7 (n)rn - 1|r^ |r l <] К  i

71 — 1 J I 71=1

Lemma 5 [14]. F o r a n y  p o s it iv e  se q u e n c e  { j n }  the in e q u a litie s

OO

(3.5) £  7 n ^  K lm  ( m = l ,2 , . . . , J S r ^ l ) ,
n=m

o r

m

(3.6) X ! 7n = Ä"7m (m =  1 , 2 , . . . , #  ^  1)
n=l

h o ld  i f  a n d  o n ly  i f  the seq u en ce  { 7 n} is  q u a s i g e o m e tr ic a lly  d e c re a s in g  o r  
in crea sin g , r e sp e c tiv e ly .

Lemma 6. L e t  7 (<) be a p o s it iv e  n o n -d e c re a s in g  fu n c tio n  d e f in e d  f o r  0 ^  
^  t  <  00  uui/i p r o p e r ty  P 2 . I f  ( 2 .2 ) h o lds th e n

00 1 00
7 (n  +  l ) 2(n  +  1 ) _ 1 1 <т"_ 1(ж) -  <r"(x)| 2 > da: й  ÜT c^7 (n ) 2

71=0 J 71 = 1

/o r  a n y  a  >  1 / 2 .

T his lem m a in  th e sp ecia l case 7 ( í )  =  V  w ith  0 <  7  <  1 w as proved by 
G. Sunouchi [18]. Our p roof to  be given below  follow s th e line o f  th e  proof 
given  by Sunouchi.

P roof. Since

it follows that

E
k. i/=0

A K z l f c l a -2 M n) - 2

°° rb
/  TÍHiffn + i r V r ’W - ^ W l2* ^

71=0 Ja

0 0  C 00 'j

= K  E IЁ  " V  -  * +  i ) 2(a_14  [ 7 ( n + i) 2( n + i n 2“-1 =
n=0 I n=0 J
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oo oo

=  #  X  v 2c i  x  i ( n + i ) 2(n - v + i ) 2 â_1^(n +  i )~2a_i =
is—0 n - v

oo /  2u oo \

= а £ л ; К >  y . = = E , + E , .
t/= 0  \ n —z/ n = 2 i / + l /

say. On account o f  a  >  1 /2 ,

OO I /

X t S ^ X + i ) V2a_1 XIn2(“-1) ^
i/= 0  ra= l

oo oo

^  К  X  ^2 7(2^  +  l ) 2 ^  A'l X 7 ( ^ ) 2 c2 <  oo.
i /= 0  i/= 0

A t th e  la st estim ation  w e used th e  fa c t th a t th e  sequence { 7 (2 " )2 - " } is quasi 
geom etrica lly  d ecreasing.

T o e stim a te  w e apply s ta te m en t (3 .5 ) o f  L em m a 5, fu rtherm ore th e  
obvious fact th at if a  sequence { 7 „} is quasi geom etrica lly  decreasing then  
so is { 7 2} . T hen if  m  =  m (u) sa tisfies the in eq u alities 2m _ 1  Ú 2i> +  1 < 2m 
we have

OO OO

X2 = A X ̂  X 7(^+l)2«-3^
u=0 n=2v+l

oo /  2m oo 2*+ 1 - l \

s ^ 'X ^ 2 X +X X j7(«+i)2«'3^
v—i  y n = 2 i /+ l  k—m n=2k )

oo ( oo ^
^  К  X " 2c2 j 7(2m)22 - 2m +  X (7(2*)2“ fc) 2 \ <i 

v—l \  k=m J
oo oo

^  j ( 2 m ) 2 ~ m ) 2 Í  A 2 X ^ W 2 <  oo.
t/=i i/=i

S um m ing up ou r estim ation s w e ob ta in  th e  sta tem en t o f  L em m a 6 .

L emma  7. L e t p > 0 , d >  m ax  ( l / 2 , ( p —l ) / p )  and let 7 (t) be a positive 
non-decreasing fu n c tio n  defined fo r  1 ^  t < 00 with property P 2. U  (2-2) 
holds, then
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(3.7)

dx <; К  J ^ c ^ 7 (n)2.

P roof. On account of d > max 1 — ^j it is easy to see th a t there 
exists a number p > 1 such that

(3.8) PP= 2 and d > 1 — (pp)~X

hold. Putting t * ( x )  : =  d ( a ^ - 1( x )  -  сгЦх)) ( =  n { o * { x )  -  ^ _ j ( x ) )  since 
d > 0) and applying Holder’s inequality we obtain that

2 n 2 n 1 I p

(3.9) E  № ) r ^ w í E  № )Г | ^
w l/=n + l

2n
^  Kn~t(n) p <̂ E  l ( v ) PPv X\tÍ{x )\

I z/=n4-l
PP

By the second statement of (3.8) we can choose a* such that

(3.10) , 1 1 , 1d -  -  -\-----> a > -2 pp 2

holds. By (3.10) the parameter conditions of Lemma 4 are fulfilled with 
r = pp, k = 2, a = a* and ß = d. The assumption (3.3) is also fulfilled since 
the sequence {7(2")2_n} is quasi geometrically decreasing. Using Lemma 4 
we get

(3.11)
1 / p p

й  К
oo

Е т  ( n f n - 1
1/2

Thus, by (3.9), (3.10), (3.11) and Lemma 6, we get

< sup
1 < T l < O G

2 n

E
v—n-\-1

i / p

* ) Г dx <
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<í к
oo

dx <í < oo,
71=1

which proves statement (3.7).

Lemma 8 . I f  p >  0, d >  m a x ( l /2 , ( p -  l ) /p ) ,  7 (f) Л«« fhe same prop
erties as in Lemma 7, ant/ additionally it has property P\, too, then (2.2) 
implies

(3.12)
f 1 2n
{ n £  № ) - < ^  1
V. i/=n+1

w i '
i/p

= ô t W 1)

a.e. in(a,b).

P roof. It is clear that

(3.13)
Í 1 2n 1 1/P
I n Ü  v ) i p =
l  П v = n + l  J

f 1 2” 11/p í 1 2n 11/p
= K \ -  £  l/OO-^OOl f + А' | -  £  К (ж) ~ ^  1(*)lp| •l i/=n + l J l V—Tl+X J

First we show that the first term has the required order. Since d > 1/2, so 
by Theorem C with p = 1, r  =  2, w = n, n = 1 ,2 ,..., /im =  2m, r/(t) = 7 (f), 
g(t) = 1, ajfc(n) = AdnZ\/A*, vk =  &, we get th a t

(3.14) f{ x )  -  o d(x) = ox ( i ( n ) ~ l )

a.e. in (a, 6). We admit that it is not very easy to see that all of the assump
tions of Theorem C are satisfied in the case given above, but a standard and 
elementary consideration shows that Theorem C with o2, ( 7 (n)_1) works, 
whence (3.14) follows clearly.

Using (3.14) we see that the first term in (3.13) has the required order
Р г Ы ^ Г 1).

Next we show that the second term in (3.13) also has the same order. 
Let e be any positive number. Let us choose N  so large that

OO

(3.15) J 2  c27 W 2 < £ 3.
n = N - \ - l
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By means of N  let us split series (2.2) into

N  oo

< °° and E  c n i ( n f  <£3’
n = l  n = A /+ l

and consider the corresponding orthogonal series, i.e., let

o° ,
(3.16) ^ a n<pn(x ) with an = I q"

71= 0  ^

and

(3.17)

for n ^  N,  
for n > N;

( Q
X ] bn<fin(x) with bn -  < 
n=o ^ Cn

for n iS N ,
for n > N .

If, in this proof, a n(a;x) and a£(b;x) denote the (C,a)-means of series 
(3.16) and (3.17), respectively, then

(3.18) < ( * )  = < (а ;ж )  +  <т“(6;ж).

Since the number of the coefficient an ф 0 is finite,

1 N
l ( a - x ) - a dl, (a - ,x )= —I ^ j kAdv_ \ck4>k(x) 

u k=о

ifi/ > N; and for any к ^  N AdZ =  0 ( l/ i /) , so using Holder’s inequality, 
we get that

2n
E  \ a t  Ч®;*)_ ^(в;*)Г ^

^=n+l

2n
= nl 1/p) E  Чо;*)-®2(«;*)|

v. i /= n + l

= Ox(l)n

whence

( 2n
(3.19)

(. i/=n+\

VP  ^

= Ox(l)n 1- 1̂ n 1̂ - "  = 0 I ( l)n 1- p,

л 1/p

1/p
= Ox(n *)
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follows a.e. in (a, 6).
Since 7 (n)n_1 —*■ 0, thus (3.19) implies that 

(3.20) Y [  = ° * Ы п)~г)

also holds a.e. in (a, b).
In order to estimate the suitable terms of series (3.17) we use Lemma 7 

and (3.15). Then

f sup
l<n<oo

l ( n ) p 2n 1/p'

П Y  \ ° í  l { b \x ) - o i{ b ; x ) |p > d x ^ K e 3.
1/=П + 1

Hence

meas  ̂x : lim sup Í — | a^ 1(b;x) — a^(b;x)\p 1 > £  ̂ ^  Ke.
2 n i / p

 ̂= 71+1

This, (3.13), (3.14), (3.18), (3.19) and (3.20) imply (3.12) a.e. in (a, b), so 
our proof is complete.

4. P r o o f  o f  T h e o r e m  1. First we show that for arbitrary positive p

(4.1) Am(z ) :=
1 Mm+1 1 1 / p

/̂ 771 +  1 Y  I V)lp
к—fin

holds a.e. in (a, b).
Let us assume that for a given pm n = n(m )  is the largest integer such 

that
n < pm,

furthermore let A be the smallest integer with N  2Л. Then, by (1.5), it is 
clear that

H  ^  P m  ^  P m  + 1 =  - V f l n l  ^  2  / 2 m  ^  2  71,

whence, by Lemma 8 and taking into account that the sequence {7(2n)2- ” } 
is quasi geometrically decreasing, we get

Í 1 2X+1"
д т (ж)<; < -  Y  I f ( x ) - a k 1(а;)Г

'  i / p

► <
k=n+l
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s *(p,a)e ( í  e " l /w - ^ w r
i=0 {  Z П k=2'n+l

1/p

and this proves (4.1).
Now we set r ' := r / ( r — 1), i.e. let l / r  + l / r '=  1. By Holder’s inequality, 

using the properties of 7 (i), (1.5) and (4.1) with p r ' in place of p, we get

(4.2) 4 w(/,p ,d ;x )p := X afc(w)K  x(x) -  f ( x ) \ p ^
k=0

/ -. \ 1/r
00 I P m + l  —1 1 ̂x I x ak̂r

m—О I k=ßrn

Mm+1 1
X ] K _1(x ) -  /(*)l

l/r '
pr <

^  к  X  W m (w ,r )  <
771=0

&—Mm 

Дт+1 1 \jr'

— X ki-1(*) - /(*)ГГ [ =/̂ 771 + 1 ^—Mm
OO

s ^ E "  mpm(w,r)ox(7(p771)
771=0

a.e. in (a, 6). By (2.1), (4.2) clearly yields

(4.3) Aw{f,p,d-,x) = Ox {g{u)l 7 (0;)) 

a.e. in (a, 6).
If (2.4) is also satisfied, then we derive the statement

(4.4) Aw(f ,p ,d ;x )  = ox (g {u )h (u ))  {u -* 00)

as follows.
Let £ > 0 be given. If x is a point where (4.2) holds, then let M (x)  be 

a positive integer such that for m > M(x)  the inequality ox ( 7 (pm)_P) < 
< £p7 (pm)_p is valid. For such x we get from (4.2) that

('y(u)/g{u))pA M , p , d ; x f  <;

M(x)
й  K{x)  ^  РтРт(и,г)1 (р,т)~Р

771=0
1 (7  (« )М « ))Р+
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oo
+ К е р ( ' у ( ш ) / д ( ш ) ) р  f J - m p m ( u , r ) i ( L i m y p .

m = M ( x ) + 1

When и  —► oo, the first sum on the right converges to zero by (2.4); and 
the second sum remains 0  ((p(u;)/7 (w))p), by (2.1).

Thus (4.4) clearly follows. Since (4.2) holds a.e. in (a, b), it follows that
(4.4) also holds a.e. in (a,b).

From statements (4.3) and (4.4) the suitable statements of Theorem 1, 
i.e. (2.3) and its variant with ox, follow easily applying Lemma 1, and this 
completes the proof of Theorem 1.

5. A pplications. First we treat those results which can be derived from 
Theorem 1 in the special case when g{w) =  1 and both (2.1) and (2.4) are 
satisfied.

5.1. If

(5.1) pnk{t) := Q t * ( l  -  к =  0 , l , . . . , n ;  n = 1 ,2 ,. . .

and (f>{t) E Tx(0 ,1) is a non-negative function with H^Hj =  1, then the matrix 
||a^(ra)|| defined by

(5.2) a k(n) := Í  pnk(t)<f>(t)dt, к = 0 ,1 , . . . ,  n; n = 1 ,2 ,. . .
Jo

yields the coefficients of a regular Hausdorff transformation. For these trans
formations we have the following results.

T heorem  2. Let p > 0, d >  m ax(l/2 ,(p — 1 )/p) and let 7 (t) be a 
positive non-decreasing function defined for 0 ^  t < 00. Suppose that a k(n ) 
are given by (5.1) and (5.2), where <f>(t) E i r (0,1) with some r > 1. If  7 (f) 
has properties P\, P2 and Pp<r with these p and r, and (2.2) holds, then

(5.3)
k=0

1 / p

= ox(7(n)_1)

a.e. in (a,b) for any increasing sequence v := {«7 } of positive integers.

C orollary 2.1. Let p > 0, d > m ax(l/2 ,{p -  1 )/p), a > 0 and a* := 
:= m in (l,a ). Suppose that ||a*;(n)|| is the matrix of a Cesaro (C ,a ) or a 
Holder (H , a ) transformation, and that the function 7 (t) has properties Pi 
and P2 , furthermore { 7 (2n)2-na*/p} is quasi geometrically decreasing. Then
(5.3) also holds a.e. in (a,b) under condition (2.2).
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P roof of T heorem 2. First we show that conditions (2.1) and (2.4) 
of Theorem 1 are satisfied if g(u>) = 1 and n [w], where [iu] denotes the 
integral part of u.  By inequality (3.1) of Lemma 2 we get

(5.4) pm{ u , r ) ^ K { r ) ^ l ru ll r~ \

whence (2.4) follows on account of the property Pp<r of 7 (f), and hence if a 
sequence {7„} is quasi geometrically decreasing then for any p > 0 {7p} is 
also quasi geometrically decreasing.

Since pm(üj, r)  =  0 if p-т > w, thus, again from (3.1), we get

(5.5) ^  ртрт(ш,г)7(/rm) p <, I iu 1/r 1^ p l n 1/r'y(Pm) P,
771=0

where the summation on the right is for pm ^  u. Because of the assumptions 
made on the sequences {gm} and {7 (2n)2n(1~r^ rp} the last sum, by Lemma 
5, is 0 ( u 1- 1/r7 (ui)_p) , thus the previous inequality proves (2.1).

The conclusion (5.3) of Theorem 2 follows from Theorem 1, and this 
completes the proof.

P roof of Corollary 2.1. Both the (C, a) and (Я, a) transforma
tions are Hausdorff ones with </>i(i) := a ( l  — i )a_1 and <fo(0 := Г (а )-1 •
• (log l / i ) " -1 , respectively, If a ^  1 (a* =  1), then <f>i(t) G Lr(0,1) for arbi
trary large r. Since then { 7(2")2~”/p} is quasi geometrically decreasing, and 
it will keep this property after multiplying its terms by 2ne if e(> 0) is small 
enough (and if 1/ r  < ep), then the sequence ( y (2")2n 1̂_r^ rp} will be quasi 
geometrically decreasing as well. If 0 < a < 1 (a* =  a), then 4>i(t) G Lr(0,1) 
if 1 /r > 1 — a. Applying the previous consideration with 1 /r — 1 +  a < ep, 
then we get that the sequence { 7 (2")2n(1~r)/rp} is also quasi geometrically 
decreasing, namely {7(2n)2-na ' p} has this property.

Consequently Theorem 2 is applicable and it yields Corollary 2.1.
5.2. If

(5.6) Ajfc(w,<) := (w lo g (l/0 )'
it! fc = 0, 1, . . . ,

and (f)(t) G £*(0,1) is a non-negative function with ||0 ||t = 1, then the 
function-sequence {a*;(w)} defined by

(5.7) a k(u):=  Í  Ak(w,t)<f>(t)dt, к = 0 ,1 ,. . .
Jo

yields the coefficients of a regular [J, //transform ation. For such transfor
mations we have the following result.

Acta  Mathemaiica Hungarica 66, 1995



78 L. LEIN D LE R

T heorem 3. Letp ,d ,r , *y(t) and <f>{t) have the same meaning and prop
erties as in Theorem 2. Suppose that а&(о») are given by (5.6) and (5.7). If 
(2.2) holds then

(5.8)
OO

X x ) -  f ( x )\p
i/p

= о^Ы а;)-1 )

a.e. in (a,b) for any increasing sequence v {i/,•} of positive integers.

C orollary 3.1. If (2.2) holds and {«^(u;)} is the coefficient-sequence 
of the Abel transformation, then (5.8) holds whenever the sequence 
{7 (2”)2-n /p} is quasi geometrically decreasing; assuming that p,d, {7 (2")} 
and {7 (2n)2-n } have the same properties as in Theorem 1.

P roof of T heorem  3. We again show that (2.1) and (2.4) are satisfied 
with g(oj) =  1 under the assumptions of Theorem 3. Now we obtain (5.4) 
from (3.2), whence (2.4) follows by the same reasoning as in the proof of 
Theorem 2.

Furthermore, by (3.2), we get

(5-9) X i  := X  /W m (w ,r)7(^m)-P S

S A'M(i + ^)1/r- ‘ £  Ш - ”.

The last sum, by reasoning made after (5.5) in the proof of Theorem 2, is 
0(u>1-1/ r j(cv)~p) , thus (5.9) yields

(5.10) X x = К (ГЫ “ Г Р-

On the other hand, by (3.2) and (5.4), we obtain that 

У := У ] PmPmi^i г )7(Мт) P =
ßm>w

= A’(r ) X  (

^  K (r) X  'K/bn)~P

^  '  e - ^ m ( l - l / r ) / ( l + u , ) 7 ^ m j - p  ^
1 + и
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due to the fact xe x < 1 for any x > 0. Since the sequence {7 (2")} is 
quasi geometrically increasing, thus, by virtue of Lemma 5, the last sum is 
0 ( 7 (и)_р) , whence

(5.11) ^  K{r)'){ui)~p

follows. Inequalities (5.9), (5.10) and (5.11) prove (2.1), therefore Theorem 
3 is also a consequence of Theorem 1, as desired.

P roof of C orollary 3.1. If 0(f) = 1 in (5.7), then a k(u) := 
u;fc/ ( l  + w)fc+1 for к = 0 , 1 , . . which yields the classical Abel transforma

tion. In this case, clearly, 0(f) G Lr(0,1) for any r > 1, thus the assumption, 
that the sequence { 7 (2”)2_”/p} is quasi geometrically decreasing, implies 
that if r is large enough then {7 (2")2"(1-r)/rp} has the same property (see 
the reasoning given in the proof of Corollary 2.1), consequently all of the 
conditions of Theorem 3 are satisfied. Therefore the statement of Corollary 
3.1 follows from Theorem 3 immediately.

5.3. If the function 0(f) in (5.2) satisfies

0 ^  0(f) ^  K (ß)tß~l 

with ß > 0, then it is easy to show that

(k + lY3-1
(5.12) a k(u>) й  K ( ß ) \  - . Г

( n  +  I f

for 0 ^  к ^  n, n =  1 ,2 ,__  Using (5.12) we can verify by easy calculations
that in these cases (2.1) and (2.4) hold whenever g(t) = 1 and the sequence 
{7(2”)2~n^/p} is quasi geometrically decreasing. For example if 0(f) = 
= ßtß~l , then the matrix ||afc(ra)|| yields, essentially, the Riesz transforma
tion of order ß. Consequently Theorem 1 with d — 1 gives a slight improve
ment of Corollary C.2.

5.4. If the function 0(f) in (5.7) satisfies

0 ^  0(f) ^  K(q) (tog - 

with q ^  0, then an easy calculation yields that

a k( u ) Z K ( q )  {к+1)Ч(w + l )9+1 \u> +  l
UJ
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for к — 0 ,1 ,__ Using this we can show easily that in this case (2.1) and
(2.4) hold whenever the sequence { 7 (2")2_n(?+1)/i>} is quasi geometrically 
decreasing. For example, if <f>(t) := (T(q + 1)) 1 (log j )4, q ^  0, then

o 1M  = ( w + i r ' - ' ( ^ , ) ( ^ I )  , к = 0,1 .......

which yields the generalized Abel transformation of order q + 1. In view of 
this, it is easy to see that Theorem 1 with d — 1 gives a generalization of 
Corollary C.3 under a slightly relaxed condition.

5.5. Next we mention two further applications of Theorem 1 with g(u>) :=
:= ( log(l + w)) 1̂ p. The proofs would run as in the previous cases, therefore 
we shall detail only one of them. These special cases of Theorem 1 include 
some of the so called “limit-case” theorems (see e.g. [6] and [10]).

THEOREM 2*. Under the assumptions of Theorem 2 with

(5.13) Y ,  2n(1~1' r'>1(2n)-p <; К  (log m )2 m(1 - 1/ rb '(2 m)_p
71=0

in place of property PPiT, but assuming that the terms of the sum are non
decreasing, we get

2 a*(n)la i  V ;*)- f ( x ) \ p
k=0

1 / p

= °x ( (log n)1̂ P7 (n)-1 )

a.e. in (a,b) for any increasing sequence v := (i7} of positive integers.

T heorem  3*. Under the assumptions of Theorem 3 with (5.13) in place 
of property Pp.r we get

OO

a fe(w)| *) -  /(* ) | p
A:= 0

i /p

= Or ( (  log(l + a;)) 1/р7 (ш)-1)

a.e. in (a,b) for any increasing sequence v {i/2 } of positive integers.

R emark . Theorems 2* and 3*, like Theorems 2 and 3 above, because 
of their generality, do not include the limit-cases theorems proved for the 
Cesaro, the Riesz and the generalized Abel summation methods (see e.g. [6] 
and [10]), but our main result, Theorem 1, yields the results for the above 
mentioned classical summation methods as well.
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P ro o f  o f  T h eo rem  2*. We show that conditions (2.1) and (2.4) of 
Theorem 1 are satisfied if n := |y] and g(u) := ( log(l + u;)) ^ p. From (3.1) 
we derive (5.4), whence (2.4) follows. Namely, by condition (5.13),

r) S  К(г)ц~1/ги 1/г- г =

=  К ( г ) И т / г ° Ы ш ) ~Р) =  ° ( (  l o g ( l  +  w ) ) 7 H " P )
clearly holds.

To show (2.1) we take into account that pm(ui,r) = 0 if p m > tu. There
fore, by (1.5) and (5.13), (3.1) implies that

53 VmPm(u,r)~/(pm) P й A'uil/r 1 ^  (Pm) ? ^
m=0 ßmSui

й  К  ( log(l + w)) j(u>) р,

what is the required inequality (2.1).
Consequently we can apply Theorem 1 and this completes the proof of 

Theorem 2*.
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FIRST R E T U R N  PATH SYSTEM S: 
D IF F E R E N T IA B IL IT Y , C O N T IN U IT Y , 

A N D  O R D ER IN G S
U. B. DARJI (Raleigh), M. J. EVANS (Raleigh) and R. J. O’MALLEY (Milwaukee)

1. Introduction

In this paper we continue the study of first return path systems, which 
were introduced in [15] as examples of minimally thin path systems suffi
ciently rich to generate many of the properties of more standard systems, 
such as the one used to study approximate differentiability and continuity. 
(The name and structure of these paths are derived from the use of a dense 
trajectory and the Poincare first return map of dynamics. This will become 
more apparent as we continue through this section and the next.)

With regard to differentiability, a question of immediate concern is the 
determination of whether various established derivatives, such as approxi
mate, Peano, and approximate Peano, can be realized among the class of 
first return derivatives. Surprisingly, this seems hard to establish directly in 
each case. (For example, finding the trajectory to establish the approximate 
result seems nontrivial.) Fortunately, all of the above types have been shown 
to be composite derivatives of a special type. (See [13], [5], and [6].) In this 
paper we establish that all such composite derivatives are first return deriva
tives. In fact, there is a non-apparent universality underlying the trajectory 
which will be shown.

A similar universality is found with respect to first return continuity and 
the familiar class of Baire* 1, Darboux functions. Furthermore, the basic 
concept of first return continuity is shown to be equivalent to the Baire 1, 
Darboux property. We also establish via examples that converses of two of 
our major theorems are not valid.

Lastly, we examine the fundamental idea of trajectory. As mentioned 
in [15], two objects are necessary to create a trajectory: a countable dense 
set D and an ordering of D into a sequence {a:n}^_0 of distinct points. For 
any such D it is easy to create orderings of D having the property that 
there is no continuous function g such that gn(xo) = xn for all n, where for 
each та, gn(x0) = g(gn~1(xo )). Therefore, it would be logical to anticipate 
that those first return path systems generated by trajectories of transitive 
continuous functions would possess nicer properties than general first return 
path systems. However, this is not the case. As a final result we show
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that each first return path system can be generated from a trajectory of a 
continuous transitive mapping, and, again a certain amount of unanticipated 
universality or flexibility is exhibited.

2. Definitions and notation

By a trajectory we simply mean any sequence {a:n}^Lo °f distinct points 
in (0,1), which is dense in [0,1]. (Note that this is a slight deviation from the 
definition used in [15], but the alteration is both cosmetic and notationally 
beneficial.) One way to produce a trajectory is to begin with a transitive 
continuous function g: [0, 1] —> [0, 1], i.e., a function having the property that 
for some yo the sequence of iterates { yo, <7(2/0), 92(уо), • • • } is dense in [0, 1]. 
Such a sequence is called the trajectory of yo under g. In this paper the 
most common method of specifying a trajectory will be that of assigning 
an enumeration or ordering to  a given countable dense subset D of (0,1). 
Throughout this work we shall refer to such a set D as a support set and will 
only use the symbol D to denote such sets.

Let {xn} be a fixed trajectory. For a given interval (a,b) C [0,1], r(a,b) 
will be the first element of the trajectory in (a, b). For 0 ^  у < 1, the right 
first return path to у, 12+, is defined recursively via

Vi = 1» and Ук+i = r (.ViVk)'

For 0 < у ^  1, the left first return path to y, R ~ , is defined similarly. For 
0 < у < 1, we set Ry = R+ (J R~  U {</}, and R 0 = {0} U /2^ , Ri = R f  U {1}. 
The collection TZ = { Ry: у € [0,1]} satisfies the definition of г, path system as 
defined in [3] and we shall refer to it as the first return path system determined 
by the trajectory {xn}. (It should be noted that for a fixed support set D, 
the nature of the first return path system will clearly depend on the ordering 
of D which defines the trajectory {xn}, and this is why we have emphasized 
this concept in our title.) Let / :  [0,1] —► R . If the

lim
t—>y

t£Ry\{y}

exists and is finite, then we say that /  is TZ-differentiable at y, or is first return 
differentiable at у with respect to the trajectory {zn}. If the above equality 
holds for all у £ [0,1], we say that /  is TZ-differentiable to the function f'n  
on [0, 1], or /  is first return differentiable to /jj on [0, 1] with respect to the 
trajectory {x n}. If /  and g are functions on [0,1] and there exists some 
trajectory { x n} for which /  is first return differentiable to g on [0, 1] with

/ (* )  -  f ( y )
t -  У fn(y)
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respect to { in}, we simply say that /  is first return differentiable to g on 
[0, 1], and call g a first return derivative of f  on [0, 1].

Now suppose that /  and g are functions with the property that for every 
support set D there is an ordering {xn} of D , such that /  is first return 
differentiable to g on [0,1] with respect to {xn}. In this situation we say 
that /  is universally first return differentiable to g on [0, 1], and call g a 
universal first return derivative of /  on [0,1]. As we shah observe in the 
Examples section of this paper, it is possible for a function to have more 
than one universal first return derivative on [0, 1].

The concepts of a function being
(i) first return continuous on [0, 1] with respect to a trajectory {xn},

(ii) first return continuous on [O, l],
(iii) universally first return continuous on [0, 1], 

are all defined in the analogous manner.
Next, we need to review the notion of composite differentiation as defined 

in [16]. A decomposition of [0,1] is a collection of closed sets En, n — 1 ,2 ,...  
such that (XLj E n = [0,1]. A function / :  [0,1] —► R  is said to have a function 
g: [0,1] -> R  as a composite derivative relative to the decomposition {En} if 
for each n and each у E E n

lim
t—y
t e E n

m  -  f{y )
t -  У = 9(y)-

The function /  is said to be compositely differentiable to a function g if 
there exists a decomposition such that /  has g as a composite derivative 
with respect to that decomposition. Similarly, we could say that a function 
/  is compositely continuous if there exists a decomposition such that the 
restriction of /  to each set in the decomposition is continuous. It is known 
(see [1] or [12]) that this property is equivalent to the Baire* 1 property. 
Recall that a function / :  [0,1] —► R  has the Baire* 1 property if for each 
perfect set P ^  [0,1] there is an open interval I  such that P  П I  ф 0, and the 
restriction of /  to P  П I  is continuous.

Finally, as an aid to concisely stating our results, we wish to alert the 
reader to the following caveat: Whenever we make a statement referring to 
bilateral behavior at each point in [0, 1], we wish to have this mean behavior 
from the right at 0 and behavior from the left at 1; that is, bilateral should 
be interpreted relative to [0, 1].

3. F irs t re tu rn  d ifferen tia tion

We begin this work by exploring the relationship between composite 
differentiation and first return differentiation. First, note that not every 
composite derivative is a first return derivative. For example, consider the
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function

which is compositely differentiable to the function

9 ( x )

— 1 if 0 x < ^
1 if \  <; x  ^  l

relative to the decomposition of [0, 1] given by the
and En = E\ U o , l - l

n+1 for n = 2 ,3 ,__  Note
perfect sets E\ = [ | , l ] ,  
that /  clearly cannot be

first return differentiable to any function since it has different left and right 
ordinary derivatives at However, if we not only require that a function /  
be compositely differentiable to a function g on [0, 1], but further require that 
g(x) be a bilateral derived number of /  at each x, then /  will be universally 
first return differentiable to g. We shall prove this result in two stages. First, 
we will show that under these hypotheses, the decomposition can be assumed 
to have a very nice structure relative to any given support set D. Then we 
shall utilize this structure to prove the main theorem. Before stating the 
first result, we recall that if /  is compositely differentiable to g on [0, 1], then 
the Baire category theorem shows the existence of a dense open set U (f)  on 
which /  is differentiable to g.

Lemma 1. Let / :  [0,1] —► R  be compositely differentiable to 5: [0,1] —► 
—> R, and suppose that for each x € [0, 1] g(x)is a bilateral derived number 
of f  at x. Let D be any support set. Then there exists a nondecreasing 
sequence {Hn} of perfect sets whose union is [0, 1] and such that for each 
natural number n

A) the restriction of f  to Hn is differentiable to g at each point of Hn ,
B) each point of H n is a bilateral limit point of Hn+\,
C) each component of [0,1] \  Hn has both endpoints in U( /)  П ZHJ {0,1}.
P r o o f . From Proposition 1 in [14] there exists a nondecreasing sequence 

{En} of perfect sets whose union is [0,1] and such that for each natural 
number n the restriction of /  to E n is differentiable to g at each point of En. 
Let U =  U( f )  and set

T  = U n D U {0,1}.

We shall construct a sequence of perfect sets {Hn} with En Q //„  for 
each natural number n and with /  being compositely differentiable to g with 
respect to {Hn} such that each H n has the desired additional properties.

The sequence of sets {Hn} is constructed inductively. A procedure for 
enlarging a certain type of perfect set to another perfect set containing it 
will be described. We begin by enlarging the perfect set E\ to a perfect set 
Hi as follows. We know that the function /  restricted to the perfect set
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Ei  is differentiable to g restricted to  E\. Thus, by a result of Laczkovich 
and Petruska [7], there is a differentiable function F  such that F  agrees 
with /  on E\ and so tha t F' agrees with g on Ei as well. To temporarily 
normalize the situation, we introduce the function f i  = F  — f .  Then f i  is 
compositely differentiable with respect to the sequence {£„}, f i  is zero on 
Ei, f i  restricted to Ei has derivative 0 at each point of E \ , and f i  has an 
ordinary derivative at each point of U. Enumerate the components of [0,1] \  
\  Ei in a finite or denumerable sequence { (an, 6n)} . We shall show that for 
each n there is a sequence {Lnik: к =  1, 2,...}  of closed intervals converging 
to an from the right such that for each к

(1) Ln,k C U П (an, (an + 6n)/2),
(2) the endpoints of L nyk are in T,
(3) for each z £ Ln k̂ we have <

To see this, first note tha t since 0 is a bilateral derived number of f i  at an, 
we know that there is a sequence of points {хп<к: к =  1, 2,...}  in (a n, (a„ + 
+ bn) / 2) converging to an from the right and for which

ln-\-k *

f l ( x n,k) 1
Xn,k 71 к

For each к let Wn,k denote the open region enclosed by the rhombus formed 
by the four lines у = ^ ( z  -  an), у =  -  ^ ( z  -  an), у = ^ ( z  -  bn), 
and у = — jjT_(z — bn). Then for each к we select positive numbers en,k 
and Sntk such that xn<k -f Sn>k < (a„ + bn) / 2 and such th a t the the rectangu
lar region (z„ifc -  Sn,k, x n,k +  6п<к) x ( f i ( x n,k) -  en,ki f \ { x n,k) + £n,k) lies in 
Wntk- Utilizing Theorem 3.2 in [16], we have that f i  has F' — g as a selec
tive derivative and, hence, by Theorem 11 in [11] f i  is a Baire*l, Darboux 
function. Utilizing this Baire*l, Darboux property we know that for each 
к there is a point уПук £ (х П}к -  6nik, x ntk + bn,k) П U such that f i ( y n,k) G 
e { h { x n,k) -  £n,k,fi(xn,k) +  £n,k) (e.g., see Theorem 2 in [10]). It is now 
an easy matter to select an appropriate closed interval L n k̂ containing уп<к 
that will have all of the listed properties. Likewise, for each n there is a se
quence {RUik: к — 1, 2,. . .}  of closed intervals converging to bn from the left 
such that for each к

(1) R n,k c U n  ((an +  bn)/2,bn) ,
(2) the endpoints of R n k are in T,
(3) for each z £ Rn,k we have •M*)

x - b n
----- ̂ n+k ‘

Then we set

H, = E  1 U U №п,к U Rn,к) ■
. п к
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Note that H\ is perfect, E\ C H \ ,  f \  restricted to H\ is differentiable at each 
point of H i; in particular, this derivative is 0 at each point of E\  and at each 
point of H1 \  E\ f i  has an ordinary derivative since such points belong to U. 
Furthermore, each endpoint of every component of [0,1] \  H\ is an endpoint 
of an ЬП}11 or an R nik and, hence, is in T. Returning our attention to the 
original function / ,  we have that /  restricted to H\ is differentiable at each 
point of H\ to g. Next, we form the union of E 2 and H\ and repeat the 
previous procedure to enlarge this perfect set to a perfect set H 2. Then each 
point of H\ is clearly a bilateral limit point of / / 2 -

In general, having formed the perfect set H n , we enlarge the perfect set 
Hn U En+1 by this procedure to obtain the perfect set Hn+\. The sequence 
of sets {Hn: n =  1 ,2 ,...}  will then satisfy our requirements.

T heorem 1. Let f:  [0,1] —* R  be compositely differentiable to g: [0,1] —» 
—► R, and suppose that for each x  £ [0, 1] g(x)is a bilateral derived number 
of f  at x. Then f  is universally first return differentiable to g on [0,1].

P roof. Let D be a support set and let {#„} be the sequence of perfect 
sets obtained from Lemma 1, and for convenience let H0 =  {0,1}. Let 
{ds}^l0 be an ordering of D. We shall utilize this ordering and the sequence 
of sets {H n: n = 0 ,1 ,...}  to construct the desired ordering {ж„} of D. As 
a mechanism to assist in this endeavor we shall construct a sequence of 
partitions {Vk}, where each Vk consists of points chosen from D U {0,1} and 
each Pfc+i is a refinement of V k.

For each у £ [0,1] we shall find it convenient to adopt the notation n(y )
for the smallest integer n for which у £ Hn. For each у £ (0,1] and each
non-negative integer к we shall let Ak(y) denote the closest element of the 
partition Vk lying strictly to the left of y\ and for each у £ [0, 1) and each 
non-negative integer к we shall let pk(y) denote the closest element of the 
partition Vk lying strictly to the right of y. For convenience, we let A_1(?/) =  
= — 1 and р~г(у) = 2 for all у £ [0,1]. We shall construct the partitions 
inductively in such a manner tha t for each к — 0, 1, 2, . . . ,  we have

A. For each у £ (0,1], [Afc-1(y ),\ к{у)] П V k C Hn(y)+i-
B. For each у £ [0,1), [pk(y), рк~г{у)] П V k C Hn(y)+a.

We start by setting Vo = {Po ~  0,p° = 1}. We further set a;_2 = 0 and 
x_i = 1. (We will want to continue this dual labelling scheme, wherein we 
label the points in each V k in the natural order for each к and label the 
points in |J]*10 TV lexicographically.) Note that for к = 0 conditions A and 
В are trivially satisfied.

Proceeding inductively, we assume that a partition,

Vk = {pb = 0 < p k < . . . < p kk = l} ,

has been chosen; that each point of Vk belongs to D U {0,1} and has been 
labelled as an X{, where —2 ^  г Ú lk — 2; and that conditions A and В
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are satisfied. We let Sk denote the largest integer .s such that ds E Vk- 
To construct Vk+i we proceed as follows. Naturally, since Vk+1 is to be a 
refinement of Vk , we first put all points of Vk into Vk+i- For each 0 % i й  
^  Ik — 1, we shall select points to properly refine ЬФ -Pt+i}- Fix such an i 
and let n(i, к) be the smallest n such that (Pi,Pi+i) С Hn ф 0. Now consider 
the set \Pi,Pi+i\ \  Hn(i,k)- If this set is empty, then we select any point from
T  which belongs to the middle third of the interval \Pi,Pi+i] an(f Put it m 
the collection of points which will form Vk+i • Then we put all elements of 
{ds:s ^  sfc} П (p*,pf+1) П Hn î k) in the collection of points which will form 
Vk+i and move on to the next i. On the other hand, if \pk,Pi] \  Hn(i}k) is 
not empty, then we proceed differently. In this case we let Vltk = J  \
\  Hn(i,k) an<l set ßi equal to the length of the longest component(s) of Vitk- 
We select the endpoints of all components of length ß k and put them in 
Vk+1- Then we put all elements of {ds:s ^  П (Pi,Pi+i) 0 Hn(i,k) in the 
collection of points which will form Vk+i- Now we pause and look at the 
partition of \Pi,Pi+i\ formed so far. If the norm of this partition is less than 
or equal to ß k, then we move on to the next г; if not, then we add additional 
points from Я п(,1 к) П [pf, Pi+\] П D to refine the partition until its norm is less 
than or equal to /3*; specifically, we may select endpoints of components of 
Vi'k other than those of length ß k and/or points from D lying in the interior 
of \Pi,Pi+il П Hn(i to accomplish this. Then we move on to the next i. 
Once we have done this for each interval [pf ,p^ ]5 0 ^  г ^  h  — 1, we have 
constructed our partition Vk+i — {pf+1 =  0 < pf+1 < . . .  < = l} and
we label the points in Vk+i \  Vk from left to right as aqfc_ i, xik, . . . ,  xik 2 -

We need to verify that conditions A and В are satisfied with к replaced 
by к + 1. Let us first consider condition A. So let у E (0,1]. We must show 
that [Afc(t/), Afc+1 (г/)] П T’fc+i C Hn(y)+i■ By the inductive hypothesis we 
know that Ak(y) E # n(v)+1. If Ak(y) = Ak+1(y), then we are done. Suppose 
Xk{y) ф Xk+1(y) and let t E { Xk(y), Xk+1 (у)] П Vk+i. Then t E Vk+i \  V k. 
There is an i such that Ak(y) = pk. Then t E (pf,y) and у E (t,pk+1]. We 
know that t E Нп^к)- Since у E (Pi,Pi+J? we must have n(i,k )  ф n{y) +  1; 
indeed, if у E (Pk,P{+1), then n (i ,k ) ^  n(y), and if у = Pi+i, then we still 
have n(i, к) ^  n(y) -f 1 since every point of Hn ŷ\ is a bilateral limit point of 
Hn(y)-\-\ ■ Consequently t E Hn(y)+i. Thus, condition A holds. Condition В 
is verified by a symmetric argument.

Next we show that lim ^ « , mesh (Vk) = 0. This is equivalent to showing 
that the closure of |J ^ 0 Vi, cl (Ui=o Яг), is [0,1]. To the contrary, assume 
that cl (USo ^») Ф [0» 1] and let (a, b) be a component of [0, 1] \  cl (USo Я,). 
Either a or b does not belong to 1J^ 0 Vt because we have that Vi+1 is 
a proper refinement of Vi for each i. Without loss of generality assume
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th a t a £ U Z 0 Vi. For each к ^  0, let jk  be such that (a, b) C \PjkiPjk+i]- 
Observe that {Pjk}^10 and {Pjfc+ i}^l0 are non-decreasing and non-increasing 
sequences which converge to  a and b, respectively. Note that {P jk} k_ 0 C 
C Hn{a) and {Pjk+i}™=0 C Я п(в) because a G HkLoiPj^Ph+i)- Thus we have 
b G Hn(a). As a £ and Hn(a) - 1  is closed, {p'-Jl°=r С Hn(a) \  Я п(а)_1
for some r. Since {pk- }°° is a non-decreasing sequence converging to a, 
whose range is contained in Я„(а) \  Я п(а)_! but does not contain a, we have 
that n(ja, s ) =  n(a) for some s. (Specifically, choose s > r such that > 
> pSj3.) For any t > s we have that n(jt , t )  = n(a) because { n(jk, &)} 
non-decreasing sequence and a G r\T=o(p'jk’Pljk+i)- As a , 6 G Я„(а), we have 
that (a,b) is the largest component of [p^iP^+i] \  R n(jk,k) f°r large enough 
k. However, this contradicts our method of defining Vk+i as a is not in 
U £oP ., and completing the proof of the fact that our trajectory is dense in

We next want to show that the range of the sequence {x„}n=0 is all of 
D. Let ds G D, and let £ =  dist (da, H n(d,)-i) ■ Let к > s be such that 
mesh (Я*,) <  e. Then, if ds g Vk, then ds G (p?,pf+1) C (ds -  £,ds -f  e) for 
some i, and hence n(da) =  n(i,k). This implies that da G Vk+u proving that 
D is the range of {xn}.

To complete the proof, we need to show that for each у G [0,1], the
Я-first return path derivative of /  at у exists and equals g(y), the composite 
derivative of /  at у based on the sequence of sets {Hn}. First, we shall show 
that the right Я -first return path derivative of /  at у , /^ (y ), exists and 
equals g(y).

Based on the enumeration scheme used for {xn}, it is clear that the right 
first return path to у is simply

OO

Rt  = U {Л)Ь
k=0

and condition В guarantees that С Я п(у)+1. Thus

m  -  f ( y )
f+n(y)  = — t——  = limt—>-y I У t->y+

t£Ry tei/n(y)+1 t -  У
d i s 

similarly, the enumeration scheme used for {xn} yields the conclusion 
that the left first return path to у is

OO

k=0
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and condition A guarantees that R y C # п(у)+1. Thus

f ' -n(y) lim
У

teRy

/(*) -  f (y)
t -  У

lim
tenn(y)+i

№  -  f (v)
t -  У = g(y),

completing the proof that

f k (v )  = 9(y)-

C orollary 1. Every approximate derivative, every Peano derivative of 
every order, and, indeed, every approximate Peano derivative of every order 
is a universal first return derivative.

P r o o f . O’Malley has shown than an approximate derivative is both a 
composite derivative [13] and a selective derivative [11]. The latter implies 
that the bilateral condition of the hypotheses for Theorem 1 will be satisfied. 
Likewise, Fejzic [5] has shown that every kth Peano derivative of a function /  
is both a composite derivative and a selective derivative of the (k — l ) th Peano 
derivative of / .  Superseding both of these results, Fejzic [6] has recently 
established that that every approximate kth Peano derivative of a function 
/  is both a composite derivative and a selective derivative of the (k — l ) th 
approximate Peano derivative of / .

4. First return continuity

Here we shall show that first return continuity is equivalent to the Baire 
1, Darboux property. We begin by showing that derivatives are first return 
continuous. In proving this result, we shall utilize the following lemma. In 
its statement we use the symbol d(y,[a,b]) to denote the distance from a 
point у to an interval [a, 6]. The proof is elementary and is left to the reader.

Lemma . Suppose F is differentiable at у and e > 0 and у is contained in
< e.some closed interval I  such that if t € I  \  {y} then F^\z .y^ ' -  F'{y) 

If [а, Ь\С I  and у £ [a, b], then F(a)~^(fe) _  F'{y) <£ 1 + 2

T heorem 2. Let f:  [0,1] —► R  be a derivative. Then, f  is first return 
continuous.

P roof. We will construct a sequence of partitions {Vk} where each Vk+i 
is a refinement of Vk by induction. At the same time, we will define a 
trajectory {xn} using {Vk}• For к ^  — 1, we let Ak(y) and pk{y) be the
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same as in the proof of Theorem 1. If F  has a derivative at x and x is 
contained in the interior of a closed interval / ,  then we will let

A (F, x, I ) = sup [I F ( x ) - F ( y )
11 X - y

F'(x) ■ye

Let F  be such that F' = / .  Let Vo — {р$ = 0,р° = 1}, and as before 
set Х- 2  = 0 and X-\ = 1. For each non-negative integer n, we want Vn to 
satisfy the following conditions:

(1) If 2/ e  (0,1], t G (An -1(p), An(p)] П Vn , and t > 0,then \ f { t ) - f ( y ) \  ^  
^  5 - A (F,y, [An -1(i/),pn-1(?/)]).

(2) If У G [0,1), t G [pn(y), pn~l (,y)) П V n, and t < 1, then | f ( t ) -  f ( y ) | ^  
^  5 - A (F,y, [A n_1(j/),/>n_1(t/)] )•

(3) And, mesh('P„) 5Í (§)".
Note that Vo satisfies conditions 1-3. (It satisfies 1 and 2 vacuously.) Sup
pose that Vk has been defined and it satisfies conditions 1-3. Let Vk — 
— {Po = 0 < p \ < . . .<  pf = 1}. Since Vk+i has to be a refinement of Vk-, 
put all points of Vk in Vk+i■ For each 0 ^  i ^  Ik — 1, we will select points
which properly refine {pf,pf+1}. Fix such an i and let lk = | pk + Ap*+1 
and rf =  |p f  +  §p*+1. Using the mean value theorem, obtain p G [pf,/*], 
Pi,m 6 and p fr G [rf,pf+1] such that

f(P ij)  =  F '(p l )  =

M m )  = F \ p Í m)

F ( p i ) - F ( l j )  
PÍ -  4  ’

П Ч )  -  F(rf)
[ k _ rk ’

and

M r )  =
F(r{) 1)

rn к _ /пк' i Л +i

We put all points of form pkt, pkim , and pkr, 0 ^  i ^  Ik-1 in the partition 
■pfc+i and order it in the natural increasing fashion as Vk = {Po+1 = 0 < 
< Pj+1 < . . .  < p^+ * = 1}. We also label points in \  Vk from left to
right as xik- i , x i k, . . . , x i k+1- 2.

We need to show that conditions 1-3 are satisfied by Vk+i- Though the 
partitions are defined by induction, conditions 1 and 2 are directly verified. 
Let us first consider condition 1. Let у G (0,1], t G ( Afc(p), Afc+1(y)] П Vk+i, 
and t > 0. Let i be such that рк < у й  pf+1. Then, t has to be one of pkt,
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Pi<mi or pf r. Let us first assume that t — pf  Now we have two cases to 
consider: у G [pf j f ]  or у $ [pf, Д]. If у G [pf,/*], then

I/ ( * ) - / ( » ) !  =  I /( r? ,i)- / ( » ) !  =
F ( p f ) - F ( l f )

p;,k __ {k
f{y) <

й A ( F , y , [ \ k(y) ,pk(y)])

where this estimate holds because the difference quotient ГМ) -ПЧ)  n
pi -ik lies

between P and If У & [p*,/f], then by Lemma 1, we have
that

p,-y

I  Д О  -  f ( y ) I  =  I f(Pi,i) -  f { y )I
F(pf)  -  F t f )

P‘,к _ [k f ( y) <

d { v M MS Д ( f , y, [A*(y), / ( » ) ] ) •  I 1 +  2 W _ J?|

Since d(y,[pk,lf]) <[ l\p- ~p-+i \ and |pf -  Д| = Цр* -  p*+1|, we have that

1 Д 0 - / Ы 1  ^ 5 - д ( г ,у , [ А * ( у ) , / ( у ) ] ) .

If t = pk m от t = pkr, we may also obtain by an argument similar to the above 
that I /(f )  — f (y)\  ^  5 • A (F, y, [A k(y), pk(y)] ) • We just consider the interval 
[if, rf] if t — pf  m, and the interval [rf,pf+l] if t = pf r. Thus, condition 1 
holds. Condition 2 may be verified by a symmetric argument.

That mesh (Vk+ \) ^ ( |) ^ +1 easily follows from the induction hypothesis 
and the facts that for every 0 ^  i ^  h - i ,  each of \pf -  pf t \ and lpf+1 - p f . r l “  
less than \  ■ \pf -  pf+ il, and each of |pfj -  p f m\ and |pf m -  p f r | is less than
I  • Ipf  — pf+11. Thus, condition 3 is satisfied.

It follows from condition 3 that {xn} is a trajectory. Now we want to 
show that /  is first return continuous with respect to this trajectory at each 
point. Let у G (0,1]. First, observe that the left first return path to у is

Ry = U  { (* fc-1M.A*(y)] n p |
k=o

Let e > 0. Let Ó > 0 such that у
m -F (y )

t—y

6 > 0, and if 0 < \t — y\ < S, then
f (y)  < | .  Let n be a positive integer such that ( | ) ” < 6

2’
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Then, by condition 1 of the induction hypothesis, we have that if к > га, and 
t e  {(Afc-1(t/),Afc(y)] nVk } ,  then

\f(t) -  f ( y ) I ^  5 • Д (F,y,  [ \ k- \ y ) , p k- 1(v ) \) ^  5 • £-  < e.

Consequently, | f ( t )  -  f (y)\  < e  for all t e  U£U +i { ( ^ к~1( у ) ^ к(у)] n V k}- 
Thus, we have tha t /  is left first return continuous. A symmetric argument 
also shows that /  is right first return continuous at each point of [0, 1).

T heorem 3. A function / :  [0,1] —► R  is Darboux and of Baire class 1 
if and only if f  is first return continuous.

P roof. (<= ) Suppose /  is first return continuous. For each positive 
integer n > 2, let hn be the natural piecewise linear continuous function that 
is obtained by connecting the first n points of the trajectory. Then, {hn} 
converges pointwise to / .  Therefore, /  is Baire 1. To see that /  is Darboux, 
recall that a Baire 1 function is Darboux iff each x E [0,1] has a bilateral 
road [2]. Since /  is first return continuous, the first return path at each point 
is a bilateral road for that point. Therefore, /  is Darboux.

(=> ) Suppose /  is Darboux, and of Baire class 1. By the Maximoff-Preiss 
theorem ([8], [17]), there exists a derivative g: [0 ,1] —*• R  and a homeomor- 
phism h: [0,1] —> [0,1] such that f ( x)  = g(h(x))  for all x. By Theorem 2, 
let {i„} be a trajectory such that g is first return continuous with respect 
to {xn}. Then, /  is first return continuous with respect to the trajectory 
{/i_1(a:n)}.

We note that the “if” portion of Theorem 3 is an immediate consequence 
of Theorem 4 in [9], but since the proof for this direction is short, we have 
included it for completeness.

C orollary 2. First return derivatives are first return continuous.

P roof. This follows immediately from Theorem 2 in [15] and Theorem 3.

There are Baire 1, Darboux functions which are not universally first 
return continuous. For example, consider Croft’s [4] familiar example of a 
Baire 1, Darboux function which is not identically zero, but is zero on a set T 
of full measure in [0,1]. If one selects a support set D С T, then clearly there 
is no ordering of D with respect to which this function will be first return 
continuous. However, if we strengthen the Baire 1 condition to Baire* 1, then 
the situation changes and we may obtain a universal first return continuity 
result. To show this we begin with a result analogous to Lemma 1. Before 
stating this result, we recall that if / :  [0,1] —► R  is a Baire* 1 function, then 
the interior V( f  ) of the set of points of continuity of /  is dense in [0, 1].

Lemma 3. Let /:[0,1] —> R  6e a Baire* 1, Darboux function. Let D be 
any support set. Then there exists a nondecreasing sequence {Hn} of perfect
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sets whose union is [0, 1] and such that for each natural number n
A) the restriction of f  to Hn is continuous,
B) each point of Hn is a bilateral limit point of Hn+\,
C) each component of [0,1] \  Hn has both endpoints in V ( f)  flDU {0,1}.
P roof. The proof this lemma is rather similar to, but somewhat simpler 

than, the proof of Lemma 1. Let U = V( f )  and set

T  = D П U U {0,1}.

Since /  is a Baire* 1 function, there is a sequence of perfect sets {En} whose 
union is [0,1] such that the restriction of /  to En is continuous. (See, for 
example, Lemma 5 in [1] or Theorem 2.1 in [12].)

Proceeding exactly as in Lemma 1, we construct the sequence {//„} 
inductively, but this time letting F  be a continuous extension of f\E \. Define 
f \  as before, and it follows that f \  is Darboux Baire* 1. We define Lny s 
and R ny s as before except replacing Condition 3 with

(3) for each x £ Ln^  (and R n k as well) we have |/i(a;)| <
It is possible to construct Lny s and Rn,k s which satisfy this new condition 3 
because every Darboux Baire 1 function has a bilateral perfect road at each 
point [2] and the points of continuity of a Darboux Baire* 1 function is dense 
in the graph [10]. Then, H\ is defined as in Lemma 1 and an analogous 
argument shows that f\H \ is continuous. The induction may be carried on 
as previously, yielding a decompostion {Hn:n  = 1 ,2 ,3 ,...}  satisfying the 
required properties.

T heorem 4. I f f:  [0,1] —>■ R  is a Baire * 1, Darboux function, then f  is 
universally first return continuous.

P ro o f . The construction of {xn} and the resulting first return path 
system R , proceeds exactly as in the proof of Theorem 1, with the sets U 
and T  having the definitions supplied in the proof of Lemma 3. That /  is 
first return continuous with respect to TZ, then follows along the same lines as 
the final part of the proof of Theorem 1, but, of course, is somewhat simpler.

C orollary 3. First return differentiable functions are universally first 
return continuous.

P roof. First return differentiable functions were observed to be Baire* 1, 
Darboux in Theorem 2 of [15].

5. Examples

Here we present two examples to show that the converses of Theorems 4 
and 1 are false. The second example further demonstrates th a t a function 
can have more than one universal first return derivative on [0 , 1].
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Example. There exists a function / :  [0,1] —► R which is universally first 
return continuous, but is not Baire* 1.

P roof. Let С C (0,1) be a Cantor set, and be a dense subset of
C. Let / :  [0,1] —*■ R  be such that

(1) /(с«) =  and i f x G C \ { c b c2, ...}  then f ( x )  = 0,
(2) /  is continuous on [0,1] \  C, and
(3) if x G C  and I is any interval containing x , then / ( / )  = [0,1].

Note /  is Darboux and Baire 1, but /  is not Baire* 1 because f \C  is 
continuous only on C \  {c1,c 2,-..} , a set which does not contain an open 
set relative to C .

We now want to show that given any support set D there exists an 
ordering of D such that /  is first return continuous with respect to this 
ordering. Let U — [0,1] \  C , and G — C \  {ci,c2,C3, ...} . Enumerate D П U 
as and D П G as Note that D П G may be finite or even
empty. However, we will consider the worst possible case and assume that 
D П G is infinite.

As we have done several times before, we will construct a sequence of 
partitions {Vk} such that each Vk C Lb and each Vk+i is a refinement of Vk- 
At the same time, we will define a trajectory {xn} using {Vk}- For к ^  — 1, 
we let \ k(y) and pk(y) be the same as in the proof of Theorem 1.

Let Vq — {po = 0,p° — 1}, £-2 =  0 and a:_i =  1. For each non-negative 
integer n, we want Vn and its labelling {^,}” n_"22 to  satisfy the following 
conditions:

I. If 1 ^  i , j  ^  n and г ф j ,  then [An(c,),p"(c,)] П [A n(cj), pn(cj)] = 0.
II. If 1 ^  j  < n, and t belongs to both ( An_1(cj), pn_1(cj)) П V n as well 

as either the left or right first return sequence to Cj restricted to {жг}™"_Г22’ 
then \f(c j)  -  f ( t )j <; ^r.

III. Let у € G, 1 ^  j  < n, and [An - 1(t/),pn-1(p)] П
n U i i  [^"(ct)5p”(ci)] = 0 -  If t belongs to both ( An_1(y), pn~l {y)) П Vn as 
well as either the left or right first return sequence to у restricted to {г,'}” "Г22, 
then |/ ( í )  -  f ( y )I ^  ^ r -

IV. { a i,a 2, . . . , a n}U {6X, 62, . . . ,  bn} U ({cx,c2, . . . ,  cn) П D) C V n.
Note that Vo satisfies conditions I-TV vacuously. Suppose that Vk has been 
defined and it satisfies conditions I-IV . Since Vk+i has to be a refinement 
of Vk, put all points of Vk in Vk+i- Now we pick some more points in the 
following fashion: For each 1 ^  к +  1, let lC] and rC] be points of {a,} \  
\  Vk such that

a. lCj < Cj < rC],
b- | / ( Cj) - / ( / Cj)| < 2- ( ^ ) ,  \ f ( c j ) ~  f( r Cj)\ < 2- ( fc+J),
c. [lCj,r C]\ C [Ak{cJ) ,p k{c])\,
d. if i Ф j ,  then [/Ct, r cJ  П [lCj, rCj] =  0, and

Acta M athem atica  Hungarica 66, 1995



F IR S T  R E T U R N  PA T H  SYSTEMS 97

e. bk+1 £ U?=i[*cj>r c>] and ak+1 ф Uf=i %j, rCj\ as well.
Let yi < z\ < y2 < z2 < . . .  < уПк+1 < znk+1 be points of { a j  \  Vk such that 

А. / Ы  = f ( z i ) =  ■ ■■ = f(Vnk+1) =  f ( znk+1) = О,
В- \Ji=i[lci,rc,} П U fc í1 [»•'>*»'] =  0’
с. с  \  U^[/c„rCj] с иГ=Г[»» ]̂. and
D. ak+i ф й £ Г [И »*]-

7-*к+1 — Т̂ к U {/С1, /С2, . . . ,  lck+1 } LI {гС1, ГС2, . . . , *“сц+1 } U 

U{j/l,í/2,---,J/nfc+1} и { z i ,z 2 , . . . , z nk+1} и 

U{bfc+1} и {а*+1} и ({с*+1} П D).

We label points of Vk+i \  Vk as xn’s in the following order:
Step 1. Label lCl, rCl, . . . ,  lCk+1, rCk+1 as listed if ck+1 does not belong D. 

If Cfc+i G D , then put ck+1 between /Cjt+1 and rCjt+1 in the listing.
Step 2. Next label y i ,z \ ,y 2 ,z 2, . . . ,  уПк+х, znk+1 as listed. Then label bk+1 

and, finally, label a^+j unless if it has not already been labelled.
We now want to show that Vk+i satisfies conditions I-IV. Condition I 

follows from the construction of Vk+i and the facts tha t for each 1 ^  i ^  
й к + l ,  A*+1(c,) = lCt and />*+1(c,) = r Cj.

To show condition II, assume that 1 ^  j  < к + 1, and t belongs to both 
(A k(cj), pk(cj)) П Vk+i as well as either the left or right first return sequence
to Cj restricted to 2 • From the induction hypothesis I for к and
the way the /c.’s and rCt’s were constructed, we have tha t t = lCj or t = rC].
Therefore, from b it follows that | /(f) — f ( c j )j ^  2“ (fc+1I.

To show condition III, assume that у 6 G, 1 ^  j  < к +  1, and that

P ‘(»),/(!()] П m  [Л^+Чс),/+1(с,)] J  = 0.

Furthermore, assume that t belongs to both (Xk(y),ph(y)) n V k+i as well 
as either the left or right first return sequence to у restricted to { z j ~ 2. 
Note that t cannot be ak+\. To see this, note that у G Uf=/+i[^,i ĉ,] or у £
G U r^i1 [Vii zi]- Now, if t = ak+1, then ak+1 was labelled last. Hence, in either 
of these cases an application of condition e or D produces a contradiction 
to the assumption that t was in the left or right first return path to y, and, 
consequently, t ф ak+\. Therefore t has to be one of lc, , r c., ct for some i > j ,
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or t has to be one of yi, Z \ ,  y2, z2, . . . ,  yn*+1, znk+1 , or t  = bk+1- If t  is one of 
Vi, zi, У2, Упк+1, znk+1, then by A we have that

I/ ( » ) - / ( < ) !  =  I /(* ) | =»•

If t  =  6fc+ i then f ( t )  =  f ( y )  =  0. If t  is one of /Ci, r Ci,c, for some i  >  j ,  then

1 / ( 0 - / M l  á  I / ( < ) - / ( « ) !  +  ! / ( < ’ . - ) - / ( 9 ) 1  =
=  |/ ( « ) - / ( C i ) | + |/ ( « i ) | < Г  +  Г < 2 - " .

Thus, condition III holds. Condition IV follows from the construction of 
Vk+1- That trajectory {x;}°^0 is a well-ordering of D follows from condition 
IV. We now want to show th a t /  is first return continuous with respect to 
{хг},“ о- Let x  £ [0) !]• We have three cases to consider: x G U, x = сг- for 
some i, or x £ G. If x E U, then /  is first return continuous at x because /  
is continuous a t x.

Consider next the case x  =  c, for some г. Let e > 0. Let A be a 
positive integer such that N  > i and 2~N < e. We want to show that if 
t ^  Vn  and t is in either the left or right first return sequence to x, then 
I /(f )  -  /(x ) | <  e. Let t be as described. Then, there is m >  N  such tha t 
t G Vm \  Vm- 1 • Since t is in either the left or right first return sequence to x, 
t e  (Am-1(x ) ,p m -1(x)) П V m . We have by condition II tha t | / ( i ) - / ( x ) |  ^  
^  2~m < 2~n  < e. Thus, /  is first return continuous at x with respect to
{x n}-

Finally, consider the case where x G G. Let £ > 0 and j  be a positive 
integer such th a t 2-J+1 < £. Utilizing the fact that {хг} ^ 0 is a trajectory, 
we may obtain a positive integer N > j  such that for all m  > N  we have

[Am-1(x),pm -1(x)] П [ J  [Am(c,),pm(c,)] = 0 .
i=i

We must show that if t  0  V n  but t  is in either the left or right first return 
sequence to x, then we have | /( f )  — /(x ) | < £. Let t be as described. Then, 
there is m > N  such that t G Vm \  Vm- \ -  Since t  is in either the left or 
right first return  sequence to  x, t  G ( Am_1(x),pm_1(x)) n V m. We have 
by condition III that | / ( t )  — /(x ) | ^  2-J+1 < e. Thus, /  is first return 
continuous at x with respect to  {xn} and the proof is complete.

Example 2. There are functions / :  [0 ,1] —► R, g: [0 ,1] -+ R, and h: 
[0,1] —» R  such that /  is compositely differentiable to h, f  is universally 
first return differentiable to  both g and /г, and yet /  is not compositely 
differentiable to g.

Acta M athem atica  Hungarica 66, 1995



FIR ST  R E T U R N  PATH SYSTEMS 99

P r o o f . Let С С [0,1] be the standard middle third Cantor set con
structed in the standard fashion. Let {(u,, an enumeration of the
contiguous intervals to C, listed in such a way that both of the sequences 
{«2;}°^-! and are dense in C

Let / :  [0,1] -> R  be such that
A. /(C )  = {0},
B. /  is differentiable on [0,1] \  C , and
C. for each even natural number i, f  is zero on ^a,, 3 a ,+6, U л),

/  ( a |2b|) = /  is increasing on ĵ 3ai*b|, , and /  is decreasing on

[ * ± 4  Ei±3bi . likewise, for each odd i, f  is zero on (сц, За'+Ь| U а .+ З Ь , л),
/  ( ^ 2^ )  =  -  1, /  i s  decreasing on З а ^ - 1 ,  j  and /  is increasing on 
[ o i+ jü  a j +ЗЬ^
L 2 ’ 4 J '

Let h be zero on C  and be the derivative of /  on [0,1] \  C. Let { c ,} ^x 
be a dense subset of C , containing no endpoint of a contiguous interval, and 
neither 0 nor 1. Let g: [0,1] —► R be such that ff(c,) = A, g is the derivative 
of /  on [0,1] \  C, and g is zero on C \  {ci,C2, ...}.

It is easily seen that /  is compositely differentiable to h on [0,1] and 
that for each x, h(x) is a bilateral derived number of /  at x. Consequently, 
Theorem 1 shows that /  is universally first return differentiable to h on 
[0,1]. Let us now show that no composite derivative of /  equals g. Let v  be 
a composite derivative of /  obtained by a sequence of closed sets { £ n}^Li- 
By the Baire category theorem, there is a positive integer n such that E n П C 
is a non-empty set which is open relative to C. Since /  is zero on C  and 
differentiable on En П C, v has to be zero on En П C. Since g is positive on 
a dense subset of C, v  does not equal g.

We now want to show that given any support set D, there exists an 
ordering of D such that the first return derivative of /  is g with respect to 
this ordering. Let U, G ,  {а*}^ , and be the same as in Example
1. We will also construct {Vn} and {x n} in a fashion similar to th a t of 
Example 1. We let Xk(y) and pk(y) have the same meaning as in Example 1.

Let Vo =  ip3 — 0>Pi =  1}) x - 2  — 0 and X-i = 1. For each non-negative 
integer n, we want Vn and its labelling to satisfy the conditions I
and IV of Example 1 as well as the following replacements for conditions II 
and III.

II. If 1 ^  j  < n, and t belongs to both (An-1(cj),pn_1(cj)) П Vn as well 
as either the left or right first return sequence to Cj restricted to
then we have c ,—t 9(cj)
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III. Let у G G, 1 ^  j  < n, and

[АП- \ У \ Р П- \ У ) ]  П [ J  [A"(c;),p”(c;)] = 0 .
t= l

m - m
t-y

If t belongs to  both (An 1(y ) ,p n г(у)) П V n as well as either the left 
or right first return sequence to  у restricted to then we have

9(y)\ й  2FT-
Now we proceed as in Example 1 up to the point of defining 1- We 

want lCj and rc to satisfy the same conditions a, c, d, e of the previous 
example, as well as the following conditions b and f.

< 2-(*+Ч ,| -  g(Cj) < 2-(fc+1),

^  6 for every у E C.
We may readily obtain lCj ’s and rC] ’s which will satisfy all of conditions 

a—f  by using the  fact that for every Cj there are contiguous intervals I  = 
=  (us,vs), and J  = (ut,v t ), with s even and t odd, arbitrarily close to Cj 
such that vs <  Cj < щ and

b. /Ы -Д Ц )
C ] — l c  ■J  C j

g(cj)

f. С>-Ц
Icj-y й  6,

C j - r C j

rCj~y

\I\  >  I  a ,  \J\  >  I
d (c j,I )+ \I \  = 2 ’ d(cj t J )+ \J \  = 2 ’

Again we proceed as in Example 1, defining j/,’s, zCs satisfying condi
tions A through D, and we order the points of Vk+i \  Vk as {жп} as we did 
before.

Next, we want to show th a t Vk+i satisfies conditions I-IV. Conditions I, 
II and IV hold for reasons similar to those of Example 1. To see the validity 
of condition III, assume th a t у £ G, 1 Ú j  < к + 1, and

[А * (» ).Л »)1 П и [ А ‘+ '( С.),/>‘+1м )  = 0-

Assume that t belongs to both (Ак(у),рк(у)) r\Vk+i as well as either the
left or right first return sequence to у restricted to 2. For reasons
similar to those in Example 1, t ф a-k+i ■ Therefore, t has to be one of 
lCl,rCi,Ci for some i > j ,  or t has to be one of J/i, y2, z2, . . . ,  ynk+1, -?„fc+1, 
or t = bk+i. If t is one of y i , z i ,y 2,z 2, . . . , y nk+1 ,z nk+1 ,bk+i, then condition 
III is satisfied because / ( / )  =  f ( y ) = 0. If / is one of lCt, rCi, с,- for some i > j ,  
then

m - f ( y )
t -  У -a{y)

f ( t )  -  f (y)
t -  У

<
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< f ( t )  -  f { C i ) t  — c,
+ /(Ci) -  f(y ) Ci -  у

t  -  c, t -  У C i-  У t -  у
< /(*) -  Л с>)

t — Ci

t  -  Ci 

t -  У + |s(c,')|
t  — Ci

t -  У
+ 0 ^

^  6 -2~l + 6 - 2~’ < 6 • 2_J+1.

Thus, condition III holds.
That /  is first return differentiable to g with respect to {ar,} ^ 0 can now 

be shown by following the same reasoning utilized at the end of the proof of 
Example 1 to show that /  was first return continuous.

6. Orderings and trajectories

Here we explore a relationship between what we have been calling trajec
tories or orderings of support sets and trajectories of continuous mappings 
of the unit interval. The following theorem in some sense justifies the use of 
the term trajectory in the definition of first return path systems. Recall that 
in the terminology of dynamics two mappings /  and g of the unit interval 
are said to be topologically conjugate if there is a homeomorphism h of the 
unit interval such that f  = ho  g о h -1 .

T heorem 5. Let D be a support set and let {xn}^L0 be an enumeration 
of D. Let g: [0,1] —► [0,1] be a transitive continuous map. Then there is a 
function f:  [0, 1] —*■ [0, 1], topologically conjugate to g, such that

A. the range of the trajectory of x, q under f  is D; i.e., the range o f the 
sequence {x0, /(ж0), f 2(x0), / 3(x0), - • •} is D.

B. the first return path system determined by the ordering {жо, x i , ...}  is 
identical to that determined by the ordering { x q , f ( x o), f 2(xo ), . . .  } .

P roof. Let t/o be such that the trajectory of yo under g is dense in [0 ,1]. 
For each m — 0 ,1 , . . . ,  let ym = gm(yo)- We inductively define an increasing 
homeomorphism h from [0, 1] onto itself such that h (Um=o ifc } )  = Start 
by letting h(0) =  0, h(l)  = 1, and h(yQ) = xQ. For each non-negative integer 
m let Qm denote the partition of [0,1] generated by {0,1, yo, Уг, ■ ■. ,Ут}, 
and assume that h has been defined on Qm. Let Vm denote the partition 
of [0,1] formed by the points { 0,1, h(y0), h(y\ ) , . . . ,  h(ym)} . Let a and b be 
neighboring nodes of Qm such that a < ym+i < b. Define h(ym+1) to be 
that xn having the property that xn £ ( h(a),h(b)) and no xj with j  < n 
belongs to that interval. In this manner we have now defined h on Qm+1 and 
it is increasing on that set. Thus h is defined on {yo,. . .  ym, ...}  so as to be 
increasing and its range is contained in D.

Let us next show by induction that h( {j/o> j/i ,...} ) =  D. We have that 
xo G h({yo ,y \ , . . .} ) . Suppose that ж,- = h(yk{) is in the range for 0 Ú i й
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^  N  — 1. Let m  =  max{^: i — 0 ,1 , . . . ,  N  — 1}. If хдг = h(t/;) for 0 ^  i й  то, 
then we are done. Otherwise, let a and b be neighboring nodes of Vm with 
a < xjs] < b. Let j  > m be the least integer such that h- 1(a) < yj < h~x(b). 
For this j  we have that h(yj) — ждг.

Now extend h to be an homeomorphism of [0,1] onto itself and define 
the function / : [0, 1] —► [0, 1] by

f  ~  h о g о h 1.

Observe that for each i ^  1, / г(#о) = h(t/t) and condition A of the theorem 
holds.

Next, we show that condition В also holds. We will just show that for x £ 
£ [0, 1), the right first return path to x generated by ordering {^o, ®i, • • •} and 
the right first return path to x generated by ordering { xo, f ( x 0), f 2(xo ),. . .  } 
are the same. Fix an a: £ [0,1). Let {#n*}/b=-i be the right first return path 
to  x determined by the ordering {z0? aq ,...} . As {xo, f(xo ), f 2(xo), ■ ■ ■} = 
=  { Xo, h(yo) , . . .  } , we may denote the right first return path to x determined 
by the the ordering {x0, f ( x 0), f 2(x0) , . . .}  as {h(ymk)} ° l _ r  (For sake of 
notational convienience, we are letting n_i =  m_i = — 1 and x_i =  y -\  = 
=  1. We are also assuming th a t and { h(ymk)} are labelled
in the natural fashion, i.e. and { т /г} ^ _ 1 are increasing sequences
of integers.)

We now use induction to show that xnk =  h(ymk) for all Лг ^  — 1. Suppose 
tha t we have that xn = h(ym j) for —l ^ j j s N  — l. Put v = m n  — 1. 
Let a and ß be neighboring nodes of Qv such that a < ymN < ß. By the 
fashion in which h was constructed, h(a ) and h(ß) are neighboring nodes 
of Vv. As h(a) < h(ymN) < h(ß) and h(ymN) is in the right first return 
sequence to x generated by { h(yo), h (y i) , . . . ,  } we have that h{a) ^  x < 
< h(ß). Consequently, h(ß) =  h(ymN_1). By definition, h(ymN) = xt where 
t is the least integer such th a t h(a ) < x t < h(ß) = We also have
that xt > x as x t = h(ymN) is in the right first return path to x. Thus, we 
have that t is the least integer such that x t > x and x t < h{yymN_1) =  xnN_ 
forcing h{ymN) = xnN and completing the proof of the theorem.

The authors wish to express their gratitude to the referee, whose thought
ful suggestions led to a significant improvement in the exposition of this work.
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N E C E SSA R Y  A N D  SU FFIC IE N T  T A U B E R IA N  
C O N D IT IO N S FO R  CERTAIN W E IG H T E D  

M E A N  M ETH O D S OF SU M M A B IL IT Y
F. MÓRICZ* (Szeged) and В. E. RHOADES** (Bloomington)

1. In tro d u c tio n

Let (sk : к = 0 ,1 ,. . .)  be a real or complex sequence. Let p := (pk) be a 
nonnegative sequence with po > 0,

П

(1.1) Pn := oo ( n ->• oo).
k-o

The weighted means of the sequence (Sk) are defined by

tn :=
Tn

Y .P kSk
к=0

(n =  0 ,1 ,...) ,

and (Sk) is said to be summable (N ,p ) if the limit

( 1.2) lim tn exists and finite.n—KX)

It is well-known th a t condition (1.1) is necessary and sufficient that every 
convergent sequence (s^) be summable (N ,p ) to the same limit.

2. M ain results

Define An := [An] for a positive number A, where [.] denotes the integral 
part. By C we shall denote a positive constant not necessarily the same at 
different occurrences.

* T his research  w as partia lly  su p p o rte d  by th e  H u n g a rian  N a tio n a l F oundation  for 
Scientific Research U n d e r  G ra n t # 2 3 4 .

** T his research w as com pleted w hile th e  au tho r w as a  Fulbright scho lar a t  th e  Bolyai 
In s titu te , U niversity o f Szeged, H ungary , du ring  the  fa ll sem ester in  th e  academ ic y ear 
1992/93.

0236 5 2 9 4 /9 5 /$ 4.00 ©  1995 Akadém iai K iadó, B udapest



106 F. M Ó R IC Z and  В. E . RHOADES

We will prove the following one-sided Tauberian theorem.
T heorem 1. Let (Sk) be a real sequence, (pk) a nonnegative sequence 

satisfying condition (1.1) and such that for each A > 1,

(2.1) 1 < lim inf й  lim sup < oo,
n-+ oo Pn n—OO Pn

and for each 0 < A < 1,

P P
(2.2) 1 < lim inf —— ^  lim sup —— < oo.n—oo PXn n—oo PXn

If (sk) is summable (N ,p ) to a finite limit s, then the limit

(2.3) lim Sk = s existsк—юо

if and only if

(2.4)

and

-ĵ An
lim sup lim inf —-------—  X  Pfc(sfc -  s„) ^  0

ли ™  Pk  -  Pn k^ +l

(2.5)
1 "

lim sup lim inf —----- —  У ' pjt(«n -  ^ )  ^  0;AT1 n^oo Pn -  PXn fc=̂ +i

m which case we necessarily have for each A > 1,

( 2 .6 ) lim
n—+ OO

fc=ra+l
^n) — 6,

and for each 0 < A < 1,

(2.7) lim —----- -—n->oo Pn -  PXn

П
^   ̂ Рк(&п f̂c) — 6.

fc=An +  l

R emark 1. According to [4] (see also [1, pp. 124-125]) a real sequence 
(Sk) is said to  be slowly decreasing if

(2.8) lim lim inf min (sk -  sn) ^  0,
A|1 n-*oo n<fcgA„

Acta M athematica  Hungarica 66, 1995



TA U B EH IA N  C O N D IT IO N S FO R  CERTA IN  W E IG H T E D  M EA N  M ETH O D S 107

or equivalently,
limliminf min (sn — sk) > 0.
A|1 A„ < k ^ n

Conditions (2.4) and (2.5) are obviously satisfied if (s*,) is slowly decreasing. 
R emark 2. The classical one-sided Tauberian condition

(2.9) K s k - s k - i ) *  - С  (к = 1, 2, . . . )

of Landau [2] is sufficient for (2.8).
R emark  3. The symmetric counterparts of conditions (2.4) and (2.5) 

are the following:

(2.10) fim inf lim su p —------ — V  pk(sk -  sn) ^  0
Ail „ ^ o o  П п -  t 'n  k= n + 1

and

1 ”
(2.11) lim inf lim sup —---- —-  V  pk(sn -  sk) ^  0.

A| 1  п —ю о  * n  — * \ n  » X  ,

Assume that conditions (1.1), (1-2), (2.1), and (2.2) are satisfied. Anal
ogously to Theorem 1, one can prove that condition (2.3) is satisfied if and 
only if (2.10) and (2.11) are satisfied. As a by-product, we may state tha t if 
conditions (2.4) and (2.5) are satisfied, then conditions (2.10) and (2.11) are 
also satisfied, and vice versa.

We extend Theorem 1 for complex sequences as follows.
T heorem  2. Let (sk) be a complex sequence and (pk) a nonnegative 

sequence satisfying condition (1.1). I f ( s k) is summable (N ,p ) to a finit limit 
s and

(i) if condition (2.1) is satisfied, then (sk) converges to s if and only if

( 2 . 12) lim inf lim sup
' Ц !  n —KX>

^   ̂ Pk($k ^n)
k = n + 1

=  0 ; or

(ii) if  condition (2.2) is satisfied, then (sk) converges to s if and only if

(2.13) lim inf lim sup
A T1 n —*oo

p  _  p  Pk(Sn Sk)
Гп ГХ" A:=A„ + 1

= 0.
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In either case, we necessarily have (2.6) for all A > 1, or (2.7) for all 
0 < A < 1, respectively.

R emark 4. In the complex case, the classical Tauberian condition

k ^ - S k ^ i C  (fc =  1,2, . . . )

is sufficient for (2.12) and (2.13). (Cf. (2.9) in the real case.)
R emark 5. If pk = 1 for all к , then the tn are the (C , l)-means (i.e., the 

first arithmetic means) of the sequence (s/t). In this case, Theorems 1 and 2 
were proved in [3].

3. A uxiliary result: representation o f the difference sn — tn

Lemma, (i) Let A > 1. For each n such that P \n > Pn,

(3.1) S n  — t n =  — _  p ( t \ n — t n )  p  _  p У   ̂ Pk{sk ~ s n ) -
\ n n  \ n  k = n + l

(ii) Let 0 < A < 1. For each n such that Pn > P\nl

(3.2) sn — tn = p _  p  {tn — t \n) +  p _  p У  ! Pk{sn — sk)-
'  M l  Г \ пP n - P x  

P roof, (i) By definition,

Л n -ĵ n
t \ n —tn =  — Y .pk*k  ~  it

r x„ , „ r n
PkSk =

n k=0

Pn -  P \n 
PnP\n

k=0

Л n

/c=0 /c= n + l

Hence

Pxn
P\„ Pn

2

(/An “  tn) ~ Pa„ -  ^
Pk$k —

/c=n+l

which is equivalent to (3.1).
(ii) The proof of (3.2) is similar.
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4. Proofs of the theorem s

P roof of T heorem 1. Necessity. By (1.2) and (2.3),

(4.1) lim (sn -  tn) =  0.
71—► OO

(4.2)

Let Л > 1. Using (2.1),

Pk
P \n Pn

(t\„ in)
P xJP n  

P x J P n -  1
Î A„ in I =

< 1 + 6
|̂ An in I( l  + 7 ) /2 -  I '

if n is large enough, where

7 := Urn inf P \n/P n and 6 := lim sup P \n/P n.

By (1.2),

(4.3) lim Px" (tXn -  tn) = 0.n—OO F \n -  r n

The same is true in the case when 0 < Л < 1.
Now, (2.6) (respectively (2.7)) follows from (3.1) (respectively (3.2)), 

(4.1), and (4.3).

Sufficiency. Assume the fulfillment of (1.1), (1.2), (2.4), and (2.5). From
(2.4) there exists a sequence {Ay} monotone decreasing to  1 such that

(4-4) lim lim inf
j — KX> 71—ИЗО

1
P\j„ ~ Pn

^jn
]T) Pk(sk -  Sn) ^  0,

k—n+ 1

where Ajn := [A j/г]. From (3.1),

(4.5) lim sup(s„ -  tn) ^
71—FOO

lim lim sup
+‘° °  71—+-00

PXjn
PXjn ~ Pn

(ixjn tn)+

+ lim lim sup
j ~ + ° °  7 1 -4 -0 0

^   ̂ Pk($k ~~ ^7i) J •
k= n +l
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From (1.2) (cf. (4.2)), for each j ,

lim
71— ► OO

(ÍAJ -  tn) = 0.

Thus, (4.4) and (4.5) yield

(4.6) hm sup (sn — tn) =  — lim hm inf —------- — V " pk(sk -  sn) й  0.
”^oo ^ ° °  ™  -  Pn kt^+l

From (2.5) there exists a sequence {A,} monotone increasing to 1 such 
that

(4.7) lim lim inf
j —ЮО n—►oo

1
Pn -  P\j

n
УУ Pk(sn -  sk) ^  0.

к—Xjn “Ь1

Using (3.2),

(4.8) lim inf (sn - t n) ^
n —► OO

lim lim inf
j —Ю О n— ►OO

(tn t \J„) +

+ hm lim inf —----——
i - ° °  n^ °°  Pn -  P\]n

П

^  '  Pk($n  ^fc)- 

Ar=Ajn+l

But for each j ,

Um
П — >■ OO

P\jn
Pn -  Pa,

(in ÍAjn) — o.

Thus, (4.7) and (4.8) yield

(4.9) liminf (sn — <n) ^  0.

Combining (4.6) and (4.9) provides (4.1), which is equivalent to (2.3), 
due to (1.2).

P r o o f  o f  T h eo r em  2. The proof of this theorem also relies on repre
sentations (3.1) and (3.2), and is modeled after that of Theorem 1. We omit 
the details.
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N U M B E R S W IT H  CO M PLICATED DECIM AL
E X PA N SIO N S

D. BEREND (Beer-Sheva) and M. D. BOSHERNITZAN1 (Houston)

1. In tro d u c tio n

One of the most basic results in the theory of distribution modulo 1 
is that, if a  is an irrational, then the sequence (m )“=1 is dense, and even 
uniformly distributed, modulo 1. In particular, given any digits ai, 02, . . . ,  a*,, 
there exists a positive integer m for which the decimal expansion of т а  
contains this block of digits. A considerable strengthening of this result 
was obtained by Mahler [13] who proved that, moreover, there necessarily 
exists an m  for which the decimal expansion of та contains the given block 
infinitely often. Mahler also established an upper bound for the minimal 
value M  of the number m with that property; M  = M (k) depends only on 
the number к of digits, but not on a.

It was noted by Furstenberg that, employing a certain result of Glasner 
[10], one can provide a very short proof of the finiteness of M (k) (see [1, 
Corollary 7.2]). Motivated by his approach, the authors [4] gave another 
short proof of Mahler’s result, which at the same time yielded a better upper 
bound, best possible up to a constant factor.

The density modulo 1 of the sequence (n a ) is a special case of a result 
which asserts that, given any polynomial P  with real coefficients, at least 
one of which (besides the free term) is irrational, the sequence P (n ) is 
dense modulo 1. (Better known is Weyl’s even stronger result by which 
this sequence is uniformly distributed modulo 1 [15].) It was shown in [4, 
Theorem 1.2] that Mahler’s result is true in this more general setting as well. 
A few other sequences besides polynomial sequences, for example (log n) 
and (ne) for positive rational non-integer в , were shown to satisfy the same 
property.

In this paper we present a general framework for the study of sequences in 
which there exist terms whose expansions tend to be complicated in the sense 
that they contain “numerous” blocks, perhaps appearing “many” times. In 
Section 2 we introduce the required definitions and show that some sequences, 
and families of sequences, possess these properties. Section 3 deals with

1 R esearch su p p o rted  in  p a r t  by NSF G ra n t No. DM S-9003450.
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the question as to what extent the number m  in Mahler’s theorem may be 
restricted to various sets of integers. The methods developed by Alon and 
Peres [1] enabled them to show that m  may be chosen to be a square, a prime, 
or to belong to any prescribed set of positive density, etc. We obtain other 
results in this direction, which cannot be obtained with their methods. In 
Section 4 it is shown that the analogue of Mahler’s theorem with continued 
fraction expansion instead of decimal expansion is false.

Obviously, the base 10 plays no special role. The abovementioned results, 
as well as the results of this paper, are valid in any base.

2. Block-com plete and block-saturated sequences

Let g ^  2 be an integer. The set Dg =  { 0 ,1 ,... ,  g — 1} is the set of digits 
in base g. A k-block (in base g) is an element of Dg, namely a sequence of 
length к of digits. Denote by Bg the set of all blocks in base q:

B ,=  { J D
к- 1

Given a real number a  and a block В  E Bg, let # (a , В ) denote the number 
of occurrences of В  in the q-adic expansion of a (thus we may well have 
# ( « ,£ )  =  oo).

R em ark  2.1. To avoid ambiguity, we agree that the q-adic expansion 
of a rational q-adic number is the one containing only 0’s from some place 
on. Also, we implicitly assume all numbers whose q-adic expansions are 
considered to be non-negative. These conventions have no effect on the 
results of the paper.

A number a is block-complete (or BC for brevity) if # ( a ,  В)  ^  1 for every 
В £ Bg. As is well known, the set of all numbers which are BC in base q 
is large both metrically (i.e., its complement is of 0 Lebesgue measure) and 
topologically (i.e., it contains an intersection of countably many open dense 
sets). Clearly, if a is BC in base q then it is even block-saturated (or BS) in 
base q, namely # (a ,B )  =  oo for every В  E Bg.

We now generalize these two concepts, of block-completeness and of 
block-saturatedness, to sequences of real numbers. A sequence (a,) is block- 
complete (resp. block-saturated) if the set {г ^  1 : #(a,-, В ) ^  1} (resp. {г ^  
^  1 : # ( o í , B) — oo}) is infinite for every В  E Bg.

These two properties admit stronger versions. We shall be interested 
in cases where the sets in question are not just infinite, but have some 
density properties. Thus, (a,-) is block-complete in density if the set {i ^  
^  1 : #(a.i ,B)  ^  1} is of density 1 for every В  E Bg. The notions of а
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sequence which is BC in Banach density is analogously defined. (Recall that 
the Banach density of a set A ^  N is given by

А  П [M, N -  
n - m L oo N  - M

if the limit exists.) Finally, (a,) is eventually BC if for every В G Bg the 
set {г ^  1 : #(a,-, B) 1} contains all sufficiently large integers. Again, all 
these admit straightforward analogues for BS sequences.

Note that a number a  is BC if and only if the constant sequence formed 
by it is a BC (or an eventually BC) sequence. However, a general sequence 
may be eventually BC while none of its terms is.

E xample 2.1. The sequence of all positive integers in ascending order,
1 ,2 ,... ,  is BC, and even BC in Banach density, in every base, but it is not 
eventually BC. The sequence 1,12,123,..., given by the recurrence

«1 =  1, o n+1 =  n +  101+[logn]a n, n |> 1,

is eventually BC in base 10.
E xample 2.2. No sequence of integers is BS.
The following two lemmas are immediate.
L emma 2.1. Let a  = (a ,)  be a sequence of real numbers and g ^  2 an 

integer. Then:
( 1) a  is a BC sequence i f  and only if it has an eventually BC subsequence.
(2) a  is BC in density if  and only if it has a subsequence of density 1 

which is eventually BC.
(3) a  is BC in Banach density if and only if it has a subsequence of 

Banach density 1 which is eventually BC.
L emma 2.2. Let a  =  (a ,)  be a sequence of real numbers, n \, п г ,. . .  any 

integers and g ^  2 an integer. Then a  is a B C  (or BS) sequence (in density, 
in Banach density, eventually) if and only if the sequence (gnia \,g n2oi2 , • • •) 
is.

T heorem 2.1. Let a  be a sequence of positive real numbers. Then:
(1) I f  the sequence (log3 a,-) is dense modulo 1 then a  is a BC sequence.
(2) I f  the sequence (log3 a t) is uniformly distributed modulo 1 then a  is 

BC in density.
(3) I f  the sequence (log a t) is well-distributed modulo 1 then a  is B C  in 

Banach density.
(4) I f the sequence (a,) is strictly monotonic and — > 1, then a. 

is BC in Banach density.
R emark 2.2. One may considerably weaken condition (2) (and, in an 

analogous fashion, condition (3)) in the theorem while obtaining the same

1]
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result. In fact, denote by f.in the normalized counting measure concentrated 
on the first n terms of the sequence ({logs а г}), for n G N . Uniform distribu
tion of the sequence in question is equivalent to  the sequence (fin) converging 
weakly to the Lebesgue measure on [0,1]. It can be shown that, if this se
quence of measures converges to  any absolutely continuous measure, or even 
if it is only known that every limit measure of the sequence is absolutely 
continuous, then oc is BC in density.

P ro o f  o f  T h e o r e m  2.1. (1) By Lemma 2.2 we may assume that 1 ^  
^  Oj < g for each i. The condition in the theorem then amounts to the 
assertion that the sequence (log a t) is dense in the interval [0,1]. Therefore 
the sequence a  is dense in the interval [1,</]. In particular, given any block 
B, there exist infinitely many terms in the sequence a  whose 5-adic expan
sion starts with B.

(2) Similarly to the preceding part, we may assume the sequence (logg 0 4 ) 
to lie in the interval [—1,0] and to be uniformly distributed there. Then the 
sequence a  defines an absolutely continuous measure on the interval [0, 1]. 
Now take an arbitrary 5-block B. Divide [0,1] into gl subintervals of equal 
lengths. Since almost every number (with respect to the Lebesgue measure) 
is normal in base 5 , given any e > 0, as l becomes large enough, at least 
(1 — e)gl of these subintervals have the property that the initial block of 
length l given by the 5-adic expansion of any (interior) point contains the 
block B. Since a  defines an absolutely continuous measure, this implies that 
the lower density of the subsequence of a ,  consisting of those terms contain
ing В within their initial block of length /, becomes arbitrarily close to 1 as 
l increases. It follows that the subsequence of a ,  consisting of those terms 
containing В  within their 5-adic expansion is of density 1, so that a  is BC 
in density.

(3) The proof follows that of part (2).
(4) We outline the proof. The condition means tha t large chunks of 

the sequence, placed in far enough places, look “almost” as arithmetic pro
gressions. Then we are basically in the situation of Example 2.1, and the 
continuation is routine.

This completes the proof.

Example 2.3. Using part (4) of the theorem, we easily verify tha t the 
sequences a, =  F(i) are BC in Banach density for the following functions F:

(1) F  is a non-constant rational function.
(2) F(x) = x 9 for any в ф 0. (Note that by [4, Example 1.1] this sequence 

is also BS for positive rational non-integer в.)
(3) F(x) =  loglog(x +  1). (In view of [4, Example 1.1] this sequence is 

also BS.)
(4) F(x) = 2
(5) Any function F(x) belonging to a Hardy field (see [3] for a definition,
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examples and references on Hardy fields), which approaches oo slower than 
cx for every c > 1, say F(x) =  x7+log2 x or F (x ) = J* t ^ d t .

Example 2.4. Let g , h be multiplicatively independent positive integers 
(that is, they are not integer powers of the same integer; equivalently,
is irrational). In view of Theorem 2.1.(4) (see also [6]), the sequence (h l ) is 
BC in Banach density. We mention that according to a certain conjecture 
of Furstenberg [8, Conjecture 2’], the sequence is, moreover, eventually BC. 
(Strictly speaking, the conjecture relates directly only to the case where h 
divides some power of g .) It is possible to deal similarly with other recurrence 
sequences. Thus, for example, the Fibonacci sequence Fn and the sequence 
n32” are BC in Banach density in every base g. (Note that the proof of this 
fact for the latter sequence involves considerations similar to those discussed 
in Remark 2.2. For g — 2 this sequence is certainly not eventually BC.)

E xample 2.5. Let r be a rational number such that r $  Z l
9 . It follows

easily from [1, Corollary 7.1] or [5, Lemma 5.1] that the sequence (r*) is 
eventually BS. The same holds, more generally, for any sequence of the form 
(sr!), where s > 0 is rational. We do not know whether this is true for every 
real s > 0.

E xample 2.6. By [6], the sequence (log5 n!) is uniformly distributed 
modulo 1 for every g , so that the sequence n\ is BC in density in every base. 
Note that in [3] necessary and sufficient conditions are provided for density, 
uniform distribution and well-distribution of a large class of sequences defined 
by certain formulae and recurrent relations. These criteria show also tha t 
(logs n!) is uniformly distributed modulo 1, but it is not well-distributed, so 
that Theorem 2.1 does not imply that n\ is BC in Banach density. Of course, 
one would expect it to be, moreover, eventually BC in every base.

Example 2.7. The sequence (2i) is BC in Banach density for every base 
g. In fact, suppose first that g is not a power of 2. Since

(?)
( 2 f c 1))

= 4 -
2
i

and log34 is irrational, the sequence log5 (2i) is well-distributed modulo 1, 
and by Theorem 2.1(3) our sequence is BC in Banach density. It remains to

p*)
deal with <7 = 2. Obviously, we may replace the given sequence by аг =
Now

ö.+l a, = 4г-Ь1 ( ( - ш )  ( ■ ) - < • ) )  =
2 (2.*)

4l+1(i + 1) ’
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so that the sequence (аг) is strictly decreasing, and

а г~f-i Oj 2? 1 ^
Oj g% — r 2? “I- 2

Theorem 2.1(4) shows that the sequence is BC in Banach density.
Example 2.8. While there are many examples of sequences of integers 

which are BC in (Banach) density, it is not easy to prove that a specific se
quence is eventually BC, even though from heuristic probabilistic arguments 
one would expect this to be the case. Thus it is interesting to note that
the sequence 1?jn+I 1, defined by a natural formula, is eventually BC in base 
10. In fact, the decimal expansion of the general term of the sequence is 
(essentially -  except for an additional block of 0’s) the recurring part in the 
decimal expansion of ут+т, so our claim follows from Example 2.6.

3. Saturating sets

Let g ^  2 be an integer.
Definition  3.1. A set Д ^  N is an M g-set if for every irrational a  and 

every #-block В  there exists an m G A such that the number та  contains 
the block В  infinitely often in its base g expansion.

Remark 3.1. Since there are only finitely many blocks of each particular 
length, if A is an Mg-set, then for every irrational a  and positive integer к 
there exists an m G A such that every block of length к appears infinitely 
often in the <7-adic expansion of та.

Remark 3.2. If A is an Mg-set, then there are infinitely many numbers 
m in A having the property in the definition (see Corollary 3.3). Conse
quently, we may rephrase Definition 3.1 by defining A to be an Mg-set if Да 
is a BS sequence for every irrational a.

The following lemma follows from Lemma 2.2.
Lemma 3.1. Let A =  {m i,m 2 , . . .}  Q N  and n \ ,n 2 , . . .  be any non

negative integers. Then A is an Mg-set if  and only if {gnim i, gn2 m 2 , ...} 
is.

Corollary 3.1. There exist Mg-sequences growing arbitrarily fast.
Corollary  3.2. It suffices to study the Mg property for sets o f integers 

not divisible by g.
For closed subsets (Ek) and E of T, we denote Ek — > E if the sequence 

Ek converges to E in the Hausdorff metric.
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L e m m a  3.2. Let Ek be a sequence of g-invariant subsets of T and r a 
non-zero integer. Then rEk — » T if and only if Ek — > T.

P r o o f . The “if” part is trivial. For the “only if” part, assume that 
rEk — *■ T. Let Eo be any limit point (in the Hausdorff metric) of the 
sequence of sets Ek- Then rEo =  T. Hence E0 has a non-empty interior. 
Being invariant under multiplication by g , the set E  must be the whole of 
T. This proves the lemma.

L e m m a  3.3. Д ^  N  is an Mg-set if and only if for every irrational a 
there exists a sequence n%k in A  such that for every sequence nk o f non
negative integers {ткдпс* : n ^  Пк} — » T.

P r o o f . Let Д  be an Mg-set. Let (Вк)^=1 be a sequence of 5-blocks 
so that Bk contains every block of length к. For each к , take an mk G Д 
such that the base g expansion of mfcO contains the block В  infinitely often. 
Clearly, for any Пк, the set {ткдпа : n ^  Пк} is ^--dense in T, and therefore
{mkgnot : n ^ n k} — » T.

The converse direction is similarly proved.
The two preceding lemmas give
L e m m a  3.4. Let Д ^  N and r G N . Then rA  is an Mg-set if and only 

if A  is.
T h e o r e m  3.1. The following conditions are equivalent:
(1) Д is on Mg-set.
(2) A E  — T for every infinite g-invariant set E Q T.
(3) For every infinite g-invariant set E Q T and e > 0 there exists an 

m  G Д such that m E is e-dense in T .
P r o o f . (2) =>• (1): Given an irrational a , let E  ^  T denote the set of 

all limit points of the sequence (gna ). It is readily verified that E  is infinite. 
Hence A E  = T, so that if В is any 5-block there exist m  G A  and x G E  
such that the base g expansion of m x  starts with 0.H01. It follows that if 
gna is sufficiently close to x, which happens for infinitely many numbers n, 
then the base g expansion of mgna starts with the block B. Consequently, 
the base g expansion of a  contains В  infinitely often.

(3) => (2): Trivial.
(1) => (3): We have to show tha t, if Д is an Mg-set, then any infinite 

(/-invariant set E  has arbitrarily dense dilations by elements of Д. Let £ > 0. 
Suppose first that E  contains an irrational point a. Take a positive integer к 
such that Since A  is an Mg-set there exists an m  G Д such that the
5-base expansion of m o  contains every 5-block of length к infinitely often. 
Therefore, the set m E  is г-dense.

It remains to deal with the case where E  consists of rational points only. 
We deal first with the special case in which 0 is an accumulation point of 
E. In this case there exists a real number x ф 0 such that fjk 6 E  for every
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non-negative integer n. (This follows, for example, from [2, Lemma 4.3].) Of 
course, x is rational, say x = and, replacing E  by — E  = {—x : x £ E} if 
necessary, we may assume th a t p, q > 0. Consider the number

OO

a = x ^ 2  9~Sj , 
j=1

where (Sj) is an arbitrary sequence satisfying sj+i — sg — > oo. Clearly, 
a  is irrational. Since, by Lemma 3.4, qA  is an Mg-set, there exists a 
sequence m-k in Д such that for every sequence n* of positive integers we 
have {qmkgna  : n ^  Пк} — »■ T . Now

OO

qm ka  = pmk ^  g~Sj . 
j=1

Thus I pmkgn i9 ~ S] '■ n = n fc| —» T. Consequently pnikE  — * T, and
by Lemma 3.2 we obtain ШкЕ — > T as well. Hence E  has arbitrarily dense 
dilations by elements of Д.

In general, given any accumulation point ß  of E, take a non-zero integer 
l with Iß = 0. In view of the preceding case, there exists a sequence mn in 
Д  with mnlE  — > T, so that by Lemma 3.2 we have m nE  — » T  as well.

This completes the proof.

Corollary 3.3. If A  is an Mg-set, then so is A  — F  for every finite 
set F.

In fact, this follows from the equivalence of conditions (1) and (3) in the 
theorem and the fact that there exist ^-invariant nowhere dense sets.

The theorem gives several general examples of Ms-sets. In [5], motivated 
by a result of Glasner [10], the notion of a Glasner set was defined. A set 
A  Q N is a Glasner set if, given any infinite subset A of T  and £ > 0, there 
exists an m £ A  such that m A  is £-dense in T. Since condition (3) of the 
theorem is the same as this condition, but with the requirement applying 
only to infinite ^-invariant sets, we immediately get the following result of 
Alon and Peres, based on an idea of Furstenberg (see Corollary 7.2 and the 
remark following it in [1]).

Corollary 3.4. Any Glasner set is an Mg-set.

Thus, (the non-quantitative version of) Mahler’s theorem follows from 
Glasner’s result, which may be paraphrased as stating that N is a Glasner 
set. Moreover, by Theorem 1.3 in [5], every set of positive upper (Banach) 
density is a Glasner set. Hence we obtain
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C o r o l l a r y  3 .5 .  For any irrational a and д-Ыоск B, the set o f those 
integers n for which the block В does not appear infinitely often in the base 
g expansion of na is o f 0 (Banach) density.

However, Theorem 3.1 provides also examples of Mg-sets which are not 
Glasner sets. In fact, according to [5, Theorem 1.4] if (nj) is a lacunary 
sequence, i.e., satisfies

nj +1
n, £ a > l, 3 г 1 ,

then it is not a Glasner set. In particular, any “one-parameter” multiplicative 
semigroup A = {/P : г 6 N} is not a Glasner set. Now if g and h are 
multiplicatively independent, then it follows easily from the results of [7, 
Chapter IV] that condition (2) of Theorem 3.1 is satisfied. Consequently we 
obtain

C o r o l l a r y  3.6. I f  g and h are multiplicatively independent, then the 
semigroup {hl : i G N} is an Mg-set.

It is worthwhile to note that another conjecture of Furstenberg [9] states 
that, under the conditions of Corollary 3.6 we have h1 E  — *• T for every 
infinite ^-invariant set E  Q T. According to this conjecture the set {/pj : j  6 
G N} is an Mg-set for any increasing sequence (i j ). Thus, if true, the 
conjecture would provide examples of arbitrarily fast growing Mg-sequences 
more interesting than those of Corollary 3.1.

P r o p o s it io n  3.1. I f  A is an Mg-set then for every finite g-block there 
exists an m  G A whose base g expansion contains this block.

P r o o f . Let В be a g-block. Extending В  if necessary we may assume it 
to neither start nor end with a 0. Consider the following g-invariant infinite 
subset of T:

E = Í — : n G n 1 .
1 9 n I

According to the implication (1) =>■ (3) in Theorem 3.1, there exists an 
m G A and a point x G E  such that the base g expansion of mx is 0. B . . .  
modulo 1. This easily implies that the block В appears in the base g 
expansion of m. This proves the proposition.

E x a m p l e  3.1. The proposition provides examples of “pretty large” sets 
of integers which are not Mg-sets. In view of Corollary 3.5, such sets must 
have density 0. However, the “Hausdorff dimension” of the set of all integers 
not containing a certain g-block in their expansion can be made arbitrarily 
close to 1 by taking this block sufficiently long, and such a set cannot be an 
Mg-set by Proposition 3.1.

E x a m p l e  3.2. Let A be the set of all positive integers whose g-adic 
expansion does not contain the block consisting of lg consecutive (g — l ) ’s for
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each g ^  2, where (lg) is an arbitrary sequence of positive integers. Selecing 
( lg) to grow sufficiently fast, we can make the “dimension” of the resulting 
set arbitrarily close to 1, while the set is not Mg in any base <7 ^ 2.

We conclude this section with a few
Qu estion s. (1) Suppose Д is an Mg-set. Is the set Д +  1 = {a +  1 : a G 

G Д} necessarily an Mg-set as well?
(2) Is the condition in Proposition 3.1 sufficient for Д to be an Mg-set?
(3) Suppose Д 1 U Д2 is an Mg-set. Is (at least) one of the sets Д1 and Д 2 

necessarily an M g-set? In other words, does the property of being an Mg-set 
have the Ramsey property?

4. T h e  failure o f th e  analogue for continued fraction
expansions

The analogue of Mahler’s result for continued fraction expansions would 
assert that, given any irrational a and finite block of positive integers, there 
exists a positive integer m  such that the continued fraction expansion of т а  
contains this block infinitely often. Our main result in this section shows in 
particular th a t this analogue is not true.

T heorem  4.1. There exist uncountably many irrationals a, having the 
property that the sequence of partial quotients of each multiple та diverges 
to 00.

The proof will be carried out in a series of steps. We start with a 
few notations and definitions. Given an irrational a , denote by cn(a) = 
= n ^  1, the sequence of convergents of a.

Defin itio n  4.1. A sequence of rationale к ^  1, is an
(1) ASC-sequence for an irrational a  if there exists an integer m such 

that rk = Cfc+m(a) for all sufficiently large к. (ASC -  Asymptotic Sequence 
of Convergents.)

(2) ASC~sequence -  if it is ASC for some irrational a.

Remark  4.1. When writing cn(a) =  or ^  we shall implicitly 
assume that (p, q) = 1 and q ^  1.

Lemma 4.1. A sequence of rationals rk = к ^  1, is ASC if and only
if there exists а ко such that either

РкЯк+l Pk+l4k = ( 1) 1 Qk+1 ^  Чк, к = ko 

or
РкЧк+1 -  Рк+1Як = ( - l ) fc+1, Як+1 > Як, к ^  fc0 .
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The lemma follows routinely from the basic theory of continued frac
tions. In fact, the conditions of the lemma and the formulas connecting the 
sequences of numerators and denominators of the convergents with the se
quence of partial quotients of a number enable a direct calculation of the 
partial quotients of a number a  whose convergents are eventually the ratio
nale Tfc.

D efinition  4.2. A sequence of positive integers qk is well-divisible if for 
every positive integer n we have n | qkqk+i for all к large enough.

D efinition  4.3. A sequence of positive integers qk is super-lacunary if

Ч к + i---------- > oo .
q k  к — KX>

P roposition  4.1. There exist uncountably many ASC-sequences o f ra- 
tionals г*, = ^  such that the sequence qk of denominators is well-divisible 
and super-lacunary.

P r o o f . We shall construct an irrational a  = [ao; tq, 02,...]  whose se
quence of convergents ^  satisfies the required conditions. Start in an arbi
trary way, say a0 = 0 and <q = 1, so that ^  = у and ^- =  ]-. The sequence 
of partial quotients ак, к ^  2, will be defined inductively and have the fol
lowing properties:

(1) If s ^  к is prime and then qk-i<q = — qk-i (modsfc).
(2) ak > к.

It is easily verified that these properties can be fulfilled, and in fact each 
ak can be chosen in infinitely many ways. Now the first of these conditions 
ensures that the sequence qk is well-divisible, and the second -  that it is 
super-lacunary. This proves the proposition.

T heorem  4.2. Let rk = ^  , к ^  1, be an ASC-sequence, with the se
quence of denominators qk well-divisible and super-lacunary. Then for every 
integer m  ^  1 the sequence mrk = Ц- is ASC  and its sequence of denomina-

1k
tors q'f. is both well-divisible and super-lacunary.

P r o o f . Obviously, it suffices to deal with the case of prime m. Employ
ing the information regarding the sequence qk and Lemma 4.1, and omitting 
finitely many terms from the sequence rk if necessary, we may assume that, 
say:

m  I g2/ - ъ  rn \ q2i, l ^  1, 

qk+i > Tn,qk, к |> 1,

PkQk+i -  Pk+iqk -  (-1)* , к ^  1 .
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Then

(4.1) p'2/_! =  P21- 1 , ?2í- i  =  P2í =  mP2U q'21 = P21, l ^  1,m

and consequently:

í4*íi+i ~ Рк+гЯк — (_1A  9Á:+1 > 9Íí = 1 •

Using again Lemma 4.1, this implies that тгк is indeed an ASC-sequence. 
From (4.1) and the fact that qк is well-divisible and super-lacunary we infer 
that q'k possesses the same properties as well, which completes the proof.

P r o p o s it io n  4.2. I f  a sequence of nationals rk — к ^  1, is ASC  
with qk super-lacunary, then rk converges to an irrational a whose partial 
quotients diverge to 00.

The proof is straightforward.
P roof o f  T heorem  4.1. Follows from Proposition 4.1, Theorem 4.2 

and Proposition 4.2.
As is well known, the continued fraction expansion of almost every real 

number (with respect to the Lebesgue measure) contains every finite block 
infinitely often (and even in some prescribed positive density). Thus there 
is no wonder tha t to construct a counter-example one needs some special 
numbers. The numbers used in Theorem 4.1 have good approximation 
properties. For example, they may be Liouville numbers, but we require that 
the sequence of partial quotients will satisfy some extra conditions. It seems 
as if these conditions are indispensable. Namely, one can show that no rate 
of growth of the partial quotients of a number can ensure that it behaves 
as in Theorem 4.1. For example, Petruska studies in a very recent paper 
[14], the set of strong Liouville numbers (i.e., numbers a  whose sequence of
convergents eventually satifies qn+1 > q^f for any M  > 0; equivalently,
the sequence of partial quotients satisfies an analogous condition). He proves 
that, usually, if a  is a strong Liouville number, then 2a is not. The conditions 
specified in Theorem 4.2 are very natural in view of [14, Theorem 3], and it 
may be that Petruska’s techniques can provide a version of our construction.

T h e o r e m  4.3. If a is a quadratic irrational, then for any block В of 
positive integers . 62, . . . ,  bk there exist infinitely many positive integers 
n for which the block В appears infinitely often in the continued fraction 
expansion o f not.

P r o o f . We may clearly assume that a  is of the form a ±  yfd, where 
a and d are integers, d not a square. If a = a + y/d, then the continued 
fraction expansion of a , as well as of any multiple thereof, is (disregarding 
the integer part) purely periodic (see, for example, [12]). Since the sequence 
(na ) is dense modulo 1, given an arbitrary block В , we can find infinitely
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many n ’s for which the expansion of na starts (upon omitting the integer 
part) with B. But then for each such n the block В occurs infinitely often 
in the expansion of na. In the remaining case, namely a — a — \/d , since 
the numbers a and ß — a + y/d are equivalent, as are na and nß for any n, 
if some n works for ß  and the block 5 , it works for a with the same block, 
and we are done by the preceding part. This proves the theorem.

R e m a r k  4.2. We believe that Theorem 4.2 is valid for any badly 
approximable number a.
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O N A  G A LLA I-TY PE PRO BLEM  
FO R  LATTICES

T. HAUSEL (Budapest)

1. In tro d u c tio n

Motivated by the well-known Helly-theorem [2], Gallai [1] raised the 
following problem in the Euclidean plane E 2. Let V  denote a finite collection 
of closed disks in E 2 such that every two disks of V  intersect. Find the 
minimum integer n with the property that for an arbitrary V  there are n 
points in E2 such that every disk of V  contains at least one of the points. 
Independently from each other, Danzer (unpublished) and Stachó [3] proved 
that n ^  4 i.e. any V  can be pinned down by 4 needles. An analogous 
problem arises if the needles can be chosen from a rather regular subset of 
E2 only. Let L be the lattice of E 2, i.e. the set of points of E 2 which have 
integer coordinates.

It is easy to prove the following Helly-type theorem (see [4]). If T  is a 
finite collection of convex sets in E 2 such that any four of the sets of T  have a 
lattice point in common, then there exists a lattice point common to every set 
of T . Moreover this theorem can be extended to the d-dimensional Euclidean 
space E d replacing 4 by 2d. Thus it is very natural to ask the following Gallai- 
type problem for planar lattices. Let T  denote a finite collection of convex 
sets in E 2 such that any three of the sets of T  have a lattice point in common. 
Find the least integer n such that for an arbitrary T  there exist n lattice 
points (i.e. n needles positioned at the lattice points) with the property that 
every set of T  contains (i.e. is pinned down) by at least one of the n lattice 
points (i.e. needles).

We prove the following

T heorem 1. I f  T  is a finite family of convex sets in E 2 such that any 
three o f them have a lattice point in common, then there exist two lattice 
points which pin down T .

R e m a r k . It is easy to  see th a t  2, i.e. the num ber of needles cannot be 
reduced to  1. M oreover, if we replace 3 (the num ber which guarantees tha t 
so m any convex sets always intersect in a common lattice point) by 2, then 
the problem  has a  triv ia l negative answer.
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2. P ro o f  o f  T heorem  1

First we introduce some simple notations. The points of the plane will 
be denoted by A, B , . . .  . The segment with endpoints A  and В  is denoted 
by AB , and the line passing through the points A  and В  is denoted by AB. 
We fix a so-called negative orientation of the plane. A convex polygon will 
be described with the sequence of its vertices according to the given negative 
orientation.

The line AB  splits the plane into two open half-planes F^,b and F b ,a- 
In this notation the order of the subscripts is important, namely, for any 
point C (D , resp.) of Fa ,в  (Fb ,a , resp.) the sequence AB C  (BAD , resp.) 
determines the negative orientation of the plane. For the closed half-plane 
determined by the open half-plane F ^ b we use the notation F ^ b (i.e. 
F a ,b = Fa,в  U A B ).

To each convex pentagon A B C  D E  we assign the convex pentagon 

A B C D E  = F a,c П F b ,d П F c,e  П F d ,a П F b ,b -

(In other words A B C D E  is enclosed by the diagonals of A B C D E .) The 
following two concepts are basically important for our proof.

D e f in it io n  1. Let L be the set of points of E 2 which have integer co
ordinates. A point of L is called lattice point. A lattice point P  is called 
a fixed lattice point (shortly an fl-point) if there are three sets of E  the 
intersection of which contains P  as the only lattice point.

D e f in it io n  2 . We define the following fixed lattice-point algorithm 
(FLP-algorithm). For each К  6 E  we proceed as follows. Let K^1) be the 
convex hull of the lattice points which are points in common of К  with two 
more sets of E . Note that K^1) is a convex lattice-polygon. Let E ^  be the 
family arising from E  when we replace К  in it by K^1). In general, suppose 
that K(') as well as E ^  have already been defined. Then take a vertex 
of K*d which is not an fl-point with respect to a triplet of E ^  containing 
K^d. Remove this vertex from the vertices of K^). Obviously, this algorithm 
terminates after finitely many steps, say n. Then it is easy to see that every 
vertex o fK H  is an fl-point with respect to a triplet of E ^  containing K(n). 
Observe that E ^  satisfies the conditions of the theorem.

After this for the next К  we use E instead of E . Finally (after finitely 
many steps), the above FLP-algorithm yields a “new” E  such that every 
vertex of any К  of E  is an fl-point with respect to a triplet of E  containing 
K . Then we say that E  is fixed.

We shall make use of the following

L em m a  1. I f  ABC  DE is a convex lattice-pentagon, then ABC D E  con
tains a lattice point.
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PROOF. (Indirect.) Let P1P2P3P4P5 be the convex lattice-pentagon with 
minimum rmmber_of lattice points for which the claim is false. Let М2 denote 
the region F 5i2 П F 2i4 П F 3jl (see Fig. 1).

Similarly we get M i,M 3,M 4 and M 5. Furthermore, let N 2 be the re
gion F 5 3 П F M П F4 5. In the same way we define the regions N1, N3, N4 
and N5. It is easy to see that the convex lattice-pentagon P1P2P3P4P5 
contains a lattice point different from its vertices. Let P6 be one of these 
lattice-points. By assumption, Pq ^  P1P2P3P4P5. Suppose that Pq g M 2. 
Then for the convex lattice-pentagon P\ P6P3P4P5 we have P\ Pp,P3P4/5  C 
С P1P2P3P4P51 a contradiction by the indirect assumption. This implies that 
the regions M i,M 2,M 3 ,M 4 and M5 do not contain a lattice point differ
ent from P\ , P2, P3, P4 and P5. Thus we may suppose that P6 g N, for some 
i 6 { 1 ,2 ,3 ,4 ,5}. Let i — 2. As the convex lattice-pentagon Р\РзРзРбРь con
tains less lattice points than P\ P2 P\ P4 P5 the indirect assumption implies the 
existence of a lattice-point P7 g P\ P2 P3 Pe,Ps■ Then it is easy to prove that 
either P7 g M5 or P7 g P1P2P3P4P5. In both cases we get a contradiction. 
This completes the proof of Lemma 1. Q.E.D.

T heorem  2. Consider five convex sets in E2 such that any three o f them 
have a point of L in common. Then for each convex set there are three others 
such that the intersection of these four sets contains a point of L.

PROOF. Let the five convex sets be denoted by K i ,K 2 ,K 3, K4 and K5. 
We are going to prove our claim for the set K4. We shall make use of the 
following special notation. P{1,,2,...>ifc(Pi1,i2,...,ik resp.) stands for a lattice- 
point in K i П K n П . . .  П K !fc ((É2 \  K i)  П Kjj П . . .  П K tJt resp.), 2 ^  г'х < 
< i2 < . . .  < ik ^  5.

The following rather technical lemma reduces the number of cases we 
have to investigate in the proofs of many statements.
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Lem m a  2 . Let P 2з  be a fixed lattice point with respect to the convex sets 
K x ,K 2, and K 3, and let P 2 3 P 2 P 3 P 2 '  be a convex lattice-quadrangle where P2 
and P2’ are distinct lattice-points in K i П K 2. Then P23 £ F 2>23 П Р 2з,2' П
n f 3,2- n F 2i3.

P r o o f . If P23 £ F 2i23 П F 3j2 then P2 £ РзР2зР23 be. P2 £ K3, but P2 ф 
ф P23 in contradiction_with the^fl-point property of P23. Similarly, we get a 
contradiction if P23 £ F32 2/ П F 2i 3 (Fig. 2.).

Fig. 2

If P2*3 £ F 3i2 n F 23,2 D F 3 2/, then Р23Р2Р23Р3Р2' is a convex lattice pen
tagon. By Lemma 1 there exists a lattice point A such that

A £ Р2 3 Р2 Р2 3 Р3 Р2 ' C  P23PÍ3P2' П P2 3 P2 3 P3  n P23P2P3 С K 2 П Кз П K j,

but А ф P23 in contradiction with the А-point property of P23. The case 
P'23 € F2/)3 n F 2-,23 n F 2,3 can be disproved similarly.

If P23 £ F 3j2 П F 2/j3 then P3 £ P2<P2P2*3 C K 2 but P3 ф P23, a contradic
tion.

If Pi3 £ F 2,,23 П F 2i3 П F 2,23, then Р2зР23Р2Р3Р2; is a convex lattice 
pentagon. By Lemma 1 there exists a lattice point A such that

A £ P23P23P2P3P2' С P23P2P2' П Р23Р23Р3 С Kx П K 2 П K 3,

but A ^  P23, a contradiction. Similarly, we get a contradiction if P23 £ 
€ F 23,2, П F 23f2 П F3)2. □
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Let с = {К 1,К 2,К з ,К 4,К 5} and apply the FLP-algorithm to C. Then 
we take Kj which is convex lattice-polygon with the property th a t each 
vertex is an fl-point PtJ for some i and j  with respect to K 4, furthermore we 
take К г and K j .  Obviously, two vertices cannot have the same “name” PtJ. 
As the number of sides of K 4 is at most 6 we distinguish 5 cases. Each of 
them has some further subcases depending on the positions of the Рг j ’s. We 
prove Theorem 2 as well as the fact that K 4 is either a triangle or a point. 
The rough idea of the proof is the following: we take a point P*-k and show 
that independently from its position the above claim is true. However, there 
are some cases where we have to consider the positions of two P*jk s.

I. K i is a convex hexagon. The vertices of K 4 are the points P,y. Suppose 
that a vertex of K 4 , say Р2з- belongs to more than three convex sets, say 
Р2з £ K j  П K 2 П А'з П K 4 . But then P24 is not an fl-point with respect to 
K 4 , K 2 and K 4 , a contradiction. Thus every vertex of K 4 belongs to  exactly 
three convex sets. Next we prove that any two opposite vertices of K 4 cannot 
be covered by К г, where i > 1. Namely, assume that K 4 = А 1А 2А з А 4 А 5Аб 
with Ai = P23 and A4 = P24. Without loss of generality we may assume 
that A3 =  P25. First we consider the case A2 = Рз4. As P 23P 34P 25P 24P 45 is 
a convex pentagon, Lemma 1 implies that there exists a lattice point В  such 
that

В £  P 23P 34P 25P 24P 45 С P 34P 24P 45 П P 23P 25P 24 C  K 4 П K 2 П K 4 .

Finally, В ф P24, a contradiction since P24 must be an fl-point.
Now assume that A2 =  P35. Since Р2зP35P25P 24P45 is a convex lattice 

pentagon, hence there exists a lattice point В  such that

В  £  P 23P 35P 25P 24P 45 С P 23P 25P 24 n  P 35P 25P 45 C  K i  П K 2 П К 5 ,

but В ф P24 so we get a contradiction since P24 is an fl-point. Finally, if 
A2 =  P45, then a similar argument yields a contradiction.

Thus it is sufficient to consider the convex hexagon P 23P 25P 35P 45P 34P 24 
(see Fig. 3).

If P345 exists, then Рз45 ф Рз4 which we proved above, and this is 
contradiction since Рз4 is an fl-point. Hence P |45 exists. As P35 is an fl- 
point and P 35P 45P 23P 25 is a convex quadrangle, by Lemma 2 we get P£45 £ 
£ F 45,23. On the other hand P34 is an fl-point and P 34P 24P 23P 45 is a convex 
quadrangle so by Lemma 2 we get Pg45 £ F 23j4s, a contradiction. □

II. K \ is a convex pentagon. We may assume that the vertices of K 4 are 
P23, P24, P25, P 34 and P35. It is easy to prove that we have to investigate four 
cases only.

(a) Ki is the pentagon Р2зРз5Р25Рз4Р24. By Lemma 1 there is a lattice 
point A such that

A  £  P 23P 35P 25P 34P 24 С  P 23P 25P 24 0  P 23P 35P 34 C  K 4 П K 2 П K3.
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Fig. 3

Since А ф P23 , this contradicts the А-point property of P2 3 .
(b) К ! is the pentagon Р2ъ^35^23^34^24- If P45 G P23P24P25, then 

P 45 € K2, but P45 ф P24, a contradiction.
If P45 G P23P34P24, then P23P45P24P25P35 is a convex pentagon, so by 

Lemma 1 we have a lattice point A, such that

A E P23P45P24P25P35 С P23P24P25 П P45P25P35 С К ,П  K2 П K5,

but A ^  P25, a contradiction. Similarly we get a contradiction if P45 E 
£  Р 2 ь Р з ь Р 2 3 -

Notice that if K i is a P25P34P23P35P24 pentagon we can proceed similarly.
(c) Ki is the pentagon P34^35^23^25^24- We may assume that P45 E 

e  P23P24P34 ( F ig .  4). Namely, if P45 E P23P34P35, then P45 E K 3. As 
P45 Ф P34, this contradicts the fl-point property of P34.

Since P25 is an fl-point, P25P24Í45P23 is a convex quadrangle. Then 
Lemma 2 implies that P235 e  F 45)23- If P235 exists, then P23 and P25 are 
А-points. As P35 is an fl-point and P45P34P35P23 is a convex quadrangle by 
Lemma 2 we get P 2 3 5  e F 23,45, a contradiction.

(d) Кг is the pentagon P34P23P25P24-F35. As P34 and P35 are fl-points, 
Р з 45 does exist (Fig. 5). Since P 34 is an fl-point and P34P23P24P35 is a convex 
quadrangle, we get by Lemma 2 that Рз45 G F 24,35 П F34i25 П F 23,34 П F 23,24-

If F345 € F 25,34 Л F34 35, then P34 E P345P25F35 С K5, which contradicts 
the fl-point property of P35. Hence we may suppose that Pg45 G F 23,34 П 
П F 34,25 П F 24.35-

If P235 exists, then we get a contradiction since P23 and P25 are fl-points. 
Thus P235 exists.
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Fig. 5

Since P25 is an fl-point, P25P24P35P23 is a convex quadrangle thus Lemma 
2 implies that

P235 G ^ 35,23 П F 25,23 П F 24,25 П F24i35.

If P235 G F35)25 n F 25)23, then P25 G P235P35P23 C K3 which contradicts the 
fl-point property of P23. Hence we may assume that P%35 6 F 24,25 П F35)23 П
П F 25j35.

Since P3*45 E F 25)34 П F 235»j25 П F235*)3s we get that P345P235P25P35 is a 
convex quadrangle. As P25 is an fl-point P23 G P345 ̂ 2*35 P25 P35 С K5 cannot
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occur. Thus p 23 ^ ^345̂ *235̂ 25^35 SO

p 23 G F 235*,25 П F35,345» П F 235*,345*-

It follows from the foregoing tha t P23P235P25P35P345 is a convex pentagon. 
Hence by Lemma 1 there exists a lattice point A such tha t

A £ Р 2 3 Р 2 3 5 Р 1 5 Р 3 5 Р 3 4 5  С P 2 3 P 2 5 P 3 5  П Р 3 4 5 Р 2 3 5 Р 3 5  C K i П К 3 П K5.

Since А ф P35 and P35 is an А-point, this is a contradiction. □
III. K t is a quadrangle. It is easy to prove that we have to investigate 

four cases only.
(a) K i is the quadrangle Р 2з Р 24Р 4б Р з 5- If P34 G P 2 3 P 2 4 P 2 5  С K2 or 

P 3 4  G P 2 5 P 3 5 P 4 5  С K5, then this contradicts the А-point property of P 2 3  and 
P 2 4  or P35 and P 4 5 . Thus we may assume that P34 £ P 2 4 P 4 5 P 2 5  (Fig. 6).

Similarly we may assume that P25 £ Р2зр24Рз4- Then P23P25P34P45P35 
is a convex pentagon, and according to Lemma 1 there exists a lattice point 
A  such that

A £ Р23Р25Р34Р45Р35 С P23P34P35 П Р25Р45Р35 C K i П K3 П K5 

but А ф P35, a contradiction.
(b)K 4 is the quadrangle Р2зр24Рз5Р45- If P25 £ P23P357 then Р2ъ G K3, 

but this contradicts the fl-point property of P23 and P35 (Fig. 7).
If P25 G P23P35P45 then P23P24P35P25 is a convex quadrangle_and since 

P23 is an fl-point, applying Lemma 2 we get that Р^34 £ F23,25 П F24.23- (If 
P234 exists we get a contradiction since P23 and P24 are А-points.) Then 
P23 G P234P24P45 С K4, but this contradicts the fl-point property of P23 and 
P24. Similarly, we get a contradiction if P23 £ P35P23P24•
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Fig. 7

Fig. 8

(c) K j is the quadrangle .P23F 25P 24F34. If F35 or F45 6 P23P25P24 C 
С K2, then we have a contradiction since P23 and P25 or P24 and P25 are 
fl-points. Thus we may assume that P35 and P45 € P23P24P34 (Fig. 8).

If P235 exists, then we get a contradiction as P23 and P25 are fl-points. 
Thus we may suppose that Р£з5 exists.
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If ^235 € F 25,23 n F 34;255 then P25 É Р235Р34Р2З C_K3, but P2S ф P23, a 
contradiction. Our proof is similar if -̂ 235 £ F 25.34 П F 24,25-

I f  ^2 3 5  €  F 23,25 П F 24 .25  П F 24,35, t h e n  Р £35Р 2 4 Р 35Р 23Р 25 IS а  СОПУвХ 
pentagon. Applying Lemma 2 we have a lattice point A for which

A £ P235 р24рзьр 23р 2ь С P24P23P25 n P235P35P23 C K i  П K 2 П K3.

As A ^  P23 this is a contradiction. We can settle the case P£35 £ F45)23 П 
n  F 25,23 П  F 25,24 similarly.

If P 235_ £  F 24,25 П F 35>24, then P24 G Р 2*35Р з 5Р 25 C K 5 , a contradiction. 
If 2̂*35 £ F 25,35 n F35,24, then the reasoning is similar.

If P 235 e  F 35i24 П F 35 i23F 25,24, then Р1зъР3ьР23р 2Ър24 is a convex pen
tagon thus according to Lemma 1 we have a lattice point A such that

Л 6 2̂*35 ^35P23P25P24 C P235P35P25 П Р235Р2зР25 П Р3ЪР2ЬР 24 €
e Кг n к2 n к5.

As A ^  P25 we get a contradiction. The reasoning in the case P235 e F 24,25 П 
0  F23,35 n  F 23,34 follows word for word the previous reasoning.

If P235 G F 45j25 П F 23,35? then P35 or P45 G P235P23P24 С K2, but this is 
a contradiction since P23 and P25 or P2\ and P25 are fl-points.

(d) K j is the quadrangle P23P34P25P24• If P35 or P45 G P25P24P23, then 
we get a contradiction as in the case (c). Hence we may assume that P35 and 
P45 € P34P25P23 (Fig- 9).

P235 does exist. (The proof is the same as in the case (c).)
If P235 ^ F 45)25 n F 25,35 П F34j23, then P35 G р2з5Р25р 23 С K2, but this 

contradicts the_fl-pointj>roperty of P23 and P25.
If P235 £ F 45i23 П F 25,45? then P45 G P235P25P23 C A'2? but this is a 

contradiction jin ce  P24_and P25 are fl-points.
If Рг*з5 e  F 23,45 П F 25,34, then P45 G Р235Р23Р34 C K3. This is possible 

only in case P45 = P34. But then this vertex is a P35 vertex and changing 
K4 and K5 we get case (c). (Notice that we have not utilized the fl-point 
property of P34 in the reasoning of case (c).) Hence we get a contradiction 
just like in case (c).

If P235 e  F 24,25 П F 34,25 П F 24,23, then Р235Р2лр23р2Ъ is a convex pen
tagon. According to Lemma 1 we have a lattice point A such that

A € p 235P24P23P34P25 С Р235Р23Р34 П P24P23P25 C  K j П K 2 П K3.

Since А ф P23_this is ji contradiction.
If P 235 *= F 23.34 П F 24 35, then P24 G P235P23P25 C K 2. As P24 P34 this

is a contradiction.
If 2̂*35 ^ F 24,25 П F35;24, then P24 G Р23ъР3ър 2Ъ C K 5. Since P24 ф P23 

this is a contradiction.

Acta  Mathematica Hungarica 66, 1995



ON A G A L L A I-T Y PE  PR O B L E M  FO R  LA TTIC ES 137

Fig. 9

If P235 6 F '23,24 n F 23,45 П F 25,24, then P ^ bP23pAbp 2bp 2i is a convex 
pentagon, hence by Lemma 1 we get a lattice point A such that

A £ ^ 35^ 23^ 45̂ 25^24 C ^ 24̂ 23^25 П P.235P45P25 C K i П K 2 П K5.

As А ф P25 we get a contradiction.
If F235 ^ F 45i23 П F 23 25, then P23 e F2*35 f 45 p25 С K5. Since P25 ^  P23 

we get a contradiction.
Thus we may suppose that P2*35 £ F 25;23 П F 34,23 П F 35)25.
If P245 exists, then we have a contradiction as P24 and P25 are fl-points. 

Hence we may assume that P245 exists.
Since P24 is an fl-point and Р2зРз4Р2бР24 is a convex quadrangle hence 

applying Lemma 2 we get that

P245 6 F 24,25 П F 23)24 П F 34 25 П F 23j34.

Since P245 G F35j25 П F 235*t35 П F 235»i25, Р245Р2з5Рз5Р25 is a convex quad
rangle.

If P24 G Р245Р2зьРзьР2ь C K 5, then since P24 ^  P25 we get a contradic
tion.
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If ^24 ^  ^ 245̂ 235̂ 35-f25, then P24 G F 235*,35 П F 235*i245* n F 25,245*? thus 
P24F235F35-P25F245 is a convex pentagon. By Lemma 1 we get a lattice point 
A such that

A G ^ 2 4^ 2*35^35^ 2 5 ^ 4 5  С P34P35P25 П ^ 24^ 35^25 П ^ 2*35^ 5^*45 C
C K i П K2 LI K5.

But this is a contradiction since A ^  P25. □
IV. K i is a triangle. It is easy to prove that we have to investigate three 

cases only.
(a) K i  is the triangle P23P24P25. Then P34 G K i П K 2, which is a con

tradiction since P23 and P24 are fl-points.
(b) K i is the triangle Р2зР24рз4- If P234 exists, then we get a contra

diction as P23 and P24 are fl-points. Thus we may suppose that Р£ы  exists 
(Fig. 10).

Fig. 10
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It is easy_to prove_that we have to investigate the following two cases.
If ^234 e ^34,24П F 24,23? then P24 £ P234P34P23 С K 3 but this contradicts 

the fl-point property of ^ 23-
If P'234 £ ^ 24,23 П F34 25 n F24,34, then P24 £ Р234Р34Р2З С K3 i.e. P25 £ 

£ К! П K 2 П K3 П K 5. Thus in this case Theorem 2 is true.
(c) K[ is the triangle P24P25F34. If P45 £ P23P24P25 C K 2, then P45 £ 

£ K t П K 2 П K 4 П K 5 which proves Theorem 2 in this case.
If P23 £ P45P34P24 С K4, then P23 £ Ki П K 2 П K3 П K 4. Hence we may 

assume that P45 £ F 24)23.
If P45 £ P23P34 C K 3, then P45 £ К] П K 3 П K 4 П K5 and we are done. 

We may assume that P45 ^ P23P34.
It follows from the foregoing that we have to investigate the following 

two cases:
(a) P23P45P34P24 is a convex quadrangle. If P234 exists, then we get а 

contradiction since P24 and P34 are fl-points. Thus P234 exists (Fig. 11).

Since P34 is an fl-point and P34P 24P 23P45 is a convex quadrangle, ap
plying Lemma 2 we get that P234 £ F 34i45 П F 24i34. Then we have that 
P34 £ P234P24P25 C K 2 thus P34 C K i П K 2 П K 3 fi K 4 which is our claim.

(/?) P34P45P23P25 is a convex quadrangle. If P245 exists we get a con
tradiction since P24 and P25 are fl-points. Thus P245 exists (Fig. 12).

If f°245 e F 23>45 П F 25,23? then P23 € P245P25P45 C K 5. Thus P23 £ K i П 
П K 2 П K 3 П K 5.

If P"245 G F 25,24 n F25,34 П F45j23, then P23 £ P245P34P24 С K 4. Thus 
P23 £ K i П П K 3 n_K4.

If ^2*45 £ ^ 34,25 n F 25>24, then P25 £ P245P34P24 C K 4. Thus P25 £ K i П 
П K 2 П K 4 П K 5.

If P“24b ^ F 23,25 П F 34>24, then we have two cases since F 23j25 П F 34i24 =  
= (F 23j25 fl F 35j24) U (F 24j35П F 34 24) wherever P35 is. If P245 £ F23,25 П F 35>24,
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F ig . 1 2

then P35 G P245-P34-P24 С K4. Thus P35 G K i П K3 П K5. If P^g G F24,35 П 
П F 34,24? then P35 G ^245-^24^25 С K2. Thus P35 G K i П K2 П K3 П K5.

If P£45 G F 24,45 n F45 25) then P45 G P245P24-P25 С K2. Thus P45 G K i П 
П K2 П K4 П K5.

Thus we may assume th a t ^245 e F 25,45 П F 23.25 П F 24,34-
If P235 exists then Theorem 2 is true. Hence we may suppose that P^35 

exists.
If 2̂*35 £ F 24,25 n F45i25, then the proof is similar to the previous one.
If P235 £ F25,45 n F 23.25 n F 24,34, then P45 G P235P23F34 С K3. Thus 

P45 G Ki П K3 П K4 П К 5-
If P"235 £ F 23,45 П F 25,23? then the proof is similar to the proof of the case 

P *-* 245 •
If Р235 ^ F 25,24 П F 25,34 П F 45j23> then P235F25P45P245 is a convex quad

rangle. Namely, ^245 G F 235,45 П F 25,235 П F 25,45-
If Р23 G P235 P25 P45 P245 ? then P23 G K i П К 2 П K3 П K 5.
If F23 ^  P235P25F45P2455 then P23 G F 25.235 n F 45>245 П F 235,245- Thus 

P23P235P25P45P245 is a convex pentagon. By Lemma 1 we have a lattice 
point A such that

A G P23P235P25P45P245 C P23F25P45 П -P235P25-P245 C Ki Л K2 Л K 5 ,

a contradiction.
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If Р235 £ ^ 34,25 n F 25,23> then P25 6 F235P34P23 С K3. Thus P25 G K i П 
П K2 П K3 П K5.

II ^235 € F 34,25 П F 45^4 П F 23,25? then P245P23P25P235 is a convex quad
rangle. Namely, P2*45 G F 23,35 П F 25,235 П F 23,235-

If P45 £ F245P23F25P235, then P45 G K i П K2 П K4 П K5.
If F45 ^ F245P23F25P235, then P45 G F 245.23 П F 25,235 П F 245.235- Thus 

F45P245P23P25P235 is a convex pentagon. By Lemma 1 we have a lattice 
point A such that

A G P45P245P23P25F235 C P45F23P25 П P245F25P235 C Ki П K2 П K5, 

a contradiction. □
V. K i is a segment. Then К, П Ку П K i contains a lattice point in 

common. Thus applying Helly’s theorem to the segment К , П K i we get 
that they have a lattice point in common. Hence, we have proved that 
in this case the convex sets have a lattice point in common, which proves 
Theorem 2.

In fact, we have proved more. Namely, we have shown that the fixed 
system of five convex sets of Theorem 2 either have a lattice point in common 
or each of them is a triangle. □

Now we are able to prove Theorem 1, though we still need a few defini
tions and several lemmas to do so.

We need the following

D efinition 3. Let T  be a fixed system of at least four sets such that 
any three of them have a lattice point in common. We say that T  is good 
if the convex hull of T  possesses a vertex S  which belongs to exactly three 
sets. Let us denote these sets by Ki ,K2 and K 3 and call them the main 
configurations of T . If a set of T  is not a main configuration then we call it 
an ordinary configuration.

THEOREM 3. Let T  be a good, system of convex sets. Then one of the 
three main configurations of T  is such that removing it from T  the remaining 
convex sets have a lattice point in common.

In the following proof step by step we discover more. We are going to 
characterize the good systems of convex sets. Notice that applying the FLP- 
algorithm we get lattice-polygons.

Lemma 3. Each vertex of a main configuration is included in another 
one.

P roof. Let A be a vertex of K4. Suppose that A 0  K2 and A K3. 
This entails a contradiction. As A is a vertex of K i we can find K4 and K5 
such that A is an fl-point with respect to K i ,K 4 and K5. It follows from 
the foregoing that K i ,K 4,K 5 and K 2; K !,K 4,K 5 and K 3; K i,K 2,K 3 and 
K4; К ь К 2 , К з  and K5 groups of four sets do not contain a lattice point in
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common. So we cannot choose further three sets from K 2,K 3,K4 and K5 
to K j such that this four sets have a lattice point in common. Thus it is a 
contradiction with Theorem 2. □

Let us denote the convex hull of K i,K 2 and K3 by M. Let M be the 
convex lattice-polygon A \A i . . .  А*,5 , where S  is an fl-point with respect to 
K b K 2 and K3. Ai is naturally a vertex of some main configuration of T . 
Hence according to Lemma 3 it is included in another one, too. Then we say 
A{ is a type B\2 vertex, if At- £ K 3 and A, £ Ki П K 2. We define type Hi3 
and type H23 vertices similarly.

L emma 4. M has got type i? i2 ,-Bi3 and J523 vertices.
P roof. Assume that there is no type B12 vertex. Then A, £ K 3 for 

each i. Since 5  £ K 3 we get that M  C K 3. But K 3 С M thus K 3 = M. We 
show that there is only one lattice point in K i П K 2. Suppose that there is 
a lattice point Si such that Si ф S  and Si £ K i П K 2. In this way we get 
that Si £ K i П K 2 C K 3, that is, Si £ Ki П K 2 П K 3 which contradicts the 
fl-point property of S. Thus the only lattice point of K i П K 2 is S. Since any 
three sets of T  have a lattice point in common, hence any set of T  contains 
S, which is a contradiction. □

Lemma 5. M has got exactly one type B i2 ,-Bi3 and B2 3  vertex.
P roof. (Indirect.) Let n be the least number with the following prop

erty: There exists a system C of n convex sets such that any three sets of 
C have a lattice point in common, moreover the claim is false for C. Let us 
consider such a C. Then we may assume that there are two type B \ 2  vertices, 
say Ai and A2.

It is trivial that n ^  5. We show that n ^  6 . Namely, if n = 5 then 
among the vertices of Ki we have 5 , Ai, A2 and a type f?i3 vertex. But that 
is impossible since we have already proved that K i is a triangle or a point. 
Thus n ^  6 .

We need the following
Lemma 6 . There exists at most one ordinary configuration of C with the 

following property: Removing this configuration from C then Ai will not be 
an fl-point with respect to any triplet of C containing a main configuration.

P roof. Suppose that this statement is false. Then there are two sets 
K4 and K5 with the previous property. It is easy to see that Ai is an fl- 
point with respect to K i,K 4  and K 5; and similarly with respect to K 2,K4 
and K5. Then the sets of groups K i,K 4 ,K s and K 3; K 2,K 4,K s and K 3; 
K i ,K 2,K 3 and K4; K i ,K 2,K 3 and K5 do not contain a lattice point in 
common. But this contradicts Theorem 2. □

If there exists a convex set of C that satisfies the conditions of Lemma 6 
then let us call it K4. Similarly we define К  5 by replacing Ai by A2. Since 
n ^  6  there exists a convex set of C, say K t, different from K i ,K 2,K 3,K4 
and K5. Removing K; from C we get a convex set system C . containing
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n — 1 sets. Let us apply the FLP-algorithm to C . Notice that C  is good 
with respect to S. We prove that the claim is false for C . By Lemma 6 we 
get a triplet of C  containing K i, in which A\ is an fl-point with respect to 
it. According to Lemma 6 we have that A\ or A<i is an fl-point with respect 
to a triplet of C containing K i or K2 (all the variations are allowed).

In this way, applying the FLP-Algorithm we cannot eliminate A\ or A2 
from neither K i nor K2. Thus for C  the claim is false, a contradiction. □

In the following part of our proof we will describe all the good C systems 
containing five sets.

Let the five sets be denoted by K i,K 2 ,K 3 ,K 4 and K5. Let K i,K 2 and 
K3 be the main configuration of C with respect to S.

Let M ' be the convex hull of C. Then M  =  M '. Namely, each triplet of 
C contains a main configuration. Let Ai, A 2 and A3 be the type B23, i?i3 
and B12 vertex of M , resp. Let M be the convex quadrangle 5A1A2A3. As 
each set of C is a triangle, K i is the triangle 5A2A3, K2 the triangle SA1A3 
and K3 the triangle SA\A2- We prove that A1A2A3 is a member of C.

If each of the points Ai, A2 and A3 is covered by four sets of C, then K 4 
and K5 will contain A \ , A2 and A3. Since K 4 and K5 are triangles we get 
that A1A2A3 -- K4 = K5.

If some A, is covered by exactly three sets of C, then C will also be good 
with respect to A,-. Thus it follows from this that A\ A2A3 is a member of C. 
Let us call it K 4.

We show that SA2 and A1A3 do not contain any lattice point except the 
endpoints.

Let N  be the intersection of the diagonals of M. Notice that any three 
sets of C have a point in common, hence it follows from the Helly-theorem 
that there exists a point common to every set of C. As the intersection of 
К х ,К 2 ,К з and K4 is a point N  we get that N  G K5.

Let D be one of S, Ai, A2 and A3. If D N  contains a lattice point different 
from D, say E, then E  is covered by all sets K; covering D. But D is an 
fl-point with respect to some triplet of C, thus we are led to a contradiction. 
Hence the diagonals of M do not contain a lattice point except the endpoints. 
Since Kj П K3 П L = 5 U A2 and K2 П K4 П L = Ai U A3, K5 contains two 
neighbouring vertices of M. Let these two neighbouring vertices be Ai and 
A2. As K5 is a triangle, its third vertex is A5 where A5 G K i П K2. This 
way we described all good C containing five sets (see Fig. 13). □

Let C be a good system of convex sets, and let Ai, A2 and A3 be the 
type F?23, .Вт and В 12 vertex of M , resp.

Lemma 7. There exists an ordinary configuration of C, K j such that 
A2 G Kj and A2 is an fl-point with respect to K i, K3 and K j.

P r o o f . Suppose that the claim is false. A 2 is an fl-point with respect to 
a triplet containing K i. Let this triplet be K i, K4 and K 5. Let us consider 
Q = { K i,K 2,K 3,K 4,K5}. Apply the FLP-algorithm to Q as follows: Let 
us consider K3. A2 is not an fl-point with respect to a triplet containing K3,
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Fig. 13

otherwise A2 would be an fl-point with respect to K 3,K 4 and K 5. Then we 
could get a contradiction in the same way as in the proof of Lemma 6. Thus 
applying the FLP-algorithm we can remove A2 from K3. Hence we get a 
good Q' with the property that one of the main configurations of Q' , K j, has 
got a vertex A2 which is not included in another main configuration, and 
this contradicts Lemma 3. □

L em m a  8 . A2 is covered by all the ordinary configurations of C.
P r o o f . According to Lemma 7 there exists an ordinary configuration of 

C; K 4 such that A2 is an fl-point with respect to K i ,K 3 and K 4. Assume 
that there exists an ordinary configuration K5 not containing A2. Let Q — 
= {K4, K 2, K 3, K 4, K5}. Applying the FLP-algorithm to Q we get a good 
Q'. Let M be the convex hull of Q'. Obviously, A2 and S  are vertices of M. 
Let A3 be a type B \2 vertex and A\ be a type B23 vertex of M. We prove 
that M is the quadrangle 5 AÍ A2A3. Consider C. If Я  is a type B23 lattice 
point, then H G Fs^; otherwise we get a contradiction since S is an fl-point 
with respect to K 4, K2 and K 3. Similarly if G is a type #12 lattice point 
of M , then G G F ^s. Thus it follows that M is the quadrangle SA'1A2A'.i . 
Notice that A2 is not covered by any set of C different from K 4,K 3 and K 4. 
Thus Q has got two opposite vertices S  and A2 with the following property: 
S  and A2 are included in exactly three sets of C. But this is impossible. 
Thus we get a contradiction. □

Notice that Theorem 3 follows from Lemma 8. □
Let us consider a convex set system T  satisfying the conditions of The

orem 1. Applying the FLP-algorithm to T  we get a fixed T '. Let M  be the 
convex hull of T '. Let R  be one of its vertices. Obviously R  is an fl-point. 
Suppose that R  is an fl-point with respect to K 4,K2 and K 3. Removing all 
sets of T ' containing R  and different from K 4,K 2 and K 3 we get a convex 
set system C. Applying the FLP-algorithm to C we get C. Obviously C  is
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good. According to Theorem 3 there exists a lattice point J  covered by all 
ordinary configurations of C . It is easy to see that J  and R  pin down T . 
The proof of Theorem 1 is complete. □
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PRO PERTIES OF H Y PE R C O N N E C T E D
SPACES

T. NOIRI (Yatsushiro)

1. Introduction

A topological space X  is said to be hyperconnected [21] if every pair 
of nonempty open sets of X  has nonempty intersection. Several notions 
which are equivalent to hyperconnectedness were defined and investigated in 
the literature. Levine [11] called a topological space X  a D-space if every 
nonempty open set of X  is dense in X  and showed that X  is a Л -space if and 
only if it is hyperconnected. Pipitone and Russo [19] defined a topological 
space X  to be semi-connected if X  is not the union of two disjoint nonempty 
semi-open sets of X  and showed that X  is semi-connected if and only if 
it is a Л -space. Maheshwari and Tapi [12] defined a topological space X  
to be s-connected if X  is not the union of two nonempty semiseparated 
sets and showed the equivalence of s-connectedness and semi-connectedness. 
Hyperconnected spaces are also called irreducible in [22]. Recently, Ajmal 
and Kohli [2] have investigated the further properties of hyperconnected 
spaces.

In the present paper, we shall use the terminology “hyperconnected” to 
express the equivalent notions previously stated. In Section 3, we obtain sev
eral characterizations of hyperconnected spaces by using semi-preopen sets
[3] and almost feebly continuous functions. The main result of the last sec
tion is that hyperconnectedness is preserved under almost feebly continuous 
surjections. This is an improvement of the result that hyperconnected spaces 
are preserved by feebly continuous surjections [2, 15].

2. Preliminaries

Throughout the present paper, ( X, r )  and (X, a)  (or simply X  and Y)  
will denote topological spaces on which no separation axioms are assumed 
unless explicitly stated. Let A be a subset of a topological space X .  The 
closure of A and the interior of A are denoted by Cl (A) and Int (A), respec
tively. A subset A is said to be semi-open [10] (resp. preopen [13], ß-open
[1]) if A C Cl (Int (A)) (resp. A C In t(C l(A )), A C Cl ( Int (C l(A ))).
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Andrijevic [3] defined a subset A to be semi-preopen if there exists a pre- 
open set У in A such that V  С А С C1(P) and showed the equivalence of 
/З-openness and semi-preopenness. The complement of a semi-open (resp. 
preopen, semi-preopen) set is said to be semi-closed, (resp. preclosed, semi- 
preclosed). The semi-closure [5] (resp. preclosure [6], semi-preclosure [3]) of 
A , denoted by sCl(A) (resp. pCl(A ), spCl(A)), is defined by the intersec
tion of all semi-closed (resp. preclosed, semi-preclosed) sets of A containing 
A. The union of all semi-open sets contained in A is called the semi-interior 
of A and is denoted by sín t (A). A subset A is said to be regular open (resp. 
regular closed) if A = Int (Cl (A)) (resp. A =  Cl ( Int (A))). The family 
of all semi-open (resp. preopen, semi-preopen, regular open, regular closed) 
sets of X  is denoted by SO (X )  (resp. PO (A), SPO (A ), RO (A), RC (A)).

L e m m a  2 .1 .  The following properties hold for a topological space ( A ,  r ) ;
(a) г  C SO (А) П PO (A),
(b) SO (A) U PO (A) C SPO (A).
Lemma 2.2 (Andrijevic [3]). Let A be a subset of a topological space A . 

Then the following properties hold:
(a) s Cl (A) = AU Int (Cl (A)),
(b) p Cl (A) = A U Cl (Int (A )), and
(c) sp Cl (A) = A U Int ( Cl (Int (A ))).

Lemma 2.3 (Noiri [16]). A topological space X  is hyperconnected if and 
only if U П V ф 0 for any nonempty sets U, V  G SO (A).

3. Characterizations of hyperconnected spaces

In Theorem 3.1 of [16], the author showed that a topological space A 
is hyperconnected if and only if рС 1(С) = A for every nonempty set U G 
G SO (A). This type of characterizations of hyperconnected spaces are com
pletely clarified by statements (a)-(e) in the following theorem and Example
3.2 (below).

T heorem 3.1. The following are equivalent for a topological space X :
(a) A is hyperconnected;
(b) Cl (VP) =  A for every nonempty set VP G SPO( X) ;
(c) s Cl (VP) = A for every nonempty set VP G SPO (A );
(d) p С1(С) - A for every nonempty set U G SO (A );
(e) spCl(Z7) = A  for every nonempty set U G SO (A);
(f) U П VP ф 0 for any nonempty sets V G SO (A) and VP G SPO (A).
P roof, (a) —> (b): Let VP be any nonempty semi-preopen set of A. Then, 

we have Int(Cl(VP)) ф 0 and hence A =  Cl ( Int (Cl(VP))) = 
= Cl (VP).
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(b) —>■ (c): Let W  be any nonempty semi-preopen set of X. By Lemma
2.2, we haves Cl (XV) = W  Ö Ы ( С 1(1У)) = W  U Int (X) = X.

(c) —»(e): Let U be any nonempty semi-open set of X .  By Lemma 2.2, we 
have spCl(í7) = UU Int ( Cl (Int (V))) = U U Int (Cl (if)) = sC l(U) = X  
since SO(X) C SPO(X).

(e) —»(f): Suppose that there exist nonempty sets U E SO (X) and W  £ 
e SPO(X) such that V П W  = 0. Since W  £ SPO(X), we have 0 = 
=  sp Cl (£/) П W  = X  П W  = W . This is a contradiction.

(f )  -»(a): By Lemma 2.1, we have r  C SO(X) C SPO (X ) and hence 
U П V ф 0 for any nonempty open sets U,V £ t . Therefore, (X,  r )  is 
hyperconnected.

The equivalence of (a) and (d) is shown in [16, Theorem 3.1].
In [14, Theorem 3.1], the author showed that a topological space X  is 

hyperconnected if and only if s Cl (17) = X  for every nonempty set U £ 
£ SO (X). Now, we consider the following properties:

(p) p С1(У) = X for every nonempty set V £ PO (X) and
(/3) spC l(lT) = X for every nonempty set W  £ SPO (X).

It follows from Lemma 2.1 that (ß ) implies both (p) and (c) in Theorem 3.1 
and also that (p) implies connectedness. It is well known that hyperconnect
edness is strictly stronger than connectedness. Example 3.2 (below) shows 
that (c) in Theorem 3.1 can be replaced by neither (p) nor (/?). Moreover, 
it also shows that (c) in Theorem 3.1 cannot be replaced by the following 
property:

(/?') spC l(F ) = X for every nonempty set V  G PO (X ).

Example 3.2. L e t X  — {a,6,c}, r = {0,X,{a,ft}} and A =  {a}. Then 
(X, r)  is a hyperconnected space and A £ PO (X , r)  C SP O (X ,r). By 
Lemma 2.2, we have pCl(A ) = spCl(X) = A /  X .

To obtain another type of characterizations of hyperconnected spaces, 
we shall first recall the definition of feebly continuous functions. A function 
/ :  X -> Y  is said to be feebly continuous [4] if, for every nonempty open set 
V  of У, / -1(У) ф 0 implies Int ( / _1(У)) Ф 0. This definition is different 
from the one in the sense of Frolik [7] because /  need not be surjective. A 
function / :  X —► Y  is said to be semi-continuous [10] if £ SO (X) for
every open set V  of Y . It is shown in [2] that every semi-continuous function 
is feebly continuous but not conversely.

DEFINITION 3.3. A function / :  X —>■ У is said to be almost feebly contin
uous if, for every nonempty V £ 1Ш (У ), f ~ 1(V) ф 0 implies
s in t ( f ~ \ V ) )  ф 0.

R emark 3.4. Every feebly continuous function is obviously almost fee
bly continuous. However, the converse is false even if the function is bijective 
as the following example shows.
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Example 3.5. Let X  = {a,b,c},  r  = { 0, X , {a}, {&}, {a, 6}} and a = 
= { 0, X, {a}, {&}, {a,6}, {a,c}}. Let / : ( Х ,г )  —► (X, cr) be a function de
fined as follows: /(a )  = 6, f(b)  = c and /(c ) = a. Then /  is an almost feebly 
continuous bijection but it is not feebly continuous. For, we have RO (X,  a) = 
= sín t ( / _1({6})) = {a}, sín t ( / _1({a,c})) = {6,c}
and Int ( / _1({a))) = 0.

The topological space consisting of two points with the discrete topology 
is usually denoted by 2. Ajmal and Kohli [2] obtained some characterizations 
of hyperconnected spaces by using feebly continuous functions.

T heorem 3.6. The following are equivalent for a topological space X :
(a) X  is hyperconnected;
(b) every almost feebly continuous function of X  into a Hausdorff space 

is constant;
(c) every almost feebly continuous function f : X —> 2 is constant;
(d) no semi-continuous function f : X  —► 2 is surjective.

P roof, (a )—>• (b): Suppose that there exist a Hausdorff space Y  and 
an almost feebly continuous function f : X  —» У such that /  is not constant. 
Then, there exist two points x and у of X  such that f ( x)  ф f(y)- Since Y  is 
Hausdorff, there exist open sets G and Я  in У such that f ( x)  G G , f (y)  G Я 
and G П Я  = 0. Put U =  Int (C1(G)) and V  =  Int (С1(Я ) ) , then we have 
0 ф U G RO (У), 0 /  V  G RO (У) and U П V — 0. Since /  is almost feebly 
continuous, sín t ( / -1 (Я)) ф 0 and sín t ( / -1 (У)) ф 0. However, we have 
sín t ( f ~ l (U)) П sín t { f - \ V ) )  C f ~ x{U П V) -  0. It follows from Lemma
2.3 that X  is not hyperconnected.

The proofs of the implications (b )—>(c) and (c)—>(d) are obvious. The 
equivalence of (d) and (a) is shown in [14, Theorem 3.1].

Jankovic and Long [9] introduced a weak form of hyperconnectedness 
which is called 0-irreducible and showed that an almost-regular space is 
hyperconnected if and only if it is ^-irreducible. We shall slightly improve 
this result. For this purpose we shall recall some definitions.

Definition 3 .7. A topological space (A, r)  is said to be
(a) almost-regular [20] if for each F  G RC (X) and each point x G X — F  

there exist disjoint open sets U and У of X such that x G U and F  С V ;
(b) strongly s-regular [8] if for each closed set A of X and each point x G 

G X — A there exists an F  G RC (X) such that x G F  and F  П A = 0;
(c) weakly [17] (resp. Pz [23]) if every V  G RO(X) (resp. V  G r)  is 

the union of regular closed sets of X.
It is shown in [8, Theorem 1] that a topological space X is strongly 

s-regular if and only if it is P^. In Examples 3 and 4 of [8], it is shown 
that almost-regularity and strong s-regularity are independent of each other 
even if the space is Hausdorff. On the other hand, it is pointed out that
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every almost-regular space is weakly Py and every P j is weakly Py but not 
conversely [17, Example 3.2]. Therefore, the notion of “weakly P s” is strictly 
weaker than both almost-regularity and strong s-regularity (or Pg).

D efinition  3.8. A topological space A is said to be в-irreducible [9] if 
every pair of nonempty regular closed sets of X  has nonempty intersection.

It is pointed out in [9] that every hyper connected (or irreducible) space is 
0-irreducible but not conversely. The following theorem is a slight improve
ment of [9, Theorem 2].

T h eo r em  3.9. A weakly P% space X  is hyperconnected if and only if it 
is O-irreducible.

P r o o f . Suppose that X  is not hyperconnected. There exist nonempty 
open sets U and V  of X  such that U П V  = 0. Since U and V  are disjoint, 
we obtain Int (C l(U)) П V = 0 and Int (C1(P)) П C1(F ) = 0. For a point 
x G Int ( Cl(Í7) ) , there exist F  6 RC(A) such that x G F  C Int (C l(U) ) . 
Therefore, we have F f l  С1(У) = 0 and С1(У) G RC(A). This shows that 
X  is not 0-irreducible.

C o r o l l a r y  3.10 (Jankovic and Long [9]). An almost-regular space is 
irreducible if and only if it is в-irreducible.

C o r o l l a r y  3.11. A strongly s-regular space is hyperconnected if and 
only if it is в-irreducible.

4. Hyperconnected spaces and functions

For a function f : X  -* У , the subset {(x , f (x) )  | x G X } of the product 
space A x У is called the graph of /  and is denoted by G(f) .  A func
tion / :  X  —► Y  is said to be somewhat nearly continuous [18] if, for every 
nonempty open set V  of У, / -1(У) ф 0 implies Int (С1( / _1(У))) ф 0. Ev
ery feebly continuous function is obviously somewhat nearly continuous but 
the converse is false as the following example shows.

E x a m p l e  4.1. Let X  = {аД с} , r  =  {0, A,{a},{6,c}} and a = { 0, A, 
{a}, {6}, {a, 6}} . Then the identity function / : ( A ,r )  —► (A, o) is somewhat 
nearly continuous but it is not feebly continuous since Int (Cl ( / _1({5}))) = 
= {b, c} and Int ( / -1({i>})) = 0.

T h eo r em  4.2. I f  X  is a hyperconnected space, f : X  —> У is somewhat 
nearly continuous and G( f )  is closed in A x У, then f  is constant.

P r o o f . Suppose that /  is not constant. There exist two points x and 
у of A such that f ( x)  ф f(y).  Then, we have ( x , f ( y) )  G A x У — G{f).  
Since G(f )  is closed, there exist open neighborhoods U and У of ж and f (y) ,
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respectively, such that (U X V) П G(f )  = 0; hence f (U)  П V = 0. Therefore, 
we have U П / _1(F) = 0 and hence U П Int (C1( / _1(P))) = 0. Since /  is 
somewhat nearly continuous, Int (C1( / -1 (F))) /  0. This contradicts that 
A is hyperconnected.

Corollary 4.3 (Thompson [22]). Let X  be a hyperconnected space. If 
f : X  —* Y  is a continuous function with a closed graph, then f  is constant.

In [15, Theorem 3.1] and [2, Theorem 2.7], it is shown that hypercon
nectedness is preserved under feebly continuous surjections. This result is 
improved as follows:

T heorem 4.4. If X  is a hyperconnected space and f : X  —► У is an 
almost feebly continuous surjection, then Y  is hyperconnected.

P roof. Suppose that Y  is not hyperconnected. There exist disjoint 
nonempty open sets G and H of Y . Put V = In t(C l(G )) and V  —
— Int (С1(Я ) ) , then we have 0 ф U £ RO(T), 0 /  F  E RO (У) and 
U П V  =  0. Therefore, we obtain 0 =  f ~ 1(U) П / _1(У) D sín t ( / -1 (P)) П 
П s Int ( f ~ l { V )). Since /  is an almost feebly continuous surjection, 
sín t ( / -1(t/)) /  0 and sín t ( / -1(P)) Ф 0. It follows from Lemma 2.3 that 
X  is not hyperconnected.

Corollary 4.5 (Ajmal and Kohli [2], Noiri [15]). I f  X  is hyperconnected 
and f : X  —> Y is a feebly continuous surjection, then Y  is hyperconnected.

Definition 4.6. A function f : X  —* Y  is said to be
(a) feebly open [7] if Int ( /( [ /) )  ф 0 for any nonempty open set U of A;
(b) almost feebly open if s Int ( f (U )) /  0 for any nonempty U £ RO (A).
Every feebly open function is obviously almost feebly open but the con

verse is false. For, in Example 3.5, /  is bijective and hence / _1:(A , cr) —► 
—► (A, r)  is almost feebly open but it is not feebly open.

T heorem 4 .7. I f Y  is a hyperconnected space and f : X  —► Y  is an 
almost feebly open injection, then X  is hyperconnected.

P roof. Let U and V  be any nonempty open sets of A . Put G —
— Int ( Cl (C/)) and H = In t(C l( t/) ) , then we have 0 ф G £ RO(A) and 
0 ф H G RO(A). Since /  is almost feebly open, sín t (/(G )) ф 0 and 
sín t ( /(Я ) )  ф 0. Since Y  is hyperconnected, by Lemma 2.3 we have

0 Ф Int (/(G )) П s l n t ( P ) )  C / ( G ) n / ( t f ) .

Moreover, since /  is injective, we obtain G П H ф 0 and hence U П V ф 0. 
This shows that A  is hyperconnected.

C orollary 4.8 (Ajmal and Kohli [2]). If Y  is hyperconnected and 
f : X  —>Y is a feebly open injection, then X  is hyperconnected.
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A W EIG H TED  L 2 M AR K O FF T Y PE  
INEQUALITY FOR CLASSICAL WEIGHTS

A. GUESSAB (Pau)

1. Introduction

Let Vn be the class of real algebraic polynomials P of degree at most 
n, such that |P (f)| = ^(f) ( -1  ^  t ^  1), where (p(t) is a non-negative 
function. Turán’s problem is: how large ЦР'Ц^ can be, where Ц.Ц^ is the 
supremum norm on [—1, 1]. Such problems first appeared in approximation 
theory notably in the work of Dzyadyk [4] and Pierre and Rahman [10].

The most interesting cases are those where tp vanishes at ± 1. In the case
of parabolic majorant (<p(t) = y/\ — t2) the answer was given by Rahman
[ И З -

THEOREM 1.1. Let P e V n and \P(t)\ ^  y/l -  t2 ( -1  ^  t ^  1). Then

M L  s 2(B - 1).
Equality is attained at the points t = ± 1, if and only if P(t)  = 

= (1 — t2)Un- 2(t)i where Un- 2 is the (n — 2)-th Chebyshev polynomial of 
the second kind.

This result can be stated in the following form: If P € Vn is such that 
P (± l)  = 0, then

( 1 )
IIP'

P € p ! - { 0 }  \\PM\
OO __= 2(n -  1),

/  ( 2)

or in an equivalent form, if Q € Vn-2> then

Ш '

QeVnJ!-{ 0} Wt QWc
= 2(n -  1).

The classical weight functions (w 6 C W ) correspond to special orthogo
nal polynomials and intervals as follows (cf [15]):

0 2 3 6 -5 2 9 4 /9 5 /$ 4.00 ©  1995 Akadém iai K iadó, B udapest
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Interval
(a,b) Weight function Symbol Name

[-M ] ( l - t ) a(l + t f  
(a,/? > -1)

p(ayß) 1 n Jacobi polynomials

(0,+oo) tse~* (s > 0) r(»)-bn Generalized Laguerre
(—oo, oo) e - '2 tfn Hermite

Let w G C W  on (a, b) and set

(3) ll/llWm
- u :

Wm(t ) f 2(t) dt
1 / 2

where wm = A mw and

(4) A(t) =
(Hermite case),
(generalized Laguerre case), 
(Jacobi case).

Let w G CW.  In this paper the extremal problem

( 5 ) max ( V Ä / w m) (teTOP (m)) '
Wm

is considered.
Concerning this problem many important contributions were made with 

different definitions of the norm, by Agarwal and Milovanovic [2], Milne [8], 
Milovanovic [9], Rahman [11], Rahman and Watt [12], Varma [13, 14], and 
Zalik [16, 17].

We note that in the Jacobi case w(t) = 1 -  t2 our problem for m  = 0 is 
the same as (2) in L2-norm.

2. The main result

With the notation of Section 1, we state the solution of our extremal 
problem and its corollaries in this section with respect to the Jacobi, gen
eralized Laguerre, and Hermite weight functions on ( - 1, 1), (0,+oo), and 
(—oo,+oo), respectively. Let w G C W , let A be given by (4) and B( t ) the 
polynomials defined by (cf [15])

(6)

' - 21 
B( t ) = < s -f 1 -  t

. ß  -  a -  (a + ß + 2)t

(Hermite case),
(generalized Laguerre case), 
(Jacobi case).
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We now formulate our main result.

T heorem 2.1. Let P & Vn be such that ЦРЦ^ ^  1. Then we have

(7)

where

( V A / w m) (wmP (m)) ' ^  \Л„,оАп,1 • • • Xn,m-lßn,r,

(8) К , U = - { п - и )  Q (n  + i / -  1)Л"(0) + Р'(0)^ { и  =  -  1),

and

(9) ßn,m = K,m + B ' ( 0 ) +( k - l ) A " ( 0 ) .

Equality is attained if and only if P is a constant multiple of the classical 
polynomial Qn orthogonal with respect to the weight function w € C W .

Corollary 2.1. Let wm(t) = (1 -  f)0+m(l + t f+m (a, ß  > -  1) and 
P G Vn such that ||P ||u,m S  1- Then we have

(10) (ч/ l  - t y w m) { w mp W ) ' < п!Г(п + a  + /? + m + l)
wm \  (n -  m)\T(n + a + ß + 1)ß n ,m i

where

(И) ßn ,m  =  ( n -  m)(n - m  + a + /? + l) + a + /? + 2rc*.

The supremum is attained if and only if P(t) = 7P ^ '^ \ t ) ,  where 7 is an 
arbitrary real constant.

R e m a r k  3.1. Daugavet and Rafal’son [3] and Konjagin [5] considered 
extremal problems of the form

(12) p(m) ^  A„,m(r,^ ;p ,i/) ||P ||
vw

(P  G Vn),

where

II/IU  = <
( £ | д | ) ( 1 - ‘У | ' л ) 1/Г.

ess sup 1 /( i ) | (1 -  t2)ß,
-i<í<i

0 ^  r < -f-oo, 

r = +00.
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The case when p = r 2. 1, /r = 1/ = 0, and m  = 1, was considered by Hille, 
Szegő, and Tamarkin [6]. The exact constant AniTn(r,p;p,i/) is known in a 
few cases, for example, А„д(оо, 0; oo, 0) = n2 is the best constant in Markov’s 
inequality [7], and А„д(оо,0; oo, 1/ 2) = n is the best constant in Bernstein’s 
inequality [1]. Also, we have

An,m(2, p, 2,// T m /2)
I п!Г(п + 4p + m  + 1) 
(u — ш)!Г(п + 4^ + 1)

The last case, in fact, is the result of Lemma 2.1 with the Gegenbauer weight 
{a = ß -  2p).

R emark 3.2. In the case a = ß  =  1, m  = 0, we have the following 
extension to L2 of the Rahman inequality (2) in L°°:

J 1 [(1 -  t2)P(t)] ' 2d t^ (n - \ -  l)(n  + 2) I  (1 - t 2)P{t)2dt, 

or in an equivalent form: If Q G Vn+2 is such that Q(± 1) = 0, then

(13) j  Q \ t f d t  ^  (n +  l){n + 2) J  Y ~ p dt'

with equality if and only if Q = c(l — i2)P(1,1) (c G R).
Inequality (13) can be represented in the form

* llQ'll^ ^ An>1(2, —1; 2,0) ||<3||2 _1/2.

This formula extends (12) to the case when the weight function has a non- 
integrable singularity.

In the generalized Laguerre case, Theorem 2.1 reduces to:

C o r o l l a r y  2.2. Let wm(t) =  ts+mе~ г (s >  -  1) on (0, +oo). Then for 
every P  G Vn such that ||P ||lUm ^  1, we have

(14) {VÄ/wm)(wmpW)' < n\
(n -  m)

( n - m  -  1) ||P ||
W  ’

with equality if and only if P(t) — cLsn{t).

For the normal weight function w(t) = e-f2 associated with the Hermite 
polynomials, we get
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Corollary 2.3. Let wm(t) = e <2 on (—oo, +oc). Then for every P £ 
6 P„ such that ||Р ||Шт ^  1, we have

(15) (1 /w m)(w mp W ) ‘ 2'm+1» /V ” V(” -  m -  1)!
yjm

with equality if and only if  P(t) — cHn(t).

3. Proof o f the theorem

We prove in this section two lemmas which will be needed for the proof 
of the main result.

The starting point of our investigations is the differential equation 

(16) ^ ( A ( t ) w ( t ) ^ )  + Xnw(t)y = 0,

satisfied by the classical orthogonal polynomials, where the spectral param
eter A„ is given by

An
' 2n (Hermite case),

1 n (generalized Laguerre case),
, n(n -f a  + ß + 1) (Jacobi case),

The solution of (16) has the remarkable property that derivatives of these 
solutions of any order m also satisfy an equation of this type:

(17)
dt

where

(18) t Wm(t)

and

(19) An,m = - ( n  -  m) Q ( n

Lemma 3.1. For all P  G Vn the

(20) д т /2  p ( m ) VII3 = \/An,oAn,l ’ " ’ An,m— 1 Ildiit
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holds, where

( 21) w (t)f(t)2 dt.

Equality is attained if and only if P is a constant multiple of the classical 
polynomial Qn orthogonal with respect to the weight function w £ CW .

P r o o f . Suppose that P  £ Vn, and let w £ C W . Integration b y  parts
gives

V I P ' 2 = C  w { t)A ( t)P \tfd t  = -  [  P(t) ( w {t)A (t)P \t)) ' dt.
w Ja Ja

Cauchy-Schwarz inequality yields

( 22) a/ I p ' ^  1И 1w 11 V M ^)(w (t)A (t)P \t)) ' w
Equality is achieved if and only if

(23) (w (t)A (t)P \t)) ' = Aw(t)P(t) (A e R).

This has a polynomial solution if A = A„ where An is defined by (16). Since 
Xv ^  An (u = 0 , . . . ,  n), from the eigenvalue problem (16) and inequality (22), 
we can determine the best constant in the extremal problem (20) for m = 1. 
Namely,

(24) \[AP ' £ Vk \\p\\
Then the extremal polynomial is the eigenfunction Qn(t) corresponding to 
the maximal eigenvalue.

If we use the differential equation (17) instead of (16), we get the in- 
equahty

Ak/2p {k) ^  (P  G Vn)

with equality if and only if P (t) = cQn(t),c  £ R. Finally, iterating this 
inequality for к = 1, . . . ,  m, we finish the proof. □

L emma 3.2. Let P be any real algebraic polynomial of degree n. Then 
we have

(25) ( V I  /w m){ w mP W ) f i y / K Z  P (m)
VJm
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where

(26) ß n<m = A„,m + Я'(0) + (к  -  1)Л"(0).

Equality is attained if and only if P is a constant multiple of the classical 
polynomial Qn orthogonal with respect to the weight function w 6 CW .

P r o o f . Let Qn be the classical polynomial orthogonal with respect to 
the weight function w € C W . Let U(t) — wm(t)Qn(t), where wm(t) = 
= A(t)mw(t). Then a direct calculation gives that U(t) is a particular 
solution of the differential equation

(27) wm{A /w mU ') '+ ßn,mU = 0

where ßn m̂ is given in (26).
Similarly to the proof of Lemma 3.1, we can see

( V Ä /wm) ( wmp(m)) 1 2 =  [ \ A / w m){wmP ^ ) ,2dt
wm J a

= - J  wmp W  ( ( А / ш ^ ^ Р ^ ) ' ) ' ,  dt

From this, Cauchy-Schwarz inequality and from the eigenvalue problem (27), 
inequality (25) follows.

We now turn to proof of our main result.
P roof  o f  T h eo rem  2.1. The proof of (7) can be obtained immediately 

from (20) and (25).
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GRADED RADICAL GRADED 
SEMISIMPLE CLASSES

H. YAHYA (Edmonton)

1. In tro d u c tio n

In [7] Stewart has given a characterization of radical semisimple classes 
of associative rings. He shows that if C is a proper subclass of all associative 
rings, then C is a radical semisimple class if and only if there is a strongly 
hereditary finite set C(T) of finite fields such that R G C if and only if R 
is isomorphic to a subdirect sum of fields in C(T) or equivalently R G C if 
and only if every finitely generated subring of R is isomorphic to a finite 
direct sum of fields in C(Jr). In [4] Fang and Stewart give some examples 
of graded radical graded semisimple classes and mention that it remains an 
open question how to characterize such classes. We answer their question in 
this paper.

Let G be a multiplicative group with identity element e. A G-graded ring 
R  is a ring together with a direct sum decomposition R — where
Rgi 9 £ G, is an additive subgroup of R  such that RgRh ^  Rgh for all g, h G 
G G. The abelian subgroup Rg is called the homogeneous g-component of R. 
It is to be noted that the e-component R e is a subring of R. A subring 5 of a 
graded ring R  is said to be a homogeneous subring of R i f  S = ® sgG ^ 
We call an ideal I  of R  which is a homogeneous subring of R a homogeneous 
ideal of R  and write I  <h R- By I  <hl R  we mean that I  is a homogeneous 
left ideal of R. If /  is a homogeneous ideal of R, then the quotient ring R /I  
has a natural G-gradation given by R / I  =  ® 36g(-̂  + Rg)/I- We denote 
by h(R) the set of all homogeneous elements of R, so h(R) = |J gEQ Rg- 
Throughout the paper we have considered graded rings, graded by a finite 
group G of order n. It can be seen easily that some of our results hold even 
if G is not finite. By a graded homomorphism f  of degree (h , k) between two 
graded rings R and S  we mean a ring homomorphism f : R —> S  such that 
f{R g) Q Shgk for all g G G and h ,k  6 G. A graded isomorphism is denoted 
by =, and a complete direct sum (direct product) by £]*. The symbols Z, 
Z+, |S| respectively denote the set of integers, the set of positive integers, 
and the cardinality of the set 5. For most of the undefined terms in graded 
rings we refer to [5] and for those in radical theory for graded rings we refer 
to [4].
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By [ж], where x £ R, we denote the subring of a graded ring R  generated 
by x. In Section 2 we study a class V 9 of graded rings R, called X^-rings, for 
which the subring [ж] = [ж]2, where ж is any homogeneous element of R. We 
show that R  is a X^-ring if and only if for all ж £ h(R ), there exists n(x) > 1 
such that x = xn(xh A graded ring R  is said to be a graded division ring 
if every nonzero homogeneous element of R  is invertible. It is clear that a 
graded ring R with identity is a graded division ring if and only if it has no 
nontrivial homogeneous left (right) ideals. We prove that if R is a 2?s-ring, 
then R  is a graded subdirect sum of graded division rings in V 9. Finally we 
show that V 9 is a graded radical class.

In Section 3 we show that if a graded radical graded semisimple class K. 
does not consist of all the graded rings, then K ^ V 9. A class /С of graded 
rings is called graded strongly hereditary if every homogeneous subring of 
a ring in 1C is also in 1C. In Theorem 3.10 we obtain characterizations of 
a graded radical graded semisimple class 1C in terms of a graded strongly 
hereditary finite set of finite graded division rings.

We also consider in this section the class /Cm of graded rings whose 
homogeneous elements satisfy the relation xm — x, where m is a positive 
integer ^  2, and show that tCm is a graded radical graded semisimple class.

In Section 4 we give graded versions of some results of Andrunakievic [2] 
and get another characterization of a graded radical graded semisimple class 
in terms of a graded special radical and its dual graded radical.

2 . X^-rings

We shall say that a G-graded ring R is a V 9-ring if for each ж £ h(R) we 
have [ж] = [ж]2. Clearly a homogeneous subring of a X>s-ring is a X>5-ring and 
a graded homomorphic image of a X>s-ring is a X>fl-ring. If T>9 denotes the 
class of all G-graded X>3-rings, then the class V  = {Re \ R £ V 9} is a radical 
class and every ring in V  is commutative (see [7]).

L emma 2.1. Let R £ V 9 and let 0 ф a £ h(R). Then a is not nilpotent,
[a] is finite and there are positive integers к and m  > 1 depending on a such 
that ka = 0 and am — a.

P r o o f . First, we will show that if 0 Ф a £ h(R ), then a is not nilpotent. 
Suppose as = 0 for some integer s > 1. Then [a] = [a]2 = . . .  =  [a]s = 0 
and we get a = 0, which is a contradiction. Since [a] = [a]2, a — 
kt £ Z. Hence l a = ^ [ _ 2 k{al~l is the identity of [a]. Moreover, [la] =
= Z \a £  Z, for Z  does not satisfy [ж] = [ж]2 for all x £ Z. Therefore, 
Z \a = Z /k Z  and k la = 0. Hence ka = k laa — 0. Thus R is a torsion ring, 
and so R = 0 p Rp, where Rp denotes the p-component of R. Let O / i  £ 
€ h(Rp). Then px = 0, for if the additive order of ж is pTO, m  > 1, then
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px ф 0 but (px)m = pmxm = 0, which is a contradiction as R has no nonzero 
homogeneous nilpotent elements. Since [x] = [x]2, we have x = 
for some index r with 0 ^  A; < p, and Ar /  0. Since (Ar,p) = 1, there exist 
integers u, v such that 1 = uXr + vp. Hence xr = uXrxT + vpxT = u \ rx r = 
= их — Í1A2X2 — . . .  — иАг_хХг-1 and for s ^  r, xs = /гг_ix r_1 + • •. + P\x, 
0 ^  p i  < p ,  1 ^  i ^  r — 1. Thus [x] is finite, so the powers x, x2, x3, . . .  are not 
distinct. Suppose xs — x* and I — s — f > 0 is minimal. Then xt( la; — x l) = 0. 
Let \ x — xl — b. Then b £ h(R) and x*b = 0. If t > 1, then (x<_16x<_1)2 =
= 0. But xi - 16xt_1 £ h(R) so xi - 16xt-1 = 0. Then (xt - 16)2 = 0, and hence 
xi-16 = 0. Continuing in this way, we get x6 = 0. If t = 1, then xb = 0. In 
any case xb — 0, whence x =  xi+1. Let 0 / a g  h(R). Then a — x 1 + . . .  + 
+ Xfc, Xi £ RPl, 1 ^  i й  к. Hence [a] g  0*L1[x,] is finite and am — a for 
some m > 1 as above.

C orollary  2.2. A graded ring R is a V 3-ring if and only if for each 
a £ h(R), there exists an integer n(a) ^  2 such that an(“) = a.

It is to be noted that in a D3-ring if a = a”(a), then we can take n(a) ^  3, 
for if a = a2, then also a — a3.

L em m a  2.3. Let R 6 V 9, a 6 h(R), and I  R. Then aR = Ra, I  = 
= R Ie = IeR and I  R. In particular, R  = R R e — ReR.

P roof . If a = 0, then clearly aR — Ra. Suppose а ф 0. Then there 
exists an integer n(a) ^  3 such that an(a) — a. Now Ra = Ran = 
=  g  Ran(al~1 = (Ran̂ ~ 2)a C Ra. Hence Ra = RaM“)"1. Sim
ilarly aR = an^ ~ l R. It can be seen easily that an(a)-1 is a nonzero homo
geneous idempotent. Let x = and у € h(R). Then (xy  -  x yx )2 = 0.
By Lemma 2.1, R  has no nonzero nilpotent homogeneous elements. Hence 
xy — xyx. Similarly yx = xyx, so x =  a"(a)-1 is central. Hence Ra — 
= üfl"*“) - 1 =  aria)~xR = aR. Since I  <, R, R Ie g  R I g  I . Let x £ h(I). 
Then there exists an integer n(x) ^  2 such that xn(x) = x. Hence x £ R Ie, 
for x =  xx”^ )“1 and x" ^ ) - 1 £ R e П /  = Ie. Thus I  = R Ie. Since aR = Ra 
for all a £ h{R), it follows that R Ie = IeR and I  R.

L em m a  2.4. А V я-ring R is a graded division ring of characteristic p if 
and only if Re is a field of characteristic p, where p is a prime.

P r o o f . Let R be a graded division ring of characteristic p. Then R e 
is a field of characteristic p, for 1 £ R e. Conversely, let Re be a field of 
characteristic p. Let 0 / 7  <hl R • Then I  = R Ie by Lemma 2.3 and 0 ф 
Ф Ie <h R e. Since R e is a field, Ie = R e. Hence 7 = R R e = R, for R is 
a 7>5-ring. Hence R has no proper homogeneous left (right) ideals. Let 1 
denote the identity element of R e and let x £ h(R). Then x = xn№ for 
some positive integer n(x) > 1. Since x"(x)-1 £ R e, lx  = ( lx n(r )_1)x  =
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= 1сс = ж. Similarly x l  = ж, so 1 is the identity of R. Hence R is a
graded division ring and the characteristic of R is p.

T heorem 2.5. Let R be a finitely generated V 9-ring. Then R e is finitely 
generated.

P r o o f . Since R is finitely generated, R is generated also by a finite set X  
of homogeneous elements. Let ( ) / i £  h(R). If ж is a product of elements in 
X , let f ix ) denote the minimum number of homogeneous generators (which 
need not be distinct) of which ж is a product. We call /(ж) the length of 
x, and prove the theorem by induction on the lengths of such homogeneous 
elements. Put /(0) = 0. We note that every homogeneous element of R is a 
finite sum of homogeneous elements which have lengths.

Let S  be the finite set of homogeneous elements of R of length 5Í n, where 
n — |G|, and let T  be the subset of S  consisting of elements in R e. Let U be 
the finite set of elements и of the form и = abamG)~2  ̂where a £ S ,b  £ T  and 
m(a) is a positive integer ^  3 such that amG) — a. Clearly, if a 6 then 
am(“)—2 £ Rg~ 1 and aTO(a)-1 £ Re. Note that T Q U , for if we take a = b, 
then u = b. We claim that R e is generated by U. Since the assertion is true 
for elements of length 5s n in Re, we apply induction and suppose it is true 
for all elements ж in R e such that fix) ^  m, m ^  n. Let у £ R e with fiy) = 
= m  + 1, and let у = Ж1Ж2 • • • xm+i, X{ £ X  П Rgi, 1 ^  i !s m  + 1. Consider 
elements дъ gig2 , ■ ■ ■, 9 i 92 ' '  ■ 9n+i in G. They are not distinct, for |G| = n, 
so • • -gr = 9 i9 2  ‘ "9k  f°r some г, к such that l ^ r < & ^ n + l ^ m  + l. 
Hence </r+i • • -gk = e. Iffc = m +  l =  n + l ,  then we can write у = У1У2 , 
where y\ — x\x<i • ■ - x r and у2 — жг+1 • • -xm+i £ R e. Hence t/i £ R e. Also 
1 is f iy i) ^  n, 1 ^  /(2/2) ^  n so у\, У2 £ U. If к ф m  + 1, we can write у 
- 2/12/22/3 where 1/1 = xxx 2 ■■■xr, y 2 = x r+l ■ • -xk, y3 = xk+l ■ Also
1 ^  l(Vi) ^  n, 1 ^  fiy2) ^  n, and 2/2 € Ret 2/12/3 £ Re, f iy m )  й  m - Since R
is a X>5-ring, there is a positive integer m(t/i) ^  3 such that y ^ y^  = y\. Also
У = 2/12/22/3 =  У? (У1 *2/22/3 = 2/1 2/22/Г(!/1)_12/з, for £ Де, y2 £ Re and
Re is commutative. Thus у = 2/12/22/ Г ^  22/12/3- Now 2/12/22/Г ^ '* 2 £ U and 
since /(2/12/3) = m , 2/12/3 is a finite product of u’s by the inductive hypothesis. 
Thus у is a finite product of u’s. The theorem follows.

Remark 2.6. We note that, in general, if R is a finitely generated graded 
ring, which is not a X^-ring, then Re may not be finitely generated. We 
illustrate it by an example. Let H  be a multiplicative free group on two 
generators and let К  be its commutator subgroup. Then К  is of infinite rank 
(see [6], Theorem 11.11) and G = H /К  is free abelian with two generators. 
Let R be the group ring Z[H\. Then R  = ф /^ #  Rh = ф heH %h. Define
Rh = ф*.еЛ- Rkh, where h = K h  £ H / К . Then R is Н /K -graded (see [5], 
page 1) and Rj = Z[K ]. Moreover, R  is a finitely generated Я /Ä'-graded 
ring but its e-component R^ is not a finitely generated ring.
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In the sequel finite graded division rings play a dominant role. Hence 
we would like to describe some of their properties here. A finite graded 
division ring need not be commutative. For example, the group ring £г[5з], 
where Z 2 is a field of two elements and S3  denotes the symmetric group 
on three symbols, is a graded division ring (graded on S 3 ), but it is not 
commutative. However, if D is a finite graded division ring, then De is a 
finite field of order pk, where p is a prime and к a positive integer. For G 
finite, a G-graded division ring is finite if and only if De is finite, for any two 
nonzero homogeneous components of D are isomorphic as abelian groups. 
The support of D = {<7 G G \ Dg ф 0} Я G is a subgroup of G. If two graded 
division rings D \, D2 are graded isomorphic, then D \e = D2r and Hi = H2, 
where H1, H2 are supports of D \ , D2 respectively. However, the converse 
may not be true. For instance, consider the graded division rings D \, D2 
on the same support H = {e,h}, where h2 = e, such that D, — Dic 0  Д л, 
i =  1,2, where Д е = {0,1, ж,ж2} and Dih = { 0 ,y ,x y ,x 2y}. For D\ we have 
the relations: x3 = 1, y2 = 1, xy -  ух, 1 + x = x2, 1 + x2 = x, x + x2 = 1, 
21 = 0, and for D2 we have the same relations except that yx — x2y. Then 
D\ 5* D2, although they have the same support and the same e-component. 
However, for G finite, there are only a finite number of nonisomorphic finite 
graded division rings with isomorphic e-components. We note that a graded 
division ring has no nonzero homogeneous zero divisors, so a homogeneous 
subring of a finite graded division ring is again a finite graded division ring.

T h eo rem  2.7. A V 9-ring is a graded subdirect sum of graded division 
rings of prime characteristic belonging to V 3.

P r o o f . Let R G V 9. Then Re G V. Hence, by [7], R e is a subdirect 
sum of a family {F\: A £ Л} of algebraic fields F\ of characteristic p \. Hence 
there exists a family {7д: A G A} of ideals of R e such that F\ =  R e/ I \  and 
Плел-^А = 0. By Lemma 2.3, R I\ <h R, and Плa \ R I\  = R{ Плел7*) = 
= 0, for ( ПА6Л R h )  — Плел A- Hence R  is a graded subdirect sum of 
graded rings R /R I \ , A G A. Since (R /R I \)e =  R e/ I \  = Fa, and R /R I \  G 
G V 9, R /R I \  is a graded division ring of characteristic p\ by Lemma 2.4. 
The theorem follows.

T h eo rem  2.8. A V 9-ring R is a finite direct sum of finite graded divi
sion rings if and only if R e is a finite direct sum of finite fields.

P r o o f . Let R  be a finite direct sum of finite graded division rings Д ,  
where 1 ^  i ^  k. Then R e is a finite direct sum of finite fields D,-e, 1 ^  i ^  
^  k. Conversely, let R e be a finite direct sum of finite fields F1,, 1 ^  i ^  k. 
Since R G T>9, by Lemma 2.3, R — R R e = R (  0 ^ - !  Ff) = RFi- By 
Lemma 2.4, RF{, 1 ^  i ^  k, is a graded division ring and so is finite as F1,- is 
finite. It remains to shows that R^i — 0 i= i  RFi- Now, by Lemma 2.3, 
RFi <h R 1 E j t i  RFj R-, so I  = RFi П ( RFj) is a homogeneous 
ideal of R, and I e = F1, П Ylrfi Fj = 0- By Lemma 2.3, 1 -  R Ie = 0. Hence
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the sum of RFi is direct and R = R R e = ® f=1 RF{. This completes the 
proof of the theorem.

Corollary 2.9. A finitely generated V 9-ring is a finite direct sum of 
finite graded division rings, and so is finite.

P roof. By Theorem 2.5, R e is a finitely generated £>-ring. Hence, by [7], 
R e is a finite direct sum of finite fields. The result follows from Theorem 2.8.

Lemma 2.10. Let R be a graded ring without nonzero homogeneous nilpo- 
tent elements. If R e is a V-ring, then R is a V 9-ring.

P r o o f . Let R e be a D-ring and let 0 x £ Rg, g ф e. Then gn — e and 
О ф xn £ R e, for R has no nonzero homogeneous nilpotent elements. Since 
R e is a Z>-ring, there exists an integer m > 1 such that (xn)m = xn. Then 
xn~l (xnm~n+1 — x) = 0. Let b = xnm~n+l — x. Then b £ h(R) and xn~1b = 
= 0. If n — 2, we get xb =  0. If n > 2, we have (xn~2bxn~2)2 = 0 and since 
R  has no nonzero homogeneous nilpotent elements, xn~'2bxn~2 = 0. Thus
(xn~2b)2 = 0 and so xn~2b = 0. Continuing in this way, we get xb — 0. In
any case x ( x nm~n+l -  x) = 0. Consequently, (xnm~n+1 -  x f  = 0. Hence 
x nm-n+\ _  x  ̂ provjng that R £ V 9.

Corollary 2.11. Let R be a graded ring without nonzero homogeneous 
nilpotent elements. If am — a for all a £ R e, then x"(m- 1)+1 — x for all 
x £ h(R).

Corollary 2.12. Let R be a finite graded division ring such that \Re\ = 
= m. Then a;n(m-1)+1 = x for all x £ h(R).

Lemma 2.13. Let T  =  {Dp. 1 ^  i Ú k} be a finite set of finite graded 
division rings. Then we have the following results.

(i) There exists an integer N  such that xN = x for all x £ h{Df), 1 ^  
^  i Ú k.

(ii) Let R be a graded subdirect sum of rings from F . Then xN = x 
for all x £ h(R). The same holds for a homogeneous subring and a graded 
homomorphic image of R.

(iii) Let D be a graded division ring which is a graded homomorphic image 
of a graded subdirect sum R of rings from T . Then D is finite.

(iv) A graded division ring D is finite if x N — x for all x £ h{D), where 
N > 1 is a fixed integer.

P roof, (i) By Corollary 2.12, there exist integers n, > 1 such that xn> = 
= x for all x £ h(D{), 1 ^  i ^  k. Let N  — n?= i(nt — 1) + 1- Then xN = x 
for all x £ h(Di), 1 ^  i ^  k.

(ii) Let x = (Xj) £ h(R). Then each xj is a homogeneous element of some 
Di, so x = xj. Hence xN — (x = (Xj) = x.

(iii) Let pi be the characteristic of Di. Let x £ h(R). Then x = (Xj),
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where Xj is a homogeneous element of some D,. Let q = P\ 'P2 • • -pk- Then 
qx = 0. Hence qx — 0 for all x £ D, so D is of finite characteristic. Also, 
since xN — x for all x E h(R), we have xN = x for all x E h(D). Hence D 
is a D5-ring, and De is a P-ring. Hence De is a field of finite characteristic 
such that each element of De is algebraic over its prime subfield, satisfying 
xN = x, so De is finite. Hence D is finite.

(iv) D is a P aring , so it is of prime characteristic by Lemma 2.4. Hence 
D is finite as in (iii).

L e m m a  2.14. A graded ring R is a V 9-ring if and only if every finitely 
generated homogeneous subring of R is a finite direct sum of finite graded 
division rings.

P r o o f . Let S be a finitely generated homogeneous subring of a Tu
ring R. Then S  is also a P fl-ring, so by Corollary 2.9, S is a finite direct 
sum of finite graded division rings. Conversely, if every finitely generated 
homogeneous subring of R  is a finite direct sum of finite graded division 
rings, then so is [ar], where 0 ф x £ h(R). Hence, by Lemma 2.13(ii), there 
exists an integer n(x) ^  2 such that xn№ =  x. Thus R E V 9.

We recall that the class P  = {Re | R E V 9} is a radical class. We now 
show that, in fact, the class V 9 is a graded radical class.

T h e o r e m  2.15. The class V 9 forms a graded strongly hereditary graded 
radical class.

P r o o f . Clearly, V 9 is closed under graded homomorphisms. Let I\ £ 
Q h  ^  • • • = I \  = . . . ,  Л E Л, be an ascending chain of homogeneous V 9- 
ideals in a graded ring R. Then I  = IJaéA I \  is also a homogeneous P 5-ideal. 
It remains to verify the graded extension property. Let R  be a graded ring 
and let J  <h R such that both J  and R /J  are in V9. Let 0 ф x E Rg.
Since R /J  E V 9, x + J  = (x + J )m for some positive integer m  ^  1. Hence
x -  xm E J. If g ф gm, then x E J3, and so [ar] = [ x f . If g -  gm, then
x — xm E Jg, so [x -  xm] — [x — xm]2. Hence x — xm = Yli=2 ni(x ~ хТпУ
for some positive integer к ^  2, щ E Z, so again [z] = [x]2. Hence R is a 
Paring. Since a homogeneous subring of a Pa ring is a P-?-ring, the class 
V 9 is graded strongly hereditary.

3. Graded radical graded semisimple classes

A graded radical a is called graded strict if every homogeneous o-subring 
of a graded ring R  is contained in a(R).

THEOREM 3.1. If a class К of graded rings is a graded semisimple class, 
closed under graded homomorphisms, then K, is also a graded radical class 
and JC is graded strongly hereditary.
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P r o o f . Let h  Я I2 Я ■ Я I \  Я . . A 6 Л, be an ascending chain of 
homogeneous ideals of a graded ring R  such that each I \  £ K. We shall show 
that I  = Ua6A A  £ Let J  be the subset of the complete direct sum I \  
defined by

J  = { { x i ,x 2, . . . , x k,xk+ i,...):x i £ X{ =  arjt, i ^  fc, some fc G Z+}.

Then J  is a graded subdirect sum of { I\}  so J  G X. Define в: J  —► I  by 
setting в(х) = Xk £ h  Я I ,  where x = (x \ ,x 2, . . . ,  ж*, Xk,...) . Then 0 is a 
graded epimorphism. Hence I  £ 1C. Therefore 1C is a graded radical class.

Let 5 be a homogeneous subring of R  G 1C. Let Ri =  R, i G Z+, 
and consider -ß,-. Let D5 = { (г, x , ...): a; G 5} . Then Ds is a
homogeneous subring of J2iez+ Ri an(  ̂ — S. Since ф , ег+ Ri is a graded 
subdirect sum of {iZj, so is ® i6Z+ Ri + Ds ■ Hence ® i62+ Ri + Ds G 1C, 
and S  = Ds — ( ф ieZ+ Ri + Ds) /  ф ieZ+ Ri G Therefore /С is graded 
strongly hereditary.

C o r o l l a r y  3.2. A graded, semisimple class is a graded radical graded 
semisimple class if and only if it is graded homomorphically closed, and then 
it is graded strongly hereditary.

As in the ungraded case (see [8]) one can show that

P r o p o sit io n  3.3. A graded radical is graded strict if and only if its 
graded semisimple class is graded strongly hereditary.

C o r o l l a r y  3.4. Let 1C be a graded radical graded semisimple class. 
Then its upper graded radical is graded strict.

P r o o f . By Corollary 3.2 and Proposition 3.3 the proof follows.
Let {X g:g G G} be a family of sets. We call X  = X g a G-graded 

set. Let X be a G-graded set such that the X5’s are mutually disjoint. Let 
R — Z[X] be the free ring generated by X . An element of R  is a finite sum 
of elements of the form nxgi xg2 ■ ■ ■ xgr, where n G Z  and x3i G X 3l. We say 
that the element nxgixg2 • ■ ■ xgr is of degree к = g\g2 - gr £ G. Also a finite 
sum of elements of degree к is defined to be of degree к. Then Rk, the set of 
all elements of R of degree к , is an additive subgroup of R and R  = ® keG Rk 
with RkRk' Я Rkk'- Thus R  becomes a graded ring over G. We say that R 
is a graded free ring with the set X as its set of generators. Any graded 
ring is a graded homomorphic image of a graded free ring. By a theorem 
of Amitsur (see 1, Corollary 3) the free ring Z[X] is a subdirect sum of full 
matrix rings of finite order over Z. Let Mn(R) denote the ring of и х  n 
matrices over a ring R. If R is a graded ring, then Mn(R ) is a graded ring 
with gradation given by Mn(R) = ф збС Mn(R)g where Mn(R)g = Mn(Rg). 
Then the group ring Mn(Z)[G] is graded isomorphic to Mn(Z[G ]). We thus 
get the following graded version of Amitsur’s theorem.
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T h eo r em  3 .5 . A graded free ring R =  Z[X] is graded isomorphic to a 
homogeneous subring of a complete direct sum of full matrix rings of finite 
order over Z[G],

P r o o f . Let R = ^ k^pR k  be a graded free ring and i  f  £  Then 
x = YlkeGxk uniquely, where xk £ Rk■ By Amitsur’s theorem, R is a 
subdirect sum of a family of rings {R\: А E A), where R \ = Mn(Z ) for 
some n E Z+ depending on A. Hence we can write xk = (r\ ), where r\ 6 
E R \. We define a mapping в: R —► Хл р л -^а[С] by setting 0(xk) — (r \k ) 
and 0(x) = YlkeG^(x k)- Then в is a graded monomorphism. But R\[G] = 
= Mn(Z)[G\ = Mn(Z[G]), whence the theorem follows.

T h eo rem  3.6. Let 1C be a graded radical graded semisimple class. I f  1C 
contains a graded ring R in which there is an x E h(R) such that [ж] ф [x]2, 
then 1C contains all the graded nilpotent rings.

P r o o f . By Theorem 3.1, [ж] £ 1C. Hence also 0 ф S — [ж]/[ж]2 £ 1C. Let 
Z° be the zero ring on Z , considered trivially graded. Then S is a graded 
homomorphic image of Z° and also that of any nonzero homogeneous ideal 
of Z°. It follows that Z° E K, for S E 1C. Hence /С contains all the graded 
nilpotent rings (see [4]).

C o r o l l a r y  3.7. I f  1C contains a nonzero graded nilpotent ring, then it 
contains all the graded nilpotent rings.

P r o o f . Let R E IC such that R k = 0, к ^  2, but 5 = R k~l ф 0. Then 
S E 1C and S 2 = 0. Let O ^ i G  h(S). Then 0 = [ж]2 ф [ж], so the result 
follows from Theorem 3.6.

We now give a graded version of a theorem of Armendariz (see [3], 
Theorem 4.4).

T h eo rem  3.8. Let 1C be a graded radical graded semisimple class. I f 1C 
contains a nilpotent graded ring, then 1C consists of all the graded rings.

P r o o f . Let K, contain a graded nilpotent ring. Then it contains all the 
graded nilpotent rings by Corollary 3.7. Let us consider Mn[Z[G}). Now the 
graded ring (2)[G]/(2k)[G], к 1, is nilpotent, so also is Mn((2)[G]/(2k)[G]) 
and therefore it belongs to 1C. But

M n{(2)[G]/(2k)[G\) й  M n ((2)[G])/Mn {(2k)[G}), 

so the right hand side belongs to A. Now

П  M n { ( 2 k ) [G})  -  Л 4 „ (  П  ( 2 * ) [ G ] )  =  M n(0 )  =  0 .
kez+ kez+
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Hence Mn[(2)[G}) is a graded subdirect sum of graded rings in К , and so 
is itself in 1C. Let p ^ . 3 be a prime. Then (2)/(2p) = (2)/ (2) П ( p )  = ((2) + 
+ (P)) / 0 )  = Z/(p).  Hence

Mn{Z[G])/M n ((p)[G}) “  Mn {Z[G]/(p)[G\) S M n (Z/(p)[G]) “

= Mn{(2)/ (2p)[G\) “  M n((2 )[G]/(2p)[G]) “

— -Wn((2)[G])/Afn ((2p)[G]) G/C.

But n p ^n((p)[G ]) = Mn ( n p(p)[G]) = Mn(0) = 0. Hence M n(Z[G}), 
being a graded subdirect sum of graded rings in 1C, is also in 1C. Since 
G is finite, M n(Z[G]) is a graded subdirect sum of rings M n (Z[G]) and 
so it belongs to 1C. Hence by Theorem 3.1, all its homogeneous subrings 
are in 1C. By Theorem 3.5, every graded free ring belongs to 1C. But every 
graded ring is a graded homomorphic image of a graded free ring. Hence 
every graded ring is in 1C.

T h eo r em  3.9. Let К be a graded strongly hereditary finite set of finite 
graded division rings. Then a graded ring R is graded isomorphic to a 
graded subdirect sum of graded division rings in 1C if and only if  every finitely 
generated homogeneous subring of R is a finite direct sum of graded division 
rings in 1C.

P r o o f . By Lemma 2.13(i), there exists an integer N  such that xN = x 
for all x G h(D{) for all Д  £ 1C. Let R  be graded isomorphic to a graded 
subdirect sum of graded division rings D \ G 1C. Then there exists a family 
{I\: A G A} of maximal homogeneous ideals of R  such that Плел L\ = 0 and 
D \ = R /I \ .  Let S be a finitely generated homogeneous subring of R. By 
Lemma 2.13(ii), 5 is a X>5-ring, so by Corollary 2.9, S  = ® f -x D[ where D[, 
1 ^  i ^  k, is a graded division ring. Consider D\ as a homogeneous subring 
of R. Since П л ел ^  = 0, is n°f contained in all I \ ,  so for some p G Л, 
D[ <jL Iß. Hence Iß П D[ ф D[, so Iß П D[ = 0. Hence D\ = (D\ + Iß) / I ß ^  
^  R /I ß = Dß, so D[ G 1C, for /С is graded strongly hereditary. Hence S  is 
graded isomorphic to a finite direct sum of graded division rings in 1C.

Conversely, let every finitely generated homogeneous subring of R  be 
graded isomorphic to a finite direct sum of graded division rings in K. Then 
for every x G h(R), [x] is a finitely generated homogeneous subring of R, so 
by Lemma 2.13(ii), there exists an integer N  > 1 such that xN — x for all 
x G h(R). Hence R E V 9 and by Theorem 2.7, R  is a graded subdirect sum 
of graded division rings Da. Thus there exist homogeneous ideals Ia such 
that p | / a = 0 and Da = R /Ia■ Each Da satisfies the relation xN = x for all 
x G h(Da). Hence by Lemma 2.13(iv), Da is finite. Therefore Da is a graded 
homomorphic image of a finitely generated homogeneous subring Sa of R. 
By assumption, Sa = ф £=1 Dk, Dk G IC, and so Da is graded isomorphic
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to one of the graded division rings in {D 1 ^  к ^  t}. Hence R  is a graded 
subdirect sum of graded division rings Da , Da £ 1C.

We are now able to answer the question of Fang and Stewart concerning 
graded radical graded semisimple classes mentioned in the introduction in 
the following theorem.

T heorem 3.10. Let 1C be a proper subclass of all G-graded rings. Then 
the following are equivalent.

(i) fC is a graded radical graded semisimple class.
(ii) There is a graded strongly hereditary finite set T  of finite graded 

division rings such that a graded ring R £ 1C if and only if R  is graded 
isomorphic to a graded subdirect sum of graded division rings in T .

(iii) There is a graded strongly hereditary finite set T  of finite graded 
division rings such that a graded ring R £ 1C if and only if every finitely 
generated homogeneous subring of R is graded isomorphic to a finite direct 
sum of graded division rings in T .

P roof, (ii) and (iii) are equivalent by Theorem 3.9.
(i) implies (ii). Let 1C be a graded radical graded semisimple class. Then 

ICe — {Re I R £ K} is a proper radical semisimple class. By Theorems 3.6 
and 3.8, K, Q V 9. Hence each R £ 1C is a graded subdirect sum of graded 
division rings in 1C (see Theorem 2.7). Let {Dp.i £ I } be the class of all 
graded division rings in 1C. Then { Д с:г £ 1} is the class of all fields in ICe. 
Since Ke is a radical semisimple class, {Д е} is a strongly hereditary finite 
set of finite fields. Since G is finite, there are only a finite number of graded 
division rings in {Di} and they are all finite. Thus { Dt} is a graded strongly 
hereditary finite set of finite graded division rings, for 1C is a graded strongly 
hereditary class of rings. Thus if R £ /С, then R is a graded subdirect sum 
of rings in {Di}. Conversely, any graded ring graded isomorphic to a graded 
subdirect sum of rings in {Di} is in /С, for 1C is a graded semisimple class. 
Thus K, satisfies (ii).

(ii) implies (i). Assume that 1C satisfies (ii). It can be easily shown that 
T  is a graded special class, so К is a graded semisimple class. We will show 
that K, is graded homomorphically closed. Let R £ 1C and let R' be a graded 
homomorphic image of R. Since R £ A, R  is a graded subdirect sum of 
graded division rings in T . By Lemma 2.13(ii), there exists an integer N  > 1 
such that x N = x for all x £ h(R). Now R1 is a graded homomorphic image 
of R, so it satisfies the same relation. Hence R1 £ V 3. By Theorem 2.7, R' 
is a graded subdirect sum of graded division rings, say {D'm}. Each D'm is 
a graded homomorphic image of R', so also of R. By Lemma 2.13(iii), D'm 
is finite. Hence D'm is a graded homomorphic image of a finitely generated 
homogeneous subring S  of R. By Theorem 3.9, S  is a finite direct sum of 
graded division rings in D, say Dk, 1 ^  к й  m. Hence D'm — 19k for some k, 
and so D'm £ T . Therefore, it follows that, R1 £ K. By Theorem 3.1, /С is a 
graded radical graded semisimple class.
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We now introduce an important class of graded rings. Let ICm be the 
class of all graded rings R for which xm — x, where m is a fixed positive 
integer > 1 and x is any homogeneous element of R. We have then the 
foDowing theorem.

T heorem 3.11. Km is a graded radical graded semisimple class.
P ro o f . Clearly, ICm is closed under graded homomorphisms and graded 

subdirect sums. Let R £ 1Cm. Then R  G V 9, so by Theorem 2.7, R is a 
graded subdirect sum of graded division rings in fCm. The class T  of all 
graded division rings in Km is a graded special class. Hence the class K,' of 
all graded subdirect sums of rings from T  is a graded semisimple class. Thus 
R G ICm if and only if R  G 1C1. Hence JCm = 1C, and K.m is a graded radical 
graded semisimple class.

C orollary 3.12. All the graded division rings in fCm are finite and 
their number is also finite.

P roo f. By Theorem 3.10 the proof follows.

4. Dual graded radical

We give here graded versions of some results of Andrunakievic [2]. The 
proofs of these results, being straightforward adaptations of those given by 
him, are omitted.

We call a graded ring R graded subdirectly irreducible if the graded heart 
of R (i.e, the intersection of all nonzero homogeneous ideals of R) is not 
zero. We call a graded ring R graded strongly a-semisimple if every graded 
homomorphic image of R is a-semisimple, where a  is a graded radical. A 
graded radical a' is called graded complementary to a if a1 is the largest 
graded radical such that a(R) П a'(R) — 0 for all graded rings R. If a 
is graded hereditary, then there always exists a graded radical a' graded 
complementary to a , where a' is the upper graded radical determined by the 
class of all graded subdirectly irreducible rings with а -radical graded hearts 
and the a'-radical rings are just the graded strongly a-semisimple rings.

Two graded radicals a  and 7 will be called mutually graded complemen
tary if 7 is graded complementary to a and a  is graded complementary to
7 . If a and 7 are mutually graded complementary, then a  = 7', 7 =  a ', and 
thus a = (a ')' = a" and 7 = (7' /  = 7". A graded radical a will be called a 
dual graded radical if there exist a ' and a" such that a  = a", that is, if a  and 
a ' are mutually graded complementary. We then say that a , a1 are duals of 
each other or they form a dual pair. We then have the following theorem.

T heorem 4.1. If a is a graded supernilpotent radical, then there exist 
graded radicals a' and a" such that a' is graded complementary to a, a" is 
graded complementary to a1, and a' and a" form a dual pair. Moreover,
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a = a" if and only if a is the graded special radical determined by the class 
of graded subdirectly irreducible rings with a-semisimple graded hearts. The 
a'-radical rings are precisely the graded strongly a-semisimple rings.

We therefore get the following characterization of a graded radical graded 
semisimple class 1C.

T heorem 4.2. A class K, of graded rings is a graded radical graded 
semisimple class if and only if К is the graded semisimple class of a graded 
special radical a and the graded radical class of a', the dual graded radical of 
a.

A cknow ledgem ent. I would like to take this opportunity to express 
my deep gratitude to Dr. A. D. Sands, my Ph.D. supervisor, for his kind 
and helpful guidance.
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A MONTGOMERY-HOOLEY TYPE 
THEOREM FOR PRIME fc-TUPLETS

K. KAWADA (Tsukuba)

§ 1. Introduction and notation

Let ctj, bj ( j  = 0, — 1) be 2к integers. If all the numbers ajn + bj
( j  = 0, . . . ,  к  — 1) are primes, then we call (a0n + bo, . . . ,  ctk-\n + i ) a 
prime fc-tuplet. When we choose ao = ai = 1, &o = 0 and b\ = 2, the prime 
2-tuplet is the “prime twins”.

As for the distribution of primes in arithmetic progressions, Barban [1], 
in 1966, considered the sum

£oM) = E  É ( E
q^Q e = l  \  пйх  'туч/;

(a ,9) 1 n=a (m odg)

where A and ф denote the von Mangoldt function and Euler’s totient function, 
respectively. Gallagher [4] showed that, for any A > 0,

(1.1) Eo(x,Q) <C x2(\ogx)~A provided that Q Ú x(\ogx)~A~l ,

which is an improvement of Barban [1] and Davenport-Halberstam [3]. These 
results should be compared with the well-known Bombieri-Vinogradov the
orem which states that, for any A > 0, there exists В  > 0 such that

E
(log x) B

max 
(“.?)=1 E  л(п)

n^x
n=a (m od q)

X

<Кч)
<  a;(log ж) A

Further, Montgomery [8] obtained an asymptotic formula for Eo(x,Q), and 
Hooley [5] sharpened Montgomery’s formula when Q < x.

In our previous paper [6] we treated a Bombieri-Vinogradov type theorem 
for prime fc-tuplets. In this paper we generalize the function Eo(x,Q) for 
prime fc-tuplets, and obtain a result similar to the Montgomery-Hooley’s 
asymptotic formula.
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In order to state our result, here we repeat the notation of [6]. For an 
integer к ^  2, we take к non-zero integers ao, a \ , . . . ,  ak~\ and take an integer 
b0 with (do, ho) = 1- Let bj (1 ^  j  ^  к — 1) be arbitrary integers and put

b = (ho,. . . ,  bk~i).

To count the number of n in an arithmetic progression for which all ajn + bj 
(0 S  j  = к — 1) are primes and ^  x , we introduce the function

k-i
Ф(я;Ь ,a ,q )=  A(ajn + hy),

neAf(b) j=o
n=a (m o d ?)

where

N (b) = N(x] b) = {t; 1 ^  ajt  + bj ^  x for all 0 ^  j  ^  к — 1}.

On the other hand, for any prime p (in the sequel p always denotes a prime 
number), let p(p) = p(p, b) be the number of solutions of the congruence

A:—1

”J(eij7i + bj) = 0 (mod p), 
j=o

and, making use of this number, put

a(b\q) if p(p) < p for all p and
a,hj /  <ij h, for all 1 ^  i < j  ^  к — 1,

. 0 otherwise

and

ст(Ь;а,9) = d(b; q) if (aja + bj, q) — 1 for all 0 ^  j  ^  к — 1, 
0 otherwise.

By a heuristic evidence (see Bateman-Horn [2]), when a(h;a,q) > 0, it 
is expected that

(1.2) Ф (г;Ь ,а,д) ~  <r(b; a, g)| 7V(b)|,
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where 17V(b)| denotes the length of the interval N (b). Now we consider the 
average of dispersion of (1.2). We define the set

Z  = Z(x) = { b; |lV(b)| ф 0},

and evaluate the function
я

(1.3) e ( x , Q )  =  Y ^  E E  |^(z;b,a,?)-<r(b;a,g) | iv(b) | |2,
q<Q ct—1 b  £.Z

which is a generalization of Eo(x,Q). The purpose of this paper is to 
obtain a precise asymptotic formula for E (x,Q ), according to the methods 
of Montgomery [8] and Hooley [5]. We need more definitions. Put

a* - max la ,I, П = /  П  ( !  -  К »  dui
0 i=°

and denote by g(p) the number of a , ’s such that p\aj.
T h eo rem  1. Let A > 0 and В  > 1 be arbitrary constants. Then there 

exist к + 3 numbers op, a j ,  ßo,. . .  ,/?* depending only on ao ,. . . ,  a^-i which 
satisfy the following relations.

(I) For Q < ж/a», we have

(1.4) E (x,Q ) = q—7T*kQ ( (bg *) -  1) k -  x kQ
к ,

E Mn >■
log

Qat +

+ 0 (x k *+2Qw + x k+1(log®) A ĵ .

(II) For x / а* й Q й  xB, we have

(1.5) E (x ,Q )=  —  ^  xkQ ( (log x) -  1) k -  a 0z fc+1 ^ l o g ^ j  +

+ a ixk+1 + 0  {xkQ(\ogx)~ASj  .

Moreover, /i(p ) being ( l  -  j )  j ( l  -  j )  ( j£ f )  ^  +  J  -  ^  j, a 0
and ßk are given by

( 1.6) o0 = Ф{ lao|)■ « n / l ( p ) ,
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and

(1.7) <A( |aol) *!’
R e m a r k . From (1.4), we have a non-trivial bound for E (x,Q ), namely 

E (x ,Q ) <C £fc+1(log x)~A, 

provided that Q «С x(\ogx)~A~k.
Secondly, we consider the same problem for the distribution of prime 

fc-tuplets in a short interval. For 0 < у й x, instead of N (b), we define

N (x ,y , b) = {t; x — у < ajt + bj ^  x for all 0 ^  j  ^  к — 1},

Z (x ,y ) = {b; \N (x,y;h)\ ф 0},

and evaluate

Then we can prove asymptotic formulas for E(x,y;Q ):
T h eo r em  2. Let A ,B ,a o ,a x ,ß o ,...,ß k  be the same as in Theorem 1, 

and let D be some positive constant depending only on к and A. We take у 
satisfying

я
E (x,y;Q ) = X ] S  |Ф (* ;Ь ,а ,д ) -Ф (а г -у ;Ь ,а ,9)

qüQ °=1 beZ(x,y)

X 3 ( \ o g x ) D  <  у  Ú  X .  

(I) For Q ^  y/а*, we have

1 K /  \  m

+0 ( ук- ь Ъ д Ш  + yfc+1(iog*)_il) .

(II) For у I a* ^  Q й xB, we have

E (x, y; Q) = ^ | ^ | )  ykQ ( (log x) -  l) k -  a0yk+1 (b g  + 

+cnyk+1 + 0  (ykQ(\ogx)~A ĵ .
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We omit the proof of Theorem 2, because it is almost the same as that 
of Theorem 1.

R e m a r k . For the case к = 1, that is the case of primes in arithmetic 
progressions, it is possible to extend, by the large sieve method, the range of 
validity of the above formulas to x7/ 12+e ^  у й  x with any £ > 0.

The author expresses here his hearty gratitude to Professor S. Uchiyama 
and Professor L. Murata for encouragement and for careful reading of the 
manuscript of this paper. He also would like to thank Dr. H. Mikawa for 
stimulating discussions.

§ 2. Proof o f Theorem 1

We start from the identity

( 2.1) E( x ,Q) = T + ' £ U i - 2 ' £ U2 -
q^Q q^Q q^Q

where

к—1t = qY. E  Пл(а̂  + м2,
b e z  n e v ( b )  j = о 

к— 1

Ui = E E E П лКп+bj ) 4 aJm + bj),
bEZ n,m€N(b) j = 0

пфт
n=m (m od q)

U 2 =  E  E <T(b;a’9)liV(b) l x {ф(а;;ь ;а’9 ) - (Т(ь ;а>9)1лг(ь )1Ь
a- 1 b€Z

^  = Е  Е ^ ^ И ь ) ] 2.
a = l  bez

Making use of the prime number theorem for arithmetic progressions, we 
obtain

(2.2) T  = Q £  Л(а0п + 60)2 П  (  E  AK n + 6j)2)  =
l^oon+bo^a: j=1 V bj /

l^ajn+6j i5r
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= q ( Y  ч ™-)2) ( Y  л(ш)2)
\ m^x / m^x

m=bo (modao)

=  xkQ ( ( !°g x ) - 2) k +  0  ( * fcQ(log ЖГ Л) •

Next we estimate 53 ^ 2- Noticing that

and that
q

Y  { 'b (x ;b ;a ,q )-(j(b ;a ,q )\N {b )\}  =
a—1

( П  (aja+bj),q)=l
'  J=0 '

= *(*; b; 1,1) -  a(b; 1 ,1)| А(Ь)| + О ((logs)**1) ,

we have

Y u* = Y  Y <T(b ;? )liV(b )l x
q^Q q^Q b€Z

x  |ф (х ; b; 1, 1) — <r(b; 1, 1)| iV(b)| + 0  ((logx)fc+1) } «

<  x(logx)2 Y  IФ(ж; b; 1, 1) — <r(b; 1, l)|iV (b)| | + xk(logx)k+3. 
b €  Z

Then, applying Theorem 1 of [6] with Q = 1, we get

(2.3) y , u * < x k+\ H * y A-
q=Q

As for 53 U\ and 53 f/3, we shall prove the following lemmas in later 
sections. For simplicity we write

flip ) =
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-1

Then we have 
L emma 1.

(2.4) xfc+iii y i  / 2{p) e  I П  Ы р )+
q<Q  ̂ p\q

and

(2.5)

+ 0  ( > +1(logx)-4 )

E  ^  = -JTj-jT-^ililogg) П  M p ) + с гхк+1 +
qiQ Ф Ы )

+о  (x k+1(\ogx)~A + xk+1Q -\\o g Q )k+1^ ,

where C\ is a constant depending only on flo ,..., ßfc_i. 
Lemma 2. We have, for Q ^  x/a*,

2
( 2 .6)

]tQu' *(i“°D
■х‘+1п П Л (р) Е 7 П Л ( р)+

q^Q ^ p\q

+ 0  ( xkQ ( log ( 2 ^ - ) )  + xk+\lo g x ) —A

and, for Q ^  x/a*,

(2.7) Y . UI = ^ ] y * * +1ii(lo g (x /« ,)) n / i W  +  C2X*+1 +
q%Q

+ 0  (x fc+1(logx) A ĵ ,

where C2 is a constant depending only on ao, . . . ,  ßfc_i.

Lemma 3. Let Q0 = (logo;)- "4 -*1. For Qo ^  Q ^  х/а», we have
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- x kQ Y ] ß m ( log-^—^ + o ( x k b+ iQ w  + xk+1(\ogx)

where ßo,. . .  ,ßk are constants depending only on ao, . . . ,  a ^ - i .

Then, for Q ^  x/ ű*, (1.6) and (1.8) follow at once from (2.1), (2.2), (2.3),
(2.5) and (2.7).

For Q ^  х/ й», using (2.1), (2.2), (2.3), (2.4) and (2.6), we see that

E(x,Q)  =

=  77T[~ ~ i\x k Q  ((lo§ x ) ~ l ) k +  °Ф{ lao|)
^x*+1(logx)-i4 + x kQ

which proves that (1.5) is true for Q ^  Qo = x(\ogx)~A~k.
Finally, let Qo й  Q й  Applying (2.4) and (2.6) with Q = <2o, we

get

^  U\ -  ^ 2  U3 <  xfc+1(logx)-j4. 
q^Qo q^Qo

Thus, it follows from (2.1), (2.2) and (2.3) that

(2.9) E(x,Q)  = --y—-r-x kQ((\ogx)  -  l) 4
П К |)

+ E E 3̂ + 0(xfc+1(logx)-A).
Qo<qúQ Qo< q%Q

As for the third term on the right hand side of (2.9), we apply (2.5). We 
have

( 2. 10)

£  %  =
Qo<q^Q

Ф{ Ы)
ск+1П П  fi(p ) + О (x i+1(logx) .

Then (1.5) follows at once from (2.9), (2.10) and Lemma 3.
Consequently, we proved Theorem 1 on the validity of Lemmas 1, 2 and 3.
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§ 3. Proof of Lemma 1

In what follows, we use following notation:

e(x)=  e2nix,
П

c„(m) = e
/1=1 

( / i ,n )= l

rTO(n) — the number of ways of writing n as a product of m  factors (the 
order of the factors being taken account),

r(n) =  r2(n) (the divisor function),

/x(n) = the Möbius function,

7 = the Euler constant,
к—1

R(b) = П <ъ П (a*b; ~ аЛ)>
j —0 1

and for a (fc -  l)-dimensional vector q =  (<7i , . . . ,  qk-i) £ Z^-1 , we define 

[q] = the least common multiple of all qj's.

First we derive (2.5) from (2.4). For a square-free natural number d, we 
define h(d) =  Д  ( / з ( р )  — l) • Then

p\d

m'j (the Ramanujan sum),

Е ^ П / з м  = = E  T
p|? q^Q d\q dfiQ m^Q/d

Since the last innermost sum equals log Q — logd + 7 + 0(d /Q ), we have

(3-1) E  IП ш  = (iogg + 7 > n  ( i  - ;  +
qíQ 4 Р\Я Р ' Г У

-  Е  Kd)2dh(d)(logd) +  О (Q _1(log(3)fc+1)  . 
d= 1

Now, it is easily seen that (2.4) yields (2.5).
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In [6, §6], we observed that, if R(b) ф 0 and (aoa + bo,q) = 1 then• • • c •a(h-,a,q) is a “singular series” . For Q\ = (logx) with C > 0, we put

ц{г)2

ыГ, “  №
H  I I Ü E *  1 Ь « л j м-

j - i

where q =  (g i , . . . ,  g*-i) and * denotes the summation over all vectors
d

d = (d \ , . . .  that satisfy the following four conditions:

1. 1 й dj ^ qj for all 1 ^ j ^ к — 1,
2. dj = a (mod (qj,q)) for all 1 ^  j  ^  к — 1,
3. di = dj (mod (<?;, qj)) for all 1 ^  г < j  ^  к — 1,

4. (aodj + bo, qj) = 1 for all 1 ^  j  ^  к — 1.

Now we use our results in [6, §6]. By (6.3) of [6], we get an estimate

Si < Лч)
q

(b g Q i)L,

where £ is a constant depending only on k. If f?(b) ф 0 and (aoa + bo, q) = 1, 
then we have

(j(h;a,q) =  |a0|Si + О ( ^ ~ r K (R {b))(logx) C+1^ ,

where i f  is a constant depending only on k. Since the number of b ’s with 
R(h) = 0 is 0 ( x k 2), we obtain, for a sufficiently large constant C,

( 3 .2) ^ C / 3 =  | a 0 | 2 ^  £  £ S 2 | i V ( b ) | 2 +
g < Q  g < Q  a = l  hez

(aoa+bo ,9)=1

+ 0  (xk+1(\ogx)~A Ĵ .

Next, we calculate S2| iV(b)| 2. We substitute Si by its definition, and 
ь

I iV(b)12 by /  /  d tid t2, then the calculation of ^  S21 iV(b)|2 can
I5sajtj-f 6j ^

for all 0^j^k—l 
and for г=1,2
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be reduced to that of the sums -KHwith (h,qj) = (h ',d )  and qv q'. й Qx

for i=l,2

As far as — +Qj
h'
O', Ф o>

h t i
— H— j
Яз 4

Ф 0, we have an estimate

~ t k  = Q' 2= (logx)
- i c

and

E
l ^ C L j t t + b j  ^ X

for i=l,2
•MM. <  (log x )1C

If h_ I hi 
4] + Qj — 0, then qj = q'-,h = h' (modqj) and

S  e 4 “  + 7  ) = m a x { x - | a j (t1 - i 2)|,0} +0 (1 ) .
a,U+b,<x \  \ 4j 4i  /  /t'tTL'j =

for i=l,2

Taking account of these results, we have

(3.3) £  S ^ N i b f  = S (a ,q ) .J  + 0 ( x k<t>(q)-\\ogxfk+^ C)  ,
ь ez

where

k-i
J =  J  J  J J  (x  -  |aj(<i -  f2)|) dtx dt2,

1^а0<,+60<:Е J—1
for t=l,2 

a*|fi—Í2^x

S{a,q)=
H (rf

<Ql ^(|ao|[?,r])
;S0(r),
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with

к-l
* м - £

2 ч

[я]= г  j=i <Кяз) d l

q
£ #
Ú2

к- 1
П
j=i

9] ( ° i  ( 4
(i)

Неге we use the notation d; 
It is easily seen that

i )  for г = 1, 2.

l^a0(ti-i)+f>o^z

í т-r
= 2|a0|_1 /  Д  (x -  |aj|i) dt + 0 (xk) =

®=*=x/ a* ^
= 2|a0|- 1a;fc+1ii + 0 (xk).

Simple calculation shows that 6о(г) is a multiplicative function in r. So 
it is sufficient to calculate So(p) only for a prime number p. The condition 
[q] =  p holds if and only if qj = 1 or p for all 1 й j  ^  к -  1, and at least one 
q: equals p. We denote by M  the set of subscripts of qj's such that qj = p 
and by # M  its cardinality. Then we get

/  1 \  * M  P P

£  — TT2 £  £  П  <*(«,■№ -  <fe)) =
M c { l  Ü - 1}  /  di=l d2 - 1 j e M

# A f ^ l  d ,= a  (m o d (p ,? ))
(a0<q+f>o>p)=l

for »=1,2

= £ £ ( {  £  Пr f i  d2 \ К M c { l . . ) г - 1}  j e M

= £  £
l^dl,<Í2^Pd,=a ( m o d ( p , ? ) )  

(a0d,+60,p)=l f o r  i = l , 2

Cp(öj(di ^2)) \

( P - 1)2 J
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1 -
-fc+1

P

P 1 -
P

-  1 

- fc+1

+

if p\q

+(P2 ~ P) 1

=

1
— !) ( 1 — “ I +

( P - I y

-fc+1

k - g ( p )
1

s(p)-i

P -  1 
if p \  q and p\a0

- P

- ( p - 1)2

if p \ qa0.

For a square-free r, we have

^ ( M M )  = \a0\q П  ( x -  П  P П  (P~ X)
p\a0q p|r p\r

p\a0 pfao9
p\q

and

p(r)2S0(r) 1

l°o| V j * , p

- 2

П >- П 1
p\r
p\q

P

- fc+1

- l  x

p\
P |oo
p\q

Now it is clear that 

p(r)2S0(r)

П ((i -^ )aw- i) П ( m - i ) .
p\r

p\a0q

4>{Wo\[q,r})' p\q ^ V/  \  j==0 /
(r)r ,
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hence

= ^  П  i 1-^ )  и ш Ц ш +
p |a O? 4  p|<? P

+О [ q~2TK2(q){log x)_G+1 ),

where K\ and K2 are constants depending only on к. 
Now, from (3.2), (3.3), (3.4), (3.5) and the fact

t  ‘ = < n ( ‘
a —1 pig

(a0a+i>0 ,9) = l  ^ ao

(2.4) follows immediately, which completes the proof of Lemma 1.

§ 4. Proof o f Lemma 2

According to Montgomery [8], we shall show (2.6) and (2.7). Mont
gomery’s argument is based on the following lemma due to Lavrik [7]:

Lemma 4. Let

F(x; a, q; h) =

A(n)A(n + h)—
l^n^x 

l^n+h^x 
n=a (m od g)

= - ' П ' -
p > 2 0 > -  Vp  -  2П

i x -  M) 
Ф(я)

if h = 0 (mod 2) and (a, q) — (a + h, q) = 1

УУ A(n)A(n -f h)
l^n^x 

n = a  (m od q)

otherwise.
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Then, for any А, В > 0,

E  r ( M ) \F (x ',ai4;h)\ <  x 2(\ogx)~A, 
0<\h\^x

uniformly for q ^  (logx)ß .

In the definition of U\ we put r =  m — n and obtain

Ux E X ] A(a0n + 60)A(a0(n + r )  + b0) X

° < 'r )= x / ,a * l< a o n + 6 0 < x  
r = °  (m 0d9) l ^ « ö ( n + r ) + ü g r

A:—1

* n
j=1

£  AK n + *j)A( ai(n + r) + bj) ■
b, }

l^djii+b] йх 
l ^ aj(n+r)-i-bj^x

By virtue of Lemma 4 we have

<4-d E  = E  E
q^Q q^Q 0<\r\^x/a +

r= 0 (m od g)

ф{ lao|) П >
p> 2 ( F - i r

fc-i

П П
j —0 V. p\a,r 

p> 2

P -  1
P - 2 (* -  l° ir l) К

+ O H a;(logx))fc 1 X ] r (l/lD
'  0 < |r |^ : r /a *

k—1

2k+1

^ ( Ы )  p>2

F(x;b0 ,a0 ;a0r) + E  F (x 'i =

п { ( - 5 Г Т ? ) ‘ ( Н з Г } ' " « - «

+ 0  (z fc+1(logx)_A) ,
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where

я „ « г , х ) = £  £  П
q^Q p\mq

a3qm=0 (m o d 2) P^^ 
for all 0<j<k—l

_ 1\  k~s(p) k_1

p - 2
П ( x -  | о , ч т о | ) .
3=0

We decompose Ho(Q,x) into

*«■*>-£ E  n ( £ )
9^<3 0 < m ^ —  p|m g

p>2

_ l^* -a(p ) fc_1
П (*- Iai9ml)-
3=0

If #(2) =  к , that is, all ay’s are even, then the conditions ajqm = 0 (mod 2) 
for all 0 ^  j  к — 1 are always true, so we have

(4.2) H0(Q ,x) = H (Q ,x),

and if g(2) < k, that is, at least one dj is odd, then we have

(4.3) H0{Q ,x) = 2kH (Q ,x/2)  + 2kH {Q /2,x/2) -  22kH (Q /2 ,x/4 ).

As for H (Q ,t), we need the following Lemma 5. Let

1 1 l f p - i V - 3^
f*(p) = ! - -  + -

P P \ P  ~  2

and

aw=H)2+;H)(£)
L e m m a  5 .  IVe have, for Q ^  2 t / a » ,

fc-a(p)

(4.4) J? (0 ,() =  (‘wn n « !’)E  -  П Ш  + 0  U kQ ( l o g 3 - M  ] ,
P > 2  a < O q  p\q \  4  /q^Q Pk

P> 2

and, /or Q ^  t/a»,

(4.5) H (Q ,t) = t fc+1íílog (í/a ,) [ ]  f 5(p) +  C3tfc+1 + О (V ^(log<)*+2) ,
p>2
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where C3 is a constant depending only on ao, . . . ,  a ^ - i .

Before proving Lemma 5, we derive Lemma 2 from Lemma 5. For Q ^  
^  x/o*, since /i(2 ) = 2k or (3/4)2fc according as <7(2) = к or not, (2.7) follows 
from (4.1), 14.2), (4.3) and (4.5).

Next we assume Q ^  x /a ,. If g(2) < к , then / з ( 2 )  = 2 and, by (4.3) and
(4.4), we have

(4.6) H0(Q ,x) =

=П aw ■ {5 E  j П ш  + E  í П aw}+
P > 2  V p \q  q ^ Q  p |g  )

2\q P>  2 2(9 P > 2

+ 0  (* * «  (log ( 2^ - ) )  )  =

=  r ‘ + , « n / . w -  E  J l l A W + o  ( i o g ( 2 ^ - ) ) bj .

If jf(2) = k, then /з(2) = 1 and, by (4.2) and (4.4), we have 

(4.7)

а д , * ) = * H 1 s i  П aw ■ E  1̂1 a w +0  ( * ‘ o  ( l o g  ( 2 ^ - ) ) ' j .
P>2 q<,Q p\q

Since / 2(2) = 2k or 2fc_1 according as <7(2) = A; or not, (2.6) follows from
(4.6), (4.7) and (4.1), which completes our proof of Lemma 2.

We now prove Lemma 5. Let w(d) be a completely multiplicative function 
defined by

for a prime p. For у ^  1, we have

(4.8) E  n ( ^ P = E E « ’« =
m ^ y  p \m  m f z y  d \m

Р&Я
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= * Е
d = 1

H(d) 2 w(d)
d

+ o ( » E ^ + E ^ )  =
4 d > y  d < y  '

=  У П / * ( ? )  П / * ( p )  1 +  0  ( ( lo g 2 y ) fc)  ■
V>2 p\q

p >  2

Then for Q ^  </a„, (4.4) follows from (4.8) by partial summation. For t/a* < 
< Q ^  2 t/a ,, (4.4) is still valid, because ^  |  /з(р) <C 1.

t / a , < q ^ Q  p \ q
p >  2

Next we assume Q ^  f/а*. We have

(4.9)

= E E  П
q m ' ü t / a ,  p \ q m  

p >  2

H (Q ,t) — H(t/a+,t) = 

i=op - 2 I ( i -  \ a j \ q ™ )  =

E  E  + E  E  - E  E
ra<_(t)1'2 ^  q < _ { ^  m<_{t) 112

= 2H ( ( f /a ,)1/2,f)  - Я ь  say.

Since ( í /a *)1̂ 2 5Í 2i/a*, we can apply (4.4) with (3.1) for the first term of
(4.9). For the second one, we use (4.8) to obtain

( 1 \  к —g ( p )  к —1

jH r s )  П  (  ̂ - 1̂ 19̂ )  =
\ч * viam?<(f/a,)1/2 m<(i/a.)1/2 Pkm

p > 2
j =0

= tfc+1
1/a,п л(р) J к- 1

E  Í1/«) П /з(р)П (i-Kk) <*u+
P>2 (ía.í-/2 «(ia.)1/2̂ ( ^ ) 1/2 Д92 J=0

+ 0  ( i fc+2 ( l o g t ) fc) .

We calculate the integrand by (3.1), then we get, by partial integration, that
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(4.10)
V“* 1 k_x

Hi = tk+1 J J  f 5(p) t  i  [  ( l  -  |ű j »  dvdu + О ( tk+k(logt)k+2 ĵ .
P>2 {  U {  j=0

Since the double integral in (4.10) depends only o n a o , . . . ,ak-i, (4.5) follows 
from (4.9), (4.10), (3.1) and (4.4).

§ 5. Proof o f Lemma 3

In this section we shall prove Lemma 3 along Hooley’s way [5]. For Q0 ^  
^  Q S  x/a* we put

V(Q ) = Y .  v 1-
Q<9̂ x/a,

Since Yh U\ = V(Qq) — P(Q), it suffices to show that 
Q o < g ^ Q

(5.1) V(Q) =
Ф{ lao|)

x k+1il ^log Д  fi(p )  + a i x k+l +

к /  \  m
+xkQ Y ,  Pm ( log ) + 0  (x k-*T iQ *£ + xk+1(log x)~A) .

m=0 \  Ча* / У '

To prove (5.1), we use the following Lemma 6 which is a slight modifica
tion of Theorem 1 of [6].

L em m a  6 . L etT  be any interval. Then for any positive number A, there 
exists a positive number В depending on A and к such that

S  maax E  |Ф (*;ь ;в .9;Г) -  o(h;a ,q)l\ <  xk(\ogx)~A,
( lo g  x ) —^  b £ Z

where
к— 1

Ф(ж;Ь;a ,q;T) = ^  Д  K(a3n + b3),
n£N(h) j =0

nET
n=a (mod q)
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and I  is the length of the interval N (b) D T, that is,

t e N (  ь) 
t e r

The proof of Lemma 6 proceeds exactly on the same lines as that of our 
Theorem 1 of [6], only by replacing Paq(a) with Pag(a ;T ) which is defined
by

Paq(® ; T ) =  £  Л(аоп + bo)e(na).
l^aon+&o

n£T
n=a (mod q)

Putting m  = n + hq,

k—l
V(Q) = 2 J 2  E E П Л(а̂п + Ь3 )К(а3т  + bj) =

b£Z Q<q^x/a+ n,m£N(b) j = 0
n=m (mod g) 

n<m

к- 1 k—l
= 2 £  £  £  П K(a3n + bj) £  П A(“>m + »>)•

b 6 Z n£N(b) j = 0 m €fV (b) j=0
a* m>n+/i<5

M=n  (mod/i)

Noticing that Q ^  Qo and x/(Qa+) <  (logx)A+fc, we apply Lemma 3 and 
obtain

V(Q) = 2 J  £<т(Ь;Л)<г(Ь;1) J  J  dh dt2 + О (x k+1 (log x)~A>j  =
л= о ^ Г  b h , t 2e N ( b )

t2 < t \ - h Q

= * £ _  £
h=Q“* (a0a+b0]h)=l ^ a 0t,+b0^x

for *=1,2 
t2<t\-hQ

cr(b; a, h)2 díj dt2 + О (log ж) ^  .

for 1
and for t=l,2
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By the same argument we used for the calculation of ^  5j|iV(b)| in Sec-
fa

t i o n  3 , w e  c a n  o b t a i n

(5.2)

where

V W ) = i r a r w n A( ' 1 ' ' 1 '

4 “* fc-i
Vi = П M p) /  П ( !  - I«» du-

P\h h J / x  j = 0^0 ^7
We put v = 1 — a,u, and define r\ , . . . ,  rk as

( 5 . 3 )  п  (1 - M“) =  П Í1 - у 1 +  T1') =  E
j = 0  j = 0  '  * * m= 1

Then a simple calculation shows 

к
( 5 . 4 )  F ,  =  i £ ^  £  Л _ ^ 1 ) т + 1 1 д / з ( р )  =

а» ' m + 1 ' V ж /  h í í
m=1 «**7  И*

= - E ^ T T “  ( - , т  + Л ,
а* , m  +  1 \ a * /m = l  '  '

where

2(*’m) = E ( i - i )  1П/з(р)-
/i ^ z  p |A

Next we examine Е(ж, m) for m 't  2. Let s = er -(- it be a complex variable. 
For a > 1, we put

OO

«*) = E л"* П aw = n  (i + p-(1 - /з(р)).
h = 1 p | / i  p

and define r)(s) by

(5.5) {(s) = ( ( s ) ((s  +  l ) krj(s),

where £ denotes the Riemann zeta function. In the half plane a ^  |  +  e
with any fixed e > 0, it is easily seen that r] is analytic and r/(s) <C 1. Thus
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(5.5) gives the analytic continuation of £(s) over о ^  — h + £. For |i| > 1 
and for any e > 0, we have

I c o o l«
\t\^-a+£ if <7^0, 

|f|?(1_ir)+£ if 0 ^  <7^1

(see Tichmarsh’s book [9], for example). Therefore, for —̂ + £ ^ < 7 ^ 0,

(5.6) |f(e)| < | i | - ( H 1>+i+«.

We note here that the exponent of |f| is less than 2 provided that a > 
> — 3/(fc + 2).

It is known that, for c > 0, и > 0 and m  ^  1,

c+ioo m

(Зтгг'Г1 I  и_5Ш (
• '  7—0r—inn J

1 —■( 1 -  u)m if 0 < и й  1,(s + j) ds = <ml
0 if и > 1.

Making use of this formula, we have

1+ÍOO
Z (z,m ) = m\(2 ni) 1 J  £(s + l) z s f  J J ( s  + j)) ds -

1—too ®

k  +  2 +ioo

= m!Ä0,m + m \Rlim + m\(2iri) 1 /  f(s  + \) z 2 (  (s + j ) )  ds,
d V i=o 'k  +  3 

' k + 2 '

where Ro,m and R\,m are the residues of the integrand at s = 0 and s — 
= — 1, respectively. (5.6) shows, for m ^  2, that the last integral converges

. k  +  3  ,
absolutely and is bounded by О ( г *+2).

On the other hand, by (5.5), we see that the integrand has poles of order 
2 and к + 1 at s =  0 and s — — 1, respectively. We find that

т!Д 0,т = C(2)4(l)(log-0 + £»2

and
к

= Z~l Y ^ l i ,m ( l o g z )3,
j=o
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where 0.2 and the 7j,m’s are constants depending only on ao ,. . . ,  a^-i. We 
note that

C(2)‘,(l) = Urn = П  ( ‘ -  \  + 1 ш )  ,

and

(5 .7 ) 7  k , m  =  - ^ C ( 0 ) r ? ( 0 )  =  П / а ( р ) _ 1 .

Taking into account these results, we have

(5.8) E(z, m) = П  ( i  -  ^ + ~ M p )^ ■ 0 °g z ) + « 2+

к

+2_1 ^ Ъ > т^°&2У + 0  •
j =0

Since

к 1 к J. jfc-1
5 ^ f m / ( m  +  l ) =  /  £ r m « " * A ,  =  a .  /  J J  ( l  -  | a j | t i )  d u  =  a * i l ,
m=l £ m =l  ̂ j=0

к
(5.2), (5.4) and (5.8) yield (5.1). Noticing (5.7) and rm = 1, we also get

m=l
(1.7), and our proof is complete.
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C A U C H Y  STR U C T U R E S IN  CLOSURE  
A N D  PR O X IM IT Y  SPACES
Á. CSÁSZÁR (Budapest)*, member of the Academy

0. In tro d u c tio n

It is well-known (see e.g. [10]) that a Cauchy structure © on a set X  
induces a limitation A = A(6 ) defined by

( 0 . 1) 3 6 A(z) iff s n i e ©  (x G X , 3 G FilX )

and, through it, a closure c = c(6 ) for which the neighbourhood filter tic(x) 
of x € X  coincides with nA(z). The same closure c(©) may be also obtained 
through a proximity 6 = £(©) defined by

(0.2) A6 B  iff there is s G ©  satisfying A, В  G secs;

then x G c(A) for с =  c(6 ), А С X  iff {x}SA, i.e. iff there is s  G © satisfying 
x G D s ,  A G secs. We say that 6  induces £(©) and c(6 ).

The purpose of the present paper is to look for necessary and/or sufficient 
conditions under which a given closure or proximity can be deduced from a 
Cauchy structure or, in other words, under which a closure or a proximity 
admits a compatible Cauchy structure.

Some results of this kind are contained in [6]. Terminology and notation 
concerning Cauchy structures will be taken from that paper; in particular, 
we shall use, in what follows, the expression Cauchy screen (or C-screen) 
for a Cauchy structure. For generalities on closures, proximities and screens, 
the reader may consult [7], 0.1-0.2 and [5].

* R esearch su p p o rted  by H ungarian  N ational F oundation  for Scientific R esearch, g ran t 
no. 2114.
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1. Preliminaries

We shall need some separation conditions for closures. It is well-known 
that a closure c on X is said to be symmetric iff

(50) У & c{{x}) implies x £ c({j/}) (x ,y  £ X ).

A stronger condition is given by

(51) ! /£ c ({ i} )  implies oc(ar) = Vc(y) (x ,y € X ) .

By [4], 4.3, (Si) holds iff x ф c(A) implies c({z}) П c(A) = 0, i.e. iff c is 
weakly separated in the sense of [7], 0.1. A still stronger condition is

(52) Dc(zr)Aoc(y) implies 0c(x) =  t>c(y) ( x , y S X )

(see [6]) (aAb means А П В ф 0 for A £ а, В  £ b).
The closure c is regular (see [1], 27B.1, 27B.2) iff

(R) for V £ üc(x) there is W  £ 0c(x) such that c(W) C V ( x £  A).

L e m m a  1.1. I f a regular closure is Si then it is S2.
P r o o f . By (Si), oc(x )  ф Dc(j/) implies the existence of V  £  t)c(x )  such 

that у ф V\ for a W  such as in (R), we have W  £ t>c(x), X  — W  £ t>c(y). □
Here (Si) cannot be replaced by (So):
E x a m p l e  1.2. Let I  =  R x  {0,1}, Qc(x ,y )  be the trace on X  of the 

Euclidean neighbourhood filter о(х, у) of (x, y) whenever x /  0; for p = (0,0) 
and q = (0,1), let t>c(p) = t>(p) П q, Uc(g) = n(^) Dp. □

On the other hand, a regular closure is necessarily So ([1], 27B.4, 23B.3). 
We shall say that a closure is S3 iff it is regular and S i, and T, (i = 1,2,3) 

iff it is S, and To where

(T0) 0c(x) = oc(y) implies x = y (x ,y € X ) .

Clearly, (St) and (T,) (i = 1,2,3) coincide with the usual separation axioms 
(see [2], Chapter 2.5) if c is a topology. Ti-closures are often called separated
([7], [4]).

In a closure space (X, c), a set К  С X is said to be compact iff the 
subspace (K ,c\K ) is compact in the sense of [1], 29B.4 or [4], p. 286, i.e. iff 
each proper filter base (i.e. one composed of non-empty sets) in К  possesses 
a cluster point in К . Let us say that А С X is semi-compact iff each proper 
filter base in A admits a cluster point in X , and it is weakly semi-compact 
iff, whenever t is a proper filter base in A , the filter

Uc(t) = {S  С X : intc S  £ fil* t}
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has a cluster point in X . (Where intc5  = {x  £ X: S E t>c(x)}.) If A is 
contained in a compact set then it is clearly semi-compact, and a semi
compact set is weakly semi-compact.

In order to establish a converse, let us first observe:
Lemma 1.3. I f c is a regular closure on X  and, for a filter base x in X , 

the point p £ X  is a cluster point of the filter 0c(t), then p is a cluster point 
of x itself.

P r o o f . Assume V  G t>c(p), R G t, VTl R = 0. For W  G Pc(p), c(W) С V, 
we would have X  -  W  G t)c(t). П

Now we can prove:
Lemma 1.4. I f  A is weakly semi-compact in a regular closure space (X, c) 

then c(A) is compact.

P r o o f . Let t be a filter base composed of non-empty subsets of c(A). 
Then A G secnc(r), hence to = t>c(t)|A is a proper filter base in A. By 
hypothesis there exists a cluster point p G X  of Dc(to); by 1.3 it is a cluster 
point of r0, hence of t>c(t)  and of t ,  too. Clearly p G c( A). □

C o r o l l a r y  1.5. In a regular closure space, A is semi-compact iff it is 
weakly semi-compact iff c{A) is compact. □

Regularity cannot be replaced by T2:
E xample 1.6. For X  — R, let oc(:r) coincide with the Euclidean neigh

bourhood filter 0(2) whenever x /  0, and set

Then c is a T2-topology. The set A = [—1,1] — IV is semi-compact in (X ,c) 
while c{A) = [—1 ,1] is not compact. On the other hand, A is a closed, weakly 
semi-compact set without c(N) = N  being semi-compact. □

We also need some operations on screens. In [6], 2.3, one of them is 
described: for a screen 6 o n l ,  let ©e be composed of the elementary filters 
(i.e. intersections of finitely many ultrafilters) contained in © and of expX. 
If © is a Cauchy screen then so is @e. It is shown in [6], 2.3 that c(©e) = 
= c(©); in fact, a stronger result is valid:

Lemma 1.7. For any screen ©, we have 6 (&e) — S(&).

P roof . ©e C 6  implies that <5(©e) is finer than <5(©). On the other 
hand, if A, В G secs, s G 6 , then (s|A) <S(s|-B) for 6 = S(&) (i.e. M SN  for 
M  G s|T , N  G s |B), hence, by [5] 3.6, there are ultrafilters u D s |А, о Э s |В 
such that u<So, and then, by [5], 3.7, u П 0 G 6 e fulfils A, В  G sec(u П p). □

If © is a screen then the fixed elements of © constitute a base for a screen
©T Clearly c(©^) = c(©) ([4], 3.6). If © is a Cauchy screen then so is ©T
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2 . CR- and CL-screens

It is easy to solve our fundamental problem for CR- or CZ-screens in 
closure spaces:

T heorem 2.1. A closure can be induced by a CR-screen iff it is S2, and 
by a CL-screen iff it is an S2-topology.

P roo f . If 6  is a CR-screen and c = c(©) then c is S2 by [6], 2.1; if © is 
Lodato then c is a topology ([6]). If c is an ^-closure then the filters t>c(x) 
(x E X )  constitute by [6], 2.2 a base for a CÄ-screen 6  satisfying c = c(6 ); 
6  is Lodato provided c is a topology. □

Corollary 2.2. I f c is an S2-closure then the finest CR-screen com
patible with c is generated by the screen base composed of the filters oc(x). 
It coincides with the finest Riesz screen ©^(c) compatible with c. I f  c is an 
S2 -topology then ©д(с) is Lodato and, therefore, it is the finest CL-screen 
compatible with c.

P roo f . [5], 2.8. □
In order to treat the question of existence of coarsest compatible 

CÄ-screens, let us say that a filter s is strongly c-compressed in a closure 
space (X , c) iff s —> x for c whenever a: is a c-cluster point of s; such a filter 
is c-compressed ([4]), 3.3).

Lemma 2.3. I f  & is a CR-screen, c — c(6 ), then every element of & is 
strongly c-compressed.

P roo f . If x is a cluster point of s E 6  then t>c(x)As and oc(x) G 6 , 
hence s' = tic(x) Л s E © is fixed at x , hence s' —► x by [4], 3.1 and 3.3. A 
fortiori, s —> x. □

T heorem 2.4. In an arbitrary closure space (X ,c), the strongly 
c-compressed filters constitute a Cauchy screen © -  ©(c) such thatc  = c(6 )
is finer than c. 6  contains all filters üc(x) iff c is S2 and then 6  is the 
coarsest CR-screen compatible with c.

P roof . For x E X , x is strongly c-compressed. A filter finer than a 
strongly c-compressed filter is strongly c-compressed. If Si and S2 are strongly 
c-compressed and Si A$2  then s = Si Л S2 is strongly c-compressed. In fact, 
oc(x)As implies t>c(x)As, for i = 1 or 2, say for i = 1. Then Si —*• x, hence 
Oc(x)Aő2 , S2 —»• x, and s —► x.

If x G c(A) then there is s E 6  such that {x}, A E secs. Since x is a 
c-cluster point of s, necessarily s —» x for c and x E c(A).

A point у is a c-cluster point of oc(x) iff ос(х)Дос(у). So if c is S2 then 
Uc(x) is strongly c-compressed for x E X  and 6  contains all c-neighbourhood 
filters. Conversely if Dc(x) E © for x E X  then oc(x)Auc(j/) implies 0c(x) —» 
—*• у , t>c(x) D Dc(j/) and similarly t>c(x) C Dc(j/), so that c is S2. If so, then
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x E c(A) implies {x}, A E sectic(x), oc(x) E 6  and x E c(ri). Thus 6  is a 
compatible CP-screen; it is the coarsest one by 2.3. □

Therefore we shall write &%R = 6 ®.д (с) for the screen © described in
2.4 in the case when c is S2. However, even if c is a T*-topology, & need not 
be a Riesz screen in general.

E x a m p l e  2.5. For an infinite set M, let X  — M  U {p, q}, oc(x) = x 
for x E M , Pc(p) = p fl filx5o where So is composed of all cofinite subsets 
of M, 0c(q) = q П filx Uo where Uo is a free ultrafilter in M . Clearly c is a 
Ta-topology.

If u ф Uo is a free ultrafilter in M , then s = p П fily u is strongly 
c-compressed, so Dc(p) C >?j(p) C s. Now Dc(p) is the intersection of all such 
filters s; in fact, if A С M  is not cofinite in M , then X  -  A is contained in 
at least one free ultrafilter u in M  distinct from Uo, so {p} U A £ p П fil^ u.
Therefore t>̂ (p) = 0c(p), but this filter does not belong to & since q is a 
cluster point of it without being its limit point. □

Observe that the only strongly c-compressed filter fixed at q is q, so 
Q^(q) = q and c is strictly finer than c.

On the other hand, c — c can occur even if c is not S2:
E x a m p l e  2.6 (J. Deák). Let X  — D U {p, q}, D = u>\ x w, oc(x) = x 

for z E f i ,  M p ) = P П p, tic(q) = q П q, where the filters p, q are defined as 
follows. Set

P (a , m) = { (о, n) E D: m  ^  n} ,

Q (a,m ) = {(ß ,m )  E D :a  ^  ß } , 

p(a) = filx { P (a , m ) :m g w } , 

q(m) = filx {Q(a, m ):a  Е ц } ,  

p = n{p(a): а Е ц } ,  

q = f l{  q(m): m E w} .

Now c is a Ti-topology (since p(a), q(m), p and q are free) but it fails to 
be T2. In fact, each Q E q contains a subset of the form U{Q (m ):m  E w}, 
Q(m) = Q (am, m), and by choosing a E w\ such that am ^  « for m E ш, we 
have Q (a,m ) C Q for every m E oj. Now any P  E p contains P (a ,m ) for 
some m g u  so that (a, m) E P(a, m) П Q(a, m) С P  nQ  7̂  0.

Clearly t)^(x) = x for x E D since c is finer than c. Further both p(a) П 
П p and q(m) П q are strongly c-compressed since they have no cluster points 
other than p or g, respectively. Therefore

Ис(р )С 1 р (р )С р (а )П р  (aEW i),
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t>c(g) C xŷ (q) C q(m) П q (m £ w )

implying
f c(p) С XУ&р) C p П p, vc(q) C 0^(9) C q П q, 

i.e.
t>c(p) = tr^(p), oc(9) = 0^(9). □

C o r o l l a r y  2.7. If c is an S2-topology then the coarsest CL-screen 
&cl ~  ®cl(c) compatible with c is generated by the c-open elements of&°CR.

P roo f . The filters in question clearly constitute a screen base for a 
Cauchy screen 6 . Obviously &R C & C &c r > hence c(6) = c and 6  is a 
CL-screen compatible with c. It is the coarsest one because any compatible 
CL-screen &  must be contained in &qR and generated by a screen base 
composed of c-open filters. □

&CL 7̂  ® ся т а У happen: consider (X ,c) in 1.6 in which the Fréchet 
filter s corresponding to the sequence (^) does not have any cluster points
(hence s  £  & g r ) while n c ( s )  clusters at 0 without e-converging to 0.

On the other hand:
L em m a  2.8. I f  c is a regular topology then 6 ° R =

P roo f . For 5  £ 6 ° R we have o c( s )  £ 6 °  R. In fact, if x £ X  is a cluster 
point of o c( s ) ,  then it is a cluster point of s  by 1.3, so s  —► x, and, c being a 
topology, P c( s )  —» x. Hence 6 °  R is Lodato. □

Observe that 2.4 and 2.7 show a certain contrast to [6], 2.17 (according 
to which a compatible CX-screen given on a subspace of a T2-topological 
space may possess compatible CX-extensions without having a coarsest C Il- 
от CX-extension).

Our previous results permit to formulate some sufficient conditions for 
the existence of compatible CR- or CX-screens in proximity spaces (X,S):

T h eo r em  2.9. I f a proximity 6 admits a compatible C R-screen then c(6 ) 
is S2. Conversely, if c is an S2 -closure on X , then the proximities

^Я -  ^я(с) = ^(® я(с))

and
6* = t>*(c) = 6{e°CR(c))

admit the compatible CR-screens &R(c) and &c r(c)> respectively.
P r o o f . 2.1, 2.2, 2.4. □
T h eo r em  2.10. I f  S admits a compatible CL-screen then c(6 ) is an S2- 

topology. Conversely, if c is an S2-topology, then the proximities bR(c) and

6 "  = 6 "(c ) = t(e °CL(c))
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admit the compatible CL-screens <3д(с) and © °L(c), respectively.
P roof . 2.1, 2.2, 2.7. □
C orollary 2.11. For an ?>2 -closure с, SR(c) and S*(c) are the finest 

a n d  the coarsest proximities, respectively, compatible with c and admitting a 
compatible CR-screen. □

Concerning proximities between SR(c) and £*(c), see 3.17.
Corollary 2.12. For an S2-topology с, SR(c) and S**(c) are the finest 

a n d  the coarsest proximities, respectively, compatible with c and admitting a 
compatible CL-screen. □

According to 2.11 and 2.12, it is reasonable to write 

h \c )  = S°CR(c), S**(c) = 6°CL(c).

It is not difficult to find direct constructions for £д(с), S°R(c) and S°L(c). 
As to  ̂= SR(c), it is obvious (cf. [4], 4.1) that ASB iff c(A) П c(B) ф 0.

T heorem 2.13. For an S2-closure c,S* = SqR(c), we have Ab*В iff 
c(A) П c(B) ф 0 or neither A nor В  is semi-compact.

P roof. Suppose there is a strongly c-compressed filter s such that A , B e 
E sees. If 3 has a cluster point x E X ,  then 3 —► x, hence c(A) П c(B) ф 0 . If 
3 does not have any cluster points, then s|A and s\B  are filter bases without 
cluster points, implying that neither A nor В  is semi-compact.

Conversely, if x E c(A) П c(B), then Dc(ar) E б “ д (с), A, В £ secoc(a:). 
If there are proper filter bases гд and tв  in A and B, respectively, without 
cluster points in X ,  then з = fil^ Гд П filjf tв  E ® ся(с) since 3 has no cluster 
points, and А, В  E secs. □

T heorem 2.14. For an S2-topology c ,6 ** = SqL(c), we have AS**В iff 
c(A) П c(B) ф Q or neither A nor В is weakly semi-compact.

P roof . If 3 is c-open and strongly c-compressed, A , B e  secs, then 
either c(A) П c(B ) ф 0 or s has no cluster points, and then the same holds 
for the finer filters t>c(s|A) and oc(s|i?). Conversely, if гд and tjg are proper 
filter bases in A and В , respectively, and neither Ос(гд) nor Ос(гв) has cluster 
points, then s = Ос(гд) П öc(tß) is a c-open filter without cluster points such 
that А, В  E secs. □

By 2.8, i “ fi(c) =  ScL(c) if c is a regular topology. On the other hand, 
these two proximities are distinct for the T2-topology c in 1.6, since P  and 
Q are proximal for the first one and far for the second one provided

Í 1 1 ^  Í
Q - {

_ J__
2n + 1

: n E N

(P  and Q are weakly semi-compact without being semi-compact).
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It is possible that c(S) is a T2-topology but 6 does not admit a compatible 
CÄ-screen or a compatible Cauchy screen at all (see 3.12, 3.13).

3. Cauchy screens

It is not difficult to establish necessary conditions for the existence of 
compatible C-screens in general.

T h eo rem  3.1. I f & is a Cauchy screen then S(&) is a Riesz proximity, 
hence c(6 ) is an Si-closure.

P r o o f . By putting 6 = Á(©), c = c(S) = c(©), suppose x G c(A) П c(B). 
Then there are Si,S2 G © such that {ж}, A G secsi, {x } ,B  G secS2- Now 
3i As2, so 3 = Si ПЗ2 G 6 , and A, В  G secs, ASB.

The rest follows from [4], 5.9 (there Riesz proximities are called weakly 
Lodato, Si-closures weakly separated). □

T h eo r em  3.2. Let & be a Cauchy screen, 6 = Á(6 ), ASB{ for i G I, 
BiSBj if i , j  G I , i ф j ■ Then

P r o o f . Let s, G ©  be chosen such that A,B{ G secs,, and suppose 
that (3.2.1) is false. Then there are i , j  G / ,  i Ф j  satisfying s;|A = 3j\A, 
consequently s,Asj. So s = s, Л Sj G 6  and B, ,Bj  G secs, which fact would 
imply Bi6 Bj. □

In order to deduce from 3.2 a necessary condition concerning closures, 
let us denote, for a closure c on X , by ф(с) the partition of X  corresponding 
to the equivalence relation

C o r o l l a r y  3 .3 . I f & is a Cauchy screen on X , с = c (© ); А С X , then

(3.2.1) | i | S 22Ml.

у iff t>c(z) = vc{y) {x,yeX).
If c is Si then x rsj у iff У G c ({z} ).

(3.3.1) { Р б ф ( с ) :Р П с ( А ) ^ 0} ^ 22'Л|.

In particular, if c is T i, then

(3.3.2) I c(^ ) | = 2г'Л1.

P r o o f . Set

{ P  G ф(с): P  П c(A) ф 0} = {P„: i G /} , 

Ct Ф Pj for i , j  G I, г Ф j-
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Choose x,- £ P{ П c(A) (г G /) . Then {x,}ÓA for 6 — 6 (6 ), and {x,}£{xj} for 
i , j  6 I , i ф j  since c is Si by 3.1. Thus (3.2.1) holds by 3.2. If c is Ti then 
each element of ф(с) is a singleton. □

A further necessary condition concerns elementary neighbourhood filters 
in closure spaces.

Lemma 3.4. Let & be a screen on X ,c  = c(&). I f x £ X ,  uc(x) is an 
elementary filter, u is an ultrafilter, and u —► x, then u fl x G &■

P r o o f . The statement is obvious if u  =  x .  Assume u  /  x ,  b c ( x )  =  x  fl
П

П Piu, where each иг is an ultrafilter and ut ф x ,  u = Uo, u, ф u, if i ф j .  
о

Choose A € Uo satisfying А ф u, for i ф 0. We have x 6 c(A), hence there is 
a filter 3 E & such that x 6 П s, A G secs, consequently s —> x by [4], 3.1 
and 3.3. Now uc(x) C s implies

s =  i n  f |U i, I  C {0, . . . , 7l}.
iei

Clearly A € secu, for some г G I  so that A G u,-, г = 0, and s C Uo П x G &.
□

C o r o l l a r y  3.5. Under the hypotheses of ЗА, if & is a Cauchy screen, 
then t>c(x) G 6 . □

C o r o l l a r y  3.6. I f  <8 is a Cauchy screen, c = c(6 ), x ,y  G X ,  oc(x) 
and Qc(y) are elementary filters, and ос(х)Дос(у), then Dc(x) = 0c(t/).

P r o o f . 3.5 and 3.1. □
For a special class of closure spaces, we can now prove a necessary and 

sufficient condition:
T h eo rem  3.7. Let (X , c) be a closure space such that each neighbourhood 

filter t>c(x) is elementary. There is a Cauchy screen compatible with c iff c 
is S2.

P r o o f . By 3.5, a compatible C-screen has to be C R , and 2.1 can be 
applied. □

Unfortunately, the collection of the necessary conditions 3.1, 3.3 and 3.6 
is not sufficient in the general case.

E x a m p l e  3.8. Let M  be a countably infinite set, M  П N  = 0, and 
suppose that p is a bijection onto N  from the set of all free ultrafilters in M . 
Define X  = M  U N  U {<7} where ^ i l iU J V .  Set oc(x) = x for x G M , 0c(x) = 
= x П fil^ u for x = p(u), u a free ultrafilter in M , and 0c(g) = q П fil^So 
where So is composed of all cofinite subsets of M . Then c is a Ti-topology 
on X , |X | ^  22UJ implies that (3.3.2) is fulfilled and the same is true for 3.6. 
However, if 6  were a Cauchy screen compatible with c then q G c{M) would 
imply the existence ofs G 6  such that q G Пз, M  G secs. Take an ultrafilter
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u in M  such that s\M  C u, then p(u) П filx u E © by 3.5, sAt>c(p(u)) and 
s П üc(p(u)) E © would imply p(u) E c({q}) '■ a contradiction. □

For the next example, we recall that the coarsest Riesz proximity S = 
= SR(c) compatible with an Si-closure c is defined by ASB iff с(А)Г\с(В) ф 0 
or both A and В  are infinite (see [7], Theorem 1.5, but a direct proof is also 
straightforward).

E xample 3.9. Let M , N , p denote the same as in 3.8, X  = M  U N , 
t>c(x) = x for x E M, Vc(x) = x П filjt u for x = p(u). Now c is a T2-topology 
and, by 3.5, each Cauchy screen compatible with c must be Riesz.

Now S = Sff(c) is strictly coarser than S* = SqR(c) because ASB if A 
and В are infinite, A , B c M , A ( ~ ) B  = 0, but then both A and В  are semi
compact and c(A) П c(B ) = 0, hence AS*В  (see 2.13). By 2.11, there is 
no Cauchy screen compatible with S (although c = c(S) admits, by 2.1, a 
compatible CL-screen).

Observe that S is Riesz and every family of pairwise disjoint non-empty 
subsets in X  has cardinality ^  22 so that the condition in 3.2 is fulfilled. 
□

The situation that c(S) admits a compatible Cauchy screen without the 
Riesz proximity S doing so cannot occur if <5 = SR(c).

L e m m a  3.10. I f a screen © is generated by a screen base composed of 
fixed filters and 6 = <5(@) is a Riesz proximity, then S = SR(c) for c = c(©).

P r o o f . It suffices to show that S is finer than 0д(с). Now if ASB, there 
is a fixed filter s E & such that А, В E secs. If s  is fixed at x, clearly 
x E с(Л) П c(B). □

C orollary 3.11. I f & is a Cauchy screen, c = c(©), then 6 (&f)  = 
= SR(c).

P r o o f . 6 f  is a Cauchy screen, so 6 (&f )  is Riesz by 3.1 and с(б^) = c.
□

Corollary 3.12. An Si -closure c admits a compatible Cauchy screen 
iff SR(c) does so. □

In order to formulate a partial analogue for the proximity SR(c), let us 
agree in saying that a closure c is Fréchet iff x E c(A) implies the existence 
of a sequence (xn) such that xn E A, xn —> x for c. If c is a topology, this 
terminology coincides with the usual one (see e.g. [8], p. 53). If every 
neighbourhood filter uc(a;) has a countable base, c is clearly Fréchet.

We also recall that an infinite set A contains 22,A| free ultrafilters (see 
e.g. [9], 9.2); we shall need this fact in the case |A| = lj.

T heorem 3.13. Suppose c is a Fréchet Si -closure on X  and |X | ^  22“ . 
Then S — SR(c) admits a compatible Cauchy screen.
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P r o o f . Consider the pairs (A, B) where A,H С X , A П В =  0, and 
either |A| = |5 | = и  or A = {a}, \B\ = и  and the filter base composed of the 
subsets cofinite in В  c-converges to a. Since the cardinality of the family of 
the countable subsets of X  is ^  (22“)ш = 22“, we can enumerate these pairs 
in the form (Aa,B a), a £ 22“ .

If (Aa ,£?0) is of the first type, we choose free ultrafilters ua , tt>Q such 
that A £ В £ tua ; if (Aa,B a) is of the second kind, we choose a free 
ultrafilter ua such that Ba £ ua . This can be done in the manner that all 
ultrafilters uQ, tna are distinct; in fact, there are 22“ free ultrafilters in 
a countably infinite set and, for a given a  £ 22 , the family of the traces on 
Aa or Ba of the ultrafilters \xp, Pß, VOp (ß < a ) has cardinality less than 22“ .

Let 05 be composed of the filters t»a П toa , da П ua (where A a = {aa}) 
and F  where F  is a finite subset contained in one of the elements of the

71

partition fP(c). Consider the intersections f)r,- where t, £ 05 and (to ,. . .  ,t„)
о

is a Cauchy chain ([6]) (i.e. t^_i At; for i = 1 , . . . ,  n). It is easy to see that 
these intersections constitute a base for a Cauchy screen ©.

If M SN , there is a filter s £ © such that M, N  £ secs. In the case x £ 
£ M  П N  we can take s = i  £ 05 C 6 . If M П X = 0, M  and N  are infinite, 
there are A С M , В  C N , |A| = |5 | = u , thus (A, В ) = (AQ, Ba) for some 
a and s = П tt>a £ 05 can be chosen.

Suppose M  П N  = 0, x £ c(M) П c(N ) and, say, \M\ < u>. Then there 
are p £ M  such that x £ c({p}) and a sequence (xn) such that xn £ N  and 
xn —► x. If xn = q for infinitely many indices n, then x £ c( {q}), hence p, q £ 
£ P  for some P  £ ф(с), and then s = F  £ 05 can be taken for F — (p, q}. If 
there is no such q then В  = {xn: n £ N} is infinite and ( {p}, В ) = (Aa , Ba) 
for some a (p, x £ P  £ ф(с), so xn —> p).

Assume now that there is s £ © such that M , N  £ secs. We can suppose
П

that s = f l t i ,  ti £ 05 and ( r o , . . . , r n) is a Cauchy chain. We show MSN.  
о

This is clear if M  and N  are infinite. Suppose one of them, say M , is finite.
Assume tj = ua П for some j;  then t; = t у for all i (since ua and 

tt)a are free and distinct from U/j, pß, VOß (ß ф a)). Hence s = tj and both 
M  and N  would be infinite. Thus each t; is either of the form äa П ua or 
of the form F,  so that all points aa and all sets F  occurring are contained 
in the same P £ ф(с) (since each ua is free and distinct from Uß (ß ф a)). 
As M  £ sect;, N  £ sectj for suitable i and j , necessarily M  П P ф 0 and 
P  П c(N) ф 0 in all possible cases, hence P C c(N)  implies M  П c(N) ф 0, 
MSN.  □

C o r o lla r y  3.14. I f c is a Fréchet Si -closure on X  and |A | 22̂  then
c admits a compatible Cauchy screen. □

COROLLARY 3.15. The cofinite topology on a set X  admits a compatible 
Cauchy screen iff \X\ ^  22“ .
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P r o o f . For this Ti-topology c, we have c(A) =  X  whenever A is infinite. 
Thus 3.3 and 3.14 can be applied (c is obviously Fréchet). □

It can be happen, for a Riesz proximity 6 , that c(S) is a T2-topology, 
ö does not have a compatible C Д-screen but admits a compatible Cauchy 
screen:

E x a m p l e  3.16. Let (X ,c) be the Euclidean line, S =  SR(c), and apply 
3.13 and 2.11 (Á is strictly coarser than S^R(c) since [0,1]<5[2,3]). □

It can also happen that Si C S2 C S3 , c(S;) = c for i = 1,2,3, Si and 63 
admit compatible CX-screens, but the Riesz proximity 6 2  does not have any 
compatible Cauchy screen:

E x a m p l e  3.17. Let X  — A U |J  where A and the sets Bi are
iei

countably infinite and pairwise disjoint. For the discrete topology c on X , 
let @1 consist of the filters i  ( 1  6 I ) ,  63 be generated by a screen base 
composed of the filters x and of all free filters. Clearly ©1 and ©3 are CL- 
screens inducing c, Si = Á(©i) = <5д(с), 63 = £(63 ) = SR(c).

Define MS2N  iff M  П N  /  0 or there is an i such that M i ld  and N  П Bi 
are infinite or there is an i such that M П Bi and N  П A are infinite. Then 
62 is a Riesz proximity and Si C S2 C S3 . However, AS2B{ (i £  X), BiS2Bj 
( i , j  £ I,  i ф j ) so that, by 3.2, S2 does not admit any compatible Cauchy 
screen if |/ |  > 22“\  □

We have seen that if a closure c admits a compatible CR-  or CL -screen 
then there are among them a coarsest one and a finest one (2.4, 2.7 and
[6], 2.8, 3.1 for I  = 0). The situation is completely different in the case of 
Cauchy screens: both a coarsest compatible C-screen and a finest compatible 
C-screen fail to exist in general. The next two examples show this fact in a 
stronger form, i.e. for proximities as well as for closures.

E x a m p l e  3.18 (cf. [4], 3.15). Let X  be an infinite set, p £ X , Uo a free 
ultrafilter in X . Let a screen base for © be composed of all filters x (x £ X)

П

and of the filters p П fj U; where n £ N and U i,. . . ,  un are free ultrafilters
1

distinct from Uo. Clearly © is a Cauchy-screen and S(&) = S can be described 
in the following way: AS В iff

or

or

or

А П В t  0

p £ A, В  is infinite 

A is infinite, p £ В  

both A and В are infinite
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(since any infinite subset of X  is contained in a free ultrafilter distinct from 
Uo). Thus c(<S) is a Тг-topology.

Now a screen finer than all these screens 6  (corresponding to the possible 
choices of Uo) necessarily coincides with {x:x G I ) ,  hence it generates the 
discrete proximity and the discrete topology of X , and then it is compatible 
with neither 6 nor c(6). □

E x a m p l e  3.19. Let X  =  R , c be the Euclidean topology on X  and 
6 = Sfi(c). Consider the construction contained in the proof of 3.13 by 
beginning the transfinite sequence (Aa ,B a ) with the pair ({0}, Bo), Bo —
= {n+T:n 6 n | .  Choose a free ultrafilter Uo satisfying B0 £ Uo- By this,
we obtain a Cauchy screen ©i such that £(©i) =  S.

Apply now the construction another time, now beginning the enumera
tion with (Ao,B q), where A0 = N, Bq has the same meaning as above, and 
choose a free ultrafilter Do such that Ao E Do, finally put roo = Uo- We obtain 
a Cauchy screen ©2 with £(62 ) = 6.

If a Cauchy screen © is coarser than both ©1 and ©2 then it contains 
5 — 0 Huo П Do so that s has to c(6 )-converge to 0. Therefore c(©) ф c (since 
Do does not c converge to 0), implying £(©) ф b. □

4. Coarsest screens as Cauchy screens

It is well-known that, if c is an So-closure, then the coarsest screen ©°(c) 
compatible with c is composed of all c-compressed filters ([4], 3.2). Similarly, 
for a proximity 6, the coarsest screen 6 °(£) compatible with 6 is composed 
of all Pcompressed filters ([3], (6.9) and (6.11)). We examine the question: 
when is ©°(c) or ©°(£) Cauchy?

The case of ©°(c) is rather simple:
T h eo rem  4 .1 . Let (X, c)  be a symmetric closure space, so the filter com

posed of all cofinite subsets of X . The following statements are equivalent:
(a) ©o(c) is a Cauchy screen,
(b) c is S2 and every c-compressed filter is strongly c-compressed,
(c) all sets P £ ф(с) are finite and Dc(x) = P for x £ P £ fß(c), with one 

possible exception Pq for which Dc(x) = Ро П So for x £ Pq.
P r o o f , (a) =>■ (b): If 6 °(c) is Cauchy then c is Si by 3.1. Thus every 

neighbourhood filter Dc(x) is c-compressed, so that ©°(c) is a CR-screen, c 
is S2, and ©°(c) is finer than © ^я(с)-

(b) =>• (c): Now ©°(c) =  ©^д(с). If x £ X  and Dc(x )  has a finite element 
then Dc(x )  has a smallest (finite) element P, Dc(x )  =  P ,  and P £  ip(c) as c 
is Si.

Suppose now that there is x £ X  such that every element of Dc(x) is 
infinite. Then x is a cluster point of Sq and, since a free filter is c-compressed,

Acta Mathematica Hungarica 66, 1995



214 Á. CSÁSZÁR

hence strongly c-compressed by the hypothesis, necessarily So —► x, tic(x) C 
C So. As c is S2, two such points x must belong to the same element P0 
of ф(с), and then 0c(a:) C Po, t>c(ar) C PoflSo. If x E Po, У G X -  P0, (Si) 
implies that there is V  E oc(x) such that у £ V , so Po П So C tic(a:) and 
t»c(ar) = P0 П s0 for x E P0-

(c) =>• (b): Suppose c has the structure described in (c). Then clearly 
c is S2. Let s be a c-compressed filter that has x E X for cluster point. If 
у G П s then s —► y, hence Vc(x) = Vc(y) by (S2) and s —► x. If s is free then 
x G Po and So C s implies s —> x again.

(b) =>• (a): Obvious by ©°(c) = &c r (c)- ^
While the answer to the question concerning ©°(c) leads to a rather 

peculiar class of spaces, the question concerning ©°(<5) is more interesting. 
For this purpose, we recall that a proximity S on X is said to be Efremovich 
i f fAb В  implies the existence of U, V С X such that U Л V  = 0, ASX — U, 
BSX  -  V.

Now we can prove:

T h eo r em  4 .2 . Let (X , Á) be a proximity space. The following statements 
are equivalent:

(a) 6 ° = ©°(i) is a Cauchy screen,
(b) ©0e is a Cauchy screen,
(c) for ultrafilters in X , the relation S is transitive,
(d) S is an Efremovich proximity.

P r o o f , (a) => (b): Obvious.
(b) => (c): Let u; (i = 1,2,3) be ultrafilters in X , U1ÁU2, 112Л13. By [5], 

3.7, Ui П U2 and U2 П U3 are Á-compressed, hence they belong to ©0e, further 
(ui П U2)A(U2 П U3), so that s = Ui П U2 П U3 G 6 0e. Both Ui and u3 being 
finer than the Á-compressed filter s, A\ E Ui, A3 G U3 imply Ai, A3 G secs, 
hence A1ÍA3, and U1ÓU3.

(c) => (d): Suppose А, В  С X  and U П V ф 0 whenever AbX  -  U, BSX  -  
— V . The sets U and V  in question constitute filters s and t, respectively, 
that fulfil sAt. Let № be an ultrafilter finer than s(fl)t. For W  G tt», A6 W  
would imply X  -  W  E s C to which is impossible. Hence A<5tr, and similarly 
BSго. By [5], 3.6, there are ultrafilters u and 0 such that A С u, В C ti, uótu, 
üítn. By hypothesis uit), hence A6 B.

(d) => (a): Let s and t be Á-compressed filters such that sAt. We show 
that s П t is i-compressed. In fact, if А, В С X , А, В  E sec(s П t) and, say, 
A, В  G secs, then A 6 B. The same is true if А, В  E sect. If A G secs, В  E 
G sect and AS В  were true, then two sets U and V  would exist such that 
U C\V = 0, ASX — U, BSX  — V . The Á-compressedness of s and t implies U G 
G s, V  G t which would contradict sAt. If A G sec t , P E  secs, the reasoning 
is similar. □

Acta Mathematica Hungarica 66, 1995



CAUCHY STR U C TU R ES IN C LO SU RE AND PR O X IM ITY  SPACES 215

The essential content of the implication (d) (a) lies in the fact that the
й-compressed filters coincide with the Cauchy filters of the totally bounded 
uniformity compatible wit 6 (see e.g. [2], (4.2.26), (5.2.8) and (5.2.9)).
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INTERPOLATION BETWEEN 
HARDY-LORENTZ-ORLICZ SPACES

V. ECHANDIA (Caracas)

1. Preliminaries

In what follows Lp will denote Lp[0,1]. For any set A  we shah denote 
the characteristic function of A by x(-Ä). For each /  € L 1, we put

£nf  := 52" /  (n € N);

where s2n /  is the 2n-th partial sum of the Walsh-Fourier series of / .
By Jensen’s inequality we have

(1) M l ,  S | |/ | |p.

The dyadic maximal operator for /  E L 1 is defined by

e f  := sup |£n/ | .
n € N

For each /  6 Ll and 0 < p < oo set

H P \ef llp-

On the set of Walsh polynomials V, the map /  —у | | / | |HP is a norm for 1 Ú 
й p < oo and a quasi-norm for 0 < p < 1.

The dyadic Hardy spaces Hp are defined to be the closure of V  in the 
quasi-norm | | . . .  ||HP for 0 < p < oo.

D e f in it io n  1 (Kalugina). We shall say that /  is a parameter function 
or /  G Bk if it is a positive, increasing and continuous function on (0,oo) 
such that roc

C f — m in(l, l / t ) f ( t )  d t/t < oo,Jo
where

/ ( 0  = sup t S -
5>0 J ( S)
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For /  G Bk and an Orlicz function F  we introduced in [2] the function 
norm Ф by

Ф ,М и) = ini {>• > 0 : ^  ^  ( ^ 0 )  Л / '  = 1}

where и is a non-negative measurable function on (0,oo).
For a Banach couple of interpolation A — (Ao, zli) we define the space

A j ,f  = (Ao, A i )j F

as the space of all a 6 £XA) such that Фf iF[K(t,a)] < oo, where K (t,a ) is 
the Peetre functional^

By construction, A f f  is an interpolation space between Ao and A\ (see 
[6]). For a detailed study of these spaces see [2].

D e f in it io n  2. Let ( f 1 ,//) be a //-finite measure space. Suppose ф is a 
non-decreasing concave function on [0, oo) such that 0(0) = 0 and F  is an 
Orlicz function. The Lorentz-Orlicz space Ьфр = L</>f (m) is defined to be 
the space of all (classes of) //-measurable functions x on Í2 such that the 
functional

'.\<t>F inf

is finite, where x* is the non-increasing rearrangement of x with respect to 
the measure //.

It is usual to define a norm ЦхЦ^ on Ьфр as follows:

|W U F : = i „ f { r > 0  : ^ % ( Ю 1 ) Л / < 5 1 } ,

where
1 F

= -  J  x*(s)ds.

The following result has been proved in [2].

P r o p o sit io n  1. I f  ф e  Bk and / ( / )  =  -щ  then

(X \X °°)/iF = Z0F.
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2. Interpolation between dyadic Hardy—Lorentz—Orlicz spaces

In this section we introduce the dyadic Hardy-Lorentz-Orlicz space Нфр, 
and obtain some results about interpolation between them.

D e f in it io n  3. Suppose ф is a non-decreasing, concave function on [0, oo) 
such that 0(0) = 0, and F  is an Orlicz function. We shall say that a function 
f  £ L1 is in the dyadic Hardy-Lorentz-Orlicz space НфР if and only if £ f  £ 
£ Ьфр. We provide Нфр with the norm

ll/llH(j>F Ik/IÎ F-
For the spaces Нфр we have the following result.
T h eo rem  1. If  ф £ Bk and f( t )  = -щ  then

( Н \ ^ ) ^  = НФР.

P r o o f . We define the operator T(a ) = ea on Ll . T(a ) is sublinear, and 
using inequality (1) of the preliminaries we get

(i) llT (°)lli = ll® ! ! # 1 1 and
(ii) Щ а ) ^  S C M ^ .
These inequalities imply that T  is bounded from Я 1 into L1 and from L°° 

into L°°. By interpolation we conclude that T  is bounded from (Я 1,/ /00) ^  
into (L1, ^ 00)^ F = Ьфр. Thus there exists C\ > 0 such that

Н \ н фР = IMI^F = Cl|lall/,F-
Therefore (H \L ° ° ) fF  С НфР.

From Lemma 2 in [1] we have that, given a £ L1 and t > 0, there are 
functions ht, gt belonging to Я 1 and L°° respectively such that a = ht + gt 
and

\ M m ü  \  ea(S) ds, HfiftlL ^  C(ea)*{t).

The inequabty
K(t,a; ^  \\ht\\H1 + t\\gt\\Loo

implies

Ü F i\

[ \  t(£a)*(t) + I  ea(s)

t(ea)*(t) + [  (ea)*(s)ds
Jo

ds
m

<
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^  F
1

m
(ea)**(t) ds F(cf>(t)(ear(t)).

Therefore we conclude that ||a ||^F ^  2С ||а||я ^ .  The theorem is proved. 
Applying the reiteration theorem given in [2] we get the following result.
T h eo rem  2 . Let the functions фо, ф\, f  and

Фо\ (t) —
<Ы0
<Ы0

belong to В к■ Set
_  фоУ)

ф2 / (< Ы * )) '
Then

( ^  0о Fq 1 ff ól Fi ) j p  — Вф2 F ■

P r o o f . Let f t(t) =  i =  0,1 and r(t) =  From Theorem 1 and 
the reiteration theorem in [2] we have

(Я * ,я ,,я л д ) />г = >h,F

where

/ 2(f) = / о ( 0 / И 0 )  = ^y /(< /> oi(f)) •

Using Theorem 1 again we obtain

{Нфор0,Нф1р1)1Р =  (H\L°°)h,F =  Нф2р

with d>2(f) = • The proof is complete.
In the classical case, each Hardy space H p consists of functions G analytic 

on the unit disc and satisfying

/ I f 0 \ 1/p
№ , : =  ™P I -  \G(re'-)\r dl>)<oo.

0^r<l J2ir /

This condition is equivalent to the Tp-integrability of the non-tangential 
maximal function

G ;(e " ):=  sup (G(U |
ze r s(e)

Acta Mathematica Hungarica 66, 1995



IN TE R PO L A TIO N  B E TW EE N  H A R D Y -L O R E N T Z-O R L IC Z  SPACES 221

where for each 0 < s < 1 and 9 £ [0,2x], ГД0) represents the convex hull of 
the set {егв} and {z £ C : \z\ й }.

By taking real parts of the boundary functions

limG(re!e) (0 ^  в  ^  2x)
r t l

and identifying the boundary of the unit disc with the interval [0,1], one 
generates the classical real Hardy spaces ‘Hv for 0 < p < oo. 'Hp is endowed 
with the quasi-norm

M w  = llöíllp
where G is the analytic function associated to g.

In the classical case we shall say that a function g is in the Hardy- 
Lorentz Orlicz space ‘Нфр if and only if the non-tangential maximal function 
G* £ Ьфр.

Using a “canonical decomposition” for functions g in Ti1 given in [5] 
(p. 192) we get an analogous result to Lemma 2 for g in H l . Using that 
result we obtain results for 'Нфр analogous to those proved above for TL̂ f -
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ON THE AVERAGE VALUE 
FOR THE NUMBER OF DIVISORS 

OF NUMBERS OF FORM a b + l

A. SÁRKÖZY (Budapest)*

1. The number of distinct prime divisors of the integer n is denoted by 
u(n). The number of positive divisors of n is denoted by r(n). tp(n) denotes 
Euler’s function. /x(n) is the Möbius function. P(n) denotes the greatest 
prime factor of n.

Let A, В be two sets of distinct integers with

(1) A , B c [ l , x ] ,  \A \,\B \> ex.

In the last 15 years several authors have studied the prime factor structure 
and arithmetic properties of the sums a + b with a E A, b E B; see the 
survey paper [7]. In particular, Erdos, Maier and Sárközy [4] showed that 
assuming (1), an Erdös-Kac [3] type theorem holds for the sums a + 6, i.e., 
the frequency amongst all sums a + b with a E A, b E В of those for which

u(a  + b) — log log а; й  ^(logloga:)1̂ 2

is approximately Gaussian for large x. This result has been extended and 
sharpened in various directions by Elliott and Sárközy [1] and Tenenbaum 
[9]. Moreover, Sárközy and Stewart [8] gave a lower bound for

(2)
аел ьев

While many results have been proved on arithmetic properties of sums 
o + b, much less is known on products ab. Recently, Elliott and Sárközy
[2] have proved the multiplicative analogue of the above mentioned result of 
Erdős, Maier and Sárközy by showing that assuming (1), an Erdös-Kac type 
theorem holds for the numbers ab + 1. The goal of this paper is to study the 
multiplicative analogue of the mean (2), i.e., to study the sum

(3) г  = ( и ц 0 | г 1 Е Е г (а6+ 1)-
aeA ьев

‘ R esearch partia lly  su p p o rted  by H ungarian  N ational F oundation  for Scientific Re

search, G ran t No. 1901.
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One might like to show that assuming (1), the mean (3) is ~  logo;2 = 2 log a; 
(note that this is certainly not so taking the average of the values of r(ab) 
instead of r(a6 +  1)). This could be considered as the “sequences analogue” 
of the Titchmarsh divisor problem. However, no asymptotics can be given 
for the mean (3) as the following examples show:

Assume that x —► + oo, H + oo, H < \  log x, and let

Then writing

(4)

Л  — l a :  a ^ x , a  =  1 I  mod p
рйН

В = : b ^  x, b = — 1 J mod jQ p
p < H

U =
\A\\BY

we have U = exp^(2 + o(l)) H^j and

T  = exp ^ (log 2 + o(l)) log*

(where T  is defined by (3)). On the other hand, let

В

= ja  : a ^  x, 0 < index of a modulo p < P - 1 for all p

< index of b modulo p < p — 1 for all p s 4
Then defining T  and U by (3) and (4), respectively, we have

H
U = exp ^ ( 2 log2 + o(l))

log H

and
T  = (с T o( 1)) (log H ) log x

(where c is a positive absolute constant) so that T  can be both much greater 
and much smaller, than log x.
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As these examples show, the mean (3) may depend considerably on the 
contribution of the small prime factors of the numbers ab + 1. Thus we may 
expect asymptotics for the average value of the number of divisors of the 
numbers ab + 1 only if we restrict ourselves to the divisors all of whose prime 
factors are large enough depending on U = X 2( |-A||ß|) -1 .

We shall use the following notations:
If A is a positive real number, then we write Рк  = П P and X k  =

P^K
= { n :(n ,Pk ) = l} . If AT > 0 is a fixed parameter, then Yl' will denote 
summation over X k  so that, e.g., Y '  means summation over the numbers

d\n

d with d\n, d G X к ■ Moreover, we define the positive integers ик{п ) and 
VK(n) by

(5) n =  uK(n)vK(n), Р (и к (п)) й  К , vK{n) G X k - 

We write

( 6 )  T - R - ( n )  =  t ( v k ( t i ) )  =  1 -

d\n

Our goal is to show that if A, В are “dense” sets, К  is large enough in 
terms of U (defined by (4)), but it is not “very large” in terms of x, then, 
writing

m  t k  = M m - 1 J 2 Y ,  тк{аЬ + 1),

we have

(8)

as expected. In fact, we will prove
T h e o r e m . Assume that x is an integer with x ^  3, К  is a real number 

with

(9) 2 ^  К  exp( (logx)1/2)

and А ,В  C {1,2,. . . ,x } .  Then there is an absolute constant c\ such that

(10) Tk  -  2 П 1 -  -  ) logx
V Р/
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< C l( |A ||ß |) -i Л  I log x
К 1!2 log2 К

у— + log log x + log К

where Тц is defined by (7). 

It follows that if

U = И|8| о [min (- , ' ° g * A-/» tog А■,
V V log log X log A log2 К  J )

then (8) holds.
We remark that in a similar way, one could sharpen the result in [8] by 

proving a theorem analogous to the one above with sums a + b in place of 
the numbers ab + 1.

2. P re lim inary  lem m as. Write

( И ) /(m ) = { (a, b): a € A 1 b £ B, m\(ab + 1)}

L em m a  1. If  m is a positive integer, x ^ m  and А, В C { 1 ,2 ,. . . ,  [x ]} ,  
then we have

( 12) f (m )  ^  2m in(|.4 |,|5 |) —.

P r o o f . We may assume that

(13) \A\ Z \B\.

Then we have

/(m ) - ^ \ {b :b e B , a b + l  = 0 (mod m)}
a£A

<

-  I { n: n й  x i an + 1 = 0 (mod m)} ^  ^  + l )  =
a£A a£A

"  m ma£A

which, by (13), proves (12).

Acta Mathematica Hungarica 66, 1995



T H E  N U M BER O F DIVISORS O F NUM BERS O F FORM  ab +  1 227

Lemma 2. There is an absolute constant C2 such that for К  ^  2 we have

M  log d
^  d
d\Pk

<  C2 .

P r o o f . We have

Y^ fi(d) log d 1
E  — —  = L - 7 ' L 1»8i’ =

d \ p k  d \ p k  P \ d

= E '^  E  ^  = E'°eo E
P^A' pl^dlffc p ^ K A(Pk / v)

= E 1°6„('-i E  ^ r) = - E ^  П
p^A" \  <|(Pa7 p ) /  p^A" q^K, q^p

i - i
9

= °  ( ( s . i r )  П  =0((logA -)(logA T >) = 0 (1 ) .

Lemma 3. There is an absolute constant C3 such that for К  ^  2, 2 ^  1 
wie have

£ Ч - ( * * ) п И )n^z р'йК

P roof. By Lemma 2 we have

< c3 log К .

Е 'Ь  E  ; - e ( E
n^z n^z n^z yá|(n,Px)

(п,Рк)=1

- E  E  1 = E  E  ^ =
|̂Pk d|jPx t^z/d

d \ n
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(log г) Т , ^ Г ~ Т ,
d \ P K d \ P K

= (log*) Д  ( l  -  +  0(logA').
P < K  '  V >

Lemma 4. There is an absolute constant c4 such that for К  ^  2, z ^  1 
we have

(14) < c4
fog г 

К  log2 К

P r o o f . Let Q denote the set of positive integers composed of powers of 
primes p with К < p ^  z so that Q contains every integer n with n ^  z, 
n 6 N k - Then we have

< log г
log A'

< log ~ v-* J_
log К  p2К<ръг

log г _j_

loe K h p2'
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Using the prime number theorem, we obtain by partial summation that

(i6)
K < p  "

1
К  log К '

Combining (15) and (16), we obtain (14).

Lemma 5. There is an absolute constant C5 such that for К  ^  2, z ^  1 
we have

n S z

P roof . This follows from Lemma 3, Lemma 4 and

Lemma 6 . If z ^  1 and m is a positive integer, then we have

P r o o f . By

and

we have

E i-
*=z

(г,ш)>1

E 2r(m ).

d\n

( 1 for n = 1 
\  0 for n > 1

<p{n)
pfd) 

d ’

E - 4 - ^ )i£z
(t,m)> 1
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\
E 1- E  1
i^z if ẑ(t',m)=l /

\  m
<

< Ei-* + zv(m)
Til E 1

i< z i <2(t,m)=l
<

й  1 + zE ^ - E  E *<o = 1 +
d|m г<г d|(г,тп) d|m d|m г<2 

d|*

=  1 + 5 > о (Н г])d\m
2 -

d\m

<

^  1 + ^ 2  1 = 1 + т{т) E 2r(m ).
d\m

Lemma 7. There is a positive constant cq such that uniformly for 2 E 
< К  < L we have

(17) E  ^ <C6 lo« A' ex» ( - i ^ ) -
P ( n ) ^ K  4 b  7

n>L

P roof . Set <r = (41ogAr) Then we have

(18) Y, - s  E  (al±L y
Р (п ) й К  Р (п ) й К  P (n ) ^ K

n>L

' exp log L \
4 log К  ) П

- 1

Acta Mathematica Hungarica 66, 1995



T H E  N U M BER O F DIVISORS O F NUM BERS O F FO RM  ab + 1 231

If К  ^  10, then

(and the product estimated in (19) is bounded for 2% К  < 10). 
(17) follows from (18) and (19).
Write

h{m) = d-1/2
d\m

and

M (z)  = {m :m  ^  z, m £ N k , h(m) > 2}. 

L e m m a  8 .  For z > 1 we have

(2 0 ) — < c 7A'_1/ 2 ((logA')_2 log 2  +  l ) .1' m
m £ M ( z )

P roof . By Lemma 3 we have

( 21)
у л  J_ < y V  h(m) -  1 _  y ^ ' J_ y ^  ^-1/2 _  

< m. ~  m  rnm í—'  mшбЛ1(г) m̂ z m
m ^ z  d\m 

d> 1

= E ' 1/2 E' ̂  = E' ■Г‘/2 E■ ' i <
^ ^ _ dt

1 < d ^ z  m ^ z  1 < d ^ z  t ^ z / d
d\m

i  Е ' ^ Е ' И ^ “* * )  e ' ^ .
l<rf<2 í<2 l<d<2
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Here we have

(22) y ' d~3/2̂  П (!-p~3/2)_1 -1 < Y p-3/2C
K diz K<p^z K<p

<  K - l ' \ \ o g K ) - \

(20) follows from (21) and (22).

Lemma 9. If  M, N,  q are positive integers, ам+х,ам+2 , ■ • • tUM+N are 
complex numbers and we write

M +N

S(x) = Y  a"X(n)>
n=M+1

then we have

Y  l3 * 5(x)|2  ̂¥>(</) Í1 +
X (m odq) M) E

M<n^M+N
(n ,g )= l

This is a well-known inequality; see, e.g. [6, p. 51].
Gallagher’s character version of the large sieve [5] (see also [6, p. 15]) 

will play a crucial role in the proof:
Lemma 10. If M,  N, ам +i, gm+2> • ■ •> ам+N and 5(x) are defined as 

in Lemma 9 then for Q ^  1 we have

M+N

E ^  E ‘ lw l2á«32+rf) e  ki2
q<Q x(m°dq) n = M + l

where the asterisk indicates summation over the primitive characters x  mod
ulo q.

3. Throughout the rest of the proof, we assume that (9) holds, and use 
the following notations: we write

L _  A '2 0 lo g lo g *  _  ( l o g  3 ^ ) 2 0  log AT a n d  y  = x L -  

and define /(m ) by (11).
In this section, we will reduce the problem to the estimate of Y2' f ( m )

m^y
by proving
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L em m a  11. There is an absolute constant cg such that if x is an integer 
with a ;> 3 , Л В С  { 1 ,2 ,... ,  a;} and К  satisfies (9), then we have

(23) Y  Y  тк̂ аЬ +!) - 2 Y  л™)
a£-4  &£ß m<y

< c8z2(loglog:r + logA').

P r o o f . Clearly, we have

(24) г к ( п )  -  2 Y  1 r ( vK( n ) ) - 2  Y  1
m\vK (n) m\vK (n)

m 2<vj((n) т 2<ьк (п )

Let

T̂ i = { (ö, 6, m): a £ A, b £ В, m £ Я к ,  m\(ab + 1), m2 ^  ик(аЬ + 1)} , 

тг2 = {(a,6, m): a £ A, b £ В, m £ Я к ,  m\(ab + 1), m й у ] , 

тг3 = {(a,6, m): a £ A , b £ В, m £ Я к ,  m\(ab + 1), у2 < ик(аЬ + 1),

У2 < тп2 ^  üa'(g&+ 1)},

7v4 = {(a, b, m): a £ A, b £ B, m £ Я к ,  rn\{ab + 1), ик{аЬ + 1) < t/2,

va(öö+ 1) < m2 ^  y2},

7̂ 5 = { (a ,6,m ):a £ A , b £ B, m £ Як, m\(ab + 1), ab + 1 < i/2Z, m  ^  3/} 

and

тг6 = {( a, 6, m): a £ A, b £ B, m £ Як, m\(ab + 1), ab + 1 ^  y2L, 

vK(ab+ 1) < y2, m ^  y}.

By (24), we have

(25) Y  Y  fA(fli +1) - 2|7г!
а ел ьев

< { (a,b):a £ A, b £ B} = \А \ \В \й х 2.

Acta Maihematica Hungarica 66, 1995



234 A. SÁRKÖZY

Moreover, clearly we have \1Z2\ — X / f ( m )i P-3 = Tli \  P 2, TZ\ — Ti2 \  P \
m^y

and тг4 С тг5 и TZe, so that

(26) Ця1| - £ , / ( го)1 = \Ш - \п 2\\ ^
m^y

й Inx \ n2\ + |?г2 \  тга| = |тг3| + |тг4| ^  |тг3| + |тг5 и тг6| ^  
^  |7г3| + |тг5| + |тг6|

so that it remains to estimate |7£з|, [R-b\ and |7£6|.
It follows from у2 < m2 ^  хк(аЬ + 1) that у2 < m 2 й ab + 1 ^  x2 + 1 so 

that у < m ^  x. Thus by Lemmas 1 and 3 we have

(27) |тг3| ^  { (a ,6, m): a E A ,b  E B ,m  E N k , m|(a& + 1), у < m ^  я}

= X ] / ( TO) = 2 min( |-4|, |ß |) a: ^  “  <
У<т^х уКт^х

<  X2 / log(x/y)
V log к

+ log К <  z2(log A + log A') <  x2(loglogs; + log A').

To estimate \Ps\, note that ab + 1 < y2L implies min (a, b) ^  yL1'2. If, 
say, a ^  yL1!2 holds, a is fixed and m E AÍk , m ^  у < x, then the number 
of integers b with b ^  x, ab + 1 =  O(modm) is at most [^-] + 1 ^  2~.  Thus 
by (9) and Lemma 3 we have

(28) \П5\

<  xyLl/2 

Assume now

< 2 { a : a ^ y L 1' 2} \ Y /, ^ < x y L 1' 2
ТПЪу

+ log — x2L 3/2 +log Klog У 
log К

that (a,h, m) E P&. Then we have

,  L , 14 a b +  1 .  V2 L  rи к  (ab + 1) = — -  > —=- = L.
vK(ab + 1) у2

1
— <  m

Let mi denote the least positive integer with гп\\ик(аЬ -\- 1), mi > L. All 
the prime factors of Ufc(ab + 1) are ^  К , thus mi satisfies

(29) L < m ^ L K ,  P(mx) ^ K .
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By m G N k  and Р(тп\) ^  К  we have (m ,m i) = 1. Thus m\(ab + 1), 
miI мд-(а6 + 1 )| (ab + 1) imply

(30) ab + 1 = 0 (modmmi).

Moreover, we have

(31) ШШ] Ú yLK  — x —— <  x.
Ju

Without loss of generality we may assume that |M| ^  |ß |. Then a in (30) can 
be chosen in |M| ways, and if a, m, m\ are fixed, then, by (31), an integer b 
satisfying (30) and b ^  x can be chosen in at most

mm  1 + 1 <
2x

ways. Thus by (29), for |M| ^  |#| the number of solutions of (30) in a, b, m, 
mi is

2xsw £ ' E  —  = а д « Е -  E  -^  mm,I ■' m ^  ™
'  L<m^Lh 

P{m\ )^K
тйуL<mi^LK 

Р(гщ)^К

m _ mi
m<y L<m\<LK

so that, by Lemmas 3 and 7, and in view of (9),

(32) \1Z6\ <  min(|M|, |# |)x  TlogA'^j logA'exp

<  x2logxexp( —51oglogx) <C x2.

b g T
4 log К <

(23) follows from (25), (26), (27), (28) and (32), and this completes the 
proof of the lemma.

4. In this section, we will estimate Yl' / ( m)-
m^y

Lemma 12. There is an absolute constant eg such that if x ^  3, А , В  C 
C { 1 ,2 , . . . ,  x} and К  satisfies (9), then

(3 3 ) E'/(m) - \A\\B\ E' i
m^y m<y

X  2 log X

< ГЭ A'1/2 log2 A'
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P r o o f . Define A4(z) as in Lemma 8, and write A4 = A4(y), A4
so that

A4 =

M  =

to: m ^ y , m e  Я к , h(m) = ^  d ly/2 > 2  ̂ ,
d\m

m : to ^  y, m E Я к ,  h(m) = ^  d 1̂ 2 ^  2
d|m

and
At U At = {то: to ^  y, to G Л/а'}, At П At = 0. 

First we estimate ^  / ( to). Clearly we have
m£.M

/(m) = ÍR  E
x(m odm ) а€.Д &£#

for all to.
By Lemma 6, the contribution of the principal character Xo can 

estimated in the following way:

^ . и ) Е Е » и - И
> аел ьев m

<

< 1
<P(™) E E 1-wißi

аел beß
(ab ,m ) = 1

+
1 1 \л\\в\ =

<p(m) Е Е  ‘- Е Е 1
абЛ  b £ ß  а е Л  b £ ß
(a b ,m )= l

+

<p(m) m

1 -^ )w |ß| =

<
i p ( m )

= —Ц  v  v  1 + ( - Ц  _  i )  и | в |  s  
^ ro ) . T ( á í  ^ (ra) ra '

(ab,m )>l

/  \

E  ißi+ E  mi + ( ^ j - s )
а€Л ЬеВ

\ ( а , т ) > 1  (Ь,тп)> 1 /

И1|0| ^
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< 2x
<p(m) f—' \ip{m) m ji<x 

( i , m ) > l

< 2x
<p(m) 2r(ro)) +

т(т)

Thus we have

(34) f (m )  -

+

«  x ‘

\A\\B\

<p(m) m ) ^ ~ X <p(m) '

m <  x
1 1 \  r(m )'

+ x-±— { +
íp(m) m J  <y?(m)

ip(m) E  x(_1)Ex(a) E*w
x ( m o d m )  a £ A  b £ B

X̂XO

<

< ( , . (  1 _ 1 ) + 1 М ) + > £
\  \ (p (m)  m  J  < д т ) )  <ß{m)

x ( m o d m )
X # X o

Е *и
a£A

E x ( 6)
beß

If the modulo m character \  is induced by the modulo q primitive character 
Xi (so that g|m), then x(n) — Xi(n) for all (n ,m) — 1. Thus writing

Ti(X, d ) = J 2  x ( a ) ,  T 2( x ,  d) = Y ,  x(b)
a€ A
d\a

ьев
d\b

and using

we have

s > H í  ss:>i.

(3 5 )

d\n

E E

= E

x ( m o d m )  a £ A  
X̂ Xo

E  E  v(d) x(a)

E x ( ft)
ьев

x ( m o d m )  a £ A  \ d | ( a , m )
x /xo

E  E  V(d) X(b)
b£B  y c i | ( 6 , 7 n )
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= E  E* Е^ад(х,<о
q\m x in io d ? )  d\m 
Q> 1

5>(ОД(х,<0
<f|m

<

s E  E" E lr>(x.<ol E lT̂ . rf)l
<j|m x(m°d9) \d|r; 
?>1

l d\r,

where the asterisk indicates summation over the primitive characters x mod
ulo q. Using the inequalities 2\uv\ ^  u2 -)- n2, (и + u)2 Ú 2(u2 + v2) (both 
for real u, v) and the Cauchy-Schwarz inequality repeatedly, for m  G M  we 
obtain

(36) E l n i x , d)l Е 1 ^ (х ,< < ) |) «
,d\m f  \ d |m

c

+

( E lr-(x,<i)|
■ * i

E N x.-oi ]
y d |m  J y d |m  J

j \ 2
Ц|Г,(х, d)| + E l T>(x,<i)|
d\m

\d < L /
d\m

\ d ^ L

\ 2
\

El^(x.<i)l + EM x.-oi
d\m

\d < L  /
d\m

KdZL  У

+

<

\
< ^ d 1/2( |T 1(x ,d ) |2 +  |T2(x ,d ) |2)

/

d\... 
\d < L

+

\

^ ( |r 1(x,d)|2 + |T2(x,d)|2)
d\m

\d^L /

E<r1/2) +
I d I Txx

E 1«
d\m
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<  ^ ^ 2( |T 1(x ,d ) )2 +  |T2(x ,i i) |2)  +
d\m
d<L

+ T ( m ) ' £ { \ T i ( x , d ) \ 2 +  \ T 2( x , d ) \ 2) .
d \ m
d^L

£ t+£ 2+£ 3+£.,+£ s

m  J  <^(m) )

e 2= e; ^ e  e * £ “,/2N ^>r.
m £ M  ?|rn x im o d ? )  d\m

q> 1 d<L

e 3= e; ^ e  e ' e i ^ - oi*
m € X  9 lm  x ( m o d ( j )  d | M

?>1 d^L

and £)4, resP- X)5 are sums analogous to and Х)з with T2 in place 
of Tj.

Clearly, we have

It follows from (34), (35) and (36) that

(37)

where

£ / ( " ■ ) - ix iisi £  i
m£j\4 m 6Л4

<

E, - E  (*2 ( ^ j
mSy

E' r ( m )

¥>("»)

- f  OO

< П 1 + E Ф " )
r [  v(pr) im^y K<p^y \

Thus by Lemma 4 and (9) we have

\ П  ИИЙ0 '
A <pSy

E  ^ - е Ч-тЦ ’ -Ч+^Е'' l  x V y?(ra) m  I  '
m b y тъу

r(m )
<?(m) <

~  .2 !og У , J  log у <  Z — ---ÖT7 + x 'К  log2 К log A' <  x2
log X  

К  log2 К
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In YI2 we have q\m, d\m , whence [q,d]\m. Write m =  [q,d\r. It is easy 
to see that

A. SÁRKÖ ZY

(38) <p(uv) ^  ip(u)tp(v)

for all u, v. Thus by Lemma 5 and in view of (9) we have

£ 2s E'-í1/2 E 1

' 2 1 < U  ^ [9’^x (m odg)
E ‘ lr.(x,̂ l2 E' </>(r )

«  (i£ 8 |L  +  logA-) V  V '  \ n ( x , d t f <
t lc« A > Ü ,  ,5 5 »  И М "1 <q%y 

[q,d\%y

< ^ Е > Е ^ Г № 4
d<L ' L x(modg)

Write (d, q) — s, d — (d, q)t = si. By (38), we have

¥>([«,<*]) = уз ^9- T ^ y )  =  ¥>(«0 ^

Thus we have

log 2: 
log К E' E' w ,/2

s<L t<L/s
E'

s|g

1
V’(9Ы О E*

x(mod?)
ri(x,^)|2-

Let 5o = К  for 5 = 1 and let So = s for s ^  2. Moreover, let J ( s )  denote the 
set of positive integers j  with 2J~1so ^  y, and for j  6 J (s ) ,  let Jj{s)  denote 
the set of integers n with 2-7~1so < n ^  2-?5o- It follows from 1 < q ^  y, s|</, 
q G Л/к  that q 6 J j ( s ) for some j  £ ^ (s ) . Thus we have

(39) E
log j- 

<  —2— 2 log A;E 'E '
s<L t<L/s

(st) 1/2

v (0 E  E  zza E ' |r.u,-)l:
je.7(s) q £ J j ( s )  xftnod,)
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By Lemma 10, for st < L we have

E E ^ E > ^ ‘>|2<
j € j ( s )  q e J j ( s )  Y  yx(m°<ig)

< E
j £ j ( s )  q e J j ( s )  x(modg)

S E 5 ^  E ± } r  l*w**>r<
j e J ( s )  q Ú 2 3 «о Г ximod«)

« E é -0{22’s°+x) E 1 s
i€ j(  *; a£A

<  У +
x \  x [

st |<2

E  y ) E ‘ <
a < x
s<|a

X2
Kt for s =  1
(s + ! ) f t for 5 > 1

Then separating the 5 = 1  term in (39), we obtain that

’г—> log X  ( x X  ̂ (s íi  ̂ / X\ X \

^  + i o <l k l  ^  (У ") *7 =
< log X I X

log К  \ К7 +  ХУ

<

l<s<L 

log a; / x

S  ei/2 +a;2 S  s3/2)  S  *1/2^ )
< s< L  K K l  /  t<L v v  '

<

log К

Here we have

(г +*»е> + * *  e ; ^ V

Е з ^ ч л 1'* - . * * - * *
s<L

and

E '  = П  б - з т ? )  ' - 1 «
l< s < L  s< L  K<p<L 4 ^  '
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> 1 1
2-j p3/2 A'1/2 log К

so that

K < p < L

logx / 1  1
- + Т57У +

1
<  X *

log X
' 2 log A' V A' A3/2 A'1/2 log A' J A'1/2 log2 К

To estimate ^ 3, we use Lemma 9. We obtain that

r(m )E 3« E ' ^ E E  E '
q \ m  d \ m  x(niodg) 

d > L
т Ъ у

<p(m) <p(m) "  d
mSy 9 |m d|m a6-4 q \ m  d \ m

d > L  d \a  d > L

By q\m and d|m we have [q,d]\m. Write (d,q) = r, q = (d,q)s = rs and 
m = [g,d]t = dst. Then using (38) and t ( u v )  Ú  r(u)r(v) (for all u, v) we 
obtain that

E 3«*2 E ' s E E  E
L ’̂ d ' ^ y  r \ d  s ^ y / r  t ^ y / d s

<

< x 2 \  ^ ' T{d) v -  / v ^ ' Ф ) E'
r ( t )

Ш ± ,dvid) f i í  \.S ÍA  r t ' V  **>
<

<  x2  V  Y' ( y '̂ г ( п Л  -  3 - 2  v '  r 2 ( r f )  ( y *' г ( п Л
b h , M d )  *  v f ? » v(n) /  J * ,  I f e 9 (n )/

Here we have

E ' ^ s  П (i + E rW

a;2 log4 x

n^y

so that

<P(n)
K < p < y hi ^ p,\ « П (* + ;)«

E 3« E

K<p^x

r 2(d)

log2 X  

log2 К

3 l0g4A' L U j y M d ) '
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Here the innermost sum is

« E 557Í * L'm
L < d

whence

E x2 log4 x x2
3 c  c  ~K'

and can be estimated in the same way as and )Г3. Combining 
the estimates above, we obtain from (37) that

(40) E /(”•> - \л\\в\ E i

<

m£M

X2 log X X2 log X
К log2 К  + A'I/2 log2 А ' A ^  A 1/2 log2 к  

Finally, by Lemmas 1 and 8, and in view of (9), it follows from (40) that

m£AA
<

X 2logx

Е ’я» )-и и Е m
mby тЪу

^тбЛ1 mGA1 /  \m £M

< E /(™) - unci E  ^
771 £ .M тЕЛЛ

<
a;2 log a; 

A 1/2 log2 A + E ( -  + - )' V пг m /m6At 4 7

+ E (/(->+T ) <

+ x2 Y ,  - <

771G  M

x2 log x
^ n o g 2K  m-  m

a:2 log x x2 /  log у \  x 2 log x
A 1/2 log A + A 1/ 2 V(logA)2 7  A 1/2 log2 A

and this completes the proof of Lemma 12.
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5. Completion o f the proof o f the theorem. By Lemmas 11 and 
12, we have

(41) £ £ г к ( « б + 1 ) - 2 И |г |
аел ьев

I J_
m

т Ъ у

<

<
аел ьев

+ 2Y  Y  TK̂ab+!) - 2 Y ' я™)
m^y

<  x2 ( log log x + log К  +

£ ' / ( • » ) - H U S IÉ ;
I

log X

/ J_ 
mтЪу т Ъ у

<

К 1!2 log2 К  )  '

Moreover, by Lemma 3 we have

(42) Е = - * * П И
т Ъ у р<к

<

<
L-J m m + E ' 1' m. - l o g x l ]  ( l - i )
m<y m<x 3 11

Л H P Ú K  4

<

«  (log П  ( 1 _  p )  + log A ^  logX  + log K  C  log log X +  log K -
p^K

(10) follows from (41) and (42), and this completes the proof of the theorem.
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A DIRECT APPROACH TO KOEKOEK’S 
DIFFERENTIAL EQUATION FOR 

GENERALIZED LAGUERRE POLYNOMIALS
H. BAVINCK (Delft)

1. In tro d u c tio n

In [4] Koorwinder studied some classes of orthogonal polynomials. One 
class was given by the polynomials < Ln'N(x) [ which are orthogonal on

1 J n—0
the interval [0,oo) with respect to the weight function 

1
TV . 1 \ x ° e X + N6(x )> a>-l, N^O.1 (a + 1)

They can be written as Lq'N(x ) = 1, and for n ^  1,

(1.1) I £ " ( z )  = 1 + jv (0 +  2 ) .- ! L ^ \ x ) + N ^ ± p ^ ~ L ^ ( x ) ,
( » - ! ) !  .

where b l? \x )  denotes the classical Laguerre polynomial defined by 

(1.2) 4°>(x) = i  £  (-« )» (o  + к + l)„_t £  =
k=0 k\

(1.3) _ (  „! )n iF l  ( a  + 1 * )  ’

The representation (1.2) is valid for all real a; (1.3) is not defined if a  is а
negative integer. Note that Ln’°(x) =  L^*\x).

For these polynomials J. Koekoek and R. Koekoek [3] found a differential 
equation of the form

OO

(1.4) N  ^  ai(x)y(~'\x) + xy"(x) + (a + 1 -  x)y’(x) + ny(x) = 0,
t=0
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248 H. BAVINCK

where the coefficients аг(ж), г 6 {1 ,2 ,3 ,...} , are independent of n and 
ao(x) = ao(n,a) depends on n but is independent of x.

This differential equation is of infinite order in general, but for nonnega
tive integer values of the parameter a the order reduces to 2o + 4. For some 
special integer values of a  such a differential equation was already known (see
[3] for references). From Koornwinder’s representation of the polynomials J. 
and R. Koekoek derived two systems of equations for the coefficients a ,(x) 
and computed a number of the а,(х). Then they guessed what the general 
formula for the coefficients might be and they showed that it actually satis
fies the systems of equations. Furthermore they proved that the solution is 
unique.

At a conference in Erice (May 1990) R. A. Askey [1] posed the problem of 
finding difference equations of similar form for generalizations of the discrete 
orthogonal polynomials which are orthogonal with respect to the classical 
weight function at which a point mass at the point x = 0 is added. In [2] 
a solution for this problem for Charlier polynomials is given and a method 
of finding the coefficients is introduced. In the present note this method is 
used to derive a formula for the coefficients а,(ж) in the Laguerre case and 
to give a new direct proof of the results in [3].

Inserting (1.1) into (1.4) and using the second order differential equation 
for the Laguerre polynomials, J. and R. Koekoek obtained the following 
systems of equations for the coefficients сц(х):

for all real x ,a  > -1 , N  ^  0 and n = 0 ,1 ,2 __  Here D = For n — 0 the
systems reduce to ао(0,а) = 0. In the sequel we take n ^  1. By using the 
well-known formulae for Laguerre polynomials, which are valid for all real x , 
for all real a and for all n G {1,2 ,...} ,

2. The system s of equations

(2.2) n ai { x ) D 'L ^ \ x )  + (a + 1) ^  at{x)Dl+1 L[a\ x )  = 0

(2.3)

and

(2.4) 4 “ ’(*) +  4 ' 3 1)(*) =  4 “+1,(*)
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the equations (2.1) and (2.2) can be written in the following form:

(2 .5 )

( 2.6)

£(-l)4 (* )4 l44)= ^^4°-44),

£ ( -и ч м 4 -4 -4 4 )  =
i=0

(Q + 2)n-1 j  (a+2)
( п - 1 ) !  " - 1 (*)■

Here L^l ( x )  = 0 for all real a , all real x and all к £ {1 ,2 ,3 ,...} . If we
multiply equation (2.5) by L ^ i \ x )  and equation (2.6) by L ^ \ x )  and 
subtract we obtain

X > i)4 (* ) [4“4 4 ) 4 “-4 4 ) -  4 -4 4 4 )4 ° 4 )
i=i

= 4 - 4 4 ) ^ ^ 4 - 4 ’w - ^4 % -4 “4)n\ ( n - 1 ) !

The right-hand side vanishes for x = 0, whereas the expression between the 
square brackets at the left-hand side is different from 0 when x — 0 (provided 
that a > — 1). Since this equation holds for all n we may conclude step by 
step that аг(0) = 0 for all i £ {1 ,2 ,...} . If we substitute x = 0 into (2.5) we 
conclude that

/ ч т(а+2 )/„ч ( a  +  3) j i n  +  a  +  1 \
““(" ’“ ) =Х! - ( 0) = 1 ^ Т ) Г = (  n — 1 )

Hence the systems of equations (2.5) and (2.6) can be written in the form

(2.7) £  (-i)4-(*)4-t'4) = 4 “'(o)4“-4 4 ) -  4 “4 )4 -4 4 ) ,
г=1

oo

(2-8) 2 ( - 1)’̂ ( * ) i i - t +i1)(*) =
г=1

= 4 “-4 4 )4 -4 4 )  -  4 -4 4 )4 -4 '(o),
for n = 1 ,2 ,3 ,..., a -  1 and all real x.
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P r o p o s i t i o n  2.1. Each solution а,(ж) (г = 1 ,2 ,...)  of the system (2.8) 
is also a solution of (2.7).

P r o o f . By m e a n s  o f  (2.4) t h e  l e f t - h a n d  s id e  o f  (2.7) c a n  b e  w r i t t e n  a s

OO CO

£ ( - i ) 4 ( x ) L S i+,,( x ) - £ ( - i ) 4 ( * ) 4 - t i Hi1,(»)-
1 = 1 1 = 1

If the coefficients eq(x) satisfy the system (2.8) for all n , then they also satisfy 
the system (2.7) if we show that

4 о)( 0 ) £ Й 2,(х) -  4 о)(х) £ Й 2'(0) =

4 ° + ,,(o )4 “+2,(x) _ 4«+Ч(х)4«+2)(о)

4 4 ,)(о > 4 -Г (х )  -  4 “-V ’(x )4 “-V '(0 )4 « + 2 ) (“+!)/ («+2),

By combining terms and using (2.4) this is easily verified. □

3. Solution o f the system

We now proceed to solve the system (2.8). We first rewrite the right-hand 
side by using the following formula for Laguerre polynomials:

L(n +1\ x )  _  Ь(п \ х )  _  nx L ^ 2\ x )
lL“+1)(0) L(na){0) (a  + !)(« + 2) L{“+*\o) ’

a direct consequence of (1.3). Equation (2.8) becomes, if we write n instead 
of n — 1:

CO

(3.1) £ ( - i ) 4 ( x ) 4 3 i+1>(x) = ^ 4 “+I)(o ) 4 “4 3,(x).
i=i

If we consider (—l)*a,-(a:) as unknown, the matrix T  of the system is trian
gular with entries im for which we have

tni = L{“+'+1\ x )  for n, i = 1 ,2 ,3 ,. . . .

We will show that the entries uni of the inverse matrix U are

(3.2) uni =  4 " Г П" 2)( -* )  for »,* = 1 ,2 ,3 ,. . . .
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In order to prove (3.2) we use the generating function for Laguerre polyno
mials

oo

71=0

It follows that
OO OO

Y ^ L (~a~n~2\ - XW Y ,  L ^ +i+1\ x ) t m =  (1 -

j—0 m—0

and therefore the power of tn ! at both sides must be equal. Hence

£  4 X " ~ 2 ) ( - z ) 4 - ' T 1 , w  =
k—i

We may conclude that the unique solution of the system (3.1) is given by

iw) ( - í r « ,«  = £  d : r ~ 2)(-*)4“+1)(o)4“-;3,M,
г  k=l

i = 1,2,3,....
From this formula we now derive the result in [3]:

(3.4)
& ( - '  )i+j+1C - i ) C - - ) (

i = 1 ,2 ,3 ,... .

(3.3) and (1.2) show that а,-(ж) is a polynomial in a , since F ^ +1^(0) 
contains a factor a + 2 for all к ^  1. Moreover by (1.2) the Laguerre
polynomial L^*\x)  and its derivatives are polynomials in a. Hence (2.1) 
and (2.2) are relations between polynomials in a. In the proof of (3.4) we 
use (1.3) and therefore we have to assume that a is not a negative integer, 
but by analytic continuation the result remains true for all real a.

( - l ) 4 ( z )  =

x y -  ( - a  -  i -  1),—fc_r (a  + A)k (a + 2)fc+1
a + 2 fr'0 (* — * — 1)! k\ (k + 1)!
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'у '' (~» + fc + l ) TO , уп у' (~*)и хг
“ Í, “ S ra!(a  + 4)n

(~ Q ~ * ~ l)«-fc-i (о + 4)fc (а + 3)fc 
" y o (г — к — 1)! jfc! (Л +1)! '

t-i
H  + fc +  i U - i n - * ) , - - »

j=0 ir'o ^ К -«  -  * -  l)m(i -  m)!(« + 4)j_j —m

= I > )+1£
j =о

(а  + 3)t_1( 1)t  — 1 + 7 7 1

Г?, m K~a  -  * -  !)m(Í -  m)!(« + 4)j-ra=0 J — m

- g 1 ( - [)* («  + 4)fe(—* + * + 1)TO(— 

k = j —m

i-1  j

= E * J+IE
j —0

k\(k + l)!(i — Ar — 1)!

(а + з)1-_1(-1)’"1(*-Яя
m=0 m !(—а -  i -  l)m(j -  m)\(j -  m  + 1)!(г -  j  + m -  1)!

•2^1
- t + j  + 1, а + 4 + j  -  m 

j  — m  -f 2

t-1
= S>i+1-

1 =

j=o

E
(а  + 3);_,( —1 Г Ч —а -  2 ),w _,

m !(-a  -  i -  1 )m(j -  m)!(j -  m + 1)!(г - j -  l)!(j -  m + 2)I_i _1

t —1
= S  *J+1

j =о

(а  +  3)|_1( - 1 Г ( - а - 2 ) , _3_1 
j!( j  + l ) ! ( i - j  -  l)!(i + 2) ( Л  l) =

i —j —i  V - а  -  г -  1 У

г—1
£ * >+1
j=0

(а + -  2)t_J_1(—а  -  1);
j\i\(i -  j  -  1)!(—а -  г -  1);-

0 C - > +3)-J=1

As is pointed out in [3], from formula (3.4) it easily follows that for nonneg
ative integer values of a the coefficients at(x) vanish if г > 2q + 4.
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ON DETERMINANTAL AND PERMANENTAL
INEQUALITIES

B. GYIRES (Debrecen)*, member of the Academy

1. In troduction

The aim of this paper is to prove four inequalities concerning determi
nants and permanents of matrices. The first inequality is related to the re
sults of the author [1] and is an extension of the van der Waerden-Egorychev 
theorem [4], [9].

The second inequality is the determinantal correspondence of the first 
one. The third and fourth inequalities are inequalities of Szász type and are 
related to the results [2]. The four inequalities are connected by the common 
source (Lemma 1.1) of their proofs.

Let n ^  2 be a fixed positive integer and let

Г к ■= { ( t i , . . .  ,*fc) I 1 ^  ii < ••• < ik й  n}

■be the set of all combinations of order к of the elements 1 , . . . ,  n without rep
etitions and without permutations. We define an ordering of the elements of 
Г* as follows. The combination (* i,. . . ,  ik) is said to precede the combination 
( j i , .. . , jk )  if the first nonzero difference in the sequence j \  — t 'i,. . .  ,jk  — ik 
is positive. Thus, to each element of Гд, there corresponds an integer s, 1 ^  
^  s ^  (™), such that this element is at the sth place in the above ordering 
(s is the ordinal number of this element in Г*,).

The complement of G IT with respect to the set { l,...,ra }
will be denoted by *'„_*) G Tn_fc.

Let M  be the set of all n x n matrices with complex entries and let 
A = (ajk) G M .  Matrices

. . .  at-jjk \

•• • aikjk /

* R esearch su p p o rted  by th e  H ungarian  F oundation  for Scientific Research under 

G ran t No. O TK A  -  1650/1991.

4 3\—3k —  
A«i...*fc ‘

ЧЛ
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with

(l- l)  (ji , • . . 5 jit) E Г&

are called к rowed matrices of A (k = 1 , . . . ,  n).
The permanent of A E Ad will be denoted by Per A. Properties of 

permanents used in this paper can be found e.g. in [6].
The permanent (determinant) of a A; rowed matrix of A E Ad will be 

called a к rowed permanental (determinantal) minor of A, respectively.
The common source of our proofs is
Lemma 1.1. If  A E Ad then for к — 1 , . . . ,  n,

(1.2) V  Per M 1"Ík Per "in~k -  ( " )  Per A,v ’ ^  *i—«„-* \ k j
к

(1.3) = ( l ) Det/1

where the summations run over (1.1).
P r o o f . The statement of the Lemma 1.1 is a consequence of the Laplace 

expansion formula, which is applicable in the case of permanents too.

2 . On inequalities of van der Waerden type

(a) The matrix A 6 M  with non-negative entries is said to be a doubly 
stochastic matrix, if all of its row and column sums are equal to one.

Let Ao € Ad be the doubly stochastic matrix, whose all entries are jk 
The following conjecture was published by van der Waerden [9] in 1926. 
Let A G Ad be a doubly stochastic matrix. Then

p}
(2.1) Per A ^  —

nn

with equality if and only if A = Ao-
This conjecture was proved first by G. P. Egorychev [4] in 1980.
The proof of the following inequality is based on the theorem of van der 

Waerden-Egorychev.
Let Tfc(A) be the sum of all к rowed permanental minors of A G Ad, 

where к = 1 , . . . ,  ra, and let Tb(A) = 1.
Moreover let

T fc(A) := ifc(A) (k = 0 , l , . . . , n ) .
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T heorem 2.1. I f  A(E M  is a doubly stochastic matrix, then

(2 .2) tk{A)tn-k(A) = ^  (k — 0 ,1 , . . . ,n )

with equality if and only if A = Aq.
R emark . For к = 0, or к = n Theorem 2.1 gives the theorem of van der 

Waer den-Egory chev.
P roof of T heorem 2.1. Applying the Schwarz inequality in (1.2), we 

get

(2.3) ( £  Per2 * ( £  Per2 = РеГ Л'

Here and in the next formula summations are extended over (1.1). Since 
the entries of A are non-negative numbers, we obtain

E Per2 ^ r*(A) (k = o , i , . . . , n ) ,

which gives us the inequality

(2-4) tk(A)tn_k(A) ^  Per A ^  ( ^ J ^

by (2.3), and by inequality (2.1). Since, by the van der Waerden-Egorychev 
theorem, Per A = ^  if and only if A = Ao, and since

/ з з  k\ . . .  (n — k)\tk(A0) = —g-, tn- k(A0) -  >

i.e.
1 n\

lk{Ao)tn—fc( Ao) := ~jn\ n (к =  0 , 1 , . . . ,  n),
Ы  n

we get that equality holds in (2.4), consequently in (2.2) too if and only if 
A = Ao- This completes the proof of Theorem 2.1.

(b) Let E  be the unit matrix. The matrix cE, where c is a positive 
number, is said to be a positive scalar matrix. Let A* 6 Л4 denote the 
conjugate transpose of A £ A4, and let tr A denote the sum of the diagonal 
elements of the matrix A.

For an A G M  let Ck(A ) be the (£) x (£) matrix defined by

k = l , . . . , n ) ,Ck(A) ( C f f )  (1 й Р , ч й
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where
C i? = Det

and the ordinal numbers of the combinations ( j j , . .  , , jk )  and (*i, . - • ,  ik) in 
the ordering of are p and q, respectively. Further let

D2(A ):= tT C k(A)C*k(A) (k = 1 , . . . ,  n).

T h eo r em  3.2. Let n be a positive integer. Let A £ Ad. Then

(2.5) Dk(A)Dn- k( A ) z ( ? \ D e t A  (k = 1 , . . . ,  n -  1)

with equality if and only if
(a) к ф n — к and A is an orthogonal matrix with determinant one, or
(b) к = n — к and A is an orthogonal matrix with determinant one mul

tiplied by an arbitrary positive scalar, or
(c) A is the zero matrix.

P roo f . Using Schwarz inequality on the left side of (1.3), we get (2.5). 
We remark that to get equality in (2.5) the condition D etT  ^  0 is obviously 
necessary.

First, let us suppose that D etT > 0. In this case equality holds in (2.5) 
if and only if a constant \k  ф 0 exists such that the equations

к
У"! Qq+jn) ; ;

(2.6) (-1)«=! D e tT f" f  = Afc DetT^1

are satisfied for all ( i i , . . . ,  ik) and ( j i , . . . , jk )  of the set (1.1). Condition
(2.6) can be written in the form

£Ck(A)£ = Xk (D e tМ Ч п~к) = AkPCn-k{A)P (k = 1 , . . . , n), 

where £ = (£,/) is the matrix with elements

£ij -  0 ,  i Ф У £a =  ( ~ ! ) г + 1  (iJ  = ! , • • • ,  ’

and P  is a permutation matrix. By the theorem of Franke ([5], p. 104, Satz 
31) we have

(2.7) (Det A)(*: 0  =  A ^ (D e t A )(V ) .
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Using the identity

we get by (2.7) that

n

2 k  1

Xk = (Det A) n (k = 1 ,. . . ,  n — 1).

Since equality holds in (2.5) if condition (2.6) is satisfied, we get 

Dl(A) = Det A = Q ( D e t  A)%.

We obtain from here

(2.8) (DetA)» =

>

(?) E E  D*‘2 =
(il. - J k ) 6 Г (il,-.»*)€Гк

1

П E  a;:::;;)
Ш>

1
^  ( DetCfc(A)) (*) = (Det Л)» 

by using again the theorem of Franke, and the equality

(El) *
© » ’

The first inequality in (2.8) is valid by the well-known inequality between 
the arithmetic and geometric means, and equality holds here if and only if 
all the quantities

E  D e t 2  A j ; - % ,  ( h . . . . . A )  e и

(•1|—.«'*)€Г к

are equal. The second inequality of (2.8) holds by a theorem of Hadamard, 
with equality if and only if Ck{A) is a diagonal matrix. Since equality should
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hold in both inequalities of (2.8) it follows that Ck(A)Ck(A) is a positive 
scalar matrix i.e.

Ск(А)С*к(А ) = Ck(AA*) = d2E, d >  0.

In this case

(2.9) Det A = , Dl(A)  = D2n_k(A) = t r Ck(AA*) = ( f y d 2,

thus equality holds in (2.5) if and only if dn — d2k. If n ф 2k, then the only 
positive solution of the system (2.9) is d — 1. If n = 2k, then (2.9) is satisfied 
by an arbitrary d > 0. Thus Ck(A) is an orthogonal matrix, and by Theorem 
2 of [3], A is an orthogonal matrix with determinant 1, if m ф 2k, while in 
the case m = 2k A it is a matrix which can be obtained from an orthogonal 
matrix with determinant 1, by multiplying it by a positive scalar.

If Det A = 0, and equality holds in (2.5), then the matrix

Ck(A)C*k(A) = Ck(AA*)

is the zero matrix, consequently AA*, and thus A is the zero matrix too ([3], 
Satz 1).

It is easy to verify that if either condition (a), or (b), or (c) is satisfied, 
then equality holds in (2.5).

This completes the proof of Theorem 2.2.

3. On inequalities o f O. Szász type

(a) Let Rk{A) be the product of all к rowed permanental minors of A, 
к = 1 , . . . ,  n, and let f?o(A) = 1.

As usual, matrices

A ( i i , . . . , i k) := ( n , . . . , i fc) e IT

are said to be principal к rowed matrices of A G M ,  where к = 1 , . . . ,  n. It 
is obvious that A ( l , . . . ,  n) — A.

The permanent (determinant) of a principal к rowed matrix of A G M  
is said to be a principal к rowed permanental (determinantal) minor of A. 
Pk(A) ( Qk(A)) denotes the product of all principal к rowed permanental 
(determinantal) minors of A, where к — 1 ,. . .  ,n.

For brevity let us set
1

qk(A) := (A) (k = l , . . . , n ) .
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In [8] O. Szász refined Hadamard’s celebrated inequality in the following 
way.

If A E M  is a positive definite Hermitian matrix, then

qi(A) ^  q2(A) ^  ^  qn-i(A )  ^  qn(A)

with equality if and only if A is a diagonal matrix.
Hadamard’s determinantal theorem states that if A £ A4 is a positive 

definite Hermitian matrix, then

(3.1) Q n ^ ^ Q ^ A )

with equality if and only if A is a diagonal matrix.
Using Hadamard’s theorem we give a short and simple proof of Szász’s 

theorem (another short proof can be found in [7]).
Let 2 ^  к ^  n and let (*!,...,**) Ё L .  If A is a positive definite 

Hermitian matrix, then the matrices A(i\ , . . . ,  i*,), adj A (ii , . . . ,  г*,) have this 
property too. Applying the Hadamard’s thorem, we get

Det (adjA(ib . . . , ú ) )  = (Det А(г'ь . . . ,  г*))fc_1 ^  Qk- i  ( A(iu  . . . ,  г'*)).

Consequently,

(3.2) Q M ) i  ( Ц д * _ 1(Л (п ,. . . ,г * ) ) )* =Г,

where the product is extended to Г*,. Since the factors of Qk- i ( A ) have the 
common multiplicity

С И Л )
(*",)

in the expression

JjQ jk_i(A (i'i,...,ijfc))

and since the identity

(£)(*_,) 1 (;:1) 
h i . )  k - 1 f i l l )

holds, we get by (3.2) that

(3.3) qk{A) ^  qk-i(A) (fc =  2 , . . . ,n )
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which is exactly the inequality of 0 . Szász. Equalities hold simultaneously 
in all inequalities (3.3) if and only if equality holds in (3.1), i. e. if A is a 
diagonal matrix.

(b) Let Pk(A) be defined by

n(A) ~  n ®  (A) ( * =  1 ,
It is obvious that pk(A) is the geometric mean of all principal к rowed 
permanental minors of A.

T heorem 3.1. Suppose that A = (ajk) £ A4 is a matrix with non
negative entries whose diagonal elements are positive. Then

(3.1.1) Per A ^  Pi(A)p„_i(A) ^  ^  p\{A)p^}k ^

^  ^  P i-2 (A)p2(A) ^  Pi(A)

with equality if and only if all principal permanental minors of the matrix

/ a n (0)
(3.1.2) A -

\(0 ) ^nn

are equal to zero.

For brevity let us set

(m )k ) (* =

= B{A)

A matrix A G Ad is a said to be a dyad if the representation

A = ab*

holds, where a and b are n dimensional column vectors, and b* is the transpose 
of b. This representation is said to be positive if the components of both 
vectors are positive numbers.

It is obvious that

rk(A) := r P  (A) (* =  l , . . . , n )

is the geometric mean of all к rowed permanental minors of A G Ad with 
positive entries.
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T heorem 3.2. Suppose that the entries of A E M  are positive numbers. 
Then

(3.2.1) Per A ^  ^  ^

^  (n)kri(A )rn-k(A) ^  ^  («)„£{* (■A)

with equality if and only if A is a dyad with positive representation.
P r o o f s . We prove Theorems 3.1 and 3.2 parallel. The numbers (3 .1 ...) 

and (3.2...) refer to Theorems 3.1 and 3.2, respectively.
We need the following
Lemma 3.1. Under the assumptions of Theorems 3.1 and 3.2, the in

equalities

(3.1.3) pk{A) ;> p1(A)pk- i(A )  (k = 1 , . . . ,  n; p0(A) = 1)

and

(3.2.2) rk(A) Z k n (A )rk-i{Ä ) (k = l , . . . , n ;  r0(A) = 1) 

hold, respectively.
P roof of Lemma 3.1. Since the entries of A are non-negative, and the 

principal к rowed permanental minors of A (permanental minors of A) are 
positive, we get by Lemma 1.1

(3.1.4)

(3.2.3)

Per A ^  У  Per А(гх,...,* * ) Per A(*i, 
(«1 ,•••>** )€Г*

Per A = ( 'Л  V  Per A f " f  Per A?-} " ín~* ^ 1 •••In —к lnO '
-k
к

where in (3.2.3) the summation is extended over (1.1). Using the well-known 
inequality between arithmetic and geometric means, we have

(3.1.5) pk{A)pn_k{A) ^  Per A,

(3.2.4) ( l ) rfc(A)r ”_fc(A) = Per A

by (3.1.4) (by (3.2.3)). If к — 1 then

(3.1.6) Pi(A)pn_i(A) ^  Per A,

(3.2.5) nri(A)r„_i(A) й  Per A
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by (3 .1 .4 ) (by (3 .2 .4 )), which gives us (3 .1 .3 ) ((3 .2 .2 )) in the case of A: = 1 . 
We can justify (3 .1.3 ) ((3 .2 .2 )) using (3 .1.6 ) ((3 .2 .5 )).
Namely, the entries of A € M  are non-negative numbers, and the diago

nal elements of A ( i \ , . . .  ,ik) (the entries of "'3*) are positive, thus (3 .1 .6 ) 
((3 .2 .5 )) is applicable. Therefore

Per A{i\ , . . . ,  ik) = ( PiA(i \ , . . . ,  ik)Pk—iA(i \ , . . . ,  it))

and

r * < : i  i  * К  K i )  л * - , K : : . t ) ) * i .

thus

(3 .1 .7) Pk{A)^  ( П А ( А ( « , , . . , ^ ) ) Р ы ( А (»1....... У ) ) 1 ,

where (г'х,. . . ,  i^) runs over Г&, and

(3 .2 .6 ) r „(a ) i ( n  r , K i )  я »-1 K i ) ) *

where the product is extended over (1.1).
It is not difficult to see that

l [ P i ( A ( i u . . . , i k)) = P p -^ iA ) ,

and

П *■ K i )  = J*S!:!)’(A),
moreover that all factors of Pk-\(A)  have the same multiplicity

(3 .1.8 ) (2КЛ)
(*-l)

= n — к +  1

in the expression

Ц  P k - i ( A ( i i , . . . , i k ) ) ,

and that all factors of Rk~\(A) have the same multiplicity 

(3 .2 .7 ) ( i f f )  = ( n - k  + l f
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in the expression

Thus (3.1.7) ((3.2.6)) can be reduced to the form

(3.1.9) Pk(A) ^  Рк^ ( А ) (п- к+1)^

and

respectively.
Taking the (£)th ((^)2th) root of both sides of (3.1.9) ((3.2.8)), and 

taking identities (3.1.8) and (3.2.7), and the identity

into consideration, we get that (3.1.3) and (3.2.2), i.e. (3.1.1) and (3.2.1) 
hold.

The statements concerning equality can be proved as follows.
It is evident that equality holds simultaneously in (3.1.1) if and only if 

the equation

(3.1.10) Per A — Pi(A)

is satisfied by a matrix A with non-negative entries, where all principal 
permanental minors are positive. Accordingly, our aim is to find all such 
matrices.

Let djj (j  — l , . . . , n )  be the diagonal elements of A. Using the well- 
known Cauchy expansion formula, we get

П
(3.1.11) Per A = P1(A) + ' £ M B (A ))

k= 2

by (3.1.2), where

(к = 2 , . . . ,  га).
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Hence equation (3.1.10) is satisfied by A if and only if

(3.1.12) £ s k ( B ( A ) )  =  0 .
k=2

Since all terms of the sum Sk(B(A))  are non-negative and the diagonal 
elements of A are positive, (3.1.12) is satisfied if any only if

(3.1.13) Per в ;; ;$ (А )  = 0, (h , . . . , i k )  e r* , k  =  2, . . . ,  n,

i. e. all principal determinantal minors of B(A) are zero.
Conversely, if conditions (3.1.13) are satisfied then (3.1.10) holds by

(3.1.11).
The statement that equality holds simultaneously in (3.2.1) if and only 

if A is a dyad with positive representation can be proved as follows.
It is evident that equality holds simultaneously in (3.2.1) if and only if 

the equation

(3.2.9) Per Л = n \R i(A )”

is satisfied by a matrix with positive entries.
Let A = (ajk) E M  be a matrix with positive entries. In this case the 

quantities

-̂ 7 Per А, ДНА)" 
n\

are the arithmetic and geometric means of the positive numbers

(3.2.10) f lj tj .. .  an tn, (i j , . . .  in) € | | ,

where Д  denotes the set of all permutations of elements l , . . . , n  without 
repetitions. Since by (3.2.9) these means are equal, we have

(3.2.11) aiq • • -anin = a > 0 for all (ib . ..,*„) G Д .

From (3.2.11) for the permutations

(iii • • • ■> iki ik+ii • • • 5 *i) and (*1, • • • t ik+li iki • • •) in)

we get
а Ык+1 _  afc+l.ú+i
ак ik ak+l,ik

Acta Mathcmatica Hungarica 66, 1995



ON D ETER M IN A N TA L AND PER M A N E N T A L  IN EQ U A LITIES 267

hence

a kj+ 1 / ■ 1 ч ч
------- = «7+1 (J = 1» •••»**- 1)®kj

by the substitutions ifc = j ,  ik+i = j  +  1, where ctj+i is a positive constant. 
Using this result we get that

0>kj — (j, к — 1, . . . , 71),

where

Ai =  1, \ j  =  a2 (j  = 2, . . . , n ) ,

i. e. A is a dyad with positive representation.
It is easy to verify that equation (3.2.9) is satisfied by such a dyad with 

positive representation.
This completes the proof of Theorem 3.2.

C o r o l l a r y  3.1. If  all principal permanental minors of the symmetric 
matrix A £ A4 with non-negative entries are positive, then inequalities (3.1.1) 
hold with equality if and only if A is a diagonal matrix.

P r o o f . Since the conditions of Theorem 3.1 are consequences of the 
conditions of Corollary 3.1, inequalities (3.1.1) hold. In order that in these 
inequalities simultaneous equalities hold, it is necessary and sufficient that 
S2(B(A))  =  0, i. e.

ajkakj = a)k = 0, j  ф к ( j , k  = l , . . . , n )

with A = (ajk). Hence A is a diagonal matrix.
Since the principal permanental minors of a positive definite symmetric 

matrix with non-negative entries are positive, we get the following result (by 
Corollary 3.1).

C o r o l l a r y  3.2. Let A £ A4 be a symmetric, positive definite matrix 
with non-negative entries. Then inequality (3.1.1) holds with equality if and 
only if A is a diaginal matrix.

In [2] the author formulated two conjectures (Conjectures 3.1, 3.2). 
Corollaries 3.1 and 3.2 are related to these conjectures.
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ON THE NORMS OF CONJUGATE 
TRIGONOMETRIC POLYNOMIALS

R. GUNTTNER (Osnabrück)

1. In troduction . If

tn{x) =  -Oo + ''^2(a k cos kx +  ßk sin kx), X e R, 
k= 1

denotes a trigonometric polynomial of order at most n with real coefficients 
then

is called the polynomial “conjugate to tn{x)". Using the maximum norm

which means that for any tn satisfying ||f„|| ^  1 we have ||/n|| ^  Cn, and this 
bound cannot be replaced by a smaller one.

Another formulation is as follows: Let f ( z ) , z  E C, be a polynomial of 
degree at most n, /(0 ) real, \z\ й  1 and | Re f(z)\  ^  1, then | Im f(z)\  ^  Cn, 
where the constant Cn is the smallest possible one independent from / .

2. R esults. Taikov [7] showed that

71

k=1

\\f\\ = m ax |/(x )| we define

Cn := sup ||in|| (n ^  1)
Ihnll î

( 1 )

Let us notice that this result has already been proved by Szegő [6]. 
It is derived here from that (cf. [6])

( 2) Cn = - lo g n  + 0(1)
7Г
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270 R. G U N T TN E R

and (cf. [7])

2 /  7Г \  1 4
(3) Cn = -  log sin + r„ , 0 < r„ < —.

7Г \  2(n + 1 )/ 7Г

The purpose of this paper is to get an improvement of (2) and (3). As a 
consequence of the following theorem we have for instance

2 4
(4) Cn = - lo g n  + a0 + en, 0 < en < — ,

a0 := —(7 + l°g —) = 0.5212 .. .
7Г 7Г

(7 = 0.5772... is Euler’s constant). More precisely we prove the following
T h e o r e m . The sequence Cn is strictly increasing, i.e. we have C\ < 

< C2 < C3 < . . . .  Further, if n is odd, then

(5) C „ - í l o g ( »  + l) +  a0 + í - ^  + . . .  + ^ i _ I + r WI ' n ?

®2i := (-1 ) i- i 8  7Г 2* 1

2г • (2г)!

M 2fc)

[(22- 1 -  1) • Я2г] 2 (г > 0),

o < ( - i ) 4 " J < ( - i )
а2к+2

(п + 1)2fc+ 2  '

(Here В2к denotes the Bernoulli numbers, B2 = B4 = -  ...) .
The constant a0 coincides with the constant \  weU known from optimal 

norms in algebraic interpolation [cf. 8 and 3].
3. P roof. We first prove C2m- 1 < C2m, m — 1 ,2 ,3 ,... . From (1) we 

have

^2m—\ — n2m

m — 1

E cot
A:=0

(2 к + 1)7Г 
2 -2  m ’ C2m —

2
2m + 1

m —1

E cot
k = 0

(2 k + l)?r
2(2m + 1)’

Therefore it suffices to prove that

1 ( 2 k + l ) n  1 ( 2 A + l ) 7 r
—  cot ------------ < ---------- cot —---------- -,
2m 2 • 2m 2m + 1 2 (2 m + l)

or, equivalently,

( 2 k  +  1)7T ( 2 f c + l ) i r  ( 2 k  +  1)7T (2A: +  l)7 r
--- --------- COt -------------- < —----------Г COt — --------- 7 .

2 • 2m 2 • 2m 2(2m + 1) 2(2m + 1)
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But the last inequality is a consequence of the fact that g(x) := xco tx  
is strictly monotone decreasing, 0 < x ^  j ,  which can be easily seen by 
differentiating g, observing that

ff'<  0 cotx <
sin2 X

cos X <
sm x

and cos a: < 1 < x /sinx .
Now to prove C2m < C2m+i we only have to note that cot § = 0 therefore

by (1)

^2m — cot
(2 к + 1) 7Г

^  2 (2 m + l) ’

and of course

( 6) c 2 m + l  —
(2 к + 1)7Г 

2m + 2 ^  2(2m + 2)E cot
k=0

By similar arguments as before we get the first statement of the theorem. 
Suppose now that n is odd, n = 2m + 1. From (6) we get

(7) Г  -  1 V" t (2fc + 1)tt
2m+1 m + 1 ^  4(m + 1) '

The asymptotic expansion of the right hand side of (7) is well known, first 
proved by Giinttner (cf. [4]) followed by Shivakumar and Wong [5], Dzjadyk 
and Ivanov [1], Feng [2]. Using [4] and substituting there n by m + 1 in 
formula (2) and Theorem 1 we easily get

C2m+1 — — log(m + 1) + Aq + -----2 ̂  2 + . . . + -----  ̂ 2k
7Г ( m + i y (m + 1)

,= 2 (
0 ' 7Г V

A2, := (-1 ) t- i

A

Stt2- 1

7 + log -  ,7Г

2i ■ 22t • (2г)!

0 <  ( - 1)^ ‘ R-m+l <  (~ ^ )k

— ■ [(22*-1 -  1) • B2i] 2 ( i> 0 ) ,

^2fc+2
(m  + 1)2fc+2  ’

Since here we have 2m + 1 = n, n odd, we may replace m + 1 by which 
immediately leads to the second statement (5) of the theorem.

Acta Mathematica Hungarica 66, 1995



Finally, to prove (4) observe that for n odd the theorem implies

(8) -  log n + a0 < -log(ra + l) + a0 < Cn < -  log(n + 1) + a0 + — — -j .
7Г 7Г 7Г I 8 ( n  +  1 )

Taking into account that log(n + 1) = log n + log(l + ^) < log n + ^ we 
easily derive

272 R. G Ü N T T N E R

0 < rn < ----- h < (n odd).
я-гс ' 18(n + l )2 ' 3n 

If n is even then n — 1 and n + 1 being odd we get from (8)

2 2 7Г
— log flo < Cn- г < Cn < Cn+1 < — log(n + 2) + ao 4----- --------70
7Г 7Г 18(n + 2)

which yields by analogous arguments

0 < rn < —  + <
7Гn ' 18(n + 2)2 '  3n 

This completes the proof.

(n even).
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A LATTICE CONSTRUCTION 
AND CONGRUENCE-PRESERVING 

EXTENSIONS
G. GRÄTZER1 (Winnipeg) and E. T. SCHMIDT2 (Budapest)

1. In tro d u c tio n

To find a simple proof of the congruence lattice characterization theorem 
of finite lattices, H. Lakser and the first author (see [1]) introduced a special 
type of finite partial lattices: a meet-semilattice in which any two elements 
with a common upper bound have a join. If iff is such a finite partial lattice, 
then the ideal lattice of iff is a congruence-preserving extension of iff; that 
is, every congruence of iff has exactly one extension to the ideal lattice.

In [2], we introduced the name chopped lattice for such partial lattices, 
no longer necessarily finite. Of course, if iff is no longer finite, we cannot 
expect the ideal lattice to be a congruence-preserving extension. It is natural 
to consider, instead, finitely generated ideals; unfortunately, they do not, in 
general, form a lattice. In Section 2 we introduce Condition (FG) under 
which the finitely generated ideals form a lattice.

Given two lattices A and В , sharing the sublattice С — А П B, we obtain 
the lattice M (A ,B )  by amalgamation. If C is a principal ideal of both A 
and В , then M (A ,B )  is a chopped lattice.

In Section 3, we introduce (see Definition 3) a set of sufficient conditions 
under which iff (A, В ) is a chopped lattice. If A and В satisfy the conditions 
of Definition 3, we shall call А, В a chopped pair. Theorem 1 states that if 
A, В  is a chopped pair, then iff (A, I?) is a chopped lattice. The concept of 
a chopped pair does not seem strong enough to compute with it. In Section 
4, we introduce two stronger versions: sharp and full chopped pairs.

In Section 5 we investigate finitely generated ideals in M ( A ,B ) for a 
chopped pair A, B. For a sharp chopped pair A and B, if С = АГ\ В  satisfies 
the Ascending Chain Condition, then we obtain Condition (FG) (which 
guarantees that the finitely generated ideals form a lattice) for M(A, B).

In Section 6 we investigate modular lattices. If A, В  is a sharp chopped 
pair and both A and В are modular, then iff (A, В ) satisfies Condition (FG)

1 The research of the first author was supported by the NSERC of Canada.
2 T he research  of th e  second a u th o r was supp o rted  by  th e  H ungarian  N ational Foun- 

d a tio n  for Scientific R esearch, un d er G ran t No. 1903.
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(Theorem 3). If A, В is a full chopped pair, then it is enough to assume that 
one of them is modular to obtain the same conclusion (Theorem 4).

In Section 7 we deal with the problem whether every lattice has a proper 
congruence-preserving extension. We apply Theorem 4 to prove that if there 
exists a nontrivial distributive interval in a lattice, then it has a proper con
gruence-preserving extension.

A modular example of a congruence-preserving extension is outlined in 
Section 6.

1.1. N o ta tion . We refer the reader to [1] for the basic concepts and 
notation.

In a lattice L, [x,y]L denotes the interval in L , and (a]L the principal 
ideal generated by a. If there is no confusion, the subscript is dropped.

If L is a sublattice of K, then we call К  an extension of L. If L has a 
zero, and it is also the zero of К , then К  is {0^-extension of L.

G. G R Ä T Z E R  and E. T . SCH M ID T

2. Chopped lattices

A chopped lattice M  is a lattice L with zero, 0, and unit, 1, with the unit 
removed: M — L — {1}; on iff, 0 is a nullary operation, Л is an operation, 
and V is a partial operation. Equivalently, a chopped lattice M  is a meet- 
semilattice with zero, 0, in which any two elements having an upper bound 
have a join. M  will be regarded as a partial algebra (M;A,V,0).

We shall use the concept of extension for chopped lattices; observe that, 
by definition, an extension of a chopped lattice is a {0}-extension.

An ideal I  of M  is a subset of iff containing 0 with the following two 
properties for x, у £ M:

x G I  and у ^  x imply that у £ / .
If x, у £ I  and x V у exists, then x V у £ I.

For H ^  iff, there is a smallest ideal (H ] of iff containing H . If an ideal 
I  can be represented in the form (H ] for some finite set Я , then the ideal I  
is called finitely generated. In particular, for a 6 M , we let (a] = ( {a}] be 
the principal ideal generated by a in M, that is,

(a] = {x I x G M  and x ^  a}.

IdM  denotes the lattice of ideals of M. Obviously, Id M  is a lattice. 
Idfg M , the finitely generated ideals of iff, form a join-sublattice of Id M .

By identifying a £ M  with (a], we regard Id M  an extension of M.

D e f in it io n  1. A chopped lattice M  satisfies Condition (FG) if every 
finitely generated ideal is a finite union of principal ideals.

Acta Mathematica Hungarica 66, 1995
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If M  satisfies Condition (FG), then Idfg M  is a sublattice of Id M. In
deed, if

I  = (ßi] U . . .  U (an], J  = (61] U . . .  Ü {bm],

then
I  П J — ^J((a, Л bj] I 1 ^  i ^  n, 1 ^  j  й m).

Lemma II.3.19 in [1] states the following:
Lemma 1. Let M  be a finite chopped lattice. Then Id M  is a congru

ence-preserving extension of M .
The proof of this lemma implicitly contains the following two lemmas.
Lemma 2. Let M be a chopped lattice. Then every congruence relation 

of M  has an extension to lá  M .

P r o o f . Let 0  be a congruence of M; define a relation 0  on Id M  as 
follows:

I  = J  (mod 0 )
if for every i £ I  there exists a j  £ J  such that i = j  (mod 0 ), and symmet
rically. The proof is the same as in [1]. □

Lemma 3. Let M  be a chopped lattice, and let S  2  M  be a sublattice of 
Id M . Let us assume that in S every ideal I  £ S  is a finite union of principal 
ideals. Then every congruence relation of M  has a unique extension to S.

P r o o f . First observe that if a £ M  and I  £ S, then (а] П I  is principal. 
Indeed,

/  =  ( a j J U  . . . U ( a n],

and so (а] П I  is generated by {aAf l i , . . . , oA an}. Since this set has an 
upper bound (namely a), it has a join b (since M  is a chopped lattice), and 
b obviously generates (а] П /  .

Let Ф be an extension of 0  from M  to 5. Let I ,  J  £ S, I  = J  (mod Ф), 
and a £ I. Then I Л (a] = J  Л (a] (mod Ф). By the statement in the previous 
paragraph, there is a b £ J  such that (а] Л J — (6]; obviously, a =  b (mod 0). 
We conclude that I  = J  (m od0). So Ф C 0 .

Conversely, let I ,  J £ S  with I  = J  (mod©). By the assumption on S , 
we can represent these ideals as

I  = (fll] U . . .  U Ы ,  J  = (bi] U . . .  и {Ьт].

By the definition of 0 , for every there is a c, in J  with a, = c, (m od0). 
Symmetrically, for every bj there is a dj in I  with dj = bj (m od0). Since Ф 
is an extension of 0 , these congruences hold for Ф. The join of these n-\- m 
congruences yields I  = J  (пк^Ф ), proving that 0  Q Ф. Thus 0  = Ф, and 
so every congruence of M  has a unique extension to S. □

Therefore, the following is true:

Acta Mathematica Hungarica 66, 1995
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L e m m a  4. Let M be a chopped lattice satisfying Condition (FG). Then 
Idfg M  is a congruence-preserving extension of M .

In fact, a congruence-preserving {0}-extension.

3. Chopped pairs

Let A and В  be lattice, let С = А П В ф 0 . Then we can form the
amalgamation M  = M (A ,B )  of A and В over C. It is well-known that on
M  we can define a partial ordering:

D efinition 2. The partial ordering ^ м  is defined on M  as follows:
(1) For x, у £ A, let x ^ м  у iff x %a У-
(2) For x, у £ B, let x 5\м  у iff x ^ в  У-
(3) For x £ A and у £ В, let x у iff there exists a c £ C such that 

x ^ a c and c tLв  У, and symmetrically, for x £ В and у £ A.
The subscripts of ^  will be dropped whenever there is no danger of 

confusion.
We shall use the following notation: M (A ,B )  = A U В is the poset 

obtained by amalgamating A and В  over C. In A we form the ideal I  a 
generated by C; we set Ca = I  a — C; symmetrically, we define I в  and С в- 
Note that the ideal Cm  generated by C in M  is the disjoint union of C, Ca , 
and Cß-

Sometimes, the poset M(A, В ) is a chopped lattice. The next definition 
formulates some natural conditions under which this is the case.

D efinition 3. A pair of lattices A and В is called a chopped pair iff 
the following conditions are satisfied:

(1) The lattices A and В  have a common zero, 0.
(2) Let C denote the lattice А П B. Then C has a largest element i.
(3) For x £ Cm , there is a smallest x £ C satisfying x й  x.
(4) For x £ M (A , В ), there is a largest x £ C satisfying x ^ x .
(5) For x £ Ca and у £ Св, the two elements: x V у (formed in A) and 

x V y  (formed in B) are comparable (in M(A, B)).
(6) For x £ A -  В  and у £ В  -  A, the two elements: x A у (formed in A) 

and x Л у (formed in B) are comparable (in M (A,B)).
T heorem 1. Let A, В be a chopped pair. Then M ( A ,B ) is a chopped 

lattice.
P roof . There are two claims to verify.
Claim 1: M (A ,B )  is a meet-semilattice. Let x, у £ M (A ,B ) .  We have 

to find и -  т$м{А,в){х ,у}- We shall distinguish several cases.
Case 1.1: x, у £ A. Let и — x Ay be formed in A. Obviously in M (A, B), 

и ^  x and и ú y .  Now let v £ M (A , В ) be a common lower bound of x and 
y. There are two subcases to consider.
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Case 1.1a: v £ A. By Definition 2.1, v is a common lower bound of x 
and у in A, hence, v ^  u.

Case 1.1b: v £ B. By Definition 2.3, there are elements cx and cy 
in C such that v ^ в  cx ^ a £ and v й в  cy йд у. Then cx A cy £ C, and 
v c* A cy ^ a u. So indeed, и = in1м(А,в){х , y}-

Case 1.2: x, у £ В. Proceed as in Case 1.1.
Case 1.3: x £ А, у £ B. In view of the previous cases, we can assume 

that x £ A -  В  and у £ В  — A. Since by Definition 2.3, any common lower 
bound must be in Cm , we can replace a: by а: Л г and у by у A i. So again 
referring to the previous cases, we can assume that x £ Ca and у £ Св- Now 
take a common lower bound v of x and y.

Now we claim that of the common lower bounds v £ A, there is a largest 
one, x A y. Indeed, x A у is a lower bound. If t £ A is also a lower bound, 
then t % у in M(A, J5), hence by Definition 2.3, there is a c £ C satisfying 
t ^ a c ^ b  y- Obviously, c ^  y, and so t ^ a £ A y, as claimed.

Now we claim that of the common lower bounds v £ B, there is a largest 
one, x A y. To prove this, proceed as in the previous paragraph.

Finally, by Definition 3.6, x A у and x A у are comparable, hence 
1П̂ М(А,В){Х,У} exists and it equals sup{x A y,x A y}.

Case 1.4: x £ В, у £ A. Proceed as in Case 1.3.
This completes the proof of Claim 1.
Claim 2: In M (A, В ), any two elements, x and у , having a common upper 

bound, v , have a join. Let x, у £ M (A , B), and let v be an upper bound of 
x and y. We have to find и = supM^ ,£){£, y}- We shall distinguish several 
cases.

Case 2.1: x, у £ A. Form и = x V у in A. We have to show that if t is 
any upper bound of x and у in M (A, В ), then и ^  i.

Case 2.1a: t £ A. This case is obvious.
Case 2.1b: t £ B. By Definition 2.3, there are cx, cy £ C so that 

x ^ a cx t and у ^ a Cy Úb t. Therefore, и = x V у ^ a cx V cy ^ b t', so 
again, by Definition 2.3, и ^ m (a ,b ) A completing Case 2.1.

Case 2.2: x, у £ В. Proceed as in Case 2.1.
Case 2.3: x £ A and у £ В. In view of Cases 2.1-2.2, we can assume 

that x £ A -  В  and у £ В  -  A. Without loss of generality, we can assume 
that t £ A. It follows that у £ Св- Again, we distinguish two subcases.

Case 2.3a: x £ Ca - If t £ A is an upper bound of x and y, then x V 
V y ^ t .  Similarly, if t £ В is an upper bound of x and y, then x V у t. By 
Definition 3.5, the elements x V у and x V у are comparable, hence,

sup{x, y} = inf{x V y, x V y).

Case 2.3b: x ^  Ca - In this case, no upper bound of x is in B, hence, 
sup{x, y) = x V у formed in A.

Case 2.4: x £ В and у £ A. Proceed as in Case 2.3.
This completes the proof of Claim 2 and of the lemma. □
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4. Some exam ples and special cases

It is easy to give examples that the last two strange conditions of Defi
nition 3 do not follow from the others. Here is one: let A — В  be the direct 
product of the two element chain {0,1} with the three element chain {0, a, 1}. 
The elements are of the form {x,y), where x £ {0,1} and у £ {0,a, 1}. We 
make A and В  disjoint (we shall denote (г, у) £ A by (x , y)A, and the same 
for В ), then we identify elements as follows:

(0,0)л with (0 ,0)B;
(1.0) л with (0 ,1)B;
(0,1)л with (1 ,0)s ;
(1.1) л with
So С = {(0,0)л , (1,0)д, (0,1)л , (1 ,1)л } is a four-element Boolean lattice. 

It is easy to see that Definitions 3.1-3.4 hold, but both Definitions 3.5 and 3.6 
fail. Indeed, let x = (a,0)A £ Ca and у — (a, 0)B £ С в ■ Then x = (1,0)^ 
and у — (1,0)B = (0 ,1)B. Hence,

х У у  -  (а, 1)л and x V у = (a, 1)B,

and these two elements are not comparable.
If A, В  is a chopped pair, then we know that in M (A ,B )  any pair of 

elements with a common upper bound has a join. To perform computations 
we need more; we must have a formula for the join we can work with.

D efinition  4. A chopped pair of lattices, A and В , is called sharp iff

x V у — x V у,

for x £ Ca and у £ Cb , and

x Л у = x A y,

for x £ A — В and у £ В — A.
There are many equivalent forms of these conditions; for instance, the 

first is equivalent to
x M y £ C ,

for x £ Ca and у £ Св\ or to

x V у — x V у.

Observe that if A and В  form a sharp chopped pair, then in M (A ,B ), 
we have x А у £ C, for x £ Ca and у £ С в ; and x V у £ C, for x £ Ca and 
У £ Св-

Two important examples of chopped pairs follow in which C is largest 
and smallest possible:
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E xample 1 .(7  =  (i] is a principal ideal of both A and B.
We considered this special case for finite lattices in a previous paper [2]. 

In this case, Ca -  Cb = 0 ; for every x € M (A, B), x = x A i;  and for every 
x E C  = Cm , x = x. The conditions of Definition 3 and Definition 4 are 
trivially satisfied — in fact,

x \ / y  = xW y = x V y  and x A y  = x_Ay —x A y A i .

E xample  2 . С = {0,г}.
In this case, again, the conditions of Definition 3 are trivially satisfied — 

in fact,
x \ / y  = xW y = i and x А у = xA  у — 0.

In these two examples, the conditions of Definition 3 and Definition 4 
hold in a much stronger form.

We name the first example:
D efinition  5. A chopped pair of lattices, A and B, is called full if 

C  — W a  ~  (®]j3 *

5. Finitely generated ideals

In this section, we shall investigate conditions under which M(A, В ) 
satisfies Condition (FG). The following two lemmas are easy to verify, but 
they are crucial to our investigations. First some definitions.

D e f in it io n  6 . Let A, В be a chopped pair, C — А П B. Let a e  A — C 
and 6 € В — C . We define the elements:

oq= a,
bo— b,

&i =  &o V a0 A i

a i —  ü Q  V 6i A i

b2— b\ V ax A i  ( =  b V ax Л г)

ö2 =  a 2 V &2 Л i  ( =  a  V b i  A  i )

(formed in B), 

(formed in A), 

(formed in B), 

(formed in A),

6n+ i=  b n  V a n  A  i (=  b  V a n  A  i) (formed in В ),

an+1= a n  V 6„+i Л г (=  a V 6n+j A  i) (formed in A),

See Figure 1 — the white filled elements are in A (and maybe in (7 );  the 
shaded elements are in В (and maybe in (7 ) ,  and the black filled elements 
are in C.
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Fig. 1

Lemma 5. Let A and В be a sharp chopped pair. Then in M (A , В ), the 
following inequalities hold:
(1) a = a0 ^  fli ^  a2 ^  . . .  (in A),

(2) b = b0 ^  ^  b2 ^  . . .  (in B),
and
(3) eto Л i ^  &i Л i ^  a\ Л i ^  b2 A i ^  a2 А г ^  . . .  (in C).
If, for some n, an = an+i, then (1) terminates at n, and (2) terminates at 
n + 1/ and symmetrically, for (2). If (3) does not terminate, neither do (1) 
and (2).

So either all three sequences terminate or none terminate.
P r o o f . Let an — an+1; then an A i =  an+1 Л г. Therefore,

^n+2 — b \/ an+i A i — b V dn A i — bn+i,
and so bn+i Л г = 6n+2 A i. By the definition of an+1 and an+2, it follows 
that an+1 = an+2- Hence, an+x Л г = an+2 Л г, so bn+2 = 6n+3. It is now 
clear that

j ■— 1 = ®n+2 — •••')and
^n+l = ^n+2 = • • • •
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Finally,
( i n  A i — A i ~ A i  ^  bn -̂2 h  L 

an h i  — an+1 Л г and i»n+i Л г =  b n+ 2 A i; therefore,

At — 6n_(_i At — At — A t , . . . ,

so sequence (3) also terminates. Conversely, if sequence (3) terminates, 
then sequences (1) and (2) terminate by the definitions of an+1 and bn+i 
in Definition 6. □

L em m a  6 . Let A and В be a sharp chopped pair; let a E A — C, b E 
E В — C . The ideal (a, b] of M (A ,B ) generated by {a, b} can be described as 
follows:

(a, b] = I J  ( (an\A I n <  u )  U | J  ( ( bn\B | n < u>).

This is not a finitely generated ideal if, and only if, none of the sequences of 
Lemma 5 terminate. If(a,b\ is a finitely generated ideal, then (a, 6] = (an] U 
U (&„] for some n < u.

P r o o f . Let R = и((а„]д | n < w ) U U ((^ i]b  I n < w)- If we know that 
R is an ideal of M (A ,B ), then it is straightforward to verify that R  is the 
ideal of M (A ,B )  generated by {a,b}, and the rest follows from Lemma 5.

So we verify that R is an ideal of M (A , В ).
Firstly, let x E R  and у ^  x in M (A, B). Without loss of generality 

we can assume that x ^  an for some n and у й x. If у £ A, then у ^  an; 
therefore у ^  an in A, and so у E R- If у E B, then у й  an, and so у ^  an A 
A i  Í  bn. This implies that у ^  bn in B, therefore у E R', completing the 
proof of у E R.

Secondly, let x, у E R, and let x and у have a common upper bound z 
in M (A , B). Without loss of generality we can assume that z E A. We want 
to show that x \!  у E R. We shall distinguish several cases.

Case 1: x, у E A.
Case 1.1: x ^  an and у ^  am for some n and m. In this case, as in all 

the subsequent cases, we can assume without loss of generality that n = m. 
Then x V у ^  an, so x V у E R-

Case 1.2: x й an and у ^  bn. Since у E A and bn E В , the condition 
У й bn implies that у ^  i. Hence, у ^  bn Л г ^  an, and so x V у ^  an, yielding 
x V у E R-

Case 1.3: x ^  bn and у fL an. Proceed as in Case 1.2.
• Case 1.4: x Ú bn and у ^  bn. As in Case 1.2, we can verify that x ^  an

and у ^  an, so Case 1.1 completes this case.
Case 2: x E А, у E B. Observe that у ^  i since у й z, у E В  and z E A.

Case 2.1: x 5Í an and у ̂  an. So х \ / у  = х \ / у 'й  an, hence iV  у E R.
Case 2.2: x ^  an and у ̂  bn. Since у ^  г, it follows that у £  bn A i , so

у ^  a„; hence xM у ^  an, yielding iV  у E R-

Acta Mathematica Hungarica 66, 1995



284 G. G R A T Z E R  and E. T . SCH M ID T

Case 2.3: x ú b n and у ̂  an. Proceed as in Case 2.2.
Case 2.4: x ^  bn and у ^  bn. Then as in Case 2.2, x ^  an and у й  an,

so we can proceed as in Case 1.
Case 3: r  G В, у £ A. This is symmetric to Case 2.
Case 4: x, у E В.

Case 4.1: x Ú an and у Ú an. Using the argument of Case 2.2, we 
obtain that x ^  bn+1 and у й bnJri, which is symmetric to Case 1.1. Hence 
X  V у E R.

Case 4.2: x ^  an and у ^  bn. Again, x € В  and x ^  an imply that 
x ^  bn+1, which is symmetric to Case 1.1.

Case 4.3: x ^  bn and у ̂  an. Proceed as in Case 4.2.
Case 4.4: x ^  bn and у ̂  bn. This is symmetric to Case 1.1. □

Observe that this lemma fully describes all finitely generated ideals, since 
a finitely generated ideal of M (A , В ) is obviously one- or two-generated.

Now we prove:
T h eo r em  2. Let A and В form a sharp chopped pair, and let С = A n  

П B. Let us assume that C satisfies the Ascending Chain Condition. Then 
M (A , В ) satisfies condition (FG), and Idfg M (A, В ) is a congruence-preserv
ing extension of M (A, B) (in fact, a congruence-preserving {0}-extension).

P r o o f . If C satisfies the Ascending Chain Condition, then sequence 
(3) of Lemma 5 must terminate. By Lemma 5, the sequences (1) and (2) 
terminate, and so the statement of the Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension fol
lows from Lemma 4. □

For full chopped pairs, Definition 6, Lemma 5, and Lemma 6 take on a 
much simpler form:

D e f in it io n  7. Let A, В  be a full chopped pair, С = АП  B. Let a e 
E A — C and b E В -  C. Then we define the elements:

ao~ a, 
bo= b,
b\= b0 V (a0 A 0 , 
a \— a0 V (&i Л г),
62= bi V (ai Л г) (= b V (ai Л г)), 
a2= a\ V (b2 Л г) (= a V (Éq Л г)),

bn+i= bn V (a„ A i) (= b V (an A *')), 
ön_)-i= an V A i ) (— a V A i)),

See Figure 2 — the white filled elements are in A (and maybe in C ); the 
shaded elements are in В  (and maybe in C), and the black filled elements 
are in C.
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Lemma 7. Let A and В be a full chopped pair. Then in M (A ,B ), the 
following inequalities hold:
(4) a = o0 ^  ai ^  0 2  ^  . . .  (in A),
(5) 6 = 60 ^ 6 i  ■■■ (in В),
and

(6 ) a0 A * ^ 6 i Л * ^ ai Л г ^ 63 A * = 0 2  A * S • • • (in C).
If, for some n, an — an+i, then (4) terminates at n, and (5) terminates at 
n + 1; and symmetrically, for (5). 7 /(6) does not terminate, neither do (4) 
and (5).

The proof of this lemma is a simplified version of the proof of Lemma 5. 
Lemma 6 remains valid for full chopped pairs; in this case, the sequences an 
and bn will be the ones defined in Definition 7.

6 . Modular lattices

By inspecting Figure 1, we can see that if A and В  are modular, then a 
lot of elements must collapse. In fact, we have the following result:
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T heorem 3. Let A and В form a sharp chopped pair. Let us assume 
that both A and В  are modular. Then M ( A ,B )  satisfies condition (FG), 
and Idfg M(A,  B) is a congruence-preserving extension of M(A,  B) (in fact, 
a congruence-preserving {0}-extension).

PROOF. Let A and В  be modular. The equations (see Figure 1)

ao A b\ A i = do A (ax A i) — ao A i, 

üq V 6i A i =  ao V (ßi A i) =  ax

hold in M(A,B) .  By the modularity of A, the two equations imply that 
A i = fli A i. So

<H A i = bi A i — b\ A i.
B y the modularity of 5 ,  a similar argument yields that &2 A i =  a\ Л г, and 
so on. So the sequence (3) has only one or two members; it terminates. 
By Lemma 5, the sequences (1) and (2) terminate. So the statement of the 
Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension fol
lows from Lemma 4. □

We can prove a stronger statement for full chopped pairs.
Lemma 8 . Let A, В be a full chopped pair. I f A is a modular lattice, 

then
(a, b] = (ax] U (bi].

P r o o f . A s in Theorem 3, the modularity of A implies that &x A i =  ax A i. 
Hence ö2 =  ö] V (ax А г) =  öx V (Ьх Л г) =  bx, and a2 =  a \  V (62 Л г) =  ax V 
V (6X Л г) = ax V (ax Л г) = ax. So the statement of the Lemma follows from 
Lemma 6. □

So now we can conclude a stronger form of Theorem 3 for full chopped 
pairs:

THEOREM 4. Let A, В  be a full chopped pair. I f  A is a modular lattice, 
then M ( A , B ) satisfies condition (FG).

7. Congruence-preserving extensions

In [2] we raised the following question:
P roblem . Is it true that every lattice with more than one element has 

a proper congruence-preserving extension?
We proved in [2] that in the finite case this is true. This result is 

generalized by the following theorem:

Acta Mathematica Hungarica 66, 1995



T h eo r em  5. Let L be a lattice with zero, 0. I f there exists an element 
a  > 0 in L such that the interval [0,a] is distributive, then L has a proper 
congruence-preserving extension К .

P r o o f . To prove this result, we need a construction due to the second 
author. Let М3 denote the five-element modular nondistributive lattice on 
the set {0,a,6,c, 1}, and let D be a bounded distributive lattice. Let

M3 [D] — {(x,y ,  z) £ D3 I x Л у = x A 2  = у Л z] .

Then M3 [D] is a modular lattice; it contains М3 as a {0, l}-sublattice (on 
the set { (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}), and each prime interval 
of this М3 contains (in M3 [D]) a copy of D; for instance, the interval 
[(0, 0,0) ,(1, 0, 0)] can be described as { (d, 0,0) | d £ D} . If we identify 
В  with { (d, 0,0) I d £ D j  , we find that the lattice M3[B] is a congruence- 
preserving {0}-extension of D.

Now let D =  [0,a], and let A = M3 [D]. Then A has a spanning М3; 
let i = (a, 0,0). Let В = L, and define г = a  in B. Then А П В = (г], 
and A, B. form a full chopped pair in which A is modular. So we can form 
the chopped lattice M( A,B) .  Obviously, M ( A , B)  is a proper congruence- 
preserving {0}-extension of L. By Theorem 4, (FG) holds for M( A,B) .  
Therefore, by Lemma 4, Idfg M( A, B)  is a congruence-preserving {0}-exten- 
sion of M ( A , B).  We conclude that Idfg M(A,  В ) is a proper congruence-pre
serving {0}-extension of L. □

The following result is a generalization of Theorem 5.

T h eo rem  6 . Let L be a lattice. I f  there exist a nontrivial distributive 
interval in L, then L has a proper congruence-preserving extension К .

P r o o f . Let [a,/3] be a nontrivial distributive interval in L. Let us form 
the lattice В = [a) in L. Obviously, В  satisfies the conditions of Theorem 5; 
therefore, В has a congruence-preserving {0}-extension K \. Clearly, В  is an 
ideal of K x and a dual ideal of L; hence we can glue L and K\ over B; let 
К  be the resulting lattice.

Let 0  be a congruence relation on L. Let 0 д  be the restriction of 0  
to B. Since К I is a congruence-preserving extension of B, there is a unique 
extension Ф of 0 д  to K \. It is easy to see that 0  = 0  U Ф is the unique 
extension of 0  to К . Hence К  is a congruence-preserving extension of L. 
Obviously, it is a proper extension. □
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8 . A modular exam ple

It is easy to give examples of classes of lattices that have proper con
gruence-preserving extensions that have nothing to do with distributivity.
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For instance, every simple lattice with more than one element has a proper 
simple extension; this is obviously a proper congruence-preserving extension.

In this section we outline a modular example with no proper distributive 
sublattice.

Let C be a continuous geometry with zero, 0, and unit, 1. Then C has 
the following properties:

(1) For a < b, the interval [a, 6] is isomorphic to C.
(2) C is a simple lattice.
Let I  be a nonprincipal ideal of C and F  a nonprincipal dual ideal of C 

satisfying I П F  = 0 . Let L be the sublattice I U F. The congruence lattice 
of L is the three element chain.

We choose in C a spanning M3 = {0 < a, b, c < 1}. The interval [0, a] is 
isomorphic to C . Therefore, we find in [0, a] a copy Ia of /  and a copy Fa of
F. The projectivities in the spanning М3 define the ideals and dual ideals, 
h , Ic, Fb, Fc in the intervals [0,6] and [0,c]. Similarly, we obtain the ideal 

and dual ideal F “ in [a, 1], I “ and Ftf in [b, 1], / “ and F “ in [с, 1].
Let I  be the ideal of C generated by the three “small” ideals, Ia, 1ь, 

Ic. Similarly, the three dual ideals Ffcu,Fcu generate a dual ideal F. We 
consider the sublattice

К  =  I U F  U Fa U Fb U Fc U / “ U 76u U

It is easy to see that К  is a sublattice of C , and it is a congruence-preserving 
extension of the sublattice L С [0,a].
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1. Introduction

A real-valued function /  on a space X  is countably continuous provided 
that X  can be partitioned into countably many sets E \,E 2, . . .  such that 
for every i, the restriction /  f E{ is continuous. Adjan and Novikov [1] 
constructed (answering a question of Lusin, cf. also Keldys [6]) an upper 
semicontinuous function on [0, 1] that is not countably continuous (we discuss 
their construction in Lemma 4.1 and Comment 6.1(B) below). A similar 
construction was used also by Sierpinski [10] (who did not address Lusin’s 
question directly, but the solution is implicit in his reasoning). We thank the 
referee for pointing out this fact to us.

Jackson and Mauldin [5] proved recently, using some notions from recur
sion theory, that Lebesgue measure A considered on the space of nonempty 
closed subsets of the unit interval is not countably continuous (being upper 
semicontinuous). They conjectured [5, Questions 5 and 6] that in the Banach 
spaces of bounded Baire 1 functions and of bounded derivatives, respectively, 
the countably continuous functions form meager sets.

In this note we prove these conjectures. We also establish a universal 
property of the map A on the space of nonempty closed subsets of the unit 
interval, which gives in particular a direct proof of the result of Jackson and 
Mauldin mentioned above.

2 . Terminology

As usual, I denotes the interval [0,1] and Q the infinite product I°°. By a 
space we mean a metrizable topological space. If X  — Jln^i X n is an infinite

1 T his n o te  was p a r tly  w ritten  du rin g  th e  second a u th o r’s visit to  Vrije U niversiteit 
(A m sterdam ). He would like to  th a n k  th e  D ep artm en t of M athem atics o f th is university  
for its  hospitality .

0236-5294 /95 /$  4.00 ©  1995 Akadém iai K iadó, B udapest



290 J. VAN M ILL and R. PO L

product of spaces then for every x £ X  and n £ N the n-th coordinate of x 
is denoted by xn.

Let X  be a compact space. The collection of all nonempty closed subsets 
of X  is denoted by K,(X). It can be topologized as follows. Let d be an 
arbitrary admissible metric for X.  If A ^  X  and £ > 0 then U£(A ) denotes 
the open £-ball of radius e about A. The formula

dH(A,B)  = inf {e:A g  U£(B)  and В Q U£(A)}

defines a metric on IC(X), the so-called Hausdorff metric, and IC(X) endowed 
with the topology derived from this metric is called the hyperspace of X . 
One can show that the topology of X( X)  is independent of the choice of 
the admissible metric d. Also, IC(X) is a compact space. For details, see 
Engelking [4] and [9, §4.7].

Let X  and (Y,d) be spaces. For functions f , g : X  —> Y  we define their 
distance d(f ,g)  £ [0, oo] as follows:

d(f ,g)  = sup {d( f ( x) ,g(x) ) :x  G l } .

Let A be a space. A function f : X  —* R  is called lower (upper) semicon- 
tinuous if for every r £ R  the set / - 1(r, oo) (the set / - 1(-oo , r)) is open. It 
is clear that a function f : X  —* R  is continuous if and only if it is both lower 
and upper semicontinuous. We will use the well-known fact that for every 
lower (upper) semicontinuous function /  on X  there exists a sequence {/,},• 
of continuous real-valued functions on X  such that for every x £ X  we have 
fi(x) /  f ( x )  (f i (x ) \  f (x)) .  We will also use the fact that the functions 
inf: Q —» I and sup: Q —► I defined by

inf(x) = inf{a:n:n  £ N}

and
sup(a:) = sup{zn:n  £ N}

are upper semicontinuous and lower semicontinuous, respectively. For details 
and references concerning these facts, see Engelking [4, pp. 61-62].

We finish this section by establishing the following easy results which are 
probably well-known.

2.1. T h e o r e m . Let r £ [0,1). In addition, let X  be a compact space 
and let f : X  —*■ [0,r] be upper semicontinuous. Then there is an embedding 
e: X  Q such that for each x £ X  we have

inf (e(x)) = f (x).

P r o o f . Write N as the union of two disjoint infinite sets, say E\  and E 2 . 
Since Q is universal for separable metrizable spaces ([9, Theorem 1.4.18]),
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there is an embedding A' —► [r, l]ß l . Since /  is upper semicontinuous there 
is a sequence {/,}!e£2 of continuous functions from X  to [0,r] such that for
every I  £ I  we have { f i (x ) } t€Ei \  f ( x )- Now define e: X  —> Q by

(г £ Ei),  
(* G E2).

Then e is clearly as required. □

We conclude that in a sense the pair (Q,inf) is “universal” for upper 
semicontinuous functions. Similarly one derives that the pair (Q,sup) is 
“universal” for lower semicontinuous functions.

2.2. T heorem . Let r £ (0,1]. In addition, let X  be a compact space 
and let f:  X  —► [r, 1] be lower semicontinuous. Then there is an embedding 
e: X  —> Q such that for each x £ X  we have

sup (e(x)) = f (x) .

3. A universal property of Lebesgue measure

In this section we formulate and prove that the pair ( /С ([— 1,1]), A) 
is “universal” for upper semicontinuous functions. In §6.1 we will present 
several “explicit” examples of upper semicontinuous functions that are not 
countably continuous. In view of Theorem 3.1 below this implies that A is 
not countably continuous.

3.1. T h e o r e m . Let X  be a compact space and let f : X  —» I be upper 
semicontinuous. Then there is a topological embedding e: X  —► /С ([—1,1]) 
such that for every x £ X  we have

М Ф О ) = f (x) .

P r o o f . We will construct a function a: X  —► /С([— 1,0]) and a function 
ß: X  —► £([0 ,1 ]). The desired embedding e will then be defined by the 
formula e{x) = a (x ) U ß(x)  (x £ A).

Claim 1. There is an embedding a: X  —► £ ([-1 ,0 ])  such that for every 
x £ X  we have А(о(ж)) = 0.

This is easy. Pick points an and bn in [—1,0] such that

ai < < ct2 < h-2 < • • • < an < bn < • • • /С 0.
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Lel Q — Щ и К А ] .  Define an embedding <p:Q —► /С([—1,0]) by <p(x) — 
= {0} U {xn:n 6 N}. Clearly, A(< (̂j )) = 0 for every x E Q. The desired
result now easily follows because Q a  Q is universal for separable metrizable 
spaces ([9, Theorem 1.4.18]).

We now come to the interesting part of the proof.
Claim 2. There is a continuous function ß: X  —» /С(I) such that for every 

i £ l w e  have A(ß(x)) = f (x) .

Since /  is upper semicontinuous we may pick a sequence {/,}, of contin
uous functions from X  to I such that for every x E X , f i(x)  \  f  (x). Define 
£i:A' —► /C(I) by £1(2:) = [0,/i(a:)]. Then £i is clearly a continuous func
tion and has the property that A(£i(a;)) = f \ (x)  for every x E X .  Define 
£2: X  —► A(I) as follows:

&(*) = °> 2^2(x) U + \ M x )

Then £2 is clearly a continuous function. Observe the following:
(1) If x E X  then the intervals [O, 5/ 2(2:)] and [5/ 1(2:) ,5/ 1(2:) + 5/ 2(2:)] 

overlap in at most one point because / 2(2:) й f i (x) ,  so that

A(£2(*)) = ^ / 2(2:)+  \ h ( x ) = M x )-

(2) If x G X  then £2(2:) Q £1(2:). (Again because / 2(2:) ^  / 1(2:).)
(3) If x E X  then

<M£iOO,£2(2:)) =  ^ ( / i ( * )  - f i { x ) )  ^

(Here d is the euchdean metric on I.)
We now continue in the obvious way and obtain a sequence of continuous 

functions £„:X —> /C(I) having the following properties:
(1) For every x E X ,  £i(z) 2  £2(2:) 2  ■■■■
(2) For every x E X  and n G N ,  A(£n(a;)) = f n(x).
(3) For every k GN,  dtf(£„,£„+1) ^  2“n.

We conclude that the sequence (£n)n is Cauchy and that the formula

ß(x)  = lim £n(a:) = П £„(x)
TL—► OO 1 *71—1

defines a continuous function from X  to £ (I) . Also,

A{ß(x)) =  inf ( A ( £ „ ( 2:))  : h GN} =  f (x )
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for every x E X . This completes the construction of ß. 
As announced, we now define e: X  —> AC ([— 1,1]) by

e(x) — a(x) U ß(x) (x £ X) .  

Then e is clearly as required. □

4. Typical bounded Baire 1 functions are not countably
continuous

Before we explicitly formulate and prove the result indicated in the title 
of this section, we shall introduce some terminology which will allow us to 
apply the original idea of Sierpinski, Adjan and Novikov in the more general 
situation that we are dealing with.

Let к £ N. £(fc) denotes the collection of all strings a = (*i,. . . ,  ip), 
where every ij is a natural number ^  к and p ^  k; the length of a is p and 
the empty string which has length 0 is denoted by 0. For convenience, put 
S = UfcLi E(A). If a — E £  and i E N then a ^ i  denotes the
String ip, i).

Let A" be a space. Given a compact set C ^  A , we fix a countable basis 
Bi(C),  B2{C), . . .  for the open sets in C with lim ,-^  diam Bi(C) = 0.

Let к G N. A к -system S(k)  in X  consists of:
(1) a collection of Cantor subsets {C(cr):<7 E £(&)} of X ,
(2) a collection of Cantor subsets {D(a):cr E E(fc)} of A ,
(3) a sequence { e(<t ):ct E S(A:)} of positive numbers, 

such that the following conditions are satisfied:
(i) C(0) = L>(0);

(ii) Уст, (г''i,cr''j E T,(k):
(a) C(a- i )  C D(a- i )  g  Bt (C(a));
(b) C(a^i)  has empty interior and D(a^i)  is clopen relative to C(a)-,
(c) if i ф j  then П Ci a^ j )  = 0.

We say that a (k + l)-system S(k  + 1) extends a ^-system S (k ) if the 
objects in S(k  + 1) associated with the strings in S (k) coincide with the 
corresponding objects in S{k).

We say that a function / :  X  —► R  is compatible with a ^-system S(k)  in 
X  if for any string о E £(fc),

(*) sup { f ( x ) : x  E D ( a ) \ C ( a ) }  + e(<r) < inf { f ( x ) : x  E C{o)}.

For such an /  we put

T](f) = m injinf { f ( x ) : x  E C(o)} -  e{<t) -
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-  sup { f(x): x G D(a) \  C(a)} : a G E(fc)j.

We call a function / :  X  —> R  of Sie rpinski Adjan - Novikov type, if there exists 
a sequence of fc-systems »S( 1), *S(2),.. . , S ( k ) , . . .  such that for all к G N,

(1) S(k  + 1) extends S( k );
(2) /  is compatible with <S(fc).
Observe that if Y  ^  X  and / :  X  -+ R  has the property that f  \ Y : Y  —► R 

is of Sierpinski-Adjan-Novikov type then so is / .
The following lemma is implicit in Adjan and Novikov [1]. Since their 

paper is in Russian we include a proof for the convenience of the reader.
4 .1 . L e m m a . I f f : X  —► R  is of Sierpinski-Adjan-Novikov type then it 

is not countably continuous.
P r o o f . Let us fix a sequence 5(1),<S(2),.. , , S ( k ) , . . .  of fc-systems com

patible with /  such that for every к the system S(k  -f 1) extends S(k).  Define

OO

E  = P | { C(a): a has length p }.
p = 1

Write E  as E\  U J?2 U • • •• We claim that for some p G N and о G S the set 

(**) Ep П C(a)  is dense in C(cr).

Otherwise (using (ii)(a)) we could choose inductively numbers ij, г'2, . . .  such 
that for every p G N, Ep П C (i\ , . . . ,  ip) = 0. But then the non-empty set 
n ~ i  C (ii , . . . ,  ip) is contained in E \  Eu which is a contradiction.

With p and о as in (**), choose any Xo E Ep Г C (a). By the definition 
of E there exists г G N with xo G C(cr^i). By (ii)(b) and (*) we can find a 
sequence xn G (E p Л D(a^i))  \  C (a ''i) converging to x0. But then

f ( x 0) > f ( x n) + e(o~i)

for all n, demonstrating that /  \E P is not continuous at Xo- □
4.2. R e m a r k . An inspection of the proof of Lemma 4.1 shows that 

condition (*) above is much more than we need. It suffices for example if 
for every о G S (к), к G N, there is a relatively open set G(a) Q D (a)\C ((T ) 
such that C(a)  C G(a) while moreover

(*') sup { f(x): x G G(a)}  + £(o) < inf { f(x): x G C'(cr)} .

By abuse of terminology we call functions satisfying such conditions also of 
Sierpinski-Adjan-Novikov type. The point is that the precise condition is
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not so important, as long as it is strong enough for the arguments in the 
proof of Lemma 4.1 to work. For the time being the definition of Sierpinski- 
Adjan-Novikov type is the one with the above condition (*). We will warn 
the reader when it is time for a change.

A function / :  I —► R  is of first Baire class if it is the pointwise limit 
of a sequence of continuous functions. The set S i (I) consists of all bounded 
functions of the first Baire class and is endowed with the supremum norm. It 
is well-known that with this norm, 5 i(I)  is a (non-separable) Banach space.

4.3. T heorem. f?i(I) contains a dense Gg-subset consisting of func
tions of Sierpinski-Adjan-Novikov type.

Consequently, by Lemma 4.1 we obtain the following corollary.

4 .4 . C o r o l l a r y . The set of all countably continuous functions in Bi(I)  
is meager.

Before presenting the proof of Theorem 4.3 we derive the following pre
liminary results.

4 .5 . L e m m a . Let S(k)  be a к-system. Then the set

{ /  £ S i(I): /  is compatible with S(k)}

is open in В i(I).

P r o o f . Let S(k) — {C(o), D (o),e(o)) In addition, let /  be com
patible with S(k).  It is easy to verify that if g £ -Si(I) and Ц/ — ^|| < r](f)/3 
then g is compatible with S(k).  □

4.6. Lemma. Let К  Q I be a Cantor set, и £ Si(I) and C\ ^  К  a 
Cantor set with empty interior in K . Then if U is a nonempty open subset 
of К  and 6 > 0 then there are a Cantor set С Я U \  C\ having empty interior 
in K , a dopen neigborhood D of C in К  and a nonempty open subset W  ^  
Q { v £ S i (I): ||u — u|| < 6 } such that for all w £ W:

ß
sup { ги(ж): z £ - D \ C }  + - < i n f {  111(2:): 2: £ C} .

0

P roof. Since и is of the first Baire class, there is a point p £ V  = U \  C\ 
at which и \ К  is continuous ([2, Theorem 8.3.1]). Let D Q V  be a clopen 
neighborhood of p in К  such that

| u ( x ) - u ( p ) |  < 6
5

(x £ D).
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Let C Q D be a Cantor set containing p and having empty interior in К . 
Define v £ i?i(I) as follows:

( x ? C ) ,  
(x £ C).

Clearly v £ -Si(I) and ||u — n|| < S. Also,

inf { v(x): x £ C} — sup { п(ж): x £ D \  C} =

3 2
= u(p) + -S  -  sup { n(ar): x £ D \ C ]  ^  -6. 

5 5

So if W  is a sufficiently small neighborhood of v then for every w £ W,  
inf { w(x): x £ C} — sup { w(x): x £ D \  C}  > §. □

By a repeated application of Lemma 4.6 one obtains:

4.7. C o r o l l a r y . Let f  £ S i(I )  be compatible with the к-system S(k).  
Then for any a > 0 one can extend S(k) to а к + 1 -system S(k  -f 1) and one 
can find a function g £ В i(I) in the a-ball about f  such that g is compatible 
with S{k  + 1).

We are now in a position to present the proof of Theorem 4.3.

4.8. P r o o f  o f  T h e o r e m  4.3. Let Hi be afamily consisting of pairwise 
disjoint nonempty open subsets of S i (I) such that

(1) VÍ7 £ Ux: diam(f/) < 2 " \
(2) IJZYi is dense in Si (I).

For every U £ U\ pick an arbitrary element fy  £ U. Then every fy  is 
compatible with the О-system. So by applying Corollary 4.7 we find for 
every U £ Ui a 1-system Sy  and a function gy £ U compatible with Sy. 
By Lemma 4.5, for every U £ U\ we may pick an open neighborhood Vu Q 
Q U  of gy such that every function in Vy is compatible with Sy. Without 
loss of generality we may assume that every Vy has diameter less than 2~2. 
For every U £ U enlarge {Vy} to a pairwise disjoint family Vu consisting 
of nonempty open subsets of U of diameter less than 2-2 and dense union. 
Let T/г denote the collection \JUeUi Vu- Observe that there are two types 
of sets in U2 - Now we repeat the same procedure. The sets in U2 that are 
“compatible” with a 1-system are being replaced by smaller sets that are 
“compatible” with a 2-system that extends the 1-system. Next, the sets that 
are “compatible” with the О-system are being replaced by smaller sets that 
are “compatible” with a 1-system. Finally, we add sets that are compatible 
with the О-system in order to get a family U3 with dense union. Then we 
again repeat the same procedure but now at three levels. At the end of the 
construction each function in the dense Gs-set fj^Li is Sierpinski- 
Adjan-Novikov type. □
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5. Typical bounded derivatives are not countably continuous

The approach in this note provides also an answer to another question 
in Jackson and Mauldin [5].

5 . 1 . T heorem. In the Banach space of bounded derivatives on I the 
countably continuous functions form a meager set.

Let us indicate which modifications in the proof of Theorem 4.3 are nec
essary to obtain this result. Our terminology and facts from differentiation 
theory are all taken from Bruckner [3].

(A) We use here the definition of Sierpinski-Adjan-Novikov function with 
condition (*) in §4 replaced by condition (*') in Remark 4.2.

(B) We construct the Cantor sets C(a)  in such a way that additionally 
each nonempty relatively open set in C(o)  has positive Lebesgue measure.

(C) Because of (B), we can define the subsequent Cantor sets C (a) and the 
relatively open sets G(o) so that there exists an approximately continuous 
function h: I —► I (hence a derivative by [3, Ch. II, Theorem 5.5(a)]) such 
that h(x) ^  § on C(a)  and h(x) = 0 on G(a). The jump in condition (*') 
can then be created by using the function и + b ■ h instead of v , where S and 
v are as in Lemma 4.6.

Only (C) needs some additional justification. To this end, let C be a 
Cantor set in I such that nonempty relatively open sets in C have positive 
Lebesgue measure. Let К  Q C  be a Cantor set of positive Lebesgue measure 
such that G — C \ K  is dense in C, and let E  be the set of Lebesgue density 
one points of К  ([3, Ch. II, Theorem 5.1]). Removing a set of measure 0 if 
necessary, we can assume that E  is as in [3, Ch. II, Theorem 6.5]; let / :  I —► 
—► I be the function described in that theorem. For every n, let En =  {a:É 
G E: f (x)  ^  i}  and pick n such that En has positive Lebesgue measure. 
There is a Cantor set L Я En having the property that all its nonempty 
relatively open subsets have positive measure. Then ^ ^  f ( x )  ^  1 on L and 
f ( x )  = 0 on G. Finally, set h — I о / ,  where I: I  —► I is a continuous function 
with £(0) = 0 and 1] ^  [ |,  1]. Then h is approximately continuous by [3, 
Ch. II, Theorem 5.4].

6 . Comments

6.1. Explicit examples of functions that are not countably continuous. 
We present here two explicit examples of first Baire class functions that are 
not countably continuous. Each, combined with Theorem 3.1, (re)proves the 
result of Jackson and Mauldin quoted in the introduction.

(A) Let С ^  I be the Cantor set. Since C is canonically homeomorphic 
to {0,1}°° it follows that C is canonically homeomorphic to C°°. The
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continuous function £:C X C —► [—1,1] defined by £(x,y)  = x — у is easily 
seen to be surjective. Consequently, there is an explicit map from C2 onto 
[-1,1]. By taking the infinite product of this map, we conclude that there 
is an explicit map from C°° onto Q. Consequently, there is an explicit map 
from C onto Q , say / .  (This is well-known of course.)

Define the functions t, u: Q —* I by

i(x) -  min / _1(ж) (ж G Q)

and
u(x) = m ax/  *(ж) (ж G Q),

respectively.

6 . 1 . 1 . T heorem. £ is lower semicontinuous and и is upper semicontin- 
uous. Moreover, l  and и are not countably continuous.

P roof . We will prove that l  is lower semicontinuous. The proof that 
и is upper semicontinuous is similar and is left to the reader. To this end, 
let r G R and ж G f _1(r, oo). Then £(x) > r and so / -1(ж) Q (r, oo). By 
compactness of I we have that the function /  is closed. Consequently, there 
exists a neighborhood V of ж in Q such that / -1 [У] C (r, oo). Now for every 
у G V  we have £(y) > r which proves that V Q f -1 (r, oo). We conclude that 
£~1(r,oc) is open.

We will next prove that l  is not countably continuous. The proof that и 
is not countably continuous is similar and is left to the reader. To this end, 
assume that Q = E\  U E2 U • • •. Since Q is not the union of countably many 
zero-dimensional subspaces ([9, Corollary 4.8.5]) and every finite-dimensional 
separable metrizable space is the union of finitely many zero-dimensional 
subspaces ([9, Corollary 4.4.8]), it follows that for some г, dim E{ — 00. We 
claim that £ [ E{ is not continuous. Observe that the composition

f o t \ E i

is the identity on E, and that /  is continuous. But then if l  \ Ei were continu
ous this would imply that £\ Ep. Ei —► £[ЕЦ is a topological homeomorphism 
which is impossible because E{ is infinite-dimensional and every nonempty 
subspace of C is zero-dimensional. □

6.1.2. Corollary. sup:Q —► I is lower semicontinuous but not count
ably continuous. In addition, inf:Q —► I is upper semicontinuous but not 
countably continuous.

P roof . The function \ l  +  \ \  Q —> [ |,  1] is lower semicontinuous but not 
countably continuous (Theorem 6.1.1). The result for sup now easily follows 
from Theorem 2.2. The result for inf can be proved analogously. □
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6.1.3. Q u e s t io n . Is there a homeomorphism a: /C(I) —* Q such that for 
every A G £ (I)  we have

A(A) = inf ( a (A) ) ,

i.e., are the pairs ( /C(I), A) and (Q, inf) topologically equivalent?
t

(B) The second example is a reformulation of the original construction 
of Adjan and Novikov. Again, let С ^  I be the Cantor set and let D = 
= {d\, d2, ...}  be a countable dense set in C.  Define ф: C —► I by the formula

ф(х)
o ( x e c \ D ) ,

7 (* = di)

and let / :  С X С X • • • -> I be defined by

OC

f (X\ ,X2, . . . )  =  ^   ̂2 ф(х\ ) • • • </>(x,).
t= l

The reasoning of Adjan and Novikov that was reproduced by us in the proof 
of Lemma 4.1 shows that /  is not countably continuous. It is easily seen that 
/  is upper semicontinuous.

Notice that one can identify С X С X С X • • • with C in I which, as can 
easily be seen, provides a corresponding example defined on I.

6.2. Zero-dimensional spaces. In the special case of zero-dimensional 
spaces it is possible to derive Theorem 6.1.1 from well-known selection the
orems. To see this, let X  be a compact zero-dimensional space and let 
/ :  X  —► I be upper semicontinuous. Put

G = { (x, A) £ X  x £(I): /(* )  = A(A)} .

Then G is a G^-subset of X  x /C(I), and hence is completely metrizable. 
From the upper semicontinuity of the function /  one readily concludes that 
the multifunction F  which assigns to each x £ X  the vertical section of G 
at x is lower semicontinuous. There exists a continuous selection ß for F by 
a selection theorem of Kuratowski and Ryll-Nardzewski [7] or Michael [8]. 
This function is what was needed in Claim 2 of the proof of Theorem 3.1.

Let us finally notice that the second function considered in §6.1 is defined 
on a zero-dimensional compact space.
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ON A C O N V E R G E N T  PÁ L -T Y PE  (0,2) 
IN TER PO LA TIO N  PRO CESS

J. SZABADOS1 (Budapest) and A. K. VARMA (Gainesville)

1 . Introduction

Let

(1) ( 1 = )з-пп ^  2-11—1,71 <•••<!  1) (n — 2,3, . . . )

be an arbitrary triangular matrix of interpolation (shortly xk := ar̂ n), and

(2) ( 1 <C)yn— l,n ^  Уп—2,п < . . .  < t/in(^ 1) (n — 2,3, . . . )

be the zeros of the derivative of the polynomial w„(x) = П [-=1 (x ~ xkn) 
(shortly yk := Укп)- Modifying the notion of the well-known Hermite-Fejér 
interpolation, L. G . Pál [5] introduced the polynomials Hn(x) € Пгп- i  (=the 
set of polynomials of degree at most 2n -  1) satisfying the conditions

( 3 )  Hn(xk) = z kn  (k =  H'n(yj) — z 'jn (j  =  1)

where z k z k n , z'- — z'j n  are arbitrary real numbers. It turned out that 
these polynomials are never uniquely determined, and in order to make 
them unique, one has to impose an additional condition. Recently, M. R. 
Akhlaghi [1] generalized this problem for successive higher order derivatives 
on the roots of successive higher order derivatives of u>n(x),  again imposing 
an additional condition on the interpolating polynomial. He, and earlier S. 
A. Eneduanya [4] proved convergence theorems for these polynomials on the 
roots of the polynomial (4) defined below. However, in doing so they assumed 
some higher order smoothness on the function to be approximated, and the 
order of convergence was far from the Jackson order.

1 Research supported by Hungarian National Science Foundation Grant No. 1910.
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Motivated by the quoted work of Pál, in this paper we investigate the 
following related problem. Let (1) be the roots of the polynomial

(4) 7гп(х) -  (1 -  z2)P '_ 1(2:) = -n {n  -  1) J  Pn_i(t) dt

where Pn- i{ x ) G IIn_i is the Legendre polynomial (normalized such that 
Pn_ i( l)  = 1). Then evidently, (2) are the roots of Pn_ 1(2;). Now, instead of
(3), we are looking for polynomials R n(x) G Щп satisfying

(5) R n(xk) = zk (k = l , . . . , n ) ,  R'n(± l)  = z ± ,

K ( y j )  = zj  ( ;  =  1)
where Zk, z± , z" are arbitrary real numbers. It will turn out that these 
polynomials are uniquely determined, they have a relatively simple form, and 
the operators determined by them approximate in Telyakowski-Gopengauz 
order for continuous functions, and close to Telyakowski-Gopengauz order for 
continuously differentiable functions. These features (which, until now, were 
unknown for any Birkhoff type interpolation) prove that our Rn's are better 
than previously investigated Pál-type interpolating polynomials. Also, if we 
interpret Paul Turán’s question about the existence of a convergent (0,2) 
interpolation process for all continuous functions in a broader sense, namely 
permitting Pál-type interpolation, then our Theorem 3 below is an answer 
to this question in the affirmative.

We also note that in a recent paper M. R. Akhlaghi and A. Sharma [2] 
considered basically the above Pál type problem (existence, uniqueness and 
fundamental functions) in a slightly different context, namely they did not 
prescribe first derivatives at the endpoints. As it will turn out, prescrib
ing these data will enable us to prove Gopengauz-Telyakowski type error 
estimates. (The problem of convergence is not considered in [2].)

Let

2 . Existence and representation

Kn{x)h(x) := lkn{x) : =  —
K ( x k ) ( x  -  X k )

(k = l , . . . , n )

be the fundamental polynomials of Lagrange interpolation based on (1) (i.e. 
the roots of (4)), let
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(6 )

Xj  Aj n_i =  О (j = -  1)

be the Cotes numbers associated with the Legendre polynomial P7l_1(x) (see
G. Szegő [7], (15.3.2)), and let

1
^  » in n ( n - l )  + i(i-iy

T heorem 1. If Xk, yj are determined by (4) and Zk, z ± , z1' are arbitrary 
real numbers, then there exists a polynomial Rn(x ) G Ü2n satisfying (5) which 
can be written in the form

71 — 1

(7) R n(x) = ^ 2  zkxk{x) + z'+a+(x) + z'_a-(x) + ^  z”g}(x)
i=ik=1

where rk, cr±, ßj G П2n can be represented as

(8a) ri(ar) = rn( - x )  =
(! + x )2K - i ( x )pn-i(x)  Зтг„(х)(1 + х )Р '_ х(ж)

2n(n -  1) 4n(n — 1) +

+

(8b)

(3n2 — 3n +  l ) 7 T „ ( x )

4n(n — 1)

71 — 1

P n - 2 ( x )  + P n - i ( x )  + 2 Pi(2i -  1)тг,-(а:)
t = 2

rk(x) = l2k(x) +
7Г„(ж)(1 -  X 2 )

K ( x k)2 P n - l ( X k )

E ^ ( 2i -  1)^-1 (*) + !Y ^ P !- l( x fc)-L X 1-

71 — 1

( 9) a +(a;) = —cr_(—x) = —

( k  =  2 , . . . ,n  — 1),

7T„(x)(l + x)Pn_i(x)

77— 1

- ! ) * ( * )

2n(n -  1)

7 T „ (x )2

4n(n — l y
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and

( 10) kW = - V»W 
2 P L M

É n £ z j ) * i ( x№ - i ( yj)
AjTTn ( x ) 2 

4n(n -  l)2

( j = 1,. . . , n  -  1).

R emark. Note that once this so-called modified (0,2) interpolation 
problem is solved, it is easy to obtain the fundamental polynomials of the 
original problem where the first derivative conditions at ±1 are omitted. 
Namely, we can look for these polynomials in the forms

rk(x) + a +a+(x) + a_cr_(x), gk(x) + ß+<7+(x) + /3_ít_(x),

where the constants a +, a_ , /?+ , /3_ are determined such that these polyno
mials will be of degree 2n — 2.

P roof. In order to prove the theorem we have to show that the polyno
mials of degree at most 2n defined in (8)-(10) satisfy the following conditions:

(11) rk(xp )  = h  p,  r * ( ± l ) = 0, r'l

Ы = 0 (k, p =  l , . . . , n ,  q-= l , . . . , n -  1),

(12) (T+{xf>) = o, < ( 1 ) = 1 ,  < ( - l ) = 0 , < Ы  =

(p == !,•••,!», 4 =  1, — *n -  1),

and

(13) Q j ( X p ) = 0, i>j(±l) =  0, Qj(Vq) = öjq

(P = ! • • • ,« ;  j , q =  i , --- ,n  -  1).

Some of these relations are trivial, and the others are easily proved 
by exact routine calculations. Therefore we omit the detailed proofs, and 
only indicate those identities which should be used in the course of the 
verifications:

(14) P „ - , ( l ) = l ,  P ,U (1) =  Q .  С - 1(1) = з ( П^ 1) ,

(15) JTn(l) = ~ n(n -  1),

(16) К - Л уч) = ^ Ь К - Л у,),
1 Уд
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8y2

(1 - v l f

(n + l)(n -  2) 
1 -  У aq )  J 4

(q =  l , -  i),

K - i ( y q)

[7Гп(ж)7Гг(ж)] " = - — Myq)pí-i(yq) (* = g= 1),
4 ri

(1 i ) PfL — 2^p) — ЯрРп— 1 Pn — 2 ^ v )  ~  P)Pn — l{&p)<i

(18) P"-2Íxp) = -  П\ П_  2^arpin- i(gp) (p = 2 , . . . , П -  1),I Жр

a-2(9,)= /': 2с/,1=y,K->t«,).

(is) C A ) =  ( 7 3 7 5 - " W i W  (» = 1........» - i ) ,
\  «О /

t-1
( 20 ) 5^(2 j  -  1 )irj(x) = -iTTi(x) + 2(1 + x)Pl_1(x)~

3=2

= (1 + х ) ( г -  1)

( 21)

г(г -  1 ) ( 1  +  x)Pi-i(x) -

Pi-2 (x) -  Pi-i(x)'
i*_2( * ) - i * _ 1(*) + 1 —  x (* = 3, 4, . . . ) ,

71— 1

Y ' W - w - i M P í- ú v )
i=1

= (n -  ^ n - i ^ / W y )  (3)^2/),
x — у

( 22)

77, — 1

E  | j — Й - х М ^ - . мi) '

^ - 1 W ^ - 3 ( y ) - P > _ a ( x ) P > _ 1 ( y )

(n-i)(x-y)

n — l

if x фу ,  

if X =  y.

All of these identities can be found in, or deduced from, relations in 
Chapter 4 of Szegő [7]. □
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3. Uniqueness

T heorem 2. The polynomial R n(x ) defined by the conditions (5) is 
uniquely determined.

P r o o f . The proof is basically the same as that of the corresponding 
result in [2]; we give it for the sake of completeness. Clearly, 

it suffices to show that if Rn(x) £ satisfies

(23) Rn(xp) = 0 ( p = l , . . . , n ) ,

< ( ± 1 )  = 0, Д " Ы  = 0 (ff= 1....... n -  1)

then R n(x) = 0. By the first set of conditions in (23) we have Rn(x) = 
= 7vn(x)qn(x), where qn(x ) £ П„. By the last set of conditions in (23) we 
conclude to the relations

- n ( n - l ) P 'ri_1(yq)qn(yq) + ( l - y g ) P^ _ 1(yq)q"{yq) = 0 (q = 1 , . . . , n -  1), 

i.e.

( 2 4 )  ( 1  -  VqWniVq) =  n ( n  -  l ) 9 n ( y g )  ( 9 =  l , . . . , n - 1) .

By the first derivative conditions in (23) we have <?n(± l)  = 0, i.e. (24) is also 
valid for yo := — 1 and yn := 1. But since qn(x) £ Пп, this implies

(25) (1 -  x2)q"(x) = n(n -  l)qn(x).

If qn(x) = cTOa:m+lower degree terms (m ^  n), then this yields -m (m  -  
-  l)cm = n(n -  1 )cm, whence cm = 0, i.e. qn(x) = 0. □

4. Convergence

For an arbitrary f ( x )  £ C [ - l , l ]  (= the set of continuous functions in 
[-1,1]) we define the polynomial R n( f , x )  £ Щп by the conditions

R n( f , x p) =  f ( x p ) ( p = l , . . . , n ) ,

<(/,±i) = o, К ( Ш  = о (g = i,..■,«-!)•
Also, if f ( x )  £ C[— 1,1], then let R n( f , x )  £ Пгп be defined by the conditions

R n ( f , X p )  =  f ( x P) ( p =  l , . . . , n ) ,  ä ; ( / , ± 1 )  =  / ' ( ± 1 ) ,

Щ1,УЯ) = 0 {q= 1 , 1 ) .
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By Theorem 2, these polynomials are uniquely determined, and by Theorem 
1 they can be written in the form

Rn{f ,  *) = f { x k)rk(x )
k=1

and
П

R n ( f , x) = ^ 2  f (xk)rk(x) + f ' ( l )a+(x)  + / ' ( - l)<r_(x). 
k=l

Let u( f ,  h ) be the modulus of continuity of /(ж) £ C [ - l ,  1]. 

T h eo rem  3 . We have

\ f ( x ) - R n(f ,x) \  = 0  u; / , \ / \  — x 2
( | a r | g l ,  / € C [ - 1 , 1 ] ) ,

and

\ f ( x)  -  R n( f ,x) \  = О
\ *

/ w VT — ж2 1 logn + g u , ^ , ^ — + p

(1*1 ^ 1, / '  e C [-i, l]) .

In particular, if f  € Lip o, then

\ f ( x ) - R n(f ,x) \

if 0 < a <

if I  ^  a  < 1, 

if a  = 1

for |ж| ^  1.
The proof will be given in Section 6. As a preparation, we need estimates 

of the fundamental functions (8) and (9).
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5 .  Estim ates o f гь(х) and <7±(a;)

L em m a  1. Letu(h)  be an arbitrary modulus of continuity, or let uj(h) = 
= 1. Then we have

(26)
I r i(z)|  =  0(1),

(1 -  х Ц 1  -  *)| ri(®)| = О w ( v2? - )

P r o o f . Using Abel transform in (8a) with the factors //,, the relations

(27) Pn_!(x) -  xPn_2(x) -  pn_2{x) = + xPn_ ^ x )
n — 1 n — 1

(cf. Szegő [6], (4.7.27)) and applying (20) we obtain

(1 + z)2P^_1(a;)Pri_1(a:) _ (3n2 -  Зп + 1)тгп(х)(1 + x)Pn- i (x)  | 
2n(n -  1) 4n(n -  l)2

[(3n2 -  Зга + l)x  + 3n -  2]тг„(х)Р)(_1(а;)(1 + x)
4ra(n -  l)3

(Зга2 -  Зга + l)7Tn(x) 
2 ra(ra — 1)

71 — 1 X- 1
]£(/*<-1 -  /ii) J](2y -  l)xj(*).
2— 3  i = 2

Here and in the sequel, we shall use the well-known estimates

(28)

(29)

( M S I , O S ^ S  i ) ,

( W S l ,  i s ^ S 2 )

and

(30) |ir„(*)| = 0 ( (1  — x2)i/2n5) (|* | g l ,

(cf. Szegő [7], Ch. VII). Hence we have
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( 31)
(l + »)2|^ _ 1(g)i>n_1(a)| _ C ( { 1 +  X ) ( l - X ) - ^

2n(n — 1)

( | x | g l , 0 £ A g 2 ) .

Thus using (20) again we obtain

(Зга2 -  Зга + 1)тг„(ж)(1 + g)Pn-i(a?)

where

(32)

ri(x) = - -
4ra(ra -  l)2

+

[(Зга2 -  3n + l)x + Зга -  2]7rn(x )P '_ 1(x)(l + x)
4 " " ' Г') h

+

4ra(ra — 1)

(Зга2 -  Зга + 1)7г„(х)(1 + x )

+0

2 ra(ra — 1)

X > .  [*?-*(*) -  *?-.<*) +

(l + x ) ( l - x ) ~ A/2\

71 — 1

t=3
+

( Iх ! = 1? 0 ^  A ^  2 ) ,

Vi = (м,_! -  /!«•)(* — 1) = О i (i = 3 ,4 ,. . .)-П

Here we use another Abel transform with the factors i/j, and then apply (27) 
as well as

( 3 3 )  K - 2 ( x ) =  x ^ - l ( x ) -  ( n  -  l ) P n - l ( x ) ,

P '_ l(x ) =  x P '_ 2(x) + (n -  l)P„_2(x)

(cf. Szegő [7], (4.7.28)) to get

, ч (Зга2 -  Зга + 1)тгп(х)(1 + x)P„_i(x)
r i(x) = -------------------— ----- ~2----------------+4ra(ra -  l )2

| [(Зга2 -  Зга + l)x  + Зга -  2]я-та(х )Р '_ 1(х)(1 + x) 
4ra(ra — l)3
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(3n2 -  3ra + l)7rn(x)(l + x)
2n(n -  1) V n - \ +

n—1
+ ~ vi )

2=4
P l- 2(*) + Pt-2(x) ~ 1 + 0

'( l  + x ) ( l - x ) - A/2'
1 — x

(3n2 -  3n +  l)7T„(x)(l + x)Pn_!(x)

Ti

+

+

4n(n -  l )2

[(3n2 -  3n + l)x + 3n -  2]7rn(x )P '_ 1(x)(l + a:)
4n(n — l)3

(3n2 -  3n + l)7rn(x)(l + x) í (n — 2)2
2n(n -  1)

+ ( b h - ”) p"-,(l)

2(n — l ) 2(n2 -  3n + 3)

П —1

+  1 p' (x)+n _ i Pn_1{x)+

2=4
> +

+ 0
(1 + x)( 1 -  x) A/2

(3n2 -  Зга + l)ffn(x)(l + x)
2ra(ra -  1)

TI — 1
53(« /Í - l  -  Vi)Pi - 2Í*) +
i=4

П —1 1 + x
(1 - x )

1=4

(1 + х)|л-п(х)Рп- 1(х)| (1 + x)( 1 -  x) A/2
(1 — x)n2 nx

Here by (28)-(30) again,

tt„(x)P '_1(x)| +

( |xI g  1, 0 g  A £  2).

(34)

|x|gl,  0^A^2),

(35) TTníxJP'.^x) = 0
Д 1 - х 2)2Ч1-Л/2 |x| g 1, 1 g  A ^ 4 )
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and

(36)

(1 + x)-K n(x)Pn-x(x) 
(1 — x)n2

With the notation

= О
'( l  + s X l - z ) - * / 2'

(1*1 g  1, O g A £ 2 ) .

1 -  Vi л /  _ 4л 
Ki = — г:----— = ü (n  ),2г — 3

an easy calculation shows that

k,_ i -  Kj = О

whence we obtain by (20) and (28)-(30), (34)-(36), performing one more 
Abel transform

(3,,2" 31 и - ; (; ) (1 + х ) §  -  =

n—1

E < 2i -  3)i i 2m=  0

n— 1

+  X I
i= 5

- « . i E
j=4

2n(n — 1)

7Гп(ж) \  Í J_ 
n4(l -  * ) /  1 n4 t=4

+

J d t A d - r  , ( 1 + х )г- у г( 1 - х ) - ^ ~
n

= 0
yjl + *(1 -  *)_A/2

(0 ^  A ^  2, |*| ^  1). 

Collecting all these estimates we obtain

(37) Ir,(x )| = О ( ' / Г Т ? ( ‘ ~ * ) — ) |*| £  1, 0 £  A g 2 ) .
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Now the proof of the lemma can be finished. The first relation in (26) 
is obtained from (37) with A = 0. As for the second relation, if пу/ 1 — x 
й  л/ l  + x, then applying (37) with A = 1 and using the monotonicity of 
we get (26). If пу/ 1 -  x ^  y /T + x  then we put A = 2 in (37), and use the 
well-known inequality

to get (26) in this case. □
In what follows we shall use the notations x — cos t, Xk = cos tk (к =

Lemma 2. We have

( |x| ^  1, |t — tk\ > c/n, к = 2 , . . . ,  n — l ) ,

where c > 0 is an arbitrary constant.

P ro o f . Using the differential equation

(1 -  x2)P’’_Л*) -  2xP’_1(x) + i(i -  l)P i-i(x) = 0,

we obtain from (8b)

(38)

t ' = 2

n
+ ^  о,(2г -  l)P<_l (x)Pi-i(arjfc) {к = 2 , . . . ,  n -  1),

where

(39)

n(n — 1) + i(i — 1)’ 1 n(n — 1) + *'(*' — 1)
*(* — 1) n(n — 1) — i(i — 1) (г = ! , . . . ,« ) .
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At first we estimate the second sum. Using (21), the notation

(40) 0 i = O, 0,-= (a,-_i-<*,■)(*-1) (i =  2, . . . , n)

and applying Abel transform we get

ON A C O N V ER G EN T  P Á L -T Y P E  (0,2) IN TE R PO L A TIO N  PR O C ESS 313

(41) В  := £  a ,(2 г -  l ) ^ _ 1(x)Pt_1(xfc) =
i=2

= Г- V  E  Ä [^ - l(* )^ -2 (* * ) -  ^ -2 (* )^ - l(* * ) ] -.7? — 'X 2/1; t=2

- - ‘ Á H i [ A i W - i W  -  n - i ( * ) f i - i ( n ) ]  := В, -  B,.
X k )  l =2

Here, using the identities (33),

B'i-\{x)Pi-2{^k) -  P--2(x)Pi-l(Xk) =

= x[Pl_2(x)Pi_2(xk) -  ^ - l í* ) # - ^ * * ) ]  +

+(* -  l)[-P,--2(x)P,_2(Xjfc) + P,-l(x)P,-l(xjfc)] ,

whence and from (41), with the notations

,42) ’ - I T T '  í . =  (i =  1....... 1)

we obtain, after applying another Abel transform, that

(43) B x = T ß i [l*_2(x)Pi- 2(xk) - I * _ 1(x)Pi- 1(xk)] +
X Xk ,= 2

1 "
+ д.-_ ^  -  l)A  [f3, - 2(x)Pt- 2(xfc) + P,_1(x)Pt_1(xfc)] =

n—1
-  -  J > ( 2 * -  1 )^ _ г(х)Р,_!(**)X -  xk

n—1

i= 2
+

+ -
1

X — Xk X ^^'(2 i -  l)P U (x )P t-i(z*) + +(n -  l)P„_i(x)P„_1(xfc) 
L t = i
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(since by (39)—(40) ßn = 1). An easy calculation from (39),(40) and (42) 
shows that

(44) 7*-i - 7 i = 0

and using the estimate

тг (i = 2 , . . . , n -  1),

= О

* t y f j - i f a t ä - i f a )
3=2 

г
+

4sin sin3/2 t sin1/2 tk \x — Xk\ sin  ̂ sin1/2 t sin1/2 tk 

(i — 2 ,3 ,...)

(this follows from [6], Lemma 2, with a slight modification of the proof 
therein), we obtain by using another Abel transform, that

n — 1

(45) Y  7i(2* -  l)P --i(x)P i-i(xk) =
i=2

n—1
= 7 n - i  $ ^ ( 2 * _  l)Pi-i(x)Pi-i(xk)+

i—2
n — 1 i—1

+ S ( 7 ' - 1 _ 7 i ) ^ ( 2J -  l )pj - i ( x)pj - i ( xk)
3=2i=3

г=1 sin I* sin3/2 t sin1/2 tk
+

+■
X — Xk\ sin  ̂ ./*! sin1/ 2 t sin1/2 tk

= о
77, sin 2~4l sin3/2 t sin1/2 tk /

( |i -  tk\ > c/n, к = 2,. . . , n  -  l)

(since by (39), (40) and (42) 7„_i = 0 (n  3), and

max(sin t, sin tk) =  0 (n \x  — £fc|)
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from the condition \t — tk\ > c/n; the latter estimate will be frequently used 
in the sequel). Hence (43) yields

(46) D x Pn- l ( x )Pn-l(x к) (n — l)Pn-i(x)Pn-i(xfc)o \  = ---------------------------- 1---------------------------------- b
X -  Xk X -  Xk

J  71 —  1
+ -------- T  6i(2i -  1 )Pi. 1(x)Pi. 1(xk) + О

X — Xk  '

1

l—l n sin - ^  sin3/2 t sin1/ 2 tk 

(\t -  tk\ > c/n, k = 2 , . . .  ,n  -  l) .

We still have to estimate the sum here on the right hand side. With the 
notation

(47) £i — 0, £i — (<$,_i — <5,)(i — 1) (i = 2, . . . , n  — 1), 

and using Abel transform as before we get

71 — 1
(48) C := £  М 2 i -  l )P ,- i (x )P _ i (x fc) =

1=1 

n—1

-  i n_! £ ( 2 :  -  l ) P _ 1(x )P _ 1(xfc)+
»'=1

^  / 6  X

P  ar — Xk ^   ̂£«'[P«'—l ( a')P»-2(a:A;) ~  P«—2 (x)P t—l(Xfc)] ■ 

Here by (39), (40) and (42)

^n-i = 1 + 0 (n  J),

by (21), (18) and (27)

X > ;  -  i ) a - i  =  -(n- ! ) ? „ , ( , ) « , . , ( „ )  -  ^ I )p - l( r t)
“ 7 X -  Ж*

and by (27)

P,_i(x)P,_2(a;fc) -  P,_2(x)P i-i(xfc) =

= x[Pt_2(x)Pt_2(xfe) -  P,_1(x)Pt_1(xJb)] -

- 7 Z T [ i t2 (* )^ - 2 (X fc )  + P U x )Pt- l ( xk)] •
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Thus, after applying another Abel transform and using the obvious estimates

we get 

(49)

l* \ í I
£i = 0 ( —2 ) > £i ~ £«'+l = 0 ( —у ' n2 J \ n 2

i . .  1 \ D  i _ \  n \  *n{x)Pn-l(Xk)  ,C  — l )Pn—iyX)Pn— lyXje) “b
x - Xk

n— 1

+ --------- ' y \ e i [Pi -2{x)Pi-2{xk) -  Pi - i (x)Pi - i (xkj\ -
X — Xk 2—

K t=2

1 — X
------------y U -1 -  6i)[Pt_2(x)Pi-2{xk) +  P U ( x ) P , - i ( x k)\ +

x  X k i- 2

+о
n sin I* sin1/2 t sin1/2 tk

, -I \ n <-\r t  /■_ \ Kn{x)Pn-l{xk) t— —(íí — 1)-Pn—1 (x^Pn—l(xk  ̂— "bX - X k

+ --------- < £ n - l [ l  -  Pn-2(x)Pn-2(xk)\ +x -  Xk

71 — 1

+  5 3 ( £‘- 1 “  ^ O t1 -  Pi-2(x)Pi-2(xk)\ |  +

n -2

i = 3

1 -  a:2
x -  xk

L t'=2

+ (^n-2 -  <5n-i)-f,ú_2(a:)-Pn-2(a;fc) + 0
n sin I* sin1/2 í sin1/2 íjfc

= - ( n  -  l)Pn- i(x )P n- i ( x k) ^n(x)Pn—l(x k)
X -  xk
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To finish this estimate, we consider the sum on the right hand side. This 
can be estimated the same way as we did in (45); namely by (42) and (44) 
we have

^i-l — ^i+l _  t>i — î+2
2i -  1 2* + 1

i -  2
2* —  1(7.-1 -  7 .) +

4*’2 — 4
4Í2Tl(7< -7 i+ i)  +

i + 2
2* + 1(7.+1 -  7i+a)

Thus we get

71-2
S > - .
«'=2

-  t>i+l)Pl-i(x)Pi-i(Xk) = 0  ^ —

{\t -  tk\ > c/n, к = 2 ,..

1Ц --1 sin3/2 t sin1/2 tk 

- ! ) •

Substituting this into (49) we obtain

/-. _ /■_ 14 0  /„4 O 4 7rn ( * ) í >n - l ( ^ f c )  ,С — (ti 1 — 1 (^/c) “b

+ 0 +

X -  Xk  

sin1/ 21
I* -  Xk\ sin1/21 sin1/2 tk n\x -  Xk\sin sin1/2 tk 

( I t - í fcl  > c/n, к = 2, . . . , га-  l ) .

Finally, substituting this into (46) we get

l(50) B, = (XXfc l ) ^ - ! ^ ) ^ - ! ^ )  + 0  
(x -  ж*)

1
+ +

k n sin  ̂ sin3/2 t sin1/2 tk 

sin1/2^ !  \

+

i(z -  xfc)2sin1/2tsin1/2ÍA: n(x -  Tfc)3 sin sin1/2 tk j 

(\t - t k \  > c/n, к = 2 , . . . ,  n -  l ) .

In order to estimate in (41) we note that, in the order of magnitude, 
this sum contributes the same as the second sum for C  in (48), since the /3,-’s 
behave similarly to the £,’s (the fact that the sum extends to n instead of 
n — 1 is indifferent). Thus the estimate for В  is the same as that of B\ in 
(50).
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Now we turn to estimating

Ы

in (38), by using the same method as above. The first Abel transform yields

i=2 ^ '

-  P U ( x ) P U ( x k) \ ,
X — Xk  i '«=2

where

(51) 6, = ^ — ^  (г =  2 , . . . ,  n).г — 1

Here by (39) a„ = and using (22), (17) and (33),

and

P L i № - i ( * t )
2(x -  xk)

P U ( x ) P U x k) -  P U { x )P U { x k) =

= -  i^ -a(*)^-2(**)] -

-(< -  l ) [ i t i ( * ) t f - i ( * * )  + Р ^ О ^ - г Ы ]  •

Hence applying another Abel transform we get

(52) A =
K - i ( x ) P n- i{ x k) 

2(x -  xk)
Xk

X -  Xk

П— 1
^2(bi -  bi+i)Pi-i(x )pi - i ( x k)+
i=2

+
"n—1
У!(д«+1
.»=2

a,_i)P/_i(x)Pi_i(a:fc) + (a„ -  ап_1)Р^_1(а:)Рп_1(а:^)

( |< -  ijfel > c/n, к = 2 , . . . , n -  l ) .
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An easy calculation shows that, using (39),

(5 3 )
®i+2 ®i ®i+l Щ—1   q  /  t

2i + 1 2* — 1

thus for estimating the sum

TV
(i = 2 , . . . , n  —2),

П —1

t'=2

we can use the same method as in (45). Hence we obtain

D = 7̂1 ^n — 2
n —1

2 n
^ 5 ] ( 2 i - l ) P / _ 1(x)Pi_1(Tfc)+

i=2

\  ^  r4 Lsin — sin3/2 t sin1/2 tk
+

+ о
\x -  Xk\ sin № kI sin1/2 t sin1/2 tk

( \t -  tk\ > c/n, к = 2 , .. . ,n  -  l ) . 

Substituting this into (52) we get

sin I* *-1 sin3/21 sin1/2 tk

П —  1
/ Kln  л P n - \ { x ) P n - \ { x k )  X k  V ' V l и \ r , i  < \ r>! I \  .
(54) A = ------------ • • ------ +  2 J 6,‘ “  6<+i)P » - i ( ;c)-P< - i ( a:fc)+

Ж  Х к  i = 2
2(x -  ж*) 

+ 0
1

\  Tl\x — sin sin3/2 < sin1/2 tfc , 

( |i -  > c/n, /г = 2 , . . n -  l ) .

Here we have to estimate
71— 1

(55) E :=  E i b '- f c + t ^ O O ^ - i O '* ) -
t=2

In doing so, we apply the same method as in (52), but now with 

«Í := (&« -  bi+ i)^ _ ^  = 0  ( ^ i )  (г =  l , . . . , n ) .
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Then it is easily seen from (38) and (51) that

at'+i ~ a II о (i = 2,

(i =  2, . . . ,n ) ,

К .  1 -  К = 0 TV-
(i = 2,

Thus we obtain from (55), just like in (52), but now using term-by-term 
estimates in the sums, that

71 — 1

TP / I xk U \r.>1 r~\Dl \ |E  =  - a n_x---------------------- + -- --- — > (6, -  6t+1)P,_1(x)Fl_1(xfc)+
X  —  X u

*  г = 2
X — Xk

+ ■
X -  xk

n—1

L t=2

= 0

+ K - < - l ) ^ n - l № - l ( X i t )  

1
n2|x -  Xjtl sin3/ 2 isin1/ 2 tk n3\x — Xfc| sin3/ 2 Í sin3/2 tk 

1 1

1

+

+

+

= о
n2\x -  Xk\ sin3/2 t sin1/2 tk n3\x — Xk\ sin3/2 t sin1/2 tk 

1
, n2|x — Xk\  sin3/2 t  sin1/2 t k  , 

Substituting this into (54) we obtain

(56) А = - Р"~1{х)Рп- ЛХк) + 0

\t -  tk\ > c/n, к =  2 , . . . ,  n — l ) .

2(x — Хк) У n\x — Xk\ sin  ̂ sin3/21 sin1/2 tk )

(\t -  tk \ > c/n, к = 2 , . . . , n -  l ) .

Now we are in the position to finish the proof of the lemma. Substituting 
(56) and (50) into (38) we get
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-  l l(X) +

+0

= 0

7Гп(ж)(1 -  £2) 
< (x jt)2(l -  x\)

sin t
I t - t k\

xkP'n-i(x) , (*** -
+

( x - x ky  

sin31

+

+
п г \ х  — X k \ sin 2tfcl sin tk n 3 ( x  — x k ) 2  sin  ̂ **1 sin tk

sin t
3 cin3 1* ...felnJ sin sin tk ,

( |< -  tk \ > c/n, к = 2 , . . .  ,n  -  l)

which is exactly the statement of the lemma. □

Lemma 3. I f  и  is an arbitrary modulus of continuity, or и  = 1, then

(57)

^  | r fc(a;)| = 0(1), 
k=\

П

^  \x -  x k\u)(\x -  xk\) I r*(a:)|
k= 1

= о
s /T ,r 2

log П + W
A:=l

vT

P roof. First note that by Lemma 1 and by symmetry, it is sufficient to 
consider

П — 1
(58) £  = £  + £

fc=2 | i—<*|=c/ n | t—i* |> c /n

on the left hand sides of (57), and we may assume that 0 is t 5í 7r/2. Here 
the first sums are easily settled if we use term-by-term estimate in (8) and 
obtain I rk(x )I = 0(1). Namely, in estimating the first sums we may assume 
that C\/n <  t ^  7t/2  with some c\ > 0 (otherwise, by choosing 0 < c < ci, 
the first sums in (58) would be empty), and then by \ x  — = 0 ( a^ )  the
contribution of this sum will be 0 (-)p )u ;(5î ) ,  which is less than the right 
hand sides of (57).

In estimating the second sum in (58) we use Lemma 2 the inequality

sin
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to obtain

E  |rjk(®)|  =  О
\ t - t k \>c/n

E
\ t - t k\>c/n

+
n3 sjn 3 i l* * i  n 3  s in 2 L J J l  sin  t k

and

(59) ^  \x -  xk\w(\x -  xk\) I rk(x)\ =
\ t - t k\>c/n

= О

+-
^sii

sin t

U ( sin ^-4^  sin t + sin

n— 1

E
k= 2

U ^sin ^ ' — ̂  sin t + sini „ ^ )

n sm2 t - t k +

2 t - t í

n sin ^ ^  sin tk

sin t
= 0  - r U A  + B).

n*

Here by the regular distribution of the roots xk the first sum is estimated 
by ^Г£=1 k~3 — 0(1). As for the second sum, if sin < sint^, then it is
equivalent to the first sum, while in the opposite case it is Yjk=i (n s'n h )  3 = 
= 0 (1) again.

Similarly, in (59) the first sum, A, is easily seen to be equivalent to

In estimating the last sum, B, if sin tk > sin then it is a part of A.
If sin tk ^  sin 1 then using a property of the modulus of continuity we
obtain

* = E
^siin~l U ( sin  ̂ 2 sin t + sin2

k=2 n sin  ̂ 3— sin tk
0  < О ^  ^ ( sin tk S№ t) |

k=2 n sin2 tk

(
+

\
E  +E » ( ^ 2 ^ )

n sm \ t - t k\ sin tk
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and here the first sum is again estimated like A. The second sum, since here 
tk - t ' t  2(7t — t) /3 ^  7г/3, easily seen to be

=  O(logn).
V " f c sm<V

Finally, in the third sum we use sin ^ y ^  ^  2 sin t , and then it becomes

n_1 ш ^sin sin tj
2 £  . i t - f j . . ’

k=2 n Sln 1 2 Sln tk

which has been already estimated (see the first sum in В  above). Collecting 
all of these estimates, the proof of Lemma 3 is complete. □

We now estimate the fundamental functions a±(x).

Lemma  4. We have

• . _ /(1  ±a;)sin“ i sin A  . .
Ы*>1 = ° (  nL  + ^ r )  ( Mái )

where a > 0 is an arbitrary constant.

P r o o f . By symmetry, it suffices to prove the statement for <7+(a:). Using 
(22) with у -  1, as well as (33), (14), the differential equation of the Legendre 
polynomials and (28)-(29) with ß — и = 1/2 we get

I—l
£ ( 2 j  -  l)P'j-i(x) = 2 
j = 2

P U ^ P U j i ) -  P[_2{X)PU{\ )  
(i -  l)(z  - 1 )

= (2 — i)P'i-\{x ) + (1 + x )P'i-\{x) — О
(  г3/2 (1 + ж)г'3/2 \
\ s in 3/ 2 t +  sin5/ 2 < J

(1*1 < 1, * = 2 , . . . ) -

Now applying Abel transform in (9) and using (32) and (30) with 6 = 1 / 2  
and 6 = 1/2 + a we obtain

*+(*) =  0  (
(1 + x) sin" t ^  sin t

—ot n* +
tin-1 *n(x) sin2 t 

2 n(n — 1)

n—1
V ( 2 z -  !)/?_ ,(* )+
1=2
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+ 0
I 7Гп ( ж ) |  S Í n 2 A  i- J  . 
------ 73------- Z A

t ' = 3 3= 2

= 0
(1 + x) sin“ t sin t

n2 - 0
+ +

+О
|тгп(я)| sin2 A  ?A-Í /  í5/2 (1 + x)

П6 y ^ \ s i n 3/2í sin5/2/

5 / 2

О
( l + a:)sin“ f | sin A  

' )2 - 0 + И  < í ) . □

6 . Proof of Theorem 3

Let first f '(x )  E C[—1,1]. By uniqueness of the polynomials R n( f , x ) we 
obtain the identities

71 П

Y  r k ( x )  = 1 ,  X =  Y  Х к Г к ( х )  +  (T+{X ) +  <T_(x) ,
fc=l fc=l

whence
П

-  xk)rk(x) = <7+A) + 0 -{x).
к - 1

Thus using the relation

/ ( г )  -  f ( x k) = f \ x ) ( x  -  x k) + 0 (  \x -  xk\ ) u ( f ,  \x -  a;*|) 

we obtain by the second relation in Lemma 3

П

f(x)  -  Rn(f,x) = Y  № )  ~ f ( Xk)] Г*А) -  / ' ( ~ lA - A )  -  /'A A + A ) =
A;=l

n i n
=  / ' A )  Y ( x -  х к У к ( х )  +  o  í  Y  I х  _  A  -  * * l )  |  г * А ) |

fc=l \ fc= l

-/'(-1 )сг_ (аг) -  f '(l)a+(x) = [ f \ x )  -  / ' ( - 1 ) ]  *_(*)+
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+ [ / ' ( * ) - / ' ( !)] i7+(a;) + 0  ( ^ r ) logo +
fc=l

V l  —  X 2

к

= 0 { u ( f ,  1 -  x)|<t+(x)|) + О ^ ^ 0 \ / l  -  x2 1logn + E - | / ’--k
k= 1 + j^

by symmetry. If — 1 ^  x ^  0 then using Lemma 4 with a  = 0, we have 
I сг+(х)| = 0  ( ^ r )  and we are done. If 0 й  x й  1, then by

<*>(/', 1 -  x) = и  0 ' ,  2 sin2 0  ^  0  + 2n tan 0  и  0 ' ,  ^ 0  

we obtain, on using Lemma 4 again with a = 1 and a  = 0,

u ( f , l - x ) \< r + (x ) \  = 0  0 0 ' ,  ^ 0  ( ^  + -
+ cos t + sin t tann 0 =

=  0 sin t (  , sin t
n U f  ,

and the second statement in Theorem 3 is completely proved.
In order to prove the statement concerning the operator R n( f , x ), first 

assume that | / '(x ) | is bounded. Then we obtain from the second relation in 
Lemma 3 applied with и  = 1

\ f { x ) ~  Rn(f ,x ) \  ^  ^ | / ( x ) - / ( x fc)||x*(x)| = 
k=l

= 0 ( | | / ' | | )  £  I* -  X i | |n ( x ) |  = 0(11/11)
. » »k=1

Thus by the first relation in Lemma 3 and by Theorem 2.3 of R. DeVore [3], 
the first statement of Theorem 3 for an arbitrary /(x ) G C[—1,1] follows. 
□
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7. The optimal order of convergence

Theorem 3 does not give 0(n ~ 2) as the order of convergence for the 
operator R n. However, for f ( x )  = x 2 we have

П  —  1

X2 -  R n(x2, x) -  2 ^ 2  Qk(x),
к= 1

and this is shown to be of order 0(n~ 2). (We do not go into details; see 
Section 1.6 of [6].)

On the other hand, 0 ( n ~2) cannot be further improved:

T h eo r em  4 . We have

||/(x ) -  -Rn( / ,z ) || = o(n~2)

if and only if f (x )  is a linear function.

The proof is an exact analogue of that of Theorem 2 from [6].
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SASAKIAN MANIFOLDS WITH VANISHING 
C-BOCHNER CURVATURE TENSOR

E.-S. CHOI (Kyungsan)*, U.-H. KI (Taegu)* and K. TAKANO (Nagano)

§1. In troduction . As a complex analogue to the Weyl conformal curva
ture tensor, Bochner and Yano [1], [15] (see also, Tachibana [13]) introduced 
a Bochner curvature tensor in a Kählerian manifold. Many subjects for van
ishing Bochner curvature tensors with constant scalar curvature have been 
studied by Ki and Kim [6], Kubo [8], Matsumoto [9], Matsumoto and Tanno
[11], Yano and Ishihara [16] and so on. One of those, done by Ki and Kim, 
asserts the following theorem:

T heorem A ([6]). Let M  be a Kählerian manifold with vanishing 
Bochner curvature tensor. Then the scalar curvature is constant if and only 
if Tr Ric(m) is constant for a positive integer m (^ 2).

In a Sasakian manifold, a C-Bochner curvature tensor is constructed 
from the Bochner curvature tensor in a Kählerian manifold by the fibering of 
Boothby-Wang. Recently, the Sasakian manifold with vanishing C-Bochner 
curvature tensor and the constant scalar curvature is studied, and in [12], 
the following theorem was proved:

T heorem B. Let M n (n ^  5) be a Sasakian manifold with constant 
scalar curvature whose C-Bochner curvature tensor vanishes. I f  the Ricci 
tensor is positive semi-definite, then M  is a space of constant ф-holomorphic 
sectional curvature.

Also, when M  is compact, the following theorems were proved:
Theorem C ([4]). Let M n (n 5) be a compact Sasakian manifold

with vanishing C-Bochner curvature tensor. I f  the length of the Ricci tensor
is constant and the length of the g-Einstein tensor is less than ^ ( д~п+1) ;

V (n —l ) ( n _ 3)
then M  is a space of constant ф-holomorphic sectional curvature.

THEOREM D ([10]). Let M n (n ^ 5 ) be a compact Sasakian manifold 
with vanishing C-Bochner curvature tensor and constant scalar curvature. If 
the smallest Ricci curvature is greater than —2, then M is a space of constant 
ф-holomorphic sectional curvature.

We shall prove Theorem A as a Sasakian analogue in §3. Moreover in §4 
we shall discuss when the smallest Ricci curvature is greater than or equal to

* Supported  by TG R C -K O SE F.
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—2 in a Sasakian manifold with vanishing C-Bochner curvature tensor and 
Tr Ric<m) is constant for a positive integer to.

§2. P relim inaries. Let M  be an n-dimensional Riemannian manifold. 
Throughout this paper, we assume that manifolds are connected and of class 
C°°. Denote by gji, Rkjih, Rji = R rjiT and R  the metric tensor, the curvature 
tensor, the Ricci tensor and the scalar curvature of M , respectively, in terms 
of local coordinates {V*}, where Latin indices run over the range { 1 ,2 ,... ,  n}.

An n(= 2/ + l)-dimensional Riemannian manifold is called a Sasakian 
manifold if there exists a unit Killing vector field £h satisfying

( 2 . 1)

f Vi — 9irs , <t>ji — 7̂jVii 4>ji T Фгд — 0, фг £ — 0, Oj l]r — 0,

1 Ф1 Фг = А T V i ч t Т  к А/1 ~ 9kjVi Т 9kiVj,

where V denotes the operator of the Riemannian covariant derivative.
It is well known that in a Sasakian manifold the following equations hold:

(2.2) RjrC = (n -  l)j?j,

(2.3) Hji + Hij — 0,

(2.4) Rji — RrsФj Фi T (n 1 )VjVii

(2.5) VkRji -  v jRki = (V tR k r ^ j rф{г-  

~Vj{Hki — (n — 1 )Фи} ~  2Vi{Hkj ~ (n — 1 )Фк]}ч

(2.6) V kRJt -  (V kR r M ^ f  =

— ~Vi{Hkj — {jl — — Vj{Hki ~ (kl — 1 ̂ Фк{\ 1

(2.7) e v rRkjih = o,

where we put //,, = ф3г Rri.
We denote a tensor field Ric^m  ̂ with components Rjг4т ) and a function 

R(m) as follows:

Rji(m) = R jh R iJ1 ■ ■ ■ R ' r 1> R(m) = Tr Ric<m> = g3iR3i[m).

Then, from (2.2) and (2.3), we,get

(2.8) Äjr (m)r  = (n -  l)mí?j,

(2.9) Rjr(mUir + Rir(mU jr = 0.
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Also, we define the 77-Einstein tensor T]t by

(2.10) Tji = R3l -  Sji + W -

If the 77-Einstein tensor vanishes, then M  is called an //-Einstein manifold. 
From (2.2) and (2.3), we have

(2.11) Тг T  = 0,

(2.12) Tjrf  = 0,

(2.13) Тзтф,т + Тггф3т = 0.

A Sasakian manifold M  is called a space of constant ^holomorphic 
sectional curvature c if the curvature tensor of M  has the form

R k j i h  =  ^  (9 j i h h  -  9 k i ^ j h ) +

C —  1
"I ^  (yktV]£ ~  9]iVk£  A  Vk9i^j ~  9 ] Tjxh ФкгФ] "Ь Ф}%Фк ~  2фк]ф{ )•

Matsumoto and Chiiman [10] introduced the C-Bochner curvature tensor 
Bkjih defined by

(2.14)  Bkjih = R kjih + о(Rkif>jh -  R j i h h + 9kiRjh -  9jiRkh + НыФ]к~71 ~г О

-Нцфкк + фкгН* — фзгНкк -f 2Hkjфih -(- 2фкзН ^  —

- R k, r } j t h + R j i 9 k i h -  9 k T h R jh + T]jr]iRkh ) -

~ fc n +  3 1^ ki^ h ~ ^ k>l + 2^ h) -  ~ 9 jih h)+

к
+  — m ( 9 k i V j t h  -  9 j i 9 k í h +  V k V i 6 j h  -  9 j 9 i h h ) ,TI ~p tj

where к = . It is well-known that if a Sasakian manifold with vanishing
C-Bochner curvature tensor is an ^-Einstein manifold, then it is a space of 
constant </i>-holomorphic sectional curvature.

§3. A Sasakian manifold with vanishing C-Bochner curvature 
tensor. Let M n (n ^  5) be a Sasakain manifold with vanishing C-Bochner 
curvature tensor. By a straightforward computation, we can prove

(3.1) rc ^  ^ rBkjS = V kRji -  V jR ki -  T]k{Hji -  (n -  l)</>j,-} +
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+nj{Hki -  (n -  1 )Фк,} + 277i{Hkj -  (n -  1 )фк]}+

+ 2 (raT lj{ (gfc* “  ЩТЬ)6зГ ~ *  rh TH)skr+

~\~Фк{Фj Фд IО k T 2 фкjФi } R r,

where we put R3 = V jR .
By virtue of (2.1), (2.2), (2.5)-(2.7) and (3.1), we obtain

(3.2) VfcÄji = {Rkr -  (n -  1)дкг}{Ф]Тf]i + d>«ri?j)+

+ 2(я +~1){2Д*(^* ~ 71 ̂  + R j^9k' ~ VkVi^

1 R i( (Jkj Цк Ijj ) ФkjФi Rr ФкгФj Rr}

and consequently from (2.7), we find

(3.3) (n + l ) (V kRJt)RJR l = 2A 2R k,

where we put A2 = R TR r.
The following lemma is needed for later use.

Lemma 3.1. Let M n (n ^  5) be a Sasakian manifold with vanishing C- 
Bochner curvature tensor. Then R jr^ R T = 0 holds for a positive integer m 
if and only if the scalar curvature R is constant.

P roof. If Rjr m̂lRT — 0 holds, then we get Rjr(2m~2l R r = 0 which
implies that | _R7r(m-1)fT |2 = 0. Accordingly, we obtain Rjr m̂~1̂ Rr — 0. 
By the inductive method, we get RjrR r = 0. Operating Vfc to this, we find 
(VkRjr)R2Rr = 0. By means of (3.3), we see that the scalar curvature R  is 
constant. The converse is trivial.

For the sake of brevity, we shall define a function a{m) as follows:

a(m) = R]t{m)RJR'.

Then, it is clear from (3.2) that

(3.4) 2(n + l ) (V kRji)Rj {Rir(m)Rr) = A 2R j m)R r + 3 a(m )R k,

(3.5) 2(n + 1 )(VkR:t) ( W rW R r) {R ts^ R s) =

= a (t)R kT(m)R r + a(m )R kTW R r + 2a(^ + m )R k,
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where we have used (2.7), (2.8) and (2.9).
Operating to (3.2) and owing to (2.1), (2.7), (2.8) and (2.9), we

find

(3.6) (n + l)V fciZ(m+1) = (m + 1) 2 R kr^ R r + {R (m)~ ( n 1 )m }Rk ■

Therefore, if the scalar curvature R  is constant, then R(m) is constant for 
any integer m (^ 2).

Now, we shall prove that the scalar curvature R is constant if Ä(m) is 
constant for any fixed integer m (^ 2).

At first, suppose that R^e+з) — 0 ,1 ,2 ,...)  is constant. Then, from
(3.6), we can get

2Д*Г(М+2)ДГ + { R {m+2) -  (n -  1 f +2} R k = 0,

which yields that 2a(2l + 2 )+  A2{ R^t+2) — (n — 1)2̂ +2} = 0, that is,

2|Ä jr(m )Är | 2 + Л2| Rji(e+1) -  (n -  1 Y+1VjT]i\2 = 0.

Thus, from Lemma 3.1, the scalar curvature R is constant.
In the next place, we shall consider when Ä(2(+2) (I = 0 ,1 ,2 ,...)  is 

constant. From (3.6), we have

(3.7) 2RjrW+VRT + { R (2t+1) -  (n -  1 )2*+1} R j = 0.

Operating Vfc to this and owing to (3.7), we get

(3.8) 2(V fcÄjr<2*+1)) RJR r + A2VfcÄ(2m) = 0.

From (3.3) and (3.8), we find the scalar curvature R is constant if £ = 0. 
Because of (3.4), (3.5) and (3.6), equation (3.8) is rewritten as follows:

21—1

(3.9) 4(£ + l ) \ 2Rkr{n)RT + 2 a(i)Rkr{2e~i]R r+
i- 1

+4(£ + \)a(2l)Rk  + (2 /+  1)A2|Ä j ,-W -  (n -  l)S iW |2«Jfc = 0.

By virtue of (3.9) and Lemma 3.1, it is clear that the scalar curvature R  is 
constant if £ — 1.
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On the other hand, we have

(3.10) A6a(2£) + 2 \4a(s)a(2£ -  s) + X4a{2s)a(2£ -  2s) =

= A2|A2ü jr(<)Är + a ( s ) Ä ^ - s)Är | 2 + a (2 ^ -2 s ) |A 2Äjr(s)Är - a ( a ) Ä j |2.

Because of (3.9) and (3.10), it is easy to see that the following equations 
hold: i f f  = 2 ,6 ,10 ,...,

(U  + 8)A6a(2f) + (2f + 1)A8| -  (га -  1)%гц\2+

(Г -2 ) /4

+4A4 ^  oi(4i)a(2£ — 4г)+
1=1

t/2
+2A2 I A2R jsW r s + a(2 i -  l )R js((- 2l+1) R s\2+

i=i

(/2
+ 2 ] T a ( 2 f - 4 i 4  2)|A2ÄJS(2,'- 1)ß s -  a(2i -  l)R 3\2 = 0,

t=i

if i  = 4 ,8 ,1 2 ,...,

(7£ + 8)A6a(2f) + (2f + 1)A8| RJt{t) -  (n -  1)%гц\*+

(e-4)/4
+4A4 a (4 i)a (2 f -4 i)  + 2A4a(f)2 +

i=i
(/2

+2A2 ^  I A2Rjs(()R s + a(2i -  l)ÄJS(f_2,'+1)Äs| 2 +
t=i

e/2
+2 a(2f -  4г + 2)| A2^ 2*"1̂ *  -  a(2i -  1)Ду|2 = 0

t=i

and if £ = 3 ,5 ,7 ,...,

(7f + 9)A6a(2f) + (21 + 1)A8| R jM  -  (n -  1)%-7?,|2 +

(Г -1 ) /2

+2A4 ] T  a(2i)a(2f — 2i) + 2A4a(f)2+

,4cfa Mathematica Hungarica 66, 1995



SASAKIAN M ANIFOLDS 333

(<—1)/2
+2A2 ^  I X2Rjs^ R s + a(2i — l)i2js^ _2í+1 î?s | 2+

2 = 1

(«—1)/2
+2 a (2 £ -4 i  + 2)|A2ÄJS<2t'- 1̂ s - Q ( 2 z - l ) Ä J | 2 = 0.

i=i

Thus we find from Lemma 3 .1  that the scalar curvature R is constant if 
R(2(+2) (£ — 2 , 3 , 4 , . ..) is constant. Hence, we have

T h e o r e m  3 . 2 .  Let M n (n ^  5 )  be a Sasakian manifold with vanishing 
C-Bochner curvature tensor. Then the scalar curvature R is constant if and 
only if T r  R ic^ "1) is constant for an integer m ( ^  2 ) .

R e m a r k . In the proof of Theorem 3 .2 ,  we use only equation ( 3 . 1 ) .  Thus 
Theorem 3 .2  is valid for the parallel C-Bochner curvature tensor.

Also, we have from Theorems В and 3.2
T h e o r e m  3 . 3 .  Let M n (n ^  5 )  be a Sasakian manifold whose C-Bochner 

curvature tensor vanishes. If the Ricci tensor is positive semi-definite and 
T r  Ric<m > is constant for a positive integer m, then M is a space of constant 

ф-holomorphic sectional curvature.
Furthermore, it is easy to see from the proof of Theorem C and Theorem 

3.2 that the following theorem holds:
T h eo rem  3 . 4 .  Let M n (n 5) be a Sasakian manifold with vanishing

C-Bochner curvature tensor. I f  Tr Ric^m) is constant for a positive integer
m and the length of the n-Einstein tensor is less than ^ ( д~та+1) then M  * 1 ' \J (n—l)(n—3) ’
is a space of constant ф-holomorphic sectional curvature.

§4. The sm allest Ricci cu rv a tu re . Let M  be an 5)-dimensional 
Sasakian manifold with vanishing C-Bochner curvature tensor. Suppose that 
R(m) is constant for any positive integer m. By Theorem 3.2, equation (3.2) 
is reduced to

( 4 . 1 )  — ( Rkr ~ (^ — 1фдкт} (^j Vi T ф{ Vj)t

which implies VkRji + VjRik + V\Rkj — 0, namely, the Ricci tensor is cyclic 
parallel. Therefore, using the Ricci formula, we find

S7kWkRji = 2{RrjisR rs -  Rit(2)) .

Applying V k to ( 4 . 1 )  and owing to ( 2 . 1 )  and ( 2 . 2 ) ,  we get

V kV kRji -  - 2  [Rji -  (n -  1 )gJt -  { R -  n(n -  1)}т)3тц] .
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On the other hand, by virtue of (2.1)-(2.4) and (2.14), it is clear that 
the following equation holds:

(n +  3)-Rrjis.firs —

= 4 R j i ^  — (4n — R  + 2k)Rji + { R(2) — (& — 4)i2 + (n — 1 )k}gji — 

~ {R {2) + (n -  l )2 -  (n -  l)k  -  kR}r]jT]i.

From the last three equations, we have

(4.2) Rji{2) = ßRji + 7 +  {(n -  l )2 -  (n -  l)ß  - 7 } ^ « ', 

where the constants ß and 7 are given by

(4.3) (n + 1)/? = Ä — 3n — 5,

(4.4) (n -  1 ) 7  =  Ä(2) ------ 7 -7 -К2 + -  -- - ) (я 2 +  3n +  4).'  ' n +  1  г а  +  1

Thus, equation (4.2) tells us that M  has at most three constant Ricci 
curvatures n — 1, x\ and x2, where we have put

(4.5) *! = ^ (/? -  л /л )  , x2 = ~ ( ß  + y /D ) ,  D — ß 2 + 47(^  0),

moreover, denote by s and n — 1 — s the multiplicities of x\ and x2, respec
tively. Therefore we have (cf. [7])

L em m a  4.1. Let M n (n ^  5) be a Sasakian manifold with vanishing 
C-Bochner curvature tensor such that Tr Ric^m  ̂ is constant for a positive 
integer m. Then M  has at most three constant Ricci curvatures.

Now, we shall prove the following theorem.

T h eo r em  4.2. Let M n (n ^  5) be a Sasakian manifold with vanishing 
C-Bochner curvature tensor such that Tr Ric^m  ̂ is constant for a positive 
integer m. If  the smallest Ricci curvature is greater than or equal to —2, 
then M  is a space of constant ф-holomorphic sectional curvature —3.

P roof. By means of (4.3), (4.5) and Lemma 4.1, we find

(4.6) R + n — 1 = П +i (n — 1 — 2s)V7tn + 3
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Because of (4.3), (4.4) and (4.6), we have

n — 1

= R

n — 1 — 2s
D =

( 2 ) П +

n + 3

- { R 2 - 2 ( n  + 3)R + ( n -  l ) 2(n + 2)},

which yields that

(4.7) (n + 1 )R(2] ~ tR 2 -  2(n + 3)Л + (n -  l)2(n + 2).

Let x\ be the smallest Ricci curvature. Then, by virtue of (4.5), we 
obtain 7 2ß + 4 which means from (4.4) that

(n + 1)Ä(2) ^  R 2 -  2(n + 3)Я + (n -  1 )2(n + 2).

Combining this with (4.7), we get that D vanishes identically, which implies 
that equation (4.6) gives R = -  n + 1. We find |Rji + 2gji -  (n + l)r]jT]i\2 = 
= 0 which yields that M  is an r/-Einstein manifold. Thus, it is easy to see 
from (2.14) that M  is of constant ^-holomorphic sectional curvature —3.

R e m a r k . In [10], this theorem was proved under the condition that M  
is compact.
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ON DERIVATIO NS A N D  CO M M U TA TIV ITY  
IN PRIME RINGS

H. E. BELL* (St. Catharines) and M. N. DAIF (Taif)

We have shown in [4] that if R is a semiprime ring admitting a derivation 
d, and if К  is a two-sided ideal such that either xy  + d(xy) — yx + d(yx) for 
all x, у 6 К, от xy  — d(xy) — yx — d(yx) for all x, у 6 К, then К  is a central 
ideal of R. More recently we have proved that if R is a semiprime ring 
admitting a derivation d such that xy — d(x)d(y) — yx — d(y)d(x) for all x , у 
in some nonzero right ideal U, then U must be central [3]. Of course, in 
the event that R  is prime, any of the conditions mentioned implies that R  is 
commutative.

In this paper we study conditions which are in some sense related to all 
the conditions above. Suppose that R  is a prime ring having a nonzero right 
ideal U. If d is a derivation on R  such that d(x)d(y) + d(xy) = d(y)d(x) + 
+ d(yx) for all x, у 6 U, we say that d is a U-*  derivation; and if d(x)d{y) + 
+ d(yx) = d(y)d(x) -f d(xy) for all x ,y  G V ,  we call d a U—** derivation. 
We prove that if d is a nonzero U—* or U—** derivation, then either R  is 
commutative or d2(U) = {0} = d(U)d(U). This result yields as a corollary an 
earlier result of Bell and Kappe [2]; and it facilitates the study of derivations 
d such that d(xy) = d(yx) for all x, у G U —  a study which constitutes the 
final section of the paper.

1. Some preliminaries

Throughout the paper, we make extensive use of the basic commutator 
identities [x,yz] = y[x,z] + [x,y\z and [xy, z] = x[y, z\ + [x,z]y . Moreover, 
we shall require the following known results.

(A) [1, Theorem 4] Let R be a prime ring and U a nonzero right ideal. If 
R admits a nonzero derivation d such that [x,d(x)] is central for all x £ U, 
then R is commutative.

(B) (Cf. [6. Lemma 1]) Let R be a prime ring and U a nonzero two-sided 
ideal. If d is a nonzero derivation on R, and if a £ R is such that d(U)a = 
= {0} or ad(U) = {0}, then a = 0.

(C) [1, Lemma 3] Let U be a nonzero left ideal of a prime ring R. If  d is

* Supported  by the  N a tu ra l Sciences an d  E ngineering Research Council of C anada , 
G ran t No. A3961.
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a nonzero derivation of R, then d is nonzero on U.
(D) [2, Lemma 2(a)] Let U be a subring of a ring R, and let d be a 

derivation of R such that d(xy) = d(x)d(y) for all x ,y  6 U. Then d(x)x ( у -  
d(y)) = 0 for all x, у £ U.

(E) [4, Lemma 1] Let R be a semiprime ring and L a nonzero ideal of 
R. Let [1,1] = { [ж,у] \x,y 6 /}  ■ If  z 6 R and z centralizes [1,1], then z 
centralizes I.

(F) If  R is a prime ring, the centralizer of any one-sided ideal is equal to 
the center of R.

2. Results on U-*  and U-** derivations

T heorem 1. Let R be a prime ring and U a nonzero right ideal. I f  R 
admits a nonzero U—* derivation d, then either R is commutative or d2(U) = 
-  d(U)d(U) = {0}.

P r o o f . Since d is a U-*  derivation, we have

(1) [d(x),d(y)] = [d(y),x] + [y,d(x)] for all x , y £ U .  

Substituting xy for y, we get

(2) d(x)[y,x\ = [d(x),x]d(y) + d(x)[d(x),y] for all x , y £ U .  

Replacing у by yx and using (2), we have

(3) [d(x),x]yd(x) + d(x)y[d(x),x] = 0  for all x , y £ U .

In (2) we substitute yd(x) for y, since U is a right ideal, to get

(4) d(x)y[d(x),x] — [d(x),x]y d2(x) — 0 for all x , y £ U .

From (3) and (4) we obtain

(5) [d(x) ,x]y(d(x)  + d2(x)) = 0 for all x , y £ U .

Thus, (5) yields

(6) [d(x),x]U R ( d ( x ) d 2(x)) — {0} for all x , y £ U .

But R is prime, hence for each x £ U, we have either [d(x),a;] U = {0} or 
d(x) + d2(x) = 0. If [d(x), x] U = {0}, then (4) shows that d(x)y [d(x), я] =
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= 0 for all у G U, so that d(x)U R [d(x),ж] = {0}. Therefore, either d(x)U = 
= {0} or [d(x),x] = 0.

On the other hand, suppose d(x) + d2(x) = 0. In (1), put у = yd(x) to 
get

(7) y[d(x),d2(x)] + [d(x),y] d2(x) = d(y)[d(x),x] + y[d2{x),x\ +

+[y, x]d2(x) for all у G U.

But d(x) = - d 2(x), hence (7) implies

(8) d(y)[d(x),x\  -  [y,x]d(x) + [d(x), y] d(x) = j/[d(x),x] for all у G U.

If in (1) we put у = yx,  we get

(9) [y,x]d(x) = [d(x),y] d(x) + d(y)[d(x),x] for ail x , y £ U .

Thus substituting from (9) in (8), we get y[d(x),x] = 0 for all у € U, that
is

(10) ' U[d{x),x] = {0}.

But U is a right ideal, hence [d(x),x] = 0. Thus, in any event, for each 
x G U, either [d(x),x] = 0 or d(x)U — {0}.

Suppose that [d(x),x] = 0. Then by (2), we have

(11) d(x)[j/,x] = d(x)[d(x),y] for all у E U.

Replacing у by yz in (11) and using (11), we get d(x)y[z,x] =  d(x)y[d(x),z] 
for all у G U, z G R', i.e., d(x)y[z,x  + d(x)] = 0 for all у £ U, z 6 R.  
Thus, d(x)yR[z,  x + d(x)] = {0} for all у G U, z £ R; hence we have either 
d(x)U = {0} or x + d(x) e Z,  when Z  denotes the center of R. The sets 
of x for which these conditions hold are additive subgroups of U with union 
equal to U; hence either d(U)U = {0} or x + d(x) G Z  for all x G U. In the 
latter case, R is commutative by (A); therefore we assume henceforth that 
d(U)U =  (0).

Under this assumption, the condition that [d(x),d(yz)] = [d(yz),x] + 
+ [yz,d(x)] for all x , y , z  G U becomes [d(x), yd(z)] = [j/d(x),x]-|- 
+ [yz,d{x)],  or

y[d(x),d(z)\  + [d(x),y]d(z) =

= у [Ф ) ,х ]  + [y,x]d(z) + y[z,d(x)] +[y,d(x)]z .

Acta M atkematica Hungarica 66, 1995



340 Н Е BELL and М. N. DA IF

Using (1) to eliminate the terms with first factor y, and noting that the last 
summand on the right is 0, we get

(12) yd(x)d(z) = [ar, y]d(z) for all x , y , z ( z U\

hence,

(13) yd(z)d(x) -  [z,y]d(x) for all x , y , z £ U .

Thus (12) and (13) give у [d(x), d(z)] = [ж, y\d(z) — [z , y]d(x) for all x , y , z  G 
G U. Using (1), we reduce this to

(14) xy d(z) -  zy d(x) = 0 for all x , y , z £ U .

Replacing x by xt  in (14) and using (14) itself, we obtain

(15) [x,zy]d(t) = 0 for all x , y , z , t £ U .

From (12), we have [x,zy]d(t) = zyd(x)d(t) .  Substituting in (15) we get

(16) zy d(x)d(t) = 0 for all x , y , z , t € U .

Since zyRd(x) d(t) = {0} for all x , y , z , t  G V and since U2 /  {0}, we con
clude that d(x)d(t) — 0 for all x , t  G U, which is the desired conclusion that 
d(U)d(U) = {0}. In particular,

(17) [d(x),d(tj\  = 0  for all x , t e U .

From (1), (17), and d(U)U = {0}, we now get

(18) yd(x) = xd(y) for all x , y £ U .

Replacing у by yr for arbitrary r G -R, we get xyd(r)  = yrd(x) — xd(y)r; and 
substituting yd(x) for xd(y) now yields

(19) xyd(r)  = y[r,d(x)] for all x , y  G U, r G R.

For r we substitute d(z): z  G U, obtaining

xyd2(z) = y[d(z),d(x)] for all x, y, z (EU;  

and using (17), we get

xyd2(z) — 0 for all x , y , z £ U .

Since U2 Ф {0}, we conclude that d?(U) = {0}; and our theorem is proved. 
Using similar arguments, we get
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T heorem 2. Let R be a prime ring and U a nonzero right ideal. If 
R admits a nonzero U—** derivation d, then either R is commutative or

From Theorems 1 and 2 we can get the following corollaries.
C orollary 1. Let R be a prime ring and U a nonzero right ideal of R. 

If  R admits a nonzero U—* or U—** derivation d with d2{U) ф {0}, then R 
is commutative.

COROLLARY 2. Let R be a prime ring and U a nonzero two-sided ideal. 
If  R admits a nonzero U—* or U—** derivation d, then R is commutative.

This corollary follows from our theorems and (B).
The next corollary is a result of Bell and Kappe, who say a derivation acts 

as a homomorphism on U (resp. an anti-homomorphism on U) if d(xy) = 
= d(x)d(y) for all x , y  £ U (resp. d(xy) = d(y)d(x) for all x , y  G U).

Corollary 3. [2. Theorem 3]. Let R  be a prime ring and U a nonzero 
right ideal. I f  d is a derivation which acts as an anti-homomorphism or a 
homomorphism on U, then d — 0.

P roof. Whether we assume that d acts as a homomorphism or as an 
anti-homomorphism, the condition that d(U)d(U) = {0} shows that d(U2) — 
— {0}; and by (C), we have d = 0. Thus, by Theorems 1 and 2 we may 
assume that R is commutative, hence is a domain, and that d acts as a 
homomorphism on U. If we assume d ф 0, it follows from (D) that d(y) = у 
for all у 6 U\ therefore, if и £ U \  {0} and r £ R,  we have ur = ud(r) + d(u)r 
and hence ud(r) = 0. But this contradicts (B), so in fact d = 0.

We conclude this section with an example showing that the non- 
commutative case in Theorems 1 and 2 actually does occur.

E xam ple . Let R be the ring of 2 x 2 matrices over a field F; let U =

Long ago Herstein [5] proved that if R  is a prime ring of characteristic not 
2 which admits a nonzero derivation such that d(x)d(y) = d(y)d(x) for all 
x, у 6 Й, then R is commutative. In view of this result, it seems appropriate 
to study derivations such that d(xy) = d(yx) for all x, у in some distinguished 
subset of R. To our surprise, the results and methods of the previous section 
are applicable in such a study.

d2(U) = d{U)d{U) = {0}.

x for all x 6 R. It is readily verified that d

. Let d be the inner derivation given

is a U-*  and U-** derivation.

3. D erivations w ith  d(xy) = d{yx)
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T heorem 3. Let R be a prime ring and U a nonzero two-sided ideal 
of R. If R admits a nonzero derivation d such that d(xy) = d(yx) for all 
x, y £ U, then R is commutative.

P ro o f . Let c £ U be a constant — i.e. an element such that d(c) = 0; 
arid let 2 be an arbitrary element of U. The condition that d(cz) = d(zc) 
yields cd(z) = d(z)c. Now for each x ,y  £ U, [x,y] is a constant; hence

(20) d(z)[x, y] = [x, y]d(z) for all x , y , z £ U .

By (E) and (F), d(z) is central for all 2 £ U; hence d is a U—* derivation 
and R is therefore commutative by Corollary 2.

The example in the previous section shows that in Theorem 3, U cannot 
be replaced by a one-sided ideal. However, we do have the following extension 
of Theorem 3.

T heorem 4. Let R be a prime ring of characteristic different from 2, 
and let U be a nonzero right ideal. I f  d is a nonzero derivation such that 
d(xy) = d(yx) for all x , y  £ U, then either R is commutative, or d2(U) = 
= {0} = d(U)d(U).

P roof. Writing d(xy) — d(yx) in the form [x,d(y)] = [y, d(:r)] and 
replacing x by x 2, we get

[y,x]d(x) + d(x)[y,x] = 0 for all x , y £ U .

Recalling (20) and using the fact that char R ф 2, we have

(21) [y,x]d(x) = 0 and d(x)[y:x] -  0 for all x , y £ U .

In the first of these equalities replace у by yw, w E U, thereby obtaining 

[y, x]Ud(x) = {0} = [y, x]URd(x)  for all x , y £ U .

Since d ф 0, we can conclude from the usual additive-group argument that

(22) [y,x]U — {0} for all x , y  £ U.

On the other hand, the second equality of (21) yields d(x)U[y,x] -  {0} = 
= d(x)UR[y, x] for all x , y  £ U; thus,

(23) for each x £ U, either x is central or d(x)U — {0}.

Assume that R  is not commutative, and hence that U is not central. By 
(22) and (23) we have [y,x]U =  {0} for all x , y  £ U and d(U)U = {0}.
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These conditions, together with the d(xy) = d(yx) condition, yield 

yd{x) = xd(y) for all x, у E U.

But this is just (18); and as in the proof of Theorem 1, we have

(24) xyd2(z) = y\d(z), d(x)] for all x , y , z E U .

Now by applying d to the condition zd(x) — xd(z), we obtain zd2(x) + 
+ d{z)d(x) — xd2(z) + d(x)d(z)', hence zd2(x) + [d(z),d(x)] — xd?(z) and

(25) y[d(z),d(x)\ = yxd2(z) -  yzd2(x).

Substituting in (24) now yields

(26) yzd2(x) = [y, x]d2(z) for all x , y , z £ U .

Since [y,x] is constant, applying d to (22) shows that [y, x]d(U) = {0} = 
= [y, x]d2(U) for all x, у 6 U; and (26) yields U2d2(U) = {0}. Since U2 Ф {0} 
and R is prime, we conclude that d2(U) — {0}. Finally, since chari? /  2, 
using the fact that d2(xy) = 0 for all x ,y  E U gives d(U)d(U) = {0}.
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ON MODULI OF CONTINUITY 
FOR A TWO-PARAMETER 

ORNSTEIN-UHLENBECK PROCESS*
LIN ZHENGYAN (Hangzhou)

1. Introduction and conclusions

Given cr > 0 and an n-dimensional vector a = ( a i , . . . , a n ) ,  a ,  > 0, 
i = define the n-parameter Ornstein-Uhlenbeck process (OUPn)
{*(*),*€  by

X(t)  = j x 0 +  a J *  e<a’*>dW(x) j ,

where W  is an n-parameter Brownian motion, X 0 is a random variable 
independent of W,  (•,•) stands for the inner product in R n. This definition 
was introduced by Wang [1], who investigated some Markov properties of 
OUP2 in his paper. Chen [2] studied sample path properties of OUP2 by 
giving Hausdorff dimension of the graph and image sets of OUP2 . Xiao 
[3] generalized these results to the case of n-dimensional processes. In this 
paper, we give some direct depictions of sample path properties of OUP2 
by establishing its Levy’s exact moduli of continuity not only for one of two 
parameters but also for both parameters.

For simplicity, we assume that <7 =  1, E X 0 = 0, E X q = 1, E exp(LXo) < 
< 00 for any 0 < t < OUP2 can be rewritten as

(1) X ( t ,v )  = e~at~ßv l x o  + J*  J ” eax+l3ydW(x,y)

with a > 0, ß > 0. Then the increment

(2) X ( t  + s , v ) ~  X( t ,  v ) = е- “(г+*)-^(1 -  еаа)Х0+
ft+ s  rv

+e-*(t+.)-ßv(1 _ e*,) / e^+ßydW{x,y)+
Jo Jo

* P ro jec t su p p o rted  by N ational Science F oundation  of C hina an d  Zhejiang Province.
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/ t+s rv
J  eax+ßydW(x,y )=:  

=: &(*,6, v) + & ( * , t>) + &(*,s , u).
Hence

(3) E ( X { t  + s , v ) - X ( t , v ) ) 2 =

=  e - 2 « ( i + » ) - 2 ^ ( 1  _  e « )  2  | i  +  - i ^ ( e 2 “ ( ‘ + s )  -  l )  ( e 2 / J u  -  l )  j  +

+ ^ ( ‘ 2° ‘ -  4  ( 1 -  e' 2S”) + -  <«2" ' - ! ) ( ! - '■ M") =

= « V e - 2“<í+5)-2'?4 ^ ( l - e - 2'3" ) + ° ( s2) as
Z f j

for any v > 0. Put a2(t, s, v) = a 2s2e 2а(*+3) 2/3t', a2(s, v) = ^  (1 — e 2̂ ) . 

R emark 1 . We take a2(t ,s,v)  into consideration since

a(s,v) = o(cr(t,s,v)) as v —► 0

for any fixed t ^  0 and s > 0.
Consider the increment of X( t ,v )  for both t and v. Put

X  (R(t ,s ,v ,u))  := X ( t  + s, v + u) -  X ( t  +  s, v) -  X( t ,  v + u) + X(t,v) .

Similarly to (2) we have

X ( R(t, s, v, u)) = (1 _ eas) (1 -  eßu) X0+

rt+s rv-\-u
+ e - a ( t + s ) - ß ( v + u )  ( J  _  e o . )  /  /  e a r + / 3 W ( a : , i / ) +

J O  Jv

f t  +  S  [ V

+  e - a ( t + * ) - 0 ( i / + u )  ( j  _  еа , Ц  j  _  e 0 u )  /  /  y ) +

Уо Уо

/í+s ru-j-u
J  eax+ß4 W ( x , y ) +

+ e - a t - ß ( v + u )  ( x _  gßn'j J * +S J V e<**+0VdW(x, у )
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and

(4) E X 2(R(t ,s ,v ,u) )  = e- 2Q<-t+s)- 2ß(v+u)(1 -  eas) 2( l  -  eßu) 2

^ e - 2 a ( t + s ) - 2 ß ( v + u )  í  I  _  e Q s \ 2 _ J _ / e2a(t+s) _  < 2 ß ( v + u )  _  e 2 ß v \
'  ' AaßV ’ '  '

_^e - 2 a t - 2 0 ( v + u ) _ ] _ ^ e 2 a ( H s )  _  e 2 a t ^ e 2 ß (v+ u )  _  e 2ß v ^  _|_ 

+ e - 2 c t - 2 ß ( v + u )  ( 1 _ e ß v . j 2 1 ( e 2 a ( t+ s )  _  e 2crí^  ̂e 2 ß v  _  j  j  +

+2e_a(2<+Ä)-2/3(u+u) (1 -  eas) —— (e2“(<+s) _  e2at ) ( e2/?(u+u) _ e2/ ^  _|_ 

_^2e~a(2t+s)~2ß(v+u) ( 1 — eas) ( 1 — eßu) 2  ̂ ^c2ot(t-H) _  e2or<̂ ^ 2/Зи _ _

= — - ( e 2os — l) (1 -  e~2ßu) -fi o(su) as 5 —► 0, и —► 0.
4aß ' '  7

Put CTi(í, S, u )  =  cr(t,  S, u )  -fi (t( s , u ) ,  <72(t, 0 , u )  =  c(t, S ,  V ) Л <t ( s , V ).
At first, we consider moduli of continuity for one of two parameters.

T h eo rem  1. Suppose that ah is a function of h with ah — o(h~s) as 
h —► 0 for any 6 > 0 and fim ад > 0. Then we have

h~* 0

(5)
|A (i + S,u ) - X ( f , t ; ) |

lim sup sup sup ---------------1----------------------------1-------------
°<'>0 0^ a f, 0^ i ) i  Cr1( f , f i ,u ) |2 (log/l- 1 +loglog(7^1(í,/l,u)) j

=  1 a.s.

and

I X ( t  -fi h,v)  -  A (t,u)|
(6) lim sup ......... ................................................................

° ° - i- ah cr1(i,/ i ,u ) |2 ( lo g /i-1 -fi log log <7j1(t, h, v)) I

for any fixed v > 0.

= 1 a.s.
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R emark 2. By symmetry of X (t, n) in t and v, we can write alternatively

\X ( t , v  + u ) ~  X(t ,v) \
lim sup sup sup ----------- -------—----------= 1 a.s.
h~*° t>0 oüv^ahO<u^h U(t,V,h)

and

lim sup
h~*°Oiv^ah

\X{ t ,v  + h ) - X { t , v ) \  
v(t, v , h)

1 a.s.

where u( t ,v ,h ) is an analogue of the normalized factor in (5) and (6).
As to moduli of continuity of X(t,  v) for both parameters, we have

T heorem 2. Suppose that ah and bh are functions of h with Hm ahbh >
h—>-0

> 0 and Ch is a continuous non-increasing function of h with Ch 0 and 
ahbh = o((/ic/j)_ i) as h —>• 0 for any 6 > 0. Then we have

(7) lim sup sup sup sup
0<s^/i Ô v^bh 0<u^c/,

X  (R ( t , s , v ,u )) 

(2hchlog (hch)~l ) 2

= 1 a.s.

and

( 8) lim sup sup
X ( R ( t , h , v , c h))

= 1 a.s.
h—*0 0^tfíah0Üv^bh (‘2hCh log (heh) X) 2

2. Proofs

In order to prove our theorems, we need some exponential inequalities.

LEMMA 1. For any 0 < e < there exist h =  h(e) > 0 and C — C(e) > 
> 0 such that for any fixed t ^  0 and 0 < s ^  h

(9) P < sup
I X ( t  + s,v) -  X ( t , v )I

u>0 cr1{ t , s ,v ) (x2 + 21oglog<72 1(t ,s ,v))
> l + 2 e <

5í C exp
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P r o o f . Let 0 < i ? < l ,  £ > 0 b e  specified later on. Define vk and v'k by 

(T2(s,vk) = űk, к = fco, fco + 1 , . . . ,

where ко =

where к\ =

( 10)

( П )

\og(6s/2ß) 
log д

log<T2(t,s,u*0)
logi?

, and

a2(t,s,v'k) = dk, k = ku ki + 1 , . . . ,

. By the definition, it is easy to see that

vk —v 0 and vk —*oo as к  —► oo, 

v k, ^  v k0 ,

(12) 1 -  e- 2̂ o +1 ^ < 5 ^ 1 -  e~2ßvk°

and

(13) t?(l — e~2ßvk) = 1 — e~2ßVk+1.

(12) and (13) imply that for к k0

(14) e-2/*K-"k+1) = 1 _  (1 - i ? ) ( l  -  e~2ßVk) e2ßvk+1 ^  1 -  i —  

Moreover, obviously

1 - Ő
h

d - 6
1 - S '

(14)'
and

(13/

e- 2/3K + i-< ) = ű

1 _  e- 2K  =  1 -  I e- 2K +1 =
d

1 „-20v[*+l 1 1
) - b - i

.-2*4fc+1
t?v* ~ ’ V  y/fi

for provided that i) is close enough to 1 since

1 _  e"2/M+i > 1 -  (T2% + i > 1 -  e~2ßvko > S.
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From (2) we have

(15) P i sup | X ( f +  s , u ) - X ( M ) |
v>0 <7i(i,5,t;)(a:2 + 21oglog<72 1(t,s,v))

-  ^  I +  2e <

< V p !  sup ^  (1 _|_ 2 e ) ( x 2 + 21oglogi9 fc)2 l +
- t k 0 U+K«  ̂ a{t's^  J

+ sup ^ т г ^ - Г  = ( 1 + 2£)(a:2 + 21oglogi?-'c)2 } +
i=L 1 v'<v<v' ° ( t , 3 ,v)к—к\

+

“к = “̂ "к+1
oo (

Ы
к=к0 {vk+i<v^Vk 

00 (

+ Y p i sup

sup 1 P)| ^  £ (a.2 + 2 log log i)-k) A  +

k—k\ 'k=v<v'k+ 1

(7(5, U)

 ̂ *■’ Y-■ ^  U x 2 + 2 log log ky  I  +
<r(s,v) 2

+
OO fЫ sup

k=k0

|& (M ,p)l
a(s,v)

!&(*> *.*?)!

3s
= ( 1 + “TT ) (X'J + 21oglogi? ky  )- +

+ Y '  P  ̂ sup
Ыкг U ^ < 4 +i a(S

( l  + | ) ( * 2 + 21oglogtrfc) * j  =

= : X > -
j=1

Estimate p\ at first. By the assumption on Xo, for s small enough we have

oo 1
(16) pl = Y  P { (ea s - l ) |X 0| ^ ( l  + 2£)a5(x2 + 21oglogi?-fc)2} ^

k=k0
OO J

s  E  r{ i* » i (1 + e)(x2 + 21oglogi? fc)2| ^
k—ko

= é E e x p ( * 2 ^ x ° ) exp | ~ ^ ( i + g)(a;2+ 2iog iog ^  *)} =
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is cexp | - ^ ( 1  + £)x2 j  ^ 2  ^  cexp | - ^ ( 1  + £)x2 j  ;

here and in the sequel c stands for a positive constant, whose value is 
irrelevant. For P2 we have a similar estimation.

Consider рз. Let

f t + s  rv

H ® )=  /  /  eas+ßydW(x,y) ,
Jo Jo

which is a Gaussian process with independent increments and 

E Y 2{v) = ^ ( e 2a(i+s) -  l)(e20v -  1).

Noting (13) and (14), we have

(17)
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P 3

OO /

-  I ]  sup |y(t>)| ^
U — U -  U u i  < V < V l ck=k0 '■«*+l < v ^ v k

^  £ ee(t+.)+/J«fc+1(ea ._  1) - V ( s , t;fc+1)(a;2 +  21oglogt?-*)H £

OO

^ 2 ^  р { |У Ы |/ ( ^ У 2Ы ) ^  £- ( E Y \ v k ) ) ~ K a^ +0v^
k= k0

•{eas -  l ) _1cr(s,vfc+i)(x2 + 2 log log iT *)2} <i

OO f 2 Q I Л
^ C  ^ 2  exP |  —I--- e ~ 20(,vk -V k + l ) ( д . 2  _ |_  21oglogí?_fc) 2 I  ^

fc=ito

00 |-
^  с X ] exp < -

k~ko '■
2

8 a s(l — Í) (z + 2 log log cexp(—x2)

provided that s is small enough. For p4 we have a similar estimation by using 
(13)’ and (14)’ instead of (13) and (14).

We now turn to p5. Let

а д = Г Г г + й # ( х,л
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which is also a Gaussian process with independent increments and

E Z \ v )  = —̂ —e2at(e2as -  l) (e2ßv -  l ) .
4ap  v ' ' '

Similarly to (17) we obtain

OO r

(18) ps й  X ! P {  sup И  4  =
k=k0 ^vk+l<^vk

^  ^1 + у )  eat+ßvk+1(r(s,Vk+i ){x2 + 2 log log д~к) 21 ^

^  c exp |  — ̂  ^1 + ’de~2ß V̂k~Vk+'l \ x 2 + 21oglogi?_fc) |  £

^  c ]T  e x p | - | ( l  + y )  ^ —|( a ;2 + 2 log log i T ^ j  ^
k=ko

^  cexp

provided that d is close enough to 1 and 6 is small enough.
For ре we have a similar estimation.
Inserting these inequalities into (15), we obtain (9). Lemma 1 is proved.

Lemma 2. Let a > 0, 0 < e < There exist h = h(e) > 0 and C\ — 
= Ci(£) > 0 such that

(19)

P i sup sup sup
I X ( t  + s , v ) ~  X ( t , v )I

v>0 0ütüa0<s^h Ox(t,h,v)(x2 + 21oglog<72 1(t ,h,v))
—  ^  1 + 4e <

< Cia■ exp
{ - 4 4

P roof. Without loss of generality, we assume that x2 ^  2. 
Let к be an integer specified later on and

tj = (<2-?//i)/i/2J, j  — k , k +  1 , . . . ,
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for any t ^  0. It is easy to show that X( t ,v )  is almost surely continuous in 
(t , v). Hence we can write

(20) |X (t + * ,t ; ) -X ( t ,t ; ) | £  * ((<  + % * ;)  -  X ( t k,v)

o o

+  +  s )k+i+nv) -  X( ( t  +  s ) k + j ,  u) +

+

3= 0

У11X ( t k+j+i,fl) A ( t k+j,v)\. 
j=о

By definitions, for h small enough, к large enough and 0 < s ^  h, 

<r2{tk,(t + s)k - t k ,v) g  a 2(l + 2- k f h2e- M t - 2 - kh)-2ßv g

= ( l  +

* 2 ((< +  «)*-**>») ^ ( l - 2 - fc) ^ ( l - e- 2/3t' ) ^  ^ l + ^ < r 2( M )

and

v 2{(t + s)k+J, h / 2k+>+\ v )  ^ a 22-2{k+i+i)h2e- ™ - W v g  

£ 2-(*+>+1)а 2^}Л^ ^

<r2( h / 2 fc+J+1,v )  g  2 - ( fc+-'+1) A ( i  _ e - 2 ^ )  g  2 - ( * + i+ i ) a 2( M ) _
Z f j

From these inequalities and Lemma 1, we have

P < sup sup sup
X ( ( t  + s)k,v) - X ( t k , v )

v>0 0^f£a0<s^h a i ( t ,h ,v ) (x2 + 21oglog CT2 1(t,h,v))

-  c2“ i  exp j - i - i - i i 2} ,

— ^  1 + 3e <

sup sup sup £
к  ( (f + s)k+j+i ,v) - X ( ( t  + s)k+j, v)

» > o o q ^ o < s ^ FO (Ji(t,h,v){x2 + 2 log log a2 1(i,/j,?;))
> £ <
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°o (
^ c J V ^ + ^ e x p j  

j=о ^

(Í + £)e2 2k+j+ix2
8(1 + 2 e f }<

= cTie~*2 ^ 2 2(fc+J+1)exp(-£22fc+j+4) ^  c ^ e - r2 
i=o

provided that к is large enough, where we have used the inequalities bd ^  
^  b + d for any 6 ^ 2  and d ^  2. For the second series on the right hand 
side of (20), we have a similar estimation. Combining these inequalities with
(20) yields (19).

L e m m a  3.  Let a > 0, b > 0, 0 <  £ <  | .  There exist h — h(e) >  0, 
d = d(s) > О, C2 — 0 2 (e) > 0 such that

(21) P<  sup sup sup sup X ( R ( t , s , v ,u ) )  / ( su)2 ^  (1 + 2e)a; > ^ 
I 0 0<s</i 0<.u<d

ah f 1 + £ 2\
= С2м е х р Г ~ х I

for any x > 0.

P roof . Without loss of generality, we assume that x ^  \/2. 
Let к be an integer specified later on and

tj = [t2*/h]h/2*, v'j = [v2J / d]d/2\ j  = к, к + 1 , . . . ,

for any t ^  0, v ^  0. Similarly to (20), we write

(22) X ( R ( t , s , v ,u ) )  <; X ( R ( t k,(t + s)k - t k,v'k, (v+u) 'k - v ' k)) +

+ X ( R ( ( t  + s)k, (t + s) — (t + s )k, v'k, (v + u)'k -  v'k) ) +

+ X  ( R(tk, t -  tk v'k, (v + u)'k -  v 'k)) +

+ X ( R ( t , s , v k,v  -  vk)) + | X (R (t,s ,(v  + u)k,(v +  u) -  (v + u)'fc)) <

< +X ( R ( t k, (t + s)k -  tk, vk, (v + u)'k -  v'k))

+  +  e ) W ( *  +  s)k+j+i ~ (t +  - s ) j f e + j»vi  ( u  +  u)'k -  » * ) ) +
l=o
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~Ь |-^ ( R {tk + ji  tk+j+l t k + j i v k i ( V "h U)k Vk:))
j= 0

+

+  X (R (t ,s ,v 'k, v -  v * ) )  +  X ( ü ( í , e , ( i 7  +  tt)'fc, ( t ;  +  t i ) -  ( t > +  « )'* ))  

Furthermore, by recalling (4), as s —*■ 0 and и —*■ 0,

E X 2(^R(tk,(t + s)k -  tk,vk,(v + u)'k -  v'k)) )  ^  (1 +  2_fc)2su + ф и ) ,  

E X 2 ( д  ( (í + i ) fc+i, (t + 5)fe+i+1 -  ( t  + s)k+j, v'k, (t> + -  v'k)) =

= 2- ^ k+̂ s u  + o{2~ ^ +1h u ) ,

and
E X 2(R ( t , s, ф  v — ф )  = 2~ksu + o(áu).

Therefore, for large k, small s and u,

P< sup sup sup sup
\  ^  =  ̂  =  a  0 < S ^ / l  O ^ v ^ b  0 K l L ^ d

X  ( R(tk,{t + s)k - t k,v'k,(v + u)'k -  v'k)) /

l ( s u ) i  g  ( 1  +  ф  I S  2 “ ^  e x p  {  -  Ц ^ х 1 }  ,

Í OO
sup sup sup sup > X ( R(t  + s)t , •, 

O itZ a O K sih O iv ib 'K u id fr 'o '  ^

(t + s)k+j+l -  (Í + «)*+,-, v'k, (v + u)'k -  v'k)) 

/  ^ 2  (2_^ +1^ u ) 2 ^  ^
j = о J

oo A I
g J ^ 2 4(/:+j+1)| -  sup sup sup sup p \  X ( R ( ( t  + s)k+j,

J=o 0<t<a 0 < s < / i  0<v<b 0<u<d

( t  +  S ) k + j + 1 -  ( t  +  5 ) j t + i , Ф  (W +  U)'k  -  V'k ) ) >
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£ y ^ - J L £x2k+^ +1^ 2( 2 - ^ k+̂ s u ) <

s  í ! ; y V < ‘+ > « > e x p í - |U 2i« +v l  < Á
hd 1 200 J hd

3=0 y 3

For the second sum on the right hand side of (22), we have a similar estima
tion. As to X  ( R(t , s, v'k, v -  v 'k) ) , we have

sup sup sup sup
. 0<i<a 0<s<h0<г/<60<«<d

X(R( t , s ,v 'k,v  -  v'k)) /(ви)2 ^

< 24/c ab
hd

exp{2kx2}
For the last term on the right hand side of (22), we have also a similar 
estimation. Combining these inequalities with (22) yields (21).

P ro o f  o f  T h eo r em  1. First, we prove

(23)
,. |j r (< -M ,u ) -X ( i ,u ) |
urn sup sup sup sup ---------------1--------------------------- 1------------- j-

h~*° V>° °=‘=ал 0<s=h (Ti(t, h, w)|2(log h- 1 + log log a ~ \ t ,  h, t>)) } 2

<

^  1 a.s.

Without loss of generality, we assume that ah is non-increasing for 0 5Í h ^  1; 
otherwise we consider a*h — sup as instead of ah-

h^s^l
Let 0 < £ < | ,  1? = 1 — e. Define hj — d3. For j  large enough, using 

Lemma 2 we obtain

P
\X ( t  + s , v ) - X ( t , v ) \

sup sup sup ---------------- ---------------------------- ----------------J-
«>0 o^igafc>+1 0<*̂ Л> cn(<, hj, u )|2 (log  h j 1 + log log ^ ( t ,  hj, u)) } 2

> 1 + £ <

-  C i^ ±Lexp { -  (* + i )  1о§ л7 а} ^  c x{hj^  e/Hhl+E' 4 й
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which, in combination with the Borel Cantelli lemma, implies

lim sup sup sup sup
j - * o о v > 0  Ogi^ahj+1 0 < s ^ h j

|X (i + s ,v ) - X ( f ,u ) |

a i ( t ,  hj, u){2(log h j  1 + log log a 2 1(t,hj ,v)) |  

Furthermore

I X ( t  +  s, w) — X(t ,  v

— ^  1 + £ a.s.

lim sup sup sup sup ---------
h^o v>ooZtíaho<süh ^ ( í ,  h, u )|2(log h j 1 + loglog a ^ l {t ,hj ,v))  |

^ lim su p su p  sup sup I X ( t  + s, v) -  X(t,  u)| /
j-* o o  v > 0  0 ^ i ^ a h j  +  1 0 < s ^ h j

/■d<Ji(t, hj, u)|2(log h j 1 + log log cr“1^ , v)) } 2 ^

^  (1 -  £)_1(1 + s) a.s.

This proves (23) by the arbitrariness of e.
Next, we prove that for fixed v > 0

r  <;
2

\X ( t  + h , v ) - X ( t , v ) \
— ^  1 a.s.(24) lim inf sup ---------

0= ^ ал <Ti(t,Ä,t>) |2 (  log h~l + log logo-”1 (t ,h,v))  } '

Noting the fact that for fixed v > 0 and t ^  0,

a(t ,h ,v)  = o(cr(h,v)) as h —*■ 0

and recalling the proof of Lemma 1 we find that (24) is equivalent to

(25) lim inf sup ---------------——--— ^  1 a.s.
A_>0 0 ü tü a h cr(h, u)(21ogh-1 )2

Put ti — ih, i = 0 ,1 , . . . ,  ih [dh/h]. Since £3(f,-, h, v), i =  0 ,1 , . . . ,  ih, are 
independent, we have for any £ > 0

(26) P  < max |6 ( L ,M ) |
a ^h, u)(21og/i-1 ) 2

1 - 0  =
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■ n > - '
I &(*.-, M )1 т>1-4  \й

i=о <r(/i,v)(21og/i- 1 ) 2 

ih ( 1
% J J | l  -  e x p { - ( l  -  £)log/i-1 } I ^  exp( — z/j/i1-£) ^  exp(- h ~ £̂ 2) .

i=0

Let hk = к~г. (26) implies

|£з(*»М)|lim inf sup
ft- >0 Ogigah <r(h, u)(21ogh-1 )2

\b(U,hk,v)\

>

> lim inf max -  ^  1 — £ a.s.
*-*°° °=‘= ^  cr(hk, v ) ( 2 \o g h ^ ) i

Hence (24) is proved. Combining (23) and (24) yields the conclusion of 
Theorem 1.

P ro o f  of  T h eo r em  2. At first, we prove

X ( R ( t ,  s, v , и))

- 1 \  2
— fi 1 a.s.(27) lim sup sup sup sup sup

h ^ °  0 ^ t ^ a h 0 < s ü h 0 ^ v ü b h 0 < u ^ c h ( 2/lCfc log (/lC/j)_ 1 )

We also assume that ah and bh are non-increasing, otherwise we consider 
a*h = sup as and b*h -  sup bs. Let 0 < £ < д -  1 -  e. Define hj by

hjChj = W , j  — 0 ,1 ,__ Then by Lemma 3

sup sup sup sup
X ( R ( t , s , v , u ))

■( . . . .
(o ^ a hj+1 0 < i^ 0 ^ 6 hj+1 0<ugChj [ 2 h j C h ] \ o g ( h j C h j ) x)

-  s  1 +  2c } £

^ c2ahJ + 1 bhJ + 1

й c 2-

hjChj

( hj+ich)+1)~ e/2
hj C-hj

{ h j C h ] ) 1 +s  =  C r f U - W 2

which implies

lim sup sup sup sup sup
X ( R ( t , s , v ,  if))

<
J — KX> ° ü t ü * h j+1 0 < s g h j  0gvgbhj+1 0<uúch] (2h j C h]  log (h j C h ] ) *) 2
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^ 1 T ‘Is a.s.

Furthermore

X ( R(t , s, v , и))
lim sup sup sup sup sup ------------------------ j- ^

л.—0 0^<^ah0<»^/i0^v^6hj + 1 0<u^ch ( 2 /г С д  log (Лсд)“ 1) 2

X  ( R( t , s , v , u ))
^  limsup sup sup sup sup

j~*°° °^*^аЛ, + 1 °< vi i’hJ + i 0<u£chj ( 2 / i j C ^  l o g ( / l j C ^ ) _ 1 )

^  (1 -  £)- J (l + 2e) a.s

This proves (27) by the arbitrariness of e.
Next we prove

_ < 
-1\ 5

X(R(t , s,v,Ch))
-  ^  1 a.s.(28) liminf sup sup

h^ °  oítűahoívíbh (2hch log ( Л с д ) - 1 ) 2

Put t j  =  ih, i =  0 , 1 , . . . , * д  : =  [ а д / / г ] ,  Vj = j c h, j  =  0 , 1 , . . . , jh ■- [ Ь д / с д ] .  

Then for any given £ > 0,

(29) P  < max max
X(R(t i ,h,Vj , ch))

<h Jh

s ПП

» = ' = * . ( 2hok log 5

X ( 7Z( t , , h , Vj, сд))
1 -  P

t=0 j=0

»h Jh

-  > 1 -  £ <
(2/ich log(/icfc) J) 2

= nn{1_exp(_(1_£)log(/ic/i)-1)} =
i=0j=0

^  ехр{-гдуд(Лсд)1_е} ^  exp |-^ад6д(/гсд)_£|  ^  exp{ -с(/гсд)~£}

provided that h is small enough. Define hk by /гдсд* = k~l . Then (29) 
implies

X ( R ( t , h , v , c  h))
liminf sup sup

k~*° oütüaho£vübh (2hch\og(hchy 1)
>

- 1 \  2
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X ( R ( t , h k,v ,chk))
>> liminf max max1111 1111 UlCtW 111СХЛ J

fc"*°° ° - - h* °=3=Jh* (2hkchklog(hkchky ')>

i.e. (28) holds true. (27) and (28) together yield the conclusion of Theorem 2.
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