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ST R O N G  LAWS OF LARGE N U M B E R S  
FO R  A R R A Y S OF O RTH OG O NAL R A N D O M  

ELEM EN TS IN  BA N A C H  SPACES
F. M ÓRICZ (Szeged), KUO-LIANG SU (Taichung) and R. L. TAYLOR (A thens)

In tro d u c tio n

Several previous authors have investigated laws of large numbers for 
arrays of orthogonal Banach space-valued random elements. The general 
goal is to obtain conditions which yield the convergence

1
m anp

m  n

E E xn 0 as min(m, n) -> oo or max(m,n) —► oo

provided that

E  E  [ '° й ( ; +  1)1 ” [lo& ü + 1,] p < 00.
i= 1 j - 1 J

where {Xij}  is an array of orthogonal Banach space-valued random elements 
with zero means and

EWXijW* < oo, 1 ^  p ^  2 for all i , j  ^  1.

Móricz [2] defined quasi-orthogonality for an array of random variables 
{ X i k  } 3.S

I E (X ikX jt \ ü p { \ i ~  i l ,\k -  /|) { E X l ) ll\ E X l f \

where p (m ,n ) is a double sequence such that

OO OO

Y  Y p^m'n  ̂< 00•
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2 F  M ÓRICZ, K U O -LIA N G  SU and R  L TAYLOR

For quasi-orthogonal real-valued random variables {X ij}, Móricz [2] showed 
th a t the condition

oo  oo p /  -y2 \

5 1  Л  [ l o S 2 (*  +  1 ) ]  2 [ l o g 2 ( j  +  1 ) ]  2 <  OO
i = l  j  =  1 J

implies
^ m  n

lim ---- } X i 1 = 0 a.s.
m a x { m ,n } —»-oo 771 Tl ~ J r —f г=1 j = 1

He also proved that

oo oo 2

H ' E p p  [ l 0 § 2 ( i  +  1 ) ]  2 [ l o g 2 ( j  +  1 ) ]  2 <  OO 
i = l  j = l  J

is, in certain particular cases, the necessary condition for

^  i n  a

lim ---- У У Xij = 0 a.s.
m ,n —* oo  m n

•=1 j = l

However, the sense of orthogonality in a Banach space must be quite 
different from that of the real numbers or even for Hilbert spaces. James 
type orthogonality for a Banach space is adopted in this paper since it is a 
generalized sense of orthogonality and will be described in detail in Section 2.

Howell and Warren [7] proposed the sufficient condition

E
E |W l ‘ +

г1+°' log1+aг < oo, 0 < a  ^  1,

for the one-dimensional average £ 0 where {Хг} is a sequence of
71 ;=i

jB-valued random variables, В  is a Ga-space, and {X,} is mutually James 
type orthogonal with

F ||X ; ||1+“ < oo for all t ^ l .

However, a G^-space is a  special type p space, and type p spaces will be 
addressed in this manuscript. Howell and Taylor [1] obtained the con ver-

П

gence in probability of ^2 ani^i f°r random elements in a separable Banach
i =  l
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L A R G E  NUM BERS F O R  ARRAYS O F O R TH O G O N A L RAN D O M  ELE M E N TS 3

space satisfying various distributional conditions, including independence, 
conditional independence, and orthogonality, and weights {am} such that

П

У \ani\p ^  1 for each n and max \anA —► 0 as n
Г- f  \< i< n2 =  1 -  -

Móricz and Taylor [5] offered the sufficient condition

0 0 . 7 1

Е ^ Е * « <

oo.

n°P .
n = 1 г=1

OO

n
for the almost sure convergence of -L- ^  Xm- for an array of rowwise orthog-

2 =  1

onal random variables in a Hilbert space or James type orthogonal random 
variables in a Banach space of type p for some 1 ^  p й  2. In Section 3, it is 
shown that

EE
«=1 j = 1

< 00

is the sufficient condition for the strong convergence of

.  771 71

-- n У У Xv
i= l  j = 1

for an array of James type orthogonal random elements in a separable Banach 
space of type p, 1 ^  p ^  2 and a ,ß  > 0, where £'||Xiy||p < oo for all i , j  ^  1.

P relim inaries

The basic definitions and properties of Banach space-valued random 
variables (or random elements) are well established in the literature (cf: 
Chapter 2 of Taylor [6]). In these preliminaries, we will introduce only 
the concepts which are not easily found in the literature. Let В  denote 
a separable Banach space. Let {Xik'.i^k ^  1} be a double sequence of 
random elements in В  with zero means (i.e., E(Xik) = 0 for all i , k ) and 
finite moments if||X !*;||P < oo, for all i,k, where 1 ^ p < oo and || • || denotes 
the norm of the separable Banach space B. When В is a Hilbert space, it 
is easy to relate orthogonality to the inner product. That is, the random 
elements {X^} are said to.be orthogonal if E(Xnc,Xji) = 0 whenever i ф j

Acta  Matkematica  Hungarica 65, 1994



4 F. M Ó R IC Z, K U O -LIA N G  SU and R  L. TA Y LO R

or к ф I where (•,•) denotes the inner product. However, it is not possible 
to create the same geometric sense of orthogonality in an arbitrary Banach 
space without the inner product. Consequently, James type orthogonality is 
adopted to circumvent this shortcoming.

For nonrandom elements x and у in a Banach space B, x is said to be 
James orthogonal to у (denoted x L j  y) if

IMI = IIх + ty\\ for all < G R.

If В is a Hilbert space, then James orthogonality agrees with the usual notion 
of orthogonality where the inner product is 0 since

IIх +  ty\\2 = (x + ty ,x  + ty) = |M |2 + <2||y||2 + 2t(x,y)  ^  |M |2

for all t 6 R  if and only if (x ,y) = 0. However, in a Banach space where 
the norm is not generated by an inner product, it is possible for x L j  у 
but у JLj  x  and for x ±.j у with (x,y) ф 0. For example, let R 2 = 
= {(®i,®2) : ||(xi,®2)|| = M l + M l) x i )x2 € R} and let x = (1,0) and у = 
= (1,1). It easily follows that the usual inner product (a:,y) — 1 ф 0. Also, 
x JLj y, since

IMII =  1 and IM +  Ml = II (1 + t,t)\\ = |1 + í| + |t| ^  1 = IMII 

for all i 6 R . However, у JLj  x since

II2/ + Ml = 11(1 + 1)11 = |1 + i| + |1| = 3/2 < 2||y||

if we pick t — — 1/2. Thus, the following definition (from Howell and Taylor
[1]) is used for orthogonal random elements in a Banach space to achieve 
symmetry in the definition of orthogonality.

D efinition 2.1. An array of random elements {Atfc} is orthogonal in 
LP(B), 1 ^  p < oo, if

(i) £||A,-fc||p < oo for all i,k,
П \  712

(ii) EE a7T1 (fc),7r2(i)^7r] (fc),7r2(0 
fc =  l  1=1

<

< E
П\ +7711 2̂ +777-2
E E •
k= 1 /=1

for all arrays {a^} Q R , for all n\, П2, m i, and m2, and for all permutations 
7Г1, 7Г2 of the positive integers {1,2, . . . ,  mi + ni} and {1, 2, . . . ,  m2 +  П2), 
respectively.

Acta  M athem atica  Hungarica 65, 1994



LA R G E NUM BERS F O R  ARRAYS OF O RTH O G O N A L R A N D O M  ELEM EN TS 5

It is important to observe that Definition 2.1 is precisely a symmetric 
James orthogonal condition in LP(B) since (ii) implies

(E\\X\\p) 1/p ^  (E \ \X +  tY \ \ )1,p and (E\\Y\\p) 1/p й  (E\\Y + tX \\p) 1/p

for all t G R. The terminology “orthogonal in Zp(i?)” used to indicate 
a dependence on the moment condition and for technical reasons later in 
addressing the geometry of the Banach space. The most recognizable case is 
when p — 2.

In order to obtain the desired results for arrays, it is necessary to consider 
results for the one-dimensional case. Let {X,} be a single sequence of 
orthogonal random elements in LP(B). A series of useful moment inequalities 
for later reference will be listed in the next four results.

P roposition  2.2 (Howell and Taylor, 1981). The following conditions 
are equivalent:

(i) В is of type p, 1 ^  p ^  2;
(ii) for each sequence {X;} of orthogonal random elements in LP(B), there 

exists a constant C such that, for all n,

E *t=i
< C £ El№ir

t'=l

The constant C in Proposition 2.2 depends on the particular orthogonal 
sequence {X;} and the Banach space B. On the other hand, in the case of 
independent random elements with zero means, the constant C depends only 
on the Banach space В (cf. Taylor [6], Theorem 4.4.6). Hence, independent 
random elements with p absolute moments and zero means in a type p space 
are orthogonal random elements in LP(B). Finite-dimensional spaces and 
separable Hilbert spaces are of type 2. Moreover, for 1 ^  q < p ^  2, type 
p implies type q, and every Banach space is of type 1. The following two 
theorems easily follow from theorems of Móricz [3] by replacing | • | by || • ||.

T heorem 2.3. Suppose that there exists a nonnegative function g(Fb,n ) 
satisfying

g(Fb,k) + g(Fb+k,i) ^  g(Fbik+i) 

for all b ^  0 and 1 ^  к < к + l, such that

E E **
k=b-\-l

й  g(Fb,n) for all b ;> 0 , n ^  1 ,

A cta  Mathematica Hungarica 65, 1994



6 F. M Ó RICZ, K U O -LIA N G  SU an d  R  L. TAYLOR

where г > 0, and the random variables Xk are Banach space-valued. Then

<; (log2 2n)rg(Fbtn).

6 + 7 1

The following corollary is obtained by setting g(Fbin) = uki where
к=Ь+ 1

{uk} is a sequence of nonnegative numbers.
Corollary 2.4. Suppose that there exist nonnegative numbers {Uk} 

such that

E
6  +  71 6  +  71E *  s E u, for all b ^ 0, n ^  1.

t '= 6 + l  t = b + l

Then Y b+k
E max E x‘

i=b+l )]й  (log2 2n)r f  Y  «»)• 
'  «'=6+1 '

Lemma 2.5. Let {2i„} be orthogonal (in LP(B)) random variables in a 
Banach space В  of type p fo r  some 1 ^  p ^  2. If

S ^ ' fcIpl" '[l0g2(fc +  1)]P < 00
fc= l

for some a > 0, then

lim
n — ►OO na E * ‘

k-1
= 0 a.s.

Rem ark . The proof of Lemma 2.5 is similar to that in Theorem 3 of 
Móricz [4] and uses Proposition 2.2 and Corollary 2.4.

P r o o f . Let

For any e > 0

n °t x— /
k = 1

OO

(2.1) P (  sup Hfnll > e) ^  m^x +1 H^ll > e)-
\ n > 2 r /  ' 2 « < n < 2 » + 1 '

q = r  —

Acta M a th em a tica  Hungarica 65, 1994



LA R G E N U M BERS F O R  ARRAYS O F O RTH O G O N A L R A N D O M  ELEM EN TS 7

Since

llínll =
1 71 1 2" 1 n

+ ̂  E ** <
k =  1 fc=l k = 2 l + l

= II6 «II + nu E **
fc = 2 « + l

* 1Ы 1 + 2»g

it follows that

2 « < n < 2 « +1 ................ ..  " 2 a p  2 « < n < 2 « +1
(2.2) max ||£n || ^  Н Ы 1 +C\ Q - л  л_1_ 1

Moreover,

max

E **
fc=2«+l

E x>
fe=2»+l

Я ||Ы Г  = E
29 2̂

for some Ci > 0,
fc=i Jfc=i

since В is of type p. 
Next,

max
, 2 « < n < 2 4 + l

2?+l
E A' ‘ S C '2 (log22«+1)1’ £  E\\Xk\\*

к=2ч+\ k= 24 +  1

for some > 0 by Corollary 2.4. By Markov’s inequality and (2.2), 

(2.3) p (  max ||fn || > e) й\  2Vn<2fH /

й  ^ ( | | Í 2*H > £/ 2) +  W  max
\  2«<n<24+! E

k = 2 4 + l

> £2a4~ 1 <

< 2pC f 1
£ p

г 1 JL  1 24+1 >
b ^ E £ i w + ^  (iog22» « ) ’’ y , « i i ^ r  >

 ̂ k=  1 k=  2« +  l '

where С — тах {С 1,Сг}. Consider

(2.4)
oo 2«
E ^ j E ^ w s2  otpq 
q = r  k = l

Acta Mathematica Hungarica 65, 199 A



8 F. M ÓRICZ, K U O -LIA N G  SU and R  L. TAYLOR

and

2r oo 1 oo .

í E w E s *  E E
k =  1

2 o-pg
g = r  fc=2r  +  l q:2«>k

^ E w +  E  ^
k j t= l  /с= 2 г + 1 }

(2.5)
oo .  29"’"1

L^o°g22?+1)p E
q=r

29+1

E
fc=24 +  l

E  { «  + ™ № o l
k = 2 r +  l

Combining (2.1), (2.3), (2.4), and (2.5), we can conclude that ||£„|| —*• О
2Г oo со

a.s. by letting r — -  1 if we have a convention that Y1 — 0 and J2 = Y1
fc= 1 fc=2r + l  Ic=l

for r = — 1. □
R E M A R K.  Móricz and Taylor [5] showed that a sufficient condition for 

the strong law of large numbers for rowwise orthogonal random variables in 
a Banach space of type p is

C-AJ ^ lb

E s s E ^ - i i ' « » -
n = l  fc=1

Hence, to apply this result to a sequence and obtain the conclusion of Lemma
2.5, it requires that

E\\Xnl\\p = . . .  = E\\Xnn\\p = E\\Xn\\p

for fixed n. However,

OO 1 П  OO 1

E ̂  E E\\Xnt\\ = E <
n = l  1 n = 1

implies th a t
o°

E  ~ £ P 'n |P o g £ ( n  + 1) < oo.
n = l

i4 d a  M a th e m a t ic a  Hungarica 65, 1994



L A R G E  N U M B ER S FO R  ARRAYS O F O RTH O G O N A L RAN DOM  ELEM EN TS 9

M ajo r resu lts

The following theorem for arrays of orthogonal random elements in Ba­
nach spaces is similar to Theorem 1 in Móricz [2] for arrays of orthogonal 
real-valued random variables in the special case p = 2. The proof of The­
orem 3.1 depends very heavily on the geometric properties of the Banach 
space. However, Theorem 3.1 provides strong laws of large numbers with 
substantially lesser moment conditions even in the real-valued random vari­
ables case since almost all orthogonality results (including Mensov’s SLLN 
and Theorem 1 in Móricz [2]) use 2nd moment conditions whereas Theorem
3.1 allows for p-th moments, 1 й p 5í 2.

THEOREM 3.1. Let {Xik} be an array of orthogonal (in LP{B)) random 
elements in a Banach space В of type p for some 1 ^  p ^  2. If

о-ч E  Ё  [1ой (( + e l" [i°g2(* + ВГ < »
i —l  k=  1

for some a ,ß  > 0, then

lim
m a x { m ,n } -* o o

1
mun l X X Xik = 0 a.s.

Before starting the proof of Theorem 3.1, a supportive lemma will be 
established.

Lemma 3.2. If {Xik} is an array of orthogonal (in LP(B)) random 
elements in a Banach space В of type p for some 1 ^  p ^  2, then

(3.2)

and

(3.3)

max
l<j<m

a + j b+n  \  p'

X X Xik
i= a -f-1 k=b-\-l

<

a+ m  6 + n

^  Ci(log2 2ra)p E E E\\Xlk\\p for some C\ > 0
i= :a + l k= b + 1

max max 
l ^ j ^ m  1

a + j b+I

X X
t = a + l  k= b + l

<

a + r a  6 + n

^  C2(log22m)p(log22n)p E E E\\Xlk\\p for some C2 > 0.
t = a + l  a+ 1

A cta  Mathematica Hungarica 65, 1994



10 F M Ó RICZ, K U O -LIA N G  SU an d  R  L TAYLOR

P roof. Since |  Xik-i — 1 ,2 ,. . . |  is a sequence of orthogonal random 

elements in В  and В is of type p for each n ^  1, there exists A > 0 such that

a + m  6+ ti

X  XI Xik
i = a + l  fc:=b+l

= E
a + m a + m

£  Yi i  a  £  E\\Yt\\p,
t = a + l  t = a + l

6  +  71

where Yi — Xik- Then, from Proposition 2.2 and Corollary 2.4, it
k=b+i

follows that

a + m  b+n

max
l ^ j ^ m X X Xik

i = a + 1 /с= 6+1

Pl а+m
^  T(log22m)p E 4 E

г=а + 1

6 +  71

k= b + l

<

а  +  m  6+Ti

^  AC(log22m)p E E £'||X,)t||p for some C > 0,
i = a + l  /c = 6 + l

which is (3.2) with C\ = ЛС.
Similarly, we can obtain (3.3). □

P roof of T heorem 3.1. Similar arguments to the proof of Theorem 1 
in Móricz [2] and Lemma 3.2 will be used. For nonnegative integers и and v,

(3.4) 

P sup ||f„
m > 2 u a n d  n'> 2v

oo oo

> + E E +
r = u  S = V

max max ||6 nn|| > £
2r<m<2r+1 2s<n<2i+I

where
j  m ti

U n  = i= l  fc = l

Let m and n be integers such that 2r < m ^  2r+1 and 2s < n E 2s + 1. 
Then, like in the proof of Lemma 2.5, we have

(3.5) max max 
2 r < m < 2 r + 1 2 » < n £ 2 » + 1

Il6 nn|| й  ||Í2r,2s + £
3=1

i d a  M athem atica  Hungarica 65, 1994



L A R G E  NUM BERS F O R  ARRAYS O F  O RTH O G O N A L RA N D O M  ELE M E N TS 11

where

4 1 > = 

4 2> =

max
2ar2^s 2r<m^2r+1

1
rs ----- x- max

2ar2<3s 2s<n<23+1

m  2s

E E ^
i= 2 r + l  k=  1 

2r n

E E X 'k
i = l  fc=2-‘+ l

Л  ( 3 )  _•AA у о
1

max max
2 a r 2 ^ s 2r < m < 2r+1 2 ’ < n < 2 ‘+1

m  n

E E *
t= 2 r  +  l  fc= 2 s+ l

From (3.4), 

(3.6)

P max max ||£mn|| > e
2r<m<2r+1 2s<n<2s+!

First,
OO OO

(3.7) E E p [ĥ i i>

< p 11?2-,2. | | > т | + Е Р К ? >
2 =  1

r = u  S = V

< E  E  ^ i ib r,2siip -
r = U  5 = V

2r 2 Л\  p со oo ..

7 )  г ^ е е 2^ 2^ е е ^ | | ^ | 1р- some r i > °
/  r = n  5 = г >  г =  1 к —  1

/ .ч P 00 00 r 2U 2V 2r 2s

= ( 7)  Fi E  E  2arp2^ p  { E  E  + E  E +
x '  T — u  s = v  K г=1 k= 1 i'= 2u +  l  A:=l

2“ 2s 2r 2ä ч
+ E  E  + E  E  }£ i№*r =

i = l  k =  2 " + l  t '= 2 u + l  fc= 2v+ l  J

= ( ; ) ’ Г' Ё *  “ у- 
V /  2 =  1

Using the same technique as in the proof of Corollary 2.4, it follows that

2U 2V oo oo 1
(3-8) b \iv — ^  1 E l У!  У!  OarpO

t = l  Ar=l r = u  s = u
<2arp<2psp

Acta M athcmatica  Hungarica 65, 1994
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2(a+ß)p j 1 ^
(2aP — 1)(2@р — 1) 2apu 2@pv '  J
'  '  i = l  k = 1

F. M Ó R IC Z, K U O -LIA N G  SU and R  L TAYLOR

Next,

(3.9) *&> = E E
oo oo 1 ^ 2 r  2

2<xpr 2@ps 
r ~ u  s —v  t = 2 u +  l  k=  1

E E w  =
oo 1 / - 2 r  o o . o o  . 4

= E E 53? E £I№‘IIE^:+ E £i№*r E ^  S
i= 2 “ + l  r : 2 r > i  ^ fc = l s = u  f c = 2 » + l  s :2 s>fc ^

2 (a + /? )p  J- ~  1

— 1K 2Pp — 1)1 ^  ^  20pvyv > K i=2u+ l к- 1
<

(2'ap iap

OO oo

+ E E ^
i=2u+l

m * \ \ p

Pfc/Зр í ■

Similarly,

(3.10) B i3J  í

and

(3.11)

2 (a+ß)p £  £  1 Э Д * 1 Г ,
(2 öp — 1 ) (2 ^ p — 1 )1  ^  ^  2apu kPpv /v ’ K k=2v+\ i=l

Е\\Хгк\\Р
OO OO

+ E E
fc=2v + l i=2“ + l i apkPp

oo oo - 2 r  2 5

ûv ЕЕ 2Of rp2ßsp E E =
r —u  s —v  i = 2 4 1  Ь 2 Ч 1

oo oo .

= E E *u**ir Е й Е *  =
i= 2 u + l  /c= 2 v + 1

2 arrp /  ^ 2 ^ SP 
r:2r>i s:2s>k

oo oo

S E E
i = 2 “  +  l

£ ||* Ы Г
iaPkßp

Secondly,

(3.12)
OO oo

е е ' И ? > <
r —u s= v

Acta M a them atica  Hungarica 65, 1994



LARGE N U M BERS FO R  ARRA Y S O F O RTH O G O N A L R A N D O M  ELEM ENTS 13

~  ~  / 4 \ P 1 1 /
-  /  /  ( _ I г----— £  I max- L ^ L ^ \ e \ 2aPT 2^ps \2 r<m<2r+>

r = U  S ~ V

OO OO

m  2 s

E Y.Xik
i= 2 r +  l  fc= l

<

f \ p 2r+1 2a
S E E ( ;  ^ i ® 7U (iog22 . 2' f  £  £ £ | | * » г ,

7 t =  2 r +  l f c = lr — U  3 = V

for some Г2, by Lemma 3.3,

s ( í V r> £  t f + ч П -20ps iaP
i = 2 u + l s = v  fc= l

/ 4 \ P  00 00

= r> £  £
x  '  — OU I 1 « — 11t =  2 U +  l  5 =  v

2 ( a + l ) p

2 ßps

2V

£ +  £
fc= l k = 2 v + \

E  M
i ° p

{1 + logp(i + 1)} =

=  2” p ( f ) 4 ^ ^  £  £ ^ [ ‘ + K ( i + i ) ] +
4 7 ^ t = 2 u + l  fc= l

+ £  (  £  £  ^ ) ^ ^ ( i u o g ; ( i +  1) ] } s
i= 2“ +  l  4  i = 2 v +  l  s :2 ä>A: 7 7

É ” l 1 + « + 4 ] +< 2ap
i=2u+l k= 1

OO OO

+ £  £  в [ 1 + ‘о й (,-+ 1
t = 2 u +  l  Jt=2*’+ 1

Pjt^P

Next,

(3.13) £ £
Г  —  XL s= v

У 1 £
) ^ a p r ^ ß p s

1 2 a P

Í
2r n

E E
*+i

<

£  £ " [ ' + К ( ^ 1)] +
4  7 k 4 k=  2V +  1 t = l
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+ E E i!Íf[i + bĝ  + i)]},
i=2u+l fc=2”+l *

for some Г3 > 0, and

С О  OO

(3.14) E E p['í>; <
Г— и S — V

ОО ОО /  А \  Р  1 /  171 п

---- - = - £ (  max max V  V  X ik
rt £ ^ W  2apr2ßps \^< m S 2--+i 2«<ng2*+i !=i " +lfc=y + i

( . ч p  O O O O  .

? r‘EE Q̂apr̂ßps (log22r+1)P (log22s+1)p-
* r  —  1 1 c  —  1 f

<

r = u  s = t /

E  E  ^ I W ^ 2( ^ ( ^ ) Pr 4
i=2r+l fc=2s+l '  '

• E E ® p j r  [ l +  los5(i +  !)][! + logS(t + l)] ■
i=2u+l fc=2v +l 

Finally, if

ОО ОО

Е Е Ef^kt ilog2('+ p̂log2(fc+*)]р <00»«=2u+l fc=2"+l

then by combining the results in (3.4), (3.6), (3.7), (3.12), (3.13), and (3.14), 
we have

SUp ||£mn|| > £
r a > 2 U a n d  n > 2V

<  00.

The proof is completed by following the similar steps in the proof of 
Lemma 2.5 to obtain

SUp IKmnll > £
m > l  a n d  n > l

< 00. □

For p = 2, Móricz [2] showed the necessity of condition (3.1). His result 
is stated in Theorem 3.3.
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T heorem 3.3. If  an array {гг;*, ^ 0} of real numbers is such that

&ik J &i+l,k ^i,k+1 ( I i ^ i—-■■д ^  max < -г----- 7777-7, ----- 1------ä / for г.к > 1
i a k ß  -  \ ( г +  1 )  №  i * ( k  +  i f  j  -

with some a ,ß  > 0, and if condition (3.1) does not hold, that is,

UCJ UU 2
(3-15) Y Y MfW [ 1оё2(̂ + 1)] 2 [log# + 1)] 2 = OO,

i=1 к= 1

then there exists an array of orthogonal random variables {Xik} such that

E(Xik) — 0 and E\Xik\2 ^  ofk, for all i,k ,

but

lim
m a x  { m , n  } —► oo

1 m  n

ttű Y Y Xtkm ^ n
i= 1 k = l

= oo a.s.

If, in addition, for every r ^  1,

(3-16) £  Y wfiß [1о§2(г' + !)] 2 [l°g2(̂ + 1)] 2 = OO,
l —Г k —T

then we have

lim
m in { m ,n } —»-oo m a nß £ £ * ■ • *

i=i it=i
= oo a.s.

It remains an open question as to whether Moricz’s very long proof of the 
necessity of (3.1) for the strong law of arrays of orthogonal random variables 
can be appropriately modified to show that (3.1) is also necessary in the 
general Banach space case when 1 < p < 2. Theorem 3.3 does provide the 
necessity of (3.1) for Theorem 3.1 when p = 2.
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ON CO M PLETELY P -A D D IT IV E  F U N C T IO N S  
W IT H  R E SPE C T  TO INTERVAL-FILLING  

SE Q U E N C ES OF T Y P E  P
Z. BOROS (Debrecen)

N o ta tio n . Let N , R  and C denote the set of positive integers, reals and 
complex numbers, respectively. Let N  E N, —oo < po < Pi < ■ ■ ■ < Pn  < 
< + oo be fixed real numbers and P = {po,Pi, • • ■ ,Pn }- Denote by Л the 
set of sequences Л = (A„):N —* R  that satisfy

(i) |An| > |A„+i| > 0 for every n E N

and
CO

(ii) ^  |A„| < oo.
П = 1

For A E Л and к E N U {0} define

Ik(P, A) =
OO OO OO OO

Po ]C  X n - P N  Xn ’ - P o  J 2  Xn + P N  A"
7i—k-\-l n = k - f-1 n = k -\-1 n = k -1-1

where x+ = max{x,0} and x~ = max{—x,0}. According to the definition in
[1] a sequence A G Л is called interval-filling of type P, if for any x E Io(P, A) 
there exists a “coefficient sequence” (f„):N  —► P such that

OO

X — ^  " £ n  A n • 
n = 1

We shall denote the set of interval-filling sequences of type P  by IF (P).  
Now we are ready to generalize the notion of completely additive functions.

D efinition. Let X  be a (real or complex) Banach space, A =  (A„) E 
E IF (P )  and f:Io(P, A) —► X .  We call /  completely P-additive with respect 
to (An), if there exists a sequence (on):N  —» X  such that P, a n  is absolutely 
convergent and

( 1 ) / ( X >  An
\n=l

OO

n= 1

0 2 36-5294 /94 /$  4.00 ©  1994 Akadém iai K iadó, B udapest



18 Z BOROS

holds for every coefficient sequence (<5n):N  —► P.
Using the above notations set

CA(P, X, X)  = { /  G X '°(p-A>|
/  is completely P -additive with respect to A}.

Naturally it would be much more convenient to write / ( A„) instead of an as 
it appears in [2], but here An £ Iq(P, A) may occur leaving / ( An) undefined. 
Nevertheless the sequence (an) is uniquely determined by A and / .  (Let 
throughout this paper К  denote either R  or C.)

Lemma 1. Let X  be a Banach space over K , A = (An) E IF(P)  and 
f  E С A(P, \ ,  X ) .  Then the sequence (an) described in the Definition is 
uniquely given by

(2) an = — -----  [ / f p i A „ +  V  PoAfc ] -  /  ( VpoAfc j )
P l - P 0 \  I  * í\{»> J  ) )

for every n E N.
P r o o f . Applying (1) for coefficient sequences of the form (p0, po, . . . )  

and (po, - - - , Po, P i, Po,---) respectively we get

( OO \  OO

Y2 p°Xk = Y2 poClk
k=1 /  fc=l

and

/  PiAn + PoAfc = P i ß n +  p°ak'
\  f c € N \{ n }  /  ke  N \ { n }

The difference of these two equations gives (2).
For a fixed A E I F{ P) define

c „ ( /)  = f a n ( n e N ,  / e CA(P, X, X) )
Л71

where (a„) is the sequence given by (2). When we wish to replace the
sequence A with another one (say p), we will write c\? \ f )  instead of cn( /) . 
W ith this notation (1) can be written in the form

(3) f [ Y 2 6-xr
\ n = l

OO

n = 1
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Conversely, if /:7o(P , A) —* X  and there exists a sequence (c „ ( / ) ) :N  —► X  
such that £  |An| ||c n(/) || is convergent and (3) holds for every coefficient 
sequence (tfn):N  —*■ X , then /  £ CA( P , \ , X) .  For example, when (cn(/))  
is a constant sequence, /  is linear and completely P-additive with respect to 
(A„). It is worth to remark the following fact (whose proof is evident).

Lemma 2. I f  A £ /P ( P )  and X  is a Banach space over K, then 
CA(P, A,X) is a linear space over К  and the mapping cn:CA(P , X, X)  —► X  
is linear for every n £ N.

When /:7o(P, A) —► X  is linear i.e. there exists c £ Xsuch that f ( t )  = 
= tc (t £ 70(P, A)) , then /  is obviously completely P-additive with respect 
to (A„), since cn( / )  — c (n £ N ). Our main purpose is to prove the converse 
of this fact, but the way we do it (which is mostly a generalization of the 
method followed in [2]) requires a bit sharper hypothesis. For m £ N U {0} 
let T mX denote the sequence whose nth element is Am+n. Put

7P(P)°° = { A £ A\TmX £ IF(P)  for every m e N U { 0 } } .

The set /P (P )°°  is described by Theorem 4 in [1]. It also turns out, that in 
some cases (e.g. P  = { 0 ,1 ,... ,  N})  IF(P)°° — 7F (P ), while in some other 
cases (e.g. P  = {0,1,3,4}) 7F(P)°° C 7F(P).

T heorem 1. I f  X = (A„) £ 7P(P)°° and /  £ CA(P, A,R), then f  is 
linear i.e. f ( x)  — cx [x £ Io(P-, A)) for some constant c f R .

P roof. For simplicity first suppose po = 0. If c„ ( /)  = c for some 
constant c and for every n £ N , then choosing arbitrarily x £ 7o(P, A) there 
existsJ<5n):N  -*• P  such that x -  Sn A„ and f ( x)  = f  i K X n) =
~ önXnc = cx as it is stated. Throughout the rest of the proof (of
the case p0 = 0) we shall assume that c„ (/)  is not a constant sequence. In 
this case there exist m, r £ N  such that cm( / )  < cr(/) . To simplify our 
notations set cn =  cn(f )  (n £ N ). We may (and will) assume that ci > 0, 
cn Ф 0 for every n £ N and there exists к £ N for which Ck < 0. Indeed, 
the set С / = { c „ | n  6 N} is countable thus we can choose a number 7 £ 
6 }cm,cT[\Cf and define /° : 7o(P, A) —► R by f 0(x) = f (x)  -  ~/x; then / °  and 
—f °  are completely P-additive with respect to (An) by Lemma 2 and writing 
(the proper) one of them instead of /  the above assumptions will hold and 
it clearly suffices to prove that the regarded function is linear.

We shall isolate two lemmas inside the proof.
Lemma 3. For every n £ N  there exists s(n) £ {n, n + l ,n  -f 2, . . .  , 00} 

such that

s{n)

(4) Pic„|An| = Pn  ^  ск\Хк\.
к= п + 1
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P roof . Fix n and first assume An > 0 adding it to our previous assump­
tions. Applying Theorem 4 in [1] we have

OO

Pi An ^ Pn  E ( * i  + лг)>
k —n  + 1

thus defining
OO

x = p i K  -  ^2 pnX^
k = n + l

one can simply derive x G In(P, X) — /o(P, TnA). Hence there exist a £ P 
(r = n -F 1, n + 2 , . . . )  satisfying x =  X ^ n+i °vAr . An inductive construction 
of this coefficient sequence is described in [1] (in the proof of Theorem 1): 
let sn — 0 and if sr_ i is already defined (for a considered r > n), put

A r — { p G - P | r G - s r _i-)- p \ T 4- 7r(P, A)},

ar G A r arbitrarily and sr = sr_i + aTAr. Now specify the coefficient se­
quence so that it should increase in the quickest possible way:

( max Ar if Xr > 0 
ar = <

( min Ar if Ar < 0.

Following this representation of x we find that either

0 )
OO

x =  pNXt
k = n + 1

or there exists m  G N for which

n - fm  OO

(ii-1) * < Y 2  PNXk -  £  p*Xk
k = n + 1 k = n + m  + l

and in the latter case there exist <5̂ G P (k — n + m  + 1, n + m -f 2, . . . )  and 
a  G P  such that a  /  pjv if An+m > 0 while а ф 0 if An+m < 0 and

(ii-2)
n + m  — 1 oo

•E — ^   ̂ ®^n+m “Ь ^   ̂ ^k^k’
k = n + 1 k = n + m + l
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In the first case the definition of x and formula (i) imply

oo oo

p \ K +  pw(_Ak ) =  J2  pn X1 -
k= n -\-1 k = n -\-l

These sums are taken from the set S(P, A) thus we can apply (3) to obtain 
two representations of f ( x ) in the equation

OO OO

PlA„C„ +  P N ( - ^ k ) c k =  ^ 2  PN><kCk,
k = n + 1 A r := n + 1

from which noticing A+ A~ = |A„| we get

OO

(5) p\cn\ n = pn  Y 2  с*1а*1>
k = n + 1

a special case of (4).
In the second case set

71+771

у = p \K  -
/с = 7 7  +  1

then due to inequality (ii-1) and the definition of x

71 +  771

y<  Y ,  PNXt
/ c = n + l

follows. Now put
OO

z = y +  PKXs(k)^k,
/ c = 71+771 +  1

where \ s  denotes the characteristic function of the set

5  = { r G N I cr Ar > 0}

over N. The above inequality for у then implies

OO

2 < E  P " Xk-
A:= 7 1 + 1
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On the other hand in view of (ii-2) we have

oo n -\-m — 1 oo

z = У ~  Y P N * k = X = Y PnXt  ~ Y PNXk-
k = n + m  + 1 k —n-\-\ k= n-\-m

Hence
n + m  — 1

2 — ^   ̂ P N ^  £ -Л1+771 —1 (-î
k = n + 1

therefore there exist sr £ P  (r = n + m,  n + m + 1 ,...)  such that

71 +  771 OO n  +  771 — 1 oo

Pi A„-  PNK  + 5 Z  PnXs(k)Xk = г = pyvA++ Y  ей*-
A : = n + 1  A : = n + 7 7 i  +  l  /c— 7 1 + 1  k = n + m

Now we can apply (3) to both expansion of /(г )  and an upper estimate to 
the second sum:

тг+га oo

Picn K +  Y WOc(-A,~)+ Y PNXs(k)ck\ k = f ( z)  =
k = n + l  /С—71+771 +  1

71 +  771—1 OO 71 +  771—1 OO

= Y PMck ^ t  + Y e^ Xk = PNCk\ k +  ^ 2  PNXs(k)ckXk,
Al —71+1 Aj— 71 +  771 Aj= 71+1 A: =71+ 771

consequently

71 +  771— 1

(6) picnAn ^  Y  Рнск{ \ к + \ к )+
Ar=71 +1

s (n )

-\-ppj Cn+m^n-\-m PNXs(n + 7™)cn+mAn+m — ^   ̂ PN^k | ̂ A; 17
A: =7i+l

where

s(n) П “1“ Ш, if Cn+m 0?
n + m  — 1, if cn+m < 0.

So we have proved (4) for A„ > 0. In case A„ < 0 we may consider the 
sequence —A = ( — Â , — A2, . . . ) which obviously also satisfies —A £ IF(P) ' ^  
with Iq(P, —A) = -  / 0(P , A), thus it is possible to apply our above result to 
the function g:Io(P, — A) —*■ R defined by g(y) = — / (  — ?/). But it gives (4)
again, since c[ ^(<7) = ck̂ \ f )  £ N) as one can easily show.
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Lemma 4. Set U = {n G N | cn > 0}. The inequality
OO

(7) pic„|An| <; pN Y  c*lAfcl
k = n + 1

holds for every n E U.
P r o o f . First observe that in case cn > 0 the left side of (4) (in Lemma 

3) is positive, consequently the sum on the right side is non-void, i.e. s(n) ^  
^  n 1, furthermore it must have at least one positive summand, that is, 
there exists m  6 N with n + 1 ^  m й s(n) and cm > 0. If moreover m  is the 
greatest integer with the above properties, (4) remains true by ignoring the 
negative summands of index к with m < к ^  s(n), i.e. putting s(n ) =  m. 
In other words, we may assume s(n ) > n and cs(nj > 0 whenever s(n ) < oo. 
Now let mi = s(n) and for к ^  2 define

\ s(m k- \) ,  if mfc_i G N
ТПк — \( oo, if m k_ 1 = oo

inductively. Then the sequence (mfc):N - » N i l  {oo} is non-decreasing and 
in case m k < oo we have cm* > 0 and m k < m^+i. Therefore sup { m k \ к E 
E N} = oo and

( 8) P\cn\K \  ^  pN £  ct\k
r=n-f 1

holds for every к £ N, which can be proved by induction: for к = 1 it follows 
from Lemma 3; if к ^  2 and (8) holds for к — 1, then in case m k = m k_\ = oo 
it is the same for к while in case m^_i 6 N consider the inequalities

Pl Cn 1 An 1 1 Am*.] 1 =

™k- 1 s(mk- 1) m*
^   ̂ cr |Ar \ + Pn  £  cr |Ar | = TN ^  у cr |Ar

r=n-f 1 r=mk — l +1 r= n + 1

Since the sum in (8) is convergent, it immediately implies (7).
Now we can complete the proof of the theorem for the case p0 = 0. Notice, 

that applying Lemma 4 for the function - /  we can write an inequality in 
case cn < 0 as well, actually the negative of (7), since ck(—f )  — —ck(f ) .  So 
we have

( 9 )

OO

Picn\xn\ ^  PN £  CfclAfcl
k = n + l
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for every n £ N \  U. Due to our assumptions there exists m 6 N such that 
cm > 0 and cm+1 < 0. First apply (7) for n = m  and then apply (9) for 
n = m + 1 to obtain

0 < Picm|Am| ^  PNCm+i|Am+i| + p N  ^  Cfc|Afc| ^
Ar= 771 +  2

^  (PN + Pi)cm+i|Am+1| < 0, 

which is a contradiction.
When p0 ^  0, introduce p° =  pj — po (j  = 0 , 1 , . . . ,  N)  and P° = { p° \j = 

= 0 , 1 , . . . ,  iV} . A simple argument (see [1]) shows, that A £ IF(P)°°  implies 
A £ IF(P°)°°. Define a function g: / 0(P°, A) —► R  by

( oo \  oo

x  +  P °  X ]  ~ Л  Po“™
n = l  /  n = l

(where (an):N  —* R  is the sequence in the Definition). For any sequence 
(e„): N —> P° clearly en + po 6 P (n £ N), thus

9 f  I ^  T Po) An
K n = 1

OO

^ ^ PQ&n —
71=1

OO

~  ^  (̂̂ тг “I" Po)^n
71=1

OO oo

^   ̂Po^n  — ^   ̂^71̂ 71? 
71=1 71=1

i.e. <7 is completely P°-additive with the same sequence (an), thus applying 
the above result for P° and g it follows that an = c \n with some constant 
c E R ,  consequently /  is linear.

It is worth to mention the following consequences of Theorem 1.

T heorem 2. I f  A = (An) £ IF(P)°° and f  £ CA(P,  A,C), then f  is 
linear i.e. f ( x)  — ex (a- £ Io(P, A)) for some constant c £ C.

P r o o f . By hypothesis (1) holds for some sequence (an):N  —» C whose 
sum is absolutely convergent and for every coefficient sequence (£n):N  —* 
—► P. Then the real valued functions Re /  and Im /  also satisfy (1) with the 
sequences (R ean) and (Im an), respectively, since Re and Im are continuous, 
additive and real homogeneous functions; furthermore the sums Y, Re an and 
Y  Im an are absolutely convergent as well. It means, that Re /  and Im /  are 
completely P-additive with respect to (An), hence they are linear by Theorem 
1. This proves th a t /  is linear itself.
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T heorem 3. I f  X — (An) £ IF(P)°°, X  is a Banach space over К  and 
/ :  /o(P, A) —► X  is completely P-additive with respect to (An), then f  is linear,
i.e. there exists с £ X  such that f ( t )  = tc [t £ /o(P, A)) .

P r o o f . According to the hypothesis there exists a sequence (a„): N —* X  
with

OO

||an|| < oo
7 1 = 1

such that (1) holds for every coefficient sequence (£n):N  —► P. Now choose 
ф £ X * (where X*  denotes the set of continuous linear functionals over X )  
arbitrarily and let F  = ф о / .  Then

OO OO

^ | </>(an)| <; 11011 IKII < 00>
n = l  n = l

and

F  ( f > An) =  4 > ( f  = Ф = Т ,* п Ф ( а п )

holds for every coefficient sequence (<5n). Hence F £ CA(P, A,K), therefore 
F is linear by Theorem 1 and Theorem 2. Thus there exists Сф £ К  such 
that

(10) ф ( т )  =F{t )  = 4 t ( t e i 0(P,x)).

Setting to £ / 0(P,A) \  {0} it implies

Сф =  0 =  ^ ( / ( * o ) )  =  Ф ’

from which with the notation c =

(11) <£(/(*)) = Щ  = tф(c) = ф{1с)

follows for every t £ Io(P, A) and for every ф £ X * , since c does not depend on 
ф. If there exists t £ Io{P, A) with f ( t )  ф tc, then due to the Hahn-Banach 
theorem there exists фг £ X* such that 0 í( / ( t ) )  ф ф^ с )  in contradiction 
with (11). This proves the theorem.

The author would like to thank Prof. Gyula Maksa for his important 
notes.
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L A G R A N G E  IN T E R PO L A T IO N  
O N G EN ER A LIZED  JACO BI ZEROS 

W IT H  A D D IT IO N A L  N O D E S1
G. CRISCUOLO (Napoli) and G. MASTROIANNI (Potenza)

1. In tro d u c tio n

Let L m ( ;  / )  be the Lagrange polynomial interpolating a given con­
tinuous function /  at the zeros of the mth Jacobi polynomial
Pm • It is well known that, if 6 = max (a,/3) > -  then the mth Lebesgue 
constant satisfies

C m { v № ) — sup
00 11/ 11=1

m s+ 2).

Nevertheless, if in addition to the knots { x ^km^} T-1 we consider a. suitable 
number of points near the endpoints ± 1, then the new interpolating pro­
cess / )  is optimal, in the sense that \\£m(v(a’̂ )  = Ö(logm).
Similar result holds when the starting knots are the zeros of pm(w) with 
w(x)  = v(a'ß \x ) \x  — t|7, — 1 < t < 1, — 1 < 7 < 0 (see [9, Remark 3]).

The technique of adding nodes near the points ±1 was first introduced by 
Szabados [14]. Recently, this procedure has been extensively used by many 
authors in different contexts (see e.g. [2], [3], [5], [8], [9], [10], [11], [13]).

Nevertheless, if the interpolation knots are the zeros of pm(w) where w 
is the weight defined above but with the exponent 7 > 0, then the additional 
nodes near ±1 have no positive influence on the behaviour of the interpolating 
process (see Remark 1).

In this paper, generalizing the previous procedure we show that, if the 
interpolation knots are the zeros of pm(w) with 7 > 0, then adding a suitable 
number of nodes near ±1 and t we obtain an optimal interpolating process. 
Furthermore, we give estimates of simultaneous approximation. Finally, we 
consider the case of multiple additional nodes.

1 T his m ate ria l is based  upo n  work su p p o rted  by the  Italian  R esearch  Council (first 
a n d  second au th o rs ) , by the  M inistern  de ll’U niversitá  e della R icerca Scientifica e Tecnolog- 
ica  (second a u th o r) .
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28 G . C R ISC U O LO  and  G . M A STROIANNI

2. P re lim in aries

Spaces of functions. We will consider functions /  with domain [—1,1], 
and define the space of functions C ^  on the interval [—1, 1] in the usual 
way; thus /  G if and only if /  is continuous with its derivatives f^> 
0  = o . [ - 1, 1].

Let

11/ 11= max |/(x ) |,  | | / | | fc
*€[-1,1]

max
O ^i^k ll/llo = 11/11-

We define the modulus of continuity u>(f; ) of the function /  by

Ц/;<$) = sup llA/i/Hf-^i-zi], 
h<6

where A h f ( x )  = f ( x  +  / )  — f (x) .  Then we write /  G Lipw A if uj(f-,S) ^  
^  M6X. Finally, we set

E m ( f )  = min
PmG.'Pm

II f - P m

where /  is a given continuous function and Vm denotes the set of polynomials 
of degree a t most m.

Special weights. Let

v^a'P\x) — (1 — z)a(l + x ) b, a, b G R, x G [—1,1].

The generalized Jacobi weight w G GJ is defined by

(2.1) w(x) =  g{x)v^a^ \ x ) \ t  — ж|7, ж е [—1, 1],

where a  > — 1, /? > — 1, 7 > — 1, and — 1 < f < 1. Here g is a positive con­
tinuous function and its modulus of continuity u> satisfies JQX ca(g; t) t~l dt < 
< 00. Now, let {Pm(^e)}m=o be the system of orthonormal polynomials cor­
responding to the weight function w G GJ, that is, pm(w) is a polynomial of 
degree m  with positive leading coefficient 'ym(w) and

J P m ( w ]  t)pn( w ; t)w(t) dt = 6m<n.
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We denote by {xj,m(w)}™=1 the zeros of pm(w) indexed in increasing order,
and by Xj}m(w) =  Xm (w; XjiTn( w) ) , j  = the corresponding Cotes
numbers, where

Xm(u>; x)
- 771 — 1

-  k—0

-1
i £ R ,

is the mth Christoffel function.

3. In te rp o la tio n  by generalized Jacobi zeros

Lagrange interpolation with simple additional nodes. We denote by 
jCm(w, / )  the Lagrange polynomial interpolating /  at the zeros XjtTn(w) ( j  = 
— l , . . . , m )  of Pm(w) with w £ GJ defined by (2.1). Then, given positive 
integers r and s, we introduce the points yj = j/ym (j = 1, 2, . . . ,  s) and zj = 
= zhm (j  = 1,2, . . . ,  r) defined by

(3.1)

(3.2)

S

1 i ■ i \ l  — xm,m(w) . ,
Z j  = l -  0 - 1) --------------------------, j  = l , . . . , r .

Moreover, for any fixed — 1 < t < 1 there exists an integer mo such that 
£i,m(R>) ^  t ^  xm<m(w) for m  ^  mo. Then, given a positive integer p, we 
introduce also the points tj — Tj>m (j  = 1, 2, . . .  ,p) defined by

(3.3) Tj —
t + j

x i,m
P+1

I •
"Г J  P+1

if t X{ m Xij.\ m t

if t T,)7n > Х{+\<гп t
j  = ! , ••• ,  P,

where x l>rn(w) й t <. x i+i im(w).
So, we denote by Cm,r,s,p(w‘, / )  the Lagrange polynomial interpolating the 

function /  at the points -1  = y\ < • • • < ys < %\,TO(w) < ••• < Xi^m{w) < 
< Tj < • • • < Tp < Xi+I<m(w) < • • • < Xm<m(w) < ZX < ■ ■ ■ < Zr = 1.

Previously we have assumed r ^  1, s ^  1 and p ^  1. We complete the 
definition by putting £ m,o,o, o(w 'i f )  — C m (го; Zi­

tiere, we have chosen the additional points y3, zj and Tj equispaced. 
However, the results of this paper remain valid fixing the above points in 
several other ways. More precisely, the choices of the additional nodes
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satisfying yj+i -  IIj ~  Ш - 2 , j  =  1 , . . .  ,s  -  l , 1 * Z j + 1 -  Zj  ~  m - 2 , j  =  l , . . . , r -  

l,z i,m (w )-? /s ~  m-2 ~  21- i m,m(if)),andrJ+1 -T j ~  m-1 , j  = l , . . . , p - l  
with T\ — t ~  m-1 ~  £;+i,m(w) — rp or 77 — XiiTn(w) ~ m-1 ~  t — tp according 
as t — Xitm(w ) ^  ®;+i,m(w) — t or t — z ,)m(w) > ®j+i,m(in) — t, are possible.

The following theorem determines the previous parameters r, s and p 
in order tha t Cm,rts,p represent a good approximation for /  and for its 
derivatives simultaneously.

T heorem 3.1. Let w £ GJ be the weight function defined by (2.1). Let 
f  £ C^4\  q^ .  0, and let i  £ { 0 ,1 ,... ,q}. For any exponents a > — 1, ß > 
> — 1 and 7 > — 1 of the weight w, there exist nonnegative integers r, s 
and p such that

(3.4)

+
1

e - j

m

x e [ - 1Д], j  -  0, 1, . . . , A

|5 .

for m ^  max(4^ + 4, mo) and with some constant C independent of f ,  m 
and x, provided that the integers r, s and p are defined by

(3.5)

(3.6)

(3.7)

a + £ 1 a + £ 5-------+ -  < r < --------+
2 4 -  2 4

Of course, one obtains the best estimate for l  — q in (3.4). Nevertheless, 
when only the first t  derivatives of /  must be approximated and i  <C q, then
(3.4) is useful in the applications; indeed, it holds by using a number of 
additional nodes depending on l  (cf. (3.5)-(3.6)).

From Theorem 2.1 the following corollary follows immediately.
Corollary  3.2. Let w £ GJ he the weight function defined by (2.1). 

Let f  £ C^q\  <7 ^ 0, and i  £ {0,1, . . .  ,</}. For any exponents a > — 1, ß > 
> — 1 and 7 > — 1 of the weight w, there exist nonnegative integers r, s 
and p such that

(3.8) II /  — £ m,r,s,p{w ] / ) | |  ( A C E m- q ( f ^ )  1

1 If A  a n d  В  are two expressions depending  on some variables then  we w rite  A  ~  В

if IA / B ] ^ 1 ^  C  uniform ly for th e  variables un d er consideration.
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for m  ^  max(4<7 +  4, mo) and with some constant C independent of  f  and 
m, provided that the integers r, s and p are defined by (3.5)-(3.7).

R emark 1. Assuming Í — 0, Corollary 3.2 assures that if

(3.9)

(3.10)

(3.11)

then the estimate

a  1 . a  5 
2 +  4 ~  2 + 4 ’
/3 1 .  /3 5
l  + 4 ^ 5 < f  + i ’

(3.12) \ \ f - £ m ,r , s ,P(wJ)\ \  Ü C E m. q{ f (?)) ^ | P ,

holds. Therefore, choosing the zeros of the polynomial pm(w) with w defined 
by (2.1) as nodes of interpolation, by (3.9)—(3.11) we can always determine 
the numbers s, r and p of nodes that we must add near 1, —1 and t 
respectively, in order that (3.12) hold.

We further remark that, having fixed the zeros of the generalized Jacobi 
polynomial pm(w), in general it is necessary to use the additional nodes to 
obtain (3.12). Indeed, if q ,/3 ^  — 1/2 and 7 ^ 0  then (3.9)-(3.11) give r — 0, 
s = 0 and p — 0 and we find the estimate [12, p. 178, Theorem 12]

\ \ f - L m(w, f ) \ \  Ü C E m- q( f M ) 1- ^ ,  a , ß S  — 1/2, 7 = 0.

However, in the case a,/3 > — 1/2, 7 ^  0, if one does not use the additional 
nodes near ± 1, then [12]

(3.13)

\ \ f - L m(w;f)\\ Í C E m- q{ f M ) ^ ^ j ,  6 = max(a,/3) > —1/2, 7 ^  0,
m q 0 2

which is worse than (3.12). On the other hand if a,/3 5Í — 1/2 and 7 > 0 
and we do not add nodes near t, then we find

(3.14) У / — Zm(« ;;/) || Em_q (/<»>) a,/3 g  -  1/2, 7 > 0,

which is also worse than (3.12).
Summarizing, in the case of generalized Jacobi zeros it is possible to 

change bad matrices (in the sense of (3.13) and (3.14)) into good ones (in the
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sense of (3.12)) by the simple technique of adding nodes near the zeros or 
singularities of the weight.

Furthermore, we remark th a t the number of nodes that we must add is 
independent of m; it depends only on the parameters a, ß and 7 of the weight 
(cf. (3.9)—(3.11)). On the other hand, for the simultaneous approximation 
the numbers r and s depend also on the order of derivatives £ that we would 
approximate, while p does not (cf. (3.5)-(3.7)).

R emark 2. From the obvious inequality

II £m,r,s,p(w'i / )  II £ = ll/llr + II /  — £m,r,s,p(wi / )  || (■>

and from (3.8) with q = Í we deduce the useful estimate

II £m,r,*,/>(w)|| e := SUP II £m,r,5,P{Щ / ) |L ^  Clog m, 
ll/llr=l

which holds when £ ^  0 and (3.5)-(3.7) are satisfied.
R emark 3. The extension of the definition of Cm,r,s,p{w\ / )  when the 

weight w is defined by

M
w(x) = g(x)v f'a,f3\ x )  Itj — x p  G GJ,

3=1

with -1  < О < <tM < 1, 7j > -  1, j  =  1 , . . . ,  M  and M  > 1 instead of
(2.1), is obvious. Further, all the previous results can be easily extended to 
this case and we omit the details for the sake of brevity.

Lagrange interpolation with multiple additional nodes. So far, starting 
from the zeros of generalized Jacobi polynomials, we have considered La­
grange interpolating polynomials on these zeros and on a suitable number of 
additional simple nodes in order to obtain an interpolating process by which 
/  and its derivatives can be well approximated. Nevertheless, if the function 
/  is sufficiently smooth we can do differently. We start again considering the 
points XjtTn(w ) with w defined by (2.1). Now, among the interpolation nodes 
we omit the point Xi*̂ m{w) closest to t and we add the point t with multi­
plicity p. Moreover, following a procedure used in [9] we also add the points 
— 1 and 1 with multiplicities s and r, respectively. In this case we must as­
sume /  G C ^  with q ^  r — 1, q ^  s — 1 and q ^  p — 1. Thus, we define the 
interpolating polynomial £ mir>SiP(w;/ )  at the points xJiTn(w) (j = l , . . . ,m ,  
к ф- г*) and at —1,1 and t with multiplicities s, r and p respectively. Obvi­
ously, this is a mixed Lagrange-Hermite interpolating polynomial of degree 
m  + r + s + p — 2 (Lagrange on the original points and Hermite on the nodes 
t, ± 1).

For this polynomial we can state the following theorem which gives an 
estimate of Telyakovskii-Gopengauz type.
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T heorem 3.3. Let w E GJ be the weight function defined by (2.1) with 
a ,ß  > — i .  Let f  E C^q\  <7^ 0, with r — 1, 5 — 1, p -  1. If

(3.15)

(3.16)

(3.17) 

then

a + o  1 .  a + o  5
---------  -4- — \  r  <" ---------  4- —

2 + 4 = 2 + 4 ’

^  + l £ p < |  + 2.

(3.18)

I /« '( * )  -  2 Ц , / ; x) |  S C £ „ - „ ( / “ )
9-J

m
logm,

* G [ - 1, 1], j  = 0, l , . . . , m i n ( r -  l , s  -  1), 

for m ^  4q +  4 and with some constant C independent of f , m and x.

4. P roofs of th e  m ain resu lts

Given the weight w E GJ defined by (2.1) and given the points yhrn — 
-  Vj Ü = 1, • • •, -5), *j,m = Zj (j = 1,. . . ,  r) and Thm = Tj (j = 1 , . . . ,  p) 
defined by (3.1), (3.2) and (3.3) respectively, we define the matrices of points 
У = {yj,m, j  = 1,-. • ,S, m e  N}, Z - {zhm, j  -  1 , . . .  ,r, m e  N ) and 
T  = j  = m G N}. Setting

(4.1)

(4.2)

(4.3)

Л0(х) = 1, 

B0(x) = 1, 

C0(x) =  1,

^«(•О — ^ yj,mfi S > 0,
J = 1

r

Иг(х) — ĵ,m)? Г > 0,
J=1

P

c p(x ) =  p > 0
J=1
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by the definition of the polynomial Cm,r,s,p(u); f )  we can write

/
AsBrCp

;* +

(4.4) Em,r,s,p(^i f \  x} — A s{̂ X̂ )Br{^X̂ Cpi^X̂ iLm

4"A s(x)Cp(x)pm(w; x^Lr f  Z, - -
\  As*-; pPmy'W)

+ B r(x)Cp(x)Pm(w;x)L, ( y ; B rCppm(w) ’* )  

A s ( x ) B T( x ) p m ( w ,  x ) L p f  Г , — — -

\x  4-

+

where

(4.5)
С т {™' AsBrCp ' X)  "

£ ^ / k'm^W' X  ̂As(xk,m(W)) B T( x k<m(w))Cp(xktrn(wj) '

h,m(w) being the fcth fundamental Lagrange polynomial with respect to the 
weight w,

(4.6) Lr Z; /

(4.7) L. 

and

(-■

AsCpPm (^ )

/
BpCpPm (^ )

;x

4 %

E П
j = 1 k=  1 , k ^ j

s s

E П
j = l  k = l , k ^ j

X  -  Zk f(*i)
Zj zk As(zj)Cp(zJ)pm(w, zj)

X -  У k f(Vj)
У] -  Ук Вг{У])С р{У])Рт{щ У])'

и  8) L  ( Т -  f  - х ]  =  V  ГГ Х ~ Тк _____ _________.
Р V ’ AsBTpm{wY )  Tj -Тк  Aí (ri ) 5 r(rj )pm(ti;;ri )

In particular, if r — 0 then we set LT = 0. Similarly, if s = 0 or p — 0 then 
Ls = 0 and L p = 0.

Furthermore, setting

(4.9) Cp(x) = (z -  t )p, p I  0,
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and

(4.10) Pm(w)= Pm{w) 
X -

where x;*)TO(tp) is the zero of pm{w) closest to i, by the definition of 
Lm,r,s,p(w; / )  we can write

(4.11) C m , r , s A w 'i /;  X ) = v (r's \ x ) C p ( x ) C m ( w \  v(  J s ) c  +

+v(~0’s\x)Cp(x)pm(w;x)Hr ( 1; /
v(°'s)CpPm(w) ; x \

+ v (r'°\x)Cp(x)pm(w;x)Hs f - 1 ;  (ro)J'- ( v
\  v(r'°)Cppm(w)

+ V(T'S\x )pm{w,x)Hp (t'l (wj ’X)  ’

+

; x +

where

(4.12) {Щг А с ; Х) -

= E f{xk,m(w))

k~ 1

(4.13)

a.’ -  Zi*,m(u>) ’ p(r-s)(a;*;,m(u;))Cp(a;fc,m(w)) ’

/Я, ( 1;
Г— 1

= E
j=o

(x -  i y

^CpPmiw)'’

/(* )

; x =

(4.14) Я , - 1;

p(M(a;)Cp(x)pm(tp;x).

/

l ( j )

37=1

S — 1

= E
i=o

(x + 1)J

p(r’°)Cppm(ip)'

/(* )

; x =

U)

j- W r'0){x)CР{х)рт( щ х ) \  x=_̂  ’

(4.15) Я р  Í; /
v(r,a)Pm(w)’

P - 1

i* = E
j=o

(» -  <)J 
j-

f (x ) U)
v(r-3)(x)pm(ii>;x)Ja._t '
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In particular, if r = 0 then we set Hr =  0. Similarly, if s = 0 or p = 0 then 
H s = 0 and Hp = 0 respectively.

In what follows, we assume that w(x)  = g(x)v^a,í3\ x ) \ t  — x\~* G GJ, and 
we denote the zeros of the m th orthonormal polynomial pm(w) corresponding 
to the weight to ordered increasingly by { а^,т (то)} ™ . For the convenience 
of the reader, we collect some properties of generalized Jacobi polynomials 
pm(w) which will be used in the proofs.

Let Xk,m{w) = cos 9k,m for к = 0 ,1 , . . . ,  m + 1 where xo,m(tn) = — 1, 
Xm+I,m(w) =  1, and 0 ^  0k,m = Then

(4.16) вк,т -  вк + l ,m ~  —,
to

uniformly for to G N and к = 0 ,1 ,. . .  ,m  (cf. [12, Theorem 9.22, p. 166]). 
The Cotes numbers Xk,m(w) satisfy

(4.17)

Afc.m(w) ~  m ~ 1( 1 -  ач-,т (то) ) " +2 (\t -  x k,m(w)| + m_1) 'y( l  + xk,m(w)) ß+2,

uniformly for to G N and к = 1 ,...  ,m  (cf. [12, Theorem 6.3.28, p. 120]). 
Furthermore,

(4.18) \pm(w;x)\ ^

^  C ( -s/l -  x + to J) a 2(|f — a;| + to x) 2 ( y/l  + x + to *)

uniformly for — 1 x ^  1 and to G N  (cf. [1, Theorem 1.1, p. 226]). 
In addition,

(4.19) |pm_i (то; x k,m(™)) I ~

~  (1 -  Xk,m(w)) ~ 2+* (\t -  X к'Тп ( то) I + TO-1) ~ 2 ( l  +  Xk,m{w))

uniformly for to G N and к = 1 , . . . ,  то (cf. [12, Lemma 9.30, p. 170]). 
In particular, by (4.18) and (4.19) and taking into account that

„ ,  ,  7 m _ i ( u ; ) 4 ,  4 ,  ,  ^  P m { w ; x )
Z k , m { w ; x )  =  ------7— т (то)рт _1 ( то; X k ' T n ( W ) )  ~ ---- ------

7 m(w) X - X k,m{w)

where 7т (то) denotes the leading coefficient of рт (то), we deduce

(4.20)
C

|4,т(то;® )| ^  — (1 -  Xk,m(w))
a id 2^4

■{\t -  Xkym{w)  I +  TO *) 2 ( 1 + Xk<m(w)) 2
+ j  |рт (то;г-)|

I* -  Xk,m(w) Г
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Moreover, denoting by d the index of the zero of pm(w) closest to ж € 
£ [ - 1, 1], we have

(4.21) |4i,m(M>;x)| ~  1,

(cf. [12, Theorem 33, p. 171]).
The following lemmas will be needed to prove the main results.

Lemma 4.1. Let f  £ C'4'. Then, there exists a sequence of polynomials 
Pm £ Pm, m ^  Aq + 4, such that for |ж| ^  1 and for j  = 0 ,1 , . . .  ,q

(4.22) f U ) ( x )  -  P Ü 4 *0 ^  C
ч- i

Em-q{ f (4)) ,

with some constant C independent of f ,  x and m ^  Aq + 4. 

For the proof see Lemma 4.3 in [9].

Lemma 4.2. Let Qm £ Vm be such that

\Q m { x ) \ ^ C

Then

|x| 5s 1, a £ R.

|x| 5s 1, j  < m.

Furthermore, if the polynomial Qm has two zeros in ±1 of multiplicity [a] +  1, 
then

\Qtt(x)\ ÜC |x| ^  1, j  < m.

The first part of the lemma can be found in [6, Theorem 7.1.3], while the 
second one is in [7, p. 169].

Lemma 4.3. Let f  £ C^q\  q ^  0, and let l  £ { 0 ,1 , . . . ,q}. Let Lr and 
Ls be the polynomials defined by (4.6) and (4.7) respectively, such that (3.5)- 
(3.7) hold. Then, for |ж| ^  1

(4.23) As{x)Стр(х)рт (,ш5 x^Lr I'm — 1
A s  C p P m  ( ̂ );x <
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(4.24)

(4.25)

m m c

Br(x)Cp(x)pm(w;x)Ls Y ; Хщ — 1
B rCpPm(w^

;x <

< C
\ / l  — x2 1

m + ^ )

ic'jí'p í X, ^m — 1
AsBrPm(w)

\ X <

S C Í “ ? + ^ 2 )m m

where rm_i =  /  — -Pm- i ,  Pm_i being the polynomial defined by Lemma 4.1, 
with some constant C independent of f , x and m  ^  4q + 4.

P r o o f . By the definition of Lr we have

LT
I'm — 1

A sC ppm (^ ) s E  П
i=l к=\,кф]

x -  Zk 
Zj -  Zk

______ |rm-l(Zj)|______
I As{zj)Cp(zj)pm(w; Zj)|

where

\A„(zj)\ 1 g  1, ICp(zj)\ 1 ^  C, \pm(w;zj)\ ~  ma+2, 

and by (4.22)

| r m _ l ( 2 j ) |  =  ( f ^ )  .

Furtherm ore, by the choice of the points Zj we have

П
k=l,k^j

x  -  Zk 

Zj  z k
^ C m 2r 2 ( \ / l  — x + m J) 2r 2,

and consequently

Í Z ' A r m~ \ \ A  ± ( У Г ^  +
\  ASC pPmyW) J

m — 1 \ 2r—2 Em-q{ f i4))
m2,+ a + i-2r+2'
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If й x = 1 then |As(x)| ^  С, |Cp(x)| й C and \pm(w;x)\ ~  m a+1/'2.
Thus, by (4.26) we deduce (4.23). On the other hand, if — 1 ^  x ^  x i im(iu), 
then |As(x)| ^  C m _2s, |Cp(x)| ^  C, |pm(tn;x)| ~ m^+1/ 2 and we have

As{x)Cp(x)pm(w,x )Lr ( z -  -,x) <.
\  ASC; рРт\Ш) J

< (J Eyn-q ( / ^ ) ______1__________1____
= m2? m 2 s - ß - i - e  ma+l-2r+e-

Since (3.5) and (3.6) assure that 2s — ß  — |  Í ^  0 and a  + |  — 2r +  £ > 0 ,
(4.23) follows again.

If Zi,m(u;) ^  x xm,m(u>) then

|pm(u>;x)| ^ C(1 -  t)“ 2_ í (1 +  x)~*~< (|a; -  i| + m_1) 5

|Ал(х)| ~  ( l  + x)s and \Cp(x)\ ^  C(  |x — t\ + m_1) p. Therefore, by (4.26) 
and p — ^ ^  0

As(x)Cp(x)pm(tn, j;)Z/r (

< C

í’m—1 -;ж
AsCppm(tn)

m 2<?-^ ma+2 2r+̂

< сЧ /!^  (1 -  *)*(! + х Г ' +1+г^ - ’m 2?-r

<

<

being m  2 ^  C(1 — x2). Now, if x ^  0 then we use (1 +  x)s f +1+ -21~ r ^  
^  (1 + x )2 . On the other hand, if x < 0 then we observe that from (3.5)-(3.6) 
s -  f  + 1 +  QL̂  — г ^  I follows. Thus, we have

As(x)Cp(x)pm(u;;x)Zr ^m — 1 e
A s C p P m  (^)

and (4.23) follows also in this case. Similarly we can prove (4.24).
In order to prove (4.25) we recall that by the definition of the polynomial 

Lp we have

LP
I'm — 1

4̂«B rPm (^)
;x sE  П

j = 1 k = l , k ^ j

X  -  Tk | r m - l ( 7 j ) |

T j  -  Tk 1 A 5 ( r j ) j 5 r ( r j ) p m ( u ; ; r J ) |
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where | As( j j )Br(Tj)\ 1 ^  C and by (4.22), |rm_1(rj)| й ( / (?)) . Let
= t = *t4-i,m(w); then for any j  G {1 ,...,/?}  the knot closest to Tj 

is Xitm(w) or Xi+i iTn(w). Denoting this knot by x l/>m(w) where i> G {г,г + 1}, 
we have

\Pm(w;Tj)\ ~

~  ш г I Tj -  x l/>m(w)\ ( y / l  -  Tj + m —1) _1( y / l  +  Tj  + to-1 ) _1 Am2 (w; T j )  ~  

~  ( \ / l  — "Г, +  m “ 1) 1 (  ^/1 +  Tj +  m _1) _ 1  ( |< -  T: \ +  m -1) 2 ,

(see [12, Theorem 33, p. 171]). Therefore,

|i>m(w;Tj)| 1 ^  C ( |i -  Tj| + m  l ) 2 <[ C m  2. 

Furthermore, by the choice of the points Tj we have

П 7
k = i , k ? j  3

x - T k
Dfc

^  C mp 1 ( |x — <| + m 1)- i \  p - 1

and consequently

(4.27) I'm — 1 _

■ds-^rPm(2̂ )
< c x - t \  + m - ' ) p- 1Ет-яУЫ )

тч+%-р+1

If —1 5Í x ^  Xi^m(w) or £t'+i,m(w) ^  a; ^  1 then proceeding very similarly as
before we can deduce (4.25) from (4.27). On the other hand, if Xi<rn(w) ^  x ^

—  ^^  x;+i,m(rn) then | As( x )B r(x)\ й C and \pm(w-x)\ 5Í (| t -  x\ + m_1) 2.
Thus, by the assumption p — ^ -  1 < 0 in view of (4.27) we deduce (4.25) 
also in this case. □

Finally, we recall that if w G GJ is the weight function defined by (2.1) 
and a, b and c are real numbers, then

у  (1 -Z fc ,m H )a ( l  + X kim{w))b < 
m \ x - X k , m(w) I

кф(1

C ( \ / l  — x + m  1) 2° 1 ( v^l + x + to 1) 2b 'log  to,

if -  ^ á  a,b ^  |x| ^  1,
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(4.29) (I* -  Sfc,m(w)| + m  г) с , 
"  m\x -  xk,m(w)\ 
k^d

< g  Í log m if c = 0
— 1 1 + m_c if c < 0

Xk,m(w)2) 2 й

k l ^  1,

where d denotes the index corresponding to the knot closest to x and C  is a 
constant independent of m  and x.

For the proof of (4.28) and (4.29) see Lemma 4.1 in [9] and Lemma 5.9 
in [4], respectively. Furthermore,

(4 30) {1 -  x k,m(w ))a( l  + xk,m(w))b(\t -  x kim(w)\ + m  1) c <

k = lk^d
m\x -  X k ,m ( w )

^  C ( \ / l  -  x + m l ) 2a 1 ( \ / l  + x  +  m г) 2Ь 1( | x - i |  + m 1) Cl°g m 5 

if -  ^  ^  a,b ^  —1 < c ^  0, |ж| й  1,

where d denotes the index corresponding to the knot closest to x and C is a 
constant independent of m  and x.

Inequality (4.30) follows from (4.28) and (4.29) and by a routine and 
laborious but not enlightening computation. We omit the details.

P roof of T heorem 3.1. Denoting rm_i = /  — Pm_i, where Pm-1 is 
the polynomial defined by Lemma 4.1 and corresponding to the function / ,  
we have

/ ы (ж) -  C^]r<StP( w J \ x )  = r^L ii* ) -  ^ | r lS> ;  rm- i;ar)

= rí - i ( x ) A s(x)Cp(x)pm(w;x)Lr Z\ I'm —l
A -sC pPm  (^)

;x
0)

В r(x^Cp^x^Pm^w, x^Ls I Y 5 T m  — 1
B rC pPm(^Ŵ

As{x)Br(x)pm(w; x)Lp ( Г; ^m 1 ;x' AsBrpm(w)

U)

i ( j )

As{x)Br(x)Cp(x)Cm I in, Dn — 1
AsB rCp ; a:

lU)

= : I i(x)  + I2(x) + I3(x) + / 4(x) + h(x ) ,  j  -  0, 1, . . .  ,1
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By Lemma 4.1

/ i(x ) | ^  C Em-q{f(4)), j  = 0,

In view of Lemmas 4.3 and 4.2 we also have

| / 2(x)| + | / 3(x)| +  | / 4(x)| i C

j 0 , 1, .

Therefore,

(4.31)

<c h H E E  + ±
t - J

m m A
Em- q{ f ^ )  +

+ A s(x )BT(x)Cp(x)CT ^ W; I'm, — 1
AsB rCp'; x

U)

To evaluate the second term on the right side of (4.31), we denote by Xd,r 
the zero of pm(w) closest to x £ [—1, 1], and write

(4.32) As(x )B r(x)C p(x)Cm w, Trn-l
A.,BTCp'

x -

= As( x ) B r(x)Cp(x)£d m̂(w,x)
r m - l { x d ,m ( w ) )

^  *̂ )
k= 1 k^d

As ( 3Cd,rn ( ̂ 0) ( ̂ d,m(^)) C p (

+As(x)Br(x)Cp(x) ■

I'm — 1 ( Xk,m(w)^ _
As{xk,m(w)) B r ( x kiJn(w))Cp(xktTn(w))

+

= : J i(x ) + J2(x).
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Since \A a{x)Br(x)Cp{x)\ ~  | As{xd<m{w)) B T{x^m(w)) Cp(xd<m(w)) | and 
I ^d,m(w\ x)| ~  1 (see (4.21)) and in view of Lemma 4.1 we can write

(4.33) -  +  ~ V ) Em_q{ f W ) .V m m l I

On the other hand, in view of the choice of the additional points we have

I A s ( X k m  ( ^ ) )  B r ( x k i r n ( l V ^ )  C p  ( X  | =

^  (1 -  H,m(w) ) r ( 1 + x k,m(w)) S (I t -  art,m(w)| +  m ~ 1)P .

Thus, by Lemma 4.1 and (4.20)

\J2( x ) \ ^ C \ A s( x ) B r(x)Cp(x)prn(w;x)\ - m —- X

{ l - X k , m ( w ) )  2 ~ Г + 2 + < ( l  +  X k i m ( w ) )  2 ~ 5+ f  +  * ( | t ~ X k i T n  ( w )  | + Ш ~ г ) 2 ~ P ^

k=1 rn\x-xk,m(w)\
k ^ d

E l № )
йС\  Aa( x ) Br(x)Cp(x)pm(w;x)\  ^ ------ X

x  y >  ( l - ^ f c , m ( ^ ) ) a ( l + ^ f c , TO( w ) ) fe( | t - a : fcim( u ; ) | + m ~ 1 ) c

m \ x - x k}m(w)\
кф-d

with a = |  — r +  ^ + | , 6  = |  — s + f  + |  and c = ^ -  p. By the assumptions
(3.5)-(3.7) we have — |  < a,b < \  and —1 < c ^  0. So, by (4.30)

E
k=1 k^d

( l  -  X k , m ( w ) ) a (  1 +  X k, m ( W ) ) b ( | *  ~  x k , m ( W )\  +  Ш  1 )" 
m \x  -  xk m̂{w)\

^  C{ yj\ — x + m  i )^+"+2 2r (^/i-)-x  + m 1) f+/J+2 2r ( \t — x\ + m J) 2 p. 

Thus,

(4.34) IM x ) \  й c
E m -4( № ) log m.
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Combining (4.33) and (4.34) with (4.32), we deduce

As(x)Br(x )Ср(ж)£т I'm — 1 # \
A sBrCp ’ /

<

Ü C E m - 4{ f M )
m q~(

logm.

Finally, applying Lemma 4.2 with 0 ^  j  £, we obtain

1 O ')

< C ' y / T =
m

)Cm 1
[ rm-i \ 

A sB rCp'X)

1 '
m2 I mq~e

<

log m.

The proof is completed by inserting the last inequality in (4.31). □
A further lemma will be needed to prove Theorem 3.3.
Lemma 4.4. Let f  £ C^A, q ^  0. Let Hp be the polynomial defined by

(4.15) such that (3.15) —(3.17) hold. Then, for |ж| 1

(4.35)

v(T’s\ x ) p m {w,x)Hp ' m —1

v(r’s)pm(w)
< C

v^T
m

Em- q{ f ( A ) ,

where rm_i — f  -  Pm- \ ,  Pm-i  being the polynomial defined by Lemma 4.1, 
and with some constant C independent of f , x and m  ^  Aq + 4.

P r o o f . By the definition of Hp we can write

# p ( /•  Г т _ 1  • т Л
I ' m — 1 U)

h v ^ ) p m ( w y X J =  2 _ ^  p
J =0  Jm

u ( r -Ä) p m ( u ; ; x ) _ x = t

Now, since

' rm- i ( z ) ~ (j) 
.Pm{w\x) J x=t £

k= 0
x)

with
1

Pm(w;t)

(k)
<  c

mк— 1

|pm (^;i)| ’
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and observing that the polynomial n(r,s) and its derivatives are bounded in 
t we have

v^r's\ x ) p rn(w,x)Hf> ( t; I'm — 1
v(r’s)pm(w)'; x

<;

m-7 й

C(1 + ®)'(1 -  x )r
\pm(w;t)\ m q~p+2

x — t| + m l ) p 1.

Thus, taking into account that \pm(w;t)\ 1 ^ C m  2 1 and | pm(u;; z)| ^  
^  C m\Pm(w; a:) | , we obtain

v ^ s\ x <

^ c (  1 + x)5(l -  x )r I pm(w; ar)| (|x -  <| + m J) p \
m

Comparing this last inequality with (4.27) we deduce that proceeding as in 
the proof of (4.25) we obtain (4.35). Indeed, the only difference is that the 
exponent q — p + 1 + 2 7S replaced by q — p + 2 + but now we have the 
assumption (3.17) replacing (3.7). □

P roof of T heorem 3.3. Let rm_! -  f  -  Pm_x where Pm_ 1 is the 
polynomial defined by Lemma 4.1 corresponding to / .  Then r^!_i( — 1) = 0,
j  = 0 ,1 ,. . .  , 5  -  1 and r^ l_ i(l) = 0, j  =  0 ,1 ,... , r  -  1, r,s ^  q + 1. Thus, 
recalling (4.11) we can write

(4.36) \ f ^ ( x ) ~ C ^ sJ w - f - x ) \  S

—  I Г ^т— I 771 —l (x)l + u(r-s>(:r)Cp(z)C m ( №;
V

^m —l

+ v(T's\ x ) p m(w,x)Hp ( t; I 'm — 1
-;z

■;x

n ( i )

( j )

+

v(T's)pm(wy

=: Ы х ) + / 2(*) + /з(я), j  =  0, 1, . . .  ,m in(r -  1,6 -  1).
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By Lemmas 4.1 and 4.2 we have

(4.37)

h { x ) Ü C  E m- q{ f M ) ,  j  = 0, l , . . . , m i n ( r -  1, 5 -  1).
m

Furthermore, in view of Lemmas 4.4 and 4.2 we also have

(4.38)

h{x) й  C (  - - -- -  I ^ m -g( / (9))> j  — 0 ,1 , . . . ,m in(r — 1,5 — 1).m

On the other hand, in view of the definition of Cm we can write

(x ЛС!.(тЛГ— I m:———E—̂ xv(r's>(x)Cp(x)Cm ( w; <

^  C (1 + :r)s(l — x)r\t — x\p x

| * f c , m ( w ) - ® i * , m ( w ) |  I ,  ,  4 | . .
V  J— i— —---- 7-7]— L\h,m(w;x)\  x\x -  x t>im{w)\h k±i*

Thus, denoting by d the index of the zero of pm(w) closest to x, by Lemma
4.1 and (4.20) we get

v(r's\x )Cp(x)Cm ( w; Тщ — 1
v(r’s)Cp'

; x <

-  C m m f — ~ x2^2 + _ X\P 1\pm(w,x)\

< ^  l 1 ~ Zfc,m(m ))a ( l  + Xk,m(x))b (\t -  XkiTn(w)\ + m~1)'

k= 1 k^d
яг x X k , m { w )  I
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where a = f  + f  + | - r ,  6 = §  +  f  + | -  s a n d c - ^ - p + l .  By the 
assumptions (3.15)-(3.17) we have ^  a,b ^  \  and - 1  < c ^  0. Therefore, 
in view of (4.30) and since

(1 + z )s(l -  x)r\t -  x\p~l \pm(w,x)\ <,

й C (  1 -  x)r- ? - i ( l  + x)s~ i - * ( \ t  -  x\  + m - 1) p~ l ~ \

X i ,m ( w )  ^  X й  X m<rn( w ) ,

we deduce

(4.39)

v ^ s\ x ) C p( x ) 2 r I'm—l w: —г— : x < C
y j \  —  X 2

m Em-q( f (q)) logm,1 v ^ C p ' '

•̂ 1 ,m(^) ~ ^

Now we assume xm<m(w) < x ^  1. Then, taking into account that

| p m ( t u ;  x ) |  ^  C m a+ 2 (л/ l  +  X  +  m~1) ( | x  -  t\ +  m ~ x) _ 2

and proceeding as before we have

v(r's\ x ) C p{x)Cr T m — 1
-m 1

<

< c Em-q{ f M )
m q

+(1 + z )s(l — a:)r ( |i — x| + m_1) p 2 1 ( \ / l  + x + m _1) 1 2m“~r 2 x

( l  ^'fc,m(^)) ( 1 T *Г/:,т( '̂)) ( |̂  *Т/:,т(гп)| T П1 )

Кz2) 2 +

E
A:=lk^d

< c

4 * -  x fcjm(u>)|

Em-q{ f (4))

<

mq (1 - x2) 2 +

+(1 + x )s( l  -  x ) f + ? + < ( |i -  *| + m - 1) p“ 2"* (x /T T ^ +  m - 1) ~ ^ 2^ ° m Q+ 2 x
1

x ^  (1 -  зч,та(ц?)) 2 (1 + a;fc,m(g)) (\t -  xfc,m(m)| + m 1) c

k=i
к - ф-d

m\x -  xkiTn(w)I }■
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Thus, by (4.30) and the assumption a > -  we can write

v^ ) {x)Cp(x)2 m ^ w. _ L ^ . x ^ ^

-  C ( ^ m  *2)  Em~ Á f (4]) { l + (! -  x )? +"ma+2 logm} ^

< C
%/l — x 2

m Em- q( f {9)) l o g  m, Xm,m(w) <  X  ^  1 .

Then (4.39) still holds for xm,m{w) < x fí 1. In the same way we can proceed 
in the case — 1 ^  x < x i }W,(w).

Applying Lemma 4.2 to

v(r’̂ ( x )C p(x )£ m ( w; ?'m— 1
V (r's)C0’

; x <

< C m E m- q( f {q)) logm, IxI ^  1,

we get 

(4.40) / 2(х) ^  C y/T
4-j

m
E m_q( f {q)) log m,

j  = 0, 1, . . .  ,m in(r -  l , s  -  1).

The proof is complete by combining (4.37), (4.38) and (4.40) with (4.36).
□
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A L M O ST  CO M PA C T  SUBSPACES  
OF H Y P E R E X T E N S IO N S

A. CSÁSZÁR (Budapest), m em ber of the Academy

0. In tro d u c tio n

The paper [1] contains the construction, if E is a topological space and 
S is an open subbase in E satisfying 0, E  G S, of a space E h, containing 
E  as a subspace and having many interesting properties; in particular, E h 
contains a series of subspaces with more or less nice behaviour, among them 
one which generalizes the concept of a Wallman-type compactification and 
another that generalizes the superextension introduced by J. de Groot [8]. 
Some further subspaces of E h were examined in [2].

The purpose of the present paper is to study, under some restriction 
concerning the subbase S, further subspaces of E h that are almost compact. 
It will turn out, in particular, that we obtain in this manner a generalization 
of the theory of almost compact extensions due to J. Flachsmeyer [7] for 
Hausdorff spaces and generalized by K. Császár [5] to arbitrary topological 
spaces. Similar but weaker statements are contained in [6].

1. Term inology

We shall use the terminology and the notations of [1], so we do not 
recall here definitions that can be found there. On the other hand, we 
formulate here some definitions that are not generally used or known and 
are not contained in [1].

A topological space E  is said to be almost compact if, in an arbitrary 
open cover of E, there is a finite number of members whose union is dense in 
E; this is equivalent to the condition that every open filter base (i.e. a filter 
base composed of open sets) has a cluster point in E where a point x £ E  is 
said to be a cluster point of a system A of subsets of E  iff x £ A for every 
A 6 A. Another equivalent characterization of almost compact spaces is the 
property that every maximal open filter base is convergent in E (see e.g. [5],
(1.5)).

Let S be a subbase (for the open sets) in E. The space E is said to 
be almost supercompact relative to S iff, in every open cover of E  whose
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members belong to S, there are two members whose union is dense in E  ([6], 
Definition 2.2, called super almost compact). If E is supercompact (see [1]) 
relative to S then it is obviously almost supercompact relative to S. On the 
other hand, if E  is almost supercompact relative to a subbase S, then it is 
almost compact; in fact, we have the following analogue of the well-known 
Alexander Lemma (implying that [6], Example 2.1 is false):

Lemma 1 .1 . Let S be a subbase in E. I f  each cover of  E  whose members 
belong to S contains a finite number of members with union dense in E  then 
E  is almost compact.

P r o o f . Let m be a maximal open filter base in E  and suppose that m  
does not converge. Then every point x £ E  would have an open neighbour­
hood Vx ф m ; we can assume that Vx is a finite intersection of members of 
S and then a t least one of them  does not belong to m, say x £ Sx £ S, Sx

П _
ф m. Since E  — (J Sx , there are SX1, . . . ,  SXn such tha t E = (J . By

x£X 1
the maximality of m, SXi ф m  implies the existence of an open G{ £ m  such

_ П
that Gi П SXl =  0, hence G{ П S Xt = 0. This would imply f) G, = 0 which is

l
impossible. □

[6], Theorem 2.1 contains a weaker statement, based on Definition 2.1 of 
[6] that introduces almost compactness relative to a subbase. According to 
1.1, this concept coincides w ith almost compactness.

A subset A  С E  will be said to be ultradense iff E — (J{{a;}:£ £ A}. 
An ultradense subset is dense; in a Ti-space, there is no proper ultradense 
subset.

Now let X  be a superspace (see [1]) of E.  If A is a system of subsets of 
X , the trace of A in E will be denoted by A |E.

The superspace X  of E  is said to be T\-reduced iff x £ X ,  у £ X  — E,  
x ф у implies that each of the points x and у has a neighbourhood not 
containing the other. X  is said to be T2-reduced iff x £ А , у £ X  — E, x ф 
ф у implies th a t x and у have disjoint neighbourhoods. A superspace tha t 
is a T,-space (г = 1,2) is Тг-reduced. Under a slightly different terminology, 
these concepts have been investigated in [4].

Now let X  be an extension of E (i.e. a superspace in which E is dense), 
and A a system of subsets of E. AMs said to be weakly A-disjunctive iff 
A \ , A2 £ A , A\  П A2 = 0 implies (Ai П A 2 ) -  E = 0 (cf. the concept of 
an А -disjunctive extension in [1]). X  is said to be A -hypercombinatorial iff 
Ai,  A2 £ A , intß(Ai П A 2 ) =  0 implies А г П A2 = A\ D A 2 for the closures 
in X  (see for special systems A in [5], Definition (3.5), and in a still more 
special case in [9]).

Let X  and Y  be extensions of E. We shall say that X  and Y  are weakly 
equivalent iff there exists a bijection h: X  —> Y  such that h(x ) = x for x £ E  
(i.e. h fixes E )  and, for x £ X  — E, the trace in E of the neighbourhood
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filter of x (in X )  is the same as the trace in E  of the neighbourhood filter of 
h(x) in Y . This is clearly an equivalence relation. If X  and Y  are equivalent 
extensions (see [1]), then they are obviously weakly equivalent.

2. T he subspace E a

As in [1], we consider an arbitrary topological space E  and a subbase S 
in E  satisfying 0 ,£  G S; we denote

(2.1) T = { E - S : S  £ S}, V  = S U T.

In the sequel, we often assume the following standard hypothesis (cf. the 
concept of a C. С.-closed subbase in [6]):

(2.2) S £ S implies 5 П .E G T, i.e. E -  S £ S.

If we understand the closure in E , then we can write simply S  £ T; however, 
we prefer to denote by A the closure of A taken in the hyperextension E h of 
E  relative to S (see [1]). (2.2) is fulfilled e.g. if S coincides with the system 
of all open sets in E,  or if E  = R  and S is composed of all intervals (—oo, c) 
and (c,+oo) (—oo ^  c 5= -f oo).

As a consequence of (2.2), let us observe:
T heorem 2.3. If  the subbase S fulfils (2.2), the following are equivalent:
(a) E is almost supercompact relative to S.
(b) Every linked system composed of members of S has a cluster point.
(c) Every S-sieve has a cluster point.
(d) Every ultra-S-sieve has a cluster point.
P r o o f , (a) => (b): Let {Sp.i £ /}  be a linked system, S, £ S. If it 

did not have a cluster point, then f) Si (with closures taken in E ) would
_  iei

be empty so that the sets E — Si = S- £ S would cover E. For i , j  £ / ,
S[ U S'j = E, S[ = E  — Si implies Si D Sj =  0: a contradiction.

(b) => (a): Let E  = (J Si, Si £ S. If E  = Si U Sj  were not true for any 
ief

i , j  £ I, then the sets E — Si = S' £ S would constitute a linked system, and
f) S[ ф 0 would imply f)(i?  — Sf) 0: a contradiction. 
iei iei

(b) => (c) => (d) (b) is obvious. □
Let us denote by E a the subspace of E h composed of E  and all points 

x £ E h — E  such that v(x) is an S-sieve; by [1], (3.6) the sieves v(z) (x £ 
£ E a — E)  are precisely all nontrivial ultra-S-sieves.

An important property of E a is contained in
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Lemma 2.4. If у & E h, So E S and у 6 v(So), then there exists a point 
x £ Ea П r(5 o) such that у £ {x}.

P r o o f . For every set 5  6 v(i/) П S, v(S)  is a neighbourhood of у in E h, 
hence v(S ) П v(So) ф 0. By [1], (4.5) this implies S П So /  0. Hence {S0} U 
U (v(y) П S) is a linked system contained in S; by [1], (3.5) it is contained in 
an ultra-S-sieve s. If s is trivial, there is a point x £ E  satisfying x E So П S 
for every 5  E v(y) П S; if s is non-trivial, there is a point x E E a — E  such

П
that s = v (x ). In both cases x E u(So) П p|u(S;) for any finite subsystem

l
{S i,. . . ,  Sn } of v(y ) П S. Hence x E E a П u(So) is contained in every member
П

Пп(5,) of a  neighbourhood base of y. □
l

Corollary  2.5. E a is ultradense in E h.
P roof. For So = F , u(So) = E h we obtain that every у E E h is con­

tained in some {x} with x £ E a. □

Lemma 2.6. Let S0,S i E S, E c  S0 U Si.  Then
(a) E a -  E C  v(S0) U v ( S 1),
(b) E h =  v(S0)U v (S 1).
P roof, (a) Assume x E E a -  F , x 0  u(So) U v(5i). Then by [1], (3.3) 

E -  Si E v (x ) for i = 0,1 and, since v (x) is an S-sieve, there are S'  E S 
such that St E v(x), S ■ С E  — S{. The sets 5 ' being open in E, we have also 
St С E — Si,  thus E -  Si E v(x). But this is impossible because (F  — 5o) П 
П (F -  S i)  =  0 by hypothesis.

(b) The hypothesis and (a) yield

E a С г?(So) U ;Í7№), 

and by 2.5 E a is dense in E h. □
T heorem  2.7. If (2.2) is fulfilled and E a С X  C E h then X  is almost 

supercompact relative to the subbase S^| AT.
P roof. Consider a cover of X whose members belong to this subbase, 

i.e. assume

(2-8) XC U v(Si)
iei

where Si E S. We claim th a t there are two sets S, whose_union is dense in 
F. By assuming the contrary, the system of the sets F  -  S, would be linked 
and, by (2.2), contained in S. Hence by [1], (3.5) there would be an ultra-S-
sieve s containing every set F  -  Si. From (2.8) we have F  = U St so that

iei
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s cannot be trivial, hence s = v(x) for some x £ E a — E.  Now if x £ v(Si) 
then Si £ v(x) and E — Si £ v(x) cannot hold simultaneously.

Therefore there exist i , j  £ I  such that

E  c  S i US j .

Then by 2.6

X  C  u ( 5 t ) U v(Sj).

Now by 2.4 у £ v (Si) implies

у £ v(Si)  П E a C v(S{) П X

and similarly у £ v(Sj )  implies у £ v ( S j ) П X. Hence

X C v(S{)  П X  U v(Sj)  П X. □

Let us mention the following consequence of 2.6:

C orollary 2.9. If (2.2) is fulfilled, then, for S  £ S, the set

(2.10) v ( S ) n ( E a - E )

is open and closed in E a — E.

P r o o f . For S'  = E — S  £ S we have E  C S U S', hence by 2.6

E a - E C  v (S )U v(S ’).

On the other hand 5 П S'  = 0 implies v(S) П v(S') = 0 so that the complement 
in E a — E  of (2.10) coincides with v(S') П (Ea — E). □

We can add to 2.5:

T heorem 2.11. A set E  с  X c  E h is ultradense in E h iff E a С X c  
C E h.

P r o o f . By 2.5 every set E a С X C E h is ultradense in E h. Conversely 
if x £ E a — E, у £ E h, x ф y, then v(x) ф v(y) so that, by [1], (3.4), there 
exist V\, V2 £  V  such that V\ £  v(x), V2 6 v(i/), V\ П Vi =  0. Since v ( t ) is 
an S-sieve, we can assume V\ = S  £ S. Hence x £ v(S ), у ф n(5) and v(S) 
being a neighbourhood of x, we have x ф {у}. Therefore if E  С X  C E h and 
X is ultradense in E h, it must contain every x £ E a. □

We can characterize the superspaces equivalent to a subspace of E a:
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T h e o r e m  2.12. A superspace Y  0 E is equivalent to a space X  such 
that E  С X  C E a iff

(a) there is in Y  a subbase S' such that S'| E — S, Y  is V '-exact (see 
[1]) for V ' = S 'U  T ', T ' = { X  — S': S' G S'}, and у G V  G T ' implies the 
existence of S'  G S' with у G S'  С T',
and

(b) Y  is a reduced superspace.

P r o o f . If E  С X  C E a then S' = S p X  fulfils these conditions ([1], 
(4.8) and (4.2)), and the properties in question remain valid for an equivalent 
superspace.

Conversely, if Y  fulfils (a) and (b), then, by [1], (4.8), there is a home- 
omorphism h:Y  —» X  such that E  С X  С E h, h\ E = idg, and h(V') = 
= v(V'  f l £ ) n l  for V  G V '. If x G X — E, x = % ) ,  and T  G v(z) П T, 
then v{T ) ПА' = /i(T ') for some T'  G T ', у G T ', T  = T'  П E,  so that there 
exists S'  G S' such that 3/ G S' С T '. Thus S  =  S'  П E  G S satisfies S  С T, 
x = h(y ) G h(S') = v(S)  П X , and S G v(x). Therefore v(x) is an S-sieve, 
x G E a, and E С X  C E a. □

Á. CSÁSZÁR

3. T h e  subspace E b

Let us now define the subspace E b C E h by setting x G E b iff either 
x G E  or x G E h — E  and v(x) is an S-sieve without cluster points in E. 
Clearly

(3.1) E С E b С E a C E h.

L e m m a  3.2. I f  у G E a — E b then there exists a point x G E such that 
x G Ы -

P r o o f . For у G E a -  E b, v ( y )  has a cluster point x G E. If x G S  G S, 
then S  П V ф- 0 for every V G v ( y ) ,  hence by [1], (3.3) 5 G v ( y ) ,  у G w(5).

П
Therefore each neighbourhood of X  of the form P) v(Si), Si G S, contains y.

1
□

From now on we always assume that the standard hypothesis (2.2) is 
fulfilled. First we prove the following analogue of 2.7:

T h e o r e m  3.3 (cf. [6], Theorem 3.1). If E b С X  C E a then X  is almost 
supercompact relative to S^^Y.

P r o o f . Let X  C (J u(5t), 5, G S. For a point у G E a — E b, select x G 
__ iei

G E  such that x G {2/}. For an index i, we have x G v(5;), hence у G n(5,-).
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Therefore
E a С IJv(S i)  

iei

and, like in the proof of 2.7, there exist i and j  such that E  C S,- U Sj.  Then 
by 2.6(a)

x  с  < 57)7T x  и v(Sj) n x .  □

Another important property of E b will follow from

L emma 3.4. I f  x E E a, у E E b -  E, x /  y, then there are So, Si E S 
such that x E v(So), У E u(Si), and

v(So) П n(5i) = 0.

P r o o f . Suppose first x G E.  Then x is not a cluster point of v(y), 
hence there is an Si G S in the S-sieve v(j/) such that x ^ Si. Then x G 
G So = E -  Si G S by (2.2), hence So П S\ — 0 and, by [1], (4.2)(b),

(3.5) x e  v(S0), у G v(Si), u(So) П u(Si) = 0.

If x G Ea — E,  then v(x) /  v(y) both are S-sieves, hence by [1], (3.4) 
there are So,S\ G S such that So G v(x), Si G v(j/), So П Si = 0. This 
implies (3.5) again. □

C o r o l l a r y  3.6 (see [6], Theorem 3.2). E b is a T^-reduced superspace of 
E. More generally, if E  С X C E a then E b U X  is a T^-reduced superspace 
of X .  □

We shall need another important

L emma 3.7. I f  So G S, x E E  n v(So) then x G So-

P r o o f . Assuming x E E  — So, by (2.2) E  — So = S G S, and So П S = 
= 0 implies v(So) П v(S ) = 0 so that the neighbourhood v (S ) of x does not 
intersect v(So). □

There is also a converse of 3.3:

T h e o r e m  3.8. If  E  С X  C E a and X  is almost supercompact relative 
to Sfc|X , then Е ь С X C E a.

P r o o f . Suppose E С X C E a and z £ Е ь — X . Let {Sp.i G 1} be the 
system of those sets Si E S for which E -  Si G v(z). We have

X С u <Si).
iei
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In fact, x £ X  implies by 3.4 the existence of S, S' £ S such that x £ 
£ v(S),  z £ v (S ’),_S П 5 ' = 0. Hence S  П S'  = 0, S'  C E -  S, S'  £ v(>), 
consequently E  — S  £ v(z) so that S — Si, x £ v(Si) for some i £ I .

Now the inclusion

X C v(Si ) П X U v(Sj) П X

cannot hold for any two indices i , j  £ I. In fact, this would imply E  C v(S{) U 
U v(Sj),  hence E  C Si U Sj  by 3.7. However, this is impossible since E  — Si, 
E  — Sj £ v(z) implies (E — Si) П (E  — Sj) ф 0.

Therefore X , satisfying E  С X  C E a, cannot be almost supercompact 
relative to S^l X  unless it contains every z £ E b. □

A converse of 3.6 will result from the following

L e m m a  3.9. I f  E  С X  C E h and X  is a strongly reduced superspace of 
E, then X  П ( E a — E b) = 0.

P ro o f . 3.2. □

C orollary 3.10. For a space X such that E С X  C Ea, the following 
statements are equivalent:

(a) E  С X C E b,
(b) X is a T^-reduced superspace of E,
(c) X is a T\-reduced superspace of E,
(d) X is a strongly reduced superspace of E.

P ro o f , (a) (b): 3.6.
(b) =$■ (c) => (d): Obvious.
(d) => (a): 3.9. □

C orollary 3.11. If E  С X С E a, X  is strongly reduced and almost 
supercompact relative to S^IX , then X  — E b.

P ro o f . 3.10 and 3.8. □
It is essential in 3.11 to consider only subspaces X  lying between E  and 

E a; without this restriction E h can contain other subspaces that are almost 
supercompact relative to the trace of S h and are even IVreduced.

E.g. let E  =  R  with the usual topology, S be the system of all open 
subsets. Now S is a regular and normal subbase and E  is X2 so that E s 
is supercompact relative to S k\ E s and at the same time T2 ([1], (5.2) and
(5.10)). We have E s — E a ф 0, E b — E s ф 0; the first difference contains e.g. 
a point x such that v(x) is an ultra-T-sieve containing the sets N and [c, + 00) 
for c > 0 (v(x) cannot be an S-sieve since in tN  = 0), and у £ E b — E s if 
v(y) is an ultra-S-sieve containing the sets

(0,+oo), ( — 00,£) for f > 0 ,  ( - 00, — c) U (c, + 00) for c > 0
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(v(j/) cannot be a T-sieve because a closed subset of (0,+oo) is disjoint from 
a set (—oo,e) if e > 0 is small enough).

Similarly to the argument yielding 2.12 we can state (with the notation 
of 2.12):

T h e o r e m  3.12. A space Y  Э E is equivalent to a space X  such that 
E b С X  C E a iff it fulfils 2.12 (a) and (b) and it is almost supercompact 
relative to S'. □

T h e o r e m  3.13. A space Y D E is equivalent to a space X  such that 
E  С X  C E b iff it fulfils 2.12 (a) and it is strongly reduced. □

THEOR EM 3.14. A space Y  Э E is equivalent to E b iff it fulfils 2.12 (a), 
it is almost supercompact relative to S' and strongly reduced. □

4. T he subspaces Ep and E f

Let us now consider the closures of E  in the subspaces E a and E b, i.e. 
the subspaces E a П E c, E b П E c C E h. They will be denoted by E p and Efi  
respectively.

x £ E a belongs to E c iff either x £ E  or v(x) is a centred (i.e. centrated 
in the terminology of [1]) ultra-S-sieve (because x £ E c means that v(x )  П S 
is centred and now v(a:) is an S-sieve).

Our next purpose is to prove that E v and E* are almost compact. To 
this aim we need a series of lemmas.

Lemma 4.1. Every centred system contained in S is contained in a 
maximal centred system contained in S.

P r o o f . An easy application of the Kuratowski-Zorn lemma. □

Lemma 4.2. If  s is a maximal centred system contained in S, S  £ S,
П

and S  Л П «S',- ф 0 whenever 5,- G s (t = 1, . . . ,  n), then S £ s.
l

P r o o f . By hypothesis s U {5} is a centred system contained in S. □

Lemma 4.3. Let s be a maximal centred system contained in S and v  
the sieve generated by the linked system s. Then v is an ultra-S-sieve.

П
P r o o f . Consider a set 5  G S. If 5 П fj 5, /  0 whenever Si £ s  (i =

l
= l , . . . , n ) ,  then by 4.2 S £ s C v. If there are S \ , . . . , S n G s such that

П  П  __

S П fj Si = 0, then П Si С E -  S (since the intersection is open in E),  hence
l _  l

the set E — S  £ S (by (2.2)) has a non-empty intersection with any finite
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n
number of members of s because such an intersection meets f )5 ,. By 4.2 we

l
have E  — S  £ s and £ - S c £ - 5 G v . By [1], (3.3) the S-sieve v is an 
ultra-S-sieve. □

T heorem  4.4 (cf. [6], Theorem 4.2). If  С X  C E c, then X  is almost 
compact.

P r o o f . By 1.1 it suffices to show tha t if

(4.5) К  U ® ($ )  ( S i t  S)
iei

then there are finitely many sets 5,- such tha t the union of the corresponding 
sets v(S{) П X  is dense in X .

Suppose (4.5) is valid. We claim that there are finitely many sets 5,- such 
that theii^union is dense in E. Assume the contrary. Then the system of all 
sets E  — S{ is a centred system contained in S; let s be a maximal centred 
system contained in S such that E — Si £ s for every i £ / ,  and let v be the 
sieve generated by s. By 4.3 v is an ultra-S-sieve. If x £ E  then x £ Si for 
some i and then 5, does not meet the set E — Si £ v. Hence v has no cluster 
point in E  and v = v(y) for some у £ E* (because v is clearly centred.) Now 
у £ v(Si), Si £ v(y)  for some i , in contradiction with E  — Si £ v(y). 

Therefore (4.5) implies

E C  ÜSi3
l

for suitable indices ij £ I. Since E  is dense in X , we also have

X  C
1

and clearly

X  C Ü v {stj) n x .  □
1

4.4 says more than  the analogues of 2.7 and 3.3; it corresponds to  a 
statem ent иЕ ь С X  C E h implies tha t X  is almost supercompact relative to 
Sh \ X " . The author does not know whether this is true or not (for subbases 
fulfilling (2.2)).

The following converse precisely corresponds to 3.8:

T heorem  4.6. If  E с  X  c  E a and X  is almost compact then E f  С X .
P r o o f . By 3.6 X  U E^  is a 7Vreduced, almost compact extension of X , 

hence [5], Theorem (1.5) (according to which an almost compact space has 
no proper TVreduced extension) implies X  U E f  = X . □
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Lemma 4.7 (cf. [1], (7.1)). F or V G V , x G Ev -  E,  w e  h a v e  x  g u(V) 
iff x e V ■

n
P r o o f , x  G v(V) implies V  П р)5,- ф 0 whenever Si € v(x) П S (г =

l
= 1 ,. . .  , га), i.e. every member of a neighbourhood base of x meets V  and 
x G V.  Conversely if x G V  then V П v(S) /  0 for every 5  G v(x) П S, hence 
V  П S ф 0 for the S  in question, whence V  G v(x), x G v(V)  by [1], (3.3). 
□

T heorem 4 .8 . The space E p is a weakly V -disjunctive extension of  E.
P r o o f . If Vu  V2 e V , V 1 n V 2 = 0, then i>(Vi) П v(V2) = 0, so F j П V 2 n 

П (Ep -  E)  = 0 by 4.7. □
It is not difficult to show that the property of weak V-disjunctivity 

coincides with that of being T-hypercombinatorial:
L emma 4.9. Let X  be an arbitrary extension of E. Then X  is weakly 

V -disjunctive iff it is T-hypercombinatorial.
P r o o f . Let X  be weakly V-disjunctive and suppose

(4.10) Tu T2 G T , intE(T! П T2) = 0.

Then, by introducing S{ — E  — Т,- G S for г = 1,2, by

int£;(Ti П T2) = int£ T\ П int£;T2 — (E -  5i) П (E  -  S2) = 0

we have E C Si U S2 (for the closures taken this time in X ), hence X =  S i U 
U S 2. By hypothesis 5,- П Т{ П (X -  E) — 0 so that Г, -  E  С X  -  5, implies 
Ti П T 2 С E  and

(4.11) Tj П T2 = Ti П T2.

Conversely suppose that (4.10) implies (4.11) and consider S G S, T  — 
= E — S  G T. By (2.2) S П E  G T and 5 П E  Л T  is the boundary of S  in E,  
hence

int#  [S П E Г\ T)  = 0 .

Therefore, by hypothesis,

S П E  ПТ -  S  Г\Т С E

and S  П T  П (X — E) — 0. In the case 5,- G S, Si П S2 = 0 we can consider 
and T  = E — Si G T to obtain 5 i П S 2 П ( X  — E) = 0; if Ti G T, Ti П T2 =  0, 
consider Ti and E  — Ti G S. □

We can give now a characterization for the extensions equivalent to spaces 
lying between E  and E p:
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THEOREM 4.12. An extension У of E  is equivalent to an extension X  
satisfying E  С X  C E p iff it is a reduced, T -strict, weakly X-disjunctive (or 
T-hypercombinatorial) extension of E.

P r o o f . If E  С X  C E p then it is reduced together with Eh ([1], (4.4)), 
and T-strict (see [1]) because T  G T implies T Г\ X  = v {T ) П X  by 4.7, so

X  - T  = X  - v ( T )  =  u ( 5 ) n X

for S = E — T  £ S. The fact that E p is weakly V-disjunctive by 4.8 clearly 
implies the same property of X . If У is equivalent to X , it possesses these 
properties as well.

Conversely let Y  be an extension having the properties in question. Since 
weak V-disjunctivity clearly implies T-disjunctivity, У is equivalent, by [1],
(7.4), to an extension X  such that E  С X  C E h. More precisely, it is shown 
in the proof of [1], (7.4) th a t, with T ' =  {T:T G T} (closure in У), S' = 
= {У -  Г : T  G T} and V ' =  S' U T ', [1], (4.8) (b) is satisfied (E' = У ); now 
the proof of [1], (4.8) yields that there is an extension X  (denoted there by 
E") between E  and E h, and a homeomorphism h:Y —*■ X  such that h\ E  — 
=  id# and, for у G У, v(/i(r/)) (which will be denoted by \ \ y ) )  is the sieve 
in E  generated by { V  П E: у G V  G V '}.

Now E  С X  — h(Y) C E p because X  C Ec (since E  is dense in У ) and 
X  C E a. In fact, v'(y) is an S-sieve for у G У -  E  since A G v'(j/) implies 
the existence of S G v'(t/) П S with S C A. To see this, consider у G V  G V ', 
V  П E  c_A; if V  G S' we are done. If V  G T ', V  = T, T  G T, then T  C A, 
S  = E — So G S (see (2.2)) for So = E — T  G S. By the weak V-disjunctivity 
of У, we have

(4.13) (So П T) -  E  = 0,

clearly 5o = To for Tb = So П £  G T (see (2.2)), so

(4.14) Y  - T 0 = S'  E S',

(4.15) S' П E = E - T 0 = E - S 0 = S  С E -  So = T  C A,

and, by (4.13) and у G T , у G У -  So = S ', S = S' П E  G v'(j/). □
C o r o l l a r y  4.16. 4 n  extension Y  of  E is equivalent to an extension 

X  satisfying E  С X  C E^ iff it is strongly reduced, T -strict, and weakly 
V -disjunctive (or T -hypercombinatorial).

P r o o f . If E  с  X  c  E f  then X  is strongly reduced by 3.10, and the 
other properties follow from 4.12. Conversely, if У is an extension with the
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above properties, then it is equivalent to some X satisfying E С X  C E p. 
The existence of a point у E X  — E b C E a -  E b would contradict by 3.2 the 
property of X  of being strongly reduced. Hence X С Е ь П Ev С E b П E c =
= E l .  □

C orollary 4.17. An extension Y  of E is equivalent to E f iff it is 
strongly reduced, T -strict, weakly V -disjunctive (or T-hypercombinatorial) 
and almost compact.

P ro o f . The necessity of these conditions follows from 4.16 and 4.4. 
Conversely if they are fulfilled, then Y  is equivalent, by 4.16, to a space 
X  such that E  С X  С E *. By 4.6, X  = E *. □

5. F lachsm eyer-type  extensions

Extensions with properties similar to E* have been investigated in [7] in 
the case when E  is a Hausdorff space and S is a base in E  satisfying 0, E  E 
E S, E — S E S for S E S and Si П S2 E S for S i,S 2 E S. In [5] the same 
conditions are assumed for S, but E  can be an arbitrary topological space; 
the present Theorem 4.17 shows that, under the above hypotheses concerning 
S, the extension E^ is equivalent to the extension (E ',a (S)) in the notation 
of [5] (see [5], Theorem (3.7)). Our Theorem 4.17 gives a generalization of
[5], (3.7) by omitting the condition of being a П-semi-lattice for S, and also 
by replacing the condition of being TVreduced by the weaker condition of 
being strongly reduced.

The following theorems show that further extensions studied in [5] (and 
in [7] for Hausdorff spaces) admit similar generalizations as well.

L emma 5.1. Let E  С X  C E c and Y  be an extension of E that is weakly 
equivalent to X. Then each point у E Y  — E has a neighbourhood subbase В 
such that В I E  C S.

P ro o f . Let h:Y  —*• X be a bijection such that h(y) = у for у E E  and 
the traces in E  of the neighbourhood filters of у and h(y) coincide.

If у E Y  — E  and V  is an arbitrary neighbourhood of y, then V  П E  is 
the trace of a neighbourhood of h(y) E X , hence

v n  E d f ] v ( S i ) n E  = n S i  
1 1

n
for suitable sets Si E S such that h(y) E n(5t), and the intersection f ) 5 t still

1
belongs to the trace of the neighbourhood filter of h(y), i.e. of y. In other 
words,

П Si = W  П E
1
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for a suitable neighbourhood W  of y. Now clearly

71
П Si = W  П V П E,
l

each of the sets Si U (W П V) is a neighbourhood of y,

n(5,-u(ifnv))c U{ wnv) cv
n

1

and
(5, u {w n v)) п е  = Si es.

If we denote by В the system of all neighbourhoods of у whose trace in E 
belongs to S, we obtain the statement. □

L emma 5.2. I f Y  is an extension of E weakly equivalent to a space 
X  such that E С X  C E p, then the traces t(r/x) and t (?/2) in E of the 
neighbourhood filters of two points y\ ф yi of Y  — E are distinct filters and 
t (y) is free for у E Y  — E .

P r o o f . It suffices to show this for У = X .  Now y \ ,y 2  G E p — E, y\ ф y2  

imply v(y i)  /  v( í/2)> hence there are Si G v(r/;) П S such that S\ П S2 = 0, 
and yi E v(Si) implies 5,- G t(y t) so that t(?/i) ф t(i/2)- If x G E, у G Ep — E, 
then v(x) ф 'v(y) and there are V  E v(x), S  G v(j/) П S such that V  П S  = 0. 
Now x G V, S  G t(?/) show that x ф П t (y). □

T heorem 5.3. An extension Y  of E is weakly equivalent to a space X  
such that E  С X  C E p iff it is weakly V -disjunctive, the points o f Y - E  have 
for traces of the neighbourhood filters free filters having subbases composed of 
elements of S, and distinct points of Y — E have distinct trace filters.

P r o o f . If E  С X  C E p then X  is weakly V-disjunctive by 4.8. X  is also 
a T-strict extension which implies that it is a strict extension and therefore 
the topology of X  is coarser than any other topology on X  which induces 
on E  the given topology of E  and yields for the points x E X  — E  the same 
traces of neighbourhood filters (see e.g. [3], (6.1.10) and (6.1.8)). Therefore 
X , equipped with a topology of this kind, remains weakly V-disjunctive, 
and the same holds for an extension weakly equivalent to X . The statement 
concerning the traces of the neighbourhood filters follows from 5.1 and 5.2.

Suppose now that У fulfils the conditions in the theorem. Consider first 
the case when У is a strict extension of T; then it is T-strict. In fact, let F C 
С У be closed. Then F — fj Ai  for suitable sets At С E  (and closures taken

in У). If, for an i G / ,  у G У — A{, then there are S i , . . .  ,S n G S belonging to
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n
the trace of the neighbourhood filter of у such that А, П П Sk — 0. So Tk =

l
__ 71 __

= E  — Sk G T implies у £ Tfc, Л,- C (JT/c, and the sets T (t £ T) constitute
l

a subbase for the closed sets in У. Now 4.12 implies that Y  is equivalent to 
a space X  such that E С X  C E p (since the hypotheses imply that У is a 
reduced extension).

In the general case we consider the topology on У obtained as a strict 
extension with the same trace filters. It is weakly V-disjunctive because 
this property depends on the trace filters only. Hence the homeomorphism 
h: Y  —* X  corresponding to this topology of У establishes a weak equivalence 
for the given topology. □

C orollary 5.4. An extension Y  of E  is weakly equivalent to a space 
X  such that E  С X  С E* iff it is T2-reduced, weakly V-disjunctive and each 
point у £ У — E has a neighbourhood subbase whose trace in E is contained 
in S.

P r o o f . By 3.6 E  С X  С E 5 is TVreduced, and the same is true, as in 
the proof of 5.3, for any other topology on X  inducing the given topology 
of E  with the same traces of neighbourhood filters. The necessity of the  
remaining conditions follows from 5.3.

The converse can be deduced from 4.16 by considering a strict extension 
on У (because the property of being a Xyreduced extension depends on the 
trace filters only). □

In order to characterize the extensions weakly equivalent to E f  itself, we 
need two lemmas.

Lemma 5.5. Let E be an arbitrary topological space. An extension X  of 
E is almost compact iff every filter base composed of open subsets of E  has 
a cluster point in X .

P r o o f . Suppose X  is almost compact and let g  be a filter base such 
that every G £ g  is open in E. Denote by h the system of all open subsets 
H of X  such that H П E  £  g .  Then h  is an open filter base in X; in fact, 
Hi £ h, Gi — Hi П E  £ g (* = 1,2) implies the existence of G3 £ g such th a t 
G3  C G\ П G2, and if # 3  is open in X  and G3  = # 3  П E , then G3  = H \ П 
n H 2 n Нз n E, hence Hi П H2 П H3 G h.

Let x 6 X  be a cluster point of h. Since H is open and E  is dense in X , 
x G H = H П E  for each H 6 h, i.e. x is a cluster point of g.

Conversely suppose that each filter base composed of open subsets of E  
has a cluster point in X .  If h is an arbitrary open filter base in X , let g 
denote its trace in E. Then g is a filter base of open subsets of E, hence by 
hypothesis it has a cluster point x 6 X . Since g is finer than h, x is a cluster 
point of h so that X  is almost compact. □
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LE MMA 5.6. Let X  and Y be two weakly equivalent extensions of an 
arbitrary topological space E. If X  is almost compact then so is Y .

P r o o f . For A С E , the closure in the extension is determined by the 
trace filters. Thus 5.5 can be applied. □

T h e o r e m  5.7. An extension Y  of E  is weakly equivalent to EJ iff Y  is
T2-reduced, weakly V -disjunctive, almost compact, and each point of Y  — E
has a neighbourhood subbase whose trace in E is contained in S.

P r o o f . The necessity follows from 5.4 and 5.6. Conversely if Y  fulfils 
these conditions, then it is weakly equivalent by 5.4 to a space X  such that 
E С X  C  E * . Since X  is almost compact by 5.6, X  — E^  by 4.6. □

Theorems 5.4 and 5.7 yield generalizations of [5], Lemma (4.2) and
Theorem (4.3), respectively.

6 . W eak equivalence a n d  ^-equivalence

Lemma 5.6 says tha t almost compactness is invariant with respect to 
weak equivalence of extensions. This fact can be formulated in a more general 
manner w ith the help of the concept of ^-equivalent superspaces.

Let us recall that a map h:X  —► Y  of topological spaces is said to be 
d-continuous if, for x £ X  and an open neighbourhood W  of /i(x), there 
is an open neighbourhood V  of x such that h(V)  C W.  If X  and Y  are 
superspaces of the space E,  they are said to be d-equivalent whenever there 
exists a bijection h: X  —> Y  such that h\ E — id# and both h and /г-1 are 
^-continuous. Taking into account the fact that a ^-continuous image of an 
almost compact space is almost compact, it is clear that almost compactness 
is invariant with respect to  ^-equivalence of superspaces.

We show that 5.6 can be deduced from this remark. In fact:

L e m m a  6 . 1 .  If X I and X 2 are extensions of a space E, h: X 1 —> X 2  
satisfies h\ E  — id# and, for x £ X \, the trace in E of the neighbourhood 
filter of h(x)  is coarser than the trace o f the neighbourhood filter of x, then 
h is d-continuous.

P r o o f . Let us denote by t , ( x )  the trace of the neighbourhood filter of 
x £ X{ and by cl, the closure with respect to X; (i =  1,2). Choose x 0 £ 
£ Xi and let W  be an open neighbourhood of h(x0) in X 2. For G — W  П E, 
consider the open subset

V  = { x £  X \ \G  £ tj(x)}

of Xj. Clearly xo £ V , since IF is a neighbourhood of h(x0) so tha t G 
belongs to t 2 (/i(x0)) C t 1(x0).
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Now x £ c h V  implies that x G clx(G) (because E is dense in X \ and G = 
= V  П E ), hence every element of tj(a;) meets G, and the same is, a fortiori, 
true for the elements of Í2(h(x))  C ti(a:). Thus h(x) 6 c^ G  C cl2 W. □

C orollary 6.2. Two weakly equivalent extensions of a topological space 
are always d-equivalent. □

Let us notice that the converse is not true. For E = R  with the usual 
topology, let p ф R  and Xi denote the (unique) extension of E  on R  U {p} 
corresponding to the trace filter t;(p) (i = 1,2), where t x(p) is generated 
by the sets (c, + 00) (c G R), and Í 2(p) by those (c,+ 00) — N (c G R). Now 
h = id^j is the only Injection h: X x —>■ X 2 satisfying h \E  — id#, and t x(p) ф 
Ф t 2(p) shows that X \ and X 2 fail to be weakly equivalent extensions.

However, the above h and its inverse /i_1 are both ^-continuous by

clx(a, b) = cl2(a,b) = [a, 6] (a < b),

cli(c,+oo) = cl2((c,Too) -  N) = [c, + 00) U (p) (c G R).

We can deduce from 6.1 (and the following Lemma 6.3) Theorem 6.4 that 
is a slight strengthening of [6], Theorem 4.4.

L emma 6.3. I f  X  is a T2 -reduced extension of E, i: X  —» X  is d- 
continuous, and i\ E  = id#, then i = idx-

P r o o f . Assume x G X  — E, i(x) = у ф x. Then there are open neigh­
bourhoods G and H of x and y, respectively, such that G П H = 0. We 
can suppose i (G) С Я , and then the existence of 2 G G Л E leads to the 
contradiction i(z) = г G H . □

T heorem  6.4. Let Y  be an almost compact extension of E that contains 
a subbase S' such that S'| E  C S. Then

(a) for any such Y , there is a д -continuous map h : E* —> Y  with h \E  = 
= idß,

(b) the map h in (a) can be subject to the condition h(E^ -  E) C Y  — E,
(c) i f Y  is T2 -reduced then h in (a) is necessarily surjective,
(d) if E ' is a T2-reduced almost compact extension of E, containing a 

subbase S' such that S'| E C S, and for any almost compact extension Y  D 
D E  with subbase having a trace in E contained in S, there is a d-continuous 
map h: E ' —* Y  such that h \E  = id#, then E^ and E' are d-equivalent.

P r o o f , (a) and (b): For x £ E* — E, consider the filter base g composed
П

of the sets П Si such that Si G v(z) П S. Then, by 5.5, g has a cluster point 
1

у G Y; clearly у ф E. Select a у of this kind and define у — h(x).
Then h satisfies the hypotheses of 6.1 provided h(x) = x for x G E.  In 

fact, if S'  G S' is a neighbourhood of h(x), then S' fl E  = S  G S meets every
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element of v(x) so that S £ v(x). Since the finite intersections of the sets S 
of this kind generate the trace in E  of the neighbourhood filter of h(x), this 
trace is contained in the trace of the neighbourhood filter of x. By 6.1, h is 
■^-continuous.

(c) : E* being almost compact, the same holds for h(E^)  Э E , and Y  is 
a IVreduced extension of h(E^). Thus Y  = h(E^) by [5], Theorem (1.5).

(d) : Suppose E ' satisfies the hypotheses. Then there are ^-continuous
maps h: E ? —> E' and к: E' —► E^ such that h\ E = k\ E  = id#. Consider 
the ^-continuous map i  = к о h: E^ —> E by 6.3 i  = idE/ . Therefore h is 
injective and, by (c), it is surjective, too. Hence к = h~l . □

The author expresses his most sincere thanks to Dr. J. Deák for valuable 
remarks.
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O N PSE U D O M A N IFO L D S  
W IT H  B O U N D A R Y . I l l

M. BOGNÁR (Budapest)

The first part of this paper [8] concerned nonorientable pseudomanifolds. 
The second one [9] discussed orientable pseudomanifolds without homolog­
ically singular interior points. This third part deals with locally orientable 
pseudomanifolds with boundary and without homologically singular interior 
points.

Without going in details the main result of this part can be sketched as 
follows:

Let (X, A) be a locally orientable n-pseudomanifold with boundary and 
without homologically singular interior points lying in R n+1. Let К  be a 
continuous closed path in X  \  A. Under the circumstances К  preserves its 
banks if and only if it preserves the orientation.

We shall use the definitions and notations of [8] and [9] without any 
comment.

First we deal with figures called (n,p)-manifolds where p is a prime.
Throughout this paper let p be a prime and n a positive integer. Let 

Zp be the cyclic group of integers mod p and H the Cech homology theory 
defined on the category of compact pairs over the coefficient group Zp. Let 
N be the set of positive integers and I = {x;0 ^  x ^  1} the unit interval 
with the usual topology.

1. (n,p)-m anifolds

1.1. D e f i n i t i o n . The compact pair (X, A) (i.e., X is a compact T2- 
space and A is a closed subspace of X ) is called an (n,p)-manifold if the 
following conditions are satisfied:

(a) x \  A  is a nonvoid connected space with countable base.
(b) There is a base a of X \  A such that for each U 6 <7, (X, X \  Í7) is an 

(n,p)-cell (cf. [8] 1.2).
(c) For each open subset U of X \  A and for every q > n, Hq(X, X  \  U) = 

= 0 holds.
1.2. Observe that for each (n,p)-manifold (X, A) the subspace X \  A of 

X is locally connected.
Namely by 1.1(b) and [8] 1.2(a) the base о of X \  A consists of connected 

sets.
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1.3. R e m a r k . Let (X, A) be an (n,p)-ce 11 without c-singularity (cf. [9]
1.1 and [9] 1.6) satisfying the condition 1.1(c). Then by [9] 1.3 (X, A) is 
clearly an (n, p)-manifold.

1.4. To prepare the next section we make a preliminary remark.
Let X  be a compact T2-space and for к 6 N let Uk be an open subset

OO

of X. Let U = [j Uk and for к G N let Uk = U\ U . . .  U Uk- Let q be an
k=l

arbitrary integer. For к G N  let jk*:Hq( X , X  \ U )  —> Hq( X , X  \  Uk) be the 
homomorphism induced by the inclusion jk ‘- (X, X \U )  С (X, X \  Uk). Let 
6 be an element of Hq( X , X  \  U) for which

(1) jk*{b) = 0 for all к £ N.

Then 6 = 0.
Indeed X  = {(X ,X  \  Uk)\ к — 1 ,2 ,...}  is a nested system with the 

intersection (X , X  \  U) (see [10] 5.2). By (1) 6 determines the 0-thread of X  
(see [10] 5.4) and thus by the continuity of Я  (see [10] 5.5) we have 6 = 0 
(see [10] 5.5) as required.

2. Q uasiregu lar dom ains

Let (X, A) be an (n,p)-manifold.
Considering the domains in X \  A we shall find that for such a domain 

U we have either Я„(Х, X  \  U) = 0 or Hn( X , X  \ U )  «  Zv and in the latter 
case (X, X  \  U) is an (n,p)-cell.

First we introduce the notation of quasiregular domains.
2.1. D e fin it io n . Let U be a domain in X \  A. We say that U is a 

quasiregular domain of the (n,p)-manifold (X, A) if it satisfies the following 
two conditions.

(a) For the inclusion г:(Х , 0) С (X, X  \  U) the induced homomorphism 
г*:Я„(Х) -> Я „(Х ,X \  U) is trivial, i.e. г»(Яп(Х)) = 0.

(b) For each nonempty open subset U' of U and for the inclusion 
j: (X ,X  \  U) C (X ,X  \  U') the induced homomorphism у»: Я „(Х ,Х  \  U) —► 
—у Я„(Х, X  \  U') is a monomorphism.

We are going to prove th a t each domain in X \  A is a quasiregular domain 
of (X,A).

2.2. R e m a r k . Let U\ and U2 be open subsets of X \  A. Consider the 
segment

«—  Я п+1( Х ,Х \ ( Я 1 ПЯ2))

яп(х ,х \Я 1) е я п( х ,х \я 2) J -  я„ (x, x \(Ui и я2)) <—
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of the relative Mayer-Vietoris sequence of the triad (X ;X  \  U\ ,X \  U2), 
where ip is defined by the formula

(2) ip(b) = ( /11,(6) ,- h 2.(b))

and for m = 1,2 hm*'- Я „(Х , X  \  (Ui U U2)) —* Hn( X , X  \ U m) is the homo­
morphism induced by the inclusion hm: (X , X  \  {U\ U U2)) С (X, X \  Um) 
(cf. [11] p. 42). According to 1.1(c) we have Hn+i(X ,X  \  {Ui П U2)) =  0 
and thus by the exactness of the sequence in question, ip is a monomorphism.

2.3. Let U\ and U2 be quasiregular domains of (X, A) intersecting each 
other. Then U\ U U2 is a quasiregular domain as well.

Indeed for m = 1,2 let hm and /im, be the same as in 2.2. We first show 
that hi* and h2+ are monomorphisms.

To this end consider the diagram

Hn{ X , X \ l h )
/ll*

3 i *

Я „ ( Х ,Х \  (C linch))
3 2 *

Hn ( X , X  \  (Ui U U2)) 

h.2*

Hn( X , X \ U 2),

where the homomorphisms j  1* and j 2„ are induced by inclusions j\  and j 2 
respectively. This diagram is commutative. Since U\ and U2 are quasiregular 
domains it follows by 2.1(b) that and j 2, are monomorphisms. Let b 6 
€ Hn(X,  X  \  (U\ U U2)) and suppose that /ii»(6) = 0. Then j 2,h2*(b) — 
= ji*/ii*(6) = 0. Since j 2* is a monomorphism we get h2t (b) = 0. Hence

Ф(Ь) = (M^),-M^)) =(o,o)
(cf. 2.2(2)). However by 2.2 ip is a monomorphism and thus we obtain 6 =  0. 
h u  is a monomorphism indeed. Likewise h2t is a monomorphism as well. 

Next we show that U\ U U2 satisfies condition 2.1(a).
Let

i„: # n(X ) —+ H n( X , X  \  U U2)) and 4 ,: Hn(X)  -  Hn(X,  X \ £/,)

be homomorphisms induced by the inclusions i and i\ respectively. We then 
clearly have ?i* =  Since U\ is a quasiregular domain according to
2.1(a) for each с E Hn(X)  we get 0 = fi*(c) = hi»i,(c) and thus since h\ ,  
is a monomorphism it follows n(c) = 0. г» is a trivial homomorphism as 
required.

Finally we prove that U\ U U2 satisfies condition 2.1(b).
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Indeed, let U' be a nonempty open subset of U\\J U?. Then U' intersects 
either U\ or t/2. W ithout loss of generality we can suppose U\ П U' ф 0. 
Consider the diagram

Hn( X , X \ U 1) — — — Hn{ x , x \ ( i h u u 2))

Я п ( ^ ,Х \ ( £ / 1 П1/')) <---- ------  Hn(X,  X  \  U')

where the homomorphisms j», j" , r» are induced by the inclusions j ,  j"  
and r respectively. This diagram is clearly commutative. However U\ is 
a quasiregulax domain and thus by 2.1(b) j"  is a monomorphism. As we 
have seen above hi* is a monomorphism as well. Consequently j* is a 
monomorphism, too.

U\ U U2 satisfies condition 2.1(b) as required. U\ U U2 is a quasiregular 
domain indeed.

2.4. T heorem . Every domain in X  \  A is quasiregular.

P r o o f . First observe that if for a domain U in X  \  A the compact pair 
(X, X  \  U) is an (n,p)-cell then U is a quasiregular domain of (X, A) (see 2.1 
and [8] 1.2). Thus according to 1.1(b) there is a base a of x \  A consisting 
of quasiregular domains of (X, A).

Now let U be an arbitrary domain in X \  A. Then U is the union of 
some domains of the base о or even more, since X  \  A has a countable 
base it follows that U is the union of a countable subset of o. However U 
is connected and so we can put this countable subset of a in a sequence

к -  1
U\ , . . . ,  Um, • • • so that for к ^.2  Uk meets the set (J Um and obviously U —

771 =  1
СО к

— (J Uk- Denoting for к G N (J Um by Uk according to 2.3 we can state
fc= l m = 1

that each Uk is a quasiregular domain of (X, A).
Now for k , s , t  G N with t ^  s let y**: Hn(X, X  \  Ul ) — * ЯП(Х, X  \  Us) 

and jk*'- H n(X,  X  \ U) — * Я П(Х, X \  Uk) be the homomorphisms induced 
by the inclusions j ls and jk  respectively. Observe that

(3) js« = j l J t . -

Moreover since U1 is quasiregular and 0 ф Us C Ul by 2.1(b) it follows that 
j^* is a monomorphism.

We now show that jk« is a monomorphism.
Indeed choose b G Я П(Х, X \  U) so that jk*(b) = 0. Then for г ^  к by 

(3) we have j r*(b) = j k,jk*(b) = 0. On the other hand for m ~ t k  j™Jm*(b) =
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= j k„(b) = 0 and since j™m is a monomorphism it follows that j m*(b) = 0. 
Thus according to 1.4 we get 6 = 0. jk* is a monomorphism as required. 

Next we show that U satisfies condition 2.1(a).
Let i„: Hn(X)  -  Hn( X , X \ U )  and г1,: Я„(Х) -> Hn( X , X \ U l ) be 

the homomorphisms induced by the inclusions г:(Х, 0) С (X, X  \ U) and 
г1: (X, 0) С (X, X  \  U1) respectively. We then clearly have

(4) i1* =

Let c € Hn(X).  Since Ul = U\ is a quasiregular domain of (X , A ) by 2.1(a) 
and (4) we get 0 =  ^»(c) = y’i*i«(c) and since j i* is a monomorphism it 
follows г,(с) = 0. г* is a trivial homomorphism as required.

Finally we prove that U satisfies 2.1(b).
Let U' be a nonempty open subset of U. Then there is a Uk meeting U'. 

Consider the diagram

Hn( X , X \ U ) ----Hn( X , X \ ( U k))

J* l'k.

Hn( X , X  \  (U) ---- ------♦ Hn( X , X \ U k n u ' ) )

where the homomorphisms у», j ' , j'kif are induced by inclusions as well. This 
diagram is clearly commutative. Uk is a quasiregular domain, consequently 
j'kt is a monomorphism. As we have seen above jk* is a monomorphism as 
well. Hence j ' = j'kmjk* is a monomorphism and so y, is a monomorphism 
as required.

U satisfies condition 2.1(b) as well.
The proof of the Theorem is complete.
2.5. Corollary . Let U be an arbitrary domain in X  \  A. Since a 

is a base of X  \  A (see 1.1(b)) there is a member U' of a contained in U . 
(X, X  \  U') is an (n,p)-cell and thus

(5) Hn( X , X \ U ’) *  Zp

(see [8] 1.2(b)). However V is a quasiregular domain and thus for the 
inclusion j : (X ,X  \U )  С (X, X \  U') the induced

j . :  Hn( X , X \ U ) - * ( H n X , X \ U ' )

is a monomorphism, consequently Hn( X , X  \  U) is isomorphic to a subgroup 
of Zp. Hence we have either Hn( X , X  \  U) = 0 or #„(X , X \  U) »  Zv.
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3. s-regu lar dom ains

Let (X, A) be an (n,p)-manifold.
3.1. D e fin it io n . A domain U of X  \  A is said to be an s-regular domain 

of (X,A) if H n( X , X \ U )  ф 0.
3.2. R e m a r k . 2.5 shows that for each s-regular domain U we have 

Hn{ X , X \ U )  «  Zp.

3.3. P r o po sitio n . Let U be an s-regular domain o /(X , A). Then 
(X, X \U )  is an (n,p)-cell without c-singularity (see [9] 1.6).

P ro o f . According to 3.2, 2.4, 1.1(a), 1.2 and [8] 1.2 (X ,X  \  U) is an 
(n,p)-cell. Consider the base о in 1.2(b) and let o' = {U' £  a ; U' C Í7}.  
Then o' is a base of U = X  \  (X \  U) and for each U' £ o', (X, X \  U') is 
an (n,p)-cell and thus U' is a c-regular domain of (X, X \  U) (see [9] 1.3). 
Consequently (X, X \  U) is without c-singularity (see [9] 1.7) as required.

3.4. R e m a r k . Let U be an s-regular domain of (X, A). Let U' be a 
domain in U . Then U' is s-regular as well. Moreover U' is a c-regular domain 
in the (n,p)-cell (X, X \ U ) .

Indeed for the inclusion j : ( X , X  \  U) C (X ,X  \  U') the induced 
j*: Hn( X , X  \  U) —► Я „(Х ,Х  \  U') is a monomorphism (see 2.1(b) and 
2.4). However U is s-regular and thus Hn( X , X  \  U) ф 0. Consequently 
H n( X , X  \  U') ф 0. U' is s-regular as well. Hence by 3.2 we have 
H n( X , X  \  U') ~  Zp and thus taking also 3.3 into account U' is a c-regular 
domain of the (n,p)-cell (X, X \  U).

3.5. Let r  be the set of the s-regular domains of (X, A). According to 
1.1(b), 3.1 and [8] 1.2(b) we have о C r  and thus r  is a base of X \  A.

For each U £ r  let H ( U ) denote the group Hn( X , X  \  U).
Now let U,U' £ r  and suppose that U' C U. Then the homomorphism 

j*:H(U)  —► H(U')  induced by the inclusion j : ( X , X  \  U) С (X, X \  U') is 
an isomorphism.

Indeed by 2.1(b) and 2.4, j„ is a monomorphism. However by 3.2 H( U ) «  
«  H(U') «  Zp. Thus j* is an isomorphism indeed.

We shall denote this isomorphism by (U' ,U)t .
Observe th a t in case U1 = U

(6) ( U \U )m = idH(u),

i.e., (и ' ,и)„  is the identity isomorphism of Hn( X , X  \  U), and if U" C U' C 
C U {U,U ',U " £ T) then

(7) (U",U) ,  = ( U" , U' ) SU' , Ul .
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3.6. For U,U' G T we say that U and U' are compatible (with each other) 
if either U' C U or U C U'.

Now let U and U' be compatible members of r. We define the isomor­
phism

[U',U]9 :H(U)  -  H(U')
by letting

( 8)
((c/, t / ') J  _1

if U' C u, 
i f u c u ' '

According to 3.5(6) this isomorphism is well defined and we have

(9) [U ,U l = idH(u)

for each U G r. Moreover

(10) [ V ,U \ = [U',U) : 1

holds for any two compatible members U,U' of r . Observe also that in case 
V" C U' C U (U, U', U" G t ) we clearly have

(11) [U ",U l = [U ",U 'U U ',U l.

3.7. A т-chain is defined as a sequence C = (Um, . . . ,  U\) of members 
of T  such that for j  = 2 , . . . ,  m, Uj and Uj-\ are compatible. The т -chain is 
closed if Um = U\.

For any r-chain C — {Um,- ■ ■ > U\) we define the isomorphism

C*: H(U\)  —► H(Um)

by letting

and

C* = idtf(crj) if m — 1 

C* = [Un ,Um- i \ m. . .  [U bU il if m > l .
Observe that if C is a closed chain then C* is an automorphism of H(U\).  

This automorphism is either the identity mapping of H(U\)  or it differs (from 
the identity. In the first case we say that C is an orientation preserving closed 
chain and in the second that C is an orientation changing closed chain.

Observe that in case p — 2 each closed r-chain is clearly an orientation 
preserving chain.

3.8. Observe that if U" C U' C U (U,U',U" G r)  then by 3.6(10) and 
3.6(11), C  = (U", U, U', U") is an orientation preserving closed r-chain.
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4. O rien ta tio n  preserving closed paths

Let (X, A)  be an (n,p)-manifold.
We now turn to the problem of defining the fact that a continuous closed 

path in X  \  A preserves the orientation. To this end we recall the notion and 
some properties of the «-category.

4.1. An i-category is a category C together with a contravariant functor 
T:C  —► C such tha t T  • T  — idc and T(B)  = В  for each object В of C (cf.
[7]).

Now we shall use the symbols С*, V* etc. for «-categories. If C* = (C,X) 
is an «-category then the class of objects (morphisms) of C* will be denoted 
by ObC* (MorC*). For any a  E МогC* the symbol X(a) will besometimes 
replaced by a*, a* is the involutoric conjugate of a.

A morphism a: A —+ A! of an «-category C* is said to be closed if its 
domain is the same as its range (i.e. A = A').

We now turn to the definition of the invariant subcategory.
An invariant subcategory of an «-category C* is a subcategory Q* of C* 

consisting of all objects and of some morphisms of C* such that
(a) for any a E MorC* we have cm* E Q*,
(b) if for any o;i, «2 E MorC* the morphism a \c*2 is defined and it belongs 

to Q* then a 2« i is also defined and a 2«i E Q*,
(c) if « 1, c*2, с*з are morphisms of C* such that «102 = «3 and a 2 E Q*, 

a 3 E Q* then a j  G Q*.
If a morphism belongs to an invariant subcategory then it is clearly a 

closed morphism.
Suppose now that the «-category C* is small, i.e., the class of objects and 

morphisms of C* is a set. Let У  be an arbitrary subset of closed morphisms 
of C*. Then there is a least invariant subcategory 0*(У) of C* containing 
У. That means 0*(У)  is contained in each invariant subcategory Q* of C* 
containing У. Q*(T) is called the invariant hull of У.

4.2. Let M  be a partially ordered set, i.e., M  is equipped with a binary 
relation ^  such that

(i) a Ú a for each a E M ,
(ii) a b and b ^  a imply a = b,

(iii) a b and b c imply a Ú c.
A sequence a  =  (хд.,. . . ,  x\): X\ —► in M  is called an M-chain if for i =

= 2, . . .  ,k  Xi and x t_i are compatible elements of M, i.e., either хг хг_х or 
хг_i ^  Xi. For the M-chains a — (x*.,. . .  ,x i)  and ß = (xTO, . . . ,  x^) let ßa = 
— (xm, .. .  ,Xfc+i,Xfc,. . .  ,x i) and a* = (xi,...,X fc). Thus (M, ^  ) becomes 
an «-category M* where Ob M* = M  and Мог M* is the set of the M-chains.

M* is a small «-category.
Let У be the set of all M-chains of the type (b,d,c,b) where b ^  c ^  d. 

Then the invariant hull of У is called the medial invariant subcategory of M* 
(cf. [4] 3.13). We shall denote it by M^ed.
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4.3 . Let R' be a TYspace and R a subspace of R'. A system из of open 
sets of R' is said to be an external base of R in R' if for each q £ R  the 
subsystem

u>q = {U £ из : q e U}

of из constitutes a base of neighbourhoods of the point q in the space R '.
Setting U U' if U C U' (U, U' £ из) the external base из can be consid­

ered as a partially ordered set. Hence the invariant subcategory of the
small г-category из* is well defined.

4.4 . Let R' = R  = X  \  A and из = r , where т is the same as in 3.5, 
i.e. it is the set of the s-regular domains of (A, A) (cf. 3.1). r  is obviously 
an external base of X  \  A in X  \  A (cf. 3.5). Moreover the members of 
r  together with the orientation preserving closed r-chains (see 3.7 and 4.2) 
form clearly an invariant subcategory Q* of t* and by 3.8 Q* contains the 
invariant subcategory r^ ed of r*.

4 .5 . Let R' and R  be the same as in 4.3. Let u> be an external base of R 
in R' and let K:q  —► 2 be a continuous path of R  (see [8] 2.4). As in [9] 2.8 
we can define the w-chains associated to К .

Indeed let a = {U\ , . . . ,  t/m+1) be an w-chain. a is said to be associated 
to К  if there exists a subdivision of К  into factors К  = K \ , . . .  , K m, where 
Ki = Kp. 1 —► qi for г = 1 , . . . ,  m, (ft = z, qm+i = q such that </, £ U{ and 
Ki C (Ui U Ui+1) for г = 1 and qm+\ € Um+i (cf. [8] 2.4 and [8] 1.6).

Observe that for each continuous path K :q -* z in R  and for each U, U' £ 
£ из with q £ U and 2 £ U' there is an иг-chain a = (U\ , . . . ,  Um+i) associated 
to К  such that U\ = U' and f/m+i = U' (see [5] 6.8).

Consequently to each closed path К  of R there is a closed w-chain a — 
— (U\ , . . . ,  E7m+i =  U\) associated to К .

Observe that if Q* is an invariant subcategory of из* containing u;^ed then 
for each closed path К  of R and for any closed ui-chains a  and a 1 associated 
to К  either both of the chains a and a' belong to Q* or neither of them 
belongs to Q* (see [5] 7.1).

4 .6 . D e f i n i t i o n . We say that a continuous closed path К  in X  \  A pre­
serves the orientation if each closed r-chain associated to К  is an orientation 
preserving chain.

According to 4.4 and 4.5 К  preserves the orientation if and only if there 
exists an orientation preserving closed r-chain associated to К .

We say that the closed continuous path К  changes the orientation if К  
fails to preserve it, i.e., if each closed r-chain associated to К  is an orientation 
changing closed chain.
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5. (n ,p)-m anifo lds in  R n+1

We first show that the definition of the (n,p)-manifold may be simplified 
i f i t  lies in R n+1.

5.1. Let (X , A) be a compact pair in the Euclidean (n + l)-space R n+1, 
i.e., the compact TVspace X  is a subspace of R n+l and A is a closed subspace 
of X . Under the circumstances (X, A) is an (n,p)-manifold if the following 
conditions are satisfied:

(a) X  \  A is a nonvoid connected space.
(b) There is a base a of X  \  A such that for each U £ о (X, X  \  U) is an 

(n,p)-cell.
Indeed, since R n+1 possesses a countable base so does X  \ A. Thus 

condition 1.1(a) is satisfied. Condition 1.1(b) is the same as (b). We only 
need to show th a t condition 1.1(c) is also satisfied.

First observe that by [8] 2.16 for each U £ a, U = X  \  (X \  U) is nowhere 
dense in R n + 1 . Consequently by (b) X  \ A itself and so each open subset of 
X  \  A is nowhere dense in R n + 1 . Thus according to [10] 6.23 and [10] 6.24 for 
each open subset U of X  \  A and for every q > n we have Hq( X , X  \  U) = 0 
and so 1.1(c) is satisfied for the pair (X, A).  (X, A) is an (n,p)-manifold as 
required.

5.2. C orollary . Let (X ,A) be an (n,p)-cell in Rn+1 without c- 
singularity (see [9] 1.6). Then by 5.1, [8] 1.2(a), [9] 1.3 and [9] 1.7 (X, A) is 
an (n,p)-manifold in Rn+1.

5.3. T h e o r e m . Let (X, A) be an (n,p)-manifold in R n+l. Then(X , A)  
is a k-manifold in R n+1 (cf. [9] 2.6).

P roof . By 5.1(a) condition [9] 2.6(a) is clearly satisfied. Moreover by 
3.3 and [9] 2.7 for each U £ a, (X ,X  \  Cf) is a fc-manifold in Rn + 1 . However 
for C7 £ a each mod(X, X  \U )  A:-regular domain of fin+1 is clearly A-regular 
mod(X, A). Thus for the compact pair (X, A) condition [9] 2.6(b) is satisfied 
as well. (X, A) is a fc-manifold in Rn+1 indeed.

In the remainder of this chapter let (X, A) be an (n, p)-manifold in R n+1.
5.4. Let Í2 be the set of the mod(X, A) А-regular domains in R n + 1 . 

According to 5.3, Q is an external base of X \  A in Rn+1.
As in [9] 2.11 we can define the chains of banks associated to an O-chain 

(see also 4.2 and 4.3).
Indeed let V  £ 0. Then by the banks of V  we mean the components of 

V  \  X  and we denote them by P X(V) and P 2{V). Let a = (V),. . . ,  Vm) be 
an О-chain and let P l (V\) and P 2{V\) be the banks of V\. Then there is a 
numeration P x and Pf of the banks of V] such that

(a) Pi = P \ V i) and Pi = P 2(Ui),
(b) Pi П P}+x ф 0 and P f  П P 2+1 ф 0 for i = 1 , . . . ,  m -  1,

and this numeration is unique (see [9] 2.11). Hence two sequences ap( 1) =
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= (Pi , .  ■ ■, Pm) and otp( 2) =  (P 2, . . . ,  P i )  of the banks belong to the D-chain 
a. Moreover for j  — 1,2 we have Р / C P/+1 in the case Vi C Vj+i and P/+1 C
С Р / in the case Vj+i C Vi. The sequences ap (l)  and a p (2) are called the 
chains of banks associated to the Cl-chain a.

If a  is closed, i.e., if Vm = V\ then two cases are possible:
(i) P i  = Pi and P 2 = P i

(ii) P i  = P 2 and P i  = P i
In the first case we say that a preserves its banks and in the second that a 
changes its banks.

Observe that the members of Cl together with the banks preserving closed 
il-chains form clearly an invariant subcategory of the г-category Cl9. Denote 
this invariant subcategory by Q*r.

It is to be noted that if V\ C V2 C V3 (Vi,V2,V3 6 Cl) then the closed 
О-chain (Vi, V3, V2, Vi) clearly preserves its banks. Hence

fimed C Cl9pr.

5.5. D efin itio n . Let К  be a continuous closed path in X  \  A. We say 
that К  preserves its banks if each closed О-chain associated to К  does (cf. 
4.5). According to 4.5 and 5.4 К  preserves its banks if and only if there 
exists a closed О-chain associated to К  which preserves its banks.

Now we can formulate our first fundamental theorem.
5.6. T heorem . Let (X , A) be an (n,p)-manifold in Rn+1 with p ^  3. 

Let К  be a continuous closed path in X  \  A. Then К  preserves its banks if 
and only if  it preserves the orientation.

We prepare the proof of this theorem.
5.7. P roposition . Let V be a mod(X, A) к-regular domain in R n + 1 . 

Then V  П X  is an s-regular domain of (X , A).
P r o o f . We argue by way of contradiction.
Suppose that U = V П X  is not s-regular, i.e., Hn( X , X  \ U) = 0. V 

is a connected set in P "+1 containing U = V П X  and disjoint from X  \  U. 
Hence by [10] 6.22, V \  X  is a connected set. However V \  X  consists of two 
components (see [9] 2.5) and this is a contradiction.

V П X  is an s-regular domain of (X, A)  as required.
5.8. P roposition . Suppose that p ^  3 and let U be an s-regular domain 

of (X , A). Then there is a к -regular domain V  mod(Ar, A) such that V  П X  = 
=  U.

P r o o f . By 3.3 (X , X  \  U) is an (n,p)-cell without c-singularity. Thus by 
[9] 2.14 ( X , X  \  U) is a nonlinked (n,p)-cell. Hence U is an г-regular domain 
of ( X , X  \  U ) (cf. [8] 2.7, [8] 2.6 and [8] 1.11). Now let V be an e-regular 
domain of (X,  X  \  U) such that V П X  = U (see [8] 2.14 and [8] 2.7). V is
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clearly a regularly intersecting domain of (X , A)  (see [9] 2.4) and by [8] 2.15 
V \  X  is nonconnected. Hence by [6] 3.4 У is a mod(A, A) k-regular domain 
in R n+1 as required.

5.9. Now let a = (V i,. . . ,  Vk) be an fl-chain and for i = l , . . . ,  к let 
Ui = Vi П X .  Denote by Ca the chain Ca =  (U\ , . .. ,Uk). By 5.7 CQ is a 
r-chain. Moreover if a  is a closed chain then so is CQ.

Let К  be a continuous path in X  \  A and let a be an fl-chain associated 
to К . Then Ca is clearly a r-chain associated to К . Hence in order to prove 
Theorem 5.6 it is necessary and sufficient to prove the following lemma.

5.10. L e m m a . Let a — (Vi,...,Vfc = Vj) be a closed fl-chain (cf. 5.4) 
and let Ca — (U i, . . . ,  Uk = U\) where U{ = VJ П X  for i = 1, . . . ,  к. Then 
C* — id#(t/i) = id#n(x,x\t/i) (cf. 3.7) if a preserves its banks and C* — 
= — idh (UA (i-e., C*(y) = — у for у G H(U\))  if a changes its banks.

We now prepare the proof of the lemma.
5.11. A positive dilatation of R n+l is a direction preserving transforma­

tion of R n + 1 , i.e., ip: R n+1 —► R n+1 is a positive dilatation if it is a bijective
map and for any two distinct points a,b of R n+1 the vectors ab and p(a)p(b) 
have the same direction. The positive dilatations form a subgroup of the 
similarity group of R n+1.

For any subset M  of a topological space let M  denote the closure of M . 
Observe tha t for any two open balls 5i = S(q\,pi) and 52 = 5 (^2,P2) in 

R n+1 (cf. [8] 2.14) there is a unique positive dilatation <PSi,S2 mapping Si 
onto S 2- This similarity p s 1}s2 takes the closed ball Si into S2. We shall 
denote the restriction pslts2 Is j: (S i,S i \  S i) (S2,S 2 \ S 2) b y ^ Sb52.

Let G be a bounded open subset of R n + 1 . Then let H'(G) denote the 
group Hn+1 (G,(j  \  G) . Moreover let 8 g be the boundary homomorphism

(12) dG: H \G ) = H n+1 (G,G \ G )  -* Hn ( G \  G)

of the compact pair (G,G \  G).
Observe tha t for each open ball S in R n+1 we have

(13) H \ S ) и  Zp (cf. [11] I. 16.4 p. 45).

Let Si and S2 be open balls in Rn + 1 . Then there is a uniquely defined 
homomorphism

JpSuS3m: H,( S i ) - * H ,(S2)

which is clearly an isomorphism. Moreover for each open ball S in R n+1 we 
clearly have 14

(14) ‘Ps.S» = idW/(5)
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and for any three open balls Si,  S2, S3 in Rn+1 the equality

(15) V’s,, s3* = tPsi ,s3*iPs1,s2* 

holds. Consequently

(16) Vs2,Si* — (VsbS2*) ■

Now let us fix an open ball So in Rn+1 and a nonzero element eo of 
H'(So). (13) shows the existence of such an eo- 

For each open ball S in R n+1 let

(17) es = ^ s 0,5.(eo)- 

Since ^Pso,s* is an isomorphism we have

(18) es /  0.

Moreover by (14) and (17) we clearly have

(19) eSo = e0.

On the other hand (15) and (17) show that

(2°) ^ s bs2. ( es,) = es2

holds for any two open balls S\ and S 2  in Rn+1.
5.12. Let G\ and G2 be bounded open subsets of R n+1 such that G2 C 

C G1. Let us denote by

kGl,G2.:H '(G i)  -  # n+i { G i , G i \ G i )

and
m aljG2.:H '(G 2 ) -  Я п+1 (Gi , G i \ G 2)

the homomorphisms induced by the inclusions

k G i , G 2 - ( G i , G i \ G i )  C  ( G i , G \ \ G 2 )

and
m G i , G 2 : (G2,<J2 \  G 2 )  C (G\ , G i \ G 2)

respectively. Observe that since me,  ,g2 is a relative homeomorphisms (cf. 
[10] 5.6) and the Cech homology theory H is invariant under relative homeo- 
morphism (see [10] 5.6 and [10] 5.5) it follows that rriGbG2, is an isomorphism.
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Now let

(21) rGliG2, =  (m Gl,G2 «)-1 fcGliG2„ :H'(G\) -> H \G 2).

For each bounded open subset G of R n+X we then clearly have

(22) = mc,G* =  rG,G* = id#'(G) •

Now let G i, G2, G3 be bounded open subsets of R n+1 such that G3 C 
C G2 C G i. Then

(23) "̂G2 ,G3* ^ G\  ,G2 * rGi ,G3* •

Indeed let

íGi,G2,G3*: Я п+1 ( G 2, G2 \  G3) —+ Я п+1 (G i,G i \  G3)

and
JGi ,G2,g3*: Я„+1 ( G i , G i \  G2)  —> Hn+ 1 ( G i , G i  \  G3)

be the homomorphisms induced by the inclusions

ÍGi,G2,G3‘ (<J2,G2 \  G3) C ( G i , G i \ G 3 )

and
ÍGltG2,G3: ((?i,G i \  G2) C (G i,G i\G s )  

respectively. We then evidently have

;Gi ,G2,G3^Gi ,G2 = ^Gi,G3,

*Gi ,G2 ,G3 m G2,G3 = mGuG3
and

*Gi ,G2,G3 ̂ G2iG3 JGj ,G2,G3 ,G2 ■
Consequently

JGi ,G2,G3*^Gi ,G2» ^Gi ,G3»j

®Gi ,G2 ,С з yGz * r̂ G \,G ^*

and
^ G i  ,С?2 ,Cj 3 * ^ G 2  , G s  * j G i  ,G 2  ,G 3  * ^ G i  ,G 2  * •

These yield
( ^ G i , G 3 * )  * G j , G 2 fG 3 *  ( ^ G 2 , G 3 * )
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and thus

r G i ,в з »  { m G\  ,G 3 » )  ^ G i  ,G3* ( m Gi,G3*)  j G i  ,G 2 ,G 3 * ^ G i  ,G 2 * —
-1 _•

( m G i,G 3*) jG i,G 2,G 3*r n G\  ,G2 * ( t o G i ,G 2 * )  ^ G \ tG2* —

( w Gi,G3*) *Gi ,G2,G3*^G2,G3»7’Gi ,G2*

(^G 2,G3*) kG 2,G3»r Gi ,G2* r G2,G3*r Gi  ,G2»
as required.

5.13. Let 5i and S2 be open balls in i?n+1 such that S2 C Si. Then

(24) rSi,S2* = VsltS2*-

Indeed consider the continuous map h:Si  X I —► Si defined by h ( y , t ) = 
= (1 -  t )y + ^Si,S2(y)- We then clearly have Л(у,0) = у = kSl,s2 (y),

= V5sbS2(y) = ?«Si ,S2̂ Sj ,S2(2/) and ^ ((^1  \ 5'i) X i )  C Si \  S2. Con­
sequently

ks1,S2 - ( S i , S 1 \ S i )  C ( S , ,S i \ S 2)
and

^ . 5 2 ^ , 5 , :  (5 i,S j \  Si) -  (Sb Si \  S2)
are homotopic maps and thus

fcSi,S2. =  (mSi,S2̂ Sb S2) ,  = mSbS2.9Sb52.-

Hence
^ S i,S 2.  =  ( m Sj ,S2 * ) — 1 &Si ,S2 * =  r s b s 2*

as required.
We mention here tha t by (24) and 5.11 (20)

(25) rSi,s2. ( e s j  =  es2.

5.14. Let G be a bounded open subset of Rn + 1 . We define the element 
e'G of H'(G) = Hn+1 ( G , G \  G) by setting

(2b) eG = rs,G*(es),

where S  is an open ball containing G. This element e'G is well defined.
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Indeed, let S i and S2 be open balls in R n+1 containing G and let S3 be 
an open ball in R n+1 containing both S\ and S2. Then by 5.13 (25) and 5.12 
(23) for j  = 1,2 we have

rSj.G* (eSj) = rS],G*rs3,Sj* (es3) = rs3,G*(es3)

and thus
rsuG* (e s J  = Ls2,g.  (es2)

as required.
Observe th a t  for any open ball S in Rn+1 by (26) and 5.12(22) we clearly 

have

(27) e's  — rs,s*(es) = es-

Moreover if G\ and G2 are bounded open subsets of f?n+1 with G2 C G1 
then

(28) rGi ,g2* (e'Gl) = eG2-

Indeed let S  be an open ball in Rn+1 containing G\. Then by (26) and 
5.12 (23) we have

rG\ ,G2* (e'd) = rG\ ,g2 * ( rs,Gi * ( es  )) = r5,G2«(es) = e'Ĝ .

5.15. Let У be a bounded mod(X,A) ^-regular domain in Rn+1 and 
let U = V  fl X . Let P be a  bank of V, i.e., a component of V \  X . P  is 
a  bounded open set as well and thus P  is compact. We shall define the 
homomorphism

A v ,p:H' (P)  = H n+r ( P , P \ P )  -  H(U) = Hn( X , X \ U )

as follows.
First observe that by [9] 2.5(c) we have U С P and thus U С P \  P,  

U \  U = U \  V  П X  = Ü \ V  c P \ V  = P \ ( P l l U ) .  Consequently (P \  P) \  
\  ( P \ V )  =  U .

Next, let
tv,p*: H n (P  \  P) -  Hn {P \  P, P \  V) , 

yv,p.:Hn ( U , U \ U )  -> H n ( P \ P , P \ V )

and
zu .’.ü n  (' V , T J \ U ) ->H(U) = Hn(X, X  \ U )
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be homomorphisms induced by the inclusions

tv, p : ( P \ P j )  C ( P \ P , P \ V ) ,  y v ,p : {Ü,Ü\U)  C ( P \ P , P \ V )

and z p : (U, U \  U) С (X , X  \  U) respectively. Since yv,p and Z(j are relative 
homeomorphisms (cf. [10] 5.6) and H is invariant under relative homeomor- 
phisms (see [10] 5.6 and [10] 5.5) it follows that yv,p* and zu» are isomor­
phisms.

Now let

(29) A v,p = zu*(yv,p*)~1W,p*dp

(cf. 5.11 (12)). A v,P'- H '{ P ) —► H{U ) is clearly a homomorphism.
5.16. P ro po sitio n . Let V ,P  and U be the same as in 5.15. Then

Av,p(e'p) Ф 0-

P ro o f . Observe th a t since yv,p* and гу» are isomorphisms we need only 
to prove tv,p*dp(e 'p ) ф 0, i.e., that

др(е'р) ф kerfv tp,.

Consider now the segment

Hn (P \  P, P  \  V) Hn(P  \  P) ^  Hn(P  \  V )

of the homology sequence of the compact pair (P \  P, P \V )  where г» is 
the homomorphism induced by the inclusion i: ( P \ V )  С ( P \  P).  This se­
quence is exact and thus we have only to prove that

(30) др(е'р) ф im г*.

To this end consider a proper linking theory QJ of the type 21 = ^p,n,o of 
compacts in R n+1. 21 is a mapping which makes correspond to each ordered 
pair (M , M ’) of disjoint compact subspaces of Än+1 a bihomomorphism (cf.
[8] 1.7) Hn(M)  x Ho(M ) —у Zp (cf. [8] 1.4) such that for any compact
subspaces M , M ' , N , N '  of Дп+1 satisfying M  C N,  M ' C N' and of course 
N  П N ' = 0 the condition Ъм,М'(и' и') = is satisfied for
every и £ Hn(M)  and u' £ Ho(M') where j: M  C N  and j'-.M ' C N ' are 
inclusion maps. Moreover for at least one ordered pair (M, M') of disjoint 
compact subspaces of Än+1, Од/,М' is a nontrivial bihomomorphism (see [8] 
1.7). According to [10] 5.13 there exists a proper linking theory of the given 
type.
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Notice tha t if M , N , M ' are compacts in f?n+1 such that M  C N  C 
C Rn+1 \  M ' then

(31) = VN,M'{jÁu) iu')

evidently holds for every и £ Hn(M)  and v! £ Hq{M') where j : M  C N  is 
the inclusion map.

Now let Ф be an arbitrary compact subset of Än+1, и £ Hn(Ф) and Y = 
— a О-sphere in R n+1 \  Ф. We say that Y  is linked by и if there exists
a v! £ Hq{ Y ) such that

Рфу  (и, и') ф 0.

We now construct a 0-sphere Y  in V \  X  linked by dp{e'P).
Let S  be an open ball in P  and let P' be the bank of V  distinct from P. 

Thus P  П P ' = 0, P  U P' = V \  X .
According to 5.14 (28), 5.14 (27) and 5.11 (18) we have

(32) rp}S*{e'P ) = e's = es  ф 0 

and thus

(33) &P,S*(ep) = mP,S»(es)-

Since S  is homologically trivial (see [11] I. 16.1 p. 45) and S \ S  is nonempty 
it follows that d s '-H \S ) -+ Hn [ S \ S )  is an isomorphism (see [11] I. 9.4 
p. 23) and thus by (32) we have

(34) ds(es ) ф 0.

Let

Д р . ; Hn { P \ P ) ~ +  Hn {P \  S) and Д Р,: Hn (5 \  S) -  Hn (P \  S)

be homomorphisms induced by the inclusions j g p : P \ P  С P \  S and Д  p : 
: S \ S  C P \ S  respectively. Moreover let dpts'-Hn+\ ( P , P  \  S) —>
—► Hn (P \  S)  be the boundary homomorphism of the compact pair 
(P , P \ S ). We then have evidently j s P,d s  — dp,sraPis* and Д Р»0р = 
= dp'Skp'S*- Hence by (33) we get

(35) ß , P * d s ( e s )  = Др.<9р(еР).

Now let Y '  =  {gi, be a 0-sphere in R n+1 \  (S \  S) linked by ds(es).  (34) 
and [10] 6.13 show the existence of such a 0-sphere Y ' . By [10] 6.8 q\ and
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q2 lie in different components of Rn+1 \  [S \ S ) ,  where the components of 
R n+1  ̂ (S \  S) are S and R n+1 \  S. Hence we can suppose that 91 G S  С P 
and q2 G R n+1 \  S. Let q2 be a point in P ' distinct from q2. There clearly 
exists such a point q2. Let Y  — {91,92}- Since P' П P — 0 and thus P' П S  = 
= 0 it follows that q2 and q2 belong to the same component of Rn+l \  (5 \  5) 
and thus by [10] 6.12, Y  is linked by ds(es)  as well.

Let u' be an element of Hq{Y ) such that

(36) p5\s,y {®s{es ) iu ) 7^0-

Since Y  is linked by ds(es)  the existence of such u' G Hq{Y)  follows. However
Y  is disjoint from P \ S  and thus by (36), (31) and (35) we get

0 Ф *>S\S,Y(^s (e s ')'lU ) ~ ^P\S,Y (is,P*ds(es)i u ) =

=  ^ P \S ,Y  ( í s , P * d p ( e p ) i u ) — VP \P ,Y  ( d p ( e p ) i  u  )  •

Y  is linked by dp(e 'P ) indeed, where Y  C P  U P' = V \  X .
We have constructed the 0-sphere Y  with the required properties.
Now let и be an arbitrary element of H n (P \  V) and u" G Hq{Y). Since 

both points of У = {91, 92} belong to V and thus 91 and q2 belong to the 
same component of Rn+1\  (P  \  V) it follows that tip\VY(u ,u") = 0 (see [10] 
6.6). Consequently by (31) we get

~̂p \ p y (^*(^),^ ) — 1L

Thus Y  fails to be linked by any element of im г*. On the other hand У is 
linked by dp(e'p). Consequently

dp(e'p) ^ im г»

as required (see (30)). This yields Ау,р(е'р ) ф 0.
The proof of the proposition is complete.
5.17. P ropo sitio n . Let V  be a bounded mod(X,A) к -regular domain 

in R n + 1 . Let P l and P 2 be the banks of V . Then

A v , P 2( e p2)  -  - A v , p i ( e p i ) .

PROOF. Let U = V  П X . We have to verify the equality 

zu*{yv,p2*) W,P2*9p2(e'p2) =
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= -Zu*{yv,pu) ^v,pl*dp\{e'Pl).

Hence we need only to show that

(37) (Vv,P2*) 1W,P2*dp2 i€'p2) = — (i/v.P1*) 1W,P1*9pi(e'pi).

To this end for j  — 1,2 consider the diagram

where i\», and are homomorphisms induced by the respective inclusion 
maps. The diagram is clearly commutative and the inclusion ip (U,U \  U) C 
С (V \  ( P 1 U P 2),V  \ V )  is a relative homeomorphism. Hence г'1» is an 
isomorphism. Consequently we need to prove the equality

(38) ii*dP2(e'p2) = - i \ , d Px{e'p l).

However by 5.14 (28) for j  — 1,2 we have

e'pj -  r v,pj*(ev) ~ {m v,pj*) k y p j^ e 'y )

(see also 5.12 (21)) and thus by (38) we have only to prove the equality

(39) i\*dp2 (mV p 2t ) 1 k y P2*(e'v ) = - i lu dP\ (myp\ , )  kVPi,(e'v ). 

Observe that

P 1 U P 2 = V \  X  = V \  (V  П X)  = V \  u. 

Moreover since P 1 Э U = V  П X  (see [9] 2.5(c)) we have

V Y *  = ^ 11^  = P 1 U U U P2 = P 1 U P 2 U U = V.
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Consider now the diagram

H n{ V \ ( P 1 U P 2 ) , V \ V )

where the homomorphisms iз„, i ^ ,  г2„ and i2* are induced by inclusions
and

d'v : H \ V  \  X ) = Hn+1 ( V , V \  (P 1 U P 2)) -+Hn{ V \  ( P 1 U P2),V  \  V)

is the boundary homomorphism of the triple ( V ,V  \  ( P 1 U P 2),V  \ V )  i.e., 
д'у =  г3,0 ^ , where 0 ": Hn+1 (V,V \  (P 1 U P 2)) -  H j ,V \  (P 1 U P 2)) is 
the boundary homomorphism of the compact pair [ V , V  \  (P 1 U P 2)) = 
= ( У \ Х , У \ Х \ ( У \ Х ) )  and the homomorphism г3„: H n [ V \ ( P 1 U P 2)) —+

—+ Hn( V  \  (P 1 U P 2),V  \ V )  is induced by inclusion. Hence to prove (39) 
we need only to show that the following conditions are satisfied:

(i) m v p \ * and m v  are isomorphisms onto,
(ii) d,v i2, = 0,

(iii) im i \# — кегг'3,  and im i\+ = кегг'3*,
(iv) commutativity holds in each triangle of the diagram (see [11] I. Lemma

15.1 p. 38).
The homomorphisms m VP 1, and are isomorphisms indeed (see

5.12). Thus condition (i) is satisfied.
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Considering the segment

Н п {У \  (P 1 U -P2), V \  V) H n + i i V ^ M P ' u P 2)) ^  Hn+1( V , V \ V )

of the exact homology sequence of the triple ( V, V \  (P 1 U P 2),Vr \ V) ,  where 
Hn+1{V,V \  ( P 1 U P 2)) =  H \ V  \  X)  and Hn+l(V, V \  V)  =  H'(V),  we 
obtain d'v i2• =  0. Thus condition (ii) is satisfied as well.

Now consider the commutative diagram

P n+1( C \ P 2, y \ ( P 1 U P 2))

where the homomorphisms г’5,  and ig„ are induced by inclusions. Thus

im i\, = 4 ,(im  ig„).

However since i$: ( P ^ P 1 \  P 1) С (V  \  P 2,V  \  (P 1 U P 2)) is a relative 
homeomorphism it follows th a t is an onto isomorphism and thus

(40) im г'4. = im i\„.

Now consider the segment

^  H n+i (V  \  P 2,V  \  ( P 1 U P 2))

Hn+1( V , V \ P 2) S  Hn+i ( V, V \  (P 1 U P 2)) ^

of the homology sequence of the compact triple (V  ,V  \  P 2,V  \  (P 1 U P 2)),  
where tfn+i ( F ,  V \  (P 1 U P 2)) = Я '(К  \  X ). By the exactness of this 
sequence (see [11] I. 10.2 p. 25) we get im = кегг2, and thus by (40) 
we obtain the required equality

im i\, = кегг2,.

Likewise we have
im г4» = кегг2з*-

Thus condition (iii) is satisfied as well.
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Observe that for j  — 1,2 the diagram

H'{V)

* 2 *

H \ V \ X )
is clearly commutative. Thus to prove (iv) we need only to show that for 
j  = 1,2 the diagram

Hn( V \ ( P l UP 2 ) , V \ V )

is commutative as weh, i.e., that

(41) &v i\, = i \ ß P].

To this end consider the diagram

H \ p i )  = н п+1 ( p ~,/p  \  Pj) A ^ H \ V  \  x ) = я п+1 ( v , v  \  (P 1 и P 2)) 

rHn ( V \ ( P l и P 2))

Hr pj \ P 3)' ~Hn [V \  (P 1 U P 2),T  \  V)

where the homomorphism i37tr is induced by the respective inclusion. This 
diagram is clearly commutative and this proves the required equality (41).

Hence all the conditions (i), (ii), (iii) and (iv) are fulfilled and this proves 
equality (39) and also the original assertion.

The proof of the proposition is complete.
5.18. P roposition . Let V and V  be bounded compatible mod(X, A) 

к-regular domains in R n+i (i.e., either V С V  or V  С V). Let U — V C\ X  
and U' — V  П X . Let P  be a bank of V  and P' a bank of V  such that 
Р П Р ' / 0  (cf. 5.4). Then

[U1, U]mAv,p(e'P) = Av',p'(e'pi)

(see also 3.6 and 5.7).
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PROOF. By 3.6(10) we only need to consider the case V  С V and in this 
case we have U' C U and P ' С P.

Consider the following commutative diagram

H'(P) .

dp

kr.p'• ^H n+1 (P, P \  P')

Hn (P  \  P ) ------ ill-------*-Hn (P \  P') n •

tv,Pm

—  Я '(Р ')

dp,

Л п (P1 \  P')

Лт l y ' . P ' m

Hn ( P \ P , P \  V) (P \ P ’, P \  V )  (P> \  P', P> \  V )

3I V,  Pm J 8» V V ' P ' m

н п (и,  U \  U) --- in ------~ я „  (и,  U \  U ' ) ----- т ► Hn {U1, U' \  U')

ZUm

Нп( Х , Х \ и у

J9*

[U'Wm

z U'm

Hn( X , X \ U ' )

where dptp>: Я п+1 (P , P  \  P' )  —* Hn ( P \ P ' )  is the boundary homomor­
phism of the compact pair ( P , P \ P ' )  and for s — the homomor­
phism j Sm is induced by the respective inclusion. Further U' C U and 3.6(8) 
show that [£/', U]* is induced by the respective inclusion as well.

Observe that jg: (U, U \  U') С (P \  P ' , P \  V )  is a relative homeomor- 
phism and thus js* is an isomorphism. Moreover e'P, — rpp,*(e'P) (see 5.14
(28)) and thus e'p, — (m pp,„)  1fcp,p<»(ep) (see 5.12 (21)). Consequently

(42) kp,P’*(e'P) = rnppim(e'P,)

and thus by the commutativity of the preceding diagram we get 

[U', U]*Av,p(e'P ) = [U1 ,U]t zum(yv,p*y1tv,p*dp(eP) =

= J9*(Í8*) XÍ7mdp,p'kppi,{e'P) = yg»(Í8*) 1 jimdp^p'т рр,ж(е'Р,) = 

= z U ' m { y v ,Р '* )  ' tv'p'.d'P(e'p i) = X v\p '(e 'P,)

as required.
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5.19. D efinition . Let a = (V i,...,V m) be an ii-chain (see 5.4) and 
C = (U i, . . . ,  Umi) a т -chain (see 3.7). We say that a  and C are associated to 
each other or that a  is associated to C or that C is associated to a if m  = m' 
and for i =  1 ,. . .  ,m , С/, = V) П X .

5.7 shows that to each il-chain a there is a unique r-chain C associated 
to a. Observe that if a  is closed then so is C.

5.20. P roposition . Let a = (V), . . . ,  Vm) 6e a closed Ll-chain (see 5.4) 
(i.e., Vm = Vi), where each V) is a bounded к-regular domain mod(X,y4). Let 
C — (Ui, . . . ,  Um) be the closed т-chain associated to a (see 5.19). Then for 
each w £ H(U\)  (cf. 3.5) we have

t w if a preserves its banks 
\  —w if a changes its banks

(cf. 3.7).
P r o o f . If m = 1 then C* = id#(j/j) (see 3.7) and a =  (Vj) clearly 

preserves its banks. Hence in this case the assertion is obviously true.
Now suppose that m  ^  2 and let a p (l)  = (P*, . . .  ,P ^)  be a chain of 

banks associated to a  (see 5.4). Then by 5.18 we clearly have

c * & v m,PL (epij
Hence if a  preserves its banks, i.e., if Vm V\ and P^  then

(43)

and if a changes its banks, i.e., if Vm = V\ and P^  /  Pf then by 5.17 

(4 4 ) C*A Vm,PL ( е / и )  =  ~ A vm,Pb ( е ' / м )  •

However by 5.16  ̂ -ф 0 and H(Um) = H(U\)  = H n( X , X  \

\  U\) & Zp (see 3.2 and 3.5). Thus Дут д  ^e'p,  ̂ is a generator of the
group H(U\).  Consequently equalities (43) and (44) prove the assertion.

We are going now to prove Lemma 5.10.
5.21. Let a = (Vi , . . . ,VOT = V\) be a closed D-chain. Let Ca — 

=  (U\ , . . .  ,Um — U\) be the closed r-chain associated to a. Then for i = 
= 1, . . . ,  m we have Ui = V{ П X .

Let S be an open ball in R n+l containing X . For i = 1, . . . ,  m  let Vf be 
the component of V) П S  containing Ui. V- is clearly a bounded domain 
in R n+1 regularly intersecting the compact pair (X, A) in Ui. Thus by
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[6] 3.5 and Vf C Vi £ Cl, V- is fc-regular mod(X, A). Consequently a' = 
=  (V /,. . . ,  = C/) is clearly a closed fi-chain, where each V- is bounded
and for i = i , . . . , r a  we have h / f l l  = U{. Moreover a' clearly preserves its 
banks if and only if a does. Hence Lemma 5.10 is an immediate corollary of 
Proposition 5.20.

The proof of Lemma 5.10 and also the proof of Theorem 5.6 is complete.
We now formulate some further theorems related to (n,p)-manifolds in

R n+1.
5.22. T heorem . Let ( X , A) be an (n,p)-manifold in Rn+1. Let C =  

= (U\ , . . . ,  Um = U\ ) be a closed orientation changing т-chain (cf. 3.7). 
Then for each w £ H(U\) we have

C*(w) — -w.

P r o o f . In case p = 2 each closed r-chain is orientation preserving (see 
3.7). Thus we may suppose p ^  3. According to Lemma 5.10 we have to 
prove the existence of a closed а -chain associated to C.

To this end we need only to show that for each finite subset {Í7(,. . . ,  U'T} 
of pairwise distinct members of r  there are members V f , . . . , V f  of Cl such 
that

Ui = V{ П Х  for i — 1, . . . ,  г

and so that
U[ C U[, implies V[ C V{,.

To show this simple fact we proceed by induction. In case r — 0 there 
is nothing to prove. Suppose now that r ^  1 and the assertion is true if we 
replace r by r — 1.

Let {U[ , . . . ,  U'T} be a finite subsystem of pairwise distinct members of r  
and let Uj be a minimal member of this system, i.e., U- C U'3 implies U- = 
= U'j and thus i — j .  Without loss of generality we may suppose that j  = r. 
By the induction hypothesis there are members V/ , . . . ,  V'r_ x of Cl such that 
Vf П X  = U[ for i = 1, . . . ,  r — 1 and U- C U[, implies V- C Vf, for г, г' £ 
£ {1, . . . , г — 1}. Choose V £ Cl such that V П X  — U'r. By 5.8 and 5.4 this 
is possible. Let A = { г£  {1. . . . ,  r — \}\U'r C LS[ } and let

т/, \  V  n П  V( if А Ф 0

[ P  if A = 0.

Let Vf be the component of V  containing U'r. Then by [6] 3.5 Vf is a 
mod(X, A) fc-regular domain, i.e., Vf £ Cl. Moreover Vf П X  = U'r and the 
condition U[ C U[, = >  V- C Vf holds for all i , i '  £ {1, . . . ,  r}.

The proof of the theorem is complete.
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Now we are going to formulate the converse of Theorem 5.3.
First we recall a definition from [6].
5.23. D efinition . Let R be a TYspace and (Y ,B ) a compact pair in 

R. A A:-regular domain V  mod(Y, B) is said to be a subdividing domain of 
(У, В ) if the two components of V \  Y  are contained in the same component 
of R \ Y .

In connection with this definition we recall a theorem.
5.24. T he ore m . Let R and (Y , B ) be the same as in 5.23. If at least 

one mod(Y, B) к-regular domain is a subdividing domain of (Y , B ) then each 
mod(Y, B) к-regular domain has this property (see [6] Theorem 4.1).

Next we give the definition of the bounded and closed fc-manifold.
5.25. D efinition . Let R  and (Y ,B ) be the same as in 5.23. (Y , B ) is 

said to be a bounded (respectively closed) k-manifold if its fc-regular domains 
are subdividing (non subdividing) domains of (Y , B ).

Also, we recall the definition of the uniform decomposition of Rn+1 (see
[10] 6.25).

5.26. D efinition . We say that a compact pair (Z ,C ) in f2n+1 decom­
poses uniformly the space R n+l if for any two distinct points 6 and d of 
R n+1 \  Z  belonging to the same component of R n+1 \ C ,  b and d belong to 
the same component of Rn+l \  Z.

Now we can state the following complement of Theorem 5.3.
5.27. T heorem . Let (A ,A) be an {n,p)-manifold in R n + 1 . Then 

(X, A) is a bounded k-manifold in R n+1.
P r o o f . Let V  be a mod(X, A) ^-regular domain in Än+1 and let q\ and 

92 be points o f V \ X  belonging to distinct components of V \  X . Since V  П 
П A = 0 it follows that q\ and 92 belong to the same component of R n+1 \  A.

According to Theorem 2.4 X  \  A is a quasiregular domain of (A, A) 
(cf. 2.1) and thus for the inclusion i: (A, 0) C ( A, A \  (A \  A)) = (A, A) the 
induced г»: Hn(X)  —>■ H n( A, A) is trivial, i.e., г» ( H n( A)) = 0. Consequently 
by [10] Theorem 6.28 (A, A) decomposes uniformly the space R n+1. Hence 
9i and 92 belong to the same component of R n+1 \  X  and thus the two 
components of V \  A are contained in the same component of R n+1 \  A. V 
is a subdividing domain of (A, A) and according to 5.25 (A, A) is a bounded 
fc-manifold in Än+1 indeed.

The converse of 5.27 is true as well.
5.28 . T heorem . Let (A', A) be a bounded k-manifold in R n+l. Then 

(A", A) is an (n,p)-manifold.
We prepare the proof by two remarks and a lemma.
5.29. R emark . Let S and S' be open balls in Rn+1 such tha t S'  C 5. 

Then B n—i (S \  S') = 0.
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Indeed, the inclusion i: S  \  S C S \  S'  is clearly a homotopy equivalence 
and thus the induced г*: Я п_г (S \  S) —► Я п_i (5 \  5 ') maps # n_i (5  \  5) 
isomorphically onto Hn- \  (S \  S') (see [11] Theorem I. 11.3 p. 29). However 
for the n-sphere S \  S' we have Я„_i (5  \  5) = 0 (see [11] Theorem 1.16.6 p. 
46) and thus Я „_1 (5 \  S') = 0 as required.

5.30. R emark . Let (X, A) be a /г-manifold in R n+l. Then by [9] 2.4(b),
[9] 2.5 and [9] 2.6, X  \  A is clearly a locally connected subset of X .

5.31. L emma . Let (X , A) be a bounded k-manifold in Rn+l. Let S be 
an open ball in R n+1 containing X  and let q £ X  \  A. Let V be a mod(X, A) 
к-regular domain in R n+1 such that q £ V C S and let S' be an open ball 
in R n+1 with the property q E S' С V. Let U be the component of  S'  П X  
containing q. U is a domain in X  \  A  (see 5.30). Let V  be a domain in 
S' regularly intersecting the pair (X, A) in U. There clearly exists such a 
domain V . Let В = S  \  V'  and Y  = В  U X . Then

Hn(Y)  ~  Zp ф Zp

(where Zp ф Zp is the external direct sum of Zp and Zp),

H n( X , X \ U )  as Hn(Y, B) as Zp

and the homomorphism k»\Hn(Y)  —> Hn(Y,B) induced by the inclusion 
k:(Y, 0) C (Y, В ) is an epimorphism.

P r o o f . Since the inclusion i : ( X , X  \  U) С (У, B)  is a relative homeo- 
morphism it follows that

(45) Hn( X , X \ U ) *  Hn(Y,B) .

V  is contained in the mod(X, A)  /г-regular domain V and thus by [6]
3.5, V  is a mod(X, A)  fc-regular domain as well. Hence V  \  X  consists of 
two components, moreover V  U X  C S and thus by

R n+i у у  = R n+1 \  (B U X )  — ( Än+1 \  (S \  V')) П (Rn+1 \ X )  =

( (R n+1 \  S)  U V )  П (R n+1 \ X )  = (Rn+1 \  S) U ( V  \  X )

Rn+i \  Y  has three components: the two components of V  \  X  and R n+1 \  S. 
Now by the Decomposition Theorem (see [10] 6.5) we have rp( Hn( Y )) = 2, 
where rp( Hn(Y))  is the p-rank of Hn( Y ) (cf. [10] 6.4 and [10] 5.17) and thus 
one has 46

(46) Hn( Y ) z z Z p ® Z p.
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Since V  C S  it follows that R n+1 \  В  has two components na­
mely R n+1 \  S  and V . Thus by the Decomposition Theorem we have 
rp(H n(B)) — 1 consequently

(47) Hn(B) »  Zp.

Let B\  = S \  S'  and Y\ = B\  U U. B\  is clearly compact. We show that 
Yi is compact as well.

Indeed U is a component of S' П X  and thus it is_closed in 5'_П X .  Hence 
U П (S' П X ) =  U. On the other hand U С X  C S and thus U П S' = U. 
Consequently U С (X  \  S') U U C (S \  S') U U = B\ U V — Y\ and this yields 
Y\ — U U B\.  Thus the union Yj of the compact sets U and B\  is compact 
as required.

Now consider the segment

Н п -^ В г )  <—  Ня(Уи В г) &  Hn{Y\)

of the reduced homology sequence of the compact pair (Yi,Hi), where the 
homomorphism k \» is induced by the inclusion Äi:(Yi,0) C (Yi,B\) .  By 
5.29 we have Hrn_ i(B 1) = I ln- \  ( S \S' )  = 0  and thus by the exactness of 
the sequence in question we can conclude that Äq» is an epimorphism.

Next consider the commutative diagram

Hn(Y\) ■ - ^  > Hn(Y)
k\ ф k+

Я„(У1,Н 1) -----------» Hn(Y,B)
1 2 »

where the homomorphisms *i* and i2* are induced by the inclusions i \ .Y\  C 
C Y  and Í2 ' ( Y \ , B i ) C (Y , B ) respectively. However by Y\ \  B\ = Y  \  В = 
=  U the inclusion г2 is a relative homeomorphism and thus г2» is an isomor­
phism. Consequently =  ?'2»ä:i» is an epimorphism and thus k* is an
epimorphism as well.

Consider now the segment

Hn( Y , B ) J ±  Hn(Y) Hn(B) <—  Hn+i(Y ,B)

of the exact homology sequence of the compact pair (Y , B ), where the ho­
momorphism y* is induced by the inclusion j : B  C Y. X  \  A is nowhere 
dense in R n+1 (see [6] 1.8) and thus by U С X  \  A, U = Y  \  В  is nowhere 
dense in R n+1 as well. Consequently Hn+i(Y, B)  = 0 (see [10] 6.23) and
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thus by the exactness of the sequence in question j * is a monomorphism and 
im j* = kerA;». Hence taking also (46) and (47) into account we get

Hn( Y ) /  кег к, «  Zp 

and since fc* is an epimorphism we can conclude

Hn( X , X  \  U) ~  Hn(Y,B)  ss Zp.

The proof of the Lemma is complete.
5 .3 2 . Now we are going to prove Theorem 5.28.
For the compact pair (X, A) according to [9] 2.6(a) condition 5.1(a) is 

satisfied.
We now prove 5.1(b).
Let q e  X  \  A and let U' be a neighbourhood of q in X  \  A. Let 5 be an 

open ball in R n+1 containing X  and let У be a mod(X, A) fc-regular domain 
such th a t q 6 V C S.  By [9] 2.6 there exists such a domain V . Let S' be an 
open ball in V  such that q £ S'  П X  C U\  and let U be the component of 
i ' f l l  containing q. By 5.30, U is a domain in X  \  A.

We only need to prove that ( X , X  \  U) is an (n,p)-cell, i.e., that (X, X \ 
\  U) satisfies conditions [8] 1.2(a), (b), (c) and (d).

U is nonempty and connected. It is an open subset of the locally con­
nected space X  \  A. Hence U is locally connected as well. U is a subspace 
of R n + 1 . So it has a countable base. Thus (X, X \ U )  satisfies condition [8] 
1.2(a).

By Lemma 5.31 (X, X  \  U) satisfies condition [8] 1.2(b).
Let V  be a domain in S'  regularly intersecting the pair (X ,A )  in U. 

There clearly exists such a domain V . By V  C S' С V  and [6] 3.5, V  is 
a m od(X ,A ) A;-regular domain and since (X , A ) is a bounded /с-manifold in 
Rn+1 it follows that the components of V  \  X  belong to the same component 
of R n+1 \  X .  Hence by [10] 6.26 the compact pair ( X , X  \ U )  decomposes 
uniformly the space R n+1 and thus by [10] Theorem 6.28 the homomorphism 
г*: Hn( X ) —> Hn( X , X  \  U) induced by the inclusion i: (X, 0) С (X, X \  U) 
is a 0-homomorphism, i.e., г* (# п(Х")) = 0. Consequently the compact pair 
(X, X  \  U) satisfies condition [8] 1.2(c) too.

Now we are going to prove that (X, X \  U) satisfies condition [8] 1.2(d).
Let U\ be a domain in U and q\ £ U\. Let S\ be an open ball in V  

such tha t q\ G 5) П X C U±. Let U2 be the component of 5i П X containing 
qi. By 5.30 U2 is a domain in X \  A. Thus we have only to prove that for 
the inclusion j 2 '. (X, X \  U) С (X, X \  U2 ) the induced j 2»: Hn( X , X  \ U )  —> 
—> H n( X , X  \  U2 ) is a monomorphism.

Let V2 be a domain in S\ regularly intersecting the compact pair (X, A) 
in U2 . By U2 C S\ there exists such a V2 and by V2 C S\ С V ,  V2 is a
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mod(Jf, A) fc-regular domain (see [6] 3.5). Let В = S \  V ,  Y  = В  U X ,  
B2 = S \  V2 and У2 = B 2 U X .  Then

(48) Y \ B  = U and Y2 \ B 2 = U2.

First we show that the compact pair (Y2 ,Y )  decomposes uniformly the 
space Rn+1.

Indeed, let Z\ and z2 be points in R n+1 \ Y2 belonging to the same 
component of R n+1 \  Y .  Then by R n+1 \  Y  = (Rn+1 \  S) U ( V  \  X )  and 
R n+1 \  Y2 = (i2n+1 \  S) U (V2 \  X )  either both of the points z\ and z2 belong 
to R n+1 \  S  or both of these points lie in the same component of V  \  X , i.e., 
in the same bank of V  (see 5.4). In this latter case 21,22 E V2 is satisfied 
as well. In the first case 21 and z2 lie in Än+1 \  S and thus in the same 
component of R n+1 \  Y2. Since the banks of V'2 are the intersections of V2 
and the banks of V  (see [6] 2.3) it follows that in the second case z\ and 
z2 belong to the same bank of V2 i.e., to the same component of V2 \  X  and 
thus to the same component of R n+1 \  Y2.

The compact pair (Y2 ,Y )  decomposes uniformly the space R n+1 as 
required. Consequently by [10] Theorem 6.28 the homomorphism m 2*: 
:Hn(Y2) - a Hn(Y2 ,Y )  induced by the inclusion m2:(Y2 ,Q) C (Y2 , Y )  is a 
0-homomorphism, i.e.,

(49) m 2. ( H n(Y2)) = 0.

Consider now the segment

ЯП(У2,У )3 -*  Нп(у 2 ) Л *- Hn(Y)

of the homology sequence of the compact pair (У2,У), where i2: Y  С У2 is 
the inclusion map. By the exactness of this sequence and by (49) we have 
im г’2* = kerm 2* = Hn(Y2) and thus i2+ is an epimorphism. However the 
diagram

Hn(Y)

A:*

Hn(Y ,B)

Hn(Y2)

2̂«

Hn(Y2,B 2)

where к: (У, 0) С (У,Я), k2:{Y2 ,9) C (Y2 , B 2) and г:(У ,Я ) С (У2,Я 2) are 
inclusions — is commutative and by Lemma 5.31 k2+ is an epimorphism as 
well. Consequently r* is an epimorphism, too. However by Lemma 5.31 
we have Hn(Y ,B)  ar Hn(Y2 , B 2) ~  Zp and thus the epimorphic r* is an 
isomorphism.
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Consider now the diagram

Hn(X, X  \ U )  ■- J—  Hn( X , X \ U 2 )

i * 2̂*

Я „(У ,Б) ---- Hn(Y2 , B 2)

where j 2* and r* are the same as before and t: ( X , X  \U )  C (Y, B),  
t2 : ( X , X  \  U2) C (У^-^г) are inclusions, t and t2 are relative homeomor- 
phisms and thus f, and t2if are isomorphisms. Consequently by the com­
mutativity of this diagram j 2* is an isomorphism as well and thus it is a 
monomorphism as required.

(X, X  \  U) satisfies condition [8] 1.2(d), ( X , X  \  U) is an (n,p)-cell and 
(X, A) is an (n,p)-manifold indeed.

The proof of Theorem 5.32 is complete.

6. Locally orientable n-pseudomanifolds w ith boundary

6 .1. Let No be the set of nonnegative integers, i.e., iV0 = N il {0}. For 
к 6 N let Zk be the cyclic group of integers mod к and let Zq = Z, where Z 
is the group of integers.

Moreover for r £ No let H r be the Cech homology theory defined on the 
category of compact pairs with the coefficient group Zr (see [9] 3.4).

6.2. P r o p o s i t i o n . Let n E N. Let Li' be a triangulation (cf. [1] p. 118) 
of dimension n. Let Y  = ||/f ||, where ||/v || is the body of К  (see [1] p. 136). 
Let F  be a closed subset o f Y .  Let r £ No and q > n. Then

H rq(Y,F) = 0.

The proposition is an immediate corollary of [11] Lemma XI. 6.2 (p. 311) 
and of the remark “Hence all statements and proofs through 6.7 hold with 
cohomology replaced by homology” (see [11] p. 320).

6.3. Let К  be a triangulation situated in some Euclidean space R s and 
let L be a closed subcomplex of К  (see [1] p. 126). Let q E ||A’|| \  ||L|| and let 
Ok (q) be the set of all simplexes T  E К  with q E T, where T  is the closure 
of T. Ox(q)  is clearly an open subcomplex of К  \  L.

Suppose that К  is an n-dimensional combinatorial pseudomanifold with 
boundary L and L ф 0 (see [2] pp. 72, 74). Then clearly, for each q E ||ii'|| \  
\  ||X|| the open subcomplex Ok {q) of Li' \  L can be uniquely represented in 
the form

Oh(q) -  £<?,i u . . . u  EqAq),
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where for j  = 1, . . .  ,t(q) E4tj is a closed subcomplex of Ок(ч)-> it is an n~ 
pseudomanifold and for j  ф j '  ( j , j ' £ {1, . . . ,  t(q)}) the dimension of the 
subcomplex Eqj  П E qji  of К  is less than n — 1. Moreover an easy computation 
shows that for r € No we have

(50) A nr { 0 K{qj) «  A ?(£9,i ) 0  - ® A  г {ЕяА я))

(cf. [2] p. 50). In particular

(51) Д 2 ( Ok{q)) ~  A J(Eqt\ ) Ф . . .  ф A 2 ( ^ 9ií(9)) ~ Z2 Ф • ■ • Ф Z2 ■
1 t(q)

Consider now the group H Tn[ ||A'||, ||£ ||, q) (see [9] 3.5), i.e., the те- 
dimensional local Betti group of the compact pair ( ||A'||, | | i | | )  at the point 
q with respect to the coefficient group ZT. According to [9] 3.6 we find th a t

H rn {\\K\\, \\Llq)  *  A ?(O fc(«))

and thus M  = H*( ||A'||, | | I | | , q) is a finite elementary 2-group (see [10] 5.10) 
and for its 2-rank r2{M ) (cf. [10] 5.17) we have

r2( M ) = r 2 ( H 2n(\\K\\,\\L\lq)) =t(q).

6.4 . D e f i n i t i o n . Let (Y , B ) be a topological (nonclosed) те-pseudo- 
manifold with boundary (see [8] 3.1). Then by 6.3 for each q G Y \  В  the 
group H l(Y ,B ,q)  is clearly a finite elementary 2-group. We say that (Y , B ) 
is locally orientable if for each q £ Y \  В

r2 {H 2n(Y,B,q))  =r{H°n(Y,B,q))

where r(H°(Y, В ,q)) is the rank of the Z-module H®(Y, В ,q).
It is easy to see that in case те ^  2 each (У, B) is locally orientable.
6.5 . Let К  be a triangulation in some Euclidean space R s and let L be a 

closed subcomplex of K.  Suppose that К  is an те-dimensional (combinatorial) 
pseudomanifold with boundary L and L ф 0. Let q £ ||ii || \  ||Х|| and let

Ok(q) — E4i 1 U . . .  U

be the same as in 6.3. Then by 6.3 (50) the condition 

r2(A 2n(O fc(9)) )  = r (A 5 (0 * (g )) ) ,
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i.e.,

r2( f fJ ( ||A - ||, | |i | | , ,) )  =  r ( f f“( | |í f | | , l |í | l .« ) )

(cf. [9] 3.6) is clearly satisfied if and only if the pseudomanifolds E qj  are all 
orientable ones. Moreover in this case we have

(52) tf° ( ||Ä '||, | |Z ||,9) * Д 5 (О й:(9)) «  Z + . . . +  Z .
1 t (q)

6.6 . Let (Y ,B ) be a topological (nonclosed) n-pseudomanifold with 
boundary. Then by 6.5 and 6.4 we can state that if (Y ,B ) is orientable 
then it is locally orientable as well (see also [8] 3.2 and [9] 3.8).

Observe that in case n = 1, Y  is a simple arc and В is the couple of 
its endpoints. In this case (У, B) is clearly orientable. However, clearly 
there exist locally orientable and nonorientable topological nonclosed 2- 
pseudomanifolds with boundary.

6.7. D e f i n i t i o n . Let (Y,B)  be a topological nonclosed n-pseudo- 
manifold with boundary. We say that (Y , B ) is without 2-singular interior 
points if for each q G Y \  В

r2 (H 2n(Y ,B ,q ))  = 1

holds, i.e.,
Hn(Y,B,q)  «  Z2.

6.8 . Let К  and L be the same as in 6.5. Then by 6.3 (51) and [9] 3.6 
( II А'У, ||Z||) is clearly without 2-singular interior points if and only if for each 
q G Hit'll \  ИXИ, t(q) = 1, i.e., Ok(q) = -Е^д is an n-pseudomanifold.

6.9. D e f i n i t i o n . Let (Y ,B ) be a topological (nonclosed) locally ori­
entable n-pseudomanifold with boundary. We say tha t (Y ,B ) is without 
homologically singular interior points if for each q G Y  \  В  the local homol­
ogy group H®(Y, В ,q) with respect to the coefficient group Z is a cyclic 
group (cf. [9] 3.8). According to 6.4 and 6.5 (52) for each q G Y \  В  we have 
H°(Y, В ,q) «  Z  in this case.

Observe that in case n =  1 each (У, B)  is without homologically singular 
interior points, but if n = 2 this is not true (see e.g., [3] 1:2.8 Fig. a)).

6.10. 6.4, 6.5 (52), 6.7 and 6.9 show that any locally orientable topo­
logical nonclosed n-pseudomanifold with boundary (Y , B ) is without homo­
logically singular interior points if and only if (У, B)  is without 2-singular 
interior points.
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However if (У, B)  is not locally orientable then it may happen that for 
each q G У \ B ,  H®(Y,B,q) is a cyclic group and in spite of that for some 
q e Y \ B  we have r 2( Я*(У, В, q)) ф 1.

We now prepare the second fundamental theorem by a lemma and by a 
remark.

6.11. L e m m a . Let p be a prime and n G N. Let (X, A) and ( X ' . A') be 
compact pairs such that X '  is a closed subspace of X  and X  \  A — X '  \  A!. 
Suppose that (X ',A ') is an (n,p)-cell and H%(X) — 0. Then (X, A) is an 
(n,p)-cell as well.

P r o o f . [8] 1.2(a) is satisfied for (X ', A') and thus by X  \  A — X '  \  A! it 
is satisfied for (X, A) as well.

By X  \  A = X '  \  A' the inclusion к : (X ', А') С (X, A) is a relative home- 
omorphism and thus the induced &*: Я £(Х ', A') —► H%(X,A) is an isomor­
phism (see [11] p. 266). Hence by #n (X ',A ') ss Zp (see 1.2(b)) we have

HZ( X, A) k H>(X' ,A' )k Zp.

1.2(b) is satisfied for (X, A) as well.
Since by assumption H%(X) = 0 it follows that 1.2(c) is satisfied for the 

compact pair (X, A), too.
Now let У be a domain in X \  A = X '  \  A! and let U be a nonempty open 

subset of V  such that for the inclusion j'\ (X ', А') С (X ', X ' \  U ) the induced 
homomorphism j'„: H%(X',A') —*■ H n ( X ' ,X ' \  U) is a monomorphism. Let 
k\: (X ', X '  \  U') С (X', X \  U) and j: (X, А) С (X, X \  U) be inclusions. Then 
the diagram

Hn(X',A ')  ---- ------♦ Hn(X', X '  \U )

H*(X,A)  ----------- , H n(X ,X  \  U)
j*

is clearly commutative, where j ,  and k u  are homomorphisms induced by the 
inclusions j  and k\ respectively. k\ is a relative homeomorphism as well and 
thus k\* is an isomorphism. Consequently fcj.y' = у*/г» is a monomorphism 
and since к, is an isomorphism too it follows that j » is a monomorphism.

(X, A) satisfies condition [8] 1.2(d) as well.
(X', A) is an (n,p)-cell as required.
6.12. R e m a r k . If p is a prime, n 6 N, (X, A) and (X', A') are homeo- 

morphic compact pairs, i.e., there is a homeomorphism <p: X  —► X '  such that 
y>(A) = A' and (X, A) is an (n,p)-cell then so is clearly (X ', A').

The second fundamental theorem can be formulated as follows
6.13. T h e o r e m . Let n £ N. Let (Y , B ) be a topological nonclosed n- 

pseudomanifold with boundary and without 2-singular interior points. Then
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(Y ,B ) is an (n,2)-manifold. Moreover i f ( Y , B ) is also locally orientable then 
for each prime p, (Y , B ) is an (n,p)-manifold.

P r o o f . By assumption Y  =  ЦА'Ц, В — ЦАЦ, where К  is a triangulation 
situated in some Euclidean space R s and L is a closed subcomplex of К , 
moreover К  is an n-dimensional combinatorial pseudomanifold with bound­
ary L and L ф 0 (see [8] 3.1).

By [8] Theorem 3.4 (Y ,B)  is an (n,2)-cell. Thus by [8] 1.2(a) condition 
1.1(a) of the present paper is satisfied. By 6.2 condition 1.1(c) is satisfied as 
well for the compact pair (Y , B ). Moreover by [8] 3.2(13) for each prime p 
we have

(53) Н?(\\К\\) = H *{Y )  = 0.

Now for q G 11 A' 11 \  ||A|| let Ok(q) be the same as in 6.3. Let 0'K(q) be 
the subcomplex of К  consisting of all simplexes of Ok(q) and of all faces of 
such simplexes. Let B^{q) — 0'K(q) \  Oj^fq). 0'K(q) and Bx(q)  are closed 
subcomplexes of K.  Since ( ЦА'Ц, ||A||) is without 2-singular interior points 
it follows by 6.8 that Ok {q) = Eqд is an n-pseudomanifold and thus 0'K(q) 
is a combinatorial n-pseudomanifold with boundary Bj^{q) and Bx(q) ф 0. 
Moreover if ( ЦА'Ц, ||Z||) is locally orientable then by 6.8, 6.4 and 6.5 for 
each q E ||A'|| \  ||A||, Ок{ч)  is an orientable n-pseudomanifold and thus the 
combinatorial n-pseudomanifold 0'K(q) is orientable as well. Consequently 
by [8] Theorem 3.4 for each q G ||A'|| \  ||A|| ( ||0/<'(9)IU II^A'(9)||) is an (n,2)- 
cell and if ( ||A '||, ||i ||)  is locally orientable then for each q E ||/ i || \  ||A|| and 
for each prime p, ( ||0 'A-(g)||, ||Ял-(д)||) is an (n,p)-cell.

Now for m G N and q E ||A'|| \  ||A|| let be the positive dilatation of

R s with the invariant point q and with ratio i.e., qtfm,q{<f) — holds 
for each q' E Rs and let Umiq = ^m,q{\\0'K(q)\\ \  ||5 л-(9) ||) . Um<q is clearly 
an open subset of ||A'|| \  ||L\\ and { Um q ; q E ||A'|| \  ||A ||, m E N} is a base
of PH IM Ifll = Y \ B . ____

Now since (Umiq, Um,q \  Um q̂) is homeomorphic to the compact pair 
( ll^k'(9)ll> ||-Sa'(9)||) it follows by 6.12, (53) and 6.11 that for each q E 
E 11 A' 11 \  ||A|| and m E N , ( ||A'||, ||A'|| \  Umiq) is an (n,2)-cell. Moreover 
if ( ЦА'Н, II A||) is locally orientable then for each prime p, ( ЦА'Ц, ||A'|| \  t/m,9) 
is an (n,p)-cell. Hence if p = 2 then condition 1.1(b) is also satisfied for the 
compact pair ( ЦА'Ц, ||A||) and if ( ||A'||, ||A||) is locally orientable then 1.1(b) 
is satisfied for each prime p.

Consequently ( ЦА'Ц, ||A||) = (Y, В ) is an (n, 2)-manifold and if (Y, B) is 
locally orientable then (Y ,B)  is an (n,p)-manifold for each prime p.

The Theorem is proved.
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6.14. R e m a r k . Let p be a prime and let n 6  N. Let ( X ,  A)  and (Y , B ) 
be homeomorphic compact pairs, where (Y , B ) is an (n,p)-manifold. Then 
(X, A) is clearly an (n,p)-manifold as well.

6.15. Now by 6.10, 6.14 and by Theorems 6.13 and 5.6 we can state  the 
following theorem.

T h e o r e m . Let n G N. Let ( X ,  A) be a compact pair lying in R n+1 and 
homeomorphic to a locally orientable nonclosed topological n-pseudomanifold 
with boundary and without homologically singular interior points. Let К  be 
a continuous closed path in X  \  A and let p be a prime with p ^  3. Under the 
circumstances К  preserves its banks if and only if it preserves the orientation 
in the (n,p)-manifold ( X ,  A).

Our program is finished.
Now we make an additional remark.
We can raise a problem converse in a certain sense to the statement of 

6.13. We also formulate a theorem related to this question without proof.
6.16. T h e o r e m . Let К  be a triangulation in some Euclidean space and 

let L be a closed subcomplex of К . Suppose that ( ||A'||, ||T||) is an (ra,p)- 
manifold for some prime p. Then К  \  L is an n-dimensional pseudomanifold 
and for each q £ ||A'|| \  ||Z||, Ok(q) is an n-pseudomanifold as well. I f  p ф- 2 
then in addition the Ok (<i )-s are orientable n-pseudomanifolds.
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P R O D U C T  SETS IN THE PLANE, SETS OF 
T H E  FO R M  A + B  O N THE REAL LINE A N D  

H A U S D O R F F  M E A SU R E S
Z. BUCZOLICH* (Budapest)

Introduction. From Theorem 2 in [1] it follows that every E  C [0,1] X 
X [0,1] = I 2 of positive two-dimensional Lebesgue measure contains a set 
of the form A X В  such that Aj(A) > 0, and В  is non-empty perfect. (We 
denote by Am(A) the m-dimensional outer Lebesgue measure of the set A.) M. 
Laczkovich asked whether the set В  can be of positive Hausdorff dimension. 
We show that the answer is negative. Moreover, in Theorem 1 we prove that 
for any Hausdorff measure there exists a set E  С I 2 of full measure such 
that if A X В С E,  A^A) > 0, and the sets A , В  are measurable then В  is of 
zero measure. (For the definition of the «^ measure see the Preliminaries.)

Sets of the form A + В = {a + b : a E A, b E B} can be regarded as 
projections of A X В  onto the line у -  x. G. Petruska asked the following 
question. Assume that AX(B)  > 0 and the Hausdorff dimension of А П I  
equals d £ [0,1] for any interval /  -ф- 0. Is it true that the Hausdorff dimension 
of the complement of A + B  cannot be bigger than 1 -  dl In Theorem 2 we 
give a negative answer to this question. In fact we show that there exist В  of 
full Aj-measure, and a set A which satisfies the above conditions with d = 1 
but the Hausdorff dimension of the complement of A + B also equals 1.

P re lim inaries . Assume that ф : [0,+oo) —» [0,-fioo) is monotone in­
creasing, 0(t) > 0 for t > 0, 0 (0) = 0, and ф is continuous from the right for 
all t  ^  0. If E  С Ц  Ui and diam(f/;) ^  S ( i  =  1 ,2 ,...)  then we say that the 
system {Ui} is a S-cover of E.  For an E C R- put

OO

n^(E) = inf У~] 0(diam Uj)
1 = 1

where the inf is taken for all ^-covers of E. Put кф(Е) = sup5>0 k,$(E). It 
is well-known [2, Theorem 27, p. 50] that the Hausdorff measure is a 
regular metric measure. Furthermore all Borel sets are «^-measurable, and 
each «^-measurable set of finite «^-measure contains an Fa-set of the same 
measure.

* R esearch su p p o rte d  by the H u ngarian  N ational F oundation  for Scientific R esearch 
G ran t No. 2114.
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When ф(1) = ta then we obtain the s-dimensional Hausdorff measure. In 
this case we shall use the notation ks instead of к* , or к^.

We say [cf. 2, Section 8.3, p.121] that the open set condition (OSC) holds 
for the contractions {Vb}™’ if there exists a non-empty bounded open set V 
such that

m

U  *i (V)  C  V

j =г
with this union disjoint. We also need [2, Theorem 8.6, p.122 ]

T h e o r e m  A. Suppose that m > 1 and the OSC holds for the similitudes 
ij)j with ratios rj, 1 C j  ^  m. Then the associated compact invariant set E 
is an s-set where s is determined by r* = 1; that is 0 < ks(E)  < oo.

We refer to [2], especially to Section 8.3 of [2] for the terminology used 
in the formulation of Theorem A.

Main results. T h e o r e m  1. Let rff denote any Hausdorff measure.
(i) For every £ > 0 there exists a measurable set E  С I 2 such that A2( /2 \ 

\  E) < e and whenever A X В  С E then either Aj(A) = 0 or кф(В)  = 0.
(ii) There exists a measurable set H С I 2 such that A2( /2 \  H) — 0 and 

whenever A X В  С H with Lebesgue measurable A and Borel measurable В 
then either Aj(A) = 0 or k^(B) = 0.

R e m a r k . In statement (ii) the assumption about the measurability of 
A and В cannot be dropped. An unpublished result of R. 0. Davies implies 
that assuming the Continuum Hypothesis, from H С / 2, A2( / 2 \  H)  = 0 it 
follows that there exists A X В С Я with Aj(A) = Aj(B) -  1. The proof of 
this fact is not difficult and can be obtained by transfinite induction.

P r o o f . For p £ (0,1) we define measurable sets H(p) С I 2 such that 
A2 (H(p)) > p and if A X В  C H(p), Aj(A) > 0 then к^(В)  = 0. This proves
(i). Then by using the sets H(p ) we construct a set E  of full A2-measure in 
1 2 which satisfies (ii).

If k and M  are given positive integers we define the sets Нь(М)  C 
C [0,1] by splitting [0,1] into M fc_1 many subintervals of length 
and deleting from each of these subintervals their last open sub-subinterval 
of length 1 / M k, that is,

A/*"1—1 M—2
H k(M)  = (J U

m=0 (=0

m C m  
+ ~Mk ' M k~l

£ + 1 
+ ~Mk

Obvicusly the sets Hk(M)  are closed and А 1(Яд.(М)) = 1 — j j . Further­
more it is easy to check that the sets Н^{М ) also satisfy the following:
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Independence- property.

Ч,0 лН=(1_£)г
for k\ < &2 < . . .  < kr.

Assume that a positive integer N is also given. We define the closed 
set H (N ,M )  C / 2 so that its horizontal section at the height у £ ( ^ 4 ,  j j )  , 
к = 1, . . . ,  N  equals Hk(M),  that is,

H ( N ,M )
N

k= 1

U  Hk{M) x
к — 1 fc

N  ’ A

It is obvious that

i n Л2(Н (Я ,М )) = 1 - ^ .

Assume that p £ (0,1) is given. Choose a sequence M\,  М2, . . . ,  Mm, . . .  
such that

( 2) 1- E M„
> P-

For m = 1 ,2 ,... choose an integer Lm such that

(3) _ L  (1
m V Mm)

Since 0(0) = 0 and ф is continuous from the right we can also find integers 
N m for m =  1 ,2 ,... such that

(4)
1

< —. m

Put H m = H (N m, Mm). Since sets of the form H (N ,M )  are closed the 
sets H m, to = 1 ,2 ,... are also closed. By (1) we have

1 -
1

Mm

Let H(p) = 
ously closed,

n « = i H m. As the intersection of closed sets H(p) is obvi- 

A2 {H(P)) = Л 2( / 2 \ ( / 2 \Я (р )) )  ^
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^  a2( / 2) -  y  4 1 2 \  н т ) = 1 -  y  > p-
m —1 m —1

In this paragraph we show that if A X В C / / (p), Aj( А) > 0 then к^(В) — 
= 0. Assume that the integer m is fixed with 1/m < Ai(A). From A X 
X В C Я(р) it follows that A x  В  С Я т  for m — 1 ,2 ,. . . .  Choose the
numbers ki < k2 < . . .  < А;Гт such that ( П В ф 0, j  = 1 ,2 , . . . ,  rm.
From the definition of the set H m it follows that its horizontal section at any 
height у £ equals Hk}{Mm). Since A x  В C H m we obtain that
A C Dj=i Hk, (Mm)- The Independence Property of the sets and (3) 
imply that

1 - ^  Aj(A) > -  > f i ­rn \  М„

Thus rm ^  Xm and hence

» C  U
j=i

kj 1 
Я ’ AJ v m  1 Y m uu

k=0

k
n Z

г ic _2 1 IUsing the intervals [-^—, tv̂ J and the points j f - , we obtain a <5-cover 
Ui,U2, ■ • • of Я with 6 = д/— such that

* Y  ^(diam Ui) < гтф{ 1/Nm) + (Nm + 1) • 0 ^  Ьтф( 1/Nm) < 1/m

where at the last step we used (4). Since the above estimates are valid for 
any to large enough, we proved that k^{B) — 0.

For n — 2 ,3 ,. . .  put E n = Я (1 — A) and E = (J^ l2 It is clear that 
E  is of full A2-measure in J 2. Assume that A x В  С E, Aj(A) > 0, A is 
Lebesgue and В  is Borel measurable. In fact we can also make the auxiliary 
assumption that A and В  are closed since if A}(A) > 0 then one can choose 
a closed subset of A of positive Aj-measure and the same is true about 
[3, Theorem 27, p.50]. Choose a sequence of intervals n = 1 ,2 ,... ,  
which consists of all open intervals with rational endpoints. Denote by G 
the union of those intervals In for which к^(/„ П Я) =  0. Obviously кф(G П 
П B)  = 0. If G = R  then к^(Я) = 0 and that is what we want to verify. 
Assume for a contradiction that G /  R . Put Я' = R  \ G .  Obviously B 1 is 
closed. Assume that x £ В ', a < x < b and choose an In such that x £ 
£ /„ C (a, 6). Then 0 < к^(1п П В)  ^  x ^ ((a ,6) П Я) . This implies that any 
neighborhood of any x £ B 1 contains points of B. Since В is closed we obtain
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that В'  С В. Furthermore кф((а,Ь)П В') ((а,Ь)Г\ В) -  кф((а,Ь)Г\ В  П
П G) = кф((а,Ь) П В) thus we obtain that for any x £ ( a ,b) П B 1 we have 
к ^ ( ( а ,6)П В ') > 0. This also implies that B'  is perfect. By using Xx instead 
of кф and a process similar to the previous one we can find a closed A' C A 
such that А1(Л/) > 0, A' is perfect and if ( a ,6) П Л' /  0 then A j((a ,6) П 
П A') > 0.

Therefore A ' x B ' c A x B c E  and A' X B'  is perfect. Put Cn = En П 
П ( A1 x B'). Since A' X В' С E  = 2 En we have 2 Cn = A' x B ' . By
Baire’s Category Theorem there exists an n and an open set U such that 
U П (A ' X В') ф 0 and Cn is dense in U П (A' X B'). Recall that En = # (  1 —
— A) is a closed set. Thus Cn С A' X B'  is also closed and it is dense in 
U П (A' x B'). Then U П Cn = U П (A' x B r). Choose (a, b) and (c, d) such 
that A"  = (a, b) D A' ^  0, (c,d) П В' ф 0, [a, 6] X [c,d] C U. Put B" = [c,d\ П 
П B ' . Then A" x В"  C U П (A1 x B') = U Л Cn С Cn С E n = H( 1 -  A ), 
A1(A") > 0, B" is closed and кф(В") > 0 a contradiction proving that E  
satisfies the conclusion of Theorem 1 in I 2.

THEOREM 2. There exist А, В  C R  such that the Hausdorff dimension of 
АГ\ I  equals 1 for any non-empty interval I, AX(R  \  B) — 0 and the Hausdorff 
dimension of R  \  (A +  B) also equals 1.

We shall show that there exists P C [0,1] such that the Hausdorff di­
mension of P  equals 1 and Aj(P — P) — 0. (We remark, in contrast, that the 
Cantor triadic set has Hausdorff dimension log 2 / log 3 and Аг(С — C) > 0.) 
First assuming the existence of P  we prove our theorem. If the sequence 
{<7„} contains all the rationals put A = + %)■ Then the Hausdorff
dimension of A in any interval equals 1. Put В' — P — A. Then В' = P —
-  ix°= i(p  + 4n) = U~ 1  {(p  -  P) -  9 n )  ■ Since Aj(P -  P) = 0 we have 
A1(B ') = 0. Put В  = R  \  B1. If x £ (A + В ) П P then there exists a £ A, 
b £ В  such that x =  a + b. Since x £ P, we have b = x -  a £ P — A — B 1 con­
tradicting b £ R \  B ' . Therefore P  C R  \  (A + B)  and hence the Hausdorff 
dimension of the complement of A + В equals 1.

We now turn to the definition of the set P. Put P = {ж £ [0,1] : the 
decimal expansion of x = О.агагаз . . .  and 02" = 1 for n — 1, 2,3 ,...} .

To compute the Hausdorff dimension of P  we need the auxiliary sets 
Pn — {x £ [0, 1] : the decimal expansion of x = 0 .aia2a3 . . . ,  a^ = 0 if 
k - 1 ,2 , . . . ,  2" — 1, and â .2n = 1 for l  = 1 ,2 ,3 ,...} . Put V = (10~2", 2 ■
• 10~2 ). Define the linear mappings tpj so that

xfffV) ■ 10-2П+1+1,ю-2П + 10 -2n+l+ j
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that is

ф,(х) = 10-»" + (X- -  10-»") ■ 10-»" + ( j  + - A  10-»"+,+l

for j  = 0 ,1 , . . . ,  102"-1 — 1. Then the sets ipj(V) С V are disjoint for j  ф 
ф j '  and this implies that the system ipj satisfies the OSC. It is also easy 
to check tha t Pn is the associated compact invariant set for the system 
ipj for j  — 0 ,1 , . . . ,  102"-1 — 1. The contraction ratio rj = 10-2" for j  — 
= 0 ,1 , . . . ,  lO2"-1 — 1. By Theorem A the Hausdorff dimension, s, of the set 
Pn can be computed from

io2 " - 1 — 1

1 =  Y,- ( i o - 2T  =  i o in"1( i o ' 2n) ' ,
:=o

that is s = 2 * n 1. 
Define

Vn  - O . W 1 W 2 ____

such that w2k = 1 if A: = 1 , . . . ,  n — 1 and Wj = 0 otherwise. Put P'n = Pn + 
+ vn. Then it is easy to check that P^ С P. Thus the Hausdorff dimension of 
P  is at least the Hausdorff dimension of P'n which is 22~г for n = 1 ,2 ,... . 
Since P C [0,1] its Hausdorff dimension cannot exceed 1. Thus the Hausdorff 
dimension of P  equals 1.

If у G P — P and the decimal expansion of у equals 60.616263 . . .  then 
the definition of P implies that 62» = 0, or 62" = 9 holds for n = 1 ,2 ,. . .  .

It is easy to verify that if H = {x £ R  : x = 00.010203 . . . ,  and there 
exists at least one integer n such that 02»» ^ {0,9}} then the set H is of full 
Ar measure. Since P -  P  C R  \  H this implies that AX(P -  P)  = 0. This 
concludes the proof.
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(L A G R A N G E  T Y P E  IN TER PO LA TIO N S)
P. VÉRTESI (Budapest)*

1. Introduction. Preliminary results

1.1. Throughout this paper X  = = cosdfcn} denotes an infinite
triangular interpolator]) matrix in [—1, 1], that means

( 1. 1)

•̂ П+1,71 — 1 = %n,n  ^  •I'n—l,n ^  ^  %2n ^  ^Tn = %0n — 11 П — 1 , 2 , . . . .

For M  ^  1, fixed integer, we consider the unique interpolatory polynomials 
(cf. (1.4) and (1.6))

(1.2)  I nM ( f i  X , x ) .— ^  y f {  %kn )hpknM ( 1 % É t i —
fc=i

for a continuous /(ж) in [—1,1] ( /  E C, shortly) and the unique Hermite 
interpolatory polynomials (cf. (1.4) and (1.6)) defined by

M — 1 n

(1.3) I nM( f , X , x ) : =  Y ,  £ / (<W ) W / ( * , z )
i=0 fc = l

(у(Л/ l) g where htknM E Рмп- 1 (the set of polynomials of degree at 
most M n -  1; actually, htknM £ Рд/n-i \  Р м п - 2 ), satisfying

(f.4) М2,л#(-У.*<») = М и ,  t, г = 0, 1, . . . ,  M — 1, k,£ = l , 2, . . . , n .

By definition (using here and later some obvious short notations), /„ м (/ , &')» 
£ PMn—1 and

Рпм{Р, x) = P(x)  for any P  e Рмп—i •

* R esearch su p p o rted  by H ungarian  National Science F oundation  G ran ts No. 1910 
and  T7570.
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by
The so called truncated Hermite in terpolator polynomials are defined

(1.5) InMr (Уэ X, x ) .— EE  \%kn )htknM (A, ®) , n — 1, 2, . . . ,
t=0  k= 1

where 0 E r E M -  1, fixed, £ C. Obviously / пмо = 4 м  and 
I n , M , M —i ~  T 'n M  1 i-6 .  I n M r  £  P  M n —\ generalizes both I n M  and Хпм . They 
satisfy the in terpo la to r properties

( ! - 6 )  I%hr( f iX >xkn) = f {l)(xkn), 1 O ^ i ^ r ,

(cf. (1.4)).
A special case of a recent result in J. Szabados [1, Theorem 1] states: 

W ith \\g\\ := max |</(a:)|, we have the following. If
- 1<X<1

ЛопМ{И) — II ̂ O n M ®)I] .—
TL

'У \ hoknM (А , X ) , 
к=1

then for any fixed interpolatory X

(1.7) Aonm(^) = clogn, m is odd.

From this Faber-type result using the Banach-Steinhaus theorem, we obtain 
that

(1.8) lim ||/ram(/, A, z)|| = oc, /  £ C is properly chosen
n —► oo

(m is odd, X  is arbitrary, fixed). (In\ = Ln is the classical Lagrange inter­
polation).

1.2 . However for even values of M  we can find “good” matrices. Namely, 
if X<~a’ß\  a , ß  > — 1, denotes the interpolatory matrix whose n-th row 
consists of the roots of the n-th Jacobi polynomial Р^а,13\ х )  then if s — 
~  2 ,4 ,6 ,. . . ,  fixed,

(1.9) lim \\Ins(f ,  X^a'0 \ x )  -  /(z ) || = 0 for all /  £ C
П — K X )

whenever

(1.10) A s -  j- -  -  ^  q ,/3 < + -  and |q -  ß\ ^  -
A S  A S  S
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(of. the works of R. Sakai and P. Vértesi [2/1, Theorem 2.1] and [3/IV, Part 
5.3]; I n2 = Hn is the classical Hermite-Fejér interpolation).

The previous considerations motivate the name “Lagrange type interpo­
lation” for Inm and the notation Lnm (instead of Inm) whenever m  is odd. 
Our present paper deals with this Lagrange type cases (i.e. with Lnm, m 
odd). The even values of M  (called Hermite-Fejér type interpolations) will 
be considered in the second part of this paper. So from now on m is a fixed 
odd positive integer.

1.3. Throughout this paper da denotes a measure generated by the non­
decreasing bounded function a(x) supported in [—1, 1] such that 
supp(da) (= the set of points of increase of a(x)) is an infinite set. We 

l
suppose that 0 < J  da < oo. pn(da,x) denotes the corresponding orthonor-

- l
mal polynomial of degree exactly n. Its roots are {xiin{da) } 1 к = 1 ,2 ,... ,n. 
If X  = {xkn(da)}, we use the notations X (da), Hnm( f , d a , x ), Z,n(/, da, x), 
etc.

If a  is absolutely continuous then a'(x) = w(x) a.e. where w(x) is called 
a weight(function). In this case we write X(w) ,  pn(w,x), etc. Generally,

l
u(x) is a weight (on [—1, 1]) iff u(x) ^  0 and 0 < f  u(x)dx < oo; the above

- l
defined w obviously satisfies these conditions.

Let и be a weight. We define

l l / ( * ) H p,u

^ f  \f(x)\pu(x)dx^j 

ess sup |/(x )|,
— 1 ̂ 37̂ 1

0 < p < oo, 

p = oo.

Note that || • || u is not a norm if 0 < p < 1. W ith the above notations let

LU ■= { / ;  ll/llp,« < oo} , o < p ^  oo.

If u(x) = 1, we write | | / | |p and Lp. Finally, if /  G С, ||/ || := Ц/Ц^ (= Ц /Ц ^  
for any и ).

In 1937, P. Erdős and P. Túrán [4] proved, in contrast to the Faber 
theorem (cf. (1.7) and (1.8) for m = 1), as follows.

T h e o r e m  1 . 1 .  Let w be a fixed iveight. Then

( 1. 11) lim
n —►OO

J ILn( f ,w ,x )  — f(x ) \2w(x)dx = 0 for all f  E C.
- l
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A natural question arises (cf. P. Túrán [5, Problem IX]):
Do there exist a weight w and an f  £ C such that for every p > 2 the 

relation

l
(1.12) lim / \Ln(f ,  w, x) -  f ( x ) \pw(x)dx = oo

n — ►OO /

holds?

In 1985, P. Nevai [8] improving his former result (cf. [6, Theorem 15, p. 
180]) proved as follows.

T heorem 1.2. Let a E 5  (= Szegő class, i.e. loga'(x)/% /l -  x 2 £ L l), 
1 = Po < 00 and a ( ^ 0 ) £ l ' .  Suppose that

(1.13) I (a ' ,p ,u ) = oo
p,u

for every p > pq.

Then there exists an f  £ C such that

(1.14) lim \\Ln(f,da)\\  =  oo if p > p0.
n —*-oo

In 1991, combining some general properties of orthogonal polynomials 
with the investigation of the sum Iх — x k n ( w )\  ж ) | =  ^ofcni
are the fundamental polynomials of Lagrange interpolation) Y. G. Shi [7, 
Theorem 4] proved the following general statement.

T heorem 1.3. Let и and w be two weight functions and 2 ^  po < oo. If

(1.15)
p ,u

oo for every p > po,

then there exists an f  £ C such that

(1.16) lim ||Tn(/,tn)|| = oo if p > p o -n—► OO

(Notice that we do not suppose that w £ S .) The above theorems may 
serve as solutions for the Túrán problem (cf. 2.2.1-2.2.4, especially 2.2.3).
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2. New results

2.1. In our paper G. Mastroianni, P. Vértesi [10] we generalized Theorem
1.3. The aim of this work is to consider the analogous results for the process 
Lnm. (Again, to is odd.)

From now on w £ J  (or w £ J { a , ß )) means that w(x) = (1 -  x )a ■ 
•(1 + x)13, a ,ß  > —1. w £ J m  (or w £ if, moreover, a ,ß  > См '■=
:= — 1/2 -  1/M (cf. (1.10)). These weights w will generally be denoted by 
v.

First we quote a result corresponding to the Erdős-Túrán theorem (cf. 
Theorem 1.1). By a rather special case of P. Vértesi, Y. Xu [9, Theorem 2.1,
(ii)] namely taking r = A = 0 we get as follows.

Let v £ J m be fixed. Then, if p = 2/m, we have

l
(2.1) lim /  \Lnm( f ,v ,x )  — /(x ) |p v(x)dx = 0 for all f  £ C.

7 1 — K X >  J
-1

(As we mentioned, to = 1 ,3 ,5 ,. . . ,  fixed.)
The previous theorem has been obtained by verifying the sufficient con-

. o  — p rn  1 — p m  1dition of (2.1), namely the relation (1 — x2) 4 v(x) 2 £ L 1 which, if p —
= 2/то, turns into l / \ / l  -  x2 £ L 1. However, if p — —(1 + 2e), £ > 0, fixed,
the condition becomes (1 -  x2) ev(x)~2s £ L 1 , which certainly does not 
hold if v £ Jm{7 , 7 ) and 7 ^  l / ( 2e), say.

The above argument suggests that for the process Lnm( f , d a ) the critical 
exponent is 2/то. Combining the previous methods with new ideas we can 
further strengthen this hint (cf. 2.2.3 and 2.2.5).

T heorem 2.1. Let supp(da)  =  [—1,1], a ' (x )  > 0 a.e. in [—1,1], 0 < 
< po ^  00 and и be a weight. If

( 2 .2)

Im(a' ,p ,u)  := [/ ^ a '\ / l  — x2^ = 00 for every Po < P = 00
p,u

then there exists an f  £ C such that

(2.3) lim \\Lnm(f,da)\\ = 00 whenever p0 < p ^  оо.
71—►СО

Now let и = a'. Then, by definition Im(a ' ,2 /m ,a ')  = f  r!-1/ 2.-1/2) < 
< 00. On the other hand, by Theorem 2.1 we obtain
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C o r o l l a r y  2.2. Let supp (da) =  [—1,1], a'(x ) >  0 a.e. in [—1, 1]. If 

(2.4) Im(a',p, a1) = oo for every 2/m < p ^  oo

then there exists a function f  £ C such that

lim \\Lnm(f,da)\\ , = oo for every 2/m  < p % oo.
n —>oo

2.2. R e m a r k s . 1. When m = 1, Theorem 2.1 was proved in G. Mastro- 
ianni, P. Vértesi [10].

2. It is easy to see that no Jacobi weight v satisfies Im(v,p, v) = 
=  oo if p is “close” to 2/m . Indeed, if p = ^(1 + 2e), then Im(v,p,v) =

= f  (1 — x2) 1/i2 6v(x)~2edx < oo if £ > 0 is small enough. On the other 
- l

hand, let wg(x) = exp ( — (1 — x2) S) , <5 > 0. Then simple calculation shows 
that

Im ( Wi’ m i 1 + 2£),Wi)  =  / ( 1 - ^ Г 1/2^ е х р ( г Г ^ )  dx = °0'
-l

Note that 6 5 if <5 < 1/2 (cf. [6, Definition 17, p. 181]).

3. By Corollary 2.2 and the above considerations we get the following 
Turán-type theorems.

T h e o r e m  2.3. Let 6 > 0 be fixed. Then there is an f  £ C such that for 
any p, 2/m  < p % oo,

l
lim /  ILnm(/ ,  ws,x) -  f(x ) \pws(x)dx = oo

n — oo J
- l

(cf (1.12) if m  = 1; for a positive result, see (2.1)).

4. For arbitrary fixed v £ J m with a ,ß  ^  — 1/2 as it comes from [9, 
Theorem 2.1, (ii)], (2.1) holds true for arbitrary 0 < p < oo (By the way, 
now Im(v ,p ,v)  ^  f  vdx < oo.)

5. Applying [9, Theorem 2.1, (ii)] with r = Л = 0 and Remark 3.2.5.3, 
we have

Acta M a th em a tica  Hungarica 65, 1994



T Ú R Á N  T Y P E  P R O B L E M S  ON MEAN C O N V E R G E N C E  I 121

Statement  2.4. Let v E J m, и G J  and 0 < p < oo, fixed. Then

l
lim /  ILnm( f , v , x )  — f ( x ) \pu(x)dx = 0 for all f  £ C

n—►OO J

iff

^v(a:)\/l — x2^ 2

When m = 1, cf. P. Nevai [18, Theorem 6, p. 695].
6. The following problem is rather natural.
Prove relation (2.1) for arbitrary (or at least “many”) weight(s) w (cf.

(1.11) when m = 1).
This Erdös-Turán-type theorem would supplement Remark 2.2.3.
2.3 . To get our statements we prove the fairly general Theorem 2.5. 

First we give a
D e f i n i t i o n . The interpolatory matrix X  is regular with respect to the 

weight w (X  is w-regular, shortly) iff for any fixed interval I  C [— 1,1] with
b

f  w > 0, there exists a subinterval J = J(I)  = [a, b] С I  satisfying f  w > 0,
I a
further each of the intervals [a, a + e] and [b — £ ,6] contains at least one root 
of

П
(2.5) {u>(x) = ujn(x) = ) u n(A%z) := cn Д (ж  -  xkn), cn > 0

k = l

if n ^  no(e). (Here e > 0 is arbitrary fixed.)
l

R e m a r k . If X  =  { ^ ^ ( ( Z q )}  and J a '  >  0 (so a '  is a weight) then X  is
- l

a'-regular (cf. G. Szegő [11, Theorem 6.1.1, p. I ll]  and [10, Parts 2.1-2.2]). 
Now let

(2.6) ||T nm W ||P)U := sup | | I nm(/,X ,a;)|! , n ^  1.
w m i

If Xs(a:) denotes the characteristic function of a Lebesgue measurable set S 
(S € M  shortly), and C S  stands for [—1, 1] \  S, our statement is as follows 
(cf. [10, Theorem 2.2]).
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T heorem 2 .5 . Let и and w be two weights, X  be a w-regular interpo­
l a t o r  matrix and qo > 0 be fixed. Then there exists an e > 0 such that if 
R n € Л4, |iln| £, otherwise arbitrary, we have for every p with qo < p й oo 
the relation

(2.7) ^  7 I <
I p ,  U  — ;||х с я п( ^ п ( л \* - ; I 1 ,U)\I Lnm(\ I PfU ’ г  1,

with a proper c > 0 not depending on p.

2.4. Let ujy(x)  = (1 — ж)г(1 + x)spn(da, x),  where 0 ^  r, s ^  1, fixed, 
N  = n + r + s. Let Lnmrs(f ,  d a , x ) stand for the Lagrange type interpolation 
based on the roots of ljn(x ). A s an application of Theorem 2.5, we state a 
generalization of Theorem 2.1 (cf. [10, Theorem 2.4]).

T heorem 2.6. Let supp (da) = [ - 1 ,1], a'  > 0 a.e. in [— 1,1], 0 < po ^  
^  oo and и be a weight. If

( 2 . 8 ) /-1

mp

( l - x ) r(l + z ) s
/  _____\ 1 /2
( a ' (x ) \ / l  — x 2)

u(x)dx = oo for every po < p ^  oo

then there exists an f  £ C such that

(2.9) lim \\Lnmrs(f ,da)\\  = oo whenever p0 < p ^  oo.n—>oo

2.5. For completeness we formulate an inverse of Theorem 2.5.
T heorem  2.7. There exist weight functions и and w and a w-regular 

interpolatory matrix X  such that for every p, 0 < p < oo,

( 2 . 10) К» b'v'' 11 ,zu - UHL \ -

Similar inverse theorems can be stated considering Theorems 2.1 and 2.2. 
Note that Statement 2.4 actually contains an inverse of Theorem 2.1. When 
m  = 1, (2.10) comes from Neva! [18, Theorem 6] (cf. Part 3.4). We omit the 
further details.

3. P roofs

3.1. P r o o f  of T heorem  2.5. By J. Szabados [1, (7) and (12)]

(3.1) hok(x) = C£(x)Вк(х), к — 1,2, . . .  ,
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where l k(x) — и(х){и>\хк)(х — x^)} 1 G Vn-i  \  Vn - 2  are the fundamen­
tal polynomials of Lagrange interpolation, В к G Vm- \ , further — which is 
fundamental —

( \  m  — 1

— ----) > 0, i G R, 1 < к < n,
x k -  x k± i  )

with one of the signs in Xk±i; R  := ( — 00, 00). (Relation (3.2) made possible 
to prove (1.7) and (1.8). Further, again by (3.2), one can prove the inequality

Aonm(l') ^  C log n  , X  $ Hn

where \Hn\ ^  e, £ > 0 is arbitrary fixed (cf. P. Vértesi [13, Theorem 2.1]).) 
Let In . [^(ni . n, H i ^  J ^  ^ T 1> a — 1 ,2 ,... .
If

(3.3) B tam W  = E t ( x ):= l(” ( l ) l |r
\ X k - X k±1\m

U)(x)
io'(xk) \ x k -  1 1

1771— 1 ’ 1 ^ к ^  n,

we prove
3.1.1. L e m m a  3.1. Let X  and s > 0 be fixed. Then there exist sets Hn, 

Hn C In, \Hn\ ^  s, such that for any n ^  1

(3.4) snm(In,x ) :=  ^  Ek{x)~t т](е) if x E l n \ H n,

where r)(s) — c£2m, c > 0 does not depend on n or In.

R emark. The investigation of ^  |x — 2fc||lfc(z)| (to = 1) was initiated 
by Y. G. Shi [12] and [7]. When m ^  1, by (3.1), (3.2) and Lemma 3.1

(3.5) ^ n m ( 7 n , x )  . — ^   ̂ IX Xfc||/i0fc(x)| ^  Cq  S n m (  I n ,  X  ) ^
Xk£tn

^  c 0 77(£r) if i G / „ \  Hn.

P r o o f  o f  L e m m a  3.1. The proof is based on ideas developed and used 
by P. Erdős, P. Vértesi and later Y. G. Shi (cf. J. Szabados, P. Vértesi [14. 
Sections III/2 , III/6.1] further Y. G. Shi [12], [7] and P. Vértesi [13]).
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First we recall some notations. Let Jк = Jkn — [ x k + \ , n , x k n \ ,  к = 
=  0, 1, . . . , n, n = 1, 2, . . . .  W ith 0 < qk = Qk(Jk) ^  5 let

(3.6) J k ^ Q k ) — [®fc+l T ifclJfcli x k  *?!c|J/c|]i

(3.7) Jk =  J  k(<ik) = J k \  Jk(qk)- 

Let Zk = Zk(qk) be defined by

(3.8) (0 <)|w (2* ) |=  min |u;(z)|, 0 ^  к ^  n,
**€•/*(<?*)

further let

(3.9) \Ji, Jk\ = m ax(|x t+i -  arjtUsfc+i -  я ,|) , 0 ^ i ' , f c ^ n .

We construct the set Hn as a. sum of subsets Gk — G h , 1 ú k ^ n .
(1) If I Jo I = £ then let Go = Jo- If this is not the case, then using (3.1),

(3.2) and the estimation I \ (x)  ^  1 for x ^  X\ we get

(3.10) Ki(x)(x -  г1)Г |л  -  a-xiil1*7” ^ {>s / 2 ) m 2 1~m, x 2  ц  + e / 2
whence we get (3.4) on J 0 apart from a set Go of measure ^ s/2. In both 
cases |Go| ^  £■

(2) A similar argument for Jn results Gn with \Gn\ ^  £.
(3) For the remaining intervals we define Gk = Jk if | Jfc| й £/ n■ For these 

Jk, l^t-l < £-
(4) Let Tk = [xk+2, Xfc-i]. I f \Jk\l\Tk\ < £, again let Gk = Jk- The total

measure of these intervals Gk, by l^fcl < S  \Tk\ = 6, is less than 6e.
By (l)-(4 ) for the remaining intervals Jk

(3.11) \Jk\ ^  £m ax(|Jfc+1|,|J jt_ i|), \ J k \ > £/n.

Denote by A n the corresponding sets of indices (i.e. к £ Д„ iff (3.11) holds). 
We prove (cf. [13, Lemma 3.2]):

If n ^  2, к £ Д„ and 1 is r G n — 1, we have

(3.12) E k( x )+ Ek+A x ) ^ c ( m ) e m-'q?\Jk\ Ц-гу)
Lü(Zk)

m

if x £ Jr{qr )•

Indeed, by (3.3) and (3.8), when x £ Jr(qr),

Ei{x) u ( x )
u ( z r) 1 1 (zr ) ^  Ei(зу) > i — к, к -\- 1,
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whence, using (3.3), (3.11), (3.6) and (3.7)

Ek(x) + E k+i(x) t  Ek(zr ) + Ek+1(zr) t

/ \ m

—Г ~ \ { \ t k ( zk)(zk -  Хк)\т + \£k+\(Zk)(Zk -  Хк+\)\т } ^  u(zk)
/  \  772

Ы Ш ) тт х к) + (?+1(гк)},

which by i'k'izk) + t™+l(zk) t  21 m (cf. [14, Lemma 3.6, p. 76]) gives (3.12).

(5) We now continue the proof of Lemma 3.1. Let qk = q = s (к G An). 
The point x, the intervals Jk and Jk(q), the index к will be called exceptional 
iff (snm(x ) = )sn(x) = sn(In,x)  < q for X  € j k{q), к G A„ (n is fixed). We 
state:

where Sn(C A„) collects the exceptional indices к of An. To prove (3.13) let 
q = C\£2m (ci will be determined later).

Let ukn G Jk(q) (k G <5„) be an exceptional point of Jk(q). If for a fixed 
n ' t  no there exists an index t(n) G 6n with

by г) > sn(utn) we get (3.13) for this n. We prove (3.14) for arbitrary n t  n0.
Indeed, let us suppose that for a certain N  t. n0 (3.14) does not hold for 

any t. Then by spj(uTдг) < £~1qpiw, r G f>iv we get

(3.13) ^ 2  \Gk\ := ^ 2  \Jk\’■= Hn й  £ ff n t n 0 = n0(£),
к£бп к£бп

(3.14) sn{utn) t  e 'qpn,

(3.15)
r£6 N

On the other hand, by (3.12) for arbitrary n t  no

\Jr\ ^ 2  E k{ur) t  | | J r | ^ { E k ( u r) + Ek+1(ur)} t

r e b n
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whence by a +  ^ ^  2, (3.13) and c\ := c (m )/8,

X  IJr |e„(ur ) ^  ^  X  lJ r l X  + £ k+i(“ r)} ^
r€5n res„ kesn

reán fce<sn

Lj(zT)
oj(zk) >

> CJf c 2mZ  E  w iai
r£6n k^r 

к£бп
(

u ( z r)
u ( z k)

+
u (zk )
v ( z r)

>

г  £ í | ü ^ - .  2  5 3  1ЛИЛ1 > ^ 2- ‘ 5 3  w i a i  =
r£<5n k^fr k£8n

k£6n

c \ r n )  _ 2 m —1 . .2 _  o .  _ 2 m - l  . .2 
=  — £ Mn  -  2 c l £ d n

which contradicts (3.15). That means, (3.13) must hold.
(6) Finally, if к G Д п \ 6n, by the definition of 6n, sn(x) ^ tj whenever 

x G Jk(q)- For these values of k, let Gk = Jk. Here

X l ^ f e l  < 2 < / X l J f c l = 2 ?  =  2 e -
k = 0

Summarizing, if Hn is the sum of sets Gk defined in (1)—(6), then \Hn\ й 
5Í lie  which essentially gives Lemma 3.1 at least when n ^  no- If n ^  no, 
we can argue as in [14, Section 2.6.6, p. 87]. We omit the details. □

R e m a r k . One can investigate, instead of S n m ( I n , x ) ,  the expressions 

(3.16) S t n M ( I n , x )  .— ^  ] \ x  *с/;||^1/;пЛ/ (^ ) | , Tf t  is o d d ,

Xk£ln

for arbitrary fixed M  = 1 ,2 ,..., t = 0 ,1 , . . . ,  M — 1 (cf. (1.3) and ( 1.4)). 
It is made possible by the formulas

(3.17)
htknM{x) =  1 ™п(х){х -  x k)lBtk{x),

M - t - 1
Btk{x) ^  ct

X — x k

X k X k± \
> 0

where

if M  — t is odd, x  G R,
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where c< > 0 (1 ^  к ^  n) (cf. [1, (12) and (7)]). Now let £ц.пм(з;) := 
:= \xk -  Xk±\\lЕкпм(х) (cf. (3.3)). By the relation

(3.18) stnM(In,x):= T  Etk( x ) Z ~ 7,
Z—' IVxkein

x E l n \ H n, M  = 1 , 2 , ,  < = 0 ,1 , . . . ,

(where = ce2M+t, Hn C / n and |i/„ | ^  f) (3.17) and (3.18) estimate StnM , 
whenever M  — t is odd.

T/ге proof of (3.18) js a word for word repetition of the previous one if as 
a first step we define Gk — Jk whenever \Jk\ ^  s /n  (the total measure of these 
Gk is % e). Then for the remaining Jk, \Etk(x)\ ^  (е/п )гEk(x) (actually for 
any fixed real t ^  0). Further details are left to the reader.

Estimations of A(nm and A(nm(x) are in [1] and [13], respectively.
3.1.2. In his paper [7, Lemma 7], Y. G. Shi obtained as follows.
Let J  C [—1,1] denote an arbitrary interval with f  iv(x)dx > 0. For S >

J
> 0 suppose \ J\ > 6 > |Z (J) |. (If S E M ,  Z(S) = ZW(S) := {x;x E S and 
w(x) = 0}^. Then we have

(3.19) p(J ,6 ) := inf j  w(x)dx > 0.
|B|=6 Q

Using Lemma 3.1, (3.19) (and the notation of (3.2)) we get (cf. [10, State­
ment 2.1]).

L e m m a  3 . 2 .  Let X  be w-regular. Then for every fixed interval I  C 
C  [—1,1] with f  w > 0 there exists an e such that if Rn E M ,  |Än| ^  e, 

I
otherwise arbitrary, we have

Dnm(I) ■=
XkEl

1

К(х*)Г1*/ь-х*±1Г - г J  |tu„(x)|mu;(x)dx

for n ^  no(e). Here c — c(I,e) > 0.
The proof of this lemma is similar to the one in [10, Statement 2.1]. Let 

J — J(I)  = [a,6]. By J w > 0, |J | -  \Z(J)\ := 5e > 0.
J

Let xj(n) E [a, a + e] and хг(„) E [6 -  £,b] (A is гп-regular so these nodes 
exist if n ^  n0(e)). Then if In := [ x j , X j ]  C J  we have \In\ -  \Z(J)\ ^  3e. 
Applying Lemma 3.1 for /„ and s defined above, then using (3.19) with J ( I )
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and b -  \Z(J)\  +  £, we get, considering that /  D J D J \  Rn Э Un := /„ \  
\  Hn \ Rn and |£/n| ^  |Z( J ) | + £. as follows.

f  sn(In,x)w(x)dx  J . . .
n  ([) > D (7 1 — JX'Hr‘---------------------- > —----  >

nml J = »ml n j _  /  K ( x ) |mn;(x)dx = . . .  =
J \ R n

77(e) J w(x)dx
> un > V(s)p(J,\Z(J)\ + £)

f  \шп(х)\т w(x)dx
J \R n

(where by |J |  — |Z (J)| — £ ^  4e the numerator is greater than zero). □
R e m a r k . Using (3.18), the previous argument yields that the estimation 

of Lemma 3.2 can be replaced by

(3.20) E
1

ш п ( х к ) \ М \ х к  -  x k ± l

---------  >iM-i-1 =

>  ----------------------------T~j------------, П >  Iln(£)
rd f  \ojn(x)\‘X w(x)dx 

J ( I ) \ R n

for M = 1 ,2 ,3 ,...  and t = 0 ,1 ,2 ,.... Here с = c( /,e ).
3.1.3. Now we can complete the proof of Theorem 2.5 (cf. [6, Theorem 

10.15], [7, Part 2.6] and [10, Theorem 2.2]). Let Z = Z „ ,([-l,l]). Denote
l

3«3 := 2 — |Z |. By /  w > 0, clearly b > 0. Fix any interval r  C [-1,1] with
- l

|т| = Ь. Then we can define two intervals in [—1,1], rji and r/2, so that |щ П 
D 7721 = 0, |D| = |Z| + b, where Í2 = 771 U 772, finally dist (r, ÍÍ) ^  b/2. Relation 
|D| > \Z\ involves J w > 0 whence J w > 0, say.

П m
Define f n € C as a function with ||/n|| ^  1 further satisfying

(3.21) f n(x k) = Xn(*/fcn)sign{u/(x*.)(C -  xk)}.

where C  is the center of r .
Now let i é t . Using that Bk(x) ^  0 (cf. (3.2)), by (3.21), using relations 

\x — x k\ % 2, formula (3.2) and Lemma 3.2, we get

(3.22) J2 fn(Xk)
k=1

Bk(x) E
xken

B k( x )
\u'n ( X k ) ( x  -  ® * ) Г

>
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Bk{x) >
\m — 1 —

- X k z m  К О о О П х - х к Г ~ *  -  П Х с Л п ^ п  llllt 

where d = d(r/i,£) = с0с(щ,£) /2. By (3.22) and (3.1)

x 6 r,

^Xr(»)kn (»)!
||XCH„W™||i ^  Xr{x)

n  (  / 4  \  7

C x x - x t ))}

< ^  ' fn(xlc)/l0Jk(
/c=l

for arbitrary x £ [—1, 1],

B k{x) <

whence

(3.23) d  ^ TU;n ^ P ’u <  N T / v \ | |  
||vCD o>m||1 = nm ' ^ p’u'11 AO Jin n 111 ,W

Divide the interval [—1,1] into t subintervals гг, t = 1,2, of measure
6 according to Figure 1.

-1

Tt - l
_ ■N

-+

1

Fig. 1

Obviously [2/<$] ^  t £ [2/tf] + 1. Choose e := min £t (cf. Lemma 3.2).
l i i i t

Then (3.23) holds true for every т,- with d, and the same £ and Rn. So if 
n ^  n0(f), 0 < p < oo, by (3.23)

< I max

1 t A

I  К П «  ^  E  /  \ X r . ^ n \ m P U £

-1 1=1 -X

< OO,
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whence taking p-th root (for p ^  qo) we get (2.7). If p = oo, again by (3.23)

IK*II = max ||Xt, < | |  ^ (max -  ) lIxm K IIr, J  W * )

If 1 ^  n ^  no, the statement is obvious whenever c is large enough. □
3.2. P roof  of T heorem 2.1. We need the following general result of 

A. Máté, P. Nevai and V. Totik [15, Theorem 2, p. 317].
Let 0 < q ^  oo. Then there is a constant d > 0 with the property that 

for every measure with supp(da) = [—1, 1] and a '(x ) > 0 a.e. in [—1, 1], the 
inequality

(3.24) IIg!  ( « V l  -  z2) 1/2| | ,  ^  d !im \\gpn(da)\\q

holds for every Lebesgue measurable g.
Let LOn(x) = pn(da,x) .  Relation (3.24) yields (with gq = и and q = mp)

(3.25) Im( a \p ,u )  ^  d \ \ m  \ \ P n ( d o ) \ \ p u, 0 <  p й  oo .
n—►OO

To estimate \\xcR nP ™ {da)\\l w we need another statement of [15].

Let supp (da) = [—1,1] and a' > 0 a.e. in [—1,1]. For a given real r > 0 
and n ^  0 define the set B rn = B rn(da) by

(3.26) B rn := {x; |p„(da,x)|A(.T) ^  r}

where A (x) = ^ a '(x ) \/l  — x2 ĵ . Then for every r > (2/тг)1/2

lim |Z7rn| = 0.
71 — ► OO

(see [15, Lemma]). 
Now let in [—1,1]

(3.27) 6 (x)
A(x) if A(x) ^  1 
1 if 1 < Д(ж).

From ex' > 0 a.e. we conclude that 0 < <$(2:) ^  1 a.e. whence 6 m is a weight. 
Further by definition S(x) ^  A(z). Again by a' > 0 a.e. we get that X (d a ) 
is in-regular for an arbitrary weight w (cf. [11, Theorem 6.1.1, p. Ill]), 
especially for Sm. So by (3.26)

(3.28) 0 < H xcB m P nW H u’» ^  \\\CBln{Pn(da)X) m||, < 2 . n 2  n0.
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By (2.7), (3.25), (3.26) and (3.28) we conclude the following important 
relation •

(3.29) [/ (a' yj  1 — x 2 ĵ < c 1
p , u

im
CO

II Lnm(X(da))\\ p u, oo.

3 .2.1. Relations (3.29) and (2.2) yield that lim || Lnm(X(da))\\ = oc
whence by the resonance principle applied for the Banach space C (with the 
usual norm) and the operator norms { ||Z,nm||p u} one would get (2.3) at least 
for any fixed p ^  1 (cf. K. Yosida [17, II. 1, Corollary 1, p. 69]). However 
if 0 < p < 1, К • И is not a norm anymore. So to prove our statement in 
general, we define prenorms and prenorrned spaces as follows.

D e f i n i t i o n . Let F  be a real linear space.* If for every /  G F  we can 
define a real number N ( f )  = N f (/ ) ,  the prenorm of / ,  such that with a 
fixed real 0 < A ^  1

(i) 0 ^  N( f )  < oo and N( f )  = 0 iff /  = 0 (zero-vector),
(ii ) N ( f  + g ) Z N ( f )  + N ( g ) f , g e F ,

(iii) N( c f )  = \c\AN ( f ) ,  c real,
then F  is a prenorrned space. By (iii), N( — f ) = N( f )  which yields tha t F  
is a metric space, too (with the metric d(x ,y ) := N(x  — у )).

E x a m p l e s . Every quasi-norm (cf. [17, 1.2, p. 31]) so every norm, 
especially || • ||pu (p 1) is a prenorm with A = 1. Further, if 0 < p < 1, 
II ' llp.u a prenorm in if A = p ((i) and (iii) are obvious; for (ii), see [16, 
Ch. I, (9.13), p. 19]).

Now let В be a Banach space and F be a prenorrned space endowed 
with II • У and N(-), respectively. If A4 is a linear continuous operator with 
M  : В —► F  (i.e. M(b) £  F  if b £ B)  we define N( M)  =  .Vf .b ( M )  by

(3.30) N ( M ) := sup N(M(b)).
Ьб В

IHI^i

By the usual argument one can see that

(3.31) N ( M ) < oo.

(Indeed, supposing the contrary, we can choose a sequence {bn } с в , \ \ ь п\ \ й  
^  1, with lim N (M (bn)) = oo. Then denoting N{M{bn)) by an, bn/an : =

n — *■ CO

:= a n —*■ 0, whence, using the continuity of M ,  M ( a n) — 0. too. But (in

* We use  th e  term inology of [17].
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the  metric space F)  Л4(а„) 0 iff N ( M ( a n)) —* 0. On the other hand, by
(iii) N (M ( a n)) = N(a~*M(bn )) — af~A 1, a contradiction.)

Let {M n} be a sequence of linear continuous operators with M n '■ В — 
—+ F  (n = 1 ,2 , . . . ) .  We claim

STATEMENT 3.3. Let В , F  and {Mn ■ в —> F) be defined as above. If  

(3.32) lim N ( M n) =  oo

then with a proper b £ B

(3.33) lim N ( M n(b)) — oo.

The proof of this Banach-Steinhaus-type theorem goes along the original 
path (cf. [16, l.c.] for the classical version or [6, Part 10, Theorem 19, p. 
182] for this prenorm form). For practical purpose we choose a proof based 
on the argument in [8, Lemma],

By (3.30) and (3.32) there exist g3 £ В  with ||<7j|| ^  1 and the subse­
quence {^j} C N  such that

(3.34) lim N(MsAgj ) )  = oo.j —*oо

Fix I. If
lim N ( M n(ge)) = oo

then g( satisfy (3.32). If this is not the case we can suppose

(3.35) supN ( M n(ge)) := a{ge) < oo, 1 = 1 , 2 , ----
П

Now we can inductively define three sequences, {£&}, {b*.} C {g3} and {n^} C 
C {í j } such that £\ = 1/2, further for к ^  1

(3.36) 0 < e£+1 й  ejf/2,

(3.37)
к- 1

£ A N ( Л 4 П|с(6 r-)) ^  к  +  1 +  ^  e A  a ( b ( ) ,

e=i

(3.38) 2e£+1N ( C nk) i l .
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Let

b := ^ £kbk.
k=  1

Then b £ В and ||6|| ^  1. Further, by (ii) we can write

/ k - \  N

N ( M nk(b)) l  N(ekM nk(bk)) -  N  £ £,Л4„*(Ь,)
\e=i /

— TV I ^  S í M . n k ( b f )  I := Si -  S2 -  S3 .
V=fc+1 /

Here, by (iii), (3.35), ||6r|| ^ 1 and (3.36)

Si = e £ N { M nk(bk)),

k — 1 к- 1
s 2 ^  Y , e* N { M nk( w ) ) ^

(=1 e=i

00
S3 ^  2  e ? N ( M nk(be)) Í  N ( M nk) £  ef  ^  2^ +1A (M nJ ,  

e=k+i e-k+i

whence using (3.37) and (3.38) we get

N ( M nk( b ) ) ^ k . □

3.2 .2 . R emarks. 1. Statement 3.3 remains true if we replace condition
(iii) by

(iv) N( c f )  = a(c)N( f ) ,  c real, /  £ F
where a ( x ) is a continuous real function, a ( x ) > 0 if x ф 0, a ( x ) is even, 
a(x)  is strictly increasing if x ^ 0, o(0) = 0, a ( l )  = 1 and lim a(x) = 0 0 .

x —*oo
(F  remains linear!)

2. A complete prenormed space can be called pre-Banach space. Any 
Frechet space (cf. [17, p. 52]) especially any Banach space is a pre-Banach 
space. On the other hand, the spaces Lu with the prenorm N(-) = || • ||^ u, 
0 < p < 1, are pre-Banach spaces (cf. [16, Ch. I, (11.1), p. 26]), but 
not Banach spaces. One can check that Statement 3.3 remains true if В  is 
replaced by a pre-Banach space. Again, (iii) can be replaced by (iv).
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3. By Statements 3.3 and (3.29) one gets a “weak version” oi' Theorem
2.1. Namely

If  for a fixed p, 0 < p ^  oo, we have (2.2), then for a proper f  € C, 
lim \\L'nm(f  ■, da)\\ = oo.П—ЮО

To verify this, we apply the cast В — C, F = ££, Л4„ = Lnm and N(- 
•) =  II • llp.u where Ap = min(p, 1).

3.2.3. To complete proof of Theorem 2.1 we need a theorem which is a 
proper modification of the Lemma in [8] originally stated for Banach spaces.

Statement  3.4. Let Fp be prenormed spaces with prenorm Np, 0 < po < 
< p ^  oo, respectively. Suppose Fv C Fr for p > r(>  po) moreover suppose, 
with 0 < 7 < oo,

(3.39) N r( f )  й  SNp{f) If Nr{f)  ^  7 ? r < p and f  6 Fp.

Let В be a Banach space with norm || • || and let { M n} be a sequence of linear 
continuous operators with Л4п : В —> F^  (C Fp, p > po) such that

(3.40) lim Np( M n ) =  oo whenever Po < P ^  oo.n—+00

Then there exists a b 6 В such that

(3.41) lim Np( M n(b)) = oo for every p0 < p ^  oo.

Before proving Statement 3.4 (cf. 3.2.4), we first use it to get Theorem
2.1. Let us define the prenormed spaces Fp by Fp = and Np(-) = || • \\ppu 
(as above, A p = m in(l,p)). First we verify Lvu C Lru, 0 < r < p й  oo (cf. 
(3.43)), and relation (3.39), 0 < r < p ^  oo (see Lemma 3.5). Then, with 
the cast В = C  (C L^f) and A4n = Lnm, using relations (2.2) and (3.29), we 
find that formula (3.40) holds true whence by (3.41) we obtain (2.3).

Relation Lvu C LTU comes from the Hölder inequality. Indeed,* let F = 
= | / | r , s = p /r  and t = s/ (s  — 1). Then

* Tacitly, we suppose th a t  p < со. The case p = со is left to  the  reader.
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or

(3.43) l l / I U  ^  Il/||p>u 1М1Г P , 0 < r < p S o o .

By relations (3.42) and (3.43) it is easy to get

Lemma 3.5. For the prenormed spaces Lvu with prenorms || ■ Ц ^, 0 <

< p й  oo, we have relation (3.39) г/ 7 = max ^1, f  u(x)dx^j .

In the proof of (3.39) we distinguish three cases.
(1) Let 0 < r < p  £  1. As in (3.42),

7 i  № .(/) =  J \ f \ ' u  S (I \i\ru ^ lr (У „У Ф i
^  (. . .)T/P-yl~r/P ^ (. . ,)r/P7 ;= I .

Dividing by 7 , we get 1 íí J \ f \pu whence by г/р < 1 we can write I  — 

— (J \ f \Pu) ^ P 1 = 1  f  l/Г «  = 7-Wp(/)> as *1 was stated.
(2) 0 < r < 1 < p is 00. By (3.42)

7 ^ N r( f ) = J i/г« s r 1 -
P,u7 < 7 := />,u I

whence, as above, 1 5= | | / | |pu, so by r < 1,

T ll/IU  = 7 ^ p (/)-

(3) 1 ^  r < p ^  00. By (3.42)

tf r ( / ) r ,u < ,,«7
\ / r - l / p  <

u7 1A ^ Il/llp,u7 =  7 Np(f) ,

without using the restriction 7 ^  N r(f).  □
3.2.4. The proof of  Statement 3.4 is very similar to the one in [8].
Let pi = po + 1. By (3.40) and Statement 3.3, there is a b\ £ В with 

||6j|| ^  1 such that

(3.44) lim NPl (Mn{b\ )) = 00.
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Using (3.39) and (3.44) we obviously have

(3.45) lim N Pl+s(Mn(bi)) = oo if <5^0.
n — »-oo

So if lim N p(A4n(bi)) = oo were true for every p E (po,P\) we would be
n —►CO

ready. If this is not the case then there must exist a p2 E {po,Po + 1/2) such 
that lim N P2( M n(bi)) < oo. (Otherwise, if lim NP2(Mn(b\)) — oo were

n —►oo n —»■oo

true for every pi ^  pa + 1/ 2, by lim NP2Jrs { M n(b\ )) = oo (see the argument
n —► OO

getting (3.45)) we would be ready.)
As above, there is a 62 £ В  with Ц&2Ц ^  1 such that lim АР2(Л4„(02)) =

n —► OO

= 00 and there must exist а рз E {po,Po + 1/3) such that 
lim NP3( A i n(b2)) < 00 (Otherwise, we would be ready.)

n — »■oo

Continuing this process, either we find a b E В  satisfying (3.41) or (and 
this case will be settled from now on) we define two infinite sequences {pk} 
and {bk} such that bк E В , ||6*.|| ^  1 and

PO < ■■■ < РЗ < P2 < Pi, Po < Pk ^  Po + l/*\

(к = 1, 2, . . . ) ,  further they satisfy the relations

(3.46) lim Np ( M n{bk)) = 00 if 1 ^  j  й  к
п — »OO

(cf. formula (3.45)) and

(3.47) lim N p (Mn(bk))  < 00 if к < j.
n —»OO J

(Indeed, by construction

lim Np (Mn( bk)) < 00.
71— »OO

If lim NPk ( M n(b2)) = 00 were true with a certain Íq ^  1, then applying 

(3.45) with 6 = pk+\ — Pk+io, one would get lim NPk (Mnib?)) — 00, a
71—»OO T

contradiction.) Let

sup А̂р2(Л4п(Ьа:)) := % ,  1 й к < j.

By (3.47), every is finite. Now, as in the proof of Statement 3.3, we 
can inductively define the sequences {sk} and {iik} C N such that £1 = 1/2, 
0 < Ek+1 ^  Sk/2, further for !■ ^ 1

0 < e f f i1 ^  C / 2,
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к- 1
e°kkN Pk( M nk(bk)) Z k  + 1 +

where a*, is the exponent A corresponding to the prenorm NPk(-) (cf. prop­
erty (iii) in 3.2.1).

Let b =  £kbk- Obviously b £ В  and ||6|| ^  1, further, as above, we
get NPk( M n k(b)) ^  к (к ^  1). Now if p > p0 is fixed (by p0 < pk ^  p0 + £) 
Pk < p if к ^  ko(p). Then by (3.39)

к ^  NPk( M nk(b)) < N p( Mnk(b)) whenever к ^  k0(p) ^ 7 . □

3.2.5. R emarks. 1. Although, as we mentioned, the proof is similar to 
the one in [8], we have verified Statement 3.4 in its general form, first of all 
because it is not a ‘Tart pour l’art” generalization but the one what we used 
(and will probably use).

2. Generalizations analogous to parts 3.2.2.1 and 3.2.2.2 can be consid­
ered. Details are left to the reader.

3. Let u n(x) = pn(v ,x)  (u £ J ) .  By (3.25), (3.28), (2.7) and Statement
3.3, for a proper f  E C

3 . 3 .  P r o o f  o f  T h e o r e m  2.6. If we can prove the relation (cf. (3.29)) 

(3.48)

0 < p ^ o o , n ^ l  (where Ц.. .Ц corresponds to (2.6)). by Statement 3.4 
we can complete the proof.

To get (3.48), first we remark that |utv(t )| ^  2\pn(da.x)\ whence bv 
(3.28)

l i m  | | I „ m ( / , t 7 ) | |  =  00
г—roc и'

whenever ( v \ / \  -  x2) 2 и ^ L1. This fact has been used in Remark 2.2.3.

I  :=

(3.49)
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Further, by relation (3.24) (with g(x) = { (1 — ж)г(1 + x)s} mpu(x)  and q = 
mp )

(3.50) I  ^  d iim \ Ш \ Р,и-

Now inequality (3.48) comes from (2.7), (3.49) and (3.50). □
3.4. P roof of T heorem 2.7. Here is a good triple u, w, X . Let и G

-----------  rn
G J  and w = ( í?v 1 — x2) 2 where v G J m- Then w £ J ,  i.e. w is a weight 
further X  — X( v)  is ю-regular.

Let ujn(X,  x) = pn(v,x).  By [6, Theorem 33, p. 171]

(3.51) \ P n ( v , x ) \  ~
n\d — űj\

( v{xj )yj i  — xj) 1/2
uniformly in n and x G [—1,1],

where xj  — Xjin^n(v) is the (a) nearest root of pn(v) to x. By (3.51), 
Ibn (l’)lli w = c’ further by [9, Theorem 2.1, (ii)] with r — Л = 0 and by
Statement 3.3 we get lim \\Lnm(v)\\ < oo if ( u>/l -  z2) m^  G Lvu. How-

ever, by (3.51) the last condition is equivalent to lim ||р]Г(г’)11п < o°. □
n —>oo

Acknowledgem ent. The author thanks the referee for the careful work.
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A  GENERALIZATION OF J. ACZEL’S 
IN E Q U A L IT Y  IN IN N E R  P R O D U C T  SPACES

S. S. DRAGOM IR (Timisoara)

1. Introduction

In 1956, J. Aczél has proved the following interesting inequality (see e.g. 
[13, p. 57]):

T h e o r e m  A. Let a = ( a j , . . .  ,an) and b = (&i,. . .  ,bn) be two sequences 
of real numbers such that

° i  -  a \  ~  ■ ■ ■ ~  a n  >  0 o r  b \  -  b \  -  . . .  -  b 2n  >  D .

Then

( 1 ) ( a 2 _ a 2 _ . . . _ a 2 ) ( 6 2 _ 62 _

^  (aibi -  a2b2 -  . . .  -  anbnf

with equality if and only if the sequences a and b are proportional.

Aczel’s inequality was generalized by T. Popoviciu [15] (see also [13]):

(2) К  -  <*5 - . . .  -  <)(ь? -  bp2 - . . .  -  ьрп) <;
^  («1*1 -  a2b2 -  . . .  -  anbnf.

The conditions

a I — a 2 -  . . .  — > 0 or Ь[ -  b\ -  .. .bpn > D and p ^  1

given in [13] are not sufficient. This was pointed out by M. Bjelica [3] who 
also proved the following theorem:

T h e o r e m  B. I f  a — (a\ , . . .  , an ) and b =  (b i , . . . ,bn) are sequences of 
nonnegative real numbers such that

(3) a i -  a2 — • • • ~ an = 0 <md 6Í — 62 — . . .  — ^  Ü

0 2 3 6 -5 2 9 4 /9 4 /$  4.00 (c) 1994 Akadémiai K iadó, B udapest
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then for 0 < p 2 one has the inequality

(4) v -S h  £
й  ßi^i -  a262 -  . . .  -  anbn

and conversely for p < 0.
For p < 2 equality holds in (4) iff

a = ( a i ,0 , . . .  ,0) and b = (iq, 0 , . . . ,  0).

For p = 2 equality holds in (4) iff a and b are proportional.
Another result connected with Aczel’s inequality was proved by 

R. Bellman in [2]. In this paper (see also [13]) the premise is sharper:

ai ~ a 2 ~ • ■ ■ ~ an > 0 and b\ -  К — . . .  -  bpn > 0

which is weakened in the next theorem proved by M. Bjelica [3].
T H EO R EM  C. If a = (o i , . . .  ,an) and b = (6i, . . .  ,bn) are sequences of 

nonnegative real numbers which satisfy

ai ~ a2 ~ ■ • • — an = 0 an(l b\ -  bv2 — . . .  — ^  0,

then for p > 1 one has the inequality

(5) «  -  a ! ! - . . .  -  a l ) 'h  +  (»J - « £ - • • •  -  b l f h  £

£  [(«1 + bi )P — («2 + f>2)P — . . .  — (an + 6n)P] ^  ■

Equality holds in (5) iff a and b are proportional.
The main aim of this paper is to extend Aczel’s inequality in inner 

product spaces. Some applications are also given.

2. The m ain  resu lts 

We will start with the following theorem.
T h e o r e m  1. Let (_#;(,)) be an inner product space over the real or 

complex number field К  and a, b, c real numbers satisfying the following 
condition

a,c > 0 and b2 ^ ac.

Then, for all x, y £ H so that

a ^  11 ar 112 or c ^  ||?/||2,
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we have the inequality

(6) ( a - |M |2) ( c - |M |2) й
^  min j  (b ±  R  e(x,y))2, (b ±  \Re{x,y) \ ) 2 ,(b ±  Im(:r,y))2, 

(b ± |Im(.T,i/)|) 2, (6 ± |(*,2/)|) 2| .

P r o o f . Suppose a > ||x ||2 and consider the polynomial 

P(t)  := at2 -  2bt + c, t G R .

Since a > 0 and b2 ^  ac it follows that there exists a io 6 R  so that P ( t0) = 0. 
Now, put

Qi(t) := P(t)  -  (IMI2*2 T 2Re<z,y)< + ||y||2), t e R

and
Qi(t)  := Pi t)  -  ( | |х | |¥  T 2|Re(ar,»)|í + |M|2), t G R.

A simple calculation gives us

Qi(t) = (a -  ||x ||2) t2 -  2(6 ± R e(x,y))t + (с -  ||j/||2), t G R

and

<?r(0 = (« -  INI2) <2 -  2(6 ± |Re<*,y)|) t + (с -  1Ы12),

Now
Qi(io) = - ( |N|2<o T 2Re(i’, j/)<0 + IMI2) S 0

because, by Schwarz’s inequality in (# ;  (,)), one has

IRe<ar, ?/)|2 ^  ||x ||2 ||j/||2.

t e r .

Thus
||x ||V  q: 2Re(x,y)t  + |M |2 = 0 for all t G R, 

and we conclude that Q\ has at least one solution in R , i.e.,

0 ^  = (6 ±  Re{x,y) ) 2 -  (a -  ||x||2) ( c -  ||i/||2) .

Similarly, Ql has at least one solution in R  which is equivalent to 

0 ^  ^ A x = ( b ±  |Re(x, i/)|) 2 -  (a -  ||x||2) (c -  |M|2),
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and the first part of (6) is proved.
The last part goes likewise, considering the polynomials

Q2(t) := P{t) -  ( ||x ||2t2 T 21m{x,y) t  + \\y\\2), t £ R,
Q2 (t) := P(t) -  {\\x\\2t2 T 2Im |(x,t/)|í + \\y\\2), t £ R

and
Q3 (t) := P(t) -  ( | |x | |V  T 2|(x, y)\t + Иг/ll2), t £ R.

The proof is thus finished.

R e m a r k  1. Let ( # ; ( , ) )  be an inner product space over the real or 
complex number field and M i, М2 € R- Then for all x ,y  £ H with

INI ^ I-Mi I o r  i n i  ^ |M 2 |

one has the inequality

(7) (M 2 -  I N I 2 )  (M | -  ||i/||2) ^  (M 1M2 -R e (x ,y ) )2.

This will be the corresponding Aczél inequality in inner product spaces. 
If H — R n_1 (n ^  2) endowed with the usual inner product, we recapture 
from (7) the inequality (1).

Using the above theorem, we can give the following inverse of Schwarz’s 
inequality in inner product spaces:

C o r o l l a r y  1.1. Suppose that a, b, с, x, у are as in Theorem 1. Then 
we have

(8) 0 ^ | |x | |2|N |2 -[R e< x ,y)]2 ^
^  b2 -  ac + a |N |2 + c ||x ||2 + min{ ± 2R e(x,y)b, ±2Re|(x, y)\b) ,

0 ^  ||.r||2||2/||2 - [ I m ( x ,2/)]2 ^
^  b2 — ac + a||i/||2 + с 11 :c 112 + min{ ±2Im(x, y)b, ±2|Im(x, ?/)|6}

and

0 ^  ||х ||2||г/||2 -  K-x, 2/> N ü b 2 -  ac + a |N |2 + c||x||2 ± 2 \(x,y)\b. 

The proof follows from (6) by a simple computation.

Acta  M athematica  Hungarica 65, 1994



A G EN ER A LIZA TIO N  OF J. A C Z E L ’S INEQUALITY 145

Corollary 1.2. Let H be as above and M  > 0. Then for all x ,y  G H 
with

||x|| ^  M or ||y|| ^  M
one has the inequality

0 ^  IM|2||j/||2 -  [Re(x,?/)]2 ^  M 2 min{ ||x -  y\\2, ||x + y\\2} .

The following theorem also holds.
T heorem 2. Let ( # ; ( , ) )  be an inner product space and a, ß, 7 real 

numbers with
a ,7  > 0 and ß 2 ^  07 .

Then for all x ,y  G H so that

11*11 ^  a  or I M I  ^  7,

we have the inequality

(9) (a  -  | |x | | ) (7  -  ||y||) ^  min j  (/? ±  |Re(x, г/)|1/2) 2.

(ß ±  |Im<x,y)|1/2) 2, (ß ±  |<x,j/)|1/2) 2}.

P r o o f . The argument is similar to that in the proof of the above theorem 
choosing the polynomials

Qi(t) : = m -  ( | |x | | í2 T 2 |Re<x,2/ ) |1/2í + ||í,||), t G R,

Q 2(t) := P(t) -  ( ||x ||i2 qp 2|Im(x, у,)\1/2t + ||y||), t G R

and
Qs(t) := P(t) -  ( IN * 2 T 2|<х,г/) |1/ 2* + ||2,||), t G R.

where
P(t) = at 2 - 2 ß t  + 7 , t e  R.

We omit the details.
R e m a r k  2. Suppose that ||x|| ^  \ M \ \ ,  ||j/|| ^  |M2| ( M \ , M 2 G R). Then 

one has the inequality

( 1 0 )  ( | M 1 | - | | x | | ) 1 / 2 ( | M 2 | - | | 2/| | ) 1 / 2 ^  | M 1 M 2 | 1/ 2 - | ( x , 2/) | 1/ 2 .

If a = (a 1, . . .  ,an), b — (b \, . . .  ,bn) G R ” are such that

a 2 -  a\  -  . . .  -  a 2 ^  0 and 62 -  b\ -  . . .  -  b2n ^  0

Acta  Mathematica Hungaricu 65, 1994



146 S. S D R A G O M IR

then

[ К
1/2 <

^  Wibi |1,/2 -  |a2&2 +  • • • + anbnI1/ 2

This is a new inequality of Aczél type for real numbers (it is obvious by
(10)).

Corollary  2.1. let I I , a, ß, 7 , x, у be as in Theorem 2. Then we have 
the following inverse of Schwarz’s inequality:

0 ^  ||z || ||y|| -  |Re(x, y)\ S ß 2 - a ^  + а||у|| + 7 ||x|| ±  2|Re<x, 2/>|1/2,
0 ^  ||x|| \\y\\ -  |Im(x, y)| ^ ß2 -  07 +  a||j/|| + 7 INI ±  2|1т(.т,г/)|1/2

(11) 0 ^  ||.t || \\y\\ -  |(.г,г/)| ^  ß 2 -  07 + a\\y\\ + 7 ||x|| ± 2 \{x,y)\1/2.

The following corollary also holds.

Corollary  2.2. Let II be as above and M > 0. Suppose 11or11 is M or 
||j/|| S M . Then we have the inequality

0 й  11*11 Ibii -  l(*i»)l ^  M {\\x \\ + ||y|| -  2 |(x ,y ) |1/2) .

The proof is obvious by inequality (11) for a — ß  =  7 = M.
For other inequalities in inner product spaces we refer to [4-14] where 

further references are given.

3. A pplications

1. Let Xi,yi 6 С (г -- l , . . . , n )  with |x,| is M  or |?/г| S M  for all i 6 
€ { 1 ,.. . ,  n}. Then we have the following converse of Cauchy-Buniakowski- 
Schwarz inequality:

П П
0  ̂ Y  |*i|2 Y  I 2/г I 2 -

i  —  1 г =  1

Y  Re{Xiyi)
1 = 1

<

й n2 M 2 min < Y  \x i -  УгI2’ Y  \Xl + *̂1
1=1 1 =  1
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2. In the above assumptions for Xi,yi we also have
1/2 1/2

° s  Е ы 2 E i 2 ]  *.-yi <
\ I—1 u=l i = l

/  п  \  1 / ^  /  n  \  1 /2 n 1 / 2 '

й n M
( S |Xi|2) + f e lrf) ‘ 2

>  x.-y,
t = l

The proof is obvious by Corollaries 1.2 and 2.2. We omit the details.
3. Let (17,Д,/г) be a measure space consisting of a set Í7, a o-algebra A  

of subsets of Í7 and a countably additive and positive measure p on A  with 
values in R  U {oo}. Denote T2(i7) the Hilbert space of all complex valued
functions x defined on 17 and 2-integrable on 17, i.e., J | x (s ) |2 dfi(s) < oo.

П
Suppose that x , y  G T2(i7) with

\y(s)\2dy(s) í  M 2.
Q Í2
У  |x (s) |' d/j.(s) < M 2 or /

Then we have the following converse of Cauchy-Buniakowski-Schwarz in­
equality for integrals:

Q= J  |z ( s ) |2 d/i(s) J  \y{s) \ 2 dn(s) -  Re J  x(s)y( s ) d/i(s) <

< M 2 min J  \^{s) -  y(s ) \ 2 dn(s), J  |x(s) + i/(s) |2d/z(s)

4. In the above assumptions for x ,y  in T2(i7) we also have

\  !/2
0 <  I / |x ( s ) |2d/r(s) j ^ J j y ( s ) \ 2 dn(s)^J -  J  x(s)y(s) dn(s) <

Í  \M\
1/2

d/i(s)
1/2

1/ 2

( У  k (« ) |2^ ( s ) J  +

- 2  J  x{s)y(s) dn(s)
Q

The proofs are obvious by Corollaries 1.2 and 2.2; we omit the details.
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DISTAL C O M PA C T  R IG H T  TOPOLOGICAL
G R O U PS

P. M ILNES1 (London, Ontario)

Let G be a compact group for which the left multiplications t st are 
all continuous; we call G a compact left topological group, and have the 
left translation flow (Лg,G).  W. Ruppert has studied the case where the 
compact left topological G is equicontinuous, i.e., (Ag,G)  is equicontinuous; 
one of his conclusions about equicontinuous groups is that the topological 
centre

{77 G G I и vT), G —> G,  is continuous}
is closed in G. This implies that none of the non-trivial compact left topo­
logical groups coming from distal flows are equicontinuous (the “trivial” ones 
being the topological ones). In this paper, we study a class of compact left 
topological groups broader than that of the equicontinuous ones, a class that 
includes some of the compact left topological groups coming from distal flows. 
The class we consider consists of the distal compact left topological groups, 
the ones for which the flow (Ag , G) is distal. In our analysis of this class, we 
present, among other things, conditions that are at the same time equivalent 
to the distality of G and analogous to conditions of Ruppert that are equiv­
alent to the equicontinuity of G; we also deal with a significant aspect of the 
resulting theory of distal compact left topological groups: a process, which 
effectively terminates after one step for equicontinuous G , can be meaning­
fully repeated for distal (non-equicontinuous) G. We discuss some examples 
of distal G, and illustrate with one of them how the process just mentioned 
not only does not terminate after one step, but can be repeated indefinitely. 
We also present some non-distal G.

I. Preliminaries

A flow (5, A ) consists of a compact Hausdorff space X  and a group S 
with identity e acting on it on the left (as in [8]): each s £ S determines 

a homeomorphism x *—> sx of X  and the conditions ex = x and s(<(x')) = 
= (st)x for all s, t  G S and x G X  are satisfied. So, 5 determines a subgroup 
(denoted here also by 5) of the semigroup X х  of all transformations of X . 
The closure S~ of S  in X х  is a subsemigroup of X х called the enveloping 
semigroup of the flow. With the relative topology from X х , S~ is a compact

1 T h is  research  was supp o rted  in  p a rt by N SER C  grant A7857.
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right topological semigroup, i.e., for all 7/ G S  , right multiplication Ъу p, о >-> 
—► op, S~ —► S~,  is continuous. The set

A (5_ ) := {g G S~ \ о •-+ go, S~ —► S~ is continuous}
is called the topological centre of S ~; here 5 С A(S~), so A(5_ ) is dense in 
S ~ . The flow is distal if sax\  —► xq and sax 2 —► xq for a net {sa } C S  and 
Xq, x \ , x 2 G X always implies X\ = x2. We quote a famous theorem of Ellis 
[3, or 4].

1. T h e o r e m . A flow ( S , X)  is distal if and only if its enveloping 
semigroup S~ is a group (i.e., a subgroup of X х ).

For a distal flow (5 ,X) ,  S~ is called the Ellis group of the flow. There 
is a powerful structure theorem for compact right topological groups that 
come from topological dynamics like this [6,7]. A consequence of it is the 
existence of Haar measure p for such groups; p is a probability measure on 
the group and is invariant under all right translations and all continuous left 
translations. We do not need these results here.

Thus far we have considered flows (5, X ) with S acting on the left (x •-*■ 
—► sx),  S~ С X х  right topological, etc. We shall need the “other-sided” 
notions as well (for example, the statement of Theorem 3 needs compact 
right topological groups and also compact left topological groups). To be 
specific, we may also consider flows (X, 5) with S acting on the right, x >->■ 
•—►ans (as in [4]); then (xt)s = x(ts) and S~ С X х  is a compact left topological 
semigroup, i.e., о >-*• go is continuous for all g G 5 “ ; also S is contained in 
the topological centre

93(5“ ) := {g G S~ | о •-► од, S~ —► S~ ', is continuous},

which is therefore dense in S ~ . A flow ( X , S )  is distal if and only if S~ C X A 
is a compact left topological group.

We need to establish notation for Schreier’s analysis of group extensions. 
Suppose that G\  and G2 are groups, the identity of each of them being 
denoted by e. Suppose that there is a mapping of G2 into the automorphism 
group of G1, that is, for every t G G2, there is an automorphism s •—► t(s) of 
G\ (acting on the left). Suppose also that there is a function {t’,t) •-> [t',t] 
from G2 X G2 into G\, so that all of the following conditions are satisfied:

e(s) = s and [t,e] = [e,t] = e for sG G1, t G G2, and also

[t, *']«'(«") = í(* V 0 )  [M'] and [t, t'][tt', t"} = t([t',t"])[t,t't"]

for t, t , t G G2 and s, s1, s" G G\.
Note that the function sending t G G2 to the automorphism s t(s) of G\ 
is not necessarily a homomorphism. However, the hypotheses do ensure that 
the formula
(1) (s ' , t ')(s, t)  = (s't'(s)[t',t],t't)
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defines a group operation on the set G = Gi X G2, that G1 X {e} is a normal 
subgroup isomorphic to G1, and that G/G1 = G2. We say that G is an 
extension of G\ by G2. Further, if G is a group with a normal subgroup 
G\ and if G^ ■— G/G  1, then one can find functions satisfying the conditions 
above, so that G is canonically isomorphic (algebraically) to G\ X G2 with 
group operation (1).

Because of the asymmetry of continuity in the definition of a compact 
right topological group, we also need the notation for the analogous situation, 
where G =  G\ X G2 is an extension of G2 by G\, i.e., G2 is a normal subgroup 
of G and G 1 = G/G^■ In this case, we have automorphisms t i—>■ (t)s of G2 
(acting on the right) and the multiplication formula is

(2) (s\ t ' ) (s , t)  = (s's,[s',s](t')st).

A situation in which left and right notations can be used at the same 
time is th a t of Zappa products [11, or 2], where a group G has subgroups G\ 
and G2 with

G = G1G2 =  {sí I s £ G\, t £ G2} and G'i П G2 — {e}.

Then G is (algebraically) isomorphic to G\ X G2 with operation

{s’,t ')(s,t) = (s't'(s),(t')st) ;

here the functions s /^/(s) := t'(s) and t' (t')slZ := (t')s are not nec­
essarily automorphisms or even endomorphisms of G'i and G'2, respectively; 
however, the maps

t' I—* G2 —* G j'1 and s I * s7v, G'i —» G^2

are homomorphisms (the semigroup operation in G ^1 and G'^2 being com­
position of functions). The conditions that make the Zappa operation asso­
ciative are

Ct’(s's) = Ct'(s') £ ({t,)sin)(s) and (t't)sП = (t']{Ct(s))TZ (<) Л -

We mention that G = Gi X G2 is an extension and a Zappa product precisely 
when it is a semidirect product, i.e., when both of Gi X {e} and {e} x Gi are 
subgroups of G in the extension format, and at least one of them is a normal 
subgroup in the Zappa format. The group Г of Example 6(e) below has a 
feature th a t seems peculiar. It is a Zappa product Г = M  X H of two of 
its subgroups, neither of which is normal, so it is not an extension of one of 
these groups by the other; nonetheless, the functions STZ are automorphisms 
of H.
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II. D istal compact left topological groups

We now consider a situation where we start with a compact group with 
one-sided continuity; we want to embed it in another compact group with 
continuity on the other side. By the symmetry of the situation, we shall 
then want to repeat the process and embed the second group in a third with 
continuity on the original side; and so forth. Clearly, the difference made by 
starting with one side, rather than the other, is in the notation. Accordingly, 
we start in the setting where the notation feels most familiar at the first stage, 
with a compact left topological group.

Let G be a compact left topological group. G acts on itself by left trans­
lation, each s £ G determines a homeomorphism As of G, i ^  As(/) := st for 
all t G G. Setting Ag {As | s 6 G ), we call G distal if (Aq ,G)  is a distal 
flow. When G is a compact topological group, G is distal; in fact, (Ag , G )  is 
equicontinuous and the Ellis group Ag is a compact topological group that 
is topologically isomorphic to G. At first glance, it may seem unexpected 
that there exist non-topological G for which (A g , G) is equicontinuous. and 
so Ag is a compact topological group. Ruppert [10] studied compact left 
topological groups with this equicontinuity property. Indeed, one thrust of 
our work here is to present appropriate extensions to our more general set­
ting of results of Ruppert; also, Example 6(e) below is taken from [10]. The 
term “distal group” was used by Rosenblatt [9], who showed that distality 
and polynomial growth are equivalent concepts for almost connected, locally 
compact, topological groups; thus, our work here is in quite a different di­
rection. It is obvious that a direct product of distal groups is distal, as is 
the homomorphic image of a distal group (since the homomorphic image of a 
distal flow is distal [4; Corollary 5.7]). Noting that the semidirect product of 
distal (even topological) groups need not be distal (Example 6(b)), we state 
the following lemma for ease of reference.

2. Le m m a . Suppose that G\ and G2 ore compact left topological groups 
and that G = G\ X G2 is the product space.

(i) Let G have Schreier operation (1). Then G is a left topological group 
if the function

(s,<) I—9- </(s)[í/,<], G —’• G\

is continuous for all t' £ Gi- If, as well, G2 is distal and the automorphisms 
s t'(s) of G\ are all trivial, then G is distal.

(ii) Let G have Schreier operation (2). Then G is a left topological group 
if G2 is a topological group and the function

s I—- [s , s](f )s, G\ —* G2

is continuous for all (s ' , tr) £ G. If, as well, G\ is distal, then G is distal.
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The next theorem gives conditions that are equivalent to distality of 
G; they are analogous to the conditions of Ruppert [10; p. 160] that are 
equivalent to equicontinuity of G.

3 .  T h e o r e m . For a compact left topological group G, the following as­
sertions are equivalent.

(i) G is a distal group, i.e., (Ag ,G) is a distal flow.
(ii) Ag“ C Gg is a compact right topological group.

(iii) If  s G G and {sa } C G with ASa(e) = sQ —► e and ASa(s) = sas —> e, 
then s = e (i.e., (Ag ,G) is a point distal flow with e as distal point).

(iv) There exist a compact right topological group Г and an algebraic iso­
morphism xp of G onto a dense subgroup M ofT. Also, there is a continuous 
map 6 : Г —+ G with 6 (ip(s)) = s for all s G G; the kernel H = {T £ Г |
I 8 (T) = e} is a compact subgroup of T, M П H = {e}, Г = M H , and 6 
induces a homeomorphism between the quotient space T/H and G.

P r o o f , (i) and (ii) are equivalent by Theorem 1, and (i) obviously implies
(iii). If (iii) holds and А Га<г —+ t0, i = 1,2, put sa := tQXrat\ and s : — t f l t2 - 
Then sa —* e and —> e, so s = e and t\ = <2, and (i) holds.

(ii) implies (iv). If (ii) holds, set Г = Ag , so that

ip: s \ s, G —► Gg with M  = Ag ,

and
6 : T  T(e), Г -> G with H = {T G Г | T{e) = e).

Then Г, ip, M, 6 and H have the desired properties. We mention that, if 
T  = limQ ASq G Г, then ASo(e) = —>• si := T(e) in G and

T  = lim ASq = lim ASl A -1 XSa = AS] h G M H ,
a  ot 1

where h := As- i T  G H . (Recall that Ag С Л(Г).)
(iv) implies (iii). Suppose that (iv) holds and that sa —v e and —> e.

To show that s = e, we may assume that {^(s0 )} converges in Г (since we 
can take a subnet of {ip(sa )}, if necessary). Then the limit h := lima V>(sQ) 
is in H , since

6 (h) = lim 6 (ip(sa )) = lim = e;
a  a

also
limi/>(sa ,s) = lim xp(sa)ip(s) = hip(s),

ot a

since Г is right topological, and hip(s) G H . Thus ip(s) G M  D H  = {e}, so 
s — e. □
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4. R emarks , the first and third of which are analogous to remarks of 
Ruppert [10] about equicontinuous groups.

(a) The map 6 (in Theorem 3(iv)) is a homomorphism if and only if Я is a
normal subgroup of Г; in this case G = Г /Я  is also a right topological group, 
and hence is a topological group (so G = Г and Я =  {e}). Indeed, when Г = 
= Ag~ C Gg as in the proof that (ii) implies (iv), {e} is the only closed 
subgroup of Я  that is normal in Г. For, if N С Я  is closed and is a normal 
subgroup of Г, we want to get a compact, Hausdorff, right topological group 
that is a homomorphic image of Г. The problem is that Г/iV is Hausdorff 
if and only if N  is also closed in the weaker topology a of Г [8, or 2]. To 
get around this, we take the er-closure N i of N,  which is a normal subgroup 
of Г and is contained in Я, which is <r-closed as Г /Я  is Hausdorff. Then 
Ti := T /N i  is a compact, Hausdorff, right topological group with closed 
subgroup H 1 := H /N\ ,  so that Т \ / H\ is homeomorphic to G (and to Г /Я ). 
The flow (G ,ri/7 7 i), (s , (T  N\)H\)  = ( s ,T H i) sT H \ , is isomorphic to
(Ag ,G ), but its Ellis group is a homomorphic image of Ti, while that of 
(Ag ,G) is Г. Thus Гг = Г and N\ = N  = {e}.

In the general setting of (iv), the left action of Г on Г /Я  gives a contin­
uous homomorphism в of Г onto the enveloping semigroup of (Ag ,G); the 
kernel of в is

П  l H 7-1!
7er

the largest normal subgroup of Г that is contained in Я. ker(ö) can properly 
contain {e} even in the “trivial” situation. Let G be the circle group T  (or 
any infinite compact abelian topological group), and let be the natural 
homomorphism of T  into T 2 := T сГ<Г— T X T x . (See Lemma 5 below; T 2 
is isomorphic to the almost periodic compactification of T with the
discrete topology.) Here ker(0) = {e} X T 1 .

(b) Since Г = M H  for subgroups satisfying M  Л Я = {e}, Г is a Zappa 
product of M  and H . It is impossible for Г to be an extension of Я  by M, 
since Я  is not a normal subgroup of Г. However, it sometimes happens that 
M  is a normal subgroup of Г (e.g., Example 6(a)). Then Г is a semidirect 
product of Я  and M , which seems very strange, since the members of 
Я correspond to automorphisms of G, while being pointwise limits of left 
translations As : G G, which are never automorphisms (except in the trivial 
situation s = e).

(c) Let N(H)  be the normalizer of Я in Г,

N{H) := {T  G Г I ТЯ = ЯТ}.

Then S(N (H ))  = 94(G). To see this, give Г /Я  the multiplication of G, 
(T \H)(TH)  = \l)(s\)TH, where is the unique element of T\H  П M.
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Note that {ф(з)Н)(ТН) = ф(з)ТН for all s E G, T E Г. So, for Г 6 N (H ) ,  
S(T) = TH ,  and it follows from the fact that Г is right topological that

rp(s)H i-f (ф(з)Н)6 (Т) = (ф(з)Н) (TH) = ф(в)ТН

is a homeomorphism of Г/Н  = G, i.e., 6 (T) E 9\(G). Conversely, if 
6 (T) E 94(G), then from ( ip(s)H) ( T H ) = ф(в)Т H for all s E G we get 
(T \H)(T H)  = T\TH  for all T\ E Г, using continuity in both Г/Н = G and 
Г. Setting T\ = T _1 shows that T E N(H).

(d) As pointed out by Ruppert [10], when Xq acts equicontinuously on G 
and Г is a topological group, then N(H)  is closed in Г; so 94(G) = S(N(H))  
must be closed in G and cannot be dense in G unless 94(G) = G , in which 
case G is a topological group. Similarly, when 91(G) is not closed in Г, e.g., 
if 94(G) is dense in G and not equal to G, then N(H)  is not closed in Г, Г is 
not a topological group, and Xq does not act equicontinuously on G.

The next step. Starting with a distal left topological group G , we 
now have a compact right topological group Г. So, Г acts on itself by right 
translation. We use right notation, (s')sp = s's, and can ask if the flow 
(Г,гр) is distal, i.e., if Г is a distal right topological group. If (Xq ,G) is 
equicontinuous, instead of merely distal, then Г is a compact topological 
group (and therefore distal), and the Ellis group гр~ С Г1 is isomorphic to 
Г. Here are two

Q u e s t i o n s . Suppose G is a distal compact left topological group. Can 
the resulting right topological group Г fail to be distal? Can (Г,гр) be not 
only a distal flow, but an equicontinuous one? We do not know the answer 
to the first question. The answer to the second question is: if and only if 
Г is a topological group, i.e., (A<3,G) is equicontinuous. This follows from 
the density of A(G) in Г and the last sentence of Remark 4(d) (in its other­
sided form).

III. Examples

We apply the methods outlined above to some examples that appear in
[2] (and elsewhere). A consequence of Pontrjagin duality is useful in the 
presentation of the examples; we give a proof of it for completeness. First 
we need some definitions. For a locally compact abelian group 0 , <£T — 0  
denotes the dual group (consisting of the continuous characters of ®, i.e., the 
continuous homomorphisms from ® into the circle group T) and 0^ denotes 
the group 0  with the discrete topology; so ®i := 0 ^  is the dual of 0^ and 
®i Э ®. We need also ®2 := (®i)d~, and identify 0  with its canonical image 
in 0 2 (s(h ) := h(s) for s E 0 , h E ®i), recalling that this image is dense
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in 02- If £  is a subgroup of 0 , then Äx := {h E 0  | /г(Я) = {1}}. One 
reference for all this is [5; §24].

5. Le m m a . Let 0  6e a compact abelian topological group, and let 0 i  and 
0 2 be as above. For a neighbourhood V of e E 0 , let V~ denote the closure 
of (the image of) V in 0 2- Then

C \V ~  = := I v>(0) = {1}} = ( 0 i / 0 ) ^ ,

and 02 is the direct product of & and 0 X .

P r o o f . Clearly, if sa —► e in 0  and sa —» p E 02 (i.e., h(sa) —> p(h)  for 
all h E 0 i ) ,  then p(h) = 1 for all h E 0 ,  i.e., p E 0 X. Conversely, let V  be 
a neighbourhood of e in 0 ,  and let W  be a neighbourhood in 02 of some 
p E 0 х C 02- To show that 0 х C V~  C 02, we must demonstrate that 
V  П W  ф 0. Now, we may assume that V  contains a neighbourhood of e in 
G of the form

V\ := {s E G I Ih(s) — 1| < z for all h E F},

where F  C 0  is finite, and also that W  contains a neighbourhood of in 02 
of the form

W\ {ip' I \<p'(h) -  <p{h)\ < £ for all h E  F\),

where F\ C 0 i is finite. But <p(F) =  {1}, since <p E 0 X, so the neighbour­
hood Wi  of p  in 0 2 ,

If/2 := W  € 02 1 \<p'{h) -  у>(/г)| < £ for all h E FU  T\},

is contained in W  and contains a member sj G 0 ,  since 0  is dense in 0 2. 
By the definition of W 2, Si E V as required.

The last equality of the display in the statement of the lemma is part of 
[5; 24.10-11]. The proof that 0 2 = 0  X 0 X is now easy: if <p E 02 and net 
{sQ} C 0  C 02 converges to p, then {s0} converges to some s E 0  and

p> — lim s(s-1 sa ) = s(s-1 (^),

where p>\ := s xp> E 0 X. □
6 .  E x a m p l e s , (a.) Let T  be the circle group, and let E : =  T i  =  

= T(T  be the set of all endomorphisms of T .  {E= ZAP, the almost periodic
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compactification of the integers Z, a compact topological abelian group [1, 
or 2].) Then G = T  x E  with multiplication in Schreier formulation (1)

(in, h)(w ' , h') = ( ww'h' о /i(e2i), hh1) — A(Wlh){w'i h')

is a compact left topological group. Here [h,h'] = h' о h{e2x) and the auto­
morphisms of G\ — T  are all trivial, so G is distal by Lemma 2(i). We write 
E x ЕсГ = T 2, and can then identify А(шм with ( w, h, h[e2x)) G T X E X 

X E\,  where T is regarded as a subset of Ei, w(h) := h(w), as above, and 
T x E  x Ei acts on G ,

(w , h, ^): (и/, h') к-» (ww1 fi(h'), hh').

To ensure that the map from Ag onto

M := { (w,h,h{e2i)) \ (w, h) G G} С T x E  x E x

is an isomorphism, we give T x  E  X E x -  (T X E) X Ex the multiplication 
in Schreier formulation ( 1)

(wi,h i , f i i )(w,h , f i )  = (wifii(h)w,hih,fiifi) ,

which makes it a compact right topological group. (Here fi i(w,h)  = 
= (fi i(h)w,h)  and the function [ , ] : Ex X Ex —> T X E  is trivial.) One 
checks readily that the map is also a homeomorphism. Now, we claim that

Г (S M ~ )  = A := { (w, h, h(e2i)fii) \ fiX G T 1 = (Ed/ Z f}  С T X E  x E x

(where T x =  Z 1 C E x, the image of n G Z in E  =  T ^  = Zlf  being the 
character w wn). For, if

^sa := А(Шаtha) —'’ T  G Г,

we refer to the last sentence of the proof that (ii) implies (iv) in Theorem 1:

■W e) -*■ Si := T(e) = (w ,h ),

say, in G , and ha(e2i) —<■ h(e2‘), so ASct = ASlA5- i s —» T. Now

= (w~1h 0 h(e2t), h~l )(wa, ha ) —

= (u;- 1[(/i- 1/ia ) о h~l](e2l)wa,h ~ 1 ha ) e

Acta M athematica  Hungarxca 65, 1994



158 P. MILNES

in G, and one sees that the last coordinate of Ae-i , namely [h 1ha](e21) G 
G T  C Ei, converges to 1 in T , and so Ag- i g —* (l,e,y>i) in T x  E  x  E\ for 
some I G Z x by Lemma 5. Thus

T = lim XSa = (w ,h ,h (e 2, ))(l,e,<pi) = (w ,/i,/г(е2,)^ х),
a

which shows th a t Г C A; it follows also from Lemma 5 that Г = A. Note 
th a t, although Г С т  X E  X E \ ,  the projection <p maps Г onto
E\.  The map 6 : Г —► G is given by 6 (w,h,h(e2')<pi) (w,h)\ its kernel
H — {(l,e,y?i) \if>i G T 1 } = T -1-. M  is a normal subgroup of Г, so Г is a 
semidirect product of T x and M.  The action of T 1 on M is given by

<Pi- ( w ,h ,h(e21)) (<pi(h)w, h,h(e2t) ) .

We now start with the compact right topological group

r  = { (w ,h ,h (e 2i)<p’) \ ( w , h ) e G ,  р ' е т 1 },

whose multiplication is given by

(v>i,hi,(pi)(w,h,(p) = (wnpi(h)w, hih,ipi<p) = (u>b hi,<pi)(wXv)p.

Lemma 2 cannot be used directly to determine the distality of Г, because Г is 
not an extension of closed subgroups. However, Lemma 2 (in its other-sided 
form) does show that T  x  E  X E\ is distal. Then, referring to the remarks 
preceding Lemma 2 (or checking directly), one verifies that Г is distal, (Г,гр) 
is a distal flow. So, setting E 2 := Eii ' ,  we identify E with a subset of E2 
{h(<p') = and (w<h,4>)P e with

(w,h,<p,h) G T  x E  X E\ X E2 ■

The identification of the character ipi 1—► <fi(h) with a member of E2 in 
the fourth coordinate is correct, because the projection (wi, h i , ipi) <pi 
maps Г onto E\. Writing out ( (u>b h i , (wi y ^ ) P ,  we see tliat the
appropriate multiplication in T x E  x E\  X E 2 is

(w,h,<p,ij>)(w', tí,<p\ ф') = (ww,tl>\<p),hh',<pip', фтр' ) ,

which makes T X E  X E\  x  E2 a compact left topological group. As above, 
if

(wa,ha,4>a)P G T X E  X Ex X E2,
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then wa —► w in T , ha —* h in E, p a —* in E i, and also hah 1 —► e in E, 
so ф — ф\Н, where

ф\ = lim hQh~l G Т х C EiOl
by Lemma 5, and tyih\(<p') = ф\(<p')tp\h) for ip' G E\. The identification of 
гp~ С Гг that we end up with is

г P ~  =  G 1 :=

:= { (w,h, h(e2t)p \ , hipi) E T  x £ x  £ , X | 91 6 Z 1 , i'i E T 1 }.

We remark that, although G1 G т  x  E  x  E\ x  E 2, the projections onto the 
third and fourth coordinates map G1 onto E\ and E2, respectively, and the 
function

(u>, h, h{e2' )<pu  /i0 i) (<Pu Фх)

maps G1 onto X T 1 . The map «51 : G1 —*■ Г (from the other-sided form 
of Theorem 3(iv)) just removes the last coordinate; its kernel H\ equals

{1} x  {e} x  {e} x  T x .

The map к: (w ,h ) •—► (w, h, /i(e2i), /г), G —► G1 (a composition of discontin­
uous isomorphisms), is a discontinuous isomorphism of G into G1. k(G) 
is a normal subgroup of G1; the density of к(G) in G1 would follow if 
each (< î, ф\) G Z 1 x T 1 C £1 X £2 could be approximated by members 
(h(e2,),h) G T x  E  with fi’s close to the identity in E. We doubt this can 
be done, and therefore think that k(G) is not dense in G1.

We discuss briefly the next step, where we start with the compact left 
topological group

G1 = {(w, h,h(e2, )<pi, Ефг) I (w, h) G G, pi G Z x , ^ G T 1 } C

С T x  E x  Ei X E2, 

whose multiplication is given by

(w ,h , ip^){w ' , t í  ,p', ф') = (ww'^(tp),hti ,  <рр',фф') =

=  \ w , h , v , 4 , ) ( w '  , t í  , p '  , ф ' ) .

G1 is distal, and we identify with

(ю,Ь,р,ф,(р) G T x  E X Ei x  E 2 x  £3
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(where £3 := Е 2Г),  for which the appropriate multiplication is

T X E X E\  X E? X Ez is a compact right topological group. The Ellis group 
Г1 := XGi C (G1) ’ is (isomorphic to)

{ (w, h, h(e2l)<pi, hipi, h(e2,)(/510 i) |

(w ,h ) £ G, <£i £ Z \  £ T 2-, #1 £ E } .

The (discontinuous) isomorphism of G into Г1 is

(in, h) i-> ( ru, /1, /i(e2'), h, h(e2t)) ;

the image of G is clearly not dense in Г1, since any non-trivial в\ £ C £3 
cannot be approximated by members /i(e2i) £ T С E\ С E3.

By this point the reader will be able to guess the form of subsequent 
groups. As a concluding remark on this example, we make the observation 
in connection with the structure theorem for compact groups with one-sided 
continuity (mentioned after Theorem 1) that, for each of G, Г, G 1 and Г1, 
(the subgroup isomorphic to) T is a compact normal topological subgroup 
yielding a compact abelian topological quotient group.

(b) Let G =  T t x T  with multiplication in Schreier formulation (1)

(h' ,w')(h,w) — (h'Lwih,w'w);

here Lwih is the left translate of the function h £ T T by w' £ T, Lwih(v) = 
= h(w'v). G is a compact left topological group, and is not distal. For, define 
h £ T T by h(e2l7rpG} = — 1 if p £ Z and q £ N, h(w) = 1 otherwise, and let 
{wn} С T be linearly independent [5] and such that wn —*• 1. Then

A(iiU,n)( l ,  1) = (l,u>„) -> (1,1), and A(i>lün)(/i, 1) = (LWnh, wn) —* (1,1)

as well, since for a given v £ T, L Wnh(v) = h(wnv) can be equal to —1 for 
at most one value of n. This is because of the linear independence; if wnv = 
— g2iTrpi /71 an(j WmV — e^ P 2/q2  ̂ then

™4nq:iwm 142 = {^nV(wmv) ~ 1 ) 4142 = 1, 

which is a contradiction (unless n — m).
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(c) This example is much like the first, so we discuss it only briefly. Let 
G =  £ x T x T  with multiplication (representable in Schreier formulation
(2) in two different ways)

(h,v ,w)(h' ,v ' ,w')  = (hh1, vv', h'(v)ww') = X(hv<w)(h' ,v' ,w ' ).

G is a distal left topological group, by Lemma 2(ii). We identify A(h,v,w) with

(v ,h ,v ,w)  € E\ X E  X T x  T, 

which gets multiplication

{<Pi,h1,v1 ,w 1 )(ip,h,v,w) = h1h,v1v,p>i (h)wl w);

T = XG C GG is (isomorphic to)

{ (<p’v, h, v, w) G Ei X E X T X T  I (h,v,w)  € G, p  € Z x } .

The last two examples are quite different from all the other groups that 
have appeared in this paper so far, in that the topological centre 9d(G) for 
these last two is not dense in G.

(d) Let G be the semidirect product T  X {±1} with multiplication in 
Schreier formulation (1)

(u,£)(v,6 ) = (uvs ,e6 ) = XM (v,6 ).

Give G the topology for which a typical basic neighbourhood of (e!a, l )  or 
(егЬ, — 1), where a < 6, is

A : =  { [eia, 1),(е‘ь, -1 )}  U { (eie,e) \ £ = ±1, a < в < b} ■

these basic neighbourhoods are open and closed. Then G is a compact left 
topological group, and ÍH(G) = {(1,1)}; (i,-i)P is at least measurable, but 
all the other right translations are not even measurable. (Nonetheless, this 
group does admit Haar measure [6].) Furthermore, G is not distal (and not 
point distal), since

A(e./nil)(1, 1) = (e '/n, 1) -  (1,1), and A(e./ntl)(l, -1 )  = (e*>, -1 )  - ( 1 , 1 )

as well ((1,1) being the identity of G).
We mention that (Ag ,G)  is a minimal flow, and yields an interesting 

“six-circle” enveloping semigroup, which we believe has useful applications.
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(e) [10; pp. 164-5] For this example, we need a discontinuous automor­
phism ip of T  satisfying ip2 — 1. [Let H'  := {2л-} U H be a Hamel basis for 
R  over Q : each x £ R  has a unique representation x = £ a€#' axa, where 
the xa's are in Q and only a finite number of them are not equal to 0. Then 
each w £ T  has the corresponding unique representation w = гсоПае # е ШГа, 
where wfa = 1 for some к £ N. Taking a\ and ai in H , we can then define a 
suitable ip by

<p(w) := w0eia'*°*eia^ n a€H\ {aua2}eia*°.]

Let G be the semidirect product {ip,  1} X  T with multiplication (essentially) 
in Schreier formulation (2)

(е,и)(1,г>) =  ( £ , u v ) ,  ( i , u ) ( y ? , u )  =  ( i i p , i p ( u ) v )

(and the product topology). G is a compact left topological group, and 
91(G) = {1} X T, which is closed and not dense in G. Also, G is distal by 
Lemma 2(ii), but in fact is equicontinuous. The Ellis group Г = \ g C Gg 
may be identified with

[ 9 , l } x T x T  = {ip, 1} x (T x T),

a topological group with multiplication in Schreier formulation (2)

( e , u i , u 2) ( 1 , v 1, v 2 ) =  ( е , щ У 1 , и 2у 2 ),

( e , u 1 , u 2 )(p>,v  i , i > 2 ) =  ( e <p , u 2 v i , u i v 2 ).

А(г,и) corresponds to { e , u , i p ( u } )  £ {^,1} X T x T, and the density of the 
image M  of \ q  in { ip ,  1} X T X T follows from Kronecker’s theorem [5]. M  
is not a normal subgroup of Г; for example,

( l,v , l ) (y > ,l ,l) ( l ,v ,l) -1 = (p ,v~l ,v) g M

(unless v = 1). So, although Г is a semidirect product of {ip, 1} and T  x 
X T, Г is a Zappa product, and not a semidirect product, of M  and H , 
#  = { 1 } x { 1 } x T  being the kernel of the continuous map 6 : Г —*• G .  ( 6  
just drops the last coordinate.) We obtain the Zappa operators C and 1Z 
for {ip, 1} X T x  T  = М Я  by taking ( ip, v, ip(v)) £ M  and (1,1, и )  £ H and 
rewriting

(1, l,u)(<p,v,<p{v)) = {<p,uv,ip(v)) =

= (<p,uv,<p(u)<p(v)) (1, l,yj(u)-1) £ MH;
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we see that
£(i,i,«)( Vb *b ¥>('”)) = {ip,uv,ip{u)<p(v))

and
( i , i , ü)(Vi„fV(t;))^  = ( i , i ,v ? ( « r 1).

Also,

£(i,i,«)( !>»»¥>(»)) = (l,»,v>(t7)) and ( l , l , u ) (1 'V̂ (v))K  = (1,1,«),

since (1 ,1 ,u)( 1, v, <p(v)) = (1, v, <p(v)) (1,1, u). The maps

(1, l , u )  £(1)ltU), H -+ M M and {e,v,<p(v)) (e,v̂ ( v))U, M -> H H

are homomorphisms (as they should be). It happens that the (^„^(„jjfö’s 
are automorphisms of H ; however, l tt) is a homomorphism of M  only 
if и =  1. The isomorphism of Г = M H  onto the Zappa product M  x H is 
given by

(e,v1 , v2) = (e,v1 ,<p(vi))(l,l,<p(vi)~1v2) •->

^  ( (£,vi,v?(vi)), (1,1, v?(vi)—1v2) ) •
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1. Introduction

For any positive integers N,  к let cr(N, к) denote the maximal number 
of integers 1 ^  a\ < ■ ■ ■ < aa C. N  such that the difference set of Л = 
= { a i , . . . ,  d(j} contains no perfect к-th powers, i.e. — aj = mK, i > j  has 
no solution.

It follows from the work of Kamae and Mendes-France [3] that a(N,  к) = 
= o(N)  for any fixed к ^  2 as N  tends to infinity. Quantitative results are 
known only in the case of к = 2. Pintz, Steiger and Szemerédi [5] proved 
that

( 1 ) <r(N, 2) C
N________

(log jV )^ loglogloglog/v'

Our aim with this paper is to extend (1) for any к ^  2.
T heorem . For any к ^  2 there are positive constants Cq and No such

that

( 2 ) a(N,  к) ^ C0
________ N________
(logN ) * loglogloglogN

for any N  ^  No-
The proof is based on the method developed in [5] so on one hand we 

can be brief in some technical details, on the other hand we can attempt to 
give a cleaner explanation of the argument.

Note that optimizing the parameters in the finest way would lead to a 
constant in place of

Our calculations are effective everywhere and it is not hard to get the 
final result uniform in к, i.e. to get the dependence of Co and No on к.

1 P a rtia lly  su p p o rted  by NSF gran t DM S-8610730.

2 P a rtia lly  su p p o rted  by H ungarian N FSR  g ran t 1901.
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2. O utline of the proof

We choose С  о and TV0 large enough to provide that

Co ^  (logTV)<loglogloglogN

whenever No ^  ^  TVq and let к ^  2 be fixed. Thus (2) is certainly true
for this range. Our argument is indirect. Suppose that (2) is not true and 
let N  > Nq be the smallest integer such that

(3) a0 = ct(TV, к) > Co
N

(log TV) <log log loglog N '

and let Ao — {1 ^  a,\ < • • • < aao ^  TV} be an extremal set of cr0 integers 
such that the difference set of Ao contains no perfect к-th powers. Co, No, 
TV, к and Ao are now fixed.

For shorter reference we denote the right hand side of (2) and (3) by 7 (TV) 
and observe tha t ~f(x) is an increasing function of the real variable x ^ No, 
if TV0 was chosen large enough.

The simple assumption th a t .До is an extremal set will imply that Ao is, 
in fact, very well distributed in a certain sense. For example, let us define

Г TV] (  N  /
(4) A\  — .До П

[ '• T J
, A 2 — *4o П ( —, TV

and cry = |.4 i|, <72 = |,Д2|. Clearly 0 \ + o-i = ao > l (N ) ,  but as the difference 
set of Ao and thus A\  and «Д2 contain no perfect к-th powers, we have v\ ^  
= 7 (if) and о2 "C 7 ( ^ 2̂ ") • Standard computation gives that

(5)
<Ji = y  (1  +  о

/  log log log log TV 
v log TV

/log log log log TV

1, 2:

The implied constants here and later depend at most on к, Co and N0 and 
are effectively calculable.

Let us define the generating functions

F i ( a ) =  e(aa), i = 0, 1,
a&A,

5(a) = wme(amK),
m<M
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( f ) XjK , and the non-negative weights
wm will be defined later. Л 2 contains no additional information to us thus 
Л -2 will not appear in the proof later on. From Parseval identity we have

where e(x) = elmx as usual, M =

( 6 )

t v -  1

E
t=0 f í l N

i = 0,1.

On the other hand as A 0 — A\  is free of perfect к-th powers we have 

T V - 1

Fn ( -  ,  ̂ , , , „ ,
N \ N  \ N<7> E 4 4 W v M v )  = w E »™ = °.t=o

which imply 

T V - 1

a — a,=mK(N)

(8) E
<=1

> F b ( 0 ) F 1( 0 ) 5 ( 0 ) a°ai Wn
1<M

The first key-point of the proof is that according to (8) F\ ( must take

large values frequently. If 

(6) we have
M l )

№ » . ) 2s E  ^ ( 1
< = o  v  1

> £(Ti for a set V  of points jr then from

that is

0 ) <7i ^

0 iN,

N
e2 W\

contradicting (3) and (5) if £ could be chosen properly. This argument alone 
would give a weaker result than the stated one.

The second key-point of the proof is to try to find the best £ such that 
e2 \V\ is biggest possible. As in (7) we have

£ * ( - £ )t = 0  4 7
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a n d  SO

N - 1

£ F0 Ft >

> Fo(0)Ft(a)S(0) ^  fCT0 CTl ^  Wn 

m<M

if a £ V,  a point where F\(a) is large. Similarly to the above, Ft (a  + 
must take large values frequently. An interesting property of the rational 
numbers will provide that these points a + jj ,  where a runs through V,  are 
basically different. This would increase £2 \V\ unless £2 [P\ is already large.

3. N o ta tio n s  and prelim inaries

We have already fixed the value of Co, No, N, к, сто, ст\, M,  and have 
defined .До, At ,  5 (a ), Fo(a), Fi(a), ~/(x). Now we introduce some more 
parameters.

— p(l°gIogA04 z — e (bglog/V)2Q = e

Р = Г Ь  И, = П ( 1- ^ )
p < z  p < z  4

o-l

(log log A)

Wq = П  ( 1 -  -  J for any q ^  1,
P < 2
р\ч

Wn
( rn \ К— 1

— J , if (m ,P)  = 1, m  ^  M

lo , otherwise;

T(q, a ) =  £
m  — 1

( (m, q) ,P)  = 1

a m *

^i(n), Tfc(n) and v(n)  denote the Möbius-, the divisor- and the counting 
function of different prime factors, resp.

To fully understand the behaviour of 5 (a ) we need the next sieve result.
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Lemma 1. If  (a, q) = 1, 1 ^  у ^  x then

5 3  i =  ^ , ( i + o ( « - i i s J ) ) .
x —y < .n ^ x

n=a(q)
( n , P )  =  l

P r o o f . This is Theorem 7.2 in Halberstam-Richert [1]. 

We also need some bounds for T(q, a).

Lemma 2. / / ( a ,  q) = 1 then

T{q, a) ^
«"Ы ^1/2 if q < z, 

generally.

P r o o f . This is basically Theorem 4.2 in Vaughan [6]. Like Lemma 2.10 
in that book we have for (a, q) — 1

T(q, a) = П  T(pa, ap), 
ра\\ч

where ap (modpa ) is determined by a, q, p01 and p \  ap. Then Lemma 4.3 of 
the book says that

( 10) IT(p, a)| ^  крх! 2 ^  npx «.

For higher prime powers let r  ^  0 be an integer such that к = р тк', p \ к', 
and 7 = г  T 2 if p = 2, т > 0, 7 = т -f 1 in all other cases. A reduced residue 
class modp° is a к-th power residue if and only if it is a к-th power residue 
modp7. For a  > 7 we have

m = 1 
p\m

E « ( ^ )  = E EP m  — 1 h= 0
p\m

ai^hp'1 + ш*)
p °

= 0.

This means (see Lemma 4.4 of [6])

' 0 if p <  z, a >  7

T(pa , a) =  < pa~ 1 if p ^ z ,  7 < а ^ к
рк~1гр(ра~к, a) if p z, к  <  a, 7 <  a.
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This with the trivial bound for the remaining cases together with (10) imply

T(pa, a) I ^
к р а ' 2 й  к р "* 1- « ) if р < г 

if р ^  z.

The next ingredient, we need for studying 5(a), is Weyl’s inequality. 

Lemma 3. If  (a, q) = 1 then

m<y
< 2 k  + (1 + log yq)

with an absolute implied constant.

P r o o f . This is basically Lemma 2.4 in [6]. The unnecessary ye can be 
removed by an additional use of the Cauchy-Schwarz inequality along with 
a bound like

Y .  = Y  Y
m < Y  m < Y

tL i (™)
m

<

й У
(к- l ) 2

<; y ( i  + 1оё г ) (к-1)2.

Finally we also need Hua’s lemma. 

Lemma 4. For s > 2K we have

da «  M S~K.

P r o o f . This is well known from the theory of Waring’s problem, see [6] 
and follows from Theorem 4, Lemma 3.6 and Lemma 7.12 of [2].

4. T h e  g e n e ra t in g  fu n c tio n  5 (a)

In this section we study the behaviour of 5 (a ). We first state all the 
lemmas and we give the very technical proofs later on.
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Lemma S I .  For q < z, (a, q) — 1 we have 

к"<9) W,
S ( - + , < qI/2 W

}  | 5 ( 7 / ) |  +  ( l  +  \ i j \ N ) M e ~ ' / i° * " '

Lemma S2. For г ^  q ^  (a, q) = 1 and | a -  ^|  < ^  we have

|5 ( q )| <  M e - * (loglogN)2 

L emma S3. For < h ^  M 1/4 ire have

S  <  M e - V ^  + M
/i

(but the second term appeal's only when h is not an even integer). 
Lemma S4.

2K +  2N - 1

E
(=0

<  M 2K+2

P roof of S i .  Let us write g(x) = e(i]xK)k ( л with any fixed real 
r/. By partial summation

( I D

s ( H -  5 . • ( f ) - » - ! " « «  5  • ( ? ) * -гйМ 
( m , P )  =  1

m^x 
m,  P)  =  1

<C (1 +  |r/| Â ) max
1<х<Л/ E

т'йх 
( m , P )  =  1

am

We use Lemma 1 to study this sum. We have in case of a* ^

7
( 1 2 ) E

m^x 
( m , P )  =  1

am

6=1
= ЕЧт ) E ‘

m^x
m=b(q)

(m,  P)  =  l

£  ‘ ( f ) i  П (x- i ) ( l + o(.-SÄ))
((6' ^ ' p )=1 Ptfbfsj
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Note that ( ( b, q), P) = 1 implies p < z, p \ is equivalent to p < z,
p \  q. Note also that writing an error term 0(qz)  makes (12) true for any x. 
Writing back everything to the first line of (11) we arrive at

(13) s ( ^  + = j W qT(q, a)g{M) —

Г X /  log q \
J  —WqT(q, a)g'(x)dx -\- 0 [ q z  -\- Me  21°s2J

'°S q \
qz + xe 21°«2 1 \g'(x)\dx

+

+ 0

w
a) ( M W g(M ) J xW  g' (x)dx^  +

_ ‘°g
+ 0  I (1 + \r]\N)[qz + Me  41°«2

1/1/ /  log M  \
= a)S(v) + О [{I + \r]\N)Me 4|°*2J

supposing q ^  y/M.  Lemma SI now follows from the bound for T(q , a) given 
in Lemma 2.

Note tha t from the first line of (13) we also have

(14) 5(0) =  M Í l  +  O Í e - ^ ) ) .

P r o o f  o f  S2. We can use the previous analysis when z < q ^  \ J M . 
The trivial bounds |5 (í;)| кМ, Wq ^  1, and Lemma 2 for T(q, a) give

|5 (a)| <C l o g z n ^ q  *M  + QMe  41°«2 ^

<  M e -^ r  <  M c ' ^ ( lo*logiV)2.
In the remaining range \/М  < q ^  ^  we use a different approach based on 
Weyl’s inequality (Lemma 3). We have from (11) that

(15) |S (a)| <  max
1 < x < M I  2

m^x 
(m ,P )  = 1
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This time we detect (m, P) = 1 by the elementary sieve of Erathostenes.

iw ) E «
m^x 

(m, P) = 1

y  e
d\P m g j

adKm K
4

<

«  E
d<Q 2k

E
-SS

adKm K + E
d|P

d>Q&

X

d'

We use Lemma 3 for the inner sum together with the trivial bound

We have 

(17)

ч г > >
(?, dK) dK y/Q'

E E
d<Q 2Z m =d

adKm K
«

<  log TV ( x l 2* Q *2*+i + (log Q)xM  2K+2 + T ( —̂ L = )  I <

<  (log N)MQ  2*+i .

For the second sum on the right hand side of (16) we note that d\P. d ^ 
imply Q 2Z ^  d ^  and thus

and

(1 8 )

V(d)> |2ST > J S f i - ;  , < 2-W -i
log г 2к log 2

_ Я
к log г

E X ,
d = x 2

d\p  
d>Q 2k

2Klog2 \  ---------
^  d
d\p

iogg
<  t 2  2k 1° s  2 J ( 1 + -  j <  (log2 г)М2 TTbfl

P < 2  '  P  '
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Now (15), (16), (17) and (18) prove Lemma S2 in the range \ fM  < q ^  
P r o o f  o f  S3. We are going to split the interval 0 < m ú M  into 

subintervals where e ( ^ - )  is close to constant. wm will be well distributed 
in these subintervals explaining the choice k( -p) * 1 in the definition of 5(a). 
Note that ^  h ^  M 1/4 is now any real number, not necessarily integer. 
Let J  = [M1/ 4] and / (n, j )  denote the interval

;N 
h

K .  N  (  7 + 1
<m = X ( ” + ~

[hi ,
These intervals cover 0 < m K ^  -jyN  when n = 0 , . . . , [j] — 1; j  = 0 , . . . ,  
J  — 1. When h < 2 we do not split anything at all and when h is an even 
integer we cover exactly the interval 0 < m  ^  M . We have

The last sum contains at most <C ^  terms and appears only when h is not 
an even integer. This is responsible for the second term in Lemma S3. If 
m  6 /(n , j )  then

We arrive at

5
[Á/2] — 1 J — 1 , , 4

L  Е Ч 5 ) Wm + 0
71=0 j = 0 r n £ l ( n ,  j )

We use the sieve (Lemma 1) with a = q — 1 to show that the inner sum is 
independent of j  within a reasonable error term. The summation over j  then 
kills the main terms. In fact for X  — Y  < т к ^  X  we have

m + )
while

x 1/k -  (x -  t )1/k = i y x b 1 + o ( y 2x «~2ĵ = o ( y x i - 1)
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so we get from Lemma 1 that

Y
X - Y < m K^ X  

( m , P )  = 1

YVF (l  + 0 ( e " 2 ) )  +0

where и = *°й  ̂K\0 *z--------We need this with Y  = j j , X  = ^ ( n  + *^jr) and
the main term is really independent of j  (and n as well). The contribution 
of the error terms after adding over j  and n is

<
M  log TV 

hJ + M e'

where v is the smallest among the u’s, which is at X  = N  and

l°g Nv ^  ---------
2 k  log г ^ 2-/log N.

The choice of J  provides that the first error term is much smaller. This 
proves Lemma S3.

P r o o f  o f  S4. From Sobolev’s inequality (Lemma 1.2 [4]) we have

N - 1

E
t=i

S N i ' \S ( a ) \ ‘
Jo

da + / 1 |s (a )* - 1 S'(a)
J o  '

da <

Í N  j \ s ( a ) \ s d a + S- ^ \ S ( a ) \ s da^ ' ^  |S'(a)|* d a ) ’ .

When s is even both of these integrals can be expressed as a sum over the 
solutions of an equation weighted by wm or 2n im Kwrn respectively. Thus we 
get an upper bound if we write к or 2x k M k in place of the weights. We 
arrive at

^  ( k s N  +
r1 Y  e(°m)s t t k s M k ) /  

J o
da <C

<  (TV + M K)M S~K <  M s 

by Hua’s lemma (Lemma 4) with s = 2K + 2.
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5. The generating function Fo(a)

In this section we state and prove some properties of the generating 
function Fo(a). We have to emphasize that these properties hold because 
Ao is an extremal set, which means »4o C {1 , . . . ,  N} ,  Ло — Ao contains 
no perfect к-th power, |Ло| = &o satisfies (3) but any set A! for which 
A! С {1 A! -  A! contains no perfect к-th powers will satisfy (2)
whenever N' < N.  The first consequence of this situation has been derived 
in (5), which says that Ло is equally distributed in the two halves of the 
interval (l,JVj. We extend this result.

Lemma F. For 1 ^  q ^  Q we have

q N - l

E E Fo
(log log yv)5 2 

logiV a°-

P roof . First we note tha t,  if N/Q 3k й  N 1 ^  N, A! C { 1 ,.. . ,  N'}  and 
A! — A! contains no perfect к -th powers then

/ (log log N )5
00

№  
N  '

This follows immediately from (5) and \A’\ ^  7 (N 1) (the extremality of N)
by

l ( N ' )  7 (N)

Set H = N
Q K  +  3

N'

and

N
1 + 0 ( (loglog A') 5 

log N

я и  = j i  Z  ( 1 _  Щ е ^ я Ка) =
т и

sin /к Н ц ка 
H sin 7ГqKa

= l + 0 { H 2 \\qKa\\2).

where ||x|| denotes the distance of x from its nearest integer. On one hand 
we have
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= ao + E
N - l

On the other hand

2N_
Т Г E

a — a'+qKh=0(N) 
\h\^H,a>a'

Here and later a, a' represent elements of Ao- As 1 -  qK H ^  a ~ a’ + qK h ^  
5í N + qKH  — 1 we either have a — a' -\- qKh — 0 or a -  a' + q*h = N.  In the 
latter case a = N  + 0 (q KH), a' = 0 (qKH), a1 = a — N (qK). The number of 
choices for a is 0(qKH),  for a' is 0 ( H ), and we arrive at

(19)

a1 <a^a'+q* H

a — a ' \

Set J  = [log Af] and split the interval (0, H] into J  equal subintervals of type
( iK  (■?+!)# 
\  J  ' J
set A! by

, j  =  0 , . . . ,  J  — 1. Let us fix a'. For every j  we can construct a

A! = {
a — a!

qK
a’ +

jq*H < a ^  a' + (j + 1 )qKH 
J

Here A! — A! contains no perfect к-th power as —  “2qA  = m* implies 
a\ — Ű2 = (qm)K. As we noted in the beginning

\A'I £ 1  + 0
( (log log A )5 
у log N

H
I n
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and we get

( 20) £
a — a '= 0 (q * )  

a 1 < a < a ' + q *  H

1 - a -  a
q«H

<

J - 1

s  £ £ ( l -
a ' z A o  j —O

J )  V 1 + °  V log N
Aiogiog n £ \ \  h _

J N

2 N

(19) and (20) prove Lemma F.

< Ú L  ( l  + o (  (1об1об ^ ) 8
log N

6. Combinatorics o f rational numbers

Let К  ^  1 and L ^  1 be given integers, moreover let 1C be a given set of 
rational numbers with denominators at most К , i.e.

AC C 1 ^  а й к ^  Л ', (а, к) =  1 j .

For every f  G AC we have another given set Ca/ k of rational numbers with 
denominators at most L, i.e.

Ca/k C { y ; l £ b g / g Z ,  (&,/) = l j .

We want to conclude that the set

л fa  b a . „ 6  , )
Q = \ k  + r k el C’ l e Ca / k j

is big. Of course, without any additional condition we can say nothing. 
However, if we know that for every fixed l ^  L there are only a few possible 
numerators in the union of all the sets £ ад. then we get our result.

L e m m a  CR. Let т be the maximal value of the divisor function up to 
KL, and let be integers such that

|AC| = G; |£ ад.| ^  H for all a/k  6 AC;
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у 6 U ^ a } ^ В for all I ^  L.

Then

l e l ^ C f l U x * (1"+ log/ о ) -

P roof . Let us fix an |  £ 1C first. For any j  £ Ta/k we associate a pair 
of integers (d, / )  such that d = (к, /), A; = dk', l = d/', (A', /') = 1, /  — (a/' + 
+ 6A', d). Note that / |d , d|A, ( / ,  A’') = ( /, /') = 1 and

a b ad + AA iLtkk.
к + 7 = a/ = “ Ш "

where this last fraction can not be simplified any more. The number of 
possible pairs (d, / )  is at most гз(А) ^  r 2 so there is a pair associated to 
more than |£ a/ fc| / r 2 rational numbers j £ Ca/k■ We associate this popular 
pair (d, f ) to I  and set

r a/k = j  у G ca/k; (A, l) = d, (al' + 6A', d) = /  j  .

We have |£*/Jfc| ^  ^ | £ e/fcl ^
Next we fix A ^  Л' and set A(k) = {a; |  £ AC}. We have

£  w * ) i  = i*;i = G-
k^K

Again there is a pair (d, / )  and a set A*(A) C A(A) such that |A*(A)| ^ 
^  ^|A(A)| and (d, / )  is associated to all a £ A*(k). We finally set

AC* = { p  A ^  A', a G A*(A)} , 

r(A) = I {a mod / ;  a € A*(A)}|,

and we note that

i n =  E H ’w u i - '
k<I<
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If к  ^  К  is fixed and (d, / )  is the associated pair then on the one hand

( 21)

but on the other hand j E П implies (ail' -f bk' ,  d ) = (a2l' +
+ bk', d) =  /  and so a\l1 = a2l’ (mod /) .  Hence a\ = ß2 (mod / )  in view of 
( /, /') = 1. This means a\ ф a2 (mod / )  implies >C * ^  П £*2д  = 0 and so

( 22 )

(21) and (22) together give

I  Вт2
(23) r ( k ) d ^ — — .

Now we fix a fraction  ̂ and check how many solutions the equation

(24)
b

l

has. If we write q = k'l’e, ( к 1, /') = 1 (we can do this at most in T^(q) ^  r 2 
different ways) then for every /  ^  min (^p-, ^7) we have d = e / ,  = A:'d,
/ = I'd are determined. Also a (mod к') is determined by al' + bk' — c f . For 
a (mod / )  there are r(k) choices and as ( /, к') = 1 there are r(fc)pj = r(k) 
choices of a. Finally, a determines b. Thus the number of solutions of (24) 
is by (23) at most

Y  Y , r (ef k">
q=l'k’e f

E E™ <
q—l'k'e j  <K f H

L B t 4 ( \  + log A ) 
H

This means

101 >
H

L B t 4( \ + log K ) Y  l £ a / Ar l  =  L B t 8 ( \
G H ‘

fex + log К )

which completes the proof.

A cta  M aihematica  Hungarica 65, 1994



D I F F E R E N C E  SETS W IT H O U T  к-TH  PO W ERS 1 8 1

7. Proof of the theorem

We are going to detect solutions of the form a — a1 = m K where a £ Ao, 
a' £ A\ ,  (m, P ) = 1. At first sight this looks curious as 2 \ m  but Ao could 
be very big without any 2 f a — a'. We stress again that this can not happen 
with an extremal Ao which must be well distributed in residue classes to 
small moduli. This fact is implicit in Lemma F.

For any 1 ^  Л, 1 ^  K ,  1 ^  P we define

Px(K,U) = к ; 1 ^  a ^  к й К, (а, к) = 1, max
J__ 3L I/ ASM t 4 W

Pi >
u

4 Л - 1

Qa = Qa- i Q i = Q\ 3 , Qi > 1; MA = max P\{K, U)/U2.l^K^Qx
1ÜU

Q1 is our most important parameter which will determine the exponent 
in the Theorem. We choose Q\ later optimally. We want that for К  ^  

Qa the intervals in the definition of P \ (K , P ) should be disjoint, and also 
Qx< z t  = e^fbgbgN)2 Both follow if we can assume

(25) ^ lo g Q j ^  ^(log log iV )2.

К  a and Pa wdl denote that pair where рд takes its maximum. If this happens 
for different К  a , let Ад be minimal such. As К — P = 1 is considered in the 
definition of p a  we have

(26) <
= /iA= U l

Like in (9), Section 2 we have

<=o x
= a\ N ,

especially

(27) <7! ^
N_
Ma

for any Л, Q\ satisfying (25).
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Clearly fi\ ^  /iA+i and either there is a 1 ^  A ^  A such that

(28) Мл ^  ^A+1 ^  MA(logNy* 

or

(29) ha ^  (logiV)2.

We will show that (28) does not happen when A ^  1 log log log log N  and 
(27), (29) will prove our Theorem.

Let 1 ^  A be fixed and let K \,  U\ provide the corresponding maximum. 
By (26), (25) and the definitions

(30) I Ü U x ü  K x й  Qx й e ^ 0*l°sN)\

We can select a set V  = { ^ }  such that |Fj (jt) | ^  is the maximal
value in |& -  f  I < 1 S a ^  к й  K x, К  k) = 1 and \V\ = PX( KX, Ux).
For any a  £ V  we have

E  e(aa')wm 
— a + a , + m K= 0 ( N )

= о

since — N  + 1 ^  — a + a’ + m K ^  N  — 1. Thus by (14), Section 3 we have

N - l

E F0 Ti >
Ux S( 0 )Z

GqG \ M
2CA(loglog jV)2 '

The contribution of those t for which either |Fb (jj)\ ^  ^  or |Fi (a + ^-)| ^  
^  is negligible by Hölder inequality, Parseval identity (6), Lemma S4, and 
(5), (25), (30). Indeed

£ ш а х |С , |^ Т 7  ( £ | F , | 2) x ( ^ | Л _ , | 2) 5 ( £  | S f +i ) <

<£
ai \ 2K_1 + i
Q

(alN ) i  2к+2(сгг_гА7)2М <
a0M N

<
GqG \ M

д з* -1+1 Ux (log log TV )3
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Similarly the contribution of those t for which

(32) < o\M  
~ Q \N ( \o g \o g N f

is negligible by Cauchy-Schwarz inequality and Parseval identity (6)

<

S m a x |,S |Q r |F „ |2) (E lU l2) '  S 

S ------- ------------ -Aa0N f \ a , N ) ^  S ------
QxN(\og\ogN) UxN(\og\ogN) 3 •

By Dirichlet approximation theorem we can find a 1 ^  b ^  l 'й (b, l)

Q
= 1 to each jj such that

t b
TV 7

< IN'

If 2 Ú l ^  ^  then Lemma S2 says

s ( ^ )  « М е - ^ (1о«|о8Л,)2 < ------- ~ --------
W  QxN(\og\og N  )4

thus (32) is really the case. If Qx+\ / Q x < l < z then by Lemma Si

M
<

G\M
< 11/3 = QxQ\/3 " QAiV(loglogiV)4

provided

(33) Q1 £ (log log N) 12

Let т(/, b, a) be the set of -fa ф 0 such that | ^ - g |  < $■, |P o (^ ) | ^  
= I-Tl (o + jf) I ^  Q-. We get from (31) that

<70(J\M
Ux(\og\ogN ) 2 <
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< E £  £
-  <?A

<  max
^  ' r(/ ,b,a)к £л±1.(М ) = 1  

'=  Qx

max
т(1,Ь,а)

F\ a  +
N , £

jj£T(l,b,a)

<

S t N

Lemma SI and Lemma S3 provide

c* ( 0£  *">2 £  Kv-i)
% £т(1,Ь,а) Gr(/,6,  a)

+

'(0/------ K\>
+Q2M e ~ <  _ _ (loglogyv)6M.

This means th a t there are integers 1 ^  Fa ^  Q, 1 ^  Wa ^  Q, 1 ^  La й 
such that the set £(a) defined by

Ц “Mp < / < La , (6, /) = 1, ^  ^  max
Z v a  r ( i , 6 , a ) f t <Jr

< 2cto
I/ ’ K a

satisfies

<  max
/  t

Fi ( a  +  —
t ( 1, b, a ) V N

I A « ) I »
VaW a L

<
2CTJ

1/2

U\R{\og\ogN) 18

where R  = т а х { к " ^ ; l ^  Q a+i }- Here we chose Vq, We, La as diadic 
integers so the possible number of choices was

<  log Q log Q log z ^  (loglog iV)10.

But this also means that for at least

PX( K X, Ux)/ (\og\ogN ) 10

different a  £ V  we chose the same triplet V , W, L. With this triplet there 
is a set V* С V  such that

(34) m  ^ P\(KA, U \)
(log log N ) 10 ’

Fi гЬ for V е 7 ” '
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Further, for any f  £ V* there is an f  with К
(а, к) = 1 and also there is a set £ ( f ) of rational numbers y, \L  < l Ú 
^  £, (6, /) = 1, with corresponding numbers ^  ^  0, f  ^  0, | f  -  y| <
| f - * |  < f  such that

V W L 1/ 2

> U xR(\og\ogN )18’

v_\ 2oo ax <
N J  V  ’ VF =

t w 
~N + N <

'2o\
~W'

(35)
N

vo
V

< * (

We are going to use Lemma CR to show that the number of different 
is large. Because of the small size of к and l this follows if the number of 
different |  + у is large. К is the set of | ,  so G satisfies (34), Ca/k is the set 
of the corresponding y, so H  satisfies (35). Finally Lemma F says that for 
any fixed < l ú  L

{b; у e u £ aAJ ( VoУ 
V )

I N - 1

s EE
6=1 U=1

I g_

\Fo N
„ (loglog N) 2 
<<: log yv ^

i.e.

В  <
F 2(log log N )5 

log N

Lemma CR says that the number of different |  -f у is at least

P \(K \, Ux) V 2W 2L__________ log N y
(log log A )10 U2 R 2(log log A )36 £ F 2(log log iV ) V  =

> VF2 log TV P \(K \, U\)
-  R2T8(\og log A)53 U2

As the denominator of |  + у is at most kl ^  Q\+\ and | |  _  £| < 
< we get that

Pa+i (QA+i , IA )»
/iA IF 2 log N

R2r 8(loglog A)53’
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i.e.

(36) > log N
И\ + 1 _  /4ЛЛ2г8(1оё1о§ЛГ)54-

As is well-known

log r, log R < log Q\+i
loglog<5A+i <

4AlogQi 
Л + log log Q j '

If

(37) 4Л log Qi 
Л + log log Q j

^  C\ log log A

with a suitably chosen C i > 0 then (25) is satisfied trivially and (28) is not 
true for A. We have to balance this with (33). The close to optimal choice 
of Q1 is

Qi = (logA)(lo6lüglügjV,1/4

and then (37) says
4 X <C (log log log N )3/4

which follows if

A ^  -  log log log log A.

(27) and (29) prove our Theorem.
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M A R K O V  A N D  B E R N S T E IN  T Y P E  
INEQ UALITIES ON SUBSETS OF

[-1,1] A N D  [—7Г, 7r]
P. BORWEIN and T . ERDÉLYI (B urnaby)1

The primary purpose of this note is to extend Markov’s and Bernsteins’s 
inequalities to arbitrary subsets of [—1,1] and [—7r, 7r], respectively.

We denote by V n the set of all real algebraic polynomials of degree at 
most n, and let m(-) denote the Lebesgue measure of a subset of R . We 
were led to the results of this paper by the following problem. Can one give 
polynomials pn E Vn and numbers an E (0,1), n = 1 ,2 , . . . ,  such that

(i) m ({x  E [0,1]: |p„(x)| ^  l}) ^  1 -  a„,
(ii) max |pn(z)| ^  1O^x^an

and
(iii) lim n_2|p /n(0)| = oo

are satisfied? This question was asked by Vilmos Totik, and a positive an­
swer would have been used in proving a conjecture in the theory of orthogonal 
polynomials. However, Theorem 2 of this note shows that the answer to the 
above question is negative, in fact, it gives slightly more. In addition, our 
Theorem 1 answers the corresponding question for trigonometric polynomi­
als. Though our results cannot be used for Totik’s original purpose, our 
proofs illustrate well, how Remez-type inequalities can be used in proving 
various other polynomial inequalities.

In this note we prove the following pair of theorems.
T h e o r e m  1. Let 0 < a ^  2zr, 0 < L ^  1, let A be a closed subset of 

[0,27t] with Lebesgue measure m(A) ^ 2 ж — a. There is an absolute constant 
C\ > 0 such that

(1) m ax |p '(f)| ^  CiT_1(n -f n2a)max |p(t)|

for every real trigonometric polynomial p of degree at most n, and for every 
subinterval I  of A with length at least La.

T h e o r e m  2. Let 0 < a ^  1, 0 < M  1, let A be a closed subset o f [0,1] 
with Lebesgue measure m (A) ^  1 — a. There is an absolute constant C2 > 0

1 T h is m ate ria l is b a sed  upo n  work su p p o rte d  by the N ational Science and  E n g in eer­
ing R esearch  C ouncil of C a n a d a  (P. B.) and  th e  N ational Science F oundation  u n d e r  G ra n t 
No. DMS-9024901 (T . E .)
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such that

(2) m ax|p,(a:)l < c2M~1n2 шах I p{x)\
х £ / 1 ' x £ A  1 '

fo r every real algebraic polynomial p of degree at most n, and for every 
subinterval I  of A  with length at least Ma.

Up to the constant ci, Theorem 1 is an extension of both Bernstein’s 
[5, pp. 39-41] and Videnskii’s [6] inequalities, while up to the constant C2, 
Theorem 2 contains Markov’s inequality [5, pp. 39-41] as a special case.

The key to the proof of Theorem 1 is a Remez-type inequality [2] proved 
recently for trigonometric polynomials, while the proof of Theorem 2 relies 
on Theorem 1.

P roof o f  T h eo r em  1. Denote by Tn the set of all real trigonometric 
polynomials of degree at most n. If x/2 ^  a ^  27t, then the theorem follows 
from an extension [1, Theorem 5] of an inequality of Videnskii [6]. Therefore, 
in the sequel we assume that 0 < a < 7t/ 2. Let I  be a subinterval of A such 
tha t m(7) ^  La and 7Г £ 7. It is sufficient to prove that there is an absolute 
constant ci > 0 such that

(3) ! 7Г)I ^  CiL_1(n + n2a) т а л  |p(/)|

for every p £ Tn. Let Tn be the Chebyshev polynomial of degree n given by

(4) Tn(x) = cos(n  arccos я), — 1 ^  x ^  1,

and let

(5) Qn,La(t) := T2n ( s in ( f /2 ) ( c o s ( 7 a /4 ) ) ( V 2„((cos(Za/4))-1) ) .

A simple calculation shows th a t Qn,La £ %i,

(6) Qn,La(ir)=l,  Q n , L J n ) = 0 ' max |Q n,La(<)| = 1,itR

and there is an absolute constant C3 > 0 such that

(7) \Qn,La{t)\ ^  exp(—c3 nLa), t £ [0,7r — La/2] U [it + La/2 ,27г].

Let p £ Tn be such that

( 8)
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The Remez-type inequality for trigonometric polynomials [2, Theorem 2], 
m(A) ^  2тг — a, 0 < a Ú 7t/ 2, and (8) yield that there is an absolute constant 
c4 > 0 such that

(9) max
0 ^tg 2ir |p (0 | ^  ехр(с4гш).

Denote the endpoints of the interval I  by a < ß . Since ß  — a — ni(I) ^  La 
and 7Г G I , we have either a ж — L a /2 or ß  ^  ж -f- L a /2. We may assume 
that

(10) ß ^ ж  + La/2,

otherwise we consider the trigonometric polynomial p £ Tn defined by p(t) := 
:= р(тг — t). Now let

( 11) m := [C4C31 L~*n\ +  1 and Q ■= Qm,La- 

Observe that (6)—(11) imply

(12) |( p Q ) ( 0 | ^ i .

where

(13) E  := [0,7Г -  Za/2] U [zr, 27г].

Note that E  is an interval of the period with length 27Г -  L a /2, and ж E E. 
Therefore an extension [1, Theorem 5] of an inequality of Videnskii [6] , 0 < 
< L ^  1 and (8) yield that there are absolute constants C5 > 0 and c4 > 0 
such that

(14)
M ) V ) |  S  ((n  +  m) +  c s ( n  +  m ) 2L a / 2 )  ^ C\ L  l ( n  +  n 2 a )  max | p (t) \.

Recalling (6), we have

(15) p'{ 7Г) =  (pQ)'( 7Г),

which, together with (14) gives the theorem. □
P roof of T heorem 2. If 1/4 ^  a ^  1, then the theorem follows from 

the Markov inequality [5, pp. 39-41]. Therefore, in what follows we may 
assume that 0 < a 5í 1/4. Without loss of generality we may also assume
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tha t /  = [0,5], where Ma ^  6 5Í 1, the general case can be deduced from this 
easily by a linear transformation. Let p E V n,

(16) y(t)  := 1/2 + ( 1 / 2  + n)cosi,

(17) p{t) ■■= p { y ( t )) e T„,

(18) Ä := {t E [0,27t] : y(t) G A)

(19) / := { < €  [0,tt] :■ y ( t )  e /} ,

and

(20) ä  := 27Г — m ( Ä ) ,  i . e . m(Ä)  = 27Г

It is easy to  see that 0 < a ^  1/4, A C [0,1], m(A)  ^  1 — a, m(I)  ^  Ma, 
(16), (18), (19), and (20) imply that

(21) a ^  сву/а

and

(22) m(7)  = ctM s/Ti ^  c - jc ^M a

with suitable absolute constants eg > 0 and c7 > 0 . If L := cyc^x M  ^  1 and 
a ^  n-2 , then Theorem 1, (20), (21), and (22) yield

(23)
m ax |p '(t)| ^  CiC^CßM-1 ^  + n2ä)m ax  |p(f)| ^  c$M ~l n2 \/a max I />( а;) I 
t ä  teÄ x£A

with a suitable absolute constant eg > 0. Also, (16)—(19) and I  C [0,1] imply 
that

\p'(t)\ =  \p'{y(t))y'{t)\ = |p'(y(<)) I (1/2 + a) sint ^  c9 \p'(y(t))\ sfa

for every t E l  with a suitable absolute constant eg > 0. Since every x E I  is 
of the form x  = y(t) with some t  E / ,  (23) and (24) imply that

(25) max | p {x)\ ^ cgcä1 M ~ l n2 max I p (x ) |,

whenever c-jc^M ^  1 and a ^ n~2. If c7Cg!M ^  1, that is M  ^  cec^1, 
and a ^  n ~ 2, then I  can be divided into subintervals of length k~1m(I) ,  
where к :=  [cßC^1] + 1, and the already proved part gives the theorem. If
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0 < a < n 2, A C [0, ll and m(A)  > 1 — a, then the Remez inequality [4, pp. 
119-121] or [3] yields that

(26) max |p(x)| ^  сю max I p(x)|

for every p £ Vn, where Сщ > 0 is a suitable absolute constant. Combining 
this with the Markov inequality [5, pp. 39-41], we obtain 

£
(27) maxIpYx)! < max |?/(x)| < 2 n2 max |p(x)l <

x€l 1 v ' -  O^xgl1 1 “  Ogxgl1 1 “

й  2c\qv?  max I p (x ) | ,

and the theorem is completely proved. □
It may be interesting to compare Theorem 2 with the following
E xample  3. Let 0 < a ^  1/2, A = [0,1 -  a] U {1} and

Pn(x)  = (x -  l)Tn(2(l -  a )_1x -  1), n = 1 ,2 ,. . . ,

where Tn is the Chebyshev polynomial of degree n defined by Tn( x ) = 
= cos(n arccos x), — 1 ^  x ^  1. Then

max I P '(x ) | ^  |P '(1 ) | = Tn (2 (l — a)-1 -  l) ^ T n(l + 2 a )^

]> 2_1( l  + 2 \ /a )n ^ 2- 1 ( l  + 2 v ^ )n m ax |F „(x )|.x&A
A similar example can be given in the trigonometric case.
A cknow ledgm ent. The authors wish to thank Vilmos Totik for his 

question tha t helped to formulate the theorems of this paper.
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SOM E LATTICE H O R N  SEN TENC ES  
FOR SU B M O D U L E S OF PRIM E P O W E R  

C H A R A C T ER IST IC
GÁBOR CZÉDLI (Szeged)1

For a ring R  with unit the class of lattices embeddable in the submodule 
lattices of R  modules is known to be a quasi variety (cf. Makkai and McNulty
[6]). This quasivariety will be denoted by

C(R) = { Su(r M)  : r M  is an Ä-module }.

We will consider rings with prime power characteristic pk where к > 1. All 
the rings in the sequel, unless otherwise stated, will be assumed to be of 
characteristic pk. Let W (pfc) denote the class {£(Д) : char R = pk }. While 
the variety H C(R)  depends only on the characteristic of R (cf. [5]), and 
W (p) is a singleton (cf. [3, p. 88]), W (pk) consists of continuously many 
quasivarieties C(R),  cf. [2]. This result was proved by the following pow­
erful tool. Let r  denote the similarity type consisting of operation symbols 
V, A, •, Í, 1 ,0 ,1  with respective arities 2,2,2,1,1,0,0. The set 2(R)  of two- 
sided ideals of R  becomes a r-algebra in a natural way: V.A are the lattice 
operations, 0 =  {0}, 1 = R, • is the usual product of ideals, j  X  =  { p x  : x £ 
£ X  }, and ' \ X  = { x : p x E X } .  Let K(R)  denote the set of all nullary 
r-term s a such that a — 1 (=  R)  holds in 2(R),  and let X{R)  denote the set 
of (universal) lattice Horn sentences satisfied in C(R).

T heorem A (Hutchinson [2]). If C(R\)  ^  £(f?2) then I i ( Ri )  2  Л’( fO)-

The proof of this theorem is based on the following

T heorem В (Hutchinson [3] and [4]). C(R\)  ^  £(/£2) is equivalent to 
the existence of an exact embedding functor füj-Mod —<• Ä2-M od.

Note that T’(Äj) 2 -ЦДг) is also equivalent to C(Ri) ^  £(i?2). There­
fore our present investigation based on Horn sentences might be interesting 
from abelian category theoretical point of view, too.

Our goal is to deal with the following two open problems, the first of 
which is related to the converse of Theorem A.

P roblem C. Does K(R\)  5  К (R2) imply £(f?i) Q £ (Ä2)?

1 T h is work was partially  su p p o rte d  by H ungarian  National F o undation  for Scientific 

R esearch  G ran t No. 1903.
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P r o b l e m  D. Is W (pk) closed with respect to arbitrary joins (taken in 
the lattice of all lattice quasivarieties)?

Note th a t W (pk) is closed with respect to finite joins. It is shown in [2] 
that ( W ( p fc); Q ) contains large chains and antichains and it has a nontrivial 
automorphism, namely C(R)  £(Äop), but we do not know ifit is a lattice. 
An affirmative answer to Problem D or (much less trivially!) to Problem C 
would imply that W (pk) is a lattice. The analogous problems for the set 
of lattice varieties H T (5), where the S  are rings of any characteristic, have 
positive solutions (cf.[5]).

M a in  T h e o r e m . A t least one of Problems C and D has a negative 
answer.

The proof of the Main Theorem is based on certain lattice Horn sentences 
x{m,p),  which might be of separate interest. Note that x(2,2) appeared in 
[1] but without any application that time. Our proof is divided into several 
lemmas.

First we define appropriate rings. The ring of integers modulo pk will be 
denoted by Z *. For a given n let Fn denote the polynomial ring

'̂ ,pk [£ъ • • • 1 1 щ 1 • • • 1 Vn\-

Let In be the ideal generated by

{ ZiVi -  1 : 1 = * = n } U { рта : [ Я i Я n )  U { рк~г£п } U

U{ : 1 ^  i ^  n, 1 Я j  ^  n ]  \J { r/iPj : 1 Я i 'й n, \ ^  j  ^  n } U 

U{ tifij : 1 l ^  j  Яп ,  i ф j  },

where £0 = 1. Put R n = Fn/ I n, ay = & + yt = rjt + Note that x 0 = 1. 
By the definition of R n we have

(1) Xiyi = pk~1x i- i ,  ViVj = 0, X{Xj — 0, x tyi = 0, pkxt -  0,

pk~1xn = 0, p y i -  0 for i , j , l  e { l ,2 , . . .n } ,  г ф l.
L e m m a  1. The elements x t (г = 0 ,1 , . . . ,  n — 1), xn and у\ (г = 

= 1,2, ...,ra ) are of respective additive order pk, pk~x and p. Further, the 
additive group of R n is the direct sum of the additive cyclic subgroups gen­
erated by these elements. In other words, each element of Rn has a unique 
canonical form

( 2 )

П— 1 П
^2 а‘х{ + 0Xn + X! iiVi 
2—0  2 —  1
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where a , G { 0 ,1 ,...  ,p k -  1}, ß G { 0 ,1 ,... ,pk 1 -  1 } and 7, G { 0 ,1 , . . . ,  
p — 1 }. The rules of computation in Rn are (1) together with the axioms of 
unital commutative rings of characteristic pk.

P r o o f . It suffices to show the uniqueness of (2); the rest is clear. Assume 
that 0 G R n is of the form (2). Then, by the definition of 7n, we have

71— 1  П  П  П

(3) a «&+ ßtn  +  ~ ~ рк~г&- о  + ■ рг>г+
2 = 0 2 = 1 2=1 2=1

71 71 71 71 71 71

T 9oP fn T У '  У 'y hij ■ +  У  ̂ У ~ Tij ■ ip\T]j +  EE s,j ■ tiVi
2 = 1 j  =  1 2 = 1 j =  1 2 = 1 /=1

where /,-, gi, hij, r,j, 5,у G Tn- We treat the elements of Fn as polynomials 
in the usual canonical form. Hence these polynomials are sums of uniquely 
determined summands and each summand consists of uniquely determined 
factors (i.e. powers of indeterminants) and a unique coefficient (from Zpk). 
Suppose we have performed the operations on the right hand side of (3). 
Then each summand on the right hand side in which гц is the only indeter­
minant has a coefficient divisible by p. Therefore 7, = 0 for all i. We obtain 
/3 = 0 similarly.

Suppose OLi ф 0 for some i. The only source of £, on the right is f l+1 • 
• {£i+iT)i+l ~  Since pk does not divide eq, the constant 6 in / г+1 is not
divisible by p. But then <5£г'-и7г+1 cannot be cancelled by other summands. 
This contradiction completes the proof.

Before describing K ( Z pk ) we make the set { 0 ,1 ,2 ,. . .  к } into an algebra 
of type r  via putting iV i /  = max{a;,j/}, x Л у = min{x,y}, } x = min{x + 
+ 1 ,&}, J, x  = max{x — 1,0}, 0 = 0, l  — к and x ■ у — max{x + у — A:,0}. 
(To avoid confusion, the ordinary product of x and у will be denoted by 
the concatenation xy.) Denoting the set of nullary r-terms by Vo, let h be 
the map associating with any element of Vo its value in the above-defined 
algebra { 0 ,1 ,2 ,...  к }.

L e m m a  2. K( Zpk) =  { о G Vo : h(o) = к }.

P r o o f . An easy induction on the length of о  yields that the value of a  
in l ( Z pk) is pk~h^ Z pk = [k~h â'> Zpk, whence the lemma follows.

L e m m a  3 .  | X L i  K ( R n )  =  A’( Z p*).
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P roof. For 0 ^  t ^  п — 1 and 0 ^  j  ^  к we consider the following 
subsets of

=  { p'xi  : 1 5Í / < ra — f, i ^  к -  jr, i ^  0 },

: n - t ú l % n  —  1, i + / ^  n -  t + fc -  j  — 1, г ^  0 },

= { p‘xn : i'Z. k — j  — l, i i> 0 },

= {l/i : 1 ^  I ^  n, j  > 0 } and

4 ?  = { р ’ : ^ * - ; } и  4 ?  U 5}? U С*? U D $  .

Note that = { j/i,. . . ,  yn} for j  > 0 and -  0. Let /["* be the
additive subgroup of f?n generated by E - t . With the help of Lemma 1
it is not hard to see that the /j" ' are ideals of Rn, 1 ^  = Rn, 0 ^  t\ й 
^  t2 ^  n -  1 implies / j ”! C /j" ) , and 0 ^  j x ^  j 2 S * implies /j"] £ 
Further, j C and |  £ /{"|. Now we claim that i f f  ■ i f f  Q
= l f f t+ 1- Suppose a G and 6 G E f f . It suffices to check ab G E f f t+l. 
We omit the straightforward but long details and consider only the case 
a G ß f f  and b G ü f f . Then a = plxi, n — — l, i + l ^ . n  — t +
+  к — j  — 1 and s > 0. We may assume that b = yi as otherwise ab = 0. 
We conclude ab — p t + k ~ 1X [ _ \ , n — ( / + 1 ) ^ 1  — l ^ n  — 1 and (г + к — 1) + 
-j- ( / — 1) — 2 -f~  ̂ Ч- ^ — 2 ^  72 — t -}- к  — j  — 1 h  — 2 — 72 — —

+  1 -  к) — 1 ^  72 — (t + 1) +  к — (j + 5 — к) — 1 ^  72 — (2 + 1) + fc — j  • S — 1,
yielding ab G ^"«ít+i £  ^ j í . t+ 1-

For a r-term  er E Vo let <тд„ denote the value of a in l ( R n). The length 
|cr| of a is defined via induction: | 0 | = | 1 1 = 1, | f a\ = | j  a\ = |<t| +
+  1, \o\ V a2\ — \o\ A cr21 = \&\ ■ <x2| = \<J\ I + I<721 + 1. The inclusions among
the i f f  we have already established yield

(4) °Rn i  4 ( ] )ik| , provided \a\ < n ,

via an easy induction on |<r|.
Now the proof of Lemma 3 will be completed easily. Suppose that a (fc 

K(Zpk). Then h( a )  ^  к — 1 by Lemma 2. Choose an n with n > |<r| -f 2. 
Then, by (4) and Lemma 1,

Г  И ” ) C /-("I C  r<n )
=  fc— 1,|<t| =  fe—l,n - ?  1,
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whence a ^  K ( R n). Therefore f l^ i  A’(Ri) K(Zpk).
Conversely, an easy induction on |<r| yields ORn 2  f t nm ln

particular, if h ( a )  — к  then ORn — R n- Hence Lemma 2 yields K(Ri )  2 
2 R ’( Z pk) ,  proving Lemma 3.

Now let m  = pk~l . On the set of variables { x , y , z , t }  we define the 
following lattice terms:

r = ( i V y ) A ( ? V  t), h 0 = g 0 = t, h\  = ( h t V у) Л ( x  V z )

h i+ i  =  ( h -  V г) Л (ж V t ) ,  g'i =  ( g t V x ) Л( у  V z ) ,  g l+x =  (g[  V г) Л (у V <),

r0 =  (/ím_i V 2) A y, 90 =  z  V z V j p - i ,  q = rQXx.

Let x ( m ->P) denote the lattice Horn sentence

ro ^ qo => r <, q.

Demma 4. x { m i P )  d o e s  n o t  h o ld  i n  C ( Z pk) .

P r o o f . Let M  be the Zp*-module freely generated by { f \ ,  f 2 , / 3 } ■ Con­
sider the submodules x = [f2], у = [ f \  -  / 2 ], г = [/3], t = [fx -  / 3 ]. An 
easy calculation gives r = [/1]. (We do not make a notational distinction 
between lattice terms and the submodules obtained from them by substi­
tuting the submodules x , y , z , t  for their variables.) It is not hard to check, 
via induction on г, that h\ = [(t + 1 ) /2 -  / 3 ] ,  ht = [ f x + i f 2 -  / 3 ] ,  g\ -  [(* + 
+ l) / i  -  (i + 1)/г -  / 3], 9 i = [(* + l ) / i  -  г/2 -  /з]- These equations yield 
»■о = { a ( f i  -  / 2 ) : т а  =  0} = [р(Д -  / 2 )], 9o = [p/i, / 2 , / 3 ] ,  9 = [p /i, / 2 ]- 
Therefore x ( m , p ) does not hold in Su(Af).

Lemma 5. x ( m i P )  h o ld s  in  C(Rn) f o r  e v e r y  n  ^ 1.

P roof. Assume that x , y , z , t  are submodules of an Än-module M such 
that r0 ^  90) and let /1 G M  be an arbitrary element of r .  Our aim is to 
show /1 G 9. Since /1 G r =  (x -f у) П (2 -f t ) ,  we can choose / 2 , /3 G M such 
that /2 G x, /1 — /2 G 2/, / 3  G 2, /1 — / 3  G t .  An easy calculation, essentially 
the same as in the previous lemma, gives (г + 1)/г — / 3  G /j  -f i f 2 — / 3  G 
G hi, and { а ( /г -  f 2 ) : т а  -  0} Q r0. In particular, x n ( f x -  f 2 ) G r0.

Now let us suppose that Xj ( f x -  f 2) G i'o for some j  > 0. We intend 
to show X j_i(/i -  / 2) G r0; then /1 -  /2 =  x0(/i -  / 2) G r0 follows by 
(downward) induction on j .  From ?-o Q qo we infer Xj(f\  — f 2) G 90 = x + 
+ 2  + <7p_i. Hence there exist elements eo and ex in M  such that eo G x , 
ei -  e0 G 2  and X j ( / i  -  / 2) -  ег G <7P- i  =  (Ур_2 + r ) n (y + t). This implies
the existence of two elements, say eip1 and ep4~x G M  such that ex — e4~x G
€ У, Z j(/i -  / 2) -  e$_1 G t ,  ex -  e£_1 G 9p_2, and ^ (/1  ~ / 2) -  4 ""1 G r - 
Continuing this parsing and denoting x} (f x — f 2) by ej we obtain that there

A cta  Mathematica Hungarica 65, 1994



200 G CZÉDLl

exist elements ej E M  for i = 1 ,2 ,... ,p — 1 and / = 1 ,2 ,. . .  ,6 such that for 
г E {1 ,2 ,... , p  -  1}

ei -  eg E у , e l - e \ E  y, eg -  e ^ z ,  e \  -  eg+1 E t, eg -  eg G x, 

eg -  eg E x ,  eg+1 -  e'5 G у ,  eg -  е г6 E z, eg+1 -  e l6 E t, е г -  ej G t.

Clearly, eg =  x j ( f \  — / 2) G y. Let us observe that x contains uo = xy/g + 
+  eo + Y^i=i ( e 2 ~ eg). But

p —2 p —2

« 0  =  ] C ( e2 _  е б )  +  “  e i + 1 )  ”  ~  / 2 )  -  e 4 _ 1  )  +  X j ( f 1 -  / 3 )  +
t—1 i = l

+*j/3 + (e0 -  ei) + (ex -  e{) +  (eg 1 -  eg 1) + (eg 1 -  eg) + (eg -  eg l ),

whence и  о G x. Now uq E x  and uo E r  imply uq E h i  for all i >  0. In 
particular, uo G /im_i- Let гц — eo -  ei — eg + eg for 1 ^  i ^  p -  1. We have, 
for i > 0,

p-i
u, = eo — (ei -  eg) -  eg + ^ ( ei+1 _ es) +

l=i

P-1 p-1
+ -  4 )  + X I ( 4  -  4 )  6 ^ + у

l=i l=i+1

and Ui = (eo — ei) -  (eg — eg) G 2, whence ut' G x. Let u, =  e± + eg -  eg. Since 
e\ -  eg -  (e\ -  ei) + (ei — eg) E у + t and, for i > 1, eg -  eg = (eg -  eg-1 ) -
-  (ei -  eg- 1 ) +  (ei -  eg) G ?/ + t , we have vt = ( e x -  eg-1 ) + (eg-1 -  eg) + eg + 
+ (ei -  е з ) € 2/ + L But и; = e0 -  (e0 -  ex) + (eg -  eg) + ( e l2 -  eg) G x  +  z ,  
whence и,- G h '0 (i = 1 ,2 ,. . .  ,p  -  1). For 1 ^  i ^  p -  1 let W{ = eo + eg — eg. 
From Wi = Vi + Ui E h'0 + r and wx = eo +  (eg -  eg) G a; we infer that wx E h \ . 
This together with wt E x yield wt G /im_ 1.

Now xy _ i(/i -  / 2) G у and, by t/yxy = m x j - 1 and p y j  = 0, X j_i(/i -
-  / 2) = X j_ i( / i  + (m -  l ) / 2 -  /3) -  2/jWo -  E iJ i  2/jw«' +  x j - i h  e hm_i + г. 
Thus X j_ i(/i — / 2) G xo, as intended.

Finally, /1 = (/1 — /g) +  /2 G fo + x =  <7 completes the proof of Lemma 5.
P roof of the Main T heorem. Let us assume that Problem C has an 

affirmative answer. We claim that
OO

(5) V  C(Rn) = C(Zpk)
71=1
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where the join is formed in (W {ph) -^  ). Since K (Rn) 2  K ( Z pk) by Lemma 
3, we obtain £ ( R n) Я C(Zpk), for every n, by the assumption. (Note that 
C(Rn) C(Zpk) also follows from Theorem B.) On the other hand, suppose 
£ (5 ) E W (pk) and, for all n, Il(Rn) Q £ (5). Theorem A yields K ( R n) ^  
5  K(S) .  From Lemma 3 we conclude K ( Z pk) = D^Li R(Rn)  =! A '(5), and 
the assumption on Problem C gives C(Zpk) ^  C(S). This proves (5).

Now if Problem D had an affirmative answer then (5) would be true 
even in the lattice of all quasivarieties of lattices. But this would contradict 
Lemmas 4 and 5.

A cknow ledgem ent. The author is grateful to George Hutchinson for 
his helpful comments. In particular, the present result was initiated by his 
idea which, although not used in this paper, is necessary to prove tha t an 
affirmative answer to Problem C yields that W (pk) is a lattice.
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SOM E R E M A R K S  ON S-CLOSED SPACES
Á. CSÁSZÁR*, member of the Academy (B udapest)

0. In tro d u c tio n

5-closed spaces have been introduced in [5], and some of their properties 
were investigated there. In particular, it was shown that they constitute a 
rather peculiar class of topological spaces (see below). The purpose of the 
present paper is to establish further statements on 5-closed spaces together 
with the result that, no matter how strange these spaces may be, every 
topological space has 5-closed extensions.

In a topological space X , a set G is said to be r-open (regular(ly) open) 
iff G = int G , i.e. iff G is the interior of a closed set. F is said to be r-closed 
(regular(ly) closed) iff X  — F  is r-open, i.e. iff F — in tT , i.e. iff F  is the 
closure of an open set.

A set 5  is said to be semi-open iff G C 5 C G for some open set G. Open 
sets and r-closed sets are semi-open. T  is said to be semi-closed iff X  — T  is 
semi-open, i.e. iff there is a closed set F  such that in tF  C T  C F.

According to [5], X  is said to be S-closed iff every cover of X  composed 
of semi-open sets contains a finite number of members whose closures cover 
X . Clearly an 5-closed space X  is almost compact (i.e. every open cover of 
X  contains a finite number of members whose closures cover A ). It is shown 
that 5-closed, first countable, regular spaces are finite ([5], Theorem 3), and 
a regular compact space is 5-closed iff it is extremally disconnected (briefly 
EDC, i.e. the closure of any open set is open) ([5], Corollary of Theorem 7). 
By this, there exist compact spaces that are not 5-closed; the existence of 
noncompact 5-closed spaces was proved in [4], see also Corollary 10.

A filter in X  will be called open (r-open) iff it is generated by a filter 
base composed of open (?--open) sets; a maximal open (r-open) filter is said 
to be ultra-open (ultra-r-open). Since the intersection of two open (r-open) 
sets is open (r-open), [2] (6.1.29) shows that every open (r-open) filter is 
contained in an ultraopen (ultra-r-open) one, [2] (6.1.26) implies that an 
open (r-open) filter s is ultraopen (ultra-r-open) iff either G 6 s or X  — G €

* R esearch  su p p o rted  by H un g arian  N ational Foundation  for Scientific Research, G ra n t 
No. 2114.
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G s for every open (r-open) set G, and [2] (6.1.28) says that two distinct 
ultraopen (ultra-r-open) filters sj and S2 contain members G{ G s, such that 
G\ П G2 — 0.

A topological space is said to be S\ ([2], p. 93) iff x has a neighbourhood 
not containing у whenever у has a neighbourhood not containing x. The 
space is S 2 ([2], p. 95) iff two points having distinct neighbourhood filters 
have disjoint neighbourhoods. Every HausdorfFspace and every regular space 
is S2.

Let X  be a topological space and Y  Э X . A trace filter system on X  is a 
map s th a t assigns to each a G Y  a filter s (a) in X  such that s ( a )  is an open 
filter and, in particular-, s(x-) is the neighbourhood filter of x if x G X .  A 
topology on Y  is an extension compatible with the trace filter system iff s ( a )  
is the trace in X  of the neighbourhood filter of a G Y . Then, in particular, 
the restriction on X  of this topology coincides with the given topology of X .

It is well-known tha t, for every trace filter system, there exist compatible 
extensions on У. Among them, there are a coarsest one, called strict exten­
sion relative to the trace filter system, and determined by the base composed 
of the sets

Á. C SÁ SZÁ R

5(G) = {a G Y :G  G s(a)}

where G С X  isopen in X  ([2] (6.1.2)), and a finest one, called loose extension 
relative to  the trace filter system, and determined by the bases { S U {a}: S  G 
G s(a)} for the neighbourhood filters of the points a G Y .

An extension on Y  is reduced iff a, 6 G Y , a /  b have distinct neighbour­
hood filters except when a, 6 G X  ([2], p. 218). A loose extension is always 
reduced; a strict one is reduced iff distinct points of Y  — X  have distinct 
trace filters, and s(p) does not coincide with any neighbourhood filter in X  
if pG Y  -  X .

A filter s is said to be fixed or free according as fj s /  0 or f) s = 0.

1. C h a rac te riz a tio n  o f .S'-closed spaces

T h e o r e m  1. The following are equivalent for a topological space X :
(a) A' is S-closed.
(b) In X , every cover composed of r-closed sets contains a finite subcover.
(c) In X , every r-open filter is fixed.
(d) In X , every ultra-r-open filter is fixed.

P r o o f , (a) => (b ). An r-closed set is semi-open and closed.
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(b) =>• (c). If s were a free r-open filter, then the r-closed complements 
X  — Gi of the r-open elements G, £ s would cover X . A finite subcover 
{X — G{: i £ /} ( /  is finite) would imply P| Gi = 0: a contradiction.

iei
(c) =>■ (d). Obvious.
(d) => (a). Assume {5t:i £ 1} is a cover of X  composed of semi-open 

sets such that |J{5 j: í £ /'} Ф X  for every finite subset / '  of I. Then 
{ n { * - 5 t: ; £ / '} }  is a filter base composed of r-open sets (when Г  runs 
over all finite subsets of I). Let s be an ultra-r-open filter containing it. For 
x £ p |s  there is an i such that x £ S í: a contradiction since X  — 5; £ s. 
□

For (a) <=>■ (b), see [1]; Theorem 2 and [4], Theorem 3.2.

2. 5-closed 52-spaces

The following lemma is contained in [5], Theorem 2:
Lemma 2. I f r is a filter base in an S-closed space X ,  then there is a 

point x e X  such that each r-closed set containing x intersects each member 
of r.

P r o o f . Assume the contrary. Then, for x £ X ,  there would be an 
r-closed set Fx and a set Rx E  r such that x £ Fx, Fx П Rx = 0. The cover 
{Fx:x £ X }  would contain by Theorem 1 a finite subcover {Fx:x £ F} (F  
finite), implying £ F} = 0: a contradiction. □

The following theorem generalizes [5], Theorem 6 and Theorem 7:
T heorem 3. An S-closed S2-space is extremally disconnected.
P r o o f . Assume X_is 5-closed and 5г, but not EDC. Then there is an 

open set G such_that G is not open. We_can suppose that G is r-open by 
substituting int G for G. For a point у £ G — G, let r denote the collection of 
the intersections of the open neighbourhoods of у with G. By Lemma 2 there 
is x £ X  such that each r-closed set containing x intersects each member of 
r. Now x £ X  — G is impossible since X  — G is r-closed and it does not 
intersect the members of r. Hence x £ G, x ф у £ G, and X  being S2, there 
are open sets U and V satisfying x E U, у E V , U П V = 0. The r-closed 
set U would intersect each member of r in contradiction with V П G £ r, 
U C\V = 0. □

The following theorem generalizes [5], Theorem 5:
T heorem 4 ([1], Corollary 1 and [4], Theorem 3.4). An almost compact, 

extremally disconnected space is S-closed.
P r o o f . The members of an r-closed cover of an EDC space are clopen, 

and if the space is almost compact, this cover contains a finite subcover so 
that Theorem 1 can be applied. □
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3. S-closed ex tensions

Consider an extension У of the space X  compatible with the trace filter 
system s. The following lemma is probably known:

Lemma 5. If G' C Y  is r-open then G = G' fl X  is r-open in X  and 
G1 = s(G).

P roof. Let F' be closed in У, G' = int у F'. We show G = int^ F  for 
the set F  =  F ' Л X  closed in X . The inclusion G C int^ F  holds since G C 
C F  and G is open in X .  Conversely, x £ int* F  implies the existence of an 
H, open in X , such that x £ H C F. Let H' be open in У, H = H' П X . 
Then H' -  F ' ф would imply ( # ' -  F') П У #  0, у £ (H 1 -  F') Г) X  for 
some у, yielding the contradiction у £ H ' П X  = H , y $ . F ' C \ X  = F.  Thus 
H'  C F', H '  C G' = inty F', H C G, x £ G, int* F  C G.

p £ G'  implies G £ s(p), p £ s(G). Conversely if p £ 5(G), say p £ H', 
H — H'  П X  C G for some H'  open in У , then H'  C F'  again since у £ (H ' — 
— F') П X  would furnish y £ H c G , y $ F ' £ )  G'. Thus H ‘ C inty F' = G", 
p £ G'. Consequently G' = 5 ( G ) .  □

Lemma 6. If every free r-open filter in X  is coarser than some trace 
filter s(p) (p £ У) then Y  is S-closed.

P r o o f . By Theorem 1 we have to show that each r-open filter s' in У is 
fixed. Now s '|X  = s is an r-open filter in X  by Lemma 5. If s is fixed then 
so is s'. If s is free and s C s (p) for some p £ Y , then G  = G' П X £ s C s (p) 
for any r-open G' £ s', hence G' = s(G) by Lemma 5 and p £ s(G) = G', 
p £ f]s' .  □

Corollary 7. Every topological space possesses S-closed extensions.

P ro o f . Take an extension compatible with the trace filter system s such 
that {s(p):p £ Y  -  X} is the collection of all free ultra-r-open filters in X.  
□

The extensions figuring in Corollary 7 are reduced if s |y  — A' is injective. 
Hence they are To if X  is T0. Moreover, two distinct points of Y -  X  have in 
this case disjoint neighbourhoods (because their trace filters contain disjoint 
members.) However, by Theorem 3, X  cannot have an S-closed S-2 extension 
unless it is (S2 and ) EDC (since a dense subspace of an EDC space is EDC).

On the other hand, for EDC spaces there exist S-closed extensions with 
better properties:

T heorem 8. Let X  be an EDC space, and Y  D X  an extension compat­
ible with a trace filter system  s such that {s(p):p £ Y  — X} is the collection 
of all non-convergent ultraopen filters in X . Then Y  is S-closed.

P r o o f . It is easy to see that each open filter in X  has a cluster point in 
У. Hence У is almost compact by [3], 5.5.
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У is EDC. In fact, if G' C Y  is open and G — G' П Л", then clearly

cly G' = cl у G = cly //

for H = clx G that is dopen in X . Now x £ cly H Г) X  iff ж £ # ,  and p £ 
£ cly H — X  iff p £ Y —X  and each member of s(p) intersects H , i.e. iff 
H £ s (p) (since s(p) is ultraopen). Thus cly H = s(H ) is open in Y .

By Theorem 4 У is .9-closed. □
C o r o l l a r y  9. A n  EDC space that is S2 (T2) possesses an S-closed 

extension with the same property.
P r o o f . In Theorem 8, consider a reduced, loose extension. It is S 2 (T2) 

because a non-convergent ultraopen filter in X  does not admit any cluster 
point in X .  □

C o r o l l a r y  10. ([4], Example 3.17.) There exists an S-closed T2-space 
that is not compact.

P r o o f . Apply Corollary 9 for an infinite discrete space. Then У is not 
compact because it contains an infinite, closed, discrete subspace. □
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ON A PRO BLEM  OF T Ú R Á N  C O N C E R N IN G  
SUM S OF PO W E R S OF COMPLEX N U M B E R S

A. BIRÓ (Budapest)

Let z \ , Z 2 , . . . , z n  be complex numbers and write Sj =  X ”=i zt U — 
= 1 ,2 ,...)  for their power sums. Paul Túrán started the investigation of 
the sequence

Rn — min max \Sj\
zl ,z2

under the condition

(*) max \zt \ = 1.
l<t<n

This minimum exists by Weierstrass’ theorem, and one can easily see that 
condition (*) can be replaced by Z\ — 1.

Túrán proved in 1942 that Rn > - ,  this was improved to Rn > 5 , by
П U/c=l к

Paul Erdos, then to R n > 2 L by Túrán (see [1]). The relation R n > c for
some positive constant c independent of n has already been conjectured by 
Túrán in 1942. In the special case when Z\  — 1 and the system 2 1 , 2 2 , . . .  , z n 
is symmetric to the real axis, max |5jj ^  1 holds, as it was shown by M.

1 = j = n
Schweitzer (see [1]). This is obviously the best possible result in this direction 
in view of the example zi = 1, z2 = z3 = . . .  = z n  = 0. The next result 
concerning the general case was N. G. de Bruijn’s one: Rn > - 1>j’fg1°s n for 
some c > 0 and for sufficiently large n. It was shown subsequently by S. 
Uchiyama that c may be chosen to be 1 — £ with arbitrary e > 0 (see [2]).

The conjecture of Túrán was proved by F. V. Atkinson in 1961; using 
complex analysis he showed that R n > |  (see [3]). Atkinson improved his 
estimate in two further papers, firstly he proved that Rn > then in [4] 
he obtained the following results: R n > for n < 1600, and, for sufficiently 
large n, R n > so, where 0 < So < \  and so satisfies the equation

^  J  (exp(‘2 s0T(x))  -  l)  x ~ 2 dx = 1,
0
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where T{x ) =  f  j/_ 1|sin?/| dy. (Atkinson did not give the exact value of so 
о

in [4], only that s0 < | . )  These last results were the best lower estimates 
known.

In his book ([5], Problem 12) Túrán posed the problem of finding the 
best possible constant c for which R n > c. This problem is still unsolved.

The best upper estimate known is due to J. Komlós, A. Sarkozy and E. 
Szemerédi [6]: R n < 1 -  for n > n0, and R n < 1 — for infinitely
many n.

In this paper I improve Atkinson’s result showing that R n > \  (Theorem 
1). Theorem 2 is on the one hand a more precise form of Theorem 1, on the 
other hand it deals also with the case when there are more l ’s among the 
numbers Z \ ,  z 2 , ■ ■ ■,  z n  explaining why it is not worth seeking “near” extremal 
systems with more l ’s.

T h e o r e m  1. If 21, 22, . . .  , z n  are complex numbers and z\ = 1, then 
max |5j| > | .  So R n > \  for every n.

P roof. Let ( 2  -  z2)(z — 2 3 ) . . .  ( 2  -  zn) = 2 n _ 1  + b\zn ~ 2 + ...  -f 6„_i.
From the Newton-Girard formulas for this polynomial ^let Tj = 5ГГ=2г^)
Tk + bfTk- 1 + . . .  + bk~\T\ + kbk = 0 (к = 1 ,2 , . . . ,  n — 1) and Tn + b\Tn- \  + 
+ . . .  -f bn- \T \  = 0. Taking into account that T) = Sj — 1 we get

( 1 ) Sk  +  b i S k - i  +  . . .  +  b ^ - i S i  =  1  +  6 1  +  . . .  +  b k - i  — кЬ^

(к = 1, 2, . . .  n. — 1),

(2) Sn + biSn-i + . . .  + bn-iS \  = 1 +  b\ + . . .  + 6n_ i .

L e m m a  1. Let 0 < a  < ^ . If 1 S к S n — 1, then one of the following 
two inequalities holds:

(3) |1 + b\ + . . .  + bk- 1 — kb Î ^ sin a | l  + 61 + .. .  +

(4) |1 +  b\ +  . .. + 6fc_] +6 -̂1 ^  |1 + b\ + • ■ • + 11 + cos 0 |6/jI.

I f  (4) is valid for к = 1 ,2 , . . . ,  s (s ú n — 1), then

11 + 61 + . . .  + bsI > cos a( 1 + |6iI + ...  + |6, |) .

P r o o f . If 1 + 61 + ...  + bk-\ — 0 or b̂  = 0 then both (3) and (4) are true. 
Hence assume that 1 + 61 + . . .  + bk~\ ф 0 and bk ф 0, and consider these 
complex numbers as vectors of the plane. Elementary geometric considera­
tion shows that if the angle of these two vectors ((1 + b\ 4- • .. + frfc-i) and b^) 
is not greater than a then (4) is true, and if this angle is greater than a ,
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then (3) is. (If one wants to avoid geometric arguments, it is possible to 
apply Lemma 2 with A = к, г = 1+fel +Ьм̂ ~ — •) Finally, if (4) is valid for 
к = 1 ,2 ,. . . ,  5, then obviously

|1 + 6x + . . .  + 6S| ^ 1 + cos a (  |6i| + . . .  + |M )

> cos a (  1 4- Ii»i| + . . .  + |6S| ) . □

Continuing the proof of the theorem we distinguish between two cases,
a) (4) holds for к = 1, 2 , . . .  , n — 1. Then by Lemma 1 and (2) we have

( max |5_,A (1 + 16x1 + . . .  + |6„_x I) ^  |5„ + 6x5n_x +  . . .  + 6n_x5x | —
\1 SjSn /

= |1 + 6i + . . .  +  6n_i| > cos ö ( l  + |6ij + . . .  + |6n_x |),

hence max \Sj\ > cos a.
1 =j = n

b) Case a) is not satisfied. Let 1 ^  k0 ^  n -  1 be the least positive integer 
for which (4) is not valid. Then by Lemma 1

I 1 + 6i + . . . + бг-о-1 I > COS 0^1 + |6] I + . . . + I 6jt0_l I ^ .

(The inequality holds for ко — 1, too.) Applying this, (1), and the fact that
(3) is true for ко (because (4) is not valid) we obtain that

( l  + I b\ I + • • • + I 6̂ 0-x| ) ^  I Sk0 + 6i5fc0- i  +  . . .  + bk0- i S \  I = 

= I 1 + 6x + .. .  + —x — к0 Ь̂ 01 ^  sin a | 1 + 6x + . . .  + 6x,0_i I >

> s in a c o sa ^ l + |6x| + . . .  + | 6fco- 11  ̂-

From this
max 15,1 > max 15,1 > sin a cos a.
1=j=n 1 = i = ̂ 0

So in both cases we have the estimate

. . . sin 2amax 5,4 > sin a  cos a  = -------.
i<7<n 3 2

With the choice a  = |  we get the assertion of the theorem. □
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Lemma 2. Let z ф 0 be a complex number, 0 < a < and A > 0. Then
(5) or (6) is satisfied:

(5)

( 6 )

|1 — A z |2 ^  sin2 Q ( 1 +
cos2 a

A + sin2 Q 

|1 +  z\ > 1 + cos alz  I.

P r o o f . Let г  =  r(cos Ф+ i sin ф) be the trigonometric form of 2. Assume 
that (6) is not true, then

|1 +  z \2 = |1 + ГСОБф + Írs in 0 |2 = 1 + 2r COS(/> + r 2 <

< 1 +  2r cos a  + r 2 cos2 a ,  

hence 2 cos ф < 2 cos a  — r  sin2 a .  Applying this

|1 — A z | 2 = |1 — A r  cos ф — l A r  sin ф\2 = 1 — 2Ar cos^+

+ A2r2 > 1 — Ar(2 cos a — r sin2 a) + A2r2 =

1
= 1 H—-  sin^ a Ar  —

A

> 1 -

cos2 a
1 + j  sin2 a

cos a
1 + 4 sin2 a

sin2 a  ( 1 +

cos2 a 
1 + sin2 a +  1 >

cos2 a 
A + sin2 a

so in this case (5) is valid, which proves the lemma. □
T h e o r e ;. 2. Let m be a positive integer and assume that

(7) Z \  -  Z2 = . .  . = Z m  = 1-

For arbitrary n > m and every system z \ , z ^ , . . .  , z n  satisfying (7) we have

/1  l m  3 / m \ 2\  
lgjgn-m + l V2 8 n 64 \ n J  J

P r o o f . Now we apply the Newton-Girard formulas for the polynomial

(z  —  Z m + l  )(z —  2 m  +  2 )  . . . ( z  — Z n ) =  Z n  m  + b \ Z n m  1 + . . . + bn- m ,

and obtain

Tk + b\Tk-\  + . . .  +  bk~' T\ + kb к = 0 (к = 1 ,2 , . . . ,  n — m), 

Tn-m+l + b\Tn- m + . . . +  bn_mT\ — 0
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where T j  = X^t=m+i zt • Here T j  =  S j  -  to, hence

(8) Sk +  biSk-i  + . . .  + bk-iSi  = m(l + b\ + ...  + 6 /t-i) — kb к

(к — 1 ,2 ,... ,  n — m ),

(9) Sn—m+1 T b\Sn—m bn—mS\ — m (1 T b\ -f- . . .  4- ön_TO).

L e m m a  3 .  Let 0 <  a <  j . If 1 ^  к ^  n —  m, then one of the following 
two inequalities holds:

( 1 0 )  I m ( l  +  bi +  . . .  +  b k ~ 1) — kbk I ^

^  m2 sin2 a f  1 -b n C°S 2 ^ |1 +  b\ + ...  + bk- 1|2,
V ^ - c o s W

(11) |1 + 6i + • • • + bk~ j +öfc| ^ |1 + öx -f .. • + bk- i  I + cos a|6fc|.

If  (11) is valid for k = 1 ,2 , . . . ,  s (s ^  n — m), then

|1 +  Öl + . . . + Ös| > COS ö( 1 + IÖl I + . . . + |ÖSI) .

P r o o f  o f  L e m m a  3. If 1 + öi + . . .  + Ьк_г = 0 or Ьк = 0, then (11) 
is satisfied. Otherwise we apply Lemma 2 with the choice 2 = 1+hl+bk+bk t 
and A  = From this we get that (12) or (13) is true:

( 12)

(13)

1 - bk

1 +

тп 1 +  öi + . . .  + bk- 1 

bk

> sin2 a 1 + cos2 a  
— + sin2 a

1 +  öi + ...  + bk_ 1
> 1 + cos a \bk\

1 + öi +  bk.

Hence we have proved that (10) or (11) is valid, because (13) implies (11), and
(12) implies (10) (taking into account that к ^  n — to). The last assertion 
of the lemma does not differ from the last assertion of Lemma 1. □

Now there are two possible cases.
a) (11) holds for к = 1 ,2 , . . . ,  n — m. Then by (9) and Lemma 3 we have

(  max ( l  + |öi| + . . .  + |ön_m|) ^
m-fl J

=; |^n — 77l-fl ~f" Ь 1 Sn — m “j“ . . . -j~ bn^ mS\ \ — 77i|l “f- b\ “j“ bn — m j >

> TO cos a (1 + |öi I + . . .  + \bn- m I),
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hence

(14) max IS, I > in cos a.
l=^ = n — m + l

b) Case a) is not satisfied. Let 1 ^  k0 ^  n — m be the least positive integer 
for which (11) is not valid. Then by Lemma 3 (and for ко = 1 obviously)

|1 + b\ + . . .  + hfco-i I > cos a (l + I b\ I + . . .  +  I 6fc0_i I) .

Applying this, (8) and (10), which is true for k0, we obtain

( max \Sj\)  (1 + I 6j I I bfco_г I) ^

= I Sfco + &i*5)fco-i + • • • + frfco—i^i I — |m( 1 -f 6i + ... + frfco-i) - k0bk0 I ^

>  m s i n a  1 +  6X +  . . .  +  bj t0 - i  \  1 +  Ц --------------5—V — — cos*1 aV m
>

> m s in a  cos a (l + | 611 + . . .  + | 6fc0—! | ) \ 1 +
cos2 a

— -  cos*1 am

From this

(15) max IS,-1 > max |S,| >
1 ̂ j^n — m 1 ̂

> m  sin a cos a w 1 + cos2 a

Let a  = j ,  then from (14) and (15) we know that

, _ . . m  m I m
max \Sj\ > mm I —y=, — d l  + ;

l=.?=n-m+l >/2’ 2 2 n — m

Now

1 + — ——  = ( l  -  — ) 5
2 n — m  V 2n/

-E <=o 22* V*2
( m NC 1 1 m 3 /f m \

— ) > 1 T — ——"b ~ ( — )V2n> 2 2n 8 '<2 71/
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On the other hand
1 1 / m

y/ 2  > 2 у ^ 2  n — m

as m < n, and this proves the theorem. □

R emark 1. The function sin a  cos a .  /1 + n COf23, is maximal not withV   cosz aV m
a = but with cos2 a  = ----4 = = . This choice of a  improves the coefficient

of ( y ) 2 in Theorem 2 to

R emark 2. From the proof it can be seen too (see inequalities (14) and 
(15)) that for arbitrary n > m, if max \ S j \  й m , then |Sn_m+i| >

1 < 7  ̂ n—m
> m cosa . For example, if max |5 j| S y ,  then |Sn_m+i| > -y- (with a =

= ^). The assertion is also interesting for a < because then the condition
for max 15)| is stronger, but we obtain abetter estimate for |Sn_m+i|.

1 ̂ j=n—m

R emark 3. A possibility to improve Theorem 2 in the case m  = 1 is 
the following. Let a  = ^, d < l ( d i s a  constant). In case a) from (14)
max 16 )I > 4=, so it suffices to consider Case b). If ко < dn, then we use 

1 = j = n * ^
this inequality instead of ко ^  n — 1 in Lemma 3, and this improves the 
estimate. But if d is sufficiently close to 1 (this means more precisely that
2“ S' < d < 1), and n is sufficiently large, then ко ^  dn implies max 15 ) | >

1 = 3 = n
> \  +  h, where h > 0 is a constant. Indeed, for ко ^  к 5Í n — 1 either 
\кЬ̂ \ < 2|1 + b\ + . . .  + ! I or \kbk\ ^  2|1 + 6i + . . .  + öfc_1|. If ki is the first 
к for which the latter inequality is true (if there is no such k, let k\ =  n), 
then in view of (8) (or (9))

max IS,I >
l<j£n

1 + bi + .
1 + jöjj + .

As
j 1 + b\ + . . .  + bk0_ l I ^ 1 
1 +  |M + • • • +  16*0—il -  y/2 

(this settles the case ko = Aq), and

N < 2 |1 + t l  + , "  + t ‘ - 11 for
П/
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so it is easy to see (since ко ^  dn)  that

1 +  b\ +  . . .  +  f r f c j  - 1

1 +  I &i I + • • • + I _ 1

if d is sufficiently close to 1. Combining this with the above geometric 
arguments we get that Rn > |  4- for sufficiently large n.
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P U R E  S U B G R O U P S  OF A -P R O JECTIVE
G RO UPS

U. A LBREC H T and P. G O ETER S (Auburn)

1. Introduction

The perhaps most significant difference between torsion-free groups and 
p-groups is that there are only few results that guarantee the splitting of an 
exact sequence of torsion-free abelian groups. One of the best known is Baer’s 
result that a pure subgroup of a homogeneous completely decomposable 
group of finite rank is a direct summand [9]. While possible generalizations 
of other results of [9] have been discussed by various authors ([2], [8], [7], and 
others), relatively little attention has been given to the previously mentioned 
result. Before we can give a summary of what has been done, it is necessary 
to introduce some notation:

Consider abelian groups A and G. The group G is А -generated if G — 
= Sa (G) = ^2 {Ф(А) I ф E Нот(А,(7)}. An А-generated group G is A- 
projective of finite А -rank if it is isomorphic to a direct summand of (J)n A 
for some n < u.  In [3], it was shown that А-generated subgroups of A- 
projective groups of finite А-rank are quasi-summands if A has a semi-simple 
Artinian quasi-endomorphism ring. Moreover, if A is a faithfully flat as an 
.E(A)-module, then this condition on QE(A)  is necessary too.

Unfortunately, this result is of limited use if we are to decide whether 
a pure subgroup U of an A-projective group of finite А-rank is a direct 
summand. In [5], we addressed this question in the case tha t U itself is A- 
projective; but the problem remained open for arbitrary А-generated groups. 
It is the purpose of this paper to address some of the questions that have 
been left unanswered in [5]. We say that A splits pure A-socles if a pure 
А-generated subgroup of an A-projective group of finite A-rank is a direct 
summand. Necessary and sufficient conditions for a torsion-free group A to 
have this property are given in Theorem 2.1. Several corollaries improve 
on the conditions in Theorem 2.1 if A is flat, respectively faithfully flat as 
an E{A)-module. In the last case, we obtain thai, A splits pure A-socles 
iff it has a semi-hereditary endomorphism ring and a semi-simple Artinian 
quasi-endomorpliism ring.

• In Section 3, we consider a dual version of the splitting problem for pure 
subgroups U of an A-projective group P of finite А-rank. We say that A has
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the radical splitting property if every subgroup U of an A-projective group P 
of finite А-rank with R a ( P / U )  = 0 is a direct summand. Here the A-radical 
of an abelian group G is R a ( G )  = fj{kerd> | ф £ Hom(G, A)}. Theorem 3.3 
characterizes the abelian groups which have the radical splitting property. 
The section concludes with the surprising result that, for a torsion-free group 
A of finite rank, the two splitting properties of this paper are equivalent. 
Moreover, we show that an abelian group A which is faithfully flat as an 
J5(A)-module and has the splitting property for pure A-socles also has the 
radical splitting property. We give an example that the converse may fail if 
A has infinite rank.

2. Pure  A-socles

Consider abelian groups A and G. The group H a {G) = Hom(A,G) 
carries a natural right f?(A)-module structure which is induced by the com­
position of maps. Since A is a left E( A)-module,

T a ( M )  — M  ® e ( a ) A

defines a functor from the category of right f?(A)-modules to the category 
Ab of abelian groups which is an adjoint of Ha - We obtain induced ho- 
momorphisms 9g-Ta Ha {G) —* G and фм'-М —* Ha Ta (M)  for all abelian 
groups G and right £(A)-modules M which are defined by #g(a  ® a) = a(a) 
and [фм{^)\  (я) = то ® a for all о £ A, a  £ Ha (G) and m £ M . If G is 
A-projective of finite А-rank, then во is an isomorphism, while фм is an 
isomorphism for all finitely generated projective £(A)-modules M [8].

T heorem  2.1. The following conditions are equivalent for a torsion-free 
abelian group A:

a) i) A has the splitting property for pure A-socles.
ii) Tor1 ( E( A ) / I ,  A) = 0 for all right ideals I  of E{A) such that

( E(A)/ I )  + is torsion.
b) If  M  is a finitely generated right E(A)-module, then M = U 0  P , 

where P is projective, and Ta (U) is torsion.
P r o o f , a) => b). The  torsion-subgroup tM of M  is a submodule of

M.  We consider an exact sequence 0 —* К  e „  Е { А ) Л  M / t M  0, 
and choose a submodule V  of 0 n E(A)  containing К  such that V/ К  = tM. 
Assume th a t it has been shown that T a ( N )  is torsion-free for all E(A)-  
modules N  whose additive group is torsion-free. Then, the kernel of the 
induced epimorphism Ta (P) is a pure А-generated subgroup of Та ( E(  A)”) . 
The map Тд(/3) splits by a); and the top-row of the commutative diagram
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H A TA (ß)
На Та ( А ( А )п) , HATA(M /tM )

^Е(А)п

Ф п Е(А)

Фм/tM

M / t M

о

о

is split-exact. This shows that Фм/tM 1S an epimorphism. Since 
HATA( M / tM )  is projective, we obtain M / t M  = ker Фм/tM Ф Q for some 
projective submodule Q of M /tM .  Write Q = [tM ® P]/tM  and ker Фм/tM = 
U / tM . Therefore, M — U 0  P, and it remains to show that TA(U) is torsion.

Since the inclusion e:U/tM —*■ M / t M  splits, the induced map 
HaTa (e) is a monomorphism. Consider x £ U/tM,  and observe that 
НАТА{£)фи/ш {х) = ефмцм(х) = 0 implies 0 = [фицм(*)\ (а) = х ® а 6 
£ TA{U/tM)  for all а £ A. Thus, TA( U / t M ) = 0, and TA(U) is torsion as 
an epimorphic image of TA(tM).

Now consider a right .E^Aj-module V  whose additive group is torsion. 
To show that Toi-1(F, A) = 0, it is enough to consider the case that V  
is finitely generated, say by r elements v \ , . . . , v T. By part i) of a), we 
may assume r > 1. Let W  be the submodule of V which is generated by 
v \ , . ..  ,vr- i .  Since both, Tor 1(V/W,A)  and Tor^VL, A) vanish, the same 
holds for Tor1(K  A). If N  is an E(A)-module whose additive group is torsion- 
free, then multiplication by a non-zero integer m induces a monomorphism
ц: N  —*■ N .  The induced sequence 0 = Tor 1(N /mN,  A) — TA(N)
Ta ( N ) is exact. Since TA([i) is multiplication by m, TA(N)  is torsion-free.

b) =>• a). To show that the second part of a) holds, we first establish that 
E(A)  is a right semi-hereditary ring: If U is a finitely generated submodule 
of a finitely generated module F , then we have a decomposition U = P  0  V  
where P  is projective and TA( V ) is torsion. The inclusion V Q F  is denoted 
by i, and satisfies [HАТА(ь)фу{х)\ (a) = ТА(и)[фу(х)\ (a) £ TA(i)(TA(V))  
for all x £ У and a £ A. Since TA(F) is torsion-free, this is only possible if 
0 = HАТА(1)фу = Since фр is an isomorphism, V = 0. Hence, E(A)  is 
right semi-hereditary.

Let M  be a right £(A)-module whose additive group is torsion. There 
exists an exact sequence 0 —̂ Í7 —̂ E(A) —► M  —> 0. We observe that
Тогг(М, A) is torsion and isomorphic to a subgroup of TA(U). Since E(A)  
is right semi-hereditary, U is a flat £(A)-module. But this is only possible 
if TA(U) is torsion-free. Therefore, Тог! (М, A) = 0.

To verify part i) of a), we consider the pure-exact sequence 0 —> £ /—>•
Oi ß  • • t •—* A" —»■ G —*■ 0 of abelian groups in which U is А-generated. It induces 

the exact sequence 0 —» H A(U) На (Ап) М —> 0 of right E(A)-
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modules in which M = i m H A(ß) is a submodule of HA(G). We write M  = 
= V 0  P  with P projective and TA(V)  torsion, and consider the induced 
diagram

TA H A(a) TAH A(ß)
TAHA(U) ---------- * TAH A(A n) ----------- TA M )

U A' G

in which 9 is the evaluation map. By the Snake-Lemma, 9 is an isomorphism. 
In particular, TA(V) — 0 since G is torsion-free, and У is a direct summand 
of M. On the other hand, if V ф 0, then there are о £ V and a £ A 
with 0 ф cr(a) — 0(a ® a) = 0. The resulting contradiction shows that M  is 
projective. Thus, the top-row of the last diagram splits; and the same holds 
for the bottom  row.

We want to remind the reader that a ring R is right strongly non-singular 
if the finitely generated non-singular right £(T)-modules precisely are the 
finitely generated submodules of free modules.

Corollary  2.2. The following are equivalent for a torsion-free abelian 
group A which is flat as an E(A)-module:

a) A has the splitting property for pure A-socles.
b) i) A / I A  is torsion for all essential right ideals I  of E{A).

ii) E (A )  is a right strongly non-singular, semi-hereditary ring.

P r o o f , a) => b). Let I  be an essential right ideal of E(A), and denote 
its Z-purification by /*. The induced sequence 0 —* TA(E)  —» Ta (E(A)) —> 
—► Ta ( E ( A ) / /») -+ 0 is split-exact by a). Thus, A = I„A ® C for some 
subgroup C  of A. If C were non-zero, then HA(C) would be a non-zero 
right ideal of E(A) with /П  HA(C) Ф 0 ,  which is not possible. Therefore, 
A = I ,A,  and A /IA  = TA(I , / I )  is torsion.

Consider a finitely generated, non-singular right f?(A)-module M . By 
Theorem 2.1, we can write M  = U ® P  with P projective and TA{U) torsion. 
Since A is flat, the group TA(U) is torsion-free. Therefore, TA(U) = 0. If U 
were non-zero, then we could find a non-zero right ideal I  of E(A),  which 
is isomorphic to a submodule of U. Then, the non-zero group IA  would be 
isomorphic to  a subgroup of TA(U) since A is flat. The resulting contradiction 
shows {7 =  0.

b) => a). If M  is a finitely generated right E ( T)-module, then M  = 
Z (M )e  P  where Z(M )  is the singular submodule of M , and P is projective. 

Since Z { M )  is finitely generated, say by {aq, . . .  , x n } ,  we can find an essential 
right ideal I  of E(A) with X{I = 0 for all i. Therefore, Z ( M ) is an epimorphic
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image of ® n E{A)/I ,  and TA( Z ( M )) is torsion as an image of the torsion 
group ф п Ta (A/IA).  Now apply Theorem 2.1.

Corollary 2.3. The following conditions are equivalent for a torsion- 
free abelian group A which is faithful as an E(A)-module:

a) i) A has the splitting property for pure A-socles. 
ii) A is flat as an E(A)-module.

b) E ( A ) is a right semi-hereditary ring such that QE(A) is semi-siniple 
Artinian.

P r o o f . It remains to show that a) implies that QE(A)  is semi-simple 
Artinian. Let I  be an essential right ideal of E(A) whose Z-purification, 
in E(A)  is not E(A). By Theorem 2.1, we have E (A ) / Im = U ® P where P 
is projective, and TA(U) is torsion. Since / ,  is essential, this is only possible 
if P = 0 and TA(U) — 0. By the faithfulness of A, we have {7 = 0.

Clearly, b) implies a) without the faithfulness assumption on A. However, 
a later example shows that the converse fails in general.

Corollary 2.4. Let A be a torsion-free abelian group ivhich is faithfully 
flat as an E(A)-module. I f  A has the splitting property for pure A-socles, then 
it has the quasi-splitting property for A-socles.

P r o o f . Let U be an А-generated subgroup of A". Since A is flat, we 
obtain that the Z-purification, {/«, of U in An is of the form TA(V) where 
V is the Z-purification of HA(U) in HA(An). Since E(A)  is right semi- 
hereditary by Corollary 2.3 and QE(A ) is semi-simple Artinian, we obtain 
that HA(An) /V  is projective. Thus, V  is finitely generated; and V /H A(U) 
is bounded. Consequently, U is quasi-equal to {7*. Since A has the splitting 
property for pure A-socles, if*-is a direct summand of An.

The last result fails if A is not faithfully flat as an E(A)-module as the 
following example shows:

Example  2.5. Let A = ® pZp where P is an infinite set of primes. 
Then, A is flat as an E{A)-module, has the splitting property for pure A- 
socles, but not the quasi-splitting property for A-socles.

P r oo f . By [7], A is flat as an £(A)-module. Moreover, [1] shows that 
E(A) = П P ZP is strongly non-singular and semi-hereditary. If I  is an 
essential ideal of E{A), then I Z p ф 0 for all p £ P, since otherwise I  would 
annihilate all maps ap: A —> Zp. Thus, HA(ZP) ^  Z[E(A))  = 0, which is 
not possible. Therefore, ZP/ I Z P is torsion. Since ® p /Z p Я I  A, we obtain 
that A / I A  is torsion. Thus, A has the splitting property for pure A-socles 
by Corollary 2.2. On the other hand, ф р  Zpp is an А-generated subgroup 
of A which is not a quasi-summand.

The last example shows that implication a) => b) of Corollary 2.3 may 
fail if A is not faithful as an £(A)-module.

The final result of this section shows that the converse of Corollary 2.4 
fails in general:

Act a Mathematica Hungarica 65, 1994



222 U A L B R E C H T  and P. G O E T E R S

Example  2.6. Let A be a torsion-free abelian group which is faithfully 
flat as an E( A)-module, and has a semi-simple Artinian quasi-endomorphism 
ring. If E ( A ) is not semi-hereditary, then A has the quasi-splitting property 
for A-socles, but not the pure splitting property.

P roof . By [3], A has the quasi-splitting property for A-socles. Apply 
Corollary 2.3.

3. Radicals and splitting

Let A and G be abelian groups. The abelian group G* = Hom(G,A) 
carries a natural left £(A)-module structure. Similarly, we set M* = 
=  Н отЕ(л)(С ,А ) for all left E (A)-modules M.  The natural map G —> G** 
is denoted by фс- Its kernel is Ra {G) = P|{ker/ | /  € G*}. A similar 
notation is used for left £ ( A)-modules.

L e m m a  3 .1 . The following conditions are equivalent for a torsion-free 
abelian group A:

a) A has the radical splitting property.
b) For every index-set I , finitely generated submodules of A 1 are projec­

tive.
P r o o f , a) =>• b). Let M  be a finitely generated submodule of A 1 for

some index-set /. Choose a projective resolution 0 —* U E(A)m -Í-
•Я M —*■ 0 of M . It induces the exact sequence 0 —  M* —> [E(A)m] *
Д  К —* 0 of abelian groups where К Q U*. Thus, Ra (E )  = 0; and the last 
sequence splits. We obtain the commutative diagram

[E(A)r

Фе(А)"

E ( A )r

ß**
AT*

Фм

M

0

0

whose top-row splits. The map фм is one-to-one since M  is a submodule of 
A1. Consequently, the vertical maps in the diagram are isomorphisms; and 
the bottom row splits too.

b) => a). We consider an exact sequence 0 —> U —> An G —*• 0 with
Ra {G) =  0. It induces the exact sequence 0 —► G* ^  [A™]* M —* 0 of 
left E(A)-modules where M  is a finitely generated submodule of U*. There 
is an index-set /  such tha t U* ^  A 1 as a left E(A)-module. By b), we obtain
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that M  is projective. An argument similar to the one used to prove the 
previous implication yields the splitting of the original sequence.

In particular, we obtain that a group A which has the radical splitting 
property has a left semi-hereditary endomorphism ring and is fiat as a left 
7?(A)-module by [7].

Lemma 3.2. The following conditions are equivalent for a torsion-free 
abelian group A whose endomorphism ring is left strongly non-singular:

a) A has the radical splitting property.
b) E(A) is a left semi-hereditary ring, and A is non-singular as an E(A)-  

module.

P r o o f . It remains to show that b) implies a). If M  is a finitely generated 
submodule of A 1, then M  is non-singular. Consequently, M  is isomorphic 
to a submodule of a finitely generated free module since E(A) is strongly 
non-singular. By b), M  is projective. Apply Lemma 3.1.

T heorem 3.3. The following conditions are equivalent for a torsion-free 
abelian group A:

a) E(A) is a right (and left) semi-hereditary ring, and QE(A ) is semi- 
simple Artinian.

b) i) A has the splitting property for pure A-socles.
ii) A is a flat E( A)-module, and A ft IA for all pure proper right 

ideals I  of A n.
c) i) A has the radical splitting property.

ii) If  I  is a pure, proper left ideal of E( A), then ann(7) ft 0.

P r o o f , b) =i> a). It remains to show that QE(A)  is semi-simple Artinian. 
If I  is an essential right ideal of E(A),  then we denote its Z-purification in 
E(A)  by 7*. Since A is flat, /*.4 is a pure А-generated subgroup of A. 
Corollary 2.2, on the other hand, yields that A/7.A is a torsion group. 
Thus, A = I,A.  By b), we obtain E(A)  = 7». Hence, Q E (A ) is semi-simple 
Artinian.

a) =>• b). Observe that non-singular modules over the ring in a) are flat. 
If 7 is a proper, pure right ideal of 72(A), then E (A ) / I  and A are flat 72(A)- 
modules. In particular, 72(A)/7 is projective, and E(A) = I  0  J  for some 
non-zero right ideal J  of E(A).  Then, A = IA  ® J A, and A ft I  A.

c) => a). Let 7» be the Z-purification of the essential left ideal I  of
E(A). The exact sequence 0 —► 7» -2- E (A ) -Л E (A ) /7» —*■ 0 induces the
sequence 0 —* [72(A)/7,] * Д  E(A)* (7,)* which splits by b). We obtain
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the  commutative diagram

E ( A ) *

i’E(A)

E ( A )

/Г*
[ E ( A ) / I . ] ’*

^ E ( A ) / 7 .

E ( A ) / I .

0

0

whose top-row splits. Consider a splitting map r  for /3**. For x 6 / ,  Л 
П im( ^  Д|т) , there is ?/ 6 [ £ (  Д)//„] ** with Фе(А)(х ) = r (2/)- We obtain
2/ =  0 " r(y ) =  Р**Фе(А)(х ) = Фе (А)/1 Л х ) = 0. Therefore, im( t p ^ r )  = 
=  0 since / ,  is essential in E(A).  Because ФщЛ)т is one-to-one, we obtain
\E(A)/I*] ** =  0. Consequently, [E(A)/I*\ — 0 since the latter is isomor­
phic to a direct summand of A.  If /* ф 0, then there is a non-zero a G A with 
/»а ф 0. The assignment 1 —► a induces a non-zero jF(A)-homomorphism 
a: E{A) —>• A with o(E) = 0, which is not possible. Thus, / ,  = E(A).

a) =i> c). By Lemma 3.2, it enough to show that part ii) of b) holds. If 
/  is a pure, proper left ideal of E (A ), then E(A) = 7® J  for some non-zero 
left ideal J  of E(A).  We choose an idempotent e G E{A) with I  = E(A)e,  
and a G A w ith (1 -  e)(a) ф 0. Clearly, (1 — e)(a) G ann(7).

Corollary  3.4. The following conditions are equivalent for a torsion- 
free abelian group A whose quasi-endomorphism ring is a finite dimensional 
Q-algebra:

a) A is a generalized rank 1 group.
b) A has the splitting property for pure A-socles.
c) A has the radical splitting property.

P ro of . Conditions b) and c) yield that E(A)  is a right, respectively left, 
semi-hereditary ring. By [12], A is a generalized rank 1-group. The converse 
follows from Theorems 2.1 and 3.3.

In [3], we showed that the ring R of algebraic integers is semi-hereditary. 
If A is an abelian group with E{A) = Ä, then the quasi-endomorphism ring 
of A is a field; and A satisfies conditions b) and c) of the previous corollary 
by Theorem 3.3, although A is not a generalized rank 1 group.

Corollary  3.5. Let A be a torsion-free abelian group which is faithfully 
flat as an E(A)-module. I f  A splits pure A-socles, then A has the radical 
splitting property.

P r o o f . By Corollary 2.3, E(A) is right semi-hereditary, and QE(A)  
is semi-simple Artinian. Consider a map ф: An —* A 1 for some n < u: and 
some index-set I. Suppose that there is no finite subset J  of I such that 
kerxy^) = ker ф, where n j  is the projection of A 1 onto AJ whose kernel is
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A ]~J . Inductively, we obtain a descending chain {Ui \ i < a;} of subgroups 
of An such that An/Ui is isomorphic to a subgroup of an Л-projective group 
of finite Л-rank and Ui ф U,+\ for all i < u>. By [1], each Ui is an A- 
generated subgroup of A n. Therefore, { Яд(1/,) | i < u>} is an infinite strictly 
descending chain of submodules of Яд(Л"). Since A is torsion-free, each of 
these submodules is pure as an abelian group. Thus, {Q ® z Ha {Uí ) | i < 
< u;} is an infinite descending chain of QE(A)-submodules of the finitely 
generated QE(A)-module Q ® z E а {Ап). Since QE( A) is Artinian, this is 
not possible.

Therefore, An/  ker ф = ф j  A for some finite subset J  of I. In particular, 
A” /  ker ф is Л-solvable. Since Л is faithfully flat as an F(A)-module, [2] 
yields that kerc/> is Л-solvable. Since Л splits pure Л-socles, kerd> is a direct 
summand of A".

We now give an example that the converse of the last result fails in 
general:

E x a m p l e  3.6. Let Л be an abelian group with E(A)  =  Zu which is 
faithfully flat as an F(A)-module. Such an Л exists by [2] and [10]. By 
Corollary 2.3, Л does not split pure Л-socles. Since R is strongly non-singular 
and semi-hereditary, in view of Lemma 3.2 it is enough to show that Л is 
non-singular as a left F(A)-module to ensure that Л has the radical splitting 
property. But this is guaranteed by the fact that Л is flat as an F(A)-module.

4. Faithfully flat 5-groups

Consider a torsion-free abelian group G. If Л is a subgroup of Q of type 
r , then S a (G) = G'(r) where G(t ) = { x 6 G \ type(a;) ^  type(r)} is a 
subgroup of G. While the Л-socle of G, for groups Л which are faithfully 
flat as an F(A)-module, resembles G(r), there are significant differences if 
ro(A) > 1. One of these is that Sa {G) is not necessarily a pure subgroup of 
G. In this section, we investigate which conditions have to be satisfied by 
an abelian group Л to ensure that Л-socles of torsion-free groups are pure. 
As in [11], a torsion-free abelian group Л is an S-group if S a {B) = В  for all 
subgroups В  of Л of finite index.

T h e o r e m  4.1. Let A be an abelian group which is faithful as an E(A)-  
module. Then, A is an S-group if and only if Sa (B ) is a pure subgroup of 
В for all torsion-free abelian groups В .

P r o o f . Suppose that Л is a faithful 5-group. By [11, Theorem III. 1 
and Corollary III.2], we obtain that Ext(A, Л) is torsion-free, and that Л has 
finite p-rank for all primes p of Z. Set C = Sa (B). We claim that Ext( A ,C) 
is torsion-free.
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To show this, we observe that [11, Theorem III. 1] guarantees that A 
is projective with respect to the sequence 0 —*■ pA —*• A —> A/pA  — 0. 
Let 7r:C —» C fpC  be the natural projection, and consider /  6 HA(C/pC )■ 
Since A has finite p-rank, there are x \ , . . . , x n G C such that / ( A ) Q 
^  ( x i , . . .  , x n ,pC) /pC . For each i G { l , . . . ,n } ,  there are rnt < and el­
ements g,i,. . . , gim, € HA(C)  and a n , . .. , a im, G A with x, = 9ij(aij)-
Set m = m\  +  . . .  + mn, and define a map ф: A m = ami ф . . .  ® Am" —> C by 
0 [(b i,” - , bm1) , ” - ,( fcm1, - ” , 6m„)] = E . j  9 ij(b)), and denote its kernel by 
K.  The group G = \тф contains x \ , . .. , x n. We obtain the exact sequence 
Ext(A ,K )  —*• E x t(T ,^ m) —*■ Ext(T,G) —* 0. Since Ext(A,A') is divisible, 
Ext(A, G) is isomorphic to a direct summand of Ext(A,Am). In particular, 
Ext(A,G) is torsion-free. By [11, Theorem II.2], the diagram

A

/

G ---------- * (G A-pC)/pC ----------* 0

can be completed by a map g G HA{C). Thus, Ext(A,C) is torsion-free by 
[11, Theorem II.2].

Suppose that C\ is a subgroup of В  containing C such that pC\ ^  C 
for some prime p. Since В  is torsion-free, and C is А-generated, А ф

OL ßpA. Consider the exact sequence 0 —»■ HA{C) —* HA(Ci) —*• HA{C\/C)  —» 
—+ Ext(A ,C) which is induced by the inclusion C Q C Since SA{C\ ) =  C , 
the map a  is an isomorphism. Thus, ß is a monomorphism, and Ext(A ,C) 
is not torsion-free unless C = C\. This shows that SA(B)  is pure in B.

The converse is obvious.

Combining the last result with those of the previous sections yields

C o r o l l a r y  4.2. Let A be a faithful S-group such that QE(A) is Ar- 
tinian:

a ) I f  U is a pure subgroup of A” for some n < u,  then SA(U) is a direct 
summand of U.

b) I f  U is a quasi-summand of An for some n < u,  then U is A-projective.
c) R a ( В / SA(B)) =  0 if В is a subgroup of A” for some n < u>.

P r o o f , a) By [11], E(A)  is a right hereditary. Corollary 2.2 yields that 
A splits pure A-socles. The previous result guarantees that SA(U) is a pure 
subgroup of A". Thus, S A(U) is a direct summand of U .

b) If U is a quasi-summand of An, then U © F is quasi-equal to A” . Since 
SA(U © V)  is a pure subgroup of U © V  by the last result and quasi-equal 
to A", we obtain that U ф V  is А-generated. Since E(A)  is hereditary, U is 
A-projective.
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c) Let U be the Z-purificatiou of S'a ( B )  in Л". By [1], U is an Л- 
generated subgroup of An. Thus, we obtain a decomposition An = U ф V . 
By Theorem 4.1, S a ( B )  is a pure subgroup of В , and hence В П V = S'a (B). 
Furthermore, B / S a ( B )  =í [B + U]/U ^  V  shows that R a { B / S'a ( B ) )  = 0.

In conclusion, we want to remark that, in general, quasi-summands of 
Л-projective groups of finite Л-rank need not be Л-projective even if QE(A)  
is semi-simple Artinian [4].
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O N PR O BLEM S OF A P P R O X IM A T IO N  
IN L 2 SPACES

X. H. SUN (Hangzhou)

1. In tro d u c tio n

Let Lj be the class of all 27r-periodic, real valued functions f (x )  square 
integrable in the interval [0,27г]. Goyaliya [2] proved the following

T h e o r e m  A. If  / (s) G L t h e n  for n e N, s E {0} U N 

(1) En ( / (S)) L. % 2 - 1'2u { f ( ° \ i r / { n + l ) ) L. ,

(2) En{ f ) L. i M n - sE n { f ^ ) L.,

where M  is a constant and E n( f ) L. = \\f — Sn( f ) ||L,, Sn( f , x ) is the partial 
sum of the Fourier series of f(x ) .

In his paper Goyaliya asked the following two questions:
(1) Can Theorem A be extended to (C, 1) summability or matrix summa- 

bility?
(2) Can the result be extended to some other series, viz. Legendre series, 

ultraspherical series, Bessel series, etc.?
The purpose of this paper is to answer these questions. We shall prove 

that (1) can be extended to (C, 1) summability, but (2) can not.
Let L2 = Хг[— 1,1] be the class of all real functions / (x ) such that

f 2(x) dx
1/2

<  0 0 .

Suppose

( 3 ) A ® )  ~  YX=OakPk(x)
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is its Fourier-Legendre series, where

(4) ak -  (к +  1/2) J f ( x ) P k(x)dx.

Define

EnU)^ = ||/  -  Sn(f)\\L2 = ||/(*) -  n= o^Pk(x)\\l2.
For Problem 2 we shall establish an estimate similar to (1) and prove 

that (2) can be extended to Legendre series.
Throughout the paper, c always denotes a constant independent of / ,  n, 

and k, but not the same at each appearance.

2. Main results

Our main results are the following
T heorem 2.1. Let f  £ L 2 and let crn( f , x )  be the (C ,\)-means of its 

Fourier series. Then there exists a constant c > 0 such that

(5) Fn( f ) L. := II f ( x )  -  on( f ,x ) \ \L. ^  cu>{f,x/(n + 1))L..

I f  f  G L2 and H/'ll > 0, then

(6) ^ n ( / ) L; ~ n - 1| | / , ||t ;.

R e m a r k  1. (6) shows th a t (2) can not be extended to (C, 1) summability. 
We say th a t the function u(t)  6 NQ (a  > 0) if
(i) u>(t) defined on [0,2] is nondecreasing and u>(t) —► 0 as t —> 0.

(ii) For 0 < S < rj ^  2, there exists a constant К = К  (a) such that

T!~au(r,) ^  KS~auj{6).

Define the Legendre transformation of /  by

f h (a:) tt~ 1 J f  ^x cos h + \ / \  — x2 sin h cos ff'j dd.

Butzer, Stens and Wehrens [1] introduced the modulus of continuity 
of /  6 C by this transformation. Here we define the integral modulus of 
continuity of / ( s) £ L2 ;

W L ( f ^ \ t )  : = sup { f (hs\ x )  -  f (s\x ) )  (1 -  x 2 )s/2 
2 \h \ü t l 2
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It is easy to see that

w L{ f ^ , t ) b2 - 0  ( t -  +0).

T heorem 2.2. Let /V) E L2 and let u(t) be a given modulus of conti­
nuity. Then

(a) for n ^  2
En(/ 2)£2 ^  Mu){ 1/n)

г/ and only if
W \ f , t ) L2 ^ cM u ( t ) -

(b) if s E N and u>(t) E N " (0 < a ^  1), í/гегг /or n ^  s

(7) En( f ) L2 й Mn  V j(l/n )

if and only if

(8) W L( f ^ \ t ) L2 ^ c M u ( t ) .

T heorem 2.3. If E T2, then

(9) En( f ) L2 i c n - sW L( f ( sK l / n ) L2,

(10) En(f )L2 ^ ™ - sEn ( f ^ ) L2.

R e m a r k  2. Theorem 2.2 is an improvement of.a result of Zidkov [3].

3. Proofs

P roof of T heorem 2.1. Zygmund [5] proved that if p ^  1 then 

(11) | | / ( * )  -  ° n ( f , x ) \ \ L. й  си(] ,ж/(п + 1))
p p

where /  is the conjugate function to f (x).  Then, (5) is a consequence of (11) 
and Riesz’ Theorem (see [6, Ch. VII]).
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Now we turn to prove (6). We have

(12) I I /( i)  -  <r„(/,x)|| = (» + l ) “2E f c i* 2( “ t  + bt) + 

+ E £ „ + , ( « i  +  « ) - ( »  + 1 Г 2£Г=„+1*2(<а +  bl) ■

From [2]

(13) Е й - и М  + Щ S c n ' 2£ 2(/ ' )4  = o (» -2) (n — 00).

It is clear that

(14) (и + 1) 2YlT=n+\k2{al  + b2k) =

= ( n+  1 )~2 II / '  -  S „ { f ) \ \ \ .  = o(n-2 ) (n — oo).

Hence from (12)—(14) it follows that

| |/ (x )  -  <M /,x)|| L.~  » - ■ { £ £  P ( « i  + bl) }1/2 = » - ‘ ||Л1Ч .

Q.E.D.
P r o o f  o f  T h e o r e m  2.2. Set x = cos/3. Using (3) and the addition 

formula of the Legendre polynomials (cf. [4])

Pk(cos ß cos h + sin ß sin h cos в) = Pk(cos ß)Pk{cos h )+

+  2X)m=i(k — m)\ ( (k  + m)) 1P™(cos ß )P™(cos h ) cos méh

where

we get

P f (x )  = (1 -  x 2 )m/2dmPk{x) / dxm (m = 1,2.......fc),

f h(x) = 7Г 1 / /(cos ß cos h + sin ß sin h cos 0) dS =
Jo
= E ”=0 akPk(x)Pk(cosh),

where is denoted by (4). Observing the properties of the function P™(x):

(15) /: P ^ ( x ) P r ( x ) d x  = 0, ( * * / ) ,  [4]
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and

(16) J [ P "1 (x )] 2 clx = 2( n + m)!/ [ (2n + 1)(n -  m)!] , [4]

we obtain (set b2 = 2 a2k/(2 k + 1 ))

(17) ( f n x ) - f <s](x))( 1 - x 2)2 \ s / 2

L 2

= E t e . (  1  -  A-(cos /I.)) 22al(k + s) l / [(2 k + 1)(* -  s)\\ = 

= T,T=s{ 1 -  Pk(cosh))2bl(k + a)!/(Ar -  5)!.

First assume that for s = 0 ,1 ,2 ,. . .  (8) is satisfied. Since

(fc +  a )! / ( fc -a ) !~  A;25,

from (17), we have for |fi| ^  t

(18) Е Г = , ( 1 - A(cos h))2k 2sbl<,

^  cE *L .( 1 -  Pk(cosh))2bl(k + a)!/(A -  5)! =

= c ( / i e)( * ) - / (e)( * ) ) ( l - a r 2) '/a 2 ^  c{fF L( /H  *) } 2 S с М У (( ) .
Li

If /1 = 2 /n  and A: ^  n ^  2, using the known estimate of Pk(cosh), 

|Pfc(cos/i)| ^  ( 2/(7tA’sin/1) ) 1//2 ^  2-1 2̂.

Hence
1 — Pk(cosh) ^ 1 /4  (k n, h = 2/n, n ^ 2). 

Then using (15), (16) and (18), we get

(is) ^ ( / к 2 = | | / - а д ) | | 22 = Е Г =п+1 ^ ^

^  16тг-25ЕГ=п+1(1 -  A  (cos 2 /n)) 2k2sb\ ^  

й  16n-2sE ^ l s ( l  -  A (cos2/n)) 2k2sb\ ^

^ c M 2n~2sw2( l /n).

( 20)

(2 1 )
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That is (7) holds for s = 0 ,1 ,2 ,... .
Now assume (7) holds for s = 0 ,1 ,2 ,.... Set n — [/i-1]. Observing (17), 

we write

( 22) ( f l S)(x) f (s4 * M  1 x 2)s/2
l 2

= ( E V ,  + ЕйU) (1 - ft(cosft) ) \ k  + ««/(* - «)! := El + E 2-
If s G N,w(í) G N a (0 < a  ^  1), then observing (19), by Abel transformation 
we get

(23) 7n := Z ? =nk2sbl = n2sY .7 = A +

+Zr=n+Ak2s - ( k - i  )2s)Z r = A i

й  n2sE l _xi f ) L2 + cE L +1^ 1£ L i ( / ) l2 *

<; c l V ( l / n )  +  сМ 2£ £ 1 п+1*г_1и;2(1/Л) ^

^ c M V ( l / n )  + cM2n V ( l / n ) ^ “=n+ir 1' 2“ ^ c M V ( l / n ) .

If 5 = 0, then by assumption

(24) 7n = Е Г = п^ = ^ n - i ( / )  ^  c M W ( l / n ) .

From (23)-(24) it follows that for s — 0 ,1 ,2 ,...

(25) £ 2 ^ Hn  = cY,T=nk2sbl  = c M 2ij2(l /n).

Using Abel transformation again, from (23)-(24) and the estimate (cf. [3])

| l  — /^(cos/i)! ^  k2h2 / 2,

we have

(26) El S c E £ =1ft4ft4+2*6i =

= <л4 (EL,*4t* -  ЕЙ (* - 4 V ) S <*4Eta.*37ft S
^  сМ 2/14^ ь 1^ 2(1/^) ^
П

<i c M 2h4 fc3(! + n/k)2u 2( l / n)  ^  c M2u 2(l /n).  
k =  1
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l2
^  cMu( l / n)  й cMu(h).

From the above it follows that for s = 0 ,1 ,2 ,...

W L( f ( s\ t ) l 2  i c M u ( t ) .

Q.E.D.
P r o o f  o f  T heorem 2.3. (9) follows from (20) and (17) immediately. 

Now turn to prove (10). Obviously, it is sufficient to prove (10) for the case 
s = 1. By induction we can easily obtain that (10) holds for all s ^  1. Using 
the method of proof of Theorem 2.2, we can prove that if s ^  1 and

{ f (hS\ x ) - f {s4x) ) (  1 - z 2)2 \ s / 2
h2

^ M,

then
En{ f )L2 ^  cMn~s.

In fact, if n ^ 2/h,  then from (20) and (17)

e I U ) l 2 й cn~2s^ =s( l -  Pfc(cos2/n)) 2k 2sb2k <. 

й cn- 2sJ2T= , { 1 -  Pk(cos2/n))2(k + s)\b\/{k -  s)! =

= cn -2s ( f l S\ x ) - f ^ \ x ) ) ( l - x 2)2 \s/2
L2

< cn~2s M 2.

Let ő = 1 and / '  G Z,2- Then, using Parseval equality and (17), we get

2||/'|ll = J\f'(x))2dx ̂  fu\x)) 2(1 -  x2) dx —

= /  (Е П =1 akP'k(x))2(l -  x 2)dx =
1

/- l

= Zk=i*lW+l)l/[(2k + IX *-1)!] ^

^ E * L i(l/4 )62 [l -  Pk(cosh)] 2(k + l)!/(* -  1)!

= (1/4) ( f h( x ) ~  f \ x ) ) ( \ - x 2 f /2 ] .
*-J2

Acta Mathematica Hungarica 65, 1994



236 X H SUN A P P R O X IM A T IO N  IN L 2 SPACES

Hence
{fh(x ) ~ f ' (x))  (1 — x2)1/2 ^ c| | / ' | |L2.

b2
Using the above proved result with s = 1 and M = ||У̂, | | , we get

En{ f )L2 ü c n - l \\f'\\L2.

Now let Pn be the best approximating polynomial of / ' ,  then

En( f ) L2 = En( f  -  Pn )b2 Í  c \ \ f  -  P ^ W J n  ^  c n - 'E n( f ' )L2.

Q.E.D.
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T Ú R Á N  T Y P E  PROBLEMS O N M E A N  
C O N V E R G E N C E . II

(H E R M IT E -F E J É R  T Y P E  INTERPO LATIO NS)
P. VÉRTESI (Budapest)*

This paper is the second part of [19]. That means many notations, 
definitions and theorems used here are detailed in the three chapters of 
[19]. Here we refer to them without any further explanation. Moreover, 
for example, (1.2) means [19, (1.2)], etc., while the references [1]—[18] are 
detailed in [19].

4. Introduction. Notations

While in [19] theorems were proved for odd values of M  (Lagrange type 
interpolation) throughout this paper we mainly deal with the process 1пм  
for even values of M  (Hermite-Fejér type interpolations; cf (1.1) and Part 
1.1). From now on we denote them by Hns where s = 2 ,4 ,6 ,... ,  is fixed. If 
s = 2, we often write Hn (the classical Hermite-Fejér interpolation).

5. Results on H erm ite-Fejér type interpolations

Contrary to the Lagrange type cases, for many matrices we have uniform 
convergence results for every /  £ C taking Hns (cf. (1.8)—(1.10)). However 
the complete analogoue of the Erdős-Túrán result is still missing (cf. (1.11)). 
Instead, we have

T h e o r e m  5.1. Let w be a fixed weight. Then

l
(5.1) lim / I Hn(R, w, x) — 72(ж)| w(x)dx = 0 for every polynomial R. П—+00 J  1 1

-1

The relatively simple proof is in P. Nevai, P. Vértesi [20, p. 46].
If s = 2 ,4 ,6 ,. . . ,  by P. Vértesi [21, Theorem 2.1, p. 371] (using definitions 

in Part 2.1), we have

* R esearch  supported  by H ungarian  N ational Science F o u n d a tio n  G rants No. 1910 
an d  T750.
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T h e o r e m  5.2. Let v £ J s and и e J . Then for every p, 0 < p < oo,

(5.2) lim У Hns(f ,  г>) — / | |  = О V / € С
71—ИХ) 11 "

(5.3)
^r(x)\/1  — х

s/2 G #

(Compare Remark 2.2.5.) A simple consequence of Theorem 5.2 is 

C o r o l l a r y  5.3. Let v e  J s. Then if p = 2/s,

l
(5.4) lim f \  Hns( f , v , x )  -  f {x) \pv(x)dx -  О V/ G C.

71— ►СО у  

-1

(Cf. (2.1).) Results (5.1) and (5.4) suggest that the critical exponent 
is (again) 2 /s. The aim of this paper is to further strengthen this hint 
by verifying a Túrán type result in Theorem 6.4. The scheme and some 
arguments are similar to those in [19].

6. N ew  results

6.1. First we prove the analogue of Theorem 2.5. Let f \ (x)  = x and 
An — [ 1?*̂ 7г,7г] И [xjn? !]•

TH EO R EM  6.1. Let и and w be two weights, X  be a w-regular interpo- 
latory matrix. Then there exists an £ > 0 such that if R n £ A4, |i2n| = £, 
otherwise arbitrary, we have for every p, 0 < p ^  oo, the relation

(6.1) (I M x )  -  Hns( h , A', x)\\p u ■ II XC R jx )u sn(X, z)|| 1>ш ^

^  ^ | |х д п(ж К (Х ,х ) ||ри, гг ^  1

with a proper c > 0 not depending on p.

Considering the factor 1/n  and that |An| is generally much smaller than 
2, one may think that (6.1) is not sharp (cf. (2.7)). However, it turns out 
that the estimation generally gives the best result.
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T heorem 6.2. There exist weights и and w and a w-regular interpola­
t o r  matrix X  such that for every p, 0 < p < oc,

(6.2)

s  v / e C -

Here Ы  is an arbitrary sequence with 0 < <pi < ip? < • • lim p̂n =  oo.

6.2. An important consequence of Theorem 6.1 is as follows (cf. Theorem 
2 . 1 ) .

THEOREM 6.3. Let supp (da) = [—1,1], a'(x) > 0 a.e. in [—1,1] and и 
be a weight. Then for any fixed 0 < p oo we have

(6.3) II f \ (x) -  Hns(fu d a ,x ) ||pu ^  ^ ||x A „ (z K (d a ,x ) ||pu.

However, for the right hand side of (6.3) we cannot apply relation (3.24) 
(which has previously led to the Túrán type Theorem 2.3).

Nevertheless, usixrg straightforward calculations Theorem 6.3 yields as 
follows (cf. Theorem 2.3).

Let

(6.4) W(x) =
exp ((d — j )  cot d) 

cosh( \  cot d) cos d. 0 < d <

be the Pollaczek-weight w(cosd; 1,0) (cf. [11, Appendix, (1.9), p. 392]). 

T heorem 6.4. For any fixed p with 2/s  < p ^  oo we have

(6.5) Hns( f x. W. x p .W oc.

6.5. Simple considerations show that

W( x)  = 5(2i)exp ^ - - ^ = L

where g(x) is positive and continuous on [-1,1] (cf. [6, Example 14, p. 82]). 
So combining Corollary 2.2, Statement 2.3 (with 6 = 1/2) and Theorem
6.4, we immediately obtain the following Túrán type theorem valid for an 
arbitrary process 7пд/ (cf- Part 1.1 (in [19]) for the definition of Iniw)-

-1  < x < 1.
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Statement  6.5. Let M  = 1 ,2 ,3 , . . .  be fixed. Then there is an f  6 C 
such that for any p, 2/М  < p ^  oo,

l
(6.6) Üm j \ l nM{f,  W, x)  -  f ( x ) \ pW(x)dx  = oo.

If p = 2/M , the corresponding convergence results were stated in Theo­
rem 1.1 (M = 1), formula (2.1) (M  = 1 ,3 ,5 ,...) , Theorem 5.1 (M  = 2) and 
Corollary 5.3 [M = 2 ,4 ,6 ,...) .

Finally, let us remark that similar other weights can be found to get 
statements similar to Theorems 6.4 and 6.5. Details are left to the reader 
(cf. [6, Example 14, p. 82]).

6.6. Some natural problems arise.
1. Prove relation (5.1) for arbitrary /  £ C .
2. Prove Corollary 5.3 for other weights.
3. Prove Theorems 6.1 and 6.4 for other polynomials or continuous 

functions.

7. Proofs

7.1. P r o o f  o f  T h e o r e m  6.1. By definition and using (3.17), relation 
x — x k ^  2 and (3.20), we get for X\ ^  x ^  1 (whence x — Xk ^  0, 1 ^  к ^  n)

(7.1) f f i x)  -  H ns( f i , x)  = hlk(x) = ^ £ ак(х)(х -  x k)Blk(x) ^
к — 1 A ;= l

(x -  x k)S  —  1

k=\ {u'n{xk){x -  x k) } s{xk -  xk±l) 

1

>
s - 2  -

Ct

k = 1  (W « (* ib ) )  S( x k -  X k±1

Un(X)

. s -2 ^ m . ( [ - l , l ] K ( a : )  £

> £
n | | x c « „ ^ n l l l , ü

, Жх = * = 1.

If — 1 ^  x Ú x n, then x k — x ^  0, which yields the same estimation for 
Hns ( f i , x ) -  By these relation (6.1) is obvious. □
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7.2. P r o o f  o f  T h e o r e m  6.2 (cf. Section 3.4). Let и e J(c,d) ,  w =
( /-------ö\ s= »VI — x 2 j with v 6 J s(a,b), X  = X(v)  and u>n( X, x )  = pn{v,x).  

Then by (3.51), ||p*(u)|| г w ~  1, further, using (3.51) again, one gets

(7.2) - | | х д „ Р » | | р,и ~  n
> ( a + l / 2 ) - | ( c + l ) - l  +  n s ( b + l / 2 ) - j ( d + l ) - l  ^

Now, if (5.3) does not hold, by (5.3) <=4> (5.2), the left hand side of (6.2) is 
greater than zero for a proper /  6 C . On the other hand,

\ / 1 — x 2  ̂v\/ 1 — x 2 ĵ Lpu

means that the exponent of 1 — x2 is less than or equal to —1, whence 

I  + с -  у  (a + 1/2) £  -  1 or (( + </ - y ( 6  + 1/2) fi -  1 

whence lim rn ^  1, i.e. lim <pnrn = oo.
71 — ► OO 71— f CO

So we obtained (6.2) whenever (5.3) does not hold.
When relation (5.3) is true, by (5.3) (5.2), (6.2) is obvious. □
7.3. P r o o f  o f  T h e o r e m  6.3. It goes like the first part of the proof of 

Theorem 2.1. We apply Theorem 6.1. Let X  = X'(da) and u n(X)  = pn(da). 
Then if w = 6 s (X(da)  is <!P-regular) and R n = В ln, we obtain

(7.3) 0 < \ \ xcBlnPn(da)\\ < 2, n ^  n0

(cf. (3.26)-(3.28)), whence by relation (6.1) we obtain (6.3). □
7.4. P roof of T heorem 6.4. Using formulae (6.4), [11; Appendix 

(1.8), (5.3) and (5.5)] we obtain

(7.4) VU(cos d) = 2 (̂ exp ^1 — (1 + 0(d))  if d > 0 is small enough,

(7.5) „ „ ( w ,  cos 2 = )  = exp {VS ( !  + * « ) }  ( l + o ( i ) ) ,

where |d| ^  2 if 0 < t = \ / l  — e4, 0 < £ 5Í fixed, n ^ 1,

(7.6) lim y/ndXn(W)  = 1,
71— M X)
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respectively. Now using (6.3), (7.4)-(7.6), the fact that pn(x) is strictly 
increasing when x ^ x \ n and writing the condition p > 2 / s as p = ^ 7^ , we 
get with a certain fixed p > 0, as follows (supposing that p < oc).

1
(7.7) \\ f i (x)  — Hns(f i ,W ,x) \ \^  w  ^  ( 9 "  /  \Pn\spW  ^

n

cos(i + p)v4T

г  ( £ ) '  /  'i>” '2+<‘vr г

(the length of the interval is cn-1). Here (...)  ^  6 whenever £ and p are 
small enough. This gives the theorem when p < 0 0 . The case p — 00 comes 
from (6.3), (7.5), and (7.6). □
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A S Y M P T O T IC  STABILITY FOR  
F U N C T IO N A L  DIFFERENTIAL EQ UATIONS

T. A. BURTON and G. MAKAY (Carbondale)

1. Introduction

We consider a system of functional differential equations with finite delay 
written as

(1) x \ t )  = f ( t , x t), ' = d /d t,

where /:[0 ,оо ) X Ch  —*■ R m is continuous and takes bounded sets into 
bounded sets and /(<, 0) = 0. Here, (C , || • ||) is the Banach space of contin­
uous functions ф: [—h, 0] —> Rm with the supremum norm, h is a non-negative 
constant, Ch is the open Я -ball in C , and xt(s) = x(t -f s) for — h g s g  0. 
Standard existence theory shows that if ф £ Си and to g 0, then there is at 
least one continuous solution x(t,to ,ф) on [to,to + a) satisfying (1) for t > 
> to, x t(to,ф) = ф and a some positive constant; if there is a closed subset 
В  C Ch such that the solution remains in В , then a — oo. Also, | • | will 
denote the norm in Rm with |x| = max1<i<m |ж,-|.

We are concerned here with asymptotic stability in the context of Li­
apunov’s direct method. Thus, we are concerned with continuous, strictly 
increasing functions W,:[0,oo) —> [0,oo) with W'i(O) = 0, called wedges, and 
with Liapunov functionals V .

D e f i n i t i o n . A continuous functional Vr:[0,oo) x Ch [0,oo) which is 
locally Lipschitz in ф is called a Liapunov functional for (1) if there is a 
wedge W  with

(i) W ( |0(O)|) g V ( t ^ ) ,  V (i, 0) = 0, and
(ii) V/n (<,xt) = lim su p i {^(t-l- 6 , x t+s(t0^ ) )  -  V  ( t ,x t(toA )) } g  0.

R e m a r k . A standard result states that if there is a Liapunov functional 
for (1), then x = 0 is stable. Definitions will be given in the next section.

The classical result on asymptotic stability may be traced back to 
Marachkov [9] through Krasovskii [7, pp. 151-154]. It may be stated as 
follows.
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T h e o r e m  MK. Suppose there are a constant M , wedges Wt, and a 
Liapunov functional V (so VFi(|<£(0)|) S У (1,ф) and K(t,0) = 0,1 with

(i) V ^ it^ x t)  S -  W2(|x (t)|) and
(ii) I / ( t ,  ф ) \  S M if t ^ O  and ||<£|| < H .

Then x = 0 is asymptotically stable.
Condition (ii) is troublesome, since it excludes many examples of consid­

erable interest. And there are several results which reduce or eliminate (ii). 
For example, we showed [2] that if

(iii) V(t,<f>) S  W3(|x | +  |x í|2) ,

where | • |2 is the Z2-norm, then uniform asymptotic stability would result. 
Other alternatives may be found in [3, 4, 5, 6], for example.

We reduce (ii) in a variety of ways and obtain results on asymptotic 
stability, partial stability, and uniform asymptotic stability. Our work was 
motivated in part by the fact that the zero solution of

(2) x" + tx ' + x = 0

is asymptotically stable [1, 5, 10, 11], so that a substantial weakening of (ii) 
is indicated.

The following is a simplified corollary to our results and is stated here to 
focus the paper.

T h e o r e m  A. Suppose there is a Liapunov functional V, wedges Wt , 
positive constants К  and J , a sequence {tn} \ oo with tn — f„_i S К  such 
that

(i) V ( tn ,<p,-SW2{\\<j>\\),
(ii) V ^ ( t , x t) S -  IT3( |z(<)|) if tn -  h S t  S tn, and

(iii) I f ( t ,  0)| S J (t + 1) ln(i + 2) for t ^  0 and ||0|| < H .
Then x = 0 is AS.

2. Statem ent of results and an example

We now define the terminology to be used here.

De f in it io n . The solution x = 0 of (1) is:
(a) stable if for each £ > 0 and fo = 0 there is a <5 > 0 such that [||<£|| < S, 

t ^  fo] imply that | x(t ,  to, ф)\ < e;
(b) uniformly stable (US) if for each £ > 0 there is a 6 > 0 such that 

[to ^  0, И<£|| < <5, t ^  to] imply that |x ( t , t 0,<£)| < £;
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(c) asymptotically stable (AS) if it is stable and if for each to ^  0 there is 
a 7 > 0 such that ||d>|| < 7 implies that x(t,to,<f>) —► 0 as t -a 00;

(d) uniformly asymptotically stable (UAS) if it is US and if there is a 7 > 0 
and for each /t > 0 there is a T  > 0 such that [to ^  0, ||d>|| < 7 , t ^  to -f T] 
imply that | x(t, to, ф)\ < p.

In preparation for our main result we remind the reader that if V  is a Lia­
punov functional, then W\ ( |<̂>( 0 )|) ^  V(t, ф), V(t, 0) = 0, and V ^ ( t , x t ) ^  Ü. 
So that our result applies also to ODE’s we introduce a positive number к 
which will replace h found in (1).

T h e o r e m  1. Let к > 0, к ^  h, let V be a Liapunov functional for  (1)  
(so that LUx(|d>(0)|) ^  V(t,fi), U (f,0) = 0, and V ^ ( t , x t) ^  0 ) and x = 
=  ( x \ , . . .  ,x m). Consider the following conditions for a given i (1 ^  i ^  m) 
and a given sequence {In} with tn f 00:

(i) there are wedges W{, U{, Qi,
(ii) there are locally integrable functions M;, P,: [0, oo) —► [0,oo),

(iii) there is a sequence { A^} with A^ ^ A > 0 (X is constant) such that 
if a,b £ [tn — k , tn] with a < b, then jj* M fit)dt ^ \ \ l \ b  -  a),

(iv) for each D > 0 with D/ X^  ^ к there is a sequence { c ^ } , c ^  > 0,

such that + Pi(s)ds  ^  c ^  for all sn £ [in — k , tn ~ D /№ ] ,
( v ) V ^)(t,x t) ^  -  Pi(t)Ui(\xi\) for \\xt\\ < II and t £ [tn -  k , tn\, and

(vi) V ^ ( t ,x t) ^  -  Qi(  |x '|) + M fit) for ||xt || < H and t £ [tn -  k , t n} with 
Qi convex downward.

We then have the following conclusions:
(I) If (i)-(vi) hold for all i satisfying 1 S i S m and for some {tn} | 00 

with eil* ^ c0 > 0 for all n and all i, if tn -  fn_j is bounded, and if V (t, ф) й 
^  1Т(||ф ||), then x = 0 is UAS.

(II) If (i)—(vi) hold for an arbitrary sequence {fn} | 00 and for some 1

satisfying 1 ^  i ^  m, if c'n ^  c0 > 0 for all n then any solution x(t) which 
remains in Ch  satisfies X{(t) —> 0 as t —*• 00.

(Ill) If (i)-(vi) hold for all i satisfying 1 'S i 'S m and for some sequence
{t„} I 00, i f V ( t n,fi) ^  ИР( Ц0 Ц) , if ĉn ^  c„ for l <. i ^  m and some cn 
with cn — 00, then x = 0 is AS.

R e m a r k . Theorem 1 is long because it is stated in terms of separate 
components of x. However, to grasp the significance we will now state some 
useful corollaries.

C o r o l l a r y  1. Suppose there is a Liapunov functional V, a locally in­
tegrable function M :[0, 00) —> [0,oo) and a monotone increasing function 
X: [0,00) —> ( 1, 00) such that if 0 < b — a < h then
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(Í) f l M (t)d t й  A(6)(6 -  a) and xffy = oo.

Suppose also that there are wedges, a constant К  > 0, and a sequence 
{tn} \ oo with tn — tn- 1 S К such that

(ii) V(tn,ф) S w(\\<t>\\) 
and if tn — h S t S tn then

( i i i )  F 'i)( i,x t ) S  -  И̂ 2(|ж(<)|) and
(iV) Vj'jj(<,Xt) ^  — И/з ( |х ,(<)|) + M{t), W3 is convex downward.

Then x = 0 is AS.
C o r o l l a r y  2. Suppose there is a Liapunov functional V , wedges Wlt 

positive constants К  and J , a sequence {tn} j  00 with tn — i„_ 1 S К such 
that

(i) V (tn,</>) s W2 { M ) .
(ii) V ^it^X t) S  -  И/3( |x(i)|) if tn ~ h S t  S t n. and

(iii) I /(f,</>)| S  J (t + l)ln (/ + 2) for t ^  0 and ||0 || < H .
Then x = 0 is AS.

C o r o l l a r y  3 .  Suppose there are a Liapunov functional V ana a wedge 
W2 with

(i) v { t , 4>) s w 2 { M ) .
In addition, suppose there are locally integrable functions M ,P:[0, 00) —r 
—+ [0, 00), a positive constant K , sequences {tn} t 00 and {An} with tn — 
— 1 S К , such that if 0 < b — a < h and if tn -  h S  t S  tn with b S tn,
then for each D > 0 there is a c > 0 with

(ii) M (s) ds S  \ n(b — a) and j*+D!Xn j ds ^ c
(iii) V ^ ( t , x t ) S  -  P{t)W 3 (\x(t)\) for tn -  h S t S tn, and
(iv) VLj(t,Xt) S  — Ж |(|а:/(<)|) -f M{t), W4 is convex downward.

Then x = 0 if UAS.
C o r o l l a r y  4 (Marachkov-Krasovskii). If there is a Liapunov func­

tional V , wedges Wt , and a constant M such that

(i) V{t,4>) S W 2{ IHI).
(ii) S -  VF3( |a-(^)l) >

(iii) |/ (C 0 ) | S M i f t ' t  0 and ||<p|| < H.  
then x = 0 is UAS.

We now give an example of Corollary 2.
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E x a m p l e . Let a,6:[0,oo) —> R  be continuous and suppose there are 
constants ci,C2,C’3 > 0 with

(a) a(t) — j 6(£ + 1)| =: a{t) ^  cx,
(b) there is a sequence {tn} | oo and К  > 0 with tn+\ — tn ^  К  and 

I b(s +  1)| ds ^  c2.
(c) a(t) + |6(f)| ^  c3(f + l)ln (i +  2).

Then the zero solution of

(3) x '(t) = —a(t)x  + b(t)x{t — 1)

is AS.
P r o o f . Define

V ( t,x t) b(s + 1)| |x(s)| ds

so that

V(3){t,x t) ^  -  o(i)|*| + |6(f)| j x(t -  1)| + \ b(t + 1)| |a:| -  \b{t)\ | x(t -  1)| ^  

й  -  [a(i) -  \ b(t + 1)|] Iа;I ^  -  a(f)|z|.

Таке H — 1 and W[r) = r. Then for ||0|| < H we have

10(0)1 ^  V(t, 0) = 0, V (tn ,4>) Í  10(0)1 + c2||0||

and
V '( t,x t ) ^  -  ci|®(<)|.

The conditions of Corollary 2 are satisfied.
Examples of a(t) and b(t) are easily constructed so that this equation is 

not uniformly stable. Let u(t) = — [f]sin27rf, w(t) = -  [t](cos27rf -  1)/27г 
and z(t) = I sin irt I -  sin irt, where [•] stands for the greatest integer function. 
Consider the scalar equation

x 1 = (u(t) — 1 -  e 2 ln(i + 1)) x(t) + ^z(i )(ln t)x(t — 1)

for t ^  1. Note that

f n+ 1 [ n+ l n
/ [f] sin 2irt dt — n / sin 27ft dt = — —  ( cos 27r(n + 1) — cos 27rn) = 0

J n  J n  27r
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so that i f n ^ i < n - f l  then

w(t) [  — [2] sin Í
Jo

2 irs ds = — (cos 27rí — 1) = — (cos 2 irt — 1' 
27Г 27Г

Let

V(t) = V ( t ,x t) = e2w(t)x2 + 1  f  g2«'(s+1) jn(s _). 1 4. 1 )x2 (s) ds
2 Jt - 1

so that

V ' ( t )  Í

^  ( —2u(t) + 2u(t) -  2 -  2e2 lufi + 1)) e2w^ x 2 4- z(t)(ln t)x(t)x(t — 1)е2ш*!* + 

4_ Ie2«'(i+1) ln (/ 4- l)z{t + l )x 2 -  ^е2ш̂ (1п t)z(t)x2(t -  1) й

^  -  (2 + 2e2ln(t + l ) ) e 2w[t)x 2 + (In t)e2w^ x 2 + ^ ( l n  t)e2w^ x 2(t -  1)4- 

+ e 2u,(t+1) Inf* + l)x2(<) -  l- e 2w(l][\o t)z{t)x2(t -  1).

Now

so V'{t) ^

е 2 ш ( « + 1 )  _  e - 2 ( [ í ]  +  l ) ( c o s 2 7 T Í - l ) / 2 7 r  <  e 2 £ 2 w ( t )

— 2x 2(t). Also, V(t) ^  x 2 (t). Finally, when n is even

V ( n )  =

=  x2 +  ^  f  e 2 w ( s + 1 )  Infs +  1 ) (  I sin 7T(5 +  1 ) 1  -  sin t t ( s  +  1 ) )  x2(s) ds =  X 2 .
2 Jn- 1

Hence, the conditions of Corollary 2 are satisfied and x = 0 is AS.

R e m a r k . This result will not follow from the work of Busenberg and 
Cooke [6] because they require that for each г/ > 0 there exists r  > 0 such 
that J l+V a(s)ds  ^  r . It will not follow from Burton [2] because that result 
requires that V(t,<j>) ^  W i ( |</>(0)|) + W3 ( |<̂ |2) , where | • |2 is the X2-norm. 
It will not follow from Burton-Hatvani [5] for the same reason. It will not 
follow from Makay [8] because he requires V(t,(j>) ^  VFf ||0||) . It will not 
follow from Wang [12] because he requires uniform stability.
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3. Proof of Theorem 1

We prove (I) first. Since V is a Liapunov functional we have 
LLi ( |0(O)|) is P (f,0 ) and V ^ ( t , x t ) й  0. The additional assumption that
P ( t,0 )  ^  W (||0 ||) yields US. For = H find 8 \ of US and take 7 = 
in the definition of UAS. Let /I > 0 be given and find the 62 of US so that 
[II0 II < 02, t0 ^  0, t к t0] imply that |x (f ,fo,0)| < И-

We will find T > 0 such that if ф 6 C7 and to ^  0, then |x (f ,io,0 )| < /.* 
i i t ^ t o  + T. Let x(t) = x (t , fo, Ф) and V(t) — V ( t ,x t(to, ф)).

Consider the intervals Sn = [tn — k ,tn\, where we may suppose, by renum­
bering, that tn — к tn- \ .  For a given n, suppose ||.x'in|| ^  8 2 . Then there is 
an rn G Sn with I Xi(rn)I ^  82 for some i. Let — a n = V (tn) — V (tn — k).

(a) If |aq(f)| ^  8 2 /2  for t G 5„, then by (v) we have V '(t) ^
^  — Pi(t)Ui(8 2/ 2) on 5n. Let F) = L’A in (iv), so that

- a n = V (tn) -  U(<n -  к) <: -  Ut(6 2 / 2) Г "  Pt(s) ds й -  ĉ U í(8 2 / 2).
J tn—к

(b) If (a) fails, then there are with [рп,<7и] C S n and with |.T!(f)|
between 82 / 2  and 8 2 on [pn;qn]; to be definite, say |aq(p„)| = 8 2 / 2  and 
I xii.4n )I — 82. To simplify arithmetic in Jensen’s inequality, let к ^  1. Then 
we integrate (vi), use Jensen’s inequality, and have

- ö n  S  V{<ln) -  V(pn) ^  -  Q l  (  [  | x ' ( s ) |  ds) + f  M i(s)ds  ^
V J p n  /  J p n

= -  Qi{82 /2) + (qn -  pn)X^K

(bi) If q„ ^  Qi(82 /2)/2, this will suffice for our proof.
(bii) If a n < Qi(82/ 2)/2, then D := Qi(82/ 2)/2 ^  ( cyn -  PnjAn1. We then 

integrate (v) and have

-Q n ^  V(qn) -  V(pn) й -  Ui(62 / 2) Г  P (s)d s  й
J p n

f P n + D / W

й  -  U i ( 82 / 2) /  а д  da £ -  c^U i(62 / 2).
J p n

From (a), (b), (bi) and (bii) we find

q„ ^  min[c^t/;(<52/2), Q,(<52/ 2) /2] ^  m in[с0£/,*(̂ 2/ 2), Q»(^2/ 2) /2] =: a.г г
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If t > tn, then
0 ^  V(t) ^  V(to) — no ^  W (ö r ) -  na,

a contradiction if n > W (áj )/ct. Now there is a A > 0 with tn — tn- i  % A so 
we may select N > W (6 \) /a  and then T  = N К . This completes the proof 
of (I ) . '

The other proofs are parallel. We must only change tn for (II), while in
(г)(III) we need to change t.n and c„ .

To prove (II) we first note that it is not vacuous. The zero solution is 
stable so there are solutions remaining in С и • Suppose that x(t ) remains 
in Си  and Xi(t) -л 0 as t —* oo. Then there is an £ > 0 and a sequence 
{tn} I oo with ^  tn + к and |.r;(fn)| = £• Let Sn — [tn — k, tn\ and
—a n = V(tn) — V( tn — к ) where V(t)  = V(t , xt). Using the same proof as in 
(I) we have

oin ^  min[coC^(£/2),Qt(£r/2)/2] =: a.

If t > tn, then 0 ^  V(t )  ^  V (t0) — M , a contradiction for large n. This 
proves (II).

To prove (HI), we note again that it is not vacuous, as in (II), and we 
consider a solution x(t ) remaining in Си on an interval [íq, oo). Suppose 
that x(t) 0 and note that V'( t ,xt) ^ 0 so that if t ^  tn then ( |a:(/)|) ^  
^  V( t , x t ) ^  V (tn,x t n) ^  W[ ||a:in| |) ; thus there is an e > 0 with ||a'tn|| ^  e 
and so there is an i for each n with | a t(rn)| ^  e, where rn 6 [tn — h, tn\. Let 
Sn — [tn — k, tn]. Once again the same proof gives

(*) a n ^  m m [clT̂ U i(£/2),Q i(s/2)/2]  ^  m in[cnU ,(s/2),Q l(s/2)/2\ .
г г

Since t > tn yields

П П
(**) 0 g V ( t , x t ) ^ V ( t l f x t l ) - ^ ai í  W  ( ||a,'(l II)

i=2 i=2

the second choice in (*) can hold only for finitely many n. Since cn —
= oo, a contradiction results in (**) for large n. This completes the proof.

4. Proofs o f the corollaries

First, note that Corollary 1 is just a statement of Theorem 1 (III) without 
a separate statement for each component. Also, Xn = \ ( t n ) will suffice, since
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P(t) — 1 and so

l
Sn +  D /  Xu

1 (It =
f S n + D / \ ( t n )

d t =
D

A (i„)
— • £n

and cn diverges since dfjj diverges and Л is increasing.
Corollary 2 follows from Corollary 1 when we note that (iv) of Corollary 

1 is satisfied, because for ||</>|| < 1 we have

V' ( t , x t) i  - H / 2(|x(i)|) ^ ~ \ f { t , x t)\ + J(t + l)ln (i + 2)

and M(t )  = J{t + l)ln(< + 2) satisfies condition (iv) of Corollary 1.
Corollary 3 plays the role for Theorem 1 (I) that Corollary 1 plays for 

Theorem 1 (III). It merely avoids the component conditions.
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C O M P L E M E N T A R Y  RADICALS REVISITED
B. DE LA ROSA (Bloemfontein), Y. FONG (Tainan) and R. WIEGANDT* (B udapest)

1. Introduction

Initially the idea with the notion of a radical was solely to have it fill 
the bad part in an algebraic structure, which was to be factored out for the 
purpose of obtaining structure theorems on the quotient (cf. [10]). This idea 
was supplemented by Andrunakievich in 1958 in [3] where he highlighted the 
fact that “bad” and “good” radicals go hand in hand to provide a fertile 
source of algebraic knowledge.

In this expanded radical scene Andrunakievich has given the concept of 
complementary radicals a fair amount of prominence, with good effect. His 
main result in this respect is his Theorem 10 in which he exhibited (in the 
case of associative rings) the existence of two mutually complementary dual 
Kurosh-Amitsur radicals associated with each class of subdirectly irreducible 
rings with idempotent hearts of some definite kind; and also emphasized 
that all dual supernilpotent radicals and all dual subidempotent radicals are 
obtained in this manner.

The present paper deals with the problem of complementary radicals in 
more general settings. We study ideal-mappings more general than Kurosh- 
Amitsur radicals, these mappings moreover being taken on universal classes 
of not necessarily associative rings (Section 2); and then investigate comple­
mentarity in Andrunakievich s-varities (Section 3); and for abstract affine 
near-rings (Section 4).

Complementary radicals have been revisited recently also by Gardner [7] 
from a similar point of view; he too tends for generality; there is, however, 
no overlapping in the results.

We shall use the standard terminology and basic facts of radical theory 
(see [9] and [11]).

* T h e  th ird  a u th o r  gratefu lly  acknowledges the financial su p p o rt of the N a tio n a l 
Science C ouncil of the R epublic  of C hina and  th e  kind hosp ita lity  of the N ational C heng- 
Kung U niversity , Tainan, R .O .C .
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2. R esults on generalizations of K urosh-A m itsur radicals

Let V be a universal class of not necessarily associative rings, or algebras 
over a commutative ring with unity. For brevity these objects will be referred 
to  as rings. A mapping p which assigns to every A £ V an ideal pA of .4 is 
called an ideal-mapping on V. An ideal-mapping p on V is said to be

hereditary if I  П pA ^  p i  for all I  < A £ V;
idempotent if ppA = pA for all A 6 V;
complete if (7 < A £ V and p l  = I) implies I  ^  pA\
a preradical if f (pA)  ^  p f ( A )  for every homomorphism /  : A —♦ f (A)  

with A £ V;
a Plotkin radical if it is a complete and idempotent preradical;
a Kurosh-Amitsur radical if it is a Plotkin radical with the property 

p(A/pA)  = 0 for all A £ V.
We now prove various results within this framework.

P r o p o s i t i o n  2 . 1 .  If p is a hereditary ideal-mapping then its semisimple 
class Sp := {A\pA  = 0} has the inductive property, that is, if I\ • • • Q Ia Í  
Q ■■■ is an ascending chain o f ideals of a ring A such that Ia £ S p for each 
index a, then also UIa £ Sp.

P r o o f . Suppose that I  := U Ia Sp, i.e., pi /  0. Then there is an 
index a such tha t Ia П p i ф 0. By Ia £ Sp and the heredity of p we get 
I a П p l Q p la =  0, a contradiction.

Let us recall that an ideal /  of a ring A is said to be essential in A , if 
/  П К  /  0 for every ideal К  ^  0 of A. This fact will be denoted by I  < A. 
A class C of rings is said to be closed under essential extensions, if I < A 
and I  £ C imply A £ C.

P r o p o s i t i o n  2 . 2 .  I f  p is a hereditary ideal-mapping then its semisimple 
class Sp is closed under essential extensions, that is, if I  < A and I £ S p 
then also A £ S p.

P r o o f . Let I  £ Sp be an essential ideal of a ring А ф 0. Then /  П pA C
Q p i = 0. Since /  is essential in A it follows that pA = 0, i.e., A £ Sp.

P r o p o s i t i o n  2 . 3 .  I f p is a hereditary preradical then its semisimple 
class Sp is closed under extensions.

P r o o f . Let B , A / B  £ S p and consider an ideal C of A which is maximal
with respect to В П C = 0. From В  = [В + C)/C and the well-known fact
that {B + C ) / C  < ■ A /C  we infer (using Proposition 2.2) that A /C  £ S p. 
Since p is a preradical, Sp is closed under subdirect sums (cf. [4], Proposition 
1.1). Hence A, being a sub direct sum of the rings А / В  and A /C, is in Sp.

Given two ideal-mappings 7 and 6 , we say that 6 is greater than 7 and 
write 7 ^  6 , if 7 A ^  6 A for all A £ V.

Now let p be a preradical and consider all Plotkin radicals 6 such that 
pA  П SA = 0 for all A 6 V. If there exists a largest Plotkin radical (p) among
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these S's, then (p) is called the complementary (Plotkin) radical o f p. In 
the case where p is hereditary, this complement exists and it is in fact a 
Kurosh-Amitsur radical. This is

T heorem  2.4. If p is a hereditary preradical, then the largest homomor- 
phically closed subclass

H P := {A G Sp I every homomorphic image of A is in Sp}

in the semisimple class Sp, is a Kurosh-Amitsur radical class, and the radical 
(p) defined by H p is the complementary radical of p. Moreover, H p = R<p) := 
:= {A I(p)A = /1} is the largest preradical class inside Sp.

P r o o f . By definition H p is homomorphically closed. To prove tha t H p 
is a Kurosh-Amitsur radical class we have to show that H p has the inductive 
property and is closed under extensions.

Let I\ C • • • Я Ia Я ■ • • be an ascending chain of ideals of a ring A  such 
that Iо, E Hp for all indices a and let I  := U Ia. We prove that I  E H p by 
showing that I / K  E Sp for all ideals К  of I. So let К  be any ideal of /  and 
consider the chain

(h  + K ) / K  Я  • • • g  (Ia + K) / K  Я ■ ■ •.

Since each Ia is in H p g Sp and since Hp is homomorphically closed, we 
have (Ia + K ) / K  = Ia/(Ia  П К) E Sp for all a. By Proposition 2.1 Sp has 
the inductive property, so we get I /K  = U (Ia + K ) / K  E Sp.

Next we prove that H p is closed under extensions. Suppose that / ,  А / 1 E 
E Hp and consider an arbitrary ideal К  of A.  Since Hp is homomorphically 
closed, А / 1 E H p implies that A/ ( I  + К)  E Hp. Using /  E H p we get ( /  + 
+ K ) / K  = 1/(1  Г) К ) E Hp Я Sp. Since also

A /K
( i + Ю / к

= A/ ( I  + К)  E Hp Я Sp

it follows by Proposition 2.3 that A / К  E Sp.
We now show that (p) is the complementary radical of p. By the heredity 

of p we have that (p)A П pA g p((p)A)  for any A. Since (p) is a Kurosh- 
Amitsur radical and hence idempotent, it follows that (p)A E R{p) = H p Я 
Я  Sp, i.e., p((p)A)  = 0. Thus we have that (p)A П pA = 0 for all A. And 
we now claim that SA Я (p)A for all A whenever S is a Plotkin radical 
such that pA П SA = 0 for all A. For let В  E R,;. Then В -  SB,  and 
so we have that pB = pB  П В = pB П SB = 0, so that В  E Sp. Thus 
we have tha t the homomorphically closed class R^ is contained in S p; and 
consequently R 5 g  Hp = R^pp N ow for any ring A, SA = ]Г (/ < A \ I  E R 5); 
and from R 5 Я R < p) we get SA Я  X X < A \ I  e R ( p) )  = (p)A. Thus (p) is 
the complementary radical of p.
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The final assertion in the theorem is obvious in view of the fact that the 
radical class of any preradical is homomorphically closed (cf.[4], Proposition 
1-1) .

From [4] Proposition 4.1 we know that a hereditary preradical is idem- 
potent. In proving our next theorem we shall need also that the hereditary 
preradical be complete. We shall therefore consider a hereditary Plotkin rad­
ical. We note th a t a Plotkin radical p is hereditary if an only if its radical 
class R p is a hereditary class.

We shall denote by H (A ) the heart of a subdirectly irreducible ring A, 
i.e., H{A)  = П ( I < A \ I  ф 0).

THEOREM 2.5. Let p be a hereditary Plotkin radical and let

s(p) := {all subdirectly irreducible rings A \ Я(А) E R p).

The complementary radical class R{p) coincides with the class Us(p) : = 
:= { A \ A / I  ф 0 =>• A/ I  ф s(p)}, and hence (p) is the upper radical o f the 
class s(p).

P r o o f . For proving R (p) Q Lls{p) let us consider an arbitrary A E R (p) 
and any subdirectly irreducible homomorphic image В of A. Since A E R (p) 
we have by Theorem 2.4 th a t В E Sp. Hence H(B) ф R p, otherwise we 
would have 0 ф H( B ) = p H( B )  Q pB by the completeness of p. Thus it 
follows that A E Us(p)\ and R (p) C Us{p).

Conversely, suppose th a t A ф R(P)- Then by Theorem 2.4 A has a 
nonzero homomorphic image В  which is not in Sp. Let {B a = B / K a \ a E 
E Л} be the set of all subdirectly irreducible homomorphic images of В  and 
consider the subdirect sum representation В  = ^2(Ba \ a  E A). Since Sp is

s.d.
closed under subdirect sums and В 0 Sp, at least one subdirectly irreducible 
component B a is not in Sp, i.e., pBa ф 0. Hence by the heredity of p we 
have H{Ba ) — H(Ba) П p B Q ^  pH(Ba), showing that H ( B a) E R p. Since 
B Q is a homomorphic image also of A, we conclude that A $ Us{p); and 
Us{p) ^  R p.

3. Com plem entary radicals in Andrunakievich s-varieties

In this section the universal class V under consideration is an An­
drunakievich s-variety. We briefly recall the definition: For A E V we define 
inductively:

:= A; A ^  := A*n_1* • A^"-1  ̂ for integers n > 0
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and
S — 1

A1 := A; As ^  A1 • A!_1 for integers s > 1.
i—i

If = 0 for some n (As = 0 for some s) then A is said to be solvable 
(nilpotent). (Nilpotency implies solvability, but not conversely. In associa­
tive rings these two concepts coincide.) The universal class V is called an 
Andrunakievich s-variety if the following two conditions hold:

(A) \ i C < B < A £ V  then С/ С  is solvable, where C denotes the ideal of 
A generated by its subring C .

(s) There exists an integer s > 1 such that whenever В < A £ V then 
B s < A. Examples of Andrunakievich s-varieties are given in [1].

We shall study the behaviour of the complementary radicals of 
Plotkin radicals in V, and prove an Andrunakievich s-variety version of 
Andrunakievich’s fundamental Theorem 10 in [3]. We shall need the fol­
lowing statement which is well-known for associative rings:

P roposition  3.1. The heart of a subclirectly irreducible ring in V is 
either simple and idempotent, or nilpotent. Every ideal I  of a subdirectly 
irreducible ring A with idempotent heart H(A)  is itself subdirectly irreducible 
with heart H ( /)  = A(A).

P r o o f . The first statement is Proposition 4 in [6].
Let 0 ф К  < I  < A and К  the ideal of A generated by A'. H(A)  ^  К  

implies that 0 ф K / K  is solvable by condition (A). Since K / K  contains the 
idempotent ring ( H( A ) + К ) / К  = # (A ) /(  H(A)  П К)  , the latter must be 
0 and H (A) £  К , a contradiction.

A Plotkin radical p is said to be supersolvable if its radical class R p is 
hereditary and contains all solvable rings. The supersolvability of p has a 
favorable influence on its complementary radical. This is

THEOREM 3.2. Let p be a supersolvable Plotkin radical. Then the radical 
class R(p) of its complementary radical (p) is hereditary.

P r o o f . We first show that К < I  < A G R(p) implies that К  < A. Since 
A G R-(p)5 A / K s G Sp, К  being the ideal of A generated by K.  Moreover, 
K / K 3 is nilpotent and hence solvable, so K / K 3 G R p; and consequently 
K / K 3 ^  p ( A / K s) = 0 as A / K 3 G Sp. Hence Íí = K s, showing that К  is 
idempotent. Consequently, since K / K  is solvable, K / K  =  0 so that К  = 
= К  < A.

We now verify the heredity of the class R /p). Let I / К  be a subdirectly 
irreducible homomorphic image of an ideal /  oi a ring A in R (p). Now К < A, 
and by Zorn’s lemma we may choose an ideal L of A such that I  П L = 
= К  and L is maximal with respect to this property. We now have that 
I / К  ^  (I + L) /L  < А /L. Let H / L be the heart of the subdirectly irreducible
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ring ( /  + L) / L .  Using the fact, that .4 £ R ^  we get from H / L <([ + L) / L < 
< A/ L  £ R(p) that H/L < Л / L £ R(p) ^  Sp. This implies that H/L  ^  R p, 
and so H/ L  is not solvable. Thus, by Proposition 3.1, II/L is a simple 
idempotent ring and so, again by H/ L  ^  R p, it follows that p(H/L)  = 0, 
i.e., H/L  E Sp. From the isomorphism I / K  = ( /  + L) / L  we get that the 
heart of I / Li is isomorphic to H /L , and so it is in Sp. Since Sp is closed 
under essential extensions (Proposition 2.2) we conclude that I /K  E S p. 
Since I /K  was an arbitrary subdirectly irreducible homomorphic image of 
/ ,  we have th a t I  E Us{p) — R ^  by Theorem 2.5. Thus R ^  is a hereditary 
class.

Following Kurosh-Amitsur radical theory we may call a Plotkin radical 7 
subidempotent if Ry is hereditary and consists of idempotent rings. The rad­
ical class R(p) in Theorem 3.2 does consist of idempotent rings: let A E R (p)- 
Since A /A 2 is a solvable ring, A /Á 2 E R p. Since R ^  is homomorphically 
closed also A /A 2 E R(p)- Hence A /A 2 E R p П Sp = 0, showing that A 2 = A. 
In view of this and Theorem 2.4 we may now reformulate Theorem 3.2 as:

Corollary  3.3. If p is a supersolvable Plotkin radical in V, then its 
complementary radical (p) is a subidempotent Kurosh-Amitsur radical.

Since (p) is a hereditary Kurosh-Amitsur radical, by Theorem 2.4 its 
complementary, radical ( (p))  exists, and by Theorem 2.5 we have R((p)) = 
=  lLs[(p)) where s[(p)) is the class

s((p)) — {all subdirectly irreducible rings with heart in R(p)}-

Clearly if p is supersolvable, then the heart of any subdirectly irreducible 
ring in s((p))  is simple and idempotent in view of Proposition 3.1. Hence 
the class s( (/.)) is hereditary and also closed under essential extensions.

Let us consider С < В < A and the ideal C of A generated by C . Assume 
that B / C  E s((p)) .  Being in an Andrunakievich variety, C/C is a solvable 
ideal of B / C .  Since B / C  E s((p)), the heart H[B/ C)  is idempotent, and 
therefore C / C  has to be 0, that is С = C  < A. Thus the class s[(p)) satisfies 
also condition

(F) if С < В < A and B / C  E s( (p)) , then C < A.

Now [2] Theorem 1 and its Corollary 1 is applicable to the class s((p))  
yielding the following

T heorem  3.4. Let p be a supersolvable Plotkin radical with complemen­
tary radical (p), R /p) = ILs(p). The complementary radical ((p)) o f (p) is 
the upper radical of the class

л((/>)) = {all subdirectly irreducible rings with heart in R(p\},
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that is, R-((p)) = Us((p))  . Moreover, the class R-((p)) is hereditary and so is 
the semisimple class S((p))- If A is any ring of $((,,)), then A is a subdirect 
sum

A = ^  (Aa I Aq £ s((p)))
s.d.

of subdirectly irreducible rings with heart in R(p)-

In order to prove a counterpart of Theorem 3.2, we need the following

P roposition 3.5 ([6] Lemma 2). If К < I < A and I /K  has no nonzero 
solvable ideals and M /K  is an idempotent minimal ideal in I / K ,  then there 
exists an ideal L o f A such that А /L  is subdirectly irreducible with heart 
H{A/ L)  = (M + L) / L  M/ K.

T h e o r e m  3.6. If p is a subidempotent Plotkin radical, then the radical 
class R.(p) of its complementary radical (p) is hereditary.

P r o o f . Let us consider an ideal /  of a ring .4 £ R(p), and let I /K  
be any subdirectly irreducible factor ring with heart H( I / K)  = M / K . Let 
us suppose that M / K  £ R p. Since p is subidempotent, M / K  has to be 
a simple idempotent ring in view of Proposition 3.1. Now Proposition 3.5 
is applicable, yielding the existence of an ideal L of A such that А / L is 
subdirectly irreducible with heart H( A/ L)  = (M + L) /L  = M / K  £ R p. 
Hence A / L  £ Sp contradicting A £ R(p). Thus necessarily H ( I / K )  £ Sp, 
regardless whether H ( I / K ) is simple idempotent or solvable. Since by 
Proposition 2.2 the semisimple class S p is closed under essential extensions, 
it follows that I / K  £ Sp. Thus I £ Us{p) = R(p) holds in view of Theorem
2.5, proving the heredity of the class R^p).

Theorem 2.4 and Theorem 3.6 give immediately

Corollary 3.7. I f  p is a subidempotent Plotkin radical in V, then its 
complementary radical (p) is a supersolvable Kurosh-Amitsur radical.

A direct consequence of Theorems 2.4 and 2.5 and Corollaries 3.3 and 
3.7 is the following

Corollary 3.8. If p is a supersolvable or subidempotent Plotkin radical, 
then p "й ((p)) where ((p)) is the complementary radical of the complemen­
tary radical (p) of p.

As in the case of associative rings, a hereditary radical p is called a dual 
radical of (p), if p — ( (p)) ■ A dual radical is always Kurosh-Amitsur radical 
in view of Theorem 2.4, and in general the same can be said on dual radicals 
in Andrunakievich s-varieties as on those of associative rings ([3], [7], [9]). 
The next theorem extends [3] Theorem 10 to Andrunakievich s-varieties and 
adds some new aspects to it.
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T heorem 3 .9 . Let Q be any class of simple idempotent rings in V, and 
define classes s (Q ) and t(Q) by

s{Q ) =  {all subdirectly irreducible rings in V with heart in Q}

and

t(Q) = {all subdirectly irreducible rings in V with heart not in Q}.

The upper radical class Us( Q ) is a supersolvable dual radical, and it is the 
unique largest universal subclass U of V such that U П Q = 0. The upper 
radical class Ыt (Q ) is a subidempotent dual radical, and it is the largest 
universal subclass V of V such that the simple rings of V are in Q. Us(Q) 
and !At(Q) are mutually dual radicals.

P roof. The class s{Q) is hereditary by Proposition 3.1, whence R 7 = 
=  lAs{Q) is a Kurosh-Amitsur radical class. Next, we prove that 7 is 
hereditary. To this end, let /  < A £ R7, and suppose that I ф R 7. Then 
I  has a homomorphic image I / К  in s(Q). Let К  denote the ideal of A 
generated by K .  In the case К  ф К the ring К /К  is solvable by condition 
(A). Further, К / К  contains the heart of I / K  which is an idempotent ring. 
This contradiction proves th a t only К  = К  is possible, that is, К < A. Next, 
put J = I / K  and В = А / К , and consider an ideal L of В which is maximal 
with respect to  J  П L = 0. It is well-known that J = (J + L) /L  is an essential 
ideal in B / L , and so J E s( Q ) implies B / L  £ s(Q), contradicting A £ R-, 
and В = А / L £ R-, Thus 7 is hereditary. Since R 7 contains clearly all 
solvable rings, 7 is supersolvable.

An application of Theorem 2.5 yields tha t the complementary radical of 
7 is R$ = ZVCQ), the latter being a subidempotent Kurosh-Amitsur radical 
by Corollary 3.3. By the same token, the complementary radical of 6 is R 7 = 
=  ZYs(Q). Hence by Corollary 3.8 7 and 6 are mutually dual supersolvable, 
resp. subidempotent radicals, and consequently both R-, = Us{Q) and R^ = 
= Ut{Q) are universal subclasses of V.

We have to  prove that R 7 and R^ are the largest universal subclasses 
with the additional properties demanded in the theorem. Let В be any 
subdirectly irreducible homomorphic image of a ring A 6 V.

Assume th a t A € U. Then В 6 U and also the heart H ( B ) is in U. 
Hence H(B)  ф Q. and so В  s(Q), implying A £ lls (Q).

Suppose th a t A E V. Then also В E V  and H ( B ) E V. Let us assume 
that H = I I {B)  is solvable. Then H2 ф II and H 2 < H holds. Since V is 
a universal class and H £ V , we have also H / В 2 £ V which is a ring with 
trivial multiplication. So any cyclic subgroup of H/ H 2 is an ideal of H / H 2, 
and it has a simple cyclic homomorphic image С E V. But the simple rings 
of V are in Q by the assumption, and Q consists of simple idempotent rings. 
This contradiction shows th a t II cannot be solvable. Hence by Proposition
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3.1 Я is a simple idempotent ring in V, and so by the assumption H G Q. 
This proves that A 6 U t(Q).

For instance, Theorem 3.9 yields the following special cases:
i) the Brown-McCoy radical (the upper radical of all simple rings with 

unity) is the largest universal subclass not containing simple rings with unity;
ii) Behrens radical (the upper radical of all subdirectly irreducible rings 

having a nonzero idempotent element in the heart) is the largest universal 
subclass not containing simple rings with nonzero idempotents;

iii) the antisimple radical (the upper radical of all subdirectly irreducible 
prime rings) is the largest universal subclass not containing simple idempotent 
rings.

iv) the class of hereditarily idempotent rings (the dual radical of the 
antisimple radical which is the upper radical of all subdirectly irreducible 
rings having solvable heart) is the largest universal subclass such that the 
simple rings are idempotent.

4. Com plem entary radicals of abstract affine near-rings

A (right) near-ring N  is called an abstract affine near-ring, if N  is 
abelian (i.e. the addition is commutative) and the О-symmetric part Nq 
of N coincides with the set of distributive elements of N. As is well-known 
the constant part N c is an ideal in the abstract affine near-ring N  and every 
ideal I  = Iq + Ic of N  is given by Io < N0 and Ic < Nc such that IqIc ^  Я and 
IoNc ^  Ic. For details we refer the reader to [8].

In this section we prove that analogous results are valid in the variety of 
abstract affine near-rings to those of Section 3. Our main objective will be, 
therefore, to prove corresponding statements to Theorems 3.2 and 3.6. For 
that purpose we need some specific results on abstract affine near-rings. The 
following assertion states that abstract affine near-rings form a 2-variety.

P roposition 4.1. If I  and К  are ideals of an abstract affine near-ring 
N, then also IK  is an ideal of N . In particular, I 2 < N for every I  < N.

The proof is a straightforward verification.
P roposition 4.2. I f К < I  < N and G is the ideal of N generated by К . 

then (G/ К )3 is a constant near-ring. Hence abstract affine near-rings do not 
form an Andrunakievich variety.

P r o o f . By GqGc ^  Gc we have

G2 = (Go +  GC)G = G0G + GC = G2 + G0GC + GC = G2 + GСЧ

and therefore

G3 = (G2 + GC)G — GqG + Gc = G3 + G^GC + Gc = Gq + Gc.

Acta  Matkematica Hmigarica 65, 1994



2 6 2 В. DE LA ROSA, Y. F O N G  and  R. W1EÜANDT

Since К  о < Go < No, No is a ring and Go is just the ideal of No generated by 
К  о, the Andrunakievich Lemma is applicable yielding G'q ^  A о ~ A . Thus 
we get

(G / A )3 = (G'3 + A )/A = (G'o + Gc + A )/A = (G'c + A )/A  = GC/(G C П A ), 

proving the assertion.

P r o p o s i t i o n  4.3. I f К  < I  < N and I /K  is a subdirectly irreducible 
ring with idempotent heart H( I / K)  — M / К,  then there exists an ideal L 
of N such that N /L  is subdirectly irreducible with heart H(N/ L)  = (M + 
+ A)/A = M / K .

P r o o f . First, we prove that К  < TV. Let us consider the ideal G of N 
generated by K.  Now we have G/ К <I / K .  Since I / K  is a subdirectly irre­
ducible ring, either M / К  Q G/ К  or G / K  = 0 . In the first case Proposition
4.2 ensures that (G/ К )3 is a constant near-ring. By G/ К  ^  I / K , however, 
G/ К  is also a ring, and therefore ( G/ K)  = 0. Since M / К  is idempotent 
we get M / K  = ( M/ К )3 ^  ( G / K )3 = 0 , a contradiction. Hence G / K  = 0 is 
valid, that is, К — G < N.

Next, we show that M  < N . Since К  < N , we may consider Мд- = M / K  
/д- = I / K  and Ад- = N / K .  Now, for the ideal ./д- of Ад- generated by 
Мд- an application of Proposition 4.2 yields that ( ./д /М д -  )3 is a constant 
near-ring, and by Jк  / Мд- ^  /д -/М д- it is a ring too. Hence we conclude that 
( Jk / Mk )3 =  0 , i.e., J 34- С М д-. Taking into account that Мд- is idempotent, 
we get Мд- = Мд- ./д-, and so by Proposition 4.1 we have Мд- = J/- о Ад-.
Thus also M  is an ideal of A .

Finally, let us consider an ideal A of A  which is maximal relative to M П 
Л L — К . Since A’ < A , by Zorn’s lemma such an L does exist. (M + L)/L is 
a minimal ideal of N / L , because of M / K  = (M + L) / L  and of Proposition
3.1. For any nonzero ideal J / L  of N / L  the maximally of L yields M П 
П J ф K,  and so by 0 ф (AI П J ) / K  Q M / K  the simplicity of M / K  implies 
M П J — M , i.e., M C J .  Hence (M + L)/L is the unique minimal ideal of 
N / L , proving that N/ L  is subdirectly irreducible with heart (M + L)/L.

A Plotkin radical p of abstract affine near-rings will be said to be su- 
pernilpotent and superconstant, if its radical class R p is hereditary and con­
tains all nilpotent rings as well as all constant near-rings. By definition the 
semisimple class Sp of a supernilpotent and superconstant Plotkin radical p 
consists of rings. Let us mention that the semisimple class Sp of a Kurosh- 
Amitsur radical p of abstract affine near-rings is hereditary if and only if the 
radical class R p contains all constant near-rings ([5] Theorem 3.4). Consid­
ering, however, a supernilpotent and superconstant Plotkin radical, we do 
not know whether its semisimple class is hereditary.
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T h e o r e m  4 . 4 .  Let p be a supernilpotent and superconstant Plotkin rad­
ical of abstract affine near-rings. Then the radical class R /^  of its comple­
mentary radical (p) is hereditary.

P R O O F .  Notice that the results of Section 2 are valid also for abstract 
affine near-rings, in particular by Theorem 2.4 the complementary radical 
(p) exists.

Since the semisimple class Sp and so also the radical class R ^  consists 
of rings, the same proof as that of Theorem 3.2 yields the assertion.

A Plotkin radical p of abstract affine near-rings is said to be subidempo- 
tent, if its radical class R p is hereditary and consists of idempotent rings. By 
the above quoted [5] Theorem 3.4 we know that the corresponding semisimple 
class Sp is in general not hereditary. Thus proving that the complementary 
radical class of a subidempotent Plotkin radical is hereditary, needs more 
effort inasmuch as Proposition 4.3 is used.

THEOREM 4 . 5 .  If p is a subidempotent Plotkin radical, then the radical 
class R (p) of its complementary radical p is hereditary.

P r oof . The proof of Theorem 3.6 can be followed and then one uses 
Proposition 4.3 instead of Proposition 3.5.

In the possession of the key statements of Theorems 4.4 and 4.5, which 
correspond to those of Theorems 3.2 and 3.6, the theory of complementary 
and dual radicals of abstract affine near-rings can be developed in the same 
way as in Section 3.
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ON THE Q U O T IEN T S OF CO UNTABLE  
D IR E C T  P R O D U C T S  OF MODULES M O D U L O

D IR E C T  SUMS
L. FUCHS* (New Orleans) and L. M. PRETORIUS (P retoria)

§1. In tro d u c tio n . A remarkable result in abelian group theory is 
Hulanicki’s theorem (see [6] or [2, p.176]) stating that, for any countable 
family A \ , . . . ,  An, . . .  of abelian groups, the quotient [ |  А „/ ф An of the 
direct product modulo the direct sum is an algebraically compact group; 
thus it is a direct sum of a divisible group and a Z-complete group. Though 
most theorems on abelian groups easily extend to modules over P.I.D.’s, and 
moreover, over Dedekind domains, this result fails for P.I.D.’s unless the 
number of primes is countable.

In view of the most recent developments on Д-completions over domains 
Д whose field Q of quotients satisfies p.d. <5 = 1 (see [3]), it seems reasonable 
to have a new look at the quotients M * = Ц Mn/  ® Mn for countable sets 
{M i , . . . ,  M „,...}  of Д-modules. We start from the fundamental observation 
due to Mycielski [9] which states that M* is algebraically (or equationally) 
Hi-compact in the sense that any countable system of equations with un­
knowns X j ,

^  rijXj = аг G M* (rij e R ; i, j  = 1, 2, . . . ,  n , . . . )
j

(for a fixed i , almost all = 0) has a solution in M* provided that every 
finite subsystem is solvable in M*. We will prove that the first Ulm sub- 
module M *1 of M* is a divisible module, and though the 0-th Ulm factor 
M */М *1 is in general not Д-complete, it is always torsion-complete, i.e. it 
is Hausdorff in the Д-topology and its ДД-extensions by torsion divisible 
Д-modules split. (Recall that a submodule IV of M  is an RD-submodule 
if rN  = N  П rM  for all r G Д; see [4, p.39]. Those extensions of M  by a 
module A  in which M  is an RD-submodule form a subgroup R D ext^A jM ) 
of Ext1(A ,M ).) As torsion-free modules are always torsion-complete, the 
result is more meaningful for torsion modules Mn.

Our main result (Theorem 6) shows that for torsion modules M„, the 
structure of M*/ М *1 can be given more explicitly with the aid of Ä-complete 
modules.

* P a rtia l  support by N SF is g ra tefu lly  acknowledged.
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§2. P re lim in aries . We assume that A is a commutative domain with 
1, and R ф Q for the field Q of quotients of R. Let S  be a subsemigroup of 
A\0. An А-module M  is said to be S-divisible if sM  = M  for all s G S. If 
S  is countable, then the localization Rs  of R at S satisfies for 5-divisible M

Ext1 (As, M ) = 0 and E xt^A s/A , M ) = 0.

In fact, by the 5-divisibility of M ,A s,A s/A  and the countability of 5 it is 
easy to show that every extension of M  by As and A s/A  is splitting.

If the projective dimension p.d.Q = 1, then К — Q /R  decomposes into 
the direct sum of countably generated divisible modules, К  = ® At/A; see 
Lee [7]. By Matlis [8, p .401 ], each Ai is a flat overring of A. Hamsher [5] 
shows that is contained in a localization As, of A at a suitable countable 
subsemigroup 5,- of A\0 such that As, /А  is a summand of К .

The Ai-component M A, of a reduced torsion А-module M  (reduced 
means that Нотя(<2,М ) = 0) is defined via

M At = Torf (Аг/А , M) = Bt ®R M  = Homfí(£ „ M )

where Bi = Aj. The Ai-component M At is Ai-torsion (Ai ®r  MAt = 0),

Ai-reduced (Н отя(А г, M At) = 0), В j-torsion-free (Torf (Bt/R,  MAi) = 0) 
and Bi-divisible (ExtJ^Ai/A , MAi) = 0). Furthermore, we have

(1) М = 0 М Л,.
г

For a subsemigroup 5  of A\0, we set M s — fj sM . The first Ulm
s&S

submodule of M  is defined as M 1 = fj rM , and M /M 1 is called the 0-
0^r£R

th Ulm factor of M . A module M is S-complete (A-complete) if M s = 0 
(M 1 = 0) and it is complete in the 5-topology (A-topology) where { s M} seS 
({rM}0 -геЛ) is a subbase of neighborhoods of 0. In [3] it is shown that
— under the hypothesis p.d.Q  = 1 — an А-module M  with M 1 = 0 is Ä- 
complete exactly if Extfjff), M ) = 0, in which case M  = Ext}j(A',M), while 
Pretorius-Schoeman [10] show that M  with M 1 = 0 is torsion-complete if 
and only if RDext}j( A’, M )  — 0 (for the definition of the group RDext1 of 
AA-extensions, see e.g. [4, p .59]).

§3. A lgebra ica lly  iE -com pact m odules. We wish to establish a 
couple of properties of algebraically Hj-compact modules, in particular, in 
case p.d. Q — 1.

L e m m a  1. Let R$ be the localization of the domain A at a countable 
semigroup S . For an algebraically P i-compact R-module M , we have
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(i) M s is S-divisible and algebraically Hi-compact;
(ii) M / M s is S-complete.

If M is reduced, then moreover
(iii) Hornr (Rs , M)  = M s ;
(iv) E x t^ R s ,  M ) = 0 and ExtlR(R s /R ,M )  = M / M s .

P r o o f . For (i), we first show that M s is contained in the union d$M 
of all 5-divisible submodules of M.  Setting S = {sx,. . .  , sn, ...} , observe 
that a G M s if and only if the finite subsystems of the countable system of 
equations

(2) s\X\ = a, snx n = xn- \  (n = 2 ,3 ,...)

with unknowns x \ , . . .  , xn, . . .  are solvable in M.  The algebraic Kx-compact- 
ness of M  ensures the existence of a global solution of (2), say xn = bn G M . 
Thus the submodule N  = (a, b \,. . .  ,bn, ...)  of M  is an epic image of Rs 
under the map 1 ^  a, . . .  s“ 1 >-* bn(n ^  1), so a G d s M .

Let Y l j rijxj — ai £ M s (i , j  = 1 ,2 ,...) be a countable system of equa­
tions which is finitely solvable in M s . Adding to this system countably many 
equations

^1^2 ' ‘ * Snxjn xj — 0 (j ■  ̂ — 1 ,2 ,...) ,
the arising new system will still be finitely solvable. By hypothesis it has a 
solution Xj — bj,Xjn = bjn in M . Evidently, bj G M s for each j , thus M s is 
algebraically Mx-compact.,

To verify (ii), notice that M / M s is evidently Hausdorff in the ■S’-topology. 
Let {an} С M  be a Cauchy sequence in the 5-topology; without loss of 
generality, we may assume that for each n,an — am G si . . . s nM  whenever 
m ^  n. This sequence has a limit in M  if and only if the countable system

(3) x Sx .. .  snxn — an (n = 1 ,2 ,...)

with unknowns x, Xi , . . .  , xn, . . .  is solvable in M.  The fact that {an} is 
Cauchy ensures the finite solvability of the system (3), thus by algebraic 
Kx-compactness (3) has a global solution in M . Consequently, (ii) holds.

For a reduced iff, from the exactness of 0 —- R —* Rs  —* Rs I hi —> 0 and 
from the divisibility of R s / R  we deduce the exact sequence

0 Horn( RS, M S) -  Horn( R , M S) — E x t^ R s /R , M s ) = 0;

thus Horn( R s , M s ) = M s . But Rs  is 5-divisible, so Horn( R s , M)  = 
= Horn (RS , M S).

(i) implies Ext 1 (Rs,  M s ) = 0 and (ii) implies Extx(Rs,  M / M s ) = 0. As 
M  is an extension of M s by M / M s ,Ext 1( Rs , M)  — 0 follows.
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From 0 —*• R  — Rs  —* R s / R  -»Owe also obtain the exact sequence 0 —> 
— Horn(RS, M)  “  M s -+ Horn( R, M)  = M  —> Ext\ R S/ R , M )  —
—> Ех1г(Д5,М ) = 0. Hence the stated isomorphism in (iv) follows. □

We can improve on the second part of the preceding lemma.

L emma 2. Let M  be a reduced algebraically )H\-compact R-module and 
А / R a summand o f R s / R  where S is a countable semigroup. Then setting 
М<л) = Horn r ( A, M) ,  we have

(4) Ext}j(A,M) = 0 and ExtlK(A /R , M ) = M / M {A).

P r o o f . If C Ú Rs  is such that Rs / R  = А / R  0  C / R,  then from the 
exact sequence 0 —> R -* A C ^  Rs  —* 0 we derive, in view of (iv), that 
Ext^(A ,M ) = 0. The exact sequence 0 — R — A —r A/ R  — 0 yields the 
exactness of 0 —*• —> M — Ext 1{ A/ R . M)  — E xt^A .M ) = 0 whence
the stated isomorphism follows. □

Turning to the global case, we have the following result.

P r o p o s i t i o n  3. Over a domain R with p.d.Q = 1, an algebraically Ki- 
compact module M  satisfies

(i) M 1 is divisible, and
(ii) M /M 1 is torsion-complete.

P r o o f . Let A /R  be a countably generated summand of K .K  = A /R  ® 
0  B / R ,  and S a countable semigroup, A ^  Rs  and R s / R  a summand of
K.  The exact sequence 0 — M s / М 1 — M / M 1 — M / M s — 0 induces the 
exact sequence

Ext\ R S/ R , M S/ M 1) -r Ext1 ( Rs / R ,  M / M 1) -  Extl (Rs / R , M / M s ) -  0.

If M  is algebraically Mi-compact, then by Lemma 1 (i), the first Ext vanishes, 
while by (ii) the third Ext is = M / M s . Hence there is a natural isomorphism

(5) Ext 1 (Rs / R,  M / M 1 ) = M / M s .

As in Lemma 2, we obtain Ext 1( A / R , M / M 1) = M / M t-A '1 where, evidently. 
M / M is a summand of M / M s . If we set К = 0  with A, /R
countably generated, then we are led to the natural isomorphism

(6) Ext 1{ K , M / M 1) -  ]^[ Ext1(Ai/Ä, M /A /1) =
i i
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Manifestly, ( M / M ^ ) 1 is (M / M s f  = 0. We infer that the first Ulm 
submodule RDext 1(h\  M / М 1) of Ext 1( K , M / M l ) (cf. [4, p.105]) vanishes, 
thus M /M 1 is torsion-complete.

From the exactness of 0 —* M 1 — M s — M s / Л/ 1 — 0 we deduce that 
the sequence

Horn(RS/ R , M S/ М 1) -* Ext 1(RS/ R , M 1) Ext1)R s /R , M s ) = 0

is exact; the last term vanishes because of Lemma 1 (i). Observe that R s / R  
is divisible, while M s / М 1 is reduced (otherwise M 1 would be larger). Hence 
the Horn vanishes, and Ext1( R s / R , M 1) = 0. Therefore, Ext1(A ',M 1) = 0, 
which amounts to the divisibility of M 1. □

From the proof it is clear that M / M s  and M/ M^A  ̂ are Д-complete. 
Moreover, from (6) we obtain immediately:

Corollary 4. Under the hypotheses of Proposition 3, the R-completion 
of M / M l (and hence that o f M ) is \[ M  /  M^A,l . □

Later on (Corollary 7) we will see that in Proposition 3 (ii), ‘torsion- 
completeness’ can not be replaced by ‘Д-completeness’.

§4. T he s tru c tu re  o f П Mn/  0  Mn. By Mycielski [9], this quotient is 
algebraically Hi-compact, so in case p.d.Q = 1 the last Proposition applies. 
In order to improve on (ii), it is natural to concentrate on torsion modules 
Mn, since all torsion-free modules are torsion-complete.

L emma 5. Suppose R is a domain with p.d .Q — 1, К  — Л / Д ф  B /R  
where A /R  is countably generated. If {Mn} is a countable set of A-torsion 
R-modules, then

M* = J ]  Mn/  © Mn

satisfies:
(a) M*x is divisible, and
(b) M*/ М *1 is R-complet.e.
P r o o f . By Mycielski [9], M* is an algebraically Pi-compact Д-module. 

Proposition 3 implies (a).
As we have noticed earlier, an А-torsion module is Д-divisible. This 

property is inherited by direct products and quotients, so M*/ М *1 is B- 
divisible, i.e. Ext} ( B / R, M* / M*1) = 0. If S is a countably generated 
semigroup with A ^  Rs  and R s / R  a summand of K,  then the vanishing of 
the last Ext implies Extx( Л /Д , M ’ /M*1) = Ext 1( Rs / R,  M*/М*1). This is, 
in view of (5), naturally isomorphic to M*/ M*s . Hence ЕхС(А', M m/ М *1) = 
= M*/ M *s . Here the Ext contains M*/ M*x as a submodule and M*/ M*s
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is a, summand of M*/M*1-, this can happen only if M "/ M ж 1 = М ж/М*5 . (b) 
follows at once. □

For a set {TV,-(i £ /)} of Д-modules, let , denote the submodule of
the product TVг consisting of all vectors with countable support.

We are now ready to prove:
T h e o r e m  6. Let R be a domain such that p .d .Q  =  1, and Mn 

(n = 1 ,2 ,...)  a countable set o f reduced torsion modules. Then M" = 
= П Mn/ ф Mn satisfies:

(a) M*1 is a divisible R-module; and
(b) M*/ М *1 is isomorphic to a submodule of elements of countable sup­

port in a product of R-complete modules.
P r o o f . On account of Mycielski [9], statement (a) follows at once from 

Proposition 3(i).
Write К  = ф  Ai /R where each Ax/ R  is countably generated, and let 

Mni denote the ф -component of Mn.
Hypothesis implies that M n = ® Mnx for each n. We view Q M n as

П

a submodule of n n ^ m = П Mn{ and write x £ П Mn in the form 
n i [n,i) n

x = ( x i , . . .  ,x n, . . .)  with x n £ Mn. Since each xn can have but finitely 
many nonzero coordinates хпг- £ М пг, it is evident that Mn ^  [3HlTffn!.

П

Factoring out ®Mn = ® Mnil we obtain the inclusion
(n,i)

M* ^  J J Nl M*.
г

where M* = \[ M ni/  Q) Mni.
П

For each index г, Mni is a summand of Mn whence it is easy to conclude 
that M* is a summand of M*. Therefore M* is an ÄD-submodule in Д  M*, 
thus

(7) M ' / M *1 ^
i

where, for each г, M* /М*1 is a summand of M '/M *1 and is Д-complete by 
Lemma 5.

For a countable subset J  of the index set / ,  we can form the A j  -  
— ^-com ponents Mnj  of M n and argue that M j / M j 1 is a summand of 

ieJ
M * / M rl where M j  — Y[Mnj /  © Mnj .  Because of Lemma 5, M j/M j1 is 
Ä-complete, and therefore by Corollary 4 it must coincide with [j M */ M *1.

l£j
Consequently, the inclusion in (7) is not proper. □
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A comparison of Theorem 6(b) and Corollary 4 leads us to the following
Corollary 7. Under the hypotheses of Theorem 6 , M*/ М *1 is R- 

complete for every choice o f torsion R-modules Mn if and only if К  is a 
countably generated R-module. □

It is easy to extend our results to quotients ® Mj with an
j€J

arbitrarily large index set J .
If the modules Mn in Theorem 6 are torsion-free, then M* is likewise 

torsion-free. In this case, M *1 is injective, and from the proof of Proposition 
3 we can conclude that M*/ М *1 is a subdirect sum of i?-complete modules

The case M n = R was considered (for arbitrary domain R) by Dimitric 
[1]. Then M *1 = 0 whenever Q is an uncountably generated i2-module.
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C O N V E R G E N C E  OF IN T E R P O L A N T S  B A SE D  
ON THE ROOTS OF FABER POLYNOMIALS

L. ZHONG and L. ZHU (Beijing)*

§1. In tro d u c tio n

Let D be a Jordan domain in the complex plane C bounded by Г, let U 
be the unit disc {w : |tt;| < 1}. We denote by E P( D) the space of all functions 
f ( z ) that are analytic in D and satisfy

sup
oo< i

/  о tl>(reie)I p х1>\гегв)I dO < oo

where ip(w) is a conformal map of U onto D.
It is well-known that if Г is rectifiable, for any f (z)  6 E P(D), f ( z)  has 

nontangential boundary values almost everywhere on Г and E P(D) can be 
equipped with the norm

Let г = Ф(ги) be the conformal map of {w: |tu| > 1} onto the complement 
of DU Г such that Ф(оо) = oo, Ф'(оо) > 0, and let w — Ф(г) be the inverse 
map of Ф. When \z\ is sufficiently large, Ф has the Laurent expansion

d\
Ф(г) = dz + d0 + — + . . .

and

[Ф(г)] П = dnzn + dnMzk + Y ,  dn<kzk.
k=0 k<0

* S u p ported  by the  N ational Science Foundation  of China.
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The polynomial
7 1 — 1

F n ( z )  = d n z n +  d nMz k
k=0

is called the n-th Faber polynomial with respect to the domain D.  We 
know that it is an effective tool to construct approximation polynomials by 
means of Faber expansion. Comparing with the Faber expansion, we can 
see that interpolation polynomials can be constructed more directly. Early 
works dealing with interpolation polynomials in the complex plane often as­
sume that the function to be interpolated can extend continuously, even 
analytically on D (see [3], [4], [5]). In 1989, X. C. Shen and L. Zhong [6] 
constructed a series of interpolation nodes in D under the assumption Г £ 
£ C(2,a), and showed that the interpolation polynomials have the same or­
der of convergence as the best approximation polynomials in E P( D ) for 1 < 
< p < oo. Recently, L. Y. Zhu [7] obtained similar result under the assump­
tion Г £ C ( l , a )  by choosing the zeros of Faber polynomials of D as the 
interpolation nodes. In the above works Г does not admit corners. Since 
many typical domains in the complex plane have corners (for example, the 
rectangle), to study interpolation in such a domain is of interest. In this 
paper, we shall show that the interpolation polynomials based on the zeros 
of Faber polynomials converge in EP(D)  for 1 < p < oo, under the condition 
that Г is piecewise VR smooth.

Before stating the theorem, we introduce some concepts and notations. 
Let 7 be an oriented rectifiable curve. For 2 £ 7, 6 > 0 we denote by s+(z,6) 
(respectively s_(2,6)) the subarc of 7 in the positive (respectively negative) 
orientation of 7 with z the starting point, and arclength from г to each point 
is not more than 6. We say that the smooth curve 7 is of vanishing rotation 
smoothness (shortly VR), if

( 1. 1) lim /
i ~ |-° J s - ( z , 6 )

d <  a r g  (C 01 W
J s.з+(г,6)

\dc a rg (( = 0

uniformly for z E 7. The VR condition is slightly stronger than smoothness. 
If the angle of inclination 6(s) of tangent to 7 as a function of the arclength 
s along 7 satisfies the Al’per condition [8], that means

( 1.2 ) dt < +00

where w(t) is the modulus of continuity of 0(s), then 7 is VR (see the 
appendix).

When all the zeros of the n-th Faber polynomial Fn(z) are in D, we 
denote by L n( f , z )  the (n — l)-th interpolation polynomial to f ( z )  £ E P(D )
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based on the zeros of Fn(z), and denote

£ n( f )p = A inf И / - Л Ц , .
d e g  Fn S n

The main result of this paper is following
T h e o r e m . If  Г consists of finitely many VR curves, and none of  its 

exterior angles equals 0 or 27r, then for sufficiently large n, the zeros of 
Fn(z) are in D. Furthermore, for any f ( z )  G EP(D), 1 < p < oo, we have

(1-3) II f(z) — Ln(f ,z ) \ \p ^  cEn- i ( f ) p

where the constant c depends only on D and p.

§2. Some preliminaries

In this section we shall always assume that Г satisfies the condition of 
the theorem. For z G Г, by [2],

Fn(z )=  i  ^ [< D (C )]4 a rg (C -* )

where the jump of arg(C — z) at (  — z equals the exterior angle azK. There­
fore

(2.1) Fn(z) — [Ф(г)] n = — /  [Ф (С )]Ч агё (С -г )  + ( а 2 -1 )[Ф (г )]п. 

Setting

(2.2) ß = max |a 2 — 1|
г€Г 1 1

in view of the fact that none of the exterior angles is 0 or 2x, then 0 ^  ß < 1. 
L e m m a  1. For an arbitrary e > 0, there exists 6 > 0 such that

(2.3) [  K a rg (C  — z)\ + [  |d c arg(C -  z)| <1 ßw + £
J s - ( z , 6 )  Js+(z,S)

for any z G Г. Furthermore, if z is a joint between two VR curves, then

(2.4) f  |d<arg(C -  z)\ + I  |d c arg(C -  z)\ < £.
J s - ( z }6) J  s+(z,6)
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The proof of this lemma uses elementary calculus and is tedious a little, 
we leave it a t the end of the paper.

For any 6 >  0, 9 £  [0,27г], we denote by the image of

5_(Ф(е’*),£) и 5+(Ф(е,йМ)
under the m ap Ф. Let

v(t,9;6)
e*'q>V‘)

Ф ( е “ ) - Ф ( е , е ) ’ 

0

if e!i I  Ig<6

if e lt £  Ie ,6-

Lemma 2. F o r  a r b i t r a r y  e  >  0, Ö > 0, th e r e  e x i s t s  a n  i n t e g e r  N > 0 s u c h  
th a t  f o r  в £  [0,27t], th e r e  i s  a  t r i g o n o m e t r i c  p o l y n o m i a l  Tg{t) o f  t w i th  d e g r e e  
a t  m o s t  N s a t i s f y i n g

(2.5) n ( t , 9 ; 6 )  -  T g ( t )I d t  <  s .

Pr o o f . For 6 > 0, e lt $ J es-i there is a constant cs  such that

1_______
Ф(е*‘) -  Ф(е!<?)| S cs-

Thus

(2.6) И * ,М ) |  ^ с й-|Ф,(е4<) |,  e! í 0 / e,ü.

For an arbitrary sequence { 9 n }  C [0,27t], there exists a convergent sub­
sequence { 0 n k }-  Writing the limits 90 , we have

v{t,0nk;6) — n(t.90\6)

for almost all t .  By the dominated convergence theorem and (2.6) we have

i>(t\9nk\6) -  n{t,90\b)I -  0.

This implies that the set of functions { i / ( t , 9 \ 6 ) : 9  £ [0, 2tt]} is sequentially 
compact in L 1. Consequently, given any t  > 0, there exists a finite |-ne t 
{ v{t, 9j\ S), j  = 1 ,2 ,. . . ,  M  } such that

/-2Я-
min / I v(t, в; 6) — v(t, 0j-6)| dt < 9 £ [0,27г].

Jo 2
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Therefore there are a finite number of trigonometric polynomials 
{yO)(i)} satisfying

u(t;ej ; 6 ) - T ^ ( t )I dt < Í j  = 1 ,2 ,. . . ,  M.

Hence
r2ir

min / I í/( í ; 0j\b) — X’̂ (<)| dt < £, ö G [0, 27г].
1<?5ÍM Jo

Let TV be the largest of the degrees of j  = 1,2, . . . ,M } .  This
completes the proof of Lemma 2. □

From Lemmas 1 and 2 we have
Lemma 3. For a n  a r b i t r a r y  e  > 0, th e re  e x i s t s  a n  i n t e g e r  TV, s u c h  th a t

(2.7) | Fn( z ) -  [Ф(2)]п | </ ?  + £, * е Г

/го/ds f o r  n  > TV.

P r o o f . By Lemma 1, given any £ >  0, there exists a Í  >  0 such that
(2.2) and (2.3) are valid. For the chosen s and by Lemma 2, there exists 
an integer TV such that (2.5) is valid. For sake of simplicity, we write

5(2) = s_ (M )U  s+(z,ó) \  {г}, г € Г.

Therefore, by (2.1) for 2 = Ф(егб) we have

Fn(z) -  [Ф(г)] " = -  [  [Ф(()] nd{ arg (( -  2)+
К Js ( z )

+ -  f  [Ф(0] 11 de arg (С -  г) + (аг -  1)ег"е =
П М»(*)

= [$(C)]"dc a rg (C -^ )+
ж J s ( z )

+ -  /  e'ntdt arg ( Ф(ей) -  Ф(е")) + (аг -  \)е'пв =

= - /  [Ф (0] nde arg (С -  г)+
^  J s ( z )  1

1 /*27Г
+ -  /  em í Im [ i i / ( f ,M )]  dt + {az -  1)е'пв = 

я  Jo
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= -  / [Ф(0] "d<arg(C -  г)+
* -M*)

1 г^ж
+ -  J eint\m [ i v { t , e \ 6 ) - T e(t)] Л + (<*,- l)emö;

the  last equality is from the fact that e,nt is orthogonal to Tg(t) as n > N.
If г is not a joint of two VR curves, then a z = 1, by (2.3) and (2.5) we 

have (2.6). If cxz ф 1, then 2 must be a joint of two VR curves. By (2.2),
(2.4) and (2.5) we also have (2.7). This completes the proof of Lemma 3.
□

For any g E LP(T), 1 < p < 00, we define the Cauchy integral operator 
7i  by

ng(z)  — ~~ : l  j ß - d C  z €  D.2тгг Jr (  -  z
Then H:LP(T)  —*■ EP(D ) is bounded, that means

\\'Hg\\p ^  c^lffllp

where the constant c\ only depends on p and D [9].

§3. P r o o f of the theorem

First of all, we claim th a t all the zeros of Fn(z ) are in D when n is 
sufficiently large. Setting e = in Lemma 3, for n sufficiently large we 
have

\Fn(z) — [ Ф(г)] n| < z € Г.

Since Fn(z) — [Ф(г)]п is analytic on the exterior of D, by the maximum 
principle we have

\Fn(z) — [Ф (2)]П| < Z ? D -

Therefore

\Fn(z)\ l  |Ф(г)|” - Ц Р - *  > 0 , z ф D.

This implies th a t the zeros of Fn(z) are all in D.
Since the n — 1-th interpolation polynomial operator Ln( f , z )  is linear 

and reproduces polynomials of degree at most n -  1, we only need to show
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that Ln( f , z ) is bounded uniformly in E P(D) as n —► oo. In fact, denoting 
by Рп_!(г) the n — 1-th best approximation polynomial to f ( z ) in E P(D)1 
we have

IIm  -  £ » ( / , * ) II, = II/ О )  -  P n - M  -  U f  -  P „ - „ 2) | | t  s

S  ( 1  +  I R . I D I I / W - A . - , W | | P .

Noticing that the interpolation nodes of Ln( f , z ) are the zeros of Fn(z), 
for f ( z )  G E P(D), we have

f ( z )  -  Ln(f ,  z) Fn(z) [  KQdC
2тгг J r  F„(C )(C  -  z )

= Fn(z)H z G D.

It follows that

II f ( z )  -  Ln{ f , z ) \ \p ^  m ax|Fn(z)|

< ci max 
“  С,геГ

Fn(z)
F n (  C)

<

p =

Cl

H

3 + /3 
1 - /?

F n

\\f\\P-

<

Hence the operators Ln( f , z )  are uniformly bounded in E P(D). This com­
pletes the proof of the theorem.

§4. A p p en d ix

This section includes
i) An example of a smooth curve which is not VR smooth curve.

ii) Showing that a curve is VR smooth if it satisfies (1.2).
iii) Proof of Lemma 1.
i) Let

Set

h(t) =
t 2 sin(l/t) 
log(l/i) ’

0,

t G (0 ,1/2], 

t G [ — 1/2,0].

7 = { t  + ih(t):t G [-1 /2 ,1 /2 ]} .

Then 7 is smooth. Evidently

(01 = /
J s 4.
[ h(t)cl a rc tan ----

(0,5) t
>
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>
6Í 20 / t /i(/)d arctan -----

/о t
+ OG.

Consequently, 7 is not a VR smooth curve.
ii) Suppose 7 satisfies (1.2). Let 7 have the representation (  = £(s), 

where s is the arclength parameter. For 2  =  £ ( s q ) ,  s  >  $o,

ds arg (C(s ) — z) = f/s I m  [ln(C(s) -  г)] =

= lm 4 'Ы
ф )  -  -г

ds.

Noticing |C'(s)| = 1, we have

4'(5) _ |sin[ai'g 4ЧД) -  arg(4(a)Im ф ) - г

<

I 4 »  -  z\

arg C.\s) -  arg(C(a) -  z)\

<

\ Ф )  -  z \

Since 7 is smooth, there exist a constant C 2  and an 5 £ ( s q , s )  s u c h  that

i__ < _fL

and

Therefore

ar

C(«) -  z\ s -  s0

rg (4(e) - z ) = ai'g 4'(5).

U , , ,  , u s  arg 4 ( e ) - a r g ;  (s) w ( s - s 0 )
\ds arg(C(s) -  z)\ S c2J---------j-------- ;-------- L S c2—;------- r—

\s -  s0| |s -  sol

Similarly, the above inequality is valid as s < s0. Consequently,

l I dc arg (4
s _  ( z , 6 )

*)l + /  .
Л +(г,5)

d( arg (( dt.

It follows from (1.2) that the inequality (1.1) is valid uniformly. This means 
that 7 is a VR smooth curve.

iii) Since Г consists of finite VR smooth curves, we can take 6 > 0 so 
small tha t a_(z,Ä) U s+(z,6)  contains at most one corner. So Lemma 1 is a 
consequence of the following assertion:
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L e m m a  1'. Let 7 1 , 7 2  be two VR smooth curves with the same starting 
point zo, at which ~f\, 72 have the angle an  (0 < a < 2). Set 7 = 7^ U 72, 
where 77" is the same curve 71 with opposite orientation. Then for any £ > 0, 
there exists 6 > 0 such that

(4.1) í  I rfc arg (C -  z)\ + /  |r/c arg(( -  z)\ ^  отг + £, 2 6 7
J s - ( z , S )  Js+(z,S)

and

(4.2) I K a rg (C  -  z0)| + /  I arg(C ~o)| < f -
J s- ( zq,6) 7s+(zo,Ä)

P roof. Noticing that s+(zo,£) and s_(z0,<5) are 5+ (г0)^) on 72 and 
s_(zo,<5) on 7j_ respectively, (4.2) follows from the definition of VR smooth­
ness.

Next we consider (4.1). Without loss of generality we may assume 20 = 0, 
and that the tangent of 72 at zq — 0 coincides with the real axis. Therefore 
72 has the representation in polar coordinates near zQ — 0

в = в{г), гегв̂  G 72

which satisfies
ö(0) = lim 9(r) = 0. r —►О

Since the angle an is not 0 or 2n, 7 has the same order of arclength and 
chord length locally. Thus for any 2 E 71, C = we have

12 1 +  г й  I 220 I +  I 2 oC I =  I z £  I й  c3| 2 -  r e i 0 ( r )  I .

Then

arg (C -  z)\ ^

<
оЩг) 1

j . g i ö ( r )  — 2  V  —  Z

It follows from (4.3), (4.4) and (4.7) that

dr -f I dr arg (r — 2 ) I + 1--- rr,—;----- г dr.
\ r e idV )  _

e*0(r > 1 1 eie(r) _  11121 ^ \z\e
J.gíö(r) — у V — Z - | ге»(г) _ з | |г  -  z\ = 8( r  +  |2 |)2
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and 0\t)\
re i6 (r) i c 3\e'(r)\.

Denote by [0,77] the set { r: re10̂  £ s+ (0,ó)}. Since «+(г,^) П 72 C 
C s+(0,<5), we have

s+ (г,<5)П72

{r + \z\)

d(, ai'g (C — z )\ = /  I rfc arg (С - *)| S
J s + (0 ,S)

• f  I dr arg (r — г)| + c3 f  \ e \ r ) \ d r ^  
Jo Jo

L

*§ i:
f  f°° \z\ Г00 П

- 8 /  7---- T W ? + I dr arg (r — z)\ + c3 /  |ö '(r) |d r.
® ./0 ( r + |z|) Jo Jo

Noticing th a t the first integral equals 1 and that arg (r — z ) is a monotonic 
function of r , it follows from (4.6) that

fJo
|d r a rg ( r  -  z)\ = I a rg (r  -  z)\'r= 

Therefore by (4 .8) we have

r = OO 
r = U I arg ( — 2)| <i |o -  1|тг + - .

I,s+(z,6)r\-y2
■| arg(C — z )I ^  | a -  117Г + - .

Together with (4.6) we have proved (4.1) for 2 £ 71. For 2 £ 72, (4.1) can be 
proved in the same way.
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N O W H E R E  D IFFE R E N T IA B L E  F U N C T IO N S  
C O N S T R U C T E D  FROM PR O BA BILISTIC  

P O IN T  OF V IE W
N. KÖNO (Kyoto)

Since Weierstrass gave an example of nowhere differentiable functions, 
many people have investigated various types of nowhere differentiable func­
tions.

In this paper, we will construct a class of nowhere differentiable functions 
based on i.i.d. (independent identically distributed) random variables and 
we shall prove a variety of irregularity of the functions including nowhere 
differentability by making use of a notion of local times following Berman’s 
idea. The notion of local times originated by P. Levy (cf. Ito-McKean [11]) 
plays a very important role especially in the theory of Markov processes, but 
it is S. M. Berman [1] who first applied local times to investigate sample path 
properties of a wide class of stochastic processes. The definition of local time 
itself is a purely real analytic one. namely, a Borel measurable real function 
/  defined on /  = [0,1] maps the Lebesgue measure on /  to 5? by

where |A| means the linear Lebesgue measure of a Borel set A and В is the 
Borel field of §?. Here we assume that /j.f(I,E) is absolutely continuous with 
respect to the Lebesgue measure, i.e.

Now we restrict /  to A £ B{I), the Borel field on I. Then the induced 
measure /г/(Л, E) is also absolutely continuous with respect to the Lebesgue 
measure, i.e.

§1. Berm an’s principle

v / ( E E )  = |{ < e / ,  f ( t ) e E ) | ,  Е е в

f i f ( I , E ) =  / aj(x)dx.  
J e

and in general we have

0 ^  otj(x, A) 'E a f(x)  a.e. x £ 3?,
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otj(x, A) -f a j(x ,  В ) = a/(x ,  A U B)  a.e. x £ 3? if А П В = 0.

We shall write a j (x , t )  when A = [0, /].
Since a j (x , t )  is a density function, we can choose a nice version satisfying 

the following conditions:
Lemma 1 ([3], [9]). (i) a j (x , t )  is right continuous and non-decreasing 

in t,
(ii) Qy(x,i) is В X  B{I)-measurable,

(iii) almost every x, the support of the measure aj(x ,d t)  is carried by 
{<;/(<) =  x ) ,

(iv) for almost every t, for any £ > 0,

a /(/(*)>[M  + £)) > 0 and Q j ( f { t ) , [ t - £ , t ] ) >  0,

(v) for all J = subinterval with rational end points, a j ( x , J ) = 0 if x (£ 
the closure of {the range of f(t); t £ J}.
D e f i n i t i o n  1. The above function a j(x , t )  is called local time at x.
Berman [4] first pointed out the relation between the original function /  

and the local times. In short the irregularity (regularity) of the original 
function reflects regularity (irregulariy) of the local times. After S. M. 
Berman we shall call it “Berman’s principle” . For example if /  is a C 1- 
function such that { t £ /; f ' ( t )  = 0} consists of isolated points, then

a j ( x , t ) =  ]T
s ^ t j ( s ) = x

1
i m r

In this case, for fixed x, a j ( x , t ) is a step function in t and at the local 
extremal points, a j ( x , t ) is divergent in x. So, it is very difficult to imagine 
a real continuous function such that the function aj{x , t)  is also continuous 
in (x, t) .  The sample functions of a Brownian motion are such a case with 
probability one. An example of a deterministic continuous function (not 
a sample function of a stochastic process) was first “discovered” by Kőno
[12]. Let P{t) = ( x{t) ,y{t)) be the famous Peano’s surface filling function
[15], then f( t )  = x(t)  — y{t) is an example of a continuous function whose 
a-f (x, t ) is also continuous in (x, t). We will generalize this example to obtain 
a class of nondifferentiable continuous functions and analyze them through 
Berman’s principle.
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§2. Construction of nowhere differentiable functions

It is well known that coordinate functions (x(t) ,y(t))  of the famous 
Peano curve are stochastically independent as random variables on a prob­
ability space ( / having uniform distribution and l/2-Hölder con­
tinuous, moreover [14] the sequence defined by

j/i(f) =  x(t), y2(t) = x(y(t )) ,  •••,  yn(t) =  x(y (n-V(t)) ,

is i.i.d. having uniform distribution. From this fact we can easily observe 
that Pn(t) = (y i( t) ,y2 (t), ■ • • ,yn(t) ) ; t £ I  maps /  continuously onto the 
n-dimensional cube [0, l]n ([17], [18]).

Since the above {yn} are not mutually orthogonal, we let

zn(f) = Vn{t) — —,

then {zn} is i.i.d. having mean 0 and variance 1/12 with uniform distribution 
on [—1/2,1/2]. Therefore, for {an} £ I 2,

OO

(*) /(<) = J 2 anZn^
7 1 = 1

converges not only in L 2(I,dt)  but also converges almost surely with respect 
to the Lebesgue measure. Clearly, if {an} 6 f1, the series (*) converges 
unformly and /  is a continuous function and if r  = max{n; an /  0} < +  oo, 
then /  is 2_Tn-Hölder continuous. If {an} £ l 2 but ^  i 1, then by taking 
account of Theorem 1, the image of /  is [—оо,+оо], the extended real line, 
and the cardinal number of the level set Lx = {t £ I; f ( t ) = x} is continuum 
for all x.

To avoid triviality, we always assume that {an} £ (? and r = the number 
of {n; an ф 0} is positive. Now we claim that /  has local times satisfying 
some regularities.

T H EO R EM , (i) /  has local times otf(x,t) and

\a / (x , t )  — a /(x ,5 ) | ^ 6D\t — s |1//2, Vx, Vi, Vs

holds, where D = la^T 1! a = min{n; an ^  0}.
(ii) If  r ^  2, then a j ( x , t )  is continuous in (x,t), and a/(x)  £ C r~2 

(including the case r = oo).
(iii) For every subinterval J , a j ( x ,J )  > 0 at every interior point x of  the 

set { f(t); t £ J )  .
(iv) If  [an] £ I2 and I х, then ay(x) > 0 for Vx £ 5?.
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(v) If there exists с > 0 such that liminfn_*+oo «|®n| ^  c, then o t f ( x ) has 
analytic extension in the domain |3z| < ce_1/2.

P r o o f . Let be the characteristic function of / ,  i.e.

JTj(e) — Í  e‘e^ ^ d t .
Jo

Then we have

-1 >0
f T j ( e )  =  /  П  e ieanX" W d t

n = i

eieanzn(t)dt _

2 . Oan
——  sin -----.
Oan 2

(by independence). (Here ^sinO = 1.) Now let

N ( 6 ) =  { n ;  \6 a n \ ^  2 } .

(a) If limiei-^oo fiV(0) = 1, then the only one an ф 0, (say a), so /  has the 
uniform distribution on [—a/2 ,a /2 ] and

f 1 /a, on [—a/2,a/2], a fix)  =  <
( 0, otherwise .

(b) If 2 5i r  < + 00, then 3#o > 0, and for all |0| ^  в0 we have N(0) ^  r. 
Therefore it follows that

| / W ) | < П
n£N{6)

2
\0 Cl n

< П
n e N ( 9 0 )

M J L .
\d\ 190an

<

From this estimation we have /t/(#) G L1(3?,d0), so there exists a continuous 
density a j(x )  such that

е‘вх aj(x)dx.

More precisely we have |0|’ 2/.if(0) G L l (?R, dO) and a / ( x ) belongs to the 
class CT~2. If r — + oo, a simple modification tells us cxj(x) belongs to the 
class C°°.
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Now we shall investigate aj(x, t) .  Set

sin в /2
(J(0) = в/2

and

f i f ( 8 , t ) =  [  e i e } ^ d s .  
Jo

Then for iyv.fc — k9~N we have

*1* r(j+l)9~N /
Hj{8,tNik) = y  /  exp ( iOai (x{s) -  1/2) +

Л э - "  V

CO

+ í ö ^ a n (x(j/(n-1)(á)) -  1/2)
71 =  2

Since x(i) and y(i) are self-affine functions (cf. N. Kőno [12]), for j9~N ^  
= s = Ü + f)9_jV they are expressed by

x(s) = xJ + T ^ j 3~Nx(9Nhj ),

»(*) = Vi + Tn j 3~N y(9N hj),

where Xj = x (j9_jV), t/j = y(j9~N), Tfcj and = + 1, or -1  and /ij =
= s — j9~N .

Therefore we have

k- 1  / • ( i + l ) 9 - N
= Y ]  exp {iOai(xj -  1/2 -I- Tfa x(9Nhj) ) ) x

j=0

( oo V
iO ^ c in  (.t [y(n~2){yj +T^JJ3~Ny(9Nh: ) )Sj  -  1/ 2) j dhj =

n = 2  '

/.-1 -j
= 9“*  ] T  / exp( töüi(a-j -  1/2 + T ^ 3 " Ns)) dá x 

1=0 90 X

X /  exp ( ?Öé Gn ( х ( у (п~2)(ю + TN,j3~Ns)) -  1/2^ ^ ds =
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к— 1
= 9~n  exp( lOuijXj — 1/2)) exp(Tftjieai3~N/2)g(6ai3~N ) x 

j=o

X J exp ^ í0 a2(x ( 2/j +  T ^ j 3 ~ N s )  -  1/2) +

OO

+ i e Y / an{x{y (n- 2\ y ] + T yN j 3~Ns)) -  1
n = 3

/с — 1

= 9 ^  exp( Wai(xj — 1/2)) exp(T^ jiöai3 N /2)д(ва\3 ^  ) X
j=o

9_1~1 , /-(ii+i)9-
X exp ( iffa2(x(s) -  1/2) +

( 41 ‘ Г 71

E 3"J
j i = pi ^ ‘ 9 ~

+ ! ^ а п (x(r/(n_2)(.s)) -  I / 2) ^ fb V
71 =  3

where

Pi9-N = yj + 3~N(T]!jj — 1 )/2, = yj +3~N(Tftj  + l)/2 , g i - p i  = 3N.

By the same procedure íve have

fc-i
f tf(0, tNik) = 9_iV ^  exp(;i9a1(xJ -  1/2 + T ^ ß ~ N /2)) g(6a13~N ) x 

3 = 0

OO /  9 m  — 1 \x П (3_7V E  ехр(г0ат+1(х,т -  l /2  + T ^ m3 -yv/2 ))ff(0am+13 -yv) j .
771 =  1 j m —Vm

Denoting by x  the indicator function of the interval Г  = [—1/2,1/2], Fourier 
inversion formula tells us that if aj ф 0, then

3~N (  x -  ai(xk-i  -  1/2 + T*N , 13 -yv)/2
(tN,k-l^N,k}) a 1 3 - y v «1

* П *
9  777 1

E
jm —Pm

1 / x -  am+i( s Jm -  1/2 + T % j J - N/2 ) '
a m + 1 X l 3_/v'am + i
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Therefore

Jm  —  Pm

In general, we have

Since is non-decreasing in t, for 9 N 1 ^  t — s ^  9 N there exists
к such that = s < t = tN,k+1 and we have

-  a f {x,s) ^  o /(® 5ijv,fc+i) -  a/(a-',iyv,A-i) =

= a f(x,(tN,k-utN,k+l])  ^

Í 2 X  З ' ^ К Г 1 <i 6|t -  s|1/2|a<r|-1 (V®).

The direct expression for a/ (x)  or af(x, t^^)  yields the proof of (iii) and
( i v ) .

Now let us prove (v). Setting N'(6)  = { n; \вап\ ^  2e}, we have

Since for Vf > 0, 3nc, Vri ^  we have \an\ ^  (c — £)/n, it follows for n0 = 
= [(с — е)\в\1(2е)1\ > n > that

|aTl0| ^  (c -  £)|0|/n = (n0/n)(c -  £)|0 |/по ^ 2e.

This means #N*(6) n0 -  n£. Hence for |0| ^ 2en£(c — f )_ i we have

|/Z)(6»)| ^  e-(c-5)|fl|/(2e)+nt + 1

So finally for 0 < b < (c — e)/(2e), we have

OC 2 . #a„
lw * ) |  = П

This yields the proof of (v) by Berman ([2], Lemma 8.1).
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§3. Relation between local tim es and the original function

In this section we shall sumarize the known facts about the relation 
between regularity of local times and irregularity of the original function.

T h e o r e m  A. ( a )  If the local time a j (x , t )  is continuous in t for almost 
every x, then

(i) ([8], Theorem A-(a.))

ap- lim --■■■-— —-p— =  +00 a.e. t 6 [0,1],
s — 11 —  s |

where “a p -  lim ” stands for approximate limit, for the definition see [16],
p.220.

(ii) ([8], Theorem A-(b)j the level set

L/(t) = { 0 g a g l ;  f( s )  = f( t )}

is uncountable for almost every t, and
(iii) ([6], Theorem \)  for almost every t, f  is not locally increasing or 

decreasing at t.
(iv) fij]) Let f  be a continuous function, then on every subinterval J C 

C [0,1], /  has multiple image of order m, all m  ^  2, i.e. J  D 3I\ , • • • , / m 
disjoint invervals such that

П №)
*:=i

> o.

(b) If the local time a j (x , t )  is jointly continuous, then
(i) ([3], Lemma 3.1, in the original statement the approximate limit is 

taken as a bilateral limit, but the proof actually gives one sided limits.)
For all t,

ap- lim
s [ t

f ( t ) - f ( s )  1 
|< -  s\

+oo,

ap- lim
s ] t

т - n s )  1
11 -  «I

+ oo

hold.
(ii) ([3], Lemma 3.2) Let f  be continuous, then {x; j|{i; f ( t )  = x} is 

countable} is noivhere dense in the range of f .
(c) ([6]j Let f  be continuous and a j{x , t)  be also jointly continuous. 

Moreover, if a j { x , I )  is positive on the interior of the image of I  by f ,  then
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/  is nowhere locally incereasing or decreasing in I . Combining this and (b)- 
(i), we obtain that f  is nowhere differentiable in the sense of Weierstrass (it 
does not allow /'(<) =  +  oo or f ' ( i )  — — oo).

(d) If  a j ( x , t )  is jointly continuous and Holder-continuous in t , i.e. there 
exist Q < ß < 1, D > 0, such that

I a/(x , t )  — o /(x,, 5)| ^  D\t — s\3, for all x , t , s

holds, then
(i) f[5], Theorem (10.1),) for all t

ap- lim
s —*t

1/(1)-/M l
|i -  i f = OO, V7 > 1 -  /?,

holds,
(ii) (|5], Lemma 5.1,) let f  be continuous, then

max{f G J\ f ( t ) }  -  min{< G J ; f( t )}  ^  | J | ! 3/ D

holds for all sub-intervals J ^  I, that is, at each point t, the graph of f  
is not contained in any domain { (u ,v ); и ^  t, \v -  f ( t )| ^  a(u — i)7 } nor 
{ (u,u); и ^  t , \ v  -  f ( t )I й  a{t — u)7 } (for all a > 0, 7 > 1 -  ß) with the 
vertex ( t , f ( t )) and

(iii) ([5], Lemma 6.2.,) let f  be continuous, then

Hausdorff-dim Lx ^  ß for x G { y\ aj{y)  /  0}

(aj(x, t)  is not necessarily continuous in x).

We remark that if /  is a-Hölder continuous, that is | f[t) -  /(/>)| ^  
^  D\t — s\a and otf(x,t) is bounded at the neighberhood of x, then for all
x,

Hausdorff-dim Lx й 1 -  a

holds ([5], Lemma 7.2).
As for the connection between the Fourier transform of a  and the Holder 

continuity and the variation of / ,  see [1], Lemmas 4.1 and 4.3.
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§4. Conclusion

From the Theorem and Theorem A(c), (d-iii), if r ^  2 and {a„} £ 
£ i 1, then /  is a continuous nowhere differentiable function in the sense 
of Weierstrass and

more precisely, for every subinterval J , the Hausdorff-dimension of Lx — 
— {t £ </; / ( 0  =  a;} ^  1/2 a t the interior point x of the set {/(<); !£ < /} .

E x a m p l e . For the Peano curve (x (< ) , y(t)) let

Since (x(t) ,x(y(t)))  and (x(t) ,y(t))  have the same probability laws, the 
above x[y(t))  can be replaced by y(t).
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R A N G E S  OF POLYNOMIALS W IT H  CURVED
M A JO R A N T S

XIN LI (Orlando)

Let Vn denote the set of real polynomials of degree at most n. Suppose 
w(x) ^ 0 on [—1,1]. Define

Cn '■= {Pn € V rn I |u>(x)pn(z)| ^  1, for -  1 ^  x ^  l} .

According to Rahman [5], a polynomial pn E Cn(w) is called a polyno­
mial with curved majorant l/ru(.r). (We find it more convenient to use 
|м;(а;)рп(ж)| ^  1 than |рп(ж)| 5í Ф(х) to define the polynomials with curved 
majorant in this paper.) This paper is concerned with the ranges of polyno­
mials in Cn(w), i.e., we want to describe the set

K n{w) := {р„(ж) I Pn € Cn( w) and x E R}

in terms of w. Since pn E Cn(w) and r E [—1,1] imply rpn E Cn(w), we need 
only to determine the boundary of 'JZn( w) which is given by

B w(x) := sup |p(.r)|, x  E R
peCn(w)

and - B w(x).
In the case when w(x) = (1 — x2) ' , Newman and Rivlin obtained the 

following result which can be stated in our notation as follows.

T h e o r e m  1 ( [ ! ] ) •  If w(x) = (1 — ж2) 1^2 , then

7cs1 x E COS 2 (n+1) COS 2(n+l) ]

\Un(x)\, x (£ COS2(n+l) COS 2(n+l)

where Un(x) is the n-th Chebyshev polynomial of the second kind.

R em ark . The following observations will be helpful in formulating the 
results for more general weight functions.

(i) The end points of the interval — cos 2(n+l) ’ 2(n+l) are the firstcos
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and the last extremal points of (1 -  x2)1̂ 2Un(x) over the interval [-1,1].
(ii) The polynomial

2»+1(n +  l ) ^ ”^
is the n-th weighted Chebyshev polynomial with respect to the weight 
(1 — x2)1/ 2 over the interval [—1,1].

Our goal is to find B w(x) for more general weights w(x). In [3], we 
considered the case when d2/ dx2 ( l /w(x))  is continuous in ( — 1,1). To 
restate the result in [3] which will be used in this paper, we need to introduce 
the weighted Chebyshev polynomials and related concepts.

For a continuous weight function w(x) on [-1,1] with w(x) > 0 for 
x G (-1 ,1 ) , we know that (cf., e.g., [3, §2]) there exists {Tn(x; in)} ^_Q, 
Tn(x ; w) = x n + . . .  G V rn, n — 0 ,1 ,2 , . . . ,  satisfying

max
se[-i,i]

Tn{x\w)w(x)\ inf max Ip(x)w(x)\ .
p(x)=xn+ ■■■£.Vrn x € [ - l , l ]

The polynomial Tn(x;w ) is called the n-th weighted Chebyshev polynomial 
with respect to w. By Chebyshev’s maximum equioscillation theorem, there 
are к — 0 ,1 , . . . ,  тг, such that

and

-1  й  ín < U - i  < . . .  < Ь  й  1

T n ( Z k ' , w )  =  ( - l ) fc m ax  I Tn(x; u ;)u )(x ) |, к =  0 , 1 , . . . ,  n .

We call {£fc}fc=o a set of points of equioscillation of Tn(x,w)w(x).  Generally, 
such a set is not unique. Denote

£„(n) = sup£n and £0(rc) = inf£o 

among all sets of points of equioscillation. Define

Tn(x;w ) = Tn{x;w)//\\Tnw\\.

T h e o r e m  2 ([3, Theorem 3]). Let tu: [—1,1] —► [0,oo) be continuous, 
w(x) > 0 for x G (—1,1) and d2/d x 2[ l /w(x)) continuous in ( — 1,1). Given 
r G (0,1), there exists N  — N(r ,w)  > 0 such that, for n^ .  N,

and

) —

£n(rc) < -Г, l o ( n )  > Г

l /w(x) ,  if x G {—r,r),

\Tn(x ,w)\ ,  if X  G (-oo ,£„ (n )]  U [ |o ( « ) ,o o ) .
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As suggested by the Question at the end of Section 2 in [3], however, we 
do not know what happens over (£ (n ),—H U [r,£o(ft))- The result of this 
paper will fill this gap for certain classes of weight functions.

Now, let us define the weight functions we will consider.
Let p be a real polynomial of degree m with p{x) > 0 on [-1,1]. Following 

Freund [2], set

s0(.r) = 1, Si/2(x) = >/x + 1, Si(x) = iy /l  — x2

and
w (x) =  I Sj(x)\ /  y/p(x), j -  0 ,1/2,1,

on [—1, i].
Let {afc}™=1 be the zeros of p. If we write

1 (  1
x = n \ v + ~ 2 \ v

Ini < 1

and

ßfc = -  a k + ( | a fc| < 1), к -  1,2....... m.

and set
m

h(v) := -  a fc),
fc=l

then h is a real polynomial of degree m and

p(x) = p0h(v)h I -

with p0 > 0. Furthermore, if we define, for j  = 0 .1 /2 ,1,

T n , j { x )  =  7
y/pö

2 Sj(x)

/1

then we have the following proposition.

P roposition 3 (cf., e.g., [1, 2]). For each j  (j  = 0 ,1 /2 ,1). Tnj is a real 
polynomial in x and the degree of Tnj is given by

degree Tnj =
n, if n ^  Uj.
m — n — 2j, if 0 Ú n < Uj,
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where
JO, if ( j ,m )  = ( 1, 0),'ll ■ — <

3 \  [m/2  + 1/2 — /], otherwise.

When v = (<p E [0,7r]), one can write

cos((n + j  -  m/2)<p + 'i(ip)) , if /  = 0, 1/ 2, 
sin((n + /  -  m/2)<p + 7(f )) , if j  = 1,

where the function 7 : [0,7r] —► R is defined continuously by

V h(v) _  TT w ~  

w y / i ( l / ü )  j“  1 -  ä k v

and 7 (0 ) = 0. Then 7 (7r) = ш7г/2, and 7  = 0 if m = 0. We have
P roposition  4. The function 7  is differentiable on (0,n). Furthermore, 

i / m / 0  then
l \ < f )  >  0, F € (0,7Г).

P r o o f . For v = e“̂  (f  E [0,7r]), write

-p— r ^ -  = e,7*(v) (|7fc(0) -  7fc(p)| < 2tt), fc = 1, 2, . . . ,  m,1 —

then
J m  ̂ 771

7(f ) = 2 X ] 7*(У>) -  2 S  7*(0)-
fc=l Ic=l

Now
dlkiF) _  1 -  \a k\2

dip \ 1 - а ке'*\2 '

so 7\ip) exists on (0, 7Г) and is positive unless m — 0 (in this case 7 = 0 ).
□

By Chebyshev’s maximum equioscillation theorem and the above repre­
sentations, it can be verified that (cf. [1]) if anj  denotes the leading coefficient 
of TnJ then Tn(x;wj) = Tnj ( x ) / a nj .

Define fk,n (к = 0 ,1 , . . . ,  n; n = 0 ,1 ,2 ,...)  by means of

(n + 1 -  m/'2)fk n + 7(^ ,n) = ктг + тг/2

and G (0 ,7Г]. Then ( c o s y n}/_0 is the only set of the equioscillation of 
Tn^(x)wi(x)  over [—1,1]. Our main result is the following theorem.
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T heorem 5. For w\(x) as defined above, there exists N  = N(w\)  > 0 
such that, for n > N, we have

R em ark . Sharp estimates for the growth along the imaginary axis 
of polynomials with curved majorants l /wj (x)  (j — 0 ,1/2,1) are given by 
Freund in [2, Corollary 1].

In light of Theorem 2, we need only to prove Theorem 5 for those points 
x e  (cos£ni„,cos£m/iTO/] U [cos£0,m',cos£o,n) with m ' =  [m /2] +  1 (taking r =  
= rnax(cos£miim/,cos£o,m') in Theorem 2). The idea of our proof is essen­
tially a refinement and generalization of that of Newman and Rivlin in [4]. 
We need the following lemmas.

L emma 6 . The following assertions hold.
(Í) 6,7i ^  6,тг — 1 ^  Я*, к — 0, 1, . ..,71 2.

(ii) 6,7i— 1 ^  1 ,nj к — 0, 1, . . . , 7i 2.
(iii) / /  n ^  m /2, then 6,n < zr/2.

P r o o f , (i) If 6 ,n ^ 6 ,n-i, then 7 (6 ,n) ^  7 ( 6 ,n - i )  by Proposition 3.

which is a contradiction. Thus 6 ,n  < 6,n-i*
Similarly, note that 6 ,n - 1 = ж would imply

k n  + 7t/2  =  ( n -  m / 2 ) £ k , n - i  + 7 (6 ,n - i)  ^ ( n  ~  m / 2 ) n  + ( m / 2 ) n ,
which is impossible. Hence we have established (i).

(ii) Assume 6+1,n ^  6 ,n - ь  then by the definition of 6 ,n - i ,6 + i ,n  and 
Proposition 3,

kn + n/2 = (n -  m / 2 )6 ,n -i + 7(6,71-1) ^  (n -  m /2 )6+ i,n  + 7 (6+ 1 ,n) =

= (/c + \ )n -f {n/2) — 6 + 1 ,ti •

l / w 1(x),  c o s ^ n ,n ^  X <: COSfon 

I TTO,i (21) I, otherwise.

Now
(77 +  1 -  m / 2 ) f k,n > (n -  m / 2 ) f k , n ^  (n -  m /2 )6 ,n -i,

so

kn +  n/2  =  (77 +  1 -  m /2) fkin +  7 (Cfc.n) > 

> (77 -  777 /  2)0 - , + 7(6,77-0 = Аг7Г + n/2,

So 6+ i,n  = which contradicts (i).
(iii) In fact, by the definition of 6,?г,

(n + 1 -  nn/2)6,71 + 7 (Co,«) = zr/2,
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so we have
(n -  m/2)£0,n + 7(ío,n) = */2 -  £o,«-

The left side of the equality is positive if n /Z m /2. □
For Л > 0, define

5n(v?) := Sn{̂ >\ Л) = ui1(cos9 )[T„,i(cos<yp) + AT„_i,i(cos v>)] .

We have
L emma 7. When n m /2 , the relative extrema of |S„(y?)| on [0 ,7r] is 

strictly decreasing.

P r o o f . Define

Cn(<p) := cos((n + 1 -  m / 2 ) ( f  + + A cos((n -  m / 2 )<p + 7 ( y > ) )

and

Then
I f-'iiCv7) T * n(V5)I •

/(</>) = e[(n+l-m/2)^+'Y(v)] де![(«-то/2)¥,+'1'(̂ )]

: le“'5 + A| =  (1 + A2 + 2A cos

and
| S „ ( v > ) l  ^  ( |C 'n (^ )|2 +  |6 '„(y5)|2) 1/2 =  Д у > ) .

Now we claim that

(1) sgn S'n(Zk,n) = -  sgn ) = (-1  )k,

for к =  0 , 1 , . . . ,  n — 1. In fact,

S U ( k , n )  =  (-l)*A[(n -  m/2) + 7,(6,n)] sin&,n

and

5 n ( í f c , n - i )  =  ( - 1 ) /' + 1 [ ( n  +  1 -  m / 2 )  +  7 , ( í f c . n - i ) ]  s i n í f c , n - i -

Also, G (0 ,7Г), so (1) holds for A = 0 ,1 , . . . ,  /г -  1.
Similarly, one can check that

(2) sgn <?„(&,„) = -sgnCn(ifc,n_x) = (-1 )fc
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for к = 0 ,1 , . . . ,  n — 1. Therefore, from (1) and (2), it follows that for each к 
(к = 0 ,1 , . . .  ,n  -  1), there exist ( k,n,Vk,n e (Zk,n,Zk,n-1) such that S 'n((/,,„) = 
=  0 and Cn(rjk,n) = 0. Each is a relative maximum point of |5„(</j)|. 
Furthermore, since |Sn(yj)| has exactly n relative maxima over [0,7r], the set 
{Gc,n}t=o consists °f all the relative maximum points of | (V7)I over [0,тг].

Now at т)к,п {к = 0 ,1 ,...  ,n  -  1) there holds |Sn(»7*,n)| = /(% ,„). But /  
is strictly decreasing over [0,7r], while

Д С Jfc.n) >  |5 'n(CAr,n)| ^  \ S n (rik,n)\  =  f ( V k , n ) -

So we must have гц.,п > Ck,n- Hence

|*S'n(Cfe,n)l = |£п(»?*:,п)| = f(Vk,n) > f(Ck+ l,n) ^  |*S'n(Cifc+l,n)l>

for к — 0 ,1 , . . .,7i — 1. □
Now we can give the proof of Theorem 5.
P r o o f  o f  T h e o r e m  5. As remarked after the statement of Theo­

rem 5, we need only to consider the case when ж G (cos£ni„,cos£m/>m/] U 
U [cos £o,m', cos жг'о,п) =: /_ U /+ . Now, assume жо G /+ , then

*r0 ”  cos 0 with 0 G [£o,n? £o,m')-

We need to construct pg G Cn(w) such that

| p# ( cO S0) |  = l/u>(cos0).

From Lemma 6,
£o,n ^  £ o ,n — 1 • • • К  £o ,m ')

so there exists jg with m' ^  j$ ^  n such that

Define

_ cos[(n + 1 -  m/2)6 + 7 (0)] (n  + 1 — m /2 + 7'(0))
8 cos[(n — m/2)0 + 7(0)] (n  — m/2 + 7 '(0))

and set
! , Tje, 1 (ж) + ^gTje_ 1,1 (ж)

р0(ж) := ---------------------7---------------.
r je,i(cos0) + AöTJe_b l(cos0)

Then, with x = cos</>,

№1(ж)ре(ж) = Ag)
S M  A*)'
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By Lemma 7 and the definition of

max |tni(a.‘)j9ö(a;)| = I mi(cos 6)pg(cos 0)1. 
*€[-1,1]

So

and
Pe 6  i  C n ( w i )

p${ cosfl) = l/ini(cos в).

By considering W\{—a1), we can obtain the result for the case when x £ /_ . 
This completes the proof of Theorem 5. □

Similar results can be proved for the weight functions w0 and w1j2. The 
details are omitted here.
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1. Introduction

Arya and Bhamini [1] and Dorsett [7] have introduced the notion of semi­
normal spaces by using semi-open sets due to Levine [9]. Recently, in [2], the 
concept of semi-generalized open sets has been introduced as a generalization 
of semi-open sets. In the present paper, we obtain further characterizations 
of semi-normal spaces by using semi-generalized open sets. Moreover, in 
order to obtain preservation theorems of semi-normal spaces, we introduce 
the concepts of pre 55-continuous functions and pre sg-closed functions.

2. Preliminaries

Throughout the present paper, spaces always mean topological spaces on 
which no separation axioms are assumed unless explicitly stated. Let A be a 
space and A a subset of X . We denote the closure of A and the interior of A 
by Cl (A) and Int (A), respectively. A subset A is said to be semi-open [9] if 
there exists an open set U of X  such that U C A C Cl(U). The complement 
of a semi-open set is said to be semi-closed. The family of all semi-open 
(resp. semi-closed) sets of X  is denoted by SO(X) (resp. SC(X)). The 
intersection of all semi-closed sets containing A is called the semi-closure of 
A [3] and is denoted by sCl(A). The semi-interior of A, denoted by slnt(A), 
is defined to be the union of all semi-open sets contained in A.

D e f in i t io n  1. A subset A of a space X  is said to be semi-generalized 
closed (briefly sp-closed) [2] if sCl(A) C U whenever A C U and U G SO(A).

Every semi-closed set is sp-closed but the converse is false [2, Example 
3]. The complement of a sg-closed set is said to be semi-generalized open 
(briefly 55-open) [2]. A subset A is 55-open if and only if F  C slnt(A) 
whenever F  G SC(A) and F  C A [2, Theorem 6].

D e f in i t io n  2. A function : X  —► Y  is said to be semi-continuous [9] 
(resp. irresolute [4]) if / -1(E) G SO(A) for every open set V  of Y  (resp. 
V  G SO(y)).
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It is obvious that semi-continuity is implied by both continuity and 
irresoluteness.

D efinition  3. A function f : X  —* Y  is said to be semi-closed [10] (resp. 
presemiclosed [11]) if f [ F ) G SC(T) for every closed set F  of A* (resp. F G 
G SC(X)).

D efinition  4. A function f : X  —* Y  is said to be sg-continuous [12] 
(resp. sg-irresolute [12]) if / _1(F ) is s^-closed in X  for every closed (resp. 
sgr-closed) set F  of Y .

It was shown that semi-continuity implies ^-continuity but the converse 
is false [12, Example 3.4].

D efinition  5. A space X  is said to be semi-normal [7] if for each pair 
of disjoint semi-closed sets A and B,  there exist disjoint U, V G SO(A') such 
that A  C U and В  С V.

In [1], Arya and Bhamini called semi-normal spaces s-normal. However, 
in this paper, we shall use the term “semi-normal” in the sequel.

D efinition  6 . A space X  is said to be semi-Ti [2] if every .^-closed set 
of X  is semi-closed in X .

3. Sem i-norm al spaces

We shall obtain the further characterizations of semi-normal spaces by 
using s</-open sets and sg-closed sets.

T h e o r e m  1 . The following properties are equivalent for a space X :
(a) X  is semi-normal;
(b) for each pair of disjoint A, В  G SC(A'), there exists disjoint sg-open 

sets U and V such that A C U and В С V ;
(c) for each A G SC(A') and each U G SO(A') containing A, there exists 

a sg-open set G such that A C G C sCl(G’) C U;
(d) for each A G SC(.A) and each sg-open set U containing A. there exists 

G G SO(AT) such that A C G C sCl(G) C slnt({7);
(e) for each sg-closed set A and each U G SO(A') containing A, there 

exists G G SO(A') such that A C sCl(A) C G C sC’l(G') C U;
(f) for each A G SC(A') and each U G SO(A’) containing .4. there exists 

G G SO(AT) П SC(.Y) such that A C G C U.
P r o o f , (a) => (b). This is obvious since every semi-open set is .sg-open.
(b) => (c). Let A G SC(A’) and U G SO(A') containing A. Then .4 П 

П (AT — C/) = 0 and X  — U  G SC( A’). There exist s^-open sets G and V such 
that A C G, X  — U С V, and G П V = 0. Therefore, we have A C G С X  — 
— V c U  and hence sCl(G) C sCl(.A — V ) C U  since A’ — I is .sg-closed and 
U G SO(A'). Consequently, we obtain A C G C sCl(G’) C U.
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(c) => (d). Let A £ SC(X) and U be a sg-open set containing A. 
We have A C slnt(f/) [2, Theorem 6] and slnt(í7) £ SO(X). There exists 
a sg-open set V such that А С V  C sCl(F) C slnt(i/). Put G = sInt(Vr), 
then we obtain G € SO(A) and A C G С sC1((j ) C slnt([/).

(d) =>• (e). Let A be any sg-closed set and U £ SO(A’) containing A. 
Then, we have sCl(A) C U and sCl(A) 6 SC(AT). Since every semi-open set 
is sg-open, there exists G £ SO(A) such that A C sCl(A) C G C sCl(G) C 
C U.

(e) => (f). Let A £ SC(-A) and U £ SO(A) containing A. There exists 
V £ SO(A') such that А С V C sCl(E) C U. Put G = sCl(P), then G is 
semi-open and semi-closed [6, Proposition 2.2] and A C G C U.

(f) => (a). Let A and В be any pair of disjoint semi-closed sets. Then, 
we have А С X  — В £ SO(X) and there exists U £ SO(A') П SC(A') such 
that A C U С X  — B. Now, put V = X  -  U, then we obtain A C U, В  C 
С V £ SO(A), and U П V = 0. This shows that X  is semi-normal.

4. P re  s^-continuous functions

In this section we introduce a new class of functions called pre 
sg-continuous functions.

D e f i n i t i o n  7. A function / :  A —> Y  is said to be pre sg-continuous if 
is sg-closed in A' for every F £ SC(F).

It is obvious that f : X  —> Y  is pre s</-continuous if and only if / - 1(V) 
is s</-open in X  for every V £ SO(T). From Definitions 2, 4 and 7, for the 
properties of a function we obtain the following relations.

s^-irresoluteness 

irresoluteness ==> pre s<?-continuity

continuity =l> semi-continuity = >  sg-continuity 
Diagram I

R e m a r k  1. By the three examples stated below we obtain the following 
properties:

(a) none of the implications in Diagram I are reversible;
(b) s^f-irresoluteness, irresoluteness, and continuity are pairwise indepen­

dent.
(c) pre sg-continuity and continuity are independent of each other;
(d) pre sg-continuity and semi-continuity are independent of each other.

E x a m p l e  1. Let X  = {a ,6,c}, r  = {0, A, {a}, {b}, {a,6}} and / :  
:(A, r )  —* (A, t ) be a function defined as follows: /(a )  =  / ( 6) =  a and
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/(с ) = с. Then /  is continuous but it is not pre s</-continuous since {u} G 
G SC( X, t ) and / _1({a}) = {a,6} is not sg-closed in (Xf, r).

E x a m p l e  2. Let X  = {a,b,c}, т = {0, X, {«}, ( 6), {a,6}} and <r = 
= { 0, X, {a}, {6, c} } . Let / :  (X, r )  —» {X , a) be the identity function. Then 
/  is irresolute but it is neither sg-irresolute nor continuous. There exists а 
sg-closed set {a, 6} in (X, a) such that / _ 1({ a ,6}) is not .s</-closed in (X, r).

Example 3. Let X  = {a,b,c}, r = { 0, X . {а}, {6, с} } . and a = { 0, X, 
{a}, {a, b}, {a, c}} . Let / : ( Х ,т )  —*• (X,cr) be the identity function. Then /  
is sg-irresolute but it is not semi-continuous since / -1 ( {a,c}) 0 SO (X ,r).

TH EO R EM  2. If a function f : X  —* Y  is pre sg-continuous and presemi- 
closed, then f  is sg-irresolute.

P r o o f . Let К  be any sg-closed set of Y  and U G SO(X) containing 
/ ~ 1(Х). Since /  is presemiclosed, it follows from [8, Theorem 3.5] that 
there exists V  G SO(T) such that К  С V  and / - 1(Е) C U. Since К  is 
s(/-closed in Y ,  we have sCl(A') С V and hence / _1 ( sCl(E)) C f ~ 1(Y )  C 
C U. Since /  is pre sg-continuous, / - 1(sCl(E)) is s^-closed in Л' and
hence s C l( /_ 1(A')) C sC l( / -1 (sCl(K)) j  C U. This shows that f ~ 1(K ) is 
si^-closed in X . Therefore, /  is st/-irresolute.

The following two corollaries are immediate consequences of Theorem 2.
C o r o l l a r y  1 (Sundaram et al. [12]). Every irresolute presemiclosed 

function is sg-irresolute.
C o r o l l a r y  2 (Sundaram et al. [12]). Semi-Ti spaces are preserved

2
under irresolute presemiclosed surjections.

P r o p o s i t i o n  1. Let X  be a semi-Ti space. A function f: X  —* Y  is pre
2

sg-continuous if and only is f  is irresolute.
P r o o f . Suppose that /  is pre sg-continuous. Let К  be any semi-closed 

set of Y . Then f ~ l ( I i ) is s^-closed in X  and hence f ~ 1(K)  G SC(X) since 
X  is semi-Ti. Therefore, it follows from [4, Theorem 1.4] that f is irresolute.
The converse is obvious.

C o r o l l a r y  3 (Sundaram et al. [12]). If f : X  —► Y  is sg-irresolute and
X  is sem i-Ti, then f  is irresolute.

2

T h e o r e m  3. I f f : X  —*■ Y  is a pre sg-continuous presemiclosed injection 
and Y is a semi-normal space, then X  is semi-normal.

P r o o f . Let A and В  be any disjoint semi-closed sets of X . Since /  is 
a presemiclosed injection, f ( A)  and f ( B )  are disjoint semi-closed sets of Y . 
By the semi-normality of Y,  there exist disjoint U, V G SO(T) such that
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f ( A)  C U and f ( B )  С V.  Since /  is pre sg-continuous, / _ 1(i/) and f ~ l (V)  
are disjoint sg-open sets containing A and U, respectively. It follows from 
Theorem 1 that X  is semi-normal.

C o r o l l a r y  4  (Arya and Bhamini [1 ]) . The inverse image of a semi­
normal space under an irresolute presemiclosed injection is semi-normal.

5. P re  sg-closed functions

In this section we introduce a new class of functions called pre sg-closed 
functions

D e f i n i t i o n  8 . A function f : X  —у Y  is said to be pre sg-closed (resp. 
sg-closed [5]) if / (F )  is sg-closed in У for every semi-closed (resp. closed) 
set F  of X .

By definition 3 and 8, we easily obtain the following diagram:

pre so-closed
11

sg-closed
Diagram II

closed

presemiclosed 

semi-closed

R e m a r k  2. By the two examples stated below, we obtain the following 
properties:

(a) none of the implications in Diagram II are reversible;
(b) a continuous closed open surjection need not be pre sg-closed;
(c) closedness and pre sg-closedness are independent of each other;
(d) semi-closedness and pre sg-closedness are independent of each other.
E x a m p l e  4. Let f : ( X , r )  —* (X,o)  be the same function as in Example

2. Then /  is pre sg-closed but it is not semi-closed. Moreover, / -1 is 
presemiclosed but it is not closed.

E x a m p l e  5. Let X  = {a,b,c,d}, т = {0,A, {a}, {(/}, {a,</}}, Y  — 
= {a,b,c}, and о = (0,У, {a}} . Let f : ( X , r )  —► (У,o) be a function defined 
as follows: /(a )  = f (d)  = a, f (b) — b, and /(c ) = c. Then /  is a continuous 
closed open surjection. However, /  is not pre sg-closed since {a} G SC (2f,r) 
and /({ a } ) is not sg-closed in (У,a).

P r o p o s i t i o n  2. I f f ' - X  —+ У is an irresolute pre sg-closed function and 
A is a sg-closed set of X , then f (A)  is sg-closed in Y.

P r o o f . Let A be a sg-closed set of X  and V G БО(У) containing f (A) .  
Since /  is irresolute, we have A C f ~ l { V ) G SO(A) and hence sCl(A) C 
С Г Ч У ) -  Since /  is pre sg-closed and sCl(A) G SC(.Y), /(sC l(A )) is
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sg-closed in У and /(sC l(A )) С V.  Therefore, we obtain sC l(/(A )) C 
C sCl(V(sCl(А))  ̂ С V.  This shows that f ( A ) is s^-closed in Y .

P r o p o s i t i o n  3. A surjective function f : X  —*• Y is pre sg-closed if and 
only if for each subset В of Y and each U G SO(.Y) containing f ~ l (B),  
there exists a sg-open set V of Y such that В С V and / _1(У) C U.

P r o o f . Necessity. Suppose that /  is pre sg-closed. Let В be any subset 
of У and U G SO(.Y) containing f ~ l (B).  Put V = Y  — f ( X  -  U). Then, V 
is 05-open in Y ,B  С V and / _ 1(У) C U.

Sufficiency. Let F be any semi-closed set of X . Put В = Y -  f ( F) ,  then 
we have f ~ 1(B)  С X  -  F  G SO(A). There exists a sg-open set У of У such 
that В С V and / - 1(У) C A' — F. Therefore, we obtain f (F)  = Y  — V  and 
hence f ( F )  is s</-closed in У. This shows that /  is pre s</-closed.

In Example 5, (A ',r) is semi-normal, (У,0 ) is not semi-normal, and 
f : ( X , r )  —>■ (У, o) is a closed irresolute surjection. Therefore, semi-nor­
mality is not preserved under closed irresolute surjections.

THEOREM4. If f : X  —* Y  is a pre щ -closed irresolute surjection and X  
is a semi-normal space, then Y is semi-normal.

P r o o f . Let F  and К  be any pair of disjoint semi-closed sets of У . Since 
/  is irresolute, f ~ 1(F) and f ~ 1(K) are disjoint semi-closed sets of A'. By 
the semi-normality of X , there exist U, V  G SO(A') such that f~ 1(F ) C U, 
f ~ x(K)  С У, and U П У = 0. By Proposition 3, there exist sg-open sets G 
and H such that F C G , К  С H, f ~ 1(G)  C U, and f ~ 1(H)  С У. Since /  
is surjective and U П У = 0, we have G П H = 0. It follows from Theorem 1 
that У is semi-normal.

C o r o l l a r y  5  (Arya and Bhamini [1]). Semi-normality is preserved 
under presemiclosed irresolute surjections.

A cknow ledgem ent. The author is grateful to the referee for many 
helpful comments that improved the presentation of this work.
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N O T E  ON TH E LO W ER ESTIM ATE  
OF O PTIM AL LEBESG UE C O N STA N TS

R. GÜNTTNER (Osnabrück)

1. In tro d u c tio n . Let X: -1  ^  ж„_г < жп_2 < . . .  < Жо ^  1 denote 
an array of n arbitrary points in the interval [—1,1]. Given the values of 
some function /  at these points, it is well known that there exists a unique 
polynomial Pn_j[/](X , x) of degree at most n — 1 such tha t Pn-\[f](X,  ж*.) = 
= f (xk),  к =  0 ,1 ,2 ,. . . ,  n — 1. We may write this interpolating polynomial 
in the Lagrange form

П—1 П—1
Pn- i [ f ] (X, x )  = V / ( a : fc) -lk(X,x) ,  where /fe(X, ж) =  ГГ - ----— .

t o
гфк

The Lebesgue function

71 — 1

Ln. x{X ,x ):=  £ | / * ( X » (

and the Lebesgue constant

An_i(X ) := max Ln- i ( X, x )

are of central importance in the theory of interpolation.
It is known by Luttman and Rivlin [8] that the Lebesgue function 

Ln- \ ( X ,x )  on each of the intervals (жо, 1), (a?i, жо), (жг, x i ) , . . .  is a polyno­
mial, which we denote by L ^ 1(X, ж), L^ l i ( X ,  ж), L ^ l ^ X ,  ж),. . . ,  possessing
there a single maximum a |i0J 1(X ),aJi121(X ) ,a|1221(X), . .. (n > 2), respec­
tively. Let further

A n-iP O  := min <

A„_i(X) := max

Of course we have An_ i(X ) = A„_i(X).
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It is an open question to  get the exact value of the optimal Lebesgue 
constants

л;_1 := minAn_i(X ).

By the Erdős conjecture, now verified by Kilgore [7], de Boor and Pinkus [1], 
we have

( i)  а ^ ^ А п- Л х )

for arbitrary X .
2. T he s ta tem e n t. In [10] Vértesi proved the famous result

T iiP + 0 ( ^ b  n even,
( 2 ) 0 > л ; _ !  -  -  log« -  x  >7Гk(logn)

where the constant x  is defined by

+ О ( \ )  , n odd,
7ГП V Пг /  ’ ’

(3)
2 /  , 4

X =  -  7 +  log -7Г \  7Г
0.5212...,

(7 = 0.5772 . . .  Euler’s constant).
In [11] the upper estimate was improved to 0 ( (loglog n/  logn)2) . For a 

general survey on this topic see [12].
In this note we focus attention on the lower estimate in (2). As it was 

already obtained in [5, p.513] we have

A*_! -  -  logn  -  x > 0 ( n =  1 ,2 ,3 ,...) .7Г

In view of (1) we have A*_a ^  An_1(T).  Brutman [3] proved that An_1(T’) = 
=  Am_i(T), m  = 7£, which of course means that (n even)

(4) л ;_ !  ^  Am_i(T), m = ^ .

From [6] (theorem 1) we know

( 5 )

A m -i(r) > — logm + — Г7 +  log —'j +ж 7Г \  ж)  72mz
49tt3

172800m4 ’ m — 1 ,2 ,3 ,...

If n is even we easily get from (3)-(5) the result cited in the following theorem. 
The purpose of this note is to  prove this result if n is odd, i.e. to verify the 
following
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T h e o r e m .

A*

П—1 -  log n -  x >7Г
7Г

18n2
49тг3

10800n4

3. P roof. Let T  denote the zeros of the Chebysev polynomials, thus 

„  (2 k + 1)tt
T : Xk = cos-----—---- , k = 0 , l , . . . , n  — 1.

2 n

In view of (1) and our preliminary remarks it is sufficient to prove that

2 7Г 497Г3
(6) К - Л т) > - i ° g n  + x +  ” °dd-

From [5] (Section 4) we derive

(7)

A n - i ( 7 , )  =  A Í i l ( T ) a n . 1 

If n is odd, then [ f  J =

(T) -  2 •
n —1 2 [ 2 J l

E + E
* = » - L?J fc= L ? J

1 (2k + 1)7T
—— • cot ———------ .
2 n An

therefore by (7) we have to deal with

( 8)
_1
n

n —1 n —2

E + E
n+l ; П- 1

K ~  2 K ~  2

cot (2k + 1)7T
4n

4 ( 7Г
7Г \  2n

1 пт (гг + 2)7г (тг + 4)7г
— cot -----f- c o t------------ 1- c o t---------- T  . . .  +
2 4n 4n 4n

+ cot
(2 n — 3) 7Г 1 (2 n — 1)7T

+  2 cot4n 2 4n

We make use of the well known trapezoidal rule

(9) Q ( f )  = h - / ( a )  + /(a  + h) + / ( a  + 2h) + . . .  + f(b -  h) + -/(& )

and the error estimate (cf. [2], p.176)

( 1 0 )  QtT(f)  = £  f ( x ) d x + ± h 2[f ' (b) - f ' (a) ]  - b- ^ h 4 -f (4\ a

Acta Mathematica  Hungarica 65, 1994



316 R  G U N T T N E R

(assuming to be continuous on [a,6]). Considering / ( x ) = cotx on the 
interval [ f , f ]  we know that /  ^  0 and f  — — (1 + / 2) ^  0; by further 
differentiation of / '  it can be seen that / ( 2) ^  0, ^  0, ^  0. From
(7)—(10) this yields

л п_х( т
7Г___ 7t_4 f  2 4n

^  A „_ i(T )---- /  cot
7Г

x dx —
12 n2

cot' cot' ( -
V4 4n/ V4

„ 7Г „ 7Г4 / 2  4 / 2
= An_ i ( T ) ---- / cotxdxH—  / cot

7Г J l  7Г Jn_JL
x dx-

12 n2
-1

+
sin2( f - ^ i )  sin2i

2 4 /’<" 7Г
= An_ i( T ) ---- log2 H—  / tan x dx + —— „

7Г 7Г Уо 12п^

> An_ i ( T ) ---- log2 +7Г

JL4 Mn
7Г io

x dx +

sin2( f - í i )  sin2l
>

7Г
12n2

7Г 7Г

(1 - 2)

A n - !  ( T )  — — log 2  +  g n 2 1 2 n 2 -

We deduce from this

( i n A . - , ( r ) > A . - , ( r ) - | l o g 2  + ^ .

Now (11), (5) and (3) yield (6).
4. R em ark s . The theorem was proved independently by W. Stolzmann 

[9] developing and using an asymptotic expansion of

1 \   ̂ (2к T 1)tt . ..Sa := — > cot ------------  (a G N , 1 ^  a ^  n).
n ' 4nk=0

The proof is somewhat lengthy and cannot be cited here.
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ON A P P R O X IM A T E  P E A N O  DERIVATIVES
H. FEJZIC  (San Bernardino)

1. In tro d u c tio n

In [1], the authors attempted to explain why many classes of functions 
behave like derivatives. They introduced a new class of functions which 
they denoted by [Д'] and they showed that /  6 [Д'] if and only if there 
are differentiable functions g ,h  and к so that /  = g' +  hk '. The latter 
decomposition shows how far a function /  6 [Д'] is from being a derivative. 
In the same paper, the authors showed that the class of all approximately 
continuous functions, the class of all approximate derivatives and the so- 
called B \ class are subclasses of [Д']. In [7] the present author showed that 
the class of all Peano derivatives is also a subclass of [Д']. The first goal of 
this paper is to show that approximate Peano derivatives are in [Д']. An 
immediate consequence is that approximate Peano derivatives are Baire 1 
functions. This result was originally proved by M. Evans in [5]. His proof is 
very complicated as are the other early investigations of approximate Peano 
derivatives. (For example see [2].)

It is also shown that a fc-th approximate Peano derivative is a composite 
derivative of the corresponding к — Tst approximate Peano derivative. As a 
consequence it is shown that a A;-th approximate Peano derivative is a path 
derivative of the к — 1-st approximate Peano derivative with a nonporous 
system of paths satisfying the I.C. condition as defined in [4]. This result 
is obtained without using any of the known properties of k-th approximate 
derivatives. In [4] it is shown that a path derivative for a nonporous system 
of paths satisfying the I.C. condition has all of the known properties of a 
fc-th approximate Peano derivative. Consequently the results in this paper 
constitute a fresh, new approach to obtaining the basic properties of fc-th 
approximate derivatives thus avoiding the complicated approach alluded to 
above. Finally it is shown that the system of paths mentioned above actually 
can be modified to have the I.I.C. condition. Again applying a result from
[4] it follows that a &-th approximate derivative is a selective derivative of 
the к — 1-st approximate Peano derivative.

0 2 3 6 -5 2 9 4 /9 4 /$  4.00 ©  1994 A kadém iai Kiadó, B u d ap es t
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For definitions and properties of the class [A'] and path derivatives, the 
reader is referred to [1] and [4] respectively. For the definition of composite 
derivatives the reader should consult [7].

2. D ecom position

Throughout the paper к isji fixed positive integer. In addition for A  C R 
the closure of A is denoted by A and if A is Lebesgue measurable, then m (A ) 
denotes the Lebesgue measure of A. This section begins with the definition of 
fc-th approximate Peano derivative. Then the major decomposition theorem, 
Theorem 2.6, is proved and several consequences are established.

D e f i n i t i o n  2.1. Let /  : R  —> R and let x 6 R. Then f  is к times 
approximately Peano differentiable at x means that there are numbers 
/ i ( x ) , . . . ,  Д  (x) and a set Vx of density 1 at x so that

tк
f ( x  + t) -  /(x )  +  f/i(x ) + • • • + + t kEk(x,t)

where \imx+t£vXlt^o£k{x,t) = 0- The coefficient Д (х) is called the Ar-th 
approximate Peano derivative of /  at x.

For к = 1 the above definition is just that of the classical approximate 
derivative. In [1] and [9] it is shown that approximate derivatives are in 
[A7]. For that reason throughout this section it is assumed that к 2. The 
next lemma is used to show that Ar-th approximate Peano derivatives are 
composite derivatives. The formula of the lemma is almost the same as the 
corresponding formula in Theorem 1 in [7]. As might be expected, the proof 
is also quite similar. Consequently the proof consists of a comment as to how 
to alter the proof of the theorem in [7] to fit the present circumstance.

L e m m a  2.2. Let f  : R  —> R  and let y, x € R. Suppose f  is к times 
approximately Peano differentiable at x and at y. Then for t ф 0

(1) A - , W - A - . ( x) ) =  t t - 1 ( / t ( x ) , A W )  +
у — x У — x 2

j=0

( у - x + j t ) k 
tk~1(y -  x) £fc(x,у -  x + j t ) -

t
у -  X 1 ■ l \ kZk(y, j t)

7 —П \  J /
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a n d

к  k

(2) f k { y ) ~ f k { x ) =  — Xfk ^  £k ( x , y - x + j t ) ~
j = о 

j=o

P r o o f . The proof of (1) is the same as the proof of Theorem 1 in [7]. 
The proof of (2) is similar to the same proof with some modification of (1). 
Instead of using A k_i as is done in the proof of Theorem 1 in [7], one should 
use Ak where Д*, = £ j= o  ( - 1)fc-J (*) f ( y  + jt).  □

To establish that a fc-th approximate derivative is a composite derivative, 
a decomposition of R  is needed. Next those sets are introduced.

D e f i n i t i o n  2.3. Let /  : R  —» R. Suppose f  is к times approximately 
Peano differentiable at each x £ R- For each x £ R  set A(x) — {x  +
+ 1 '■ E j=o \£k (x ,j t)I ^  1} and let

Hn = |a ; : \fk{x)\ ^  n and m(A(x)  П I) > ^ m( I )  

V interval I  containing x with m(7) < 1/n  >.

The statement of Theorem 2.6 is that under the assum ptions of Definition
2.3 the derivative of f k~\ on 77„, computed relative to H n is Д . According 
to the definition of composite derivatives this result means that f k is the 
composite derivative of f k- i -

The following convention and notation will be used in the remainder 
of this section. If /  is к times approximately Peano differentiable at x,  
then for all t with x + t £ Vx it is assumed that |е*(ж,<)| ^  p  Let 7 be 
the characteristic function of the set Vx of Definition 2.1, and set Г(п) =  
= /о“ ~í(x + t)dt.

Lemma 2.4. Let f  : R  —» R  be к times approximately Peano differen­
tiable at each x £ R . Then IJ^Lj Hn = R.

P r o o f . Let i e R .  Let I  =  [a,6] be an interval containing x. For j  =  

= 1 , 2 , . . . ,  A: let T j  = {x + t £ [a, b] : \ek(x, j t ) \  £  £}. Then,

7{x + j t )dt  = j(r(y '(6  -  x)) -  T( j (a -  x) ) ) .
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Let n G N be such that |Д (х ) | ^  n and |Г(и)| > ( l  -  4̂ ) M whenever |u| < 
< £. If m (/) < A, then

m( Tj )  ^  ( j (b -  x) + j ( x  -  a)) = ^1 -  m(I).

Setting T  = flj= i Tj it follows that m(T)  ^  (l -  к-^) тп(1) = | m(I).  Ob­
viously T  С A(x)  П /. Thus m(A(x)  П I)  > |m (7) whenever m(7) < A. 
Hence x G H n . □

The next lemma and Lemma 2.4 to follow constitute the crux in the proof 
of Theorem 2.6.

Lemma 2 .5 .  Let f  : R  —> R be к times approximately Peano differen­
tiable at each x  G R ,  let e G (O, and let x G R .  Then there is a Ó > 0 
such that whenever у G Hn, with \y — x\ < 6 there are t\ and t2 so that

1) У + j t \  e V x for j  = 1 , . . .  ,k, у + Í1 G A(y) and e2 < \h\/\y -  x| < e,
2 ) У + j t2  e  Vxfor j  = 1,.  . . , k,  Í/ +  t2 G A(y) and 1 > \t2\ / \ y - x \  > 1 / 4 .
P roof . It is enough to consider the case when у >  x.  For j  = 1 ,2 , . . . .  к 

let Tj = {Д G [e2\y -  z |,£ |y  -  x|] : у 4- jU  € Vx). Then

re\y-x\ re\y—x\
m(Tj )  =  /  7 (y + j t ) d t =  / i (x  + у -  x + j t )dt  =

Je2\y-x\ Je2\y—x\

1 r(l+je)\y~x\ 1
= -  i ( x  + u ) du =  T  (r((l  +  y£)|y -  x|) -  r ( ( l  + j s 2)\y -  x|)) .

J J(l+je2)\y—x\ J

Now let Л G ^0, and let Д G (0, A) be such that |Г(и)| > (1 — Ae)|u|
whenever |u | < 2Д. If \y — x\ < Д, then

m(Tj )  > j ( ( l  -  A£)(l + je)\y  - x \ -  (1 + j e2)\y -  ar|) =

. 2,. . A£(l A je).  .
= (£ -  £ )| У -  x \ ---------- :----- 1 у -  x\ >

J

£  -  £2
> ( e  -  e2) \ y -  x\ -  l  +  ,g£(l + j e) \y -  x\ = (1 -  e)(e - s 2)\y -  x\. 

Therefore if T  — Hj=i 2Д then

£  -  £2
m(T)  > (1 -  ke)(e -  £2)| у - x \ >  — — | у -  x\.
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If у € Hn, \y — x\ < <5i, then

m  (A(y) П [y 4- e2\y -  x\ ,y  + e\y -  z | ] ) >

3 I I 21 I £ -  e21 .> - \̂У -  x \ -  е* \ у -  x\ > —- — I у -  x|.

Therefore (у + T)  П A(y) ф 0. Choose any t\ so that у -\-1\ G (у + T) П A(y). 
Then t\ satisfies condition 1) of the lemma.

Turning to the proof of 2) set Cj — {i2 G [\\y — x\, \y — x|] : у + yf2 G Vx} 
for each j  = 1,2, . . .  ,k.  By an argument similar to the argument above

™ ( C j ) =  j  (V(( l  + j ) \ y - x \ )  - f ( ( i + { )  I2/ ”  )  '

Let Л G (О,  ̂ and let <52 G (^,0) be such that |Г(и)| > (1 — A£)|u|
whenever |u| < (1 + k)<52. If \y — ж| < 8 2 , then

m(Cj)  > j  ( (1 -  Ae)(l + j)\y  -  x\ ! +  4 ) \ У ~ Х\ ) =

= h y - x \ - ^ ± J l \ y - x \ >
4 J

> - \ y  — ad — ,
Г  ' 4(1 + y)

3 3
Ф  + ])\У ~ x \ = -(1  -  e)|y -  x\

Therefore if C = Plj-i then

m (C) > |( 1  -  ke)\y -  x \>  ~ \  у -  x\.

If у G Hn, \y -  x\ < 8 2 , then

m  ( A{y) П y + - \ y -  x \ , y+  I у -  x\
3. . 1 .  . 13. .

> l \ y - x\ -  -A\ y - * \  > 2 A\y - x I-

Therefore the set (у + С) П A(y) ф 0. Choose any <2 so that у + f2 G (y + 
+ С)  П A(y).  Then t2 satisfies condition 2) of the lemma. Finally set 8 — 
= min(<5i, 8 2). □

THEOREM 2.6. Let f  : R  —» R  be к times approximately Peano differ­
entiable at each x G R. Then there is a sequence of closed sets {En} so 
that
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1) ü n = l  E n = R,
2) fk - \  is differentiable on En, with respect to En with the exacted 

equality; namely fk~i\'En(x) = f k{x) for each n £ N.

P r o o f . Let En = H n. By Lemma 2.4, |J n E n — R  establishing condition 
1). It will be shown that the sets En also satisfy condition 2). Let x £ E n, 
let e £ (0, jj^) and let 6 , ti and 12 be as in Lemma 2.5. If у £ Hn with 
\y — x\ < 6 , then у + f2 G A(y)  and У + j h  G Vx for j  — 1 ,2 , . . . ,  к. Therefore 
I Дг) !  ^  1, I Ек(х, у  — x + ) I ^  £ and there is a positive constant N
depending only on x so that | f k(y) — Д(ж)| ^  iV. Also by the choice of <2
it follows that < 1 and ^  ( i -f k)k for j  — 1 , 2 Now
from formula 2) of Lemma 2.2, there is a positive constant L depending 
only on x so that if у £ Hn with \y — x\ < <5, then \ek(x,y -  z)| ^  L.
Since formula 1) of Lemma 2.2 implies that there is a positive
constant M  depending only on x so that if у £ Hn with \y — x\ < 6 , then 

~ fk(x)  = M.  Solving (1) of Lemma 2.2 for £k(x,y -  x)  it
ollows that

£k( x , y -  x) = ( -1 ) k+l +k — 1

к— 1
f k - i ( y )  -  f k - i(ar)

у -  x(У -  *)

tk ( k - l ) { h ( x ) - f k(y))

fk(x)

(У -  x )

к ■
+ ( - i ) ‘ E ( - 1) '" 1" í (

j=i '

2

{у -  x + j t f  
(У -  х ) к

k - 1 - j  ( к

+

(у - * )  s

к- 1 /
E i - 1) Ч
О— П '

■£к(х,у -  X + j t ) -

j k£k{y,jt).

Choose > 0 so that if x + t £ Vx with \t\ < 26\, then \ek(x,t)\ < e2k. Set 
62 = min(<5,<5i). If у £ Hn with \y — ж| < 62, then the formula above and the 
choice of <1 gives

\ek( x , y -  x)| <

< M ek~l + ^ — ^ - e k + E ( fc; 1) ( i + i ^ “ + fcf
j = i v j  j  j=1

к  — I
j kek

= Ke к — 1
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In the above formula К  is a constant that depends only on к and x. Since 
к ^  2, limy£Hn,y->x £k(x ,y -  x) = 0. Choose 63 > 0 so that if у E H n with 
\y — x| < 6 3 , then I£k(x,y  -  ж)| < е2к. Let 6 4  = min(<$2, £3). By formula (1) 
of Lemma 2.2, if у E Hn with \y — x\ < 6 4 , then

(3) f k - i ( y )  -  f k - i ( x )

у -  X fk(x) <

. ( k - l ) N  /fc -  1
s *  2 “  +  M  j

3 = 0  4  J

(1 +j e )
к £2k к — 1

ß2(k—l)  i—' , 7
3=0 4 J

к — 1
j ke — Re.

Since the constant R  in (3) depends only on к and x,

(4) lim A - W  -  - M * )  =  M x ) .
уенп,у-+х у -  x

To complete the proof let x E En and let {xj} be a sequence in H n such 
that Xj —► x. By what was just proved, for each j  E N there is a yj E Hn 
such that

( 5 )
f k - \ { y j )  f k - l ( X j )

У] -  X 3

-  fk(Xj) < 1.

In addition assume that \yj -  Xj\ ^  j \ xj  -  x\. Since xj  E \fk(xj)\  = n 
for every j  E N. Consequently (5) implies that

( 6)

Now

A - i ( y j )  -  f k - l { X j

Уз -  хз
< n + 1.

f k - l { x j )  f k —l ( x ) _  _  f k - l ( x j )  f k - l ( V j )  x j  y j  ^

Xj  — X Xj  —  y j  Xj  —  X

+{ A- ( у , ) - A -M  _ Mx_
t Уз -  X J Xj  -  X Xj  -  X

So by (6)

( 7)
fk-l{Xj)  -  f k- l (x)

1
й  i n  +  1 ) t  +  

J
f k-ЛУз) -  f k - i ( x )

Уз -  x

-  f k ( x )

f k ( x )

<

4 11 + T + П-.

Acta Mathematica Hungarica 65, 1994



3 2 6 H FEJZIC

Finally since limj_oo£? = x,  linij_oo 2/j = x.  Since tjj £ Hn for each j  £ N,
(4) implies

( 8 ) lim
j-*oo

f k- i (Vj )  -  fk-  i(g) 
Vi -  x

fk(x).

Therefore by (7) and (8)

lim
j - > o o

f k- l (Xj )  fk—l{x)
X j  — X

/*(*)• □

C o r o l l a r y  2.7. Let f  : R  —» R  be к times approximately Peano differ­
entiable at each x £ R. Then Д  is a composite derivative of fk-i -

It is well known that if a function g , defined on a closed set A, is 
differentiable relative to A, then there is a differentiable function G on R  
with G — g and G' = g' on A. (See Marik [12].) This result yields the 
following corollary to Theorem 2.6.

C o r l o o a r y  2.8. Let f  : R  —► R be к times approximately Peano dif- 
ferentiable at each x £ R. Then fk £ [Д'].

The next corollary follows from the fact that every function in [A7] is a 
Baire 1 function.

C o r o l l a r y  2.9. Let f  : R  —*• R  be к times approximately Peano differ­
entiable at each x £ R. Then fk is a Baire 1 function.

Corollary 2.9 was first proved by M. Evans in [5] using a long and 
complicated proof. The proof presented here is much shorter, but does 
require the work done in [1].

3. A p p ro x im a te  P e a n o  derivatives and pa th  derivatives

This section presents a new development of the basic properties of ap­
proximate Peano derivatives. It has already been proved in Corollary 2.9 
that they are Baire 1 functions. Here using the notion of path derivatives as 
developed in [4] and the results established in that paper, it is shown that 
approximate Peano derivatives have the Darboux property, the Denjoy prop­
erty and, when bounded either above or below on an interval, are ordinary 
derivatives on tha t interval. In addition the so-called - M , M  property intro­
duced in [10] is also established for approximate Peano derivative. The sets 
E n from Theorem 2.6 are employed to construct the paths that are used.

L e m m a  3.1. Let l £ N with l й к — 1. Assume that if L is an interval and 
if  g ■ I  -* R  is l times approximately Peano differentiable on I , then gi has
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the Darboux property. Moreover if gi ^  0 on I, then gi — gW on I. Suppose 
f  : R  —*■ R  is к times approximately Peano differentiable at each x £ R. Fix
x £ R  and for each у £ К  set P(y)  = Yli=o(y ~ Let £ > 0, 77 >
> 0. Then there is a 6 > 0 such that if I  is a subinterval o f (x — 6 ,x  + <5), j
an integer with 0 < j  < к and \fj(y) — P ^ \y ) \  ^  s\y — on I, then
m(I)  5Í íj dist(x, I).  (Here d is t(x ,/) is the distance from x to I .)

P roof . The proof of this assertion parallels the proof of Theorem 3 in 
[11]. The difference is that the use of Lemma 4 in [11] is replaced here by 
the assumption concerning the general function g. □

We need Lemma 3.1 to state and prove the following result.
Lemma 3.2. Under the assumptions of Lemma 3.1, for each point x £ R  

there is a nonporous path Ex leading to x so that

lim
y£ E x ,y—>x

/fc-i(y) -  f k - i ( x)  
У -  x /*(*)■

P r o o f . The assertion of Lemma 3.2 follows directly from Lemma 3.1 
with j  = к — 1 and Lemma 3.6.1 in [4]. □

T h e o r e m  3.3. Let l £ N with l й к — 1. Assume that if  I  is an interval 
and if g : /  —► R  is l times approximately Peano differentiable on I , then 
gi has the Darboux property. Moreover if gi ^  0 on I, then gi = gW on I . 
Suppose f  : R  —► R  is к times approximately Peano differentiable at each x £ 
£ R. Then there is a bilateral nonporous system of paths E  = {Ex : x £ R} 
satisfying the I.C. intersection condition such that Д is the E-derivative o f 
f к — 1 •

P r o o f . For each x £ R  let E'x be a path satisfying the conclusions of 
Lemma 3.2. For x £ R  let Ex — E'x U En where n £ N is such that x £ E n. 
That E  is nonporous (therefore bilateral) follows directly from Lemma 3.2. 
Also Lemma 3.2 and Theorem 2.6 imply that fk - \  is E  differentiable with 
fk-i\'E(x ) = fk(x)  for every x £ R. It remains only to prove that E  satisfies 
the I.C. intersection condition. In fact it is shown that E x П E y П [x,y] ф 
Ф 0 for any two distinct points x and y; a condition stronger than the I.C. 
condition.

Let x and у be any two distinct points and let n,m  £ N  be such tha t 
x £ En and у £ E m. If n ^  m, then Em D E n and hence у £ E x. If n ^  m,  
then En D E m and hence x £ E y. Therefore E x П Ey П [x,y\ ф 0. Thus E  
satisfies the I.C. condition. □

Next it is shown that the assumption concerning the general function g 
of Theorem 3.3 can be dropped. To accomplish this goal the results from 
[4] are used extensively. In particular those dealing with properties of path 
derivatives that are Baire 1 functions and with a nonporous system of paths 
satisfying the I.C. condition are employed.
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T h e o r e m  3.4. Let f  : R  —► R  be к times approximately Peano differ­
entiable at each x £ R . Then there is a bilateral nonporous system of paths 
E  = {Ex : x 6 R} satisfying the I.C. intersection condition such that /*. is 
the E-derivative of fk-i -

P r o o f . The proof is by induction on к. It is well known and easy to 
see that an approximate derivative is the path derivative of its primitive for 
the system of paths consisting of the sets of density one through which the 
approximate derivative is computed. Consequently the assertion is true for 
к = 1.

Suppose the assertion of the theorem is true for every 1 ^  j  ^  к — 1, 
and every function h , defined on some closed interval J,  which is j  times 
approximately Peano differentiable on J . (Note that this seemingly stronger 
induction hypothesis is justified because any such h can always be extended 
to R so th a t hj  exists on R . For example if J  = [a, b], then set

h ( y )  =  (У -  Х У ~ Т -  for 2/ e ( - o o , a )
t'=0

and

Му) = for y € ( 6 , ° ° ) . )
2 —  0

Let 1 ^  l ^  к — 1 and let a function g , defined on some closed interval / ,  
have an /-th approximate Peano derivative on I. By Corollary 2.9, gi is a 
Baire 1 function. By the induction hypothesis and Theorem 6.4 from [4], gi 
has the Darboux property. Suppose that gi ^  0 on / .  Again by the induction 
hypothesis but now using Theorem 4.7.1 of [4], <?/_j is nondecreasing on I. 
By Theorem 4.4.3 from [4] g'l_ 1 = gi on I.  Also there is an a 6 R  such that
gi_i -  a ^  0 on I. Let h(x)  =  g{ x) — a о Lip • Then /q_i = gi-\ -  a and hence 

2 0 on / .  Proceeding as before h \ _ 2 = /q_! on / .  This implies g\ _ 2 =
= gi-i on I . Continuing in this fashion one can deduce that g ^  exists on I. 
Now apply Theorem 3.3. □

COROLLARY 3.5. Let f  : R  —► R  be к times approximately Peano differ­
entiable at each x £ R. Then fk has the Darboux property.

P r o o f . The assertion follows directly from Theorem 3.4 a n d  Theorem
6.4 in [4]. □

Corollary 3.6. Let f  : R  —> R  be к times approximately Peano differ­
entiable at each x € R . Let [a, b] be an interval, and a  £ R. If f к ^  a (or 
f k ^ o t )  on [a,b\, then

a) f k - i ( x )  — ax ( a x  — fk-i{x) ) is nondecreasing and continuous on
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[a, b], and
b) fW  exists and f  ̂  = Д  on [a, 6].
P R O O F . The assertion follows directly from Theorem 3.4, and Theorems 

6.6.1 and 4.4.3 of [4]. □
C o r o l l a r y  3.7. Let f  : R  —► R be к times approximately Peano differ­

entiable at each x E R. Then Д  has the Denjoy property.
P r o o f . The assertion follows directly from Theorem 3.4, Theorems 6.6.1 

and 6.7 from [4] and Corollary 3.5. □
An immediate consequence of Theorem 3.4 and Theorem 8.1 of [4] is the 

following corollary.
COROLLARY 3.8. Let f  : R  —> R 6e к times approximately Peano differ­

entiable at each i E R  and let M  > 0. I f  Д  attains both M  and —M  on an 
interval, Iq, then there is a subinterval I  of Iq on which Д  = f ^  and /Р ) 
attains both M  and —M on I .

4. A p p ro x im ate  Peano derivatives and selective derivatives

The goal of the final section is to prove that every approximate Peano 
derivative is a selective derivative. This result is obtained by constructing 
a different system of paths along which the derivative of Д_ i is Д . This 
system of paths will be shown to have the I.I.C. intersection property. Then 
a result from [4] will achieve the desired result.

First the system of paths is defined. For that purpose it is assumed that 
/  : R  —► R  is к times approximately Peano differentiable at each x E R. The 
desired system is constructed from the sequence of sets { En} of Theorem 2.6 
augmented by the sets introduced next. For each у E R  let Py be a set 
containing у , having у as a bilateral point of accumulation of Py and so that

limzdPy,z-+y

and

(9)
f k - i ( z )  -  f k - i ( y )

z - У

f k - i ( z )  -  f k - i ( y )  

z  -  У
=  f k ( y )

f k { y ) < 1 for every г E Pv

Theorem 3.4 assures the existence of such a set Py.
N o t a t i o n . For x, y  E R let 6 (x,y) =  min{l, }. For x  E R and 

n E N let
Rx,n — \J { Py L\ [у, у S2(x , у)) : у £ E n and у is right isolated from 

E m for all m E N }
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and let
Lx,n — U { Ру Г1 (У ~  d2(x, y)i y] '■ У £ En and у is left isolated from 

Em for all m G N }.
Next a specific set from the sequence {En} is selected for each x £ R  and 

the set Ex is defined depending on this choice. If there is an n £ N such that 
x is a bilateral accumulation point of En, then select M x to be the smallest 
such n and let

Ex =  E mx U RxMx u Lx,Mx ■
Suppose no such n exists. Assume there is an n such that x is a left 
accumulation point of En. Let Mx be the smallest such n and note that 
in this case x is right isolated from En for each n £ N. Similarly if there is 
an n such tha t x  is a right accumulation point of En, then select Mx to be 
the smallest such n and note that in this case x is left isolated from E n for 
each n £ N. Finally if x is an isolated point of En for every n £ N, then let 
M x = 1. In each of these three cases let

Ex — E m x LI Px U R x,Mx Li LXimx .

Let Е be the system of paths, Ex.
T heorem 4.1.  Let f  : R  —► R be к times approximately Peano differen­

tiable at each i £ R .  Then E  is bilateral and satisfies the I.I.C. intersection 
condition.

P roof . Clearly E  is bilateral. A slightly stronger condition than I.I.C. 
will actually be established; namely that Ex П Ey П (x ,y ) ф 0 for any two 
points x ,y  £ R . Let x < у and suppose first that Mx ^  My. Then Е м х C 
С Ему and consequently x  £ Ему- If x is a right accumulation point of 
then Ex П Ey П (x,y)  0. If x is right isolated from Ещх , then by the choice
of Mx, x is right isolated from En for every n £ N. Thus

0 Ф Px п [x,x  +  6 2 (x,y)) n (x , y)  C Ex n Ey П (x,y).

Now suppose Mx > M y. Then Ему С Emx. If у is a left accumulation 
point of Е м у, then Ex П E y П (x,y) 0. If у is left isolated from then by
an argument similar to th a t above Ex П E y П (x,y) ф 0. Therefore E  satisfies 
the I.I.C. condition. □

T heorem 4.2. Suppose f  : R  —»■ R  is к times approximately Peano 
differentiable at each x £ R . Then fk - \  is E differentiable with =
= Л ( х)-

P roof . Let x £ R  and £ > 0. Then there is an ту £ (0,£) such that

( 10)
f k - \ { y )  -  f k - i ( x )

y - x f k ( x ) < £
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whenever |y — ж| < 77 and у £ Е м х U Px■ Let г £ Ex be such that \z — x\ < 3. 
If 2 £ E mx U Px, then (1 0 )  holds with у replaced by 2. So assume 2 £ R x Mi u 
U Lx,Mi ■ Then 2  £  Py for some у £ E \jx and у is left or right isolated from 1 

for every n £ N . Then |  > \z — ж| \x — y\ — \y — z\ 26(x, y) — S2(x, y)
^ S(x , y). Therefore \y -  x\ й  \y — z\ -f \x — z\ < 6 (x, y) + 77/2 < r\. Hence

f k - i ( y )  -  f k - i ( x )

у  -  x
f k ( x ) < £.

Thus

fk- i ( z )  -  fk- i (x)
-  f k ( x )

+

2 -  X

fk- \ {z)  -  f k - i ( y )

f k - \ ( y )  -  f k - i ( x )  ,  , \  у -  x
-------  J k ( x )  1 ---------+

z ~ y
f k { y )

у  -  x

Z - y  z - y
z  — X z  — X

z  — X

i f k { y )  -  f k { x )) <

< f k - \ { y )  -  f k - l ( x )

у  -  x
fk(x) z - y

z — X
+

+
f k - i ( z )  -  f k - i ( y )  

z - y
f k ( y )

z - У z - y
+

z - x Z — X (!/*(*)! + \fk{y)\)

By (10), (9) and the relationship among x, у and 2, the last two lines in the 
above estimate are no more than

1 I I 1 62(Х’У) I 6 ^ x ' yh \ f  (r)\ \ и  \ '

= 2e + fj(x,y)( 1 +  \fk(x)\ + M x) ^  2e + - ( 1  + \fk(x )\ + Mx) 

and since e was arbitrary,

lim A-i (^)  ~ fk-i(x) _  д  □
zeEx,z-*x z - x  y

Corollary 4.3. Let f  : R  —»• R  6e к times approximately Peano differ­
entiable at each x £ R . Then Д  is a selective derivative of fk -i-

P ro o f . The assertion follows immediately from Theorems 4.1 and 4.2 
and Theorem 3.4 of [4]. □
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U N IFO R M  E M B E D D IN G  OF A B E L IA N  
TO PO LO G ICAL G R O U PS IN E U C L ID E A N

SPACES
M. BOGNÁR (B udapest)

In tro d u ctio n

LCA-groups are in this paper locally compact Abelian Го-topological 
groups with countable bases. For each nonnegative integer m  let R m denote 
the m-dimensional Euclidean space.

In the papers [1], [2], [3], [4] the question of topological embeddability of 
any LCA-group in R m was investigated and solved. However each Abelian 
topological group determines also uniquely a uniform space, the underlying 
(uniform) space of the topological group. R m itself is a uniform space as 
well. Thus we can raise the question of the uniform embeddability of an 
arbitrary Abelian topological group in R m. This is the aim of the present 
paper.

1. Locally com pact groups

We shall prove the following theorems.
T h e o r e m  A. Each n-dimensional LCA-group can be uniformly embed­

ded in R n+2.
THEOREM  B . Each n-dimensional LCA-group with locally connected 

components can be uniformly embedded in R n+1.
T h e o r e m  C. An n-dimensional LCA-group can be uniformly embedded 

in R n if and only if it is isomorphic to the vector group R n.
T h e o r e m  D. An n-dimensional LCA-group without locally connected 

components cannot be uniformly embedded in R n+1.
First we are going to prove Theorems A and B.
Let Г be an n-dimensional LCA-group. Then there exists a subgroup Ti 

in Г satisfying the following conditions:
(a) the factor group Г/Tj is discrete,
(b) Tj is the direct sum of a compact subgroup Г2 and a vector subgroup 

V  (see [7] Ch. V. §35 E) and Theorem 41, pp.160-161).
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Since the subgroup V is divisible, it is an injective group and thus Г is 
the direct sum of a subgroup Г3 and V,  where Г3 П Id = IV Consequently 
Г3/Г2 is isomorphic to Г/Г1 thus it is discrete and countable.

Let Г4 be the component of zero of the group Г3. Then Г4 is a subgroup 
of Г2. Let Г5 be the component of zero of the group Г. We then clearly have 
Г5 = r 4 + c .

Suppose th a t V  is a ^-dimensional group. Then Г3 and Г2 are (n — k)- 
dimensional groups (see [3] 1.2 and 1.3).

Now suppose that there is a topological embedding уз:Г2 —► R m in some 
Euclidean space R m, where m  ^  1. Г2 is a compact group and thus <p is also 
a uniform embedding. Let С = <y?(0). </?(Г2) is then contained in an open 
sphere S(C,s)  in R m. Choose the points C \ , . . . ,  Cr, . . .  in R m so that C\ = 
=  C and d(Ci,Cj) > 3e for i  ф j , where d(Ci,Cj) is the distance between 
the points C{ and Cj.

If Г3/Г2 is finite then let H \ , . . . ,  H s and if Г3/Г2 is infinite then let 
H i , . . . ,  Hr , . . .  be the cosets of Г3 modulo Г2, where in both cases H\ — Г2. 
Choose a representative gr from each coset Hr so that g 1 = 0.

Now for each coset Hr let фг:Нг —* R m be defined by the formula

ФЛд) = Cr - C 1 + g>(g -  gr).

Then ф\ = <p and the map ф:Гз —> R m defined by ф\Нг = фг (г =  l , . . . , s  
or r  — 1, 2, . . . )  is clearly a uniform embedding of Г3 in R m. Further for 
h = g + v (g E Г3, v 6 V)  let

((h)  = ф(д) | i ? G  R m -\-V — K m+k,

where R m + V  is the direct sum of the vector groups R m and V . Then (  is 
clearly a uniform embedding of Г in R m+fc.

Now according to [3] Theorem D (see also [1] and [2]) Г2 can be topo­
logically embedded in R n-fc+2. Hence by the preceding considerations Г can 
be uniformly embedded in л п~к+'2+к = R n+2. The proof of Theorem A is 
complete.

Suppose now that Г5 is locally connected. Since Г5 = Г4 -f V , it follows 
that Г4 is locally connected as well. Hence by [3] Theorem В Г2 can be topo­
logically embedded in R ra_fc+1. According to the preceding considerations we 
obtain that Г can be uniformly embedded in R n_fc+1+fc — R n+1. The proof 
of Theorem В is complete as well.

We now prove Theorem C.
If Г is an n-dimensional vector group then clearly it can be uniformly 

embedded in R n.
Now suppose that Г is an n-dimensional LCA-group and it can be uni­

formly embedded in R n. Let £:Г —► R n be a uniform embedding. Then 
(  is also a topological embedding. Г has a subspace homeomorphic to R ra
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(see [3] Lemma 1.1). Thus each element of Г is contained in a subspace of 
Г homeomorphic to R n. Consequently, according to Brouwer’s theorem on 
invariance of domain it follows that £(Г) is open in R n. On the other hand 
by the local compactness of Г it follows that Г is a complete uniform space 
(see [5] 11.3.21 p.466). Hence £(Г) is complete as well and thus £(Г) is a 
closed subspace of R n (see [5] 5.1.16 p.185).

Thus by the connectedness of R ” it follows that £(Г) = R n. Hence Г 
is connected and locally connected. Consequently Г is the direct sum of a 
^-dimensional (0 ^  к ^  n) toroidal subgroup Г] and an (n — fc)-dimensional 
vector subgroup V  (see [3] 1.2 and [7] Theorem 43. p.170). Thus Г and Id 
are of the same homotopy type and since R n is contractible to a point over 
itself so is Г and Ti. This yields к — 0 and thus Г = V . Г is isomorphic to 
R n as required. The proof of Theorem C is complete.

Finally we prove Theorem D. If Г is an n-dimensional LCA-group without 
locally connected components then by [3] Theorem A and [3] 1.3 Г cannot be 
topologically embedded in R n+1. Hence it cannot be uniformly embedded 
in Дп+1 indeed.

2. A b e lia n  to p o lo g ic a l groups

Let Г be an Abelian topological group and R m a Euclidean m-space, 
where m is a nonnegative integer. Suppose the existence of a uniform 
embedding £:Г —* R m of Г in R m. Г is then clearly a То-group with a 
countable base. Let Г bp the completion of Г (see [6] 8.5.15 p.571 and
[5] 11.3.d. pp.463-466). The closure £(Г) of £(Г) in R m is a complete 
subspace of R m and £(Г) is dense in £(Г). Thus the uniform isomorphism 
£:Г —+ C(T) is extendable to a uniform isomorphism £:Г —*• £(Г) (see [6] 
8.3.11 p.549). However £(T) is a closed subspace of the locally compact 
space R m, consequently £(Г) and so Г are locally compact spaces and thus 
the 0-element of Г has a precompact neighbourhood (see [5] 11.3.24 p.466).

Hence we have the following theorem.

T h e o r e m  E. I f  an Abelian topological group Г can be uniformly embed­
ded in R m then it is a То-group with a countable base, its О-element has a 
precompact neighbourhood, its completion Г is an LCA-group and Г can be 
uniformly embedded in R m as well.

Now suppose that Г is an Abelian T0-topological group with a countable 
base and the zero element of Г has a precompact neighbourhood. Then 
the topological space Г is separable and Г is also a To-uniform space with 
a countable uniform base. Hence the uniform space Г is metrizable (see
[8] II.2.8 Satz 2. p.119) and so Г is a metric space with a countable base. 
Consider now the completion Г of Г. Then Г is a То-group as well with a
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countable base (see [5] 6.3.29 p.256, [6] 8.3.12 p.549 and [6] 4.3.19 p.340) and 
Г is locally compact (see [5] 11.3.24 p.466).

We now define the uniform dimension dim Г of Г as the topological 
dimension of Г. Г is said to be m-dimensional if dim Г — m. If Г is locally 
compact then it is complete (see [5] 11.3.21. p.466) and thus in this case we 
have Г = Г and so the topological dimension of Г coincides with its uniform 
dimension. However if Г is not locally compact then its topological dimension 
may differ from its uniform one.

Now according to Theorems А, В, C, D and E we have the following 
theorems.

THEOREM  F. An Abelian topological group Г can be uniformly embedded 
in some Euclidean space if and only if the following conditions are satisfied.

(a) Г is a То-group with a countable base.
(b) The zero element o f Г has a precompact neighbourhood.
(c) The uniform dimension of Г is finite.
In what follows we shall say that an Abelian topological group Г is simple 

if it satisfies the conditions (a), (b) and (c) of Theorem F.
TH EO REM  G. Each n-dimensional simple Abelian topological group can 

be uniformly embedded in R n+2.
TH EO REM  H. A simple n-dimensional Abelian topological group can be 

uniformly embedded in R n+1 whenever the components of its completion are 
locally connected.

T h e o r e m  I. A simple n-dimensional Abelian topological group can be 
uniformly embedded in R n if  and only if it is isomorphic to a dense subgroup 
of R n.

T h e o r e m  J. A simple n-dimensional Abelian topological group cannot 
be uniformly embedded in R n+1 if the components of its completion are not 
locally connected.

TH EO R EM  K. If m < n then no simple n-dimensional Abelian topological 
group can be uniformly embedded in R m.
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ON Q U A SI tp(L)m-A .E . C O N V E R G E N C E  
OF FO U R IE R  SERIES OF F U N C T IO N S  

IN ORLICZ SPACES
H. KITA (O ita) and K. YONEDA (Osaka)

§1. In tro d u ctio n

Let /  be a real valued integrable function defined on T = [—x, x] and 
be the n-th partial sum of the Fourier series of / .  The majorant 

function S*(f) is defined by

(1.1) S*(f)(x)  := sup 11 Sn( f;x ) \  :n ^  o j for i ET.

In this paper || • || means the usual norm on Lp(T) and meas(£) means 
the Lebesgue measure of the set E  С T. Hunt [1] proved the following 
theorem.

T h e o r e m  1.1. When 1 < p < +oo, we get

(1.2) II £*(/) || p = СрЦ/llp for all / e m

where Cp is a constant depending only on p and satisfies Cp = O(p) as 
p —► + oo. When p = + oo, we get

(1.3) meas{z E T :S * (f)(x ) >  i} ^  C \  exp(-Сг^/Ц/Ц^) for all t >  0,

where C\ and Cg. are absolute positive constants.
The following are proved in [3], [4].
T h e o r e m  1.2 (see [3]). Let tp(t) = e1 — 1. I f f  is a continuous 

2 'K-periodic function, then we get
7Гj  ip(aS*(f)(x)) dx < +oo for all a  > 0,

— 7Г

and
7Г

lim /  <p(a\Sn(f-, x) -  f ( x ) I) dx -  0 for all a > 0.
n —► OO J

— 7Г
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T heorem 1.3 (see [4]). Let ip(t) = el — 1. Then there exists a bounded 
function f  such that Ц/Ц^ = 1,

7Г

(1.4) J <p(a0 S*(f)(x)) dx = +oo
— 7Г

and ■к
lim ; /  ¥>(ao| S n(f-,x) -  /(z)|) dx = +oo

— 7Г

fo r  some positive constant op.
The aim of this paper is to  consider the case of the Fourier series of 

functions in Orlicz spaces X* .

§2. N o ta t io n s  and d e fin itio n s

Let ip be a continuous function defined on [0,oo) satisfying the following 
properties:

( y>(0) = 0 , <p(t) > 0  if t > 0;
\  ip(t) t  Too as f -* + 00.

We denote by Ф the set of all functions ip satisfying (2.1).
D e f i n i t i o n  2.1. When <p G Ф and о > 0, <p(a L) is a set of real valued

7Г

functions /  such that f  ip (a \f(x)\dx < +oo. The sets X* and tp(L)* are
— 7Г

defined as follows:

(2.2) X* := [ j  p{eL);
£>0

(2.3) (p(L)* := f)< p(aL).
a > 0

The space X* is termed an Orlicz space which is a generalization of the 
space XP(T ).

D e f i n i t i o n  2.2. We say that a function <p € Ф satisfies the Д 2- 
condition if there exist positive constants Co > 0 and to > 0 such that

(2.4) <f (22) S  Co<p(t) for all t > to-
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From (2.2) and (2.3) it is clear that (^(Z)* C Z*. In general the equality 
<p(L)* = Z* does not hold. However we get the following result ([6], [8]).

T h e o r e m  2.3. When tp £ Ф, the equality ip(L)* = Z* holds if and only 
if p(t) satisfies the Д2-condition.

We are interested in the case when <p does not satisfy the A2-condition. 
First we give an interesting example which does not satisfy the A2-condition 
and plays an important role later.

Example  2.4. Let 0 <  7  < + 0 0  and put

(2.5)

( 2 .6 )

q>(t) := ^ 2  ,, '' = exp(f7) — Í7 — 1 for t ^  0;
k=2

rp(t)
OO

E tk
{k\)l h

for t ^ 0.

Since lim <p(t)/tn = +  00 and lim ip(t)/tn = + 00 for every positive
t —►oo t —►OO

integer n, neither <p nor tp satisfy the A 2-condition. Therefore, by Theorem 
2.3 it follows that <p(L)* ^  Z* and ip(L)* C ZJ. The functions <̂ (f) and V’(f) 
have the different expressions (2.5) and (2.6). However they define the same 
Orlicz space. Namely, we have

(2.7) <p(L)* = V>(Z)* and Z ; = ZJ.

We prove (2.7). In fact, when 1 < 7 < + 00, it follows that 

00 /  ^  \ 7 /  00 /* \ 7 

v<<) = S ( ( « ) 1/v  H S iF f )  = (л<)) ’

Since (̂ >(f) ^  ( l / 2)exp(f7) for sufficiently large t > 0, </> ^ ( l /7 )1̂ 7f^ ^  2V>(f)
holds for sufficiently large f > 0. By Theorem 3.1 in [6] tp(L)* C y?(Z)* holds. 
On the other hand, Holder’s inequality gives

,/>(1/ 2) =  £ ( 1/ 2*)
fe=2

_ i E <
( Z !)1/7 “

s  E * 1/ 2“)'
i/V

a =2
E

4fc=2

(t7)*
k\

i /t i /V
<

1 -  ( 1/ 27') (v»(0 )
1/7
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where 7' = 7 /(7  -  1) is the exponent conjugate to 7 > 1. Therefore we get 
V>(f/2) ^  4</з(<) for sufficiently large t. Theorem 3.1 in [6] gives tp{L)* C 
С ф(Ь)*, and so < (̂X)’ = ip(L)* holds.

When 0 < 7 < 1, arguing in the same way, we find that ip(L)* = ip(L)*. 
By Theorem 2.5 in [7] X* =  X^ holds. □

D e f i n i t i o n  2.5. Let be a function defined by (2.5). Then L*(expi'1') 
denotes the set X* given by (2.2) and (exp X'1')* denotes the set <p(L)* given 
by (2.3).

§3. C o n tr o l fu n ction s o f  a .e . co n v erg en ce

For the a.e. convergence of sequences of functions, Yoneda [11] proved the 
following result. When { f n(x);n  ^  1} is a sequence of real valued functions 
defined on the closed interval [a, 6] and

(3.1) lim f n(x) = f i x )  a.e. on [a,6],
71— ►OO

there exists a positive and a.e. finite valued function <5(x)such that for every 
£ > 0 there exists a positive integer n(e) satisfying | f n(x) -  /(x )| ^  £ Í(t ) 
everywhere for all n ^  n(e). The function S(x) is termed a control function 
of the a.e. convergence (3.1).

Wagner and Wilczynski [10] showed that Yoneda’s result is equivalent 
to the well known Egoroff’s and Taylor’s theorem [9]. We apply the control 
function to the a.e. convergences of Fourier series of functions in Orlicz 
spaces. We say that (3.1) has an X*-integrable (or y?(X)*-integrable) control 
function, when (3.1) has a control function in the space X* (or <p(L)*).

In [3] the following theorem was proved:
T heorem  3.1. I f f  is a continuous 2-K-periodic function, then the a.e. 

convergence

(3.2) lim 5n( /;x )  = f ( x )  a.e. x G T
71— ► OO

has an (exp L)*-integrable control function.
When /  is a bounded function, the following result has been given in [4].
T heorem  3.2. There exists a bounded function f  such that Ц/Ц^ = 1 

and the a.e. convergence (3.2) has no (p(L)*-integrable control function.
On the other hand S*( f )  € X*(expi), whenever /  £ X°°(T) in virtue of

(1.3) . A problem arises whether a control function of the almost everywhere 
convergence of (3.2) can be chosen in the Orlicz space X*(exp<), whenever 
/  £ X°°(T). The following lemma plays an important role.
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L emma 3.3. Let f  £ <t>{L)* and let S*(f) be a majorant function defined 
by (1.1). Then it follows that

(1) if  S*(f) £ (ß(L)*, then (3.2) has a <p(L)*-integrable control function;
(2) if  S*(f) £ then (3.2) has no L^-integrable control function.
P r o o f . The statement (1) was proved in [12]. We have to prove (2). 

Suppose (3.2) has an T*-integrable control function 6 . Then there exists a 
positive number £o such that

7Г

(3.3) /  </>(£о<5(я)) dx < +oo.

Since 6 is a control function of (3.2), for any £ > 0 there exists a positive 
integer 71(e) satisfying

I З Д ;  x) — /(ж )| ^  e6 (x) everywhere for all n ^  n(e).

Therefore it follows that

(3.4) S * ( f ) ( x ) ^ £ 6 (x) + \ f ( x ) \ + M f i f )  for x £ T ,

where M c(f )  := sup j  | 5 „ (/; z ) | : 1 ^  n ^  n(e),x e t | .
Let a  be any positive number and fix it. Put e =  eo/2a, where £o is a 

positive number which is given in (3.3). Then it follows from (3.4) that
7Г 7Г

J  p(aS*( f ) ( x ) )  dx fs J v ( a s 6 (x) + a | f (x)\  + a M e(f)) dx 5Í
— 7Г — 7Г

7Г 7Г

^  I  <p(2aeS{x)) dx + J  <p(2a\f(x)\ + 2 oAfe( /) )  dx ^

7Г 7Г

^  J  т(£oHx)) dx + J  (p ( aoi\ / ( z )| j  dx + 2n<p(4aMe(f)) < +oo.
— 7Г — 7Г

Hence S*( f )  is <^(X)*-integrable, which contradicts our assumption. □
By Theorem 1.3 and Lemma 3.3 we have the following theorem.
T h e o r e m  3.4. There exists a bounded function f  such that Ц/Ц^ = 1 

and the a.e. convergence (3.2) has no L*(exp t)-integrable control function.
P r o o f . We consider a function /  mentioned in Theorem 1.3. It is easy 

to see that S*(f) £ X*(expf) in virtue of (1.3). However, from (1.4) S * ( f ) $ 
^  (expX)* holds. Therefore by Lemma 3.3 the desired result follows. □
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§4. p(L)* -a .e . convergence

We now turn to the discussion of almost everywhere convergence of a 
sequence of functions { f n(я); n ^  l}  .

D e f i n i t i o n  4.1. We say tha t a sequence of functions { f n(x);n ^  1}, 
x £ [—7Г, 7r] converges to /  p(L)* -a.e., if (3.1) has a y>(L)*-integrable control 
function.

D EFIN ITIO N  4.2. We denote by Ф0 a subset of Ф such that each function 
p  in Фо has the expansion

OO

(4.1) p(t) = E ßntn for all t > 0,
n = 2

where ßn ^  0 for all n ^  2 and lim \fßn — 0.П—+00

T h e o r e m  4 . 3 .  Let p  6  Фо have an expansion (4 .1 ) .  Put

OO „
(4.2) № ) : =  Y  Z j tn for all t > 0.

z —4 n\
n —2

I f  f  G p(L)*, then the Fourier series of f  converges to f  ip(L)"-a.e.

P r o o f . Since our theorem is clear by Theorem 1.1, if ßn = 0 for suffi­
ciently large n, we consider the case when ßn > 0 for infinitely many positive 
integers n. Then we get <p(L)* С П Lp. From (1.2) it follows that

p > l

(4.3) | И Я | | р ^ С - р | | / | |р for р г  2,

where C > 0 is an absolute constant.
Let a be any positive number. In virtue of (4.2) and (4.3), it follows that

/
ОО -о л

чн « « '( /к * ) )  <<*= E ^ - l i s v ) l l ^
n = 2

< E
n = 2

7Г

—  IT

n
dx.
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Since nn/n\ ^  e", we get

aS*(f)(x)) dx
n = 2

J ( eaC\ f ( x ) \ )
П

dx =

7ГJ y[eaC \ f ( x ) f j  dx < +oo.
— 7Г

Therefore S*( f ) G 'fi(L)* holds and by Lemma 3.3 our desired result follows.
□

C o r o l l a r y  4 . 4 .  When f  G ( e x p X 7 )* for 0 <  7  <  +  00, then the 
Fourier series of f  converges to f  ( e x p  Z 7/(7+1)) _a  e

P r o o f . L e t  0 <  7  <  + 0 0  a n d  p u t

E
k = 2

tk
{k\)l h

for t 0.

From (2.7) (exp L7)* = ф-у(Ь)* holds. By Theorem 4.3 it follows that the 
Fourier series of /  converges to /  ^ 7/(7+1)(Т)*-а.е. Applying (2.7) again, the 
desired result follows. □

§5. Quasi ip(L)*-a .e . convergence

In this section we consider the control function of a.e. convergence of 
functions in the Orlicz space L*(expt7). We obtain the following result.

T h e o r e m  5.1. Let if G Фо he a function defined by (4.1) and let fi G Фо 
be a function defined by (4.2). If f  G L* , then S*(f)  G L

P r o o f . Arguing in the same way as in the proof of Theorem 4.3, the 
desired conclusion follows. □

D e f i n i t i o n  5.2. Let f 0 g Ф. A set Ф(у>0) consists of functions f  G Ф 
such that for any 0 < £ ^  1,

(5.1) f ( t )  = o(fo(et))  as t —► -f 00.

As an example, it is easy to see that if 0 < 7 < 1, f-y(t) := e — 1 and 
fo{t) := e1 — 1 for t 0, then f y G Ф(^>о) for 0 < 7 < 1.
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D e f in i t io n  5.3. Let ipo E Ф. We say that a sequence of functions 
{ f n( x) ; n  ^ 1}, x E [—7Г, 7г] converges to /  quasi ipo(L)“-a,.e., if for any ip E 
E Ф(узо)5 (3.1) has a y>(i/)*-integrable control function 6V.

By Definitions 4.1 and 5.3 we have the following lemma.

Lemma 5.4. Let ipa E Ф. I f  a sequence of functions [ f n(x)\n  ^  l} , x E 
E [—7Г, 7Г] converges to f  ipo(L)*-a.e., then it converges to f  quasi ipo[L)“-a.e.

P r o o f . If a sequence of functions { / п(ж); n ^  1} converges to /  ipo(L)"- 
a .e., then there exists a To(-L)*-integrable control function 6 .

For any ip E Ф(д>о) it is easy to see that ifo(L)* C ip{L)* in virtue of (5.1). 
Therefore 6 E ip{L)* holds. □

The concept of quasi </>o(T)*-a.e. convergence is a generalization of quasi 
uniform convergence (see [5], [12]). The following theorem plays an important 
role in deciding a control function of a.e. convergence of Fourier series of /  E 
E X*(expf7).

T h e o r e m  5.5. //Vo 6 Ф, then 

(5.2) L^0 =  n{ ip(L)*: ip E Ф(то)} •

P r o o f . First we prove th a t L*0 С П ip{L)*. Let /  E L*0. Then there 
exists a positive number £q such that

(5.3) J  Vo ( f o | / ( * ) | ) dx < Too.

For any o ^ l ,  choose a positive number e such that 0 < ea < £o- From
(5.1) there exists a positive constant to such that ip(t) ^  ipo(st) for t p: to- 
Therefore we get

ip(at) ^  ipo(eat) ^  ipo(£ot) lor all t ^  to- 

Thus it follows from (5.3) tha t

7ГJ (p(^a\f(x)\^j dx ^ 2 n<p(at0) + J  To^o| f { x ) \ ) dx < Too.

_7Г |/(ж)|^<0

Therefore /  E y>(L)* holds.
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Next we show that L* D П Let /  £ <p(L)* for all p> £ Ф(у?о).

Suppose for each r) > 0

(5.4)

уеФ(у’о)

7ГJ  <Po(y\f{x)\) dx = -|-oo.

It will be proved that there exists a function p £ Ф(</?о) such that /  ^  р>(Ь)*. 
For each 0 ^  t ^  и ^  -f oo, put

(5.5) F(x;u, t )  :=
I /(z ) | if u >  \f(x)\ 2  t- 
0 if j /(x ) | ^  и or t > I f ( x ) I.

In virtue of (5.4) it follows that for each rj > 0
7Г

(5.6) lim /  <^o(r]F(x; u, i)) dx — -foo.u—oo 7
— 7Г

Choose two sequences of numbers {un; n ^  1} and {<„; n ^  0} satisfying the 
following properties:

(5.7) 0 = to < u\ < t\ < U2 < . . . <  un < tn < ... 1 -foo as n —► -f oo;

(5.8) ~ V o ( u n / n )  = —j— P o { t n / ( n  -f 1)) for n ^  1; 
n n -f 1

(5.9)

(5.10)

—Fo(un/ n) ^  n for n £ 1;

7Г

/  ( п ^ ( Ж; U n , í n _ 1 ) l  dx ^  1 f ° r  «  ^  1-

We show that it is indeed possible to choose such sequences satisfying
(5.6)-(5.10). Put t 0  = 0. From (5.5) and (5.6) we can choose a positive 
number u\ > to such that p>o{^\) ^  1 and

7ГJ  <po( F(x; ui, t0)) dx ^ 1.

Since <po(u\) > 7}<po ( 2^ i) , there exists a positive number t\ > ui such that 
V’o(tii) = \ч>о
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Suppose to, u \ , . . . , un, tn have been chosen. From (5.6) we can choose a 
positive number un+\ such tha t tin+i > tn,

1
■+on + 1 V n + 1

1
Un + 1 ) ^ n + 1

and
7Г

/  T^o ( — — F(x;un+i , t n)) dx 1> 1.
J n + 1 \ n + 1 /

Since

1
■+on -)-1 \ n  +  1-Un+1 I ^ -<PoTl +  *1 у n + 2'Un+1 ) :+on +  2 у n -p 2i^n+l

there exists a positive number tn+\ > un+\ such that

1
■+on + 1 yn +  1

'Un + \
1

'+0
ti +  1 у тт + 2

1
'Лп+l I •

This selection procedure produces a sequence of numbers satisfying the prop­
erties (5.7)-(5.10). We note that

(5.11) un I Too as n —► + oo.

In fact, suppose there exists a positive constant C such tha t 0 < un ^  C < 
< + oo for a' 1 n ^  1. From (5.5) it is clear that

+ o  <1 ^ F ( x ; C , 0 ) ^  ^  + 0 ■

Therefore if follows that
/I

I - + 0 ( - F ( x ; u n, tn_i )  ) dx ^ —  +o ( —C ) -> 0 as n -> +  oo. 
J n \ n  )  п у n

We have arrived at a contradiction to (5.10). Thus (5.11) holds. 
Define a function <p(t) as follows:

(5.12) ¥>(0 : =
7 + 0  ( 7 *) if tn - 1  й  t < Un for n j> 1 ; 
7 + 0  ( 7 «*) if un ^  t < tn for n ^  1 .
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By the construction of y>(t) it is clear that y>(0) =  0 and <p(t) is a monotone 
increasing function. Moreover, in virtue of (5.9) and (5.12) we get <p(un) ^  n 
for n ^  1. Therefore we get ip{t) f +oo as t —► + oo.

It remains to prove that 6 Ф(<уРо) and /  <p(L)*. For any e > 0, a
positive integer n(e) can be chosen such that

(5.13) 0 < 1
n(e) + 1 < £.

For any t ^  £„(ф there exists a positive integer n ^  n(e) such that tn ^  t < 
< i„+i. Then combining (5.12) and (5.13) we can at once obtain that

^  n + l ^ 0  ( n + i )  ^  „ + 1  ‘Fo ( n ( i - )  +  l  )  ^

<Po(et) = <fo (et) = y?o (st)

< 5±L^o(^) 1
<Po(£t) n + 1

Consequently, (p(t) = o(tpo(£t)) as t —► + cX) holds.
We show that /  ip(L)*. Put

En = ja; G [-7Г,7Г HVII ^  n̂+1^

Then it follows from (5.5) and (5.10) that

7Г

/  ^ ( l  / ( ^ ) |)
— 7Г

OO -

dx =  E  En=0 17 bn

oo

= £ /n=0_C
<p{F(x-,tn+i , t

oo
n))

n=0

7Г

/  V>(*X

°°̂  r l / l  \  °°̂
= Z  /  Г Х Т ^о  ( ^ T T ^ V i d n )  dx ^  £ l  = Too.

n=0__ V "Г '  n - 0

The proof is complete. □
It was proved in [12] that if (3.1) holds and f*(x)  = supj | / „ ( x ) | : n ^

^  1 j  6 <p(L)*, then there exists a </j(T)*-integrable control function 6 . Com­
bining this with Theorem 5.5, the following theorem holds.
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T h e o r e m  5.6. Let <po G Ф. //(3 .1 ) holds and f*  G £*0, then /„ con­
verges to f  quasi ipo(L)*-a.e.

C o r o l l a r y  5.7. Suppose f  G L*(exp t7) for 7 > 0. Then S*(f)  G 
G L* (exp c/C + B ) Consequently, Sn( f ; x ) converges to f ( x )  quasi 
(exp Т^/ВН-В) -a.e.

P r o o f . Put
00 t k

:= E 7TTTI77 for 1 = °-
k=2 \ K->

In virtue of (2.7), we get = L*(e\p i7). Therefore, by Theorem 5.1 it 
follows that if /  G X*(expC), then S*( f ) G L^  + = F*(exp p /b+ B ) . By
Theorem 5.6 our desired conclusion holds. □

C o r o l l a r y  5.8. If f  G BMO(T), then S*(f)  e L* (exp t1/2) . Conse­
quently, Sn( f ; x ) converges to f ( x )  quasi (exp L 1/2)*-a.e.

P r o o f . John and Nirenberg [2] proved that if /  G BMO(T) and /  is 
any interval in T, then there are positive constants Ci and C2 independent 
of /  and I  such that

(5.14) m easjx G / :  | f ( x )  -  f i \  > t j  ^  C\\I\ exp( - C 2i / | | / | | J

for all t > 0, where / /  = |jf / 7 f ( x ) d x  and | | / | | ,  = sup { щ / ; | f ( x )  -  f i \  d x j.

From (5.14) it is easy to see that if /  G BMO(T) then /  G L*(expt). By 
Corollary 5.7 the desired result follows. □

§6. E xam p le

In the preceding section we proved that if /  G L*(expC)  for 7 > 0, then 
S*( f ) G L* (exp T'/C'+B) . A problem arises whether we can find a control 
function of (3.2) in L* (exp fi/C+B) , whenever /  G F*(exp C).  In this section 
a negative example will be given.

T h e o r e m  6.1. For each 7 > 0 there exists a function f  G L*(expC)  
such that for some positive integers N\ < N 2 < . ■. < < . . .  we get

(6.1) SNk(f-,x) ^  C(logjV*)(7+1)/7 for all О ^ х ^ т г /З Nk,

where C > 0 is a constant depending only on 7 > 0.
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T heorem 6 .2. Let 7  >  0. Then there exists a function f  £ L ' i e x p P)  
such that S*(f)  0 (exp Z/7^ 7+1 )̂ and

7Г

/  <T4/(-Y+i)(aoj s n{f \x)  -  / ( x ) |)  dx -  +00

for sufficiently large «о > 0, where y>7/(7+1)(f) = exp(i7^ 7+1 )̂ -  р /Ь * 1) _  1.

By Lemma 3.3 and Theorem 6.2 we get the following result.

C o r o l l a r y  6.3. For any 7 > 0, there exists a function f  £ Lm(expt~‘) 
such that the a.e. convergence of (3.2) has no L*(exp р /С + Р ) -integrable 
control function.

P r o o f  o f  T h e o r e m  6.1. Let {nk;k ^  1} be an increasing sequence of 
positive integers which will be defined later. Set

(6.2) No = 1, Nk = ЩП2 ■ ■ -Пк for к ^  1,

and define the closed intervals Д- and Jk as follows:

h  = [Tr/Nk,Tr/Nk-i], Jk = [2Tr/Nk,Tr/Nk-i -  ж/Nk] for к ^  1. 

If we choose the sequence {Nk; к ^  1} as 

(6.3) 3Nk-! < Nk for к Z 1,

then we get 2 ж/ Nk < ж/N k- \  — ж/ N k and so Jk С Д-. 
Now we construct a function f (x )  £ L*(exp i7). Put

(6.4) /(* )  ==
' ck sin N kx if x £ Jk for к ^  1: 

0  i f  x £ [ 0 , 7г] \  U  Jk,
k = \

where {c^; к ^  1} is an increasing sequence of positive numbers which will be 
defined later. Put f { —x) = f ( x )  for 0 < x ^  ж and extend it to a function 
with period 2 ж.

We consider the Fourier series of f (x).  As is known, we have

Sn{f;x) 1
7Г

sin nt ,
f ( x  + t )—-— dt + o( 1)

—  7Г

as n + 00,
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where o(l) is uniformly convergent. Therefore it follows that

SNk{f;x)  = ~  J  f (x  + t ) S-n~ - k- dx + ^  j  f ( x -  t d t  + o(l) :=
о о

:= s t i )k(f - ,x)  + S%)k( f ; x )  + o( 1).

In order to evaluate 5д^(/;ж ), we divide it into three terms:

Tr/iV*

■ ф /;* )  = ~ J  /(*  + o sin^  dt+
0

n / N k _ !  7Г

1 f  ,sh\ N kt , 1 Г .sh \N k .
A— /  /(ж + t ) ----------dt A—  / f(x  t) - dt

7Г J t 7Г J t
I t / N k * / N k- 1

:= Г ,(1)(ж) + ^ 2)(х) + т (3)(ж).

If 0 ^  x < тг/iVfc and к / N k - i  ^  ^  7r, then n/Nk- i  + тг/ЛТ + тг ^
^  7Г/Â i + 7Г. Therefore it follows from (6.4) that

7Г

(6.5) |T<3)( x ) | ^  J  \ f ( x  + t ) \ ± d t i ^ - \ o g N k_,.

For |T Í1)(x)| it is easy to see that if 0 ^  x < n / N k, then it follows that

n / N k

= ~ f  | Д Х + 0 | dt й  
0

2 i r / N k n / N k

= ~~ j  | / ( S) | d s = “ ~  j  | / ( S) | CÍ5 = 
0 0
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Thus we get

(6.6) I Т ^(ж )| ^  N k ■ —-— for 0 ^  x < 7r/iVfc and к ^  1.
j=k+1 J -7 “ 1

Í2)It remains to estimate Т/ (x). Suppose 0 ^  x ^  zr/3 Nk and put a k = 
= 2n / Nk and ßk = n /N k_-y — n / N k. Then it follows from (6.4) that

rp(2)
ß k ~ x

[ . -T . .s in N kt/ ck s m N k(x + t ) --------- dt =
a k - x

0 k~x
ck sin N kx f  cos Nkt ■ sin N kt

/ t
dt-\-

Qk-X

+
0  k - X

ck cos N kx f  (sin N kt)
7Г / dt = cku[1\ x )  + ckUyk4 {x).(2),

ak-x

According to the second mean value theorem, taking into account that 
1/ ( 21) is positive and decreasing monotonically in the range of integration, 
we get

(*) =
sin N^x

7Г /
ak-x

sin 2Nkt 
2(ak -  x) ’

where £(x) £ [ak — x , ßk — х]. Since 0 5s x ^  7r/3 N k < 7r/Nk and a k = 
= 2^ / N k, it follows that

(6.7) ____ 1_______ L . 2 < _ L
2ж(ак — x) 2 N k 2tt2 for 0 x ^  7г/3N k.

We estimate U ^ \ x ) .  Since 0 Ú x ^  x /3Nk, we get

c !2,(x) г

ß k - x ß k - x ß k - x

f (sinjvil) i , —  [  - d t -
1 [ cos 2N kt

J t 4 ж J t 4тг J t
o t k - x o t k - x a k - x
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Now we can assume that the sequence {nk\k  ^  1} satisfies the following 
properties:

(6 .8) 4 < n\ < n2 < .. .  < n k < . . . ,  that is, 4iVfc_i < Nk for к 2. 1.

From (6.8) we find а к -  x й2ж/ N k < n /Nk_i — 2тг/ N k, therefore we have

ßk~x Tr/Nk_1-2ir/Nk

—  /  - d t >  — /47Г J t 47Г J t
dt

a k - x 2n/Nk

= ~  l°g ((Nk/ 2 N k - i )  -  l) = log(n*/2 -  1) £

^  ^ lo g ( n fc/4 ) = - ^ \ og ( Nk/4Nk-i).

We choose the sequence {nk \ к ^  1} such that 

(6.9) 16N l_ x < Nk for k ^ l .

Then we get

ß k - X

\ж( 6 . 10)

Pk —я
j -  Í  j  dt i> log N k for к 2 1. 4т J t 8tt

a k - x

By the second mean value theorem, we get

( 6 . 11)

ßk-x
1_ f  cos 2N kt ^  < 1 1 < 1
7Г J  t ~ 4n(ak — x) Nk -  4t 2

a k - x

From (6.10) and (6.11) we get

(6 .12) и к2\ х )  ^  logN/c -  ^ 2  for к 2  1.

From (6.7) and (6.12) it follows that if 0 ^  x  ^  7r /3Nk, then

(6.13) T (k2\ x ) log Nk - for к > 1.
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Thus it follows from (6.5), (6.6) and (6.13) that if 0 ^  x ^  7r /3Nk, then we 
get

+ 0
sin N kt 

t
d t 2 l f )( x ) - \ T l 1\ x ) \ - \ T (k3\ x )I ^

( 1 1 о \  00
—  lo g A j  -  - l o g  -  J ^ i )  -  A t • Y ,  ^ 7 7  fOT

7 J = k + l 3

oo
Now we consider the sequence Nk ■ дг2- for A: ^  1. Put

j = k +1  ;_1

(6.14) ck = ( l o g f o r  к 2 1.

Then from (6.2) we get

N k ■ E
j=k+l

Nk -
OO

E
j = k + 1

(log Nj—i )1̂ 'y 
Nj-i

= (log Nk)l h
(log N k+S)lh

^k+l ̂ /c-f-2 • • • /̂c+s

Since A:2/7 ^  2fc < n t for sufficiently large к in virtue of (6.9), it is easy to 
see that

(log Â ) 1/7 < {(k + lognk+s) l h
Hk+s Tlk+s

=  ílssü íyE l _  о *,
y/^k+s

< y/Wfc+J(log nk + sf h
^ k+ s

S —* +  OC.

Therefore there exists a positive constant M (7 ) depending only on 7 > 0 
such that

N t - y
j = k + 1

( lQ g ^ - i)1/7
N j- 1

<

^ ( lo g 7Vfc)1/7 + M(7 ) h  + £
1 <

_ 2 n k + l  ■ ■ • * 4 + s - l
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^  (log N k)1̂  + M (7 ) 1 1 + £  I  = (log Nk)1̂  + 2M(7). 

Consequently we get the following inequality:

(6.15) N k . f ;  -(1° g ^ ----1-)— - ^  2(logNk)1̂
j=k+ 1 J 1

for sufficiently large k.
Now we choose the sequence { Nk]k ^  1} such that

(6.16) N t6. ,  < Nk < N i l ,  for к 1 1.

Then it is clear from (6.14) that

(6.17) log N £_! < log N k and (\ogNk)l h  < I 7 l h c k .
lb

When 0 ^  x ^  7r /3Nk, from (6.15) and (6.17) the following inequality follows:

7Г

(6.18) -  [ f(x + t)^p±dt  ̂ Cx(7)(logiVfc)(1+^
7Г 7 t

0

for sufficiently large к, where > 0 is a constant depending only on
7  > 0 .

(2)In order to estimate S yN ( f ; x)  we divide it into four terms: 

i r /Nk 2ir/Nk
„(2) , ,  4 1 f r ,  sin N kt U i l [ sin Nkt
S N k ( f ' i x ) = ~  /  f ( X -  0 ---- 1---- rff + -  /  / ( X‘ - C ---- 1----

0 TT/Nfc

n /N k - 1  7Г
1 f  . sin Nkt , 1 f  . s'm Nkt ,

+  -  /  f ( x - t ) — -— d t  +  -  /  / ( ж - t ) — -— df.7Г J  Z 7Z J  t
2ix/Nk * / N k- i

Arguing in the same way, we find that if 0 Í; a: ^  ir/Nk,

(6.19) 5д^(/; ж) ^  Ci^Xlog./Vfc)^14’7^ 7 for sufficiently large к, 

where Сг(7) > 0 is a constant depending only on 7 > 0.
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If we choose the sequence {nk'k ^  1} satisfying the conditions (6.3),
(6.8), (6.9) and (6.16), then from (6.18) and (6.19) we get (6.1).

Finally, it will be proved that the function /  constructed above is in the 
Orlicz space T*(expi7). Put </?(<) = exp(f7) — V -  1 and e0 = (1/2)г^ .  It 
follows from (6.14) that

7Г 7ГJ  ^ ( e o |/ ( z ) |)  dx = 2 J (р(е0 \ / (х) \^  dx =
— 7Г 0

* /Nk_!-ir/Nk

/  V>(eo|/(*)|) dx <i
Jk=l n/Nk

^ 2 5^v>(e0c * ) - - ^ — ^ 2 ^ e x p ( ( £ 0CfcD •
k=i k~ l k= l fc_1

OO OO ✓ 1
= 2 £  exp(c2/2) • = 2 5 ^  exp f -  log Nk_

k= l /;_1 *=i 4

= 2 E <
OO J

2* £ ^ T <  +°°-
k= 1

Therefore /  G L*(exp i7).
P r o o f  o f  T h e o r e m  6.2. Let /  be a function constructed in the proof 

of Theorem 6.1. We have to prove that S*(f)  0 (exp Т7^ 7+1 )̂ *. Suppose 
S*(/) G (exp Xt/Ph-i )) *. Put

(6.20) \ k :=C( \ogNkf +̂ h  for к 2 1,

where C  > 0 is a constant given in the inequality (6.1). Since S * ( f ) G 
G (exp Xt/O+ i )) by assumption, for any positive number a we get the 
following inequality:

(6.21) meas{x G T :S*(f)(x)  ^  A*.} 5Í
7Г

^  exp( —(aA jt)7^ 7 + 1 ^) J  e x p ( a 5 " * ( / ) ( x ) )  7^ 7+1* dx for к ^  1.

On the other hand, by Theorem 6.1 it is easy to see that

(6.22) meas{ x G T :  5,* (/)(t ) ^  A^} ^  meas{x G T : 5 ; v t ( / ; x )  ^  A*.} ^
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> ■■■ Ж- - for к > 1. 
-  3 N k

From (6.21) and (6.22) we find that

7Г
(6.23) -щ-  ■ exp((aXk)l /b+1) ) й J e x p ( a S m{f)(x))' l/('l+1]d x < + o o

— IT

for к ^  1. In virtue of (6.20), Nk = exp( (Xk/C)~1̂ ' r+1̂ ) . Therefore it follows 
from (6.23) that

(6.24) ^ е х р ( ( а ^ +1) - ( 1 /С 'Г /(7+1))ЛУ(л,+1)) ^

7Г

^  Í  exp( aS*(f ) (x))  dx < +oc for k ^ . 1 .
—  7Г

If we choose a  such that a  > 1/C , then the left side of the inequality (6.24) 
diverges to infinity because of the fact lim A/; = + oc. We arrive at a

fc—> oo

contradiction. We get S*(f)  ^  (exp £'y/('y+1)) .
Finally, we show that if we choose a positive number q0 such that

(6.25) i ( a 0С /2Г /(^+1) > 2,

where C > 0 is a constant given in (6.1), then we get

7Г

/  ¥Ч/Ы-1) ( а о |SNk( f ; x )  -  / (x ) | )  dx = +oc.

When тг/Nk+i  ^  x ^  тг/Nk,  it follows from (6.4) that

I Snk(f-,x) -  f ( x )I ^ C(\ogNk)(1+̂ h  -  сш  =

= C(log7Vfc)(1+^ ^  -  (logN k)l h  ^  | ( l o g N k){1+-')h
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for sufficiently large k. Therefore from (6.25) we get

V-y/h+i)(®o\SNk( f ; x )  -  / ( * ) | )  vV ( t+ i ) ( ^ ( l o g i V * ) {1+^ )  ^

- exp{K ^(iog7Vfc)(1+")/7)7/(7+,)}=
f 1 / o o C y /(7+1) 'I= exp

2 V 2 ) \ogNk } ^  exp(2logNk) = Nk .

Thus we get

7ГJ  ¥>7/(7+1) ( а 0|5яЛ /;а;) -  Дж)| )  dx ^

n/3Nk

= J  ^ / h + i ) { ao\SNk{f;x)  -  / ( z ) |)  dx ;>

= ( ж  -  л г ^ г )  = Nk ( I  -  i £ l )  ^  + “  “  ^ + 0 0 '

Our desired result follows. □
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ON A D IO P H A N T IN E  PRO BLEM  
C O N C E R N IN G  STIRLING  N U M B E R S

Á. PIN T É R  (Debrecen)1 *

Denote by S£ the Stirling number of second kind with parameters (n, к ), 
that is the number of partitions of the set { l ,2, . . . , n}  into к non-empty 
subsets. The Stirling numbers play an important röle in mathematics, espe­
cially in combinatorics, number theory and a little bit surprisingly in alge­
braic topology, too. For a survey on Stirling numbers and their applications 
we refer to [3].

The arithmetical structure of Stirling numbers have been studied by 
several authors (see [2], [5] and [10]). We proved in [1] that for fixed positive 
integers u, v, the equation

SZ-u = vy*

in integers x , y , z  with x > u, |j/| > 1, 2 ^  2 has only finitely many solutions 
and gave an effective upper bound for these solutions. The proof of this 
result is based ultimately on Baker’s method.

Let b > a > 1 be rational integers. In this note we consider the equation

(1) in integers x ,y  with x > a, у > b.

Using again the theory of linear forms in logarithms we obtain 

T h e o r e m . All the solutions of equation (1 )  satisfy

max (x,y) < C ■ b ■ (log b)3 ■ log log a,

where C is an effectively computable absolute constant.

1 R esearch su p p o rted  in p a r t  by G ran t 4055 from  the  H u ngarian  National F o undation
fo r Scientific R esearch  and  by K ereskedelm i és H itel B ank R t. U niversitas F o u ndation .

0 2 3 6 -5 2 9 4 /9 4 /$ 4.00 ©  1994 A kadém iai K iadó, B udapest



3 6 2 A. P IN T E R

P re lim in a r ies

To the proof of the Theorem we need two auxiliary results. 
Lemma 1. Let n, к be rational integers with 1 ^  к < n. Then

( 2)

and

(3)

&  _ ( k - l ) n < n < &  
k\ (к -  1)! = k = k!

\ ( k 2 + к + 2 )kn~k~l - l ^ S nk ^ \  Q  kn~k

P r o o f . For (2), see Satz 2.1 in [12] and the inequalities (3) are due to 
Dobson and Rennie [4].

Let a \ , ü 2 , . ■ ■ ,a r be rational integers with аг ^  2. The next lemma is a 
special case of a deep result of [6]. For a more explicit version, see the recent 
paper of Waldschmidt [11].

L emma 2. Let b \ , . . .  ,br be rational integers such that

abf - - - a bf  ф 1,

and put В  = max] 2, |&i|,. . . ,  I&2I} • Then

I a j1 • • • аь/  -  l |  > ex p (-c i  • logai • • • logar • lo g ü ) ,  

where C\ is an effectively computable positive number depending only on r.

P r o o f  o f  th e  T h eo rem

In the sequel C2, C3 will denote effectively computable positive const 
Let (x ,y ) be an arbitrary but fixed solution to (1). By (3) we obtain ax 
^  2b~l by~b and by~b ^  2a~1ax~a. These inequalities imply

(4) x ^  2(log6)?/ and у й x + b, respectively.

It is known (cf. [8] or [9]), that

antc

( 5 ) Q i *  -  D ” + Q < *  -  2)” - . . . + ( - u v ) .
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Set

S(k, n) = к -  l \ n 4*)’+...+<-.>*-’(t *,)(£
We may assume that min(x,?/) > 261og6, for otherwise our Theorem is 
proved by (4). Using (1), (2), (5) and the assumption x > 26lógó we get

( 6 )
ax6!
a\by

-  1
max( S(a, ж), 5(6, j/))
---------------------------  S 2 max( b(a, x), b(b, y)) S1 — S(a,x)

f I л \  min (x.y) . .

< 2 6 1 ^ 1  < 2 ^ = 4 ^ .

One can see that ф 1. Indeed, suppose the contrary

(7) b\ax = a!6y

for some x > a and у > 6 > 2. Then (7) gives that 6 - 1  divides by 1, which 
is a contradiction. Since min (x,y)  > 26log6, we deduce from (4) that

( 8) max(x,y) ^  2 log6min (x, y),

and Lemma 2 yields

ax6!
bya\

-  1 > exp  ̂ -C2 ■ log ( - j  ) ■ log a • lógó • log max (x, y)

Comparing now this inequality with (6) we infer that

min (z, y) < c3 • 6 • log ( — ) • log a ■ (log b )\

and (8) completes the proof of the Theorem.
Acknowledgem ents. The author is grateful to Professors Brindza and 

Györy and the referee for their valuable remarks.
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SIM ULTANEO US E X T EN SIO N S  
OF C A U C H Y  STR U C T U R E S
A. CSÁSZÁR (Budapest),* member of the Academy

Acta Math. Hungar.
6 5  ( 4 )  ( 1 9 9 4 ) ,  3 6 5 - 3 7 7 .

0 . In tro d u c tio n . The papers [3] deal, among others, with the following 
problem: in a closure space (X, c), let a (possibly empty) family of subsets 
X{ (i E I)  be given, and, for each : £ f ,  a merotopy M, on X,; look for an 
extension of {c;M ,}, i.e. for a merotopy M  on X  such that M induces the 
closure c and its restriction to X, coincides with M,. The author considered 
in [2] the same problem in the case when M, and M are filter merotopies 
or (equivalently) Si and S are screens on X{ and X , respectively (for the 
terminology, see Chapter 1 below). The present paper intends to investigate 
from this point of view a still more special kind of structures, namely Cauchy 
structures; in fact, our results will concern two classes of Cauchy structures 
only and questions related with Cauchy structures in general remain open 
until future publications.

1. P re lim in aries . For a set X , let us denote by F ilX  the collection 
of all filters in X  (including the improper filter expX). For a C expX,  
denote by filx a =  fila the smallest filter containing a, by secA a = sec a the 
collection of all subsets of X  that meet each element of a. In particular, we 
write A — Шл'-{А} for А С X  and x = A for x E X , A = {a;}.

If a  C exp X  and Xo С X ,  we denote by a|X 0 the collection of all 
intersections А П Xo where A E a. If s is a filter in X  then s|Xo is a filter 
in Xo- Conversely, if so E FilXo, then Sq = filx s0 is the finest filter s in X  
such that s|X 0 =  s0.

For a, b C expX,  let us introduce the notation aA b to denote the 
situation that each A E a meets each В E b; we write аДЬ in the opposite 
case.

A screen on X  (see [2]) is a set 0 ф S C FilX  such that

(1.1) x E X  implies that there is s £ S such that x E П s,

(1.2) s £ S and s C s' E Fi lX imply s' E S.

•R esearch  su p p o rte d  by H ungarian  N ational F oundation  for Scientific R esearch, g ran t 
no . 2114.
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If 0 ф S С Fii A fulfils (1.1), we say that S is a screen base on A ; it generates 
the screen S' composed of all filters in X  finer than some element of S. We 
also say that S is a screen base for the screen S'.

If S is a screen on X  and A'o С X  then S|Ao = { s|Ao: s £ S} is a screen 
on X q.

The screen S on X  induces a closure (see [3], 0.1) c = c(S) on X  defined 
by x £ c ( A ) iff there is s £ S such that {a:}, A £ secs. Clearly if s 6 S 
and x £ П s then s —> x for c(S). Observe that the free filters in S do not 
have any influence on c(S). If Ao С X  and S is a screen on X , we have 
c (S |A 0) = c(S)|A"0.

A screen S on X  is said to be Riesz iff v c(a:) £ S for x £ X , where v c(z) 
denotes the c-neighbourhood filter of x for the closure c = c(S); S is said 
to be Lodato iff v c(s) £ S for each s £ S where c = c(S) again and, for an 
arbitrary s £ Fii X ,  v c(s) is composed of all sets V  С X  such that there is 
S  £ s satisfying V  £ v c(a:) for a; £ 5. If c is a topology then vc(s) is the filter 
generated by the filter base composed of the c-open elements of s. If S is a 
Lodato screen then c(S) is a topology; if c is a topology and c = c(S) then 
S is Lodato iff it is generated by a screen base composed of c-open filters.

If S is a Riesz or Lodato screen on X  then so is S|A'o on Xo С X .
A Cauchy structure S on X  (see e.g. [4], p. 12) is a screen satisfying

(1.3) s b s2 € S, SjAs2 imply s j f l s ^ S .

We shall call Cauchy screen or briefly C-screen on A a Cauchy structure on 
X  in the above sense. A CR-screen or CL-screen is a C-screen that is Riesz 
or Lodato, respectively.

If a screen base S fulfils (1.3) then the screen generated by S is a C-screen 
since Si C s'j, s2 C Sj, s'j A s '2 imply Si As2. This is the case in particular when 
s iA s2 for s i , s 2 £ S, si ф s2.

If S is a C-screen on X  and Xo С X  then S|Ao is a C-screen on Xo 
because s i |A oA s2|A o implies s iA s2, further si Пs2| Ao = (si|A 0) П (s 2|Ao) •

Let us agree in saying that (so,. . . ,  sn) is a Cauchy chain on A iff s; £ 
£ FilA  for i = 0 , . . .  , n and s,_iA si for i =  1, . . .  ,n. An easy induction 
based on the observation

{
n m

for s,-,tj £ FilA', П з‘л П  t j iff there are 
о о

i and j  such that s;A tj

3 6 6  Á. CSÁSZÁR

П
shows that P |s t £ S whenever S is a C-screen and (so, . . . , s n) is a Cauchy 

о
chain such that s; £ S for i =  0 , . . . ,  n.

For screens Sx and S2 on A , Si is said to be coarser than S2, S2 finer 
than S i, iff Si Э S2. If Si is coarser than S2 then c(Si) is coarser than c(S2).
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For a screen S on X, the finest C-screen Sc coarser than S is generated by
П

the screen base S' composed of all intersections ("Is,- where (so,. . .  , s n ) is a
о

Cauchy chain such that s,- £ S (г = 0 , . . .  ,n); S' fulfils (1.3) in consequence
П

of (1.4). If В is a screen base for S, it suffices to take intersections f") s,- such
о

that the elements of the Cauchy chain (so,. . . ,  s„) belong to B.
We are now able to formulate more precisely the purpose of the present 

paper. Let (X ,c) be a closure space, X, С X  for г E /  ( /  = 0 can happen), 
and S, a given screen on X,. We look for CR- or CL-extensions of {c;S,}, 
i.e. for a CR-screen or CL-screen S on X  such that

(1.5) c(S) = c, SIX,- = S; for i E I.

In Sections 2 and 3, we always assume the following standard hypotheses: 
(X, c) is a closure space, X,- С X, St- is a screen on X,- for i £ I, and extension 
will mean a screen S on X  fulfilling (1.5). We write c, = c(S,) and X tJ = 
=  X; П Xj  for i , j  E I-

2. C R -ex tensions. A simple necessary condition can very easily be 
obtained:

Lemma 2.1. I fS  is a CR-screen then c = c(S) fulfils the condition

(2.1.1) for x , y e X ,  vc(x) ф v c(y) implies v c(x)Xvc(i/).

P r o o f . If vc(x)Avc(y) then s =  v c( i ) n v c(j)  E S since the CR-screen 
S contains both vc(x) and vc(y). Now s E S, x E П s imply s —► x for c and 
v c(x) C s. Similarly vc(y) C s so that s = vc(x) = v c(y). □

For topological spaces, condition (2.1.1) is often called axiom (S 2 ) (see 
e.g. [1], p. 95). Therefore we shall say that the closure c (or the closure 
space (X, c)) is S2 iff (2.1.1) holds. This is the case of course if c is Hausdorff 
(or Tf), i.e. if x ф у implies vc(x)Avc(?/). According to [5], Definition 3.1, 
the C-screen S is said to be Hausdorff iff c(S) is T\ (i.e. separated).

It is easy to prove the converse of 2.1 in the following form:

Lemma 2.2. If c is an S2 closure then В = {v c(x):x  € X} is a screen 
base for a CR -screen S such that c — c(S).

P r o o f . By (S2) the screen generated by В is Cauchy. If x E c(A), 
v c(x) E S satisfies x E П v c(x), A E sec v c(x). If s E S, x E П s, A E secs, 
then s D v c(y) for some у E X; by x E П v c(y) and (S2), vc(j/) =  v c(x), 
hence A E sec v c(x) and x  E c(A). Thus c = c(S) and S is Riesz. □

Observe th a t a C-screen need not be a CR-screen although it induces a 
T2 closure:
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Example  2.3. In a set X , let us say th a t s E FibY is an elementary
П

filter if s = П u » where u; is an ultrafilter for i = 0, . . . , n .  Then by (1.4) 
о

uA s for an ultrafilter u implies u = u, for some i; hence s is an elementary 
filter iff there are finitely many ultrafilters only finer than s. Therefore a 
filter finer than  an elementary filter is elementary itself.

Let S be a  screen on X  and denote by Se the collection of exp X  and 
of all elementary filters belonging to S. Then Se is a screen since x is an 
elementary filter for x E X .  If S is a C-screen then the same holds for Se. 
We have c(Se) =  c(S) because Se C S implies that c(Se) is finer than c(S),
and if s G S, x  E П s, A E secs, then x D s, ( s |A )A Э s, so tha t by taking
an ultrafilter u  finer than (s|i4) X, we obtain an elementary filter s' = x П u 
finer than s and satisfying {x}, A E secs'. Hence c(S) is finer than c(Se).

Consider now a non-discrete topology c that is first countable and 
let S be a C-screen such th a t c = c(S) (by 2.2, S may be chosen to be a 
CR-screen). Then c = c(Se) and Se is a C-screen; however, Se cannot contain 
v c(x) for a point x that is the limit of a sequence (xn) such tha t x ф xn ф x m 
for n ф m. In fact, there are infinitely many subsequences of (xn) each two of 
which correspond to disjoint sets of indices, and by choosing ultrafilters finer 
than the corresponding Fréchet filters, it turns out that there are infinitely 
many ultrafilters finer than v c(x), and the la tter cannot belong to Se. □

Lemma 2 .4  (cf. [2], (2.7.1)). If S is a Riesz extension then vc(x)|Xt- E 
E S, for x E X , i E / . □

Lemma 2.5. If S is an extension and s :- E S,- then s^ E S.

P r o o f . There is s E S such that s|2f,- = st- and s f  is finer than s. □
Corollary  2.6. If S is a Cauchy extension and ( to , . . . ,  t„ )  is a Cauchy 

chain such that tj = s* , sj E Stj) ij E I, then

(2.6.1) ^ Q t ^ p O t E S f e  ( k e i ) .  □

Corollary  2.7. I f  S is a CR-extension, s; E S,, and x E X  is a cluster 
point for c o f s f , then s f  —> x with respect to c.

P r o o f . v c(x)AsY by hypothesis and both filters belong to S, hence 
s = vc(x) П E S and x E П s, so s —► x for c, and s^ is finer than s. □ 

Now we can prove:
T heorem  2.8. There is a CR-extension of {c;S,} iff the following con­

ditions hold:
(a) c is an S2 closure,
(b) v c(x)|X,- E S; for x E X , i E I,

Á. CSÁSZÁR
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(c) if S{ £ S, and x £ X  is a cluster point for c of s f  then s f  —> x for c,
(d) if ( to , . . . , t n) is a Cauchy chain such that t j  = s j , sj £ S,j, ij £ I,

then ( f l t j  IXk £ Sfc for к £ / .

/ /  these conditions are fulfilled then the filters vc(x) (a- £ X ) and the 
filters

(2.8.1) О  ( t j  as in (d))
о

constitute a screen base for the finest CR-extension S^R = S^.R(c;Sj). 

P r o o f . Necessity: 2.1, 2.4, 2.7, 2.6.
Sufficiency: The collection В of the neighbourhood filters v c(a) and the 

filters (2.8.1) is obviously a screen base. It generates a Cauchy screen because 
s', s" £ B, s'As" imply s' П s" £ B. This is a consequence of (a) if both s' 
and s" are neighbourhood filters, and of (d) if both have the form (2.8.1) (cf.

(1.4)). If s ' = vc(a), s" = f l tj as in (2.8.1), then by (1.4) one of the filters
о

tj  has x for cluster point (with respect to c) and then, by (c), t j  —► x. Now 
t j_ jД tj  (except for j  — 0) and t jA t j+i (except for j  = n ) imply, again by 
(c), tj_ i —* x, t j +i —► x. After a finite number of steps we obtain t j  —> x for 
each j , hence s" —► x , and s' П s" = s'.

By 2.2 c(S) is coarser than c for the screen S generated by B. If s £ S, 
{a;}, A £ secs, then x £ c(A) (and c(S) is finer than c). In fact, we may 
suppose that s £ B, and the case s = vc(ai) is settled by 2.2. If s is of the 
form (2.8.1) then {x} £ sectj = s j  for a j , hence by (c) s j  —> x for c, and 
a successive application of (c) as above furnishes s —► x, x £ c(A).

Therefore S is a Riesz screen, (b) and (d) show that s|X ; £ S; (i £ 
£ I)  if s £ B, and then for s £ S, too. On the other hand, s, £ Si implies 
s f  £ В C S and s^’ |А г = s,.

By this, S = SqR is a CR-extension. If S' is another CR-extension then 
В C S' by 2.5, so that S C S'. □

Observe that 2.8 (c) and (d) hold as soon as they are fulfilled for filters 
Si or sj taken from screen bases generating St- or Sj, respectively.

Further necessary conditions can be easily formulated for the existence 
of a CR-extension:

Lemma 2.9. I f  S is a CR-extension then
(a) c; = c|Ai for i £ I ,
(b) S t\Xij = Sf iXi j  for i , j  £ / ,
(c) S, is a CR-screen for i £ I .

P r o o f , (a) and (b) hold for every extension ([2], (1.19) and (1.20)). □
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We show that each of the conditions 2.8 (a) to (d) is independent of the 
others even if 2.9 (a) to (c) hold. For (a), this is shown by the case I  = 0.

E xample  2.10. Let x = R, c be the Euclidean topology, Xo = (0,+oo), 
Co = c|Xo, and let So be generated by the screen base composed of all co- 
neighbourhood filters. By 2.2 S0 is a CR-screen and c(So) = Co; 2.9 (b) is 
obvious since |/ | = 1. 2.8 (c) holds because v Co(x)A has the only c-cluster 
point x G X q. 2-8 (d) is always fulfilled if /  = {0} and Sq is a C-screen by

(2.10.1) s f  As f iff s ,A s j for S{,Sj G FilXi

n (  n \ X
(2.10.2) n - f = m s .  for s> e FilX0.

0 Vo /

However, Vc(0)|Xo ^ So- □
E xample  2.11. Consider X , c, Xo, со as in 2.10, and let So be generated 

by the filters v Co (.t ) (x G X o) and by

so = ( v c(0)pY0) П fUA'0 r

where r  = { (a, +oo): a G Xo} . We have со = c(So) as above because so is a 
free filter. Hence S0 is a Riesz screen again and 2.9 (b) holds for the same 
reason as in 2.10. So is Cauchy since so does not have any co-cluster point. 
Now

v c(x)|Xo = vco(x) G S0 for x G X0, 

v c(x)|Xo = exp X 0 G S0 for x < 0, 

v c(0)|X o D s0,

so that 2.8 (b) holds. However, Sq has the c-cluster point 0 without con­
verging to 0. □

2
E xample  2.12. Let Yt -  R  x {i} for i — 0,1,2, X  = (JF;, c the

о
Euclidean topology of R 2 restricted to X , X, = X -  У;, c,- =  c|X,, r, = 
= { (a, +oo) X {г}: a G R} . Let S,- be generated by the screen base composed 
of the filters у с(х)|Х"г- (x G X,) and, for i = 0, of

soi = fiU'c r i and sq2 = Ша'о Г2,

for i = 1 of
Si =  (fÜA'i r 0 ) n (fiiА', Г2) ,
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for i = 2 of
S2 = Го) П (fÜA'a ri)  •

Now c, = c(Sj) since sói, S02, si, S2 are free filters, hence the screens 
S; are Riesz. They are_Cauchy because soi, s02, Si, S2 do not have any 
c-cluster points and s0i A s02. For the same reason, 2.8 (c) holds, and 2.8 (b) 
is obviously valid. 2.9 (b) follows from the formulae

soi|Aoi = expA'oi = expA'i|Xoi, 

soi|-^02 =  fily, ri = S2IA02 , 

S02|-Toi =  filya Г2 = Sj IA 01, 

so2Í^fo2 = exp A02 = expA'2|Ao2> 

silA '12 =  fily0 го = s2|AT12

and the obvious ones concerning the neighbourhood filters.
However, (sA",sA) is a Cauchy chain and

(s f  П sA) |X0 = (filx0r i)  П (filx0r 2) £ S0. □

From a certain point of view, Example 2.12 is the best one; in fact, we 
can show:

j
Lemma 2.13. I f  |/ |  ^  2, each S; is a Cauchy sci'een, and 2.9 (b) is 

fulfilled, then 2.8 (d) holds.
P r o o f . This is obvious for /  = 0 and we have shown it in 2.10 for |/ |  — 1. 

Let I — {0,1} and consider a Cauchy chain ( t o , . . . , t n) such that t j  = s* , 
sj G So or Si for each j .

Suppose sj G S0 for j \  ^  j  ^  j 2. Then by (2.10.2)

П  sf  = sX for s = П
3 = 3 1  3 = 3 1

and by (2.10.1) ( s j j , . . . , s  jfi) is a Cauchy chain in A"o. Hence s G So and 

sA_ i Asa (except for ji  = 0), 

s^  A s^ +1 (except for j 2 = n)

clearly imply

Sn-1 AsЛ'
s A' A s £ + 1 .
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A similar statement is valid if sj £ Si for j \  % j  ^  / 2- Therefore it suffices 
to consider Cauchy chains ( t0, . . . , t n) such that t j = s j  and, say, Sj £ S0 
for j  = 2k, Sj £ Si for j  = 2 k + 1.

Now we proceed by induction according to n. For n = 0, so £ So implies 
Sq"|Ao = so £ So and Sq |Xi £ S i, too. In fact,

(2.13.1) Sq' |X i = (s0|A0i ) Al for s0 £ FilX0.

Namely, so is a base in X  for s £ , hence so|Xi = so|Xoi is a base in Xi for 
s^ |X i- On the other hand, so|Xoi is a base in Xi for (so \Xoi) Al, too.

From so £ S0 and (2.13.1) we obtain by 2.9 (b)

s6Y|A i = (s ilX o i)*1

for some Si £ Si, and (si|X oi) Xl D Si implies Sq |ATi £ Si as stated.
Suppose the statement holds for some n and consider a Cauchy chain 

( to ,. . .  , t n+i)  such that t j  =  sj1, s  ̂ £ So if j  = 2 k, sj £ Si if j  = 2 k +  1. 
Assume n +  1 is even (the other case is established by interchanging the roles

71

of So and S i). By the induction hypothesis, s = f ) t ; satisfies s|Xo £ So,
о

s|X i £ Si. Now t n+i = s*+1, sn+i £ S0 implies

(2.13.2) |*o  — (s П s*+1) IA0 — (s|A0) П sn+i ,

further s C t„  and t„A s^+1 imply sAs^+1 and then s|XoAsn+i by A'o £ 
£ s*+1 so that the right hand side of (2.13.2) belongs to S0. On the other 
hand,

(2.13.3) l* i  = (s O s * . , )  | * i  = ( s |* i )  П (s^+1|* i )

where sjf+1|Xi £ Si by the reasoning applied above for n — 0. Now tnA tn+i 
and t n = s*  sn £ Sx, Ai £ s* imply tn|A iA tn+11Ab hence, by s C t n, 
s|* iA s^ +1|* i ,  so that the right hand side of (2.13.3) belongs to Si. □

C o r o l l a r y  2.14. //(2 .8 ) (a), (b), (c), (2.9) (b), (c) are fulfilled and 
|J| ^  2, then SqR constructed as in 2.8 is the finest CR-extension. □

Observe that 2.9 (c) can be weakened to: St- is a Cauchy screen for each i.
It is shown in [2], 2.8 that if c is S2 (or even satisfies a weaker hypothesis) 

and 2.8 (b), 2.9 (a) and (b) hold, then the finest Riesz extension S^ is
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generated by the screen base composed of the filters v c(x) (x £ X) and s f  
(st- £ S{, i £ I) . From this, we easily deduce

T heorem 2.15. Under the hypotheses of 2.8, we have

s c r  =  ( s c r ) •

cP r o o f . If S is a CR-extension then C S, consequently (SR) C S.
C  q

From SR C ( SR) C S we deduce that ( S^) is an extension, namely a 
CR one; therefore it coincides with the finest CR-extension SqR by 2.8. □

SqR can be distinct from SR:

Example  2.16. Consider X, X,, c, S; as in 2.12 but for i  = 1,2 only. 
Then by 2.14 and 2.15 (whose hypotheses are fulfilled now by 2.13) there
exists = (Sß) C. Now clearly , s*  £ SR but П £ (S}j)C does 
not belong to SR. □

In contrast to [2], 2.7, according to which there exists a coarsest Riesz 
extension (if there exist any), we can show that a coarsest CR-extension need 
not exist:

E xample 2.17. Let X  = R  x {0,1}, let c be the restriction to X of the 
Euclidean topology of the plane,

r0+ =  { (a, poo) X {0}: a £  R } ,

r0-  -  { ( - 00, a) X {0}: a c R} ,

ri =  { (a, Too) X {1}: a £  R} ,

and

s0+ = (Ша'Г0+) П (Шл'Гг) , 

s0_ = (filxr0—) П (filxri) .

For Xo = R  X {0}, let So be generated by the screen base composed of the 
filters vc(x)|Xo (x £ Xo) and So+|Xo, so_|Xo. On the set X, consider the 
screens S and S' generated by the screen bases composed of the filters v c(x) 
(x £ X) and, in the case of S, of so+ and fUx ro-, in the case of S', of so- 
and filx r0+. As the elements of both screen bases are pairwise in relation 
A, and clearly c(S) = c(S') = c, S|Xo = S'|Xo = So, both S and S' are 
CR-extensions of So- However, any Cauchy screen coarser than both S and 
S' necessarily contains so+ П so- whose trace on Xo does not belong to So- 
□
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Observe tha t this example shows the lack of a coarsest Cauchy extension 
in general, in contrast to [2], 2.6, according to which there is a coarsest 
extension of {c;S,} whenever an extension exists at all.

3. C L -ex tensions. A great deal of questions arising on this field can be 
treated w ith methods applied for CR-extensions. If S is a Lodato screen and 
x £ c(c(A)) , c = c(S), then there is s £ S such that {x}, c(A) £ secs and 
clearly A £ sec v c(s), v c(s) £ S, so that x  £ c(A) and c is a topology. If So = 
= S|Xo, so £ So, then Sq £ S by 2.5 and vc(sq ) £ S. By this, taking into 
account th a t a Lodato screen is Riesz (since vc(x) = vc(x)), we immediately 
obtain, using 2.8, the necessity part of

T heorem  3.1. There exists a CL-extension iff the following conditions 
are satisfied:

(a) c is an S2 topology,
(b) v c(x)|X i £ S, for x £ X , i £ I ,
(c) if S{ £ Sj- and x £ AT is a cluster point for c o /v c(s^ ) then v c( s f )  —> 

—> x for c,
(d) if ( t 0, . . . , t n) is a Cauchy chain such that t j — v c(s'v), sj £ S tj , 

ij £ I, then

(0 tj)
If these conditions are fulfilled then the screen base В composed of all 

filters v c(x) (x £ X ) and of all intersections

Á. C S Á S Z Á R

(3.1.1) f l u  ( tj  as in (d))
о

generates the finest CL-extension SqL = SqL(c;S,).
P r o o f . We only have to check the sufficiency. Similarly to the proof of 

2.8, (a) and (c) show that В is a screen base for a Cauchy screen S such that 
c(S) = c. Thus S is a CL-screen because c is a topology and the elements 
of В are c-open filters. Now (b) and (d) show S|X; C S; for i £ /  and Si C 
C S|Aj- follows from Э v c( s f ) . If S' is an arbitrary CL-extension then 
В C S', hence S C S'. □

If c is a  topology and X q is c-open, s0 is a Co = c|Ao-open filter in Xo, 
then clearly vc(sq ) = Sq". Hence, if each X, is c-open and S, is Lodato, 
then 2.8 (c) and (d) coincide with 3.1 (c) and (d), respectively.

For the existence of a CL-extension, further necessary conditions are, 
of course, 2.9 (a) and (b), and the one that the screens S; have to be 
CL-screens. Examples 2.10, 2.11, 2.12 show that each of the conditions 3.1
(a) to (d) is independent of the others even if the above necessary conditions
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are satisfied; in fact, in 2.10, 2.11, 2.12, c is always a T2 topology, the sets 
X, are c-open and the filters in the screen bases generating S, are c-open, 
too, so tha t all screens S,- are CL-screens and the conditions 3.1 (b), (c), (d) 
coincide with the respective conditions in 2.8.

Moreover, it can happen that all conditions in 2.8 and all but one con­
ditions in 3.1 are fulfilled and the exceptional condition in 3.1 fails to be 
true.

Example 3.2. Let X  — R, c* be the Euclidean topology on X , c the 
Hausdorff topology for which vc(a;) =  v c.(a;) if x ф 0, and a base for v c(0) 
is composed of the sets V -  N where У is a ^-neighbourhood of 0 and

:n £ N  j  .

Define Xo = N  so that Co = c|Xo is discrete, and let the screen base gener­
ating S0 be composed of the filters á:|Xo (x £ Xo) and so = vc*(0)|Xo. Then 
c(So) =  Co since s0 is free, so S0 is a CL-screen and 2.9 (a), (b) are fulfilled. 
The same holds for 3.1 (a), (b), (d) since vc( sq ) does not have any c-cluster 
point in Xo and vc( sq ) |Xo = So- 2.8 (c) is satisfied, too, since s£  does not 
have any c-cluster points. However, 3.1 (c) fails to hold since 0 is a c-cluster 
point of v c(s* ) but D v c(so ) does not c-converge to 0. □

Example 3.3. Let c* denote the Euclidean topology on R 2, X  = R  x 
X [0,+oo), and c be the Niemytzki topology on X  (v c(p) = vc.(p )|X  for 
p = (x ,y ) , у > 0, and, for p =  (a:,0), a base for v c(p) is composed of 
enclosed disks contained in X  and containing p). Then c is T2 and, on 
Xo = R  X {0}, c induces the discrete topology Co = c|Xo- Define Q = Q x 
X {0}, P — Xo — Q , and let sp (sq) be composed of those sets S C Xo for 
which P — S (Q -  S) is finite. Let a screen base for So be composed ,i'|Xo 
(x £ Xo) and of sp and sq . Then Co = c(So) (sp and sq are free filters), 
and So is a CL-screen (spAsq by P  6 sp, Q 6 sq ). Consequently 2.9 (a),
(b) , 3.1 (a), (b), 2.8 (d) are fulfilled (for the latter, consider I  = {0}). 3.1
(c) holds since vc(sp ) clearly does not have any cluster points in X  — Xo 
and, if p £ Xo, choose 5  £ sp such that p ^  S, a disk D С X such that 
p £ D, and disks Ds С X for s £ S  such that s £ Ds, D s П D = 0, so that 
V  = |J  D s £ vc(sp) , V  П D = 0. A similar reasoning shows that vc( sq )

ses w
does not have any cluster points at all for c.

However, v c(sp) Avc( sq ) . In fact, for 5 £ sp and a c-open V  D S, let 
Pn denote the set of all p £ P for which the disk D С X containing p and of 
diameter -  is contained in V. Then P  is the union of the sets Pn and of the 
finite set P  — 5. Since P  is a Gs subset of Xo for the topology c*|A"o, the 
Baire Category Theorem furnishes a Pn that is c*-dense in an open interval 
(a, 6) C Xo- Then (a, b) x (0,^) С V , hence, for an arbitrary S' £ sq and a
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c-open V  D S ', there is а <7 G S ' whose first coordinate belongs to (a,b) and 
then necessarily V  П V  ф 0.

Now vc(sp ) f lv c(sg) has a trace on A'o that is composed of all sets 
S  C Xo for which A'o — S is finite; this filter does not belong to So, and 3.1
(d) fails to hold. □

This example shows that an analogue of 2.14 (by substituting 3.1 (a),
(b ) , (c) to the respective conditions in 2.8) cannot be true for CL-extensions 
and |/ | = 1. It also shows tha t an analogue of [2], 2.14 fails to be valid for 
/  = {0} and a c-closed Ao- On the other hand:

T heorem 3 .4 . The conditions 3.1 (b) to (d) follow from 3.1 (a) and 
2.8 (b) to (d) provided X , is c-open and S, is a Lodato screen for i G I . 
Therefore, under these hypotheses, there exists a Cl,-extension.

P roof. By 2.8 there exists an extension, so 2.9 (a) holds and then 3.1
(c) and (d) coincide with 2.8 (c) and (d), respectively. □

According to [2], 2.17, the finest Lodato extension is generated by 
the screen base composed of the filters v c(x) (x G A) and vc(s;x) (s; G S,-, 
i G f) (whenever a Lodato extension exists at all). Hence 2.16 (in which 
c is a T2 topology, the sets A; are c-open, and the screen bases for S, are 
composed of c-open filters) furnishes an example where SR = S^, SqR = S^L, 
consequently S qL ф S^. In the following example SR = S^R, = SqL, but 

Ф an d so SqR ф SqL:

Exam ple  3.5. Let A  =  R ,  c be the Euclidean topology on A, Ao = 
= N, Co =  c|Ao, and So be composed of expAo and of all ultrafilters in 
Ao- Then 3.1 (a) to (d) are fulfilled: v c(so ) does not have any c-cluster 
points for a free ultrafilter s0 in Ao, v c( s f ) Avc(s2V) for two distinct free 
ultrafilters s j , s 2 G So, and v c(so ) |Ao = so- However, Sq is an ultrafilter in 
A , whereas vc( sq ) does not contain any of the complementary sets Ao and 
A -  A0. □.

Example 2.17 (in which c is a T2 topology and the screen base defining 
S and S' are composed of c-open filters) shows that CL-extensions may exist 
without existing a coarsest one among them (in contrast to the case of Lodato 
extensions, see [2], 2.13).

The following analogue of 2.15 can be proved in the same way: 

T heorem 3.6. Under the conditions of 3.1, rue have

s k  = ( s L ) c

P roo f . ( S}J is Lodato since it admits a base composed of open filters.
□

The author thanks Dr. J. Deák for valuable remarks.

Á. CSÁSZÁR
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G EN ER A LIZED  A R ITH M ETIC A L  
PR O G R E SSIO N S A N D  SUM SETS

I. Z. RÚZSA* (B udapest)

1. In tro d u c tio n

A famous theorem of Freiman [3, 4, 5] describes the structure of sets 
whose sum-set is not much larger than the original set. In this paper we 
present a novel approach to this problem. We prove a result, which is 
essentially equivalent to Freiman’s though expressed in different terms, and 
the proof goes along completely different lines. The connection between 
Freiman’s and our formulation is discussed in the last section.

Like Freiman’s, our method works equally for sets in finite dimensional 
Euclidean spaces, or abstract torsionfree groups, so for greater flexibility we 
present it in this form. Probably a generalization to every commutative 
group is possible, though this seems to present some difficulties.

Let q i , . . . ,q d and a be elements of an arbitrary commutative group, 
l i , . . . , l d positive integers. By a d-dimensional (generalized) arithmetical 
progression we mean a set of the form

(1.1) P (q i,. . . ,q ,i; l i , . . . , ld \a )  = {n = a + x xq i + . . .+  xdqd, 0 ^  x t <i /,}.

(More exactly, we think of it as a set together with a fixed representation in 
the form (1.1); this representation is in general not unique.) We call d the 
dimension of P , and by its size we mean the quantity

d

ll̂ ll = II(L + !),
i=i

which is the same as the number of elements if all sums in the right side of
(1.1) are distinct. In this case we say that P is proper.

1.1. T h e o r e m . Let A, В be finite sets in a torsionfree commutative 
group satisfying |A| — |P | = n, \A + B\ ^  an. There are numbers d, C

‘ Supported by Hungarian National Foundation for Scientific Research, Grant No.
1901.
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depending on a  only such that A is contained in a generalized arithmetical 
progression o f dimension at most d and size at most Cn.

Two im portant cases, which we do not formulate separately, are A  = В 
and A — — B.

2. “Bohr neighbourhoods” in certain sumsets

For iterated sumsets we introduce the notation

к A = A + .. .  + A, к summands.

For distinction we denote

Ak  =  {ka : a E A}.

If G is a commutative group, 7i , . . .  , 7fc are characters of G and ej > 0, we 
write

Я(7Ъ ” ->7 *;£ь--->£*) =  id  6 G : |a r g 7j(y)| ^  2irej for ally = 1........k}

and call these sets Bohr sets. In particular, if = . . .  = £■*. = £, we shall 
speak of a Bohr (k,e)-set. (We take the branch of arg that lies in [—x, 7r).)

In locally compact groups these sets form a base for the Bohr topology; 
we shall work with finite groups, but we preserve the name that suggests 
certain ideas.

2.1. L em m a . Let G be a finite commutative group, \G\ = m. Let A be 
a nonempty subset of G and write \A\ — n — ßm. The set D = 2A — 2A 
(the second difference set of A) contains a Bohr k, e-set with some integer 
к < ß ~2 and e = 1/4.

This is essentially a result of Bogolyubov [1] which he used to study the 
Bohr topology on the integers. We include a proof for sake of completeness. 
With certain additional ideas, a similar result can be achieved for three 
summands , see Freiman-Halberstam-Ruzsa [6], but the situation for two is 
different, see Bourgain [2] and Rúzsa [7].

P r o o f . Let Г denote the group of characters. For 7 £ Г put

/ (7 )  =
aeA

We have
y j  / ( 7 ) I 2 = mn = ßm 2
"у€Г
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and / ( 70) = n for the principal character 70. We have x 6 D for those 
elements x for which

(2-1) 5^1 4Т(ат) 7̂  °-
7СГ

To estimate (2.1), we split the characters 7 ф 70 into two groups. We 
put those for which | / ( 7)| ^  Vßn  into and the rest into IV We claim 
that x G D whenever R e7(3;) ^  0 is satisfied for all 7 € IV Indeed, we have

Y I /(t)| 47(̂ ) < ßn2 Y\ /(7)12 < ß2m2n2 = n4,
7 6 Г 2  7 6 Г 2

consequently

Re X ] | / ( 7 ) |47(z) ^  n4 + Re Y  | / ( 7 ) |47(^) ^  n4 -  Y  | / ( t )| ^7(^)
-у£Г 7 6 Г2  ТбГг

> 0.

The condition Re 7(3;) ^  0 is equivalent to | arg ~/(g)| ^  7r/2, thus we have 
a Bohr (k, 1/4) set with к = |Гх |. We estimate k. We have

kßn 2 ^  5Z I -/(Т)| 2 < 5ZI -/(Т)| 2 =

hence к ^  (m /n )2 = ß 2 as claimed. □

3. A generalized arithm etical progression in a Bohr 
neighbourhood

We show that Bohr sets contain large generalized arithmetical progres­
sions. We are able to do this only for cyclic groups; this will be sufficient 
for our present aims, but it would be interesting to decide whether a similar 
result holds in general groups.

Let G be the group of residues modulo m. The characters of G are of 
the form

7(z) = e'2iriux/m

for some residue u. Consequently Bohr sets are sets of the form

(3.1) В ( щ , . . .  . . .  ,£>) = { x : ||ujx/m|| ^ £j for all j  = 1 , . . . ,  fc}.

Here ||f|| denotes the distance of a real number t from the nearest integer. 
With a slight abuse of notation, we define ||u/m|| for a residue и modulo m 
as the common value of ||v/m|| for representants v of this residue class.
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3.1. T h e o r e m . Let m be a positive integer, u \ , . . . ,u k residues modulo 
m  such that (u j, U2 , ■ • • ,uk, m ) =  1, E i , . . . , £ k  real numbers satisfying 0 < 
< Ej < 1/2. Write

(3.2) _  E \ . . . £ k  

кк

There are residues qi,. ■. ,qk and nonnegative integers l\ 
set

(3.3) P = {q iX i  + . . .qkx k ■■ \x í \ ^  li} 

satisfies

(3.4) P C B(U\ ,. . . , Uk, E\, . . . , E k ),

lk such that the

the sums in (3.3) are all distinct and

(3.5) \\P\\ = П (2lJ + 1) ^  m  + !) > 6m-

P roof . Let L  be the к dimensional lattice of integer vectors ( x i , . . .  , x^) 
satisfying

x\ = x u \ , . . . ,x k = xu k (mod m)

with some integer x. This lattice is the union of m translations of the lattice 
(Z m)k (here we need the coprimality condition, otherwise there may be 
coincidences), hence its determinant is m k~ l .

Let Q be the rectangle determined by |xj| й Ej,j  = 1 , . . . , k  and let 
A i , . . . , A j k  denote the successive minima of Q with respect to the lattice 
L. These are the smallest positive numbers such that there are linearly 
independent vectors cq,. . . ,  a*. G L, a, G Q^i- By Minkowski’s inequality we 
have

(3.6) Ai . . \ k ^ 2 k
det L 
vol Q

m k - \

E \ . . . E k

Write
ai — (о*!,. * *, U{k).

The condition а г G QA; means that |а,у| ^  Л{Ej. Since аг G L , there are 
residues such that а,у =  qiUj (modm). These are our qfis and we put

L =
m 

к A j
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First we show that P С B. Consider an ж 6 P, x = x xqx + . . .  +  xkqk. 
We have

xuj = 'ŜT^XiqluJ = Xjajj (modm),

consequently

X Uj

m
E  Xjajj

m
x,at]

m
< ljXj£j <-

m -] •

Next we show that these elements are all distinct. If x x, . . . , x k and 
2/i > • • •) У к give the same sum, then with zj = Xj — yj we have

Z j q t = 0 (mod m), \zj\ ^  2/,. 

Multiplying this congruence by Uj we infer that

У ] Zjüjj = 0 (mod m) 

for all j .  Moreover a calculation like above yields

E  z'a'i = E  lj\j£j ^  2£jm < m.

Consequently ^  Zjüjj — 0 for every j ,  which means that ziai — 0; by yiew 
of the linear independence of the vectors a,, Zj = 0 for all i, qu.e.d.

Finally we prove (3.5). We have

lj + 1 >
m
kXi’

hence

П са + и
m m

> kk\ x . . . \ k = kk£ l " - £k 6 m

by (3.6). □
It is easy to see that the result need not hold if (u i , . . .  ,u k,m ) = d > 1; 

consider, for instance, the case m = d2, к = 1, ux — d. It can be shown that 
а к -|- 1 dimensional arithmetical progression can always be found in B.

3.2. L emma. Let m be a prime, and let A be a nonempty set of residues 
modulo m  with |A| = ßm. There are residues qx, . .. ,qk and nonnegative 
integers / i , . . .  lk such that the set

(3.7) P  = {91Ж1 + . . .  + qkxk : |ж*| ^  /,}
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satisfies P  C D — 2A — 2/1, the sums in (3.7) are all distinct and

(3.8) ||P || = П (2 / ,  +  1) £  + !) > 6m-

where к ^  ß 2 and

(3.9) 6 = (4k)~k <: (ß2 /4 ) 1,ß2

P r o o f . This follows from a combination of Lemma 2.1 and Theorem 3.1. 
The assumption that m is a prime guarantees the coprimality assumption 
required in Theorem 3.1. □

Let Gi, G2 be commutative groups, A\ C G i, A2 C G i. We say that a 
mapping ф : A\ —> A2 is a homomorphism of order r in the sense of Freiman, 
or an FT-homomorphism for short, if for every aq ,. . . ,  xr, j / i , . . . ,  yT G Ai (not 
necessarily distinct) the equation

(4.2) d>(xi) + ф(х2) + . . .  + ф{хт) = Ф{У\) + Ф{У2) + - • ■ + d>(2/r).

We call ф an Fr-isomorphism, if it is (1-1) and its inverse is a homomorphism 
as well, that is, (4.2) holds if and only if (4.1) does. When we do not specify 
the order, we mean a homomorphism of order 2.

4.1. Lemma. Let G, G' be commutative groups. I f a set P' C G' is the 
homomorphic image of a generalized arithmetical progression P(qi, ■ ■ ■ ,qd\ 
/1, . . . ,  Id', a) C G, then there are elements q[ , . . . ,  q'd, a' £ G' such that

4. Freiman isomorphy

(4.1) X \  +  X2  +  • • • +  X r -  У\ +  У2 +  • • • +  Ут

implies

(4.1)

and the homomorphism is given by

(4.2) ф(а + xiqi + . . .  + xdqd) = a' + Xiq[ + . . .  + xdq'd.

P r o o f . Define a' and q[ by

a' = ф(а), q[ = ф{а + qt) -  ф(а).
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We prove (4.2) by induction on r =  x\ + . . .  + xj. For r ^  1 it is an immediate 
consequence of the definition. Assume that r ^  2 and the statement holds 
for every smaller value. Consider an element

x  =  a +  X i q i  +  . . .  +  X d q d , aq +  . . .  +  £<* =  r .

Since r ^  2, either there are subscripts i ф j  such that xq ^  1 and Xj  ^  1, or 
there is a subscript for which xt- ^  2. In the second case write j  =  i. In both 
cases the sums

у = x — Xi, z = x — Xj, и = x — Xi — xj

are in P, their sums of coefficients are at most r — 1 and they satisfy x + 
+ и = у + 2. This implies <̂>(x) + </>(u) = ф(у) + that is, ф(х) = ф(у) + 
+ ф{г) — ф(и). Substituting (4.2) for у, z and и into this equation we conclude 
that (4.2) holds for x as well, which completes the inductive step. □

4.2. L emma . Let G, G' be commutative groups, and let A C G, A! C Gl 
be Fr isomorphic sets. Assume that r = r'(k + /) with nonnegative integers 
r ',k ,l. The sets к A — l A and к A' — l A1 are Fri isomorphic.

P r o o f . Let ф be the isomorphism between A and A!. For an 

x G к A — l A, x = a,j + . . .  + ah — b\ — ...  — bi 

we define naturally

ф(х) = ф(а1) + . . .  + ф{а,t) -  ф{Ьг) -  . . .  -  ф(Ь1).

The facts that this depends only on x and not on the particular representa­
tion, and that ф is an Fr< isomorphism, follow immediately from the defini­
tion. □

5. Proof o f the main theorem

We need the following results from Rúzsa [7].
5.1. L e m m a . Let A be a set o f integers, |A| = n, r ^  2 an integer and 

D — rA — rA. Write \D\ = N . For every m > 2r(N  — 1) there exists a set 
A' C A, \A'\ ^  n /r  which is FT-isomorphic to a set T  of residues mod m.

5.2. L e m m a . Let A, В be subsets of an arbitrary Abelian group. Write 
\B\ = n, \B -j- A\ = an. For arbitrary positive integers к, l we have

(5.1) IkA -  IA\ ak+tn.
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P r o o f  o f  T h e o r e m  1.1. The subgroup generated by Л, like any finitely 
generated torsionfree group, is isomorphic to Zv for some integer v. Let A \  

be the image of A; the group isomorphy implies the Freiman isomorphy of 
arbitrary order between A and A\.

For arbitrary fixed r we can find a set A 2 C Z which is fv-isomorphic to 
A \. Indeed, consider the mapping

(5.2) ( ö i , . . . ,  av) —> űi +  ta,2 +  .. • +  tv 1av.

This is an Fr-homomoprhism for every r. If H denotes the maximal absolute 
value of coordinates of elements of A\ and t > 2rH , then the coincidence of 
two r-fold sums of numbers of the form (5.2) implies the coincidence of the 
coordinates, thus this mapping is an isomorphism of order r. We shall use 
this with r =  8; so let A 2 be a set of integers which is Fs-isomorphic to Д1, 
hence to A.

Lemma 5.2 implies that

(5.3) |2Л2 -  2 Л21 = |2Л -  2 ЛI ^  a 4 n.

(The first equality follows from the Fg isomorphy.) We apply Lemma 5.1 
for r = 8 and a prime number m  > 2г|2Л — 2Л|. By (5.3) and Chebyshev’s 
theorem we can find such a prime with

m < 4r\2A -  2 ЛI <i 32 a 4 n.

Lemma 5.1 gives us a set А! С Л2 Fs-isomorphic to a set T  of residues modulo 
m, \A'\ ^  n /r  — n / 8 .

Applying Lemma 3.2 we find a к dimensional proper arithmetical pro­
gression P  С 2T -  2T  of size ^  6 n, where к = k (a ) and 6 = ) > 0 depend
on a  only.

Now T  is Fg-isomorphic to a subset A* of Л. By Lemma 4.2, this 
Fg isomorphism can be extended to an F2 isomorphism between 2T  -  2T  
and 2Л* — 2Л*. The image P* of P  is a proper F-dimensional arithmetical 
progression by Lemma 4.1 and we have P* С 2Л* — 2Л’ С 2Л — 2Л.

Select a maximal collection of elements a i , . . . ,  as £ Л such that the sets 
P* + at are pairwise disjoint. We estimate s. Since these sets are all subsets 
of Л + P* С ЗЛ -  2Л, we have

, 13Л -  2ЛI . a 5Tis S -— ---- -—1 < ----
\\P*\\ ön

a 5 / 6(a).

Here in the second inequality we used Lemma 5.2. 
For every a £ Л there is an a, such that

(o +  P ) П (a,- + P*) ф 0-
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Thus there are p,p ' E P* such that a + p =  a,- + p' , that is, a = + p' — p.
This means that

(5.4) A c  { a i , . .. ,a ,} + P* — P*.

Since P* is a fc-dimensional arithmetical progression, so is P* — P*, and 
obviously

||P* -  P*|| ^  2fc||P*|| ^  2fc|2A -  2A\ £ 2ka 4 n.

The set { a i , . . . , a s} can be covered by the s-dimensional arithmetical pro­
gression

P (ai, • • •, as; 1, • • •, l; 0).
Hence the right side of (5.4) can be covered by an arithmetical progression 
of dimension d = s + к and size C = 2 s+ka 4 n. Since both s and к were 
bounded in terms of a , the proof is complete. □

6. Concluding remarks

One can imagine many results in the form “if |2A| ^  a |A |, then . . . ” . 
Such a description is adequate, if the condition involved implies that |2A| ^  
й  a'\A\ with some a' depending on a  only. Among adequate descriptions 
one can distinguish on two grounds: first, the smaller the value of a', the 
better our result is; second, simplicity. For instance, the statement “if 
|2A| ^  a |A |, then \A — A\ ^  a 2|A|” , a particular case of Lemma 5.2, is an 
adequate description with a' — a 4, but one cannot say that it helps much to 
understand the structure of these sets. Our Theorem 1.1 uses a very simple 
structure. The value we get for a 1 is 2dC . We did not express d and C 
from a, but if we did so, we would get an exponential bound for d and a 
doubly exponential one for C, so a doubly exponential bound for a1. An 
improvement of these bounds would be interesting; I think the correct value 
of d is about a , and that of C is about exp a.

There are other possibilities for improvement. It would be desirable to 
have a proper d-dimensional arithmetical progression. Also, a d-dimensional 
progression is the image of a set of lattice points in Zd. The following two 
properties would be useful to have:

i) this map between Zd and our set is an isomorphism
ii) the inverse image of A in Z d is proper d-dimensional.
Since proper d-dimensional sets satisfy |2A| ^  (d + 1)|A| — d(d + l) /2  

(Freiman [4]), these properties_ would automatically yield the (optimal) 
bound d ^  [q — 1] for n > n0(a).

Freiman [3, 4, 5] expresses the result in a rather different way. He asserts 
that the set A is isomorphic to a subset of the set of lattice points in a convex 
region of volume Cn  in R d, where for d he gives the optimal bound a — 1
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(he does not specify the bound for С). I think my formulation and his are 
essentially equivalent, though this is not obvious. I plan to return to this 
and the problems mentioned above in another paper.
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O PT IM A L  PA C K IN G S OF ELEVEN EQ UAL  
CIRCLES IN  A N  EQ UILATERAL T R IA N G L E

J. В. M. MELISSEN (Eindhoven)

An interesting problem in the theory of packing is that of finding the 
densest packings of circles in a triangle. Malfatti [6], for instance, studied 
the question of how to cut three circular cylinders of largest total volume from 
a right triangular prism. He surmised that the solution would be obtained 
by finding three circles in the triangle that each touches both the other two 
circles as well as two of the sides of the triangle: ‘. .. cosicche ciascun de 
circolo toccasse gli alti due ed insieme due lati del triangolo’. Unfortunately, 
Malfatti had been wrong here; Goldberg [3, 4] showed that these so-called 
Malfatti circles in fact never solve the densest packing problem. For a 
description of similar packing problems we refer to [1, 2, 9].

In this article we will restrict our attention to equilateral triangles and 
to packings with congruent circles. By stacking the circles on a regular tri­
angular lattice, it is easy to find obvious candidates for the optimal packings 
of n =  k(k  + l) /2  circles in an equilateral triangle. The proof, however, is 
not so straightforward as the simplicity of the solution would suggest; it was 
given in 1961 by Oler [10]. Recently, optimal configurations and proofs for 
n =  4,5, 7,8,9 and 12 were obtained by the author [7]. A different proof 
for the triangular numbers is also contained in that article. Conjectured 
configurations for n — 17 are given in [8].

Fig. 1: a) Closest packing of eleven equal circles in an equilateral triangle, 
b) M axim um  least distance arrangement o f eleven points in an equilateral triangle. The 

solid line segments between the points are o f equal length.

We will now give a proof for the optimality of certain arrangements of 
eleven circles in an equilateral triangle. Since the inner parallel domains
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of a triangle are similar to the original triangle, the problem of finding the 
densest packing of n equal circles in a triangle is equivalent to placing n points 
inside that triangle such that the minimum distance between the points (the 
separation distance) is maximal. We shall use this last formulation.

The optimal arrangements of eleven points in a unilateral triangle (up 
to  rotations) are shown in Figure lb. The separation distance between the 
points follows from these configurations as d\\ — (3 -  \ /6 ) /2  = 0.275255 
The position of the central point is not unique, similar to the optimal ar­
rangements of seven points in an equilateral triangle [7], or eight points in a 
circle [11].

Fig. 2: P a r tit io n  of the triangle used in the proof. The dotted lines are of length í/ ц . 
The dashed/solid lines and arcs indicate to which o f  the subregions each edge belongs.

The simplest way to prove the optimality of d\\ would be to partition the 
triangle into ten subregions th a t all have a diameter of at most d\\. For some 
smaller numbers of points this method works well [7]. It is a result of Graham
[5], however, th a t  the maximum diameter of ten subregions whose union is a 
unilateral triangle is at least equal to l / ( 2 \ /3 )  > du. For the proof of the 
case n = 11 we will, instead, use the partition in Figure 2. This subdivision 
of the unilateral triangular region T  into eleven subregions is based on the 
three disc segments of radius d \\ around the vertices of the triangle, on points 
from the arrangement in Figure lb, its rotated images and some points at 
distance d\\ from these points. The dotted lines in Figure 2 are of length 
d u  and show, in combination with symmetry in the vertical bisector, how 
to construct the  vertices of the partition. Each dashed/solid edge belongs to 
the subregion th a t is indicated by the solid side of the line. All subregions 
except the central hexagon H  are of diameter dn; the diameter of H is less 
than du- The edges and vertices are distributed over the subregions in such 
a way that no single subregion can contain points that are a distance d\\ 
apart.

Suppose th a t we have a configuration of eleven points in T  for which the 
maximal separation distance is equal to d ^  c/ц , then there must be exactly 
one point in each of the eleven regions. The points in the three extreme
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circle segments may be assumed to lie on the vertices of the triangle. To 
see this let xo be a vertex of T  and suppose that x\ and x2 are points in 
T  such that ||xi -  Х2Ц ^  d and ||x2 -  xo|| ^  ||xi -  xo||. If ||®i -  x0|| ^  d , 
then ||x2 — xo|| ^  ||xi — x’oИ ^  d. The region of those points in T  that have a 
distance to xo of at most d is a circular disc segment around xo- This region 
has a diameter d , so if ||xi — xo|| < d, then ||x2 -  x*o|| ^  d. In both cases Xi 
can be replaced by Xo in the arrangement without decreasing the separation 
distance. We can therefore assume that the three vertices of T  are part of 
the solution. As it turns out, this assumption will not restrict the number of 
solutions found.

Let U be the closure of the region that is obtained by removing the three 
disc segments of radius d around the vertices from the triangular region, and 
let Г1 be the boundary of U. Without restricting generality, it may also be 
assumed that the seven points in U\H  lie on IV This can be seen as follows. 
Region H  can be divided into six congruent triangles. By symmetry it can be 
assumed that the point in H is in one particular triangle S. The point in S 
restricts the seven other points in U to lie in an annular-shaped region U \H , 
where H = {x | d ist(5 ,x ) ^  d u } . The boundary Г2 = dH  of H consists of 
three circular arcs. Now consider the polygon that is formed by connecting 
each of the seven points of the configuration in U \H  with the two points 
from the neighbouring regions in U \H . If the interior angle at a vertex is 
less than or equal to 7Г, this vertex can be moved onto without decreasing 
the separation distance. In the case that the angle exceeds n, the point 
can first be moved onto Г2, and subsequently it can be reflected in the line 
through the two neighbouring vertices. Some tedious, but straightforward 
calculations show that the reflected vertex always remains inside U \B  (only 
three subregions need to be considered). It can then be moved onto IV  This 
means that it can now be assumed that all seven points lie on IV

There can only be seven points on Г1 at a mutual distance of at least d if 
the maximal separation distance d is equal to dn , as the following detailed 
analysis of the location of these points will show.

First, suppose that d is equal to dn. The points on the circle segments 
can be parametrised by the use of angles V’l , Ф2, Фз G [0,7r/3[ as shown in 
Figure 3. Now we will determine the tightest possible arrangement of points 
on Г1 by starting with the point on the first circular arc at angle ф\. There 
is a point on the horizontal line segment at distance dn from the first point. 
The next point at distance dn  may lie on the same line segment, or on the 
next arc, depending on the value of V- For the angle V2 on the next arc the 
following relations hold:

7Г
Ф1 G [0, Ф2  = 2 -  arccos (a  -  cos фх) G [<Pi, <Лг[ ,

V’l G [v?i, у?2[=*> Ф2 = -  -  arccos (a  -  cos фх) GО <*>2’ 3

Acta M athematic  a Hungarica 65, 1994



392 J  В M MELISSEN

Fig. 3: D efinition o f the angles ф, required in the proof. The length of the dotted line
segments is equal to d\ \ .

Ф\ €
7Г

ф2 — — — arccosО
1
2

— COS ф\ е [о ,  v ? r [ .

Here ipi = arccos ( 1/2 + 1/-\/б) , tp2 = тг/З — tp\ — arccos ( \/б /3 )  and a = 
— 1/(2с?ц). In the first two cases there is one point of the solution on the 
interjacent line segment, whereas in the third case the line segment contains 
two points. After finding this point on the second arc, the same construction 
can be continued to obtain a point on the third arc at an angle of ^ 3, and 
another point on the first arc at angle ф\. The seven points can, of course, 
only be accommodated on Г] if Ф4 ^  Ф1 for some choice of ip\. For гр\ 6 
£ ]0, 9 i[ we have

dtp2 sin ф 1

<̂^’1 — (a — cos V’i )2

and
d2V>2 _  (1 -  cosV>i)2 + (2 -  a) cos ф\
d^ i  0 (1 — (a  — cos )2) 3/2

so ip2 is increasing and strictly convex as a function of ф\. This results in 
the following inequality

Ф2 <ч>\ + ———ф\ for Ф\ e ]o,<y?i[.
V3!

By similar arguments it follows that

/1 , Л■q — ^2Фз < <Рг +  —----------ip2 -  (рг (Ф2 “ VT) and Ф* < Ц-----{Фз-фФ)-
я -  <F2
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Combination of these three inequalities shows that ip4 is always smaller 
than Vh if V’l € ]0,</2i[. The same is true for ф\ G ]<£>ъ<̂ 2[ and for V’l € 
G ]<y?2? я"/3[. Only when ф\ is equal to 0, or ip 2, we can have that Ф4 =  tp2 , 
so it is only in these cases that the seven points can be fitted on IT. The 
corresponding solutions are the optimal configurations depicted in Figure 1, 
and their rotated images. If d > dn, the seven points obviously cannot be 
placed on the curve at a mutual distance of at least d. □
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K.-K. TAN (Halifax), J. YU (Guiyang) and X.-Z. YUAN (Halifax)

1. Introduction

Let X  , Y  be Hausdorff topological spaces and /  be a real-valued function 
on the product space X  x Y . If e > 0, a point (x*,y“) E X  X Y  is said to be 
an e-saddle point of /  if for each (x ,y ) E X  X Y , we have

f ( x , y * ) - e  < f{x*,y;)  < f(x*e,y) + e.

Also a point (x*,y*) E X  x У is said to be a saddle point of /  if for each 
(x,y)  E X  X У, we have

f (x, y*)  ^  f{x*,y*) ^  f{x*,y).

We shall denote by R  and N the set of all real numbers and the set of 
all natural numbers, respectively. If X  is a convex subset of a vector space 
and /  : X  — * R, then /  is said to be quasi-concave if for each i E R, the set 
{ж E X  : f ( x )  > t} is convex. /  is said to be quasi-convex if —/  is quasi­
concave. If У is a compact Hausdorff space, C(Y)  denotes the Banach space 
of all continuous real-valued functions on У with supremum norm.

In this note, we shall obtain a new e-saddle point theorem and two new 
saddle point theorems. Our results generalize the corresponding results of 
Komiya [5].

2. Main results

We begin with the following result:
T h e o r e m  1. Let X  be a non-empty convex subset of a Hausdorff topo­

logical vector space, Y be a non-empty compact convex subset of a Hausdorff 
topological vector space. Suppose that f  : X  x Y  —* R satisfies the following 
conditions:

(i) for each (x ,y ) E X  X Y , infv6y f ( x , v)  > -  oo and supueA- f ( u , y )  < 
< + oo;
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(ii) for each fixed у £ Y , x ь-f f ( x , y)  is quasi-concave and x t-»- f ( x , y )  —
— infugy f ( x , v )  is upper semicontinuous;

(iii) for each fixed x £ X , у >-* f ( x , y )  is quasi-convex and у /(ж,?/) —
— supue^  f ( u , y ) is lower semicontinuous.

Then f  has an e-saddle point (x*,y*) £ X  x Y  for each e > 0.

P r o o f . Let e > 0 be given. For each (x , y ) G l x Y ,  define 

T(x) = { у £ Y : f ( x , y )  -  inf f ( x , v )  < e } ,i

and
S(y) = {z £ X  : f {x , y)  -  sup f (u, y)  > - e } ,

u£X
then by (i), (ii) and (iii), T ( x ) and S(y)  are non-empty and convex. For each 
(x,y)  £ X  X У, the sets

Т~г{у) = { x  £ Л' : f ( x , y )  -  inf f ( x , v )  < c},
v£Y

5 _1(x) =  { у £ Y  : f { x , y )  -  sup f ( u , y )  > - e )
uex

are open by (ii) and (iii).
Thus, by Theorem 1 of [3] (which is equivalent to Theorem 1 of [4]; see 

also [7, Corollary 1.7]), there exists (x*,y*) £ X X У such that y* £ T(x*)  
and x* £ S(y*),  i.e.,

-  e < f (x*,y£) < f (x*,y)  + £ 

for each (x,y)  £ X  X У. □
T h e o r e m  2 . Let X  be a non-empty convex subset of a Hausdorff topo­

logical vector space, Y  be a non-empty compact convex subset of a Hausdorff 
topological vector space. Suppose that f  : X  X Y  —> R satisfies the following 
conditions:

(i) for each fixed у £ У , sup„eA- f ( u , y )  < + oo;
(ii) for each fixed у E Y , x >->■ f  ( x , y ) is quasi-concave and x i—>• f ( x , y )  — 

— infv£Y f ( x iv) is upper semicontinuous;
(iii) for each fixed x £ X , у н->■ f ( x , y )  is quasi-convex and lower semicon­

tinuous and у t-> f ( x , y )  — su p ^ ^  f ( u^y) lower semicontinuous;
(iv) for each sequence { ( х ь , у к ) } in X  X Y where for each к £ N, 

(XkiVk) Is an e^-saddle point of f  and $k —► 0+, there exist a subsequence 
{znfc}fcGN and x* £ X  such that for each у £ У ,

lim f { x nk,y) <, f (x*,y).
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Then f  has saddle point (x*, у*) £ X  X Y .
P roof . For each fixed x £ X ,  since Y  is compact and у  •— f i x , у )  is 

lower semicontinuous by (ii), we must have infv€y /(x ,u ) > — oc.
For each к £ N , by Theorem 1, there exists ix*k,y*k ) £ Л' x V' such that 

for each (x ,y ) £ X  X У,

(1) f(xiVk) -  £k < А Л Л  < f(x*k,y) + sk.
By (iv), there exist a subsequence {x*t }fc6N of {A )fceN and x* £ X  such 
that for each у £ У,

lim f(x',* у) <i f i x * , у).
к - ю о  *

Since У is compact, there exist a subnet {t/Q}Q6r of {Vnk}keN and 2/* £ У 
such tha t y* —» y*. We shall prove that (x*, y*) is a saddle point of / .

For each у £ У and each a £ Г, by (1),

f(x*,y*) = f (x*,у*) -  fix*a , y *) + fix*0,y*) <

< А Л Л  -  А Л  Уа) + А Л  У) + =
= [ А Л Л “ А Л Л ]  + [ А Л Л  -  А Л Л ]  +/(*в.У) + £а <

< [ А Л Л  -  А Л Л ]  + А Л у )  + 2ев«
By (iii) and (iv), it follows that

f(x*,y*)ü lim[/(x*,y*) -  fix*,y*)\ +l\m fix*,y) ^
a  a

 ̂А Л  Л - И т А Л  Л  + f i x* , y )  ^ f i x*,y) .CK

Next, for each x £ A” and each а  £ Г, by (1),

f i x* , у*) = fix* , у*) -  fix*a,y*0) + fix*Q,y*a) >

> А Л Л  -  АЛ.Уа) + f(x,y*) ~£a =
= [ А Л Л - А Л Л ]  + [ А Л Л - А Л Л ]  + fix,y*a ) - e a >

> [ А Л Л  -  А Л Л ]  + fix,у*) -  2£а-
By (iii) and (iv), it follows that

А Л Л  = И т [ А Л Л  -  А Л  у*)] + lim/(®,y«)^
а  а

Z fix*,У*) -  lim А Л Л  ^ fix,у*).а
Therefore (х*, у*) £ X  X У is a saddle point of / .  □
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LEMMA 3 .  Let X  be a non-empty convex subset of a Hausdorff topolog­
ical vector space, Y  be a non-empty compact convex subset of a Hausdorff 
topological vector space. Suppose that f  : X  X Y ^  R  satisfies the following 
conditions:

(i) f {x , y)  is continuous on X  X Y ;
(ii) for each fixed у E Y , n -*  f ( x , y)  is quasi-concave;

(iii) for each fixed x € X , у f ( x , y)  is quasi-convex;
(iv) suPxeA- minyeY f ( x ,y)  <
(v) the family {f(x, -) : x E X }  of real-valued functions on Y is equicon- 

tinuous and closed in the Banach space C(Y) ;
(vi) there exists a sequence {(хк,Ук)} ken in X  x Y  where for each к E N, 

{х к,Ук) Is an £k-saddle point of f  on X  X Y  and Ek —* 0+ .
Then sup{ \ f (xk,y)\  : к £ N , y  e Y }  < + oo.

P roof . Since Y  is compact, by (i), (ii), (iii) and (iv), the beginning of
proof in Theorem 3 of [5] shows that there exists a number M\  such that
f ( x , y )  ^  Mi for all x E X  and all у E Y .  It follows that the map у >-+

supX£x f{x,y) is real-valued and lower semicontinuous. By compactness 
of Y  again, there exists a number М2 such that supr6_y f ( x ,y) ^  М2 for all
у eY.

Since Ek —► 0+, we may suppose tha t < 1 for each к E N. For each 
к E N  and each у E Y,  by (vi),

Mi ^  f ( x k,y) ^  f ( x k , y k) -  £k Z SUP f {x , yk) -  VEk 2 M2 -  2
xex

so that

su p { \ f {xk, y)\ : к E N , y  E F} ^  max( |Mi |, |M 2 -  2 |) . □

As an application of Theorem 2, we have the following result which is 
Theorem 3 of [5].

Corollary  4. Let X  be a non-empty convex subset of a Hausdorff topo­
logical vector space, Y  be a non-empty compact convex subset of a Hausdorff 
topological vector space. Suppose that f  : X  x Y  —+ R  satisfies the following 
conditions:

(i) f ( x , y )  is continuous on X  x Y ;
(ii) for each fixed у E Y , i h  f ( x , y ) is quasi-concave;

(iii) for each fixed x E X , у f  ( x , y ) is quasi-convex;
(iv) suPxeA minyeY f ( x , y ) <  + 0 0 ;
(v) the family {f (x,  •) : x E X }  of real-valued functions on Y  is equicon- 

tinuous and closed in the Banach space C(Y).
Then f  has a saddle point (x*,y*) E X  X Y .
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P r o o f . For each fixed у E У, by Corollary 2 of [1, p.53],

n - t  sup[-/(ai, u)] =  -  inf f ( x , v )  
veY V£Y

is upper semicontinuous so that by (i), x i—► f (x ,y)  — inf„ey f ( x , v )  is upper 
semicontinuous.

For each fixed у E Y  and for any tj > 0, by (v), there exists a neighbor­
hood V  of у such that

-  f (u , y )  < V
for any и E X  and у' E V; thus

sup f (u,  y') <; sup f (u,  y) + Т].
uEX

It follows that у и-* supue;r f ( u , y ) is upper semicontinuous so that by (i), 
у и-> f ( x , y )  — supuc^ f ( u , y )  is also lower semicontinuous.

Now if {(xk,yk)}keN is a sequence in X  X Y  where for each к E N, 
(х к,Ук) is an £fc-saddle point of /  and Ek —+ 0+, by Lemma 3 and Ascoli’s 
Theorem (e. g., see [6, p.369]), there exist a subsequence { f ( x Uk, •)} of 
{ f ( x k, •)} fc€N an<  ̂ x* ^ X  such that { converges uniformly to 
/(ж*,-) on Y.  The conclusion now follows from Theorem 2. □

In order to obtain another new saddle point theorem, we need the concept 
of an escaping sequence introduced in [2, p.34]: Let E  be a Hausdorff 
topological vector space and У be a subset of E  such that Y  = U^Li X n 
where {A'n}ngN is an increasing sequence of non-empty compact sets, then a 
sequence {j/n}„pN in Y  is said to be escaping from Y  (relative to {A'„}n6N) 
if for each n E N , there exists a positive integer M such that yk & K n for all 
k ' t  M.

T heorem 5. Let X  be a non-empty convex subset o f a Hausdorff topo­
logical vector space, Y  be a non-empty convex subset of a Hausdorff topolog­
ical vector space such that Y  — U^Li Kn where {/\'n}n€N is an increasing 
sequence of non-empty compact convex subsets of Y . Suppose that f  : X  X 
x У —► R  satisfies the following conditions:

(i) f ( x , y )  is continuous on X  x  Y;
(ii) for each fixed у E Y , x f (x , y)  is quasi-concave;

(iii) for each fixed x E X , у н-> f  (x,y) is quasi-convex;
(iv) for each n E N, sup^g* miny6A;n f ( x , y )  < + oo;
(v) for each n E N, the family {f (x,  ■) : x E A} of real-valued functions 

on K n is equicontinuous and closed in the Banach space C( I in);
(vi) for each sequence { ( in,j/n)} , N in X  X У where (x n,yn) is a saddle 

point of f  on X  X K n for each n E N which is escaping from X  X У relative 
to {X  x Ffn}neN, there exist n0 E N and x ’nQ E X  (or y'nQ E K no) such that

f ( xn0 ^ no) > f ( xnoi У no ) (or f ( x no,yno) > f ( x  no •) У no ) ) •
Then f  has a saddle point (x *, у*) E X  X Y .
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P r o o f . By Corollary 4, for each n G N, there exists a saddle point 
(xn,yn) G X x K n of /  on X x K n.

Suppose that the sequence {(xn, yn)}neN in X X Y  were escaping from 
X X Y  relative to {X X A'n}ngN, then by (vi) there exist no 6 N and x'nQ G X  
(or y'no G К n0) such that

/ ( х По,Упо) '> 1 {х по1Упо) (or / { х по1Упо) ^  /С3- no 5 Уno))

which contradicts the fact that (xno,yno) G X X K no ls a saddle point of /  
on X X A'no. Therefore the sequence {(xn,j/n)} G {X x Ä'n}n6N is not 
escaping from X  X Y  relative to {X X A'n}neN; thus some subsequence 
{(®n*,i/nfc)}*€N of {(zn,2/n)}neN must lie entirely in some X X K s, where 
8 G N.

By (v), Lemma 3 and Ascoli’s Theorem again, there exist a subsequence 
{ /(* nfc,-)} fceN of { /(*« ,-)}  n€N and x* G X such that

(2) { f ( xnk,-)} keN converges uniformly to /(x*,-) on I is.

Since K s is compact, there exist a subnet {?/а }абГ {У^Акек an(  ̂ У* ^ A'a 
such that ya —* y*.

For each у G У, there exists Si > s such that у G A'Sl. Let op G Г be 
such that op ^  Si, then for any a ^  «о, у G A'a and

f(x*,y*) = f (x*,y*)  -  f(x*a ,y*)  + / « , ? / * )  ^

^  f(x*,y*) -  f(x*a,y*a) + / « , ? / )  =

= [f(x*,y*) -  f{x*,y*a)] +  [ / ( z * , i £ )  -  f(x*Q,y*)] + / « , < / )

so that by (i) and (2), we have f(x*,y*)  ^  f(x*,y).
For each x G X ,

f (x*,y*) = f ( x* , y* ) - f { x*a ,y*) + f ( x l , y * )  ^

^  /(**,2/*) -  f(x*a,y*a) + f(x,y*a) =

= [/(^* , 2/*) — /(^* , 3/ )̂] + [/(**,2/«) -  /(*£»*£)] + /(^2 /«)

so that by (i) and (2) again, we also have /(х*,г/*) ^  f (x,y*).  Therefore 
(x*, y*) is a saddle point of / .  □

Finally, for application of escaping sequences in minimax inequalities, 
variational inequalities and equilibrium points, we refer to [8-10].
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T H E  STR O N G  SUM M  A BILITY  OF FO U R IE R
T R A N SFO R M S

D. V. GIANG* and F. MÓRICZ* (Szeged)

We prove that the Fourier transform of a nonnegative integrable function 
/  and its conjugate Fourier transform are strongly summable with every 
exponent q > 0 at every Lebesgue point of / ,  at which the Hilbert transform 
/  exists. Hence it follows that both the Fourier transform of any integrable 
function /  and its conjugate Fourier transform are strongly summable with 
every q > 0 almost everywhere. In the particular case where /  £ L 1 П Lp for 
some p > 1, we give an essentially shorter proof.

The proof of our main theorem can be modified for the case of the Fourier 
series of a periodic, integrable function to obtain an improvement of the 
strong summability theorem of Marcinkiewicz and Zygmund.

1. Introduction

We consider complex-valued functions /  defined on the real line R := 
:= (—00, 00). Denote by Lp the class of measurable functions whose pth 
power is Lebesgue integrable on R in the case 1 ^  p < 00, or essentially 
bounded on R in the case p = 00. As is well known, Lp endowed with the 
norm

a
00 \  i/p

\f(t)\p dt j  for 1 = P < 00,

or

ll/lloo := esssuP{ |/(0 I  : -00  < t < 00}

is a Banach space.
It is easy to check that

(1.1) L1 П Lr Q L1 Г\ Lp for 1 < p < r ^  00.

* P a rtia lly  su p p o rte d  by the  H ungarian  N ational Foundation  for Scientific R esearch  
u n d e r G ra n t # 2 3 4 .
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In fact, in the case r = oo it is plain that

/ OO

I m f d t ü w f w z 1
-oo
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1’

whence (1.1) follows. In the case 1 < r < oo, we apply Holder’s inequality 
with the conjugate exponents

Л :=
r — 1 
P -  1

and A' :=
r — 1 
r -  p

to obtain

/oo r oo
m \ pd t= / \ m \ r'x\ m r r'xd t i

-oo J —oo

a °o \ 1/A / roo \1/^*
i / w r * )  ( y  m o |Л(' - г/А>л)  = ii/ ii;a ii/ ii!/ ,

whence (1.1) follows again.
We remind the reader that the cosine Fourier transform a(u) and sine 

Fourier transform b(u) of a function /  6 X1 are defined by

( 1.2)

(1.3)

1 [°°a(u) := — / f ( t )  cos ut dt,
^  J —oo

1 z-00
b(u) — /  / ( t )  sin ut dt for и G R ;

J —oo

the partial integral s„(f ,x)  and Cesäro mean ov{f ,x)  of the Fourier trans­
form of /  are defined by

a „ ( /,z )  := / {a(u)cosxu +  6(u)sina:u} du,
Jo

1 f T
su( f , x )d u  =

= J  ^1 — { a(u) cos zu +  6(u)sinzu} du for T >  0 and a; 6 R;

the conjugate partial integral S„(/,z) and conjugate Cesaro mean сгД/, z) 
of the Fourier transform of /  are defined by

£„(/, x) := / (a(u) sin zu — h(u) cos zu) du,
Jo
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l  f T f T ( u \& j ( f , x ) : = — / sl/( f , x ) d i ' =  / ( 1 — — ) { a(u) s i n  xu — b(u) c o s  x u } du.
T  Jo Jo '  Т /

A s  i s  w e l l  k n o w n ,

( 1 . 4 )  s „ ( f , x ) = - [  f ( t )
Я J— OO

s i n  — x )  _  1

t -  X
1 r°°

= - /  /(* ̂J—oo
. s i n W  , 

+  i ) — -—  dt.

G i v e n  a  f u n c t i o n  g l o c a l l y  i n t e g r a b l e  o n  R ,  i n  s i g n  : g £ Ljo c , w e  a g r e e  t o  

w r i t e

/—*oo r N
g(t) dt  l i m  /  g(t)dt,

— oo N-*oo ДГ

p r o v i d e d  t h i s  l i m i t  e x i s t s .  A c c o r d i n g l y ,  

f~~°° s i n  I't
J —*-—oo

( 1 . 5 ) dt =  x  f o r  v > 0 .

C o m b i n i n g  ( 1 . 4 )  a n d  ( 1 . 5 )  g i v e s

( 1 . 6 )  su( f , x)  -  f(x)  = -  I  { f ( x  + t ) - f ( x ) } S- ^ d t .
Я J-+-00 г

L e t  /  £ £ f o c  f o r  s o m e  p, 1 £ p < oo. W e  s a y  t h a t  x G R  i s  a  L e b e s g u e  

p o i n t  o f  /  o f  o r d e r  p i f

( 1 . 7 )  g(t) := Í  \ f (x + u ) - f ( x ) \ pdu = o(\t\)  a s  t -* 0 .Jo
W e  c a l l  t h e  s e t  o f  s u c h  p o i n t s  x G R  t h e  L e b e s g u e  s e t  o f  /  o f  o r d e r  p a n d  

d e n o t e  i t  b y  E(f , p) .  D u e  t o  H o l d e r ’s  i n e q u a l i t y ,  w e  h a v e

E ( f , r) (̂ E ( f , p )  f o r  1 ^  p < r < o o .

I n  t h e  c a s e  p =  1 ,  w e  w r i t e  E(f )  : =  E(f,  1 ) .

A s  i s  k n o w n  ( s e e ,  e . g . ,  [ 1 0 ,  V o l .  1 ,  p . 6 5 ] ) ,  a l m o s t  e v e r y  x £ R  i s  a  L e b e s g u e  

p o i n t  o f  o r d e r  p  o f  e v e r y  f u n c t i o n  /  £ Lpoc f o r  e v e r y  1 ^  p < o o ,  w h i c h  m e a n s  

t h a t  t h e  c o m p l e m e n t  o f  E( f , p )  w i t h  r e s p e c t  t o  R  i s  o f  L e b e s g u e  m e a s u r e  

z e r o .

A s  i s  w e l l  k n o w n ,  i f  /  6  L1 a n d  x £ E(f) ,  t h e n

( 1 . 8 ) l i m  o„(f,x)  =  f(x),
v — ►OO

( 1 . 9 ) l i m  ä„(f , x )  =  f(x),
V — ►OO
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in the latter case provided that the Hilbert transform of /  defined by

( 1. 10) f ( x )  := I f  f i x + t) , 1 flim — /  —------- - dt = lim — /
£i°  ж J\t\~^e t £1° ж Je

f ( x  + t) -  /(31 -  t) 
t

dt

exists. Since the existence of /  for any /  € L 1 is proven for almost every 
i 6 R ,  both (1.8) and (1.9) hold almost everywhere on R  (in abbreviation: 
a.e.).

Let q > 0. We say that the Fourier transform of a function /  6 L x is 
strongly summable with the exponent q, or briefly: summable Hq, at x 6 R 
if

(1.11) lim ^  /  \ Sl/( f , x )  -  f ( x ) \ q dv = 0 .
T—o° 1 J0

Clearly, summability Hi  implies Cesaro summability, i.e., the fulfillment of
(1.8). Holder’s inequality shows that if (1.11) is satisfied for some q, then it 
is true for any smaller q\ > 0 :

( 1. 12) Jo ~ f(x)\91 du
1/91

<

for 0 < q\ < q < 00.

Summability H\  indicates that the mean value of s„(f ,x) -  f ( x )  tends 
to zero, not because of the cancellation of positive and negative terms, but 
because the indices v for which | s„( f , x) -  f ( x )j is large form a set of “small” 
measure.

On the other hand, ordinary convergence of s„(/, x) to f {x)  as v —* 00 
implies summability Hq at x , for every q > 0. To sum up, strong summability 
lies between ordinary convergence and Cesaro summability.

Of course, we may speak of summability Hq of the conjugate Fourier 
transform of a function /  £ I 1 at some x € R  :

lim i  í  I ЗД /,ж ) — ~f{x) \ 4 dv = 0,
Т—юо 1 Jo

provided the Hilbert transform /  exists at x.
Concerning the definitions and results in this section, we refer the reader 

to the monographs [7, Ch. 1] and [8, Ch. 1].
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2. M ain results

Among others, we will prove that the Fourier transform of every function 
/  £ L 1 is a.e. summable Hq with every exponent q > 0.

The particular case where /  £ X1 П Lp for some p > 1 can be proved in 
an easy way.

T h e o r e m  1. If f  £ L l П Lv for some p > 1, x £ E(f ,p) ,  and q > 0, 
then the Fourier transform of f  is summable Hq at x.

In the more general setting where we assume merely /  £ L 1 , it is no 
longer true that the Fourier transform of /  is strongly summable at every 
Lebesgue point of / .  However, if we assume that some x £ R  is not only a 
Lebesgue point of a nonnegative / ,  but the Hilbert transform /  also exists at 
x , then we are able to conclude strong summability at x. Even the following 
finer conclusion is true, which is our main result.

T h e o r e m  2. / / 0  ^  /  £ L1, x £ E( f ) ,  the Hilbert transform f  exists at 
x, and q > 0 , then both the Fourier transform of f  and its conjugate Fourier 
transform are summable Hq at x.

R e m a r k  1. From Theorem 2 it follows immediately that both the 
Fourier transform of every function f  £ L l and its conjugate Fourier trans­
form are a.e. summable H q with every q > 0.

R e m a r k  2 .  A s  is  k n o w n  (see [5] a n d  a lso  [1]), t h e r e  e x i s ts  a  f u n c t i o n  
f  £ L1 s u c h  t h a t

lim sup |s^(y, x)| =  oo a.e.
V — > 0 0

This example shows that a.e. strong summability of the Fourier transform of 
an integrable function may take place when ordinary convergence fails a.e.

R e m a r k  3. The reader will have no difficulty in modifying the proof 
of Theorem 2 contained in Sections 4 and 5 to obtain the following result 
for the Fourier series of a nonnegative, periodic, integrable function / ,  in 
sign : f  £ L \n.

T h e o r e m  3. If 0 /  £ Ь\ж, x £ E( f ) ,  the conjugate series o f f  is
Cesáro summable at x, and q > 0, then both the Fourier series of f  and its 
conjugate series are summable Hq at x.

We note th a t Marcinkiewicz [4] (in the case q = 2) and Zygmund [9] (in 
the case q > 0) proved that if f  £ Ь\ж, then both the Fourier series of /  and 
its conjugate series are a.e. summable H q. (See also [10, Vol. 2, p.184].) 
Furthermore, according to [10, Vol. 1, p.92], the Cesaro summability of the 
conjugate series of /  at a Lebesgue point x of /  is equivalent to the existence 
of the conjugate function of /  at x.
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3. P roof o f Theorem  1

We begin with the following
R e m a r k  4. It is enough to prove Theorem 1 in the special case where 

q is the conjugate exponent to p, i.e., q p/ (p — 1). Indeed, by (1.1) then 
/ e i ' f l  Lp' for every 1 < p' < p. Hence we conclude summability Hqi for 
q' := p'/(p'  — 1). By (1.12), summability H q follows for every q < q1. It 
remains to take into account that by taking p' -  1 sufficiently small we get 
q' arbitrarily large.

Let 0 < v  < T. By (1.6), we may write

(3.1) 7Г{ S „ ( f , X )  -  f ( x ) }  =

L '/t+{ L L +L,t ) } { / ( i

. sin ut ,+ t) -  f {x)}  — —  dt

— h ( T , v )  + /г(Т , и),

say. An elementary estimate shows that

f l /T
\ h ( T , v ) \ ^ v  /  I f ( x  

J-l /T
+ t ) ~  f(x)l dt ,

whence, by Fubini’s theorem,

(3.2) { i j f , , . « * , „ . * } * *

1 /Т
^  ------— - j - T  [  \ f ( x  + t ) - f ( x ) \ d t - * Q  as T  -> oo,

(<7+l ) /9 J-i/T
rl /T  

1 /Т

due to (1.7).
Next, we estimate /г(Т , v). Without loss of generality, we may assume 

that 1 < p < 2. Making use of the HausdorfT-Young inequality (see [8, p.96]),
then exploiting (1.7) gives

(3.3) j * \ h ( T , v ) \ qd v }  $

n V 1 /p
< °v  Í [ f {x  + t ) ~  /(* ) d t \  -  Cp

T x/q \J\t\Zi/T t d t j  Т'/ч
№

i/p
dt

l / T
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where Cp is a constant depending only on p. By integrating by parts, we get

(3.4)
ÍP

г а » *
J i / т  f

Г OG

Jl/T
g(0
ÍP + 1

dt —

) as T  —> oo.

Combining (3.3), (3.4), and the symmetric counterpart of (3.4) for J_ 
yields

r 1 f T Л 1/q
(3.5) I  - J  \ h ( T , v ) \ q d v \  —+ 0 as Г -»oo.

Clearly, (1.11) follows from (3.1), (3.2) and (3.5). The proof of Theorem 1 is 
complete.

R e m a r k  5. By [5] (see also [1]), the celebrated results of [2] and [3] can 
be extended to Fourier transforms, as well. Among others, the following is 
true: If /  G L 1 П Lp for some p > 1, then

lim sl/( f , x ) =  f (x )  a.e.
v — ►OO

Hence a.e. summability Hq follows immediately for all q > 0. However, our 
proof of Theorem 1 gives slightly more: namely, strong summability takes 
place at every Lebesgue point of / .

4. Auxiliary notions and results

The proof of Theorem 2 is much more difficult than that of Theorem 
1. We will still use the Hausdorff-Young inequality. However, since /  need 
not belong to any Lp, p > 1, it will be necessary to deal not with /  itself, 
but with its Poisson integral U( f , x , y ) as well as with its conjugate Poisson 
integral U( f , x , y ) ,  and then to make у tend to 0.

First, we remind the reader of the definition of the Poisson integrals U 
and U. Given a function /  g L1, set

(4.1)

(4.2)

/ OO

f ( t )P(x  -  t , y)dt ,
-O O

U{f , x , y)  J f{t )P(x  -  t ,y)dt ,

Acta Mathematica Hungarica 65, 1994
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where

(4.3) P (x ,y ) У
7Г(.Т2  +  у 2 )

is the Poisson kernel, while

P(x,y)
X

7r(a:2 + у2)

is the conjugate Poisson kernel, where (x,y)  £ := {{x,y) : x £ R  and
У > °}-

The following properties of the Poisson kernel P are of vital importance 
in the sequel:

(4.4)

(4.5) x — и, y)P(x -  t, y)dx — P(u — t, 2y).

For a complex number 2 := x + iy with у > 0, define

r°°
(4.6) Ф(г) := / {a(u) -  ib(u)}e,zu du,

Jo
where a(u) and b(u) are defined in (1.2) and (1.3). By Fubini’s theorem,

(4.7) Ф(г) = -  Г  f{t )  dt Г  е‘и1г_В du = — Г  dt -  я- Jo Jo г7Г J-оо t — z

= — [  fit)-;- — Х\ +гУ7 dt = U( f , x , y )  -  iU( f , x , y) ,
™ J-oo (t - x y  + y2

where the Poisson integrals U and U are defined in (4.1) and (4.2). It is 
plain that the function Ф of the complex variable z := x iy is analytic on 
the upper half-plane R^_.

As is known (see, e.g. [6, p.62]), for every /  £ X1 we have

lim f/( /, x, y) = f {x)  and lim C/(/, x, y) = f i x )  a.e., 
y ~ *  о y->0

where the Hilbert transform /  of /  is defined in (1.10).
In Section 5, we will rely on the following two auxiliary results.
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Lemma 1. If a  > 1, /  e L 1, and for some к > 0 we have

(4.8) /  If{t)\dt ,  f  \ f ( t ) \ d t ú k y  for all у > 0,
JO J-y

then

(4.9) [  M  dt ^  ^ - k y l ~a for all у > 0. 
J\t\zy m « - i

P r o o f . Introduce the auxiliary function

(4.10) V<0 := /  № ) |d u .  
Jo

As is well known,

(4.11) rp'(t) = |/(<)| a.e.

By integrating by parts and (4.8), we have

(4.12)

iKO
OO 1-00

+ a
у f

r w * =  r m * -J, Iff J,t“

< a /  — dt — —-----yl~a for all у > 0.
Jy a -  1

Analogously, we have

ry 1/(01(4.13) fJ — c

O' /ь
l^c dt <; —Y?/1-" for all У < 0.

Collecting (4.12) and (4.13) yields (4.9).
Lemma 2 . I/O ^  /  e  Í 1 and condition (4.8) is satisfied, then

(4.14) 0 ^ U ( f , x , y ) ^ k  for all ( i , j )  G R 2+1

where the Poisson integral U is defined in (4.1).
P r o o f . We use notation (4.10). By (4.3) and (4.11), while integrating 

by parts, we have

(4.15) U{f ,x ,y) x — t ,y)dt  =

A cta  Mathematica Hungarica 65, 1994
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/ °о
t)Pt(x -  t, у) dt =

-С О-< ы ;

ip(t)Pt(x -  t, у) dt := /1 + / 2,

say, where Pt (d / d t ) P . Another integration by parts and (4.8) gives

(4.16) s * / tPt{x -  t ,y)dt  =

rOO rCO
= fc[ — t P (x  -  t, j/)] ™ + к P(x -  t ,y)dt  = к P(x -  t,y) dt.

Jo Jo
By symmetry,

(4.17) I\ ^  к I  P ( x - t , y ) d t .
J — CO

Taking into account (4.4) and (4.15)-(4.17), the right inequality in (4.14) 
follows.

The left inequality in (4.14) is obvious, since the Poisson kernel P  is 
nonnegative.

5. Proof o f Theorem  2

W ithout loss of generality, we may assume that x = 0 and /(0 ) =  0 in 
Theorem 2. Accordingly, the assumptions in Theorem 2 can be formulated 
as follows:

(5.1) f (u)du  = o(|i|) as t -  0

(cf. (1.7)), the Hilbert transform /  defined in (1.10) exists at x = 0, and 

(5.2) lim { <7„(/, 0) + *£„(/, 0)} = *7(0)V —►OO

(cf. (1.8) and (1.9)). In the sequel, we will adopt the abbreviations 

«I/ := Si/(/,0) 4- and av := (x1/( / ,  0) + *<7„(/, 0).
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Since, by (5.2), the limit of ov exists as и —> oo, it is enough to show that 
for all q > 2

(5.3) Í  |.s„ — ov|9 du = o(T) as T —► oo.
Jo

This in turn will follow if we show that
л о о

(5.4) / Hisy — ст„|9е~''9!/ du = o(y~x~q) as у —* 0.
Jo

In fact, take (5.4) valid for the moment and set у 1/T. Clearly, 

rT rT
e~q / uq\sl/ — ct„|9 du ^  -  ст^е- "9/ 7 du.

Jo Jo
Consequently, from (5.4) it follows that

rT
(5.5) [  uq\sv -  au\q du -  o{Tl+q)

Jo
Now, introducing the auxiliary function

V>(i) := f  uq\su -  0v |9 du, 
Jo

by l’Hopital’s rule, we see that 

(5.6)

as T —► oo.

lim —  = lim ^ 4  =  !im I k u L í iü  _  0 .t— * 0 tq qtq~l q

By integration by parts, while making use of (5.5) and (5.6), we conclude

T j j ,

Jo Jo 1/4
Ц и )

uq
1 T

+ <7
J 0
/Ф М  , " (Л  ,

IJö+i dl ~Тч~+ ^T > = ^T ' aS T

which is (5.3).
Returning to (5.4), we start with the representation

u(s„ -  au) = I u{ a(u) -  ib(u)} 
Jo

du.
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/ OO Г OO Г  OO

u{su — au)ell,z du = / u{ a(u) — ib(u)} du / ell,z du —
•oo J  0 */u

1 r°°= -  / {a(u) — i6(u)}
г Уо

elzuiu du = $ '(*)

where Ф is defined in (4.6). Let p be the conjugate exponent to q :1 / p + l / q = 
=  1. We remind the reader tha t q > 2, so 1 < p < 2. By the HausdorfF-Young 
inequality,

if 1/9
u4 \au - a v\4e~v,fíld v \  % C P

Ф'(г) v 1 Ip 
dx

(cf. (3.3)). Since (-1  — q)p/q = 1 — 2p, (5.4) will be established if we show

>

dx = o(y1~2p) as у —► 0.

that
r oo Ф'(г) p

(5.7) 1 dx = о
J —oo z

Finally, we recall that, by (4.7),
IIb*00Ю 1 Г  'M  л?.7T J— OO ( t -  г)

1 f 00 1 1
< 1  /  / ( i r Л  -  Í

7Г 7-00 (f -  x) + y 2 У

- f  m —™ J-00 Ut-
(t -  X + i y f

[ ( <  -  X ?  4- y2] 2 

2 =  x + iy and

(cf. (4.1) and (4.3)). Consequently, (5.7) will follow if we show that

dt <

(5.9) / ( / ,2 / ) : -  f
«/ — (

Up( f , x , y )
(x 2  + i/ 2 ) p / 2

dx = о(уг p) as у —> 0 .

The rest of this section is devoted to the proof of (5.9). Writing Up = 
UV~XU , by Fubini’s theorem, we have

(5.10) / ( / ,• » = / :
00 rrp-lU p- \ f , x , y )

Xi-(x2 + y2 )P^2

(x 2  + y2 ) p / 2

dx /  f ( t )P(x  — t ,y)dt  —

= Г
J - 0 0  J -  oo (x 2  + i/2)P

P(x — t,y)dx.
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We will estimate / ( / ,  y) by splitting the integrals in (5.10) into a few parts, 
appealing in each case to appropriate hypotheses about the behavior of /  at 
x =  0.

First, we split the range t of the outer integral in (5.10) into two parts: 
|<| ^  у and the remainder. Correspondingly,

(5.11) I { f , y ) = : h { f , y )  +  W , y ) .

It is not hard to see that

(5.12) ( f , y ) - =  fJ-y 

J —b

f ( t )d t f°° U * - \ f , x , y )  n, , w  „/ --------------7—r(x  -  t, y)dx S
(„ 2  _l „2^P/2 V -

g !TP

00 (x2 +  ?/2)

/
ОО

Up~1( f , x , y ) P( x  -  t, y)dx =
•C

= 2TP Г  f ( t )d t  f
J-y J -<

Up 1( f , x , y ) P 1/r(x -  t ,y )P 1' r\ x  -  t,y)dx,1 / r ' l

where

(5.13)
1r : =

P -  1

Observe that, by (4.5),

and -  + =  1 (1 < p < 2).
r  r

/
ОО

U(f ,x ,  y)P(x -  t ,y)dx = U(f, t ,2y).
•OO

Making use of Holder’s inequality, (4.4) and (5.14), from (5.12) it follows 
that

/ у ( roo л v- 1
f ( t )d t  j y  U(f , x , y )P(x  -  t , y ) d x j  x

Í 1 1/ r', f '■
\ J  p (x - ^ y ) d x j  = 2/p_1 J m U p~ \ f , t , 2 y ) d t .

By (5.1), there exists a positive constant к — k ( f ) such that

(5.16) f  f ( t )dt ,  Í  f ( t ) d t ^ k y  for all у ^  0.
Jo J - y

A cta  Mathematica Hungarica 65, 1994



416 D. V. G IA N G  and F MÓRICZ

Consequently, from (4.14) and (5.15) it follows that

(5.17) = y~pkp~l f y f ( t )d t  = o(kpyl ~p) as у -  0.
J - y

Next, we split the inner integral in I 2( f ,  у )  according as |x| й  |i |/2  or
lx l = 1*1/2 :

5.18) I2( f , y ) =  I  f ( t )d t  Í  U\  { f ' * ' 1j } p ( x - t , y ) d x +
J\t\*V J\x|g|t|/2 (x2 + у2)Р,г

+ /  f ( t )d t  [
J\t\ly J\x 1̂1

Up~ \ f , x , y )
i|t|/2 (x2 + y2)p/2

say. The inner integral in I2i {f , y)  does not exceed

Up~ \ f , x , y )  
r2 I „2 \P/2

P(x  -  <, y)dx I 2l ( f , y )  +  d22{ f  1 y ) i

P(t /2, y)  [  J la
dx <

x | g | i | / 2  ( X 2 +  y 2 )P 

P - 1

= -P(</2, y) |  /  U(f , x , y )dx  1 ( /
( d |x | ^ | t | / 2  J ( 7 |x

dx
l/r'

cl=ld/2 (z2 + y2)r p/2

where r' is defined in (5.13), and so, by (4.14), does not exceed

dx
P( t /2 ,y){k\ t \ )p 1 j J 1/r'

oo (x2 + у2Г ' /2

= C’1/ r'(p r7 2 )F(</2,y )(/c |i|)p- 1y(1-Pr')/r' ^  —C l/r'(pr'/'2 )kp~l \t\p~3 y3~2p,

where we used the obvious estimate

P( t /2 , y )  ^  — yi~2 for í G R  and у > 0;
7Г

and the notation

(5.19) C (,)  := why for " > L
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T h u s ,  b y  ( 5 . 1 6 )  a n d  L e m m a  1 ,  w e  h a v e

( 5 . 2 0 )  I21( f , y)  ^  V / r V / 2 ) ^ - y - 2p /  m \ t \ p~3dt S

^ 8j£ ^ p ) c i/r',pr, /2)kPyl~P f o r  a l l  у > 0 .
7t(2 -  p)

N o w ,  w e  d e a l  w i t h  / 2 г ( / ,  2/ ) -  S i m i l a r l y  t o  ( 5 . 1 2 )  a n d  ( 5 . 1 5 ) ,  w e  m a y  

p r o c e e d  a s  f o l l o w s :

^ d t  Г  Up- \ f , x , y ) P ( x - t , y ) d x  ^
J\t\Zy H  J - o о

Í 2 p I t t £ u p- \ f , t , 2 y ) d t .
J \t \ l y  1*1

B y  ( 4 . 1 4 ) ,  ( 5 . 1 6 ) ,  a n d  L e m m a  1 ,

( 5 . 2 1 )

<

Ы / , у )  ^ 2pkp 

P2p+1

"  /A ^ y
m
\ t \ p

dt <

P -  1
kpyl p f o r  a l l  у >  0 .

T o  s u m  u p ,  b y  ( 5 . 1 1 ) ,  ( 5 . 1 7 ) ,  ( 5 . 1 8 ) ,  ( 5 . 2 0 )  a n d  ( 5 . 2 1 ) ,  w e  h a v e

( 5 . 2 2 )  I ( f , y)  = 0( kpy1- p) f o r  a l l  у >  0 .

I n  o r d e r  t o  a r r i v e  a t  t h e  w a n t e d  e s t i m a t e  ( 5 . 9 ) ,  w e  h a v e  t o  i m p r o v e  “ O ”  

t o  “ o ”  i n  ( 5 . 2 2 )  a s  у —► 0 .  T o  t h i s  e f f e c t ,  w e  s e t  /  =  / 1  +  / 2 , w h e r e  f\ {t )  : =  

: =  / ( t )  f o r  \t\ ^  2t] a n d  f\(t)  =  0  o t h e r w i s e .  I t  i s  c l e a r  t h a t  t h e  v a l u e  o f  к 
f o r  / 1  m a y  b e  a s  s m a l l  a s  w e  w i s h ,  p r o v i d e d  77 i s  s u f f i c i e n t l y  s m a l l .  T h u s ,  f o r  

e v e r y  £ > 0  t h e r e  e x i s t s  77 =  77( e )  s u c h  t h a t

/ ( / 1 ,  y)  ^  eyl~p f o r  a l l  у >  0

( c f .  ( 5 . 1 )  a n d  ( 5 . 1 6 ) ) .

T h e r e f o r e ,  i t  r e m a i n s  t o  v e r i f y  t h a t

( 5 . 2 3 )  I ( f 2 ,y) = o(yx~p) a s  у - »  0 .
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To achieve this goal, we consider

(5.24) I(f2,y) = Up( h , x , y )  
(x2 + y2)p/2

dx =: J i ( /2, y) + J-2Í f 2,y),

say (cf. (5.9)).
On the one hand,

lim U(f 2 , x , y )  = 0 uniformly for all |x| й rj v—о

(see, e.g., [7, p.10] or [8, p.28]). In other words, given any e > 0 there exists 
Si = Si(e) such that

О й U( f 2 , x , y )  й £l /p for all \x\ й  1) and 0 < у < S\.

Hence it follows that

/v dr
— ----- й С{р/2 )еуг- р for all 0 < у < Su

-v [Хг + y l y'

where C( p / 2 ) is defined in (5.19).
On the other hand, by (4.14) and (5.16) (observe that k(f2) ^  k(f)  =  k), 

we have

(5.26) М / 2 ,У) й  —  {m ax í/p
V М>Т7 / о

-с

U{f2, x , y)dx  й

u p -  1
= ^ T r l l b l l i  = £У1~Р for а11 0 < у < 02,

provided tha t S2 is small enough. (We recall that p > 1.) 
Combining (5.24)-(5.26) yields

Д / 2,У) ^  (1 + C(p/2))ey1 p for all 0 < у < min(<5b S2). 

This proves (5.23). The proof of Theorem 2 is complete.

Acta M a them atica  Hungarica 65, 1994



T H E  S TR O N G  SUMM ABILITY OF F O U R IE R  TR A N S F O R M S 419

References

[1] P. Auscher and M. J. Carro, On relations between operators on R ", T n , and Z N,
Studia Math., 101 (1992), 166-182.

[2] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math.,
116 (1966), 135-157.

[3] R. A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their
Continuous Analogues (Proc. Con}., Edwardsville, III., 1967), pp.235-255; 
Southern Illinois Univ. Press (Carbondale, 111., 1968).

[4] J. Marcinkiewicz, Sur la sommabilité forte de series de Fourier, J. London Math. Soc.,
14 (1939), 162-168.

[5] A. Máté, Convergence of Fourier series of square integrable functions, Mat. Lapok.,
18 (1967), 195-242 (Hungarian); MR 39 #  701.

[6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
Univ. Press (Princeton, New Jersey, 1970).

[7] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces,
Princeton Univ. Press (Princeton, New Jersey, 1971).

[8] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press
(Oxford, 1937).

[9] A. Zygmund, On the convergence and summability of power series on the circle of
convergence (II), Proc. London Math. Soc., 47 (1942), 326-350.

[10] A. Zygmund, Trigonometric Series, Cambridge Univ. Press (Cambridge, 1959).

(Received November 2, 1992)

U N I V E R S I T Y  O F  S Z E G E D  
B O L Y A I  I N S T I T U T E  
A R A D I  V É R T A N Ú K  T E R E  1 
6720 S Z E G E D  
H U N G A R Y

Acta  Mathematica Hungarica 65, 1994





Acta Math. Hungar. 
65 (4) (1994), 421-422.

C O R R E C T IO N  TO TH E PA PE R  
“O N T H E  R IE M A N N IA N  CURVATURE OF A  

T W IST O R  SPA C E” 1
J. DAVIDOV and O. MUÖKAROV (Sofia)

The system at the bottom of p.330 is not written correctly. This system 
and the subsequent arguments up to line 9, p.331 should be changed as 
follows:

3

bii -  (3//4) a\t + (3t/4)ajt = X , 
k= 1

3

Ьц + b j j  -  ( A t / 4 ) Y X ali + a l j ) + (3i/4 ) ( c i i j  + a j i ) 2 + ( 3 t / 2 ) a t la , j j  =  2 X ,

k= 1

3

bij T  bji (At/ 2) ^   ̂akidkj +  (At/ 2 ')da(dij 4" dji) — 0
к — 1

for 1 ^  i ф j  ^  3. These identities imply au = and ay = — aji for i ф j , 
i.e.

g ( n ( s i ) , X A  SiX) = g{ n ( s : ) , X  A S j X ) , 

g ( n ( s i ) , X  A S j X )  =  - g { H ( Sj) , X  A S i X ) ,  i  ф  j .  

Now varying X  over the unit sphere of T VM  gives

g(TZ{si),Sj) -  S i j g (n{ s i ) , s i) , 

g ( K ( s i ) , S j )  = 0, 1 ^  i ,  j  ^  3.

1 A cta  Math. Hung.,  58 (1991), 319-332.
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Hence M  is Einstein and self-dual. Since X  A S X  G R- ■ о ф Д+ TPM  for 
any X  G TPM,  it follows that R ( X  A S X) a  = 0 and (5.1) shows that M  is 
of constant sectional curvature X . The rest of the proof is unchanged.

(Received October 1, 1992)
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