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LOCAL U N IFO R M  C O N V E R G E N C E  
OF TH E E IG E N F U N C T IO N  E X PA N SIO N  

A SSO C IA T ED  W IT H  TH E LAPLACE  
O PER A TO R . I
M. HORVÁTH (Budapest)

1. Introduction

The convergence properties of the expansions formed by a system of 
eigenfunctions of the Laplace operator are studied by many authors, see 
e.g. [1], [5], [6], [7], [8], [9], [10]. In this paper the following notions will be 
used. Consider a bounded domain

ft C R , N  > 1.

By an eigenfunction of the Laplace operator we mean a function 0 ^ n £  
G C2(ft) satisfying

—А и =  A и on if;

A G C is called the eigenvalue of u. We consider a Riesz basis (14) C X2(ft) 
of the eigenfunctions of the Laplace operator and consider the biorthogonal 
system (ví) C L2(ft):

(1) A Ui — A íUi\ Aj G C, (u;, j'

We do not assume that the Vj are eigenfunctions. Introduce the notations

Pi  := \/Ä~ Pi  := Re p i  2  0, := Im/r,.

Introduce further the Bessel-Macdonald kernel

(2) va (r ) := ------N------------ > 0 < a
(2тг)ТГ( | )  r—

where Kv(r)  is the Macdonald function, see [1].
The Liouville classes X " , l ^ p ^ o o , a > 0  are defined as follows ([4]). 

L%(RN ) consists of the functions /  : R w —► C representable in the form

/(* ) Wa(|* -  y\ )h(y)dy
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with some h € Lp(Tl.N) and we define the norm

This extends the notion of Soboleff spaces W" for nonintegral a.
The main results of this paper are the following statements published 

without proof in [12].
T heorem 1. Suppose supp /  C П is compact and

f  e L“(Rn ), a s t i ,

Then the partial sums

(3) Sß( f , x ) : =  ftui(x), f,
pí<u

of the expansion of f  tend to f  locally uniformly in П.
THEOREM 2 (localization principle). Let supp /  C П be compact and 

suppose that for some other domain Oo C П we have

f  e L%{Rn ), f \ Qo = 0.

Then the expansion of f  tends to zero locally uniformly in По-
T heorem  3 (absolute convergence). Suppose again that supp /  С П

and

/ e X p ( H N ), a  >  y ,  ap > N,  p ^ l .

Then the expansion of f  converges absolutely and locally uniformly in П.
R emarks 1. The above theorems extend some results of E. C. Titch- 

marsh [1] and V. A. Il’in [5], [6]. They investigated the same problems for 
A, ^ 0. For the case of arbitrary complex eigenvalues these theorems were 
obtained for N  = 3 by I. Joó [8], [9], [10]. Earlier the case N — 1 with com
plex eigenvalues and for the Schrödinger operator was obtained by I.Joó and 
V. Komornik in [7].

2. Using the ideas of A. Bogmér [11] we can generalize the above theo
rems for the case of higher order eigenfunctions.

3. We can give examples of Riesz bases (Ui) with complex eigenvalues 
A; (even with sup \u[\ =  oo) if П = (0,27r)^ by the “direct product” of one
dimensional exponential bases, see e.g. [14].

ap > N, p ^ 1.

:= /  fv i ,  
J  fi

p > 0

Acta M a th em a iica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR. I 3

2. E stim ation  o f  th e  square sum s of eigenfunctions

In this section we consider a domain Cl C R N (not necessarily bounded) 
and a system of eigenfunctions C L^Cl),

—A Ui =  A ; « ; A i G C.

(щ) is called Bessel-system, if

OO
№  £ |< / ,< * .> |! S c |l/llb < !» . /  €

1=1

holds with a constant c > 0 independent of / .
(щ) is a Hilbert-system if, conversely,

OO
(5) £ | < / , u t> r ^ | | / | | £ 2(n), f e L \ c i )

»=1

for some c > 0. In these formulas

(/,« < ):=  /  fűi.
J n

If (u,) is Bessel- and Hilbert-system, then

OO
c i l l / l l b m á  £ | и « 0 | 2 й с 2||Л |Ь (!1,

i — \

In this case we shall use the notation
OO

(6) y~ll (fl  ц«')1 x  l|/|lL2(n)-
t'=l

We shall prove
Lemma 1. Let (щ) C L2(Cl) be a Bessel-system. Fix a compact set 

К  C Cl and a number R,

0 < R < min j -  dist(A',őíí), —
[ 2 3

Then there exists a constant

c =  c ( R , K , N )

A cta  Mathematica Hungarica  64, 1994



4 M.HORVÁTH

independent of  x and i such that

(7) ^ 2  (K (z ) |e 2|",|H) 2 ^ cpN x G K,  p  ^ 1.
|m- pí|^i

P roof . We shall use the following mean-value formula:

( 8) Í  щ(х +  r 0 )  dQ = (27r)
J o

N J  (/A p2 --- 2---------N—2
(tMr) 2

иг(а:).

Here 7„(г) is the ordinary Bessel function [2], the integration is taken over 
the surface of the ball with centre x and radius r, and dQ is the normed 
Lebesgue measure. If pi =  0, then (8) is to be substituted by

(S ')

N_

/  Ui(x +  r Q ) d Q =  ■Ui{x).
J e  2 ~ T ( ^ )

Let now 0 <  R < h dist(Ä', dSl) and define

d \ r , p )  := <
J N—2 (pr)

V 2 ------ W=2Г 2
Ю,

r ( f )

R ü r  ^ 2R

otherwise.

Consider the coefficients d] of the expansion of dx( \x -  y\,p)  for fixed 
x E K:

d} = [  d 1( \ x - y \ , p ) u i( y ) d y =  í rN d\(r, p) [  u f x  + rQ) dQ dr = 
Jq Jr  J&

N  f 2 R
=  (2t)t

Jr

K JEf 2(pr)JNfZ(plr)
Г p* ------WZ2-------- N=2

r 2 (g,r) 2
dr ■ U{{x)

i.e.

(9)
—  К  p T  [ 2R
dj = (27t) 2 _2 / r J N -2(p r ) jN - i (p i r )d r  ■ щ(х).

. .“ г-  Jr 2 2
r1!

Here the integral can be explicity given by the formula ([3], 7.14.1)

( 10) J rJu(pr ) Ju(pir) dr =

Acta M a th em a tica  Hungarica  64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR I 5

2 2 [ ß* 'A'+l ßJui^ßi^Ju-\-\ (/^)] ? ß ф Mi
ßi ~ ß

Г
4 L

2 (Ju(ßr)) 2 -  2Л +1(/2г)Л _ 1(/2г)

We shall use the asymptotical formula ([2])

(П )  « * )=  {“ » ( * - 4  " i ) ( 1 + 0 ( i ^ )

ß = ßi

4 v l
8

z < тг.

In our case, when -г = /i,r the condition |argz| ^ |  holds, so (11) can be 
applied. Using the Bessel property (4) we get that

( 12) E K 1! = cl l ( I* — y\>p)
г=1

4(Q)

/*2Л г2Я . ^2
= c / rN~* (d}(r ,p))  dr = cpN / r y j N - 2([ir)j dr й 

J R JFt ^

/-2Я
^ c/t^ /  — dr < cpN~x.

Jr  ß r

So our task is to estimate the integral in (9) from below. Consider separately 
the following cases:

A) Pl ;> 5|i/i| ^ B 2

for some large constant В = Б(Л', R,N).  Now if |/t -p ; | ^ 1 then |/t -  /i, | x  
x  \Pi\, \p + I x  pi x  /i x  l/i;I. Hence for R  ^ r ^ 2f2 we have

RiJ N  (U;r)j N - 2 (/ГГ) — UJ N  ( Lir}J N - 2  (ßir} =
2 2 2 2

= (/ij -  ß )JN (ß ir ) jN -2(pr) +

+ ß J N _ ( ß i r ) J  N - 2 _ ( p r )  -  J N  ( p r ) J  N - 2  ( ß i r )

= o [ \ iyt \ e ^ r ( \ p i \ p )  2 ) +

A cta  Mathematica Hungarica 64, 1994



6 M. HORVÁTH

+  -
fi 2

(fiifiV- i r r

N + 1
COS [ f l { T -----------------7Г I COS I f i r ---------- ------7Г

N  -  1

N -  1 \  (  JV +  1 \  /  e ^ r
— COS [ Щ Г ----------------- 7Г I COS I f i r ---------- —-----7Г I +  О  I ---------

=  _2_
7Г Г

This means that for В large enough we get

(/if -  fi)r +  0  .
\  fii \  fi J

/  r j N- 2 (ur)J n-2 (fur) dr 
J 2 2

and then
rzn

/  rJ  n -2 (fir) J n - 2  (/nr) dr
Jr 2 2

Taking into account (9), (12) we obtain

>

eW.\r

Wilfi

e2 k h  

' H /x  '

(13) X] м ж)1
>е4к.|Я 00

s  £ K T s“ 2 <- C ß N ~ \

z—1

B) fi^. fio and \ui\ ^ В

where fi = fio(B) is large enough. Then

Ы  ~  M, 1/2 -  ^ I  ^  1 +  B ,  \fi +  m \ x f i .

Define
z j  N  ( r z )J  N- 2 (ryt) — U J N  (rfl)J N - 2 (гг) 

/ ( г )  := ---------- 2_---------------1---------- 2-------

then
2 +  fl

/(/*f) -  /(М)- Г A B z )

/  r j  N - 2  (fir)J N - 2  (fur) dr =  < f l i

J 1 Л /2 ),

-  /2
, fl Ф fli

fl =  fli

and

A * )  =
r2 /  N 2
—  I J at- 2 ( г г )  — J jv ( t z ) J n - 4 ( г г )  2 V 2 /  2 2

A cia  M athem atica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR I 7

From the equation

— [zvJv(rzj\ = rzv3„-i{rz)

and the estimate

we get

| J „ ( r z ) |  ^  c \ z \  2

\f"(z)\ й Ф Г \
Since /  is analytic on [/i,/q], we get

(14)
M. -  И 

On the other hand,

^ \fM max \f"(z)\ <: c
ze[ß,ßi]

1 -

7ГГ/Г
I iV -  1COS I f i r ----------- 7Г 1 + 0 1

\LJ J

A  +  l  \  /  N - 3  \  -  / 1COS [ /ГГ------ ----7Г I COS -----------7TJ + CM —
TTVfl

N  -  1
=  ------  ^ COS^ ( f i r --------- — — 7Г ) +  s i n ^  ( f i r

= -  + o ( \
n f i  \ f l г

N  -  1
4 ’ ) + ° { ~ ,

Now if \fi — fii\ < Co and Co is small enough with respect to the constant 
appearing in (14), then

/ r j N - г ( u r ) J N - 2 (u ,-r)  
2 2

d r
/(/* i) -  / 0 0

f i t  -  f i

r r
=  —  + r ) ,  \ l f \  < - —x/i 8x/i

and hence 

(15)
I

/  r j  N - 2  (fir)J N - 2  i p . r l  d r
\ J r  2 2

If Co ^ — /i| then, as we showed in A),

/ rJ n - 2  ( fir) J  n - 2  (fi;r) d r  =  
2 2

;> £

Acta  Mathematica Hungarica 64, 1994



8 M. HORVATH

/i? -  /X2 L 7ГГ V Mi
^ sin(Mi -  м)г + о ( —

Mi J

2 sin(т — м)’' 
7Г м2 ~  М2

+ о  ( —

Obviously, for Ä < f  we have Ä|/i — /эг| < f ,  and then

[sin(Mi -  м)г
2Я

M2 -  M2 . r=ß
— I sin íü(mí -  m)I 
M

c c
•|2 cos Ä(Mi — м) _  1| = —I sinR(m — m)| = -

M M
so (15) is proved also for cq < |m — Mil- Consequently

(16) ^  М * ) |2 ^ с £ К 1|2 ^ см "  1 for m ^

H g ß

C) M ^ Mo, Pi ^ # M ,  В ^

We expand in this case the function

,2 ( \ /  r 1/ ,  R < r < 2R 
<, (r ’ '‘ ) : = \ o ,  otherwise.

Then

(17) d] =  I d2(\x — y\,p) Ui(y) dy  =  
in

N  [ 2R N  1 l n  J l L z l i w )  -Uj(x)(27r)2 / rW Jr 2 w_2 dr = 
iß  (Mir) 2

We know that

JV 2̂ JV r2R J
= (2л-) 2 2 / Г2 J n- í ÍRít) dr ■ Ui(x). 

iß  2

(18)
СО

J ] | d 2|2 5í c|| d2( |ar — 3/|, м) II ß2(n) = c- 
2 = 1

Л е к  M a them atica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR I 9

Now

” ; ¥ h ') = ( 4 ) ’ “ s ('‘■r " i l + 0 ( й
and hence

2Я i
J N—2 (Lur) dr 

R  2
2 L
7Г I

N  -  1
Sin /1,T —

2 R

+
r = R

r2R

+о Л /  e ^ d r  ,|l Jr. Ы 5
Since sh I Im z\ ^ | sin z\ ^ ch Im 2 and

hence for large В

and so by (18)

r2R
/  ew

Jr
dr < c-

02|i/.| Я

2Я ,
n  JN-z(mr) dr 

R  2
>

е2к,|Я

OO ___  4|i/ |Я
(19) c ^ £ K 2|2 ^ c £  |и,(х)|2|М,|2-^ ^ — 3- ^

B<t\v,\

1=1

e 4 M  Я

^  К ( а ) Г ~  |JV+l for /* = /*0-
In- Pi 1 = 1 ^
Pi^ßk.l
BShi

D) /i0, Ы  ^ £1

where Bi  =  f?i(i?,/i0) is large enough. Then

- 7  7 ч , 2 \  2 (  N  -  1 \  _ ( e^’l
T2 J N=2.(U ir) — ------  COS U , r ---------------7Г +  О2 VW/ V 4 у 3

Pi I 2

Acta M atkem atica  Hungarica b'4, 1994



10 M HORVÁTH

and hence
r l R  j е 2 к , |Л

/  Г 2 J N - i i u i r )  d r >  c=  C 3 •
Jr 2 Ы 2

Now (18) implies

OO „ И М «

tO О ri II
V £ Ю 2 г с  E и Н а'Л  1 iN+1

‘- 1 Pi<M0+l
k | ^ « i

\щ\

Е) м ^  /Аъ Ы  й  в \-

Неге we take 0 < R\  < R(Bi,uo)  small enough, and define the function 
d3(r,/i), which is the same as er, only R is changed in its definition by R\.  
We have as above

OO

£ K 3l2 ^ c ,
t = l

---  N  2 ~ N  f 2 R l  1
d? =  (2тг) 2 2 / г? JN=2_((J,ir) dr ■ ut(x).

JRi 2

Now

J N = 2 . ( m r )  =  с { щ г ) ~  +  О  ( ( | / X i | r )  2 )

hence

2-ЛГ c2üi
^ 2 / r? J jj-2 in.-rf dr

J  R\  2
+  0 ^ c(Äi) > 0

and then

( 21) £  k(z)l2 ^ c.
Pi^MO+l
k.l^Si

The estimates (13), (16), (19), (20), (21) show that

E
1m—pí l^i

u,(x) |2
e4|i/,|Ä

(1 +  N ) f'+1
£  c ^ - 1, x e  к .

A cta  M athem atica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR. I 11

Take any R < R' < min {  ̂dist(Ä',<9i2), then

е4ЫЛ'е4к,|Я <S c
(1 +  \uA) N+1

hence Lemma 1 is proved.
Next we consider the lower estimate.

Lemma 2. Let (щ) C L2(ÍÍ) be a Bessel- and Hilbert-system. Then 
for any fixed compact set К  C ÍÍ and 0 < R there exist M > 0 and c > 0 
satisfying

(22) \ui{x)\2e4^ R ^ c p N~ \  x E K ,  p ^ \ .
\ß - p , \Ü M

P r o o f . Obviously we can suppose that

R < min < -  dist(A_, dfl),

and then the upper estimate (7) holds. Consequently for any Ó > 0 we have 

(23)
~  v . ( r ) I2p4 k d «

E  ~/i , „лЛГ+5 = c(̂ ) < 00» x e K -
i=1 (1 +  P<)

Take the expansion of d1 defined in Lemma 1, then

r2R  , ^ 2
\\d1( \ x - y \ , p ) \ \ L^ il) =  cpN Г \ J  в - г (ц г ) )  dr =

J R

cpN
Г  A —Jr  {

cos I pr
N -  1

7Г pr \  4

for p ^ po, po =  po{R) large. Hence

7Г +  О dr if cpN 1

(24) cpN 1 g | | r f 1( | * - y | >M) | | ^ ( n ) g c £ | d } |  =
1=1

w  I r2R
= c E M ^ l 2 , |N- 2 /  r j  N=1 (pr)jN^1 (pir )dr

i - 1 l/̂ il I •'Я

i4cia Mathematica Hungarica 64, 1994



12 M. HORVATH

We have to estimate the integrals

r2Rrin
I i  = /  r j N - 2( u r ) j N-2 (u,

Jr 2 2
r) dr.

Consider first the case |/r -  pi\ ^ Then by the asymptotical expression 
of Bessel functions,

N  -  1 . , 
r ----------- 7Г ar+

Consequently

(25)

Take a large number

+ 0

r g2|/zt|/2
1* 1 * 7 1 . I , ,  |p  -  p i | */2 1 +  Im -  Pi I 2

2m =  M > M ( n o , K , R ,N )  

to be specified later and suppose that

/г > 2M.

Then (24) and (25) give

N
(26) / - ‘ S .  £  |« i ( i ) |V W « +  £  l«,(*)|2- ^ =# , | 2.

Here the constant c is independent of M.  Take the decomposition

E  -  E + E +  E +  E •
\ n - P i \ > M  M < \ p - p , \ < £  р , й  1 l < P i ^  f

Estimate the first sum. Suppose that

2p- i < ÜL <  2P.

Acta M a th em a tica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR I 13

Then

(27) E  m *)i !rJk i i /'i2 s
N

M<\ß- Pi\<f  

p
S ' E  E

Ы '

\щ(х)\‘
о4|;/(|Я

<
k = m + l 2k- ' - i \ ß - p , \ ^ 2 k ^*1

S '  É  bE w u i v w « s
k = m + 1 2fc- 1g | ix-p,|^2'=

P 1 „ЛГ-1
< с V  —  и" - 1 -2k < ___= 2^  22fcM = M

k= m + l

where c is again independent of M .
In case pi ú 1 suppose first that \pj  ^ 1. Then using the formulas

J r"+1 Ju(pr) dr = .</+1Jp+i{pr)
M

— [r ^y„(/*r)] = -цт uJp+i(nr )

we get 

(28)
-J Í

N N - 2
r 2 J n-2 1 p r ) ■ r 2 J  n - 2  {pur) dr 

R  2 2

n 2R
J N  ( u r ) j  N - 2  (ß;r)

P  2 2
+

J г=Я
Mi f 2R ,--  / IV N
M Jr 2

(ypr)Jr±{pir) dr.

Using the estimates | J„{pir)\ Ú с\рч\и, |^ (pr)! ^ c/z 2 we get

Im.In~2 , I Mi I| / i |2 й  c
N+2

MJ
+ < iMil N - 2

M MJ

If pi 5= 1 ^ |/ii| then we estimate by | Ju(pir)\ ^ c ^ y  to obtain
1м. 12

| / t |2 й c e 2|l/,|fí +  [Mil
, m 2Im. P  M2 ■'Д

i i i  f 2Rt
I Jr

eM r d r \  <c
e*Wi\R

=  „3m3Im .I

i4c<a Mathematica Hungarica 64, 1994



14 M.HORVÁTH

and then
N

(29) Y  М ж)12 . l iv-al '̂l2 =  CPN 3 Y  l“ »(*)|2e4|,'i|fl S cp
N - 3

p,< 1 Ы pí'í  1

In case 1 < pi Ú  ̂ we use again (28) and put the asymptotic expression 
of Ju into the integral on the right to obtain

I Ш с
e2\vi\R |M.|

3 . . I  '
M2 I fiiV P

1 p2\ui\H p2\i/i\Fi
(л*1/̂ «-|) 2 i „ i  :,.i +  a, ; 1 + - r

|М Mil P 2 \Pi\2 M2 lMi|2 .

мÍV

Ы

^ cfiN 2e4^'lß + Ы
+ —

|М«Г <
i l  |АГ-1 1 äi I AT—1 1 I 1 2. iiV—1 f =

M2 Ы  A*21Ab I IM — Â .l M2lMi| J

^ C[lN %e4\yi\R
N + T  +

M
Af+i Im A4 I

+ N+ § ^2
<

P;

е 4|1/,|Я1
<  с/ / - ! е4к , |я ( 1 + М _ < ЛА- I
-  P N+Í -  P iV+i

Mi Рг
for some R < R i  <  min {y d is t ( I í ,ő í í ) , |} .  Consequently we have by (23)

,N
(30) Y  M x)i2 M

K p .^ f I A41N - 2 1*12 £

С  C/2 2 У '  K ( * ) | V k |f i l  ЛА-1
/  AT I 1 = LP

l<PiZ f  P:
N+%

Finally if pi > ^  then we take another integration by parts to get 

r l R

*  = J r

_  N - 2  AT
r 2 J W- 2 (qr) • г г J ;v-2 (q,-r) dr = 

2 2

- J  N - 2  (pr)J N  (p;r)  
2 2

2R /-2Я
H-----/  rJa ( p r ) J n_(pít) dr.

r= R  Mi J r  2 2

A c ta  M athematica  Hungarica 64, 1994



EIGENFUNCTION EXPANSION ASSOCIATED WITH THE LAPLACE OPERATOR. I 15

Applying the asymptotics on the right, we obtain

1*1 ^ c
02|í/,| R

I Pi
3 1
2/1 2

+ J L
Ы

e2k l R

_/i2 |p ,|2 |/i _
+

Р2к.|я

/12|/|,-
+

-2МЯ
Т  ПГ/2 2 I /h I 2 J

<

<
е2к,|Д

!|I/АI2 /2 2
and hence

,N

р& Ч
" Ы " - 2 'Л1‘ s *  ъ  - ы " +1

E
\ui(x)\2e4\u,\R

N+Í
Pi

-р <

The estimates (26), (27), (29), (30), (31) show that

E  k w iv h « + ĉ - '  C± + ±

where the constants c are independent of M , ц , г, ж. If M  =  M(/i0, i f ,  ÍV, Ä) 
is large enough, then we get the desired estimate for /i > 2 M . But we can 
substitute M  by its double and then (22) holds for all ц ^ 1. Lemma 2 is 
proved.

3. E stim ates for the spectral function

Let fl C be a (not necessarily bounded) domain and (m;)^ i C Z2(fl) 
a Riesz basis in T2(il) with arbitrary complex eigenvalues. The spectral 
function of this system is the function

&(х ,У,р) ■= ui(x )vi(y)-
p,<ß

It may be an infinite sum, but the proof of Lemma 7 below will show that 
the sum converges. We shall show that the spectral function is bounded in 
norm when varies. First some technical lemmas are needed.

A cta  M athematica Hungarica 64, 1994
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We know the general asymptotic expansion of J„(z), namely ([2]) fo 
M  ^ 1 and I arg z\ < 7Г we have

(32)

M z) j )
M-l

E  (-1)’
_m=0

, (y,2m)
(2z)2m

+ 0 ( i-2M\

- s in  ( г - т
4 /

M- 1

E  (-1)”
_ m = 0

(t ,̂2m + 1)
( 2 2 ) 2 m + l + 0 ( | г | - 2М- 1)

where the implicit constants contained in the О-term depend on u, M  and 6 
if 7Г — I arg z\ ^  <5 > 0. If we take the difference z~" Jfiz)  — (Re z)-1' Ju(Re z)  
by (32), the remainder term does not give a good estimate using (32). So 
our first aim is to give an exact estimate for the remainder.

of
Lemma 3. Let i / g R f e  arbitrary fixed. Then the asymptotic expansion

Jv{z) ./„(Rez) 
(Re г)" ’

Re г > 1

whose main part is given corresponding to the main part of (32), has a 
remainder

(33) R m ,u — 0
(  e\y\ -  1 Ы Ы \
^ | 2|!/+2М+| |^||/+2AÍ+| xv+2M+% J

if x := Re z ^ 1, у := Im 2 .
P r o o f . We know that ([2])

т ,_л Hl1\ z )  +  HÍ2\ z )
A z ) — 2

We shall show separately that the corresponding remainder of the asymp
totic expansions of н1г\ г ) ,  resp. Hl2\ z )  has an estimate of type (33). 
Remark that it is enough to prove (33) for large values of M  because for 
smaller M  the superfluous main terms satisfy the needed estimate, e.g.

cos [z — — | )  cos (x — i / |  — j )

(1
z"+ 2

. . ( 7Г— г sin ж — v -----V 2
7г\ shy  
4)  z»+h
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(  7Г X \+  cos 7Г x \ ch у — 1
z v+ \

Suppose first that

then ([2])

H ^ \ z )  -- 

if

-  n  (  M  a. M  , elvl -  1
\ u r +t ®"+§ u r +2

V >  2 ’

ги^ e‘(— f - f )  /oo-e'/»
---- 777------Г Г ' /  e~uuv~  ̂ I 1 +хг Г (и + i )  Jo \  22

du

\ß\ < arg г ф ß  -

This last condition ensures that 1 +  ^  7̂  0. Fix the value

/3:=

As it is known ([2]), for any integer p > 0

(34)
.1 p—1tu \ ' 2 / i

1 +  2i )  - £m=0

I -  I/\ /  U \ m
m ) \ 2iz +

( J L V  Г  ( i  _  , r i ( 1 _  "  У '" '*  A  
(p — 1)! y0 v V 2 tz )

Let p be large enough, namely

v — P — < 0, v + p -  i  > 0.

Substituting (34) into the integral defining and applying the formula 
([3], 1.1(6))

roo-e'P
r(z) = / e~uuz~l du, R e z > 0

Jo
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the m-th mean term will be of the form

f )  ( 2rn )  Г (  ̂+  2 +  TO)
(2 i z T  r ( i /  +  i )

We know that

hence | l  — 4M > 4= and thenI 2 i z  I — ^ 2

< c.

Consider the remainder for

(i)/

apart from a constant factor, it is

„ t z  r ° o-e* "-P-2

y*'+
dt du—

Г e'2 е,ж "I f c
L "+p+2 XV+1P+Ú  Jo

e- uui/+p-2

1 / - P - 1

dt du+
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ix roo-e
+-

rS+P+lг /
.e'P

e - u ^ + P - iЧ У ' Г ' ( > + £ Г *

-  ( 1 +  7̂  I dt du =: / i  + / 2.

For a regular function /  we have obviously

I/(*2) -  /(* i)| ^ 1̂ 2 -  2X| max |/'|.
[21,22]

Applying this for f ( z )  = z l/+p+ 2 we get

etz é x x^+P+he-y -  z l' JrP+2
z»+p+h хи+р+2 (x z )l/+P+2

<

< I*- '  -  ч  +
. ,^+p+i

" + P + §  — Zl' +P+ 2

(**) "+P+3
<

hence

Analogously,

M + Ы
|z|"+p+2 ’ \х " +р+а |Z|'/+P+f

N $ 7 7 ^  + - ^  + 191iH-p+J a;'/+P+2 Ь |1/+Р+2

1 +
iut
77 - n + ^ j

p-p - 2
<

and so

= c|ti|
1 1 =  c

uy
г X xz

1 Ш с - Ы
х"+р+!

We have proved that for large p, hence for all integers p ^ 0,

S Í M  _  -  / 2 е‘( - " ? - 1 )  ^  ( - 1Г ( ^ ,т )
X" V *  2-+S Í j  (2к ) ”
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2 e ; ( x - „ f - í )  р д  ( _ 1 ) т ( ^ то)

1 / л - 'mх"+ 2

+o í ^  + ы

771 =  0

+

(2 ix)r

\у\ ^
I v + p + t

We know that

2|"+p+ 2 х^+Р+г

# 2 ! ( * )  =  e ^ H ^ ( z )

> 1.

hence we get an integral representation also for и ^  ̂ and repeating
the above proof we get that (35) holds for all real values v. The asymp-

tt(2)/ \ T r( 2) / \
totic expansion of ‘'z} z > ----- can be dealt with similarly; using the
representation

H ? \ z )  =
-*■(*-*' ?-?) roo-e'

Г (- + 1) Jo

7Г 1

2 ’ _ 2 ’

гп
l ~ T z '  dU’

7Г

2

with ß j  we get for  ̂ > — L  and by the identity

# L % )  =  е ~ ™ Н ? \ г

for all real v  the asymptotic expansion

HÍ2\ z )  HÍ2)(x) / 2 е - !(г- г т )  ^  (i/,m)
1 j г" х" V тс ^  (2гг)т

771 =  0

2 е - ( — f - f )  g  (и,т)  |
х"+ 2 —' (2ixYт= 0 v 7

+ 0
|е» -  II

Т  +
Ы +  Ы

x^+P+t ЬГ+Р+5

Since Ju

\ | г |"+Р+2 

I ^Я^1* + Я<2)) ,  Lemma 3 is proved.

х > 1.
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Corollary .

( 3 7 ) J»(Pir) Jv(Pir)
Pi

<

<
ek.> _  1

r 2\Pi\ v +T  + l  v+i +
Г2 Pi r 2 \Pi\ "+Í

ргг i> R,

(38)

(39)

Jv(Pir) Jv(pir)
Pi

COS (/it r — 1̂ 1 -- f ) COS (ptr - v i  -  \ )
i'+i I V+k iр г Г2 Ю

+

f2 4i/2 -  1
7Г 8

cos ( щ г  -  1/ f  +  f ) cos {pjT -  v \  +  \ )

v + i  3 7*2Pi
H - f  3 

P l 2 Г  2
+

+ 0 > -lr - 1  It'd
+  ^ - r  +

I P r i o r i  p l + b  f | / i , r+ *rf 1 ’ 

Jv(pir ) Jv(p,r )

p tr ^ Я,

<

сг*+1еы я

<

/9jT 5s Ä, I/ ^ 0

ЫЯ

(1 + Ы ) *
r, P,r й  R, V  ^  0, pi ^  1,

(40) I PiJi(Pir)  -  PiJi(pir) \  ^ ce|l/,|fi, ptr й  у .

PROOF. The estimates (37) and (38) are immediate consequences of 
Lemma 3. To show (39) and (40) we remark first that for к =  1 , 2 , . . .

2k
\ р 1 к - р 1 к \ й  Y , \  / j w p r  ■ ^

/= i

\ l 2k-l <
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2 к
й P T ‘Е

/=о
hi* = pf Ч1 + hl) 2 к

(here we use 1 instead of рг- in case рг- й  1). Consequently, using the power 
series of Ju we get

Pi E ( - i ) ‘
( T +2V - P ‘ )—( fc!Г(& +  и +  1) \2

<

s « E
-J/+1 (1 + hi)

k\T{k + v +  l) -tpi{  1 + hi)
2fc-l

<

< ĉ i f  . (1±M_  [*(1 + N)
= fc!r(fc +  t/ +  l )  |_2 1 ] ,l)

2k—1
<

< cr +̂i If Í1 + N il
k=i

2k

(к\У
< r.ru+l Y' [f (i + hi)] k \ 2

k\
<

< crv+1eMR:
on the other hand

Jv(Pir ) Ju(Pir)
A*

<
Pi [ Pi ( 1 + k\ T(k + v + 1) =

<
Pi I P i  I \ k = l

rf (! + hi
k\

max
I k+u

<  — e H 2- / u
Я eH f

к T(k +  г/ + 1)

е к.|л

<

PilPtT ( l  +  h l ) *  PilPiT (1 +  |г/-|) 2 

so (39) is proved. The proof of (40) is similar:

jphi(pT) -  PiJi(pir)\ = E ^ ( | ) “+ ,( ^ - ^ : <

s E
1

* ! ( * + i ) !
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^ c ( ! +  I*'.-1) Y l
l i i l + M T l  r  [f (1 + î i)3E

Кк=0 /  \k= 0
I R

(41)

k\  I (Л + 1)! y

^ c ( l  +  \ v i \ ) e M $  ^ ceM R .

Lemma 4. Let R  >  0 and p ^ 1, then

^ i i L z i ,  * J 2 dü g  r S Ä,

<

(42)
r-R gk.k _  1

fJ r  r°
A*

dr  <  с е ^ й — ——
i +  k

(43)
La*

‘ cos(/zr -f a) cos(/9,r + /3)
dr g c - ---- p ---- -г, - < t < R ,

(44)
r

A*/:
cos(/ur + a ) cos(p;r +  /3) ch -  1

dr < fie H R

1 +  |/t -  /Oil ’

cos(pr +  a ) cos(/9,r + /3) sh ViT
dr < /LieHR

1 +  |/Li -  /Эг

where the constants c =  c (R )  are independent of the other variables.

P roof . (41) follows from the Taylor series of the corresponding func
tions. To show (42) we remark that

f R еЫг _  I rR
/  ------=-----dr ^ c el"'

J r  rJ J r
\r dr <

eW,\R 

1 +  I Vi I

MR[ TeL Z f l d r < eeM f  P L d r < ca l
J r rJ J r r z ~ 1 ++  Wi

In (43) we apply the addition formulas in case \p -  p,| ^ 1: 

cos((/i +  pj)r  + 7 ) + cos((/z -  pi)r +  6)1: dr <

Acta Mathematica Hungarica 64, 1994
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<

+

sin ((/x +  Pi)r +  7 ) Sin((/x -  P í ) t  +  s )  \  1 
P +  Pi P ~ Pl r

П <

/ 4r2
* ( sin ((/t 4- /9»)Г +  7 ) s in ((/i -  p,)r + ó)

p  +  Pl p  -  Pl
dr

+

<

<  CT " + r  4J r r ‘
p„ dr ■£ c-

2 l +  |/i'-/9 i|l/* -P i| Ia* — P«l и

and in case |д — Píl ^ 1

Г‘ cos((fi  +  Pt)r +  7 ) + cos((/i -  pt)r + <5)/: dr <

^ 2  í  - d r <
J r  r

cin/ i  ^ c
1 +  |/t -  pi

which proves (43). Finally (44) follows from (41), (43) if we use, as in [7], 
the inequalities

ch r — 1 
r

I
> 0,

s h \vi\r 
r

> 0 , r >  0

and integrate by parts in (44). Lemma 4 is proved.
We continue the proof in the next issue of this journal.
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A R IT H M E T IC S OF A G IN G  D IST R IB U T IO N S:
M A X IM U M
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1. Introduction

1.1. O b jective and prelim inaries. The present paper is the coun
terpart of [6], where the convolution structure of the reliability semigroups 
IFR , IF R A , N B U , N B U E , H N B U E  and L are discussed. It is proved 
there that in each semigroup every distribution can be decomposed into the 
convolution product of at most countably many irreducible distributions 
and a degenerate one; degenerate distributions are the only anti-irreducible 
or infinitely divisible elements; and the set of irreducible distributions is 
dense. Uniqueness of the decomposition cannot be expected, since at least 
in the four upper classes no distribution is prime. This time our aim is to 
investigate these classes when the semigroup operation is the pointwise mul
tiplication of distribution functions (which corresponds to taking the max
imum of independent random variables) instead of convolution. In order to 
make the present work easily readable without having read its counterpart
[6] we repeat here all the necessary definitions.

Arithmetical properties of probability distributions were first studied by 
Khinchin and Levy, as early as in the thirties. Since then lots of relevant pa
pers have been published on the topic and interesting general theories have 
been developed. Most investigations have dealt with the convolution struc
ture of probability distributions defined on more and more general struc
tures, but there exist results concerning semigroups of distributions with 
other operations such as the multiplication of distribution function (maxi
mum of random variables). A recent monograph of Rúzsa and Székely [8] 
provides an excellent synthesis of latest researches in the so called algebraic 
probability theory, which aims at proving arithmetical type results for a 
wide class of commutative semigroups. Their general theorems will be cited 
in this paper at every moment.

The arithmetic structure of the multiplicative semigroup of all real or 
nonnegative probability distributions is not so interesting, since every dis-

1 T h is p a p e r  was w ritten  while th e  author was visiting  the M ath em atica l In s t i tu te  

of th e  H ungarian  A cadem y of Sciences.
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tribution is infinitely divisible, therefore most arithmetic problems become 
meaningless. The situation is quite different in higher dimensions, where 
the pointwise multiplication of distribution functions corresponds to the 
coordinatewise maximum of independent random vectors. Infinitely divis
ible elements in the multiplicative semigroup of multivariate distribution 
functions were characterized by Balkema and Resnick [1]; Zempléni found 
conditions for irreducibility and anti-irreducibility [9]—[11]. Another possi
bility to avoid triviality observed in one dimension is confining ourselves to 
certain subsemigroups, such as the aging classes of distributions. This is 
just what we wish to do.

Results to be communicated below were discovered in 1987. Although 
they were already reported in [5] and [8 , Remark 6.3.9], no proofs have 
appeared so far. This may justify publishing the present paper.

1.2. A g in g  d istr ib u tion s. In order to introduce certain classes of 
aging distributions with finite expectation let us start with some definitions 
and notations.

As it is usual in reliability theory, we shall only deal with the set D + of 
nonnegative probability distributions. Distributions will be identified with 
their cumulative distribution functions defined right continuous. For an 
arbitrary_distribution F G D + let us introduce the corresponding survival 
function F  =  1 — F, expectation E(F), variance V ar(F), Laplace transform 
(fp(t) = J0°° e~tx dF(x), t ^  0, starting point ap  and endpoint up  defined 
as ap =  in f{t G R: F(t) >  0} and up  =  sup{f G R: F(t)  < 1}, resp.

The exponential distribution with expectation p > 0 will be denoted 
by £д, that is, £ß(t) = 1 — ex p (-f/p ), t ^ 0. The corresponding Laplace 
transform is t ^ 0. In addition, we shall write for the degenerate
distribution concentrated onto p ^ 0. Clearly, Sß(t) =  0 or 1 according as 
t < p or t ^  p, resp. The Laplace transform of is exp(—p<), t ^ 0.

The most frequently used classes of aging distributions are as follows.

F G IF R  iff for every s > 0 the function t F( t  +  s)/F(t) ,  i ^ 0 is 
decreasing.

F G IF R A  iff the function t i-> F ( i ) 1̂ , t > 0 is decreasing, or, equiva
lently, w ( F , t ) =: -  у log F ( f ) is increasing in t, 0 < t <  up.

F G N B U  iff F(t +  s)  ^ F(t)F(s) for every nonnegative t and s.

F G N B U E  iff E (F)  =  p is finite and /0°° F(u) du ^ pF(f) for t ^ 0.

F G H N B U E  iff E (F ) = p is finite and J0°° F(u) du ^ pexp(—f/p ) for
t  2  0.

F G L iff E(F) = p is finite and <p f (0  ^ i+Jii-i  ̂ = 0-
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These classes form an increasing sequence in the order of definition: 
IF R  C IF R A  C N B U  C N B U E  C H N B U E  C L. Properties of the 
first four classes are found in [2]. Classes H N B U E  and L were first 
introduced and studied by Rolski [7] and Klefsjö [4], resp. Both exponential 
and degenerate distributions belong to the smallest class IFR . In addition, 
exponential distributions lie on the common boundary of the above aging 
classes, since they satisfy each inequality-type definition with equality and 
show constant rate where monotonicity is required.

All these classes are closed subsets of _D+ with respect to the usual 
topology of convergence in distribution (i.e., pointwise convergence at the 
continuity points of the limit distribution function).

1.3. A rithm etica l defin itions. For any pair of distributions F ,G  G 
G D+ let F  V G  denote their pointwise product. This corresponds to the 
maximum of independent random variables with distributions F and G, 
resp. Operation V is clearly commutative, associative.and continuous with 
respect to the weak topology. This makes it possible to extend the operation 
to an infinite sequence of distributions as the weak limit of the finite sections. 
The main difference with respect to the case of convolution discussed in [6] 
is that the semigroup (J9+ ,V) is not cancellative, which makes the basic 
arithmetical notions a little more complicated. Let us examine the above 
aging properties whether they are preserved under this operation.

As it is well-known, IF R  is not closed in this sense; for example, eß V 
V Sy IF R  if /г ф v. Classes IFRA and N B U  are closed under a more 
general (multivariate) operation: the life distribution of a coherent system  
with independent components all belonging to IFRA (N B U ) is IF R A  
(N B U ) again [2, Theorems 4.2.6 and 6.5.1]. Particularly, the case of parallel 
systems shows that both classes are subsemigroups of D + , thus they can 
be subjects of our further investigations. Though N B U E  is not preserved 
under the formation of coherent systems ([2] contains a counterexample 
consisting in a series system of two independent components), it can be 
shown that V does not lead out from N B U E . Maybe this is well-known; for 
the sake of completeness we nevertheless give a short proof below.

Lemma 1. Let F and G belong to N B U E , then so does F  V G.

P roof . Suppose E(F) ^ E(G). Since F  V G(f) -  F ( t ) +  F(t)G(t),  we 
have

roo roo
/  F V G(t) dt — (F{t) +  F(t)G(t)) dt =

J x  J X

- f F(t) dt +  F V G(x) Г
J X

F{t)G(t)dt  +  F(x)G(x>/;F(t)G(t) dt.

Here the first two terms do not exceed E (F)F(x)  and ( E( FV G) — 
— E (F)) F V G(x),  resp. The third term can be estimated in the following
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way:
Г ОО _ ГСО _

F(x)G{x)  / F(t)G(t)dt  ^ F(x)  / G (t)d t  ^
Jх J X

<: F(x)E,(G)G(x) ^ E (F)F(x)G{x).

Hence

¥ V G ( t ) d t  ^

^ E (F ) (F (x )  +  F(x)G(x))  + ( E ( F V G ) -  Е(Е)) f V G ( x )  =

=  E (F  V G)F  V G(x).

R e m a r k  1 .  If a p  <  X <  U p  and a o  <  x < u>g , in the above line strict 
inequality holds.

H N B U E  is not closed with respect to V, as it can be seen by consid
ering the mixture F = 0.98 + 0.02^5 £ H N BU E, F  V F — 0.9604 Si +
+  0.0396 65 £  H N B U E . So far I have been unable to decide if L is closed 
or to find any reference on the subject.

In the arithmetic of ( D + , V) the unity is So, the point mass at 0. Now, 
let S be an arbitrary subsemigroup of D + containing So- For F  and G 
belonging to S  let us introduce the following arithmetical notions.

G is a divisor (or a factor)  of F  if there exists an H in S such that 
F  = G V H . We use the notation G\F. An equality of the form F = G  V H 
is called a decomposition of F. A pair of elements mutually dividing each 
other are called associates. Since G\F implies F ^ G  pointwise, it follows 
that D + is associate-free.

G is an effective divisor of F if F  =  G  V H with H  £ S, H ф F.
A decomposition F =  G V H is effective, if neither G,  nor H is equal to 

F.
F is irreducible, if F  7̂  do and it has no divisor but the unity and itself.
F is effectively irreducible, if F ф do and it has no effective decomposi

tion.
F is anti-irreducible, if it has no irreducible effective divisor.
F is effectively anti-irreducible, if it is not effectively divisible by any 

effectively irreducible element.
F  is idempotent, if F 2 — F. F is bald, if it has no idempotent divisor 

but 6q.
F  is infinitesimally divisible, if it can be decomposed into a product of 

distributions all coming from an arbitrarily preassigned neighbourhood of 
60. F  is infinitely divisible, if for every positive integer n there exists an 
Fn £ 5  such that F = F f  (Fn is called the nth root of F).

F is prime, if it is different from <!>o and F\G V H implies F\G or F\H .
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2. M ain results

2 .1 . D ecom positions. In this section a Khinchin-type decomposition 
theorem will be proved in our three aging classes. This can be done by 
applying the general theory of Hun semigroups developed in [8, Chapter 2]. 
We start with some simple lemmas.

Lemma 2. F  £ D + is idempotent iff F =  6C, c > 0, F is bald iff a p  =  0.

P roof . Obvious.

Lemma 3. IF R A , N B U  and N B U E  are stable normable Hun semi
groups (see Definitions 2.2.2, 2.10.6 and 2.15.2 in [8]).

P ro o f . It is sufficient to show that D+ itself possesses all these proper
ties, since they are inheritable to closed subsemigroups. Since a distribution 
is always stochastically larger than its divisors, the set of divisors of a com
pact set is tight, hence relatively compact.

Thus D + is stable Hun. D + is normable, since for any non-degenerate 
F  and a p  < x < ujp, Ap(G )  =  — logG(x) defines an F-norm on the set of 
divisors of F such that Ap( F)  > 0.

THEOREM 1. In IFR A , N B U  and N B U E  every distribution can be 
decomposed

(a) into the product of at most countably many irreducible distributions 
and an anti-irreducible one,

(b) into the product of at most countably many effectively irreducible 
distributions and an effectively anti-irreducible one.

P ro o f . This is a simple corollary of our Lemma 3 and Theorem 2.23.3 
of [8].

R emark 2. The above decomposition can sometimes be simplified due 
to the results of the next section. Firstly, by Theorem 2.24.16 of [8], every 
effectively anti-irreducible element is infinitely divisible, hence we obtain 
that in IFR A  every distribution can be decomposed into a (finite or count
ably infinite) product of effectively irreducible elements and a degenerate 
distribution. Secondly, the (effectively) anti-irreducible factor can be omit
ted for bald distributions in each of our semigroups, since by Theorem 2.8.9 
of [8] every bald anti-irreducible element is infinitesimally divisible.

2 .2 . Infin itely  d ivisib le d istributions. In this section we first deal 
with infinitesimally divisible elements.

Lemma 4 [8, Remark 5.9.8]. Expectation is a continuous operator on L 
(hence particularly on N B U E /

T heorem 2. There is no infinitesimally divisible element in IF R A , 
N B U  and N B U E  except the unity Sq.
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P r o o f . Suppose F  is infinitesimally divisible in N B U E  (it is clearly 
sufficient to deal with the largest class). Let us fix x > 0 and £ > 0 arbitrar
ily. Then by the previous lemma there exists a decomposition of the form 
F — F\ V F? V . . .  V Fn, where F,(x) ^ 1 — £ and E(F;) ^ e, i  = 1 , . . . ,  n. 
Now let у ^ x, then F(y)  > 0 and

-  log F(y) =  £ ( - l o g  F<(y)) ^
t= l  i= l  гКУ) j'=1

Integrating this and using the N B U E  property we obtain that

r o o  1 П __ f  71 —

/  ( -  log F (y)) d y g — £  E(Fi)Fi(x) F ' W  =
J x  1 £  1 1 £ , = 1

^ j - ^ ^ ( - log-fi(*)) = j ^ ; ( - l o g F ( z ) ) .
1=1

Since £ can be arbitrarily small, it follows that F(x)  = 1 for every x > 0.

T heorem 3 (Characterization of infinitely divisible distributions).
(a) F E IF R A  is infinitely divisible iff F — 6C, c ^ 0.
(b) F E N B U  is infinitely divisible iff u F ^ 2a F.
(c) F E N B U E  is infinitely divisible iff

roo
(1) / ( - l o g  F(y)) dy й  a F ( - l o g F ( x ) ) , V x > a F.

J  X

P ro o f , (a) Degenerate distributions are obviously infinitely divisible. 
On the other hand, consider a non-degenerate F E IFR A  that is infinitely 
divisible. Then there exist positive numbers x and y, 0 < x < y, such that 
0 < F(x)  ^ F ( y ) < 1. Infinite divisibility means that F 1/" E IFR A  for 
every n =  1 ,2 , . . . ,  thus w( F1/ n, x)  ^ w( F1̂ n,y),  from which it follows that

1 __ log (n (l -  F l,n(x))  < 1 _  log( u( 1 -  F 1/n(y)) 
x x logn  — у 2/logn

Letting n —»■ oo we obtain  ̂ ^ a contradiction.
(b) Suppose F  is infinitely divisible in N B U . By the N B U  property of 

F 1/", for arbitrary x > a F, we have

1 -  F1/ n(2x)  <; (1 -  F 1/" (x ))2.
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Since n (l — c1/ 71) —*• — logc, multiplying the above inequality by n2 then 
tending with n to infinity we arrive at a contradiction unless F(2x)  =  1. 
Hence up  ^ 2ap.

The opposite implication easily follows from the simple observation 
that u p  ^ 2a p  is sufficient for any F G D + to have N B U  property (the 
inequality in the definition holds automatically if t or s is less than O f or 
t +  s ^ Up).

(c) Suppose F  is infinitely divisible in N B U E . Since F x>n G N B U E , 
for x > ap  we have

r oo
(2) / n ( l - F ^ n(t)) d t ^ n E ( F 1/ n) ( l - F 1' n(x) ) .

J  X

Here n( 1 -  F x/" (i)) is -  log F(i)  uniformly in n, and -  log F  is integrable 
over (ж ,+ос), since — logF(f) ~  F(t) as t —» oo. Let n tend to infinity 
in (2). Then applying the monotone convergence theorem and using that 
E (E 1/" ) —> a p  we arrive at (1).

For the opposite it suffices to show that inequality (1) implies the 
N B U E  property, because (1) is inheritable from F to F x/ n.

Let 0 ^ x < ap ,  then clearly

f  F(t) dt ^ E (F) =  E(F)F(x) .
J  X

If a p  ^ x and F(x)E(F)  ^ a p , we have

f F( t )dt  =  E( F) ~  l F { t ) d t ü E ( F ) - a p £ E ( F ) F ( x ) .  
Jx Jo

Finally, if F(x)E(F)  > ap,  then
r  o o   r  oo
/  F(t )dt <:  / — log F(<)di ^ a/r( -  log F (x)) ^

J x J X

S « r -  U y *  s E (F )C (x),

thus F  G N B U E .
2 .3 . Irreducib le d istributions. Similarly to the case of convolution 

structure, we cannot give the full characterization of irreducible distribu
tions, but there exists a simple sufficient condition for a distribution to be 
irreducible even in the largest class N BU E, which is still sufficiently general 
to imply that irreducible distributions are dense in all classes under consid
eration. The next lemma corresponds to Lemma 4 in [6]; in fact, formally 
it is the same assertion but with a different proof.
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Lemma 5. Let F € N B U E , F ф So, and suppose that 

limsup x ~ 2 F ( x )  = + 00.
xj.0

Then F is irreducible.

P ro o f . By the N B U E  property,

(3) F(x)  й  1 -  j ™ F ( t ) d t  =  j *  F( t ) d t  <, x/E(F) .

Hence the lemma.
Remark  3. Lemma 2.11.8 of [8] concerns the existence of an upper 

bound for the number of terms in certain decompositions of a bald element 
in a Hun semigroup. Inequality (3) above provides the following estimation 
in N B U E . Let F = F\ V F? V . . .  V Fn, a p  — 0, then

n < liminf 
rjo

logT (r) 
log a;

T heorem  4. The set of irreducible elements is dense in IF R A , N B U  
and N B U E .

P roof. By Lemma 5 it suffices to show that every distribution in each 
class can be approached by distributions with the property F(x)  ~  cx,  x [ 0. 
This is just what has been done in Theorem 3 of [6].

Remark  4. Effective irreducibility is weaker than irreducibility, for 
example, every irreducible distribution is necessarily bald, while there are 
lots of non-bald effective irreducible elements, as we shall show it in the 
next section (they all are anti-irreducible). Evidently, the set of effective 
irreducible elements is also dense in our semigroups. The set of irreducible 
elements, as well as the larger set of effective irreducible elements, are Gs 
in each class, by Theorem 2.19.2 of [8].

2.4. A n ti-irred u cib le  d istributions. In this section we are going to 
show that, unlike the case of convolution structure, the set of anti-irreducible 
elements is rich enough to be dense in each semigroup. Two simple steps of 
the proof may be worth separating as lemmas, being of independent interest.

Lemma 6. Let F ,G  £ IFR A. Suppose that w (F  V G,x) is a positive 
constant on a nonnegative interval (a ,b ). Then min{u>/,UG} ^ a.

P r o o f . Suppose on the contrary that F(a)  < 1, G(a) < 1. Let us 
denote w ( F , a ) = 1 / / ,  w(G, a)  = l / g ,  w ( F \ / G , a ) = l /h.  By the IFRA  
property F( x)  ^  £f(x)  and G(x) ^  £g(x)  for x > a. Hence in the interval
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(a, 6) we have £h(x ) = F  V G(x)  ^ V £g(x),  and for x =  a equality holds. 
Here £f  V £g E IF R A , consequently £f  V £g(x) ^ £д(ж), x > a. Thus

x, hence (4) must hold for every real x. But this is impossible, since for 
negative x the sides of (4) differ in sign.

LEMMA 7. Let F E N B U . Suppose that F is constant and less than 1 
on a nonnegative interval (a, 6). Then a p  ^ b -  a.

P r o o f . Let 0 < x < b — a, then by the N BU  property F(a) =  F(a  + 
x) й F(a)F(x) ,  hence F(x)  = 0.

T heorem 5. The set of anti-irreducible elements is dense in IF R A , 
N B U  and N B U E .

P r o o f . The method of proof is common for IF R A  and N B U E : we 
show that every distribution can be approximated by non-bald effective 
irreducible ones to an arbitrary extent. Since the only effective divisor of an 
effectively irreducible element is itself, and a non-bald distribution can never 
be irreducible, non-bald effective irreducible elements are anti-irreducible at 
the same time. In addition, in the proof of Theorem 4 we have seen that 
every distribution in each semigroup can be approximated by bald ones 
with arbitrary accuracy. Therefore we can be confined to approximating 
bald distributions.

Case IFR A . Let us define the approximating distributions Fn, n =

This function is increasing in ж, that is, Fn E IF R A . Clearly, aFn = 
^ 1/n. Consider an arbitrary IFRA-decomposition of the form Fn =  G V 
V H . In virtue of Lemma 6 we can suppose uiq 'S 1/n, hence H — Fn, thus

—» w(Fn, x ) at every F-continuity point x > 0.
Case N B U E . Let R  be a fixed distribution, e and 6 positive parameters 

which can be thought of as small. For any distribution F E N B U E  let us

(4) (1 — exp ( — /ж )) (1 — exp( -gx) )  = 1 -  exp(—hx)

for every ж E (a,b). Both sides of this equality are analytic functions of

=  1 ,2 , . . .  by

0 if nx ^ 1,

if й  n x  й  k = 2 , 3 , • • • ,

2 < nx.

the decomposition is not effective. Finally, Fn — > F,  since w(Fn,x)
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define
ч Г m in{Ä (a:),F (£)}, if x < 6, 

Fs{x) = <
[ F( x  -  6 + e), if x ^ <5. 

Then fi(S) = E (Fs) is continuous in 6, since

/о о __ rS

F ( t ) d t - \ -  J  max{ R ( t ) ,  F ( s ) }  d t .  

In addition, if F ( e )  < 1, we have
r oo_

n ( e F ( e ) )  й  J  F ( t ) d t  +  e F ( e )  ^ E (F).

/
OO _

F(t )dt  + F(e) {e / F(e) )  £  E (E ).

Hence /х(й) =  E (F ) for some 6 =  <5(e), sF(e)  ^ 6 ^ e/F(e) .  Let us choose 
S in this way. We first show that if both F  and R belong to N B U E  and 
E (F ) й E (R),  then Fg £ N B U E . Indeed, for x ^ 6 we can write

dt I  E (R)R(x)  I  E (Fs)Fs(x),

while for x > 6
roc

Jx—6+e
F( t )  dt í  E(F)F(x -  6 + e) =  E (Fg)Fs(x).

It is time now to specify R.  Let 0 < c < eF(e) ,  с < E(F)F(e) ,  and

R(x)
if x < c ,  

if X >  c .

Then E(Ä) =  E (E ), and ap6 =  ад  = c. We y/ant to show that no N B U E  
decomposition of the form Fg =  G V H can' be effective. Let c < x < 6 , 
then

r  o o   r x

/  Fg( t )dt  = E ( F ) ~ c -
J X  Jc

= ( Е( Л  -  c) exp

1 -  z r ^ r le x p  ( - L - é )  dt =
E (F) E (F)J

=  E ( * № ( .) ■
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By Remark 1, either о д  ^ c or о д  ^ c; we can suppose the former. Conse
quently, H(x)  = Fs(x) for x ^ c. If a #  were less than с, H could not satisfy 
the N B U E  inequality for x £ (c ,6), since

/ H ( t ) d t =  Fs(t )dt  =  E(F6) Fs ( x ) >E{ H) H{ x) .
J X  J X

Thus H — Fs.
Finally, let e tend to 0, then the corresponding <5 also tends to 0 (e ~  6), 

and the distribution F$ constructed above converges to F  weakly.
Case N B U . Now let Fn(x) = F ([n x ]/n ), then Fn £ N B U , since

F n(t)Fn(s) -  F([nt] /n)  F([ns] /n)  ^ F(([nt] +  [ns])/n) ]>

^ F([nt  + ns]/n) = F n(t + s).

Clearly, Fn — F  as n —* oo. This time we prove the anti-irreducibility of 
Fn directly. Suppose Fn =  G V H with some G,H  £ N B U . Then, together 
with Fn, both G and F  are constant and positive on the intervals (£ , 
к ^ 1. If ujq > 1/n =  apn, then ao  ^ 1/n by Lemma 7. thus G  is not 
irreducible. On the other hand, if wg ^ 1 /n ,  then H =  Fn, thus G  is not 
an effective divisor of Fn. Hence Fn is anti-irreducible.

R e m a r k  5. In the above proof none of the constructed anti-irreducible 
distributions is bald. This is not a matter of chance: there are no bald 
anti-irreducible elements at all (see Remark 2). One can naturally ask if 
the (smaller) set of effectively anti-irreducible distributions is still dense. 
The answer is negative, not only in our semigroups, but also in every stable 
normable Hun semigroup, in which not every element is infinitely divisible. 
This follows from Theorem 2.24.16 and Statement 2.19.1 of [8]. The former 
claims that effective anti-irreducible elements are infinitely divisible; the 
latter, that the set of infinitely divisible elements is closed, thus it could be 
dense but in the trivial case when it exhausts the whole semigroup. Another 
question is whether effectively anti-irreducible distributions are dense among 
the infinitely divisible ones (this is obvious in IFR A  but not decided in 
N B U  and N B U E ).

2.5. P rim e d istributions. There is no general result known about the 
existence or non-existence of primes in semigroups, should they be as special 
as stable, normable, metrizable Hun. For this reason it is always interesting 
to answer this question in specific semigroups. Rúzsa and Székely proved 
the non-existence of primes in the convolution semigroup of probability 
distributions on the Borel field of a locally compact Hausdorff group (to 
be more precise, they found a finite number of exceptions, all on small 
cyclic groups, see [8, Section 4.7]). Similar results are known for some other
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semigroups, such as the multiplicative structure of multivariate distribution 
functions (due to  Zempléni, see [8, Corollary 6.3.7]), or the convolution 
structure of reliability classes N B U , N B U E , H N B U E  and L [6].

Surprisingly, in out semigroups there are primes, however trivial.

THEOREM 6. Degenerate distributions are the only primes in IF R A , 
N B U  and N B U E .

P roof. The prime property of degenerate distributions is obvious, since 
6C\F  iff c ^ ö f ,  and otcvH =  max{c*G,a#}. In the opposite direction, the 
prime property of a given non-degenerate F  can be disproved, for example, 
by considering an appropriate decomposition of F V<5C with c < up, in which 
none of the factors is divisible by F.

Case IF R A . Let F be an arbitrary non-degenerate IF R A  distribution. 
We distinguish two cases according as limu;(F, x) = lim f ( x ) / x  is positive

з:|0  xj.0
or not.

Firstly, when this limit is equal to 0, let G  be defined as

( w(F,c),  x < c, 
w(G, x) =  \

I w(F, x), if x ^ c,

where ар < c <  u>p. Then G  G IFRA, G ^ F, F V 6C =  G V 6C, hence F 
divides G V 6C, but does not divide either G  or 6C (for G  is irreducible by 
Lemma 5 and F(c)  < 1).

Secondly, when this limit is positive, then lim w(F2,x )  =  0; thus we can
x | 0

repeat the above argumentation with F 2 in place of F.
Case N B U . If F G N B U  is a non-degenerate infinitely divisible distri

bution, it cannot be prime, since F divides F = у/ T  V y/~F, but does not 
divide у/F .  By Theorem 3 we can suppose that ‘l a p  < up.  Let c be an 
F-continuity point, l a p  < c <  up, then by the N B U  inequality F(c)  ^
^  1 — ( l  — F ( c / 2)) 2 > F( c / 2). Now define G  as

G(x)

'0 ,  if x < c/2,

< F(c/1),  if c /2  ^ x < c, 
, F(x)  if c ^  x.

Then G G N B U , because for 0 ^ t ^ s, t < c/2  we have G(t)G(s)  = G(s)  ^ 
^ G(t  -|- s), while for c/2 ^  t ^ s we can write G(t)G(s)  ^ F(t )F(s)  ^ 
^ F(t  + s) =  G(t  + s). Again, F V Sc =  G  V <5C, thus F\G V 6C. Clearly, 6C 
is not divisible by F; nor can F divide G , since =  1, but —
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Case N B U E . If u p  = c < oo but F ф 6C, then 6c/ 2 V F is non-degenerate 
and infinitely divisible (even in N B U ). It is easy to see that F  does not 
divide y/Sc/2 V F (because F(x) < y/F(x)  if a p  < x < up),  thus F  is not 
prime.

Suppose now u p  =  oo. Since — logF  ~  F as x —► oo, we have

r OO Гoo
( -  log F(x)) - 1 ( -  log F(t))  dt ~  F( x ) - 1 /  F(t) dt S E (F ).

J  X  J x

Hence there exists a positive constant c for which

r  OO
/  ( — lo g ir'(/)) dt ^ c ( -  log ip(x ) ) , Vx ^ c.

1/ X

Consequently F  V is infinitely divisible, in virtue of Theorem 3. Again, 
F  does not divide y / F  V 6C, thus F  is not prime.
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D -C O M PLETE E X T E N SIO N S  
OF Q U A SI-U N IFO R M  SPACES*

A. CSÁSZÁR (Budapest), member of the Academy

0. In troduction . Let (x , U ) be a quasi-uniform space. A pair ( t ,s )  of 
filters in X  is said to be a Cauchy filter pair iff, for U E U , there are T E t 
and S E s such that T  X 5  C U. A filter s is said to be a D-filter ( Cauchy 
filter in [8]-[12], D-Cauchy-filter in [13]) iff there exists a filter t such that 
( t ,s )  is a Cauchy filter pair. The space (X , U ) (or the quasi-uniformity U )  
is said to be D-complete (complete in [8]-[12]) iff every Z)-filter converges 
in (X, U )  (i.e. with respect to the topology U  p induced by U ) .

The papers [8]—[12] contain constructions of Л-complete extensions for 
some classes of quasi-uniform spaces. More precisely, quiet spaces are 
concerned in [8]—[10]; (X ,U ) and U are said to be quiet iff, for U E U ,  
there exists Uo G U such that, if x, у G X  and Uo(x) G s, и ^ 1(у) G t for 
some Cauchy filter pair ( t ,s ) ,  then (x , y ) G U. In [11]—[12], the construction 
is defined for stable spaces where (X , U ) or U is said to be stable iff every 
D-filter is stable, and the filter s is said to be stable (see e.g. [2], p.126) iff, 
for every U EU, f ] {U( S ): 5  G s] G s.

The purpose of this paper is to present further constructions of D- 
complete extensions, permitting to establish the existence of such an ex
tension for every quasi-uniform space (while special classes of spaces are 
considered in [7]—[12]).

1. D -com p lete  strict exten sion s. Let (X, T)  be a topological space, 
Y  D X ,  and let us be given, for a E Y,  a filter s(a) in X  that is open (i.e. 
it is generated by a filter base composed of open sets) in the topology T ; in 
particular, for a E X ,  let s(a) denote the T-neighbourhood filter of a. It is 
well-known (see e.g. [2], p.122) that there exist then topologies T' on Y  such 
that s(a) is the trace in X  of the T'-neighbourhood filter v'(a) of a E Y  
(i.e. v '(a )|X  =  s(a)), consequently T '\X  — T. Among these topologies, 
there is a coarsest one, called the strict extension of T  for the trace filter 
system {s(a):a  G T); for this topology, the sets s(G) =  {a  E Y : G  E s(a )}, 
where G  is T-open, constitute a base. There is also a finest one, the loose 
extension, for which

v'(a) = { S ü { a } : í  G s(a )}  (а £ У ).
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Consider now a quasi-uniform space (X,ZZ) and define T = ZZ<P. If we 
look for a quasi-uniformity ZZ' on У compatible with the trace filter system  
(i.e. such that s(a) is the trace in X  of the ^/'^-neighbourhood filter of 
a G У) and with ZZ (i.e. satisfying U'\X  =  ZZ), then it is necessary that 
every s(a) should be ZZ-round (i.e. S G s(a) has to imply the existence of 
So G s(a) and U G ZZ such that //(So) C S) (see [2], 1.1).

In the following, we understand by a trace filter system in a quasi
uniform space (X,ZZ) a family S = {s(a ):a  G Y}  of ZZ-round filters in X  
such that Y  Э X  and s(a) is the ZZip-neighbourhood filter of a if a G X  
(observe that a ZZ<p-neighbourhood filter is always ZZ-round and a //-round 
filter is necessarily Z/tp-open).

If ZZ' is a quasi-uniformity on Y  such that U'\X  =  ZZ, and ( t ,s )  is 
a filter pair in X , then, clearly, it is ZZ-Cauchy iff there is a ZZ'-Cauchy 
filter pair (t',s ')  satisfying t = t'|X , s =  s'|X . Therefore, if we look for 
a Л -complete extension ZZ', it is necessary that every Л -filter in (X,ZZ) 
should be convergent for ZZ'ip, i.e. it should be finer than some trace filter 
s(a). These considerations motivate the following terminology: a trace filter 
system {s(a):a  G У} in (X,ZZ) is said to be admissible iff every Л-filter in 
(X,ZZ) is finer than some s(a).

We would like to construct Л-complete compatible extensions ZZ' for 
a given admissible trace filter system S. For this purpose, we need some 
lemmas.

Lemma 1.1. If (Y ,T ') is the strict extension of the topological space 
(X, T) for the trace filter system {s(a):a G f } ,  s' is a T'-open filter and 
s'|X  —>■ a G X , then s' —> a.

P roof . For a T-open set G such that a G s(G),  there is a T'-open set 
G'  G s' satisfying G1 ПX C s(G).  Then G ' n X c  s(G)  П X  = G,  and b G G'  
implies G ' n X  G s(i>), G G s (b), b G ^(G), hence G" C s(G).  □

For a filter s in the quasi-uniform space (X,ZZ), let us denote byZZ(s) the 
ZZ-envelope of s, i.e. the filter {U(S) :S  G s, 17 G ZZ}, coarser than s and ZZ- 
round (see [2], 4.6). By ZZ-1 we denote the quasi-uniformity {U~l \U G ZZ}, 
by ZZ~tp its topology.

Lemma 1.2. If (t ,s )  is a Cauchy filter pair in (X,ZZ), then (ZZ_1(t), 
ZZ(s)) is a Cauchy filter pair as well. Consequently every D-filter is finer  
than a round D-filter. □

T heorem 1.3. Let S =  {s(a):a G Y }  be an admissible trace filter sys
tem for (X,ZZ). Suppose that ZZ' is an extension ofU compatible with S such 
that

(a) H'tp is the strict extension of Utp,
(b) X  is dense both f o r U' tp andU'~tp.
Then ZZ' is D-complete.
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P r o o f . By 1.2, it suffices to show that s' is convergent for U'tp whenever 
(t',s')  is a ZY'-Cauchy filter pair such that s' is ZY'-round, t' is ZY'_1-round. 
Then by (b) ( t ,s )  is a ZY-Cauchy filter pair for t = t ' \ X ,  s = s'|X. The 
Л-filter s in (X,ZY) is coarser than some trace filter s(a), hence it converges 
for ZY'ip, and the same is true for s' by 1.1. □

Let us say that an extension ZY' of ZY, compatible with the trace filter 
system {s(a):a  E Y }, is uniformly strict ( strict in [2]) iff, for U1 E ZY', there 
is Uq E ZY' such that

s ( U b ( a ) n X )  C U\ a)  (a E Y).

Then clearly l i ,tp is the strict extension of ZYip. [2] 6.2 and 7.3 furnish 
necessary and sufficient conditions (in fact, rather complicated ones) for the 
existence of a uniformly strict extension for a given trace filter system; in 
particular, [2] 7.3 and (6.2.7) show that X  is ZY'_ip-dense whenever ZY' is 
uniformly strict and the trace filters s(a) are Л-filters. Thus we can state:

Corollary 1.4. If S =  {s(a):a  E Y }  is an admissible trace filter sys
tem in (X,ZY) such that every s(a) is a D-filter, andU1 is a uniformly strict 
extension ofU  compatible with S, then ZY' is D-complete. □

Corollary 1.5 (J. Deák). If {s(a):a E Y } is an admissible trace filter 
system in (X,ZY) such that every s(a) is a stable D-filter, then a D-complete, 
uniformly strict extension ZY'(S), compatible with ZY and this system, is 
generated by the entourages

(1.5.1) Z7' =  { (a, b): U(5) € s (b) for S E s(a)} 

where U E ZY.
P r o o f . By 1.4 and [2], 6.2 and 6.3, a ZY' satisfying these conditions 

is generated by the subbase composed of the entourages W (U ) (U E ZY) 
defined in the following manner. Suppose x ,y  E X , p,q E Y  — X , and put

(1.5.2) ou(p)  =  p |{C /(S ):S  E s(p)} E s(p),

(1.5.3) ( x , y ) e W ( U )  iff ( x , y ) EU,

(1.5.4) ( p , x ) E W ( U )  iff x E cru{p),

(1.5.5) (x ,p ) e W ( U ) iff U(x)Es(p) ,

(1.5.6) ( p , q ) € W ( U )  iff ou(p)Es(q) .
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We show that the entourages (1.5.1) generate 77'(S) (they constitute a 
uniform base because U\ C U2 implies U[ C U'2).

This is contained in

L e m m a  1.6 ([6], 1 .7). If S is a trace filter system, in (X,U)  composed 
of stable filters, then the entourages U' given by (1.5.1) and those W( U)  
defined by (1.5.2)-(1.5.6) generate the same quasi-uniformity U's(S).

P roof . It is sufficient to show Uq C W(U)  and W(Uo)  C U' whenever
u ,  u 0 e  u ,  u l  c u .

In fact, (x , y )  G Uq implies Uq{Uq{x )) G s(у), у G U(x),  and (x , y ) G 
G W(Uo) implies у G 7/o(x), hence у G t/o(P) for V G s(x), Uo(y) C U(V),  
U(V)  G s (y),  (x, y)  G V .

Similarly (p , x ) G Uq implies (p, x) G V , so U(S)  G s(x) for S G s (p), 
x G ou{p).  Conversely, (p, x) G W { U q ) implies x G U q ( S )  for S G s (p), 
U q ( x ) C U( S)  G s ( x ) ,  ( p , x ) e U \

Further (x,p)  G Uq implies Uq ( U q ( x ) )  G s(p), U{x)  G s(p), (x,p)  G 
G W(U),  and (x,p)  G W ( U 0) implies Uo(x) G s(p), f7o(5) G s(p) for S  G 
G s(x), (x ,p ) G U q C Í/7.

Finally (p, g) G Cq implies Uo{S) G s(g) for 5  G s(p), hence C (5) D 
D Uo(Uo(S))  , i.e. 17(5) D Uo(T) for some T  G s(g), consequently (?u(p) D 
3  € 3(9)ЛР>9) € W( U) .  Conversely (p,q) G VF(t/0) implies oUo(p) G
G s(g), hence Co(5) G s(q) for 5 G s(p), (p ,q) £ Uq C U'. □

Let us say that (X ,U ) is a D-space iff every 77-filter is finer than some 
stable 77-filter. E.g. every 77-complete space is a 77-space because any 
neighbourhood filter is a stable 77-filter:

P |{ f / (5 ) :x  G in t5} D U(x) (U G U),

and T X 5  C U if Г = {x } , 5  = U(x),  so that (t,s) is a Cauchy filter pair if 
s is the neighbourhood filter of x and t =  x,  where x =  Á forA  = {x )  and 
Á = {5 C X : S  D A}.

Now we can state:

T heorem 1.7 (J. Deák). I f ( X, U)  is a D-space, then there is an ad
missible trace filter system S composed of stable D-filters, and then 7V'(S) 
is a D-complete extension ofU,  compatible with S.

P roof . 1.5 applies because, if s is a stable 77-filter, then Z7(s) is round, 
stable ([2], 4 .6), and a 77-filter by 1.2; in particular, the Utp-neighbourhood 
filters are round, stable 77-filters, so that it suffices to choose for {s(p):p G 
G Y -  77} the collection of all non-77ip-convergent, round, stable 77-filters 
in (X,U).  □

Instead of all these filters we may use a part of them provided every 
non-convergent 77-filter is finer than one of the trace filters selected.

Á. CSÁSZÁR
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The hypotheses of 1.7 are fulfilled if (X,M)  is stable; then 1.7 furnishes 
the Л-complete extension constructed in [11] (provided U tp is To and S is 
reduced, i.e. x £ X , p,q  £ Y  — X , p ф q imply s(x) ф s (p) ф s (q)). However, 
a Л-space need not be stable, even if it is Л-complete:

E xample 1.8. For x , y  £ R, e > 0, let (x , y ) £ U£ hold iff x — у or 
Then clearly Uf C U?e, hence {U£:e > 0} is a base for 

a quasi-uniformity U on R. U£{x) = {я} if x > 0, U£(x) =  {ж} U (0,x  +  e) 
if x ^ 0 (where (0, x + e) =  0 if x + e 0), hence 0 ф T  X 5  C U£ implies 
either T =  {x}, S C U£(x),  or T П (0, +oo) = {x}, S = {x} ,  x ^ inf T -f 
+ £, or T  C (—oo,0], S  C [0,+oo), sup S ^ infT  + e. Consequently, for a 
Cauchy filter pair ( t ,s ) , either t = x and s —► x, or s =  x (and then s —> x 
again), or [0,+oo) £ s and s —> 0: (R,Z7) is Л-complete. However, if

t = fil{ (—£,0):£ > 0} , s =  fil{(0,e):e > 0} ,

then ( t ,s )  is a Cauchy filter pair, but s is not stable. □

E xample  1.9 (cf. [4], 0.7). If X  =  R — {0} and we consider the sub
space on X  of the space (R,ZY) of the previous example, then any Л-filter 
coarser than the Л-filter s |X  (using still the same notation) must coincide 
with it (because it is the trace of a filter that converges to 0 in U tv), and 
s|X  is not stable: the subspace in question is not a Л-space. □

A non-Л-complete, non-stable Л-space is presented by

E xample  1.10 (cf. [5], 7.12). For X  =  R — {0} again, let (x ,y) £ Us 
hold iffx  =  ? / o r x < 0 < i /  and — xy < e. Then U£ — U£, and {UE:e > 0} is 
a base for a quasi-uniformity U.

For c > 0, Ue(c) =  {c}, Ue( - c ) = { -c }  U (0, ^). Hence, if 0 ф T X S  C 
C Ue, then either T =  {x}, 5  C U£(x), or T  П (0,+oo) =  {x}, S = {x } , 
or T  C (—a,0), S C (0,6), ab ^ e. Thus any non-convergent Л-filtér s 
necessarily contains some bounded set A C (0,-foo), and then A is a stable 
Л-filter coarser than s. However, the Euclidean neighbourhood filter of 
c > 0 is a non-stable Л-filter. □

THEOREM 1.11. I f ( X, U)  is a uniform space, and every S(a) is a round, 
Cauchy filter in the trace filter system S =  (s(a):a £ У }, then U's(S) is a 
uniformity.

P ro o f . Observe that, in a uniform space, Cauchy filters are stable and 
coincide with the Л -filters, so that the hypotheses of 1.5 are fulfilled. For 
U £ U, select a symmetric U\ £ U , t/2 C U. Then U[ C t/7-1; in fact, 
(a ,6) £ U[ implies U\(S)  £ s(6) for some S £ s(a) satisfying S X S C U\.  
For any T  £ s(6), we have U\(S)  П T £ s(6), and x £ 5 , у £ UfiS)  П T  
imply (z , y ) £ U\ for some z £ S,  hence x £ U\(z)  C Ui(Ui (y) )  C U(y) ,  
S C U ( Ui(S)  П T) C U(T)  £ s(a), consequently (6, a) £ U'. □
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Thus ZV'(S) is the standard completion of a uniform space (cf. [1], p.256) 
provided the trace filter system S composed of all round Cauchy filters is 
reduced (cf. [8], Theorem 1, [12], Theorem 1).

2. D - c o m p le t e  loose  e x te n s io n s .  Let S be a trace filter system in a 
quasi-uniform space (X, M). It is known ([2], 4.8 and 6.1) that, in general, 
there is no compatible extension of U compatible with the strict extension of 
U tp for S. However, there is always an extension compatible with the loose 
extension ([2], 2.2). In order to construct it (see [2], 2.1), let us denote by 
E the collection of all maps a: Y  —► exp X  such that cr{x) =  {ж} for x G X , 
a(p)  G s(p)  for p G Y — X , and let us keep the convention that a,b,c denote 
points of Y ,  x , y , z  belong to X,  and p , q , r  belong to Y  — X.  For U G U,  
a  G E, let W( U, a )  be the entourage on У defined by

(2.1) ( x , y )  eW(U,<r)  iff (x,y)  G U,

(2.2) ( p , x ) 6 W(U, a)  iff x e U ( a ( p ) ) ,

(2.3) (x , p ) 0 W ( U , v ) ,

(2.4) (p,q)  G W( U, a)  iff p  = q.

Then { W( U,  a): U G U , a  G E} is a quasi-uniform base that generates a 
quasi-uniformity U'fiS) compatible with U  and with the loose extension of 
Utp for the given trace filter system. Let us call it the uniformly loose 
extension o i U  for S.

T heorem  2.1. If an admissible trace filter system is composed of D- 
filters, then the uniformly loose extension is D-complete.

P r o o f . Select, for every a G У, a filter t(a) in X  such that ( t (a ) ,s (a ) )  
is a Cauchy filter pair; in particular, let t(a:) = x for x G X.  Denote by 0  
the collection of all maps т: У —> exp X  such that r(a)  G t(a), satisfying 
the condition т(х) = {ж} for x G X.  For А С У, denote

т(л ) = U i r (a ):a 6 A}•

Let ( t ',s ')  be a Cauchy filter pair in (y,Z^'(S)). We have to show that 
s' is convergent. By 1.2 we can suppose that s' is £/^(S)-round so that s — 
= s'|X is a proper filter. The sets т(Т') (T' G t', т G 0 )  clearly constitute a 
filter base in X  that generates a filter t in X . The pair t ,s )  is a ZV-Cauchy 
filter pair.

In fact, given U EU ,  we can choose U\ G U such that C U, and then 
maps r G 0 ,  о G E such that т(а) X a(a ) C U\ for each a G У. Choose 
V  G t', S'  G s' such that V  x S' C W ( U U o). Then r(T') x {S' П X )  C U.
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To see this, let x £ т(Т'), у £ S' П X.  Then x £ т(а) for some a £ T' , 
hence (a , у) £ W( U\ , a) ,  i.e. (a , у ) £ U\ if a £ X  or у £ Ui(cr(a)) if a £ 
£ Y  — X .  In the first case x — a and (x , y ) £ U\ C U, in the second one 
r(a) X (j{a) C U\ implies <r(a) C U\(x), у £ U\(Ui(x))  C U(x).

The P-filter s converges with respect to U'((S)tp since the trace filter 
system is admissible. Then s' converges as well. This is clear if X  £ s', and 
this is the case if t ' |X  is a proper filter because then V  X S' C W(U\ , o)  
implies S' С X  by T' П X  /  0 and (2.3). If Y  — X  £ t' and X  ^ s' then the 
same inclusion implies T' -  X  =  {p} = S' — X  by (2.4). Thus {p}  £ t' and, 
for P  £ H , c  £ £ ,  there is S' £ s' such that {p} X S' C W( U, a) ,  so that 
s' —► p. □

C orollary 2 .2. Every quasi-uniform space has a D-complete uni
formly loose extension.

P r o o f . By 1.2, there are admissible trace filter systems composed of 
.D-filters. □

Instead of 2.1, we could use [3], Theorem 3.3. In fact, it is proved there 
that Z^(S) is 5P-complete if S is composed (of the neighbourhood filters 
and) of the non-convergent, round 5P-filters. In (X ,U ), a filter s is said 
to be an SP-filter iff, for U £ U, there is x £ X  such that U(x)  £ s, and 
( X, U)  or U is SP-complete iff every 5P-filter is convergent. Now a P-filter 
is obviously an SP-filter, so an 5P-complete space is P-complete.

A further possible tool in proving 2.2 would be the observation that 
M'e(S)  is SP-complete (hence P-complete) if S is composed (of the neigh
bourhood filters and) of all non-convergent, round filters. In fact, the 
method of proof of [3], Theorem 3.3 furnishes the following statement: if 
s' is an 5P-filter for ZŶ (S) and s'|A  is Z^(S)<p-convergent then s', too, is 
convergent.

However, an extension involving a narrower class of new points is more 
valuable, hence 2.1 can be considered, in some sense, to be a better result 
than those yielding SP-complete extensions but using huge classes of trace 
filters.

As to 2.1, it is worth-while to observe that S) is not necessarily P- 
complete if S is an admissible trace filter system:

E xample  2.3. Consider the upper half-plane of the Sorgenfrey plane, 
i.e. X  — R x  (0 ,+oo), and, for x , y  £ X,  x = ( x i , x2), у -  (уьУг), £ > 
> 0, (ж, у) £ U£ iff Х{ 'S pi < x г -f £ (г = 1,2), and let the quasi-uniformity 
U be generated by {Ue:£ > 0}. Then U is P-complete so that any trace 
filter system is admissible. Let Y  — X  = R — {0} and the sets S{p ,£ ) = 
= (p — e, p  +  e) X (0,e) (£ > 0) constitute a base for s(p). Now

U£( S( p , 6)) = ( p -  S, p+ 6 + e) x (0,<$ + f),
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hence Uc {S(p,e))  C S(p,2e) ,  and s(p) is round. For W = U'f iS)  (with S 
being composed of the given trace filters s(p) (p G Y -  X )  and the Utp- 
neighbourhood filters s(z) (z G X )), s' = fily s is a Л -filter if s is generated 
by the base {Q(e):£ >  0}, Q(e) =  (0 ,e) x (0,e); in fact, we can choose t' = 
= А1к {Т(£):£ > 0}, T(s )  =  ( -£ ,0 )  C Y  — X.  In order to see this, choose 
£ > 0 and о G S, then Sp > 0 such that S(p,6p) C er(p), and observe that 
p G T(e)  implies

U2e{a{p))  D ( p -  6p, p  +  6P +  2e) X (0,<5P +  2s) D 

D ( p , p +2 e )  x (0,2s) D Q(e),

i.e. T (s) X Q(s)  C W { U 2si^)- However, s' does not U'tp-converge. □
The construction of the uniformly loose extension can be slightly gen

eralized. For this purpose, let So be a subset of S  such that

(2.5) for a G Y , S  G s(a), there is a a G So such that ст(а) C S

(automatically fulfilled for a G X ).  Then it is easy to check (see [2], 2.1) 
that W ( U \ , a )2 C W( U, a )  if Uf  C U,  so that

(2.6) { W( U, a ) : U  GZV,<r G S 0}

is a subbase for a quasi-uniformity £^(So) (it is a base if, for cti,<72 6 So, 
there is er G So such that a(p) C &i(p) П ^ (p ) for each p G Y  — X ). By (2.5) 

So) is compatible with the given trace filter system (and still induces the 
corresponding loose extension of U tv):

Lemma  2.4 (cf. [5], 6.5 and [6], Problem 32). If a trace filter system 
S is given in (X, U) ,  and So C S fulfils (2.5), then (2.6) is a subbase for a 
quasi-uniformity ZV (̂So) compatible with U and with the loose extension of 
U tp for  S. □

If we look for a Л -complete U'fiSo), we suppose that the trace filter 
system is admissible and it is composed of Л-filters, and then we can repeat 
the reasoning in the proof of 2.1, provided the following condition is fulfilled:

(2.7) it is possible to select filters t(a) for a G Y  such that (t(a ),s(a )) is 
a Cauchy filter pair, t(x ) =  x for x G X , and, for U G U, there are 
r G 0  and a  G So such that т(а) X a(a)  C U for a G Y.

C orollary 2 .5 . If an admissible trace filter system composed of D- 
filters is given and So C S fulfils (2.5) and (2.7), then U'fiSo) is a D- 
complete extension. □

Tf^(So) can be distinct from H((S)  (see 3.9).
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If (2.5) holds without (2.7) being fulfilled, then ^ (S o )  may or may not 
be D-complete:

E x a m p l e  2.6. Let X  =  R  — Q, U be the restriction to X  of the 
Sorgenfrey quasi-uniformity, i.e. be generated by the collection of Ue (e > 0) 
where (x ,y ) E Ue iff x, у E X , x ^ у < x + z. For У = R, p E Y  — X  = 
= Q,  let s(p) be generated by { (p,p +  e) П X: e > 0} . Then s(p) is a round 
D-filter and S = {s(a):a E У } is admissible. Choose a function /:  Q —► R  
such that f (p)  > 0 for p E Q, and define

for p E Tn, £ > 0, n ^ k. However, A does not 7/^(Eo)ip-converge.
b) If f (p)  = p for p > 0, f (p)  = 1 for p ^ 0, then Z '̂(Eo) is D- 

complete. In fact, consider the quasi-uniformity U'e(T,\) obtained from the 
choice f {p)  =  1 for p E Q and denote by a'n E Ei the corresponding map. 
Now a round 7/^(£o)-.D-filter s' clearly converges if there is a filter t 7 such 
that ( t ' ,s7) is a Cauchy pair and Y  — X  ф t7 or Y  — X  E s7. Suppose 0 ф

Щ E N . Then So C W((Uco, ano)(p) for a p E To, hence So is bounded, and 
supT ^ inf S ^ sup So — К  whenever T E i ' , S E s7|X , T  C Y — X , T  X 
X S C W(Us,Ok)  for some <5 > 0, к E N . Choose e > 0, n E N , then к E N  
such that £ К  < and T E t 7, S E s' satisfying T C Y  — X,  T x S  C 
C W(Uc, a k). Then p E T implies

Then So fulfils (2.5), and (2.7) holds iff /  is bounded, 
a) If /  ( - £ )  =  2n, 4  = ( 0 , l ) D l ,  '

then ( t ,A )  is a Z^(£o)-Cauchy pair because

W{Ue, a k)(p) = Us ( a k{p)) D (p,p +  2 +  s) П D A

Ф T0 C Y  -  X , <D ф S0 С X , T0 E t ' , T0 x S0 C W(U£o, ano) for some £0 >  0,

W(Ue,<rk) ( p) C W(U£,<r'n)(p)

i.e.

so that s' is a ZMilter with respect to U[{T,i). The latter being D-complete 
by 2.5, s' converges for £^(£0)<p =  ZV^(£i)ip. □

Acta M athem atica  Hungarica 64, 1994



5 0 Á. CSÁSZÁR

3. E x ten sio n  o f m aps. A reasonable concept of completeness involves 
an extension theorem of uniformly continuous maps into complete spaces 
to  a complete extension of the space. A theorem of this kind corresponds 
to the extension ZV'(S) described in 1.5. In order to formulate it, we recall 
that a quasi-uniform space (X , U) or a quasi-uniformity U is said to be 
uniformly regular (regular in [2]), iff, given U £ M, there is Uo £ U such 
that Uo(x) C U (x ) for every x £ X (and for the closure with respect to 
U t p ) .

T heorem 3.1. I f ( X , U ) is a D-space, S is an admissible trace filter 
system composed of stable D-filters, f : X  —» Z is (U,U")-continuous for a 
D-complete, uniformly regular quasi-uniformity U” on Z , then f  admits a 
(M's(S),U") -continuous extension g:Y —► Z.

P roof . If (t , s) is a D-Cauchy filter pair in X , then (filz /( t ) ,h lz  / ( s )) 
is at/"-Cauchy filter pair in Z. Hence the U"-D-filters filz /(s (p ) )  (and the 
filter bases / ( s ( p ) )  are convergent in U"tp (p £ Y — X ). Define g:Y —> Z 
such that g(x)  — f ( x ) for x £ X , and / ( s (p ) )  —► g(p) for p £ Y  — X.  Then, 
by the (Utp, U "tp)-continuity of / ,  /( s (a ) )  —+ g(a) holds for every a £ У.

Now, for a given U" £ U "', choose U(f £ U" such that Uq(z) C U"{z) for 
z £ Z,  then U" £ U" such that U"2 C U(J, finally U £ U  such that (x , y) £ U 
implies ( /(ж ) , f (y))  £ U" for x, у £ X.  Define U1 be (1.5.1).

If a,b £ Y ,  (a,b) £ U', then we can choose 5 £ s(a) such that f (S)  C 
C U"(g(a)) , and clearly

f { U ( S ) ) c  U['{U{'(g(a))) C K ( g ( a ) ) .

As U(S) £ s (6) and /( s (6 ))  —* g(b), necessarily

g ( b ) £ f ( U ( S ) )  C US{g(a))  C U"{g(a)).  □

[11], Theorem 2 corresponds to 3.1 in the case of stable То-spaces and 
reduced trace filter systems.

An essentially better extension theorem can be proved for D-complete, 
uniformly loose extensions:

THEOREM 3.2. If S is an admissible trace filter system composed of 
D-filters in a space (X,ZY), ( Z,U ") is D-complete and f : X  —» Z is (U,U")- 
continuous, then f  admits a -continuous extension g:Y  —> Z.

P r o o f . We can again define g satisfying g\X  = / ,  / ( s ( a ) )  —> g(a) for 
a £ Y . Given U" £ D", choose U" £ U" such that U”2 C U", and U £ U 
such that (a:, y) £ U implies ( f ( x ) , f ( y )) £ U”, finally define o: Y  —> exp X
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such that (сг(ж) =  {x} for x E X  and) a(p) E s(p) for p E Y  -  X ,  satisfying 
/(<т(р)) C U"( g( p) ) .

Now (a, b) E W(U, o)  implies ( g(a),g(b)) E U". This is clear if a,b E 
E X ,  or a E X ,  b E Y — X ,  or a, b E Y  -  X.  If a E Y — X,  b E X,  then 
b E U (<r(a)) , hence

m  e U['( f (a(a) ) )  C U['{u[\g(a)))  C U"{g(a)) ,

so that g(b) =  f ( b ) E U"(g(a) ) . □
It is easy to show that the condition of uniform regularity cannot be 

dropped in 3.1:

E xample 3.3. Let Y =  R, X  = Q, U be the restriction to X  of the 
Euclidean uniformity of R , s(p) be generated by { (p -  e, p +  e) П X: £ > 
> 0} for p E Y  — X.  Now l/g(S) is the Euclidean uniformity of R  by 1.11. 
For the same trace filter system S, let U" — И'е(S), then U" is D-complete 
by 2.1. However, the (ZY^'^-continuous map /  = id^ cannot be extended 
in a ,U "tp) -continuous manner, because such an extension would
coincide with idR. (since U"tp is T2), and the loose extension is strictly finer 
than the strict one. □

In order to obtain a similar extension theorem for the extensions IA[{Y0), 
let us introduce the following terminology: a quasi-uniform space ( X, U)  or 
a quasi-uniformity U is weakly quiet iff, for U EU ,  there is U0 E U such that 
if (t, s) is a Cauchy filter pair, s —> x for l i tp, T E t, S E s, and T  X S C Uo, 
then S C U(x).

The terminology is justified by

L emma 3.4. A quiet space is weakly quiet.

P roof . For U EU, choose Uo E U such that if ( t , s) is a Cauchy filter 
pair, Uo(x) E s, Uq 1(p) E t, then (x ,y ) E U. Now if (t ,s )  is a Cauchy filter 
pair, s —► x ,  T E t ,  S E s, and T  X 5 C U o ,  then Uq(x ) E s , и ^ 1( у )  Э T E t  

for у E S,  hence S  C U ( x ) .  □
Conversely, a weakly quiet space need not be quiet:

E xample 3.5. Let X  be a regular topological space and U be its Pervin 
quasi-uniformity (see [14]), i.e. the entourages

UG =  (G x G)U ( ( X  - G )  x X)  (G С X  open)

constitute a subbase for U. It suffices to show that Uo = Ug corresponds to 
U = Ug in the sense of the weak quietness. In fact, let ( t , s )  be a Cauchy 
filter pair, x , T  Et ,  S E s , T  x S C Ug -

Now T С X  — G  is impossible whenever x E G.  In fact, if G0 is open 
and x E Go C Go C G,  then T  С X  -  G would imply T С X  — Go =  H
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and To x So C Uh for suitable To G t, So G s. But у G T П To implies 
So C Uh ( v) =  H in contradiction with s —*• x. Therefore T П G ф 0 and 
2 G T П G implies S C Ug ( z) =  G =  Ug (x ), while S C Ug (x ) is obvious if 
x G G.

We know from [2], 8.2 that U is not uniformly regular in general (e.g. if 
X  = R ), while a quiet space is necessarily uniformly regular ([13], Proposi
tion 1.2). □

There are also weakly quiet, uniformly regular spaces that are not quiet:
E x a m p l e  3.6 (J. Deák). Let X  =  (0,-t-oo) x { -1 ,0 ,1 } ,  and, for e > 

> 0, let { zx, z 2) G UE iff zi = 22 or 2, =  (z;,j/i), xi  +  x2 < £, y\ < y2. Then 
{UE:e > 0} is a base for a quasi-uniformity U.  Clearly both Utp and U~tp 
are discrete, hence U is uniformly regular and weakly quiet (in fact, U(z) = 
— U(z ) for 2 G X,  and (t ,s) can be Cauchy filter pair satisfying s —► 2 only 
if t = s =  2 , so that T G t, S G s, T x S C Ue imply 2 G T, S C Us{z)).  
However, if U were quiet and Us (6 > 0) were suitable for U\ in the sense of 
the quietness, then 2,- =  (aq,0), aq < 6, x\ ф x2 would imply (21, 22) G U1 
because (t ,s )  with

t = И {(0 ,е ) x { - l } : e  > 0 } , 

s =  fil{(0 ,£) x { l} :e  > 0}

is a Cauchy filter pair and Us(z\) G s, U$l (z2) G t, while (21, 22) 0  U\.  □
On the other hand, there are uniformly regular spaces that are not 

weakly quiet:
E x a m p l e  3.7 (J. Deák). Let X  -  R, and, for £ > 0, Ue(x) =  {x} U 

U [0,+oo) if - e  < x < 0, Ue(0) =  [0,£), UE(x) = {x} otherwise. Then 
UE C Ue, hence {Ue: £ > 0} is a base for a quasi-uniformity U.  For U tp, each 
U£(x) is closed so that U is uniformly regular. However, any Us is unsuitable 
for Ui in the sense of the weak quietness, because (t ,s) is a Cauchy filter 
pair if

t = f il{ (-£ ,0 ):£  > 0 } ,  s = fil { [0, £): £ > 0 } ,

further s —► 0, and (—£,0) X [0,+oo) C Ue, ( -£ ,0 )  G t, [0,+oo) G s, but the 
latter set is not contained in Ti(0). □

Now we can prove:
T h e o r e m  3.8. Let S be an admissible trace filter system composed of 

D-filters in a quasi-uniform space (X, U) ,  and Eo C S satisfy (2.5) and
(2.7). If (Z,U") is D-complete and weakly quiet, and f : X  —*• Z is (U,U")- 
continuous, then there is a {U'fiYio) ,U") -continuous extension g :Y  —> Z 
of f .

P r o o f . We can define g satisfying g\X  =  /  and /( s(a))  —► g(a)  for
a G Y.  Given U" G U",  select Uq G U" such that U'f2 C U", then U" G 
G U" such that S" C U(f(z) whenever (t",s") is a ZV"-Cauchy filter pair,
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such that S" C U q ( z )  whenever ( t , , , s w)  is a 7/"-Cauchy filter pair, s "  —► 

2, T" G t " ,  S" G s " ,  T" x 5" C [/". We can suppose U{' C £# . For U", 
choose first U £ U  such that (x , y ) G U implies G U",  then
t ( a ) ,  r G 0 ,  о  G So according to (2.7).

We show that (a ,6) G VF(Í7,<r) implies (g(a),g(b)) G U". It suffices to 
consider the case a G Y  — X , b G X . Then b G U ( a( a ) ) , r(a) X cr(a) C U , 
hence /(ft) G ^ " (/(^ (a )) , /(r (a ) )  X /(a (a ) )  C {/",

/ ( т (а ) )  G t" =  filz /( t (a ) )  , / ( CT(a)) G s" =  filz /( s (a ) )  ,

and ( t " , s " )  is a 7/"-Cauchy filter pair, s ' '  —> g(a). Thus

f ( * ( a) )  C U£(g(a) ) ,  U['{f(a(a)))  C U"{g(a) ) ,

and g(b) =  f(b)  G U"(g(a) ) . □
The condition of weak quietness cannot be dropped in 3.8:

Example 3.9 (cf. 1.9). Let X  =  (R  -  {0}) x N , (2b 22) G Ue for e > 
> 0 iff either Z\  = 22 or Z{ =  (aq,n;), щ  =  n2, X\ < 0 < x2 < x\ -f £. Then 
{Ue:e > 0} is a base for a quasi-uniformity U. Define Y  = R x N , and 
let s(pn) be generated, for pn = (0 ,n ), by {(0,£) X {n}:<S > 0 } , finally 
°б(Рп) -  (0,(5) x {n}.

It is easy to see that the trace filter system S = {s(a):a G Y }  is com
posed of (round) D-filters: U£(as(pn)) =  crs(Pn)i (t(p „),s(p n)) is a Cauchy 
filter pair if t(pn) is generated by { ( —<5,0) x {ra}:<5 > 0} because

( M , 0 ) x  {n}) x ( ( 0 , í ) x { n } )  C U2S.

Clearly (2.5) and (2.7) are fulfilled for So = {<7,5:<5 > 0). This trace filter 
system is admissible because, if ( t , s )  is a Cauchy filter pair distinct from 
those of the form (2, 2), then necessarily ( —0 0 , 0) X {n} G t ,  (0, + 0 0 )  X {n} G 
G s for some n, and s is finer than s(pn).

Thus 7^(S) and U't {So) both are ^-complete extensions ofU,  they induce 
the loose extension of Utp (=  the discrete topology of X) .

The only (7/^(Eo)ip,Z^(S)ip)-continuous extension of idx is idy (be
cause the loose extension is T2). However, idy is not (7^(Eo),7/^(S)) - 
continuous. In fact, let a(pn) = (0,^ ) X {n}, then W( Us,as)  C W( Ui , a )  
does not hold for any e >  0, 6 > 0 because (f  , n) G W( U£,(Js)(Pn), while
{ l n ) t W { U x,a){pn) \ i \ <  f. □

The author is thankful to Dr. J. Deák for a lot of useful remarks and 
ingenious counter-examples.
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A  N O T E  ON C O N G R U E N C E  D IST R IB U T IV E
A L G E BR A S

P. V. RAMANA MURTY (Waltair)

Dedicated to my teacher, Prof. N. V. Subrahmanyam on his sixtieth birthday

Introduction

It is well known tjiat the lattice Con(A) of all congruence relations on 
a universal algebra A is a complete and compactly generated lattice with 
Д  and у ,  the smallest and the largest congruence relations, respectively. If 
A  is a congruence distributive algebra, i.e. Con(A) is a distributive lattice, 
then it is well known that the infinite distributive law 0  Л ( V a,-) = V (© Л

iei  iei
Л a;) is satisfied in Con(A) (where 0 , a,- are in Con(A)). Hence it follows 
that Con(A) is a complete lattice and is also pseudocomplemented. In their 
paper [4], T. Katrinák and S. El-Assar have stated that it is an open question 
whether the identity

A (Vzts I s 6 S)
l t e T

** v
0<EST

(  Л  Xt0(t)) 
\ ет ' J

holds for all congruence distributive algebras. In this paper this question is 
answered in the negative by giving an example.

P r e l i m i n a r i e s

An element a of a complete lattice (L,V,  A) is said to be a compact 
element of L if and only if a ^  V Xj (where the elements x3 are in L)

iei
implies a ^ V xj  for some finite subset F  of J.  

j €F
A lattice L is said to be compactly generated if every element of L is a 

join of compact elements of L. A pseudo complemented semilattice ( = PCS) 
is an algebra (5, Л, *,0,1) in which (S, A, 0,1) is a bounded meet semilattice 
and for every element a £ S,  the element a* £ S is the pseudo complement 
of a; that is, x ^  a* if and only if x A a =  0. If for any PCS S we write 
B ( S ) for {a: £ S \ x** = x}  (the set of closed elements of S ) and D(S)  for 
{x G S I x** = 1} (the set of dense elements of S'), then (B(S) ,  U, A, *, 0, l)



56 P. V. RAMANA MURTY

is a Boolean algebra, where a U b is defined to be (а* Л 6*)* for a, 6 € B(S) ,  
and D( S ) is a filter in S.

An algebra (Z; V, Л, *, 0,1) is called a p-algebra or a pseudo comple
mented lattice (=PCL) if (Z, Л, *, 0,1) is a PCS and (Z, V, A) is a lattice. If 
(Z,V, A) is a complete lattice satisfying the identity

( D )  x  Л  (  V 2/Л =  V (2  л Уг),
\ e i  ' iei

then Z becomes a pseudocomplemented lattice in which for any a G Z v/e 
have that a* is the join of all elements of Z that are disjoint from a, i.e. 
a* — V x.  In such a lattice the set B( L ) of all closed elements of Z is

x A a = 0
closed under arbitrary meet and it is therefore a complete lattice, which is 
complemented. The join of a subset of B(L)  can be computed by taking 
the join in Z and then closing it (by applying **), i.e, if A ^ B(L) ,  then

V A = ( VA) **. These facts are straightforward.
B(L) L

3 . A t o m i c  c o n g r u e n c e  l a t t i c e s

In their paper [4] the authors also consider the two identities

(I) [ A ( V « to) r = f  V ( Л ***(*))
l t e T y s e s  / J  > e s T  t e r  '

and

(П) A f V x t s \  —  V ( A x t , < t > ( t ) )
teT'ses  ' L̂ e sT 4<er y

By omitting the asterisks, we obtain the complete distributive law from both 
identities. By a Theorem of Tarski (see [1] Theorem V. 17) every complete, 
completely distributive Boolean algebra is isomorphic to the Boolean alge
bra of all subsets of a set, that is, it is atomic. This result is applied in [4] 
(Theorem 2) to show that Z satisfies (II) if and only if B(L)  is atomic. It is 
asked in [4] whether (I) holds in Con(A) for every congruence distributive 
algebra A.  (It is easy to see that II implies (I).) In this paper an example 
is given to show that (I) need not hold in Con(.4) where A is a congruence 
distributive algebra. Before going to the example the following two use
ful theorems may be observed. The proof of the following theorem is well 
known and hence its proof is omitted.
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T h eo r em  1. If В is a complete Boolean algebra, then В is isomorphic 
to B(Con(B))  as the closed ideals are exactly the principal ones.

THEOREM 2. If В is a complete Boolean algebra and Con(B) satisfies 
(I), then В 5* ß (C o n ß ) is atomic.

P r o o f . If В is a complete Boolean algebra, then by Theorem V.16 in 
[1] it follows that В satisfies (D). Notice that B(Con(B))  is a sublattice of 
Con(R), hence if x and x' are complements in В , then (ж] V (x'] =  (1]. Now 
let C  be the set of all complementary pairs ((ж],(a;']) with x £ В,  Ф the set 
of all functions ф which select from each complementary pair one member 
and (рф\ the intersection of the elements in the range of ф. By (I) we have

(1 ]=  A ( ( x] л (*']) V(P*]

(where the first join is understood in Соп(Б), the last one in В ). Since from 
this point on, Tarski’s proof does not use complete distributivity, only the 
identity (D) in B,  our proof is complete.

Thus every complete Boolean algebra, which is not atomic, is a coun
terexample. Now the Boolean algebra В /  J  where В is the field of all Borel 
sets of real numbers and J is the ideal of all sets of first category in in fact 
an uncountable complete atom free Boolean algebra (see e.g. Theorem XI.6 
in [1]).

In conclusion I highly thank the referee for his valuable comments which 
helped in shaping the paper to the present form.
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I .  I n t r o d u c t i o n

Iteration processes are extremely important in solving optimization 
problems, linear and nonlinear equations, and, in general, they are used 
in all fields of applied mathematics. A very important field of such appli
cations can be found in solving optimization problems in economy and in 
solving nonlinear input-output systems. In recent years, the study of opti
mization problems has included a substantial effort to identify properties of 
iteration processes that will guarantee their convergence in some sense [1], 
[2], [3], [4], [5], [7]. Klessig, Polak and Tishyadhigama in [6] have made a 
very nice comparative study of several general convergence conditions for 
iteration processes modeled by stationary point-to-set maps.

In this paper the convergence conditions in [6] will be generalized and 
extended to nonstationary multistep iteration processes [1], [8] (to be pre
cised later). We feel that iteration processes in this general form have real 
practical importance. Moreover, the extension of the convergence condi
tions for stationary point to set maps to nonstationary multistep maps is of 
extreme importance. Note first that one of the most popular solvers of non
linear equations is the secant method, which is actually a two-step process. 
Many dynamic economic processes are based on the selection of optimal 
strategies by the participants at each time period. If the optimal solution is 
not unique, then the strategy for the next period can be selected from the 
set of optimal solutions. Hence the iteration is based on a set-valued map
ping. In addition, if the participants’ decisions are based on extrapolative 
expectations on the other’s behaviour, then the process becomes multistep. 
Time dependency of the process follows from price changes, technological 
development, etc. For the description of such models in oligopoly theory 
see Okuguchi and Szidarovszky [8].
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I I .  P r e l i m i n a r i e s

We will need the following definitions.
D efinition  1. Denote by fl a Hausdorff topological space that satisfies 

the first axiom of countability and by Д С Í1 the set of desirable points.
Note that the set Д consists of points that we will accept as “solutions” 

to the problem being solved by the iteration process. For example, it may 
consist of all points satisfying a necessary condition of optimality. Í1 is 
sometimes taken as the set of feasible points for a problem. Thus, if may 
be a subset of a larger topological space. If this is the case, the relative 
topology on Cl is used.

D efinition  2. Let S be a set, and for к ^ 0 the point-to-set mappings 
f (k\  •) are defined on Cl = S l =  S X S X . . .  5 ,  and for all

and к ^ l — 1, /(fc; . . . ,  is nonempty in S. Define the iteration
process as

where к ^  l — 1, жо, aq, . . . ,  aq_i G 5 , and arbitrary element from the set 
can be selected as the successor of Xk■

First we show that this multistep process is equivalent to a certain single- 
step method. To show this equivalence set

e S

( 1 ) 1 6 f  (̂ м %k— /+1 ? Я к— /+2> • • • i 2-fc) >

% к — ^ /c-f-1 1

The vectors Xk (к ^ 0) obviously satisfy the following recursion:
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J 2) _ J 3 )•''fc+l ~  xk ’

T(*-l)'_ JOxk+l -  xk

and

(2) 4 + i  e f

which is a single-step process. In the following part of this paper this process 
will be investigated.

We now state our concept of convergence.
D efinition 3. We say that the algorithm model described in Defini

tion 2 is convergent if the accumulation points of the sequence { 4 + 1 }  are 
in Д.

D efinition 4. A map V : fi —* R+ is called the Liapunov map of 
the iteration process (2), if for arbitrary G S, i = 1 , 2 , . . . , / ,  and у G 
6

v(t«>..... «('),») < v ( < ( 4 , tP) , . . . ,<(0) .

We can show that the chart on p. 173 of [6] where several sufficient con
ditions are compared with each other is correct for nonstationary multistep 
iteration processes. For brevity we will only prove two theorems that gener
alize Theorems (3.5) and (3.9) in [6], respectively. The rest of the theorems 
in [6] can be generalized similarly. The details are therefore omitted.

I I I .  C o m p a r i s o n  o f  s u f f i c i e n t  c o n d i t i o n s

We will need the following definition:
D efinition 5. The Liapunov function V is said to be locally bounded 

from below at (f(x), t̂ 2\  . . . ,  fW) if there exist a neighborhood U of the point 
. . .  ,tW) and b G R+ (possibly depending on . . .  , № ) )

such that

for aii ( 4 4 4 24  • -?4^) £ U-

Conditions 1. (i) The Liapunov function V  is locally bounded from 
below on 0  — A;
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(ii) there exists an integer k\ ^ / — 1 such that

V < F  (<<■>,(<’>,. . . ,<<«)

for all

y e .,!('> ), ........ i"1)  € a

and к ^ fcj.
(iii) For each 2 £ ÍÍ — A, if jx j^ j  C ÍÍ is such that xj^ —> 2 and 

V ( x ^ \ x ^ \ . .. ,x j ^  —> c*, then there exists an integer ^ k\ such that

V Л1) J D ,2/ < c*

for all
u P f f b - x (1) x (2) Ж(,Л 2/ c  /  ^«2, , x fc2 , . . . , x k2j .

THEOREM 1. If Condition 1 holds, then the iteration process (2) is 
convergent (in the sense of Definition 3).

Proof. Let 2* be an accumulation point of the iteration sequence 
jxj  ̂j, к ^  / — 1. We assume that 2* 6 Q - Д and establish a contra

diction. Then there exists a subsequence Ixi.̂ } C {0,1,2,...} such
I * ) k e M '

that x (0 A/2*. Without loss of generality, we can also assume that
jv ^ x j^ , x̂ k \ . . .  ,xj^) ^  is monotonically decreasing because of (ii).

Moreover, by (i) the sequence \ V  ( x i1', x[2\  . . . ,  x!^) } is bounded from
t > кем

below. Therefore V ^xj^, x[2\  . . . ,  x j ^  —*■ mc*. But then,

V ( r W T(2) Jl ) \
\ X k  ’ X k  1 ’  ’ ’ 1 x  к  )

and
V f x ^ ,  x[.2\ . . . ,  x^ ^  ^ c* for all k~t k\ .  

But from (iii) if 2* £ ÍI — A, then

У • • • ’ жй) < c*’ ^  =  2̂ +  1
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which contradicts the previous inequality. That is, 2* G A. Thus, the proof 
is complete. □

Condition  2. (i) The Liapunov function V  is locally bounded from 
below on Í2 — A;

(ii) there exists an integer k\ ^ l — 1 such that

for all

г /е /(м (1),*(2),...,г(0),

f i i  and к ^ ki-

(iii) For each z G Cl — A, if j  , ji t f> } e n , k ^ i - 1 are such that

-(0 ,  „(0 p f ( k - T {1) x (2] A l)S xk z i Ук+1 ь J \ K' x k >xk ’■•■■’xk y) , v < ( V 1) x(2)у 1к ’ ---- , arj^ —» c* and

v  (s/£1), 2/£2), - - -, 2/*)-)  -»• c, then c < c*.

T heorem 2. Condition 2 implies Condition 1.

P r o o f . To show that Condition 2 implies Condition 1 we only need to 
show that (iii) of Condition 1 is satisfied. Let us assume that (iii) does not
hold. Then there exists G /  (k;  x ^ \ x ^ \ . . ., such that

V > c* k Z l - 1 .

But then we get

^  V (у{ь+1,Ук+1, ',(!) J 2) 'k+1 ) , k Z l ~ 1.

Hence, c — c* which contradicts (3.8)(iii).
That completes the proof of the theorem. □
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O N C O N V E R G E N C E  CO M PLETE STR O N G  
Q U A SI-M ETR IC S

S. ROMAGUERA and J. A. ANTONINO (Valencia)1

1 .  I n t r o d u c t i o n

Throughout this note all spaces are Xj, N  will denote the set of positive 
integers and R  the set of real numbers. Terms and concepts which are not 
defined are used as in [4].

A quasi-metric on a set A  is a non-negative real-valued function d on 
A  X A  such that, for all x, y, z E X:  (i) d(x,y)  = 0 if and only if x = y, and 
(ii) d(x,y)  <: d(x,z)  +  d{z,y).

Each quasi-metric don I  induces a topology T(d) on X  which has as a 
base the family of d-balls (S j(x ,r ):x  E X ,  r > 0} where Sd(x,r) = { у E 
E X : d ( x , y )  < r } .

If d is a quasi-metric on X , let d_1(x, y) =  d(y, x) for all x , y  E X . Then 
d~l is also a quasi-metric on X . A quasi-metric d on X  is called strong if 
T(d) Q T(cZ_1). A topological space (X,  T)  is said to be (strongly) quasi- 
metrizable if there is a (strong) quasi-metric d on X  such that T = T(d) .  
In this case we say that d is compatible with T.

A quasi-metric d on X  is called equinormal [4], [9], if d(A,B)  > 0 
whenever A and В are two disjoint non-empty T(d)-closed subsets of X  
and d is called a Lebesgue quasi-metric [9] if for each T(d)-open cover C 
of X  there exists an n E N  such that { Sd{x,2~n): x E X }  refines C. It is 
well-known that every Lebesgue quasi-metric is equinormal and that every 
equinormal quasi-metric is strong.

Each quasi-metric d o n i  induces a quasi-uniformity U{d)  on X  which 
is generated by the base {Un:n E N } where Un = { (x,y) :  d(x,y) < 2- n } .  
Following [4, page 47], a filter T  on a quasi-uniform space (A ,U) is called 
a ZV-Cauchy filter if for each U E l i  there is an'x E X  such that U(x) E 
E T.  A quasi-uniformity U on a set A  is called convergence complete if 
each ZY-Cauchy filter on A  converges in A  with respect to the topology 
T(U)  and it is said to be complete if each ZV-Cauchy filter on A  has a T(U)-  
cluster point in A . Clearly, each convergence complete quasi-uniformity is 
complete. However, the converse is not true as it is shown in [8]. A quasi-

1 T h is  research  is p a rtia lly  supported  by D G IC Y T , grant PB 89-0611.
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metric d on a set X is called (convergence) complete if the quasi-uniformity 
IL(d) is (convergence) complete.

In the light of the classical theorem [2, Theorem 4.3.26] that every 
metrizable Cech complete space is completely metrizable, one can conjecture 
that every quasi-metrizable Cech complete space has a compatible conver
gence complete quasi-metric. Unfortunately, this conjecture is false. In 
fact, H. P. Kiinzi [8, Example 7] has obtained a zero-dimensional space that 
has a compatible complete quasi-metric but does not have a compatible 
convergence complete quasi-metric. By [8 , Proposition 4] this space is Cech 
complete. In Section 2 of this paper we observe that, nevertheless, the above 
conjecture is true in the class of strongly quasi-metrizable spaces. We will 
show that a Tychonoff space has a compatible convergence complete strong 
quasi-metric if  and only if it is a Cech complete strongly quasi-metrizable 
space.

In Section 3 two interesting classes of complete strong quasi-metrics, 
namely equinormal quasi-metrics and Lebesgue quasi-metrics, are consid
ered. In particular we will prove that if a space has a compatible Lebesgue 
quasi-metric then every compatible equinormal quasi-metric is convergence 
complete.

2 .  S p a c e s  h a v i n g  a  c o m p a t i b l e  c o n v e r g e n c e  

c o m p l e t e  s t r o n g  q u a s i - m e t r i c

Following [4, page 97] we say that a cover C of a subset A of a quasi
uniform space (X,Z7) is a quasi-uniform cover of A if there is U £ U such 
that { U(x) :x  £ A} refines C. A quasi-uniformity U on a set X  is a 
Lebesgue quasi-uniformity provided that every T(U)-open cover of X  is 
a quasi-uniform cover. An open cover of a topological space (X, T) is a 
quasi-normal cover provided it is a quasi-uniform cover of (X , U ) for some 
quasi-uniformity U compatible with T.  Thus an open cover C of (X ,T ) is a 
quasi-normal cover provided there is a normal neighbornet U of (X ,T ) such 
that [ U ( x ) : x  G 1 }  refines C (see [4, page 5] for the notion of a normal 
neighbornet). We say that a space (X ,T ) is quasi-normal if every open 
cover of X  is a quasi-normal cover. So, the next result is obvious.

P r o p o s i t i o n  1. A space (X, T) is quasi-normal if and only if the fine 
quasi-uniformity of (X, Г ) is a Lebesgue quasi-uniformity.

In [3] Fletcher and Lindgren introduced the notion of a strongly Cech 
complete space. Let a — {Qp. i £ / } be a collection of open covers of a space 
(X, T). An a-Cauchy filter base on X  is a filter base ß  on X  such that 
for each Gi £  a  there exists G  £ Gi and В  £ ß  with В ^ G. The family a 
is called (weakly) complete provided that every open a-Cauchy filter base 
(has a cluster point) is a convergent filter base. Frolik [5] showed that a
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Tychonoff space is Cech complete if and only if it has a countable weakly 
complete collection of open covers. A space (X, T)  is said to be strongly 
Cech complete [3] if it has a countable complete collection of open covers.

Now we shall prove the following result (compare with [3, Theorem 4.4]).
P r o p o s i t i o n  2. A quasi-normal space (X , T) has a compatible conver

gence complete quasi-metric if and only if it is a strongly Cech complete 
space.

P r o o f . Suppose that (X , T) is a quasi-normal strongly Cech complete 
space. Let Q =  { б п‘п E N } b e a  countable complete collection of open cov
ers of (X, T).  By Proposition 1 there exists a sequence (Un) of neighbornets 
of (X , T) such that, for each n E N, U%+1 C Un and { Un(x):x £ J i}  re
fines Qn. By Kelley’s Lemma [6 , page 185], there exists a quasi-pseudometric 
d on X  such that, for each n G N, Un+1 Я {(x, y) :d(x,y)  < 2 "} Я Un. 
Thus, for each x E X and each n E N, we have Un+i(x)  ^ Sd (x,2~n) and, 
hence, T{d) Я T . Now we will show that T Я T(d).  Given x E X  let ß  = 
= { Sd(x,2~n): n E N } . Clearly, ß is an open C-Cauchy filter base and, 
hence, it converges to a point у E X.  Then, the filter base { { t }}  also 
converges to y. Consequently x — у and, thus, d is a quasi-metric on X  
compatible with T. It remains to show that d is convergence complete. 
Let T  be a ZV(cf)-Cauchy filter on X.  Then, there is a sequence (xn) in 
X  such that Sd(xn, 2~n) £ T  for all n E N . Let H be the filter gener
ated by { Sd(xn, 2~n): n E N } .  For each b £ N  there is Gn E Qn such that 
Sd (xn, 2~n) Я Un(xn) Я Gn. So, H is an open ^-Cauchy filter. Therefore 
it converges to a point x E X  and, consequently, T  converges to x. We 
conclude that d is convergence complete. The converse follows from the 
well-known fact (see [3, Theorem 4.4]) that every space that has a compat
ible convergence complete quasi-metric is a strongly Cech complete space.

C o r o l l a r y  2 . 1 .  Every countably metacompact strongly Cech complete 
quasi-metrizable space has a compatible convergence complete quasi-metric.

P r o o f . It is proved in [4, Corollary 7.22] that every countably meta
compact quasi-metrizable space is a quasi-normal space. The result follows 
from Proposition 2.

P r o p o s i t i o n  3. A space ( X , T )  has a compatible convergence complete 
strong quasi-metric if and only if it is a strongly Cech complete space and a 
strongly quasi-metrizable space.

P r o o f . Suppose that (X , T) is a strongly Cech complete space that has 
a compatible strong quasi-metric d \ . Since every strongly quasi-metrizable 
space is semi-stratifiable and every semi-stratifiable space is countably meta
compact (see, for instance, [7, page 59] and [4, page 136]) it follows from 
Corollary 2.1 that (X,T)  has a compatible convergence complete quasi
metric с?2- Define d(x,y) = max{ di(x, y), d2(x , y ) }  for all x , y  E X .  Then,
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it is immediate to show that d is a convergence complete strong quasi-metric 
on X  compatible with T.  The converse is obvious.

R emark . It is well-known [7, Theorem 1] that a quasi-metrizable space 
is strongly quasi-metrizable if and only if it is developable. By Proposition 
2 we then have the following reformulation of Proposition 3: A space has a 
compatible convergence complete strong quasi-metric if and only if it is a 
quasi-normal developable strongly Cech complete space.

The next corollary should be compared with the result of Roberts [10] 
and Zippen [16] which says that a metrizable space is completely metrizable 
if and only if it is a complete Moore space . A related result may be found 
in [4, Theorem 7.40].

C orollary 3 .1 . A regular space has a compatible convergence complete 
strong quasi-metric if and only if it is a complete Moore space and a quasi- 
metrizable space.

P roof . Let ( X , T )  be a quasi-metrizable complete Moore space. By 
[3, Theorem 2.13] ( X , T )  is strongly Cech complete. Since every devel
opable quasi-metrizable space is strongly quasi-metrizable it follows from 
Proposition 3 that (X , T ) has a compatible convergence complete strong 
quasi-metric. The converse is obvious.

C orollary 3 .2 . If a regular space has a compatible complete strong 
quasi-metric then it has a compatible convergence complete strong quasi
metric.

P roof . Let (X , T) be a regular space having a compatible complete 
strong quasi-metric d. For each x £ X  and each n £ N  there exists an 
open neighborhood Vn(x ) of x such that Vn(x ) Я Sd(x,2~n). Put, for each 
n £ N , Qn =  { Vn(x):x £ X } . It is easy to see that {Gn:n £ N }  is a 
development for ( X , T) .  Now suppose that (Fn) is a decreasing sequence of 
non-empty closed sets such that Fn ^ Vn(xn) for all n £ N. Let T  be the 
filter generated by (Fn). Then, for each n £ N , Sd{xn,2~n) £ T  and, thus, 
T  has a cluster point in (X, T) .  Consequently, ПЕп ф 0. We conclude that 
( X , T )  is a complete Moore space. By Corollary 3.1 (X , T ) has a compatible 
convergence complete strong quasi-metric.

C orollary 3 .3 . A Туchonoff space has a compatible convergence com
plete strong quasi-metric if and only if it is a Cech complete strongly quasi- 
metrizable space.

P roof . Every Cech complete strongly quasi-metrizable Tychonoff space 
is strongly Cech complete [3, Corollary 2.13]. The result follows from 
Proposition 3. The converse is obvious.

E xample 1. It is well-known that the Niemytzki plane is a Cech com
plete space. Moreover it follows from [4, Example 5.17 and Corollary 7.24]
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that it is a strongly (non-archimedeanly) quasi-metrizable space. Therefore 
Corollary 3.3 shows that this space has a compatible convergence complete 
strong quasi-metric.

E xample  2. Let (A , T) be the Dieudonné example [1] of a Tychonoff 
locally compact non-normal topological space. Then (A , T) is a Cech com
plete space. On the other hand Stoltenberg [15] showed that this space 
is strongly quasi-metrizable. Therefore, Corollary 3.3 shows that it has a 
compatible convergence complete strong quasi-metric.

Certainly, the main problem in the area of strongly quasi-metrizable 
spaces is the question whether these spaces are orthocompact spaces (or 
equivalently, whether these spaces have a compatible strong non-archime- 
dean quasi-metric). On the other hand we observe that the spaces of 
the above examples actually have a compatible convergence complete non- 
archimedean quasi-metric. It then seems that the following weaker question 
is also open: Let (X , T) be a space admitting a compatible convergence 
complete strong quasi-metric. Is it an orthocompact space?

3 .  E q u i n o r m a l  a n d  L e b e s g u e  q u a s i - m e t r i c s

In [8 , Proposition 6] Kiinzi proves that every equinormal quasi-metric is 
complete. He also gives [8, Example 5] an example of an equinormal quasi
metric d on a set X  that is not convergence complete. However, it is not 
hard to see that the topological space ( X , T ( d )) of Kiinzi’s example is a 
strong Cech complete space.

A slight modification of the proof of Proposition 3 permits us to state 
the following result.

P roposition 4. Let (A , T) be a space having a compatible equinormal 
quasi-metric. Then (A, T ) has a compatible convergence complete equinor
mal quasi-metric if and only if it is strongly Cech complete.

The above observations suggest the following open question: Let (X , T ) 
be a space having a compatible equinormal quasi-metric. Is it a strongly 
Cech complete space? (A characterization of spaces which have a compatible 
equinormal quasi-metric is given in [11].)

It is noted in [8, Remark 2] that if d is an equinormal quasi-metric on 
a set X  such that (A , T(d)) is a Hausdorff space then d is convergence 
complete. Since every Hausdorff space which has a compatible equinormal 
quasi-metric also has a compatible Lebesgue (quasi-)metric, our next result 
is a slight improvement of [8, Remark 2]. In the proof we use ideas of [8 , 
Proposition 6] and the fact [12], [13], that a quasi-metrizable space (A , T )  
has a compatible Lebesgue quasi-metric if and only if the set X' of the 
nonisolated points of A is compact.
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P roposition 5. Let (X ,T ) be a space having a compatible Lebesgue 
quasi-metric. Then every equinormal quasi-metric on X  compatible with T  
is convergence complete.

P r o o f . Let d be an equinormal quasi-metric on X  compatible with T 
and let T  be a i/(d)-Cauchy filter on X . Then there exists a sequence (xn) 
of (distinct) points of X  such that Sd(xn, 2~n) £ T  for all n £ N. Suppose, 
firstly, that T  has a finite element F . Then there exists an x £ F and a 
subsequence (xn^)) of (xn) such that x £ Sd (хпщ, 2~п к̂ )̂ for all A; £ N. 
Hence {xn<k)) is T(d~ ̂ -convergent to x and, thus, T(d)-convergent to x. By 
the triangle inequality, T  converges to x. Now suppose that each element in 
T  is infinite. In this case, if (xn) has a convergent subsequence, the triangle 
inequality permits us to show that the filter T  converges. If the sequence 
(xn) has no cluster point, we can suppose, without loss of generality, that 
each xn is an isolated point. Construct a sequence (an) in X  such that a\  £ 
£ Sd (zb 2-1 ) \  {zi} and an £ Sd (xn, 2~n) \  {aq, ■ ■., xn, ab . . . , an_ i } for 
all n > 1. Since each xn is isolated, it follows that {an:n £ N} П {xn:n £ 
£ N ) = 0. However, d(xn, a n ) < 2 " for all n £ N, a contradiction because 
d is equinormal. Consequently, every £/(d)-Cauchy filter on X  is convergent.

The following example shows that the converse of the above Proposition 
is not true.

Example  3. Let (an) and (bn) be two sequences of distinct points such 
that А П В  =  0 where A = { an: n £ N } and В = {bn: n £ N }. Let X  =  A U 
U В  and define a quasi-metric p on X  as follows

p(an,bm) =  1/m for all n,m  £ N

p(an, am) = 1 if n ф m

and

p(bn, x) = 1 if x ф bn

p( x , x )  = 0 for all x £ X.

It is easy to see that p is an equinormal quasi-metric on X . However the 
set X'  of the nonisolated points in T(p ) is not T(p)-compact. So (X , T(p)j  
does not have a compatible Lebesgue quasi-metric. We want to show that 
if d is an equinormal quasi-metric on X  compatible with T(p) then it is 
convergence complete. Let T  be a U(d )-Cauchy filter on X. Then there is 
a sequence (xn) of distinct points of X  such that Sd( xn,2~n) £ T  for all 
n £ N. First assume that the sequence (xn) has a cluster point x. Then, 
similarly to Proposition 5, the filter F  converges to x. Second consider that 
(xn) has no cluster point. Then we can suppose, without loss of generality, 
that xn £ A for all n £ N . Put F = {xn: n £ N}. Note that if there exists a 
subsequence (*n(Jfc)) of ix n) such that d ( x n(k), F \  { z n(A;)}) < 2 ” for all
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к G N , then we can obtain two subsequences i x n k̂j) j  and \ x'n(k °^{xn(k)) 

such that { xn(kj)'-j 6 N } П G N } =  0 and d(xn{kj), x'n(kj)) 0,
a contradiction. Hence we assume, without loss of generality, that d (xn, F \  
\  {x„}) ^ 2“n for all n G N. We now have two cases: (a) for every к G 
G N  there is yk G A such that yk G Sd (xk,2~k) \  {x*,}; (b) there is k e  N  
such that Sd (xk, 2~k) П A =  {х*,}. Assume (a). In this case, хто ф yk for 
all m, k  G N  because 0 < d(xk, x m) — d(xk,yk) is d(yk,xm). Thus, F and 
H = {ym: m G N } are disjoint closed sets with d(F, H ) = 0, a contradiction. 
Now assume (b). Then there is ko G N  such that Sd (xk,2~k) =  {x*.} U B k 
with {bn:n ^ n(k)} Я В к Я B.  Since, for each m  G N,

Sd (x fc, 2- fc)  n [ r | { 5d(x i+ » ,2 '(j+s)) : l  ^  ̂ ^ rn) G T

it follows that there exists a strictly increasing sequence (n(m )) in N  such 
that { 6n:n ^ n(m )} G T.  Therefore T  converges to every point in A. We 
conclude that d is convergence complete.

Our next result extends the classical Niemytzki-Tychonoff theorem that 
a metrizable space is compact if and only if every compatible metric is 
complete to spaces having a compatible Lebesgue quasi-metric.

Let (X , T ) be a quasi-metrizable space and denote by X'  the set of the 
nonisolated points of X . Given a quasi-metric d on X  compatible with T,  
define

d \ x ,  y) = min{ l,d (x ,i/)}  if x G X' 

d \x ,  y) — 1 if x G X  \  X' and x ф у

and
d \ x , x )  =  0 for all x G X.

Clearly, d' is a quasi-metric on X  compatible with T.  We will say that d' is 
the X'-associated quasi-metric to d.

It is well-known [4, Theorem 7.35] that a quasi-metrizable space (X, T) 
is compact if and only if every quasi-metric on X  compatible with T is 
(convergence) complete. We here prove the following extension.

P roposition 6 . A quasi-metrizable space (X ,T ) has a compatible 
Lebesgue quasi-metric if and only if for each quasi-metric on X  compat
ible with T , its X'-associated quasi-metric is (convergence) complete.

PROOF. Suppose that (X ,T)  has a compatible Lebesgue quasi-metric 
and let d be a quasi-metric on X  compatible with T. If F  is a £/(<f')-Cauchy 
filter on X , then there exists a sequence (x„) in X  such that Sd (xn,2 _n) G 
G T  for all n G N. Assume that there is a subsequence (xn(k)) of (xn) such
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that E X  \  X'  for all к E N . Then all terms of (xn(*.)) coincide and, 
clearly, T  converges. Otherwise there is no G N  such that xn E X'  for all 
n ^ no- Hence the sequence (xn) has a cluster point x E X ' . It follows 
that J- converges to x. Conversely, suppose that the set X' is not compact. 
Then there exists a sequence (xn) in X ' without cluster point. Let p be 
a quasi-metric on X  compatible with T  such that p ^ 1. Define, for each 
n E N , A nj =  {xm: m  ^ n} and dn: X _x X  -+ R  by dn(x,y)  =  p(x,y)  if 
x, у e X  \  An, dn(x, у) =  1 if x E X  \  An and у E An and dn(x,y )  = 0 if 
x E An.

Now put d(x,y)  =  sup{2~ndn(x,y):n  E N }  for all x,y  E X .  Then 
it follows from [14, Lemma 2] that d is a quasi-metric on X  compatible 
with T  such that the filter T  generated by {A„:n E N } is a U(d)-Cauchy 
filter. Consequently T  is a £/(d')-Cauchy filter without cluster point. This 
contradiction concludes the proof.

Finally we observe that one can easily obtain an analogue of the pre
ceding proposition for metrizable spaces. The necessary condition is an 
immediate consequence of it and the sufficiency should be derived from 
Hausdorff-Dugundji’s extension theorem (see [2, Problem 4.5.20(c)]).

P roposition 7. A metrizable space (X, T)  has a compatible Lebesgue 
metric if and only if for each metric on X  compatible with T , its X '- 
associated quasi-metric is (convergence) complete.

A ck now ledgem en ts. The authors ar‘' grateful to Prof. H. P. Kiinzi 
for suggesting several questions considered in Section 2. We also would like 
to thank the referee for his many valuable suggestions which include a great 
simplification of the arguments needed to establish Proposition 5. Finally, 
we acknowledge the privilege of having seen [8] before publication.
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N O N -L IN E A R
D IFFE R E N T IA L -FU N C T IO N A L  E Q U A T IO N S

H. LESZCZYNSKI (Gdansk)

Introduction

Uniqueness results for first order differential equations are well known if 
boundedness of the domain or the solutions is assumed. Basic methods of 
uniqueness proofs were developed by Szarski [13], see also [10]. There are 
a lot of papers and books where the authors extend Szarski’s results in a 
way. Let us mention only few of them, for instance [4] where uniqueness for 
unbounded solutions is shown, and [8] where Szarski’s ideas are extended to 
the case of equations with functional variable. Particular results for equa
tions with a special kind of functional dependence were established in [8]. 
Uniqueness and existence results for parabolic equations demand assump
tions about a class of solutions, namely they assume that the solutions and 
their derivatives grow at most as exp(c||x ||2) , cf. [9]. In this paper Besala’s 
and Krzyzanski’s ideas of dealing with classes of unbounded functions are 
adapted to first order equations for which any restrictions were unnatural 
until there was no functional variable. This enables us to obtain uniqueness 
in a way which was done by Szarski. Let us notice that our results, written 
for one equation, can be easily proved for weakly coupled systems.

Now we formulate the differential-functional problem.
Let E0 =  [-To,0] X R n, E = [0,a] x  R ”, D = [ - r o,0] X [—r,r], where 

a, Tp E R +, a > 0, т =  (tj, . . .  ,rn) E R +. Denote by C(X,  Y)  the set of all 
continuous functions defined on X  taking values in Y.  X , Y  are non-empty 
metric spaces. If г E C(Eo  U E, R) and (t ,x)  E E then Z(t xy. D —*■ R  is 
defined by z t̂ x^{s,y) = z( t  +  s,x -f y) for (s , y ) E D. Assume that f : E  X 
X R  X C(D,  R ) X Rn —► R  and уз: E0 —> R  are given functions.

We consider the problem

(0.1) Dtz ( t , x )  = f ( t , x , z ( t , x ) , z ^ x), Dxz ( t , x ) ) ,

(0.2) z ( t ,x)  = 4>{t,x), ( t , x ) e E 0,

where D xz( t , x )  = ( D Xlz ( t , x ) , . . . ,  DXnz ( t , x ) ) . We are concerned with 
classical solutions of problem (0.1)-(0.2), i.e. functions и G C(Eq U E , R )
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having partial derivatives Dtu, Dxu on (0,a] X R n, and satisfying the dif
ferential equation on (0,a] x R n and the initial condition on E0.

The differential inequalities methods seem to be basic tools in all in
vestigations of solutions of initial-value problems for non-linear differential 
or differential-functional equations in partial derivatives of the first order. 
Uniqueness theorems require assumptions about an estimation of the right- 
side increase and about some regularity of the solutions. Uniqueness criteria 
are obtained as consequences of suitable comparison theorems for differential 
or differential-functional inequalities. In order to illustrate these methods 
consider two examples.

Ex a m pl e  1. Let X  =  j ( f , z )  e  R 1+n:t £ (0,a), |х;| ^ с,- -  Mit, i =

= X q = [—ro, 0] X [ c, c], where c = (cb . . . ,c „ )  £ R+, М,- > 0,
c, -  Mia ^  0, i  = 1 ,n . Any function z: X  о U X  —► R  is said to be 
of class V  iff 2 £ C(Xo U X , R ) ,  the derivatives Dtz( t ,x) ,  Dxz ( t , x ) exist 
for (t , x ) £  X , and г is differentiable on the set FrX П {(0 ,a ) X R 71} .  
For 2 6 C (X о U X, R) denote by Tz: [—r0,a) —► R + the function given by
(Tz)(t) = maxj I 2( f , z ) |: (t, x) 6 X 0 U X  j for t £ [ - r 0,a). Then Tz  £
£ C ( [ -r 0,a ) ,R + ) . Assume that the function гг:Хо U X  —► R  of class V  
satisfies the differential-functional inequality

71

(0.3) \ D tu{t,x)\ ^ o ( t , \ u ( t , x ) \ , T u )  +  y ^ M ,|D Xiu(t ,x)\ ,
i- 1

for (t ,x) £  X , where a: [0,a) X R + X C ([—ro,a),R +) —>• R+. Suppose that 
for every 77 £ C ([-ro ,0 )R + ) there exists an upper solution to the problem

(0.4) y \ t )  = ° ( t , y { t , y ) , y ) ,  y(t)  = 77(f) for t £ [—7o,0].

Let 77(f) =  max 11 u ( t , x ) \ : x £ [ - c ,c ] | ,  t £ [-то,0]. Then under natural
assumptions on a (see [7]) we have |u(f,a:)| ^ u(t,  77) for (f,a:) £ Xo U X , 
where is an upper solution of problem (0.4).

Consider the following Cauchy problem in the local version:

(0.5) Dtz(t ,x)  =  F ( t , x , z ( t , x ) , z , D xz ( t , x ) ) , ( t ,x)  £ X,

(0.6) z ( t , x)  = ip{t,x),  (t, x) £ X0,

where F: X  X R X C (X 0 U X, R) X R n —*■ R  and ф: Xo —»• R. Assume that 
F satisfies the following Volterra condition:

Í if (t , x ) £ X, (p,q) £ R 1+n, 2,2  £ C ( X 0 U X, R),  2(5, 7/) = 2(0, 7/) for 
\  -  T0 ^  5 ^ t, ( s ,y)  £ X 0 U X, then F( t , x ,p , z , q)  =  F( t ,x ,p , z ,q) .
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If the estimation
П

I F( t , x , p , z , q )  -  F( t , x ,p , z ,q) \  й o ( t , \ p - p \ , T ( z  - z ) )  + ^ M {\ q -  q{\
1=1

is satisfied on X  x R  x C( Xо U X,  R ) x R", and the upper solution to 
problem (0.4) for r}(t) =  0, t G [—To, 0], is y ( t) = 0, t G [—To,a), then 
problem (0.5)-(0.6) has at most one solution of class V  on Xo U X , see
[7 ].

Thus we have obtained a uniqueness criterion of Perron type. Similarly, 
there is a uniqueness theorem with a comparison function of Kamke type, 
see [1].

It is easily seen that the above considerations do not cover our problem
(0.1H 0 .2 ). ‘

E xam ple  2. Suppose that.E: £ x R x  C (E 0 U E, R)  x R n —> R and 
rp: Eo —► R . Consider problem (0.5)-(0.6), which is now global with respect 
to x. The Volterra condition is modified there as follow:

(V)
{ if z, ~z G C(Eo U E, R ), and z(s,  у ) =  z(s, y) for To ^ s ^ t,

1Ы1 ^ ||*||, then F( t , x , p , z , q ) =  F ( t , x , p , z , q ) for all (p,q ) G R 1+”.

Assume that the function u: Eo U E  —► R  has partial derivatives on £  (we do 
not assume that и is differentiable) and satisfies (instead of the comparison 
condition (0.3)) the inequality

(0.7) \ D tu(t,x)\ й a ( t , \ u ( t , x ) \ , T (tiX)uj + Y ^ M t\DXiu( t ,x) \ ,
i=i

for ( t , x)  G E,  where T{t<xy. [ - r 0, a] -> R+ is given by (7)i);r)u)(s) = 

= m a x ||« ( 5,j/)|:||j/|| ^ ||x ||| for s G [ - r 0, a], and cr:[0 , a ] x R + X
x C ( [ - r 0, a ],R +) —► R + satisfies additionally the Lipschitz condition with 
respect to the last two variables. If |u (i,x ) | ^ rj(t) for (t ,x ) G Eo, and the 
right-side solution из{-,7]) of (0.4) exists on [0,a], then | u(t ,x)J ^ u(t,rj)  for 
(t , x ) G E.

As a consequence of the above consideration we get a uniqueness theo
rem ([8]) which is obtained under the assumption that F satisfies condition
(V), and

\ F( t , x , p , z , q )  -  F( t , x ,p , z ,q) \  <,
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й К\р  — р\ +  М  max j  I z(s, у) -  ф ,  у ) |: - т 0 ф  5Í í, ||t/|| 5Í ||х ||} +

П
+ ] Г М ,ф  - q t I 

«=1

on Е X R  X С ( Е 0 U £ ,R )  X R ra, where Л', М ,М , £ R+, г = 1 , . . .  ,п.  This 
uniqueness result is proved as a natural generalization of [7], where partial 
differential equations were considered.

There exist simple natural examples of equations with do not come with 
the above uniqueness criterion.

Consider the equation (with an integral dependence)

(0 .8) D tz ( t , x )  = G ( t , x , z ( t , x ) ,  J z(t +  s , x  +  y) ds dy ,Dxz ( t , x ) ) ,
D

where G: E  X R  X R  X R n —► R. This equation does not satisfy a Volterra 
condition of type (V), and it can be specified as a particular case of (0.1). 
It is enough to define

f ( t , x , p , w , q ) =  G \ t , x,p,  j  w(s , y)  ds dy,q

for  (t , x , p , w, q) G E X R  X C(Eo U E,  R) X R n.

Now we consider another equation (with a retarded variable):

(0.9) D tz ( t , x ) =  G ( t , x , z ( t , x ) , z ( a ( t , x ) , ß ( t , : r ) ) , Dxz(t, x)J ,

where —To ^  a ( t , x ) й t and ß( t ,x)  £ R" for ( t ,x)  £ E.
Studying equation (0.9) we come to the conclusion that condition (V) 

implies j) /3(i, ar) J j ^ ||z|| for each x £ R n, whereas our equation (0.1) con
tains a relatively wide class of equations without such restrictions. It will 
be easier to check it if we define the function /  in (0 .1) by

f ( t , x , p , w , p , w ( a ( t , x )  — t , ß( t ,x)  -  x

for (i ,  x , p , w , q )  E E X R  X C(Eq U E,  R) x R n.
R e m a r k . There are numerous approaches to construct some appro

priate models in many branches of science and technology which lead to 
differential equations. In order to describe the reality in a dependence in
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many circumstances as exactly as it is possible they must often permit non
linearity and appearance of an integral or retarded functional coefficients in 
deduced differential equations.

In [2] they reduce some problems of non-linear dispersive laser optics 
to quasilinear hyperbolic integral-differential systems, see also [3]. Let us 
list some further examples. Systems of differential equations containing 
an operator acting on an unknown density of populations in dependence 
on their age, size, DNA content and so on, are considered in [12]. An 
equation with a deviated variable ([5]) describes a density of households 
at time t , depending on their estates, in the theory of the distribution of 
wealth. Another system of integro-differential equations appears in modern 
research in biology in order to investigate an age-dependent epidemic of a 
disease with vertical transmission, ([6]). The authors of [11] consider also 
first order differential-functional equations motivated by applications.

1 .  B a s i c  a s s u m p t i o n  a n d  n o t a t i o n s

In this short section we introduce some useful classes of functions and 
needed assumptions.

H £ TL iff H £ C( EoU E , ( 0 ,oo)) and H\Eo and H\ E are continuously 
differentiable, and

1° H(- ,x)  is non-decreasing for every x — (x j ,. . .  , x n) £ R",
2° XiDXiH(t ,x)  ^ 0 for i = 1 , . . .  ,n , (t , x ) £ Eo U E,  x = (x j ,. . .  , x n).
If C £ C(E,  R +), Lo, L \ , 1/2 £ R + then H £ Lio(C\ Lo, L \, L2) iff H £ 7i 

and for ( t ,x)  £ E we have

(1.1) DtH( t ,x )  ^ (Lo + L\)H(t ,  x) + £( t , x) \ \H(t}X)\\D +  L2\\ DxH ( t , x ) \\,

where DxH( t ,x )  = ( D Xl H(t ,  x ) , . . . ,  DXnH(t ,  x ) ) .
If H £ 7i then z £ Ch iff г £ C(Eo U £ ,R )  and there is e £ C(Eo  U 

U E,  R + ) such that | z(t,  x)| ^ e(t ,x)H(t ,  x) for t ,x £ EoU E,  and e( t , x)  —> 
—► 0 as ||x|| —> oo.

The class Ch is equipped with semi-norm || ■ ||j(j defined by 

(!-2) I M I ( ( ) = s u p { \ z ( s , y ) \ H ~ \ s , y ) : ( s , y )  £ E0 UE,  s <[ t} ,

where t £ [0 ,a].
We denote by ЦгсЦ̂  the supremum norm of 
= E  x R  x C(T>, R) x R n.

w £ C(D,  R). Denote
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If £  G C ( E ,  R +), L0, L i , L 2 e R +  then f e  Lip(íl<°>;£,Zi,L2) iff /  G 
G C(fi<°>,R) and we have

(1.3) \ f ( t , x , p , w , q )  -  f ( t , x , p , w, q ) \  <i

й  L\ \P~P\  +  £(t ,x)\ \w -  w\\D + L2\ \q-q\ \

for all ( t , x , p , w , q ) , ( t , x , p , w , q )  G
Let /G  Lip(fl(°); C , L \ ,  T2) and p  G C ( E o ,  R). We will assume that the 

Cauchy problem (0.1)-(0.2) considered in our paper has a solution defined 
on Eq U E .

2. T h e  m a x i m u m  p r i n c i p l e  a n d  u n i q u e n e s s  r e s u l t

Now we will prove the maximum principle for problem (0.1).

T h e o r e m  2.1. Assume that
1) H G 7f0(£ ;£o , L i , L 2) and f  G Lip(il(°); £, L\,  T2), where L0 > 0, 

L \ , L 2 G R+ and £  G C (£ ,R + ) ,
2) the functions u,vi G Ch  are solutions to problem (0 .1).
Then we have

(2.1) \ \u -  ü ||(t) ^ ||u — tt||(0), t G [0,a].

P r o o f . Denote v(t ,x)  =  u(t,x) — u( t ,x)  for (f ,x ) G Eol) E,  and 
a;(t,x) = v ( t , x ) ( H( t , x ) )  *. Of course, v G Ch - Thus |u>(t,x)| й s( t ,x)  —> 
—► 0 as ||x|| —» oo, where £ G C(.Eo U R + )• Then there exists (í*,x*) G 
G £ o U £  such that |w (f,x )| ^ |w(i*,x*)| for (í,x ) G Eo U E. Either u> or 
—u) takes its maximum at the point (<*,x*).

Assume that (í*,x*) G E  \  Eo, then

(2 .2) w (i* ,x , )D |w (<*,x*)^0, 

and

(2.3) DXlu>(t* ,x*) = 0, i =  1 , . . . ,  n.

It is easy to get

(2.4) D Xiu>(tm, x m) = ( H ( r , x * ) ) - l [Dx,V( t * , x - ) - u ( f , x * ) D x, H( f , x ~ ) ] ,

i — 1 ,n.
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From (2.3) and (2.4) we obtain

(2.5) DXiv { t * X )  =  u( t* ,x ' )Dx, H{ f , x* ) ,  i =  1 , . . . ,  n. 

From (2.2) and cj ( t ,x)H( t ,x)  =  v(t ,x)  we have

(2.6) u>(t*,x*)Dt v( t* ,x*)Z (u{T*,x*) )2DtH ( t \ x * ) .

As и and 1Z are solutions of (0.1) we have

|А и(Г ,а:*)| = |/( t* ,x * , u(t*, x*), û t, x^ , D xu(t*,x*)) — 

/ ( t  , x ,u(t  , X  ),!!(*•tx*)i Dxu(t ,x  )) .

By (1.3) this implies the inequality

(2.7) | W \ * * ) |  ^

^ Lx\ v(t*,x*)\ +  £ (Г , x*)|| К d + L2\\ D xv ( f , x * ) \ \ .

From (2.5), (2.6), (2.7) we have

(2.8) (u( t*,x*) )2DtH ( f , x * ) i

й (ЦГ,х*))2 [Ьъ H (<*,£*) + £(<V*)|| H(t. ^ И 0 +

+ L 2\\DxH(t*,x*)

because

(2.9) | |v(<*,x*)IId = II M O «  V )  II d = II " « V )  II d H H(f,x')\\D

and

(2.10) II"p v )IId = I“ (| ' , i , )|.

Conditions (1.1) and (2.8) imply

(2.11) {u( t*,x*) )2DtH( t * , x*)ü

й ( u { f , x * ) ) 2 [ D tH { f X )  -  LoH (t* , x* ) \ .

It follows from (2.11) that сu(í*,x*) = 0, and then the maximum is taken 
on Eo, and condition (2.1) holds true. This finishes the proof.

Let us observe that continuous dependence on initial conditions and 
uniqueness are easily obtained from Theorem 2.1,
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C orollary 2.1. Suppose that
1) the assumptions of Theorem 2.1 are satisfied,
2) I u( t , x ) -  й(<,х)) й p H( t , x )  for (t , x ) G Eq.
Then I u(t, x) -  Ti(t,x) | ^ pH(t ,  x) for ( t , x)  E EoU E.

C orollary 2.2. Suppose that
1) assumption 1) of Theorem 2.1 is satisfied,
2) u,u  E Ch are solutions to problem (0.1)-(0.2).
Then u(t, x) =  u(t, x) for  (t , я) G E0 U E.

3 .  S o m e  m o d i f i c a t i o n  o f  t h e  t h e o r e m  o n  u n i q u e n e s s

One can consider another kind of functional dependence dealing with 
the Volterra function /  and without any trouble we obtain the maximum 
principle and uniqueness result assuming existence.

If L, Lq, L2 E R-+ then H E Tl\(L,  Lq, L\,  Lf) iff H E hi and for 
(t , x ) G E  we have

(3.1) D tH (t , x ) ^ (X +  L0 +  Li)H(t ,  x) + Х2Ц DXH (f,a:)||.

Let = E x R  x Ch x R n. If L, L q, L \ , L -2 E R n then /  G 
G Lip^fl^; L, L\ ,  iff / g C ^ Í Í ^ \ r ) and we have

(3.2) I f { t , x , p , z , q ) ~  f ( t , x , p , z , q ) \  ^

^ L i \ p - p \  +  L H ( t , x ) \ \ z - z \ \ {t) + L2\\q ~q\\

for all ( t , x , p , w , q ) , ( t , x , p , w , q )  E f i^ .
For /  G Lip^fl^; L, L\ ,  L2J and ip E C(Eo,  R) we will consider the 

following Cauchy problem:

(3.3) D tz ( t , x ) =  f ( t , x , z ( t , x ) , z , D xz ( t , x ) ) ,

(3.4) z ( t , x )  = <p{t,x), ( t , x ) E E 0.

In a similar way as in Theorem 2.1 we can prove the maximum principle 
for problem (3.3).

T heorem 3.1. Assume that
1) H E hii(L,  Lq, Li ,  L2), f  E L ip^O ^;X ,X i, , where L , L q, L i ,
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L2 G R + , Lq > 0,
2) the functions и ,й  G C# are solutions to problem (3.3).
Then we have

(3.5) | | « - « | | (4) ^  | | t t - « | | (0)t <6[0 ,a].

We omit the proof.
As a consequence of Theorem 3.1 we obtain continuous dependence on 

initial conditions and uniqueness for problem (3.3) and (3.4).

4. E xam ples of functions H,C

Uniqueness criteria for differential-functional equations are based either 
on comparison theorems ([4], [7], [8], [13], see also Examples 1 and 2) or on 
the maximum principle. In comparison theorems the existence of solutions 
to some initial value problems for ordinary differential-functional equations 
(cf. (0.4)) is assumed. The maximum principle we have proved here works 
under the assumption on the existence of solutions to the partial differential- 
functional inequality (1.1) or (3.1). This is the main difference between the 
results from [7], [8] and our Theorems 2.1 and 3.1. To study more about 
them we give some examples of functions H and C which satisfy conditions
(1.1) or (3.1).

Let T:R + —*■ R + and к , ^ : [ - т о , а ]  —► (0,oo) be continuously differ
entiable functions such that n'(t) ^ 0, ф'{1) ^ 0 for t G [0,a]; n \t)  — 0, 
if'(t) = 0 for t G [—7”o, 0]; r'(t) ^ 0 for t G R +.

We define

(4.1) H(t ,x)  =  г (vMv^ + NI2) 
for ( t , x)  G Eo U E,  and

(4.2) C(t ,x)  =  p/T (n( t ) y / l  +  ||z ||2)

for (t , x ) G E,  where p G R+.
The first-order partial derivatives of H are

D tH( t ,x )  =  Г '  ^ ( O V ^ l  +  l k l l 2 )  Ф 'Ю у/1 +  | M | 2 ,

1 + lkll2 ’
for (t, ж) G E.

D XlH{t ,x)  =  Г' 1 +  11*1 xf(t) 1, . . . , 71,
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Consider the inequalities

(4.4) D tH ( t , x ) ^ K 0H ( t , x )  +C( t , x) \ \H( ttX)\\D +  K \  \\DxH(t,x)\\  

for (t , x ) G E,  where K q, K \  G R+ and C G C(.E,R+), and

(4.5) D tH( t ,  x) ^ K 0H ( t , x )  + KH(t ,x)\ \H\\( t) + K i \ \ D xH(t,x)\\

for (t , x ) G E , where K o , K , K \  G R+. These correspond to (1.1) and (3.1) 
respectively. We need not give any examples of functions H satisfying 
inequality (4.5) because | |# | |( 4) = 1 (compare definition (2.1)) and it is in 
fact easy to solve it as a differential inequality without functional variables. 
We are concerned with the differential-functional inequality (4.4).

Lemma 4 .1 .  Suppose that 
1) ф:[—tq, a] —► (0 ,oo) satisfies

(4.6) kip'{t)/ij>(t) ^

^ Üfo+  p (« (0 ) ß l + j l k к

for t G [0,a], where ß, к G R +, and n(t) > 0 for t G [0,a],
2) T(f) =  tk for t G R + , where к > 0 is fixed,

3) H is defined by (4.1) and C( t ,x)  = p ^ n ( t ) i j  1 + ||ж||2̂  for 

( t ,x)  G E.
Then H G Ti and inequality (4.4) is satisfied.

P roof . From (4.3) we obtain

D tH( t ,x)  =  ф'{t)k(ij}{t))k X( l  + ||x||2) k/2,

D XiH(t ,x)  -  k('if>(t))kxl ( l  -I- \\x\\2) k/2 \  i — 1 , . . . ,  ti .

Moreover, for (t, x) G E  we have

(4.8) 4<.*)||Я(«,.>||„ s

£ ? ( < / ’ ( > ) ) t ( l ‘ ( t » ~ l 3 ( i  +  (  1 1 * 1 1  +  I M I ) 2 )  /  ( 1  +  1 М Г )  , 1 / ! -
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Of course we have

(4.9)

i +  INI2) ^
l
2 ’

( 1 + * +  r ) " / 2 ( i  +  I M I 2 ) ~ ( k+ 0)/2 <

for x E R + . Then (4.4) follows from (4.6) and from (4.7)-(4.9). This finishes 
the proof.

Lemma  4.2. Suppose that H is defined by (4.1) and we have

' 1P'(t) ^ (A) + A 'i/2 )tp(t), t E [0, a],

' T ( ( )  £  ( e W 0 ) , o o ) ,

where ßo > 0 .
Then H E Tt and inequality (4.5) is satisfied.

P r o o f . Using (4.3) we have that (4.5) is equivalent to

(4.11) r ' (  v W i  + l M I 2 )  ^'(*)\Л  + I M I 2 -  А \ ф ( г ) - ^ М =
V 1  +  I k l

^ (0 \Л  +  IMI2)  (K o + К ).

>

> г

Condition (4.11) can be rewritten as

(4.12) Г' 1 +  11*1 l+llxlr x

X v > ' ( f )  -  ij>(t)(ßо +  A ' i | M | / ( l  + | M | 2 ) ) + ij>(t)ßо > ^

> Г М 0 \Л  + Ikll2)  (Ko + K)rp(t)

for (t , x ) E E.  Condition (4.12) is a simple consequence of (4.10).
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L e m m a  4.3. Suppose that
1) the function H is defined by (4.1), where T(i) = el , t E R +, with 

fixed к > 0,

2) C( t , x ) 5Í pexpl 1 +  ||x
fc-i

1 + 11Х1Г ) for (*>*) 6

E E, where p E R + .
Then H £ H and H satisfies (4.4) if any of the conditions (a), (b) or 

(c) listed below holds true.
(a) Either 0 < к ^ 1 and ( k(í ))*: 1 ^ &1М1($(0) £ [0, a], or 1 < к

and

И 0 )* 1 = ^ ( O H M I i  +  \ m  ( l N I  +  \ / 4  +  l l r l l 2
t E [0, a];

(*-1)/2

and

(4.13) k-fi,(t)('ip(t)) k_1 ^  K Q + ^ A 'i  + p ,  t E [0,a],

b) 1 < к ^ 3 and

( /í( í) ) fc_1 > fcV»(Ollr l l ( \ / l  + IMI2)  max{ 1, (fc -  1)_1}

t E [0,a],

and

(4.14) к ф Щ ф Ц ) ) 1' - 1 I  K o + \ k K 1(4>(t))k+

+pexp< -( /«(i ))*"1 + *(V’(0)*IMI^1 + (llr ll + ro (0 )2J

for t E [0,a], where r0(t) дшеп by

(4.14') r0(f) =

_  f e ( W ) fc(lk ll2 +  IMI) Í 1 + llr ll2) (fc 3)/2 max{ l,(fc -  l )" 1}

(«(<)) *_1 -  k( ip{ t ) )k\\r\ \(l  + IM lV * 3)/2 max { 1, (Ar — l ) -1 }

Л е к  M aihem atica  Hungarica 64, 1994



FIR ST  O R D E R  N O N -LIN E A R  D IFFE R E N TIA L -FU N C TIO N A L  EQ U A TIO N S 87

(с) 3 < к and

(«(*))* 1 > *(^<))*IM I \
k- 3

max{ 1, (к — l ) -1 }

for t E [0,a], and

(4.15) г  K o + ^ k K 1( ^( t ) )k+

+pexp | - ( k(0 ) /C_1 + *(V»(0 ) fc||r ||( l  + (r0( i ) +  ||т ||)2) ( ^  j ,

for t E [0,a], where ro(t) is given by

(4 16) r (t ) =  +  llr ll) ( g°(*))* 3 m a x { l , ( f c - l )  ' }

(«(<)) i_1 -  "0 (i)) (^o(i)) max{ 1, (Ä; -  l ) - 1 } ’

*o(0 = \  (|М1 + / 4 + IN

P r o o f . Condition (4.4) follows from (4.3) and assumption 2) when the 
following inequality holds:

(4.17) к — 1 >

^ K 0( 1 +  I N I 2 )  *12 + кКг ( r f ( t ) )  * | N I / (  1 + | N | 2 )  +

+ p e x p | +  INI2)  +

+(V>W) (1 + (1М  + 1И 1)а) ‘ / г - ( 1  + м 5
l2\ k/2

where (t, x) E E.
If we assume (a) then (4.17) follows from (4.13) and from

(4.18) — («(<))k ' ( l  +  l N l V *  1)/a +  ( ^ ) ) * [ ( i + ( I N I  +  I M D a )
k/2

- ( 1  +  ||x||2) /̂21 ^ 0 , ( t , x ) E E .
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Indeed, from the mean value theorem we have

(4.19) ( l  +  ( 1 1 * 1 1  +  I M I )  J ) t / a  -  ( ‘  +  l l * H 2 ) t / 2  =
/ o\ k/2—1

=  * I M I ( I M I  +  0 l l r l l )  ( i  +  ( I M I  +  0 I M I )  )  ,

where 0  £ (0,1). If 0 < к ú 1 then from (4.19) we have

(4.20) (l + (M  + IMI) 2)*/2-  (1 + IMI2) Ф fi *||r||(l + IWI2) “' ,)/2

and inequality (4.18) follows immediately from кк 1 ^ ||r||^fc.
If 1 < k then (4.18) is a simple consequence of the condition

(« (0 )* 1 ^ 1 + 2 IW (iMI +
l ( f c - l ) / 2

because (4.9) holds.
If we assume (b) then (4.17) follows from (4.14) and from

(4.21) - ( K( i ) ) ‘“ 1( l  +  ||x||2) “ “ 1)/2 + ( « < ) ) ‘
k f  2

( i  +  IMI2)
2\ fc/2

( i  + (||*|| +  1И 1) 2)

^ -  (к(0)*-1 + *(^(0)*1М|(1 + (llr ll + ro(0)2) (

for t G [0,a], where r0(f) for t G [0,a] is defined by (4.14').
Inequality (4.21) holds for ||ж|| ^ ro(f), and the left-hand side of the 

inequality (4.21) is non-increasing with respect to ||x|| for ||x|| ^ 7"o(t), where 
ro(t) is defined by (4.14').

If we assume (c) then inequality (4.21) with ro(f) defined by (4.16) holds 
for the same reason as in case (b). This finishes the proof.

Define e0(i) =  t, e,+i(f) = exp(e , ( f ) ) , i =  0 , 1 , . . . ,  t G R,  E f t )  -  e\{t) 
for г =  0 , 1 , . . . ,  t G R.

Lemma 4.4. Suppose that
1) H ,C are defined by (4.1), (4.2), where

(4.22) r (t) =  em(t), t G R +, with fixed m G { 2 , 3 , . . . , } ,

2) for t G [0,aj we have n(t) > ф(t ) and

(4.23) f i \ t )  ^ Ы Е т - г О Ю )  _1 +  \к \ф (1 )+
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+P  exp < em_i 1 + (r0(t) + ||r||)'

m — 1

- e m_i(/s(<)) -  5 ^ e j (^ ( i) )  [>j=o J
where

(4.24)

r0(i) =  max j  ^||r|| +  ^ ||r ||2(co(0 ) 2 -  ( Ы *))2 “  l ) ^  ((<*>(<)) 2 -  l )  \

( \ / |M |2 + 4 -  IMl) / 2 j ,  г̂ Легг ||r|| > ( ( c0( t)) 2 -  l ) / c 0(<),

ro(<) =  ( \ Л  +  ||r ||2 -  ||r ||)  / 2, when ||r|| ^ ( ( c 0(i)) 2 -  l)/co(*)»

Co(t) = K(t)/-ip(t).

Then H  6  TL and (4.4) holds true.

P r o o f . From (4.22) and (4.1), (4.2) condition (4.4) is a consequence of 
the following:

(4.25)

^ K 0em

1 + 1Ы 12 >( W I T S 5) ^'(0\/

ii2) + к  I Em (W jv̂  + imi2)1 + |Ы

+ p e x p | - e m_i + ||x||2)

l
= +

1 + *

+  ^m—1 1 +  11*11 + IMI

Condition (4.25) will be established by (4.23) if we prove that for r ^  0 
we have

(4.26) <f>(r) =  —em_i ( к ( г ) \ / 1 +  г2)  +  em_i ^ ( O ^ 1 +  ( r +  I M l ) 2 )  ~

m — 1 _______

-  eí ( v’í o V i + í’2)  ^
i =0
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= m̂ —1
г----------------------\  m~1
1 +  ( r 0 ( < ) I M I ) 2 J  - e m _ i ( / e ( 0 )  -  ^ 2 еЛ^) ) -

To do this let us observe that

K(t)y/ l  +  r2 ^ 1 +  (r  + ||r||) 2

for r ^ ro(i), ro(t) defined by (4.24), moreover ф'(г) 5í 0 for r ^ r0(i), 
because in this case the following inequalities hold:

(4.27) ф \г)  = - E m - 1 ( k(Í ) \ /1  +  Г2 )  2 +

+ -E, 1-1 +  ( r + Ikll)2)  - j=

V i T
V»(<)(r + ||r||)

\ / i  +  ( r  +  I N

£ 4 - ( * o V iT ^ )  ^(<)r -
m —1

j= 0
\ / l  + r2

^ -  Í^Em- 1 (к (О У Г Т ^ )  K(í ) \ / l+"

- e 1 +  г2

and

(4.28) г + \\т\
1 +  г2 1 + ( г + | | г | , 2 => 0

for г ^ ro(t). Thus, the maximum of ф must be taken at a point r £ [0, ro(i)], 
and estimation (4.26) holds true. This finishes the proof.

Example  4 .1 . There are functions Г which grow faster than em. Let 
r(m ) = em(m) for m = 0 , 1 , . . . ,  and Г(г) =  (r -  т ) Г ( т  + 1) + (m + 1 — 
— г)Г(п) for m  Ú r ^ m  +  1, m  =  0 ,1 , . . . .  We define Г(г) for r £ R+
by
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(4.29) Г(г) =  exp

Let us observe that Г is increasing and Г(ш) ^ em(m)  for m — 1 ,2 , . . . .  
Thus, for every m — 1 ,2 , . . .  we have ет (г)/Г(г) —► 0 as r —> 0. If we define 
H, C by (4.1),(4.2) with Г given by (4.29) then condition (4.4) will follow 
from the inequality

(4.30)
i  +  N

-\-p exp ( L*(<)>A+(IWI+IMI)2

(OVi+IWI2
T(s + 1) ds — J

Jo
«.(ОлЛ+IWI2 _ \

T(s + 1) ds .

Let us observe that

(4.31) _ г ( к (!) У Г Т ^ + 1) - | й = +

W ( r  +  I M P  <  0  
V 1  +  (r + I M P 2

for r ^ r0(t), where r0(t) is defined by (4.24) with c0(t) = K(t)/ip(t) > 1, 
t G [0,a]. From (4.31) we obtain

+Г 1 + (r +  ||r | | ) 2 + 1

/чК0л/Ж1М1+1М1)- „ fWVi+11*1 Г -
(4.32) /  _____  T(s +  l ) d s -  /  T(s +  l ) d s ^

J kU ) J 1+1Ы12 Jo
m V ' + M 2

<(t)Ví+ÍHÍ

rxp(t

J n ( t )

V,(i)\/l+(||Tll+r'o(i))2
t p ( t )

T(s + 1) ds — /  f ( « + l ) ds.

and in order to obtain (4.30) from (4.31) and (4.32) we have to assume that

(4.33) V>'(i) ^ A’o + -Кхф{{)+

+pexp < 

for t G [0,a].

yV'lO^/i+ilWI+rolo)

J  n ( t )
T(s

/V’(i) _
+ 1) ds — I r (s  1) 

Jo
ds
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A  C O N SIST E N C Y  RESULT C O N C E R N IN G  
SET M A P P IN G S

P. KOMJÁTH (Budapest)*

0. Introduction

A set mapping is a function / :  [к]" —► [/c]A or /:  [к]” —► [к]<А for some 
cardinals к, A, and natural number n. A subset 'X Я к is free (or f-free), 
if for different aq, . . .  , x n,y  6 X,  у £  /(aq , . . .  , xn) always holds. The most 
important problem in the theory of set mappings is how large free sets can 
be guaranteed, depending on к, A, and n. Several results have been proved 
by Sierpinski, Erdős, Hajnal, Máté, and others; see the excellent exposition
И-

Here we focus on the problem when n = 2. Erdős and Hajnal observed 
that if к > 2Ш, f: [к]2 —» [к]<ш is a set mapping, then there is an uncountable 
free set. Hajnal and Máté proved that it is consistent that 2Ш =  ид. and there 
is no uncountable free set for some / :  [uq]2 —> [ш2\<ш. They asked if a similar 
statement can be proved for W3. This is what we prove.

An easy argument (see Section 4) gives that it suffices to give a set 
mapping / :  [w3]2 —► [сиз]к° with no uncountable free sets. We try to force this 
by countable approximations but the u)2-c.c. poses problems. To overcome 
the difficulty we use a (variant of a) forcing technique of Baumgartner- 
Shelah. Sections 2, 3 are devoted to the description of this technique (up 
to Lemma 3.3).

N o t a t io n . We identify cardinals with initial ordinals. If S is a set, к 
a cardinal, [S]K = { X  g  S: \X\ = к},  [5]<л = { X  Q S: \X\ < к) .  If (S, <) 
is an ordered set, for A, В ^ S, A < В means that x < у holds whenever 
x G A, у G В . We write A < x for A <  {a:}, etc.

* R esearch  su p p o rted  by H ungarian  N a tio n a l Science F o u n d a tio n  G ran t No. 1908 

a n d  2117.
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1. T h e m ain forcing construction

In this section we show that if CH holds and a function T : [из]2 —»• [с̂ з]Н1 
with some properties exists, then, in a certain forcing extension, there is a 
set mapping H: [и>з]2 —» [ц;з]Ко with no uncountable free sets.

D e f in it io n  1.1. Given T:[w3]2 -> [w3]Nl, a forcing condition q G Q = 
=  Q ( T ) is a triplet q = ( s , / ,  F ) such that s is a countable subset of из, 
f:  [s]2 —► [s]N°, f ( a , ß ) 2  T( a , ß )  (a , ß  G s), F  is a countable set, every 
element of F  is either

a subset F  2  s, of limit type, /-free, for no x > F,  F U {x} is /-free, 
or else

a pair ( F ^ F 1) with F°, F 1 non-empty, F° < F 1, F° of limit type, F° U
U F 1 /-free, but for no 1 6 5, with F° < x < F 1 remains F° U {x} U F 1
/-free.
We order Q as follows, (s', / ' ,  F ') ^ (s , f , F ) iff s' 2  s, / '  2  / ,  T'  2  T .

Lemma 1.1. ) is u^-closed.

P r o o f . Straightforward. □
The proof of the following statement will be given in Section 3.
L e m m a  1.2. It is consistent that 2W = u \ and there is a function 

T:[u3]2 —> [co3]Nl such that (Q (T ) ,^  ) isu^-c.c.

When G  2  Q is generic, put

X  = |J{s: (s, / ,  F )  G G} ,  H = U  { / : ( s , / , F )  G G ).

Lemma 1.3. |X | =  o>3.

P r o o f . As Q is и^з-с.с. , there is an a < u 3, such that if q =  (s , / , F ) G 
G Q with s П a  =  0, then for every ß > a,  there is a q' — (s ',/', F ') 
compatible with q, s' П ß  =  0. If we remove the part up to a  from Q , 
we get a poset satisfying the claim. □

Lemma 1.4. H : [ X ]2 —► [X]H° has no free set of size N1.

P r o o f . Assume that q forces that Y  ^ X  is an uncountable free set. 
We can assume that q forces that Y  is maximal and determines if Y is of 
order type u \. If У is of type u \,  by wi-closure, we can assume that q =  
= ( s , / ,  F )  determines s П У, which is the set of the first 6 elements of У, 
for some limit S < U\. Let F  be this set, s П У. Then q' =  ( s , / , F  U {F })  
is a condition, extending q, forcing У 2  sup(F), a contradiction.

If q forces that У is of type > u\, we may assume that q = ( s , / , F )  
determines 7 , the limit of the first ui elements of У, determines s П У , and
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forces that s П 7 П Y  is the set of the first 6 elements of Y , for some limit 6 < 
< и г . Put F° =  0 ПУ П7 , F 1 = («НУ) - 7 . T h e n ( s ,/ ,F U { (F ° ,F 1) } ) S ?  
forces that sup(F П 7 ) = sup(F°), a contradiction. □

2 .  T h e  B a u m g a r t n e r - S h e l a h  f o r c i n g  c o n s t r u c t i o n

In this section we describe a forcing notion which is an inessential 
variation of the historic forcing presented in [1], Section 9.

We are going to build a certain poset P. Every element p of P  will 
be a set of size ^ u\  of functions h such that Dom(/i) = [a]2 for some a G
G [и>з]-К1. In this case we write a =  supp(/i). We require that for a < ß, 
in the domain of h, a £ h(a ,ß )  ^ ß,  \h(a,ß)\ ^ N1. The elements of p must 
be compatible as functions, and one of them must extend all; |J p G p. This 
function is denoted as base(p), and let supp(p) be supp ( b ase(p)).

Not all conditions of the above type will be in P,  we put P — |J {P Q: a < 
< Ш2} where Pa is constructed by induction on a.

{/1} G Po iff Dom(h) =  {£,£} for some £ < £ < u>3, h({ ,( )  =  0-
p G -Pa+i iff there are q, r G Pa, supp (q) =  a U 6, supp(r) =  a U c, 

a < b < c, there is an isomorphism between (a U 6, < , q ) and (a U c, < ,r), 
and p =  q l) r U { f }  where / 2  IJp, (J r is such that /(£ ,£ ) =  ( ( a U i U  
U c )(1 ()  — {£} for £ G 6, (  G c. In this case we say that p is obtained by 
amalgamating q and r.

If a  < u>2 is limit, p G Pa iff for some limit 77 < u>2, P( G Pai (£ < p,
< a) p̂  decreasing, p contains the functions in the union of the p -̂s 

together with their union. Formally:

p =  < *?}u { U U ^ :  ̂ < */)}■

We put p ^ q iff base (q) G p and q = {h G p: h Q base (p)}.
LEMMA 2.1. If p G Pa+1 and p is obtained by amalgamating q and r G 

G Pa , then p ^ q, r.
P r o o f . Obvious. □
L emma 2.2. If 2Ш1 = u>2, then (P, ^ ) has the u 3-c.c.
P r o o f . By Lemma 2.1 and a А -system argument. □
Lemma 2.3. If p, q, r G P, p ^ q,r  and base(r) G q, then q ^ r.
P r o o f . Easy. □
Lemma 2.4. If p, q, r G P, p ^ q, P Ф q, p e Pa, q 6 Pg, then ß  < a.
P r o o f . By induction on a. For a  = 0, the statement is vacuously true.
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If a  = ß  -f 1, and p is obtained by amalgamating p\ and p2 then by 
Lemma 2.3 either рг ^ q or p2 ^ q and we are done by induction.

If a  is limit, and p is obtained from p̂  (£ < rj) for some rj < u>2, then 
base (q) G Pf for some £ < p and by Lemma 2.3, p̂  ^ q and we are done, 
again. □

L emma 2 .5 . (P , ^ ) is u;2-closed.
P roof. From Lemma 2.4 and the definition of (P, ^ ). □
It follows from Lemmas 2.2 and 2.5 that if 2U'1 = w2, then forcing with 

(P, preserves cardinals and cofinalities. Let G Q P  be generic, put A =  
=  IK SUPP{PY-P £ G } , T  = \JG:[A}2 -> [A]"1.

L emma 2 .6 . \A\ =  w3.
PROOF. If p G P , a < w3, there is a q G P , isomorphic to p, such that 

<7 lies entirely above p and a, and, therefore, p and 9 can be amalgamated. 
□

For simplicity, from now on we pretend that A = w3 and that T  is 
defined on [u;3]2 (in fact, an isomorphism is needed).

3. H istories

Lemma 3.1. Suppose that p G P, h G p. Then q = {g G p: <7 Q h} G P  
and p ^ <7.

P roof. By induction on a , for p G Pa . □
D efinition 3.1. Assume that p G P. A path through p is a sequence 

= C} such that
(3.1) {ho} £ -Fb i
(3.2) h^+ 1 is an immediate C -successor of /1̂  ;
(3.3) if £ is limit, then ĥ  =  \J{hv:g < £} ;
(3.4) h{ — base(p).
Lemma 3.2. Suppose h G p G P. Then there is a path through p which 

contains h.
P roof . By induction on a , for p G Pa . □
Now suppose that p G P  and s = {p^:£ ^ £} is a path through p. If 

a  G supp(p), let t(a)  be the least £ with ĥ  defined on a. i(a) is 0 or 
a successor ordinal. If t (a)  =  £ + 1, a  is in supp(hi+1), where h^+1 is 
obtained by amalgamating ĥ  with some other function, say g. If тг is the 
isomorphism between supp(p) and supp(h^), let a(a), the ancestor of a , 
be 7r(a). If i(a )  =  0, then a (a ) is undefined. Otherwise, i(a (a ))  < <(a), so 
the set Г (а ) =  {i(a" (a)):n  < a»} is finite (the history of a).
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L emma 3.3. Suppose p G P, h — base(p), s =  { h ú £} is a path 
through p. Suppose a, ß  G supp (p), t (a ) < t (ß) , t (a ) £ t*(ß).Then 
h (a ,ß )  2  min (a ,ß )  П supp (/ií(a)).

P r o o f . By induction on t(ß).  If t(ß) = f  +  1, h^+i is obtained by 
amalgamating ĥ  and g, on some supports a U b and a U c. ß G c and as 
f(a) < t(ß),  a G aU b.

If a  G b, then h(a ,ß )  = /i +̂1(a,/3) = (m a x (a ,/? )fl supp(/ii+ 1)) -  
-  {min (a , ß )} 2  min (a , ß ) П supp (/rí(a)).

If a  G a, ĥ +1(a,/3) = (a , a(/J)), and a < a{ß)  as a < b.
If t ( a ) < t (a(ß))  , we are done by induction.
t (a )  ф <(a(/3)) holds by hypothesis.
If t(a(/?)) < t(a) ,  at stage f(a), if the supports are a U b and a U c, with 

a < b <  c, a  and a(ß)  must be in different tails, and a < a(ß), so a  G 6, 
a(ß) e  C. Then, ht^ ( a , a ( ß ) )  2  min (a ,ß )C  supp (/ií(q)). □

L emma 3.4. =  L emma 1.2. In Vp, Q(T) is u 2-c.c.
P r o o f . Assume that p forces that {</£:£ < u>2) is an antichain. We 

may assume that are isomorphic, ŝ  =  A U flj with the sets
{A,d£:£ < u2} pairwise disjoint. Choose Po ^ P determining Д and the 
isomorphism type of q£. Then select a decreasing, continuous chain {р$:£ < 
< W2} such that p£+i determines s£. Let {h  ̂ : £ < u 2} be a ’path’ through 
U{í*£ : £ < ^2} obtained by taking a path through po and concatenating 
it with paths from base(p^) to base(p^+1)) for £ < u 2. For every p  ̂ some 
initial segment of the path is a path through p£.

For a  G U {suPP(Pi) : £ < ^2} we can dehne t(a),  t*(a) as above. As 
t*(a) is finite we can find £ < 7/ < u 2 such that

(3.5) if r G A, ol G U av , then <(r) < i(a);

(3.6) if a G d£, ß  G av, then t (a)  < t(ß), t ( a ) ф. i*(/3).

We now prove that pv+i forces that q̂  and qn are compatible. As they 
are isomorphic structures the only thing we must prove is that hv+i allows 
us to extend Д U f v to keep the elements of U non-extendible, as 
required.

Assume first that F  G is extended by x G av. In F  there are z < у 
such that t ( z ) ^ t(y) and t ( z ) ф t*(x) (as F  is inhnite and t*(x) is hnite). 
By Lemma 3.3, 2: G hvJt. \ (y ,x) .

Assume next that F  G Fv is extended by x G a ,̂ F < x. As F is non
extendible in qr,, there is а у G F П av. When у is born, x already exists, 
and as у < x, they are in different tails, so hv+ i ( y ,x ) covers {z  G F : z  ф 
Ф y,t{z )  Ú t(y)}.  This latter set is non-empty, if F П А ф 0, in the other 
case, it is empty only for at most one у G F.
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Assume that (F ° ,F l ) suffers a forbidden extension by x G av. As x < 
<  F 1, when x is born, x and the elements of F 1 are in different tails, so for 
у  G F 1, T (x , y ) covers F°.

Suppose, finally, that ( F ° , F 1) G Fv is extended by x G a If F° ^ Д, 
choose z < у from F°, у G F°  — Д, t(z) ^ t (y) .  When у is born, x already 
lives, so they are in different tails, and so 2 G T(x,y).  If F° Í  Д , there is, 
as (F ^ F 1) is non-extendible in qv, a у G F 1 — Д. Then, x < y, t(x) < t(y), 
t (x )  £ t*(y), so we can apply Lemma 3.3 and get that T ( x , y ) covers F°. 
□

4 .  E n d  o f  t h e  p r o o f

T heorem 4 .1 . It is consistent that there is a set mapping f: [и?з]2 —> ui3 
with no uncountable free sets.

P r o o f . Assum e that H :[ lj3\2 —► [и>з]Но is a set mapping with no un
countable free sets (see Lemma 1.4). Let p G P  if p =  (s ,g)  where s G 
€ [W3]<u\  9- [s]2 -*■ s is a set mapping, w ith g ( a , ß ) G H ( a , ß ) .  (s' ,g') ^ 
^  (s,g) iff 5' 2  s > g 1 = 9-

Lemma 4 .2 . For a < u>3, {(s,</):a G 5) is dense.

P r o o f , ( s  U { a } ,g) ^  (s ,g) .  □

Lemma 4 .3 . (F, ^ ) is ccc.

PROOF. Assume that G P (£ < u>i). We may assume that p̂  =  
= (s U s^g^).  As g^(a,ß) G H(a,ß) ,  a countable set, we can assume that 
g^|s =  gv\s for £ < 77. Then, (s U ŝ  U sv ,g$ U gn) extends p  ̂ and pn. □

Therefore, forcing with (F , ^ ) preserves cardinals and cofinality. Put 
/  = U{i7: ( s > 9) € G}  for a generic

Lemma 4 .4 . In FfG], /  has no uncountable free sets.

P r o o f . Assume that Y  is an uncountable free set. There are, for f  <  
< wi, conditions p(£) and different ordinals a(£) that p(£) forces that a(£)  
is in Y.  W e may assume that the p(£)-s are compatible, p(£) =  (sU  
a(£) G S£ w ith  pairwise disjoint. As H  has no uncountable
free sets, there are £0» £1 , £2 such that 0 (^2) € Я (a(£o), “ ( 6 ) )  • Now

q =  | s U s $0U U s Í2, gío U git U gb  U ({а(£о),< *(Ы } ,а (£ 3))  

forces a contradiction. □
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LOCAL U N IFO R M  C O N V ER G EN C E  
OF T H E  E IG E N F U N C T IO N  E X PA N SIO N  

A SSO C IA T E D  W IT H  TH E LAPLACE  
O PERATO R. II
M. HORVÁTH (Budapest)

In this paper we continue the proof of the two convergence theorems in 
[15]. We use the notations and symbols introduced in [15] and the numbering 
of formulas and statements follows the one used in [15] as well.

Lemma 5. We have

(45) <

< c-
.ИД И , A4 = 1-

1 +  I /4 — Pi I V 1 +  Pi ,

P r o o f . Case А: ц ^ 2p,. Then in (45) we take the decomposition

J L  R
R  2Pi A* R

S - - S 4 4 -0 O R R
2 P, p

Using I Ji(fir)\ ^ c/ir we get by (39)

/*

2 Pi 2Pi

J  — C J  ^ 2 г  ' r e ^ ^ R  d T  =  с е ^ ' ^ -

< сеУ'\к ^  < ceM * ----- _ !3 =л2 1 +  1/  ̂ Pi I V 1 +  P

\
2
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In estimating p

(46)

R
A*

IR
2P,

we use the formulas

J(  4 ^  ( - 1)" { P r \ 2k+1
Jl "  k \ ( k  +  1)! \  2 /

(47) M ß tr) -  Jo(Pir) = c
COS (fijr -  f  )

( / i , r ) 2

cos (p,r - I )

(pir) a

I »у. I eM r _  1
+ o i - ^ L + e

(|/íí|r) 2

Consider first the remainder term of (47) with |(Ji(^r)| ^ cpr:

A*r у  /

p /^  c /  p 2r j
J
R R  \

2 Pi 2 P ,

2. 2 г 2 pf
+

Ыг _  1

(l^*k)=
dr <

^ Cp2̂ - + c - ^  I Г2 -----------  dr <
l ^ l 5 RP,? P 2

Я
A*/ie l t/-lr -  1

2P ,

< сЫ ( ' р у + с е ы я P 2
Pi V pi J M 5 J

^ е1м,|й / p
= с 1 +  | р - р г| V. 1 +  Pi

J A dr <

The main term of (47) has a decomposition

, Jo4 cos (/íjr 4) c o s ( p i r - f )  cos ( p i r - z ) f  1
1 1 _(^ Г )2 (ptr )2
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cos (pir -  \ )
+ ------------2-̂ -(ch Р,Г -  1) -  j

.sin (p,r -  f )

(^Т )2 (Pir Y‘

where j 2 =  —1. Estimating term by term we get from (48)

sh щт

P

R

{  r 2 Pi2 J
dr <

*pi

^ cp —  2 _,
I___ _ ^ y k+1 J  _2* + l COS (Ргг -  f )

P. 5 f e í

W f  i i l 2̂< c E

R

2 P,

1

ir 2
dr <

< c (  /̂ Л 5 Ы
Л-2 j ^ fe!(fc+ 1)!/i2fc+2/9, \Л 7  Рг

eM  R

<

< c-

p

1 + \ p - p i \  \ 1  +  P i j
R
A* . \

/ , 4 cos (p,r -  7 )
J i( //r )----------- £■” (chi/t-r -  1) dr

{pir)2ж
2 P,

<

£

S ‘7 r E
00 /u \2fc+l(!)

Ы ’ Ь 7< * + 1>!
J r2k+ 2 cos p̂,T — ^7Г \  c h  V i r  — 1

dr
ж
2 Рг

Since

J r2k+ 2 COS ^ /9 , r  — — ^ dr

and

1ж
2 P,

я

< c-
t2K+ 2

J r2k+ 2 COS
7T\ ch i ^ r  -  1

dr
ж2 P,

<
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eh — -  1
< -í*-----

Я
ß

J r2k+ 2 cos ^p,r -  ^ dr
_ß_2P,

+

R
ß t

+ j  Í  2 COS (̂ *T — dr
R R2pj 2p̂

^ch V{t — 1V dt <

< C e ^ \ R
w 2k+>

hence

M

R
ß

J  J l ( P r )
R_

2 Pt

COS ( p t r -  5 )
-----1 1 (ch 1>{Г — 1) dr

(p,r)2
<

P ^  ( f ) W  в '-1«  .i,,IH „

e |p .|f í
< c

1 +  Im -  Pilj ( r f s )
and analogously

M

я

J  J i ( p r )
R

IPi

S'm [ p i r - / < h b « r d r  
(P*r) 2

я

< c
,W i\R

1 + |м — m;| V1 + pi
M

So it is remains to estimate f  in (45). In this case we use the following 

integration by parts:
R
ß

R

M J  J i ( p r ) [ M p i r )  -  M P i r )} d r  =
R
ß
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= P

+P'

By Lemma 3,

Ji(fir)

rRJM MPr)

M P i r) _  J\{pít)
Pl pi

J\(plT) Jl(pir)

R

+

Pl Pl
dr —: I\ -(- / 2-

P

whence

Ji(pr) M p i r )  Ji(pir)
Pi Pi

< cp±  / Wi\ e *̂'r — i )
Г 2  y r - 2 ^ 2  r  2 \p{ I 2 /

\ h \ ü + c - £ L eN *  < c
><|Л

л 2 M 2

In /2 we use the estimates 

(49) * ( , г )  =

1 +  l/í -  л-1V1 +  p i )

( p r y
+

+л2 15 cos (/jp -  Z' 1

(/*»*) =

(50) J\(Pir) Ji(pir)
Pi Pi

■ Л

/2 3
+  V i 8

-  т )  cos (р,т -
a 1 

/ i ,  2 r  2
2 i  

/), 2 Г2

cos (^,r -  f ) cos (p̂ r -  f )
5 3

f l {  2 T  2

+ o f ^ T  + í

5 3Pi 2 7* 2

— 1

+

+

\pi '*ri  \pi\*r*
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In /2 the remainder terms give the following quantities: 

R

P

П. /

{  (mO 2 \ r 2 Pi

eW,lr -  M  , /
Г  +  I .  ,3  d t  =

Г*\Рг\2 )

c \Vj\p2 
=  1 5. '

A*2 P i 2 A42

я
c Í e'l/,'r

l imit  J r
Ыг _  1

dr <
я
A*

■M«
< c (  £ ) а М  +  с_Ё!_еЫ л < с

V Pi ) Pi  I yUj I 2 1 + I*' _ P i  I V 1 + P i )
( V M ‘,

Â

Я  X

/  ( м О 2 V
A*

к  I kik-i
+

Г2рг-2 Г2|^г|2
dr <

< p 2 W , \ p 2
R

+  C
p i2 pl \pi\ 

s  c i i H  + Д , и «  S c

At2 f  e'l/,'r -  1

mil J r3

ЫЯ

dr <

P

P i ‘ \PÚ] 1 + IÂ — Рг I V 1 + P
In the main terms of (50) we take a decomposition of type (48); e.g. the 
second term can be written in the form

COS ( р гГ - ! ) cos ( p , T  -  \
5 3 5 3

Pi  2 Г 2 Pi  2 r  2

cos (a -  f ) ( 1 1— 3 1 5 5
Г 2 \  Pi  2 P i 2

+  -
cos (p,r -  \ )

5 3
fii 2 Г 2

(ch Vi г -  1) -  j
.sin (a>,t  -  f )

Ъ 3
P i 2 r  2

sh глг.
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Now

И

R

!
E

COS (цг -  to)  cos (p,r -  f ) / _L_ _  _1_ \  dr

(ИГ) 2 rl \/it2 ptl /
<

< 3 l',' 
^  C//2 —

Pi2

R

I
R
A*

cos (fir -  ^-) cos (р%т -  f ) 1 ,--------------------------------- — . _ dr
r r

<

и<  n 2Wt\ и < c e^ R
Pi a 1 +  l/i -  /5.1 =  Pi 1 +  \и -  Pi\ V 1 +  pi

и

R

J
R
V-

cos (fir -  3g) cos (pit- -  I )
5 3

Щ 2 Г 2
(ch i^r — 1) dr <

<
3

H2

Ы 2

R/
R
M

cos (/rr -  cos (ptr -  I) chl/;7- -  1
dr <

/if  el"'^ e
S  C------г---------;---------- г <  С

v,\R

| / i/|2 1 +  \и -  pú 1 +  Im -  pi\ V 1 +  pi

1
и  ' 2

and similarly

И

R/
R
A*

COS (ur  — s i n  (Pir —
-----  1 ----- 1 3 sh V{V dr

(ht ) 2 Hi2T2
<

< c-
>.|Я и

i  +  Im ~  pi\ V 1 +  p

Using the estimates (41)-(44) we analogously get

И

R/cos (fir -  cos (p,r -  f ) /  1 1

(/ir)2
3г 2

------Г dr5 5
p i2

<
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< с-P 2\Vi

Pi*

R

Í
R
P-

cos (fir -  cos (p,r -  f ) 1
dr <

< c ^ h . A4 < c
Wi\R

, |  pi  1 +  |/i -  p i |  1 +  \p  -  Pi\ Vi + p i )
p

P

R  R  
P P

И(К“ +

1 ch v:t — 1
t3 t

>.|я
— ----------  й
1 +  \P -  Рг I

and similarly

<
> ; | Я

1 +  1P -  Pi\ 1 +  pi J

p

R

J cos (pr  -  sin (ргг -  \ )

(^ r )2 I ap - r  2
sh глг dr <

<
■ ЫЯ

1  +  \p  -  р г 1 +  Pt J
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Using the decomposition

cos {щг  -  cos (p,r -  )
3 1p, 2 Г 23 i  Pi 2 Г 2

Зтг\ ( 1 
~43 1  =  c o s  l  p , r  -  —  )  l — --------------1 ^

P .2 Pi

Pi 2 г 2
we see as above that

, cos(ptr -  , 14 .8in (p ,T - &)
+ -------- a 1 (chp^r -  1) -  J --------3 a - sht/,-r

p ,  2 r  2

P

Я/Ä cos (pr -
(pr)2

cos (p,r -  If)  cos (p,T -
3 I  Pi 2 Г2 3 1Pi 2 r  2

dr <

<  с е ы п -----------L

я

p
2 1 /  C O S ( p r -  If)

Я (Pr)*/ 1 + |p — Ptl \  1 + Pi /

COS ( p , r  -  c o s  ( p , r  -
3 1

P i  2 7* 2
3 I

p  ■ 2 r  2
dr <

< c
>.IP p

Hence we obtain

| / 2| ^ c

1 +  Ip  -  p . -1 V 1 +  Pi J

еИ Я P
1 +  Ip  — Pi| V 1 +  Pi 

and so (45) is proved in case A).
Case В: 1 ^ pi ^ In this case we have to prove that

я

P J  J i (p r ) [J0(ptr) -  Jo(pir)} dr < c-
1/.1Я

(pp.)

Using the rule J'Q = —J\ we obtain

я

P J  d i (p r ) [ j0(p.r) -  Jo(Pir)] dr
Acta M athem atica  Hungarica 64, 1994
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Jo(pr)(Jo(p,r)  -  Jo(pir ))
■ R 
- r=0

R
-  J  Jo(fJ,r)[niJi(mr) -  piJi(pir)\ dr =: h  + h-

0

Obviously

|/ i |  = J0(pR)[Jo(mR) Jo(píR)]
e \ » i \ R  

= c--------
( m )

We have to obtain the same estimate for R.  Consider the decompositi

R  _£_R M 2 Pj H

О О Л - R -P 2pt

By (40) we have

J Jo(Pr) [p iJ i (P ir) ~ PiJi(Pir )\ dr <

R

< ce^'lK J  dr < c
■H*

< c-
P

MR

(,PPi)5

2p;
J Jo(pr)[mJi(mr)  -  ptJi(pir)\ dr
R

<

Í  еЫя

Я
м/о еМД

dr < с-------
Р

еМ  R

(.PPi)*
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R
In order to estimate f  , we take the expansions 

д
2 Pi

Jo(Rr)

+

-Лcos (fir -  I )  Í2 1 cos (pr + f )
(fir) 2  V it 8  (fi'r) 2

fiiJ\(fiir) -  piJi(pir)  =

+ 0

/2  3 
V 7Г 8

c o s  ( / ^ r  -  f )  COS (p ,T  -  f )
i  3 fl{ 2 Г 2 Pi 2 7* 2

+  0 I 'd

Xpr)2

/ 2 cos (p,r -  ^ )  1 cos (p,r -  ^ )  1
V " 1 P i2 , p«2
V 7Г 7* 2 7* 2

+

k.k

,(p»r)'
+

|p ,|2r-2

The contribution of the remainder terms in Ii  can be estimated as follows:

dr ^

< W*\pi2
1 5

fl 2 Pi 2
+

2 Pi

> .|я
dr ^ c------- j-,

(p p . ) 2

< c N p . 2

P 2P.
Pi + | P i | 2  Pi 

p 2 1 +  Ы
еН д

(PP. )2
Consider the decomposition

( 51 )
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I Vi 37Г
—j \  — sin ( p i r -----— sh Vi r.

We have
я

ж
2 Pi

<

J ( p r ) 2

cos (pjT -
dr

r 2
<

Ы
^ c- 1 1 

P 2Pi2

< c

я

/
_R
Pi

cos (/if -  f ) COS (p,T -  ^f)
ár <

UA- Pi < c-
(/Xpi)  ̂ 1 +  ^  Pl\ {PPi) 2

I
- R .
2 Pi

COS (pr -  f )  Щ2 -  p{2 
1 I

( p r ) 2 r 2

s 4 4 /li2 0;2 Á

COS(ftr -  f)(ch я;г — 1) dr <

c Ы  f  ch V{r -  1 , Ua
у- / ------------- dr  S  c-

p 2 p ~

e\pi\R

R  
2 P ,

( w ) - 1 +  |*A
<

klfi

( w )

я

/
R

lPi

cos [ p r - j ) ( p i \ 7

(pr)
— I cos 
r i p'r -  t )

(ch г/,г — 1) dr

1 >
2

<

< r Í2.
1 я
2

j  cos ( /i f  -  0  cos /̂Э,Г -
З71Л ch Vir — 1

dr
R

2 P,

<

„ 5  IД
s  c ^ e l “ ' l R  S  C - Í — T  

p> (lip,)1

and similarly for the third term of (51). So we proved that 

Я

/
R

2 P,

cos (/rr -  I )

( / r r ) 2 (?)I /  37Гcos I p tr -  —
'Pi\ 5 / Зтг\— ) cos ( ptr -  —  I dr
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^ c e M R(npi)-$.

Analogously we can see that 

я

J
- R .2Pi

cos (fir + f ) Mi V  (  3n -  c o s U - r - T

Indeed,

- ( ? )
Pi У  f  Зтг 
7  ) c o s l p , r - T dr < c-

:к|Л 

( M M , ) 2

я
( м г + 1 ) /  1 _ n  cos (р,т -f  COS (/ír + 4) /  l  1\

/  --------------- Г "* “  ( M i 2 -  Mi2 )J (/zr)* V '
2P,

i r 2
dr <

M. 2 M 2 '  rд 
2 pí

еЫД

(ММг)2

Я/
Я

2pt

cos (м  ̂+  | ) у / / м - 7 м 7

(мгЯ л
cos (лт_т ) (eh я, г — 1) dr <

fi с - М -  /  i r  s  c í i i W  /  ch ‘'-r - 1 *  <
M2 M 2 í  r M2 Í rR  

2 Pl
Я

2P*

,■ 2 . е1*'*1дg c£ i l eM ^ c.
M 2 ( mm . ) ' 2

j  » . ( p r  +  , )  ^  г c o s  ^  _  3 ^  ( c h  _  ц  * .

1 я
2Р»

<
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< С Р-  = ° з
Р 2

Я/
Я

2Р<

COS ( p r  +  j )  COS (p jT  — ^ t )  с Ь я , т  -  1
dr <

0 2 о I id еМ л< c£ ! i ----- £ l ------ eM *  < c £------  < c-£----- -
-  a 1 +  lp -  Pi\fl2 M ( m ) 2

and similarly

f  cos (рт + f ) /,£, ч ‘ sii| /  _  3t \  sh у;г dr
J (pr)2 у г у \  A j
R

2 p.

<

< c-
■lw|Ä

( w )
1 *
2

Using the decomposition

cos
i  3 fi{ 2 Г 2

cos (р,т -  f  )

•r  -  f )  /' 1 11 3  -  1 1 1 I2 r 2 '\P 12 p. 2 /

.sin 1{ргГ -

1 \  cos (p,r -  f )
3

r 2
+

I 3 Щ2Г 2
1 3Pt 2 Г 2

shi/,T

we get that

Г cos (pr -  5 ) cos (p,T -  f ) cos (p,r -  f )
dr1 ( p r ) 2 fii 2 Г 2 pi 2 r 2

< c-
ЫЯ

( m ) ’
2P,

Finally we can put the absolute value into the integral to obtain 

Я
Г П К  I n r  4 -  — \ r o s  ( ll.:r — — 1 ГО К  ( П:Г — A 1

drJ
R  

2 Pi

( Mr + f )
(pr)

cos (p,T -  I )  cos (p,r -  \ )
1 3

fii 2 Г 2 I  3 Pi 2 r 2
<

я /
g  c

£ (p,r)2 \ ( p , r
e|l/,|r -  1 \  , /  Wi\ 2 + ----- i J— 1 dr <; C ^ p . 4з 1 I I1 a r)2 |p;|2r 2

=  v 3 3
P 2 Pi 2

2 P,
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Я

+ /  гз dr ^
/*2Ы 2 J ГR

2p,

e W i\R

(npiY

Consequently
eM T

1/21 *  c— 7
0 v>0 2

and in case B) (45) is proved.

Case C: pi ^  1. Then take the same transformation

[R
p  /  Ji(pr) [J0{ptr) -  Jo(Pir)] dr = h  + I2 

Jo

as in Case B; we have to prove that

eM R
\h\,  \ h \ i c e— .

p i

Using (44) we obtain immediately that

I-Til — Jo(pR)[ Jo(piR) -  Jo(PiR)] < c-
,Wi\R  

T~ •P 2

Now consider

я

= J  Jo(pr )[p iJ \ {p ir ) -  PiJi(pir )\ dr;

here
ж ж
2M 2M

/  = c J Iй dr < с-
|м,|Я

я

“п(а£-я)

/  S c  /  ^
Iй dr < с-

ji2м ж2м

,ЫЯ
тр 2
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and in case pi > \ ,

í  1  (/*г) 2 V r2

1еЫг  _  I
lГ 2

dr <

2P, 2P>

Ы  c el"-l*|/it |2 
=  c 1 ' 1 2 <r e S c -

|р,|Я

P 2 p 2 1 +  W,

Lemma 5 is completely proved.

Lem m a  6 . For any dimension N  ^ 1 we have

i/ i2

(52)
N_ R

M 2
К 

p, 2
Г Г  /  j NÍur)JN - i imr) dr -  6(p,pi )
2~ J 2 2

<

where

< c
eWi\R (  P \

1 +  \p -  Pi\ VI + p i )

Г 1  if
6(p,p,): = l if

l o  if

P r o o f . The case TV = 1 is proved in Joó, Komornik [7]. 
To prove the case TV = 2, consider the decomposition

я
p J Ji(^r)Jo(^,r) dr =

oo oo

= P J J i ( pr ) Mp i r )  dr -  p J J\(pr)Jo{plr) dr+

+P -  M p i r )\ dr =

— ’l l  + ^ 2  +  ^3-
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It is known [2] that
h  = 6(p,pi)-

By Lemma 5

|/3| ^ c:
,Ыя P

1 +  \p — Pi\ V1 + p 
We shall prove the same estimate for 12.

Case A: pi ^  Then by integration by parts

12

\ h \  =

S c

OO
P j  J\(pr)JQ(pir) dr 

R
% ^ \ M p R ) M p%r )\ +

+

U 2
+  C 3

PC

I uu
a 2 f
— /  M P r ) M P ir ) dr
pl J

R

J  [ cos (pr  -

,  P  2
й с ^ т  +  

PC

1r 2
+ 0 3

cos (Plr -  t ) ! c
*.)] dr

T 2 \P ir 2J .
<

1 v 3 OO

» i s '  + c / »97
R

cos ( p r - ^ f )l +  p , )  l + \ p - p i \

(  J s  (  p \ *  1COS P ir ------- — dr S c  ------------ -------- ;-------------
V 4 /  V1 +  Pi)  1 + \p -  Pi\

Case В: 1 S pi S Then we make another integration by parts:

| / 2| ^  j J0(pR)Jo(piR)\ +  Pi

OO

J J0{pr)J1(pir) dr
R

<
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Case С: pt- 1. Then in the decomposition given in Case В we make 
another partial integration:

OO/
Я

dr [i /i

OO

J Ji(nr)J2{pir) dr .
R

Here the case pi =  0 is trivial, and if рг ф 0, then
I

^ \ j x{p.R)Jx(PiR)\ ^ ^ ^ 4 -
P /Г2 p 2

So the statement of Lemma 6 is proved for N — 2, too. Now consider 
the case N  ^  3.

Case A i: pi ^ 2p. In this case we can prove (52) by a simple induction 
on N.  Using the rules

I  r~a Ja+1(pr) dr = - ~ r - aJa(pr),J L1
[ra+1JQ+i(pr ) \ ' = p.ra+1Ja(pr)
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we get
N «

p  2 Í
—Í737 /  JK (^ r)J^ ( p . r )  dr =
Ц—  j  2 2

Я
2 Г

J N-2 + — jTzr /  J N-2 ( p r ) j N-4 (p,r) dr.
2 2 /i, 2 У 2 2

By the induction hypothesis

N=2 -R 
p  2 у

N-4 /  jN=i{nr )JiLzx^ir) dr -  <5(p,p,)
Pi 2 J 2 2^ 0

<

< c-
> d « Z4

1 +  | p  -  P t |  \  1 +  p ,

In case I pt-1 ^ 1

N-3
2 < e S c

h l«
1 + |p -  Pi| V1 + p

N-l
2

N-2
2

J n=z (hR )J  N=z(ntR) 1 +  |p — p,| \  1 +  pi

N-1
- n=3 el*'* Iя  (  p  \  2S e p  ! S c  '

and in case |p,-| ^ 1

\  ^ f2
— J Jn=2{pR)Jn-2̂ PíR)Pi J 2 2 <  C

■hl«

(ppt) 2 Vl/4
Z4

N-2
<

< 2 -  
-  V l +  Z>.7 1

,kl«

+ I/4 -  z>.| ’

So in case p,- ^ 2p the estimate (52) is proved.

Case Bp p, ^ 2p. We have to prove that

fi/7 n (pr)- 
2

Jn=i(l*ir)
2____N-2 

Pi 2
dr

eh l«
< c— --------=  1 N -f 1 •P 2P, 2
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Consider the identity 

R R

/ J s ( p r ) J N - i ( u; r )  d r  =  — J N ( u R ) J N ( m R )  +  — [  J N + 2 ( p r ) J N ( m r )  dr.
2 2 2 2 /Л-г J 2 2

Obviously

—  J N_(pR)J n_ÍPíR)At. 2 2
< c

>.|я

a**ImíI*
hence we have to show that 

■R

(53)
' n
J  J N ± z ( ^ r )
0

We substitute here /хг by рг:

R

J a  (par)
2___

n
A4 2

dr < c
МЯ

3 N + l •
M2Pi 2

/o Jn±z{pr)-
J&(Pir)

dr =
Рг

oo oo

= —J7- l  JN±2(nr)JN_(pir) d r ------2Г /  jN±i(pr)JN_(ptr)  dr+
p:1 J 2 2 О 2 7  2 2

0 R

R

+  j  JN±2.{pr) 
0

J мЫ{Г) J N_ (pi Г )
_2_____  _2_____

N.
Pi 2

V
Р» 2

dr =: 7j + /2 +  7з-

From pi >  p  it follows that 

see [2]. Further we have

/ i  = 0

P. 2 ,R
4 ~ ^ + 0

(pry- ÁPr)*

COS i p i r  —
----m ^ ----1 + 0

(pirY Xpi^Y
dr <
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< -------------- —=  3 N _
l 2 D; 2hi 1 N4-1

OO/
Я

COS (/1 Г  -  c o s  (/9 jT  — ^ 4 ^ 7 t)
dr <

<  ----- ------=  3 n + i •
P 2Pi 2

Now consider / 3 .  We take the decomposition

л  _RR Pi 2>i я

J - + H -
By (39) and (37)

о о я. я.
P, 2/x

Я.
Pi

J  J N ± z ( ß r ) J&imr)  J k (pít)
n

р, 2

n 
Рг 2

dr <

я.
pí

^ с J (рг)~2~ г~г"2е1"*1я dr ^ Pi N 3 ^

л_2м

е |я.|я е м я
— С N . о — с —з n +Г ’

Р, 2 + Р2Р, 2

j  JN±2(pr)
Л
Р|

J n {PíT) JN(pir)
N

Р 2
N

Pi 2
dr <

2м
J (/zr)

N±2 / |N,
2 +

el"* Iя -  1

я.
Pi

1 N4-3 1 N4-1 1
j 2pí 2 Ip,-1 2 r 2

dr <

_R
N 4-2 2m

< C W  +C J i J .
=  I  N4-3 ' C . . N4-2

M2Pt I Pi I /
Я.
P.

N±3 el"*lr — 1 , .r 2 ------------dr S
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<
ЫЯ

1 jV+3
k l  R

+ с <  c-
к |л

P 2Pi
3 N + l  =  ^ 3 N + l  •

P2 \pi\ 2 P 2Pi 2

For ^  í  г ^  Й we take the two term asymptotical expansion of the Bessel 
functions figuring in / 3 :

7  7  л COS (pr -  COS (fir -  * & * )  (  1 \
Jn±2.(fir) =  C l ------------------- ---------- - +  C2 ------------------- 3 ^ --------  +  0  ---------5 - ,

2 (a*»*)2 (р г ) 2 \ ( p 0 2 /

J k ( P í t )  J n ( p í t )_2_____  _2_____
я

P i 2

я
л 2

Сз
COS (/-tjr -  4 COS ( p ,r  -  ^ - т г )

I  N + lГ2/1г 2 1 N + lГ 2 p, 2
+

+C4
COS ( / i t r  -  :ix i 7r) cos ( p i r  -

3 N+3 3 N+3
Г 2  P i  2

+

+ 0  N  gi—к —!
I 5 N+7 ' 5 N+5
\ r l p i  2 r 2 |p t | 2

We see from this expansion that the estimate

R

j  JN±2.(pr)
R_
2m

J n (pí t) J к(ргГ)
Я я

P i2
dr <

= C
ек|Я

can be proved by the exact repetition of the steps of the proof of Lemma 5, 
Case A. Lemma 6 is proved.

Now we are able to estimate the spectral function. Introduce the func
tion

VR(r,p): (2тг)_ ^ (я) 2 JK (pr) if 0 ü r < b R  
0 if r > R.

Lemma  2. 
compact,

Let (u )^ j be a Riesz basis in L2(Ll), and let К  C Ll be

0 < R < min |dist(A ', dLl),
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Then

(Q (x,y ,n )  = ил (|*  -  y\,fi) + Q(x,y ,n) ,
II л II N~1

II ©(a:,2/ ,m)|| z,2(Q) ^ СЦ 2 , x G К  

with c independent of x and p. If ÍÍ is bounded and 1 ^ q < щ п  then 

(55) I) ©(я:,-,/*)||b. (n) ^ c / i V ,  x € K.

P r o o f . Calculate the coefficients u, of vp\
(56) V, = j  vR(\x -  y\ ,p) щ(у) dy -

R

= J  rN 1VR(r,p) J  iii(x + r0 ) d e  dr =
0 0

я

= J  r N  Ч2*) 2 (̂ ) 2 J z ( ß r )  ■ (2ir)N Jä^2(pir)
2 — 2—5 5 -  dr ■ u f x ) =

(/i,r) 2

R
И

N-2 
Рг 2

(ж) / J N iur)J  n-2 (u;r) dr. 
J 2 2

Introduce the function

(57) e ( x , y , p ) : =  ^ 2  (щ(х) -  Vi) Vi(y) -  n,v,(y).
pi<ß PxZß

Then

0(ж,-̂ )Иь2(п)x E N*)-£>|2+ ^ 2  î i2 + E î i2
Pi=p pi>ppi<p

E i + Е з + Е з -
From Lemma 6 we know that

Ц,(ж)| e2МЯ /  \  лг- i

Pi<ß + Im — Ps I V1 + Pt
<
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<  С
U i (х)| 2е21"‘1лÄ kÚPi^ k+1 ^  + ^  ( 1 +  1̂  ^1) 

м

2/i N - 1 <

^ с̂ ' _1Е< о /^ - ( * + 1)
ЛГ-1

—  < сим~г \ N - l r - ,  , I j 12\ =fe=0 + !) (1 + l/i -  А:| )

Е 2 = с Е  М ж)12 1 +
B2Wi\R N - V

p ,= ß 1 +  1 h - píY K pí,
<

й с ^  I Ui(x)\2e2^ R й c/iN *,
р , = и

Е + ‘ Е
(í + e + l « / ' M\ ' ' - 1 <

р,>д 1 +  I/X _ /,*I

oo

s <+'" E  E
и,(x ) | 2е211/,1я

/г=[д] k^pi^k+l

s ч."-1 E

(1 + 1* -  md )
<

- í

1

fc=M 1 + |/i -  £| 2  ̂Ĉ _1

which proves (54). If ÍI is bounded, then (54) obviously implies for q < 2 
that

II ©(зь ‘»aOH = cll ®(ж> ■’/2)ll l2( n) =

The main term of 0  can be estimated by

, , f » R( i x - » u )  ||ы(0) =

if TV — 1 — ^ —q > - 1  i.e. q < щг[,  which completes the proof of Lemma 7.
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4 .  T h e  k e r n e l  o f  f r a c t i o n a l  o r d e r ;  

p r o o f  o f  T h e o r e m s  1 ,  2  a n d  3

Let N  > 1, Í2 C a domain and («,•) C Z2(ii) a Riesz basis. Let 0 < 
< a  < 2N.  As in [5-6],'we introduce the notion of the kernel of fractional 
order a; this is a kernel Ta(x ,y ), x ,y  E ÍÍ, whose coefficients for all fixed x 
are

(58) /Ta(x, y)ui(y) dy = Uj(x)
( l  + p,2)*

* =  1, 2 ,.

We can use the abbreviated form

Ta{x , y ) ~ L
Ui{x)vj(y) 

( 1  + Рг2)Г

The question arises whether such a kernel exists. Our answer is positive 
for a  > (see the proof of Theorem 3 below). The proof which we will 
give here further develops the ideas of [5-6]. Recall the Bessel-Macdonald 
kernel

va(r)
(2тт) £ г ( | )

IiN-*(r)
2____
N - a

r 2

defined in Section 1. For some fixed 0 < R and n E { 1 ,2 ,.. .}  define the 
polynomial

71

wc(r) := ^ a fcr2fc
fc=o

by

(59) va(R) =  wa(R), v'a(R)  =  w'a( R ) , . . . , v i n\ R )  =  u»W(Ä); 

we know that (59) determines uniquely the polynomial wa. Let further

r ^ R  
r > R  ’

r ^ R
r > R

For the sake of simplicity assume that n > а -  Define </?,• =  ipi(x) as 
the г-th coefficient of the function v ^ \ x  -  г/|) -  (|x  — j/|), then in case
0 < R < d ist(x ,d ii) we have

Vi J  t£(l* - 2/1) - - 2/|) Щ(у) dy =
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Я

= J rN ~1[va(r) — w a(r)] J щ(х +  rQ) dQ dr =

N f J n - 2  (U;r)
= (2тг)~?щ(х) /  rN_1 [vQ(r) -  wa(r)] — 2 N—~  dr

J ( щ г )  2

We shall prove
L e m m a  8.  We have

(60) 9,- -
щ(х)

(1 + P.2) ?

eW.\R
< c--------- -Т—ГТ • I u.-(a:)|.

(1 + Pi)
0 + 1

PROOF.  Introduce the operator

D f ( r )  := V ( r ) .  r

Then (59) means that

0 = (va -  w a)(R)  = D (vQ -  wa)(R) =  . . .  =  Dn(va -  wq)(R).

Using the rules ([2])

u(fir) dr = ^ r"*1 J„+i(/xr),

D {r~ uK l/{r))  = - r _ l/-1A'l/+i(r)

we see that we can integrate by parts n + 1 times such that the free terms 
of integrations vanish, namely

Я

f  [va(r) -  И1а(г)] Г* Jjv̂ 2(/rtr) dr = 
a. 2 J 2

H
= - ( 2tt)T  [  D [ v a ( r ) -  ша(г)] r ^  J n (hít) dr

W 2 ^

я
=  ( - 1)п+1(2тг) 2 щ(х) J D n+1 [va(r) -  ma(r)]

K + n+1J f + n M  J 
r 2 + + ——r;------ dr.

м Д +”
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We know that
Dn+1wa =  0,

Dn+1«°(r) = — ( - 1  ( ,)

hence

(2T r )fr (f )

я
_  2  2 [  a

Vi = f l ( f ) U‘(a:) J  r 2K *f*+n+1(r)-
_-+n

P, 2 +"
dr =

2—0 f °°2 2 I f  a '
=  F ( f ) Ui(:c) I J  r 2K ^ + n + i ( r >

J z +n(pir)-+n
N+n dr-

OO

- j  г* Кц=я+п+1(г)
Я

J j l + n M
-- ■ft- dr+  p,T+"

Я

+ J  r U ^ +n+1(r)
</я+п(м.) ^ +n(p«r)L+n 

,f+ n
+nV
T dr } =

^2- q

Г^Т^г(^){А + h  + / 3}.
r ( ! )

Using the identity ([2])

OO/* - ( . 0 Л(Ь0  л  = t "r ( ^ g ± l)
tA 2 А + 1 а ^ - А + 1 Ц 1 / +  ! )

я -  A + /г +  1 я -  A -  /í +  1
2 2 ’  2

Re (я + 1) > I Re /х|, Re a > | I m&|

62 , i ̂  d- 1) у I í

we get
r ( f )  1

1 г 2?  (1 + p,2) * '
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Using the estimates

Ku(r) I < i  ’
r  2

|Л (Г)| ^  , r  ^  R  >  0
/»2

we get
oo

M  ^ c j
R

- r  1 j  s- ce  r  2 —;---- J77-;------- d r  S1 W±I+n = ü£±I+ n '
T 2 p i  2 + n  P i  2 + ”

We estimate /3 by (39) and (37). We know ([2]) that

consequently we estimate in case pi 5í 1 

R

| / 3 | ^  C J  Г 2 r ~ 2 п -1гТ+п+1еЬ|Я <; сек,|Я

and in case /э, ^ 1 

_a
Px
[  « Г ̂ +n(p,r) J z +Лргг)  1J  Г 2 К N=a+n+1(r)  

0

2 '
[ p i ^ +n

Й+ ̂
ol 

1 dr <

я.
p>

5~ c /  r 2 r 2 n l r 2 +n+1el|,*lß dr < с -----------J  (1 + Р»)a+1 ■

R
Г J f +n{Pir) ^ +n(PiO]

J  r 2 A_JV̂ a+n+1(r)
R

£L + n[ p ,  2 + П P,T+" J
dr <

<  c I r i r ^ - - ' (  M  +  e"''1, -  1= / Г i  ^±l+n +  1 . ,£±i
{  \ r2 Pi  2 +  ra| /i , - |  2 + n

dr <

Px
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< c- Ы
Pi

+Пp r a+E^ +n +

pi

dr <

i'll
=  Рга+1
< c- +  C N: 

Pi 2
V+l , / '2 + 71 J

dr < c-
МД

я.
Pi

(1 +  Pi)
a+1

Lemma 8 is proved.
Define the partial sums of the kernel Ta:

EßTa(x ,y ) :=  ^ 2
Uj(x)vj(y)

Pi U + Pi2) 2

Lemma 9. Let N > 1, fi C bounded and К  C  Lt a compact subset. 
Then

O N
(61) | | ^ (1 ,.)||и (п)йс, к  9 < 1 Г Г 1 , * e t f .

Further if К  C fii C fi is another domain, then

(62) | ^ ( . , - ) | |  S « , с е л - .

P r o o f . It is based on the partial integration

E’

EßTN=x(x,y) =  /  — — —дггт dtQ (x ,y , t ) =
2 i  0  +  *2) ~

Q (x ,y ,p )  N  -  1
N-1 I /  0 (* ,y ,O -

•/ I

2t

(1 +  P2) ^  4  ̂ '(1  + *2)1+^

Prove first (61). By (51) we have

= c-

— d t  —: i i  + /2«
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In /2 it is enough to restrict ourselves to f .  Let R < m in(dist(íí',őíl),
1

Take first the remainder 0 .  By (52) and (57) it has the form

00 eWi\R
0 ( x ,» ,!) =  E  М » Ы » )1 + | ( _ Л | ( т у т ;

where
\Ri\ ^ c

and c does not depend on i , t , x , y .  Consequently

N - 1
t \  2

Ri(t)

ß

J 0 -
( l  + t2) 3

dt =

~ ____  еы я  r
= X  M x)M v)------------ n=t  /

é í  (1 +  Р,2) ~ /

N  — 1
t 2

( l  +  Pi2) ^ /  1 +  | t - p , | ( l +  *2)—̂
dt.

Now

e w-i 
i  2

j  l  +  \ i -  pi\ ^  +  t2 у Ф  dt -  I  1 + I* - Pi I 1 +  t2
d t  <

hence

< cM I ± pO <
! + рг (1 +  рг)?

J 0(*,-,O N4-3
(1 + i2) <

dt <

L4(Q)

< ^ | u t(x ) ||u t(2/)|
к.|я

t=i (1 + Pi) 2
N-l , 2 <

= « £
и,-(ж)| e2\i/i\R

< c.
=  1 ( 1  +  P i )
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Consider the main term. Denote r: =  |:r — у |, then in case r ^ ^ we have

/  vR(r,t) —
/  (1

л  ̂+ 3
(1 +  i 2) <

ß , . N

dt =  c

ß . . я 

/  ( ? )  ’
(tr)-

(1 + <2)
N4-3 dt <

= C /  (T) 2 (<r)f-----4 s ä A  ̂ /J  W  (1 + t2) < J

, ^  I N - l  , . N4-1dt ^ /  t 2 dt ^ c / i  г

and
N4-1

M 2
ы ( !*-»!<£) /

N41
д 2 4 dy =

i

о
In case r ^  ̂ we have analogously

l*-s/|<£ 

d r  ^ cfi~2~q~N ^ c .

r

J  vR(r, t )
t

(1 + Í2)
N + 3 

4
d t

г
,  f  N -l . C

= C /  Í 2 ^  ~N±T-У r 2

The integral f  will be estimated by the asymptotical expansion

J ií( lr )  =  c i 2! ( Í L + S  + 0
2 ( t r ) 2

The remainder term gives

M N

/  ( ; )  1 - T - -------Ц г г  *  £  - S T  /
j  V r /  i t r l  2 t l  4- t 2 l  4 r  2 J

4  N -l
t  2 , - C

dt <
( t r )  2 ( 1  +  * 2 ) -

Г

and the main term

. - N4-3 =  N4-1Г 2 t  ( l + ( 2) 4 Г 2

ß N/(?)2 cos(tr -f /3) t
(tr) 2 ( l + f 2) ^

dt
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I M ЛГ+з
1 f  cos (ír +  /3) t 2

ЛГ+1
r  2 (1 +  Í2) 4

dt <

< 1 w  M
N4-3 M 2 \  4

Г 2 ,1 +M2
cos (ír +  /3)) 4 Г cos(ír

J  í
dt +

+ j  J ^ ! L ± M d,
1 i
Г Г

JV±3.T I,2 \  4

1 +  V?
du \ <

r ~ 2 ~

because /cos(ír +  /?)
< c.

Consequently

/  Vfí(r,í)-
./ I

di
Я

( l  +  <2) 2 

Thus (61) is proved. To prove (62), let

Щ i
S ' / ' " -

4 2 dr < c .

0  <  i 2  <  m i nin |d ist(A ',d fii),

Then the main term г>я(г) =  0, since r > R, so

&(x,y , t )  = Q (x ,y ,t).

Consequently

p i l l£,*(0X0!) = p N - 1 © O r,/*) L2(n) = ^/v-l lU‘(X)|2+

+ E
\ut{x)\2e ^ \ R (  /X JV-l\ 00

1 + 1/1 -  Pi 12 V1 + Pi У )  ^  1 + l/i -  k\
К. c 12 = C’
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l l ^ 2 | | 2 Z,2(í í \ n 1 ) ^  C +  C £ М * ) 1  k ( y ) l
M\ R

1 — 1
, 4 2£-l_ I
( l  + p, ) 2+6

<
L2(Q)

|и,(а;)|2е211/,1я
= c + c 2 _y - . 1  ^ c-

»=1 ( i + pO^"1"3

Lemma 9 is proved.
We finally need the following known result:

Lemma 10 ([13]). Let 1 ^ p ^ oo, a ^ 0. Then for every f  E Lp(R‘v ), 
supp /  C Í1 ihere exists a (unique) h E Xp(fl) such that supp h C ÍZ,

/ ( ® )  =  j  (va -  wa)  ( к  -  2/1) Ml/) dy, X  е й  

Q

further

\\f\\b? x  IMIlp(íí)

and here the implicit constants may depend only on K\,  supp /  C K\,  and 
on R, a , p , N .

P roof of T heorem 3. Remark first that there exists a  ^ a 1 > у  
with

/  € La2\ R N).

Indeed, if p ^ 2 then we can take a' — a by the boundedness of Í1 and if 
1 ^ p < 2 then we apply the imbedding [4]

Lap ( R N) C L%'(Rn ), a' = a -  N  Q  -  Л  > 0.

In fact we have a' =  a  -  у  + у  > у . So take /  E X f, a > у  supp /  C 
and let h E X2(il) be the function from Lemma 10. Define the function

rl>a(x,y)  := У л tu,(x)v,(y), 7, := - = = =  +  ----- ——ä-
«,(*) (1 + Pt2) 2

This series converges in X2(il) for every fixed a; by Lemma 8 (even for a > 
> у  — 1). Consequently the function

Xq(i , 2/) := i£(|®  -  2/1) -  toJd* -  y|) +  фа(х,у)
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is the kernel of fractional order a. It is enough to show that the expansions 
of the functions

g(x) := J ipa(x,y)h(y)  dy, 

F (x ) :=  J Ta(x,y)h(y)  dy

converge absolutely and locally uniformly. We know that

g(x) =  Х л  iUi(x)(h,Vi)

and

X l  7/iui(x ){h,vi)\ й
i=k

( t  I I j

1
2

( ~ \ut(x)\2e ^ \ R \

(1 + P i f a + 2 )
й c (K ) ■ ok( 1).

Since for a  > у  the series of Ta(x , y) converges in L2y(£t) for every fixed x, 
we get analogously

(1 + /Л ) 2

and then

i=k ' ri ) \i=k

E
г(Л| ^ c(K)ok(l)

^ ( 1  + Р г Т  . г =  1

which proves Theorem 3.

P r o o f  o f  T h e o r e m  1. We shall show first that

(63) /  G L^  X(R A ) for some q >
2N

N - l '
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The tool of the proof is the following imbedding theorem [4]:

Z“(Rn ) C <  ^  < \ r n )

if 1 < p < q < oo and a  > IV ^  .

If a  =  then q = p > у  =  will be appropriate. If a  > 
then we want to apply the mentioned imbedding theorem, i.e. let

N- 1
N - 1

a — N (^ — i V <7 = —— pN . Now if N -  ар + > 0 then p < q is\ P  Я J J\ — ap+p —2—  z

satisfied, because a  > ^ y y  which proves (63). If N — ар  + p -у 1 ^ 0 then 
we can take some a > ß  > N-i

2 ГГ 2
N  — 1

> 0; in this case /  E Lp(RN) and Lp C Lq 2 . So (63) is proved and
JV=I

then it is enough to prove the following statement: Let /  E Lp 2 (R ^ ) for 
some p > and supp f  C ft. Then the expansion of /  converges locally 
uniformly in ft.

Let 0 < R < min {dist(A',őíí), у  } , then 'ipN-x^x,-) G L2(ft) and

EßipN^i(x,-)
ЬЯ( П)

< с E ^ n- i (z , - )  
2

<
L*(Q)

s «  £
u,(a;)| 2e2l‘/,|l?\  2

\pt<ß ( l +  Pi) 
Denote /, the coefficients of / ,  then

N+l < c.

Y  f iui(x ) = tti(x) I  Vi(z) Í  (v£ -  w£)  (Iz -  I/I) Л(у) dy dz =
PiCß Pi<ß  Q  Q

=  /  М у ) X ]  _  ) ( I 2 -  2/1) ».■(*) dz dv =
n *<" 0

= J  h ( y ) E ß  ( v a  -  w a ) ( l x  -  y \ )  d y -
Q

By (64) and (61) we obtain

(65) Y  fMx)
Pi<ß

^  IIMIl p (O) EM V* -  « £ )  ( I *  -  y |) LIW
<
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= cIHIlp(ü)-

We know that C “ (RW) is dense in Lp(RN ) ([4]), hence we can take

G CS°(il) f (k) -  /  in K-

Consider the functions h representing f ( k\  then by Lemma 10

hW  -» h in Lp(il).

Now we have

/ ( * ) -  Y  /*■“ •■(*) <
pi<ß

f (k\ x ) ~  £  j ? 4 (x)
Pi<ß

+

+ f (k\ x )  -  f {x ) + Y  ( fi -  f i k)) ui(x)
p,<ß

=: I\ +  h  +  / 3.

Since L p  2 (Í7) C L°°(Q)  [4], for large к ,

* < § •
If we apply (65) with /  — instead of / ,  then for large к we obtain

*<! ■
Finally for fixed к and for large p > p(k)  we obtain from Lemma 11 that 

Theorem 1 is proved.

P r o o f  o f  T h e o r e m  2. Let К c  be compact, let

Д0 := ^ dist(Ä',dil0),

Л'д0 := {2 G ÍI:dist(x,/t') ^ До}-
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We can repeat the proof of Theorem 1 with ÍÍ \  Kf^ instead of fi. This 
means that for the function h representing /  we have

h\KPo -  °-

Hence (65) is substituted by the estimate

/  h ( y ) E ß ( v a -  W a )  ( 1*  -  2/1) d y

p , < ß J
Q

= IWIl2(íi) E u ' № - « £ ) ( \ * - y \ ) = cIÎ IIl2(h)
& ( n \ K * o )

(we used (64) and (62)). The remaining part of the proof is the same as in 
Theorem 1.
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A N  ELEM EN TAR Y PRO O F FO R  A RESULT  
ON SIM U LA TED  FACTO RING

K. CORRÁDI and S. SZABÓ (Budapest)

Acta Math. Hungar.
6 4  (2 )  (1 9 9 4 ), 13 9 -1 4 2 .

1. In troduction . Let G be a finite abelian group written multiplica- 
tively with identity element e. Let A \ , . . . , A n be subsets of G. If each 
element g of G is uniquely expressible in the form

g — cti an. q,\ £ A \ , . . .  , an £ An,

then we say that the product A\ • ■ ■ An is a factorization of G. In the most 
commonly used factorizations the factors are subgroups.

In [1] the case when the factors are close to being subgroup were con
sidered. The subset A{ of G is said to be simulated if there is a subgroup 
Hi of G such that |A;| = |Я,| ^ 3 and |А,- П Я,| +  1 ^ |A;|. It was proved 
that if A\  • • • An is a factorization of G , then one of the factors is a subgroup 
of G, that is, there is an i, 1 ^ i ^ n such that A{ =  Я,-. At a point the 
proof essentially made use of group characters. The purpose of this paper 
is to give a new proof which is elementary in the sense that does not use 
characters.

2. T h e resu lt. The subset A is defined to be periodic if there exists an 
element g of G \  {e} with gA = A. We refer to such elements g as periods 
of A.

The periodicity of a subset can be tested in terms of its translates.
L e m m a  1. If A is a nonempty subset of a finite abelian group, then the 

nonidentity elements of the subgroup

H =  p |  a-1 A
a eA

are all the periods of A.
P roof. Let A = { a i , . . .  ,an} and suppose that g £ H \  {e}. There are 

elements h i , . . .  ,bn £ A such that g = b \a f l = • • • = bna~l . Since h i , . . .  ,bn 
are different elements they are all the elements of A. Consequently,

gA = {fifai, . . . ,  gan } =  { h i a ^ a i , . . .  ,Ьпа^гап} =  {hb . . . ,h n} =  A.

The converse, that each period g of A lies in Я , is immediate. This 
completes the proof.
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Let A be a simulated subset of G and let H be the corresponding 
subgroup of G. There are elements a £ A and h E H such that a $ H 
and h £ A. Further there is an element d 6 G for which a = hd. Clearly, 
the subset A uniquely determines the subgroup H and the elements h and
d. Conversely, the subgroup H and the elements h and d determine the 
subset A.

Lemma 2. Let A be a simulated subset of G and let H be the corre
sponding subgroup of G. If A is periodic, then A = H.

P roof. Let g be a period of A and suppose that |<?| =  r, where r is 
prime. The permutation defined by

a —> ag, a £ A

consists of cycles of length r. Consider the cycle which contains hd. If r ^ 
^ 3, then there must be at least two further elements a and b in this cycle 
contained by H. So gta =  b for some t, 0 G t ^ r — 1. Therefore g £ H . 
Similarly, gsa = hd for some s, O ^ s ^ r  — 1 and so d 6 H.

If r =  2, then since \A\ ^ 3 the permutation must contain at least one 
additional cycle. As before, using this second cycle we can see that g £ H 
and using the first cycle we have that d 6 H . This completes the proof.

Lemma 3. Let G  =  AB be a factorization of the finite abelian group
G. Suppose that A is a simulated subset of G and H is the corresponding 
subgroup of G. Then G =  H B  is also a factorization of G.

P roof. Let H = { h i , . . . ,  hs} and A = { h i , . . . , /is_i, hsd}  and suppose 
that h\ =  e. The fact that G =  AB  is a factorization of G can be expressed 
such that h i B , . . . ,  hs- i B ,  hsdB  are disjoint subsets of G. If G  = H В is not 
a factorization of G, then the subsets h \B , . . . ,  hs- \ B , h sB are not disjoint. 
Thus hiB П hsB is not empty for some i, 1 ^  i ^  s — 1.

If i ф 1, then we have the contradiction /q/q-1 В П hsh~l В =  hi В ilh^B 
is not empty and 1 ^ j  ^ s — 1.

If i =  1, then since \H\ = s ^ 3 there is a hk E H with 2 ^ к fs s — 1. 
Now we have the contradiction that h^hiB П h^hsB = h^B П hjB is not 
empty and 1 ^ j ,  к ^ s — 1. This completes the proof.

T heorem 1. Let

(1) G = A i - - - A n

be a factorization of the finite abelian group G, where for each г, 1 = г = n 
there is a subgroup Hi of G such that |A,j =  \Hi\ ^ 3 and \Ai П Hi\ ^ |A;| — 
— 1. Then Ai =  Hi for some i, 1 й i й n.

P roof. If Аг = Hi for some i, 1 ^ г G n, then the result holds. So we 
may suppose that | Аг П # ,j =  | A,j — 1, that is, A, is a simulated subset of G
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for each i, 1 ^ г ^ n. If n =  1, then the result is trivial so we may proceed 
by induction on n. By Lemma 3 the factor Ai can be replaced by Hi to 
give the factorization

(2) G = Hi A2 - - - An.

From this we have the factorization of the factorgroup G / H\

G/Hi  =  (Я 1Л2) /Я 1 - - - (Я 1Л „)/Я 1.

By the inductive assumption some factor (H\Ai) /Hi  is a subgroup of G /H i .  
We may assume that г = 2 because this is only a matter of indexing the 
factors. We may consider a suitable factorgroup again to get a new factor
ization. Continuing in this way we conclude that there is a subgroup M  of 
G  which contains all but one of the subsets Я, A2, . . . ,  An. We suppose that 
An (£_ M  since this is only a matter of indexing the factors.

Let 6 £ An. From factorization (2) multiplying by 6_1 we have that

(3) G = HiA2 - - -An. i ( b ~ lAn)

is also a normed factorization of G. Since Hi, A2, . . . ,  An_i С M  restricting 
the factorization (3) to M  we have the factorization M  — Hi A2 •• • An_ 
We distinguish two cases depending on whether Ai С M  or Ai M .

First consider the case when Ai С M .  Now M  =  A i A 2 - - -An- i  is a 
factorization of M  as well. Since M  is a proper subgroup of G by the 
inductive assumption T, =  Я г for some г, 1 5í г ^ n.

Turn to the second case when Ai (jt M . Note that in this case G  =  
= M(b~1An) is a factorization of G. Since b~1An is a complete set of 
representatives modulo M  there exists an element Cf, of b~1A n such that the 
coset сьМ contains the element h ^ d ^ 1, that is for which hidiCb £ M . Let

Cb =  {hidiCb} U ( Я \  { M i} )  =  {hidiCb} U ( А г \  { a j } ) .

Note that M  =  СьА2 • • • An^\ is a factorization of M  as well. Indeed, 
products coming from СьА2 • • • An_i occur among the products coming from 
A \ A 2 • • • An_i(b -1 An) and these latter are distinct since A\ • • • An- i (b ~ 1An) 
is a factorization of G.

Using the fact that M  is a proper subgroup of G the inductive assump
tion gives that Сь is a subgroup of M . Clearly, Сь is a periodic subset of M  
and so by Lemma 2 Сь = Hi.  Thus hid\Cb — hi, that is, c;, = and so 
d^ 1 £ b~l An. This gives

d~l £ p | b~l A.
ьеЛп
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Thus, by Lemma 1, A n is periodic. 
This completes the proof.
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ON TH E M A T R IX  T R A N SFO R M A T IO N S OF  
A B SO L U T E  SU M M A BIL IT Y  FIELDS OF 

R E V E R SIB L E  M ATRICES
A. AASMA (Tallinn)

Acta Math. Hangar.
6 4  ( 2 ) (1994), 1 4 3 -1 5 0 .

§ 1. Introduction

In this paper, except otherwise stated, let A — [anjt] be an arbitrary 
reversible matrix over C, i.e. the infinite system of equations

( 1.1)
OO

^ ' &nk%k 
k= 0

has a unique solution for each convergent sequence (zn). Here and in what 
follows, free indices have the values 0 , 1, . . .  and terms with negative indices 
the value 0. Moreover, let В =  [ßnk] be an arbitrary triangular matrix 
over C and M  = [m nk] an infinite matrix over C. We wish to determine 
necessary and sufficient conditions for M  in order that each of the series

( 1.2)
OO

Уп =  £  m”kXk 
к- 0

is convergent and the sequence у =  (yn) is 5-summable for each absolutely 
A-summable sequence x = (x*,).

To characterize this problem in more details, we write (1.1) in the form 
z =  Ax or 2 = (Anx) where Anx =  zn as usual and introduce the notations

c — {я  =  (xk) I the finite limit lima;*, ex ists},

bv

c° =  { z  = (xк) I lima:*, = 0 } ,

\ x =  (xk) I |*0| + ^2 \xk ~  *jfc-i| < oo >,
 ̂ к- 1 J

bv° =  {ж = (xk) I x E bv and limXk =  0} ,
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с_4 = |а: = (а:^)| the series Anx are convergent 
and (Anx ) £ c} ,

bvA = { x = (Xk) I the series Anx are convergent 
and (А„ж) £ bv} ,

(bvA,cB) =  { M  = [mnk\ I m nk £ C, the series yn = Mnx are convergent

Similarly to (bvA,cB) we define the sets (bvA,bvB) and (cA,cB). The sets 
cA and bvA are called a summability field of the matrix A and an absolute 
summability field of the matrix A, respectively. We are looking for necessary 
and sufficient conditions for M  to belong to (bvA,cB) or (bvA,bvB). We 
notice that in the special case when M  is a diagonal matrix, our problem 
reduces to the widely investigated problem of absolute summability factors. 
In several works [2-8,12] conditions for M  to belong to (cA,cB) have been 
investigated also in the case of a non-diagonal matrix M.  First results 
of this kind have been proved by L. Alpár [6- 8] in the case if A and В 
are the methods of Cesäro of real order. In [12] B. Thorpe generalized 
L. Alpár’s results considering the case when В is an arbitrary normal matrix. 
Moreover, the case when A is an arbitrary reversible matrix and В is an 
arbitrary matrix has been considered in [3-5]. For non-reversible matrix 
A this problem has been studied in [2]. Conditions for M £ (bvA,cB) and 
M  £ (bvA,bvB) in the general case have been given in [1] without proofs. 
In the present paper we shall prove these results.

In §2 we are going to present some notations about reversible matrices, in 
§3 we shall give the solution of the stated problem for an arbitrary reversible 
matrix A and an arbitrary triangular matrix В and in §4 we shall apply the 
results, obtained in §3, in the case when A is a Riesz method.

§ 2. Som e n ota tion s concerning reversible m atrices

2 .1 . It is known ([13, p.82) that the summability field cA of any re
versible matrix A is a BK-space (i.e. cA is a Banach space in which coor- 
dinatewise convergence is valid). Then each coordinate xь of the sequence 
x =  (Xk) G cA is a continuous linear functional on cA. Hence there exist

and (yn) G cB for each x £ bvA} .

CO

numbers a and absolutely convergent series ^  уц such that
1=0

OO

( 2.1)
/= 0
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where zi =  Aix and /x =  Итг/ ([13], p.82). Taking now Z} — 6ir (where 
6ir =  1 if l =  г and 6ir — 0 if / Ф r ) in (2.1) for fixed r we see that x = rg-r 
because /x — lim /^ r =  0. If z\ =  6ц in (2.1) then

OO

Zfc =  <*k +  ^  Vkl 
1=0

since in this case /x =  lim£/; = 1. Consequently, (r]kr) for fixed r and (77̂ ) 
where

OO
Vk =  Oik +  ^ 2  Vkl 

1=0

are solutions of the system of equations z = Ax for zi — SiT and Z[ — 6ц, 
respectively. Thus we may represent (2.1) in the form

OO
Xk =  VkfJ- +  Vkl(zi -  fi).

1=0

As Ьуа C ca, (2.2) holds also for each x £ bvA-

2.2. It is easy to see that for the convergence of the series (1.2) for each 
x £ Ьуа it is necessary and sufficient that the numbers mn* for fixed n are 
absolute convergence factors for A. Therefore we have the following result 
(cf. also [10], Theorems 2 and 6):

L e m m a  1. Let A =  [a nk] be a reversible matrix and M  =  [m nk] an 
infinite matrix. The necessary and sufficient conditions for the series Mnx 
to be convergent whenever x £ bvA, are the following:

OO OO
(I) the series ^  mn;77; and m-niVik are convergent,

1=0 1=0

(П) £  m nivik = o n(i).
k=0 i=0

§ 3. The m ain results

We are going to prove two theorems. The first theorem characterizes 
the matrix transformations from Ьуа into cb and the second one from bvA 
into bvß- First we introduce the matrix G = [gnk] where

П
9nk ~  ^   ̂ß n s^ sk

5=0

Acta M athem atica  Hungarica 64, 1994



146 A. AASMA

and the numbers
S

7 sk =  ^ 9 n m -  
1=0

T heorem 1. Let A =  [ank] be a reversible matrix, В = [ßnk] a triangu
lar matrix and M  =  [mnfc] an infinite matrix. The necessary and sufficient 
conditions for M  G (Ьуа, св) are: (I), (II), further

OO

(III) the finite limit limn Япк'Пк exists,
к= 0

(IV) the finite limits lim„ ~/nk exist,

(V) É  ink =  o ( i ) ,
fc=0

where
7 nk =  Hms 7"fc.

P roof. Necessity. We suppose that M  G (Ьид,св). Then the condi
tions (I) and (II) are fulfilled by Lemma 1 and

(3.1) B ny =  Gnx

for each x = (xk) G bvA where у =  (ук) = (МкХ). Therefore Ьид C cg- 
Moreover, as Anr} — 6nn where r/ =  (%) and

OO

<$00 "I“ ^  ̂I <$nn &n— l,n—1| — 1? 
n=1

then T] G Consequently 77 G cg, i.e. condition (III) is fulfilled.
As each coordinate x  ̂ of a sequence x = (x^) G &U4 may be represented 

in the form (2 .2), where zi = A/x, fi = Ишг/ and

OO

X ]  I7?«! < 00>
1=0

we have
S  S  OO

(3.2) gnlxI = Ц 9niVi + тГа:(zk ~ /0
1=0 1=0 k=0

for each x =  (x*.) G since

OO

X ]  l*Wfcl \ z k  -  MI <  OO. 
k=0
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It follows from (3.2) that the finite limits

OO

sk(zk - ^ )
k=0

exist for (Zk — /x) G bv°, because the series Gnx are convergent for each 
x G Ьуа by (3.1) and T] £ cq. On the other hand, by the reversibility of 
the matrix A , for each 2 =  (2/) G bv° there exists a sequence x — (xь) G 
G Ьуа so that Z[ — Aix and g, =  0. Hence the matrix [7”fc] (for each fixed n ) 
transforms bv° into c. Consequently, it follows from (3.2) by Theorem 3.3 
of [9] (cf. also [9], Remark in p.34) that

OO OO OO

(3.3) ■ £  9nlx i =  И X gnll7‘ +  X 7nfc(2jfe -  m)
i=o l=o k=о

for each x G bvA. Here we see that (г*, — /х) G cp where Г =  ['ink]- Moreover, 
Г transforms bv° into c by the reversibility of the matrix A. Therefore the 
conditions (IV) and (V) are fulfilled (cf. [9], p.30-34).

Sufficiency. We suppose that the conditions (I)-(V) are fulfilled and 
show that in this case M  G (Ььа, св).

It is easy to see that the series Mnx are convergent for each x G Ьуа by 
Lemma 1. Therefore (3.1) with у = (t/*,) = (Mkx) holds for each x = (Xk) G 
G bvA and the series Gnx are convergent for each x G bvA. Consequently (cf. 
the proof of necessity), (3.2) and (3.3) with 2j. = A^x and ^ =  Итг*. hold 
for each x =  (ж*,) G Ьга- Moreover, (IV) and (V) imply that (Zk -  /i) 6 cp 
(cf. [9], p.30-34). Hence Ьуа C cq by (III). So M  G (Ьуа, св) by (3.1).

T heorem 2. Let A =  [an*.] be a reversible matrix, В =  [ß nf\ a triangu
lar matrix and M = [mnk\ an infinite matrix. The necessary and sufficient 
conditions for M  G (bvA,bvB) are: (I), (II), further

(VI) Ы  G bvG,
oo к

(VII) £  E ( 7 « - 7 n - u )  = 0 ( 1 ) .
n=0 /=0

P r o o f . Necessity. We suppose that M  G (bvAibvs). As Ьув C cjg, 
the conditions (I) and (II) are fulfilled and (3.1) holds for each x G bvA 
by Theorem 1. Hence bvA C bvo■ This implies that the condition (VI) is 
fulfilled because (%) G Ьуа (cf. the proof of Theorem 1). Moreover, we have
(3.3) for each x = (хь) G Ьуа where z  ̂ =  A^x, /х = Итг*. and the sequence 
(zk — ft) G bv° (cf. the proof of Theorem 1). Therefore the condition (VII) 
is fulfilled by Proposition 100 of [11] since Г = [^nf] transforms bv° into bv 
by the reversibility of the matrix A.

Sufficiency is proved by Theorem 3.3 of [9] and Proposition 100 of [11] 
similarly as it is done by Theorem 3.3 of [9] in the proof of Theorem 1.
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§ 4 .  T h e  a p p l i c a t i o n s  o f  m a i n  r e s u l t s  i n  t h e  c a s e  o f  

R i e s z  m e t h o d s

Now we shall give some results for the case when A is a Riesz method. 
Let (/>„) be a sequence non-zero complex numbers, P„ =  po + • • • + pn ф 0, 
P_i =  0 and P  = [otnk\ be the series-to-sequence Riesz method generated 
by (pn), be.

_ j l - P k - i / P n if k ^ n ,
\  0 if к > n.

It is well-known that P  is a normal method. Therefore P  has the inverse 
matrix P -1  =  [rink] where

(4.1) Vnk — *

' Pk/pk
- P k ( i / p k  +  i/pfc+i) 
Pk/pk+i
о

if n = k, 
if n = к +  1, 
if n = к + 2 , 
i f n < f c o r n > f c -|-2

([9], P.116).
For the convergence of the series M nx for each x € bvp it is necessary 

and sufficient that the numbers mnk are absolute convergence factors for P  
in the case of fixed n. Therefore the following lemma holds by Theorems
17.2 and 22.4 of [9]:

Lemma  2. Let P  be an absolute convergence preserving Riesz method 
and M  =  [mns] an infinite matrix. The necessary and sufficient conditions 
for the series Mnx to be convergent whenever x 6 bvp, are the following:
(VIII) Psm ns = On(ps),

(IX) PsA sm ns = On(ps) 
where

A smns — rnns

Now we shall prove two theorems.
T heorem  3. Let P  be an absolute convergence preserving Riesz method, 

В — [ßnk] a triangular matrix and M  — [mnk] an infinite matrix. The 
necessary and sufficient conditions for M  6 (b vp ,cp ) are: (VIII), (IX), 
further

(X) the finite limits lim„i/ns exist,
(XI) gns =  0(1),

(XII) PsA sgns = O(ps).

P r o o f . Necessity. Let M  £ (bvp,cg).  We shall show that in this case 
conditions (VIII)-(XII) are fulfilled.

It is easy to see that conditions (VIII) and (IX) are fulfilled by Lemma 2 
and bvp C cg (cf. the proof of Theorem 1). Therefore conditions (X) and
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(XI) are fulfilled by Theorem 3.1 of [9] since the method P  preserves aosolute 
convergence.

It remains to show that the condition (XII) is also fulfilled. We see by
(4.1) that

(4.2) lnk  =  pkA k^ ± .
Pk

Therefore

s - l
^  , Ink 
k=0

5 — 1

/=0

s— 1
Д kQnkA 

Pk )

5—1

^2 A ‘9nl 
1=0

Д sQns 
Ps

5—1

E * -

— 9n0 9n,s-\-1

whence it follows that

^sQns
Ps

(4.3)
s-l

Ps
^sfjns  -- 9n0 9n,s+ 1 ^  ^'Ink •

k=0

This implies that condition (XII) is fulfilled by (XI) and Theorem 1.
Sufficiency. We start with the hypothesis that the conditions (V III)-

(XII) hold and show that then the conditions of Theorem 1 are satisfied.
It is easy to see that the series Mnx for each x G bvp are convergent by

Lemma 2. Therefore conditions (I) and (II) are fulfilled by Lemma 1.
As P  is a normal method and a„o = 1, we have gn =  6nо ([9], p.58). 

Hence condition (III) is fulfilled by (X) and condition (IV) by (X) and (4.2). 
Now we have by (4.3), (XI) and (XII) that condition (V) is also fulfilled. 
Thus M  G (bvp,cp)  by Theorem 1.

T heorem 4. Let P  be an absolute convergence preserving Riesz method, 
В — [ßnk\ я triangular matrix and M — [m nk] an infinite matrix. The 
necessary and sufficient conditions for M  G (bvp,bvp) are: (VIII), (IX), 
further

OO

(XIII) £  \gnk - 9n-i,k\ = 0 ( l ) .
71=0

OO

(XIV) Pk E | A fc(<7nfc -9n- i ,k) l  = 0 ( p k).
71=0

P r o o f . Necessity. We suppose that M  G (bvp,bvp) and show that then 
conditions (VIII)-(IX) and (XIII)-(XIV) are fulfilled.

First we note that conditions (VIII) and (IX) are fulfilled by Lemma 2 
and bvp C bvQ (cf. the proof of Theorem 2, taking there A =  P ). Hence
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condition (XIII) is fulfilled by Theorem 4.2 of [9] since the method P  
transforms all absolutely convergent series into bv. Therefore condition 
(XIV) is fulfilled by (4.3) and Theorem 2.

Sufficiency. We shall show that conditions (VIII)-(IX) and (X III)- 
(XIV) imply M  G (bvp,bvB). It is sufficient to prove for this that the 
conditions of Theorem 2 are fulfilled.

First we notice that the series Mnx are convergent for each x G bvp 
by Lemma 2. Therefore conditions (I) and (II) are fulfilled by Lemma 1. 
Condition (VI) is fulfilled by (XIII) (since in the present case r]n — 6no) and 
condition (VII) is fulfilled by (XIII) and (XIV). Thus, M  G (bvp,bvB) by 
Theorem 2.
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ON /i-R E C U R R E N T  W A G N E R  SPACES  
OF W -SC A L A R  CURVATURE

U. P. SINGH and R. K. SRIVASTAVA (Gorakhpur)

I n t r o d u c t i o n

S. Numata [3] and T. Varga [5] have independently proved that if an 
n (£  3) dimensional Finsler space is a Berwald space of scalar curvature 
К , then it is a Riemannian space of constant curvature К , or a locally 
Minkowski space according as К  ф 0 or К  = 0. Afterwards M. Hashiguchi 
and T. Varga [1] showed a similar result on Wagner spaces of W-scalar 
curvature. The purpose of the present paper is to examine /i-recurrent 
Wagner spaces of W-scalar curvature and to prove a similar theorem.

Throughout the present paper we shall use the terminology and nota
tions of Matsumoto’s monograph [2].

1 .  h - r e c u r r e n t  W a g n e r  c o n n e c t i o n s  a n d  W a g n e r

s p a c e s

/i-recurrent Wagner connections and Wagner spaces are defined as fol
lows ([4]).

D e f in it io n  1. The /i-recurrent Wagner connection WT  of the Finsler 
space F  is a Finsler connection N k, Cj kJ uniquely determined by the 
following five axioms:

(Cl) 1УГ is v metrical, i.e., gtJ\k =  0.

(C2) The (u)w-torsion S' of WT vanishes, i.e., C l-k =  C lk-.

(C3) WT is h-recurrent with respect to the vector field a*.(a:), i.e., д^\к = 
~  O-kQij-

(C4) The (/i)/i-torsion tensor T, of WT, is given by

T ) k  =  F j k  -  F lk j  -  F j S k  - 6 \ s j ,

where s/c(x) is a vector field.
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(C5) The deflection tensor D  of WT  vanishes, i.e.

D \ = y>F]k - N i  = 0.

(Cl) and (C2) show that Cijk are the same as in the Cartan’s connection 
CT.

Definition 2. A Finsler space equipped with the h-recurrent Wagner 
connection WT  is called an h-recurrent Wagner space if the coefficients F l-k 
depend on position alone.

For any Finsler connection ( 3 *  , the (u)/i-torsion tensor R ljk
and h-curvature tensor R \ jk are given by ([2])

(1.1) R)k = 6kN ) - 63N'k 

and

(1.2) R[jk = 6kF>hj -  6j F lhk + F% rmk -  F?kr mi + C'hmR?k

where 6k =  dk -  N]?dm, дк =  д / д х к, дт = d / d y m.

T heorem 1.1. In an h-recurrent Wagner connection 1ГГ with respect 
to a gradient recurrence vector ak = 6ka the h-curvature tensor defined by 
Rhijk — guR‘hjk is skew-symmetric in the first two indices.

Proof. Applying the Ricci identity ([2], (10.8')) for the metric tensor 
gi3 we get

9ij \k\ l  9i j \ l \k 9 i r R jk i 9 r j R lkl 9 i j \ r T ki 9 i j \ r R ki

which in view of gÍ3\k = akg%J, (C4) and gij\k =  0 gives

Rjikl T Rijkl — 9ij  f dk a l H i с к ) ■

Therefore, since ak is a gradient vector, i.e., ak = dka, the above equation 
reduces to

Rijki Rjikl•
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2 .  Д - r e c u r r e n t  W a g n e r  s p a c e s  o f  W - s c a l a r  c u r v a t u r e

We consider one of the Bianchi identities ([2], (11.1')) of a WT:

(2.1) A{ijk) [ T t r jk + T ^ k +  C k R)k -  R ^ }  = 0,

where A^jk̂  means the cyclic permutation of indices and summation for the 
expression m the brackets behind it.

First we derive the equation (2.5) which holds for some special Д- 
recurrent Wagner connection of W-scalar curvature К , and will be needed 
in our subsequent proof. From (C4) we obtain

T lT ]k =  -* Т Д , shT}k =  0, A(l]k){ T t T ] k) =  0,

and hence

A(ijlc) — (5fc|i ~  *̂|А:} 5

st‘|j — OjSi d{Sj.

Therefore, if is a gradient vector, i.e., s; =  dis(x),  then (2.1) becomes

(2.2) A(ijk){ c Í R rj k - R ? jk}  =  0 .

If 1ТГ is Д-recurrent with respect to the recurrence gradient vector ak = 
— dka{x) then by Theorem 1.1 we have Rihjk = —Rhijk• Therefore equation
(2.2) becomes

(2-3) ^(ijk) {CihrRjk + Rhijk} = 0

where Cihr =  9hlC\r . Contracting equation (2.3) with yh, we get

A(ijk) {Roijk} 0-

Then on account of [2] Theorem 13.3 we obtain A(tj k) {Rijk} — 0, which 
implies Rioj — Rjoi.

Now we consider the equation

(2.4) RlokX ' X k = K L 2hlkX ' X k

where X  =  (X*) is a tangent vector of a Finsler space at x, where R{ok is 
formed from the coefficients of the Д-recurrent Wagner connection, L is the 
metric function, Д,*. =  g,k — /;/*. is the angular metric tensor, and К , called
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the VF-sectional curvature, is a function of x , y  and of the vector field X  
((2.4) has the same form as (26.1) in [2] for the Cartan’s connection СГ.)

Definition 3. If the W-sectional curvature K ( x , y , X ) in (2.4) is a 
scalar field which does not depend on X \  then the h-recurrent Wagner 
connection is called of W-scalar curvature K.

Consequently, if we consider h-recurrent Wagner connection WT  with 
gradient vector field Sj(x) =  djs(x),  gradient recurrence vector aj(x)  =  dja 
and of IT-scalar curvature K,  then the symmetry property of Ri0j  leads us 
to the equation

(2.5) R lok = K L 2hlk

which is the same as the well-known equation in a Finsler space of scalar 
curvature with the Cartan’s connection.

3 .  B e r w a l d  s p a c e s  c o n f o r m a l  t o  h - r e c u r r e n t  W a g n e r

s p a c e s

Let a Finsler space F n be h-recurrent Wagner space with respect to the 
gradient vector field Sj(x) = dj s (x ) and gradient recurrence vector üj(x) = 
= djd(x).  The metric function of F n is L, the metric tensor is gt j , and the
h-recurrent Wagner connection is given by (* i*  ■> N lk, C lj^J. Let us consider
the Finsler space *Fn with the metric function *L = e~b̂ L  where b =  
= s + |a .  We define

(3.1) 'F]k = F]k -  6) s k,

(3.2) *Х'к =  Х'к - у < з к,

(3.3) * q k = C)k.

These (^F'k,*N lk, *СХ-Л form the Cartan’s connection on *Fn. Namely, 
denoting quantities in *Fn by an asterisk we get

(3.4) *gij =  e~2bgij

and then we can easily check the validity of the relations *gij\k = 0 with 
respect to *F^k and *gij\k =  0 with respect to *Сг-к, *D\  = 0, and moreover 
the symmetry of *FU  and *Cjk in j  and k. These together mean that 

*Nk-, is the Cartan’s connection on *Fn (see [2] Definition 17.2).
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Since the F]k of the /г-recurrent Wagner connection are functions of xl 
alone, so are the *F-k. Hence *Fn is a Berwald space (see also Theorem 3.6 
of B. N. Prasad et al [4]).

We show that the Berwald space *F n is of scalar curvature if the 
/г-recurrent Wagner space F n is of W  scalar curvature. By virtue of (3.4) 
we have

* D .  , _ *  n r  _ — 26„.  * n r^iok — У гг -ft о к — e У гг fíQk•

Since Si is gradient and N k is (l)p-homogeneous, from (1.1) and (3.2) we 
get *Rrjk = Rr-k and thus *Riok = e~2bRiok.

Assuming that F n is of VP-scalar curvature, (2.4) yields (2.5), and we 
obtain

*Riok = е~2Ь К  L2hik =  К  *L2hlk.

Furthermore

*htk =  *gik -  8\ *Ld) *L = e~2b(gtk -  ltlk) =  e~2bhlk.

Thus we have *Riok = e2bK  *L2 *h{k, namely, the Berwald space *F n is of 
scalar curvature *K =  e2bK.

Thus, by the theorem of S. Numata ([3] Theorem 2) and T. Varga ([5] 
Theorem 11), this Berwald space *Fn for n ^ 3 is a Riemannian space of 
constant curvature * K , or a locally Minkowski space, according as К  ф О 
or К  =  0. Furthermore the /г-recurrent Wagner space F n is conformal to 
this *Fn, so we have the following.

T heorem 3.1. / /  an n {>. 3) dimensional Finsler space is an h- 
recurrent Wagner space with respect to the gradient vector sj(x) =  d:ts(x) 
gradient recurrence vector a j(x) = dja and of W-scalar curvature K ,  then 
the space is conformal to a Riemannian space of constant curvature, or con
formal to a locally Minkowski space, according as К  ф 0 or К  = 0.

It should be noted that the above scalar К  ф 0 does not depend on the 
supporting element y \  but it is not necessarily constant.

As a special case, we get the following shown in the paper [1].

Corollary (Hashiguchi and Varga). If an n (^ 3) dimensional Wag
ner space with respect to a gradient vector field st(x) = djs(x) is of non-zero 
W-scalar curvature К , then, the space is Riemannian and the scalar К  is 
written as К  = Ce~2s(x\  C =constant.
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O N A N E W  LAW OF THE IT ER A T ED  
L O G A R IT H M  OF ERDŐS A N D  RÉVÉSZ

QI-MAN SHAO1 (Hangzhou)

1 .  I n t r o d u c t i o n

Let {W(t) ,  i ^ 0} be a standard Wiener process and consider the 
processes

£(t) = su p {s :0 ^ s ^ t ,  W (s) ^ (2s log lo g s)1/ 2} , t ^ 0 ,

£e(t) = sup js: 0 s ^ t, W (s) ^ (2(1 -  £ )slog logs)^ 2| ,  i^ O , 0 ^ £ < 1, 

£gP\ t )  =  sup{ s: 0 ^ s ^ t, W(s) ^ s 1̂ 2a((5, p, s)}  , t ^ 0 ,

where

(1.1) a ( 6,p,s)  = ^2  ^ log2 s + ^ log3 s + Y j logj5 -  ё logp > 6 ^ 0,

p = 3 , 4 , ,  log, t =  logx(logj_j f), i =  2 ,3 ,. . . ,  logx x = In x for x > 0 and 
logx x =  1 if x ^ 0. It is clear that

lim £(i) =  lim £e(t) =  lim ÚP\ t )  = oo a.s.
t—+oо i-+oо i-+oo 0

and

lim sup  ̂ = lim sup = lim sup ———  - 1 a.s.
<—►00 t  <— ► OO t  t — Ю О  t

1 R esearch su p p o r te d  by  th e  Fok Y ingtung E ducation  Foundation  an d  by a n  NSERC
C an ad a  Scientific E xch an g e  A w ard a t  C arle to n  University, O ttaw a, C anada.
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for each O ^ e c l ,  p = 3 , 4 , . . . ,  by the law of the iterated logarithm.
Erdos and Révész [2] considered the lower bound of £(f) and obtained a new 
law of the iterated logarithm, which states that

lim inft—►OO

( i° g m 1/2
log3 t ■ log t

log ££) =  -C o a.s.

for some constant Co with \  ú  Co 214. At the end of their paper, Erdős 
and Révész proposed the challenging question of finding the lower bound 
for the general processes £e(t) and

The aim of the present note is to find the exact value of Co and the 
exact lower bound of £s(t) and that of as well.

T heorem 1. We have

( 1.2 )

(1.3)

lim inf (b g 2)
1 /2

log « 0 = —3-v/x a.s..t—►OO log3 1  • log t 

liminf (log f)5- 1(log2 f )-1 / 2 • log = — 2<5y/7r /(l — 6) a.s.t—+oo

for each 0 < S ^ 1/2.

T heorem 2. We have

(1.4)

(1.5)

( 1.6 )

lim inft—* OO

logp ^ p)(0  -  logpt
10gp+1t

=  —2\рк a.s.,

liminft—►OO

logp-i d P)(0  -  1оёр-1 *
(logp_ i 0 1_<5logp i

= —2<$-у/7г a.s. for 0 < 6 < 1,

liminft—KX>

bgp—2d P)(0  -  logp-2<
logp_2 C (logp_ 1t )1-5 logpi

—2бл/ n  a.s. for 6 > 1

f o r p =  3 ,4 , . . .  .

Our Theorem 1 says that for any t big enough, between

ti-3v^ios3Miog2t) 1/2 and t

there exists an s such that lE(s) ^ (2slog2s) 1' 2. The meaning of Theorem 
2 can be interpreted in the same way.
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2 .  P r o o f s

Throughout this section we will use the following notations: Yl'iLn ~  0 
and UT=n = 1 if m < Щ M denotes the integer part of x; denotes

Define a (f>iPis ) as in (1-1). That is

P =  4 ,5 , . . .  .
We also let

a ( 6, 2 ,5) = (2(1 — £)log2 5) 1/2, 0 ^ 6 < 1.

It is easy to see that

(2.1) a (0 ,2 ,a )  =  a (3 /2 ,3 , s ) ,

(2.2) a (0 ,p ,s) = a ( l , p + l , s ) ,  p = 3 , 4 , . . . ,

(2.3) lim a(<5,p, s)/(21og2 s ) 1̂ 2 — 1 for each<5 ^ 0, p ^ 3,
S  —► OO

(2.4) a ( 6, p , s ) is non-decreasing for s sufficiently large.

Let {W (t) ,  t ^ 0} be a standard Wiener process and {X( t) ,  t ^ 0} = 
{1У(е‘) /е г/ 2, t ^ 0}. Then {X{ t ) ,  t ^ 0} is an Ornstein-Uhlenbeck process 

with JSX(t) =  0, E X 2(t) = 1 and

(2.5) p(t,s) = E X ( t )X ( s )  = e -li_sl/2.

Clearly, we have

(2 .6) p(t , s )  = 1 -  - \ t -  s\ +  o(t s) as t — s 0.

Hence, form Lemmas 2.5 and 2.9 of Picklands [4] it follows that (cf. [3], 
p.232)

(2.7) lim
X —too

^ ( suP o ^ i ^ ( 5) > z )
V>(x)
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( 2 .8 )

(2.9)

lim
х —юо

p (  m a x  X ( j 6 / ( 2 x 2)) > x )

'ф(х)

Я ( 0 )lim ——  =  1. 
e—о 9

Ш
в ’

Here and in the sequel,

( 2 . 10) **> -  Ш
To prove our theorems, we need the following lemmas.

Lemma 2.1. Let {Yt , t G T }  and {Z t , t G T} be centered Gaussian 
processes on a parameter set T  with EYt2 =  E Z f  and EYtYs ^ EZtZs for 
all s , t e T .  Then for all real x

P  f sup Yt ^  x)  £ p f  sup Zt x ) . 
y teT ' v ter '

This is the well-known Slepian lemma [5].

L e m m a  2.2. For each 6 > 0, p  ̂2, 0 < r/ < 1, there exists a constant 
N  =  N(fj,p,r}) such that

( 2 . 11)

« Q , *  *

( W ( s )
й a(6,p ts) V

> eu \5\e' a ( 6,p,s)
>

| e x p ( - i ± | 2 \ / ^ ( l o g  b f \ b s - a 8) j ,  if 0 < S < 1, p =  2, 

I exp ((logp_2 b)S -  (logp_2 ° )5) )  , if 6 > 0, p Z 3

for each b ^ a +  2 ^ N.  

P r o o f . P u t

a(6,p ,s )  =  a(6,p,s)  - V
a(S,p,s)

Then

( 2 . 12) n  {
ea<s<eb

VP(s)
^ a (i,p ,s ) V

a ( 6,p,s)
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W(a)
=  P \  sup

кеа<8<еь 'V SOl\ ' , i P i S )
^ 1 ) = PI sup * (a )

a<s<b ö ( í , P , e s )

^ p (  max sup - f } a + ^  ^ 1 ) >

v, D (  A (a T s) s- 1 \й  P  max sup — — ---- -4- < 1 ,
\ 0 % х й ь - а  a ( s , p , e a + l )

provided that a is large enough, by (2.4). 
We now prove

(2.13) X(a  +  s) ^ ^
max sup —7 ------- tW ^ 1 ) >

Ô t'̂ 6—a *^s<t+l )

< 1 >

г  п ” р (  »“p , ш 1 +Л ) = 0 = n p ( jup x ( . ) g & ( s , p , ^ ) ) .
!=0 '  «^S<! + 1 u \ v iP ie ) J -_0 4 0^S<1 '

Define

z t = - f } a + a+i\ if * ^ i < *  +  1» * = 0, 1, . . . ,  [6 - a } .а (с ,р ,еа+г)

Let {Y), i Ú t < i +  l} f=0a] be independent stochastic processes and let 
{Yt, к ^ t < к +  1} have the same distribution a,s {Zt, k ^ t < k +  1} for 
each 0 ^ к 5= [6 -  a]. Then, { Zt, t G [0 ,6 -a  +  1)} and {Yt , t G [0 ,6 -  a +  1)} 
are centered Gaussian processes with EY t2 — E Z 2 = l / ö 2(6,p, ea+i) if i й 
^ t < i +  1, 0 ^ i ^ [6 — a]. It is easy to see that

EYtYs ^ EZtZs for all s , t  G [0,6 -  a + 1). 

Therefore, using the Slepian lemma (i.e., Lemma 2.1), we have

X(a  +  t )max sup
o < i < b - a  , < , < , + !  ä ( 6 , p , e “ + 1')

< 1 =

= P(
b—a

sup Zt ^ l )  ^ p (
V<e[0 ,6 -a+ l)  '  '

b—a

sup Yt ^ l )  =
i£ [0 ,6 -a + l )  '

= Ц р (  sup Yt Z l )  = T [ p (  sup Zt Í  l )
. МсГ,,±1\ / N tali ;_li \ /1=0 (€[«.<+1) i = 0  4 t€[»,«+l)

Acta  Mathematica Hungarica 64, 1994



162 QI-M AN SHAO

b—a b—a

= Г И  sup - I ^ S ' b n Kf=o Vt€[»,»+i) o i ( 6 , p , e a + t ) )  1 1  V
sup X (s )  ^ й(6,р ,еа+г 

i=о v°=s<1

as desired. By (2.7), there exists a positive constant xq such that for each
X  ^ X q

p (  sup X (s) > x) < f l  + !:W (z)

and
1 -  ( i  + 1 )  ф(х) ^ exp ( -  ( l  + 1 )  v » ( * ) )

Hence

(2.14)
b—a

T p (  sup X(s)  ^ <э(<$,р,еа+г)) ^ 
i=o

^ exp ^ -  ( l  + 1 )  (a(6,p ,ea+l)) ^ ,

provided a is large enough. Write

b—a

I (a ,b ,S ,p ) =  (ä(<$,p,ea+t)) .
t= 0

Note that

Ф ( ä ( 6, p, еа+г)) й  -  exP (»7 -  \ a2(6’ TP' e“+!) )  '

Therefore

(2.15)

ф (d(<5,2 , ea+i)) ^ j  У  — (a + i f - 1 log1/2(a + г), for 0 < 6 < 1, 

and

(2.16) ф (а(<5,р,еа+г)) ^

< _________________ (1 +  p / 2)er,\ogi/2(a + i)_________________

~ 2у/ж(a +  i)log3/2(a +  t) • (logp_2(a +  i))~ S ■ Щ =l  loSj(a +  0
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for 6 > 0, p =  3 ,4 , . . . ,  provided a is sufficiently large, by (2.3). 
From (2.16) it follows that, for 6 > 0, p ^ 3

(2.17) 1{а,Ь,6р) й

< (1 +  7?/2)er
b—a

E 1

(« +  0  Io§(a + *') 0 °gP- 2(a + 0 ) 6 • I l j =2 logj(a +  *')

(1 +  r)/2)e'1

<

< 1 +

r[b-a]

J o

2у/тг

dy

й  1 +

(a +  y)log(a +  У) (logp_2(a + y)) 6 • Щ =2 logj(a + 2/) 

(1 + ф ) е "  / 6 d y

<

\/2)er] Г  
f t  Ja2\/тГ Ja y\ogy(\ogp_2 y) S- Пу=2 logj 2/ 

(1 +  ri/2)ei
= 1 + ( (<'°®--2 b)S - (log" -2 0)5)  •

Similarly, one can get from (2.15) that for 0 < <5 < 1

(2.18) / ( a , M , 2) ^ 1 +  £ b g 1/ 2b.(bs - a 6).

An elementary inequality says for 0 < r\ < 1

( l  +  l ) 2«77 ^ I + 877.

Now (2.11) follows from (2.12), (2.13), (2.14), (2.17) and (2.18).
Lemma 2.3. Let £ i , . . . , £ n be standard normal variables with covari

ance matrix Л1 = (Л -), and rji , . . . ,rjn be standard normal variables with 
covariance matrix A0 = (A° ). Assume n ^ 3,

(2.19) Aij ^ Afj for all 1 £  i, j  g  n,

(2 .20) A[j ^ A[kAlkj ^ 0 for / = 0,1  and for all 1 is i , j ,  к ^ n.

Put py =  max(|Ajj|, |A” | ) . Then

( 2 .21) ^ %■}) -  p (  П и -  ^ uj} )  ^
Vi=i 7 4 j=i 7
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£  (ЛЬ -  л °>)(1 -

• exp -
и1 +  uj

2(1 +  pij) р(  r i t e S “ > > ) +
i= i

+ j í  £  (Ai> -  л?>)(1 -
1 üi<j^n

i exp —
и2 +  uj 

2 (1  +  Pij)
( e-«?/2 + e - ^ / 2)

for all Uj ^  0 , j  =  1, . . . ,  n.

P roof. The proof is along the lines of that of Theorem 4.2.1 of [3]. 
Write

ЛА =  hA1 +  (1 -  Л)Л° = (Л £) for O ^ h ^ l .

Let £ =  (C i,. . .  ,Cn) be normal random variables with covariance matrix ЛА, 
let fh be the density function of £ and

u'

F{h,u) = J  ■■■ j  fh(yi,...,yn)dy,
—oo

where u =  (ui Then

( 2 .22)

P  (  f j { f c  ^ rj{»7j ^ uj} )  =  ^ ( M )  -  F( 0>u ) = J  F'(h,u)dh.

It is shown that (cf. [3], p.82)

u '

(2.23) F \ h , b u ) =  Y  (Ли -  Al ) /  [  fhiVi =  Ui, yj = Uj)dy',
1 g«<jgn J -oo J

where fk(yi — Щ, У, — uj)  denotes the function of n — 2 variables formed by 
putting j/t- =  it;, yj — Uj, the integration being over the remaining variables.
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Let ф(х,у; 7 ) be the standard bivariate normal density with correlation 
coefficient 7 . Then we can write

(2.24) J ■■■ J fh{Vi  =  Ui,  lIj =  Uj)  d y '  =
— OO

=  Ф(^,и^-,А^)Р(С ^ u' I Ci = uí, Cj = Uj).

For the sake of simplicity, we work only with i =  1, j  = 2. Since

Í c Afi -  Л*2Л* A -*2 -  A*aA* 1 , r /* \
I е  1 - A f 22 Cl 1 -  Л£22 C2, * - 3, . . . , n |  and {CbC2}

are independent, we have

p (  ГКО «Л I Cl = «1, C2 = «2) = 
4 = 3  '

(  Д  f Aj, -  A ^ A l
p ( n { o -  ; ; _ t i 2o j2ci

j =3 Лл 2 y l12

^ 2  -  a Qa Q̂ 
1 -  AXV C2 =

л;, -  л*гл;2 

1 -  л|о
Л?2 -  Af2Aj,

“  1 - Л * г  "г12 1 7V12
<

= Р(С 1 = ui)  +  -Р(Сг = иг)+

, ^ ^ А^ — Л 2̂ -  Л^ЛО
+Р( Ci ^ ui, С2 ^ «2, 0  -  ---- т т А  -  -J ; ~ Г Л Л С2 ^1 -  Aj22 1 -  Л*22

< _  4  -  А ^А^ 4  -  a í2a }, . о
! - А *22 1 Т ^ ~ Ц ^ ~ и2' 3 =  3’ - - - ’п ) =

^  p ( C i  £  щ) +  Р ((2 ^ и2) +  р(  Г { 0  g  « л ) .
4 = 1  '

since (2.19) and (2.20) imply A^ ^ A ^A ^ and Aj 2 ^ Aj2A^ for each 3 ^ 
S j  = n and 0 ^ / i ^  1.

Noting that ЛА ^ Ab for all 1 ^ г, j  ^ n, 0 ^ h ^  1 and using the 
Slepian lemma, we obtain

c ( f | { C j S « , } )  S r i f l f ä s ^ } ) .
Vi= l y VJ=1 y
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Hence, we have

P [  [НС» = “Л  I Cl = uu  C2 = u2 J ^
S = 3  7

^  P(C 1 ^  «1) + P(C2 ^  tt2) + H U i  ^  «,-}) g
V J=1 7

^ e~“i /2 +  e " ^ 2 + H iC j ^ « j} )  •
'  7=1 7

Generally, we have

(2.25) P(C й и ' I Ci = ti,-, 0  =

On the other hand, it is easy to see that (cf. [3], p.83)

1 /
(2.26) 0 ( и,-,«,-;A*-) ^

27t(1 -  p h ) 1^2 V ^  P '* } )

U2 + u2

This proves (2.21) by (2.22)-(2.26).
Noting that for the Ornstein-Úhlenbeck process {X( t) ,  t ^ 0}

p(t,s)  ^ p( t , v )p(v ,s) ,  for all t , s , v l t  0 ,

by (2.5), as an immediate consequence of Lemma 2.3, we have the following.
Lemma 2.4. Let (X (i), t ^  0} be an Ornstein-Uhlenbeck process satis

fying (2.5). Let Efi ~ (^f(^7i fv) ^ xn}v‘‘ v “  0 , . . . ,  m„) with all distinct 
and xHyV ^ 0. Then

p (  f ] E k) - f [ P ( E k) Z
^ k = 1 '  fc=l

wi> m, /  n

s  Y .  n s
—л —n ' /c=l

•exp -
T? -1- 7;? xi}v '

2 ( 1 + p ( t i , v , t j , u ) )
+
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mj m;
+  }  ] ^  ] P(tj,v>tj,u) (  1  P ( ti,vitj,u) )

«=0 v=0

/  X l,v + Xj,u \  /  _ i x 2 _ i  2 \

V 2 ( 1 +  A»(i,> ,* ,> )) у V '

Using Lemma 2.4, we can now establish another technical lemma.

Lemma 2.5. For each 6 > 0, p ^ 2, 0 < r] < í/геге exists a constant 
N = N(ő,p,r/) such that

(2.27) П {
W ( a )

>. ea y/sa(6,p,s) < 1  <

<

6 e x P ( - ^ \ / ^ ? ( 1оё а ) 1/2( 65 -  « * ) )  +

+7V(6 -  a)a_1(1_l5P2+p/2) • log2 6, г/ 0 < 6 < 1, p = 2,

6 e x P ( ( l o g p_ 2 ö ) á -  ( l o g p_2 a ) 5) )  +

+7Va-(1+̂ 2), г/ 6 > 0, p ^ 3

for each 6 ^ a +  2 ^ iV г/ p ^ 3 and 7 V ^ a  + 2 ^ 6  +  a1-5 г/ 0 < 6 < 1, 
p = 2, where p = 1 — e-7?/2.

Proof. Note that

P n  {— m .  < Л )  =  р (  n
.< s<e6 l ^ a (^ P ’S) J /  \ Л 4 1 а ( ^ - е‘ )

<1  <

<  p max sup X (s )
X1.1.UUV w u .|/ .

‘ 0= ' z ^ T t i ) ^  a + i ( l + 7))5i s ^ a + l + i ( l + 7j) ® )

< p f  * (* )S PI max "”1' -----
\o<«<^=A=i

— — 1 +  4

< 1 <

sup
l + t) a+ i'( l+ j))^ s^ a + l+ t(l+ r))  a (f>iPi еа+1+г 1+7>))

By (2.8) and (2.9), there exist в  > 0 and x o  such that

( 2 -2 8 )  p {oim y . x {i ^ ) >x) i (i - d ^

< 1 .
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for each x ^  xq. Put

Xi := Xi(a,b) = a ( 6,p ,ea+1+t^ +r>'>), i = 0 , 1 , . . .  .

Then, using Lemma 2.4, we obtain

P
X(s)

max SUP —77--------ГГГТГТ
°=,= kf+7i a+«(l+r))gega+l+t(l+7j) Ct(S,P,ea 77 )

<

< P  I max max < < 6 -0 -1  2x2 
— — l + »7 0  =  J  ^  - Q 1-

x ( a  + i ( l  +  r j ) + j ^ j  < Л  <

6—a —1 
l  +  >7

< П  ' max
Л + i( 1 +  77) + j  2*2 'j ^

t '= 0  \ 0< j <  '■

2дг̂
e в

X i

xi + x)

ц=°^=°
+  £  E E ^ - 4 * ) '  e x p ^ 2(1 +

X  (a + г( 1 +  j ,) + j + )  ^
■P I max max0<^Ь^ 1  2*2----1 + rj

2 x 2

+ E  E E  Pi, j ,u,v(  1 Pi,j,u,v
2 4-1/2

°^г< ^ ь777~ u==0 "=0

• exp - s? +
2 ( 1  +  Pi , j ,u,v )

+ e 2^  =

— I i ( a ,b) + / 2(0 , 6)+(+ /з (а ,6 )Р  max max
x  (a + i(! + Í?) + /572)

< 1
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where pi<jiUiV =  exp ( ( j  -  i) ( l +  77) + | |  -   ̂ ,

b—a— 1 
1 + 7

Ii(a,b) =  TT P  [ max
\  O r*

X

i=0 \o<j<-
M) < 1) ,

X t I

2x2 
в в

^ { a i b) — 'У '  X )  'У ) Pitj,u,v(  ̂ Pi,j,u,v)
- 1/2

0<)< ,< k-'‘~ 1 u=0 v=0 = = 1 + 17

• exp
xf  +  x2- 

2(1 +  Pi,j,U,v)
2X? 4- e 5

2 „22x̂  2X

/ 3 ( 0 , 6 )  =  E  X  E  Pbj'uA1 -  Pi,j,u,v)
2 4-1/2

0^г<4^ь=|=1«=0 V=0

• exp - a ? +  »j \  
2(1 +  Pi,j,U,v) I

From (2.28) it follows that 

(2.29) / 1(0 , 6) ^  П  ( i  -  ( i  -  M xij )  ^

b—a—1
1+7

i= 0

6—a —1

^ exp  ̂ -  ( l  -  Y ,  & & ))

/f

* - § )

1 + 7
exp - ( X  H\ ! = 0

Similarly to (2.17) and (2.18), one can see that

b—a — 1 
1 + T?
E  V’ (а(<$,р,еа+1+г(1+,,)) )  ^
t=0
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>
S ( f c r t \ / : ? ( lo g “ ) 1 /2 ('>4“ <,‘ ) - 1’ if  0 < « <  l , p  =  2,

(2 .3 0 )  / a( a , 6 ) g <

(d<>gp- 2 b )‘  -  ( lo g p_ ,  a f )  -  1, if  S >  0, p  g  3.

T herefore

3 ex p  ^ - :4 | !íy ^ ( l o g a ) 1/2(6í  -  a 5)^  , 

i f  0 <  á <  1, p  =  2,

3 e x P ( ( lo g p -2 ^ )Ä -  ( b g p_ 2 a / ) )  ,

i f  6 >  0, p  ^  3.

N o tin g  that for г <  j ,  0 ^  ^  2 x j / 6 ,  0 ^  п ^  2 х ? /в

Pi,j,u,v ^  ex p  -  0 ( !  +  *7) -  ! ) )  S

-  ехр ~  О»/) =  е х Р ( ~ | )  >

w e  have, w ith  р  — 1 -  ехр ( — | ) ,

(2 .3 1 ) / 2(а,Ь)^

2х̂  2i^
0 0

< Е  E E - “ "
1/2 .

O g i < j g  £ = |= I  u= 0  W=0

•exp +  xj \  /  -±*2
2(2 -  p)

e 2x i +  e  5И )  g

s i e  E
x :x ;  

J  «
2(2 - p )

X* +  x )

Oái<Já4+n

e ~ * x ' +  e г
Ix2\ - I  2xj J e 25 U-'h <

< E  o x p ( - ^ - | ) . l o g ! ( «  +  i ( l + 4 ) + l )  S
' r Ь-а-1 40<t< ,,= = 1+1?

<
Í C ( tj, $ ) (6  -  а )а - ( 1 - « ) ( 2 +р/(2 -р)) l o g 2 if  о <  S <  1, p  =  2,

\  C ( t?, 6 , p ) a - ( l +p' 2\  if Í >  0 , p  ^  3,
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by (2.3), where C(rj,6) and C(r],S,p) are positive constants depending only 
on 71, S, p. Similarly, we have

(2.32)
C(rj,6) ( b -  a)a- (1-5)(1+p/(2-p) \  
C(v,S,p)a~p/2,

if 0 < 6 < 1, p =  2, 
if <5 > 0, p ^ 3,

< Í | ,  if 0 < S < 1, p = 2, b -  a ^ a1 5,

\  2> if Ь > 0 , p ^ 3,

provided a is sufficiently large. Combining the above inequalities, we get 
(2.27), as desired.

Let

a(t, 0 , 2) = З-у/тг
log3 i • logt

0 °g 20
1/2  ’

a(t, 6, 2) = 2<$ (logt)1 -* ■(log2t)1/''i , 0 < « < 1,1 -  S
1/2

a (t ,0 ,p) = 2v/7rlogp+1t, p ^ 3 ,

a( t , 6,p) = 2<$v/*:(bgp_11)1-5 ■ logpf, 0 < 6 < 1, p ^ 3 ,

a(C b-iP) — ЪЬу/к logp_2 t • (logp_1 i)1-5 ■ logp Í, <5 > 1, P ^ 3 .

P r o o f  of T h e o r e m  1. It is clear that

(2.33) { 6 ( 0  = ° }  = i  SUP
l a<s<

W ( s )

gt y / 2( l  -  6)s log logs
< 1

for each 0 < a ^ /. We first prove for each 0 < £ < 1/2 that

/̂2

(2.34) liminf -  -° —■ ̂ -----log  ̂ > -  (1 + 2£)3л/тг a.s.
V ’ i—oo log3 1 * log / & t -  v ' v

Let

Noting that

tk =  exp (exp(fc2/3)) ,

a(t ,6, 2) 
log i -  a(t,S,2)

к =  1 ,2 , . . .  .

as f —► oo
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for 0 ^ 6 ^ 1 /2 , and using (2.33), (2.1) and (2.27), we have

£o (tk)(2.35) p  I l o g ■ -  ( 1  +  £ > ( ! b 0 , 2 ) )  =

= P (  

= P ( ,

sup W(s)
tk e x p (-(l+ £ )a (ifc,0,2))^s^<fc a (0> 2 , s)-\/s

W(a)

< 1 =

< 1 <
. t k e x p (-( l+ £ )a ( ifc  ,0 ,2 ) )^ s ^ U  a ( 3 / 2 ,  3 ,  s ) y / s

^ 6 exp ((log2 i fc)3/2 -  (log(logi* -  ( l  + e)a(ifc, 0 , 2) ) )3/2^

+iV (logifc -  ( l  + e)a(ifc, 0 , 2 ))-1 й 

^ 6 exp ^ ^(log2 tk)3,2~

-  (log; tt +  log (1  -  ( 1 +  g/ ° ( 21) )  ) ) + 2A (lo g i t r 1 S

£ 6 exp ( — 1 -  2т?
3\/x  у

-  ( lo g , t t  -  — ■e/iog°(tib 0 ’2))

(log 2 (t )3/2-  

3/2 '
+ 2iV(logifc) - 1 £

^ 6 exp ( —1-27? 3 ( l  + e/4)a(*fc,0,2)
' (l°g2 Ifc)1̂ 2  ̂ +3^/7r 2 log ifc

+ 2-/V exp(-A2/ 3) ^

^ 6 exp ^ - ^ ( 1 - 2 t?)(1 + £ /4 )lo g 3 / fĉ  +  2N exp(-fc2/3) ^ 

^ 6AT(1+£/ 8) + 21V exp( —fc2/3)

for every A: sufficiently large, provided 1 > 1 — 2rj2  щ /f  • Hence

W(s)(2.36) sup
tk e x p ( - ( l + e ) a ( i / f c , 0 , 2 ) ) ^ i ^ i *  a ( 0 »  2 ,  s)y/s

£  1, i.o. = 0,
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by the Borel-Cantelli lemma. On the other hand, noting that 

log(<*+ 1/ifc) = exp ((fc +  1)2/3) -  exp(fc2/3) =

=  exp — exp ( - ( *  + 1)2/3 +  Ä;2/3) )  ~

~  /̂c_1/3exp к + l)2/3)

and
a(ifc+i,0, 2) ~  3 V ^ T 1/3exp (̂fc + 1)2/3) log(A:+ l ) 2̂ 3,

we have

(2.37) log(ijt+ i/ifc) = o (a (ifc+1,0 ,2)) as к —> oo.

Therefore, for every к big enough and for any tk ú t Ú

te x p ( —(1 +  2e )a (t ,0, 2)) й tk+1 e x p ( - ( l  +  e)a (ifc+b0, 2)) =

= ( h +1/ t k) - t k • exp( — (1 + e)a(tk+i , 0 , 2)) ^

^ t k e x p ( - ( l  +  £)a(tfc,0, 2)) ^ tk ^  t.

Consequently, for any t big enough, there exists a !' =  t '( t,u) between 
íexp ( —(1 +  2e)a(t,0 , 2)) and t such that

W{t') a (0 ,2, t')y/t',

by (2.36). This proves (2.34).
We next show that for each 0 < £ < 1/5

I j2
(2.38) liminf ----- -̂-------- log < _  (1 _  5е)3у/ж a.s.
v ’ i—oo log3 1 • log t 6 t -  y '

Let
Sk ■= s k(e) =  exp(exp(fc£+2/3) ) , к =  1, 2, . . .  .

Then

log(sk+1/ s k) ~  Q  + fc£-1/3exp ({k  +  l ) £+2/3) , 

a(sk+1,0 ,2) ~  Зу/тг Q  + k~1/3~e/2 exp ({k  +  l)£+2/3)  log к
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and hence
a(sfc+1, 0 , 2) = o(log(sjt+ i /á fe) ) . 

Set bk = sk+1 e x p (— (1 — 5e)a(sfc+i ,0 ,2 ) ) . Noting that

and

we have 

(2.39)

Г W ( s ) - W ( s k) ^ (4sk\og2sk) ^ 2 \
I Ьк^ ф к+1 £*(0 ,2 ,s)y/s  -  b\ /2 J

Í sup n  = 4  U { w (s^  = (4^1og2 ^ ) 1/2|U fc^ Sf c+1 « ( 0 , 2 , a ) V e  J 1 J

P ( w ( s k) ^  (4sklog2sk)1/2, i .o .) = 0 ,

W(s) < 1 i.o. >

> p

b J 2 k+1 £*(0,2 ,a)y/s

W ( s ) - W ( s k) ^ i (4sk log2 5fc)1/2 . ^
bJ 2 k+1 e(0 ,2 ,3 )V S  = 1 kW  ’ ЬО-'-

To prove (2.38), it suffices to  show that

(2.40)
oo /

e K
k= 1 4

W ( s ) - W { s k) < x _  (4gfc log2 Sfc)1/2sup _
a ( 0 , 2, s V s

by the Borel-Cantelli lemma, since

W ( s ) - W ( s k)

1/2

*,s“ L ,  o (0,2,«)VS ’
> 1

are independent.
It is easy to  see that for each 0 < rj < 1/3{sup Í Ű £ ) < o(0, 2>s ) _ _ 4 _

t,S<S*.+. VS “ 0(0,2,»){sup
bfc üs^sk +

w ( s )  -  W (sfc) ^ (4sfclog2sfc)1/2l 
J £*(0,2, s)-y/i -  fcj/2 J

{ -1 У (б ^ )^ (4 5,1оё 2 ^ ) 1/2} ,

U
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provided к is big enough, since a 2(0 , 2 , sk+i) = о ( (̂bk/ ( s k\og2 sk) ) l ^2 
Therefore, by (2.11) and (2.1)

(2.41) P Í  sup\bk<s<ak+1 «(0,2 ,a)y/s bl/2 )

> P (  sup ™ < a( 0, 2, 3) -  — ^ — _
-  \ b kS. £ k+1 v /i -  V J a (0 , 2, s)

- p ( - W ( s k) ^ (4sfclog2+t)1/2) ^

-  ^ exp ( “ 1 ^  ( ( log20fc+ ^ 3 /2_  (loS s^ )3/2) )  -  2 e x p (-21og2s fc) ^

= r xp

^ -  exp —1 +  8ту _  3 a(sfc+1, 0, 2)(log2 sk+1)1/2
Зу/тг  ̂ ' 2  logSjt+i - k ~2 >

^ ^ e x p ( - ( l  +  8t?)(1 -  2e ) log к) -  к 2 ^ -^k  (1 e\

provided к is sufficiently large and 1 < 1 + 877 < (1 — e ) / ( l  — 2e).
This proves (2.40). Now (2.38) is proved. This completes the proof of

(1.2) by (2.34) and (2.38) and by the arbitrariness of e.
We now turn to the proof of (1.3). We again formulate the proof in two 

steps.

Step 1. For each 0 < e < 1/2

(2.42) lim inf (logt)5 т( ^ 2/) ^ 2
t — ► OO

log M í l  £  -  ( l  +  2e)26 7Г
a.s.

Put
tk = exp(Á)1/'5), A = 1 ,2 , . . . ,  0 < <5 ^ 1/2.
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Similarly to (2.35), using (2.33) and (2.27), we have

^ - ( 1 +  £)<*(**, M ) )  =

=  P sup
tk e x p ( - ( l + E ) a ( i f c , 5,2) ) ^ s ^ i j t  a [ ° i  2 , s ) y / S

W(s)
< 1 <

^ 6 exp ( -  -1—  -2?? y j ^ -  ( log(log tk -  (1 + e)a(tk,S, 2 ) ) )1/2

• ( (b g tk)s -  ( lo g tk -  (1 +  e)a(ifc,Ä,2) ) 5) j  +

+iVa(tfc,<5,2)(log2 tk)2 • ( l o g i * - ( l  + s ) a ( t k, 6, 2) ) - (1- S)(2+p/2] %

= 6 exp 1 2p l°g2 tk)1/2 • 6(1 +  e/2)a(tk, S, 2)(log tk)8’ 1 j  +

+2 Na(tk, 6, 2)(log2 tkf  • (log ifc)-(i-«)(2+P/2) ^

^ 6 exp( — (1 -  2 tj)6 ( 1  + £ /2) log2 tk) + 

+ 7V (í)(log í,)1- 5(log2 í , ) 3(log ífc) - (1- 5)(2+p/2) £

^ 6k-(l-?v)(l+e/2) +  ^(i)jfc-(1-«)(1+/»/2)/«(log jt)4 g

^ 6fc-(1+£/ 4> +  iV ^ fc -^ - ^ r ^ logfc)4

for every A: sufficiently large, provided 1 > 1 — 27/ > (1 +  e /4 ) / ( l  + e/2). 
Hence

(2.43) sup
tk exp ( ~ ( l+e )a ( tk ,6,2) ) ü s ü t k

W(s)
a (6, 2,s)y/s й 1, i.o. = 0,

by the Borel-Cantelli lemma and the assumption 0 < 6 ^ 1/2. It is clear 
that

log(ifc+1/ifc) =  o(a(tk, 6, 2)) as к —к oo.

Now a repetition of the proof of (2.34) yields (2.42), by (2.43).
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Step 2. For each 0 < er < 1/5, 0 < <5 < 1

(2.44) lim inf (log t)S 1(log2 <) 1/2 • log
t — ►OO I

7Г

Let
sk ■= sk(e) =  exp(ke+1/s), k = 1, 2 , . . .  .

Then

й( % ь М )  =  о(1о? ( % 1/ ^ ) )  as к - + oc

and

as к —► oo. Along the same lines of the proof of (2.38), one can arrive at 
(2.44). This proves (1.3) by (2.42) and (2.44).

P r o o f  o f  T h eo rem  2. The idea of the proof is completely the same 
as that of Theorem 1 and hence only a sketch will be given here. Write

ei(a:) = exp ж, ep(x) = exp(ep_ j(x )) , p =  2 , 3 , . . . .

We first prove (1.5). It suffices to show that

(2.45) liminf logp-! d P)(0  -  log p -i 1 >
0°gp-i ■ l°gpt

(1 + 2s )2бу/тт a.s.

and

(2.46) liminf<—►00
logp _ i^ p)( f ) -  logp -it  

(logp_! t)l ~S ■ logp t
й -  (1 — 5е)26л/х a.s.

for every 0 < £ < 1/5, 0 < 6 < 1, p = 3 , 4 , . . .  . Let

tk =  ep^i(k1/s), к =  1,2, . . .  .

Then

(2.47) a( t ,6,p) =  o(\ogp_1t) as t —► oo, 0 < 6 <  1, p ^ 3.
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Using (2.27), we get

log p - id P)(* fc )- lo6P-i*fc
(log p—lU t)1 áb g  p tk

й  -  ( 1  +  е ) 2 6 у/ п  J =

=  p (
\  ep_ i( lo g  j t f c -

SUP ( с ч г
(l+£)o(tk,8p))^s<,tk a { ° iP i s ) V s

= 6exp( “ ^ l ( (log>'-I'‘)i'

-  (lo§p—2 ( p̂—2 (logp_j tk -  (1 +  £)a{tk, 6, p ) ) ) ) b ^  + 

+ N (ep_2(logp_1 tk -  (1 +  e)a(tk, 6,p))) -1 ^

^ 6 exp (( lo g p - i^ ) 5 -  ( logp—1 tk -  (1 + £ )a ( tk, 6,p))'

+ N e x p ^

^ 6 exp ^ - ^ - ^ ( 1  +£/2)<5a(tfc,^,p)(logp_1 +

JT(s)
< 1 <

+

+ N  exp ( ~ H  s

^ 6Л:-(1- 277><1+е/ 2> + N  exp ^ 6Ar<1+E/4> + N  exp

provided 1 >  1 — 2rj > (1 +  £ /4 ) /( l  + £ /2). Therefore 

(2.48) p (  sup ( ^ S\ Г  -  1; i '°') =  °~
'  6p_i(logp_1 <* — ( l + £ ) a ( i j t , 6 a ( ‘hP>,s, ) vs /

It is easy to find that

logp_i tk+l -  logp.! tk -  o (a( tk, 6,p)) as к -> oo.

Hence, (2.48) implies (2.45).
To prove (2.46), we let

Sfc := sk(e) =  ep_i(fc£+1/5), fc = 1, 2, . . .  .

Acta. M a th em a tica  Hungarica 64, 1994



A N E W  LAW O F TH E IT E R A T E D  LO G A RITH M 179

Then

and

a(sk,S,p) = o ( l o g sk+1 -  log ! sk)

a \6 ,p ,Sk+1) =  o ( ( s j f c  + ie x p ( - ( l  -  5e)a(sk+1,6,p))/(sk \og2Sk) ) 1/2') .

Now along the lines of the proof of (2.38), we get that (2.46) holds true. 
Let again tk =  ep_ i (k1̂ )  and sk =  ep_i(fc£+1/'5). Then we can also

obtain that

(2.49) lim inf 1оЕр_2 ^ Р)(0  - logp_2 í ^
l°gp—2 * ■ 0 °gp_i *)1_á • logp г “t —+oo

(2.50) liminf logp—2 ЙР)(0  -  logp_2 t ^
logp-2 * ■ (logp.! 0 1" 5 • 1оёр 1 ~t —+oo

^ — (1 — 5e)26у/ж a.s.

for every 0 < e < 1/5, 6 > 1, p ^ 3.
Taking tk = ep(k) and sk = ep(k1+s), we can prove that

(2.51)

(2.52)

lim in f1Ogpf ) ( 0 - b g -p 1 >  — (1 +  2 е ) 2 \ / тг a.s., 
i^oo logp+1 t

liminf l0g?- f (<).....< -  (1 -  5е)2у/ ж a.s.
<_>0° b g p+11

for every p — 3 , 4, . . .  .
The proof of Theorem 2 is now complete.

R e m a r k  2.1. We conjecture that (1.3) holds true for every 0 < S <  1.

R e m a r k  2.2. Let X \ ,  X 2, . . .  be a sequence of i.i.d.r.v.’s with Е Х г — 0, 
E X f  — 1 and E\X{\2+s < 00 for some e > 0. Put So = 0, Sn = X\  +  • • • + 
+ X n. Consider

f(n) = max jk :0  ^ к ^ n, Sk ^ (2fcloglogА;)г 2̂|  ,

£5(n) =  max jfc: 0 ^ к ^ n, S* ^ ( 2(1 — 6)k loglog k) j  , 0 й 6 < 1,

, Sk ^ k 1/ 2a(6,p ,k)}  , <5 ^ 0, p ^ 3.riP)(n) =  max{ k:0 й к ^ n
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Note that

{d P)(rc)  ̂а(™)} = | a max Sk
(n) f̂c^n k1/ 2a(S,p,k)

< 1

and
Sn — W (n) = о a.s.

in the sense o f Strassen [6] (cf. [1]). Hence, we have, for every 0 < 77 < 1 

Г W(s)  „  , v '
l  aW<!<n s 1/ 2a(8,p, s)

< 1 -
г ( п ) = '

c m a X  , 1 / 9  /  c , \a(n)=^=n kll za{o,p,  к)
Sk

a 2(6,p,s)

< l ) c

C

W(s)
C  ̂ e(n)g*gn s 1/ 2a (i,p ,s)

< 1 + a2(<5
J__ \
6 , P , s )  J ’

provided n is sufficiently large, for any sequence { a(n), n ^ 1} with a{n) —► 
—*• 00 as n —► 00 . Now using the above relation and proceeding along the 
lines of the proof of Theorems 1 and 2, we can obtain the following results:

,• • r (logo u )1̂ 2 í (n )liminf ;----- • lo g -------  = -ЗхД7 a.s.,
П-+ 0 0  log3 n • log n n

liminf (logn )á_1(log2 n)_1/2 • log ^   ̂ =  —28\/ж1(1 -  6) a.s., 0 < 6 ^ 1/ 2 ,
71—► OO U

c(p),,. . ^logpfo ( n ) - lo g pn

7(p),

lim infn-»oo logp+1 n
=  —2у/ к a.s., p ^ 3,

,. . . . lo g p - i í í  ( n ) - l o g p _ x n  л .  Clim in f---- ------------7—f------------  = — 2by/n a.s., 0 < 0 < 1, p Í  3,
n-o° (logp_i H) logp n

— ( p )

- , 4 - 2ÍÍ ( n ) - l o g  2П oc r  c „ ,
lim m f--------------------------- H i--------  =  -2<?V7r a.s., 0 > 1, p г. 3.
"^°° logp_2 n • (logp.j n) logp n
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A N O T E  O N K Ö N IG ’S M IN IM A X  TH EO R EM
L. L. STACHÓ (Szeged)

Recently G. Kassay [1] published an elementary proof of König’s mini
max theorem [2]. His method seems to be an interesting mixture of both of 
the so-called methods of level sets and cones, respectively. Formally, König’s 
theorem is an extension of Ky Fan’s classical minimax theorem [3] by re
stricting convexity to diadic rational convexity. It is well-known [4] that 
Ky Fan’s theorem can be deduced from the Brézis-Nirenberg-Stampacchia 
level set minimax theorem by a function lifting. It is an old open question 
whether there is a short direct connection between König’s and Ky Fan’s 
minimax theorems.

The aim of this note is to show that the mentioned function lifting in [4] 
transforms a König-type saddle function into a Ky Fan-type saddle function 
with the same minimax values. A careful analysis of the proof of this fact 
leads also to new generalizations of König’s theorem, which seem not be 
provable with a simple adaptation of Kassay’s method.

Finally we remark that the question of König-type generalizations of M. 
Sion’s minimax theorem [5] is still open.

1 .  O n  t h e  c o n t i n u i t y  o f  c o n v e x  f u n c t i o n s

Throughout this section let V denote an arbitrary vector space and 
let T be the finest locally convex topology on V. It is immediate that the 
absorbing convex subsets of V form a neighbourhood basis of 0 for r. We 
say that a subset S С V  is a simplex in V  if S is the convex hull of a set 
В С V  such that the system {b -  b0 : b G В ,b ф 60} is linearly independent 
for all &o G B.

1.1. Lemma. Assume S is a simplex in V, К  is a convex subset of  S 
and x G K- Then the following statements are equivalent:

(i) К  is a neighbourhood of x in the relative topology of т on S,
(ii) {u G V : 3e > 0, x +  ev G K )  =  {v G V : 3e > 0, x + ev G 5}.

P roof. By shifting a suitable vertex of S into the origin and restricting 
ourselves to the subspace spanned by 5, we may assume without loss of 
generality that S — c o ( ß  U {0}) the convex hull of some Hamel basis 
В of V  with the origin and x = X^=i ßibi for some b i , . . . , b n G В and



18 4 L. L. STACHÓ

ß i ,  . . . , ß n >  0 with £ " =1 ßi =  1. Let us write

Co := {bi -  x : i = 1, . .  . , n  -  1}, C\ := { b -  x  : b £ В \  {bx, . . .  ,&„}} .

Then С := { —ж} U Co U C\ is again a Hamel basis of V and

(1.2) {u £ V : 3e > 0, ж +  ev £ 5} =  co ((R +C) U ( - R +C o)).

Therefore for each c G C  there exists e(c) > 0 with x  + [0,£(с)] с С К  for 
c G C \  Co and x + [ — £(c),e(c)] с С К  for c 6 Co- Define

U := c o ( ( J  [ -  e(c),£(c)] с + ж),
cec

Since C is a Hamel basis of V, U is a convex r-neighbourhood of x and

U = l x  + ^ 2  Acc : ( c ^ A J e A ,  ^  |AC|/e(c) ^ l |
A c€C c€C >

where A := {functions C —> R  with finite support}. By (1.2) we obtain 

U П S =  I  ж +  ^  Acc : (с к-»- Ac) G A, Ac ^ 0 (cG С), ^  Ac/£(c) ^ 11 =

=  co( U  [0 , £(c)j С + ж).
cec

Since x,e(c)c  +  x E К  (с E C ), we have U П 5 С К  which completes the 
proof.

1.3. C o r o l l a r y . If {gi : i £ 1}  is a family of affine functions on V 
such that the function f  sup,ej<jft- is finite on the simplex S then f  is 
continuous on S with respect to the relative topology of r.

P r o o f . First of all remark that convex functions of one real variable 
are always upper semicontinuous. Hence, for any x £ S, g > 0 and b G { d E 
G V : >  0, ж + ev £ 5 }  there exists e > 0 such that f (x  +  £u) < g +  /(ж )
for all £ G [0,£]. Thus the convex level sets К7 := {ж £ S  : /(ж) < 7 } are 
all open in the relative topology of r on 5 by 1.1. That is, the function 
/  is upper semicontinuous. On the other hand, affine functions are all 
r-continuous on V. Hence /  as the supremum of a family of continuous 
functions is lower semicontinuous on 5  in the relative topology of r.
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2 .  K ö n i g - c o n v e x  a n d  K y  F a n - c o n v e x  m a p p i n g s

2 . 1 .  D e f in it io n . Let E  be an ordered vector space and Z be any set. 
We say that a mapping Ф : Z  —► E  is König-convex if for every Z\ , z-i G Z 
there exists z £ Z  with Ф(г) ^ (1/2)Ф(21) + (1/2)Ф(22). The mapping Ф is 
said to be Ky Fan-convex if for every Z\,Z2 G Z  and t G [0, 1] there exists 
z G Z  with Ф(г) ^ (1 — <)Ф(гх) + 1Ф(г2). If -Ф is König-convex (resp. Ky 
Fan-convex) then we say that Ф is König-concave (resp. Ky Fan-concave).

Throughout the whole work we write V  for the field of diadic rationals.
2 .2 . L e m m a . 7/Ф  : Z  —► E is König-convex then fo r  every finite seqence 

z i , . . . , z n G Z  and 0 ^  S i , . . . , 6 n G V  with f,- =  1 there exists z  G Z 
with ФО) ^

P r o o f . Define Z  : =  {functions Z  — *  R  with finite support} and

В Д : =  Е ?(2)ф(г) ( * e Z).
z £ Z

Let T  := { z G Z : 3z G Z, Ф(г) ^ Ф (г)} . We have to prove that

(2.3) T  J  <z G Z  : range (Z) С V ,  2 ^ 0 ,  ^  2(2) = 1 1 .
zez >

By writing l z for the characteristic function of the set { z } ,  we have l z G T 
because Ф(12) = Ф(г) (z  G Z). Furthermore, if 21,22 G Z  then for some 
21,22 G Z  we have Ф(^) ^ Ylz^Z z i (z ) ^ ( z ) (® = 1, 2). Since Ф is König
convex, hence there exists 23 G Z with

ф (*з) ^  ^ ( * i )  +  ^ Ф Ы  ^  ( ^ 1 ( 2 ) +  \ M z ) ]  $ (* )•
z e z  '  '

Thus T  D ( 1/ 2)T + (1/ 2)T  and l z G T  (2 G Z)  whence 2.3 is immediate.
2 .4 . LEMMA. Let E  be a function space (with its natural ordering) 

and let Z  be a compact topological space. Assume Ф : Z  ^  E is a lower 
semicontinuous1 König-convex mapping. Then Ф is necessarily Ky Fan- 
convex.

P r o o f . Fix any 20,z x G Z. By 2 .2 , for every <5 G V  П [0, 1] there ex
ists 25 G Z  such that Ф(г^) ^ (1 -  £)Ф(2о) + ^Ф(2х). Given any t G [0 , 1],

1 I.e. if E C {functions Q —► R} then for each fixed u> 6 ft the function z Ф(г)(о;) 
is lower semicontinuous on Z.

Acta Mathematica  Hungarica 64, 1994



186 L. L. STACHO

choose a sequence 61,62, . . .  E V  П [0, 1] such that t = lim„_oo 6n- By the 
compactness of the space Z,  there exists an index net (n,- : i E 1 ) with 
limtgxz,5n =  г* for some 2* E Z.  Then

$ 0 *) ^ liminf Ф(г5п.) ^  liminf [(1 -  «п;)Ф(го)+ п̂,.Ф(гг)] ^гбХ * г£1

 ̂ (1 -  *)Ф(*>) + *Ф(*1).

3 .  K ö n i g ’ s  t h e o r e m  v i a  K y  F a n ’ s  m i n i m a x  t h e o r e m

3.1. D efinition . Henceforth let X  denote a compact topological space, 
У a non-empty set and let F  be a function X  x Y  —► R .  We write E x  
(resp. E y )  for the space of all real functions on X  (resp. Y) .  We denote 
by rx  the finest locally convex topology on the subspace X  := {x : supp (ж) 
finite} and we embed the set X  into X  by identifying each point ж E X  
with its characteristic function l x. In accordance with this embedding, we 
denote the simplex { i E l  : ж ^ 0, ^2xeX ж(ж) = l}  by со (X ). The objects 
Y , ту, со (У) are defined analogously.

We say that the function /  is of König-type if the mapping x / ( ж , •) 
is König-concave and upper semicontinuous from X  into the function space 
E y  (see footnote and у i—► /(• , y) is König-convex from Y  into Ex .

Similarly we speak of fuctions of Ky Fan-type when replacing König- 
convexity (concavity) in the above definition by Ky Fan-convexity (concav
ity).

Finally we shall write shortly inf sup /  (resp. sup in f /)  instead of 
m iyeY supxeX f ( x , y )  (resp. supx6*  mfyey /(ж , у)).

3.2. P roposition . Let f  : X  x Y  —► R  be a function of König-type. 
Then the lifted function f  : X  X co(F) —»• R  defined by

J ( x , y ) : =  := ^ y { y ) f { x , y )  (ж E X,  у E со (У))
у e V

is of Ky Fan-type and it satisfies
inf sup /  =  inf sup / ,  sup inf /  = sup inf / .

P ro of . For any x £ X ,  clearly in%gco(y) J(x,  y) =  inf yeY f ( x , y ) .  
Hence sup inf /  = sup inf / .

We have also inf sup /  =  infygy supx€A- /(ж , l y) ^ inf sup / .
To prove the converse inequality, notice that со(У) is a simplex in Y  

and for any ж E X,  the function gx : у '̂ fijyeYy{y ) f { x , y )  is affine on У. 
Moreover, if у E со (У) and supp (у) = {г/1; . . . ,  уп} then

Acta  M athem atica  Hungarica 64, 1994



A N O T E  ON K O N IG ’S M INIM AX T H EO R EM 187

n  n

9x{y) =  У ]уЫ)1(х,Уг)  S  y 'm a x / i i ' .K i)  < oo (x e  X)
x ' £ Xt = l 1 = 1

since, for any fixed у £ У, the function x' i-> f(x',  y) is upper semicontinuous 
on the compact space_X. Thus we may apply 1.3 to conclude that the 
function у и->• supX£x f ( x ,y)  is convex and continuous when restricted to 
any finite dimensional affine section of со(У). Fix again an arbitrary у £ 
£ со (У) and let supp (y) =  {j/1}. . . ,  yn}. Given any e > 0, we can choose 
diadic rationals . , 6n ^ 0 with ^ = 1 such that

sup f i x ^ S i l y A  5Í sup f ( x , y )  +  e.
x£X \  J=1 /  x£X

Since the mapping у i—> f ( - , y ) is supposed to be König-convex, by 2.2 there 
exists у* £ У with

Therefore

П  /  П  \

Я -.» ’ ) S = - . y i . i , , )
i—l ' i—l '

inf sup /  = sup f (x,y*)  ^ sup f (x,  y) + £. 
x£X x£X

By the arbitrariness of у £ со (У) and e > 0, hence inf sup /  ^ sup inf / .
By 2.4, the mapping x (-»■ f(x, - )  is also Ky Fan-concave. Hence, given 

any t £ [0,1], женат £ -X", there exists xt £ X  with

f ( x t ,y)  ^ (1 -  t ) f ( x0, y ) + t f (x\ ,  у) (у £ У).

If у £ со (У) then

/(**>») =  Y  y(y) f (xt,y)  ^
y e Y

^ 5 ^  2/(2/)[(! -  t ) f (x0,y)  + t f (x i , y ) ]  = (1 -  t )J(x0,y)  + t f ( x u y).
y e Y

Thus the mapping x f(x, - )  is Ky Fan-concave X  —> Eco(yy
For any fixed у £ со (У) the function f ( - , y ) =  £ уеГ у(у)Н'-У) is a 

finite convex combination of upper semicontinuous functions on X.  Thus 
the mapping x ^  f (x, - )  is upper semicontinuous X  —> Eco(yy

Finally the mapping у >-► f ( - , y ) is affine со(У ) —> Ex,  whence it is in 
particular also Ky Fan-convex.

3.3. C o r o l l a r y  (König’s theorem [2]). If f  : X  x У —> R is a function 
of König-type then inf sup /  = sup inf / .
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P r o o f . We may apply Ky^Fan’s minimax theorem to the fuction /  in
3.2. Hence inf sup /  =  sup inf / .

4 .  G e n e r a l i z a t i o n s

Throughout this section let X,  Y  denote two non-void sets, let /  be 
a function X  X Y  —> R . We shall keep the notations X , t x , c o ( X )  resp. 
Y , T y , c o ( Y )  established in 3.1. We denote by /  the affine lifting

7 ( x , y ) :=  ^ 2 y ( y ) f ( x , y )  {x G X,  у G со(У))
y e Y

of the function /  in the second variable to X  X со(У ).
4.1. P r o p o s i t i o n . Assume the function f  : X  x У -+ R  has the fol

lowing properties:
0)  supx6X f ( x , y )  <  oo ( y e Y ) ,

(ii) the set {у E со (У ):  З у Е  У f  (■,у) ^ f(-,  у)}  is dense in со (Y ) with 
respect to ту.

Then we have inf sup /  = inf sup /  and sup inf /  = sup inf / .
P r o o f ./The simple arguments at the beginning of the proof of 3.2 show 

that sup inf /  =  sup inf /  and inf sup /  ^ inf sup / .
Since со (У ) is a simplex in У and since the family { f ( x , •) : x E X }  of 

affine functions on X  is bounded from above (by assumption (i)) for each у E 
G со(У ), it follows from 1.3 that the function со(У ) Э у sup^g^ f (x , y )  
is continuous with respect to the topology ту. Then, given any £ > 0 and 
у G со(У ), by assumption (ii) there exist y* G У and jT G со(У ) with

su p /(z ,y * ) ^ sup 7(2,1/) +  £ and / ( • , y*) ^ J ( - , y*).
x£X  xdX

Thus inf s u p / ^ sup x € X f(-,y*)  ^ supxeXJ(x,y*)  ^ supx e XJ(x,y)  + £ 
for every у G со (У) and £ > 0. This implies inf sup /  ^ inf sup / .

4.2. T h e o r e m . Let X  be a compact topological space, Y an abstract 
set and f  : X  X У -> R  к  a function satisfying 4.1(ii) and such that 
the mapping x f ( x ,  •) is Ky Fan-concave and upper semicontinuous (cf. 
footnote г) . Then inf sup /  = sup inf / .

P r o o f . The lifted function /  : X  x со(У ) —► R is of Ky Fan-type 
(for definition see 3.1). Hence, by Ky Fan’s minimax theorem inf sup /  = 
= sup inf / .  Since for every fixed y e Y ,  the function x >->• f (x , y )  is upper 
semicontinuous on the compact space X,  also 4.1 (i) holds. Thus, by 4.1, 
also inf sup /  = inf sup /  = sup inf /  = sup inf / .
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4 .3 .  R emark . Several equivalent but seemingly weaker formulations 
can be given for the conditions of 4.2.

(i) The Ky Fan-concavity of ж i-> / ( ж, •) can be replaced by König- 
concavity in view of 2.4.

(ii) Observe that, by writing Л4у := { functions Y —> (0, oo)} , the family 
of all figures

uß := ly e Y : |F (k) |a*(*) < l }  (m 6 M y )
^ y £ Y  J

forms a neighbourhood basis of 0 for the topology ту on the space Y.  
Therefore condition 4.1(ii) can be formulated elementarily as follows:

For every finite family { y \ , . . . , y n} C Y  and ^ 0 with
E?=i ti =  1 and f°r every /i 6 M y  there exist y* G Y  and { (у /, t / )  : i = 
= 1 , . . .  ,n '}  C Y  X R+ such that n' ^ n, у,' = у,- (* = 1 ,.. .  ,n), ^ " =1 t f  = 
= 1,

7l'f(;y*)ü Z W ’*') a n d  1^* —  <  !■
t= l ign «>n

4.4 .  C o r o l l a r y . If X  is a compact space, Y  is a set and f  : X  x Y  —* 
-» R  is a function such that

{y  G со (F) : 3y* G Y, f ( - , y *) ^ »(»)/('» у)) is dense in c o (y )
with respect to the topology ту,

{ж 6 co(X ) : Зж* G X , /(• , ж*) ^ SxeA  ж(ж)/(ж, ■)} is dense in со (X ) 
with respect to the topology rx and the mapping x >—> /(ж ,-) is continuous 
(cf. footnote x) then in f  sup /  = sup in f /.

P r o o f . In view of 4.3(i) we need only to verify the König concavity of 
ж /(ж ,-).

Let Жх,Ж2 G X  be arbitrarily fixed. We have to find ж* G X  such that 
f (x*,y)  ^ (/(жх, у) +  /(ж 2, у)) /2  for all у £ Y .

Given any £ > 0 and finite subset F C Y ,  define

А*е,И*) := E max |/ (ж ,у ) |/е  (ж G X).
y e F

By the continuity of the mapping ж i-» /(ж ,-), the function p c,F  belongs to 
M x  (for definition see 4.3(H)). By assumption, we can choose же>у  G X  
and xe,F £ co(X ) such that

/(*e,F, *) = X I * ' A x ) f ( x i О and x e , F  ~  X * £  U ß t  J 
x e x
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where ж* := ( l / 2 ) l Xl + (1 /2 )1 ^  and Ußtf  denotes the r^-neighbourhood 
of 0 defined in 4.3(ii). It follows from the definition of Ußc f that

<

Y  xe, F{x) f (x, y) -  Y  Х*(Х) Я Х,У)
x(zX x&X

Y  -  ®*(®)| m a x |/(-,j/) |
xex

<

(у e П

In particular

f { x e, Fi  У)  =  J ^ X £ ,F ( x ) / ( x , ^ )  ^  Y  Х * ( Х Ш Х , У)  -  £ =
x£X x£X

= ^ f ( x l ,  У) +  ^ f ( x2, y) -  e (y 6  F).

If x* is an accumulation point (with respect to the topology of X )  of the net 
(x£)F : £ > 0 ,F  finite C Y) then, by the continuity of the functions x >-»• 
>~>f(x ,y) (У € Y) on the space X , we have /(ж*, у) ^ ( /(® i, y) +  / ( * 2, y)) / 2 
for all у G Y.
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C O B O R D ISM  G R O U PS OF IM M ERSIO NS OF 
O R IE N T ED  M ANIFO LDS

A. SZŰCS (Budapest)1

1. Introduction

In this paper we compute the cobordism groups of immersions of ori
ented manifolds by projecting the images of the immersions into a hyper
plane. Such a “project in a hyperplane” method has been used by T. Ban- 
choff [1] and U. Koschorke [5]. Banchoff considers the singular set as an 
invariant. Koschorke takes into account also naturally arising bundles and 
bundle maps over the singularity set and forms some rather complicated bor- 
dism groups from these data and relates these groups by exact sequences to 
the cobordism groups of immersions.

The essential new feature in our approach is that we consider the whole 
singular map and construct a classifying space (i.e. an analogue of the Thom 
space) for the cobordism of these singular maps.

This classifying space by its construction has a filtration with simple 
quotient spaces. Koschorke’s exact sequences arise now simply as homotopy 
exact sequences of pairs of spaces. Moreover we can consider the spectral 
sequence arising from this filtration and this allows us to get results in a 
much wider range than just by using the exact sequences.

By this method we have investigated the cobordism groups of immer
sions and embeddings of unoriented manifolds in [16]. There the compu
tation was trivial since the spectral sequence had a single nonzero column 
and so it degenerated.

In the present case of oriented manifolds the spectral sequence is non 
trivial and the main work is devoted to its computation. (I tried to make 
this paper independent of [16].)

1 S u p p o rted  by  th e  A. v. H um bold t Foundation  a n d  th e  H ungarian N a tional Science 
Foundation , G ra n t No. T4232.
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2. Form ulation o f  th e  theorem s

N o t a t io n s . 1. The cobordism group of immersions of oriented n di
mensional smooth manifolds into the euclidean space R n+k will be denoted 
by Imm5°(n , k). (A cobordism joining two such immersions is an immersion 
into Rn+k x I , see for example [7].)

2. Let C(2,3) denote the class of finite Abelian groups (in the sense of 
Serre) having only 2 and 3 primary torsions. Let C(2) be the class of finite 
2-primary groups and C(3) that of finite 3-primary groups.

The aim of this paper is to prove the following

T h eo r em  1. For n < 3k the following sequences of groups are exact 
modulo C(2 ,3):

(a) If к is even then

0 —► —> Imms o (n,A;) Vn,k > Imms o (n,A: + 1) —► 0.

(b) If к is odd then

0 —► Imms o (n, к) Vn'k > Imms o (n, к + 1) + Qn_k_ l $  fln_2jt_ 2 —*• 0

where the groups and maps are defined as follows:
(1) fÍ, is the group of cobordism classes of oriented manifolds.
(2) <pn,k • Imms o (n, &) —> Imms o (n,k  + 1) sends [/] G Imms o (n,fc) to 

[t о /]  G Imms o (n, к +  1) where i denotes the inclusion Rn+k = Rn+k x 0 C 
C R n+k X R =  Rn+k+1.

(3) The maps u\ : Imm5° (n , к + 1) —*■ and <71,1 : Imms o (n, к +
+  1) —> fin—2A:—2 are defined as follows. Let p : R n+ k+1 —у R n+k be the 
standard projection and let [f] be the cobordism class of an immersion 
f  : M n -> R n+k+1. For a generic immersion f  the sets S 1(p о / )  and 
S 1,1(p о / )  are oriented manifolds of dimensions n — к — 1 and n — 2k — 2 
respectively. L e i [ £ 1(p o /)]  and [EJ,1(p o /) ]  denote their cobordism classes 
in and i in_2jt_2 respectively. They depend only on the class of f .

Let us put

([ /] )  =  [ ^ ( P 0 /) ]  and cri,i([/]) =  [ £ u ( p o / ) ] .

Now the map 1 т т 5°(тг, к +  1) —> ф íín.—2fc—2 the second sequence
(for к odd) is о  1 ® <71,1.

For к even the maps o\ and стад are zero modulo C(2,3) (and then 
actually 2 • <7i = 0  and 2 • одд = 0 since ÍÍ, has only second order torsion 
elements).
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(4) The map f in_£ —* Imm5°(n,fc) of the first sequence can be described 
as follows. Let

[/] € Ker (<рП'к : Imms o (n, A;) —> Immso (n, H I ) ) .

Then there exists an immersion F into R n^ k+1 x I such that dF  = / .  Let 
us project the image of F into R n+k X I . For a generic F we obtain an n — к 
dimensional manifold of singular points of this projection. Let [E] € Hn-k  
be the cobordism class of this manifold. It turns out that the correspondence 
[/] —> [E] defines a C(2,3) isomorphism Кег</зп *. ifn_j.. Its inverse 
composed with the inclusion Ker С 1 т т 5°(п,&) gives the map if„_*. —> 
—* Imms o (n, k). (For the correctness of this definition see below in Remark
w

Addenda to the Theorem:
A ddendum 1. The first sequence (where к is even) has a splitting map 

Д : ImmS0(n,A;) —* $ln-k

which associates with the cobordism class [/] of an immersion the cobordism 
class of the manifold of the double points of / .

R emark 1. The double points of the projection of F  to R n+k x I  form 
an oriented cobordism between the singularity manifold of this projection 
and the double point manifold of / .  (The latter is orientable since к is 
even.) This shows that

a) the class [E] depends only on [/] and not on [F1].
b) the map A  is a splitting map.
A ddendum 2. (a) The first sequence (for к even) is actually exact 

modulo the class of finite 2-primary groups.
(b) The homology groups of the second sequence (where к is odd) do 

have 3-torsion (for some n < 3k). Nevertheless it becomes exact modulo 
the class of finite 2-primary groups if we replace in it the group ifn_2/c-2 
by the cobordism group i f^ l2fc_ 2 those oriented n -  2k — 2 dimensional 
manifolds whose stable normal bundles are split into the direct sum of three 
isomorphic bundles. The groups Í); and f if7 are isomorphic modulo their 
3-primary torsion but if)*7 does have 3-torsion (for some i) while if; does 
not.

C orollary. The group Imm5°(n,A:) has no p-torsion if p > 3 and 
n < 3k.

P r o o f . For к big enough Imm5°(n,fc) sa if„. By Theorem 1 

Ker ( ipn k̂ ■ Imms o ( n ,k) —* Imm5 0 (n ,/ : + ! ) )
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has no p torsion. □
R e m a r k  2. (a) The ranks of the groups Imm,so(n,A:) are well-known 

(see e.g. [3]). They can be computed as follows:

Imms o (n ,k) <gi Q и  тг3п+к(М  SO(k) ® Q) a  Hn+k(MSO(k) ;Q)  «

«  Hn+k( MSO{k) ;Q)  w Hn{ B S O { k ) - Q) .

(b) The groups Imms o (n, k) have no odd torsion if n < 2k.
Actually Theorem 1 allows us to compute the groups Imms o (n, k) com

pletely modulo 2 and 3 torsion.
M ain  C o r o l l a r y . Let Pn k be the subgroup of the cobordism group f ln 

consisting of those cobordism classes [M] for which each Pontryagin number 
corresponding to a monomial divisible by a normal Pontryagin class pi for 
2i > к are zero. Then for n < 3k the following isomorphism holds modulo
C( 2,3):

Imm5°(n , к ) {Pn k if к is odd
Pn,k Ф Пп-к if к is even.

When к is even then the second factor is the cobordism class of the 
manifold of double points.

N o t a t io n s . 1. Let Emb(n,fc) denote the cobordism group of 
embeddings of oriented те-manifolds into Rn+k. (Hence Emb(n,fc) ss 
«тс n+k{MSO( k) ) . )

2. Let Emb(n,fc® 1) denote the cobordism group of embeddings of 
oriented n-manifolds into р п+к+г with nonzero normal vectorfield. (Hence 
Emb(n, 1 : ® 1 ) й  7rn + *.+1 ( SMSO(k) )  .)

THEOREM 2. For n < 3k the following sequences of groups are exact 
modulo C(2,3):

(a) If к is even then

0 —► > Emb(n,fc 0  1) —► Emb(n, к +  1) —*• 0.

(b) If к is odd then

0 -+ ü n_k 0  Qn_ 2A;-i -»■ Emb(n, к 0  1) ->• Emb(n,k + 1)
where the maps are defined as follows:

The map
Emb(n, к 0  1) —► Emb(n, к +  1) 

is given by forgetting the normal vector field.
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The map iln-k  —> Emb(n, к ® 1) can be defined as above for immersions 
(see part (3) in Theorem \) .

The map i ln_2fc_i —► Emb(n, к ® 1) can be defined analogously but tak
ing only the E1,1 singular set of the projection (instead of the whole singular 
set).

More precisely the definitions of the last two maps are the following. Let 
/  be a map representing an element of the kernel of the map Emb(n,A; ® 
® 1) —► Emb(n,A: +  1). Then /  is an embedding with normal field, and 
there is an embedding F : W n+1 —> Rn+k+1 x /  of a manifold W n+1 with 
boundary, such that the restriction of F to the boundary of lT n+1 coincides 
with / .

By Hirsch’s theorem /  is regularly homotopic to an immersion into 
Rn+k. Therefore — after a possible regular homotopy — the embedding 
F projected to Rn+k x /  will have no singularities at the boundary. Let 
7Г denote the projection Rn+k+1 x /  —► Rn+k x I. Then the map ж о F has 
only E1 singularities and by dimensional reasons these are only E1,0 and 
E1,1 singular points. The manifolds Е1(7г о F) and E1,1(x о F) are oriented 
manifolds of dimensions n — к and n — 2k — 1 respectively with cobordism 
classes [Е 1(7г о Е)] E Qn-k  and [Е1,Х(7Г о F)] £ Ún- 2k-i- The correspon
dence [/] —» ([E 1(7T о  F)] , [Е1,1(7г о  F )] ) defines a C(2,3) isomorphism of 
the Ker (Emb(n, к ® 1) —► Emb(n,A; -f 1)) to Cln-k  ® iln- 2k-i-  Its inverse 
composed with the inclusion into Emb(n® 1) gives the map

fIn-к ® iln-2fc-i -*• Emb(n, к ® 1)

from the exact sequence.
Addenda to Theorem 2.
A ddendum  1. An embedding with normal field into Rn+k+1 is regularly 

homotopic to an immersion into R n+k. Taking the double points set of this 
immersion we obtain a splitting map Д analogous to the one in Theorem 1.

A ddendum  2. The analogue of Addendum 2 to Theorem 1 holds, i.e. 
the sequence for к even is exact modulo the finite 2-primary groups, while 
the homologies of the sequence for к odd have 3-torsion.

T erminology . From now on we shall say that a certain sequence is 
exact or a homomorphism is an isomorphism if it is such modulo C(2,3).

3 .  T h e  s c h e m e  o f  t h e  p r o o f  o f  t h e  t h e o r e m s

For Theorem 1: We project the immersions M n —► Fn+fc+1 into Rn+k 
and get singular maps M n —► Rn+k of certain type (E 1,1-prim maps in the 
terminology of [16] i.e.: these maps may have only E1,0 and E1,1 singular
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points and their kernel bundles are trivial over the sets of singular points). 
The cobordism group of these singular maps M n —► N n+k can be identified 
with the cobordism group of immersions into Rn+k+1 i.e. with Imms o (n, 
к +  1). One can construct a classifying space X(k)  for the cobordisms of 
singular maps of this type. (See [16] and Section 4 below.) Now our task will 
be to compute the homotopy groups of this space X(k).  The construction 
of X(k)  provides a filtration Г(&) C Z(k) C Y(k)  C X(k).  Investigating 
the spectral sequence associated with this filtration in the stable homotopy 
groups and in the homotopy groups we shall obtain Theorem 1.

Theorem 2 can be proved mainly in the same way; we only have to re
place the space X(k)  by another space X ( k ) which classifies the projections 
of embeddings, see [14]. It also has an analogous filtration:

X{k)  D Y ( k ) D Z(k) D f(fc).

The computation of the spectral sequence of this filtration will prove The
orem 2.

4. T h e  c o n s t r u c t i o n  o f  t h e  s p a c e s  X(k)  Э Y(k ) D Z(k) D Г (к)

4 .1 . T h e  s p a c e  Г(к) d= f S l ° ° S ° ° MSO(k) .  Here if is the loop-space 
functor and S is the suspension.

R emark Г. This is the classifying space of codimension к immersions 
having oriented normal bundles in the following sense. The n +  fc-th homo
topy group of this space is isomorphic to the cobordism group of immersions 
of oriented n manifolds in Rn+k, i.e.:

жп+к(Т(к))  ss Imms o (n, к).

Moreover any codimension к immersion with oriented normal bundle 
defines a unique homotopy class of maps of its target manifold into T(k).

4 .2 . T h e  s p a c e  Z(k).  (Compare with the space X(k)  in [11] and [13].) 
Before constructing this space we need some definitions.

D efinition . (1) A smooth map /  : M —> N  is a prim map if it is the 
composition of an immersion M  —► N  X R with the projection N  x R —> 
—>• N . (prim = projected immersion.) An equivalent definition is that the 
differential of the map at each point has at most one dimensional kernel and 
the line bundle formed by these kernels over the set of singular points is a 
trivial line bundle.)

(2) A prim map /  : M n —* N n+k will be called £ lr prim  map (£ lr = 
_  number of digits 1 is r) if it has no E1̂ 1 singular points and
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the Elr singular points are not multiple points. For such a map we denote 
by E ( /)  the set of Elr singular points and by £ ( / )  its image.

The space Z (k ) which we are going to construct now will be the classi
fying space of E1,0 prim maps. (E1,1 prim maps will be called also Z-maps.) 
Let /  : M n —► N n+k be a E1,0 prim map. Let us denote by T and T  the 
tubular neighbourhoods of E( / )  and E( / )  in the manifolds M" and N n+k 
respectively. Then the following commutative diagram arises:

(*)

T

*[

f\T
t

7Г
т л

4 f )

We recall from [17] that for these commutative diagrams there exists a 
universal one. Namely there exists a universal E1,0 prim map

(**) Rk+i
£

ф
£

в iden tity

to
 <

—

such that for any £ 1,0 prim map /  the diagram (*) can be induced from 
this diagram, i.e. there exist vector bundle maps j  : T —*■ £ and j  : T  —► £ 
which are isomorphisms on each fibre and

Фоу =  | о ( / | Г ) .

The bundles £ and £ are the к + 1 and 2k + 1 dimensional universal 
vectorbundles over the space BSO(k)  associated with the representations 
a : SO (k ) —► SO(k +  1), a(A)  =  diag(l,^4) and ß : SO(k) -* S 0(2k  +  1), 
ß{A) =  diag (1, A, A).

(Here diag(Ai, Á2, . . . )  denotes the matrix with the blocks Ai , A 2, . . .  
on its diagonal and with zero elements otherwise.) We shall not repeat 
here the description of the map Ф in details. (See [17].) We only recall 
that Ф is described locally by the local normal form of E1,0 maps. (Ф is 
a fiberwise map but it is not linear. Its restriction to any fiber R k+1 of 
£, x £ В  =  BSO(k) ,  gives a map to the corresponding fiber R%k+1 of £
and the image of this map is the к + 1 dimensional Whitney umbrella in 
R2k+i _  Ä2*+i )

The image of Ф intersected with the sphere bundle S(£) defines an 
(infinite dimensional) immersed submanifold of codimension к. Therefore 
by Remark Г a unique homotopy class of maps pz  : *?(£) —> T(k) arises.

Acta M athem atica  Hungarica 64, 1994



1 98 A. SZŰCS

The definition of the space Z(k)  is

Z(k)dAf T(k)UpzD(l).

C o r o l l a r y . Z(k) /T(k ) =  S(T2')k)-

Here S denotes the suspension, T is the Thom space functor, 7*. is the 
universal к dimensional oriented vectorbundle and 27*. denotes the sum 
I k  0  Ik-

R em a r k  Z. The constructed space Z(k)  is the classifying space for the 
E 1,0 prim maps of codimension k. This means that any E1,0 prim map 
defines a unique homotopy class of maps of its target manifold to Z(k).

4.3. T he space Y(k).

D e f in it io n . A point P  in the source of a map /  is called stationary 
point if

1) it is a E 1,0 singular point, and
2) / _1(/(-P )) consists of two points: the point P  and a nonsingular 

point.

Let us denote by St ( / )  the set of stationary points of a map /  : M n —* 
—> N n+k and by St ( /)  its image, St ( /)  = / ( St ( / ) ) .

The analogue of the universal diagram (**) exists for the stationary 
points of prim maps too, see [17], Example 2.

The universal bundle £ in this case will be (27k ф 1) X 7*, over the space 
BSO(k)  X BSO(k) .  The space Y(k)  will be the following:

T(fc) = Z(fc)U„y£((27 fc©l)x7fc)
where py '■ сШ ((27*, ф 1) X 7 ^) —*► Z(k) is an attaching map analogous to 
p z  (existing by Remark Z).

C o r o l l a r y . Y(k) /Z(k)  =  ST2^k Л Т 7 *..

R em a r k  Y . The space Y ( k )  is the classifying space for those codimen
sion к maps, which have (besides the regular points) only simple E1,0 points 
and stationary points. Such a map will be called У-map. Any codimen
sion к У-map with oriented source and target manifolds induces a unique 
homotopy class of maps of its target manifold in У (Ar).

4.4. T h e  space X(k) .  The analogue of the universal diagram (**) 
holds also if we substitute for E ( / )  the set Ea,1( / )  of E1,1 points of / ,  where 
/  is a codimension к Е1,х- р п т  map. (See [17], Example 3.)
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The target bundle £ in this case is 37^ ® 2c1, where e1 is the trivial line 
bundle.

The definition of the space X ( k ) is the following:

X( k)  = Y(k)  U PxD{^')k ® 2c1)

where p x  : dD(37*, ® 2c1) -+ Y(k) is an attaching map defined according to 
Remark Y by the image of the map Ф : £ —► £ in 5(£).

R e m a r k  X. The space X(k)  is the classifying space of E1,1 prim maps 
with oriented source and target manifolds. This means that any such map 
induces a unique homotopy class of maps of its target manifold in the space 
X(k).  (E 1,1 prim maps will be called also X-maps.)

C o r o l l a r y . X ( k ) / Y { k )  = 5 2T37fc.

Sum m ary. So far we have constructed the spaces X(k)  Э Y ( k )  D 
D Z(k) D Г(к).

The space X(k)  classifies the prim E1,1-maps of codimension к of ori
ented manifolds. The dimension of the set of E1,1 singular points of a generic 
map /  : M n —► N n+k is n — 2(k + 1 ) .  If n + 1 < 2(k + 1) + к = 3k + 2, then 
the E1,1 points are not multiple points either for the maps or the cobor- 
disms joining them. Since the more complicated singularities have even 
bigger codimension we have:

7rn+k(X(k))  ~  Imms o (n , к + 1).

Now we use the spectral sequence arising from this filtration to compute 
the homotopy groups of the space X(k) .

5 .  G e n e r a l i t i e s  a b o u t  s p e c t r a l  s e q u e n c e s

Our reference for spectral sequences will be Chapter 15 of Switzer’s 
book [10] with a slight modification. Switzer treats spectral sequences 
for arbitrary (extraordinary) homology theories. We are going to apply 
them for homotopy groups, which of course do not form a homology theory. 
But the arguments in [10] use only the exact sequences arising from pairs 
and triples of spaces. So the only point where we can not follow those 
arguments is that we must not replace the groups of pairs by the groups of 
the corresponding quotient spaces (unless we are in the range of dimensions 
where the homotopy excision theorem holds.)

The groups and differentials of the spectral sequence associated with the 
filtration X( k)  Э Y(k)  Э Z(k) D Г(&) can be seen on Fig. 1.
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Es-г, t * г-1 *S,t E's.t
Q) Г = 1

C.1 ,d2.f „d3,f cl < t eI .1, t г> t

Ыг = !

E \ , t  ~  тсж(Г(Л)),

E l t * * t+2{Z {k ) t T (k ) ) ,

E l t *7rt+3{ Y( k ) , Z ( k ) ) ,

E l t t * x t+4{ X ( k ) , Y ( k ) ) .

The final term of this spectral sequence is E°° ~  E 4. This final term 
is associated with a filtration of the group 7r*(X(fc)), i.e. 7ri+1(X) has a 
filtration v t + i (X( k ) )  = Ft< 1 D Ft- 1,2 Э T )-2,3 D T)_3i4 D Т*_4,5 = 0 such
that Fp,q /  Fp—l,q+l ~  Ep,q-

Similar spectral sequence holds for the stable homotopy groups too. 
In this case the relative homotopy groups of pairs can be replaced by the 
(absolute) homotopy groups of the quotient spaces and this makes easier to  
handle this spectral sequence. In the next section we shall see how one can 
gain information from the spectral sequence in the stable homotopies for 
that in the non stable homotopies.
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6 .  T h e  r e l a t i o n s h i p  b e t w e e n  t h e  s t a b l e  a n d  

n o n  s t a b l e  h o m o t o p y  g r o u p s  o f  t h e  c l a s s i f y i n g  s p a c e s

L e m m a  1 .  Let A and В be two spaces, В C A and let both of them be 
one of the spaces X , Y, Г, 0.* Then there exist maps

7Гi (A ,B)  - A  7T°(A/B) -L+ 7Гi (A,B)

such that r o s  = identity, and these maps commute with the homomorphisms
of the exact sequences of the pair A , B .  (If В = 0 then 7r,(A,0) d=f 7t,-(A), 
A /0 = A U * and s is the composition of the map induced by the inclusion 
A C A U * with the iterated suspension.)

P r o o f . For simplicity we prove this lemma for A =  X , В =  0. For any 
other case it can be proved modifying this proof in an obvious way.

The following geometric interpretation of the groups тг ,̂к(Х(к)  U *) 
will be useful for the proof. The stable homotopy group 7r*+fc(X(fc) U *) is 
isomorphic to the cobordism group of triples consisting of

(1) an n +  fc-dimensional stably parallelizable manifold П,
(2) a trivialization of its stable normal bundle, and
(3) an X-map of a closed smooth oriented n dimensional manifold into 

П.
To show this consider the natural fibrewise map 9 : SN(X  U *) —> S N 

such that 9(X)  is one point. Let us denote this point by P.  The com
position of 9 with a map F  : SN+n+k —► S N(X  U *) gives a map g — 9 о 
о F  : SN+n+k -> SN . We can suppose that g is transversal to P  and so 
g~1(P ) is a smooth (n +  к) dimensional stably parallelizable manifold n n+i’. 
The map g defines a trivialization of the stable normal bundle of П. We 
shall denote this trivialization also by 9. The restriction of the map F  to 
П i.e. F |n : П —» X  defines an X-map (up to cobordism) of codimension 
к into П which we denote by /  : M n —> П71"1̂ . Now it is easy to see that 
the correspondence between the homotopy classes [F] and the cobordism 
classes of the triples (П , 6 , f )  is one to one.

Similar geometric interpretation can be given for the spaces Y(k) ,  Г(&) 
and for the pairs (Х,У) ,  (X , Г), (У, Г) as well.

Now the map s : 7r,(X) —> 7r*(X U * ) is the obvious map induced by the 
iterated suspension. It sends an X-cobordism class [/] represented by the 
X-map /  : M" —► Sn+k into the triple (Sn+k,9 , / )  where 9 is the standard 
trivialization of the stable normal bundle of Sn+k. The map r : ж\(А,В)  —> 
—* 7T,(A,f?) can be defined as follows. Let (11,9, f  : M n —* П) be a triple 
representing an element a of ж̂+к(Х  U *). We can consider nn+fc as a

* к  will be fixed all th e  tim e and it will be often o m itted . So instead  of 
Y ( k ) ,  Z ( k ), Г ( к )  we shall w rite  ju s t  X ,  Y , Z ,  Г respectively.
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submanifold in the Euclidean space R N + n + k (JV >  1). Remove a point Q 
from П which does not belong to / (M ) .  The manifold П' = П \  Q is an 
open submanifold of R N + n + k and has trivialized normal bundle. By the 
Smale-Hirsh theory there exists a regular homotopy joining the embedding 
П7 C RN+n+k with an immersion g : IT —> Rn+k(C RN+n+k). Now the 
composition g o  /  is an X-map M n —* R n+k and so it represents an element 
ß  G Kn+k{X(k ) ) . It can be shown that this element depends only on a.

We put r(a) = ß.  Obviously г о s =  identity. The lemma is proved.
□

R e m a r k  3 .  (a) Note that the space Z was excluded in the lemma above. 
(Recall that a Z-map is a map which has only E1’0 singular points, its kernel 
bundle is trivial and the singular points are non-multiple.) If /  had been a 
Z-map in the proof above then its composition with the immersion g : П '  —► 
—> Rn+k might have not been a Z-map (the singular points might have 
become double points). But if /  is an X Y -  or Г-map then its composition 
with an immersion is also a map of the same type.

(b) For the space Г the lemma follows from Proposition 3.6 of [2] saying 
that for any pointed space A there exists a commutative diagram

Г+Л ------- > Г+Г+Л

X\ i  hAN. ■ф

Indeed 7г*(Г+ Л) = 7г*(Г+ Г+ Л) and for Л =  MSO(k)  the space Г+Л is Г(А;) 
(see [12]).

7 .  T h e  s p e c t r a l  s e q u e n c e  i n  t h e  s t a b l e  h o m o t o p y  g r o u p s

Let us consider the spectral sequence { E£„} associated with the filtration 
l U O h  U * D Z U * D r u * i n  the generalized homology theory formed 
by the stable homotopy groups.

7 Л .  T h e  g r o u p s  From Section 5 by the corollaries in Section 4 
we have that the groups are the following:

K t  = < f i ( r u * ) ,

E ] , t =  * st+2 ( Z /  Г) = < +2(5T27fc) = xJ+1(T27fc),

E l ,  = kU Á Y / Z )  = * st+3(ST2lh  A T l k ) = 7rf+2(T27fc A Tl k ),

E l,t = *;+4(X/Y) = ^ +4(S2T37k) = < +2(Г37*).
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In the next lemma we compute these groups expressing them by the cobor- 
dism groups of manifolds Í2*.

Lemma 2. I f i  < 4 к then

(a) 1. 7rf(T27fe) ~  & i-2k modulo C{2) if к is odd,

2. n-(T2~/k) «  iij_2fc 0  П^з*, modulo C{2) г/ A; is even,

(b) 1. n-{T3y/k) ~  modulo C(3),

2. 7rf (T37fc) has 3-torsion for г — 3k + 4,

(c) 7rf(T27fc A T7 fc) «  modulo C(2).

P r o o f , (а) 1. For A: odd the inclusion T27*: C F 72A: induces isomor
phisms of the cohomology groups with coefficients Zp, p ф 2 in dimensions 
less than 4A; and ir-(Tj2k) ~  í í ; -2* for г < 4A;.

(a) 2. For к even the natural inclusion T2^k С T^2k X ГЗ7*; (defined by 
the inclusions 2jk C 72fc and 27*, C 37 )̂ induces C(2) isomorphisms of the 
cohomology groups in dimensions less than 4A;. Indeed the Thom class of 
the bundle 37  ̂ is mapped onto U ■ x where x  is the Euler class of 7 and 
U is the Thom class of 2jk- The ring H*(T3yk)  (in dimensions less than 
4A;) is mapped isomorphically onto the ideal generated by U ■ x  6 Н*(Т2'ук), 
while H*{T')2k) is mapped isomorphically onto the factorring H*{T2‘yk) / {U ■ 
• x)  (which is generated by the Pontrjagin classes). ^i{T^2k) ’Ki ( T i 2k) 
is an isomorphism if i < 4A;, since T^2k is {2k -  l)-connected. Idem for 
Ki(T~/3k)' —*■ ^■{Т'узк)- Therefore п-{Тх2к) =  < ( 172*) 0  < ( Т 7зк) г < 4к, 
and the isomorphism (а) 2 follows again since г < 4A;.

(b) The inclusion ТЗ7* С T73* induces isomorphisms of the cohomology 
groups with coefficients Zp, p ф 3 in dimensions less than 4A;. Indeed it is 
enough to show that the corresponding map of the base spaces

j  : BSO{k) -> BSO{3k)

defines isomorphisms in dimensions less than k. Notice that j  is not the 
standard inclusion, it is defined by the equation j*y3к =  3-7*.  Hence the 
induced homomorphism j*  in dimensions less than 4A: is defined by the 
formula

j*{p{l3k)) = p { l k f
where p{ ) denotes the total Pontryagin class Ep,. Hence

j*pr -  3pr + f { p i , . . . , p r- i )  for r = 1 , 2 , . . . ,  [Ar/2].

So if 3 is invertible in the coefficient ring, then j* is an isomorphism and 
this proves (b) 1, but j* is not an isomorphism for coefficients Z3 and this 
implies (b) 2.
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(c) Trivial computation shows that the groups on the left and the right 
sides have the same ranks. Hence it is enough to show the following propo
sition:

P roposition 1. The groups nj(T2jk  A T 7*) have no odd torsion for 
j  < 4k.

PROOF.  We shall use the following lemma due to Milnor (see [9] page 
113).

L e m m a  (Milnor). Let X  be a stable spectrum such that the group 
H*(X\  Z ) has no p-torsion and H*(X; Zp) is a free Ap/ { Q q) module. Then 
the homotopy groups of the spectrum have no p-torsion. □

We shall use also the following fact (see [9] Chapter IX, section “Odd 
primary results”):

P roposition 2. The spectrum T B S O  satisfies the conditions of Mil- 
nor’s lemma for any odd prim e p, i.e. H*{TBSO\ Z) has no p-torsion and 
H*(TBSO; Zp) is a free A p/Qo module. □

Let us consider the spectrum TBSO A TBSO.  The cohomology ring of 
this spectrum is the tensor product H*(T В SO AT В SO ) ~  H*(TB SO)  ® 
® H*{TBSO).  Therefore the spectrum T BS O  A T B S O  also satisfies the 
conditions of Milnor’s lemma and so its homotopy groups n „(TBSO A 
A TBSO)  do not have odd torsion. It remained to show the following 
lemma.

L e m m a . nj(T2~/k A T^k) is isomorphic to the (j  — 3k)-th homotopy 
group of the spectrum T B S O  A TBSO for j  < 4k.

P r o o f . By part (a) of Lemma 2 the inclusion T 27*. C T^2k induces 
isomorphism of the homologies in dimensions less than 3k. The space T 7*, 
is к — 1 connected. Therefore in dimensions less than 4k the inclusion T2^k A 
A T~fk C T~j2k AT'fk induces isomorphisms.

Finally notice that the inclusion S T j n  А Т^м С T7Л/+1 А Т-ум induces 
isomorphisms in dimensions less than 2N  + M -  1 for any N  and M . 
Therefore the homotopy groups -Kj{T2^k Л T7*) for j  < 4k coincide with 
the homotopy groups of the spectrum T B S O  A TBSO.  □

Corollary . 1. The groups E\ t have no odd torsion for s = 2 or 3 and 
t < 4k.

2. The groups E\ t have no p torsion for p > 3 and t < 4k.
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S u m m a r y  o f  7 . 1 .  The groups E 1 of the spectral sequence in the stable 
homotopy groups are the following:

E l,t ~  (Г U *),

E \ } t  W  < + 2 ( Z / r )  И  í í t -2 J fe+ i  f o r  k  o d d >

E \,t ~  7rt+2(^ /r ) ~  ^i-2fc+l © & t-3 k + l for к even’

El,t «  * st+3(Y/Z)  «  тг*+ 2 ( Г 2 7 * A r 7fc) «

~  ® íífc I (L Ь — t *1 — 3fc},

E \,t  ~  ^ t + á ( X / Y ) »  7Г(*+2(Г37А:) га S7i+2-3A: mod (1(3).

7 . 2 .  T h e  d i f f e r e n t i a l s  o f  t h e  s p e c t r a l  s e q u e n c e  i n  7r*.
C laim  1a . If к is odd then the differentials d\ t, d\ t going into the first 

column are zero modulo C{2) (i.e their images are contained in the 2-torsion 
parts.)

P r o o f . Let us consider the spaces Y(k)  and Z(fc) which classify the 
same maps as Y  (k) and Z( k ) but without the condition that the ker
nel bundles are trivial i.e. nn+k{Y(k))  =  the cobordism group of the 
maps of oriented n dimensional manifolds into Rn+k having only simple 
(=  non-multiple) E1,0 singular points and having no quadruple points and 
7rn+fc ( Z(fc)) =  the cobordism group of the maps which have only E1,0 sin
gular points and the preimage of a point may consist of

1) at most 3 nonsingular points, or
2) a E1,0 singular point and a nonsingular point, or
3) a E1,0 singular point alone.
These spaces Y (к) and Z(k)  have been constructed in [14]. Notice that 

Y(k)  D Z(k)  э  Г(&) and there exists a natural map (У, Z, Г) —► ( y ,Z ,T )  
which is the identity on Г. Therefore in order to show Claim la  it is enough 
to show that the corresponding differentials d\ t and d\ t of the second triple 
are zero modulo C(2). This follows from the following

L e m m a  3. The factorspaces Y /Z  and Z /Г  have finite 2-primary coho
mology groups.

Hence the stable homotopy groups of these spaces are finite 2-primary 
groups as well. The source groups of the differentials d\ t and d\ t are these 
stable homotopy groups and so Claim la  will follow from Lemma 3.

P r o o f  o f  L e m m a  3. It follows from the construction of the spaces У 
and Z that there exists a bundle £ such that Z /Т  — ST£ and У / Z =  S T f  A
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A T'jk- Неге Т£ is the Thom space of the bundle £ and 5  is the suspension. 
It is enough to show that H*(T£;ZP) =  0 for p odd. The Thom space 

can be obtained from Т2^к x S°° factorising out by an involution which 
changes the factors in 27*, =  ■jk ® 7* and which is the multiplication by — 1 on 
S°°. Hence H*(T£; Zp) is isomorphic to the invariant part of H*(T2-fk', ZP) 
under this involution. But this involution changes the sign of the Thom 
class (because к is odd) and keeps unchanged the cohomology classes of the 
base space BSO(k).  Hence H*(T2 f̂k'i Zp) =  0. □

C laim  1 b . For к even the restriction of the differential 

4 , - i  : 0  Sl3tZ3k -  7rt*(r(fc) U *)

(a) to the first factor is a monomorphism mod C(2 ).
(b) to the second factor is zero mod C(2).

P r o o f . Part (a) follows by mapping the spectral sequence into the 
analogous spectral sequence of the space X \ k ) which classifies the same 
maps as X ( k )  without the conditions of orientability of the source manifolds. 
This space has a filtration analogous to the one of X ( k ) and so a spectral 
sequence arises. (See [16].) In this spectral sequence the map

4 t - i  :ft«-2* - i r ? ( Q A f O ( * ) U  * )

is the only nonzero (modulo C(2)) differential and it is an isomorphism. 
Hence d\  t_ x in our spectral sequence restricted to f l t - 2k is a monomorphism.

Part (b) will follow from the fact, which we prove later, that for к even 
the differential d\ t_2 is a C(2)-epimorphism onto the second factor of the 
source of 4 , - 1. □

C l a im  2. The differential d\ t : E3 t —> E\ t is zero.

P r o o f . We have

4 t  ~  Л T ^ k ) i  t =  7ri+i(T27fc).

Let us put T\ = T7fc and T2 = T2^k- Let us consider the following part of 
the exact sequence of the pair ((Ti x T2)/T i,T 2) :

-  4 ( №  x T2) / T U T2) Л  * < _ № )  - -  ^ ( ( T a  x T2)fTi)  -

The map d  is the differential d \ t .
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There exists a commutative diagram:

№  x T2)/Ti

г T2

where p is the natural projection and i is the inclusion. Hence г* is a 
monomorphism and so d =  0. □

C laim 3. If к is even then Ef] ® Q = 0 for s > 1 and t < 4k.

P r o o f . It is enough to show that the inclusion

T(k) U * C X(k) U *

induces epimorphisms of the rational stable homotopy groups in dimensions 
less than 4k. Since the inclusion i : SMSO(k)  С MSO( k  +  1) induces a 
monomorphism of the rational cohomology rings

H* { MS O ( k  +  l);Q)  -+ H*(SMSO{k)- ,Q)

so does the inclusion í q  : QSMSO(k)  C QMSO(k  -f 1), where Q = i l ^ S 00. 
This follows for example from the stable decomposition

OO

QA = T + A ^ st V  DtA
i=1

which holds for any space A,  see [2]. Since the spaces QSMSO{k)  and 
QMSO(k  +  1) are JY-spaces they can be replaced from rational point of 
view by some products of Eilenberg-Maclane spaces and the fact that iq  is 
a monomorphism in rational cohomology implies that the map

К : n* { Q SMS O ( k )) ® Q -> v m(QMSO{k + l ) )  ®Q

is onto. Now it is obvious that the map Ш : QQSMSO(k)  C ClQMSO(k +  
+  1) induces an epimorphism in rational homotopy. But QQSMSO(k)  =  
=  QMSO(k)  and this space is (4к — l)-equivalent to Г(/г). Moreover the 
space fIQMSO(k  +  1) is 4k — 1 equivalent to X(k).  Hence the inclusion 
Г(Аг) U * C X(k)  U * induces epimorphisms of the rational stable homotopy 
groups

7rj(T(Á;) U *) ® Q -*» -Kj(X(k) U *) ® Q for j  < 4k.  □
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C laim  4 .  d \ t : E \ t —*• E \ t is zero.

This figure shows a disc normal to the submanifold formed by the images 
of E1,1 singular points in the image of the set of triple points. Such a normal 
disc can be defined although the image of the triple points set is not a 
smooth manifold (it has a sharp edge at the image of E 1,1 points). Now as 
the point О  runs over the manifold / ( E 1,1( / ) )  the points A and В run over 
some manifolds A and B. The differential d\ t sends the cobordism class of 
/ ( E  1,1( / ) )  (with the appropriate normal structure) into the cobordism class
of A U В  (w ith the appropriate normal structure). The manifolds A and В 
are diffeomorphic but they are provided with opposite orientations and so 
A U В is null-cobordant. (The fact that for an arbitrary E1,1 prim map /  
the manifold A U В is null-cobordant can be seen as follows. The manifold 
A l i B  is the intersection of the set of stationary (= multiple singular) points 
St ( /)  with the boundary of a tubular neighbourhood TEm of the manifold 
E1’1 = / ( E 1,1). Now A U В  is the boundary of the submanifold formed by 
those stationary points which lie outside the tubular neighbourhood TVi.i 
i.e Ä U Ő =  <9{St ( /)  \  TEi,i }.) □

C o r o l l a r y . There exists a retraction r : X /Z  —>■ Y/ Z.

P r o o f . By definition X / Z  -  Y / Z  U PD ( ® 2) where D(3~fk ® 2) is 
the disc bundle 37  ̂® 2. This bundle is the sum of 3 copies of the universal 
oriented к dimensional bundle 7  ̂ with a 2 dimensional trivial bundle, p is 
an attaching map p : сШ(37* ф 2) —► Y / Z ,  which is defined by A U В (and 
its normal structure). Claim 4 shows that p is null-homotopic hence it can 
be extended to a map

p* : D{37fc ® 2 )  —>■ Y/Z.
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Now p* defines a retraction r : X / Z  —> Y/ Z.  □
We shall use this Corollary later in the computation of d\ t.

S u m m a r y  o f  7 . 2 .  The E 2 terms of the spectral sequence in the stable 
homotopy groups are the following:

For к odd E 2 «  E 1.
For к even the last two columns are the same as before i.e.

É&,t ~  E h  and E 2t as E\  t.

The first two columns change as follows:

E j  t «  t t t-зк and E^ t «  E\ J S l t_3k и  тг*+1(Г U *) / i l t- 3k-

7 . 3  T h e  d i f f e r e n t i a l s  d 2  a n d  t h e  t e r m s  E 3  o f  t h e  s p e c t r a l  s e 

q u e n c e  i n  t h e  s t a b l e  h o m o t o p y  g r o u p s .

R emark 4. For к odd the differential t is zero by Claim la.

C laim 5. If к is even then the differential d \ t is monomorphic modulo
C (  2).

P r o o f .

El,t

I»
*st+3(Y/Z)

dl , p 2
-̂ 1.<+l

* t - 2Í u *)
nt+3( Y / Z ) =  irt+3(S T 2ik  ЛТ-ук) rs ® { ila ®fifc|a + 6 = t +  2 -  ЗА:} mod C(2).

Since E^t 0  Q = 0 (see Claim 3) and there are no nonzero differentials 
going into E h  the differential d \ t must be a rational monomorphism (i.e. 
it must have finite kernel). But ® {ila 0  has no odd torsion so d \ t is a 
C(2)-monomorphism. □

C laim 6. If к is odd then d\ t = 0 mod C(2).

P r o o f . The source of the map d\ t : E \ t —► E2t+1 is Qt- 3k+2 modulo 
C(3), its target is $lt- 2k+2 modulo C(2). At least one of these groups is finite 
(since the difference of the dimensions of the manifolds occurring in these 
cobordism groups is к which is odd) and their torsion groups are always 
2-primary. Hence d\ t is zero modulo C(2) if к is odd. □

In order to compute the differential d\ t for к even we shall need the 
following remark.
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Remark 5. In Lemma 2 we have shown that the following C(2) iso
morphism holds:

7r/+1( Z , r ) « n , _ 2fc0 i i ^ 3 fc.

Here we give a geometric description of this C(2) isomorphism.
The group 7r?,1(Z, Г) can be identified with the cobordism group of 

embeddings of г — 2k dimensional manifolds in R l+1 with normal bundle 
isomorphic to the sum of two isomorphic bundles plus the trivial line bundle. 
(Such a manifold will be called a 27 manifold.) Now let j  : N  C R1+1 be 
an embedding such that its normal bundle Uj is isomorphic to 1 ® 2 • ^  
where £* is a к dimensional bundle over N . Then the first component of 
the element corresponding to the class of j  is the cobordism class [N] G fl».

We shall call the bundle the half normal bundle of the 2"f manifold 
N .

In order to obtain the second component — which we shall call the З7 
component — take a generic (i.e. transversal to the zero-section) section r of 
the half normal bundle £k —* N  and let r _ 1(0) be the set where r vanishes. 
Then the second component is represented by the manifold r _1(0).

Notice that the normal bundle of r _1(0) in N  is isomorphic to £*|t- 1(0) 
and so the normal bundle of r _1(0) in R l+1 is isomorphic to 3 •& |г- 1(0)® 1. 
Hence r _ 1(0) represents an element of ÍÍ»7.

The 37-cobordism class of the manifold r _ 1(0) will be called the Euler 
cobordism class of the half normal bundle of the 2~j cobordism class of the 
manifold N.

Let к be even and let us consider the differential

7t:t + 2 ( X , Y ) Ker [<9 : 7r*+1(Z, Г) —» 7г*(Г U *)] .

The source of this differential is isomorphic to and its target is
modulo C(2) a subgroup of flfZßfc- Hence we can consider this differential 
(modulo C(2)) as a homomorphism:

(*) d2
4,i —2 • ÍI37 ifЗ7

t — 3k  *

CLAIM 7. The map (*) is the multiplication by 2 (for t < Ak and к 
even).

Proof. This differential can be described as follows. Put n = t -f 2 — k. 
Pick up an element a  G 7г*+2(Х,У).  It can be represented by an X-map 
(i.e. a E1,1 prim map) /  : ( M n, d M n) —*■ (Dn+k, Sn+k~1) such that its 
restriction to the boundary / \dM : d M  —> 5 n+ *-1 is a У -map (i.e. has no 
E1,1 point). Take a small tubular neighbourhood T  of the set / ( E x,1( / ) )  
and let us denote by Z ( f )  the intersection of dT  with / ( E 1,0( / ) ) . Z ( f )  is
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a submanifold of d T  of codimension 2k +  1. The normal bundle v ( Z ( f )  C 
C d T ) of Z(f )  in d T  is the direct sum of two isomorphic bundles and a 
trivial line bundle

o ( Z ( f ) c d T )  = 2 - ^ 0 1 .

The manifold Z ( f )  with this normal structure represents the image of 
a at the map d:

<+k(X/Y) ^  < +fc_ i(Z/T) «  Пп_к_2 ф пЦ2к_г
The last “isomorphism” is an isomorphism modulo the class C(2). The 
element d\  „(a) is the second component of d(a),  i.e

-д k - á z / y ) »п,-_2*_2 0 -д iif: 3fc_ 2

c?4 = p о d,  where p  is the projection onto the second factor.
So we have to show that the Euler cobordism class of the half normal 

bundle of the class d ( a ) is equal to 2a. This will follow from part (c) of the 
following lemma.

Lemma 4. Let Z( f ) ,  E1,1( / ) ,  and denote the same as above. Then 
there exists a bundle rjk —* E1,1( / )  such that

(a) Z( f )  is difjeomorphic to the total space of the spheric bundle of the 
vector bundle т]к ® 1. Let us denote this spheric bundle by

TTs : S{r,k © 1) -> Y } ' \ f ) .

(b) The half normal bundle £k —► Z( f )  of the 27 -manifold Z(k) can be 
identified with the bundle K*s r)k ■

(c) The generic section т of the half normal bundle of the 27 manifold 
Z( f )  can be chosen in such a way that the zeroset r - 1(0) intersects each 
fibre of the bundle 7Г5 : S(rjk 0  1) —► E1,1( / )  at two points and the projection 
7Ts|r- 1(0) : r _1(0) —* E1,1( / )  give an orientation preserving double covering 
map.

P roof of Lemma 4. First of all we show the bundle rjk —► E1,1( / ) .  In 
a neighbourhood of the set E1,1( / )

1) the stationary points (those which are both double and singular) 
form a set St ( / )  diffeomorphic to E1,1( / )  X I  (where I  = [—1,1]), and

2) the singular points form a к dimensional disc bundle over the set 
St ( /) .  We denote this bundle by Qk.

The restriction of the bundle <jk to E 1,1( f )  is rfi.
(a) The set Z( f )  was defined as the intersection of / ( E ^ / ) )  with the
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boundary of a neighbourhood of / ( E  1,1( / ) )  in the target manifold. Since /  
restricted to the set of singular points is a 1 to 1 map, Z( f )  is diffeomorphic 
to the intersection of the set of singular points with the boundary of a 
neighbourhood of Ex,1( / )  in the source manifold M", i.e.

Z ( ! )  = » ( ‘ (E 1J( / )  X ( - 1 ) )  x ( 1 ) ) U S ( ( ‘ )

where is the projection of the disc bundle C,k. Now it is clear that the 
set Z( f )  can be identified with the set S(rjk 0  1). Part (a) is proved.

(b) In order to Show that the half normal bundle £k of the 27-manifold 
Z( f )  is isomorphic to the bundle ж*3т]к it is enough to find a bundle over 
D(r)k © 1) such that its restrictions to S(rjk 0  1) and E1,1( / )  are isomorphic 
to £k and T]k respectively. The normal bundle of the closure of the set of 
double points in the source manifold restricted to D(r]k 0  1) is such a bundle.

All the statements made here during the proofs of parts (a) and (b) 
follow directly from the local normal form of a E1,1 singular map given by 
Morin [6]. This normal form is the following:

Morin’s formulae:

Rn Э ( i i , . . . , < „ _ i , ж) -L- (yu . . . , y n_ 1, z i , . . . , z k, zk+1) £ Rn+k,

Vi — t i ) * — 1 , 2 , . . . ,  n — 1,

Z \  =  t \  ■ X +  Í 2 • x 2 ,

Zk — 2̂k— 1 ' ® T Í2k ' X ,

Zk+ 1 — ^2А:+1 Ж T  X  ,

The equations defining the set E1,1( / )  of E1,1 singular points are

tx — <2 =  . . .  = <2fc+i = 0 and ж — 0.

The set S t ( / )  of stationary points (i.e those E1,0 singular points which 
have the same image as another — nonsingular — point) is defined by the 
equations

t x -  . . .  — t 2k =  0 and t2k+1 = -Зж2.
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In the local coordinates (t\ , . . . ,  tn- i , x )  the equations of the set of E1 points 
are the following:

t\ -f • 2̂ — 0, 

i3 + 2x ■ <4 =  0,

2̂k—\ “1“ • 2̂к ~~ 0?

2̂fc+i + 3x2 = 0.

Hence over each point of the manifold S t ( / )  there is a к dimensional 
linear space formed by the E1 singular points (those which have the same 
coordinates tj for j  > 2k +  1). Above we denoted this bundle by £k —► St ( / ) .

P r o o f  o f  p a r t  ( c ) .  We have to define a section r  of the bundle 
£k = ngT]k which is transversal to the zero section and intersects with the 
zero section in the union of the “poles”, i.e. in the spheric bundle of the 
trivial factor:

r ( 5(17*0 1)) П 5 ( ^ ® 1 )  = 5(1).

Let b 6 E1,1( /) .  Then the fibre of S(r]k ® 1) over b is

S(r)k 0  l ) t =  {(®,»)|x € т£, У G 1 and |x |2 + \y\2 =  l }  .

The fibre of K*s r]k over (a:, у ) G S(rjk 0  l ) b can be identified with rjk.
Let us define the section r : S(rjk ® 1) —► 7rgT]k as follows:

r (x , y )  = x £  г

Obviously this section is zero if and only if x — 0 and then (x , y ) =  (0,1) G 
G 5(1). (Hence the intersection r -1 (0) = r( S(r]k 0  1)) П S(r]k © 1) is 5(1).)  
In order to show that r is transversal to the zero section of £k consider its 
composition c with the projection of the nearby fibers onto the fibre over a 
point of 5(1). The tangent space to the fibre of S(r]k 0  1) at this pole can 
be identified with the corresponding fibre of rjk . After this identification the 
differential of c restricted to the fibre of S(r]k ф 1) will be the identity map 
(up to sign). Hence r is transversal to the zero section.

T he orientation . The fibers of 5(1) consist of two points: +1 and 
— 1. The union of ( +  1) points and the union of ( — 1) points have opposite 
orientations since they form the oriented boundary of D( 1). On the other 
hand the bundle п^г]к restricted to a fibre S k of the sphere bundle S(rjk ф 1) 
is trivial. Hence the signs of intersection of r ( S k) with Sk at the two poles
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are opposite (since the Euler class of the trivial bundle over the fibre Sk 
is zero). Eventually the union of (+1) points (North poles) and the union 
of ( — 1) points (South poles) have to be taken with the same orientation 
when we compute p о d ( a ) = d\ »(a). Lemma 4 is proved and so Claim 7 is 
proved as well. (Notice that for к odd the orientations of the components — 
namely the union of the North poles and union of the South poles would get 
opposite orientations — the Euler cobordism class of an odd dimensional 
bundle has order 2, and so the differential d\ t is zero for к odd, according 
to Claim 6.) □

S u m m a r y  o f  7 . 3 .  The E 3 terms of the spectral sequence in the stable 
homotopy groups are the following:

For к odd E3 и  E 2.

For к even E\  t & 0,

E 33,  ~  0,

E3t ~  E 2t «  ф {fla (g) fib I a + b =  i — ЗА:},

E l ,  «  E 2 t / im .  d \  t .

7 . 4  T h e  d i f f e r e n t i a l s  d3 a n d  t h e  E 4 t e r m s  o f  t h e  s p e c t r a l  s e 

q u e n c e  i n  t h e  s t a b l e  h o m o t o p y  g r o u p s .

R emark  6. For к even the differential d3A t is automatically zero because 
the group E \  t is zero.

C laim 8. If к is odd then d\ t =  0 mod C(2).

P r o o f . We shall use the standard notation for the groups of cycles and 
boundaries associated with the filtration X  Э Y Э Z Э Г. (See for example 
[10]. Неге X 4 = X; X 3 =  Y ; X 2 = Z; X 1 = Г.)

The differential
d3

4 ,i E3
M + 2

is the following composition:

Eh - 7 3 — / в 3, . z l t / z l В \,+ 2/ B 3}t+2 Z l , t + 2 / B i tt + 2 i

where the first map is epimorphic and the second one is monomorphic. 
In our case this is the following:

1т[тг?+4(А;,Г)^7г?+4(Х ,У )] 1т[тг?+4(Х ,Г )^ тг*+4(Х ,У )] _
0 im [x$+4(X  U *) —t nst+4( X , Y) ]  ~
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im \дх  : 7Г;-|-4(.Х) Г) —> тг̂ +3(Г U *)]

~  im [9y : я-?+4 ( У ’ Г ) -*■ * * + з(г  u  *)]

_ ____________ ^ +з(Г)____________
im [ду : тг»+4(У,Г) - f  тг*+3(Г U *)]

It is enough to show that the images of the maps

Ox : Г) —► тг*_1(Г U *) and ду  : < (У ,Г ) -> ^ ( Г  U *)

coincide modulo C(2) for * < 4k.
Obviously imöy Э i mdy .  Now we prove the inclusion in the other 

direction. By the Corollary of Claim 4 there exists a retraction r : X / Z  —► 
—*• Y/ Z.  Hence the following commutative diagram arises:

< { Y , Z )

I
< ( X , Z )

4
K ( Y , Z )

* < - i ( Z U * )

^id en tity

* < - i ( Z U * )

identity

* < - i ( Z U * )

It follows that

im [öi : 7Г»(Х, Z) —► K - i { Z  U *)] = im [ö2 : 7Г*(У, Z) —► 7r*_1(Z U *)] .

Since d\ t : 7r*(Z, Г) —» 7r^_j(r U *) is zero modulo C(2) (by Claim la) the 
map i : 7Г*(Г U *) —*■ 7r*(Z U *) is monomorphic modulo C(2). Now the 
following diagram implies that im дх C im dy ■

^ ( У,Г) - > < _ х( Г и * )

Зг
' K ( Y , Z ) -------> K - i ( Z  U * y

1
3i

, < { X , Z ) -------+ K - \ ( Z  u * )

i ( r u * )
dx
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Indeed let a E 7г*_1(Г U *) belong to im dx ■ Then i (a) E im d\ modulo 
C{2) and the latter group is isomorphic to im d2. Hence i (a) E (imi) П 
П im02 mod C(2). Then a 6 im 9y mod C(2). □

S u m m a r y  o f  7 . 4 .  The E4 terms are the same as the E 3 terms modulo 
C( 2,3).

S u m m a r y  o f  S e c t i o n  7 .  Having computed all the differentials, we can 
write down the E°° members of the spectral sequence associated with the 
filtration

r(fc) U * C Z(k)  U * C Y(k)  и* C X ( k ) U *

in the generalized homology theory formed by the stable homotopy groups: 
For к even the groups E™t modulo C(2) are the following:

~  { (r(fc) U 2fc} /  ® {  fia® Ob \ a +  b = t + l -  ЗА:}

and

E% =  0 for s = 2 , 3 ,4 . . .  . 

For к odd these groups modulo C(2) are:

E Z  «  < ( В Д  и *),

E^t ~

E$°t «  ® {ila ® íí( , |a  + 6 = t + l -  ЗА:},
R°° й; О37 - ^ 4 ,i  ~  “ <.+1-ЗА:-

8 .  T h e  s p e c t r a l  s e q u e n c e  o f  t h e  f i l t r a t i o n  

r c ^ C f C l i n  t h e  n o n  s t a b l e  h o m o t o p y  g r o u p s

From now on the differentials and groups of the spectral sequence that 
we considered in Section 3 (i.e the one for the stable homotopy groups) will 
be denoted with an additional upper index s. For example instead of E \ t
we shall write sE \ t. The notation without this upper index s will refer to 
the objects of the spectral sequence we consider in the present section, i.e. 
to the one in the non stable homotopy groups.

A cta  M athem atica  Hungarica 64, 1994



C O B O R D ISM  G RO U PS O F  IMM ERSIONS O F  O RIEN TED  M A N IFO LD S 217

8.1. T he groups E 1. The E 1 groups are the following:

E\,t ~  * t + l ( r ) ,

E \  t »  tt(+2(Z, Г ) ,

E \ t ~  ® {Í2a ® í í j , |a  +  6 =  í + 2 — ЗА;},

F11 ~  O37-^4,1 ~  “ t+2-3fc-

So the third and fourth columns are the same as in the previous spectral 
sequence while in the second column we have 7r*(Z, Г) instead of 7T^(Z/r) ~  
rí 7T»(Z/r) (this last isomorphism holds for * < 4A;) and in the first 7г(+1(Г) 
instead of 7г*+1(Г U *).

Lemma 5. The natural map nt( Z , r )  —» Trt(Z/T)  is an epimorphism if 
t <  4k.

P roof. Let a  be an element of Trt(Z/T)  and let /  : y t- 2k~1 —> Rl be 
a map representing a. Then /  is an embedding and the normal bundle и 
of / ( F )  in Rl is split into the direct sum of a trivial line bundle and two 
isomorphic к dimensional bundles и  £2 he.

V «  l ® í f  0 f a -

Let D l be a ball in Rl containing f (V)  and let 5 i_1 be its boundary. Since 
t < 4k there exists an embedding j  of the cylinder V X [0,1] into Dl such 
that

(1) -Яухо = f  1
(2) j ( V  x 1) C 5 i_1,
(3) j (x  x  [0,1]) is t a n g e n t  t o  the  l ine b u n d l e  a t  f (x)  — j ( x  X 0) for x £ 

£  V , a n d
(4) j {x X [0,1]) is transversal to 5 <_1.
Obviously the normal bundle of the cylinder j(V  X [0,1]) in Dl is the 

direct sum rj =  CÍ ® C2 where ( k =  i =  1,2 and x : У x [0,1] —»■ F  is the 
projection. Let w  =  (u,f) be a point of the cylinder V X [0, l]. Let us denote 
the normal fibre to the cylinder j(V  x [0,1]) over w by r]w. Let us join the 
points which correspond to each other at the isomorphism and lie on
the e-spheres of rjw for some fixed, small enough e by a segment in r]w. The 
union of these segments in r)w together with the e-discs of the fibers (£к)ш 
and (£2 )ш form the image of a topological immersion of a A;-sphere. It can be 
smoothed and we get a (differentiable) immersion iw : Sk —*■ R 2k — rjw with 
a single double point at the origin. Let us denote by H the union of images 
of the immersions iw for w — (v, t),  v £ V  and 6 ^ t ^ 1 where 6 is a small 
number. H is the image of an immersion with double points at j ( V  X [S,t]).
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Its boundary dH consists of two parts d\H and 62H . The first one lies in 
5 <_1 and the second one in the boundary of a tubular neighbourhood T  of 
f(V).  Now in each fibre of the 2k +  1 dimensional disc bundle T  —► f ( V)  
we can put a (k + l)-dimensional Whitney umbrella in such a way that the 
union of these umbrellas form the image of a smooth map of a manifold 
W : (М*~к, дМ)  -+ (Г, dT)  such that

(1) W  has only simple S 1,0 singular points and the image of its singular 
set is f ( V ) .

(2) W ( d M ) = Ö2H . Then W ( M ) U H forms the image of a map which 
represents an element ß  of 7rt(Z, Г). The image of ß  is a.

Notation . Let Gt  denote the kernel of the epimorphism

*t(Z,T) -» nt(Z/T).

REMARK 7. Actually we have shown that

7rt(Z, Г) ss 7rt(Z /r )  0  Gt for t < 4k.

8 . 2  T h e  d i f f e r e n t i a l s  o f  t h e  s p e c t r a l  s e q u e n c e  i n  t h e  n o n - s t a b l e  

h o m o t o p y  g r o u p s  7Г*.

C laim 9. d\ t -  0.

P r o o f . d \ t =  sd\  t =  0. □

C laim 10. d \ t(Gt+2) =  0.

N o t a tio n . Let & denote the natural map (induced by the iterated 
suspension) from the spectral sequence {£'»»} of the filtration X  Э Y  Э 
D Z D Г (in the groups 7Г*) into the spectral sequence { sEl„} of the same 
filtration in the stable groups 7г®).

P roof  of C laim 10. We have

^ 2 , t ( ^ t + 2 )  =  s d \ t ( X G  t+2) = sd \ )t(0) =  0.

The map & on the left is the map s : 7г*(Г) —► 7г*(Г U *) which is monomor- 
phic by Section 6. □

C laim 11. The restriction of the differential d\ t to the group 7r®+2(Z /r )  
is the same as before. □

C laim 12.
im d \ t — Gt+2 modulo C(2,3).
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P r o o f . For any x £ nt+3( Y / Z ) (=  E \ t) we have

& 0 d3,t(x ) =  S4 ,t  0 & (*) = 0

(because sd \ t = 0). Hence im d3,t C G t+2- Now

Gt+2/ i m d l  t C Coker ( 7ri+2( r ) T r i+2(X )) C

C Coker ( < f 2( r u * ) - > * J +2( * U * ) )

and the last group is zero modulo C(2) if к is even (since SE™ £ C(2) for 
s > 1). Thus for к even the Claim is proved.

For к odd the group Coker (тг*(Г U *) —» 7Г®(Х)) will have free part but 
its torsion part is the sum of a 2-primary group and a 3-primary group. 
Hence the Claim will follow if we show that Gt+2/^ m d\ t is finite.

Lemma  6 . Gt+з/  imdlj t is finite if к is odd.

P r o o f . We shall show later that d\ t — 0, d\ t = 0, d%t = 0 mod C(2) 
and so the 222°. members on a line where p -f- q = t will be the following 
modulo C(2):

E Z - i  = *<(г ),

Erf/t- 2 — &t-2k © {Gt/im  d\'t_2),

ET+-3 = 0,

On the other hand the rank of Coker (^(Г ) —► nt(X ))  can be computed 
easily (because 7г((Г) «  Imm(< -  k, k) and 7rt(X) ís Imm(í — к, к + 1).) This 
computation implies that Gt+з/im  d\ t is finite. □

Now we show that actually the previous Claim is true modulo C(2) too.
C laim 12'.

\ m d \ t = Gt+2 modulo C( 2).
P r o o f . For к even we have shown this claim above.
For к odd:

Gt+2/ im  d\ t C coker (тг(+2(Г) 7tí+2(F )) С

C coker ( < f 2( F U * ) - < +2( y u * ) )

and the last group has only 2-primary torsion. The last inclusion follows 
from the following
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Lemma 7. Let us denote by {F*,} and {SF*„} the spectral sequences of 
the triples X  Э У D Г and I U 0 7 U 0 r i l * i n  the non stable and in 
the stable homotopy groups, respectively. Then there exist maps

{ f : , }  {sf; , }  {f ;,}

such that 1Z • & =  identity.

P r o o f . This follows from Lemma 1. □
C laim 13.

d\ t =  0 modulo C(2).

P r o o f . For к odd this can be proved in the same way as in the stable 
groups namely by mapping into the spectral sequence of the filtration У D 
Э Z Э Г and noticing that the groups 7Г*(У, Z ) are 2-primary for * < 4k.

For к even we show that the group E^t (which is thé domain of the 
differential d \ t ) is zero modulo C(2). We know that for к even the natural 
map <pt '■ тг«(Г) <g) Q -> 7гг(Х ) ® Q is epimorphic. Hence ® Q =  0 for 
s =  2,3,4. Especially rank F |°t =  0. The rank of the kernel of the map 
can also be computed easily, since this is the rank of the kernel of the map 
i/* (M 5 0 (fc)) —► H .(M S O (k  +  1)). On the other hand the kernel of the 
map pt equals the sum of the images of all the differentials going into the 
groups Е[ г_ г; r = 1, 2, . . . ,  i.e.

rank kery>< =  rank im d ^ t-i + rank \m d^ t_2 + rank imd^ (_3

We have computed the differential d] t _ x and the computation gives that

rank im d^ i-i =  rank ker^ .

Hence all the other differentials mapping into the first column have finite 
images. Especially the image of is finite. Hence

rank kertig m =  rank E\  „

and the latter equals rank ker d\ „. On the other hand

rank k erd |, = rank F|^,

(because all the differentials dr for r > 2 mapping into the groups F3 are 
zero). But rank F “, is zero. So ker d\ „ is finite. But ker d\  , C n*(Y/Z) 
and 7r»(y/Z) has only 2-primary torsion. So ker d\ m E C(2). Since F3 * is
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a quotient-group of ker 4 , ,  it also belongs to C(2). The group E 2 r is the 
domain of the differential d2 and so this differential is zero modulo C(2) 
(if к is even). □

C laim 14. If к is odd then d\ t =  0 mod C(2) for t < 4k.

L emma 8. Let f t  : Kt(X ,Y )  —> 7г*_1(У,Г) denote the boundary map of 
the triple X ,  У, Г. Then for к odd

ker [ft : *t( X ,Y )  -  тг*_1(У,Г)] =  ker [d^ ,_ 4 : irt( X ,Y )  -> jrt_ i(Z ,T )] .

P roof . By definition the map d\ t is the following composition:

d> *t (X, Y)
} i m[ Tt{ X , T ) - n c t( X t Y)]  ~

^  i m [ d : * t( X , Z ) ^ n t^ (Z ,T )\  
im [ő :7 r í(y ,Z )-> 7 r í_1(Z ,r)] *

d" im [7rt_ i(Z ) -*■ 7rt_ i(Z ,r)j
* im [ ö : x <(y ,Z )-^ 7 r i_1(Z ,r)] ’ 

d\ t — d" о i о d!

Since d" and i are monomorphic maps, d\ t{x) = 0 if and only if d \ x )  = 0. 
Now from the exact sequence

*t( X , r ) У ) - ^ * (_!(У,Г)

we have ker ft  =  im [7гг(Х ,Г ) —»• nt(X ,Y ) ]  = kerd' =  kerd^. □

R emark 8 . The analogue of this lemma holds in the stable homotopy 
groups as well i.e

Ker ( sft  : 7Г\ ( X ,Y )  -> т г ^ У .Г ))  =  Ker* d \ t_4.

The proof is the same.

Lemma 9. f t  : 7гг(Х , У) —> jrt_ i(y , Г) is zero mod C(2) for к odd and 
t < 4k.

P roof . Since sd\ t — 0 the map sf t  : 7r*(Х,У) —* ттг3_ г(У,Г) is zero mod 
C(2). The maps f t  and sft  are differentials of the spectral sequences {F*,} 
and {S-F*„} respectively arising from the filtration X  Э У D Г in the non 
stable and in the stable homotopy groups respectively. Using the maps IZ
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and & between these spectral sequences we can write & o ő i =  sői 0 & = 0 
and so ÍZ о &; о д\ — 0 but TZ о &; = identity. Eventually we have d\ — 0. 
□

Lemmas 8 and 9 imply Claim 14. □
C laim 15.

4̂,< = 0
P roof . This can be deduced from the fact that

S
dlt = 0

using the maps TZ and & as above. □
The E°° members modulo C(2) in the t-th row are the following. 
For к even

*t(T)
Q t-2k

0 0 0,

for к odd
1Г«(Г) ^ t - 2k 0 О3'!'

“ í + l - 3 / f

9 .  P r o o f  o f  T h e o r e m  1

Now we show that having computed the E°° terms of this spectral 
sequence, Theorem 1 follows immediately. The easiest way to see this is 
to use part (3) of Leray’s theorem (see [4], page 133) which we recall here.

T heorem (Leray).

™,, _  Im { H r+ ,(X r) ^ H r+,(X )}
“  ~  lm { ÍV h ' V , )  -

where
0 = X -!  C X 0 C . . .  C C X k = X

is a filtration.

(Repeating what we have said about the spectral sequence for homotopy 
groups in Section 5 we replace here the homology groups H by the homotopy 
groups 7Г.)

Our spectral sequence converges to the group 7rt (X (k ))  «  ImmÄO(i — 
— k,k +  1).

Let n and к be fixed as in the formulation of Theorem 1. For к even on 
the skew line p +  q = n + к we have the group 7rn+*. ( Г(&)) / i l n-k standing
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in the first coloumn as the only non zero group. By Leray’s theorem this 
is the image of the map 7rn +k ( m )  —* Kn+k{X(k)) be. the image of the 
map Imms o (n,A;) —► Imms o (n,A; + 1).

Since all the other columns contain only zero groups this map is epi- 
morphic and we get the exact sequence for к even:

0 —*• Qn-k  —> Imm5°(n,fc) > Imms o (ii,fc +  1) —> 0

Retracking the computation we see that the kernel group Sln-k  arises as the 
homotopy group of the quotient space Z/Г  which is the Thom space of the 
normal bundle of the submanifold formed by the E1,0 points. This implies 
the geometric interpretation of this kernel (part (4) of Theorem 1).

For к odd we have on the skew line p -f q = n + к the groups

7Tn+fc(r) 0

By the theorem of Leray mentioned above we conclude that the map 
7rn+fc(r) —► 7rn-|_fc(JQ is monomorphic, i.e. the map Imm5°(n,fc) —►
—> Imms o (n,fc +  1) is monomorphic and its cokernel is ® Qn- 2k - 2-
Now the exact sequence

0 —► Imms o (n, k) * >  lmms o (n, к + 1) > ttn- k - i  ® fin- 2fc-2  —*• 0

follows.
Retracking the computation we see that the groups fln- k - i  and i)n_2fc_2 

arise from the homotopy groups of qoutient spaces Z/Г  and X / Y  which 
are the Thom spaces of the normal bundles of submanifolds formed by 
the E1’0 and E1,1 singular points respectively. This implies the geometric 
interpretations of the maps 0 \ and 0 \ }\.

Theorem 1 is proved. □.
P roof of the  Main Corollary. First we prove

LEMMA 10. If к is odd then any self-tranverse immersion f  : M n —* 
—+ Rn+k has a 0-cobordant double point set.

PROOF.  Let us consider the map /  x /  : M  X M  —► R n+k x R n+k 
restricted to M  x M  \  U where U is a small neighbourhood of the diagonal 
in M  X M .  The map /  x /  | M x M \ i 7 i s  transversal to the diagonal of 
Rn+k x Rn+k and its preimage consists of the pairs of double points:

A ( / )  =  { ( ж , ? / )  I / ( ж )  =  / ( y )  and х ф у ) .

This set is an oriented n — к dimensional oriented manifold invariant under 
the involution M  X M -* M  X M  induced b y  the change of orders (x,y) —* 
—> (y ,x).  This involution changes the orientation on Д ( / )  (because к is
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odd). An oriented manifold with an orientation reversing involution is 0- 
cobordant. □

Lemma 11. Let f  : M n —*■ Rn+k be a generic immersion where к is 
even. Then the double point set Д (/)  of f  is cobordant (in oriented sense) to 
the singularity manifold Еа(7г о / ) ,  where ir is a projection into a hyperplane, 
i.e.

Д ( / )  ~  Е^тго / ) .

P roof . See Remark 1. □
Notation . Let J(n ,k )  denote the subgroup of Immso (n,fc) formed 

by the cobordism classes of those (self-transverse) immersions, which have 
0-cobordant double-point sets. (If a (self-transverse) immersion has 0- 
cobordant double-point set then any other (self-transverse) immersion in 
its cobordism class also has 0-cobordant double-point set.)

By Theorem 1 and Lemma 10 we have the following isomorphism 
mod C(2,3):

Imm50(n,
J{n, к) ф

for к odd 
for к even.

Let к be any even natural number. Then J(n ,k ) «  J {n ,k  + 1) and 

0 —> J(n, к — 1) —> J(n, к) 171,1 > ftn- 2k —> 0.

Therefore for any even к greater than 2

0 —» J(n, к — 2) —+ J(n, к) —— > fln_2fc —> 0.

Lemma 12. a) Given an immersion f  : M n —*■ R n+k with к even and 
denoting by n the projection into a hyperplane, the homology class realised by 
the submanifold Е1,1(7г о  / )  is dual to the top normal Pontrjagin class pk/2-

b) There is an automorphism в of the linear space formed by all poly
nomials of total degree n — к in the variables p i ,p2, • ■ where deg pi = Ai, 
such that fo r  any polynomial uj{p\ , . . . )  of degree n — к we have the equality

M íK S 1’1) ) , [E1-1]) = {pk, 2(M )  U 0{w (p (M ))) , [M ]).

Here E1’1 denotes the manifold Е1,1(7г о  / )  andи (р (Е 1,г)) denotes the ratio
nal cohomology class in H *(E1,X;Q) obtained from u>(p\ , . . . ) by substituting 
^ (E 1,1) for  pi. Similarly we define u>(p(M)). In other words the normal 
Pontrjagin numbers of E 1,1 coincide with those of M  corresponding to the 
polynomials divisible by p k/2 ■

P r o o f . We prove the following more general statement:
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P roposition. For any natural r

V [ ^ ( n o  / ) ]  = x r

where x  the normal Euler class of the immersion f  and V is the Poincare 
duality operator.

P roof. Induction on r. First for r =  1. Let us call the chosen hyper
plane (onto which the projection x maps) horizontal and the orthogonal 
direction vertical. Let us choose for each x 6 M a vertical upward directed 
short vector starting at the point / ( x )  and let us project it orthogonally into 
the normal fibre at / (x ) .  This projection gives a section of the normal bun
dle vanishing precisely at the points of the singular set of x о / .  For generic 
immersions this section will be transversal to the zero section, therefore

P [ £ V  о /)]  = x-
The induction step. Suppose that for r we know already the claim. Let 

us choose a direction different from the vertical. Let -к' be the projection in 
this direction.

Let us consider the normal bundle of /  pulled back to £ lr. The pro
jection of a small vector field parallel to the chosen non vertical direction 
into the pulled back normal bundle gives a section transversal to the zero 
section and its zero set is £ 1г(х о / )  П £ x(x' о /) .  The homology class in M n 
realized by this submanifold is

[ £ 1г(х о / )  П £ х(х' о /) ]  =  V (xT U x) = T>xr+1-

We get a cobordant submanifold of £ lr (cobordant inside £ lr) if we choose 
any other generic direction instead of x'. Especially we get the same 
homology class realized by the zero set if we choose the vertical direction for 
x' too. (For generic immersions the vertical direction will be generic.) But 
the zero set in this case will be precisely the set Elr+1. Part a) of Lemma 
12 is proven.

Proof of part b). Let us denote the E^-prim map x о /  by g. It 
follows from the description of E1,1-prim maps that the stable normal bundle 
of r̂( E1’1( f̂)) is stably isomorphic to the triple of the normal bundle of /  
restricted to E1,1. (Here we identified E1,1 with its image ^(E1,1).) Therefore 
if i is the inclusion of E1,1 in M n then for the total normal Pontrjagin classes 
the following holds: p(E1,x) = (г*р(М ))3. Let us denote by qs the class 
i*(ps(M ) ) . Then ps(E 1,x) =  3qs + polynomial of qi,q^, ■ ■ ■ ,qs- i- Therefore 
any monomial и  in the variables p i(E 1,1),p 2(S 1’1) , . . .  of the degree (n — 
— k ) /4 =  dim E1,1 can be expressed in a unique way as a homogeneous 
polynomial #(<7i, qi, ■..). Then

<w(p1(E1,1),p2(E 1’1) , . . . ) ,  [E1,1]) = (% b 9 2 ,. . . ) ,[E u ]> =
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= (г*0(рг(М ),р 2(М ),. . . ) ,  [S 1-1]) = ( в { р 1( М) , р2( М ) , . . . ) ,  ».[Е1-1]) =

= {e{p1( M ) , p 2( M) , . . . ) , v - p k/2(M))  =

= {Рк/2(М )  и 0(р1(М ),р2(М ),. . . ) ,  [М])

Part b) is proven. □

Obviously if к ^ n +  2 then J(n,k)  «  f in and so the Main Corollary 
holds for big enough k. Now we deduce the Main Corollary for arbitrary к 
by an induction going downward using the following commutative diagram 
with exact rows:

0 — > J ( n , k -  2) -----------*• J{n, k)  ----——* Qn- 2k

I  1  i
0 — ► P (n ,k  -  2) --------- ♦ P(n, k)  ---------- ► z *((n-2k)/A)

Here 7r(x)  denotes the number of partitions of x. (7т(ж) =  0 if x is not a 
natural number.)

The right side vertical arrow is the mod C(2) monomorphism given by 
the normal Pontrjagin numbers, the midie arrow is an isomorphism modulo 
C(2,3) by the hypothesis of the induction. The map P( n , k )  —+ Zn n̂~2k^ 4  ̂
is given by normal Pontrjagin numbers divisible by pk/2.

The arguments above show that the natural map J( n, k)  —► Pn<k that 
associates w ith the cobordism class of an immersion that of its domain 
manifold maps the subgroup J ( n , k -  2) in Рп<к- 2, therefore the left side 
arrow arises and the left hand square of the diagram commutes. The 
commutativity of the right hand square follows from part b) of Lemma 12. 
By the commutativity of this diagram the map J(n,k — 2) —>■ P(n, k  — 2) 
is an isomorphism (modulo C(2,3).) The proof of the Main Corollary is 
finished. □ .

10. P roo f o f T heorem  2

Let jus define the spaces f(fc) C Z(k)  C Y(k)  C X( k)  as follows:
(1) T{k) =  SlSMSO(k).
(2) Z (k ) can be obtained from T(fc) in the same way as Z(k)  was obtained 

from r(fc). More precisely: Let us recall that the space Z{k)  was obtained 
by attachinga disc bundle D(£)  to T(fc) by a gluing map p : dD(£) —* Г (к).  
Notice that Г(&) С T(fc) and the map p can be decomposed as follows:

p : 8 D (О Л  f ( k )  C T(fc).
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Now use the map p as a gluing map to attach D(£) to T(k).  The space 
obtained in this way will be Z(k).

(3) Analogously Y(k) and X(k)  can be obtained from Z(k)  and Y(k)  
in the same way as Y(k)  and X(k)  were obtained from Z(k)  and Y ( k ), 
respectively.

Remark 9. It follows from this description of the spaces X(k) ,  Y(k) ,  
Z(k),  T(k) that there exists a map

d:  ( X( k) , Y( k) ,  Z(k),T(k)'j -  {X(k) , Y(k) , Z(k) , T(k) )

such that
(a) is the natural inclusion of T(k)  = t t SMSO(k)  into T(k)  =  

= n °°S 00MSO( k) .
(b) The spaces X  \ Y , Y  \  Z, Z \  Г are mapped by d in a 1-1 way onto 

the spaces X  Y , Y  \  Z , Z \  Г respectively.
P roposition. If n < 3 k  then

7Гn+k(X( k) )  ~  nn+k+i ( MSO( k  +  1)) = Emb(n,A: +  1)

and
7rn+fc(f(fc)) « 7 vn+k+1( SMSO( k) )  = Emb(n, к ® 1).

P roof. See the analogous propositions on X(k)  and Г(Аг) in [15]. □
To prove Theorem 2 we have to compute the homomorphism 7Г„( f  (&)) —► 

—»• 7r*(X(fc)) induced by the inclusion f(fc) C X(k).  For this purpose we 
should consider the spectral sequences of the filtration Г(А:) C Z(k)  C 
C Y (к) C X( k)  first in the stable and then in the non stable homotopy 
groups. In the stable homotopy groups the computation is quite similar to 
the case of the immersions so we do not repeat it. This computation gives 
the following result.

C laim 16. The group C o k er^ ^ S M S O (k ))  —► x l ( MS O( k  + 1)) is a 
finite 2-primary group if к is even and it has only 2- and 3-primary torsions 
if к is odd.

Now we sketch the computation of the spectral sequence in the non 
stable homotopy groups.

(A) Let к be even. Then modulo C(2) the E 1 groups are the following: 

E \ j _ x sa xt(f(fc)) «  xt ( Q S MS O ( k ) ) ,

^2, t - 1 ~  x i+ l ( Х , Г )  ~  £lt-2k  ф  ^ t - 3 к ® Gt+1

Here Gt+i is the kernel of the natural epimorphic map

7Ti+1( Z , f )  -» 7Tt + 1(Z / f ) .
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The groups £3 „ and Е\ л are the same as for the filtration X  D Y D Z D Г: 

-̂ 3,4-1 ~  Kt+2( y / z )  =  Xi+2(T /^ ) И ® {iia ® fib|a +  b = t + 1 -  3fc}

E \ t - 1 »  7Tt+3(Х /У ) =  7ri+3( X /y )  »  fti+i_3fc.

The differentials for к even. In computing the differetials of this spectral 
sequence, the main tool will be the map ő : X(k)  —► X(k)  which respects the 
filtrations of these spaces and so it induces a map 1?* of the corresponding 
spectral sequences. Using 7?* we obtain

( 1) d \ t = 0. 4 >г is monomorphic and its image is contained in the group 
Gt+3. d\  t _ j  restricted to i l t - 2k is monomorphic.

(2) In the same way as in the case of immersions it can be proved that 
d\ t_2 is an isomorphism modulo C{2) onto ^ Z 3k- This implies that d\ t_ t 
is zero modulo C( 2) on ^ Z 3k-

(3) Let us consider the spectral sequence of the filtration X(k)  D Y (fc) D 
Э Z(k)  D Г (к) in the groups 7Г* and the maps & and 7Z analogous to those 
defined for immersions. We obtain that

d],t(Gt+2) = 0.

(4) By a theorem of Burlet [3] the map

n . ( SMSO( k) )  -> TT»(M50(fc+ 1))

is a rational epimorphism. Hence the factorgroup G*/im  CÍ3 „ is finite.

(5) Coker 7Г* ( SMSO( k) )  -> тг,( MSO( k  + 1)) C 
C Coker x t ( SMSO( k ) )  - n r l ( M S O ( k +  1))

and the last group belongs to C(2,3) by Claim 16. Then E^, = G»/ im d3 r G 
G C(2,3) because this group is a factor in a subgroup chain of the previous 
group.

So we get the following E°° groups for к even modulo C(2,3):

This implies Theorem 2 for к even.
(B) Let к be odd. Then the E 1 members are the following:

7гД Г 1 5 MSO( k) )  I Q.t-2k ©  G t+i  I 0  { U a ® Í I ; ,}  | £1^+\-3к

nt ( i l SMSO( k) )
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The differentials for к odd:
Ó

d\ t restricted to f l t - 2k is monomorphic.
d\,t(ß t+ 2) -  0 as before.
d \ t is isomorphic onto Gi+2 modulo C(2,3).
^ 4  ,t =  0-
d  ̂t is monomorphic modulo C(2,3).

(Proof: Because of the theorem of Burlet mentioned above, ker d \ t is 
finite. On the other hand the torsion group of the domain of this differential 
belongs to C(2,3).)

Hence the E°° members are the following:
£ “(_i =  7rt ( f l SMSO(k) )  / ü t- 2k ®
Ef ,̂ =  0 for s > 1.

This implies Theorem 2 for к odd too. □
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RELATIO NS B E T W E E N  N E W  TO PO LO G IES  
O B T A IN ED  FROM  OLD ONES

T. HATICE YALVAQ (Ankara)

So far, topologies rs, rg, r a , Tpo(x) were defined on X  by using the 
given topology T on X.

We construct new topologies on X  by using supratopologies on X . We 
obtain the topology Tgpo(X) in this way and investigate some relations 
between r, rs , T g , r “, T p o (x ) i  and TS P O (X )-

A, A will stand for the interior and the closure of the subset A of X  
respectively in the topological space (X, r) only.

In a topological space (X , r), the following families of subsets of X  are 
well known:

(1) та =  { A c  X : A  C Á}. Sets in r“ were introduced by Njástad [8]
and called a-sets. _

(2) 5 0 (X )  =  {A С X : A  C A).  Sets in S O (X ) were introduced by 
Levine [4] and called semi-open sets.

(3) P O ( X ) — { A С X : A  C A}.  Sets in PO( X)  were introduced by 
Mashhour et al. [6] and called pre-open sets.

(4) SPO( X)  — {A С X :A  C Ä}. Sets in SPO(X)  were introduced by 
Andrijevic [1] and called semi-preopen sets.

(5) A is called regular open if A = A [2, Problem 22, p. 92], RO{ X)  =  
= { A C  X : A  = A}.

The topology ts on X  which has as its base RO(X)  is called semiregu
larization topology of (X, r).

(6) Tg = {A C X : A  is 0-open} = { А с Х \ А  — в - 1г\Х,А =  { х ^ А \  
there exists an open set U such that x £. U C Ü CA} } .

0-open sets were introduced by Long and Herrington [5].
A set A is called а -closed (resp. semi-closed, pre-closed, semi-preclosed, 

regular closed) if X  — A is an а -set (resp. semi-open, pre-open, semi
preopen, regular open set).

а -closure (resp. semi-closure, pre-closure, semi-preclosure) of a set A is 
the intersection of all а -closed (resp. semi-closed, preclosed, semi-preclosed) 
sets containing A, and we will denote these sets respectively by acl A , scl A, 
pci A, spcl A.

It is well known that та is a topology [8] and та = P O ( X ) П SO(X) 
[9], PO( X)  U SO( X)  C SPO(X)  [1].
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232 T  H A TIC E YALVAQ

X  is extremely disconnected, shortly e.d. (means every regular open set 
is closed), iff r “ =  S O ( X ) [8]. X is e.d. iff SO{X)  C PO{X)  [3].

Tg is a topology and at the same time (X, r) is almost regular iff rs = t$
[5]. (X, r) is semi-regular iff rs = т, X  is regular iff it is semi-regular and 
almost regular.

Definition [7]. Let А  C P{X) .  If 0 £ А,  X  £ A  and A is closed under 
arbitrary union, then A  is called a supratopology.

It is known that S O( X) ,  PO(X) ,  SPO( X)  are supratopologies [8], [6],
[13-

THEOREM 1. If A  is supratopology on X , then ta  = {T С X : A £ A  => 
=>■ T П A £ A }  is a topology and гд C A.

P r o o f . А е А = > Ф Г \ А  = Ц)ЕА and X  П A = A £ A.  Hence 0 £ тд 
and X  £ ta .

Let {T,} С гд and A £ A.  ((JT,) П A = (J(X) П A) £ A.  We have 
I \Ti £ ta .

Let T\ £ тд, T2 £ гд and A £ A.  Then (Ti П T2) П A = T\ П (T2 П A). 
Since T2 П A £ A  and T\ £ ta , we have T\ П (T2 П A) £ A.  Thus ta  is a 
topology.

If T £ тд, then, since X e A,  Т Г \ Х  =  Т е А.

Corollary 1. ^spo(X) = Í.P C X \ A  G SPOi^X) => I  П A £
£ SPO( X) }  is a topology and т$ро(Х) C SPO(X) .

If we take A as SO( X)  (P O ( X )) then we get the topology tq [8, 
Proposition 1] (r7 defined by Andrijevic [1]).

We know that г С т" С трд(х) С PO( X)  C SPO(X)  [1]. Clearly 
t01 = TPO(X) Cl SO( X) .

Theorem 2. If a supratopology A is a topology then гд = A.
Corollary 2. (1) (Njástad [8]). та = iff SO(X) is a topology.
(2) TPO(X) = P O (X ) iff PO( X)  is a topology.
(3) tSPO(x ) = S P O( X)  iff SPO( X)  is a topology.

Corollary 3. If PO( X)  c  S O (X ) then

tp o (x ) = rso(X) = T° = PO(X) .

Proof. If P O ( X )  C 5 0 (X ) then r “ = PO( X) .  It is clear now since 
та — Tso(x)  an(i from Corollary 2.

But as we can see from the following example, we can have tPO(x ) — 
= Tso(x)  without P O ( X )  C SO(X) .

Example 1. Let X = N, r the cofinite topology on it.
S O( X)  — г  =  tSO(x )i PO( X)  =  {A C A": A is infinite or void}.
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If A £  P O ( X ) and A £ T then A £ tPq(x )i because X  \  A is infiflite and 
if we choose В = (X \  A) U C  (where C is a finite subset of A), В £ PO(X)  
but АП В £ PO(X) .  Hence we have tPO(x ) — T-

L e m m a  1. If A £ та and В £ SPO( X)  then АП В £ SPO(X) .  
P r o o f . Let A £ r a and В £ SPO(X) .

A n  в  c  An в  c  (An в )  = (An в )  c  (An в )  = (An в )  =

= ( А г \ в )  с  ( А п в )  с  ( А п в ) .

C o r o l l a r y  4. та с  tSPo(x ) С SPO(X) .
T h e o r e m  3. Let A and В be supratopologies on X .
(1) If A  =  В then ГД = Tß.
(2) А  С В does not imply гд C Tß or тр С тд.
(3) It can be тд = Tß without A  = В.
In Example 1, rP0(x) =  t s o ( x )  but PO( X)  ±  SO(X).
E x a m p l e  2. Let

X  = {a,b,c} T = {0 ,X ,{6 } ,{ c } ,{6 ,c } } ,

S O( X)  = {0 ,X ,{6 } ,{ c } ,{6 ,c } ,{a ,6 } ,{a ,c } } ,

PO( X)  =  r. r a = SO(X)  П PO( X)  =  r = ts o ( X ) .

Let r* =  { 0, X , {6}, {c}, {b, c}, {a, 6}} . т* C S O ( X ). Since r* is а 
topology ОП X,  T>. =  T*. But Гт . (f_ TS 0 (X y

E x a m p l e  3. Let

X  = {a,b,c} ,  г  = {0 ,X , {a ,6}},

r = 5 0 (X ) = rso(X) , PO( X)  = { 0 ,X ,{ a } ,W ,{ a ,6 } ,{ « ,c } ,{ 6 ,c } } ,

T P O (X ) = r U { {a}, {&}}, SO( X)  C PO(X) ,  but тР О (Х ) <£ TS 0 ^X y  

L e m m a  2.  If U is open and closed then U £ тд.
P r o o f . x £ U = > x E U c Ü c U.  Hence U is 0-open.
L e m m a  3. X  is e.d. iff SPO( X)  = P O (X ).

P r o o f . Let X  be e.d. A £ SPO(X)  => A C A = A. Hence A £ 
£ PO( X) .  Since PO( X)  C SPO(X) ,  we have SPO( X)  = PO( X) .  Con
versely let SPO( X)  = P O ( X ). Since 5 0 (X ) C SPO(X)  С PO( X) ,  X  is
e.d.
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Corollary 5. S O ( X )  C P O { X)  iff SPO(X)  = PO(X) .

Corollary 6 . I f  X  is e.d. then
( 1 )  ts = тв,
(2) та  = t S 0 ( X ) = SO(X) [8 ],
(3) tSPO(X) = Tp0 (x)-

P roof . (1) Since every regular open set is closed, тд contains the base 
of ts. We have rs С Tg. Hence ts = Tg.

(3) S P O ( X )  = P O ( X )  gives us tSP0(X) = rP0 (X)-

Corollary 7. I f  SO(X)  =  P O ( X )  then rs = тд, та = tp o X̂ ) = 
= rSPO(x )  = P O ( X )  =  SO( X)  =  SPO(X) .

T heorem 4. The followings are equivalent:
(1) each subset o f X  is pre-open,

(2) fo r  each x E X , {ж} C {a>},
(3) each subset o f X  is pre-closed,
(4) each open set is pre-closed,
(5) each open set is closed (equivalently each closed set is open),
(6 ) each pre-open set is pre-closed,
(7) each pre-closed set is pre-open.

P roof. Since P O ( X )  is a supratopology and a set A is pre-closed iff 
X — A  is pre-open, l = » 2 = > 3 = > 4 i s  clear.

( 4  => 5 ) Let U be an open set. Since U is pre-closed, U = U C Í7. So U 
is closed. _

( 5  => 6 ) Let U be a pre-open set. U = U C U. So U is pre-closed.
( 6  =>• 7) is clear.
( 6  => 5) Let U be an open set. U is pre-open, semi-open and pre-closed. 

Since semi-open and pre-closed is regularly closed [3], U is closed.
(5 => 1) Let U С X . Ü is closed, Ü =  Ü D U. So U is pre-open.

C orollary 8 . I f  every open set is closed in ( X , t ) then
( 1 )  T — ts =  tq — t °  — SO ( X) ,
(2) PO ( X)  =  Tspo(x) — TPO(X)  ~  discrete topology on X .

P roof. (1) Since every open set is closed, every open set is 0-open from 
Lemma 2. We know that тд C ts C r. Hence r = rs = т$. A £ та =>
= > A c A  = A = > A  is open, and since X is e.d. r = r “ = SO( X) .  Thus
T =  Ts =  Tg -  Ta =  S O ( X ) =  TSO(X)-

This corollary is interesting for an indiscrete space (X, r).

Example 4. Let X  be any set and т = {0 ,X }. r = rs = та = тд = 
= S O ( X )  = T s o ( X ) ,  PO(X)  = S P O ( X)  = TS P 0 (X)  = TP0 ( X) = P{X) .
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ON A PR O BLEM  IN A D D IT IV E  N U M B E R
TH EO RY

A. SÁRKÖZY and E. SZEMERÉDI (Budapest), corresponding member of the Academy

1. Let A  and В be infinite sequences of non-negative integers. Denote 
the number of solutions of

( 1 ) a +  b = n, a £ A,  b £ В

by /(ft), and denote the counting function of the sequences A  and В by 
A(x)  and B(x),  respectively:

A(a:) = Y^  1 and B(x)  = ' Y  1.
a ^ x  b<x
a£A Ьев

Assume that there exists an integer n0 with 

(2) f (n)  ^ 1 for 71 > n0,

i.e., every large integer n can be represented in the form (1). This implies 
that for all x we have

(3)

and hence

(4)

A(x)B{x)  = Y
a<x 
a e A

г E  E
no<n<;c a+b=n

-  аеА,ьев

E ' ä  E  i s
b^x a+b x̂
b e e  a e A }b e e

1 ^ y  1 = M -  fto
no <n^x

liminf
X — *--f-00

A(x)B{x)
x ^ 1.

Starting out from a problem of Hanani and Erdős [2], [3], Danzer [1] 
conjectured that if also

( 5 ) lim sup
x —>--|-oo

A(x)B(x)
x

^ 1
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holds and hence, in view of (4),

( 6 ) lim
x —► -f- oo

A(x)B(x) 
x = 1,

then we have

(7) liminf ( A(x)B(x)  — x) = +oo.
x —> + o o  4

(See also [4], p. 10, [5], p. 75 and [6].) The goal of this paper is to prove 
this conjecture.

T h e o r e m . If A  and В are infinite sequences satisfying (2 )  and (5 ), then
(7) must hold.

2 . P r o o f  o f  t h e  T h e o r e m . We start out from the indirect assump
tion that A  and В satisfy (2) and (5), however, (7) does not hold. In view 
of (3) this implies that the limit on the left hand side of (7) is finite:

(8) — oo < lim inf ( A(x)B(x)  — x) < +oo.

By (2), it follows that

+ 00 > ljrn_inf(A(x)B(x) -  x) =  Hminf Í (  £  l )  X)  " x >
\ a^x b̂ a

а ел ьев

i  l™i”f (( E 0 - *) = “ (É Л") -*) г
\ a-\-b̂ x / П—0

a(zA,b£B

> liminfЛ  É  / W - x )  г  l i m w ( [ x ] - n „ +  Y . ‘ - г )  ä
п —п  0+1 \  П С ) < П < Х  'no < n S x  

/(«)> 1

> lim inf ( V  1 I
c-x  +  oo \ ' /

\ 7 l n < n < X  /
— (no + 1 )

no <r  _  
/ ( n ) > l

and thus by (2), there exists an integer ni with

(9) /(re) = 1 for n ^ щ.
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Furthermore, since A and В are infinite, it follows from (5) that

(10) A(x)  = o(x) and B(x) =  o(x).

Let us write
liminf( A(n)B(n)  -  n) — L
TL—►“TOO '  '

(L is finite by (8)), and let X  — {ж1,а:2, . ..} (where x\ < X2 < . . . )  be a 
sequence of positive integers with

(11) A { x k) B ( x k) -  xk =  L ( k  = 1, 2, . . . ) .

To every к we assign certain numbers yk,b k̂\  etc., and we will study 
these numbers and their functions as к —у -fi oo. Correspondingly, we 

кwrite (/5 -a -fioo, =  ок(ф), <f =  Ok{Ф) (where ip and ф depend on к) 
if lim <p =  -fioo, lim Щ = 0 and limsup \4\ < -fioo, respectively.

fc-̂ +oo к-*-fco v fc-,+00 w
We may assume without loss of generality that the greatest term of 

(A U В)  П [0,Zfc] belongs to $, and let us denote this term by 6^). We put 
Ук — х к — bW.  Then in view of (2) and (11) we have

(12) L = T(xyt)(xi) -  xk =  f  E  l ) (  E  l )
V a^xk / V b ^ x k /  

a e A  beß

V E  > + ( E  i ) (  E
a + b ^ x k \  yk < a ^ x k /  \  x k - y k ^ b ^ x k /
a£ A , b£ß  b£ß

Xk
=  X I  Л п) +  (^(*fc) ~  Myk)) - x k Z

n = 0

^ (Xk -  no) +  ( A(xk) -  A(yk)) -  xk = (A(xfc) -  A(i/fc)) -  rc0.
к

Since .4 is infinite, we have 4  (ж*) —> -fioo. Thus (12) implies that

(13) A(yk) Л  -fioo 

and hence

(14) yk Л  -fioo.
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On the other hand, by (6) we have

(1 +  ofc(l))** = A ( x k)B(xk) = A ( b W) B { b W)  =

=  (1 + Ok( 1)) 6(/c) = (1 + ofc( l ) )  (xk -  yk)

and hence

(15) У к = о к{ хк ).

Furthermore, (12) implies that

(16) A(xk) -  A(yk) ^ L +  n0.

Now we are going to show that

(17) max ( B ( z  +  yk) -  B(z ) )  =  ok(yk).

(Note that yk +oo by (14).) In fact, assume that contrary to (17), for 
some £ and infinitely many к there exists a z k with 0 й zk < x and

(18) В (zk +  yk) -  B { z k) > eyk.

If 0 Ú z Ú 2yk, then in view of (10) we have

B {z  + yk) -  B(z)  ^ В (3yk) = o(yk)

so that for large к (18) can not hold (with г in place of zk).
Assume now that (18) holds with some zk > 2yk. Let us form all the 

sums a -f b with 0 S a ^ yk, z k < b й zk +  y k. In view of (18), the number 
of these sums is

A(yk) { B( z k +  yk) -  B( z k)) > eA(yk) y k,

and since A  is infinite, for large к this is greater than 2yk. On the other 
hand, all these sums belong to the interval ( z k, zk + 2yk] which contains 2yk 
integers. Thus by the pigeon hole principle, there exist two equal sums:

a + b =  a' +  b1 > zk (a 6 A, a1 6 А , а ф a', b £ В , b' € В, b /  b’).

For large к this contradicts (9), and this contradiction completes the proof 
of (17).
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Next we will show that

(19) B( xk -  yk) -  B( xk -  2yk) +oo.

In fact, by (9), (15), (16) and (17), for к —* +  oo we have

Xk

O N  A PRO B LEM  IN A D D ITIV E N U M B ER  THEORY

y k  = Y  Дп)= Y  1 =
n = X k - y k  +  l хк~Ук<а+Ь^хк

adA,bdB

241

s E E  1 + E 1 E  >
Ук<а̂ Хк \  xk-a -yk<b^xk-a

adA bdB
айук ' ' xk- 2yk<b^xk
adA bdB

= Y  ( B (xk - a ) - B ( x k - a - y k) ) + A ( y k) ( B( x k - y k) - B ( x k - 2 y k))
Ук<а^*к

adA

Y  1 ) °к(Ук) + A(yk) {B{xk -  yk) -  B{xk -  2yk))
У к < а  S x k 

a£A

Ok( l )ok(yk) + A(yk) ( B( x k -  yk) -  B( xk -  2yk)) 

= ok(yk) + A(yk) ( B( x k -  yk) -  B( xk -  2yk)) .

By (10) this implies (19).
By (2) and (11) we have

L = A(xk) B{ xk) -  xk =  ( Y  1 ] ( Y  1 ) ~ X k  =
/ \ Ь̂ Хк

de A bee

г E  1 + ( E  0  E  1 -** =
а+Ьйхк \  2yk< a ^ x k /  \  x k - 2 y k < b ^ x k - y k /
adA,bdB adA bdB

xk
= Y - f ^  + ( Л(х *) -  А (2Ук)) { в ( х к -  Ук) -  В ( х к -  2ук)) ~ х к ^

п = О
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Xk
^ Y  1 +  ( M xk) -  М 2Ук)) ( B( xk -  yk) -  B( xk -  2yk)) -  x k =

n=7lo+l

=  ( A( x k) -  A(2yk)) ( B(xk -  yk) -  B(xk -  2yk)) -  n0.

By (19), this implies for large к that

A( xk) -  A(2yk) = 0,

or in equivalent form,

(20) А П (2yk, Xfc] = 0 for к > ко- 

Finally, let us write

V = { ( 6 ,a ):6 G B, a £ A , b ^ xk -  yk, a ^ xk -  yk, b -  a > yk } .

It suffices to show that for large k,

(21) \V\ > xk — 2yk.

Namely, if (6, a) £ V,  then

(22) yk < b -  a ^ xk -  yk (for (6,a) G V).

By the pigeon hole principle, (21) and (22) imply that there exist (6, a) G T>, 
(b', a') G V  with b ^ b',a ф a',

b — a = b' — a

hence
a + b' = a + b.

Then writing n = a + b’ — a' + b, we have

/ ( « U  2

and
n'^.b'^.b — a > y k

which, for large k, contradicts (9). This proves (7) and thus it completes 
the proof of our theorem.

In order to prove (21), first we write

X>! =  {(6, a): 6 £ B,  a £ A,  2yk < b ^ xk -  yk, a < b < yk}
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and

V 2 = |(i»,a):6 e В, a e Л , ^ у к < b й 2 yk, 0 ^ a й ^yk j  .

Then, in view of (15) and (20), we have V\ С V,  D2 С V  and clearly V\ П 
П Т>2 ф 0, hence

(23) \V\ > |X»1f +  \V2\.

In view of (20), b й xk — yk, a < b — yk(< xk) imply that a ^ 2yk. Thus 
writing

T>f =  { (b,a): b e B, a e A, 2yk < b ^ xk -  yk, 2yk}

and

Щ  =  { { b , a ) : be  B, a e  A , 2 y k < b <; xk -  yk, a ^ 2yk, a ^ b - y k } ,  

we have P+ =  D] U Pj~, Pj П Pj~ = 0, hence

(24) i P a ^ l P + M P r l -  

By (6), (11), (14) and (20),

(25) \V+\ =  ( P(x* -  yfc) -  P (2yfc)j A(2y*) =

= B(xk -  yk)A{2yk) -  B{2yk)A(2yk) =

= P (x fc);4(xfc) -  B(2yk)A(2yk) = (x*O fc(l)) -  ( l  +  o*(l)) -2yk =

= (*fc -  2Ук) +  ok{yk).

Furthermore, 2yk < b, a ^ 2yk, a ^ b — yk imply that 2yk ^ a ^ 
^ b -  yk > 2yk -  yk = yk and 2t/fc < 6 ^ a + yk ^ 3j/fc, hence, by (16) 
and (17),
(26)

\V ~ \^  {A(2yk) - A ( 2 y k) ) ( B( 3 y k) - B ( 2 y k)) = Ok( l )ok(yk) = ok(yk).

It follows from(24), (25) and (26) that

(27) -IPi I =  (xk -  2yk) +  ok(yk).
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Finally, we are going to estimate |X>21 • It follows from the definition of 
T>2 that

(28) \V2\ = A ( в ( 2 у к) -  В .

In view of (6) and (14), here we have

(29) A ( - y k ) ^ A
1 \  В {±ук) _  А ( \ у к) В ( \ у к)
F‘) В(ук)  Л (ук) В ( у к)

= ( 1 + О к (1)) ~ (2  ̂ А ( у к ),

and, in view of (6), (10), (14) and (16),

А(Ук)  =

Гчт 1 п [ ' 3 , Л  В(2ук) А( у к) -  В { \ у к) А ( у к)(30) В( 2ук) -  В [ - y kj =  ----------------- — -----------------

В(2ук)(А(2ук) +  0*(1)) -  В ( I Ук) {А ( | ук) +  О к( 1)) _
А (ук)

А(2ук)В(2ук) + Ок { В( 2 у к)) -  А (§ук) В (§ук) + О к (В ( | ук))
А(ук)

_ (2 + Ofc(l)) Ук +  Ок{Ук) -  (I +  Ofc(l)) Ук + Ок(Ук) _
А ( у к )

-  Q + 0fc(1)) Ук
А(укУ

It follows from (28), (29) and (30) that

(31) т г ( Ь в‘ (1)) Ук-

If к is large enough then (23), (27) and (31) imply (21) and this completes 
the proof of the theorem.

3. By using the same method, it could be shown that if (2) and (7) hold 
then

A(x)B(x)  -  x = o( m in(A (x),B(x)))
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is impossible. On the other hand, we guess that

(32) A(x)B(x)  -  x = 0 (  min(^4(x),5(x)))

is possible and, in fact, we guess that for every function f ( x )  with 
lim f (x)  = +oo, there exist infinite sequences satisfying A(x) =  0 ( f ( x ) ) ,

X — ► -} - 0 0

(2), (5) and (32).
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A P P R O X IM A T E  M E A N  C O N T IN U O U S
IN T E G R A L

S. K. MUKHOPADHYAY and S. N. MUKHOPADHYAY (Burdwan)

1 .  I n t r o d u c t i o n

By extending the concept of ordinary limits Burkill introduced the ap
proximate continuous Perron integral or the AP-integral [1] and the Cesaro- 
Perron integral or the CP-integral [2]. These integrals have been extended 
further in various ways [4, 6 , 3]. The extension of CP-integral to GMr  
integral by Ellis [4], based on the descriptive definition of the general Denjoy 
integral, uses approximate derivative and mean continuous ACG function. 
Replacing the mean continuity in the definition of GMj-integral, by the ap
proximate mean continuity — called Dj-continuity — we introduce, in the 
present paper, an integral which is called Dj-integral. This integral which 
is an approximate extension of GMi-integral, is shown to possess various 
properties of Denjoy integrals including integration by parts and the Cauchy 
and the Harnack properties. The special Denjoy integral or the DMntegral 
and the general Denjoy integral or the D-integral, used in this paper, are in
[7].

2 .  P r e l i m i n a r i e s

D efinition 2.1. A function f : E  ^  R ,  where R  is the set of reals and 
E  C R ,  is said to be generalized absolutely continuous on E  if E can be 
expressed as a countable union of closed sets on each of which /  is absolutely 
continuous and is written /  € ACG(E).

Note that this definition of ACG differs from that in [7, p. 223] in that 
we are not using continuity of / .  Since a continuous function /  is absolutely 
continuous on the closure of a set on which /  is absolutely continuous, it 
follows that if /  is ACG in the sense of [7], then /  is also ACG in our sense. 
The converse is not true. It is clear that if /  G ACG(E) then /  is VBG 
on E  in the sense of [7, p. 221] and is measurable and so by [7, Theorem
4.3, p. 222] the approximate derivative / '  exists almost everywhere on 
E.  It can be verified that if f , g  G ACG(E') then a f  + ßg G ACG(E) and 
fg  G ACG(E), where a and ß  are constants.
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Lemma  2.2. If F  £ ACG(.E') then every closed subset of E contains a 
portion on which F is absolutely continuous.

P r o o f . Let E =  Li Ek where each Ek is closed and F  is absolutely 
к

continuous on Ek- Let Q be any closed subset of E. By Baire’s theorem 
there is a portion P  of Q which is contained in some Ek and hence F  is 
absolutely continuous on P.

Lemma  2.3. If F  £ ACG(E) then F fulfils the Lusin condition (N) on 
E.

P r o o f . The proof given in [7, p. 225, Theorem 6.1] will suffice.

T heorem 2.4. Let F  £ ACG[a,6] and let F have Darboux property in 
[a, 6]. If

( 2 .1) lim sup 
/i—о

F(x + h )~  F(x)  
h ^ 0

for almost all x £ [a, 6] then F is continuous and nondecreasing in [a ,b ].

P roof. Let G be the set of all points x in [a ,ö] such that there is a 
neighbourhood of x in which F is nondecreasing (for the endpoints a and b 
we consider one sided neighbourhoods). Then G is open. Let H = [a, b] ~  
~  G. Then H is closed. If possible let H be non void. If (c,d) is a contiguous 
interval of H then F  is nondecreasing in (c,d) and so by the Darboux 
property F  is continuous and nondecreasing in [c,d]. Hence H cannot have 
isolated points. So H is perfect. By Lemma 2.2, there is a portion (p, q)C\ H 
of H on which F  is absolutely continuous. Let a and ß  be such that p  Ú a < 
< ß  ^ q and (а,/?) П Я / Й .  Then F  is absolutely continuous in [a,/3] П H . 
Since F  is continuous and nondecreasing in the closure of the complementary 
intervals of \ a ,ß] Г\ H , F  is continuous and of bounded variation in [a,ß]. 
Since by Lemma 2.3, F fulfils the Lusin condition (N), F is absolutely 
continuous on [a,/?]. The condition (2.1) almost everywhere then ensures 
that F  is nondecreasing in [a,/3]. But this is a contradiction, since (а,/?)Л  
П H ф 0. Thus H is void. Hence F is nondecreasing in [a,6].

Corollary 2.5. If F has Darboux property on [a, 6] and F e  
G A C G ([a,6]) and F p̂ = 0 almost everywhere in [a, b], then F is constant.

3 .  T h e  D i - i n t e g r a l

D efinition 3.1. Let f\[a,b] —► R and let x £ [a,6]. Let /  be D- 
integrable in some neighbourhood of x and let F be its indefinite D-integral.
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If F  is approximately differentiable at x then the approximate derivative 
F'&p(x) is called the Di-limit of /  at x and we write

Dr lim f ( t )  = F1 (x).
t—*x

The function /  is said to be Di-continuous at x if

Di-lim f ( t )  = f(x).

In other words, /  is D1-continuous at x £ [a, ft] if /  is D-integrable in 
some neighbourhood of x and f (x)  is the approximate derivative at x of 
its indefinite D-integral; /  is said to be Di-continuous on [a, 6] if it is Dx- 
continuous at every point of [a,ft]. (If x = а от x =  b then appropriate one 
sided neighbourhood and one sided limit are to be considered in the above 
definition).

Clearly if /  is continuous in [a, ft] then /  is the derivative of its indefinite 
integral and so /  is Di-continuous in [a,ft]. The converse is not true. In 
fact, there exists a function /  and there is a set E q of positive measure in 
its domain such that /  is Dj-continuous at each point of Eq but nowhere 
continuous on E q. Let F be an ACG function on an interval which is not 
differentiable at the points of a set E  of positive measure (cf. [7, p. 224]). 
The approximate derivative F'&p exists almost everywhere (cf. [7, p. 222, 
Theorem 4.3]). Let /  =  F'&p where F' exists and /  = 0 otherwise. Clearly 
/  is Dj-continuous almost everywhere on E but /  is not continuous on E.

It may be recalled that a function /  is said to be Ci-continuous at x if /  
is D*-integrable in some neighbourhood of x and if F'(x) — f (x)  where F  is 
an indefinite D*-integral of /  (see [2]). Replacing D*-integral by D-integral, 
Ellis [4] introduced the concept of Mi-continuity. Clearly Ci-continuity 
implies Mi-continuity and Mi-continuity implies Di-continuity.

D efinition 3.2. A function f:[a,b] —*• R is said to be Dj-integrable 
on [a,ft] if there is a Di-continuous, ACG function Ф:[а, ft] —* R such that 
Ф̂ р = /  almost everywhere in [a,ft]. Then the function Ф is said to be an 
indefinite Di-integral of /  and Ф(ft) — Ф(а) is the definite integral of /  on 
[a,ft]. Since a Di-continuous function is an approximate derivative, it has 
Darboux property and so by Corollary 2.5, Ф is unique up to an additive 
constant whence the definite integral is unique. The definite integral is 
denoted by

b b

(D i) J f ( t ) d t  or simply (Dx) J f.
a a

Recall that a function f:[a,b\  -> R  is GMx-integrable on [a,ft] if there 
is an Mi-continuous, ACG function Ф: [a, ft] —► R such that Ф̂ р = /  almost
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everywhere in [а,Ь]. Since Mi-continuity implies Di-continuity, it follows 
that if /  is GMi-integrable then it is Di-integrable and the integrals are 
equal. In Example 6.1 we shall show that the Di-integral is strictly more 
general than the GMi-integral [4]. Since the GMi-integral includes the CP- 
integral [2] the Di-integral is more general than the CP-integral and hence 
more general than the D- and D*-integrals. In Examples 6.2, 6.3 and 6.4 
we shall show that the Di-integral and the AP-integral [1] (and also the 
AD-integral [6]) are not comparable and even not compatible. It may be 
noted that AP-integral and the AD-integral have the disadvantages that the 
indefinite integrals (which are expected to have properties nicer than the 
integrand) may not be integrable (cf. [3] and Example 6.3 below).

The function /  is said to be Di-integrable on a measurable subset E of 
[a, 6] if f E is Di-integrable on [a, 6] where f E is defined by

M x )  = {  f (x )’ x e E
lE[ > \ 0 ,  x £ E

and we write /  £ Di(E'). We shall take

ь

(D i) J f  =  (DX) J  f E.
E  CL

X

T heorem 3.3. If f  is Di-integrable in [a,6], then F(x)  =  (D i) J f  is
a

D -integrable and D i-continuous on [a ,6].
T heorem 3.4. If f  and g are D\-integrable in [a,6] and a ,ß  are con

stants then a f  + ßg is D\-integrable in [a,b} and

b b b

(Dr) j  ( a f  +  ßg) =  a (D i) J f  + ß ( Dx) J g.
a a a

The proofs of Theorems 3.3 and 3.4 follow from the definition of the 
Di-integral.

T heorem 3.5. If f  is Y)\-integrable in [а,Ь] and in [&,c] then it is D i- 
integrable in [a,c] and conversely if f  is Dj-integrable in [a,c] and a < b < c 
then it is so in [a,6] and [5,с].

In either case

c b c

(3.1) (D i) / /  = ( Di) J /  + (Da) J f.
a a b
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P r o o f . Let F\ and F2 be the indefinite Di-integrals of /  in [a,b] and 
in [b,c] respectively. We may suppose that F2(b) =  0. Let

Fi{x)
F1(b) +  F2(x)

for x E [a, b] 
for x E [6, с].

Then F  is ACG in [a,c] and F'&p = /  almost everywhere in [a, с]. So we are 
to show that F is Di-continuous in [a, с]. Since F\ and F2 are Dj-continuous 
in [a,b] and in [b,c] respectively, we are only to consider the point x — b. 
Since F\ and F2 are D-integrable in [a, b] and [6,c] respectively, F  is D- 
integrable in [a, с]. Let Ф be an indefinite D-integral of F . Since F\ is 
Di-continuous at 6,

lim ap
A—>o+

Ф{ b -  h) — Ф(6) 
- h

lim ap y(D) /  
/1—*o+ b J

b—h

F(t)  dt =

= lim ap 
Л—0+ b> > /

b - h

Fi(t) dt = Fi(b).

Also, since F2 is Di-continuous at 6,

lim ap
/1—*-0+

Ф(b +  h) -  Ф(6) 
h

6-f h
lim ap -(D ) [  F(t)  dt =
/1—0+ b  J

b+h

= lim ap y-(D) /  [F^b) + F2(t)} dt = F^b) +  F2(b) = F,(b).
A—0+ n J

ь

Hence F  is Drcontinuous at b. Thus F  is indefinite Di-integral of / .  Since 
F(b) -  F(a)  + F(c) — F(b)  = F(c) — F(a),  the relation (3.1) is clear. The 
converse is easy.

THEOREM 3.6. If f  is D i -integrable and f  ^ 0 almost everywhere in 
[a,b], then f  is Lebesgue integrable in [a,b\ and the integrals are equal.

X

P r o o f . Let F(x)  =  (D i) J / .  Then F is Di-continuous and hence is
a

an approximate derivative. So F has Darboux property. Also F  is in 
ACG([a, 6]) and F̂ p — f  ^ 0 almost everywhere in [a, 6]. Hence by Theorem
2.4, F  is nondecreasing in [a, b]. So F' exists almost everywhere and is 
Lebesgue integrable in [a,6]. Since F̂ p = /  almost everywhere in [a, 6], /  is 
Lebesgue integrable in [a,6]. The rest is clear.
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T h eo rem  3.7 . If both f  and g are D\-integrable on [a, 6] and if f  ^ g 
almost everywhere then

ь b
(D X) J  f l (  DX) J  g.

a a

P r o o f . Let F  and G be indefinite integrals of /  and g respectively. 
Then both F  and G are Di-continuous and ACG on [a, b\ and F'&p = / ,  
G '&p = g almost everywhere on [a, 6]. Hence Ffp ^ G'&p almost everywhere 
on [a, b]. If Ф =  F -  G, then Ф is Da-continuous and ACG on [a, b] and 
Ф^р ^ 0 almost everywhere on [a, b] and hence by Theorem 2.4, we have

Ф(6) -  Ф(а) ^ 0 .

So
b b

(D i) J f * (  Da) J  9 •
a a

T heorem 3.8.  If f  is T)\-integrable then f  is measurable and finite 
almost everywhere.

P r o o f . L e t  F be an in d e f in i t e  D a - in te g ra l  of /  in [ a , 6]. T h e n ,  since F  
is  ACG in  [a, b], [a,b} = U E n, E n closed a n d  F  is a b so lu te ly  con tinuous  onП
each En. For each n, let Fn =  F  on En and Fn is linear in the closure of 
each contiguous interval. Then Fn is of bounded variation in [a,b]. Since 
/  =  F̂  = F'n almost everywhere on En and since the derivative of a function 
of bounded variation is finite almost everywhere and measurable, the result 
follows.

T heorem 3.9 (Dominated convergence theorem). If
(i) for each n, g ^ fn ^ h almost everywhere in [a,b] where g, /„ , h are 

D i-integrable and
(ii) lim f n( x ) = f(x) almost everywhere on [a,b],

71—FOO

then f  is Dx-integrable and

ь b

lim (Da) [  f n =  (Da) /  /.
n—oo J  J

a a

P roof . Write Фп = /„  — g, Ф = /  — g, Ф — h -  g. Then Ф„ and Ф are 
non-negative almost everywhere and Da-integrable in [a, 6]. By Theorem 
3.6, they are Lebesgue integrable in [a, 6]. Since 0 ^ Фп ^ Ф, the Lebesgue
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theory of limits under the integral sign shows that Ф is Lebesgue integrable 
and

b ь

Hm (L) J Фп = (L) J Ф.
a a

That is

Г f>r Ь 1r
lim

71—► OO (Dl) J
fn — (D i) J g

a 0-
9-

Hence the result.
T heorem 3.10 (Monotone convergence theorem). If { /„ }  is a non

decreasing sequence of T)\-integrable functions on [a,b] and if the sequence 
b

{(D i) /  /„} is bounded above then the function f(x)  =  lim f n(x) is D i-
„ n —► ooa

integrable on [a, ft] and

(3.2) /■

PROOF. Since /„  — fi is Di-integrable and nonnegative, by Theorem 3.6 
it is Lebesgue integrable. Since f n — fi —► /  — / 1, by the Lebesgue theory

(3.3)
b

/0 = (L) ju-h)-
a a

b
Since the sequence of integrals {(Di) f  /„ }  is bounded above, so is the

a
b

sequence {(L) f ( f n — f i ) }  and therefore
a

0 ^ (L) < oo.

Hence /  — / i  is Lebesgue integrable and a fortiori, is Di-integrable and Д  
being Di-integrable, /  is also so. Hence (3.2) follows from (3.3).
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Theorem 3.11. If f  is Di-integrable on [a,6] then for every closed set 
E  C [a, 6] there is a closed interval J C [a, 6] containing points of E in its 
interior such that

(i) /  is Lebesgue integrable on J П E,
(ii) if {Ik} is the sequence of contiguous closed intervals of J Г\ E then

< 00.

X

P roof. Let F (x ) =  (Di) f  f . Then since F is ACG on [a, 6] by Lemma
a

2.2 there is a closed interval J C [a, 6] containing points of E in its interior 
such that F  is absolutely continuous on J П E. Let G be the function on 
J which coincides with F on J П E  and is linear on each contiguous closed 
interval of J П E. Then G is continuous and of bounded variation on J 
and F  satisfies Lusin condition on J. So G is absolutely continuous on 
J and hence G' is Lebesgue integrable on J . Since G' = = /  almost
everywhere on J П E, f  is Lebesgue integrable on J Л E, proving (i).

To prove (ii), note that since F  is absolutely continuous on J Г) E, F is 
also of bounded variation on J П E and hence

£  (D i) /  /  = Y , \ F( b k ) ~F{ a k)\ <
L. J

oo

where Ik = [^k^k]- This proves (ii).

4. In tegration  by parts

Lemma 4.1. Let Ф be D\-continuous at xq E [a, b] and F be an indefinite 
L-integral of a function f  of bounded variation in [a, 6]. Then ФF is Dj- 
continuous at X q .

Proof. Let a ^ xo < b. Since Ф is Di-continuous at xo, it is D-
X

integrable in some neighbourhood of x q . Let Ф1 = (D) J Ф. Then Ф! is
0̂

continuous in that neighbourhood of xo- Hence for s > 0 there is S > 0 such 
that

(4.1) I Фx(í ) I < £ whenever |t — x0| < F 

Since /  is bounded in [a, 6], there is M > 0 such that

(4.2) \ f ( t ) \ ^ M ,  for all t e [ a , b } .
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Since Ф is D-integrable in a neighbourhood of xq and F is absolutely 
continuous in [a, 6], by [7, p. 246, Theorem 2.5] ФF is D-integrable in that 
neighbourhood of x0 and

xo+h
(D) j  <bF =  <S>l(Xo + h)F(Xo + h)

X Q

X Q + h

(S) J Ф1 dF.
X Q

Let
X

H(x)  = (D) J ФТ.
xo

Let /  =  pi — gi where g\ and g2 are nonnegative nondecreasing functions 
and let F — F\ — F2 where F\ and F2 are indefinite Z-integrals of g\ and gi 
respectively.

Then, if 0 < \h\ < 6

(4.3) Я ( , 0 +  h) -  И Ы  _  =
a

X q  + h

= ^(D ) j  <t>F -  F(x0M x 0) =

x o + h

=  ^ F( x 0 + Н)Ф1(х0 + h) - - (̂S) J Ф1 dF Т (х0)Ф(х0).
Xo

X

If 5(ж) =  (S) /  Ф1 dFi, then since Fj is continuous and nondecreasing, S (x )
x 0

is continuous. Also by [7, p. 244, Theorem 2.1(H)], S ^ \ x )  = $\ (x)gi (x)  
except on an enumerable set and hence by [7, p. 235, Theorem 10.5], S  is 
ACG*. Since Ф1Р1 is Riemann integrable

X  X

(S) j  Ф, dF1 = S ( x )  =  (R) J Фт .
X Q  X Q

Considering similarly for g2 and taking the difference, we have
X  X

(S) J Фг dF = (R) J $ i f .
X Q  X Q
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Hence from (4.3), (4.1) and (4.2)

H(xo +  h) -  H(xo)
h

-  Г (х 0)Ф(а:о) =

xo+ h

fiF (xo +  h№i (x0 +  h) -  Т(х0)Ф(х0) -  (̂R) J Ф1/
XO

Ф1 (x0 + h)

<

F(x0 + h) F (x 0 + Л)Ф(х0) +

xo+h

+ F( xо + Л)Ф(х0) - - Р ( х 0)Ф(хо)| + ^ (R )  J |Фг| • l/l ^
XO

Фх(хо + h)
-  Ф(®о) +g  |F(xo +  /i|

M
+ j Ф(х0)| • I F (x 0 + h ) ~  F (x 0)| + — • £ ■ h. 

Therefore, since £ is arbitrary,

'H(x0 +  h) -  H(x0)
lim ap
h—►0-f- h

-  Т (х0)Ф(х0) =  0.

Similarly if a < Xo ^ b then

v \ H { x 0) -  H(x0 -  h)
lim ap —— ■ ■ ------------
/1—0+ «

Hence the result.

-  Т(х0)Ф(х0) =  0.

L e m m a  4.2. Let f  be D\-integrable and f  be of bounded variation in 
[a, 6]. Let

Ф(х) = (Dj) J  f ,  F(x) =  ( R ) J f ,  а й х ^ Ь .
a a

Then the function Ф defined by

Щх) =  F ( x ) i ( z ) - ( D )  j  i f ,  a i x i b ,
a

is Di-continuous, ACG on [a,6].
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P r o o f . By Theorem 3.3, Ф is D -integrable and so by [7, p. 2f6,  
Theorem 2.5], Ф / is D -integrable and so Ф is well defined. Since Ф is 
D j-continuous, by Lemma f . l ,  РФ is D j-continuous. Also since Ф is ACG  
and F is absolutely continuous, РФ is ACG in [a,6]. Since a continuous

X

function is D i-continuous, (D) J Ф/ is Di -continuous and ACG. So, Ф is
a

D i-continuous and ACG in [a,6].
T h e o r e m  4.3 (Integration by parts). If tp is Di-integmble and f  is of 

bounded variation in [a, 6] and if

Ф(х)
X  X

— (D i) J <p, F(x) =  (R) J /, agzg

then pF  is D i-integrable in [a, 6] and

b

(DO J p F  =  [ФР]а — (D) J Ф/.
a a

P roof . By Lemma 4.2, the function Ф defined by

X

Ф(х) =  Р(х)Ф (х) -  (D) J Фf, a 'S x G b.
a

is Dj-continuous and ACG in [a, b]. Also almost everywhere in [a, 6], 

F' =  f ,  ФаР =  p and |( D )  J  Ф /j = Ф /.
a p

Hence almost everywhere in [a, 6],

Ф1Р = /Ф + F<p -  Ф/ = Fy>.

So Ftp is Di-integrable and Ф is an indefinite Di-integral of F<p. Hence 

ъ ь

(Di) J F<p =  Ф(6) — Ф(а) = [Р (х )Ф (х ) ]^ - (Р )  J Ф/.
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5 .  C a u c h y  a n d  H a r n a c k  p r o p e r t y

T heorem 5.1 (Cauchy property). If f  is Di-integrable in [a,/?] for 
every /3, a < ß  < b, and if

ß

a

then f  is D i -integrable in [a,b] and

ь
(Di) /  f  =  L.

a

P r o o f . Let b\, Ь2>. . . ,  bn, . . .  be an increasing sequence which converges 
to b with b\ — a. Then /  is Di-integrable on each /„ = [6n, 6n+1] and so 
there is a function Fn which is Dr continuous and ACG on /„ and (Tn)^p = /  
almost everywhere on We may suppose Fn(bn) = 0 for all n. Let

F(x)

Fi(x) ,
П—1

' Fn(x)  + ' jTFkibk+i) ,
к=1

x e h

x e ini n^ . 2

. L, x = 6.

Then since F  is ACG on each In, F  is ACG on [a,6]. Also F'&p = /  almost 
everywhere in [a,b]. Since

X

F(x)  =  (Di) J / ,  a < : x < b ,
a

we have from the given condition Dj-lim F(ß)  = L and so F is D-integrable
/3—fe

in some neighbourhood of b and hence F  is D-integrable in [a,6]. Let
X

Ф(х) =  (D ) J F, a ^ x ^ b .
a

Then
6

Ф' (6) = lim а р - ( D )  [  F =  Dr limF(/3) =  L = F(b).
X —+ 0 +  J (3—+b—

b—x
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Thus F  is Di-continuous at x =  b. Also F is Di-continuous on each In. So 
/  is Di-integrable in [a,b] and F  is an indefinite Di-integral in [a, 6]. Thus

ь
(Dx) I  f  =  F ( b ) - F ( a )  =  F(b) =  L.

a

T h eo r em  5.2 (Нагпаск property). Let E C [a,6] be a closed set with 
complementary intervals Ik =  (ак,Ьк), к = 1 ,2 , . . .  . Let f  £ D i(i?) and 
f  £ D i([a^ ,6fc]) for each к with

X

Fk(x) = (D j) J / ,  ak ^ x ^ bk.

Let (if there are infinite number of intervals Ik) 
bk

o ) E
k = l

( D , ) / /
Ik

< 00,

(ii) lim sup
k ~*°° х б ( а к ,Ьк ]

X

— (D) [  Fk(t) dt 
-  a k J

°-k
= 0 .

Then f  is Di-integrable in [a, 6] and

0  Ok

(DO J f  = (Da) J / + £ (  DO j  /■

P r o o f . This result is known for the D-integral [7. p. 257, Theorem 
5.1] with the condition (ii) replaced by

(ii)' lim 0 ( F k;ak,bk) — 0
AC—FOO

where 0 ( F k;ak,bk) denotes oscillation of Fk in [ak,bk]. Note that for the 
D-integral the condition (ii)' implies (ii). In fact, for the D-integral Fk is 
continuous and

— -— (R) [  Fk(t) dt x -  ak J 
ak

й —3 — (R.) [ \ F k(t)\ dt = 0 (F k; ak,bk)
X CLk J  

ak

and so if (ii)' holds then (ii) holds.
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Let

Ф^(х)
Fk(x), ak ^ x % bk,
Fk(bk), x > bk,
O, x < ak

and
OO

F(x)  =
k= 1

We shall show that F  is Di-continuous in [a,b].
If x is an interior point of some Ik, say Im, then since F(t) = Фk(bk)-\- 

+ F m(t), for am <  t Ú bm, where Y '  is taken for those к for which Ik C 
C [a,am) and since Fm is Dj-continuous, F is Di-continuous at x. If x is an 
isolated point of E  then x is the common endpoint of two intervals Ik, say 
Ip and Im where bp = x = am. Then for small h > 0, F(x + h) — F(x)  = 
=  Fm(x + h) and F(x) -  F(x  — h) = Fv{x) — Fp(x — h). Since Fm and Fv 
are Di-continuous in [am,bm\ and in [ap,bp] respectively,

D i-lim [T (z +  h) -  Т(ж)] = Fm(am) = 0
h — ►0-f-

and

D i-lim [fr'(x) — F(x -  h)] = Fp(x ) -  Fp(bp) = 0.
h — ►0-f-

So F is Di-continuous at r. If E  has component intervals then clearly 
these intervals are closed and F  is constant in these intervals and hence is 
Di-continuous there with one sided Di-continuity at the endpoints. Also 
the endpoints of the component intervals are the endpoints of suitable 
contiguous intervals (ak,bk) and so, applying the second case above, F is 
both sided Dx-continuous at the endpoints of the component intervals of 
E.  The only remaining case we are to consider is that a: is a limit point of 
endpoints of the contiguous intervals. Let x be such a limit point from the 
right. Let £ >  0 be arbitrary. Then from the conditions (i) and (ii) there is 
ko such that

(5.1)

(5.2)

£ | ^ ( M  < £ ,
k>ko

sup < e, for all к ^ ко-
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Let Ö > 0 be such that (x ,x  -f 6) does not contain the intervals Ik, 1 й  к ^ 
ко- Let t G (x,x  + 6) П E.  Then denoting by the summation taken 

over those к for which Ik C [x,i], we have from (5.1)

(5.3) \ F ( t ) - F ( x ) \ = \ j 2 1 Fk( b k ) \ ^ ^ 2 1\Fk(bk) \ ü  Y 1 \ F^ \ < £-
h>ko

Since the functions Fk are D-integrable in [a*, 6*], Ф*, is measurable in [a, 6] 
for each к by [7, p. 243, Theorem 1.3] and so F is measurable. So by (5.3), 
F(t)  — F(x)  is Lebesgue integrable in (x , x  + 6) П E and

(5.4) (L) /  I F(t)  -  F(a:)J dt ^ e • p ( (x,x  + h) П E) for 0 < h < 6
( x , x + h ) n E

where p is the Lebesgue measure.
Let t € (x, x +  <5) ~  E.  Then t £ Ik for some k. Let t £ Im- Denoting 

by the summation taken over those к for which Ik C [x ,am], we have

F ( t ) - F ( x )  = ' £ 2 Fk(bk) + Fm(t).

That is

(5.5) I F(t) -  F(x) -  Fm( t)I ^ Fk(bk)\ Z £  | Fk(bk)\ < e.
k > k 0

Hence as above F(t) — F(x) — Fm(t) is Lebesgue integrable and so it is 
D-integrable in Im. The function Fm which is an indefinite Di-integral is 
D-integrable and hence F(t)  — F(x)  is D-integrable in Im. Taking D-integral 
in (5.5),

l
- 4 ~ ( d ) J [ f (o  -  f (x )] it. < £ + -(D) [ Fm(t) d£

for am ^ t ^ bm. Hence by (5.2), since m > ко

(5.6)
t

- 2 s ( t  -  am) < (D) J  [F ( 0  -  F (z)] d£ < 2 e { t  -  om), for am й t ^ bm.
Q-m
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Hence

(5.7) F(t)  d t < (2 e +  \F(x) \ )  • (h, dm ) •

Since Im is any interval Ik С (ж, x + <$) ~  E,  (5.7) is true for all such intervals 
and so adding for these intervals

(5.8) *X0 dt < (2e + |JF (* )|)i,

where denotes summation over those к for which Ik C (x,x + 6) ~  E.  
Also if

í
Hk(t) =  (D) J F i t ) d t ,  d k ü t ^ b k ,

(5.9) Hk{t) =  ^  Fp(bp) ■ (t -  ak) + Gk(t)

where denotes summation over those p for which Ip C ( d , d k ) ,  and Gk 
is defined by

t

Gk(t) =  (D) J FkiO dt, a k S t ű  Ьк.
a-к

Then for u,v  G [ak,bk]

| G fc( u ) - G , ( u ) |  ^  \ G k ( u ) - G k(ak)\ + \ G k(v) -  Gk(ak)\ ^

= sup

Z

— -— (D) /  Fk(t) dt
Z  -  a k J  

a k

{(u  -  ak) +  (i> -  ak)} ^

^ 2(bk -  ak) sup
2 € ( a fc,6fc)

— -— (D) /  Fk(t) dt  z -  ak J
ak

and hence
lim 0 (G k-,ak,bk) = 0.

к — м э о
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Therefore from (5.9)

(5.10) lim 0(Hk', aki bk) — 0.
k —>oo

The relations (5.8) and (5.10) show that F satisfies the hypothesis of the 
corresponding theorem for D-integral [7, p. 257, Theorem 5.1]. Hence by 
[7, p. 257, Theorem 5.1], F  is D-integrable in [x,z +  h] and

x + h  b k

(5.11) (D) J F =  (D) J F + ̂ w J f,
x  £ n [ i , i + / i ]  ak

where is the summation over all к for which E  C [x,x + h) ~  E.  The 
relation (5.6) being true for all intervals E  С [x,x +  <5] ~  E,  by adding all 
the relations in (5.6) with (5.4), we get from (5.11)

x + h

(D) j  [ F ( t ) - F ( x ) ] d t ^ 2eh for all /г, 0 < h < 6.

Dividing by h and letting h —> 0+, since e is arbitrary,

x + h

lim t-(D) /  F(t) dt = F(x).  
h—►O-f- h J

x

If x is a limit point of endpoints of the contiguous intervals from the left 
then we get similarly

lim i(D ) /  Л—>o+ h  J
F (t) dt = F(x).

In fact, in this case the left side of (5.5) will be | F(t)  — F(x)  + Fm(i)| and 
the summation there will be taken over those к for which E  С [ат ,ж].

Hence F  is Dj-continuous at x. Thus F is Di-continuous in [a, 6]. Next 
we shall show that F is ACG on [a,b\. Clearly F is ACG on each interval 
[а^,6д.]. So we are to show that F is absolutely continuous on E. Let

9{x)

'0 , x e E

b ^ - ( D i ) / / ,  x £ [ a k,bk\.
(*k
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By the condition (i), g is Lebesgue integrable in [a,b\. Put

G(x ) =  (L) J g, a ^ x ^ b.
a

If ж 6 E,  then G{x)  = F(x).  Since G is absolutely continuous on [a,b\, F  is 
absolutely continuous on E. Thus F is ACG on [a,b].

Finally, since G  = F on E, we have F'&p =  G' = g = 0 almost everywhere
on E. Also in Tfc, F  and Fk differ by a constant and hence F p̂ = (Е*)аР = /  
almost everywhere in J*. Hence F̂ p = f  almost everywhere in [a, b] ~  E. 
So it follows that F  is an indefinite Dj-integral of Ф where Ф(ж) = f (x)  if 
x E [a,6] ~  E  and Ф(х) = 0 if x € E.

On the other hand if Ф(ж) =  f(x)  if x £ E  and Ф(ж) = 0 if x G [a, b] ~  
~  E,  then by hypothesis Ф is Di-integrable in [a,b\. Hence Ф + Ф = /  is 
Di-integrable in [a, 6] and

6 6 6 6 

(Dx) J f  =  (Dx) J Ф +  (D i) J Ф = F(b) -  F(a) + (Dx) J Ф =
a a a a

Y ^ ^ k ( b ) - ^ k ( a )  +
к к

f  =

Hence the result.

6 .  E x a m p l e s

For the definitions of GMx-integral, AP-integral and AD-integral, con
sidered below, we refer to [4], [1] and [6] respectively. Note that AD-integral 
includes AP-integral.

E x a m p l e  6.1. T h e re  is a  fu nc tion  w h ich  is D i- in te g ra b le  b u t  no t GMx- 
in teg rab le .

Let { /„ = (on, hji)} be a sequence of intervals such that
(i) In С (0 ,1 ), for all n,

(ii) bi > ai > f>2 > «2 > • • • > bn > an > . ..  and lim bn =  0 ,
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(iii) 0 is a point of dispersion of the set U In,
n= \

(iv) "Ь bn
-  ör

oo as n 00.

(One may take an = ± bn = £ +  £ ) •
Let

f or *G/ n,
0

F (x) =
for x £ UП— 1

Then Е(;г) is continuous in [0,1]. Also F' exists in (0,1] but F' does not 
exist at 0 while i^ p(0) exists and is 0. Since F is continuous and is ACG in 
[0,1] and since F'&p exists everywhere in [0,1], F̂ p is Dj-continuous in [0,1]. 
Since

KP(X)

F'&p is ACG in [0,1]. Also (F^)'  exists almost everywhere on [0,1]. Hence 
the function / ,  where

/(* )  = {  Ю 'арС*) i f (^p)lp(^) exists, 
l 0 otherwise

Qn Ч~Ьп 
bn — ön
0,

7Г S in v ( x - a n ) 
bn an cos bn- for x e i n,

oo
for x U /„,

n = l

is Di-integrable and F̂ p is its indefinite Di-integral. But /  is not GM r 
integrable. For, if it is so then there exists an Mi-continuous ACG function 
Ф such that Фдр = /  almost everywhere on [0,1]. Since Mi-continuity 
implies Di-continuity Ф = ф — F'&p is Di-continuous, ACG in [0,1] and 
Ф̂ р = 0 almost everywhere on [0,1]. Hence by Corollary 2.5, Ф and F'&p 
differ by a constant. Since Ф is Mi-continuous at 0, F̂ p is also so at 0. 
Since F is indefinite D-integral of F̂ p, the derivative -F'(O) exists. But this 
is a contradiction, since F \ 0) does not exist.

Example  6.2. There is a function which is Di-integrable but not AD- 
integrable.

Let

Then /  is Di-integrable in [0,1] and

F(x) sin J ,  X  /  0, 
0, x — 0
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is its indefinite Di-integral. In fact F  is the derivative of

G(x) x2 cos  ̂ — 2(R) f  x cos j  dx, x ф 0, 
< о

0 , x = 0

and so F  is Di-continuous in [0,1]. Moreover F  £ ACG([0,1]) and F'  =  /  
almost everywhere. Hence /  is Di-integrable in [0,1] (in fact, /  is CP- 
integrable in [0,1]). But /  is not AD-integrable in [0,1]. For, if possible 
let p  be an indefinite AD-integral of / .  Let 0 < a < 1. Then since p  
is approximately continuous and ACG in [0,1], F — <f is approximately 
continuous and ACG in [a, 1]. Also since p'ap =  /  almost everywhere, 
(F — <рУар =  0 almost everywhere in [a, 1]. Since approximately continuous 
functions possess Darboux property, by Corollary 2.5 there is a constant 
К  such that p(x) — sin A + К  for x £ [a, 1]. The constant К  cannot be 
different for different a  and hence p(x)  = sin  ̂ + К  for x £ (0,1]. Hence
lim ap p( x )  does not exist which is a contradiction since ip is approximately 

£—►0
continuous at x = 0 .

Example  6.3. There is a function which is AP-integrable (and hence 
AD-integrable) but not Di-integrable.

In [3] a nonnegative function ip has been constructed such that ip' exists 
finitely everywhere on (0,1] and <^p(0) exists finitely but ip is not Lebesgue 
integrable in [0,1]. Clearly p'ap is AP-integrable and ip is its indefinite AP- 
integral. Note that ip is not even AD-integrable in [0,1]. For, if ip is so then 
since ip ^ 0, ip would be Lebesgue integrable (as in Theorem 3.6). But p'ap is 
not Di-integrable in [0,1]. For, if possible, let F be its indefinite Di-integral. 
Then for 0 < a < 1, F — p  £ ACG([a, 1]) and F — ip is Di-continuous in 
[a, 1] and so as in Example 6.2, F{x)  =  ip(x) + К  for x £ (0,1] where К  is 
a constant. Since F  is D-integrable in [0,1], p  is also D-integrable in [0,1]. 
Since ip ^  0, ip is Lebesgue integrable in [0,1] which is a contradiction.

E xample  6.4. The Di-integral and the AP-integral (and hence the 
AD-integrals) are not compatible.

Ellis [5] constructed a function /  such that /  is AP-integrable and is 
CP-integrable but the values of the integrals are different. Since the Dj- 
integral includes CP-integral and the AD-integral includes AP-integral the 
result follows.
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O N E X T E N S IO N S  OF SOME T H EO REM S OF
FLETT. I

L. LEINDLER (Szeged), member of the Academy

1 .  I n t r o d u c t i o n .  In [2] T. M. Flett defined a very useful extension of 
absolute Cesaro summability. According to his definition we shall say that 
a series a„ is summable |C, o ,7 |fc, where к ^ 1, a  >  —1, 7 ^ 0 , if the
series nk'y+k~1 |cr“ — 0%_i\k is convergent, er“ being the nth Cesaro mean 
of order a  of the series an.

Among others, he proved the following result.

T h eo rem  A. Let г ^  к > 1, 7 ^  0, a > 7 -  1, ß  ^  a +  1 /к  -  l / r .  
Then if an is summable |C ,a ,7 |fc, it is summable \ C , ß , i \ r and with

T n  ■ =  n «  -  < - i )

( i . i )

If к =  1, result (1.1) holds when 1, 7 ^ 0 , « > 7  — 1, ß  > a + l /к  — l /r .

This theorem is a very important result, also in itself; moreover it 
has turned out that inequality (1.1) is crucial in the proofs of theorems 
concerning strong approximation of orthogonal series having approximation 
order ox( l /n 7) (see e.g. G. Sunouchi [8], and [4], [5], [6]). Recently we 
intended to generalize these results replacing the factor 1/n 7 by a more 
general factor If'y(n). We had to recognize that this can be done, in our 
view and experience, only if previously we can generalize Theorem A by 
the same way, that is, if in Theorem A we can replace the factor tP  by a 
suitable factor 7 (71).

This is our motivation for generalizing this important result of Flett. 
Naturally, having found the method for such an extension, we shall use it 
for generalizing some further interesting theorems of Flett [2] relevant to 
our present interest; maybe in some subsequent papers, too.

We shall not cite the theorems of Flett to be generalized here, because 
the theorems to be proved in our present paper in the special case 7 (t) =  f 1 
will reduce to the appropriate results of Flett, except Theorem 4.

2 .  N o t a t i o n s  a n d  d e f i n i t i o n s .  We shall use the notions and notations 
of the paper [2] and introduce some new ones. Let a  be any real number,

02 3 6 -5 2 9 4 /9 4 /$  4.00 ©  1994 A kadém iai K iadó, B udapest
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and let
F,a

(q + 1) .  ■ . (q + n)
n!

(n > 0), E% =  1.

For any given series an and any n ^ 0 we write <r“ and r" for the 
nth Cesaro means of order a  of the series ^ o° a" an<l the sequence nan, 
respectively. We have then the following identities, valid for all a and 6 :

( 2 .1)

( 2 .2)

and

(2.3)

1 n
x+6 _  x Far a
'■ va+6 n-v V V '

v = \

0 + 5  _  _____________  V "  z r < 5 —  1  p a  a
Gn Jpa+S 2-v i/p-On v=0

Tn = n« - (7n - 1) ( = a «  1 -  < }  if О > 0)

In view of the identity (2.3) we may restate the definition of summability 
\C,a,~/\k in terms of the series

(2.4)
1

the series ^ o °  Gn being summable \C,a,~f\k if series (2.4) is convergent.
Let 7 (<) be a positive non-decreasing function defined for 1 ^ t < oo. 

We shall say that the series an is summable |C, a ,7 ( i ) |fc if the series

OO

(2.5) ^ 7 ( n ) V 1K | fc

is convergent.
We extend also the definition of the summability \A,~/\k introduced 

by Flett [2] as follows: We shall say that the series an is summable 
|A ,7 (f)|fc, where к ^ 1, if the series J2 anXn is convergent for any 0 ^ x <  1 
and its sum-function ф(х) satisfies the condition

/*1
(2.6) J  (1 — x )fc_17 ^(1 -  я)-1 )  \ф \х)\кdx < oo.

It is clear that if 7 (f) =  V  this definition coincides with that of Flett.
A summation sign in which the limits of summation are omitted will 

denote summation from 1 to сю.
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We use В to denote a positive constant depending on the parameters 
c , d , . . .  concerning the particular problem in which it appears. If we wish to 
express the dependence explicitly, we write В in the form B ( c , d , . . .).  The 
constants are not necessarily the same at any two occurrences.

Inequalities of the form
L £  BR

are to be interpreted as meaning “if the expression R is finite, then the 
expression L is finite and satisfies the inequality.”

3. T heorem s. First we extend Theorem A.

T h e o r e m  1. Let г ^ к > 1, a  > —1, ß ^  a  +  l / k  — 1 / r ,  and q ( i )  a 
non-decreasing positive function defined for 1 ^ t < oo so that with some 
C  > 1

(3.1) limsup < Ca+1.
7 (0

Then if the series

(3.2)
OO

n = 0

is summable \C,a,~/(t)\k, it is summable \C,ß,~/(t)\k and

(3-3) {Х л(п)Гп-11г"1г} 7 = B {Zl7(n)fcn_1ir«ifc} 7 •

If к =  1, the result holds when r ^ l ,  ß > a + l  — 1/ r  and (3.1) is satisfied.

We mention that using the reasoning of the proof of Theorem 1 to be 
given the following result follows:

T h e o r e m  1 A . Under the assumptions of Theorem 1, we have for any s

OO 'j l / r
^ 7(n + l ) r(n + i r V f  -  s|r l ^

N l/k
„ 71 = 0

= B  ) + 0  V n ~ 5l
. 71=0

If we keep r = k, then the factor 7 (n) on the left-hand side of (3.3) can 
be replaced by another factor p(n) as follows.
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T h e o r e m  2. Let к ^ 1, а  > —1, ё > 0, ß  7Z а  -  6, and ß  > -  1, fur
thermore let p(t)  be a positive monotone function, and 7 (<) a non-decreasing 
positive function defined for 1 ^ t < 00, so that

(3.4) lim sup < lim inf < lim sup < C ° +1k ' MO 7(0 -  7(0
with some C  > 1. Then if series (3.2) is summable \C,a,~f(t)\k, it is summ- 
able \C, ß ,p( t ) \ k and

(3.5) 5>(»)*»-v»'ifc = BY,l{n)kn - ' K t
In case of the strict inequality ß  > a — ё we can prove a consistency 

result for r  < k, too.
T h e o r e m  3. Let к > r l,  a  > - l ,  ё > 0, and ß > max(a — 6, -1 ) . If 

p(t) is a positive monotone function, and ~y(t) is a positive non-decreasing 
function defined for 1 Ú t < 00, furthermore they satisfy (3.4) and series
(3.2) is summable |C, a,7(0lfc> then (3.2) is also summable \C, ß , p(t)\k and

(3.6) { $ > ( » ) r" - , l’i l r} ,/r s j { £ * ) ‘ « - ' |r ; |‘ ) ' / ‘ .

Finally we present two theorems in connection with summability
l^,7(0U-

T h e o r e m  4. Let к ^ 1, a  > — 1 and 7 (0  be a non-decreasing positive 
function defined for 1 ^ t < 00 so that

(3.7) limsup < C(a+1)/k
7(0

with some C  > 1. Then if series (3.2) is summable |C, a,7(0 |fc, it is 
summable |M7(0lfc- Moreover, if

(3.8) ф(х) anxn,
77 =  0

then

( 3 . 9 )  J  ( 1  — a:)fc_17  ( ( 1  — ж ) - 1 )  \ф \х)\кdx ^  В ^  f ( n ) kn~l | r " | fc.

T heorem 5. Let к > r ^ 1 and ё > 0, furthermore let M 0 be a positive 
monotone function, and j ( t )  a positive non-decreasing function defined for
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1 ^ t < oo with properties (3.4). Then if series (3.2) is summable \ A,~j(t)\k, 
it is summable \A,p(t) \r . Moreover, if ф(х) is given by (3.8), then

(ЗЛО) j y  (1 -  x)T~l p ((1 -  z ) -1 ) \ф'(х)\гd x I  ^

Ui k > i/fc
( l - x ^ - S ^ l - * ) - 1)  № x ) \ kd x j  .

For further cases of the summability \C ,a,-)\k and |A ,7 |fc useful hints 
can be found in the fundamental paper of T.M. Flett [2], p. 361.

4. Lem m as. We require the following lemmas.

L e m m a  1. If ß  > 0, p 1, then

(4.1) B(ß)p~ß й í (1 -  x)ß~1xpdx ^ T(ß)p~ß.
Jo

This lemma is due to H. P. Mulholland [7].
Using Lemma 1 we can prove the following result.

Lemma 2. If a  > —1, p ^ 1, к ^ 1 and 7 (f) is a non-decreasing positive 
function defined for 1 ^ t < 00 satisfying the condition

(4.2) limsup < C {a+1)/k
7(0

with some C  > 1, then

(4.3) I  := J  (1 — x )°7  ^(1 — z ) -1  ̂ xpdx ^ B^(p)k p~a~x. 

P r o o f . Since

I  = + У  ^  (1 -  x)a7 ((1 -  z)"1)  xpdx =: h  + / 2,

and by (4.1)

h  й 7 (/>)'
l

1- 1/p
(1 — x)axpdx ^ B(a)‘y(p)kp -a —1

ylcia M athem atica  Hungarica 64, 1994



2 7 4 L. LEINDLER

holds for any p > 1; so it is enough to verify that

(4.4) I2 ^ В ^ Р)кр - а~х

also holds.
An elementary transformation gives that

(4.5)
p OO p N n+1

n = 0  m = p N n

— ■ h-

From (4.2) we can easily derive that there exist an integer N(^. 1) and 
a positive to so that

Т ( Щ  1 7 (t)
( N t ) ('a+1^ k 4 <(«+1)/fc

holds for any t ^ t0. Hence we get for any p ^ t0 (2. 2) that

1г й  B( N)  Y  ( p N n )~a~l~f{pNn)k Í  B{N)~i(p)kp~a~l .
71=0

This inequality and (4.5) prove (4.4), and this completes the proof of 
Lemma 2.

L e m m a  3. Let r > к > 1, 6 = 1 /к -  l / r ,  cn ^ 0,

71— 1
Cn := Y  (n ~ )̂5_lĉ

v- 1

Then

(4.6) { ^ c ; } I/rS B ( t , o { E 4 r

This lemma was proved by G. H. Hardy, J. E. Littlewood and G. Pólya 
[3].

5. P roofs o f  the th eo rem s. It seems to be the most convenient to 
follow the treatments of the proofs of Flett with the required changes, so 
we do this helping the comparisons as well.

P r o o f  o f  T h e o r e m  1. First we consider the case г  ^ к > 1. Let S 
denote the expression on the right hand side of (3.3), and let <5 > l /k  — l / r
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0), г] := k+rkk_^  and A := 1 — 1 /к  — e where e > 0 and will be chosen 
later. Setting к' := k/(k -  1), then we have that

(5.1) k'(6 — 1)(1 — 17) > —1.

Now using (2.1) and applying the triple form of Holder’s inequality with 
indices r, k1 and kr / ( r  — к), we get

П
(5.2) |r“+5| <i Bn~n- S £ ( n +  1 -  и)5~ \ а \т̂ \ =

v -\

= B n - a~s Y ^  { ( n +  1 -  i,)(Ä- 14 a+A+(r-*>/rS ( t ') fc/7'_1|C I*/r} X
i/=l

X { ( n  +  1  -  j  { 7 ( i / ) * i / - 1 | r “ | * } ( r  k ) / k r

<1 Bn~a~s I ^ ( n  + 1 -  I/)(5- 1)" V (a+^ + b 17(I/)fc- r |r “ |/c

П Д ’ (  n

<

1 f r

. V = 1
( r  — k ) / k r

X ) + 1 “  v ) x ) l \Ti
-I I I к

.</ = 1 ,iV=l

Using the definition of S and A, by (5.1) and (5.2) we get 

(5.3) |r"+5| ^ Bn- c - 6n(S-i)(i-v)-x+i/k's i -k/T x

{n 'I 1 /r

Y  (n  +  1 -  ^)(5- 1b V ( ° +A>+r/ fc- 17(t/)*-r |u,a |fc L . 

Setting Ц := (6 — l)ryr and ы := r(a + A) + r/fc we get from (5.3)

m

(5.4) 5 > ( пГп-1 |гп+Т  ^
71=1

m  n

<: В S r~k Y  7 ( п ) г п - 1п - ш- »  Y  ( n +  1 -  t' Y v W~ l l ( v ) k~ r K \ k ^
71 = 1 l / =  1

771 ТП

й  в  s r - k Y ^ ~ l  - í H k ~ r K \ k  Y  (n +1 -
u=\
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If we can show that
m

(5.5) ^  (n +  1 -  v)ßn~w~ß~l 7 (n)r ^ v~w
TL-V

holds for any m and и large enough (v < to), then (5.4) verifies (3.3) when 
г ^ к > 1 and ß  := a  -f S > a +  1/ k — 1/r.

Now we start the proof of (5.5). For this purpose we first show that in 
view of (3.1) there exist an integer N  and positive numbers £ and to so that

(5.6) ( t N Y ^ N t )  H e7 (0
( N t )a+1 2 Г + 1

holds for any t ^ <o- A straightforward calculation gives that (3.1) implies, 
with some to and N,  that

(5.7)
< 1 7 (0

( N t )a+1 4 ta+l

for any t ^ io- Hence, by choosing £ := (log2 N ) (<  1 / Ar'), we get (5.6). 
Now we turn back to the proof of (5.5). In view of /г > -1  and ^

(5.8) E ( n+ 1
n —v

v )ßn- u- ß- x'1{n)r й Bv~w~ß~l 7 И Г£ >  ^
i- 1

On the other hand, if и ^ <o, then by (5.6) and и — r(a  + 1 — e), we 
have

O O  CO

(5.8*) ^  (n +  1 — v)ßn~u'~ß~1~f(n)r ^ В ^  n~w~l ~i(n)T ^
n = 2 i/ n = l/

co 1 oo

E  n— 17(n)r ^ JB ( 7 V ) ^ ( ^ m) - 7 ( I,N mr  =
ra = 0  n = i s N rn m = 0

=  f i ( J V )  ^  [ ( v N rn) - a- \ v N my 1 ( v N rn) Y
771 =  0

<i 5(7V)i/-w7(i/)r.

Thus (5.5) is proved, consequently Theorem 1 holds if г ^ к > 1 and 
/3 =  a - f < 5 > a + l / f c  — 1/r.
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Now we consider the case r ' Z . k y  1 and 6 := 1/k — 1/r.
If r =  к then 6 =  0, consequently ß = a  thus (3.3) is trivial.
If r > к then 6 = 1/k — 1/r is positive. The proof of this case needs a 

longer calculation. By (2.1)

(5.9)
1 "

T a + S I <  x ip S - 1 m | T a i  <
T n  I =  i p o t + 6  /  у ^ n - v ^ v  Hi/ I =

IS = 1

i l " n  " \
s ^  E  + E  W l  =: Г, + r a.

£ 'n \ i / = l  ^ „ / 2 /

Here

Г1 £
В
Q̂ + l

n / 2

E £ °i
i/=i

r “ | <
£
a-f 1 E £íi

i/=i
Repeating the procedure used above with 1 in place of 6 we can conclude 
that

(5-10) { Х л ( п)Гп W } 7 = B  { 2 i ( n )kn 1irn i * } 7

holds.
To estimate the expression with T2 we use Lemma 3. Writing cn := 

:= 7 (n)n_1/ fc|r"|, we have

7 (п)гГ1/гГ2 ^ В £  Е*п-Ы *>~1,кК \  й
i/^n/2

n —1

=  B  “  | / ) в" 17 И * ' ' 1 /*|т-“ | +  £ 7 ( n ) n ~ 1/fc|r " | ^
i/=i

g  BCn + Б 7 ( п ) п - 1 / * | т “ | .

Hence, by (4.6),

(5.11) { E i W ' ”"1^ } 1 é

^ { Е с;} ‘/г+{Е1(»)г»‘" ‘к г }1/г5

s s { E 4 } ,/‘ + B {E ^")‘"“,Ki‘},/t =
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=  2 B { £ 7 ( „ ) ‘ n - | r « | ‘ } , / ‘ .

The required inequality (3.3) now follows from inequalities (5.9), (5.10) 
and (5.11).

Finally we deal with the case к — 1. Then 6 > 1 — 1/r ^ 0. In this special 
case we define A := 0 and 77 := 1. With these parameters we can repeat the 
reasoning made in (5.2) and (5.3) which gives that

( 5 .12) | r " + s | <; x

(  n  >| 1/ r

X J > + ! - i / ) (5- 1V a+r- 17(z/)1- r|T"| \  •

Now setting fM* (6 — l)r  and u* := r(a  + 1), then by (5.12), we get

m  m

(5.13) 5 3  7 (n)rn_1|r“+,5|r ^ В 5 r_1 5 3  'y(n)rn~1n~ß ~ы x
71=1 71= 1

71
x 5 3  (n +  1 -  j/)'‘V * - 17 (i/)1- r |T-“ | ^

U=1
m  m

Ú B S r~l 5 3  Z/U'*_17 (iy)1_r|r^l 5 3  + 1 -  _17 (тг)7 .
i/ =  l TI — U

Here we have the same question as at (5.5) with p* and u* in place of // 
and to, respectively. Since ц* > — 1 and у* > 0 we can carry out all of the 
considerations made in (5.8) and (5.8*), and so we conclude that

m

53 (n + 1 — ~ ш  - 17(n)r  ̂ и~ш
n = u

holds if и and m are large enough. Regarding this, (5.13) proves that (3.3) 
holds when к =  1, r ^ 1 and ß  > a  + 1 — 1/r.

Herewith Theorem 1 is completely proved.

P r o o f  o f  T h e o r e m  1A. Using the identity (2.2) instead of (2.1) 
and following the arguments used in the proof of Theorem 1, we get the 
statement of Theorem 1A. To give the details it seems to be a good practice, 
so we omit it.

P r o o f  o f  T h eo r em  2. First of all we show that it is enough to prove 
the special case in which ß  =  a — 6 > — 1. For if ß  > a  — fj and / ? > —!, then
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ß = a \  +  6, where c*i > a. Series (3.2) is summable |C ,Q i,7 ( i) |fc whenever 
it is summable |C ,a ,7 (/) |fc (see Theorem 1), and the result will therefore 
follow immediately from the special case mentioned above with a  replaced 
by «!.

Therefore we can suppose that ß  =  a — 6 > — 1. Then we have to prove 
that

; г > ( » ) * » _11гг* |*  ^

Consider first the case к > 1. By (2.1) we have

П

(5.14) |r“- 5| ^
V=1

Let 0 < e < min (j>, (к + A;')-1 ) and X := 1/k' — e ( к' = k/(k  — 1)). Then, 
by Holder’s inequality,

(5.15) * — 6 I <; Bnk(s~a) l ] T | E-n 5_1l;/A:(Q+A)|r0'lA:
. i /= l

X

* I
k/k1

-k'\ й B n k(6~a~л> J ^ | £ “^ 1k fc(a+A)|r"|
. j/= i .i/=i

Furthermore it is easy to see that in view of (3.4) there exists a number 
<o so that

fi(Ct)Cs
fi(t)

7 (Ct) 
7(0

< C a+1

holds for any t ^ t0. Hence, considering the monotonicity of fi(t) and 7 (£), 
we get

М Ы / ^
for any у ^ whence, obviously, it follows

(5.16) V-{y)y& ^ 5 7 (1/)

for any у ^ 1 with an appropriately chosen constant B. 
Thus, by (5.15) and (5.16), we have for any m ^ 1

(5.17)
n = l

<; д $ ^ 7 (п )* п -* (в+А)-1
n = l

X
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x £ t ó : V (“+A,k T s
l/=l

й B Y ^  v k(a+X)K \ k Y  \En - ^  |n- fc(Q+A)- 17(n)/£.
V — \ n=v

Next we show that
m  m

(5.18) y  := Y  i ^ n - ;1h _fc(a+A)_17(r*)/: s  ^7 ( j / ) V * (a+A)-1.
i/ П—V

A reasoning similar to that given in the proof of Theorem 1 shows that

2zx ix
(5.19) Y  = 5 i/ - fc(a+A)- 17(^)fc ^ ß ^ _Mo+A)_17(^)fc

n=i/ n=l

and, by ke < 6,

OO OO CO

(5.20) ^ В Y  n - s- 2~k(a+xh { n ) k <, B v ke~5 Y  n~k(Q+1)- ^ ( n ) k.
n = 2v n —v n —v

The second inequality in (3.4) is the same as (3.1) in Theorem 1. There
fore (3.4) also implies (5.7) as we have seen above, whence

oo oo 1/ЛП+ 1

Y n ~ k i a + 1 ) ~ 1 l ( n ) k  =  53 Y  n - fc(a+1)- 17(n)fc й
n —v 2 = 0  n - v N x

co v N t+1

<; в  Y ( l / N l V k { a + 1 ) ~ í ( I' N t ) k  Y  n_1 = B ( N ) v - k { a + 1 ) ~ , ( v ) k
i= 0 n = v N '

follows. Hence, in view of (5.20), we get

CO

(5.21) Y  = B v k' - Sv~k(a+1) 7(i/)fc = B v - 8~l v - k(a+x^ ( v ) k.
n=2v

This and (5.19) verify (5.18), whence, by (5.17), (3.5) follows for к > 1.
If к =  1 then we cannot apply Holder’s inequality in (5.15). But then 

we can use inequality (5.14) instead of (5.15). If we set Л =  £ = 0, it is 
easy to check that all of the estimations (5.17)— (5.21) will be fulfilled with
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these parameters. Collecting these estimations we again get the required 
statement (3.5).

This completes the proof of Theorem 2.

P r o o f  of T h e o r e m  3. As an additional hypothesis, we may suppose 
that ß  < a. For if ß  ^ a, then ß  = a0 -  <5, where a 0 > о (since 6 > 0). 
Then the hypotheses continue to hold with a  replaced by any between a 
and ao and thus (since cm > a), there exists some a\  so that qi > ß.  From 
«1 to a  we can get over by using Theorem 1 with ß  = а г.

In the case ß < a  we have 6 > a  — ß > 0, further, by Holder’s inequality 
with indices k/r  and k/(k  -  r),

(5.22) £ > ( ' • ) r » - , | > i f  £  X

&
- l + r k ( ß - a ) / ( k - r ) к) г/ к

Now we apply Theorem 2 with and 6 -  (a — ß)  in place of /i(f)
and 6, respectively; the application is legitimate in view of <5 > a  — ß  > 0 
and (3.4). Then we get that

This and (5.22) prove (3.6), which completes the proof.

P r o o f  of T h e o r e m  4. The convergence of series (3.8) follows from 
the obvious implication |C ,a ,7 ( i) |fc =>• |С ,а,0|^ =  |C ,a \k and from a result 
of T.M. Flett [1] (Theorem 2) stating that if к ^ 1 and a > — 1 then 
summability |C, a\k implies summability |A|fc = |A ,0 |fc.

Thus it is enough to verify that (3.9) holds. Using the identity

х ф ' ( х )  =  (  l - x ) a Y , K < x n  ( | x | < l ) ,
where ф ( х ) is the sum-function of the convergent series (3.8), and applying 
Holder’s inequality with indices к and k1, we have for 0 ^ x < 1

\ф'(х)\к i ( l - x ) ka

 ̂( l - x ) ka ( 2 ^ n- 1)"

S B ( k ,  a)(l -  x)“ - fc+1 £  K K \ k x n ~ l .

<
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Hence we get

I  := J  (1 -  z ) fc-17 ((1 -  z ) “ 1)  \<t>'{x)\kdx <:

^ B(k,  a)  £  E Z K \ k £  (1 -  x )°7 ((1 -  x)"1)*  xn~'dx.  

Regarding (4.3), the previous inequality yields

/ Ё - в £ к | * 7(п)‘ » - \

which proves (3.9), and hereby the proof is complete.

P roof o f  T heorem  5. As we have seen at the proof of Theorem 2,
(3.4) implies (5.16), whence

M уЫ уУ 1 ^ B y ~ s

follows for any у ^ 1, or equivalently, for any 0 ^ x < 1,

M(1 -  z ) -1 )7 ((1 -  ^ Г 1) ^ B ( l - x ) 8.

Regarding this estimation, and applying Holder’s inequality, we get

J  (! -  z)r~ V  ((1 -  z)_1) \Ф\х)\г<1х ^

й  j  ( l - x ) fc_17 ( ( l - x ) _1)  m x t d x )  X

X { /  ^ ~ X̂_1 ^  ~ X^ 1) ^  ~ г)_1)) A >c/;r} =

“ B { /  c1 ~~ x)fc~lT 0 1 _ x)_1)

U1 л 1 -r /k
(1 -  x ) - 1+6rk/{k- r)d x j

Hence (3.10) clearly follows as desired.
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A M A T R IX  O PER A TIO N A L CALCULUS
H. WYSOCKI (Gdynia)

The vectorial-matrix model and the matrix model of the Bittner oper
ational calculus are introduced in this article. The primary properties of 
those models are also described.

1. Prelim inaries

The Bittner operational calculus [2] is the system 

C O ( l ° , L \ S , T q, s q,q,Q),

where L° and L1 are linear spaces (over the same field Г of scalars) such 
that Ll C L°; the linear operation S:L1 —* L° (denoted as S  £ L(L1, L0)), 
called the (abstract) derivative, is a surjection. Moreover, a nonempty set 
Q is the set of indices q for the operations Tq £ L(L°,L1) such that STqf  =  
= / ,  /  £ L°, called integrals and for the operations sq £ L(L l , L l ) such 
that sqx = x — TqSx, x £ L 1, called limit conditions. The kernel of S , i.e. 
the set Ker5 := {c £ Ll :Sc  =  0}, is called the space of constants for the 
derivative S.

T heorem 1 [2]. The abstract differential equation 

Sx =  / ,  /  £ L°, x £ L1

with the limit condition

sqx = x0, q £ Q ,  xq £ KerS

has a unique solution

x = x0 + Tqf.
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2 .  B a s i c  p r o p e r t i e s

Let Q C Q be a set, which has more than one element. Consider an 
operational calculus

C O (L ° , Ll , S,Tq, s q, q,Q),

in which
— 1° is a commutative algebra with a unity e E L 1, and L1 is its 

subalgebra;
— the derivative S satisfies the Leibniz condition

(1) S(x ■ y) =  Sx ■ у +  x ■ Sy, x , y e L l

— the limit conditions sq,q 6 Q are multiplicative, i.e.

(2) sq(x ■ y) =  sqx ■ sqy, q e Q ,  x ,y  6 L1.

The mapping Iql  6 L(L° ,Ker 5) described by the formula

'■= {Tq 1 -  Tq2)f  -  sq2Tqif ,  q\,q2 € Q, f  G L°

is called the operation of definite integration.
It is easy to verify that [13]

(3) I £ S x  =  R%x, qu q2 e Q ,  x E L 1

and

(4) / £ ( *  • Sy) =  • у) -  I ” (Sx ■ у), 9i ,92 e <2, x , y e L \

where the operation R 4qi G L(L1,K er5) is defined by the formula

R4q\x  := ( s q2 -  sqi)x, 9i ,92 € Q, x E L1.

(3), (4) are called the Leibniz-Newton formula and the integration by 
parts formula, respectively.

We also have e E Ker 5 and

(c ,dE  Ker 5) => (cd E Ker 5)

(c £ Ker 5  is invertible in L1) => (с-1 E Ker 5).

The other properties of the derivative 5 satisfying the Leibniz condition (1) 
are discussed in the works [ 10]—[13].
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Let MatmXn(Z), m , n  G N denote the set of all matrices with m  rows and 
n columns, with elements belonging to the set Z. In the sets MatmXn(Zfc), 
к = 0,1 we define the usual operations of addition of matrices and multi
plication of a matrix by a scalar.

C o r o l l a r y  1. The sets Matmx n ( Lk), к = 0 ,1 , MatmXn(Ker 5 ) are 
linear spaces (over the field Г) such that

MatmXn(Ker S ) C MatmXn(Z ) C MatmX71(Z ).

For the elements X  G Matmxr(Z A:), Y  G Matrxn(Lk), к = 0,1 the 
product X  • Y  is defined as the usual matrix multiplication.

C o r o l l a r y  2. The sets MatnXn(Z fc), к — 0,1 are algebras (over the 
field Г,) with unity E := [<$,ye]nXn, where 6ij denotes the Kronecker symbol.

Let

S X  [5xjj]mXn, TqF [Tqfi j]mXn, sqX  [3ga:,y]mXri,

where F .— [f i j ] G MatmXn(L ), X  .— [x,y] G MatmXn(Z ), g G Q. Using 
the formulas (l)-(4 ) and the definitions of matrix operations, it is easy to 
show the following relations:

(5) S ( a X  +  ß ? )  = a S X  + ßSY, a , ß  G Г, X , Y  G M a t ^ ^ f 1),

(6) sq(aX  + ß Y )  = asqX  +  ß s qY , q G Q, a , ß  G Г, X , Y  G Matmxn(L 1),

(7) Tq(aF + ß G )  -  aTqF +  ßTqG, q e Q , a , ß  ET, F , G  e  MatmXn(Z°),

(8) STqF  =  F, sqX  =  X  -  TqSX,

4 G Q , F G M atmXn(L ), X  G MatmXn(Z ),

(9) SC =  0, C e  Matmxn(KerS),

(10) S(X -Y)  =  S X  ■? +  X  ■ SY, X  e  M atmXr(L1), ?  € M a tr ^ Z 1) 

(the Leibniz formula),

к- 1
(11) 5 ( X * ) = ^ X <- 5 X - X * - ' - 1, X  G M at^niL1), к G IV,

i= 0
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(12) if X  ■ S X  = S X  ■ X , then S(X*) =  k X k~l SX  = k S X  • X k~ \

X  £ M atnxníl1), к £ N,

(13) S ( C - X )  = C - S X ,  S ( X  • D) = S X  • D, X 6 Matnxp( I 1),

C  £ Matmxn(Ker S)., D e MatpXr(Ker £ ),

(14) SqC = C, q £ Q, C £ Mat mXn(K®

(15) s„(X- Y ) - — SqX q £ Q , X  £ Matmxr(L ), Y  £ MatrXn(Z )

(the multiplication condition),

(16) sq(C ■X ) =  C-SqX,  Sq(X ■ D) = 8qX • D, q £ Q, X £ MatnXp(X ),

C  £ Matmxn(Ker S) , D e MatpXr(Ker S ),

(17) Tq(C ■F) = C ■ TqF, Tq(F ■ D ) = TgF • D, q e  Q, F e Matnxp{L ),

C  £ Matmxn(Ker 5), D £ MatpXr(Ker 5 ) ,

(18) i < ; s x  = R f i x ,  qi,q2 g Q, x  e Matmxn(x 1)

(the Leibniz-Newton formula),

(19) I ^ ( X  • S Y )  =  R l l (X  • ¥ ) -  I ^ ( S X  - Y ) ,  q u ^ e Q ,  X  e  MatmXr(L 1),

У £ MatrXn(X1)

(the integration by parts formula).
Corollary 3. MatnXn(Ker5) is the subalgebra of the algebras 

Matnx.n(Lk), к — 0,1. Moreover, E £ M atnxn(Ker 5).

The determinant of a matrix X  =  [ x , j ]  £ MatnXn(i* ) , fc — 0, 1 is 
defined similarly to the numerical determinant. Namely, it is an element 
of the algebra Lk, к =  0,1 defined by the formula

xn  ■ % l n

det X  = X 2 1 * X 2 n

X n l % n n

^  ( 1 ) Pxljl x 2jq '  ' ' x n j „  ,
V
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where the summation is extended to all permutations p = (ji, j i ,  • • • , jn)  
of numbers l , 2 , . . . ,n ,  whereas Ip denotes the number of inversions in the
permutation p. The rules of computing det X  are the same as for a numerical 
determinant.

C o r o l l a r y  4. If C  £ MatnXn(K erS), th ende tC  £ Ker5.

Let Inv(Z) denote the set of invertible elements in an algebra Z.

C o r o l l a r y  5 . X  £ Inv(MatnX7l(Z)) iff det X  £ Inv(Z), where Z is 
the algebra Lk, к — 0,1 or KerS. If X  £ Inv( Matnxn(L1)) , then sqX  £ 
£ Inv(MatnXn(Ker5 )) ,  q E Q .  Moreover,

(20) sq(X (s9X ) ~ \ q e Q ,

(21) sg(det X)  = det(s9Á), q e Q ,

(22) S(X'~г ) = - X ~ l - SX ■ x - \

T h eo rem  2. If X = [z.j] £ MatnXn(L1), then

71
xn • • • xlj x \n

(23) 5(det X) = £ Sxt 1 S x ij
г — i

7̂ll xnj X 7171

P r o o f . (23) follows from the determinant definition and from the 
Leibniz formula (1).

3. T he Cauchy matrix

Assume that there exists a solution X  £ Inv(MatnXn(X1)) of the ab
stract matrix differential equation

(24) S X  = A X ,

where A £ MatnXn(L°) is the given matrix. From (13) it follows that for 
an arbitrary matrix D £ MatnXn(Ker S),

(25) Y  = X D
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is also the solution of the equation (24). Let

F M (A )  := E Inv(M atnXn(L1)) :5 X  = A x } .

R e m a r k . For any pair X , Y  E FM(A),  Y  has the form (25), where 
D  G Inv( MatnXn(Ker 5 ) ) .  Indeed, if А , У G FM(A),  then A “1 • У E 
G Inv(MatnXn(L1)) . Therefore, on the basis of (10) and (22), we obtain

5 (А _1У) =  - X ~ l AY  + X ~ l AY  = 6,

i.e. X ~ l Y  =  D  G Inv(M atnxn(K erS)).

T h e o r e m  3. The differential equation (24) with the limit condition

(26) sqoX  =  A0, qo € Q, Xo G Inv( MatnX„(Ker 5))

has exactly one solution in the set FM(A).

P r o o f . Assume that the problem (24), (26) has two solutions X , Y  E 
G FM(A) .  Then by the Remark Y  is of the form (25) where D is invertible 
and sqoY  — X q. Hence and from (16) it follows that

(27) A0 = sqoY  =  sqo( X D ) = sqoX  -D = X 0 -D.

Thus from (27) we obtain D = E. So X  = Y .
In the case, when n — 1 the set FM(a),  where a E L°, is the set of all 

invertible solutions of the equation

(28) Sx — ax, x G L l .

So, if there exists a solution x E In v ^ 1) of the equation (28) satisfying the 
limit condition

(29) sqox = x0 G Ker S, q0 G Q,

then it is unique. That is the statement of Theorem 1 in [7] (see also [5]).

D e f in it io n  1. Each element Y  E FM (A)  will be called a fundamental 
matrix of the equation (24).

D e f in it io n  2. The element

(30) 4q,<to)(A)  := (sqX )  ■ (sqoX ) ~ 1, q,q0 G Q,
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where X  £ F M (A ) ,  will be called the Cauchy matrix (belonging to q, <70) of 
the equation (24).

T h e o r e m  4. 1. The Cauchy matrix does not depend on choosing the 
fundamental matrix.

2. Ф(q,q0)(A) £ Inv(M at„Xn(Ker5)) .
3. det Ф(<7, <7o)(̂ 4) £ Inv(Ker5).
4. $>(q0,qo){A) -  E.
5. Ф_1(?, 9oK^)^= [$(<?, 9o)(A)J_1 = $(qo,9)(T).
6- Ф(д2,9 1 )Й ) • Ф(9ь9о)(А) = Ф(<72> Чо)(А), q,q0,q i ,q2 £ Q-

P r o o f . 1. К У Д  are the fundamental matrices of (24), then У = X D ,  
where D £ Inv(M atnx„(Ker S ) ) . Therefore

*?(?, Яо)(А) = (sqY ) • (sqoY f l = [sq(XD)]  ■ [* ,„ (* £ )]  =

=  (s4X )  D D - 1 - ( s ^ X f 1 =  ^ ( 9, 90)(A).

Properties 2 and 3 follow from Corollary 5.
4. $ (90,90)(A) = (sqoX ) - ( s qoX )~1 = E.
5.  Ф-Ч9,90) ( A )  = [ { s qX )  ■ ( s qoX )  ’ j " 1 = (s9oX) • (5, X f 1 =

= Ф(90 ,g)(A).
6. $(q2,q i) (A y  $(ql t qo)(A) = (sq2X ) • ( sgiX )  1 ■ (sqiX )  ■ (sqoX)  ' =  

= (sq2X )  - (sqoX )  = $(q2,q0)(A).

D efinition 3. An element X  £ F M (A ) being the solution of the prob
lem

S X  = A X ,  sqoX = E, qo £ Q

will be called a normalized fundamental matrix (belonging to 90) and de
noted as Ф9о(А).

C o r o l l a r y  6. The solution of the problem (24), (26) has the form

(31) Х  =  Ф?0(Л )-Х 0.

D efinition 4 (cf. [11]). The mapping defined by the formula

Х 0 ~ Ф 9о(А )-Х 0

will be called the resolvent of the equation (24) (belonging to q0)-

A c ta  Mathematica H ungar ica  64, 1994



292 H W Y SO C K I

It follows from (31) and from the definition of the Cauchy matrix that

sqX  =  5,Ф90(Л) • X 0 =  &{q,qo)(A) ■ X 0.

C o r o l l a r y  7 (cf. [9]). s,4>90(A ) =  Ф ( q , q0) ( A ) .

This is a direct consequence of Definitions 1 and 3.

4 .  T h e  O s t r o g r a d s k i - L i o u v i l l e - J a c o b i  f o r m u l a

D e f in it io n  5. The element

w = W( X )  := detX

will be called the Wronski determinant (briefly: the Wronskian) of the 
fundamental matrix X  G FM(A).

C o r o l l a r y  8. W ( X )  G I n v ^ 1) for all X  G FM (A) .

Let X  — [*tj']nXn a fixed fundamental matrix of (24). Using Theorem 
2 we obtain for the derivative of the Wronskian

71

Sw = w„
i=l

where

x u ••• Xi j ■ %ln

(32) Wi  := S x n • • • S x i j •*'171

99 n  1 %7lj %nn

Equation (24) is equivalent to the system of the following n2 “scalar” ab
stract differential equations:

П
Sx,j  — ^ • Xkj, i , j  — 1 , 2 , . . . ,  n.

fc= l

Substituting these into (32), and using the known determinant properties, 
we obtain

Wi = ац ■ w, i =  1 ,2 , . . . ,  n.
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Finally,
Sw = tr A ■ w,

where tr A E L° is the trace of the matrix A G Matnxn(L°). Since w G 
G Inv(F1), therefore

(33) w = ФЧо(Ът A )  ■ w0,

where Ф90̂ гЛ ) G F M ( t r A )  is the normalized fundamental element and
wo = sqow, qo G Q (cf. the problem (28), (29)).

(33) will be called the Ostrogradski-Liouville-Jacobi formula.

5 .  T h e  l i n e a r  t r a n s f o r m a t i o n

Let

(34) Y = P X ,  

where P  G Inv(MatnXn(L1) ) , X  G FM(A).  Then

(35) S Y  = S P X  +  P S X  = (SP + P - A ) X  = (SP P ~ l + Р - Л - Р “ 1)?  

and

(36) У0 =  SqoY  = P0 ■ X'o, qo G Q,

where Po = sqoP, Xo — sqoX . Hence P F M ( A , n ) = F M (B ,n ) ,  where В = 
=  SP ■ Р ~ г + P ■ A ■ P ~ l . From (35) and (36) we obtain

Y  = ФЧо( В )?0 = Ф?0 { S P - P - 1 + P - A - P - 1)-PoXo.

Therefore

ФЧ0(А) ■ Xo = X  = P - 1?  = P - 1 ■ ^ ( S P - P - '  + P - A - P - ^ - P o X o ,

whence

(37) Ф90(Л) = Р"1Ф,0(5 Р  • P - 1 + P A P - 1) ■ sqoP = P ~ 4 qo(B)sqoP.

This shows the connection between the normalized fundamental matrices 
Фqo(A) G FM (A ,n )  and Фqo(B) G F M (B ,n )  = PFM(A,  n).
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6 .  T h e  a d j o i n t  e q u a t i o n s

If Г is the field of reals or complexes and A+ £ MatnXn(L°) denotes
the adjoint matrix with the matrix A £ MatnXn(Z°), i.e. A+ := (Л*) (the 
symbols “t” denote the complex conjugation and the transposition,
respectively), then we can introduce the following

D e f in it io n  6. The abstract matrix differential equation

(38) S Y  = - A + - Y,

where У £ M atnX„(T1), will be called the adjoint equation to (24).
Between the elements X  £ FM(A)  and Y  £ FM( — A + ) the relation

(39) Y+ X  = C,  C £ Inv( MatnXn(Ker 5 ))

holds.
Indeed, applying 5 T + =  (5 У )+ (cf. [8]), we have

S (? +  • X )  = (5У )+ • X  + У+ • S X  = - Y +AX  +  Y +A X  = 6

which means that У+ • X  £ MatnXn(Ker 5 ). The invertibility of У+ • X  is 
evident. From (39) we obtain

Y  — (X -1 )+ • C + , sqY  = (sqX ~ 1)+ - C + , q e Q ,

because sqY + = (й9У)+ , q £ Q (cf. [8]). Hence, in particular, if C — 
=  E, we obtain the relation between the normalized fundamental matrices 
of equations (24) and (38):

ф ,„ (-Я + ) = [® -'(T )]+ .

Corollary  9. If the equation (24) is self-adjoint, i.e. A — A+ , then
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7 .  T h e  r e d u c i b l e  e q u a t i o n s

D efinition 7. If A £ MatnX„(Ker 5), then the abstract matrix differ
ential equation (24) will be called the stationary equation. In the opposite 
case (24) is nonstationary.

DEFINITION 8. Equation (24) will be called reducible if there exists an 
element P  £ Inv(M at^x^Z1)) such that applying the linear transforma
tion (34) with this P,  (35) will turn to a stationary equation SY  = B Y . In 
this case P  and the transformation (34) will be called the Liapunov matrix 
and the Liapunov transformation, respectively.

T h e o r e m  5. The differential equation (24) is reducible iff its normal
ized fundamental matrix takes the form

(40) Фдо(А) = P _1 • ФЧ0(В) ■ sqo P  ( the Yerugin formula),

where P  £ Inv( M at^x^Z1)), Фдо(Р ) £ FM[B) ,  В £ MatnXn(Ker S).

P r o o f . Necessity. Assume that (24) is reducible. Then some Liapunov 
transformation Y  = P X  transforms it into the stationary equation

(41) SY  =  B Y

for which Фдо(Р) is the normalized fundamental matrix. Equation (41) with 
the limit condition

Ao, Уо € Q ,

where Xo =  sqoX,  has the solution

Y  = Фчо( В ) - з чоР - Х 0.

Hence

X  =  Фqo(A) • X 0 =  P~l ■ Y  — P - 1 • Фqo(B) ■sqoP  • Ao,

whence the Yerugin formula (40) follows.
Sufficiency. Assume that the matrix P  £ Inv(Mat„Xn(L1)) satisfies 

(40) with the matrices A £ Matnxn(L°) and В £ Matnx„(Ker 5). Then

Р  =  Ф,0( Р ) - 5доР . ф - 1(А).
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Since Ф90(А) E FM( A) ,  we have for the derivative of the transformed ma
trix Y = РФ ,0(А)

(42) S Y  = 5 (Р Ф ,0(Л)) = ( SP  + РА)ФЧ0(А).

Taking into account that 5Ф^)1(А) = -  Ф~1(А) • A and therefore

S P  = BP  - P A ,  

after substituting (42) we have

S Y  = { SP  +  РА)ФЧ0(А) =  ( B P  - P A  +  РА)ФЧ0{А) =  ВРФЧ0(А) = BY,  

where by assumption В E MatnXn(Ker 5). On the other hand by (35)

В =  S P  P - 1 + P A P - 1.

Hence (24) is reducible and P  is the Liapunov matrix.

8 .  T h e  v e c t o r i a l - m a t r i x  C a u c h y  m o d e l  o f  t h e  o p e r a t i o n a l

c a l c u l u s

T h e o r e m  6 . If for a fixed matrix A E Matnxn(L°) and for all q E Q 
the elements Фq(A) exist, then the system

(.L°n, L \ , S , T q, s q, q ,Q ),

where
L°n := M atnXl(X°), L \ Mat„xi(Z/1)

and

S~x Sx — A -x, x E L\,

q e Q, f  E L°n,

sqx  := ФЧ(А) ■ sqx,  q E Q, x E L\  

forms an operational calculus.

PROOF. It is easy to notice that S,  T q, sq are linear operations. Utilizing 
the axioms of the operational calculus CO(L°, Ll , S ,Tq,sq,q,Q)  and the
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known properties of the derivative, the integrals and the limit conditions, 
we obtain

s t J  =  S{  Ф , ( Л )  • тч[ Ф ; \ А )  - 7 } } = s {  ф , ( Л )  • r ß ; \ A )  • / ] } -  

- А - Ф Ч( А ) - Т Ч[ Ф - \ А ) - Т ]  =

= л  • Ф,(Л) • Т ,[Ф -Х(Л) • 7 ]  + фЧ(А)  ■ ф; \ А )  ■ 7 -  

-А.Фч(А).тч[Ф;\А)-Т\ = 7
or

S T J  =  7 ,
We also have

=  Г , ( 5 х  -  Л  • x) = Ф q(A) ■ Т ^ Ф - ^ Л )  • Sx  -  Ф * Х( Л )  - A- x ]  =

=  Ф , ( Л ) - Т , 5 [ Ф , - 1 ( Л ) . г ]  = Ф , ( Л ) [ Ф - 1 ( Л ) . х - 5 9 Ф - 1 ( Л ) . 5 , х ] =

= X -  Ф,(Л) • SgX 

or
T qSx = x - s qx,  q e Q ,  x G L\.

Therefore 5 is the derivative, Tq, q £ Q are integrals and sq, q £ Q are limit 
conditions (cf. Theorem 2 [7]).

D efinition 9. The system

(43) CO{L°n,L\,~S,Tq, s q,q,Q)

will be called the vectorial-matrix Cauchy model of the Bittner operational 
calculus.

Corollary 10. If A e  MatnXn(T°), В £ Matnxm(T°), й £ are 
given and for a certain qo £ Q the element Ф9о(Л) exists, then the abstract 
vectorial-matrix differential equation

(44) Sx = Ax + Bü, x £ L\  

with the limit condition

(45) sqox = x0, x0 e  MatnXi(Ker S)

Acta M athem atica  Hungarica 64, 1994



298 H. W Y SO C K I

has a unique solution defined by the Cauchy formula

(46) x =  Фqo{A) ■ x0 + Фgo(A) ■ Tqo [Ф -ЧЯ) • Щ  .

P roof. In the Cauchy model (43) of the operational calculus, the 
problem (44), (45) takes the form

Sx = Bu, sqox = Ф , 0 ( А )  • *0.

Hence and from Theorem 1 the Cauchy formula (46) follows.

9 .  T h e  m a t r i x  C a u c h y  m o d e l  o f  t h e  o p e r a t i o n a l  c a l c u l u s

e Q
T h e o r e m  7 . If for fixed matrices Äi,  A 2 £ MatnXn(T°) and for all q £ 

the elements Фд(Аг) and Ф9(А2) exist, then the system

( MatnXn(Z ), MatnXn( i  ), S ,T q, sq, q,Q) ,

where

S X  := S X  -  Ax • X  -  X  ■ A2, X  6 MatnXn(T1),

% F  := Фч(Аг) ■ Tq { ^ ( A i )  • F • [Ф ~ Ч ^ )]‘} • Ф‘ (% ), 

q e Q ,  F  £ Matnxn(T°),

s qX  := Ф9(Аг) • sqX  • Фд(А2)» q £ Q,  A £ MatnXn(T 1) 

forms an operational calculus.

P roof. It is easy to verify that 5, Tq, are linear operations. We also 
have

STqF =  5 { ф ,( А г)-Г ,

- A i  ■ * я & )  ■ Тч {Ф7 1 A )  • F ■ [ Ф ; \ А \ ) }  *} • Ф‘ (А ^)- 

- 8 ?(A i ) • Tq { ф - х(А г) • F • [Ф -Х(А‘ )] ‘} ■ Ф^(А‘ ) • А2 = 

= М  ■ Ф9(А 0  • Тч { ^ ( А г )  • F  • [Ф -Ч А ')]‘} • Ф '(^ )+
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+ $ , ( 2 0  • $ 4 ( 2 o  • f  ■ [ $ , ( 2 0  • ф -а(Я |)] 4  

+ Ф ,(2 о  • т , { $ 4 ( 2 0  • F • [ $ 4 ( 2 0 ]  ‘} • $ ‘ ( 2 0  • 2 2-  

-2а • $ , ( 2 о  • тч ( $ 4 ( 2 ! )  • F • [ $ 4 ( 2 ‘ ) ]*} • $ J ( 2 0 -  

- $ , ( 2 о  • г, { $ 4 ( 2 о  • F  • [ $ 4 ( 2 0 ] г} • $ 4 2 ' ) ■ 22 = f

ОТ
STqF = F ,  q e Q , F  G MatnXn(X°).

Moreover,

f q S X  =

=  $,(2o • T, {$4(2o - [ S X - M - X - X - M ] .  [$-1(20]‘} • $4^0 = 

= $,(2o • rqs {$4(2o • x ■ [$4(20]'} • $420 =

= $?(2o • {$4(20 x ■ [$4(20](- 

-s,$4(2o • sqx  • ̂ ,[$4(20]г} • $42') =

= x -  $,(2o -*qx ■ $420
or

f qS X  =  X - s qX,  q E Q ,  I  e MatnXn( I 1).

Therefore S is the derivative, Tq, q G Q are integrals and s q, q £ Q are limits 
conditions.

D e f in it io n  10. The system

(47) CO(M atnXn(Z/°),MatnXn( i /1), S,Tq,sq,q ,Q )

will be called the matrix Cauchy model of the Bittner operational calculus.

C o r o l l a r y  11. If A i ,A 2,F  £ MatnXn(L°) are given and for a cer
tain qo G Q the elements Ф,0(АО, Ф,0(А2) exist, then the abstract matrix 
differential equation

(48) S X  = AxX  + X A 2 + F, i e M a t ^ i 1)
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(49) s?0X = X 0, X0 e M atnXn(KerS) 

has a unique solution defined by the Cauchy formula

(50) Х  =  Ф „ (Д ,)-Х о - Ф ; Й ) +

+ « « ( 2 . )  -тк{ ф , - 1 A )  ■ г  ■ К '.1 A ) ] ' }  •

P r o o f . In the Cauchy model (47) of the operational calculus, the 
problem (48), (49) takes the form

S X  = F, з чоХ  = Фчо( А1) - Х о Ц 0(А12).

Hence and from Theorem 1 the Cauchy formula (50) follows.

w i t h  the l i m i t  c o n d i t i o n

1 0 .  E x a m p l e s

Let us consider the abstract differential equation

(51) S2x =  и 

with the lim it conditions

(52) S q QX  —  Co, SqqS x —  C.\,

where i  G 1 2 := ( i  E Ll : S x  £ L1}, и £ L° , co,Ci £ Ker 5 , qo £ Q■ Putting 
:= x, £2 :=  5 £ i we can represent the problem (51), (52) in the vectorial- 

matrix form

(53) Sx — Ax + Bu, sqox = x0, 

where
£1

_x2 , A =
0 e '  
0 0 , B =

o'
e HI 0 II Co

Cl

and e is the unity in the algebra L°. If the derivative S  satisfies the Leibniz 
condition and the limits condition sqo is multiplicative, then the solution of 
the problem (53) can be obtained on the basis of the Cauchy formula (46). 

A. The non-homogeneous Euler differential equation of the second order

(54) i2x +  <x = и
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(55) x(t0) = d0,

w ith  t h e  in i t ia l  c o n d it io n s

x(t0) - di

can be reduced into the form (53) if we consider the operational calculus in 
which

L° := C°(Q, R 1), L l : = C \ Q , R l)

and

5ж:={ ^ } ’ Tt^  := { /  ^ T dT\ ' St°x := {x(<o)}’

where /  =  { /(* )}  G L°, x = {x(f)}  G L1, q0 = to G Q := (0,+oo). The 
initial conditions (55) determine the limit conditions (52). Namely, со =  
= { d o } ,  C! = {Mi}-

With the usual multiplication of functions, the spaces L° , X1 are com
mutative algebras with unity e = {1}, the derivative S satisfies the Leibniz 
condition and the operations s to are multiplicative.

It is easy to verify that in the considered model of the operational 
calculus the matrix

*to(A)  = 1 I n f<o
0 1

is the normalized fundamental matrix corresponding to the matrix A 

 ̂  ̂ . Therefore from the Cauchy formula (46) we obtain0 0

Xi
X2

1 I n fto
0 1

do
tod\ + 1 I n f

to
0 1 /Jto

1 I n f  
0 1

u ( t )
dr,

whence it follows that the function

= jd 0 + M i In y  + In ^ dr j

is the solution of the problem (54), (55).
B. In the operational calculus [3, 7] with the derivative

the integrals

i dx  Ox)
x ' 1 dt + d z  J ’

Ttof ■= I f ( r , z - t  +  T)dr  j
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a n d  th e  l i m i t s  c o n d it io n s

s tox := { x(t0, г  -  t + t0)} ,

where

/ =  { f ( t , z ) }  E L° := C \ R l x R X, R}) ,

x =  { x(t,  z)} E L 1 := {x E L°: Sx E L0}, q0 =  t0 E Q := R 1,

the differential equation (51) takes the form of the partial equation of the 
second order of the parabolic type

(56)
d 2x d2x d2x

+ 2-r—— +  —  = u.
d t 2 dtdz  d z 2

The limit conditions (52) are determined by the Cauchy conditions

(57) x( t0, z )  = <p(z), x't(t0,z) = ф(г),

where <p E C 3(R1, R 1), гр E C 2(Rl , R 1). Then

со =  { y { z  -  t +  t0) }  , ci = { <p'(z -  t + t0) +  ip(z - t  + t0) } .

With the usual multiplication of functions of two variables, the spaces L°, 
Ll are commutative algebras with unity e = {1}, whereas the derivative S 
satisfies the Leibniz condition and s to are multiplicative operations.

It is easy to verify that

= 1 t -  to 
0 1

is the normalized fundamental matrix corresponding to the matrix A
'0  Г
0 0 On the basis of the Cauchy formula (46) we obtain

X\ ' 1 t -  t0
.X2. 0 1

-  t +  to)
q z \ z  — t +  to) +  ip(z — t +  to) +

+ ‘l t - t o f ■ 1 to -  T o'
0 1 Jto 0 1 1 u ( t , z — t + r) dr,
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whence it follows that the function

x  —   ̂y>( £ —  ̂+ to) + (t tо) [ г — t  +  t o )  t p ( z  —  1 + iо)] +

+  (t -  t )u(t, z -  t +  t ) c/ t  j  

is the solution of the problem (56), (57).
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H A JÓ S’ T H EO R E M  FOR M ULTIPLE  
FACTORIZATIONS

K. CORRÁDI (Budapest) and S. SZABÓ (Stockton)

1. In troduction . Let G be a finite abelian group written multiplica- 
tively with identity element e. Let A i , . . . , A n be subsets of G. If each 
element g of G is expressible precisely к ways in the form

g — <2i • • • un, cii E A \ , . . . ,  an 6 Ащ

then we say that the product A\ • • • A n is a k-factorization of G. When the 
product A\ ■ • • An is direct then it is a 1-factorization of G and will be called 
simply a factorization of G. The subset A of G is defined to be cyclic if it 
is of form

{e,a,a2, . . . , aT~1}.

In 1942 G. Hajós [1] solving a famous geometrical conjecture of H. 
Minkowski proved that in every factorization of a finite abelian group by 
cyclic subsets at least one subgroup must occur among the factors.

Hajós’ theorem does not extend to multiple factorizations as it is shown 
by examples. Let G be the direct product of two cyclic groups of order four 
with basis x, у and let

M  = {e , y} ,  A2 = { e , x 2y},  A3 = {e,x},
A4 = {e,xy},  A5 = { e , xy 2}, А6 = {е,х?/Э}.

The product A1A2A3A4A5A6 is a 4-factorization of G and none of the 
factors is a subgroup of G.

However, we will show that there must occur a subgroup among the 
factors in every multiple factorization of a finite abelian group, provided 
the multiplicity of the factorization is relative prime to the order of the 
group.

2. T h e  result. The group ring Z ( G ) provides an adequate tool to deal 
with ^-factorizations. We identify the subset A of G  with the element

A =
ae A

0 2 3 6 -5 2 9 4 /9 4 /$  4.00 ©  1994 Akadémiai K iadó , B udapest
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of Z(G). The product A\ ■ ■ ■ An is a fc-factorization of G if and only if

kG — A\ ■ ■ ■ An.

Rédei [2] developed a method using characters of G to study factoriza
tions of G. Characters of Z( G)  which are linear extensions of characters of 
G  can be used to study multiple factorizations.

Let Xi be the zth character of G and let gj be the jth element of G. Let
A, B e  Z(G),

|G| |G|
A =  Y ^ aj9j,  5  =

j=l J=1
If Xi(A) = X*(-®) f°r each i, 1 ^ г ^ |G|, then

|G|
bj)Xi(9j) =  0.

3 —1

By the standard orthogonality relations the matrix Xiidj) is orthogonal and 
so its determinant is nonzero. Hence it follows that aj — bj =  0 for each 
j ,  1 ^ j  й  \G\. Therefore A — B. Thus kG = Aj ■ ■ ■ An if and only if 
x(kG) = x(^-i ’ ' ' An) for each character x  of G. For the principal character 
this reduces to k\G\ = |Ai| For nonprincipal characters we have
0 =  x("4i) ’ •' x (A i)- Therefore, the product A\ ■ ■ ■ An is a /r-factorization 
of G if and only if k\G\ =  |Лх| • • • |An| and for each nonprincipal character 
X of G there is an г, 1 ^ г ^ n such that x (^ i)  =  0-

T H E O R E M .  In a multiple factorization of a finite abelian group by cyclic 
subsets always occurs a subgroup among the factors if the multiplicity is 
relatively prim e to the order of the group.

P r o o f . Let A j , . . . , A n be cyclic subsets of the finite abelian group G 
and suppose that the product A\ ■ ■ • An is a k-factorization of G , where к is 
relatively prime to |G|. In other words, suppose that the equation

kG = A ! ■ • ■ An

holds in Z(G) .
First we show that we may focus our attention on factorizations in which 

the orders of the factors are primes. To show this suppose that

A =  {e ,a,a2, . . .  , ars-1}

is one of the factors of the factorization and let

В =  {e, a, a2, . . . ,  ar_1}, C =  {e, ar, a2r, . . . ,  â s~^r}.
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Note that A = В C . If C  i§ a subgroup of G,  then aTS — e and so A is also a 
subgroup of G. If В is a subgroup of G , then ar = e. But this is impossible 
since the elements e ,a ,a2, . . .  , ars_1 are the elements of A and so they are 
different. Thus cyclic factors of composite order can be further factored 
and if a subgroup occurs in the resulting factorization then a subgroup 
must occur in the original factorization.

Let В I ■ • ■ Bm be the resulting k-factorization of G , where \Вг\ is a prime 
for each i, 1 ^ г ^ m. Clearly,

k G =  В\ • В m .

Let x bejt nonprincipal character of G. There must be a factor, say В , 
for which x(.B) =  0. Let

В =  {e, b,b2, , 67--1}.

0 = х( В)  = ' £ х ( Ь ' ) = ^ Ш У -

Then x(6) ф 1 and so

о = х(Д) =i - ( x ( 6 ) ) r 
1 - x ( b )

Consequently, (х(^) )Г =  1- Since r is prime and since x(&) is a |(j|-th  
root of unity it follows that r is a divisor of |(7|. Thus for each nonprincipal 
character x  of G  there is a factor Bi such that x(-ßi) = 0 and \B{\ is a divisor 
of |G|. This means that the product of factors Bi whose order divide \G\ 
form a multiple factorization of G as well.

Using the facts that the multiplicity к is relatively prime to \G\ and 
each \B{\ is a prime and k\G\ =  |f?i| • • • |i?m| we have that \G\ is equal to the 
product of all the |LL|’s for which |i?;| divides |G|. Thus certain factors form 
a 1-factorization of G. So by Hajós’ theorem one of the factors В i , . . . ,  B m 
is a subgroup of G  and finally one of the original factors A \ , . . . ,  An must 
be a subgroup of G.

This completes the proof.
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D E C O M PO SIT IO N S OF C O N T IN U IT Y
T. HATICE YALVAC (Ankara)

Tong [10], [11] and Ganster-Reilly [5] gave some decompositions of 
continuity. In this paper we will give a decomposition of continuity which 
improves the decompositions given in [10] and [5], and some properties 
between special families of subsets of a topological space ( X , t ).

A, A will stand for the interior and the closure of subset A of X  in the 
topological space (X , r) only, resp.

A set 5  is called regular-open if S  =  S,  regular closed if X  — S  is regular 
open (equivalently S — S).

Tong [11] defined a set S t-set if S = S.

D efinition 1. A subset S of ( X , t ) is called
(i) an а -set (or а -open) if S C S ,

(ii) a semi-open set if S C S,
(iii) a pre-open set if S C 5,
(iv) an A  set if S — U П F , where U is open and F is regular closed,
(v) locally closed if S = U П F where U is open and F is closed,

(vi) a В set if S — U П A where U is open and A is a f-set,
(vii) a semi-preopen set if 5 C S.

The notions in Definition 1 were introduced by Njástad [7], Levine [6], 
Mashhour et al. [8], Tong [10], Bourbaki [4], Tong [11] and Andrijevic [1].

S is called а -closed (resp. semi-closed, pre-closed, semi-preclosed) set if 
X  — S is а -open (resp. semi-open, pre-open, semi-preopen).

It is known that S is а -closed (resp. semi-closed, pre-closed, semi-

preclosed) iff S C S (resp. S C 5, S C S, S C S).
a-closure (resp. semi-closure, pre-closure, semi-preclosure) of a set 5 

is the intersection of all а -closed (semi-closed, pre-closed, semi-preclosed) 
sets containing S,  and we will denote these sets by ocl 5, scl 5 , pci 5 , spcl 5 
respectively.

It is well known that a set S is semi-closed iff S =  S. Hence t-sets and 
semi-closed sets are the same. Clearly S is a В set iff there exists an open set 
U and a semi-closed set A such that 5  = V П A. We note that a subset S is 
locally closed iff S — U П S for some open set U ([4], I. 3.3, Proposition 5).
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We will denote family of а -sets (resp. pre-open sets, semi-open sets, 
locally closed sets, A se ts , ß-sets) shortly by r “ , PO(X) ,  SO(X) ,  LC(X) ,
A(X) ,  B(X) .

In [5] the following relations were given:
(i) A { X )  =  S O ( X ) f )  LC(X) ,

(ii) T — та П L C{ X) ,
(iii) r = Р О ( Х ) П  LC(X) ,
(iv) r = P O ( X )  П A(X) .

From (ii), (iii) and (iv), three decompositions of continuity were obtained 
[5] and all of them improve the decomposition of continuity given by Tong
[Ю].

In the topological space (X, r) we will define the following families:

Ai  =  та = {U Л N: U £ r, N = X }  [7],

A 2 =  P O { X )  = { U r  N:U  e r, N = X }  [3],

A  =  { U n N : U  6 r, N  C  N},

A 4 = A ( X )  = {U П N : U E t, N  =  N} ,

Л5 =  B( X)  = {U П N: U G r, N  C N} ,

A 6 =  L C { X ) = {U П N: U e r, N  = N},

A 7 =  { U n N : U  e  r, C  N}.

If we take X  instead of N  in every A t we can easily see that r is a 
subfamily of all these families:

A i  С  A2 [8 ] ,  A4 С  .Д б  [5 ] ,  A 4 C  A s [ 1 1 ].

It is easy to see that As С  Аз, Ав С  A7 C  A3, A 4 С  A 7, Аб C  As-
Let /  be a function from ( X , t ) to any topological space. If the inverse 

image of each open set is in Ai,  then we call /  A-continuous.
An А -continuous (resp. A - , A 4-, A 5-, А -continuous) function was 

called а -continuous (resp. pre-continuous, A ,  B-, LC-continuous) before.

T heorem 1. Let S be a subset of (X, r) .
(1) S G A 3 iff there exists an open set U such that S — U П spcl5.
(2) S € A 4 iff there exists an open set U such that S = U П S .
(3) S G As iff there exists an open set U such that S — U П scl 5.
(4) 5 G A  iff there exists an open set U such that S — U П pci S.
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Proof. (1) Let 5  G Лг- Then there exists an open set U and a semi- 
preclosed set N  such that S — U Л N .

We have S C U, S C N, S C spc N , S C U П spcl S C U П N = 5 . 
Hence S =  U П spcl S.
The converse is obvious since spcl S is semi-preclosed.
Proofs of (3) and (4) are similar.

(2) If 5  = U П S (where U G r), then, since ( S ) = 5 , S G A 4.
Let 5  G Then there exists an open set U and a regular closed set 

N  such that S = U П N .

S C N ^ S C N  =  N.

We get U П S C U П N.

U H N  = U n N c { U n N )  = ( U n N ) = ~ S .

Hence U_ П N  C U Л S.
S o U n S  = U n N  =  S.

Theorem 2. (1) A 4 -  SO(X)  П A 7,
(2) SO(X)  П A 3 C A s .

Proof. (1) Let S G A 4. Since A 4 C 50(X) ([10], Theorem 3.1) and 
A 4 C A 7, A4 c SO( X)  П A 7.

Conversely let S be semi-open and in A 7. Then from Theorem 1, there 
exists an open set U such that

S = £ / n p c l 5  = t / n ( S u S )  = U n S .

(We use here that, for any set S,  pci 5  =  S U S [2].)
So S is an A  set, i.e. S G A 4.
(2) let S G SO( X)  П A 3. Then S C S and there exists an open set U 

such that

S — U П spcl5  = U n ( S ö  ~S) =

= un(su§) (S c!> => s =~s => S = ä)

— U П sei 5  (for any set S,  sei S -  S U S,  [2]).

Hence S  G A 5.
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Corollary  1. (1) /  is ЛА-continuous iff f  is semi-continuous and A t  
continuous.

(2) ([5], Theorem b) A \  — SO(X)  П Ae-
(3) ([5], Theorem 4(i)^ /  is A 4-continuous iff f  is semi-continuous and 

Ae-continuous.
(4) A 4 C S O( X)  П Аз-
(5) ff f  is A 4-continuous, then it is semi-continuous and A 3-continuous.

T heorem 3. r = A\  n A 3 .

P roof . It is clear that т C *4i П A 3.
Conversely A\  ПЛз С РО(Х)Г\  S O( X)  ПЛз С P O ( X )  r\As = T. (from 

Theorem 2, and from Proposition 9 in [11])
Corollary  2. (1) /  is continuous iff f  is A\-continuous arid А з - 

continuous.
(2) г  =  A \  П A t-
(3) /  is continuous iff f  is Ai-continuous and A 7-continuous.
(4) (Given in [5]j т = A \  П Ae-
(5) ([5], Theorem 4(ii) /  is continuous iff f  is A\-continuous and Ae-

continuous.
(6) (Given in [5]j

r =  Ax П A6 =  P O { X ) П S O ( X ) П л  = P O ( X )  П A 4-

(7) ([5], Theorem 4(v)/) /  is continuous iff f  is precontinuous and A 4- 
continuous.

The following theorem was given by Tong [11]. But we will give a 
different proof.

T heorem 4 (Proposition 9 in [11]). r  =  P O ( X ) П As-

P roof . Clearly г С P O ( X )  П As- If 5  G PO(X)  П As  then S C  5  and 
there exists an open set U such that

S = U Г\ sei s = (/ n (S U  5 ) = U П 5  e  r.
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C O N T IN U O U S FU N C TIO N S

B. A. BARNES (Eugene)

Introduction

Let ÍI be a locally compact Hausdorff space, and let C(fl) be the Ba
nach space of all bounded complex valued continuous functions on fl. The 
complete norm on C(i2) is, as usual,

\\f\\n =  su p |/(* ) |.

Fix fi a (T-finite positive regular Borel measure on fi which is strictly positive 
in the sense that

fi(U) > 0 for all nonempty open subsets U Q ÍI.

In this paper we study the class of all linear integral operators on C (il)  
(relative to the fixed measure fi). Such an operator is determined by a kernel 
(measurable function) K(x, t )  on if2 = fl X fl according to the formula

(/) K c( f ) (x)  =  J  K(x , t ) f ( t ) d f i ( t )  (/ € C(il)).
Q

For convenience of notation, fi being fixed, we often write dt in place of 
dfi{t) in integral expressions. The class of integral operators considered in 
this paper is defined as follows.

Definition 1. A kernel К  on f l 2 is in A c = A c ( i l , f i ) if

(i) rc( K)  = sup / \K(x, t ) \  dt <  oo; and
xeo Jn

(ii) K c( f ) 6 C(i l )  whenever f  G C(fl).
We derive the basic properties of A c, including the fact that (A c,r c) is 

a Banach algebra in §1. For К  G A c , formula (I) also defines an operator 
К 00( f )  for /  G L°° =  L°°(Cl,fi). In §2 we consider compactness properties 
of the operators K c and К qq. The main results are in §3 where the spectral
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and Fredholm theory of the Banach algebra A c is developed. These results 
are all expressed in terms of the spectral and Fredholm properties of the 
operators K c and К  ж-

This paper is motivated by the beautiful and useful theory of integral 
operators on C(fl )  as developed by K. Jörgens in his book [5].

T he algebra A c

In this section we derive the basic properties of the algebra of kernels, 
A c- Throughout this paper the space ft and the measure p are as described 
in the Introduction. For К , J  £ A c

sup
x£U

j  J \K {X, Z)\  ̂J dt'j d z j  ^  tc( K ) tc(J).

Therefore the convolution of the kernels К  and J ,

( K  * J) (x, t )  =  J K ( x , z ) J ( z , t )  dz, x, t  E ft,

is again a kernel in A c, and clearly, ( K  * J)c = K CJC. We make the under
standing that two kernels K ,  J 6 A c are considered equal if for each x G ÍÍ, 
J(x, t )  =  K ( x , t )  a.e. on 0 . Equivalently, К  and J are considered equal if 
tc(K  — J) =  0. Thus (A c, tc) is a normed algebra of equivalence classes of 
kernels.

P r o p o s it io n  2 . For К  e  A c, rc( K)  =  | | / t c || (the operator norm K c).

P r o o f . For each x G 12, define the functional a x on C = C(Q)  by

a x{g) =  j  K(x, t )g( t )  dt {g G C).
П

Then the norm of a x on C  is ||ax|| = J \ K ( x , t ) \ d t  [7, Theorem 6.13 and
n

Theorem 6.19]. Suppose for some x0 E ft,

J \ K ( x 0,t)\ dt > ||A'C||.
Q
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/  K ( x 0,t)g(t) dt
Q

= |о*0Ы1 >Then there exists g & C,  ||<7||q =  1, with 

> ||Â C||. But this implies ||A'c(<7)||q > ||AC||, a contradiction. Therefore

TC{K)  ^ IIA'c||.

The reverse inequality is immediately obvious.

T heorem 3. (A c,r c) is a Banach algebra. Also, if { K n} is a rc-Cauchy 
sequence, then some subsequence of { K n} converges a.e. on f l2.

P roof . We prove completeness as this requires a technical argument 
which is not completely obvious. Let { K n} Я. A c be rc-Cauchy. There 
exists a subsequence { К П]} .>x such that тс ( К П]+1 -  К П]) < 2 -J for j  ^ 1.
It suffices to show that this subsequence converges. For convenience we use 
the relabeling Kj  = K nj, j  ^ 1. So we have

Tc{Kj+\  — Kj )  < 2  3, j  ^  1.

OO

Set J ( x , t ) = \Kj+i (x, t )  -  Kj (x, t ) \ .  For all x E 0 , integrating term by 
j=1

term we have
OO

11̂ (*.о||1̂  ^ 2 Tci K j+i -  K j )  ü i .  
j=i

Let
Г =  { (x, t )  E Cl2:J(x, t )  = + oo}.

Also, for each fixed x, Гх = { t E íí: {x, t) E Г} is a set of /i-measure zero 
since I] J (x ,i ) | |1 < oo. Therefore by definition [7, Definition 8.7] /хг(Г) =
=  J /л(Гх) dfi(x) =  0 where Ц2 denotes the usual product measure / i x / i .  

n
When Д is a set, we use the notation Д с for the complement of Д . Fix x. 
If (x , t ) E Гс, then let

OO

K ( x , t )  = y ^ ( K j + i ) ( x , t )  -  K j ( x , t )  + K \ ( x , t ) )  = lim K n(x, t)
L '  71—♦■OO
j  =  1

(note that the series converges absolutely). If (x,<) E Г, then set K ( x , t )  = 
=  0. Since Г is a set of /^-measure zero, К  is a measurable function on 
ÍÍ2.
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Now for each x £ Í!

П

\ K n+1(x,t)\ ^ y ^ | K J+1(x , t )  -  +  |A'i(z,<)| ^
j= i

^ J ( x , i ) + |A ' i ( x ,0 |  € 1 4 « ) ,
so by Dominated Convergence Theorem

(a) I] K ( x , t )  — A'n(x,<)|| —*■ 0 as n —► oo.

Let £ >  0 be arbitrary. Fix ./V such that

n , m  .̂ N => тс( К п -  K m) < e /2 .

Fix z and assume n^.  N .  Using (a ), choose m ^ N  such that

J I K(x , t )  -  K m(x,t)\  dt < e/2.
n

Then

J I K ( x , t )  -  K n(x, t)\  dt = J I A'(a:, <) -  K m(x, t )  \ dt + тс(К т -  K n) <

< £/2 +  £/2 =  £.

Therefore if n ^ JV, rc(/i — A'n) < £. Thus, К  is the rc-limit of the 
sequence {Kn}-

Assume K(x, t )  is a measurable function on f l2, the minimal require
ments for К  to determine an integral operator on C (fl) are:

(i) for all x £ D, K ( x , t )  £ Lx\ and
(ii) for all g £ C, J K(x, t )g( t )  dt £ C.

и
In fact if К  satisfies (i) and (ii), then К  £ A c, as the following argument 
shows. It suffices to show tc( K ) < oo. For each x £ ÍÍ, let a x be the con
tinuous linear functional on C given by

<xx ( g )  = J  K ( x , t ) g { t ) dt  (g £ C).
П
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Now ||ax|| = dt. The collection { ax\ x E 0 }  is pointwise bounded
Q

on C  since a x(g) = f  K(x, t )g( t )  dt E C.  Therefore by the Uniform Bound- 
Q

edness Theorem,

tc( K ) =  sup
x£Q

J \ K ( x , t ) \
n

dt = sup ||ax|| < oo.

E xample  4. In [5], K. Jörgens introduces the algebra of all kernels К  
on ÍI2 having the property that

x —» K( x ,  •) is a bounded continuous function from ÍI into /x).

Let i  =  be the collection of all such kernels. Then £ is a closed
subalgebra of A c [5, Theorem 12.2]. In fact, l  is a closed right ideal in A c 
as the following argument proves:

For К  & £, J E A c, x , y  E fl;

(I (Ii * J)(x ■) — ( K  * J){y,  • ) I) j ^

^ j  ^ J \ K { x , z ) ~  K ( y , z ) \ \ j ( z , t ) \  d z \  dt —

= f \ K ( x , z )  -  K(y, z) \  ( f ( J ( z , t )  I d íj  d z ú
n \ q J

^ ||-8’( ® - ) - Ä'(y.-)ll1T'cU).
When X  is a Banach space, let IC(X) denote the space of all compact 

operators on X . Now t  may be a proper ideal of A c, for when Í! is compact, 
then t  ^ /C(C) by [5, Theorem 12.1]. But it is not difficult to find examples 
where ÍI is compact, К  E A c, but К  £  Af(C); see Example 6.

The algebra l  is a very interesting Banach algebra of operators. Now 
we give two examples with the aim of showing that there are important 
operators in A c which are not in i. This is one justification for studying the 
larger algebra, A c.

E x a m p l e s  5. Let ÍI =  [0,1], let m  be the Lebesgue measure, and let 
be the point mass at the origin. Set ц — m + 6o- Let \E  denote the 

characteristic function of a set E. Fix a > 0, and define К  by

K(x,t) = x-ata- lX(o,*](0> * > 0;
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K { 0 , t )  = a 1Х{0}(<)-

For /  G

X

О

Л'оо(/)(0 ) = а - 1/(0 ).

If /  G С [0 ,1], /  real valued, then clearly K 00(f)(x)  is continuous on (0,1]. 
If £ > 0 is given, choose 6 >  0 such that 0 ^ t < 6 =>■ /(0 )  — £ й  a _1/ ( i )  ^ 
= /(0 ) + e. If 0 < x < S, then

Therefore Ff00(/)(a:) is continuous at 0. Thus, К  G A c.
Note that for g = X{0} G T°°(/r), K<x>(g) = g, so K 00(L°C>) %.C. It is not 

difficult to see that Ä' ^ f(fI,/x). Operators of this type are used as examples 
in Jürgens book [5]. The case a = 1 is the familiar Cesaro operator.

E x a m p l e  6. Let c be the usual Banach space of sequences which 
converge. For a = {u/c}fc>i G c, let a0 =  lim a*. Let N  = {1 ,2 , 3 , . . . }к—► oo
be the natural numbers with the discrete topology and let ÍÍ = N  U {oo} 
be the one-point compactification of N , formed by adding the point oo. A 
set U ^ Cl is an open neighborhood of oo if Uc is a finite subset of N . Each 
sequence a =  {a*.} G c is naturally associated with a continuous function on 
Cl by setting

Then a —► a is a linear isometry of c onto C(Cl). Let fi be counting measure 
on Cl.

The following proposition is a restatement of the well-known character
ization of when an infinite matrix determines an operator in B(c); see [6, 
Theorem 6.4].

P r o p o s it io n  7. Let {K( j ,k))k>oj>o ê an infinite matrix. Then К  G 
G A c(Cl,^i) if and only if

X

/(0) - £ ^ *«,(/)(*) -  J  ta - ' m  dt й  / (0 )  + £.
о

a(k) =  at, к ^ 1, a(oo) = ao-

OO

(ii) Ä'(0,fc) = lim K ( j , к) for к ^ 1; and
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oo
and K ( 0,0) =  /?— ^  K(0,k) .

k=1
When conditions (i)-(iii) hold, then for a — {a*:}fc>1 G c,

K c(a)(j) = K( j , k ) ak (j  1> 0), 
k=o

and tc( K ) =  a.
In this case *4c(fi, p) is completely identified with B(c) via the map К  —* 

—> K c. There are many interesting operators in B(c) which are not in the 
ideal £(Sl,p), for example the HausdorfF matrix H £ l:

H ( j , k )  = j - \  l ^ k ^ j ;

H( j , k)  = 0, к > j  ^ 1;

7/(0, k) -  0, Jfe^l;

H{j,  0) =  0, j l  1; 77(0,0) = 1.

2 .  C o m p a c t n e s s  p r o p e r t i e s

P roposition 8. For К  G A c, K c is compact о  7t'oo is compact.

P roof . Assume that is compact, and let {/„} Q C  with | | / n | | n  ^ 1. 
Since 7t'oo is compact, there is a subsequence { f nk} such that {Koo(fnk) } 
is a Cauchy sequence in L °° . Because the measure p  is strictly positive, 
Ildiin =  Iblloo for a11 9 e C - Therefore

II K c{fnk) -  Kc( fn} ) ||n = \\Koo{fnk) -  7i'oo(/nJ)||00 ^  о as k , j  -» oo.

This proves K c G /C(C).
Now suppose K c is compact. Note that L l (£l ,p)  can be identified as a 

closed subspace of the dual space of C (fi), as follows: For /  G L 1,
the functional

a / (g) =  J  fg  dp (g G C) 
n
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has the property ||a / || =  Ц/Hj . Since K c is compact, we have K'c, the 
adjoint of K c, is compact [6, Theorem 7.3]. The operator K'c acts on g £ L 1 
(considered as a subspace of C )  according to the formula

Therefore

K 'Á9)(t ) = j  K(x, t )g(x)  dx.

|̂ c(fl,)||1̂  J  l j \ K (x ^ ) \ \ 9 ( x )\ dt
n \n

dx й r-c(A')||5r!|1.

This proves that K'c(L l ) С T1, so the restriction of K'c to Ll is in K,(Ll ). 
Let J denote this restriction. It is straighforward to verify that J', the 
adjoint of J on L°°, is the operator K ^ .  Finally, since J is compact, we 
have Koo =  J' is compact.

In the next two results we assume Í) is а -compact. Then there exists 
{ iin} n> i, a sequence of compact subsets of fi with

íí„ Q int(ÍIn+1) ^ i in+i (n ^ 1),

and ÍI =  fln. We fix this sequence for the remainder of this section. It
is easy to see that if A is any compact subset of Cl, then A Q Cln for some 
n. We need to define a condition on kernels.

II. Condition on a kernel К  6 A c:

We use the notation Cc(Cl) for the subspace of /  e C(Cl) such that /  
has compact support.

T h e o r e m  9 . Let Cl be a-compact. Assume К  £ A c with К compact on 
C . Then К  satisfies the condition in II.

P r o o f . Suppose not. Then there exists ó > 0 and a sequence {yn} Q Cl 
with

J I K ( y n,t)\ dt > ó, n ' t  1.
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Define the functional a n on Cc{ ii£) by

K{yn, t)g(t)  dt.

Now ||an|| =  /  \ K ( y n, t ) \dt  > S, n ' t  1. Choose gn G Cc (i2^), ||g„||Qc =  1, 
ncn

with

J Li. (gn, t ) dt I a n(<7n)| ^ <5.

Extend g„ to be 0 on iin, and note that this extension, which we also 
denote by gn, is in Cc(ii). For each fixed x, K(x, t )gn(t) —*• 0 everywhere 
on 0 . Therefore

A'(íí„)(x) J  K(x, t )gn( t ) dt
il

0

by the Dominated Convergence Theorem. Since / f  is compact, there exists 
a subsequence {gn'} of {gn} and /  G C such that

K(gn') —* f  uniformly on Q.

By the argument above, /  =  0. Therefore II K(gn< But

\К(дп')(Уп') I = f  ft (gn7? t)gn'(t) dt
ns.

^ <5, a contradiction!

We say a sequence {Д } Cj C (ii) converges locally to /  G C (if), if 
{ ||/* ||n } tó l is bounded and f k ~ * f  a.e. on Í2.

C orollary 10. Let f l be a-compact. If К <*, or K c is compact, then
Koo(L°°) C c.

P ro of . By Proposition 8 we may assume that Kc is compact. Let /  G 
G L°°, | | / |  ^  =  1. Let £ > 0 be arbitrary. By Theorem 9 there exists n

such that 1 J |A' (x , i ) |  dt < £. Fix w G C  with w =  1 on Sln, w =  0

on Í2£+1, ^ w ^  1. By [7, Corollary, p. 56] there exists {/*,} Q C with
fk —► Xttn+if locally-on iin+ i. Therefore wf^ —* w f  locally on Ó. Since K c

A cta  Mathematica Hungarica 64, 1994



324 В А BARNES

is compact, there exists a subsequence { f Uk} such that K c( ( wfnk)) —* g 
for some g E C . Now K c (w f nk) —> Koo(wf)  = g. Finally,

g - K o o ( f ) \ \ Q = K<x> { (w — 1)/) ^  J \ K ( x , t ) \  \f(t)\ dt < e.

гг

Since £ was arbitrary, A'oo(/) must be continuous.

3. Spectral th eory  in A c

Let X  be a Banach space. Denote the collection of all T E B{X)  which 
are Fredholm operators by Ф(Х) [5,§ 5.3]. For T  6 Ф(А), let nul(T),  
def (T), and ind (T), denote the nullity, defect, and index of T, respectively. 
For T E B(X) ,  let cr(T) be the usual spectrum of T as an operator in B(X) ,  
and let u>(T) be the usual Fredholm essential spectrum of T:

In this section we describe the spectral and Fredholm properties of a 
kernel К  E A c relative to the algebra A c in terms of the spectral and 
Fredholm properties of the operators K c and K^.

Another algebra of operators plays a role here. We describe this algebra 
now. Let Í1 and p be as in the Introduction. The spaces C — C (0 )  
and L1 =  L1(ii,/i)  form a dual system where the nondegenerate bounded 
bilinear form on С X Ll is given by

Dual systems are discussed in [5, pp. 43-44]. Let A(C, L1) be the algebra of 
all operators T  E B(C)  for which there exists (a necessarily unique) operator 
Tt E B(L')  with

The algebra В = А ( С , Ь г) is a Banach algebra, and the spectral and Fred
holm theory in A is well established; see [5] and [2].

Let К  E A c, and set

u { T)  = {A:A -  T  £ Ф( Х) } .

n

(Tf ,g)  =  (f ,T'g)  ( / E C j E i 1).

I í \ x , t )  = K ( t , x )  (x , tEÍÍ) .

Acta  M athem atica  Hungarica 64, 1994



INTEGRAL OPERATORS ACTING ON CONTINUOUS FUNCTIONS 325

For /  6 C, g £ L 1, using Fubini’s Theorem we have

(K c { f ) g ) = J  ( J  K{x , t ) f ( t )  dt g(x) dx =

dt = ( f , K \ g ) )  .

Therefore A c is a subalgebra of B.  We prove that the spectral and Fredholm 
properties of К  £ A c are the same as those of К  relative to the larger algebra 
B. It is clear what this means in the case of spectral theory: For К  £ A c, 
о д ( К )  =  CTß(Ä') (the spectrum of К  relative to the algebra A  is equal to 
the spectrum of К  relative to the algebra B).  In order to understand the 
Fredholm theory in В and A c we need some preliminary definitions.

First note that the set

T c = span{ </?(x)^(t): £ С, ф £ Ll }

is an ideal of both A c and В =  A(C, L1). The set

Фв =  { T  £ В : T is invertible in В modulo Tc}

is called the collection of Fredholm elements of В (relative to JFC); see [2,§ 2] 
concerning properties of this set. The algebra A c in general does not contain 
the identity operator. For К  £ A c and Л £ С ,  Л /  0 ,  we write A — К  £ 
when there exists J £ A c such that J * К — К  * J  and К  + AJ — J * К  £ 
£ T c. We show in Theorem 12 that when А ф 0, К  £ A c, then A — К  £ Фд 
if and only if A -  К  £ Фв.

We need to prove a preliminary result. Let Лоооо be the set of all kernels 
К  on if2 such that J | K(x, t ) \  dt £ L°°. 

n

For К  £ Aoooo, let Too(K) K(x, t) \  dt . Call g £ L°° essen-
'  OO

tially continuous if there exists /  £ C  with g — f  a.e. on if.

P roposition 11. Assume К  £ A c, and J £ Jlooco has the property that 
for all f  £ C, J ( f ) is essentially continuous. Then К  * J £ A c-

P r o o f . F or e v e r y  x £ if,

J \ ( K  * J) (x , t )  I dt ^
n

dz %
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^ j \ K ( x , z ) \  dzTooiJ).
П

Therefore тс(К  * J) Ú rc(Ä')rQO( J).
Also, if /  E C, then </(/) is essentially continuous, and so A'(< /(/)) G C. 

This proves К  * J E A c.

For T  e  В =  Д С , ! 1), let

ив(Т)  =  {А £ С : 1 - Г 0 в } .

If К  G .Ac, then there is a similar definition of u A(I().  If the algebra Ac 
does not have an identity, then let

ил ( К)  =  { А е С , Л / 0 : А - И О з } и { 0 } .

If A c has an identity, let

oja ( K)  = {A E С: A — К  is not invertible in A c modulo Tc} .

An element T  of an algebra В has a quasi-inverse 5 G В when S  +  T — 
= ST  =  TS.  When В has a unit / ,  then T G В has a quasi-inverse in В 
exactly when I -  T  has an inverse in B.

T h e o r e m  12. The algebra A c is a subalgebra of В = A ( C, T 1). For 
A G A c •

(1) <ta(K )  = а в (К )  =  o ( K c) U cr(A'oo);
(2) For Л ^ 0, A — A' G Ф.д г/ and only if X — К  G Фв;
(3) lja ( K)  = u>(Kc) U ^(A'oo) U û o, where u>0 =  { A : Л — A’c £ Ф(C) and 

X — A'oo G Ф(А°°), but ind(A -  A'c) ф ind(A -  A'oo)} .

P r o o f . Assume К  G A c has a quasi-inverse T  E A(C, A1), so К  + T = 
= A'T = T K .  Since T  G A(C, A1), we have that (T^/ is an extension of 
T, and it is easy to see that (T^)' E A(A0O,A1). By [5, Proof of Theorem 
11.11, p. 293] there exists M  E Aoooo such that

M ( / )  =  А '((Г + )'( /) )  a.e. ( /  G A°°).

For /  G C, M( f )  — A '(T (/)) a.e., so M( / )  is essentially continuous. There
fore T =  — К  +  M  G Aoooo und has the property that T (/)  is essentially 
continuous for all /  E C.  Thus by Proposition 11

A T = K ( —K  + M) G A c.
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Therefore T  £ A c. It follows that сгд(К) = aß(K).  Now by [2, Theorem 2.7 
(1)], crß(A') =  <j ( K c) U a ( a'c) .  Also, ( a'<  ̂ = A'oo, so ob(K)  =  a (A'c) U 
U <t(A'00). This proves (1).

The proof of (2) is similar to the proof of (1). Note that T  as defined in 
[2, p. 2] is exactly T c. Suppose К  £ A c and there exists T  £ A(C, L 1) with

K  +  T - K T e ?  = t c.

Following the same steps as in the proof of (1), we have T £ A c. This 
suffices to prove (2).

To prove (3), we have by (2) that when К  £ A c, then ui_a(K)  = u>ß(K). 
Now by [2, Theorem 2.7]

Lüß(K) = U>(KC) U U! ( a ] )  U U>0

where изо = { A: A — K c £ Ф(С)},  Л -  К \  £ Ф(А!), but ind(A — K c) ф 

Ф — ind Â -  A'c^. As we have noted previously, ^ A = К From the 

Fredholm theory of operators [5, Corollary 3, p. 91] из ^A'JJ = w^(A'c)  ̂ =

= ^(A'oo), and when A -  A'j £ Ф(А!), ind Â -  K ^  =  - i n d ^ A -  ( Kc)  j  =
=  — ind(A — A'00). Combining these various equalities, we have the state
ment in (3).

For an operator T, we let Af(T) denote the null space of T and 1Z(T) 
denote the range of T.  For E  С C  and F Q A1, let

{ / £  A1: (</,/) = 0 for all g £ E )  ,

i f ’ = { i e C : ( j , / )  = 0 for all /  £ F}  .

C orollary 13. If К  £ A c, А ф 0, and A -  К  £ ФА , then:
(a) Щ Х  -  K c) =-*- 71 (A -  A l)  ;

(b) Ai(X -  K C)L = n( x -  K Í)  ;

(c) A f { \ -  A'cf)  =  ЩХ  -  K c)x -

(d) LM  (A -  K Í )  =  K(X -  K c)-

(e) nul(A -  A’c) =  def Â -  A'c  ̂ ;

(f) nul (A -  A'cf) =  def (A -  K c).

P roof . Since A — К  £ Фß where В = A ( C , Ll ), that (a)-(f) hold follows 
from the general Fredholm theory in algebras such as В as developed in [5]
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P roof. Since A -  К  £ Ф*? where В = A (C ,  X1), that (a )-(f) hold follows 
from the general Fredholm theory in algebras such as В as developed in [5] 
and [2]. We give some details. By [2, Theorem 2.5 (3)] ind(A — K c) =
— — ind Â — A'<Q follows immediately that (a), (c), (e), and (f) hold by
applying [5, Theorem 5.16, p. 111].

Now we prove (b). Let { / i , . . .  ,/„ }  be a basis for A — K c). By [5, 
Exercise 3.17, p. 45] there exists =  X1 with (fk , 9 j ) = f>k,j, 1 =
^  k , j  ^ n. If A*. £ C and Aipi +  . . .  + Angn G Л/"(А -  K c)± , then X: = 0 for
all j .  Using (a) this implies,

codim  ̂ 77(A -  A'j)  ̂ = codim^A7(A -  А’с) ± )  ^ n.

By (e) codim ^77 ( A -  A’])  ̂ =  n. Since 77 Â — Kc j ^  ̂ 77(A —A’c)^ , it

follows using (a) that 77 Â — А'<П = Í 77(A — A'*)  ̂ =  -V(A -  K C)L.
A similar argument proves (d).

Corollary 13 has application to equations involving K c and A’]. For 
example, assume К  £ A c, Ao Ф 0, and A0 — A' 6 Ф .̂ Let {<71, . . .  ,gn} be a
basis for N  ^A0 — A'jj. Then by Corollary 13, for h £ C(Ct) the equation

Aof (x)  — J  К (x, /)/(<) dt = h(x) 
и

has a solution /  £ C(fi) exactly when

J  9k(t)h(t) dt -  0 for 1  ̂к ^ n.
Q

A general Fredholm theory relative to a Banach algebra is developed in
[1]. This is the setting for the Fredholm theory in the algebras studied in [2]. 
One consequence of Theorem 12 is that spectral and Fredholm properties 
of К  £ A c relative to the Banach algebra A c is identical to the spectral and 
Fredholm properties of A' as a member of A(C,  X1).

It is often the case that a kernel К  £ A c has the property K 00(L°°) ^ C. 
For example whenever К  £ £( í í ,p)  then A'00(A0°) ^ C [5, Exercise 12.4 (a), 
p. 306]. Let J  = [ K  £ A c‘- A'co(A°°) ^ C } . It is easy to verify that J  is 
a closed ideal in A c- When К  £ J ,  then the spectral and Fredholm theory 
of Ii’c in B(C) ,  Koo in B(L°° ), and К  in A c are essentially the same. We 
prove this result now.

If Д is a subset of C, then we use the notation Д' =  A \  {0}.
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THEOREM 14. Assume К  £ Ac and K 00(L°°) g  C.
(!) а'л{К ) =  v'(Kc) =  <r'(Koo)\
(2) u'A(I i)  = u'(Kc) =  ^ (A ’oo);
(3) For А ф 0,

A -  К  £ Фл <=> A -  K c £ Ф(С) о  A -  Л'оо £ Ф(А°°).

Furthermore, when A -  /£с £ Ф(С), then ind(A -  K c) =  ind(A -  A'oo)-
(4) If А ф 0 and A — A'c £ Ф°(С), then there exists F  £ T c with A — К  — 

— F invertible in the algebra A c with the identity adjoined.
P r o o f . Parts (1), (2) and (3) follow from applying Theorem 12 in 

combination with [2, Theorem 2.7] and [3, Theorem 4]. For example, letting 
В be as before, we have by Theorem 12 that ct̂ (A') = Oß( K)  for К  £ A c. 
Also, by [2, Theorem 2.7],

(Tß(A') = o(Kc) U <7 ( Ii\ ) .

Now Koo — ^A'l^ , and therefore, a (K 00) — cx^A'j^. By assumption
A'00(A°°) C £7, so applying [3, Theorem 4] we have o'(Kc) =  a f K ^ ) .  Com
bining all these equalities has the result:

o'a{K)  =  °'в{К) = A'c) = ст'(Л'оо)-

This proves (1), and the proofs of (2) and (3) are not much different.
To prove (4), assume that A -  K c £ Ф°(С). Then by (3) A -  К  £ 

£ Ф]д = Ф .̂ By [2, Theorem 2.5 (2) and Corollary 2.6] there exists F £ T  
with A — К  — T  invertible in B. As noted before T  — T c, so A — К  — T  is 
invertible in A c with identity adjoined.

T h eo r em  15. Assume A' £ A c.
(1) Oo a ( K)  ^ o-(A’oo) and дол (К) Q cr{Kc);
(2) d a ( K c) g  cr(A'oo);
(3) If <t( A'oo ) °r  a( A'c) is totally disconnected (abbreviation: t.d.), then

° a ( K)  = ct(A'oo) = <r( A'c);

(4) If d o ( K c) — o(Kc) and доЦ'Соо) = o ( K 00), then

стд(Л') =  а(А то) = <7 (A'c).

P roof. The algebra isometry A' —► A'c maps Ac onto a closed subalge
bra of B(C).  Therefore by standard Banach algebra theory

dorA(K) Í  <7(A'c).
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Essentially the same argument proves

даА(К)  С ct(A'oo).

This proves (1).
(2) follows from the obvious fact that every approximate eigenvalue of 

K c is an approximate eigenvalue of K ^ .
If <r(A'00) or ct(A 'c) is t.d., then by (1), daA( K)  is t.d. Therefore 

aA{K)  — d a A(K).  Then the conclusion of (3) follows from (1).
Now assume dcr(Kc) =  cr(A'c) and д а (К 00) = а ( К ж>). Since aA( K )  =  

= a(Ií'oc) U <j ( K c), it follows that daA{ K)  = aA(K).  Therefore by (1)

aA(K)  = сг(А'то) = ct(A'c).

Q u e s t i o n . I s i t  t r u e  f o r  a l l  A' e A c t h a t

cta ( K)  = a ( A c) =  ^(A'oo)?

It seems very unlikely that this question would have an affirmative answer. 
However, despite some effort, we have been unable to find a kernel К  E A c 
for which cr(A'c) ф a(A'oo).

A cknow ledgem ent. The author acknowledges with appreciation the 
support of a Fulbright Grant during the period in which this paper was 
written. Also, the author thanks the faculty and staff of the Mathematics 
Department of the University of Athens, Greece, for their hospitality at the 
time.

R eferences

[1] B. Barnes, G. Murphy, R. Smyth and T. West, Riesz and Fredholm Theory in Banach 
Algebras, Pitman (Boston-London-Melbourne, 1982).

[21 B. Barnes, Fredholm theory in a Banach algebra of operators, Proc. R. Ir. Acad., 
87A  (1987), 1-11.

[3] B. Barnes, The spectral and Frendholm theory of extensions of bounded linear
operators, Proc. Amer. Math. Soc., 105 (1989), 941-949.

[4] N. Dunford and J. Schwartz, Linear Operators, Vol. I, Intesscience (New York-
London, 1964).

Acta  M athem atica  Hungarica 64, 1994



INTEGRAL OPERATORS ACTING ON CONTINUOUS FUNCTIONS 331

[5] K. Jörgens, Linear Integral Operators, Pitman (Boston-London-Melbourne, 1982).
[6] D. Lay and A. Taylor, Introduction to Functional Analysis, Second Edition, John

Wiley &: Sons (New York-Toronto, 1980).
[7] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill (New York,

1966).

(Received September 26, 1991)

D E P A R T M E N T  OF MATHEMATICS 
UN IV ERSITY  OF OREGON 
EUGENE, OREGON 97403 
U.S.A.

A cta  Mathematica Hungarica 64, 1994





Л N ew  M athem atica l Series

BOLYAI SOCIETY 
MATHEMATICAL STUDIES
The János Bolyai Mathematical Society has launched a new mathematical 
series called " B O L Y A I  S O C I E T Y  M A T H E M A T I C A L  S T U D I E S ” aimed to be 
a sort of continuation of the terminating old series “ C o l l o q u i a  M a t h e -  

m a t i c a  S o c i e t a t i s  J á n o s  B o l y a i ”  published jointly with North-Holland. 
The scope of the volumes has been widened: they are not restricted any 
more only to conference proceedings, rather we aim to publish survey vol
umes or books; by all means, definitely more up-to-date and higher quality 
materials. Keeping this in mind, the first three books of the series are the 
following:
Volume 1: Com binatorics ,  Paul Erdos is Eighty,  1,

published in July 1993
• 26 invited research/survey articles, list of publications of Paul 

Erdős (1272 items), 4 tables of photos, 527 pages
V o lu m e  2: Com binatorics ,  Paul Erdos is Eighty,  2 ,  

to appear in Summer, 1994
• invited research/survey articles, biography of Paul Erdos

V olum e 3: Extremal Problems for  Finite Sets,
published in May 1994

• 22 invited research/survey articles
A l im ited  tim e discount is offered for purchase orders received by 
S ep tem ber  30, 1 994 .

Price table (US dollars) Vol 1 Vol 2 Vol 1+Vol 2 Vol 3

(A) List price 
(C) Limited time discount 

(purchase order must be 
received by September 30, 1994)

100 100 175 100 
59 59 99 59

For shipping and handling add $5 or $8/copies of book for surface/air mail. 

To receive an order form or detailed information please write to:

J. BOLYAI MATHEMATICAL SOCIETY,
1371 BUDAPEST, PF. 433, HUNGARY, H 1371
E-mail: H3341SZAOHUELLA.BITNET



O R D E R  F O R M
BOLYAI SOCIETY MATHEMATICAL STUDIES

T O :  J .  B O L Y A I  M A T H E M A T I C A L  S O C I E T Y

1 3 7 1  B U D A P E S T ,  P F .  4 3 3 ,  H U N G A R Y ,  H - 1 3 7 1  

E - m a i l :  H 3 3 4 1 S Z A 0 H U E L L A . B I T N E T

Vol 1 Vol 2 Vol 1+2 Vol 3

Ordered copies:
Price category (circle one) A C
Shipping/Handling   x 5 US $ (surface mail)

(per voloume)   x 8 US $ (airmail)

Total price US $ _____

P L E A S E  D O  N O T  S E N D  M O N E Y  W IT H  Y O U R  O R D E R !
You will get a detailed bill w ith the book(s). P lease  n o te  th at  
p erso n a l ch eck s  are not accep ta b le  w a y  o f p a y m en t.

Order placed by (print)-------------------------------------------------------------------
E -m a il-------------------------------------------------------------------

Date. Signed

Shipping address (print clearly)

N a m e:-----------------------------------------------------------------
A ddress:--------------------------------------------------------------
C ountry/ P osta l C ode:----------------------------------------

Billing address (if different from above)

N a m e:-----------------------------------------------------------------------
A ddress:--------------------------------------------------------------------
C ountry/ P osta l C ode:----------------------------------------------



Instructions for authors. Manuscripts should be typed on standard size paper 
(25 rows; 50 characters in each row). When listing references, please follow the following 
pattern:

[1] G. Szegő, Orthogonal polynomials, AMS Coll. Publ. Vol. XXXIII (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J 12 (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the 
references give the author’s affiliation.

Authors of accepted manuscripts will be asked to send in their T)jX files if available. 
Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back 

to authors (neither for the purpose of proof-reading nor when rejecting a paper).
Authors obtain 50 reprints free of charge. Additional copies may be ordered from the 

publisher.
Manuscripts and editorial correspondence should be addressed to 

Acta Mathematica, H-1364 Budapest, P.O.Box 127.

Only original papers will be considered and copyright will be vested in the publisher. 
A copy of the Publishing Agreement will be sent to the authors of papers accepted for 
publication. Manuscripts will be processed only after receiving the signed copy of the 
agreement.



ACTA MATHEMATICA HUNGARICA /  VOL. 64 No. 3

CONTENTS

Hatice Yalvaq, T., Relations between new topologies obtained from old ones 231 
Sárközy, A. and Szemerédi, E., On a problem in additive number theory . 237
Mukhopadhyay,' S. K. and Mukhopadhyay, S. N., Approximate mean con

tinuous integral........................................................................................  247
Leindler, L., On extensions of some theorems of Flett. I ............................ 269
Wysocki, H., A matrix operational calculus ..................................................  285
Corrádi, К. and Szabó, S., Hajós’ theorem for multiple factorizations . . . .  305
Hatice Yalvag, T., Decompositions of continuity .........................................  309
Barnes, B. A., Integral operators acting on continuous functions .............. 315

PRINTED IN HUNGARY
A kadém iai K iadó és N yom da V állalat, B u d a p es t



Acta
Mathematica
Hungarica
VOLUME 64, NUMBER 4, 1994

EDITOR-IN-CHIEF

K. TANDORI

DEPUTY EDITOR-IN-CHIEF

J. SZABADOS

EDITORIAL BOARD

L. BABAI, Á. CSÁSZÁR, I. CSISZÁR, Z. DARÓCZY, J. DEMETROVICS, 
P. ERDŐS, L. FEJES TÓTH, F. GÉCSEG, В. GYIRES, К. GYÖRY,
A. HAJNAL, G. HALÁSZ, I. KÁTAI, M. LACZKOVICH, L. LEINDLER,
L. LOVÁSZ, A. PRÉKOPA, P. RÉVÉSZ, D. SZÁSZ, E. SZEMERÉDI,
B, SZ.-NAGY, V. TOTIK, VERA T. SÓS



ACTA MATHEMATICA
HUNGARICA

Distributors:
For Albania, Bulgaria, China, C.I.S., Cuba, Czech Republic, Estonia, Georgia, 
Hungary, Korean People’s Republic, Latvia, Lithuania, Mongolia, Poland, Roma
nia, Slovak Republic, successor states of Yugoslavia, Vietnam

AKADÉMIAI KIADÓ 
P.0. Box 254, 1519 Budapest, Hungary

For all other countries

KLUWER ACADEMIC PUBLISHERS 
P.0. Box 17, 3300 AA Dordrecht, Holland

Publication programme: 1994: Volumes 63-65 (twelve issues)
Subscription price per volume: Dfl 249,- /  US $ 130.00 (inch postage)
Total for 1994: Dfl 747,- /  US $ 390.00

Acta Mathematica Hungarica is abstracted/indexed in Current Contents — Physi
cal, Chemical and Earth Sciences, Mathematical Reviews, Zentralblatt für Math
ematik.

Copyright (с) 1994 by Akadémiai Kiadó, Budapest.

Printed in Hungary



Acta Math. Hungar. 
64 (4) (1994), 333-340.

O N  E N T R O P Y  FU N C T IO N A L S OF STATES  
OF O PE R A T O R  ALG EBRAS

D. PETZ (Budapest)

For two finite probability distributions ( p \ , P 2 , . . .  , p n) and (<71,(72, . . . ,  
qn) the quantity

( 1 )  ^ P k i l o g p k  -  \ o g q k )
Jt=i

was introduced in 1951 by Kulback and Leibler. They called it information 
Tor discrimination [12, 13]. Some years later Rényi suggested the name 
information gain [23]. As a natural analogue of (1) Umegaki defined the 
relative entropy of two density matrices in 1962 [27] by the formula

(2) Tr p(logp -  logy?)

and this notion was extended by Araki [2] to states of C*-algebras as follows.
Let the von Neumann algebra M  act on a Hilbert space H  and let the 

normal state и  be given by a vector ft 6 H. Let be another normal state. 
Then there exists a positive selfadjoint operator Д (<p,u) such that

(i) I A(y3,w)1̂ 2aii|| 2 = <p(apa*) for every a G M  and for the support 
projection p of w,

(ii) the support of Д(<£>,са) is in the closure of ATÍÍ,
(iii) Л is a core for the restriction of Д(у>,а>)1̂ 2 3 to the closure of Л10.

For normal states Araki defined the relative entropy as

(3) S(uj,tp) =  - (  logA (9 ,w)í l , í í )

which turns out to be independent of the representation. For positive func
tionals of an arbitrary C*-algebra A  the relative entropy may be determined 
through the GNS-construction. Let (77,Ф,7г) stand for the GNS-triplet for 
the unital C*-algebra A  and the positive functional ф of A.  Let гф be an
other positive functional on A.  We write ф for the normal state of Tt(A)" 
such that

ф(п(а))  =  ф(а) {a E A)

0 2 3 6 -5 2 9 4 /9 4 /$  4.00 ©  1994 Akadém iai K iadó , Budapest
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if a normal functional with this property exists. Let

S(i/>, Ф)
if ф exists, 

-foo otherwise.

Properties of the relative entropy functional were established in many 
papers and the highlight of this development was Lieb’s convexity theo
rem [15]. The notion received much attention in quantum mechanics [16]. 
Concerning the details we refer to the survey papers [3] and [19].

The aim of the present paper is to characterize the relative entropy func
tional through its well-known properties and to prove some results related 
to a net of mappings approximating the identity. As a frame we consider 
nuclear C*-algebras [10, p. 858] and injective von Neumann algebras [24, 
p. 143]. Such algebras are well-aproximated by finite dimensional ones and 
we shall benefit from the characterization of the relative entropy functional 
on matrix algebras [22].

Our crucial postulate for the relative entropy includes the notion of 
conditional expectation. Let us recall that in the setting of operator algebras 
conditional expectation (or projection of norm one) is defined as a positive 
unital idempotent linear mapping onto a subalgebra [25, p. 131].

Now we list properties of the relative entropy functional needed in 
the characterization. Let us recall that a separating state gives rise to a 
separating cyclic vector in the GNS Hilbert space for the generated von 
Neumann algebra.

(i) Conditional expectation property: Assume that A is a subalgebra of 
В and there exists a projection of norm one E  of В onto A  which leaves 
invariant the separating state ip. Then for every state и  of В the equality 
S(w,ip) =  5(w|A,yj |A, )  + S(w,w о E , )  holds.

(ii) Monotonicity property: For every completely unital positive mapping 
a of a C*-algebra A  into В we have S(w,<p) ^ S(u  о a,<p о a).

(iii) Direct sum property: Assume that В = B\ ® B2 and (p\2(a Ф b) — 
= Xipi(a) +  (1 -  X)tp2(b) and ui\2(a ® 6) = Aoq(a) + (1 -  X)u>2(b) for every 
a £ Bi,  b e  B2 and some 0 < A < 1. Then S(u  12, 912) = A5(a>i, <p\ ) + (1 -
-  X)S(u2,<p2) ■

(iv) Nilpotence property: S(<p,<p) = 0.
(v) Lower semicontinuity: The function >-> S(u,<p) is weak* lower

semicontinuous on the state space of a nuclear C*-algebra В (when <p is 
assumed to be separating).

The properties (i)-(v) are well-known for the relative entropy functional. 
Among them the conditional expectation property is the most crucial (it 
was obtained in [21] in full generality, cf. [20]). The monotonicity has been 
proven by Uhlmann [26] and weak* lower semicontinuity is a consequence
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of Kosaki’s formula [11] stated here for further use:

(4) S(u,<p) =

= sup sup j w ( J ) l o g n - ^  u(y(t)*y(t))  + í _V ( * ( í M <) * ) y I

where the first sup is taken over all natural numbers n, the second one is over 
all step functions x : ( l/n ,o o )  —► A with finite range and y(t) = I -  x(t).

T heorem 1 [22]. If a real valued functional S'(p,u>) defined for sep
arating states p  and arbitrary states ui of finite dimensional C*-algebras 
posesses the properties (i)-(v ) then there exists a constant C  G R such that

S \ p ,  u)  = CTr  Dw{log D w -  log Dv ) .

The proof consists of several steps. It is shown that for larger and larger 
class of states

S'(p,u)  = C S(p,u>)

must hold.
A C*-algebra A  is said to be nuclear if, for every C*-algebra В, there is 

only one C*-norm on A  © B. Finite dimensional and abelian C*-algebras are 
nuclear. A C*-algebra A  is called AF-algebra if it contains an increasing 
sequence of finite dimensional subalgebras such that their union is norm 
dense in A.  It can be proved that the inductive limit of nuclear C*- 
algebras is nuclear itself. In particular, every AF-algebra is nuclear. Let 
(cuj : Ai —► A ) i be a net of unital completely positive mapping defined on 
finite dimensional algebras. We shall call (a ,){ a norm approximating net 
if for each i there exists a unital completely positive mapping /3,- : A  —> Ai  
such that

||q,' о  ßi(a) — a|| —► 0 (a 6 A).

(The net a, о /3,- approximates the identity of A  in the topology of pointwise 
norm convergence.) The class of nuclear C*-algebras is characterized by 
the existence of a norm approximating net. A C*-algebra admitting the 
existence of a norm approximating net is often called semidiscrete. The 
equivalence of nuclearity and semidiscretness was proved in [4]. The works
[8] and [14] review this subject. Most physically important C*-algebras are 
nuclear. For example, the algebra of the canonical commutation relation is 
a nonseparable nuclear C+-algebra.

THEOREM 2. Let A be a nuclear C*-algebra with states and u. If 
(a; : Ai —* A ) i is a norm approximating net then

S(u>, p)  =  lim S(u) о а г, p  о a;).
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Consequently, S(oJ,<p) is the lowest upper bound of the quantities 
S(u о a,  ip о a )  where a ranges all completely positive unital mappings from 
a finite dimentional algebra into A.

P r o o f . Since S(u>oa,<poa) ^ S(u>,<p) holds for any completely positive 
mapping a , we show that given a generating net (a, : Ai  — A ),• and numbers 
О ^ и < 5(u;,<y?), 0 < £, for large enough i

(5) S(u> о oti,ip о ai)  ^ и -  £

holds.
The main ingredient of the proof will be Kosaki’s formula (4). There 

exists an те G N  and a step function x : [1/те,оо) —► A  such that it has finite 
range, x (í)  =  I  for large t and

roo
log П -  / t~ XUJ 

J l / n  •
Ы 0*У (0) + t  2¥>( x(t )x (t )*) dt = u.

For large i we have

logn - f
J l / r

t xu(oti o ßi(y(t)*y(t))  +  t 2<p(q, о ßi(x(t)x(t)*) dt ^ и -  £

where ||а,- о ßfia) -  а|| —*■ 0 for every а G A  So writing xfit) and for 
ßi(x{(t))  and ßi(yi(t))  , respectively, we obtain from the Schwarz inequality

roo
l o g n -  /  Г 1 (w о n .) {yi(t)* yfit)) +  t~2(p  о ati)(xi(t)xi (<)*) dt ^ 

J l / n
U -  £

and Kosaki’s formula yields (5) for large enough i. □

T heorem  3. If a real valued functional S'(p,u>) defined for separating 
states ip and arbitrary states tv of nuclear C*-algebras posesses the properties 
(i)-(v) then there exists a constant C  G R  such that

(6) % w )  =  C % ,w ) .

P r o o f . Theorem 1 tells us that S' must be a constant multiple on 
finite dimensional algebras. The rest is in Theorem 2. For an arbitrary 
nuclear C*-algebra let ( а г : A t -* A ) i be a norm approximating net and let 
ßi : A  —> Ai  be the corresponding completely positive mappings from the 
definition of such a net. From the monotonicity

S'(oj, <p) ^ limsup S'(u> о ai,<po а г) ^ limsup S'(uj о а,- о ßi, p  о а; о ß f ) .
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According to the weak* lower semicontinuity we have

S'(u>, ip) 5s lim inf S'(u> о a; о /3,-, ip о о,- о /3,). i

Therefore
</?) = lim ^(ui о a ,̂ уз о a )̂ 

i
and (6) must holds. □

Let Ad be a von Neumann algebra and let (a; : Ai —* Ad) be a net of 
unital completely positive mappings with finite dimensional algebras (Л г)г. 
We shall call (a;)t- a weak* approximating net if for each i there exists a 
normal unital completely positive mapping / 3 : Ad —*■ Ai  such that

lim о ß ,-a) =  ф(а) 
i

for every a £ Ad and for every ф 6 Ad».
Assume that a von Neumann algebra Ad contains an ascending net (A/i)t- 

of finite dimensional subalgebras so that UtA/i is strongly dense in Ad. Let 
к,; be the embedding of A/j- into Ad. Then (к,)8 is a strong approximating 
net. Indeed, for the generalized conditional expectation Ei \ M  —+ M i  we 
have Ki о £ г —► id strongly, due to the martingale convergence theorem [9] 
and [18].

Injective von Neumann algebras admit the existence of a weak* approxi
mating net (for the identity, see [8]) and completely similarly to the previous 
proofs one obtains the following.

T heorem 4. Let Ad be an injective von Neumann algebra with nor
mal states ip and u>. Then S(u,ip) is the supremum of all the quantities 
S(u> о a,  ср о a) where a runs over all completely positive unital mappings 
from a finite dimensional algebra into Ad.

T heorem 5. If a real valued functional S'(p,u>) defined for separating 
states ip and arbitrary states и  of injective von Neumann algebras posesses 
the properties (i)-(v) then the functional S' is a constant multiple of Araki’s 
relative entropy.

While this characterization of the relative entropy on injective algebras 
is based on finite dimensional approximation, we note that another charac
terization was given in [6] which benefited from the fact that an injective von 
Neumann algebra is the range of a conditional expectation of some BfiH).

Let Ad С В (It) be an injective von Neumann algebra and let tp,w be 
normal states on Ad. Then S(u,ip) = entx(w,<^) where en t^  is defined in 
the following way:

(i) entß(ft)(<7,/>) =  S((T,p) when a and p are normal.
(ii) entB(W)(<7,p) =  sup { F(o,p) : F is w* lower semicontinuous, convex,
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and coincides with S(a,p) when a and p are normal}.
(iii) entJvi(c7, p)  = inf { en t^ c^ cr',//) : cr'\M = cr and p'\M = p ) .

The following definition for the entropy of states of arbitrary C*-algebras 
was proposed in [17]:

(7) S(p)  = sup { ] T , A p)  : S.A.yj, = ip) .

Here the supremum is over all decompositions of p  into finite (or equiva
lently countable) convex combinations of other states. This definition was 
generalized in [5]. Let a : В —* A  be a completely positive unital map and 
p  a state of A .  The quantity

(8) H v (a)  = sup { 52i\ iS(pi  о a , p  о a)  : A^,- =  p )  .

can be called the entropy of the mapping a.

Theorem 6. Let A be a nuclear C*-algebra with an approximating net 
(a,- : Ai —► A ) i . Then for every state p  of A

S(p)  = lim Hv (ai)
i

holds.

Proof. By the definition of the entropy we can find a finite convex 
decomposition Ak P k  of p  for an e  > 0 so that

S{p>) й kS (pk,p )  + E-

к= 1

For i big enough we have

S (pk ,p )  S S(pk  о oti,p о a,-) +  £  (A: = 1 ,2 ,. . .  ,n ) 

due to Theorem 2. Hence

71
S {p )  й Ak S (p k о ац,р о ai)  + 2s £  Я Д а .)  + 2s

k=l

for large i. Since # Д а г) ^  S(p),  the proof is complete. □
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LEBESG U E F U N C T IO N  T Y P E  SUM S  
OF H ER M ITE IN TER PO LA TIO N S

P. VÉRTESI (Budapest)*

1 .  I n t r o d u c t i o n .  P r e l i m i n a r y  r e s u l t s

Let X  =  {xkn = cost?*,,.} C [-1 ,1],

(1.1) 1 =  tcnn < x n_ i i n < . . . <C x i 7 i ^ l ,  n ~  1 , 2 , . . . ,

be an infinite triangular interpolatory matrix. For m ^ 1 we consider the 
unique Hermite interpolatory polynomials

( 1.2 )

m  — 1 n

In m  (f , X , x ) : =  E E  f t k n  h t k r i m i X  ч % )
t=0 k= 1

of degree ^ ran — 1 where T  — {ftkn}  ( ftkn real), and the polynomials 
htknm^X^X^ G T^mn—1 Satisfy

(!-3) h\Pknm(X ’ x qn) =  hpfikq, t ,p = 0 , . . . , m -  1, k, q =  1, . . .  , n

(S is the Kronecker delta). When /  £ C  or / ( m-1) £ C,

(1.4)

П

fc=l

m—1 n
1-tnm(f,X,x)  : =  E E  / ( 0 (* Ь г ) /* гЫ п г ( Х , * )

- t= 0  j t= l

are two important special cases of Inm. By (1.2) and (1.3) (using obvious 
short notations) #nm (/, ) — Sotf{xk) ( l ^ ^ ^ n ,  0 ^ < ^ m - l )  —

* Research su p p o rte d  by H ungarian  N ational Foundation  for Scientific R esearch  

G ra n t No. 1910.
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this is why H nm is called Hermite-Fejér interpolatory polynomials of higher 
order. (If m =  1, we get the Lagrange interpolation; H n 2 is the classical 
HF interpolation.) For A  = A^“'^ (Jacobi nodes) using fairly precise 
asymptotic formulae for the corresponding h^k,f3\  it turned out that for 
arbitrary odd m , H ^ f \ f , x )  is of “Lagrange type", i.e. for a proper / 1  G C

(1.5) lim \ \ H^ l ß\ f , x ) \ \  = 0 0

(Ĥ ll =  max |<7(a:)|). On the other hand, if m  is even, for proper a  and ß  
ar€[—1 ,1]

lim У H ^ f \ f , x )  -  /(ar)|| =  0 for all /  G C
n —►OO 11 11

i.e., H ^ f \ f , x )  is of “HF-type” for even values of m  (cf. R. Sakai, P. 
Vértesi [1, Theorem 3.3], [2, Part 5.3]).

Actually, (1.5) follows from the estimations

( 1.6 )
П

£ Г ОкптУх >
k= 1

> с т а х (log 72, П
m ( a + l / 2 ) n m(!3+1/2) j m = 1 ,3 ,.

which makes the conjecture

(1.7)
П

^   ̂ I ^OA:nm( A  1 ® ) I
fc=l

^ clogn  for any A c  [—1 , 1 ]

reasonable. (1.7) was proved by J. Szabados [3]. More exactly, using a nice 
idea of G. Halász, he proved the following very general theorem.

With
( 1.8 )

A<nm(A) :— IIájnrn(А, ж)У
П

^  ^ \h-tknm (A, x)| ,
k= 1

t =  0 , . . . ,  m — 1 ,

we have for an arbitrary system X

(1.9) Ainm(A) ^ <

’ log n 
C l— ( •

£ 2

ni 1

m — t odd, 

m  — t even,
t = 0 ,1 , . . .  , m — 1.

(If m  = 1, t =  0, we get the well-known Faber theorem; Лопз(А )  
^ clogn  was proved in J. Szabados, A. K. Varma [4].)
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2. T h e result

2 . 1 .  The aim of this paper is to prove some estimations for the Lebesgue 
function type sums \ tnm(X ,x ) ,  m — t odd. We have

T h e o r e m  2.1. For arbitrary fixed X,  m and t, 0 ^  t й  m — 1, m — t 
odd, there exists a constant c = c ( m , t ) > 0 such that if £ > 0 is any fixed 
positive number then there exist sets Hn — Hn( e , X ,m , t )  with \Hn\ is e such 
that with г/ =  T](e,m,t) > 0

log Tl
(2.1) ^tnm{X, x) TJ - if X  £ ( 00,00) \  Hn , n — 1 ,2 , . . .  .

nl

2.2. R e m a r k s  a n d  P r o b l e m s . 1. For Am_i,„m(a;) (m =  1 ,2 ,. . . )  
and Аопз(я) see J. Szabados, P. Vértesi [5; Theorem 3.5, p. 75] and its 
references, further P. Vértesi [6].

Í 2k -  1 I n
2. Using the Chebyshev matrix T =■ \ cos ——— 7Г f one can prove

k= 12 n
that the order of estimation (2.1) is optimal. However our present proof 
gives г] — c£2m. We think i] = cem can be obtained (cf. the case X  =  T).

3. Estimate (2.1) gives

1

/- l
Atnm(X,x)dx  ^ crj

log n
> 1.

4. Analogous results certainly hold when m — t is even, but we can not 
prove them at present.

5. It would be interesting to get estimates analogous to those in (1.9) 
and (2.1) considering trigonometric and complex cases (cf. [5, Ch. III. §3]).

6. Our theorem is important proving divergence of | Hnm( f , x )| almost 
everywhere (m is odd) and in the investigation of the mean convergence. 
We consider them in other papers.

3. P ro o f

3.1. First we recall that by the fundamental [3, Lemma 3] we have with 
an absolute constant a > 0

(3.1) \htk( x ) \ ^ a —----— ------^ l - , m — t odd, 0 ^ < ^ m - l
[Xk  -  Zfc± l)

(—oo < x <  oo) with one of the signs in Xk±i (cf. [3, Corollary]).
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Here í k(x)  =  t -kn(X,x)  are the fundamental polynomials of Lagrange
71

interpolation, i.e. with u>n(x) — cn П (x — x k), /  0
к— 1

ik{x) un{x)
u h(x k)(x -  ХкУ

1 ^ к й n.

3 . 2 .  In what follows we use many ideas of some previous works of P. 
Erdős and P. Vértesi (cf. [5; References [E4], [EV2], [V14], [V15]]). First 
we recall some notations.

Let J k = J  kn = [®Jk+l,n> З'/стг]» к = 0 ,1 , . . . ,  П, Xqi — 1, z n+l,7i = — 1, 
n = 1 ,2 ,___With 0 < qk = Qkn S  2 êt

(  Jk(<lk) =  [^-fc+l 4" 4 k \ J  k \ i  X k —

l J k  = J к ( Ч к )  =  J k \  Jk( <l k) -

Let zk =  zk(qk) be defined by

(3.2) (0 < )|u „ (z* )| -  min |u>n(a:)|, 0 ^ к ^ n,
x£Jk(qk)

further let

(3.3) \Ju Jk\ =  max ( | i i + i -  ж*|,|**+1 -  х{\ ) , 0 ^ i, к £  n,

(3.4) p ( J i , J k )  -  m in (|x i+i - x k\,\xk+i -  x ,|) , 0 ^ г, к ^ n.

A simple consequence of [5, Lemma 3.9 or [V14, Lemma 3.1] from the 
references therein] is

Lemma 3.1. Let \ J k n \ > S n := n-1/6 (k is fixed, 0 <  к <  n). Then for 
any {qkn} with (logn)-2 ^ qkn ^ 1/4, we can define the index и = u(k,n)  
and the set rknf J kn (Z rkn Cl Jkni so that jc/crij ^ У̂кп I Lkn I > moreover

|£un(a;)|  ̂3^ if x £ Jkn \  rkn and n ^ щ

(n\ > 0 is an absolute constant, large enough).

By Lemma 3.1, if qkn — &n — (logn)-2 , say, for a “long” interval (| Jk\ > 
Sn) we have if x G Jk \  rk, using (3.1) and Lemma 3.1,

. 1 (3^ )"
' „га — 1 om — i— > log2 n (n ^ n0(e)),
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say. Further lrA:| = 4sn ^  | J \̂ < £, n ^ no(e), whence (2.1) holds true 
for the long intervals excluding the set H \n (J J*. of measure ^ e.

\Jk\>Sr,
(Here and later we exclude certain sets where (2.1) may not hold. We have 
to prove that their total measure is “small” and the validity of (2.1) for the 
remaining part of ( —00, 00).)

3 . 3 .  We now consider the “short” intervals, i.e. when \Jk\  6 n 

(= n -1 '6), к = 0 ,1 , . . . ,  n. If Jfc, к  — 0,n, is short we exclude it (them). 
The measure of the excluded set is £  2n-1/ 6 < e (n ^ n0)-

3 . 4 .  From the remaining short intervals we omit those for which 
l^*:|/|7fc| < £> where Tk = [xk+2, %k-i}- The total measure of these excluded 
short intervals Jk is less than or equal to Y1 |«4| < £ \Tk\ ^ 6e. (By the

П— 1
definition of Tk, the relation \Tk\ < 6 is clear.)

k =  1
Remark that for the remaining short intervals we have

(3.5) \ J k \ ^ m a x  ( \ J k + i \ , \ J k - i \ )  , к  £ E n

where E n  denotes the corresponding set of indices. If к  £  E n ,  then (cf. [6, 
Lemma 3.2])

Lemma 3.2. Let m -  t be odd. If к  £  E n  and 1 ^ r ^ n — 1, then

(3.6) I htk(x)\ + |fi<ifc+1(x)| ^ c(m)em 1 1q™ OJn(Zr)
u n(zk)

whenever x £ J T( q r ) ,  p ( J r , J k ) ^  2<5„ and |Jr | ^ 6n. 

P r o o f . By [6, (3.7), (3.8)]

m I I ii+1
Ш
I Jr , Jk I

, П ^ 6,

(3.7)

and

(3.8)

-  < zr -  x
X  -  I .

^ 2 ,  s = k,k +  l ,  x £ Jr(qr)

| 4 ( * ) |  ^  з Н Д 2г ) | , s =  k , k +  1, x £ j T(qT). 

By (3.1), (3.8), (3.5), (3.7) and again by (3.7)

|M * ) |  +  I ht M i{x)\ Z a Í
.Xk -  Xk+1

m  — t  — l

[ \ x - X k \ m  1 \ l k ( z r ) \ m  +  \ x  -  X k + l \ m  1 | 4 + 1 ( 2 r ) | m |
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a |  3

m —t—1

P. VÉRTESI

Xk -  Xk+1
u(zr )

\x к Zr
\Xk -  Zk Г

X -  Xk

u(zk)

m — 1

"t“ I I l̂ /c-J-1 I

ЧЮ

IX k-\-1 zr

171 £m - t - l  Ц гг)

Xfc -  2r

x — ®fc+i

+

m — 1
>

—1 a>(zfc)

m 7̂71№ 1
1ЛГ"1"1

(® G Л (9г ))j

®fc+l

|*fc t̂ | I A:-(-1
H^fc) 1
-1 Zr I J

whence by |жя -  z r \ < \ J s , J r \ (5 = к, к +  1) and t ™ { z k )  + f™+1(zfc) ^ 21 m 
(cf. [5, Lemma 3.6, p. 76]) we get (3.6). □

3.5. The following argument is a combination of Erdős-Vértesi [5, 
[EV2]] and [5, [V15]].

Let qk =  q  = £ (1 ^ к ^ n — 1). The point £, the intervals J k  and J k ( q ) ,
log л

the index к will be called exceptional iff Лгпт(х) й rj— — for x E Jfc(<?)
nl

(k G f?n, n is fixed). We state

(3.9) H2n := \Jkn \ '■= 2Дп ^ 2e if n ^ n0 = n0(e),
keen

where en — {к: к G En and J^n is exceptional}. To prove (3.9), first we 
quote a slight modification of [5, Lemma 3.8, p. 78].

Lemma  3.2. Let Ik =  [ak,bk], 1 ^  к fí t, i ^ 2, be any t intervals in 

[-1 ,1 ] with IIk П ij| = 0 (к ф j) ,  \Ik\ ^ S (1 ^ к й t) and ]T \Tk\ ^ P,
k =  l

where Tk Q Ik, are arbitrary measurable sets. Let £ ^ 6 be fixed. If for a 
certain integer R ^ 2 we have the relation p ^ 2Я£, then with a proper s, 
1 ^ s ^ t, we have

(3.10) F = F, £ > R

k= 1
р(/.Л)1(

|Г*|
|Es,/fc| _ 8 P ~ Ti

lg will be called (an) accumulation interval of {/fc}fc=1.
(The proof is a word-for-word repetition of the original lemma.)
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To prove (3.9), it is enough to take those := A for which p„t ^
^ f/ 20, say. Omitting those exceptional intervals for which |/fc| ^ let 
k E f n iff A; € e„ and | Jk\ > Obviously

(3.11) 2/in ^ \Jk\ > hn, n ^ n0.
k&fn

Apply Lemma 3.2 with { /fc} = {J fc, A; E /„} := S„, Tk =  Ik, p  =  p„,

£ = 2<5n, 6 — 6n, R =  [logn1/7] + 1 if n E A, n ^ 71o(f) (shortly n E Ai).
Denote by Mi =  Mi„ an accumulation interval. Dropping Mi we apply 

Lemma 3.2 for the remaining intervals with p =  p n — |Mi| > with the 
same and R (n E A i). An accumulation interval now is М2. At the i-th 
step (2 ^ г ^ фп) we drop Mi, М2, . . .  , M;_i and apply Lemma 3.2 for the

i —1
remaining intervals of Sn with p =  pn — |M,-| using the above f,<5 and

3 =1
Д, where фп is the first index with

(3.12) E  |M ,| s  f but E w i > y .
1=1

n £ Ai.

Denoting by i = фп + 1, фп +  2 , . . . ,  (where <p„ = | / n|), the 
remaining (i.e. not accumulation) intervals of Sn, using (3.10) and (3.12) 
we have (by 20p„ ^ f)

(pn
(3.13)

k—r

\ м к \

\Mr,M k\
> P n  log П 

2 -7 -8
3 > P n  log n 
2 ~  113 ’

1 ^ г ^ фп, n E Ai.

Here and later the dash indicates that we omit к whenever p(Mr, M*,) < 2<5n.

3.6. Now let T] =  ci f t + 1  (where ci > 0 and T >  0 will be given later), 
and let Uin E Mtn(q) (1 ^ г £  <pn, n E A i) be exceptional points.

If for a fixed n £ A i there exists a v =  v(n), 1 ^ u ^ <pn, such that

(3.14) xtnm{uvn) Z c , e T ^ ^ ,
nl

by rV2̂ rL = ^tnm{uvn), we obtain (3.9) for this n. We prove the existence of 
u(n) for arbitrary n E N\.  Indeed, let us suppose that for a certain p  E N\

(3.15) Лtnm(urp) < CiF7 -"-7---1̂ 11 for each urn E M rn(q), 1 ^ r ^ <pn.nl
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By (3.15) and (3.9)

V p  2 I

(3.16) £  |M rp|AípTO(urp) < 2ci £T ^ n ° g n , V €  ATi.
r = l

On the other hand, by (3.6) for arbitrary n £ N i we have (with z k corre
sponding to (3.2))

П
\M r \^ 2 \h tk(ur) \^  (|b<fc(“r)| +  \ht,k+i(ur)\) ^

k= 1 fce/n

С(Ш) m-t-1
4>n

> milZ£m - t - lqm y ' 
k= 1

Ц*г)
w(zjt)

> c(TO).m -« -l g" X/fn
t

fc=l

Ц^г)
w(zfc)

m |M ,|t+I|Mr|

|м г||м *|

>

, 1 ^ r ^ </3n

(if fc G /„ , then \Jk\ > /i„/n). So by \y\ + ^  ^ 2, (3.12), (3.13), ^ e/20
and q =  £, we have

(3.17)
(p n

5  |Afr| Atn(ur) ^ 
r=l

£(m) m_ t_!
2 n(

Vn Vn

E E '
r = l  fc =  l

Ц Е ) m |Mp||Mfc|
u)(zk) \Mr , M k\

c(m)  m_i_t - i ± _ V n  NT' /
n* ^  ^  Vp—1 fc=r 4

Ц*г) +
<*>(**)

^ c(m)e’ 71

Ц**)

r E i " - i E

W(2r)
|MrllMfcl >

V-’n
|Affc|

r = l k=r \Mr,M k\
>

> c(m) £m 1 l qmn t+2 l o g  n > с ( т п ) £ 2гп+ 1 /г ^  l o g n

2 • 113 71- 2 • 113■ 12m • 20* • тг* ’

which contradicts (3.16) if Ci =  c(m)(4 ■ 113 • 12m ■ 20*) 1 and T  = 2m + 1. 
That means (3.9) holds true, i.e. (2.1) is valid if x G Jk{q), к G En \  en. 
The total measure of the set Hзп omitted in 2.3-2.6 on which (2.1) may not 
hold is less than or equal to

£ +  6< r + |# 2„ |+  5 Z  2q|Jfc| ^ 9e +  4q = 13e (тг ^ тг0). 
keEn\ e n
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3 . 7 .  If |ж| ^ 1 +  e, e.g. x ^ 1 -f s, say, then

( l  +  e)n- ' i x n~ ' =  J > * ( * ) |
k= 1 k=l

whence by (3.1) it is easy to get (2.1) for \x\ 2. 1 + e.
Summarizing, we obtained (2 .l) apart from a set of total measure 

|Я 1п| +  |Язи| +  2s < 16e, which essentially gives our theorem whenever 
n ^ По-

3 . 8 .  Finally, let n ^ n0(e). For qkn -  qn := ^  we get by (3.1),
П
^2 \(-k{x)I ^ 1 and n ^ no with a proper q

k= 1

^inm(®) = C
,  771 — 1

m — 1 Om-i-l > 77 max
1 ̂ г̂ 71

(< = 0 , . . . ,  m -  1). □
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O N  TH E ZEROS OF JA C O BI POLYNOM IALS*

Á. ELBERT (Budapest), A. LAFORGIA (L’Aquila) 
and LUCIA G. RODONÓ (Palermo)

1 .  I n t r o d u c t i o n

For a > —1, ß  > — 1 we denote by xn, = xni (a ,ß )  the tth zero, in 
decreasing order, of the Jacobi polynomial Pna^ \x ) :

1 Xn\ ^ Xn2 ^  • I .  ^  Xy i y i  1.

In the literature there are many inequalities for xm. We mention, for 
example, the well-known Buell inequalities [3, p. 125]

i + (a + ß  — l) /2  _______ i_______
n + (a + ß  +  l) /2  ^ m ^ n + (a +  ß  + l) /2  ’

i  =  1 , 2 , . . . ,  n

where t?nt- = arccos xm- and —1/2 ^ a ^ 1/2, - 1 /2  ^ ß  ^ 1/2 excluding 
the case a 2 = /32 =  1/4.

These inequalities are stringent for fixed a and /3 and large values of 
n. In this paper we present a procedure based on the Sturm comparison 
theorem, to obtain inequalities for xnt. The results obtained in this way 
are valid for a > — 1/2 and ß  > -  1/2. The method employed here has
been already used in the case of ultraspherical polynomials Р^Х\ х )  (see [1]). 
In that case, however, the situation was simpler because of the symmetry
relation Р^Х\ - х )  =  ( —1)пР^А̂ (х) and the point x = 0 played a key role in 
the application of Sturm comparison theorem.

+ W ork sponsored by CNR (C onsiglio  Nazionale delle Ricerche) in  Ita ly  un d er G ra n t 
No. 88.00261.01 and by H ungarian N a tio n a l Foundation  for Scientific R esearch G ran t No. 
6032/6319.

02 3 6 -5 2 9 4 /9 4 /$  4.00 ©  1994 Akadém iai Kiadó, B u d ap est



2 .  P r e l i m i n a r i e s

The function

(2.1) tt(x) =  (1 -  x )(a+1)/2( l + x)(ß+l)l2P[a'ß\ x )  

is a solution of the differential equation [3, p.67]

(2.2) u "  + q(x)u = 0 

where

, ч 1 1 - a 2 , 1 l - / ? 2 , n(n +  a +  /? + l)  +  ( a + l ) ( / ? + l ) / 2
’  1  =  4 +  4  ( T T x ?  +

and, as usual, a  > — 1, ß  > — 1.
Introducing the notations

1 А л 1о — 0  +  - ,  ß — /? + -

3 5 2  Á. ELBERT, A. LAFORGIA and LUCIA G RODONÓ

and

A =  (2n +  ä + /3)2, J9 =  4n2 +  4n(ö + ß) — (á — ß )2, С = 2(ä2 — ß 2) 

the function q(x) assumes the form

, л B - C x - A x 2 ^ + " i  +  ^ (ä + / ? ) / 4 + -
(2.3) q(x) = — ------ ---------------------- -- + - 1------ -  +  -------------------

4(1 — x2)2 ' 4(1 — x)2 ' 4(1 + x)2 ' \ -  x2

The quadratic polynomial В — Cx — Ax2 can be written as 

В — Cx  — Ax2 = A(a — x)(x — b)

where

(2.4) a,b =
ß 2 -  a 2 ±  y l6 n (n  +  a)(n  + ß)(n + ä  -+ ß)

a > b.
(2 n +  á  +  ß)

It is clear that —1 ^ 6 < a ^ l  and, from (2.4)

2a
(2.5) y / ( l  -  e ) ( l  -  b) =

2n +  á  A ß , \ / ( l  + a)( l + M —
2/?

2n +  ä  +  /3
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Let us introduce the function <p(x) by

2n +  á  +  /3 Г  ^ (a  -  s)(s -  b)
= ------ 2-------I  --------~

<p(x) is clearly decreasing with respect to x. 
Making use of the substitution

t2 a — x 
x — b ’ 0 < t < oo

in (2.6) we find

<p(x) = (2 n +  á + ß)  arctan t - á  arctan — ß  arctan

This formula can be checked directly by differentiation with respect to x , 
taking into account formula (2.5).

Moreover we have

<p(a) =  0, tp(b) = П7Г.

Now w e can  p ro v e  th e  following re su l t .

Lemma. Let p(x) be defined by

(2 .7)  p(x) =  (1 -  x2)1/2[(a -  x)(x -  6)] -1/4.

Then the functions

(2.8) ui(a;) =  p(x)siny>(a:), V2(x) = p(x) cos <p(x) 

are linearly independent solutions of the differential equation

(2 .9 )  v" T   ̂ v — 0, b < x < a.

P r o o f . T h e  re su l t  follows im m e d ia te ly  by d i re c t  s u b s t i tu t io n  o f  v" a n d  
v'f in  (2.9).
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By (2.8) and (2.7) we get

lim m(x) =  lim W x) =  0.
X — *CL — 0 x - * b - \ - 0

Therefore the function ui(x) has zeros at where 

( 2 . 1 0 )  i f i t i )  =  Í7T, i  =  0 , 1 , 2 , . . . ,  n

with the special values
£o =  £n = b.

3 .  T h e  m a i n  r e s u l t

Now we are in the position to prove the main result.
T heorem 3.1. For i — 1 ,2 , . . .  ,n  let xn; =  xm(a,/?) be the i th zero, in

decreasing order, of the Jacobi polynomial Рп°'^\х). Then for a  > — 1/2, 
ß  > -  1/2 the following inequalities

^ %ni ^ £г — 1 ?  ̂ — 1,2, . . . , П

hold, where £o, £i, • • •, £n are defined by (2.10). In particular £0 = a and 
£n = b are given by (2.4).

P r o o f . We shall apply the Sturm comparison theorem [3, p.19] to the 
differential equations (2.2) and (2.9). Actually we show that differential 
equation (2.2) is a Sturmian majorant of (2.9).

By (2.3) and (2.6) we have to show the inequality

(3.1)
!  +  « J +  ß  (ä +  0 ) / 4 + £  и

—--------~2 -̂---i--------\2 -̂-------i------ о -̂----> 94(1 -  x )2 4 ( 1 +  x )2 1 -  x2 p
for b < x < a,

where á  > 0, ß  > 0 and p is defined by (2.7). 
By (2.7) we have

and

p' _  1 1  1 1  x
p 4 a  — x 4 x — 6 1 — x2
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Using these relations in (3.1) we have to prove the inequality 

2 [ (<5 — ß)x + á  +  ß] (x -  a)2(x -  b)2 + P (x ) > 0

where

P ( x ) =  (x2 — 2)(x — a)2(x — 6)2 — 2x(l — x2)(2x -  a — b)(a — x)(x — b)+

+  ( l - x 2)2 3x2 — 3(a + b)x + 5 a2 + 2 ab +  562 
~ 4

Since
(ä -  /3)х +  ä + /I > О, — 1 ^ x ^ 1

we need only to show that P (x ) ^ 0 for b < x < a. 
With the notations

a +  b
= F, ab = G,

the polynomial P (x) can be written in the form

P (x) =  P(x; F,G)  = (x2 -  2)(x2 -  2Fx +  G)2 + 4x(l -  x 2)(x -  F) 

•(x2 -  2Fx + G) + (x2 -  l)(3x2 -  6Fx + 5F2 -  2G).

Since
P (x;F ,G ) = P ( - x ; - F ,G ) ,

it is sufficient to prove the inequality P(x) ^ 0 only for F  ^ 0. We observe 
that

2 F -  1 ^ G <: 2 x F - x 2, b ^ x ^ a .

Indeed, the first inequality is equivalent to (1 — a)(l -  b) ^ 0 which is clearly 
true. The second one is equivalent to (a — x)(x  — b) ^ 0 which is also true 
for b ^ x ^ a.

Now P(x; F, <7) is a quadratic polynomial in G and the coefficient of G 2 
is x2 — 2 which is negative in our cases. Therefore, in order to prove that 
P(x) ^ 0, we have only to check the inequalities at the endpoints G = 2F  — 
— 1, G =  2xF  — x 2, i.e.

P(x; F, 2F — 1 ) ^ 0 ,  P ( x ; P ,2 x P - x 2) ^ 0.

In the first case we get

P(x; P, 2F  — 1) = (x — l ) 3P [(x  + 3 )P  + 2(x + l)(x  — 2)] .
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Clearly (a; — l ) 3 < 0 and F  ^ 0, thus we have only to show that the 
expression in the brackets is negative. Since

a + b 1 +  x
T  = ------  S  -------

2 “ 2
1 -j- x

we need to prove that (x +  3)  ̂ - - +  2(x + l)(x — 2) < 0. But this is
5

true because it is equivalent to -(1  + x )(x  -  1) < 0 which clearly holds.
This proves that P(x; F, 2F  — 1 )^ 0 . The inequality P(x\F,2xF  -  x 2) ^ 0 
follows immediately observing that it is equivalent to

5(x -  1)2(P  -  x )2 ^ 0.

Thus we can conclude that P(x) > 0 on b < x < a or, equivalently, that 
the equation (2.2) is a Sturmian majorant of (2.9). Therefore we are in 
the position to apply the Sturm comparison theorem to equations (2.2) and
(2.9) obtaining that between two consecutive zeros i of tq(x) occurs
at least one zero of p !“ ’̂ ( x). But we know that on the interval ( — 1,1) 
there are exactly n zeros of P„a,'^(x), hence we can conclude that in each
interval (£ i,& -i)  it occurs exactly the zero xni( a , ß ) of P^'>3\ x )  and the 
conclusion of Theorem 3.1 follows. □

A consequence of the above theorem is the following result.
Corollary 3.1. Under the conditions of Theorem 3.1 we get

P(^n,t4-r) P(*Eni) ^ , i — 1 , 2 , . . . ,  n 1.

P r o o f . The functions u(x) defined by (2.1) and the function

v(x) =  p(x)sin[<^(x) — </?(xm)] =  cos <p(xni)vi(x) -  sin¥>(xm)u2(x)

with iq(x) and V2(x) defined by (2.8) have a common zero at x =  x ni. The 
largest zero x of v(x) on the left of xn{ satisfies the relation

v(x)  -  <p(xnl) = 7Г.

The existence of x is ensured by the facts that the function <p(x) is decreasing 
and that by Theorem 3.1 we have

ip(b) -  (p(xni) > <p(b) -  V ?(£ n - l )  =  7Г.

Again by the Sturm comparison theorem we conclude that the zero of v(x) 
next to x, occurs before x n<i+1, the next zero of u(x),  i.e.

X <  X n j^_i.
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Using again the decreasing character of <p(x) we obtain

ж = tp(x) -  <p{xni) > <p(xn>i+1) -  <p(xni) 

which proves Corollary 3.1.
The proof of the following result is based also on the Sturm comparison 

theorem.
Corollary 3.2. Suppose that all the conditions of Theorem 3.1 are 

satisfied and let x" < x' be two values on [b,a] such that

<p(x") — <p(x') ^ 7Г.

Then the Jacobi polynomial Pl?'^\x) has a zero on (x",x').
P roof. The function

v(x) =  p(x) sin [<у?(ж) -  т(х1)\

has a zero at x =  x'. The largest zero x of v(x) on the left of x' satisfies the 
relation

<fi(x)  — i p ( x ' )  =  7Г.

The existence of x is ensured by the fact that

tp(b) -  <p(x') ^ 7Г.

The Sturm comparison theorem gives that between x  and x'  a zero of
D(a,/3)/ \Pn [x) occurs, i.e.

X <  X n i <  x '

for some value of i. Since

<p(x") — <p(x') ^ 7Г,

using the decreasing character of ip(x) we get x" ^ x and this proves the 
desired result.

Corollary 3.3. Let 7 and 6 be nonnegative real numbers such that 
7 + 6 > 0. Let a n, fin be defined by a n  =  — 1/2 + /17, fin =  — 1/2 +  n6.
Then for the zeros x̂ *fi"̂ n\  of the Jacobi polynomial P*fif""̂ n\ x )  we
have

a > x (“f"K)  > > x {Óin fin) > b

and
lim xП-ЮО

(Ö
nl

П,/9„) = a, lim = b
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where

(3.2)
62 -  72 ± ^ /16(1 + 7)(1 + £)(1 + 7 + 6)

a.b  — ---------------------------------- ö------------------- ,
(2 +  7  +  <5) 2

P r o o f . Let £ >  0, e <  a — b. In order to prove the first limit relation
we need only to show that there exists a zero of PÍa,f3\ x )  on the interval 
(a — £,a). We observe that now a and b are independent of n and that the 
function <p(x) in (2 .6) can be written in the form <p(x) =  пф(х)  where <p(x) 
is independent of n. Thus we find

lim [<p(a — e) — <p(a)] = lim n(p(a -  e) =  oo.
n —►oo L J n —♦oo

Therefore by Corollary 3.2 we can conclude that there is at least one zero 
of P„ ’̂ (ж) on the interval [a — £,a] if n is sufficiently large.

The proof of the second limit relation is similar. We get

lim [ tp(b) -  <p(b — £)] = lim n Í 7Г -  <p(b -  £)] — oo.

The proof is now complete.
We observe that Corollary 3.3 shows that our result in Theorem 3.1 

cannot be improved and that in some sense it is optimal. By Theorem 
3.1 we have that the possible values of <p(xni) (i = l , 2 , . . . , n )  belong to 
the interval (0 ,n 7r). Supported by numerical calculations we guess that the

interval (0 ,n 7r) could be replaced by t

Finally we observe that by the continuous dependence of a,b on 7 ,S in
(3.2) we can generalize Corollary 3.3 to the cases

OL-r, ßnlim —
TL—►OO f l

7  =  l i m  — 6
n —► 00 и

which is equivalent to the results proved by Moak, Saif and Varga [2].
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C. R. SELVARAJ (Sharon)

1. In troduction . For a given positive integer n , we shall consider
the nodes {xk}^Zoi & =  0 , l , - - - , n — 1 and the space Tm of even
trigonometric polynomials spanned by {cos jx }™ ^ .  Since the polynomials 
in Tm are even, it seems reasonable to raise the problem of regularity of 
interpolation from Tm on the n nodes Xk.

The regularity of (0,M) interpolation is established in Section 2. In 
the remark at the end of Section 2 we indicate why the regularity is not 
true when M  is odd. The fundamental polynomials are given explicitly in 
Section 3. In Section 4 we discuss the convergence of certain sequences 
of interpolating polynomials to / .  This requires a lemma by Sharma and 
Varma [2, p. 350] in which the authors use the inequalities due to 0 .  Kis [1,
p. 268].

2. T he regularity  theorem . The result on regularity can be stated 
as follows:

THEOREM 2.1. Given a positive even integer M and the equidistant 
nodes {xk}kZo'n — 1 г?г [0,7т], there exists a unique trigonometric polyno
mial T(x)  £ Ту where

Tjg =  span { 1, cos x, cos 2x, ■ ■ • , cos(N  -  l)a:} 

depending on n such that

(2.1) T(xk) =  a k-, T W \ x k) = ßk (fc = 0 , 1 , . . . ,  n — 1)

for any given 2n(— N ) complex numbers {«*:} and {ßk}-

P roof. It suffices to consider the homogeneous (0,M)  interpolation 
problem and show that if the trigonometric polynomial T(x)  from T/v sat
isfies

(2.2) T(xk) =  0; Г<м >(х*) = 0 (к =  0 , 1 , . . . ,  n -  1),

then T ( x ) =  0.
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Since the total number of interpolation conditions in (2.1) is N  — 2n, 
the required unique trigonometric interpolant T(x) £ 1 /v must be of the 
form

2n—1
T 2 n { x )  =  ^  d j C O s j x .

2=0
Equivalently we may write

П —  1 71—1
(2.3) T2n(x) = űo + ^ 2  a,j cos j x  + }  an+j cos(n + ;')x.

j= i j=o

Applying the conditions (2.2) to T2„(x) given by (2.3) we get (for к = 
=  0,1 , . . . , n  -  1),

(2.4)
71—1 71 — 1

oo + ( — l ) fca„ + ^  d j cos j x k + E  dn+j cos(n + j)xjt = 0, 
2=1 2=1

nM( —l ) fcan +  ^ j MdjCos jxk + (те +  j ) Man+j cos(n + j ) x k = 0. 
2=1  2=1

It is easy to verify that the system (2.4) is equivalent to

(2.5)
71—1

d0 + ( —l ) fcan +  (dj cos j x k + an+J- cos(n -  j ) x k) -  0,
2 =  1

71 — 1
nM( - l ) kan + ( j Md3 cos j x k + (n +  j ) Man+j cos(n -  ; ) x fc)

2 =  1

= 0.

n—1
In (2.5), we write УУ = si +  s2 and replace j  by n — j  in s2. Thus we have

l
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( 2 .6 )

o-o + ( - l ) fcan + +  o2n- j )  cos jx k =  0,
j=i

71— 1

nM( - l ) fcan + + (2n -  j ) Ma2n- j )  cos j x k =  0
j=i

(A: = 0 ,1 , . . . ,  n -  1).

Now, we will show that a3 =  0 for j  =  0,1,  • • •, 2ra — 1. In order to establish 
this, we will first prove that ao = an — 0 by taking the cases when n is odd 
and n is even in (2.6).

Suppose that n is odd. Then by considering only those equations with 
even nodes (i.e., к = 2/r, /х = 0,1,2,  • • •, Ii= i) we get

(2.7)

71 — 1

oq + an + ] P (aj + a2n_j)  cos j x 2ß = 0,
j=i

71 — 1

гм On + ^2 ( j M(4  + (2n -  i ) M 0 2 n - j }  c o s jx 2ß = 0.
1

( 2 .8 )

Since co s jx 2ß = cos(n — j ) x 2ß, we can combine the j-th  term and the 
(n — i)-th  term ( j  =  1,2,  • • • , iL̂ -) in each of the summations above to get

n — 1
2

ao + a„ +  + a”-J + + o2n—j ) cos j x 2ß = 0,
j = 1

n  — 1

n M a n +  +  (n  — j ) M a n- j  +  ( n  +  j ) M a n+j-\-

i= 1

+ (2n  -  j ) Ma2n- 2 j  cos j x 2ß = 0.

The equations (2.8) imply that two cosine polynomials of the form

n — 1 
2

p(x) = £  Aj cosjx
J = 0
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each of degree vanish at distinct points in [0, л-]. Therefore p(x) =  
=  0, whence Áj =  0 for all j  — 0,1,  • • •, In particular Ao = 0 which implies 
that an = 0 and ao =  0.

Now suppose that n is even in (2.6). Then by considering only those 
equations with odd nodes (i.e., for к = 2/í — 1, /г = 1,2, • • •, we get

(2.9)

' n - 1

do Un -b ^ (̂ay -b a2n—j ) cos x2ß~ i — 0,
1=1
n—1

-  nMa„ + '^T{jMaj + (2n -  j ) Ma2n- j )  cos j x 2ß- i  = 0. 
. 1=1

Rewriting (2.9) in a way similar to the case for к even and noting that 
cos =  0 for p — 1,2, • • •, j  we obtain that

( 2 . 10)

a 0  a n ~b ^   ̂( f l j  &n—j  a n + j  ~b ^ 2n ~j )  cos j  x 2^—\  — 0 ,  

l= i
a - i2 /M - ^ 4 /  -ЛГ /  *\Af /  * I-  П1 an + 2 ^ y ]  C L j - { n - j )  a „ _ j - ( a  +  j )  an+j +  
1=1

+(2те -  j ) Ma2n- j j  cos = 0.

The equation (2.10) consists of two cosine polynomials each of degree  ̂ — 
— 1 vanishing at |  distinct points. Hence all coefficients in (2.10) vanish 
implying that an = 0 and ao =  0. Hence we have shown that an = ao =  0 
in (2.6) for all n.

Therefore the system (2.6) becomes

( 2 . 11)

' 71 — 1

^ ( a j  +  a2n- j ) cos j x k =  0, 
j = 1

<
n  — 1

+ ( 2 n -  j ) Ma2n. j ) c o s j x k =  0,
. 1=1

where к =  0,1 , • • • , «  — 1. The system of equations in (2.11) shows that 
the cosine polynomials of degree n — 1 have n zeros in [0,7г]. Therefore,
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the polynomials are identically zero. Hence, their coefficients must be zero. 
Thus we have

{ü j  +  Ü2 n —j  — О?
M м (j = l , 2 , . . . , n  —1).

j Maj +  (2n -  j ) Ma2n- j  = 0

Since (2n -  j ) M — j M > 0 for j  = 1,2, • • •, n — 1 we conclude that 

aj = 0 for j  — 1,2, • • •, 2n -  1.
Hence Т2п(т) = 0.

We would like to remark that the (0 , M )  interpolation is not regular 
if M  is odd. For, if M  is odd, then the conditions given in (2.2) yield a 
homogeneous system of ‘In — 1 equations in 2n unknowns. This fact can be 
easily verified by a simple case of M  = 3.

3. Fundam ental polynom ials. Given any function / ,  the trigono
metric polynomial which coincides with /  and at the points {xj}".T0 
is given by

П  —  1 7 1 —  1

/„ ( / ,  x) =  £  /(*„)/!„(*) + Y ,  / (М,Ы Д Л * )-
j/=0 t/=0

The fundamental polynomials Au(x) and B l/(x ) satisfy the following condi
tions:

(3.1) A„(xk) = 6vk, A[M\ x k) = 0,

(3.2) Bv(xk) = 0, B[M\ x k) = 6vk

where xk =  -ĵ -, for к = 0,1, 1 and Au(x) and Bl/(x) are each of
order 2n — 1.

Consider the cosine polynomial

(3.3) F(x)
2 n

2n - l  .чА/
, , 9 V-  (2n ~ j )  cosjz

+  _  a W  _  -M

The M-th derivative of this polynomial vanishes at each of the points x k, 
because

F (M\ x k) =
, , Г 2 n —1
( " I ) 2

n E (2 n - j ) Mj M

. j=i ( 2 n i ) M cosjxk
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M
( - 1 ) 2

TL — 1
v  ^ (2n -  y)
>  ----------------- T i------------ C O S 7 £ f c +

n L ^ i a n - i r - i

^  (2 ,n ..
+ > —-------  ■ X? cos(2n -  j ) x k

and cos jx*, =  cos(2n —j)xfc. Now to get the values of F(xfc) for к =  0 ,1, . .  
first we notice that F(x)  is 27r-periodic. Then we consider

2n—1
( 2 n  -  j ) M  C O S  j X к

f r í  ( 2 n  - j ) M -  j M  

зфъ

1 + 2 5 ] 2 n

П—1
1 +  2 ^  cos j xk  

i=1

Therefore,

Я 0 )  =
2n -  1

2n ’
F (tt) = ( - 1)

n + 1

2n
and

( _ l ) fc+1
F{xk)  =  — ------- for fc = 1 , 2 , . . . ,  n -  l , n  +  1, . . .  ,2n -  1,

2 n
П—1

j'=i

using the fact that cos jx^ — ---------------- .

Now we define the fundamental polynomial A„(x) as

(3.4)

Au{x)
' F{x -  x„)  + F(x + x„) + 2( —l) 1/+n+1 F(x -  7t), v ф 0, 

. F{x)  +  ( - l ) n+1T(x -  7Г), v = 0.

Then А„(х)  is a trigonometric cosine polynomial of degree ^ 2n — 1. Next 
we will prove that this A„(x) satisfies the conditions given in (3.1). It is clear
that AÍM\ x k )  = 0. Also, Ao(0) =  1 and for к ф 0, A0(xfc) = 0. Moreover, 
when и ф О,

А„(х„) =  F (0) + F + 2 ( - i r +n+1F -  тг) =

= 2 n ^  (~ 1 )2,/+1 r + , +i ( - i r n+1 =
2п 2п у ’ п
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and for k ф v

A^ ) =  F ( ^ ) + f ( ^ ) + 2 ( _ i r »+, f ( ^ x)  =

/ 1  Xi'+fc +  l  /  1\i/+fc +  l
— -  I------- - I-------------=  0.

In In n

Now let us consider the cosine polynomials G{x) and H(x)  given by

cos j x( i l f - 1 2n- 1

i=i 
:Фп

n

and

(2n - j ) M - j M

H(x)  = ( -  1)T
2 n —1

1 — COS П Х  1 ^  C O S  J X

2 nM+1 + n ^  (2 n - j ) M - j M
]фп

which are also 27t-periodic. We can easily verify that G ( x k) = 0 for к =  
=  0 ,1 , . . . ,  and to get the values of the M -th derivative of this polynomial 
at the points xк, к = 0 ,1 , . . . ,  we consider that

/  _ i

G^M\ x k) =  ------
n E

i =1
jf-n

j M c o s j x k 1
(2n -  j ) M - j M ~ n

П— 1
У " , COS j x k. 
3 =  1

Therefore,

G ^ ( 0 )  = - -----  and Ĝ M\ x k) =  ̂ 1)*+1-----
n 2 n

n_1 ( - i ) ^ 1 _  1
for к =  1 ,2 , . . . ,2 n — 1, using the fact that cosjxk =  ----------------

j=i ^
Also, it is easy to see that H { 0) = 0 and

H(xk) =.
2nM+1 l - ( - l ) *  , for к = 1 ,2 , . . . ,  n — 1.
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Next, we consider that

Я<">(**) = ( - 1 ) * “1
/ \ _1( —1 ) 2 COS n X k

2 n

, ,  ч M  2 n —1 -Af( -1 )  2 _ 3 COSJXk
71 Z_—✓ (f=í  (2n -  j ) M -

M-1 ( - l ) f +fc+1 ( - l ) f -1”“1
2n + гг

^  cos j x к 
j=1

Therefore,

Я<м )(0) =  1 -  — , and H^M\ x k) =  - 2 -  for fc =  1 , 2 , . . . , 2 n  -  1 .  2 2 ть

Set

(3.5)

Я 0 ( х )

' G(x)  -  G(x — гг), n even 

Н ( Х ) - Н ( Х  -  7Г) —

, . ч M. 71—1

-  n  odd 
t=0

n

and for г/ ф 0 set

G(x -  x„) +  G(* + x„) + ( - 1  Y +n+12G(x -  гг), 

if г/ and n have same parity,

H(x  + .Tjy) +  Я (х  -  x„) -  2Я (х  -  7т)+

,4 f+ n  n-1
Я1/(х) -  *

i=0

if // and n have opposite parity.

Clearly B u(x)  is a trigonometric cosine polynomial of degree ^ 2n — 1. Also, 
it satisfies the conditions given in (3.2) which can be verified by similar 
arguments used in the case of the polynomial A„(x).
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4. C onvergence. The convergence problem requires the estimates
n—1 n — 1

on the sums ^^|A„(a;)| and where Al/( x ) and B„(x) are the
i/=0 u=0

fundamental polynomials given in (3.4) and (3.5) respectively. First we will 
obtain the bounds on F(x) ,  H(x)  and G(x).

From (3.3) we have

F<*>= 2n

2n—1
COS J X

l=l 1 -  ( a £ j )]фп \  J '

M
3
зФ

Now using the identity given in [2, p. 349]

1 1 1
+ h(a)1 — aM M  1 — a 

where h(a) =  ж  {М~\}+а+а̂ +.^м:х гМ ‘ we obtain

1
(4.1) F(x) =

2 n
1 2 n — j  I j  \

H 77 )  -------- cos j x  + 2 у h i  —------ : J cos j xM ф—* n -  7 J 2E V 2  n - j  J

2n-l

3=1 
Зфп 3 =  1 

Зфп
2 n -  j

Here h{a) = h( ) is a decreasing function and hence h(a) < 1. This 
implies that

(4.2)
2n—1 ✓ • \

e *  f e )
J = 1  4  J '
зфп

COS J X =  O(n).

Also, consider the absolute value sum

. 2n—1 0 1 y " 2тг — j  
—  )  ------------Г COSJ X
M  1' n — j3=1 J

Зфп

2n—1
< —  V  I cos j x  I 4- —  -  M  ^  J 1 A/f

3 =1

71
M

2n—1

E
3=1
Зфп

C O S  J X

n -  J

<

< 2(тг -  1) n 
M + M

n —1 . 2 n —1
C O S J X  C O S J X

^  T l - j  П — 7
.7 =  1 J j= n + l  ^
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Replacing j  by 2n — j  in the second summation on the right side of the 
above inequality we obtain,

2n—l 0
1 \  л  ZTi — J

—  >  ------------Г  COS J X
M  n — j

< 2(n -  1)
M

П—1 cos jx  — cos(2 n — j )x

2 (n — 1) 2n
M +  M

n—1

E
i=i

M
3—1

n

sin ПХ sin(n — Ji)x
n -  j

<

by the identity cos C  — cos D =  2 sin c 1jD sin D2° ■ Thus we have

(4.3)
2 n —11 v—> 2 П — j

----- >  -------------- COS ) X
M ' n — jj=1 Jзфп

2 n

71—1

E
j=i

sin(n -  j)X
n -  J

, 0 ^ a: ^ 7Г.

-  M ^1 + 3V^ ) =  °(")-

Using (4.2) and(4.3) in (4.1) yields

(4.4) И * ) |  = 0 ( 1 ) .

A similar method of obtaining the bound for F(x)  can be found in [3, p. 247].
We observe that the cosine polynomials H(x)  and G(x)  defined in Sec

tion 3 to form the fundamental polynomial B u(x) is similar to the cosine 
polynomial given in the equation (6) by Sharma and Varma in [2, p. 342]. 
Following the method used in the proof of Lemma 3 in [2, p. 350] for the 
case M even, we get

(4.5) \ H ( x ) \ = 0 ^ ^ j  and 1G(x)| = О ■

Substituting the values of | F ( x ) \ , | H( x) \ , and | G(x)| in the expression for 
the fundamental polynomials Ay(x) and B ^ x)  respectively we obtain the 
following estimates:

71—1
(4.6) I M x )\ =  O(n),

i/=о

and
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(4-U E l s - И  = ° ( ^ я г г ) -
i/ = 0  v  '

Now we state the convergence theorem.
TH EO REM  4.1. If f ( x )  is an even 2тг-periodic function and continuous 

on [0,7Г] satisfying the Zygmund condition

f (x  +  h) — 2f (x)  +  f (x  -  h) = o(h)

and if we set
П— 1 71—1

R n ( x )  :=  ^ f i x ^ A ^ x )  + ^ ß ^ B f i x )
u=0 v=0

where ß u =  o(nM x), v — 0 , — 1, then Rn(x) converges uniformly 
to f (x)  on every finite interval on the x axis.

P roof. We know that [2, p. 356] if f (x)  is continuous and 27r-periodic 
and satisfies the Zygmund condition then there exists a trigonometric poly
nomial Tn(x ) of order n — 1 such that

(4.8) f ( x )  -  Tn(x) =  o ( - )  and T[M\ x )  = o(nM J).
n

Since f (x)  is even, Tn(x) must be a cosine polynomial. Then

f ( x )  -  Rn(x) =  f (x)  -  Tn(x)  + Tn(x) -  R n(x) =

n  — 1 71— 1

= f ( x )  -  Tn(x) +  'Y^Tn(xv)A l/(x) + ' ^ T j lM'>(xl/)Bl/(x)-
i/—0 u=0

n —1 n —1

- X я х » ) А Л х ) - X ß v B ^ x )
v=0 u=0

so that by (4.6), (4.7) and (4.8) we get

71—1

I f (x)  -  Rn(x)\ ^ I f (x)  -  Tn(x )I +  X  I Tn(xu) -  f ( x „)11 Afix)\  +
i/—0

+ X  lr -iM)(^ ) l | B„(x)\ + ( max,, \ßv\) X  I B„(x)\ =
i/=0 u=0
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= о ф  +  о I А и{х)\ + о(пм  х) ^  I ВЛ Х)\ =  о(1).
'  '  /у— 0  и —о

which proves the theorem.
The author wishes to thank Professors A. Sharma and A. S. Cavaretta 

for their useful comments and helpful suggestions. The author is also in
debted to the referee whose suggestions significantly improved the formula
tion of the fundamental polynomials.
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E X T R E M A L  PRO PERTIES OF DERIVATIVE  
OF A L G E BR A IC  PO LYNO M IALS

J. BURKETT and A. K. VARMA (Gainesville)

I n t r o d u c t i o n

The following problem was raised by P. Túrán at a conference held 
in Varna, Bulgaria (1970). Let <p(x) ^ O f o r — and consider

71
the class pUiV> of all polynomials pn(x) = ctkXk of degree at most n

k=о
such that |рп(ж)| ^ <p(x) for —1 S x ^ 1. How large can max

-1<X<1
P n \ x )

become if pn(x) is an arbitrary polynomial belonging to Important
contributions to the problem of Túrán have been made by Prof. Rahman
and his associates. In the case of circular majorants = (1 — x2)*) ,
Rahman [4] proved the following result:

T h eo r em  A (Q. I. Rahman). Ifpn(x) is an algebraic polynomial of de
gree n such that |p„(x)| ^ (1 — x2)2, fo r -1  ^ x ^ 1, then max jp(j(a:)| ^

^ 2(n -  1). Equality iff pn(x) = (1 -  x2)un- 2(x), un- 2(x ) = sm̂ nng1)g, x =
- COS в .

For other interesting results concerning Turáns problem, we refer to the 
works of Rahman and Pierre [2], [3] and Rahman and Schmeisser [5].

Recently, Varma [7], [9] and Varma, Mills, and Smith [10] obtained an 
analogue of Theorem A in the L2 norm. We state some of these results as 
follows:

T h eo r em  В (A. K. Varma). Let pn+\(x) be any real algebraic polyno
mial of degree at most n +  1 such that

|pn+i(z)| = (1 -  z 2) 2, for -  1 ^ x й !•

Then

f  [Pn-íiOO] (1 -  x 2y  dx ^ j  ̂ [ f (0j)(x j ]2{ \ -  X 2  у  dx for j  =  1,2,3

0 2 3 6 -5 2 9 4 /9 4 /$  4.00 (c) 1994 Akadém iai K iadó, B udapest



374 J BURKETT and A К VARMA

where / 0(х ) = (1 -  i 2)u „ - it wn- i ( x )  =  x =  cosff. Equality iff
Vn+\{x) =  ±  fo(x).

Theorem C (Varma, Mills, and Smith). Let pn+2(x) be any real alge
braic polynomial of degree at most n +  2 such that

|p„+2(x )| (1 -  x2), for -  1 ^ x ^ 1.

Then, [p"+2(x )]2 dx й Д  [/" (x )] 2 dx where Д (х ) = (1 -  x2)Tn(x); 
Tn{x) — cos пв, x = cos в. Equality iff pn+2(x) =  ±  /i(x ) .

In addition, if all n -f- 2 zeros of pn+2(x) are real and lie inside [—1,1],
then / * г [pú+2(x ) ]2 dx = / - i [ / i ( x ) ] 2 dx■ Equality iff p„+2(x) =
= ±/i(x).

In this paper, we shall prove the following analogue of Theorem В and 
Theorem C.

Theorem 1. Let pn+1(x) be a real algebraic polynomial of degree n + 1
such that |pn+i(x)| ^  (1 — x2) 2, for — 1 2s x ^ 1. Then, for к = 2 ,3 , . . .  we 
have

( 1 . 1)
f j

P n h ( x ) ( 1 - a : 2)
2k—3 

2 dx
-  L  K1

(x) ( 1 - X 2)
2fc—3

2 dx

where /о (х ) = (1 — x 2)un_i(x). Equality iff pn+i(x )  =  ±  /o(x).

Remark 1. The case fc =  1, under the further assumption that the 
polynomial pn+ i(x) has all real zeros that lie inside [—1,1], is also treated 
in [7].

Next we shall prove
Theorem 2. Let p„+2(x) be a real algebraic polynomial of degree n +  2 

such that |pn+2(x)| ^ 1 — x2, for  — 1 ^ x 5s 1. Then for к =  3 ,4 , . . .  we 
have

( 1.2 ) PnU(x ) (! -  x2) dx = / ' ( aw (* ))2( 1 -
2 k - b

dx

where f \ (x)  = (1 -  x 2)T„(x). Equality iff pn+2(x) = ± / i(x ) .

Remark 2. In the case к — 2, we were not able to resolve the inequality
( 1.2 ).

Theorem 3. Let Pn+2(x) be any real polynomial of degree n -f 2 such
that

(1) j P„+2(x)| ^ 1 -  x2 for -  1 й x is 1.
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Then we have

(2) J  J  K+2ÍX)\2P dx ^  ^ ~ [ n2p + cPn‘2p~1

where p is any fixed positive integer and cp is a constant that depends on p 
(cp ^ 0). The above inequality is best possible in the following sense:

(3) iiS o  J S  /_ ,  I ' dz =  2 Í T T ’

where Pn+2(2 ) =  (1 — x2)Tn(x) =  cos пв, cos в — x.

2. Lem m as

Here we state and prove some lemmas which are needed in the proofs 
of our theorems.

Lemma 2.1. Let qn- \ {x)  be any algebraic polynomial of degree at most 
n — 1 with real coefficients. Further let

(2.1) \qn- f ix) \  <= (1 -  x2)~

Then we have

for -  1 < x < 1.

( 2 .2 )
L

Ín -ií* )] (! -  х2У dx ^ | ( « 2 -  !)•

Equality iff qn_fix)  -  x =  cos в.

Proof of this lemma is given in [8].

Lemma 2.2. Let qn~i(x) be any algebraic polynomial of degree n — 1
with real coefficients such that |qrn_ 1(x)| й (1 — x2)~*, for — 1 < x <  1. 
Then we have for к = 1 ,2 ,. . .

Equality iff qn-f ix )  =  ±u„_ i(x); un- f i x )  = x -  cos в.
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n  —1
P r o o f . We begin by setting <7„_i(x) — ^  ßjuj (x )- Now using the

j = о
orthogonal properties of j u ^ ( x ) j  and |и ^ (х ) |,  we obtain 

(2.4)

J  [ é n - i ( x ) (1 -  x2) ^ ~  dx = J  [ ^ ’(x) ( 1 - x 2) 2 dx
_1 j=k -1

and

(2.5) f  [9Í,_i(*)]2(1 -  x2)2 dx = f  K (x ) ]2( l -  x2)
J- 1 j=i

Next, we note that у — uj (x)  satisfies the differential equation

(2.6) (1 -  x2)y" -  3xy' + j ( j  +  2)y = 0.

From (2.6) it follows that

(2.7)
(1 -  x2)u k̂\ x )  -  (2k -  l)x t^ fc_1)(x) +  ( ( j  +  l ) 2 -  (к -  l ) 2) û k~2\ x )  = 0. 

Now on using integration by parts and (2.7), we have

2

dx.

( 2 .8) Uj ' (x)  (1 — x 2) 2 dx =

=  -  J  itjfc 1 ̂ (x)( 1 — x2) 2 (1 -  x2)u^fc+1'(x) -  (2k + l)xu^k\ x ) dx =

L

1 2 — \  dxu^~l \ x )  (1 -  x2) 2

Through repeated application of (2.8) we have 

(2.9) J  ^ttj^(x) (1 -  x 2) 2 dx

{(j +  l ) 2 - k 2].

П (0 ' +  ! ) 2 -  г'2) /  [uj(x )]2( l -  x2)2 dx
, i=2
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for к =  1 , 2 , . . where we define for к =  1, П ( ( i  + l ) 2 -  г2) = 1.
i=2

Hence

/! tu\ l2 2k+l
г [ í - i ( x ) }  ( l - ^ 2) 2 =

n —1

= E n ( ( i  + i ) 2 -* '2)

<

<

,i=2
к

ß / 1 з
[n'(x)] 2(1 — x 2) 2 dx ^

П ( п 2 -  г2)
Ь'=2 

к

í  t « í ( ® ) ] 2 ( i - * 2 ) *  d x ü

j=k
n — 1

n<»2- i 2) E t f  /  [uí(x)]2(1 - *2)5L=2 J j=l ■'-i

I J ( n 2 - í 2) | /  [ ^ _ ! ( x ) ] 2( l - X 2)2 dx ^
, t'=2

< П(”! - ;2)
t = 2

- s :

r1
*n-i(*)] 2(! -  a;2)2

, , ,  2 „  2fc+l

4 - i ( * )  (1 -  * ) 2 dx.

Equality, iff g„_!(x) = ±u„_i(x). This completes the proof of Lemma 2.2.

Lemma 2.3. Let qn_j(x) be any real algebraic polynomial of degree n — 1
such that I Q'rx—i (x)I ^ (1 — x2) 2 for -1  < x < 1. Then, we have for к =
= 0 ,1 , . . .

( 2. 10) J _ ^  [4-lO) 2 2 k —

(1 -  x2) 2 dx <
г 1

4-10*0 (1 -  x2
2k —\

) 2 dx.

Equality holds iff qn- \ (x )  = ± u n_j(x).

P roof. Let V\,V2, ■ ■., be the zeros of Т ^ \ х ) .  Then

( 2. 11) 4 -1  к ) < u( * )  
n —1 for г =  1 ,2 , . . . ,  n — к
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(c.f. [8]). Now, using Gaussian quadrature formula, based on V\,V2, 
we obtain

/  [я(п-Лх) (1 -  z2) 2 dx = Y  [q[nkl
*'-1 »=i

i(®*)
2
Mi

where

Mi
r l ú k\x)

2
2/c-l

/1

J 1 (x — V i ) 2 Úk+1\ Vi)
2 V± *  J dx >

^ 0 for i = 1 ,2 , . . . ,  n -  fc.

In view of (2.11), we have

n —k

dx й Y  [ u i - i  (vi)
t=l

2( 1 - * 2)
2fc —1

2 da:

2
M ,=

This completes the proof of Lemma 2.3.
The previous three lemmas are needed for the proof of Theorem 1, while 

the subsequent three lemmas are used in the proof of Theorem 2.

L e m m a  2 . 4 .  Let qn- i ( x ) be any real algebraic polynomial of degree at 
most n — 1 such that | gn_ i(x ) | 1 for —1 ^ x ^ 1. Then we have

(2.12) J  ^ [̂ _!(ж)]2(1 - x 2 ) *  d x  ^  |(n- l)2.
Equality iff qn_i(x) = ±  cos(n -1 )0 ,  x =  cos в.

The proof of this lemma follows from a known result of Calderon and 
Klein [9].

L e m m a  2.5. Let q„(x) be any real algebraic polynomial of degree n such 
that j qn{x)\ S 1) for - 1  ^ x ^ 1. Then we have for к = 1 ,2 ,...

(2.13) J  [я{п \ х ) (1 -  x2) 2 dx й
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Equality iff qn(x) =  ±Tn(x); Tn(x) =  cos пв, x = cos в.
П

P roof. Let qn(x) — a jTj (x )- From the orthogonal properties of 
j=о

{T j^ (x )}  and { Т)'(х)} , we obtain 

(2.14)
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and

(2-!5) /  [q'n( x ) \2( l -  x2ff dx =
j =l

Following as in (2.8), we obtain 

(2.16)
к— 1

П о 2 - ;* )
t=iL \

T[k\ x ) ( l - х 2) ’ dx =

к—1
where for к = 1, we define П (j 2 -  г2) = 1. Hence,

i=i

J   ̂ (1 -  x2) 2 dx =

=  E  По'2- *2)1а] [ [т>(х)}2(1 - x2y
j = k  Li=i J J ~ 1

dx <

= I l i » 2 -  *2) Х Х  /  [7j(x)]2(i -  x2Y  dx <:
i=l j=k J~l

й Ш п 2 - г‘2) Х > 2 Г  [ а д ] 2( 1 - х 2)"
■=i j=i

= П ( п 2 - г 2) /  [q'n( x ) \2(l -  х 2У dx ^
t=i *'-1

2 dx =
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^ П ( - 2 - *2) Í  [тп(х)}2( 1 - х2у  dx =
i =  1 • '"I

= J   ̂ T(k\ x )  (1 - х 2)~*~ dx.

This completes the proof of Lemma 2.5.

L em m a  2.6. Let qn(x) be any real algebraic polynomial of degree n such 
that I <jVi(£)| = 1 for — 1 ^ x ^ 1. Then we have for к — 1 ,2 , . . .

(2.17) J  [glfc)(x) (1 - x 2)~T~ d x ü  J  [ г ^ ( * ) ]  (1 - ж 2)“  dx.

Equality holds iff qn(x) — ±Т„(ж).
(k—1)

P r o o f . Let u \ , u2> ■ ■ ., u n_A:+i he the zeros of T„ '(x). Then

(2.18) 9Ífc)(«i) й Tík\ u t) , for i =  1 ,2 , . . . ,  n — к +  1.

Equality possible for any i if qn(x) = ±Tn(x).
For the proof of the above statement we refer to [8], page 104, formula

(2.7.1). Now, using Gaussian quadrature formula, based on 
un-k+i,  we obtain

n - k -f 1
/ [,№(*)] 2(l-*2)“ <fa= E №

Г _ , ( f c - l ) .  , “I 2  2 k - 3

where Hi = [ ( l_J) ||r ilr,). |1j (1 -  *2) 1 dx i  0.
Now, using (2.18), we have

Ui ) Нг

J \  № ){Х)

n — k + 1

(1 -  x 2) 2 dx ^ [Tn ](Ui)
1 =  1

[ Т ^ ( х ) } 2( 1 - х ^  dx.

Нг

From this Lemma 2.6 follows.
The proof of Theorem 3 is based on the following lemma.
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L em m a  2.7. Let tn(6) be a trigonometric polynomial of order n. For p 
and к fixed positive integers, we have the following inequality
(2.19)

Г  [t'n(6)]2pSm k e d e ^ ^ f ± n 2 Г  [t'n(0 j\2p- \ i n *  e d e + ^ n ^ - 1.
Jo Jo

The above inequality is best possible in the following sense:

lim
n —►oo

2psink 9 dd =

= limn—►СО
1

n 2 p - 2
( 2 p -  1
V 2 p [t'n(e)} 2p-2sink ede

when tn(9) = cosnÖ.
P r o o f . Define

(2.20) Л = /  [4 (0) ]2psin*0 d0 .Jo
Clearly, we may write

where

( 2 .21)

and

( 2 .22)

h  — h  +

/2 -  f  [С (0 )]2Р_2[(С (0 ))2 - i n ( W ) l  Sin^

/з  =  Г  t№ ) t n(9)[t'n(0)] 2p~2 sin* 0 dd.
Jo

de

From integration by parts,

(2.23) /3 =  -  £ t n ( e ) { [ t ' j e ) \ 2 p - 1 s i n k e +

+(2 p  -  2 ) C ( e ) t n ( e ) [ t ' n { e ) \  2p~3s[nke +  ktn(e)[t'n(e)] ŝin*-1 öcosöjdö.
From (2.23), we have

(2.24) /3 = - / ,  -  (2p -  2) /3 + E, 

where

£ = -* [ tn{e)[t'n(e)]2p~1smk-10cose Jo de.
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Hence,

(2.25) h  =  r - ^ - 7/1 + T ~ 7E.2p -  1 2p -  1

From (2.21) and (2.25), we have

(2.26)

Further

(2.27)

2P h = h  +  zr^— rE.2 p - l 2 p -  1

Г  [ í#„(0)] 2psink e d 6  =
Jo

Г  К ( 0 ) ]  2р~2[ Ш 2 -  и в ) ф ) \  sink e de-
Jo

— — f tn(e)\t'n(0)] 2p_1 sinfc_1 9cos9 de.
Jo

We now state the following inequality (see Varma [8])

2 p  -  1 
2 p

(2.28) K(0)\2 -  C(e)tn(e) ^ n2 for |*n(0)|gi

valid for any real trigonometric polynomial i„(0) of order n. Here equality 
holds for tn(d) =  cos пв. We now apply (2.28) to the first and Berstein’s 
inequality to the second term on the right hand side of (2.27). We obtain

(2.29)

jT [cm] 2 r s J ’  [4(9)] !r-2Sin‘ в  d e
The proof of Lemma 2.7 is now complete.

P r o o f  o f  T heorem  1. We let pn+i(x )  be any real algebraic polyno
mial of degree n + 1 such that |pn+1(x)| ^ (1 -  x2) 2 for — 1 ^ x й 1.

Now we write

(3.1) pn+1(x) = (l -  x2)qn_1(x)

where <7n_ i(x )  is a real algebraic polynomial of degree n — 1. Further we 
have,

(3.2) j gn_j(x)| ^  (1 -  x2) 2, for -  1 < x < 1.
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Through repeated differentiation of (3.1), we obtain

( 3 -3 ) P n h (x ) =  (1 -  х2)Чп1 i ( s )  -  2 Ь ^ _ _11)( х )  - ( к -  1 )kq[kS i \ x )
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for к  =  0, 1, 2, . ..
From (3.3) we have

(3.4)

where

(*) 2 * -3

'-1
(x) (1 — x ) 2 dx — I\ -f /2 +  / 3  +  / 4  +  / 5  +  Iß

(3.5)

/■* r t  1 2 „ 2 >1+1

h  =  J   ̂ [ii-iO O ] (! -  * ) 2 dx, 

h  =  4k2 J   ̂ [^-1}(х) x2(\  -  x2)—  dx,  

h  =  ( к -  1 )2k2 J   ̂ [^_"2, (x) (1 -  x2) ~  dx,

/4 =  -4 k  j  ̂  [9ÍÍ)i(x)gJJ_i1)(x) x( 1 - x 2) 2 dx.

Upon integration by parts

h  =  2 k  J  jgjk.j^x) (1 -  x2) 2 (l-2 A :x 2)d x ,

/5  =  4 ( k  -  1 ) k 2  J   ̂ ®(1 -  x 2 ) ~  d x .

(3.6)

Similarly, we obtain 

(3.7) /5 =  —2(k — 1 

Next,

Is

Q r i - i \ x ) (1 -  x2) 2 [ 1 -  2(k -  l)x 2] dx.

=  - 2 (k -  1 )k J   ̂ [^_)1(х )^ _ 12)(х)] (1 -  x2) 2 dx =

= 2(к -  1 )k j  [ ^ ( x )  (1 -  x2) ~  d x -
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-2(2*: -  1 )(*: -  l )k J   ̂ [ ^ ^ ( х ) ^ 2^ )  x (l -  x2) 2 dx.

Note that

J 1 x ( l - x 2) 2 dx =

=  ~ \ J i {<1п~\2)(х ) (1 - ж 2)^1“ [1 - 2 { k -  l ) x 2] dx.

Hence,

(3.8) I&- 2 ( k - l ) k  J  (1 — x2) 2 dx+

+ (2 к -  1 )(*r -  1)*: J  [ííÍT ^Í*) 2(1 -  x2) ^  [ l  -  2(k -  l)x 2] dx.

From (3.4)-(3.8), we obtain

(3.9) J  ^ [pnh(x)  (1 - x 2) ~ d x  = J ^
(u) 1 2 9 2*+ 1

9n-l(x) (1 -  X2) 2 dx+

1 '  ,(*-!)/ 12
2k - l

+2(k -  l)k j  \ f i _ S \ z )  (1 — a;2) 2 dx +

+2fc J   ̂ [Яп-1 ](х) ( 1 - x 2) 2 dx+

+(k  -  2)(k -  l ) 2k J  [ ^ ^ ( x )  ( 1 - x 2) 2 dx+

+(2k -  3){k -  l )k  J  (x) ( 1 - x  ) 2 dx.

Finally, we use Lemmas 2.2 and 2.3 along with (3.2) and (3.9) to get

J_  ̂ [p!+ i (x)
2k —3

(1 — x2) 2 dx ^ I |u[f2i(x) (1 — x2) 2 dx+

+ 2(k  -  l)k  J  ( 1 - x 2) 2 dx+

+2k J  [ « ^ ( x )  (1 -  x2) 2 dx+
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/I -  i"2 2k—Z
|^|/Tj2^(x) ( 1 - x2) 2 dx+

+(2k  — 3)(fc — l)fc J  (1 -  x2) 2 dx —

J  [fok\ x ) O - - ^ )  2 dx where / 0(x) -  (1 -  ar2)rtn_1(x).

Equality iff pn+\(x)  = ±  / 0(x). The proof of Theorem 1 is now complete.

P r o o f  o f  T h eo r em  2. We let pn+2(a0 be any real algebraic polyno
mial of degree n +  2 such that |pn+2(x)| ^ 1 — x2, for — 1 is x 5í 1. Now we 
write

(3.10) pn+2(x) = (l -  x2)qn(x)

where qn(x) is a real algebraic polynomial of degree n. Further, we have

(3.11) |(?„(x)| ís 1, for -  1 ^ x ^ 1.

Through repeated differentition of (3.10), we get

(3.12) p[%(x) =  (1 -  x2)qW(x) -  2k x q ^ (x )  -  (к -  1 ) ^ ~ 2)(х)
for к =  0 , 1 , 2 , . . .

From (3.12) we have

(3.13) J 1 [p(n% ( x ) ] \  1 -  x 2f ^  dx = h  + h  + h  + A +  /5 + h

where

(3.14)

= J   ̂ [ я п \ х ) (1 -  x2) 2 dx,

/2 =  4k2 J  jqff ^(x) x2( l  -  x2) 2 dx,

/ l p  2 2k —5
i [ ^ “2)(^)] ( l - x 2) ~  dx, 

/4 =  -4fc J  [.q(nk\x )q lk~1\ x ) x( l  -  x2) “  dx.
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Using integration by parts,

' Г  ̂ Г 2 2к —5
14 =  2k / [ ^ “ ^ (x ) (1 — x2) 2 [ 1 -  2(k — l)x 2] dx ,

< 1
15 =  4 ( k - l ) k 2 j  [q[k- 2\x ) q ik- 1\ x )  x ( l -  x2) 2 dx.

(3.15)

Similarly, we obtain 

(3.16) h  =  - 2 ( k -  l )k2 

Next,

J  [ii* 2HX) (1 — x2) 2 [ 1 -  2(k -  2)x2] dx.

Iх ) (1 — x2) 2 dx =I6 = - 2 ( k - l ) k  j '  [q(nk- 2\x)q(nk\ :

=  2 ( k - l ) k J  [q4*_1)(x) ( l - x 2) ~  d x -  

-2 ( 2k  -  3)(k -  l )k J  q̂[k~1'>(x)qllk~2\ x )  x( l  -  x2) 2 dx.

Observe that

J   ̂ [я(п г)(х кп 2)(x ) x( l ~ x 2) 2 dx =

=  J  г [<ln~2)(x ) (1 - x 2) ~ [ l  - 2 (к -  2)x2] dx.

Hence,

(3.17) Ie = 2(k -  l )k  J  jgifc-1)(x) ( 1 - x 2) 2 dx+

+(2k -  3)(k -  l)k J 1 [ ^ _2)(х)] 2(1 -  x2) ^ 1 [ 1 — 2(/fc -  2)x2] dx. 

From 3.13-3.17, we can write

(3.18)
n 2 2 2, —

PnU(x) 2 dx =  I  ̂ WnKx ) ( l - x 2) 2 dx+
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+ 2 (k -  3)k J  ^ " ^ ( х )  (1 — x2) 2 dx+

+ 6 к J  ( l - z 2) 2 dx+

+(k -  4)(k — 3)(k — l )k J  q̂{nk~2](x) (1 -  x2) 2"~ dx+

+3(2k — 5)(k -  l)k J  (1 — x2) 2 dx.

Finally, we use Lemmas 2.5 and 2.6 along with (3.11) and (3.18) to obtain

[p I % ( x ) (1 - x 2) ~ d x < :  j  \t W ( x ) (1 - x 2) ~ d x +

+ 2 (к -  3)к j '  [Т ^ - 1̂ ) ] 2̂  -  x2) ~ d x +

+ 6 к J  |r^fc_1*(x)| (1 -  x2) 2 dx+

+ (*  -  4)(* -  3)(Л -  l )k J  [ r ^ - 2)(* )]2( l  - x 2) ^  dx+

/! г ,, 2 „ 2)i-7
[T ^ -2)(x)J (1 -  x2) 2 dx —

= У 1 [ / - ( , ) ]  ( l - z 2) ~  dx

where / i ( x )  = (1 — x 2)Tn(x). Equality iff pn+2(x) =  ± /i(x ). This conclude 
the proofs of Theorems 1 and 2.

P r o o f  of T h e o r e m  3. Define /o(x) such that Pn+2(x) =  (1 -  
— x2)/o(x). Then fo(x)  is a real algebraic polynomial of degree n such 
that I /о (х )| = 1 f°r “ 1 = x = 1- We now define

(3.19) tn(0) = /o(cos0) for 0 ^ в ^ я-.

Then tn(9) is a trigonometric polynomial of order n such that

(3.20) | fn( 0 ) | £ l  for 0 ^ 0 ^  7Г.
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From the binomial theorem and Bernstein’s inequality,

(3.21) J  |P '+2(x )|2p dx = J  [sin 0t'n(6) + 2 cos #/„(#)] 2p sin Odd =

=  J  [sin et'n(0)] 2p sin в de+

-f J  [ s in < ( ö ) ] 2p 1 [2 cos (%„(#)] 1 sin# d6 + . . .  +

Г  [ 2 c o s e t n ( e ) ] 2 p s i n e d e  <: Г  [ t ' n ( 6 ) \ 2 p s i n 2 p + 1  e d e +
V  Jo  Jo

+  ( ? ) A - ^  +  - + S ) (l )* ” 0-

After repeated applications of Lemma 2.7, we have

Г  [t'n{9)] 2p sin2p+1 в de <:
Jo

£  sin2p+1 0d9

3 8 8  J BURKETT and A. К. VARMA

+ . . . +
2
2py

+  |'2/ ,) ( 2 ) 4 » * - ‘

2p

+
n3 n

+  -"  +  Y  + T

We conclude that 

(3.23)

+

+

5) (!) (!
(2 p +  1) 7Г

/ V ' +2(x) |2p

-'j J *  sin2p+1

n

2p
2 p - l  n 2P -3 П3 71

+  F T T  +  ---  + Y  +  T

n2p+

+

+  ( 2iP)2 7 rn 2p- 1 +  227rn2p- 2 +  . . .  +  ( ^ )  22р7ГП°.

The theorem now follows.
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ON E X T E N SIO N S OF SOM E TH EO REM S
OF FLETT. II

L. LEINDLER (Szeged), member of the Academy

1. In [4] we generalized some interesting theorems of T. M. Flett [2] 
concerning the extended absolute Cesaro and Abel summability of numerical 
series. Applying our procedure of proof introduced in [4] we continue 
the generalizations of Flett’s theorems and improve some of his results 
concerning the generalized absolute summability of power series.

We do not cite the theorems of Flett to be generalized here, because our 
results in the special case 7 (t) =  P  will reduce to his appropriate theorems 
proved in [2].

We use throughout this paper the following notations, and agreements: 
Let a  be any real number, and let

(o + l) (a + n)
n: (n > 0), ES := 1.

Let 4>(z) := cnZn be regular in \z\ < 1, and let r" := r “(Q) denote
the nth Cesaro mean of order a  of the sequence ncneniCi.

A summation sign in which the limits of summation are omitted will 
denote summation from 1 to 00.

We use В to denote a positive constant depending only on the parame
ters concerned in the particular problem in which it appears. If we wish to 
express the dependence explicitly, we write B(c , d , . . .), say. The constants 
are not necessarily the same at any two occurrences.

Inequalities of the form L BR  mean: ”if R is finite, then L is also 
finite and the inequality holds”.

Let 7 (t) be a positive non-decreasing function defined for 0 < t < 00 
such that

(1.1) 7(07(1/0 = 1
for any t.

We define the following functions:

0*,7(t)(O) :=  I J  7(1 -  p) *(1 -  p)k 1\ф,(ре'я ) \к dp
1 /*
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Ч.л«>(<3) := { E  7(»)‘» -4 r.“(0 ) |* }1 /l,

and

7(1 -/.)-* (! - р ) ' “ - г
I <f>'(peiQ+it)\k

|1 -  peH\a
dt dp

1 /к

2. In terms of functions introduced above we can state our results.
T h e o r e m  1. If к  ^ 1, g m ax(0,1 — 2/k),  a  > g + (1 / к )  — 1 and 

ak := a  +  min(l/fc, 1 — 1 /к )  (>  0), furthermore if there exists a constant 
С  > 1 so that

(2.1) l im s u p ^ y ^  <
у  *oo 7 [ У )

then

T h e o r e m  2. If X ^ к ^ 1, and a  > 1, then 

(2-2) Г  TkxMt) a(Q)dQ ^ В Г  gXkMt)(Q)dQ.

These theorems imply the most interesting inequality formulated as
T h e o r e m  3. If A ^ A: ^ 1, a  > т а х (1 Д , 1 — 1/fc), := a +

+ min(l/fc, 1 — 1 / fc), and (2.1) holds with some C > 1, then

Г  hxKaMt){Q)dQ й  В Г  gXkMt)(Q)dQ.
J — ir J  — 7Г

3 .  To prove the theorems we require the following lemmas.
Lemma 1. Let f (Q)  be integrable in (—x, x) and periodic with period 

2x, and ZeZ
Г(<Э) := sup j i  f  |f(Q + r)|dr] .

0< |í |$7T  l  1 Jo J

Then

НГНг = “ jllillr (*■ >!) ,
where || • ||p denotes the usual Lp-norm.

This lemma is a part of a well-known theorem of Hardy and Littlewood 
[3].
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Lemma 2. If £(Q) and £*(Q) are the functions given in Lemma 1, and 
Л > 1, then

(3.1) £(Q + Ф + 1)
|1 -  pelt|A

dt ^ B(X) c m i - p e * ]
(1 - f > ?

This lemma is due to Flett [1] (Lemma 4).
The following lemma can be found in [1] (p. 368) implicitly. For details 

see, for example, Zygmund [5], Chapter XII, §3-5.
Lemma 3. If к ^ 1, a  > — 1 and p := max(0,1 -  2/k),  then

(3.2) 2|r » lV "  ZB Г  }*{PetQ*b[4dt.
J —7Г |1 -  p e ! i |

Lemma 4. If ß  > —1, v't. 1, I't. 1 and p (t) is a positive non-decreasing 
function defined for  1 ^ t < oc satisfying the condition

(3.3) limsup < C (ß+l)/l
t—► OO p(t)

with some C  > 1, then

1 -  x f  p {(  1 — ж) x) (x1'dx ^ В p(u)eo ß x.

This lemma was proved in [4].
4. P r o o f  o f  T h eo rem  1. Let us apply Lemma 3, furthermore 

multiply both sides of (3.2) by (1 -  р)ка~к,,+к~2р(1 -  p)~k and integrate 
with respect to p from 0 to 1; then we get that

(4.1) Y ,  пка~к^ к~2\т \̂к j \  1 -  p)ka- krl+k- 27 ( l -  p)~kpkn dp й 

Jo  J —K 11 — p e “ |

In view of (1.1) it is obvious that

(4.2) /:= f 1 (1 -  p)ka- kv+k- 2't ( ( l  -  p ) - 1) V ”  dp ^
Jo

rl — l / 2 n

^  ^ B p ( n ) kn ~ka+kT,~k+1;
Л - 2 / n
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furthermore, by Lemma 4, /  < oo also holds. Indeed, the use of Lemma 4 
with p(t) = 7 (<), ß  — ka — kp +  к — 2, v — kn and Í = к is permissible, 
because then ß  > — 1 and (ß  -f 1 )/£ =  a*., that is, (2.1) coincides with (3.3), 
thus every condition of Lemma 4 is satisfied.

Finally (4.1) and (4.2) plainly yield the statement of Theorem 1.

P r o o f  of T h e o r e m  2. First we verify the case Л — к of (2.2). Then

Г  T kkMt)j,{Q)dQ =
J  — 7Г

',4.t - 2 k'0>e'g -|-', )r
|1 -  ре'У\°

dy dp > dQ ==  Г  /  Г  1 (1 - p ) - \ i - p )J —7Г  ̂Jo j  — 7Г ^

= [ \ ( l - p ) - k(l-p)*+k- 2dp-
Jo

namely the innermost integral is actually independent of y, and is equal to

Г  |< A V e ) | ‘J — IT
dQ.

Furthermore, by a  > 1,

L - -
dy
ре'У |c

Ü B ( a ) ( í - p ) l —a

In view of these

f  TkkMt)<a(Q)dQ i
J —it

± B(a)  j f  7 (1 -  P)“ fc( l  -  P)k~l {  f  I * V Q)| kdQ}  dp =

= B(a)  Г  9kkMt)(Q)dQ
J — IT

and this is (2.2) with A = k.
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If Л > к then we set /i := A/(A -  k). Then

(4-3) {jT  T ^ d Q ^  = {jT  ( n M t Uf k d Q ^ ' X =

= sup /  TkMt),°ZdQ'

the supremum being taken over all non-negative functions £ such that
Hill, ^ 1.

Since

(4.4) / 'J  —IT

■ £ {jf £ 7(1 -  /■>-*(! -  r  * * }  =

= £ £ t ( i -  ^
and, by Lemma 2, using the notations introduced in Lemma 1, the integral 
in the brackets does not exceed

(4.5) Я И Ш и - р ) 1" '.

Combining (4.4) and (4.5), and applying Holder’s inequality with indices 
А/к  and we obtain that

(4.6) Г  n Mt)A d Q  й
J  — IT

й В (a) í  /  7(1 -  P)“fc(l -  p)k~1\ ^ ( p e ty)\kV ( y ) d y d p  =
JO J—K

= B(° )  Í  Л . у ф ' Х ' Ш я й  B(<r)||jM l) ||‘ ||{* ||,.
J  —  IT

Combining (4.3), (4.6) and the inequality

lien s J^M I. s \
which comes from Lemma 1 and the definition of fi, we get immediately
(2.2); this completes the proof of Theorem 2.
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P r o o f  o f  T h eo rem  3. Theorem 3 is an immediate consequence of 
Theorems 1 and 2; we have only to observe that if the conditions of Theorem 
3 are satisfied, then all of the conditions of Theorems 1 and 2 are also 
fulfilled. Indeed, a > max(l/fc, 1 — 1 / к )  implies both a  = ka — kr] >  1, 
and a > 7 7  +  (l/fc) — 1, furthermore the rest of the conditions is obviously 
satisfied.
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THE N U M E R IC A L  SO LUTIO N  
OF D IFFE R E N T IA L  EQ UATIO NS  

U SIN G  M O D IFIED  L A C U N A R Y  SPLIN E  
F U N C T IO N S OF T Y PE  (0;2;3)

J. GYŐRVÁRI (Veszprém)

1. Introduction

In this paper we are going to approximate the solution of the differential 
equation

y(m\ x )  = f [ x , y ( x ) , y ' ( x ) , . . . , y (m 1}(x)] , x £ [0; 1], 

y(j)(0) =  y ^  ( j  =  0 ,1 , . . . ,  m -  1; 2 g  m й  5)

supposing

(1.1) f [ x , y ( x ) , y ' { x ) , . . .  ,y(m- l \ x ) \  е с ' г>([0; 1])

where r is a fixed integer,

( 1.2 ) f(4) (0) (1) (m—1)x , y  \ ' , y { y \ f ( ? ) (0) (1) (m —1)х , у у , у у , . . . , у к2 <

m — 1
= L ~  У*2 (9 = 0 , 1 , . . . , г)

i=0

(Lipschitz condition), where

/ (0) = / ,

/ (,+1) =  Ú 4) + f l q) ■ y' + f ?  • y" + • • • + • y(m-l) + 4 (1 - .)  • / ,

(q = o,i,2,... ,r  -  l).

The problem of approximating the solution of differential equations with 
Hermite type spline functions was discussed in [1], [2], [3] and [7]. In [4],
[5], [6] lacunary spline functions are used. The main idea of our method 
is the following: we approximate the values of y^(xk)  using the values of
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у (j = 0 , 1 , . . .  , m -  1) and the function /  (like in [5], [7]). Denote these
approximate values by (к =  0 , 1 , . . . ,  n; q =  0,1,2,3).  Then, using these 
approximate values we construct the modified lacunary spline function of 
type (0;2; 3), defined in [8]. In the approximation theorems we use the 
average moduli defined in [10].

398 J. GYŐRVÁRI

2 .  T h e  f i r s t  a p p r o x i m a t i o n  p r o c e s s

2 . 1 .  Definition of the approximate values yĵ *. Let

к \  ti
X к  =  ) к  — , — X к  T  ~x ( k  — 0,1 , .  . . , 7l),n n

и ( f {r),x ,h)  =  sup | / (r)( i i ) - / (r)(t2)| ,
4 '  t i ,i2 e [x - |;x + ^ ]n [0 ;l]

1
r  (/(r),̂ ) = J  и  [ f (r),x,h^j dx.

D e f i n i t i o n  ([7]). Let

V o ') :=  У о ] (J =  0 , 1 , . . . , m -  1),

Уд
( m + q ) ___

:= f (q)
(o)  (1) (m - i)

хо,Уо ,Уо (q =  0 , 1 , . . . ,  г),

Ук] '■= Gk \ xk) (к = 1 , 2 , . . . ,  га -  1; q =  0 , 1 , . . . ,  m + г), 

Уп] :=  Gn l i ( x n) (д =  0 , 1 , . . . , т  +  г),

where

( 2.1.1)
т - 1  (j)

G q { x ) : =  ^ ^ y ( x - x 0 ) J +  

j =0 J'

7 = 0

/(?) (0) (1) (m—1)
*о,Уо

(m +  у)! (x -  x0)m+9

if xq ^  x ^ xi;
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DIFFERENTIAL EQUATIONS USING MODIFIED LACUNARY SPLINE FUNCTIONS 399

^  GÍ j \ ( x k )
G k( x ) : =  ^  k~ ] ;  k\ x- Xky +( 2 . 1.2)

j = 0

+ y -  f M PbGt-i(xt ),Gj,_,(*U,... .G ^ f a ) ]  ^ _ ^ )m+.
9=0 (m +  9)!

if xk ^ a: ^ z fc+1 (k = 1 ,2 , . . . ,  n -  1).
2 . 2 .  77ie convergence process. In [7] a theorem was proved which 

showed how the approximating values converge to the exact values of 
y[j) = y(j)(xk) (k = 1 ,2 , . . .  ,n; j  = 0 ,1 , . . . ,  m + r).

T h e o r e m  2 .1  (see [7, Theorem 2.2 .1]) .  We have

4J) := \yíJ)~yíÍ]\  ̂Cj,khrT ( /m+r\h)
(k = 1,2 , . . . ,n ;  j  =  0 , l , . . . ,m  + r) 

where the constants Chk are independent of n.

3 .  T h e  s e c o n d  a p p r o x i m a t i o n  p r o c e s s

As we have seen before, we have the set of approximate values

(я = 0>2>3)

which are the approximating values for the exact solution y(x)  of (1) and 
its derivatives at the points i o , i i , . . . ,Z n .

Using these approximate values (q = 0,2,3; к — 0 , 1 , . . . , n) and
Й 1),у11) on the basis of [8] we construct the modified lacunary spline func
tion S д(ж) of type (0;2;3). Then we prove some approximation theorems.

3 . 1 .  The construction of the modified lacunary spline function. We 
construct the lacunary spline function 5д(ж) of type (0;2;3) (5 д (х ) := 
:= S k{x) if Xk ^ x ^ Zfc+i) similarly to [8].

T heorem 3 .1 .1 . Let y ^  (  ̂ = 0,2,3; к =  0 ,1 , . . . ,  n), y ^ \  yn  ̂ he the 
approximate values defined above. Then there exists a unique spline function 
S a (x ) satisfying:

(3.1.1) S % \x  0) : = i4 j) ( j  =  0 ,1 ,2 ,3),
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(3.1.2) S[4\ x k) := (9 = 0,2,3; k = 1 ,2 , . . .  ,n  -  1),

(3.1.3) f 1W : = í ' i) ( i  = 0 ,1 ,2 ,3 ),

(3.1.4) 51, ) (**+1) : = 5 Ц 1(**+1) : = у Ц 1 (д = 0,2,3; * = 0 , l , . . . , n -

(3.1.5) б'д(х) ís a polynomial of minimal degree on [хк;хк+\]. 

We quote the following relations (see [8] § 2):

—(2) —(3)
(3.1.6) S 0(x) = 2/̂ 0) +  y (o \ x  -  x0) + ~ ~ ( x -  xo)2 + ^r~(x -  жо)3+ 

+ ä4,0(x -  x0)4 + ä5t0(x -  x0)5 + ä6,0(x -  x0)6, if x0 й x ^ xb

, „(2) y(3)
(3.1.7) S fc(x) = у)?’ +  ä i^ (x  -  xk) + ~^~{х -  xk)2 + - £ - ( z  ~ xk)3 +

~\~&4 ,&(•£ «XT /с) “Ь & 5 , к ( %  X ^ )  , 1^ % к  ^  ^  ^  X / ^ i

(fc =  1 ,2 , . . .  , n  -  2),

(3.1.8) 5„_i(x) = +  a i , n - i (x -  xyv—l) + ^-Цх ~ x„_x)2+
y(3)

“b 0 (*£ Xn- l )  ”h ®4,n—1(*̂ ®n-l)
+ a5,n--l(*£ Xn— i) “b 6̂,n—l(*£ xn — 1 ) , if Xn_| ^ X ^ X

where

(3.1.9) 7 _ ,c* í ‘г!0)  ̂ t42) 1 f тК3)
4’°~ h4 l F° 2/0 л/ 2/i2F° + 12//° ’

(3.1.10) -6 /-̂ (0) _(1), \ . 4 —(2) 3 — (3) 

05'0 - h5 V °  Уо h\  + bh3F° 20/i2 F° ’

(3.1.11) - 2 fp(0) _(1),1 3 - ( 2 )  1 -н (З )  
6’° Д6 \ Fo з/о ю/г4^0 + 15/i3jF° ’
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(3.1.12) aljfc =  i f f  -  A h F<2) + ± h * 7 l 3) ( k  = l , 2 , . . . , n - 2 ) ,

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

«4,* = 1 -  1 ,2 ,. . .  ,n  — 2),

= Ш / И ’ +  <* = 1-2........" - 2>-

j j  _  ^  r f 0 ) _  p f 1) I .1 /, /? (2) ____/,2  ZT1!3)
^ l ,n —1 1 T n _ j  T  ^ П Г  n _ 4 gQ ^  ^  n —1>

77 _  _ ^ t ;(0) , A t 1̂) ___ I 1 7?(3)
4 , n - i  h 4  t  n _ i  +  ^ 3 ^ - 1  2 / j 2 *  " - 1 +  g /г *  ri- 1 ’

-  _  A t (0) _  A ^ 1» , l r < 2) _ 1 -р(з)
“5>n_1 h^1 n_1 /j4r n-i ' h3* n~1 4/l2 Í "-1 ’

/о 1104 ^ _  Z^r(°) . A ^ 1) ____L_r<2) I 1 -p(3)
( 3 - • 8 )  6 .П -1  fe6 f n - i  +  Л 5 ^ » - 1  ю / i4 ^ n_1  +  1 0 /i 3 F " - 1 ’

—(2) _(3)
(3.1.19) Afc0) =  -  y[0) (fc = 0 ,1 , . . . ,  n -  1),

(3.1.20) F (k2) = y(2l  -  y (2) -  y f h  (к =  0 ,1 , . . . ,  n -  1),

(3.1.21) FÍ3) = -  ^ 3) (fc = 0 ,1 , . . . ,  n -  1),

_(3)
(3.1.22) ^

3 .2 . A general convergence process. In this section we prove the essen
tial theorems concerned with the convergence of modified lacunary spline 
functions. We also prove that this function satisfies the differential equation 
as n —► oo, for 2 ^ m  and m +  r ^ 5.
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T heorem 3.2.1. If y(x) & C m+T([0; 1]) is the exact solution of ( 1) and 
5д(ж ) is the spline function constructed in Theorem 3.1.1 then the following 
inequalities hold:

I y(q\ x )  — 5 q9)(x)| ^ M0,qhm+T- 4 ( y ( m+r \ h )

(q = 0 , 1, . . .  , m +  r), if x o ^ x ^ x i ,

|i/(g) -  S[4\ x ) \  S M k>qhT~4r  (У т+г>,/г)

(9 =  0 , 1), if xk ^ x ^ x k+i (k = 1, 2, . . . , » - 2),

|2 / (9) ( x ) - 5 Í 9) ( x ) |  ^  Mk,qhT+^ T ( y ^ \ h )

(q = 2 ,3 , . . .  ,m  + r), if xk ^ x ^ xk+1 (k =  1 ,2 ,. . .  ,n  -  2),

| 2/ <'>(x) - 5 ! 2 1(x)| S M n- ltqh r * T ( y l m+rKh)

(9 = 0 , 1, . . . ,  m +  r), if xn_i ^ x ^ x„,

where the constants Mkq̂ are independent of n.
We prove this theorem later.
Let

S l ( x )  := 5*(х) := /  [x, S*(x), S'k(x) , . . . ,  s f ^ x ) ]  , 
if xk ^ x й xk+i (k =  0 , 1 , . . . ,  n — 1, 2 ^ m ^ 5).

THEOREM 3.2.2. If the function f  in (1) satisfies the conditions (1.1) 
and (1.2), then the following inequalities hold:

\y {m){x) -  5 q(x)| ^ D0,mhr+1T ( y {rn+r),ĥ J , if x0 ^ x ^ x b

I i/(m)(x) — 5fc(x)| ^ D ktmhr~1 T (V m+rU )  , if xk i x i  xk+1

(к = 1 , 2 , . . .  ,n — 2),

| ^ m) ( x ) - 5 ; _ 1(x)| ^ D n_ 1<rnhr+1- mT ^ m+r\ h ) ,  if xn_j ^ x ^ x n,

where the constants Dkm are independent of n.
THEOREM 3.2.3. If the function f  in (1) satisfies the conditions (1.1) 

and (1.2), then the following inequalities hold:

4 m)(x) -  5*(x)| ^ E0,mhrT ( > m+r),/i) , if x0 g  x g  x i,
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s ] T \ x) -  s l (x ) = Ek,mh3r  (V m+r),/i) , if Хк ЪХ ^ Xk+i

(k = 1 , 2 , . . . ,  n — 2) where s =  min(r + 2 — m, r -  1),

s t \ ( * )  -  K - l  (*)| ^ En-l,mhT~mT (y(m+r\ h )  , if xn_! й х ^ Х п ,

where the constants Ek<m are independent of n.
To prove these theorems we need some lemmas, which can be easily 

proved using formulae (3.1.6-3.1.22) and Theorem 2.1.

L e m m a  3.2.1. Let and ( j  =  0,2,3; к = 0 , 1 , . . . ,  n — 1) denote 
the values defined in (3.1.19-3.1.21) with the exact values y ^ \ x k) — yk and 
the approximate values ŷk \  respectively. Then we have

F ^  -  FÍJ)| ^ A0,jhm+T- ’ T ( y ^ r\ h )  (j  =  0,2,3),

F (kj) - f [3)\ ^  AktjhrT ( y ^ r\ h )  (j = 0,2,3; к =  1,2, . . .  ,n — 1),

where the constants Akj  are independent of n.
L e m m a  3.2.2. Let aj>k and djtk denote the coefficients of the lacunary 

spline function 5д(х) and S  д (х ) of type (0;2;3) constructed in (3.1.9-3.1.18)
with the exact values ŷ 3\ x k) = y ^  and the approximate values y ^ \  respec
tively.

Then we have

к о  -öj-ol g  Bj,0hm+r-ÍT (y(m+T\ h )  (j  =  4 ,5 ,6),

|ß i,i -  öijfcl ^ Bi'khr~l T (V m+r), / i)  (к = 1 , 2 , . . . ,  n -  2), 

aj , k - ä j tk\ ^ Bjikhr+2~3T ( y {m+T\ h )  ( j  =  4,5; к =  1 , 2 , . . . , n  -  2), 

k > - 1 ^ B-j}n- \ h r~JT ( y {Tn+r),ĥ J (j  =  1,4,5,6),

where the constants B j k are independent of n.

Lemma 3.2.3. Let 5д (х ) and Sд(х) denote the lacunary spline func
tion of type (0;2;3) constructed with the exact values y ^ \ x k) = (Theo
rem 2.1 in [8]J and the approximate values y ^  (see Theorem 3.1.1,1. Then 
we have (2 ^ m ^ 5)

S (04\ x )  -  s i f t * ) |  ^ Ko,qhm+T~qT (y(m+r\ h )  , if Xq ^ X й Xx
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( 9  = 0 , 1 , . . . , 6 ),

s p ’W -  4 ' V ) ^ K k,qhr~4T (j if Xfc ^ X ^ xk+i

(9 = 0 , 1; к = 1, 2, . . . ,  n —2),

S“ (x) - ^ K k,qhr+2- qT ( y(m+r\ h ) , if x k й X ^ xk+i

(g = 2, 3,4,5;  k = 1, 2 , . . . ,  n - 2),

■ í i - i W ^ K n—\̂ qhr 4T ( y (m+r\ h ) , if Xn _ !  ^ X ^ X

(q = o, i , . . . , 6 ),

where the constants K kt4 w e  independent of  n.

P ro o f  o f  T heorem  3 .2 .1 . Lemma 3.2.3, Theorem 3.1.2 of [9], Theo
rem 3.1 of [8] and the inequality

y(q\ x ) Ä ) < y(9)( z ) -  4 9) (ж) + SÍ4\ x ) - S r ( x )сЫ,

(q =  0, l , . . . , m  +  r)

imply Theorem 3.2.1.
P r o o f  o f  T heorem  3 .2 .2 . Using condition (1), (1.1) and (1.2) we 

obtain

У(т\ х )  -  S \ ( x ) f \ x , y (x) , y ' (x ) , . . . , y {m x)(x)

- f \ x , S A ( X ) , S' A ( x ) , . . . , S (?  1]( x )
m — 1

^ L ^ | j / ( 9) ( x ) - 5 ? ( x )
9—0

which implies Theorem 3.2.2 by the help of Theorem 3.2.1.
P r o o f  o f  T heorem  3.2 .3 . Theorems 3.2.1, 3.2.2 and the inequality

SÍm)( * ) - ^ ( z )  ^  skm)( * ) - 2/(m)(x) + У(т\ х )  -  S*A(x)

imply Theorem 3.2.3.

R e m a r k  1. If / ^  has finite variation then r (f^r\ h )  = 0(h)  (see [10]). 
Using this equation we get the following versions of Theorems 3.2.1 through 
3.2.3:
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Theorem 3.2.1.a. We have

y ^ ( x ) - S (04\ x ) \ ^ M ^ 4hm+r^

(q = 0,1,..., ш + r), if x0 ^ x й xi, 

y ^ ( x ) - S [ 4\ x ) \ ^ M ^ - «

(9 = 0,1), if xk ^ x ^ x k+1 (k = l,2,...,n -  2), 
y ^ (x )  -  5Í?)(z)| ^ Mk qhr+3~q

(q = 2 , 3 , . . . , m  + r) if xk ^ x ^ x k+i (k = 1,2,..., n -  2),
y ^ (x )  ~ s l ? U x ) \ ü  M:_h4hT+l- q 

(q =  0,1,..., m + r), if xn_ i < : x ^ x n, 

where the constants M£q are independent of n.

Theorem 3.2.2.a. We have

W x ) - T 0(x) \ZB-0,mh « \  if х о й х ^ х и  

y(m\ x )  -  S*k(x)  ̂D*krnhr, if xk ^ x ^ x k+1 (k = 1,2,... ,n -  2),

y(m\ x ) - r n_1(x) \^D-n_hmhr+2- m, if х и - г й х й х п ,

where the constants are independent of n.
Theorem 3.2.3.a. ITe have

s ST \ x) - T 0(x) й Eo,mhr+\  if g*g*b

S (r \ x ) -  s l ( x ) ^ E k<mhs+\  if xk ^ x ^ xk+1 (k = 1,2,... ,n - 2), 
where s = min(r + 2 — m, r — 1),

s i - ’ w  -  s  K ~ i „ h
r + l —m

i f  X „ _ i  ^  X  ^  X n ,

where the constants E£m are independent of n.

R e m a r k  2. Theorems 3.2.1 through 3.2.3 show that modified lacunary 
spline functions of type (0;2;3) give better approximation than the Hermite 
spline function of type (0;1;2) discussed in [7].
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3.3. A numerical example. In this section we have tested our method 
numerically by the example of [11] and [9]:

y" = Ay +  4 chi, i/(0) =  0; t/'(0) = - 2  shl.

J. GYŐRVÁRI

The exact solution is

y(x) = ch (2x — 1) — ch 1 

which is symmetric at x =  0.5.
We have made the calculation at r =  3, n =  9 (see in [11]) and n =  16 

(see in [9]). We have given the result by x = 0.1 ■ к (к =  0 , 1 , 2 , . . . ,  10).

П 9

X У(х)
5 д (х )

y(1)( i)

S a V )

j / 2)x
5Í2>(x)

j /3Z x  

S д (x) 5 д (х )

0.0 -0.00000000
+0.00000000

-2.35040239
-2.35040239

+6.17232254
+6.17232254

-9.40160955
-9.40160955 +6.17232254

0.1 -0.20564569.
-0.20564589

-1.77621196
-1.77621646

+5.34973979
+5.34972941

-7.10484786
-7.10330507 +5.34973898

0.2 -0.35761542
-0.35761704

-1.27330716
-1.27332379

+4.74186087
+4.74184217

-5.09322866
-5.09244521 +4.74185439

0.3 -0.46200826
-0.46201239

-0.82150465
-0.82153350

+4.32428949
+4.32425381

-3.28601861
-3.28545893 +4.32427297

0.4 -0.52301388
-0.52302161

-0.40267201
-0.40271301

+4.08026702
+4.08021256

-1.61068802
-1.61048730 +4.08023609

0.5 -0.54308063
-0.54309314

+0.00000000
-0.00005406

+4.00000000
+3.99992494

+0.00000000
-0.00021020 +3.99994997

0.6 -0.52301388
-0.52303248

+0.40267201
+0.40260302

+4.08026702
+4.08016893

+  1.61068802 
+  1.61005813 +4.08019261

0.7 -0.46200826
-0.46203452

+0.82150465
+0.82141784

+4.32428949
+4.32416502

+3.28601861
+3.28500274 +4.32418446

0.8 -0.35761542
-0.35765122

+  1.27330716 
+  1.27319848

+4.74186087
+4.74170510

+5.09322866
+5.09194165 +4.74171767

0.9 -0.20564569
-0.20569335

+  1.77621196 
+  1.77607699

+5.34973979
+5.34954909

+7.10484786
+7.10428859 +5.34954914

1.0 +0.00000000
-0.00006243

+2.35040239
+2.35023330

+6.17232254
+6.17152163

+9.40160955
+9.38095072 +6.17207282
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П =  16

X y(x)
5 д (х)

y(1)(x)
oOL чS A  ( x )

y(2)x
5 i2)(z)

y(3)x 
Sд (x) S l(z )

0.0 -0.00000000
+0.00000000

-2.35040239
-2.35040239

+6.17232254
+6.17232254

-9.40160955
-9.40160955 +6.17232254

0.1 -0.20564569
-0.20564573

-1.77621196
-1.77621288

+5.34973979
+5.34973649

-7.10484786
-7.10476629 +5.34973962

0.2 -0.35761542
-0.35761561

-1.27330716
-1.27330939

+4.74186087
+4.74185889

-5.09322866
-5.09338271 +4.74186010

0.3 -0.46200826
-0.46200872

-0.82150465
-0.82150769

+4.32428949
+4.32428654

-3.28601861
-3.28589435 +4.32428767

0.4 -0.52301388
-0.52301471

-0.40267201
-0.40267634

+4.08026702
+4.08026133

-1.61068802
-1.61076838 +4.08026371

0.5 -0.54308063
-0.54308195

+0.00000000
-0.00000576

+4.00000000
+3.99999473

+0.00000000
-0.00002288 +3.99999473

0.6 -0.52301388
-0.52301582

+0.40267201
+0.40266503

+4.08026702
+4.08025687

+ 1.61068802 
+ 1.61072373 +4.08025924

0.7 -0.46200826
-0.46201099

+0.82150465
+0.82149575

+4.32428949
+4.32427743

+3.28601861
+3.28584653 +4.32427856

0.8 -0.35761542
-0.35761913

+  1.27330716 
+  1.27329635

+4.74186087
+4.74184482

+5.09322866
+5.09333049 +4.74184602

0.9 -0.20564569
-0.20565063

+  1.77621196 
+  1.77619828

+5.34973979
+5.34971688

+7.10484786
+7.10470868 +5.34972003

1.0 +0.00000000
-0.00000646

+2.35040239
+2.35038513

+6.17232254
+6.17223840

+9.40160955
+9.39779356 +6.17229669
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TH E C O N G R U E N C E  LATTICE OF A N  
E X T E N SIO N  OF COM PLETELY 0-SIM PLE

SEM IG RO UPS
M. PETRICH (Burnaby)

1 .  I n t r o d u c t i o n  a n d  s u m m a r y

Much has been said about congruences on a completely О-simple semi
group 5. If S  is represented, indeed identified, with a Rees matrix semi
group, proper congruences on 5 can be themselves represented by admissible 
triples which involve all the ingredients of a Rees matrix semigroup. Manip
ulation of these triples makes it possible to obtain almost any information 
we may desire about the congruences on S  or the congruence lattice C(S ) 
of 5.

All of this changes radically if we consider congruences on an (ideal) 
extension S of a completely 0-simple semigroup So by a completely 0- 
simple semigroup 5i; this is especially true about the congruence lattice 
C(5). Proper congruences p on S are of two kinds: 5 /p is either completely 
0-simple or an (ideal) extension of completely 0-simple semigroups. In 
studying the structure of C(S), one may consider the partitions of C(S)  
induced by restrictions of congruences to 5o or to Sf. Another approach 
consists in considering the kernel relation К  and the trace relation T  on 
C(S). In this context, it is of interest to find necessary and sufficient 
conditions on S in order that К  be a congruence. If this is not feasible, 
we may consider certain restrictions on S  and then attempt to answer such 
a question. Our purpose here is to consider each one of these subjects.

In Section 2 we prepare the notation, terminology and some preliminary 
results which will be used extensively throughout the paper. Congruences 
on 5  in the preceding paragraph are constructed in Section 3 in a rather 
transparent form; certain simple properties of these are also proved in this 
section to be used repeatedly. Meets and joins of all types of congruences on 
S are described in Section 4. In Section 5, the relation on C(S) induced by 
the restrictions of congruences to So and S£, respectively, and their classes 
are described in some detail. The kernel and the trace relations, К  and T,  
are then studied in Section 6 with the particular attention to К  and the 
conditions ensuring that it be a congruence. The case when 5 is a strict 
extension of 5b by 5 1 is considered in Section 7, in particular necessary 
and sufficient conditions on 5  are found for К  to be a congruence when
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the extension is strict or 5o has no contractions, as well as certain ends 
of intervals which make up the K-  or T-classes. In the final Section 8, 
necessary and sufficient conditions for К  to be a congruence when S\ has 
no zero divisors are found.

We are unable to find necessary and sufficient conditions on 5 in order 
that К  be a congruence, but can do this in three special cases: with a 
condition on 5b (no contractions), with a condition on S\ (no zero divisors) 
and with a condition on the kind of extension (strict).

2 .  P r e l i m i n a r i e s

We follow the standard notation and terminology which can be found 
in the books [1] and [5]. In addition, or for emphasis, we shall adhere to the 
following notation, nomenclature and convention.

The equality and the universal relations on any set X  are denoted by 
e and u,  respectively. The restriction of a function or a relation 0 to a 
set X  is denoted by 0 \%. If 0 is an equivalence relation on a set X  and 
x G X , then хв denotes the 0-class containing x; 0 is proper if 0 ф ш; if 
А С X  is a union of 0-classes, then 0 saturates A. If A and В are sets, then 
A \ B  =  { a  G A\a £ B } .

If a  and ß  are elements of a lattice L such that a ^ ß,  then [a,ß] denotes 
the interval in L with lower end a  and upper end ß.

Let S  be a semigroup. Its set of idempotents is denoted by E(S).  If 
S has an identity, then S 1 =  S otherwise 5 1 stands for S  with an identity 
adjoined. If 5  has a zero and A ^ 5, then A* -  A \  {0}. The congruence 
lattice of S  is denoted by C(S).  If 5 has a zero, Coi-S) denotes the set of all 
congruences on S having {0} as a class. For any relation 0 on 5, 0* stands 
for the congruence on S generated by 0. If 0 is an equivalence relation, 0° 
denotes the greatest congruence on 5 contained in 0; it is given by

ав°Ь xay 0 xby for all x,y  G S 1.

Now let 5 be a regular semigroup. The natural partial order on S is 
given by

a ^ b ^ a  =  eb — bf  for some e , f  G E{S),

Restricted to F (5 ), it has the form

e ^ / o e  =  e /  = fe.

For p G C(S),

kerp = { a  G 5jape for some e G E ( S ) } , tr p —
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are the kernel and the trace of p, respectively. The relations К  and T  are 
defined on C(S) by

XKp  4=> ker A = ker/>, XTp tr A = trp.

Then К  is a complete Л-congruence and T is a complete congruence. Their 
classes are intervals, in the notation

p K  -  [p k ,PK] , pT =  [рт,р7] ■

Next let S be a completely О-simple semigroup. We may consider its 
Rees matrix representation and in fact set S =  M °( I ,G ,A ;P ) .  A proper 
congruence p on S is represented by an admissible triple ( r ,N ,x )  so that

( i ,g,X)p( j ,h ,p)  4» irj ,  pe,gp\kN =  pejhpßkN,  Атгp

for some в £ A and к £ I  such that pg,- ф 0, p \ k ф 0. If p ^ 7i , this simplifies 
to

( i ,g,X)p(j ,h,p)  i = j,  g h ' 1 £ N, X = p.

For a complete discussion of this subject, we refer to ([1], III.4). In partic
ular, define r and ж by:

ir j  ( Pm Ф 0 o  pxj ф 0 for all A e A ) ,

Хжр (p\i ф 0 •£> pßt ф 0 for all i £ / )  .

Then the triple (r, G,  7r) is easily seen to be admissible and the corresponding 
congruence (  to be the greatest proper congruence on S. In fact, (  is the 
principal congruence on S relative to the set {0}.

Throughout the whole paper we fix the following notation. S stands for  
an (ideal) extension of a completely О-simple semigroup So by a completely 0- 
simple semigroup Si such that SoSi ф {0}. The equality and the universal 
relations on 5,- are denoted by £, and w,, respectively, for i =  0,1. This 
extension is strict (or retract) if for every a G Sf  there exists a' £ So such 
that ax =  a'x and xa =  xa' for all x £ So- For a complete discussion of this 
subject we refer to ([5], Chapter III).

The reason for limiting ourselves to the case ф {0} is that in the 
contrary case, the semigroup S is an orthogonal sum of So and Si- The 
study of C(S) in this case is routine and is omitted. In particular К  is a 
congruence in this case ([7], Theorem 3.6).

NOTATION 2.1. Let к be the congruence on S  generated by the relation 

{ ( e , / ) £ £ ( S ) x £ ( S ) | e > / > 0 } ,
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and let «о =  k |Sq. Also let £i be the greatest proper congruence on S\.
We shall see in Lemma 3.6(i) that either к = u> or к is the least com

pletely О-simple congruence on S. We shall need the following auxiliary 
results.

Lemma 2.2. For every a £ Sf, there exists b £ Sq such that a > b. 

Proof. Let
/ =  { a  £ S;\S0aS0 =  {0}} U {0}.

Then I  is an ideal of S\ so either /  =  {0} от I = Si. The second alternative 
would contradict the hypothesis that SoS\ ф {0}. Hence /  = {0} so for 
every a £ Sf ,  we have SoaSo ф {0}, and thus ua,av ф 0 for some u,v  £ Sq. 
Let s 6 So be such that avsua ф 0 and let p be an inverse of avsua. For 
e = avsuap, f  =  vsuapa and b = avsuapa , we obtain

e2 =  avsua(pavsuap) - avsuap =  e,
/ 2 -  vsua(pavsuap)a = vsuap =  / ,  

b — ea = a f  ф 0

so that a > b with b 6 Sq.
Corollary 2.3. For every e £ E(S j), there exists f  £ E(Sq) such that 

e > f  ■
Proof. By Lemma 2.2, there exists 6 £ Sq such that e > b. Hence 

b — fe — eg for some / ,  g £ E(S)  so that

b2 =  ( fe ) (eg ) = (fe)g  =  bg = b £ E{Sq).

Lemma 2.4 ([5], Chapter III). The extension S of So by Si is strict if 
and only if for any e , f , g  £ E(S), e > f  > 0 and e > g > 0 implies f  = g.

Lemma 2.5 ([7], Theorem 3.6). The relation К  is a congruence for a 
completely 0 -simple semigroup.

3 .  C o n g r u e n c e s

We extract here a description of congruences on 5  from [3] in terms of 
congruences on So and Si as follows.

Notation 3.1. Let po £ C(5o) be such that for every a £ S j there 
exists a' £ So with the property that 1

(1) axpoa'x, xapoxa' (x £ So).
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In such a case we say that a and a' are po-linked. On S define a relation 
[po] by

apob \ i a , b e S o ,  
apob' if a £ So, b £ Sx 
a'p0b if a £ SI, b e  S0, 
a'pob' if a,b e Si

for some [all] a' po-linked to a and b' po-linked to b.
Let po e C(So) and p\ e  Co(£i) be such that

a,b e Si ,  ap\b, xpoy => axpoby, xapoyb.

On S define a relation [po,p\\ by

( 2) a[p0]b О

if a,b e So, 
i f a,b e Si-

The alternative “for all a to “for some a'” in Notation 3.1 is justified 
by noticing that if a' and a" are p0-linked to a, then a'xpoa"x and xa'poxa" 
for all x e  So and thus a'poa" by weak reductivity of So/po-

All our discussion of the congruence lattice C(S) is based upon the 
following representation of congruences on 5.

T h e o r e m  3.2. The relations [po] and [p0,pi] are congruences on S. 
Conversely, every congruence on S can be so represented.

This representation is evidently unique. Clearly s = [eo, £i], =  [wo]
and [u>o,£i] is the Rees congruence relative to the ideal So- The congruences 
[po,Pi] are precisely those which saturate So- For p £ C(S), we have that 
S/p  is completely О-simple if and only if either p = [po] for some p0 £ C(So) 
such that po ^ wo or p =  [wo, Pi] for some p\ £ Co{S\). For the remaining 
congruences p =  [po, pi], we have that S /p  is an extension of So/po by S\ /p \ ,  
both of which are completely О-simple. We now give the inclusion relation 
for these congruences.

L e m m a  3.3. (i) Let [Ao],[po] G C{S). Then [A0] ^ [po] if and only if 
Ao ü Po-

(ii) Let [A0, Ax], [p0,pi] £ C(S). Then [A0, Ai] Í  [po,Pi] if and only if 
A0 Q po and Ai Q px.

(iii) Let [A0,Ai],[p0] £ C(S). Then [A0,AX] C [po] if and only if A0 Q po-
(iv) Let [A0] £ C(S), p0 £ C(S0) and A0 Í  po- Then [p0] £ C(S).

P r o o f , (i) Note that [Ao]|So = A0. Hence if [Ao] Q [po], then A0 Q po- 
Conversely, assume that Aq Q po and let a[Ao]6. For a,b £ Sx, let a, a' and
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b, b' be Ao-linked. Then a'Xob'. Since Ao Я pa, we have that a, a1 and b, 
b' are po-linked; in addition, a'pob'. Consequently a[po]b. The other three 
cases require similar arguments. Therefore [Ao] Я [po]-

(ii) This follows directly from [po, pi]|So =  Po and [Po?Pi]ls* = Pils; •
(iii) Note that [Ao .A i]|*  ~  and [p0]|So =  pa- Hence if [A0, Ai] C 

C [p0], then Ao Я pa- Conversely, assume that Ao Я pa and let a[Ao, Ai]6. 
By the remarks made, if a, b £ So, then a[po]b. Let a,b £ Sj and x £ So- 
Then axXobx and xaXoxb so that axpobx and xapoxb. Let a, a' and 6, b' be 
po-linked. Then axp0a'x, xapoxa' , bxpob'x and xbp0xb' which implies that 
a'xpab'x and xa'poxb'. Since this holds for all x £ So and Sa/po is weakly 
reductive, we conclude that a'pob'. Therefore a[po\b which completes the 
proof that [Ao, Ai] ^  [po]. However [Ao, Aj] ф [po] since the former saturates 
So and the latter does not.

(iv) Indeed, if a' is Ao-linked to a, then also a' is po-linked to a.

The next lemma will come in very handy.

Lemma 3.4. Let [po] G C(S) and a > b >  0 in S. Then a[po]6.
P roof. By hypothesis, b =  ea = af  for some e, /  G E(S).  The conclu

sion holds trivially if p0 = wo, so we may assume that p0 ф uq- Then 5/[po] 
is completely О-simple and we may let 5/[po] =  M °(I ,G ,A ;P ) .  Then

b[po] = { i ,g ,  X), e[p0] = ( i , p ~ - , p ) ,

/[Po] = a[po] =  {i ,h,  A)

with
( i , g , X ) =  ( i , p ~ l ,p )  ( i,h,  A) =  ( i ,  h, A) ( j ,P x j , A)

whence g = h. Therefore a[p0] =  b[po], that is a[po]b.

Based on this lemma, we can give alternative expressions to those in (1) 
and (2) for definability and the form of [po] in terms of the natural partial 
order which will prove often more convenient than the original definition.

Lemma 3.5. Let p0 G C(50).
(i) [po] G C(S) if and only if for every a E 5 [ and some [all] b £ Sq such 

that a > b, we have axpobx and xapoxb for all x £ So-
(ii) Assume that [po] G C(S). If a,b £ 5 j , then

a[p0]b äpob for some [all] a,b such that a > a > 0, b > b > 0.

If a £ S] and b £ So, then

a[po]b О  dpob for some [all] ä such that a > ä > 0.
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P roof, (i) Assume that [po] G C(S) and let a > 6 > 0, x E So. By 
Lemma 3.4, we have a[po]b whence ax[po]6a: so that axpobx and similarly 
xapoxb. The converse is obvious.

(ii) Let a,b  E S*. Assume that a[p0]b and let a > ä > 0 and b > b > 
> 0. By Lemma 3.4, we have a[po]a and 6[po]6. Thus a[po\b so that äpob. 
Conversely, assume that ap0b where a > ä  > 0 and b > 6 > 0. By Lemma
3.4, we have a[po]a and 6[po]6. Hence, for all x E So, we get ax[po]ax, 
xa[po]xa, bx[po]bx and xb[po]xb. But then axpoäx, xap0xä , bxpobx and 
xbpoxb, that is a ,ä  and 6,6 are po-linked. Therefore a[po]6.

The argument for the case a E and 6 G So runs along the same lines 
and is omitted.

We collect some of the properties of к and «o> introduced in Notation
2.1, in the next simple result.

Lemma 3.6. (i) к is the least congruence on S of the form [po]-
(ii) Let po G C(So). Then [p0] G C(S) if and only if ^ p0.

(iii) Let e , f , g  E E(S) be such that e > / > 0 ,  e > g > 0 and f g  = 0. 
Then к = Ш.

(iv) Let So be a Brandt semigroup with at least two nonzero idempotents. 
If S is a strict extension of So, then к = [e]/ otherwise к = и.

P roof, (i) By Corollary 2.3, for every e E -E(Sj), there exists /  E 
E E (So) such that e > f .  Hence к does not saturate So and must be of the 
form [po], in fact к = [ко]- Let [p0] G C(S) and e , f  E E(S) be such that 
e > f  > 0. Then by Lemma 3.4, we have e[po]/- This proves that к* ^ [po], 
as required.

(ii) If [po] G C(S), then к ^ [po] by part (i) and thus «о ^ Po- Conversely, 
if «о Я Po, then [k0] G C(S) together with Lemma 3.3(iv) implies that [po] G 
EC(S).

(iii) Lemma 3.4 implies that ек / and екд so that fug.  Multiplying this 
on the right by g gives 0кд. Therefore к = ш.

(iv) If S is a strict extension, then for every a E SJ" there exists a' E Sq 
such that ax = a'x and xa = xa! for all x E So which shows that [e0] G C(S) 
and thus к = [so] by part (i). If S is not a strict extension of So, then by 
Lemma 2.4 there exist e , f , g  E E(S)  such that e >  /  > 0 ,  e > p > 0  and 
f  Ф g so that f g  =  0 and part (iii) gives that к = и.

4 .  M e e t s  a n d  j o i n s

We shall represent meets and joins of the congruences on S in our 
representation.
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Lemma 4.1. Let [A0],[po] G C(£).
(i) [Ao] A [po] =  [Ao A pol- 

Cii) [Ao] V [po] =  [Ao V poj.
P roof, (i) By Lemma 3.6(H), [A0 A po] 6 C(S).  For a > b > 0 in S, 

by Lemma 3.4, we have a[Ao] A [po]b and hence [Ao] A [po] is of the form 
[#o]- Clearly ( [A0] A [p0]) |Sq = A0 A p0 whence, by the uniqueness of the
representation, [Ao] A [po] = [Ao A po].

(ii) By Lemma 3.6(H), [A0 V po] G C(S). Since A0, po Я Ao V po, by 
Lemma 3.3(i), we have [A0],[po] ^  [Ao V p0] so that [A0] V [po] ^ [Ao V po]. 
Also [Ao] V [po] does not saturate So and hence is of the form [0O]- Thus 
[P0] Q [Ao V po]. For the opposite inclusion, in view of Lemma 3.3(i), it 
suffices to consider their restrictions to So. Indeed, let a\o  V pob. There 
exists a sequence

aAoCi Р0С2 . . .  cnpob 

with ci, C2, . . . ,  cn E So, so that

a[Ao]ci[po]c2 . . . c n[p0]6

and thus a[A0] V [po]b. Therefore [A0 V p0] Q [A0] V [po] and equality prevails.
Lemma 4.2. Let [Ao, Aj], [po, Pi] E C(S).
(i) [A0, Aj] A [po, Pi] = [A0 A po, A! A pi].

(ii) [Ao, Ai ] V [po, pi] =  [Ao V po, Xx V pij.
P r o o f , (i) A simple argument shows that [A0 A po, Ai A pi ]  E C(S). The 

required equality follows easily from the definitions.
(ii) Let a,b E S* and x ,y  G So be such that aA} V p\b and a;A0 V роУ- 

There exist sequences

(3) dX\C\p\C2 • • * cmpi&, Ci, c2, * • .,  cm G F j,

(4) x \ 0z1poz2 . . .  znp0y, z \ , z 2, ■.. , z n G S0.

By possibly repeating parts of the above sequences, we may assume that 
m — n. It follows that

aa:AiCiZipoc2z2 . , . c nznpoby

and thus ax Ao V poby and similarly хаХо V poyb. Therefore

[Ao V po, Ai V pi] G C(S).

The inclusion [A0, Aj] V [po, P i ]  ^ [Ao V po, Xx V p i ]  follows directly from 
Lemma 3.3(H). If a, 6 G and a[A0 V po, Xx V P\}b, then we have a sequence 
(3) so that

a[Ao, Ai]ci [po, pi]c2 . . .  cm[po, p\]b
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whence a[Ao, Ai] V [po, p\)b. If x ,y  E So and x[Ao V po, Aj V p\]y, then we 
have a sequence (4) so that

x[A0, Ai]^ [p0, Pl}*2 ■ ■ ■ Zn[Po, P\]y 

whence x[Ao, Ai] V [po,Pi]y- Therefore

[Ao V po, Ai V pi] Q [Ao, Ai] V [po, pi] 

and equality prevails.
For the meet of mixed types of congruences, we shall need some prepa

ration.

N o t a t i o n  4.3. For [po] E C(S), define a relation p'0 on Si by 

ap'0b axpoby, xapoyb for all xpoy

if a,b G Sj and OpóO.

Straightforward verification shows that p'0 is an equivalence relation on 
S\.  Let p0 =  (pó)° be the greatest congruence on Si contained p'0. Recall 
that Ci denotes the greatest proper congruence on Si.

L e m m a  4.4. Let [p0] E C(S). Then [p0,p0] E C(S) and is the greatest 
congruence p on S with the properties: p saturates So and p|So =  po- In 
addition, [po,p0] = Ы  A [w0,Ci]-

PROOF. First note that p0 is a proper congruence on S\.  That [po,P0] E 
E C(S) follows directly from the definition of p0. Let [po, Pi] E C(S) and 
a,b 6 be such that ap\b. Then axpoby and xapoyb for all x ,y  E So such 
that xpoy and thus ap0b. Therefore p\ ^ p0 so that [po, Pi] í  [po,Po]-

By Lemma 3.3(iii), we have [po,Po] C [po]- M aximally of (i implies 
that Po ^ Ci which by Lemma 3.3(ii) yields [po,P0] = [wo, Cl]- Therefore 
[po,Po] = [Po] A MbCi]-

Since [p0] A [a»o,Ci] Я [u>o,(i] we have that [p0] A [u>0, Cl] is of the form 
[i9o,0\\. Let a[po] A [^o,Ci]h. For a, b E So, a[po]b implies that apob. Let 
a,b E Sj, u ,v  E (S j)1 and xpoy. Then apob implies (uav)x[po](ubv)y so 
that (uav)xp0(ubv)y and similarly x(uav)poy(ubv). Also uav[u>o, Ci]ubv and 
hence uav E So if and only if ubv E So- In Si this means that uav =  0 
if and only if ubv =  0. It follows that uavp'0ubv. Since this holds for all
u,v  E (S i)1, we get ap0b. Therefore [po] A [u>o,Ci] (= [po,Po] and equality 
prevails.

L e m m a  4.5. Let [p0], [p0,pij_E C(S).
(i) [Ao] A [po, Pi] = [A0 A po, A0 A pi].

(ii) [Aq] V [po,Pi] =  [Aq V po].
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P r o o f , (i) Indeed,

[A0] A bo, Pi] =  [A0] A b>o, Ci] A [po, Pi]  by maximality of [w0, Cl]

= [A0, A0] A bo, Pi] by Lemma 4.4

= [A0 A po, A0 A p\] by Lemma 4.2(i).

(ii) By Lemma 3.3(i) (iii), we have [Ao] Q [Ao V po] and

bo, Pi] C [A0 V po] 

so that [A0] V [po,Pi] £  [A0 V p0].
Since [A0] Q [A0] V [po,pi], we have that [A0] V [po,Pi] is of the form [Po]- 

We already have в0 ^ Ao V po. For the opposite inclusion, by Lemma 3.3(i), 
it suffices to show that A0 V po Q #o, that is

A0 V po C ( [A0] V [po, Pi]) |S(j •

If xXo V poy, then there exists a sequence (4) whence

z[Aobi [po, Pi]*2 • • • 2nbo, Pi]y
and thus ж[Ао] V [po, Pi]y, as required.

5. R elations induced by restrictions

In order to study the structure of the congruence lattice of S, we consider 
here the relations Ro and R\  on C(5) induced by the restrictions of the 
congruences on S to So and 5J, respectively.

N o t a t io n  5.1. Define a relation Ro by

\ R 0p O  A|So = p|So (A , p e C ( S ) ) .

Considering various cases, straightforward checking shows that Rq is a 
congruence on C(S). We now describe its classes. Recall that [a , ß ] denotes 
an interval in a lattice and p0 is defined in Notation 4.3.

P r o p o s it io n  5.2. Let [po,Pi] € C(S) and

ГР0 = [bo,£i], bo, Л,]] •

Then

Гр0 u {bo]} -  [bo,ei]],[po]]
P̂o

*/ bo] e  c(S),
otherwise.
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Proof. By Lemma 4.4, [po, p0] is the greatest congruence on S of the 
form [po, #i] for some в\ E Co(Si)- If [po] G C(5), then by Lemma 3.3(iii), it 
is the greatest element of [po, Pi]Ro; otherwise its greatest element is [po, Pol
ln either case, [po,£i] is the least element of [p0, pi]Ro- Clearly [po, Pi ]Rq is 
convex, which then implies the assertion of the proposition.

The above result also takes care of [po]Ao when [po] E C(S). We shall 
need some more symbolism.

Notation 5.3. Define a relation f?i by

Л Д 1 Р 1 44 A |5 . =  p|s . (A ,p  E C(S) ) .

Also let

A =  {b E До I there exists a E S[[ such that a > b} .

Clearly R \  is an equivalence relation on C(5).
Lemma 5.4. (i) For [Ao],[po] G C(S), we have

[Ao]Äi[po] 44 A0|a = PoU-

(ii) For [A0, Aj], [/>0, Pl] E C(S), we have

[A0, Ai]^i[p0,pi] 44 Ax = pi.

(iii) For [A0],[po,Pi] G C(S), we have

[A o]Ä i[p o ,P i] 44 (for any a > 5 > 0, b > b  > 0: a \ 0b О  ap\b).

Proof. We shall use Lemma 3.5(ii) freely.
(i) Let a > a > 0 and b > b > 0. If [Ao]Ai[po], then

äAob 44 a[Ao]6 44 a[po]6 44- äpob

which shows that A0U =  PoU- Conversely, if Ao|a = PoU) then 

a[A0]6 44 a \ 0b 4=4 ap0b 44 a[p0]6

so that [A0]Ai[po]-
(ii) This is obvious.

(iii) Again let a > ä  > 0 and b > b > 0. If [A0]-Ri[po,Pi]? then

a \ 0b 44 a[A0]6 44 a[p0, pi]b 44 ap\b.
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Conversely, if the above condition holds, then

a[A0]i> <4> aX0b apib О  a[p0,p\]b.

In order to describe the R \-classes, we shall need some more notation. 
N o t a t i o n  5.5. For pi g C0(S i) , let

Pi =  n { A0 G C(5'o)|[Ao, p\] G C ( 5 ) } .

For po G C(S),  let

Po =  n{ Ao G C(5o)|[Ao] G C(S) and Ао|л = Po\a } >

and define a relation po on So by

ap0b O- (if x ,y  G (So)1 and xay,xby  G A, then xayp0x b y ) .

We shall see below that the following notation for certain intervals is 
meaningful.

rpi = [[Pi>/>ib[wo,Pi]] if P ieC (S i) ,  

д ро =  [ [Po], [po]] if [po] g C(S).

We call [p0] G C(S) pure if [po] is not Är related to any [Ao, Ai], and we call 
[p0,pi] G C(S) pure if [p0,Pi] is not f?j-related to any [A0].

We are now ready for the main result of this section.
T h e o r e m  5.6. [po,Pi]Ri -  ГР1 if[po,P\] G C(S) is pure,

[p0]Ri =  A Po if [po] G C(S) is pure,

[po]Äi =  ГР1 U Д а0 if [Ao]Äi[po,Pi]-
P r o o f . Let [po,Pi] be pure. It suffices to prove that [pi,pi] is the least 

element of [po,Pi]#i- We verify first that [p0,pi] G C(S). Hence let a,b G 
G SI be such that ap\b and let xpxy. Then for every [Ao, pi] G C(S), we have 
xXoy and hence axXoby and xaXoyb which implies that axpxby and xapxyb. 
Therefore [pi,pi] G C(S). The minimality of [pi,pi] is obvious.

Next let [po] be pure. We show first that [po] is the least element of 
[p0]Äi. Let

F  — { Ao G C(So)|[A0] G C(S) and А0|л — PoU } •

Then po G T  and thus T  ф 0. Let a > b > 0 in S and x G So- Then axXobx 
and xaXoxb for all Ao G T  by Lemma 3.4 and hence axp0bx and xapoxb. 
Therefore [po] G C(S).
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Since po po, we have ро\л Я Ро|д- Let аро|д1». Then aXob for all Ao G 
G T  and thus ap^b. Hence р0|д Q Po\a and equality prevails. By Lemma 
5.4(i), we get [po]-fti[po]- Let [A0]Äi[/t>o]• Then by Lemma 5.4(i), we have 
AoU = Pol A  so that Ao G T  and thus p0 Q Ao. But then Lemma 3.3(i) yields 
[po] Я [Ao]-

We now show that [po] is the greatest element of [po]Äi- Clearly po 
is an equivalence relation. Let apob,c G So and x,y  G (So)1. If x(ac)y,  
x(bc)y G A, then xa(cy), xb(cy) G A and the hypothesis implies that 
xa(cy)poxb(cy), that is x(ac)ypox(bc)y. Hence acpobc and similarly capocb. 
Therefore p0 G C(So).

If apob, then xaypoxby for all x,y  G (So)1 so that po ^  po- Now Lemma 
3.3(v) implies that [po] G C(S). In addition, po £ [ро]|д. If аро|д6, then 
a,b G A so with x = у = 1, we get apob. Therefore p0\a ^ PoU and equality 
prevails. By Lemma 5.4(i), we obtain that [p0]Äi[Po]- Let [A0]Äi[po] and 
a \ 0b. By Lemma 5.4(i), we have Ао|д = PoU- If for x , y  G (-So)1 we have. 
xay,xby  G A , then xayX0xby which then yields xayp0xby. Therefore apob 
which proves that Ao Q po- Now Lemma 3.3(i) gives [Ao] Q [po].

Since [po]Äi is obviously convex, we deduce that [po]-ßi =  ГРо.
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Finally assume that [A o ]A i[p o ,P i]- By the above ГР1 Я [po,pi]R\  and 
Дд0 Я [Ao]i?i. If [Öo]Ai [A0], then as above, we get [00] E Дл0? and if 
[Oo,0i]Ri[po,Pi] then again as above, we obtain [0o>#i] £ ГР1. Consequently 
[Ao]Ai = [po, p \ \R\  = ГР1 U Дд0.

Diagram 1 represents the lattice C(S). In it are visible A0-classes and 
the eAi-class. The intersection Rо П Ri is “almost” the equality relation; it 
is possible, however, that [po]f?o П Ai[po, Pi]-

6 .  T h e  k e r n e l  a n d  t h e  t r a c e  r e l a t i o n s

We have recalled the definitions of the kernel and trace of a congruence 
and the kernel and trace relations К  and T in Section 2. We start here 
with a study of the relation К  on our semigroup S with a view of obtaining 
necessary and sufficient conditions on S  in order that К  be a congruence. 
This does not succeed in a satisfactory manner, so in the next two sections 
we consider special classes for which the answer is complete. We also 
consider briefly some of the ends of the intervals which make up the K-  
and T-classes on C(S).

Our first result is basic for most of present considerations.
Lemma 6.1. (i) For [p0] £ C(5), we have

ker [po] =
=  ker po U {a  E 5j| some [every] po-linked element of a is in kerpo}
= kerpo U {a G 5j|a has a p0-linked element in E ( S q))

= ker po U { a G Aj |ä G ker po for some [all] ä such that a > a > 0} .

(ii) For [p0, pi] E C(S), we have ker [po, pi] = kerpo U (kerpi)*.

P r o o f , (i) Let a £ кег[ро]. Then a[po]e for some e G E(S).  If e G 
G E(S^),  then by Corollary 2.3, there exists /  £ E  (Sq) such that e > / .  
By Lemma 3.4, we have e[po]/. We may thus assume that e G E(So).  If 
a G So, we get that a G kerpo. Let a E S]  and let a and a1 be p0-linked. 
From Notation 3.1 we have that a[po]a' which together with a[po]e gives 
a'poe so that a' E ker po-

Now let a E S] and a' E kerpo be po-linked. Then a'poe f°r some e E 
G E ( S q )  which evidently implies that also e  is po-linked to a.

Next let a G 5J and e E E ( S q ) be po-linked and let a > ä > 0. Then 
a[po]e and by Lemma 3.4, also a[po]a. Hence a[po]e which implies that 
ä G ker po-

Finally let a G 5J and a > a > 0, a E kerpo- Then by Lemma 3.4, we 
have a[po\a and also ар0е. It follows that a[po\e so that a E ker [po].
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Since obviously kerpo ^ ker[po], this proves all the equalities in part
(i).

(ii) This is evident.

Lemma 6.2. Let [po,pi] G C(5), a £ (kerpj)* and a > b > 0. Then 
b £ kerpo-

P roof. By hypothesis, ap\e for some e £ E (S { )  and b = fa  — ag for 
some / ,p  £ E(S).  Hence b =  fapofe  and b = agp^eg so that

b2po(fe)(eg) =  (fe)gp0bg = b

and b £ kerpo-
We can now characterize the relation К  as follows.

Corollary 6.3. (i) For [Ao],[po] £ £(£), we have

[Ao]A'[po] о  AoA'po-

(ii) For [A0, Ax], [p0,pi] G C(5), we have

[A0, A!]A'[po,Pi] <=> AoA'po, AiA'pi.

(iii) For [A0],[po,Pi] G C(S), we have

[Ao]A'[po,pi] AoA'po and (a > b > 0,6 £ kerpo => a £ kerpi). 

P roof, (i) Indeed, by Lemma 6.1(i), we get

ker [A0] = ker [p0]
ker A0 = kerpo and (for a > b > 0 : 6 £ ker Ao 6 £ kerpo) 4=>

<=> ker Ao = kerpo-

(ii) This is an obvious consequence of Lemma 6.1(ii).
(iii) Indeed, by Lemma 6.1, we have

ker [A0] = ker [p0, pi]
ker Ao =  ker po and (for a > b > 0 : 6 £ kerA0 44>6£ kerpi)

which in view of Lemma 6.2 gives the desired statement.

The manipulation with kernels and the relation К  would be more effec
tive if К  were always a V-congruence; recall that К  is always a (complete)
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Л-congruence. It is thus of some importance to know for which regular semi
groups (belonging to some classes) is К  a congruence on their congruence 
lattices. The next theorem provides a general criterion on our S which is 
necessary and sufficient for its kernel relation К  to be a congruence. In 
fact, representing the congruences on S as either [po] or [ p o ,  p i ] ,  we shall ex
amine which combinations of these respect the V-congruence property and 
which, in general, do not. Even though this result expresses the congru
ence property of К  again in terms of congruences on S, and not directly in 
terms of the structure of S, it will turn out quite useful when we consider 
specializations o f S in the next two sections. Even in its full generality, it 
indicates which combinations of congruences [po] and [po, pi] are crucial for 
the congruence property of К .

THEOREM 6.4 . The following conditions on S are equivalent.
(i) К  is a congruence.

(ii) For [po],[Po,Px],[0o,0i] e  C{S), A0 Ф w0,

[Ao]A’[po,Pi] => [Ao V во\К[ро V 0o,Pi V 0i].

(iii) For [Ao],[po,pi],[0o,0i] e  C(5), A0 Ф u 0,

ker Ao = kerpo, {x > у > 0, у € kerpo => x £ kerpi),

a > b > 0, 6 € ker(po V 0o) => a £ ker(pi V в\).

P r o o f . By Lemma 4.5(ii), (i) implies (ii). Also (ii) and (iii) are equiv
alent in view of Corollary 6.3(iii) and Lemma 2.5.

(ii) implies (i). We have to check that all cases, except the one in part 
(ii), are automatically satisfied. We shall use Lemmas 2.5, 4.1 (ii), 4.2(B), 
4.5(ii) and Corollary 6.3 freely.

1. [Ao]Ä'[po]- Then XqK p\  and
[Ao] V [#o] = [Ao V 0o] A [Po V #o] =  [po] V [0o],
[Ao] V [0o,0i] = [Ao V Oo\K[po V 0O] =  [po] V [0o,0i]-

2. [A0, A!]Ä'[p0,pi]. Then A0A'p0, Aiii'pi and
[Ao, Ai] V [0O] = [Ao V в о ]Ä [po V в0] =  [po,Pi] V [0o],
[Ao, Ai] V [0o,0i] = [Ao V 0o, Ai V 0i]/t [po V 0o, pi V 0i]

=  [Po,P i] V [0o,0i].
3. [A0]A'[po,Pi]. Then A0A>o and

[A0] V [в0] = [Ao V 0o]A'[po V 0O] = [po] V [0o].
LetAo = wo- By Lemma 6.1, kerpo = So and kerpi = S\ and thus

ker [w0 V 0O] = S = ker[p0 V 0o,pi V 0a]
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so that [cjo V #o]A'[/9o v $o,P i V вj].
Therefore К  may fail to be a congruence because of the single case in 

Theorem 6.4(ii). Sufficient conditions for the congruence property of К  can 
thus be easily provided.

C o r o l l a r y  6.5. If ker[Ao] Ф ker[po,pi] for all choices of [A0], 
[po, pi] G C(S) Ao ф wo or a > b > 0 implies b £ E(S)  or к = и , 
then К  is a congruence.

P r o o f . The first antecedent uses Theorem 6.4(H), the second Theorem 
6.4(ni). Assume that к =  ш. By Lemma 3.6(ii), lo — [uio] is the only 
congruence on S of the form [po] and Theorem 6.4(H) is satisfied.

A concrete sufficient condition for the first condition in Corollary 6.5 is 
the following.

L em m a  6 .6 .  Suppose that there exists a £ 5j such that a > e for some 
e £ E  (Sq) and a2 £ Sq. Then ker [Ao] Ф ker[p0,pi] for all [A0],[po,pi] £ 
£ C(5) and thus К  is a congruence.

P r o o f . By contrapositive, assume that ker[Ao] = ker[po,Pi] and that 
a > e for some e £ E (S q). By Corollary 6.3(iii), we have kerAo = kerpo 
and x > у > 0, у £ kerp0 imply x £ kerpi. In particular, a > e > 0 and 
e £ kerpo imply that a £ kerpj. Hence a2pa so that a2 £

We shall see in Lemma 7.4 that the converse of this lemma holds for 
strict extensions.

The Л'-classes are intervals in C(S), in the notation p K  =  [рл',рА] for 
any p £ C(S). If we represent the congruences on S as either [po] or [po?Pi]> 
one may ask about the form of

(5) [Po]r-, [po,P i]r-, [ро]Л )[Po,P i]A

in terms of po or po and p\,  respectively. Toward this goal, we find only the 
following result.

P r o p o s it io n  6.7. For [p0] € C(S), we have [р0]Л = [(po)A] •

PROOF. Since po Q (po)h and [po] £  C(5), Lemma 3.3(iv) implies that 
[(p0)A] £ C(5). By Lemma 6.1(i), we obtain

ker (po)A =  ker (p0)A U | a £ 5 i | a > a > 0 = i >  ker (po)A |  =  

=  ker p0 U { a £ 5 j | a > a > 0 = > a £  ker p0 } = ker [po].

If [A0]/i [po], then by Corollary 6.3(i), we have A0A'po whence Ao Q (po)A 
so that [A0] ^ [(po)A] by Lemma 3.3(i).
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Let [Л0, \i]K[po\ and g[A0, Ax]6. By Corollary 6.3(iii), we have X0K p 0- 
Hence A0 Я (p0)h so that, if a,b G So, then a \ 0b and thus a[(p0)A]^ 
whence a\(po)K]b. Assume next that a,b G Sx. Then a\\b.  Let x £ So- 
Then axXobx so that ax(po)h bx and thus a x [ ( p o ) ] b x .  Let a > a > 0 
and b >  b > 0. By Lemma 3.4, we have a[(po)A] a  and b[(po)K]b and 
thus ax[ (po)R] bx whence ax [(/o0)A ] bx . Symmetrically, we get xa(p0)K xb. 
Since this holds for all x £ So, weak reductivity of So/(po)K yields that 
a(po)h b. Therefore а[(/9о)Л] b and thus a [(po)A ] b. Consequently [Ao, Ax] Q
= [ Ы А ] completing the proof of the maximality of the latter. The 
assertion of the proposition follows.

We now cast a brief look at the relation T .

Lemma 6.8. (i) For [A0],[po] 6 C(5), we have

[Ao]T[po] XoTpo-

(ii) For [A0, Ai],[p0,/9i] £ C(S),  we have

[Aq, Ax]T[po, Pi) XoTpo, X\Tp\.

(Ш) For [A0], [po> p\] e  C(S), we have [A0] /T[po,Pi}-

Proof, (i) Trivially [A0]T[po] implies X0Tp0- Conversely assume that 
X0Tpo and let e , /  G E( S)  be such that e[A0] /.  If e , f  £ So, then eX0f  and 
hence ep0f  so that e[p0]f- Let e , f  £ S{.  By Corollary 2.3, there exist 
e ,/  G E ( S q) such that e > e and /  > / .  Now Lemma 3.4 implies that 
e[Ao]/ whence eX0f  so that epof ■ But then e[po\f and again by Lemma 3.4, 
we conclude that e[po]f ■ The case e G 5X and /  G So is treated similarly 
whereas the case e G and /G  5* is symmetric to it. Therefore e[po]f in 
all cases so that tr [A0] Q tr [p0]- By symmetry, equality prevails and gives 
[Ao]T[po].

(ii) This is obvious.
(iii) For any e G E(S^), by Corollary 2.3, there exists /  G E( S q) such 

that e >  f .  By Lemma 3.4, we have e[A0] /,  whereas e[po, p i \ f  is contrary 
to the definition of [po,p\]-

We can also consider expressions in (5) with T  instead of K.  The next 
result concerns [poj-

Proposition 6.9. For [p0] € C(S), we have [p0]j = [(po)r] and 
Ы Т =  [(Po)T] -
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Proof. We show first that [(po)j] E C(S). Recall that we have defined 
к in Notation 2.1 as the congruence on S generated by the set

{ ( e J ) e E ( S ) x  E( S ) \ e >  f  > 0 } .

It then follows that к = (tr/c)* and by ([2], Theorem 3.2), (x/i)* =  k j . 
Consequently к — k j . It also follows that the operator subT is monotone. 
Hence к — n j  Q ((Р о)х)т =  (Po)t so by Lemma 3.6(ii), we have [(ро)г] £ 
E C(S).  By Lemma 6.8(i), we easily get that [/>o]j = [(/9o)x] • By Lemma 
3.3(iv), we have [(po)7 ] E C(S) so again by Lemma 6.8(i), we easily see 
that [(p0)] T = [(po)T] •

7. S trict extensions

In the case of a strict extension S of So by Si,  we shall be able to obtain 
explicit answers to several queries left open in the general case, in particular, 
by providing converses of some results obtained in the preceding section.

Recall from Section 2 that 5 is a strict extension (of So by Si) if for every 
a 6 5J, there exists a' E So such that ax = a'x and xa = xa' for all x E Só
in fact, the mapping <p: a —> a1 (a £ Sf)  is a partial homomorphism <p: —►

So which determines the multiplication of 5. Since we have excluded the 
case when SoS\ = {0}, that is when S is an orthogonal sum of So and Si,  our 
partial homomorphism maps into 5q. It will be convenient occasionally 
to give both Sb and Si the Rees matrix representation. In such a case, we 
may set

S0 = M°(Io,Go,A0; P), Sr = M 0( /1,G 1,A 1;Q)

and our partial homomorphism <p takes on the following form. Let

I\ —* /о, и: I\ —> Go, ш: G\ —* Go, v : Ai —► Go, f)'- Ai —+ Ao 

be functions with и: i —► щ, и  a homomorphism, v: A —»■ v\ ,  such that

(6) PM ф 0 => Pmu = vxqxntfUi

Now define

<р:(г,р, A) — (iZ,Ui(gu)vx,\ri) ((i ,g,  A) E S j ) .

Then (p is a partial homomorphism of Sj into Sq. Conversely, every such is 
of the above form.
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Also note that the mapping

ip: a f ap if a £ 5j 
l a  if a £ So

is a retraction of S  onto 5o, so 5  is also called a retract extension (of 5b by 
5 i ) .  For a full discussion of this subject, see ([5], Chapter III).

We shall abbreviate the designation of the above situation to “Let S 
be a strict extension.” In order to place the strict extension case into our 
general context, we prove the following simple result.

P r o p o s it io n  7.1. The following conditions on S are equivalent.
(i) S is a strict extension.

(ii) Ы  g C(S).
(Ш) bo] G C(S)  for some p0 Q H q.
(iv) [ Щ £ C(S).
(v) bo] Is defined for all p0 £ C(S).

(vi) k0 = £0-

P r o o f . Items (i) and (ii) are equivalent by the very definitions. Also 
items (v) and (vi) are equivalent by Lemma 3.6(ii). Lemma 3.3(iv) yields 
that (ii) implies (v) and (iii) implies (iv). Trivially (ii) implies (iii) and (v) 
implies (ii).

(iv) implies (i). Let e, f , g  £ E(S ) be such that e > /  > 0 and e > g > 0. 
By Lemma 3.4, we have e[Ho\f  and e[Ho]g so that fHog  and hence /  = g. 
By Lemma 2.4, we conclude that the extension is strict.

It is a useful consequence of this lemma that [po] G C(S)  for all p0 £ 
£ C(So). In fact, for any a £ 5* and [po] G C(S),  we have that a<p is p0- 
linked to a. Using the retraction ip mentioned above, the expression for [po] 
simplifies to:

a[po]b a-ippobip (a,b £ So).

L emma  7.2.  Let S be a strict extension. Then for po £ C(So), we have 

ker[po] =  ker p o U { a e 5 ' i | a i p 6  ker p0 } .

In this case, even the conditions for membership of [pmPi] in C(S) 
simplify, as we shall now see.

L emma  7.3.  Let S be a strict extension and let p0 £ C(So) and p\ £ 
£ Co(S\). Then [poiPi] G С(б’) if and only if for any a,b £ S*, ap\b implies 
aippobp.

P r o o f . This is a special case of ([3], Theorem 3(ii)).

We also have the converse of Lemma 6.6 for strict extensions.
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Lemma 7.4. Let S be a strict extension. 7/кег[Ао] Ф ker [/>o7 />1] for 
all [Ao], [pOiPi] € C(S),  then there exists a E S* such that ap E E ( S q )  and 
a2 E Sq.

Proof. By contrapositive, assume that if ap E E ( S q), then a2 6 5J\ 
We shall construct [Ao], [po,Pi] € C(S) such that ker [Ao] =  ker[po, Pi]- With 
the notation for p  above, we get that (£,keru;,£) is an admissible triple for 
the Rees matrix semigroup Si; let p\ be the corresponding congruence. We 
show next that [£o,pi] E C(S).

Let a = (i ,g,  A) and b =  (j , h , p ) E Sf  be such that ap\b. Then i =  j ,  
gh~l E kero; and A = p  so that

ap = (i,g,  \ ) p  — (i£,Ui(guj)v\,\ri) =

= {j^Uj(hüj)vß,pTj) =  (,j ,hp)p  = bp.

Hence ap\b implies apeobp and Lemma 7.3 implies that [£o>Pi] € C(S). By 
Lemma 7.1, we have [£o] E C(S). It follows from Lemma 7.2 that

ker[£0] =  £ ( S 0)U {a  € S ; \ap  E E{S0)}

and from Lemma 6.l(ii) that ker[£o,pi] =  E(So) U (kerpi)* with

(kerp\)* =  {(г,р,А) G S Í |pa; Ф 0,ррЛ! € kero;}.

Hence ker[£o] =  ker[£o,Pi] is equivalent to

(7) ( i , g , \ ) p  E В Д )  p\i ф 0, gp\i E keru>.

Now
( i , g , X) p =  (i£,ui(gu)vx,  Ap) E E(Sq)

4̂  9A?),tí ф 0, ufgoj^vx = 9Ar),tí

^  9Ar),j'i Ф 0 { з ш ) =

О q\r,M ф 0, (pw)-1 =  рХги  by (6)

<=> p x i  Ф 0, g p x i  G kerui.

Therefore ker[£o] = ker[£o,pi], as required.
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Corollary 7.5. Let S be a strict extension. Then ker[Ao] 7̂  
Ф ker[po,Pi] for all [Ao], [po, Pi] G C(S) if and only if there exists a E 
such that a<p G E(Sq) and a2 E So.

Proof. This follows directly from Lemmas 6.6 and 7.4.
We are now ready for a complete answer to the question: when is К  a 

congruence if the extension is strict. For the case when S is also an inverse 
semigroup, a similar characterization can be found in ([6], Theorem 5.7).

T heorem 7.6. Let the multiplication in S be determined by a partial 
homomorphism <p: 5j —► Sq. Then К  is a congruence if and only if either 
<p:Sl[ —► E( S q) or there exists о € 5,* such that atp E E(S q) and a2 E So-

P roof. Necessity. Assume that the second alternative does not take 
place. By Corollary 7.5, there exist [Ao], [po-. Pi] G C(S) such that ker [A0] =  
= ker [p0, p\\.  Then

ker [e0] =  ker ( [e0] Л [A0]) =  ker[e0] П ker[A0] =

= ker[e0] П ker[p0,pi] =  ker([e0] A [po,Pi])

and [£1] Л [po,Pi\ = [0o,0i] for some во and в\ so that [ео]К[во,в\]. The 
hypothesis implies that

[£o] V [wo, £ i ]A  [ 0 0 ,0 i]  V [w o,£i]

whence [u;0] /i [wo, 0\] by Lemmas 4.5(ii) and 4.2(ii). Hence ker [wo, в\\ =  5  
and thus ker в\ = S\.  Consequently

E(So)  U { a E Sj I a<p E A (5q)}  = ker [e0] by Lemma 7.2

=  ker[0o,0i] =  ker0o U (ker0i)* by Lemma 6.1(ii)

= ker 0o U Si

which implies that S îp Q E(Sq). Therefore <p: 5j —> E( Sq).

Sufficiency. Assume the first alternative and let [Ao]A’[po,Pi]- By 
Lemma 7.2 and the hypothesis, we obtain

(8) ker[Ao] = ker Ao U S[\

Now ker [Ao] = ker[po, pi] by Corollary 6.3(iii) implies that kerAo = ker po 
and ker pi =  S\. Let [0o,0i] G C(S).  Then

(9) ker [A0 V 0O] =  ker (Aq V 0q) U 5 j by Lemma 6.1 and (8),
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( 10)

kér [po V 60,p \  v #i] = kér (p0 V в0) U (ker(px V 0X)) * by Lemma 6.1 (ii) .

By Lemma 2.5, we have ker(Ao V во) =  ker(po V Oq). Since kerpx = S \,  we 
have ker(px V 9\) = 5 i. Now (9) and (10) give

[До V в0\К [po V 0o,p \  V 0X].

By Theorem 6.4, we conclude that К  is a congruence.
If the second alternative takes place, then by Corollary 7.5, we have 

ker [Ao] ф ker[po,pi] for all [A0], [po,Pi] G C(5) which by Theorem 6.4 yields 
that К  is a congruence.

C o r o l l a r y  7.7. Let S be a strict extension and suppose that p  is a 
homomorphism. Then К  is a congruence if and only if p: —> E(Sq).

P r o o f . The second alternative in Theorem 7.6 can not occur since if 
a G 5 X, ap  G E (S q), then a2<p = ap  so that a2 G SJ.

In the present case, we can find some more ends of the intervals making 
up the K-  and T-classes in C(S).

T h e o r e m  7.8. Let S be a strict extension.
(i) For [po, pi] G C(S), we have

tPo,Pi\K -  [ ( P o) a - , ( p i ) a ] 1 [Po,Pi]T = Ы Г, Ы Т]. 

(ii) For po G C(So), we have

Ы а-
[(Po)a-] г/ ker [p0] /  ker [A0, Aj] for all [А0,АХ] G C(S)), 
[(po)A-,0i] for some 0\ G Coíá'i) otherwise.

P r o o f , (i) We show first that [(P o) aa (Pi)a ] G C (5). In the Rees 
matrix representation of 5 X, let a = (i,g, A) and b — (j , h , p ) and assume 
that a(pi)K b. Let p\ be represented by the admissible triple (rx, N\, 7rx). 
Clearly (e, jVi,e) is admissible and it represents the congruence (p i)a - It 
follows that i — j ,  gh~l G N\ and A = p. Furthermore, ap\b and hence 
appobp by Lemma 7.3.

Now assume that po ф- and represent it by the admissible triple 
(r0, No, яр). Hence

ap =  (i£,Ui(güj)vx,\rj) p0bp =  ( г'£, u,(hu)vx, Xp)

implies that (gh~l )oj G No- Since (po)a- is represented by the triple 
(£,iVo, e), similarly as above for px, we conclude that ap(p0)K bp.
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Consider the case po — u?o- Note that uqK  consists precisely of band 
congruences on So- First assume that So has zero divisors. Then there 
exists a £ Sq such that a2 =  0. If 6oKu>o, then авоа1 =  0 and thus 90 — u>o- 
In this case we have (u>o)A- =  wо• Suppose next that So has no zero divisors. 
Then Ho is the least band congruence on So so that (u>o)A- = Ho- In both 
of these cases we have ap(po)K bp.

Therefore [ ( po)a ,(Pi)a'] G C(5). It now follows from Corollary 6.3(ii) 
that [po,pi]K =  [ Ы к ЛР1)к ] ■

For the second assertion, we prove first that [(po)T,(p i)T] G C(S). With
\ Tthe same notation as above, let a(pi) b. Since pi  is represented by the 

triple (ri, N \ ,  xj), clearly ( p i)  is represented by ( r i , G i , n i ) .  Hence i r xj  
and Аяур. Let рв{ ф 0 and p\k  ф 0. Then

РеЛрхк -  Pej  ( pe j ~ l P e i P \ k P ßk~l ) Рцк

implies that
(i, 1, A ) p i  ( j ,  pej  ~1 Р в г Р Х к Р ц к ~ \ p )

whence

(11) (г, 1, \)<ppo {j,Pej~^PeiP\kPiik-  \  p) <P-

If po = wo, then trivially appobp. Assume that po Ф ojo- Then (11) implies
T  1that i£r0y£ and Арл-орт/. Since (p0) is represented by the triple (ro, G'o, яр), 

it follows that

cup =  (i£,u,(gu>)vA, Xr]) (po)1 (j£,Uj(hu)Vn,p.Ti) = bp, 

г T T л fas required. Therefore [(po) ,(pi) j G C(S). Now Lemma 6.8(ii) implies 
that [p0,P i]T =  [(P o f ,(P i)T] •

(ii) Assume first that ker [po] Ф ker[Ao, Aj] for all [Ao, Aj] £ C(S). It 
follows that [po]A- is of the form [<?o]. Now Lemma 6.3(i) implies that [p0]A =
=  [ M K ]  ■

Suppose next that ker [po] = кег[Ао,Аг] for some [A0, Aj] £ C(S). Then 
[P o \ k  = [Ao, Ai]a- = [(Ао)д-, (Ai)a ] by part (i). By Corollary 6.3(iii), we 
have AqA'po and thus (A0)a- = (ßo)K - Therefore [p0]A- = [(po)a ^ i ] where

= (Ai )a .
We can derive one more result from our considerations. As above, we 

let So =  M °(/o,Go, Ao; P ) .  Following ([4], Definition 6.1), we say that P 
has no contractions if

p Xi ф 0 4Ф- pßi ф 0 for all i G /о implies A = p,
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P\i Ф 0 4=> p \j  ф 0 for all A € Ло implies i = j.

Since for another Rees matrix representation of So with sandwich matrix 
Q, we have that P  has no contractions if and only if Q has no contractions, 
we may say that So has no contractions.

T h e o r e m  7.9. Let So have no contractions. Then К  is a congruence 
if and only if

either the extension is not strict,
or the extension is determined by a partial homomorphism <p: 5J“ —►

-  В Д ) ,
or the extension is determined by a partial homomorphism <p: 5J“ —■» 

—> Sq and there exists a £ 5J“ such that ap  £ E(Sq) and a2 £ So.
P r o o f . Necessity. It suffices to consider a strict extension. This was 

taken care of in Theorem 7.6.
Sufficiency. Assume first that the extension is not strict. In view of 

Lemma 2.4, there exist e , f ,g  £ E(S)  such that e > / > 0 ,  e > < / > 0  and 
/  /  g. By Lemma 3.4, we have that enf  and eng whence fug. Hence к 
is not idempotent separating. By ([4], Lemma 6.2), the hypothesis implies 
that all proper congruences on So are idempotent separating. Therefore 
No =  u>o whence к — [ко] =  [up] = и. By Corollary 6.5, we have that К  is a 
congruence on C(S). If the extension is strict, the same conclusion follows 
directly from Theorem 7.6.

8 .  T h e  c a s e  w h e n  S i  h a s  n o  z e r o  d i v i s o r s

We first characterize this case in terms of congruences on S  and then 
give necessary and sufficient conditions for К  to be a congruence.

P r o p o s it io n  8.1. The following conditions on S are equivalent.
(i) Si has no zero divisors.

(ii) If[po] £ C(S), then ker[/90] =  ker[p0,Pi] for some p\ £ Co(Si).
(Ш) ker [w0, Hi] = S.

P r o o f , (i) implies (ii). Let [p0] G C(S). We define pi on Si as the 
proper congruence on Si with the property that pi|s* = [polls*■ ^  follows
easily that [po-, P \ ]  6 C(S). If a  £ Si П ker[/>0], then a [ p o ]  is an idempotent 
[po]-class and thus also of p \  and a  £ (kerpi)*. Conversely, if a £ (kerpi)*, 
then clearly a  £ Sf П [po]- Therefore ker [p0] = ker[p0,Pi]-

(ii) implies (iii). Since [w0] £ C(S), by hypothesis ker[wo] = ker[u;0,pi] 
for some pi £ Co(>5i)- Hence ker[wo,Pi] = 5 so that kerpj = Si. Let a £ 
£ Si. If a2 — 0, then ap\a2 = 0 which is possible only for a = 0. Hence S\ 
has no zero divisors which evidently implies that ker [wo, ’Hi] = S.

(iii) implies (i). The hypothesis implies that kerTfi = S\ which clearly 
implies that Si has no zero divisors.
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Recall Notations 2.1 and 5.3.
T h eo r em  8.2. Let S\ have no zero divisors. Then К  is a congruence 

if and only if A Q ker к.
P r o o f . Necessity. Since 5i has no zero divisors, we may define a proper 

congruence «i on Si by the requirement that Ki|s . = k|s *. It is easily
checked that [ko5ki ] G C(S). By Lemma 3.3(iii), we have [ko?« i] С [кр] 
and thus ker[K0,« i]  Q кег[к0]. Conversely, let a G Sf П кегк. Then аке 
for some e G E(S) .  If e £ S*, then an\e and hence a £ ker«i. If e £ 
£ So, then ак П 5j is an idempotent «q-dass and hence a £ ker/sq. Since 
[«o,Ki]|s0 — Kls0 =  K0i it follows that ker[«o] Q ker[Ko,«q] and equality 
prevails. Therefore [ко]Аг[«о? «l]- 

The hypothesis then implies that

Ы  V [wo,£ i ]A"[k0,Ki ] V [w0,£i]

which by Lemmas 4.5(H) and 4.2(ii) implies that [wojA'tuio,Ki] whence 
ker«q =  Si. Now let a > b > 0 in S. By Lemma 3.4, we have a[/c0]6 
which together with a £ ker«q C ker [яр] implies that b £ ker[«p]. There
fore A Q ker к.

Sufficiency. By Theorem 6.4, it suffices to consider the case: Ao Ф up, 
ker[A0] = ker[/90, Pi] and [0O, #i] £ C(S).  Let a £ 5J1. By Lemma 2.2, there 
exists b £ Sq such that a > b. It follows that a[A0]6 by Lemma 3.4. Since 
b £ A, the hypothesis implies that b £ кегкр- Since [Ao] G C(5), Lemma 
3.6(ii) implies that ко ^ A0 which yields b £ ker A0. Now Lemma 6.1(i) gives 
a £ ker[A0], We deduce that ker[A0] = ker A0 U 5j again by Lemma 6.1(i). 
In addition, Lemma 6.1(H) implies that ker [p0, p\] — kerpo U (kerpi)*. Now 
the equality ker[Ao] = ker[/>o,Pi] gives kerpi =  S\. Finally, by Corollary 
6.3(iii), we have kerA0 = kerpo so that

ker [Ao V #o] = ker (A0 V 0o) U S{ by Lemma 6.1(i)

=  ker(po V во) U 57 by Lemma 2.5 

= ker[po V во, P\ V во] by Lemma 6.1(H),

as required.
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