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STRONG LAWS OF LARGE NUMBERS
FOR ARRAYS OF ORTHOGONAL RANDOM
ELEMENTS IN BANACH SPACES

F. MORICZ (Szeged), KUO-LIANG SU (Taichung) and R. L. TAYLOR (Athens)

Introduction

Several previous authors have investigated laws of large numbers for
arrays of orthogonal Banach space-valued random elements. The general
goal is to obtain conditions which yield the convergence

m n
malnp E E XN 0 as min(m, n) -> 00 or max(m,n) —»00

provided that

E E [°W(; + D17 [lo&u + 1,]p < 00.
i=

1j-1 J

where {Xij} is an array of orthogonal Banach space-valued random elements
with zero means and

EWXijW* <00, 1~ p~™ 2 foral i,j " 1

Moricz [2] defined quasi-orthogonality for an array of random variables
{Xik} 38

IE(XikXjt\ dp{\i~ il,\k - /) {EXI)INE X 1f\

where p(m,n) is a double sequence such that

0o 0o

Y Y pm'nt< 00
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2 F MORICZ, KUO-LIANG SU and R L TAYLOR

For quasi-orthogonal real-valued random variables {Xij}, Moricz [2] showed
that the condition

oo o0 p/-y2\

51 1 [loS2(* + 1)] 2[log2(j + 1)] 2 < 00
i=l j=1

implies
n m n

lim -} Xil=0 as.
max{m,n}—»-o00 771TI f:fjfﬁ.

He also proved that

00 00 2

H "E pp [l1082(i + 1)]2[log2(j + 1)] 2 < 00
i=1j=1

is, in certain particular cases, the necessary condition for

lim -—-Y Y Xij =0 as.
m,n—00 mn
=1 j=1

However, the sense of orthogonality in a Banach space must be quite
different from that of the real numbers or even for Hilbert spaces. James
type orthogonality for a Banach space is adopted in this paper since it is a
generalized sense of orthogonality and will be described in detail in Section 2.

Howell and Warren [7] proposed the sufficient condition

E |\r/\1/ c! * logl+ar < oo, 0O<a”"l,
for the one-dimensional average £ 0 where {Xr} is a sequence of

=i
jB-valued random variables, B is a Ga-space, and {X,} is mutually James
type orthogonal with

FIIX;||1+* < oo forall t~1.

However, a G”-space is a special type p space, and type p spaces will be
addressed in this manuscript. Howell and Taylor [1] obtained the conver-

gence in probability of 2 ani®i f°r random elements in a separable Banach
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LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 3

space satisfying various distributional conditions, including independence,
conditional independence, and orthogonality, and weights {am} such that

n

)/fl \ani\p * 1 for each n and \max \anA—0 as n  oo.
b <i<n

Moricz and Taylor [5] offered the sufficient condition

0o 0 .7 1

E fpE * « < @
n=1 r=1

n
for the almost sure convergence of -L- »~ Xmfor an array of rowwise orthog-

onal random variables in a Hilbert spz;ce or James type orthogonal random
variables in a Banach space of type p for some 1" p it 2. In Section 3, it is
shown that

EE <00

«=1j=1

is the sufficient condition for the strong convergence of

—1Y Y%

for an array of James type orthogonal random elements in a separable Banach
space of type p, 1~ p” 2and a,R > 0, where £'||X¥||p < oo for all i,j ™ 1.

Preliminaries

The basic definitions and properties of Banach space-valued random
variables (or random elements) are well established in the literature (cf:
Chapter 2 of Taylor [6]). In these preliminaries, we will introduce only
the concepts which are not easily found in the literature. Let B denote
a separable Banach space. Let {Xik".i*k ~ 1} be a double sequence of
random elements in B with zero means (i.e., E(Xik) = 0 for all i,k) and
finite moments if||X*||P < oo, for all i,k, where 1~ p < 0o and || | denotes
the norm of the separable Banach space B. When B is a Hilbert space, it
is easy to relate orthogonality to the inner product. That is, the random
elements {X”} are said to.be orthogonal if E(Xnc,Xji) = 0 whenever i ¢ j

Acta Matkematica Hungarica 65, 1994



4 F. MORICZ, KUO-LIANG SU and R L. TAYLOR

or K ¢ I where (e,*) denotes the inner product. However, it is not possible
to create the same geometric sense of orthogonality in an arbitrary Banach
space without the inner product. Consequently, James type orthogonality is
adopted to circumvent this shortcoming.

For nonrandom elements x and y in a Banach space B, x is said to be
James orthogonal to y (denoted x Lj vy) if

IMI = lIx + ty\ for all <GR.

If B is a Hilbert space, then James orthogonality agrees with the usual notion
of orthogonality where the inner product is 0 since

X + tyW\2= (x +ty,x +ty) = |[M|2+ |ly|[2+ 2t(x,y)  |[M]|2

forall t 6 R if and only if (x,y) = 0. However, in a Banach space where
the norm is not generated by an inner product, it is possible for x Lj y
but y Jj x and for x £j y with (x,y) ¢ 0. For example, let R2 =
= {(®i,®2):]|(xi,®2)|| = MI + MI) xi)x2€ R} and let x = (1,0) and y =
= (1,1). It easily follows that the usual inner product (a:,y) —1 ¢ 0. Also,
X Jj y, since

MI=1 and IM+MI=1Q+t)\ =1+ + |t~ 1= IMI
for all i 6 R. However, y Jj x since

12+ Ml = 01+ DN=|1+i+ |1 =3/2<2|y|

if we pick t — —1/2. Thus, the following definition (from Howell and Taylor
[1]) is used for orthogonal random elements in a Banach space to achieve
symmetry in the definition of orthogonality.

Definition 2.1. An array of random elements {Atfc} is orthogonal in
LP(B), 1" p < oo, if

(i) £||A,-fc|lp < oo for all i,k,
(i) E E a7, x2(i)y"7r] @120 <
fe=1 1=1
M7 "2H772
<t EE o
k=1 /A1
for all arrays {a"} Q R, for all n\, 2, mi, and m2, and for all permutations

11, T2 of the positive integers {1,2,..., mi + ni} and {1,2,..., m2+ IR),
respectively.

Acta Mathematica Hungarica 65, 1994



LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 5

It is important to observe that Definition 2.1 is precisely a symmetric
James orthogonal condition in LP(B) since (ii) implies

(EWX\p) Up A (EW\X+ tYW)Lp and (EWY\\p)Up it (EWNY + tX\\p) Up

for all t G R. The terminology “orthogonal in Zp(i?)” used to indicate
a dependence on the moment condition and for technical reasons later in
addressing the geometry of the Banach space. The most recognizable case is
when p —2.

In order to obtain the desired results for arrays, it is necessary to consider
results for the one-dimensional case. Let {X,} be a single sequence of
orthogonal random elements in LP(B). A series of useful moment inequalities
for later reference will be listed in the next four results.

P roposition 2.2 (Howell and Taylor, 1981). The following conditions
are equivalent:

(i) B isoftypep, 1~ p "™ 2;

(ii) for each sequence {X;} of orthogonal random elements in LP(B), there
exists a constant C such that, for all n,

E* <C £I EINeir
t'=

The constant C in Proposition 2.2 depends on the particular orthogonal
sequence {X;} and the Banach space B. On the other hand, in the case of
independent random elements with zero means, the constant C depends only
on the Banach space B (cf. Taylor [6], Theorem 4.4.6). Hence, independent
random elements with p absolute moments and zero means in a type p space
are orthogonal random elements in LP(B). Finite-dimensional spaces and
separable Hilbert spaces are of type 2. Moreover, for 1~ g <p * 2, type
p implies type g, and every Banach space is of type 1 The following two
theorems easily follow from theorems of Moéricz [3] by replacing |«]| by || «||.

Theorem 2.3. Suppose that there exists a nonnegative function g(Fb,n)
satisfying

g(Fb,k) + g(Fb+k,i) * g(Fhbik+H)

for all b~ 0 and 1™ kK < K+ |, such that

E |E * iigFon forall bpo nn
k=b-\-I

Acta Mathematica Hungarica 65, 1994



6 F. MORICZ, KUO-LIANG SU and R L. TAYLOR

where r > 0, and the random variables Xk are Banach space-valued. Then
< (log22n)rg(Fbtn).

6+71

The following corollary is obtained by setting g(Fbin) = uki where
K=b+ 1
{uk} is a sequence of nonnegative numbers.

Corollary 2.4. Suppose that there exist nonnegative numbers {Uk}

such that
E E* S Eu, for all b~ 0, n " 1L

t'=6+1 t=b+1
Then
Y b+k
E max E X‘ (log22n)rf Y  «»)e
i=b+l ST I

Lemma 2.5. Let {2i,} be orth

I (in LAB)) random variables in a
Banach space B of type p for some 1~ p

2. If

S A 'felpl"'[I0g2(fc + 1)]P< 00

fc=1

for some a > 0, then

lim ¢« =0 as.
n —»00 naEl

Remark. The proof of Lemma 2.5 is similar to that in Theorem 3 of
Moricz [4] and uses Proposition 2.2 and Corollary 2.4.

Proof. Let
n°t x—/
k=
Forany e > 0
A I\ -
@D P(gpHmI>e . x>

q=r

Acta Mathematica Hungarica 65, 1994



LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 7

Since
1 7 1 2 1 n
llinll = +N\ | *k <
k=1 fe=I k=21+1
=medi+ B Fep oy B
fc=2«+1 fc=2«+I
it follows that
. N + max
(2 2) Q?(<rp<a%((n(¥i ||£n|| .......... H bl"l 2ap 2«<n<2«+l fe=§+l X>
Moreover,
2 e
A|lblT = E for some Ci > 0,
fc=i S
since B is of type p.
Next,
22+
max E A¢ SC'2(log22«+1)1 £ EV\Xk\W*
,2«<n<24+| K:2L|+\ k= 24+ 1

for some > 0 by Corollary 2.4. By Markov’s inequality and (2.2),

(2.3) P ( /M3, lIfnll > €) i
n A T2H> £2) +W\2((<rrr]1§3%+' E > fla4~1 <
T k=24+1
< 2pC f i JL 1 21 >
NE Eiw o+ N (10022»%«)” y , « i >
ELA k=1 k= 2«+ | '

where C —1ax{C1Cr}. Consider

00 <

(2.4) E Sy E ~ W s
q=r k=1

Acta Mathematica Hungarica 65, 199A



8 F. MORICZ, KUO-LIANG SU and R L. TAYLOR

2r o 1 00
iEwEss E E
k=1 g=r fe=2r+1 q:2«>k

~“NE w + E A2

k jt=1 /c=2r+1

and

00 A o 29*%
(2.5) _ﬁﬂp

!:F C) QJZ chE;+I

E { « +™ N o |

k=2r+1

Combining (2.1), (2.3), (2.4), and (2.5), we can conclude that ||£,| —%0O
2r 00 co
a.s. byletting r — - 1ifwe have a convention that YL —0and J2 = Y1
fe=1 fc=2r+1 le=I1
forr= —1. O

REMARK. Moricz and Taylor [5] showed that a sufficient condition for
the strong law of large numbers for rowwise orthogonal random variables in
a Banach space of type p is

CA n Ib

E SSE ™ -ii'« » -
n=1 fc=1

Hence, to apply this result to a sequence and obtain the conclusion of Lemma
2.5, it requires that

EWXnI\p = ... = E\\XXnn\\p = E\\Xn\\p
for fixed n. However,
ENE BYI\=E
n=1 1
implies that
00

E ~£P'n|Pogf£(n + 1) < oo.

n=1

idda Mathematica Hungarica 65, 1994



LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 9

M ajor results

The following theorem for arrays of orthogonal random elements in Ba-
nach spaces is similar to Theorem 1 in Moricz [2] for arrays of orthogonal
real-valued random variables in the special case p = 2. The proof of The-
orem 3.1 depends very heavily on the geometric properties of the Banach
space. However, Theorem 3.1 provides strong laws of large numbers with
substantially lesser moment conditions even in the real-valued random vari-
ables case since almost all orthogonality results (including Mensov’s SLLN
and Theorem 1in Moricz [2]) use 2nd moment conditions whereas Theorem
3.1 allows for p-th moments, 14 p 5 2

THEOREM 3.1. Let {Xik} be an array of orthogonal (in LP{B)) random
elements in a Banach space B of type p for some 1~ p » 2. If

0-4 E E [ ((+ el"[i°gA* + Bl <»

i— k=1
for some a,R > 0, then

lim mulnl XXXk =0 as.

max{m,n}-*o0o0

Before starting the proof of Theorem 3.1, a supportive lemma will be
established.

Lemma 3.2. If {Xik} is an array of orthogonal (in LP(B)) random
elements in a Banach space B of type p for some 1~ p ~ 2, then

atj b+n L
3.2 max ) ﬂ( )
(3.2) I<j<m izzgl k=>b-\<-l

a,
A Ci(log22ra)p E 6E E\\XIkK\\p for some C\ >0

i=:a+l k=b+ 1

and

a+j b+1

(3.3) max. max X X <

t=a+1 k=b+l1

N C2(log22m)p(log22n)p E GE E\\XIk\\p for some C2> 0.

t=a+l a+l

Acta Mathematica Hungarica 65, 1994



10 F MORICZ, KUO-LIANG SU and R L TAYLOR

P roof. Since | Xik-i —1,2,...]| is a sequence of orthogonal random

elements in B and B is of type p for each n ~ 1, there exists A > 0 such that

a+m 6+ ti a+m atm
X X| Xik = E £ Yi ia £ EWt\p,
i=a+1 fc:=b+l t=a+1 t=a+1
where Yi — ) +b _Xik- Then, from Proposition 2.2 and Corollary 2.4, it
=D+l

follows that

a+m  b+n Pl + N
max X X )1k A T(log22m)p aé] 4 E <

NN
17j~m iza+1/c=6+1 r=a+l  k=b+l

N AC(log22m)p E E £'|X)t|lp for some C >0,

i=a+1 /c=6+I
which is (3.2) with C\ = J1C.
Similarly, we can obtain (3.3). O

Proof of T heorem 3.1. Similar arguments to the proof of Theorem 1
in Moéricz [2] and Lemma 3.2 will be used. For nonnegative integers n and v,

(3.4)
0
P Su f, m max. nn|| > £
m>2u anEi) n's2v “ > + E SE +2r<m%)§r+l2s<n2)§|+l ”6 ”
where
J m ot
Un = izl f=|

Let m and n be integers such that 2r < m ~ 2r+1 and 2s<n E 2s+ 1
Then, like in the proof of Lemma 2.5, we have

(3.5) max max lignn|| i lir2s + £

2r<m<2r+12»<nf2»+
3=1

id a Mathematica Hungarica 65, 1994



LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 11

where
m 2s
N\
41>= Harons or ko E E
i=2r+1 k=1
4= =2 EE .,
2ar2<is 25<n<23+1 = = X'k
1 m n
9 - max max *
Ay 2ar2”s 2r<m<2r+12’<n<2‘+1 t:§-| fC:§+|
From (3.4),
(3.6)
ma [Emn|| > e < =
2r<m<2r+123<n<25+l P w22 ||>7| + 2|_51 PK?2> —
First,
(3.7) E E p [H\ i> < EE "iibr,ZSiip_
\'p co 00 . 2r 2N

7) r"e e 202" e e MM |Pp- some ri>"°
!

r=n 5=r> r= 1 k—1

[ uwP 0 @© r 20 v i G
FiE E 2" E E+ E E*+

g( ) IT—u s=v %rp p {KF:l k=1 i'=2u+1 A:=l
2 2 2r 24y

+E E +E E }£iNo*r=

i=1 k=2"+1 t'=2u+ 1 fc=2v+ 1 J
= () TE oy
A\ 2=1
Using the same technique as in the proof of Corollary 2.4, it follows that

U 2V o o 1

(3-8) bW —~1E | Y Y! e

t=1 Ar=l r=u s=u

Acta Mathcmatica Hungarica 65, 1994



12 F. MORICZ, KUO-LIANG SU and R L TAYLOR

2(a+B)p I
(2aP—1)(2@p —1) 2apu Z@pvi‘: | Jk: .
Next,
(3.9) E E . 2<er 2 EEw =
r~u s—v t=2u+1 k=1
00 1 /-2r o o .
=E E 5P EENYJIEN+ E £iNrE ~ S
=2+ 1 r:2r>i N fe=1 s=u fc=2»+lI s:2s>fc
2 (a+/?)p J ~ 1
< ) /\
@ —UGPP =1l iyr g 1 20V 1P +| gﬂ E
Similarly,
(3.10)  Bi3 i 2@0p £ £ 1. aA*1r,

(;dp — l)\gZAp _l)lKk=/\Zv+\ iA:| 2apu kPp

(e]e]

+E — E\XrK\P
o | ;=] 1APKPP

and
ew Ny EE WBE E =
r—u s—v i=241 b241
- E E u Ir E Mrp ;YSP —
i=2u+ 1 /c=2v+1 S:25>k
— [ E£|[*bIT
Si:Z‘E‘+I E iaPkRp
Secondly,
(06} 00
(3.12) P <
r—u s=v

Acta Mathematica Hungarica 65, 1994
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13
~ ~ [4\P 1 1 /

m
<
el B harBiRors !T:H fY| X
oo oo f \p r+1 2a
SEE(; ~i® 7U(i0g22.2f £ E££||*»r
r—u 3=V 7 t=2r+ Ifc=1
for some 2, by Lemma 3.3,
s(iVvr>£ 20ps iaP tf+ull-
i=2u+ls=v fc=1

| 4\P 00

0 2(a+l)p 2V

EM .
_ + . {1 + logp(i + 1)} =
T ox o r>1:§@+l} égév 28ps f£c:I k Ev+\ tP

A
£ £ [
4 7 n t=2u+ 1 fc=I

K ()]

+ £ ( £ £E ~)y~"~(iuog

;(1+1)]}s
i=2“+1 4i=2v+1 s:28>A: 7
< 2ap _ E ” 1+« + 4]+
i=2u+l k=1
+ £ £ B pitrbp 1+ oi(-+1
t=2u+ 1 Jt=2*"+1
Next,
(3.13) c
r—x s=v
- x n
Yy 1 £ <
) apr®Bps E E*+I
£ £E " [ '+ K (™ 1]+
4 7 k 4 k=2w+ 1 t=1

Nex Math.tma.tica Hungarica 65, 1994



14 F. MORICZ, KUO-LIANG SU and R. L. TAYLOR
+E E iIHT[1 +hg H)J};
i=2u+] fc=2"+1
for some '3 > 0, and

bas) EEp['i>; -

r—un S—V
00 00 /I A\ P 1 / 171

-——-=-£( max max \Y vV  Xik <
tE ~W 2apr2Bps  \N<m S2—H 2«<ng2*+ 15" +lfc=y + i

2 FEE Guis(a:riRia:sdp

T=u s=1tf

E E ~1w ~2(nr (7)) Pr4

i=2r+| fc=2s+1
eE E o pjr [I+los5(i + |)][I Hogs(t ) =
i=2u+| fc2v+l

Finally, if

E E Bt i+ paferp<m

then by combining the results in (3.4), (3.6), (3.7), (3.12), (3.13), and (3.14),
we have

|[Emn|| > £ < oo.
ra>2U and n>2V

The proof is completed by following the similar steps in the proof of
Lemma 2.5 to obtain

SUp IKmnll > £ <00. O

m>| and n>|

For p = 2, Mdricz [2] showed the necessity of condition (3.1). His result
is stated in Theorem 3.3.

Acta Mathematica Hungarica 65, 1994



LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS 15
T heorem 3.3. If an array {m* ~ 0} of real numbers is such that

. . e A
—&hkl, A max é-r-‘-g-d:%ﬁ, b -T-l--é9 I!or rk>'1
iakB - V(r+ 1) N oi*(k o+ i f ] -

with some a,8 > 0, and if condition (3.1) does not hold, that is,

G VY MMa+)flogth). =@

i=1k=1

then there exists an array of orthogonal random variables {Xik} such that

E(Xik) —0 and E\Xik\2" ofk, for all ik,

but

lim m’j ?)ﬂ(zoo a.s.

max{m,n}—wo M

If, in addition, for every r ~ 1,

GH £ Y Wil B[ )=

I— k—T

then we have

lim = 00 a.s.
£

* *
min{m.n}—»0 man@ E£FMe

I=1 I1t=I

It remains an open question as to whether Moricz’s very long proof of the
necessity of (3.1) for the strong law of arrays of orthogonal random variables
can be appropriately modified to show that (3.1) is also necessary in the
general Banach space case when 1< p < 2. Theorem 3.3 does provide the
necessity of (3.1) for Theorem 3.1 when p = 2.

Acta Matkematica Hungarica 65, 1994
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ON COMPLETELY P-ADDITIVE FUNCTIONS
WITH RESPECT TO INTERVAL-FILLING
SEQUENCES OF TYPE P

Z. BOROS (Debrecen)

Notation. Let N, R and C denote the set of positive integers, reals and
complex numbers, respectively. Let N EN, —00 < po <Pi < mmm< Pn <
< + 00 be fixed real numbers and P = {po,Pi, emPn}- Denote by J1 the
set of sequences /1= (A,,):N —=R that satisfy

(1 |An| > |A,+i| >0 forevery nEN
and
(i) N A, < oo.

el

For AE 1and Kk EN U {0} define

[e]e] [e]e] [e]e] [e]e]

Ik(P, A= Po 1C Xn-PN Xn'-Po J2 Xn+PN A
Q% n=Kk-f1 n=k--1 n=k-11

where x+ = max{x,0} and x~ = max{—x,0}. According to the definition in
[1] asequence Ac Jlis called interval-filling of type P, if for any x E lo(P,A)
there exists a “coefficient sequence” (f,,):N —»P such that

0o

X — "~ "£nAne

n=1

We shall denote the set of interval-filling sequences of type P by IF(P).
Now we are ready to generalize the notion of completely additive functions.

Definition. Let X be a (real or complex) Banach space, A= (A,) E
EIF(P) and f:lo(P, A) —X. We call / completely P-additive with respect
to (An), if there exists a sequence (on):N —» X such that P, an is absolutely
convergent and

0o

(1) [ (X > An
\n=l n=1
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18 Z BOROS

holds for every coefficient sequence &n):N —»P.
Using the above notations set

CA(P, X,X) = {/ GX"(p-A
/ is completely P-additive with respect to A}.

Naturally it would be much more convenient to write /(A,) instead of an as
it appears in [2], but here An £ Ig(P, A) may occur leaving /( An) undefined.
Nevertheless the sequence (an) is uniquely determined by Aand /. (Let
throughout this paper K denote either R or C.)

Lemma 1. Let X be a Banach space over K, A= (An) E IF(P) and
f E CA(P,\, X). Then the sequence (an) described in the Definition is
uniquely given by

(2 an= —-— [/fpiA,+ V PoAlt] - / (VpoAfcj)
PI- PO\ | *\{»> J ))
for every n EN.

Proof. Applying (1) for coefficient sequences of the form (pO,po,...)
and (po,---,Po,Pi,Po,---) respectively we get

( 00 \ 00
Y2 X = Y2 podk
k=1 / fcd
and
/[ PiAn+ PoAfc =Pilln+ p°ak’
\ fcEN\{n} / ke N\{n}

The difference of these two equations gives (2).
For a fixed AE IF{P) define

c,(/)=fan (neN, / e CA(P,X,X))
na

where (a,,) is the sequence given by (2). When we wish to replace the

sequence Awith another one (say p), we will write c\?\f) instead of cn(/).
With this notation (1) can be written in the form

®3) f[Y2 6xr

\n=1 n=1
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ON COMPLETELY P-ADDITIVE FUNCTIONS 19

Conversely, if /:70(P, A) —* X and there exists a sequence (c,,(/)):N —»X
such that £ |An|||lcn(/)|| is convergent and (3) holds for every coefficient
sequence (th):N —aX , then / £ CA(P,\,X). For example, when (cn(/))
is a constant sequence, / is linear and completely P-additive with respect to
(A,,). It is worth to remark the following fact (whose proof is evident).

Lemma 2. If A£ /P(P) and X is a Banach space over K, then
CA(P, AX) is a linear space over K and the mapping cn:CA(P, X,X) —»X
is linear for every n £ N.

When /:70(P, A) —X is linear i.e. there exists ¢ £ Xsuch that f(t) =
= tc (t £ 70(P, A)), then / is obviously completely P-additive with respect
to (A,), since cn(/) —c (n £ N). Our main purpose is to prove the converse
of this fact, but the way we do it (which is mostly a generalization of the
method followed in [2]) requires a bit sharper hypothesis. For m £ N U {0}
let TmX denote the sequence whose nth element is Am+n. Put

7P(P)°° = {A£ A\TmMX £ IF(P) forevery meNU{0}}.

The set /P(P)°° is described by Theorem 4 in [1]. It also turns out, that in
some cases (e.g. P = {0,1,...,N}) IF(P)°° —7F(P), while in some other
cases (e.g. P = {0,1,3,4}) 7F(P)°° C 7F(P).

Theorem 1. If X = (A,) £ 7P(P)°° and / £ CA(P, A,R), then f is
linear i.e. f(x) —cx [x £ lo(P-, A)) for some constant cfR.

Proof. For simplicity first suppose po = 0. If c,,(/) = c for some
constant c and for every n £ N, then choosing arbitrarily x £ 70(P, A) there
existsJ<5n):N * P such that x - SnA, and f(x) = f i KXn) =
~ onXnc = cx as it is stated. Throughout the rest of the proof (of
the case p0 = 0) we shall assume that c,,(/) is not a constant sequence. In
this case there exist m,r £ N such that cm(/) < cr(/). To simplify our
notations set cn = cn(f) (n £ N). We may (and will) assume that ci > 0,
cn @ 0 for every n £ N and there exists kK £ N for which k < 0. Indeed,
the set C/ = {c,|n 6 N} is countable thus we can choose a number 7 £
6 }cm,cT[\Cf and define /°: 70(P, A) —R by f O(x) = f(x) - ~/x; then /° and
—f° are completely P-additive with respect to (An) by Lemma 2 and writing
(the proper) one of them instead of / the above assumptions will hold and
it clearly suffices to prove that the regarded function is linear.

We shall isolate two lemmas inside the proof.

Lemma 3. For every n £ N there exists s(n) £ {n,n+ I,n -f2,... ,00}
such that

s{n)
()] Pic,,|An| = Pn ~  cK\XK\

K=n+1
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20 Z. BOROS

Proof. Fix n and first assume An > 0 adding it to our previous assump-
tions. Applying Theorem 4 in [1] we have

PianAPn B (*i Far

k—n+1

thus defining

0o

x =piK - "2 pnx*

k=n+1

one can simply derive x GIn(P, X) —/o(P, TnA). Hence there exist a £ P
(r=n+F1n+2,..) satisfying x = X " n+i °vAr. An inductive construction
of this coefficient sequence is described in [1] (in the proof of Theorem 1):
let sn —O0 and if sr_i is already defined (for a considered r > n), put

Ar —{pG-P|rG-sr_i-)- p\T4 7r(P, A)},

ar G Ar arbitrarily and sr = sr_i + aTAr. Now specify the coefficient se-
quence so that it should increase in the quickest possible way:

émaxAr if Xr>20
ar = . .
(min Ar if A <O

Following this representation of x we find that either

0o

0) X= pNXt

k=n+1

or there exists m G N for which

n-fm (0 0]
(ii-1) *< Y2 PNXk - £ p*Xk
k=n+1 k=n+m+1

and in the latter case there exist 8 GP (k —n+m+ L,n+ m-f2,...) and
a GP such that a / pjv if Antm > 0 while a ¢ 0 if An+tm < 0 and

n+m—1 00
(ii-2) €— AA @M+m ‘b AN ARAK
k=n+1 k=n+m+1
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ON COMPLETELY P-ADDITIVE FUNCTIONS 21

In the first case the definition of x and formula (i) imply

00 00
P\K + pw(_Ak)= J2 pnXl-
k=n-\-1 k=n-\-1

These sums are taken from the set S(P, A) thus we can apply (3) to obtain
two representations of f(x) in the equation

[e]e) 0o
PIA,C,, + PN(-~k)ck= A2 PN><kCK,
k=n+1 Ar:=n+1

from which noticing A+ A~ = |A,| we get

[e]e]

5) p\cm\n=pn Y2 cb*>

k=n+1

a special case of (4).
In the second case set

71+771

y = p\K -

le=77+ 1

then due to inequality (ii-1) and the definition of x

7+ 771

y< Y, PNXt

lc=n+1

follows. Now put

0o

7 =y+ PKXs(K)"k,

le=T71+771+ 1

where \'s denotes the characteristic function of the set
5 = {rGN lcrA > 0}

over N. The above inequality for y then implies

0o

2< E P"Xk-

A=T71+1
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22 Z. BOROS

On the other hand in view of (ii-2) we have

00 n-\-m—1 00
z=Y-~ Y PN*k=X= Y Pnxt — Y PNXk-
k=n+m+ 1 k —n-\-\ k=n-\-m
Hence
n+m —1
2— NN PNA £ JIHAAN
k=n+1

therefore there existsr£ P (r=n+m,n+m + 1,...) such that

n+ 771 o0 n+ 7m—1 00
PiA,- PNK + 5Z PnXs(k)Xk =T = PyvA++ Y eli*-
A:=n+1 A=n+77i+ | Je—71+1 k=n+m

Now we can apply (3) to both expansion of /(r) and an upper estimate to
the second sum:

T+ 00,
PicnK + YA WOc(-A,~)+ Y PNXs(k)ck\ k = f(z) =

k=n+1 JG—T1+771+ 1

71+?_1 ? T+ 771—1 @
= PMck"t + en Xk = PNCK\k + 722 PNXs(k)ckXk,
A—T71+1 A—T1+ T Aj=71+1 A=71+70

consequently

T+ 771—1
(6) picnAn A~ Y Puck{\K + \K)+

A=TI+1

s(n)

\-ppjCn+m*nA-m  PNXs(n + 7™en+mAn+m — N A PNYK|"A Y
ATiH

where
n ‘1LY, if Ctm  O?
n+m—1, ifcntm < 0.

s(n)

So we have proved (4) for A, > 0. In case A, < 0 we may consider the
sequence —A = (—A" —A2,...) which obviously also satisfies —A£ IF(P)'"
with 1P, —A) = - /0(P, A), thus it is possible to apply our above result to
the function g:lo(P, —A) —#R defined by g(y) = —/(—2/). But it gives (4)

again, since c[ <7 = ck\f) £ N) as one can easily show.
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ON COMPLETELY P-ADDITIVE FUNCTIONS 23

Lemma 4. Set U= {n GN |cn > 0}. The inequality

(e]e]

(7) pic,JAn| < pN Y  c*IAd

k=n+1

holds for every n E U.

P roof. First observe that in case cn > 0 the left side of (4) (in Lemma
3) is positive, consequently the sum on the right side is non-void, i.e. s(n) *
N on 1, furthermore it must have at least one positive summand, that is,
there exists m 6 N with n+ 1~ m i1 s(n) and cm > 0. If moreover m is the
greatest integer with the above properties, (4) remains true by ignoring the
negative summands of index k with m <k ~ s(n), i.e. putting s(n) = m.
In other words, we may assume s(n) > n and cs(nj > 0 whenever s(n) < oo.
Now let mi = s(n) and for k ™ 2 define

\s(mk-\), ifmEi GN

T — ( 00, ifmk 1= 00

inductively. Then the sequence (mfc):N -»Nil {oo} is non-decreasing and
in case mk < oo we have cm* > 0 and mk < m”~+i. Therefore sup {mk\k E

E N} = oo and

(8) P\cn\K\ ~ pN £ ct\k
r=n-f1

holds for every k £ N, which can be proved by induction: for k = 1 it follows
from Lemma 3; ifk * 2and (8) holds for k —1, then in case mk = mk_\ = oo
it is the same for k while in case m”_i 6 N consider the inequalities

PlhiAnl 1Am*] 1=

™-1 s(mk- 1) nt

AN cer|Ar\+Pn £ CrlAr| = TN ~ y cr|Ar
r=n-f1 r=mk—+1 r=n+1

Since the sum in (8) is convergent, it immediately implies (7).

Now we can complete the proof of the theorem for the case p0 = 0. Notice,
that applying Lemma 4 for the function -/ we can write an inequality in
case cn < 0 as well, actually the negative of (7), since ck(—f) ——ck(f). So
we have

0o

(9) Picn\xn\* PN £ CdAd

k=n+1
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for every n £ N \ U. Due to our assumptions there exists m 6 N such that
cm > 0 and cm+l < 0. First apply (7) for n = m and then apply (9) for
n=m+ 1to obtain

0 < Picm|Am| » PNCm+i|Am+i| + pn A COdAd
Ar=T71+ 2

A (PN + Pi)cm+ilAm+1| < 0,

which is a contradiction.

When p0 ~ 0, introduce p° = pj —po (j = 0,1,..., N) and P° = {p°\j =
=0,1,..., iV}. Asimple argument (see [1]) shows, that AE IF(P)°° implies
AE£ IF(P°)°°. Define a function g: /0(P°, A) —R by

( 00 \ 00

X + P° X] ~J1 Po*™

n=1 / n=1

(where (an):N —* R is the sequence in the Definition). For any sequence
(e,,): N —P° clearly en+ po 6 P (n £ N), thus

0o

9 f1n T Po)An A A PQ&N —
Kn= 1 71=1
00 (0 0] 00
~ N ANMTT'PO)M A APoAn — A ANTINTI?
71=1 71=1 71=1

i.e. is completely P°-additive with the same sequence (an), thus applying
the above result for P° and g it follows that an = c\n with some constant
cER, consequently / is linear.

It is worth to mention the following consequences of Theorem 1.

Theorem 2. If A= (An) £ IF(P)°° and f £ CA(P, A,C), then f is
linear i.e. f(x) —ex (a £ lo(P, A)) for some constant ¢ £ C.

P roof. By hypothesis (1) holds for some sequence (an):N — C whose
sum is absolutely convergent and for every coefficient sequence (En):N —*
—»P. Then the real valued functions Re/ and Im/ also satisfy (1) with the
sequences (Rean) and (Iman), respectively, since Re and Im are continuous,
additive and real homogeneous functions; furthermore the sums Y, Re an and
Y Iman are absolutely convergent as well. It means, that Re/ and Im/ are
completely P-additive with respect to (An), hence they are linear by Theorem
1. This proves that / is linear itself.
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T heorem 3. If X—(An) £ IF(P)°°, X is a Banach space over K and
/: lo(P, A) —»X is completely P-additive with respect to (An), then f is linear,
i.e. there exists ¢ £ X such that f(t) =tc [t £ /o(P, A)) .

P roof. According to the hypothesis there exists a sequence (a,): N —=* X
with

[e]e]

llan|| < oo

71=1

such that (1) holds for every coefficient sequence (En):N —»P. Now choose
£ X * (where X* denotes the set of continuous linear functionals over X)
arbitrarily and let F = to/. Then

00 [e]e]

A fan)| < Ml 1K1 < 00>
|

n= n=1

and
F(f> A) = 4>(f =0 =T.*nd (an)

holds for every coefficient sequence (&n). Hence F £ CA(P, A K), therefore
F is linear by Theorem 1 and Theorem 2. Thus there exists Gb£ K such
that

(10) D (T) =F{t) =4t (teiO(P,x)).

Setting to £ /O(P,A) \ {0} it implies

ch = 0=Ar(/(*0)) = O
from which with the notation ¢ =

(11) <E(I(*)) = W = thp(c) = dflc)

follows for every t £ 1o(P, A) and for every ¢ £ X*, since c does not depend on
. If there exists t £ lo{P, A) with f(t) & tc, then due to the Hahn-Banach
theorem there exists dr £ X* such that 0i(/(t)) & ¢”c) in contradiction
with (11). This proves the theorem.

The author would like to thank Prof. Gyula Maksa for his important
notes.
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LAGRANGE INTERPOLATION
ON GENERALIZED JACOBI ZEROS
WITH ADDITIONAL NODES1

G. CRISCUOLO (Napoli) and G. MASTROIANNI (Potenza)

1. Introduction

LetLm( ; /) be the Lagrange polynomial interpolating a given con-
tinuous function / at the zeros of the mth Jacobi polynomial
Pm < It is well known that, if6 = max (a,/3) > -  then the mth Lebesgue

constant satisfies

Cm{vNe ) — sup m s+ 2).
0 114

Nevertheless, if in addition to the knots {x"km"}T-1 we consider a suitable
number of points near the endpoints =1, then the new interpolating pro-
cess /) is optimal, in the sense that \\Em(v(a™) = O(logm).
Similar result holds when the starting knots are the zeros of pm(w) with
w(x) = v(@B\x)\x —|7, 1 <t<1 —<7 <0 (see [9, Remark 3]).

The technique of adding nodes near the points +1 was first introduced by
Szabados [14]. Recently, this procedure has been extensively used by many
authors in different contexts (see e.g. [2], [3], [5], [8], [9], [10], [11], [13]).

Nevertheless, if the interpolation knots are the zeros of pm(w) where w
is the weight defined above but with the exponent 7 > 0, then the additional
nodes near =1 have no positive influence on the behaviour of the interpolating
process (see Remark 1).

In this paper, generalizing the previous procedure we show that, if the
interpolation knots are the zeros of pm(w) with 7 > 0, then adding a suitable
number of nodes near +1 and t we obtain an optimal interpolating process.
Furthermore, we give estimates of simultaneous approximation. Finally, we
consider the case of multiple additional nodes.

1 This material is based upon work supported by the Italian Research Council (first
and second authors), by the Ministern dell’Universitd e della Ricerca Scientifica e Tecnolog-

ica (second author).
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28 G. CRISCUOLO and G. MASTROIANNI

2. Preliminaries

Spaces of functions. We will consider functions / with domain [—1,1],
and define the space of functions C”* on the interval [, 1] in the usual

way; thus / G if and only if / is continuous with its derivatives fA>
0 = o.[-1,1]
Let
W 1= max |/ , /|t max = -
Uy OO il max /lo = 11tk

We define the modulus of continuity u>(f; ) of the function / by

L/;<$) = sup lA/i/Hf-"i-zi],
h<6

where Ahf(x) = f(x + /) —f(x). Then we write / G Lipw A if uj(f-,S) *
A M6X. Finally, we set

where / is a given continuous function and Vm denotes the set of polynomials
of degree at most m.

Special weights. Let
via'P\x) — (1 —z)a(l + x)b, abGR, x G[41].
The generalized Jacobi weight w G GJ is defined by
(2.1 w(x) = g{x)vra\x)\t —x7, xe [, 1],
wherea > —1, /7> —1, 7 > —1,and —1 < f < 1. Here g is a positive con-

tinuous function and its modulus of continuity u>satisfies JQca(g; t)t~1 dt <

< 00. Now, let {Pm(*e)}m=0 be the system of orthonormal polynomials cor-
responding to the weight function w G GJ, that is, pm(w) is a polynomial of
degree m with positive leading coefficient 'ym(w) and

J Ppm(w] t)pn(w;t)w(t) dt = 6m<n.
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We denote by {xj,m(w)}™=1 the zeros of pm(w) indexed in increasing order,
and by Xjimw) = Xm(w; XjiT{w)),]j = the corresponding Cotes
numbers, where

-Tn—1 -1
Xm (= x) i £R,
- k—0

is the mth Christoffel function.

3. Interpolation by generalized Jacobi zeros

Lagrange interpolation with simple additional nodes. We denote by
jGn(w, /) the Lagrange polynomial interpolating / at the zeros XjtT(w) (j =
—1I,...,m) of Pm(w) with w £ GJ defined by (2.1). Then, given positive
integers r and s, we introduce the points yj = jiym(j = 1,2,...,s) and zj =
=zhm (j = 1,2,..., r) defined by

(3.1) S

(32) 2 = 1 ™ Blxmmw) gy

Moreover, for any fixed — < t < 1 there exists an integer mo such that
£imR>) » t A xmam(w) for m A mo. Then, given a positive integer p, we
introduce also the points ¢ —Tj>m( = 1,2,... ,p) defined by

{4 iftoXm  Xij\m t
@3 T— P = leee P

Xim . ift T)h>X{+m t

P+1

where xI>m(w) 1 t < xi+Him(w).

So, we denote by Cm,r,s,p(w;/) the Lagrange polynomial interpolating the
function / at the points -1 = y\ < eee< ys < %\ TqW) < oo < Xi'm{w) <
< T < eee< Tp < XiHlam(w) < eee< Xmdmw) < X< mm< 7r = 1.

Previously we have assumed r ~ 1, s » 1and p”™ 1. We complete the
definition by putting £m,000(wif) —Cm(ro; Zi-

tiere, we have chosen the additional points y3, zj and Tj equispaced.
However, the results of this paper remain valid fixing the above points in
several other ways. More precisely, the choices of the additional nodes
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satisfying yj+i - 1j ~ w-2,j = 1,...,S- 1, 1*zZj+1- zj ~ m-2,j = |,..., r-
l,zi,m(w)-?/s~ m-2 ~ 21- i mm(if)),andr+1-Tj ~m-1,j =1,...,p-|I
with N — ~ m-1 ~ £;+i,m(w) —rpor 77 —Xiilflw) ~ m-1 ~ t—tpaccording
as t —Xitm(w) N ®;+im(w) —t or t —z,)m(w) > ®j+i,m(in) —t, are possible.

The following theorem determines the previous parameters r, s and p
in order that Cm,risp represent a good approximation for / and for its
derivatives simultaneously.

Theorem 3.1. Let w £ GJ be the weight function defined by (2.1). Let
f £CM g~ 0, and leti £ {0,1,... ,q}. For any exponentsa > —1, § >
> —1 and 7 > —1 of the weight w, there exist nonnegative integers r, s
and p such that

(3.4)

ej
m 5 .
xe[-14], j- 0,1,....A

for m A~ max(4” + 4, mo) and with some constant C independent of f, m
and x, provided that the integers r, s and p are defined by

35 fa__:l-_f} _1< r < _?l_:l:f'+ 5
(3.5) 2 4 - 2 4
(3.6)
(3.7)

Of course, one obtains the best estimate for | —q in (3.4). Nevertheless,
when only the first t derivatives of / must be approximated and i <Cq, then
(3.4) is useful in the applications; indeed, it holds by using a number of
additional nodes depending on | (cf. (3.5)-(3.6)).

From Theorem 2.1 the following corollary follows immediately.

Corollary 3.2. Let w £ GJ he the weight function defined by (2.1).
Letf £ CM\ 47 0, and i £ {0,1,... </}. For any exponentsa > —1, B >
> —1 and 7 > —1 of the weight w, there exist nonnegative integers r, s
and p such that

(3.8) N/ —Emrsp{w]/)|| (ACEm-q(f") 1

1 I1f A and B are two expressions depending on some variables then we write A ~ B
if IA/B]”"1~ C uniformly for the variables under consideration.
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for m » max(4Z+ 4, mo) and with some constant C independent of f and
m, provided that the integers r, s and p are defined by (3.5)-(3.7).

Remark 1. Assuming I —0, Corollary 3.2 assures that if

(3.9) ial 2ea

(3.10) /|3+411}\5<?+;5’

(3.12)

then the estimate

(3.12) \\f-Em,r,s,AwI)\\ UCEm. q{f(?))"|P,

holds. Therefore, choosing the zeros of the polynomial pm(w) with w defined
by (2.1) as nodes of interpolation, by (3.9)—3.11) we can always determine
the numbers s, r and p of nodes that we must add near 1, —1 and t
respectively, in order that (3.12) hold.

We further remark that, having fixed the zeros of the generalized Jacobi
polynomial pm(w), in general it is necessary to use the additional nodes to
obtain (3.12). Indeed, ifq,/3” —1/2 and 7~ 0 then (3.9)-(3.11) give r —0,
s=0and p —0 and we find the estimate [12, p. 178, Theorem 12]

Wf-Lmw,f)\\ UCEm-q(fM)1 ", a,BS —1/2, 7 = 0.

However, in the case a,/3 > —1/2, 7 ~ 0, if one does not use the additional
nodes near +1, then [12]

(3.13)
Wi-Lmw;H)\ IC Em-g{fM )~ ’(‘)jz, 6 = max(a,/3) > —1/2, 7 ~ 0,
mq

which is worse than (3.12). On the other hand ifa,/3 5i —1/2 and 7 > 0
and we do not add nodes near t, then we find

(3.14) Y/ —zm(«;;)|| Em_q(/<»>) a/3g - 1/2, 7> 0,

which is also worse than (3.12).
Summarizing, in the case of generalized Jacobi zeros it is possible to
change bad matrices (in the sense of (3.13) and (3.14)) into good ones (in the
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sense of (3.12)) by the simple technique of adding nodes near the zeros or
singularities of the weight.

Furthermore, we remark that the number of nodes that we must add is
independent of m; it depends only on the parameters a, § and 7 of the weight
(cf. (3.9€3.11)). On the other hand, for the simultaneous approximation
the numbers r and s depend also on the order of derivatives £ that we would
approximate, while p does not (cf. (3.5)-(3.7)).

Remark 2. From the obvious inequality

HEm,r,s,p(wi/) NE= 1/lIr + I/ —Em,r,s,p(wi/) | @

and from (3.8) with q =1 we deduce the useful estimate

Il E£m,r,* />(W)|| e := IIISI}PI NEm,r,5P{LL/)|L » Clog m,
r=

which holds when £/ 0 and (3.5)-(3.7) are satisfied.

Remark 3. The extension of the definition of Cm,r,s,p{w\/) when the
weight w is defined by

M
w(x) = g(x)vtafdx) It —xp GGJ,
3=1

with -1 < O < <tM <1,7)>-1j=1,..,M and M > linstead of
(2.1), is obvious. Further, all the previous results can be easily extended to
this case and we omit the details for the sake of brevity.

Lagrange interpolation with multiple additional nodes. So far, starting
from the zeros of generalized Jacobi polynomials, we have considered La-
grange interpolating polynomials on these zeros and on a suitable number of
additional simple nodes in order to obtain an interpolating process by which
/ and its derivatives can be well approximated. Nevertheless, if the function
/ is sufficiently smooth we can do differently. We start again considering the
points XjtTn(w) with w defined by (2.1). Now, among the interpolation nodes
we omit the point X*m{w) closest to t and we add the point t with multi-
plicity p. Moreover, following a procedure used in [9] we also add the points
—1 and 1 with multiplicities s and r, respectively. In this case we must as-
sume/ GC " withg” r—1, q” s—1land g” p—1 Thus, we define the
interpolating polynomial £ mir>SiP(w;/) at the points xJTn(w) (j = I,...,m,
K ¢ r*) and at —1,1 and t with multiplicities s, r and p respectively. Obvi-
ously, this is a mixed Lagrange-Hermite interpolating polynomial of degree
m +r+s+ p —2 (Lagrange on the original points and Hermite on the nodes
t, £1).

For this polynomial we can state the following theorem which gives an
estimate of Telyakovskii-Gopengauz type.
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Theorem 3.3. Let w E GJ be the weight function defined by (2.1) with

a,f > —i. Letf EC”r\ 47 0, with r—1,5—1 p- 1 If
a+o 1. a+o 5
--------- 4 =N < e 4 —
(3.15) 5 +4:r AT
(3.16)
(3.17) N+ lEp<| +2.
then
(3.18)
9-J
«'(*) - 21 , X)) SCE, -, (/") m logm,
*G[-1,1], j=0,0,...omin(r- I,s - 1),

for m ~ 4q + 4 and with some constant C independent of f, m and x.

4. Proofs of the main results

Given the weight w E GJ defined by (2.1) and given the points yhrn —
- VU= 15 *5im=Z (=1,.,rad Thm=T (j=1,.,p
defined by (3.1), (3.2) and (3.3) respectively, we define the matrices of points
Y ={ym j =1,-9S me N}, 2 -{zhm j - 1,...,r, me N) and

T = j m G N}. Setting
(4.1) no(x) = 1, (O — Noyjmfi s >0,
J=1
r
(4.2) BO(x) = 1, Nr(x) — Nmy? >0,
J=1
P
(4.3) CO(x) = 1, cp(x) = p>0
J=1
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by the definition of the polynomial Cm,rs,p(u); f) we can write

/

(4.4)  Emrsp(hif\x} —AsPX)B{XQiIXLM o GC\X

4"As(x)Cp(x)pm(w; x Lr f Z, - ok
\ A pPy'W)

+Br(x)Cp(x)Pm(w;x)L, (y ;BrCppm(w) "*) *
As(x)BT(x)pm(w, x)Lpfl, — —
where

(45) CT{™ AsBrCp'X) "

£ M Km W XMAs(xk,m(W)) B T(xk<sm(w)) Cp(xktrn(wj)
h,m(w) being the fcth fundamental Lagrange polynomial with respect to the

weight w,

_ / _ - f(*i
(4.6) Lr Z; ASCPPM (") X JE1k !_kl Zi zk As(zj)Cp(zJ)pm(w, zj)

/ f(vj)
4.7) L. %
G L m BpcpPm(n) ¥ JE.k .rkl A Sk BrODCHODP YD

and

) LP(/T-’ASB'IIpm{WY ; v %‘ TR ARTHS e pmiti=rD)’
In particular, if r —0 then we set LT= 0. Similarly, if s = 0 or p —0 then

Ls=0and Lp=0.
Furthermore, setting

(4.9) Cp(x) =(z- Hp,  pl 0o
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and
(4.10) Pm(w)= X_Pm{‘”)

where x;*)Idtp) is the zero of pm{w) closest to i, by the definition of
Lm,r,s,p(w;/) we can write

(4.11) Cm,r,sAwi/; X)=v(r's\x)Cp(x)Cm (w\ v(Js)c +

+v@s\x)Cp(x)pm(w;x)Hr ( 1; v(°'s)C|/oPm(W) (x\ o+

+v(r'°\x)Cp(x)pm(w;x)Hs{-1; Ero J'- E viX +
v

r'°)Cppm(w)
+V(Tx)pm{w,x)Hp (t'l (wj’X) ’
where
(4.12) (WrAG:Y -
_— f{xk,m(w))
T & Zem) * p(r)(a*m(u;))Cp(a;tm(w))
/ )
(4.13) A, (l "Cmeiw)"z(
_r_l (x- iy 1(*) 1)
= P(M(a;)Cp(X)pm(tp;X). 5
/
4.14 q, -1 Cx =
@19 p(r=)Cpm(ip)”
_SEl (x + 1)J I*) Y
Tz b WIrO{X)CRx)pT(wx)\ x=""

. / . _Prl (»- < f(x) U
(4.15) sap [ V(r,a)pm(w)l* _J=EO i v(r3)(x)pm(ii>;x)Ja_t"
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In particular, if r = 0 then we set Hr = 0. Similarly, if s = 0 or p = 0 then
Hs = 0 and Hp = 0 respectively.

In what follows, we assume that w(x) = g(x)v*aid\x)\t —~* G GJ, and
we denote the zeros of the mth orthonormal polynomial pm(w) corresponding
to the weight tordered increasingly by {a",1t (o)} ™ . For the convenience
of the reader, we collect some properties of generalized Jacobi polynomials
pm(w) which will be used in the proofs.

Let Xk,m{w) = cos9%,m for k = 0,1,..., m+ 1 where xom(tn) = —1,
Xm+I,m(w) = 1, and 0~ Okm =  Then
(4.16) BK,T - BK+l,m~ —,
to

uniformly for w GN and k = 0,1,... ,m (cf. [12, Theorem 9.22, p. 166]).
The Cotes numbers Xk,m(w) satisfy

(4.17)
Afemn) ~ m~1(1- a7 (10))"+2 (\t - xkm(w)] + m_1)'y(l + xkm(w)) R+2,

uniformly for o GN and k = 1,... ,m (cf. [12, Theorem 6.3.28, p. 120]).
Furthermore,

(4.18) \pm(w;x)\ »
NC(-sll- x+toJ) a 2(f —g|+ o X) 2(y/l +x+ 0 *

uniformly for —4 x ~ 1and o GN (cf. [1, Theorem 1.1, p. 226]).
In addition,

(4.19) |pm_i (10; xk,m(™)) | ~
~ (1 - Xkm(w)) ~2+*(\t - XKTn(To)I+ TO1) ~2 (I + Xkm{w))

uniformly for oGN and k = 1,..., 10 (cf. [12, Lemma 9.30, p. 170]).
In particular, by (4.18) and (4.19) and taking into account that

Zk,m{w;x) = EV. SR T’(TozspT 1 (7o) XK' T '(w/)\) Pmiw:x)
,m{w;x) = =-=-m-f— _ ; n PR
7m(w) X - X k,m{w)

where 7T (T0) denotes the leading coefficient of pt (T0), we deduce
(4.20) |4,7(TO;®)| » 3(1 - Xk,m(w)) %Q

* +j  |pT (TO;r)|
m{\t - Xkym{w) I+ TO *) 2( 1+ Xk<n(w)) 2 - Xkm(w) T
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Moreover, denoting by d the index of the zero of pm(w) closest to X €
£ [-1,1], we have

(4.21) imM>x)| ~ 1,

(cf. [12, Theorem 33, p. 171]).
The following lemmas will be needed to prove the main results.

Lemma 4.1. Letf £ C'4. Then, there exists a sequence of polynomials
Pm £ Pm, m N Ag+ 4, such that for o » 1 andforj =0,1,... ,q

Y

(4.22) fuyx) - puar N C Em-a{f(4)),

with some constant C independent of f, x and m ~ Aq+ 4.
For the proof see Lemma 4.3 in [9].
Lemma 4.2. Let Qm £ Vm be such that

\Qm{x)\"C IX| 51, af£R.
Then
X| 51, j <m.

Furthermore, if the polynomial Qm has two zeros in +1 of multiplicity [a] + 1,
then

\Qtt(x)\ UC X A L <m.
The first part of the lemma can be found in [6, Theorem 7.1.3], while the

second one is in [7, p. 169].

Lemma 4.3. Letf £C*\ gq" 0, and letl £ {0,1,...,q}. Let Lr and
Ls be the polynomials defined by (4.6) and (4.7) respectively, such that (3.5)-
(3.7) hold. Then, for p ~ 1

I'm—

(4.23) As{x)Cp(X)pT (udSx"Lr AsCpP (A);x
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m mc
: oo L <
(4.24) Br(x)Cp(x)pm(w;x)Ls Y ; B rCpPm(w" X
\/I —x2 1
<C m +"N)
(4.25) iC'jI"p iX m= <

: \X
AsBrPm(w)

SCi“ 2 +82)

where rm_i = / —Pm-i, Pm_i being the polynomial defined by Lemma 4.1,
with some constant C independent of f, x and m » 4q + 4.

Proof. By the definition of Lr we have

I'm— X - XK Irm-1(Zj)l__
ascpmey S B (7o 2 1asga Catzipmw, Z)

LT
where
\A,,(zj)\ 1g 1, ICp(zj)\ 1~ C, \pm(w;zj)\ ~ ma+2,
and by (4.22)
[rm_1(2j)] = (fr)

Furthermore, by the choice of the points Z we have

A Ccmar 201 —x+m D 2,
k:,k/\j Zj zk

and consequently
i 5 —\ 2r—= Em-q{fi4))
I\Z ASE:FPW\V\»AJ (Y rrem m2+a+i-2r+2'
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If i x = 1then |As(x)| » C, |Cp(x)| # C and \pm(w;x)\ ~ ma+l/2
Thus, by (4.26) we deduce (4.23). On the other hand, if —4 " x ~ xiim(iu),
then |[As(x)] » Cm_2s, |Cp(x)] » C, |pm(tn;x)| ~ m”~+1/2 and we have

As{xX)Cp(x)pm(w,x)Lr (z- -X) <
{x)Cp(x)pm(w,x) ( ASCPPTLL) 3
< (J Eyn-q (/™) 1 1
= m2? mas-B-i-e ma+l-2r+e-
Since (3.5) and (3.6) assure that 2s —8 —| [~ Oand a + | —2r + £>0,

(4.23) follows again.
If Zi,m(u;) » x  xmm(u>) then

lpmu>x)| ~ C(1 - £)“2_i(1+ x)~*~<(a - i[+ m_1) 5

|An(x)| ~ (I + x)s and \Cp(x)\ » C(|x —t\ + m_1) p. Therefore, by (4.26)
andp—"~ "0

As(x)Cp(x)pmitn, j)Zr ( Asc"’;“;n‘(m)-;m <

<C <
m 22-" ma+2 2r+

< CL’InIZ‘!r/\ (L-*)*( +x T "+1+17 -7

being m 2~ C(1 —x2). Now, if x » 0 then we use (1 + x)s f+1+-2 r »
N (1 + x)2. On the other hand, if x < 0 then we observe that from (3.5)-(3.6)
s-f+1+ @ —r ™ | follows. Thus, we have

"m—1 e

As(x)Cp(x)pm(u;;x)Zr Ascppm ()

and (4.23) follows also in this case. Similarly we can prove (4.24).
In order to prove (4.25) we recall that by the definition of the polynomial
Lp we have

'm<1 | -1(7j
P 5x SE M
MeB rPm(”) (D1 k=lkaj TEo Tk IASGIST(ri)pm(usind)
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where |As(jj)Br(Tj)\ 1~ C and by (4.22), [rm_1(rj)| 1 (/(?). Let

=t = *t4-i,m(w); then for any j G {1,...,/?} the knot closest to Tj
is Xitm(w) or Xi+iiTn(w). Denoting this knot by xl/>n(w) where =G {r,r + 1},
we have

\Pm(w; T\ ~
~ wrlTj- xi=mw)\ (y/l1 - Tj + m=3) _1(y/l + 1)+ to-1) _1AM2(W; Tj) ~
-~ (v = em*) (ML T+ m_1) 1 (<. T:v+ m-1) 2,

(see [12, Theorem 33, p. 171]). Therefore,

[i>m(w;Tj)] L~ C(li- Tj+m I)24Cm 2.

Furthermore, by the choice of the points Tj we have

M 7‘T[:: A Cmp 1([x —d + m )P

k=i k?j 3

and consequently

I'm—1 . ET-aYhbl)
4.27 - <c Xx-t\+m-")p-1
420 mds-"rPm(2") )P Tu+%p+l

If 45 x ~ Xi"m(w) or £¢+i,m(w) ~ g ~ 1 then proceeding very similarly as
before we can deduce (4.25) from (4.27). On the other hand, if Xisn(w) * x/’\\
A x;+i,m(rn) then |As(x)Br(x)\ i C and \pm(w-x)\ 5 (|t- x\ + m_1) 2.

Thus, by the assumption p —”" - 1< 0 in view of (4.27) we deduce (4.25)
also in this case. O

Finally, we recall that if w G GJ is the weight function defined by (2.1)
and a, b and c are real numbers, then

y (1-Zfc,mH)a(l +Xkim{w))b <
m\x-Xk,m(w) I
k(1

CMl—x+m 1) (v +x+ t 1) 'log to,
if - ~adabn x| ~ 1,
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(I - Sfem(w) + m r)c,

(4.29) m\x - xkm(w)\

Xk,m(w)2) 2 i

k*d

<g llogm ifc=0

N
— 1l1+mc ifc<O kI~ 1

where d denotes the index corresponding to the knot closest to x and C is a
constant independent of m and x.

For the proof of (4.28) and (4.29) see Lemma 4.1 in [9] and Lemma 5.9
in [4], respectively. Furthermore,

(4 30) {1 - xkm(w))a(l +xkm(w))b(\t - xkimw)\ +m 1)c <
r(/:\(lj m\x - Xk.m(w)

AC(MI-x+m D2a (Ml +x+m ) 1(|x-i| + m 1)d°gm5
if - AAabs —1<chO0, L

where d denotes the index corresponding to the knot closest to x and C is a
constant independent of m and x.

Inequality (4.30) follows from (4.28) and (4.29) and by a routine and
laborious but not enlightening computation. We omit the details.

Proof of Theorem 3.1. Denoting rm_i =/ —Pm_i, where Pm-1 is
the polynomial defined by Lemma 4.1 and corresponding to the function /,
we have

/bl (K) - CMIr<8RWJI\X) = r*Lii*) - A |rlS ; rm-iar)

1 O)
I'm-
= ri_i As(x)Cp(x)pm(w;x)Lr 2\ X
= ri-i(x) (x)Cp(x)pm(w;x) ascopm (M)
ACHAYAPMA A Tm—1 w
B r(x*"Cpx"Pm"w, x LSIY5BGC A

i(J)
- . N .
As{x)Br(x)pm(w; x)Lp (T; Aanr]pr%(w)’X
o= Y

AsBGC’a
=:hi(x) + 12(x) + 13(x) + /4(x) + h(x), j - 0,1,...,1

As{xX)Br(x)Cp(x)Cm I in,
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By Lemma 4.1
li(x)| ~ C Em-a{f@), 1i=0
In view of Lemmas 4.3 and 4.2 we also have

[12(x)] + |/3(x)| + [/4(x)|] iC

j 0.1.
Therefore,
(4.31)
h t-J
<chHEE +% _af fA
- A Em-q{f") +
Y
+ As(X)BT(x)Cp(x)CT ~W, AsBGC'X

To evaluate the second term on the right side of (4.31), we denote by Xd,r
the zero of pm(w) closest to x £ [, 1], and write

(4.32) As(x)Br(x)Cp(x)Cm  w, Arg]%lc:p' X

rm- 1 {xdm(w))

As (3m("0)  ("d,m(")) Cp(
+As(x)Br(x)Cp(x) m

= As(x)Br(x)Cp(x)Edm(w,x)

" I'm— ( Xk, m(w)"
&_& )As{xk,m(w)) Br(xkiJn(w))Cp(xkTn(w))

=:Ji(x) + J2(x).
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Since \Aa{x)Br(x)Cp{x)\ ~ |As{xd<a{w)) BT{x*m(w)) Cp(xdo<m(w)) | and
Ind,m(w\x)| ~ 1 (see (4.21)) and in view of Lemma 4.1 we can write

(4.33) Vv m’ +~r-n\{)I Em _g{fw).

On the other hand, in view of the choice of the additional points we have

IA s (xkm (")) Br(xkirn(lvr) Cp (X | =
A1 - HmW))r(1+ xkm(w)) S(It - atm(w)| + m~1)P.
Thus, by Lemma 4.1 and (4.20)

\J2(x)\*C\As(x)Br(x)Cp(x)prn(w;x)\ -m —-X

{1-Xk,m(w)) 2~T+2+<(l + xkim(w)) 2~5+f +=* (|t~ XkiTn(w) |+W~r)2~P~"

k=1 rn\x-xk,m(w)\
k~d

“C\ Aa(x)Br(x)Cp(x)pm(w;x)\ EATNe) - X

xy> (I-~fec,m(~))a(l+~fc, TQw ) ) fe(|t-a:fcim(u;)|+m~1)c
m\x - x Km(w)\
K-d

witha=| 4+ "+|,6 = | —s+f +| and c = - p. By the assumptions
(3.5)-(3.7) we have 4 <a,b <\ and —4< c”™ 0. So, by (4.30)

(I - Xk,m(w))a(1l+ Xk,m(W))b (]* ~ xk,m(W)\ + w 1)"
m\x - xkm{w)\

K%
ANCLy)\ —x+m i)M+2 2 (Mi-)-x +m 1) fHIH2 (Mt —x\+m J)2 p.
Thus,

(4.34) IMX)\ i1 ¢ Em-4(Ne) log m.
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Combining (4.33) and (4.34) with (4.32), we deduce

'm< #\ _
As(X)Br(x)Cp(K)ET ASBICp’ /
uc Em-4{fM) logm.

m o
Finally, applying Lemma 4.2 with 0~ j £, we obtain

rm-i -\t _
e t ASBICp'X)
yIT= 1
<C m m2 | ma-e log m.

The proof is completed by inserting the last inequality in (4.31). O
A further lemma will be needed to prove Theorem 3.3.

Lemma 4.4. Letf £ C*"A, g~ 0. Let Hp be the polynomial defined by
(4.15) such that (3.15)—3.17) hold. Then, for pd 1
(4.35)

vT\X) p m{w,x)Hp V(r,;;“p;(w) <cC "ATm Em-g{f(A),

where rm_i —f - Pm-\, Pm-i being the polynomial defined by Lemma 4.1,
and with some constant C independent of f, x and m » Ag+ 4.

Proof. By the definition of Hp we can write

I'm—1 v)
#o (b v pwy XJ = 25 P A
v A m(w = _ _ ..
P y 120 n u(r-Apm (u;ix)_ y=t
Now, since
rmi(z)~()
Pm{w\x) J x=t E—o X)
with
< c
Pm(w;t) lpm (i)
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and observing that the polynomial n(r,s) and its derivatives are bounded in
t we have

I'm-

vAr's\x ) p m(w,x)HE( t; v(Fs)pm(w) o X

m+

Cl+®'(@- x)r \pm(w:t)\ N x—t|+m I)p L

Thus, taking into account that \pm(w;t)\ 1~ Cm 2 land |pm(u;;z)| »
A C m\Pm(w; a)|, we obtain

v s\ X <

Ao (14 )X - x)ripm(w; an) . (Jx-d9+m Jp\

Comparing this last inequality with (4.27) we deduce that proceeding as in
the proof of (4.25) we obtain (4.35). Indeed, the only difference is that the
exponent g —p + 1+ 2 Sreplaced by q—p + 2 + but now we have the
assumption (3.17) replacing (3.7). O

Proof of Theorem 3.3. Let rm_! - f - Pm_x where Pm_1 is the
polynomial defined by Lemma 4.1 corresponding to /. Then r*_i(—1) = 0,

j=0,1,..,5s- 1land r*_i(I) =0,j =0,1,...,r- 1, r,s ~ g+ 1. Thus,
recalling (4.11) we can write

(4.36) \fA(x)~C AsJw-f-x)\ S

- |Im_l(x)l + u(rs>(nCp(z)Cm (Ng VAm4 mx -

Ho (t 'm—1 "M
+  v(Ts\x)pm(w,x)Hp ( ’v(Ts)pm(wy’Z

=i bl X)+ /2*) + /3(7), j=0,1,...,min(r- 1,6 - 1)
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By Lemmas 4.1 and 4.2 we have
(4.37)

h{x)ucC . Em-q{fM), j =0,l,....min(r- 1,5- 1).

Furthermore, in view of Lemmas 4.4 and 4.2 we also have

(4.38)

{x) i € (--=- 1 ~m-g(/@> j—0,1,.,min(r—15—1)

On the other hand, in view of the definition of Cm we can write

V(s KON [ —E—=x <

ANC@A A+ s —x)r\t —x\p x

*fc,m(w)-®i*,m(w) , . 4| ..
r\]/ {Y-_x_t_Si_nZ{_ T L\Ih,m(w,x)\ X

k™

Thus, denoting by d the index of the zero of pm(w) closest to x, by Lemma
41 and (4.20) we get

Tw— <

v(rs\sx)Cp(x)Cm (w; v(r’s)Cp;X

-C mmf— ~ X272 + _ X\P I\pm(w,x)\

<A 11~ Zem(m))a(l + Xk,m(x))b(\t - XKTh(w)\ + m~1)’
&f& ar X xXk,m{w) 1
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wherea=f +f+|-r, 6=8 +f+ |- sandc-"~-p+1. By the

assumptions (3.15)-(3.17) we have Nab”\Vand -1 <c” 0. Therefore,
in view of (4.30) and since

X+ z)s(l - x)r\t - x\p~I\pm(w,x)\ <
We(l- xr-?2-i(l +x)s~i-*(\t - x\ + m-1)p~1~\

Xim(w) ~ X i Xm<rn(w),

we deduce
(4.39)
A o I'mA yiv —
vAs\x)Cp(x)2r W'lv’\_Cr_p"X <C m Em-q(f(g) logm,
ANLm*n) ~ ~

Now we assume xmm(w) < x A 1. Then, taking into account that

[pm(tu; x)| ~ Cmat+2 (/| + x + m~1) (x - tV+ m~x) 2
and proceeding as before we have

Tm—
s\x)C C <
v(r's\x) C p{x) rrn 1

c Em-q{fM)
mq

< 22) 2+

+(1+z)s(l —a)y(ji—x +m_1p 2 1(Ml+x+m_1) 1 2m“+2 X

(r ~em®) (LT *L7™) () *Tha(m) T I ) <
= 4 > - xfgn(w)

< o Em-a{f(®)

g (1- x2)2+

+(1 +x)s(l - x)f+2+<(]i- *|+m-)p“2"™(X/TT "+ m-1)~"2mQ+2 X

1
x N (- 3uTaw?) 2(1 + akkm(g)) (Mt - xttm(m)| + m 1)c

k_=$ij m\x - xkTn(w)l }.
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Thus, by (4.30) and the assumption a > - we can write

vAi ) {x)Cp(x)2mw. _ L N . xn A

-C(*m *2) Em~Af@){l+ (! - x)?+"ma+2 logm} ~

0%/l —x2

<C m Em- q(f{9) 1og m, Xmm(w) < x ~ 1.

Then (4.39) still holds for xm,m{w) < x fi 1. In the same way we can proceed
in the case — "~ x < xijW(w).
Applying Lemma 4.2 to

VM EOCPOOEM (Wi FTE xS
<C m Em-q(f{g) logm, IxX ~ 1,
we get
4]
(4.40) 1200~ c Y Tm Em_q(f{g) log m,

j=0,1,... min(r- Il,s - 1)

The proof is complete by combining (4.37), (4.38) and (4.40) with (4.36).
O
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ALMOST COMPACT SUBSPACES
OF HYPEREXTENSIONS

A. CSASZAR (Budapest), member of the Academy

0. Introduction

The paper [1] contains the construction, if E is a topological space and
S is an open subbase in E satisfying 0, E G S, of a space Eh, containing
E as a subspace and having many interesting properties; in particular, Eh
contains a series of subspaces with more or less nice behaviour, among them
one which generalizes the concept of a Wallman-type compactification and
another that generalizes the superextension introduced by J. de Groot [8].
Some further subspaces of Eh were examined in [2].

The purpose of the present paper is to study, under some restriction
concerning the subbase S, further subspaces of Eh that are almost compact.
It will turn out, in particular, that we obtain in this manner a generalization
of the theory of almost compact extensions due to J. Flachsmeyer [7] for
Hausdorff spaces and generalized by K. Csaszar [5] to arbitrary topological
spaces. Similar but weaker statements are contained in [6].

1. Terminology

We shall use the terminology and the notations of [1], so we do not
recall here definitions that can be found there. On the other hand, we
formulate here some definitions that are not generally used or known and
are not contained in [1].

A topological space E is said to be almost compact if, in an arbitrary
open cover of E, there is a finite number of members whose union is dense in
E; this is equivalent to the condition that every open filter base (i.e. a filter
base composed of open sets) has a cluster point in E where a point x £ E is
said to be a cluster point of a system A of subsets of E iff x £ A for every
A 6 A. Another equivalent characterization of almost compact spaces is the
property that every maximal open filter base is convergent in E (see e.g. [5],
(1.5)).

Let S be a subbase (for the open sets) in E. The space E is said to
be almost supercompact relative to S iff, in every open cover of E whose
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52 A CSASZAR

members belong to S, there are two members whose union is dense in E ([6],
Definition 2.2, called super almost compact). If E is supercompact (see [1])
relative to S then it is obviously almost supercompact relative to S. On the
other hand, if E is almost supercompact relative to a subbase S, then it is
almost compact; in fact, we have the following analogue of the well-known
Alexander Lemma (implying that [6], Example 2.1 is false):

Lemma 1.1. Let S be a subbase in E. If each cover of E whose members
belong to S contains afinite number of members with union dense in E then
E is almost compact.

Proof. Let m be a maximal open filter base in E and suppose that m
does not converge. Then every point x £ E would have an open neighbour-
hood Vx ¢ m; we can assume that Vx is a finite intersection of members of
S and then at least one of them does not belong to m, say x £ erf[ S, Sx

¢ m. Since E — gXSx, there are SX1,..., SXn such that E = (il_ . By
X

the maximality of m, SXi ¢ m implies the existence of an ?_?en G{ £ m such
that Gi MSX = 0, hence G{ MSX = 0. This would imply f? G, = 0 which is

impossible. O

[6], Theorem 2.1 contains a weaker statement, based on Definition 2.1 of
[6] that introduces almost compactness relative to a subbase. According to
1.1, this concept coincides with almost compactness.

A subset A C E will be said to be ultradense iff E — (J{{a;}:£ £ A}.
An ultradense subset is dense; in a Ti-space, there is no proper ultradense
subset.

Now let X be a superspace (see [1]) of E. If A is a system of subsets of
X, the trace of A in E will be denoted by A |E.

The superspace X of E is said to be T\-reduced iff x £ X, y £ X —E,
X ¢ y implies that each of the points x and y has a neighbourhood not
containing the other. X is said to be T2-reduced iffx £ A, y £ X —E, x @
® y implies that x and y have disjoint neighbourhoods. A superspace that
is a T,-space (r = 1,2) is Tr-reduced. Under a slightly different terminology,
these concepts have been investigated in [4].

Now let X Dbe an extension of E (i.e. a superspace in which E is dense),
and A a system of subsets of E. AMs said to be weakly A-disjunctive iff
A\,A2 £ A, A\ MMA2 = 0 implies (Ai MA2)- E = 0 (cf. the concept of
an A-disjunctive extension in [1]). X is said to be A-hypercombinatorial iff
Ai, A2 £ A, intB(Ai MA2) = 0 implies Ar I A2 = A\ D A2 for the closures
in X (see for special systems A in [5], Definition (3.5), and in a still more
special case in [9]).

Let X and Y be extensions of E. We shall say that X and Y are weakly
equivalent iff there exists a bijection h: X —Y such that h(x) = x forx £ E
(i.e. hfixes E) and, for x £ X —E, the trace in E of the neighbourhood
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filter of x (in X) is the same as the trace in E of the neighbourhood filter of
h(x) in Y. This is clearly an equivalence relation. If X and Y are equivalent
extensions (see [1]), then they are obviously weakly equivalent.

2. The subspace Ea

As in [1], we consider an arbitrary topological space E and a subbase S
in E satisfying 0,£ GS; we denote

(2.1) T={E-S:S£S}, V=SUT.

In the sequel, we often assume the following standard hypothesis (cf. the
concept of a C. C.-closed subbase in [6]):

(2.2) SE£S implies 5MEGT, ie. E-SE£S.

If we understand the closure in E, then we can write simply S £ T; however,
we prefer to denote by A the closure of A taken in the hyperextension E h of
E relative to S (see [1]). (2.2) is fulfilled e.g. if S coincides with the system
of all open sets in E, or if E = R and S is composed of all intervals (—o0, ¢)
and (c,+00) (—e0 " ¢ 5 -f 00).

As a consequence of (2.2), let us observe:

T heorem 2.3. If the subbase S fulfils (2.2), the following are equivalent:
(a) E is almost supercompact relative to S.

(b) Every linked system composed of members of S has a cluster point.
(c) Every S-sieve has a cluster point.

(d) Every ultra-S-sieve has a cluster point.

Proof, (a) = (b): Let {Sp.i £/} be a linked system, S, £S. If it

did not have a cluster point, then f) Si (with closures taken in E) would
_ lei

be empty so that the sets E —Si = S- £ S would cover E. For i,j £ /,
SfUSj =E, S[ = E —Si implies Si DSj = 0: a contradiction.

(b) = (a): Let E = (J Si, Si £S. If E = Si USj were not true for any

ief

i,j £1, then the sets E —Si = S' £ S would constitute a linked system, and
) S[ & 0 would imply f)(i? —Sf) 0: a contradiction.
iei iei

(b) = (c) = (d) (b) is obvious. O

Let us denote by Ea the subspace of Eh composed of E and all points
x £ Eh —E such that v(x) is an S-sieve; by [1], (3.6) the sieves v(z) (x £
£ Ea—E) are precisely all nontrivial ultra-S-sieves.

An important property of Ea is contained in
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Lemma 2.4. Ify &Eh, So ES and y 6 v(So), then there exists a point
x £ Eallr(50) such that y £ {x}.

Proof. For every set 5 6 v(i/) MS, v(S) is a neighbourhood of y in Eh,
hence v(S) M v(So) ¢ 0. By [1], (4.5) this implies S M So / 0. Hence {S0} U
U (v(y) MS) is a linked system contained in S; by [1], (3.5) it is contained in

an ultra-S-sieve s. If s is trivial, there is a point x £ E satisfying x E So NS
for every 5 E v(y) MS; if s is non-trivial, ttHere is a point x E Ea—E such

that s = v(x). In both cases x E u(So) IN ﬁ|u(8;) for any finite subsystem
{Si,..., Sn} of v(y)MS. Hence x E Eallu(So) is contained in every member
I?n(S,) of a neighbourhood base of y. O

Corollary 2.5. Ea is ultradense in E h.

Proof. For So = F, u(So) = Eh we obtain that every y E Eh is con-
tained in some {x} with x £ Ea. O

Lemma 2.6. Let SO,Si ES, Ec SOUSi. Then

(@ Ea- EC v(SO)UV(S]),

(b) Eh = v(SO)Uv(S1).

Proof, (a) Assume x E Ea- F, x 0 u(So) Uv(5i). Then by [1], (3.3)
E - Si Ev(x) for i =0,1 and, since v(x) is an S-sieve, there are S' E S
such that St E v(x), SmC E —S{. The sets 5' being open in E, we have also
St CE —Si, thus E - Si E v(x). But this is impossible because (F —50) N
M (F - Si) = 0 by hypothesis.

(b) The hypothesis and (a) yield

Ea C r(So) Ui7Ne),

and by 25 Eaisdensein Eh. O

Theorem 2.7. 1f(2.2) is fulfilled and EaC X C Eh then X is almost
supercompact relative to the subbase S*| AT.

Proof. Consider a cover of X whose members belong to this subbase,
i.e. assume

2-9) XC U v(si)

iei

where Si E S. We claim that there are two sets S, whose_union is dense in

F. By assuming the contrary, the system of the sets F - S, would be linked

and, by (2.2), contained in S. Hence by [1], (3.5) there would be an ultra-S-

sieve s containing every set F - Si. From (2.8) we have F = U St so that
iei
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s cannot be trivial, hence s = v(x) for some x £ Ea—E. Now if x £ v(Si)
then Si £ v(x) and E —Si £ v(x) cannot hold simultaneously.
Therefore there exist i,j £ 1 such that

E c SiUSj.
Then by 2.6
X C u(5t)UVv(Sj).

Now by 2.4 y £ v (Si) implies
y £ v(Si) MEaC v(S{) NX
and similarly y £ v(Sj) implies y £ v(Sj) M X. Hence

X Cv(S{) MX Uv(Sj) NX. O

Let us mention the following consequence of 2.6:
Corollary 2.9. If (2.2) isfulfilled, then, for S £ S, the set

(2.10) v(S)n(Ea-E)

is open and closed in Ea—E.
Proof. For S'=E —S £ S we have E C S US’', hence by 2.6

Ea-EC v(S)Uv(S’).

On the other hand 51S" = 0implies v(S) Mv(S') = 0so that the complement
in Ea—E of (2.10) coincides with v(S') N (Ea—E). O
We can add to 2.5:

T heorem 2.11. A set E ¢ X ¢ Eh is ultradense in Eh iff EaC X ¢
C Eh.

Proof. By 25 every set EaC X C Eh s ultradense in Eh. Conversely
ifx £ Ea—E, y£ Eh, x ¢y, then v(x) ¢ v(y) so that, by [1], (3.4), there
exist V\, V2 £ v such that W\ £ v(x), v2 6 v(i/), W nVi = 0. Since v(t) is
an S-sieve, we can assume VA = S £ S. Hence x £ v(S), y ¢ n(5) and v(S)
being a neighbourhood of x, we have x ¢ {y}. Therefore if E C X C Eh and
X is ultradense in Eh, it must contain every x £ Ea. O

We can characterize the superspaces equivalent to a subspace of Ea:
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Theorem 2.12. A superspace Y 0 E is equivalent to a space X such
that E C X C Ea iff

(a) there is in Y a subbase S' such that S'| E —S, Y is V '-exact (see
[A) forV' =SUT' T'={X —S§:S" GS'}, andy GV GT' implies the
existence of S' GS' withy GS' C T,
and

(b) Y is a reduced superspace.

Proof. IFTE C X C Eathen S' = SpX fulfils these conditions ([1],
(4.8) and (4.2)), and the properties in question remain valid for an equivalent
superspace.

Conversely, if Y fulfils (a) and (b), then, by [1], (4.8), there is a home-
omorphism h:Y — X such that E C X C Eh, \E = idg, and h(V') =
=v(V'fIE)nl forV GV IfxGX —E, x=%), and T Gv(z) NT,
then v{T) MA"' = /i(T') for some T' GT', y GT', T = T' INE, so that there
exists S" GS' such that 3GS'C T'. Thus S = S'TME GS satisfies S C T,
X = h(y) Gh(S") = v(S) NX, and S Gv(x). Therefore v(x) is an S-sieve,
X GEa,and ECX CEa. O

3. The subspace Eb

Let us now define the subspace Eb C Eh by setting x G Eb iff either
X GE or x GEh—E and v(x) is an S-sieve without cluster points in E.
Clearly

(3.1) ECEbCEaCEh.

Lemma 3.2. Ify GEa—EDb then there exists a point x G E such that
X Gbl -

Proof. For y GEa- ED, v(y) has a cluster point x GE. Ifx GS GS§,
then S MV ¢ 0 for every V Gv(y), hence by [1]I"|(3'3) 5 Gv(y), y Gw(b).

Therefore each neighbourhood of X of the form P)v(Si), Si G S, contains y.
1

O
From now on we always assume that the standard hypothesis (2.2) is
fulfilled. First we prove the following analogue of 2.7:

Theorem 3.3 (cf. [6], Theorem 3.1). IfFEbC X C Ea then X is almost
supercompact relative to SMY.

Proof. Let X C (J u(5t), 5, GS. For a point y GEa—EHD, select x G
___iei

GE such that x G {2}. For an index i, we have x Gv(5;), hence y Gn(5,-).
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Therefore

Ea C Dv(Si)
iei

and, like in the proof of 2.7, there exist i and j such that E C S-USj. Then
by 2.6(a)

X € <5N7Txnv(Sj)nx. 0O
Another important property of Ebwill follow from
Lemma 3.4. If x EEa, y E Eb- E, x / y, then there are So, Si E S
such that x E v(So), YE u(Si), and
v(So) MNMn(5i) = 0.

Proof. Suppose first x G E. Then x is not a cluster point of v(y),
hence there is an Si GS in the S-sieve v(j/) such that x ~ Si. Then x G
GSo=E - Si GS by (2.2), hence So NS\ —O0 and, by [1], (4.2)(b),

(3.5) x e v(S0), y Gv(Si), u(So) Mu(si) =0.

If x GEa—E, then v(x) / v(y) both are S-sieves, hence by [1], (3.4)
there are So,S\ G S such that So Gv(x), Si Gv(j/), SoMSi = 0. This
implies (3.5) again. O

Corottary 3.6 (see [6], Theorem 3.2). Ebis aT"-reduced superspace of
E. More generally, if E C X C Ea then EbU X is a T"-reduced superspace
of X. O

We shall need another important
Lemma 3.7. If S0 GS, x E E n v(So) then x G So-

Proof. Assuming x EE —So, by (22) E —So =S GS, and SolS =
= 0 implies v(So) Mv(S) = 0 so that the neighbourhood v(S) of x does not
intersect v(So). O

There is also a converse of 3.3:

Theorem 3.8. IfE C X C Ea and X is almost supercompact relative
to STdX, then Eb C X C Ea.

Proof. Suppose E CX C Eaand z £ Eb—X . Let {Sp.i G1} be the
system of those sets Si E S for which E - Si Gv(z). We have

X C Uﬂ)

Acta Mathematica Hungarica 65, 1994



58 A. CSASZAR

In fact, x £ X implies by 3.4 the existence of S, S' £ S such that x £
£ v(S), z£v(S’),. SN5" =0. Hence SNS' =0,S'CE- S, S' £ Vv(>),
consequently E —S £ v(z) so that S —Si, x £ v(Si) for some i £ I.

Now the inclusion

X C v(Si) X Uv(sj) NX

cannot hold for any two indices i,j £ I. In fact, this would imply E C v(S{) U
Uv(Sj), hence E C Si USj by 3.7. However, this is impossible since E —Si,
E —Sj £ v(z) implies (E —Si) M(E —Sj) ¢ 0.

Therefore X , satisfying E C X C Ea, cannot be almost supercompact
relative to Sl X unless it contains every z £ Eb. O

A converse of 3.6 will result from the following

Lemma 3.9. IfE CX C Eh and X is a strongly reduced superspace of
E, then X M(Ea—Eb) = 0.

Proof. 3.2. O

Corollary 3.10. For a space X such that E C X C Ea, the following
statements are equivalent:

(a) EC X C EHb,

(b) X is a T*-reduced superspace of E,

(c) X is a T\-reduced superspace of E,

(d) X is a strongly reduced superspace of E.

Proof, (a) (b): 3.6.
(b) -9 (c) = (d): Obvious.
(d) = (a): 3.9. O

Corollary 3.11. IfE C X C Ea, X is strongly reduced and almost
supercompact relative to SMIX, then X —EDb.

P roof. 3.10 and 3.8. O

It is essential in 3.11 to consider only subspaces X lying between E and
E a; without this restriction Eh can contain other subspaces that are almost
supercompact relative to the trace of Sh and are even 1Vreduced.

E.g. let E = R with the usual topology, S be the system of all open
subsets. Now S is a regular and normal subbase and E is X2 so that Es
is supercompact relative to SK\Es and at the same time T2 ([1], (5.2) and
(5.10)). We have Es—Ea ® 0, Eb—E s ¢ 0; the first difference contains e.g.
a point x such that v(x) is an ultra-T-sieve containing the sets N and [c, +00)
for ¢ > 0 (v(x) cannot be an S-sieve since intN = 0), and y £ Eb—Es if
v(y) is an ultra-S-sieve containing the sets

(0,+00), (-—00,£) for f>0, (-00,—)U(c,+00) for c>0
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(v(j/) cannot be a T-sieve because a closed subset of (0,+00) is disjoint from
a set (—oo0,e) ife > 0 is small enough).

Similarly to the argument yielding 2.12 we can state (with the notation
of 2.12):

Theorem 3.12. A space Y 3 E is equivalent to a space X such that
Eb C X C Ea iff it fulfils 2.12 (a) and (b) and it is almost supercompact
relative to S'. O

Theorem 3.13. A space Y D E is equivalent to a space X such that
E C X C Ebiffit fulfils 2.12 (a) and it is strongly reduced. O

THEOREM 3.14. A space Y 3 E is equivalent to Eb iff it fulfils 2.12 (a),
it is almost supercompact relative to S' and strongly reduced. a

4. The subspaces Ep and Ef

Let us now consider the closures of E in the subspaces Ea and Eb, i.e.
the subspaces EalEc, EbMEcC Eh. They will be denoted by Ep and Efi
respectively.

x £ Ea belongs to Ec iff either x £ E or v(x) is a centred (i.e. centrated
in the terminology of [1]) ultra-S-sieve (because x £ Ec means that v(x) NS
is centred and now v(a:) is an S-sieve).

Our next purpose is to prove that Ev and E* are almost compact. To
this aim we need a series of lemmas.

Lemma 4.1. Every centred system contained in S is contained in a
maximal centred system contained in S.

P roof. An easy application of the Kuratowski-Zorn lemma. O
Lemma 4.2. If s is a maximal centred system contained in S, S £ S,
and S J1 T<&¢O whenever 5- Gs (t = 1,..., n), then S £ s.

P roof. By hypothesis s U{5} is a centred system contained in S. O

Lemma 4.3. Let s be a maximal centred system contained in S and v
the sieve generated by the linked system s. Then v is an ultra-S-sieve.

M
Proof. Consider aset5 GS. If 51N flj 5,/ 0 whenever Si £ (i =

= 1,...,n), then by 42 S £ s C v. If there are S\,...,Sn Gs such that
Sn flj Si = 0, then II‘ISi C E - S (since the intersection is open in E), hence

the set E —S £ S (by (2.2)) has a non-empty intersection with any finite
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n
number of members of s because such an intersection meets f|)5,. By 4.2 we

have E —S £ sand £ - S ¢c £ -5 G v. By [1], (3.3) the S-sieve v is an
ultra-S-sieve. O

T heorem 4.4 (cf. [6], Theorem 4.2). If C X C Ec, then X is almost
compact.

Proof. By 1.1 it suffices to show that if

(4.5) K U®($) (SitS)
1el

then there are finitely many sets 5- such that the union of the corresponding
sets v(S{) MX is dense in X .

Suppose (4.5) is valid. We claim that there are finitely many sets 5- such
that theii“union is dense in E. Assume the contrary. Then the system of all
sets E —S{ is a centred system contained in S; let s be a maximal centred
system contained in S such that E —Si £ s for every i £/, and let v be the
sieve generated by s. By 4.3 v is an ultra-S-sieve. If x £ E then x £ Si for
some i and then 5, does not meet the set E —Si £ v. Hence V has no cluster
point in E and v = v(y) for some y £ E* (because V is clearly centred.) Now
y £ v(Si), Si £ v(y) for some i, in contradiction with E —Si £ v(y).

Therefore (4.5) implies

EC l'IJSis
for suitable indices ij £ 1. Since E is dense in X, we also have

X C
1

and clearly

X C L"iv{stj)nx. O

4.4 says more than the analogues of 2.7 and 3.3; it corresponds to a
statement MEb C X C Eh implies that X is almost supercompact relative to
Sh\X". The author does not know whether this is true or not (for subbases
fulfilling (2.2)).

The following converse precisely corresponds to 3.8:

Theorem 4.6. IfTEc X ¢ Eaand X is almost compact then Ef C X.

Proof. By 3.6 X UE” is a 7Vreduced, almost compact extension of X ,
hence [5], Theorem (1.5) (according to which an almost compact space has
no proper TVreduced extension) implies X UEf = X. O
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Lemma 4.7 (cf. [1], (7.1)). For VGV, x GEv- E, we nave x g u(V)
iff XeVnm
n
Proof, x G v(V) implies V I |c|))5,- ¢ O whenever Si € v(x) IS (r =

.. ,ra), i.e. every member of a neighbourhood base of x meets V and

1,.
GV. Conversely if x GV then V IMv(S) / 0 forevery 5 Gv(x) IS, hence
MS o 0 for the S in question, whence V Gv(x), x Gv(V) by [1], (3.3).

O<> 1

T heorem 4.8. The space Ep is a weakly V -disjunctive extension of E.

Proof. IfVuV2eV ,V1nV2=0, then i>Vi)Mv(V2) = 0,s0Fj NV 2n
M(Ep- E)y=0by 47. O

It is not difficult to show that the property of weak V-disjunctivity
coincides with that of being T-hypercombinatorial:

Lemma 4.9. Let X be an arbitrary extension of E. Then X is weakly
V -disjunctive iff it is T-hypercombinatorial.

Proof. Let X be weakly V-disjunctive and suppose
(4.10) TuT2GT, intE(T! MT2) =0
Then, by introducing { —E —T-GSforr = 1,2, by
intE;(Ti MT2) = intE T\ NintE;T2— (E - 5i) N (E - $2) = 0
we have E C Si US2 (for the closures taken this time in X), hence X = Si U

US2. By hypothesis 5-MNT{MN (X - E) —0sothatl,- E C X - 5, implies
TiMNT2CE and

(4.11) TjNT2=Ti NT2

Conversely suppose that (4.10) implies (4.11) and consider S GS, T —

=E—-SGT. By (22) STIE GT and 5 ME NT is the boundary of S in E,
hence

int# [SNENT) =0.
Therefore, by hypothesis,

SAENT-SIM\TcE

and STIT M(X —E) —0. In the case 5- G S, Si MNMS2= 0 we can consider
and T = E —Si GT to obtain 5i MS2M(X —E) = 0;if Ti GT, Ti MNT2 = 0,
consider Ti and E —Ti GS. O

We can give now a characterization for the extensions equivalent to spaces
lying between E and Ep:
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THEOREM 4.12. An extension ¥ of E is equivalent to an extension X
satisfying E C X C Ep iff it is a reduced, T -strict, weakly X-disjunctive (or
T-hypercombinatorial) extension of E.

Proof. IFE CX C Ep then it is reduced together with Eh ([1], (4.4)),
and T-strict (see [1]) because T GT implies TN X = v{T) MNX by 4.7, so

X -T =X -v(T) = u(5)nX

for S= E —T £ S. The fact that Ep is weakly V-disjunctive by 4.8 clearly
implies the same property of X . If ¥ is equivalent to X , it possesses these
properties as well.

Conversely let Y be an extension having the properties in question. Since
weak V-disjunctivity clearly implies T-disjunctivity, ¥ is equivalent, by [1],
(7.4), to an extension X such that E C X C Eh. More precisely, it is shown
in the proof of [1], (7.4) that, with T' = {T:T GT} (closure in ¥), S' =
= {¥Y-TI:T GT}and V'= S UT', [1], (4.8) (b) is satisfied (E' = ¥); now
the proof of [1], (4.8) yields that there is an extension X (denoted there by
E") between E and Eh, and a homeomorphism h:Y —aX such that \E —
= id# and, for y GY, v(/i(r/)) (which will be denoted by \\y)) is the sieve
in E generated by {V NME:y GV GV'}.

Now E C X —h(Y) C Ep because X C Ec (since E is dense in ¥) and
X C Ea. In fact, v'(y) is an S-sieve for y GY - E since A GV'(j/) implies
the existence of S Gv'(t/) NS with S C A. To see this, considery GV G V',
V MECcA;ifV GS' wearedone. IfV GT',V =T, T GT, thenT C A,
S = E—So GS (see (2.2)) for So = E —T G S. By the weak V-disjunctivity
of ¥, we have

(4.13) (SoMT) - E =0,
clearly 50 = To for Tb= So M£ GT (see (2.2)), so

(4.14) Y-T0=S'ES,

(4.15) SNME=E-TO=E-S0=SCE-So=TCA,

and, by (4.13) and y GT,y GY - So=S', S=S'ME GV(j). O

Corottary 4.16. 4n extension Y of E is equivalent to an extension
X satisfying E C X C E” iff it is strongly reduced, T -strict, and weakly
V -disjunctive (or T -hypercombinatorial).

Proof. IfE c X ¢ Ef then X is strongly reduced by 3.10, and the
other properties follow from 4.12. Conversely, if ¥ is an extension with the
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above properties, then it is equivalent to some X satisfying E C X C Ep.
The existence of a point y EX —EbC Ea- Ebwould contradict by 3.2 the
property of X of being strongly reduced. Hence X C EbIMEv C EbMEc=
=El. O

Corollary 4.17. An extension Y of E is equivalent to Ef iff it is
strongly reduced, T -strict, weakly V -disjunctive (or T-hypercombinatorial)
and almost compact.

P roof. The necessity of these conditions follows from 4.16 and 4.4.
Conversely if they are fulfilled, then Y is equivalent, by 4.16, to a space
X suchthat EC X CE*. By4.6, X =E*. O

5. Flachsmeyer-type extensions

Extensions with properties similar to E* have been investigated in [7] in
the case when E is a Hausdorff space and S is a base in E satisfying 0, E E
ES, E—SESforSESand SilS2 ES for Si,S2E S. In [5] the same
conditions are assumed for S, but E can be an arbitrary topological space;
the present Theorem 4.17 shows that, under the above hypotheses concerning
S, the extension E” is equivalent to the extension (E',a(S)) in the notation
of [5] (see [5], Theorem (3.7)). Our Theorem 4.17 gives a generalization of
[5], (3.7) by omitting the condition of being a -semi-lattice for S, and also
by replacing the condition of being TVreduced by the weaker condition of
being strongly reduced.

The following theorems show that further extensions studied in [5] (and
in [7] for Hausdorff spaces) admit similar generalizations as well.

Lemma 5.1. LetE CX CEcandY bean extension of E that is weakly
equivalent to X. Then each pointy EY —E has a neighbourhood subbase B
such that BIE C S.

Proof. Let h:Y —%X be a bijection such that h(y) =y fory E E and
the traces in E of the neighbourhood filters of y and h(y) coincide.

Ify EY —E and V is an arbitrary neighbourhood of y, then V ME is
the trace of a neighbourhood of h(y) E X, hence

vn E d f]Jv(Si)nE = nSi
JvSHnE =1

n
for suitable sets Si E S such that h(y) E n(5t), and the intersection ffSt still

belongs to the trace of the neighbourhood filter of h(y), i.e. of y. In other
words,

Msi=w nE
1
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for a suitable neighbourhood W of y. Now clearly
n
nsi=Wnvne,
I
each of the sets Si U (W MYV) is a neighbourhood ofy,
n -
q(S,-u(lfnv))c U{wnv)cv

and
G u{wnv)) ne = sies.

If we denote by B the system of all neighbourhoods of y whose trace in E
belongs to S, we obtain the statement. O

Lemma 5.2. If Y is an extension of E weakly equivalent to a space
X such that E C X C Ep, then the traces t(r/x) and t(?2) in E of the
neighbourhood filters of two points y\ ¢ yi of Y —E are distinct filters and
t(y) isfreeforyEY —E.

P rooft. It suffices to show this for Y = X. Nowy\,y2 GEp—E, y\
imply v(yi) / v(i/2>hence there are Si Gv(r/;) MS such that S\ MS2
and yi E v(Si) implies 5- Gt(yt) so that t(?/i) o t(i/2)- If x GE, y GEp
then v(x) ¢ 'v(y) and there are V E v(x), S Gv(j/) NS such that V MS
Now x GV, S Gt(?/) show that x ¢ Mt(y). O

T heorem 5.3. An extension Y of E is weakly equivalent to a space X
such that E C X C Ep iffit is weakly V -disjunctive, the points ofY - E have
for traces of the neighbourhood filters free filters having subbases composed of
elements of S, and distinct points of Y —E have distinct trace filters.

Proof.IfE C X C Epthen X is weakly V-disjunctive by 4.8. X is also
a T-strict extension which implies that it is a strict extension and therefore
the topology of X is coarser than any other topology on X which induces
on E the given topology of E and yields for the points x E X —E the same
traces of neighbourhood filters (see e.g. [3], (6.1.10) and (6.1.8)). Therefore
X, equipped with a topology of this kind, remains weakly V-disjunctive,
and the same holds for an extension weakly equivalent to X . The statement
concerning the traces of the neighbourhood filters follows from 5.1 and 5.2.

Suppose now that Y fulfils the conditions in the theorem. Consider first
the case when Y is a strict extension of T; then it is T-strict. In fact, let F C
C ¥ be closed. Then F — fj Ai for suitable sets At C E (and closures taken

inY). If, forani G/, y GY —A{, then there are Si,... ,Sn G S belonging to
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n
the trace of the neighbourhood filter of y such that A, IN I? Sk —0. So Tk =

_ 7 —_
= E —Sk GT implies y £ Tfc, /- C (IJT/c, and the sets T (t £ T) constitute

a subbase for the closed sets in Y. Now 4.12 implies that Y is equivalent to
a space X such that E C X C Ep (since the hypotheses imply that ¥ is a
reduced extension).

In the general case we consider the topology on ¥ obtained as a strict
extension with the same trace filters. It is weakly V-disjunctive because
this property depends on the trace filters only. Hence the homeomorphism
h:Y — X corresponding to this topology of ¥ establishes a weak equivalence
for the given topology. O

Corollary 5.4. An extension Y of E is weakly equivalent to a space
X such that E C X C E* iff it is T2-reduced, weakly V-disjunctive and each
point y £ Y —E has a neighbourhood subbase whose trace in E is contained
in S.

Proof. By 3.6 E C X C Es5 is TVreduced, and the same is true, as in
the proof of 5.3, for any other topology on X inducing the given topology
of E with the same traces of neighbourhood filters. The necessity of the
remaining conditions follows from 5.3.

The converse can be deduced from 4.16 by considering a strict extension
on Y (because the property of being a Xyreduced extension depends on the
trace filters only). O

In order to characterize the extensions weakly equivalent to Ef itself, we
need two lemmas.

Lemma 5.5. Let E be an arbitrary topological space. An extension X of
E is almost compact iff every filter base composed of open subsets of E has
a cluster point in X.

Proof. Suppose X is almost compact and let g be a filter base such
that every G £ g is open in E. Denote by h the system of all open subsets
H of X such that HME £ g. Then h is an open filter base in X; in fact,
Hi £ h, Gi —HITME £ g (*= 1,2) implies the existence of G3 £ g such that
G: CG\NG2,and if »s isopenin X and Gs =.s IMNE, then Gs = H\ I
nH2n H3n E, hence Hi MH2MH3 Gh.

Let x 6 X be a cluster point of h. Since H is open and E is dense in X ,
x GH = H NE foreach H 6 h, i.e. x is a cluster point of g.

Conversely suppose that each filter base composed of open subsets of E
has a cluster point in X. If h is an arbitrary open filter base in X, let g
denote its trace in E. Then g is a filter base of open subsets of E, hence by
hypothesis it has a cluster point x 6 X . Since g is finer than h, x is a cluster
point of h so that X is almost compact. O
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LEMMA 5.6. Let X and Y be two weakly equivalent extensions of an
arbitrary topological space E. If X is almost compact then so is Y .

Proof. For A c E, the closure in the extension is determined by the
trace filters. Thus 5.5 can be applied. O

Theorem 5.7. An extension Y of E is weakly equivalent to EJ iff Y is
T2-reduced, weakly V -disjunctive, almost compact, and each point of Y —E
has a neighbourhood subbase whose trace in E is contained in S.

Proof. The necessity follows from 5.4 and 5.6. Conversely if Y fulfils
these conditions, then it is weakly equivalent by 5.4 to a space X such that
Ec X c E*. Since X is almost compact by 5.6, X —E” by 46. O

Theorems 5.4 and 5.7 vyield generalizations of [5], Lemma (4.2) and
Theorem (4.3), respectively.

6. Weak equivalence and ~-equivalence

Lemma 5.6 says that almost compactness is invariant with respect to
weak equivalence ofextensions. This fact can be formulated in a more general
manner with the help of the concept of *-equivalent superspaces.

Let us recall that a map h:X —»Y of topological spaces is said to be
d-continuous if, for x £ X and an open neighbourhood W of /i(x), there
is an open neighbourhood V of x such that h(V) C W. If X and Y are
superspaces of the space E, they are said to be d-equivalent whenever there
exists a bijection h: X —Y such that h\ E — id# and both h and /r-1 are
A-continuous. Taking into account the fact that a ~-continuous image of an
almost compact space is almost compact, it is clear that almost compactness
is invariant with respect to ~-equivalence of superspaces.

We show that 5.6 can be deduced from this remark. In fact:

Lemma 6.1. If X1 and X2 are extensions of a space E, h:x 1 — x2
satisfies N\ E — id# and, for x £ X\, the trace in E of the neighbourhood
filter of h(x) is coarser than the trace of the neighbourhood filter of x, then
h is d-continuous.

Proof. Let us denote by t,(x) the trace of the neighbourhood filter of
x £ X{ and by cl, the closure with respect to X; (i = 1,2). Choose xo £
£ Xi and let W be an open neighbourhood of h(x0) in X2. For G —W TE,
consider the open subset

V = {x£ X\\G £ tj(x)}

of Xj. Clearly xo £ V, since IF is a neighbourhood of h(x0) so that G
belongs to t2(/i(x0)) C t1(x0).
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Now x £ chV implies that x G cIx(G) (because E isdense in X\ and G =
=V TME), hence every element of tj(a;) meets G, and the same is, afortiori,
true for the elements of 12(h(x)) C ti(a:). Thus h(x) 6 ¢cAG C cl2W. O

Corollary 6.2. Two weakly equivalent extensions of a topological space
are always d-equivalent. O

Let us notice that the converse is not true. For E = R with the usual
topology, let p @ R and Xi denote the (unique) extension of E on R U {p}
corresponding to the trace filter t;(p) (i = 1,2), where tx(p) is generated
by the sets (c, +00) (¢ GR), and i2(p) by those (c,+00) —N (c GR). Now
h = id”j is the only Injection h: X x —mX 2 satisfying h\E — id#, and tx(p) ¢
® t2(p) shows that X\ and X2 fail to be weakly equivalent extensions.

However, the above h and its inverse /i_1 are both ~-continuous by

clx(a, b) = clz(a,b) = [a,6 (a<b),

cli(c,+00) = cl2((c,Too) - N) = [c,+00)U(p) (c GR).

We can deduce from 6.1 (and the following Lemma 6.3) Theorem 6.4 that
is a slight strengthening of [6], Theorem 4.4.

Lemma 6.3. If X is a T2-reduced extension of E, i1 X —» X is d-
continuous, and i\ E = id#, then i = idx-

Proof. Assume x GX —E, i(x) =y ¢ x. Then there are open neigh-
bourhoods G and H of x and vy, respectively, such that GTTH = 0. We
can suppose i (G) C A, and then the existence of 2 G G J1E leads to the

contradiction i(z) = rGH. O

T heorem 6.4. LetY be an almost compact extension of E that contains
a subbase S' such that S'|E C S. Then

(a) for any such Y, there is a g-continuous map h:E* —Y with h\E =
= idR,

(b) the map h in (a) can be subject to the condition h(E* - E) CY —E,

(c) ifY is T2-reduced then h in (a) is necessarily surjective,

(d) if E' is a T2-reduced almost compact extension of E, containing a
subbase S' such that ST E C S, and for any almost compact extension Y D
D E with subbase having a trace in E contained in S, there is a d-continuous
map h: E' —=*Y such that h\E = id#, then E* and E' are d-equivalent.

P roof,l_fa) and (b): For x £ E* —E, consider the filter base g composed
of the sets I Si such that Si Gv(z) MS. Then, by 5.5, g has a cluster point

1
y GY; clearly y ¢ E. Select a y of this kind and define y —h(x).
Then h satisfies the hypotheses of 6.1 provided h(x) = x for x GE. In
fact, if S' GS'is a neighbourhood of h(x), then S'flE = S G S meets every
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element of v(x) so that S £ v(x). Since the finite intersections of the sets S
of this kind generate the trace in E of the neighbourhood filter of h(x), this
trace is contained in the trace of the neighbourhood filter of x. By 6.1, h is
m”-continuous.

(c) : E* being almost compact, the same holds for h(E*) 3 E, and
a IVreduced extension of h(E”*). Thus Y = h(E”") by [5], Theorem (1.5).

Y

(d) : Suppose E' satisfies the hypotheses. Then there are ~-continuous

maps h: E? —E' and k:E' —»E”" such that \E = K\ E = id#. Consider
the ~-continuous map i = koh: E®» —E Dby 6.3 i = idE/. Therefore h is
injective and, by (c), it is surjective, too. Hence k = h~l. O

The author expresses his most sincere thanks to Dr. J. Deak for valuable
remarks.
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ON PSEUDOMANIFOLDS
WITH BOUNDARY. IIl

M. BOGNAR (Budapest)

The first part of this paper [8] concerned nonorientable pseudomanifolds.
The second one [9] discussed orientable pseudomanifolds without homolog-
ically singular interior points. This third part deals with locally orientable
pseudomanifolds with boundary and without homologically singular interior
points.

W ithout going in details the main result of this part can be sketched as
follows:

Let (X, A) be a locally orientable n-pseudomanifold with boundary and
without homologically singular interior points lying in Rn+1. Let K be a
continuous closed path in X \ A. Under the circumstances K preserves its
banks if and only if it preserves the orientation.

We shall use the definitions and notations of [8] and [9] without any
comment.

First we deal with figures called (n,p)-manifolds where p is a prime.

Throughout this paper let p be a prime and n a positive integer. Let
Zp be the cyclic group of integers mod p and H the Cech homology theory
defined on the category of compact pairs over the coefficient group Zp. Let
N be the set of positive integers and | = {x;0 » x * 1} the unit interval
with the usual topology.

1. (n,p)-manifolds

1.1. Definition. The compact pair (X, A) (i.e., X is a compact T2-
space and A is a closed subspace of X) is called an (n,p)-manifold if the
following conditions are satisfied:

(@) x\ A is a nonvoid connected space with countable base.

(b) There is a base a of X \ A such that for each U 6 <, (X, X \ 7) is an
(n,p)-cell (cf. [§ 1.2).

(c) For each open subset U of X \ A and for every g > n, Hg(X, X \ U) =
= 0 holds.

1.2. Observe that for each (n,p)-manifold (X, A) the subspace X \ A of
X is locally connected.

Namely by 1.1(b) and [8] 1.2(a) the base o of X \ A consists of connected
sets.
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1.3. Remark. Let (X, A) be an (n,p)-cellwithout c-singularity (cf. [9]
11 and [9] 1.6) satisfying the condition 1.1(c). Then by [9] 1.3 (X, A) is
clearly an (n, p)-manifold.

1.4. To prepare the next section we make a preliminary remark.
Let X be a compact T2-space and for k 6 N let Uk be an open subset

of X. Let U = k[iILkand for Kk GN let Uk = WU ... UWk- Let gbe an

arbitrary integer. For Kk GN let jk*:Hq(X,X \U) —Hq(X,X \ Uk) be the

homomorphism induced by the inclusion jk*(X, X \U) C (X, X \ Uk). Let
6 be an element of Hg(X, X \ U) for which

(1) jk*{b) = 0 forall k£ N.

Then 6= 0.

Indeed X = {(X,X \ Uk)\ k —1,2,...} is a nested system with the
intersection (X, X \ U) (see [10] 5.2). By (1) 6 determines the O-thread of X
(see [10] 5.4) and thus by the continuity of A (see [10] 5.5) we have 6 = 0
(see [10] 5.5) as required.

2. Quasiregular domains

Let (X, A) be an (n,p)-manifold.

Considering the domains in X \ A we shall find that for such a domain
U we have either A,,(X, X \ U) = 0or Hn(X,X \U) « Zv and in the latter
case (X, X \ U) is an (n,p)-cell.

First we introduce the notation of quasiregular domains.

2.1. Definition. Let U be a domain in X \ A. We say that U is a
guasiregular domain of the (n,p)-manifold (X, A) if it satisfies the following
two conditions.

(a) For the inclusion r:(X, 0) C (X, X \ U) the induced homomorphism
r*:a,,(X) -> 4,,(X,X\ U) is trivial, i.e. r»(An(X)) = 0.

(b) For each nonempty open subset U' of U and for the inclusion
J: (X, X'\ U) C (X,X \ U the induced homomorphism y»: A4,,(X,X \ U) —»
—y 4, (X, X \ U') is a monomorphism.

We are going to prove that each domain in X \ Ais a quasiregular domain
of (X,A).

2.2. Remark. Let U\ and U2 be open subsets of X \ A. Consider the
segment

« An+1(X X \(5 1MA2)
an(x,x\dA)ean(x,x\a2J- 4, (x,x (Ui nad) <
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of the relative Mayer-Vietoris sequence of the triad (X;X \ U\,X \ U2),
where ip is defined by the formula

(2) ip(b) = (/1L(6),-h 2.(b))

and form = 1,2 hm*4A,,(X, X \ (Ui UU2)) —= Hn(X,X \Um) is the homo-
morphism induced by the inclusion hm: (X, X \ {A UU2)) C (X, X \ Um)

(cf. [11] p. 42). According to 1.1(c) we have Hn+i(X,X \ {Ui NMUW2) = 0
and thus by the exactness of the sequence in question, ipis a monomorphism.

2.3. Let W\ and U2 be quasiregular domains of (X, A) intersecting each
other. Then W\ U U2 is a quasiregular domain as well.

Indeed for m = 1,2 let hm and /im, be the same as in 2.2. We first show
that hi* and h2+are monomorphisms.

To this end consider the diagram

/I*
Hn{X,X\Ih) Hn(X,X \ (Ui UU2)
3i* hzc
9,(X,X\ (Clinch)) Hn(X,X\U 2),

where the homomorphisms j 1* and j2, are induced by inclusions j\ and j2
respectively. This diagram is commutative. Since W\ and U2 are quasiregular
domains it follows by 2.1(b) that and j2, are monomorphisms. Let b 6
€ Hn(X, X \ (U\ UU2) and suppose that /ii»(6) = 0. Then j2,h2*(b) —
= Ji*/ii*(6) = 0. Since j2*is a monomorphism we get h2t(b) = 0. Hence

i =(M"),-M?)) =0,0)

(cf. 2.2(2)). However by 2.2 ipis a monomorphism and thus we obtain 6 = 0.
hu is a monomorphism indeed. Likewise h2t is a monomorphism as well.
Next we show that W\ U Uz satisfies condition 2.1(a).
Let

I #n(X) —+Hn(X, X\ Uu2) and 4,: Hn(X) - Hn(X, X \ £/)

be homomorphisms induced by the inclusions i and i\ respectively. We then
clearly have ?* = Since W\ is a quasiregular domain according to
2.1(a) for each ¢ E Hn(X) we get 0 = fi*(c) = hi»i,(c) and thus since h\,
is a monomorphism it follows n(c) = 0. ™ is a trivial homomorphism as
required.

Finally we prove that U\ U U2 satisfies condition 2.1(b).
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Indeed, let U' be a nonempty open subset of UWJ U?. Then U’ intersects
either U\ or t/2. Without loss of generality we can suppose U\ MU' ¢ 0.
Consider the diagram

Hn(X,X\U 1) —— — Hn{x,x\(ihuu?2))

An(~N, X \(E/1M1/)) <o e Hn(X, X \ U)

where the homomorphisms j», j*, r» are induced by the inclusions j, j"
and r respectively. This diagram is clearly commutative. However U\ is
a quasiregulax domain and thus by 2.1(b) j" is a monomorphism. As we
have seen above hi* is a monomorphism as well. Consequently j* is a
monomorphism, too.

U\ U U2 satisfies condition 2.1(b) as required. U\ U U2 is a quasiregular
domain indeed.

2.4. Theorem. Every domain in X \ A is quasiregular.

Proof. First observe that if for a domain U in X \ A the compact pair
(X, X \'U) is an (n,p)-cell then U is a quasiregular domain of (X, A) (see 2.1
and [8] 1.2). Thus according to 1.1(b) there is a base a of x\ A consisting
of quasiregular domains of (X, A).

Now let U be an arbitrary domain in X \ A. Then U is the union of
some domains of the base o or even more, since X \ A has a countable
base it follows that U is the union of a countable subset of 0. However U
is connected and so we can put this countable subset of a in a sequence

U\,..., Um, eeeso that for k *.2 Uk meets the set (J Um and obviously U —

=1

co K
— (J Uk- Denoting for Kk GN (J Um by Uk according to 2.3 we can state

fc=1 m=1
that each Uk is a quasiregular domain of (X, A).

Now for k,s,t GN with t ~ s let y**: Hn(X, X \ Ul) —*AMX, X \ Us)
and jk*-Hn(X, X \ U) —*4ATX, X \ Uk) be the homomorphisms induced
by the inclusions j§ and jk respectively. Observe that

(3) js«=jlJt.-

Moreover since Ui is quasiregular and 0 ¢ Us C Ul by 2.1(b) it follows that
j™* is @ monomorphism.

We now show that jk« is @ monomorphism.

Indeed choose b G AN(X, X \ U) so that jk*(b) = 0. Then for r * K by

(3) we have jr*(b) = jkjk*(b) = 0. On the other hand for m~tk j™Jm*(b) =
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= jk,,(b) = 0 and since j™nis a monomorphism it follows that jm*(b) = 0.
Thus according to 1.4 we get 6 = 0. jk*is a monomorphism as required.
Next we show that U satisfies condition 2.1(a).
Let i, Hn(X) - Hn(X,X\U) and rl: A,(X) -> Hn(X,X\U ) be
the homomorphisms induced by the inclusions r:(X,0) C (X, X \ U) and
rl: (X, 0) C (X, X \ U1) respectively. We then clearly have

4) i1* =

Let ¢ € Hn(X). Since Ul = W\ is a quasiregular domain of (X,A) by 2.1(a)
and (4) we get 0 = “»(c) = yi*i«(c) and since ji* is a monomorphism it
follows r,(c) = 0. r*is a trivial homomorphism as required.

Finally we prove that U satisfies 2.1(b).

Let U' be a nonempty open subset of U. Then there is a Uk meeting U'.
Consider the diagram

Hn(X,X\U) -—Hn(X,X\(Uk))
> k.
HN(X, X \ (U) —=--—¢ Hn(X,X\Uknu"))

where the homomorphisms y», j ', j'kf are induced by inclusions as well. This
diagram is clearly commutative. UKk is a quasiregular domain, consequently
j'’kt is @ monomorphism. As we have seen above jk* is a monomorphism as
well. Hence j ' = j'kmk* is @ monomorphism and soy, is a monomorphism
as required.

U satisfies condition 2.1(b) as well.

The proof of the Theorem is complete.

2.5. Corollary. Let U be an arbitrary domain in X \ A. Since a
is a base of X \ A (see 1.1(b)) there is a member U' of a contained in U.
(X, X\ U’ is an (n,p)-cell and thus
(5) Hn(X,X\U’)* Zp

(see [8] 1.2(b)). However V is a quasiregular domain and thus for the
inclusion j : (X, X \U) C (X, X \ U’ the induced

.o Hn(X,X\U)-*(HnX,X\U")

is @ monomorphism, consequently Hn(X,X \ U) is isomorphic to a subgroup
of Zp. Hence we have either Hn(X,X \ U) = 0 or #,,(X, X \ U) » Zv.
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3. s-regular domains

Let (X, A) be an (n,p)-manifold.

3.1. Definition. A domain Uof X \ A issaid to be an s-regular domain
of (X,A) if Hn(X,X\U) ¢ 0.

3.2. Remark. 25 shows that for each s-regular domain U we have
Hn{X,X\U) « Zp.

3.3. Proposition. Let U be an s-regular domain o/(X, A). Then
(X, X \U) is an (n,p)-cell without c-singularity (see [9] 1.6).

Proof. According to 3.2, 24, 1.1(a), 1.2 and [8] 1.2 (X,X \ U) is an
(n,p)-cell. Consider the base o in 1.2(b) and let o' = {U' £ a; U' c i7}.
Then o' is a base of U = X \ (X \ U) and for each U' £ o', (X, X \ U") is
an (n,p)-cell and thus U' is a c-regular domain of (X, X \ U) (see [9] 1.3).
Consequently (X, X \ U) is without c-singularity (see [9] 1.7) as required.

3.4. Remark. Let U be an s-regular domain of (X, A). Let U' be a
domain in U. Then U' is s-regular as well. Moreover U' is a c-regular domain
in the (n,p)-cell (X, X \U).

Indeed for the inclusion j:(X,X \ U) C (X,X \ U') the induced
j¥*>Hn(X, X \ U) =»4,,(X,X \ U) is a monomorphism (see 2.1(b) and
2.4). However U is s-regular and thus Hn(X,X \ U) ¢ 0. Consequently
Hn(X, X\ U) ¢ 0 U is s-regular as well. Hence by 3.2 we have
Hn(X,X \ U') ~ Zp and thus taking also 3.3 into account U' is a c-regular
domain of the (n,p)-cell (X, X \ U).

3.5. Let r Dbe the set of the s-regular domains of (X, A). According to
1.1(b), 3.1 and [8] 1.2(b) we have o c r and thus r is a base of X \ A.

For each U £ r let H(U) denote the group Hn(X,X \ U).

Now let U,U" £ r and suppose that U' C U. Then the homomorphism
j*:H(U) —»H(U") induced by the inclusion j:(X,X \ U) C (X, X \ U') is
an isomorphism.

Indeed by 2.1(b) and 2.4, j,, is a monomorphism. However by 3.2 H(U) «
« H(U') « Zp. Thus j* is an isomorphism indeed.

We shall denote this isomorphism by (U',U)t.

Observe that in case Ui= U

(6) (U\U)Ym= idH(u),

i.e., (u",n),, is the identity isomorphism of Hn(X,X \ U), and if U" C U' C
CuU{uU,uU,U" £T)then

(7) (U",U), = (U",U")SuU",Ul.
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3.6. For U,U" GT we say that U and U’ are compatible (with each other)
if either U' CUor UC U"

Now let U and U' be compatible members of r. We define the isomor-
phism

[U,UJe:H(U) - H(U)

by letting
o if U Cu,
© (c/, /3 1 ifucu

According to 3.5(6) this isomorphism is well defined and we have
9) [U,Ul =idH(u)

for each U Gr. Moreover

(10) [V,U\ =[U,U):1

holds for any two compatible members U,U" of r. Observe also that in case
V" CU CU(U,U,U" Gt) we clearly have

(11) [U™,Ul = [U",U'UU"UlI.
3.7. A T=chain is defined as a sequence C = (Um,..., U\) of members
of T such that forj = 2,..., m, Uj and Uj-\ are compatible. The T-chain is

closed if Um = U\
For any r-chain C —{Um,- m>U\) we define the isomorphism

C*: H(U\) —»H(Um)

by letting
C* = idtf(crj) if m —1
and
C* = [Un,Um-i\m... [UbUIil if m>I.

Observe that if C is a closed chain then C* is an automorphism of H(U\).
This automorphism is either the identity mapping of H(U\) or it differs (from
the identity. In the first case we say that C is an orientation preserving closed
chain and in the second that C is an orientation changing closed chain.

Observe that in case p —2 each closed r-chain is clearly an orientation
preserving chain.

3.8. Observe that if U" C U' C U (U,U",U" Gr) then by 3.6(10) and
3.6(11), C = (U", U, U, U") is an orientation preserving closed r-chain.
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4. Orientation preserving closed paths

Let (X, A) be an (n,p)-manifold.

We now turn to the problem of defining the fact that a continuous closed
path in X \ A preserves the orientation. To this end we recall the notion and
some properties of the «-category.

4.1. An i-category is a category C together with a contravariant functor

T:C —C such that T «T — idc and T(B) = B for each object B of C (cf.
7]).
’D Now we shall use the symbols C*, V* etc. for «-categories. If C* = (C,X)
is an «-category then the class of objects (morphisms) of C* will be denoted
by ObC* (MorC*). For any a E MorC* the symbol X(a) will besometimes
replaced by a*, a* is the involutoric conjugate of a.

A morphism a: A —+ Al of an «-category C* is said to be closed if its
domain is the same as its range (i.e. A= A").

We now turn to the definition of the invariant subcategory.

An invariant subcategory of an «-category C* is a subcategory Q* of C*
consisting of all objects and of some morphisms of C* such that

(a) for any a E MorC* we have cm* E Q¥,

(b) iffor any o;i,«2 E MorC* the morphism a\c2is defined and it belongs
to Q* then a2«i is also defined and a2«i E Q*,

(c) if «1, ¢*2, ¢*3 are morphisms of C* such that «102 = «3 and a2 E Q¥*,
a3 E Q* then aj G Q*.

If a morphism belongs to an invariant subcategory then it is clearly a
closed morphism.

Suppose now that the «-category C* is small, i.e., the class of objects and
morphisms of C* is a set. Let ¥ be an arbitrary subset of closed morphisms
of C*. Then there is a least invariant subcategory 0*(¥) of C* containing
Y. That means 0*(Y) is contained in each invariant subcategory Q* of C*
containing Y. Q*(T) is called the invariant hull of ¥.

4.2. Let M be a partially ordered set, i.e., M is equipped with a binary
relation ~ such that

(i) a U a for each a EM,

(i) a band b”™ aimply a = b,

(ili) a band b cimply aUc.

A sequence a = (X4.,..., X\): X\ —» in M is called an M-chain iffori =
= 2,... ,k Xi and xt_i are compatible elements of M, i.e., either xr  xr_x or
Xr_i N Xi. For the M-chains a — (x*.,... ,xi) and B = (xTQ..., x") let Ra =
— (xm,... Xfc+i,Xfc,... ,xi) and a* = (xi,...,Xfc). Thus (M, "™ ) becomes
an «-category M* where Ob M* = M and Mor M* is the set of the M-chains.

M* is a small «-category.

Let ¥ be the set of all M-chains of the type (b,d,c,b) where b ¢ ” d.
Then the invariant hull of ¥ is called the medial invariant subcategory of M*
(cf. [4] 3.13). We shall denote it by M”ed.
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4.3. Let R' be a TYspace and R a subspace of R'. A system 13 of open
sets of R' is said to be an external base of R in R' if for each g £ R the
subsystem

wg={U E£m:qe U}

of 18 constitutes a base of neighbourhoods of the point g in the space R'.

Setting U U'if U C U' (U, U' £ ) the external base 18 can be consid-
ered as a partially ordered set. Hence the invariant subcategory of the
small r-category ms* is well defined.

4.4, Let R"=R =X\ A and w8 = r, where Tis the same as in 3.5,
i.e. it is the set of the s-regular domains of (A, A) (cf. 3.1). r is obviously
an external base of X \ A in X \ A (cf. 3.5). Moreover the members of
r together with the orientation preserving closed r-chains (see 3.7 and 4.2)
form clearly an invariant subcategory Q* of t* and by 3.8 Q* contains the
invariant subcategory r”ed of r*.

4.5. Let R" and R be the same as in 4.3. Let u>be an external base of R
in R" and let K:q —»2 be a continuous path of R (see [8] 2.4). As in [9] 2.8
we can define the w-chains associated to K.

Indeed let a = {U\,..., t/m+1) be an w-chain. a is said to be associated
to K if there exists a subdivision of K into factors K = K\,... ,Km, where
Ki=Kp. 1-—»giforr=1,...,m, (ft =z, gn+i = qsuch that <, £ U{ and
Ki C (UiUUIHL) forr=1 and gm+\ € Um+i (cf. [8] 2.4 and [8] 1.6).

Observe that for each continuous path K:q -* z in R and for each U, U' £
£ mwith g £ Uand 2 £ U' there is an u-chain a = (U\,..., Um+i) associated
to K such that U\ = U'" and f/m+i = U' (see [5] 6.8).

Consequently to each closed path K of R there is a closed w-chain a —
—(U\, ..., BEf+i = U\) associated to K.

Observe that if Q* is an invariant subcategory of v8* containing u;"ed then
for each closed path K of R and for any closed ui-chains a and a1 associated
to K either both of the chains a and a' belong to Q* or neither of them
belongs to Q* (see [5] 7.1).

4.6. Definition. We say that a continuous closed path K in X \ A pre-
serves the orientation if each closed r-chain associated to K is an orientation
preserving chain.

According to 4.4 and 4.5 K preserves the orientation if and only if there
exists an orientation preserving closed r-chain associated to K.

We say that the closed continuous path K changes the orientation if K
fails to preserve it, i.e., if each closed r-chain associated to K is an orientation
changing closed chain.
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5. (n,p)-manifolds in Rn+1

We first show that the definition of the (n,p)-manifold may be simplified
ifit liesin Rn+1.

5.1. Let (X, A) be a compact pair in the Euclidean (n + I)-space Rn+1,
i.e., the compact TVspace X is a subspace of Rn+l and A is a closed subspace
of X. Under the circumstances (X, A) is an (n,p)-manifold if the following
conditions are satisfied:

(a) X \ A is a nonvoid connected space.

(b) There is a base a of X \ A such that for each U £ 0 (X, X \ U) is an
(n,p)-cell.

Indeed, since Rn+1 possesses a countable base so does X \ A. Thus
condition 1.1(a) is satisfied. Condition 1.1(b) is the same as (b). We only
need to show that condition 1.1(c) is also satisfied.

First observe that by [8] 2.16 foreach U £ a, U = X \ (X \ U) is nowhere
dense in Rn+1. Consequently by (b) X \ A itself and so each open subset of
X \ Ais nowhere dense in Rn+1. Thus according to [10] 6.23 and [10] 6.24 for
each open subset U of X \ A and for every g > n we have Hg(X,X \ U) = 0
and so 1.1(c) is satisfied for the pair (X, A). (X, A) is an (n,p)-manifold as
required.

52. Corollary. Let (X,A) be an (n,p)-cell in Rn+1 without c-
singularity (see [9] 1.6). Then by 5.1, [8] 1.2(a), [9] 1.3 and [9] 1.7 (X, A) is
an (n,p)-manifold in Rn+1.

5.3. Theorem. Let (X, A) be an (n,p)-manifold in Rn+l. Then(X,A)
is a k-manifold in Rn+1 (cf. [9] 2.6).

Proof. By 5.1(a) condition [9] 2.6(a) is clearly satisfied. Moreover by
3.3 and [9] 2.7 for each U £ a, (X, X \ Cf) is a fc-manifold in Rn+1. However
for @ £ a each mod(X, X \U) A:-regular domain of fin+l is clearly A-regular
mod(X, A). Thus for the compact pair (X, A) condition [9] 2.6(b) is satisfied
as well. (X, A) is a fc-manifold in Rn+1 indeed.

In the remainder of this chapter let (X, A) be an (n, p)-manifold in Rn+1.

5.4. Let 2 be the set of the mod(X, A) Aregular domains in Rn+1.
According to 5.3, Q is an external base of X \ Ain Rn+1.

As in [9] 2.11 we can define the chains of banks associated to an O-chain
(see also 4.2 and 4.3).

Indeed let V £ 0. Then by the banks of V we mean the components of
V \ X and we denote them by P XV) and P2{V). Let a = (V),..., Vm) be
an O-chain and let P1(V\) and P2{V\) be the banks of V\. Then there is a
numeration P x and Pf of the banks of V] such that

(@ Pi = P\Vi)and Pi = P 2(Ui),

(b) Pi MP}+x pOand PFMP2L pOfori=1,...,m- 1,
and this numeration is unique (see [9] 2.11). Hence two sequences ap( 1) =
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= (Pi,. = Pm) and otp(2) = (P2,..., Pi) of the banks belong to the D-chain
a. Moreover forj —1,2 we have P/ C P/+1 in the case Vi C Vj+ and P/+1 C

C P/ in the case Vj+i C Vi. The sequences ap(l) and ap(2) are called the
chains of banks associated to the Cl-chain a.

If a is closed, i.e., if Vm = W\ then two cases are possible:

() Pi =Piand P2 = Pi

(i) Pi = P2and Pi = Pi
In the first case we say that a preserves its banks and in the second that a
changes its banks.

Observe that the members of d together with the banks preserving closed
il-chains form clearly an invariant subcategory of the r-category 9. Denote
this invariant subcategory by Q*r.

It is to be noted that if W C V2 C V3 (Vi,V2V3 6 () then the closed
O-chain (Vi, V3,V2 Vi) clearly preserves its banks. Hence

fimed C Cifr.

5.5. Definition. Let K be a continuous closed path in X \ A. We say
that K preserves its banks if each closed O-chain associated to K does (cf.
4.5). According to 4.5 and 5.4 K preserves its banks if and only if there
exists a closed O-chain associated to K which preserves its banks.

Now we can formulate our first fundamental theorem.

5.6. Theorem. Let (X, A) be an (n,p)-manifold in Rn+1 with p ~ 3.
Let K be a continuous closed path in X \ A. Then K preserves its banks if
and only if it preserves the orientation.

We prepare the proof of this theorem.

5.7. Proposition. Let V be amod(X, A) k-regular domain in Rn+1.
Then V X is an s-regular domain of (X, A).

Proof. We argue by way of contradiction.

Suppose that U = V M X is not s-regular, i.e,, Hn(X,X \ U) = 0. V
is a connected set in P"+1 containing U = V MX and disjoint from X \ U.
Hence by [10] 6.22, V\ X is a connected set. However V \ X consists of two
components (see [9] 2.5) and this is a contradiction.

V MX is an s-regular domain of (X, A) as required.

5.8. Proposition. Suppose thatp ~ 3 and let U be an s-regular domain
of (X,A). Then there is a k-regular domain V mod(Ar, A) such that V NX =
= U

Proof. By 3.3 (X,X \ U) is an (n,p)-cell without c-singularity. Thus by
[9] 2.14 (X, X \ U) is a nonlinked (n,p)-cell. Hence U is an r-regular domain
of (X, X \ U) (cf. [8] 2.7, [8] 2.6 and [8] 1.11). Now let V be an e-regular
domain of (X, X \ U) such that VI X = U (see [8] 2.14 and [8] 2.7). V is
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clearly a regularly intersecting domain of (X ,A) (see [9] 2.4) and by [8] 2.15
V \ X is nonconnected. Hence by [6] 3.4 ¥ is a mod(A, A) k-regular domain
in Rn+1 as required.

5.9. Now let a = (Vi,..., VK) be an fl-chain and for i = I,..., K let
U = Vi NX. Denote by Ca the chain Ca = (U\,... ,Uk). By 57 CQis a
r-chain. Moreover if a is a closed chain then so is CQ.

Let K be a continuous path in X \ A and let a be an fl-chain associated
to K. Then Ca is clearly a r-chain associated to K. Hence in order to prove
Theorem 5.6 it is necessary and sufficient to prove the following lemma.

5.10. Lemma. Let a —(Vi,...,Vfc = Vj) be a closed fl-chain (cf. 5.4)
and let Ca — (Ui,..., Uk = U\) where U = MIMX fori=1,..., kK. Then
C* — id#(t/i) = id#n(x,x\t/i) (cf. 3.7) if a preserves its banks and C* —
= —idh(UA (i-e., C*(y) = —y for y GH(U\)) ifa changes its banks.

We now prepare the proof of the lemma.

5.11. A positive dilatation of RnH is a direction preserving transforma-
tion of Rn+1, i.e., ip: Rn+1 —»Rn+1 is a positive dilatation if it is a bijective

map and for any two distinct points a,b of Rn+1 the vectors ab and p(a)p(b)
have the same direction. The positive dilatations form a subgroup of the
similarity group of Rn+1.
For any subset M of a topological space let M denote the closure of M.
Observe that for any two open balls 5i = S(qg\,pi) and 52 = 5("2,P2) in
Rn+1 (cf. [8] 2.14) there is a unique positive dilatation <PSi,S2 mapping Si

onto S2- This similarity psi}2 takes the closed ball Si into S2. We shall

denote the restriction pslts2Isj: (Si,Si \ Si) (52,S2\S 2) by~ Sh52.
Let G be a bounded open subset of Rn+1. Then let H'(G) denote the

group Hn+1(G,(j \ G). Moreover let sg be the boundary homomorphism

(12) dG:H\G) = Hn+1(G,G \G) -* Hn(G\ G)

of the compact pair (G,G \ G).
Observe that for each open ball S in Rn+1 we have

(13) H\S)u Zp (cf. [11]1. 16.4 p. 45).

Let Si and S2 be open balls in Rn+1. Then there is a uniquely defined
homomorphism

JSuSsmH,(Si)-*H ,(S2)

which is clearly an isomorphism. Moreover for each open ball S in Rn+1 we
clearly haved

(14) Ps.S» = idW(5)
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and for any three open balls Si, S2, S3 in Rn+1 the equality

(15) Vs,,s3* = Psi s3*Psl,s2*
holds. Consequently

(16) Vs2Si* — (VsbS2%) m

Now let us fix an open ball So in Rn+1 and a nonzero element eo of
H'(So). (13) shows the existence of such an eo-
For each open ball S in Rn+1 let

(17) es = *s0,5.(e0)-
Since "Pso,s* is an isomorphism we have

(18) es / 0.
Moreover by (14) and (17) we clearly have
(19) e = e0.

On the other hand (15) and (17) show that
(2°) Nshs2 (es,) = es2

holds for any two open balls S\ and s2 in Rn+1.

5.12. Let G\ and G2 be bounded open subsets of Rn+1 such that G2 C
C GL1 Let us denote by

KGl,Ge.:H'(Gi) - #n+i {Gi,Gi\Gi)

and
maljG2.:H'(G2) - Amtl (Gi,Gi\G 2
the homomorphisms induced by the inclusions

kGi,G2-(ci,civci) C (Gi,G\\G2)

and
mGi,G2: (G2<J2\ c2) C (G\,Gi\G2)

respectively. Observe that since me, ,g2 is a relative homeomorphisms (cf.
[10] 5.6) and the Cech homology theory H is invariant under relative homeo-
morphism (see [10] 5.6 and [10] 5.5) it follows that rriGb &, is an isomorphism.
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Now let
(21) rGliG2, = (mG1,Ge«)-1fGliG2, :H'(G\) -> H\G 2).
For each bounded open subset G of Rn+X we then clearly have
(22) = mc,G* = rGG* = id#'(G) *

Now let Gi, G2, G3 be bounded open subsets of Rn+1 such that G3 C
C G2C Gi. Then
(23) "RE&B~G,G2* rGi ,G3*

Indeed let

iGi,G2G3* An+l (G2, G2 \ G3) —+4An+l (Gi,Gi \ G3)
and

JGi,G2,g3*:4,,+1 (Gi,Gi\ G2) —Hn+1(Gi,Gi \ G3)
be the homomorphisms induced by the inclusions

IGi,G2,x83* (<J2,G2\ G3) C (Gi,Gi\G3)
and

IGItG2,&3: ((?i,Gi \ G2) C (Gi,Gi\Gs)
respectively. We then evidently have

;Gi,&2,G3"Gi & = "Gi,G3,

*G,&R2,63mG2,G3 = mGuG3
and
*G,G2,&BMG2iG3  JGj,R,G3 evd |
Consequently
JGi,G2,G3*"Gi ,G2>» "Gi ,G3»j
®Gi ,G2,Cs Gzx  AG\,GN*
and
~Gi ,C?2,Cj3*~G 2 ,6s* jGi ,G2,G3*"G i ,G2*«
These yield

("Gi,G3*) *Gj,G2fG3* ("G 2,G3%)
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and thus

1.
rGi,ss» {mG\,G3») ~Gi,G3* (m Gi,G3*) " jGi,.G2,G3*"Gi,G2* —

(m Gi,G3*) jGi,G2,G3*rnG\,62*(t0Gi,62*) ~G\tG2* —
(W Gi,G3*) *Gi G2,G3*"G2,G3»7Gi ,G2*

("G2,G3*) kG2,G3»rGi ,G2* rG2,G3*rGi ,G»
as required.
5.13. Let 5i and S2 be open balls in i+l such that S2C Si. Then

(24) rSi,S2* = VsltS*
Indeed consider the continuous map h:Si x | —»Si defined by h(y,t) =
= (1- t)y +7Si,S2(y)- We then clearly have N(y,0) = y = kSl,s2(y),

= VB 2(y) = 2«Si,S2°Sj,2(2)) and ~((*1 \ 5') Xi) CSi\ S2. Con-
sequently

ks1,52-(Si,S1\Si) C (S,,Si\S2
and
ANb52n75,: (5i,S)\Si) - (SbSi\S2
are homotopic maps and thus

fcSi,S2. = (mSi,S2*SbS2), = mShS2.9Sh52.-

Hence
ASi,82. = (mSj,S2*)—1&Si,S2* = rsbhs2*

as required.
We mention here that by (24) and 5.11 (20)

(25) rsSi,s2 (esj = es2.

5.14. Let G be a bounded open subset of Rn+1. We define the element
€Gof H'(G) = Hn+1 (G,G\ G) by setting

(2b) eG = rs,G*(es),
where S is an open ball containing G. This element €G is well defined.
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Indeed, let Si and S2 be open balls in Rn+1 containing G and let S3 be
an open ball in Rn+1 containing both S\ and S2. Then by 5.13 (25) and 5.12
(23) forj = 1,2 we have

rSj.G* (eSj) = rS],G*rs3,Sj* (es3) = rs3,G*(es3)

and thus
rsuG* (esJ = Ls2,g. (es2)

as required.

Observe that for any open ball S in Rn+1 by (26) and 5.12(22) we clearly
have

(27) €s —rs,s*(es) = es-

Moreover if G\ and G2 are bounded open subsets of fn+l with G2C G1
then

(28) rGi g2* (€Gl) = eGe-

Indeed let S be an open ball in Rn+1 containing G\. Then by (26) and
5.12 (23) we have

rG\,G2* (e'd) = rG\,g2*(rs,Gi*(es)) = r5G2«(es) = €G"

5.15. Let ¥ be a bounded mod(X,A) ~-regular domain in Rn+1 and
let U=V fl X . Let P be a bank of V, i.e.,, a component of V\ X. P is

a bounded open set as well and thus P is compact. We shall define the
homomorphism

AV,p:H'(P) =Hn+r (P,P\P) - H(U) = Hn(X,X\U)

as follows.

First observe that by [9] 2.5(c) we have U C P and thus U C P\ P,
U\U=U\V NX =U\V ¢cP\V =P\(PIlIU). Consequently (P\ P) \
\ (P\V) = U.

Next, let

tvp*> Hn (P \ P) - Hn{P\P,P\V),
yv,p.:Hn (U,U\U) -> Hn (P\P,P\V)
and
zu.lin (V,TJ\U) ->H(U) = Hn(X, X \U)
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be homomorphisms induced by the inclusions
tv,p:(P\Pj) C (P\P,P\V), yv,p:{U,0\U) C (P\P,P\V)

and zp:(U,U\ U) C (X, X \ U) respectively. Since yv,p and Z(j are relative
homeomorphisms (cf. [10] 5.6) and H is invariant under relative homeomor-
phisms (see [10] 5.6 and [10] 5.5) it follows that yv,p* and zu» are isomor-
phisms.

Now let

(29) Av,p = zu*(yv,p*)~1W,p*dp

(cf. 5.11 (12)). AvP-H'{P) —H{U) is clearly a homomorphism.
5.16. P roposition. Let V,P and U be the same as in 5.15. Then

Av,p(e'p) ® 0

P roof. Observe that since yv,p* and ry» are isomorphisms we need only
to prove tv,p*dp(ep) & O, i.e., that

ap(e'p) ¢ kerfvip,.

Consider now the segment
Hn(P\ P,P\V) Hn(P\ P)~ Hn(P\V)

of the homology sequence of the compact pair (P \ P,P\V) where m is

the homomorphism induced by the inclusion i: (P\V) C (P\ P). This se-
guence is exact and thus we have only to prove that

(30) Ap(e'p) ¢ im r*,

To this end consider a proper linking theory Q of the type 21 = "p,n,o0 of
compacts in Rn+1. 21 is a mapping which makes correspond to each ordered
pair (M, M) of disjoint compact subspaces of Antl a bihomomorphism (cf.

B] 1.7) Hn(M) x Ho(M) —y Zp (cf. [8] 1.4) such that for any compact
subspaces M,M"',N,N" of A+l satisfying M C N, M' C N' and of course
N MN' = 0 the condition bm,M'(n'n’) = is satisfied for

every u £ Hn(M) and u" £ Ho(M') where j:M C N and j'--M"' C N' are
inclusion maps. Moreover for at least one ordered pair (M, M") of disjoint
compact subspaces of An+1, Og/,M is a nontrivial bihomomorphism (see [8]
1.7). According to [10] 5.13 there exists a proper linking theory of the given

type.
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Notice that if M, N, M' are compacts in fon+l such that M ¢ N c
¢ Rn+1 \ M’ then

(31) = VN,M'{jAu)iu’)

evidently holds for every n £ Hn(M) and v! £ Hg{M') where j:M c N is
the inclusion map.

Now let ® be an arbitrary compact subset of An+1, u £ Hn(®) and Y =
— a Osphere in Rn+1 \ ®. We say that Y is linked by u if there exists

avl £ Hg{Y) such that
Poy (1, 1n") o 0.

We now construct a 0-sphere Y in V \ X linked by dp{e'P).

Let S be an open ball in P and let P' be the bank of V distinct from P.
Thus PMP'=0,PUP"' =V \X.

According to 5.14 (28), 5.14 (27) and 5.11 (18) we have

(32) rp}S*{eP) =es =es ¢ 0
and thus
(33) &P,S*(ep) = mP,S»(es)-

Since S is homologically trivial (see [11] I. 16.1 p. 45) and S\S is nonempty
it follows that ds'-H\S) -+ Hn [S\S) is an isomorphism (see [11] I. 9.4
p. 23) and thus by (32) we have

(34) ds(es) o O.
Let
Op.;Hn {P\P)~+ Hn{P\S) and O P,>Hn(5\S) - Hn(P\YS)

be homomorphisms induced by the inclusions jgp:P\P CP\S and [ p:
:S\S C P\S respectively. Moreover let dpts'-Hn+\ (P,P\S) —
—»Hn (P\S) be the boundary homomorphism of the compact pair
(P,P\S). We then have evidently js P,ds —dp,sraPis* and [ P»0p =
= dp'Skp'S*- Hence by (33) we get

(D) B,P*ds(es) = p.<9p(eP).

Now let Y' = {qi, be a 0-sphere in Rn+1 \ (S\ S) linked by ds(es). (34)
and [10] 6.13 show the existence of such a 0-sphere Y'. By [10] 6.8 q\ and
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e lie in different components of Rn+1 \ [S\S), where the components of
Rn+1 ~ (S\ S) are S and Rn+1 \ S. Hence we can suppose that 1 GS C P

and g2 GRn+1 \ S. Let g2 be a point in P" distinct from g2. There clearly
exists such a point g2. Let Y —{91,92} Since P'T1P —0 and thus P' IS =
= 0 it follows that g2 and g2 belong to the same component of Rn+l\ (5 \ 5)
and thus by [10] 6.12, Y is linked by ds(es) as well.

Let u' be an element of Hg{Y) such that

(36) p5\s,y {®s{es)iu ) 770-

Since Y is linked by ds(es) the existence of such u" GHg{Y) follows. However
Y is disjoint from P\S and thus by (36), (31) and (35) we get

0 & *8\S,Y(*s(es)IU) ~ AP\S,Y (is,P*ds(es)iu) =

= AP\S,Y (is,P*dp(ep)iu) — VP\P,Y (dp(ep)iu ) -

Y is linked by dp(eP) indeed, where Y CP UP' =V \ X.
We have constructed the 0-sphere Y with the required properties.

Now let n be an arbitrary element of Hn (P \ V) and u" G H(Y). Since
both points of ¥ = {91,92} belong to V and thus 91 and g2 belong to the
same component of Rn+1\ (P \ V) it follows that tip\VY(u,u") = 0 (see [10]

6.6). Consequently by (31) we get

"p\py (M*(M)N ) —L

Thus Y fails to be linked by any element of im r* On the other hand ¥ is
linked by dp(e'p). Consequently

dp(e'p) » im ™

as required (see (30)). This yields Ay,p(e'p) ¢ O.
The proof of the proposition is complete.

5.17. Proposition. Let V be a bounded mod(X,A) k-regular domain
in Rn+1. Let Pl and P2 be the banks of V. Then

Av,P2(ep2) - -Av,pi(epi).

PROOF. Let U = V MX. We have to verify the equality

zu*{yv,p2*) W,P2*9p2(e'p2) =
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= -Zu*{yv,pu) "v,pl*dp\{ePl).
Hence we need only to show that
(37) (Vv,P2%) 1W,P2*dp2i€p2) = —{i/v.PT*) 1W,P1*9pi(e'pi).

To this end for j —1,2 consider the diagram

where i\», and are homomorphisms induced by the respective inclusion
maps. The diagram is clearly commutative and the inclusion ip (U,U\ U) C

C(V\(P1UP2,V \V) s a relative homeomorphism. Hence rl» is an
isomorphism. Consequently we need to prove the equality

(38) ii*dP2(ep2) = -i\,d Pxepl).
However by 5.14 (28) for j — 1,2 we have

ey - rv,pj*(ev) ~ {mv,pj*) kypje'y)
(see also 5.12 (21)) and thus by (38) we have only to prove the equality
(39) i\*dp2(mVp2t) 1kyP2*@Ev) = -ildP\ (myp\,) kVPi,(e'v).
Observe that

PLUP2=V\X =V \(VNX)=V\u
Moreover since P13 U = V M X (see [9] 2.5(c)) we have

VY* =~ 11 =PluUuUP2=PluP2UuU=V.
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Consider now the diagram

Hn{V\(P1UP2),V\V)

where the homomorphisms i3, i*, r2,, and i2* are induced by inclusions
and

dv:H\V \ X) = Hn#l(V,V\ (PLUP2)) -+Hn{V\ (P1UP2),V \ V)

is the boundary homomorphism of the triple (V,V \ (P1UP2),V \V) i.e,
oy = 3,07, where 0": Hn+1 (V,V\ (P1UP2) - Hj,V\ (P1UP2) is
the boundary homomorphism of the compact pair [V,V \ (P1UP2) =
= (Y\X,Y\X\(¥Y\X)) andthe homomorphism 3, Hn[V\(P1UP2)) —+

—+Hn(V \ (P1UP2),V \V) is induced by inclusion. Hence to prove (39)
we need only to show that the following conditions are satisfied:

(i) mvp\* and mv are isomorphisms onto,

(if) dyi2, =0,

(iii) im i\# —kerr'3, and im i\+ = kerr'3*

(iv) commutativity holds in each triangle of the diagram (see [11] I. Lemma
151 p. 38).

The homomorphisms mVP1, and are isomorphisms indeed (see
5.12). Thus condition (i) is satisfied.

Acta Mathematica Hungarica 65, 1994



90 M. BOGNAR

Considering the segment

Hn{Y \ (P1U-P2), V\ V) Hn+iiVAMP'uP2) ~ Hn#(V,V\V)

of the exact homology sequence of the triple (V, V\ (P1UP2),Wr\V), where
Hntl{V,V\ (P1UP2) = H\V \ X) and Hn+l(V,V \ V) = H'(V), we
obtain dvize = 0. Thus condition (ii) is satisfied as well.

Now consider the commutative diagram

Pn+1(C\P2,y\(P1UP2)

where the homomorphisms 5, and ig, are induced by inclusions. Thus
im i\, = 4,(im ig,).

However since i$: (PA"P1\ P1) C (V\ P2V \ (P1UP2) is a relative
homeomorphism it follows that is an onto isomorphism and thus

(40) im 4 = im i\,

Now consider the segment

A Hn+i(V\P2V \ (P1UP2))

Hn+1(V,V\P2) S Hn+i(V,V\ (PLUP2) A

of the homology sequence of the compact triple (V,V \ P2,V \ (P1UP2)),
where tfn+i(F, V\ (P1UP2) = A'(K \ X). By the exactness of this

sequence (see [11] I. 10.2 p. 25) we get im = kerr2, and thus by (40)
we obtain the required equality

im i\, = Kerr2,.

Likewise we have
iMm M» = Kerrg.

Thus condition (iii) is satisfied as well.
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Observe that for j — 1,2 the diagram
H'{V)

2 x

H\V\X)

is clearly commutative. Thus to prove (iv) we need only to show that for
Jj = 1,2 the diagram

Hn(V\(PI1UP2),V\V)
is commutative as weh, i.e., that

(41) & i\, = i\RP].

To this end consider the diagram

H\pi) = Hml (p~,/p \P)) AAH\V \x)=saml(v,v \ (PluP2)

rtHn(V\(P 1 n P2))

Hr Pl \p 3 ~Hn[V\ (P1UP2), T\ V)

where the homomorphism i3r is induced by the respective inclusion. This
diagram is clearly commutative and this proves the required equality (41).
Hence all the conditions (i), (ii), (iii) and (iv) are fulfilled and this proves
equality (39) and also the original assertion.
The proof of the proposition is complete.

5.18. Proposition. Let V and V be bounded compatible mod(X, A)
K-regular domains in Rn+i (i.e., either VCV orV CV). LetU—V QX
and U' —V TMX. Let P be a bank of V and P' a bank of V such that
PMP'/0 (cf. 54). Then

[UL UJnAv,p(e’P) = Av',p*(e’pi)
(see also 3.6 and 5.7).
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PROOF. By 3.6(10) we only need to consider the case V. C V and in this
case we have U' CU and P' C P.

Consider the following commutative diagram

H'(P). kr.p's "Hn+1 (P,P\ P") — A'(P")
dp dp,
Hn(P\ P)--—- il------- *-Hn (P \ P") ne nn (P1\ P")
tv,Pm nr ly' Pom
Hn(P\P,P\ V) (P\P’,P\ V) P>\ P, P>\ V)
av.pm 38> VV'P'm
Hn(n, U\ U)—in---—-- ~a, (M, U\ U")-—- T »Hn {ULU'\ U)
ZUm Jo* 2Um
Hn(X ,X\uny [UWm Hn(X,X\U")

where dptp> A+l (P,P \ P') —*Hn(P\P') is the boundary homomor-
phism of the compact pair (P,P\P') and for s — the homomor-

phism j Smis induced by the respective inclusion. Further U' C U and 3.6(8)
show that [£/, UT*is induced by the respective inclusion as well.

Observe that jg: (U,U\ U') C (P\ P',P\ V) is a relative homeomor-
phism and thus js* is an isomorphism. Moreover €P, — rpp,*(e'P) (see 5.14

(28)) and thus €p, — (mpp,,,) Ifcp,p<»(ep) (see 5.12 (21)). Consequently
(42) kp,P*('P) = rnppingeP,)
and thus by the commutativity of the preceding diagram we get
[U', UJ*Av,p(e'P) = [UyU]tzum(yv,p*yitv,p*dp(eP) =
= Jo*(ig*) XM7mdp,p'kppi,{e'P) = yg»(i8%) 1jimdp”p'T pp,4eP,) =
= zUu'm{yv,P'*) 'tv'p".d'P(epi) = Xvip'(e'P,)
as required.
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5.19. Definition. Let a = (Vi,...,Vm) be an ii-chain (see 5.4) and
C = (Ui,..., Umi) a T-chain (see 3.7). We say that a and C are associated to
each other or that a is associated to C or that C is associated to a if m = m’
and fori=1,... m, d, =VNX.

5.7 shows that to each il-chain a there is a unique r-chain C associated
to a. Observe that if a is closed then so is C.

5.20. Proposition. Leta = (V),..., Vn) 6e a closed LI-chain (see 5.4)
(i.e., Vm = Vi), where each V) is a bounded k-regular domain mod(X,y4). Let
C —(Ui,..., Um) be the closed T-chain associated to a (see 5.19). Then for
each w £ H(U\) (cf. 3.5) we have

tw if a preserves its banks
\ —w ifa changes its banks
(cf. 3.7).

Proof. If m = 1 then C* = id#(j/j) (see 3.7) and a - (Vj) clearly
preserves its banks. Hence in this case the assertion is obviously true.

Now suppose that m ~ 2 and let ap(l) = (P*,... ,P") be a chain of
banks associated to a (see 5.4). Then by 5.18 we clearly have

¢ ~&vmpL (€p]
Hence if a preserves its banks, i.e., if Vvm W and P~ then
(43)
and if a changes its banks, i.e., if Vm = W and P~ / Pf then by 5.17
(44) C*AVMPL (e/v) = ~AvmPb (e'/m) -

However by 5.16 A0 and HUmM) = H(U\) = Hn(X,X \

\U\) & Zp (see 3.2 and 3.5). Thus Ayta 7ep, M is a generator of the

group H(U\). Consequently equalities (43) and (44) prove the assertion.
We are going now to prove Lemma 5.10.

521. Let a = (Vi,...,vO = W) be a closed D-chain. Let Ca —
(U\,... ,Um —UW\) be the closed r-chain associated to a. Then for i =
1,..., mwe have U = T X.

Let S be an open ball in Rn+l containing X. Fori = 1,..., m let Vf be
the component of V) M'S containing Ui. V- is clearly a bounded domain
in Rn+1 regularly intersecting the compact pair (X, A) in Ui. Thus by

Acta Mathematica Hungarica 65, 1994



94 M. BOGNAR

[6] 3.5 and Vf C Vi £ O, V- is fc-regular mod(X, A). Consequently a' =
= (V/,..., = C/) is clearly a closed fi-chain, where each V- is bounded
and fori=1i,...,ra we have h/fll = U{. Moreover a' clearly preserves its
banks if and only if a does. Hence Lemma 5.10 is an immediate corollary of
Proposition 5.20.

The proof of Lemma 5.10 and also the proof of Theorem 5.6 is complete.

We now formulate some further theorems related to (n,p)-manifolds in
R n+1.

5.22. Theorem. Let (X A) be an (n,p)-manifold in Rn+1. Let C -
= (U\,..., Um = U\) be a closed orientation changing T-chain (cf. 3.7).
Then for each w £ H(U\) we have

C*(w) —-w.

Proof. In case p = 2 each closed r-chain is orientation preserving (see
3.7). Thus we may suppose p A 3. According to Lemma 5.10 we have to
prove the existence of a closed a-chain associated to C.

To this end we need only to show that for each finite subset {i7(,..., UT}

of pairwise distinct members of r there are members Vf,...,Vf of d such
that

u=v{nx for i—1,...,r

and so that
UCUY, implies V[C W.

To show this simple fact we proceed by induction. In case r —O0 there
is nothing to prove. Suppose now that r A 1 and the assertion is true if we
replace r by r —1.

Let {U[,..., UT} be a finite subsystem of pairwise distinct members of r
and let Uj be a minimal member of this system, i.e., U C U3 implies U =
= Uj and thus i —j. Without loss of generality we may suppose that j = r.
By the induction hypothesis there are members V/,..., Vr_x of d such that
vinx =yl fori=1,....,r—1and U C U, implies V- C W, for r,r £
£ {1,...,r —1}. Choose V £ d such that V M X —Ur. By 5.8 and 54 this
is possible. Let A= {r£ {1....,r —\}U'r C LY} and let

T/, \'Vn n V( ifA®O

[P if A=0.
Let Vf be the component of V containing Ur. Then by [6] 3.5 Vf is a
mod(X, A) fc-regular domain, i.e., Vf £ 4. Moreover Vf M X = Ur and the

condition U[ C U[, => V- C Vf holds for all i,i' £ {1,..., r}.
The proof of the theorem is complete.
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Now we are going to formulate the converse of Theorem 5.3.
First we recall a definition from [6].

5.23. Definition. Let R be a TYspace and (Y,B) a compact pair in
R. A A:-regular domain V mod(Y, B) is said to be a subdividing domain of
(Y, B) if the two components of V \'Y are contained in the same component
of R\Y.

In connection with this definition we recall a theorem.

5.24. Theorem. Let R and (Y,B) be the same as in 5.23. If at least
one mod(Y, B) k-regular domain is a subdividing domain of (Y ,B) then each
mod(Y, B) k-regular domain has this property (see [6] Theorem 4.1).

Next we give the definition of the bounded and closed fc-manifold.

5.25. Definition. Let R and (Y,B) be the same as in 5.23. (Y,B) is
said to be a bounded (respectively closed) k-manifold if its fc-regular domains
are subdividing (non subdividing) domains of (Y,B).

Also, we recall the definition of the uniform decomposition of Rn+1 (See
[10] 6.25).

5.26. Definition. We say that a compact pair (Z,C) in f2n+l decom-
poses uniformly the space Rn+l if for any two distinct points 6 and d of
Rn+1\ Z belonging to the same component of Rn+1 \C, band d belong to
the same component of Rn+H \ Z.

Now we can state the following complement of Theorem 5.3.

5.27. Theorem. Let (A,A) be an {n,p)-manifold in Rn+1. Then
(X, A) is a bounded k-manifold in Rn+1.

Proof. Let V be a mod(X, A) ~-regular domain in An+1 and let q\ and
92 be points o fV \X belonging to distinct components of V \ X . Since V 1
MA = 0 it follows that g\ and 9 belong to the same component of Rn+1 \ A.

According to Theorem 2.4 X \ A is a quasiregular domain of (A, A)
(cf. 2.1) and thus for the inclusion i: (A,0) C (A, A\ (A\ A)) = (A, A) the
induced m: Hn(X) —aHnN(A, A) is trivial, i.e., »(Hn(A)) = 0. Consequently
by [10] Theorem 6.28 (A, A) decomposes uniformly the space Rn+1. Hence
9i and 92 belong to the same component of Rn+1 \ X and thus the two
components of V \ A are contained in the same component of Rn+1 \ A. V
is a subdividing domain of (A, A) and according to 5.25 (A, A) is a bounded
fc-manifold in An+1 indeed.

The converse of 5.27 is true as well.

5.28. Theorem. Let (A", A) be a bounded k-manifold in Rn+l. Then
(A", A) is an (n,p)-manifold.

We prepare the proof by two remarks and a lemma.
5.29. Remark. Let S and S' be open balls in Rn+1 such that S' C 5.
Then Bn—+ (S\ S') =0.
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Indeed, the inclusion i: S\ S C S\ S' is clearly a homotopy equivalence
and thus the induced > An r (S\'S) —»AN i (5\5") maps #n_i (5\5)
isomorphically onto Hn-\ (S \ S') (see [11] Theorem I. 11.3 p. 29). However
for the n-sphere S\ S' we have #,,_i (5\ 5) = 0 (see [11] Theorem 1.16.6 p.
46) and thus 4, 1 (5\ S') = 0 as required.

5.30. Remark. Let (X, A) be a /-manifold in Rn+I. Then by [9] 2.4(b),
[91 25 and [9] 2.6, X \ A is clearly a locally connected subset of X .

5.31. Lemma. Let (X, A) be a bounded k-manifold in Rn+l. Let S be
an open ball in Rn+1 containing X and let g£ X \ A. Let V be amod(X, A)
K-regular domain in Rn+1 such that g £ V C S and let S' be an open ball
in Rn+1 with the property g ES' C V. Let U be the component of S' INMX
containing g. U is a domain in X \ A (see 5.30). Let V be a domain in
S' regularly intersecting the pair (X, A) in U. There clearly exists such a

domain V. Let B=S\V'andY = B UX. Then
Hn(Y) ~ Zpo Zp
(where Zp ¢ Zp is the external direct sum of Zp and Zp),
Hn(X,X\U) a Hn(Y, B) & Zp

and the homomorphism k»\Hn(Y) — Hn(Y,B) induced by the inclusion
k:(Y,0) C (Y, B) is an epimorphism.

Proof. Since the inclusion i:(X,X \ U) C (¥,B) is a relative homeo-
morphism it follows that

(45) Hn(X,X\U)* Hn(Y,B).

V is contained in the mod(X, A) /r-regular domain V and thus by [6]
3.5, V is a mod(X, A) fc-regular domain as well. Hence V \ X consists of

two components, moreover V UX C S and thus by

RN+ yy =R+t \ (BUX) — (An+l\ (S\ V') M(Ra+1 \X) =

((Rn+1 \ S) UV) |-|(Rn+1 \X) = (Rn+1 \ S) U(V \ X)

Rn+i\'Y has three components: the two components of V \ X and Rn+1\ S.
Now by the Decomposition Theorem (see [10] 6.5) we have rp(Hn(Y)) = 2,
where rp(Hn(Y)) is the p-rank of Hn(Y) (cf. [10] 6.4 and [10] 5.17) and thus

one has8
(46) Hn(Y)zzZp®Zp.
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Since V. C S it follows that Rn+1 \ B has two components na-
mely Rn+1\'S and V . Thus by the Decomposition Theorem we have
ro(Hn(B)) — 1 consequently

47 Hn(B) » Zp.

Let B\ = S\ S" and Y\ = B\ UU. B\ is clearly compact. We show that
Yi is compact as well.

Indeed U is a component of S' MX and thus it is_closed in 5 T X. Hence
Un(' nx)= U. On the other hand U C X C S and thus UTS' = U.
Consequently U C (X\S)UU C (S\S) UU = B\ UV —Y\ and this yields
Y\ —U UB\. Thus the union Yj of the compact sets U and B\ is compact
as required.

Now consider the segment

Hn-"Br) <— Ha( Br) & Hn{Y\)

of the reduced homology sequence of the compact pair (Yi,Hi), where the
homomorphism k\» is induced by the inclusion Ai:(Yi,0) C (Yi,B\). By
5.29 we have Hn_i(B1) = IIn-\ (S\S') =0 and thus by the exactness of
the sequence in question we can conclude that Ag» is an epimorphism.

Next consider the commutative diagram

Hn(Y\) = ~ > Hn(Y)
Ko kt
A,(YLHI) - » Hn(Y,B)

where the homomorphisms *i* and i2* are induced by the inclusions i\.Y\ C
C Y and I2'(Y\,Bi) C (Y,B) respectively. However by Y\ \ B\ = Y \ B =
= U the inclusion r2 is a relative homeomorphism and thus r2»is an isomor-
phism. Consequently = »di» is an epimorphism and thus k* is an
epimorphism as well.

Consider now the segment

Hn(Y,B)J+ Hn(Y)  Hn(B) < Hn+i(Y,B)

of the exact homology sequence of the compact pair (Y,B), where the ho-
momorphism y* is induced by the inclusion j:B C Y. X \ A is nowhere
dense in Rn+1 (see [6] 1.8) and thus by U C X \ A, U =Y \ B is nowhere
dense in Rn+1 as well. Consequently Hn+i(Y,B) = 0 (see [10] 6.23) and
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thus by the exactness of the sequence in question j*is a monomorphism and
im j* = kerA;». Hence taking also (46) and (47) into account we get

Hn(Y)/ kerk, « Zp
and since fc*is an epimorphism we can conclude
Hn(X,X \ U) ~ Hn(Y,B) ss Zp.

The proof of the Lemma is complete.

5.32. Now we are going to prove Theorem 5.28.

For the compact pair (X, A) according to [9] 2.6(a) condition 5.1(a) is
satisfied.

We now prove 5.1(b).

Let ge X \ A and let U' be a neighbourhood of gin X \ A. Let 5 be an
open ball in Rn+1 containing X and let ¥ be a mod(X, A) fc-regular domain
such that g6 V C S. By [9] 2.6 there exists such a domain V. Let S' be an
open ball in V such that g£ S' X C U\ and let U be the component of
i'f 11 containing g. By 5.30, U is a domain in X \ A.

We only need to prove that (X,X \ U)is an (n,p)-cell, i.e., that (X, X\
\ U) satisfies conditions [8] 1.2(a), (b), (c) and (d).

U is nonempty and connected. It is an open subset of the locally con-
nected space X \ A. Hence U is locally connected as well. U is a subspace
of Rn+1. So it has a countable base. Thus (X, X \U) satisfies condition [8]
1.2(a).

By Lemma 5.31 (X, X \ U) satisfies condition [8] 1.2(b).

Let V Dbe a domain in S' regularly intersecting the pair (X,A) in U.
There clearly exists such a domain V.. By V CS CV and [6] 35, V is
a mod(X,A) A;-regular domain and since (X,A) is a bounded /cmanifold in
Rn+1 it follows that the components of V \ X belong to the same component
of Rn+1 \ X. Hence by [10] 6.26 the compact pair (X,X \U) decomposes
uniformly the space Rn+1 and thus by [10] Theorem 6.28 the homomorphism
™ Hn(X) —=Hn(X,X \ U) induced by the inclusion i: (X,0) C (X, X \ U)
is a 0-homomorphism, i.e., r*(#n(X") = 0. Consequently the compact pair
(X, X \ U) satisfies condition [8] 1.2(c) too.

Now we are going to prove that (X, X \ U) satisfies condition [8] 1.2(d).

Let U\ be a domain in U and o\ £ U\. Let S\ be an open ball in V
such that g\ G5) NMX C Ut Let U2 be the component of 5i M X containing
gi. By 5.30 U2 is a domain in X \ A. Thus we have only to prove that for
the inclusion j2'. (X, X \ U) C (X, X \ W) the induced j2» Hn(X,X \U) —
—Hn(X,X \ U2) is a monomorphism.

Let V2 be a domain in S\ regularly intersecting the compact pair (X, A)
in U2. By W C S\ there exists such a V2. and by V2C S\ CV, V2is a
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mod(Jf, A) fc-regular domain (see [6] 3.5). Let B =S\V, Y =B UX,
B2=S\Vzand ¥2=B2UX. Then

(48) Y\B =U and Y2\Bz2= 2

First we show that the compact pair (Y2,Y) decomposes uniformly the
space Rn+1.

Indeed, let 2\ and z2 be points in Rn+1 \ Y2 belonging to the same
component of Rn+1 \' Y. Then by Rn+1\'Y = (Rn+1\ S) U(V \ X) and

Rn+1\ Y2 = (i2n+1\ S) U(V2\ X) either both of the points z\ and z2 belong

to Rn+1 \ S or both of these points lie in the same component of V \ X, i.e,,
in the same bank of V (see 5.4). In this latter case 21,22 E \2 is satisfied
as well. In the first case 21 and z2 lie in An+1\' S and thus in the same
component of Rn+1 \ Y2. Since the banks of V2 are the intersections of V2
and the banks of V (see [6] 2.3) it follows that in the second case z\ and
z2 belong to the same bank of V2 i.e., to the same component of V2\ X and
thus to the same component of Rn+1 \ Y2.

The compact pair (Y2,Y) decomposes uniformly the space Rn+1 as
required. Consequently by [10] Theorem 6.28 the homomorphism m2*
‘Hn(Y2) -a Hn(Y2,Y) induced by the inclusion m2:(Y2,Q) C (Y2,Y) is a
0-homomorphism, i.e.,

(49) m2.(Hn(Y2)) = 0.
Consider now the segment
AMNY2,Y)3-* Hn(y2) J1 = Hn(Y)

of the homology sequence of the compact pair (¥Y2,Y), where i22Y C Y2 is
the inclusion map. By the exactness of this sequence and by (49) we have
im r2x = kerm2* = Hn(Y2) and thus i2+is an epimorphism. However the
diagram

Hn(Y) Hn(Y2)
A* N
Hn(Y,B) Hn(Y2,B2)

where k: (¥,0) C (¥,4), k2:{Y2,9) C (Y2,B2) and r:(¥,A) C (¥2,42) are
inclusions — is commutative and by Lemma 5.31 k2+is an epimorphism as
well. Consequently r* is an epimorphism, too. However by Lemma 5.31
we have Hn(Y,B) ar Hn(Y2,B2) ~ Zp and thus the epimorphic r* is an
isomorphism.
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Consider now the diagram

Hn(X, X \U) ® J—  Hn(X,X\U2)
i rox
A,(Y,6) —-Hn(Y2,B2)

where j2* and r* are the same as before and t: (X,X \U) C (Y, B),
t2: (X, X \ U2) C (¥Y*-"r) are inclusions, t and t2 are relative homeomor-
phisms and thus f, and taf are isomorphisms. Consequently by the com-
mutativity of this diagram j2* is an isomorphism as well and thus it is a
monomorphism as required.

(X, X \ U) satisfies condition [8] 1.2(d), (X,X \ U) is an (n,p)-cell and
(X, A) is an (n,p)-manifold indeed.

The proof of Theorem 5.32 is complete.

6. Locally orientable n-pseudomanifolds with boundary

6.1. Let No be the set of nonnegative integers, i.e., iV0O = Nil {0}. For
K 6 N let Zk be the cyclic group of integers mod k and let Zq= Z, where Z
is the group of integers.

Moreover for r £ No let Hr be the Cech homology theory defined on the
category of compact pairs with the coefficient group Zr (see [9] 3.4).

6.2. Proposition. Let n EN. Let Li' be a triangulation (cf. [1] p. 118)
of dimension n. Let Y = ||/f||, where ||/v | is the body of K (see [1] p. 136).
Let F be a closed subset ofY. Let r £ No and g >n. Then

Hq(Y,F) =0.

The proposition is an immediate corollary of [11] Lemma XI. 6.2 (p. 311)
and of the remark “Hence all statements and proofs through 6.7 hold with
cohomology replaced by homology” (see [11] p. 320).

6.3. Let K be a triangulation situated in some Euclidean space Rs and
let L be a closed subcomplex of K (see [1] p. 126). Let g E ||A’||\ ||IL|| and let
Ok (q) be the set of all simplexes T E K with q ET, where T is the closure
of T. Ox(q) is clearly an open subcomplex of K \ L.

Suppose that K is an n-dimensional combinatorial pseudomanifold with
boundary L and L ¢ O (see [2] pp. 72, 74). Then clearly, for each q E ||ii'|| \
\ |IX|| the open subcomplex Ok {q) of Li' \ L can be uniquely represented in
the form

Oh(q) - £<iu ...u EgAq),
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where for j = 1,... ,t(q) E4j is a closed subcomplex of Ok(4)-> it is an n~
pseudomanifold and for j ¢ j' (j,j' £ {1,..., t(q)}) the dimension of the
subcomplex Eq MEqji of K is less than n—1. Moreover an easy computation
shows that for r € No we have

(50) An{0K{q) « A?(£9i)0 -® A r{EsA=)
(cf. [2] p. 50). In particular

(1) A2(0k{q) ~ AJEQ) D ... A2 (7Gi(9) ~ Z2Demwd Z2 m
1 t(q)

Consider now the group H®[||AY IIE]l, ) (see [9] 3.5), i.e., the =
dimensional local Betti group of the compact pair (||A']|, ||i]|) at the point
g with respect to the coefficient group ZT. According to [9] 3.6 we find that

Hn{\K\\,\\LIg) * A?(O(«))

and thus M = H*(||A"|, [[1]|,g) is a finite elementary 2-group (see [10] 5.10)
and for its 2-rank r2{M) (cf. [10] 5.17) we have

r2(M)=rz(H2\K\\,\\L\I)) =t(q).

6.4. Definition. Let (Y,B) be a topological (nonclosed) m®pseudo-
manifold with boundary (see [8] 3.1). Then by 6.3 for each q GY \ B the
group HI(Y,B,q) is clearly a finite elementary 2-group. We say that (Y ,B)
is locally orientable if for each q£ Y \ B

rz{Hz{Y,B,q)) =r{H°n(Y,B,q))

where r(H°(Y, B,q)) is the rank of the Z-module HE&(Y, B ,q).
It is easy to see that in case ®” 2each (¥, B) is locally orientable.

6.5. Let K be a triangulation in some Euclidean space Rs and let L be a
closed subcomplex of K. Suppose that K is an 'edimensional (combinatorial)
pseudomanifold with boundary L and L ¢ 0. Let g £ ||ii | \ ||X|| and let

Ok(q) —E41U ... U

be the same as in 6.3. Then by 6.3 (50) the condition

r2(AB(O[9))) =r(A5(0%(9))),
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r2(FFI (1A -ILINL)) = e (FEECHEILT <))

(cf. [9] 3.6) is clearly satisfied if and only if the pseudomanifolds Eqj are all
orientable ones. Moreover in this case we have

(52) tFe(IALNZ,9) *A5(0H(9) « Z +...+ Z .
1 t(a)

6.6. Let (Y,B) be a topological (nonclosed) n-pseudomanifold with
boundary. Then by 6.5 and 6.4 we can state that if (Y,B) is orientable
then it is locally orientable as well (see also [8] 3.2 and [9] 3.8).

Observe that in case n = 1, Y is a simple arc and B is the couple of
its endpoints. In this case (¥,B) is clearly orientable. However, clearly
there exist locally orientable and nonorientable topological nonclosed 2-
pseudomanifolds with boundary.

6.7. Derinition. Let (Y,B) be a topological nonclosed n-pseudo-
manifold with boundary. We say that (Y,B) is without 2-singular interior
points if for each qGY \ B

rz(Ha0Y,B,q)) =1

holds, i.e.,
Hn(Y,B,q) « Z2.

6.8. Let K and L be the same as in 6.5. Then by 6.3 (51) and [9] 3.6
(NAY, ||1Z]||) is clearly without 2-singular interior points if and only if for each
g GHIitll\ X t(q) = 1, i.e., Ok(g) = -E"g is an n-pseudomanifold.

6.9. Definition. Let (Y,B) be a topological (nonclosed) locally ori-
entable n-pseudomanifold with boundary. We say that (Y,B) is without
homologically singular interior points if for each q GY \ B the local homol-
ogy group H®(Y, B,q) with respect to the coefficient group Z is a cyclic
group (cf. [9] 3.8). According to 6.4 and 6.5 (52) for each g GY \ B we have
H°(Y, B,q) « Z in this case.

Observe that in case n = 1each (Y, B) is without homologically singular
interior points, but if n = 2 this is not true (see e.g., [3] 1:2.8 Fig. a)).

6.10. 6.4, 6.5 (52), 6.7 and 6.9 show that any locally orientable topo-
logical nonclosed n-pseudomanifold with boundary (Y,B) is without homo-
logically singular interior points if and only if (¥, B) is without 2-singular
interior points.
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However if (¥, B) is not locally orientable then it may happen that for
each q GY \B, H®(Y,B,q) is a cyclic group and in spite of that for some
geY\B we have r2(A*(Y, B, q)) ¢ 1

We now prepare the second fundamental theorem by a lemma and by a
remark.

6.11. Lemma. Letp beaprime and n GN. Let (X,A) and (X'.A") be
compact pairs such that X' is a closed subspace of X and X \ A —X" \ AL
Suppose that (X',A") is an (n,p)-cell and H%(X) —0. Then (X, A) is an
(n,p)-cell as well.

Proof. [8] 1.2(a) is satisfied for (X', A") and thus by X \ A —X" \ Al it
is satisfied for (X, A) as well.

By X \ A = X"\ A’ the inclusion k: (X', A") C (X, A) is a relative home-
omorphism and thus the induced & A£(X',A") —»H%(X,A) is an isomor-
phism (see [11] p. 266). Hence by #n(X',A") ss Zp (see 1.2(b)) we have

HZ(X,A)k H>(X",A")k Zp.

1.2(b) is satisfied for (X, A) as well.

Since by assumption H%(X) = 0 it follows that 1.2(c) is satisfied for the
compact pair (X, A), too.

Now let ¥ be a domain in X\ A = X"\ Al and let U be a nonempty open
subset of V such that for the inclusion j'\ (X', A") C (X', X"\ U) the induced
homomorphism j,,: H%(X',A") —aHn(X',X"\ U) is a monomorphism. Let
K\: (X, X"\U) C (X, X\U)andj: (X,A) C (X, X\U) beinclusions. Then
the diagram

Hn(X',A') ——- —---4 Hn(X', X' \U)

SR R — , Hn(X, X\ U)
J*

is clearly commutative, where j, and ku are homomorphisms induced by the
inclusions j and k\ respectively. k\ is a relative homeomorphism as well and
thus k\* is an isomorphism. Consequently fcj.y' = y*¥m is a monomorphism
and since K, is an isomorphism too it follows that j»is a monomorphism.
(X, A) satisfies condition [8] 1.2(d) as well.
(X', A) is an (n,p)-cell as required.

6.12. Remark. Ifpisaprime, n 6 N, (X,A) and (X', A") are homeo-
morphic compact pairs, i.e., there is a homeomorphism ¢ X —»X" such that
y>(A) = A" and (X, A) is an (n,p)-cell then so is clearly (X', A").

The second fundamental theorem can be formulated as follows

6.13. Theorem. Let n £ N. Let (Y,B) be a topological nonclosed n-
pseudomanifold with boundary and without 2-singular interior points. Then
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(Y,B) is an (n,2)-manifold. Moreover if(Y,B) is also locally orientable then
for each prime p, (Y,B) is an (n,p)-manifold.

Proof. By assumption Y = LAL, B —uay, where K is a triangulation
situated in some Euclidean space Rs and L is a closed subcomplex of K,
moreover K is an n-dimensional combinatorial pseudomanifold with bound-
ary L and L ¢ O (see [8] 3.1).

By [8] Theorem 3.4 (Y,B) is an (n,2)-cell. Thus by [8] 1.2(a) condition
1.1(a) of the present paper is satisfied. By 6.2 condition 1.1(c) is satisfied as
well for the compact pair (Y,B). Moreover by [8] 3.2(13) for each prime p
we have

(53) H?2(\K\\) =H*{Y) = 0.

Now for g G 1A' 1\ ||Al| let Ok(qg) be the same as in 6.3. Let 0'K(q) be
the subcomplex of K consisting of all simplexes of Ok(q) and of all faces of
such simplexes. Let BM{q) —0'K(qg) \ Oj*q). 0'K(qg) and Bx(q) are closed
subcomplexes of K. Since (LUAL,||A|) is without 2-singular interior points
it follows by 6.8 that Ok {g) = Eqa is an n-pseudomanifold and thus 0'K(q)
is a combinatorial n-pseudomanifold with boundary Bj*{q) and Bx(q) o O.
Moreover if (UAL, ||Z]|]) is locally orientable then by 6.8, 6.4 and 6.5 for
each g E ||A'|| \ ||A], Ok{u) is an orientable n-pseudomanifold and thus the
combinatorial n-pseudomanifold 0'K(q) is orientable as well. Consequently

by [B8] Theorem 3.4 for each q G ||A'|| \ ||JA]] (]lo/<'(9)1U HHMA'9)]) is an (n,2)-

cell and if (||A']|,]|i|]]) is locally orientable then for each q E ||/i|| \ ||A|| and
for each prime p, (]|0 A(9)|, [|An-(g)|]) is an (n,p)-cell.

Now for m GN and q E ||A|| \ ||A]| let be the positive dilatation of
Rs with the invariant point g and with ratio i.e., gtfmo{<f) — holds

for each g E Rs and let Umig = "m,q{\O'K(@\ \ ||5 n-(9)||). Umg is clearly
an open subset of ||A'| \ ||[L\ and {Umq; q E ||A'| \ [|A]l, m E N} is a base
of PHIMIfIl =Y\B.__

Now since (Umig, Um,g\ Um%) is homeomorphic to the compact pair
(K> ||-Sa(9)|]) it follows by 6.12, (53) and 6.11 that for each gq E
E 1A' 21\ JA]l and m E N, (|JAY], [JA'l] \ Umig) is an (n,2)-cell. Moreover
if (LUAH NIA]||) is locally orientable then for each prime p, (LIAL, ||A'|| \ t/m,9)
is an (n,p)-cell. Hence if p = 2 then condition 1.1(b) is also satisfied for the
compact pair (LAL, |A]]) and if (||A"]], |Al]) is locally orientable then 1.1(b)
is satisfied for each prime p.

Consequently (UAL, ||A]) = (Y, B) is an (n, 2)-manifold and if (Y, B) is
locally orientable then (Y,B) is an (n,p)-manifold for each prime p.

The Theorem is proved.
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6.14. Remark. Let p be a prime and let n6 N. Let (x, A) and (Y,B)
be homeomorphic compact pairs, where (Y,B) is an (n,p)-manifold. Then
(X, A) is clearly an (n,p)-manifold as well.

6.15. Now by 6.10, 6.14 and by Theorems 6.13 and 5.6 we can state the
following theorem.

Theorem. Let n G N. Let (x, A) be a compact pair lying in Rn+1 and
homeomorphic to a locally orientable nonclosed topological n-pseudomanifold
with boundary and without homologically singular interior points. Let K be
a continuous closed path in X \ A and let p be a prime with p ~ 3. Under the
circumstances K preserves its banks if and only if it preserves the orientation
in the (n,p)-manifold (x, A).

Our program is finished.

Now we make an additional remark.

We can raise a problem converse in a certain sense to the statement of
6.13. We also formulate a theorem related to this question without proof.

6.16. Theorem. Let K be a triangulation in some Euclidean space and
let L be a closed subcomplex of K. Suppose that ([|A'|l, ||T||) is an (ra,p)-
manifold for some prime p. Then K \ L is an n-dimensional pseudomanifold
and for each g £ ||A']| \ ||Z]|, Ok(q) is an n-pseudomanifold as well. Ifp ¢ 2
then in addition the Ok («)-s are orientable n-pseudomanifolds.
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PRODUCT SETS IN THE PLANE, SETS OF
THE FORM A+B ON THE REAL LINE AND
HAUSDORFF MEASURES

Z BUCZOLICH* (Budapest)

Introduction. From Theorem 2 in [1] it follows that every E C [0,1] X
x [0,1] = 12 of positive two-dimensional Lebesgue measure contains a set
of the form A x B such that Aj(A) > 0, and B is non-empty perfect. (We
denote by Am(A) the m-dimensional outer Lebesgue measure of the set A.) M.
Laczkovich asked whether the set B can be of positive Hausdorff dimension.
We show that the answer is negative. Moreover, in Theorem 1 we prove that
for any Hausdorff measure there exists a set E C 12 of full measure such
that if A x B C E, A®A) > 0, and the sets A, B are measurable then B is of
zero  measure. (For the definition of the «* measure see the Preliminaries.)

Sets of the form A+B = {a+b:aE A, bE B} can be regarded as
projections of A x B onto the line y - x. G. Petruska asked the following
question. Assume that AXB) > 0 and the Hausdorff dimension of A M|
equals d £ [0,1] for any interval / b 0. Is it true that the Hausdorff dimension
of the complement of A + B cannot be bigger than 1- dl In Theorem 2 we
give a negative answer to this question. In fact we show that there exist B of
full Aj-measure, and a set A which satisfies the above conditions with d = 1
but the Hausdorff dimension of the complement of A + B also equals 1

Preliminaries. Assume that ¢ : [0,+00) —» [0,-fioo) is monotone in-
creasing, 0(t) > 0 for t > 0,0(0) = 0, and ¢ is continuous from the right for
all« ~ 0. IfFE C L Ui and diam(f/;) ~ S¢i = 1,2,...) then we say that the
system {Ui} is a S-cover of E. For an E C R put

n*(E) = inf ¥~] 0(diam Uj)
E1l

where the inf is taken for all ~-covers of E. Put kq(E) = sup5>0k$(E). It
is well-known [2, Theorem 27, p. 50] that the Hausdorff measure is a
regular metric measure. Furthermore all Borel sets are «*-measurable, and
each «*-measurable set of finite «*-measure contains an Fa-set of the same
measure.

* Research supported by the Hungarian National Foundation for Scientific Research
Grant No. 2114.
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108 Z. BUCZOLICH

When (1) = tathen we obtain the s-dimensional Hausdorff measure. In
this case we shall use the notation ks instead of k¥* , or k.

We say [cf. 2, Section 8.3, p.121] that the open set condition (OSC) holds
for the contractions {Mb}™ if there exists a non-empty bounded open set V
such that

m
u *I(V) cv
j=r
with this union disjoint. We also need [2, Theorem 8.6, p.122 ]

Theorem A. Suppose that m > 1 and the OSC holds for the similitudes
ij)j with ratios rj, 1 Cj ™ m. Then the associated compact invariant set E
IS an s-set where s is determined by r* = 1; that is 0 < ks(E) < oo.

We refer to [2], especially to Section 8.3 of [2] for the terminology used
in the formulation of Theorem A.

Main results. Theorem 1. Let rff denote any Hausdorff measure.

(i) For every £ > 0 there exists a measurable set E C |2 such that A2(/2\
\ E) <e and whenever A X B C E then either Aj(A) = 0 or kgAB) = 0.

(if) There exists a measurable set H C I2 such that A2(/2\ H) —0 and
whenever A X B C H with Lebesgue measurable A and Borel measurable B
then either Aj(A) = 0 or k*(B) = 0.

Remark. In statement (ii) the assumption about the measurability of
A and B cannot be dropped. An unpublished result of R. 0. Davies implies
that assuming the Continuum Hypothesis, from H C /2, A2(/2\ H) = 0 it
follows that there exists A X B C A with Aj(A) = Aj(B) - 1 The proof of
this fact is not difficult and can be obtained by transfinite induction.

Proof. For p £ (0,1) we define measurable sets H(p) C I2 such that
A2(H(p)) =>pandif AXB CH(p), Aj(A) > 0then k*(B) = 0. This proves
(). Then by using the sets H(p) we construct a set E of full A2measure in
12 which satisfies (ii).

If k and M are given positive integers we define the sets Hb(M) C
C [0,1] by splitting [0,1] into Mfc 1 many subintervals of length
and deleting from each of these subintervals their last open sub-subinterval
of length 1/M Kk, that is,

AX'1AM-=2

M) = mgo (=0

m C m £+ 1
+ ~Mk' M k~I + ~Mk

Obvicusly the sets Hk(M) are closed and AL(A4.(M)) = 1—jj. Further-
more it is easy to check that the sets H*{M) also satisfy the following:
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Independence- property.

HnH=LEr

for k\ < &< ... < kr.

Assume that a positive integer N is also given. We define the closed
set H(N,M) C /2 so that its horizontal section at the height y £ (~4, jj) ,
K=1,..., N equals Hk(M), that is,

N

—1 f
HINM) o HK(M) x o)
_ N A
k=1
It is obvious that
in Je(H(A,M)) =1 -~

Assume that p £ (0,1) is given. Choose a sequence M\, M2,..., Mm, ...
such that

(2) l_EM P

For m = 1,2,... choose an integer Lm such that

“ G

m Mm)

Since 0(0) = 0 and ¢ is continuous from the right we can also find integers
Nm for m= 1,2,... such that

< 1
@) —.
Put Hm = H(Nm, Mm). Since sets of the form H(N,M) are closed the
sets Hm, to= 1,2,... are also closed. By (1) we have
1
1-
Mm

Let H(p) = n«=i Hm. As the intersection of closed sets H(p) is obvi-
ously closed,

A{H(P)) =n2(/2\(/2\A(p))) *
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Nal2)-y 412\HT)=1-y >
m—1 m—1

In this paragraph we show that if A x B C //(p), Al(A) > Othen k*(B) —
= 0. Assume that the integer m is fixed with 1/m < Ai(A). From A X
x B C A(p) it follows that Ax B C 41 for m — 1,2,.... Choose the

numbers ki < k2 < ... < AI'T such that ( MmB ¢©0,j=1,2,....,rm.
From the definition of the set Hm it follows that its horizontal section at any
height y £ equals Hk}{Mm). Since Ax B C Hm we obtain that

A C Dj=i Hk, (Mm)- The Independence Property of the sets and (3)
imply that

L AW iy,

Thus rm ~ Xm and hence

i k
»C U 4 ml’Am uu
J=1

kZO nZz

Using the intervals [icAi,Mj and the points jf-, we obtain a <b-cower
Ui,U2,meof A with 6 = g—such that

*Y AMdiam Ui) < rTp{1/Nm)+ (Nm+ 1) 0" bTd(1/Nm) < 1/m

where at the last step we used (4). Since the above estimates are valid for
any to large enough, we proved that k*{B) —O0.

Forn —2,3,... put En=49(1 —A) and E = (J"I2 It is clear that
E is of full A>-measure in J2. Assume that Ax B C E, Aj(A) > 0, A is
Lebesgue and B is Borel measurable. In fact we can also make the auxiliary
assumption that A and B are closed since if AA) > 0 then one can choose
a closed subset of A of positive Aj-measure and the same is true about
[3, Theorem 27, p.50]. Choose a sequence of intervals n=12,...,
which consists of all open intervals with rational endpoints. Denote by G
the union of those intervals In for which k~(/,, MA) = 0. Obviously kd(G N
MB) = 0. If G =R then k*(A) = 0 and that is what we want to verify.
Assume for a contradiction that G/ R. Put 4' = R \G. Obviously B1is
closed. Assume that x £ B', a < x < b and choose an In such that x £

£/, C(a,6). Then 0< k*(1nNB) ™ x~((a,6) MA) . This implies that any
neighborhood of any x £ B 1contains points of B. Since B is closed we obtain
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that B' C B. Furthermore kd((a,b)lN B') ((a,b)r'\ B) - kdp((a,b)'\ B I
MG) = kd((a,b) MB) thus we obtain that for any x £ (a,b) NMB1 we have
K”™((a,6)l1 B") > 0. This also implies that B" is perfect. By using Xx instead
of kpand a process similar to the previous one we can find a closed A' C A
such that AL(J1/) > 0, A" is perfect and if (a,6) /1" / 0 then Aj((a,6) N
MA" > 0.

Therefore A'xXB'cAxBcE and A" XB' is perfect. Put Cn= EnTl
M(A1x B'). Since A'x B'CE = 2En we have 2Cn=A"x B'. By
Baire’s Category Theorem there exists an n and an open set U such that
UM(A'x B') ®0and Cnisdense in UNM(A'x B"). Recall that En=#( 1—
—A) is a closed set. Thus Cn C A" X B' is also closed and it is dense in
UM (A" x B'). Then UMNCn = UTI(A" x Br). Choose (a, b) and (c,d) such
that A" = (a,b)) DA'* 0, (c,d)MB" 0, [a6] X[c,d] C U Put B" = [c,d\ T
MB'. Then A" x B" CUMN(A1x B') =UJZICnCCnC En=H(1- A),
AL(A") > 0, B" is closed and kdg(B") > 0 a contradiction proving that E
satisfies the conclusion of Theorem 1in I2.

THEOREM 2. There exist A, B C R such that the Hausdorff dimension of
Al 1 equals 1for any non-empty interval I, AXR \ B) —0 and the Hausdorff
dimension of R \ (A + B) also equals 1.

We shall show that there exists P C [0,1] such that the Hausdorff di-
mension of P equals 1 and Aj(P —P) —0. (We remark, in contrast, that the
Cantor triadic set has Hausdorff dimension log 2 /log 3 and Ar(C —C) > 0.)
First assuming the existence of P we prove our theorem. If the sequence
{Z,} contains all the rationals put A = + %)m Then the Hausdorff
dimension of A in any interval equals 1. Put B' —P —A. Then B' = P —
- ix°=i(p +4n) = U~1 {(p - P) - 9n) mSince Aj(P - P) = 0 we have
AB") =0 Put B =R\B1Ifx £ (A+ B)IP then there exists a £ A,
bf B suchthatx = a+ b Since x £ P, whaveb=x- af£ P —A —B1con-
tradicting b£ R\ B'. Therefore P C R\ (A + B) and hence the Hausdorff
dimension of the complement of A + B equals 1.

We now turn to the definition of the set P. Put P = {xk £ [0,1] : the
decimal expansion of x = O.arara3 ... and 02" = 1forn —1,2,3,...}.

To compute the Hausdorff dimension of P we need the auxiliary sets
Pn — {x £ [0,1] : the decimal expansion of x = o.aiaz2as..., a* = 0 if
k -1,2,...,2"—1 and &*2n = 1for |l =1,2,3,...}. Put V = (10~2,2 m
*10~2 ). Define the linear mappings tpj so that

XFfV) mlO-2M ¥+, 1o -T T+ 10 2
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that is

M,(X) = 10-»" + < - 10-»") m10-»" + (j + -A  10-»"++l

forj =0,1,...,102"-1 —1. Then the sets ipj(V) C V are disjoint for j @
® j' and this implies that the system ipj satisfies the OSC. It is also easy
to check that Pn is the associated compact invariant set for the system
ipj forj —0,1,...,102'-1 —1. The contraction ratio rj = 10-2" for j —
=0,1,...,102'-1 —1. By Theorem A the Hausdorff dimension, s, of the set
Pn can be computed from

10+ - 11
1= Y,- (io-2T =ioin"Xio"2n)",

=0

that iss = 2™1.
Define

Vn - 0O.W1iW2

such that w2k = 1if A= 1,...,n—1and Wj = 0 otherwise. Put Pn = Pn+
+ vn. Then it is easy to check that P* C P. Thus the Hausdorff dimension of
P is at least the Hausdorff dimension of Pn which is 22~r forn = 1,2,... .
Since P C [0,1] its Hausdorff dimension cannot exceed 1. Thus the Hausdorff
dimension of P equals 1

If y GP —P and the decimal expansion of y equals 60.616263 ... then
the definition of P implies that 62» = 0, or 62" = 9 holds forn =1,2,... .

It is easy to verify that if H = {x £ R :x = 00.010203 ..., and there
exists at least one integer n such that 02»” {0,9}} then the set H is of full
Ar measure. Since P - P C R\ H this implies that AXP - P) = 0. This
concludes the proof.
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TURAN TYPE PROBLEMS
ON MEAN CONVERGENCE. I
(LAGRANGE TYPE INTERPOLATIONS)

P. VERTESI (Budapest)*

1. Introduction. Preliminary results

1.1. Throughout this paper X = = cosdfcn} denotes an infinite
triangular interpolator]) matrix in [, 1], that means
(1l
ANAHLL — 1= %nn N eI'ndhn " Ngen M ANTn = won — 11 n—1,2,....

For M ~ 1, fixed integer, we consider the unique interpolatory polynomials
(cf. (1.4) and (1.6))

(1.2) INM(fi X ,x).— ~ yf{%kn)hpknM( 1 %E ti—
fc=i

for a continuous /() in [1,1] (/ E C, shortly) and the unique Hermite
interpolatory polynomials (cf. (1.4) and (1.6)) defined by

M—1 n

(1.3) InM(F,X,x):= Y, £ / QN YW /(*,z)
i=0 =

(yov/ g where htknM E Pwmn- 1 (the set of polynomials of degree at
most Mn - 1; actually, htknM £ Pa/n-i \ Pmn-2), satisfying

(f4) M2#(-Y*<»)=Mmu, tr=01.., M—1 kE=12..n.

By definition (using here and later some obvious short notations), /,,m (/, &»
£ PMn— and

Pnm{P, x) = P(x) forany P e Pmn—ie

* Research supported by Hungarian National Science Foundation Grants No. 1910
and T7570.
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The so called truncated Hermite interpolator polynomials are defined
by

(1.5) InMr (s X, x) .— E E \%kn)htknM(A,®), n —1,2,...,

t=0 k=1
where O Er E M - 1, fixed, £ C. Obviously /nmo = 4m and
InM,M—i ~ T'nM1i-6. InMr £ PMn—\ generalizes both inm and Xnm . They

satisfy the interpolator properties

(1-6) 19%hr(fiX xkn) = f {)(xkn), 1 O7irr,

(cf. (1.4)).
A special case of a recent result in J. Szabados [1, Theorem 1] states:

With W\ := max |</(a)], we have the following. If
- I<X«

NonM{M) — IO n M @1 .— 'Y\hoknM(A . X) .

K=1

then for any fixed interpolatory X
(1.7) Aonm(*) =clogn, m is odd.

From this Faber-type result using the Banach-Steinhaus theorem, we obtain
that

(1.8) lim ||//ran(/, A, z)|| = oc, [ £ C isproperly chosen
n—mo

(m is odd, X is arbitrary, fixed). (In\ = Ln is the classical Lagrange inter-
polation).

1.2. However for even values of M we can find “good” matrices. Namely,
if Xc<aB®\ a,R > —1, denotes the interpolatory matrix whose n-th row

consists of the roots of the n-th Jacobi polynomial P*a,Bx) then if s —
~ 2,4,6,..., fixed,

(2.9) lim \\Ins(f, X*a'o\x) - /(z)|| =0 forall/ £C
n—KXx)
whenever
R AN - - AN
(1.10) As T q,/3< A and |g- R\ <

Acta Mathematica Hungarica 65, 1994



TURAN TYPE PROBLEMS ON MEAN CONVERGENCE. | 117

(of. the works of R. Sakai and P. Vértesi [2/1, Theorem 2.1] and [3/1V, Part
5.3]; In2 = Hn is the classical Hermite-Fejér interpolation).

The previous considerations motivate the name ‘Lagrange type interpo-
lation” for Inm and the notation Lnm (instead of Inm) whenever m is odd.
Our present paper deals with this Lagrange type cases (i.e. with Lnm, m
odd). The even values of M (called Hermite-Fejér type interpolations) will
be considered in the second part of this paper. So from now on m is a fixed
odd positive integer.

1.3. Throughout this paper da denotes a measure generated by the non-
decreasing bounded function a(x) supported in [—1,1] such that
supp(da) (= the Iset of points of increase of a(x)) is an infinite set. We

suppose that 0 < JI da < oo. pn(da,x) denotes the corresponding orthonor-

mal polynomial of degree exactly n. Its roots are {xiin{da)}1k = 1,2,... ,n.
If X = {xkn(da)}, we use the notations X (da), Hnm(f,da,x), Zn(/, da, x),
etc.

If a is absolutely continuous then a'(x) = w(x) a.e. where w(x) is called
a weight(function). In this case we write X(w), |c|)n(w,x), etc. Generally,

u(x) is a weight (on [, 1)) iffu(x) ~ Oand 0 < fI u(x)dx < oo; the above

defined w obviously satisfies these conditions.
Let n be a weight. We define

A OAF(X)\pu(x)dx? 0<p<oo
I/(*)H p,u

ess sup |/(x)|, p = 0o0.

—3mM1

Note that || ¢|| uis not a norm if 0 < p < 1. With the above notations let

LUm={/; ll/llpx <00}, o<p” oo
Ifu(x) = 1, we write ||/||pand Lp. Finally, if/ GC, ||/|] := W/u” (= 4/Lu”
for any n).

In 1937, P. Erdés and P. Taran [4] proved, in contrast to the Faber
theorem (cf. (1.7) and (1.8) for m = 1), as follows.

Theorem 1.1. Let w be afixed iveight. Then

(111, lim J ILn(f,w,x) —f(x)\aw(x)dx =0 for all f EC.
-l
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A natural question arises (cf. P. Taran [5, Problem IX]):

Do there exist a weight w and an f £ C such that for every p > 2 the
relation

|
(1.12) lim / \Ln(f, w, x) - f(x)\pw(x)dx = 00

n—»00 /

holds?

In 1985, P. Nevai [8] improving his former result (cf. [6, Theorem 15, p.
180]) proved as follows.

Theorem 1.2. Leta E5 (= Szeg6 class, i.e. loga'(x)/%/l - x2 £ LI),
1=Po< 00 anda(”"0)£1"'. Suppose that

(1.13) I(a',p,u) = 00 for every p > paq.
p,u

Then there exists an f £ C such that

(1.14) nIi_rpm\\Ln(f,da)\\ = o0 if p>p0.

In 1991, combining some general properties of orthogonal polynomials

with the investigation of the sum X — xkn(w) x)| = nofeni
are the fundamental polynomials of Lagrange interpolation) Y. G. Shi [7,
Theorem 4] proved the following general statement.

Theorem 1.3. Let n and w be two weight functions and 2 » po < oo. If

(1.15) oo for every p > po,
p,u

then there exists an f £ C such that
(1.16) nIE&DHTn(/,tn)H =00 if p>po-

(Notice that we do not suppose that w £ S.) The above theorems may
serve as solutions for the Tarén problem (cf. 2.2.1-2.2.4, especially 2.2.3).
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2. New results

2.1. Inour paper G. Mastroianni, P. Vértesi [10] we generalized Theorem
1.3. The aim of this work is to consider the analogous results for the process
Lnm. (Again, tois odd.)

From now on w £J (or w £ J{a,)) means that w(x) = (1- x)a m
‘1+x)Ba,R>—1.wEJIm (orwtE if, moreover, a,R >Cm 'm=
= —1/2 - 1/M (cf. (1.10)). These weights w will generally be denoted by
V.

First we quote a result corresponding to the Erd@s-Turan theorem (cf.
Theorem 1.1). By a rather special case of P. VVértesi, Y. Xu [9, Theorem 2.1,
(i)] namely taking r = A= 0 we get as follows.

Let v £ Jm be fixed. Then, ifp = 2/m, we have

|
(2.1) lim / \Lnm(f,v,x) —/(x)[pv(x)dx =0 for all f £ C
1

71— KX

(As we mentioned, to = 1,3,5,..., fixed.)

The previous theorem has been obtained by verifying the sufficient con-
dition of (2.1), namely the relation (1 —x2)~"4 v(x)' "2 £ L1 which, ifp —
= 2/10, turns into 1/\/l - x2 £ L1 However, if p ——1 + 2e), £ > 0, fixed,

the condition becomes (1 - x2) ev(x)~% £ L1, which certainly does not
hold if v £ Jm{7,7) and 7 "~ 1/(2e), say.

The above argument suggests that for the process Lnm(f,da) the critical
exponent is 2/to. Combining the previous methods with new ideas we can
further strengthen this hint (cf. 2.2.3 and 2.2.5).

Theorem 2.1. Let supp(da) = [4,1], a'(x) > 0 ae. in [—,1], 0 <
<po”™ 00 and n be a weight. If

(2.2)
Im(a’,p,u) :== [/ *a'\/l —x2? =00 for every Po<P=o0
p,u
then there exists an f £ C such that
(2.3) nlimm \\Lnm(f,da)\\ = 00 whenever pO<p” oo.

Now let u = a'. Then, by definition Im(a',2/m,a") = f r!-1/2.-1/2) <
< 00. On the other hand, by Theorem 2.1 we obtain
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Corollary 2.2. Letsupp (da) = [,1], a'(x) > 0 ae. in[—1,1]. If
(2.4) Im(a',p,al) = oo for every 2/m <p” o0
then there exists afunction f £ C such that

nI|_rl100 \\Lnm(f,da)\\ , = oo for every 2/m < p %oo0.

2.2. Remarks. L. When m = 1, Theorem 2.1 was proved in G. Mastro-
ianni, P. Vértesi [10].

2. It is easy to see that no Jacobi weight v satisfies Im(v,p,v) =
oo if p is “close” to 2/m. Indeed, if p = (1 + 2e), then Im(v,p,v) =

f (1 —x2) M2 ev(x)~2edx < oo if £ > 0 is small enough. On the other
-1

hand, let wg(x) = exp (—(1 —x2) S), $> 0. Then simple calculation shows
that

Im (WiPmil+2E)Wi) = /(1-~T U2" exp(rT~) dx = °0
-l

Note that 6 5 if < 1/2 (cf. [6, Definition 17, p. 181]).

3. By Corollary 2.2 and the above considerations we get the following
Turan-type theorems.

Theorem 2.3. Let 6 > 0 hefixed. Then there is an f £ C such that for
any p, 2/m < p %oo,

I
Ii_m f ILnm(/, ws,x) - f(x)\pws(x)dx = 00
-1
(cf (1.12) if m = 1; for a positive result, see (2.1)).

4. For arbitrary fixed v £ Jm with a,k ~ —1/2 as it comes from [9,
Theorem 2.1, (ii)], (2.1) holds true for arbitrary 0 < p < 00 (By the way,
now Im(v,p,v) » f vdx < 00.)

5. Applying [9, Theorem 2.1, (ii)] with r = J1= 0 and Remark 3.2.5.3,
we have
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Statement 2.4. LetvEJIm, n GJ and 0 < p < oo, fixed. Then

I
nI|_rpqml ILnm(f,v,x) —f(x)\pu(x)dx = 0 for allf £C

iff

Av(@ )Vl —x2n 2

When m = 1, cf. P. Nevai [18, Theorem 6, p. 695].
6. The following problem is rather natural.

Prove relation (2.1) for arbitrary (or at least “many”) weight(s) w (cf.
(1.11) when m = 1).
This Erdds-Turan-type theorem would supplement Remark 2.2.3.

2.3. To get our statements we prove the fairly general Theorem 2.5.
First we give a

Definition. The interpolatory matrix X is regular with respect to the
weight w (X is w-regular, shortly) iff for any fixed interval I C [1,1] with
b

f w > 0, there exists a subinterval J = J(I) = [a,b] C | satisfying f w > 0,
| a
further each of the intervals [a,a + €] and [b—£,6] contains at least one root
of

n
(2.5) {u>(x) = uin(x) = )un(A%z) := cn 4 (K - xkn), cn>0

k=1

if n » no(e). (Here e > 0 is arbitrary fixed.)

I
Remark. Ifx = {#*((Zq)} and JI a' > 0 (s0 a* is a weight) then x is

a'-regular (cf. G. Szeg6 [11, Theorem 6.1.1, p. Il1l] and [10, Parts 2.1-2.2]).

Now let

(2.6) [TAnmW|PU:= sup [[Inm(/,X,a;)]! , n~" 1
wmi

If Xs(a:) denotes the characteristic function of a Lebesgue measurable set S

(S € M shortly), and CS stands for [, 1]\ S, our statement is as follows
(cf. [10, Theorem 2.2]).
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T heorem 2.5. Let n and w be two weights, X be a w-regular interpo-
lator matrix and qo > 0 be fixed. Then there exists an e > 0 such that if
Rn € N4, |iln| £, otherwise arbitrary, we have for every p with go <p i1 00
the relation

27  ~7 Lo <lixean(hn(a\*-; poubnmQ prge 14
with a proper ¢ > 0 not depending on p.

2.4. Let ujy(x) = (1 —x)r(1 + x)spn(da, x), where 0 ~ r, s ~ 1, fixed,
N = n+r+s. Let Lnmrs(f, da, x) stand for the Lagrange type interpolation
based on the roots of 1jn(x). As an application of Theorem 2.5, we state a
generalization of Theorem 2.1 (cf. [10, Theorem 2.4]).

Theorem 2.6. Letsupp (da) =[-1,1], a' > 0ae. in [—1,1], 0<po "
N o0 and n be a weight. If

mp

(2.8) / /(I_X yr(t+ Z\)]sz u(x)dx = oo for every po<p” 00

1 (a'(x)UT —x2)
then there exists an f £ C such that

(2.9) nIi_n}*{ljo\\anrs(f,da)\\ =00 whenever po <p " oo.

2.5. For completeness we formulate an inverse of Theorem 2.5.

Theorem 2.7. There exist weight functions n and w and a w-regular
interpolatory matrix X such that for every p, 0 < p < 00,

(2.10) K» b'v" T -W\-
Similar inverse theorems can be stated considering Theorems 2.1 and 2.2.

Note that Statement 2.4 actually contains an inverse of Theorem 2.1. When

m = 1, (2.10) comes from Neva! [18, Theorem 6] (cf. Part 3.4). We omit the
further details.

3. Proofs
3.1. Proof of Theorem 2.5. By J. Szabados [1, (7) and (12)]

(3.1) hok(x) = CE(x)Bk(x), «k—1,2,... ,
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where Tk(x) —u(x){u>\xk)(x —x™} 1 G Vn-i \ Vn-2 are the fundamen-
tal polynomials of Lagrange interpolation, Bk GVm-\, further — which is
fundamental —

(_““) \' ' m—1 -

, i GR, 1<k<n,
xk - xkzi)

with one of the signs in Xkti; R := (—00,00). (Relation (3.2) made possible
to prove (1.7) and (1.8). Further, again by (3.2), one can prove the inequality

Aonm(l) A clogs , x $ Hn
where \Hn\~ e, £ > 0 is arbitrary fixed (cf. P. Vértesi [13, Theorem 2.1]).)
Let In. [~(ni.n, H i*"JA"""T >>a—1,2,....
If
3.3 BtamW = x )= 1" (D r
33) uik Kzt O
U)(x)
., 1MK”MN N,
0'0K) . o ‘
we prove
3.1.1. Lemma 3.1. Let X and s >0 befixed. Then there exist sets Hn,
Hn C In, \Hn\~ s, such that for any n ~ 1
(3.4) snm(ln,x):= ~

Ek{x)~t T if XEIn\Hn,

where r)(s) —c£2m, ¢ > 0 does not depend on n or In.

Remark. The investigation of ~ |x —2fc||lfc(z)] (to = 1) was initiated
by Y. G. Shi [12] and [7]. When m ~ 1, by (3.1), (3.2) and Lemma 3.1
(3.5)

Anm(7n,x) .— N NIX XEiOfe(xX)] A casam(in,x ) N
XKEtn

~ correry if 1G /,,\ Hn.

Proof of Lemma 3.1. The proof is based on ideas developed and used
by P. Erdds, P. Vértesi and later Y. G. Shi (cf. J. Szabados, P. Vértesi [14.

Sections 111/2, 111/6.1] further Y. G. Shi [12], [7] and P. Vértesi [13]).
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First we recall some notations. Let JK = JKn — [xk+\,n,xkn\, K
=0,1,...,n,n=1,2,.... With 0 <gk =Qk(JK) » 5 let

(3.6) Jkrqk) —[®fcH T ifclifcli  x«  *2ddd]i
(3.7) Jk = Jk(<k) = Jk\ Jk(gk)-
Let Zk = Zk(gk) be defined by
(3.8) 0 <)w(Z*)|= min_ |u;(z)], O~ K™ n,
)
further let

(3.9) \Ji, JK\ = max(|xt+i - arjtUsfc+i - a,]), O0~i',fc™n.

We construct the set Hn as a sum of subsets Gk —Gh, 1Uk”n.

(1) If Yol = £ then let Go = Jo- If this is not the case, then using (3.1),
(3.2) and the estimation I\(x) ~ 1for x » X\ we get

(310)  Ki(x)(x - T |n - axil?*7 ~ §/2)m2-m, x2 U +¢e/2

whence we get (3.4) on JO apart from a set Go of measure ~ s/2. In both
cases |Go| N fm

(2) A similar argument for Jn results Gn with \Gn\ * £

(3) For the remaining intervals we define Gk = Jk if |Jfc| 1 £/ nmFor these
Jk, Il < £-

(4) Let Tk = [xk+2, Xfc-i]. IT\IK\NTK\ < £, again let Gk = Jk- The total
measure of these intervals Gk, by Ifcl < S \TK\ = 6, is less than 6e.

By (I)-(4) for the remaining intervals Jk

(3.11) I\ A Emax ([Iferd|,|Ijt_i]), \Ik\>£/n.
Denote by A n the corresponding sets of indices (i.e. k £ [,, iff (3.11) holds).

We prove (cf. [13, Lemma 3.2]):
Ifn”™ 2 k£QA, and 1isr Gn—1, we have

m
(312)  Ek(x)+ Ek+Ax)"c(m)em-'q2\Jk\ 'L'l(?g if x £ Jr{gr)e
u

Indeed, by (3.3) and (3.8), when x £ Jr(qr),

Ei{x) l;l((zxr)) 11(zr) ® Ei(3y)> i —K, K1,
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whence, using (3.3), (3.11), (3.6) and (3.7)
Ek(x) + Ek+i(x) t Ek(zr)+ Ek+u(zr) t

afk) (KKK XV + B2 (Zk - Xke)T ) 2

! \ T2

bl W )TT X K)+ (?+1(rk)},

which by i'k'izk) + t™1(zk) t 21 m (cf. [14, Lemma 3.6, p. 76]) gives (3.12).

(5) We now continue the proof of Lemma 3.1. Let gk = g =5 (k G An).
The point X, the intervals Jk and Jk(g), the index k will be called exceptional
iff (snm(x) = )sn(x) = sn(In,x) <qfor x € jk{q), Kk GA,, (n is fixed). We
state:

(3.13) N2 \GK = A2 \Jk\i=Hhii £ ff ntno = n0(f),
KEON KEON

where Sn(C A,,) collects the exceptional indices k of An. To prove (3.13) let
g = C\£2m (ci will be determined later).

Let ukn GJk(q) (k G<§) be an exceptional point of Jk(q). If for a fixed
n't no there exists an index t(n) Gen with

(3.14) sn{utn) t e ‘gpn,

by ) > sn(utn) we get (3.13) for this n. We prove (3.14) for arbitrary nt n0.
Indeed, let us suppose that for a certain N t. no (3.14) does not hold for

any t. Then by spj(uTar) < £~1gpiw, r G v we get

(3.15)
resN

On the other hand, by (3.12) for arbitrary nt no

I\ A2 Ek{ur)t [|3r] A{Ek(ur)+ Ek+(ur)} t

rebn
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whence by a+  ~ 2, (3.13) and ¢\ := ¢c(m)/8,

X Urle,(ur)» A~ X Url X + £k+i(“n}
reéon res,, kesn
Lj(zT)
reanfea 0j(zk)

o u(zr) u(zk) S
>z, £ wisi (ue v
KEON

re£ijgnr-.2 53 1am01 > A~ - 53 wiai =
= kfr kfsn
kEsn

c\rn) _2m—1.2 _ o. _2m-Il..2
= — £ Mn - 2clf dn

which contradicts (3.15). That means, (3.13) must hold.

(6) Finally, if k GAn\ en, by the definition of en, sn(x) * 4 whenever
X GJk(q)- For these values of k, let Gk = Jk. Here

XIn~fel <2< /X 13fcl= 2?2 = 2e-
k=0

_ Summarizing, if Hn is the sum of sets Gk defined in (1)—6), then \Hn\ ii
5 lie which essentially gives Lemma 3.1 at least when n ~ no- If n N no,
we can argue as in [14, Section 2.6.6, p. 87]. We omit the details. O

Remark. One can investigate, instead of snm(in,x), the expressions

(3.16) stnM(in,x) .— ~ 1w *h|MEY (M), TF ¢ 1S odd,
XkEIn

for arbitrary fixed M = 1,2,...,t=0,1,..., M —1 (cf. (1.3) and (1.4)).
It is made possible by the formulas

htknM{x) = 1 ™M(xX){x - xk)IBtk{x),  where

(3.17) M-t- 1
Btk{x) ~ ct >0 ifM —tisodd, x GR,
X k
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where <> 0 (1 » Kk ~ n) (cf. [1, (12) and (7)]). Now let £u.nm(3;) :=
= Wk - Xk£\\IEknm(x) (cf. (3.3)). By the relation

(3.18) staM(Inx):= T Etk(x)Z=~7,

xkein

XxEln\Hn, M=1,2,, <=0,1,...,

(where = ce2M+t, Hn C /nand [i/,,| © ) (3.17) and (3.18) estimate StnM,
whenever M —t is odd.

T/re proof of (3.18) js a word for word repetition of the previous one if as
a first step we define Gk — Jk whenever \Jk\ ~ s/n (the total measure of these

Gk is %e). Then for the remaining Jk, \Etk(x)\ ~ (e/nm)rEk(x) (actually for
any fixed real t  0). Further details are left to the reader.
Estimations of A(nm and A(nm(x) are in [1] and [13], respectively.

3.1.2. In his paper [7, Lemma 7], Y. G. Shi obtained as follows.
Let J C [1,1] denote an arbitrary interval with f iv(x)dx > 0. For S >

J
> 0 suppose \\\ >6 > |Z(J)|. (IfS EM, Z(S) = ZWS) = {x;x ES and
w(x) = O}*. Then we have

(3.19) p(Jd,6) := inf j w(x)dx > 0.
IBI=6 Q

Using Lemma 3.1, (3.19) (and the notation of (3.2)) we get (cf. [10, State-
ment 2.1]).

Lemma 3.2. Let X be w-regular. Then for every fixed interval | c
c [2,1] with f w > O there exists an e such that if Rn E M, |An| " e,

|
otherwise arbitrary, we have

1
Dom(l) ==
) xikEl K(X*)F1*/b-x*+1I -1 I ftu, (9 Imus (x)dx
for n ~ no(e). Here c—c(l,e) >0.
The proof of this lemma is similar to the one in [10, Statement 2.1]. Let
J —J(I) =[a,6]. By Jw >0, |J] - \ZJ)\ := 5e > 0.

J

Let xj(n) E [a,a + €] and xr(,) E[6- £b] (A is mregular so these nodes
exist if n  n0(e)). Then if In = [xj,xj1 C J we have \In\- \Z(J)\ * 3e.
Applying Lemma 3.1 for /,, and s defined above, then using (3.19) with J(1)
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and b - \Z(J)\ + £ we get, considering that / DJ DJ\ Rn 3 Un =/, \
\ Hn\ Rn and [E/n| " |Z(J)| + £. as follows.

f sn(In,x)w(x)dx J...

n f[) >D f7 ] — XH* > >
nmi3= “»>mtnj_ T/ K (x)|mn(x)dx = ... =
J\Rn
J d
> me)unW(X) " s> V(S)PINZI)\ +£)

f o \wn(x)\Tw(x)dx
J\RnN

(where by |J] —|Z(J)| —£ ™ 4e the numerator is greater than zero). O

Remark. Using (3.18), the previous argument yields that the estimation
of Lemma 3.2 can be replaced by

(3:20) E (e
wn(x K)\M \xk - xkzl

> - T , > lIn(£)
rd f \gn(x)\X w(x)dx
J(1)\Rn
forM=1,2,3,...and t=0,1,2,.... Here c= ¢(/,e).
3.1.3. Now we can complete the proof of Theorem 2.5 (cf. [6, Theorem

10.15], [7, Part 2.6]I and [10, Theorem 2.2]). Let Z = Z,,,([-1,1]). Denote
33:=2—|Z|. By /I w > 0, clearly b > 0. Fix any interval r C [-1,1] with

IT| = b. Then we can define two intervals in [—1,1], rji and 2, so that | I1
D72= 0, |D| = |Z| + b, where 12 = 74U 772 finally dist (r, II) » b/2. Relation
ID| > \2\ involves J w > 0 whence J w > 0, say.
M m
Define fn € C as a function with ||/n]| 1 further satisfying

(3.21) fn(xk) = Xn(*ffon)sign{u/(x*.)(C - xKk)}.

where C is the center of r.
Now let i ¢ £ . Using that Bk(x) ~ 0 (cf. (3.2)), by (3.21), using relations
\x —xk\ % 2, formula (3.2) and Lemma 3.2, we get

Bk(x) Bk(x) S

(3.22) J2 fn(Xk) wn(Xk)(x - ®*)r

k=1 xken
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Bk{x
) > X 6r,
- Xkzm KO O0oOTMx -x kr~+* - NOXcaAn™n It

where d = d(r/i,£) = coc(w,£)/2. By (3.22) and (3.1)

n ( /4 \ 7

Cxx-xt))}

AXr(»)kn (»)!

<
IXCH, W™ Bk{x)

N Xr{x)

< A fn(xlc)/I0K for arbitrary x £ [, 1],

Jo=}
whence
(323) d ~ TUpn ~"Pu < NT /y\|| -
eSimemlidw= nm ' ~ pu
Divide the interval [,1] into t subintervals rr,t = 1,2, of measure

6 according to Figure 1

Fg 1

Obviously [2<§] ~ t £ [2/tf] + 1. Choose e := Ir_n_i_nt £t (cf. Lemma 3.2).
i

Then (3.23) holds true for every T- with d, and the same £ and Rn. So if
n ~ no(f), 0 < p < oo, by (3.23)

1 t A

I KN« ~ E /I \Xr."n\mPU £

-1 =1 -X
< I max <

>Ic/.a Mathemaiica Hunyarica 65, 1994



130 P VERTES!

whence taking p-th root (for p * qo) we get (2.7). If p = oo, again by (3.23)
IK*Il = max |[Xt,< || » (max- ) lIxmKIIr,J W *)

If 1~ n”™ no, the statement is obvious whenever c is large enough. 0O

3.2. Proof of Theorem 2.1. We need the following general result of
A. Maté, P. Nevai and V. Totik [15, Theorem 2, p. 317].

Let 0 < g ™ oo. Then there is a constant d > 0 with the property that
for every measure with supp(da) = [, 1] and a'(x) > 0 a.e. in [, 1], the
inequality

(3.24) lig! («V 1 - 22)1/2|]|, » d lim \\gpn(da)\\q
holds for every Lebesgue measurable g.
Let LOv(x) = pn(da,x). Relation (3.24) yields (with gg=u and q = mp)

(3.25) Im(a\p,u) ~ dﬁ\m WPn(do)\\pU, O< piu 00.

To estimate \\xcrnp™{da)\\l wwe need another statement of [15].

Let supp (da) = [1,1] anda' > 0 a.e. in[,1]. Foragiven realr > 0
and n 0 define the set B = Brn(da) by

(3.26) B = {X; |p,,(da,x)|A(.T) ~ r}
where A(x) = ~a'(x)V/l —x2j . Then for every r > (2-)*/2

lim [Z/rn| = 0.

71—»00

(see [15, Lemma]).
Now let in [—1,1]
AXx) if AXx)"™ 1

(3:27) o) 1 if 1< A0x).

From eX > 0 a.e. we conclude that 0 < <{2) 1 a.e. whence em is a weight.
Further by definition S(x) ~ A(z). Again by a' > 0 a.e. we get that X(da)
is in-regular for an arbitrary weight w (cf. [11, Theorem 6.1.1, p. 1ll]),
especially for Sm. So by (3.26)

(328) O<HxcBmPnWHu»” WCBIn{Pn(da)X) m||, <2. n2 n0.
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By (2.7), (3.25), (3.26) and (3.28) we conclude the following important
relation e

(3.29) [/ (a'yjl1—x2j < c¢ Im lILnm(X(da))\\ pu, 00.

p.u

3.2.1. Relations (3.29) and (2.2) yield that lim || Lnm(X(da))\\ = 0oc
whence by the resonance principle applied for the Banach space C (with the
usual norm) and the operator norms {||Z,nm||pu} one would get (2.3) at least

for any fixed p ~ 1 (cf. K. Yosida [17, Il. 1, Corollary 1, p. 69]). However
if0 < p <1 Kel is not a norm anymore. So to prove our statement in

general, we define prenorms and prenorrned spaces as follows.

Definition. Let F be a real linear space.* If for every / GF we can
define a real number N(f) = N¥(/), the prenorm of /, such that with a
fixed real 0< AM 1

(i) 0~ N(f) <o00 and N(f) = 0 iff/ = 0 (zero-vector),
({i)N(f +g)ZN(f) + N(g)f,geF,
(iii) N(cf) =\c0\AN(f), c real,

then F is a prenorrned space. By (iii), N(—f) = N(f) which yields that F
is a metric space, too (with the metric d(x,y) := N(x —y)).

Examples. Every quasi-norm (cf. [17, 1.2, p. 31]) so every norm,
especially || ¢|jpu (p 1) is a prenorm with A = 1. Further, if 0 < p < 1,

' llpu a prenorm in if A =p ((i) and (iii) are obvious; for (ii), see [16,
Ch. 1, (9.13), p. 19)).

Now let B be a Banach space and F be a prenorrned space endowed
with I «Yand N(-), respectively. If A4 is a linear continuous operator with
M :B —»F (i.e. M(b) £ F if b £ B) we define N(M) = Vrb (M) by
(3.30) N(M):= sup N(M(b)).

b6B
IHIN

By the usual argument one can see that
(3.31) N (M) < oo.

(Indeed, supposing the contrary, we can choose a sequence {bn}cB,\\bn\\i1
A1, with lim N(M(bn)) = oo. Then denoting N{M{bn)) by an, bn/an :=
:= an —#0, whence, using the continuity of M, M(an) — 0. too. But (in

* We use the terminology of [17].
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the metric space F) N4(a,,) 0 iff N(M(an)) —==0. On the other hand, by
(iii) N(M(an)) = N(a~*M(bn)) —af~A 1, a contradiction.)

Let {M n} be a sequence of linear continuous operators with M n mB —
—+F (n=1,2,...). Weclaim

STATEMENT 3.3. Let B, F and {Mn mB —F) be defined as above. If
(3.32) lim N(Mn)= oo
then with a proper b£ B
(3.33) lim N(Mn(b)) —oo.

The proof of this Banach-Steinhaus-type theorem goes along the original
path (cf. [16, l.c.] for the classical version or [6, Part 10, Theorem 19, p.
182] for this prenorm form). For practical purpose we choose a proof based
on the argument in [8, Lemma],

By (3.30) and (3.32) there exist g3 £ B with |<j|| » 1 and the subse-
qguence {"j} C N such that

(3.34) j%N(MsAgj)) = 00.
Fix I. If
lim N(Mn(ge)) = 0o

then g( satisfy (3.32). If this is not the case we can suppose

(3.35) supN(Mn(ge)) := afge) < oo, 1=1,2,-—-

Now we can inductively define three sequences, {£&}, {b*} C {g3} and {n"} C
C {ij} such that £\ = 1/2, further for k ~ 1

(3.36) 0<et+1 i ejf/2,
K- 1

(3.37) EAN (NN4MC6r)) » k + 1+ ~ eaa(b(),
e

(3.38) 2e£+IN(Cnk) i I .
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Let

b:= " £kbk.
k=1

Then b £ B and ||6]] 1. Further, by (ii) we can write

Ik -\ N
N(Mnk(b)) I N(ekM nk(bk)) - N £ £J14,*(b,)
\e=i /

VI~ simonkeon I:=Si-S2- Ss.
V=fc+l /

Here, by (iii), (3.35), ||6r]] ~ 1and (3.36)

Si = e£N{M nk(bk)),

k— K- 1
s2™ Y ,e*N{Mnk(w))"
(=1 e=i
@
S3~ 2 e?N(Mnk(e)) I N(Mnk) £ ef ~ 280 +1IA(MnJ,
e=kH e-k+i

whence using (3.37) and (3.38) we get

N (M nk(b))"k. O

3.2.2. Remarks. 1 Statement 3.3 remains true if we replace condition
(iii) by
(iv) N(cf) = a(c)N(f), creal, / £F

where a(x) is a continuous real function, a(x) > 0 if x ¢ 0, a(x) is even,

a(x) is strictly increasing if x ~ 0, 0(0) = 0, a(l) = 1and lim a(x) = oo.
X —*00

(F remains linear!)

2. A complete prenormed space can be called pre-Banach space. Any
Frechet space (cf. [17, p. 52]) especially any Banach space is a pre-Banach
space. On the other hand, the spaces Lu with the prenorm N(-) = | *||*u,

0 < p < 1, are pre-Banach spaces (cf. [16, Ch. I, (11.1), p. 26]), but
not Banach spaces. One can check that Statement 3.3 remains true if B is
replaced by a pre-Banach space. Again, (iii) can be replaced by (iv).
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3. By Statements 3.3 and (3.29) one gets a “weak version” oi' Theorem
2.1. Namely
If for a fixed p, 0 < p ™ o0, we have (2.2), then for a proper f € C,

H‘%\\L'nm(fma)\\ = 00.

To verify this, we apply the cast B —C, F = ££, J14,, = Lnm and N(-
) = Il «llpu where Ap = min(p, 1).

3.2.3. To complete proof of Theorem 2.1 we need a theorem which
proper modification of the Lemma in [8] originally stated for Banach spaces.

Statement 3.4. Let Fp be prenormed spaces with prenorm Np, 0 < po <
< p " oo, respectively. Suppose Fv C Fr for p > r(> po) moreover suppose,
with 0 < 7 < 00,

(3.39) Nr(f) W SNp{f) If Nr{f) ~7? r<p and f 6 Fp.

Let B be a Banach space with norm | ¢|| and let { M n} be a sequence of linear
continuous operators with /14n : B —=F* (C Fp, p > po) such that

(3.40) n“—'l?DN p(Mn) = 00 whenever Po< P” oo0.

Then there exists a b6 B such that

(3.41) lim Np(Mn(b)) = oo for every po<p " oo.

Before proving Statement 3.4 (cf. 3.2.4), we first use it to get Theorem
2.1. Let us define the prenormed spaces Fp by Fp = and Np(-) = || «\pp
(as above, Ap = min(l,p)). First we verify LuC Ln, 0<r <p it oo (cf.
(3.43)), and relation (3.39), 0 < r <p ™ 00 (see Lemma 3.5). Then, with
the cast B = C (C L~f) and A4n = Lnm, using relations (2.2) and (3.29), we
find that formula (3.40) holds true whence by (3.41) we obtain (2.3).

Relation Lu C LUcomes from the Holder inequality. Indeed,* let F =
= |/|r,s =p/r and t = s/(s —1). Then

* Tacitly, we suppose that p < co. The case p = co is left to the reader.
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or

(3.43) /1U ~ 1/|jpuIMIC P, 0<r<pSoo.

By relations (3.42) and (3.43) it is easy to get

Lemma 3.5. For the prenormed spaces Lu with prenorms || mL”, 0 <

< pn oo, we have relation (3.39) ¥ 7 = max "1, f u(x)dx"j .

In the proof of (3.39) we distinguish three cases.
(1) LetO<r<p£ 1 Asin (3.42),

70 Ne.(/y = J\f\'u S (| \i\ru A Ir ()’,)’(D.

AN (L)TPYI~rP A (L )rIPT =0
Dividing by 7, we get 1ii J\f\pu whence by r/p < 1 we can write | —

— (J\\Pu)"P1 =1 f /T « = 7-Wp(/)> as *1 was stated.
(2) 0<r<1<pis00. By (3.42)

7aneh) RS b < =
whence, as above, 1 5= ||/||pu,so by r < 1,
TH/IU = 77p(/)-
(3) 1~ r<p” 00. By (3.42)

tfr(/) WS gt s u7 1A A 1Ip,u7 = 7Np(f),

without using the restriction 7 » Nr(f). O

3.2.4. The proof of Statement 3.4 is very similar to the one in [8].

Let pi = po+ 1. By (3.40) and Statement 3.3, there is a b\ £ B with
|6j]] 1 such that

(3.44) lim NP (Mn{b\)) = 00.
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Using (3.39) and (3.44) we obviously have

(3.45) lim NPI+s(Mn(bi)) = 0o if <570.

So if nI_imCO Np(A4n(bi)) = oo were true for every p E (po,P\) we would be

ready. If this is not the case then there must exist a p2 E {po,Po + 1/2) such
that lim NP (Mn(bi)) < oo. (Otherwise, if lim NR2(Mn(b\)) — oo were

true for every pi » pa+ 1/2, by nIim NPJs{Mn(b\)) = oo (see the argument

getting (3.45)) we would be ready.)
As above, there is a 62 £ B with L&LIN 1such that Iirgo AP2(14,,(02)) =

= 00 and there must exist a p3 E {po,Po + 1/3) such that
lim NR(Ain(b2)) < 00 (Otherwise, we would be ready.)

Continuing this process, either we find a b E B satisfying (3.41) or (and
this case will be settled from now on) we define two infinite sequences {pk}
and {bk} such that bk E B, ||6*|| 1 and

PO< mm<p3 <P2<Pi, Po<Pk” Po+ I/*\
(k = 1,2,...), further they satisfy the relations
(3.46) rIIim Np (Mn{bk)) = 00 if 1”~j i K
(cf. formula (3.45)) and
(3.47) nlirrgoNe (Mn(bk)) < 00 if k<j.
(Indeed, by construction

lim Np (Mn(bk)) < 00.

If lim NPk (Mn(b2) = 00 were true with a certain Iig” 1, then applying

(3.45) with 6 = pk+\ —Pk+io, one would get Ijngo N (Mnib?)) —00, a
contradiction.) Let

sup Ap2(N4n(ba)) := %, 11 K <j.

By (3.47), every is finite. Now, as in the proof of Statement 3.3, we

can inductively define the sequences {sk} and {iik} C N such that £1 = 1/2,
0 < Ek+1 " Sk/2, further for m~ 1

0<effil™C /2,

Nc<a Mathematica Hungarica 65, 1994



TURAN TYPE PROBLEMS ON MEAN CONVERGENCE. | 137

K-1
eKkN Pk(M nk(bk)) Zk + 1+

where a*, is the exponent A corresponding to the prenorm NPk(-) (cf. prop-
erty (iii) in 3.2.1).

Let b= £kbk- Obviously b £ B and ||6|| ~ 1, further, as above, we
get NPk(Mnk(b)) » k (k  1). Now if p > po is fixed (by po <pk ”* po + £)
Pk <p if Kk * ko(p). Then by (3.39)

KN NPK(M nk(b)) < Np(Mnk(b)) whenever k" ko(p) ™ 7. O

3.2.5. Remarks. 1. Although, as we mentioned, the proof is similar to
the one in [8], we have verified Statement 3.4 in its general form, first of all
because it is not a Tart pour I’art” generalization but the one what we used
(and will probably use).

2. Generalizations analogous to parts 3.2.2.1 and 3.2.2.2 can be consid-
ered. Details are left to the reader.

3. Let un(x) =pn(v,x) (uf£J). By (3.25), (3.28), (2.7) and Statement
3.3, foraproperf EC

Him |[L,m(/t7)]] = 00
whenever (v\/\ - x2) 2wu " L1 This fact has been used in Remark 2.2.3.
3.3. Proof of Theorem 2.6. If we can prove the relation (cf. (3.29))

(3.48)

O<p”™oo,n”l (where L..Ll corresponds to (2.6)). by Statement 3.4
we can complete the proof.

To get (3.48), first we remark that |uev(t) © 2\pn(da.x)\ whence bv
(3.28)

(3.49)
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Further, by relation (3.24) (with g(x) = {(1 —x)r(1 + x)s}mpu(x) and g =
mp)

(3.50) | A diim \LU \Pw

Now inequality (3.48) comes from (2.7), (3.49) and (3.50). O
3.4. Proof of Theorem 2.7. Here is a good triple u, w, X. Let n G

GJ and w = (i3 1—x2) 2 where v GJm- Then w £ J, i.e. w is a weight

further X —X(v) is to-regular.
Let uin(X, x) = pn(v,x). By [6, Theorem 33, p. 171]

\d —j\ . .
(351) \pn(v,x)\ ~ n " uniformly in nand x G[—4,1],

(vixjyii —xj) 12

where xj — Xjin*n(v) is the (a) nearest root of pn(v) to x. By (3.51),
Ibn (INIli w = ¢’ further by [9, Theorem 2.1, (ii)] with r — /1= 0 and by
Statement 3.3 we get lim \\Lnm(v)\\ < oo if (u>/l - z2) m" G Lu. How-

ever, by (3.51) the last condition is equivalent to nIi_r)n00 lpIr(Mn < o°. O

Acknowledgement. The author thanks the referee for the careful work.
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A GENERALIZATION OF J. ACZEL’S
INEQUALITY IN INNER PRODUCT SPACES

S. S. DRAGOMIR (Timisoara)

1. Introduction

In 1956, J. Aczél has proved the following interesting inequality (see e.g.
[13, p. 57]):

Theorem A. Leta= (aj,...,an) and b= (&i,... ,bn) be two sequences
of real numbers such that

°i - a\ ~ mmm~ an >0 or b\ - b\ - ...- bAd > D.
Then
(1) (a2 a2 _..._a2)(62 _62_
N (aibi - azb2 - ... - anbnf

with equality if and only if the sequences a and b are proportional.

Aczel’s inequality was generalized by T. Popoviciu [15] (see also [13]):

%) K-<-...-<9b?-k-... - NS
N («I*1- azb2 - ... - anbnf.

The conditions
al—a2- ... — >0 or b[-b\- .. .bp>D and p~"1

given in [13] are not sufficient. This was pointed out by M. Bjelica [3] who
also proved the following theorem:

Theorem B. Ifa—(a\,...,an) and b= (bi,...,bn) are sequences of
nonnegative real numbers such that

(3) ai- a2—eee~an=0 <nd 6l 62—...— ~ U

0236-5294/94/$ 4.00 (c) 1994 Akadémiai Kiadd, Budapest
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then for 0 < p 2 one has the inequality
(4) v-Sh £
i Bi™i - a262- ... - anbn
and conversely for p < 0.
For p < 2 equality holds in (4) iff
a=(ai,0,...,00 and b= (iq,0,...,0).

For p = 2 equality holds in (4) iff a and b are proportional.
Another result connected with Aczel’s inequality was proved by
R. Bellman in [2]. In this paper (see also [13]) the premise is sharper:

ai~a2~m~an>0 and b\- K—...-bp>0

which is weakened in the next theorem proved by M. Bjelica [3].

THEOREM C. Ifa = (oi,... ,an) and b= (6i,... ,bn) are sequences of
nonnegative real numbers which satisfy

ai ~a2~we—an=0 an(l b\- be —.. — 70,

then for p > 1 one has the inequality

(5) « -all-...-al)’h + (»-«£-eee - pIfh £
£ [(«1+ bi )P—«2 + )P—... —(@an+ 6n)F] " m

Equality holds in (5) iff a and b are proportional.

The main aim of this paper is to extend Aczel’s inequality in inner
product spaces. Some applications are also given.

2. The main results

We will start with the following theorem.

Theorem 1 Let (_#;(,)) be an inner product space over the real or
complex number field K and a, b, c real numbers satisfying the following
condition

a,c>0 and bk " ac
Then, for all x,y £ H so that

a” Iaw or c” |2
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we have the inequality
(6) (a-IM [2)(c-IM [2) i
AN minj (b re(x,y))2 (b £ \Re{x,y)1)2,(b £ Im(:r,y))2,

(b + [Im(CT,iN) 2, (6 + |(%,2)) 2| .

P roof. Suppose a > ||x||2 and consider the polynomial
P(t) := at2- 2bt +c, tGR.

Since a > Oand b2 ~ ac it follows that there existsaio 6 R so that P (t0) = 0.
Now, put

Qi(t) := P(t) - (IMIZ2T 2Re<z,y)< + |ly||2), teR
and
Qi(t) := Pit) - (|Ix]|¥ T 2|Re(ar»)|i + IM|2), tGR.
A simple calculation gives us
Qi(t) = (a - [Ix[[Dt2- 2(6 £ Re(x,y))t + (c- [lj/ll2, tGR
and
<?r(0 = (« - INI2) - 2(6 £ |Re<*\y))t+ (c- 1bl2), te r.

Now
Qi(io) = - (|N|2<0T 2Re(i’,j)<0+ IM2) S O
because, by Schwarz’s inequality in (#; (,)), one has

IRe<ar, 2/)[2 ™ [[x]|2 [|j/l|2.

Thus
[IX||V o 2Re(x,y)t + [IM|2=0 forall tGR,

and we conclude that Q\ has at least one solution in R, i.e.,
o~ = (6% Re{x,y))2- (a - [x][2) (c- [li/]|2).
Similarly, QI has at least one solution in R which is equivalent to
07 ~"Ax= (bx [Re(x,i/))) 2- (a- [x][2) (c- [M[2),
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and the first part of (6) is proved.
The last part goes likewise, considering the polynomials

Q2(t) = P{t) - (|Ix]|2t2T 21m{x,y)t + W2), t£ R,
Qz(t) := P(t) - {\W\\ot2 T 2Im|(x,t/)[i + W\2), t£R

and
Q3(t) := P(t) - (IIx|IV T2|(x, y)\t + UW2), t£R.
The proof is thus finished.

Remark 1. Let (#;(,)) be an inner product space over the real or
complex number field and Mi, M2 € R- Then for all x,y £ H with

INNA Imit or ini M M2

one has the inequality

) (M2- vy (M| - [l » (MIM2-Re(x,y))2

This will be the corresponding Aczél inequality in inner product spaces.
If H—Rn1l (n ™ 2) endowed with the usual inner product, we recapture
from (7) the inequality (1).

Using the above theorem, we can give the following inverse of Schwarz’s
inequality in inner product spaces:

Corollary 1.1. Suppose that a, b, ¢, x, y are as in Theorem 1. Then
we have

(8) 07 [x[I2IN[2-[Re<x,y)]2 "
N b2 - ac + a|N |2+ c||x]|2+ min{ £2Re(x,y)b, £2Re|(x, y)\b),

07 lrli2|2A2-[Tm (x,2)]12 7
N b2 —ac + al|i/||]2+ clcI2+ min{ £2Im(X, y)b, £2|Im(x, ?/)|6}

and
0™ |Ix12|Ir/)|2- Kx2>N Ub2- ac + a|N |2+ c||x]|2 £ 2\(X,y)\b.
The proof follows from (6) by a simple computation.
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Corollary 1.2. Let H be as above and M > 0. Then for all x,y GH
with
lIX|[ ~ M or ly[[ * M

one has the inequality
0~ IMJ2j/l|2- [Re(x,?N]2~ M2min{ |x - W2, ||x + Y\2}.

The following theorem also holds.

Theorem 2. Let (#;(,)) be an inner product space and a, 3, 7z real
numbers with

a,7 >0 and R2" 07.
Then for all x,y GH so that

11 ~ a  OF im1 ~ 7,

we have the inequality

9) (a - [Ixipez - |lyll) A minj (/? £ |Re(x, r/)|1/2) 2.

(R £ |Im<x,y)[1/2) 2, (R + |<x,j)|1/2) 2}.

Proof. The argument is similar to that in the proof of the above theorem
choosing the polynomials
Qi(t) : = m - (|[x|[i2T z|[Re<x,4)|V2i + [lil)y tGR,
Qa(t) :=P(t) - (IIx|lizep2|im(x, y)\1/2t + [ly]l), tGR
and
Qs(t) := P(t) - (IN*2T 2|<x,r)|V2*+ ||2||), t GR.

where
P(t) = at2-2Rt +7, te R.

We omit the details.

Remark 2. Suppose that [|x|| ~ \mw, |li/|| » IM2] (m\,m 2 GR). Then
one has the inequality

(10) (IM 1] - x|D1/2(IM 2]-]]2/])1/2~ |M1IM 2|1/ 2-|( x,2)|1/2.
Ifa=(al,... ,an), b—(b\,... ,bn) GR” are such that
a2-a\- ...-a2”~0 and 62- b\- ...- b2 "0
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then

1/2
[K )
N Wibi |L/2- |a28 + eee+ anbnll/2

This is a new inequality of Aczél type for real numbers (it is obvious by
(10)).

Corollary 2.1. letll, a, B, 7, x, y beas in Theorem 2. Then we have
the following inverse of Schwarz’s inequality:

0™ flzf] Nyl - IRe(x,y)\ SB2-an +ally|| + 7[x|| £ 2|Re<x, 2>[1/2,

O™ |IX|| WA\ - |Im(x, y)| » B2- 07 + al|j/|| + 7INI £ 2|Ir(.7,r/)| V2

(11) 07 [l WA\ - [Cr i) A B2 - 07 + aW\ + 7Ix]| £ 2\{x,y)\1/2.

The following corollary also holds.

Corollary 2.2. Let Il be as above and M > 0. Suppose Hllis M or
i/l S M. Then we have the inequality

0 1L Ibii - 1(<i»)1 ~ M QXN+ |lyll - 2|(x,y)|12).

The proof is obvious by inequality (11) fora —R = 7 = M.
For other inequalities in inner product spaces we refer to [4-14] where
further references are given.

3. Applications

1. Let Xi,yi 6 C (r -- I,...,n) with |x,] is M or [ S M for all i 6
€ {1,..., n}. Then we have the following converse of Cauchy-Buniakowski-
Schwarz inequality:

M M
0N Y [*ij2Y @r2- Y RefXiyi) <
E1

i—1 r=1

nn2M2min <Y WXi- Y2V W+ ™~
1= =1
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2. In the above assumptions for Xi,yi we also have
1/2 1/2

°s E bl 2 E i 2] *~yi <
\1—1 u=lI i=1

/ n e / n \ 1/2 n 1/2'

nM > XY,
(S +felrf) 2.

The proof is obvious by Corollaries 1.2 and 2.2. We omit the details.

9

3. Let (17,4,/r) be a measure space consisting of a set 17, a o-algebra A

of subsets of i7 and a countably additive and positive measure p on A with
values in R U {oo}. Denote T2(i7) the Hilbert space of all complex valued

functions x defined on 17 and 2-integrable on 17, i.e., IJ_I|x(s)|2dfi(s) < 00.
Suppose that x,y GT2(i7) with
Y [x(s)| dfj.(s) < M2 or é \y(s)\ady(s) i M2
Q

Then we have the following converse of Cauchy-Buniakowski-Schwarz in-
equality for integrals:

Q= J |z(s)]2d/i(s) J \y{s)r\2dn(s) - ReJ x(s)y(s)d/i(s) <

< M2min J \M{s) - y(s)\2dn(s), J [x(s) + i/(s)]|2d/z(s)

4. In the above assumptions for x,y in T2(i7) we also have

\ 1/2
0< I /|x(s)]|2d/r(s) j AJjy(synzdn(s)N - J x(s)y(s) dn(s) <

; 1/2 1/2
WM (Y k(«)[27(s)d + d/i(s)

1/2
-2 J x{s)y(s) dn(s)
Q

The proofs are obvious by Corollaries 1.2 and 2.2; we omit the details.
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DISTAL COMPACT RIGHT TOPOLOGICAL
GROUPS

P. MILNES1 (London, Ontario)

Let G be a compact group for which the left multiplications t st are
all continuous; we call G a compact left topological group, and have the
left translation flow (Jlg,G). W. Ruppert has studied the case where the
compact left topological G is equicontinuous, i.e., (Ag,G) is equicontinuous;
one of his conclusions about equicontinuous groups is that the topological
centre

{rTGG In I, G —G, is continuous}

is closed in G. This implies that none of the non-trivial compact left topo-
logical groups coming from distal flows are equicontinuous (the “trivial” ones
being the topological ones). In this paper, we study a class of compact left
topological groups broader than that of the equicontinuous ones, a class that
includes some of the compact left topological groups coming from distal flows.
The class we consider consists of the distal compact left topological groups,
the ones for which the flow (Ag, G) is distal. In our analysis of this class, we
present, among other things, conditions that are at the same time equivalent
to the distality of G and analogous to conditions of Ruppert that are equiv-
alent to the equicontinuity of G; we also deal with a significant aspect of the
resulting theory of distal compact left topological groups: a process, which
effectively terminates after one step for equicontinuous G, can be meaning-
fully repeated for distal (non-equicontinuous) G. We discuss some examples
of distal G, and illustrate with one of them how the process just mentioned
not only does not terminate after one step, but can be repeated indefinitely.
We also present some non-distal G.

I. Preliminaries

A flow (5, A) consists of a compact Hausdorff space X and a group S
with identity e acting on it on the left (as in [8]): each s £ S determines
a homeomorphism x %=>sx of X and the conditions ex = x and s(<(x")) =
= (st)x for all s,t GS and x GX are satisfied. So, 5 determines a subgroup
(denoted here also by 5) of the semigroup X x of all transformations of X .
The closure S~ of S in X x is a subsemigroup of X x called the enveloping
semigroup of the flow. With the relative topology from X x , S~ is a compact

1 This research was supported in part by NSERC grant A7857.
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150 P. MILNES

right topological semigroup, i.e., forall 7G S , right multiplication by p, 0 >>
—»0p, S~ —»S~, is continuous. The set

A(5_) = {g GS~ \o «+go, S~ —»S~ is continuous}

is called the topological centre of S~; here 5 C A(S~), so A(5_) is dense in
S~. The flow is distal if sax\ —»xqg and sax2 —xq for a net {sa} C S and
Xa,x\,x2 G X always implies X\ = x2. We quote a famous theorem of Ellis
[3, or 4].

1. Theorem. A flow (S,X) is distal if and only if its enveloping
semigroup S~ is a group (i.e., a subgroup of X x).

For a distal flow (5,X), S~ is called the Ellis group of the flow. There
is a powerful structure theorem for compact right topological groups that
come from topological dynamics like this [6,7]. A consequence of it is the
existence of Haar measure p for such groups; p is a probability measure on
the group and is invariant under all right translations and all continuous left
translations. We do not need these results here.

Thus far we have considered flows (5, X) with S acting on the left (x <=
—»sx), S~ C X x right topological, etc. We shall need the *other-sided”
notions as well (for example, the statement of Theorem 3 needs compact
right topological groups and also compact left topological groups). To be
specific, we may also consider flows (X, 5) with S acting on the right, x >=
gt (as in [4]); then (xt)s = x(ts) and S~ C X x isa compact left topological
semigroup, i.e., 0 >% go is continuous for all g c 5“; also S is contained in
the topological centre

93(5*) := {g GS~ |0 «»og, S~ —»S~', is continuous},

which is therefore dense in S~. A flow (X, S) is distal ifand only if S~ C XA
is a compact left topological group.

We need to establish notation for Schreier’s analysis of group extensions.
Suppose that G\ and G2 are groups, the identity of each of them being
denoted by e. Suppose that there is a mapping of G2 into the automorphism
group of G1, that is, for every t GG2, there is an automorphism s «»t(s) of
G\ (acting on the left). Suppose also that there is a function {t’,t) > [t't]
from G2 X G2 into G\, so that all of the following conditions are satisfied:

e(s) =s and [te] = [et] =e for sG GL t GG2 and also
[t, *]«'(«") = i(*VO0) [MT and [t t][tt", t"F = t([t" t"D[t,t't"]
for t,t,t GG2 and s, sl s" GG\

Note that the function sending t GG2 to the automorphism s t(s) of G\
is not necessarily a homomorphism. However, the hypotheses do ensure that
the formula

(1) (s",t')(s,1) = (S'T(S)[t',E].t'T)
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defines a group operation on the set G = Gi XG2, that G1X {e} is a normal
subgroup isomorphic to G1, and that G/G1 = G2. We say that G is an
extension of G\ by G2. Further, if G is a group with a normal subgroup
G\ and if G* m—G/G 1, then one can find functions satisfying the conditions
above, so that G is canonically isomorphic (algebraically) to G\ X G2 with
group operation (1).

Because of the asymmetry of continuity in the definition of a compact
right topological group, we also need the notation for the analogous situation,
where G = G\ XGz2 is an extension of G2 by G\, i.e., G2 is a normal subgroup
of G and G1= G/G”"mIn this case, we have automorphisms t i-=(t)s of G2
(acting on the right) and the multiplication formula is

2 (s\t')(s,t) = (s's,[s',s](t")st).

A situation in which left and right notations can be used at the same
time is that of Zappa products [11, or 2], where a group G has subgroups G\
and G2 with

G =Gi1G2= {siIs£ G\, t£ G2} and GiNGz2—{e}.

Then G is (algebraically) isomorphic to G\ X G2 with operation

{s’,t")(s,t) = (s't'(s),(t")st);

here the functions s  /M/(s) := t'(s) and t' (t)slz = (t')s are not nec-
essarily automorphisms or even endomorphisms of G'i and G2, respectively;
however, the maps

t = G2 =Gj'land s | *s7v, Gi -»G"2

are homomorphisms (the semigroup operation in G*1 and G2 being com-
position of functions). The conditions that make the Zappa operation asso-
ciative are

Ct’(s's) = Ct'(s") £ {t,)sin)(s) and (t't)sh = ('H{AE)TZ QN -

We mention that G = Gi XG2is an extension and a Zappa product precisely
when it is a semidirect product, i.e., when both of Gi X{e} and {e} x Gi are
subgroups of G in the extension format, and at least one of them is a normal
subgroup in the Zappa format. The group I' of Example 6(e) below has a
feature that seems peculiar. It is a Zappa product ' = M X H of two of
its subgroups, neither of which is normal, so it is not an extension of one of
these groups by the other; nonetheless, the functions SIZ are automorphisms
of H.
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Il. Distal compact left topological groups

We now consider a situation where we start with a compact group with
one-sided continuity; we want to embed it in another compact group with
continuity on the other side. By the symmetry of the situation, we shall
then want to repeat the process and embed the second group in a third with
continuity on the original side; and so forth. Clearly, the difference made by
starting with one side, rather than the other, is in the notation. Accordingly,
we start in the setting where the notation feels most familiar at the first stage,
with a compact left topological group.

Let G be a compact left topological group. G acts on itself by left trans-
lation, each s £ G determines a homeomorphism Asof G, i * As(/) := st for
all t GG. Setting Ag {As|s 6 G), we call G distal if (Aq,G) is a distal
flow. When G is a compact topological group, G is distal; in fact, (As ,c) is

equicontinuous and the Ellis group Ag is a compact topological group that
is topologically isomorphic to G. At first glance, it may seem unexpected
that there exist non-topological G for which (Ag, G) is equicontinuous. and

so Ag is a compact topological group. Ruppert [10] studied compact left
topological groups with this equicontinuity property. Indeed, one thrust of
our work here is to present appropriate extensions to our more general set-
ting of results of Ruppert; also, Example 6(e) below is taken from [10]. The
term “distal group” was used by Rosenblatt [9], who showed that distality
and polynomial growth are equivalent concepts for almost connected, locally
compact, topological groups; thus, our work here is in quite a different di-
rection. It is obvious that a direct product of distal groups is distal, as is
the homomorphic image of a distal group (since the homomorphic image of a
distal flow is distal [4; Corollary 5.7]). Noting that the semidirect product of
distal (even topological) groups need not be distal (Example 6(b)), we state
the following lemma for ease of reference.

2. Lemma. Suppose that G\ and Gz ore compact left topological groups
and that G = G\ X Gz is the product space.

(i) Let G have Schreier operation (1). Then G is a left topological group
if the function

(s,<) HO<(9)[i/<], G -G\
is continuous for all t' £ Gi- If, as well, G2 is distal and the automorphisms
s t'(s) of G\ are all trivial, then G is distal.

(ii) Let G have Schreier operation (2). Then G is a left topological group
if Gz is a topological group and the function

S —Js,s](f)s, G\ =G=2

is continuous for all (s',tr) £ G. If, as well, G\ is distal, then G is distal.
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The next theorem gives conditions that are equivalent to distality of
G; they are analogous to the conditions of Ruppert [10; p. 160] that are
equivalent to equicontinuity of G.

3. Theorem. FOr a compact left topological group G, the following as-

sertions are equivalent.
(i) G is a distal group, i.e., (Ag,G) is a distal flow.

(i) Ag“ C Gg is a compact right topological group.

(iii) If s GG and {sa} C G with ASa(e) = sQ—»e and ASa(s) = sas —e,
then s = e (i.e., (Ag,G) is a point distal flow with e as distal point).

(iv) There exist a compact right topological group I and an algebraic iso-
morphism »p of G onto a dense subgroup M ofT. Also, there is a continuous
map 6 : I —+ G with 6(ip(s)) = s for all s GG; the kernel H = {T £ I |
18(T) = e} is a compact subgroup of T, MTMH = {e}, ' = MH, and s
induces a homeomorphism between the quotient space T/H and G.

Proof, (i) and (ii) are equivalent by Theorem 1, and (i) obviously implies
(iii). If (i) holds and Alar —t0, i = 1,2, put sa :=tQXrat\ and s :—tflt2-
Then sa —*e and —>e, s0 s = e and t\ = <, and (i) holds.

(ii) implies (iv). If (ii) holds, set ' = Ag , so that

ipps \s, G—»Gg with M = Ag,

and
6:T T(e), T->G with H={T GI' | T{e) =e).

Then I, ip, M, 6 and H have the desired properties. We mention that, if
T = limQAxy GT, then ASo(e) = —=si := T(e) in G and

T= Ii;nA“q: IiortnASA-1XSa:Aqh GMH,

where h := As-iT GH. (Recall that Ag C /I(IN).)

(iv) implies (iii). Suppose that (iv) holds and that sa —ve and —e.
To show that s = e, we may assume that {~(s0)} converges in " (since we
can take a subnet of {ip(sa)}, if necessary). Then the limit h := lima VXQ)
is in H, since

6(h) = Ii;‘n 6 (ip(sa)) = Iiam =g

also
Iigtni/>(sa S) = Iiam xp(sa)ip(s) = hip(s),

since I is right topological, and hip(s) GH. Thus ip(s) GM DH = {e}, so
s—e. O
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4. Remarks, the first and third of which are analogous to remarks of
Ruppert [10] about equicontinuous groups.

(a) The map 6 (in Theorem 3(iv)) is a homomorphism ifand only if 4 is a
normal subgroup of I'; in this case G = /A is also a right topological group,
and hence is a topological group (so G = I"'and A = {e}). Indeed, when I" =
= Ag~ C Gg as in the proof that (ii) implies (iv), {e} is the only closed
subgroup of A that is normal in . For, if N C A is closed and is a normal
subgroup of I', we want to get a compact, Hausdorff, right topological group
that is a homomorphic image of . The problem is that I'/iV is Hausdorff
if and only if N is also closed in the weaker topology a of I [8, or 2]. To
get around this, we take the er-closure Ni of N, which is a normal subgroup
of I and is contained in A, which is <r-closed as '/A is Hausdorff. Then
Ti := T/Ni is a compact, Hausdorff, right topological group with closed
subgroup H1:= H/N\, so that T\/H\ is homeomorphic to G (and to I'/A).
The flow (G,ri/77i), (s,(TN\)H\) = (s,THi) sTH)\, is isomorphic to
(Ag,G), but its Ellis group is a homomorphic image of Ti, while that of
(Ag,G) isT. Thus 'r= T and N\ = N = {e}.

In the general setting of (iv), the left action of " on '/A gives a contin-
uous homomorphism B of I" onto the enveloping semigroup of (Ag,G); the
kernel of B is

nmiIH7-1!
Ter

the largest normal subgroup of I' that is contained in A. ker(0) can properly
contain {e} even in the “trivial” situation. Let G be the circle group T (or
any infinite compact abelian topological group), and let  be the natural
homomorphism of T into T2:= Tcl<IT—T XTx. (See Lemma 5 below; T2
is isomorphic to the almost periodic compactification of T with the
discrete topology.) Here ker(0) = {e} XT1.

(b) Since ' = MH for subgroups satisfying M 1A = {e}, I is a Zappa
product of M and H. It is impossible for I' to be an extension of A4 by M,
since A is not a normal subgroup of I. However, it sometimes happens that
M is a normal subgroup of I' (e.g., Example 6(a)). Then I is a semidirect
product of A4 and M, which seems very strange, since the members of
A correspond to automorphisms of G, while being pointwise limits of left
translations As: G G, which are never automorphisms (except in the trivial
situation s = e).

(c) Let N(H) be the normalizer of A in T,

N{H) :={T GFITa = AT}

Then S(N(H)) = 94(G). To see this, give I'/A the multiplication of G,
(T\H)(TH) = \I)(s\)TH, where is the unique element of T\H M M.
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Note that {p(3)H)(TH) = p(3)TH forall sEG, T ET. So, forI" 6 N(H),
S(T) = TH, and it follows from the fact that I is right topological that

rp(s)H i-f (p(3)H)e(T) = (p(3)H) (TH) = dp(s)TH

is a homeomorphism of I''H = G, i.e., 6(T) E 9\(G). Conversely, if
6(T) E 94(G), then from (ip(s)H) (TH) = ¢(8)TH for all s E G we get
(T\H)(TH) = T\TH for all T\ E I, using continuity in both '/H = G and
. Setting T\ = T_1 shows that T E N(H).

(d) As pointed out by Ruppert [10], when Xq acts equicontinuously on G
and I is a topological group, then N(H) is closed in I'; so 94(G) = S(N(H))
must be closed in G and cannot be dense in G unless 94(G) = G, in which
case G is a topological group. Similarly, when 91(G) is not closed in I, e.g.,
if 94(G) is dense in G and not equal to G, then N(H) is not closed in I, T is
not a topological group, and Xg does not act equicontinuously on G.

The next step. Starting with a distal left topological group G, we
now have a compact right topological group I'. So, I acts on itself by right
translation. We use right notation, (s')sp = s's, and can ask if the flow
(',rp) is distal, i.e., if I is a distal right topological group. If (Xq,G) is
equicontinuous, instead of merely distal, then I is a compact topological
group (and therefore distal), and the Ellis group rp~ C I'1 is isomorphic to
. Here are two

Questions. Suppose G is a distal compact left topological group. Can
the resulting right topological group I fail to be distal? Can (I',rp) be not
only a distal flow, but an equicontinuous one? We do not know the answer
to the first question. The answer to the second question is: if and only if
I" is a topological group, i.e., (A3,G) is equicontinuous. This follows from
the density of A(G) in I and the last sentence of Remark 4(d) (in its other-
sided form).

I11. Examples

We apply the methods outlined above to some examples that appear in
[2] (and elsewhere). A consequence of Pontrjagin duality is useful in the
presentation of the examples; we give a proof of it for completeness. First
we need some definitions. For a locally compact abelian group 0, <€T—0
denotes the dual group (consisting of the continuous characters of ®, i.e., the
continuous homomorphisms from ® into the circle group T) and 0" denotes
the group O with the discrete topology; so ®i := 0 ” is the dual of 0 and
®i 3 ®. We need also ®2 := (®i)d~, and identify 0 with its canonical image
in 02 (s(h) := h(s) for s EO, h E ®i), recalling that this image is dense
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in 02- If £ is a subgroup of 0, then Ax := {hE 0 |/r(d) = {1}}. One
reference for all this is [5; §24].

5. Lemma. Let 0 6e a compact abelian topological group, and let O
0 2 be as above. For a neighbourhood V of e E 0, let V~ denote the closure
of (the image of) V in 0 2- Then

C\V~ = = I v>(0) = {1}} = (0i/0)",

and 02 is the direct product of & and 0 X.

Proof. Clearly, ifsa —»ein 0 and sa —p E 02 (i.e., h(sa) — p(h) for

al hEOQi), then p(h) = 1for all hE O, i.e., p E O X. Conversely, let V be
a neighbourhood of e in 0, and let W be a neighbourhood in 02 of some

p EOx C 02- To show that 0x C V~ C 02, we must demonstrate that
V MW ¢ 0. Now, we may assume that V contains a neighbourhood of e in
G of the form

W:={sEGIIh()—1 <z forall hEF}

where F C 0 is finite, and also that W contains a neighbourhood of in 02
of the form

WA {ip' 1\<o(h) - <p{)\ <£ forall he F\),

where F\ C 0i is finite. But <p(F) = {1}, since pE 0 X, so the neighbour-
hood Wi of p in 02,

1f/2:= W € 02 1\p{h) - y>(n)| < £ forall hEFU T\},

is contained in W and contains a member sj GO, since 0 is dense in 02
By the definition of W2, Si EV as required.
The last equality of the display in the statement of the lemma is part of

[6; 24.10-11]. The proof that 02= 0 x 0 X is now easy: if 9E 02 and net
{sQ} C 0 C 02 converges to p, then {s0} converges to some s E0 and

p>—Ilims(s-1sa) = s(s-1("),

where pA :=s xp>EO0 X. O

6. Examples, (a) Let T be the circle group, and let E := Ti =
= T(T be the set of all endomorphisms of 1. {E= ZAP, the almost periodic
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compactification of the integers Z, a compact topological abelian group [1,
or 2].) Then G = T x E with multiplication in Schreier formulation (1)

@in, h)(w',h") = (ww'h" o/i(e2i), hh1) — AWh){w'i h")
is a compact left topological group. Here [h,h'] = h' o h{e2) and the auto-
morphisms of G\ —T are all trivial, so G is distal by Lemma 2(i). We write
Ex Ecl=T2, and can then identify Alwm with (w, h, h[e2)) GT x E x
x E\, where T is regarded as a subset of Ei, w(h) := h(w), as above, and
T x E x Ei acts on G,
(w,h,?): (u/, h") k» (wwafi(h'), hh').
To ensure that the map from Ag onto

M := {(w,h,h{e2i)) \(w,h) GG} C T x E x Ex

is an isomorphism, we give T x E x Ex- (T x E) x Ex the multiplication
in Schreier formulation (1)

(wi,hi,fii)(w,h,fi) = (wifii(h)w,hih,fiifi),
which makes it a compact right topological group. (Here fii(w,h) =

= (fii(h)w,h) and the function [, ]: Exx Ex —T x E s trivial.) One
checks readily that the map is also a homeomorphism. Now, we claim that

[ (S M~) =A := {(w, h, h(ez2i)fii) \fiXGT 1 = (Ed/Zf} CT XE x Ex

(where T x = Z1 C EX, the image of n GZ in E = T~ = ZF being the
character w wn). For, if

Nsa := A(lLitha) =T GT,
we refer to the last sentence of the proof that (ii) implies (iv) in Theorem 1
m\We) “uSi ;= T(e) = (w,h),
say, in G, and ha(e2i) —ah(e2), so ASt = ASIAS-is —»T. Now

= (w~1h0h(e2t), h~I)(wa, ha) —

= (u;- 1[(/i- Via) oh~I](e2l)wa,h~1ha) e
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in G, and one sees that the last coordinate of Ae-i , namely [h 1ha](e2) G
GT C Ei, convergesto 1in T, and so Agig —*(l,e,y>i) in T x E x E\ for
some | GZx by Lemma 5. Thus

T = lim X& = (w,h,h(e2,))(l,e,<pi) = (w /i,/r(e2)")

which shows that ' C A; it follows also from Lemma 5 that ' = A. Note
that, although ' c T X E X E\, the projection < maps I onto

E\. The map & : [ —»G is given by 6(w,h,h(e2)<pi)  (w,h)\ its kernel
H —{(l,e,y?i) \ifSi GT1} = T4 M is a normal subgroup of I', so I is a
semidirect product of T x and M. The action of T 1 on M is given by

<B- (w,h,h(e20)) (<pi(h)w, h,h(e2t)).
We now start with the compact right topological group

r = {(w,h,h(e2i)p)\(w,h)eG, p'eT1},
whose multiplication is given by
(v=>i,hi,(pi)(w,h,(p) = (wnpi(h)w, hih,ipi<p) = (b hi,<pi)(wXv)p.

Lemma 2 cannot be used directly to determine the distality of I', because I is
not an extension of closed subgroups. However, Lemma 2 (in its other-sided
form) does show that T x E x E\ is distal. Then, referring to the remarks
preceding Lemma 2 (or checking directly), one verifies that I" is distal, (I",rp)
is a distal flow. So, setting E2 := Eii', we identify E with a subset of E2

{h(<p) = and (wh,sPe with
(w,h,<p,h) GT X E x E\ x E2n

The identification of the character ipi ¥»<fi(h) with a member of E2 in
the fourth coordinate is correct, because the projection (wi, hi,ipi) ]

maps I onto E\. Writing out ((Wb hi, Wy”)P, we see tliat the
appropriate multiplication in T x E x E\ XE2 is
(w,h,<p,ij>) (W', ti,<p\ ) = (ww,t>\<p),h',<pip’, §Tp’),

which makes T x E x E\ x E2 a compact left topological group. As above,
if
(wa,hasa)P GT x E x Exx E2,
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then wa —»w in T, ha —*h in E, pa—* in Ei, and also hah 1—»e in E,
so ¢ —\H, where

m\ = Ii&w hGh~I GTx C Ei

by Lemma 5, and tyih\(<p') = d\(<p')tp\h) for i GE\. The identification of
rp~ C I'r that we end up with is

= {(w,h, h(ezt)p\,hipi) ET x £x £, X [9162Z1, ii ET1}.

We remark that, although G1G T x E x E\ x E2, the projections onto the
third and fourth coordinates map Glonto E\ and E2, respectively, and the
function

(b h, h{e2)qu /i0i) (<Pudx)
maps G1onto XT1. The map &:G1—al (from the other-sided form
of Theorem 3(iv)) just removes the last coordinate; its kernel H\ equals

{1} x {e} x {e} x T x.

The map k: (w,h) «»(w, h, /i(e2i), /Ir), G —»G1 (a composition of discontin-
uous isomorphisms), is a discontinuous isomorphism of G into G1. k(G)
is a normal subgroup of G1; the density of k(G) in G1 would follow if

each (<M, p\) GZ1 xT 1 C £1 X£2 could be approximated by members
(h(ez2,),h) GT x E with fi’s close to the identity in E. We doubt this can
be done, and therefore think that k(G) is not dense in G1.

We discuss briefly the next step, where we start with the compact left
topological group

G1= {(w, h,h(e2,)<p, Egr) 1(w, h) GG, pi GZx, "G T 1}C

CT x Ex Ei x E2,
whose multiplication is given by
(w,h,ipM){w’,ti,p", &) = (ww'*(tp),hti, <pp',c) =
= \w,h,v,4,)(w', ti,p",d").

G1lis distal, and we identify with

(t0,b,p,d,(p) GT x E x Ei x E2 x £3
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(where £3 := E2I"), for which the appropriate multiplication is

T XE XE\ XE? XEz is a compact right topological group. The Ellis group
M :=XGi C (G1) "’ is (isomorphic to)

{(w, h, h(e21)<d, hipi, h(e2,)(5101) |

Wh)EG, GEZ\ £T2 #MEE }.

The (discontinuous) isomorphism of G into I'lis
(in, h) i=> (ry, /1, /i(e2), h, h(e2t)) ;

the image of G is clearly not dense in "1, since any non-trivial B\ £ C£3
cannot be approximated by members /i(e2i) £ T C E\ C E3.

By this point the reader will be able to guess the form of subsequent
groups. As a concluding remark on this example, we make the observation
in connection with the structure theorem for compact groups with one-sided
continuity (mentioned after Theorem 1) that, for each of G, I, G1 and I'1,
(the subgroup isomorphic to) T is a compact normal topological subgroup
yielding a compact abelian topological quotient group.

(b) Let G =Tt x T with multiplication in Schreier formulation (1)
(h*,w")(h,w) —(h'Lwih,w'w);
here Lwih is the left translate of the function h£ T T by w' £ T, Lwih(v) =
= h(w'v). G is a compact left topological group, and is not distal. For, define
hE€TThby h(e2lapG} = —1ifp£ Z and g£ N, h(w) = 1otherwise, and let
{wn} C T be linearly independent [5] and such that wn —%1. Then
A@iUn)(Il, 1) = (LLu>,,) -> (1,1), and AQ@AY/i, 1) = (LWhh, wn) —=*(1,1)

as well, since for a given v £ T, LWhh(v) = h(wnv) can be equal to — for

at most one value of n. This is because of the linear independence; if wnv =
—g2Tpi /71 an(j WmV —e”™ P 2/g2"then

™ngiiwm 142 = {*nV(wmv)-~1) 4142 = 1,
which is a contradiction (unless n —m).
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(c) This example is much like the first, so we discuss it only briefly. Let
G = £x T x T with multiplication (representable in Schreier formulation
(2) in two different ways)
(h,v,w)(h',v',w") = (hhg,vv',h'(V)ww') = X(hvay(h',v',w").
G is a distal left topological group, by Lemma 2(ii). We identify Ah,v,w) with
(v,h,v,w) € E\ x E x T x T,
which gets multiplication
{<Pi,h1,vi,w1)(ip,h,v,w) = hih,vaiv,p>i (h)wlw);

T = XG C GG is (isomorphic to)

{(v,h,vyw) GEi x ExTxT I (hvw) €G, p €2Zx}.

The last two examples are quite different from all the other groups that
have appeared in this paper so far, in that the topological centre 9d(G) for
these last two is not dense in G.

(d) Let G be the semidirect product T x {1} with multiplication in
Schreier formulation (1)

(u,E)(v,6) = (uvs,es) = XM (v,s).

Give G the topology for which a typical basic neighbourhood of (ela,l) or
(erg, —1), where a < 6, is

A:= {[eia, 1),(e'b,-1)} U{(eie,e) \£E=%1, a<B<b}m

these basic neighbourhoods are open and closed. Then G is a compact left
topological group, and IH(G) = {(1,1)}; (i,-i)P is at least measurable, but
all the other right translations are not even measurable. (Nonetheless, this
group does admit Haar measure [6].) Furthermore, G is not distal (and not
point distal), since

Ae/nil)(1,1) = (e'/n,1) - (1,1), and Ae/ntl)(l, -1) = (e*>,-1) -(1,1)
as well ((1,1) being the identity of G).

We mention that (Ag,G) is a minimal flow, and yields an interesting
“six-circle” enveloping semigroup, which we believe has useful applications.
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(e) [10; pp. 164-5] For this example, we need a discontinuous automor-
phism ip of T satisfying ipp —1. [Let H' := {20} UH be a Hamel basis for
R over Q : each x £ R has a unique representation x = £a€#' axa, where
the xa's are in Q and only a finite number of them are not equal to 0. Then
each w £ T has the corresponding unique representation w = rcollae#e LLIMg,
where wia = 1 for some K £ N. Taking a\ and ai in H, we can then define a
suitable ip by

<p(w) = wleia™*°*eia® n a€H\{aua2}eia*°.]

Let G be the semidirect product {ip, 1} x T with multiplication (essentially)
in Schreier formulation (2)

(em(@A,r>) = (£,uv), (i,u)(y2,u) = (iip,ip(u)v)

(and the product topology). G is a compact left topological group, and
91(G) = {1} x T, which is closed and not dense in G. Also, G is distal by

Lemma 2(ii), but in fact is equicontinuous. The Ellis group ' =\g C Gg
may be identified with

[9,13IxTxT ={ip, 1} x(T xT),
a topological group with multiplication in Schreier formulation (2)

(e,ui,u2)(1l,vi, v2) = (e,;;¥Y1,n2y2),

(e,ul,u2)(p>,vi,i>2) = (eg,u2vi,uiv?).

AW corresponds to {e,u,ip(u}) £ {M1} x T x T, and the density of the
image M of \q in {ip, 1} x T x T follows from Kronecker’s theorem [5]. M
is not a normal subgroup of I'; for example,

(v, hH(y>,1,H(,v,)-1 = (p,v~l,v) g M

(unless v = 1). So, although T is a semidirect product of {ip, 1} and T x
x T, I is a Zappa product, and not a semidirect product, of m and H,
# = {1}x {1}x T being the kernel of the continuous map 6 : " —= . (6
just drops the last coordinate.) We obtain the Zappa operators C and 1Z
for {ip, 1} x Tx T = M4 by taking (ip,v, ip(v)) £ M and (1,1,4) £ H and
rewriting

(L, Lu)(<p,v,<p{v)) = {<p,uv,ip(v)) =
= (Spwv,<pu)<p(v) (1, Lyj(u)-1) £ MH;
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we see that
£(1,1,«)(M*p¥(")) = {ip,uv,ip{u)<p(v))
and
(i, i, 0)M,MENN = (i,i,v?(«rl).
Also,

£(i,1,«)( >»¥>(»)) = (I,»,v>(t7)) and (I,1,u) @'V (V))K = (1,1,«),
since (1,1,u)(1,v, <pVv)) = (1,v, <p(v)) (1,1, u). The maps
1 bu) £@OY), H-+ MM and {e,v,<p(v)) ev (vw)u, M -> HH

are homomorphisms (as they should be). It happens that the (",,”(,,jjf6’s
are automorphisms of H; however, I tt) is a homomorphism of M only
if » = 1. The isomorphism of T = MH onto the Zappa product M x H is

given by
(e,v1,v2) = (e,va,<p(vi))(l,l,<p(vi)~1v2) &>

N ((EViv2(viD), (1,1, v2(vi)—2v2) ) »
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DIFFERENCE SETS WITHOUT k-TH
POWERS

A. BALOG1,22, J. PELIKAN, J. PINTZ2 and E. SZEMEREDI2, corresponding member
of the Academy (Budapest)

1. Introduction

For any positive integers N, K let cr(N, k) denote the maximal number
of integers 1~ a\ < mm< aa C N such that the difference set of J1 =
= {ai,..., d(} contains no perfect k-th powers, i.e. —aj = mK i >]j has
no solution.

It follows from the work of Kamae and Mendes-France [3] that a(N, k) =
= o(N) for any fixed k » 2 as N tends to infinity. Quantitative results are
known only in the case of k = 2. Pintz, Steiger and Szemerédi [5] proved
that

N

(1) <r(N,2) c -
(log jV )™ loglogloglog/v'

Our aim with this paper is to extend (1) for any Kk ~ 2.

Theorem. For any k ~ 2 there are positive constants Cq and No such
that

N
(logN) * loglogloglogN

(2) a(N, k) * Co

for any N » No-

The proof is based on the method developed in [5] so on one hand we
can be brief in some technical details, on the other hand we can attempt to
give a cleaner explanation of the argument.

Note that optimizing the parameters in the finest way would lead to a
constant in place of

Our calculations are effective everywhere and it is not hard to get the
final result uniform in K, i.e. to get the dependence of Co and No on K.

1 Partially supported by NSF grant DMS-8610730.
2 Partially supported by Hungarian NFSR grant 1901.

0236-5294/94/% 4.00 (c) 1994 Akadémiai Kiadd, Budapest
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2. Outline of the proof

We choose Co and ™ large enough to provide that

Co " (logTV)<loglogloglogN

whenever No * A T and let k ™ 2 be fixed. Thus (2) is certainly true
for this range. Our argument is indirect. Suppose that (2) is not true and
let N > Nqg be the smallest integer such that

(3) ao = TV, k) > Co N
(log TV)<loglogloglogN *

and let Ao — {1 ™ a\ < eee< aap » TV} be an extremal set of ao integers
such that the difference set of Ao contains no perfect k-th powers. Co, No,
TV, kK and Ao are now fixed.

For shorter reference we denote the right hand side of (2) and (3) by 7(TV)
and observe that ~f(x) is an increasing function of the real variable x ™ No,
if VO was chosen large enough.

The simple assumption that o is an extremal set will imply that Ao is,
in fact, very well distributed in a certain sense. For example, let us define

r EN /
(4) A\ —[pnN A2 —*oM (—, vV

[eTJ’

and ay = |.4i|, 2= [[[B. Clearly o\ + oi = a0 > I(N), but as the difference
set of Ao and thus A\ and «[R contain no perfect k-th powers, we have v\ *

= 7(if) and 02 'C7(”~2") « Standard computation gives that

/ logloglog log vV

% log ™V L2

Jd=y (1+o0

)
/log log log log vV

The implied constants here and later depend at most on k, Co and No and
are effectively calculable.
Let us define the generating functions

Fi(a) = e(aa), i=0 1, 5(a) = wme (amK),
a&A, m<M
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where e(x) = elmx as usual, M = (f) XK , and the non-negative weights

wm will be defined later. J12 contains no additional information to us thus
N2 will not appear in the proof later on. From Parseval identity we have

(6) E ¢ i=0,1.
= filN

On the other hand as Ao —A\ is free of perfect k-th powers we have

& EB4WVMw) =w E %

a—a,=mK(N)
which imply
TV-1
(8 E > Fb(0)F1(0)5(0) acai W
=1 =

The first key-point of the proof is that according to (8) F\ ( must take
large values frequently. If g |) > £(Ti for a set V of points jr then from

(6) we have
Ne».)2s E "~ (1 oiN,
<=0 v 1
that is
N
4 N
0) e2W\

contradicting (3) and (5) if £ could be chosen properly. This argument alone
would give a weaker result than the stated one.

The second key-point of the proof is to try to find the best £ such that
e2\W\ is biggest possible. As in (7) we have

éo* (4_ £ )7
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and SO

p=4
[

£ Fo Ft =

> Fo(0)Ft(a)S(0) ~ fcrocm ~  wn
m<M

ifa £V, a point where F\(a) is large. Similarly to the above, Ft (a +
must take large values frequently. An interesting property of the rational
numbers will provide that these points a + jj, where a runs through V, are

basically different. This would increase £2\V\ unless £2[P\ is already large.

3. Notations and preliminaries

We have already fixed the value of Co, No, N, k, co, ciy, M, and have
defined o, At, 5(a), Fo(a), Fi(a), ~/(x). Now we introduce some more
parameters.

Q =p(I°glogA04 z — e(bglog/V)2

o-1

P=Tb N=r(1-") (loglog A)

p<z p<z 4

Wg=1n (1- -J forany g* 1,

P<2

py
(rn}K—l if P 1 M
Wh — ;o (m,P) =1m
lo, otherwise;
am*
T(q, a)= £

m—1
((m,q),P)=1

Ai(n), Tfe(n) and v(n) denote the Mobius-, the divisor- and the counting
function of different prime factors, resp.
To fully understand the behaviour of 5(a) we need the next sieve result.
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Lemma 1. If(a,q)=1 1"y "™ x then

53 i=/,(i+o0(«-iisd)).
X —y<.n”x

n=a(q)
(n,P)=1

Proof. This is Theorem 7.2 in Halberstam-Richert [1].
We also need some bounds for T(q, a).
Lemma 2. //(a, ) = 1 then

«"bINY2  if g<yg,

T{a, a) "
generally.

Proof. This is basically Theorem 4.2 in Vaughan [6]. Like Lemma 2.10
in that book we have for (a, q) —1

T(q, a) = M T(pa, ap),
pa\d

where ap (modpa) is determined by a, g, pa and p\ ap. Then Lemma 4.3 of
the book says that

(10 IT(p, a)] » Kpxt2 ™ npx «.

For higher prime powers let r » 0 be an integer such that Kk = p', p\ K,
and7=rT2ifp=2,T7T>0,7=T-f1lin all other cases. A reduced residue
class modp® is a k-th power residue if and only if it is a k-th power residue
modp7. For a > 7 we have

athpi+ w*) 0
E«(8) =E E . -V
m=1 ( P ) m—1 h=0 P
p\m p\m
This means (see Lemma 4.4 of [6])
‘0 if p<z,a>7
T(pa, a) = < pa~1 if ptz, 7<a”K

pk~Ip(pa~k,a) if p z,«x<a, 7< a.
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This with the trivial bound for the remaining cases together with (10) imply

kpa'2 n kp"*1-«) if <r
T(pa,a)l P
ifp~ z
The next ingredient, we need for studying 5(a), is Weyl’s inequality.

Lemma 3. If (a, g) = 1 then

< a (1 + log yo)
m<y

with an absolute implied constant.

Proof. This is basically Lemma 2.4 in [6]. The unnecessary ye can be
removed by an additional use of the Cauchy-Schwarz inequality along with
a bound like

tbi(™) <
Y. =YY m
m<Y m<Y
(k-1)2
ny <Sy(i + 108 1) (k-1)2.
Finally we also need Hua’s lemma.
Lemma 4. For s > 2K we have
da « MS-K

Proof. This is well known from the theory of Waring’s problem, see [6]
and follows from Theorem 4, Lemma 3.6 and Lemma 7.12 of [2].

4. The generating function 5(a)

In this section we study the behaviour of 5(a). We first state all the
lemmas and we give the very technical proofs later on.
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Lemma SI. Forq<z (a q) —1 we have

K'<9) W, [5(7/)] + (1 + \ijiN) /
- + + \VijAN)Me~"Jiexne
SC+0 < gz w :

Lemma S2. Forr ~ gq” (ag=1and|a- Y <™ we have

[5(a)l < M e - (loglogN)2
Lemma S3. For < h”~ M4 ire have

M

S <|\/|e-V"+/i

(but the second term appeal's only when h is not an even integer).

Lemma S4.
N-1 2K+ 2

< M 2K+2
=

171

Proof of Si. Let us write g(x) = e(i]xK)k( n  with any fixed real

rl. By partial summation

(1D

s(H - v c(f)-»-1I" «we« oy o (?)7* -

(m,P)=1 m,P)=1
am
<1+ Ay ma
O LI i =
TUX
(m,P)=1

We use Lemma 1 to study this sum. We have in case of & "

7
02 E ™ =EUT)E °
m~x 6=1 m”x
(m,P)=1 m=b(q)
(m, P)=1

£ (f)i N (x-i)(1+0(.-SA))

(6"'p)=1 Ptfiofsj
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Note that ((b, g), P) = 1 implies p <z, p\ is equivalent to p < z,

p\ g. Note also that writing an error term 0(qz) makes (12) true for any x.
Writing back everything to the first line of (11) we arrive at

(13) s(*+  =jW qT(q, a)g{M)—

3" XwqT(q, a)g'(x)dx A 0[qz + Me T+

10/ \
0 G+ xe 252 1\g'(x)\dx
) (MWg(M) J xWg(x)dx +

+0 1 (1+ \rI\N)[qz + Me~ b2

/ [o]
a)S(v) + O [{1 + \rI\N)Me 4/*2)

supposing g * y/M. Lemma SI now follows from the bound for T(q, a) given
in Lemma 2.
Note that from the first line of (13) we also have

(14) 50)=M (1 +0 fe-~)).

Proof of S2. We can use the previous analysis when z < g~ \um.
The trivial bounds |5(i;)] &M, Wg” 1, and Lemma 2 for T(q, a) give

|5(a)] < logzn®*g *M + QMe 4°«27

< Me-*r < Mc'” (lo*logiv)2.

In the remaining range \/M < g™ " we use a different approach based on
Weyl’s inequality (Lemma 3). We have from (11) that

(15) S(a)|] < max | 2
l<x<M mAx

(m,P)=1
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This time we detect (m, P) = 1 by the elementary sieve of Erathostenes.

. adkKm K
iw) E « y e
m”x d\P mgj
(m, P)=1

adkKmK X
« E E + E d'

d<Q 2k 'SS le
d>Q&

We use Lemma 3 for the inner sum together with the trivial bound

> >
T, dk dK y/Q!

We have

(17) E E adkmK «

d<Q 2z m=d

< logV(xl 2*Q*2+ + (logQ)XM 2wz + T(=2L=) 1<

< (logN)MQ 2% .

For the second sum on the right hand side of (16) we note that d\P. d *
imply Q22 ™ d and thus

V(d)> [2ST > JSfi-; < 2-W i iofr
ogr 2klog?2

and

E X
d

L —
(18) 0ge L

= x2
d\p d\p
d>Q 2k
i
< t2 zkolggz J(1+ -j < (log2r)M2 TTbfl

P<2 P
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Now (15), (16), (17) and (18) prove Lemma S2 in the range \fM <qg”

Proof of S3. We are going to split the interval 0 <m 0 M into
subintervals where e (~ -) is close to constant. wm will be well distributed
in these subintervals explaining the choice k(-p) * 1in the definition of 5(a).
Note that A h A MY4is now any real number, not necessarily integer.
Let J = [MY4] and /(n, j) denote the interval

N K. N ( 7+ 1
h <m =X ("+~
: [hi ; :
These intervals cover 0 < mK” -jyN when n=0,...,[j]] —1j = 0,...,

J —1 When h <2 we do not split anything at all and when h is an even
integer we cover exactly the interval 0 < m ~ M. We have

The last sum contains at most <C”* terms and appears only when h is not
an even integer. This is responsible for the second term in Lemma S3. If
m 6 /(n, j) then

We arrive at
[Al2]—J— , .4
5 L E 4 5) Wm +0
71=0 j=0 rnel(n, j)

We use the sieve (Lemma 1) with a = g — 1to show that the inner sum is
independent of j within a reasonable error term. The summation over j then
kills the main terms. In fact for X —Y < TK”™ X we have

m +
)
while
x Uk- (X- t)l/k=iyxb 1+ 0 (yax «~2f =0 (yxi-1)
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so we get from Lemma 1 that

Y YVE (I + 0(e"2)) +O

X-Y<mK*X
(m,P)=1

where n = »i "RO *z--We need this with Y = jj, X = 2(n + *Yr) and

the main term is really independent of j (and n as well). The contribution
of the error terms after adding over j and n is

M Iog'|V+

hJ Me

where v is the smallest among the u’s, which is at X = N and

v A 1°gN_ A 2-/log N.
2k logr

The choice of J provides that the first error term is much smaller. This
proves Lemma S3.

Proof of S4. From Sobolev’s inequality (Lemma 1.2 [4]) we have

N-1

SN inS(a)\‘da+ /1s(a)*-15'(a) da <

IN j\s(a)\sda+S~\S(a)\sda™ ' ~ |S'(a)|*da)’.

When s is even both of these integrals can be expressed as a sum over the
solutions of an equation weighted by wm or 2nim Kwm respectively. Thus we

get an upper bound if we write K or 2xkm k in place of the weights. We
arrive at

ri
A (ksN + sttksM k) 7/ Y d da <
Jo

< (W+ MKMS-K< Ms
by Hua’s lemma (Lemma 4) with s = 2K+ 2.
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5. The generating function Fo(a)

In this section we state and prove some properties of the generating
function Fo(a). We have to emphasize that these properties hold because
Ao is an extremal set, which means »o C {1,..., N}, Jlo —Ao contains
no perfect k-th power, |/lo] = &o satisfies (3) but any set Al for which
Al C {1 Al - Al contains no perfect k-th powers will satisfy (2)
whenever N' < N. The first consequence of this situation has been derived
in (5), which says that Jlo is equally distributed in the two halves of the
interval (1,JVj. We extend this result.

Lemma F. For 1~ g~ Q we have

g N (log log yv)5 2
E Fo

logivV  a°-

Proof. First we note that, if N/Q3k# N1~ N, Al C {1,..., N'} and
A! —A! contains no perfect k-th powers then

/ (log log N )s No
00

This follows immediately from (5) and \A’\~ 7(N1J (the extremality of N)
by

I(N")  7(N) 1+ 0 ( (loglog A)5
N' N logN

Set H= N, and

an =ji Z (1_ W e”sakKa)=
Ll

sin kHuka
H sin TgKa

where ||x|| denotes the distance of x from its nearest integer. On one hand
we have

= | + 0{H 2\\gka\\2).
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N -1
—ao+ E

On the other hand

2N

T E
a—a'+qkh=0(N)
\h\"H,a>a'

Here and later a, a' represent elements of Ao- As 1- gKH » a~ a’+qgkh *
5 N + gkH —1 we either have a—a' -gkh —0Oor a- a + g*h = N. In the
latter case a = N + 0(qKH), a = 0(qKH), ai= a—N (gK). The number of
choices for a is 0(gKH), for a' is 0(H), and we arrive at

(19)

a—a'\

al<a”a'+q*H
Set J = [log Af] and split the interval (0, H] into J equal subintervals of type
\(”f. ('?JH)# ,j=0,...,J —1 Let us fix a'. For every j we can construct a
set Al by

o I .
Al 2 L JatH o, (0 DakH
aK J
Here Al —A! contains no perfect k-th power as — ‘XA = m* implies

a\ —(2 = (gm)K As we noted in the beginning

WIE 1 40 ( (log log A)5 H
y logN I n
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and we get
a-a
- <
(20) £ ! q«H
a—a'=0(q*)
al<a<a'+q* H
J-1 . .
Aiogiogn £\\ h_
s £ £ ( 1-3)ywvi+° V logN JN
a'zAo j—O
<UL (I +0 ( (106106")8
2N logN

(19) and (20) prove Lemma F.

6. Combinatorics of rational numbers

Let K ~ 1and L * 1 be given integers, moreover let IChe a given set of
rational numbers with denominators at most K, i.e.

ac C 1Aa[/'|KAn',(a,K)=1j.

For every f G ACwe have another given set Ca/k of rational numbers with
denominators at most L, i.e.

CakC {y;l£bg/gZ, (&) =1j.

We want to conclude that the set

n fa ba .,6 v )
Q=\k +r k elC’1 eCalkj

is big. Of course, without any additional condition we can say nothing.
However, if we know that for every fixed | ~ L there are only a few possible
numerators in the union of all the sets £aa. then we get our result.

Lemma CR. Let T be the maximal value of the divisor function up to
KL, and let be integers such that

I”G = G; |£an.| » H for all a/k 6 /G
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y6U"a} ~ B for all I L.

Then

lel” CflU x * (1"+ log/o0 ) -
Proof. Let us fix an | £ 1Cfirst. For any j £ Ta/lk we associate a pair

of integers (d, /) such that d = (k, /), A= dk', 1 = d/', (A, /') = 1,/ —(a/' +
+ 6A, d). Note that /[d, diA, (/, &) = (/, /') = 1and

a b ad+ AA iLtkk.
K+ 7= a =“W"

where this last fraction can not be simplified any more. The number of
possible pairs (d, /) is at most r3(A) * r2 so there is a pair associated to

more than |Ea/fd/r2 rational numbers j £ Ca/kmWe associate this popular
pair (d, f) to | and set

rak=jyGCAK®A I)=d (aI'+ 6A, d) = /] .

We have |E*fd » ~|£ effd
Next we fix A™ JT and set A(k) = {a; | £ ACk We have

£ w*)i=i%i=G-

kK
Again there is a pair (d, /) and a set A*(A) C A(A) such that |A*(A)| »
A NA(A)| and (d, /) is associated to all  a £ A*(k). We finally set

A= {p A™ A, a GA*A)},

r(A) = 1{amod/; a € A*(A)}|,
and we note that

in= EH 'wui-'
kd<
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If «  k is fixed and (d, /) is the associated pair then on the one hand

(21

but on the other hand j E M implies (ail' -f bk, d) = (azl' +

+ bk', d) = / and so a\li=az2l’ (mod /). Hence a\ = B2 (mod/) in view of
(/, I') = 1. This means a\ ¢ a2 (mod /) implies £€*”~ M£*21 = 0 and so

(22)

(21) and (22) together give

1 BT2
(23) F(k)dA—

Now we fix a fraction ~ and check how many solutions the equation

b

(24) ,

has. If we write g = k'l’e, (x1, /') = 1 (we can do this at most in TA(g) ™ r2
different ways) then for every / ~ min ("p-, *7) we have d = e/, = A'd,
/ = 1'd are determined. Also a (mod k') is determined by al' + bk' —cf. For
a (mod /) there are r(k) choices and as (/, k') = 1there are r(fc)pj = r(k)

choices of a. Finally, a determines b. Thus the number of solutions of (24)
is by (23) at most

LBt4(\ + logA)
v voretkes E E™ML H
g=I'k’e f g'k'e j <K
This means

H GH*

101 > LB ea(\ + |OgK) erX I£ alArl = LBt8(\ 4+ |ogK)

which completes the proof.
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7. Proof of the theorem

We are going to detect solutions of the form a —ai1= mKwhere a £ Ao,
a £ A\ (m, P) = 1 At first sight this looks curious as 2\ m but Ao could
be very big without any 2 fa —a'. We stress again that this can not happen
with an extremal Ao which must be well distributed in residue classes to
small moduli. This fact is implicit in Lemma F.

Forany 1~ /1, 1~ K, 1~ P we define

Px(K,U) = K;l"a"Kl7| K, (a K) = 1, Mnm%pi > !

Qa= QaiQi=Q\ 3, Qi>1 M= QR PV U)1U2
1UU

Q1 is our most important parameter which will determine the exponent
in the Theorem. We choose Q\ later optimally. We want that for K #

Qathe intervals in the definition of P\(K, P) should be disjoint, and also
Qx< zt =e~fbghgN)2 Both follow if we can assume

(25) NMMogQj ™ M(loglogiVv)2.

Kaand Pawdl denote that pair where pg takes its maximum. If this happens
for different Ka, let Ag be minimal such. As K — P = 1is considered in the
definition of ,a we have

(26) =
= [iA= U

Like in (9), Section 2 we have

= a\N,
especially
(27) < oA

for any J1, Q\ satisfying (25).

Acta Mathematica Hungarica 65, 1994



182 A BALOG, J. PELIKAN, J PINTZ and E SZEMEREDI

Clearly fi\ ~ /iA+i and either there isa 1~ A~ A such that

(28) M1 A AL A MA(logNy*
or
(29) ha ~ (logiV)2.

We will show that (28) does not happen when A~ 1loglogloglogN and
(27), (29) will prove our Theorem.

Let 1~ Abe fixed and let K\, U\ provide the corresponding maximum.
By (26), (25) and the definitions

(30) I UUXU Kx i Qx it e A o*IPsN)\

We can select a set V = {"} such that |Fj (jt) | " is the maximal

value in |& - fl< 1Sa” kit Kx, K kKl = 1and \\\ = PX(KX Ux).
For any a £ V we have

E e(aa')wm= 0
—a+a,+mK=0(N)

since —N + 1 —a+a’+ mK”~ N —1 Thus by (14), Section 3 we have

N -1
E Fo Ti > S(0)7 Gqc\M
Ux (0) 2CAloglog jv)2'

The contribution of those t for which either |Fb (jj)\ ~ ~ or |Fi (a + ~-)| »
A is negligible by Holder inequality, Parseval identity (6), Lemma S4, and
(5), (25), (30). Indeed

£ wax|C,AT7 (£[F,|2 X (M1 1D5(E |ST+) <

AN K LIN)i a2 ramem < QOMN - cacim
A3*-1+#1  Ux(loglog V)3
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Similarly the contribution of those t for which

< o\M

(32)
~ Q\N(\og\ogNf

is negligible by Cauchy-Schwarz inequality and Parseval identity (6)

S max|,S|Qr|F,[2 (EIUI2
------------------- -AaON f\a,N )" S -—---- 3.
QxN(\og\ogN) UxN(\og\ogN)

By Dirichlet approximation theorem we can finda 1" b”™ 1R (b, 1)
= 1to each jj such that

t Db Q

<
v 7 IN'
If2 U1~ ~ then Lemma S2 says

s (" M e -" (lok|o8/,)2 < ~
(N) ¢ (ojo8) QxN(\og\og N )4

thus (32) is really the case. If Qx+\/Qx < | <z then by Lemma Si

M - G\M
< 13 = QxQV3 ™ QaM(loglogiVi4

provided
(33) QLE (log log N) **

Let 7(/, b, a) be the set of fa & 0 such that |[*-g]| < $m |[Po(M)]|
= -T1 (o + jf) I Q. We get from (31) that

<70(0\M
Ux(\og\ogN)2 <
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<E £ £ <

<?A

< max max F\ a+ £
K Ents(My=, "0 Tba jigr@ba) ° N
= ox
Lemma SI and Lemma S3 provide
C+(0

*32 £ Kv-i) +

%ET(1,b,a) Gr(/,6, a)

K\e9
+Q2M e ~ < _ _ (loglogyv)6M.

This means that there are integers 1~ Fa® Q, 1" Wa”™ Q, 1~ La
such that the set £(a) defined by

(1! = AN
L Mp z </<la,(6/)=1 va r(rir,]i?,);) ft<dr < %’

o t X1
< max H (a+ — <
t(Lb,a) V N
satisfies
Vawal Y2
'A T U\R{\og\ogN) *®

where R = Tax{k"”"; | » Qati} Here we chose Vq, We, La as diadic
integers so the possible number of choices was

< logQlogQlogz ™ (loglogiV)l0.
But this also means that for at least
PX(KX Ux)/(\og\ogN)10

different a £ V we chose the same triplet V, W, L. With this triplet there
is a set V* C V such that

A P\(KA U\) .
(34) m (loglog N) 10 Fi r b .b’V e7”!
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Further, for any f £ V* there is an f with K
(a, K) = 1 and also there is a set £ () of rational numbers y, \L < | U
N £, (6, /) = 1, with corresponding numbers ~ ~ 0, f ~ 0, |[f - y| <
|f-*| < f such that

VWLy2
(35) > UxR(\og\ogN)18
VO ~ v\ 200 ax < t w - 20\
Vv *(NJ V' W= N+ N ~W'

We are going to use Lemma CR to show that the number of different
is large. Because of the small size of k and | this follows if the number of
different | + yis large. K is the set of |, so G satisfies (34), Ca/k is the set

of the corresponding y, so H satisfies (35). Finally Lemma F says that for
any fixed <ldaL

VoY — =’ (loglogN) 2
{b; y e ufaAl (V) S GElél\Fo N < logw ~*
| 4

F 2(log log N )5
log N

Lemma CR says that the number of different | -f y is at least

P\(K\, Ux) Va2W2L log N y
(loglog A)I0U2R 2(loglog A )36 £F 2(loglog iV) V =

> VR2log TV P\(K\, U\
- R2T8(\og log A)53 U2

As the denominator of | + y is at most kI ~ Q\+\ and | | _f] <
< we get that

/iAIF 2log N

Pati(QAt , 1A)»
R2r 8(loglog A)53’
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i.e.
> log N
(36) M+1 /4ﬂﬂ2r8(10%10§l'||')54r

As is well-known

logr, logR < loglog<5A+i S N+ loglog Qj"
If
4log Qi A
(37) N+ log log Qj el loglooA

with a suitably chosen Ci > 0 then (25) is satisfied trivially and (28) is not
true for A We have to balance this with (33). The close to optimal choice
of Qlis
Qi = (logA)(lodlligliigjV,1/4
and then (37) says
4 X<C (log log log N )3/4
which follows if

A" - logloglog log A

(27) and (29) prove our Theorem.
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MARKOV AND BERNSTEIN TYPE
INEQUALITIES ON SUBSETS OF
[-11] AND [ 4

P. BORWEIN and T. ERDELYI (Burnaby)l

The primary purpose of this note is to extend Markov’s and Bernsteins’s
inequalities to arbitrary subsets of [,1] and [, 7], respectively.

We denote by Vn the set of all real algebraic polynomials of degree at
most n, and let m(-) denote the Lebesgue measure of a subset of R. We
were led to the results of this paper by the following problem. Can one give
polynomials pn E Vn and numbers an E (0,1), n=1,2,..., such that

() m({x E[01]: [p,,(x)| » 1}) * 1- a,,

. A

(i) gogx Ipn(2)| ~ 1
and

(iii) lim n_2|ph(0)| = oo
are satisfied? This question was asked by Vilmos Totik, and a positive an-
swer would have been used in proving a conjecture in the theory of orthogonal
polynomials. However, Theorem 2 of this note shows that the answer to the
above question is negative, in fact, it gives slightly more. In addition, our
Theorem 1 answers the corresponding question for trigonometric polynomi-
als. Though our results cannot be used for Totik’s original purpose, our
proofs illustrate well, how Remez-type inequalities can be used in proving
various other polynomial inequalities.

In this note we prove the following pair of theorems.

Theorem 1. LetO<a”™ 2z O0< L ™ 1 let A be a closed subset of
[0,279 with Lebesgue measure m(A) 2 >x—a. There is an absolute constant
Q > 0 such that

@ max|p'(f)] » CiT_1(n-f n2a)max |p(t)|

for every real trigonometric polynomial p of degree at most n, and for every
subinterval I of A with length at least La.

Theorem 2. Let0<a”™ 1, 0< M 1, let A be a closed subset of [0,1]
with Lebesgue measure m(A) ~ 1—a. There is an absolute constant @2 > 0

1 This material is based upon work supported by the National Science and Engineer-
ing Research Council of Canada (P. B.) and the National Science Foundation under Grant
No. DMS-9024901 (T. E.)

0236-5294/94/$4.00 (c) 1994 Akadémiai Kiad6, Budapest
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such that

(2) max|p,(@)l < caM~1n2 wax Ip{x)\
x£/1 ! XEA 1 !

for every real algebraic polynomial p of degree at most n, and for every
subinterval I of A with length at least Ma.

Up to the constant ci, Theorem 1 is an extension of both Bernstein’s
[5, pp. 39-41] and Videnskii’s [6] inequalities, while up to the constant C,
Theorem 2 contains Markov’s inequality [5, pp. 39-41] as a special case.

The key to the proof of Theorem 1is a Remez-type inequality [2] proved
recently for trigonometric polynomials, while the proof of Theorem 2 relies
on Theorem 1.

Proof of T heorem 1. Denote by Tn the set of all real trigonometric
polynomials of degree at most n. If x/2 » a * 27, then the theorem follows
from an extension [1, Theorem 5] of an inequality of Videnskii [6]. Therefore,
in the sequel we assume that 0 < a< % 2. Let | be a subinterval of A such
that m(7) ~ La and T£ 7. It is sufficient to prove that there is an absolute
constant ci > 0 such that

(3) DI~ Cik_1(n + n2a) Tan [p(/)|

for every p £ Tn. Let Tn be the Chebyshev polynomial of degree n given by
(4) Tn(x) = cos(n arccos 1), —ANx N1,

and let

(5) La(t) := Tn(sin(f/2)(cos(7ald))(V 2,((cos(Zal4))-1))

A simple calculation shows that Qnlat %i,

(6) Qn,La(ir)=l, Qn,LJn)=0" max|QnLa()| = 1,

and there is an absolute constant G > 0 such that

(7) \Qn,La{t)\ ™ exp(—e3nLa), t £ [0,#—La/2] Uit + La/2,27r].

Let p £ Tn be such that

(8) max |[K0| = 1
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The Remez-type inequality for trigonometric polynomials [2, Theorem 2],

m(A) A 2r —a, 0< a U W 2, and (8) yield that there is an absolute constant
c4 > 0 such that

©) O,F\T][géir Ip(0] ~ exp(c4rw).

Denote the endpoints of the interval | by a <& . Since s —a —ni(l) * La
and TG, we have either a >—La/2ors ™ >xFLa/2. We may assume
that

(10) B + Lal2,

otherwise we consider the trigonometric polynomial p £ Tn defined by p(t) :=
= p(or —t). Now let

(11) m:= [A3l1L-*n + 1 and Q m=QmlLs

Observe that (6)—€11) imply

(12) [(pPQ ) (O [™i.
where
(13) E := [0,T- Za/2] U [z, 2r].

Note that E is an interval of the period with length ZT"- La/2, and >E E.
Therefore an extension [1, Theorem 5] of an inequality of Videnskii [6], 0 <
< L~ 1and (8) yield that there are absolute constants G > 0 and c4 > 0
such that

(14)
M)V )| S ((n+ m)+ cs(n + M)2Las2) ~ c\L I(n + n2a) max |p(t)\.

Recalling (6), we have

(15) p{m = (pQ)'(7n).

which, together with (14) gives the theorem. O

P roof of T heorem 2. If 1/4 N a ™ 1, then the theorem follows from
the Markov inequality [5, pp. 39-41]. Therefore, in what follows we may
assume that 0 < a 5 1/4. Without loss of generality we may also assume
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that / = [0,5], where Ma ~ 6 5I 1, the general case can be deduced from this
easily by a linear transformation. Let p E Vn,

(16) y(t) := 1/2 + (172 + n)cosi,
17) p{t) m=p ¢y (1)) e T,
(18) A = {te [027d : y(t) GA)
(19) ['={<€ [0,4] my1) e/},
and

(20) a=ar—m(A), ie M(A) = ar

It is easy to see that 0 < a ~ 1/4, A C [0,1], m(A) » 1—a, m(l) » Ma,
(16), (18), (19), and (20) imply that

(21) a” csyla
and
(22) m(7) = ctM dTi ® c-jc "Ma

with suitable absolute constants eg > 0 and c¢7>0. If L :=cyc”xM ~ 1and
a” n-2, then Theorem 1, (20), (21), and (22) yield

(23)
max|p'(t)] » CiC"CBM-1" + n2)max |p(f)] » c$M ~In2\/a max 1/X(a;)I
ta teA XEA

with a suitable absolute constant eg > 0. Also, (16)—19) and I C [0,1] imply
that

POV = \p{y(O)y{O\ = [p'(y(<)) 1(1/2 + @) sint * co \p'(y()\ sfa

for every t E | with a suitable absolute constant eg > 0. Since every x E I is
of the form x = y(t) with some« E/, (23) and (24) imply that

(25) max |p {X)\ ~ cgcdlM ~In2max Ip(x)],

whenever c-jcM ~ 1 and a ~ n~2. If c7Cg!M ~ 1, that is M ~ cec”l,
and a ® n~2, then | can be divided into subintervals of length k~im(l),
where k := [cRCM] + 1, and the already proved part gives the theorem. If
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O<a<n 2,ACIO Il and m(A) > 1—a, then the Remez inequality [4, pp.
119-121] or [3] yields that

(26) max |p(x)|] * cto max Ip(x)|

for every p £ Vn, where Q> 0 is a suitable absolute constant. Combining
this with the Markov inequality [5, pp. 39-41], we obtain

£

| ?
@D Pt < RGPIOOL e G lpl 5

i 2c\qv? max Ip(x)],
and the theorem is completely proved. O
It may be interesting to compare Theorem 2 with the following
Example 3. Let0<a” 1/2, A=1[0,1- a U{l} and

Pn(x) = (x - NTn2(l - a) 1x- 1), n=1,2,..,

where Tn is the Chebyshev polynomial of degree n defined by Tn(x) =
= cos(narccosx), —1 ™ x ™ 1. Then

max IP'(x)] ~ |P'(1)] = Tn(2(1 —a)-1 - 1) AT n(l + 2a)"

P 231 + 2Va)n » 2-1(1 + 2vA)nmax|F,, (x)].

A similar example can be given in the trigonometric case.

Acknowledgment. The authors wish to thank Vilmos Totik for his
guestion that helped to formulate the theorems of this paper.
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SOME LATTICE HORN SENTENCES
FOR SUBMODULES OF PRIME POWER
CHARACTERISTIC

GABOR CZEDLI (Szeged)1

For a ring R with unit the class of lattices embeddable in the submodule
lattices of R modules is known to be a quasivariety (cf. Makkai and McNulty
[6]). This quasivariety will be denoted by

C(R) = {Su(rM) :rM is an A-module }.

We will consider rings with prime power characteristic pk where k > 1 All
the rings in the sequel, unless otherwise stated, will be assumed to be of
characteristic pk. Let W (pfc) denote the class {£() :char R = pk}. While
the variety H C(R) depends only on the characteristic of R (cf. [5]), and
W (p) is a singleton (cf. [3, p. 88]), W (pk) consists of continuously many
quasivarieties C(R), cf. [2]. This result was proved by the following pow-
erful tool. Let r denote the similarity type consisting of operation symbols
V, A +1,1,0,1 with respective arities 2,2,2,1,1,0,0. The set 2(R) of two-
sided ideals of R becomes a r-algebra in a natural way: V.A are the lattice
operations, 0 = {0}, 1 = R, «is the usual product ofideals, j X = {px :x £
£ X } and '\X = {x:pxEX}. Let K(R) denote the set of all nullary
r-terms a such that a —1 (= R) holds in 2(R), and let X{R) denote the set
of (universal) lattice Horn sentences satisfied in C(R).

T heorem A (Hutchinson [2]). If C(R\) ~ £(f?2) then Ii(Ri) 2 /1(fO)-
The proof of this theorem is based on the following

T heorem B (Hutchinson [3] and [4]). C(R\) * £(/£2) is equivalent to
the existence of an exact embedding functor fij-Mod —<A2-Mod.

Note that T’(Aj) 2 -LAr) is also equivalent to C(Ri) ~ £(i?2). There-
fore our present investigation based on Horn sentences might be interesting
from abelian category theoretical point of view, too.

Our goal is to deal with the following two open problems, the first of
which is related to the converse of Theorem A.

P roblem C. Does K(R\) 5 K (R2) imply £(f2i) Q £(A2)?

1 This work was partially supported by Hungarian National Foundation for Scientific
Research Grant No. 1903.
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196 G. CZEDLI

Probtem D. IsW (pk) closed with respect to arbitrary joins (taken in
the lattice of all lattice quasivarieties)?

Note that W (pk) is closed with respect to finite joins. It is shown in [2]

that (W (pfo); Q ) contains large chains and antichains and it has a nontrivial
automorphism, namely C(R)  £(Aop), but we do not know ifit is a lattice.
An affirmative answer to Problem D or (much less trivially!) to Problem C

would imply that W (pk) is a lattice. The analogous problems for the set
of lattice varieties HT (5), where the S are rings of any characteristic, have
positive solutions (cf.[5]).

Main Theorem. At least one of Problems C and D has a negative
answer.

The proof of the Main Theorem is based on certain lattice Horn sentences
x{m,p), which might be of separate interest. Note that x(2,2) appeared in
[1 but without any application that time. Our proof is divided into several
lemmas.

First we define appropriate rings. The ring of integers modulo pk will be
denoted by Z * For a given n let Fn denote the polynomial ring
I/\,pk[Eb eee, 1 eoe, \V\-

Let In be the ideal generated by
{ZiVi - l:1=*=n}u{pra:[Aidn) uU{pk-ren}tu
W 1707, 19jAn]V{rPj:19i%n \AjAn}U
U{ tifij : 1 I~jdAn, idj }

where £0 = 1. Put Rn= Fn/In,ay = & + yt =t + Note that xo = 1
By the definition of Rn we have

(1)  Xiyi = pk=Ixi-i, WiVj =0, X{Xj —0, xtyi =0, pkxt- 0,

pk~1xn=10, pyi- 0 fori,j,le{l,2,..n}, rp .

Lemma 1 The elements xt (r = 0,1,...,n —1), xn and W\ (r =
= 1,2, ...,ra) are of respective additive order pk, pk~x and p. Further, the
additive group of Rn is the direct sum of the additive cyclic subgroups gen-
erated by these elements. In other words, each element of Rn has a unique
canonical form

M M
(2) A2 ax{+ 0Xn + Xliivi
20 21
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where a, G{0,1,... ,pk- 1}, 8 G {0,1,... ,pk 1- 1} and 7, G{0,1,...,
p—1}. The rules of computation in Rn are (1) together with the axioms of
unital commutative rings of characteristic pk.

P roof. It suffices to show the uniqueness of (2); the rest is clear. Assume
that 0 G Rnis of the form (2). Then, by the definition of 7n, we have

71—1 n n n

3 a«&+[tn + ~ ~ pK~T&-0 + r>+
®) 20 =1 =1 P =1 n

TP M TY Y, hijm + YAy Tijmplj+ EE s,j WiVi
=1;-1 2=1j-1 =1 /=1

where /-, gi, hij, r,j, sy GTn- We treat the elements of Fn as polynomials
in the usual canonical form. Hence these polynomials are sums of uniquely
determined summands and each summand consists of uniquely determined
factors (i.e. powers of indeterminants) and a unique coefficient (from Zpk).
Suppose we have performed the operations on the right hand side of (3).
Then each summand on the right hand side in which m is the only indeter-
minant has a coefficient divisible by p. Therefore 7, = 0 for all i. We obtain

3= 0 similarly.
Suppose Qi ¢ O for some i. The only source of £ on the right is fl+1e
o{EIHT)iH ~ Since pk does not divide eq, the constant 6 in /r+l is not

divisible by p. But then &H-u7r+1 cannot be cancelled by other summands.
This contradiction completes the proof.

Before describing K (Zpk) we make the set {0,1,2,... k} into an algebra
of type r via putting iV i/ = max{a;,j/}, x 1y = min{x,y}, } x = min{x +
+1,&}, Jx = max{x —1,0}, 0 =0, I —k and x &y — max{x + y —A:,0}.
(To avoid confusion, the ordinary product of x and y will be denoted by
the concatenation xy.) Denoting the set of nullary r-terms by Vo, let h be
the map associating with any element of Vo its value in the above-defined
algebra {0,1,2,...k }.

Lemma 2. K(Zpk) = {0 GVo :h(O) = K}.

Proof. An easy induction on the length of o yields that the value of a
in 1(Zpk) is pk~* Z pk = [k~ha>Zpk, whence the lemma follows.

Lemma 3. |[XLi K (Rn) = A(Zp*).
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Proof. For 0t~ n—1and 0" j ™ Kk we consider the following
subsets of

- {pxi 118 /<m@—f, i"Kk-j, i” 0}
n-tal%n -1, i+/~n-t+f-j—1 r*0}
= {p‘xn:iZ k—j —I, ii>0},
={lli:1~1"n,j >0} and
42 ={p’:"*-;}u 4?2 U5}?2 UC*?UDS$ .

Note that = {jli,...,yn} for j > 0 and - 0. Let /["* be the
additive subgroup of f2n  generatedby E-t. With the help of Lemma 1
it is not hard to see that the /j"' are ideals of Rn, 1 = Rn, 0" t\ I
ANtz n- 1implies /j”1 C /j"), and 0~ jx ™ j2 S * implies /j"] £
Further, j c and | £ /{"|. Now we claim that iff mff Q

= |fft+1- Suppose a G and 6 GE ff. It suffices to check ab GE fft+l.
We omit the straightforward but long details and consider only the case
a GRff and b Gl ff. Then a = plxi, n — —I,i+1".n —t+
+ K—j —1 and s > 0. We may assume that b = yi as otherwise ab = 0.
We conclude ab —pt+k-1x(_v, n —(/+1)"*1 —I*n —land (r+ Kk —1) +
- (/—1) —24+"4 N 2" R—tFx— —1 h—2—R—
+1- K —1"R—Ht+ 1)+ K—(j+5—K) —1"2—2+ 1)+t -S—l
yielding ab G M'«it+i £ "Nji.t+1-

For a r-term e E Vo let <1z, denote the value of a in [ (Rn). The length
lcrl of a is defined via induction: [0]| = |11= 1, |fa\=]|j a\ = |« +
+ 1, \o\ Va2\ —\o\ Aa2l= \& 2| = \<A I+ K21+ 1. The inclusions among
the i ff we have already established yield

(4) °Rni 4(])ik|, provided \a\ <n,

via an easy induction on |<r|.
Now the proof of Lemma 3 will be completed easily. Suppose that a (c
K(Zpk). Then hcay » k —1 by Lemma 2. Choose an n with n > |1 -f 2.

Then, by (4) and Lemma 1,

run C ("l C r<n
- f((:—1,|<t|: a2 1,
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whence a * K(Rn). Therefore fI*i A'(Ri) K(Zpk).
Conversely, an easy induction on |<] yields ORn 2 ftrm In

particular, if h(a) — x then orn — Rn- Hence Lemma 2 yields K(Ri) 2
2 R’(zpk), proving Lemma 3.

Now let m = pk~l. On the set of variables {x,y,z,t} we define the
following lattice terms:

r=(ivVy)A(?Vvit), ho=go=t, hn =(htVy)Jl(x V)

hi+i = (h- VI) JIOKVt), ¢i= (gt VX)N(y Vz), gl+x = ([ VI) J1(y V<),
rO= (/im_i V2) Ay, 90=zVzVjp-i, q=rQXx.
Let x (m ->P) denote the lattice Horn sentence

rn”~q=>rsnq
Demma 4. x{m iP) does not hold in C(Zpk).

Proof. Let M be the Zp*-module freely generated by {f\, f2,/33 mCon-
sider the submodules x = [f2], y = [f\ - /2], T = [/3], t = [fx- /3]. An
easy calculation gives r = [/1. (We do not make a notational distinction
between lattice terms and the submodules obtained from them by substi-
tuting the submodules x,y,z,t for their variables.) It is not hard to check,
via induction on r, that h\ = [(t+ 1)/2- ,s;, ht =[fx+if2- ;57 g\ - [(*+

+ D/i- (i + ) - /3] 9i = [(*+ I)/i - /2 - /3]- These equations yield
W= {a(fi - /2) 7T 0} = [p(A - /2)], % = [pli, /2,121, 9= [pli, /2]
Therefore x(m ,p) does not hold in Su(Af).

Lemma 5. x(miP) holds in C(Rn)for every n ~ 1

Proof. Assume that x,y,z,t are submodules of an An-module M such
that rO”~ 90) and let /1 G M be an arbitrary element of r. Our aim is to
show /1 G9. Since /1 Gr = (x -fy) M(2 -ft), we can choose /2,/3 GM such
that /2 Gx, 11 —2 G2, = G2,/1 —s Gt. An easy calculation, essentially
the same as in the previous lemma, gives (r+ 1)/r —s G lj fif2—s G
Ghi, and {a(/r- f2) :7a - 0} Q r0. In partlcular xn(fx - f2) GrO0.

Now let us suppose that Xj(fx- f2) Gi'o for some j > 0. We intend
to show Xj i(/i - /2) Gr0; then /1 - /2 = x0(/i - /2) G r0 follows by
(downward) induction on j. From 20 Q go we infer Xj(f\ —f2) G0 = x +
+ 2+ 9_i. Hence there exist elements eo and ex in M such that eo G x,
ei - e0G2 and xjui - /2)- er GE-i = (¥Yp 2+ r)n (y + t). This implies
the existence of two elements, say eipland eg~x GM such that ex—e4~x G
€Y Zj(li - 12)- e$1 Gt, ex- eE1 G99 2, and "(/1 ~/2)- 4™L G-
Continuing this parsing and denoting x}(f x—f2) by ej we obtain that there
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exist elements e EM fori=1,2,...,p—21and /= 1,2,...,6 such that for
re {1,2,....p - 1}

ei-egEY, el-e\E Y, eg-e”z, e\ -epHlet e-egGx,

eg- egE x, egtl- €5Gy, eg- e6E Z, egtl- ebE L, er- e Gt.

Clearly, eg = xj(f\ —/2) Gy. Let us observe that x contains uo = xy/g +
+ e0+ Y7Mi=i(e2 ~ eg). But

p—2 p—2

C (82 _ e6) + “oei+1l) " ~ 72) - ed_1)+ Xj(f1- 73)+

+*j/3 + (e0- ei)+ (ex- e{)+(eg 1- eg 1)+ (eg 1- eg)+ (eg- eg I),
whence vo G x. Now ug E x and uo E r imply uq E hi for all i > 0. In
particular, uo G /im_i- Let ry —eo- ei —eg+egfor 17~ i~ p- 1 We have,
fori >0,

p-i
u =eo—(ei - eg)- eg+ ™ (eitl _es)+
=i
P-1 p-1

+ -4)+ X1 (4-4)6"r+y
I=i I=i+1
and U = (eo —ei) - (eg—eg) G2, whence ut Gx. Letu, = et+eg- eg. Since
e\-eg- (e\-ei)+(ei —eg) Ey+tand, fori> 1, eg- eg=(eg- eg1)-
- (ei- egl)+ (ei- eg) G7+t,wehave vt = (ex- eg-1)+ (eg-1 - eg) + eg +
+ (ei- e3)€ 2+ L But u; = e0- (e0- ex)+ (eg - eg) + (eR- eg) Gx + z,
whence i-Gho (i=1,2,... ,p- 1). For 1~ i~ p- 1llet W= eo+ ey —eg.
FromW = Vi+ U e ho+r and wx= eo + (eg - eg) Ga we infer that wxE h\.
This together with wt E x yield wt G/im_1.

Now xy_i(/i - /2) Gy and, by tlyxy = mxj-1and pyj =0, Xj_i(/i -
-12)=Xj_i(/i +(m- 1)/2- /3)- 2jWo- EiJi 2jw&+ xj-ih e hm_i + T.
Thus Xj_i(/i —/2) Gxo, as intended.

Finally, /1 = (/1 —/g) + /12 Gfo+ x = dcompletes the proof of Lemma 5.

Proof of the Main T heorem. Let us assume that Problem C has an
affirmative answer. We claim that

(5) v C(Rn) = C(Zpk)

71=1
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where the join is formed in (W {ph)-~ ). Since K(Rn) 2 K(Zpk) by Lemma
3, we obtain £(Rn) A C(Zpk), for every n, by the assumption. (Note that
C(Rn) C(zZpk) also follows from Theorem B.) On the other hand, suppose

£(5) E W (pk) and, for all n, 1I(Rn) Q £(5). Theorem A yields K(Rn) *
5 K(S). From Lemma 3 we conclude K(zZpk) = D~Li R(Rn) 2 A'(5), and
the assumption on Problem C gives C(Zpk) » C(S). This proves (5).

Now if Problem D had an affirmative answer then (5) would be true
even in the lattice of all quasivarieties of lattices. But this would contradict
Lemmas 4 and 5.

Acknowledgement. The author is grateful to George Hutchinson for
his helpful comments. In particular, the present result was initiated by his
idea which, although not used in this paper, is necessary to prove that an
affirmative answer to Problem C yields that W (pk) is a lattice.
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SOME REMARKS ON S-CLOSED SPACES

A. CSASZAR*, member of the Academy (Budapest)

0. Introduction

5-closed spaces have been introduced in [5], and some of their properties
were investigated there. In particular, it was shown that they constitute a
rather peculiar class of topological spaces (see below). The purpose of the
present paper is to establish further statements on 5-closed spaces together
with the result that, no matter how strange these spaces may be, every
topological space has 5-closed extensions.

In a topological space X , a set G is said to be r-open (regular(ly) open)
iff G = int G, i.e. iff G is the interior of a closed set. F is said to be r-closed
(regular(ly) closed) iff X —F is r-open, i.e. iff F —intT, i.e. iff F is the
closure of an open set.

A set 5 is said to be semi-open iff G C 5 C G for some open set G. Open
sets and r-closed sets are semi-open. T is said to be semi-closed iff X —T is
semi-open, i.e. iff there is a closed set F such that intF CT C F.

According to [5], X is said to be S-closed iff every cover of X composed
of semi-open sets contains a finite number of members whose closures cover
X. Clearly an 5-closed space X is almost compact (i.e. every open cover of
X contains a finite number of members whose closures cover A). It is shown
that 5-closed, first countable, regular spaces are finite ([5], Theorem 3), and
a regular compact space is 5-closed iff it is extremally disconnected (briefly
EDC, i.e. the closure of any open set is open) ([5], Corollary of Theorem 7).
By this, there exist compact spaces that are not 5-closed; the existence of
noncompact 5-closed spaces was proved in [4], see also Corollary 10.

A filter in X will be called open (r-open) iff it is generated by a filter
base composed of open (?-open) sets; a maximal open (r-open) filter is said
to be ultra-open (ultra-r-open). Since the intersection of two open (r-open)
sets is open (r-open), [2] (6.1.29) shows that every open (r-open) filter is
contained in an ultraopen (ultra-r-open) one, [2] (6.1.26) implies that an
open (r-open) filter s is ultraopen (ultra-r-open) iffeither G 6 s or X —G €

* Research supported by Hungarian National Foundation for Scientific Research, Grant
No. 2114.
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G s for every open (r-open) set G, and [2] (6.1.28) says that two distinct
ultraopen (ultra-r-open) filters sj and S2 contain members G{ Gs, such that
G\ NGz —0.

A topological space is said to be S\ ([2], p. 93) iff x has a neighbourhood
not containing y whenever y has a neighbourhood not containing x. The
space is S2 ([2], p. 95) iff two points having distinct neighbourhood filters
have disjoint neighbourhoods. Every HausdorfFspace and every regular space
is S2.

Let X be a topological space and Y 3 X . A trace filter system on X is a
map s that assigns to each a G Y a filter s(a) in X such that s(a) is an open
filter and, in particular-, s(x-) is the neighbourhood filter of x if x G X. A
topology on Y is an extension compatible with the trace filter system iff s(a)
is the trace in X of the neighbourhood filter of a G Y . Then, in particular,
the restriction on X of this topology coincides with the given topology of X.

It is well-known that, for every trace filter system, there exist compatible
extensions on Y. Among them, there are a coarsest one, called strict exten-
sion relative to the trace filter system, and determined by the base composed
of the sets

5G)={aGY:G Gs(a)}

where G C X isopen in X ([2] (6.1.2)), and a finest one, called loose extension
relative to the trace filter system, and determined by the bases {S U{a}:S G
Gs(a)} for the neighbourhood filters of the points a GY .

An extension on Y is reduced iffa,6 GY ,a/ b have distinct neighbour-
hood filters except when a, 6 GX ([2], p. 218). A loose extension is always
reduced; a strict one is reduced iff distinct points of Y —X have distinct
trace filters, and s(p) does not coincide with any neighbourhood filter in X
ifpGY - X.

A filter s is said to be fixed or free according as fjs/ Oor f)s = 0.

1. Characterization of .S'-closed spaces

Theorem 1. The following are equivalent for a topological space X:
(a) A" is S-closed.

(b) In X, every cover composed of r-closed sets contains afinite subcover.
(c) In X, every r-open filter is fixed.

(d) In X, every ultra-r-open filter is fixed.

Proof, (a) = (b). An r-closed set is semi-open and closed.
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(b) == (c). If s were a free r-open filter, then the r-closed complements
X —Gi of the r-open elements G, £ s would cover X . A finite subcover
{X —G{:i £/} (/ is finite) would imply P| Gi = 0: a contradiction.

(c) == (d). Obvious. !

(d) = (a). Assume {5t:i £ 1} is a cover of X composed of semi-open
sets such that |J{5j:7 £ /'} ® X for every finite subset /' of I. Then
{n{*-5t:;£/'}} is a filter base composed of r-open sets (when ' runs
over all finite subsets of 1). Let s be an ultra-r-open filter containing it. For
X £ pl|s there is an i such that x £ Si: a contradiction since X —5; £ s.
a

For (a) <m(b), see [1]; Theorem 2 and [4], Theorem 3.2.

2. 5-closed 52-spaces

The following lemma is contained in [5], Theorem 2:

Lemma 2. Ifr is afilter base in an S-closed space X, then there is a
point x e X such that each r-closed set containing x intersects each member
ofr.

Proof. Assume the contrary. Then, for x £ X, there would be an
r-closed set Fx and a set Rx e r such that x £ Fx, Fx MRx = 0. The cover
{Fx:x £ X} would contain by Theorem 1 a finite subcover {Fx:x £ F} (F
finite), implying £ F} = 0: a contradiction. O

The following theorem generalizes [5], Theorem 6 and Theorem 7:

Theorem 3. An S-closed S2-space is extremally disconnected.

Proof. Assume X _is 5-closed and 5r, but not EDC. Then there is an
open set G such_that G is not open. We_can suppose that G is r-open by
substituting int G for G. For a point y £ G —G, let r denote the collection of
the intersections of the open neighbourhoods of y with G. By Lemma 2 there
is X £ X such that each r-closed set containing x intersects each member of
r. Now x £ X —G is impossible since X —G is r-closed and it does not
intersect the members of r. Hence x £ G, x py £ G, and X being Sz, there
are open sets U and V satisfying x EU, y EV, UMV = 0. The r-closed
set U would intersect each member of r in contradiction with VMG £ r,
UCWV=0 O

The following theorem generalizes [5], Theorem 5:

T heorem 4 ([1], Corollary 1and [4], Theorem 3.4). An almost compact,
extremally disconnected space is S-closed.

Proof. The members of an r-closed cover of an EDC space are clopen,
and if the space is almost compact, this cover contains a finite subcover so
that Theorem 1 can be applied. O
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3. S-closed extensions

Consider an extension Y of the space X compatible with the trace filter
system s. The following lemma is probably known:

Lemma 5. IfG' CY is r-open then G = G'fl X is r-open in X and
G1=5(G).

Proof. Let F' be closed in ¥, G' = inty F'. We show G = int* F for
the set F = F' J1X closed in X. The inclusion G C int® F holds since G C
C F and G is open in X. Conversely, x £ int* F implies the existence of an
H, open in X , such that x £ H C F. Let H' be open in ¥, H = H' M X.
Then H' - F' ¢ would imply (#' - F)NY # 0,y £ (H1- F) )X for
some y, yielding the contradiction y £ H'MX =H,y$.F'C\X =F. Thus
H'CF,H CG =inty F, HCG, x £ G, int* F CG.

p £ G' implies G £ s(p), p £ s(G). Conversely if p £ 5(G), say p £ H',
H —H'MX C G for some H' openin Y, then H' C F' again sincey £ (H'—
—F") NMX would furnish yEHcG,y$F'£) G. Thus H*C inty F' = G",
p £ G'. Consequently G' = 5(G). O

Lemma 6. If every free r-open filter in X is coarser than some trace
filter s(p) (p £ ¥) then Y is S-closed.

Proof. By Theorem 1 we have to show that each r-open filter s' in ¥ is
fixed. Now s'|X = s is an r-open filter in X by Lemma 5. If s is fixed then
soiss'. Ifsisfreeand s C s(p) forsomep £ Y,thenc = G'TIX £5s C s(p)
for any r-open G' £ s', hence G' = s(G) by Lemma 5 and p £ s(G) = G/,
p £ f]s'. O

Corollary 7. Every topological space possesses S-closed extensions.

Proof. Take an extension compatible with the trace filter system s such
that {s(p):p £ Y - X} is the collection of all free ultra-r-open filters in X.
O

The extensions figuring in Corollary 7 are reduced if s|y —A' is injective.
Hence they are To if X is TO. Moreover, two distinct points of Y - X have in
this case disjoint neighbourhoods (because their trace filters contain disjoint
members.) However, by Theorem 3, X cannot have an S-closed S2extension
unless it is (S2and ) EDC (since a dense subspace of an EDC space is EDC).

On the other hand, for EDC spaces there exist S-closed extensions with
better properties:

Theorem 8. Let X be an EDC space, and Y D X an extension compat-
ible with a trace filter system s such that {s(p):p £Y —X} is the collection
of all non-convergent ultraopen filters in X. Then Y is S-closed.

Proof. It is easy to see that each open filter in X has a cluster point in
Y. Hence Y is almost compact by [3], 5.5.
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Y is EDC. In fact, if G' CY is open and G —G' N JT', then clearly
cdyG' =clyG=cly//

for H = clx G that is dopen in X . Now x £ cly H )X iffxx£ #, and p £
£ clyH —X iffp £ Y —X and each member of s(p) intersects H, i.e. iff
H £ s(p) (since s(p) is ultraopen). Thus cly H = s(H) is open in Y .

By Theorem 4 Y is .9-closed. O

Corottary 9. An EDC space that is S2(T2 possesses an S-closed
extension with the same property.

Proof. In Theorem 8, consider a reduced, loose extension. It is S2 (T2)
because a non-convergent ultraopen filter in X does not admit any cluster
point in X. O

Corottary 10. ([4], Example 3.17.) There exists an S-closed T2-space
that is not compact.

Proof. Apply Corollary 9 for an infinite discrete space. Then ¥ is not
compact because it contains an infinite, closed, discrete subspace. O
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ON A PROBLEM OF TURAN CONCERNING
SUMS OF POWERS OF COMPLEX NUMBERS

A. BIRO (Budapest)

Let zv,z2,..., zn be complex numbers and write Sj = X'=izt U —
= 1,2,...) for their power sums. Paul Turan started the investigation of
the sequence

Rn —  min max \Sj\
2l 22

under the condition

*)

max \zt\= 1
I<t<n

This minimum exists by Weierstrass’ theorem, and one can easily see that
condition (*) can be replaced by 2\ — 1.

Tarén proved in 1942 that Rn > -, this was improved to Rn > 5, by

M Ulc=l k
Paul Erdos, then to Rn > 2L by Taran (see [1]). The relation Rn > c for
some positive constant ¢ independent of n has already been conjectured by
Taran in 1942. In the special case when z\ — 1land the system 21,22,... ,zn
is symmetric to the real axis, max |5jj ™ 1 holds, as it was shown by M.
19 =
Schweitzer (see [1]). This is obviously the best possible result in this direction
in view of the example zi = 1, z2 = z3 = ... = zn = 0. The next result

concerning the general case was N. G. de Bruijn’s one: Rn > -3fd°sn for

some ¢ > 0 and for sufficiently large n. It was shown subsequently by S.

Uchiyama that ¢ may be chosen to be 1—£ with arbitrary e > 0 (see [2]).
The conjecture of Taran was proved by F. V. Atkinson in 1961; using

complex analysis he showed that Rn > | (see [3]). Atkinson improved his

estimate in two further papers, firstly he proved that Rn >  then in [4]
he obtained the following results: Rn >  for n < 1600, and, for sufficiently

large n, Rn > so, where 0 < So < \ and so satisfies the equation

N (exp(2soT(x)) - 1) x~2dx =1,
0
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where T{x) = f j/_1|sin?/| dy. (Atkinson did not give the exact value of so

0
in [4], only that sO < |.) These last results were the best lower estimates
known.

In his book ([5], Problem 12) Turan posed the problem of finding the
best possible constant ¢ for which Rn > ¢. This problem is still unsolved.

The best upper estimate known is due to J. Komloés, A. Sarkozy and E.
Szemerédi [6]: Rn < 1- for n > n0,and Rn< 1— for infinitely
many n.

In this paper | improve Atkinson’s result showing that Rn > \ (Theorem
1). Theorem 2 is on the one hand a more precise form of Theorem 1, on the
other hand it deals also with the case when there are more |’s among the
numbers z\, z2, mmn, zn explaining why it is not worth seeking “near” extremal
systems with more 1.

Theorem 1. If 21,22,... ,zn are complex numbers and z\ = 1, then
max |5j|] > |. So Rn >\ for every n.

Proof. Let (2 - z22)(z —23)... (2 - Zn) = 2n_1 + b\zn~2+ ... f 6, _1I.
From the Newton-Girard formulas for this polynomial ~let Tj = 5IT=2r")

Tk + bfTk- 1+ ... + bk~\T\ + kbk = 0(k = 1,2,..., n—1) and Tn+ b\Tn-\ +
+ ... -fn-\T\ = 0. Taking into account that T) = Sj —1 we get

(1) Sk + biSk-i + ... + b™-iSi = 1+ 61 + ... + bk-i — kb"
(K=12,... n—1),
2 Sn + biSn-i + ... + bn-iS\ = 1+ b\ + ... + 6n_i.

Lemma 1. LetO<a < ” If1S kS n—1 then one of the following
two inequalities holds:

3) |1+ b\ + ... + bk-1—kbN ~ sina|l + 61+ ... +
4) 1+ b\+ ... +6fc]+6M~1 " [1+D\+ ome+ 11+ cos 0 |6/jl.
If (4) is valid for k = 1,2,..., s (s 0 n —1), then
N+6L+...+bsl>cosa(l+ |6l +...+16,]).
Proof. If1+ 6L+ ... + bk-\ —Oor b* = 0 then both (3) and (4) are true.
Hence assume that 1+ 6L+ ... + bk~\ ¢ 0 and bk b 0, and consider these
complex numbers as vectors of the plane. Elementary geometric considera-

tion shows that if the angle of these two vectors ((1 + b\ 4-+.. + frfc-i)and b")
is not greater than a then (4) is true, and if this angle is greater than a,
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then (3) is. (If one wants to avoid geometric arguments, it is possible to
apply Lemma 2 with A = k, 1 = 1Hd +bf ~ —¢) Finally, if (4) is valid for
K=1,2,..., 5 then obviously

1+ 6+ ...+ 69" 1+ cosa( |6i] + ... + |[M)
>cosa( 14 limij+ ... +65). O

Continuing the proof of the theorem we distinguish between two cases,
a) (4) holds for k = 1,2,... ,n—1. Then by Lemma 1 and (2) we have

( max 5 A (1 + 8B4+ ... + 16, xI) |5, +6x5n X+ ... +6n_X5x| —
1S)Sn —/

=1+6i+...+6n_i] >cosd(l + [6ij+ ... + |6n_X]|),
hence max \Sj\ > cosa.
1=j=n

b) Case a) is not satisfied. Let 1~ ko » n- 1be the least positive integer
for which (4) is not valid. Then by Lemma 1

11+ 6i + ...+ 6r-011 > GB0"L + 6] 1+ ...+ IGO0 | 1™,

(The inequality holds for ko — 1, too.) Applying this, (1), and the fact that
(3) is true for ko (because (4) is not valid) we obtain that

(I + Ib\1+ eee+ [6°0-x|) " ISko + 615fc0-1 + ... + bko-iS\ I =

= 11+ 6x+ ... + —>x—KoBO1" sina] 1+ &+ ... + &0.il >
> sinacosa”l + |6x| + ... + |6fw 11"-

From this

max 151 > max 151 > sinacosa.
15=n 1=i="0

So in both cases we have the estimate

e sin 2a
max 54 > sinacosa = ---—-—-—-- .
i</<n 3 2
With the choice a = | we get the assertion of the theorem. O

Acta Mathematica Hungarica 65, 1994



212 A BIRO

Lemma 2. Let z ¢p 0 be a complex number, 0 < a < and A >0. Then
(5) or (6) is satisfied:

1—Azj2~ sin2Q(1+ %28
®) A + sin2Q
(6) 1+ 2\ >1+cosalzl

Proof. Letr = r(cos @+ isin ¢) be the trigonometric form of 2. Assume
that (6) is not true, then

|1+ zv = |1+ FCOBG+ irsin0[2= 1+ 2rQFP+ r2<
< 1+ 2rcosa + r2 COS2a,
hence 2cosh < 2cosa —r sin2a. Applying this
1 —azj2=1|1—ar cOSP—iar Sin g2 = 1—2Ar cOSN+

+A2r2 > 1—Ar(2cosa —rsin2a) + A2r2 =

1 cos a cos2a
= 1H-—-sin"a Ar —
A 1+ 4sin2a 1+ sin2a viz
cos2a . cos2a
L. sin2a (1+ ]
1+ j sin2a A + sin2a

so in this case (5) is valid, which proves the lemma. O
Theore; 2. Let m be a positive integer and assume that

@) Z\ - z2=.. . =2zm = I
For arbitrary n > m and every system z\,z~,... ,zn satisfying (7) we have

/1 Im 3/m\2\
Igjgn-m +I V2 8n 64\nJ J

Proof. Now we apply the Newton-Girard formulas for the polynomial
(z—zm+1)(@Z = 2m+2)...(z —2n)= zZn m +b\zn m 1+ ...+ bn-m,
and obtain
Tk + b\Tk-\ + ... + bk~T\ + kbk =0 (k= 1,2,..., n—m),

Tn-m+l + b\Tn-m+ ...+ bn_mT\ —0
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where tj = X™M=m+i zte Here 1; = sj - to, hence
(8) Sk + biSk-i + ... + bk-iSi =m(l + b\ + ... + 6/t-i) —kbk
(k —1,2,...,n—m),
9 Sn—m+1T b\Sn—m b—mS\ —m (1 Th £... 4 6n_TO.

Lemma 3. Leto<a< j. Ifl~ Kk~ n— m, then one of the following
two inequalities holds:

(10) Im(l + bi + ... + bk-1) —kbki ~

Am2sin2aflbn CS2 A1+ Db+ ...+ bk-12

\ N - cosW

(11) |1 + 61 + eee+ bk~j +0fc| * |1 + Ox -f .. «+ bk-i | + cos a|6fc|.
If (11) is validfor k= 1,2,...,5 (S n—m), then

1+ QA+ ...+ G|>0B6(1+ 1A+ ...+ |09 .

Proof of Lemma 3. If 1+ 6i+ ...+ bk r=0o0r kx =0, then (11)
is satisfied. Otherwise we apply Lemma 2 with the choice 2 = 1+hl-+k+dk t

and A = From this we get that (12) or (13) is true:
(12 1- bk > sin2a 1+ cosZ.a
ml+ 6i + ...+ bk-1 —+ sin2a
bk \bK\
1 > 1+
(13) Y i eie L+ bk 1 5% s+ bk

Hence we have proved that (10) or (11) is valid, because (13) implies (11), and
(12) implies (10) (taking into account that Kk » n —to). The last assertion
of the lemma does not differ from the last assertion of Lemma 1. O

Now there are two possible cases.

a) (11) holds for k = 1,2,..., n —m. Then by (9) and Lemma 3 we have

+ 16i] + ... + |0 A
( maxm_ﬂ 3 (1 + |6i| |6n_m|)

5 ™—H 'B1Sn—m f° ... ~bn*mS\\ —77i|l “E b\ f* bn—mj >
> TOcosa (1 + [6il+ ... + \bn-ml),

Acta Mathematica Hungarica 65, 1994



214 A BIRO

hence
(14) max IS, 1> incosa.
I="=n—m+|
b) Case a) is not satisfied. Let 1~ ko ~ n—m be the least positive intege

for which (11) is not valid. Then by Lemma 3 (and for ko = 1 obviously)
L+ Db\ + ...+ hfco-il>cosa (I + Ib\I+ ... + 1660 i1).

Applying this, (8) and (10), which is true for k0O, we obtain
( max \Sj\) 1+ 16jl Ibfo rl) ~

= |10+ & + see+ fiwi2i | —M( 156 +... + fifcoi) - kobkol A

> msina 1+ 6X+ ...+ bjto- (I I >
' A VAR Sy

> i | + |611+ + |6f0—L)\ 1+ cos2a
msina cos a ( | ot L) - costa
From this
1 max IS-1> max |S,| >
(15) B 151> max IS |
. cos2a
>msinacosawl+
Let a = j, then from (14) and (15) we know that
. . m m |
max S\ >mm | = —d | + ;
I=.2=n-m+I 3 ?E’ 2 2n —m

Now
1+ﬁ—m:\$' 2n/) S

-E < 22*5/%>IF> tr 2121 'b3(<27]>
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On the other hand
1 1/ m
y: > 2y "~2n—m

as m < n, and this proves the theorem. O

Remark 1. The function sina cosa./1 + n% is maximal not with
\) m &

a =  but with cos2a = --—-4==. This choice of a improves the coefficient
of (y)2in Theorem 2 to

Remark 2. From the proof it can be seen too (see inequalities (14) and

(15)) that for arbitrary n > m, if max sj\ 1 m , then |Sn_m+i| >
1<7 MM

> mcosa. Forexample, if max |5j| Sy, then |Sn_m+i| > -y- (with a =

= ). The assertion is also interesting for a <  because then the condition
for max 15)| is stronger, but we obtain abetter estimate for |Sn_m+i|.
1N=n—m
Remark 3. A possibility to improve Theorem 2 in the case m = 1is
the following. Let a = », d<I(disa constant). In case a) from (14)

max B)l> 4=, so it suffices to consider Case b). If ko < dn, then we use

1:': * N\
this inequality instead of ko » n —1 in Lemma 3, and this improves the
estimate. But if d is sufficiently close to 1 (this means more precisely that

2“8 < d < 1), and n is sufficiently large, then ko ~ dn implies max 15)| >

1=3=n
>\ + h, where h > 0 is a constant. Indeed, for ko » k 5l n —1 either
Ko\ < 21+ Db\ + ... + Flor \kbk\ A 2|1 + 6i + ... + ofc_1|. Ifki is the first

K for which the latter inequality is true (if there is no such k, let k\ = n),
then in view of (8) (or (9))

1+ bi +.
max IS,1 > o
I<JEn 1+ jojj + .

Jl+b\+ ..o+ bko_I1 N 1
1+ |M + eee+ 160-H - y/2

(this settles the case ko = Ag), and

N <2|1+tl+," +t*-11 for
n
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SO it is easy to see (since ko M dn) that

1+ b\+ Lo+ frfej -1
1+ 181+ seet | 1

if d is sufficiently close to 1. Combining this with the above geometric
arguments we get that Rn> | 4 for sufficiently large n.

Acknowledgement. | am grateful to professor M. Szalay for drawing
this problem to my attention as well as for valuable advices.
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PURE SUBGROUPS OF A-PROJECTIVE
GROUPS

U. ALBRECHT and P. GOETERS (Auburn)

1. Introduction

The perhaps most significant difference between torsion-free groups and
p-groups is that there are only few results that guarantee the splitting of an
exact sequence of torsion-free abelian groups. One of the best known is Baer’s
result that a pure subgroup of a homogeneous completely decomposable
group of finite rank is a direct summand [9]. While possible generalizations
of other results of [9] have been discussed by various authors ([2], [8], [7], and
others), relatively little attention has been given to the previously mentioned
result. Before we can give a summary of what has been done, it is necessary
to introduce some notation:

Consider abelian groups A and G. The group G is A-generated if G —
= Sa(G) = "2 {P(A) I E HoTt(A,(7)}. An A-generated group G is A-
projective of finite A-rank if it is isomorphic to a direct summand of (J)n A
for some n < u. In [3], it was shown that A-generated subgroups of A-
projective groups of finite A-rank are quasi-summands if A has a semi-simple
Artinian quasi-endomorphism ring. Moreover, if A is a faithfully flat as an
.E(A)-module, then this condition on QE(A) is necessary too.

Unfortunately, this result is of limited use if we are to decide whether
a pure subgroup U of an A-projective group of finite A-rank is a direct
summand. In [5], we addressed this question in the case that U itself is A-
projective; but the problem remained open for arbitrary A-generated groups.
It is the purpose of this paper to address some of the questions that have
been left unanswered in [5]. We say that A splits pure A-socles if a pure
A-generated subgroup of an A-projective group of finite A-rank is a direct
summand. Necessary and sufficient conditions for a torsion-free group A to
have this property are given in Theorem 2.1. Several corollaries improve
on the conditions in Theorem 2.1 if Ais flat, respectively faithfully flat as
an E{A)-module. In the last case, we obtain thai, A splits pure A-socles
iff it has a semi-hereditary endomorphism ring and a semi-simple Artinian
quasi-endomorpliism ring.

* In Section 3, we consider a dual version of the splitting problem for pure
subgroups U of an A-projective group P of finite A-rank. We say that A has
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the radical splitting property if every subgroup U of an A-projective group P
of finite A-rank with rRa(P/u) = 0is a direct summand. Here the A-radical
of an abelian group Gis Ra (G) = fj{kerd> | p£ Hom(G, A)}. Theorem 3.3
characterizes the abelian groups which have the radical splitting property.
The section concludes with the surprising result that, for a torsion-free group
A of finite rank, the two splitting properties of this paper are equivalent.
Moreover, we show that an abelian group A which is faithfully flat as an
J5(A)-module and has the splitting property for pure A-socles also has the
radical splitting property. We give an example that the converse may fail if
A has infinite rank.

2. Pure A-socles

Consider abelian groups A and G. The group Ha{G) = Hom(A,G)
carries a natural right f?(A)-module structure which is induced by the com-
position of maps. Since A is a left E(A)-module,

Ta(M) —M ® ¢ (a)A

defines a functor from the category of right f?(A)-modules to the category
Ab of abelian groups which is an adjoint of Ha- We obtain induced ho-
momorphisms 9g-TaHa{G) —* G and pm'-M —*HaTa (M) for all abelian
groups G and right £(A)-modules M which are defined by #g@ ®a) = a(a)
and [pM{")\ () = To® a for all 0 £ A, a £ Ha(G) and m £ M. If G is
A-projective of finite A-rank, then Bo is an isomorphism, while dgm is an
isomorphism for all finitely generated projective £(A)-modules M [8].

Theorem 2.1. The following conditions are equivalent for a torsion-free
abelian group A:
a) i) A has the splitting property for pure A-socles.
i) Torl(E(A)/I, A) = 0 for all right ideals I of E{A) such that
(E(A)/1) + is torsion.
b) If M is a finitely generated right E(A)-module, then M = U0 P,
where P is projective, and Ta(U) is torsion.

Proof, a) = b). The torsion-subgroup tM of M is a submodule of

M. We consider an exact sequence 0 —=* K e, E{A)T M/tM 0,
and choose a submodule V of 0 nE(A) containing K such that V/K = tM.
Assume that it has been shown that Ta(n) is torsion-free for all E(A)-
modules N whose additive group is torsion-free. Then, the kernel of the
induced epimorphism Ta(P) is a pure A-generated subgroup of Ta (E(A)”).
The map Tpa(/3) splits by a); and the top-row of the commutative diagram
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HATA(R)
HaTa (A(A)n) , HATA(M/tM) 0
AE(A)N DwtM
PnE(A) M/tM 0

is split-exact. This shows that ®wm/tM 1S an epimorphism. Since
HATA(M/tM) is projective, we obtain M/tM = ker ®m/tM ® Q for some
projective submodule Q of M/tM. Write Q = [tM®P]/tM and ker dm/tM =
U/tM. Therefore, M —UO P, and it remains to show that TA(U) is torsion.

Since the inclusion e:U/tM —m M/tM splits, the induced map
HaTa(e) is a monomorphism. Consider x £ U/tM, and observe that
HATA{E)dwu/w {x) = edomum(x) = 0 implies 0 = [huum(*)\ (&) = x®a 6
£ TA{U/tM) for all a £ A. Thus, TA(U/tM) = 0, and TA(U) is torsion as
an epimorphic image of TA(tM).

Now consider a right .E*Aj-module V whose additive group is torsion.
To show that Toi-1(F, A) = 0, it is enough to consider the case that V
is finitely generated, say by r elements v\,...,vT. By part i) of a), we
may assume r > 1. Let W be the submodule of V which is generated by
v\,...,vr-i. Since both, Tori1(V/W,A) and Tor*VL, A) vanish, the same
holds for Torl(K A). IfN isan E(A)-module whose additive group is torsion-
free, then multiplication by a non-zero integer m induces a monomorphism

u: N —aN. The induced sequence 0 = Tori(N/mN, A) — TA(N)
Ta(N) is exact. Since TA([i) is multiplication by m, TA(N) is torsion-free.

b) == a). To show that the second part of a) holds, we first establish that
E(A) is a right semi-hereditary ring: If U is a finitely generated submodule
of a finitely generated module F, then we have a decomposition U =P 0 V
where P is projective and TA(V) is torsion. The inclusion V Q F is denoted
by i, and satisfies [HATA(b)py{x)\ (2) = TAWM)[Dy(x)\ () £ TA(i)(TA(V))
for all x £ ¥ and a £ A. Since TA(F) is torsion-free, this is only possible if
0 = HATA()py = Since ¢p is an isomorphism, V = 0. Hence, E(A) is
right semi-hereditary.

Let M be a right £(A)-module whose additive group is torsion. There
exists an exact sequence 0 —2 {7 2 E(A) —»M —0. We observe that
Torr(M, A) is torsion and isomorphic to a subgroup of TA(U). Since E(A)
is right semi-hereditary, U is a flat £(A)-module. But this is only possible
if TA(U) is torsion-free. Therefore, Tor!(M, A) = Q.

To verify part i) of a), we consider the pure-exact sequence 0 —£/—>
3 A" LaG —m0 of abelian groups in which U is A-generated. It induces
the exact sequence 0 — HA(U) Ha(An) M —0 of right E(A)-
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modules in which M = imHA(R) is a submodule of HA(G). We write M =
= V0 P with P projective and TA(V) torsion, and consider the induced
diagram

TAHA(a) TAHA(B)
TAHA(U) ---------- *TAHA(AN) e TA M)

U A G

in which 9 is the evaluation map. By the Snake-Lemma, 9 is an isomorphism.
In particular, TA(V) —0 since G is torsion-free, and ¥ is a direct summand
of M. On the other hand, if V ¢ 0, then there are 0 £ V and a £ A
with o ¢ cr(a) —0(a ® a) = 0. The resulting contradiction shows that M is
projective. Thus, the top-row of the last diagram splits; and the same holds
for the bottom row.

We want to remind the reader that a ring R is right strongly non-singular
if the finitely generated non-singular right £(T)-modules precisely are the
finitely generated submodules of free modules.

Corollary 2.2. The following are equivalent for a torsion-free abelian
group A which isflat as an E(A)-module:
a) A has the splitting property for pure A-socles.
b) i) A/IA s torsion for all essential right ideals | of E{A).
i) E(A) is a right strongly non-singular, semi-hereditary ring.

Proof, a) =b). Let | be an essential right ideal of E(A), and denote
its Z-purification by /*. The induced sequence 0 =*TA(E) —»Ta (E(A)) —
—»Ta(E(A)//») -+ 0 is split-exact by a). Thus, A = I,,A® C for some
subgroup C of A. If C were non-zero, then HA(C) would be a non-zero
right ideal of E(A) with /T HA(C) ® o, which is not possible. Therefore,
A =1,A, and A/lIA = TA(I,/1) is torsion.

Consider a finitely generated, non-singular right f?(A)-module M. By
Theorem 2.1, we can write M = U® P with P projective and TA{U) torsion.
Since A is flat, the group TA(U) is torsion-free. Therefore, TA(U) = 0. If U
were non-zero, then we could find a non-zero right ideal I of E(A), which
is isomorphic to a submodule of U. Then, the non-zero group 1A would be
isomorphic to a subgroup of TA(U) since A is flat. The resulting contradiction
shows {7 = 0.

b) = a). If M is a finitely generated right E(T)-module, then M =
Z(M)e P where Z(M) is the singular submodule of M , and P is projective.
Since Z{M) is finitely generated, say by {aq,... ,xn}, we can find an essential
right ideal I of E(A) with X{I = O for all i. Therefore, Z(M) is an epimorphic

Acta Matkematica Hungarica 65, 1994



PURE SUBGROUPS OF /1-PROJECTIVE GROUPS 221

image of ® nE{A)/I, and TA(Z(M)) is torsion as an image of the torsion
group ¢ nTa(A/IA). Now apply Theorem 2.1.

Corollary 2.3. The following conditions are equivalent for a torsion-
free abelian group A which is faithful as an E(A)-module:
a) i) A has the splitting property for pure A-socles.
ii) A isflat as an E(A)-module.
b) E(A) is a right semi-hereditary ring such that QE(A) is semi-siniple
Artinian.

Proof. It remains to show that a) implies that QE(A) is semi-simple
Artinian. Let | be an essential right ideal of E(A) whose Z-purification,
in E(A) is not E(A). By Theorem 2.1, we have E(A)/Im= U®P where P
is projective, and TA(U) is torsion. Since /, is essential, this is only possible
if P = 0 and TA(U) —0. By the faithfulness of A, we have {7 = 0.

Clearly, b) implies a) without the faithfulness assumption on A. However,
a later example shows that the converse fails in general.

Corollary 2.4. Let A be a torsion-free abelian group ivhich isfaithfully
flat as an E(A)-module. If A has the splitting property for pure A-socles, then
it has the quasi-splitting property for A-socles.

Proof. Let U be an A-generated subgroup of A". Since A is flat, we
obtain that the Z-purification, {/«, of U in An is of the form TA(V) where
V is the Z-purification of HA(U) in HA(An). Since E(A) is right semi-
hereditary by Corollary 2.3 and QE(A) is semi-simple Artinian, we obtain
that HA(An)/V is projective. Thus, V is finitely generated; and V/HA(U)
is bounded. Consequently, U is quasi-equal to {7~ Since A has the splitting
property for pure A-socles, if*-is a direct summand of An.

The last result fails if A is not faithfully flat as an E(A)-module as the
following example shows:

Example 2.5. Let A = ®pZp where P is an infinite set of primes.
Then, A is flat as an E{A)-module, has the splitting property for pure A-
socles, but not the quasi-splitting property for A-socles.

Proof. By [7], Ais flat as an £(A)-module. Moreover, [1] shows that
E(A) = MPZP is strongly non-singular and semi-hereditary. If | is an
essential ideal of E{A), then 1Zp ¢ 0 for all p £ P, since otherwise 1 would
annihilate all maps ap:A —Zp. Thus, HA(ZP) » Z[E(A)) = 0, which is
not possible. Therefore, ZP/1ZPis torsion. Since ® p/Zp A | A, we obtain
that A/IA is torsion. Thus, A has the splitting property for pure A-socles
by Corollary 2.2. On the other hand, ¢ p Zpp is an A-generated subgroup
of A which is not a quasi-summand.

The last example shows that implication a) => b) of Corollary 2.3 may
fail if A 'is not faithful as an £(A)-module.

The final result of this section shows that the converse of Corollary 2.4
fails in general:

Acta Mathematica Hungarica 65, 1994



222 U ALBRECHT and P. GOETERS

Example 2.6. Let A be a torsion-free abelian group which is faithfully
flat as an E( A)-module, and has a semi-simple Artinian quasi-endomorphism
ring. If E(A) is not semi-hereditary, then A has the quasi-splitting property
for A-socles, but not the pure splitting property.

Proof. By [3], A has the quasi-splitting property for A-socles. Apply
Corollary 2.3.

3. Radicals and splitting

Let A and G be abelian groups. The abelian group G* = Hom(G,A)
carries a natural left £(A)-module structure. Similarly, we set M* =
= HotE(n)(C,A) for all left E(A)-modules M. The natural map G —=G**

is denoted by dc- Its kernel is Ra{G) = P|{ker/ |/ € G*}. A similar
notation is used for left £ (A)-modules.

Lemma 3.1. The following conditions are equivalent for a torsion-free
abelian group A:
a) A has the radical splitting property.

b) For every index-set I, finitely generated submodules of A1 are projec-
tive.

Proof, a) > b). Let M be a finitely generated submodule of A1 for
some index-set /. Choose a projective resolution 0 —=* U E(A)m -i-
1 M —a0 of M. It induces the exact sequence 0 — M* — [E(A)m]*

O K —0 of abelian groups where K Q U*. Thus, Ra(E) = 0; and the last
sequence splits. We obtain the commutative diagram

Bidc
[E(A)r AT* 0
@A v
E(A)r M 0

whose top-row splits. The map ¢m is one-to-one since M is a submodule of

Al Consequently, the vertical maps in the diagram are isomorphisms; and
the bottom row splits too.

b) =a). We consider an exact sequence 0 —=U —> An G —0 with

Ra{G) = 0. It induces the exact sequence 0 —G* * [AM* M —*0 of
left E(A)-modules where M is a finitely generated submodule of U*. There
is an index-set / such that U* * A1 as a left E(A)-module. By b), we obtain
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that M is projective. An argument similar to the one used to prove the
previous implication yields the splitting of the original sequence.

In particular, we obtain that a group A which has the radical splitting
property has a left semi-hereditary endomorphism ring and is fiat as a left
7?(A)-module by [7].

Lemma 3.2. The following conditions are equivalent for a torsion-free
abelian group A whose endomorphism ring is left strongly non-singular:

a) A has the radical splitting property.

b) E(A) is a left semi-hereditary ring, and A is non-singular as an E(A)-
module.

Proof. It remains to show that b) implies a). If M is a finitely generated
submodule of A1, then M is non-singular. Consequently, M is isomorphic
to a submodule of a finitely generated free module since E(A) is strongly
non-singular. By b), M is projective. Apply Lemma 3.1.

Theorem 3.3. The following conditions are equivalent for a torsion-free
abelian group A:
a) E(A) is a right (and left) semi-hereditary ring, and QE(A) is semi-
simple Artinian.
b) i) A has the splitting property for pure A-socles.
ii) A is aflat E(A)-module, and A ft 1A for all pure proper right
ideals I of An.
c) i) A has the radical splitting property.
ii) If I is a pure, proper left ideal of E(A), then ann(7) ft O.

Proof, b) #>a). It remains to show that QE(A) is semi-simple Artinian.
If 1 is an essential right ideal of E(A), then we denote its Z-purification in
E(A) by 7* Since A is flat, /*.4 is a pure A-generated subgroup of A.
Corollary 2.2, on the other hand, yields that A/7.A is a torsion group.
Thus, A = I,A. By b), we obtain E(A) = 7. Hence, QE(A) is semi-simple
Artinian.

a) >»b). Observe that non-singular modules over the ring in a) are flat.
If 7 is a proper, pure right ideal of 72(A), then E(A)/I and A are flat 72(A)-
modules. In particular, 72(A)/7 is projective, and E(A) =10 J for some
non-zero right ideal J of E(A). Then, A = 1A ®JA, and A ft I A

c) => a). Let ™ be the Z-purification of the essential left ideal | of

E(A). The exact sequence 0 —»7» 2= E(A) -/1 E(A)/7» —a0 induces the
sequence 0 —=* [72(A)/7,] * 4 E(A)* (7,)* which splits by b). We obtain
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the commutative diagram

/ *
E(A)* [E(A)/1.]"* 0
i 'E(A) NE(A)IT,
E(A) E(A)/I. 0

whose top-row splits. Consider a splitting map r for /3** For x 6 /, Jl
Mim(~ Ot) , thereis 76 [E( A)//,] ** with ®Pe(A)(x) = r(2)- We obtain
2=0"r(y) = P*®e(A)(X) = ®e(A)/1Nx) = 0. Therefore, im(tp~r) =
= 0 since /, is essential in E(A). Because ®wJN)Tis one-to-one, we obtain

\E(A)/1*] ** = 0. Consequently, [E(A)/1*\ —O0 since the latter is isomor-
phic to a direct summand of A. If /* ¢ 0, then there is a non-zero a G A with
/»a @ 0. The assignment 1 —»a induces a non-zero jF(A)-homomorphism
a: E{A) —&A with o(E) = 0, which is not possible. Thus, /, = E(A).

a) #>c). By Lemma 3.2, it enough to show that part ii) of b) holds. If
/[ is a pure, proper left ideal of E(A), then E(A) = 7® J for some non-zero
left ideal J of E(A). We choose an idempotent e G E{A) with | = E(A)e,
and aGA with (1- e)(@ o 0. Clearly, (1 —e)(a) G ann(7).

Corollary 3.4. The following conditions are equivalent for a torsion-
free abelian group A whose quasi-endomorphism ring is a finite dimensional
Q-algebra:

a) A is a generalized rank 1 group.

b) A has the splitting property for pure A-socles.

c) A has the radical splitting property.

Proof. Conditions b) and c) yield that E(A) is a right, respectively left,
semi-hereditary ring. By [12], A is a generalized rank 1-group. The converse
follows from Theorems 2.1 and 3.3.

In [3], we showed that the ring R of algebraic integers is semi-hereditary.
If Ais an abelian group with E{A) = A, then the quasi-endomorphism ring
of A is a field; and A satisfies conditions b) and c) of the previous corollary
by Theorem 3.3, although A is not a generalized rank 1 group.

Corollary 3.5. Let A be atorsion-free abelian group which isfaithfully
flat as an E(A)-module. If A splits pure A-socles, then A has the radical
splitting property.

Proof. By Corollary 2.3, E(A) is right semi-hereditary, and QE(A)
is semi-simple Artinian. Consider a map dx An —* A1 for some n < u: and
some index-set |. Suppose that there is no finite subset J of I such that
kerxy™) = ker b where nj is the projection of A1 onto AJ whose kernel is
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A]~J. Inductively, we obtain a descending chain {Ui \i < a;} of subgroups
of An such that An/Ui is isomorphic to a subgroup of an Jl-projective group
of finite Nl-rank and Ui ¢ U+ for all i < u» By [1], each Ui is an A-
generated subgroup of An. Therefore, {Aa(1/,) | i < w3} is an infinite strictly
descending chain of submodules of Apg(J1"). Since A is torsion-free, each of
these submodules is pure as an abelian group. Thus, {Q ® zHa{Ui) | i <
< u;} is an infinite descending chain of QE(A)-submodules of the finitely
generated QE(A)-module Q ® zEa{An). Since QE(A) is Artinian, this is
not possible.

Therefore, An/ kerdp= ¢ j A for some finite subset J of I. In particular,
A”/ ker o is J1-solvable. Since J1 is faithfully flat as an F(A)-module, [2]
yields that kerc/>is J1-solvable. Since /1 splits pure J1-socles, kerd> is a direct
summand of A",

We now give an example that the converse of the last result fails in
general:

Example 3.6. Let J1 be an abelian group with E(A) = Zu which is
faithfully flat as an F(A)-module. Such an J1 exists by [2] and [10]. By
Corollary 2.3, 11 does not split pure J1-socles. Since R is strongly non-singular
and semi-hereditary, in view of Lemma 3.2 it is enough to show that J1 is
non-singular as a left F(A)-module to ensure that J1 has the radical splitting
property. But this is guaranteed by the fact that J1is flat as an F(A)-module.

4. Faithfully flat 5-groups

Consider a torsion-free abelian group G. If J1is a subgroup of Q of type
r, then Sa(G) = G'(r) where G(t) = {x 6 G \ type(a;) » type(r)} is a
subgroup of G. While the Ji-socle of G, for groups J1 which are faithfully
flat as an F(A)-module, resembles G(r), there are significant differences if
ro(A) > 1. One of these is that Sa{G) is not necessarily a pure subgroup of
G. In this section, we investigate which conditions have to be satisfied by
an abelian group J1 to ensure that Jl1-socles of torsion-free groups are pure.
As in [11], a torsion-free abelian group J1is an S-group if Sa{B) = B for all
subgroups B of J1 of finite index.

Theorem 4.1. Let A be an abelian group which is faithful as an E(A)-
module. Then, A is an S-group if and only if Sa(B) is a pure subgroup of
B for all torsion-free abelian groups B.

Proof. Suppose that /1 is a faithful 5-group. By [11, Theorem I111.1
and Corollary I11.2], we obtain that Ext(A, /1) is torsion-free, and that /1 has
finite p-rank for all primes p of Z. Set C = Sa(B). We claim that Ext(A,C)
is torsion-free.
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To show this, we observe that [11, Theorem IIl.1] guarantees that A
IS projective with respect to the sequence 0 —mpA —% A —A/pA — 0.
Let 7r:C — CfpC be the natural projection, and consider / 6 HA(C/pC m
Since A has finite p-rank, there are x\,...,xn G C such that /(A) Q
N (xi,... ,xn,pC)/pC. For each i G{l,...,n}, there are rmt < and el-
ements g,i,. ..,gim € HA(C) and an,... ,aim, GA with x, = 9ij(aij)-
Setm=m\ + ... + mn,and defineamap p:Am=ami ¢ ... ®Am" —C by
O[(bi,” -,bm1),” -,(fonl,-” ,6m,)] = E .j 9ij(b)), and denote its kernel by
K. The group G = \T¢ contains x\,... ,xn. We obtain the exact sequence
Ext(A,K) — Ext(T,"m) —mExt(T,G) —=*0. Since Ext(A,A") is divisible,
Ext(A, G) is isomorphic to a direct summand of Ext(A,Am). In particular,
Ext(A,G) is torsion-free. By [11, Theorem 11.2], the diagram

can be completed by a map g G HA{C). Thus, Ext(A,C) is torsion-free by
[11, Theorem 11.2].

Suppose that C\ is a subgroup of B containing C such that pC\ ~ C
for some prime p. Since B is torsion-free, and C is A-generated, A ¢

pA. Consider the exact sequence 0 —mHA{C) —* HA(Ci) —% HA{C\/C) —»
—+ Ext(A,C) which is induced by the inclusion C Q C Since SA{C\) = C,
the map a is an isomorphism. Thus, 8 is a monomorphism, and Ext(A,C)
is not torsion-free unless C = C\. This shows that SA(B) is pure in B.

The converse is obvious.

Combining the last result with those of the previous sections yields

Coroltary 4.2. Let A be afaithful S-group such that QE(A) is Ar-
tinian:

a) If U is a pure subgroup of A” for some n <u, then SA(U) is a direct
summand of U.

b) If U is a quasi-summand of Anfor some n <u, then U is A-projective.

c) Ra(B/SA(B)) = 0 if B is a subgroup of A” for some n < u>

Proof, a) By [11], E(A) is a right hereditary. Corollary 2.2 yields that
A splits pure A-socles. The previous result guarantees that SA(U) is a pure
subgroup of A". Thus, SA(U) is a direct summand of U.

b) If U is a quasi-summand of An, then U©F is quasi-equal to A”. Since
SA(U © V) is a pure subgroup of U©V by the last result and quasi-equal
to A", we obtain that U ¢ V is A-generated. Since E(A) is hereditary, U is
A-projective.
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C) Let U be the Z-purificatiou of sa(s) in /1". By [1], U is an JI-
generated subgroup of An. Thus, we obtain a decomposition An= U ¢ V.
By Theorem 4.1, sa () is a pure subgroup of B, and hence B NV = Sa(B).
Furthermore, 8 /sa(8) = [B + UJ/U ™ V shows that ra {8 /sa(B)) = 0.

In conclusion, we want to remark that, in general, quasi-summands of
N-projective groups of finite /1-rank need not be J1-projective even if QE(A)
is semi-simple Artinian [4].
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ON PROBLEMS OF APPROXIMATION
IN L2 SPACES

X. H. SUN (Hangzhou)

1. Introduction

Let Lj be the class of all 27r-periodic, real valued functions f(x) square
integrable in the interval [0,27r]. Goyaliya [2] proved the following

Theorem A. If/ () GLthen forne N, sE{0} UN

(1) En(/(S)L. %2-T2u{f(°\ir/{n+1))L.,

(2 En{f)L.iM n-seEn{f")L,

where M is a constant and En(f)L. = \\f —Sn(f)||L,, Sn(f,x) is the partial
sum of the Fourier series of f(x).

In his paper Goyaliya asked the following two questions:

(1) Can Theorem A be extended to (C, 1) summability or matrix summa-
bility?

(2) Can the result be extended to some other series, viz. Legendre series,
ultraspherical series, Bessel series, etc.?

The purpose of this paper is to answer these questions. We shall prove
that (1) can be extended to (C, 1) summability, but (2) can not.

Let L2 = Xr[—,1] be the class of all real functions / (x) such that

1/2
f 2(x) dx < 00.

Suppose

(3) A®) ~ YX=0akPK(x)
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is its Fourier-Legendre series, where
(4) ak - (k + l/Z)J f(x)Pk(x)dx.

Define
EnU)” = ||/ - Sn(H\L2= ||/(*) - n=0 P kXW2.

For Problem 2 we shall establish an estimate similar to (1) and prove
that (2) can be extended to Legendre series.

Throughout the paper, c always denotes a constant independent of /, n,
and k, but not the same at each appearance.

2. Main results

Our main results are the following

Theorem 2.1. Let f £ L2 and let an(f,x) be the (C,\)-means of its
Fourier series. Then there exists a constant ¢ > 0 such that

(5) Fn(f)L. := If(x) - on(f,x)\\L. ~ cu>{f,x/(n + 1))L..
Iff GL2 and H/'ll >0, then
(6) (L~ n -1/t

Remark 1. (6) shows that (2) can not be extended to (C, 1) summability.
We say that the function u(t) 6 NQ (a > 0) if

(i) u>(t) defined on [0,2] is nondecreasing and u~t) —0 as t —0.

(if) For 0 < S< ™ 2, there exists a constant K = K (a) such that

Tl~au(r,) » KS~auj{6).

Define the Legendre transformation of / by
fh(a) tt~1J f xcosh + \/\ —x2sinh cos ffj dd.

Butzer, Stens and Wehrens [1] introduced the modulus of continuity
of / 6 C by this transformation. Here we define the integral modulus of
continuity of /(s) £ L2 ;

WL(f M\t) = sup {fls\x) - f(s\x)) (L - x2)s2
2 \nlt 12
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It is easy to see that
wL{f*,t)yp2 -0 (t- +0).

Theorem 2.2. Let /V) E L2 and let u(t) be a given modulus of conti-
nuity. Then
(@) forn” 2

En(/2)£2 * Mu){ 1/n)
r/ and only if
WA\f, t) L2 *cMu(t)-

(b) ifsEN anduxt) EN" (0 <a ™ 1), ilrer/orn” s

(7) En(fyz # Mn Vj(l/n)
if and only if
(8) WL(fA\t) L2 ~ecMu(t).

T heorem 2.3. If E T2, then

9) En(f)lzicn-sWL(f(sKIl/n)L2,

(10) En(f)Lz A ™ -sEn( ") L2.

Remark 2. Theorem 2.2 is an improvement of.a result of Zidkov [3].

3. Proofs

Proof of Theorem 2.1. Zygmund [5] proved that if p A 1 then
(11) 1(*) = *n(f)NL i cu(]. >/ (n + 1)) ;

where / is the conjugate function to f(x). Then, (5) is a consequence of (11)
and Riesz’ Theorem (see [6, Ch. VII]).
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Now we turn to prove (6). We have
(12) /@) - <r,(/X)]| = (»+ 1)“2Efci*2(“t + bt) +
+EE,+,(«i +«)-(» + 1T2EM=,+1*2(<a + bl) m
From [Z]
(13) En-uM + LW Scn'2£2(/")4 =o0(»-2) (n—00).
It is clear that
(19 (n+ 1) 2vIT=n+\k2{al + bR) =
= (n+ 1)~20/" - S,,{H)\\\. = 0o(n-2) (n — o0).

Hence from (12)—14) it follows that

1(x) - <M/x)|| L~ »-m{E£E£P («i +bl)}12=»-*|/11Y .

Q.E.D.

Proof of Theorem 2.2. Set x = cos/3. Using (3) and the addition
formula of the Legendre polynomials (cf. [4])

Pk(cos B cos h + sin B sin h cos B) = Pk(cos R)Pk{cos h)+
+2X)m=i(k —m)\((k + m)) 1P™(cos B )P ™cos h)cos méh

where
Pf(x) = (1 - x2)m/2dmPk{x)/dxm (m = 1,2....... fc),
we get

fh(x) =T 1\]/0 /(cos B cos h + sinf3sin hcos0)dS =

= E 7=0akPk(x)Pk(cosh),

where  is denoted by (4). Observing the properties of the function P™(x):

(15) / PA(x)Pr(x)dx =0, (**/), 4
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and
(16) J [P"1(x)] 2cdx = 2(n+ m)I/ [(2n + 1)(n- m)!], [4]
we obtain (set b2 = 2a2k(2k +1))

(17) (fnx)-f<six)(1-x2)"? Lo

= ete.(1- A-(cos/l)) 22al(k + s)I/[(2k + 1)(* - s)\\ =
= T,T=s{ 1- Pk(cosh))2bl(k + a)//(Ar - 5).
First assume that for s = 0,1,2,... (8) is satisfied. Since
(fc+ a)!l/(fc-a)!l~ A5,
from (17), we have for |fi| * t
(18) EI=,(1-A(cosh))zkashl<,
N cE*L.(1- Pk(cosh))2bl(k + a)l/(A - 5)! =
=c (/ie)(*)-/(e)(*))(1-ar2)'/a Ei Ne{fFL(/H ® }2S cMY(().
If A= 2/n and A™ n ”~ 2, using the known estimate of Pk(cosh),

IPfc(cos/i)| » (2/(TeAsin/l)) U2 ~ 2-172.

Hence
1—Pk(cosh) ~1/4 (k n, h=2/n, n" 2).

Then using (15), (16) and (18), we get
(is) N(lk2=||l-ap)||22= Er=n+t1/~"
A 16Tr-25EM=n+1(1 - A (cos2/n)) 2kasb\ ~

(20) i 16n-2sE " Is(l - A(cos2/n)) 2kasb\ »

(21) A cMan~2sw2(l/n).
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That is (7) holds for s = 0,1,2,....
Now assume (7) holds for s = 0,1,2,.... Set n —[/i-1]. Observing (17),
we write

(22) (FI9X)  f(sa*M 1 X2)s/2 ,

=( E V,+EnU) (1- ft(cosft))\k +««/(* - QI =El +E2

Ifs GN,w(i) GNa (0 <a ~ 1), then observing (19), by Abel transformation
we get

(23) = Z?=nk2sbl = na2sY.7=A+
+Zr=n+Ak% - (k-1)X)Zr=Ai
n n2sEl_xif)l2 + cE L +1 1ELi(/)12*
<clV (I/n) + cM2££1 n+1% 1m2(1/) A
NeMV (l/n) +cM2n V (I/n )N “=n+ir 1'2* 2~ cMV (I/n).
If 5= 0, then by assumption
(24) n=ElMN=n”="n-i(/) » cMW(l/n).
From (23)-(24) it follows that for s —0,1,2,...
(25) £ 27 Hn = cY,T=nk2sbl = cMazij2(l/n).
Using Abel transformation again, from (23)-(24) and the estimate (cf. [3])
[l —/~(cosli)! " kz2h2/2,
we have
(26) El ScE£=1fufta+2*6i =
=<gB(EL,*4c*- EVN(* - 4V) S<4Eta.*3Mm S

A M2 b 1N 2(1/N) A
n

<d cM2ha  fc3(T + n/k)au2(l/n) A cMau2(l/n).
k=1
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Combining (22), (25) and (26) yields
A s)yin\ N*)L»'t' (n _2a«/2 I2/\ CMU(|/I’1) |7| CMU(h)

From the above it follows that for s = 0,1,2,...
WL(f(s\t)i2 icMu(t).

Q.E.D.

Proof of Theorem 2.3. (9) follows from (20) and (17) immediately.
Now turn to prove (10). Obviously, it is sufficient to prove (10) for the case
s = 1. By induction we can easily obtain that (10) holds for all s # 1. Using
the method of proof of Theorem 2.2, we can prove that if s * 1 and

{0 x) - f{s4x))(1-22)? oM,

then
En{f)L2 » cMn~s.

In fact, if n A 2/h, then from (20) and (17)
elU)I12 1 cn~2s" =s( |- Pfc(cos2/n)) 2k2shR <
i cn-28J2T=,{1- Pk(cos2/n))2(k + s)\b\/{k - s)! =
=con 2 (F19x)-fA\x)) (1-x3)2 L, <en=aM2

Let 6= 1 and /' G Z2- Then, using Parseval equality and (17), we get

2”/"' =J\f (X))Zj(AfU\X)) 21 - x2)dx —

1
[ (EN=akPk))2l - x2)dx =
A

= Zk=i*IW+) /[ (2K + 1X*-1)1] A

A E*Li(1/4)62[1 - Pk(cosh)] 2(k + D)1/(* - 1)!

= (1/4) (fh(x)~ f\x))(\-x2f 12 ] .
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Hence
{the0) ~ (x)) @ —x212  ~ ell|L2.

Using the above proved result with s = 1and M = |¥}| | , we get

En{f)L2 G cn-T1\F\L2.
Now let Pn be the best approximating polynomial of /', then
En(fyLz = En(f - Pnyb2 | c\\f - PAWJn ~ cn-"En(f')L2.
Q.E.D.
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TURAN TYPE PROBLEMS ON MEAN
CONVERGENCE. II
(HERMITE-FEJER TYPE INTERPOLATIONS)

P. VERTESI (Budapest)*

This paper is the second part of [19]. That means many notations,
definitions and theorems used here are detailed in the three chapters of
[19]. Here we refer to them without any further explanation. Moreover,
for example, (1.2) means [19, (1.2)], etc., while the references [1]—FL8] are
detailed in [19].

4. Introduction. Notations

While in [19] theorems were proved for odd values of M (Lagrange type
interpolation) throughout this paper we mainly deal with the process inm
for even values of M (Hermite-Fejér type interpolations; cf (1.1) and Part
1.1). From now on we denote them by Hns where s = 2,4,6,..., is fixed. If
s = 2, we often write Hn (the classical Hermite-Fejér interpolation).

5. Results on Hermite-Fejér type interpolations

Contrary to the Lagrange type cases, for many matrices we have uniform
convergence results for every / £ C taking Hns (cf. (1.8)—1.10)). However
the complete analogoue of the Erd@s-Turan result is still missing (cf. (1.11)).
Instead, we have

Theorem 5.1. Let w be afixed weight. Then
I
(5.1) IJII—QEDJ !LHn(R, w, X) —72()K)HW(X)dX =0 for every polynomial R.
-1
The relatively simple proof is in P. Nevai, P. Vértesi [20, p. 46].

Ifs =2,4,6,..., by P. Vértesi [21, Theorem 2.1, p. 371] (using definitions
in Part 2.1), we have

* Research supported by Hungarian National Science Foundation Grants No. 1910
and T750.
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Theorem 5.2. LetvE£ JsandueJ. Thenfor everyp, 0 <p <oo,

(5.2) lim YHns(f, ® —/|] =0 VI/€C

71—X) 1

(5.3) .y G#
Ar(x)\11 —x

(Compare Remark 2.2.5.) A simple consequence of Theorem 5.2 is

Corotlary 53. Letve Js. Then ifp = 2/s,

|
(5.4) lim f\ Hns(f,v,x) - f{x)\pv(x)dx - O V/ GC.

71—»CO y

(Cf. (2.1).) Results (5.1) and (5.4) suggest that the critical exponent
is (again) 2/s. The aim of this paper is to further strengthen this hint
by verifying a Taran type result in Theorem 6.4. The scheme and some
arguments are similar to those in [19].

6. New results

6.1. First we prove the analogue of Theorem 2.5. Let f\(x) = x and
An —[ 127 U [xjn? 1]e

THEOREM 6.1. Let n and w be two weights, X be a w-regular interpo-
latory matrix. Then there exists an £ > 0 such that if Rn £ A4, [|i2n| = £,
otherwise arbitrary, we have for every p, 0 < p ~ oo, the relation

(6.1) (Mx) - Hns(h, A, x)\\pumIXCRjx)us(X, z)|| BwA
A AN Ixpn(kK(X,x)||pn, m 1

with a proper ¢ > 0 not depending on p.

Considering the factor 1/n and that |An| is generally much smaller than
2, one may think that (6.1) is not sharp (cf. (2.7)). However, it turns out
that the estimation generally gives the best result.
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Theorem 6.2. There exist weights n and w and a w-regular interpola-
tor matrix X such that for every p, 0 <p < oc,

(6.2)

S vieC -

Here bl  is an arbitrary sequence with 0 < i < ip? < ¢¢ |im “m = o0.

6.2. An important consequence of Theorem 6.1 is as follows (cf. Theorem
2.1,

THEOREM 6.3. Let supp (da) = [1,1], a'(x) > 0 ae. in[—1,1] and u
be a weight. Then for any fixed 0 < p 00 we have

(6.3) If\(x) - Hns(fuda,x)||pu ™ M|xA, (zK(da,x)||pu.

However, for the right hand side of (6.3) we cannot apply relation (3.24)
(which has previously led to the Tarén type Theorem 2.3).

Nevertheless, usixrg straightforward calculations Theorem 6.3 yields as
follows (cf. Theorem 2.3).

Let

_exp ((d—j) cotd)

(6.4) W(x) = cosh(\ cot d) cosd. 0<d<

be the Pollaczek-weight w(cosd; 1,0) (cf. [11, Appendix, (1.9), p. 392]).

Theorem 6.4. For any fixed p with 2/s < p ~ oo we have

(6.5) Hns(fx. W.x oc.

p.W
6.5. Simple considerations show that
W(x) = 5(d)exp *--~=L -l <x <Ll

where g(x) is positive and continuous on [-1,1] (cf. [6, Example 14, p. 82]).
So combining Corollary 2.2, Statement 2.3 (with 6 = 1/2) and Theorem
6.4, we immediately obtain the following Turén type theorem valid for an
arbitrary process 7ng/ (cf- Part 1.1 (in [19]) for the definition of Iniw)-
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Statement 6.5. Let M = 1,2,3,... befixed. Then thereisanf 6 C
such that for any p, 2/M <p ™ o0,

|
(6.6) Om j\ 1 nM{F, W,x) - F(x)\pW(x)dx = oo.

If p = 2/M, the corresponding convergence results were stated in Theo-
rem 1.1 (M = 1), formula (2.1) (M = 1,3,5,...), Theorem 5.1 (M = 2) and
Corollary 5.3 [M = 2,4,6,...).

Finally, let us remark that similar other weights can be found to get
statements similar to Theorems 6.4 and 6.5. Details are left to the reader
(cf. [6, Example 14, p. 82]).

6.6. Some natural problems arise.

1. Prove relation (5.1) for arbitrary / £ C.

2. Prove Corollary 5.3 for other weights.

3. Prove Theorems 6.1 and 6.4 for other polynomials or continuous
functions.

7. Proofs

7.1. Proof of Theorem 6.1. By definition and using (3.17), relation
x —xk ™ 2and (3.20), we get for X\ » x * 1 (whence x —Xk ~ 0, 1™ K~ n)

(7.1)  ffix) - Hns(fi,x) =  hIk(x) = » £ &(X)(x - xk)BIK(x)

K—1 A=l
(x - xk) S

k2 {un{xk)}{x - xk)}s{xk - xkl)*2 -

1

k=1 (W«(*ib)) S(x k - Xkl

o Amo([-1,11K (a:) £

>g  Un(X)

N ||xce,Anlll,i

, HK=*=1

If —4 A x U xn, then xk —x ~ 0, which yields the same estimation for
Hns(fi,x) - By these relation (6.1) is obvious. O
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7.2. Proof of Theorem 6.2 (Cf Section 34) Let ne J(C,d), w =

= GVIr=x9)S  with v 6 Js(ab), X = X(v) and BA(X,x) = pn{v,x).
Then by (3.51), ||p*(u)|| rw ~ 1, further, using (3.51) again, one gets

72) -1IXa.P»|pu~ n>(a+|/2)-|(c+|)-| + ns(b+1/2)-j(d+1)-1 n

Now, if (5.3) does not hold, by (5.3) <4> (5.2), the left hand side of (6.2) is
greater than zero for a proper / 6 C. On the other hand,

Vi1 —x2 MW 1—x2] Lp
means that the exponent of 1—x2 is less than or equal to —1, whence
| +c-y (@+1/2)£ -1 or (+49-y(6+1/2)fi -1

whence lim rn ™ 1, ie. lim <nrn = oo.

71— »00 71—fCO

So we obtained (6.2) whenever (5.3) does not hold.
When relation (5.3) is true, by (5.3) (5.2), (6.2) is obvious. O

7.3. Proof of Theorem 6.3. It goes like the first part of the proof of
Theorem 2.1. We apply Theorem 6.1. Let X = X'(da) and un(X) =pn(da).
Then if w = 6s (X(da) is <!P-regular) and Rn = BlIn, we obtain

(7.3) 0 < \\xcBInPn(da)\ <2, n”no0
(cf. (3.26)-(3.28)), whence by relation (6.1) we obtain (6.3). O

7.4. Proof of Theorem 6.4. Using formulae (6.4), [11; Appendix
(1.8), (5.3) and (5.5)] we obtain

(7.4) VU(cos d) = 2 ("exp ™M — (L +0(d)) if d>0 issmall enough,
(7.5) ,,,,(Ww,cos2=) = exp{VS (! +*«)} (I+o0(i)),

where [d] ~ 2if0<t=\/l —e4,0<£59 fixed, n * 1,

(7.6) lim y/ndxn(W) = 1

71—MX)
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respectively. Now using (6.3), (7.4)-(7.6), the fact that pn(x) is strictly

increasing when x ~ x\n and writing the condition p >2/s asp = *7*, we
get with a certain fixed p > 0, as follows (supposing that p < oc).

1
(7.7) Wfi(x) —Hns(fi, W, x)\\*w ~ (9" / \Pn\spW ~
n
cos(i+p)\AT
r (£)' / v T

(the length of the interval is cn-1). Here (...) ™ s whenever £ and p are
small enough. This gives the theorem when p <oo0. The case p —00 comes
from (6.3), (7.5), and (7.6). O
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ASYMPTOTIC STABILITY FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS

T. A. BURTON and G. MAKAY (Carbondale)

1. Introduction

We consider a system of functional differential equations with finite delay
written as

) x\t) = f(t,xt), ‘= d/dt,

where /:[0,00) x Ch —&Rm is continuous and takes bounded sets into
bounded sets and /(<,0) = 0. Here, (C, | *|]) is the Banach space of contin-
uous functions dx [h, 0] — Rm with the supremum norm, h is a non-negative
constant, Ch is the open A-ball in C, and xt(s) = x(t -fs) for —h g s g 0.
Standard existence theory shows that if £ Cu and to g 0, then there is at
least one continuous solution x(t,to,d) on [to,to + a) satisfying (1) for t >
> to, xt(to,(p) = dpand a some positive constant; if there is a closed subset
B C Ch such that the solution remains in B, then a —oo0. Also, | « | will
denote the norm in Rm with |x| = maxi<i<m pk.

We are concerned here with asymptotic stability in the context of Li-
apunov’s direct method. Thus, we are concerned with continuous, strictly
increasing functions W,:[0,00) —[0,00) with Wi(O) = 0, called wedges, and
with Liapunov functionals V.

Definition. A continuous functional W:[0,00) x Ch [0,00) which is
locally Lipschitz in ¢ is called a Liapunov functional for (1) if there is a
wedge W with

i W (o)) g V(t*), V(i,0) =0, and

(i) VIn (<,xt) = limsupi {~(t-1- 6,xt+s(t0")) - v (t,xt(toA)) } g O.

Remark. A standard result states that if there is a Liapunov functional
for (1), then x = 0 is stable. Definitions will be given in the next section.

The classical result on asymptotic stability may be traced back to
Marachkov [9] through Krasovskii [7, pp. 151-154]. It may be stated as
follows.
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Theorem MK. Suppose there are a constant M, wedges Wt, and a
Liapunov functional V (so VFi([<€E0))) S ¥ (1,00) and K(t,0) = 01 with

(i) VNitAxt) S - W2(|x(t)]) and

@) (t,o S M ift*O and |<f < H.
Then x = 0 is asymptotically stable.

Condition (ii) is troublesome, since it excludes many examples of consid-

erable interest. And there are several results which reduce or eliminate (ii).
For example, we showed [2] that if

(i) V(,<t>) S W3(|x| + [xi]2) ,

where | ¢ |2 is the Z2-norm, then uniform asymptotic stability would result.
Other alternatives may be found in [3, 4, 5, 6], for example.

We reduce (ii) in a variety of ways and obtain results on asymptotic
stability, partial stability, and uniform asymptotic stability. Our work was
motivated in part by the fact that the zero solution of

(2 X"+tx"+x =0

is asymptotically stable [1, 5, 10, 11], so that a substantial weakening of (ii)
is indicated.

The following is a simplified corollary to our results and is stated here to
focus the paper.

Theorem A. Suppose there is a Liapunov functional V, wedges Wt,
positive constants K and J, a sequence {tn} \ oo with tn —f,_i S K such
that

(i) V(tn,<p,-SW2{Q\GH),
@) VA(t,xt) S - IT3(|z(<))) if tn- h St S tn, and
@iii) If(t,0)] SJI(t+ DIn(i+2)fort” 0 and ||0]| < H.
Then x = 0 is AS.

2. Statement of results and an example

We now define the terminology to be used here.

Definition. The solution x = 0 of (1) is:

(a) stable if for each £ > 0 and fo = 0 there isa $> 0 such that [||<f|| < S,
t ~ fo] imply that |x(t, to, P\ <e;

(b) uniformly stable (US) if for each £ > 0 there is a 6 > 0 such that
[to™ 0, f| <t~ to] imply that |x(t,t0,<E)| < £
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(c) asymptotically stable (AS) if it is stable and if for each to ~ 0 there is
a 7 > 0such that ||& < 7 implies that x(tto,<f>) —»0 as t -a 00;

(d) uniformly asymptotically stable (UAS) ifit is US and if thereisa7 > 0
and for each /t > O there isa T > 0 such that [to* O, ||& <7,t " to -fT]
imply that |x(t, to, )\ < p.

In preparation for our main result we remind the reader that if V is a Lia-
punov functional, then W\ (|X0)|) ~ V(t, ¢), V(t,0) = 0, and V ~(t,xt) ~ U
So that our result applies also to ODE’s we introduce a positive number K
which will replace h found in (2).

Theorem 1. Let K > 0, K™ h, let V be a Liapunov functional for (1)
(so that LUx(d>0)]) ~ V(tfi), U(f,0) = 0, and V" (t,xt) » 0) and x =
= (x\,... ,xm). Consider the following conditions for a giveni (L ~ i ~ m)
and a given sequence {In} with tn f 00:

(i) there are wedges W{, U{, Qi,
(ii) there are locally integrable functions M;, P,: [0, 00) —]0,00),

(iii) there is a sequence { A”} with A ~ A> 0 (X is constant) such that
if a,b £ [tn —k,tn] with a < b, then jj* Mfit)dt ~ \\I\b - a),
(iv) for each D > 0 with D/X~ ~ «k there is a sequence {c"}, ¢/ > (,

such that + Pi(s)ds ~ c” for all sn £ [in—k,tn~D/Ne] ,
(v) VM) (t,xt) ~ - Pi(t)Ui(\xi\) for \xt\ < Il and t £ [tn - k,tn\, and
(vi) VA(t,xt) ~ - Qi(|x']) + Mfit) for ||xt| < H andt £ [in- k,tn} with
Qi convex downward.
We then have the following conclusions:
(1) 1f (i)-(vi) hold for all i satisfying 1S i S m and for some {tn} | 00
with eil*~ c0 > Ofor all n and all i, if tn - fn_j is bounded, and if V(t, &)

AIT(||d]l), then x = 0 is UAS.

(1) 1f (i)—¢vi) hold for an arbitrary sequence {fn} | 00 and for some 1
satisfying 1~ i ~ m, ifcn ” c¢0 > 0 for all n then any solution x(t) which
remains in Ch satisfies X{(t) —0 as t —*00.

(1) If (i)-(vi) hold for all i satisfying 1'Si'Sm and for some sequence
{t,} 1 00, ifV (tn,fi) »~ WP(LOL, ifcn ~ c, for | <i” m and some cn
with cn —00, then x = 0 is AS.

Remark. Theorem 1 is long because it is stated in terms of separate

components of x. However, to grasp the significance we will now state some
useful corollaries.

Corottary 1 Suppose there is a Liapunov functional V, a locally in-
tegrable function M:[0,00) — [0,00) and a monotone increasing function
X: [0,00) —(1, 00) such that if 0 < b—a < h then
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() fIM(t)dt it AB)6- a) and  xffy = oo.

Suppose also that there are wedges, a constant K > 0, and a sequence
{tn} \ 00 with tn —tn-1S K such that

i) V(tng) S wi<tx)
and if tn —h St S tn then

(iti) Fi)(i,xt)S - W2(x(<)]) and

(V) Vi Xt) ~ —WB(|x, (<)) + M{t), W3 is convex downward.
Then x = 0 is AS.

Corotlary 2. Suppose there is a Liapunov functional V, wedges WIt
positive constants K and J, a sequence {tn}j 00 with tn —i,,_1S K such
that

) V{nB® S Wa2{M).
(i) V7itrXt) S - W3(Ix(i)]) if tn~h St Stn. and
@iii) V(f</>)] S It +DIn(/ + 2) fort ™ 0 and ||0|| < H.
Then x = 0 is AS.

Corollary 3. Suppose there are a Liapunov functional V ana a wedge
W2 with

() v{t,4S w2{M).

In addition, suppose there are locally integrable functions M,P:[0, 00) —
—+ [0,00), a positive constant K, sequences {tn} t 00 and {An} with tn —
— 1S K, such that if0O< b—a <h and iftn- hS tS tn with bS tn,
then for each D > 0 there is a ¢ > 0 with

(i) M(s) ds S \n(b—a) and j*+D!Xn jds ¢

@iii) VA(t,xt) S - P{)Ws(\x(t)\) fortn- h St S tn, and

(iv) VLj(t,Xt) S —X]|(Ja:/(<)]) -f M{t), W4 is convex downward.
Then x = 0 if UAS.

Corottary 4 (Marachkov-Krasovskii). If there is a Liapunov func-
tional V, wedges Wt, and a constant M such that

(i) V{t,4>) S W2{IHI).

(if) S - W(Jla-(MI) >

(iii) |/(CO)] SMift't 0 and || < H.
then x = 0 is UAS.

We now give an example of Corollary 2.
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Exampte. Let a,6:[0,00) — R be continuous and suppose there are
constants ¢i,C2,C3 > 0 with

(a) a(t) —j6E+ 1) =: aff) " cx,

(b) there is a sequence {tn} | oo and K > 0 with tn+\ —tn ~ K and
Ib(s + 1)| ds ~ c2.

(c) a(t) + |6(F)] ~ c3(f+ DIn(i + 2).

Then the zero solution of
3) x'(t) = —a(t)x + b(®)x{t —1)
is AS.

Proof. Define

V (t,xt) b(s + 1)| |x(s)| ds

so that
VR{t.xt) » - o(i)*| + [6(f)] jx(t - )| +\b(t + )] faf - b\ [x(t - ] 7
i - [a(i)- \b(t+ 1] &I - a(f)z].
Take H —1and W[r) = r. Then for ||0]| < H we have
10(0)1 7 V(t,0)=0,  V(tnd) I 1001+ c2|0|

and
Vi(t,xt) A - ci|®(<)|.
The conditions of Corollary 2 are satisfied.
Examples of a(t) and b(t) are easily constructed so that this equation is
not uniformly stable. Let u(t) = —[f]sin27rf, w(t) = - [t](cos27rf - 1)/27r

and z(t) = Isinirtl- sin irt, where [4] stands for the greatest integer function.
Consider the scalar equation

x1= (u(t) —1- e2ln(i + 1) x(t) + ~z(i )(In t)x(t —1)

for t ~ 1. Note that

fn+tl L }n+| . n
/ [f] sin 2irtdt —n sin 27ftdt = —— (cos 27r(n + 1) —cos 27rm) =0
Jn Jn 2
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sothatifn~i<n-fl then
w(t) J% —]sin kirsds = ﬁ(cos 2ri —1) = ﬁ(coszirt —1
Let

V(t) = V(t,xt) = eaw(t)x2 + 12th lg2«'(s+1)jn(s 21 4. 1)x2(s) ds

so that
Vi) i

A (=2u(t) + 2u(t) - 2- 2e2lufi + 1)) e2w” x 2 4-z(£)(In )X ()X (t —L)e2ur*+

4 le<(i+)In(/ 4- Dz{t + )x2 - ~e2N(1n t)z(t)x2At - 1) i
A= (2 + 2e2In(t + 1))eaw[t)x2 + (Int)eaw* x 2+ A (I n t)eaw* x 2(t - 1)4

+e2u,(t+l) InF* + 1)x2(<) - teaw(II[\ot)z{t)x2(t - 1),

Now

e2w («+1) _ e-2([i]1+ 1)(cos27Ti-1)/27r < e2£2w(t)
so V'{t) ~ —2x2(t). Also, V(t) » x2(t). Finally, when n is even
V(n) =

f  eows+1) INfs+ 1) 1SIN7TB+ 11 - SN + 1)) X2(S) dS = x2.

= X2+ »
2Jn-1

Hence, the conditions of Corollary 2 are satisfied and x = 0 is AS.

Remark. This result will not follow from the work of Busenberg and
Cooke [6] because they require that for each / > 0 there exists r > 0 such
that JI+Va(s)ds ~ r. It will not follow from Burton [2] because that result
requires that V(t,<j>) » Wi (|<>0)) + W3(|<Y2), where | «|2is the X2-norm.
It will not follow from Burton-Hatvani [5] for the same reason. It will not
follow from Makay [8] because he requires V(t,(j=>) ~ VFF||O|]) . It will not
follow from Wang [12] because he requires uniform stability.
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3. Proofof Theorem 1

We prove (l) first.  Since V is a Liapunov functional we have
LLi (|0(O)]) is P(f,0) and V~(t,xt) " 0. The additional assumption that
P(t,0) ~ W(||O]|) yields US. For = H find 8\ of US and take 7 =
in the definition of UAS. Let /l > 0 be given and find the 62 of US so that
[on < 02,t0~ 0, t k tO] imply that |x(f,fo,0)] < W

We will find T > 0 such that if g6 C7 and to ~ 0O, then |x(f,i0,0)| < /*
iit"to +T. Let x(t) =x(t,fo, ®) and V(t) —V (t,xt(to, d)).

Consider the intervals Sn = [tn—k,tn\, where we may suppose, by renum-
bering, that tn—k  tn-\. For a given n, suppose |Xin|| * 82. Then there is

an rn G Sn with IXi(rn)l ~ 82 for some i. Let —an = V(tn) —V (th —k).
(a) If lag(f)] ™ s82/2 for t G 5,, then by (v) we have V'(t) *
N —Pi(t)Ui(s2/2) on 5n. Let F) = LAIin (iv), so that

-an=V(tn)- U<n- K) < - Ut(e2/2) I'" Pt(s)ds n - U i(s2/2).
Jin—

(b) If (a) fails, then there are with [pn,<M] C Sn and with | T(f)]
between g2/2 and 82 on [pn;gn]; to be definite, say |aq(p,,)| = s2/2 and
Ixii.an)l —s2. To simplify arithmetic in Jensen’s inequality, let k ~ 1. Then
we integrate (vi), use Jensen’s inequality, and have

-on s V{<In)- V(pn) ~ - QI ( [ |x'(s)| ds) + £ Mi(s)ds »
VJpn / Jpn
= - Qi{82/2) + (gn - pn)X*K

(bi) If g,, ™ Qi(82/2)/2, this will suffice for our proof.

(bii) If an < Qi(82/2)/2, then D := Qi(822)/2 ~ (on - PnjAnl. We then
integrate (v) and have

-Qn ™ V(gn)- V(pn) 1 - Ui(62/2) ' P(s)ds i
Jpn
fPn+D/W
W - ui82:2) / apn daf - cMUi(s2/2).

Jpn

From (a), (b), (bi) and (bii) we find
a. N min[ch;(<5212), Q(<EI2)/2] A min[cOHA(Y 2), Qx("22)/2] =: a.
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Ift > tn, then
0~ V() N V(to) —no » W (6r)- na,

a contradiction if n > W (4j )/ct. Now there isa A > 0 with tn—tn-i % A so
we may select N > W (e\)/a and then T = NK. This completes the proof
of (1).'

The other proofs are parallel. We must only change tn for (11), while in
(1) we need to change tn and ér) :

To prove (I1) we first note that it is not vacuous. The zero solution is
stable so there are solutions remaining in Cwue Suppose that x(t) remains
in Cn and Xi(t) -n 0 as t —=* 00. Then there is an £ > 0 and a sequence
{tn} I oo with A tn+ k and |.r;(fn)] = £ Let Sn — [tn —k,tn\ and
—an = V(tn) —V(tn —k) where V(t) = V(t, xt). Using the same proof as in
(1) we have

oin ® min[coC"(£/2),Qt(£r/2)/2] =: a.

If t > tn, then 0 ~ V(t) » V(t0) —M, a contradiction for large n. This
proves (l1).

To prove (HI), we note again that it is not vacuous, as in (Il), and we
consider a solution x(t) remaining in Cn on an interval [ig, oo). Suppose
that x(t)  0and note that V'(t,xt) » 0so that ift ~ tn then (Ja:(hp ~
ANV (L, xt) A V(tn,xtn) & W[ |lazin||); thus there is an e > 0 with |a'tn|| ~ e
and so there is an i for each n with |at(rn)| ~ e, where rn 6 [tn—h,tn\. Let
Sn —[tn —k,tn]. Once again the same proof gives

@) an”® mrm[cIr‘Ui(£/2),Qi(s/2)/2] A mrin[cnU,(s/2),QI(s/2)/2\.

Since t > tn yields

n n
(**) OgV(t,xt)AV(tlfxtl) - ~ ai i W (ja'¢ 1
i=2 i=2
the second choice in (*) can hold only for finitely many n. Since cn —

= 00, a contradiction results in (**) for large n. This completes the proof.

4. Proofs of the corollaries

First, note that Corollary 1is just astatement of Theorem 1 (111) without
a separate statement for each component. Also, Xn = \(tn) will suffice, since
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P(t) —1and so

Sn+ D/ Xu fSn+D/\(tn) D
I 1(It = dt = —e fn

Ali,,)

and  cn diverges since dfjj diverges and J1is increasing.

Corollary 2 follows from Corollary 1 when we note that (iv) of Corollary
1is satisfied, because for |<4 < 1 we have

Vit xt) i -H2(x()) A ~\F{t,xt\ + I(t + DIn(i + 2)

and M(t) = J{t + DIn(< + 2) satisfies condition (iv) of Corollary 1
Corollary 3 plays the role for Theorem 1 (I) that Corollary 1 plays for
Theorem 1 (I11). It merely avoids the component conditions.
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COMPLEMENTARY RADICALS REVISITED

B. DE LA ROSA (Bloemfontein), Y. FONG (Tainan) and R. WIEGANDT* (Budapest)

1. Introduction

Initially the idea with the notion of a radical was solely to have it fill
the bad part in an algebraic structure, which was to be factored out for the
purpose of obtaining structure theorems on the quotient (cf. [10]). This idea
was supplemented by Andrunakievich in 1958 in [3] where he highlighted the
fact that “bad” and “good” radicals go hand in hand to provide a fertile
source of algebraic knowledge.

In this expanded radical scene Andrunakievich has given the concept of
complementary radicals a fair amount of prominence, with good effect. His
main result in this respect is his Theorem 10 in which he exhibited (in the
case of associative rings) the existence of two mutually complementary dual
Kurosh-Amitsur radicals associated with each class of subdirectly irreducible
rings with idempotent hearts of some definite kind; and also emphasized
that all dual supernilpotent radicals and all dual subidempotent radicals are
obtained in this manner.

The present paper deals with the problem of complementary radicals in
more general settings. We study ideal-mappings more general than Kurosh-
Amitsur radicals, these mappings moreover being taken on universal classes
of not necessarily associative rings (Section 2); and then investigate comple-
mentarity in Andrunakievich s-varities (Section 3); and for abstract affine
near-rings (Section 4).

Complementary radicals have been revisited recently also by Gardner [7]
from a similar point of view; he too tends for generality; there is, however,
no overlapping in the results.

We shall use the standard terminology and basic facts of radical theory
(see [9] and [11]).

* The third author gratefully acknowledges the financial support of the National
Science Council of the Republic of China and the kind hospitality of the National Cheng-
Kung University, Tainan, R.O.C.
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2. Results on generalizations of Kurosh-Amitsur radicals

Let V be a universal class of not necessarily associative rings, or algebras
over a commutative ring with unity. For brevity these objects will be referred
to as rings. A mapping p which assigns to every A £ V an ideal pA of 4 is
called an ideal-mapping on V. An ideal-mapping p on Vs said to be

hereditary if | TIpA » pi for all | <A £V,

idempotent if ppA = pA for all A6V,

complete if (7 <A £ Vand pl =1) implies | » pA\

a preradical if f(pA) ~ pf(A) for every homomorphism / : A —f(A)
with A £V;

a Plotkin radical if it is a complete and idempotent preradical,

a Kurosh-Amitsur radical if it is a Plotkin radical with the property
p(A/pA) = 0 forall AE£ V.

We now prove various results within this framework.

Proposition 2.1. Ifp is a hereditary ideal-mapping then its semisimple
class Sp:= {A\pA = 0} has the inductive property, thatis, if I\ eeeQ lal
Q mm is an ascending chain of ideals of a ring A such that la £ Spfor each
index a, then also Ula £ Sp.

Proof. Suppose that I := ula Sp, ie, pi/ 0. Then there is an
index a such that lalpi ¢ 0. By la £ Sp and the heredity of p we get
laMpl Qpla = 0, a contradiction.

Let us recall that an ideal / of a ring A is said to be essential in A, if
[ MK / 0 for every ideal K ™ 0 of A. This fact will be denoted by | < A.
A class C of rings is said to be closed under essential extensions, if | < A
and I £ C imply A£ C.

Proposition 2.2. Ifp is a hereditary ideal-mapping then its semisimple
class Sp is closed under essential extensions, that is, if | < A and | £ Sp
then also A £ Sp.

Proof. Let | £ Spbe anessential ideal ofaring A ¢ 0. Then / MpA C
Q pi =0. Since / is essential in A it follows that pA = 0, i.e., A £ Sp

Proposition 2.3. If p is a hereditary preradical then its semisimple
class Sp is closed under extensions.

Proof. Let B,A/B £ Sp and consider an ideal C of A which is maxim
with respect to B TC = 0. From 8 = [B + C)/C and the well-known fact
that {B + C)/C < mwA/C we infer (using Proposition 2.2) that A/C £ Sp.
Since p is a preradical, Spis closed under subdirect sums (cf. [4], Proposition
1.1). Hence A, being a subdirect sum of the rings A/B and A/C, is in Sp.

Given two ideal-mappings 7 and 6, we say that 6 is greater than 7 and
write 7" 6, iIf 7TA ™ 6A for all AE V.

Now let p be a preradical and consider all Plotkin radicals s such that
pA TSA = 0 for all A6 V. If there exists a largest Plotkin radical (p) among
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these S's, then (p) is called the complementary (Plotkin) radical of p. In
the case where p is hereditary, this complement exists and it is in fact a
Kurosh-Amitsur radical. This is

Theorem 2.4. Ifp is a hereditary preradical, then the largest homomor-
phically closed subclass

HP:= {A G Splevery homomorphic image of A is in Sp}

in the semisimple class Sp, is a Kurosh-Amitsur radical class, and the radical
(p) defined by Hp is the complementary radical of p. Moreover, Hp = R<p) :=
= {AI(p)A = /1} is the largest preradical class inside Sp.

Proot. By definition Hp is homomorphically closed. To prove that Hp
is a Kurosh-Amitsur radical class we have to show that H p has the inductive
property and is closed under extensions.

Let I\ C eeed la A meebe an ascending chain of ideals of a ring A such
that 1qg E Hp for all indices a and let | := Ula. We prove that | E Hp by
showing that I/K E Sp for all ideals K of I. So let K be any ideal of / and
consider the chain

(h + K)/K a eeeg (la+ K)/K A mme.

Since each la is in Hp g Sp and since Hp is homomorphically closed, we
have (la+ K)/K = la/(la MK) E Sp for all a. By Proposition 21 Sp has
the inductive property, so we get I/K = U(la+ K)/K E Sp.

Next we prove that Hpis closed under extensions. Suppose that/, A/1 E
E Hp and consider an arbitrary ideal K of A. Since Hp is homomorphically
closed, A/1 E Hp implies that A/(l1 + K) E Hp. Using / E Hp we get (/ +
+ K)/K = 1/(1 T)K) E Hp A Sp. Since also

A/K

(i + KO [«

=A/(l +K) EHp A Sp

it follows by Proposition 2.3 that A/K E Sp.

We now show that (p) is the complementary radical of p. By the heredity
of p we have that (p)A MpA g p((p)A) for any A Since (p) is a Kurosh-
Amitsur radical and hence idempotent, it follows that (p)A ER{p) = Hp A
a Sp, i.e., p((p)A) = 0. Thus we have that (p)AlMpA = 0 for all A. And
we now claim that SA A (p)A for all A whenever S is a Plotkin radical
such that pA INMSA = 0 for all A. For let B ER,;, Then B - SB, and
so we have that pB = pB NMB =pB NSB = 0, so that B E Sp. Thus
we have that the homomorphically closed class R" is contained in Sp; and
consequently R5g Hp = R™"pp Now for any ring A, SA = ]I (/ <A\l ER5);
and from R5 A r<p) we get SA a X X <A\l e r(p)) = (p)A. Thus (p) is
the complementary radical of p.
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The final assertion in the theorem is obvious in view of the fact that the
radical class of any preradical is homomorphically closed (cf.[4], Proposition
1-1).

)From [4] Proposition 4.1 we know that a hereditary preradical is idem-
potent. In proving our next theorem we shall need also that the hereditary
preradical be complete. We shall therefore consider a hereditary Plotkin rad-
ical. We note that a Plotkin radical p is hereditary if an only if its radical
class Rpis a hereditary class.

We shall denote by H(A) the heart of a subdirectly irreducible ring A,
i.e., H{A) = M (I1<A\Il ¢ 0).

THEOREM 2.5. Let p be a hereditary Plotkin radical and let
s(p) := {all subdirectly irreducible rings A\A(A) E Rp).

The complementary radical class R{p) coincides with the class Us(p) :=

= {A\A/l ¢ 0 => A/l ds(p)}, and hence (p) is the upper radical of the
class s(p).

Proof. For proving R(p) Q LlIs{p) let us consider an arbitrary A E R(p)
and any subdirectly irreducible homomorphic image B of A. Since A E R(p)
we have by Theorem 2.4 that B E Sp. Hence H(B) ¢ Rp, otherwise we
would have 0 ¢ H(B) = pH(B) Q pB by the completeness of p. Thus it
follows that A E Us(p)\ and R (p) C Us{p).

Conversely, suppose that A ¢ R(P- Then by Theorem 24 A has a
nonzero homomorphic image B which is not in Sp. Let {Ba = B/Ka\a E
E N1} be the set of all subdirectly irreducible homomorphic images of B and
consider the subdirect sum representation B = ~2(Bala E A). Since Sp s

s.d.
closed under subdirect sums and B 0 Sp, at least one subdirectly irreducible
component Ba is not in Sp, i.e,, pBa ¢ 0. Hence by the heredity of p we
have H{Ba) — H(Ba)MpBQ" pH(Ba), showing that H(Ba) E Rp. Since
BQis a homomorphic image also of A, we conclude that A $ Us{p); and
Us{p) * Rp.

3. Complementary radicals in Andrunakievich s-varieties

In this section the universal class V under consideration is an An-
drunakievich s-variety. We briefly recall the definition: For A EV we define
inductively:

=A AN = A 1*eAN'-1M for integers n > 0
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and
Al:=A; As A Ai1eAl 1l forintegers s > 1
i—+
If = 0 for some n (As = 0 for some s) then A is said to be solvable
(nilpotent). (Nilpotency implies solvability, but not conversely. In associa-
tive rings these two concepts coincide.) The universal class V is called an
Andrunakievich s-variety if the following two conditions hold:

(A)\iC<B<AE£V then C/C is solvable, where C denotes the ideal of
A generated by its subring C.

(s) There exists an integer s > 1 such that whenever B <A £ V then
Bs<A. Examples of Andrunakievich s-varieties are given in [1].

We shall study the behaviour of the complementary radicals of
Plotkin radicals in V, and prove an Andrunakievich s-variety version of
Andrunakievich’s fundamental Theorem 10 in [3]. We shall need the fol-
lowing statement which is well-known for associative rings:

Proposition 3.1. The heart of a subclirectly irreducible ring in V is
either simple and idempotent, or nilpotent. Every ideal | of a subdirectly
irreducible ring A with idempotent heart H(A) is itself subdirectly irreducible
with heart H (/) = A(A).

Proof. The first statement is Proposition 4 in [6]

Let 0 ¢ K <I <A and K the ideal of A generated by A. H(A) * K
implies that 0 ¢ K/K is solvable by condition (A). Since K/K contains the
idempotent ring (H(A)+ K)/K = #(A)/( H(A) NMK) , the latter must be
0 and H(A) £ K, a contradiction.

A Plotkin radical p is said to be supersolvable if its radical class R p is
hereditary and contains all solvable rings. The supersolvability of p has a
favorable influence on its complementary radical. This is

THEOREM 3.2. Let p be a supersolvable Plotkin radical. Then the radical
class R(p) of its complementary radical (p) is hereditary.

Proof. We first show that K <l <A G R(p) implies that K <A. Since
A GR(pp A/Ks G Sp, K being the ideal of A generated by K. Moreover,
K /K3 is nilpotent and hence solvable, so K/K3 GRp; and consequently
K/Ks " p(A/Ks) = 0as A/Ks GSp. Hence Ii = Ks, showing that K is
idempotent. Consequently, since K/K is solvable, K/K = 0 so that K =
=K <A

We now verify the heredity of the class R/p). Let I/ K be a subdirectly
irreducible homomorphic image of an ideal / oi a ring Ain R(p). Now K <A,
and by Zorn’s lemma we may choose an ideal L of A such that I ML =
= K and L is maximal with respect to this property. We now have that
I/K ~ (I + L)/L <A/L. Let H/L be the heart of the subdirectly irreducible
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ring (/ +L)/L. Using the fact, that 4 £ R ~ weget from H/L<([ + L)/L <
<A/L £ R(p) that H/L <N1/L £ R(p ~ Sp. This implies that H/L * Rp,
and so H/L is not solvable. Thus, by Proposition 3.1, Il/L is a simple
idempotent ring and so, again by H/L ~ Rp, it follows that p(H/L) = O,
i.e.,, H/L E Sp. From the isomorphism I/K = (/ + L)/L we get that the
heart of 1/L is isomorphic to H/L, and so it is in Sp. Since Sp is closed
under essential extensions (Proposition 2.2) we conclude that I/K E Sp.
Since I/K was an arbitrary subdirectly irreducible homomorphic image of
/, we have that | EUs{p) —R ”~ by Theorem 25. Thus R ” is a hereditary
class.

Following Kurosh-Amitsur radical theory we may call a Plotkin radical 7
subidempotent if Ry is hereditary and consists of idempotent rings. The rad-
ical class R(p) in Theorem 3.2 does consist of idempotent rings: let A E R (p)-
Since A/Az is a solvable ring, A/A2 E Rp. Since R~ is homomorphically
closed also A/A2 ER(pr- Hence A/A2 E RplSp= 0, showing that A2 = A.
In view of this and Theorem 2.4 we may now reformulate Theorem 3.2 as:

Corollary 33. If p is a supersolvable Plotkin radical in V, then its
complementary radical (p) is a subidempotent Kurosh-Amitsur radical.

Since (p) is a hereditary Kurosh-Amitsur radical, by Theorem 2.4 its
complementary, radical ((p)) exists, and by Theorem 2.5 we have R((p)) =

= ILs[(p)) where s[(p)) is the class

s((p)) —{all subdirectly irreducible rings with heart in R(p)}-

Clearly if p is supersolvable, then the heart of any subdirectly irreducible
ring in s((p)) is simple and idempotent in view of Proposition 3.1. Hence

the class s( (/.)) is hereditary and also closed under essential extensions.

Let us consider C <B <A and the ideal C of A generated by C. Assume
that B/C E s((p)). Being in an Andrunakievich variety, C/C is a solvable

ideal of B/C. Since B/C E s((p)), the heart H[B/C) is idempotent, and

therefore C/C has to be 0, that is C = C <A. Thus the class s[(p)) satisfies
also condition

(F) if C<B <A and B/C E s( (p)) , then C <A.

Now [2] Theorem 1 and its Corollary 1 is applicable to the class s((p))
yielding the following

Theorem 3.4. Let p be a supersolvable Plotkin radical with complemen-
tary radical (p), R/p) = ILs(p). The complementary radical ((p)) of (p) is
the upper radical of the class

n((/>)) = {all subdirectly irreducible rings with heart in R(p\},
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that is, R-((p)) = Us((p)) . Moreover, the class R-((p)) is hereditary and so is
the semisimple class S((p))- If A is any ring of $((,,)), then A is a subdirect
sum

A=" (AalAg£ s((p)))
s.d.

of subdirectly irreducible rings with heart in R(p)-
In order to prove a counterpart of Theorem 3.2, we need the following

P roposition 3.5 ([6] Lemma 2). If K <l <A and I/K has no nonzero
solvable ideals and M /K is an idempotent minimal ideal in I/K, then there
exists an ideal L of A such that A/L is subdirectly irreducible with heart
H{A/L) = (M + L)/L M/K.

Theorem 3.6. Ifp is a subidempotent Plotkin radical, then the radical
class R.(p) of its complementary radical (p) is hereditary.

Proof. Let us consider an ideal / of a ring 4 £ R(p), and let 1/K
be any subdirectly irreducible factor ring with heart H(1/K) = M /K. Let
us suppose that M/K £ Rp. Since p is subidempotent, M/K has to be
a simple idempotent ring in view of Proposition 3.1. Now Proposition 3.5
is applicable, yielding the existence of an ideal L of A such that A/L is
subdirectly irreducible with heart H(A/L) = (M + L)/L = M/K £ Rp.
Hence A/L £ Sp contradicting A £ R(p). Thus necessarily H(1/K) £ Sp,
regardless whether H(I1/K) is simple idempotent or solvable. Since by
Proposition 2.2 the semisimple class Sp is closed under essential extensions,
it follows that I/K £ Sp. Thus | £ Us{p) = R(p) holds in view of Theorem
2.5, proving the heredity of the class R"p).

Theorem 2.4 and Theorem 3.6 give immediately

Corollary 3.7. If p is a subidempotent Plotkin radical in V, then its
complementary radical (p) is a supersolvable Kurosh-Amitsur radical.

A direct consequence of Theorems 2.4 and 2.5 and Corollaries 3.3 and
3.7 is the following

Corollary 3.8. Ifp isasupersolvable or subidempotent Plotkin radical,
then p % ((p)) where ((p)) is the complementary radical of the complemen-
tary radical (p) of p.

As in the case of associative rings, a hereditary radical p is called a dual
radical of (p), if p — ((p)) mA dual radical is always Kurosh-Amitsur radical
in view of Theorem 2.4, and in general the same can be said on dual radicals
in Andrunakievich s-varieties as on those of associative rings ([3], [7], [9]).
The next theorem extends [3] Theorem 10 to Andrunakievich s-varieties and
adds some new aspects to it.
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Theorem 3.9. Let Q be any class of simple idempotent rings in V, and
define classes s(Q) and t(Q) by

s{Q) = {all subdirectly irreducible rings in V with heart in Q}
and
t(Q) = {all subdirectly irreducible rings in V with heart not in Q}.

The upper radical class Us(Q ) is a supersolvable dual radical, and it is the
unique largest universal subclass U of V such that U M Q = 0. The upper
radical class blt(Q) is a subidempotent dual radical, and it is the largest
universal subclass V of V such that the simple rings of V are in Q. Us(Q)
and 'At(Q) are mutually dual radicals.

Proof. The class s{Q) is hereditary by Proposition 3.1, whence R7 =
= IAs{Q) is a Kurosh-Amitsur radical class. Next, we prove that 7 is
hereditary. To this end, let / <A £ R7, and suppose that | ¢ R7. Then
I has a homomorphic image I/K in s(Q). Let K denote the ideal of A
generated by K. In the case K ¢ K the ring K/K is solvable by condition
(A). Further, K/K contains the heart of I/K which is an idempotent ring.
This contradiction proves that only K = K is possible, that is, K <A. Next,
put J =1/K and B = A/K, and consider an ideal L of B which is maximal
with respect to J ML =0. It is well-known that J = (J +L)/L is an essential
ideal in B/L, and so J E s(Q) implies B/L £ s(Q), contradicting A £ R-,
and B = A/L £ R, Thus 7 is hereditary. Since R7 contains clearly all
solvable rings, 7 is supersolvable.

An application of Theorem 2.5 yields that the complementary radical of
7 is R$ = ZVCQ), the latter being a subidempotent Kurosh-Amitsur radical
by Corollary 3.3. By the same token, the complementary radical ofs is R7 =
= ZYs(Q). Hence by Corollary 3.8 7 and 6 are mutually dual supersolvable,
resp. subidempotent radicals, and consequently both R-, = Us{Q) and R" =
= Ut{Q) are universal subclasses of V.

We have to prove that R7 and R” are the largest universal subclasses
with the additional properties demanded in the theorem. Let B be any
subdirectly irreducible homomorphic image of a ring A6 V.

Assume that A € U. Then B 6 U and also the heart H(B) is in U.
Hence H(B) ® Q. and so B s(Q), implying A £ 1Is(Q).

Suppose that A EV. Then also B EV and H(B) EV. Let us assume
that H = I1{B) is solvable. Then H2 ¢ Il and H2<H holds. Since V is
a universal class and H £ V, we have also H/B2 £ V which is a ring with
trivial multiplication. So any cyclic subgroup of H/H2 is an ideal of H/ H 2,
and it has a simple cyclic homomorphic image C E V. But the simple rings
of V are in Q by the assumption, and Q consists of simple idempotent rings.
This contradiction shows that Il cannot be solvable. Hence by Proposition
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3.1 A is a simple idempotent ring in V, and so by the assumption H G Q.
This proves that A 6 Ut(Q).

For instance, Theorem 3.9 yields the following special cases:

i) the Brown-McCoy radical (the upper radical of all simple rings with
unity) is the largest universal subclass not containing simple rings with unity;

ii) Behrens radical (the upper radical of all subdirectly irreducible rings
having a nonzero idempotent element in the heart) is the largest universal
subclass not containing simple rings with nonzero idempotents;

iii) the antisimple radical (the upper radical of all subdirectly irreducible
prime rings) is the largest universal subclass not containing simple idempotent
rings.

iv) the class of hereditarily idempotent rings (the dual radical of the
antisimple radical which is the upper radical of all subdirectly irreducible
rings having solvable heart) is the largest universal subclass such that the
simple rings are idempotent.

4. Complementary radicals of abstract affine near-rings

A (right) near-ring N is called an abstract affine near-ring, if N is
abelian (i.e. the addition is commutative) and the Osymmetric part Ng
of N coincides with the set of distributive elements of N. As is well-known
the constant part Ncis an ideal in the abstract affine near-ring N and every
ideal I = Ig+ Icof N is given by lo <No and lIc<Nc such that Iglc™ A and
IoNc ” lc. For details we refer the reader to [8].

In this section we prove that analogous results are valid in the variety of
abstract affine near-rings to those of Section 3. Our main objective will be,
therefore, to prove corresponding statements to Theorems 3.2 and 3.6. For
that purpose we need some specific results on abstract affine near-rings. The
following assertion states that abstract affine near-rings form a 2-variety.

P roposition 4.1. Ifl and K are ideals of an abstract affine near-ring
N, then also IK is an ideal of N. In particular, 12 <N for every I <N.

The proof is a straightforward verification.

Proposition 4.2. If K <l <N and G is the ideal of N generated by K .

then (G/ K)3 is a constant near-ring. Hence abstract affine near-rings do not
form an Andrunakievich variety.

Proof. By GgGc” Gc we have
G2 = (Go + GQG = GO0G + GC= G2 + GoGC+ GC= G2 + G,
and therefore
G3 = (G2+ GOG —GG + Gc= G3 + GM"GC+ Gec= Gg+ Gc.
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Since Ko<Go <No, No is a ring and Go is just the ideal of No generated by
Ko, the Andrunakievich Lemma is applicable yielding Gg” Ao~ A. Thus
we get

(G/IA)3= (G3+ A)IA = (Go+ Ge+ A)/A = (Ge+ A)/A = GA(GCMA),

proving the assertion.

Proposition 4.3. If K <I <N and I/K is a subdirectly irreducible
ring with idempotent heart H(1/K) — M/K, then there exists an ideal L
of N such that N/L is subdirectly irreducible with heart H(N/L) = (M +
+ A)A = M/K.

Proof. First, we prove that K <TV. Let us consider the ideal G of N
generated by K. Now we have G/K <I/K. Since I/K is a subdirectly irre-
ducible ring, either M/K Q G/K or G/K = 0. In the first case Proposition
4.2 ensures that (G/ K)3 is a constant near-ring. By G/K ~ 1/K, however,
G/K is also a ring, and therefore (G/K) = 0. Since M/K is idempotent
we get M/K = (M/K)3 ~ (G/K)3 = 0, a contradiction. Hence G/K = 0 is
valid, that is, K —G <N.

Next, we show that M <N. Since K <N, we may consider Mg- = M/K
/n- = 1/K and Ag- = N/K. Now, for the ideal ./az- of Ag- generated by
Mg- an application of Proposition 4.2 yields that (./a/M g-)3 is a constant
near-ring, and by JKk/Mga- N /g-/Mg- it is a ring too. Hence we conclude that
(Jk/Mk )3 = 0,i.e,J3 C Mg-. Taking into account that Mg- is idempotent,
we get Ma- = Mg- ./g-, and so by Proposition 4.1 we have Ma- = J/- 0 Ag-.
Thus also M is an ideal of A.

Finally, let us consider an ideal A of A which is maximal relative to M I
NL —K. Since A'<A, by Zorn’s lemma such an L does exist. (M + L)/L is
a minimal ideal of N/L, because of M/K = (M + L)/L and of Proposition
3.1. For any nonzero ideal J/L of N/L the maximally of L yields M I
MJ ¢ K, and soby 0 ¢ (Al MJ)/K Q M/K the simplicity of M/K implies
MMJ —M,ie, M Cy. Hence (M + L)/L is the unique minimal ideal of
N/L, proving that N/L is subdirectly irreducible with heart (M + L)/L.

A Plotkin radical p of abstract affine near-rings will be said to be su-
pernilpotent and superconstant, if its radical class R p is hereditary and con-
tains all nilpotent rings as well as all constant near-rings. By definition the
semisimple class Sp of a supernilpotent and superconstant Plotkin radical p
consists of rings. Let us mention that the semisimple class Sp of a Kurosh-
Amitsur radical p of abstract affine near-rings is hereditary if and only if the
radical class R p contains all constant near-rings ([5] Theorem 3.4). Consid-
ering, however, a supernilpotent and superconstant Plotkin radical, we do
not know whether its semisimple class is hereditary.
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Theorem 4.4. Letp be a supernilpotent and superconstant Plotkin rad-
ical of abstract affine near-rings. Then the radical class R/* of its comple-

mentary radical (p) is hereditary.

PROOF. Notice that the results of Section 2 are valid also for abstract
affine near-rings, in particular by Theorem 2.4 the complementary radical
(p) exists.

Since the semisimple class Sp and so also the radical class R ~ consists
of rings, the same proof as that of Theorem 3.2 yields the assertion.

A Plotkin radical p of abstract affine near-rings is said to be subidempo-
tent, if its radical class R p is hereditary and consists of idempotent rings. By
the above quoted [5] Theorem 3.4 we know that the corresponding semisimple
class Spis in general not hereditary. Thus proving that the complementary
radical class of a subidempotent Plotkin radical is hereditary, needs more
effort inasmuch as Proposition 4.3 is used.

THEOREM 4.5. If p is a subidempotent Plotkin radical, then the radical
class R(p) of its complementary radical p is hereditary.

Proof. The proof of Theorem 3.6 can be followed and then one uses
Proposition 4.3 instead of Proposition 3.5.

In the possession of the key statements of Theorems 4.4 and 4.5, which
correspond to those of Theorems 3.2 and 3.6, the theory of complementary
and dual radicals of abstract affine near-rings can be developed in the same
way as in Section 3.
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ON THE QUOTIENTS OF COUNTABLE
DIRECT PRODUCTS OF MODULES MODULO
DIRECT SUMS

L. FUCHS* (New Orleans) and L. M. PRETORIUS (Pretoria)

81. Introduction. A remarkable result in abelian group theory is
Hulanicki’s theorem (see [6] or [2, p.176]) stating that, for any countable
family A\,..., An,... of abelian groups, the quotient [| A,/ ® An of the
direct product modulo the direct sum is an algebraically compact group;
thus it is a direct sum of a divisible group and a Z-complete group. Though
most theorems on abelian groups easily extend to modules over P.1.D.%, and
moreover, over Dedekind domains, this result fails for P.1.D.’s unless the
number of primes is countable.

In view of the most recent developments on [-completions over domains
[ whose field Q of quotients satisfies p.d. < = 1 (see [3]), it seems reasonable
to have a new look at the quotients M* = L, Mn/ ® Mn for countable sets
{Mi,..., M,,,...} of A-modules. We start from the fundamental observation
due to Mycielski [9] which states that M* is algebraically (or equationally)
Hi-compact in the sense that any countable system of equations with un-
knowns xj,

AorijXj = ar G M* (rij e R;i,j =1,2,...,n,...)
]

(for a fixed i, almost all = 0) has a solution in M* provided that every
finite subsystem is solvable in M*. We will prove that the first Ulm sub-
module M =1 of M* is a divisible module, and though the 0-th Ulm factor
M*/M=*1is in general not J-complete, it is always torsion-complete, i.e. it
is Hausdorff in the [-topology and its A/ -extensions by torsion divisible
O-modules split. (Recall that a submodule IV of M is an RD-submodule
if rN =N MNrM for all r G[; see [4, p.39]. Those extensions of M by a
module A in which M is an RD-submodule form a subgroup RDext*"AjM)
of Ext1(A,M).) As torsion-free modules are always torsion-complete, the
result is more meaningful for torsion modules Mn.

Our main result (Theorem 6) shows that for torsion modules M,,, the
structure of M*/M =1 can be given more explicitly with the aid of A-complete
modules.

* Partial support by NSF is gratefully acknowledged.
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82. Preliminaries. We assume that A is a commutative domain with
1, and R ¢ Q for the field Q of quotients of R. Let S be a subsemigroup of
A\0. An A-module M is said to be S-divisible if sM = M for all s GS. If
S is countable, then the localization Rs of R at S satisfies for 5-divisible M

Extl(As,M) =0 and Ext*As/A, M) = 0.

In fact, by the 5-divisibility of M ,As,As/A and the countability of 5 it is
easy to show that every extension of M by As and As/A is splitting.

If the projective dimension p.d.Q = 1, then K —Q/R decomposes into
the direct sum of countably generated divisible modules, K = ® At/A; see
Lee [7]. By Matlis [8, p.401], each Ai is a flat overring of A. Hamsher [9]
shows that is contained in a localization As, of A at a suitable countable
subsemigroup 5- of A\O such that As,/A is a summand of K.

The Ai-component MA, of a reduced torsion A-module M (reduced
means that Hota(<2,M) = 0) is defined via

MAt = Torf(Ar/A, M) = Bt ®RM = Homfi(£,,M)
where Bi = Aj. The Ai-component MAt is Ai-torsion (Ai ® MAt = 0),

Ai-reduced (Hota(Ar,MAt) = 0), Bj-torsion-free (Torf(Bt/R, MAi) = 0)
and Bi-divisible (ExtJ*Ai/A, MAI) = 0). Furthermore, we have

1) M=0M T.
r

For a subsemigroup 5 of A\O, we set Ms — S](‘gj‘SsM. The first Ulm

submodule of M is defined as M 1= Of\ff-ER rM, and M/M lis called the O
r

th Ulm factor of M. A module M is S-complete (A-complete) if Ms = 0
(M1=0) and it is complete in the 5-topology (A-topology) where {sM}seS
({rM}0-refl) is a subbase of neighborhoods of 0. In [3] it is shown that
— under the hypothesis p.d.Q = 1 — an A-module M with M1= 0is A-
complete exactly if Extfjff), M) = 0, in which case M = Ext}j(A',M), while
Pretorius-Schoeman [10] show that M with M1 = 0 is torsion-complete if
and only if RDext}j(A’,M) —O0 (for the definition of the group RDextl of
AA-extensions, see e.g. [4, p.59]).

83. Algebraically iE-compact modules. We wish to establish a
couple of properties of algebraically Hj-compact modules, in particular, in
case p.d. Q — 1

Lemma 1. Let R$ be the localization of the domain A at a countable
semigroup S. For an algebraically Pi-compact R-module M, we have
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(i) M s is S-divisible and algebraically Hi-compact;
(i) M/Ms is S-complete.
If M is reduced, then moreover
(iii)) Hornr(Rs,M) = Ms;
(iv) Ext"Rs, M) = 0 and ExtR(Rs/R,M) = M/Ms.

Proof. For (i), we first show that Ms is contained in the union d$M
of all 5-divisible submodules of M. Setting S = {sx,... ,sn,...}, observe
that a GM s if and only if the finite subsystems of the countable system of
equations

2 s\ X\ =a, snxn =xn-\ (n=2,3,..)

with unknowns x\,... ,xn,... are solvable in M. The algebraic Kx-compact-
ness of M ensures the existence of a global solution of (2), say xn = bn GM.
Thus the submodule N = (a, b\,... ,bn,...) of M is an epic image of Rs
under the map 1" a, ..8“1>*pbn(n ~ 1), s0 a GdsM.

Let YIjrijxj —ai £ Ms (i,j = 1,2,...) be a countable system of equa-
tions which is finitely solvable in M s. Adding to this system countably many
equations

AR T SXjn xj —0 (e —1,2,...),

the arising new system will still be finitely solvable. By hypothesis it has a
solution Xj —bj,Xjn = bjnin M . Evidently, bj GM s for each j, thus Ms is
algebraically Mx-compact.,

To verify (ii), notice that M/M s is evidently Hausdorff in the #-topology.
Let {an} C M be a Cauchy sequence in the 5-topology; without loss of
generality, we may assume that for each n,an —am Gsi ...snM whenever
m " n. This sequence has a limit in M if and only if the countable system

3) X &X...snxn —an (n=1,2,..)

with unknowns x, Xi,... ,xn,... is solvable in M. The fact that {an} is
Cauchy ensures the finite solvability of the system (3), thus by algebraic
Kx-compactness (3) has a global solution in M. Consequently, (ii) holds.

For a reduced iff, from the exactness of 0 — R —=Rs —=*Rslhi —0 and
from the divisibility of Rs/R we deduce the exact sequence

0 Horn(RS,MS) - Horn(R,MS) — Ext*"Rs/R, Ms) = 0
thus Horn(Rs,Ms)=Ms. But Rs is 5-divisible, so Horn(Rs,M) =
= Horn(RS,MS).

() implies Ext1(Rs, Ms) = 0 and (ii) implies Extx(Rs, M/Ms) = 0. As
M is an extension of Ms by M/M s, Exti(Rs,M) —O0 follows.
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From 0 %R — Rs —*Rs/R -»Owe also obtain the exact sequence 0 —
— Horn(RS,M) “ Ms -+ Homn(R,M) = M — Ext\R S/R,M) —
— ExIr(A5,M) = 0. Hence the stated isomorphism in (iv) follows. O

We can improve on the second part of the preceding lemma.

Lemma 2. Let M be a reduced algebraically )H\-compact R-module and
A/R asummand of Rs/R where S is a countable semigroup. Then setting
M<n) = Hornr (A,M), we have

(4) Ext}j(AM) =0 and ExtK(A/R, M) = M/M{A).

Proof. If C URs is such that Rs/R = A/R 0 C/R, then from the
exact sequence 0 —=R -* A C " Rs —*0 we derive, in view of (iv), that
Ext"(A,M) = 0. The exact sequence 0 — R — A — A/R — 0 vyields the

exactness of 0 —* —M — Exti{A/R.M) — Ext*A.M) = 0 whence
the stated isomorphism follows. O

Turning to the global case, we have the following result.

Proposition 3. Over a domain R with p.d.Q = 1, an algebraically Ki-
compact module M satisfies

(i) M1 is divisible, and

(i) M/M 1 is torsion-complete.

Proof. Let A/R be a countably generated summand of K.K = A/R ®
0 B/R, and S a countable semigroup, A ~ Rs and Rs/R a summand of

K. The exact sequence 0 —Ms/M1—M/M1— M/Ms —O0 induces the
exact sequence

Ext\R S/R,MS/M1)-r ExtI(Rs/R, M/M1)- Extl(Rs/R,M/Ms)- 0.

If M is algebraically Mi-compact, then by Lemma 1(i), the first Ext vanishes,
while by (ii) the third Ext is= M/Ms. Hence there is a natural isomorphism

(5) Ext1(Rs/R, M/M1)= M/Ms.

As in Lemma 2, we obtain Exti(A/R,M/M1) = M/Mta1 where, evidently.

M /M is a summand of M/Ms. If we set K = 0 with A,/R
countably generated, then we are led to the natural isomorphism

(6) Exti{K,M/M1) - ][ ExtL(AI/A, M/A/L) =
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Manifestly, (M /M M) 1is (M/Msf = 0. We infer that the first Ulm
submodule RDexti(h\ M/M 1) of Exti(K,M/MI) (cf. [4, p.105]) vanishes,
thus M/M lis torsion-complete.

From the exactness of 0 M1 —Ms — Ms/J¥1— 0 we deduce that
the sequence

Hom(RS/R,MS/M1) -* Exti(RS/R,M1) ExtL)Rs/R,Ms)=0

is exact; the last term vanishes because of Lemma 1 (i). Observe that Rs/R
is divisible, while M s/M1 is reduced (otherwise M 1 would be larger). Hence

the Horn vanishes, and Exti(Rs/R,M1) = 0. Therefore, Ext1(A',M1) = 0,
which amounts to the divisibility of M1 O

From the proof it is clear that M/Ms and M/M”A” are [i-complete.
Moreover, from (6) we obtain immediately:

Corollary 4. Under the hypotheses of Proposition 3, the R-completion
of M/M1 (and hence that of M) is\[M /M”*Al. O

Later on (Corollary 7) we will see that in Proposition 3 (ii), ‘torsion-
completeness’ can not be replaced by ‘[-completeness’.

84. The structure of M Mn/ 0 Mn. By Mycielski [9], this quotient is
algebraically Hi-compact, so in case p.d.Q = 1the last Proposition applies.
In order to improve on (ii), it is natural to concentrate on torsion modules
Mn, since all torsion-free modules are torsion-complete.

Lemma 5. Suppose R is a domain with p.d.Q —1, K —n/4¢ B/R
where A/R is countably generated. If {Mn} is a countable set of A-torsion
R-modules, then

M* = J] Mn/ © Mn

satisfies:

(a) M*x is divisible, and

(b) M*/M =1 is R-complet.e.

Proof. By Mycielski [9], M* is an algebraically Pi-compact [-module.
Proposition 3 implies (a).

As we have noticed earlier, an A-torsion module is A-divisible. This
property is inherited by direct products and quotients, so M*/M=1 is B-
divisible, i.e. Ext}(B/R, M*/M*1) = 0. |If S is a countably generated
semigroup with A ~ Rs and Rs/R a summand of K, then the vanishing of
the last Ext implies Extx(/1/4, M’/M*1) = Exti(Rs/R, M*/M*1). This is,
in view of (5), naturally isomorphic to M*/M*s. Hence EXC(A', Mni M *1) =
= M*/M*s. Here the Ext contains M*/M*x as a submodule and M*/M*s
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is 3 summand of M*/M*1, this can happen only if M"/M > = M¥M*5. (b)
follows at once. O

For a set {TVK{i £ /)} of A-modules, let , denote the submodule of
the product TV consisting of all vectors with countable support.
We are now ready to prove:

Theorem 6. Let R be a domain such that p.d.Q = 1, and Mn
(n = 1,2,...) a countable set of reduced torsion modules. Then M" =
= M Mn/ P Mn satisfies:

(a) M*1 is a divisible R-module; and

(b) M*/M =1 is isomorphic to a submodule of elements of countable sup-
port in a product of R-complete modules.

Proof. On account of Mycielski [9], statement (a) follows at once from
Proposition 3(i).

Write K = ¢ Ai/R where each AXR is countably generated, and let
Mni denote the ¢ -component of Mn.

Hypothesis implies that Mn = ® Mmx for each n. We view Q Mn as

a submodule of NN M = T[] Mn{ and write x £ [1Mn in the form
n

i [n,i) n
X = (xi,... ,xn,...) with xn £ Mn. Since each xn can have but finitely
many nonzero coordinates xm-£ Mnr, it is evident that Mn ~ [3HITin!.
" (n.i)

Factoring out ®Mn = ® Mnil we obtain the inclusion

M* A JJN M*.
r

where M* = \[M ni/ Q) Mni.

For each ir?dex r, Mni is a summand of Mn wheqce it is easy to conclude
that M* is a summand of M*. Therefore M* is an AD-submodule in  M¥*,
thus

) M "/ M =1 A
i

where, for each r, M*/M*1is a summand of M'/M*1 and is A-complete by
Lemma 5.
For a countable subset J of the index set /, we can form the Aj -
—  ~-components Mnj of Mn and argue that mj/m j1is a summand of
iel
M*/Mrl where Mj — Y[Mnj/ © Mnj. Because of Lemma 5, M j/Mjlis
A-complete, and therefore by Corollary 4 it must coincide with I!Ej' M */ M *1,
J
Consequently, the inclusion in (7) is not proper. O
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A comparison of Theorem 6(b) and Corollary 4 leads us to the following

Corollary 7. Under the hypotheses of Theorem 6, M*/M*1 is R-
complete for every choice of torsion R-modules Mn if and only if K is a
countably generated R-module. O

It is easy to extend our results to quotients ® Mj with an

L . J€J
arbitrarily large index set J.

If the modules Mn in Theorem 6 are torsion-free, then M* is likewise
torsion-free. In this case, M =1 is injective, and from the proof of Proposition
3 we can conclude that M*/M =1 is a subdirect sum of i?-complete modules

The case Mn = R was considered (for arbitrary domain R) by Dimitric
[1]. Then M *1 = 0 whenever Q is an uncountably generated i2-module.
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CONVERGENCE OF INTERPOLANTS BASED
ON THE ROOTS OF FABER POLYNOMIALS

L. ZHONG and L. ZHU (Beijing)*

81. Introduction

Let D be a Jordan domain in the complex plane C bounded by I', let U
be the unit disc {w: |tt;] < 1}. We denote by EP(D) the space of all functions
f(z) that are analytic in D and satisfy

sup. / o tI>(reie)l? x>\rers)l dO < 00
00<i

where ip(w) is a conformal map of U onto D.

It is well-known that if " is rectifiable, for any f(z) 6 EP(D), f(z) has
nontangential boundary values almost everywhere on I' and EP(D) can be
equipped with the norm

Let r = ®(rv) be the conformal map of {w:|tu| > 1} onto the complement
of DU T such that ®(00) = oo, ®'(00) > 0, and let w —®(r) be the inverse
map of ®. When \2\ is sufficiently large, ® has the Laurent expansion

d\
®(r)=dz+do+ — + ...

and

[®()] N=dnzn+  dnMzk + Y, dndek.
k=0 k<o

* Supported by the National Science Foundation of China.
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The polynomial
711
Fn(z) = dnzn + dnMzk
k=0

is called the n-th Faber polynomial with respect to the domain D. We
know that it is an effective tool to construct approximation polynomials by
means of Faber expansion. Comparing with the Faber expansion, we can
see that interpolation polynomials can be constructed more directly. Early
works dealing with interpolation polynomials in the complex plane often as-
sume that the function to be interpolated can extend continuously, even
analytically on D (see [3], [4], [B])- In 1989, X. C. Shen and L. Zhong [6]
constructed a series of interpolation nodes in D under the assumption I £
£ C(2,a), and showed that the interpolation polynomials have the same or-
der of convergence as the best approximation polynomials in ER(D) for 1<
< p <o0o0. Recently, L. Y. Zhu [7] obtained similar result under the assump-
tion T £ C(l,a) by choosing the zeros of Faber polynomials of D as the
interpolation nodes. In the above works ' does not admit corners. Since
many typical domains in the complex plane have corners (for example, the
rectangle), to study interpolation in such a domain is of interest. In this
paper, we shall show that the interpolation polynomials based on the zeros
of Faber polynomials converge in EP(D) for 1< p < oo, under the condition
that I is piecewise VR smooth.

Before stating the theorem, we introduce some concepts and notations.
Let 7 be an oriented rectifiable curve. For 2 £ 7, 6 > 0 we denote by s+(z,6)
(respectively s_(2,6)) the subarc of 7 in the positive (respectively negative)
orientation of 7 with z the starting point, and arclength from r to each point
is not more than 6. We say that the smooth curve 7 is of vanishing rotation
smoothness (shortly VR), if

(11 lim / d<arg ¢ QL W \dcarg(( =0
i~F° Js-(z,6) J8+(r,6)

uniformly for z E7. The VR condition is slightly stronger than smoothness.
If the angle of inclination 6(s) of tangent to 7 as a function of the arclength
s along 7 satisfies the Al’per condition [8], that means

(1.2 dt < +00

where w(t) is the modulus of continuity of 0(s), then 7 is VR (see the
appendix).

When all the zeros of the n-th Faber polynomial Fn(z) are in D, we
denote by Ln(f,z) the (n —I)-th interpolation polynomial to f(z) £ ERD)
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based on the zeros of Fn(z), and denote
En(f)p= ﬁngISn n/-nu,.

The main result of this paper is following

Theorem. If [ consists of finitely many VR curves, and none of its
exterior angles equals 0 or 27, then for sufficiently large n, the zeros of
Fn(z) are in D. Furthermore, for any f(z) GERD), 1< p < 0o, we have

(-3 If(z) —Ln(f,z)\\p~ cEn-i(f)p

where the constant ¢ depends only on D and p.

82. Some preliminaries

In this section we shall always assume that I" satisfies the condition of
the theorem. For z GT, by [2],

Fn(z)= i <D (C)]4arg(C-*)

where the jump of arg(C —z) at ( —z equals the exterior angle azK There-
fore

(2.1) Fn(z) —[®(r)]n= —/ [®(C)]Haré(C-r) + (a2-1)[P (r)]n.

Setting
(2.2) R = rp&x haZ—]Jl

in view of the fact that none of the exterior angles is 0 or 2x, then 0~ B < 1.
Lemma 1. For an arbitrary e > 0, there exists 6 > 0 such that

(2.3) [ Karg(C —z)\ + [ |dcarg(C - z)] <LRw + £
Js-(z,6) Js+(z,S)

for any z GI'. Furthermore, if z is ajoint between two VR curves, then

(2.4) f |d<arg(C - z)\ + | |dcarg(C - z)\ <£
Js-(z6) Js+(z,6)
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The proof of this lemma uses elementary calculus and is tedious a little,
we leave it at the end of the paper.
For any 6 > 0, 9 £ [0,27r], we denote by the image of

5 (P(e™),E) n5+(dD(e M)

under the map . Let

e*'g>Vv* . .
V(t,9,6) (e )q_q,(e)ye). if elil |g<6

0 if eIt £ 1e,6-

Lemma 2. For arbitrary e > 0, ®> 0, there exists an integer N > 0 such
that for B £ [0,274, there is a trigonometric polynomial TQ{t) of t with degree
at most N satisfying

(2.5) n(t,9;6) - Tg(t)l dt < 8.

Proof. For 6 >0, elt $ Jes-i there is a constant cs such that

1
o) - dEe) © S

Thus
(2.6) Nn* M)l ~culd,(eR], eli0 /e,.

For an arbitrary sequence {on} C [0,274, there exists a convergent sub-
sequence {onk}- Writing the limits 90, we have

v{t,0nk;6) — n(t.90\6)

for almost all . By the dominated convergence theorem and (2.6) we have
i>(t\9nk\6) - n{t,90\b)l - 0.

This implies that the set of functions {i/(t,9\6):9 £ [0, 2a]} is sequentially
compact in L1. Consequently, given any . > 0, there exists a finite |-net
{v{t,9\S),j = 1,2,..., M } such that

2!
min J{) Iv(t, B; 6) —V(t, 0j-6)| dt < ) 9 £ [0,271].
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Therefore there are a finite number of trigonometric polynomials
{yO)(i)} satisfying

u(t;ej;6)-TA(t)ldt <1 j=1,2,..., M
Hence i
rar
in / 1i(i;0j\b) —X"(<)| dt < £, 0 G [0, 27].
LR L 10(5501\b) —XA(<)) 6 G [0, 27]
Let TV be the largest of the degrees of j=12,...,M}. This

completes the proof of Lemma 2. O
From Lemmas 1 and 2 we have

Lemma 3. For an arbitrary e > 0, there exists an integer TV, such that
(2.7) [Fn(z)- [®(2)]n]| </? + £ *el

/ro/ds for n > TV.

Proof. By Lemma 1, given any £ > 0, there exists a i > 0 such that
(2.2) and (2.3) are valid. For the chosen s and by Lemma 2, there exists
an integer TVsuch that (2.5) is valid. For sake of simplicity, we write

5(12) = s_(M)U s+(z,0) \ {r}, rer.

Therefore, by (2.1) for 2 = ®(er6) we have

Fn@z) - [®(M]1"=- 1 ) [®(0] na{ arg (( - 2)+

K Js(

+- f [®(0] Idearg (C- r) + (ar - l)er'e=
MTM»(*)

= [$(C)]"dcarg(C-")+

X Js(z)

+- e'ntdtarg (P(ert) - d(e") + (ar- \)e'm =

=-/ [®(0]ndearg(C- r)+

A Js(2)1

1 Far .
+- [ emilmii/(f,M)] dt +{az- 1)e'nB =

a Jo
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=: -{w*) [®(0] “d<arg(C - N+

.1 \]rA)Keint\m [iv{t,e\6)-Te(®)] N + (<*,- I)ems;

the last equality is from the fact that e,nt is orthogonal to Tg(t) as n > N.
If r is not a joint of two VR curves, then az = 1, by (2.3) and (2.5) we

have (2.6). If cxz ¢ 1, then 2 must be a joint of two VR curves. By (2.2),

(D2.4) and (2.5) we also have (2.7). This completes the proof of Lemma 3.

Forany g E LR(T), 1< p < 00, we define the Cauchy integral operator
7i by

2rrr Jr
Then H:LRT) —mERD)is bounded, that means

n9(2) — 5 {B-9C z¢ D.

WHg\\p A ciffllp

where the constant c\ only depends on p and D [9].

83. Proof of the theorem

First of all, we claim that all the zeros of Fn(z) are in D when n is

sufficiently large. Setting e = in Lemma 3, for n sufficiently large we
have

\Fn(z) — [©(F)] n| < ZET.

Since Fn(z) — [®(r)]n is analytic on the exterior of D, by the maximum
principle we have

\Fn(z) — [®(2)]M < Z? D-
Therefore
\Fn(2\ I | (D)|” -4 P -* >0, z ¢ D.

This implies that the zeros of Fn(z) are all in D.
Since the n —1-th interpolation polynomial operator Ln(f,z) is linear
and reproduces polynomials of degree at most n - 1, we only need to show
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that Ln(f,z) is bounded uniformly in EP(D) as n —»00. In fact, denoting
by Pn_I(r) the n —1-th best approximation polynomial to f(z) in ER(D)1
we have

Hm - £»(/,*)Il, = W/O) - Pn-M - U f - P,-,2)||ts
S (1 + IR.IDII/W -A .-, W ||P.

Noticing that the interpolation nodes of Ln(f,z) are the zeros of Fn(z),
for f(z) GERD), we have

Fn(z2) [ KQdC

f(z) - Ln(f, z
(2) (f. 2) 2mr Jr F,(C)(C - 1)

= Fn(z)H z GD.
It follows that
If(z) - Ln{f,z)\\p™ max|Fn(z)] H <
Fn

< ci max Fn@) < qa 3+
) Crel £1(0) 1-/2 WA\P-

Hence the operators Ln(f,z) are uniformly bounded in EP(D). This com-
pletes the proof of the theorem.

84. Appendix

This section includes

i) An example of a smooth curve which is not VR smooth curve.
i) Showing that a curve is VR smooth if it satisfies (1.2).
iii) Proof of Lemma 1

i) Let

t2sin(l/t)

0, t G [—1/2,0].

h(t) =

Set
7= {t+ih(t):t G[-1/2,1/2]}.
Then 7 is smooth. Evidently
h(t)
= darctan-—+- >
(01 .][S4. (0.5) t
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| .
> darctan i)  +QG
/o t

Consequently, 7 is not a VR smooth curve.

ii) Suppose 7 satisfies (1.2). Let 7 have the representation ( = £(s),
where s is the arclength parameter. For 2 = z(sa), s > $o,

dsarg (C(s) —z) = #s1m [In(C(s) - 1)] =
= Im 4'bl ds.
o) - T
Noticing |C'(s)| = 1, we have
m 40 _ [sinfag44l) - arg(4@ <
¢ )-r 14» - 2\
arg C\s) - arg(C(a) - 2)\
\d) - z\

<

Since 7 is smooth, there exist a constant c2 and an 5 £ (sq,s) sucnh that

i < fL
C«™-2\ "s-s0

and _
arg (4€) - 2) =ag40).
Therefore
) , S arg 4(e)-arg; (s) w (s-s0)
\ds arg(C(S) - Z)l{ S c2}---+-—--- {'S“:“é-o[ -------- LS Cz_r-S“-“SE)

Similarly, the above inequality is valid as s < s0. Consequently,

* dt.
ldcag(@ )+ l/1+(r,5) “d( arg (( t

Is_ (z,6)
It follows from (1.2) that the inequality (1.1) is valid uniformly. This means
that 7 is a VR smooth curve.

iii) Since I" consists of finite VR smooth curves, we can take 6 > 0 so
small that a_(z,A) Us+(z,6) contains at most one corner. So Lemma 1is a
consequence of the following assertion:
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Lemma 1'. Let71, 72 be two VR smooth curves with the same starting
point zo, at which ~f\, 72 have the angle an (0 <a < 2). Set7 =7~ U72,
where 77" is the same curve 71 with opposite orientation. Then for any £ > 0,
there exists 6 > 0 such that

4.1 i Irfcarg (C- z)\ + / [rlcarg(( - 2\ ™~ or+ £ 267
Js-(z,S) Js+(z,5)

and

4.2 I Karg(C - z0)| + / | arg(C -~o0)| <f-

(4.2) 25 (208) 9( )| 74420y g( )1

Proof. Noticing that s+(zo,£) and s_(z0,<) are 5+(r0)*) on 72 and
s (zo,<5) on 7] respectively, (4.2) follows from the definition of VR smooth-
ness.

Next we consider (4.1). Without loss of generality we may assume 20 = 0,
and that the tangent of 72 at zg —0 coincides with the real axis. Therefore
72 has the representation in polar coordinates near zQ—0

B = B{I), re* G72

which satisfies
0(0) = }%9(0 = 0.

Since the angle an is not 0 or 2n, 7 has the same order of arclength and

chord length locally. Thus for any 2E 71, C= we have
21+ TN 12201+ 120C1= 126 1 C3|2- reio(r) 1.
Then
arg(C- 2\ »
oLLY) 1
< dr -f Idrarg (r —) | + }—y—-—--rdr.
j.gio(r) — 2 V — Z \I'eIdV) _

It follows from (4.3), (4.4) and (4.7) that

eo(r> 1 leig(r) _ 11122~ \z\e
Jgio) —y  V—Z - |rex(r) _3||r - 2\ = 8(r + [2])2
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and

rei6 () ic3\e'(n\.

Denote by [0,77] the set {r:reld* £ s+(0,6)}. Since «+(r,A)M72 C
C s+(0,%), we have

dagC—)\ =/ IfcagC- *)| S

Ls+ (r,<5)r72 Js+(0,9)
.. « f Idrarg (r —r)| +c3 f \e\r)\dr~
*8I: {r+\) Jo Jo
g/fw? \'ZI}W’) rmld \ SP" d
- . ? + r r—z»\ +c 6'(r)|dr.
®./0 (r+|z]) Jo agr —2 Jo 0]

Noticing that the first integral equals 1and that arg (r —z) is a monotonic
function of r, it follows from (4.6) that

lgrarg(r - 2\ = larg(r - z)\'EJGD larg (—2)] d|o- Yo+ -.

Therefore by (4.8) we have
# arg(C—z) ~ |a- 1T+ -.
Z,6n-y2

Together with (4.6) we have proved (4.1) for 2£ 71. For 2 £ 72, (4.1) can be
proved in the same way.
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NOWHERE DIFFERENTIABLE FUNCTIONS
CONSTRUCTED FROM PROBABILISTIC
POINT OF VIEW

N. KONO (Kyoto)

81. Berman’s principle

Since Weierstrass gave an example of nowhere differentiable functions,
many people have investigated various types of nowhere differentiable func-
tions.

In this paper, we will construct a class of nowhere differentiable functions
based on i.i.d. (independent identically distributed) random variables and
we shall prove a variety of irregularity of the functions including nowhere
differentability by making use of a notion of local times following Berman’s
idea. The notion of local times originated by P. Levy (cf. Ito-McKean [11])
plays a very important role especially in the theory of Markov processes, but
it is S. M. Berman [1] who first applied local times to investigate sample path
properties of a wide class of stochastic processes. The definition of local time
itself is a purely real analytic one. namely, a Borel measurable real function
/ defined on / = [0,1] maps the Lebesgue measure on / to 5? by

VI(EE) = |{<el/, f(t)eE)|, EesB
where |A| means the linear Lebesgue measure of a Borel set A and B is the

Borel field of §2. Here we assume that /j.f(1,E) is absolutely continuous with
respect to the Lebesgue measure, i.e.

Fif(1,E)= / aj(x)dx.
Je

Now we restrict / to A £ B{l), the Borel field on I. Then the induced
measure /r/(J1, E) is also absolutely continuous with respect to the Lebesgue
measure, i.e.

and in general we have

0~ otj(x, A) 'Eaf(x) ae. x£3,
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otj(x, A) faj(x,B)=al/(x, AUB) ae x£ RIfFAMNB =0.

We shall write aj(x,t) when A = [0,/].
Since aj(x,t) is a density function, we can choose a nice version satisfying
the following conditions:

Lemma 1 ([3], [9]). (i) aj(x,t) is right continuous and non-decreasing
in t,

(if) Qy(x,i) is B x B{l)-measurable,

(iii) almost every x, the support of the measure aj(x,dt) is carried by
{<il(<) = x),

(iv) for almost every t, for any £ > 0,
al(/(*)>[M +£)) >0 and Qj(f{t),[t-£,t])> O,

(v) for all J = subinterval with rational end points, aj(x,J) = 0 if x
the closure of {the range of f(t); t £ J}.

Definition 1. The above function aj(x,t) is called local time at x.

Berman [4] first pointed out the relation between the original function /
and the local times. In short the irregularity (regularity) of the original
function reflects regularity (irregulariy) of the local times. After S. M.
Berman we shall call it “Berman’s principle”. For example if / is a C1-
function such that {t £ /; f'(t) = 0} consists of isolated points, then

aj(x,t)y="JT .
im r

sMtj(s)=x

In this case, for fixed x, aj(x,t) is a step function in t and at the local
extremal points, aj(x,t) is divergent in x. So, it is very difficult to imagine
a real continuous function such that the function aj{x,t) is also continuous
in (x,t). The sample functions of a Brownian motion are such a case with
probability one. An example of a deterministic continuous function (not
a sample function of a stochastic process) was first “discovered” by Kdéno
[12]. Let P{t) = (x{t),y{t)) be the famous Peano’s surface filling function
[15], then f(t) = x(t) —y{t) is an example of a continuous function whose
a-f(x, t) is also continuous in (x, t). We will generalize this example to obtain
a class of nondifferentiable continuous functions and analyze them through
Berman’s principle.
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82. Construction of nowhere differentiable functions

It is well known that coordinate functions (x(t),y(t)) of the famous
Peano curve are stochastically independent as random variables on a prob-
ability space ( / having uniform distribution and I/2-Hdélder con-
tinuous, moreover [14] the sequence defined by

i@ = x(0), y2(t) = x(y(1)), eee, yn(t) = x(y(n-V(1)) ,

is i.i.d. having uniform distribution. From this fact we can easily observe
that Pn(t) = (yi(t),y2(t), we,yn(t)); t £ 1 maps / continuously onto the
n-dimensional cube [0, ITn ([17], [18]).

Since the above {yn} are not mutually orthogonal, we let

n(f) = Vn{t) ——

then {zn} isi.i.d. having mean 0 and variance 1/12 with uniform distribution
on [—1/2,1/2]. Therefore, for {an} £ 12,

(e]e]

™ /(<) = J 2 anZn®

71=1

converges not only in L2(1,dt) but also converges almost surely with respect
to the Lebesgue measure. Clearly, if {an} 6 f1, the series (*) converges
unformly and / is a continuous function and ifr = max{n; an/ 0} < + 0o,
then / is 2_Tn-Holder continuous. If {an} £ 12 but ~ i1, then by taking
account of Theorem 1, the image of / is [—60,+00], the extended real line,
and the cardinal number of the level set Lx = {t £ I; f(t) = x} is continuum
for all x.

To avoid triviality, we always assume that {an} £ (? and r = the number
of {n; an ¢ 0} is positive. Now we claim that / has local times satisfying
some regularities.

THEOREM, (i) / has local times otf(x,t) and
\a/(x,t) —al/(x,5)| ™ 6D\t —s|U2, VX, Vi, Vs

holds, where D = [a”T1! a = min{n; an " 0}.

(i) If r A~ 2, then aj(x,t) is continuous in (xt), and a/(x) £ Cr~2
(including the case r = 00).

(iii) For every subinterval J, aj(x,J) > 0 at every interior point x of the
set {f(t); t£1J).

(iv) If [an] £12 and 1x, then ay(x) > 0 for W £ 52
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(v) If there exists ¢ > 0 such that liminfn_*+00 «®n| * c, then otf(x) has
analytic extension in the domain |3z| < ce_1/2.

Proof. Let be the characteristic function of /, i.e.

JTj(e) — [ e‘errdt.
Jo

Then we have

-1 X0 ]
fTje) = [ T eieanx"wdt eieanzn(t)dt _
n=i
. Oan
— sin--—- .
2

(by independence). (Here ~sinO = 1) Now let
N(6) = {n; \6an\ » 2}.

(a) If limiei-"oo0 fiV(0) = 1, then the only one an ¢ 0, (say a), so/ has the
uniform distribution on [a/2,a/2] and

. f Ya, on [—a/2,a/2],
afix) = < .
(0, otherwise .

(b) If25 r < + 00, then 3#0 > 0, and for all |0] » BO we have N(0) ~ r.
Therefore it follows that

2

< < MJL. <

o1 < T g = T N g
nEN{6) neN(90)

From this estimation we have /t/(#) G L1(3?,d0), so there exists a continuous
density aj(x) such that

e‘sxaj(x)dx.

More precisely we have |[0|” 2/.if(0) G LI("R dO) and a/(x) belongs to the

class CT~2. If r — + 00, a simple modification tells us cxj(x) belongs to the
class C°°.
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Now we shall investigate aj(x,t). Set

sinB/2
) = 8/2

and

fif(8,t)= [ eie}™ds.
Jo

Then for iwifc —k9~N we have
*1* r(+)9~N /
Hj{8,tNik) =y / exp (iGai (x{s) - 1/2) +
\%

nas-"

fiona n(x(j/(n-1)(8)) - 1/2)

=2

Since x(i) and y(i) are self-affine functions (cf. N. Kéno [12]), for j9~N ~
=s = U + f)9_jV they are expressed by

X(s) = xJ+T"j3~Nx(9Nhj),

»(*) = Vi + Tnj3~Ny(9Nhj),

where Xj = x(j9_jV), t/j = y(j9~N), Tfcj and = + 1 or -1 and /ij =
=5 —j9~N.
Therefore we have
k-1 /e(i+1)9-N
=Y] exp {iOai(xj - 1/2 - Tfa X(9Nhj))) x
=0

J
(00] \Y
(O"cin (t [y(n~2){yj +T"JI3~Ny(9Nh:))p - 1/2) j dhj =

=2

l-1
= 9“* |T [/ exp(téli(aj- 1/2 + T~3"Ns)) da x
1=0 90X

X/ exp (?20é G (x(y(m~2)(t0 + TN,j3~Ns)) - 1/2~ ~ ds =
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k—1
= 9~n exp( 10uijXj —1/2)) exp(Tftjieai3~N/2)g(6ai3~N) x
j=o0

XJ exp Noa2(x(dj + T~j3~Ns) - 1/2) +

0o

+ieY/an{x{y(n-2y]+T¥Nj3~Ns)) - 1

n=3
lc—1
=9~ exp( Wai(xj —1/2)) exp(T~jidai3 N/2)g(sa\3 ~) X
j=o
(-1 f-(ii+i)9-
x E 3 exp (iffa2(x(s) - 1/2) +
ji=pi N9~

+1 A a0 (x(r(n_2)(s) - 1/2) A fbV

=3

where
Pi9-N = yj + 3~N(T]'jj —1)/2, = yj +3~N(Tftj + 1)/2, gi-pi = 3N.
By the same procedure ive have

fc-i
ftf(0,tNik) = 9_.iV~  exp(;i9al(xJ - 1/2 + TAR~N/2)) g(6al3~N) x
3=0

X[ (3_7\/ E  exp(r0aT+1(x,T - /2 + T A m3-w/2))ff(0am+13-)j.
m=1 jm —Vm

Denoting by x the indicator function of the interval ' = [—1/2,1/2], Fourier
inversion formula tells us that if aj ¢ O, then

3~N (x - ai(xk-i - 1/2 + PN, 13-w)/2

_INn
(INK-IANKD) v g

97 1 1

*I‘I * E
jm—Pm
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Therefore

Jm—Pm
In general, we have
Since is non-decreasing int, for9 N 1~ t—s ™ 9 N there exists
K such that =s <t = tNk+l and we have

- af{x,s) N o/(®5ijv,fcti) - a/(a-',iyv,A-i) =
= af(x,(tN,k-utN,k+1]) »
[2X 3'"AKTF1<6|t- s|l/2a<d-1 (V®).
The direct expression for a/(x) or af(x,t~”) yields the proof of (iii) and

(iv).
Now let us prove (v). Setting N'(6) = {n; \Ban\”" 2e}, we have

a 2 . #a,
Iw>*)| =N

Since for Vf > 0, 3nc, Vri®  we have \an\ " (c —£)/n, it follows for n0 =
= [(c —e)\B\1(2e)L > n >  that

|[amo] ~ (c - £)|0}/n = (nO/n)(c - £)|0|/no " 2e.
This means #N*(6) n0- n£. Hence for |O] » 2enf(c —F)_i we have

1Z)6»)] ~ e-(c-5)[fl|/(2e)+nt+1

So finally for 0 < b < (c —e)/(2e), we have

This yields the proof of (v) by Berman ([2], Lemma 8.1).
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83. Relation between local times and the original function

In this section we shall sumarize the known facts about the relation
between regularity of local times and irregularity of the original function.

Theorem A. (a) Ifthe local time aj(x,t) is continuous int for almost
every x, then
(i) (I8], Theorem A-(a.))

ap- lim --—— = +00 ae. t6 [01],
s — — s

where «ap- lim” stands for approximate limit, for the definition see [16],
p.220.
(ii) ([8], Theorem A-(b)j the level set

L/(t) = {O0gagl; f(s) =f(t)}

is uncountable for almost every t, and

(iii) ([6], Theorem \) for almost every t, f is not locally increasing or
decreasing at t.

(iv) fij]) Let f be a continuous function, then on every subinterval J C
C [0,1], / bhas multiple image of order m, all m » 2, i.e. J D 3I\ e, /m
disjoint invervals such that

NG >e

(b) If the local time aj(x,t) isjointly continuous, then

(1) ([3], Lemma 3.1, in the original statement the approximate limit is
taken as a bilateral limit, but the proof actually gives one sided limits.)
For all t,
ap- lim f(t)-1(s) 1 +00,
[t I<- s\
. T -ns)l
ap- lim + 00
s1t n-d
hold.

(i) ([38], Lemma 3.2) Let f be continuous, then {x; ji{i; f(t) = x} is
countable} is noivhere dense in the range of f .

(c) ([6]j Let f be continuous and aj{x,t) be also jointly continuous.
Moreover, ifaj{x,l) is positive on the interior of the image of | by f, then
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/ is nowhere locally incereasing or decreasing in I. Combining this and (b)-
(i), we obtain that f is nowhere differentiable in the sense of Weierstrass (it
does not allow /'(<) = + oo or f'(i) — —o00).

(d) Ifaj(x,t) isjointly continuous and Holder-continuous in t, i.e. there
exist Q< B < 1, D >0, such that

la/(x,t) —o/(x,,5) ~ D\t —s\3, for all x,t,s

holds, then
(i) f[5], Theorem (10.1),) for all t

artim VML~ 0 w1

holds,
(i) (|5], Lemma 5.1,) let f be continuous, then

max{f GJ\ f(t)} - min{< GJ:f(t)} ~ [J|! 3/D

holds for all sub-intervals J ~ |, that is, at each point t, the graph of f
is not contained in any domain {(u,v); u ™ t, \v- f(t)] » a(u—i)7} nor
{(uu); m ™ t\v - f(t) i a{t—u)7} (for alla >0, 7 > 1- R) with the
vertex (t,f(t)) and

(iii) ([5], Lemma 6.2.,) let f be continuous, then

Hausdorff-dim Lx * B for x G {W aj{y) / 0}

(aj(x,t) is not necessarily continuous in x).

We remark that if / is a-HOlder continuous, that is |f[t) - /(/>)] *
N D\t —s\a and otf(x,t) is bounded at the neighberhood of x, then for all
X,

Hausdorff-dimLx i 1- a

holds ([5], Lemma 7.2).
As for the connection between the Fourier transform of a and the Holder
continuity and the variation of /, see [1], Lemmas 4.1 and 4.3.
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84. Conclusion

From the Theorem and Theorem A(c), (d-iii), if r ~ 2 and {a,} £
£ i1, then / is a continuous nowhere differentiable function in the sense
of Weierstrass and

n—1

more precisely, for every subinterval J, the Hausdorff-dimension of Lx —
—{t£<, /(0 =a} ™ 1/2 at the interior point x of the set {/(<); 1£</}.

Example. FoOr the Peano curve (x(<), y(t)) let

then / is nowhere differentiable and
Hausdorff-dim Lx = -, V]a] < (|« + |6]) /2.

Since (x(t),x(y(t))) and (x(t),y(t)) have the same probability laws, the
above x[y(t)) can be replaced by y(t).

Acknowledgment. The author is greatly obliged to the referee for
letting him know Sierpiiiski’s papers.
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RANGES OF POLYNOMIALS WITH CURVED
MAJORANTS

XIN LI (Orlando)

Let Vn denote the set of real polynomials of degree at most n. Suppose
w(x) » 0on [1,1]. Define

Cn'e={Pn € Vnl|u>X)pn(z)| ~ 1, for - 17~ x~" I}.

According to Rahman [5], a polynomial pn E Cn(w) is called a polyno-
mial with curved majorant l/ru(.r). (We find it more convenient to use
[M;(@;)pn(K)| A 1 than |pn(Ek)| 5 P(x) to define the polynomials with curved
majorant in this paper.) This paper is concerned with the ranges of polyno-
mials in Cn(w), i.e., we want to describe the set

Kn{w) := {p,,(x) IPn € Cn(w) and x ER}

in terms of w. Since pn E Cn(w) and r E [,1] imply rpn E Cn(w), we need
only to determine the boundary of 'JZn(w) which is given by

B = N, x ER
W(x) pesdulgw) Ip(.n)|

and - B w(x).

In the case when w(x) = (1 —x2) ' , Newman and Rivlin obtained the
following result which can be stated in our notation as follows.

Theorem 1 ([!'])+ Ifw(x) = (1 —x2)172, then

o 8 x E

@B 2n+1l) aB2(n+l)]
\Un(x)\, XE  cosm+) am2(nH)

where Un(x) is the n-th Chebyshev polynomial of the second kind.

Remark. The following observations will be helpful in formulating the
results for more general weight functions.

(i) The end points of the interval —cos 2(n+) 7008 p(n+l) are the first
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and the last extremal points of (1 - x2)1"2Un(x) over the interval [-1,1].
(i) The polynomial

2»+1(n+ )ArA
is the n-th weighted Chebyshev polynomial with respect to the weight
(1 —x2)Y/ 2 over the interval [—1,1].

Our goal is to find Bw(x) for more general weights w(x). In [3], we
considered the case when d2/dx2(1/w(x)) is continuous in (—1,1). To
restate the result in [3] which will be used in this paper, we need to introduce
the weighted Chebyshev polynomials and related concepts.

For a continuous weight function w(x) on [-1,1] with w(x) > O for
x G (-1,1), we know that (cf, e.g., [3, 82]) there exists {Tn(x; in)}" _Q
Tn(x;w) =xn+ ... GVn,n—0,1,2,..., satisfying

max_ Tn{x\w)w(x)\ inf max Ip(x)w(x)\.
se[-1,i] { W) p(x)=xn+ mmENh x€[-1,1] POIW(X)

The polynomial Tn(x;w) is called the n-th weighted Chebyshev polynomial
with respect to w. By Chebyshev’s maximum equioscillation theorem, there
are K—0,1,..., m, such that

%)

-l Ain<U-i<...<bil
and
Tn(zk,w) = (-1)€ max 1Tn(x; u;)u)(x)], K=0,1,..., n.

We call {£fc{ic=0 a set of points of equioscillation of Tn(x,w)w(x). Generally,
such a set is not unique. Denote

£,,(n) = supEn and £0(rc) = inffo
among all sets of points of equioscillation. Define
Tn(x;w) = Tn{x;w)/\\TnwA\.

Theorem 2 ([3, Theorem 3]). Let tu: [1,1] —»[0,00) be continuous,
w(x) > 0 for x G(—1,1) and d2/dx2[l/w(x)) continuous in (—1,1). Given
r G(0,1), there exists N —N(r,w) > 0 such that, for n*. N,

£n(rc) < -I', lo(n) > T
and
[/w(x), if x G{—r),
\Tn(x,w)\, if x G (-00,£,,(n)] U[|o(«),00).
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As suggested by the Question at the end of Section 2 in [3], however, we

do not know what happens over (£(n),—H U [r,£o(ft))- The result of this
paper will fill this gap for certain classes of weight functions.

Now, let us define the weight functions we will consider.

Let p be a real polynomial of degree m with p{x) > Oon [-1,1]. Following
Freund [2], set

SO(r) = 1, Sil2(x) = Sx + 1, Si(x) = iy/l —x2

and
w (X) = ISJ)N/ y/p(x), j- 0,1/2,1,

on [, i].
Let {afc}™=1 be the zeros of p. If we write

1 1 -
x=g§v+v~ Ini < 1
and
fc=- ak+ (lad < 1), k- 1,2.... m.
and set
m
h(v) := - af),
fc

then h is a real polynomial of degree m and

p(x) = pOh(v)h I -

with p0 > 0. Furthermore, if we define, forj = 0.1/2,1,

y/pd 11

T 2sj(x)
then we have the following proposition.
P roposition 3 (cf., e.g., [1, 2]). Foreachj (j =0,1/2,1). Tnj is a real
polynomial in x and the degree of Tnj is given by
n, if n”™U.

Tnj = g
degree Tnj m —n—2j, if 0Un <Uj
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where _ _
u_ 30, if (j,m) =(1,0),
3 \[m/2 +1/2 —/], otherwise.
When v = (< E [0,7r]), one can write
cos((n +j - m2)<p+'i(ip)), if /=012,
sin((n+/ - m2)<p+7(f)), if j=1

where the function 7:[0,4] —R is defined continuously by

Vh(v) _  TT w-

wy li(l/d) i 1- akv

and 7 (o) = 0. Then 7 (7) = w7r/2, and 7 = 0 if m = 0. We have

Proposition 4. The function 7 is differentiable on (0,n). Furthermore,
i/m/0 then

INn<f) > 0, F € (0,7I).
Proof. For v = e“" (f E [0,7r]), write

ﬁrA- =e7*Vv) (|7f0) - 7fp)| < 2w), T=1,2,..., m,
then I m —
7(F)=2X]7%)- 2S 7*0)
fe=I1

lc=I
Now
dlikiF) _  1- \ak\2
dip \1-ake™\2'

so 7\ip) exists on (0,7T) and is positive unless m —O0 (in this case 7 = 0).

By Chebyshev’s maximum equioscillation theorem and the above repre-
sentations, it can be verified that (cf. [1]) ifanj denotes the leading coefficient

of TnJ then Tn(x;wj) = Tnj(x)/anj.
Define fk,n (k =0,1,...,n; n =0,1,2,...) by means of

(n+21- m/'2)fkn+ 7(",n) = K+ 2

and G (0,T]. Then (cosyn}/_0is the only set of the equioscillation of
T (x)wi(x) over [1,1]. Our main result is the following theorem.
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Theorem 5. For w\(x) as defined above, there exists N = N(w\) >0
such that, for n > N, we have

I/w1(x), cos*nn ~ X< COSfon
ITTQi(2)1, otherwise.

Remark. Sharp estimates for the growth along the imaginary axis
of polynomials with curved majorants I/wj(x) (j —0,1/2,1) are given by
Freund in [2, Corollary 1].

In light of Theorem 2, we need only to prove Theorem 5 for those points
x e (cosEni,,cosEmM/ITJ] U [cos£0,m',cos£o,n) with m*= [m/2]+ 1 (taking r =
= rnax(cosEmiim/,cos£o,m") in Theorem 2). The idea of our proof is essen-
tially a refinement and generalization of that of Newman and Rivlin in [4].
We need the following lemmas.

Lemma e. The following assertions hold.
() 6,7i » 6,4~ & k—0,1,...,71 2.
(ii) 6,71~ 1njk—0,1,...,4 2.
@iii) //'n™ m/2, then 6,n < z1/2.

Proof, (i) Ifs n” & ,n-i, then 7(s ,n) » 7(6,n-i) by Proposition 3.
Now

@+ 1- m/2)fkn > (N - m/2)fk,n ™ (N - M/2)6,n-i,
SO

kn+n/2 = (77+ 1- m/2)fkin + 7 (Cfc.n) >
> (77- TM2)0- , +7(6,77-0 = AT+ n/2,

which is a contradiction. Thus 6,n < 6,n-i*
Similarly, note that 6,n-1 = >kwould imply

kn +a2 = (n- mi2)Ek,n-i +7¢6,n-i) ~(n~m/2)n +(m/2)n,
which is impossible. Hence we have established (i).

(i) Assume 6+1,n ™ 6,n-b then by the definition of 6,n-i,6+i,n and
Proposition 3,

kn+n/2 =(n- m/2)6,n-i +7(6,71-1) ~ (n - m/2)6+i,n + 7(6+1,n) =
= (c+ \)n-fF{n/2) — +:, G

So 6+i,n =  which contradicts (i).
(iii) In fact, by the definition of 6,7r,

(n+ 1- nn/2)6,71 + 7(Co,«) = zr/2,
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so we have
(n - m/2)EOn + 7(io,n) = */2 - Foxe

The left side of the equality is positive if n /Z m/2. O
For 1> 0, define

5n(V?) := Sn{™\ /1) = uil(cos9)I[T,, i(cos<yp) + AT,,_i,i(cos )] .

We have

Lemma 7. When n m/2, the relative extrema of |S,(y?)| on [0,7] is
strictly decreasing.

P roof. Define
Cn(p = cos((n + 1- m/2)(f + + Acos((n - m/2)p+ 7(y>))

and
1507 T * n(\B) I+
Then
(<) = e[(nH-m2+Y (V)] pe![(«-To 2%+1(Y]
: Ie“'5+A| = (1+A2+2ACOS

and
Is.(v>)I ~ (|[C'n(")|2+ [6',(YD)[2) V2 = py>).
Now we claim that

(1) sgn Sn(zk,n) = - sgn )= (-1 )k,
fork = 0,1,...,n —1 In fact,

su(k,n) = (-D*A[(n - m/2) + 7,(6,n)] sin&,n
and

5n(ifc,n-i) = (-1)'+1[(n + 1 - m/2) + 7,(ifc.n-i)] sinifc,n-i-

Also, G (0,m), so (1) holds for A=0,1,..., - 1
Similarly, one can check that

2 sgn <?,(&,,,) = -sgnCn(ifcn x) = (-1 )t
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fork = 0,1,..., n —1 Therefore, from (1) and (2), it follows that for each «
(xk=0,1,... ,n - 1), there exist (k,n,Vk,n e (Zk,n,Zk,n-1) such that Sh((/,,,,) =
= 0 and Cn(rjk,n) = 0. Each is a relative maximum point of |5,,(</j)|.

Furthermore, since |Sn(yj)| has exactly n relative maxima over [0,7r], the set

{Gc,n}=0 consists °f all the relative maximum points of | (M)l over [O,Tr].
Now at n {k = 0,1,... ,n - 1) there holds [Sn(»>7*n)| = /(%,,,). But /
is strictly decreasing over [0,7r], while

O C Jfen) > [5'n(CAr,n)| A~ \Sn(rik,n)\ = f(Vk,n)-
So we must have m,n > Ckn Hence
*SnCren)l = |[En(»?*,n)| = f(Vk,n) > f(Ck+1,n) ~ [*Sn(GfcH,n)l>

for k —0,1,...,71 —1 O
Now we can give the proof of Theorem 5.

Proof of Theorem b. AS remarked after the statement of Theo-
rem 5, we need only to consider the case when > G (cos£ni,,,coSEm/>1] U
U [cos £o,m', cosxa'on) =: /_ U /+. Now, assume »0 G/+, then

H0” cos0 with 0 G [Eon?Eo,m)-
We need to construct pg GCn(w) such that
Ip#(c0s0)| = l/u>(cos0).

From Lemma 6,

fo,n ~ £o,n—1 eee K £0,m")

so there exists jg with m" A j$ ~ n such that

Define

_cos[(n+1- m/2)6+ 7(0)] (n + 1—m/2 + 7'(0))
8 cos[(n —m/2)0 + 7(0)] (n —m/2 + 7'(0))

and set

" 0%)«) = T'je,1(>K) + "g:l';:,e_],l(»() .

rje,i(cos0) + A6TJe bl(cos0)
Then, with x = cos<>,

0 = Q)

NeLOPe(H) = ¢ A
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By Lemma 7 and the definition of

*ér[]-%),(l] [tni(a.*)j96(s;)] = I mi(cos 6)pg(cos 0)1.

So

Pe 6 i Cn(wi)
and

p${ cosfl) = I/ini(cos B).

By considering WA{—al), we can obtain the result for the case when x £ /_.
This completes the proof of Theorem 5. O

Similar results can be proved for the weight functions w0 and w1lj2. The
details are omitted here.

References

[1] N. I. Achiezer, Theory of Approximation, Ungar (New York, 1956).

[2] R. Freund, Some problems of complex polynomials, Constr. Approx., 4 (1988), 111-
121

[3] X. Li, On the size polynomials with curved majorants, J. Approx. Theory, 76 (1994),
93-106.

[4] D. J. Newman and T. J. Rivlin, On polynomials with curved majorants, Canad. J.
Math., 34 (1982), 961-968.

[5] Q. I. Rahman, On a problem of Taran about polynomials with curved majorants,
Trans. Amer. Math. Soc., 163 (1972), 447-455.

(Received September 22, 1992)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CENTRAL FLORIDA
ORLANDO, FL 32816

U.S.A,

Acta Matkematica Hungarica 65, 199[]



Acta Math. Hungar.
65 (3) (1994), 305-311.

SEMI-NORMAL SPACES AND SOME
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Dedicated to Professor Akihiro Okuyama on his 60th birthday

1. Introduction

Arya and Bhamini [1] and Dorsett [7] have introduced the notion of semi-
normal spaces by using semi-open sets due to Levine [9]. Recently, in [2], the
concept of semi-generalized open sets has been introduced as a generalization
of semi-open sets. In the present paper, we obtain further characterizations
of semi-normal spaces by using semi-generalized open sets. Moreover, in
order to obtain preservation theorems of semi-normal spaces, we introduce
the concepts of pre 55-continuous functions and pre sg-closed functions.

2. Preliminaries

Throughout the present paper, spaces always mean topological spaces on
which no separation axioms are assumed unless explicitly stated. Let A be a
space and A asubset of X . We denote the closure of A and the interior of A
by CI (A) and Int (A), respectively. A subset A is said to be semi-open [9] if
there exists an open set U of X such that U C A C CI(U). The complement
of a semi-open set is said to be semi-closed. The family of all semi-open
(resp. semi-closed) sets of X is denoted by SO(X) (resp. SC(X)). The
intersection of all semi-closed sets containing A is called the semi-closure of
A [3] and is denoted by sCI(A). The semi-interior of A, denoted by sInt(A),
is defined to be the union of all semi-open sets contained in A.

Definition 1. A subset A of a space X is said to be semi-generalized
closed (briefly sp-closed) [2] if sSCI(A) C U whenever AC U and U G SO(A).

Every semi-closed set is sp-closed but the converse is false [2, Example
3]. The complement of a sg-closed set is said to be semi-generalized open
(briefly 55-open) [2]. A subset A is 55-open if and only if F C sInt(A)
whenever F G SC(A) and F C A [2, Theorem 6].

Definition 2. A function :X —»Y is said to be semi-continuous [9]
(resp. irresolute [4]) if /-1(E) G SO(A) for every open set V of Y (resp.
V G SO(y)).
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It is obvious that semi-continuity is implied by both continuity and
irresoluteness.

Definition 3. A function f: X —*Y s said to be semi-closed [10] (resp.
presemiclosed [11]) if f[F) G SC(T) for every closed set F of A (resp. F G
G SC(X)).

Definition 4. A function f: X —*Y s said to be sg-continuous [12]
(resp. sg-irresolute [12]) if / _1(F) is s"-closed in X for every closed (resp.
sgr-closed) set F of Y.

It was shown that semi-continuity implies ~-continuity but the converse
is false [12, Example 3.4].

Definition 5. A space X is said to be semi-normal [7] if for each pair
of disjoint semi-closed sets A and B, there exist disjoint U,V G SO(A") such
that AC Uand B C V.

In [1], Arya and Bhamini called semi-normal spaces s-normal. However,
in this paper, we shall use the term “semi-normal” in the sequel.

Definition 6. A space X is said to be semi-Ti [2] if every .*-closed set
of X is semi-closed in X .

3. Semi-normal spaces

We shall obtain the further characterizations of semi-normal spaces by
using s</-open sets and sg-closed sets.

Theorem 1. The following properties are equivalent for a space X :

(a) X is semi-normal;

(b) for each pair of disjoint A, B G SC(A"), there exists disjoint sg-open
sets U and V such that AC U and B C V;

(c) for each A G SC(A") and each U G SO(A") containing A, there exists
a sg-open set G such that A C G C sCI(G’) C U;

(d) for each A G SC(.A) and each sg-open set U containing A. there exists
G G SO(AT) such that A C G C sCI(G) C sInt({7);

(e) for each sg-closed set A and each U G SO(A") containing A, there
exists G G SO(A") such that A C sCI(A) C G C sCI(G") C U;

(f) for each A G SC(A") and each U G SO(A’) containing .4. there exists
G G SO(AT) M SC(.Y) such that A C G C U.

Proof, (@) = (b). This is obvious since every semi-open set is .sg-open.

(b) = (c). Let A G SC(A’) and U G SO(A") containing A. Then 4T
MAT—C/) = 0and X —u G SC(A’). There exist s"-open sets G and V such
that ACG, X —UCV, and GNV = 0. Therefore, we have ACG C X —
—V c U and hence sCI(G) C sCI((A —V)CU since A —I is .sg-closed and
U G SO(A"). Consequently, we obtain A C G C sCI(G’) C U.
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(c) = (d). Let A £ SC(X) and U be a sg-open set containing A.
We have A C siInt(f/) [2, Theorem 6] and sInt(i7) £ SO(X). There exists
a sg-open set V such that A C V C sCI(F) C sInt(i/). Put G = sInt(Vr),
then we obtain G € SO(A) and A C G C sC1((j ) C sInt([/).

(d) == (e). Let A be any sg-closed set and U £ SO(A’) containing A.
Then, we have sCI(A) C U and sCI(A) 6 SC(AT). Since every semi-open set
is sg-open, there exists G £ SO(A) such that A C sCI(A) C G C sCI(G) C
C u.

(e) = (f). Let A £ SC(-A) and U £ SO(A) containing A. There exists
V £ SO(A") such that ACV C sCI(E) C U. Put G = sCI(P), then G is
semi-open and semi-closed [6, Proposition 2.2] and A C G C U.

(f) = (a). Let A and B be any pair of disjoint semi-closed sets. Then,
we have A C X —B £ SO(X) and there exists U £ SO(A") N SC(A") such
that AC UC X —B. Now, put V =X - U, then we obtain ACU, B C
CV £ SO(A), and UV = 0. This shows that X is semi-normal.

4. Pre s™-continuous functions

In this section we introduce a new class of functions called pre
sg-continuous functions.

Definition 7. A function /: A —Y is said to be pre sg-continuous if
is sg-closed in A for every F £ SC(F).

It is obvious that f: X —Y is pre s</-continuous if and only if / - 1(V)
is s</-open in X for every V £ SO(T). From Definitions 2, 4 and 7, for the
properties of a function we obtain the following relations.

s™-irresoluteness
irresoluteness ==> pre s<?-continuity

continuity =I> semi-continuity =>  sg-continuity
Diagram |

Remark 1. By the three examples stated below we obtain the following
properties:

(a) none of the implications in Diagram | are reversible;

(b) s"f-irresoluteness, irresoluteness, and continuity are pairwise indepen-
dent.

(c) pre sg-continuity and continuity are independent of each other;

(d) pre sg-continuity and semi-continuity are independent of each other.

Exampte 1. Let X = {a,6,c}, r = {O,A, {a}, {b},{a,G}} and /:
(A, r) — (A, t) be a function defined as follows: /(a) = /(6) = a and
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/(c) = c. Then / is continuous but it is not pre s</-continuous since {u} G
G SC(X,t)and / _1({a}) = {a,6}is not sg-closed in (Xf,r).

Exampte 2. Let X = {a,b,c}, T= {0, X, {«}, (6), {a,6}} and < =
= {0, X, {a}, {6,c}}. Let /: (X,r) = {X, a) be the identity function. Then
[ is irresolute but it is neither sg-irresolute nor continuous. There exists a
sg-closed set {a, 6} in (X, a) such that / _1({a,6}) is not .s</-closed in (X, r).

Example 3. Let X = {a,b,c}, r = {0, X. {a}, {6,c}}. and a = {0, X,
{a}, {a, b}, {a,c}}. Let /:(X,1) —=*(X,cr) be the identity function. Then /
is sg-irresolute but it is not semi-continuous since / -1 ({a,c}) 0 SO(X,r).

THEOREM 2. Ifafunction f:X —*Y is pre sg-continuous and presemi-
closed, then f is sg-irresolute.

Proof. Let K be any sg-closed set of Y and U G SO(X) containing
/~1(X). Since / is presemiclosed, it follows from [8, Theorem 3.5] that
there exists V G SO(T) such that K C V and /-1(E) C U. Since K is

s(/-closed in Y, we have sCI(A") C V and hence / _1(sCI(E)) C f~1(Y) C
C U. Since / is pre sg-continuous, /- 1(sCI(E)) is s"-closed in JT and
hence sCI(/_1(A")) C sCI(/-1(sCI(K))j C U. This shows that f~ 1(K) is
si*-closed in X . Therefore, / is st/-irresolute.

The following two corollaries are immediate consequences of Theorem 2.

Coroltary 1 (Sundaram et al. [12]). Every irresolute presemiclosed
function is sg-irresolute.
Corottary 2 (Sundaram et al. [12]). Semi-Ti spaces are preserved
2
under irresolute presemiclosed surjections.

Proposition 1. Let X beasemi-Ti space. A function f: X —=*Y is pre
2
sg-continuous if and only is f is irresolute.
Proof. Suppose that / is pre sg-continuous. Let K be any semi-closed

set of Y. Then f~I(li) is s”-closed in X and hence f~1(K) G SC(X) since
X is semi-Ti. Therefore, it follows from [4, Theorem 1.4] that fis irresolute.

The converse is obvious.

Coroltary 3 (Sundaram et al. [12]). Iff:X —»Y is sg-irresolute and
X is semi-TZi, then f is irresolute.

Theorem 3. Iff:X —mY is apre sg-continuous presemiclosed injection
and Y is a semi-normal space, then X is semi-normal.

Proof. Let A and B be any disjoint semi-closed sets of X. Since / is
a presemiclosed injection, f(A) and f(B) are disjoint semi-closed sets of Y.
By the semi-normality of Y, there exist disjoint U,V G SO(T) such that
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f(A) C U and f(B) CV. Since / is pre sg-continuous, / _1(i/) and f~1(V)
are disjoint sg-open sets containing A and U, respectively. It follows from
Theorem 1 that X is semi-normal.

Corottlary 4 (Arya and Bhamini [1]). The inverse image of a semi-
normal space under an irresolute presemiclosed injection is semi-normal.

5. Pre sg-closed functions

In this section we introduce a new class of functions called pre sg-closed
functions

Definition 8. A function f:X —yY is said to be pre sg-closed (resp.
sg-closed [5]) if /(F) is sg-closed in Y for every semi-closed (resp. closed)
set F of X .

By definition 3 and 8, we easily obtain the following diagram:

presemiclosed pre so-closed
closed semi-closed sg-closed
Diagram 11

Remark 2. By the two examples stated below, we obtain the following
properties:

(a) none of the implications in Diagram Il are reversible;

(b) a continuous closed open surjection need not be pre sg-closed;

(c) closedness and pre sg-closedness are independent of each other;

(d) semi-closedness and pre sg-closedness are independent of each other.

Example 4. Let f:(X,r) —=(X,0) be the same function as in Example
2. Then / is pre sg-closed but it is not semi-closed. Moreover, /-1 is
presemiclosed but it is not closed.

Example 5. Let X = {a,b,c,d}, T = {O,A,{a}, {(/}, {a,</}}, Y —
= {a,b,c}, and 0 = (0,¥, {a}} . Let f: (X,r) —»(¥,0) be a function defined
as follows: /(a) = f(d) = a, f(b) —b and /(c) = c. Then / is a continuous
closed open surjection. However, / is not pre sg-closed since {a} G SC(2f,r)
and /({a}) is not sg-closed in (Y ,a).

Proposition 2. Iff'-X —+Y¥ is an irresolute pre sg-closed function and
A is a sg-closed set of X, then f(A) is sg-closed in Y.

Proof. Let A be asg-closed set of X and V G BO(Y) containing f(A).
Since / is irresolute, we have A C f~I{V) G SO(A) and hence sCI(A) C
C ryy)- Since / is pre sg-closed and sCI(A) G SC(.Y), /(sCI(A)) s
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sg-closed in ¥ and /(sCI(A)) C V. Therefore, we obtain sCI(/(A)) C
C sCI(V(sCI(A)) » C V. This shows that f(A)is s"-closed in Y.

Proposition 3. A surjective function f:X —%Y s pre sg-closed if and
only if for each subset B of Y and each U G SO(.Y) containing f~1(B),
there exists a sg-open set V of Y such that B CV and /_1(¥) C U.

P roof. Necessity. Suppose that / is pre sg-closed. Let B be any subset
of ¥ and U G SO(.Y) containing f~I(B). PutV =Y —f(X - U). Then, V
is 05-open in Y,B CV and / _1¥) C U.

Sufficiency. Let F be any semi-closed set of X. Put B =Y - f(F), then
we have f~1(B) C X - F G SO(A). There exists a sg-open set ¥ of ¥ such
that B CV and / -1(¥) C A' —F. Therefore, we obtain f(F) =Y —V and
hence f(F) is s</-closed in ¥. This shows that / is pre s</-closed.

In Example 5, (A',r) is semi-normal, (¥,0) is not semi-normal, and
f:(X,r) —=(¥Y,0) is a closed irresolute surjection. Therefore, semi-nor-
mality is not preserved under closed irresolute surjections.

THEOREM4. If f:X —*Y is apre ui-closed irresolute surjection and X
is a semi-normal space, then Y is semi-normal.

Proof. Let F and K be any pair of disjoint semi-closed sets of ¥. Since
/ is irresolute, f~1(F) and f~1(K) are disjoint semi-closed sets of A'. By
the semi-normality of X , there exist U,V G SO(A") such that f~1(F) C U,
f~x(K) C Y, and UMY = 0. By Proposition 3, there exist sg-open sets G
and H such that FC G, K CH, f~1(G) C U, and f~1(H) C¥. Since /
is surjective and UMY = 0, we have G NMH = 0. It follows from Theorem 1
that ¥ is semi-normal.

Corottary 5 (Arya and Bhamini [1]). Semi-normality is preserved
under presemiclosed irresolute surjections.

Acknowledgement. The author is grateful to the referee for many
helpful comments that improved the presentation of this work.
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NOTE ON THE LOWER ESTIMATE
OF OPTIMAL LEBESGUE CONSTANTS

R. GUNTTNER (Osnabriick)

1. Introduction. Let X:-1 ™ X, r <x12< ... < X" 1denote
an array of n arbitrary points in the interval [4,1]. Given the values of
some function / at these points, it is well known that there exists a unique
polynomial Pn_j[/](X, x) of degree at most n —Lsuch that Pn-\[f](X, x*) =
= f(xk), k= 0,1,2,..., n —1 We may write this interpolating polynomial
in the Lagrange form

- M1

Pn-i[f](X,x) = V /(a:f) -1k(X,x), where /®|(X,X) = trr B
0
rgox

The Lebesgue function

n—l

Ln. x{X,x):= E|/* (X »(

and the Lebesgue constant

An_i(X) := max Ln-i(X,x)

are of central importance in the theory of interpolation.

It is known by Luttman and Rivlin [8] that the Lebesgue function
Ln-\(X,x) on each of the intervals (o, 1), (8%, o), (kr, Xi),... is a polyno-
mial, which we denote by L ~ 1(X, X), LA (X, »x), LA X, x),..., possessing
there a single maximum ald1(X),aJ21(X),a|R1(X), ... (n > 2), respec-
tively. Let further

An-iPO = min <

A, _i(X) :

max

Of course we have An_i(X) = A,,_i(X).
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314 R. GUNTTNER

It is an open question to get the exact value of the optimal Lebesgue
constants

MT,_1 = minAn_i(X).

By the Erd&s conjecture, now verified by Kilgore [7], de Boor and Pinkus [1],
we have

(i) a® M A n-Jix)

for arbitrary X .
2. The statement. In [10] Vértesi proved the famous result

TiiP+0 (b neven,

(2) 0 >n; 1 - loge - x >
Klogn) 7rn + 0 (’I\r)/ s N Odd‘
where the constant x is defined by
2/ 4
(3) X= -\ 7+ log o 0.5212...,

(7 = 05772 ... Euler’s constant).

In [11] the upper estimate was improved to 0( (loglog n/ logn)2). For a
general survey on this topic see [12]

In this note we focus attention on the lower estimate in (2). As it was
already obtained in [5, p.513] we have

A* 1 - -Tlogn -x>0 (n=1,2,3,..)).

In view of (1) we have A*_a ~ An_1(T). Brutman [3] proved that An_1(T’) =
= Am_i(T), m = E which of course means that (n even)

(4) n_t N Ami(T), m= "
From [6] (theorem 1) we know

(5)
4943

- — + —[7 + 4+ —
Am |(r)>)KIogm T{'? |Og)§j 7omz  172800md4’ m—1,2,3,...

If n is even we easily get from (3)-(5) the result cited in the following theorem.
The purpose of this note is to prove this result if n is odd, i.e. to verify the
following
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Theorem.

N | T 49173
M 109N - X > e 1080004

3. Proof. Let T denote the zeros of the Chebysev polynomials, thus
T: Xk=cos-----—r-]--, k=o,l,....,n —1

In view of (1) and our preliminary remarks it is sufficient to prove that

2 T 49713
(6) K-TT)> -i°gn + x+ ” °dd-

From [5] (Section 4) we derive

()
2[23 1
_ . 1 (2k + nIT
An-i(7.)= A Ti1(T yan. 1(T)- 2e E +E o cot A )
*=»-L?J fe=L?2J
If n is odd, then [fJ = therefore by (7) we have to deal with
1 (2k + 1)7T
(8) N ﬁ
] n+| 1
4 (T T (rr )T (Tr+ 4)T
T\ 500t grF OOt FCOta

(2n —3)T 1 2n —nrT
4n + 2 cot 4n

+

We make use of the well known trapezoidal rule

@ Q (f)=h -/(a)+/(a+h)+/(a+2h)+..+Fb-h+-/(&)

and the error estimate (cf. [2], p.176)

10y QITf) = £ f(x)dx++h2[f (b)-f'(a)] - b~ h 4-f(4 a
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(assuming to be continuous on [a,6]). Considering /(X) = cotx on the
interval [f,f] we know that / » Oand f — —(1 +/2) ™ 0; by further
differentiation of /' it can be seen that /(2) O, N, ~ 0. From

(7)—10) this yields

nn_x(T
n

m_
f2un
cot xdx — cot

4
A i — ' cot' ( -
An_i(T)— 12n2 V4 4n/ {a

T T
= An_i(T)---flllzcotxdxH—4 //2 cot xdx-
TJI TJn_JL

-1
+
1202 sin2(f-7i)  sin2i

’<I
:An_i(T)----2I092H—4 / tanxdx+—-'{;\, >
T X0 12n sin2(f-ii)  sin2l
> An_i(T 2 + 4 I_x dx + " 1-2
_ | ( ) ---']JOQ Tio 12n2 ( - )

T T
An-1(T) ——|ng + gn2 12n2-
We deduce from this
(in A.- (r)>A.-,(r)-|log2 +7

Now (11), (5) and (3) yield (6).

4, Remarks. The theorem was proved independently by W. Stolzmann
[9] developing and using an asymptotic expansion of

N
Sa:= Ly ,cot(-z-l(-I--l-zf-t (@GN, 1~ a”~n).

" k=0
The proof is somewhat lengthy and cannot be cited here.
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ON APPROXIMATE PEANO DERIVATIVES

H. FEJZIC (San Bernardino)

1. Introduction

In [1], the authors attempted to explain why many classes of functions
behave like derivatives. They introduced a new class of functions which
they denoted by [A] and they showed that / 6 [A] if and only if there
are differentiable functions g,h and k so that / = ¢g' + hk'. The latter
decomposition shows how far a function / 6 [47] is from being a derivative.
In the same paper, the authors showed that the class of all approximately
continuous functions, the class of all approximate derivatives and the so-
called B\ class are subclasses of [47]. In [7] the present author showed that
the class of all Peano derivatives is also a subclass of [4]. The first goal of
this paper is to show that approximate Peano derivatives are in [4']. An
immediate consequence is that approximate Peano derivatives are Baire 1
functions. This result was originally proved by M. Evans in [5]. His proof is
very complicated as are the other early investigations of approximate Peano
derivatives. (For example see [2].)

It is also shown that a fc-th approximate Peano derivative is a composite
derivative of the corresponding k —Tst approximate Peano derivative. As a
consequence it is shown that a A-th approximate Peano derivative is a path
derivative of the Kk —1-st approximate Peano derivative with a nonporous
system of paths satisfying the I1.C. condition as defined in [4]. This result
is obtained without using any of the known properties of k-th approximate
derivatives. In [4] it is shown that a path derivative for a nonporous system
of paths satisfying the 1.C. condition has all of the known properties of a
fc-th approximate Peano derivative. Consequently the results in this paper
constitute a fresh, new approach to obtaining the basic properties of fc-th
approximate derivatives thus avoiding the complicated approach alluded to
above. Finally it is shown that the system of paths mentioned above actually
can be modified to have the I.I.C. condition. Again applying a result from
[4] it follows that a &-th approximate derivative is a selective derivative of
the kK —1-st approximate Peano derivative.

0236-5294/94/$4.00 © 1994 Akadémiai Kiadd, Budapest
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For definitions and properties of the class [A] and path derivatives, the
reader is referred to [1] and [4] respectively. For the definition of composite
derivatives the reader should consult [7].

2. Decomposition

Throughout the paper K isji fixed positive integer. In addition for A C R
the closure of A is denoted by A and if A is Lebesgue measurable, then m (A)
denotes the Lebesgue measure of A. This section begins with the definition of
fc-th approximate Peano derivative. Then the major decomposition theorem,
Theorem 2.6, is proved and several consequences are established.

Definition 2.1. Let / :R —R and let x 6 R. Then f is k times
approximately Peano differentiable at x means that there are numbers
li(x),..., & (x) and a set Vx of density 1 at x so that

t
f(x + 1) - /(X) + Fli(x) + oo+ “ tKEK(x, )

where \imx+tEvXIt"o£k{x,t) = 0 The coefficient [(x) is called the Arth
approximate Peano derivative of / at x.

For k = 1 the above definition is just that of the classical approximate
derivative. In [1] and [9] it is shown that approximate derivatives are in
[A7. For that reason throughout this section it is assumed that k 2. The
next lemma is used to show that Arth approximate Peano derivatives are
composite derivatives. The formula of the lemma is almost the same as the
corresponding formula in Theorem 1in [7]. As might be expected, the proof
is also quite similar. Consequently the proof consists of a comment as to how
to alter the proof of the theorem in [7] to fit the present circumstance.

Lemma 2.2. Letf :R —R and let y,x € R. Suppose f is k times
approximately Peano differentiable at x and aty. Then for t ¢ 0

(1) A- W-A-.(x) )= t t- 1(/t(x), AW) +
y —X Y—x 2
(y-x+jt)k .
_ the1(y - x) SO0V XD
j=0
t 1 I\ kZk(y,jt
y- Xzh Vg kO
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and

K k
2  fk{y)~fk{x)= — Xk A EK(X,y-x+]jt)~

1=0

j=o

Proof. Ihe proof of (1) is the same as the proof of Theorem 1 in [7].
The proof of (2) is similar to the same proof with some modification of (1).
Instead of using AK_i as is done in the proof of Theorem 1 in [7], one should
use Ak where O* = £j=0 (- DfcI(®)f(y + jt). O

To establish that a fc-th approximate derivative is a composite derivative,
a decomposition of R is needed. Next those sets are introduced.

Definition 2.3. Let / : R —»R. Suppose f is K times approximately
Peano differentiable at each x £ R- For each x £ R set A(x) — {x +

+ 1 mEj=0 Ek(x,jt)l » 1} and let

Hn = |a; :\fk{x)\ ~ nand m(A(x) 1) > *m(l)

Vinterval | containing x with m(7) < 1/n >

The statement of Theorem 2.6 is that under the assumptions of Definition
2.3 the derivative of fk~\ on 77,, computed relative to Hn is []. According
to the definition of composite derivatives this result means that fk is the
composite derivative of fk-i-

The following convention and notation will be used in the remainder
of this section. If / is k times approximately Peano differentiable at x,
then for all t with x +t £ Vx it is assumed that |e*(x,<)| » p Let 7 be
the characteristic function of the set vx of Definition 2.1, and set I'(n) =
= Jo* ~i(x + t)dt.

Lemma 2.4. Letf : R — R be Kk times approximately Peano differen-
tiable at each x £ R. Then IJ*Lj Hn = R.

Proof. Let ieR . Let | = [a,6] be an interval containing x. Forj =
=1,2,..., Alet rj = {x +t £ [ab]:\ek(x,jt)\ £ £}. Then,

{x+jt)dt = j(r(y'(6 - x)) - T(i(a- x))).
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Let n GN be such that |4 (x)| »~ nand |[F(n)] > (I - 4) M whenever |u| <
< £ I1fm(/) < A then

m(Tj) * (j(b - x) +j(x - a)) = "1- m(l).

Setting T = flj=i Tj it follows that m(T) ~ (I - k-*) Tn(1) = | m(l). Ob-

viously T C A(x) M/. Thus m(A(x) M1) > |m(7) whenever m(7) < A
Hence x G Hn. O

The next lemma and Lemma 2.4 to follow constitute the crux in the proof
of Theorem 2.6.

Lemma 2.5. Letf :R —R be k times approximately Peano differen-
tiable at each x Gr, lete G (G and let x Gr. Then there isa O> 0
such that whenever y GHn, with \y —x\ < ¢ there are t\ and t2 so that

) Y+jt\ evxforj =1,... .,k y+ i1 GA(y) ande2 < \h\/\y - x| <e,
2) Y+jt2 e Vxforj = 1,. ..k, I+t2 GA(y) and 1> \t2\/\y-x\ >1/4,

Proof. It is enough to consider the case wheny > x. Forj = 1,2,.... K
let Tj = {4 G [e2y- z|,£]y - X]] :y4jU € V). Then

rely-x\ rely—
m(Tj) = / 7(y +jt)ydt= / i(Xx +y- x +jt)dt =
(T Je2ly-x\ +in Je2\y—d
1 r(l+je)ly~x\ 1 )
=-_ i Gctuydu = (r((F+ yE)ly - X)) - r((1 +js2)ly - x])) .
J J(1+je2)\y— J
Now let 1G "0, and let 4 G (0, A) be such that |F(n)| > (1 —Ae)|u|

whenever |u] < 24. If \y —x\ < [, then
m(Tj) > j((l - AE)(I +je)ly -x\- (A +je2)\y- arf) =

o AE(lAje).. .
- - Byy-a-nE --:]:-J-e-)-y- X\ >

- £2
> (e - e2)\y- X\ - 1%+ GE(I+je)ly - X\ = (1 - e)(e -s2\y- x\.
Therefore if T — Hj=i 2/, then

m(T) > (1 - ke)(e - £2)]y -x\> E—’iz|y- X\.
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Ify € Hn, \y —x\ < <, then

m (A(y) M [y 4e2ly- x\,y +ely- z[]) >
> 3’\\&’- x\- Z;‘L\y- x\ >£—'-G£]Iy- X[.

Therefore (y+ T) MA(y) ¢ 0. Choose any t\ sothat y-\-1\ G(y + T) IMA(y).
Then t\ satisfies condition 1) of the lemma.

Turning to the proof of 2) set Cj —{i2 G[\\y —\, \y —x|] :y + yf2 G Vx}
for each j = 1,2,... ,k. By an argument similar to the argument above

M= (VI -y - f (e ) 27 )

Let 1G (G N and let € G (2,0) be such that [F(n)] > (1 —AE)|y|
whenever |u| < (1 + K& If \y —¢ < 82, then

m(Cj) >J (Q- Ae)(I+ Dy - X\ 14 4)\y~X\) =

=hy-x\-"%+JIl\y-x\>
4 J

> -\y —ad — 3 o +])\Y \—31 \

Therefore if C = Plj-i then

m(C) > |(1 - ke)ly - x\> ~\y- x\

Ify GHn, \y - x\ < 82, then

3. 1. .13, .
m (A{y) T y+ -\y- xLy+ Iy - X > [ly-x\- Aly-*\ > 2Aly - xF

Therefore the set (y + C) MA(y) d 0. Choose any <2 so that y + f2 G (y +
+ C) MA(y). Then t2 satisfies condition 2) of the lemma. Finally set 8 —
= min(<5i,82). O

THEOREM 2.6. Letf :R —» R be Kk times approximately Peano differ-
entiable at each x G R. Then there is a sequence of closed sets {En} so
that
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Din=1En=R,
2) fk-\ is differentiable on En, with respect to En with the exacted
equality; namely fk~i\V'En(x) = fk{x) for each n £ N.

Proof.Let En = Hn. By Lemma 2.4, |Jn En —R establishing condition
1). It will be shown that the sets En also satisfy condition 2). Let x £ En,
let e £ (0,jj") and let 6, ti and 12 be as in Lemma 2.5. If y £ Hn with
\y —x\ <6, then y+ f2 GA(y) and ¥Y+jh GVxforj —1,2,..., k. Therefore
I Ayt ~ 1 IEk(x,y —x + )1~ £ and there is a positive constant N
depending only on x so that |fk(y) —40«)| ~ iV. Also by the choice of <

it follows that < land NG -fkkforj —1 , 2 Now

from formula 2) of Lemma 2.2, there is a positive constant L depending
only on x so that if y £ Hn with \y —x\ < <§ then \ek(x,y - z)| * L.
Since formula 1) of Lemma 2.2 implies that there is a positive
constant M depending only on x so that if y £ Hn with \y —x\ < 6, then

~ fk(x) = M. Solving (1) of Lemma 2.2 for £k(x,y - Xx) it

ollows that

£K(X,y- X) = (_1)kﬂ +4<—1_1 fk-i(y) - fk-iar) F(x)
- 9" v x
tk  (k-1){h(x)-fk(y)) .

- %) 2
Kkm  {y- x+]jtf .
E 1)1 mEK(X,y - X+]t)-
+(-1)° o I( )Lt (Y- X)K
K- 1 k—1—'/|< _ _
Ei-) Y j KEKLy.jt).
(y-*) & '

Choose > 0 so that if x +t £ Vx with \t\ < 26\, then \ek(x,t)\ <e2k. Set
62 = min(<5,<5i). Ify £ Hn with \y —K < 62, then the formula above and the
choice of < gives

\ek(x,y- x)| <
< Mekel+ =~ 4k+E(m1MHwA“ € ke
J=1v J j=1
- KeK—l
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In the above formula K is a constant that depends only on k and x. Since
K" 2, limyEHny->x £k(x,y - x) = 0. Choose 63 > 0 so that if y E Hn with
\y —X| < &3, then EK(x,y - X)| < e2k. Let ¢« = min(<$2, £3). By formula (1)
of Lemma 2.2, if y E Hn with \y —x\ < 64, then

fk-i(y) - fk-i(x)
®) vo X fk(x) <
—1
(k-1)N fc- 1 ok g T k—1 .
s* 2+ M A +je) p2(k—) i ] J ke —Re.

Since the constant R in (3) depends only on k and X,

(4) lim A-W - -M*) = Mx).
yeHn,y-+x y- X

To complete the proof let x E En and let {Xxj} be a sequence in Hn such
that Xj —»x. By what was just proved, for each j E N there is a yj E Hn
such that

) oy Hea) g ey < 1

Y] - x3

In addition assume that \yj - Xj\ » j\xj - x\. Since xj E \fk(xj)\ = n
for every j E N. Consequently (5) implies that

A-i(y]) - f-I{X) oy g

® M- X3
Now
fk-1{xj) fk—I(x) _ Cofk-1(xj)  fk-I(Vi) xji yj A
Xj — X Xj — yj Xj - X
{A-(y,)-A-M _ M
t Y- X JXj- X Xj - X
So by (6)
fk-1{Xj) - fk-1(x
1 _ _ s
ioin e Lye o tk-J1y3) - fhe-i () fk(x) f+ T + I'I-l.
J ¥ - X
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Finally since limj_oo£? = x, linij_oo 2j = x. Since tjj £ Hn for each j £ N,
(4) implies

fk-i(Vj) - fk-i(g)

(8) J._lirg]) -y fk(x).
Therefore by (7) and (8)

. fk-1(X] fk—H{x

jm NOD R0

j->o00 Xj — X

Corottary 2.7. Letf : R —»R bek times approximately Peano differ-
entiable at each x £ R. Then [} is a composite derivative of fk-i-

It is well known that if a function g, defined on a closed set A, is
differentiable relative to A, then there is a differentiable function G on R
with G —g and G' = g on A. (See Marik [12].) This result yields the
following corollary to Theorem 2.6.

Cortooary 2.8. Letf : R —»R be k times approximately Peano dif-
ferentiable at each x £ R. Then fk £ [A].

The next corollary follows from the fact that every function in [A7 is a
Baire 1function.

Corottary 2.9. Letf : R —%R bek times approximately Peano differ-
entiable at each x £ R. Then fk is a Baire 1 function.

Corollary 2.9 was first proved by M. Evans in [5] using a long and
complicated proof. The proof presented here is much shorter, but does
require the work done in [1].

3. Approximate Peano derivatives and path derivatives

This section presents a new development of the basic properties of ap-
proximate Peano derivatives. It has already been proved in Corollary 2.9
that they are Baire 1functions. Here using the notion of path derivatives as
developed in [4] and the results established in that paper, it is shown that
approximate Peano derivatives have the Darboux property, the Denjoy prop-
erty and, when bounded either above or below on an interval, are ordinary
derivatives on that interval. In addition the so-called - M, M property intro-
duced in [10] is also established for approximate Peano derivative. The sets
En from Theorem 2.6 are employed to construct the paths that are used.

Lemma 3.1. Letl £ N with I # k—1. Assume that if L is an interval and
ifgm -*R is | times approximately Peano differentiable on I, then gi has
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the Darboux property. Moreover ifgi *# 0 on I, then gi —gW on I. Suppose
f :R —#R is k times approximately Peano differentiable at each x £ R. Fix

x £ R and for each y £ K set P(y) = Yli=o(y ~ Let £>0, 7>
> 0. Then there is a6 > 0 such that if | is a subinterval of (x —6,x + <5, ]
an integer with 0 < j < k and \fj(y) —P "M\y)\ ~ s\y — on I, then

m(1) S fjdist(x, 1). (Here dist(x,/) is the distance from x to I.)

Proof. The proof of this assertion parallels the proof of Theorem 3 in
[11]. The difference is that the use of Lemma 4 in [11] is replaced here by
the assumption concerning the general function g. O

We need Lemma 3.1 to state and prove the following result.

Lemma 3.2. Under the assumptions of Lemma 3.1, for each point x £ R
there is a nonporous path Ex leading to x so that

; ffc-i(y) - fk-i(x)
e sy x P(*)m

Proof. The assertion of Lemma 3.2 follows directly from Lemma 3.1
with j = k —1and Lemma 3.6.1 in [4. O

Theorem 3.3. Letl £ N with | # Kk —1. Assume that if | is an interval
and if g :/ —»R is | times approximately Peano differentiable on I, then
gi has the Darboux property. Moreover if gi ~ 0 on I, then gi = gW on I.
Suppose f : R —»R is K times approximately Peano differentiable at each x £
£ R. Then there is a bilateral nonporous system of paths E = {Ex :x £ R}
satisfying the 1.C. intersection condition such that [, is the E-derivative of
f k—2e

Proof. For each x £ R let Ex be a path satisfying the conclusions of
Lemma 3.2. For x £ R let Ex —EXx UEn where n £ N is such that x £ En.
That E is nonporous (therefore bilateral) follows directly from Lemma 3.2.
Also Lemma 3.2 and Theorem 2.6 imply that fk-\ is E differentiable with
fk-iI\"E(x) = fk(x) for every x £ R. It remains only to prove that E satisfies
the I.C. intersection condition. In fact it is shown that Ex MEy T [x,y] o
® 0 for any two distinct points x and y; a condition stronger than the I.C.
condition.

Let x and y be any two distinct points and let n,m £ N be such that
Xx£Enand y £ Em. If n» m, then EmD En and hencey £ Ex. Ifn * m,
then En D Em and hence x £ Ey. Therefore Ex MEY M [x,y\ ¢ 0. Thus E
satisfies the I.C. condition. O

Next it is shown that the assumption concerning the general function g
of Theorem 3.3 can be dropped. To accomplish this goal the results from
[4] are used extensively. In particular those dealing with properties of path
derivatives that are Baire 1 functions and with a nonporous system of paths
satisfying the 1.C. condition are employed.
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Theorem 3.4. Letf : R —»R be k times approximately Peano differ-
entiable at each x £ R. Then there is a bilateral nonporous system of paths
E = {Ex :x 6 R} satisfying the I.C. intersection condition such that /*. is
the E-derivative of fk-i-

Proot. The proofis by induction on k. It is well known and easy to
see that an approximate derivative is the path derivative of its primitive for
the system of paths consisting of the sets of density one through which the
approximate derivative is computed. Consequently the assertion is true for
K=1

Suppose the assertion of the theorem is true for every 1~ j * k —1,
and every function h, defined on some closed interval J, which is j times
approximately Peano differentiable on J. (Note that this seemingly stronger
induction hypothesis is justified because any such h can always be extended
to R so that hj exists on R. For example if J = [a, b], then set

h(y) = (Y- Xy~T- for 2e(-00,a)

and

My) = for y€(6,°°).)

2—0

Let 1~ 1~ k—1and let a function g, defined on some closed interval /,
have an /-th approximate Peano derivative on I. By Corollary 2.9, gi is a
Baire 1function. By the induction hypothesis and Theorem 6.4 from [4], gi
has the Darboux property. Suppose that gi » Oon /. Again by the induction
hypothesis but now using Theorem 4.7.1 of [4], </ is nondecreasing on I.
By Theorem 4.4.3 from [4] g1_1 = gi on |. Also there is an a 6 R such that

gi_i-a” 0onl. Leth(x) = g{x) —aoLipeThen /q_i = gi-\ - a and hence

2 0 on /. Proceeding as before h\_2 = /g_! on /. This implies g\_2 =
= gi-i on I. Continuing in this fashion one can deduce that g” exists on I.
Now apply Theorem 3.3. O

COROLLARY 3.5. Letf : R —»R be Kk times approximately Peano differ-
entiable at each x £ R. Then fk has the Darboux property.

Proor. The assertion follows directly from Theorem 3.4 and Theorem
64 in[4. O

Corollary 3.6. Letf :R —R be k times approximately Peano differ-
entiable at each x € R. Let [a b] be an interval, and a £ R. Iffk " a (or
fk~ot) on [ab\, then

a) fk-i(x) —ax (ax —fk-i{x) ) is nondecreasing and continuous on
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[a, b], and
b) fW existsand f~ = A on [a, 6].

PROOF. The assertion follows directly from Theorem 3.4, and Theorems
6.6.1 and 443 0of 4. O

Coroltary 3.7. Letf : R —»R Dbe k times approximately Peano differ-
entiable at each x E R. Then [ has the Denjoy property.

P roof. The assertion follows directly from Theorem 3.4, Theorems 6.6.1
and 6.7 from [4] and Corollary 3.5. O

An immediate consequence of Theorem 3.4 and Theorem 8.1 of [4] is the
following corollary.

COROLLARY 3.8. Letf :R —R 6e k times approximately Peano differ-
entiable at each i ER and let M > 0. If [ attains both M and —M on an
interval, lq, then there is a subinterval I of Igon which 4, = f* and /P)
attains both M and —M on I.

4. Approximate Peano derivatives and selective derivatives

The goal of the final section is to prove that every approximate Peano
derivative is a selective derivative. This result is obtained by constructing
a different system of paths along which the derivative of 4_i is 4. This
system of paths will be shown to have the I.I.C. intersection property. Then
a result from [4] will achieve the desired result.

First the system of paths is defined. For that purpose it is assumed that
/ R —»R is k times approximately Peano differentiable at each x E R. The
desired system is constructed from the sequence of sets {En} of Theorem 2.6
augmented by the sets introduced next. For each y E R let Py be a set
containing y, having y as a bilateral point of accumulation of Py and so that

. fk-i(z) - fk-i(y)
im = fk
WY,y )

and

o floiz) - feil) ) < 1for every T E Py

z-Y
Theorem 3.4 assures the existence of such a set Py.

Notation. FoOr X,y £ R let 6(x,y) = min{l, } For x E R and
nEN let
Rx,n — \J {PyL[y,y S2(x,y)) :y £ Enandy is right isolated from
Em forallmEN}
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and let
Lxn— U {Py (Y ~ d2(x, y)iy] m¥ £ En and y is left isolated from
Em forall m G N}.
Next a specific set from the sequence {En} is selected for each x £ R and
the set Ex is defined depending on this choice. If there is an n £ N such that

x is a bilateral accumulation point of En, then select Mx to be the smallest
such n and let

Ex = EmxURxMx u Lx,Mxm

Suppose no such n exists. Assume there is an n such that x is a left
accumulation point of En. Let Mx be the smallest such n and note that
in this case x is right isolated from En for each n £ N. Similarly if there is
an n such that x is a right accumulation point of En, then select Mx to be
the smallest such n and note that in this case x is left isolated from En for
each n £ N. Finally if x is an isolated point of En for every n £ N, then let
Mx = 1 In each of these three cases let

Ex —Emx UPx URX,Mx Li LXimx.

Let E be the system of paths, EX.

Theorem 4.1. Letf :R —»R be k times approximately Peano differen-
tiable at each i £ R . Then E is bilateral and satisfies the I.I.C. intersection
condition.

Proof. Clearly E is bilateral. A slightly stronger condition than I.1.C.
will actually be established; namely that Ex MEy M (x,y) ¢ 0 for any two
points x,y £ R. Let x < y and suppose first that Mx ~ My. Then Emx C
C Emyand consequently x £ Emy- If x is a right accumulation point of

then ExMEy M(x,y) 0. If x is right isolated from Ewx, then by the choice
of Mx, x is right isolated from En for every n £ N. Thus

0 @ Pxn [x,x + 62(x,y)) n(x,y) CExn Ey (x,y).

Now suppose Mx > My. Then Emy C Emx. If y is a left accumulation
point of Emy, then ExMEyY M (x,y) 0. Ify is left isolated from then by

an argument similar to that above ExMEyT(x,y) ¢ 0. Therefore E satisfies
the 1.1.C. condition. O

Theorem 4.2. Suppose f : R —aR is K times approximately Peano
differentiable at each x £ R. Then fk-\ is E differentiable with =

= ﬂ(x)_
Proof. Let x £ R and £ > 0. Then there isan w£ (0,£) such that

fk-\{y) - fk-i(x)
10 <t
(10 y - X fk(x)
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whenever [y —y < 7and y £ EMmx UPxmLet r £ Ex be such that \z —x\ < 3.
If 2£ EmxUPx, then (10) holds with y replaced by 2. So assume 2 £ RxMi u
ULx,MimThen. : Pyforsomey £ E\jxand y is left or right isolated from .
forevery n £N. Then | >\z— W—W—\y—2\ 26(X,y) —S2(x, y) 2
N S(x,y). Therefore \y - X\ i \y —2\ -f \x —2\ <6(x,y) + 77/2 < A. Hence

fk-i(y) - fk-i(x)

Vo x fk(x) <&£
Thus
fk-i(z) - fk-i(x) fk-\(y) - fk-i(x) ,, \Yy-X
o x - fk(x) yox T TK(x) 1ot
fk-\{z) - fk-i(y) Z-y z-y <
2~y thiy) o, kDY) - k(X))
< fk-\{y) - fk-1(x) fk(x) 2oy,
y - X Z —X

fk-i(z) - fk-i(y) z-Y z-y
z-y @), oy () + \k{y)Y)

By (10), (9) and the relationship among X, y and 2, the last two lines in the
above estimate are no more than

11 11 62(X’Y) 16~ X' yh\f (D\ \ n \ '

= 2e + fj(x,y)( 1+ \fk(X)\ + Mx) » 2e + -(1 + \fk(x)\ + Mx)
and since e was arbitrary,

lim  A-i(") ~ fk-i(X) _ & O
zeEX,z-*X Z-X y

Corollary 4.3. Letf :R —»R 6e K times approximately Peano differ-
entiable at each x £ R. Then [ is a selective derivative of fk-i-

Proof. The assertion follows immediately from Theorems 4.1 and 4.2
and Theorem 3.4 of [4]. O
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UNIFORM EMBEDDING OF ABELIAN
TOPOLOGICAL GROUPS IN EUCLIDEAN
SPACES

M. BOGNAR (Budapest)

Introduction

LCA-groups are in this paper locally compact Abelian lo-topological
groups with countable bases. For each nonnegative integer m let R m denote
the m-dimensional Euclidean space.

In the papers [1], [2], [3], [4] the question of topological embeddability of
any LCA-group in Rm was investigated and solved. However each Abelian
topological group determines also uniquely a uniform space, the underlying
(uniform) space of the topological group. Rm itself is a uniform space as
well. Thus we can raise the question of the uniform embeddability of an
arbitrary Abelian topological group in Rm. This is the aim of the present

paper.

1. Locally compact groups

We shall prove the following theorems.

Theorem A. Each n-dimensional LCA-group can be uniformly embed-
ded in Rn+2.

THEOREM B. Each n-dimensional LCA-group with locally connected
components can be uniformly embedded in Rn+1.

Theorem C. An n-dimensional LCA-group can be uniformly embedded
in Rn if and only if it is isomorphic to the vector group Rn.

Theorem D. An n-dimensional LCA-group without locally connected
components cannot be uniformly embedded in Rn+1.

First we are going to prove Theorems A and B.

Let I" be an n-dimensional LCA-group. Then there exists a subgroup Ti
in I satisfying the following conditions:

(a) the factor group I'/Tj is discrete,

(b) Tj is the direct sum of a compact subgroup 2 and a vector subgroup
V (see [7] Ch. V. 835 E) and Theorem 41, pp.160-161).
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Since the subgroup V is divisible, it is an injective group and thus T is
the direct sum of a subgroup '3 and V, where 31 Id = IV Consequently
M3/T'2 is isomorphic to I'/I'1 thus it is discrete and countable.

Let 4 be the component of zero of the group 3. Then 4 is a subgroup
of I'2. Let ' be the component of zero of the group I'. We then clearly have
NS=r4+c.

Suppose that V is a *-dimensional group. Then '3 and 72 are (n —Xk)-
dimensional groups (see [3] 1.2 and 1.3).

Now suppose that there is a topological embedding y3:'2 —»R m in some
Euclidean space Rm, where m A 1. I'2 is a compact group and thus <pis also
a uniform embedding. Let C = <s10). <2 is then contained in an open
sphere S(C,s) in Rm. Choose the points C\,..., Cr,... in Rmso that C\ =
= C and d(Ci,Cj) > 3e for i ¢ j, where d(Ci,Cj) is the distance between
the points C{ and Cij.

If F3/r2 is finite then let H\,..., Hs and if '3/T2 is infinite then let
Hi,..., Hr,... be the cosets of '3 modulo "2, where in both cases H\ —TI2.
Choose a representative gr from each coset Hr so that gl= 0.

Now for each coset Hr let dr:Hr — R m be defined by the formula

d/ig) = Cr-C 1+ gxg- gr).

Then ¢\ = spand the map p:'3 —Rm defined by p\HFr = dor (r = 1,...,s
or r —1,2,...) is clearly a uniform embedding of '3 in Rm. Further for
h=g+v(gET3,v6 V) let

((h) = d(A) |i?G Rm-\-V —K m-+k,

where Rm + V is the direct sum of the vector groups Rmand V. Then ( is
clearly a uniform embedding of I' in R m+c.

Now according to [3] Theorem D (see also [1] and [2]) 2 can be topo-
logically embedded in R n-fc+2. Hence by the preceding considerations I' can
be uniformly embedded in n n~k+2+k = Rn+2. The proof of Theorem A is
complete.

Suppose now that I'5 is locally connected. Since I'5 = 4 -f V, it follows
that I'4 is locally connected as well. Hence by [3] Theorem B 2 can be topo-
logically embedded in Rra fc+1. According to the preceding considerations we
obtain that I can be uniformly embedded in Rn_fc+1+£—Rn+1. The proof
of Theorem B is complete as well.

We now prove Theorem C.

If I is an n-dimensional vector group then clearly it can be uniformly
embedded in Rn.

Now suppose that I" is an n-dimensional LCA-group and it can be uni-
formly embedded in Rn. Let £: —»Rn be a uniform embedding. Then
( is also a topological embedding. I has a subspace homeomorphic to Ria
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(see [3] Lemma 1.1). Thus each element of I' is contained in a subspace of
I homeomorphic to Rn. Consequently, according to Brouwer’s theorem on
invariance of domain it follows that £(I") is open in Rn. On the other hand
by the local compactness of I it follows that I' is a complete uniform space
(see [6] 11.3.21 p.466). Hence £(I') is complete as well and thus £(I') is a
closed subspace of Rn (see [5] 5.1.16 p.185).

Thus by the connectedness of R” it follows that £(I') = Rn. Hence I
is connected and locally connected. Consequently I is the direct sum of a
A-dimensional (0 » k ~ n) toroidal subgroup 'l and an (n —fc)-dimensional
vector subgroup V (see [3] 1.2 and [/] Theorem 43. p.170). Thus I' and Id
are of the same homotopy type and since R n is contractible to a point over
itself so is " and Ti. This yields Kk —0 and thus ' = V. I is isomorphic to
Rn as required. The proof of Theorem C is complete.

Finally we prove Theorem D. If " is an n-dimensional LCA-group without
locally connected components then by [3] Theorem Aand [3] 1.3 I cannot be
topologically embedded in Rn+1. Hence it cannot be uniformly embedded
in An+l indeed.

2. Abelian topological groups

Let ' be an Abelian topological group and Rm a Euclidean m-space,
where m is a nonnegative integer. Suppose the existence of a uniform
embedding £:F = Rm of ' in Rm. I is then clearly a To-group with a

countable base. Let ' bp the completion of I (see [6] 8.5.15 p.571 and
6] 11.3.d. pp.463-466). The closure £(I") of £(I") in Rm is a complete
subspace of Rm and £(I') is dense in £(I'). Thus the uniform isomorphism
£:I — C(T) is extendable to a uniform isomorphism £: —% £(I") (see [6]
8.3.11 p.549). However £(T) is a closed subspace of the locally compact

space Rm, consequently £(I") and so I" are locally compact spaces and thus
the 0-element of I" has a precompact neighbourhood (see [5] 11.3.24 p.466).
Hence we have the following theorem.

Theorem E. Ifan Abelian topological group I can be uniformly embed-
ded in Rm then it is a To-group with a countable base, its O-element has a
precompact neighbourhood, its completion I is an LCA-group and I can be
uniformly embedded in Rm as well.

Now suppose that I" is an Abelian TO-topological group with a countable
base and the zero element of ' has a precompact neighbourhood. Then
the topological space I' is separable and I is also a To-uniform space with
a countable uniform base. Hence the uniform space ' is metrizable (see
[B] 11.2.8 Satz 2. p.119) and so I is a metric space with a countable base.

Consider now the completion " of . Then I is a To-group as well with a
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countable base (see [5] 6.3.29 p.256, [6] 8.3.12 p.549 and [6] 4.3.19 p.340) and
I" is locally compact (see [5] 11.3.24 p.466).

We now define the uniform dimension dimIl of I as the topological
dimension of I'. T is said to be m-dimensional if dimI™ —m. If I" is locally
compact then it is complete (see [5] 11.3.21. p.466) and thus in this case we

have I' = I and so the topological dimension of I coincides with its uniform
dimension. However if " is not locally compact then its topological dimension
may differ from its uniform one.

Now according to Theorems A, B, C, D and E we have the following
theorems.

THEOREM F. An Abelian topological group I can be uniformly embedded
in some Euclidean space if and only if the following conditions are satisfied.

(@) I is a To-group with a countable base.

(b) The zero element of ' has a precompact neighbourhood.

(c) The uniform dimension of " is finite.

In what follows we shall say that an Abelian topological group I is simple
if it satisfies the conditions (a), (b) and (c) of Theorem F.

THEOREM G. Each n-dimensional simple Abelian topological group can
be uniformly embedded in R n+2.

THEOREM H. A simple n-dimensional Abelian topological group can be
uniformly embedded in Rn+1 whenever the components of its completion are
locally connected.

Theorem |. A simple n-dimensional Abelian topological group can be
uniformly embedded in Rn if and only if it is isomorphic to a dense subgroup
of Rn.

Theorem J. A simple n-dimensional Abelian topological group cannot

be uniformly embedded in Rn+l if the components of its completion are not
locally connected.

THEOREM K. Ifm < n then no simple n-dimensional Abelian topological
group can be uniformly embedded in Rm.
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ON QUASI tp(L)mA.E. CONVERGENCE
OF FOURIER SERIES OF FUNCTIONS
IN ORLICZ SPACES

H. KITA (Oita) and K. YONEDA (Osaka)

81. Introduction

Let / be a real valued integrable function defined on T = [—x, x] and
be the n-th partial sum of the Fourier series of /. The majorant
function S*(f) is defined by

(1.1) S*¥(f)(x) := supLLSn(f;x)\:n ~oj for i ET.

In this paper || *|| means the usual norm on Lp(T) and meas(£) means

the Lebesgue measure of the set E C T. Hunt [1] proved the following
theorem.

Theorem 1.1. When 1< p < +00, we get
(1.2) HE*(/)||p=Cpllp forall /e m

where Cp is a constant depending only on p and satisfies Cp = O(p) as
p —»+ 00. When p = + 00, we get

(1.3) meas{z ET:S*(f)(x) > i} ~ C\exp(-CrA~/L/LU”) for all t > O,

where C\ and Cg are absolute positive constants.
The following are proved in [3], [4].

Theorem 1.2 (see [3]). Let tp(t) = ee—1 If f is a continuous
2'K-periodic function, then we get

IT
J ip(aS*(f)(x)) dx < +oo for all a > 0,
—T
and
-
nllrgoj <p(a\sn(f-,x) - f(x)l)dx - 0 forall a>0.
—T
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T heorem 1.3 (see [4]). Let ip(t) = el —1. Then there exists a bounded
function f such that U/U» = 1,

(1.4) J <paos*(Hx)) dx = 4D

-

lim: /l¥@8n(f-,x) i /(Z)l) dx = D

for some positive constant op.

The aim of this paper is to consider the case of the Fourier series of
functions in Orlicz spaces X*.

and

§2. Notations and definitions

Let ipbe a continuous function defined on [0,00) satisfying the following
properties:

(y0)=0, <pt)>0 ift>0;
\ip(Y) t Too as f-* + 00.
We denote by @ the set of all functions ip satisfying (2.1).
Definition 2.1. When G ®and o0 > 0, paL) is a set of real valued
functions / such that f ip(a\f(x)\dx < +o00. The sets X* and tp(L)* are

defined as follows:

(2.2) X* =[] p{eL);
£>0
(2.3) (p(L)* == f)<p(al).

The space X* is termed an Orlicz space which is a generalization of the
space XP(T).

Definition 2.2. We say that a function <€ & satisfies the [2-
condition if there exist positive constants Co > 0 and to > 0 such that

(2.4) £(22) S Co<p(t) for all t> to-
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From (2.2) and (2.3) it is clear that (*(2)* C Z*. In general the equality
<p(L* = Z* does not hold. However we get the following result ([6], [8]).

Theorem 2.3. When tp £ @, the equality ip(L)* = Z* holds if and only
if p(t) satisfies the 4 2-condition.

We are interested in the case when <pdoes not satisfy the A2-condition.
First we give an interesting example which does not satisfy the A2condition
and plays an important role later.

Example 2.4. Let 0 < 7 < +o00 and put

(2.5) o) := ~2 ,, "=exp(f7) —7—1 for t " O;
k=2
(2.6) rp(t) E tk for t~0
' {k\)Ih '

Since lim <p(t)/tn = + 00 and Iirorg ip(t)/tn = + 00 for every positive

integer n, neither pnor tp satisfy the A2-condition. Therefore, by Theorem
2.3 it follows that <p(* ~ Z* and ip(L)* C ZJ. The functions <\f) and V/(f)

have the different expressions (2.5) and (2.6). However they define the same
Orlicz space. Namely, we have

(2.7) <pL* = V2* and Z; = ZJ.
We prove (2.7). In fact, when 1< 7 < +00, it follows that

o/ ~ N7 [ QO M~ \7
w9=S((«)IW H S iFf) =() "’

Since (™>(f) ~ (1/2)exp(f7) for sufficiently large t > 0, & (1/7) 17T N 2VX(f)

holds for sufficiently large f > 0. By Theorem 3.1 in [6] tp(L)* C y?(2)* holds.
On the other hand, Holder’s inequality gives

VY2)=£ (VU2*) _IE <
Ab2) ﬁ,:z( )(z!)1/7 “

iv i/t i’V

wy . 7
s E * 1/2%) . V(0
£ ) 4sz K 1- (127) (»(0)
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where 7' = 7/(7 - 1) is the exponent conjugate to 7 > 1. Therefore we get
V>(fl2) N 4<3(<) for sufficiently large t. Theorem 3.1 in [6] gives tp{L)* C
C d(b)*, and so <\X)’ = ip(L)* holds.

When 0 < 7 < 1, arguing in the same way, we find that ip(L)* = ip(L)*.
By Theorem 2.5 in [7] X* = X" holds. O

Definition 2.5. Let be a function defined by (2.5). Then L*(expi')
denotes the set X* given by (2.2) and (exp X'1)* denotes the set <p(L)* given

by (2.3).

83. Control functions of a.e. convergence

For the a.e. convergence of sequences of functions, Yoneda [11] proved the
following result. When {fn(x);n ~ 1} is a sequence of real valued functions
defined on the closed interval [a, 6] and
(3.2) nlirrlofn(x) =fix) a.e. on [a,6],
there exists a positive and a.e. finite valued function <5(x)such that for every
£ > 0 there exists a positive integer n(e) satisfying |fn(x) - /(x)| ~ £i(t)
everywhere for all n » n(e). The function S(x) is termed a control function
of the a.e. convergence (3.1).

Wagner and Wilczynski [10] showed that Yoneda’s result is equivalent
to the well known Egoroff’s and Taylor’s theorem [9]. We apply the control
function to the a.e. convergences of Fourier series of functions in Orlicz
spaces. We say that (3.1) has an X*-integrable (or y?(X)*-integrable) control
function, when (3.1) has a control function in the space X* (or <p(L)*).

In [3] the following theorem was proved:

Theorem 3.1. Iff is a continuous 2-K-periodic function, then the a.e.
convergence

(3.2) Ijm 5n(/;x) = f(x) ae. xGT

has an (exp L)*-integrable control function.
When / is a bounded function, the following result has been given in [4].

Theorem 3.2. There exists a bounded function f such that Ll/UN = 1
and the a.e. convergence (3.2) has no (p(L)*-integrable control function.

On the other hand S*(f) € X*(expi), whenever / £ X°°(T) in virtue of
(1.3) . A problem arises whether a control function of the almost everywhere
convergence of (3.2) can be chosen in the Orlicz space X*(exp<), whenever
[ £ X°°(T). The following lemma plays an important role.
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Lemma 3.3. Letf £ <t={* and let S*(f) be a majorant function defined
by (1.1). Then it follows that

(1) if S*(f) £ (B(L)*, then (3.2) has a <p(L)*-integrable control function;

(2) if S*(f) £ then (3.2) has no L"-integrable control function.

P roof. The statement (1) was proved in [12]. We have to prove (2).
Suppose (3.2) has an T*-integrable control function 6. Then there exists a
positive number £o0 such that

™

(3.3) | <o) dx < +00.

Since 6 is a control function of (3.2), for any £ > 0 there exists a positive
integer 7l(e) satisfying

134 ; x) —/(k)| ™ ee(x) everywhere for all n "™ n(e).
Therefore it follows that

(3.4) S* () (X) E6(x) + \FOX)\+MFif) for x£T,

where Mc(f) :=supj |5, (/;z)]:1" n” n(e),x e t|.

Let a be any positive number and fix it. Put e = eo/2a, where £o is a
positive number which is given in (3.3). Then it follows from (3.4) that

J p(aS*(f)(x)) dx fs V v(ase(x) + a| f(x)\ +aMe(f)) dx 5

™ ™

A1 pRaes{x)) dx + J <p(2a\f(x)\ +2o0Afe(/)) dx

A \] T(£0Hx)) dx + J o (aoi\/(z)|j dx + 2n<p(4aMe(f)) < +oo0.
Hence S*(f) is <A(X)*-integrable, which contradicts our assumption. O
By Theorem 1.3 and Lemma 3.3 we have the following theorem.

Theorem 3.4. There exists a bounded function f such that Ll/UN = 1
and the a.e. convergence (3.2) has no L*(exp t)-integrable control function.

Proof. We consider a function / mentioned in Theorem 1.3. It is easy
to see that S*(f) £ X*(expf) in virtue of (1.3). However, from (1.4) S*(f) $
N (expX)* holds. Therefore by Lemma 3.3 the desired result follows. O
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84. p(L)*-a.e. convergence

We now turn to the discussion of almost everywhere convergence of a
sequence of functions {fn(s); n ~ 1} .

Definition 4.1. We say that a sequence of functions {fn(x);n ~ 1},

X £ [, #] converges to / p(L)*-a.e., if (3.1) has a y>(L)*-integrable control
function.

DEFINITION 4.2. We denote by @0 a subset of ®such that each function
p in oo has the expansion

(4.1 p(t) = E Bntn forall t >0,
n=2

where Bn ”~ 0 for all n ~ 2 and I'lli—%)\mn —0.

Theorem 4.3. Letp 6 oo have an expansion (4.1). Put

@ 7
: 0):= j > 0.
(4.2) No ) ;(_4Zn\|tn forall t>0

n—

Iff Gp(L)*, then the Fourier series of f converges to f ip(L)"-a.e.

P roof. Since our theorem is clear by Theorem 1.1, if Bn = 0 for suffi-
ciently large n, we consider the case when Bn > 0 for infinitely many positive
integers n. Then we get <p(L)* C I Lp. From (1.2) it follows that

p>I

(4.3) In A ffprC-pll/l[p for pr 2

where C > 0 is an absolute constant.
Let a be any positive number. In virtue of (4.2) and (4.3), it follows that

/l-lH««'(/K*)) <= E M -lisv)II~”
n=2

™

< E ndx.
n=2
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Since nn/n\ " e", we get

J M
aS*(f)(x)) dx (eaC\f(x)\) dx =

n=2

\] y[eaC\ f(x)fj dx < +oo.

—

Therefore S*(f) G 'fi(L)* holds and by Lemma 3.3 our desired result follows.
O

Coroltary 4.4. When f G (expx7)* for 0 < 7 < + 00, then the
Fourier series of f converges to f (exp z7/(7+1)) _a e

Proof. Let 0 < 7 < +00 and put

E tk for t
{Vlh

k=2

From (2.7) (exp L7)* = dry(b)* holds. By Theorem 4.3 it follows that the
Fourier series of / converges to / ~7/(7+1)(T)*-a.e. Applying (2.7) again, the
desired result follows. O

85. Quasi ip(L)*-a.e. convergence

In this section we consider the control function of a.e. convergence of
functions in the Orlicz space L*(expt7). We obtain the following result.

Theorem 5.1. Let if G do he afunction defined by (4.1) and let fi G do
be a function defined by (4.2). Iff GL*, then S*(f) GL

Proof. Arguing in the same way as in the proof of Theorem 4.3, the
desired conclusion follows. O

Definition 5.2. Let fo g @ A set ®y>0) consists of functions f G ®
such that for any 0 < £~ 1,

(5.1 f(t) = o(fo(et)) as t—»-f0O0.

As an example, it is easy to see that if0<7 < 1, f-y(t) :=e —1 and
fo{t) :=exr—1fort O, then fy Gd("™>0) for0<7 < 1
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D efinition 5.3. Let ipp E ®. We say that a sequence of functions
{fn(x);n ™ 1}, x E [, n] converges to / quasi ipo(L)*“a,e., if for any ip E
E ®(y30)5(3.1) has a y>(i/)*-integrable control function eV.

By Definitions 4.1 and 5.3 we have the following lemma.

Lemma 5.4. Letipa E ®. If a sequence offunctions [fn(x)\n ~ 1}, X E
E [, T] converges to f ipo(L)*-a.e., then it converges to f quasi ipo[L)*-a.e.

P root. If a sequence of functions {/n(x); n ~ 1} converges to / ipo(L)"-
a.e., then there exists a To(-L)*-integrable control function 6.

For any ip E ®&(1>0) it is easy to see that ifo(L)* C ip{L)* in virtue of (5.1).
Therefore 6 E ip{L)* holds. O

The concept of quasi </>o(T)*-a.e. convergence is a generalization of quasi
uniform convergence (see [5], [12]). The following theorem plays an important
role in deciding a control function of a.e. convergence of Fourier series of / E
E X*(expf7).

Theorem 5.5. //V0o 6 ®, then
(5.2) LM"0 = n{ ip(L*:ipE ®(10)} *

Proof. First we prove that L*0 C Mip{L)*. Let / E L*0. Then there
exists a positive number £g such that

(53) \] Vo (fol/(*)]) dx < Too.

Forany o ~ I, choose a positive number e such that 0 < ea < £o- From
(5.1) there exists a positive constant to such that ip(t) ~ ipo(st) for t p: to-
Therefore we get

ip(at)  ipo(eat) ” ipo(Eot) lor all t " to-

Thus it follows from (5.3) that

J(p("a\f(x)\"j dx A 2n<p(at0) + \] To”o| f{x)\) dx < Too.
T /(x)1"<0

Therefore / E y>(L)* holds.
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Next we show that L* D T Let/ £ <p(L)* for all p>£ ®(y?0).

yed(yo)
Suppose for each ) > 0

(54) \] <Po(y\f{x)\) dx = --00.

It will be proved that there exists a function p £ ®&</?0) such that / ~ p>(b)*.
Foreach 0~ t™ n ™ -foo, put
I/(z)] ifu> \f(x)\ 2 t-

(65  Fleut = ifj/0) ~moor t> ()1,

In virtue of (5.4) it follows that for each > 0
(5.6) u“—néo% <Mo(r]F(x; u, 1)) dx —-foo.

—T

Choose two sequences of numbers {un;n ~ 1} and {<,; n * 0} satisfying the
following properties:

(5.7) O=to<ul <t\ <l <...< un<tn<...1-foo asn—»-f 00;

~Vo(un/n = —j o{tn n - NT
(5.8) Ve uning = o _hp {tnrn -F1)) for n”™ L
(5.9) —Fo(un/n) A~ n for n€£ 1;
(5.10) / (n~ (xun,in_1)1 OX~ 1 for « ~ 1.

We show that it is indeed possible to choose such sequences satisfying
(5.6)-(5.10). Put o = 0. From (5.5) and (5.6) we can choose a positive
number u\ > to such that p>o{™) * 1and

\] <po( F(x; ui, t0)) dx 1.
Since <po(u\) > 30 (2"1), there exists a positive number t\ > ui such that

Vo(tii) = \wo
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Suppose to, u\,...,un,tn have been chosen. From (5.6) we can choose a
positive number un+\ such that tin+i > tn,

1 1
WU + "n+1
n+1.+0Vn+1 t)
and
/ T (— — F(x;un+i,tn)) dx & 1.
Jn+l \n+1
Since
L O Ul | A +<Fo ‘Un+1 ) +0 j*n+l
n->x1 "\n + 1 M+ 1 " yn+ 2 n+ 2 yn-pﬂ

there exists a positive number tn+\ > un+\ such that

! ‘Un+\ L, L.
n+ fPyn+1 g+ 170y I 1

This selection procedure produces a sequence of numbers satisfying the prop-
erties (5.7)-(5.10). We note that

(5.11) unl Too as n —»+ 00.

In fact, suppose there exists a positive constant C such that 0<un”™ C <
< + o0 for aln” 1 From (5.5) it is clear that

+0 A NE(x;CL0)N A +0 .

Therefore if follows that
A

JI -n+0(r-1F(x;un,tn_|))dx F+O)$n_c)'>0 as n -> + 00.

)

We have arrived at a contradiction to (5.10). Thus (5.11) holds.
Define a function <p(t) as follows:

7+0 (7% iftn-1 W t < Un for n j>a;
7+0 (7«*) ifun”™ t<tnforn " 1.

612 (0.
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By the construction of yx(t) it is clear that y>0) = 0 and <p(t) is a monotone
increasing function. Moreover, in virtue of (5.9) and (5.12) we get <p(un)  n
for n ~ 1. Therefore we get ip{t) f +00 as t —»+ 0o0.

It remains to prove that 6 d<P) and / <p(L)* For any e > 0, a
positive integer n(e) can be chosen such that

1

<
0 n(e)+1<£"

(5.13)

For any t  £,,(ib there exists a positive integer n * n(e) such that tn * t <
<i,+i. Then combining (5.12) and (5.13) we can at once obtain that

nEIAO (n+i) A ,,+1F0(n(i—)+l)
<Po(et) = <fo(et) = yo(st)

< 5L o(") 1
<PoE) n+1

Consequently, (p(t) = o(tpo(£t)) as t —»+ &} holds.
We show that /  ip(L)* Put

En =ja; G[-7T, T < T AN N1

Then it follows from (5.5) and (5.10) that
T @ -

i}_"(”(")l) dx= E &

(D (D "

_ <p{F(x-,tn+i,tn)) I V(X

- nﬁo_é n=0
enr I \ on

=Z | TXT("TTA"AVidn) dx™ £ 1 = Too.
n=0__ vV 'T ' n-0

The proof is complete. O
It was proved in [12] that if (3.1) holds and f*(x) = supj|/,,(x)|:n »

~ 1j 6 <p(L)*, then there exists a </j(T)*-integrable control function 6. Com-
bining this with Theorem 5.5, the following theorem holds.
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Theorem 5.6. Let 90 G ®. //(3.1) holds and f* G £*0, then /,, con-
verges to f quasi ipo(L)*-a.e.

Coroltary 5.7. Suppose f G L*(expt7) for 7 > 0. Then S*(f) G
G L*(expc/C+B) Consequently, Sn(f;x) converges to f(x) quasi
(exp TA/BH-B) -a.e.

Proof. Put
00

=E QW7 o ==

In virtue of (2.7), we get = L*(e\pi7). Therefore, by Theorem 5.1 it
follows that if / G X*(expC), then S*(f) GL® + = F*(exp p/b+B) . By
Theorem 5.6 our desired conclusion holds. O

Corollary 5.8. Iff G BMO(T), then S*(f) (] L*(eXp t]./Z) Conse-
quently, Sn(f;x) converges to f(x) quasi (exp L1/2)*-a.e.

Proof. John and Nirenberg [2] proved that if / G BMO(T) and / is
any interval in T, then there are positive constants Ci and C2 independent
of / and | such that

(5.14) measjx G/: [f(x) - fi\ >tj » C\\exp(-C 2i/[|/||J

forall t > 0, where // = |jf /7f(x)dx and [[/]], = sup {w /;|f(x) - fi\ dx].

From (5.14) it is easy to see that if/ G BMO(T) then / G L*(expt). By
Corollary 5.7 the desired result follows. O

86. Example

In the preceding section we proved that if / GL*(expC) for 7 > 0, then
S*(f) GL*(exp T/C'+B) . A problem arises whether we can find a control

function of (3.2) in L* (exp fi/C+B) , whenever / G F*(exp C). In this section
a negative example will be given.

Theorem 6.1. For each 7 > 0 there exists a function f G L*(expC)
such that for some positive integers N\ < N2 < .m < < ... We get

(6.1)  SNk(f-,x) * C(logjV*)(7+1)/7 for all O~x~Tr/3Nk,

where C > 0 is a constant depending only on 7 > 0.
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T heorem 6.2. Let7 > 0. Then there exists a function f £ L'iexpP)
such that S*(f) 0 (exp Z/~7+1" and

T

[ F4/(-Y+i)(aoj sn{f\x) - /(x)]) dx - +00

for sufficiently large «o > 0, where y¥/(7+1)(f) = exp(i7*7+1") - p/b*1)_ 1.
By Lemma 3.3 and Theorem 6.2 we get the following result.

Corotlary 6.3. For any 7 > 0, there exists afunction f £ Ln{expt~*)
such that the a.e. convergence of (3.2) has no L*(exp p/C+P) -integrable
control function.

Proof of Theorem 6.1. Let {nk;k ™ 1} be an increasing sequence of
positive integers which will be defined later. Set

(6.2) No=1, Nk =L mlk for k" 1,

and define the closed intervals - and Jk as follows:
h = [Tr/NK, Tr/Nk-i], Jk = [2Tr/Nk,Tr/Nk-i - >¥Nk] for «k~ 1
If we choose the sequence {NKk;k ~ 1} as

(6.3) 3Nk-! <Nk for kZ 1,

then we get 2> Nk < >¥Nk-\ —« Nk and so Jk C [I-.
Now we construct a function f(x) £ L*(expi7). Put

‘cksin Nkx ifx £ Jk for k™ 1:

(6.4) /(*) = 0 |fX£ [0,7(]\ U \]ks

k=\

where {c" kK 1}is an increasing sequence of positive numbers which will be
defined later. Put f{—x) = f(x) for 0 < x ™ >kand extend it to a function
with period 2>k

We consider the Fourier series of f(x). As is known, we have

Sr{f;x) i f(x + t)S—in-lt dt+o(1) as n  +00,

—
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where o(l) is uniformly convergent. Therefore it follows that

SNk{f;x) = ~ \] f(x +t)Sn -k dx+"J f(x-t d t +o(l):=
0 0

= stik(f-,x) + S%K(f;x) + o(1).

In order to evaluate 547 (/;x), we divide it into three terms:

T
mp/;*) = ~ T/(*+osin“ dt+

0
At s SNKg T o SPINK
T 3 { T t
1t/Nk *IN k-1
=LK + A 2)(x) + T(3)0K).
If 0™ x < mfivic and k/Nk-i ~ ~ F, then n/Nk-i + T + T/

N TIAN + T. Therefore it follows from (6.4) that

(6.5) T<3)(x ) |~ \] \f(x +t)\£dtir-\ogNk,,.

For |TT1)(x)| it is easy to see that if 0 * x < n/Nk, then it follows that

n/Nk

=~ f |4X+0]|dti
0

2ir/Nk n/Nk

=~~ ] I(9lds="~ j |/(9)|d=
0 0
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Thus we get

(6.6) IT~A0k)| » Nk m —-— for 07~ x < #fivic and k"™ 1.
j=k+1J 71

It remains to estimate T/? (x). Suppose 0~ x A z/3Nk and put ak =
=2n/Nk and Bk = n/Nk sy —n/Nk. Then it follows from (6.4) that

Bk~x
P(2) E cksm NT((X + t)s--l-rl-N--lEE dt =

ak-x

k~

ok~x
ck sin N kx / cos Nkt msin N kt

t
Qk-X

dt-\-

0k-X
k Nk in Nkt
L C co;_ X / (sin Nkt) dt = cku[1\x) + ckU{x).

ak-x

According to the second mean value theorem, taking into account that
1/(21) is positive and decreasing monotonically in the range of integration,
we get

sin N~x sin 2Nkt
*\ —
*) = T 2(ak- x)
ak-x

where £(x) £ [ak —X,Bk —Xx]. Since 0 5 x  #/3Nk < F/Nk and ak =
= 2"/NKk, it follows that

L for 0 x~ 7r/3Nk.

(6.7) 1 L .2<
2K(@K —x) 2Nk w2

We estimate U*\x). Since 0 U x ~ x/3Nk, we get

Bk-x Bk-x 1 Kktx Zhlk
COoSs t
] f (sinjvil) i, — -dt-
C.ZKX) r J ( % ) 4X(\; td sarrJ t
otk-x otk-x ak-x
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Now we can assume that the sequence {nk\k ~ 1} satisfies the following
properties:

(6.8) 4<n\ <n2<..<nk<.., thatis, 4iMci < Nkfork 2 1

From (6.8) we find ak- x W2>x/Nk <n/Nk_i —2m/ Nk, therefore we have

RK~x Tr/NK_1-2ir/Nk
md 9w ¢ O
ak-x 2n/Nk
=~ I°g((Nk/2Nk-i) - I) = log(n*/2 - 1) £

A AMog(nfdd) = -Mog(Nk/4Nk-i).

We choose the sequence {nk\k ~ 1} such that

(6.9) 16N1_x < Nk for k~™I.

Then we get
F-a

(6.10) !l;x J|’ jdt > g logNk for k21
ak-x

By the second mean value theorem, we get

RK-x
6.11 1 f cos2Nkt™ < 1 1< 1
(6.1 T t ~ 4n(ak —x) Nk - 4t2
ak-x

From (6.10) and (6.11) we get

(6.12) nrke\x) A logN/c - ~2  for k2 1.

From (6.7) and (6.12) it follows that if 0~ x ~ #/3NKk, then

(6.13) T k2\x) log Nk - for k> 1.
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Thus it follows from (6.5), (6.6) and (6.13) that if 0 ~ x ~ #/3NKk, then we
get

. osthktd €2 16)(x)-\T I x )\ -\ Tka\x )l A

( 1 1 o \ 00
— logAj - -log - JNi) - Ate Y, ~77 fOT
7 J=H 3
00}
Now we consider the sequence Nk m ar2- for A™ 1. Put
j=k+1 ;1
(6.14) ck=(logfor k21

Then from (6.2) we get

0o

o
Nkm nk- | 1NITHIEY
j=KH Err R

(log Nk+S)Ih

= (log NK)Ih
(log Nk) NI NGED se oAt

Since A2/7 ~ 2t < nt for sufficiently large K in virtue of (6.9), it is easy to
see that

(log X* ) 17 < {(k+ lognk+s)lh < yMWfctJ(log nk+sf h
Hk+s Tik+s A+ s

= {IssUiyEl 0 * s — + OC
y/"kﬂys -

Therefore there exists a positive constant M (7) depending only on 7 > 0
such that

I N7
Nt- vy (Ql(ill 1) <
j=k+1 J-
1
Alog™MYLUT7+ M(7) h + £ <

_2nk+] mme*4+5s-]
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N (logNK)I + M(7)11+ £ I = (log Nk)I* + 2M(7).
Consequently we get the following inequality:

(6.15) Nk. f; {°g" —B—- " 2(logNk)I"
j=k+1 I

for sufficiently large k.
Now we choose the sequence {Nk]k ~ 1} such that

(6.16) Nt6, < Nk < Nil, for k1 1

Then it is clear from (6.14) that
(6.17) logNE! < b logNk and (\ogNk)Ih < [7]hck.

When 0~ x » #/3NK, from (6.15) and (6.17) the following inequality follows:

(6.18) §r7[ f(x+t)"}:t)idt N Cx(7)(logiVig) (147

0
for sufficiently large k, where > 0 is a constant depending only on
7 > 0.

In order to estimate Sﬁ)(f;x) we divide it into four terms:

ir/Nk 2ir/Nk

22, 4 1 fr, sinNkt Uil [ sin Nkt
SNk(flix)=~ [ f(X- 0-—-2—r1ff+- [ [(X-C 21—
0 TINc

n/Nk-1 T
1 f .sin Nkt 1 /f ) 'S|metdi‘
+-7|_ f(x-t)—-Z— dt+-7Z ; ()K-t—-t— .
2ix/Nk *INK-i

Arguing in the same way, we find that if 0 I: a ™ ir/Nk,
(6.19) 507(/; ) N Ci*Xlog./Vfc)M47~7 for sufficiently large Kk,

where Cr(7) > 0is a constant depending only on 7 > 0.

lck Mathematica Hungarica 65, 1994



CONVERGENCE OF FOURIER SERIES OF FUNCTIONS IN ORLICZ SPACES 357

If we choose the sequence {nk'k ~ 1} satisfying the conditions (6.3),
(6.8), (6.9) and (6.16), then from (6.18) and (6.19) we get (6.1).

Finally, it will be proved that the function / constructed above is in the
Orlicz space T*(expi7). Put <19 = exp(f7) —V - land eo = (1/2)r. It
follows from (6.14) that

JA(eo|/(z)|) dx = Z\I(p(eo\/(x)\" dx =

i 0
*/NK_!-ir/Nk
/ V>(eol/(*)]) dx <
LS VINTS
N 257v>(e0c*)--~N— N 27exp ((EOCFeD
k=i k~1 k=I ftl
@ @ 1
= 2£ exp(c2/2) = 25" exp - log Nk_
k=l /i1 *= 4
@ J
=2E S E AT < 400
k=1

Therefore / GL*(exp i7).

Proof of Theorem 6.2. Let/ be a function constructed in the proof
of Theorem 6.1. We have to prove that S*(f) 0 (exp T7"7+1" * Suppose
S*(/) G (exp Xt/Ph-i)) *. Put

(6.20) \k:=C(\ogNkf +*h for k2 1,

where C > 0 is a constant given in the inequality (6.1). Since S*(f) G

G (exp Xt/O+i)) by assumption, for any positive number a we get the
following inequality:

(6.21) meas{x G T :S*(f)(x) » A} 9
Noexp(—taAjt)7r 7+1%) \]exp(aS"*(/)(x)) ™ T7+1*dx  for k™ 1.

On the other hand, by Theorem 6.1 it is easy to see that
(6.22) meas{x GT: 5*(/)(e) » A} N meas{x GT:5;vt(/;x) ~ A} "
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>5>K- for k> 1.

From (6.21) and (6.22) we find that

T
(6.23) -wy- mexp((aXk)l/b+1)) i Jexp(aSngf)(x)) l/(1+1]dx<+00
T

for k » L In virtue of (6.20), Nk = exp( (Xk/C)~2'r+1Y . Therefore it follows
from (6.23) that

(6.24) Aexp((ar+1)-(1/C'TIT+)NY(n+L) A

m

’

A | exp(as*(f)(x)) dx < +oc for kA.1.

—

If we choose a such that a > 1/C, then the left side of the inequality (6.24)
diverges to infinity because of the fact lim A, = + oc. We arrive at a

fc—>o00
contradiction. We get S*(f) " (exp £'y('y+l) .
Finally, we show that if we choose a positive number g0 such that

(6.25) i(a0C/2T /(1) > 2,

where C > 0 is a constant given in (6.1), then we get

m

/ ¥U/bl-1)(ao|SNK(f;x) - /(x)]) dx = +oc.

When WNk+i ~ x ~ WNK, it follows from (6.4) that
ISnk(f-,x) - f(x)I » C\ogNk)(I+* h - cw =

= C(log7viy(1+*~ - (logNk)Ih ~ |(1o g Nk){1+)h

Acta Mathematica Hungarica 65, 1994



CONVERGENCE OF FOURIER SERIES OF FUNCTIONS IN ORLICZ SPACES 359

for sufficiently large k. Therefore from (6.25) we get

V-y/h+i)(®0\SNK(F;x) - /(*)]) W (t+i) (*(logiV *){1+» ) ~

- L K™ (@O Y ) A7) =

= exp Fl/ooCy/(7+l) \ogNkE" exp(2logNk) = Nk.
2V 2 )
Thus we get
\] ¥/(7+1) (a0l5a/1/;a;) - Ax)|) dx *
n/JNk
= Ah+i){ao\SNk{f;x) - /(z)]) dx >
= (x - nar™r) =Nk (I -i£1) ~ +% = A +00°'

Our desired result follows. O

References

[1] R. A. Hunt, On the convergence of Fourier series, in Orthogonal Expansions and
Their Continuous Analogues, Proc. Conf. Edwardsville. 111. (1967),235-255
(Southern Illinois Univ. Press, Carbondale, 111., 1968).

[2] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math., 14 (1961), 415-426."

[3] H. Kita, On control functions of a.e. convergence of Fourier series of continuous
functions, Math. Japon., 30 (1985), 897-912.

[4] H. Kita, On control functions of a.e. convergence of the Fourier series of bounded
functions, Math. Japon., 36 (1991), 649-655.

[5] H. Kita, Convergence of Fourier series of a function on generalized Wiener’s class
BV (p(n) j oo), Acta Math. Hungar., 57 (1991), 233-243.

[6] H. Kita and K. Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon.,
37 (1992), 775-802.

[71 H. Kita and K. Yoneda, Some inclusion relations of Orlicz spaces, Math. Japon., 37
(1992), 1189-1199.

[8] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc. (1991).

Acta Mathematica Hungarica 65, 1994



360 H. KITA and K. YONEDA: CONVERGENCE OF FOURIER SERIES OF FUNCTIONS ...

[9] S.J. Taylor, An alternative form of Egoroff’s theorem, Fundamente Math.. 48 (1960).
169-174.

[10] E. Wagner and W. Wilczynski, Convergence almost everywhere of sequence of mea-
surable functions, Colloquium Math., XLV (1981), 119-124.

[11] K. Yoneda, On control functions of a.e. convergence, Math. Japon.. 20 (1975), 101—
105.

[12] K. Yoneda, On a.e. convergence of Fourier series, Math. Japon., 30 (1985), 617-633.

(Received August 24, 1992)

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION

OITA UNIVERSITY

700 DANNOHARU OITA 870-11
JAPAN

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSAKA PREFECTURE
SAKAI 593, OSAKA

JAPAN

Acta Mathematica Hungarica 65, 1994



Acta Math. Hungar.
65 (4) (1994), 361 364.

ON A DIOPHANTINE PROBLEM
CONCERNING STIRLING NUMBERS

A. PINTER (Debrecen)¥

Denote by S£ the Stirling number of second kind with parameters (n, k),
that is the number of partitions of the set {I,2,...,n} into kK non-empty
subsets. The Stirling numbers play an important role in mathematics, espe-
cially in combinatorics, number theory and a little bit surprisingly in alge-
braic topology, too. For a survey on Stirling numbers and their applications
we refer to [3].

The arithmetical structure of Stirling numbers have been studied by
several authors (see [2], [5] and [10]). We proved in [1] that for fixed positive
integers u, v, the equation

SZ-u = w*

in integers x,y,z with x > u, |j/| > 1, 2~ 2 has only finitely many solutions
and gave an effective upper bound for these solutions. The proof of this
result is based ultimately on Baker’s method.

Let b > a > 1be rational integers. In this note we consider the equation

(1) in integers X,y with x > a, y >h.

Using again the theory of linear forms in logarithms we obtain

Theorem. All the solutions of equation (1) satisfy

max (x,y) < C sbm(log b)3 mlog log a,

where C is an effectively computable absolute constant.

1 Research supported in part by Grant 4055 from the Hungarian National Foundation
for Scientific Research and by Kereskedelmi és Hitel Bank Rt. Universitas Foundation.
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Preliminaries

To the proof of the Theorem we need two auxiliary results.
Lemma 1. Letn, k be rational integers with 1~ k <n. Then

& _(k-1I)n< n< &

(2) A (k- 1)1 = k=K
and
3) \(k2 + K+ 2)kn—k~1 - 1A S kA\ Q knk

Proof. For (2), see Satz 2.1 in [12] and the inequalities (3) are due to
Dobson and Rennie [4].

Let a\,i.,.mmar be rational integers with ar ™ 2. The next lemma is a
special case of a deep result of [6]. For a more explicit version, see the recent
paper of Waldschmidt [11].

Lemma 2. Let b\,... ,br be rational integers such that

ab---ab ¢ 1,
and put B = max] 2, |&i|,..., I&I}« Then
lajleecab - 1| > exp(-ci *logai eelogar ¢logi),

where C\ is an effectively computable positive number depending only on r.

Proof of the Theorem

In the sequel @, G will denote effectively computable positive constante
Let (x,y) be an arbitrary but fixed solution to (1). By (3) we obtain ax =
N 2b~lby~band by~b " 2a~1ax~a. These inequalities imply
(@) x ™ 2(log6)?/ and y i@ x +b, respectively.

It is known (cf. [8] or [9]), that

(5) Qi* - D"+ Q<*-2y-...+(-uv).
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. K- 1\n 4*),+...+<>k',(t*,)(£

We may assume that min(x,?/) > 261log6, for otherwise our Theorem is
proved by (4). Using (1), (2), (5) and the assumption x > 2616g6 we get

axe! max( S(a, X), 5(6, j/))
(6) a\by 1508 S 2max(b(a, x), b(b,y)) S
fl A\ min (x.y) .
<26171 <2nrh=4N,
One can see that ® 1 Indeed, suppose the contrary
W) blax = al6y

for some x > aand y > 6> 2. Then (7) gives that 6-1 divides by 1, which
is a contradiction. Since min (x,y) > 26log6, we deduce from (4) that

(8) max(x,y) * 2logémin (x, y),
and Lemma 2 yields

axe!

- /\_ _- L] A A L]
byal 1 >exp”-C2mlog (-j ) mloga *16g6 * log max (X, y)

Comparing now this inequality with (6) we infer that

min (z,y) <c3e+6°log (— ) *loga m(logb)\

and (8) completes the proof of the Theorem.

Acknowledgements. The author is grateful to Professors Brindza and
Gyory and the referee for their valuable remarks.
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SIMULTANEOUS EXTENSIONS
OF CAUCHY STRUCTURES

A CSASZAR (Budapest),* member of the Academy

0. Introduction. The papers [3] deal, among others, with the following
problem: in a closure space (X, c), let a (possibly empty) family of subsets
X{ (i E1) be given, and, for each : £f, a merotopy M, on X,; look for an
extension of {c;M,}, i.e. for a merotopy M on X such that M induces the
closure c and its restriction to X, coincides with M,. The author considered
in [2] the same problem in the case when M, and M are filter merotopies
or (equivalently) Si and S are screens on X{ and X, respectively (for the
terminology, see Chapter 1 below). The present paper intends to investigate
from this point of view a still more special kind of structures, namely Cauchy
structures; in fact, our results will concern two classes of Cauchy structures
only and questions related with Cauchy structures in general remain open
until future publications.

1. Preliminaries. For a set X, let us denote by FilX the collection
of all filters in X (including the improper filter expX). For a C expX,
denote by filx a = fila the smallest filter containing a, by secA a = seca the
collection of all subsets of X that meet each element of a. In particular, we
write A — Wn-{A} for AC X and x = A for x EX, A = {a}

If a C expX and Xo C X, we denote by a|XO0 the collection of all
intersections A 1 Xo where A E a. If s is a filter in X then s|Xo is a filter
in Xo- Conversely, if so E FilXo, then Sq = filx s0 is the finest filter s in X
such that s|X0 = s0.

For a,b C expX, let us introduce the notation aAb to denote the
situation that each A E a meets each B E b; we write aflb in the opposite
case.

A screenon X (see [2])isaset 0¢p S C FilX such that

(1.1) x E X implies that thereis s £ S such that x E s,

(1.2) S£S and sCs'EFilX imply s ES.

*Research supported by Hungarian National Foundation for Scientific Research, grant
no. 2114.
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IfO S C Fii A fulfils (1.1), we say that S is a screen base on A ; it generates
the screen S' composed of all filters in X finer than some element of S. We
also say that S is a screen base for the screen S'.

If Sis ascreen on X and Ao C X then S|Ao = {s]Ao: s £ S} is a screen
on Xq.

The screen S on X induces a closure (see [3], 0.1) ¢ = ¢(S) on X defined
by x £ C(A) iff there is s £ S such that {a}, A £ secs. Clearly if s 6 S
and x £ s then s —x for c(S). Observe that the free filters in S do not
have any influence on c¢(S). If Ao C X and S is a screen on X, we have
c(S|A0) = c(S)|A"0.

A screen Son X is said to be Riesz iffvc(a) £ S for x £ X, where vc(z)
denotes the c-neighbourhood filter of x for the closure ¢ = c(S); S is said
to be Lodato iff vc(s) £ S for each s £ S where ¢ = ¢(S) again and, for an
arbitrary s £ Fii X, vc(s) is composed of all sets v C X such that there is
S £ s satisfying V £ vo(a) for g £ 5. If cis a topology then vc(s) is the filter
generated by the filter base composed of the c-open elements of s. If S is a
Lodato screen then c(S) is a topology; if c is a topology and ¢ = c(S) then
S is Lodato iff it is generated by a screen base composed of c-open filters.

If S is a Riesz or Lodato screen on X then so is S|A'o on Xo C X .

A Cauchy structure S on X (see e.g. [4], p. 12) is a screen satisfying

(2.3) sbhs2€ S, SjAs2 imply sjfls~S.

We shall call Cauchy screen or briefly C-screen on A a Cauchy structure on
X in the above sense. A CR-screen or CL-screen is a C-screen that is Riesz
or Lodato, respectively.

If a screen base S fulfils (1.3) then the screen generated by S is a C-screen
since Si C s'j, s2 C Sj, sjAs2 imply SiAs2. This is the case in particular when
siAs2for si,s2£ S, si ¢ s2.

If S is a C-screen on X and Xo C X then S|Ao is a C-screen on Xo
because si|AocAs2|Aocimplies siAs2, further si Ms2|Ao = (si|A0) M(s2JAo)

Let us agree in saying that (so,..., sn) is a Cauchy chain on A iffs; £
£ FilA for i =0,...,n and s,_iAsi for i = 1,...,n. An easy induction
based on the observation

n m
r s-tj £ FilA', 1 3'n N tj iff there are
0 0

M and j such that s;Atj
shows that P|st £ S whenever S is a C-screen and (so, ...,sn) is a Cauchy

chain such that s;£Sfori=0,
For screens Sx and S2 on A Sl |s said to be coarser than S2, S2 finer
than Si, iff Si @ S2. If Si is coarser than S2then c¢(Si) is coarser than ¢(S2).
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For a screen S on X, the finest C-screen Sc coarls]er than S is generated by
the screen base S' composed of all intersections ('ls,- where (so,... ,sn) is a
0

Cauchy chain such that s- £ S (r= 0,... ,n); S fulfils (1.3) in consequence
of (1.4). If B is a screen base for S, it suffices to take intersections ) s- such
0

that the elements of the Cauchy chain (so,..., s,,) belong to B.

We are now able to formulate more precisely the purpose of the present
paper. Let (X,c) be a closure space, X, CX forrE/ (/ = 0can happen),
and S, a given screen on X,. We look for CR- or CL-extensions of {c;S,},
i.e. for a CR-screen or CL-screen S on X such that

(1.5) c(S)=c¢ SIX-=S; for iEI

In Sections 2 and 3, we always assume the following standard hypotheses:
(X, ¢) is a closure space, X,- C X, Stis a screen on X for i £ 1, and extension
will mean a screen S on X fulfilling (1.5). We write ¢, = ¢(S,) and XtJ =
= X; MNXj fori,j EI-

2. CR-extensions. A simple necessary condition can very easily be

obtained:

Lemma 2.1. IfS is a CR-screen then ¢ = ¢(S) fulfils the condition
(2.1.1) for x,yeX, vdx) ¢ vc(y) implies vc(x)Xvc(i/).

Proof. If ve(X)Avc(y) then s = ve(i)nvc(j) E S since the CR-screen
S contains both vc(x) and ve(y). Now s E S, x E Ms imply s —»x for ¢ and
vc(x) Cs. Similarly ve(y) C s sothat s = ve(x) = ve(y). O

For topological spaces, condition (2.1.1) is often called axiom (S2) (see
e.g. [1, p. 95). Therefore we shall say that the closure c (or the closure
space (X, ¢)) is S2iff (2.1.1) holds. This is the case of course if cis Hausdorff
(or Tf), i.e. if x dy implies ve(x)Avc(?/). According to [5], Definition 3.1,
the C-screen S is said to be Hausdorff iff ¢(S) is T\ (i.e. separated).

It is easy to prove the converse of 2.1 in the following form:

Lemma 2.2. Ifcis an S2 closure then B = {vc(x):x € X} is a screen
base for a CR-screen S such that ¢ —c(S).

Proof. By (S2) the screen generated by B is Cauchy. If x E c(A),
vc(x) E S satisfies x E Mvce(x), A E secve(x). Ifs ES, x E IMs, A E secs,
then s D vc(y) for some y E X; by x E Mvdy) and (S2), vc(/) = ve(x),
hence A E secvc(x) and x E c(A). Thus c=c¢(S) and S is Riesz. O

Observe that a C-screen need not be a CR-screen although it induces a
T2 closure:
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Example 2.3. In aset X, let us say that s E FibY is an elementary
filter if s = T1 u»where u; is an ultrafilter for i = 0,...,n. Then by (1.4)

uAs for an ulotrafilter u implies u = u, for some i; hence s is an elementary
filter iff there are finitely many ultrafilters only finer than s. Therefore a
filter finer than an elementary filter is elementary itself.

Let S be a screen on X and denote by Se the collection of exp X and
of all elementary filters belonging to S. Then Se is a screen since x is an
elementary filter for x EX. If S is a C-screen then the same holds for Se.
We have ¢(Se) = ¢(S) because Se C S implies that c(Se) is finer than c(S),

and ifs GS, x E Ms, A E secs, then x Ds, (s|A)A 3 s, so that by taking

an ultrafilter u finer than (s|i4) X, we obtain an elementary filter s' = x Mu
finer than s and satisfying {x}, A E secs'. Hence c(S) is finer than c(Se).
Consider now a non-discrete topology c that is first countable and
let S be a C-screen such that ¢ = ¢(S) (by 2.2, S may be chosen to be a
CR-screen). Then ¢ = c¢(Se) and Seis a C-screen; however, Se cannot contain
vc(x) for a point x that is the limit of a sequence (xn) such that x dpxn ¢ xm
for n g m. In fact, there are infinitely many subsequences of (xn) each two of
which correspond to disjoint sets of indices, and by choosing ultrafilters finer
than the corresponding Fréchet filters, it turns out that there are infinitely
many ultrafilters finer than vc(x), and the latter cannot belong to Se. O

Lemma 2.4 (cf. [2], (2.7.1)). If S is a Riesz extension then vc(x)|Xt E
ES forx EX,iE/. O

Lemma 2.5. IfS is an extension and s-E S- then s E S.
Proof. There iss E S such that s|2f,- = stand sf is finer thans. O

Corollary 2.6. If S is a Cauchy extension and (to,..., t,,) isa Cauchy
chain such that tj = s*, sj E Stj) ij EI, then

(2.6.1) ANQtApOtESfe (kei). O

Corollary 2.7. IfS is a CR-extension, s; ES,, and x E X is a cluster
point for ¢ of s f, then sf —x with respect to c.

Proof. vc(x)AsY by hypothesis and both filters belong to S, hence

s =ve(x) M E Sand x E s, sos—»x for ¢, and s” is finer thans. O
Now we can prove:

Theorem 2.8. There is a CR-extension of {c;S,} iff the following con-
ditions hold:

(@) c is an S2 closure,

(b) ve(x)|X,- ES; for x EX, i EI,
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(c) ifS{£S, and x £ X is a cluster point for ¢ ofsf thensf —x for c,
(d) if (to,...,tn) is a Cauchy chain such that tj = sj, sj £ S,j, ij £ 1,

then (fltj IXk £ Sfcfor k £ /.

/I these conditions are fulfilled then the filters vc(x) (a- £ X) and the
filters

(2.8.1) @] (tj asin (d))
0

constitute a screen base for the finest CR-extension S*"R = S"R(c;Sj).

Proof. Necessity: 2.1, 2.4, 2.7, 2.6.

Sufficiency: The collection B of the neighbourhood filters vc(a) and the
filters (2.8.1) is obviously a screen base. It generates a Cauchy screen because
s', s" £ B, s'As" imply s' Ms" £ B. This is a consequence of (a) if both s’
and s" are neighbourhood filters, and of (d) if both have the form (2.8.1) (cf.

(1.4)). If s' = vc(a), s" = fltj as in (2.8.1), then by (1.4) one of the filters
0

tj has x for cluster point (with respect to ¢) and then, by (c), tj —»X. Now
tj_jAOtj (except for j —O0) and tjA tj+i (except for j =n) imply, again by
(c), tj_i —=*x, tj+i —»x. After a finite number of steps we obtain tj —x for
each j, hence s" —»x, and s' Ms" = s".

By 2.2 ¢(S) is coarser than c for the screen S generated by B. If s £ S,
{a;}, A £ secs, then x £ c(A) (and c(S) is finer than c¢). In fact, we may
suppose that s £ B, and the case s = vc(ai) is settled by 2.2. If s is of the
form (2.8.1) then {x} £ sectj = sj foraj, hence by (c) sj —x for c, and
a successive application of (c) as above furnishes s —»x, x £ c(A).

Therefore S is a Riesz screen, (b) and (d) show that s|X; £°S; (i £
£1) if s £ B, and then for s £ S, too. On the other hand, s, £ Si implies
sf £B C S and sV |Ar=s,.

By this, S = SqR is a CR-extension. If S' is another CR-extension then
B CS by25sothat SCS. O

Observe that 2.8 (c) and (d) hold as soon as they are fulfilled for filters
Si or sj taken from screen bases generating Stor Sj, respectively.

Further necessary conditions can be easily formulated for the existence
of a CR-extension:

Lemma 2.9. If S is a CR-extension then
(@ ¢, =clAifori £,

(b) St\Xij = SfiXij fori,j £/,

(c) S, is aCR-screenfori £ I.

Proof, (a) and (b) hold for every extension ([2], (1.19) and (1.20)). O
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We show that each of the conditions 2.8 (a) to (d) is independent of the
others even if 2.9 (a) to (c) hold. For (a), this is shown by the case | = 0.

Example 2.10. Let x = R, ¢ be the Euclidean topology, Xo = (0,+00),
= c|Xo, and let So be generated by the screen base composed of all co-
neighbourhood filters. By 2.2 SO0 is a CR-screen and c¢(So) = Qg 2.9 (b) is

obvious since |/| = 1. 2.8 (c) holds because vQ(x)A has the only c-cluster
point x G Xq. 2-8 (d) is always fulfilled if / = {0} and Sqis a C-screen by

(2.10.1) sfAsf iff s,Asj for S{Sj G FilXi
n (n \ X
(2.10.2) n-f =ms. for s>e FilXO0.
Vo /

However, Vc(0)|Xo  So- O

Example 2.11. Consider X, c, X0, coas in 2.10, and let So be generated
by the filters v (t) (x G Xo) and by

so = (vc(0)pYO0) M fUAOTr

where r = {(a, +00): a G Xo} . We have co = ¢(So) as above because so is a
free filter. Hence SO is a Riesz screen again and 2.9 (b) holds for the same

reason as in 2.10. So is Cauchy since so does not have any co-cluster point.
Now

vc(x)|Xo = veo(x) GSO for x G XO,
ve(x)|Xo = exp X0GSO for x <0,
vc(0)|Xo D s0,

so that 2.8 (b) holds. However, Sq has the c-cluster point 0 without con-
verging to 0. O

2
Example 2.12. Let Yt - R x {i} for i —0,1,2, X = (JF;, c the
0
Euclidean topology of R2 restricted to X, X, = X - ¥;, ¢-=¢|X,, r, =

= {(a, +00) X{r}a GR} . Let S- be generated by the screen base composed
of the filters yc(X)|X"F (x GX,) and, for i =0, of
soi = fiUcri and sqg2= Waol?2
for i = 1 of
si = (fUAi ro) n (fiiA, 12),
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for i = 2 of
2= ro) M (fUAari) »

Now c, = c(Sj) since s6i, 02, si, S2 are free filters, hence the screens
S; are Riesz. They are_Cauchy because soi, s02, Si, &2 do not have any
c-cluster points and s0i As0Oz2. For the same reason, 2.8 (c) holds, and 2.8 (b)
is obviously valid. 2.9 (b) follows from the formulae

soilAoi = expA'oi = expA'i|Xoi,
s0i[-202 = fily, ri = SzlAoz,
S02/-Toi

s02iMo2 = exp AR = expA'2A02>

filyal2 = SjIAOL

silA-12 = fily0ro = s2|AT12

and the obvious ones concerning the neighbourhood filters.
However, (sA,sA) is a Cauchy chain and

(sf MsA) [X0= (filx0ri) M (filx0r2) £ SO. O

From a certain point of view, Example 2.12 is the best one; in fact, we
can show:

Lemma 2.13. ItJ |/| ~ 2, each S; is a Cauchy sci'een, and 2.9 (b) is
fulfilled, then 2.8 (d) holds.

Proof. This isobvious for/ = 0 and we have shown it in 2.10 for |/| —L1
Let I —{0,1} and consider a Cauchy chain (to,...,tn) such that tj = s*,
sj GSo or Si for each j.

Suppose sj GSO for j\ ~ j ~ j2 Then by (2.10.2)

I‘IS(:SXfor s=1N

3=31 3=31

and by (2.10.1) (sjj,...,sjfi) is a Cauchy chain in A'o. Hence s G So and

sA_iAsa (except for ji =0),

n)

s As™+l (except for j2

clearly imply
P-1 AsfI SAA sE +1.
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A similar statement is valid if sj £ Si for j\ %j ” /2- Therefore it suffices
to consider Cauchy chains (t0,...,tn) such that tj = sj and, say, § £ SO
forj =2k, Sj £ Si forj =2k + 1

Now we proceed by induction according to n. For n = 0, so £ So implies
Sq'|Ao= so £ Soand Sq|Xi £ Si, too. In fact,

(2.13.1) SqIXi = (sOJAGI)Al for sOE£ FilXO.

Namely, so is a base in X for s£, hence so|Xi = so|Xoi is a base in Xi for

s”|Xi- On the other hand, so|Xoi is a base in Xi for (so\Xoi) Al, too.
From so £ SO and (2.13.1) we obtain by 2.9 (b)

sor]Ai = (silXoi)*1

for some Si £ Si, and (si|Xoi) XI D Si implies Sq |ATi £ Si as stated.
Suppose the statement holds for some n and consider a Cauchy chain

(to,... ,tn+i) such that tj = sj1, " £ So ifj = 2k, sj £ Si ifj =2k + 1

Assume n+ 1lis even (the other case is established by interchanging the roles

of So and Si). By the induction hypothesis, s = f)t satisfies s|Xo £ So,

s|Xi £ Si. Now tn+i = s*+1, sn+i £ SO implies
(2.13.2) [*o — (s Ms*+1) IA0 —(s|AQ) Msn+i,

further s C t,, and t,As™+l imply sAs™+1l and then s|XoAsn+i by Ao £

£ s*+1 so that the right hand side of (2.13.2) belongs to SO. On the other
hand,

(2.13.3) I*i = (sOs*.,) |*i = (s|*i) M (s"+1[*i)

where sjf+1|Xi £ Si by the reasoning applied above for n —0. Now tnAtn+i
and tn = s* sn £ Sx, Ai £ s* imply tn|AiAtn+11Ab hence, by s C tn,
s|*iAs™+1|*i, so that the right hand side of (2.13.3) belongs to Si. O

Corottary 2.14. //(2.8) (a), (b), (c), (2.9) (b), (c) are fulfilled and
|[J] N 2, then SgR constructed as in 2.8 is the finest CR-extension. O

Observe that 2.9 (c) can be weakened to: Stis a Cauchy screen for each i.
It is shown in [2], 2.8 that if c is S2 (or even satisfies a weaker hypothesis)
and 2.8 (b), 2.9 (a) and (b) hold, then the finest Riesz extension S” is
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generated by the screen base composed of the filters vc(x) (x £ X) and sf
(st£ S{, i £1). From this, we easily deduce

Theorem 2.15. Under the hypotheses of 2.8, we have

scr = (scr) o

Proof. If S is a CR-extension then C S, consequently (SR) ¢cs.

C q
From SR C (SR) C S we deduce that (S”) is an extension, namely a
CR one; therefore it coincides with the finest CR-extension SqR by 2.8. O
SgR can be distinct from SR:

Example 2.16. Consider X, X,, ¢, S; as in 2.12 but for i = 1,2 only.
Then by 2.14 and 2.15 (whose hypotheses are fulfilled now by 2.13) there

exists = (SB) C. Now clearly ,s* £ SR but M £ (S}j)C does

not belong to SR. O

In contrast to [2], 2.7, according to which there exists a coarsest Riesz
extension (if there exist any), we can show that a coarsest CR-extension need
not exist:

Example 2.17. Let X = R x {0,1}, let c be the restriction to X of the
Euclidean topology of the plane,

ro+ = {(a, poo) X{0}:a ¢ R},
ro- - {(-00,a) X {0} ac R},
ri = {(a Too) X {1}: a£ R},
and
(Waro+) m(Wwn'rr) ,
(filxr0=y M (filxri) .

sO+

sO_

For Xo = R x {0}, let So be generated by the screen base composed of the
filters ve(x)|Xo (x £ Xo) and So+|Xo, so_|Xo. On the set X, consider the
screens S and S' generated by the screen bases composed of the filters vc¢(x)
(x £ X) and, in the case of S, of so+ and fUx ro-, in the case of S', of so-
and filx ro+. As the elements of both screen bases are pairwise in relation
A, and clearly ¢(S) = ¢(S') = ¢, S|Xo = S'|Xo = So, both S and S' are
CR-extensions of So- However, any Cauchy screen coarser than both S and
S' necessarily contains so+ 1so- whose trace on Xo does not belong to So-
O
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Observe that this example shows the lack of a coarsest Cauchy extension
in general, in contrast to [2], 2.6, according to which there is a coarsest
extension of {c;S,} whenever an extension exists at all.

3. CL-extensions. A great deal of questions arising on this field can be
treated with methods applied for CR-extensions. If S is a Lodato screen and
x £ c(c(A)) , ¢ = c(S), then there is s £ S such that {x}, c(A) £ secs and
clearly A £ secvc(s), ve(s) £ S, sothat x £ ¢(A) and c is a topology. If So =
= S|Xo, so £ So, then Sg £ S by 25 and vc(sqg) £ S. By this, taking into
account that a Lodato screen is Riesz (since vc(x) = vc(x)), we immediately
obtain, using 2.8, the necessity part of

Theorem 3.1. There exists a CL-extension iff the following conditions
are satisfied:

(@) c is an S2 topology,

(b) ve(x)|Xi £S,forx £X,i£1,

(c) if{ £ §-andx £ AT is a cluster pointforco/vc(s”) thenvc(sf) —
—>x for c,

(d) if (tO,...,tn) is a Cauchy chain such that tj —vc(s'v), sj £ Stj,

(o 1)

If these conditions are fulfilled then the screen base B composed of all
filters ve(x) (x £ X) and of all intersections

(3.1.1) flu (j asin (d)
0

generates the finest CL-extension SqL = Sql{(c;S,).

Proof. We only have to check the sufficiency. Similarly to the proof of
2.8, (a) and (c) show that B is a screen base for a Cauchy screen S such that
c(S) = ¢. Thus Sis a CL-screen because c is a topology and the elements
of B are c-open filters. Now (b) and (d) show S|X; CS; fori £/ and Si C
C S|Aj- follows from 2 vce(sf). If S'is an arbitrary CL-extension then
BCS', hence SCS'. O

If c is a topology and X qis c-open, sOis a @ = c|Ao-open filter in Xo,
then clearly ve(sg) = Sq'. Hence, if each X, is c-open and S, is Lodato,
then 2.8 (c) and (d) coincide with 3.1 (c) and (d), respectively.

For the existence of a CL-extension, further necessary conditions are,
of course, 2.9 (a) and (b), and the one that the screens S; have to be
CL-screens. Examples 2.10, 2.11, 2.12 show that each of the conditions 3.1
(@) to (d) is independent of the others even if the above necessary conditions
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are satisfied; in fact, in 2.10, 2.11, 2.12, c is always a T2 topology, the sets
X, are c-open and the filters in the screen bases generating S, are c-open,
too, so that all screens S- are CL-screens and the conditions 3.1 (b), (c), (d)
coincide with the respective conditions in 2.8.

Moreover, it can happen that all conditions in 2.8 and all but one con-
ditions in 3.1 are fulfilled and the exceptional condition in 3.1 fails to be
true.

Example 3.2. Let X —R, c¢* be the Euclidean topology on X , ¢ the
Hausdorff topology for which vc(a;) = ve.(a;) if x ¢ 0, and a base for vc(0)
is composed of the sets V - N where ¥ is a *-neighbourhood of 0 and

NENJ.

Define Xo = N so that @ = c|Xo is discrete, and let the screen base gener-
ating SO be composed of the filters &Xo (x £ Xo) and so = vc*(0)[Xo. Then
c(So) = (o since sO is free, so SOis a CL-screen and 2.9 (a), (b) are fulfilled.
The same holds for 3.1 (a), (b), (d) since vc(sq) does not have any c-cluster

point in Xo and vc(sq ) |[Xo = S 2.8 (c) is satisfied, too, since s£ does not
have any c-cluster points. However, 3.1 (c) fails to hold since O is a c-cluster
point of vc(s*) but D vc(so ) does not c-converge to 0. O

Example 3.3. Let c* denote the Euclidean topology on R2, X = R x
X [0,+00), and c be the Niemytzki topology on X (vc(p) = ve.(p)|X for
p=(xy), y>0 and, for p = (a:,0), a base for vc(p) is composed of
enclosed disks contained in X and containing p). Then c is T2 and, on
Xo = R X {0}, cinduces the discrete topology @ = c|Xo- Define Q = Q X
X {0}, P —Xo —Q, and let sp (sq) be composed of those sets S C Xo for
which P —S (Q - S) is finite. Let a screen base for So be composed ,i'|Xo
(x £ Xo) and of sp and sq. Then @ = c¢(So) (sp and sq are free filters),
and So is a CL-screen (spAsq by P 6 sp, Q 6 sq). Consequently 2.9 (a),
(b) , 3.1 (a), (b), 2.8 (d) are fulfilled (for the latter, consider 1 = {0}). 3.1
(c) holds since vc(sp) clearly does not have any cluster points in X —Xo
and, if p £ Xo, choose 5 £ sp such that p A S, a disk D C X such that
p £ D, and disks Ds C X for s £ S such that s £ Ds, DsT D = 0, so that

V = |J Ds £ vc(sp),V MND = 0. A similar reasoning shows that vc(sq)
ses w
does not have any cluster points at all for c.

However, vc(sp) Ave(sq) . In fact, for 5 £ sp and a c-open v D S, let
Pn denote the set of all p £ P for which the disk D C X containing p and of
diameter - is contained in V. Then P is the union of the sets Pn and of the
finite set P —5. Since P is a Gs subset of Xo for the topology c*A"o, the
Baire Category Theorem furnishes a Pn that is c*-dense in an open interval
(a, 6) C Xo- Then (a,b) x (0,~) CV, hence, for an arbitrary S' £ sq and a
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c-open V D S’, there isa G S' whose first coordinate belongs to (a,b) and
then necessarily V MV ¢ 0.

Now vc(sp ) flve(sg) has a trace on Ao that is composed of all sets

S C Xo for which Ao —S is finite; this filter does not belong to So, and 3.1
(d) fails to hold. O

This example shows that an analogue of 2.14 (by substituting 3.1 (a),
(b) , (c) to the respective conditions in 2.8) cannot be true for CL-extensions
and |/| = 1. It also shows that an analogue of [2], 2.14 fails to be valid for
/ = {0} and a c-closed Ao- On the other hand:

Theorem 3.4. The conditions 3.1 (b) to (d) follow from 3.1 (a) and
2.8 (b) to (d) provided X, is c-open and S, is a Lodato screen for i G 1.
Therefore, under these hypotheses, there exists a Cl,-extension.

Proof. By 2.8 there exists an extension, so 2.9 (a) holds and then 3.1
(c) and (d) coincide with 2.8 (c) and (d), respectively. O

According to [2], 2.17, the finest Lodato extension is generated by
the screen base composed of the filters vc(x) (x GA) and vc(s;x) (s; G S,
i Gf) (whenever a Lodato extension exists at all). Hence 2.16 (in which
c is a T2 topology, the sets A; are c-open, and the screen bases for S, are
composed of c-open filters) furnishes an example where SR = S”, SgqR = S~L,

consequently SqL ¢ S”. In the following example SR = SR, = SqL, but
) and so SgR ¢ SqL:

Example 3.5. Let A = R, c be the Euclidean topology on A, Ao =
= N, @ = c|Ao, and So be composed of expAo and of all ultrafilters in
Ao- Then 3.1 (a) to (d) are fulfilled: vc(so) does not have any c-cluster
points for a free ultrafilter SOin Ao, vc(sf) Avc(sd/) for two distinct free
ultrafilters sj,s2 G So, and vc(so ) |JAo = so- However, Sq is an ultrafilter in
A, whereas vc(sg ) does not contain any of the complementary sets Ao and
A - A0 O

Example 2.17 (in which c is a T2 topology and the screen base defining
S and S' are composed of c-open filters) shows that CL-extensions may exist
without existing a coarsest one among them (in contrast to the case of Lodato
extensions, see [2], 2.13).

The following analogue of 2.15 can be proved in the same way:

Theorem 3.6. Under the conditions of 3.1, rue have
sk = (sL)c

Proof. (S}J is Lodato since it admits a base composed of open filters.
O
The author thanks Dr. J. Deék for valuable remarks.
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GENERALIZED ARITHMETICAL
PROGRESSIONS AND SUMSETS

I. Z. RUZSA* (Budapest)

1. Introduction

A famous theorem of Freiman [3, 4, 5] describes the structure of sets
whose sum-set is not much larger than the original set. In this paper we
present a novel approach to this problem. We prove a result, which is
essentially equivalent to Freiman’s though expressed in different terms, and
the proof goes along completely different lines. The connection between
Freiman’s and our formulation is discussed in the last section.

Like Freiman’s, our method works equally for sets in finite dimensional
Euclidean spaces, or abstract torsionfree groups, so for greater flexibility we
present it in this form. Probably a generalization to every commutative
group is possible, though this seems to present some difficulties.

Let gi,...,qd and a be elements of an arbitrary commutative group,
li,...,1d positive integers. By a d-dimensional (generalized) arithmetical
progression we mean a set of the form

(1.1) P(qi,...,q,i;li,...,Id\a) = {n =a+xxqgi + ...+ xdgd,0 ~ xt < /}.
(More exactly, we think of it as a set together with a fixed representation in

the form (1.1); this representation is in general not unique.) We call d the
dimension of P, and by its size we mean the quantity

Nl = i|i|i(|_+ ),

which is the same as the number of elements if all sums in the right side of
(1.1) are distinct. In this case we say that P is proper.

1.1 Theorem. Let A, B befinite sets in a torsionfree commutative
group satisfying |[A| —|P| = n, \A+ B\ ~ an. There are numbers d, C

‘Supported by Hungarian National Foundation for Scientific Research, Grant No.
1901.
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depending on a only such that A is contained in a generalized arithmetical
progression of dimension at most d and size at most Cn.

Two important cases, which we do not formulate separately, are A = B
and A — —B.

2. “Bohr neighbourhoods” in certain sumsets

For iterated sumsets we introduce the notation

KA =A+..+A, Ksummands.

For distinction we denote
Ak = {ka :a E A}.

If G is a commutative group, 7i,... ,7f are characters of G and ej > 0, we
write

A(Tb” ->7*Eb--->£*) = id 6 G :|arg7j(y)| ™ 2irej for ally = 1....... k}

and call these sets Bohr sets. In particular, if = ... = fik= £ we shall
speak of a Bohr (k,e)-set. (We take the branch of arg that lies in [—x, ).)

In locally compact groups these sets form a base for the Bohr topology;
we shall work with finite groups, but we preserve the name that suggests
certain ideas.

2.1. Lemma. Let G be afinite commutative group, \G\ = m. Let A be
a nonempty subset of G and write \A\ —n —RBm. The set D = 2A —2A
(the second difference set of A) contains a Bohr k, e-set with some integer
K <R~2and e= 1/4.

This is essentially a result of Bogolyubov [1] which he used to study the
Bohr topology on the integers. We include a proof for sake of completeness.
With certain additional ideas, a similar result can be achieved for three
summands , see Freiman-Halberstam-Ruzsa [6], but the situation for two is
different, see Bourgain [2] and Rlzsa [7].

Proof. Let I denote the group of characters. For 7 £ I" put

I(7) =
aeA

We have

y j/I(7)I2= mn =Bm2
ALl
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and /(70) = n for the principal character 70. We have x 6 D for those
elements x for which

(2-1) 5n1 4T(am) 7°°-
7cr

To estimate (2.1), we split the characters 7 ¢ 70 into two groups. We
put those for which |/(7)] ~ VRn into and the rest into 1V We claim
that x G D whenever Re7(3) ~ 0 is satisfied for all 7 € IV Indeed, we have

Y V@40Y <Y\ (<e=rg

7612 76T 2

consequently

ReX 1|/(7)|47(z) » na+Re Y |/(7)]|47(") " na- Y |I(O)"7 (") >0
-yElr 762 To6rr

The condition Re 7(3) N 0isequivalent to |arg ~/(g)| » #/2, thus we have
a Bohr (k, 1/4) set with Kk = |Ix|. We estimate k. We have

kBnz A 5Z I-(T)| 2 < 5Z1-(T)| 2=

hence k » (m/n)2= R 2as claimed. O

3. A generalized arithmetical progression in a Bohr
neighbourhood

We show that Bohr sets contain large generalized arithmetical progres-
sions. We are able to do this only for cyclic groups; this will be sufficient
for our present aims, but it would be interesting to decide whether a similar
result holds in general groups.

Let G be the group of residues modulo m. The characters of G are of
the form

7(z) = e2iri/m

for some residue u. Consequently Bohr sets are sets of the form
(3.1) B(w,... o EB2) = {x s lujx/m|| A £j forall j =1,..., fc}.

Here [|f|| denotes the distance of a real number t from the nearest integer.
With a slight abuse of notation, we define |ju/m|| for a residue u modulo m
as the common value of ||[v/m|| for representants v of this residue class.
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3.1. Theorem. Let m be a positive integer, u\,...,uk residues modulo
m such that (uj, Uz, me uk,m) = 1 Ei,..., gk real numbers satisfying 0 <
< Ej <1/2. Write

_EVLLLEK

(3.2) (K
There are residues qi,. m ,gk and nonnegative integers I\ Ik such that the
set
(3.3) P = {qiXi + ...gkxk m\xi\ " li}
satisfies
(3.4) P CB(U\,...,WkE\ ..., Ex),

the sums in (3.3) are all distinct and

(3.5) WW=" (20+ )" m + 1) > 6m-
Proof. Let L be the k dimensional lattice of integer vectors (xi,... ,x")
satisfying
X\ = xu\,...,xk= xuk (mod m)

with some integer x. This lattice is the union of m translations of the lattice
(Zm)k (here we need the coprimality condition, otherwise there may be
coincidences), hence its determinant is mk~1.

Let Q be the rectangle determined by |xj| W Ej,j = 1,...,k and let
Ai,...,Ajk denote the successive minima of Q with respect to the lattice
L. These are the smallest positive numbers such that there are linearly
independent vectors cq,..., a- GL, a, GQ"i- By Minkowski’s inequality we
have

det L mk -
3.6 A . \k N2k
(3.6) volQ  E\V.. . Ek

Write
ai —(o*!,. ** Uk).

The condition ar G QA means that |a,y| ~ JKE. Since ar G L, there are
residues  such that ay = qiUj (modm). These are our gfis and we put

m

L= KA
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First we show that P C B. Consider an x 6 P, x = xxgx+ ... + xkgk.
We have

xuj = 8TXiglud = Xjajj (modm),
consequently
XUj E Xjajj x,af] _ ljXj£j <
m m m m e

Next we show that these elements are all distinct. If xx,...,xk and
2i >+ ¢) YK give the same sum, then with zj = Xj —yj we have

zjgt = 0 (mod m), \zj\ » 2/,.
Multiplying this congruence by Uj we infer that
Y1 Zjijj = 0 (mod m)

for all j. Moreover a calculation like above yields

E z'a'i = E Ij\jJEj » 2Ejm < m.

Consequently ~ Zjujj —O for every j, which means that  ziai —O0; by yiew
of the linear independence of the vectors a,, 4 = 0 for all i, qu.e.d.
Finally we prove (3.5). We have

li+ 1> m
] KXi’
hence
m m om
Mecat N5 yvx. . \k = kkE 1" - £k
by (3.6). O
It is easy to see that the result need not hold if (ui,... ,uk,m) =d > 1,

consider, for instance, the case m = d2, Kk = 1, ux —d. It can be shown that
a K |- 1 dimensional arithmetical progression can always be found in B.

3.2 Lemma. Let m be aprime, and let A be a nonempty set of residues
modulo m with |A] = Bm. There are residues gx, ... ,gk and nonnegative
integers /i,... lk such that the set

(3.7) P = {ODK+ ... +gkxk: k] A 1}
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satisfies P C D —2A —2/1, the sums in (3.7) are all distinct and

(3.8) IPI| = M(2/, + 1) £ + 1) > 6m-

where K * B 2 and

(3.9) 6 = (4k)~k < (R2/4)182
P roof. This follows from a combination of Lemma 2.1 and Theorem 3.1.

The assumption that m is a prime guarantees the coprimality assumption
required in Theorem 3.1. O

4. Freiman isomorphy
Let Gi, G2 be commutative groups, A\ C Gi, A2 C Gi. We say that a
mapping ¢ : A\ —A2is a homomorphism of order r in the sense of Freiman,

or an FT-homomorphism for short, if for every aq,..., xr,j/i,..., yT G Ai (not
necessarily distinct) the equation

(4.1) X\ 4+ X2 + ooot Xr - M+ Y2+ eoet M
implies
(4.2) d>(xi) + p(x2) + ... + P{xT) = PMN) + BP2) + -emt+ B>2h).

We call gpan Fr-isomorphism, ifit is (1-1) and its inverse is a homomorphism
as well, that is, (4.2) holds if and only if (4.1) does. When we do not specify
the order, we mean a homomorphism of order 2.

4.1. Lemma. Let G, G' be commutative groups. If a set P' C G' is the
homomorphic image of a generalized arithmetical progression P(qi, mmmqd\
/1,...,Id,a) C G, then there are elements q[,..., dd,a' £ G' such that
(4.1)
and the homomorphism is given by
(4.2) h(a+ xigi + ... + xdqd) = a' + Xig[ + ... + xddd.

Proot. Define a' and q[ by

a =), d=da+q)- b
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We prove (4.2) by inductiononr = x\ + ... + xj. Forr ” 1itisan immediate
consequence of the definition. Assume that r ~ 2 and the statement holds
for every smaller value. Consider an element

x = a+ Xigi + ... + Xdqd, agq + ...+ £F= r.

Since r N 2, either there are subscripts i dj such that xg”™ 1and Xj ~ 1, or
there is a subscript for which xt* 2. In the second case write j = i. In both
cases the sums

y:X—Xi, Z:X—)(j, M:X—Xi—Xj

are in P, their sums of coefficients are at most r —1 and they satisfy x +

+ 1 =y+ 2. This implies <> + <>U) = d(y) + that is, d(x) = d(y) +
+ {r) —p(n). Substituting (4.2) for y, z and ninto this equation we conclude
that (4.2) holds for x as well, which completes the inductive step. O

4.2, Lemma. Let G, G' be commutative groups, and let A C G, Al C Gl
be Fr isomorphic sets. Assume that r = r'(k + /) with nonnegative integers
r',k,I. The sets KA —IA and kA" —IAz1 are Fri isomorphic.

Proof. Let ¢pbe the isomorphism between A and A!. For an
X GKA —A, x=aj+ ... +ah—b\ —... —Di
we define naturally

Bh(x) = d(@al) + ... + pfat) - dbr) - ... - dib).

The facts that this depends only on x and not on the particular representa-
tion, and that ¢ is an Fr<isomorphism, follow immediately from the defini-
tion. O

5. Proof of the main theorem

We need the following results from Ruzsa [7].

51. Lemma. Let A be a set of integers, |A| = n, r * 2 an integer and
D —rA —rA. Write \D\ = N. For every m > 2r(N —1) there exists a set
A' C A, \A\ ~ n/r which is FT-isomorphic to a set T of residues mod m.

52. Lemma. Let A, B be subsets of an arbitrary Abelian group. Write
\B\ = n, \B §- A\ = an. For arbitrary positive integers k, | we have

(5.1) KA - 1A\ ak+n.

Acta Mathematica Hungarica 65, 1994



386 1Z RUZSA

Proof of Theorem 1.1. The subgroup generated by /1, like any finitely
generated torsionfree group, is isomorphic to Zv for some integer v. Let a\
be the image of A; the group isomorphy implies the Freiman isomorphy of
arbitrary order between A and A\.

For arbitrary fixed r we can find a set A2 C Z which is fv-isomorphic to
A\. Indeed, consider the mapping

(5.2) (6i,..., av) —di + ta2 + ..+ tv lav.

This is an Fr-homomoprhism for every r. If H denotes the maximal absolute
value of coordinates of elements of A\ and t > 2rH, then the coincidence of
two r-fold sums of numbers of the form (5.2) implies the coincidence of the
coordinates, thus this mapping is an isomorphism of order r. We shall use
this with r = 8; so let A2 be a set of integers which is Fs-isomorphic to A1,
hence to A.

Lemma 5.2 implies that

(5.3) |2N2- 2N21= |21 - 211" a4n.

(The first equality follows from the Fg isomorphy.) We apply Lemma 5.1
for r = 8 and a prime number m > 2r|2/1 —2J1|. By (5.3) and Chebyshev’s
theorem we can find such a prime with

m < 4r\2A - 2J711 < 32a4n.

Lemma 5.1 gives us a set A! C J12 Fs-isomorphic to a set T of residues modulo
m, \A\ A~ n/r —n/s.

Applying Lemma 3.2 we find a k dimensional proper arithmetical pro-
gression P C 2T - 2T of size » sn, where k = k(a) and 6 = ) > 0 depend
on a only.

Now T is Fg-isomorphic to a subset A* of J. By Lemma 4.2, this
Fg isomorphism can be extended to an F2 isomorphism between 2T - 2T
and 2J1* —2/1*. The image P* of P is a proper F-dimensional arithmetical
progression by Lemma 4.1 and we have P* C 2/1* —2/1° C 2J/1 —2/1.

Select a maximal collection of elements ai,..., as £ J1 such that the sets
P* + at are pairwise disjoint. We estimate s. Since these sets are all subsets
of N1+ P* C 3/1 - 2/1, we have

S___-___}'Ih -:-- as/e(a).

Here in the second inequality we used Lemma 5.2.
For every a £ /1 there is an a, such that

(0+ P )N@-+P*) p0

Ada Mathematica Hungarica 65, 1994



GENERALIZED ARITHMETICAL PROGRESSIONS AND SUMSETS 387

Thus there are p,p' E P* such that a+ p= a-+ p',thatis,a= +p'—p.
This means that

(5.4) Ac {ai,... ,a,} + P* —P*

Since P* is a fc-dimensional arithmetical progression, so is P* —P*, and
obviously

[[P* - P*|| ~ 2d|P*|| ~ 2fd2A - 2A\ £ 2kas4n.

The set {ai,...,as} can be covered by the s-dimensional arithmetical pro-
gression

P(ai, **°,as; 1, ¢, [; 0).

Hence the right side of (5.4) can be covered by an arithmetical progression

of dimension d = s + K and size C = 2s+kaan. Since both s and K were
bounded in terms of a, the proof is complete. O

6. Concluding remarks

One can imagine many results in the form “if |2A| ~ a|A|, then ...”.
Such a description is adequate, if the condition involved implies that |2A| »
i a"\A\ with some a' depending on a only. Among adequate descriptions
one can distinguish on two grounds: first, the smaller the value of a', the
better our result is; second, simplicity. For instance, the statement “if
|2A| ~ alA|, then \A —A\ N a2|A|”, a particular case of Lemma 5.2, is an
adequate description with a' —a4, but one cannot say that it helps much to
understand the structure of these sets. Our Theorem 1.1 uses a very simple
structure. The value we get for a1is 2dC. We did not express d and C
from a, but if we did so, we would get an exponential bound for d and a
doubly exponential one for C, so a doubly exponential bound for al An
improvement of these bounds would be interesting; | think the correct value
of d is about a, and that of C is about exp a.

There are other possibilities for improvement. It would be desirable to
have a proper d-dimensional arithmetical progression. Also, a d-dimensional
progression is the image of a set of lattice points in Zd. The following two
properties would be useful to have:

i) this map between Zd and our set is an isomorphism

ii) the inverse image of A in Zd is proper d-dimensional.

Since proper d-dimensional sets satisfy |2A| ~ (d + 1)|JA| —d(d + 1)/2
(Freiman [4]), these properties_ would automatically yield the (optimal)
bound d * [q —1] for n > n0(a).

Freiman [3, 4, 5] expresses the result in a rather different way. He asserts
that the set A isisomorphic to a subset of the set of lattice points in a convex
region of volume Cn in Rd, where for d he gives the optimal bound a —1
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(he does not specify the bound for C). | think my formulation and his are
essentially equivalent, though this is not obvious. | plan to return to this
and the problems mentioned above in another paper.
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OPTIMAL PACKINGS OF ELEVEN EQUAL
CIRCLES IN AN EQUILATERAL TRIANGLE

J. B. M. MELISSEN (Eindhoven)

An interesting problem in the theory of packing is that of finding the
densest packings of circles in a triangle. Malfatti [6], for instance, studied
the question of how to cut three circular cylinders of largest total volume from
a right triangular prism. He surmised that the solution would be obtained
by finding three circles in the triangle that each touches both the other two
circles as well as two of the sides of the triangle: “... cosicche ciascun de
circolo toccasse gli alti due ed insieme due lati del triangolo’. Unfortunately,
Malfatti had been wrong here; Goldberg [3, 4] showed that these so-called
Malfatti circles in fact never solve the densest packing problem. For a
description of similar packing problems we refer to [1, 2, 9].

In this article we will restrict our attention to equilateral triangles and
to packings with congruent circles. By stacking the circles on a regular tri-
angular lattice, it is easy to find obvious candidates for the optimal packings
of n = k(k + 1)/2 circles in an equilateral triangle. The proof, however, is
not so straightforward as the simplicity of the solution would suggest; it was
given in 1961 by Oler [10]. Recently, optimal configurations and proofs for
n=4,57,89 and 12 were obtained by the author [7]. A different proof
for the triangular numbers is also contained in that article. Conjectured
configurations for n — 17 are given in [8].

Fig. 1: a) Closest packing of eleven equal circles in an equilateral triangle,
b) Maximum least distance arrangement of eleven points in an equilateral triangle. The
solid line segments between the points are of equal length.

We will now give a proof for the optimality of certain arrangements of
eleven circles in an equilateral triangle. Since the inner parallel domains
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of a triangle are similar to the original triangle, the problem of finding the
densest packing of n equal circles in a triangle is equivalent to placing n points
inside that triangle such that the minimum distance between the points (the
separation distance) is maximal. We shall use this last formulation.

The optimal arrangements of eleven points in a unilateral triangle (up
to rotations) are shown in Figure Ib. The separation distance between the
points follows from these configurations as d\\ — (3 - \/6) /2 = 0.275255
The position of the central point is not unique, similar to the optimal ar-
rangements of seven points in an equilateral triangle [7], or eight points in a
circle [11].

Fig. 2: Partition of the triangle used in the proof. The dotted lines are of length i/y, .
The dashed/solid lines and arcs indicate to which of the subregions each edge belongs.

The simplest way to prove the optimality of d\\ would be to partition the
triangle into ten subregions that all have a diameter of at most d\\. For some
smaller numbers of points this method works well [7]. It is a result of Graham
[5], however, that the maximum diameter of ten subregions whose union is a
unilateral triangle is at least equal to 1/(2\/3) > du. For the proof of the
case n = 11 we will, instead, use the partition in Figure 2. This subdivision
of the unilateral triangular region T into eleven subregions is based on the
three disc segments of radius d\\ around the vertices of the triangle, on points
from the arrangement in Figure Ib, its rotated images and some points at
distance d\\ from these points. The dotted lines in Figure 2 are of length
du and show, in combination with symmetry in the vertical bisector, how
to construct the vertices of the partition. Each dashed/solid edge belongs to
the subregion that is indicated by the solid side of the line. All subregions
except the central hexagon H are of diameter dn; the diameter of H is less
than du- The edges and vertices are distributed over the subregions in such
a way that no single subregion can contain points that are a distance d\\
apart.

Suppose that we have a configuration of eleven points in T for which the
maximal separation distance is equal to d  du, then there must be exactly
one point in each of the eleven regions. The points in the three extreme
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circle segments may be assumed to lie on the vertices of the triangle. To
see this let xo be a vertex of T and suppose that x\ and x2 are points in
T such that ||xi - XU d and |[x2- xo| ~ ||xi - xo|. If |® - x0| ~ d,
then |[x2—xo|| ~ |[xi —XoW”™ d. The region of those points in T that have a
distance to xo of at most d is a circular disc segment around xo- This region
has a diameter d, so if ||[xi —x0| < d, then ||[x2- x%| ~ d. In both cases Xi
can be replaced by Xo in the arrangement without decreasing the separation
distance. We can therefore assume that the three vertices of T are part of
the solution. As it turns out, this assumption will not restrict the number of
solutions found.

Let U be the closure of the region that is obtained by removing the three
disc segments of radius d around the vertices from the triangular region, and
let 'l be the boundary of U. Without restricting generality, it may also be
assumed that the seven points in U\H lie on IV This can be seen as follows.
Region H can be divided into six congruent triangles. By symmetry it can be
assumed that the point in H is in one particular triangle S. The point in S
restricts the seven other points in U to lie in an annular-shaped region U\H,
where H = {x | dist(5,x) » du}. The boundary N'2= dH of H consists of
three circular arcs. Now consider the polygon that is formed by connecting
each of the seven points of the configuration in U\H with the two points
from the neighbouring regions in U\H. If the interior angle at a vertex is
less than or equal to T, this vertex can be moved onto  without decreasing
the separation distance. In the case that the angle exceeds n, the point
can first be moved onto 2, and subsequently it can be reflected in the line
through the two neighbouring vertices. Some tedious, but straightforward
calculations show that the reflected vertex always remains inside U\B (only
three subregions need to be considered). It can then be moved onto IV This
means that it can now be assumed that all seven points lie on IV

There can only be seven points on 'l at a mutual distance of at least d if
the maximal separation distance d is equal to dn, as the following detailed
analysis of the location of these points will show.

First, suppose that d is equal to dn. The points on the circle segments
can be parametrised by the use of angles VI, d2, ®3 G [0,7r/3[ as shown in
Figure 3. Now we will determine the tightest possible arrangement of points
on 'l by starting with the point on the first circular arc at angle g\. There
is a point on the horizontal line segment at distance dn from the first point.
The next point at distance dn may lie on the same line segment, or on the
next arc, depending on the value of V- For the angle V2 on the next arc the
following relations hold:

T
® G0, & = 2 - arccos (a - cos px) G [<Pi,JH ,

VI G [V2, y2B> @& = ol arccos (a - cosx) G <2, 3
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Fig. 3: Definition of the angles &, required in the proof. The length of the dotted line
segments is equal to d\\.

T 1
O\ ¢ (h2 — 5—arccos 5 —QBd\ e [0, vorl.

Here ipi = arccos (1/2 + 1/-\/6), tpz = 1r/3 —tp\ —arccos (\/6/3) and a =
—1/(2c?u). In the first two cases there is one point of the solution on the
interjacent line segment, whereas in the third case the line segment contains
two points. After finding this point on the second arc, the same construction
can be continued to obtain a point on the third arc at an angle of ~3, and
another point on the first arc at angle ¢\. The seven points can, of course,
only be accommodated on I'] if & ~ &1 for some choice of ip\. For rp\ 6
£ 10,9i[ we have
dtpz sin ¢l

a7 —(a —cos Vi)2

and
d2v2 (1 - cosV>i)2+ (2 - a) cos ¢\
dni 0 (1 —(a —cos )2 3/2

so ip2 is increasing and strictly convex as a function of g\. This results in
the following inequality

® <P\ +——d for de oyl
By similar arguments it follows that
_/(2 [11
03¢ v @V ad o < L= {03-0)-
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Combination of these three inequalities shows that ips is always smaller
than Vh if VI € ]J0,<2i[. The same is true for ¢\ G <& and for VI €
G Kk2?4"13[. Only when ¢\ is equal to 0, or ip2, we can have that @ = tpe,
so it is only in these cases that the seven points can be fitted on IT. The
corresponding solutions are the optimal configurations depicted in Figure 1,
and their rotated images. If d > dn, the seven points obviously cannot be
placed on the curve at a mutual distance of at least d. O
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note on Nsaddle point and saddle

POINT THEOREMS

K.-K. TAN (Halifax), J. YU (Guiyang) and X.-Z. YUAN (Halifax)

1. Introduction

Let X ,Y be Hausdorff topological spaces and / be a real-valued function
on the product space X xY . Ife > 0, a point (x*,y*“) EX XY is said to be
an e-saddle point of / if for each (x,y) EX XY, we have

f(x,y*)-e <f{x*y;) < f(x*e,y) +e.

Also a point (x*,y*) EX x ¥ is said to be a saddle point of / if for each
(x,y) EX XY, we have

FOGy™) ~ H{xxy®) ~ H{xny).

We shall denote by R and N the set of all real numbers and the set of
all natural numbers, respectively. If X is a convex subset of a vector space
and / : X _*R, then / is said to be quasi-concave if for each i E R, the set
PKE X :f(x) >t} is convex. / is said to be quasi-convex if — is quasi-
concave. If Y is a compact Hausdorff space, C(Y) denotes the Banach space
of all continuous real-valued functions on ¥ with supremum norm.

In this note, we shall obtain a new e-saddle point theorem and two new
saddle point theorems. Our results generalize the corresponding results of
Komiya [5].

2. Main results

We begin with the following result:

Theorem 1. Let X be a non-empty convex subset of a Hausdorff topo-
logical vector space, Y be a non-empty compact convex subset of a Hausdorff
topological vector space. Suppose that f : X x Y —*R satisfies the following
conditions:

(1) for each (x,y) EX x Y, infvey f(x,v) > - 0o and supueA-f(u,y) <
< + 00;

0236-5294/94/$ 4.00 © 1994 Akadémiai Kiad6, Budapest



396 K -K TAN,J YU and X.-Z. YUAN

(ii) for each fixed y £ Y , x bf f(X,y) is quasi-concave and x t»>f(x,y) —
—infugy f(x,v) is upper semicontinuous;
(iii) for each fixed x £ X, y >*f(x,y) is quasi-convex andy  /(X,?/) —
—supue” f(u,y) is lower semicontinuous.
Then f has an e-saddle point (x*,y*) £ X x Y for each e > 0.

Proof. Let e > 0 be given. For each (x,y) G I1xY , define
T(x) = {y£Y :f(x,y) - inf f(x,v) <e},

and
S(y)= {z £ X :f{x)y) - su&f(u,y) > -e},
ug

then by (i), (ii) and (iii), T(x) and S(y) are non-empty and convex. For each
(x,y) £ X x Y, the sets

T~r{y) = {x £ T :f(x,y) - VIE\]; f(x,v) <c},
5 1(x) = {y£Y :f{x,y) - sup f(u,y) > -e)
uex

are open by (ii) and (iii).

Thus, by Theorem 1 of [3] (which is equivalent to Theorem 1 of [4]; see
also [7, Corollary 1.7]), there exists (x*,y*) £ X x ¥ such that y* £ T(x*)
and x* £ S(y*), i.e.,

- e<f(x*yE) < f(x*,y) + £

for each (x,y) £ X x V. O

Theorem 2. Let X be a non-empty convex subset of a Hausdorff topo-
logical vector space, Y be a non-empty compact convex subset of a Hausdorff
topological vector space. Suppose that f : X x Y —R satisfies the following
conditions:

(i) for each fixed y £ Y, sup,,eA-f(u,y) < + 00;

(if) for each fixed y E Y, x >=f (x,y) is quasi-concave and x i>f(Xx,y) —
—infvEY f(xiv) is upper semicontinuous;

(iii) for each fixed x £ X, y w=f(x,y) is quasi-convex and lower semicon-
tinuous and y t>f(x,y) —sup”” f(u”y) lower semicontinuous;

(iv) for each sequence {(xb,yK)}in X x Y where for each Kk £ N,
(XkiVk) Is an e”-saddle point of f and $k —»0+, there exist a subsequence
{znfc}foGN and x* £ X such that for eachy £ Y,

lim f{xnk,y) < f(x*,y).
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Then f has saddle point (x*, y*) £ x Xv .

Proof. For each fixed x £ x, since v is compact and y —fix,y) is
lower semicontinuous by (ii), we must have infv€y /(x,u) > —oc.

For each Kk £ N, by Theorem 1, there exists ix*ky*) £ JT x V such that
for each (x,y) £ X XYV,

M (XK - EK<A 1N < f(eky) +sk.

By (iv), there exist a subsequence {x*t}fc6N of {A)fceN and x* £ x such
that for eachy £ ¥,

lim f(x',* y) <4 fix*,y).
K-100 *

Since Y is compact, there exist a subnet {t/Q}Q6r of {Vnk}keN and 2* £ ¥

such that y* —»y*. We shall prove that (x*, y*) is a saddle point of /.
For each y £ Y and each a £ T, by (1),

f(x*,y*) = f(x*,y*) - fixxa,y*) + fix*0,y*) <
<SANN -ANYA+AN Y+ =
=[ANDN*“ANN] +[ANN -ANN] +/(*B.Y) +£fa<
<[ANN -ANN] +ANly) + 2eB«
By (iii) and (iv), it follows that
fOFy*) U lim[/(x*,y*) - fix5y* )\ +H\mfix*y)
NANN-U &A N+ fix*y) N fix*,y).

Next, for each x £ A”and each a £ T, by (1),
fix*,y*) = fix*, y*) - fix*xay?0) + fix*Qy*a) >
>A NN - ANYa)+f(xy*) ~fa=
=[ANN-ANnN] +[AON-ANN] +fixy*a)-ea>

>[ANN -ANN] +fixy)- 2a

By (iii) and (iv), it follows that
ANN =WT[ANN - AJT y9)] + Ié'lm/(®,y«)/\
Zfix* Y- lpA NN~ fix,y.

Therefore (x*,y*) £ X XY is a saddle point of /. O
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LEMMA 3. Let X be a non-empty convex subset of a Hausdorff topolog-
ical vector space, Y be a non-empty compact convex subset of a Hausdorff
topological vector space. Suppose that f : X x Y ~ R satisfies the following
conditions:

(i) f{x,y) is continuous on X X Y ;

(ii) for each fixed y EY, n-* f(x,y) is quasi-concave;

(iii) for each fixed x € X, y  f(x,y) is quasi-convex;
(ivg SUPxeA- min Yfo,y) < ) ] ]
(v) the family {)%e(x,- :X"E X} of real-valued functions on Y is equicon-
tinuous and closed in the Banach space C(Y);
(vi) there exists a sequence {(xK,¥k)}ken in X xY where for each Kk E N,
{XK,¥K) Is an £k-saddle point off on X XY and Ek —=*0+.
Then sup{ \f(xk,y)\ :k £ N,y eY} < + oo.

P roof. Since Y is compact, by (i), (ii), (iii) and (iv),the beginning of
proof in Theorem 3 of [5] shows that there exists a number M\ suchthat
f(x,y) » Mi forall x EX and all y E Y. It follows that the map y >+

supXex T{X,y) is real-valued and lower semicontinuous. By compactness
of Y again, there exists a number M2 such that supré yf(x,y) » M2 for all
ey.
y Since Bk —»0+, we may suppose that < 1for each kK E N. For each
K EN and each y EY, by (vi),

Mi A f(xk,y) * f(xk,yk)- £k Z )%J;f{x,yk)- VEK 2 M2- 2

so that
sup{\f{xk,y\ :k e N,y e F} » max(|Mi|,[M2- 2|). O

As an application of Theorem 2, we have the following result which is
Theorem 3 of [5].

Corollary 4. Let X be anon-empty convex subset of a Hausdorff topo-
logical vector space, Y be a non-empty compact convex subset of a Hausdorff
topological vector space. Suppose that f : X xY —+R satisfies the following
conditions:

(i) f(x,y) is continuous on X x Y ;

(ii) for each fixedy e Y, ih f(x,y) is quasi-concave;

(iii) for each fixed x E X,y  f(x,y) is quasi-convex;
(iv) suPxeA minyeY f(x,y)< +o00;

(v) the family {f(x, ¢) :x e X} of real-valued functions on Y is equicon-
tinuous and closed in the Banach space C(Y).

Then f has a saddle point (x*,y*) E X X Y.
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Proof. For each fixed y E Y, by Corollary 2 of [1, p.53],
n-t supl[-/(ai, u)] = - inf f(x,v
Veg[ (ai, u)] ool (x,v)

is upper semicontinuous so that by (i), x i»f(x,y) —inf,ey f(x,v) is upper
semicontinuous.
For each fixed y EY and for any § > 0O, by (v), there exists a neighbor-
hood V of y such that
- f(uy) <V
for any n EX and y' E V; thus

sup f(u, y) < sup f(u, y) + 11

It follows that y w* supue;r f(u,y) is upper semicontinuous so that by (i),
y w>f(x,y) —supuc” f(u,y) is also lower semicontinuous.

Now if {(xk,yk)}keN is a sequence in X XY where for each Kk E N,
(xk,Yk) is an £fc-saddle point of / and Bk —+ 0+, by Lemma 3 and Ascoli’s
Theorem (e. g., see [6, p.369]), there exist a subsequence {f(xK, *)} of

{f(xk, ¢)} EN an<* x* ~ X such that { converges uniformly to
/(k*,-) on Y. The conclusion now follows from Theorem 2. O

In order to obtain another new saddle point theorem, we need the concept
of an escaping sequence introduced in [2, p.34]: Let E be a Hausdorff
topological vector space and Y be a subset of E such that Y = U”Li Xn
where {A'n}ngN is an increasing sequence of non-empty compact sets, then a
sequence {j/n},pN in Y is said to be escaping from Y (relative to {A',}n6N)
if for each n E N, there exists a positive integer M such that yk &Kn for all
k't M.

T heorem 5. Let X be a non-empty convex subset of a Hausdorff topo-
logical vector space, Y be a non-empty convex subset of a Hausdorff topolog-
ical vector space such that Y — U”Li Kn where {/\'\n}n€N is an increasing
sequence of non-empty compact convex subsets of Y. Suppose that f : X X
X Y —»R satisfies the following conditions:

(i) f(x,y) is continuous on X x Y;

(ii) for each fixed y EY, x  f(x,y) is quasi-concave;

(iii) for each fixed x E X, y H>f (x,y) is quasi-convex;
(iv) for each n E N, sup”g* miny6Anf(x,y) < + 00;

(v) for each n E N, the family {f(x, ® : x E A} of real-valued functions
on Kn is equicontinuous and closed in the Banach space C(lin);

(vi) for each sequence {(in,j/n)} ,N in X XY where (xn,yn) is a saddle
point of f on X XKn for each n EN which is escaping from X XY relative
to {X X Ffn}neN, there exist no EN and xiQ E X (or ymQ E Kno) such that

f(xno” no) > f(xnoi ) (OF f(xno,yno) > f(x no9IND))*
Then f has a saddle point (x* y*) EX XY .
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Proof. By Corollary 4, for each n G N, there exists a saddle point
(xn,yn) GX x Knof/ on X x Kn.

Suppose that the sequence {(xn,yn)}neN in X XY were escaping from
X XY relative to {X X An}ngN, then by (vi) there exist no 6 N and X G X
(or yno G Kn0) such that

[ (xMo,¥no) '>1{xno1yno) (or /{xnoiyno) * /C3no5¥ho))

which contradicts the fact that (xno,yno) G X X Kro Is a saddle point of /
on X X Ano. Therefore the sequence {(xn,j/n)} G {X x An}n6N is not
escaping from X XY relative to {X X A'n}neN; thus some subsequence

{(®n*,i/lnf)}*€EN of {(zn,2/n)}neN must lie entirely in some X X Ks, where
8 GN.
By (v), Lemma 3 and Ascoli’s Theorem again, there exist a subsequence

{/(*nfg-)}oeN of {/(*«,-)} n€EN and x* G X such that
2 {f(xnk,-)}keN converges uniformly to /(x*,-) on lis.

Since Ks is compact, there exist a subnet {?a}a6lr {Y"Akek an(*¥* " A'a
such that ya —*y*.

For each y G Y, there exists Si > s such that y G A'Sl. Let op G T be
such that op ~ Si, then for any a ® «0, y G A'a and

f(x*,y*) = f(x*,y*) - fOka,y*) + [«,2/*) A
A f(x*,y*) - fxrayRa) + [« ,?1) =
= [f(x*y*) - fxxy*a)] + [/(z*,i€) - fQy*)] + /«,</)

so that by (i) and (2), we have f(x*,y*) » f(x*,y).
For each x G X,

fOcx,y*) = f(xx,y*)-f{x*a,y*) + f(xl,y*) *
AJ(*,21%) - f(x*ay*a) + f(x,y*a) =
= [, 27 (M, 3] + [1(7*,21«) - I(*E»*E)] + [("2/«)
so that by (i) and (2) again, we also have /(x*,r/*) ~ f(x,y*). Therefore
(x*, y*) is a saddle point of /. O
Finally, for application of escaping sequences in minimax inequalities,

variational inequalities and equilibrium points, we refer to [8-10].
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THE STRONG SUMMABILITY OF FOURIER
TRANSFORMS

D. V. GIANG* and F. MORICZ* (Szeged)

We prove that the Fourier transform of a nonnegative integrable function
/ and its conjugate Fourier transform are strongly summable with every
exponent q > 0 at every Lebesgue point of /, at which the Hilbert transform
/ exists. Hence it follows that both the Fourier transform of any integrable
function / and its conjugate Fourier transform are strongly summable with
every q > 0 almost everywhere. In the particular case where / £ L1 Lp for
some p > 1, we give an essentially shorter proof.

The proof of our main theorem can be modified for the case of the Fourier
series of a periodic, integrable function to obtain an improvement of the
strong summability theorem of Marcinkiewicz and Zygmund.

1. Introduction

We consider complex-valued functions / defined on the real line R :=
= (—o0,00). Denote by Lp the class of measurable functions whose pth
power is Lebesgue integrable on R in the case 1 » p < oo, or essentially
bounded on R in the case p = oo. As is well known, Lp endowed with the
norm

00 \ilp

a \f(t)\pdt] for 1=P< oo,
or

[I/lloo := esssuP{|/(0l :-o0 <t < oo}

is a Banach space.
It is easy to check that

(1.1) LIMLrQLINLp for l<p<r?” oo

* Partially supported by the Hungarian National Foundation for Scientific Research
under Grant #234.
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In fact, in the case r = oo it is plain that
[e]e]
imfdtawfwzl 1

-0

whence (1.1) follows. In the case 1 < r < 0o, we apply Holder’s inequality
with the conjugate exponents

n=""1 aa a='"1
P-1 r-p
to obtain
00 1
/ m \ pdt= /m \m\r'x\m r rxdti

-0 J—e0

°0 \ VA / roo \1/~*
A i/wr*) (y moll-tAsn) =il iaiilil |

whence (1.1) follows again.
We remind the reader that the cosine Fourier transform a(u) and sine
Fourier transform b(u) of a function / 6 X1 are defined by

(1.2) a(u) := i:[ f(t) cos ut dt,
N J —e0
(1.3) b(u) i /Z-00 /(t) sinut dt for nGR;
J—e0

the partial integral s,,(f,x) and Ceséro mean ov{f,x) of the Fourier trans-
form of / are defined by

a,(/,z) = J/o {a(u)cosxu + 6(u)sina:u} du,
T
su(f,x)du =

:\] "M —  {a(u)coszu + 6(u)sinzu} du for T> 0 and g6 R;

the conjugate partial integral S,,(/,z) and conjugate Cesaro mean crf/, z)
of the Fourier transform of / are defined by

£,(/,x) = J{) (a(u) sinzu —h(u) coszu) du,
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u\

/fT((l—T—/) £a(u) sin XU —b(U) cos Xu} du,

&j(f,X):=_:__J{JTsI/(f,x)di': /

As is well known,

—x) 1 re° osinWw

(1.4) s, (f,x)=- HOR P
o ( )ﬂjfoo() t- X A{]—ED

Given a function g locally integrable on R, in sign :g £ Ljoc, we agree to

write o N
/ g(t) dt im -+ g(t)dt,
—00 N-*oo O

provided this limit exists. Accordingly,

(1.5) —° sin 't dt = « for V>o.
J * m

Combining (1.4) and (1.5) gives

(1.6) su(f,x) - F(x) = - | {f(x+t)-f(x)}S~dt.
A J-+-00 r
Let / £ £foc for some P, 1£ P <00 we say that X G R is a Lebesgue
point of / of order P if

(1.7) g(t) := £\f(x+ W) -f(x)\pdu = o(\t\))  as  t-*o

We call the set of such points X G R the Lebesgue set of / of order p and
denote it by E(f,p) Due to Holder’s inequality, we have

E(f,r) (\E(f,p) for 1~ P<Tr<oo.

In the case P = 1, we write E(f) i= E(f, 1).

Asis known (see, e.g., [10, Vol. 1, p.65]), almost every X £R isa Lebesgue
point of order Pofevery function / £ L[]lxlfor every 1 ~ P < oo, which means
that the complement of E(f,p) with respect to R is of Lebesgue measure
zero.

As is well known, if/ 6 L1land X£E E(f), then

(1.8) lim 0,(f,x) = f(x),
(1.9) |_im00'a,,(f,X) = f(x),
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in the latter case provided that the Hilbert transform of / defined by

. o
(110, f(x) = timLh IXED o gim i f T -G 0
£i° > M\t\~e t £1° >k Je t

exists. Since the existence of / for any / € L1 is proven for almost every
i6 R, both (1.8) and (1.9) hold almost everywhere on R (in abbreviation:
a.e.).

Let g > 0. We say that the Fourier transform of a function / 6 Lx is
strongly summable with the exponent g, or briefly: summable Hqg, at x 6 R
if

(1.11) lim ~ [ \Sl/(f,x) - f(x)\gqdv = 0.
T—0°1 Jo

Clearly, summability Hi implies Cesaro summability, i.e., the fulfillment of
(1.8). Holder’ inequality shows that if (1.11) is satisfied for some g, then it
is true for any smaller g\ > 0 :

191
(113 b ~foo\dd  ©

for 0<aq <q< 00.

Summability H\ indicates that the mean value of s,,(f,x) - f(x) tends
to zero, not because of the cancellation of positive and negative terms, but
because the indices v for which |s,,(f,x) - f(x)j is large form a set of “small”
measure.

On the other hand, ordinary convergence of s,,(/, x) to f{x) as v —=*00
implies summability Hqat x, for every g > 0. To sum up, strong summability
lies between ordinary convergence and Cesaro summability.

Of course, we may speak of summability Hqg of the conjugate Fourier
transform of a function / £ 1 1at some x € R :

TI|_+n(1)0 |l JIO 1I34/,x) —f{x\adv = 0,

provided the Hilbert transform / exists at x.
Concerning the definitions and results in this section, we refer the reader
to the monographs [7, Ch. 1] and [8, Ch. 1].
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2. Main results

Among others, we will prove that the Fourier transform of every function
/ £ L1is a.e. summable Hq with every exponent g > 0.

The particular case where / £ X111 Lp for some p > 1 can be proved in
an easy way.

Theorem 1. Iff £ LI nLvfor somep >1 x £ E(f,p), and q > o,
then the Fourier transform of f is summable Hq at x.

In the more general setting where we assume merely / £ L1, it is no
longer true that the Fourier transform of / is strongly summable at every
Lebesgue point of /. However, if we assume that some x £ R is not only a
Lebesgue point of a nonnegative /, but the Hilbert transform / also exists at
X, then we are able to conclude strong summability at x. Even the following
finer conclusion is true, which is our main result.

Theorem 2. /10 ™~ [ £ L1 x £ E(f), the Hilbert transform f exists at
X, and g > o, then both the Fourier transform of f and its conjugate Fourier
transform are summable Hq at x.

Remark 1. From Theorem 2 it follows immediately that both the
Fourier transform of every function f £ LI and its conjugate Fourier trans-
form are a.e. summable Hqg with every q > 0.

Remark 2. As is known (see [5] and also [1]), there exists a function
f £ L1such that
lim sup [s™(y, X)| = 00 a.e.
V—>00

This example shows that a.e. strong summability of the Fourier transform of
an integrable function may take place when ordinary convergence fails a.e.

Remark 3. The reader will have no difficulty in modifying the proof
of Theorem 2 contained in Sections 4 and 5 to obtain the following result
for the Fourier series of a nonnegative, periodic, integrable function /, in
sign :f £ L\n.

Theorem 3. Ifo / £ b\ x £ E(f), the conjugate series of f is
Cesaro summable at x, and q > 0, then both the Fourier series of f and its
conjugate series are summable Hq at x.

We note that Marcinkiewicz [4] (in the case q = 2) and Zygmund [9] (in
the case g > 0) proved that if f £ b\sikthen both the Fourier series of / and
its conjugate series are a.e. summable Hq. (See also [10, Vol. 2, p.184].)
Furthermore, according to [10, Vol. 1, p.92], the Cesaro summability of the
conjugate series of / at a Lebesgue point x of / is equivalent to the existence
of the conjugate function of / at x.
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3. Proof of Theorem 1
We begin with the following

Remark 4. It is enough to prove Theorem 1 in the special case where
g is the conjugate exponent to p, i.e., g p/(p —1). Indeed, by (1.1) then
[ei'fl Lp for every 1 < p' <p. Hence we conclude summability Hg for
q =p'/(p' —1). By (1.12), summability Hq follows for every q < gl It
remains to take into account that by taking p' - 1 sufficiently small we get
g' arbitrarily large.

Let 0< v < T. By (1.6), we may write

(31) 7r{Sn(f7x)‘ f(X)} =

LfeH{LL Lty o o™

—h(T,v) +/r (T, n),
say. An elementary estimate shows that
flT
\h(T,v)\" v J/_”_I_If(x +t)~ f(x)I dt,

whence, by Fubini’s theorem,

(3.2) {ijf,«x,, *}*>

rUT
------ \f(x +t)-f(x)\dt-*Q as T -> 00,

due to (1.7).

Next, we estimate /r(T, v). Without loss of generality, we may assume
that 1 < p < 2. Making use of the HausdorfT-Young inequality (see [8, p.96]),
then exploiting (1.7) gives

(3.3) j*\h(T,v)\qdv} $
. n  Vlip i/p
<°v I[ f{x +t)~ /(*) diy - Ne g
Tx/g \I\\ZI/T t J 4 1T
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where Cp is a constant depending only on p. By integrating by parts, we get

r oG 0
(3.4) ra»=* ) 9(0 g
JilT f ip JIT P+l

) aa T —o0.

Combining (3.3), (3.4), and the symmetric counterpart of (3.4) for J_
yields

ri fT N
(3.5) I-J \h(T,v)\gdvl —0 as I -»00.

Clearly, (1.11) follows from (3.1), (3.2) and (3.5). The proof of Theorem 1is
complete.
Remark 5. By [9] (see also [1]), the celebrated results of [2] and [3] can

be extended to Fourier transforms, as well. Among others, the following is
true: If/ GL1MLp for some p > 1, then

lim sl/(f,x) = f(x) a.e.

Hence a.e. summability Hq follows immediately for all @ > 0. However, our
proof of Theorem 1 gives slightly more: namely, strong summability takes
place at every Lebesgue point of /.

4. Auxiliary notions and results

The proof of Theorem 2 is much more difficult than that of Theorem
1. We will still use the Hausdorff-Young inequality. However, since / need
not belong to any Lp, p > 1, it will be necessary to deal not with / itself,
but with its Poisson integral U(f,x,y) as well as with its conjugate Poisson
integral U(f,x,y), and then to make y tend to O.

First, we remind the reader of the definition of the Poisson integrals U
and U. Given a function / g L1, set

(4.1) he f(t)P(x - t,y)dt,

-00

(4.2) F{OP(x - t,y)dt,

u{f,x,y) \]
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where

(4.3) P(x.y) Y

(T2 + y2)

is the Poisson kernel, while

X
P(x,y) Ha2+y2)
is the conjugate Poisson kernel, where (x,y) £ = {{x,y) :x £R and

T%e following properties of the Poisson kernel P are of vital importance
in the sequel:

(4.4)

(4.5) X —1, y)P(x - t,y)dx —P(u —t, 2y).

For a complex number 2 := x + iy with y > 0, define

{o]e]

(4.6) d(r) = J/ {a(u) - ib(u)}e,zudu,
0
where a(u) and b(u) are defined in (1.2) and (1.3). By Fubini’s theorem,

. = - f d ¢ du = = dt -
4.7) ®(r) ﬂ-JE {t) th e‘vlr_ Bdu ﬂ_Jr-G)t _; t

--—x+wm—ut, - 1U(f,x,
J[oo -Xy ry (Fx0y) = 100X,

where the Poisson integrals U and U are defined in (4.1) and (4.2). It is
plain that the function ® of the complex variable z := x iy is analytic on
the upper half-plane R™..

As is known (see, e.g. [6, p.62]), for every / £ X1we have

lim f/(/, x,y) = f{x) and lim C/(/,x,y) = fix) ae.,
y~*0 y->0

where the Hilbert transform / of / is defined in (1.10).
In Section 5, we will rely on the following two auxiliary results.
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Lemma 1. Ifa> 1 / e L1, andfor some K > 0 we have

(4.8) [ f{t\dt, f \f(t)\dtaky forall y >0,
JO J-

then

(4.9 [ M dtr"r-kyl~a for all y > 0.
JMzy m « -1

Proof. Introduce the auxiliary function

(4.10) V<0:= / Ne)|du.
Jo

As is well known,

(4.11) rp'(t) = |/(<)| a.e.

By integrating by parts and (4.8), we have

(4.12) FwiE= rmo*- oL

<a/ —dt——--yl~a for all > 0.
y +ag kY a- 1 Yy y

Analogously, we have
Ohb
(4.13) y Wy« Ronr foral y<o
J—

Collecting (4.12) and (4.13) yields (4.9).
Lemma 2. 1/0 A/ e 11 and condition (4.8) is satisfied, then
(4.14) 07U (f,x,y) "k  forall (.,) GR2L

where the Poisson integral U is defined in (4.1).
Proof. We use notation (4.10). By (4.3) and (4.11), while integrating
by parts, we have

(4.15) U{f,x,y) X —t,y)dt =
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°0
/ t)Pt(x - t,y)dt =

.< iD(OPL(X - t,y)dt == /1 + /2,

bl ;
say, where Pt (d/dt)P. Another integration by parts and (4.8) gives

(4.16) g * ; tPt{x- ty)dt =

r@ r
=f —tP(x - t,jH)™ + KJO P(x - t,y)dt = KJO P(x - t,y) dt.

By symmetry,
4.17 N"~kl P(x-t,y)dt.
(4.17) 1o (x-t,y)

Taking into account (4.4) and (4.15)-(4.17), the right inequality in (4.14)
follows.

The left inequality in (4.14) is obvious, since the Poisson kernel P is
nonnegative.

5. Proof of Theorem 2

Without loss of generality, we may assume that x = 0 and /(0) = 0 in
Theorem 2. Accordingly, the assumptions in Theorem 2 can be formulated
as follows:

(5.1) f(uydu = o(lif) a t- O

(cf. (1.7)), the Hilbert transform / defined in (1.10) exists at x = 0, and
(5.2) \}E&m{{,(/, 0)+ *£,(/,0)} = *7(0)
(cf. (1.8) and (1.9)). In the sequel, we will adopt the abbreviations

d/ := Sil(l,0) 4 and  av:= ((/, 0) + %, (/, 0).
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Since, by (5.2), the limit of ov exists as 1 —00, it is enough to show that
for all > 2

s

(5.3) J!) |s, —ov|9du = o(T) as T —»oo0.

This in turn will follow if we show that

noo

(5.4) fo Hisy —Tt,/%~"% du = o(y~x~q) as y —=*0.
In fact, take (5.4) valid for the moment and sety  1/T. Clearly,
rT rm
e~q ./ ug\sl —a;,|9du - cTe-"97 du.
Jo Jo

Consequently, from (5.4) it follows that

rT
(5.5) J% ug\sv - aulgdu - o{TI+q) as T —»oo.

Now, introducing the auxiliary function

V() = JfO ug\su - Ov|9du,

by I’Hopital’s rule, we see that

(5.6) Hmt_q = lim atqfl-l = !imlkulq_l'iu 0.
By integration by parts, while making use of (5.5) and (5.6), we conclude
Tl
Jo 14

L'II/I)lT a ¢M , "(ﬂ ,
ug g0 Uoti d ~Tu-4 AT>= ~T' aS T

which is (5.3).
Returning to (5.4), we start with the representation

u(s,, - au) = JB u{ a(u) - ib(u)} du.
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Hence, by Fubini’s theorem,

(e]e] roo

u{su—au)ellzdu = / u{a(u) —ib(u)} du r/OO

*00

ell,z du —

Jo *Iu

B rl j:{a(u) —i6(u)}elzuiu du = $'(*)

where ®@is defined in (4.6). Let p be the conjugate exponenttoq:1/p+1/q=

= 1 Weremind the reader that q > 2, s0 1 < p < 2. By the HausdorfF-Young
inequality,

= 1/9 D' v 1lp

If us\au - a Vae~vfildv\  %CP " 4
(cf. (3.3)). Since (-1 —q)p/q = 1—2p, (5.4) will be established if we show
that

ro ¢/ P
(5.7) 1 *'(n) dx = o(y1~2p) as y —»0.
J-eo ¢

Finally, we recall that, by (4.7),

1

, (t- X+ iyf
8 = r M n i d <
S F T it 1 ™ED" tK-x- 422
1 f 1 1. _
; n- i 2=x+iy and
St Uy +v. y

(cf. (4.1) and (4.3)). Consequently, (5.7) will follow if we show that

(5.9) 1,20 £ YPEXY) gy —or p) as y .
o —( (Xz + )i

The rest of this section is devoted to the proof of (5.9). Writing Up =
UV-XU, by Fubini’s theorem, we have

(5.10)  /(/, © Upltxy)

o=/ d>><(./ f(t)P(x —t,y)dt —

(x2 + y2)pr2 - Al-

=T ) P(x —t,y)dx.
J-00 J—G)(XZ+V29HZ
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We will estimate /(/, y) by splitting the integrals in (5.10) into a few parts,
appealing in each case to appropriate hypotheses about the behavior of / at
x = 0.

First, we split the range t of the outer integral in (5.10) into two parts:
|4 ~ y and the remainder. Correspondingly,

(5.11) I{f,y)=:h{f,y) + W,y).

It is not hard to see that

_ CUTMX Y)Y
(5.12) (fy)-= g, T [(I)(’)(Q:Ll Sph - Lt
g TP [ Upitxy)POx - ty)ax =
J—b <

= 2TP [ f(0)dt f Up 1(f,x,y)PLr(x - t,y)PUMx - ty)dx,
-y <

where

(5.13) r.= P-l 1 and -+ = 1 (@<p<2).

Observe that, by (4.5),

/OO U(,x, Y)P(x - ty)dx = U(,t,2y).

*00

Making use of Holder’s inequality, (4.4) and (5.14), from (5.12) it follows
that

y (roo nv-1
I fwydtjy  UExYP(- ty)dx)  x

I 1Uv, fm
\J p(x-"y)dxj =13 M U p~\f,t,2y)dt.

By (5.1), there exists a positive constant kK —k(f) such that

(5.16) £ o, i f(t)ydtrky  forall y~ o
0

J-y
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Consequently, from (4.14) and (5.15) it follows that
(5.17) = y~pkp~l fyf(t)dt = o(kpyl~p) as y- 0.
J-y

Next, we split the inner integral in 12(f, y) according as |x| # [i|/2 or
Ixl = 1*1/2 :

5.18 12(f,y)= 1 f(t)dt I U\ {f'*' X-t,y)dx+
) (f.y) M\+V ) J\x|g|t|/2 (x2+{y2)Pj,Lr}p( Y)

+ j\ f(t)dtin_ Up=it.x.y) P(Xx - Sy)dx  121(f,y) + d22{f .y)i
t\ly Nt|/2 (x2+ y2)p/2

say. The inner integral in 12i{f,y) does not exceed

Up~\f,x,y)
P(t/2, dx <
(t/2.y) jblg|i|/2 A2 4l y3)p/2

P-1 d I/r
X
= -P(<2,y)| [/ U(f,x,y)dx 1 (/
(d|x|*|t]/2 J (71xd=1d/2 (z2 + y2)r p/2
where r' is defined in (5.13), and so, by (4.14), does not exceed

dx 1/r

P(t/2,y){k\t\)p 1JJ w (x2+ y2 12
= CUr(pr72)F(</2,y)(/c|i])p- y(1-Pr)/r ~ —CIl/r'(pr'/'2 )kp~I\t\p~3y3~2p,
where we used the obvious estimate

P(t/2,y) » Fyi~2 for iGR and y >0;
and the notation

(5.19) C(,) := i " >L
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Thus, by (5.16) and Lemma 1, we have

(5.20) 121(f,y) v 7ev 12 )~ -y - 2p s m \t\p~3dt S

N GE N p)cilrt,pr,/2)kPyl-P for all y >o.
-5

Now, we deal with /2r(/, 2)- Similarly to (5.12) and (5.15), we may

proceed as follows:

Ndt o Up-\f,x,y)P(x-t,y)dx ~
JAt\zy H J-00

i2p | ttEup\f,t,2y)dt.
Judly M

By (4.14), (5.16), and Lemma 1,
m
(5.21) bl /,y) " 2pkp, dt <
/\y \t\p

< P2p+1kpy| p for all Y > o.

-1

To sum up, by (5.11), (5.17), (5.18), (5.20) and (5.21), we have

(5.22) 1(f,y) = 0(kpyl-p) for all y > o.

In order to arrive at the wanted estimate (5.9), we have to improve “O”
to “o0” in (5.22) as Y —»0. To this effect, we set / = /1 + /2, where f\{t) 1=
1= /(t) for \t\ n 21} and f\(t) = 0 otherwise. It is clear that the value of K
for /1 may be as small as we wish, provided 77is sufficiently small. Thus, for

every £> 0 there exists 7= 77(e) such that

rci1y) N eyl-p for all y>o

(cf. (5.1) and (5.16)).

Therefore, it remains to verify that

(5.23) I(f2,y) = o(yx~p) as Yy -» 0.
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To achieve this goal, we consider

(5.24) 1(f2y) = (L:(';(f 'yxz'));izdx = Ji(/2,y) + Rifay),

say (cf. (5.9)).
On the one hand,

\I/lmOU(fz,x,y) =0 uniformly for all IX| 1

(see, e.g., [7, p.10] or [8, p.28]). In other words, given any e > 0 there exists
Si = Si(e) such that

Oon U(f2,x,y) u £l/p for all X\ i 9 and 0<y<AS\.

Hence it follows that

v dr
" W C{p/2)eyr-p forall 0<y<Su
v [Xr+ yly'

where C(p/2) is defined in (5.19).
On the other hand, by (4.14) and (5.16) (observe that k(f2) ~ k(f) = k),
we have

0
2 M/2,Y)1h — i / U{f2,x,y)dx i
(5.26) [2,Y) i v {r,{}%llp ) {f2,x,y)
up-l
= ATrllblli = £Y1~P for all 0<y< 02

provided that Sz is small enough. (We recall that p > 1))
Combining (5.24)-(5.26) yields

4/2Y)~ (1 +C(p/2))eyL p for all 0 <y < min(<5b S2).

This proves (5.23). The proof of Theorem 2 is complete.
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CORRECTION TO THE PAPER
“ON THE RIEMANNIAN CURVATURE OF A
TWISTOR SPACE”1

J. DAVIDOV and O. MUOKAROV (Sofia)

The system at the bottom of p.330 is not written correctly. This system

and the subsequent arguments up to line 9, p.331 should be changed as
follows:

3
bii - (3//4)  a\t+ (3t/4)ajt =X,
k=1

3

bu + bjj - (At/4)Y Xali + at1j)+ (3i/d)(ciij + aji)2 + (3t/2)atla,jj = 2X,
k=1

3
bij T bji  (At/2)~ ~akidkj + (At/2")da(dij 4" dji) —0
Kk—1

for 1~ i gj ™ 3. These identities imply au = and ay = —aji fori ij,
ie.

g(n(si)y,xAa SiX) =g{n(s:),X Asijx),
g(n(siy,x asix) = -g{H(S)),X ASiX), iai.
Now varying x over the unit sphere of Tvm gives

g(TZ{si),Sj) - Sijg(n{si),si),

g(K(si),sj) =0, 176, ) N3

1 Acta Math. Hung., 58 (1991), 319-332.
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Hence M is Einstein and self-dual. Since X ASX GR-mo ¢ A+ TPM for

any X GTPM, it follows that R(X ASX)a = 0 and (5.1) shows that M is
of constant sectional curvature X . The rest of the proof is unchanged.
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