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TOPOLOGICAL COMPLEXITY OF GRAPHS
AND THEIR SPANNING TREES

R. NAHUM and S. ZAFRANY (Haifa)

Introduction

Let A' be a perfect Polish space. Let G = (V,E) be a simple graph
such that V A X. Let E = {(x,y) \{x,y] GEj. We call G analytic if

E is an analytic subset of the perfect Polish space AxA . Similarly, G
is cr-analytic if E belongs to the <r-algebra generated by all the analytic
subsets of X X X . Having assigned this topological complexity to G, one may
ask questions concerning the topological complexity of objects related to G.
In this paper we study spanning trees. The basic question is: Given the
topological complexity of G, how simple can a spanning tree of G be?

By Zorn’s Lemma, it is easy to show that every forest F in a connected
simple graph G can be extended into a spanning tree of G, but the proof is
not constructive. In Section 1 we show that if G is analytic, F is cr-analytic,
V (F) is analytic, and F has countably many connectivity components, then
F can be extended into a <j-analytic spanning tree of G (Theorem 1.2).

In Section 2 we study weighted graphs. A weighted graph is a triple W =
= (Glw, A) such that G = (V,E) is a simple graph, /1is an ordinal, and
w :E —y A For every B < A let G@ be the subgraph of G consisting of all
edges n G E such that w(u) = B. Here we are looking for a spanning tree
of G whose “total weight” is as small as possible. This makes a clear sense
in case that G and J1are finite. In the infinite case, Ron Aharoni [2] gave
the definition: T is a minimal spanning tree of W if T is a spanning tree of
G and if we replace one edge in T by a lighter edge, then T stops being a
spanning tree. First, we prove a purely combinatorial fact: every connected
weighted graph has a minimal spanning tree (Theorem 2.2). Then we prove
a topological version of this fact: Let W = (G, w, A) be a connected weighted
graph where G is an analytic graph, Ais a countable ordinal, and for every
B GA the graph G@is analytic and has countably many components. Then
W has a cr-analytic minimal spanning tree (Theorem 2.4).

In Section 3 we show that Theorem 2.4 is optimal. First, we show that
an analytic minimal spanning tree for W does not always exists. Second, we
show that if GB has uncountably many components for some B G Aor Ais
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2 R. NAHUM and S. ZAFRANY

uncountable then a n-analytic minimal spanning tree for W does not always
exist. Finally, we list some open problems.

0. Preliminaries

A graph G is a pair of sets (V,E) such that E C [F]2—{{x,t/} | x,y G
GF}. Elements of F are called vertices and elements of E are called edges.
We also denote F by V(G), and E by E(GO- A path in G is a finite sequence
p = (zo,x1i,... ,xn) of distinct vertices of G such that {x,-,x;+i} G E(g ) for
every i < n. A graph G is connected if for every u,v 6 V(G) there is a path
p= z,,_i,v)in G. This is an equivalence relation on V(G"), and
its equivalence classes are called connectivity components, or components,
for short. A cycle in G is a path p = (xo, xi,..., xn) such that n ~ 2 and
{xra X0} G TJ(G). A forest is a graph with no cycles. A tree is a connected
forest. A graph G'= (V', E') is a subgraph of a graph G = (F,E)ifV QV
and E' Q E. We also say that G extends G'. IfV = F then G'is a spanning
subgraph of G. If, in addition, G' is a tree then G' is a spanning tree of G.
By a simple use of Zorn’s Lemma one gets the following theorem.

Theorem 0.1. Let F be aforest in a connected graph G. Then F can
be extended into a spanning tree of G.

Let X be a perfect Polish space, i.e., a perfect separable complete metric
space. A set B Q X is called Borel if B belongs to the cralgebra generated
by all the open subsets of A; B is analytic if B is a set, i.e.,, B is a
continuous image of some Borel subset of some perfect Polish space; B is
co-analytic if B is a IlJ set, i.e., X —B is a set. We call B a-analytic if
B belongs to the g-algebra generated by all the analytic subsets of X .

Let R and R* be binary relations. We say that R* uniformizes R if
R* £ R, R* is a function, and dom(i2) = dom(f?*). The axiom of choice
implies that any binary relation can be uniformized by some function, but
it does not specify the function. In particular, if R »# Xx X, we would like
R* to have a not much greater topological complexity than R. This is true
in some cases. For example, The Kondo-Addison Uniformization Theorem
asserts that if R is a Il [ relation then it can be uniformized by a N\ relation
(see Kondo [4] and Addison [1]). Another theorem which we use in this paper
is:

Theorem 0.2. Let X, Y be two perfect Polish spaces.

(i) Every analytic relation R » X xY can be uniformized by a a-analytic
relation.

(if) There isaBorel relation R Q X xY such that R cannot be uniformized
by an analytic relation and dom (R) = X (Indeed, R can be chosen to be T a).

Acta Mathematica Hungarica 66, 1995



TOPOLOGICAL COMPLEXITY OF GRAPHS 3

For a proof of this theorem and for more extensive and detailed discussion
of this subject see Kuratowski [5] and Moschovakis [8].

1. Spanning trees in analytic graphs

Let X be a perfect Polish space. Every graph G = (¥, E) in this paper is
such that V ~ X. Let E = {(x,y) | {X,y} £ E }+ We call G Borel, analytic,

or (/-analytic if E is a Borel, analytic, or a-analytic subset of the perfect
Polish space X x X, respectively. Note that if G = {V,E) is an analytic

connected graph then V = {x \3y : (x,y) £ E} is also an analytic subset
of X.

Lemma 1.1. Let G be an analytic connected graph, and let To be a o-
analytic tree in G such that VV(To) is analytic. Then TO can be extended into
a o-analytic spanning tree T of G.

Proof. For every n £ N, define by induction two analytic sets Vn ~ X
and Rn2 X x X . Let Vo = V(Tb). For every n £ N, let

kn+i —VnUjx @YY £ VnA{x,y}£ E(G)] ],

Rn = {(x,y) 1{x,y} £ E(G), x £ Vn+l, y £ Vn}.

By Theorem 0.2(i), each Rn can be uniformized by a cr-analytic relation
Rn Q Rn. For every n, define a cranalytic relation En:

En= {(x,y) I(x,y) £ A* 1x "~ Vn}.

Let T be the subgraph of G whose edges are:
E(M) =EMO)U (I {{x,y} I(x,y)E En}
KEN

Then T is a-analytic and extends To. It is left to show that T is a spanning
tree of G.

1 T has no cycles: Suppose that (xo, x\, ..., Xk) is a cycle in T. Since To
is a tree, one of the edges in the cycle does not belong to E(To). Therefore,
without loss of generality, we may assume that (xo,xjt) £ Eno for some no £
£ N. Hence, x0 £ Vno+l - Vro and x* £ Vno. This implies that (x0,xi)  Emo
(since T*0is a function), (xo, xj) ™ En for every n ¢ no (since xo £ V,04.i —

- Vno), and {x0,xi} ~ E(TO) (since x0 0 Vo 2 VO = V(TO0)). Hence, it
must be that (xi,xq) £ Eni, for some n\ £ N. Then n\ > no, since n\ * w4
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4 R. NAHUM and S. ZAFRANY

implies that x0 G Vni * V,,0, in contradiction to x0 £ Vno. Continuing like
this, we get no < n\ < w, < eee< n* such that (xj,Xj_1) G EI], for every
0 <j i k. In particular, (xk,Xk-i) G Enk, which implies x* ~ Vnk. But
nk > n0 implies that Xk * V,,0. This contradicts Xk G Vno.

2. T is connected and it spans G: From the connectivity of G it follows
that V(G) = UneN “n* Letx G V(G) and n GN. Call n the rank of x if nis
the least such that x GVn. By induction on the rank of x G V(G), we show
that there is a path in T from x to some r G Vo- This is obvious for n —0. If
x is of rank n+ 1then (x,y) GRn for some y G Vn. Hence, (x,y') GR* for
some y' GVn. But x $ Vn, hence (x,y') GEn, so {x,y'} G E(T). The rank
of y' must be ra, hence by the induction hypothesis there is a path (y',..., r)
in T where r GVo- Then (x,y',..., r) is a path in T from x to r.

This argument shows that V(T) = V(G), and that T is connected (since
Vo = V(To) and To is a tree). O

Theorem 1.2. Let G be an analytic connected graph. Let F be a o-
analytic forest in G such that V(T) is analytic and F has countably many
components. Then F can be extended into a o-analytic spanning tree of G.

Proof. By Theorem 0.1 G has a spanning tree T which extends F.
Choose r G V(T), and for every component V(T) of F, choose pT to be the

shortest path in T from r to V(T). There is only one such path, since T
is a tree that extends F. Let E(jP) and V(T) be the sets of all edges and
vertices, respectively, that belong to one of those paths. There are at most
countably many such paths and each path is finite, hence E(T) and V(T)
are countable sets.

Now let To be the subgraph of G whose edges are E(T3) = E(T) U E(T).
Then V(To) = V(T) U V(F). Obviously, To is a <r-analytic tree in G such
that V(To) is analytic. By Lemma 1.1, To can be extended into a cr-analytic
spanning tree T of G. But Tgextends F, therefore, T also extends F. O

2. Minimal spanning trees in analytic weighted graphs

Our main goal in this paper is to prove the topological analog of the
next purely combinatorial theorem. For simplicity, we divide the task to two
parts. First, we prove the purely combinatorial theorem. Second, we prove
the topological version thereof by going through the first proof and by taking
care of the topological complexity part.

Definition 2.1. (i) A weighted graph is a triple W = (G,w, A), where
G is a graph, Jlis an ordinal, and w : E(C) —»/1is a weight function (where
Ais viewed as the set of all ordinals a < A).

(if) Let G = (V, E) be agraph, and let ti,t)G [V]2. We denote by G(u/v)
the graph whose edges are (E(0) —{u}) U {u}.

Acta Maihematica Hungarica 66, 1995



TOPOLOGICAL COMPLEXITY OF GRAPHS 5

(iii) Let W = (&,ny, /1) be a weighted graph. A minimal spanning tree of
W is a spanning tree T of G such that for every v G E(G) —E(T) and n G
€ E(T), if T(u/v) is a spanning tree of G then w(u) i w(v). Especially, if
G and J1are finite, then a minimal spanning tree is one whose total weight
is smallest. Similarly a maximal spanning tree is defined.

(iv) Let W = (G, w, A) be a weighted graph. For every & G A we denote
by GR and G&the subgraphs of G whose edges are:

E(G?) = {«G E(G) Iw(ti) » R},
E{GR) = {u G E(G) Iw(u) = R}.

We denote by CB the collection of all components of GR where each compo-
nent is viewed as subgraph of GR, and for every a G and K GCR let

CalK = {# GCa lif is a subgraph of K}.

Theorem 2.2. LetW = (G, w, A) be a connected weighted graph. Then
W has a minimal spanning tree.

P roof. By transfinite induction on § G A we construct a spanning tree
Tk forevery K GCRB such that ifa <8 and H G Ca\K then I# isa subtree of
Tk . First, let /3= 0 and let K GCo- By Theorem 0.1, K has a spanning tree
Tk . Next, suppose B —a -f 1 and let K GCR. By the induction hypothesis,

there is a spanning tree Tu for every H GCa\K. Let Fa — U{TH IH G
GCa\K}. Every Hi,H2GCa\K are vertex-disjoint, hence, T4, and Ta2 are

vertex-disjoint. Therefore, Fa is a forest in K. By Theorem 0.1, Fa can be
extended into a spanning tree Tk of K. Finally, suppose that [ is a limit
ordinal and let K GCR. For every a <R, let Fa be as above. Then Fa is
a forest in K, and if a < a' <R then the induction hypothesis implies that
Fa is a subforest of Fai. Hence F = (Ja</?Fa is a forest in K. By Theorem
0.1, F can be extended to a spanning tree Tk of K.

Now, for every B GAlet FR = (J {Tk \K GCR]. Then FR is a forest in
GB, and if a <R then Fa is a subforest of FR& (it follows from the way the
Tk 's were constructed). Hence F = 1J/?<AFR is a forest in G. By Theorem
0.1, F can be extended into a spanning tree T of G.

We claim that T is a minimal spanning tree of W. For suppose that v G
E E(E?) —E(T), n G E(T), and T(u/v) is a spanning tree of G. We need
to show that w(u) fi w(u). Let a = w(v) and B = w(u). Assume that a <
< 3 toward a contradiction. Let H G Ca be such that v G E(H). Then
Ty Q Fa QT. Therefore Tfj(u/v) ~ Fa(u/v) ~ T(u/v). Hence Tu{u/v) is
a forest in H. But u,v £ E(Ta) (since w(u) = B >a and v £ T), which
implies that Tfj(u/v) = Th U{u} 3 TH- A contradiction to the fact that TH
is a spanning tree of H. O

Acta Mathematica Hungarica 66, 1995



6 R. NAHUM and S. ZAFRANY

Before we turn to the topological version of the last theorem, we prove a
lemma that seems to be a converse of it.

Lemma 2.3. LetW = (G, w, A) be a connected weighted graph and let T
be a minimal spanning tree of W. Then for every 8 £ Aand every K £ CRg,
T MK is a spanning tree of K .

Proof. Toward a contradiction, assume that there are R £ Aand K £
£ CRsuchthat T —T MK is not a spanning tree of K. Then there is an edge
v = {&a;0,£i} 6 E(A) —E(T) such that T U{n} is still a forest. However,
T U{u} has a cycle that contains the edge v. Let ¢ = (xo,x\,..., xn) be this
cycle. For convenience, denote xn+\ —xq. Let 1~ j ~ n be the least such
that £ E(A"). There is such a j for otherwise c is a cycle in K
and therefore cisacycle in (T U{n}) MK = TU {u}, but T U{n} is a forest
— a contradiction.

Clearly, T[{xj,Xj+i}/v) is a spanning tree of G. Now, {a;j,£j+i} "
A E(AY) while Xj\(K) (since {xj_i,Xj} £ E(A"). Therefore, {xj,xj+i}
N E(GR) Hence w( {xj, Xj+i}) > B, while w(u) » . A contradiction to the
minimality of T. O

Now we proceed to the topological version of Theorem 2.2. The proof
of Theorem 2.2 can be described in terms of a greedy algorithm. The way
we constructed T was straightforward without any special obstructions. But
in order to obtain a cranalytic T, one cannot use a greedy procedure. The
choice of Tjc for every K £ CR cannot be arbitrary and has to be made
according to Theorem 1.2.

Theorem 2.4. Let W = (G,w, A) be a connected weighted graph where
G is an analytic graph, A is a countable ordinal, and for every B £ A the
graph G& is analytic and has countably many components. Then W has a
cr-analytic minimal spanning tree.

Proof. For every B £ A we have the following facts.

EGR - Ua*RGa.

2. GR is an analytic graph (by Fact 1).

3. QR is countable (by Fact 1).

4. For every a <3 and K £ CB, Ca\lv is countable (by Fact 3).

5. For every K £ CB, IC is an analytic graph. The proof is: For every
n £ N, define by induction a set En C X xX as follows: Eq= {u} where
n £ E{K) is arbitrary, and

En+i —E{GR) D {{x, y} 13z : {y,z} £ Enj.

Then E(A) = U, GNAn and, by Fact 2, A' is analytic.

Acta Mathematica Hungarica 66, 1995



TOPOLOGICAL COMPLEXITY OF GRAPHS 7

We follow the proof of Theorem 2.2. For every K E C?, we construct a a-
analytic spanning tree Tk using the same transfinite induction as in Theorem
2.2. First, let B = 0 and let K E Co- By Fact 5 and Theorem 1.2, K has a
cranalyti'c spanning tree Tk - Next, suppose that 8 = a + 1and let K E CR.
By the induction hypothesis, every H E Ca\K has a cranalytic spanning tree

Th - Therefore, by Fact 4, Fa = \J {TH \H E Ca\K } is a cranalytic forest in

K with countably many components and ~V(Fa) is analytic, since V(-Fa) =
= U {V(7tf) IH ECa\K] and, by Fact 5 V(TH) = V() is analytic for
every H E Ca\K. Therefore, by Fact 5and Theorem 1.2, Fa can be extended
into a a-analytic spanning tree Tk of K.

Finally, suppose B is a limit ordinal and let K E C3. For every a <R, Fa
is a cranalytic forest in K with countably many components and V(Fa) is
analytic. Therefore, F = \Ja<R Fa is a cranalytic forest in K with countably
many components and V(-F) is analytic (since 3 is countable). Therefore by
Fact 5 and Theorem 1.2, F can be extended into a cr-analytic spanning tree
Tk of K. This finishes the construction of the cranalytic trees Tk -

Forevery B E A by Fact 3, FB = (J {Tk \ K E CR] is a cranalytic forest
in G/j with countably many components and, by Fact 5, \{FR) is analytic.
Let F = U/E\FR. Then F is a cranalytic forest in G with countably
many components and \{F) is analytic (since J1is countable). Therefore
by Theorem 1.2, F can be extended into a cranalytic spanning tree T of G.
By Theorem 2.2, I is a minimal spanning tree of W. O

Remark 2.5. Theorem 2.2 does not hold for maximal spanning trees as
the following simple counterexample shows (Fig. 1). However, Theorem 2.4
is still true for a maximal spanning tree if /1is a finite ordinal: define W =
= (G, w7, A) where w'(u) = A—w(u) —1 for every v E E(G), then a minimal
spanning tree of W is a maximal spanning tree of W .

Fig. 1
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8 H. NAHUM and S. ZAFRANY
3. Optimality

In this section we show that Theorem 2.4 is optimal. First, we show that
an analytic minimal spanning tree of W does not always exists. Second, we
show that if has uncountably many components for some B G /1or Jlis
uncountable, then a g-analytic minimal spanning tree of W does not always
exist.

Theorem 3.1. Let X be a perfect Polish space. There is a Borel con-
nected graph G = (X, E) that has no analytic spanning tree.

Proof. Let xq g X and let A, B Q X be two disjoint perfect Polish
subspaces such that xo ®* AUB. Let R AxB be as in Theorem 0.2(ii).
Define G to be the graph whose edges are:

E(G) = {{xy) I(x=x0and y£ A) or (k,y) GR} m

Then G is a Borel connected graph (in fact, G is Ea) such that VAG) = X
(since dom(A) = A). We claim that G does not have an analytic spanning
tree. Suppose, for contradiction, that T is an analytic spanning tree of G.
For every b GN, define by induction an analytic set Rn Q X x X as follows:

Ro = {(kx0) Ix £ B},
Rn+l = {(xy) 13z : (y,z) ERN}-

Let R* = (JnEN A2n+i« Then R* is analytic and we leave it to the reader to
check that R* uniformizes R. A contradiction to Theorem 0.2(ii). O

Now, let W = (G,w. A) where G is the graph defined in Theorem 3.1
and w is a constant function. Then W satisfies the conditions of Theorem
2.4, but from Theorem 3.1, W has no analytic minimal spanning tree.

Let C be the Cantor space, that is: C = {x \x :N —={0,1}} with the
metric d(x,y) = Ix(n) ~ ¥(n)|*2-"-1. Clearly, C is a perfect Polish
space. For every » y E C define xx ~ vy iff x and y differ in at most finitely
many coordinates. Clearly, this is an equivalence relation with uncountably
many equivalence classes. The following two well-known theorems are needed
(see Moschovakis [8]).

Theorem 3.2 (Vitali). If a set A Q C contains exactly one element
from each equivalence class of ~ , then A is not measurable.

Theorem 3.3. Every analytic subset of C is measurable. Therefore,
every a-analytic set is measurable.

Theorem 3.4. There is a Borel graph G = (C,E) and a Borel forest
F =(C, E") in G with uncountably many components such that F cannot be
extended into a a-analytic spanning tree of G.

Acta Mathematica Hungarica 66, 1995



TOPOLOGICAL COMPLEXITY OF GRAPHS 9

Proof. Define F = (C,E") to be the graph such that {x,y} E E' iff
there is n 6 N such that

(i) For every r < n, x(i) = y(i) = 0.

(i) x(n) = 0and y(n) = 1.

(iii) For every i > n, x{i) = y(i).
Then F is a Borel forest (in fact F is Ta). The components of F are the
same as the equivalence classes of ~ . Therefore, F has uncountably many
components. Now, define G = (C, E) to be the graph whose edges are:

E=E'U{{0,y}\0dyec}.

Then G is a Borel connected graph (in fact G is F,,) and F is a forest in
G. We claim that F cannot be extended into a cr-analytic spanning tree of
G. Assume by contradiction that T is a cr-analytic spanning tree of G that
extends F. Let

A= {0} U{x EC I{x, 0} E E(T) and x %0} .

For every x E C, let F[x] be the set of vertices of the component-tree of
F to which x belongs. Clearly, A MF[0] = {0}. If x £ F[0] then there is
a path (xo,..., X,,,0) in T such that xg = x. Clearly, xr E F[x] for every

r~ n. Therefore, x,, E AN [X] (since {x,,6} E E(T)). We claim that
A MF[x] = {xn}. For if there is x,, @ y E A NMF[x] then there is a path

(X,,, Ma, ®**, yn,y) in F and (xn,yi,...,yn,y, 0) would be a cycle in the tree
T.

Therefore, A is the same as in Theorem 3.2. Hence, A is not measurable.
But A is cr-analytic (since T is), therefore A is measurable. A contradiction.
O

Now, let W = (G,w, A) where G is the graph defined in Theorem 3.4
and w(u) = 0ifv E E(F), w(u) = 1ifv £ E(F). Then W satisfies all the
conditions of Theorem 2.4 except the condition that GO has countably many
components for each B E A (since G° has uncountably many components).
But from Theorem 3.4, W has no cranalytic minimal spanning tree, since
every minimal spanning tree T must extend F: otherwise, suppose that n E
E E(F) —E(T). Then E(T) U {u} has a cycle. Let v be an edge in this cycle
such that v~ E(F) (since F is a forest). It is easy to see that T(v/u) is a
spanning tree. But w(w) = 0 < w(v) = 1. A contradiction to the minimality
of T.

Finally, let W = (G, w, JT) where G is as in Theorem 3.4, A= 2" + 1,
w(u) = 27 iff v 0 E(F) and w(u) = w(u) iff n and v belong to the same
component-tree of F. Then W satisfies all the conditions of Theorem 2.4
except the condition that Ais countable. But from Theorem 3.4, W has no
c-analytic minimal spanning tree, since every minimal spanning tree T must
extend F: let To be a component-tree of F. It is easy to see that Tg E CRO
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10 R. NAHUM and S. ZAFRANY: TOPOLOGICAL COMPLEXITY OF GRAPHS

for some Bo £ A By Lemma 2.3 T NTo is a spanning tree of To. But Tois a
tree, hence T MTo = To- Therefore ToQ T.

Problems. 1. Suppose G = (X,E) is a co-analytic connected graph.
Does G have a J-analytic spanning tree?

2. Suppose G = (X,E) is a co-analytic (or even Borel) connected graph.
Does G have a co-analytic spanning tree?

3. A graph G is said to be regular if all of its vertices have the same
degree. Let G be a regular connected graph. Andersen and Thomassen [3]
used the axiom of choice to show that G has a regular spanning tree. One
may ask: If G —{X,E) is analytic (or even Borel), does G have a er-analytic
regular spanning tree?
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ON THE CONTROLLABILITY OF A STRING
WITH RESTRAINED CONTROLS

. JOO and N. V. SU (Budapest)

I. Introduction

Consider a string along the segment [0,1] fixed at the two ends 0 and 1
and controlled at some point 0 < a < 1 with a function u(t). If we denote
by y(x,t) the distance of the point x of the string from the equilibrium state
at time t, then we have the equation

(1/a) p(x)ytt = yxx + 6(x - a)u(t), xe (0,1), />0
with boundary condition

(1/b) 20,0 = y(I,t), t>0

and with initial conditions

(2) y(x,0) = yo(x), yt{x,0) = yi(x).

Here p G C2[0,1] is the linear density of the substance, p(x) >0(0 * x 1),
the control u(-) e I'm C Z2(0,T) belongs to some subset {lt in the space
L2(0,T).

The control problem of this system was investigated by many authors; see
e.g. [1, [2], [3], [4]. For the controllability (investigated by A. G. Butkovskii
[2]) the question is to find conditions for the position of the point 0 < a< 1
that for any initial conditions

Y(x,0) = yo{x), yt(x, 0) = yi(x)

given in some function space, the string can be relaxed in a finite time
T < 00, i.e. the control u(-) can be given such that

y{x,T) = yt(x,T)=0.

The reachable movement states question (investigated in [3], [5], [6] in recent
years) refers to the structure of the reachability set Da(T) := 1 (y(-,T),

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



12 X JOO and N. V. SU

yt(;T)) :u(t) runs over some space of controlsj. Many interesting results

were obtained by using the method of Riesz’s bases. It should be noted that
until now the authors investigated this problem only in the case when the
controls u(-) run over the full space of controls. In this paper we shall be
concerned with the controllability of the above system in the case when the
controls belong only to some subset of the space of controls. We emphasize
that for investigating this system we will use the so called discretization
method. This method can be seen in some previous papers [7], [8], [9].

Il. Definitions, notations

We need the following notations and definitions.

Definition 1. We say that y £ Z2([0,1] x [0,T]) is a solution of (1/a)-
(1/b) if forany z £ C2([0,1] X[0,T]) such that 2(0,f) = z(I,t) —0 QO #n t "
aT), z(-,T) = zt(-,g)g= O the equation

y(pzt ;) dx dt

holds.
As we know (see I. Joo [6]) for every yO £ HI(0,1), y\ £ Z2(0,1), p £
£ C20,1), p > 0 and any control u(-E}DF, L2(0,T) the system (l/a), (1/b),

(2) has a unique solution y(x,t) = ~ | cn{t)vn(x); this sum converges in
n=

Z2((0,1) X (0,T)), further the series can be differentiated term by term.
Moreover

|
—£M0cos\JAnt 4 0o + vn(a)\] u(ry SMYAN(t- 1)
y/*n
where
® ®
Yo{x) = c,0ih(x), vyi(x) = cnovn(x).
71=1 =1

Here {u,} are the solutions of the boundary value problem

vn(x) + \ np{x)vn(x) =0, v, (0)= u,(l) =0.

Ada Mathematica Hungarica 66, 1995



ON THE CONTROLLABILITY OF A STRING 13
Define the following reachability set:
Da(T):= {(y(.,T), yt(;T)):uelL\0,T)}
and the corresponding set in /2:
Ba(t):= {[*Kcn(T) +icn(T)y.uE X2(0,T)}.

From I. Joé [6] and M. Horvath [5] we know that there exists

(yG:T).yt(..T) ~ (y/Ken(T) +icn(T))

which is an isomorphism between /2 and H1(0,1) © 1 2(0,1) for every a and
T. Soinstead of investigating this system in H1(0,1) © L2(0,1) we can do it
in 2and as we shall see later this gives us many advantages in our work.

Definition 2. For a given controlled set ilj C L2(0,T) we define
Da{T,nT) = {(y(;T),y,(;T)) GH\0,1)©L \0,1):uGDr},
Ba(T, SIT) := {(Anen(T) + icn{Tj) ~ r GI2:« GIl,},
Sa(T,IT) := {(20,21) 6 Hr(0,1) © X2(0,1): for every e >0
there exists n GEIT such that . Tym;T)) < 5}.

and
Sa(Qoo) TU Sa(T,QT).
>0

Remark. The set Sa(T,fij) is an approximately null-controllability set
in 410, 1) ©T2(0,1) after time T under controls u G Dr, 5a(il0) is an
approximately null-controllability set after unbounded time.

We say that the system (l/a)-(1/b) is approximately locally controllable
(ALC) if

(0,0) G int 5a(iioo)

and approximately globally controllable (AGC) if

A1(0,1)©X2(0, 1) sSeiiioo).

Acta Mathematica Hungarica 66, 1995



14 1.J0O and N. V. SU

I11. Discrete-time systems

In what follows we will show some properties about the controllability of
discrete-time systems (see N. K. Son [10] and N. V. Su [9]). Consider the
discrete-time system

(A, B, I): xn+i = Axn+Bun, xnGX, unGii CU,
where X, U are Hilbert spaces; A GL(X,X), B GL(U,X), ) is an arbitrary
subset in U for which 0 G I2

Let Un = UxUx...xU, where the direct product is taken n times,
and let us consider the operator Fn:Un — X defined by

Fn(«<">) = An~1Buo + An~2Bu\ + ... + Bun-1

where = (uo, ,..., m, i) GUn. Clearly,
Fn(Un) = An~IBU + An~2BU + ...+ BU,

and
F,,(iT) = An~1Bil + An~2BQ + ... + BU,

where ilI" = 11 Xi1x ...X 1 (Here the direct product is also taken n times.)
We define the approximate controllability set as

S,.(il) == {x GX:-Anx GFn(ii")}

and
S(u) := Ulsn(ii).

We remark that

Sn(Q) := |x GX: forevery e >0 thereexists u* GIi"
such that  1rX+ ,P,,(n("))| <£}
and
5(ii):=<xGX: forevery £>0 thereexists n and
<) Gii” such that  Anx + Fy(u ()| < £|.

Acta Mathemaiica Hungarica 66, 1995



ON THE CONTROLLABILITY OF A STRING 15

DEFINITION 3. We say the system (A,B, D) is approximately locally
controllable (ALC) if

0 G int5(D)
and approximately globally controllable (AGL) if

X = 5(D).

Let further
5n(D) = {xe X :-Anx € Fn{ln)}
and
N GDA
5(D) = U Sn(Q).
(D) 1 Q

We say that the system (A,B, D) is locally controllable (LC) if
0 G int 5(D)

and globally controllable (GC) if X = 5(D).
We denote the spectrum of the operator A by cr(A).

Assumption 1. a(A) c {AgC:|A =1}, ||A| ™ L1
Now we are in position to state the following theorem.

Theorem 1. Consider the system (A,B,SIl) with the condition that D
is convex and 0 G D. Assume that Assumption 1 is fulfilled. The system
(A,P,D) is AGC if and only if

(a) there is no eigenvector x* of A*, A*x* = Ax*, A> 0, such that
(x*, BWL) " 0,

(b) there is no eigenvector x* of A*, A*x* = Ax*, A is complex, such that
(x*, K2 = 0.

Proof. Necessity. Assume that the system (A,B, D) is AGC. In order
to prove the conditions (a) and (b), we assume the contrary: let us suppose
there exists A> 0 such that A*x* = Ax* and

(x*, jBD) * 0
or there exists complex Asuch that A*x* = Ax* and

(x*,BM) = 0.

We show that both cases lead to a contradiction. We can assume, without
loss of generality, that |pi*|| = 1. Let xq be a point in X such that (x*px0) =

Acta Maikematica Hungarica 66, 1995



16 1.J00 and N. V SU

= 1. Then for any 6 >0 and any trajectory {x,,} of (A,B,Q) steered from
X0 we have, in both cases,

(x*, xn+1) = (x*,An(6x,)> + <x* An~1BuOQ) + ... + (x\ Bun-i) =
Mn M
= 6Xn(x\x0) + X! An- /(x*,Diii_1) = 6\n+ n~{(x\B L, -1)-
i=i t=i
Since 11I= 1for all AGcr(A) (from Assumption 1) it follows from the above
equality that

I*n+i|| ~ 1(**,x,,+i)| £ <GAn = 6 forall n.

Thus, in any 26 neighbourhood of the origin there exists a point 6x0 which
cannot be steered to the 6/2-neighbourhood of the origin. This means that
the system is not AGC, a contradiction.

Sufficiency. Assume that for the system (A, B, O) the conditions (a) and
(b) are fulfilled. We will first show that

5(fi) = A.

Assume the contrary: there exists a point z G X for which r ~ S(Q,). Since
a point 2 is a compact set and S(il) is a closed, convex set (because of the
convexity of Il), we have by the Separation Theorem that there exists a
hiperspace which separates the point 2 and the set 5(ii), that is there exist
a GR and /* G X* such that

(3) S(n)C {x eX:f*{x)"a}
and
4) f*(z) > a.

Consider the following space:
1°={iG I|: /*(*) = 0}.
As we known X° is a subspace of X and codimX0 = 1. Therefore
X = X°®X1

(here ® denotes direct sum) and dimX1= 1. Let P:X-~ X1 be the
projection on X 1along X°. Let B\:U —%X 1 be defined as

B\U —PBu, nGU.

Ada Mathematica Hungarica 66, 1995



ON THE CONTROLLABILITY OF A STRING 17

For x = x° + x1, where x £ X, x° £ X°, x1£ A1lwe define Ai: Al —Al1
as PA —AIiP, that is PAx = AiPx for all x £ A" Clearly, A\ and Pi are
linear, bounded operators. Consider the following system:

(Ai,Bi,Q): x*+1 = Axx\ + Bxun, x* £ A'l, m,, £ OCT.

We show that the system (Ai,Pi,fi) is LC. Assume the contrary. Then by
Theorem 2.2 of [11], either there exists a non-zero eigenvector / of A™ with
an eigenvalue A> 0 supporting Biii, or there exists a non-zero eigenvector
/ of A\ with a complex eigenvalue Ad 0 orthogonal to Bii7. We show that
both cases lead to a contradiction. Note first that

(f,BIU) = (/, PBu) = (P*f, Bu)
and
A\P*f) = (PA)Y*f = {A\P)*f = P*A*J = \(P*f).

Since P is onto, ||[P*/|| ™ a]|/|| for some a > O (see Theorem 4.15 of [12].)
Consequently, under the above hypothesis, P*f is a non-zero eigenvector of
A* supporting, in the first case, or orthogonal, in the second case, to BSI.
This contradicts conditions (a) and (b). So the system (Ai,J9i,il) is LC.
Since [|A|| < 1 (by Assumption 1), the system (Ai,f?i,il) is GC, too (see
Lemma 1 of [13]). It means that for this system (Ai,Pi,fi) S(El) = X 1.

This contradicts (3) and (4), and shows that 5(ii) = X . So for an arbitrary
X £ A and for any e > 0 there exist n £ N and y £ Sn(Q) such that

lk- 2L i
Since y £ 5,,(ii) there exist wy, uy,..., un-\ £ i such that
IAny + An 1Buo+ A7 2Bu\ + Pun_2107

By Assumption 1 we have

[[A"X + A”"1Bu0+ An~2Bu\ + ... + Pun_!lII =

lIAnX - Any + Any + An~1BuO+ An~2Bu\ + ... + Bun_x\*

=«

KAn(x - y) + Any + ATt 1Bu0+ An~2Bux+ ... + Bun-X| *
AIAIMX - YW+ IIAny + An~1BuO + An~2Bu\ + ... + Pt»,_1|| *

This means that the system (A,P,0) is AGC. This completes the proof of
Theorem 1.
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18 1.JOO and N. V. SU

P roposition 1. Assume that for the system (A, P, fi) Assumption 1 is
fulfilled. Then the system (A, B, ii) is AGC if and only if it is ALC.

Proof. The necessity of the Proposition is immediate. Assume that the
system (A, 5, fi) is ALC. Since 0 £ intS(ii), S(fl) contains some ball BR.

Taking a number N such that < 1for an arbitrary x £ X and for any
e > 0, we have that

A~(~) £ By for Jit=0,1,2 —
Since £ 5(D), we can find uj £ i, r=1,2,..., u such that
An'(~)+ A ni-1Bu\ + ...+ Bufi < \

Analogously, using the fact that Ak(jj) £ S(Q) for all kK, we can write the
inequalities

N"2(ATL(IO ) + Am*-1Bu2+ ... + BubR

and

ANNAgnr+Tb+...+n»-! + AnN~IBu” + ...+ Bu%N
where u\ £ 12, j = M, ras3,..., njy, i = 1,2, K= 23,..1V. De-
note p = n\ + n2+ ... + ngr. Applying the operators Ap_ni, Ap-ni_n2,
- Ap-ni_n2_7- "M in turn, to each of the above inequalities, except

the last one, and summing then up, we obtain
NApx + Ap~1Bu\ + ...+ Ap~ni Buhi + Ap~ni-'Bu\ + ... + Ap~n1“"2Bu@+
+...+ ATF“1Bv? + ...+ Bu%\ iie.

This means that the system (A, B, 12) is AGC. The proof is complete.

Acta Mathematica Hungarica 66, 1995



ON THE CONTROLLABILITY OF A STRING 19

IV. Discretization

In this part we introduce the discretization method. We will show that
the above system described by (1/a), (1/b) and (2) is equivalent with some
discrete-time system in the sense of the controllability.

Let SI C TU L2(0,T). An u(-) GSl is an admissible control if Sl has the

>0 w

following properties:

(a) SITTL2(0,1) is convex; denote Sl := SIML2(0,1),

(b) 0 G i,

(c) if u(-) GSlthen «m) GL2(0,1) defined by u,(0) = u(i +0),0 G [0,1]
is such that mr G Sl for each r GN.

Let us return to the system (l/a), (1/b) and (2). It is easy to see that

VKcen(T) + icn(T) = —ic,, e WXT

From this we have

y/Ken(T + 1) + icn{T + 1) = crsO/A ~-IVA (r+1>-

|
:%“iy/Xn krm)/ﬂ;_lne—'ry/Xn‘T FC/I_LOe—F\/Xn-T
VM J *) +mx(o <T+
0

-e (yfK.cn{T) + ic”T)) + ivn(a)\]lu(T +r)e t) dr.
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20 1. J00 and N. V. SU
Consider the following discrete-time system in /2 as follows. Let

[ e-<\AI' \

-IVK
00X 00

be an 00 x 00 diagonal matrix. Clearly, A £ L(12,/2)- Let

I Bi\
#2

V’ / IXo00

be an I x 00 column vector, where Bn:L2(0,1) —C,
\]1
Bnu(-) —ivn(a) n=1,2,....

It is easy to see that B: \/X"(0,1) /2 and I? £ L(Z2(0,1),/2). Consider
the discrete-time system

% —Axn 4 Bun

xn (xn,xn,En,me) £ 2? CcL (0,1,
nevw@2iz), s £x(12o,i),/?,

O isaconvex setin T2(0,1), O£ I7.

(A B, 1)

For this system we have clearly
<r(A)c {ytn £ C, |A=1} and |0~ 1,

that is Assumption 1lis fulfilled for the system (A, B, fi). Consider the system
(1/a), (1/b) and (2). Assume that the control set Il satisfies properties (a),
(b) and (c).

Theorem 2. The system (1/a), (1/b) and (2) is AGC or ALC if and
only if the system (A,B, O) is AGC or ALC.
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ON THE CONTROLLABILITY OF A STRING 21

P roof. For the system (A, B,SI) we denote the reachability set by

O07~:={0}, R{:=Ak~1BU + Ak~2BU + ... +BU for k" 1

It suffices to show that
RI = Ba(k, ilk).

Let p GBa(k, ilfc), then there exists u(-) 6 fin T2(0,&) such that
P = (\N~cn(A)+ *<4(N))

Defining a control sequence it; Gfi, i= 1,2,..., by u,(0) = u@r—1+ 0),
0 G|[0,1], we can easily show that

p= (y\"en(k - 1) + icn(k - 1)) _x+

+L ,(@)/,(*-> +ry -~Ur
\ 0

—Ak *Bii\ Ak 2BL12 T eeeT Buki

thus p GRf. Conversely, let p GRf, then there exists a control sequence
WGD, i—1,2,..., ksuch that

p = Ak~IBu\ + Ak~2Bu2 + ... + Bilk-

Taking u(t) = Ui(t- (i—1) for i—1 0t <i, i =1.2,...,k we have
u(-) G 1M X2(0, k) and

P = (y/Kcn(k) + «£(*)) n=1-

Hence, p G Ba(k,Qk). The proof is complete.
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V. Main results

Applying the discretization method we obtain the following results.

Theorem 3. Consider the system (l/a), (1/b) and (2). Assume that
the control set Il satisfies properties (a), (b) and (c). Then the system (1/a),
(1/b) and (2) is AGC if and only if there is no s/Af such that

vn(a)\] u(t) m Tdr =0 forall u(-) EQ
0
P roof. First we describe the system (1/a), (1/b) and (2) as in Section

IV. We obtain an equivalent system (A,fi,SI). We note that the operator

A has only complex eigenvalues, n= 1,2,  The corresponding
eigenvectors are 1 X oo vectors of the form

/°\
0

1
0

w

Thus from Theorems 1and 2, we obtain Theorem 3 immediately.

Remark. The condition
vn e Tru(T)dr =0 forall u(-)EQ

can be simply checked in many cases.

Corollary 1. Ifp(x) = 1 and a is rational number then the
system (l1/a), (1/b) and (2) with restrained controls (u(-) E fl) is never AGC
(so never ALC).

Proof. Since p(x) = 1, vn(a) = sin(n#a) = sin*n*”. Therefore
vn(a) = 0if g\n. Thus Corollary 1is immediate from Theorem 3.

Corollary 2 (see |. Jo6 [6]). If p(x) = 1 and the controls u(-) E
E F2(0,T) run over the whole space L2(0,T), then
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ON THE CONTROLLABILITY OF A STRING 23

(@) ifa = &is rational, the system (1/a), (1/b) and (2) is not AGC;
(b) if a is irrational, the system (1/a), (1/b) and (2) is AGC.

Proof, (a) Immediate from Corollary 1L
(b) If a is irrational, then vn(a) ¢ O for all n £ N. Thus the condition

II
J e- W/A(1_T)u(r)dr= 0 for all u(-)eX2(0,1)
0

is equivalent to the condition = Oforall t €[0,1]. From Theorem
3 we obtain that the system (l/a), (1/b) and (2) is AGC (see I. Jod [6] and
M. Horvéth [5]).
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WEIGHTED (0.2)-INTERPOLATION
ON THE ROOTS OF JACOBI POLYNOMIALS

1. JOO and L. SZILI1 (Budapest)

1. Introduction

Weighted (0, 2)-interpolation means the following problem. Let (a, b) be
a finite or infinite open interval,

@ —oc N a < X[MN< eee< xiqa<b” + 00 (n EN)

distinct fundamental points and w E C2(a, b) a weight function. Determine
a polynomial Rn of lowest possible degree satisfying the conditions

(@) k,n) — YK, T (WRnN) (Xk>n) — Yk,n — 122,99+, 71, N1 E N),

where yk<iand y"n are arbitrarily given real numbers.
P. Taran suggested to study this problem and it was investigated firstly
by J. Baldzs. In [1] he proved that if the fundamental points (1) are the roots

of the ultraspherical polynomial P (a > —1), and the weight function is

w(x) = (I - x2) * (xE [-1,1]),

then generally there does not exist any polynomial of degree fi 2n —1 satis-
fying the requirements (2). But he could show that if n is even then under
the condition
Rn(0) = ¥Yk,n1k,n(0)’
k=1

where Ik,n represent the Lagrange-fundamental polynomials corresponding
to the nodal points »  there exists a unique polynomial of degree * 2n (if
n is odd then the uniqueness is not true.) He gave the explicit form of this
polynomial and proved the following convergence theorem.

1 This author’s research was supported by the Hungarian National Scientific Research
Foundation Grant No. 384/324/0413.

0236—5294/95/$4.00 (c) 1995 Akadémiai Kiad6, Budapest



26 1. JOO and L. SZILI

Theorem A. Leta > 0. Suppose that the differentiable function f :
[1,1] —=*R satisfies the condition f £ blpg, | < p. ™ 1. Further let

-3
Y= f(xkn),  ykn=ofyn) (L- xIn) 2 (k=12,..1a).

Then the sequence of weighted (0”-interpolation polynomials Rn (n =
= 2,4,...) converges uniformly to f in [1+ e, 1—e\, where e £ (0,1) is
an arbitrarily fixed number.

In [6] J. Prasad extended the result of J. Balazs to the case when the

nodes of interpolation are the roots of Jacobi polynomials P*a> (0 < |a| »

A M) (see also [7] and [8]). In [10] L. Szili investigated this problem in the
case when (a, b) = (—e00,+00), the fundamental points (1) are the roots of

Hermite polynomials and the weight function is w(x) = exp (x £ R).

In this paper we want to study some analogous problems in the case when
the fundamental points are the roots of Jacobi polynomials and the weight
function is

wij=1- 02 @+x0°7 ®E[-L1 a3 > - 1),

Section 2 contains the results. Section 3 provides the proofs of Theorems
1 and 2. We collected the tools for proving the convergence theorem in
Section 4. Finally, we prove Theorem 3 in Section 5.

2. Results

Let P1“™ (0,/3 > —1, n £ N) be the Jacobi polynomial of degree n
with the normalization

SUNE (n* a)

where an ~ bn means that \an\ —0(bn) and \bn\= 0(an).
These polynomials are orthogonal over the interval [—1,1] with respect
to the weight function

fikYy= (1-*r(l +2f  (*€(-1,1)).

Denote by Xk,n (& = 1,2 n £ N) the roots of Pn°'” in decreasing order
and let /*,, represent the Lagrange-fundamental polynomials corresponding
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to the nodal points xk,n, he.

P tB)(x
(3) Ik,n(X) = )0 (k = 1,2,-¢s,n;n e N).
Pna®) (Xk,n)(x - Xk,n)
The following theorems are true.
Theorem 1. Ifa,B > —I, the nodal points xkn are the roots of the

Jacobi polynomial P*a'*\x) and the weight function is

(4) w(x) —(1- x) 2 1+Xx) Sﬁl (ke [-1,1)

then there does not exist —in general—a polynomial Rn of degree » 2n —1
satisfying the conditions (2).

T heorem 2. Leta,R> -1,

i . .2 r\ ., Pna®\x) fJIkn{i){ak,nt+ bk,n) - t'knft)
%) Ak,,,0)=<«,,» + , X t xkn dt,
PP (**,,
where
(6) dors&2 T hkn — IN(xk*,  &KIn ——\ZNWE{)’:iE;
and
AR
@) Bk,n{x) = P It

2w (xk<s)P*a,R) (x k<n) Jo
(k=1,2,..., w3 ne N).

If n is a such number that P$Y'3\ 0) b O then

It 0
(8) Rn(x) = ~ 1ykn.Akn{x) 4°~ A¥Yk,nBk,n(x)
fcd k=l

is the uniquely determined polynomial of degree 5 2n satisfying the require-
ments

—yk,nt i"xRn) (£:n) Y

© "

An(0) = ﬁ<|>,n/u °)>

where yk’h and y'fn are arbitrary real numbers.
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Remark 1. If nis a such number that PiaR\ 0) = 0 (for example if
a = R and n is an arbitrary odd number) then there are infinitely many
polynomials of degree  2n satisfying (9). Indeed, in these cases for every
real number c the polynomials

M M
Rn{x) = YK,nAK,N(X) + yk,nBk,n(X) + cPMaB\x)
k=1 fe=I
satisfy (9).

Corollary 1 Let n be a natural number satisfying the condition
Pn°R\ 0) @ 0. IfS is an arbitrary polynomial of degree  2n then for all
i ER

n n
S(x)= "~  S{xKn)Akn(x) + (wS)" (xk,n)Bh,n(x) + CnP~"ix),
A4 k=1

where

G=remfy, X ;"

We introduce the following notations: nall denotes an odd number if
a-B=41+2 (le Z), an even number ifa - B = 4/ (/ G Z) and an arbitrary
natural number otherwise;

in(0,/3), if min(a,/l) < —

(10 . .
b if rnin(a,/3) *

Theorem 3. Let f :=1,1] =R be a continuously differentiable func-
tion, a,B > —1 ande G (0,1) afixed number. If

Ykn  f(xkn)- Ykn —o (DA X ) 2 (Lf lien) 2 i2,

(k=12 n),

then the sequence of the weighted (0,2)-interpolation polynomials R riaB{f\x)
satisfying (9) obeys the estimate

log nal

e ) - RI2ARN =00 ulf- g ) oy

(x G[-1 + e; 1—£)),
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where w(/'; S) is the modulus of continuity of f and O does not depend on
na,R and Xx.

3. Existence and uniqueness of the interpolation polynomials

Proof of Theorem 1. Letn 6 N andj e {1,2,...n} be fixed natural
numbers and choose yk,n, n (k = 1,2,..., n) such that

(n) yk,n = 0, y'kIn = 6Kk,j (k = 1,2,..., n),

where 6k,j denotes the Kronecker symbol.

For the proof of the theorem assume that there exists a polynonial Rn of
degree 1 2n —1 satisfying the requirements (2). Then Rn has the following
form

Rn(x) = P *"\x)Q n. x{x),

where Qn-1 is a polynomial of degree * n —1.
It is known (see [9], (4.2.1)) that the polynomial satisfies the
differential equation
(12) 1- x2)PAY(x) +[(B-a)-(a +B+2)x] P ™ ’(x)+
+n(n+a+ B+ I)p(alx) - 0,
thus
(wP2)"(xkn)=(1- xkm)™{1 + xfq, X
X[@- xIn)Pr "\ xkn)+ {# - a-(a + B +2)xgkn}P* Hxkn) =0,
which proves that
(13) {wP(aV)"(xkn) =0 (k= 1,2,...,n; n€N).
Using these relations and (11) we obtain
(WRn)"(xk,n) = 2w(xkn)p(aB >(xkn)Qn_x{xkn) =0

fork =1,2,...j —1,j + 1,...,» from which it follows that Qn_x(x) = 0 for
all x GR, contradicting (11). This completes the proof of Theorem 1. O
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We seek the interpolation polynomials Rn of degree A 2n satisfying the
conditions (2) in the form

Pn(x) —~ - YKn-"k,n(x"- ~ ~ yk,n*k,n{")i
k=1 k=1

where the so called fundamental polynomials of the first kind satisfy the
requirements

(14) Ak,n(xi*n) — (mAk,n) (xin) —0 (rk=12...,n;nGN)

and the so called fundamental polynomials of the second kind obey the
requirements

(15) —0, (wBk)) (*r\m) = &i (Lk—I,2,...,Tl).
Lemma 1. For every a, R > —1 the fundamental polynomials (5) offirst

kind are of degree In and satisfy conditions (14).

Proof. Fix the number k. The polynomials Ak<n are of degree 2n,
indeed, and it is easy to see that they satisfy the first requirements of (14).
For the proof of the second conditions of (14) firstly suppose that Xi<a ¢ x kf1
(i=1,2,...,n). In this case we have

(TeTATT) (MTrn) —

—21C(xHT [AArm] 2In(xin) PleENx.n) kn(xin) ~ O
Pn {xk,n)(x*n  Xkn)

If xiiTl = xk,n then

( ) (#em) —
W MAN) h (Tkn”k,n"k,n) 4* 4 kn)(lk,ne
so from (6) we get
{wAk*n) (Mc,n) —4o n(*Arn)  (MALN) 4¢ .

From the differential equation (12) it follows

Pnal3) (xk,n) ~ B -a-(g + B+ 2)xkn
2Pn°'R) {x}) 2(1 ~ XI,n)

Ik,n(Xk,n)
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thus
N (offn) P A Xk,n)Ik,n(Xk,n) = 0
and this completes the proof of Lemma 1. O

Lemma 2. For every a,f > —1 the fundamental polynomials (7) of
second kind are of degree 2n and satisfy conditions (15).

Proof. Fix the number k. The polynomials Bkn are of degree 2n,
indeed, and they satisfy the first conditions of (15). Using (13) and

(WBkn) (3% j(WPE*’/J))"(Z,-,n)\] ]Kl-(l-)/\+

2wixk,n)Piat) (Xcn)

+2 w\xitn)PlaO\x iln) + w(xiin)PaB) okr,n)| /*,,(xt>) j

we obtain that the polynomials B satisfy the second conditions of (15),
too. O
Proof of Theorem 2. From Lemmas 1 and 2 it follows that the
polynomial
n n

Rn(x) — " yYx,nAk,n{x) + » Yk, n*"" n{x)
K=1 fe=1

satisfies the conditions (9). Suppose that the polynomial Rn also obeys (9).
Then for k= 1,2,..., n we have

RN XKjTi") Pn(*£fc,n) — 0} (tc(Pn P2r)) (*ALN) —d,
Pn(0) - Rn(0) = 0.
Hence it follows that
Rn(x) - Rn(x) = P[a'’\x)H n{x),
where the polynomial Hn is of degree 1 n. By our condition P*,3 0) ¢p O

so Hn(0) = 0.
For the second derivative we get

(w{Rn - Rn))"(xkn) = 20(xk,n)p(aldY(xknM x kn) =0,
i.e. Hn(xxkd) = 0 (k = 1,2,..., n) and this means that Hn(x) is constant.
Since Hn(0) = 0 thus Rn(x) = Rn(x) for all x and this completes the proof

of Theorem 2. O
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Proof of Corollary 1. Let S(x) be an arbitrary polynomial of degree
A 2n and consider the polynomial

U(x) = S(x) - X S(xkn)Ak,n{x) - X (wS)" (xk,n)Bk,n(x)-
K=1 k=1

By Lemmas 1and 2 we have
U(Xk,n) = 0 (k=1,2,..., n),
i.e. the polynomial U is of the form
U(x) = P *\x)H n{x),

where the polynomial Hnis of degree ~ n.
Using (13) we obtain

(WU)" (xkn) = 0 = 2w{xk,n)PiaR)\xk,n)H'n{xkin) (k= 1,2,...n),

thus Hn(x) = Cn (constant). Hence

M M
CnPra,R\x) = S{x) - X S{xk,n)Ak,n(x) - X (wSy (xknBK,n(x)e
k=l k=1

The value of Cn follows from the above relations. O

4. Estimates with respect to the fundamental polynomials
Akn and Bkn

Firstly we mention some basic relations with respect to the Jacobi poly-
nomials which will be used later.

For the roots of the Jacobi polynomial P, we have the asymptotical
relation

k2
(16) 1- xlin~ -2 (k=1,2,...,n; hGN)
(see [5], Lemma 2 or [9], (8.9.1));

(17) pWAx)=(-1ypM {-x)
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(see [9], (4.13));

na+2
(18) (xkn” 0)
ka+!

(see [9], (8.9.2)) and for every £ £ (0,1)
(19) =0 (xE[-1+e,l-e]-,a,B> - 1)

(see [9], (7.32.5).
The Jacobi polynomial satisfies the relation

1
(20) Jg H an™) i =0 ), (neN;aBR> -1

for all x £ [1+ e; 1—¢] where e £ (0,1) is a fixed number.
For the proof of (20) we integrate the differential equation (12)

1

n(n+a+B+ 1)+ (a+R) (-

M p tR\t)dt =
Jo

m(/3- a) - (a+R)x] Pia®\x) +P ~ Y0)+ (B - a)P ~\0)
Applying this identity, (19) and

li=agpsyv=ogym)  (*G[-I +e,l-e])

(see [9], (8.9.5)) we obtain the estimate (20).

We shall also use the following statement. Let e £ (0,1) be a fixed number
and x £ [1+ £, 1—e\. Suppose that xkn & [O#] if x > 0 and xKMO0 [a?0]
if x < 0. Then

PiaB\t)

(21)
t  Xkn

where O does not depend on n, Kk and x.
Integration by parts gives
- 1 X H 1
r Po'RB)Ypo dt = Jo Pja'R\u )du Jopja't\u)du dt =
JO t * t ~ Xk,n 1 (<- %kn)2
JXp(aP)(uy u rx ft p(aB\ u)du
+ j dt
x - Xkn 0 (t - Xk,nf
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Using (20) we get

;rPia'B\t) * -0 , l f x 0

| @®n ve8/21% - xkn\ W V-00 (t- X,y

= 0(1)(n3/2|X-XM])"

Thus the inequality (21) is proved.

Lemma 3. Leie G(0,1) 6e a ./need number and a,f > —1. Then the
Lebesgue function of the second kind polynomials satisfies the inequality

(22) k=1 = ('AI'IU .

for all x G [—1 + £, 1—£], where 7 is the number defined in (10) and O does
not depend on x and n.

PROOF. If x = Xk,n for a 15 kK * n then (22) is obvious. Suppose that
x G[0,1 —£]. Let /= 1,2,..., n be the index for which

SHLTL < X € XIT1

From (7) we get

a—3 33.
(23) F d- %n 2 QT %kn) 2 LEficn(
=1
|AOOI A 1 1{ dt
2 k=1(1 -4 ,N2AP " ¥(xx¥b1 48
M (¢ LELE.E

\ceAl *e,q2 Aen3
where
= {itGN 11- 1 xkn <()
A2:= jrit GN lygn~r :n4 5
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A3:= {k £N 10~ xkn * %/, },
N4:= jicGN 1- 1+ 1 <xkn<0},
N5:= jfcGN I - 1<xin A - 1+ 1 }.

Applying (16), (18), (19) and (21) we have for all a, > —1

™ riJa>ui
@0 E Ul
~x|,nf\pn'o)\xk,n)\2[J0 t  9%kn
i ifa >0
A2'-1J=0(1) < ifa =0,
! v el it —1<a <0

It is known that

(25) XN %nl ~ \'21}5 \

(see [5], Lemma 2), thus using (18), (19), (21), (25) and Cauchy’s inequality
we have for the second term of (23)

PiaBlt)
oo bt on
o rPOBN
=0(> 1B, \phanvpany  Jo t
1" k2a3
o oY 2=<A
n2a+4 Xy koo o) (1),,2dh 4fec:i 4"'4; n3:}'2

|

for all a,/? > —1.

Let us consider the third term of (23), i.e. suppose that 0 xkn N %,n
Firstly we prove that

7) T /,0<ft =0 (1)/A(~) +2) (ke A3).
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Suppose that K ¢ I. Then
f x fxk+1,n fxk—I,n [ x
M *)* = M 0~*+ M 0*+ ik M dt-
Jo )=k et shtn !

Using (18), (21) and (25) we have

U fxkH,n
(28) (1) dt
[ h-
Ct+|N
- 0(1) =0 (1)1
HB/ 2|~ “MN)'(®JIn)| |®fcti,n - ®fcnl novn,
and
(29) Ik,n(t)di

Since ([9], (4.5.2)) for x ¢ y we have
=

j=0

2-q-/?7 T'(n+r(n+a+/72+1)
2n+a + /3 M(rc+ a)l(ra + /1)

>(y) -
X
x- Y
where
Y% 2«+R+i Y(j+a+ Dr(j+7+1)
2f+a+ B+ 1r(j+ DT(j+a+B+1)’
and
=
ET«™[MrV )]2=
j=0

2~a~" I(n+ D(n+a+/77+1)
2n+a + B Fn+ a)T(n +R)

W pE T (x)p!?/1 (x)],
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therefore for every t £ [—1,1] we get

Piaf\t)
Pi°'0)" (Xk,n)(t - X&n)
2n+a + R reer+ a)f(n+R) «
*-a~f I(n+ HF(n+a+B8+ 1)p W \ Xk<n) P tB)\xk,n)
71—1
xE
3=0 nj

The Jacobi polynomials satisfy the identity

2n +a + B)(I —x2)p(a™'(x) =

-n[(2n +a+ /k+ B - a] P[aB\x) +2(n+ a)(n + B)P "i\x)

(see [9], (4.5.7)) thus
*<«.0)7-. t - _Zn + Q+ /? 2 \p(a,0)Y )
RN A B A I A RN |

so we obtain that

D)

bl '~

(a+ a)(n + 13) rer+ a)f(n+R)
2— 0-1 Frm+ )r(n+«+ 2+ 1)(!- xIn)[PbaB)\x kn)\:

i"o4'
Using the relations
i—1,2,...,n—1),
3 3 (i )
Mr+a+(w+/7+1
r(r-fyr(r+a+B+1)
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where the constant ¢ does not depend on m, we conclude that

rxk+1I,n
JIXk-I'fl
2 I (
= 0 (1)- 32 j\PRI3xk,n)\ ««()
(' - XI,n)\pna'®B)\xk,n)\2 j=0 k-1,

Since in this case \xk,n\ < 1—S§, thus

li f =0 (4),) g=12...,n-1).
W7
By (19) and (25) we get

j* kHnp{°R)(t)dt = O ~

from which it follows that

xkcetn PA—bn LT
(30) | lkn@y dt =0 n '
Ixk-I,n Ok
1 2c*+4' I (
=0 qyny 0n G

The inequalities (28)-(30) prove (27) for k ¢ I. It is easy to see that (27)
also holds for kK = /, too.

Applying (16), (18), (19) and (27) we conclude that for all x £ [ +
+£,! —f]and a,B > —1

P fRR(x 1 ]
(31) el ii'm o *| =0 (7).
2 *£3(* - XI,nf\Pnal)\ xkn)\
Similarly to (24) and (26) we obtain by (18)

(32)

2 E (- ~)2lpmaB) (xm)lr
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and
A .
3 FOEON t IELIOM
keAb(! _ Xl,n) IPn (X’\.«)| Jo t  xkr,
L. it >0
oax®, ifp=o

paty, if—1</B3<0.

Combining (23), (24), (26), (31), (32) and (33) gives (22) and this com-
pletes the proof of Lemma 3 for x £ [0,1—e€]. For x £ [1 + ¢,0] the proof
is similar. O

To estimate of the Lebesgue function of the fundamental polynomials (5)
we need some other representation of these polynomials.

Lemma 4. The fundamental polynomials of first kind (5) can be written
in the form

Ak,n(x}— :n(x) T &n~ Platiix) |hn{t)dt\-
Pfi'B),(Xk,n) JO

[an+|(r3 a-(RB +a+2)x]Pjr3f3\x)

Ik,n(x)+
(f - Xk,n)pn B)
N [2xkan- (B - g)]pjaB\x) kn(o) + (1-x 2P<a®By(x) %)
21 ~ xI M a®) (Xkn) 2(1 - x1,n)PnaBy (Xk,n)

1 —x2 >(«J*)(x)
X)) ﬁcvn(°)+

n
2(1-%2) 2(f - xIPPnam) xkn)
,Nn+a+B+ 1)PAE/8) x)
| Ikn{t) df
2 (1-x 1Pk n) Jo
(k=1,2,...,n;, n£N,; a,kR> —1).
Proof. Using (6) we obtain that
PjR'R\x ) X h,n(t)(ak,nt + sfor) —ffeno
PiG/3'(xfn) do t - xkn
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PIFRX) f Ik,n{t)dt +
~ ak'nPlaB)\*kn) Jo

Pn R\ Ik,n(t)(ak,nx k,n + bk" A on(l
- n’[3Y X) n(t) (ak,nxk,n n) Q) dt —I\ £ J2
a (Xk,n) t Xk,l’\
Since
p NP AR) (xk,n) (R-a)- (a+ R +2)zfon
= ~--(N — — —
SPE B ) 2(1-3%)
we have
3K/ (3
- ()

2 (1-x{ M aR)\xk,n)

I_X \(B °) (g + B+2)xkn]lk,n(t) 21 xI,n)~,n(0 it

A 3kn

* *

- - —
é(i-«UiA(4'n)d°t xk,n

X | (o +B+ 2)(I  xk,n)lk,n(t)y 201  XK,nNYKNN)P

+2(t2 - DIEL,(I) - [(BR- a)- (a + B +2)]/*,(N)}dt =

(« + /7 + 2)P tR\x)
t h,n{t) dt-
2(1- *iM al)\xkn) Jo

PiaB\x)
1-4-)p» ()
+- PR 7 An (0)'F

(- 4n)P"a/3,(m)

P gaR\x)
+- £ Ik,n(t)dt+

(' - xk,n)pn "B\ xk,n) J0

Acta Mathematica Hungarica 66, 1995



WEIGHTED (0,2)-INTERPOLATION 41

.. Pi“'B),(x)
2(1- xI,n)PlaP\ xkn)
7% 2(1- t)Itin(t)-[(B-a)-(a +B + 2)**.(<)
X A @n dl
From (3) and (12) we get
(1 - )0k - xkfMml'i'n(x) + 2(1 - »2)4 >K)+
+(* - M2 - a - (a+ B+ 2 I*,,(%)+
+(?7-a- (a+B+2)x)llen(x) + (x - xka)n(n +a +B + 1)/*,,,0 = 0.

Thus integration by parts provides

o . (@+B+2)PLB) Jf hn(®) di-
0

2(1

P t B)(x)
Ok T xk,nBk,n(x)P
(1 - xI,n)PnaB)'(Xk,n)
(%)
+m
(1- xl,n)PnaR)\ xkn)

3K/0) .
+ o) | hont) -

(I-*fe,n)-p =70, (6 2°
P(EBIK

Pia/3(x) % *\_ I
2(l-4n~V M )(I Xn( ) 2(1 - xIJPnan)\ xkn fer()

PaB)(x) r
+ x 1k,n(x }
(1 - xI,n)pn ' B)\ xkn) (1- XLnpra)xk,n) do

PR )
21- xI M aR)\xkn)

o£fc,Mc,n(0)T

n(t) dt-\-

[R-a- (a+ B+ 2 Xk n(x)-

PAB\X) )
2(1 _)&’nyg)(ramﬂ) {ans& a )Mc,n(0) +
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(g + B+ 2)PiaR)(x)

i Ik,n(t)dt-\-
2(i-4,)p " ybl,n)J0
n(n +a + R+ 1)Pna,R\x)
. i lkn(t)dt =
(! - xk,n)PnaB)\ xkn) JO
-[~  +\{B-a- (a+B+2)x]pjadix)
~fe,n(a;) +
(I ~ XI,n)Pna'R)\ Xk,»)
L Cfen= 103 - a) plale) o o
(i-4n)~aly(~)
I X2)Pn B\ x) 'y , u Ifc,n(0)+
2(1- 4.)% 1), W ) 21
N n(n +a+ R+ 1)piaRix) Ik<n(t)dt.
0

2(1 .

Using
', u_ ¢k - XKn)RnaB) (K) - PnaB\x)
1k, n\x ) p(a,R) xkn)(x  Xkn)

we obtain our statement. O

Lemma 5. Lete £ (0,1) be afixed number and a, 8 > —1. The Lebesgue
function of the fundamental polynomials of first kind (5) obeys the estimate

(35) 1P| Aktn{x)\ =0(n) (X £ [—1+ £ 1—e]),
*=]

where O does not depend on n and x.
Proof. It is known (see [3], (2.34)) that

L+ x B

36 "
(36) 14" xkn 2> nl

(x| <15 a,B >-1).
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This implies
|
m E Ux)=owlL (b )°®
(x G[—-TE, 1—£)).
An easy calculation shows that
w" (xk>n) - 01
2w (xk<n) 2w/ >

thus by Lemma 3 we obtain fora,R > —1

. ) —
(38) - B ) (x| If d =0 n274) [

where 7 is the number defined in (10).
From the Cauchy inequality, (16), (18) and (37) we have fora,B > - 1

i [ 4l Xkn+ URB~a)~(a+h + 2)x\ [Pna®\x)\ I !

> B M jJiF M - IMX)| =

=o(nic<n () E = o (n/n)e
ifei CL- *2,n)2|p»*1),(a*,n)[2 ifc

Similarly,

(<0 t (*fc.n-5("-a))pn®,/)(*)f = 0(Vn)

f= (1
foralla,R > - 1and
(41) E 1- x"PA"V)
A=t 2(1-4 n)P 7~ )(ahn)

i, In[(2n + 0 + /3)2 + B- a] Pn'lixXx) + 2(n + a)(n + AaB)

<\ 2(2n +a + /2)(! - *I>0)| P10/2) (7, )|
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o|fjifc,nO0i = o(y/n) y
fe(i-4n)lpwaR3W )I

0(y/n) E lri(x) = 0(n)
o1 x I m)2\P t B\ x ka2t i

(a,B > - 1).
From (37), (16), (18) and (19) it follows that

1" 1-7r2
(41) Ly — \ 1 {X):
2N 1 -
onL Y' 12®+ V [P /& = 0(D.
oxs,rr™1- |
Let us consider the next term:
lg(la,m
E ) =E +E =
k=1 2(1 - xIl,n)p(n 'B)\ XKn) H’feri"Z |aAr|/\>2

Using (3), (16), (17), (18), (19) and |Pia™'(0)] = O (0r) we obtain

E PiaB\x) PiaRY(0)xkn + PiaR)(0)
(42) e npsg  2(1 = xLmPnaB) (xkn) x1,nP 6 ' B)\ x k<)
=0(HE 0 (L

ifc (! - 4«)1p”a’3),(xM)r

foralla G|+ £, 1—£f]and a,3> —L
Since |/~n(0)] = 0(n), by (17), (18) and (19) we have

(43) E POEX) *U°)
2(4 - Mi,,)417" BK(a;fen)
1
_O(OO ifci IPI '), (Me,n)| -
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forallx E[2+ £,! —£] and a,B > —1. Combining (42) and (43) we get

Pia\ x
(49) ) U o)
k=1 2(1- *I,n)rtaJ)\x k,n)
forallzE[—2+£ 1—] and a,B > —1.
Finally, similarly to the proof of (22)
>eh)
(45) rR(n+ Q+ g + 1) N (™I Ii Ikn@)dt =
\Jo () 0 ()

foralzE[4+ £ 1—£]and a,B > —1.
From the relations (37)-(45) we get the inequality (35). O

5. Proof of the convergence theorem
Firstly we prove the following statement. Denote na an odd number if

a—R =A+2(/E Z),an even number ifa —8 = 4/ (/ E Z) and an arbitrary
natural number otherwise. Then there exist nO EN and ¢ > 0 such that

(<)  "«(0)] > (n,/n >10).
y/na,R

It is known (see [9], Theorem 8.21.8) that
P*a/3(0) = n~HOcos(N” + 7) + 0(n~%),

where

kO =it 2 7sin 0 N—n+a+8+1 7 = T

Since for every naii5 we have

c’s (M1 +7) oo,

we obtain the inequahty (46).
We remark that for these naR the interpolation polynomials RHal? are

uniquely determined by the conditions (9) and we can also use Corollary 1
in these cases.

Acta Mathematica Hungarica 66, 1995
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In the following we denote the index nail’ briefly by n.

For the proof of the Theorem 4 we also use the following result of I.E.
Gopengauz (see [2]): if / € C1[—,1] then for every n ~ 9 there exists a
polynomial pn(x) of degree at most n such that

ViG\X) - pAOXON = 0(L) A A A A W(A2n)

(x G[-1,1],jJ =0,1),

and
(47) [rfw =0 (1) (-~ U(/";1)) (€[-1,1]).

For n A 6 a fixed integer let pm be the polynomial of approximation to /
guaranteed by the above theorem. Applying Lemma 5 we obtain that for
every x £ [—1+ £, 1 —¢]

(48) \f(x) - Rn(f;x)\V A \f(x)-pzan(x)\ + \p2n(x) - Rn(f;x)\ ~

Nof(a-) - Pen(x)\ + A If{xkIn) - P2n{Xk,n)\ TAKkin(x)\ +
k=1

4 - (wP2n)"{xkn) 1 IBk,n(x)\ + \CnP t'R\x)\ A

+ YU I {wP2n) (a(/:,n)| 1-0fc,n(a))| +
fe=1

+\CnPjla,R)(x) \.
We have
AADKR (wP2n) (xkAmM| | M —
Ic=I
=0 ~ A k,n)P2n(%k,n™\ |-®ANY| b

k=1

~aw (xk,n)P2n(Xk,n) « Bk,n(x)\ -
Kk—1
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"b IW(x k,n)P2n(xk,n)Bk,n(x )1+ lyfc,n-®*,n(a:)|
A

+Cl+ L2+ Uz + Wa.

Since |p2n(®)| is bounded and
" _ £=i
w'(x) = (1—x) 2 (1F+x)72 x
X ra24_1(1+x)2- 2a-§ 1/35-1 (1_ xV - *r
thus from Lemma 3 we obtain

(49) Ifi=0 (1)~ (I-x fan)afa(l + *fon) A |5 fon(ic)] =0 (-1j7IT),
fc=i '

where 7 is the number defined in (10).
The polynomial p2n(x) is also bounded and

£1 i- 3 Bl <4 31
o) = -2 ) 2 (1+ %) 2

so similarly to the proof of (22) we have

.
(50) W=0(1)J2(1-Xk,n)A(l + Xkn)SFI\Bktn(x)\ =
k=1

forall x G[-1 +e,1—¢\ and a,f > —1.
For Uz we get

(1)
ny Al

=0 (@ (/5 A)) £ (V- An)F(L+*M)FIBKAX) =
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-0 - )]
AT W 7T T, A )(AfC,n)|

forall x G|+ £ 1—¢] and a,R > —1L
By the condition of the theorem we have

iknl= 0 (1) A1 —£fen) 2 L+ Xkn) 2~ ;20 A
thus

(52) Vt=0(1) @ (/i) )

From (49)-(52) we obtain

(53)

_, ! Y= wP2n) (fen)t 1BKn(\ = 0(1) fw (1 —

where 7 is the number defined in (10).
Finally, we consider the term |C,Pia”™”"(x)|. From Corollary 1 we get

\CnPiaR\x)\ = Aa,ﬂ)(;” PN(0) A TP2n(xkn)lkn(®)
(U1 k=1

Using (19) and (46) we obtain that

\CnP AR\x)\ =0(1) Pm(O) ~ IyP2n{xk,n)Ik,n(®)
K-

n / n \
0(D (P2n(°) - P2n(xkn)\ /*,,(0) + P2n(0) (1- 57 /*,,(0)J
)=l v k=l '

for all n = n@} > no-
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In [4] 1. Joo proved that

=0(l)E~"~0°)=
k=1 ( k:)l Jk.n )
—o(i\E [Fr BIto)iL2 0.1, logm)
_O(I) 1 (P - XEn)AXKk,n\ \Pna®)\x k,n)[ m(r+1)
where 7 is the number defined in (10).
From
[P2n(0) - P2n(xk,n\ fen(o) ~ *1 | |Pan(s n)|Ifc,no) =
fc=l fc=I

=0 (i) k.PUO0)=01)E T%U,(0)=0(1)(-"])
Al

we obtain that

IC.A“NMW = 0(1) (~ 5),

which proves our theorem. O
We wish to express our thanks to J. Balazs for his helpful remarks.

References

[1] J. Balazs, Sulyozott (0,2)-interpolacio ultraszférikus polinomok gydkein, MTA III.
Oszt. Koézi, 11 (1961), 305-338.

[2] 1. E. Gopengauz, On a theorem of A. F. Timan on approximation of functions by
polynomials on a finite interval, Mat. Zametki, 1 (1967), 163-172.

[3] I. Joo, Stabil interpolaciorol, MTA I11l. Oszt. Kdzi, 23 (1974), 329-363.

[4 1. Jo, On interpolation on the roots of Jacobi polynomials, Annales Univ. Sei.
Budapest, Sect. Math., 17 (1974), 119-124.

[5] G. I. Natanson, Two-sided estimate for the Lebesgue function of the Lagrange inter-
polation with Jacobi nodes, lzv. Vyss. Ucebn. Zaved. Matematika, 11 (1967),
67-74 (Russian).

[6] J. Prasad, On the weighted (0,2) interpolation, SIAM J. Numer. Anal, 7 (1970),
428-446.

[7] J. Prasad and E. J. Eckert, On the representation of functions by interpolatory
polynomials, Mathematica (Cluj), 15 (1973), 289-305.

[8] J. Prasad, On the uniform convergence of interpolatory polynomials, J. Austral. Math.
Soc. (Series A), 27 (1979), 7-16.

[9] G. Szeg6, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. (New York, 1959).

Acta Mathematica Hungarica 66, 1995



50 1 JOO and L. SZILI: WEIGHTED (0,2)-INTERPOLATION

[10] L Szili, Weighted (0, 2)-interpolation on the roots of Hermite polynomials, Annales
Univ. Set. Budapest, Sect. Math., 27 (1985), 153-166.

(Received December 18, 1992)

DEPARTMENT OF ANALYSIS

LORAND EOTVOS UNIVERSITY
H-1088 BUDAPEST, MUZEUM KRT. 6-8
HUNGARY

DEPARTMENT OF NUMERICAL ANALYSIS
LORAND EOTVOS UNIVERSITY

H-1117 BUDAPEST, BOGDANFY U. 10/B
HUNGARY

Ada Mathematica Hungarica 66, 1995



Acta Math. Hungar.
66 (1-2) (1995), 51-60.

ON POWER SUMS OF COMPLEX NUMBERS
WHOSE SUM IS 0

G. HARCOS (Budapest)

Introduction. Let z4,...,zn be complex numbers, sv = 2%+ ... +
+z", and put Mn = inf ex \s,.\, where the infimum is taken over systems

1r:r13in|_|\zj\ = 1 and si = 0. The determination of Mn, which is clearly a
minimum by Weierstrass’ theorem, is raised by P. Taréan in his posthumous
book [1]. Simple examples show M2m = 2, M3m_i * 3, M6m_3 * 3 ([2]) and
by a note of [2] Mn = 0(1) for the outstanding case n = 6m + 1. M. Szalay
has proved the lower bound 1+ (log 2- o(l)) / log n for Mn ([2]). It is known
that M2 = 2, M3 = 3, M4 = 2, 1.9219 < M5 < 2.2321 and 1.7936 < M6 "
i 1.9968 ([2]). We shall prove

Theorem 1. Mn < 2+ ¢El/2+°(]).
We also improve the lower bound:
Theorem 2. 1+ W Mn (n” 1024).

In Section 3 we obtain some numerical estimates for Mn (6 ~ n U 19).
The lower bounds are deduced as in [2], the upper ones are gained by direct
computing of examples \zj\ —1(j = 1,..., n). A detailed calculation is given
for the cases n = 6,7.

1. To prove Theorem 1 we can assume n is odd, since M2m ~ 2 by the
result of [2]. Let n = 2m —1 (m ”~ 2) and consider the system

for 17 j A~ m—1
) form~j~n

where i2 = —, tp = 2ir/(n +2) and a * 1is to be chosen later. Clearly

1m_in \z,\ = 1 and we shall see that si = 0 holds for a suitable a. For 1<
==n
< 1 < n we obtain

0236-5294/95/$4.00 (c) 1995 Akadémiai Kiad6, Budapest



52 G HARCOS

m—1 T+
My
=f{av- 1Y, effju+ 53 e*idl = («"- 1) 53 eVjV* 1-
K= K=}

9

. sin ip(m —1)i//2 .
=e* - —2 2
e*mvil2 1) sin (fiu2 cos ipmv/
ie.,
siny?(m —l)u/2 .
= "o —2cosipmv/2
S/ (a 1 sin <pu/2 P
With the notation A= ~ = 2(n+2) we "“ave
ip(m—1)_z|:__ , um_ T
5 =5 3A and s =% A
SO
sin (“i/ —3Xu) 5
bl = K - ]_) sin 2Ar< - cos (§|| ) nn)
which yields
4+cos3Ai/ : .
= 7o) — i/ according as u = lor 3 (mod 4),
bl \(/a 1 sin 2\v ¥ 2 SmAV/ g ( )
+ sin 3Xu .
= - 1)— =2or4 4).
1S..| \(/a TNy + 2cos Xu according as v or 4 (mod 4)
Thus
. [(«'/- 1) i ~ - 2sinA”l if~isodd
(1) S =

(" “ 1)§& + 2co8/1,/1 if v is even.
Now define v' —n + 2 —u, then Xu = k/2 —Xu' and (1) gives

K -1)S I~ +2cosA” ifuis odd

(2) \sp\ = L
» V if nis even.

Denoting min{i/, u'} by k and noting that v and u' are of opposite parity, we
get by (1) and (2)

if «is odd

(3) g = g e
I(«a' - 1JUSTIS + 2cos A« if s even.
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ON POWER SUMS OF COMPLEX NUMBERS 53
(3) shows that si = 0 holds if a is chosen such that a —1 = 2sld)slt ""'e
Clearly
o\ .o\
a=l+—-- (I +o(l)) =1+ (n2+o0(l))/n2=
= exp{(Tr2+ o(1))/r2},
ie.,

(4) an=expj (M2+ o) /nj = 1+ (x2+ o(l)) /n.

Suppose first that k is even. Since K < (n -f2)/2, 0 < Ak < x/4, we can
observe that cos Ak, sin 2Ak and sin 3Ak are positive. Thus we can omit the
sign of absolute-value in (3) and deduce by (4)

o sin3AK [l 3 3r2/2 + o(1)

A - - - - = 2 Heomo X

K (a 1)SinZAK +2cos AK < (a 1)2 +2=2H - .
Secondly, assume k to be odd. If Kk = 1then v = land su = 0. Therefore we
only have to deal with the case k * 3. (3), (4) and 0 < Ak < W4 yield

IsJ'Sfan_112sinA < (x2+ o(l))/n +25sin Ak A
sin 2Ak ~ . sin 2Ak ] .
< (12 % °(1))/n 4 (12 +«0(1))/I'I . YI__K_ JT2-|:O(|) 4 T .
*2Ak ne2 n+2 2k n+ 2

This gives for 3" Kk~ (n + 2)/12 and all large enough n

m+oil) x 10 4
K|=— 6 +MN <T +H =2

and for (n + 2)/T2 < k and all large enough n

m+o() T 4_
AN L 2N+ 212+ 2< 2

The results gained in the even and in the odd cases imply Theorem 1. O

Remark. One would expect that a similar good or perhaps a better
estimate can be obtained for Mn by the system

atevd forl™rj m-1
<= {e¥(+]) form "~ j " n
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where the complex a is chosen such that si = 0. However, this is not so,
since — by similar calculation as above — for any fixed and even u

sJ = 54--12-'-/-1-9-92 as n —>o00.

2. To prove Theorem 2 we use the fact (see [2]) that the unique positive
root Rn of the polynomial (of degree [n/2])

2j2+---+njn=n 2<i/<,

furnishes a lower bound for Mn (the jv's are nonnegative integers). Using

the formula 1
E --r 1/ X\Jv _

(see [3]) we easily get for any positive integer Kk < n/2

2k—1
=-1+ £ " +*-1- (£ +
A . n—r )(r\

-2k

T (2k —1)! E [l

N+..+njn=n-2k

2K
. X+ n—r—10 (—x)r
s-1+E n—r n
r=0
Now let n 1024, e = I<x™ 1+ A7 and K = [8], then
2k (Xx+n——, / ur
. X+ n —2k —1 % n-r ) (-x)
Fn(x) n - 1+ N —ok Er ixen—okay o
0V n=2k )
We have
(x+n—2k—]4 (Nr~ x —1 <
{ n-u )<exp(E —
log(n —2k) + 1
< exp e) Iog N } < el-*,
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and for any 0 ~ r A 2k

Y< V n-r < V x —1
— /x+n—2k—4\ —(x+nlr42H1%—1V “ p E <

V n=2k ) n—2K lj=n-2A:+I
—I —2k
 <exp n —log(n )
<expluygb j:n|-52k+I!J log n
ie.,
XFN——1\
V n—+ ) _ 1 <
'\’/‘Tizzfi_“) " (log7) 1< lognexP (logn)
Thus
2
Fn(x) + 1< ex£1Y, (%> exp <
I 7 logn \bg nj J'
2fc+
< <e~Xx + + exp <
{2k + 1)! * logn LLI
a1 22k+l
<el® - exp 1+ <
e ' ((2k+ 1)/3)2k+1 ' I°gn 0
I -/1 6 6 \ -
<€ (6+ MWTT + toFil

/1 7 20 - £ - -
( |ognJ)g€ #i:():-_-_-_-<e%+é<e%+ee%,

since n N 1024 implies e < 1. Finally
Fn(x) < -1 +e-£(l +e) < -1 +e_fe£=0.
Now 0 ii Fn(Mn), hence

1+ 1—55/log,, =1+1-£< O
logn logn -

Remark. A similar argument leads to the result

-0 (!l
Rn —1+ (1
log n
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3. Finally we consider systems of type

*j=exp(y?jO 1=J=T0
f n=2m,
zJ+Hm = exp(-<y3ji) (I™*j~rn)
zi =1
zj+l = expfaji) > if n—2m—1

zj+m =exp(-(pji) (1™ jA m -1),
where the <fj are real numbers. Ifsu = z\ +... + z,, and sx = Othen Ig}?/\xn IS,

provides an upper estimate for Mn.
First we deal with the case n = 6 in detail. If

5) (z- zi)...(z- 26) = z6 +aiz5+ ... + abz + ab

then a6 = 1, a2 = 04 = a and 03 = B with some real a and & and the
condition si = 0 implies a\ —ab —0. It is easy to verify that the numbers
A =2cosg (j =1,2,3), which lie in the interval [2; 2], are real roots of
the equation

(6) A3+ (a —3)A+ 3= 0.

Conversely, if we choose the real a and B such that (6) has three roots in
[2; 2] and define aB to be 1,ax = 05 to be 0, a2 = <4to be a and a3 to be
R then the numbers Z\,..,,Zgdetermined by (5) lie on the unit circle \2\ = 1
and they satisfy sx = 0.

Calculating the power sums in terms of a and R by the Newton-Girard
formulae we get

5 = —2a, 53= —3/3, 4= 2a2—4a, 5% = 5a/3, 56 = 3/32—2a3+ 6a2—-6.

It seems to be convenienttoputa = 1—£and B8 —|(1 +£), where 0 * £ |,
since then

max Isj/l = 2(1 —e2)
and
|s6] = 2(1 - e2) - ’Z‘E(ZSeS- 1952 - 63e + 6).

It can be checked that 25e3 —19e2 —63e + 6 has the only real root £ =
= 0.092951... in the interval [0; 2/5] and this e determines an a =
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= 0.907048 ... and a B —0.437180 ... such that (6) has three roots in [—2; 2].
Thus the inequality

M6~ 2(1 -E2)= 1.982720...

follows. O
Secondly, let n = 7. If 2z = 1and

@) (z-zxX)(z-22).. (z- z7) =z7+ aizb6+ ... + abz + a7
then «7 = —1, @2 = —a, as = a and a3 = —8, a* —[ with some real a and
R and the condition si = 0 implies a\ =  —0. It is easy to verify that the

numbers Aj = 2cos(pj (j = 1,2,3), which lie in the interval [—2; 2], are real
roots of the equation

(8) A+ A —(a+ 2QA—(a £/3+ 1) = 0.

Conversely, if we choose the real a and B such that (8) has three roots in
[2; 2] and define a7to be —1, a\ = a6to be 0,a2as —a, as as a, a3 as —H
and finally a4 as 8 then the numbers z\ — 1, z%,...,z7 determined by (7) lie
on the unit circle \2\ = 1 and they satisfy Sj = 0.

It is convenient to put B —2a/3. Calculating the power sums in terms
of a by the Newton-Girard formulae we get

«@=1s3=2a, Ss4= 2a’2- §a, 5 —b5a,

/ 13 2 2 3\
+-a

56:2a§-§a2, s7T=711- —a ),

which yields that for 9/10isa < 1

13 2
max |s,| = 2a and |s7|:7(1 ——a2+ -a3

It can be checked that 2a = 7(l —* a2+ |a 3) has the only real root
a = 0.947181... in the interval [0; 9/10] and this a determines a B =
= 0.631454... such that (8) has three roots in [2; 2]. Thus the inequal-
ity
M7S 2a = 1.894363...
holds. O
Further on we indicate for comparison the lower bounds Rn of Section 2.

The upper bounds are derived from systems described above. We have the
following inequalities for Mn (6 1 n ~ 19):
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1.793610. 1.982720...

1.719907. miM 711 1.894363...

33.987585.

73.303745.
| va 109.097547.
| ya 142.118198.

1.662581.. ,AM 8" 1.999796...

‘W 38.430487.
Va' 67.220086.
Vs m 134114614,

V4 m 167.022740.

1.618555.. 1.790782...

'Vi 32.074778

V2 57.616740

1583255 .. .S Mo A 1.973688... < V3 91.887543
Vs 117.618984

yb 152.425330

Vi 44.038349.
V2 70.364417.
1.554267.. .~ Mu ~ 2.119011... <v;  96.533487.
Vs  125.493345,
up  149.374899.

'Vi  26.280566.
V2 52.020428.
Vs  76.396810.

| Va  102.127160.
Vb 129.177757.

[ Ve 154.877600.

1.529965 .. - /i m 127 1.998574...
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“fx= 19.191938...°

2= 39.803824...°
f3 — 88.675687...°
<= 117.904497...°
f5=142.222650...°
.<fe= 167.789878...°

1.509245.. .~ Mi3 " 2.126728 ...

“fi = 9.069892...°
f2= 31.062936...°
f3= 52.885792...°
1.491331.. .~ M4~ 1.828905... . f4= 98.672340...°
¥s= 121.786322...°
142.291313...°
168.191278...°

fe
f7

21.810490...°
¥ = 40.279274...°
= 61.823098...°
105.380928...°
fb = 125.044087...°
fe = 146.843332.. °
.¥7 = 170.714120...°

>

1.475659.. .S M5~ 1.967363... < f4

1.4618007. .. ~ Mie S 2

'<¥>j= 19.331397...°
¥2= 39.866743...°

= 58.023924.. °

= 75.955699..°
¥5= 114.414529...°
fe = 133.645456...°
¥>7 = 153.498174...°
f 8= 170.045331.. °

1.449458.. .~ Mi7g 1.948290...
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1.438363... * M18 " 2

Y 18.409141.. °

v 37.223032.. °

52.895537.. °

44  70.133067.. °

1428328 ...<, M19< 1.888063... < «5 88.133122.. °
6 123.294802.. °

<7 139.974654.. °

48 156.231133.. °

Vo 172.269165.. °

Acknowledgement. | wish to thank M. Szalay for his helpful and
valuable comments about this work.
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GENERAL RESULTS ON STRONG
APPROXIMATION BY CESARO MEANS
OF NEGATIVE ORDER

L. LEINDLER (Szeged), member of the Academy

1. Introduction. Let {ipn(x)} be an orthonormal system on a finite
interval (a,b). We shall consider real orthogonal series

[o] 00

0
(1.2) A C n(n(x) with £c£<oo.
71=0 71=0

It is well known that the partial sums sn(x) of any such series converge in
the L2 norm to a square-integrable function f(x).

The following theorem, proved in [3], provides a very good quantitative
estimate for the pointwise approximation of f(x) by the arithmetic means of

Let0O<7< 1 If
(1.2)

then
—rr E “I(*) =°*(n 7)

almost everywhere (a.e.) in (a,b).

This result was extended by G. Sunouchi [18] to strong approximation
as follows:

Theorem A. Let0<7 < landa>0. If(1.2) holdsand 0 < p <7-1,
then

Vp
(13) £EN 21-*(*)-loor x(n 7)
fco

a.e. in (a,b), where A" := (n"a).

In [5] we generalized this result in such a way that we replaced the
partial sums in (1.3) by Cesdro means of negative order and the external
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Cesdro means by a general summation. We consider a regular summation
method Tn determined by a triangular matrix |janfcMn|| (ank ~ 0 and An :=
:= £fc=0 ank), i.e. if St tends to s, then

1 7
r-= = NE &nk$K S.
k=0

In the sequel K, Kr will denote positive constants, not necessarily the same
ones, furthermore K{.) denotes constants depending only on those parame-
ters indicated. Our generalization reads as follows:

T heorem B. Suppose that 0 < 7 < 1 and 0 <p < 7-1, furthermore
that there exists a number p > 1 such that

and with this p for any 0< 6 < 1 and 2m < n "1 2TOH

m  min(2%*1n)
E . y. O + ir'l-*»-1 . A Kn~6An.
is=21 —

Then, (1.2) implies, for arbitrary

P- 1
pp

d>1

that

(1.4) aﬁl? __US((n 7)

holds a.e. in (a, 6), where cr%x) denotes the n-th (C,a)-means of series
(1.1).

After several articles have dealt with strong approximation (see e.g. [4],
[6]-10], [16]), in a joint paper with A. Meir [15], we proved a very general
result which includes almost all of the theorems proved previously and gave
some new consequences, as well.

In order to recall this joint result we present some definitions and nota-
tions, furthermore some assumptions to be kept throughout this paper.
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Leta  {a™(w)}, k= 0,1,... denote a sequence of non-negative func-
tions defined for 0 A w < oo, satisfying

k=0

We shall assume that the linear transformation of real sequences x := {ar"}
given by

[e]e]

N2 <Kk, W -> 00

fco

is regular [2, p.49]. Let 7:= rj(t) and g(t) denote non-decreasing positive
functions defined for 0 5 i < oo, furthermore let p:={pm} m—0,1,...
denote a fixed, increasing sequence of integers with po = 0. We shall assume
that there exist positive integers N and h so that

Au(x) :

(16) V(Vm+l) A NP(Hn),  m —1.2,...,
(1.7) Vil*m+h) = 27/07m), m-—12,__

Forr>1,nm >0and m —1,2,... we define

(1.8) Pm{u,r)y:= i -==- (ai,(uj))r

In terms of the quantities introduced above we formulate our result
proved in [15].

Theorem C. Letp > 0. Suppose that there exist r > 1 and a constant
K(r,p, T) such that for anyn >0

(1.9 Y I VmPm(u,r)r){pm) p < K(r,p,r])(g(w)/r](w))p.
m——9

If

(1.10) £Oo’\ H 2<oc

n=1
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then

(1.11)
b '
- fOO)\P> = Ox (a{w)/T](w))
J

a.e. in (a,b) for any increasing sequence v := {*} of positive integers.
If, in addition, for every fixed m,

pmu=>n =o((am)/TI(M)p), a  n “moo,

/Nen ifre Ox m (1.11) can be replaced by ox.

Theorem C gives estimates for the pointwise approximation of f(x) by
a large family of HausdorfF transformations and [J, /]-transformations. Be-
cause ofthe generality of Theorem C it is really not easy to realize how many
well-known summation methods are included in this theorem. We refer to
[15] for some examples. Here we present only three known and frequently
used methods, namely the Cesdro, the Riesz and the generalized Abel trans-
formations. We also mention that the corollaries to be recalled here were
proved before appearing Theorem C individually, as well. Corollaries C.I
and C.2 were proved in [16], and C.3in [6].

Corollary C.l. Letp >0,a>0. If0<7 < p~I and (1.2) holds,
then

1/p

(1.12) /ool ox(n 7)
k=0

a.e. in (a,b) for any increasing sequence { } .
Corollary C2. Letp >0,R8>0. IfO<py <R and (1.2) holds, then

n 1p
n+ ~eY~(k + D™ 1s,n(ar) - f(x)\pl = ox(1I'7)

=0 J

a.e. in (a,b) for any {ok}-

Corollary C.3. Let q be a non-negative integer andp >0. 7/0 < 7 <
< p~l and (1.2) holds, then

(L - QI+IE (40 *)i*P4W - /U "} = »4(1-07
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a.e. in (a,b) for any {fk}.

We mention that Corollary C.3 is an extension of a result of L. Rempulska
[17] to strong means.

Comparing the theorem of Sunouchi and Corollary C.I, we see that
among the assumptions of Corollary C.l the restriction 7 < 1 does not
appear. This is a great advantage of Corollary C.l. But if we consider
Theorem B in the special case anu = A°zIl, then (1.4) has the advantage
regarding (1.12) that in (1.4) we can approximate the function f(x) by Cesaro
means of negative order, although then among the conditions the restriction
7 < 1 appeared again. So it is natural to ask whether in the general case,
or only in the Cesaro case, if we want to approximate the function f(x) by
Cesaro means of negative order, then the restriction 7 < 1 can be omitted.

We have so far proved only that in the special case rj(t) = V with the
restriction 7 < 1the function f(x) can be approximated by Cesaro means of
negative order for the same class of summations given in Theorem C.

The main tool of the proof was the following Proposition proved recently
in [11]. This reads as follows:

Proposition. Ifp>0,0<7<1 andd> max(l/2,(p—1)/p), then
(1.2) implies

Yp

£ K V;*)—/(z)r‘l:| =ox(n 7)
|+ k=n+1

a.e. in (a,b) for any increasing sequence n  {ok}, where

< ("x)m=JayY ,h An-ks" x)
n k=0

Using the notations introduced above we formulate the result proved in
[12], and mention that it is the most general result in this field.

Theorem D. Letp >0, d> max(l/2,(p—1)/p) and 0 < 7 < 1. Sup-
pose that there exist r > 1 and a constant K(r,p) such that for any i>> 0

00

(M3) 1*TPT(n,r)p,-1P » K(r,p)(a(w)/v'y) p.

m=0
If (1.2) holds, then
(1.14)

00 J!/p
{ - 1(z)[Pj = Ox(g(u)/u'y)
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a.e. in (a,b) for any increasing sequence u := {iqt} of positive integers.
If, in addition, for every fixed m,

(1-15) pm(u,r) = o((a(w)/nl)p), as n -* oc,

then the Ox in (1.14) can be replaced by ox.

We point out that the most important special case of Theorem D, in our
view, is when both (1.13) and (1.15) are satisfied with g(u3) = 1. In this case
we get that

(1.16) Tw(/,p,d,i/;z) = ox(bI-7)

holds a.e. in (a, b).

We want to point out again that Theorem C, contrary to Theorems A, B
and D, does not claim the extra restriction 7 < 1. This is a great advantage
of this theorem, but it does not allow approximating with Cesaro means of
negative order.

The common kernel of the proofs of Theorem A, B and D is based on a
very interesting result of T. M. Flett [1] and a useful lemma of G. Sunouchi
[18]. Unfortunately, Sunouchi’s lemma requires the assumption 0 < 7 < 1,
furthermore the Flett’s result works only if 1/(Tr) has the form of n7; e.g. if
77(71) = W7, 7 > 0.

Recently we ([13]) generalized Flett’s result replacing the factors nl by
more general factors 7(77). Having this generalization of Flett’s result (here
Lemma 4) and after extending the lemma of Sunouchi by similar way in the
present paper (here Lemma 6) we shall be ready to generalize Theorem D,
and in a certain range of the functions qft) our new result will generalize
Theorem C replacing the partial sums by Cesaro means.

2. The main result. Before formulating our result we recall a definition
and define three properties of the function 7 (t) which will replace essentially
the function r/(t) used above.

A sequence {7n} of positive numbers is said to be quasi geometrically
increasing (decreasing) if there exist natural numbers p, v and a real number
K ~ 1 such that 7,+ii ~ 27n and 7,, » K7,+i (IntB8 ~ ~7« and 7,+i N
N K-jn) hold for all natural numbers n ~ 4.

We shall say that the function 7 (t) has the following properties:

Pi: the sequence {7(2")} is quasi geometrically increasing;

P2: the sequence {7(2")2_n} is quasi geometrically decreasing;

PPT:the sequence {7 (2rd(2n(1_r)/rp} is quasi geometrically decreasing with
somer > 1and p > 0.

In terms of the quantities and properties introduced above we are ready

to state our first theorem.
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Theorem 1. Letp > 0, d > max (1/2,(p —1)/p) and let 7 (/) be a
positive non-decreasing function defined for 0 ~ / < 00 with properties P\
and P2. If there existr > 1 and a constant K(r,p) such that for any n > 0

(2.1) IWm(w,rb(/im) P K(r,p)(g(u>)/1(u))P,
m -0

then

(2.2) A 27(n)2 <00

implies that

(2.3)
1/p
ajt(w)|<Tf_Li/ar) - /(x)|? = Ox(a(w)/ y(uw))
0
holds a.e. in (a, 6)/or any increasing sequence v := Wk} ofpositive integers.
If, in addition, for every fixed m,
(2.4) Pm(u, r) = o ((g(ui)/y(u))p), as w—>00

then the Ox in (2.3) can be replaced by ox.

It is easy to see that Theorem 1 in the special case 7 (t) = V with 0 <
< 7 < 1 reduces to Theorem D; and if p(t) = 7(t) then all of the conditions
of Theorem C are satisfied under the assumptions of Theorem 1. This means
that Theorem 1is a slight improvement of Theorem D; but it is only partly a
generalization of Theorem C, namely we claim more about 7 (f) in Theorem
1 than what g(t) has to satisfy in Theorem C.

In order to help the comparison of the new and known results we shall
follow the structure of the paper [15].

3. Lemmas. To prove our theorems and their consequences we need five
known lemmas and three new ones to be proved in this paper.

Lemma 1 [8]. Let 6 > 0 and {bn} be an arbitrary sequence of positive
numbers. Suppose that for any orthonormal system the condition

(e]e] /00 \on

2 MiJ2®) <oo

71=1 \k=n 7/
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implies that the sequence {s,,(x)} possesses a property P, then any subse-
quence {”,,(A)} also possesses property P.

Lemma 2 [2]. Let (a*,(n)}, the coefficients of a regular Hausdorff trans-
formation, be given by

(1) Jo ()RRl

where (fiX{t) GLr(0,1) for some r > 1. Then

(3.1) Y;‘O“(ﬂ)r = K(r)(n + D)1 r.
k=0
Lemma 3 [15]. Let the coefficients of a regular [J,~-transfor-

mation, be given by

ak ~~k\ ]

where 4>t) GLr(0,1) for some r > 1. Then for £=0,1,...

(3.2) EKWT T ~ A ((1 +o0;1e-"~1+))r-1.
k=e

Before formulating the next lemma we recall some definitions and nota-
tions.

Let k ~ 1, a > —1 and 7 (f) be a positive non-decreasing function
defined for 1 ~ t < 00. We say that a numerical series YI~"Loan s summable

|C,a,7(i)|f if the series 7(n)An_11rn| is convergent, where r" :=
= n(cr* —&n-i) and denotes the nth Cesdaro mean of order a of the
series Yhan- It is well known that ifa > 0 then r* = a(<t“-1 —<g“).

Lemma 4 [13]. Letr » k > L a > —1,/3"a+«k~r—r_1, and 7 (i) he
a non-decreasing positive function defined for 1A t < 00 so that with some
cC >1

(3.3) lim sup < Ca+l.

t—w o TvV
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Then if the series Y~=oan summable [C,a,7(/)|fg it is summable
IC,B,i(t)\ , furthermore

' 0° 11/r (o°
N 7M)rn-Lrenr . 9K
1 J 1711

Lemma 5 [14]. For any positive sequence {jn} the inequalities

0o

(3.5) £ nAKIm  (m=1,2,...,3Sr"l),
n=m

or
m

(3.6) XIm=ATm (Mm=1,2,...# "1
n=I

hold if and only if the sequence {7n} is quasi geometrically decreasing or
increasing, respectively.

Lemma 6. Let 7(<) be a positive non-decreasing function defined for 0 ~
ANt < 00 uui/i property P2. 1f (2.2) holds then
00 1 00
7(n+ D2(n+ 1)_11<m_1(K) - <r"(x)| 2 >da: it UT cn7(Nn)2
710 =1
/or any a > 1/2.

This lemma in the special case 7 (i) = V with 0 < 7 < 1 was proved by
G. Sunouchi [18]. Our proof to be given below follows the line of the proof
given by Sunouchi.

P roof. Since

ka AKzlfcl a?mn)?
40

it follows that

°° b
[ TIHiffn+irV r’w-~W |22
71=0 Ja
oo CQ0 ij
=KE |IE"V -4 JT(n+ DA+ in 2 =
n=0 In=0

ic k Mathematica Hungarica 66, 1995



70 L LEINDLER

00 00
=# X v2cix i(n+)2(n- v+i)2a 18n+ i)~2ai =
is—0 n-v
00 / 2u oo \
=af n ;K > y . ==E ,+ E,
t/=0 \n —z/ n=2i/+1/

say. On account ofa > 1/2,

X tS~X +i)Vaal X1~
i/=0 ra=|
00 00
NK X M7+ )2 M AT X T (N)2e2 < oo0.
i/=0 iI=0

At the last estimation we used the fact that the sequence {7 (2")2- "} is quasi
geometrically decreasing.

To estimate we apply statement (3.5) of Lemma 5, furthermore the
obvious fact that if a sequence {7,} is quasi geometrically decreasing then
so is {72}. Then if m = m(u) satisfies the inequalities 2m_1 U 2>+ 1< 2m
we have

X2=AX" X T(M)2e3

n=2v+l

00 2*+1-1\

s"'X"Z X +X X jT(cHi)RBN

yn=2i/+1  k—m n=2k )

( o) A
N K X "2¢2j 7(2m)22-2m + X (7(2%)2“f) 2\ 4
v— \ k=m J
00 00
n j(2m)2~m)21 A2X ~ W 2< oo.
t/=i i/=i

Summing up our estimations we obtain the statement of Lemma 6.

Lemma 7. Letp>0,d> max (I/2,(p—I)/p) and let 7(t) be a positive
non-decreasing function defined for 1 ~ t < 00 with property P2. U (2-2)
holds, then
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(3.7)

dx < K JAcAT7(n)2.

Proof. On account of d > max 1—Aj it is easy to see that there
exists a number p > 1 such that

(3.8) PP= 2 and d>1—pp)~X

hold. Putting ¢*(x) := d(a~-1(x) - Crux)) (= n{o*{x) - ~_j(x)) since
d > 0) and applying Holder’s inequality we obtain that

(3.9) E Ne )rAwi E Ne)[M| A
wi=n+l
7))
A Kn~t(n) p€ E  1(V)PPV Xl {x)\""
| 2=l

By the second statement of (3.8) we can choose a* such that

1,1 1
(310) d- '2 -\--b-F-)> a > -2

holds. By (3.10) the parameter conditions of Lemma 4 are fulfilled with
r=pp, k=2 a=a*and B =d. The assumption (3.3) is also fulfilled since
the sequence {7(2")2_n} is quasi geometrically decreasing. Using Lemma 4
we get

1/ pp 00 1/2

(3.11) i K ET(nfn-1

Thus, by (3.9), (3.10), (3.11) and Lemma 6, we get

2n ilp
< sup E\_l *) [ dx <
1<TI<O0G V—A-
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dK dx < < 00,
71=1
which proves statement (3.7).

Lemma 8. Ifp> 0, d> max(l/2,(p- 1)/p), 7(f) i« fhe same prop-
erties as in Lemma 7, ant/ additionally it has property P\, too, then (2.2)
implies

f1 o i/p
(312) n £ No )_</\ ]_WI' =d* tW 1)
i/=n+1
a.e. in(a,b).

P roof. It is clear that

i1 2n S1wp
(3.13) In U v)ip =
I Mv=n+l J

_f12 JU I o Lp
=K\~ £, I00-"001 " +A I~ £ KO§~" 19" -

First we show that the first term has the required order. Since d > 1/2, so
by Theorem C withp=1,r =2, w=n,n= 1,2,..., /im= 2m, r/(t) = 7(f),
g(t) = 1, ajfc(n) = AdZ\/A*, vk = & we get that

(3.14) f{x) - 0d(x) = ox(i(n)~1)

a.e. in (a, 6). We admit that it is not very easy to see that all of the assump-
tions of Theorem C are satisfied in the case given above, but a standard and
elementary consideration shows that Theorem C with 02(7(n)_1) works,
whence (3.14) follows clearly.

Using (3.14) we see that the first term in (3.13) has the required order
Prbl AT 1). .

Next we show that the second term in (3.13) also has the same order.
Let e be any positive number. Let us choose N so large that

(e]e]

(3.15) J2 QIW2<£3.

n=N-\-1
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By means of N let us split series (2.2) into

N 00

<00 ad E cni(nf <B,

n=1 n=A/+I

and consider the corresponding orthogonal series, i.e., let

00
' for n~ N
AN H - 11 ]
(3.16) 71:? n<m(x) with an | q for n > N:
and
(Q for niSN
(3.17) X]bn<fin()  with  bn- < '
n=o A for n>N.

If, in this proof, an(a;x) and a£(b;x) denote the (C,a)-means of series
(3.16) and (3.17), respectively, then

(3.18) <(*) = <(a;x) + <(6;x).

Since the number of the coefficient an ¢ 0 is finite,

I(a-x)-alj(a-,x):—ll "Nj kAd_\ckak(x)

u k=o
ifi/ > N; and forany k * N AdZ = 0(l/i/), so using Holder’s inequality,
we get that
n
E e HOF_AEHEN
a nlp
=nl ]Jp)vi/EnH Yo; *)-®2(«<;*)| "

= O0x(hnl-1"n21*-" = 01()n1l-p,
whence

( = Up
(3.19) = 0Ox(n *

( i=nA
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follows a.e. in (a, 6).
Since 7(n)n_1 —a0, thus (3.19) implies that

(3.20) Y[ =°*bln)~r)

also holds a.e. in (a, b).
In order to estimate the suitable terms of series (3.17) we use Lemma 7
and (3.15). Then

2n Vp'

I(n)p . .

f sup Y \°i I{b\x)-o0i{b;x)|p > dx"Ke3.
lncoo M yeq

Hence

2n e
meas A x :limsup I — |a® 1b;x) —a~(b;x)\p1 > £~ Ke.
A=TH

This, (3.13), (3.14), (3.18), (3.19) and (3.20) imply (3.12) a.e. in (a, b), so
our proof is complete.

4. Proof of T heorem 1. First we show that for arbitrary positive p

p

11 '
ay amz= Y V)lp

N7+ 1 K—fin

holds a.e. in (a, b).
Let us assume that for a given pm n = n(m) is the largest integer such
that

n<pm,
furthermore let A be the smallest integer with N 2/1 Then, by (1.5), it is
clear that

H* Pm ~ Pm+1 = -Vflnl ~ 2 /2m ~ 2 71,

whence, by Lemma 8 and taking into account that the sequence {7(2n)2-"}
is quasi geometrically decreasing, we get

ilp

[ 12X
AT K<, <- Y If(x)-ak Lig)r » <

k=n+I
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1p

s *(p,ae gi e" I/w-"wr

i=0 { ZNMk=2"n+l

and this proves (4.1).
Nowweset r' := r/(r—1),i.e. let I/r + 1/r'= 1. By Holder’s inequality,
using the properties of 7(i), (1.5) and (4.1) with pr' in place of p, we get

(4.2) 4w(/,p,d;x)p:= X aoWwW) K x(x) - f(x)\p~
k=0
o, Wriisi ALY M1 s
pr <
/\5( I X *\r X] K _1(x)- /(*)I
m—O | k=Rrn &Mn
At 1 ur
A 1 *x —_—
X wmonn < e XKHE- (T =

SAE " mpm(w,r)ox(7(pm
710

a.e. in (a, 6). By (2.1), (4.2) clearly yields

(4.3) Aw{f,p,d-,x) = Ox{g{u)I7(0;))
a.e. in (a, 6).

If (2.4) is also satisfied, then we derive the statement
(4.4) Aw(f,p.d;x) = ox(g{u)h(u)) {u -* 00)
as follows.

Let £ > 0 be given. If x is a point where (4.2) holds, then let M(x) be
a positive integer such that for m > M(x) the inequality ox(7(pm)_P) <
< £p7(pm)_p is valid. For such x we get from (4.2) that

(y(u)/g{u))pAM ,p.d:;xf <
M(x)

K{x) "~ PTPTMU.NL(ET)P 1(7 («)M «))P+
7710
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(00]

+Kep('y(w)/a(w))p flJ-mpm(u,r)i(Limy p.
m=M(x)+1

When n —»00, the first sum on the right converges to zero by (2.4); and
the second sum remains 0 ((p(u;)/7(w))p), by (2.1).

Thus (4.4) clearly follows. Since (4.2) holds a.e. in (a, b), it follows that
(4.4) also holds a.e. in (a,b).

From statements (4.3) and (4.4) the suitable statements of Theorem 1,
i.e. (2.3) and its variant with ox, follow easily applying Lemma 1, and this
completes the proof of Theorem 1.

5. Applications. First we treat those results which can be derived from
Theorem 1 in the special case when g{w) = 1 and both (2.1) and (2.4) are
satisfied.

51. If

(5.1) pnk{t) ;== Q t* (I - K=0,l,....n; n=1,2,...

and (>{t) E Tx(0,1) is a non-negative function with H'Hj = 1, then the matrix
[la~(ra)|| defined by

(5.2) ak(n) := JI' onk()<i>@)dt,  K=0,1,..m n=1,2,..
0

yields the coefficients of a regular Hausdorff transformation. For these trans-
formations we have the following results.

Theorem 2. Letp >0, d > max(l/2,(p —1)/p) and let 7(t) be a
positive non-decreasing function defined for 0 ~ t < 00. Suppose that ak(n)
are given by (5.1) and (5.2), where <) E i r(0,1) with some r > 1. If 7(f)
has properties P\, P2 and Pps with these p and r, and (2.2) holds, then

1/p

(5.3) = ox(7(n)_1)
k=0

a.e. in (a,b) for any increasing sequence v := {«7} of positive integers.

Corollary 2.1. Letp >0, d > max(l/2,{p- 1)/p), a > 0 and a* :=
= min(l,a). Suppose that ||a*;(n)|| is the matrix of a Cesaro (C,a) or a
Holder (H,a) transformation, and that the function 7(t) has properties Pi
and P2, furthermore {7(2n)2-na*/p} is quasi geometrically decreasing. Then
(5.3) also holds a.e. in (a,b) under condition (2.2).
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Proof of Theorem 2. First we show that conditions (2.1) and (2.4)
of Theorem 1 are satisfied if gu>) = 1 and n [w], where [iu] denotes the
integral part of u. By inequality (3.1) of Lemma 2 we get

(5.4) pm{u,r)*"K{r)*lrullr~\

whence (2.4) follows on account of the property Pps of 7(f), and hence if a
sequence {7,} is quasi geometrically decreasing then for any p > 0 {7p} is
also quasi geometrically decreasing.

Since pm(ij, r) = 0 if p-T> w, thus, again from (3.1), we get

(5.5) AopTrpT(w,r)7(/rm) p s liulr 12 p Inl/r'y(Pm) P,

771=0
where the summation on the right is for pm ~ u. Because of the assumptions
made on the sequences {gm} and {7 (2n)2n(1~r" rp} the last sum, by Lemma
5,1is 0 (u 1- ¥r7 (ui)_p), thus the previous inequality proves (2.1).

The conclusion (5.3) of Theorem 2 follows from Theorem 1, and this
completes the proof.

Proof of Corollary 2.1. Both the (C,a) and (A, a) transforma-
tions are Hausdorff ones with </>i(i) := a(l —i)a_1 and <fo(0 := '(a)-1 ¢
*(log I/i)"-1, respectively, Ifa ~ 1 (a* = 1), then <=it) GLr(0,1) for arbi-
trary large r. Since then {7(2")2~"/p} is quasi geometrically decreasing, and
it will keep this property after multiplying its terms by 2re if e(> 0) is small
enough (and if 1/r < ep), then the sequence (y(2")2n™_r*rp} will be quasi
geometrically decreasing as well. If0< a < 1(a* = a), then 4>i(t) GLr(0,1)
if 1/r > 1—a. Applying the previous consideration with 1/r —1+ a <ep,
then we get that the sequence {7(2")2n(1~r)/rp} is also quasi geometrically
decreasing, namely {7(2n)2-na'p} has this property.

Consequently Theorem 2 is applicable and it yields Corollary 2.1.

52. If

(5.6) Affew<) = (W'Ogm(”o)' £=0,1,...,

and (f)t) G £%(0,1) is a non-negative function with [|0||t = 1, then the
function-sequence {a*;(w)} defined by

(5.7) ak(u):= J|' Aw)<f>(dt,  k=0,1,...
0

yields the coefficients of a regular [J,//transformation. For such transfor-
mations we have the following result.
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T heorem 3. Letp,d,r, *y(t) and <{f) have the same meaning and prop-
erties as in Theorem 2. Suppose that a&(o») are given by (5.6) and (5.7). If
(2.2) holds then

0o I/p
(5.8) X x)- f(x)\p = o0”bla;)-1)

a.e. in (a,b) for any increasing sequence v {i/} of positive integers.

Corollary 3.1. If (2.2) holds and {«"(u;)} is the coefficient-sequence
of the Abel transformation, then (5.8) holds whenever the sequence

{7(2”)2-n/p} is quasi geometrically decreasing; assuming that p,d, {7(2")}
and {7(2n)2-n} have the same properties as in Theorem 1.

P roof of Theorem 3. We again show that (2.1) and (2.4) are satisfied
with g(oj) = 1 under the assumptions of Theorem 3. Now we obtain (5.4)
from (3.2), whence (2.4) follows by the same reasoning as in the proof of
Theorem 2.

Furthermore, by (3.2), we get

(5-9) Xi:= X IWmw,n7("m)-P S
S A'M(i + N Ur-* £ w -

The last sum, by reasoning made after (5.5) in the proof of Theorem 2, is
0(u>1-1/rj(cv)~p), thus (5.9) yields

(5.10) X x= K (bl “T P-

On the other hand, by (3.2) and (5.4), we obtain that

Y = Y] PmPmitir)7(Mrt) P=
Rm>w

, A "e-Am(l-Ur)/(1+u )7 mj-p A
=AM X (1404

AK(r) X 'Klbn)~P
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due to the fact xe x < 1 for any x > 0. Since the sequence {7(2")} is
guasi geometrically increasing, thus, by virtue of Lemma 5, the last sum is

0 (7(n)_p), whence

(5.11) A K{r)"){ui)~p

follows. Inequalities (5.9), (5.10) and (5.11) prove (2.1), therefore Theorem
3is also a consequence of Theorem 1, as desired.
Proof of Corollary 3.1. If 0(f) = 1 in (5.7), then ak(u) :=

ufid (I + w)feel for k = 0,1, .. which yields the classical Abel transforma-
tion. In this case, clearly, 0(f) G Lr(0,1) for any r > 1, thus the assumption,

that the sequence {7(2”)2_"/p} is quasi geometrically decreasing, implies

that if r is large enough then {7(2")2"(1-r)/rp} has the same property (see
the reasoning given in the proof of Corollary 2.1), consequently all of the
conditions of Theorem 3 are satisfied. Therefore the statement of Corollary
3.1 follows from Theorem 3 immediately.

5.3. If the function O(f) in (5.2) satisfies
0" 0(f) M K(R)tR~I

with B > 0, then it is easy to show that

. (k +1Y3-1
(5.12) ak@) n K(R)\ -I.fr
(n +
for0”~ k™~ n,n= 1,2, Using (5.12) we can verify by easy calculations

that in these cases (2.1) and (2.4) hold whenever g(t) = 1 and the sequence
{7(2”)2~n"Ip} is quasi geometrically decreasing. For example if 0(f) =
= RtB~I, then the matrix |jafc(ra)|| yields, essentially, the Riesz transforma-
tion of order B. Consequently Theorem 1with d — 1 gives a slight improve-
ment of Corollary C.2.

5.4. If the function 0(f) in (5.7) satisfies
07 0(f) » K(q) (tog -

with g~ 0, then an easy calculation yields that

()]
ak(u)ZK(q) (\ﬁKfH&ﬂ \u> + |
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for k — 0,1, Using this we can show easily that in this case (2.1) and
(2.4) hold whenever the sequence {7(2")2_n(?+1)/i>} is quasi geometrically

decreasing. For example, if ) := (T(q+ 1)) 1(logj)4, q” O, then

0IM =(w +ir'-"(~,) (~ 1) ,  K=01lu.

which yields the generalized Abel transformation of order g+ 1. In view of
this, it is easy to see that Theorem 1 with d — 1 gives a generalization of
Corollary C.3 under a slightly relaxed condition.

5.5. Next we mention two further applications of Theorem 1with gu>) :=

= (log(l + w)) p. The proofs would run as in the previous cases, therefore
we shall detail only one of them. These special cases of Theorem 1 include
some of the so called “limit-case” theorems (see e.g. [6] and [10]).

THEOREM 2*. Under the assumptions of Theorem 2 with

(5.13) Y, 2n(1~1'r2(2n)-p < K (log m)2m(i- 1/rb'(2m)_p
71=0

in place of property PRT, but assuming that the terms of the sum are non-
decreasing, we get

1/p

2 @l Vi*)-roon = x(Uogmrer(n)-1)

a.e. in (a,b) for any increasing sequence v := (i7} of positive integers.

T heorem 3*. Under the assumptions of Theorem 3 with (5.13) in place
of property Ppr we get

00 i/p
a ’(w)| - 1M)Ip o =0 ((log(l + &) Yp7 (w)-1)

A=0

a.e. in (a,b) for any increasing sequence v {i/2} of positive integers.

Remark. Theorems 2* and 3*, like Theorems 2 and 3 above, because
of their generality, do not include the limit-cases theorems proved for the
Cesaro, the Riesz and the generalized Abel summation methods (see e.g. [6]
and [10]), but our main result, Theorem 1, yields the results for the above
mentioned classical summation methods as well.
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Proof of Theorem 2* We show that conditions (2.1) and (2.4) of

Theorem 1are satisfied if n := |y] and g(u) := (log(l + u;)) *p. From (3.1)
we derive (5.4), whence (2.4) follows. Namely, by condition (5.13),

r S K(ru~Yrul/r-r =

= K(ryur/ee bl w)~P) ="{[ leg(l+w )| Th "7

clearly holds.
To show (2.1) we take into account that pm(ui,r) = O ifpm > tu. There-
fore, by (1.5) and (5.13), (3.1) implies that

53 vmPm(u,r)~/(pm) P @ Auil/r 1 N (Pm) 27

m=0 BmSui
A K (log(l +w)ju>) p,

what is the required inequality (2.1).
Consequently we can apply Theorem 1 and this completes the proof of
Theorem 2*.
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FIRST RETURN PATH SYSTEMS:
DIFFERENTIABILITY, CONTINUITY,
AND ORDERINGS

U. B. DARJI (Raleigh), M. J. EVANS (Raleigh) and R. J. O’'MALLEY (Milwaukee)

1. Introduction

In this paper we continue the study of first return path systems, which
were introduced in [15] as examples of minimally thin path systems suffi-
ciently rich to generate many of the properties of more standard systems,
such as the one used to study approximate differentiability and continuity.
(The name and structure of these paths are derived from the use of a dense
trajectory and the Poincare first return map of dynamics. This will become
more apparent as we continue through this section and the next.)

With regard to differentiability, a question of immediate concern is the
determination of whether various established derivatives, such as approxi-
mate, Peano, and approximate Peano, can be realized among the class of
first return derivatives. Surprisingly, this seems hard to establish directly in
each case. (For example, finding the trajectory to establish the approximate
result seems nontrivial.) Fortunately, all of the above types have been shown
to be composite derivatives of a special type. (See [13], [5], and [6].) In this
paper we establish that all such composite derivatives are first return deriva-
tives. In fact, there is a non-apparent universality underlying the trajectory
which will be shown.

A similar universality is found with respect to first return continuity and
the familiar class of Baire* 1, Darboux functions. Furthermore, the basic
concept of first return continuity is shown to be equivalent to the Baire 1,
Darboux property. We also establish via examples that converses of two of
our major theorems are not valid.

Lastly, we examine the fundamental idea of trajectory. As mentioned
in [15], two objects are necessary to create a trajectory: a countable dense
set D and an ordering of D into a sequence {an}" 0 of distinct points. For
any such D it is easy to create orderings of D having the property that
there is no continuous function g such that gn(xo) = xn for all n, where for
each 1 gn(x0) = g(gn~1(x0)). Therefore, it would be logical to anticipate
that those first return path systems generated by trajectories of transitive
continuous functions would possess nicer properties than general first return
path systems. However, this is not the case. As a final result we show

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



84 U B DARIJI, M. J EVANS and R. J. O'MALLEY

that each first return path system can be generated from a trajectory of a
continuous transitive mapping, and, again a certain amount of unanticipated
universality or flexibility is exhibited.

2. Definitions and notation

By a trajectory we simply mean any sequence {an}*Lo °f distinct points
in (0,1), which is dense in [0,1]. (Note that this is a slight deviation from the
definition used in [15], but the alteration is both cosmetic and notationally
beneficial.) One way to produce a trajectory is to begin with a transitive
continuous function g: [0, 1] — [0, 1], i.e., a function having the property that
for some yo the sequence of iterates {yo, 9(20), 92(yo), **+} is dense in [0, 1].
Such a sequence is called the trajectory of yo under g. In this paper the
most common method of specifying a trajectory will be that of assigning
an enumeration or ordering to a given countable dense subset D of (0,1).
Throughout this work we shall refer to such a set D as a support set and will
only use the symbol D to denote such sets.

Let {xn} be a fixed trajectory. For a given interval (a,b) C [0,1], r(a,b)
will be the first element of the trajectory in (a,b). For 0 * y < 1, the right
first return path to y, 12+, is defined recursively via

Vi = I and Yk+i = r(.Vivk)'

For 0 <y ~ 1, the left first return path to y, R~, is defined similarly. For
0<y<1 weset Ry=R+ JR~ U{<}, and RO= {0} U/2*,Ri =Rf U{1}.
The collection TZ= {Ry:y € [0,1]} satisfies the definition of r, path system as
defined in [3] and we shall refer to it as the first return path system determined
by the trajectory {xn}. (It should be noted that for a fixed support set D,
the nature of the first return path system will clearly depend on the ordering

of D which defines the trajectory {xn}, and this is why we have emphasized
this concept in our title.) Let /: [0,1]] —R. If the

lim /() - f(y)
t—y -
tERY\{y}

exists and is finite, then we say that / is TZ-differentiable at y, orisfirst return
differentiable at y with respect to the trajectory {zn}. If the above equality
holds for all y £ [0,1], we say that / is TZ-differentiable to the function f'n
on [0,1], or / is first return differentiable to /jj on [0, 1] with respect to the
trajectory {xn}. If / and g are functions on [0,1] and there exists some
trajectory {xn} for which / is first return differentiable to g on [0, 1] with

fn(y)
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respect to {in}, we simply say that / is first return differentiable to g on
[0, 1], and call g a first return derivative of f on [0, 1].

Now suppose that / and g are functions with the property that for every
support set D there is an ordering {xn} of D, such that / is first return
differentiable to g on [0,1] with respect to {xn}. In this situation we say
that / is universally first return differentiable to g on [0,1], and call g a
universal first return derivative of / on [0,1]. As we shah observe in the
Examples section of this paper, it is possible for a function to have more
than one universal first return derivative on [0, 1].

The concepts of a function being

(i) first return continuous on [0, 1] with respect to a trajectory {xn},

(i) first return continuous on [Q 1],

(iii) universally first return continuous on [0, 1],
are all defined in the analogous manner.

Next, we need to review the notion of composite differentiation as defined
in [16]. A decomposition of [0,1] is a collection of closed sets En,n —1,2,...
such that (XLj En = [0,1]. A function /: [0,1] —R is said to have a function
g: [0,1] -> R as a composite derivative relative to the decomposition {En} if
for each n and each y E En

oom - f
teE’n

The function / is said to be compositely differentiable to a function g if
there exists a decomposition such that / has g as a composite derivative
with respect to that decomposition. Similarly, we could say that a function
[ is compositely continuous if there exists a decomposition such that the
restriction of / to each set in the decomposition is continuous. It is known
(see [1] or [12]) that this property is equivalent to the Baire* 1 property.
Recall that a function /: [0,1] —R has the Baire* 1 property if for each
perfect set P ~ [0,1] there is an open interval | such that P M1 ¢ 0, and the
restriction of / to P NI is continuous.

Finally, as an aid to concisely stating our results, we wish to alert the
reader to the following caveat: Whenever we make a statement referring to
bilateral behavior at each point in [0, 1], we wish to have this mean behavior
from the right at 0 and behavior from the left at 1; that is, bilateral should
be interpreted relative to [0, 1].

3. First return differentiation
We begin this work by exploring the relationship between composite
differentiation and first return differentiation. First, note that not every
composite derivative is a first return derivative. For example, consider the
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function

which is compositely differentiable to the function

1 if0 x< A
90) 1 if\<xnl

relative to the decomposition of [0, 1] given by the perfect sets E\ = [|,I],

and En=E\U o |- n!rl for n = 2,3, Note that / clearly cannot be

first return differentiable to any function since it has different left and right
ordinary derivatives at However, if we not only require that a function /
be compositely differentiable to a function g on [0, 1], but further require that
g(x) be a bilateral derived number of / at each x, then / will be universally
first return differentiable to g. We shall prove this result in two stages. First,
we will show that under these hypotheses, the decomposition can be assumed
to have a very nice structure relative to any given support set D. Then we
shall utilize this structure to prove the main theorem. Before stating the
first result, we recall that if / is compositely differentiable to g on [0, 1], then
the Baire category theorem shows the existence of a dense open set U (f) on
which / is differentiable to g.

Lemma 1. Let /: [0,1] —R be compositely differentiable to 5:[0,1] —»
—>R, and suppose that for each x € [0, 1] g(x)is a bilateral derived number
of f at x. Let D be any support set. Then there exists a nondecreasing
sequence {Hn} of perfect sets whose union is [0, 1] and such that for each
natural number n

A) the restriction of f to Hn is differentiable to g at each point of Hn,

B) each point of Hn is a bilateral limit point of Hn+\,

C) each component of [0,1]\ Hn has both endpoints in U(/) NMzHJ {0,1}.

P roof. From Proposition 1in [14] there exists a nondecreasing sequence
{En} of perfect sets whose union is [0,1] and such that for each natural
number n the restriction of / to Enis differentiable to g at each point of En.
Let U = U(f) and set

T=UnDU{0,1}.

We shall construct a sequence of perfect sets {Hn} with En Q //,, for
each natural number n and with / being compositely differentiable to g with
respect to {Hn} such that each Hn has the desired additional properties.

The sequence of sets {Hn} is constructed inductively. A procedure for
enlarging a certain type of perfect set to another perfect set containing it
will be described. We begin by enlarging the perfect set E\ to a perfect set
Hi as follows. We know that the function / restricted to the perfect set
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Ei is differentiable to g restricted to E\. Thus, by a result of Laczkovich
and Petruska [7], there is a differentiable function F such that F agrees
with / on E\ and so that F' agrees with g on Ei as well. To temporarily
normalize the situation, we introduce the function fi = F —f. Then fi is
compositely differentiable with respect to the sequence {£,}, fi is zero on
Ei, fi restricted to Ei has derivative 0 at each point of E\, and fi has an
ordinary derivative at each point of U. Enumerate the components of [0,1] \
\ Ei in a finite or denumerable sequence {(an,6n)}. We shall show that for
each n there is a sequence {Lnik:k = 1,2,...} of closed intervals converging
to an from the right such that for each k

(1) Lnk C UM (an, (an + 6n)/2),

(2) the endpoints of Lnyk are in T,

(3) foreach z £ Ln’k we have < ni‘_k*
To see this, first note that since 0 is a bilateral derived number of fi at an,
we know that there is a sequence of points {xmkk = 1,2,...} in (an,(a, +
+ bn)/2) converging to an from the right and for which

fl(xn,k) 1
Xn,k n K

For each k let Wnk denote the open region enclosed by the rhombus formed
by the four lines y =" (z - an),y= - ~(z - an),y="(z - bn),
and y = —jjT_(z —bn). Then for each k we select positive numbers enk
and Sntk such that xnk-f Sk < (a,, + bn)/2 and such that the the rectangu-
lar region (z,ic- Snk,xnk+ 6n«) x (fi(xnKk) - enki f\{xn,k) + £n,k) lies in
Wntk- Utilizing Theorem 3.2 in [16], we have that fi has F' —g as a selec-
tive derivative and, hence, by Theorem 11 in [11] fi is a Baire*l, Darboux
function. Utilizing this Baire*l, Darboux property we know that for each
K there is a point yMk £ (xIk- 6nik,xntk + bnk) MU such that fi(ynk) G
e {h{xnk) - £n,k,fi(xnk) + £nk) (e.g., see Theorem 2 in [10]). It is now
an easy matter to select an appropriate closed interval Ln’k containing yrnx
that will have all of the listed properties. Likewise, for each n there is a se-
quence {RUkk —1,2,...} of closed intervals converging to bn from the left
such that for each k

(1) RnkcUn ((an+ bn)/2,bn),

(2) the endpoints of Rnk are in T,

(3) for each z £ RnKwe have ‘M) A i
Then we set

H =E1U  UNnkURK =

.Nn K
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Note that H\ is perfect, E\ C H\, f\ restricted to H\ is differentiable at each
point of Hi; in particular, this derivative is 0 at each point of E\ and at each
point of H1\ E\ fi has an ordinary derivative since such points belong to U.
Furthermore, each endpoint of every component of [0,1] \ H\ is an endpoint
of an bl or an Rnik and, hence, is in T. Returning our attention to the
original function /, we have that / restricted to H\ is differentiable at each
point of H\ to g. Next, we form the union of E2 and H\ and repeat the
previous procedure to enlarge this perfect set to a perfect set H2. Then each
point of H\ is clearly a bilateral limit point of //2-

In general, having formed the perfect set Hn, we enlarge the perfect set
Hn UEn+1 by this procedure to obtain the perfect set Hn+\. The sequence
of sets {Hn:n = 1,2,...} will then satisfy our requirements.

Theorem 1. Let f: [0,1] =R be compositely differentiable to g: [0,1] —»
—»R, and suppose that for each x £ [0, 1] g(x)is a bilateral derived number
of f at x. Then f is universally first return differentiable to g on [0,1].

Proof. Let D be a support set and let {#,,} be the sequence of perfect
sets obtained from Lemma 1, and for convenience let HO = {0,1}. Let
{ds}"10 be an ordering of D. We shall utilize this ordering and the sequence
of sets {Hn:n = 0,1,...} to construct the desired ordering {x,} of D. As
a mechanism to assist in this endeavor we shall construct a sequence of
partitions {Vk}, where each Vk consists of points chosen from D U{0,1} and
each Pfc+i is a refinement of Vk.

For each y £ [0,1] we shall find it convenient to adopt the notation n(y)
for the smallest integer n for which y £ Hn. For each y £ (0,1] andeach
non-negative integer k we shall let Ak(y) denote the closest element of the
partition Vk lying strictly to the left of y\ and for each y £ [0, 1) and each
non-negative integer k we shall let pk(y) denote the closest element of the
partition Vk lying strictly to the right of y. For convenience, we let A 1(?/) =
= —1and p~r(y) = 2 for all y £ [0,1]. We shall construct the partitions
inductively in such a manner that for each k —0,1,2,..., we have

A. For each y £ (0,1], [Afc-1(y),\ k{y)] MVk C Hn(y)+i-

B. For each y £ [0,1), [pk(y), pk~r{y)] MVk C Hn(y)+a.
We start by setting Vo = {Po ~ 0,p° = 1}. We further set 5.2 = 0 and
x_i = 1 (We will want to continue this dual labelling scheme, wherein we
label the points in each Vk in the natural order for each k and label the
points in [J]*10TV lexicographically.) Note that for k = 0 conditions A and
B are trivially satisfied.

Proceeding inductively, we assume that a partition,

Vk ={pb =0<pk<...<plk=1},

has been chosen; that each point of Vk belongs to D U {0,1} and has been
labelled as an X{, where —2 ~ r U Ik —2; and that conditions A and B
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are satisfied. We let Sk denote the largest integer s such that ds E Vk-
To construct Vk+i we proceed as follows. Naturally, since Vk+1is to be a
refinement of Vk, we first put all points of Vk into Vk+i- For each 0 % i i1

M lk —1, we shall select points to properly refine b®-Pt+i}- Fix such an i
and let n(i, k) be the smallest n such that (Pi,Pi+i) CHn ¢ 0. Now consider
the set \Pi,Pi+i\\ Hn(i,k)- If this set is empty, then we select any point from

T which belongs to the middle third of the interval \Pi,Pi+i] an(f Put it m
the collection of points which will form Vk+ie Then we put all elements of

{ds:s ~ sfc} M (p*,pf+1) MHNNK) in the collection of points which will form
Vk+i and move on to the next i. On the other hand, if \pk,Pi] \ Hn(ik) is
not empty, then we proceed differently. In this case we let Vltk = J\
\ Hn(i,k) and set Ri equal to the length of the longest component(s) of Vitk-
We select the endpoints of all components of length Rk and put them in
Vk+1- Then we put all elements of {ds:s * M (Pi,Pi+i) 0 Hn(i,k) in the
collection of points which will form Vk+i- Now we pause and look at the
partition of \Pi,Pi+i\ formed so far. If the norm of this partition is less than
or equal to Rk, then we move on to the next r; if not, then we add additional
points from An(,X) M [pf, Pi+\] MD to refine the partition until its norm is less
than or equal to /3*; specifically, we may select endpoints of components of
Vi'k other than those of length Rk and/or points from D lying in the interior
of \Pi,Pi+il MHN(@ to accomplish this. Then we move on to the next i.
Once we have done this for each interval [pf,p® 150" r™ h —1, we have
constructed our partition Vk+i —{pf+l = 0 < pf+l < ... < = 1} and
we label the points in Vk+i \ Vk from left to right as agfc i, xik, ..., xik  2-

We need to verify that conditions A and B are satisfied with k replaced
by Kk + 1. Let us first consider condition A. So let y E (0,1]. We must show
that [Afq(t/), Alctl(r/)] M TfcH C Hn(y)+im By the inductive hypothesis we
know that Ak(y) E # n(v)+1. If Ak(y) = Ak+1(y), then we are done. Suppose
Xk{y) ¢ Xk+1(y) and let t E {Xk(y),Xk+1(y)] MVk+i. Then t E Vk+i \ VK.
There is an i such that Ak(y) = pk. Then t E (pf,y) and y E (t,pktl]. We
know that t E Hn"k)- Since y E (Pi,Pi+J? we must have n(i,k) d n{y) + 1;
indeed, if y E (Pk,P{+1), then n(i,k) * n(y), and if y = Pi+i, then we still
have n(i, k) » n(y) -f 1 since every point of Hn’y\ is a bilateral limit point of
Hn(y)\-\m Consequently t E Hn(y)+i. Thus, condition A holds. Condition B
is verified by a symmetric argument.

Next we show that lim ~«, mesh (Vk) = 0. This is equivalent to showing
that the closure of |J~ 0Vi, cl (Ui=o 4r), is [0,1]. To the contrary, assume
that cl (USo ?») @ [0»1] and let (a, b) be a component of [0, 1]\ ¢l (USo 4,).
Either a or b does not belong to 1J* OVt because we have that Vi+l is
a proper refinement of Vi for each i. Without loss of generality assume
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that a£ UZOVi. For each k * 0O, let jk be such that (a, b) C \PjkiPjk+i]-
Observe that {Pjk}*10and {Pjfc+i}~10 are non-decreasing and non-increasing
sequences which converge to a and b, respectively. Note that {Pjk}k_0 C
C Hnfa) and {Pjk+i}™=0 C A n(B) because a G HkLoiPj*Ph+i)- Thus we have
b GHn(@). As a £ and Hn(a)-1 is closed, {p'-JI°=r C Hn(a) \ An(a)_1
for some r. Since {pk }°° is a non-decreasing sequence converging to a,
whose range is contained in d,,(a)\ An(a)_! but does not contain a, we have
that n(ja,s) = n(a) for some s. (Specifically, choose s > r such that >
> pp3) For any t >s we have that n(jt,t) = n(a) because {n(jk, &}

non-decreasing sequence and a G NT=o(p'jk’PJk+i)- As a,6 G 4,,(a), we have
that (a,b) is the largest component of [p”iP*+i] \ Rn(jk,k) f°r large enough
k. However, this contradicts our method of defining Vk+i as a is not in
U£oP., and completing the proof of the fact that our trajectory is dense in

We next want to show that the range of the sequence {x,}n=0 is all of
D. Let ds G D, and let £ = dist (da, Hn(d,)-i) m Let K > s be such that
mesh (5*) < e. Then, if ds g Vk, then ds G (p?,pf+1) C (ds- £,ds f e) for
some i, and hence n(da) = n(i,k). This implies that da G Vk+u proving that
D is the range of {xn}.

To complete the proof, we need to show that for each y G [0,1], the
A-first return path derivative of / at y exists and equals g(y), the composite
derivative of / at y based on the sequence of sets {Hn}. First, we shall show
that the right A-first return path derivative of / at y, /*(y), exists and

equals g(y).
Based on the enumeration scheme used for {xn}, it is clear that the right

first return path to y is simply
Rt =U{/T)b
k=0
and condition B guarantees that C An(y)+1. Thus

— m - fly) .
fn(y) = y—F— = Im, Ly dis-
tERy te1/n(yHl

similarly, the enumeration scheme used for {xn} yields the conclusion
that the left first return path to y is

0o

k=0
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and condition A guarantees that Ry C # n(y)+1. Thus

lim /() - £(y) lim  Ne - f(v) _

t y . - y g (y) 1l
teRy tenn(y)H

f-n(y)

completing the proof that

fk(v) = 9(y)-

Corollary 1. Every approximate derivative, every Peano derivative of
every order, and, indeed, every approximate Peano derivative of every order
is a universal first return derivative.

Proof. O’Malley has shown than an approximate derivative is both a
composite derivative [13] and a selective derivative [11]. The latter implies
that the bilateral condition of the hypotheses for Theorem 1 will be satisfied.
Likewise, Fejzic [5] has shown that every kth Peano derivative of a function /
is both a composite derivative and a selective derivative of the (k —I)th Peano
derivative of /. Superseding both of these results, Fejzic [6] has recently
established that that every approximate kth Peano derivative of a function
/ is both a composite derivative and a selective derivative of the (k —I)th
approximate Peano derivative of /.

4. First return continuity

Here we shall show that first return continuity is equivalent to the Baire
1, Darboux property. We begin by showing that derivatives are first return
continuous. In proving this result, we shall utilize the following lemma. In
its statement we use the symbol d(y,[a,b]) to denote the distance from a
point y to an interval [a, 6]. The proofis elementary and is left to the reader.

Lemma. Suppose F is differentiable at y and e > 0 and y is contained in
some closed interval | such that ift € I \ {y} then FMz.y* - F'{y) <e.

If[a b\C | andy £ [a, b], then F@~"(B _ F'{y) <£ 1+2
Theorem 2. Let f: [0,1] —»R be a derivative. Then, f isfirst return
continuous.

P roof. We will construct a sequence of partitions {Vk} where each Vk+i
is a refinement of Vk by induction. At the same time, we will define a
trajectory {xn} using {Vk}s For k ~ —1, we let Ak(y) and pk{y) be the
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same as in the proof of Theorem 1. If F has a derivative at x and x is
contained in the interior of a closed interval /, then we will let

A(F, x, 1) = sup ﬂi'z(xx)":(y) F'(x) mye
-y

Let F be such that F' = /. Let Vo —{p$ = 0,p° = 1}, and as before
set X-2 = 0 and X-\ = 1. For each non-negative integer n, we want Vn to
satisfy the following conditions:

@ If2e (0,1],t G(An-1p), An(p)] MVn,and t > 0,then \f{t)-f(y)\ ~
N 5-A(Fy, [An-1(i/),pn-1(?N)]).

(2) IfYG[0,1), t G[pn(y), pn~I(y)) MVn, and t < 1, then |f(t)- f(y)| »
N 5-A (Fy, [An_1(GN/>n_1(tN] )*

(3) And, mesh('P,,) 5 (8)".
Note that Vo satisfies conditions 1-3. (It satisfies 1 and 2 vacuously.) Sup-
pose that Vk has been defined and it satisfies conditions 1-3. Let Vk —
—{Po=0< p\ < ...< pf = 1}. Since Vk+i has to be a refinement of Vk-,
put all points of Vk in Vk+imFor each 0~ i ~ Ik —1, we will select points
which properly refine {pf,pf+1}. Fix such an i and let Ik = | pk + Ap*l
and rf = |pf + 8p*+1. Using the mean value theorem, obtain p G [pf,/*],

Pi,m 6 and pfr G [rf,pf+1] such that
. F(pi)-F (1))
f(Pij) = F'(pl) = .
(Pij) = F'(pl) o4
Mm) =F\pim) I'Il-IBk-_Ir:k(rf),
and
. F(r{) 1)
)= i

We put all points of form pkt, pkm, and pkr, 0~ i ~ Ik-1 in the partition
mfct and order it in the natural increasing fashion as Vk = {Po+l = 0 <
< Pj#l < ... < p™*= 1}. We also label points in \ Vk from left to
right as xik-i,xik,...,xik+l- 2.

We need to show that conditions 1-3 are satisfied by Vk+i- Though the

partitions are defined by induction, conditions 1 and 2 are directly verified.
Let us first consider condition 1. Let y G (0,1], t G (Afldp), Afctl(y)] MVk+i,

and t > 0. Let i be such that pk <y i pf+1l. Then, t has to be one of pkt,

Ada Mathematica Hungarica 66, 1995



FIRST RETURN PATH SYSTEMS 93

Pi<mi or pfr. Let us first assume that t —pf  Now we have two cases to
consider: y G [pfjf] ory $ [pf, A]. If y G [pf,/*], then

_ F(pf)-F(If) <
1/(*)-1(»)! = 1(r2,i)-1(»)! = p,k_{k f{y)

nA(CF,y,[\k(y),pk(y)])

where this estimate holds because the difference quotient I'Mp)-_li'lkl-l) Nes

between P 0,y and If Y& [p*,/f], then by Lemma 1, we have
that ’
F(pf) - Ftf
L - f(y)l = 1f(Pi,i) - f{y) (p)_ [k ) fiy) <
s 4 (r, W), ()M MW g

Since d(y,[pk,If]) q N\p- ~p-+il\and |pf - A| = Up* - p*+1|, we have that

1400-/bll ~A5-p(r,y,[A>*(y)./(y)]).

Ift = pkmort = pkr, we may also obtain by an argument similar to the above
that 1/(f) —f(y)\ ~ 5¢A (F, vy, [AK(Y), pk(y)] ) *We just consider the interval
[if, rf] if t —pfm, and the interval [rf,pf+1] if t = pfr. Thus, condition 1
holds. Condition 2 may be verified by a symmetric argument.

That mesh (Vk+\) & (|)*+1 easily follows from the induction hypothesis
and the facts that for every 0 i ~ h-i, each of \pf - pft\and Ipf+1-pf.rl“
less than \ m\pf - pf+il, and each of |pfj - pfm\and |pfm - pfr| is less than
| «pf —pf+11 Thus, condition 3 is satisfied.

It follows from condition 3 that {xn} is a trajectory. Now we want to

show that / is first return continuous with respect to this trajectory at each
point. Let y G(0,1]. First, observe that the left first return path to y is

Ry = U {(*fc-IM.A*(y)] n p |
k=0

Let e > 0. Let O> Osuch that y 6> 0, and if 0 < \t —\\ < S, then
m't'i§y) f(y) < |. Let n be a positive integer such that (|)” < %
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Then, by condition 1 of the induction hypothesis, we have that if K > ra, and
te {(Afc-1(t/),Af(y)] nVk}, then

\f(t) - F(y)17~ 5f (F,y, [\k-\y),pk-1(V)\) ~ 5+£ <e.

Consequently, |f(t) - f(y)\ <e forallte UEU+i {("k~1(y)" k()] nV k}-
Thus, we have that / is left first return continuous. A symmetric argument
also shows that / is right first return continuous at each point of [0, 1).

T heorem 3. A function /: [0,1] —»R is Darboux and of Baire class 1
if and only if f isfirst return continuous.

Proof. (<= ) Suppose / is first return continuous. For each positive
integer n > 2, let hn be the natural piecewise linear continuous function that
is obtained by connecting the first n points of the trajectory. Then, {hn}
converges pointwise to /. Therefore, / is Baire 1. To see that / is Darboux,
recall that a Baire 1 function is Darboux iff each x E [0,1] has a bilateral
road [2]. Since / is first return continuous, the first return path at each point
is a bilateral road for that point. Therefore, / is Darboux.

(=>) Suppose / is Darboux, and of Baire class 1. By the Maximoff-Preiss
theorem ([8], [17]), there exists a derivative g: [0,]] =R and a homeomor-
phism h: [0,1] —[0,1] such that f(x) = g(h(x)) for all x. By Theorem 2,
let {i,} be a trajectory such that g is first return continuous with respect
to {xn}. Then, / is first return continuous with respect to the trajectory

{/i_1(@n)}.

We note that the “if” portion of Theorem 3 is an immediate consequence
of Theorem 4 in [9], but since the proof for this direction is short, we have
included it for completeness.

Corollary 2. First return derivatives are first return continuous.
P roof. This follows immediately from Theorem 2 in [15] and Theorem 3.

There are Baire 1, Darboux functions which are not universally first
return continuous. For example, consider Croft’s [4] familiar example of a
Baire 1, Darboux function which is not identically zero, but is zeroon a set T
of full measure in [0,1]. If one selects a support set D C T, then clearly there
is no ordering of D with respect to which this function will be first return
continuous. However, if we strengthen the Baire 1 condition to Baire* 1, then
the situation changes and we may obtain a universal first return continuity
result. To show this we begin with a result analogous to Lemma 1. Before
stating this result, we recall that if /: [0,1] —R is a Baire* 1function, then
the interior V(f ) of the set of points of continuity of / is dense in [0, 1].

Lemma 3. Let /:[0,1] — R 6e a Baire* 1, Darboux function. Let D be
any support set. Then there exists a nondecreasing sequence {Hn} of perfect
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sets whose union is [0, 1] and such that for each natural number n
A) the restriction of f to Hn is continuous,
B) each point of Hn is a bilateral limit point of Hn+\,
C) each component of [0,1] \ Hn has both endpoints in V (f) fIDU {0,1}.

P roof. The proof this lemma is rather similar to, but somewhat simpler
than, the proof of Lemma 1. Let U = V(f) and set

T =D NUU{0,1}.

Since / is a Baire* 1 function, there is a sequence of perfect sets {En} whose
union is [0,1] such that the restriction of / to En is continuous. (See, for
example, Lemma 5 in [1] or Theorem 2.1 in [12].)

Proceeding exactly as in Lemma 1, we construct the sequence {//,,}
inductively, but this time letting F be a continuous extension of f\E\. Define
f\ as before, and it follows that f\ is Darboux Baire* 1. We define Lny s
and Rny s as before except replacing Condition 3 with

(3) foreach x £ Ln* (and Rnk as well) we have |/i(a;)| <
It is possible to construct Lny sand Rnk s which satisfy this new condition 3
because every Darboux Baire 1 function has a bilateral perfect road at each
point [2] and the points of continuity of a Darboux Baire* 1 function is dense
in the graph [10]. Then, H\ is defined as in Lemma 1 and an analogous
argument shows that f\H\ is continuous. The induction may be carried on
as previously, yielding a decompostion {Hn:n = 1,2,3,...} satisfying the
required properties.

T heorem 4. Iff: [0,1] —=R is a Baire> 1, Darboux function, then f is
universally first return continuous.

Proof. The construction of {xn} and the resulting first return path
system R, proceeds exactly as in the proof of Theorem 1, with the sets U
and T having the definitions supplied in the proof of Lemma 3. That / is
first return continuous with respect to TZ then follows along the same lines as
the final part of the proof of Theorem 1, but, of course, is somewhat simpler.

Corollary 3. First return differentiable functions are universally first
return continuous.

P roof. First return differentiable functions were observed to be Baire* 1,
Darboux in Theorem 2 of [15].

5. Examples

Here we present two examples to show that the converses of Theorems 4
and 1 are false. The second example further demonstrates that a function
can have more than one universal first return derivative on [0, 1].
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ExaMPLE. There exists a function f:[0,1] — R which is universally first
return continuous, but is not Baire* 1.

Proor. Let C' C (0,1) be a Cantor set, and {¢;};=; be a dense subset of
C. Let f:[0,1] — R be such that

(1) f(cn) = 3w, and if z € C \ {c1, ¢2,...} then f(z) =0,

(2) f is continuous on [0,1]\ C, and

(3)if z € C and I is any interval containing z, then f(I)=[0,1].

Note f is Darboux and Baire 1, but f is not Baire* 1 because f|C is
continuous only on C'\ {¢1,¢3,...}, a set which does not contain an open
set relative to C'.

We now want to show that given any support set D there exists an
ordering of D such that f is first return continuous with respect to this
ordering. Let U = [0,1]\ C, and G = C \ {e1,¢2,¢3,...}. Enumerate DNU
as {a;},2,, and DNG as {b;};2,. Note that DN G may be finite or even
empty. However, we will consider the worst possible case and assume that
D NG is infinite.

As we have done several times before, we will construct a sequence of
partitions {Px} such that each Py C D, and each P41 is a refinement of Py.
At the same time, we will define a trajectory {z,} using {Px}. For k 2 —1,
we let \¥(y) and p*(y) be the same as in the proof of Theorem 1.

Let Po = {pd = 0,p = 1}, 2_5 = 0 and z_; = 1. For each non-negative
integer n, we want P, and its labelling {z;}7"7* to satisfy the following
conditions:

LLIf1<4,7<nand i # j,then [/\”(ci),p"(ci)] n [/\"(cj),p"(cj)] =0

ILIf 1 £ j < n, and ¢ belongs to both (A"~!(c;), p""1(c;j)) N Py as well
as either the left or right first return sequence to c; restricted to {wi}:’;"__;,
then | f(e;) — F(1)] £ 2

L Let y € G, 1 £ j < n, and [A""1(y),p" Y(y)] N
NUL, [A™(ei),p™(ci)] = 0. If t belongs to both (A"~1(y),p" (y)) N P, as
well as either the left or right first return sequence to y restricted to {zi}:';"__;,
then | f(t) — f(y)| £ 5tr-

IV. {5085 .05t} U {Bis00; - o o, BpF U [ {1528, < s sn ) N1 D) € Pis
Note that Py satisfies conditions [-IV vacuously. Suppose that P has been
defined and it satisfies conditions I-IV. Since Pi4; has to be a refinement
of Pk, put all points of Px in Pry1. Now we pick some more points in the
following fashion: For each 1< j £ k+ 1, let [, and r.; be points of {a;} \
\ P such that

a. le; < ¢ < ey

b | #leg)= Flleg)| < 219, | fleg) = fn, )] < 2704,

e. [Ie;,7e;] © [X*(e;), 0%(es)]
d. if 7 # j, then [I.,,re,] N [Ic;, 7c;] = 0, and
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e. bk+1£ U?=i[*cj>rc and ak+1 ¢ Uf=i %j, rG\ as well.
Letyi <z\ <y2<7z2< ... <yl < znk+1 be points of {aj \ Vk such that
A. /bl =f(zi)= wm=f(Vnk+l) = f(znk+l) = O,
B- \Ji=i[lci,rc} M Ufcilp»>»]= 0’
c.c \ UMN/c,,r@c ulr=»". ad
D. ak+i p RET [N »*]-

el —TXU{/CLIC. .., It JU{rQL T . .., *ap1} U
U{j/l,i/2,---dInfctl} n {zi,z2,...,znk+1} n

U{bfc+1} u {a*+1} n ({c*+1} MD).

We label points of Vk+i \ Vk as xn’s in the following order:

Step 1. Label ICI, rCl,..., |G, rek+1 as listed if ck+l does not belong D.
If CicH G D, then put ck+l between /gt and rQtl in the listing.

Step 2. Next label yi,z\,y2,z2,..., y[k+x znk+1 as listed. Then label bk+1
and, finally, label a”+j unless if it has not already been labelled.

We now want to show that Vk+i satisfies conditions I-1V. Condition |
follows from the construction of Vk+i and the facts that for each 1 ~ i »
WK +1, A1) = 1@ and S+1(c,) = rq.

To show condition II, assume that 1~ j <k+ 1, and t belongs to both
(Ak(cj), pk(cj)) MVk+i as well as either the left or right first return sequence
to g restricted to 2¢ From the induction hypothesis I for Kk and
the way the /c.’s and rCQ’s were constructed, we have that t = IG or t = rC].
Therefore, from b it follows that |/(f) —f(cj)] ~ 2 (fc+ll.

To show condition I1l, assume that y 6 G, 1~ j <k + 1, and that

P‘»),/(!0] Mm [N~+4Yc),/+1(c,)]J = 0.

Furthermore, assume that t belongs to both (Xk(y),ph(y)) nV k+i as well
as either the left or right first return sequence to y restricted to { z j ~ 2.
Note that t cannot be ak+\. To see this, note that y G Uf=/+i[*i’c] ory £

G Ur”il]Vii zi]- Now, if t = ak+1, then ak+1 was labelled last. Hence, in either
of these cases an application of condition e or D produces a contradiction
to the assumption that t was in the left or right first return path to y, and,
consequently, t ¢ akH\. Therefore t has to be one of Ic,,rc., ct for some i > j,
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or t has to be one of yi, z\, y2,22,..., yn*1, znk+1, or t = bk+1- If t is one of
Vi, zi, ¥, Y+, znk+1, then by A we have that

U(»)-1(<)1 = U(¥)| =»s

Ift = efc+i then f(t) = f(y) = 0. Iftisone of /Q,rQ,c, for some i > j, then

LECE T T T Fpep s T -1
= |/[(«)-1(Ci)| +|/(«i)| < T +T<2-",

Thus, condition 11l holds. Condition IV follows from the construction of
Vk+1- That trajectory {x;}°"0 is a well-ordering of D follows from condition
IV. We now want to show that / is first return continuous with respect to
{xr},* o Let x £ [0)!]* We have three cases to consider: x G U, x = cFfor
somei,or x £ G. Ifx E U, then / is first return continuous at x because /
IS continuous at Xx.

Consider next the case x = ¢, for some r. Let e > 0. Let A be a
positive integer such that N > i and 2~N < e. We want to show that if
t ~ Vn and t is in either the left or right first return sequence to x, then
I/(f) - /(X)| < e. Lett be as described. Then, there is m> N such that
t GVm\ Vm- 1+ Since tis in either the left or right first return sequence to x,
te (Am-1(x),pm-1(x)) MVm. We have by condition Il that |[/(i)-/(x)| "
N 2~-m < 2~n < e. Thus, / is first return continuous at x with respect to
xn}-
¢ %:inally, consider the case where x GG. Let £> 0 and j be a positive
integer such that 2-J+1 < £. Utilizing the fact that {xr}~0is a trajectory,
we may obtain a positive integer N >j such that for all m > N we have

[Am-1(x),pm-1(x)] M [J [Am(c,),pm(c,)] =0.
i=i

We must show that ift 0 vn but t is in either the left or right first return
sequence to x, then we have |/(f) —/(x)| < £. Let t be as described. Then,
there is m > N such that t G Vm\ Vm-\- Since t is in either the left or
right first return sequence to x, t G (Am_1(x),pm_1(x)) nV m. We have
by condition III that |/(t) —/(x)| ™ 2-J+1 < e. Thus, / is first return
continuous at x with respect to {xn} and the proof is complete.

Example 2. There are functions /: [0,1]] —R, ¢:[0,]] -+ R, and h:
[0,1] —» R such that / is compositely differentiable to h, f is universally
first return differentiable to both g and /r, and yet / is not compositely
differentiable to g.
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Proof. Let C C [0,1] be the standard middle third Cantor set con-

structed in the standard fashion. Let {(u,, an enumeration of the
contiguous intervals to C, listed in such a way that both of the sequences
{«2}°*-! and are dense in C

Let /: [0,1] -> R be such that

A. /(C) = {0},

B. / is differentiable on [0,1]\ C, and

C. for each even natural number i, f is zero on "a,, 32.%6. ﬂ),
/ (al2b]) = [ is increasing on fSai*b, , and / is decreasing on

[*+4 Ei+3bi . likewise, for each odd i, f is zeroon (cu, 3a'+H4 y 2*3b. j'l),
("2 | = - 1,1 Iy decreasing on 1i' .|, | and | is increasing on
[oi+ju aj+3b"

L2 4 )

Let h be zero on C and be the derivative of / on [0,1]\ C. Let {c,}"x
be a dense subset of C, containing no endpoint of a contiguous interval, and
neither 0 nor 1 Let g: [0,1] —»R be such that ff(c,) = A, g is the derivative
of / on [0,1]\ C, and g is zero on C \ {ci,C2,...}.

It is easily seen that / is compositely differentiable to h on [0,1] and
that for each x, h(x) is a bilateral derived number of / at x. Consequently,
Theorem 1 shows that / is universally first return differentiable to h on
[0,1]. Let us now show that no composite derivative of / equals g. Let v be
a composite derivative of / obtained by a sequence of closed sets {£n} Li-
By the Baire category theorem, there is a positive integer n such that EnncC
is a non-empty set which is open relative to C. Since / is zero on C and
differentiable on EnTC, v has to be zero on EnT1C. Since g is positive on
a dense subset of C, v does not equal g.

We now want to show that given any support set D, there exists an
ordering of D such that the first return derivative of / is g with respect to
this ordering. Let U, ¢, {a*}”, and be the same as in Example
1. We will also construct {Vn} and {xn} in a fashion similar to that of
Example 1. We let Xk(y) and pk(y) have the same meaning as in Example 1.

Let Vo = ip3—0>Pi = 1}) x-2 —0 and X-i = 1. For each non-negative
integer n, we want Vn and its labelling to satisfy the conditions |
and 1V of Example 1 as well as the following replacements for conditions Il
and 111

Il.If 1~ j <n,and t belongs to both (An-1(cj),pn_1(cj)) MVn as well

as either the left or right first return sequence to g restricted to
then we have . 9(cj)
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. Letyc G, 1~ j <n, and
[ATF\Y\PTHY)] il [A"(c).p"(€)] =0.
t=1

If t belongs to both (An 1(y),pn r(y)) MVn as well as either the left
or right first return sequence to vy restricted to then we have
My 9\ i FT-

Now we proceed as in Example 1 up to the point of defining 1- We

want IG and rc to satisfy the same conditions a, ¢, d, e of the previous
example, as well as the following conditions b and f.

Ibl - . .

b. c;fILI-'l) g(cj) < 2-("*+4.] - 9(Cj) < 2-(frD),
G-l . oo ocire 4

f.o TGy 76, rgy " 6foreveryyEC.

We may readily obtain 1g’s and r@’s which will satisfy all of conditions
a—F by using the fact that for every g there are contiguous intervals | =
= (us,vs), and J = (ut,vt), with s even and t odd, arbitrarily close to G
such that vs < Cj < w, and

\I\ b \J\ )|
d(cj,)+\I\ = 2° d(cjtd)+\J\ = 2

Again we proceed as in Example 1, defining j/,’s, zCs satisfying condi-
tions A through D, and we order the points of Vk+i \ Vk as {xn} as we did
before.

Next, we want to show that Vk+i satisfies conditions I-1V. Conditions I,
Il and IV hold for reasons similar to those of Example 1. To see the validity
of condition 111, assume that y £ G, 1Uj <k + 1, and

[A*(>)JI»)L M W[A ‘+'(C)/>+Im ) = O0-

Assume that t belongs to both (Ak(y),pk(y)) r\Vk+i as well as either the

left or right first return sequence to y restricted to 2. For reasons
similar to those in Example 1, t ¢ ak+ m Therefore, t has to be one of
Id,rd,Ci for some i >j, or t has to be one of Ji, y2,z2,..., ynk+1,-?fc+l,

or t=1bk+i. If tisoneofyi,zi,y2,z2,...,y nk+1,znk+1,bk+i, then condition
I11 is satisfied because /(/) = f(y)= 0. If / is one of IC, rCj, ¢c- for some i > j,
then

m-f(y) f(t) - f(y)
i-y aly) t-y )
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< fu-Henp =6 /(Ci)- f(y) G- y
t- C -y Ci-Y t'y

< I(*)- Ncy t- Ci L t—ci +0A
t_c toy TBEII Ly

NB-2~1+6-2~" < 62_J+1.

Thus, condition 11l holds.

That / is first return differentiable to g with respect to {ar,}”~0 can now
be shown by following the same reasoning utilized at the end of the proof of
Example 1to show that / was first return continuous.

6. Orderings and trajectories

Here we explore a relationship between what we have been calling trajec-
tories or orderings of support sets and trajectories of continuous mappings
of the unit interval. The following theorem in some sense justifies the use of
the term trajectory in the definition of first return path systems. Recall that
in the terminology of dynamics two mappings / and g of the unit interval
are said to be topologically conjugate if there is a homeomorphism h of the
unit interval such that f =hogoh-1.

Theorem 5. Let D be a support set and let {xn}*L0 be an enumeration
of D. Let g: [0,1] —»[0,1] be a transitive continuous map. Then there is a
function f: [0, 1] —m[0, 1], topologically conjugate to g, such that

A. the range of the trajectory of q under f is D; i.e., the range of the
sequence {x0,/(x0), f 2(x0), / 3(x0), -} is D.

B. the first return path system determined by the ordering {xo, xi, ...} is
identical to that determined by the ordering {xq,f(x0), f 2(x0),... }.

P roof. Let t/o be such that the trajectory of yo under g is dense in [0,1].
For each m —0,1,..., let ym = gm(yo)- We inductively define an increasing
homeomorphism h from [0, 1] onto itself such that h (Um=oifc}) = Start
by letting h(0) = 0, h(l) = 1, and h(yQ = xQ For each non-negative integer
m let Qm denote the partition of [0,1] generated by {0,1, yo, ¥r, m YT},
and assume that h has been defined on Qm. Let Vm denote the partition
of [0,1] formed by the points {0,1, h(y0), h(y\),..., h(ym)}. Let a and b be
neighboring nodes of Qm such that a < ym+i < b. Define h(ym+l) to be
that xn having the property that xn £ (h(a),h(b)) and no xj with j <n
belongs to that interval. In this manner we have now defined h on Qm+1 and
it is increasing on that set. Thus h is defined on {yo,... ym,...} so as to be
increasing and its range is contained in D.

Let us next show by induction that h( {lo>j/i,...}) = D. We have that

xo Gh({yo,y\,...}). Suppose that x- = h(yk{) is in the range for 0 U i i
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AN —1 Letm = max{":i—0,1,..., N —1}. Ifxgr = h(t/;) for 0~ i 1 70O,
then we are done. Otherwise, let a and b be neighboring nodes of Vm with
a < xs] <b. Let j > m be the Ieast integer such that h-1(a) <yj < h~x(b).
For this j we have that h(yj) —

Now extend h to be an homeomorphlsm of [0,1] onto itself and define
the function / : [0, 1] —»{0, 1] by

f ~hogoh 1.

Observe that for each i ~ 1, / r(#0) = h(t/t) and condition A of the theorem
holds.

Next, we show that condition B also holds. We will just show that for x £
£ [0, 1), the right first return path to x generated by ordering {*0, ®i, * <} and
the right first return path to x generated by ordering {xo,f(x0), f2(x0),... }
are the same. Fix an a £ [0,1). Let {#n*}/b=-i be the right first return path
to x determined by the ordering {z(?aq,...}. As {xo, f(x0), f 2(x0), mm} =
= {Xo,h(yo),... },we may denote the right first return path to x determined
by the the ordering {x0,f(x0), f 2(x0),...} as {h(ymk)}°l_r (For sake of

notational convienience, we are letting n_i = m_i = —land x_i = y-\ =
= 1. We are also assuming that and {h(ymk)} are labelled
in the natural fashion, i.e. and {1/}~ _1 are increasing sequences

of integers.)

We now use induction to show that xnk = h(ymk) for all Jt* —L1. Suppose
that we have that xn = h(ymj) for 4”2 jjs N —I. Putv = mn —1
Let a and B be neighboring nodes of Qv such that a < ymN < . By the
fashion in which h was constructed, h(a) and h(B) are neighboring nodes
of Vv. As h(a) < h(ymN) < h(R) and h(ymN) is in the right first return
sequence to x generated by {h(yo), h(yi),..., } we have that h{a) » x <
< h(R). Consequently, h(B) = h(ymN_1). By definition, h(ymN) = xt where
t is the least integer such that h(a) < xt < h(R) = We also have
that xt > x as xt = h(ymN) is in the right first return path to x. Thus, we
have that t is the least integer such that xt > x and xt < h{yymN_1) = xnN_
forcing h{ymN) = xnN and completing the proof of the theorem.

The authors wish to express their gratitude to the referee, whose thought-
ful suggestions led to a significant improvement in the exposition of this work.
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NECESSARY AND SUFFICIENT TAUBERIAN
CONDITIONS FOR CERTAIN WEIGHTED
MEAN METHODS OF SUMMABILITY

F. MORICZ* (Szeged) and B. E. RHOADES** (Bloomington)

1. Introduction

Let (sk :k = 0,1,...) be a real or complex sequence. Let p := (pk) be a
nonnegative sequence with po > 0,

(1.1) Pn := 00 (n > 00).
k-0

The weighted means of the sequence (Sk) are defined by

tn = Y.PkSk (n=20,1,.),
Tn K=0

and (Sk) is said to be summable (N,p) if the limit

(1.2) r]Iim tn exists and finite.

—<X)
It is well-known that condition (1.1) is necessary and sufficient that every
convergent sequence (s") be summable (N,p) to the same limit.

2. Main results

Define An := [An] for a positive number A where [] denotes the integral
part. By C we shall denote a positive constant not necessarily the same at
different occurrences.

* This research was partially supported by the Hungarian National Foundation for
Scientific Research Under Grant #234.

** This research was completed while the author was a Fulbright scholar at the Bolyai
Institute, University of Szeged, Hungary, during the fall semester in the academic year
1992/93.
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106 F. MORICZ and B. E. RHOADES

We will prove the following one-sided Tauberian theorem.

Theorem 1. Let (SK) be a real sequence, (pk) a nonnegative sequence
satisfying condition (1.1) and such that for each A> 1,

(2.2) 1< liminf i limsu < 00,
N+ Pn n Pn

and for each 0 < A< 1,

P P
N -
(2.2) 1< I|m_|0r6f By I|m supp)<n < 00.

If (sk) is summable (N ,p) to afinite limit s, then the limit

(2.3) lim Sk =s exists
K—00
if and only if
A A
(2.4) lim sup I|m inf —---—-- X Pfe(sfc- s,,) 0
n Pk - Pnkt +
and
(2.5) li li ---1- jt«n - ~) N 0O;
: M RIBT B PanczY +i Pl

m which case we necessarily have for each A> 1,

(2.6) lim An) —6,
N—oo
fc=ra+l

and for each 0 < A< 1,

n
(2.7) ||>n&) Pn-PYn NN PK(&I'I /\‘fC) —6.
fc=An+ 1

Remark 1. According to [4] (see also [1, pp. 124-125]) a real sequence
(SK) is said to be slowly decreasing if

(2.8) limliminf min (sk - sn) * 0,
A]l n-*oo n<fcgA,,
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or equivalently,

limliminf min (sn —sk) > 0.
All A, <k"n

Conditions (2.4) and (2.5) are obviously satisfied if (s*,) is slowly decreasing.
Remark 2. The classical one-sided Tauberian condition

(2.9) Ksk-sk-i)* -C (K=12..)

of Landau [2] is sufficient for (2.8).

Remark 3. The symmetric counterparts of conditions (2.4) and (2.5)
are the following:

(2.10) fiminflimsup—-—--- — V  pk(sk- sn)~ 0
Ail ,200 M n- tn k=n+1
and
L 1 "
(2.11) liminflimsup ——-—V  pk(sn- sk) * 0.
All n—oo *n — *\n » X ,

Assume that conditions (1.1), (1-2), (2.1), and (2.2) are satisfied. Anal-
ogously to Theorem 1, one can prove that condition (2.3) is satisfied if and
only if (2.10) and (2.11) are satisfied. As a by-product, we may state that if
conditions (2.4) and (2.5) are satisfied, then conditions (2.10) and (2.11) are
also satisfied, and vice versa.

We extend Theorem 1 for complex sequences as follows.

Theorem 2. Let (sk) be a complex sequence and (pk) a nonnegative
sequence satisfying condition (1.1). If(sk) is summable (N,p) to afinit limit
s and

(i) if condition (2.1) is satisfied, then (sk) converges to s if and only if

(2.12) liminf lim sup AN Pk$k ~n) = 0; or
ot n —KX> k=n+ l
(ii) if condition (2.2) is satisfied, then (sk) converges to s if and only if
(2.13) liminf lim sup Pk(Sn Sk) = O.
ATl  n—o0 PI'I - FX"A'=A,+1 ( )
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In either case, we necessarily have (2.6) for all A> 1, or (2.7) for all
0 < A< 1, respectively.

Remark 4. In the complex case, the classical Tauberian condition
k~-Sk~icC (fc=1,2,...)

is sufficient for (2.12) and (2.13). (Cf. (2.9) in the real case.)

Remark 5. Ifpk = 1for all K, then the tn are the (C, I)-means (i.e., the
first arithmetic means) of the sequence (s/t). In this case, Theorems 1 and 2
were proved in [3].

3. Auxiliary result: representation of the difference sn—tn

Lemma, (i) Let A> 1. For each n such that P\n > Pn,

(3.1) sn —th= — _ p (t\n—m) P _p y N Pk{sk ~ sn)-

\n n \n k=n+1

(i) Let 0 < A< 1. For each n such that Pn > P\nl

— = — | — -
(3.2) sn —tn IgnTpr {tn—t\n)+ p _p vy ! Pk{sn—sk)

M1 rin

Proof, (i) By definition,

Jh ff n
t\n—tn= — Y.pk*k ~ it PkSk =
" Xn k=0 rn =0
Jh
Pn- P\n
PnP\n /c=0 /lc=n+l
Hence
2
Pxn
Pk$k —
P\,, Pn(/An*“ tn) ~ Pa, - 1EnH

which is equivalent to (3.1).
(if) The proof of (3.2) is similar.
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4. Proofs of the theorems

Proof of Theorem 1. Necessity. By (1.2) and (2.3),

(4.1) lim (sn- tn) = 0.

71—»00

Let 1> 1. Using (2.1),

Pk . PxJPn .
4.2 _
(4-2) pin pn M pigpn. PN
1+6
< n .
(I +7)/2- I,|An inl

if n is large enough, where

7 ;= Uminf P\n/Pn and 6 := limsup P\n/Pn.
By (12),

(4.3) nI%F\rI?)_( rn(tXn - tn)=0.

The same is true in the case when 0 < JI< 1.
Now, (2.6) (respectively (2.7)) follows from (3.1) (respectively (3.2)),
(4.1), and (4.3).

Sufficiency. Assume the fulfillment of (1.1), (1.2), (2.4), and (2.5). From
(2.4) there exists a sequence {Ay} monotone decreasing to 1 such that

/\jn

L 1
(4-4) Aim liminf 1T) Pk(sk- Sn)~ 0,
J —Kkx> 71—130 P\j,, ~ Pn K+ 1

where An := [Aj/r]. From (3.1),

(4.5) limsup(s,, - tn) A lim limsup "9 Gixin )+
71—F00 #00  71—+-00 PXJn ~ Pn
+ lim limsup AN CPK(SK ~AT7i) J e
j=+°° 71-4-00 K=n+l
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From (1.2) (cf. (4.2)), for each j,

lim (IA - tn)=0.

71— »00

Thus, (4.4) and (4.5) yield
(4.6) hmsup (sn—tn) = —Ilim hminf —------ — V" pk(sk- sn) i 0.
”A00 Aoo ™ - Pn kt"+1

From (2.5) there exists a sequence {A,} monotone increasing to 1 such
that

n

1
4.7 Aim_lim inf YY Pk(sn- sk) ~ 0.
( ) J—® n—o Pn - P\j K—Xjn‘b]_ ( )
Using (3.2),
(4.8) 'L”l,Lfgf (sn-tn)" jl_iwolinrﬂ.iorgf (tn  t\J,)+

+ hm liminf —-—-— Aot PK(SN Afe)-
i-°° n~°° Pn- P\]n A=A
But for each j ,
P\jn

Um - T A" _
"% P - Pa (in  1AN) —o.
Thus, (4.7) and (4.8) yield
4.9 liminf (sn —<n) ~ 0.

Combining (4.6) and (4.9) provides (4.1), which is equivalent to (2.3),
due to (1.2).

Proof of Theorem 2. The proof of this theorem also relies on repre-
sentations (3.1) and (3.2), and is modeled after that of Theorem 1. We omit
the details.
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NUMBERS WITH COMPLICATED DECIMAL
EXPANSIONS

D. BEREND (Beer-Sheva) and M. D. BOSHERNITZAN1 (Houston)

1. Introduction

One of the most basic results in the theory of distribution modulo 1
is that, if a is an irrational, then the sequence (m )“=1 is dense, and even
uniformly distributed, modulo 1. In particular, given any digits ai, 02,..., a~,
there exists a positive integer m for which the decimal expansion of Ta
contains this block of digits. A considerable strengthening of this result
was obtained by Mahler [13] who proved that, moreover, there necessarily
exists an m for which the decimal expansion of Ta contains the given block
infinitely often. Mahler also established an upper bound for the minimal
value M of the number m with that property; M = M (k) depends only on
the number k of digits, but not on a.

It was noted by Furstenberg that, employing a certain result of Glasner
[10], one can provide a very short proof of the finiteness of M(k) (see [1,
Corollary 7.2]). Motivated by his approach, the authors [4] gave another
short proof of Mahler’s result, which at the same time yielded a better upper
bound, best possible up to a constant factor.

The density modulo 1 of the sequence (na) is a special case of a result
which asserts that, given any polynomial P with real coefficients, at least
one of which (besides the free term) is irrational, the sequence P(n) is
dense modulo 1. (Better known is Weyl’s even stronger result by which
this sequence is uniformly distributed modulo 1 [15].) It was shown in [4,
Theorem 1.2] that Mahler’s result is true in this more general setting as well.
A few other sequences besides polynomial sequences, for example (log n)
and (ne) for positive rational non-integer B, were shown to satisfy the same
property.

In this paper we present a general framework for the study of sequences in
which there exist terms whose expansions tend to be complicated in the sense
that they contain “numerous” blocks, perhaps appearing “many” times. In
Section 2 we introduce the required definitions and show that some sequences,
and families of sequences, possess these properties. Section 3 deals with

1 Research supported in part by NSF Grant No. DMS-9003450.
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the question as to what extent the number m in Mahler’s theorem may be
restricted to various sets of integers. The methods developed by Alon and
Peres [1] enabled them to show that m may be chosen to be a square, a prime,
or to belong to any prescribed set of positive density, etc. We obtain other
results in this direction, which cannot be obtained with their methods. In
Section 4 it is shown that the analogue of Mahler’s theorem with continued
fraction expansion instead of decimal expansion is false.

Obviously, the base 10 plays no special role. The abovementioned results,
as well as the results of this paper, are valid in any base.

2. Block-complete and block-saturated sequences

Let g ~ 2 be an integer. The set Dg = {0,1,..., g—1} is the set of digits

in base g. A k-block (in base g) is an element of Dg, namely a sequence of
length k of digits. Denote by Bg the set of all blocks in base q:

B,= {JD
k-1

Given a real number a and a block B E Bg, let #(a, B) denote the number
of occurrences of B in the g-adic expansion of a (thus we may well have
#(«,£) = 00).

Remark 2.1. To avoid ambiguity, we agree that the g-adic expansion
of a rational g-adic number is the one containing only 0’s from some place
on. Also, we implicitly assume all numbers whose g-adic expansions are
considered to be non-negative. These conventions have no effect on the
results of the paper.

A number a is block-complete (or BC for brevity) if #(a, B) » 1for every
B £ Bg. As is well known, the set of all numbers which are BC in base g
is large both metrically (i.e., its complement is of O Lebesgue measure) and
topologically (i.e., it contains an intersection of countably many open dense
sets). Clearly, if a is BC in base g then it is even block-saturated (or BS) in
base q, namely #(a,B) = oo for every B E Bg.

We now generalize these two concepts, of block-completeness and of
block-saturatedness, to sequences of real numbers. A sequence (a,) is block-
complete (resp. block-saturated) if the set {r ~ 1:#(a,-, B) ™ 1} (resp. {r »
~ 1:#(oi,B) —o00}) is infinite for every B E Bg.

These two properties admit stronger versions. We shall be interested
in cases where the sets in question are not just infinite, but have some
density properties. Thus, (a,-) is block-complete in density if the set {i »
N 1:#(a.i,B) ™ 1} is of density 1 for every B E Bg. The notions of a
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sequence which is BC in Banach density is analogously defined. (Recall that
the Banach density of a set A~ N is given by

ATI[M,N - 1]
n-mLao N -M

if the limit exists.) Finally, (a,) is eventually BC if for every B G Bg the
set {r ~ 1:#(a,-, B) 1} contains all sufficiently large integers. Again, all
these admit straightforward analogues for BS sequences.

Note that a number a is BC if and only if the constant sequence formed
by it is a BC (or an eventually BC) sequence. However, a general sequence
may be eventually BC while none of its terms is.

Example 2.1. The sequence of all positive integers in ascending order,
1,2,..., is BC, and even BC in Banach density, in every base, but it is not
eventually BC. The sequence 1,12,123,..., given by the recurrence

«1l =1, on+l = n+ 101+[logn]an, ni>1

is eventually BC in base 10.
Example 2.2. No sequence of integers is BS.
The following two lemmas are immediate.

Lemma 2.1. Leta = (a,) be a sequence of real numbers and g * 2 an
integer. Then:

(1) a isaBC sequence if and only if it has an eventually BC subsequence.

(2) a is BC in density if and only if it has a subsequence of density 1
which is eventually BC.

(3) a is BC in Banach density if and only if it has a subsequence of
Banach density 1 which is eventually BC.

Lemma 2.2. Leta = (a,) be a sequence of real numbers, n\, nr,... any
integers and g * 2 an integer. Then a is a BC (or BS) sequence (in density,
in Banach density, eventually) if and only if the sequence (gnia\,gn2oiz, ***)
is.

T heorem 2.1. Leta be a sequence of positive real numbers. Then:

(1) If the sequence (log3a,-) is dense modulo 1 then a is a BC sequence.

(2) If the sequence (log3at) is uniformly distributed modulo 1 then a is
BC in density.

(3) If the sequence (log at) is well-distributed modulo 1 then a is BC in
Banach density.

(4) If the sequence (a,) is strictly monotonic and —>1, then a
is BC in Banach density.

Remark 2.2. One may considerably weaken condition (2) (and, in an
analogous fashion, condition (3)) in the theorem while obtaining the same
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result. In fact, denote by fin the normalized counting measure concentrated
on the first n terms of the sequence ({logsar}), forn GN. Uniform distribu-
tion of the sequence in question is equivalent to the sequence (fin) converging
weakly to the Lebesgue measure on [0,1]. It can be shown that, if this se-
guence of measures converges to any absolutely continuous measure, or even
if it is only known that every limit measure of the sequence is absolutely
continuous, then oc is BC in density.

Proof of Theorem 2.1. (1) By Lemma 2.2 we may assume that 1/
N Q] < g for each i. The condition in the theorem then amounts to the
assertion that the sequence (log at) is dense in the interval [0,1]. Therefore
the sequence a is dense in the interval [1,</]. In particular, given any block
B, there exist infinitely many terms in the sequence a whose 5-adic expan-
sion starts with B.

(2) Similarly to the preceding part, we may assume the sequence (loggo4)
to lie in the interval [—4,0] and to be uniformly distributed there. Then the
sequence a defines an absolutely continuous measure on the interval [0, 1].
Now take an arbitrary 5-block B. Divide [0,1] into gl subintervals of equal
lengths. Since almost every number (with respect to the Lebesgue measure)
is normal in base 5, given any e > 0, as | becomes large enough, at least
(1 —e)gl of these subintervals have the property that the initial block of
length | given by the 5-adic expansion of any (interior) point contains the
block B. Since a defines an absolutely continuous measure, this implies that
the lower density of the subsequence of a, consisting of those terms contain-
ing B within their initial block of length /, becomes arbitrarily close to 1 as
| increases. It follows that the subsequence of a, consisting of those terms
containing B within their 5-adic expansion is of density 1, so that a is BC
in density.

(3) The proof follows that of part (2).

(4) We outline the proof. The condition means that large chunks of
the sequence, placed in far enough places, look “almost” as arithmetic pro-
gressions. Then we are basically in the situation of Example 2.1, and the
continuation is routine.

This completes the proof.

Example 2.3. Using part (4) of the theorem, we easily verify that the
sequences a, = F(i) are BC in Banach density for the following functions F:

(1) F is a non-constant rational function.

(2) F(x) = xo forany B 0. (Note that by [4, Example 1.1] this sequence
is also BS for positive rational non-integer B.

(3) F(x) = loglog(x + 1). (In view of [4, Example 1.1] this sequence is
also BS.)

4) F(x) =2

(5) Any function F(x) belonging to a Hardy field (see [3] for a definition,

Acta Maihematica Hungarica 66, 1995



NUMBERS WITH COMPLICATED DECIMAL EXPANSIONS 117

examples and references on Hardy fields), which approaches oo slower than
cx for every ¢ > 1, say F(x) = x7Hog2x or F(x) = J*trdt.

Example 2.4. Let g,h be multiplicatively independent positive integers
(that is, they are not integer powers of the same integer; equivalently,

is irrational). In view of Theorem 2.1.(4) (see also [6]), the sequence (hl) is
BC in Banach density. We mention that according to a certain conjecture
of Furstenberg [8, Conjecture 27], the sequence is, moreover, eventually BC.
(Strictly speaking, the conjecture relates directly only to the case where h
divides some power ofg.) It is possible to deal similarly with other recurrence
sequences. Thus, for example, the Fibonacci sequence Fn and the sequence
n32” are BC in Banach density in every base g. (Note that the proof of this
fact for the latter sequence involves considerations similar to those discussed
in Remark 2.2. For g —2 this sequence is certainly not eventually BC.)

|
9

easily from [1, Corollary 7.1] or [5 Lemma 5.1] that the sequence (r*) is
eventually BS. The same holds, more generally, for any sequence of the form
(sr!), where s > 0 is rational. We do not know whether this is true for every
real s > 0.

Example 2.5. Letr be arational number such thatr $ Z . It follows

Example 2.6. By [6], the sequence (log5n!) is uniformly distributed
modulo 1 for every g, so that the sequence n\ is BC in density in every base.
Note that in [3] necessary and sufficient conditions are provided for density,
uniform distribution and well-distribution of a large class of sequences defined
by certain formulae and recurrent relations. These criteria show also that
(logs n!) is uniformly distributed modulo 1, but it is not well-distributed, so
that Theorem 2.1 does not imply that n\ is BC in Banach density. Of course,
one would expect it to be, moreover, eventually BC in every base.

Example 2.7. The sequence (2i) is BC in Banach density for every base
g. In fact, suppose first that g is not a power of 2. Since

(?) —a.°2
(2f ¢ 1))

and log34 is irrational, the sequence log5 (2i) is well-distributed modulo 1,

and by Theorem 2.1(3) our sequence is BC in Banach density. It remains*to

deal with 4= 2. Obviously, we may replace the given sequence by ar = P)

Now

_ 2(2)
4r-b1((_|_u ) (m)-<e)) = 4l+1(i+ 1)
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so that the sequence (ar) is strictly decreasing, and

arfi O 22 1~
Of g% 272

Theorem 2.1(4) shows that the sequence is BC in Banach density.

Example 2.8. While there are many examples of sequences of integers
which are BC in (Banach) density, it is not easy to prove that a specific se-
quence is eventually BC, even though from heuristic probabilistic arguments
one would expect this to be the case. Thus it is interesting to note that

the sequence 19nH 1, defined by a natural formula, is eventually BC in base
10. In fact, the decimal expansion of the general term of the sequence is
(essentially - except for an additional block of 0’s) the recurring part in the
decimal expansion of yT+T, so our claim follows from Example 2.6.

3. Saturating sets

Let g~ 2 be an integer.

Definition 3.1. A set I » N is an Mg-set if for every irrational a and
every #-block B there exists an m G A such that the number Ta contains
the block B infinitely often in its base g expansion.

Remark 3.1. Since there are only finitely many blocks of each particular
length, if A is an Mg-set, then for every irrational a and positive integer k
there exists an m G A such that every block of length K appears infinitely
often in the <-adic expansion of Ta.

Remark 3.2. If A is an Mg-set, then there are infinitely many numbers
m in A having the property in the definition (see Corollary 3.3). Conse-
guently, we may rephrase Definition 3.1 by defining A to be an Mg-set if [la
is a BS sequence for every irrational a.

The following lemma follows from Lemma 2.2.

Lemma 3.1. Let A = {mi,m2,...} QN and n\,n2,... be any non-
negative integers. Then A is an Mg-set if and only if {gnimi, gnam2,...}
is.

Corollary 3.1. There exist Mg-sequences growing arbitrarily fast.

Corollary 3.2. It suffices to study the Mg property for sets of integers
not divisible by g.

For closed subsets (Ek) and E of T, we denote Ek — >E if the sequence
Ek converges to E in the Hausdorff metric.
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Lemma 3.2. Let Ek be a sequence of g-invariant subsets of T and r a
non-zero integer. Then rEk —» T if and only if EK —>T.

Proof. The “if” part is trivial. For the “only if” part, assume that
rEk —@T. Let Eo be any limit point (in the Hausdorff metric) of the
sequence of sets Ek- Then rEo = T. Hence Eo has a non-empty interior.
Being invariant under multiplication by g, the set E must be the whole of
T. This proves the lemma.

Lemma 3.3. 4 ™ N is an Mg-set if and only if for every irrational a
there exists a sequence & in A such that for every sequence nk of non-
negative integers {Tkgnc :n " Mk} —»T.

Proof. Let o be an Mg-set. Let (Bk)*=1 be a sequence of 5-blocks
so that Bk contains every block of length k. For each k, take an mk G [
such that the base g expansion of mfcO contains the block B infinitely often.
Clearly, for any Ik, the set {Tkgna :n ~ Tk} is *--dense in T, and therefore
{mkgnat :n*nk} —»T.

The converse direction is similarly proved.

The two preceding lemmas give

Lemma 3.4. Let 4 ~ N andr GN. Then rA is an Mg-set if and only
if A is.

Theorem 3.1. The following conditions are equivalent:

(1) 4 is on Mg-set.

(2) AE —T for every infinite g-invariant set E Q T.

(3) For every infinite g-invariant set E Q T and e > 0 there exists an
m G/ such that mE is e-dense in T.

Proof. (2) => (1): Given an irrational a, let E » T denote the set of
all limit points of the sequence (gna). It is readily verified that E is infinite.
Hence AE = T, so that if B is any 5-block there exist m GA and x GE
such that the base g expansion of mx starts with 0.HO1. It follows that if
gna is sufficiently close to x, which happens for infinitely many numbers n,
then the base g expansion of mgna starts with the block B. Consequently,
the base g expansion of a contains B infinitely often.

(3) == (2): Trivial.

Q) => (3): We have to show that, if [, is an Mg-set, then any infinite
(/-invariant set E has arbitrarily dense dilations by elements of . Let £ > 0.
Suppose first that E contains an irrational point a. Take a positive integer K
such that Since A is an Mg-set there exists an m G [} such that the

5-base expansion of mo contains every 5-block of length K infinitely often.
Therefore, the set mE is r-dense.

It remains to deal with the case where E consists of rational points only.
We deal first with the special case in which 0 is an accumulation point of
E. In this case there exists a real number x ¢ 0 such that fjk 6 E for every
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non-negative integer n. (This follows, for example, from [2, Lemma 4.3].) Of
course, X is rational, say x = and, replacing E by —E£ = {—x :x £ E} if
necessary, we may assume that p, q > 0. Consider the number

a=x"29-§,
j=1

where (Sj) is an arbitrary sequence satisfying sj+i —sg —>o00. Clearly,
a is irrational. Since, by Lemma 3.4, qA is an Mg-set, there exists a
sequence mk in [ such that for every sequence n* of positive integers we
have {gmkgna :n " Nk} —=T. Now

gmka = pmk”™ g~§ .
=1

Thus Ipmkgn i9~9 W = nfc|] —» T. Consequently pnikE —*T, and
by Lemma 3.2 we obtain LUKE — >T as well. Hence E has arbitrarily dense
dilations by elements of [.
In general, given any accumulation point 8 of E, take a non-zero integer
I with IB = 0. In view of the preceding case, there exists a sequence mn in
O with mnlE — >T, so that by Lemma 3.2 we have mnE —» T as well.
This completes the proof.

Corollary 3.3. If A is an Mg-set, then so is A —F for every finite
set F.

In fact, this follows from the equivalence of conditions (1) and (3) in the
theorem and the fact that there exist ~-invariant nowhere dense sets.

The theorem gives several general examples of Ms-sets. In [5], motivated
by a result of Glasner [10], the notion of a Glasner set was defined. A set
A QN is a Glasner set if, given any infinite subset A of T and £ > 0, there
exists an m £ A such that mA is £-dense in T. Since condition (3) of the
theorem is the same as this condition, but with the requirement applying
only to infinite ~-invariant sets, we immediately get the following result of
Alon and Peres, based on an idea of Furstenberg (see Corollary 7.2 and the
remark following it in [1]).

Corollary 3.4. Any Glasner set is an Mg-set.

Thus, (the non-quantitative version of) Mahler’s theorem follows from
Glasner’s result, which may be paraphrased as stating that N is a Glasner
set. Moreover, by Theorem 1.3 in [5], every set of positive upper (Banach)
density is a Glasner set. Hence we obtain
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Corollary 3.5. For any irrational a and a-block B, the set of those
integers n for which the block B does not appear infinitely often in the base
g expansion of na is of 0 (Banach) density.

However, Theorem 3.1 provides also examples of Mg-sets which are not
Glasner sets. In fact, according to [5, Theorem 1.4] if (nj) is a lacunary
sequence, i.e., satisfies

el 31,

then it is not a Glasner set. In particular, any “one-parameter” multiplicative
semigroup A = {/P : 1 6 N} is not a Glasner set. Now if g and h are
multiplicatively independent, then it follows easily from the results of [7,
Chapter 1V] that condition (2) of Theorem 3.1 is satisfied. Consequently we
obtain

Coroltlary 3.6. If g and h are multiplicatively independent, then the
semigroup {hl :i GN} is an Mg-set.

It is worthwhile to note that another conjecture of Furstenberg [9] states
that, under the conditions of Corollary 3.6 we have hiE —* T for every
infinite ~-invariant set E Q T. According to this conjecture the set {/pj :j 6
G N} is an Mg-set for any increasing sequence (ij). Thus, if true, the
conjecture would provide examples of arbitrarily fast growing Mg-sequences
more interesting than those of Corollary 3.1.

Proposition 3.1. If A is an Mg-set then for every finite g-block there
exists an m G A whose base g expansion contains this block.

Proof. Let B be a g-block. Extending B if necessary we may assume it
to neither start nor end with a 0. Consider the following g-invariant infinite
subset of T:

According to the implication (1) =>m (3) in Theorem 3.1, there exists an
m GA and a point x G E such that the base g expansion of mx is 0.B ...
modulo 1. This easily implies that the block B appears in the base ¢
expansion of m. This proves the proposition.

Example 3.1. The proposition provides examples of “pretty large” sets
of integers which are not Mg-sets. In view of Corollary 3.5, such sets must
have density 0. However, the “Hausdorff dimension” of the set of all integers
not containing a certain g-block in their expansion can be made arbitrarily
close to 1 by taking this block sufficiently long, and such a set cannot be an
Mg-set by Proposition 3.1.

Example 3.2. Let A Dbe the set of all positive integers whose g-adic
expansion does not contain the block consisting of Ig consecutive (g—I)’s for
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each g~ 2, where (lg) is an arbitrary sequence of positive integers. Selecing
(lg) to grow sufficiently fast, we can make the “dimension” of the resulting
set arbitrarily close to 1, while the set is not Mg in any base 4/ 2.

We conclude this section with a few

Questions. (1) Suppose [ is an Mg-set. Istheset 4+ 1= {a+ 1:a G
G O} necessarily an Mg-set as well?

(2) Is the condition in Proposition 3.1 sufficient for [ to be an Mg-set?

(3) Suppose A1UA2is an Mg-set. Is (at least) one of the sets Aland [2
necessarily an Mg-set? In other words, does the property of being an Mg-set
have the Ramsey property?

4. The failure of the analogue for continued fraction
expansions

The analogue of Mahler’s result for continued fraction expansions would
assert that, given any irrational a and finite block of positive integers, there
exists a positive integer m such that the continued fraction expansion of Ta
contains this block infinitely often. Our main result in this section shows in
particular that this analogue is not true.

Theorem 4.1. There exist uncountably many irrationals a, having the
property that the sequence of partial quotients of each multiple Ta diverges
to 00.

The proof will be carried out in a series of steps. We start with a
few notations and definitions. Given an irrational a, denote by cn(a) =

= n ~ 1, the sequence of convergents of a.

Definition 4.1. A sequence of rationale K™ 1,is an

(1) ASC-sequence for an irrational a if there exists an integer m such
that rk = Cfctim(a) for all sufficiently large k. (ASC - Asymptotic Sequence
of Convergents.)

(2) ASC~sequence - if it is ASC for some irrational a.

Remark 4.1. When writing cn(a) = or AN we shall implicitly
assume that (p,q)=1and g™ 1
Lemma 4.1. A sequence of rationals rk = K" 1, is ASC if and only

if there exists a ko such that either

Pkl Pk+ldk = ( 1) 1 Qe+1” YW K = ko

or
PkUk+1- Prk+isk = (-1)fctl, Fk+1l> 5k K™ f0.
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The lemma follows routinely from the basic theory of continued frac-
tions. In fact, the conditions of the lemma and the formulas connecting the
sequences of numerators and denominators of the convergents with the se-
guence of partial quotients of a number enable a direct calculation of the
partial quotients of a number a whose convergents are eventually the ratio-
nale Tic

Definition 4.2. A sequence of positive integers gk is well-divisible if for
every positive integer n we have n | gkgk+i for all K large enough.

Definition 4.3. A sequence of positive integers ok is super-lacunary if

Proposition 4.1. There exist uncountably many ASC-sequences of ra-
tionals ™, = ~ such that the sequence gk of denominators is well-divisible

and super-lacunary.

Proof. We shall construct an irrational a = [ao; tqg, 02,...] whose se-
guence of convergents ~ satisfies the required conditions. Start in an arbi-
trary way, say ao = 0 and <g = 1, so that ~ = y and *- = ]~ The sequence

of partial quotients ak, Kk ™ 2, will be defined inductively and have the fol-
lowing properties:

(1) If s ™ kis prime and then gk-i<g = —qk-i (modsfo).

(2) ak > k.
It is easily verified that these properties can be fulfilled, and in fact each
ak can be chosen in infinitely many ways. Now the first of these conditions
ensures that the sequence ok is well-divisible, and the second - that it is
super-lacunary. This proves the proposition.

Theorem 4.2. Letrk =~ K" 1, be an ASC-sequence, with the se-
quence of denominators gk well-divisible and super-lacunary. Then for every

integer m ~ 1 the sequence mrk = H( is ASC and its sequence of denomina-
tors df. is both well-divisible and super-lacunary.

Proof. Obviously, it suffices to deal with the case of prime m. Employ-
ing the information regarding the sequence gk and Lemma 4.1, and omitting
finitely many terms from the sequence rk if necessary, we may assume that,
say:

m 1g2-b rn\ oi, A
gk+i > Tnok, K[> 1,
PkQk+i - Pk+igk - (-1)*, KN 1.
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Then
(4.1) p2!=Pa-1, ?2-i= m P2i= mP2U gz = P2, |71
and consequently:

i4*fi+i ~ Pk+rak —(_ 1A 9A+H > 9ii =1

Using again Lemma 4.1, this implies that Trk is indeed an ASC-sequence.
From (4.1) and the fact that gk is well-divisible and super-lacunary we infer
that dk possesses the same properties as well, which completes the proof.

Proposition 4.2. If a sequence of nationals rk — K™ 1, is ASC

with gk super-lacunary, then rk converges to an irrational a whose partial
guotients diverge to 00.

The proof is straightforward.

Proof of Theorem 4.1. Follows from Proposition 4.1, Theorem 4.2
and Proposition 4.2.

As is well known, the continued fraction expansion of almost every real
number (with respect to the Lebesgue measure) contains every finite block
infinitely often (and even in some prescribed positive density). Thus there
is no wonder that to construct a counter-example one needs some special
numbers. The numbers used in Theorem 4.1 have good approximation
properties. For example, they may be Liouville numbers, but we require that
the sequence of partial quotients will satisfy some extra conditions. It seems
as if these conditions are indispensable. Namely, one can show that no rate
of growth of the partial quotients of a number can ensure that it behaves
as in Theorem 4.1. For example, Petruska studies in a very recent paper
[14], the set of strong Liouville numbers (i.e., numbers a whose sequence of

convergents eventually satifies gn+1 > g~f for any M > 0; equivalently,

the sequence of partial quotients satisfies an analogous condition). He proves
that, usually, if a is a strong Liouville number, then 2a is not. The conditions
specified in Theorem 4.2 are very natural in view of [14, Theorem 3], and it
may be that Petruska’s techniques can provide a version of our construction.

Theorem 4.3. Ifa is a quadratic irrational, then for any block B of
positive integers .62,..., bk there exist infinitely many positive integers
n for which the block B appears infinitely often in the continued fraction
expansion of not.

Proof. We may clearly assume that a is of the form a = yfd, where
a and d are integers, d not a square. If a = a+ y/d, then the continued
fraction expansion of a, as well as of any multiple thereof, is (disregarding
the integer part) purely periodic (see, for example, [12]). Since the sequence
(na) is dense modulo 1, given an arbitrary block B, we can find infinitely
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many n’s for which the expansion of na starts (upon omitting the integer
part) with B. But then for each such n the block B occurs infinitely often

in the expansion of na. In the remaining case, namely a —a —\/d, since

the numbers a and B —a + y/d are equivalent, as are na and nR for any n,
if some n works for B and the block 5, it works for a with the same block,
and we are done by the preceding part. This proves the theorem.

Remark 4.2. We believe that Theorem 4.2 is valid for any badly
approximable number a.
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ON A GALLAI-TYPE PROBLEM
FOR LATTICES

T. HAUSEL (Budapest)

1. Introduction

Motivated by the well-known Helly-theorem [2], Gallai [1] raised the
following problem in the Euclidean plane E2. Let V denote a finite collection
of closed disks in E2 such that every two disks of V intersect. Find the
minimum integer n with the property that for an arbitrary V there are n
points in E2 such that every disk of V contains at least one of the points.
Independently from each other, Danzer (unpublished) and Stach6 [3] proved
that n » 4 ie. any V can be pinned down by 4 needles. An analogous
problem arises if the needles can be chosen from a rather regular subset of
E2only. Let L be the lattice of E2, i.e. the set of points of E2 which have
integer coordinates.

It is easy to prove the following Helly-type theorem (see [4]). If T is a
finite collection of convex sets in E 2 such that any four of the sets of T have a
lattice point in common, then there exists a lattice point common to every set
of T . Moreover this theorem can be extended to the d-dimensional Euclidean
space Edreplacing 4 by 2d. Thus it is very natural to ask the following Gallai-
type problem for planar lattices. Let T denote a finite collection of convex
sets in E2such that any three of the sets of T have a lattice point in common.
Find the least integer n such that for an arbitrary T there exist n lattice
points (i.e. n needles positioned at the lattice points) with the property that
every set of T contains (i.e. is pinned down) by at least one of the n lattice
points (i.e. needles).

We prove the following

Theorem 1. If T is afinite family of convex sets in E2 such that any
three of them have a lattice point in common, then there exist two lattice
points which pin down T .

Remark. It is easy to see that 2, i.e. the number of needles cannot be
reduced to 1. Moreover, if we replace 3 (the number which guarantees that
S0 many convex sets always intersect in a common lattice point) by 2, then
the problem has a trivial negative answer.
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2. Proof of Theorem 1

First we introduce some simple notations. The points of the plane will
be denoted by A, B,... . The segment with endpoints A and B is denoted
by AB, and the line passing through the points A and B is denoted by AB.
We fix a so-called negative orientation of the plane. A convex polygon will
be described with the sequence of its vertices according to the given negative
orientation.

The line AB splits the plane into two open half-planes F~,b and Fb,a-
In this notation the order of the subscripts is important, namely, for any
point C (D, resp.) of Fa8 (Fb ,a, resp.) the sequence ABC (BAD, resp.)
determines the negative orientation of the plane. For the closed half-plane
determined by the open half-plane F"b we use the notation F"b (i.e.
Fab = Fas UAB).

To each convex pentagon ABC DE we assign the convex pentagon

ABCDE = Fac NMFbdMFce MNFdallFbb-

(In other words ABCDE is enclosed by the diagonals of ABCDE.) The
following two concepts are basically important for our proof.

Definition 1. Let L be the set of points of E2 which have integer co-
ordinates. A point of L is called lattice point. A lattice point P is called
a fixed lattice point (shortly an fl-point) if there are three sets of E the
intersection of which contains P as the only lattice point.

Definition 2. We define the following fixed lattice-point algorithm
(FLP-algorithm). For each K 6 E we proceed as follows. Let K"1) be the
convex hull of the lattice points which are points in common of K with two
more sets of E . Note that K"1) is a convex lattice-polygon. Let E * be the
family arising from E when we replace K in it by K*1). In general, suppose
that K() as well as E” have already been defined. Then take a vertex
of K*d which is not an fl-point with respect to a triplet of E* containing
K”d. Remove this vertex from the vertices of K”). Obviously, this algorithm
terminates after finitely many steps, say n. Then it is easy to see that every
vertex ofK H is an fl-point with respect to a triplet of E A containing K(n).
Observe that E ~ satisfies the conditions of the theorem.

After this for the next K we use E  instead of E . Finally (after finitely
many steps), the above FLP-algorithm vyields a “new” E such that every
vertex of any K of E is an fl-point with respect to a triplet of E containing
K. Then we say that E is fixed.

We shall make use of the following

Lemma 1. ITABCDE is a convex lattice-pentagon, then ABCDE con-
tains a lattice point.
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PROOF. (Indirect.) Let P1P2P3P4P5 be the convex lattice-pentagon with
minimum rmmber_of lattice points for which the claim is false. Let M2 denote
the region F52TMF 24 M F3jl (see Fig. 1).

Similarly we get M i,M 3, M4 and M5. Furthermore, let N2 be the re-
gion F53MFM MF4 5. In the same way we define the regions N1, N3, N4
and N5. It is easy to see that the convex lattice-pentagon P1P2P3P4P5
contains a lattice point different from its vertices. Let P6 be one of these
lattice-points. By assumption, Pg ~ P1P2P3P4P5. Suppose that Pqg M2
Then for the convex lattice-pentagon P\ P6P3P4P5 we have P\PpP3P4/5 C
C P1P2P3P4P51 a contradiction by the indirect assumption. This implies that
the regions Mi,M 2,M 3,M 4 and M5 do not contain a lattice point differ-
ent from P\,P2,P3,P4 and P5. Thus we may suppose that P6 g N, for some
i6{1,2,3,4,5}. Let i —2. Asthe convex lattice-pentagon P\P3P3P6Pb con-
tains less lattice points than P\P2P\ P4P5 the indirect assumption implies the
existence of a lattice-point P7 g P\ P2P3Pe,PsmThen it is easy to prove that
either P7 g M5 or P7 g P1P2P3P4P5. In both cases we get a contradiction.
This completes the proof of Lemma 1. Q.E.D.

Theorem 2. Consider five convex sets in E2 such that any three of them
have a point of L in common. Then for each convex set there are three others
such that the intersection of these four sets contains a point of L.

PROOF. Let the five convex sets be denoted by Ki,K 2,K 3, K4 and Kb5.
We are going to prove our claim for the set K4. We shall make use of the
following special notation. P{L,2..3#f(Pili2,..,ik resp.) stands for a lattice-
point in Ki MKn M ... MK ((E2\ Ki) NKjj M ... MKtk resp.), 2 * rx<
<i2z< ... <ik" 5.

The following rather technical lemma reduces the number of cases we
have to investigate in the proofs of many statements.
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Lemma 2. Let p2s be afixed lattice point with respect to the convex sets
Kx,K2, and K3, and let p23r2pr3p2' be a convex lattice-quadrangle where P2
and P2’ are distinct lattice-points in Ki MK 2. Then PZB £ F223MP Xx,2 I
Nf32-NF2i3.

Proof. If P23 £ F2A23MF 32 then P2 £ P3P23P23be. P2 £ K3, but P2
® PZ3in contradiction_with the”fl-point property of P23. Similarly, we get a
contradiction if PZB £ FR2 2 MF23 (Fig. 2.).

Fig. 2

IfPBE£ F32NF232DF 32/, then P23P2P23P3P2' is a convex lattice pen-
tagon. By Lemma 1 there exists a lattice point A such that

A £ P23P2P23Ps P2’ ¢ P23PI3P2 P25 P22Ps N P23P2P3 ¢ K 2 MK3 MnKj,

but A ¢ P23 in contradiction with the A-point property of P23. The case
Pz €F2)3NF2,2NF23 can be disproved similarly.

If PB £ F3j2MF2j3then P3 £ P2<P2P23 C K2 but P3 ¢ P23, a contradic-
tion.

If Pis £ F2,23MF23MF223 then PBP23P2P3P2 is a convex lattice
pentagon. By Lemma 1 there exists a lattice point A such that

A £ P23P23P2P3P2' C P23P2P2' I P23P23P3 C Kx MK 2M K3,

but A~ P23, a contradiction. Similarly, we get a contradiction if P23 £
€FB2MNFZBRMNF3)2 O
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Let c ={K1,K 2,K3,K4,K5} and apply the FLP-algorithm to C. Then
we take Kj which is convex lattice-polygon with the property that each
vertex is an fl-point PtJ for some i and j with respect to k 4, furthermore we
take k r and k j. Obviously, two vertices cannot have the same “name” PtJ.
As the number of sides of K4 is at most 6 we distinguish 5 cases. Each of
them has some further subcases depending on the positions of the Prj’s. We
prove Theorem 2 as well as the fact that k 4 is either a triangle or a point.
The rough idea of the proof is the following: we take a point P*k and show
that independently from its position the above claim is true. However, there
are some cases where we have to consider the positions of two P*jk s.

I. Ki is a convex hexagon. The vertices of K4are the points P,y. Suppose
that a vertex of k 4, say P2- belongs to more than three convex sets, say
Px3 £ kj Nnk2MA3Mk 4. But then P24 is not an fl-point with respect to
K 4,K 2 and K 4, a contradiction. Thus every vertex of k 4 belongs to exactly
three convex sets. Next we prove that any two opposite vertices of k 4 cannot
be covered by k r, where i > 1. Namely, assume that K 4 = A1A2A3A 4A5A6
with Ai = P23 and A4 = P24. Without loss of generality we may assume
that A3 = P25, First we consider the case A2 = P34. As P23r34p 25pP 24P 45 iS
a convex pentagon, Lemma 1implies that there exists a lattice point B such
that

B£ P23r34P25P 24P 45 C P34P 24P 45 M P23P25P24 C K 4N K 2 M K 4.

Finally, B o P24, a contradiction since P24 must be an fl-point.
Now assume that A2 = P35. Since P23P35P25p 24P45 is a convex lattice
pentagon, hence there exists a lattice point B such that

B £ P23p35p25P 24P 45 C P23P25P 24 n P35P25P45 C Ki MK 2M K 5,

but B o P24 so we get a contradiction since P24 is an fl-point. Finally, if
A2 = P45, then a similar argument yields a contradiction.

Thus it is sufficient to consider the convex hexagon p 23p 25p 35p 45pP 34p 24
(see Fig. 3).

If P345 exists, then P345 ¢ P34 which we proved above, and this is
contradiction since P34 is an fl-point. Hence P |45 exists. As P35 is an fl-
point and p35r45r 23r 25 is a convex quadrangle, by Lemma 2 we get PE4S £
£ F4523. On the other hand P34 is an fl-point and p34p 24P 23P 45 is a convex
quadrangle so by Lemma 2 we get Pg45 £ F 23is, a contradiction. O

. K\ is a convex pentagon. We may assume that the vertices of Kk 4 are
P23,P24, P25, p34 and P35. It is easy to prove that we have to investigate four
cases only.

(@) Ki is the pentagon P23P35P25P34P24. By Lemma 1 there is a lattice
point A such that

A £ P23P35P25P34p24 C P23P25P 240 P23P35P34 Cc K 4N K 21 K3.
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Fig. 3

Since A ¢ P23, this contradicts the Arpoint property of P23.

(b) K1 is the pentagon P2v735723"34724- |If P45 G P23P24P25, then

P45 € K2, but P45 ¢ P24, a contradiction.
If P4 G P23P34P24, then P23P45P24P25P35 is a convex pentagon, so by
Lemma 1 we have a lattice point A, such that

A E P23P45P24P25P35 C P23P24P25 N P4A5P25P35 C K, K2 MKS,

but A A P25, a contradiction. Similarly we get a contradiction if P45 E
£ P2bP3bP23-

Notice that if Ki is a P25P34P23P35P24 pentagon we can proceed similarly.

(c) Ki is the pentagon P34735723725"24- We may assume that P45 E
e P23P24P34 (Fig. 4). Namely, if P4 E P23P34P35, then P45 E K3. As
P45 ® P34, this contradicts the fl-point property of P34.

Since P25 is an fl-point, P25P24i45P23 is a convex quadrangle. Then
Lemma 2 implies that P235 e F 4523 If P235 exists, then P23 and P25 are
A-points. As P35 is an fl-point and P45P34P35P23 is a convex quadrangle by
Lemma 2 we get r 235 € F2345, a contradiction.

(d) Kr is the pentagon P34P23P25P24-F35. As P34 and P35 are fl-points,

P 345 does exist (Fig. 5). Since P34 is an fl-point and P34P23P24P35 is a convex
quadrangle, we get by Lemma 2 that P345 G F 2435 M F34i25 M F 2334 1 F 2324-
If F345 € F 2534 1F34 35, then P34 E P345P25F35 C K5, which contradicts

the fl-point property of P35. Hence we may suppose that Pg4s G F2334 1

MF3425MF24.35-
If P235 exists, then we get a contradiction since P23 and P25 are fl-points.
Thus P235 exists.
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Fg. 5

Since P%is an fl-point, P25P24P35P23 is a convex quadrangle thus Lemma
2 implies that

P235 G 35,23 MF2523 M F 24,25 N F 24i35.

If P25 G FHSBn F 2523 then P25 G P235P35P23 C K3 which contradicts the
fl-point property of P23. Hence we may assume that P45 6 F 2425 F 352311
M F 25535.

Since P35 E F 2534 MF 23525 M F235%3% we get that P345P235P25P35 is a
convex quadrangle. As P is an fl-point P23 G P345"2%P25P35 C K5 cannot
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occur. Thus p 3 N A345¥235" 25735 O
p B GF 235%25 N F 35345» 1 F 235%345*

It follows from the foregoing that P23P235P25P35P345 is a convex pentagon.
Hence by Lemma 1 there exists a lattice point A such that

A £ p23p235p15P35P345 C P23P25pP35 lP345p235pr35 C Ki MK3MKS5.

Since A ¢ P35 and P35 is an A-point, this is a contradiction. O
Il Kt is a quadrangle. It is easy to prove that we have to investigate
four cases only.
(@) Ki is the quadrangle p2p24p4d6p35- If P34 G P23p24ap25 C K2 or
P34 Gr2spaspas C K5, then this contradicts the A-point property of P23 and
P24 or P35 and p4s5. Thus we may assume that P34 £ p24pasp25 (Fig. 6).

Similarly we may assume that P25 £ P23p24P34- Then P23P25P34P45P35
is a convex pentagon, and according to Lemma 1 there exists a lattice point
A such that

A £ P23P25P34P45P35 C P23P34P35 M P25P45P35 C Ki MK3 MK5

but A ¢ P35, a contradiction.
(b)K4 is the quadrangle P23p24P35P45- If P25 £ P23P357 then P2b G K3,
but this contradicts the fl-point property of P23 and P35 (Fig. 7).

If P25 G P23P35P45 then P23P24P35P25 is a convex quadrangle_and since
P23 is an fl-point, applying Lemma 2 we get that P"34 £ F23,25 M F24.23- (If
P234 exists we get a contradiction since P23 and P24 are Awpoints.) Then
P23 G P234P24P45 C K4, but this contradicts the fl-point property of P23 and
P24, Similarly, we get a contradiction if P23 £ P35P23P24s

Acta Mathematica Hungarica 66, 1995



ON A GALLAI-TYPE PROBLEM FOR LATTICES 135

Fig. 7

Fig. 8

(c) Kj is the quadrangle .P23F25P24F34. If F35 or F45 6 P23P25P24 C
C K2, then we have a contradiction since P23 and P25 or P24 and P25 are
fl-points. Thus we may assume that P35 and P45 € P23P24P34 (Fig. 8).
If P235 exists, then we get a contradiction as P23 and P25 are fl-points.
Thus we may suppose that P£35 exists.
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If 235 € F2523n F34;255then P25 E P235P34P23 C_K3, but PS¢ P23, a
contradiction. Our proof is similar if #2365 £ F 2534 N F 24,25

If "235 € F 23251 F24.25 M F 24,35 then PE£35P24P35P23P25 IS a COMYysX
pentagon. Applying Lemma 2 we have a lattice point A for which

A £ P2HBp24p3bp23p 2 C P24P23P2s n P235P35P23 C ki Mk 2 MKS.

As A" P23 this is a contradiction. We can settle the case PED £ F45)3 11
n F 25230 F 2524 Similarly.

IfP2% £ F2425nN F 35524, then P24 Gp23sp35p 25 C Kk 5, a contradiction.
If 23 £ F 2535 n F3524, then the reasoning is similar.

If p23s e F3Bi24TM F3sizaF 25,24, then P13bP3uP23p 224 is a convex pen-
tagon thus according to Lemma 1 we have a lattice point A such that

N1 6 72H"35P23P25P24 C P235P35P25 M P235P 3P 25 M PsHP2br 24 €
e KFn K2n K&

As A" P25 we get a contradiction. The reasoning in the case P235 e F2425T1
0 F233%n F23,34 follows word for word the previous reasoning.

If P25 G F4525MF 2335? then P35 or P45 G P235P23P24 C K2, but this is
a contradiction since P23 and P2 or PA and P25 are fl-points.

(d) Kj is the quadrangle P23P34P25P24s If P35 or P45 G P25P24P23, then
we get a contradiction as in the case (c). Hence we may assume that P35 and
P45 € P34P25P23 (Fig- 9).

P235 does exist. (The proof is the same as in the case (c).)

If P26 N F4525n F 25,35 M F34j23, then P35 G p235P25p23 C K2, but this
contradicts the_fl-pointj>roperty of P23 and P25.

If P23 £ F4523T1F 2545? then Ps4s G P235P25P23 C A'2? but this is a
contradiction jince P24_and P2 are fl-points.

If P e F2345T1F 25,34, then P45 G P235P23P34 C K3. This is possible
only in case P45 = P34. But then this vertex is a P35 vertex and changing
K4 and K5 we get case (c). (Notice that we have not utilized the fl-point
property of P34 in the reasoning of case (c).) Hence we get a contradiction
just like in case (c).

If P25 e F2ASMF3425MNF2423 then P235P2np23pZb is a convex pen-
tagon. According to Lemma 1 we have a lattice point A such that

A € p235P24P23P34P25 C P235P23P34 n P24P23P25 ¢ Kj n K2n K3.

Since A ¢ P23 _this isji contradiction.
If p23s *=F 24TF 2435, then P24 G P235P23P25 C K2. As P24 P34 this
is a contradiction.

If 72236 ~ F 24,51 F35;24, then P24 G P23uP3yp2bC K 5. Since P24 ¢ P23
this is a contradiction.
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Fig. 9

If P25 6 F'2824n F234 T1F2524, then P/AbP23pAp2bp2i is a convex
pentagon, hence by Lemma 1 we get a lattice point A such that

A £ N 323N 45254 C 1240 23025 T1 P.235P45P25 C Ki MK 2TMKS.

As A ¢ P2 we get a contradiction.

If F25 N FASIZTMF 2325, then P2B e F2&Hf45p5 C K5. Since PS5 N P23
we get a contradiction.

Thus we may suppose that P23 £ F 2523 F 34,231 F 35)25.

If P245 exists, then we have a contradiction as P24 and P25 are fl-points.
Hence we may assume that P 245 exists.

Since P24 is an fl-point and P23P34P26P24 is a convex quadrangle hence
applying Lemma 2 we get that

P245 6 F245 TMF 224 F 34 25T F 23j34.

Since P245 G F35j5 M F 235136 MF 235%i25, P 245P 235P35P 25 is a convex quad-
rangle.

If P24 G P245P23bP36P26 C K5, then since P24~ P2 we get a contradic-
tion.
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If 724 N ~245° 2350 35-125, then P24 G F 235535 M F 235%i245* n F 25,245*? thus

P24F 235F35-P25F 245 is a convex pentagon. By Lemma 1 we get a lattice point
A such that

A GN2aNHs5N35M25~45 C P34P35P25 17247 35725 1M 285N 5a%45 C

C Ki MK2 UK-5.
But this is a contradiction since A~ P25. 0O
V. Ki is atriangle. It is easy to prove that we have to investigate three
cases only.

(a) Ki is the triangle P23P24P25. Then P34 GKi MK 2, which is a con-
tradiction since P23 and P24 are fl-points.

(b) Ki is the triangle P23P24p34- If P234 exists, then we get a contra-
diction as P23 and P24 are fl-points. Thus we may suppose that P£bl exists

(Fig. 10).

Fig. 10
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It is easy_to prove_that we have to investigate the following two cases.
If 7234 e "34,24MNF 24237 then P24 £ P234P34P23 C K 3 but this contradicts
the fl-point property of ~23-
If P24 £ "2423T1F34 5n F24,34, then P24 £ P234P34P23 C K3 i.e. PS5 £
£ K!I MK2MK3MKS5. Thus in this case Theorem 2 is true.
(©) K[ is the triangle P24P25F34. If P45 £ P23P24P25 C K2, then P45 £
£ Kt MK2MK4MKS5which proves Theorem 2 in this case.
If P23 £ P45P34P24 C K4, then P23 £ Ki MK 2MK3 MK4. Hence we may
assume that P4 £ F24)23.
If P45 £ P23P34 C K3, then P45 £ K] MK3MK4T K5 and we are done.
We may assume that P45~ P23P34.
It follows from the foregoing that we have to investigate the following
two cases:
(a) P23P45P34P24 is a convex quadrangle. If P23 exists, then we get a
contradiction since P24 and P34 are fl-points. Thus P23 exists (Fig. 11).

Since P34 is an fl-point and P34P 24P 23P45 is a convex quadrangle, ap-
plying Lemma 2 we get that P24 £ F34ibMF24i34. Then we have that
P34 £ P234P24P2s C K2 thus P34 C Ki MNMK2MK3fi K4 which is our claim.

(/?) P34P45P23P25 is a convex quadrangle. If P245 exists we get a con-
tradiction since P24 and P2 are fl-points. Thus P245 exists (Fig. 12).

If f°245 e F 2345 T1F 2523?then P23 € P245P25P45 C K 5. Thus P23 £ Ki I
NK2MK3MKS5.

If Pr2s G F2524n F25,34 MF4523, then P23 £ P24sP3aP2s4 C K4. Thus
PZE£KiN MNMK3n_KA4.

If "2 £ "5 n F2534, then P25 £ P245P34P24 C K4. Thus PS5 £ Ki 1M
NK2MNK4MKS5.

If P24b N F 2325 MF34>24, then we have two cases since F 2325 F 34i24 =
= (F2j5 1l F 35j24) U(F 24i35T1F 34 24) wherever P35 is. If P245 £ F23,25F 35,
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Fig. 12

then P35 G P245-P34-P24 C K4. Thus P35 GKi MK3 MK5. If PAg GF2435T
MF3424 then P35 G"245-724"25 C K2. Thus P35 GKi MK2 NMK3 MK-.

If PEAS G F 2445 n F45 25) then P45 G P245P24-P25 C K2. Thus P45 GKi I
M K2 NK4 nks.

Thus we may assume that 7245 e F2545 M F 2325 MNF 24,34-

If P235 exists then Theorem 2 is true. Hence we may suppose that PA3%
exists.

If 2% £ F 2425 n F45i25, then the proof is similar to the previous one.

If P235 £ F25,46n F2325 n F2434, then P45 G P235P23F34 C K3. Thus
P45 GKi MK3 MK4 NK5-

If P25 £ F 23451 F 2523? then the proofis similar to the proof of the case
BY/5.

If P235 N F 2524 T F 2534 M F4523>then P235F25P45P245 is a convex quad-
rangle. Namely, 7245 GF 23545 N F 25,235 M F 25,45

If P23 G P235P25 P45 P245?then P23 G Ki NMK2MK3 MKH5.

If F23 ~ P235P25F45P2455 then P23 G F 25235 n F45245 M F 235245~ Thus
P23P235P25P45P245 is a convex pentagon. By Lemma 1 we have a lattice
point A such that

A G P23P235P25P45P245 C P23F25P45 M-P235P25-P245 C Ki JIK2 /1K s,

a contradiction.
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If P235 £ 3425 n F2523>then P25 6 F235P34P23 C K3. Thus P25 GKi M
MK2 NK3nks.

11 7235 € F3425 M F45M M F2325?then P245P23P25P235 is a convex quad-
rangle. Namely, P245 G F 23,35 I F 25,235 I F 23,235

If P45 £ F245P23F25P235, then P45 G Ki MK2 M K4 M KS.

If F45 N F245P23F25P235, then P45 G F 24523 M F 25235 M F 245235 Thus
FA5P245P23P25P235 is a convex pentagon. By Lemma 1 we have a lattice
point A such that

A G P45P245P23P25F235 C P45F23P25 M P245F25P235 C Ki MK2 MKS,

a contradiction. O

V. Ki is a segment. Then K, MKy MKi contains a lattice point in
common. Thus applying Helly’s theorem to the segment K, MKi we get
that they have a lattice point in common. Hence, we have proved that
in this case the convex sets have a lattice point in common, which proves
Theorem 2.

In fact, we have proved more. Namely, we have shown that the fixed
system of five convex sets of Theorem 2 either have a lattice point in common
or each of them is a triangle. O

Now we are able to prove Theorem 1, though we still need a few defini-
tions and several lemmas to do so.

We need the following

Definition 3. Let T be a fixed system of at least four sets such that
any three of them have a lattice point in common. We say that T is good
if the convex hull of T possesses a vertex S which belongs to exactly three
sets. Let us denote these sets by Ki,K2 and K3 and call them the main
configurations of T . If a set of T is not a main configuration then we call it
an ordinary configuration.

THEOREM 3. Let T be a good, system of convex sets. Then one of the
three main configurations of T is such that removing itfrom T the remaining
convex sets have a lattice point in common.

In the following proof step by step we discover more. We are going to
characterize the good systems of convex sets. Notice that applying the FLP-
algorithm we get lattice-polygons.

Lemma 3. Each vertex of a main configuration is included in another
one.

Proof. Let A be a vertex of K4. Suppose that A 0 K2 and A  K8.
This entails a contradiction. As A is a vertex of Ki we can find K4 and K5
such that A is an fl-point with respect to Ki,K4 and K5. It follows from
the foregoing that Ki,K4,K5and K2; K!,K4,K5and K3; Ki,K2K 3and
K4; KbK2,K3 and K5 groups of four sets do not contain a lattice point in
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common. So we cannot choose further three sets from K2,K 3,K4 and K5
to Kj such that this four sets have a lattice point in common. Thus it is a
contradiction with Theorem 2. O

Let us denote the convex hull of Ki,K2 and K3 by M. Let M be the
convex lattice-polygon A\Ai... A5, where S is an fl-point with respect to
Kb K2and K3. Ai is naturally a vertex of some main configuration of T.
Hence according to Lemma 3 it is included in another one, too. Then we say
A{ is a type B\2 vertex, if At£ K3 and A £ Ki NMK2. We define type Hi3
and type H23 vertices similarly.

Lemma 4. M has got type i?i2,-Biz and J523 vertices.

Proof. Assume that there is no type B12 vertex. Then A, £ K3 for
each i. Since 5 £ K3 we get that M C K3. But K3 C M thus K3 = M. We
show that there is only one lattice point in Ki M K2. Suppose that there is
a lattice point Si such that Si ¢ S and Si £ Ki NMK2. In this way we get
that Si £ Ki MK2C K3, that is, Si £ Ki MK2NMK3 which contradicts the
fl-point property of S. Thus the only lattice point of Ki MK 2is S. Since any
three sets of T have a lattice point in common, hence any set of T contains
S, which is a contradiction. O

Lemma 5. M has got exactly one type Bi2,-Biz and B2s vertex.

Proof. (Indirect.) Let n be the least number with the following prop-
erty: There exists a system C of n convex sets such that any three sets of
C have a lattice point in common, moreover the claim is false for C. Let us
consider such a C. Then we may assume that there are two type Bi2 vertices,
say Ai and A2.

It is trivial that n ~ 5. We show that n ~ 6. Namely, if n = 5 then
among the vertices of Ki we have 5, Ai, A2and a type f?i3 vertex. But that
is impossible since we have already proved that Ki is a triangle or a point.
Thus n”" 6.

We need the following

Lemma 6. There exists at most one ordinary configuration of C with the
following property: Removing this configuration from C then Ai will not be
an fl-point with respect to any triplet of C containing a main configuration.

Proof. Suppose that this statement is false. Then there are two sets
K4 and K5 with the previous property. It is easy to see that Ai is an fl-
point with respect to Ki,K4 and K5; and similarly with respect to K2,K4
and K5. Then the sets of groups Ki,K4,Ks and K3; K2,K4,Ks and K3;
Ki,K2,K3and K4; Ki,K2,K3and K5 do not contain a lattice point in
common. But this contradicts Theorem 2. O

If there exists a convex set of C that satisfies the conditions of Lemma 6
then let us call it K4. Similarly we define K5 by replacing Ai by A2. Since
n ™ e there exists a convex set of C, say Kt, different from Ki,K 2 K 3,K4
and K5. Removing K; from C we get a convex set system C . containing

Acta Maihemaiica Hungarica 66, 1995



ON A GALLAI-TYPE PROBLEM FOR LATTICES 143

n —1 sets. Let us apply the FLP-algorithm to C. Notice that C is good
with respect to S. We prove that the claim is false for C. By Lemma 6 we
get a triplet of C containing Ki, in which A\ is an fl-point with respect to
it. According to Lemma 6 we have that A\ or Ad is an fl-point with respect
to a triplet of C containing Ki or K2 (all the variations are allowed).

In this way, applying the FLP-Algorithm we cannot eliminate A\ or A2
from neither Ki nor K2. Thus for C the claim is false, a contradiction. O

In the following part of our proof we will describe all the good C systems
containing five sets.

Let the five sets be denoted by Ki,K2,K3,K4and K5. Let Ki,K2 and
K3 be the main configuration of C with respect to S.

Let M' be the convex hull of C. Then M = M'. Namely, each triplet of
C contains a main configuration. Let Ai, A2 and A3 be the type B23, i?i3
and B12 vertex of M, resp. Let M be the convex quadrangle 5A1A2A3. As
each set of Cis a triangle, Ki is the triangle 5A2A3, K2 the triangle SA1A3
and K3 the triangle SA\A2- We prove that AL1A2A3 is a member of C.

If each of the points Ai, A2 and A3 is covered by four sets of C, then K4
and K5 will contain A\, A2 and A3. Since K4 and K5 are triangles we get
that A1A2A3 - K4 = K5.

If some A, is covered by exactly three sets of C, then C will also be good
with respect to A-. Thus it follows from this that A\ A2A3 is a member of C.
Let us call it K4.

We show that SA2 and A1A3 do not contain any lattice point except the
endpoints.

Let N be the intersection of the diagonals of M. Notice that any three
sets of C have a point in common, hence it follows from the Helly-theorem
that there exists a point common to every set of C. As the intersection of
Kx,K2,K3 and K4 is a point N we get that N G Kb5.

Let D be one of S, Ai, A2 and A3. IfDN contains a lattice point different
from D, say E, then E is covered by all sets K; covering D. But D is an
fl-point with respect to some triplet of C, thus we are led to a contradiction.
Hence the diagonals of M do not contain a lattice point except the endpoints.
Since Kj MK3 ML =5 UA2 and K2 MK4 ML = Ai UA3, K5 contains two
neighbouring vertices of M. Let these two neighbouring vertices be Ai and
A2. As K5 is a triangle, its third vertex is A5 where A5 G Ki MK2. This
way we described all good C containing five sets (see Fig. 13). O

Let C be a good system of convex sets, and let Ai, A2 and A3 be the
type F?23 .BT and B12 vertex of M, resp.

Lemma 7. There exists an ordinary configuration of C, Kj such that
A2 GKj and A2 is an fl-point with respect to Ki, K3 and Kj.

P roof. Suppose that the claim is false. A2is an fl-point with respect to
a triplet containing Ki. Let this triplet be Ki, K4 and K5. Let us consider
Q= {Ki,K2,K3,K4K5}. Apply the FLP-algorithm to Q as follows: Let
us consider K3. A2 is not an fl-point with respect to a triplet containing K3,
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Fig. 13

otherwise A2 would be an fl-point with respect to K3,K 4and K5. Then we
could get a contradiction in the same way as in the proof of Lemma 6. Thus
applying the FLP-algorithm we can remove A2 from K3. Hence we get a
good Q' with the property that one of the main configurations of Q', Kj, has
got a vertex A2 which is not included in another main configuration, and
this contradicts Lemma 3. O

Lemma 8. A2 is covered by all the ordinary configurations of C.

Proof. According to Lemma 7 there exists an ordinary configuration of
C; K4 such that A2 is an fl-point with respect to Ki,K 3 and K4. Assume
that there exists an ordinary configuration K5 not containing A2. Let Q —
= {K4,K2,K3,K4,K5}. Applying the FLP-algorithm to Q we get a good
Q'. Let M be the convex hull of Q'. Obviously, A2 and S are vertices of M.
Let A3 be a type B\2 vertex and A\ be a type B23 vertex of M. We prove
that M is the quadrangle 5 AlA2A3. Consider C. If A is a type B23 lattice

point, then H G Fs”; otherwise we get a contradiction since S is an fl-point
with respect to K4, K2 and K3. Similarly if G is a type #12 lattice point
of M, then G GF~s. Thus it follows that M is the quadrangle SA'1A2Ai .
Notice that A2 is not covered by any set of C different from K4,K 3 and K4.
Thus Q has got two opposite vertices S and A2 with the following property:
S and A2 are included in exactly three sets of C. But this is impossible.
Thus we get a contradiction. 0O

Notice that Theorem 3 follows from Lemma 8. O

Let us consider a convex set system T satisfying the conditions of The-
orem 1. Applying the FLP-algorithm to T we get a fixed T'. Let M be the
convex hull of T'. Let R be one of its vertices. Obviously R is an fl-point.
Suppose that R is an fl-point with respect to K4,K2 and K3. Removing all
sets of T' containing R and different from K4,K 2 and K3 we get a convex
set system C. Applying the FLP-algorithm to C we get C. Obviously C is
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good. According to Theorem 3 there exists a lattice point J covered by all
ordinary configurations of C. It is easy to see that J and R pin down T .
The proof of Theorem 1is complete. O
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PROPERTIES OF HYPERCONNECTED
SPACES

T. NOIRI (Yatsushiro)

1. Introduction

A topological space X is said to be hyperconnected [21] if every pair
of nonempty open sets of X has nonempty intersection. Several notions
which are equivalent to hyperconnectedness were defined and investigated in
the literature. Levine [11] called a topological space X a D-space if every
nonempty open set of X is dense in X and showed that X is a J1-space if and
only if it is hyperconnected. Pipitone and Russo [19] defined a topological
space X to be semi-connected if X is not the union of two disjoint nonempty
semi-open sets of X and showed that X is semi-connected if and only if
it is a J1-space. Maheshwari and Tapi [12] defined a topological space X
to be s-connected if X is not the union of two nonempty semiseparated
sets and showed the equivalence of s-connectedness and semi-connectedness.
Hyperconnected spaces are also called irreducible in [22]. Recently, Ajmal
and Kohli [2] have investigated the further properties of hyperconnected
spaces.

In the present paper, we shall use the terminology “hyperconnected” to
express the equivalent notions previously stated. In Section 3, we obtain sev-
eral characterizations of hyperconnected spaces by using semi-preopen sets
[3] and almost feebly continuous functions. The main result of the last sec-
tion is that hyperconnectedness is preserved under almost feebly continuous
surjections. This is an improvement of the result that hyperconnected spaces
are preserved by feebly continuous surjections [2, 15].

2. Preliminaries

Throughout the present paper, (X,r) and (X,a) (or simply X and Y)
will denote topological spaces on which no separation axioms are assumed
unless explicitly stated. Let A be a subset of a topological space X. The
closure of A and the interior of A are denoted by CI (A) and Int (A), respec-
tively. A subset A is said to be semi-open [10] (resp. preopen [13], R-open

[1) if AC Cl(Int(A) (resp. A C Int(CI(A)), A C CI(Int(CI(A))).
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Andrijevic [3] defined a subset A to be semi-preopen if there exists a pre-
open set ¥ in A such that V C A C C1(P) and showed the equivalence of
/3-openness and semi-preopenness. The complement of a semi-open (resp.
preopen, semi-preopen) set is said to be semi-closed, (resp. preclosed, semi-
preclosed). The semi-closure [5] (resp. preclosure [6], semi-preclosure [3]) of
A, denoted by sCI(A) (resp. pCI(A), spCI(A)), is defined by the intersec-
tion of all semi-closed (resp. preclosed, semi-preclosed) sets of A containing
A. The union of all semi-open sets contained in A is called the semi-interior
of A and is denoted by sint (A). A subset A is said to be regular open (resp.
regular closed) if A = Int (CI (A)) (resp. A = Cl(Int(A))). The family
of all semi-open (resp. preopen, semi-preopen, regular open, regular closed)
sets of X is denoted by SO (X) (resp. PO (A), SPO (A), RO (A), RC (A)).

Lemma 2.1. The following properties hold for a topological space (A, r);

(@ r c SO (A) M PO (A),

(b) SO (A) U PO (A) C SPO (A).

Lemma 2.2 (Andrijevic [3]). Let A be a subset of a topological space A.
Then the following properties hold:

(@) sCI(A) = AU Int (CI (A)),

(b) pCI(A) = AUCI (Int (A)), and

(c) spCI(A) = AU Int (Cl(Int (A))).

Lemma 2.3 (Noiri [16]). A topological space X is hyperconnected if and
only if UMV ¢ 0 for any nonempty sets U,V G SO (A).

3. Characterizations of hyperconnected spaces

In Theorem 3.1 of [16], the author showed that a topological space A
is hyperconnected if and only if pC1(C) = A for every nonempty set U G
G SO (A). This type of characterizations of hyperconnected spaces are com-
pletely clarified by statements (a)-(e) in the following theorem and Example
3.2 (below).

Theorem 3.1. The following are equivalent for a topological space X :
(a) A is hyperconnected;

(b) CI(VP) = A for every nonempty set VP G SPO(X);

(c) sCI(VP) = A for every nonempty set WP G SPO (A);

(d) pCL(C) - A for every nonempty set U G SO (A);

(e) spCl(Z7) = A for every nonempty set U G SO (A);

(f) UMW, b 0 for any nonempty sets V G SO (A) and W G SPO (A).

Proof, (a) —=(b): Let W be any nonempty semi-preopen set of A. Then,
we have Int(CI(VP)) ¢ O and hence A = CI(Int(CI(VP))) =

= Cl (VP).
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(b) —=(c): Let W be any nonempty semi-preopen set of X. By Lemma
2.2, we haves CI(XV) = W O bl (C 1(Y)) = W U Int (X) = X.

(c) —»(e): Let U be any nonempty semi-open set of X. By Lemma 2.2, we
have spCI(i7) = UU Int (CI(Int(V))) = U U Int (Cl (if)) = sCI(U) = X
since SO(X) C SPO(X).

(e) —»(f): Suppose that there exist nonempty sets U E SO (X) and W £
e SPO(X) such that VITW = 0. Since W £ SPO(X), we have 0 =
= spCI(ENNW = X MW = W. This is a contradiction.

(f) -»(a): By Lemma 2.1, we have r C SO(X) C SPO(X) and hence
Unv ¢ 0 for any nonempty open sets U,V £ «. Therefore, (X, r) is
hyperconnected.

The equivalence of (a) and (d) is shown in [16, Theorem 3.1].

In [14, Theorem 3.1], the author showed that a topological space X is
hyperconnected if and only if sCI(17) = X for every nonempty set U £
£ SO (X). Now, we consider the following properties:

(p) p C1(Y) = X for every nonempty set V £ PO (X) and

(/3) spCI(IT) = X for every nonempty set W £ SPO (X).

It follows from Lemma 2.1 that (8) implies both (p) and (c) in Theorem 3.1
and also that (p) implies connectedness. It is well known that hyperconnect-
edness is strictly stronger than connectedness. Example 3.2 (below) shows
that (c) in Theorem 3.1 can be replaced by neither (p) nor (/?). Moreover,
it also shows that (c) in Theorem 3.1 cannot be replaced by the following
property:

(/7)) spCI(F) = X for every nonempty set V G PO(X).

Example 3.2. LetX —{a,6,c}, r = {0,X,{a,ft}} and A - {a}. Then
(X, r) is a hyperconnected space and A £ PO(X,r) C SPO(X,r). By
Lemma 2.2, we have pCI(A) = spCI(X) = A/ X.

To obtain another type of characterizations of hyperconnected spaces,
we shall first recall the definition of feebly continuous functions. A function
/. X ->Y is said to be feebly continuous [4] if, for every nonempty open set
V of Y, /-1(¥Y) ¢ O implies Int (/_1(¥)) ® 0. This definition is different
from the one in the sense of Frolik [7] because / need not be surjective. A
function /: X —»Y is said to be semi-continuous [10] if £ SO (X) for
every open set V of Y. It is shown in [2] that every semi-continuous function
is feebly continuous but not conversely.

DEFINITION 3.3. A function /: X —aY is said to be almostfeebly contin-
uous if, for every nonempty V £ W (Y), f~1V) & 0 implies
sint(f~\V)) &o.

Remark 3.4. Every feebly continuous function is obviously almost fee-

bly continuous. However, the converse is false even if the function is bijective
as the following example shows.
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Example 3.5. Let X = {a,b,c}, r = {0,X, {a}, {&} {a,6}} and a =
= {0, X, {a}, {&} {a,6}, {a,c}}. Let /:(X,r) —»(X, o) be a function de-
fined as follows: /(a) = 6, f(b) = cand /(c) = a. Then / is an almost feebly
continuous bijection but it is not feebly continuous. For, we have RO (X, a) =
= sint (/_1({6})) = {a}, sint (/_1({a,c})) = {6,c}
and Int (/_1({a))) = 0.

The topological space consisting of two points with the discrete topology
is usually denoted by 2. Ajmal and Kohli [2] obtained some characterizations
of hyperconnected spaces by using feebly continuous functions.

Theorem 3.6. The following are equivalent for a topological space X :

(a) X is hyperconnected;

(b) every almost feebly continuous function of X into a Hausdorff space
is constant;

(c) every almost feebly continuous function f : X —2 is constant;

(d) no semi-continuous function f: X —»2 is surjective.

Proof, (a)—>(b): Suppose that there exist a Hausdorff space Y and
an almost feebly continuous function f: X —Y such that / is not constant.
Then, there exist two points x and y of X such that f(x) ¢ f(y)- Since Y is
Hausdorff, there exist open sets G and A in ¥ such that f(x) GG, f(y) GA
and GMNA =0. Put U= Int (C1(G)) and V = Int (C1(4)), then we have
OpbUGRO(Y), 0/ VGRO((Y)and UNV —0. Since / is almost feebly
continuous, sint (/-1(A)) ¢ 0 and sint (/-1(¥)) & 0. However, we have

sint (f~1(U)) Nsint {f-\V)) Cf~x{unv) - 0. It follows from Lemma
2.3 that X is not hyperconnected.

The proofs of the implications (b)—>(c) and (c)—=(d) are obvious. The
equivalence of (d) and (a) is shown in [14, Theorem 3.1].

Jankovic and Long [9] introduced a weak form of hyperconnectedness
which is called O-irreducible and showed that an almost-regular space is
hyperconnected if and only if it is ~-irreducible. We shall slightly improve
this result. For this purpose we shall recall some definitions.

Definition 3.7. A topological space (A, r) is said to be

(a) almost-regular [20] if for each F G RC (X) and each point x GX —F
there exist disjoint open sets U and ¥ of X such that x GU and F C V;

(b) strongly s-regular [8] if for each closed set A of X and each point x G
G X —A there exists an F G RC (X) such that x GF and F IMA = 0;

(c) weakly [17] (resp. Pz [23]) if every V G RO(X) (resp. V Gr) is
the union of regular closed sets of X.

It is shown in [8, Theorem 1] that a topological space X is strongly
s-regular if and only if it is P*. In Examples 3 and 4 of [8], it is shown
that almost-regularity and strong s-regularity are independent of each other
even if the space is Hausdorff. On the other hand, it is pointed out that
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every almost-regular space is weakly Py and every Pj is weakly Py but not
conversely [17, Example 3.2]. Therefore, the notion of “weakly Ps” is strictly
weaker than both almost-regularity and strong s-regularity (or Pg).

Definition 3.8. A topological space A is said to be B-irreducible [9] if
every pair of nonempty regular closed sets of X has nonempty intersection.
It is pointed out in [9] that every hyperconnected (or irreducible) space is

O-irreducible but not conversely. The following theorem is a slight improve-
ment of [9, Theorem 2].

Theorem 3.9. A weakly P% space X is hyperconnected if and only if it
is O-irreducible.

Proof. Suppose that X is not hyperconnected. There exist nonempty
open sets U and V of X such that UMV = 0. Since U and V are disjoint,
we obtain Int (CI(U)) MV =0 and Int (C1(P)) M C1(F) = 0. For a point
x G Int (CI(i7)), there exist F 6 RC(A) such that x GF C Int (CI(U)).

Therefore, we have Ffl C1(¥) = 0 and C1(¥) G RC(A). This shows that
X is not O-irreducible.

Corollary 3.10 (Jankovic and Long [9]). An almost-regular space is
irreducible if and only if it is B-irreducible.

Corollary 3.11. A strongly s-regular space is hyperconnected if and
only if it is B-irreducible.

4. Hyperconnected spaces and functions

For a function f: X -* ¥, the subset {(x,f(x)) | x GX } of the product
space A x Y is called the graph of / and is denoted by G(f). A func-
tion /: X —»Y is said to be somewhat nearly continuous [18] if, for every
nonempty open set V of ¥, /-1(Y) ¢ 0 implies Int (C1(/_1(Y))) ¢ 0. Ev-
ery feebly continuous function is obviously somewhat nearly continuous but
the converse is false as the following example shows.

Example 4.1. Let X = {afAc}, r = {0,A,{a},{6,c}} and a = {0,A,
{a}, {6}, {a, 6}} . Then the identity function /:(A ,r) —»(A, 0) is somewhat
nearly continuous but it is not feebly continuous since Int (Cl (/_1({5}))) =
= {b,c} and Int (/-1({i>})) = 0.

Theorem 4.2. If X is a hyperconnected space, f: X —Y is somewhat
nearly continuous and G(f) is closed in A x ¥, then f is constant.

P roof. Suppose that / is not constant. There exist two points x and
y of A such that f(x) ¢ f(y). Then, we have (x,f(y)) GA x Y —G{f).

Since G(f) is closed, there exist open neighborhoods U and ¥ of xand f(y),
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respectively, such that (U XV) MG(f) = 0; hence f(U) MV = 0. Therefore,
we have Un/ _1(F) = 0 and hence Un Int (C1(/_1(P))) = 0. Since / is
somewhat nearly continuous, Int (C1(/-1(F))) / 0. This contradicts that
A is hyperconnected.

Corollary 4.3 (Thompson [22]). Let X be a hyperconnected space. If
f:X —*Y is a continuous function with a closed graph, then f is constant.

In [15, Theorem 3.1] and [2, Theorem 2.7], it is shown that hypercon-
nectedness is preserved under feebly continuous surjections. This result is
improved as follows:

Theorem 4.4. If X is a hyperconnected space and f: X —»Y is an
almost feebly continuous surjection, then Y is hyperconnected.

Proof. Suppose that Y is not hyperconnected. There exist disjoint
nonempty open sets G and H of Y. Put V = Int(CI(G)) and V —
— Int (C1(A)), then we have 0 ¢ U £ RO(T), 0/ F E RO (¥) and
UnV = 0. Therefore, we obtain 0= f~1(U) n/ _1(¥Y) b sint (/-1(P)) n
nsint (f~1{V)). Since / is an almost feebly continuous surjection,

sint (/-1(t/)) / 0and sint (/-1(P)) 0. It follows from Lemma 2.3 that
X is not hyperconnected.

Corollary 4.5 (Ajmal and Kohli [2], Noiri [15]). 1fX is hyperconnected
and f: X —Y is afeebly continuous surjection, then Y is hyperconnected.

Definition 4.6. A function f: X —*Y is said to be

(a) feebly open [7] if Int (/([/)) & O for any nonempty open set U of A;

(b) almost feebly open ifsint (f(U)) / 0 for any nonempty U £ RO (A).

Every feebly open function is obviously almost feebly open but the con-

verse is false. For, in Example 3.5, / is bijective and hence / _1:(A, c) —»
—»(A, r) is almost feebly open but it is not feebly open.

Theorem 4.7. If Y is a hyperconnected space and f: X —»Y is an
almost feebly open injection, then X is hyperconnected.

Proof. Let U and V be any nonempty open sets of A. Put G —
— Int (CI(C/)) and H = Int(CI(t/)), then we have 0 dp G £ RO(A) and

0 H G RO(A). Since / is almost feebly open, sint (/(G)) ¢ 0 and
sint (/(A)) & 0. Since Y is hyperconnected, by Lemma 2.3 we have

00 Int (/(G)) MslInt(P)) C/(G)n/(tf).

Moreover, since / is injective, we obtain GTH ¢ 0 and hence UMV ¢ 0.
This shows that A is hyperconnected.

Corollary 4.8 (Ajmal and Kohli [2]). If Y is hyperconnected and
f:X —Y is afeebly open injection, then X is hyperconnected.
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A WEIGHTED L2 MARKOFF TYPE
INEQUALITY FOR CLASSICAL WEIGHTS

A. GUESSAB (Pau)

1. Introduction

Let Vn be the class of real algebraic polynomials P of degree at most
n, such that |[P(f)] = ~(f) (-1 ~ t ~ 1), where (p(t) is a non-negative
function. Turén’s problem is: how large LP'LU" can be, where L.LIN is the
supremum norm on [—4, 1]. Such problems first appeared in approximation
theory notably in the work of Dzyadyk [4] and Pierre and Rahman [10].

The most interesting cases are those where tp vanishes at + 1. In the case
of parabolic majorant (<p(t) = y/\ —t2) the answer was given by Rahman

(xR
THEOREM 1.1. Let P eV n and \P(t)\  y/l - t2(-1 ~ t~ 1). Then

ML s2B D

Equality is attained at the points t = + 1, if and only if P(t) =
= (1 —t2)Un- 2(t)i where Un-2 is the (n —2)-th Chebyshev polynomial of
the second kind.

This result can be stated in the following form: If P € Vn is such that
P(xl) = 0, then

IP' o
) PEyl-{ 1) WPMA

or in an equivalent form, if Q € Vn-2>then

=2(n- 1),

LI-I 1
(2) =2(n - 1).
Qevnl!-{0} W QW

The classical weight functions (w 6 CW) correspond to special orthogo-
nal polynomials and intervals as follows (cf [15]):
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Interval

(ab) Weight function  Symbol Name

[-M] (l('at 7a>(l +1)tf PY®  Jacobi polynomials
(0,+00) tse~* (s > 0) ) Generalized Laguerre
(—e0, 00) e-'2 tfn Hermite

Let w GCW on (a, b) and set

1/2

) Wy W0 F2(0) ot

u
where wm = Amw and

(Hermite case),
(4) At) = (generalized Laguerre case),
(Jacobi case).

Let w GCW. In this paper the extremal problem

(5) max (VA/wm) (teT® (m))" wn

is considered.

Concerning this problem many important contributions were made with
different definitions of the norm, by Agarwal and Milovanovic [2], Milne [8],
Milovanovic [9], Rahman [11], Rahman and Watt [12], Varma [13, 14], and
Zalik [16, 17].

We note that in the Jacobi case w(t) = 1- t2 our problem for m = O is
the same as (2) in L2-norm.

2. The main result

With the notation of Section 1, we state the solution of our extremal
problem and its corollaries in this section with respect to the Jacobi, gen-
eralized Laguerre, and Hermite weight functions on (-1,1), (0,+00), and
(—00,+00), respectively. Let w GCW, let A be given by (4) and B(t) the
polynomials defined by (cf [15])

- 21 (Hermite case),
(6) B(t) = <s-f1-1t (generalized Laguerre case),
B -a-(a+B+2)t (Jacobi case).
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We now formulate our main result.
Theorem 2.1. Let P &Vn be such that LJPLI® ~ 1. Then we have

@ (VA/wm) (WmP (m))’ A \/1,,,0An1seeXnm-IBn,r,
where

8) k.u=-(n-u) Q(n+il- HA"O)+ PO (= - 1),
and

@) Bh,m = K,m + B'(0)+(k-1)A"(0).

Equality is attained if and only if P is a constant multiple of the classical
polynomial Qn orthogonal with respect to the weight function w € c w .

Corollary 2.1. Let wm(t) = (1 - fo+m(l + tf4M(a,8 > - 1) and
P GVn such that ||P|lumS 1- Then we have

nrn+a+7”7+m+1)

(10) (/I -tywm{wmpW)"' wm<\ (- M\T(n +a+8+ 1)

Bn,mi

where

(n) Bhm = (n- m)(n-m +a+2+1)+a+/2+ 2k

The supremum is attained if and only if P(t) = 7P ~'*\t), where 7 is an
arbitrary real constant.

Remark 3.1. Daugavet and Rafal’son [3] and Konjagin [5] considered
extremal problems of the form

(12) (M) A A m(rAip,in)IP] (P GVn),
VW
where

(£1a)(1-Y |'n)ur. 07 r<-foo,

I"/1lU = <
esssup /(i)| (1 - t2)R, r = +00.
-i<i<i
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The case whenp =r 2.1, /r=1¥=0,and m = 1, was considered by Hille,
Szeg6, and Tamarkin [6]. The exact constant AniTn(r,p;p,i/) is known in a

few cases, for example, A,,n(00, 0;00, 0) = n2is the best constant in Markov’s
inequality [7], and A,,5(00,0; 00, 1/2) = n is the best constant in Bernstein’s
inequality [1]. Also, we have

Inf(n+4p+m+ 1)

An,m(2,p, 2,/ T m/2) (U —w)IF(n + 47 + 1)

The last case, in fact, is the result of Lemma 2.1 with the Gegenbauer weight
{a =R - 2p).

Remark 3.2. In the case a = B = 1, m = 0, we have the following
extension to L2 of the Rahman inequality (2) in L°°:

J1[1- t2P(t)] '2dt (n-\- D(n +2)1 (1-t2)P{t)2dt,
or in an equivalent form: If Q GVn+2 is such that Q(x 1) = 0, then
(13) j Q\tfdt ~ (n+ ND{n+2)J Y ~pdt

with equality if and only if Q = c(l —2)P(L]) (c GR).
Inequality (13) can be represented in the form

* HQ'I™N ~ Arkl(2, —1; 2,0) ||<3|j2_1/2.
This formula extends (12) to the case when the weight function has a non-
integrable singularity.
In the generalized Laguerre case, Theorem 2.1 reduces to:

Corollary 2.2. Letwm(t) = ts+me~r (s > - 1) on (0,+00). Then for
every P GVn such that ||P|[lun”™ 1, we have

n

y , \
(14) {VA/wm) (wmpW) < (- m

(n-m - 1 [P, .

with equality if and only if P(t) —cL#a{t).

For the normal weight function w(t) = e-f2 associated with the Hermite
polynomials, we get
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Corollary 2.3. Let wm(t) =e < on (—e0, +oc). Then for every P £
6 P,, such that ||P||LLr A 1, we have

(15) (L /wm)(wyrvnmpw ) 2'm+l» IV V(- m - 1)

with equality if and only if P(t) —cHnN(t).

3. Proof of the theorem

We prove in this section two lemmas which will be needed for the proof
of the main result.
The starting point of our investigations is the differential equation

(16) MA(Dw (D7) + Xaw(t)y = 0,

satisfied by the classical orthogonal polynomials, where the spectral param-
eter A, is given by

'2n (Hermite case),
A 1n (generalized Laguerre case),
,n(n-fa+ R+ 1) (Jacobi case),

The solution of (16) has the remarkable property that derivatives of these
solutions of any order m also satisfy an equation of this type:

(17)

dt
where
(18) t W)
and
(19) Avm =-(n - m) Q(n

Lemma 3.1. For all P GVn the

(20) AT/2p(m) wé \VAN,0AN.1 "™ An,m—2 Ildiit
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holds, where

(21) w (t)f(t)2dt.

Equality is attained if and only if P is a constant multiple of the classical
polynomial Qn orthogonal with respect to the weight function w £ CW.

Proof. Suppose that P £ Vn, and let w £ CW . Integration by parts
gives

VIpP' \2/v: J% w{t)A ()P \tfdt = - 351 P(t) (W{t)A(t)P\t))" dt.

Cauchy-Schwarz inequality yields

(22) dip' A m1 LVMAYWHADP)

Equality is achieved if and only if

(23) (w(t)A(t)P\t))" = Aw(t)P(t) (Ae R).

This has a polynomial solution if A= A, where An is defined by (16). Since
Xv” A(u=0,...,n), from the eigenvalue problem (16) and inequality (22),
we can determine the best constant in the extremal problem (20) for m = 1.
Namely,

(24) AP £ Vk ol

Then the extremal polynomial is the eigenfunction Qn(t) corresponding to
the maximal eigenvalue.

If we use the differential equation (17) instead of (16), we get the in-
equahty

Akip K » (P GVN)

with equality if and only if P(t) = cQn(t),c £ R. Finally, iterating this
inequality for k = 1,..., m, we finish the proof. O

Lemma 3.2. Let P be any real algebraic polynomial of degree n. Then
we have

(25) (V Hwm){wmP W)f iy /K Z P
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where
(26) Rn<m = A,m+ A'(0) + (x - 1)71"(0).

Equality is attained if and only if P is a constant multiple of the classical
polynomial Qn orthogonal with respect to the weight function w 6 CW.

Proof. Let Qn be the classical polynomial orthogonal with respect to
the weight function w € CW. Let U(t) — wm(t)Qn(t), where wm(t) =
= A(t)mw(t). Then a direct calculation gives that U(t) is a particular
solution of the differential equation

27) wm{A/wmU ")'+ BnmU = 0

where Rn‘m is given in (26).
Similarly to the proof of Lemma 3.1, we can see

(VA/wm) (wmp(m))12 = J[\A /w m){wmP 7 ) ,2dt

=-J wmpW ((A/w ArPAYY)Y, dt

From this, Cauchy-Schwarz inequality and from the eigenvalue problem (27),
inequality (25) follows.
We now turn to proof of our main result.

Proof of Theorem 2.1. The proof of (7) can be obtained immediately
from (20) and (25).
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GRADED RADICAL GRADED
SEMISIMPLE CLASSES

H. YAHYA (Edmonton)

1. Introduction

In [7] Stewart has given a characterization of radical semisimple classes
of associative rings. He shows that if C is a proper subclass of all associative
rings, then C is a radical semisimple class if and only if there is a strongly
hereditary finite set C(T) of finite fields such that R G C if and only if R
is isomorphic to a subdirect sum of fields in C(T) or equivalently R GC if
and only if every finitely generated subring of R is isomorphic to a finite
direct sum of fields in C(Jr). In [4] Fang and Stewart give some examples
of graded radical graded semisimple classes and mention that it remains an
open question how to characterize such classes. We answer their question in
this paper.

Let G be a multiplicative group with identity element e. A G-graded ring
R is a ring together with a direct sum decomposition R — where
Rgi 9 £ G, is an additive subgroup of R such that RgRh » Rghfor all g,h G
G G. The abelian subgroup Rgis called the homogeneous g-component of R.
It is to be noted that the e-component Reis a subring of R. A subring 5 ofa
graded ring R is said to be a homogeneous subring of Rif S = ®sgG »
We call an ideal | of R which is a homogeneous subring of R a homogeneous
ideal of R and write | <h R- By | <hl R we mean that | is a homogeneous
left ideal of R. If / is a homogeneous ideal of R, then the quotient ring R/I
has a natural G-gradation given by R/I = ®36g(*+ RQ)/lI- We denote

by h(R) the set of all homogeneous elements of R, so h(R) = |JgEQRg-

Throughout the paper we have considered graded rings, graded by a finite
group G of order n. It can be seen easily that some of our results hold even
if G is not finite. By a graded homomorphism f of degree (h, k) between two
graded rings R and S we mean a ring homomorphism f: R —S such that
f{Rg) Q Shgk for all g GG and h,k 6 G. A graded isomorphism is denoted
by =, and a complete direct sum (direct product) by £]*. The symbols Z,
Z+, |S| respectively denote the set of integers, the set of positive integers,
and the cardinality of the set 5. For most of the undefined terms in graded
rings we refer to [5] and for those in radical theory for graded rings we refer
to [4].
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By DK, where x £ R, we denote the subring of a graded ring R generated
by x. In Section 2 we study a class V9 of graded rings R, called X”-rings, for

which the subring D = Px]2, where > is any homogeneous element of R. We
show that R is a X*-ring if and only if for all X £ h(R), there exists n(x) > 1
such that x = xn(xh A graded ring R is said to be a graded division ring
if every nonzero homogeneous element of R is invertible. It is clear that a
graded ring R with identity is a graded division ring if and only if it has no
nontrivial homogeneous left (right) ideals. We prove that if R is a 2%-ring,
then R is a graded subdirect sum of graded division rings in V9. Finally we
show that V9 is a graded radical class.

In Section 3 we show that if a graded radical graded semisimple class K
does not consist of all the graded rings, then K 2~V 9. A class /C of graded
rings is called graded strongly hereditary if every homogeneous subring of
a ring in ICis also in 1C In Theorem 3.10 we obtain characterizations of
a graded radical graded semisimple class ICin terms of a graded strongly
hereditary finite set of finite graded division rings.

We also consider in this section the class /Cm of graded rings whose
homogeneous elements satisfy the relation xm —x, where m is a positive
integer N 2, and show that tOm is a graded radical graded semisimple class.

In Section 4 we give graded versions of some results of Andrunakievic [2]
and get another characterization of a graded radical graded semisimple class
in terms of a graded special radical and its dual graded radical.

2. X™-rings

We shall say that a G-graded ring R is a V9-ring if for each £ h(R) we

have D = PKJ2. Clearly a homogeneous subring of a Xs-ring is a X5-ring and
a graded homomorphic image of a Xs-ring is a Xfl-ring. If ™9 denotes the
class of all G-graded X3-rings, then the class V = {Re\R £ V9} is a radical
class and every ring in V is commutative (see [7]).

Lemma 2.1. LetR £ V9 andlet0 ¢ a £ h(R). Then a is not nilpotent,
[a is finite and there are positive integers kK and m > 1 depending on a such
that ka = 0 and am —a.

P roof. First, we will show that if 0 ®a £ h(R), then ais not nilpotent.
Suppose as = 0 for some integer s > 1. Then [a] = [a]2= ... = [a]ls= 0
and we get a = 0, which is a contradiction. Since [a] = [a]2, a —
kt £ Z. Hence la = ~[_2k{al~l is the identity of [a]. Moreover, [la] =

= Z\a £ Z, for Z does not satisfy i = D2 for all x £ Z. Therefore,
Z\a= Z/kZ and kla= 0. Hence ka = klaa —0. Thus R is a torsion ring,
and so R = 0 pRp, where Rp denotes the p-component of R. Let O /i £

€ h(Rp). Then px = 0, for if the additive order of xis pTQ m > 1, then
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px ¢ 0 but (px)m = pmxm = 0, which is a contradiction as R has no nonzero
homogeneous nilpotent elements. Since [X] = [x]2, we have x =

for some index r with 0 A < p, and A/ 0. Since (Ar,p) = 1, there exist
integers u, v such that 1= uXr+ vp. Hence xr = uXrxT+ vpxT = u\rxr =
= ux —1A2X2 —... —uAr_xXr-1 and for s ~ r, xs = /ir_ixr_1 + e + P\x,
O™ pi <p, 1™ i” r—L Thus [X] is finite, so the powers x, x2,x3, ... are not
distinct. Suppose xs —x* and | —s—f > 0is minimal. Then xt(lg—xI) = 0.
Let \x —xI —b. Then b £ h(R) and x*b = 0. Ift > 1, then (x<16x<1)2=
= 0. But xi-16xt_1 £ h(R) so xi-16xt-1 = 0. Then (xt-16)2 = 0, and hence
xi-16 = 0. Continuing in this way, we get x6= 0. Ift = 1, then xb = 0. In
any case xo —0, whence x = xi+l. Let 0/ag h(R). Then a —x1+ ... +
+ X, Xi £ RPI, 1~ i1 k. Hence [a] g 0*L1[x,] is finite and am —a for
some m > 1 as above.

Corollary 2.2. A graded ring R is a V3-ring if and only if for each
a £ h(R), there exists an integer n(a) ® 2 such that an(*) = a.

It is to be noted that in a D3-ring if a = a”(a), then we can take n(a) " 3,
for if a = a2, then also a —as3.

Lemma 2.3. LetR 6 V9, a6 h(R), and I R. Then aR = Ra, | =
= Rle=1eR and I R. In particular, R = RRe —ReR.

Proof. If a = 0, then clearly aR —Ra. Suppose a ¢ 0. Then there
exists an integer n(a) » 3 such that an(@ —a. Now Ra = Ran =
= g Ran(al~1= (Ram ~ 2)a C Ra. Hence Ra = RaM*)"1. Sim-
ilarly aR = an® ~ IR. It can be seen easily that an(a)-1 is a nonzero homo-
geneous idempotent. Let x = and y € h(R). Then (xy - xyx)2= 0.
By Lemma 2.1, R has no nonzero nilpotent homogeneous elements. Hence
Xy —xyx. Similarly yx = xyx, so x = a"(a)-1 is central. Hence Ra —
= 0fI"™)-1= aria)~xR = aR. Since | <, R, Rleg RI g I. Let x £ h(l).
Then there exists an integer n(x) ~ 2 such that xn(x) = x. Hence x £ Rle,
for x = xx”*)“1and x"*)-1£ Rell/ = le. Thus | = Rle. Since aR = Ra
for all a £ h{R), it follows that Rle = leR and I R.

Lemma 2.4. A Vsd-ring R is a graded division ring of characteristic p if
and only if Re is afield of characteristic p, where p is a prime.

Proof. Let R be a graded division ring of characteristic p. Then Re
is a field of characteristic p, for 1 £ Re. Conversely, let Re be a field of
characteristic p. Let 0 /7 <hl Re Then | = Rle by Lemma 2.3 and 0 ¢
® le <h Re. Since Reis a field, le = Re. Hence 7 = RRe=R, for R is
a 75-ring. Hence R has no proper homogeneous left (right) ideals. Let 1
denote the identity element of Re and let x £ h(R). Then x = xnNe for

some positive integer n(x) > 1. Since x"(x)-1 £ Re, Ix = (Ixn()_1)x =
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= le = Similarly xI = so 1is the identity of R. Hence R is a
graded division ring and the characteristic of R is p.

Theorem 2.5. LetR be afinitely generated V9-ring. Then Re isfinitely
generated.

P roof. Since R is finitely generated, R is generated also by a finite set X
of homogeneous elements. Let ()/1£ h(R). If xis a product of elements in
X', let fix) denote the minimum number of homogeneous generators (which
need not be distinct) of which > is a product. We call /(x) the length of
X, and prove the theorem by induction on the lengths of such homogeneous
elements. Put /(0) = 0. We note that every homogeneous element of R is a
finite sum of homogeneous elements which have lengths.

Let S be the finite set of homogeneous elements of R of length 5 n, where
n —|G|, and let T be the subset of S consisting of elements in Re. Let U be
the finite set of elements n of the form n = abamG)~2"wherea £ S,b £ T and
m(a) is a positive integer A 3 such that amG) —a. Clearly, if a 6 then
am(“)—2 £ Rg~1 and aTa)-1 £ Re. Note that T QU, for if we take a = b,
then u = b. We claim that Reis generated by U. Since the assertion is true
for elements of length % n in Re, we apply induction and suppose it is true
for all elements x in Re such that fix) » m, m ~ n. Let y £ Re with fiy) =
=m+ 1 and let y = XORReeexm+i, X{ £ X MRgi, 1™ i!sm + 1. Consider
elements ab gigz, mmoio2 ' n+i in G. They are not distinct, for |G| = n,
S0 ee-gr = sis2 “"9k f°rsomer, ksuchthat I"r<&”*n+1~m +1I.
Hence <r+iee-gk = e. Iffc = m+ | = n+ |, then we can write y = M1¥2,
where y\ —x\x<i emxr and y2 —xa+lee-xm+i £ Re. Hence t/i £ Re. Also
Lisfiyi)* n, 17 /22)* nsoy\, 2 £ U. If K p m + 1, we can write y
- 212223 where U1 = xxx2 mmmxr,y 2 = Xr+| mw-xk, y3 = xk+l m Also
I~ IVI) A on, 17 fiy2) A n, and 22 € Ret 2123 £ Re, fiym) 4 m- Since R
is a X5-ring, there is a positive integer m(t/i) ~ 3 such that y * y* = y\. Also
Y= 21223 = Y? X223 = 02/22/T (Y1) _12/3, for £ [e, y2 £ Re and

Re is commutative. Thus y = 2122/ ~ 22123- Now 222 ~'* 2 £ U and
since /(2/12/3) = m, 2123 is a finite product of u’s by the inductive hypothesis.
Thus vy is a finite product of u’s. The theorem follows.

Remark 2.6. We note that, in general, if R is a finitely generated graded
ring, which is not a X”-ring, then Re may not be finitely generated. We
illustrate it by an example. Let H be a multiplicative free group on two
generators and let K be its commutator subgroup. Then K is of infinite rank
(see [6], Theorem 11.11) and G = H/K is free abelian with two generators.
Let R be the group ring Z[H\. Then R = ¢ /*# Rh = ¢ heH %h. Define

Rh = ¢*.e/l-Rkh, where h = Kh £ H/K. Then R is H/K-graded (see [9],
page 1) and Rj = Z[K]. Moreover, R is a finitely generated A/A'-graded
ring but its e-component R” is not a finitely generated ring.
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In the sequel finite graded division rings play a dominant role. Hence
we would like to describe some of their properties here. A finite graded
division ring need not be commutative. For example, the group ring Z3[S3],
where Z; is a field of two elements and S3 denotes the symmetric group
on three symbols, is a graded division ring (graded on S3), but it is not
commutative. However, if D is a finite graded division ring, then D, is a
finite field of order p*, where p is a prime and k a positive integer. For G
finite, a G-graded division ring is finite if and only if D, is finite, for any two
nonzero homogeneous components of D are isomorphic as abelian groups.
The support of D = {g € G | Dy # 0} € G is a subgroup of G. If two graded
division rings Dy, D, are graded isomorphic, then Dy, = Dy, and Hy = Hy,
where Hy, H, are supports of Dy, D, respectively. However, the converse
may not be true. For instance, consider the graded division rings Dy, D,
on the same support H = {e,h}, where h? = e, such that D; = D;, & D;,,
i = 1,2, where D;, = {0,1,z,2%} and D;, = {0,y,zy,2%y}. For D; we have
the relations: 23 =1,y =1, 2y =yz, 1+ =22 14+ 22 =2,2+22 =1,
21 = 0, and for D, we have the same relations except that yz = z?y. Then
Dy % D,, although they have the same support and the same e-component.
However, for G finite, there are only a finite number of nonisomorphic finite
graded division rings with isomorphic e-components. We note that a graded
division ring has no nonzero homogeneous zero divisors, so a homogeneous
subring of a finite graded division ring is again a finite graded division ring.

THEOREM 2.7. A D9-ring is a graded subdirect sum of graded division
rings of prime characteristic belonging to DY.

PRroOF. Let R € D9. Then R. € D. Hence, by [7], R, is a subdirect
sum of a family {Fy: A € A} of algebraic fields F) of characteristic py. Hence
there exists a family {Iy: A € A} of ideals of R, such that F\ & R./I, and
Nxea In = 0. By Lemma 2.3, RI) <) R, and Maea BRI = R( ﬂ/\eAI,\) =
= 0, for ( MNjea RI\), = e In- Hence R is a graded subdirect sum of
graded rings R/RI\, A € A. Since (R/RI)), = R./I\ = F\, and R/RI) €
€ D9, R/RI, is a graded division ring of characteristic py by Lemma 2.4.
The theorem follows.

THEOREM 2.8. A D9-ring R is a finite direct sum of finite graded divi-
sion rings if and only if R, is a finite direct sum of finite fields.

Proo¥r. Let R be a finite direct sum of finite graded division rings D;,
where 1 £ ¢ < k. Then R, is a finite direct sum of finite fields D;,, 1 £ ¢ <
< k. Conversely, let R, be a finite direct sum of finite fields F;, 1 < i < k.
Since R € D9, by Lemma 2.3, R = RR. = R( @, F}) = Y5, RF.. By
Lemma 2.4, RF;, 1 < i £ k, is a graded division ring and so is finite as F; is
finite. It remains to shows that Zf;l RF; = Eszl RF;. Now, by Lemma 2.3,
RF; 43 R, Z#i RF; <4 R,s0 I = RF;n ( E#i RF;) is a homogeneous
ideal of R, and I, = F; N 2]‘# F; =0. By Lemma 2.3, I = RI. = 0. Hence
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the sum of RFi is direct and R = RRe = ®f=1 RF{. This completes the
proof of the theorem.

Corollary 2.9. A finitely generated V9-ring is a finite direct sum of
finite graded division rings, and so is finite.

Proof. By Theorem 2.5, Reis a finitely generated £>-ring. Hence, by [7],
Reis a finite direct sum of finite fields. The result follows from Theorem 2.8.

Lemma 2.10. LetR be agraded ring without nonzero homogeneous nilpo-
tent elements. If Re is a V-ring, then R is a V9-ring.

Proof. Let Rebe a D-ringandleto x £ Rg,g ¢e. Then gn —e and
O xn £ Re, for R has no nonzero homogeneous nilpotent elements. Since
Re is a Z>-ring, there exists an integer m > 1 such that (xn)m = xn. Then
xn~I (xnm~n+l —x) = 0. Let b= xnm~n+l —x. Then b £ h(R) and xn~1b =
=0 Ifn—2, weget xb=0. Ifn>2 we have (xn~2bxn~2)2 = 0 and since
R has no nonzero homogeneous nilpotent elements, xn~2bxn~2 = 0. Thus
(xn~2b)2 = 0 and so xn~2b = 0. Continuing in this way, we get xo —0. In

any case X(xnm~n+| - X) = 0. Consequently, (xnm~n+1 - xf = 0. Hence
xnm-n+\ _ x”*provjng that R £ V9.

Corollary 2.11. Let R be a graded ring without nonzero homogeneous
nilpotent elements. If am —a for all a £ Re, then x"(m- )+1 —x for all
x £ h(R).

Corollary 2.12. LetR be afinite graded division ring such that \Re\ =
= m. Then gn(m-1)+1= x for all x £ h(R).

Lemma 2.13. Let T = {Dp.1” i Uk} be afinite set of finite graded
division rings. Then we have the following results.
(i) There exists an integer N such that xN = x for all x £ h{Df), 12
N UKk
(ii) Let R be a graded subdirect sum of rings from F. Then xN = x
for all x £ h(R). The same holds for a homogeneous subring and a graded
homomorphic image of R.
(iif) Let D be a graded division ring which is a graded homomorphic image
of a graded subdirect sum R of rings from T . Then D is finite.
(iv) A graded division ring D is finite if xN —x for all x £ h{D), where
N > 1 is afixed integer.

Proof, (i) By Corollary 2.12, there exist integers n, > 1such that xr>=
=x forall x £h(DY, 1™ i”" k. Let N —n?=i(nt—1)+ 1- Then xN = x
for all x £ h(Di), 1~ i " k.

(if) Let x = (Xj) £ h(R). Then each xj is a homogeneous element of some
Di,so x = xj. Hence xN —(x = (Xj) = x.

(iif) Let pi be the characteristic of Di. Let x £ h(R). Then x = (Xj),
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where Xj is a homogeneous element of some D,. Let g = P\'R2 ee-pk- Then
gx = 0. Hence gx —O0 for all x £ D, so D is of finite characteristic. Also,
since XN —x for all x E h(R), we have xN = x for all x E h(D). Hence D
is a D5-ring, and De is a P-ring. Hence De is a field of finite characteristic
such that each element of De is algebraic over its prime subfield, satisfying
XN = x, so De is finite. Hence D is finite.

(iv) D is a Paring, so it is of prime characteristic by Lemma 2.4. Hence
D is finite as in (iii).

Lemma 2.14. A graded ring R is a V9-ring if and only if every finitely

generated homogeneous subring of R is a finite direct sum of finite graded
division rings.

Proof. Let S be a finitely generated homogeneous subring of a Tu-
ring R. Then S is also a P fl-ring, so by Corollary 2.9, S is a finite direct
sum of finite graded division rings. Conversely, if every finitely generated
homogeneous subring of R is a finite direct sum of finite graded division
rings, then so is [a], where 0 @ x £ h(R). Hence, by Lemma 2.13(ii), there
exists an integer n(x) A 2 such that xnNe = x. Thus R E V9.

We recall that the class P = {Re | R E V9} is a radical class. We now
show that, in fact, the class V9 is a graded radical class.

Theorem 2.15. The class V9 forms a graded strongly hereditary graded
radical class.

Proof. Clearly, V9 is closed under graded homomorphisms. Let I\ £
Qh N eee= |\ = .. JIE JI, be an ascending chain of homogeneous V 9-
ideals in a graded ring R. Then | = [JaéAl\ is also a homogeneous P 5-ideal.

It remains to verify the graded extension property. Let R be a graded ring
and let J <h R such that both J and R/J are in V9.Let 0 ¢ x E Rg.
Since R/J EV9, x + J = (x + J)mfor some positive integer m ~ 1. Hence
X-xmEJ. Ifgdgm, then x E J3, and so [a] = [xflIf g - gm, then
X —xm E Jg, so [x - xm] — [x — xm]2. Hence x —xm =Yli=2ni(x ~ xTnY
for some positive integer k 2, W E Z, so again [z] = [x]2. Hence R is a
Paring. Since a homogeneous subring of a Pa ring is a P-?-ring, the class
V9 is graded strongly hereditary.

3. Graded radical graded semisimple classes

A graded radical a is called graded strict if every homogeneous o-subring
of a graded ring R is contained in a(R).

THEOREM 3.1. Ifa class K of graded rings is a graded semisimple class,
closed under graded homomorphisms, then K is also a graded radical class
and XC is graded strongly hereditary.
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Proof. Leth Al12A m AI\ A . . A6 JI, be an ascending chain of
homogeneous ideals of a graded ring R such that each I\ £ K. We shall show
that | = UabAA £ Let J be the subset of the complete direct sum I
defined by

J = {{xi,x2,...,xKk,xk+i,...):xi £ X{=ait, i fc, some tGZ+}.

Then J is a graded subdirect sum of {I\} so J G X. Define B:J —»l by
setting B(x) = Xk £ h A 1, where x = (x\,x2,..., %* XKk,...). Then 0 is a
graded epimorphism. Hence | £ 1C Therefore ICis a graded radical class.
Let 5 be a homogeneous subring of R G1C Let Ri = R, i G Z+,
and consider - Let D5 = {(r,x,...):a G5}. Then Ds is a

homogeneous subring of J2iez+ Ri an(®  —S. Since ¢ ,er+ Ri is a graded
subdirect sum of {iZj, so is ® i6Z+ Ri + Dsm Hence ® i62+ Ri + Ds G 1C
and S = Ds — (@ ieZ+Ri + Ds) / ¢ ieZ+ Ri G Therefore /C is graded
strongly hereditary.

Corollary 3.2. A graded, semisimple class is a graded radical graded
semisimple class if and only if it is graded homomorphically closed, and then
it is graded strongly hereditary.

As in the ungraded case (see [8]) one can show that

Proposition 3.3. A graded radical is graded strict if and only if its
graded semisimple class is graded strongly hereditary.

Corollary 3.4. Let IC be a graded radical graded semisimple class.
Then its upper graded radical is graded strict.

Proof. By Corollary 3.2 and Proposition 3.3 the proof follows.

Let {Xg:g GG} be a family of sets. We call X = X g a G-graded
set. Let X be a G-graded set such that the X5’ are mutually disjoint. Let
R —Z[X] be the free ring generated by X. An element of R is a finite sum
of elements of the form nxgixg? mmkgr, where n GZ and x3i G X3l. We say
that the element nxgixg2 «mkgr is of degree Kk = g\g2 -gr £ G. Also a finite
sum of elements of degree K is defined to be of degree k. Then RK, the set of
all elements of R of degree K, is an additive subgroup of R and R = ® keG Rk
with RkRk' A Rkk'- Thus R becomes a graded ring over G. We say that R
is a graded free ring with the set X as its set of generators. Any graded
ring is a graded homomorphic image of a graded free ring. By a theorem
of Amitsur (see 1, Corollary 3) the free ring Z[X] is a subdirect sum of full
matrix rings of finite order over Z. Let Mn(R) denote the ring of nx n
matrices over a ring R. If R is a graded ring, then Mn(R) is a graded ring
with gradation given by Mn(R) = ¢ 36C Mn(R)g where Mn(R)g = Mn(Rg).
Then the group ring Mn(Z)[G]is graded isomorphic to Mn(Z[G]). We thus
get the following graded version of Amitsur’s theorem.
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Theorem 3.5. A graded free ring R = Z[X] is graded isomorphic to a
homogeneous subring of a complete direct sum of full matrix rings of finite
order over Z[G],

Proof. Let R = ™ k*pRk be a graded free ring and i f £ Then

x = YlkeGxk uniquely, where xk £ Rkm By Amitsur’s theorem, R is a
subdirect sum of a family of rings {R\: AE A), where R\ = Mn(Z) for
some n E Z+ depending on A Hence we can write xk = (r\), where r\ 6

E R\. We define a mapping B: R —»Xnpn-"a[C] by setting 0(xk) — (r\k)
and 0(x) = YlkeG”(xk)- Then B is a graded monomorphism. But R\[G] =
= Mn(Z2)[G\ = Mn(Z[G]), whence the theorem follows.

Theorem 3.6. Let 1C be a graded radical graded semisimple class. 1f 1C
contains a graded ring R in which there is an x E h(R) such that P4 ¢ [X]2,
then 1C contains all the graded nilpotent rings.

Proof. By Theorem 3.1, p§ £ 1C Hence also 0 o S —DK]/PK]2 £ 1C Let
Z° be the zero ring on Z, considered trivially graded. Then S is a graded
homomorphic image of Z° and also that of any nonzero homogeneous ideal
of Z°. It follows that Z° E K for S E 1C Hence /C contains all the graded
nilpotent rings (see [4]).

Corollary 3.7. If IC contains a nonzero graded nilpotent ring, then it
contains all the graded nilpotent rings.

Proof. Let R EICsuch that Rk =0, Kk 2, but 5 = Rk~l o 0. Then

SEIXand S2=0. Let O~iG h(S). Then 0= P2 ¢ PK, so the result
follows from Theorem 3.6.

We now give a graded version of a theorem of Armendariz (see [3],
Theorem 4.4).

Theorem 3.8. Let IC be a graded radical graded semisimple class. If IC
contains a nilpotent graded ring, then IC consists of all the graded rings.

Proof. Let K contain a graded nilpotent ring. Then it contains all the
graded nilpotent rings by Corollary 3.7. Let us consider Mn[Z[G}). Now the

graded ring (2)[G]/(2k)[G], k 1, is nilpotent, so also is Mn((2)[G]/(2k)[G])
and therefore it belongs to 1C But
Mn{(2)[G1/(2K[GY) i Mn((2)[G])/Mn{(2k)[G}),

so the right hand side belongs to A. Now
LAV L kﬂeﬁ(? E]] = Mn(o) = [
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Hence Mn[(2)[G}) is a graded subdirect sum of graded rings in K, and so
is itself in 1C Let p~. 3 be a prime. Then (2)/(2p) = (2)/(2) M) = ((2) +
+ (P))/0) = Z/(p). Hence

Mn{Z[G])/Mn((MIGC}H) “ Mn{Z[G)/(pP)[G) SM n(Z/(p)[C]) “
= Mn{(2)/(2p)[G)) “ Mn((2)[C]/(2p)[C]) “
—-Wn((2)[G])/Afn((2p)[G]) GI/C.

But np™n((p)[G]) = Mn(n p(p)[G]) = Mn(0) = 0. Hence Mn(Z[G}),
being a graded subdirect sum of graded rings in 1C is also in 1C Since
G is finite, Mn(Z[G]) is a graded subdirect sum of rings Mn(Z[G]) and
so it belongs to 1C Hence by Theorem 3.1, all its homogeneous subrings
are in 1C By Theorem 3.5, every graded free ring belongs to 1C But every
graded ring is a graded homomorphic image of a graded free ring. Hence
every graded ring is in 1C

Theorem 3.9. Let K be a graded strongly hereditary finite set of finite
graded division rings. Then a graded ring R is graded isomorphic to a
graded subdirect sum of graded division rings in ICif and only if every finitely
generated homogeneous subring of R is afinite direct sum of graded division
rings in 1C

Proof. By Lemma 2.13(i), there exists an integer N such that xN = x
for all x Gh(D{) for all 4, £ 1C Let R be graded isomorphic to a graded
subdirect sum of graded division rings D\ G 1C Then there exists a family
{I\: AG A} of maximal homogeneous ideals of R such that MNnen L\ = 0 and
D\ = R/I\. Let S be a finitely generated homogeneous subring of R. By
Lemma 2.13(ii), 5 is a X5-ring, so by Corollary 2.9, S = ® f-xD[ where DI,
1~ 07K, is agraded division ring. Consider D\ as a homogeneous subring
of R. Since Mnen”™ = 0, is n°f contained in all I\, so for some p G/,
D[ 41. Hence IRTID[ ¢ D[, so IRTID[ = 0. Hence D\ = (D\ + IR)/IR~
N R/IB = DR, so D[ G 1C for /C is graded strongly hereditary. Hence S is
graded isomorphic to a finite direct sum of graded division rings in 1C

Conversely, let every finitely generated homogeneous subring of R be
graded isomorphic to a finite direct sum of graded division rings in K. Then
for every x Gh(R), [X] is a finitely generated homogeneous subring of R, so
by Lemma 2.13(ii), there exists an integer N > 1 such that xN —x for all
x Gh(R). Hence R EV9 and by Theorem 2.7, R is a graded subdirect sum
of graded division rings Da. Thus there exist homogeneous ideals la such
that p|/a = 0 and Da = R/lamEach Da satisfies the relation xN = x for all
x Gh(Da). Hence by Lemma 2.13(iv), Da is finite. Therefore Da is a graded
homomorphic image of a finitely generated homogeneous subring Sa of R.
By assumption, Sa = ¢ £=1 Dk, Dk GIC, and so Da is graded isomorphic
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to one of the graded division rings in {D 1” k ™ t}. Hence R is a graded
subdirect sum of graded division rings Da, Da £ 1C

We are now able to answer the question of Fang and Stewart concerning
graded radical graded semisimple classes mentioned in the introduction in
the following theorem.

Theorem 3.10. Let 1C be a proper subclass of all G-graded rings. Then
the following are equivalent.

(i) fC is a graded radical graded semisimple class.

(i) There is a graded strongly hereditary finite set T of finite graded
division rings such that a graded ring R £ I1C if and only if R is graded
isomorphic to a graded subdirect sum of graded division rings in T .

(iii) There is a graded strongly hereditary finite set T of finite graded
division rings such that a graded ring R £ IC if and only if every finitely
generated homogeneous subring of R is graded isomorphic to a finite direct
sum of graded division rings in T .

Proof, (ii) and (iii) are equivalent by Theorem 3.9.

(i) implies (ii). Let IChe a graded radical graded semisimple class. Then
ICe —{Re IR £ K} is a proper radical semisimple class. By Theorems 3.6
and 3.8, K QV9. Hence each R £ ICis a graded subdirect sum of graded
division rings in 1C (see Theorem 2.7). Let {Dp.i £ I} be the class of all
graded division rings in 1C Then {4 c:r £ 1} is the class of all fields in ICe.
Since Ke is a radical semisimple class, {f, e} is a strongly hereditary finite
set of finite fields. Since G is finite, there are only a finite number of graded
division rings in {Di} and they are all finite. Thus {Dt} is a graded strongly
hereditary finite set of finite graded division rings, for 1ICis a graded strongly
hereditary class of rings. Thus if R £ /C, then R is a graded subdirect sum
of rings in {Di}. Conversely, any graded ring graded isomorphic to a graded
subdirect sum of rings in {Di} is in /C, for 1Cis a graded semisimple class.
Thus K satisfies (ii).

(if) implies (i). Assume that ICsatisfies (ii). It can be easily shown that
T is a graded special class, so K is a graded semisimple class. We will show
that K is graded homomorphically closed. Let R £ ICand let R' be a graded
homomorphic image of R. Since R £ A, R is a graded subdirect sum of
graded division rings in T . By Lemma 2.13(ii), there exists an integer N > 1
such that xN = x for all x £ h(R). Now R1lis a graded homomorphic image
of R, so it satisfies the same relation. Hence R1£ V3. By Theorem 2.7, R’
is a graded subdirect sum of graded division rings, say {D'm}. Each Dm is
a graded homomorphic image of R', so also of R. By Lemma 2.13(iii), D'm
is finite. Hence D'm is a graded homomorphic image of a finitely generated
homogeneous subring S of R. By Theorem 3.9, S is a finite direct sum of
graded division rings in D, say Dk, 1™ kK i m. Hence Dm — Bk for some Kk,
and so Dm £ T . Therefore, it follows that, R1£ K. By Theorem 3.1, [Cis a
graded radical graded semisimple class.
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We now introduce an important class of graded rings. Let IOm be the
class of all graded rings R for which xm —x, where m is a fixed positive
integer > 1 and x is any homogeneous element of R. We have then the
foDowing theorem.

Theorem 3.11. Km is a graded radical graded semisimple class.

Proof. Clearly, IOm is closed under graded homomorphisms and graded
subdirect sums. Let R £ 1On. Then R G V9, so by Theorem 2.7, R is a
graded subdirect sum of graded division rings in fCm. The class T of all
graded division rings in Km is a graded special class. Hence the class K,' of
all graded subdirect sums of rings from T is a graded semisimple class. Thus
R GIOnif and only if R G1CL Hence JOn = 1C, and Km is a graded radical
graded semisimple class.

Corollary 3.12. All the graded division rings in fCm are finite and
their number is also finite.

Proof. By Theorem 3.10 the proof follows.

4. Dual graded radical

We give here graded versions of some results of Andrunakievic [2]. The
proofs of these results, being straightforward adaptations of those given by
him, are omitted.

We call a graded ring R graded subdirectly irreducible if the graded heart
of R (i.e, the intersection of all nonzero homogeneous ideals of R) is not
zero. We call a graded ring R graded strongly a-semisimple if every graded
homomorphic image of R is a-semisimple, where a is a graded radical. A
graded radical a' is called graded complementary to a if alis the largest
graded radical such that a(R) Ma‘'(R) — 0 for all graded rings R. If a
is graded hereditary, then there always exists a graded radical a' graded
complementary to a, where a' is the upper graded radical determined by the
class of all graded subdirectly irreducible rings with a-radical graded hearts
and the a'-radical rings are just the graded strongly a-semisimple rings.

Two graded radicals a and 7 will be called mutually graded complemen-
tary if 7 is graded complementary to a and a is graded complementary to
7. If a and 7 are mutually graded complementary, then a = 7', 7 = a', and
thus a =(a')’=a" and 7 = (7'/ = 7". A graded radical a will be called a
dual graded radical if there exist a' and a" such that a = a", that is, ifa and
a' are mutually graded complementary. We then say that a, alare duals of
each other or they form a dual pair. We then have the following theorem.

Theorem 4.1. If a is a graded supernilpotent radical, then there exist
graded radicals a' and a" such that a' is graded complementary to a, a" is
graded complementary to al and a' and a" form a dual pair. Moreover,
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a = a" if and only if a is the graded special radical determined by the class
of graded subdirectly irreducible rings with a-semisimple graded hearts. The
a'-radical rings are precisely the graded strongly a-semisimple rings.

We therefore get the following characterization of a graded radical graded
semisimple class 1C

Theorem 4.2. A class K of graded rings is a graded radical graded
semisimple class if and only if K is the graded semisimple class of a graded
special radical a and the graded radical class of a', the dual graded radical of
a.
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A MONTGOMERY-HOOLEY TYPE
THEOREM FOR PRIME fc-TUPLETS

K. KAWADA (Tsukuba)

8 1. Introduction and notation

Let ctj, bj (j = 0, —1) be 2k integers. If all the numbers ajn + bj
(j =0,..., k—1) are primes, then we call (aOn + bo, ..., ctk-\n + i)a
prime fc-tuplet. When we choose ao = ai = 1, &= 0 and b\ = 2, the prime
2-tuplet is the “prime twins”.

As for the distribution of primes in arithmetic progressions, Barban [1],
in 1966, considered the sum

s

e=1 ( ninx "Tyu/;
(a,9) 1 n=a (modg)

£0M) =E

where A and ¢pdenote the von Mangoldt function and Euler’s totient function,
respectively. Gallagher [4] showed that, for any A > 0,

(1.1) Eo(x,Q) <x2(\ogx)~A provided that Q U x(\ogx)~A-~I,

which is an improvement of Barban [1] and Davenport-Halberstam [3]. These
results should be compared with the well-known Bombieri-Vinogradov the-
orem which states that, for any A > 0, there exists B > 0 such that

X

E max E n(n < a(logx) A

08 Oy M«
n=a (mod Q)

Further, Montgomery [8] obtained an asymptotic formula for Eo(x,Q), and
Hooley [5] sharpened Montgomery’s formula when Q < x.

In our previous paper [6] we treated a Bombieri-Vinogradov type theorem
for prime fc-tuplets. In this paper we generalize the function Eo(x,Q) for
prime fc-tuplets, and obtain a result similar to the Montgomery-Hooley’s
asymptotic formula.
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178 K KAWADA

In order to state our result, here we repeat the notation of [6]. For an
integer K * 2, we take K non-zero integers ao, a\,..., ak~\ and take an integer
b0 with (do, ho) = 1- Let bj (1 ~ j ~ k —1) be arbitrary integers and put

b = (ho,..., bk~i).

To count the number of n in an arithmetic progression for which all ajn + bj
(0 S j =k—1)are primes and * x, we introduce the function

K-i
®(a;b,a,q)= A(ajn + hy),
neAf(b) j=o
n=a (mod?)
where
N(b) = N(x]b)={t; 1" ajt+bj~ xforall 0™ j ~ k—1}.

On the other hand, for any prime p (in the sequel p always denotes a prime
number), let p(p) = p(p, b) be the number of solutions of the congruence

A—1
J(eiji + bj) = 0 (mod p),
j=o0

and, making use of this number, put

a(b\q) if p(p) < p for all p and
ahj / <ih forall 17 i<j A Kk—1,
.0 otherwise

and

cT(b:a,9) = d(b;q) if (aja + bj,q) —21forall 0™ j » k—1,
Y 0 otherwise.

By a heuristic evidence (see Bateman-Horn [2]), when a(h;a,q) > O, it
is expected that

(1.2) @ (r;b,a,a) ~ <r(b; a, 9)[ 7V(b)],
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A MONTGOMERY-HOOLEY TYPE THEOREM FOR PRIME jfe-TUPLETS 179

where 17V(b)| denotes the length of the interval N (b). Now we consider the
average of dispersion of (1.2). We define the set

Z = Z(x) = {b; [IV(b)| ¢ O},
and evaluate the function

A
(1.3) e x.0) = v~ E E |r@zb.a,2)-<r(b;a,g)liv(b)|12
0<Q o1 bEZ

which is a generalization of Eo(x,Q). The purpose of this paper is to
obtain a precise asymptotic formula for E(x,Q), according to the methods
of Montgomery [8] and Hooley [5]. We need more definitions. Put

a*- max lal, M=, pn (' - K » dui
0 i=°

and denote by g(p) the number of a,’s such that p\aj.

Theorem 1. Let A > 0 and B > 1 be arbitrary constants. Then there
exist k + 3 numbers op, aj, Ro,... ,/2* depending only on ao,..., a*-i which
satisfy the following relations.

(I) For Q < w/a», we have

K '

(1.4) E(x,Q) = ¢—7T*kQ((bg*) - k- xkQ E M _log oat ¥
n

+0 (xk *+2Qw + xk+1(log®) Aj.

%)

(1) Forx/a*n Qi xB, we have
(15 EXQ)= —"™ xkQ((logx)- 1)k- aOzfetL~"log™j +

+aixkl + 0 {xkQ(\ogx)~Ag .

Moreover, /i(p) being (I - j) J(I -j) (jEf) ~ +J3- 7 J, a0
and Bk are given by

(1.6) 00 = q{m). «nlli(p),
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180 K. KAWADA

and

(1.7) Red) ™

Remark. From (1.4), we have a non-trivial bound for E(x,Q), namely
E (x,Q) <C £fctl(log x)~A,

provided that Q «C x(\ogx)~A~K.
Secondly, we consider the same problem for the distribution of prime
fc-tuplets in a short interval. For 0 <y i x, instead of N (b), we define
N(x,y,b) = {t;x —y <ajt+ bj» x forall 0~ j ~ k —1},
Z(x,y) = {b; \N(x,y;h)\ ¢ 0},

and evaluate

f
E(x,y;Q) = X] S |® (*;b,a,n8)-®P (ar-y;b,a,9)
quQ °=1 bez(x.y)

Then we can prove asymptotic formulas for E(x,y;Q):

Theorem 2. Let A,B,a0,ax,R0,...,8k be the same as in Theorem 1,
and let D be some positive constant depending only on Kk and A. We take y
satisfying

X3(\ogx)D < y U X.

() For Q ~ yla*, we have

1 K / \'m

+0 (yk-bb ol + yfeHl(iog*) il) .
(1) Foryla* ™ Q i xB, we have
E(xy; Q) =~ ™) ykQ((logx) - 1) k- alyk+l (bg +
+cnyk+l + 0 (ykQ(\ogx)~Aj .
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A MONTGOMERY-HOOLEY TYPE THEOREM FOR PRIME fc-TUPLETS 181

We omit the proof of Theorem 2, because it is almost the same as that
of Theorem 1

Remark. For the case k = 1, that is the case of primes in arithmetic
progressions, it is possible to extend, by the large sieve method, the range of
validity of the above formulas to x7/12+e  y 1 x with any £ > 0.

The author expresses here his hearty gratitude to Professor S. Uchiyama
and Professor L. Murata for encouragement and for careful reading of the
manuscript of this paper. He also would like to thank Dr. H. Mikawa for
stimulating discussions.

8§ 2. Proofof Theorem 1

We start from the identity

(2.1 E(x,Q =T+'£Ui-2"£ U2-
"Q 7"Q "Q
where
— K—L
t=q), E e +m2
bez nev(b) J=o
K—1
u=E E E KMy)2am+ b))
bEZ n,m€EN(b) j=0
n=mrI (r;nrodq)
u2=E bE <X(b;a’9livb) I x {d(a;b;a’9) - (Tlb;a>9)1r(b)1b
a- 1 b€z

ANZE EAAN b)]2
a=I bez

Making use of the prime number theorem for arithmetic progressions, we
obtain

22) T=Q £ N(a0n + 60)2M ( E AK n+6)2) =
["oon+bo”a: i=1v. b /
"ajn+§ i5
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182 K. KAWADA
=a( Y w2 (Y NP
m=bo (modao)

= xkQ ((1°gx) - 2)k+ 0 (*fQ(log X JT)

Next we estimate 53 *2- Noticing that

and that
q
Y {'b(x;b;a,q)-(i(b;a,g)\N{b)\} =
a—1
( JIgo(c'slja+bj),q)=|
= *(*;b; 1,1) - a(b; 1,1)]A(b)| + O ((logs)**1) ,
we have

Y u*=Y Y Gb;2)Iivb)l x
a"Q 1"Q b€z

X [p(x;b; 1,1) —=<r(b; 1, 1) iV(b)] + 0 ((logx)fctl) } «

< X(logx)2Y 190k b; 1, 1) —<r(b; 1, 1)[iV (b)| | + xk(logx)k+3.
beZ
Then, applying Theorem 1 of [6] with Q = 1, we get

(2.3) y ,u*<xkt\H *vyA-
Q

As for 53 U\ and 53 /3, we shall prove the following lemmas in later
sections. For simplicity we write

flip) =

Acta Mathematica Hungarica 66, 1995



A MONTGOMERY-HOOLEY TYPE THEOREM FOR PRIME *-TUPLETS 183

-1

Then we have

Lemma 1.
(2.4) xfeHiiyi /2{p)e | M blp)+

a<Q " pg
+0 (> +1(logx)-4)
and
(2.5) N = JTy-JT-"Nlilogg) M Mp) + 1
qiQ (0] bll )J gg) Py ey

+0 (xk+1(\ogx)~A + xk+1Q -\\og Q ) k+1" |

where C\ is a constant depending only on flo,..., Rfc_i.
Lemma 2. We have, for Q ~ x/a*,

2
26 e EART(P)E 7T (p)+
JtQu' *(i*“D Q" pg

+0 (xkQ (log (2 ~-)) +xkAlogx) ™
and, for Q  x/a*,

2.7) Y LU= A1y ** +lii(log(x/«,)) n/iW + C2X1+
PR

+0 (xfctl(logx) Aj,

where C2 is a constant depending only on ao, ..., Bfc_i.
Lemma 3. Let Q0 = (logo;)-'4-*1 For Qo » Q N x/a», we have

Acta Maihematica Hungarica 66, 1995
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-xkQY]Rm(log-—" + o(xk b+iQw + xk+1(\ogx)

where Ro,... ,Bk are constants depending only on ao, ..., a™-i.
Then, for Q * x/a*, (1.6) and (1.8) follow at once from (2.1), (2.2), (2.3),

(2.5) and (2.7).
For Q ~ x/iw, using (2.1), (2.2), (2.3), (2.4) and (2.6), we see that

E(x,Q) =
= gifgy\xkQ (o x) =~ Tyk+~ Ax*+1(logx)-i4 + xkQ

which proves that (1.5) is true for Q * Qo = x(\ogx)~A~Kk.
Finally, let Qo i Q i Applying (2.4) and (2.6) with Q = <20, we
get

AUV- A2 U3< xferl(logx)-jd.
Qo Qo

Thus, it follows from (2.1), (2.2) and (2.3) that

(2.9) E(x,Q) = I_-I-&—l)-r-ku((\ogx) -4
+E  E ‘S+0EHaRA
Qo<qiQ Qo<

As for the third term on the right hand side of (2.9), we apply (2.5). We
have

(2.10

£ % +1M1 M fi(p) + O (xi+1(logx)

= obl)
Qo<1"Q

Then (1.5) follows at once from (2.9), (2.10) and Lemma 3.
Consequently, we proved Theorem 1on the validity of Lemmas 1, 2 and 3.
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§ 3. Proofof Lemma 1

In what follows, we use following notation:

e(x)= e2nix,

n

c,(m) = e m'j (the Ramanujan sum),
/=1
(/i,n)=1

r’@n) — the number of ways of writing n as a product of m factors (the
order of the factors being taken account),

r(n) = r2(n) (the divisor function),
Ix(n) = the Mdbius function,

7 = the Euler constant,
k=1
RO=Me N (@-ap

and for a (fc- I)-dimensional vector q = i, ..., gk-i) £ Z"-1, we define
[q] = the least common multiple of all gj's.

First we derive (2.5) from (2.4). For a square-free natural number d, we
define h(d) = 4 (/s(p) —1) * Then
p\d

EAM/3m = = E T
p|? g™"Q dg dfiQ m~Q/d

Since the last innermost sum equals logQ —logd + 7 + 0(d/Q), we have

w =(iogg+7>n (i-; +
qiQ 4 RA P Ty

- E Kd)2dh(d)(logd) + O (Q_1(log(3)fc+l) .
d=1

Now, it is easily seen that (2.4) yields (2.5).

Acta Mathematica Hungarica 66, 1995



186 K. KAWADA

In [6,.§6], Vg observeq that, if R(b) ¢ O and.(aoa + bo,q) = 1 then
a(h-,a,q) is a “singular series”. For Q\ = (logx)~ with C > 0, we put

u{r)2 .
HI1IITUE* 1b«njm-
bil, “ Ne -1
where g = (gi,..., g*-i) and d * denotes the summation over all vectors
d= (d\,... that satisfy the following four conditions:

1.1ndj~q forall 1~ N KkK—1,

2.dj =a (mod (qj,q)) forall 1~j ~ k—1,
3.di=dj (mod (<,qj) forall 1" r<j ™ k—1,
4. (aodj + bo,gj) =1 forall 1~ j ~ k—1

Now we use our results in [6, §86]. By (6.3) of [6], we get an estimate
Si < “:) (bgQi)L,

where £ is a constant depending only on k. If f?(b) ¢ Oand (aoa + bo,q) = 1,
then we have

(j(h;a,q) = |a0|Si + O (" ~ r K(R{b))(logx) C+1n,

where if is a constant depending only on k. Since the number of b’s with
R(h) = 01is 0(xk 2), we obtain, for a sufficiently large constant C,

(3.2) AC /3= |a0j2~ £ £ S 2]iV(b)|2+

< < a= heZ
9<Q 9<Q (aoa+bo',9)=1

+0 (xk+1(\0gx)~A%d.

Next, we calculate  S2|iV(b)|2. We substitute Si by its definition, and
b

liV(b)12 by [/ dtidt2, then the calculation of # S21iV(b)|2 can
I5sajtj-f6 N
for all 0" j~"k—t
and for r=1,2
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A MONTGOMERY-HOOLEY TYPE THEOREM FOR PRIME fc-TUPLETS 187

be reduced to that gf the

with (h,qj) = (h',d) and qv d. i Qx

for i=1,2
As far as 6+ ?} & 8> we have an estimate
h H—ti' -ic
B4 ~tk =Q 2=(loy)
and
E VM < oo
Ctorizl2
if N o then gj = q'-,h = ' (modgj) and
4+Q

s e 4 “ +7 )=max{x-|aj(tl-i2)],0} +0(1).

a,tfHdj=x \ \ 4j 4i |/
for i=l,

Taking account of these results, we have

(3.3) £ SANibf =S(a,q).d +0 (xk<t>(q)-\ogxfk+ C) ,
bez

where

K-i
J= \] \] JJ (x - |aj(<i - f2)|) dtxdt2,
1Ma0<+00<E J—

for t=I,2
a*|fi—2”x

H(rf

S{a,q)= ;
<Ql ~(lao][?,r])

So(r),
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with
kel 24 q Kl 0
i
*m -£ £ #I_I °j
W j=i <Km) i 0 i=i 9 i (4
Here we use the notation d; i) forr=1,2.

It is easily seen that

| a0(ti-i)+f>0"z
i 1T -
=2a0 1/ I (x - |ajli) dt +o (xk) =
®*=x/a* N

= 2]a0}- 1afcHlii + o (xk).

Simple calculation shows that 60o(r) is a multiplicative function in r. So
it is sufficient to calculate So(p) only for a prime number p. The condition
[a] = p holds if and only if g = 1orp forall 1i j » k- 1, and at least one
g: equals p. We denote by M the set of subscripts of gj's such that g = p
and by #M its cardinality. Then we get

/ 1 \ *M P P
£ — T £ £ N <*(«,mNe - <fe)) =
el U-q) / dd d..
#A A d,=a (mod(p,?))
al
for »=1,2

'ﬁ é{mﬁ W

Cp(6j(di  "2))\

i (P-12 3
k.
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A MONTGOMERY-HOOLEY TYPE THEOREM FOR PRIME fc-TUPLETS 189

-fc+l
1- -1 if p\
p P\q
- forl
- +
P 1 P
k-g(p) s(p)-i
+(P2~P) 1 1 -P
(P-ly P-1
= if p\ g and p\ao
1 fetl
- (1—1 +
-(p-1)2

if p\ ga0.

For a square-free r, we have

AMM) =g (x- M P EP-X

p\a0q pir p\r
p\a0 pfao9
and
p(r)2So(r) 1 2 o
>- -1 x
I°0|V jl_! p FI;I l P
P
M ((i-")aw-i) M (m-i).
pi\ p\r
Ploo p\a0q
P
Now it is clear that
p(r)zSo(r)l or .
4>{Wo\[q,r}) pg ~ Vs =
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hence

=~Mil-) vwdw+

pla0? 4 p|<?
+0 [q~2TKz(q){log x)_G+1 ),

where K\ and K2 are constants depending only on K.
Now, from (3.2), (3.3), (3.4), (3.5) and the fact

t [1 - < n ( [1
a—1 pig
(a0a+i>0,9)=1 " ao

(2.4) follows immediately, which completes the proof of Lemma 1.

84. Proofof Lemma 2

According to Montgomery [8], we shall show (2.6) and (2.7). Mont-
gomery’s argument is based on the following lemma due to Lavrik [7]:

Lemma 4. Let

F(x; a,gh) =
A()A(n + h)—
I"n"x
I"n+h”"x
n=a (modg)
. , M ix- M)
= p!_zl T 0> Vp- 2

ifh =0 (mod2) and (a,q) —(@a+ h,g) =1

YY  A(nA(n -fh) otherwise.
I"n”x

n=a (mod Q)
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Then, for any A, B >0,

E r(M)\F(x'ai4;h)\ < x2(\0gx)~A,
0<\hVx

uniformly for g~ (logx)RB.
In the definition of U\ we put r = m —n and obtain

WX E X] A(aOn + 60)A(a0(n + ry + B0) x

°<'r)=x/a* I<aon+60<x
r=° (m0d9) IM«&é(n+r)+ugr
Al

*n £ AK n+ *PDA(ai(n+r)+h) m
01 b )
: Idjii+b] iix
17 gj(n+1)-i-bj

By virtue of Lemma 4 we have

4d E =E E >

qAQ qAQ o<\r\"x/a+ d){|a0|) p>2 (F - ir
r=0 (modg)
fc-i
N Il ot (* - I°irl) K
- 1°ir
j—0 vplar P-2
p>2

+OHa;(logx))t1 X] r((l/ID

o<|r|™:rla*

k—1
F(x;bo,ao;aor) + E F(xf =

2k+1
by BA{(-5T T?)(H3IM}"™ «-«

+0 (zferl(logx)_A) |
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where
_ 1\ k~s(p) k=
,<r,x)=£ £ M ﬁ{x- LT
p- 2 30
a3gm=0 (mod2) P"
for all 0<j<k—
We decompose Ho(Q,x) into
JIrap) 1
*«m*>-£ E n(£) 1 (*- B9}
<3 0<mAr— p|ng 3=0
p>

If #(2) = K, that is, all ay’s are even, then the conditions ajgm = 0 (mod 2)
forall 0~ j  k—1are always true, so we have

(4.2) Ho(Q,x) = H(Q.x),

and if g(2) < k, that is, at least one dj is odd, then we have

(4.3) Ho{Q,x) = 2kH (Q,x/2) + 2kH{Q/2,x/2) - 22kH (Q/2,x/4).
As for H(Q,t), we need the following Lemma 5. Let

1 1 Ifp-iVv -3

frp) =1-- +-
) P P\P~2

avH) HH)(E)™

Lemma 5. IVe have, for Q N 2tla»,

@4) 20,0 = (WNN«!)E - TTw  +o ukQ (loga-m 1,
P>2 g:0Qa Pl \ 4 /

P>2

and, /or Q ~ t/a»,

(4.5) H(Q,t) = tfetliflog(i/a,) [] fs(p) + C3thetl + O (VA(log<)*+2)
p>2
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where C3 is a constant depending only on ao, ..., a”-i.

Before proving Lemma 5, we derive Lemma 2 from Lemma 5. For Q

N xlo*, since /i(2) = 2k or (3/4)2ftaccording as 4(2) = k or not, (2.7) follows
from (4.1), 14.2), (4.3) and (4.5).

Next we assume Q N x/a,. Ifg(2) < K, then /s(2) = 2 and, by (4.3) and
(4.4), we have

(4.6) Ho(Q x) =
TawmOE jMuw +E i Maw
P>2 p\q q"Q  plg )
2\q P>2 2(9 P>2
+0 (**« (log (27 -)) ) =
=r ‘4«n/.w - E JIIAW +o0 (iog(2”™-))bj .

If jf(2) = k, then /3(2) = 1 and, by (4.2) and (4.4), we have

4.7)

bt st Mlawr B ML +o [0 (i [2 ) )

pP>2 q<,Q p\q

Since /2(2) = 2k or 2fc 1 according as 9(2) = Aor not, (2.6) follows from
(4.6), (4.7) and (4.1), which completes our proof of Lemma 2.

We now prove Lemma 5. Let w(d) be a completely multiplicative function
defined by

for a prime p. For y » 1, we have

(4.8) En("P=EE « «=
m~y  p\m mfzy d\m

R&A
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H
_ (d)ZW(d) +0 ( » E N + E N ) —

da=1 4 d>y d<y

= m/*(?) I_Il*(p) 1+ 0 ((log2y)fo =

V2 pg
p>2

Then for Q » </a,, (4.4) follows from (4.8) by partial summation. For t/a* <
< Q™ 2t/a,, (4.4) is still valid, because  * | /3(p) < L.

t/a,<q”™Q p\q
p>2

Next we assume Q ~ f/a*. We have

(4.9) H(Q,t) —H(t/a+,t) =

=EE M ,., | G- e -

gm'it/a, p\gm i=0
p>2
E E + E E - E E
ra<_(t)r2 » g<_{" m<_{Hhw

= 2H ((f/a,)U2,f) -9 b say.

Since (i/a*)1*2 5l 2i/a*, we can apply (4.4) with (3.1) for the first term of
(4.9). For the second one, we use (4.8) to obtain

1\ K—g(p) k—1

i (Hrs) n ¢-nrimo) =
2<(fla,)12 m<(i/a)¥Z il =0

: . K-1
= wen [] (p) ja E 11N AEM3I-KK) <u
P2  (fai-2 (i) (M) 02 X0
+0 (ifc+2(logt)fo) .

We calculate the integrand by (3.1), then we get, by partial integration, that
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(4.10)
Ver 1k x

Hi=tet JIfs@) t 0 [ (I - [Gj» dvdu + O (tk+k(logt)k+2] .
pP>2 { U{ j=0

Since the double integral in (4.10) depends only onao,...,ak-i, (4.5) follows
from (4.9), (4.10), (3.1) and (4.4).

8 5. Proofof Lemma 3

In this section we shall prove Lemma 3 along Hooley’s way [5]. For Qo »
N QS x/a* we put

V(Q)= Y. VI

Q<9X/a,

Since Yh U\ =V(Qqg) —P(Q), it suffices to show that

Qo<g”™Q
(5.1) V(Q) = xk+1il ~og O fi(p) + ai xk+l+

®{ lao|)
K / \'m
+xkQ Y, Pm (log ) +0 (xk-*TiQ*E + xk+1(log x)~A) .
m=0 \ Ya*/ Yy '

To prove (5.1), we use the following Lemma 6 which is a slight modifica-
tion of Theorem 1 of [6].

Lemma 6. LetT be any interval. Then for any positive number A, there
exists a positive number B depending on A and k such that

S max E |P(*;b;8.9;") - o(h;a,q)I\ < xk(\ogx)~A,
(log x)— b£z
where
k!
®(k;bsa,q;T) = 7 O K(a3n + b3),
10
n=a (modaq)
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and | is the length of the interval N(b) DT, that is,

teN (b)
ter

The proof of Lemma 6 proceeds exactly on the same lines as that of our
Theorem 1 of [6], only by replacing Pag(a) with Pag(a;T) which is defined

by
Pag(®;T)= £ N(aon + bo)e(na).
I"aon+<§|c_0
n=anfmodq)
Putting m = n + hq,

kt
V(Q) = 2J2 EE I_I.IH}-H'I:B)K(aST +j) =

b£Z Q<g™x/a+ n,mEN(b) j=0
n=m I’I‘OJ

n<m
K-1 k—+
=2£ £ £ Ilk@n+v) = 1AMy
b6Z NEN(b) j=0 mefv(b)  j=0
a* m>n+/i<5

M=n (modi)

Noticing that Q » Qo and x/(Qa+) < (logx)Atfc, we apply Lemma 3 and
obtain

VQ)=2 11 £<t(byl)<r(b;1) J J dhdtz+ 0O (xk+1(logx)~A} =

n=o"T b h,t2adl (b)
t

= * £ _
h=Q** h=I ~aot
Q* (@atl)=l " 30tH0x
t2<t\-hQ
cr(b; a, h)2dij dt2+ O (logx) ~

for 1
and for t=1,2
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By the same argument we used for the calculation of A 5j|iV(b)| in Sec-
fa

tion 3, we can obtain

(5.2)
VW)=zirarw n A(C1'1l
where
4 “* fe-
Vi = Mve) + Mo - lTe» due
AQNT P\h hi/x j=0
We put v = 1—a,u, and define r\, ..., rk as

on @M NI-y: T E

Then a simple calculation shows

2"m=E (1-1) 1T1/3p}

Next we examine EQk, m) form 't 2. Let s = er{-it be a complex variable.
For a > 1, we put

«*)=E A*T1 aw =N (i+ pd- 13(D)).

h=1 plli p
and define r)(s) by
(5.5) {(s) = ((s)((s + 1)krj(s),

where £ denotes the Riemann zeta function. In the half plane a » | +e
with any fixed e > 0, it is easily seen that r]is analytic and r/(s) <C 1. Thus
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(5.5) gives the analytic continuation of £(s) over o » —h +£. For |i| > 1
and for any e > 0, we have

\t\-at+£ if <770,
[fl2(1inN+E if 0~ <771

Icool«

(see Tichmarsh’s book [9], for example). Therefore, for 2+ £/<7 " 0,
(5.6) [f(e)| <[i]-(H >+i+«.

We note here that the exponent of [f| is less than 2 provided that a >
> —3/(fc + 2).
It is known that, forc> 0, n > 0and m ~ 1,

c+ioo m

Grrrl 1 ousw ((S4+) Tds=<mir UM if0<unil,

r—inn I.]7_0 O |f n> 1

Making use of this formula, we have

140D
Z(z;m) =m\(2ni) 1 J £+ zsf JI(s +])) ds-
1—too ®

\. , Tioo

= m!AOm+ m\Rlim + m\(2iri) 1/ f(s+\)z2( (s+]j)) ds,
.. 8 Vi=o '

K3
where Ro,m and R\,m are the residues of the integrand at s = 0 and s —
= —1, respectively. (5.6) shows, for m A 2, that the last integral converges

absolutely and is bounded by O (r “*+2).

On the other hand, by (5.5), we see that the integrand has poles of order
2and k+ lats = 0and s— —1, respectively. We find that

TI00T = C(2)4(1)(10g-0 + &2

and
K

= Z~1 Y i,m(logz)3,
j=o
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where 0.2 and the 7j,m’s are constants depending only on ao,..., a®-i. We
note that

a2 (h)=un =n(-\V+1w),

and

(5.7) Tkm = -AC(0)r?(0) = Mia(p)_1.

Taking into account these results, we have

(5.8) E(zm)=1Nn (i - "+ ~Mp)* m0°gz) + «2+
K
+2 17D >TM°&2Y +0 .
j=0
Since
K 1 K J jfcl
5Afm/(m + 1)= [ £ r m«"*A, = a. [/ JJ (I - |aj|ti) du = a¥*il,
m=I £ m=l N =0
K
(5.2), (5.4) and (5.8) yield (5.1). Noticing (5.7) and rm = 1, we also get
m=|

(1.7), and our proof is complete.
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CAUCHY STRUCTURES IN CLOSURE
AND PROXIMITY SPACES

A CSASZAR (Budapest)*, member of the Academy

0. Introduction

It is well-known (see e.g. [10]) that a Cauchy structure © on a set X
induces a limitation A= A(6 ) defined by

(0.1) 36 A() Iff snie® (XGX, 3G FilX)

and, through it, a closure ¢c = c¢(6 ) for which the neighbourhood filter tic(x)
of x € X coincides with nA(z). The same closure ¢c(©) may be also obtained
through a proximity 6 = £(©) defined by

0.2) AeB iffthereis sGc o satisfying A, B G secs;

then x G c(A) forc= c(6), A C X iff {x}SA, i.e. iffthereiss G © satisfying
X G Ds, A G secs. We say that 6 induces £(©) and c(6 ).

The purpose of the present paper is to look for necessary and/or sufficient
conditions under which a given closure or proximity can be deduced from a
Cauchy structure or, in other words, under which a closure or a proximity
admits a compatible Cauchy structure.

Some results of this kind are contained in [6]. Terminology and notation
concerning Cauchy structures will be taken from that paper; in particular,
we shall use, in what follows, the expression Cauchy screen (or C-screen)
for a Cauchy structure. For generalities on closures, proximities and screens,
the reader may consult [7], 0.1-0.2 and [5].

* Research supported by Hungarian National Foundation for Scientific Research, grant
no. 2114.

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



202 A. CSASZAR
1. Preliminaries

We shall need some separation conditions for closures. It is well-known
that a closure c on X is said to be symmetric iff

(50) y &c{{x}) implies x £ c({j/}) (x,y £ X).

A stronger condition is given by
(51) VEc({i}) implies oc(ar) = W(y) (x,y€X).

By [4], 4.3, (Si) holds iff x dc(A) implies c({z}) Mc(A) =0, i.e. iffcis
weakly separated in the sense of [7], 0.1. A still stronger condition is

(52 Dx(zr)Aoc(y) implies 0Oc(x) = te(y) (x,ySX)

(see [6]) (aAb means ATIB ¢ 0 for A £ a, B £ ).
The closure c is regular (see [1], 27B.1, 27B.2) iff

(R) for V £ lc(x) there is W £ Oc(x) such that c(W) CV(x£ A).

Lemma 1.1. Ifa regular closure is Si then it is S2.

Proof. By (Si), oc(x) ¢ Dc(j/) implies the existence of v £ t)c(x) such
that y ¢ V\ for a W such as in (R), we have W £ te(x), X —W £ te(y). O
Here (Si) cannot be replaced by (So):

Exampte 1.2. Let | = Rx {0,1}, @(x,y) be the trace on X of the
Euclidean neighbourhood filter o(x, y) of (x, y) whenever x / 0; forp = (0,0)
and g = (0,1), let te(p) = t>(p) Ma, We(g) = n(") Dp. O

On the other hand, a regular closure is necessarily So ([1], 27B.4, 23B.3).

We shall say that a closure is S3iffit is regular and Si,and T, (i = 1,2,3)
iffit is S, and To where

(TO) Oc(x) = oc(y) implies x=y (X, y€X).

Clearly, (St) and (T,) (i = 1,2,3) coincide with the usual separation axioms
(see [2], Chapter 2.5) if c is a topology. Ti-closures are often called separated
71, [4]).

( ]Ir[1 ]a)l closure space (X, c), a set K C X is said to be compact iff the
subspace (K,c\K) is compact in the sense of [1], 29B.4 or [4], p. 286, i.e. iff
each proper filter base (i.e. one composed of non-empty sets) in K possesses
a cluster point in K. Let us say that A C X is semi-compact iff each proper
filter base in A admits a cluster point in X, and it is weakly semi-compact
iff, whenever t is a proper filter base in A, the filter

W(t) = {S C X : intcS £ fil* t}
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has a cluster point in X. (Where intc5 = {x £ X:S E te(x)}.) If A is
contained in a compact set then it is clearly semi-compact, and a semi-
compact set is weakly semi-compact.

In order to establish a converse, let us first observe:

Lemma 1.3. Ifc is a regular closure on X and, for afilter base x in X ,
the point p £ X is a cluster point of the filter Oc(t), then p is a cluster point
of x itself.

Proof. Assume V Gte(p), R Gt, VTIR = 0. For W GPc(p), c(W) CV,
we would have X - W Gtc(t). T
Now we can prove:

Lemma 1.4. IfA is weakly semi-compact in a regular closure space (X, c)
then c(A) is compact.

Proof. Let t be a filter base composed of non-empty subsets of c(A).
Then A G secnc(r), hence to = te(t)|A is a proper filter base in A. By
hypothesis there exists a cluster point p G X of Dx(to); by 1.3 it is a cluster
point of rO, hence of t¢(t) and of t, too. Clearly p G¢c(A). O

Corollary 1.5. In a regular closure space, A is semi-compact iff it is
weakly semi-compact iff c{A) is compact. O

Regularity cannot be replaced by T2:

Example 1.6. For X —R, let oc(:r) coincide with the Euclidean neigh-
bourhood filter 0(2) whenever x / 0, and set

Then cis a T2-topology. The set A = [1,1] —IV is semi-compact in (X,c)
while c{A) = [1,1]is not compact. On the other hand, A is a closed, weakly
semi-compact set without c(N) = N being semi-compact. O

We also need some operations on screens. In [6], 2.3, one of them is
described: for a screen 6 on |, let ©e be composed of the elementary filters
(i.e. intersections of finitely many ultrafilters) contained in © and of expX.
If © is a Cauchy screen then so is @e. It is shown in [6], 2.3 that c(©e) =
= ¢(©); in fact, a stronger result is valid:

Lemma 1.7. For any screen ©, we have 6(&e) —S(&).

Proof. ©e C s implies that <5(Cg) is finer than <5(©). On the other
hand, if A, B G secs, s G6 , then (s|A) <S(g-B) for 6 = S(&) (i.e. MSN for
M Gs|T, N Gs|B), hence, by [5] 3.6, there are ultrafilters u Ds|A, 0 3s|B
such that uSo, and then, by [5], 3.7, u M0 G 6 efulfils A,B G sec(ulp). O

If © is a screen then the fixed elements of © constitute a base for a screen
©T Clearly c(©") = ¢(©) ([4], 3.6). If © is a Cauchy screen then so is ©T
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2. CR- and CL-screens

It is easy to solve our fundamental problem for CR- or CZ-screens in
closure spaces:

Theorem 2.1. A closure can be induced by a CR-screen iff it is S2, and
by a CL-screen iff it is an S2-topology.

Proof. If 6 is a CR-screen and ¢ = ¢(©) then cis S2 by [6], 2.1; if © is
Lodato then c is a topology ([6]). If c is an "~-closure then the filters te(x)
(x E X) constitute by [6], 2.2 a base for a CA-screen 6 satisfying ¢ = ¢(6);
6 is Lodato provided cis a topology. O

Corollary 2.2. Ifc is an S2-closure then the finest CR-screen com-
patible with c is generated by the screen base composed of the filters oc(x).
It coincides with the finest Riesz screen ©”(c) compatible with c. If ¢ is an
S2-topology then ©p(c) is Lodato and, therefore, it is the finest CL-screen
compatible with c.

Proof. [5],28. O

In order to treat the question of existence of coarsest compatible
CA-screens, let us say that a filter s is strongly c-compressed in a closure
space (X ,c) iffs —x for ¢ whenever a is a c-cluster point of s; such a filter
is c-compressed ([4]), 3.3).

Lemma 2.3. If & is a CR-screen, ¢ —c(6 ), then every element of & is
strongly c-compressed.

Proof. If x is a cluster point of s E 6 then te(x)As and oc(x) G 6,
hence s' = tic(x) 1s E © is fixed at x, hence s' —»x by [4], 3.1 and 3.3. A
fortiori, s —=x. O

Theorem 2.4. In an arbitrary closure space (X,c), the strongly
c-compressed filters constitute a Cauchy screen © - ©(c) such thatc = c(6)

is finer than c¢. 6 contains all filters tc(x) iff ¢ is S2 and then 6 is the
coarsest CR-screen compatible with c.

Proof. For x E X, x is strongly c-compressed. A filter finer than a
strongly c-compressed filter is strongly c-compressed. If Si and S2 are strongly
c-compressed and SiAs2 then s = Si JIS2 is strongly c-compressed. In fact,
oc(x)As implies te(x)As, for i = 1or 2, say for i = 1. Then Si —%x, hence
Qc(x)AB2, S2 —» X, and s —PX.

If X Gc(A) then there is s E 6 such that {x}, A E secs. Since x is a
c-cluster point of s, necessarily s — x for ¢ and x E c(A).

A point y is a c-cluster point of oc(x) iff oc(x)foc(y). So if cis S2then
LE(x) is strongly c-compressed for x E X and 6 contains all c-neighbourhood
filters. Conversely if Dx(x) E © for x E X then oc(x)Auc(j/) implies Oc(x) —»
—y, te(x) D De(j/) and similarly te(x) C Dx(j/), so that cis S2. If so, then
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x E c(A) implies {x}, A E sectic(x), oc(x) E6 and x E c(ri). Thus 6 is a
compatible CP-screen; it is the coarsest one by 2.3. O
Therefore we shall write &R = 6 ®g(c) for the screen © described in

2.4 in the case when cis S2. However, even if c is a T*-topology, & need not
be a Riesz screen in general.

Example 2.5. For an infinite set M, let X — M U {p,q}, oc(x) = X
for x E M, Pc(p) = pfl filx50 where So is composed of all cofinite subsets
of M, 0c(q) = g Tl filx Uo where Wo is a free ultrafilter in M. Clearly cis a
Ta-topology.

If u d W is a free ultrafilter in M, then s = p N filyu is strongly
c-compressed, so Ox(p) C 2j(p) Cs. Now Dx(p) is the intersection of all such
filters s; in fact, if A C M is not cofinite in M, then X - A is contained in
at least one free ultrafilter u in M distinct from Uo, so {p} UA £ p I fil* u.
Therefore t>Yp) = 0c(p), but this filter does not belong to & since g is a
cluster point of it without being its limit point. O

Observe that the only strongly c-compressed filter fixed at g is g, so
QY9 = gand cis strictly finer than c.

On the other hand, ¢ —c can occur even if ¢ is not S2:

Example 2.6 (J. Dedk). Let X —D U{p,q}, D = A x w, oc(x) = X
for zE fi, M p) = PTlp, tic(q) = gl g, where the filters p, g are defined as
follows. Set

P(a,m) = {(o,n) ED:m " n},
Q(aym) = {(B,m) ED:a R},
p@) = filx{P(a,m):mgw},
q(m) = filx {Q(a,m):a Eu},
p=n{p(@:akEu},
g= fi{ g(m): m Ew}.

Now c is a Ti-topology (since p(a), q(m), p and g are free) but it fails to
be T2. In fact, each Q E g contains a subset of the form U{Q(m):m E w},
Q(m) = Q(am, m), and by choosing a Ew\ such that am * « for m E w, we
have Q(a,m) C Q for every m E ¢gj. Now any P E p contains P (a,m) for
some m gu so that (a, m) EP(a,m) MQ(a,m) CP nQ 7™O0.

Clearly t)*(x) = x for x E D since c is finer than c. Further both p(a) I
Mp and q(m) Mq are strongly c-compressed since they have no cluster points
other than p or g, respectively. Therefore

e(p)Clp(p)Cp(a)ip (aEWI),
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Bo(@) CxyX@) C g(m) Mg (mEw)

implying
fc(p) C ¥&p) CpMp,  ve(q) CO0*9) C qMg,

tc@p) = tr\(p), oc(9) =0M9). O

Corollary 2.7. If ¢ is an S2-topology then the coarsest CL-screen
&cl ~ ®cli(c) compatible with ¢ is generated by the c-open elements of&°CR.

Proof. The filters in question clearly constitute a screen base for a

Cauchy screen 6 . Obviously &R C & C &cr>hence c(6) = cand 6 is a
CL-screen compatible with c. It is the coarsest one because any compatible
CL-screen & must be contained in &gR and generated by a screen base
composed of c-open filters. O

&CL 7 ®ca Tay happen: consider (X,c) in 1.6 in which the Fréchet
filter s corresponding to the sequence () does not have any cluster points
(hence s £ &g r) While nc(s) clusters at o without e-converging to o.

On the other hand:

Lemma 2.8. Ifc is a regular topology then 6 °R =

Proof. Fors £ 6 °R we have oc(s) £ 6° R. In fact, if x £ X is a cluster
point of oc(s), then it is a cluster point ofs by 1.3, so s —»x, and, ¢ being a
topology, Pc(s) —» X. Hence 6° R is Lodato. O

Observe that 2.4 and 2.7 show a certain contrast to [6], 2.17 (according
to which a compatible CX-screen given on a subspace of a T2-topological
space may possess compatible CX-extensions without having a coarsest C I1-
ot CX-extension).

Our previous results permit to formulate some sufficient conditions for
the existence of compatible CR- or CX-screens in proximity spaces (X,S):

Theorem 2.9. Ifaproximity 6 admits a compatible CR-screen then c(s)
is S2. Conversely, if c is an Sz2-closure on X, then the proximities

- Ma(c) = M®4a(c)

and
6* = t>*() = 6{e°CR(c))
admit the compatible CR-screens &R(c) and &cr(c)> respectively.
Proof. 2.1,22,24. O

Theorem 2.10. IfS admits a compatible CL-screen then c(e) is an S2-
topology. Conversely, if ¢ is an Sz2-topology, then the proximities bR(c) and

6" =6"(c) =t(e°CL(c))
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admit the compatible CL-screens <3a(c) and ©°L(c), respectively.
Proof. 2.1,22,27. O

Corollary 2.11. For an 2-closure ¢, SR(c) and S*(c) are the finest
and the coarsest proximities, respectively, compatible with ¢ and admitting a
compatible CR-screen. O

Concerning proximities between SR(c) and £*(c), see 3.17.

Corollary 2.12. For an S2-topology ¢, SR(c) and S**(c) are the finest
and the coarsest proximities, respectively, compatible with ¢ and admitting a
compatible CL-screen. O

According to 2.11 and 2.12, it is reasonable to write
h\c) = SCR(c), S**(c) = sCL(c).

It is not difficult to find direct constructions for £4(c), S°R(c) and S°L(c).
As to * = SR(c), it is obvious (cf. [4], 4.1) that ASB iff c(A) MNc(B) ¢ 0.

Theorem 2.13. For an S2-closure ¢,S* = SqR(c), we have Ab*B iff
c(A) Nc(B) ¢ o or neither A nor B is semi-compact.

P roof. Suppose there is a strongly c-compressed filter s such that A ,B e
E sees. If3 has a cluster point x E X, then 3 —»x, hence c(A) Nc(B) ¢ o. If
3 does not have any cluster points, then s|A and s\B are filter bases without
cluster points, implying that neither A nor B is semi-compact.

Conversely, if x E c(A) Mc(B), then Dx(ar) E 6 “a(c), A, B £ secoc(a).
If there are proper filter bases rg and te in A and B, respectively, without
cluster points in X, then 3 = fil* [gMfiljf ts E ® ca(c) since 3 has no cluster
points, and A, B E secs. O

Theorem 2.14. For an Sz-topology c,6* = SqL(c), we have AS**B iff
c(A) Mc(B)  Qor neither A nor B is weakly semi-compact.

Proof. If 3 is c-open and strongly c-compressed, A,Be secs, then
either c(A) Mc(B) ¢ 0 or s has no cluster points, and then the same holds
for the finer filters te(s|A) and oc(s|i?). Conversely, if rg and tjg are proper
filter bases in A and B, respectively, and neither Gc(rg) nor Q(re) has cluster
points, then s = Q(rpg) Moc(tR) is a c-open filter without cluster points such
that A, B E secs. O

By 2.8, i“fi(c) = ScL(c) if c is a regular topology. On the other hand,
these two proximities are distinct for the T2-topology c in 1.6, since P and
Q are proximal for the first one and far for the second one provided

i1 1 A J_
- ‘nEN
Q-{ons1

(P and Q are weakly semi-compact without being semi-compact).
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_Itis possible that c(S) is a T2-topology but 6 does not admit a compatible
CA-screen or a compatible Cauchy screen at all (see 3.12, 3.13).

3. Cauchy screens
It is not difficult to establish necessary conditions for the existence of
compatible C-screens in general.

Theorem 3.1. If & is a Cauchy screen then S(&) is a Riesz proximity,
hence c(6 ) is an Si-closure.

P roof. By putting 6 = A©), ¢ = ¢(S) = ¢(©), suppose x Gc(A) Mc(B).
Then there are Si,S2 G © such that {x}, A G secsi, {x},B G secS2- Now
3iAs2,503 =SiM32G6,and A, B G secs, ASB.

The rest follows from [4], 5.9 (there Riesz proximities are called weakly
Lodato, Si-closures weakly separated). O

Theorem 3.2. Let & be a Cauchy screen, 6 = A6 ), ASB{ for i G,
BiSBj ifi,j GI, i ¢ jmThen
(3.2.1) li|S 22M.

Proof. Let s, G© be chosen such that A,B{ G secs,, and suppose
that (3.2.1) is false. Then there are i,j G/, i ®j satisfying s;|A = 3\A,
consequently s,Asj. Sos =s, JISj G6 and B,,Bj G secs, which fact would
imply BisBj. O

In order to deduce from 3.2 a necessary condition concerning closures,
let us denote, for a closure con X, by (c) the partition of X corresponding
to the equivalence relation

y iff tc@2) = vofy) {x,yeX).
Ifcis Si then x gy iff YGc({z}).
Corollary 3.3. If& isa Cauchy screen on X ,c=¢c(©); A C X, then

(3.3.1) {P6d(c):PMNc(A)r0} ~ 22N,.
In particular, ifc is Ti, then

(3.3.2) lc(M)| = 2L

Proof. Set

{P Gi(c): P Mc(A) dp 0} = {P,:i G/},
aQ®Pj for i,j Gl rdj-
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Choose x- £ P{Mc(A) (r G/). Then {x,}OA for 6 —6(6 ), and {x,}£{xj} for
i,j 61, 1dj since cis Si by 3.1. Thus (3.2.1) holds by 3.2. Ifcis Ti then
each element of d(c) is a singleton. O

A further necessary condition concerns elementary neighbourhood filters
in closure spaces.

Lemma 3.4. Let & be a screen on X,c = ¢(&). Ifx £ X, uc(x) is an
elementary filter, u is an ultrafilter, and u —»x, then ufl x G &a

I_IP roof. The statement is obvious if u = x. Assume u / x, be(x) = x fl
M Piu, where each wur is an ultrafilter and ut ¢ x, u = Uo, u, pu, if i ¢ j.

0
Choose A € W satisfying A ¢u, for i @ 0. We have x 6 c(A), hence there is
a filter 3 E & such that x 6 Ts, A G secs, consequently s —x by [4], 3.1
and 3.3. Now uc(x) C s implies

s=in flUi, | C{O0,...,1}.
iei

Clearly A € secu, for some rGI sothat A Gu-, r=0,and s ClWIMx G &.
O

Corottary 3.5. Under the hypotheses of 3A, if & is a Cauchy screen,
then te(x) G6 . O

Corollary 3.6. If <g is a Cauchy screen, ¢ = ¢(6), x,y G X, oc(x)
and Q@(y) are elementary filters, and oc(x)4oc(y), then Dc(x) = Oc(t/).

Proof. 3.5and 3.1. |

For a special class of closure spaces, we can now prove a necessary and
sufficient condition:

Theorem 3.7. Let (X,c) be a closure space such that each neighbourhood
filter te(x) is elementary. There is a Cauchy screen compatible with c iff ¢
is S2.

Proof. By 3.5, a compatible C-screen has to be CR, and 2.1 can be
applied. O

Unfortunately, the collection of the necessary conditions 3.1, 3.3 and 3.6
is not sufficient in the general case.

Example 3.8. Let M be a countably infinite set, M NMN = 0, and
suppose that p is a bijection onto N from the set of all free ultrafilters in M.
Define X = M UN U{Z} where M iliU JV . Set oc(x) = x for x GM, 0c(x) =
= x M Afil*u for x = p(u), u a free ultrafilter in M, and 0c(g) = g N fil*So
where So is composed of all cofinite subsets of M. Then c is a Ti-topology
on X, |X| ~ 22J implies that (3.3.2) is fulfilled and the same is true for 3.6.
However, if 6 were a Cauchy screen compatible with ¢ then g G ¢{M) would
imply the existence ofs G6 such that q G N3, M G secs. Take an ultrafilter
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uin M such that s\M C u, then p(u) M filxu E © by 3.5, sAt>c(p(u)) and
s Mic(p(u)) E © would imply p(u) E c({q}) ma contradiction. O

For the next example, we recall that the coarsest Riesz proximity S =
= SR(c) compatible with an Si-closure c is defined by ASB iff c(A)['\c¢(B) ¢ 0
or both A and B are infinite (see [7], Theorem 1.5, but a direct proof is also
straightforward).

Example 3.9. Let M, N, p denote the same as in 3.8, X = M UN,
te(x) = x for x E M, Ve(x) = x M filjtu for x = p(u). Now cis a T 2-topology
and, by 3.5, each Cauchy screen compatible with ¢ must be Riesz.

Now S = Sff(c) is strictly coarser than S* = SgR(c) because ASB if A
and B are infinite, A,BcM,A(~)B =0, but then both A and B are semi-
compact and c(A) Mc(B) = 0, hence AS*B (see 2.13). By 2.11, there is
no Cauchy screen compatible with S (although ¢ = ¢(S) admits, by 2.1, a
compatible CL-screen).

Observe that S is Riesz and every family of pairwise disjoint non-empty
subsets in X has cardinality » 22 so that the condition in 3.2 is fulfilled.
O

The situation that c(S) admits a compatible Cauchy screen without the
Riesz proximity S doing so cannot occur if $= SR(c).

Lemma 3.10. If a screen © is generated by a screen base composed of
fixed filters and 6 = <§@) is a Riesz proximity, then S = SR(c) for c = ¢(©).

Proof. It suffices to show that S is finer than 0g(c). Now if ASB, there
is a fixed filter s E & such that A,B E secs. Ifs is fixed at x, clearly
X Ec(1)MNc(B). O

Corollary 3.11. If & is a Cauchy screen, ¢ = ¢(©), then 6(&f) =
= SR(c).

Proof. 6 f is a Cauchy screen, so 6(&f) is Riesz by 3.1 and c(6”) = c.
O

Corollary 3.12. An Si-closure ¢ admits a compatible Cauchy screen
iff SR(c) does so. O

In order to formulate a partial analogue for the proximity SR(c), let us
agree in saying that a closure c is Fréchet iff x E c(A) implies the existence
of a sequence (xn) such that xn E A, xn —x for c. If ¢ is a topology, this
terminology coincides with the usual one (see e.g. [8], p- 53). If every
neighbourhood filter uc(a;) has a countable base, c is clearly Fréchet.

We also recall that an infinite set A contains 22A free ultrafilters (see
e.g. [9], 9.2); we shall need this fact in the case |A| = 1j.

T heorem 3.13. Suppose ¢ is a Fréchet Si-closure on X and |X| ~ 22*.
Then S —SR(c) admits a compatible Cauchy screen.
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Proof. Consider the pairs (A,B) where A\H C X, AT B = 0, and
either |A| = |5] = un or A = {a}, \B\ = u and the filter base composed of the
subsets cofinite in B c-converges to a. Since the cardinality of the family of
the countable subsets of X is A (22*)w= 22‘, we can enumerate these pairs
in the form (Aa,Ba), a £ 22°.

If (Aa,£?0) is of the first type, we choose free ultrafilters ua, #Q such
that A £ B £ tua; if (Aa,Ba) is of the second kind, we choose a free
ultrafilter ua such that Ba £ ua. This can be done in the manner that all
ultrafilters uQ, tna are distinct; in fact, there are 22 free ultrafilters in
a countably infinite set and, for a given a £ 22 , the family of the traces on
Aa or Ba of the ultrafilters \xp, PR, M (B < a) has cardinality less than 22°.

Let 05 be composed of the filters ta MNtoa, da Mua (where Aa = {aa})
and F where F is a finite subset containgld in one of the elements of the

partition fP(c). Consider the intersections f)r,- where t, £ 05and (to,... ,t,,)

0
is a Cauchy chain ([6]) (i.e. t*_iAt; fori=1,...,n). It is easy to see that
these intersections constitute a base for a Cauchy screen ©.

If MSN, there is a filter s £ © such that M, N £ secs. In the case x £
£EMTIN wecantakes=i £06BC6.IfMTMX =0, M and N are infinite,
there are AC M, B CN, |Al = |5] = u, thus (A, B) = (AQ,Ba) for some
aands = Mta £ 05 can be chosen.

Suppose M MN =0, x £ ¢(M) MNc(N) and, say, \M\ < u= Then there
are p £ M such that x £ c({p}) and a sequence (xn) such that xn £ N and
xn —»x. Ifxn = gfor infinitely many indices n, then x £ c¢({q}), hencep,q £

£ P for some P £ p(c), and then s = F £ 05 can be taken for F —(p, q}. If
there is no such g then B = {xn:n £ N} is infinite and ({p},B) = (Aa,Ba)
for some a (p,x £ P £ p(c), so xn —p).

Assume now that there iss £ © such that M, N £ secs. We can suppose

that s = flti, ti £ 05 and (ro,...,rn) is a Cauchy chain. We show MSN.
0

This is clear if M and N are infinite. Suppose one of them, say M, is finite.

Assume tj = ua Il for some j; then t; = tyfor all i (since ua and
tt)a are free and distinct from UJj, pB, M® (B ¢ a)). Hence s = tj and both
M and N would be infinite. Thus each t; is either of the form &a Mua or
of the form F, so that all points aa and all sets F occurring are contained
in the same P £ ¢(c) (since each ua is free and distinct from W3 (B b a)).
As M £ sect;, N £ sectj for suitable i and j, necessarily M MNP ¢ 0 and
P Mc(N) ¢ 0 in all possible cases, hence P C ¢(N) implies M Tc(N) & 0,
MSN. O

Coroltary 3.14. Ifc is a Fréchet Si-closure on X and |A| 22 then
¢ admits a compatible Cauchy screen. O

COROLLARY 3.15. The cofinite topology on a set X admits a compatible
Cauchy screen iff \X\ ~ 22¢.

Acta Mathematica Hungarica 66, 1995



212 A. CSASZAR

P rooft. For this Ti-topology c, we have c(A) = X whenever A is infinite.
Thus 3.3 and 3.14 can be applied (c is obviously Fréchet). O

It can be happen, for a Riesz proximity s, that c(S) is a T2-topology,
0 does not have a compatible C/-screen but admits a compatible Cauchy
screen:

Example 3.16. Let (X,c) be the Euclidean line, S= SR(c), and apply
3.13 and 2.11 (Ais strictly coarser than S*R(c) since [0,1]<5[23]). O

It can also happen that Si C S2 C S, ¢(S;) = cfori=1,2,3, Si and 63
admit compatible CX-screens, but the Riesz proximity s. does not have any
compatible Cauchy screen:

Examptle 3.17. Let X —AuU |J  where A and the sets Bi are

iei

countably infinite and pairwise disjoint. For the discrete topology c on X,
let @L consist of the filters i (1 6 1), 63 be generated by a screen base
composed of the filters x and of all free filters. Clearly ©1 and ©3 are CL-
screens inducing ¢, Si = A(©i) = <54(c), 63 = £(63) = SR(C).

Define MS2N iff M TN / 0O or there is an i such that M ild and N TBi
are infinite or there is an i such that M MBi and N MA are infinite. Then
62 is a Riesz proximity and Si C S2 C S3. However, AS2B{ (i £ X), BiS2Bj
(i,j £1, 1 dj) so that, by 3.2, S2 does not admit any compatible Cauchy
screen if |[/| > 22\ O

We have seen that if a closure ¢ admits a compatible CR- or CL-screen
then there are among them a coarsest one and a finest one (2.4, 2.7 and
[6], 2.8, 3.1 for I = 0). The situation is completely different in the case of
Cauchy screens: both a coarsest compatible C-screen and a finest compatible
C-screen fail to exist in general. The next two examples show this fact in a
stronger form, i.e. for proximities as well as for closures.

Example 3.18 (cf. [4], 3.15). Let X be an infinite set, p £ X, W a free
ultrafilter in X . Let a screen base for © be composed of all filters x (x £ X)

and of the filters p I fl'U, where n £ N and Ui,..., un are free ultrafilters

distinct from Uo. Clearly © is a Cauchy-screen and S(&) = Scan be described
in the following way: ASB iff

AMBt O
or
pf£ A B isinfinite
or
A s infinite, p£B
or

both A and B are infinite
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(since any infinite subset of X is contained in a free ultrafilter distinct from
Uo). Thus d<S) is a Tr-topology.

Now a screen finer than all these screens 6 (corresponding to the possible
choices of Uo) necessarily coincides with {x:x G 1), hence it generates the
discrete proximity and the discrete topology of X , and then it is compatible
with neither 6 nor c(6). O

Example 3.19. Let X = R, ¢ be the Euclidean topology on X and
6 = Sfi(c). Consider the construction contained in the proof of 3.13 by

beginning the transfinite sequence (Aa,Ba) with the pair ({0}, Bo), Bo —

= {n+T:n 6 n|. Choose a free ultrafilter Wo satisfying BO £ Uo- By this,
we obtain a Cauchy screen ©i such that £(©i) = S.

Apply now the construction another time, now beginning the enumera-
tion with (Ao,B g), where A0 = N, Bqg has the same meaning as above, and
choose a free ultrafilter Do such that Ao E Do, finally put roo = Uo- We obtain
a Cauchy screen ©2 with £(62) = 6.

If a Cauchy screen © is coarser than both ©1 and ©2 then it contains
5 —0Huo NDo so that s has to ¢(6 )-converge to 0. Therefore c(©) ¢ c (since
Do does not ¢ converge to 0), implying £(©) b b. O

4. Coarsest screens as Cauchy screens

It is well-known that, if c is an So-closure, then the coarsest screen ©°(c)
compatible with ¢ is composed of all c-compressed filters ([4], 3.2). Similarly,
for a proximity 6, the coarsest screen 6 °(£) compatible with 6 is composed
of all Pcompressed filters ([3], (6.9) and (6.11)). We examine the question:
when is ©°(c) or ©°(£) Cauchy?

The case of ©°(c) is rather simple:

Theorem 4.1. Let(X,c) beasymmetric closure space, so the filter com-
posed of all cofinite subsets of X . The following statements are equivalent:

(a) ©o(c) is a Cauchy screen,

(b) ¢ is S2 and every c-compressed filter is strongly c-compressed,

(c) all sets P £ th(c) are finite and Dc(x) = P for x £ P £ fB3(c), with one
possible exception Pgfor which Dx(x) = Po MSo for x £ Pq.

Proof, (a) =m(b): If 6 °(c) is Cauchy then cis Si by 3.1. Thus every
neighbourhood filter Dc(x) is c-compressed, so that ©°(c) is a CR-screen, ¢
is S2, and ©°(c) is finer than ©”"a(c)-

(b) == (c): Now ©°(c) = ©"g(c). If x £ X and Dc(x) has a finite element
then Dc(x) has a smallest (finite) element P, De(x) = P, and P £ ip(c) as ¢
is Si.

Suppose now that there is x £ X such that every element of Dc(x) is
infinite. Then x is a cluster point of Sqand, since a free filter is c-compressed,
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hence strongly c-compressed by the hypothesis, necessarily So —»x, tic(x) ¢
C So. As cis S2, two such points x must belong to the same element PO

of @(c), and then Oc(a:) C Po, te(ar) C PoflSo. If x E Po, YG X - PO, (Si)
implies that there is V E oc(x) such that y £ V, so Po S C tic(a:) and
te(ar) = POTMsO for x E PO-

(c) == (b): Suppose c¢ has the structure described in (c). Then clearly
cis S2. Let s be a c-compressed filter that has x E X for cluster point. If
y G I1s then s —»y, hence \&(x) = \E(y) by (S2) and s —»x. If s is free then
x GPo and So C s implies s —x again.

(b) == (a): Obvious by ©°(c) = &cr(c)- *

While the answer to the question concerning ©°(c) leads to a rather
peculiar class of spaces, the question concerning ©°(<5) is more interesting.
For this purpose, we recall that a proximity Son X is said to be Efremovich
iffAbB implies the existence of U,V C X such that U1V = 0, ASX —U,
BSX - V.

Now we can prove:

Theorem 4.2. Let(X, A) be aproximity space. The following statements
are equivalent:

(a) 6 ° = ©°(i) is a Cauchy screen,

(b) ©0Ce is a Cauchy screen,

(c) for ultrafilters in X, the relation S is transitive,

(d) S is an Efremovich proximity.

Proof, (a) = (b) Obvious.

(b) = (c): Let u; (i = 1,2,3) be ultrafilters in X, UIALR, 112113, By [5],
3.7, Ui MW and W2 TMW3 are A-compressed, hence they belong to ©0g, further
(ui MWAU2MWB), so that s = Ui MW MW G6 0e. Both Ui and u3 being
finer than the A-compressed filter s, A\ E Ui, A3 GW imply Ai, A3 G secs,
hence A1iA3, and UIQLB.

(c) = (d): Suppose A,B C X and UMV ¢ 0 whenever AbX - U, BSX -
—V. The sets U and V in question constitute filters s and t, respectively,
that fulfil sAt. Let Nebe an ultrafilter finer than s(fl)t. For W Gtt», AsW
would imply X - W Es C to which is impossible. Hence A<Gtr, and similarly
BSro. By [5], 3.6, there are ultrafilters u and 0 such that A C u, B C ti, u6tu,
uitn. By hypothesis uit), hence AsB.

(d) =>(a): Let s and t be A-compressed filters such that sAt. We show
that s Mt is i-compressed. In fact, if A,B C X, A, B E sec(s Nt) and, say,
A, B G secs, then AsB. The same is true if A, B E sect. If AG secs, B E
G sect and ASB were true, then two sets U and V would exist such that
UC\WV = 0, ASX —U, BSX —V. The A-compressedness ofs and t implies U G
Gs, V Gt which would contradict sAt. If A G sect,PE secs, the reasoning
is similar. O
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The essential content of the implication (d)  (a) lies in the fact that the
i-compressed filters coincide with the Cauchy filters of the totally bounded
uniformity compatible wit 6 (see e.g. [2], (4.2.26), (5.2.8) and (5.2.9)).
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INTERPOLATION BETWEEN
HARDY-LORENTZ-ORLICZ SPACES

V. ECHANDIA (Caracas)

1. Preliminaries

In what follows Lp will denote Lp[0,1]. For any set A we shah denote
the characteristic function of A by x(-A). For each / € L1, we put

gnf :=52'/  (n € N);

where s2n/ is the 2n-th partial sum of the Walsh-Fourier series of /.
By Jensen’s inequality we have

) M I, S [[/llp.
The dyadic maximal operator for / E L1 is defined by

ef := sup |En/|.

n€N

Foreach / 6 LI and 0 < p < 00 set

HP \eflip-

On the set of Walsh polynomials V, the map / —y||/||HP is a norm for 1 U
W p <ooand aquasi-norm for0<p < 1

The dyadic Hardy spaces Hp are defined to be the closure of V in the
quasi-norm ||... ||HP for 0 < p < oo.

Definition 1 (Kalugina). We shall say that / is a parameter function
or / GBKk if it is a positive, increasing and continuous function on (0,00)

such that
roc

Cf— min(l, I/t)f(t) dt/t < oo,
b (1, 17t)f(t)

where

(0 = supysy
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For / G Bk and an Orlicz function F we introduced in [2] the function
norm ® by

O Mm=ini >0:A A (A0 N/ =1}

where 1 is a non-negative measurable function on (0,00).
For a Banach couple of interpolation A — (Ao, zli) we define the space

AjF = (Ao Ai)jF

as the space of all a 6 £XA) such that ®fiF[K(t,a)] < oo, where K(t,a) is
the Peetre functional”®

By construction, A ff is an interpolation space between Ao and A\ (see
[6]). For a detailed study of these spaces see [2].

Definition 2. Let (f1,//) be a //-finite measure space. Suppose ¢ is a
non-decreasing concave function on [0, 00) such that 0(0) = 0 and F is an
Orlicz function. The Lorentz-Orlicz space btp = Ls&f (m) is defined to be
the space of all (classes of) //-measurable functions x on i2 such that the

functional

"oF inf

is finite, where x* is the non-increasing rearrangement of x with respect to
the measure //.

It is usual to define a norm LxU" on bdip as follows:
WUF:=i,f{r>0: " % (K 1) N/<51},

where

= -1JF X*(s)ds.

The following result has been proved in [2].
P roposition 1. Ifpe Bk and /(/) = -u then

(X\X°°)/iF = ZOF.
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2. Interpolation between dyadic Hardy—torentz—Orlicz spaces

In this section we introduce the dyadic Hardy-Lorentz-Orlicz space Hdp,
and obtain some results about interpolation between them.

Definition 3. Suppose (is a non-decreasing, concave function on [0, 00)
such that 0(0) = 0, and F is an Orlicz function. We shall say that a function
f £ L1lis in the dyadic Hardy-Lorentz-Orlicz space HpP if and only if £f £
£ bp. We provide Hdp with the norm

/HF KNI

For the spaces Hdp we have the following result.
Theorem 1. Ifp£ Bk and f(t) = -w, then

(H\A)A = HoP

P roof. We define the operator T(a) = ea on LI. T(a) is sublinear, and
using inequality (1) of the preliminaries we get

(Ig IT ()i = llor#11 and

() W a)y» SCM~.

These inequalities imply that T is bounded from A linto L1and from L°°
into L°°. By interpolation we conclude that T is bounded from (A 1,//00) »

into (L1, 00" F = bgp. Thus there exists C\ > 0 such that

H kP = IMIAF = Clllall,~

Therefore (H\L°°)fF C HdP.

From Lemma 2 in [1] we have that, given a £ L1 and t > 0O, there are
functions ht, gt belonging to A1 and L°° respectively such that a = ht + gt
and

\Mmia \ ea(S) ds, HfiftlL ~ C(ea)*{t).
The inequabty
K(t,a; A \\ht\WHL + t\\gt\\Loo
implies
[\ t(Ea)*(t) + | ea(s) ds <
m

U Fi\ t(ea)*(t) + J% (ea)*(s)ds
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AE 1 (ea)**(t) ds F(cf>(t)(ear(t)).
m

Therefore we conclude that ||a||*F ~ 2C]||a||a” . The theorem is proved.
Applying the reiteration theorem given in [2] we get the following result.

Theorem 2. Let the functions do, ¢\, f and

(1) _<bIO
<bl0
belong to BkmSet
—  GoYy)

@ /(<bl*))’

Then
(" CoFglffolF )jp —Bdg2Fm
Proof. Let ft(t) = i=0,1andr(t) = From Theorem 1 and

the reiteration theorem in [2] we have
(A*,a,,anp)/>r = >h,F
where
12(f) =10 (0/N0) = ~yl(</>0i(f)) *

Using Theorem 1 again we obtain

{HOHEPD1P: (H\L°°)hF: Hip

with d2(f) = » The proof is complete.
In the classical case, each Hardy space Hp consists of functions G analytic
on the unit disc and satisfying

/1 fo \
Ne ,:= ™p I - \Gﬁ'e'-)\rkoo.
0/r<l J2ir /

This condition is equivalent to the Tp-integrability of the non-tangential
maximal function

G;(e"):= sup (G(U|
zers(e)
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where for each 0 < s < 1and 9 £ [0,2x], ['40) represents the convex hull of

the set {ers} and {z £ C:\2\ i }.
By taking real parts of the boundary functions

IirInG(re!e) 0" s ™ 2x)
rt

and identifying the boundary of the unit disc with the interval [0,1], one
generates the classical real Hardy spaces Hv for 0 < p < o0o. 'Hp is endowed
with the quasi-norm

M w = lIgillp

where G is the analytic function associated to g.

In the classical case we shall say that a function g is in the Hardy-
Lorentz Orlicz space Hgp if and only if the non-tangential maximal function
G* £ bap.

Using a “canonical decomposition” for functions g in Til given in [5]
(p. 192) we get an analogous result to Lemma 2 for g in HI. Using that
result we obtain results for 'Hdp analogous to those proved above for TLMF -
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ON THE AVERAGE VALUE
FOR THE NUMBER OF DIVISORS
OF NUMBERS OF FORM ab + 1

A. SARKOZY (Budapest)*

1. The number of distinct prime divisors of the integer n is denoted by
u(n). The number of positive divisors of n is denoted by r(n). tp(n) denotes
Euler’s function. /x(n) is the Maobius function. P(n) denotes the greatest
prime factor of n.

Let A, B be two sets of distinct integers with

(1) A,Bc[l,x], \A\,\B\>ex.

In the last 15 years several authors have studied the prime factor structure
and arithmetic properties of the sums a + b with a E A, b E B; see the
survey paper [7]. In particular, Erdos, Maier and Sarkdzy [4] showed that
assuming (1), an Erdds-Kac [3] type theorem holds for the sums a + 6, i.e.,
the frequency amongst all sums a + b with a E A, b E B of those for which

u(a + b) —loglogg i ~(logloga:)1"2

is approximately Gaussian for large x. This result has been extended and
sharpened in various directions by Elliott and Séarkdzy [1] and Tenenbaum
[9]. Moreover, Sarkézy and Stewart [8] gave a lower bound for

(2)

aen bes

While many results have been proved on arithmetic properties of sums
o0 + b, much less is known on products ab. Recently, Elliott and Sarkézy
[2] have proved the multiplicative analogue of the above mentioned result of
Erdds, Maier and Sarkdzy by showing that assuming (1), an Erdds-Kac type
theorem holds for the numbers ab + 1. The goal of this paper is to study the
multiplicative analogue of the mean (2), i.e., to study the sum

3) r=(umyO0|rlE E r(a6+ 1)
aeA bes

‘Research partially supported by Hungarian National Foundation for Scientific Re-
search, Grant No. 1901.
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224 A SARKOZY

One might like to show that assuming (1), the mean (3) is ~ logo;2= 2log g
(note that this is certainly not so taking the average of the values of r(ab)
instead of r(a6+ 1)). This could be considered as the *“sequences analogue”
of the Titchmarsh divisor problem. However, no asymptotics can be given
for the mean (3) as the following examples show:

Assume that x —»+ 00, H + 00, H <\ log x, and let

N —la:a”x,a=1 |Imod

piiH
B= :brx b= —1 JnodjQ p
p<H
Then writing
“) Y= \anay
we have U = exp”(2 + o(l)) HY and
T =exp *(log2 + o(l)) log*

(where T is defined by (3)). On the other hand, let

= ja:a” X 0< index of a modulop<P'1 for all p

B < index of bmodulo p <p —1forall p S 4

Then defining T and U by (3) and (4), respectively, we have

U =-exp *(2log2+ o(l)) H
logH

and

T=1(cTo(l)) (logH) logx

(where c is a positive absolute constant) so that T can be both much greater
and much smaller, than log x.
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As these examples show, the mean (3) may depend considerably on the
contribution of the small prime factors of the numbers ab+ 1. Thus we may
expect asymptotics for the average value of the number of divisors of the
numbers ab + 1only if we restrict ourselves to the divisors all of whose prime
factors are large enough depending on U = X 2(|-A||B) -1.

We shall use the following notations:

If A is a positive real number, then we write Pk = 1 Pand Xk =

PAK
= {n:(n,Pk)=1}. If AA> 0is a fixed parameter, then YI' will denote
summation over Xk so that, e.g., Y' means summation over the numbers
d\n

d with d\n, d GX k m Moreover, we define the positive integers nk{n) and
VK(n) by

(5) n = uK(n)vk(n), P(uk(m)) n K, vK{n) GXk-
We write
(6) T-R-(n) = t (vk (ti)) = 1-

d\n

Our goal is to show that if A, B are “dense” sets, K is large enough in

terms of U (defined by (4)), but it is not “very large” in terms of x, then,
writing

m tk=M m -1J2Y, ®{ab + 1),

we have
(8)

as expected. In fact, we will prove

Theorem. Assume that x is an integer with x ~ 3, K is a real number
with

€)] 27N K exp((logx)1?2)

and A,B C {1,2,...,x}. Then there is an absolute constant c\ such that
(10) Tk-2n0 1- -)Iogx
v P
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<cigagp +loglog x + log K

g X
K1!2Iog¥K

where Ty is defined by (7).
It follows that if

Y= 18] ° V[anIog log )élog’;';\g AD toI%g'A‘Z.K J)

then (8) holds.

We remark that in a similar way, one could sharpen the result in [8] by
proving a theorem analogous to the one above with sums a + b in place of
the numbers ab+ 1

2. Preliminary lemmas. Write
(") I(m) = {(a,b):a€ Alb£f B, m\(ab + 1)}

Lemma 1. If m is apositive integer, x*m andA,Bc {1,2,..., [x]},
then we have

(12) f(m) » 2min(|.4],|5]) —.

P roof. We may assume that
(13) \A\ Z \B\.

Then we have

/(m) -~ \{b:beB, ab+1 =0 (mod m} <
afA

- I{n:ni xian+ 1=0(mod m} ~ ~ +1) =
afA

atA m m

which, by (13), proves (12).
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Lemma 2. There is an absolute constant @ such that for K ~ 2 we have

M logd <o

d\Pk
P roof. We have

YA fi(d) logd 1
E — — =L -7'L b8i'=

d\pk d\pk P\d

=E'~ E " =E“o0 E

PAA plrdiffc pAK A(PK/v)

=E 16,(-1 E *r)=-E "~ M1 i-q

prA" \ <|(Pa7p) / prA 9K, q”p
=° ((s.ir) n =0((logA-)(logAT>) =0(1).

Lemma 3. There is an absolute constant G3 such that for K ~ 2, 2/ 1
wie have

#AZLI _(* *p-),{l |/| ) < c3logK.

Proof. By Lemma 2 we have

E'b E ;- g’
n"z n"z n"z ya|(n,Px)
(n,Pk)=1
- E E1=E E N=
NPk djPx t"z/d

d\n
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(logr) T,~T~T,

d\PK d\PK

= (log*) &4 (1 - +0(logA).

P< K V>

Lemma 4. There is an absolute constant c4 such that for K ~ 2, z ~ 1
we have

(14) o fogr
K log2K

Proor. Let Qdenote the set of positive integers composed of powers of
primes p with K <p ™ z so that Q contains every integer n with n » z,

n 6 Nk- Then we have

logr < log~ v-* J_
log A log K K<pbr p2
logr e
loe Kh p2'
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Using the prime number theorem, we obtain by partial summation that

1

(i6) KlogK'

K<p -

Combining (15) and (16), we obtain (14).

Lemma 5. There is an absolute constant G such that for K ~ 2, z ~ 1
we have

nSz

P roof. This follows from Lemma 3, Lemma 4 and

Lemma 6. Ifz”™ 1 and m is a positive integer, then we have

E |- E 2r(m).
*_
(ra>1
Proof. By
(1 forn=1
. \0 forn>1
and
<) Pra).
d
we have

-4 - N

(t,m)>1
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n1+zo||-:m/\-E E *p=1

r<r d|(;m dm dm <2

- §m>O(H|—]) am 2

A1+ 72 1= 1+ T{T) E 2r(m).
d\m

Lemma 7. There is a positive constant og such that uniformly for 2 E
< K <L we have

(17) E  ~ <CélocAex» (-in)-
P(n)"K 4 b "7
nSL

Proof. Set « = (410gAr) Then we have

(18) Y, = (alirl.y

P(n)iiK P(n)iK P(n)~K
n>L

. logL \
=P 4log K) I_I
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If K~ 10, then

(and the product estimated in (19) is bounded for 2% K < 10).
(17) follows from (18) and (19).
Write

h{m)=  d-1/2
d\m

and
M(z) ={m:m ~ z, m £ Nk, h(m) > 2}.

Lemma 8. Forz > 1 we have

(20) 1 <c7A'_1/2((logA") _2logz + ).
mEM(z2)

Proof. By Lemma 3 we have

21) yn J_<yV h(m)-1_yn~J yrnr1/2
u_|6fI1<(r) "y M maz " dim
d>1
=B ]{ZE N=E'WR2E"
1<d”z 1<d”™z thz/d
d\m
E LIV E Y N (LT e ' A
I<rf<2 i<2 I<d<2
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Here we have

) Kdiz daz,\KQ (-8 1-1< }I<ppgzz
< K-I"'WogK)-\

(20) follows from (21) and (22).

Lemma 9. If M, N, q are positive integers, am+x,am+2, m<tUM+N are
complex numbers and we write

M+N
9=, 0P
then we have
Y IBRRN ¥ 1+ E
X(modq) <n“"M+N

(n.g)=1

This is a well-known inequality; see, e.g. [6, p. 51].
Gallagher’s character version of the large sieve [5] (see also [6, p. 15])
will play a crucial role in the proof:

Lemma 10. If M, N, am+i, gm+2>m>am+N and 5(x) are defined as
in Lemma 9 then for Q ~ 1 we have

M+N
E N E° Iwl2a32+rf) e ki2
0<Q x(m°dq) n=M +I

where the asterisk indicates summation over the primitive characters x mod-
ulo g.

3. Throughout the rest of the proof, we assume that (9) holds, and use
the following notations: we write

L _ A20loglog* _ (log sr20log AT and y = XxL-

and define /(m) by (11).
In this section, we will reduce the problem to the estimate of Y2' f(m)
mty
by proving
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Lemma 11. There is an absolute constant cg such that if x is an integer
with a;>3, 1BC {1,2,...,a} and K satisfies (9), then we have

(23) Y Y 'I'K'\d:>+|) -2y nTl\) < ¢8z2(loglog:r + logA).

at-4 &£B m<y

Proof. Clearly, we have

(24) -2 Y 1 rokmny-2 Y 1
m\vK (n) m\vK (n)
m2<vj((n) T2<bK(N)

Let
T™ = {(6,6m):a£ A, bEB, m £ a4k, m\(ab + 1), m2” uk(ab + 1)},
2= {(a,6,m):a£ A, bEB, m£ Ak, m\(ab+ 1), miivy],
3= {(a,6,m):af£ A, bEB, m£ Ak, m\(ab+ 1), y2 < uk(ab + 1),
Y2< " a(g&t 1)},
M= {(a,bm):af A, bf B, m£ Ak, rn{ab+ 1), uk{ab + 1) < t/2,
va(oot+ 1) < m2 /" y2},
75= {(a,6,m):a £A, bEB, m£ ﬂ(, m\(ab + 1), ab+ 1< i/2Z, m ~ 3}
and
6= {(a,6,m):af A, bEB, m£ K m@b+ 1), ab+ 17 y2L,
vK(ab+ 1) < y2, m ”* y}.
By (24), we have

@) v Yy fAfli+D)- M < {(ab):a£A bEB} =\A\Bix2

ae/l beB
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Moreover, clearly we have \122\ — XA/ f(m)i P-3=TIli \ P2, TA —Ti2\ P\
m=y
and Tr4 C 15w Tze, so that

(26) LAy - £ ,/(rot =\ -\n2A A
mhy

AInx\n2+ |72\ tra| = [rr3| + [tr4| * |tr3 + [tr5m Tr6| A
N3]+ [tr5 + [Tr6]
so that it remains to estimate |7£3|, [Rb\ and |7£6|.

It follows from y2< m2” xk(ab + 1) that y2<m2ii ab+ 1/ x2+ 1s0
that y <m ” x. Thus by Lemmas 1 and 3 we have

@7) [T~ {(a,6,m)}:aEAbEB,m ENk,m/@&+ 1),y <m ~ s}

= X1 /(TQ=2min(|4, B)a » <
Y<Tx yKT"X
B Iog(xly) logK < z2(log A+ log A) < x2(loglogs; + log AY).

V log K

To estimate \Ps\, note that ab+ 1< y2L implies min (a, b) ~ yL1'2. If,
say, a ™ yL112 holds, a is fixed and m EAik, m~ y < X, then the number
of integers bwith b~ x, ab+ 1= O(modm) is at most [*] + 1~ 2~. Thus
by (9) and Lemma 3 we have

1
28) M8\ <2 {a:aryLI2ZI\Y /A< xyL 12 <
TMMby
< xyLl2 199Y g —xa 32 +log K
log K

Assume now that (a,h, m) E P& Then we have

_ ab+ 1 . V2L _
VlK(allf"' ﬁj— W(Zﬂb+ 1)> —y-—2'— L.

Let mi denote the least positive integer with rm\\uk(ab + 1), mi > L. All
the prime factors of Ufc(ab + 1) are » K, thus mi satisfies

(29) L<m~ALK, Pmx)~*K.
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By m GNk and P(rm\) # K we have (m,mi) = 1. Thus m\(ab + 1),
mil mg-(a6 + 1) (@b + 1) imply

(30) ab+1=0 (modmmi).

Moreover, we have

(31) W) UyLK —x—< x.
Ju

Without loss of generality we may assume that [M| ~ |B|. Then ain (30) can
be chosen in |M| ways, and if a, m, m\ are fixed, then, by (31), an integer b
satisfying (30) and b~ x can be chosen in at most

+ 1< 2
mm1l

ways. Thus by (29), for |[M| ~ |#| the number of solutions of (30) in a, b, m,
mi is

2X
SW £ I E :a « - /\E T i
TiyL<miaLK™™T A m'<Eynm Lameihe
P(rw)~K P{m\)~K

so that, by Lemmas 3 and 7, and in view of (9),

bgT

32) \1\< min(|M|, |# TlogA™j logA'
(32) min(MJ, [#)x 0gAN logA'exp 1

< x2logxexp(—5loglogx) <Cx2.

(23) follows from (25), (26), (27), (28) and (32), and this completes the
proof of the lemma.

4. In this section, we will estimate YI' /(m)-
mty

Lemma 12. There is an absolute constant eg such that ifx ~ 3, A,B C
C {1,2,...,x} and K satisfies (9), then

(33) E/(m) - e E' 2109

mAy m<y < [BA'V2log2 A
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Proof. Define A4(z) as in Lemma 8, and write A4 = A4(y), Ad
so that

A= wim?ry me Ak, h(m)=" d 2>2",
d\m

<
I

m:w”y mEAK, h(m) =" d 12" 2
dm
and
At UAt = {To: to " vy, to GJ/a}, At MAt = 0.
First we estimate ~ /(to). Clearly we have

ya

/(m :I R x(m%m)

a€.[] &E#
for all to.

By Lemma 6, the contribution of the principal character Xo can
estimated in the following way:

N

. E E » - U <
>VI ) aen bes " m
1 1 1 -
< Wil \n\g\ =
eon E ETWIl* o
(ab,m)=1

wm 55 -EELT 1-Mw=
(ab,m)=I

=—l v v 1+ (- _i) u|s]|s

Nro). T (&i N o(ra)  ra
(ab,m)>1
/ \
< {u - Ng_ nilo| ~
wor E Bt E i +(1j-s) wo
\(a,1)>1 (b,Tn)>1 /
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< 2X
Pm T \ip{m) mj

(i,m)>1

2X

" <o (o) +
)

<p(m) m )"~ X<p(m)

Thus we have

\A\B\ 1 1\ r(m

(34) f(m) - m < X io(m) mJ+ %/7( +

*ip(m) E x(_l)Ex(a) E*w ©

x(m atA beB

X‘)O

2 <AT)? <B{m) x(modm) afA bel

X#Xo

{ R(p(m)

If the modulo m character \ is induced by the modulo g primitive character
Xi (so that gjm), then X(N) —Xi(n) for all (n,m) —1. Thus writing

Ti(X,d)=32 x(a), T2x, d) =Y, x(b)

a€a bEB
d\a d\b
and using
s>H i ss:>i.
d\n
we have
(35) E E E x (f)
x(modm) afA beB
X0
= E E E vd xa9 E E v xo
x(modm) af£A \d|(a,m) bEB ycil(6,7n)

X/X0
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=E E* EMag(x,<o 5>(O,£I,(x <0 <

g\m xiniod?) d\m

ol
<]|mx(m°d9) \o|||rE |I‘>(X<d .c% I Iﬂ
?7>1

where the asterisk indicates summation over the primitive characters x mod-
ulo g. Using the inequalities 2\uv\ * u2-Fn2, (1 + u)2 U 2(u2+ v2) (both

for real u, v) and the Cauchy-Schwarz inequality repeatedly, for m GM we
obtain

(36) Elnix,d E17(x,<<)]) «
,d\m f \dm

(Elrfxd) ., ENx.-oi

yd|m J yd|m
j \ 2
¢ Ur(d - EIBKd -

\d<L / \d~L
\' 2 \
+ EMx<i)l + EMx.-0l <
d\m d\m
\d<L / KdZL Yy
\
< A d Y2(|TAx,d)|2+ |T2(x,d)[2) E<r +
d\... 1dItx 1/2)

\d<L

/ \
:\\m( |r Xx.d)|2+[TAx,d)[9 d% 1«
\d~L /
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< NN 2(ITUX,d))2+ |T2(x,ii)|2) +
d\m
d<L

+T (M) E{\Ti(x,d)\2+ \T2(x,d)\2).
d\m

d"L

It follows from (34), (35) and (36) that

@) e/(rw)-ixiisi £ i < £t{+E 24E£ HE. +E S

mEj\4 me4
where
E,-E (*2 5
msy( ("] ma o
e2=e; N e e*£ “IN>r.
mEM ?lm ximod?) d\m
g>1 d<L
edFe N e e' eiN-a*
m € X 9Im x(mod(j) d|M
>1 drL
a?d £)4, resP- X)5 are sums analogous to and X)3 with T2 in place
of Tj.

Clearly, we have
r(m)
E' i |/||/||/l
Thus by Lemma 4 and (9) we have
A ,T(m)
E. "z eb ij/y?'tal a4+ E <(m) =
mby
~ |Og§ . J, logy |ng
22K logZK T X log A < XZK log2 K
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In Yl2 we have gq\m, d\m, whence [q,d]\m. Write m = [q,d\r. It is easy
to see that

(38) <p(w) " ip(u)tp(v)

for all u, v. Thus by Lemma 5 and in view of (9) we have

£2sE-RE EfI(XM2E

A [9”‘x(m odg

« (i£8|L + logA-) V V ' o\n(x,dtf<
t loc A >0, &gy U M "
[ad%
</M"E >E AT N 4
d<L x(modg)

Write (d, ) —s, d —(d, q)t = si. By (38), we have

B = 1r9- THy) = ¥

Thus we have

log 2

|OgKE W)/ZE V(9b|O E* rl( )|2

s<L t<L/s x(mod?)
slg

Let 50= K for 5= 1land let So= s for s » 2. Moreover, let J(s) denote the
set of positive integers j with 2J~1so * y, and forj 6 J(s), let Jj{s) denote
the set of integers n with 27~1so < n * 2?%0- It follows from 1<q” vy, s<,
g GJl/k that g6 Jj(s) for some j £ ~(s). Thus we have

o e, REE Y E E IAE ruo)l:

s<L t<L/s V(O je.7(s) qeJij(s) xftnod,)
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By Lemma 10, for st < L we have

EEAE >N
i€i(s) qedi(s) v yx(m°<ig)

<E

JEi(s) qedi(s) x(modg)

SE 5™ E +}r Pwr<

jed(s) qU 23«0 Ximod«)

« i€I%é 25 E 1s

stie

E y) E ‘<
a<Xx
s<|a
X\ X [ fors=1

< Y (s + 1) ft for5> 1

Then separating the 5=1 term in (39), we obtain that

=  logx (X x N (sii ™/ X\ X\
vio<rkt (y ")*7:

log X I X

SlogK \K* X S ez +a2 S
l<s<L K

s3/2) S ) <
K 1 | t<L vv '

< loga /x *. * % - N\
gk (I +»e>+ e "V
Here we have

E 37Ny Ix- xx.xx
s<L

and

E " = M 6-37?) '- 1«
I<s<L s<L K<p<L 4 A '
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> 1 1
2-j p32  A'lY2log K
K<p<L
so that
logx /1 1 1 log x
2 logA VA TARY T Av2i0g AT S X A2l0g2K

To estimate ~ 3, we use Lemma 9. We obtain that

ExENEE E

Tby g\m d\m x(niodg)
d>L
m <p(m d
mSy i )9|m dm a6-4 ( )q\m d\m
d>L d\a d>L

By g\m and djm we have [q,d]\m. Write (d,q) = r, q= (d,q)s = rs and
m = [g,d]t = dst. Then using (38) and « (.v) o r(u)r(v) (for all u, v) we
obtain that

E 3«*2E SEE E )

2\"‘ T{d) v-/ v"\' ) £ r) o
LU +,dvid) fif \.STA rt'v x>
¢ XV YUyl R i) (y ()
bh,Md) * vi?»v(n)/ J* | fe 9(n)/

Here we have

Ens T G+E MW « T (54)« oo

nty K<pe<y (I ¢} K<p”x g
so that

E 3« a2logax E r2(d)

3 10g4A' LUjyM d)"
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Here the innermost sum is
T %
| |
«KE®*L'm
L<d

whence

E x2log4 x X2
3c ¢ ~K

and can be estimated in the same way as and )['3. Combining
the estimates above, we obtain from (37) that

’ -
(40) E/f>VBEi -
mEM MEAA
X2log X X2log X X 2logx
Klog2K + A'll2log2A ' A ~ Al2log2k
Finally, by Lemmas 1and 8, and in view of (9), it follows from (40) that

E’a»)-nunk

mby Thy

~T6J11 mGA1  / \m£M

< ELM-ua E N +E (J(->+T )<

TE M 771G M

g2log & x2log x
AV2l0g2 A +m|65A't r +Fn)§ Anog2K TX2p s mS

a2log x x2 | logy \ x2log x
Al2logA + AY2V(logA)2 7 Al/2log2 A

and this completes the proof of Lemma 12.
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5. Completion of the proof of the theorem. By Lemmas 11 and
12, we have
(N
(41) £ £r1 K(«B6+1)-2U|r| - <
aen bes Thy m
|
<Yy { ' ampeoc iy nusielt
m!)_zl\ q T+2£ /(*»)-HUSIE; o <
aen bes mhy Thy Thy
log x

< x2(loglogx + logK +
(loglog g K12log2K) '

Moreover, by Lemma 3 we have

(42) E=-**11] =

Tby p<K

g cTogxI] (1-0) <

+
L-J m m E
oL PUK 4

m<y m<x
« (log IOI;\IK (1_p) tlogA "~ logX +logK C loglogX+ logK -

(10) follows from (41) and (42), and this completes the proof of the theorem.
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A DIRECT APPROACH TO KOEKOEK'’S
DIFFERENTIAL EQUATION FOR
GENERALIZED LAGUERRE POLYNOMIALS

H. BAVINCK (Delft)

1. Introduction

In [4] Koorwinder studied some classes of orthogonal polynomials. One
class was given by the polynomials ELn'N(x)J e which are orthogonal on
n
the interval [0,00) with respect to the weight function

e xe w8 NO.

They can be written as Lg'N(x) = 1, and for n ~ 1,

0+2).-!
(»-1)!

1) 1£"(z) = 1+ v LAVK)+ NA+pA~LA(x),

where b1?\x) denotes the classical Laguerre polynomial defined by

(1.2) 4o5(x)= 1 £ (-<)»(0 + K+ 1), tE =
- A

(13 _C L )niFl (a +1 *)

The representation (1.2) is valid for all real a; (1.3) is not defined if a is a

negative integer. Note that Ln”(x) = L"*\x).
For these polynomials J. Koekoek and R. Koekoek [3] found a differential
equation of the form

(1.4) N N ai(x)y€E"\x) + xy"(x) + (a + 1- x)y’(x) + ny(x) = 0,
t=0

0236-5294/95/S4.00 © 1995 Akadémiai Kiadd, Budapest



248 H. BAVINCK

where the coefficients ar(x), r 6 {1,2,3,...}, are independent of n and
ao(x) = ao(n,a) depends on n but is independent of x.

This differential equation is of infinite order in general, but for nonnega-
tive integer values of the parameter a the order reduces to 20 + 4. For some
special integer values of a such a differential equation was already known (see
[3] for references). From Koornwinder’s representation of the polynomials J.
and R. Koekoek derived two systems of equations for the coefficients a,(x)
and computed a number of the a,(x). Then they guessed what the general
formula for the coefficients might be and they showed that it actually satis-
fies the systems of equations. Furthermore they proved that the solution is
unique.

th a conference in Erice (May 1990) R. A. Askey [1] posed the problem of
finding difference equations of similar form for generalizations of the discrete
orthogonal polynomials which are orthogonal with respect to the classical
weight function at which a point mass at the point x = 0 is added. In [2]
a solution for this problem for Charlier polynomials is given and a method
of finding the coefficients is introduced. In the present note this method is
used to derive a formula for the coefficients a,(>k) in the Laguerre case and
to give a new direct proof of the results in [3].

2. The systems of equations
Inserting (1.1) into (1.4) and using the second order differential equation

for the Laguerre polynomials, J. and R. Koekoek obtained the following
systems of equations for the coefficients cu(x):

22) n  ai{x)D'LMx) + (a + D~ at{x)DHiL[a\x) = 0

forall real x,a > -1, N~ 0Oandn=0,1,2  Here D = For n —0 the

systems reduce to ao(0,a) = 0. In the sequel we take n ~ 1. By using the
well-known formulae for Laguerre polynomials, which are valid for all real x,
for all real a and for all n G{1,2,...},

(2.3)
and
24 41°(%) + 43 1)(%) = 4 “+1,(%)
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the equations (2.1) and (2.2) can be written in the following form:

@) E(-1)4(*)4144)=AN4°-44),
2o E(-uumd-4-44) = T e

Here L™l (x) = 0 for all real a, all real x and all k £ {1,2,3,...}. If we

multiply equation (2.5) by L”i\x) and equation (2.6) by L”\x) and
subtract we obtain

X >i)4(*) [444)4444) - 4-444)4°4)

=4-44) "4 -4 W-"4%,-4)

The right-hand side vanishes for x = 0, whereas the expression between the
square brackets at the left-hand side is different from 0 when x —O0 (provided
that a > —1). Since this equation holds for all n we may conclude step by
step that ar(0) = O for all i £ {1,2,...}. If we substitute x = 0 into (2.5) we
conclude that

/ 4y  T(a+2)/,M (a+3) |j in +a+ 1\
we(rrey=x1- ((0)=1AT)IF =( n—1)

Hence the systems of equations (2.5) and (2.6) can be written in the form
Q1) £ (-i)4-(*)4-t'4) =4"(0)4“44) - 44)4-44),

00

(2-8) 2 (-Dn()ii-t4])(*) =
r=1

=4%44)4-44) - 4-44)4-4" (o),
forn=1,2,3,..., a- 1and all real x.
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Proposition 2.1. Each solution a,(x) (r = 1,2,...) of the system (2.8)
is also a solution of (2.7).

Proof. By means of (2.4) the left-hand side of (2.7) can be written as

0o co

£(-1)4 (X)L Si+,(x)-£(-1)4(*)4-tiHL»)-
1 =

If the coefficients eq(x) satisfy the system (2.8) for all n, then they also satisfy
the system (2.7) if we show that

4 0)(0)EN 2,(x)- 4 o)(x)E W 2(0) =

4°+,(0)4“+2,(x) _ 4«+Y(x)4«+2)(0)
44 ) (054 Px) - 44 x) 450

By combining terms and using (2.4) this is easily verified. O

3. Solution of the system

We now proceed to solve the system (2.8). We first rewrite the right-hand
side by using the following formula for Laguerre polynomials:

LG +1\x) _ ba\x) _ nx L ~ 2x)
IL“+1)(0) L@){0) (a+ D(«+2)L{*+*\0)’

a direct consequence of (1.3). Equation (2.8) becomes, if we write n instead
of n —1:

(3.1) £(-1)4 (X)43H1>)) =" 4 “+1)(0)4% 3,(x).
i=i

If we consider (—)*a,-(a:) as unknown, the matrix T of the system is trian-
gular with entries im for which we have

tni = L{*+'+1\x) for n,i=1,2,3,....
We will show that the entries uni of the inverse matrix U are
(3.2) uni = 4"T M'2)(-*) for »,*=1,2,3,...
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In order to prove (3.2) we use the generating function for Laguerre polyno-
mials

00)
71=0
It follows that
YAL(~a~n~2A - XW Y, L™M+i+1\x)tm= (1.
-0 m—o

and therefore the power of tn ! at both sides must be equal. Hence

We may conclude that the unique solution of the system (3.1) is given by

Iw) (-ir«,« = £_ d:r~ 2(-*)4“+1)(0)4*“-3M,

r k=

i=123,....

From this formula we now derive the result in [3]:

o4 & (-')HHC -i)C --)(

i=1,2,3,..

(3.3) and (1.2) show that a-(x) is a polynomial in a, since F”+170)
contains a factor a + 2 for all k »~ 1. Moreover by (1.2) the Laguerre

polynomial L~*\x) and its derivatives are polynomials in a. Hence (2.1)
and (2.2) are relations between polynomials in a. In the proof of (3.4) we
use (1.3) and therefore we have to assume that a is not a negative integer,
but by analytic continuation the result remains true for all real a.

(-N4(z) =
X y-(-a-i-1),—fr(a+ Ak(a+ 2)fctl
a+2fro (*—*—1! k\ (k + !
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y eeeno, yy' G N

“ Sra(a + 4)n

(~Q~ *~ N«-fc-i (0 + 4)E(a + 3)E
"y 0 (T—Kk—1) o (n+1)!
t-i o
H +ft+iU-in-*),--»
J=0  iro"K-« - *- hm(i - m)l(« + 4)j—m
(@+3)t 1 "
_Jl > Iy mk-a -« m(i - m)l(c + 4)jen

-g 1(-D*(« + dfe(—=+ *+ NTA—
K\(k + D!(i —A&—1)!

o @31 (-D)™1(*-HA
_,E_O*JHE mi(—a-i- Dm@- m\G- m+ DI(r-j+m- 1)
A -t+j+lLa+4d4+j-m ~
2" j —m f2 -
t-1 .
:_S>|+]__
j=0
(a + 3);_,(—1I' Yy —a - 2),W .
E mica-i- pmG- muG- m+ 0ic-j- iG- m+ 21
{1

(@a+3)_2-1T7(-a-2), 31 _
= SZO*J+1j!(j +D)(i-j - DI+ 2)i — (/-a - fr-l 1 Ig/_

I'—l— (a+ L 2)tJ 1(—a - 1),
j£=0* > NG - - DY(—a - r- 1)-
=1 o C -> +3)-

As is pointed out in [3], from formula (3.4) it easily follows that for nonneg-
ative integer values of a the coefficients at(x) vanish if r> 2q + 4.
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ON DETERMINANTAL AND PERMANENTAL
INEQUALITIES

B. GYIRES (Debrecen)*, member of the Academy

1. Introduction

The aim of this paper is to prove four inequalities concerning determi-
nants and permanents of matrices. The first inequality is related to the re-
sults of the author [1] and is an extension of the van der Waerden-Egorychev
theorem [4], [9].

The second inequality is the determinantal correspondence of the first
one. The third and fourth inequalities are inequalities of Szasz type and are
related to the results [2]. The four inequalities are connected by the common
source (Lemma 1.1) of their proofs.

Let n ~ 2 be a fixed positive integer and let

Fk m={(ti,... *R) 117 ii < e < ik il n}

me the set of all combinations of order k of the elements 1,..., n without rep-
etitions and without permutations. We define an ordering of the elements of
™ as follows. The combination (*i,..., ik) is said to precede the combination
(ji,.. .,jk) if the first nonzero difference in the sequence j\ —t'i,... ,jk —ik
is positive. Thus, to each element of I'g there corresponds an integer s, 12
N s A (™) such that this element is at the sth place in the above ordering
(s is the ordinal number of this element in I'*).

The complement of G IT with respect to the set {I,...,ra}
will be denoted by *. %) GTn_ft

Let M be the set of all n x n matrices with complex entries and let
A = (ajk) GM. Matrices

yn ... agjk\
oo o aikjk /

* Research supported by the Hungarian Foundation for Scientific Research under
Grant No. OTKA - 1650/1991.
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256 B. GYIRES
with
(-1 (ji, .. 5it) ET&

are called k rowed matrices of A (k = 1,..., n).

The permanent of A E Ad will be denoted by Per A. Properties of
permanents used in this paper can be found e.g. in [6].

The permanent (determinant) of a A rowed matrix of A E Ad will be
called a k rowed permanental (determinantal) minor of A, respectively.

The common source of our proofs is

Lemma 1.1. If A E Ad then for k —1,..., n,

*2) N PerM1"ik Per *i—"<i<2-’K' (k] Per A,
(13 = (1) Det/1

where the summations run over (1.1).

P roof. The statement of the Lemma 1.1 is a consequence of the Laplace
expansion formula, which is applicable in the case of permanents too.

2. On inequalities of van der Waerden type

(a) The matrix A 6 M with non-negative entries is said to be a doubly
stochastic matrix, if all of its row and column sums are equal to one.

Let Ao € Ad be the doubly stochastic matrix, whose all entries are jk

The following conjecture was published by van der Waerden [9] in 1926.

Let A GAd be a doubly stochastic matrix. Then

(2.1) PerA» ﬂ}
nn

with equality if and only if A = Ao-

This conjecture was proved first by G. P. Egorychev [4] in 1980.

The proof of the following inequality is based on the theorem of van der
Waerden-Egorychev.

Let Tfc(A) be the sum of all k rowed permanental minors of A G Ad,
where Kk = 1,..., ra and let Th(A) = L

Moreover let

TRA) = ifc(d) (k=0,1,...,n).
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Theorem 2.1. If A(EM is a doubly stochastic matrix, then
(2.2) tk{A)tn-k(A) = ~ (k—0,1,...,n)

with equality if and only if A = Aq.
Remark. For Kk = 0, or K = n Theorem 2.1 gives the theorem of van der
Waerden-Egorychev.

P roof of Theorem 2.1. Applying the Schwarz inequality in (1.2), we
get

(23) (£ Per2 *(£ Per2 = Pel /1'

Here and in the next formula summations are extended over (1.1). Since
the entries of A are non-negative numbers, we obtain

E P2 ~r*(A) (k=o,i,...,n),

which gives us the inequality
(2-4) tk(A)tn_k(A) » PerAn™ (NN

by (2.3), and by inequality (2.1). Since, by the van der Waerden-Egorychev
theorem, Per A= "~ if and only if A = Ao, and since

(R0 = Ky tn-kag) - TR

1 n\
Ik{Ao)tn—f(A0) = Erli\ n (k=0,1,..., n),
n
we get that equality holds in (2.4), consequently in (2.2) too if and only if
A = Ao- This completes the proof of Theorem 2.1.

(b) Let E be the unit matrix. The matrix cE, where c is a positive
number, is said to be a positive scalar matrix. Let A* 6 J14 denote the
conjugate transpose of A £ A4, and let tr A denote the sum of the diagonal
elements of the matrix A.

For an A GM let Ck(A) be the (£) x (E) matrix defined by

Ck(A)  (Cff) (LWP,ui k=1,...,n),
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where
Ci? = Det

and the ordinal numbers of the combinations (j;... ,,jk) and (*i,.--, ik) in
the ordering of  are p and q, respectively. Further let

D2(A):=tTCKA)C*(A) (k= 1,..., n).

Theorem 3.2. Let n be a positive integer. Let A £ Ad. Then

(2.5) DK(A)Dn-k(A)z(?\DetA (k=1,..n- 1

with equality if and only if
(a) Kk b n —k and A is an orthogonal matrix with determinant one, or
(b) Kk = n—xk and A is an orthogonal matrix with determinant one mul-
tiplied by an arbitrary positive scalar, or
(c) A is the zero matrix.

P roof. Using Schwarz inequality on the left side of (1.3), we get (2.5).
We remark that to get equality in (2.5) the condition DetT ~ 0is obviously
necessary.

First, let us suppose that DetT > 0. In this case equality holds in (2.5)
if and only if a constant \k ¢ O exists such that the equations

Y1Qq+jn) .
(2.6) (-1)«=! DetTf"f = Ac DetTA1

are satisfied for all (ii,..., ik) and (ji,...,jk) of the set (1.1). Condition
(2.6) can be written in the form

£CK(A)E = Xk (DetM U n~k) = AKPCn-k{A)P (k= 1,...,n),

where £ = (£,/) is the matrix with elements
fj- 0, i®Y fa: [+l (=] 00, ’

and P is a permutation matrix. By the theorem of Franke ([5], p. 104, Satz
31) we have

(2.7) (Det A)(*: 0 = A~(Det A)(V).
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Using the identity

we get by (2.7) that
Xk= (DetA)n  (k=1,..,n—1).

Since equality holds in (2.5) if condition (2.6) is satisfied, we get
DI(A) = DetA = Q (D et A)%.

We obtain from here

(2.8) (DetA)» = O E E D¥2

Z(il.-3k)e T (il,-»*)€rk
> M E a;) >

A ( DetCfc(A)) (*) = (Det NM)»

by using again the theorem of Franke, and the equality

(E) *
@ »
The first inequality in (2.8) is valid by the well-known inequality between

the arithmetic and geometric means, and equality holds here if and only if
all the quantities

(*1|—«"*)€lk

are equal. The second inequality of (2.8) holds by a theorem of Hadamard,
with equality if and only if Ck{A) is a diagonal matrix. Since equality should
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hold in both inequalities of (2.8) it follows that Ck(A)Ck(A) is a positive
scalar matrix i.e.

CK(A)C*K(A) = Ck(AA*) = d2E, d> 0.

In this case

(2.9) DetA = , DI(A) = DA _K(A) = trCk(AA*) = (fyd2,

thus equality holds in (2.5) if and only if dn —d2k. If n ¢ 2k, then the only
positive solution of the system (2.9) isd — 1. If n = 2k, then (2.9) is satisfied
by an arbitrary d > 0. Thus Ck(A) is an orthogonal matrix, and by Theorem
2 of [3], A is an orthogonal matrix with determinant 1, if m ¢ 2k, while in
the case m = 2k A it is a matrix which can be obtained from an orthogonal
matrix with determinant 1, by multiplying it by a positive scalar.

If Det A = 0, and equality holds in (2.5), then the matrix

CK(A)C*k(A) = CK(AA*)

is the zero matrix, consequently AA*, and thus A is the zero matrix too ([3],
Satz 1).

It is easy to verify that if either condition (a), or (b), or (c) is satisfied,
then equality holds in (2.5).

This completes the proof of Theorem 2.2.

3. On inequalities of O. Szész type

(a) Let Rk{A) be the product of all k rowed permanental minors of A,
K=1,...,n, and let f20(A) = 1L
As usual, matrices

A(ii,...,ik) := (n,....iQ0elIT

are said to be principal k rowed matrices of A GM, where k = 1,...,n. It
is obvious that A(l,..., n) —A.

The permanent (determinant) of a principal k rowed matrix of A GM
is said to be a principal k rowed permanental (determinantal) minor of A.
Pk(A) (Qk(A)) denotes the product of all principal k rowed permanental
(determinantal) minors of A, where k —1,... ,n.

For brevity let us set

agk(A) := (A) (k=1,...n).
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In [8] O. Szész refined Hadamard’s celebrated inequality in the following
Vvay.IfA E M is a positive definite Hermitian matrix, then
Gi(A) "~ q2(A) N " an-i(A) N an(A)

with equality if and only if A is a diagonal matrix.
Hadamard’s determinantal theorem states that if A £ A4 is a positive
definite Hermitian matrix, then

(3.1) Qnr"Q"MA)

with equality if and only if A is a diagonal matrix.

Using Hadamard’s theorem we give a short and simple proof of Szész’s
theorem (another short proof can be found in [7]).

Let 2~ Kk~ n and let (*!,...,**) EL. If A is a positive definite
Hermitian matrix, then the matrices A(i\,..., i*), adj A(ii,..., %) have this
property too. Applying the Hadamard’s thorem, we get

Det (adjA(ib ...,0)) = (DetA(rs ..., r*))icl A Qk-i (A(iu ..., r')).

Consequently,

3.2) QM)i (Ua*_1(1(n,....,r*)))*=T,

where the product is extended to ™, Since the factors of Qk-i(A) have the
common multiplicity

RN
(*")

in the expression
JjQjk_i(A(i',...,ijfc))
and since the identity
E)_) 1 (;:1)
hi.) k-1 fill)
holds, we get by (3.2) that
(3.3) gk{A) ~ gk-i(A) (fc=2,...,n)
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which is exactly the inequality of 0. Szasz. Equalities hold simultaneously
in all inequalities (3.3) if and only if equality holds in (3.1), i. e. if Alis a
diagonal matrix.

(b) Let Pk(A) be defined by

nA)~18 A (= L

It is obvious that pk(A) is the geometric mean of all principal Kk rowed
permanental minors of A.

Theorem 3.1. Suppose that A = (ajk) £ A4 is a matrix with non-
negative entries whose diagonal elements are positive. Then

(3.1.1) Per A~ Pi(A)p,_i(A) A A p\{A)prtk A
A A PI-2(A)p2A) A Pi(A)

with equality if and only if all principal permanental minors of the matrix

fan ()]
(3.1.2) A - = B{A)
\(0) nn
are equal to zero.
For brevity let us set
(m)k ) (=

A matrix A GAd is a said to be a dyad if the representation
A = ab*
holds, where a and bare n dimensional column vectors, and b*is the transpose
of b. This representation is said to be positive if the components of both
vectors are positive numbers.
It is obvious that

rk(A) :=rP (A) (*=1,...n)

is the geometric mean of all k rowed permanental minors of A G Ad with
positive entries.
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Theorem 3.2. Suppose that the entries of A EM are positive numbers.
Then

(3.2.1) Per A A ALA

A (n)kri(A)rn-k(A) ~ AN («),E{* @)
with equality if and only if A is a dyad with positive representation.

Proofs. We prove Theorems 3.1 and 3.2 parallel. The numbers (3.1..)
and (3.2...) refer to Theorems 3.1 and 3.2, respectively.
We need the following

Lemma 3.1. Under the assumptions of Theorems 3.1 and 3.2, the in-
equalities

(3.1.3) pk{A) >pL(A)pk-i(A) (k=1,...,n; pO(A) =1
and
(3.2.2) rk(A) Z kn(A)rk-i{A) (k=1,...,n; roA) =1)

hold, respectively.

P roof of Lemma 3.1. Since the entries of A are non-negative, and the
principal k rowed permanental minors of A (permanental minors of A) are
positive, we get by Lemma 1.1

(3.1.4) Per A » Y Per A(rx,...,**) Per A(*i,
(L >)er™
! " we 'k
= YA ~
(3.2.3) Per A (l{l B‘ YA PerAfl f PerA.}_.Ilnn_K

where in (3.2.3) the summation is extended over (1.1). Using the well-known
inequality between arithmetic and geometric means, we have

(3.1.5) pk{A)pn_k{A) * Per A,
(3.2.4) (1) rfic(A)r”_fc(A) = PerA

by (3.1.4) (by (3.2.3)). If K —1then
(3.1.6) Pi(A)pn_i(A) ™ PerA,
(3.2.5) nri(A)r,,_i(A) 1 PerA
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by (3.1.4) (by (3.2.4)), which gives us (3.1.3) ((3.2.2)) in the case of A= 1.
We can justify (3.1.3) ((3.2.2)) using (3.1.6) ((3.2.5)).
Namely, the entries of A € m are non-negative numbers, and the diago-
nal elements of A(i\,... ,ik) (the entries of  ™3*) are positive, thus (3.1.6)
((3.2.5)) is applicable. Therefore

Per A{i\,..., ik) = (PiA(i\, ..., I Pk=A(i\, ..., it))

and

r < :ii *K K i) n*, K:t))*i.
thus
(3.1.7) Pk{A)" (M A (A («,,...,"))Pbl (A (»1....... Y )1,

where (r'x,..., i) runs over I'&, and

(3.2.6) r(a)i (n r,K i) a»1K i))~*

where the product is extended over (1.1).
It is not difficult to see that

I[Pi(A(iu...,ik)) = Pp-"iA),
and
"\ ueraN\?
MK i) =39)®,
moreover that all factors of Pk-\(A) have the same multiplicity

@K _ s g
(*-1)

(3.1.8)

in the expression
L Pk-i(A(ii,...,ik)),

and that all factors of Rk~\(A) have the same multiplicity

(3.2.7) (iff) =(n-k+If
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in the expression

Thus (3.1.7) ((3.2.6)) can be reduced to the form

(3.1.9) Pk(A) 7 PK® (A ) (M- K+1)°

and

respectively.

Taking the (£)th ((*)2th) root of both sides of (3.1.9) ((3.2.8)), and
taking identities (3.1.8) and (3.2.7), and the identity

into consideration, we get that (3.1.3) and (3.2.2), i.e. (3.1.1) and (3.2.1)
hold.

The statements concerning equality can be proved as follows.

It is evident that equality holds simultaneously in (3.1.1) if and only if
the equation

(3.1.10) Per A —Pi(A)
is satisfied by a matrix A with non-negative entries, where all principal

permanental minors are positive. Accordingly, our aim is to find all such
matrices.

Let djj (j —1,...,n) be the diagonal elements of A. Using the well-
known Cauchy expansion formula, we get
M
(3.1.11) PerA = P1(A) +'£ M B(A))
k=2

by (3.1.2), where
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Hence equation (3.1.10) is satisfied by A if and only if

(3.1.12) £ s k(B(A)) = 0.
k=2

Since all terms of the sum Sk(B(A)) are non-negative and the diagonal
elements of A are positive, (3.1.12) is satisfied if any only if

(3.1.13) PerB;;;$(A) =0, (h,...,ikyer*, k= 2,...,n,

i. e. all principal determinantal minors of B(A) are zero.

Conversely, if conditions (3.1.13) are satisfied then (3.1.10) holds by
(3.1.112).

The statement that equality holds simultaneously in (3.2.1) if and only
if A is a dyad with positive representation can be proved as follows.

It is evident that equality holds simultaneously in (3.2.1) if and only if
the equation

(3.2.9) Per 1 = n\Ri(A)”
is satisfied by a matrix with positive entries.

Let A = (ajk) E M be a matrix with positive entries. In this case the
guantities

~TPer A, HA)"

N AHA)

are the arithmetic and geometric means of the positive numbers
(3.2.10) fljtj... antn, (ij,...in) € ||,

where [ denotes the set of all permutations of elements I,...,n without
repetitions. Since by (3.2.9) these means are equal, we have

(3.2.11) aig ee-anin=a >0 forall (ib...,*,) GL4 .
From (3.2.11) for the permutations
(i1i ooomki ik+ii eee5*i) and (*1, eeetik+li iki ***) in)

we get
ablktl  afcH.O+i
akik ak+l,ik
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hence

akj+1 /m 1 uy
----- - = [+l (] = Dresen**- 1)

K

by the substitutions ifc = j, ik+i =j + 1, where ctj+i is a positive constant.
Using this result we get that

ol — (J,k—1,..., 7D,
where
A =1 \j=a2 (j =2,...,n),

i. e. A is a dyad with positive representation.

It is easy to verify that equation (3.2.9) is satisfied by such a dyad with
positive representation.

This completes the proof of Theorem 3.2.

Corottary 3.1. If all principal permanental minors of the symmetric
matrix A £ A4 with non-negative entries are positive, then inequalities (3.1.1)
hold with equality if and only if A is a diagonal matrix.

Proof. Since the conditions of Theorem 3.1 are consequences of the
conditions of Corollary 3.1, inequalities (3.1.1) hold. In order that in these
inequalities simultaneous equalities hold, it is necessary and sufficient that
S2(B(A)) =0,1i. e

ajkakj =a)k=10, j ok (j,k=1,....n)

with A = (ajk). Hence A is a diagonal matrix.

Since the principal permanental minors of a positive definite symmetric
matrix with non-negative entries are positive, we get the following result (by
Corollary 3.1).

Corottary 3.2. Let A £ A4 be a symmetric, positive definite matrix
with non-negative entries. Then inequality (3.1.1) holds with equality if and
only if A is a diaginal matrix.

In [2] the author formulated two conjectures (Conjectures 3.1, 3.2).
Corollaries 3.1 and 3.2 are related to these conjectures.
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ON THE NORMS OF CONJUGATE
TRIGONOMETRIC POLYNOMIALS

R. GUNTTNER (Osnabriick)

1. Introduction. If

tn{x) = -Oo + ""2(akcos kx + Bksinkx), XeR,
k=1

denotes a trigonometric polynomial of order at most n with real coefficients
then

7

k=1

is called the polynomial “conjugate to tn{x)". Using the maximum norm
W\ = max|/(x)| we define

Cn:= sup |lin| (n™1)
IhnllNi

which means that for any tn satisfying ||f,|| » 1 we have ||/n|| * Cn, and this
bound cannot be replaced by a smaller one.

Another formulation is as follows: Let f(z),z e C, be a polynomial of
degree at most n, /(0) real, \2\ 1 1and |Re f(z)\ ~ 1, then |Im f(z)\ ~ Cn,
where the constant Cn is the smallest possible one independent from /.

2. Results. Taikov [7] showed that

(1)

Let us notice that this result has already been proved by Szeg6 [6].
It is derived here from that (cf. [6])

(2) Cn= ;I_Iogn + 0(1)
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270 R. GUNTTNER

and (cf. [7])

3 cn=2log'sin "\ 0<r, <3
(3) n_TOQ\SmZ(n+1)/ [ r, -

The purpose of this paper is to get an improvement of (2) and (3). As a
consequence of the following theorem we have for instance

4
(@) Cn:-zlogn + a0+ en, 0O<en< —,

a0 := ?(7 +1°g # = 0.5212 ...

(7 = 0.5772... is Euler’s constant). More precisely we prove the following
Theorem. The sequence Cn is strictly increasing, i.e. we have C\ <

< C2<C3< .... Further, if n is odd, then

5 C,-ilog(» +1)+a0+i- ~ +...+™ 10 _ |l+r

9 i | ?
8 m2*
= (-1) Izr (20! [(22- 1- 1) <9212  (r > 0),
. . az2k+2
0 < (-|)MZCZ<(-|) (n + 1)2fc+2‘

(Here B2k denotes the Bernoulli numbers, B2=  B4= - ).

The constant a0 coincides with the constant \ weU known from optlmal
norms in algebraic interpolation [cf. 8 and 3].

3. Proof. We first prove C2m-1< C2m, m —1,2,3,... . From (1) we
have

) " Qk+ )T . 2 M ks
23 —hn E o 2.2m - Y Tom+ 1 B oms 1y

Therefore it suffices to prove that

1 (2k+1)n 1 cot (2A+1)7r
2m 2+2m 2m+ 1 2(2m+l)’
or, equivalently,
(2k + 17T (2fc+1)ir < (2k + 17T (2A: + I)7r
2+2m 2+2m 22m + 1) 2(2m + 1)
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But the last inequality is a consequence of the fact that g(x) := xcotx
is strictly monotone decreasing, 0 < x ™ j, which can be easily seen by
differentiating g, observing that

'< cotx < . Cos X <
f'< 0 sin2X sm X

and cosa < 1< x/sinx.
Now to prove C2m < Cam+i we only have to note that cot § = 0 therefore

by (1)

> o @k + )T
m— A T o 2m )
and of course
2k + Hym
(6) Com+l —

2m + 2 E 00 2(2m + 2)

By similar arguments as before we get the first statement of the theorem.
Suppose now that n is odd, n = 2m + 1. From (6) we get

0 r - 1 V" t(@fc+ Hu
2l m+ 17 4m + 1)

The asymptotic expansion of the right hand side of (7) is well known, first
proved by Giinttner (cf. [4]) followed by Shivakumar and Wong [5], Dzjadyk
and lvanov [1], Feng [2]. Using [4] and substituting there n by m + 1 in
formula (2) and Theorem 1 we easily get

Caml ——log(m + 1) + Aq+ --—-- N4 4 —m Nk
L (m+iy (m+ 1)

:2(
“, -
o vl tlogs

. t-ij Su2 1 RO .
A2 = (-1) 2i w22 + (20 m[(22<1 - 1)B2]2 (i>0),
. . ~2fc+2
0< (-1)"R-m+l < (=M)k (m + 1)2fc+2-
Since here we have 2m + 1= n, n odd, we may replace m + 1 by which

immediately leads to the second statement (5) of the theorem.
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Finally, to prove (4) observe that for n odd the theorem implies

) + ) £+ - +1)+a0+ — —-j.
(8) ; logn+a0< -log(ra+ 1) +a0 < Cn < - log(n+ 1)+ a0+ — = —]

Taking into account that log(n + 1) = logn + log(l + *) < logn + ™ we
easily derive

0< < - h n odd).
M sc ' 18(n + I)2<' 3n ( )

If n is even then n —1and n + 1being odd we get from (8)

2 2 T
- + + 2) + a0 4z -z
;log flo< Cn-r<Cn< Cntl < ;log(n 2)+ a0 4 18+ 2)70

which yields by analogous arguments

oO<rn<— +

< (n even).
m ' 18(n+ 2)2 ' 3n

This completes the proof.
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1. Introduction

To find a simple proof of the congruence lattice characterization theorem
of finite lattices, H. Lakser and the first author (see [1]) introduced a special
type of finite partial lattices: a meet-semilattice in which any two elements
with a common upper bound have a join. If iff is such a finite partial lattice,
then the ideal lattice of iff is a congruence-preserving extension of iff; that
is, every congruence of iff has exactly one extension to the ideal lattice.

In [2], we introduced the name chopped lattice for such partial lattices,
no longer necessarily finite. Of course, if iff is no longer finite, we cannot
expect the ideal lattice to be a congruence-preserving extension. It is natural
to consider, instead, finitely generated ideals; unfortunately, they do not, in
general, form a lattice. In Section 2 we introduce Condition (FG) under
which the finitely generated ideals form a lattice.

Given two lattices A and B, sharing the sublattice C —A B, we obtain
the lattice M(A,B) by amalgamation. If C is a principal ideal of both A
and B, then M(A,B) is a chopped lattice.

In Section 3, we introduce (see Definition 3) a set of sufficient conditions
under which iff(A,B) is a chopped lattice. If A and B satisfy the conditions
of Definition 3, we shall call A, B a chopped pair. Theorem 1 states that if
A, B is a chopped pair, then iff(A, 1?) is a chopped lattice. The concept of
a chopped pair does not seem strong enough to compute with it. In Section
4, we introduce two stronger versions: sharp and full chopped pairs.

In Section 5 we investigate finitely generated ideals in M (A,B) for a
chopped pair A, B. For a sharp chopped pair A and B, if C = AN B satisfies
the Ascending Chain Condition, then we obtain Condition (FG) (which
guarantees that the finitely generated ideals form a lattice) for M(A, B).

In Section 6 we investigate modular lattices. If A, B is a sharp chopped
pair and both A and B are modular, then iff(A, B) satisfies Condition (FG)
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276 G. GRATZER and E. T. SCHMIDT

(Theorem 3). If A, B is a full chopped pair, then it is enough to assume that
one of them is modular to obtain the same conclusion (Theorem 4).

In Section 7 we deal with the problem whether every lattice has a proper
congruence-preserving extension. We apply Theorem 4 to prove that if there
exists a nontrivial distributive interval in a lattice, then it has a proper con-
gruence-preserving extension.

A modular example of a congruence-preserving extension is outlined in
Section 6.

1.1. Notation. We refer the reader to [1] for the basic concepts and
notation.

In a lattice L, [x,y]L denotes the interval in L, and (a]L the principal
ideal generated by a. If there is no confusion, the subscript is dropped.

If L is a sublattice of K, then we call K an extension of L. If L has a
zero, and it is also the zero of K, then K is {0"-extension of L.

2. Chopped lattices

A chopped lattice M is a lattice L with zero, 0, and unit, 1, with the unit
removed: M —L —{1}; on iff, O is a nullary operation, J1is an operation,
and Vis a partial operation. Equivalently, a chopped lattice M is a meet-
semilattice with zero, 0, in which any two elements having an upper bound
have a join. M will be regarded as a partial algebra (M;A,V,0).

We shall use the concept of extension for chopped lattices; observe that,
by definition, an extension of a chopped lattice is a {0}-extension.

An ideal I of M is a subset of iff containing 0 with the following two
properties for x, y £ M:

x Gl and y ~ x imply that y £ /.
Ifx, y £1 and x Vy exists, then x Vy £ I.

For H ~ iff, there is a smallest ideal (H] of iff containing H. If an ideal
I can be represented in the form (H]for some finite set A, then the ideal |
is called finitely generated. In particular, for a 6 M, we let (a] = ({a}] be
the principal ideal generated by a in M, that is,

@ ={x1xGM and x " a}.

IdM denotes the lattice of ideals of M. Obviously, Id M is a lattice.
Idfg M , the finitely generated ideals of iff, form a join-sublattice of Id M .
By identifying a £ M with (a], we regard Id M an extension of M.

Definition 1. A chopped lattice M satisfies Condition (FG) if every
finitely generated ideal is a finite union of principal ideals.
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A LATTICE CONSTRUCTION AND CONGRUENCE-PRESERVING EXTENSIONS 277

If M satisfies Condition (FG), then IdfgM is a sublattice of Id M. In-
deed, if

| =@iJu...u(an], J=(6]u ... U {bm]

then
I NJ —"J((a, 11~ i~n, 17§ A m).

Lemma 11.3.19 in [1] states the following:

Lemma 1. Let M be a finite chopped lattice. Then IdM is a congru-
ence-preserving extension of M.

The proof of this lemma implicitly contains the following two lemmas.

Lemma 2. Let M be a chopped lattice. Then every congruence relation
of M has an extension tola M.

Proof. Let 0 be a congruence of M; define a relation 0 on IdM as
follows:
I =J (mod0)

if for every i £ | there exists aj £ J such that i =j (mod 0), and symmet-
rically. The proof is the same as in [1]. O

Lemma 3. Let M be a chopped lattice, and let S 2 M be a sublattice of
Id M. Let us assume that in S every ideal | £ S is afinite union of principal
ideals. Then every congruence relation of M has a unique extension to S.

P roof. First observe that ifa£ M and | £ S, then (a] I is principal.
Indeed,

/ = (ajJu ...U (an],

and so (a] M1 is generated by {aAfli,...,0A an}. Since this set has an
upper bound (namely a), it has a join b (since M is a chopped lattice), and
b obviously generates (a] N/ .

Let & be an extension of 0 from M to 5. Let 1, J £S,1 =J (mod ®),
and a£ 1. Then | N1(a] = J N1(a] (mod ®). By the statement in the previous
paragraph, there isa b £ J such that (a] J1J — (6]; obviously, a = b (mod 0).
We conclude that | =J (mod0). So ®C 0.

Conversely, let I, J £ S with | = J (mod®©). By the assumption on S,
we can represent these ideals as

| = (fJU...Ubl , J=(bi]U ... n{bT]

By the definition of 0, for every  there is a c, in J with a, = ¢, (modO0).
Symmetrically, for every bj there is a dj in | with dj = bj (mod0). Since ®
is an extension of 0, these congruences hold for ®. The join of these n-\- m
congruences yields 1 = J (nk~®), proving that 0 Q ®. Thus 0 = @, and
so every congruence of M has a unique extension to S. O

Therefore, the following is true:
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278 G GRATZER and E. T. SCHMIDT

Lemma 4. Let M be a chopped lattice satisfying Condition (FG). Then
ldfg M is a congruence-preserving extension of M.

In fact, a congruence-preserving {0}-extension.

3. Chopped pairs

Let A and B be lattice, let C = ATIB §0.Then we canform the
amalgamation M = M (A,B) of A and B overC. It iswell-knownthat on
M we can define a partial ordering:

Definition 2. The partial ordering ~m is defined on M as follows:

(1) Forx, y £ A, let x *m y iffx %= ¥

(2) Forx, y£ B, let x Bm yiffx "B ¥

(3) Forx £ A and y £ B, let x y iff there exists a ¢ £ C such that
X Ma cand ctls Y, and symmetrically, for x £ B and y £ A.

The subscripts of A will be dropped whenever there is no danger of
confusion.

We shall use the following notation: M(A,B) = A UB is the poset
obtained by amalgamating A and B over C. In A we form the ideal la
generated by C; we set Ca = la —C; symmetrically, we define I8 and Cs-
Note that the ideal Cm generated by C in M is the disjoint union of C, Ca,
and CR-

Sometimes, the poset M(A, B) is a chopped lattice. The next definition
formulates some natural conditions under which this is the case.

Definition 3. A pair of lattices A and B is called a chopped pair iff
the following conditions are satisfied:

(1) The lattices A and B have a common zero, O.

(2) Let C denote the lattice A M B. Then C has a largest element .

(3) For x £ Cm, there is a smallest x £ C satisfying x i x.

(4) For x £ M (A, B), there is a largest x £ C satisfying x " x .

(5) For x £ Ca and y £ Cs, the two elements: x Vy (formed in A) and
xVy (formed in B) are comparable (in M(A, B)).

(6) Forx £ A- Bandy £ B - A the two elements: x Ay (formed in A)

and x J1y (formed in B) are comparable (in M(A,B)).

Theorem 1. Let A, B be a chopped pair. Then M (A,B) is a chopped
lattice.

P roof. There are two claims to verify.

Claim 1: M(A,B) is a meet-semilattice. Let x, y £ M(A,B). We have
to find n - TSM{A,B){x,y}- We shall distinguish several cases.

Case 1.1: x, y £ A. Let n —x Ay be formed in A. Obviously in M(A, B),

m™ xandwnay. Now let vE£ M(A,B) be a common lower bound of x and
y. There are two subcases to consider.
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A LATTICE CONSTRUCTION AND CONGRUENCE-PRESERVING EXTENSIONS 279

Case 1.1a: v £ A. By Definition 2.1, v is a common lower bound of x
and y in A, hence, v u.

Case 1.1b: v £ B. By Definition 2.3, there are elements cx and cy
in C such that v~B cx"a £ and v iiB cy ng y. Then cx Acy £ C, and
v c*Acy Ma u. Soindeed, n = inlm(A,B){x,y}-

Case 1.2: x, y £ B. Proceed as in Case 1.1.

Case 1.3: x £ A, y £ B. In view of the previous cases, we can assume
that x £ A- B and y £ B —A. Since by Definition 2.3, any common lower
bound must be in Cm, we can replace a by a /irand y by y Ai. So again
referring to the previous cases, we can assume that x £ Ca and y £ Cs- Now
take a common lower bound v of x and .

Now we claim that of the common lower bounds v £ A, there is a largest
one, X Ay. Indeed, x Ay is a lower bound. Ift £ A is also a lower bound,
then t %y in M(A, J5), hence by Definition 2.3, there is a ¢ £ C satisfying
t"a c”b y- Obviously,c” y,and sot *a £ Ay, as claimed.

Now we claim that of the common lower bounds v £ B, there is a largest
one, X Ay. To prove this, proceed as in the previous paragraph.

Finally, by Definition 3.6, x Ay and x Ay are comparable, hence
IT™M(A,B){X,¥} exists and it equals sup{x Ay,x Ay}.

Case 1.4: x £ B, y £ A. Proceed as in Case 1.3.

This completes the proof of Claim 1

Claim 2: In M(A, B), any two elements, x and y, having a common upper
bound, v, have a join. Let x, y £ M (A,B), and let v be an upper bound of
x and y. We have to find n = supM” £){£, y}- We shall distinguish several
cases.

Case 2.1: x, y £ A. Form n =x Vy in A. We have to show that if t is
any upper bound of x and y in M(A, B), then n " i.

Case 2.1a: t £ A. This case is obvious.

Case 2.1b: t £ B. By Definition 2.3, there are cx, cy £ C so that
X Na cX tand y~a G Ub t. Therefore, n =xVy*a xVcy b t, so
again, by Definition 2.3, n *m(a,b) A completing Case 2.1.

Case 2.2: x, y £ B. Proceed as in Case 2.1.

Case 2.3: x £ A and y £ B. In view of Cases 2.1-2.2, we can assume
that x £ A- B and y £ B - A. Without loss of generality, we can assume
that t £ A. It follows that y £ Cs- Again, we distinguish two subcases.

Case 2.3a: x £ Ca- Ift £ A is an upper bound of x and vy, then x v
V y~t. Similarly, if t £ B is an upper bound of x and y, then xvy t. By
Definition 3.5, the elements x vy and x vy are comparable, hence,

sup{x, y} = inf{x Vy, x Vy).

Case 2.3b: x ™ Ca- In this case, no upper bound of x is in B, hence,
sup{x,y) = x Vy formed in A.
Case 2.4: x £ B and y £ A. Proceed as in Case 2.3.
This completes the proof of Claim 2 and of the lemma. O
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280 G. GRATZER and E. T. SCHMIDT
4. Some examples and special cases

It is easy to give examples that the last two strange conditions of Defi-
nition 3 do not follow from the others. Here is one: let A —B be the direct
product ofthe two element chain {0,1} with the three element chain {0, a, 1}.
The elements are of the form {x,y), where x £ {0,1} and y £ {0,a, 1}. We
make A and B disjoint (we shall denote (r,y) £ A by (x,y)A, and the same
for B), then we identify elements as follows:

(0,0)n with (0,0)B;

(1.0) n with (0,1)B;

(0,1)n with (1,0)s;

(1.1) n with

So C = {(0,0)n, (1,0)a, (0,1)n,(1,D)n}is a four-element Boolean lattice.
It is easy to see that Definitions 3.1-3.4 hold, but both Definitions 3.5 and 3.6
fail. Indeed, let x = (a,0)A£ Ca and y —(a,0)B £ Cem Then x = (1,0)*
and y —(1,0)B = (0,1)B. Hence,

XYy - (a, 1)n and x Vy = (a, 1)B,

and these two elements are not comparable.

If A, B is a chopped pair, then we know that in M (A,B) any pair of
elements with a common upper bound has ajoin. To perform computations
we need more; we must have a formula for the join we can work with.

Definition 4. A chopped pair of lattices, A and B, is called sharp iff
XVy—xVy,
for x £ Ca and y £ Cb, and
Xy =x Ay,

forx £ A—B and y £ B —A.

There are many equivalent forms of these conditions; for instance, the
first is equivalent to

xMy£C,
for x £ Ca and y £ Cs\ or to
XVy—xVy.

Observe that if A and B form a sharp chopped pair, then in M(A,B),
we have x Ay £ C, for x £ Caand y £ CB; and x Vy £ C, for x £ Ca and

Y £ Cs-
Two important examples of chopped pairs follow in which C is largest

and smallest possible:
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A LATTICE CONSTRUCTION AND CONGRUENCE-PRESERVING EXTENSIONS 281

Example 1.(7 = (i] is a principal ideal of both A and B.

We considered this special case for finite lattices in a previous paper [2].
In this case, Ca - Cb = 0; for every x € M(A, B), x = xAi; and for every
X EC = Cm, x = Xx. The conditions of Definition 3 and Definition 4 are
trivially satisfied — in fact,

x\/y =xWy =xVy and xAy =x Ay —xAYyAi.

Example 2. C = {0,r}.
In this case, again, the conditions of Definition 3 are trivially satisfied —
in fact,
x\/y =xWy =i and xAy=xAy—0.

In these two examples, the conditions of Definition 3 and Definition 4
hold in a much stronger form.
We name the first example:

Definition 5. A chopped pair of lattices, A and B, is called full if
C —Wa ~ @)3*

5. Finitely generated ideals

In this section, we shall investigate conditions under which M(A, B)
satisfies Condition (FG). The following two lemmas are easy to verify, but
they are crucial to our investigations. First some definitions.

Definition 6. Let A, B be a chopped pair, C —AnNB. Letae A—C
and 6 € B —C. We define the elements:

oo 4,

bo—Dh,

&= &V a0 Ai (formed in B),

ai— uQ V6Bi A (formed in A),

b2—b\ Vax Ai (= bvax nr) (formed in B),

62= a2Ve&Jli (= a Vbi A i) (formed in A),
6N+i= bn Van a i (=6 Vanai) (formed in B),

an+l= an V6,+i ir(= aveén+j a i) (formedin A),

See Figure 1 — the white filled elements are in A (and maybe in (7); the
shaded elements are in B (and maybe in (7), and the black filled elements
are in C.
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282 G. GRATZER and E. T. SCHMIDT

Fig. 1

Lemma 5. Let A and B be a sharp chopped pair. Then in M (A, B), the
following inequalities hold:

(1) a=a0” fli~ a2~ ... (in A),

(2) b=b0~ A~ b2~ ... (inB),

and

(3) go/Ti~ &NiNa\ Nni~b2Ai~a2Ar™ ... (in C).

If, for some n, an = ant+i, then (1) terminates at n, and (2) terminates at
n + 1/ and symmetrically, for (2). If (3) does not terminate, neither do (1)
and (2).

So either all three sequences terminate or none terminate.
Proof. Let an —an+1; then an Ai = an+1J1r. Therefore,

"M+2 —bV an+i Ai —bVvdn Ai —bn+i,

and so bn+i Jir = 6n+2A i. By the definition of an+1 and an+2, it follows
that aml = an+2- Hence, antx JIr= ant2 /1r, so bn+2 = 6n+3. It is now
clear that

and B 1= @2 —ee)

/\n+| = /\n+2 = eee o
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Finally,
(in Al — Al ~ Ai ™~ bn\2n L

anhi —an+1 irand in+i 1r= bvn+2 Ai; therefore,
At —6n (i At — At — At,...,

so sequence (3) also terminates. Conversely, if sequence (3) terminates,
then sequences (1) and (2) terminate by the definitions of an+l and bn+i
in Definition 6. O

Lemma 6. Let A and B be a sharp chopped pair; leta EA —C, b E
E B —C. The ideal (a, b] of M (A,B) generated by {a, b} can be described as
follows:

(@, b=!1 (@\Aln<u) U/l [[bn\B|n <u>).

This is not afinitely generated ideal if, and only if, none of the sequences of
Lemma 5 terminate. If(a,b\ is afinitely generated ideal, then (a, 6] = (an]U
U (&,] for some n < u.

Proof. Let R = n((a,]g In <w)UU(»ilo In < w) If we know that
R is an ideal of M (A,B), then it is straightforward to verify that R is the
ideal of M (A,B) generated by {a,b}, and the rest follows from Lemma 5.

So we verify that R is an ideal of M (A,B).

Firstly, let x ER and y ~ x in M(A, B). Without loss of generality
we can assume that x A an for some nand y it x. Ify £ A, then y  an;
therefore y ~ aniin A, and soy ER- Ify E B, theny it an,and soy * an A
Ai | bn. This implies that y ~ bn in B, therefore y E R, completing the
proof of y E R.

Secondly, let x, y ER, and let x and y have a common upper bound z
in M (A, B). Without loss of generality we can assume that z E A. We want
to show that x\! y E R. We shall distinguish several cases.

Case 1. x, y EA.

Case 1.1: x »~ anand y ® am for some n and m. In this case, as in all
the subsequent cases, we can assume without loss of generality that n = m.
Then x Vy ™ an, so x Vy E R-

Case 1.2: x 1 an and y ” bn. Since y E A and bn E B, the condition
Yii bnimplies that y A i. Hence, y » bnJir® an, and so x Vy  an, yielding
xVy ER-

Case 1.3: x ™ bnand yfLan. Proceed as in Case 1.2.

« Case 1.4x Ubnandy ~bn. Asin Case 1.2, we can verify that x ~ an
and y  an, so Case 1.1 completes this case.

Case 2. x EA, y EB. Observe that y ~ isinceyin z, yEB and z E A.

Case 2.1: x S anand y*an. Sox\/y = x\/y'ii an, hence iV y ER.
Case 2.2: x ™ anand y*bn. Since y ~ r, it follows that y £ bn Ai, so
y ™ a,,; hence xM y » an, yielding iV y E R-
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Case 2.3: xUbnand y* an.Proceed as in Case 2.2.

Case 2.4: x”bnand y™ bn.Then asin Case 2.2, x ® anand y i an,
S0 we can proceed as in Case 1.

Case 3: r GB, y £ A. This is symmetric to Case 2.
Case 4: x, y EB.

Case 4.1: x Uan and y U an. Using the argument of Case 2.2, we
obtain that x ~ bn+l and y @ bnJri, which is symmetric to Case 1.1. Hence
x Vy ER.

Case 4.2: x ~ anand y ™ bn. Again, x € B and x  an imply that
X ™ bn+1, which is symmetric to Case 1.1.

Case 4.3: x”bnand y™ an.Proceed as in Case 4.2.

Case 4.4: x"bnand y™ bn.This is symmetric to Casel.l. O

Observe that this lemma fully describes all finitely generated ideals, since
a finitely generated ideal of M (A, B) is obviously one- or two-generated.
Now we prove:

Theorem 2. Let A and B form a sharp chopped pair, and let C = An
MB. Let us assume that C satisfies the Ascending Chain Condition. Then
M (A, B) satisfies condition (FG), and Idfg M (A, B) is a congruence-preserv-
ing extension of M (A, B) (in fact, a congruence-preserving {0}-extension).

Proof. If C satisfies the Ascending Chain Condition, then sequence
(3) of Lemma 5 must terminate. By Lemma 5, the sequences (1) and (2)
terminate, and so the statement of the Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension fol-
lows from Lemma 4. O

For full chopped pairs, Definition 6, Lemma 5, and Lemma 6 take on a
much simpler form:

Definition 7. Let A, B be a full chopped pair, C = Al B. Let ae
EA —C and bE B - C. Then we define the elements:

ao~ a,

bo= b,

b\= o V(a0 AOQ,

a\—ao V(& J1r),

62= bi V (ai Nr) (= bV(ai /r)),

a2=a\ V(e ir) (= aV & Nr)),

bn+i= bnV (a,, Ai) (= bV (an A*)),
6n )-i=anV Ai) (—aV Ai)),

See Figure 2 — the white filled elements are in A (and maybe in C); the
shaded elements are in B (and maybe in C), and the black filled elements
are in C.
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A LATTICE CONSTRUCTION AND CONGRUENCE-PRESERVING EXTENSIONS 285

Lemma 7. Let A and B be a full chopped pair. Then in M (A,B), the
following inequalities hold:

4) a=o00"aiNo2”" ... (inA),

(5) 6= 60161 == (in B),

and

() a A*N 6l JT*™ ai JIr ™ 63 A*= 02 A*S eee (inQ

If, for some n, an —an+i, then (4) terminates at n, and (5) terminates at
n + 1; and symmetrically, for (5). 7/(6) does not terminate, neither do (4)
and (5).

The proof of this lemma is a simplified version of the proof of Lemma 5.
Lemma 6 remains valid for full chopped pairs; in this case, the sequences an
and bn will be the ones defined in Definition 7.

6. Modular lattices

By inspecting Figure 1, we can see that if A and B are modular, then a
lot of elements must collapse. In fact, we have the following result:
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286 G. GRATZER and E. T. SCHMIDT

Theorem 3. Let A and B form a sharp chopped pair. Let us assume
that both A and B are modular. Then M(A,B) satisfies condition (FG),
and ldfg M(A, B) is a congruence-preserving extension of M(A, B) (in fact,
a congruence-preserving {0}-extension).

PROOF. Let A and B be modular. The equations (see Figure 1)

a0Ab\ Ai =doA (axAi) —ao A,
ogv6i Ai=aoVv (Bi Ai)= ax

hold in M(A,B). By the modularity of A, the two equations imply that
Ai=fliAi So
HAIi=biAi—bl Al
By the modularity of 5, a similar argument yields that A i = a\ nr, and
so on. So the sequence (3) has only one or two members; it terminates.
By Lemma 5, the sequences (1) and (2) terminate. So the statement of the
Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension fol-
lows from Lemma 4. O

We can prove a stronger statement for full chopped pairs.

Lemma 8. Let A, B be a full chopped pair. If A is a modular lattice,
then

(a, b = (ax] U (bi].

Proof. Asin Theorem 3, the modularity of A implies that & Ai = axAi.
Hence 62 = 6] V (aXAr) = 6xV (bx /1) = bx, and a2 = a\ v (62/Ir) = axVv
V(6X1r1) = axV (axJ1r) = ax. So the statement of the Lemma follows from
Lemma 6. O

So now we can conclude a stronger form of Theorem 3 for full chopped
pairs:

THEOREM 4. Let A, B be afull chopped pair. If A is a modular lattice,
then M (A,B) satisfies condition (FG).

7. Congruence-preserving extensions

In [2] we raised the following question:

Problem. Isit true that every lattice with more than one element has
a proper congruence-preserving extension?

We proved in [2] that in the finite case this is true. This result is
generalized by the following theorem:
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Theorem 5. Let L be a lattice with zero, 0. If there exists an element
a > 0 in L such that the interval [0,a] is distributive, then L has a proper
congruence-preserving extension K.

Proof. To prove this result, we need a construction due to the second
author. Let M3 denote the five-element modular nondistributive lattice on
the set {0,a,6,c, 1}, and let D be a bounded distributive lattice. Let

M3[D] —{(x,y,z) £ED3 Ixly=x A2 =y /1z] .

Then Mz3[D] is a modular lattice; it contains M3 as a {0, I}-sublattice (on
the set {(0,0,0), (1,0,0), (0,1,0), (0,0, 1), (1,1,1)}), and each prime interval
of this M3 contains (in M3[D]) a copy of D; for instance, the interval
[(0,0,0),(1,0,0)] can be described as {(d,0,0) | d £ D} . If we identify
B with {(d,0,0) Id £ Dj, we find that the lattice M3[B] is a congruence-
preserving {0}-extension of D.

Now let D = [0,a], and let A = M3[D]. Then A has a spanning M3;
let i = (a,0,0). Let B =L, and define r=a in B. Then AMB = (r],
and A, B. form a full chopped pair in which A is modular. So we can form
the chopped lattice M(A,B). Obviously, M(A,B) is a proper congruence-
preserving {0}-extension of L. By Theorem 4, (FG) holds for M(A,B).
Therefore, by Lemma 4, IdfgM(A,B) is a congruence-preserving {0}-exten-
sion of M (A, B). We conclude that IdfgM(A, B) is a proper congruence-pre-
serving {0}-extension of L. O

The following result is a generalization of Theorem 5.

Theorem 6. Let L be a lattice. If there exist a nontrivial distributive
interval in L, then L has a proper congruence-preserving extension K.

Proof. Let [a,/3] be a nontrivial distributive interval in L. Let us form
the lattice B = [a) in L. Obviously, B satisfies the conditions of Theorem 5;
therefore, B has a congruence-preserving {0}-extension K\. Clearly, B is an
ideal of Kx and a dual ideal of L; hence we can glue L and K\ over B; let
K be the resulting lattice.

Let O be a congruence relation on L. Let Og be the restriction of O
to B. Since K1 is a congruence-preserving extension of B, there is a unique
extension ®of 0 to K\. It is easy to see that 0 = 0 U®d is the unique
extension of 0 to K. Hence K is a congruence-preserving extension of L.
Obviously, it is a proper extension. O

8. A modular example

It is easy to give examples of classes of lattices that have proper con-
gruence-preserving extensions that have nothing to do with distributivity.
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For instance, every simple lattice with more than one element has a proper
simple extension; this is obviously a proper congruence-preserving extension.

In this section we outline a modular example with no proper distributive
sublattice.

Let C be a continuous geometry with zero, 0, and unit, 1. Then C has
the following properties:

(1) For a < b, the interval [a, 6] is isomorphic to C.

(2) C is a simple lattice.

Let I be a nonprincipal ideal of C and F a nonprincipal dual ideal of C
satisfying | MF = 0. Let L be the sublattice | UF. The congruence lattice
of L is the three element chain.

We choose in C a spanning M3= {0 < a, b, ¢ < 1}. The interval [0, a] is
isomorphic to C. Therefore, we find in [0, a] a copy la of / and a copy Fa of
F. The projectivities in the spanning M3 define the ideals and dual ideals,
h, Ic, Fb, Fcin the intervals [0,6] and [0,c]. Similarly, we obtain the ideal

and dual ideal F* in [a, 1], 1* and Ftf in [b, 1], /“ and F* in [c, 1].

Let | be the ideal of C generated by the three “small” ideals, la, 1b,
Ic. Similarly, the three dual ideals F&i,Fo generate a dual ideal F. We
consider the sublattice

K=1lUuFuFauFbuFcu/“uU7au

It is easy to see that K is a sublattice of C, and it is a congruence-preserving
extension of the sublattice L C [0,a].
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BAIRE 1 FUNCTIONS WHICH ARE NOT
COUNTABLE UNIONS OF CONTINUOUS
FUNCTIONS

J. VAN MILL (Amsterdam) and R. POL1 (Warsaw)

1. Introduction

A real-valued function / on a space X is countably continuous provided
that X can be partitioned into countably many sets E\,E2,... such that
for every i, the restriction / fE{ is continuous. Adjan and Novikov [1]
constructed (answering a question of Lusin, cf. also Keldys [6]) an upper
semicontinuous function on [0, 1] that is not countably continuous (we discuss
their construction in Lemma 4.1 and Comment 6.1(B) below). A similar
construction was used also by Sierpinski [10] (who did not address Lusin’s
question directly, but the solution is implicit in his reasoning). We thank the
referee for pointing out this fact to us.

Jackson and Mauldin [5] proved recently, using some notions from recur-
sion theory, that Lebesgue measure A considered on the space of nonempty
closed subsets of the unit interval is not countably continuous (being upper
semicontinuous). They conjectured [5, Questions 5 and 6] that in the Banach
spaces of bounded Baire 1functions and of bounded derivatives, respectively,
the countably continuous functions form meager sets.

In this note we prove these conjectures. We also establish a universal
property of the map Aon the space of nonempty closed subsets of the unit
interval, which gives in particular a direct proof of the result of Jackson and
Mauldin mentioned above.

2. Terminology

As usual, | denotes the interval [0,1] and Q the infinite product 1°°. By a
space we mean a metrizable topological space. If X — JIn~i X nis an infinite

1 This note was partly written during the second author’ visit to Vrije Universiteit
(Amsterdam). He would like to thank the Department of Mathematics of this university
for its hospitality.
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product of spaces then for every x £ X and n £ N the n-th coordinate of x
is denoted by xn.

Let X be a compact space. The collection of all nonempty closed subsets
of X is denoted by K,(X). It can be topologized as follows. Let d be an
arbitrary admissible metric for X. If A~ X and £ > 0 then UE(A) denotes
the open £-ball of radius e about A. The formula

dH(A,B) = inf {e:A g UE(B) and B Q UE(A)}

defines a metric on IC(X), the so-called Hausdorff metric, and IC(X) endowed
with the topology derived from this metric is called the hyperspace of X .
One can show that the topology of X(X) is independent of the choice of
the admissible metric d. Also, IC(X) is a compact space. For details, see
Engelking [4] and [9, 8§4.7].

Let X and (Y,d) be spaces. For functions f,g:X —Y we define their
distance d(f,g) £ [0, oo] as follows:

d(f,g) = sup {d(f(x),g(x)):x G 1}.

Let A be a space. A function f: X —*R is called lower (upper) semicon-
tinuous if for every r £ R the set / - 1(r, 00) (the set / - 1(-00, r)) is open. It
is clear that a function f: X —*R is continuous if and only if it is both lower
and upper semicontinuous. We will use the well-known fact that for every
lower (upper) semicontinuous function / on X there exists a sequence {/,},*
of continuous real-valued functions on X such that for every x £ X we have
fi(x) I f(x) (fi(x)\ f(x)). We will also use the fact that the functions
inf: Q — | and sup: Q —»l defined by

inf(x) = inf{a:n:n £ N}
and
sup(a:) = sup{zn:n £ N}

are upper semicontinuous and lower semicontinuous, respectively. For details
and references concerning these facts, see Engelking [4, pp. 61-62].

We finish this section by establishing the following easy results which are
probably well-known.

2.1. Theorem. Let r £ [0,1). In addition, let X be a compact space
and let f: X —[0,r] be upper semicontinuous. Then there is an embedding
e: X Q such that for each x £ X we have
inf (e(x)) = f(x).

P roof. Write N as the union of two disjoint infinite sets, say E\ and E2.
Since Q is universal for separable metrizable spaces ([9, Theorem 1.4.18]),
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there is an embedding A" —»fr, []B1. Since / is upper semicontinuous there
is a sequence {/,}!e£2 of continuous functions from X to [0,r] such that for

every I £1 we have {fi(x)}t€Ei \ f(x)- Now define ez X —Q by

(r £ Ei),
* GE2).

Then e is clearly as required. O

We conclude that in a sense the pair (Q,inf) is “universal” for upper
semicontinuous functions. Similarly one derives that the pair (Q,sup) is
“universal” for lower semicontinuous functions.

2.2. Theorem. Let r £ (0,1]. In addition, let X be a compact space
and let f: X —»]fr, 1] be lower semicontinuous. Then there is an embedding
e: X —Q such that for each x £ X we have

sup (e(x)) = f(x).

3. A universal property of Lebesgue measure

In this section we formulate and prove that the pair (/C([—1,1]), A
is “universal” for upper semicontinuous functions. In 86.1 we will present
several “explicit” examples of upper semicontinuous functions that are not
countably continuous. In view of Theorem 3.1 below this implies that Ais
not countably continuous.

3.1. Theorem. Let X be a compact space and let f:X — 1 be upper
semicontinuous. Then there is a topological embedding e: X —»/C([—,1])
such that for every x £ X we have

M®O) = f(x).

P roof. We will construct a function a: X —/C([—,0]) and a function

RB: X —»£([0,1]). The desired embedding e will then be defined by the
formula e{x) = a(x) UR(x) (x £ A).

Claim 1. There is an embedding a: X —»£([-1,0]) such that for every
x £ X we have A(o(x)) = O.

This is easy. Pick points an and bn in [—1,0] such that
al < <d2< hg<eee<an<hbn< +e¢/CO.
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Lel Q — W, nK A ]. Define an embedding <p:Q —/C([—1,0]) by <p(X) —
= {0} U{xn:n 6 N}. Clearly, A(<*(j)) = 0 for every x E Q. The desired

result now easily follows because Q a Q is universal for separable metrizable
spaces ([9, Theorem 1.4.18]).
We now come to the interesting part of the proof.

Claim 2. There is a continuous function R: X —/C(I) such that for every
i £ 1w e have A(B(x)) = f(x).

Since / is upper semicontinuous we may pick a sequence {/,}, of contin-
uous functions from X to | such that for every x E X, fi(x) \ f(x). Define
£i:A" —»/C(l) by £1(2) = [0,/i(a:)]. Then £i is clearly a continuous func-
tion and has the property that A(£i(a;)) = f\(x) for every x E X. Define
£2: X —»A(l) as follows:

&(*) = esonpx) Y +\M Xx)

Then £2is clearly a continuous function. Observe the following:
(1) Ifx E X then the intervals [0, 5/2(2)] and [5/1(2),5/1(2) + 5/2(2)]
overlap in at most one point because /2(2) i1 fi(x), so that

AE2(*)) = A2(2)+ \h(X) =M x)

(2) If x GX then £2(2) Q £1(2). (Again because /2(2) ~ /1(2).)
(3) If x EX then

<M£i00,£2(2)) = ~(/i(*) -fi{x)) ~

(Here d is the euchdean metric on 1.)

We now continue in the obvious way and obtain a sequence of continuous
functions £,,:X —/C(l) having the following properties:

(1) Forevery x EX, £i(z) 2 £2(2) 2 wm

(2) For every x EX and nGN, A(En(a;)) = fn(x).

(3) For every k GN, dtf(£,,.£,,+1) N 2“n.
We conclude that the sequence (En)n is Cauchy and that the formula

B(x) = lim £n(a) = [1£,(x)
TL—»00 m

defines a continuous function from X to £(1). Also,
A{B(x)) = inf (A(£.,(2:)) :h GN} = f(x)
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for every x E X . This completes the construction of B.
As announced, we now define e: X —A([—1,1]) by

e(x) —a(x) UR(x) (x £ X).

Then e is clearly as required. O

4. Typical bounded Baire 1 functions are not countably
continuous

Before we explicitly formulate and prove the result indicated in the title
of this section, we shall introduce some terminology which will allow us to
apply the original idea of Sierpinski, Adjan and Novikov in the more general
situation that we are dealing with.

Let K £ N. £(fc) denotes the collection of all strings a = (*i,..., ip),
where every ij is a natural number » K and p ™ k; the length of a is p and
the empty string which has length 0 is denoted by 0. For convenience, put
S = Ufcli E(A). If a — E £ and i EN then a”i denotes the
String ip, i).

Let A' be a space. Given a compact set C » A, we fix a countable basis
Bi(C), B2{C),... for the open sets in C with lim,-~ diam Bi(C) = 0.

Let Kk GN. A k-system S(k) in X consists of:

(1) a collection of Cantor subsets {C(cr):<7 E £(&)} of X,

(2) a collection of Cantor subsets {D(a):cr E E(fc)} of A,

(3) a sequence {e(t):a E S(A:)} of positive numbers,
such that the following conditions are satisfied:

(i) C(0) = LXO);

(@it) ¥er, (r"i,er”j E T,(K):

(a) C(a-i) C D(a-i) g Bt(C(a));
(b) C(a”i) has empty interior and D(a”i) is clopen relative to C(a)-,
(c)ifidj then ncia”j) = 0.

We say that a (k + I)-system S(k + 1) extends a "-system S(k) if the
objects in S(k + 1) associated with the strings in S(k) coincide with the
corresponding objects in S{k).

We say that a function /: X —»R is compatible with a ~-system S(k) in
X if for any string o E £(fc),

*) sup {f(x):x ED(a)\C(a)} + e(<r) <inf {f(x):x EC{0)}.
For such an / we put
TI(f) = minjinf {f(x):x EC(0)} - elx)-

Acta Maihematica Hungariai 66, 1995



294 J VAN MILL and R POL
- sup {f(x): x GD(a) \ C(a)} :a G E(fc);.

We call a function /: X —R of Sierpinski Adjan - Novikov type, if there exists
a sequence of fc-systems »§1), *S(2),.. .,S(k),... such that for all K GN,

(1) S(k + 1) extends S(k);

(2) / is compatible with <§(fc).

Observe that ifY ~ X and /: X -+ R has the property that f \Y:Y —R
is of Sierpinski-Adjan-Novikov type then so is /.

The following lemma is implicit in Adjan and Novikov [1]. Since their
paper is in Russian we include a proof for the convenience of the reader.

4.1, Lemma. Iff:X —»R is of Sierpinski-Adjan-Novikov type then it
is not countably continuous.

Proof. Let us fix a sequence 5(1),<S(2),..,,S(k),... of fc-systems com-
patible with / such that for every k the system S(k -f 1) extends S(k). Define

E = P| {C(a): a has length p}.
p=1

Write E as E\ UJ22 U e+« We claim that for some p GN and o G S the set
**) EpMC(a) is dense in C(cr).

Otherwise (using (ii)(a)) we could choose inductively numbers ij, 12, ... such
that for every p GN, EpMC(i\,..., ip) = 0. But then the non-empty set
n~i C(ii,..., ip) is contained in E \ Eu which is a contradiction.

With p and o as in (**), choose any X0 E EpI" C(a). By the definition

of E there exists r GN with xo GC(cr”i). By (ii)(b) and (*) we can find a
sequence xn G (Ep/1D(a”i)) \ C(a"i) converging to x0. But then

f(x0) > f(xn) + e(o~i)

for all n, demonstrating that / \EPis not continuous at Xo- O

4.2. Remark. An inspection of the proof of Lemma 4.1 shows that
condition (*) above is much more than we need. It suffices for example if
for every 0 G S(k), K GN, there is a relatively open set G(a) Q D(a)\C((T)

such that C(a) C G(a) while moreover
* sup {f(x): x GG(a)} + £(0) <inf {f(x): x GC'(cr)}.

By abuse of terminology we call functions satisfying such conditions also of
Sierpinski-Adjan-Novikov type. The point is that the precise condition is
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not so important, as long as it is strong enough for the arguments in the
proof of Lemma 4.1 to work. For the time being the definition of Sierpinski-
Adjan-Novikov type is the one with the above condition (*). We will warn
the reader when it is time for a change.

A function /: | —»R is of first Baire class if it is the pointwise limit
of a sequence of continuous functions. The set Si (1) consists of all bounded
functions of the first Baire class and is endowed with the supremum norm. It

is well-known that with this norm, 5i(1) is a (non-separable) Banach space.

4.3. Theorem. f?i(l) contains a dense Gg-subset consisting of func-
tions of Sierpinski-Adjan-Novikov type.

Consequently, by Lemma 4.1 we obtain the following corollary.

4.4. Corottlary. The set of all countably continuous functions in Bi(l)
is meager.

Before presenting the proof of Theorem 4.3 we derive the following pre-
liminary results.

4.5. Lemma. Let S(k) be a k-system. Then the set
{/ £ Si(l):/ is compatible with S(k)}

is open in Bi(l).

Proof. Let S(k) —{C(0),D(0),e(0)) In addition, let / be com-
patible with S(k). It is easy to verify that if g £ -Si(l) and L/ —|| < r](f)/3
then g is compatible with S(k). O

4.6. Lemma. Let K QI be a Cantor set, u £ Si(l) and C\ » K a
Cantor set with empty interior in K. Then if U is a nonempty open subset
of K and 6 > 0 then there are a Cantor set C A U\ C\ having empty interior
in K, a dopen neigborhood D of C in K and a nonempty open subset W »
Q{vESi(l):|lu—u| <6} such that for all w £ W:

B
sup {m(k):z£-D\C} + 6<inf{ m2).2 £ C}.

P roof. Since u is of the first Baire class, there isa pointp £ V = U\ C\
at which n \K is continuous ([2, Theorem 8.3.1]). Let D QV be a clopen
neighborhood of p in K such that

uEO-uPI <7 (<E D),
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Let C Q D be a Cantor set containing p and having empty interior in K.
Define v £ i?i(l) as follows:

(x2C),
(x £ C).

Clearly v £ -Si(l) and |lu —n|| < S. Also,

inf {v(x):x £ C} —sup {n(x):x £D\ C} =
= u(p) + g’s - sup {n(@n:x £ D\C] ~ 5—6.

So if W is a sufficiently small neighborhood of v then for every w £ W,
inf {fw(x): x £C} —sup {w(x):x£D\C} >8 O

By a repeated application of Lemma 4.6 one obtains:

47. Corollary. Letf £ Si(l) be compatible with the k-system S(k).
Then for any a > 0 one can extend S(k) to a k + 1-system S(k -f 1) and one
can find afunction g £ Bi(l) in the a-ball about f such that g is compatible
with S{k + 1).

We are now in a position to present the proof of Theorem 4.3.

48. Proof of Theorem 4.3. Let Hi be afamily consisting of pairwise
disjoint nonempty open subsets of Si (I) such that

(1) VI7 £ Ux: diam(f/) < 2"\

(2) NZ2Yi is dense in Si ().
For every U £ U\ pick an arbitrary element fy £ U. Then every fy is
compatible with the Osystem. So by applying Corollary 4.7 we find for
every U £ Ui a 1-system Sy and a function gy £ U compatible with Sy.
By Lemma 4.5, for every U £ U\ we may pick an open neighborhood Vu Q
QU of gy such that every function in Vy is compatible with Sy. Without
loss of generality we may assume that every Vy has diameter less than 2~2.
For every U £ U enlarge {Vy} to a pairwise disjoint family Vu consisting
of nonempty open subsets of U of diameter less than 2-2 and dense union.
Let Tr denote the collection \JUeUi Vu- Observe that there are two types
of sets in U2- Now we repeat the same procedure. The sets in Uz that are
“compatible” with a 1-system are being replaced by smaller sets that are
“compatible” with a 2-system that extends the 1-system. Next, the sets that
are “compatible” with the Osystem are being replaced by smaller sets that
are “compatible” with a 1-system. Finally, we add sets that are compatible
with the Osystem in order to get a family U3 with dense union. Then we
again repeat the same procedure but now at three levels. At the end of the
construction each function in the dense Gs-set fj~Li is  Sierpinski-
Adjan-Novikov type. O
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5. Typical bounded derivatives are not countably continuous

The approach in this note provides also an answer to another question
in Jackson and Mauldin [5].

5.1. Theorem. In the Banach space of bounded derivatives on | the
countably continuous functions form a meager set.

Let us indicate which modifications in the proof of Theorem 4.3 are nec-
essary to obtain this result. Our terminology and facts from differentiation
theory are all taken from Bruckner [3].

(A) We use here the definition of Sierpinski-Adjan-Novikov function with
condition (*) in 84 replaced by condition (*') in Remark 4.2.

(B) We construct the Cantor sets C(a) in such a way that additionally
each nonempty relatively open set in C(0) has positive Lebesgue measure.

(C) Because of (B), we can define the subsequent Cantor sets C(a) and the
relatively open sets G(0) so that there exists an approximately continuous
function h: I —»l (hence a derivative by [3, Ch. II, Theorem 5.5(a)]) such
that h(x) »~ § on C(a) and h(x) = 0 on G(a). The jump in condition (*')
can then be created by using the function n + b mh instead of v, where S and
v are as in Lemma 4.6.

Only (C) needs some additional justification. To this end, let C be a
Cantor set in | such that nonempty relatively open sets in C have positive
Lebesgue measure. Let K QC be a Cantor set of positive Lebesgue measure
such that G —C \K is dense in C, and let E be the set of Lebesgue density
one points of K ([3, Ch. IlI, Theorem 5.1]). Removing a set of measure 0 if
necessary, we can assume that E is as in [3, Ch. Il, Theorem 6.5]; let /: | —»
—»1 be the function described in that theorem. For every n, let En = {a:E
G E: f(x) ™ i} and pick n such that En has positive Lebesgue measure.
There is a Cantor set L A En having the property that all its nonempty
relatively open subsets have positive measure. Then ~ ~ f(x) ~ 1on L and
f(x) = 0on G. Finally, set h —1 o/, where I: I —»l is a continuous function
with £(0) = 0 and Jq~ [, 1. Then his approximately continuous by [3,
Ch. I, Theorem 5.4].

6. Comments

6.1. Explicit examples of functions that are not countably continuous.
We present here two explicit examples of first Baire class functions that are
not countably continuous. Each, combined with Theorem 3.1, (re)proves the
result of Jackson and Mauldin quoted in the introduction.

(A) Let C ™ | be the Cantor set. Since C is canonically homeomorphic
to {0,1}° it follows that C is canonically homeomorphic to C°°. The
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continuous function £:C X C —»[—1,1] defined by £(x,y) = x —y is easily
seen to be surjective. Consequently, there is an explicit map from C2 onto
[-1,1]. By taking the infinite product of this map, we conclude that there
is an explicit map from C°° onto Q. Consequently, there is an explicit map
from C onto Q, say /. (This is well-known of course.)

Define the functions t, u: Q —=*1 by

i(x) - min/_1(K) 0k G Q)

and
u(x) = max/ *(x) 0Pk GQ),

respectively.

6.1.1. Theorem. £ is lower semicontinuous and u is upper semicontin-
uous. Moreover, | and u are not countably continuous.

Proof. We will prove that | is lower semicontinuous. The proof that
1 is upper semicontinuous is similar and is left to the reader. To this end,
let r GR and X Gf_1(r,00). Then £(x) > r and so /-1(«k) Q (r, 00). By
compactness of | we have that the function / is closed. Consequently, there
exists a neighborhood V of xin Q such that /-1[¥] C (r, 00). Now for every
y GV we have £(y) > r which proves that V Q f-1(r, 00). We conclude that
£~1(r,oc) is open.

We will next prove that | is not countably continuous. The proof that u
is not countably continuous is similar and is left to the reader. To this end,
assume that Q = E\ UE2 U eee Since Q is not the union of countably many
zero-dimensional subspaces ([9, Corollary 4.8.5]) and every finite-dimensional
separable metrizable space is the union of finitely many zero-dimensional
subspaces ([9, Corollary 4.4.8]), it follows that for some r, dim E{ —00. We
claim that £[E{ is not continuous. Observe that the composition

fot\Ei

is the identity on E, and that / is continuous. But then if | \Ei were continu-
ous this would imply that £\ Ep. Ei —£[EL| is a topological homeomorphism
which is impossible because E{ is infinite-dimensional and every nonempty
subspace of C is zero-dimensional. O

6.1.2. Corollary. sup:Q —»l is lower semicontinuous but not count-
ably continuous. In addition, inf:Q —»l is upper semicontinuous but not
countably continuous.

P roof. The function \I + \\ Q —[|, 1] is lower semicontinuous but not
countably continuous (Theorem 6.1.1). The result for sup now easily follows
from Theorem 2.2. The result for inf can be proved analogously. O
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6.1.3. Question. Isthere a homeomorphism a: /C(I) —* Q such that for
every A GE£(I) we have

A(A) = inf (a(A)),
i.e., are the pairs (/C(I), A) and (Q, inf) topologically equivalent?

t

(B) The second example is a reformulation of the original construction
of Adjan and Novikov. Again, let C ~ | be the Cantor set and let D =
= {d\, d2,...} be a countable dense set in C. Define dx C —»l by the formula

0 (xec\D),
7 (*=di)

B(x)

and let /: C X C X eee-> | be defined by

F(X\,X2,...) = A A2 (h(X\) eso</>X).
t=1

The reasoning of Adjan and Novikov that was reproduced by us in the proof
of Lemma 4.1 shows that / is not countably continuous. It is easily seen that
/ is upper semicontinuous.

Notice that one can identify C X C X C X eeewith C in | which, as can
easily be seen, provides a corresponding example defined on 1.

6.2. Zero-dimensional spaces. In the special case of zero-dimensional
spaces it is possible to derive Theorem 6.1.1 from well-known selection the-
orems. To see this, let X be a compact zero-dimensional space and let
/: X —»l be upper semicontinuous. Put

G={(xA) £X x£(I):/(*) = A(A)}.

Then G is a G"-subset of X x /C(l), and hence is completely metrizable.
From the upper semicontinuity of the function / one readily concludes that
the multifunction F which assigns to each x £ X the vertical section of G
at x is lower semicontinuous. There exists a continuous selection 8 for F by
a selection theorem of Kuratowski and Ryll-Nardzewski [7] or Michael [8].
This function is what was needed in Claim 2 of the proof of Theorem 3.1.

Let us finally notice that the second function considered in 86.1 is defined
on a zero-dimensional compact space.
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ON A CONVERGENT PAL-TYPE (0,2)
INTERPOLATION PROCESS

J. SZABADOSL1 (Budapest) and A. K. VARMA (Gainesville)

1. Introduction

Let
1) (1= )3nn" 21471 <eee<! 1) (n—2,3,...)

be an arbitrary triangular matrix of interpolation (shortly xk := an), and

@) ( 1<Oy—hn ~ Yn2n < ... <t/in(*1)  (n—2,3,...)

be the zeros of the derivative of the polynomial w,(x) = M[=L(x ~ xkn)
(shortly yk := Ykn)- Modifying the notion of the well-known Hermite-Fejér

interpolation, L. c. Pal [5] introduced the polynomials Hn(x) € Mrn-i (=the
set of polynomials of degree at most 2n - 1) satisfying the conditions

) H(xk) =k (K = Hn(yj) —zin (j = 1

where zk zkn, - — zjn are arbitrary real numbers. It turned out that
these polynomials are never uniquely determined, and in order to make
them unique, one has to impose an additional condition. Recently, M. R.
Akhlaghi [1] generalized this problem for successive higher order derivatives
on the roots of successive higher order derivatives of n(x), again imposing
an additional condition on the interpolating polynomial. He, and earlier S.
A. Eneduanya [4] proved convergence theorems for these polynomials on the
roots of the polynomial (4) defined below. However, in doing so they assumed
some higher order smoothness on the function to be approximated, and the
order of convergence was far from the Jackson order.

1 Research supported by Hungarian National Science Foundation Grant No. 1910.

0236-5294/95/$4.00 © 1995 Akadémiai Kiad6, Budapest



302 J. SZABADOS and A. K. VARMA

Motivated by the quoted work of Pal, in this paper we investigate the
following related problem. Let (1) be the roots of the polynomial

4) mx) - @ - z2)P'_1(2) = -n{n - 1)\] Pn_i(t) dt

where Pn-i{x) G lIn_i is the Legendre polynomial (normalized such that
Pn_i(l) = 1). Then evidently, (2) are the roots of Pn_1(2). Now, instead of
(3), we are looking for polynomials Rn(x) G LLin satisfying

(5) Rn(xk) =zk (k=1,...,n),  Rn(xl) =z%,

K(yj) =zj (;= 1)

where Zk, z+ , z'" are arbitrary real numbers. It will turn out that these
polynomials are uniquely determined, they have a relatively simple form, and
the operators determined by them approximate in Telyakowski-Gopengauz
order for continuous functions, and close to Telyakowski-Gopengauz order for
continuously differentiable functions. These features (which, until now, were
unknown for any Birkhoff type interpolation) prove that our Rn's are better
than previously investigated Pal-type interpolating polynomials. Also, if we
interpret Paul Turén’s question about the existence of a convergent (0,2)
interpolation process for all continuous functions in a broader sense, namely
permitting Pal-type interpolation, then our Theorem 3 below is an answer
to this question in the affirmative.

We also note that in a recent paper M. R. Akhlaghi and A. Sharma [Z]
considered basically the above P&l type problem (existence, uniqueness and
fundamental functions) in a slightly different context, namely they did not
prescribe first derivatives at the endpoints. As it will turn out, prescrib-
ing these data will enable us to prove Gopengauz-Telyakowski type error
estimates. (The problem of convergence is not considered in [2].)

2. Existence and representation

Let
h) =lkfy - — < k=1,..n)

K (xk)(x - Xk)

be the fundamental polynomials of Lagrange interpolation based on (1) (i.e.
the roots of (4)), let
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(6)

xi  Ajni - o (E - 1)

be the Cotes numbers associated with the Legendre polynomial P7A_1(x) (see
G. Szeg6 [7], (15.3.2)), and let

1
A »in on(n-1) +1(i-1y

Theorem 1. IfXk, yj are determined by (4) and Zk, z+, z1 are arbitrary

real numbers, then there exists a polynomial Rn(x) G U2n satisfying (5) which
can be written in the form

71—1
@) Rn(x) = 72 zkxk{x) + Z+a+(x) + z'_a-(x) + ~ z7g}(x)
k=1 i=i

where rk, crt, Bj GTI2n can be represented as

o _ (1 x)2K-i(x)pn-i(x) 3T, + X)P'_X(K)
(8) ri(ar) = rn(-x) = 2n(n - 1) 4n(n —1)

71—1

3n2—3n+ nrT, i(2i
( T ) + P +2 PRI - DTH@)

4n(n —1)
A (2i- 171 (%) Ly AP XD
(k= 2,...,n—1),

o 7T..(x)2

D) an(n —1y

Acta Mathematica Hungarica 66, 1995



304 J. SZABADOS and A. K. VARMA

and

V»W ATTn(x)2

10 =- = ) * i (xNe -i(yj

(10 kW op L ENEZDTIXN-I) 4y )2
(G=1...,n-1).

Remark. Note that once this so-called modified (0,2) interpolation
problem is solved, it is easy to obtain the fundamental polynomials of the

original problem where the first derivative conditions at +1 are omitted.
Namely, we can look for these polynomials in the forms

rk(x) + a+a+(x) + a_cr_(x), gk(x) + B+<7+(x) + /3_it_(x),

where the constants a+, a_, /?+, /3_ are determined such that these polyno-
mials will be of degree 2n —2.

Proof. In order to prove the theorem we have to show that the polyno-
mials of degree at most 2n defined in (8)-(10) satisfy the following conditions:

(11) rk(x;) = h o cexy =0, 1l
bl =0 (k,p=1,...,n, g-=1... ., n - 1),
(12) (THxH =0, <(1)=1, <(-1) =0, <bl =

(p :!,.oo,!»’ 4 = 1,_*n' 1),

and

(13) Qitxp) = 0, i>j(xl) =0, Qj(vg) = ¢q
(p: !ouo,«; j,q= i,--- ,n - 1)

Some of these relations are trivial, and the others are easily proved
by exact routine calculations. Therefore we omit the detailed proofs, and
only indicate those identities which should be used in the course of the
verifications:

(14) P,-,(D=I, PUM@M=Q . C-L1)=3(N"1,
(15) JIn(l) = ~n(n - 1),
(16) K-Ny) =1 b K -1 y,),
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8y2 (n+ D(n- 2

@ -vif 1- Ya K-i(ya)
(=1, -,
(oW, =-—Mya)pi-ibd (= OF D,
(L)  P2rp) —spPn-1 Pn—24v) ~ P)Pn—H&p)<i

(18) P"-2ixp) = - I'k|'|_ %‘apin-i(gp) (p=2,...,M- 1),

a-A9)= [ 1=y K->t,).
(is) CA)= (\737(8-"/\N W »=1.... »-1),
t-1
(20) 57(2j - 1)irj(x) = -iTTi(x) +2(1 + x)PI_1(x)~
3=2
rer- 1)1+ X)Pi-i(x) -
=0 ()i _1 ey =,
(21) Yi'W-w -iMPi-av)
i=1
=(n- "n-i"/W y) (3)"2/),
X —y
(22) E |j—IJ"/)|,-xM"-.M
AW A ,(3n(-yi)),(;(>-y)a(x)p> 1 |f Xq)y,
n—- if X=1y.

All of these identities can be found in, or deduced from, relations in
Chapter 4 of Szeg6 [7]. O
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3. Uniqueness

Theorem 2. The polynomial Rn(x) defined by the conditions (5) is
uniquely determined.

Proof. The proof is basically the same as that of the corresponding
result in [2]; we give it for the sake of completeness. Clearly,
it suffices to show that if Rn(x) £ satisfies

(23) Rn(xp) =0 (p=I,...,n),
<(x1) =0, A"bl =0 (ff=1.... n- 1)
then Rn(x) = 0. By the first set of conditions in (23) we have Rn(x) =

= In(x)gn(x), where gn(x) £ IM,,. By the last set of conditions in (23) we
conclude to the relations

-n(n-1)Pri_1(ygan(ya) + (I-yg)P*_Uygg{ya) =0 (@=1,....n- 1),
ie.
(24) (1 - VgwniVg) = n(n - 1)9n(yg) (9= 1

By the first derivative conditions in (23) we have €(x1) = 0, i.e. (24) is also
valid for yo := —1 and yn := 1 But since gn(x) £ In, this implies

(25) 1- x2)g"(x) =n(n - DHan(x).

If gn(x) = cT&m+lower degree terms (m ”~ n), then this yields -m(m -
- Dem= n(n - 1)cm, whence cm = 0, i.e. gn(x) = 0. O

4. Convergence

For an arbitrary f(x) £ C[-1,1] (= the set of continuous functions in
[-1,1]) we define the polynomial Rn(f,x) £ LLn by the conditions

Rn(f,xp) = f(xp) (p=1,..., n),
<(/4)=q K(LLU =0 @=i,..mcct)e
Also, if f(x) £ C[—1,1], then let Rn(f,x) £ INrn be defined by the conditions

Rn(f,Xp) = f(xP) (p= 1

L, Y5j=0 {q
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By Theorem 2, these polynomials are uniquely determined, and by Theorem
1 they can be written in the form

Rn{f, *) =  f{xk)rk(x)
k=1

and

n
Rn(f,x) = 22 f(xk)rk(x) + f'()a+(x) + /' (- )<r_(x).

Let u(f, h) be the modulus of continuity of /() £ C [-I, 1].

Theorem 3. We have

—x2
MO0-Ratot =0 w1 (larlgl, 1€C[-1,11),
and
\f(x) - Rn(f,x)\ =0 logn + g u ,/XV ,VI_—)*Q+ pl
\ *

@17 1 /' e C[-i, 17).

In particular, if f € Lipo, then

if 0<ac<

\f(x) - R n(f,x)\ flrac<t

ifa=1
for p ~ L
The proof will be given in Section 6. As a preparation, we need estimates

of the fundamental functions (8) and (9).
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5. Estimates of ro(x) and <7+(a;)

Lemma 1. Letu(h) be an arbitrary modulus of continuity, or let uj(h) =
= 1. Then we have

Iri(z)| = 0(1),
(26)
L- xU1- %) ri@®) =0 w (v2? -)

P roof. Using Abel transform in (8a) with the factors //,, the relations

(27)  Pn_I(x) - xPn_2(x) - pn_2{x) = + XPn_"x)
n—1 n—1
(cf. Szeg0 [6], (4.7.27)) and applying (20) we obtain

1+ z)2P™_La;)Pri_1(a) _ (3n2- 3n+ [mn(x)(1 + x)Pn-i(x) |

2n(n - 1) 4n(n - 1)2
[(3n2- 3ra+ )x + 3n - 2]tr,,(x)P)(_1(a;)(1 + x)
4rain- 1)3

n-1 x1

@ra2- Ja+ )7T(x)

my L DIy - D)

i=2

Here and in the sequel, we shall use the well-known estimates

(28) (MSI,0S”S i),
(29) (WSI, is"S2)
and

(30) lir,(*)| = 0((1 —x2)i/2n5) (I*l gl,

(cf. Szeg6 [7], Ch. VII). Hence we have
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31 (I +»)2” _1@)i>n 1@)] _c ((1+ x)(1-x) -2
(3 2n(n —1)

(Ix|gl,0EAQg?2).
Thus using (20) again we obtain

_ (@ra2- 3ra+ 1)r,,(K)(1 + g)Pn-i(a?) N

00 = dra(ra- 1)2

[@ra2- 3n + 1)x + 3ra- 2[7m(x)P'_1(x)(I + X)
4 . h

drafra —
@ra2- 3a+ 1)7r,,(x)(1 + x)
¥ 2rara—1)

i

X > [*¥2-%(%) - *?-.<*) + +
t=3

w0 UHXU)=AZ s hon An 2,

where

(32) Mi=,_!- le)*—1) = Oi (i=3,4,.)-

M

Here we use another Abel transform with the factors i/j, and then apply (27)
as well as

(33) K-2(x)= x~-1(x)- (n- DHPn-I(x),
P' I(x) = xP'_2(x)+ (n- DP,,_2(x)
(cf. Szegd [7], (4.7.28)) to get

N (Bra2- 3ra+ Dmn(x)(1 + x)P,,_i(x)
0o = dafa- Y2 T *

| [Bra2- 3ra+ D)x + 3ra- 2Ja=(x)P'_1(X)(1 + x)
4ra(ra—I)3
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(3n2- 3ra+ N7rn(x)(l + x)

Vn-\ +
2n(n - 1)
n—
Pt-2(x) ~ 1 (I +x)(1-x)-A2
TR RTE: o At
(3n2- 3n+ N7T,(x)(1 + x)Pn_!(x) .
an(n - 1)2
[(Bn2- 3n + I)x + 3n - 2/m(x)P'_1(x)(l + a)
¥ an(n —1)3
(Bn2- 3n+ D7m(x)(l + x) i (n —2)2 0 +ilph 10@*
2n(n - 1) 2(h —)2(n2- 3n+3) ~ -
+(b h-7)p"-(l) -

1+ x)(1- x) A2

(3n2- 3@+ D)1 +x) T+ -
2rra- 1) S3(«/f-1 = W)Pi-20*)+
pE
1+ x
,\X P' 1(x
@-x) ., 5, (x)P"_1(x)| +

@+ x)n-n(x)Pn-1(x)] @+ x)(1- x) A2

(1 —x)n2 nx (xIg 1,0g AE 2).

Here by (28)-(30) again,

(34)

|x|gl, 0"AN2),

(35)  TTnixJP'.Ax) = 0 X g 1 1g Ar4)

1 -x 3y
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and

(36)

(1 + x-Kn(x)Pn-x(x) -0 "M+sXl1-z)-*/2

1 —n2 (1*1g 1, Og AE2).

With the notation
SRS S TR

an easy calculation shows that
k_i- K=0

whence we obtain by (20) and (28)-(30), (34)-(36), performing one more
Abel transform

(3,,2" 32N —1) )(1+x) § - =

e \ 13 "
n4(l - *)/ 1n4 E<2i-3)ii2m *
t=4

J d tA d -r ,(I+x)r-yr(l-x)-~~

n
yjl +*(1 - *)_A2
o~ AN 2, ¥ M 1)
Collecting all these estimates we obtain
(37) Ir,(x)] =0 ('ITT2("~*) —) *| £ 1, 0£ Ag2).
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Now the proof of the lemma can be finished. The first relation in (26)
is obtained from (37) with A= 0. As for the second relation, if ny/ 1 —x £
W Al + x, then applying (37) with A= 1 and using the monotonicity of w
we get (26). Ifny/ 1- x » y/T+x then we put A= 2 in (37), and use the
well-known inequality

to get (26) in this case. O
In what follows we shall use the notations x —cost, Xk = costk (K =

Lemma 2. We have

(X~ 1, t—tk\ >c/n, k=2,...,n—I),

where ¢ > 0 is an arbitrary constant.
P roof. Using the differential equation

(1- x2)P” N1*) - 2xP’_1(x) + i(i - 1)Pi-i(x) =0,

we obtain from (8b)

(38)

n

+n 0,2r - DP<I(X)Pi-i@jf)  {k=2,...,n- 1),

where

(39)
**—1) n(n —1) —i(i —1) (r=" «)
n(n —1) +i(i—1)" 1 n(n—1)+ **—1) o
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At first we estimate the second sum. Using (21), the notation
(40) 0i =Q 0,-=(a,-_i-<*,m)(*-1) (i=2,...,n)

and applying Abel transform we get

(42) B:= £ a,cr- D™_1x)Pt_Lxf) =
i=2

= ke By A1) -200) - 209810
A L HITAIW W nsi()fisi(n)] =B, - 8,
Here, using the identities (33),
B'i-\{x)Pi-2{"k) - P--2(x)Pi-I(Xk) =
= X[PI_2(x)Pi_2(xk) - A-1{*)#-A**)] +

+(* - D[-P,--2(x)P,_2(4f0) + P,-1(x)P,-I(xjfc)] ,

whence and from (41), with the notations

42) -1 T T ' .= (i = L...1)

we obtain, after applying another Abel transform, that

43) Bx = T B i[l*_2(x)Pi-2(xk) - 1* _1(x)Pi- 1(xk)] +
X Xk =2
+,q.-_1" ) - DA [f3-2(x)Pt- 2(xfc) + P, _1(x)Pt_1(xf)] =
n—
X- xk - ?; (2*- DN _r(xX)P,_1(**) +
1 n—
+3(_Xk“)§;""(2i - DPU (X)Pt-i(z*) + +(n - DP,,_i(x)P,,_1(xf)
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(since by (39)—40) Bn = 1). An easy calculation from (39),(40) and (42)
shows that

(44) 7*-1-71=0 - (i=2,...,n- 1),

and using the estimate

* tyfj-ifata-ifa)
32

r
+
4sin sind/2tsinl/2tk  \x —XK\ sin sinl/2t sinl/ 2tk

(i—2.3,...)

=0

(this follows from [6], Lemma 2, with a slight modification of the proof
therein), we obtain by using another Abel transform, that

n—1

(45) Y T7i(2* - )P--i(x)Pi-i(xk) =
i=2
n—
=7n-i $~(2%_ DPi-i(x)Pi-i(xk)+
i—2
n— i—
+S(7'-1_71)M(2- Dpj-i(x)pj-i(xK)
i=3 3=2

+
r=1 sin IF sin3/ 2t sinl/ 2tk

+a
X—XK\ sin N ./*!1sinl/ 2t sinl/ 2tk

=0 (Ji - tkh >c¢/n, k=2,...,n - 1)
7sin 24 sin3/2tsinl/ 2tk/

(since by (39), (40) and (42) 7,,_i = 0(n 3), and
max(sin t, sintk) = 0(n\x —£fc|)
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from the condition \t —tk\ > c/n; the latter estimate will be frequently used
in the sequel). Hence (43) yields

R = XPr-1()Pn-1(xK)__,(n —hPn-i(x)Pn-i(xfc)

(46)
X- Xk X- Xk

s M1

S T 6i(2i - 1)Pi. I(x)Pi. 1(xk) + O 1
X — Xk | nsin - * sind/2tsinl/ 2tk

(\t-t\>c/n, k=2,...,n-1).

We still have to estimate the sum here on the right hand side. With the
notation

47 £i —0, £i —(S_i —5)i—1) (i=2,...,n —=1),
and using Abel transform as before we get

71—1
(48) C:=£ M2i- I)P,-i(x)P_i(xf) =

1=1

n—

- in_ ' £(2: - )P_1(x)P_1(xfy+
»=1

16 X

Pa—Xk A AEC[P—H(@)Pr-2(ah) ~ Pe—2(x)Pt—HXfc)] m

Here by (39), (40) and (42)

An-i = 1+ 0(n J),
by (21), (18) and (27)

‘)‘(7>, - i)a-i = (1')!()_?;*1((!(1)«"1(”) - N

and by (27)
P,_i(xX)P,_2(fo) - P,_2(X)Pi-i(xf) =
= X[Pt 2(xX)Pt_2(x®) - P,_1(x)Pt_1(xd] -
STZT[it2(*)"-2(Xfc) + P U x)Pt-1(xk)] *
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316 J. SZABADOS and A. K VARMA

Thus, after applying another Abel transform and using the obvious estimates

I* \ il
H=0(:2)> fi~&4=0(

we get
(49) c— 1 Pniykopiyge  TMEIPRIN0y
n—
R 'y\ei[Pi-2{x)Pi-2{xk) - Pi-i(x)Pi-i(xkj\ -
X5 b
1—X _ _ .
ey U -1 6 [PE_2(X)Pi-2{xK) + PU(X)P,-i (xK)\ +
- 2
+0

nsin F  sinl/2tsinl/2tk

it 3} BaafBn <MD

+ S(“Z"X'k<£n'l[l - Pn-2(x)Pn-2(xk)\ +

1—1

+ 53 (£-1" A0tl- Pi-2(X)Pi-2(xk)\ | +

i=3

1- a2 "2

X - xk
Lt=2

+(™n-2 - <5n-i)-f 2(a)-Pn-2(a;fc) + 0
( )-H0_2(@) @fc) nsin P sinl/2isinV 2ijc

An(x)Pn—(xK)

= -(n - DPn-i(x)Pn-i(xk) X- xk
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To finish this estimate, we consider the sum on the right hand side. This
can be estimated the same way as we did in (45); namely by (42) and (44)
we have

A-l —NiH B N2
2i- 1 2+ 1
i- 2 &2 —4 i+ 2
2, 1(7--1 - 7))+ 412TI(7< -7i+i) + ox 4 (741 - Ti+a)
Thus we get

712

S > -, - t>i+H)Pl-i(X)Pi-i(Xk) =0 "—

<=2 1l --1sin3/2t sinl/ 2tk

{\Mt- tkhk>c/n, k=2,.. -1)e

Substituting this into (49) we obtain
6 _ /(ti 140 1/,,40 —]:(’\/Cﬁl 7rn(*x)in;<lk("fc) “

N sinl/21
I* - XK sinl/21sin¥2tk  n\x - Xk\sin sinl/ 2tk

+0
(It-ifcl >c¢/n, k= 2,...,ra- 1).
Finally, substituting this into (46) we get
(50) B, = (0 1)~ -1A)A-1A) 40 ' N
(x - x9) knsin A siny/2tsinl/2tk

1 N sinl/2n! \
i(z - xf)2sinV/2tsin1/2iA  n(x - Tic)3sin sinl/ 2tk j

(\t -tk\ >c/n, k=2,...,n- 1).

In order to estimate in (41) we note that, in the order of magnitude,
this sum contributes the same as the second sum for C in (48), since the /3-s
behave similarly to the £,’s (the fact that the sum extends to n instead of
n —1 is indifferent). Thus the estimate for B is the same as that of B\ in
(50).
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Now we turn to estimating

bl

in (38), by using the same method as above. The first Abel transform yields

=2~

X — Xk i - PU(x)PU(xk)\,

where
=N __N =
(51) 6, it (r=2,...,n).
Here by (39) a,, = and using (22), (17) and (33),
PLiNe -i(*t)
2(x - xk)

and

PU(x)PUxKk)- PU{x)PU{xk) =
= - in-a()n-2(*)] -
(< - DIiti(*)tf-i(**) + P20 ~-rbl ] »

Hence applying another Abel transform we get

. . |

(52) A= K-Ié)(;)?r;lg)(k) ) _Xka iAzgz(bi - bi+i)Pi-i(x)pi-i(xk)+
"=

+ Y(ac+l a,_i)P/_i(x)Pi_i(a:fc) + (a,, - an_1)P~_1(a:)Pn_1(a:"N)
»=2

(k- ijd>c/n, k=2,...,n-1).
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An easy calculation shows that, using (39),

®+2 ®& ®+H w2 9/t

(53) .
20+ 1 *—1 v

(i=2,..n—2),

thus for estimating the sum
R

t'=2

we can use the same method as in (45). Hence we obtain

n—l
Agn "B 1(2i-1)P/_ Ax)Pi_1TI)+

i=2

D=

+
\' A rd Lsin— sin3/2tsinl/2tk

+ 0
\x - XK\ sin Ne klsinl/2t sinl/2tk sin P *1sin3/21sinl/ 2tk

(- tkh>c/n, kK=2,...,n-1).

Substituting this into (52) we get

. mooA\rio <\t 1\
6, “ 6<+i)P'»-i(;c)-P<-i(a:fc)+

+0
\ TIXx—  sin sin3/2<sinl/ 2tfc,

(i - >c/n, F=2,..n-1).

Here we have to estimate
71—1

(55) E:= E;b'-fc+t"OO’\-iO‘*)-
t=

In doing so, we apply the same method as in (52), but now with

o = G- bi+i)A _ A =0 (M) r=1,..n).
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Then it is easily seen from (38) and (51) that

at#i~a < © (i=2

- = .:2,
K.1- K=0 4 (i

Thus we obtain from (55), just like in (52), but now using term-by-term
estimates in the sums, that

= -ah et K (6 - B (RI_1(c

n—i

+ N
X XK | =

+K-<-DAn-INe -1(X it)

1 1
. +
n2|x - Xt sin3d/2isinl/2tk  n3\x —Xd sin3/ 21 sin3/ 2tk
1 N 1

+

n2\x - XK\ sin3/2tsinl¥/2tk  n3\x —XK\ sind/ 2t sinl/ 2tk
- 1

0] ) ) \t- tkh>c/n, kK= 2,...,n—I).
,N2|X — xk\ Sin3/ 2t sinl/ 2tk ,

Substituting this into (54) we obtain
(56) A =- P"”’l{X)PI‘I-ﬂXK) +0 ) ) )
2(X —XK) Yn\x —XK\sin A sin3/21sinl/2tk)
(\t- tk\>c/n, k=2,...,n- 1).

Now we are in the position to finish the proof of the lemma. Substituting
(56) and (50) into (38) we get
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e - £2)  XKPHH(X) . (F** -

- H(X) + +
X <(xj)2(l - x\) (x-xky
40 sint N sin31
o —xosin TA sintk s — )2 Sin A *sin tk
int
=0 ! (k- tk\>c/n, k=2,...,n- 1)

n3 &iA3 ¥..fel sin tk

which is exactly the statement of the lemma. O

Lemma 3. Ifu is an arbitrary modulus of continuity, or n = 1, then

A frida)l = 0(1),
k=\
(57) A= xKW)(\x - xKY) Tre(ad))
k=1
r2
-6 sIT log B! W vT

AH

P roof. First note that by Lemma 1 and by symmetry, it is sufficient to
consider

=t
(58) £ = £ + £
fc=2 |i—<*|=c/n |[t—i*|>c/n

on the left hand sides of (57), and we may assume that 0 is t 5 7/2. Here
the first sums are easily settled if we use term-by-term estimate in (8) and

obtain Irk(x)l = 0(1). Namely, in estimating the first sums we may assume
that C\/n < t » &2 with some ¢\ > 0 (otherwise, by choosing 0 < ¢ < ci,
the first sums in (58) would be empty), and then by .« — = 0(a") the

contribution of this sum will be 0(-)p)u;(5*), which is less than the right
hand sides of (57).

In estimating the second sum in (58) we use Lemma 2 the inequality
sin
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322
to obtain
\t tlli\ / e \t E , n3sIn3 il T 3sin2 i sin t
-tkA=>c/n -tk\>c/n
and
(59) A \x - xk\w(\x - xk\) Irk(x)\ =
\t-tk\>c/n
. n— U Asin N '_/\Sin t + Sin A )
sint »
=0 E 2 t-tk +
nsm
k=2
U (sin A-44 sint + sin? ©Y sint
=0 -rUA +B)

+- . . *
nsin A A sin tk n

Here by the regular distribution of the roots xk the first sum is estimated

by ~"T£=1 k~3 —0(1). As for the second sum, if sin < sint®, then it is
equivalent to the first sum, while in the opposite case it is Yjk=i (ns'nh) 3=
= 0 (1) again.

Similarly, in (59) the first sum, A, is easily seen to be equivalent to

In estimating the last sum, B, if sintk > sin then it is a part of A.
If sintk ~ sin 1then using a property of the modulus of continuity we
obtain

n~l U (sin ~2 sint + sin2 0 <O A(sintk SNet) |

* =F .
k=2 nsin ~ 3—sin tk k=p Nsin2tk
( \ » ( N 2/\ )
+
E +E nsm ‘Ut gin tk

Acta Mathematica Hungarica 66, 1995



ON A CONVERGENT PAL-TYPE (0,2) INTERPOLATION PROCESS 323

and here the first sum is again estimated like A. The second sum, since here
tk -t't 2(7e—t)/3 " 7r/3, easily seen to be

= O(logn).
V "fcsm<V

Finally, in the third sum we use sin 'y~ ”~ 2sint, and then it becomes

n_1 w”sin sintj
2 it-fl, .~
E:2 nsin 12 ' Sintk

which has been already estimated (see the first sum in B above). Collecting
all of these estimates, the proof of Lemma 3 is complete. O
We now estimate the fundamental functions a(x).

Lemma 4. We have

. /(1 £a;)sin“i  sin A
b*>1=°( nL +7r) (Mai)

where a > 0 is an arbitrary constant.

P roof. By symmetry, it suffices to prove the statement for <#(a:). Using
(22) with y - 1, as well as (33), (14), the differential equation of the Legendre
polynomials and (28)-(29) with B —u = 1/2 we get

-+ .

PUAPUji)- P[L2AX)PU{\)
£(2j - NPY-i(x) =2 G- Dz -1)
j=2

R, . ol @2 @+xrI2
= @RI+ @+ )PI) =0\t s singra< 3
(1< 1 *=2,..)-

Now applying Abel transform in (9) and using (32) and (30) with 6=1/2
and 6 = 1/2 + a we obtain

. . n—1
L+ x)sin"t " sint tin-1*n(x) sin2t
*+(*) =0 ( —d nx T 2n(n(il) \1/_2(22- NI2_(*)+
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lm o)) sin2 A i-J .

------ 73w ZA
=3  3=2

+0

L+ x)sin“t sint
=0 + +
n2 -0
[trrn(s)| sin2A A1/ i52  (1+ x) s~
6 y M\sin 3/2i sin5/2/

o (I + a:)sin*“ f l sin A

)0 ) Nn<i). o

6. Proof of Theorem 3

Let first f'(x) E C[—1,1]. By uniqueness of the polynomials Rn(f,x) we
obtain the identities

71 n

Y rk(x) =1, X =

Y  XkIFk(x) + (T+{X) + <T_(x),
(o= fcd

whence
M

- xk)rk(x) = <+A) + o0-{x).

K- 1

Thus using the relation
f(r) - f(xk) = fAx)(x - xk) + 0( W - xk\)u(f, x- a;*)

we obtain by the second relation in Lemma 3

n

f(x) - Rn(f,x) =Y No ) ~f(x] ™A) - ['(~IA-A) - ['AA+A) =
A=l

n in
FATY (x- XkYkli)+ ol Y I (IR RN N
fe=1 \fc=1

-'(-Der_(ar) - fi(Da+(x) = [f\x) - /*(-1)] *_(*)+
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Vi — X2

+[1'(*)-1"(D]i+(x)+ 0 (~r) logo + )

\/1
= 0{u(f, 1- x)<er(x))) +O~ "~ 0 |q_:ﬂ+gl- |/,——kX2+ j’l\

by symmetry. If —4 ~ x ~ 0 then using Lemma 4 with a = 0, we have
la+(x)| = 0 (*r) and we are done. If 0 x i 1, then by

<>,1- x) =n 0", 2sin20 ~ 0 +2ntan0 n0',~ 0O

we obtain, on using Lemma 4 again with a = 1and a = 0,

+ cost + sint
u(f,l-x)\<r+(x)\ =000 "', ~ 0 (" +- 0 ! tan0 _

sint (f, sint
n i)

=0

and the second statement in Theorem 3 is completely proved.
In order to prove the statement concerning the operator Rn(f,x), first

assume that |/'(x)| is bounded. Then we obtain from the second relation in
Lemma 3 applied withu =1

V)~ R(fo)\ ~ A T(x ) -1 (x BIx*(X)] =
k=1

=0(||/']D) £ I*- Xi]In(x)] = 0(11/11)
k=1
Thus by the first relation in Lemma 3 and by Theorem 2.3 of R. DeVore [3],

the first statement of Theorem 3 for an arbitrary /(x) G C[—1,1] follows.
O
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7. The optimal order of convergence

Theorem 3 does not give 0(n~2) as the order of convergence for the
operator Rn. However, for f(x) = x2 we have

X2- Rn(x2,x) - 272 Qk(x),
k=1

and this is shown to be of order 0(n~2). (We do not go into details; see

Section 1.6 of [6].)
On the other hand, 0(n~2) cannot be further improved:

T heorem 4. We have
Il/(x) - R (/,z)]| = o(n~2)

if and only if f(x) is a linear function.
The proof is an exact analogue of that of Theorem 2 from [6].
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SASAKIAN MANIFOLDS WITH VANISHING
C-BOCHNER CURVATURE TENSOR

E.-S. CHOI (Kyungsan)*, U.-H. Kl (Taegu)* and K. TAKANO (Nagano)

81. Introduction. Asa complex analogue to the Weyl conformal curva-
ture tensor, Bochner and Yano [1], [15] (see also, Tachibana [13]) introduced
a Bochner curvature tensor in a Kéhlerian manifold. Many subjects for van-
ishing Bochner curvature tensors with constant scalar curvature have been
studied by Ki and Kim [6], Kubo [8], Matsumoto [9], Matsumoto and Tanno
[11], Yano and Ishihara [16] and so on. One of those, done by Ki and Kim,
asserts the following theorem:

Theorem A ([6]). Let M be a K&hlerian manifold with vanishing
Bochner curvature tensor. Then the scalar curvature is constant if and only

if Tr Ric(m) is constant for a positive integer m (™ 2).

In a Sasakian manifold, a C-Bochner curvature tensor is constructed
from the Bochner curvature tensor in a Kéhlerian manifold by the fibering of
Boothby-Wang. Recently, the Sasakian manifold with vanishing C-Bochner
curvature tensor and the constant scalar curvature is studied, and in [12],
the following theorem was proved:

Theorem B. Let Mn (n ~ 5) be a Sasakian manifold with constant
scalar curvature whose C-Bochner curvature tensor vanishes. If the Ricci
tensor is positive semi-definite, then M is a space of constant -holomorphic
sectional curvature.

Also, when M is compact, the following theorems were proved:
Theorem C ([4]). Let Mn (n 5) be a compact Sasakian manifold
with vanishing C-Bochner curvature tensor. If the length of the Ricci tensor

is constant and the length of the g-Einstein tensor is less than ~ (g~n+l) ;
V (n—)(n_3)

then M is a space of constant d-holomorphic sectional curvature.

THEOREM D ([10]). Let Mn (n ~5) be a compact Sasakian manifold
with vanishing C-Bochner curvature tensor and constant scalar curvature. If
the smallest Ricci curvature is greater than —2, then M is a space of constant
t-holomorphic sectional curvature.

We shall prove Theorem A as a Sasakian analogue in 83. Moreover in 8§
we shall discuss when the smallest Ricci curvature is greater than or equal to

* Supported by TGRC-KOSEF.
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328 E.-S CHOI, U.-H KI and K. TAKANO

—2 in a Sasakian manifold with vanishing C-Bochner curvature tensor and
Tr Ric<m) is constant for a positive integer to.

82. Preliminaries. Let M be an n-dimensional Riemannian manifold.
Throughout this paper, we assume that manifolds are connected and of class
Ce°. Denote by gji, Rkjih, Rji = RrjiTand R the metric tensor, the curvature
tensor, the Ricci tensor and the scalar curvature of M, respectively, in terms
of local coordinates {V*}, where Latin indices run over the range {1,2,..., n}.

An n(= 2/ + I)-dimensional Riemannian manifold is called a Sasakian

manifold if there exists a unit Killing vector field £h satisfying

(2.1
fM—9irs , GG —"jVii 45 Tag—0, dr £ —0, Q [r—o0,
1dddr = A TMut TkAL~  9KkjVi T 9kiVj,

where V denotes the operator of the Riemannian covariant derivative.
It is well known that in a Sasakian manifold the following equations hold:

(2.2) RjrC = (n - 1)j?j,
(2.3) Hji + Hij —O0,
(2.4) Rji —Rrs®j & T (n  1)VjVii
(2.5) VKRji - v jRki = (VtRKr”jroofr-
~Vj{Hki —(n —1)®u} ~ 2Vi{Hkj ~ (n —1)DKJ}
(2.6) VKRY - (VKR rM 7 f =
—~Vi{Hkj —{jl — —Vj{Hki ~ (K —1x{\1
2.7 e v rRkjih = o,

where we put //,, = dBrRri.

We denote a tensor field Ricm™with components Rj#T) and a function
R(m) as follows:

Rji(m = RjhRiJ1 mmR 'r 1> R(m) = Tr Ric<m>= g3iR3i[m).
Then, from (2.2) and (2.3), we,get
(2.8) Ajr(mr = (n- 1)mi?,
(2.9) Rjr(mUir + Rir(mU jr = 0.
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Also, we define the 7#Einstein tensor T]t by

(2.10) Tji = R3 - Sji + W -

If the 7#Einstein tensor vanishes, then M is called an //-Einstein manifold.
From (2.2) and (2.3), we have

(2.11) T T =0,
(212) Tjrf =0,
(2.13) T31h, T+ TrrgB8T= 0.

A Sasakian manifold M is called a space of constant “holomorphic
sectional curvature c if the curvature tensor of M has the form
Rkjih = N (9jihh - 9kinjh)+

cC—1
M A (yKtVIE ~ 9]iVKE A VK9iA] ~ 9]Tjxh  okrd] b DK ~ 20K]d{ )e

Matsumoto and Chiiman [10] introduced the C-Bochner curvature tensor
Bkjih defined by

(2.14) BKih= RKih+; _ o(Rkif>jh- Rjihh+9kiRjh- 9jiRkh + Hei®]k~

-Hupkk + dokrH* —gerHkk -f 2Hkjpih - 2dk3H * —

-R k,r}jth + Rji9kih - 9kThRjh + T]jr]iRkh) -

~fn+ 317 ki*h=2 kd+28  h)- ~ 9jihh)+
K

+ -I-I’[btjgkivjth - 9jigkih + VkVi6éjh - 9j9ihh),

where K = . It is well-known that if a Sasakian manifold with vanishing

C-Bochner curvature tensor is an ~-Einstein manifold, then it is a space of
constant </i>-holomorphic sectional curvature.

83. A Sasakian manifold with vanishing C-Bochner curvature
tensor. Let Mn (n ~ 5) be a Sasakain manifold with vanishing C-Bochner
curvature tensor. By a straightforward computation, we can prove

(31) ®” A rBKjS = VKRji - VjRki- TK{Hji - (n - <53+
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+nj{Hki - (n - Dk} + ZA{HK] - (n - D)pk]}+

+2(raTIlj{(gicc* LWb)6sI ~ * th H)skr+

Adddi Ok T 2dkjdi IR,

where we put R3= VjR.
By virtue of (2.1), (2.2), (2.5)-(2.7) and (3.1), we obtain

(3.2) VicAji = {Rkr - (n - L)akrH{P]Ti + dxri?))+

+2(a +~0){20*(™* ~ T+ RjMK ~ Vkvir
IRI((JY Lkljj) kjdi Rr dwdy Rr}
and consequently from (2.7), we find

(3.3) (n + N(VKRI)RIRI = 2A2RK,
where we put A2= RTRr.
The following lemma is needed for later use.

Lemma 3.1. Let Mn (n ~ 5) be a Sasakian manifold with vanishing C-

Bochner curvature tensor. Then Rjr* R T= 0 holds for a positive integer m
if and only if the scalar curvature R is constant.

Proof. If Rjr'mIRT — 0 holds, then we get Rjr2m~2Rr = 0 which
implies that | Rr(m-1)fT|2 = 0. Accordingly, we obtain Rjr'm~1"Rr —O0.
By the inductive method, we get RjrRr = 0. Operating Mt to this, we find

(VKRjr)R2Rr = 0. By means of (3.3), we see that the scalar curvature R is
constant. The converse is trivial.

For the sake of brevity, we shall define a function a{m) as follows:
a(m) = RIt{fmRJR".
Then, it is clear from (3.2) that
(3.4)  2(n+ I)(VKRji)Rj{Rir(mRr) = A2R j m)Rr + 3a(m)RK,
(3.5) 2(n + 1)(VKR:t) (WrWRr) {Rts" R s) =
= a(t)RKT(mRr + a(m)RKIWRr + 2a(™ + m)RKk,
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where we have used (2.7), (2.8) and (2.9).
Operating to (3.2) and owing to (2.1), (2.7), (2.8) and (2.9), we
find

(3.6) (n+ Viiz(m+l) = (m + 1) 2Rk R r+ {R(m)~(n  1)m}Rk m
Therefore, if the scalar curvature R is constant, then R(m) is constant for
any integer m (" 2). )

Now, we shall prove that the scalar curvature R is constant if A(m) is
constant for any fixed integer m(” 2).

At first, suppose that R"e+3) —0,1,2,...) is constant. Then, from
(3.6), we can get

20*rv+2)ar+ {R{m2) - (n- 1f +2}Rk =0,
which yields that 2a(2l + 2)+ A2{R"t+2) —(n —1)2+2} = 0, that is,
2|Ajr(m)Ar|2+ J2|Rji(e+) - (n- 1Y+1VjT]i\2 = 0.
Thus, from Lemma 3.1, the scalar curvature R is constant.

In the next place, we shall consider when A(2(+2) (I = 0,1,2,...) is
constant. From (3.6), we have

(3.7) 2RjrW+VRT+ {R(2t+1) - (n - 1)2<+1}Rj = 0.
Operating Mc to this and owing to (3.7), we get
(3.8) 2(VIAjr<<1)) RIRr + A2VfA(2m) = 0.

From (3.3) and (3.8), we find the scalar curvature R is constant if £ = 0.
Because of (3.4), (3.5) and (3.6), equation (3.8) is rewritten as follows:

211
(3.9) 4E+ D\Rkr{n)RT+ 2 a(i)Rkr{~i]Rr+
i- 1

+4(E + \)a(21)Rk + (2/+ DA2JAjW- (n- 1)SiW |2dfc = 0.

By virtue of (3.9) and Lemma 3.1, it is clear that the scalar curvature R is
constant if £—1
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On the other hand, we have
(3.10) A6a(2£) + 2\da(s)a(2£ - s) + Xda{2s)a(2f - 2s) =
= A2JA20jr(QAr + a(s)A ~-s)Ar|2+ a(27-2s)|A 2Ajr(s)Ar -a(a)A j|2.

Because of (3.9) and (3.10), it is easy to see that the following equations
hold: iff = 2,6,10,...,

(U + 8)ABa(2f) + (2f + 1)A8| - (ra- 1)%ruy\2+
(r-2)/4
+4A4 N oi(di)a(2€ —4r)+
1=1
t/2

+2A2  IARjsWrs+ a(2i- 1)Rjs((- 2+1)Rs\2+
i=i
(12
+2]Ta(2f-4i4 2)JA2AIS2'-1)Bs- a(2i - HR3\2=0,
t=i

ifi =4,8,12,...,

(7€ + 8)ABa(2f) + (2f + DAB|RIY) - (n - 1)%ru\*+

(e-4)/4
+4A4 a(4i)a(2f-4i) + 2Ada(f)2+
i=i

(12
+2A27  IA2Rjs(ORs + a(2i - 1)AISF 2 +1)As|2+

t=i
o2

+2  a(2f- 4r+ 2N 221A* - a2i - 1)Ay|2= 0

t=i

and if£= 3,5,7,...,

(7f + 9)AGa(2f) + 2L+ DASRjM - (n - 1)%-72,2+

(r-1y/2
+2A4 1T a(2i)a(2f —2i) + 2Ada(f)2+
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(<22
+2A2 A IX2RjSMR s + a(2i —1)i2js®_2i+1M%s| 2+
=1
()2
+2 a(2£-4i + 2)|A2AJSA-1" s-Q (2z-1)AJ|2= 0.

Thus we find from Lemma 3.1 that the scalar curvature R is constant if
R(2(+2) (E —2,3,4,...) is constant. Hence, we have

Theorem 3.2. Let Mn (n ~ 5) be a Sasakian manifold with vanishing
C-Bochner curvature tensor. Then the scalar curvature R is constant if and

only if Tr Ricr1) is constant for an integer m (» 2).

Remark. Inthe proof of Theorem 3.2, we use only equation (3.1). Thus
Theorem 3.2 is valid for the parallel C-Bochner curvature tensor.

Also, we have from Theorems B and 3.2

Theorem 3.3. Let Mn (n” 5) be aSasakian manifold whose C-Bochner
curvature tensor vanishes. If the Ricci tensor is positive semi-definite and

Tr Ric<m> iS constant for a positive integer m, then M is a space of constant
t-holomorphic sectional curvature.

Furthermore, it is easy to see from the proof of Theorem C and Theorem
3.2 that the following theorem holds:

Theorem 3.4. Let Mn (n 5) be a Sasakian manifold with vanishing

C-Bochner curvature tensor. If Tr Ricm) is constant for a positive integer
-Ei i i N ~

m and the length o{ the n-Einstein tensor is less than \J(,{fp)(}?” , then M

is a space of constant grholomorphic sectional curvature.
84. The smallest Ricci curvature. Let M be an 5)-dimensional
Sasakian manifold with vanishing C-Bochner curvature tensor. Suppose that

R(m) is constant for any positive integer m. By Theorem 3.2, equation (3.2)
is reduced to

(4.1) — (R~ (" =1} (") M T of Vit

which implies VkRji + VjRik + VARkj —O0, namely, the Ricci tensor is cyclic
parallel. Therefore, using the Ricci formula, we find

STKWKRji = 2{RrjisRrs - Rit(2).
Applying Vkto (4.1) and owing to (2.1) and (2.2), we get
VKVKRji - -2 [Rji - (n- 1)git- {R- n(n- 1)}1)3m] .
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On the other hand, by virtue of (2.1)-(2.4) and (2.14), it is clear that
the following equation holds:

(n + 3)-Rrjis.firs —
= 4Rji™" —(4n —R + 2k)Rji + {R(2) —(&—4)i2 + (n —1)k}gji—
~{R{2+ (n- 1)2- (n- Nk - kR}]jTIi.
From the last three equations, we have
4.2) Rjif = BRji+7 + {(n- 1)2- (n- DB - 7} «',
where the constants R and 7 are given by

(4.3) (n+ 1) = A—3n—5,

(4.4) (n- 17 = A e e+ - - P(FIZ +3n + 4).

y

(

Thus, equation (4.2) tells us that M has at most three constant Ricci
curvatures n —1, x\ and x2, where we have put

(45) * =7 (?- nln), x2=~(R +y/D), D —R2+47(™ 0),
moreover, denote by s and n —1—s the multiplicities of x\ and x2, respec-
tively. Therefore we have (cf. [7])

Lemma 4.1. Let Mn (n * 5) be a Sasakian manifold with vanishing

C-Bochner curvature tensor such that Tr Ric"m" is constant for a positive
integer m. Then M has at most three constant Ricci curvatures.

Now, we shall prove the following theorem.

Theorem 4.2. Let Mn (n A 5) be a Sasakian manifold with vanishing

C-Bochner curvature tensor such that Tr Ricm™ is constant for a positive
integer m. If the smallest Ricci curvature is greater than or equal to —2,
then M is a space of constant g-holomorphic sectional curvature —3.

Proof. By means of (4.3), (4.5) and Lemma 4.1, we find
(4.6) R+n—1= Pils(n —1—2s)V7t
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Because of (4.3), (4.4) and (4.6), we have

n—1 n —1—2s

D=
n+3

=Ry I_I+-{R2-2(n +3)R+ (n- D)2n + 2)},

which yields that
4.7) (n+ 1R ~tR2- 2(n +3)1+ (n- 1)2(n + 2).

Let x\ be the smallest Ricci curvature. Then, by virtue of (4.5), we
obtain 7 2B + 4 which means from (4.4) that

(n+ AR~ R2- 2(n + 3)A + (n - 1)2(n + 2).

Combining this with (4.7), we get that D vanishes identically, which implies
that equation (4.6) gives R = - n+ 1 We find |Rji + 2gji - (n + Dr]jT]i\2 =
= 0 which yields that M is an r/-Einstein manifold. Thus, it is easy to see
from (2.14) that M is of constant *-holomorphic sectional curvature —3.

Remark. In [10], this theorem was proved under the condition that M
is compact.
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ON DERIVATIONS AND COMMUTATIVITY
IN PRIME RINGS

H. E BELL* (St. Catharines) and M. N. DAIF (Taif)

We have shown in [4] that if R is a semiprime ring admitting a derivation
d, and if K is a two-sided ideal such that either xy + d(xy) —yx + d(yx) for
all x,y 6 K, orxy —d(xy) —yx —d(yx) for all x, y 6 K, then K is a central
ideal of R. More recently we have proved that if R is a semiprime ring
admitting a derivation d such that xy —d(x)d(y) —yx —d(y)d(x) for all x,y
in some nonzero right ideal U, then U must be central [3]. Of course, in
the event that R is prime, any of the conditions mentioned implies that R is
commutative.

In this paper we study conditions which are in some sense related to all
the conditions above. Suppose that R is a prime ring having a nonzero right
ideal U. If d is a derivation on R such that d(x)d(y) + d(xy) = d(y)d(x) +
+ d(yx) for all x,y 6 U, we say that dis a U-* derivation; and if d(x)d{y) +
+ d(yx) = d(y)d(x) -f d(xy) for all x,y GV, we call d a U—* derivation.
We prove that if d is a nonzero U—* or U—* derivation, then either R is
commutative or d2(U) = {0} = d(U)d(U). This result yields as a corollary an
earlier result of Bell and Kappe [2]; and it facilitates the study of derivations
d such that d(xy) =d(yx) for all x,y GU — a study which constitutes the
final section of the paper.

1. Some preliminaries

Throughout the paper, we make extensive use of the basic commutator
identities [x,yz] = y[x,z] + [x,y\z and [xy, z] = x[y, 2\ + [x,z]y. Moreover,
we shall require the following known results.

(A) [1, Theorem 4] Let R be a prime ring and U a nonzero right ideal. If
R admits a nonzero derivation d such that [x,d(x)] is central for all x £ U,
then R is commutative.

(B) (Cf. [6. Lemma 1]) Let R be a prime ring and U a nonzero two-sided
ideal. Ifd is a nonzero derivation on R, and ifa £ R is such that d(U)a =
= {0} or ad(U) = {0}, thena = 0.

(C) [1, Lemma 3] Let U be a nonzero left ideal of a prime ring R. Ifd is

* Supported by the Natural Sciences and Engineering Research Council of Canada,
Grant No. A3961.

0236-5294/95/$4.00 (c) 1995 Akadémiai Kiad6, Budapest



338 H. E. BELL and M N. DAIF

a nonzero derivation of R, then d is nonzero on U.
(D) [2, Lemma 2(a)] Let U be a subring of a ring R, and let d be a

derivation of R such that d(xy) = d(x)d(y)for all x,y 6 U. Then d(x)x (y -

d(y)) = Ofor all x,y £ U.

(E) [4, Lemma 1] Let R be a semiprime ring and L a nonzero ideal of
R. Let [1,1] = {Pxy]\x,y 6 /} mIfz 6 R and z centralizes [1,1], then z
centralizes 1.

(F) If R is a prime ring, the centralizer of any one-sided ideal is equal to
the center of R.

2. Results on U-* and U-** derivations

Theorem 1. Let R be a prime ring and U a nonzero right ideal. If R
admits a nonzero U—* derivation d, then either R is commutative or d2(U) =

- d(U)d(V) = {0}

Proof. Since d is a U-* derivation, we have

(1) [d(x).d(y)] = [d(y).x] + [y,d(x)] forall x,y£U.

Substituting xy for y, we get

(2 d()Ly.x\ = [d(x),x]d(y) +d(x)[d(x),y] forall x,y£U.
Replacing y by yx and using (2), we have

@) [d(x),x]yd(x) + d(x)y[d(x),x] =0 forall x,y£U.
In (2) we substitute yd(x) for y, since U is a right ideal, to get

(4) d(x)y[d(x),x] —[d(x),x]y d2(x) —0 forall x,y£U.
From (3) and (4) we obtain

(%) [d(x),x]y(d(x) +d2(x)) =0 forall x,y£U.
Thus, (5) yields

(6) [d(x),x]JUR (d (x)d2(x)) —{0} forall x,yEU.

But R is prime, hence for each x £ U, we have either [d(x),a;] U = {0} or
d(x) + d2(x) = 0. If [d(x), x] U = {0}, then (4) shows that d(x)y [d(x), ] =
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Oforally GU, sothat d(x)UR [d(x),»] = {0}. Therefore, either d(x)U =
{0} or [d(x),x] = 0.

On the other hand, suppose d(x) + d2(x) = 0. In (1), put y = yd(x) to
get

(7)  y[d(x),d2(q)] + [d(x),y] d2(x) = d(y)[d(x),x] + y[d2{x),x\ +

+[y, x]d2(x) for all y G U.

But d(x) = -d 2(x), hence (7) implies
(8) d(y)[d(x),x\ - [y,x]d(x) + [d(x), y] d(x) = j/[d(x),x] forally GU.

Ifin (1) we put y = yx, we get

)  [y:xJd(x) = [d(x),y] d(x) + d(y)[d(x),x] forail x,y£U.

Thus substituting from (9) in (8), we get y[d(x),x] = 0 for all y € U, that
is

(10) ' U[d{x),x] = {0}.

But U is a right ideal, hence [d(x),x] = 0. Thus, in any event, for each
x G U, either [d(x),x] = 0or d(x)U —{0}.
Suppose that [d(x),x] = 0. Then by (2), we have

(11) dX)[i/,x] = d)[d(x),y] forall yEU

Replacing y by yz in (11) and using (11), we get d(x)y[z,x] = d(x)y[d(x),z]
forall y GU, z GR, ie, d(X)y[z,x +d(X)] = 0forall y £ U, z 6 R.
Thus, d(x)yR[z, x + d(x)] = {0} forall y GU, z £ R; hence we have either
d(x)U ={0} or x T d(x) € Z, when Z denotes the center of R. The sets
of x for which these conditions hold are additive subgroups of U with union
equal to U; hence either d(U)U = {0} or x + d(x) GZ for all x GU. In the
latter case, R is commutative by (A); therefore we assume henceforth that
d(U)U = (0).

Under this assumption, the condition that [d(x),d(yz)] = [d(yz),x] +
+ [yz,d(x)] for all x,y,z G U becomes [d(x),yd(z)] [/d(x),x]-|-

+ [yz,d{x)], or

y[d(x),d(2)\ + [d(x),yld(z) =
= y[®).x] + [yx]d(z) + y[z,d(x)] +[y,d(x)]z.
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Using (1) to eliminate the terms with first factor y, and noting that the last
summand on the right is O, we get

(12) yd(x)d(z) = [ar,y]d(z) forall x,y,z(zU\
hence,
(13) yd(z)d(x) - [z,y]d(x) forall x,y,z£U.

Thus (12) and (13) give y [d(x), d(z)] = Dx y\d(z) —[z, y]d(x) for all x,y,z G
G U. Using (1), we reducethis to

(14) xyd(z) - zyd(x) =0 forall x,y,zEU.

Replacing x by xt in (14) and using (14) itself, we obtain

(15) [x,zy]ld(t) = 0 forall x,y,z,tEU.

From (12), we have [x,zy]d(t) = zyd(x)d(t). Substituting in (15) we get
(16) zy d(x)d(t) =0 forall x,y,z,t€U.

Since zyRd(x) d(t) = {0} for all x,y,z,t GV and since U2/ {0}, we con-
clude that d(x)d(t) —O0 for all x,t G U, which is the desired conclusion that
d(U)d(U) = {0}. In particular,

7 [d(x),d(tj\ =0 forall x,teU.

From (1), (17), and d(U)U = {0}, we now get

(18) yd(x) = xd(y) forall x,yEU.

Replacing y by yr for arbitrary r G-R we get xyd(r) = yrd(x) —xd(y)r; and
substituting yd(x) for xd(y) now yields

(19) xyd(r) = y[r,d(x)] forall x,y GU r GR.
For r we substitute d(z):z G U, obtaining
xyd2(z) = y[d(z),d(x)] forall x,y,z(EU;
and using (17), we get
xyd2(z) —0 forall x,y,zEU.

Since U2 & {0}, we conclude that d?(U) = {0}; and our theorem is proved.
Using similar arguments, we get
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Theorem 2. Let R be a prime ring and U a nonzero right ideal. If
R admits a nonzero U—* derivation d, then either R is commutative or

d2(U) = d{u)d{u) = {0}.
From Theorems 1 and 2 we can get the following corollaries.

Corollary 1. Let R be aprime ring and U a nonzero right ideal of R.
If R admits a nonzero U—* or U—* derivation d with d2{U) ¢ {0}, then R
is commutative.

COROLLARY 2. Let R be a prime ring and U a nonzero two-sided ideal.
If R admits a nonzero U— or U—** derivation d, then R is commutative.

This corollary follows from our theorems and (B).

The next corollary is a result of Bell and Kappe, who say a derivation acts
as a homomorphism on U (resp. an anti-homomorphism on U) if d(xy) =
= d(x)d(y) for all x,y £ U (resp. d(xy) = d(y)d(x) for all x,y G U).

Corollary 3. [2. Theorem 3]. Let R be a prime ring and U a nonzero
right ideal. If d is a derivation which acts as an anti-homomorphism or a
homomorphism on U, then d —O0.

P roof. Whether we assume that d acts as a homomorphism or as an
anti-homomorphism, the condition that d(U)d(U) = {0} shows that d(U2) —
—{0}; and by (C), we have d = 0. Thus, by Theorems 1 and 2 we may
assume that R is commutative, hence is a domain, and that d acts as a
homomorphism on U. If we assume d ¢ 0, it follows from (D) that d(y) =y
for all y 6 W\ therefore, if u £ U\ {0} and r £ R, we have ur = ud(r)+ d(u)r
and hence ud(r) = 0. But this contradicts (B), so in fact d = 0.

We conclude this section with an example showing that the non-
commutative case in Theorems 1 and 2 actually does occur.

Example. Let R be the ring of 2 x 2 matrices over a field F; let U =

. Let d be the inner derivation given

x for all x 6 R. It is readily verified that d

is a U-* and U-** derivation.

3. Derivations with d(xy) = d{yx)

Long ago Herstein [5] proved that if R is a prime ring of characteristic not
2 which admits a nonzero derivation such that d(x)d(y) = d(y)d(x) for all
X,y 6 W, then R is commutative. In view of this result, it seems appropriate
to study derivations such that d(xy) = d(yx) for all x, y in some distinguished
subset of R. To our surprise, the results and methods of the previous section
are applicable in such a study.
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Theorem 3. Let R be a prime ring and U a nonzero two-sided ideal
of R. If R admits a nonzero derivation d such that d(xy) = d(yx) for all
X, ¥y £ U, then R is commutative.

Proof. Let c £ U be a constant — i.e. an element such that d(c) = 0;
arid let 2 be an arbitrary element of U. The condition that d(cz) = d(zc)
yields cd(z) = d(z)c. Now for each x,y £ U, [x,y] is a constant; hence

(20) d(z)[x,y] = [x,yld(z) forall x,y,zEU.
By (E) and (F), d(z) is central for all 2 £ U; hence d is a U—* derivation
and R is therefore commutative by Corollary 2.

The example in the previous section shows that in Theorem 3, U cannot

be replaced by a one-sided ideal. However, we do have the following extension
of Theorem 3.

Theorem 4. Let R be a prime ring of characteristic different from 2,
and let U be a nonzero right ideal. If d is a nonzero derivation such that
d(xy) = d(yx) for all x,y £ U, then either R is commutative, or d2(U) =
= {0} = d(U)d(V).

P roof. Writing d(xy) —d(yx) in the form [x,d(y)] = [y, d(:r)] and
replacing x by x2, we get

[y, x]d(x) + d(X)[y,x] = 0 forall x,yEU.
Recalling (20) and using the fact that char R ¢ 2, we have
(21) [y,x]d(x) =0 and d(x)[y:x]- O forall x,y£U.
In the first of these equalities replace y by yw, w E U, thereby obtaining
[y, xJud(x) = {0} = [y, xJURd(x) forall x,y£U.
Since d ¢ O, we can conclude from the usual additive-group argument that
(22) [y.x]JU—{0} forall x,y £ U

On the other hand, the second equality of (21) yields d(x)U[y,x] - {0} =
= d(x)UR[y, x] for all x,y £ U; thus,

(23) for each x £ U, either x is central or d(x)U —{0}.

Assume that R is not commutative, and hence that U is not central. By
(22) and (23) we have [y,x]U = {0} for all x,y £ U and d(U)U = {0}.
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These conditions, together with the d(xy) = d(yx) condition, yield
yd{x) = xd(y) forall x,yEU.
But this is just (18); and as in the proof of Theorem 1, we have
(24) xyd2(z) = y\d(z), d(x)] for all x,y,zEU.

Now by applying d to the condition zd(x) — xd(z), we obtain zd2(x) +
+ d{z)d(x) —xd2(z) + d(x)d(z)', hence zd2(x) + [d(z),d(x)] —xd?(z) and

(25) y[d(z),d(x)\ = yxd2(z) - yzd2(x).

Substituting in (24) now yields

(26) yzd2(x) = [y, x]d2(z) forall x,y,z£U.

Since [y,x] is constant, applying d to (22) shows that [y, x]d(U) = {0} =
= [y, x]d2(U) for all x, y 6 U; and (26) yields U2d2(U) = {0}. Since U2 & {0}
and R is prime, we conclude that d2(U) — {0}. Finally, since chari? / 2,
using the fact that d2(xy) = 0 for all x,y E U gives d(U)d(U) = {0}.
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ON MODULI OF CONTINUITY
FOR A TWO-PARAMETER
ORNSTEIN-UHLENBECK PROCESS*

LIN ZHENGYAN (Hangzhou)

1. Introduction and conclusions

Given o > 0 and an n-dimensional vector a = [i1, ..  i1] &, >0,

i = define the n-parameter Ornstein-Uhlenbeck process (OUPN)
{*(*).*€ by

X(t) = jx 0+ al* ea*>dW(X)j

where W is an n-parameter Brownian motion, X0 is a random variable
independent of W, (e,») stands for the inner product in Rn. This definition
was introduced by Wang [1], who investigated some Markov properties of
OUP2 in his paper. Chen [2] studied sample path properties of OUP2 by
giving Hausdorff dimension of the graph and image sets of OUP2. Xiao
[3] generalized these results to the case of n-dimensional processes. In this
paper, we give some direct depictions of sample path properties of OUP2
by establishing its Levy’s exact moduli of continuity not only for one of two
parameters but also for both parameters.

For simplicity, we assume that <= 1L, EX0= 0, EXqg= 1, E exp(LXo0) <
<00 forany 0<t<  OUP2can be rewritten as

(1) X(t,v) =e~at~RviIxo +J*J “eaxH3ydW(X,y)
with a > 0, § > 0. Then the increment
2 X(t+s,v)~ X(t,v) =e-“(r+*)-~(1 - eaa) X0+

ft+s rv
+e-*(t+.)-Bv(1_ e*)) [ eM+RydW{x,y)+
Jo Jo

* Project supported by National Science Foundation of China and Zhejiang Province.
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346 LIN ZHENGYAN
/t+S J K eax+RydW(x,y)=:
= &(*6,v) + & (¥, D)+ &(* s, U).

Hence

3) E(X{t +s,v)-X(t,v))2=

ST

=l

+ A (2% 4 (1- e 25+ -y (LMY =
= «Ve-2'445)-2% A (I-e - 23)+°(s2) as

forany v > 0. Put a2(t,s,v) = a2s2e 2a(*+3) 2%, a2(s,v) =" (1— 20).
Remark 1. We take a2(t,s,v) into consideration since

a(s,v) =o(cr(t,s,v)) as v—»0

for any fixed t » 0 and s > 0.
Consider the increment of X(t,v) for both t and v. Put

X (R(t,s,v,u)) = X(t+s,v+u)- X(t+s,v)- X(t,v+u)+ X(t,v).

Similarly to (2) we have

X (R(t,s,v,u)) = (1 _eas) (1 - elBu) X0+
rt+s  rv-\-u
+e-a(t+s)-B(v+u) (J _ eo.) [/ / ear+/3W (a:,il)+
j0 Jv
ft+s [V
+e-a(t+*)-0(i/+u) (j _ ea,l j _ eou) / / y)+
o MY

i+s nH-u
J eax+R4W (x,y)+
+e-at-B(v+u) (X_ gBn'j J*+SJ Ve<**+0VdW(x, y)
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TWO-PARAMETER ORNSTEIN-UHLENBECK PROCESS 347

and

4)  EX2(R(t,s,v,u)) = e-Z3+s)- 28(v+u)(L - eas)2(] - eBu) 2

AN e-2a(t+s)-2R(v+u) il _ erl\Z J __le2a(t+s) _ <2B(v+u) _ eZBv\l
. \V )

_"e-2at-20(v+u)_]_"e2a(Hs) _ e2atre2R(v+u) _ e2Bvr |

+e-2ct-2R(v+u) (1 _ eBv.j2 1 (e2a(t+s) _ e2cri® "e2Rv _ jj +

+2e_a(2<A)-2/3(u+u) (1 - eas) — (e2‘(<+s) _ e2at) (e2?2(u+u) _ e2 ™ |

_Ne~a(2t+s)~2R¥(v+u) (1 —=eas) (1 —elBu) 2 N ~c2ot(t-H) _ e2a<™ 21 _

4—a[g(e203 —I1) (1 - e~2f3u)] fio(su) as 5-—»0, u —»0.

Put cTi(i, S, u) = cr(t, S, u) i (t(s, u), <72(t,0,u) = c(t, s, v) T<(s, V).
At first, we consider moduli of continuity for one of two parameters.

Theorem 1. Suppose that ah is a function of h with ah —o(h~s) as
h —»0 for any 6 > 0 and F‘}i;noap, > 0. Then we have

(5)
A(i +Su)-X(f,t;
limsup sup sup li (rsu)-x, ’)|1 = las.

°<'>007 a f0Mi)i GL(f,fi,u)|2 (log/I- 1 +loglog(71(i,/1,u))

and
(6) lim sup e ! X(tﬁhv)A(tu)| ................. = las.
°o_j-ah orl(i,/i,u)|2 (1o g/i- 1 log log <7ji(t, h, v)) |

for any fixed v > 0.
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348 LIN ZHENGYAN

Remark 2. By symmetry of X (t, n) in t and v, we can write alternatively

\X(t,v +u)~ X(t,v)\
=1

lim sup sup sup a.s.
h~* t>0 oUv*ahO<u™h U(t,V,h)
and
) \X{t,v + h)-X{t,v)\
lim sup 1 as.
h~*°Qiv/ah v(t, v, h)

where u(t,v,h) is an analogue of the normalized factor in (5) and (6).
As to moduli of continuity of X(t, v) for both parameters, we have

Theorem 2. Suppose that ah and bh are functions of h with Hm ahbh >
h—0
> 0 and Ch is a continuous non-increasing function of h with ¢h 0 and

ahbh = o((/ic/j)_i) as h —0 for any 6 > 0. Then we have

X (R(t,s,v,u))
(7) lim sup sup sup  sup =1 as.
0<s™/i O'vbh 0<uc/, (2hchlog (hch)~1) 2

and

X(R(t,h,v,ch))
im sup  sup =1 as

(8 lim, S
~0ontfiahoUvoh (2hCh log (heh) X 2

2. Proofs

In order to prove our theorems, we need some exponential inequalities.

LEMMA 1. Forany 0 < e < there existh = h(e) >0 and C —C(e) >
> 0 such that for any fixedt» 0 and 0 <s” h

IX(t+s,v) - X(t,v)l
© P <sup
u>0 ad{t,s,v)(x2+ 2loglog<72 1(t,s,v))

> +2e <

5 Cexp
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TWO-PARAMETER ORNSTEIN-UHLENBECK PROCESS 349

Proof. Let 0<i?<l, £>0be specified later on. Define vk and vk by

where Ko

where K\

(10

()

(12)
and

(13)

(12(s,vk) = ik, k= foo,fo+ 1,...,

\og(6s/2R)

log 1 , and

a2(t,s,v'k) = dk, k=kuki+1,..,

log<T2(t,s,u*0)

logi? . By the definition, it is easy to see that

vk 0 and vk —=00 as «k —»00,

vk, ~ vko,

1-e-220+ A"<5M1- e~2BK°

t2(1 —e~20vk) = 1—e~2RVk+L,

(12) and (13) imply that for k kO

(14) e2PK-"ke) = 1 (1-12) (1 - e~2BW edbked ~ 1- i

1-60  d-
1

Moreover, obviously

(14)

and

(13/

for

e- 2K +i-<) = d

1 ”_20\/|;k+| 1 ) 1 ._2*41—0}_1
tvE ~ ) -b-iv oy

provided that i) is close enough to 1 since
1_e"2M+i > 1- (TZ +i > 1- e~2vko > S
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From (2) we have

(15) Pi sup [X(F+s,u)-X(MY[ n iy e <
v>0 <7i(i,5,t;)(a:2 + 21loglog<72 1(t,s,v))

V p sup N (1] 2e)(x2 + 210glogi9 fo2] +
tk0 UK« aft'sh J

<

ATrN-T = (1+ 2£f)(a2 + 210glogi?-'02} +

+ ~sup 3
=k lviguswgq °(t,3,v)

00 (

+ sup 1 P) A £(@2+ 2loglogi)-k) A +
KIE?(!J {vk+i<v~Vk (7(510

00 (
+Y i A HY-mN Ux2+ 2loglog  ky | +
K—k\ P 'k:S/Lfv)'ku <r(s,v) 2
3s
i I - '&aii”v’f” = (1+ 7TT) (X3 + 21oglogi? ky )+
k=kO '

sy paosp PN () (% 2+ 210glogtriy*j =
blkr U~*r<4+ a(S

= X>-
=1
Estimate p\ at first. By the assumption on Xo, for s small enough we have
0 1
(16) pl =Y P{(eas-1)|X 0" (I + 2£)ab(x2+ 21loglogi?-i)2}
k=k0
@ J
s E r{i*»i (1+e)(x2+ 2loglogi? 2|~
k—ko

= 6 Eexp(* 27x°)expl|~"(i+g)(a2+ 2iogiogh *)} =
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iscexp |-N(1 + £)x2] "2 Nocexp [-M (1 + E)x2)

here and in the sequel c stands for a positive constant, whose value is
irrelevant. For P2 we have a similar estimation.
Consider p3. Let
ft+s rv

H®)= / [ eas+RBydW(x,y),
Jo Jo

which is a Gaussian process with independent increments and
EY2{v) =~ (e 2a(i+s) - I)(e20v- 1).

Noting (13) and (14), we have

(e]e] !

) S sup ly(e)] A
k=k0 U <wwk

N Eee(t+)+J«fetl(ea . 1)-V (s, tfctl)(a2+ 21loglogt?-*)H £

[e]e]

A2 A p{IYBLI(AY 26l )N E(EY\vK))~Kat  +Ov

k=k0
ofeas - 1) _lcr(s,vfcH)(x2+ 2loglogiT*)2} 4
()] f 2Q In
Noen2 exP| ——e~20(vk-Vk+1)z.2 . 21oglogi?_fc)21 ~
fe=ito
04) -
2
n e X] exp <- ot (z + 2loglog cexp(—x2)
k%o - 8as(l —I)

provided that s is small enough. For p4we have a similar estimation by using
(13)’ and (14)’ instead of (13) and (14).
We now turn to p5. Let

ap=r T r+n#(xn
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which is also a Gaussian process with independent increments and

EZ\v) = E;\p—eZatgleZas - 1) (e2v- 1).

Similarly to (17) we obtain

[e]e] r

18 s X! p su n 4 =
(18) P k=k0 {’\vk+lg"vk

N ML+ y ) eatHWk+L(r(s,Vk+i ){x2+ 2loglog g~k)21 ~

N exp| < M+ tHe~2R8"k~\k#\ x 2+ 21oglogi? fc) | £

ANe]lT exp|-|(lI +y) *~—|(a;2+ 2loglogiT ~j ~
k%o

N cexp

provided that d is close enough to 1 and 6 is small enough.
For pe we have a similar estimation.
Inserting these inequalities into (15), we obtain (9). Lemma 1 is proved.

Lemma 2. Leta> 0, 0<e< There exist h = h(e) > 0 and C\ —
= Ci(£) > 0 such that

(19)
IX(t +s,v)~ X(t,v)l
Pi sup sup sup _ N 144 <
v>0oltiao<s"h Ox(t,h,v)(x2+ 2loglog<72 1(t,h,v))

Cia
< lexp{ _ 4 4

P roof. Without loss of generality, we assume that x2 " 2.
Let kK be an integer specified later on and

tj = A)/i/2), j —k,k+ 1,...,
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for any t ~ 0. It is easy to show that X(t,v) is almost surely continuous in
(t,v). Hence we can write

(20) IX(t+*,6)-X (L) £ *((< + %*;) - X(tk,v) +

00

+ + s)k+i+nv) - X((t + s)k+j, u) +
3=0

Y11X (tk+j+i,fl) A (tk+j,V)\.
j=o

By definitions, for h small enough, K large enough and 0 < s ” h,

ftk, (t + )k - tk,v) g a2(l + 2k fh2e-Mt-2-Kkh)-28v g
= (l +

*O(<+ «OF-**>n) A ([-2-f) A (1-e-2%)" A+ A< r2M)
and
v2{(t +s)k+J,h/2k+>\v) ~ a22-2{k+i+i)h2e-™ -Wv g
£ 2-(*+>+a2 "y~

<q2(h/2fc+d+1,v) g 2-(fc++1) A (i
Zfj

e-27) g 2-(*+i+i)a2(M ) _
From these inequalities and Lemma 1, we have

X((t +9s)k,v) -X(tk,v)
P <sup sup sup —N"N1+3 <
v>0 0rfE£ao<s™h ai(t,h,v)(x2+ 21loglog @ 1(t,h,v))

- c2“ i expj-i-i-ii2},

K ((f+ s)k+j+i,v) - X ((t +3)k+j,v
wp sup sup ¢ (FF AN X+t

»>000q70<s"FO (Ji(t,h,v){x2+ 2loglog a2 1(i,/j,?;))
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°0 ( . .
ACIV A+ Aexp (I + £)e2 2k+j+ix2
j=o A B8(1+ 2ef

= cTie~*2" 2 2(fctJ+l)exp(-E22fc+j+4) » c”e-r2
i=0
provided that Kk is large enough, where we have used the inequalities bd
N b+ dforany 672 and d * 2. For the second series on the right hand

side of (20), we have a similar estimation. Combining these inequalities with
(20) yields (19).

Lemma 3. Leta> 0 b>0 0< £ < |. There exist h —h(e) > o,
d=d(s) > Q C2—o2(e) >0 such that

(21) P< sup sup sup sup X(R(t,s,v,u)) /(su)2”™ (1+ 2e)a; >N
10 O<s</i O<ud

ah f 1+£ 2\
=C2m explh ~ x|

for any x > 0.

P roof. Without loss of generality, we assume that x ~ \/2.
Let kK be an integer specified later on and

tj = [2%/h]h/2*, vj = [v23/d]d/2\ j =K K+ 1,...,

for any t A 0, v~ 0. Similarly to (20), we write
22) X(R(t,5,v,u)) < X(R(tk,(t +s)k-tkvk (v+u)'k-v'k) +
+ X(R((t + )k, (t + ) —(t + )k, VK, (v + Uk - Vk)) +
+ X (R(tk,t - tkvk, (v + uyk - vK)) +
+ X(R(t,5,vk,V - VK) +| X (R(t,5,(v + Uk, (v+ u) - (v+ U)yR) <

< X(R(tk, (t+ s)k - tk,vk, (v + uyk - VK)) +

| Eall(* S)kH ~ (tt )jietpwi [0 Uk o))+

I=0
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-+ [-N (R{tk+ji tk+j+1  tk+jivki(v'h Uk \Kk)) +
j=0

+ X(R(t,s,V'K,v- v*) + X(u(i,e, (i7 + t)fe(t; + ti)- (t>+ «)™*))
Furthermore, by recalling (4), as s —m0 and 1 —#0,

E X 2("R(tk,(t + s)k - tk,vk,(v + uyk- vk))) » (1+ 2. fo)2su + pu),
EX2(a ((i + i)fcH, (t + 5)feri+l - (t + s)k+j, vk, >+ - vk)) =

=2-"k¥*su +o{2~ * +lhu),

and
EX2(R(t,s,d0 v—h ) = 2~ksu + o(au).

Therefore, for large k, small s and u,

P< sup sup sup sup X (R(tk,{t + s)k-tk,vk,(v+ u'k- vk)) /

\A=7r=a 0<S”/l OAv~rb OKILAd

Isu)ip (b o v wax
V4
®
sup sup sup sup > X (R(t+ s)t,e
OitZzaOKsihOivib'Kuidfr'o' n

(t + S)k+j+l - (I + «*+-, VK, (v + U)'k - VK))

[ N2 (2_"+1Mu) 210 A
j=o J
09] A |
g JN24(+j+1)|- sup sup, sup, sup p\ X(R((t + s)k+j,
O<tal <1 i O3RbO=Lkal

J=0
>

(t + S)k+j+1 - (t+ 5)jt+i,» (W+ U)k - Vk))
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£ yA-JLEX2kHA +102(2-Ak# su) <

S k!d;yv < ‘+>«>efp£66U 2ic +V |J < h’é
3=0 y 3

For the second sum on the right hand side of (22), we have a similar estima-
tion. Asto X (R(t,s, vk,v - vk)), we have

sup sup sup sup X( A s Vk)) /(Bn)2 ~
.0<i<a 0<s<h0<r/<60<«<d
4c @b
2kx 2
<2 hd exp X

For the last term on the right hand Side (22), we have also a similar
estimation. Combining these inequalities with (22) yields (21).

Proof of Theorem 1. First, we prove

(23)

" j <-Ml -X -! -
urnsup sup sup  sup Er( u)-X{l u)ll <

h~*  \&° °=*=an0<s=h (Ti(t, h, w)|2(log h- 1+ logloga~\t, h, ©)) } 2

N1 oas.

Without loss of generality, we assume that ah is non-increasing for 0 5i h ~ 1;

otherwise we consider eh — hiuRI as instead of ah-
S

Let 0< £< |, P= 1—e. Define hj —d3. For j large enough, using
Lemma 2 we obtain

\X(t +5s,v)-X(t,v)\
P sup sup sup - ( )X (L) J

«0 0rigafer 0> en(<, hj, u)|2(log hj1+ loglog” (t, hj, u)) }2

>1+£ <

- Cin zLexp {- (* + i) 1l8n7a}  cx{hj® eHhl+E4n
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which, in combination with the Borel Cantelli lemma, implies

limsupsup  sup sup
j-*00 v>0 Ogi’\ahj+1 0<s”hj

X (i +s,v)-X(f,u)] A 14f as
ai(t, hj, u){2(lognj 1+ logloga21(t,hj,v)) |

Furthermore
IX(t+ s, wW)—X(t,
limsupsup sup SUp -——--——-- (t+s,wW)—X(t, v <
hho v>ooZtiaho<siih ~ (i, h, u)|2(log hj1+ loglog a*I{t,hj,v)) | 2

Alimsupsup  sup sup IX(t +s,v)- X(t,u)|/

j-*00 v>o0 0nriranj+1 0<s™hj

/md<i(t, hj, u)|2(log hj1+ logloger“1®, v))}2~°

N(-£E)1(1+5s) as.

This proves (23) by the arbitrariness of e.
Next, we prove that for fixed v > 0

\X(t+h,v)-X(t,v)\
(24) liminf sup --------- ( v)-X(t.v) —N" 1 as.
0="an <Ti(tAt>) |2 ( log h~I + log logo-"1(t,h,v)) }'
Noting the fact that for fixed v> 0 and t ~ 0,
a(t,h,v) = o(cr(h,v)) as h—m0

and recalling the proof of Lemma 1 we find that (24) is equivalent to

(25) liminf sup -----------———A 1 as.
A>0 oataah cr(h, u)(21ogh-1)2

Put ti —ih, 1=0,1,..., ih  [dh/h]. Since £3(f- h,v), i = 0,1,..., ih, are
independent, we have for any £ > 0

16 (L.M)]
a™h, u)(21og/i-1)2

(26) P < max 1-0 -
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1&*.-, M)1 _ o
mn>- <r(/i,v)(210g/i-1)-|;>l 4\
ih ( . 1 -
% JJ|T - exp{-(I - £)log/i-1}1 ™ exp(—zZ/j/il-E) * exp(-h~£2).
i=0

Let hk = k~r. (26) implies

liminf sup |£3(*>M| >

ft->0 Ogigah <r(h, u)(21ogh-1)2
> liminf max \KU,H(,V)\ -NMN1—£ as.
*xee o=f=n cr(hk,v)(2\ogh”)i

Hence (24) is proved. Combining (23) and (24) yields the conclusion of
Theorem 1

Proof of Theorem 2. At first, we prove

X(R(t, s, v,n))
(27) limsup sup sup sup sup —fi las.
hae 0rtrah0<sih0rviibh0<urch (2/ICfelog (/1C/)- 1) 2

We also assume that ah and bh are non-increasing, otherwise we consider
ah= sup asand bh- sup bs. Let 0<£< pg- 1- e Define hj by

hjChj = W,j —0,1, Then by Lemma 3

X(R(t,s,v,u))

sup sup sup sup - s 1+2c}£
10"afj+10<i’\0’\6fj+10<ung [2hjCchTvog(hjChj) X)
A~ ~ahHibhI+l
c2 hjChj

o (hj+ich)+1)~e/2
- . . {hjCh])l+s = CrfuU -W 2
hj Ch
which implies

X(R(t,s,v, if)
limsup  sup sup sup sup
I-Ke egtixhj+1 0<sghj 0gvgbhj+1 O<ulch] (2njcny log (hjch1) *) 2
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N1TI1s as.

Furthermore

X (R(t,s, v,n))
limsup sup SUp  SUP  SUP =---mmmmmmmmemmmemeeee-
0 0°<"ah0<»™i0"vA6hj+10<u’ch (2rrca log (lca) 1) 5

X (R(t,s,v,u))
A limsup  sup sup sup sup —
j~%*o0o0 ONAXN o R/ H H .. A . A '])\ 5
J a/i+1 <vi ’hJ+i O<ufchj (2/ijC~ log(/1jCA)_ T

N(L-E)-J(1+2) as

This proves (27) by the arbitrariness of e.
Next we prove

X(R(t,s,v,Ch))
(28) liminf sup  sup - M1 as.
e oitliahoivibh (2hchlog (ncg)-1)

N

Put ¢j = ih, i=0,1,..., *g := [aair], Mj = jch,j = o,1,..., jh m- [bgarcal.
Then for any given £ > 0,

X(R(ti,h,Vj,ch))

(29) P < max max
» = '= * _(2hoklog 5
<hJh X (74t,,h, Vj cn))
s t-rp ->1-£ <
t=0j=0 (2/ichlog(/icf) J) 2

i=0j=0
N exp{-roya(/lca)1l_e} ~ exp |-"*ap6a(/rca)_£| ~ exp{-c(/rcp)~£}

provided that h is small enough. Define hk by /roco* = k~I. Then (29)
implies

X(R(t,h,v,ch))
liminf sup  sup
k~* oltuahofvibh (2hch\og(hchy 1) 2
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X (R (t,hk,v,chk))
> |liminf max max 3

f*e° ° - - h*o=3=J* (2hkchklog(hkchky ')>

>1-e as.

i.e. (28) holds true. (27) and (28) together yield the conclusion of Theorem 2.
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