Acta Mathematica Hungarica

VOLUME 59, NUMBERS 1-2, 1992

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD
L. BABAI, A. CSÁSZÁR, I. CSISZAR, Z. DAROCCZY, P. ERDÓS,
L. FEJES TÓTH, T. GALLAI, F. GECCSEG, B. GYIRES, A. HAJNAL,
G. HALÁSZ, I. KÁTAI, L. LEINDLER, L. LOVASZ, A. PRÉKOPA,
A. RAPCSAK, P. RÉVÉSZ, D. SZASZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

ACTA MATHEMATICA
 hUNGARICA

Acta Mathematica publishes papers on mathematics in English, German, French and Russian.

Distributors:
For Albania, Bulgaria, China, Cuba, Czech and Slovak Federal Republic, Hungary, Korean People's Republic, Mongolia, Poland, Romania, successor states of the U.S.S.R., successor states of Yugoslavia, Vietnam
akadémiai kiadó
P.O. Box 254, 1519 Budapest, Hungary

For all other countries with
KLUWER ACADEMIC PUBLISHERS
P.O. Box 17, 3300 AA Dordrecht, Holland

Publication programme: 1992: Volumes 59-60 (eight issues)
Subscription price per volume: Dfl 206,- / US $\$ 105$ (incl. postage)

Acta Mathematica Hungarica is abstracted/indexed in Current Contents - Physical, Chemical and Earth Sciences, Mathematical Reviews.

Copyright (c) 1992 by Akadémiai Kiadó, Budapest. Printed in Hungary.

ACTA MATHEMATICA

 HUNGARICAEDITOR-IN-CHIEF
K. TANDORI
DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD

L. BABAI, Á. CSÁSZÁR, I. CSISZÁR, Z. DARÓCZY, P. ERDƠS, L. FEJES TOTH, T. GALLAI, F. GÉCSEG, B. GYIRES, A. HAJNAL, G. HALÁSZ, I. KÁTAI, L. LEINDLER, L. LOVÁSŻ, A. PRÉKOPA, A. RAPCSAK, P. RÉVÉSZ, D. SZÁSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

VOLUME 59

AKADÉMIAI KIADÓ, BUnAPEST

CONTENTS

VOLUME 59

Angelov, V. G., Uniform asymptotic stability and contractive semigroups 345
Avgerinos, E. P., Flytzanis, E. and Papageorgiou, N. S., On $U(\cdot)$-invari- ance for finite and infinite dimensional control systems 309
Берман, Д. Л., Экстремальные задачи теории полиномиальных операторов 75
Берман, Д. Л., Необходимые и достаточные условия сходимости расширенных интерполяционных процессов высшего порядка в метрике L_{p} 327
Birkenmeyer, G. F., Decompositions of Baer-like rings 319
Bognár, M., On pseudomanifolds with boundary. I 227
Bojanic, R. and Cheng, F., Rate of convergence of Hermite-Fejér polyno- mials for functions with derivatives of bounded variation 91
Borwein, D., Tauberian theorems concerning power series with non-nega- tive coefficients 85
Buczolich, Z., A v-integrable function which is not Lebesgue integrable on any portion of the unit square 383
Cheng, F., see Bojanic, R.
Đào, N. T., Endomorphism rings of abelian groups as isomorphic restric- tions of full endomorphism rings. II 253
Erdős, L., On some problems of P. Turán concerning power sums of com- plex numbers 11
Ésik, Z., Varieties of automata and transformation semigroups 59
Flytzanis, E., see Avgerinos, E. P.
Gajda, Z., Note on decomposition of bounded functions into the sum of periodic terms 103
Gal, S. G. and Szabados, J., On monotone and doubly monotone polyno- mial approximation 395
Győrvári, J. and Mihálykó, Cs., The numerical solution of nonlinear dif- ferential equations by spline functions 39
Joó, I., On the control of a rectangular membrane 25
-, A remark on the vibration of a circular membrane in different points 245
-, On the optimal control of circular membranes 365
Kamal, A. A. M., Idempotents in polynomial rings 355
Kovács, Katalin, On total additive solution of some equations 33
-, Complex-valued multiplicative functions with monotonic properties 401
Kovács, Z. and Tamássy, L., Yano-Ledger connection and induced con- nection on vector bundles 405
Künzi, H. P. A., Complete quasi-pseudo-metric spaces 121
Ky, N. X., On approximation of functions by polynomials with weight 49
$L u u, D . Q$., Convergence and lattice properties of a class of martingale-like sequences 273
Malkowsky, E., On the extension of two theorems by Maddox to general- ized sets of Cesàro summable sequences 263
Masterson. J. J., A nonstandard result about path continuity 147
Mihálykó, Cs., see Győrvári, J.
Mohamed, A. S., Numerical solution by spline method for an elastic prob- lem 159
Molnár, E., Polyhedron complexes with simply transitive group actions and their realizations 175
Muñoz Rivera, J. E., Remarks on the optimal control problem for strongly non-linear hyperbolic system 151
Nieto, J. J., Positive solutions of nonlinear problems at resonance 339
Okutoyi, J. I., A note on generalized Köthe-Toeplitz duals 291
Paez, J., see Sebestyén, Z.
Papageorgiou, N. S., see Avgerinos, E. P.
Petz, D., Characterization of the relative entropy of states of matrix alge- bras 449
Ramadan, M., Influence of normality on maximal subgroups of Sylow sub- groups of a finite group 107
Ruzsa, I. Z., On the number of sums and differences 439
Sakai, R., Certain unbounded Hermite-Fejér interpolatory polynomial op- erators 111
Sebestyén, Z., Stochel, J. and Paez, J., Restrictions of normal operators 377
Stochel, J., see Sebestyén, Z.
Strommer, J., Konstruktion des regulären Siebzehnecks mit Lineal und Streckenübertrager 217
Suen, C.-Y., The maximal radius of a completely bounded map 283
Szabados, J., see Gal, S. G.
Szabó, Gy., ϕ-orthogonally additive mappings. II 1
Tarafdar, E., On the existence of Nash equilibrium point for a game be- tween infinitely many players with noncompact strategy sets 301
Tamássy, L., see Kovács, Z.
Tateoka, J., The modulus of continuity and the best approximation over the dyadic group 115
Vértesi, P. and Xu, Y., Weighted L^{p} convergence of Hermite interpolation of higher order 423
$X u, Y$., see Vértesi, P.

ϕ-ORTHOGONALLY ADDITIVE MAPPINGS. II

Gy. SZABÓ (Debrecen)

1. Introduction

This is the second part of a series of papers describing the properties of ϕ-orthogonally additive mappings for a sesquilinear form ϕ. While in the first part [3] the symmetric orthogonality has been studied, here we examine the cases of non-symmetric and totally isotropic orthogonalities showing essentially the general solution to be additive (see Sections 2 and 3 below). Furthermore, we illustrate our theory by some examples and summarize the results obtained in the different possible cases (see Section 4 below). These results turn out to be proper generalizations of those of Sundaresan-Kapoor [2].

We shall use the same notation and terminology as in the first part [3]. Namely, throughout the paper, Φ will denote a field of char $\Phi \neq 2, X$ a Φ-vector space with $\operatorname{dim}_{\Phi} X \geqq 2$ and $(Y,+)$ an abelian group. Furthermore, consider a sesquilinear functional $\phi: X \times X \rightarrow \Phi$ with respect to an automorphism ${ }^{-}: \Phi \rightarrow \Phi$ and define the ϕ-orthogonality relation \perp^{ϕ} on X by

$$
\perp^{\phi}=\{(x, y) \in X \times X \mid \phi(x, y)=0\} .
$$

A vector $x \in X$ is said to be isotropic, if $\phi(x, x)=0$. For $x \in X$ define the linear functional $\phi_{x}: X \rightarrow \Phi$ by $\phi_{x}(t)=\phi(t, x)$ and consider the linear subspace $X_{\phi}^{*}=\left\{\phi_{x} \mid x \in X\right\}$ in the algebraic conjugate X^{*} of X. Denoting by \mathcal{P} the family of all 2-dimensional linear subspaces in X, for $P \in \mathcal{P}$ let $\perp^{\phi}{ }_{P}$ be the set of all $(u, v) \in \perp^{\phi}$ such that $\operatorname{lin}\{u, v\}=P$ (the set of all ϕ-orthogonal bases in P), where lin V stands for the linear hull of a subset $V \subset X$.

The vector $x \in X$ is said to be a τ_{0}-element, if $x \in \operatorname{lin}\{u, v\}$ for some $u, v \in X$ such that ($x \perp^{\phi} u$ or $u \perp^{\phi} x$) and ($x \perp^{\phi} v$ or $v \perp^{\phi} x$). Let X_{0} denote the set of all τ_{0}-elements in X and define the subfamily $\mathcal{P}_{0}=$ $=\left\{P \in \mathcal{P} \mid \perp^{\phi} P \cap\left(X_{0} \times X_{0}\right) \neq \emptyset\right\}$ in \mathcal{P}.

We say $P \in \mathcal{P}$ to be a \perp^{ϕ}-normal plane, if there are $\left(u_{i}, v_{i}\right) \in \perp^{\phi}{ }_{P}$ $(i=1,2)$ with

$$
\bigcap_{i=1}^{2}\left(\operatorname{lin}\left\{u_{i}\right\} \cup \operatorname{lin}\left\{v_{i}\right\}\right)=\{0\} .
$$

The subfamily of all \perp^{ϕ}-normal planes in \mathcal{P} will be denoted by \mathcal{P}_{n}. A vector $x \in X$ is called a τ_{1}-element, if it is contained in a \perp^{ϕ}-normal plane: $x \in P \in \mathcal{P}_{n}$.

The mappings A, Q and $F: X \rightarrow Y$ are said to be additive, quadratic or orthogonally additive (\perp^{ϕ} additive), if they satisfy the equations:

$$
\begin{gathered}
A(x+y)=A(x)+A(y), \quad x, y \in X, \\
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y), \quad x, y \in X, \text { or } \\
F(x+y)=F(x)+F(y), \quad x, y \in X, x \perp^{\phi} y
\end{gathered}
$$

respectively. For any $t \in X$ let $F_{t}: \Phi \rightarrow Y$ be defined by $F_{t}(\lambda)=F(\lambda t)$. Furthermore, we shall use the notations:

$$
\begin{aligned}
\operatorname{Hom}(X, Y) & =\{A: X \rightarrow Y \mid A \text { is additive }\} \\
\text { Quad }(X, Y) & =\{Q: X \rightarrow Y \mid Q \text { is quadratic }\} \\
\operatorname{Hom}_{\perp \phi}(X, Y) & =\left\{F: X \rightarrow Y \mid F \text { is } \perp^{\phi} \text {-additive }\right\} .
\end{aligned}
$$

Finally, \mathbf{R} is the real line, 0 denotes the scalar zero, the zero vector as well as the identity element of the group Y. The actual meaning of 0 always will be clear from the context. The sign 0 stands for the constant zero mapping.

2. The non-symmetric ϕ-orthogonality

Lemma 2.1. Suppose that $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ and
(i) either $P \in \mathcal{P}_{0}$,
(ii) or $P \in \mathcal{P}_{n}$ such that F is additive on $\operatorname{lin}\{v\}$ for some $(u, v) \in \perp^{\phi}{ }_{P}$. Then F is additive on the whole P.

Proof. (i) We can choose $(u, v) \in \perp^{\phi} P \cap\left(X_{0} \times X_{0}\right)$, i.e., a ϕ-orthogonal base in P consisting of τ_{0}-elements. Then by [1], Lemma 2.4, F is additive on $\operatorname{lin}\{u\}$ and $\operatorname{lin}\{v\}$, whence [1], Lemma 2.1 yields the additivity of F on $\operatorname{lin}\{u, v\}=P$.
(ii) Since P is a normal plane, there exists $(x, y) \in \perp^{\phi} P$ with $x, y \notin$ $\notin \operatorname{lin}\{v\}$. By the homogeneity, we may assume that $x=(u+\xi v) \perp^{\phi}(u+\eta v)=$ $=y$ and so formula (2.5) in [1] turns into

$$
F_{u}(\lambda+\mu)=F_{u}(\lambda)+F_{u}(\mu), \quad \lambda, \mu \in \Phi
$$

i.e., F is additive on $\operatorname{lin}\{u\}$. Finally, [1], Lemma 2.1 completes the proof.

Lemma 2.2. If $P \in \mathcal{P}$ is such that the ϕ-orthogonality is not symmetric on P, then there is a non-isotropic vector in P and any $F \in \operatorname{Hom}_{\perp^{\phi}}(X, Y)$ is additive on P.

Proof. Choose vectors $u, v \in P$ with $\phi(u, v) \neq 0=\phi(v, u)$. Then obviously $\operatorname{lin}\{u, v\}=P$ and one of the vectors u, v and $u+v$ is not isotropic. Now defining ζ to satisfy $\bar{\zeta}=\phi(u, u) / \phi(u, v)$, we have for $z=u-\zeta v$ that

$$
\phi(u, z)=0 \quad \text { and } \quad \phi(u-z, u)=0
$$

i.e., u is a τ_{0}-element. On the other hand, if $w=[\phi(v, v) / \phi(u, v)] u$, then

$$
\phi(v, w)=0 \quad \text { and } \quad \phi(v-w, v)=0,
$$

i.e., v is also a τ_{0}-element. These mean that $P \in \mathcal{P}_{0}$ and so the previous lemma implies the additivity of F on P.

Lemma 2.3. Suppose that $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ and there is a non-isotropic vector $z \in X$ such that F is additive on $\operatorname{lin}\{z\}$. Then F is additive on each $\operatorname{lin}\{t\}, t \in X \backslash\{0\}$, separately.

Proof. Let $t \in X \backslash\{0\}$ be arbitrarily fixed. We may and do assume that t is not isotropic and t, z are linearly independent, i.e., $\operatorname{lin}\{t, z\}=P \in \mathcal{P}$. Now there may occur exactly one of the following possibilities:
a) \perp^{ϕ} is non-symmetric on P : Then Lemma 2.2 yields the additivity of F on $P \supset \operatorname{lin}\{t\}$.
b) \perp^{ϕ} is symmetric on P : Then we have to deal with the cases below:

$$
\mathrm{b} / 1) \phi(t, z)=0 \text { : Then }(t+\xi z) \perp^{\phi}(t-z) \text { holds for } \xi=\phi(t, t) / \phi(z, z) \text {, }
$$ and so formula (2.5) in [1] yields the desired additivity:

$$
F_{t}(\lambda+\mu)=F_{t}(\lambda)+F_{t}(\mu), \quad \lambda, \mu \in \Phi .
$$

$\mathrm{b} / 2) \phi(t, z) \neq 0$: If $x=[\phi(z, t) / \phi(t, t)] t-z, y=t-[\phi(t, z) / \phi(z, z)] z$, then clearly $(x, t),(y, z) \in \perp^{\phi_{P}}$ and $\phi(t, z) \neq 0 \neq \phi(z, t)$ implies that $\operatorname{lin}\{t, y\}=P=\operatorname{lin}\{x, z\}$. Furthermore, we have

- either $y \in \operatorname{lin}\{x\}$, i.e., $y=\lambda x$ for some $\lambda \in \Phi$. Then $\phi(y, t)=$ $=\lambda \phi(x, t)=0$, and so y is a τ_{0}-element showing by [1], Lemma 2.4, that F is additive on $\operatorname{lin}\{y\}$. Since $(y, z) \in \perp^{\phi}{ }_{P},[1]$, Lemma 2.1, completes the proof.

$$
\begin{aligned}
& - \text { or } \operatorname{lin}\{x, y\}=P \text {, i.e., } P \text { is a normal plane with } \\
& \quad\left(u_{1}, v_{1}\right)=(x, t) \text { and } \quad\left(u_{2}, v_{2}\right)=(y, z) .
\end{aligned}
$$

Thus Lemma 2.1 implies that F is additive on $\operatorname{lin}\{y, z\}=P \supset \operatorname{lin}\{t\}$.
Lemma 2.4. Let $P \in \mathcal{P}$ and suppose that each $x \in P$ is isotropic, but ϕ is not identically zero on $P \times P$. Then \perp^{ϕ} is symmetric on P and there exist vectors $u, v \in P$ such that $\operatorname{lin}\{u, v\}=P$ and $\phi(u, v)=1=-\phi(v, u)$. Moreover, $\bar{\alpha}=\alpha$ for all $\alpha \in \Phi$.

Proof. The symmetry of \perp^{ϕ} is a direct consequence of Lemma 2.2. Now choose an arbitrary base x, y for $P: \operatorname{lin}\{x, y\}=P$. Then $\phi(x, y)+\phi(y, x)=$ $=\phi(x+y, x+y)=0$. Here $\phi(x, y) \neq 0$, since otherwise ϕ would vanish identically on $P \times P$. Thus $u=x / \phi(x, y)$ and $v=y$ satisfy all the required properties:

$$
\phi(u, v)=1 \quad \text { and } \quad \phi(v, u)=\phi(u+v, u+v)-\phi(u, v)=-1 .
$$

Finally, for any $\alpha \in \Phi$, we have

$$
\alpha-\bar{\alpha}=\phi(\alpha u+v, \alpha u+v)=0 .
$$

Lemma 2.5. Suppose that $P \in \mathcal{P}$ and each $x \in P$ is isotropic. If $F \in$ $\in \operatorname{Hom}_{\perp^{\phi}}(X, Y)$ and there is a non-isotropic vector $z \in X$ such that F is additive on $\operatorname{lin}\{z\}$, then F is additive on the whole P, too.

Proof. If $\phi(x, y)=0$ for all $x, y \in P$, then there is nothing to prove. Otherwise, by Lemma 2.4, $\bar{\alpha}=\alpha$ whenever $\alpha \in \Phi$ and we can choose $u, v \in P$ such that $\operatorname{lin}\{u, v\}=P$ and $\phi(u, v)=1-\phi(v, u)$. Next define

$$
x=\phi(z, v) u-\phi(z, u) v \in P
$$

for which $\phi(x, u)=\phi(z, u)$ and $\phi(x, v)=\phi(z, v)$. Thus setting $z_{0}=z-x$, we get $\phi\left(z_{0}, u\right)=0=\phi\left(z_{0}, v\right)$ and so $\phi\left(z_{0}, x\right)=0$. Now we can proceed in different ways depending on the cases as follows:
a) $\phi\left(u, z_{0}\right) \neq 0$: Let $\beta=-1 / \phi\left(u, z_{0}\right)$ for which $\phi\left(u, \beta z_{0}+v\right)=0$ holds.
b) $\phi\left(v, z_{0}\right) \neq 0$: Let $\alpha=1 / \phi\left(v, z_{0}\right)$ for which $\phi\left(v, \alpha z_{0}+u\right)=0$ holds.
c) $\phi\left(u, z_{0}\right)=0=\phi\left(v, z_{0}\right)$: Then $\phi\left(x, z_{0}\right)=0$ and

$$
\begin{gathered}
\phi\left(z_{0}, z_{0}\right)=\phi\left(z-x, z_{0}\right)=\phi\left(z, z_{0}\right)=\phi(z, z-x)= \\
=\phi(z, z)-\phi\left(z_{0}+x, x\right)=\phi(z, z) \neq 0 .
\end{gathered}
$$

Thus for $\alpha=-1 / \phi\left(z_{0}, z_{0}\right)$, we have $\phi\left(\alpha z_{0}+u, z_{0}+v\right)=0$. These mean that in any case there are scalars $\alpha, \beta \in \Phi$ with

$$
\left(\alpha z_{0}+u\right) \perp^{\phi}\left(\beta z_{0}+v\right) \text { or }\left(\beta z_{0}+v\right) \perp^{\phi}\left(\alpha z_{0}+u\right) .
$$

Now using repeatedly the orthogonal additivity of F, we obtain for all $\lambda, \mu \in$ $\in \Phi$ that

$$
\begin{gathered}
F\left(\lambda \alpha z_{0}+\mu \beta z_{0}\right)+F(\lambda u+\mu v)=F\left(\lambda \alpha z_{0}+\mu \beta z_{0}+\lambda u+\mu v\right)= \\
=F\left(\lambda\left[\alpha z_{0}+u\right]+\mu\left[\beta z_{0}+v\right]\right)=F\left(\lambda \alpha z_{0}+\lambda u\right)+F\left(\mu \beta z_{0}+\mu v\right)= \\
=F\left(\lambda \alpha z_{0}\right)+F(\lambda u)+F\left(\mu \beta z_{0}\right)+F(\mu v)
\end{gathered}
$$

Due to Lemma 2.3, F is additive on $\operatorname{lin}\left\{z_{0}\right\}$, thus we gain

$$
\begin{equation*}
F(\lambda u+\mu v)=F(\lambda u)+F(\mu v), \quad \lambda, \mu \in \Phi . \tag{2.1}
\end{equation*}
$$

Finally, because of the same Lemma 2.3 (or simply by the isotropy of u, v), F is additive on $\operatorname{lin}\{u\}$ and $\operatorname{lin}\{v\}$, and so (2.1) yields the additivity of F on $P=\operatorname{lin}\{u, v\}$.

Theorem 2.6. If the ϕ-orthogonality is not symmetric on X, then

$$
\operatorname{Hom}_{\perp^{\phi}}(X, Y)=\operatorname{Hom}(X, Y) .
$$

Proof. Let $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ and choose $u_{0}, v_{0} \in X$ such that $\phi\left(u_{0}, v_{0}\right) \neq$ $\neq 0=\phi\left(v_{0}, u_{0}\right)$. Then u_{0}, v_{0} are linearly independent, and by Lemma 2.2 , there exists a non-isotropic vector $z_{0} \in P_{0}=\operatorname{lin}\left\{u_{0}, v_{0}\right\}$ and F is additive
on $P_{0} \supset \operatorname{lin}\left\{z_{0}\right\}$. Since F is additive on $\operatorname{lin}\left\{z_{0}\right\}$, Lemma 2.3 ensures the additivity of F on each $\operatorname{lin}\{t\}, t \in X$. Now it suffices to prove the additivity of F on any $P \in \mathcal{P}$. There are two possibilities:
a) $\phi(x, x)=0$ for all $x \in P$: Then Lemma 2,5 gives the desired result.
b) $\phi(v, v) \neq 0$ for some $v \in P$: Then choosing an $x \in P \backslash \operatorname{lin}\{v\}$, for $u=x-[\phi(x, v) / \phi(v, v)] v$, we have $(u, v) \in \perp^{\phi}{ }_{P}$. Finally, regarding that F is additive on $\operatorname{lin}\{u\}$ and $\operatorname{lin}\{v\},[1]$, Lemma 2.1, completes the proof.

3. The totally isotropic ϕ-orthogonality

Proposition 3.1. Let $P \in \mathcal{P}$ and suppose that each $x \in P$ is isotropic. If $\phi_{z} \notin\left\{\phi_{x} \mid x \in P\right\}$ for some $z \in X$, then every $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ is additive on P.

Proof. By Theorem 2.6, it suffices to deal with symmetric \perp^{ϕ}. If $\phi(x, y)=0$ for all $x, y \in P$, then there is nothing to prove. Otherwise, by Lemma $2.4, \bar{\alpha}=\alpha$ whenever $\alpha \in \Phi$ and we can choose $u, v \in P$ such that $\operatorname{lin}\{u, v\}=P$ and $\phi(u, v)=1=-\phi(v, u)$. Next define

$$
x=\phi(z, v) u-\phi(z, u) v \in P
$$

for which $\phi(z, u)=\phi(x, u)$ and $\phi(z, v)=\phi(x, v)$. With respect to our hypothesis, $\phi_{z} \neq \phi_{x}$ and so there exists $t \in X$ such that $\phi(t, z) \neq \phi(t, x)$. Let further

$$
y=\phi(t, v) u-\phi(t, u) v \in P
$$

Then $\phi(t, u)=\phi(y, u)$ and $\phi(t, v)=\phi(y, v)$, and for $z_{0}=z-x, t_{0}=t-y$, we have

$$
\phi\left(z_{0}, u\right)=0=\phi\left(z_{0}, v\right) \quad \text { and } \quad \phi\left(t_{0}, u\right)=0=\phi\left(t_{0}, v\right) .
$$

The symmetry of \perp^{ϕ} yields also

$$
\phi\left(u, z_{0}\right)=0=\phi\left(v, z_{0}\right) \quad \text { and } \quad \phi\left(u, t_{0}\right)=0=\phi\left(v, t_{0}\right),
$$

whence by the biadditivity of ϕ, we obtain

$$
\begin{aligned}
& \phi\left(z_{0}, x\right)=0=\phi\left(z_{0}, y\right) \quad \text { and } \quad \phi\left(t_{0}, x\right)=0=\phi\left(t_{0}, y\right), \\
& \phi\left(x, z_{0}\right)=0=\phi\left(y, z_{0}\right) \quad \text { and } \quad \phi\left(x, t_{0}\right)=0=\phi\left(y, t_{0}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
\phi\left(t_{0}, z_{0}\right)=\phi\left(t_{0}+y, z_{0}+x\right)-\phi(y, x)= \\
=\phi(t, z)-\phi\left(t_{0}+y, x\right)=\phi(t, z)-\phi(t, x) \neq 0 .
\end{gathered}
$$

Thus we may assume that $\phi\left(t_{0}, z_{0}\right)=1$. Then for any $\lambda, \mu \in \Phi$, we have

$$
\phi\left(\pm \lambda u+\mu t_{0}, \pm \mu v-\lambda z_{0}\right)=\lambda \mu-\mu \lambda=0 .
$$

Now we can compute according to the orthogonal additivity of F :

$$
\begin{gathered}
F(\pm \lambda u \pm \mu v)+F\left(\mu t_{0}-\lambda z_{0}\right)=F\left(\left[\pm \lambda u+\mu t_{0}\right]+\left[\pm \mu v-\lambda z_{0}\right]\right)= \\
=F\left(\pm \lambda u+\mu t_{0}\right)+F\left(\pm \mu v-\lambda z_{0}\right)=F(\pm \lambda u)+F\left(\mu t_{0}\right)+F(\pm \mu v)+F\left(-\lambda z_{0}\right) .
\end{gathered}
$$

Since F is obviously odd on P, therefore subtraction of the above equalities from each other yields

$$
2 F(\lambda u+\mu v)=2 F(\lambda u)+2 F(\mu v), \quad \lambda, \mu \in \Phi .
$$

Hence, taking into account the additivity of F on $\operatorname{lin}\{u\}, \operatorname{lin}\{v\}$ and $\operatorname{lin}\{\lambda u+\mu v\}$, we obtain the required result: F is additive on $P=\operatorname{lin}\{u, v\}$.

Corollary 3.2. If all $x \in X$ are isotropic and $\operatorname{dim} X_{\phi}^{*} \geqq 3$, then

$$
\operatorname{Hom}_{\perp^{\phi}}(X, Y)=\operatorname{Hom}(X, Y) .
$$

Proof. Let $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ and $P \in \mathcal{P}$. Since $\operatorname{dim}\left\{\phi_{x} \mid x \in P\right\} \leqq 2$, there exists $z \in X$ such that $\phi_{z} \notin\left\{\phi_{x} \mid x \in P\right\}$. Therefore Proposition 3.1 implies the additivity of F on P, and because of the arbitrary choice of P, F is additive on the whole X.

Lemma 3.3. Let $P \in \mathcal{P}$ and suppose that each $x \in P$ is isotropic but ϕ does not vanish identically on $P \times P$. If the ϕ-orthogonality on X is symmetric and $X_{\phi}^{*}=\left\{\phi_{x} \mid x \in P\right\}$, then there exists a unique linear projection $L: X \rightarrow P$ such that $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ if and only if it has the form

$$
\begin{equation*}
F(z)=H(L(z))+A(z-L(z)), \quad z \in X \tag{3.1}
\end{equation*}
$$

where $H: P \rightarrow Y$ is a mapping, additive on any straight line through the origin and $A: N=\{z \in X \mid L(z)=0\} \rightarrow Y$ is an additive mapping.

Proof. Lemma 2.4 ensures the existence of vectors $u, v \in P$ such that $\phi(u, v)=1=-\phi(v, u)$ and by the same Lemma, $\bar{\alpha}=\alpha$ for all $\alpha \in \Phi$. This implies that

$$
\phi\left(\lambda_{1} u+\mu_{1} v, \lambda_{2} u+\mu_{2} v\right)=\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}, \quad \lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2} \in \Phi,
$$

and so

$$
\begin{equation*}
\phi(t, x)=0 \Longleftrightarrow x \in \operatorname{lin}\{t\}, \quad t, x \in P, \quad t \neq 0 . \tag{3.2}
\end{equation*}
$$

Hence for $x_{1}, x_{2} \in P$, we have

$$
\begin{equation*}
\phi\left(t, x_{1}\right)=\phi\left(t, x_{2}\right), \quad t \in X \Longleftrightarrow x_{1}=x_{2} . \tag{3.3}
\end{equation*}
$$

By our assumption, if $z \in X$, then $\phi_{z}=\phi_{x}$ for some $x \in P$, i.e. there is a mapping $L: X \rightarrow P$ such that

$$
\phi(t, z)=\phi(t, L(z)), \quad t, z \in X .
$$

The uniqueness of L is clear from (3.3). Next we show that L is a linear projection. Indeed, for any $z \in X, L(z)$ and $L(L(z))$ are in P and

$$
\phi(t, L(z))=\phi(t, L(L(z))), \quad t \in X
$$

whence by (3.3), $L(z)=L(L(z))$. On the other hand, if $z_{1}, z_{2} \in X, \zeta_{1}, \zeta_{2} \in \Phi$, then simple computations show that

$$
\phi\left(t, L\left(\zeta_{1} z_{1}+\zeta_{2} z_{2}\right)-\zeta_{1} L\left(z_{1}\right)-\zeta_{2} L\left(z_{2}\right)\right)=0=\phi(t, 0), \quad t \in X .
$$

This together with (3.3) give the linearity of L. Now introducing the null space $N=\{z \in X \mid L(z)=0\}$, any vector $z \in X$ can uniquely be written in the form $z=x+w$ with $x=L(z) \in P$ and $w=z-L(z) \in N$, i.e. $X=P \oplus N$. Furthermore, for any $z \in X$ and $w \in N$, we have $\phi(z, w)=$ $=\phi(z, L(w))=\phi(z, 0)=0$. Thus taking into account the symmetry of \perp^{ϕ}, we obtain

$$
\begin{equation*}
\phi(z, w)=\phi(w, z)=0, \quad z \in X, w \in N \tag{3.4}
\end{equation*}
$$

This enables us to represent the bilinear form ϕ as follows: If $z_{i} \in X$, $L\left(z_{i}\right)=\lambda_{i} u+\mu_{i} v \in P$ and $w_{i}=z_{i}-L\left(z_{i}\right) \in N(i=1,2)$, then

$$
\begin{equation*}
\phi\left(z_{1}, z_{2}\right)=\phi\left(\lambda_{1} u+\mu_{1} v+w_{1}, \lambda_{2} u+\mu_{2} v+w_{2}\right)=\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1} . \tag{3.5}
\end{equation*}
$$

Finally, let $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$. Then for any $z \in X$, we have $P \ni L(z) \perp^{\phi}$ $(z-L(z)) \in N$ and so the orthogonal additivity of F yields

$$
F(z)=F(L(z))+F(z-L(z)) .
$$

Now define $H: P \rightarrow Y$ by $H(x)=F(x)$ for all $x \in P$ and $A: N \rightarrow Y$ by $A(w)=F(w)$ for all $w \in N$. Since every vector in P is isotropic, H is additive on each one dimensional subspace of P and by (3.4), $A \in \operatorname{Hom}(N, Y)$ giving formula (3.1).

Conversely, consider an arbitrary mapping F of the form (3.1). Then for $\left(z_{1}, z_{2}\right) \in \perp^{\phi}$, formulas (3.5) and (3.2) imply that $L\left(z_{1}\right)$ and $L\left(z_{2}\right)$ are linearly dependent and so

$$
\begin{aligned}
& \qquad F\left(z_{1}+z_{2}\right)=H\left(L\left(z_{1}+z_{2}\right)\right)+A\left(\left[z_{1}+z_{2}\right]-L\left(z_{1}+z_{2}\right)\right)= \\
& H\left(L\left(z_{1}\right)+L\left(z_{2}\right)\right)+A\left(\left[z_{1}-L\left(z_{1}\right)\right]+\left[z_{2}-L\left(z_{2}\right)\right]\right)= \\
& =\left[H\left(L\left(z_{1}\right)\right)+A\left(z_{1}-L\left(z_{1}\right)\right)\right]+\left[H\left(L\left(z_{2}\right)\right)+A\left(z_{2}-L\left(z_{2}\right)\right)\right]=F\left(z_{1}\right)+F\left(z_{2}\right) \text {, } \\
& \text { i.e. } F \in \operatorname{Hom}_{\perp \phi}(X, Y) \text {. }
\end{aligned}
$$

4. Supplementary results

Example 4.1. The conditions of Lemmas 2.1 and 2.2 are not necessary for the additivity of an arbitrary $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ on some $P \in \mathcal{P}$. Let, e.g., $X=\mathbf{R}^{4}$ and $\phi: X \times X \rightarrow \mathbf{R}$ be defined by

$$
\phi\left(\left(\xi_{1} ; \xi_{2} ; \xi_{3} ; \xi_{4}\right),\left(\eta_{1} ; \eta_{2} ; \eta_{3} ; \eta_{4}\right)\right)=\xi_{1} \eta_{2}-\xi_{2} \eta_{1}+\xi_{3} \eta_{4}-\xi_{4} \eta_{3}
$$

Then \perp^{ϕ} is symmetric on the plane $P=\operatorname{lin}\{(1 ; 0 ; 0 ; 0),(0 ; 1 ; 0 ; 0)\}$ (in fact on the whole X) and $\perp^{\phi}{ }_{P}=\emptyset$, however every vector in X is isotropic and for $z=(0 ; 0 ; 1 ; 0)$, we have

$$
\phi_{z} \notin\left\{\phi_{x} \mid x \in P\right\}
$$

Thus by Proposition $3.1, F$ is additive on P.
Example 4.2. The condition of Proposition 3.1 is not necessary for the additivity of an arbitrary $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ on some $P \in \mathcal{P}$. Indeed, e.g. consider on $X=\mathbf{R}^{3}$ the bilinear form $\phi: X \times X \rightarrow \mathbf{R}$ defined by

$$
\phi\left(\left(\xi_{1} ; \xi_{2} ; \xi_{3}\right),\left(\eta_{1} ; \eta_{2} ; \eta_{3}\right)\right)=\xi_{1} \eta_{2}-\left(\xi_{2}-\xi_{3}\right) \eta_{1}
$$

Then every $x \in P=\operatorname{lin}\{1 ; 0 ; 0),(0 ; 1 ; 0)\}$ is isotropic and for any $t=$ $=\left(\tau_{1} ; \tau_{2} ; \tau_{3}\right), z=\left(\zeta_{1} ; \zeta_{2} ; \zeta_{3}\right) \in X$, we have

$$
\phi(t, z)=\phi\left(\left(\tau_{1} ; \tau_{2} ; \tau_{3}\right),\left(\zeta_{1} ; \zeta_{2} ; 0\right)\right)
$$

i.e., $\phi_{z} \in\left\{\phi_{x} \mid x \in P\right\}$. However

$$
\phi((1 ; 1 ; 0),(1 ; 2 ; 1)) \neq 0=\phi((1 ; 2 ; 1),(1 ; 1 ; 0))
$$

showing that \perp^{ϕ} is not symmetric and so by Theorem $2.6, F$ is additive.
However, in this context we can state the following
Proposition 4.3. Suppose that $\operatorname{Hom}(\Phi, Y) \neq\{0\}$ and $P \in \mathcal{P}$. Then every $F \in \operatorname{Hom}_{\perp \phi}(X, Y)$ is additive on P if and only if one of the conditions below is satisfied:
(i) $\phi(x, y)=0$ for all $x, y \in P$;
(ii) \perp^{ϕ} is not symmetric;
(iii) Every $x \in P$ is isotropic and $\phi_{z} \notin\left\{\phi_{x} \mid x \in P\right\}$ for some $z \in X$.

Proof. Sufficiency. It is clear from Lemma 2.1, Theorem 2.6 and Proposition 3.1 above.

Necessity. If none of the conditions (i), (ii) and (iii) holds, then \perp^{ϕ} is symmetric and

- either $\phi(v, v) \neq 0$ for some $v \in P$, when $F: X \rightarrow Y$ defined with the aid of some $a \in \operatorname{Hom}(\Phi, Y) \backslash\{0\}$ by

$$
F(x)=a(\phi(x, x)), \quad x \in X
$$

is not additive on P, but anyway $F \in \operatorname{Hom}_{\perp \Phi}(X, Y)$.

- or each $x \in P$ is isotropic, when conditions of Lemma 3.3 are satisfied and so one can easily define a mapping $F \in \operatorname{Hom}_{\perp^{\phi}}(X, Y)$ of form (3.1) which is not additive on P.

Remark 4.4. In the rest of the paper we are going to summarize our results concerning ϕ-orthogonally additive mappings. There may occur exactly the following possibilities:
a) \perp^{ϕ} is not symmetric: Then

$$
\operatorname{Hom}_{\perp^{\phi}}(X, Y)=\operatorname{Hom}(X, Y) .
$$

b) \perp^{ϕ} is symmetric: Now
$\mathrm{b} / 1$) either each $x \in X$ is isotropic: Then there may happen that
b/1) (i) $\operatorname{dim} X_{\phi}^{*}=0$: Then

$$
\operatorname{Hom}_{\perp \phi}(X, Y)=\operatorname{Hom}(X, Y) .
$$

$\mathrm{b} / 1$) (ii) $\operatorname{dim} X_{\phi}^{*}=1$: This is impossible, since then $X_{\phi}^{*}=\operatorname{lin}\left\{\phi_{x}\right\}$ and $\phi(t, x) \neq 0$ for some $t, x \in X$, and so we could choose $\lambda \in \Phi$ such that $\lambda \phi(x, x)=\lambda \phi_{x}(x)=\phi_{t}(x)=\phi(x, t) \neq 0$, i.e., x would not be isotropic.
$\mathrm{b} / 1$) (iii) $\operatorname{dim} X_{\phi}^{*}=2$: Then $X_{\phi}^{*}=\operatorname{lin}\left\{\phi_{x}, \phi_{y}\right\}$ for some $x, y \in X$. Obviously x and y are linearly independent and so $\operatorname{lin}\{x, y\}=P \in \mathcal{P}$. Then $X_{\phi}^{*}=\left\{\phi_{p} \mid p \in P\right\}$. Since $\phi_{x} \neq 0$, there exists $t \in X$ with $\phi(t, x) \neq 0$ and so by the isotropy, $0 \neq \phi(t, x)=\phi(t+x, t+x)-\phi(x, t)=\phi(x, p)$ for some $p \in P$, i.e., ϕ does not vanish on $P \times P$. Thus Lemma 3.3 provides a unique linear projection $L: X \rightarrow P$ such that $F \in \operatorname{Hom}_{\perp^{\phi}}(X, Y)$ if and only if

$$
F(z)=H(L(z))+A(z-L(z)), \quad z \in X,
$$

where $H: P \rightarrow Y$ is a mapping, additive on any straight line through the origin and $A: N=\{z \in X \mid L(z)=0\} \rightarrow Y$ is an additive mapping.
$\mathrm{b} / 1$) (iv) $\operatorname{dim} X_{\phi}^{*} \geqq 3$: Then

$$
\operatorname{Hom}_{\perp^{\phi}}(X, Y)=\operatorname{Hom}(X, Y) .
$$

$\mathrm{b} / 2$) or there is a non-isotropic vector $v \in X$: Then we have to deal with the cases:
$\mathrm{b} / 2)$ (i) $\operatorname{dim} X_{\phi}^{*}=1$: Then $X_{\phi}^{*}=\operatorname{lin}\left\{\phi_{v}\right\}$. This means that for any $y \in X$ there is a unique $\mu(y) \in \Phi$ with $\phi(x, y)=\phi_{y}(x)=\mu(y) \phi_{v}(x)=$ $=\mu(y) \phi(x, v)$ whenever $x \in X$. For $x=v$ this yields $\phi(v, y)=\mu(y) \phi(v, v)$, i.e., $\mu(y)=\phi(v, y) / \phi(v, v)$. Now consider the linear functional $\lambda: X \rightarrow$ $\rightarrow \Phi$ defined by $\lambda(x)=\phi(x, v) / \phi(v, v), x \in X$. It is clear that for any $x \in X, \phi(x-\lambda(x) v, v)=0$, whence using the symmetry of \perp^{ϕ}, we have $\phi(v, x)-\overline{\lambda(x)} \phi(v, v)=\phi(v, x-\lambda(x) v)=0$, i.e., $\overline{\lambda(x)}=\mu(x)$. Thus $\phi(x, y)=$
$=\mu(y) \phi(x, v)=\lambda(x) \overline{\lambda(y)} \phi(v, v)$ whenever $x, y \in X$. Hence one can see easily that $F \in \operatorname{Hom}_{\perp^{\phi}}(X, Y)$ if and only if

$$
F(x)=f(\lambda(x)), \quad x \in X,
$$

with arbitrary $f: \Phi \rightarrow Y$ satisfying $f(0)=0$.
$\mathrm{b} / 2$) (ii) $\operatorname{dim} X_{\phi}^{*} \geqq 2$: If $\Phi \neq G F(3)$, then by [3], Corollary 2.9, the odd mappings in $\operatorname{Hom}_{\perp^{\phi}}(X, Y)$ are additive, while the even ones are quadratic. Moreover, using the notations $\Omega=\{\alpha \in \Phi \mid \alpha=\bar{\alpha}\}$, $\Omega_{+}=$ $=\{\mu \bar{\mu} \mid \mu \in \Phi\}, \Omega_{-}=-\Omega_{+}$and assuming that

$$
\Omega_{+}+\Omega_{+} \subset \Omega_{+} ; \quad \Omega=\Omega_{-} \cup \Omega_{+} ; \quad \Omega_{+}=\left\{\omega^{2} \mid \omega \in \Omega_{+}\right\}
$$

for 2-torsion free Y, Corollary 3.5 in [3] implies that $F \in \operatorname{Hom}_{\perp}(X, Y)$ if and only if

$$
F(x)=A(x)+a(\phi(x, x)), \quad x \in X,
$$

with some $A \in \operatorname{Hom}(X, Y)$ and $a \in \operatorname{Hom}(\Phi, Y)$.
Remark 4.5. It is worth mentioning that the planes P defined in the Examples 4.1, 4.2, contain no ϕ-orthogonal base at all. This is the reason why the theory of abstract orthogonality spaces developed in [1] can not be applied for non-symmetric or totally isotropic ϕ-orthogonality. Anyway, the results of Sundaresan-Kapoor [2] are completely covered now.

References

[1] J. Rätz - Gy. Szabó, On orthogonally additive mappings, IV, Aequationes Math., 38 (1989), 73-85.
[2] K. Sundaresan - O. P. Kapoor, T-orthogonality and nonlinear functionals on topological vector spaces, Can. J. Math., 25 (1973), 1121-1131.
[3] Gy. Szabó, ϕ-orthogonally additive mappings. I, Acta Math. Hungar., 58 (1991), 91-99.
(Received July 24, 1989; revised November 2, 1989)
institute of mathematics
L. KOSSUTH UNIVERSITY

EGYETEM TÉR 1
H-4010 DEBRECEN, PF. 12
HUNGARY

ON SOME PROBLEMS OF P. TURÁN CONCERNING POWER SUMS OF COMPLEX NUMBERS

L. ERDŐS (Budapest)

1. Introduction

Let $z_{1}, z_{2}, \ldots, z_{n}$ be complex numbers satisfying

$$
\begin{equation*}
\max _{j=1,2, \ldots, n}\left|z_{j}\right|=\left|z_{1}\right|=1 \tag{1.1}
\end{equation*}
$$

and, for arbitrary positive integer ν, let $s_{\nu}=z_{1}^{\nu}+z_{2}^{\nu}+\ldots+z_{n}^{\nu}$. We are interested in the asymptotic behaviour of the expression

$$
\begin{equation*}
\min _{z_{1}, \ldots, z_{n}} \max _{\nu \in H}\left|s_{\nu}\right| \tag{1.2}
\end{equation*}
$$

under the condition (1.1), where H denotes a fixed finite subset of the positive integers. The minimum in (1.2) exists because of the compactness of the domain (1.1) in C^{n}. One can easily prove by rotation and homothetic transformation that the condition (1.1) can be exchanged for

$$
\begin{equation*}
z_{1}=1 \tag{1.3}
\end{equation*}
$$

without changing the value of (1.2).
Several papers deal with the case $H=\{1,2, \ldots, n\}$ (see P. Turán's book [6]). F. V. Atkinson [1] has proved that

$$
\alpha_{n}:=\min _{z_{1}=1} \max _{\nu=1,2, \ldots, n}\left|s_{\nu}\right|
$$

is greater than $1 / 6$. On the other hand, a suitably chosen set $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ proves that $\alpha_{n}<1$ (for the best known result see [3]).

The situation essentially changes omitting the number 1 from H and replacing it by integers greater than n. Let us denote

$$
\begin{equation*}
\beta_{n}:=\min _{z_{1}=1} \max _{\nu=2,3, \ldots, n+1}\left|s_{\nu}\right| . \tag{1.4}
\end{equation*}
$$

P. Erdős has proved (see [6], Theorem 4.1) that, for large enough n,

$$
\beta_{n} \leqq 2(n+1)^{2} e^{-\vartheta n}<\frac{1}{1.32^{n}}
$$

where ϑ is the only positive root of the equation

$$
\begin{equation*}
1+\vartheta+\log \vartheta=0 \tag{1.5}
\end{equation*}
$$

$(\vartheta=0.2784 \ldots)$, i.e., β_{n} is exponentially small.
P. Turán ([6], Problem 6) posed the problem of the exact value of β_{n}. In our Theorem 1 we prove the following estimations for β_{n}.

Theorem 1. Under the assumption (1.1) and with the notations (1.4) and (1.5), we have

$$
\begin{equation*}
n^{-0.7823} \exp (-2 \vartheta n) \leqq \beta_{n} \leqq n^{4.5} \exp (-2 \vartheta n) \tag{1.6}
\end{equation*}
$$

for sufficiently large n.
Corollary. For $n>n_{0}$, we have $\frac{1}{1.746^{n}}<\beta_{n}<\frac{1}{1.745^{n}}$.
V. T. Sós and P. Turán asked for the "smallest" numerical positive value A_{1} for which the inequality

$$
\begin{equation*}
\max _{\substack{m+1 \leq \nu \leq m+n \\ \nu \text { integer }}}\left|s_{\nu}\right| \geqq\left(\frac{n}{A_{1}(m+n)}\right)^{n} \tag{1.7}
\end{equation*}
$$

holds for arbitrary nonnegative integer m and positive integer n under the assumption (1.1) (see [7]).

Using the result of P. Erdős quoted above it is trivial that $A_{1}>1.321$. The authors of [7] mentioned that the case $m=2$ can yield a better lower estimation for A_{1}. So denoting

$$
\begin{equation*}
\gamma_{n}:=\min _{z_{1}=1} \max _{\nu=3,4, \ldots, n+2}\left|s_{\nu}\right| \tag{1.8}
\end{equation*}
$$

they have shown in Section 11 of [7] that a good estimation of the minimal absolute value of the zeros of a certain equation involving Hermite polynomials (see formula (4.8) in [7]) can give an upper estimation for γ_{n}, and that can yield a better estimation for A_{1}.

Fulfilling this programme E. Makai proved that, for sufficiently large n,

$$
\gamma_{n} \leqq \frac{1}{1.473^{n}}
$$

which implies that $A_{1} \geqq 1.473$ (see [4]).
The idea of the proof of our Theorem 1 can also be applied for the estimation of γ_{n}. Similar but longer calculations show the following

Theorem 1^{\prime}. We have

$$
\begin{equation*}
\gamma_{n} \leqq \min _{z_{1}=1} \max _{\nu=2,3, \ldots, n+2}\left|s_{\nu}\right| \leqq \frac{1}{1.745^{n}} \tag{1.9}
\end{equation*}
$$

The main difference between our idea and that of V. T. Sós, P. Turán and E. Makai is that we do not stick to choose $s_{3}, s_{4}, \ldots, s_{n+1}$ all to be zero as they did but we exploit the possibility of choosing certain s_{i} 's to be small but not zero.

In Section 3 we answer another question of P. Turán. Problem 7 of his book [6] asked whether the expression (1.2) is exponentially small under the assumption (1.1) if $H=\{2,3, \ldots, n+2\}$. Theorem 1^{\prime} shows that the answer is yes. Following the idea of P. Erdös' proof of $\beta_{n} \leqq 1 / 1.32^{n}$ we give a positive answer in the following general form.

Theorem 2. Under the assumption (1.1) if $k \leqq 0.2783 \frac{n}{\log n}$, then

$$
\min _{z_{1}=1} \max _{\nu=2,3, \ldots, n+k}\left|s_{\nu}\right|
$$

is exponentially small.

2. Proof of Theorem 1

The lower estimation. Let us denote $\varepsilon(n)=\exp (-2 \vartheta n-c \log n)$ where the number c will be chosen later. We are going to prove that $\beta_{n} \geqq \varepsilon(n)$. On the contrary let us assume that $\left|s_{2}\right|,\left|s_{3}\right|, \ldots,\left|s_{n+1}\right|$ are smaller than $\varepsilon(n)$.

By Waring's formulae (see L. Rédei [5]) the coefficients a_{k} of the polynomial $\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$ can be expressed by $s_{1}, s_{2}, \ldots, s_{n}$ in the following way:

$$
\begin{gather*}
a_{k}=\sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geqq 0 \\
i_{1}+2 i_{2}+\ldots+n i_{n}=k}} \frac{1}{i_{1}!i_{2}!\ldots i_{n}!}\left(-\frac{s_{1}}{1}\right)^{i_{1}}\left(-\frac{s_{2}}{2}\right)^{i_{2}} \ldots\left(-\frac{s_{n}}{n}\right)^{i_{n}} \tag{2.1}\\
(k=1,2, \ldots, n) .
\end{gather*}
$$

For $k=1$ we have $a_{1}=\left(-s_{1}\right)$. For $k \geqq 2$ separating the summands corresponding to $i_{1}=k, i_{2}+i_{3}+\ldots+i_{n}=1$ and $i_{2}+\ldots+i_{n} \geqq 2$ we obtain that

$$
\begin{gather*}
a_{k}=\frac{\left(-s_{1}\right)^{k}}{k!}+\sum_{i_{1}=0}^{k-2} \frac{\left(-s_{1}\right)^{i_{1}}}{i_{1}!}\left(\frac{-s_{k-i_{1}}}{k-i_{1}}\right)+ \tag{2.2}\\
+\sum_{i_{1}=0}^{k-2} \frac{\left(-s_{1}\right)^{i_{1}}}{i_{1}!} \sum_{\substack{i_{2}, \ldots, i_{n} \geqq 0 \\
i_{2}+\ldots+i_{n} \geqq 2 \\
2 i_{2}+\ldots+n i_{n}=k-i_{1}}} \frac{1}{i_{2}!\ldots!i_{n}!}\left(\frac{-s_{2}}{2}\right)^{i_{2}} \ldots\left(\frac{-s_{n}}{n}\right)^{i_{n}} .
\end{gather*}
$$

(It is trivial that i_{1} cannot be $k-1$ in (2.1) because $2 i_{2}+\ldots+n i_{n}$ cannot be 1.$)$

Using the roughest estimation for the third sum we get

$$
\begin{equation*}
\left|a_{k}-\frac{\left(-s_{1}\right)^{k}}{k!}\right| \leqq \sum_{i=0}^{k-2} \frac{\left|s_{1}\right|^{i}}{i!} \varepsilon(n)+\sum_{i=0}^{k-2} \frac{\left|s_{1}\right|^{i}}{i!} \sum_{\substack{i_{2}, \ldots, i_{n} \geq 0 \\ i_{2}+\ldots+i_{n} \geqq 2 \\ 2 i_{2}+\ldots+n i_{n}=k-i}} \varepsilon(n)^{i_{2}+\ldots+i_{n}} \tag{2.3}
\end{equation*}
$$

The number of summands in the third sum is equal to the number of partitions of $k-i$ not containing 1 as a summand and containing at least
two terms. This number is smaller than that of all partitions of n which can be estimated by $\exp (d \sqrt{n})$ where d is a fixed positive number (see [2]).

Thus from (2.3)

$$
\begin{equation*}
\left|a_{k}-\frac{\left(-s_{1}\right)^{k}}{k!}\right| \leqq e^{\left|s_{1}\right|} \varepsilon(n)+e^{\left|s_{1}\right|} \varepsilon(n)^{2} e^{d \sqrt{n}}=e^{\left|s_{1}\right|} \varepsilon(n) t_{n} \tag{2.4}
\end{equation*}
$$

where t_{n} converges to 1 exponentially fast.
By the remark in Section 1 about the conditions (1.1) and (1.3) we may assume that $z_{1}=1$, consequently $z_{1}=1$ is a root of the equation $z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=0$, thus

$$
\begin{equation*}
a_{n}=-\left(1+a_{1}+\ldots+a_{n-1}\right)=-\sum_{i=0}^{n-1} \frac{\left(-s_{1}\right)^{i}}{i!}+e^{\left|s_{1}\right|} \varepsilon(n) n r_{n} \tag{2.5}
\end{equation*}
$$

where $\left|r_{n}\right| \leqq 1+o(1)$.
Since $\left|s_{1}\right| \leqq\left|z_{1}\right|+\left|z_{2}\right|+\ldots+\left|z_{n}\right| \leqq n$, an easy computation shows that

$$
\begin{gather*}
\left|e^{-s_{1}}-\sum_{i=0}^{n-1} \frac{\left(-s_{1}\right)^{i}}{i!}\right| \leqq \sum_{i=n}^{\infty} \frac{\left|s_{1}\right|^{i}}{i!} \leqq \frac{\left|s_{1}\right|^{n}}{n!}\left(1+\frac{\left|s_{1}\right|}{n+1}+\frac{\left|s_{1}\right|^{2}}{(n+1)^{2}}+\ldots\right)= \tag{2.6}\\
=\frac{\left|s_{1}\right|^{n}(n+1)}{n!\left(n+1-\left|s_{1}\right|\right)}
\end{gather*}
$$

Thus by (2.5)-(2.6)

$$
\begin{equation*}
\left|a_{n}\right| \geqq\left|e^{-s_{1}}\right|-\frac{\left|s_{1}\right|^{n}(n+1)}{n!\left(n+1-\left|s_{1}\right|\right)}-e^{\left|s_{1}\right|} \varepsilon(n) n\left|r_{n}\right| \tag{2.7}
\end{equation*}
$$

Using (2.4) and Newton-Girard's formula

$$
s_{n+1}+a_{1} s_{n}+\ldots+a_{n} s_{1}=0
$$

(see L. Rédei [5]) we get

$$
\begin{gathered}
\left|a_{n}\right|\left|s_{1}\right| \leqq\left|s_{n+1}\right|+\left|a_{1}\right|\left|s_{n}\right|+\ldots+\left|a_{n-1}\right|\left|s_{2}\right| \leqq\left(1+\left|a_{1}\right|+\ldots+\left|a_{n-1}\right|\right) \varepsilon(n) \leqq \\
\leqq \varepsilon(n)\left(\sum_{i=0}^{n-1} \frac{\left|s_{1}\right|^{i}}{i!}+e^{\left|s_{1}\right|} \varepsilon(n) n t_{n}\right)
\end{gathered}
$$

Comparing this inequality with (2.7) and using $\left|e^{-s_{1}}\right| \geqq e^{-\left|s_{1}\right|}$, we obtain that
$\left|s_{1}\right|\left(e^{-\left|s_{1}\right|}-\frac{\left|s_{1}\right|^{n}(n+1)}{n!\left(n+1-\left|s_{1}\right|\right)}-e^{\left|s_{1}\right|} \varepsilon(n) n\left|r_{n}\right|\right)<\varepsilon(n)\left(e^{\left|s_{1}\right|}+e^{\left|s_{1}\right|} \varepsilon(n) n t_{n}\right)$.
First case: $\left|s_{1}\right| \leqq \vartheta n-c_{1} \log n\left(c_{1}>0\right.$ will be chosen later). It can be assumed that $\left|s_{1}\right|>1 / 6$ since Atkinson's result [1] claims that $\max _{\nu=1, \ldots, n}\left|s_{\nu}\right|>$ $>1 / 6$ and $\left|s_{2}\right|,\left|s_{3}\right|, \ldots,\left|s_{n}\right|$ are small. (Instead of Atkinson's deep result, one can use (2.7) and (2.4) with $k=n>n_{0}$.)

In this case for large enough n

$$
\begin{equation*}
e^{\left|s_{1}\right|} \varepsilon(n) n\left|r_{n}\right| \leqq \exp \left\{-\vartheta n+\left(1-c_{1}-c\right) \log n+\log (1+o(1))\right\} \tag{2.9}
\end{equation*}
$$

and by Stirling's formula

$$
\begin{align*}
& \frac{\left|s_{1}\right|^{n}(n+1)}{n!\left(n+1-\left|s_{1}\right|\right)} \leqq \exp \left\{n\left(\log \left(\vartheta-c_{1} \frac{\log n}{n}\right)+1\right)+\log \frac{1}{1-\vartheta}\right\} \leqq \tag{2.10}\\
& \leqq \exp \left\{\log \frac{1}{1-\vartheta}-n \vartheta\right\}
\end{align*}
$$

since $\vartheta+\log \left(\vartheta-c_{1} \frac{\log n}{n}\right)+1 \leqq 0$ by the definition of ϑ.
Using these estimations in (2.8)

$$
\begin{align*}
& \frac{1}{6}\left\{\exp \left(-\vartheta n+c_{1} \log n\right)-\exp \left(\log \frac{1}{1-\vartheta}-n \vartheta\right)-\right. \tag{2.11}\\
& \left.-\exp \left(-\vartheta n+\left(1-c_{1}-c\right) \log n+\log (1+o(1))\right)\right\}<
\end{align*}
$$

$<\exp (-2 \vartheta n-c \log n)\left\{\exp \left(\vartheta n-c_{1} \log n\right)+\exp \left(-\vartheta n+\left(1-c_{1}-c\right) \log n+\log t_{n}\right)\right\}$.
Since $\log (1+o(1)) \rightarrow 0$ and $\log t_{n} \rightarrow 0$, the main term on the left side is $(1 / 6) \exp \left(-\vartheta n+c_{1} \log n\right)$ if

$$
\begin{equation*}
c_{1}>1-c_{1}-c \tag{2.12}
\end{equation*}
$$

and the main term on the right side is $\exp \left(-\vartheta n-\left(c+c_{1}\right) \log n\right)$. Thus we get a contradiction if

$$
\begin{equation*}
c_{1}>-\left(c+c_{1}\right) \tag{2.13}
\end{equation*}
$$

but (2.12) guarantees (2.13).
Second case: $\left|s_{1}\right|>\vartheta n-c_{1} \log n$. The estimation (2.4) yields that

$$
\begin{equation*}
\left|a_{n}\right| \geqq \frac{\left|s_{1}\right|^{n}}{n!}-e^{\left|s_{1}\right|} \varepsilon(n) t_{n} . \tag{2.14}
\end{equation*}
$$

We repeat the calculation of the first case replacing the estimation of $\left|a_{n}\right|$ in (2.7) by (2.14). Similarly to (2.8) we get

$$
\begin{equation*}
\left|s_{1}\right|\left(\frac{\left|s_{1}\right|^{n}}{n!}-e^{\left|s_{1}\right|} \varepsilon(n) t_{n}\right)<\varepsilon(n)\left(e^{\left|s_{1}\right|}+e^{\left|s_{1}\right|} \varepsilon(n) n t_{n}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{6} \frac{\left|s_{1}\right|^{n}}{n!}<e^{\left|s_{1}\right|} \varepsilon(n)\left(1+\frac{t_{n}}{6}+\varepsilon(n) n t_{n}\right) . \tag{2.16}
\end{equation*}
$$

By Stirling's formula, we have

$$
\begin{gather*}
\exp \left(-\left|s_{1}\right|+n \log \left|s_{1}\right|-n \log n+n-\frac{1}{12 n}-\log \sqrt{2 \pi n}+\right. \tag{2.17}\\
+2 \vartheta n+c \log n) \leqq 6\left(\frac{7}{6}+o(1)\right)
\end{gather*}
$$

Simple differentiation shows that in the interval $\left[\vartheta n-c_{1} \log n, n\right]$ the function $f(x)=-x+n \log x$ is increasing, so the minimal value is attained at $x=$ $=\vartheta n-c_{1} \log n$. Since $\left|s_{1}\right|$ is in this interval by (1.1), we have

$$
\begin{aligned}
& \exp \{-\vartheta n+ c_{1} \log n+n \log \left(\vartheta n-c_{1} \log n\right)-n \log n+n-\frac{1}{12 n}- \\
&-\log \sqrt{2 \pi n}+2 \vartheta n+c \log n\} \leqq 7+o(1)
\end{aligned}
$$

or

$$
\begin{gather*}
\exp \left\{n\left(\vartheta+\log \left(\vartheta-c_{1} \frac{\log n}{n}\right)+1\right)+\left(c_{1}+c-\frac{1}{2}\right) \log n-\right. \tag{2.18}\\
\left.-\frac{1}{12 n}-\log \sqrt{2 \pi}\right\} \leqq 7+o(1)
\end{gather*}
$$

But

$$
\begin{gathered}
n\left(\vartheta+\log \left(\vartheta-c_{1} \frac{\log n}{n}\right)+1\right)=n\left(\log \left(\vartheta-c_{1} \frac{\log n}{n}\right)-\log \vartheta\right) \geqq \\
\geqq n\left(-c_{1} \frac{\log n}{n}\right) \max _{\vartheta-c_{1} \frac{\log n}{n} \leqq x \leqq \vartheta}(\log x)^{\prime}=-c_{1} \log n \frac{1}{\vartheta-c_{1} \frac{\log n}{n}} .
\end{gathered}
$$

Thus from (2.18) we get a contradiction if

$$
\begin{equation*}
c_{1}+c-\frac{1}{2}>\frac{c_{1}}{\vartheta} . \tag{2.19}
\end{equation*}
$$

Now we can choose the constants c_{1} and c on the grounds of (2.12) and (2.19). These inequalities will be satisfied if

$$
c_{1}=\frac{\vartheta}{2(\vartheta+1)} \quad \text { and } \quad c=0.7823>\frac{1}{\vartheta+1} .
$$

The upper estimation. We are going to prove the existence of complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that $z_{1}=1$ and $\left|s_{2}\right|,\left|s_{3}\right|, \ldots,\left|s_{n+1}\right| \leqq$ $\leqq \exp (-2 \vartheta n+4.5 \log n)$ for large enough n (by the remark in Section 1 about (1.1) and (1.3) it is enough to guarantee (1.3) instead of (1.1)).

From Waring's formulae it follows that for an arbitrary system of the sums of the first n powers there uniquely exists a system of numbers z_{1}, z_{2}, \ldots, z_{n} resulting the given sums of powers. So we shall give explicitly the numbers $s_{1}, s_{2}, \ldots, s_{n}$ instead of $z_{1}, z_{2}, \ldots, z_{n}$.

Let $\varepsilon(n)=\exp (-2 \vartheta n+4.5 \log n)$; we are going to choose $s_{2}, s_{3}, \ldots, s_{n-1}$ to be smaller than $\varepsilon(n)$ in absolute value. For the moment we do not care about s_{n} because it plays no role in (2.2) for $k=1,2, \ldots, n-1$. Assuming this choice of $s_{2}, s_{3}, \ldots, s_{n-1}$ we have an estimation similar to (2.3) using the partitions. For $2 \leqq k \leqq n-1$,

$$
\begin{equation*}
a_{k}=\frac{\left(-s_{1}\right)^{k}}{k!}+\sum_{i=0}^{k-2} \frac{\left(-s_{1}\right)^{i}}{i!} \frac{-s_{k-i}}{k-i}+O\left(e^{\left|s_{1}\right|} \varepsilon^{2}(n) e^{d \sqrt{n}}\right) \tag{2.20}
\end{equation*}
$$

Let us choose $s_{1}=[\vartheta n]$. Then $e^{\left|s_{1}\right|} \mid \varepsilon^{2}(n) e^{d \sqrt{n}} n \leqq e^{-2.5 \vartheta n}$. Now we choose the value of a_{n} to guarantee $z_{1}=1$ to be a root:

$$
\begin{gather*}
a_{n}:=-\left(1+a_{1}+\ldots+a_{n-1}\right)= \tag{2.21}\\
=-\left\{\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}+\sum_{k=2}^{n-1} \sum_{i=0}^{k-2} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{k-i}}{k-i}\right)\right\}+O\left(e^{-2.5 \vartheta n}\right)= \\
=-\left\{\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}+\sum_{i=0}^{n-3} \frac{\left(-s_{1}\right)^{i}}{i!} \sum_{j=2}^{n-1-i} \frac{-s_{j}}{j}\right\}+O\left(e^{-2.5 \vartheta_{n}}\right) .
\end{gather*}
$$

By the Newton-Girard's formulae and (2.20)

$$
\begin{aligned}
& -s_{n}=a_{1} s_{n-1}+\ldots+a_{n-1} s_{1}+n a_{n}=\sum_{k=1}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!} s_{n-k}+ \\
& +\sum_{k=2}^{n-1} \sum_{i=0}^{k-2} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{k-i}}{k-i}\right) s_{n-k}+O\left(e^{-2.5 \vartheta n}\right)+n a_{n}
\end{aligned}
$$

consequently,

$$
\begin{align*}
& -s_{n}=\sum_{k=1}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!} s_{n-k}+\sum_{i=0}^{n-3} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{n-1-i}}{n-1-i}\right) s_{1}+ \tag{2.22}\\
& +\sum_{k=2}^{n-2} \sum_{i=0}^{k-2} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{k-i}}{k-i}\right) s_{n-k}+O\left(e^{-2.5 \vartheta n}\right)+n a_{n}
\end{align*}
$$

The double sum on the right side can be estimated by $e^{\left|s_{1}\right|} \varepsilon^{2}(n) n$, which can be endorsed to the error term. Expressing s_{n+1} we get

$$
\begin{gather*}
-s_{n+1}=a_{1} s_{n}+\ldots+a_{n} s_{1}=\sum_{k=2}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!} s_{n+1-k}+ \tag{2.23}\\
+\sum_{k=2}^{n-1} \sum_{i=0}^{k-2} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{k-i}}{k-i}\right) s_{n+1-k}+O\left(e^{-2.5 \vartheta n}\right)+s_{1} a_{n}-s_{1} s_{n}
\end{gather*}
$$

The double sum on the right side can be treated as in (2.22). So it is enough to guarantee that

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}+\sum_{i=0}^{n-3} \frac{\left(-s_{1}\right)^{i}}{i!} \sum_{j=2}^{n-1-i}\left(\frac{-s_{j}}{j}\right)=0 \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!} s_{n-k}+\sum_{i=0}^{n-3} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{-s_{n-i-1}}{n-i-1}\right) s_{1}=0 \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=2}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!} s_{n+1-k}=0 \tag{III}
\end{equation*}
$$

Indeed, (I) implies that $\left|a_{n}\right|=O\left(e^{-2.5 \vartheta n}\right)$, then this and (II) imply that $\left|s_{n}\right|=O\left(n e^{-2.5 v_{n}}\right)<\varepsilon(n)$, finally, these both and (III) imply that $\left|s_{n+1}\right|=$ $=O\left(n^{2} e^{-2.5 \vartheta n}\right)<\varepsilon(n)$.

All we have to do is to prove the existence of a "small" solution s_{2}, s_{3}, \ldots, s_{n-1} of the equations (I)-(III). The number A will be chosen as a suitable integer not far from $n-s_{1}$. All the $s_{2}, s_{3}, \ldots, s_{n-1}$ are to be zero except s_{A}, s_{A+1}, s_{A+2}. Thus (I)-(III) take the following form:
(I') $\sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!}\left(\frac{s_{A}}{A}+\frac{s_{A+1}}{A+1}+\frac{s_{A+2}}{A+2}\right)+\frac{\left(-s_{1}\right)^{n-A-2}}{(n-A-2)!}\left(\frac{s_{A}}{A}+\frac{s_{A+1}}{A+1}\right)+$

$$
+\frac{\left(-s_{1}\right)^{n-A-1}}{(n-A-1)!} \frac{s_{A}}{A}=\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}
$$

(II') $\frac{s_{A}}{A}\left(\frac{-s_{1}}{n-A}\right)+\frac{s_{A+1}}{A+1}+\frac{s_{A+2}}{A+2}\left(\frac{n-A-1}{-s_{1}}\right)=\frac{\left(-s_{1}\right)^{A+1}(n-A-1)!}{n!}$,

$$
\left(\frac{-s_{1}}{n-A+1}\right) s_{A}+s_{A+1}+\left(\frac{n-A}{-s_{1}}\right) s_{A+2}=0
$$

Anticipating that for suitable A, this system of linear equations has a nonzero determinant (cf. (2.33)) we obtain that

$$
\begin{equation*}
s_{A}=A\left\{\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}-\frac{\left(-s_{1}\right)^{n-1}(n-A)(n-A-1)(A+2)}{(n+1)!}+\right. \tag{2.24}
\end{equation*}
$$

$$
\left.+\sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!} \frac{\left(-s_{1}\right)^{A+1}(n-A-1)!}{(n+1)!}\left(-s_{1}(A+1)-(n-A)(A+2)\right)\right\} \times
$$

$$
\times\left\{\sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!}\left(1+\frac{2 s_{1}}{n-A+1}+\frac{s_{1}^{2}}{(n-A)(n-A+1)}\right)+\right.
$$

$$
\left.+\frac{\left(-s_{1}\right)^{n-A-2}}{(n-A-2)!}\left(1+\frac{2 s_{1}}{n-A+1}\right)+\frac{\left(-s_{1}\right)^{n-A-1}}{(n-A-1)!}\right\}^{-1}
$$

$$
\begin{equation*}
s_{A+1}=s_{1} s_{A} \frac{2(A+1)}{A(n-A+1)}+\frac{\left(-s_{1}\right)^{A+1}(n-A)!(A+1)(A+2)}{(n+1)!}, \tag{2.25}
\end{equation*}
$$

$$
\begin{equation*}
s_{A+2}=s_{1}^{2} s_{A} \frac{A+2}{A(n-A)(n-A+1)}-\frac{\left(-s_{1}\right)^{A+2}(n-A-1)!(A+1)(A+2)}{(n+1)!} . \tag{2.26}
\end{equation*}
$$

The second terms in (2.25) and (2.26) can be estimated easily, anticipating that A will be chosen $n-s_{1}$ or $n-s_{1}+1$. The second term in (2.26) is not smaller in absolute value than that of (2.25), so we are dealing with it:

$$
\begin{gathered}
\left|\frac{\left(-s_{1}\right)^{A+2}(n-A-1)!(A+1)(A+2)}{(n+1)!}\right| \leqq \\
\leqq \frac{s_{1}^{n-s_{1}+2}\left(s_{1}-1\right)!\left(n-s_{1}\right)^{2}(1+o(1))}{(n+1)!} \leqq \\
\leqq \frac{(\vartheta n)^{n}(\vartheta n)^{2.5} n^{2}(1-\vartheta)^{2} e^{n(1-\vartheta)}(1+o(1))}{(n+1) \sqrt{n} n^{n}}= \\
=\vartheta^{2.5}(1-\vartheta)^{2} n^{3} e^{-2 \vartheta n}(1+o(1)) \leqq \frac{1}{2} \exp (-2 \vartheta n+3 \log n) .
\end{gathered}
$$

Thus from (2.25) and (2.26) (for $A=n-s_{1}$ and $A=n-s_{1}+1$) we get

$$
\begin{equation*}
\left|s_{A+1}\right| \leqq(2+o(1))\left|s_{A}\right|+\frac{1}{2} \exp (-2 \vartheta n+3 \log n) \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\left|s_{A+2}\right| \leqq(1+o(1))\left|s_{A}\right|+\frac{1}{2} \exp (-2 \vartheta n+3 \log n) \tag{2.28}
\end{equation*}
$$

Now we estimate s_{A} from (2.24). We start with the first $\{\ldots\}$ consisting of three terms, T_{1}, T_{2}, T_{3}. The first term T_{1} can be treated similarly to (2.6):

$$
\begin{gathered}
\left|T_{1}\right|=\left|\sum_{k=0}^{n-1} \frac{\left(-s_{1}\right)^{k}}{k!}\right| \leqq e^{-s_{1}}+\frac{s_{1}^{n}}{n!} \frac{n}{n-s_{1}} \leqq \exp (-\vartheta n+1)+ \\
+\exp (n(\log \vartheta+1)) \frac{1}{1-\vartheta}
\end{gathered}
$$

Since $-\vartheta=\log \vartheta+1$,

$$
\begin{equation*}
\left|T_{1}\right| \leqq \exp (-\vartheta n)\left(e+\frac{1}{1-\vartheta}\right) \tag{2.29}
\end{equation*}
$$

The second term T_{2} gives:
(2.30)

$$
\begin{gathered}
\left|T_{2}\right|=\left|\frac{\left(-s_{1}\right)^{n-1}(n-A)(n-A-1)(A+2)}{(n+1)!}\right| \leqq(e \vartheta)^{n} \frac{(1-\vartheta) \vartheta}{\sqrt{2 \pi}} \sqrt{n}(1+o(1)) \leqq \\
\leqq \frac{1}{2} \exp \left(-\vartheta n+\frac{1}{2} \log n\right)
\end{gathered}
$$

The estimation of the third term T_{3} yields:

$$
\begin{gathered}
\left|T_{3}\right|=\left|\sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!} \frac{\left(-s_{1}\right)^{A+1}(n-A-1)!}{(n+1)!}\left(-s_{1}(A+1)-(n-A)(A+2)\right)\right| \leqq \\
\leqq e^{s_{1}} \frac{s_{1}^{n-s_{1}+1}\left(s_{1}-1\right)!}{(n+1)!} 2 \vartheta(1-\vartheta) n^{2}(1+o(1))
\end{gathered}
$$

since $s_{1}=(1+o(1)) \vartheta n, A=(1+o(1))(1-\vartheta) n$. Thus we get
(2.31) $\left|T_{3}\right| \leqq \exp \left\{n(1+\log \vartheta)+\log n+\frac{1}{2} \log \vartheta+\log (2 \vartheta(1-\vartheta))+o(1)\right\}<$

$$
<0.213 \exp (-\vartheta n+\log n)
$$

Thus the first $\{\ldots\}$ in (2.24) is smaller than the sum of the right sides of (2.29), (2.30) and (2.31), i.e.

$$
\begin{equation*}
\text { the first }\{\ldots\} \text { in }(2.24) \leqq 0.22 \exp (-\vartheta n+\log n) \text {. } \tag{2.32}
\end{equation*}
$$

The second $\{\ldots\}$ of (2.24) cannot be estimated from below in a direct way but we have a certain freedom in the choice of A. We are going to prove that $A=n-s_{1}$ or $A=n-s_{1}+1$ suits. Let

$$
\begin{aligned}
f(A):= & \sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!}\left(1+\frac{2 s_{1}}{n-A+1}+\frac{s_{1}^{2}}{(n-A)(n-A+1)}\right)+ \\
& +\frac{\left(-s_{1}\right)^{n-A-2}}{(n-A-2)!}\left(1+\frac{2 s_{1}}{n-A+1}\right)+\frac{\left(-s_{1}\right)^{n-A-1}}{(n-A-1)!} .
\end{aligned}
$$

Lemma. We have

$$
\begin{equation*}
\max \left\{\left|f\left(n-s_{1}\right)\right|,\left|f\left(n-s_{1}+1\right)\right|\right\} \geqq \frac{1}{2} \exp (\vartheta n-2.5 \log n) . \tag{2.33}
\end{equation*}
$$

Proof. Indirectly, let us suppose that

$$
\left\{\begin{array}{l}
\left|f\left(n-s_{1}\right)\right|<\frac{1}{2} \exp (\vartheta n-2.5 \log n) \tag{2.34}\\
\left|f\left(n-s_{1}+1\right)\right|<\frac{1}{2} \exp (\vartheta n-2.5 \log n)
\end{array}\right.
$$

In order to eliminate the annoying $\sum_{i=0}^{n-A-3} \frac{\left(-s_{1}\right)^{i}}{i!}$, let us consider the following linear combination:

$$
\begin{equation*}
L:=\frac{4 s_{1}-3}{s_{1}-1} f\left(n-s_{1}\right)-\frac{4 s_{1}+1}{s_{1}+1} f\left(n-s_{1}+1\right) . \tag{2.35}
\end{equation*}
$$

From (2.34) it follows that

$$
\begin{equation*}
|L| \leqq 5 \exp (\vartheta n-2.5 \log n) \tag{2.36}
\end{equation*}
$$

A simple calculation shows that

$$
\begin{equation*}
L=\frac{\left(-s_{1}\right)^{s_{1}}}{s_{1}!} \frac{-2}{\left(s_{1}-1\right)\left(s_{1}+1\right)} . \tag{2.37}
\end{equation*}
$$

Thus

$$
|L| \geqq \exp (\vartheta n-2.5 \log n) \frac{(2+o(1))}{\sqrt{2 \pi \vartheta} e \vartheta^{2}}>7 \exp (\vartheta n-2.5 \log n)
$$

which contradicts (2.36).

Now let us choose A so that $|f(a)| \geqq \frac{1}{2} \exp (\vartheta n-2.5 \log n)$. Then from (2.24) and (2.32) it follows that

$$
\begin{gathered}
\left|s_{A}\right| \leqq(n(1-\vartheta)+2) \cdot 0.22 \exp (-\vartheta n+\log n) \cdot 2 \exp (-\vartheta n+2.5 \log n) \leqq \\
\leqq 0.4 \exp (-2 \vartheta n+4.5 \log n),
\end{gathered}
$$

and from (2.27) and (2.28) we get

$$
\left|s_{A+1}\right| \leqq \exp (-2 \vartheta n+4.5 \log n), \quad\left|s_{A+2}\right| \leqq \exp (-2 \vartheta n+4.5 \log n) .
$$

Remark. The proof of Theorem 1^{\prime} is essentially the same but we must choose $s_{A}, s_{A+1}, s_{A+2}, s_{A+3}$ so that they satisfy a system of linear equations similar to (I)-(III) consisting of four equations. The index A can be chosen either $n-s_{1}$ or $n-s_{1}+1$ so that the absolute values of the solutions s_{A}, $s_{A+1}, s_{A+2}, s_{A+3}$ are "small". The calculation is elementary but rather long so we omit the details.

3. Proof of Theorem 2

Let $k_{0}=0.2789 \frac{n}{\log n}$. We prove the existence of numbers $z_{1}=1$, z_{2}, \ldots, z_{n} so that $s_{2}, s_{3}, \ldots, s_{n+k_{0}}$ are exponentially small. Instead of $z_{1}, z_{2}, \ldots, z_{n}$ we prescribe the values of the sums of powers. Following the idea of P. Erdős let $s_{1}=\vartheta n, s_{2}=s_{3}=\ldots=s_{n-1}=0$. From NewtonGirard's formulae one can easily get that $a_{j}=\frac{\left(-s_{1}\right)^{j}}{j!}(j=1,2, \ldots, n-1)$ where the a_{j} 's are the same as at the beginning of Section 2. To guarantee $z_{1}=1$ let us choose

$$
a_{n}:=-\left(1+a_{1}+\ldots+a_{n-1}\right)=-\sum_{j=0}^{n-1} \frac{\left(-s_{1}\right)^{j}}{j!}
$$

The coefficients $a_{1}, a_{2}, \ldots, a_{n}$ being given, all the sums of powers are determined by Newton-Girard's formulae. We are going to prove the following estimation by induction on k :

$$
\begin{equation*}
\left|s_{n+k}\right| \leqq 2 n s_{1}^{k} e^{-s_{1}}\left(\frac{1}{\log 2}\right)^{k} \quad \text { if } \quad k=0,1, \ldots, n-1 \tag{3.1}
\end{equation*}
$$

Case $k=0$. By $s_{n}+a_{1} s_{n-1}+\ldots+a_{n-1} s_{1}+n a_{n}=0$ we get

$$
s_{n}=n \sum_{j=0}^{n} \frac{\left(-s_{1}\right)^{j}}{j!}=n\left(e^{-s_{1}}-\sum_{j=n+1}^{\infty} \frac{\left(-s_{1}\right)^{j}}{j!}\right)
$$

Since $\sum_{j=n+1}^{\infty} \frac{\left(-s_{1}\right)^{j}}{j!}$ is an alternating series with terms decreasing in absolute value, we obtain that

$$
\left|s_{n}\right| \leqq n\left(e^{-s_{1}}+\frac{s_{1}^{n+1}}{(n+1)!}\right) \leqq n e^{-s_{1}}(1+\exp (n(\vartheta+\log \vartheta+1)))=2 n e^{-s_{1}}
$$

Case $k=1$. Expressing s_{n+1} from Newton-Girard's formulae we get

$$
\begin{gathered}
\left|s_{n+1}\right|=s_{1}\left|n \sum_{j=0}^{n} \frac{\left(-s_{1}\right)^{j}}{j!}+\sum_{j=0}^{n-1} \frac{\left(-s_{1}\right)^{j}}{j!}\right| \leqq \\
\leqq s_{1} e^{-s_{1}}(n+1)\left(1+e^{s_{1}} \frac{s_{1}^{n}}{(n+1)!}\left(s_{1}+1\right)\right) \leqq 2 n s_{1} e^{-s_{1}}\left(\frac{1}{\log 2}\right)
\end{gathered}
$$

Case $k \geqq 2$.

$$
\begin{gathered}
\left|s_{n+k}\right|=\left|-\sum_{j=1}^{k} \frac{\left(-s_{1}\right)^{j}}{j!} s_{n+k-j}\right| \leqq \sum_{j=1}^{k} \frac{s_{1}^{j}}{j!}\left|s_{n+k-j}\right| \leqq \\
\leqq 2 n e^{-s_{1}} \sum_{j=1}^{k} \frac{s_{1}^{j}}{j!} s_{1}^{k-j}\left(\frac{1}{\log 2}\right)^{k-j}=2 n e^{-s_{1}} s_{1}^{k}\left(\frac{1}{\log 2}\right)^{k} \sum_{j=1}^{k} \frac{(\log 2)^{j}}{j!} \leqq \\
\leqq 2 n e^{-s_{1}} s_{1}^{k}\left(\frac{1}{\log 2}\right)^{k}
\end{gathered}
$$

By (3.1) easy calculation shows that s_{n+k} is exponentially small if $k \leqq k_{0}$ since

$$
\begin{array}{rl}
2 n e^{-s_{1}} s_{1}^{k}\left(\frac{1}{\log 2}\right)^{k}=2 & n \exp \left\{-n\left(\vartheta-\frac{k}{n} \log n+\frac{k}{n}(\log \log 2-\log \vartheta)\right)\right\} \leqq \\
\leqq 2 n \exp (-n(\vartheta-0.2783))
\end{array}
$$

Remark. A slightly more accurate calculation proves that s_{n+k} is exponentially small if $k=O\left(\frac{n}{\log n}\right)$. The proof is based on the following inequalities which can be proved by induction:

$$
\left(1-\varepsilon_{k}\right)\left(\frac{n}{k!}+\frac{1}{(k-1)!}\right) s_{1}^{k} e^{-s_{1}} \leqq s_{n+k} \leqq\left(1+\varepsilon_{k}\right)\left(\frac{n}{k!}+\frac{1}{(k-1)!}\right) s_{1}^{k} e^{-s_{1}}
$$

where $\varepsilon_{0}=\exp \{n(\gamma+\log \gamma+1)\}, \varepsilon_{k}=\varepsilon_{0} \cdot 3^{k-1} k!, s_{1}=\gamma n, s_{2}=s_{3}=$ $=\ldots=s_{n-1}=0, z_{1}=1$ and γ denotes a positive constant smaller than $\exp \left\{-\frac{k \log n}{n}-2\right\}$ (the term $\frac{1}{(k-1)!}$ is considered 0 for $k=0$).

References

[1] F. V. Atkinson, On sums of powers of complex numbers, Acta Math. Acad. Sci. Hungar. 12 (1961), 185-188.
[2] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. of the London Math. Soc., XVII (1918), 75-115.
[3] J. Komlós, A. Sárközy and E. Szemerédi, On sums of powers of complex numbers (in Hungarian), Mat. Lapok, 15 (1964), 337-347.
[4] E. Makai, An estimation in the theory of diophantine approximations, Acta Math. Acad. Sci. Hungar., 9 (1958), 299-307.
[5] L. Rédei, Algebra, I, Akadémiai Kiadó, Budapest - Pergamon Press, Oxford, 1967.
[6] P. Turán, On a new method of analysis and its applications, John Wiley \& Sons (New York, 1984).
[7] V. T. Sós and P. Turán, On some new theorems in the theory of diophantine approximations, Acta Math. Acad. Sci. Hungar., 6 (1955), 241-255.
(Received August 22, 1989)

ON THE CONTROL OF A RECTANGULAR MEMBRANE

I. JOÓ (Budapest)

1. Let $\Omega=(0, a) \times(0, b)$ be a rectangle and consider the following control problem:

$$
\begin{align*}
& u_{t t}=\Delta u+\sum_{j=1}^{N} \delta\left((x, y)-P_{j}\right) v_{j}, \quad(x, y) \in \Omega \tag{1}\\
& \left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega \times(0, T)}=\sum_{j=N+1}^{M} \delta\left(s-S_{j}\right) v_{j}, \quad s \in \partial \Omega \tag{2}
\end{align*}
$$

Here $u(t, x, y)$ gives the height of the point $(x, y) \in \Omega$ in time $t, P_{1}, \ldots, P_{N} \in$ $\in \Omega, S_{N+1}, \ldots, S_{M} \in \partial \Omega$ and

$$
v_{j}(t) \in L^{2}(0, T) \quad(j=1, \ldots, M)
$$

are the controls. We suppose further that the initial state is relaxed, i.e.

$$
\begin{equation*}
u(0, x, y)=u_{t}(0, x, y)=0 \quad \text { on } \quad \Omega \tag{3}
\end{equation*}
$$

Define further the reachability set

$$
R(T):=\left\{\left(u(T, ., .), u_{t}(T, ., .)\right): v_{j} \in L^{2}(0, T) ; j=1, \ldots, M\right\}
$$

and consider the following system of eigenfunctions:

$$
-\Delta \varphi_{m n}=\lambda_{m n} \varphi_{m n}, \quad \frac{\partial \varphi_{m n}}{\partial \nu}=0 \quad \text { on } \quad \partial \Omega
$$

It has solutions

$$
\begin{gathered}
\varphi_{m n}(x, y)=\gamma_{m n} \cos m \frac{\pi}{a} x \cos n \frac{\pi}{b} y, \quad \lambda_{m n}=\left(m \frac{\pi}{a}\right)^{2}+\left(n \frac{\pi}{b}\right)^{2} \\
(m, n=0,1,2, \ldots)
\end{gathered}
$$

forming a complete orthonormal system in $L^{2}(\Omega)$ if

$$
\gamma_{m n}:= \begin{cases}\frac{2}{\sqrt{a b}} & \text { if } m, n \neq 0 \\ \frac{1}{\sqrt{a b}} & \text { if } m=n=0 \\ \sqrt{\frac{2}{a b}} & \text { if one of } m, n \text { is } 0 .\end{cases}
$$

Introduce the spaces

$$
\begin{gathered}
W_{r}:=\left\{f=\sum_{m, n} c_{m n} \varphi_{m n}:\|f\|_{W_{r}}^{2}:=\left|c_{00}\right|^{2}+\sum_{(m, n) \neq(0,0)}\left|c_{m n}\right|^{2} \lambda_{m n}^{r}<\infty\right\} \\
\mathcal{H}_{r}:=W_{r+1} \oplus W_{r}
\end{gathered}
$$

First we prove
Theorem 1. For any control the solution of (1)-(3) satisfies $\left(u, u_{t}\right) \in$ $\in C\left([0, T], \mathcal{H}_{r}\right)$ for $r<-3 / 4$.

We recall that the system (1)-(3) is approximately controllable in time T if for all $r<-3 / 4 R(T) \subset \mathcal{H}_{r}$ is dense in \mathcal{H}_{r}. The system is approximately controllable in nonbounded finite time if $\bigcup_{T<\infty} R(T)$ is dense in \mathcal{H}_{r} for all $r<-3 / 4$.

Theorem 2. (a) The system (1)-(3) is not approximately controllable in any time $T<\infty$ (i.e. $R(T) \cap \mathcal{H}_{r}$ is not dense in \mathcal{H}_{r} for any $r \in \mathbf{R}$).
(b) The system (1)-(3) is approximately controllable in nonbounded finite time i.e. $\bigcup_{T<\infty} R(T)$ is dense in \mathcal{H}_{r} if and only if all $\lambda_{m n}$ are different (i.e. a^{2} / b^{2} is not rational) and if all $e_{m n}$ are nonzero.

As a corollary we get that, contrary to the onedimensional case of vibrating strings ([1], [2]) the reachability set $R(T)$ does not give up growing for large T.

We give to (1)-(3) the following interpretation. The function $u(t, x, y)$ satisfies (1)-(3) if for every function $z(t, x, y) \in C^{2}$ with

$$
z(T, ., .)=z_{t}(T, ., .)=0,\left.\quad \frac{\partial z}{\partial \nu}\right|_{\partial \Omega \times(0, T)}=0
$$

the following relation holds:

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} u\left(z_{t t}-\Delta z\right)=\int_{0}^{T}\left(\sum_{j=1}^{N} z\left(., P_{j}\right) v_{j}+\sum_{j=N+1}^{M} z\left(., S_{j}\right) v_{j}\right) \tag{4}
\end{equation*}
$$

We ask for the solution u in the form

$$
u(t, x, y)=\sum_{m, n \in \mathbb{N}} c_{m n}(t) \varphi_{m n}(x, y)
$$

then

$$
c_{m n}=\int_{\Omega} u \varphi_{m n}
$$

Applying (4) to the function $z(t, x, y)=b(t) \varphi_{m n}(x, y)$ with $b \in C^{2}[0, T]$, $b(T)=b^{\prime}(T)=0$ we obtain

$$
\begin{gather*}
c_{m n}(t)=\int_{0}^{t} \frac{\sin \sqrt{\lambda_{m n}}(t-\tau)}{\sqrt{\lambda_{m n}}} h(\tau) d \tau, \quad(m, n) \neq(0,0) \tag{5}\\
c_{00}(t)=\int_{0}^{t}(t-\tau) h(\tau) d \tau \\
h(t):=\sum_{j=1}^{N} \varphi_{m n}\left(P_{j}\right) v_{j}(t)+\sum_{j=N+1}^{M} \varphi_{m n}\left(S_{j}\right) v_{j}(t)
\end{gather*}
$$

Denote

$$
\begin{gathered}
\xi_{m+1, \pm(n+1)}(t):= \pm i \sqrt{\lambda_{m n}} c_{m n}(t)+c_{m n}^{\prime}(t)= \\
=\int_{0}^{t} e^{ \pm i \sqrt{\lambda_{m n}}(t-\tau)} h(\tau) d \tau=\int_{0}^{t}\left\langle e_{m n} e^{ \pm i \sqrt{\lambda_{m n}} \tau}, \quad v(\tau)\right\rangle d \tau \\
\xi_{1,1}(t):=c_{00}(t) \int_{0}^{t}(t-\tau) h(\tau) d \tau=\int_{0}^{t}\left\langle e_{00} \tau, v(\tau)\right\rangle d \tau \\
\xi_{1,-1}(t):=c_{00}^{\prime}(t)=\int_{0}^{t} h(\tau) d \tau=\int_{0}^{t}\left\langle e_{00}, v_{(\tau)}\right\rangle d \tau \\
e_{m n}:=\left(\begin{array}{c}
\varphi_{m n}\left(P_{1}\right) \\
\vdots \\
\varphi_{m n}\left(P_{N}\right) \\
\varphi_{m n}\left(S_{N+1}\right) \\
\vdots \\
\varphi_{m n}\left(S_{M}\right)
\end{array}\right), \quad v(\tau):=\binom{\frac{\vdots}{v_{1}(t-\tau)}}{v_{m}(t-\tau)}
\end{gathered}
$$

For given functions

$$
f=\sum_{m, n} f_{m n} \varphi_{m n}, \quad g=\sum_{m, n} g_{m n} \varphi_{m n}
$$

it is easy to check

Lemma 1. The mapping

$$
A:(g, f) \rightarrow\left\{f_{00}, g_{00},\left(\lambda_{m|k|}\right)^{r / 2} \xi_{m k}: m,|k|=1,2, \ldots ; m+|k|>2\right\}
$$

establishes an isomorphism between \mathcal{H}_{r} and ℓ_{2}.
This means that in proving Theorems 1 and 2 we can investigate $A R(T)$ in ℓ_{2}. It is not hard to see that for fixed m the sequence $\sqrt{\lambda_{m n}}$ has a partition into $c \sqrt{m}$ sequences in which the distance of the neighbouring elements is not smaller than 1 (see [13]). Consequently

$$
\sum_{n}\left|\int_{0}^{t}\left\langle e_{m n} e^{i \sqrt{\lambda_{m n}} \tau}, v(\tau)\right\rangle d \tau\right|^{2} \leqq c \sqrt{m}\|v\|_{L^{2}\left(0, t ; C^{N}\right)}^{2}
$$

which implies that $A R(t) \subset \ell_{2}$. The fact that for fixed $v A\left(u(t,),. u_{t}(t,).\right)$ is continuous in t can be proved similarly.

Return to the proof of Theorem 2/a. It is easy to see that:
LEMMA $2([3],[4])$. The vectors $e_{m n}(0 \leqq m, k \leqq 2 M-2)$ span the space C^{M}.

Using this, we obtain a basis e_{1}, \ldots, e_{M}. We have
Lemma 3 ([3], [4]). Let $T, \varepsilon>0$. Then the system

$$
e(\Lambda):=\left\{e_{m n} e^{ \pm i \sqrt{\lambda_{m n}} t}: m+n>0 ; \quad m, n \geqq 0\right\}
$$

contains a subsystem

$$
\Phi=\left\{e_{n}^{j} e^{i \lambda_{n}^{(j)} t}: j=1, \ldots, M ; n=1,2, \ldots\right\} \cup\left\{e_{o}^{j} e^{i \lambda_{o}^{(j)} t}: j=1, \ldots, M\right\}
$$

such that
(a) $\left|e_{n}^{j}-e_{j}\right|<\varepsilon(j=1, \ldots, M ; n=0,1, \ldots)$,
(b) $\lambda_{n}^{(j)}=2 \pi \frac{n}{T}+O(1 / \sqrt{n})$.

If $e_{\boldsymbol{j}}=e_{m \boldsymbol{k}}$ then by simultaneous diophantine approximation we get that for any pair (m^{\prime}, k^{\prime}) there exist $m=m^{\prime}+O(1), k=k^{\prime}+O(1)$ satisfying $\left|e_{j}-e_{m k}\right|<\varepsilon$. Now approximate $2 \pi \frac{n}{T}$ by $\lambda_{m^{\prime} k_{0}^{\prime}}$ with $k_{0}^{\prime}=O(1)$. Then take appropriate $m=m^{\prime}+O(1)$, further $k^{\prime}=O\left(m^{1 / 2}\right)$ such that $\lambda_{m k^{\prime}}=$ $=2 \pi \frac{n}{T}+O\left(m^{-1 / 2}\right)$. Finally take $k=k^{\prime}+O(1)$, then $\lambda_{m k}=2 \pi \frac{n}{T}+O\left(m^{-1 / 2}\right)$; the proof of Lemma 3 is based on these ideas.

We see from (a) that the system

$$
\Phi_{0}=\left\{e_{|n|}^{j} e^{i 2 \pi(n / T) t}: j=1, \ldots, M ; n \in Z\right\}
$$

is a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$. We have

Lemma 4 ([5] in case $M=1$). If $\left\{e_{n} e^{i \lambda_{n} t}: n \in Z\right\}$ is a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$ with

$$
c_{1} \sum\left|\alpha_{n}\right|^{2} \leqq\left\|\sum \alpha_{n} e_{n} e^{i \lambda_{n} t}\right\|_{L^{2}}^{2} \leqq c_{2} \sum\left|\alpha_{n}\right|^{2}
$$

and if $\varepsilon>0$ satisfies $e^{T \varepsilon}-1 \leqq \sqrt{c_{1} / c_{2}}$, then for any shifted exponents $\lambda_{n}^{\prime} \in C,\left|\lambda_{n}-\lambda_{n}^{\prime}\right|<\varepsilon$ the new system $\left\{e_{n} e^{i \lambda_{n}^{\prime} t}: n \in Z\right\}$ remains a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$.

The proof is an easy application of the method of Duffin and Eachus [5]. As a consequence we get that if in Φ we substitute all exponentials $2 \pi \frac{n}{T}$ (with finitely many exceptions) by $\lambda_{n}^{(j)}$, we get a Riesz basis. That the remaining finitely many exponents can also be shifted (to obtain that Φ is a Riesz basis) is proved in

Lemma 5. Let $\left\{e_{n} e^{i \lambda_{n} t}: n \in Z\right\}$ be a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$ and let $\lambda_{0}^{\prime} \neq \lambda_{n}(n \in Z)$. Then the new system $\left\{e_{0} e^{i \lambda_{0}^{\prime} t}, e_{n} e^{i \lambda_{n} t}: n \in Z \backslash\{0\}\right\}$ is also a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$.

The proof is based on the Riesz basis criterion given in [6]; namely the Hilbert transform must be bounded in the L^{2} space weighted by the generating function. Now we shall join some elements to Φ to obtain a basis in $H^{s}\left(0, T ; C^{M}\right)$. We use the following generalization of a theorem of Russell [7].

Lemma 6. Let

$$
H_{n}=\bigvee_{L^{2}\left(0, T ; C^{M}\right)}\left\{e_{\lambda} e^{i \lambda t}: \lambda \in \sigma_{n}\right\}, \quad n \in Z
$$

where $\bigvee_{H} \psi$ denotes the closed linear hull of ψ in the space $H, \sigma_{n} \subset C$ are finite sets and $e_{\lambda} \in C^{M}$. Suppose that $\left\{H_{n}: n \in Z\right\}$ is a Riesz basis in $L^{2}\left(0, T ; C^{M}\right)$. Let $s \geqq 1$ be an integer and

$$
H_{(0)}:=\bigvee_{L^{2}\left(0, T ; C^{M}\right)}\left\{e_{j} e^{i \mu_{j} t}: j=1, \ldots, M s\right\}
$$

where
(a) the system $\left\{e_{j} e^{i \mu_{j} t}\right\}$ is linearly independent,
(b) $H_{(0)} \cap H_{n}=\{0\}$ for every n,
(c) the vector systems $\left\{e_{1}, \ldots, e_{M}\right\},\left\{e_{M+1}, \ldots, e_{2 M}\right\}, \ldots,\left\{e_{(s-1) M+1}, \ldots\right.$, $\left.e_{s M}\right\}$ are bases in C^{M}.

Then $\left\{H_{(0)}, H_{n}: n \in Z\right\}$ forms a Riesz basis in $H^{s}\left(0, T ; C^{M}\right)$.
This can be proved by induction on s. If we introduce the operator

$$
B: H^{s}\left(0, T ; C^{M}\right) \rightarrow H^{s-1}\left(0, T ; C^{M}\right), \quad B f=f^{\prime}+C f
$$

where C is a constant matrix of the form

$$
C=T^{-1}\left(\begin{array}{ccc}
-i \mu_{1} & & 0 \\
& \ddots & \\
0 & & -i \mu_{M}
\end{array}\right) T
$$

then B maps ${ }_{0} H^{s}:=\left\{f \in H^{s}\left(0, T ; C^{M}\right): f(0)=0\right\}$ isomorphically onto $H^{s-1}\left(0, T ; C^{M}\right)$. Using this, the proof of Lemma 6 is easy. So we can get a system $\Phi_{1}, \Phi \subset \Phi_{1} \subset e(\Lambda)$ forming a Riesz basis in H^{s}. Expanding an element of $e(\Lambda) \backslash \Phi_{1}$ in H^{s} we get a relation

$$
0=\sum_{m, n} d_{m n} e_{m n} e^{ \pm i \sqrt{\lambda_{m n}} t}
$$

which converges in $L^{2}\left(0, T ; C^{M}\right)$ with its derivatives up to the order s, i.e. the series

$$
0=\sum_{m, n} d_{m n}\left(\lambda_{m n}\right)^{s / 2} e_{m n} e^{ \pm i \sqrt{\lambda_{m n}} t}
$$

is convergent in L^{2}. But then

$$
0=\sum_{m, n} d_{m n}\left(\lambda_{m n}\right)^{-r / 2}\left(\lambda_{m n}\right)^{r / 2} \xi_{m n}(T)
$$

which proves that if s is large, then $R(T)$ is not dense in \mathcal{H}_{r} as we asserted.
Finally we prove Theorem $2 / \mathrm{b}$.
Let $\nu_{m n}:=\sqrt{\lambda_{m n}}+i, \nu_{m,-n}:=-\sqrt{\lambda_{m n}}+i$ and

$$
\begin{gathered}
\tilde{R}(\infty):=\left\{\left\{\left\langle e_{00} \tau e^{-\tau}, v\right\rangle_{L^{2}},\left\langle e_{00} e^{-\tau}, v\right\rangle_{L^{2}},\right.\right. \\
\left.\left.\left(\lambda_{m|k|}\right)^{\frac{\tau}{2}}\left\langle e^{i \nu_{m k} \tau} e_{m|k|}, v\right\rangle_{L^{2}}: m,|k|=1,2, \ldots ; m+|k|>2\right\} ; v \in L^{2}\left(0 . \infty, C^{M}\right)\right\} .
\end{gathered}
$$

Lemma 7. We have

$$
\bigcup_{T<\infty} A R(T) \subset \tilde{R}(\infty) \subset \overline{\bigcup_{T<\infty} A R(T)}
$$

The proof is a standard limiting argument hence we omit it.

By Lemma 7 we have to investigate the density of $\tilde{R}(\infty)$ in ℓ_{2}. Suppose that for some $a_{m n} \in \ell_{2}$ we have

$$
\begin{align*}
& 0=\sum_{\substack{m,|k|=0 \\
m+|| |>0}}^{\infty} a_{m k}\left(\lambda_{m|k|}\right)^{r / 2} \int_{0}^{\infty}\left\langle e_{m k} e^{i \nu_{m k} \tau}, v(\tau)\right\rangle d \tau+ \tag{6}\\
& +a_{0} \int_{0}^{\infty}\left\langle e_{00} e^{-\tau} \tau, v(\tau)\right\rangle d \tau+a_{1} \int_{0}^{\infty}\left\langle e_{00} e^{-\tau}, v(\tau)\right\rangle d \tau
\end{align*}
$$

for all $v \in L^{2}$. Using the notation $f(z):=\int_{0}^{\infty} v(t) e^{i z t} d t$ we can reformulate (6) as follows:

$$
\begin{equation*}
0=\sum_{\substack{m,|k|=0 \\ m+|k|>0}}^{\infty} a_{m k}\left(\lambda_{m|k|}\right)^{r / 2}\left\langle e_{m k}, f\left(-\overline{\nu_{m k}}\right)\right\rangle+a_{0}\left\langle e_{00}, i^{-1} f^{\prime}(i)\right\rangle+a_{1}\left\langle e_{00}, f(i)\right\rangle . \tag{7}
\end{equation*}
$$

Let $\left(m_{0}, k_{0}\right) \neq(0,0)$ be fixed and define for $p \in N$

$$
f_{p}(z):=\left(\frac{2 i}{z+\nu_{m_{0} k_{0}}}\right)^{p} \cdot e_{m_{0} k_{0}} .
$$

Then $f_{p} \in H_{+}^{2}\left(C^{M}\right)$ and

$$
f_{p}\left(-\overline{\nu_{m_{0} k_{0}}}\right)=e_{m_{0} k_{0}},\left|f_{p}\left(-\overline{\nu_{m k}}\right)\right| \leqq(1+\delta)^{-p}, \quad(m, k) \neq\left(m_{0}, k_{0}\right),
$$

further $\left|f_{p}^{\prime}(i)\right| \leqq(1+\delta)^{-p}$, where

$$
\delta=\min \left\{\left|\sqrt{\lambda_{m|k|}}-\sqrt{\lambda_{m_{0}\left|k_{0}\right|}}\right|:(m, k) \neq\left(m_{0}, k_{0}\right)\right\} .
$$

Consequently we get by (7) that

$$
\begin{gathered}
\left|e_{m_{0} k_{0}}\right|^{2}\left(\lambda_{m_{0}\left|k_{0}\right|}\right)^{p / 2}\left|a_{m_{0} k_{0}}\right| \leqq(1+\delta)^{-p}\left(\left|a_{0}\right|+\left|a_{1}\right|\right)+ \\
+\sum_{\substack{m+|k|>0 \\
(m, k) \neq\left(m_{0}, k_{0}\right) \\
\lambda_{m|k|} \leq \lambda_{m_{0}}\left|k_{0}\right|}}\left|a_{m k}\right|\left(\lambda_{m|k|}\right)^{r / 2}(1+\delta)^{-p}+ \\
+\sum_{\lambda_{m}|k|>8 \lambda_{m_{0}\left|k_{0}\right|} \mid}\left|a_{m k}\right|\left(\lambda_{m|k|}\right)^{r / 2}\left(2 \lambda_{m|k|}\right)^{-\frac{p}{2}} \leqq \frac{c}{(1+\delta)^{p}}+\frac{c}{2^{p / 2}} \rightarrow 0
\end{gathered}
$$

as $p \rightarrow \infty$ and hence all $a_{m k}=0$ and (7) is reduced to

$$
0=a_{0}\left\langle e_{00}, i^{-1} f^{\prime}(i)\right\rangle+a_{1}\left\langle e_{00}, f(i)\right\rangle \quad \text { for all } \quad f \in H_{+}^{2}
$$

and hence $a_{0}=a_{1}=0$. The proof is complete.
Added in proof (June 28, 1991). S. A. Avdonin informed the author that they obtained independently Lemma 6 in their book [14], p. 107 by different proof.

References

[1] I. Joó, On the vibration of a string, Studia Sci. Math., 22 (1987), 1-9.
[2] I. Joó, On the reachability set of a string, Acta Math. Hung., 49 (1987), 203-211.
[3] I. Joó, On some Riesz bases, Preprint of the Math. Inst. of the Hungarian Acad. of Sci. No 50/1989.
[4] M. Horváth, On the vibration of a membrane in different points, Annales Univ. Sci. Budapest. Sect. Math., 33 (1990).
[5] R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Am. Math. Soc., 48 (1942), 850-855.
[6] S. A. Avdonin, S. A. Ivanov and I. Joó, On Riesz bases from vector exponentials I, II, Annales Univ. Sci. Budapest. Sect. Math., 32 (1989).
[7] D. L. Russell, On exponential bases for the Sobolev space over an interval, J. Math. Anal. Appl., 87 (1982), 528-550.
[8] V. Komornik, On the vibration of a square membrane, Proc. Soc. Edinburgh, 111 A (1989), 13-20.
[9] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure and Applied Math., vol. 93, Academic Press, 1980.
[10] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations, Recent progress and open questions, SIAM Rev., 20 (1978), 639739.
[11] A. G. Butkovsky, A. I. Egorov and K. A. Lurie, Optimal control of distributed systems (A survey of Soviet publications), SIAM J. Control, 6 (1968), 437-476.
[12] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
[13] S. A. Avdonin, S. A. Ivanov and I. Joó, Exponential families and the controllability of a rectangular membrane (in Russian), Studia Sci. Math. Hung., 25 (1990), 291-306.
[14] S. A. Avdonin, S. A. Ivanov, Controllability of Distributed Parameter Systems and Exponential Families (in Russian), UMK VO (Kiev, 1989).
(Received September 5, 1989)
MATHEMATICAL INSTITUTE OF THE
hUNGARIAN ACADEMY OF SCIENCES
REÁLTANODA U. 13-15
H-1053 BUDAPEST
HUNGARY

ON TOTAL ADDITIVE SOLUTION OF SOME EQUATIONS

KATALIN KOVÁCS (Budapest)

In 1946 P. Erdős proved the following theorem [1]:
Theorem 1. Let f be additive function. If

$$
f(n+1)-f(n) \rightarrow 0,
$$

then $f(n)=c \log n$.
E. Wirsing gave a more general result for total additive functions [4]:

Theorem 2. Let f be a total additive function. If

$$
f(n+1)-f(n)=o(\log n),
$$

then $f(n)=c \log n$.
Using the above result I. Kátai proved [2]
Theorem 3. Let f be a total additive function and $f_{i}=c_{i} f$. If

$$
\sum_{i=1}^{m} f_{i}\left(n+a_{i}\right)=o(\log n)
$$

then $f(n)=c \log n$ or $f \equiv 0$.
In these results the arguments are linear. In this article we examine some equations which contain quadratic arguments or arguments $n^{k}+s$ too. These are only special cases of the

Conjecture. Let $\chi_{i}(n)$ be polynomials. For the total additive solution of the equations

$$
f\left(\chi_{i}(n)\right)=o(\log n) \quad(i \in\{1, \ldots, k\})
$$

$f(p)=c \log p$ or $f(p)=0$ for the primes p, which divides at least one of the $\chi_{i}(n)$ for some n.

Remark. We cannot write $f(n)=c \log n$ or $f \equiv 0$ in the conjecture. For example $f\left(n^{2}+1\right)=o(\log n)$ allows arbitrary choice of the $f(p)$'s if $p \equiv-1 \bmod 4$.

Definition. Let $\chi_{i}(n)$ be the polynomials in the arguments of our equations. We call a prime p relevant, if there exists a pair (n, i), such that $p \mid \chi_{i}(n)$.

In [3] we got the following assertions for total additive f :

Theorem 4. (i) $f\left(n^{2}+a\right)=0$ for $|a| \leqq 20$ implies $f(p)=0$ for the relevant primes.
(ii) $f\left(n^{2}+k\right)=f\left(n^{2}\right)+o(\log n) \Rightarrow f(n)=c \log n$.
(iii) $f\left(n^{3}-1\right)=t f\left(n^{3}\right)+o(\log n)(t \neq 0) \Rightarrow f(n)=c \log n$ or $f \equiv 0$.

Here we show some other equations where we can use the same methods.
Theorem 5. Let f be total additive.
(i) If $f\left(n^{2}+n+a\right)=0$ for some $|a| \leqq 20$, then $f(p)=0$ for the relevant primes.
(ii) Let $\varepsilon \in\{1,2,-2\}$ or $\left\{p_{1},-p_{2}, p_{1} p_{2}\right\}$ (p_{j} are odd primes), $a_{i c} \in Z$, $i \in\left\{1, \ldots, s_{\varepsilon}\right\}, M_{\varepsilon}=\max \left\{\left\{\max _{i} a_{i \varepsilon}\right\}, 0\right\}, m_{\varepsilon}=\min \left\{\left\{\min _{i} a_{i \varepsilon}\right\}, 0\right\}$,

$$
T=\max _{\varepsilon}\left\{2,\left|m_{\varepsilon}\right|, m_{\varepsilon}^{2}+\varepsilon, M_{\varepsilon}+\max _{\varepsilon<0} \sqrt{2|\varepsilon|}, M_{\varepsilon}^{2}+\varepsilon,\left|\frac{M_{\varepsilon}^{2}}{4}+\varepsilon\right|\right\} .
$$

If for $p \leqq T f(p)=0$ and $f\left(n^{2}+\varepsilon\right)=\sum_{i=1}^{s_{\varepsilon}} c_{i e} f\left(n+a_{i \varepsilon}\right)$, then $f \equiv 0$.
Remarks. (i) If Theorem 5 (i) and Theorem 4 (i) were valid for all $a \in Z$, then $f\left(n^{2}+b n+a\right)=0$ in the case $b \leqq 1$ would imply $f(p)=0$ for the relevant primes. (Replacing n by $n-\left[\frac{b}{2}\right]$ we get this result.) For a fixed pair (a, b) it is enough to know $f(p)=0$ for the relevant primes not greater than $\max \left\{\frac{a-b+1}{-b+2}, \frac{-b+\sqrt{b^{2}-4 a}}{2},\left|a-0.25 b^{2}\right|\right\}$ for the prime-divisors of a and for the first relevant prime. (The proof is similar to that of Theorem 5 (i).)
(ii) We show two examples, which imply $f \equiv 0$.

1. $f\left(n^{2}+2\right)=f(n+7)+f(n-2), f\left(n^{2}-2\right)=f(n), f\left(n^{2}+1\right)=f(n)$. (We must control $f(p)=0$ for $p \leqq 51$.)
2. $f\left(n^{2}+5\right)=f(n-4)+f(n), f\left(n^{2}-3\right)=f(n-2)+f(n-3)$, $f\left(n^{2}+15\right)=f(n+1)+f(n+3)$. (Here $T=23$.)

Theorem 6. Let f be a total additive function. The following conditions imply $f(n)=c \log n$ or $f \equiv 0$.

1. $f\left(n^{2}+1\right)=s_{1} f(n)+s_{2} f(n-1)+o(\log n)\left(s_{1}, s_{2} \neq(0,0)\right)$.
2. (i) $f\left(n^{2}+2 k\right)=f(n-k)+o(\log n)$.
(ii) $f\left(n^{2}+k\right)=\sum_{i=1}^{m} c_{i} f\left(n+a_{i}\right)+o(\log n)$, if $a_{i}=-s_{i}^{2}-s_{i}-k$ with some $s_{i} \in Z$.
3. (i) $f\left(n^{2}+n+k\right)=f(n+1)+o(\log n)$, if $k=-s^{2}-s-1$ with some $s \in Z$.
(ii) $f\left(n^{2}+n+k\right)=\sum_{i=1}^{m} c_{i} f\left(n+a_{i}\right)+o(\log n)$, if $a_{i}=1-k-s_{i}^{2}$ with some $s_{i} \in Z$.
4. Let $f\left(n^{3}+1\right)=o(\log n)$ and
(i) $f\left(n^{3 \cdot 2^{k}}-1\right)=o(\log n)$
or
(ii) $f\left(n^{2}+1\right)=\sum_{i=1}^{m} c_{i} f\left(n+a_{i}\right)(\neq-f(n+1)-f(n+2))+o(\log n)$
or
(iii) $f\left(n^{4}-1\right)=o(\log n)$
or
(iv) $f\left(n^{4}+\varepsilon\right)=o(\log n), \varepsilon=1$ or 2
and
$f\left(n^{8}-1\right)=o(\log n)$.
Proof of Theorem 5. (i) For each relevant prime $p+a$ there exists an $n \in\{0, \ldots, p-1\}$ such that $p \mid n^{2}+n+a$ and in the case $a>0$

$$
0<\frac{n^{2}+n+a}{p} \leqq \frac{(p-1)^{2}+p-1+a}{p}=p-1+\frac{a}{p}<p \quad \text { if } \quad p>a
$$

resp. in the case $a<0$

$$
0<\frac{n^{2}+n+a}{p}<p-1 \quad \text { if } \quad p>\frac{-1+\sqrt{1-4 a}}{2}
$$

If $f(p)=0$ for the primes $p \leqq a$ (if $a>0$) resp. for the primes $p \leqq \sqrt{|a|}$ (if $a<0$), then $f(p)=0$ for all relevant primes by induction, using that

$$
0=f\left(n^{2}+n+a\right)=f(p)+f(s) \quad \text { with } \quad s \leqq p-1
$$

So we must control only the relevant primes $p \leqq a$ resp. $p \leqq \sqrt{|a|}$, whether $f(p)=0$ or not. Let us see two cases:
$a=-14: p \in\{2,3,7\}$. For $n \in\{5,4,7\}$ we have $f\left(2^{4}\right)=f(2 \cdot 3)=$ $=f(2 \cdot 3 \cdot 7)=0$, which imply $f(2)=f(3)=f(7)=0$.
$a=19: p \in\{3,5,7,13,19\}$. For $n \in\{1,2,4,5,19\}$ we get

$$
f(3 \cdot 7)=f\left(5^{2}\right)=f(3 \cdot 13)=f\left(7^{2}\right)=f(19 \cdot 3 \cdot 7)=0 .
$$

(ii) Replacing n by $n-M_{\varepsilon}$ in

$$
f\left(n^{2}+\varepsilon\right)=\sum_{i=1}^{s_{\varepsilon}} c_{i \varepsilon} f\left(n+a_{i \varepsilon}\right)
$$

we get

$$
\begin{equation*}
f\left(\left(n-M_{\varepsilon}\right)^{2}+\varepsilon\right)=\sum_{i=1}^{s_{\varepsilon}} c_{i \varepsilon} f\left(n+a_{i \varepsilon}-M_{\varepsilon}\right) \tag{1}
\end{equation*}
$$

For the two sets of ε 's every prime is relevant. So for each p there exists an ε and an $n_{p} \in\{0, \ldots, p-1\}$ such that $p \mid\left(n_{p}-M\right)^{2}+\varepsilon$. For $n \leqq\left|m_{\varepsilon}\right|+M_{\varepsilon}$

$$
\left(n-M_{\varepsilon}\right)^{2}+\varepsilon \leqq \max \left\{M_{\varepsilon}^{2}+\varepsilon, m_{\varepsilon}^{2}+\varepsilon,\left|\left(\frac{M}{2}\right)^{2}+\varepsilon\right|\right\} \leqq T
$$

So for $p>T$ we have $n>\left|m_{\varepsilon}\right|+M_{\varepsilon}$. Replacing these n 's in (1), the arguments of the right hand side are all in the interval $[1, p-1]$. Using that $p>1+M_{\varepsilon}+\max _{\varepsilon<0} \sqrt{2|\varepsilon|}$, we get

$$
0<\frac{\left(n_{p}-M_{\varepsilon}\right)^{2}+\varepsilon}{p} \leqq \max \left\{\frac{\left|\left(\frac{M_{\varepsilon}}{2}\right)^{2}+\varepsilon\right|}{p}, \frac{\left(p-1-M_{\varepsilon}\right)^{2}+\varepsilon}{p}\right\}<p
$$

If we know $f(m)=0$ for all $m<p$, then we have

$$
\begin{equation*}
f\left(\left(n_{p}-M\right)^{2}+\varepsilon\right)=f(p)=0 \tag{2}
\end{equation*}
$$

For $p<T f(p)=0$ is assumed and for the other p 's we get it by induction after (2).

Proof of Theorem 6. We use the following equality: If $\Theta(n)=n^{2}+$ $+t n+k$, then

$$
\boldsymbol{\Theta}(\boldsymbol{\Theta}(n)+n)=\boldsymbol{\Theta}(n)-\boldsymbol{\Theta}(n+1)
$$

i.e. $f(\boldsymbol{\Theta}(\boldsymbol{\Theta}(n)+n))=f(\boldsymbol{\Theta}(n))+f(\boldsymbol{\Theta}(n+1))$.

1. By the choice $\Theta(n)=n^{2}+1$ in the equation
$s_{1} f\left(n^{2}+n+1\right)+s_{2} f\left(n^{2}+n\right)=\left(s_{1}+s_{2}\right) f(n)+s_{2} f(n-1)+s_{1} f(n+1)+o(\log n)$, i.e.

$$
s_{1} f\left(n^{2}+n+1\right)=s_{1} f(n)+s_{2} f(n-1)+\left(s_{1}-s_{2}\right) f(n+1)+o(\log n)
$$

Choosing $\Theta_{2}(n)=n^{2}+n+1$ we have

$$
\begin{gathered}
2 s_{1} f(n+1)+s_{2} f\left(n^{2}+2 n\right)+\left(s_{1}-s_{2}\right) f\left((n+1)^{2}+1\right)= \\
=\left(s_{1}+s_{2}\right) f(n)+s_{2} f(n-1)+\left(2 s_{1}-s_{2}\right) f(n+1)+ \\
+\left(s_{1}-s_{2}\right) f(n+2)+o(\log n)
\end{gathered}
$$

Using our basic equation we can replace

$$
f\left((n+1)^{2}+1\right)=s_{1} f(n+1)+s_{2} f(n)+o(\log n)
$$

So Theorem 3 is applicable.
2. (i) $\operatorname{By} \Theta_{1}(n)=n^{2}+2 k$

$$
f\left(n^{2}+n+k\right)=f(n-k)+f(n-k+1)+o(\log n) .
$$

Here the choice $\mathbf{O}_{2}(n)=n^{2}+n+k$ implies
$f\left(n^{2}+2 n\right)+f\left(n^{2}+2 n+1\right)=f(n-k)+2 f(n-k+1)+f(n-k+2)+o(\log n)$.
We can apply Theorem 3 again.
(ii) Let us take $\Theta(n)=n^{2}+k$ and apply Theorem 3 .
3. (i) By the choice $\Theta_{1}(n)=n^{2}+n+k$

$$
f\left((n+1)^{2}+k\right)=f(n+1)+f(n+2)+o(\log n) .
$$

Replacing n by $n-1$ and considering $\Theta_{2}(n)=n^{2}+k$
$f\left(n^{2}+n+k\right)=f\left(n^{2}+n+k+1\right)=f(n)+2 f(n+1)+f(n+2)+o(\log n)$.
Our basic equation and the choice $k=-s^{2}-s-1$ give only linear arguments. Theorem 3 is applicable.
(ii) Let us take $\Theta(n)=n^{2}+n+k$ and apply Theorem 3.
4. (i)

$$
\begin{aligned}
& f\left(n^{3 \cdot 2^{k}}-1\right)=f\left(n^{3 \cdot 2^{k-1}}-1\right)+f\left(\left(n^{2^{k-1}}\right)^{3}+1\right)= \\
= & f\left(n^{3 \cdot 2^{k-1}}-1\right)+o(\log n)=\cdots=f\left(n^{3}-1\right)+o_{k}(\log n) .
\end{aligned}
$$

We can prove Theorem 4 (iii) for $t=0$ too: In $f\left(n^{2}+n+1\right)=-f(n-1)+$ $+o(\log n)$ by the choice $\Theta(n)=n^{2}+n+1$ we get

$$
-f\left(n^{2}+2 n\right)=-f(n-1)-f(n)+o(\log n)
$$

Applying Theorem 3 we get $f \equiv 0$.
(ii) $\mathrm{By} \boldsymbol{\Theta}(n)=n^{2}-n+1$ in

$$
f\left(n^{3}+1\right)=f\left(n^{2}-n+1\right)+f(n+1)=o(\log n)
$$

we get

$$
\begin{equation*}
f\left(n^{2}+1\right)=-f(n-1)-f(n+2)+o(\log n) . \tag{3}
\end{equation*}
$$

Considering the other equation Theorem 3 is applicable.
(iii) $f\left(n^{3}+1\right)=o(\log n)$ gives (3), which implies

$$
f\left(n^{4}-1\right)=f\left(n^{2}+1\right)+f\left(n^{2}-1\right)=f(n-1)-f(n+2)+o(\log n) .
$$

Let us apply Theorem 3 again.
(iv) The case $\varepsilon=1$: $f\left(n^{8}-1\right)=f\left(n^{4}-1\right)+f\left(n^{4}+1\right)$ gives $f\left(n^{4}-1\right)=$ $=o(\log n)$ which we examined in (iii).

The case $\varepsilon=2$: $f\left(n^{16}-1\right)=f\left(n^{8}+1\right)+f\left(n^{8}-1\right)$ gives $f\left(n^{8}+1\right)=$ $=o(\log n)$. Replacing n by n^{4} in (3) we have
$f\left(n^{4}+2\right)+f\left(n^{4}+1\right)=f\left(n^{4}+1\right)+o(\log n)=-f\left(n^{8}+1\right)+o(\log n)=o(\log n)$, i.e. the case $\varepsilon=1$.

References

[1] P. Erdős, On the distribution function of additive functions, Annales of Math., 47 (1946), 1-20.
[2] I. Kátai, Characterization of $\log n$, Studies in Pure Mathematics, Birkhauser (BaselBoston Mass., 1983), pp. 415-421.
[3] K. Kovács, Additív számelméleti függvények karakterizációjáról, Matematikai Lapok (in print).
[4] E. Wirsing, Additive and Completely Additive Functions with Restricted Growth, Recent Progress in Analytic Number Theory, Proc. of Symp. (Durham, 1979), Vol 2, Acad. Press (London, 1981), pp. 231-280.
(Received September 26, 1989)
DEPARTMENT OF ALGEBRA AND NUMBER THEORY
LORÁND EÖTVÖS UNIVERSITY
H-1088, BUDAPEST, MÚZEUM KRT. 6-8

THE NUMERICAL SOLUTION OF NONLINEAR DIFFERENTIAL EQUATIONS BY SPLINE FUNCTIONS

J. GYŐRVÁRI and Cs. MIHÁLYKÓ (Veszprém)

1. Introduction

In this paper we are going to approximate the solution of the nonlinear differential equation

$$
\left\{\begin{array}{l}
y^{(m)}(x)=f\left[x, y(x), y^{\prime}(x), \ldots, y^{(m-1)}(x)\right], \quad x \in[0 ; 1], \tag{1}\\
y^{(j)}(0)=y_{0}^{(j)}(j=0,1, \ldots, m-1 ; m \geqq 2)
\end{array}\right.
$$

supposing

$$
\begin{equation*}
f\left[x, y(x), y^{\prime}(x), \ldots, y^{(m-1)}(x)\right] \in C^{(r)}([0 ; 1]) \tag{1.1}
\end{equation*}
$$

where r is a fixed integer,

$$
\begin{gather*}
\left|f^{(q)}\left[x, y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{1}^{(m-1)}\right]-f^{(q)}\left[x, y_{2}, y_{2}^{\prime}, y_{2}^{\prime \prime}, \ldots, y_{2}^{(m-1)}\right]\right| \leqq \tag{1.2}\\
\leqq L \cdot \sum_{i=0}^{m-1}\left|y_{1}^{(i)}-y_{2}^{(i)}\right| \quad(q=0,1, \ldots, r)
\end{gather*}
$$

(Lipschitz condition), where

$$
\begin{gathered}
f^{(0)}=f, f^{(q+1)}=f_{x}^{(q)}+f_{y}^{(q)} \cdot y^{\prime}+f_{y^{\prime}}^{(q)} \cdot y^{\prime \prime}+\cdots+f_{y^{\prime}(m-2)}^{(q)} \cdot y^{(m-1)}+f_{y^{(m-1)}}^{(q)} \cdot f \\
(q=0,1,2, \ldots, r-1) .
\end{gathered}
$$

The problem of approximating the solution of nonlinear differential equations has been always of special interest. By spline functions the Cauchy problem $y^{\prime}=f(x, y)$ was discussed by F. R. Loscalzo and T. D. Talbot [1], [2] and Th. Fawzy [3]. Some problems of a second order differential equation was solved by Gh. Micula [4], [5] by Th. Fawzy [6], [7] and by J. Györvári [8], [9], [10].

The main point of our method is that approximated values of $y^{(q)}\left(x_{k}\right)$ are constructed by the help of $y_{0}^{(j)}(j=0,1, \ldots, m-1)$ and the function f, then using these approximate values $\bar{y}_{k}^{(q)}(k=0,1,2, \ldots, n ; q=0,1,2)$ the solution of (1) and its derivatives are approximated up to the $(m+r)$-th order by the spline function of type $(0 ; 1 ; 2)$ defined in [6]. In the approximation theorems we use the average moduli defined in [11].

2. The first approximation process

2.1. Definition of the approximate values $\bar{y}_{k}^{(q)}$. Let

$$
\begin{gathered}
x_{k}=\frac{k}{n} ; \quad h=\frac{1}{n} ; \quad x_{k+1 / 2}=x_{k}+\frac{h}{2} \quad(k=0,1, \ldots, n) \\
\omega\left(f^{(r)}, x, h\right)=\sup _{t_{1}, t_{2} \in\left[x-\frac{h}{2} ; x+\frac{h}{2}\right] \cap[0,1]}\left|f^{(r)}\left(t_{1}\right)-f^{(r)}\left(t_{2}\right)\right| \\
\tau\left(f^{(r)}, h\right)=\int_{0}^{1} \omega\left(f^{(r)}, x, h\right) d x .
\end{gathered}
$$

Definition.

$$
\begin{gathered}
\bar{y}_{0}^{(j)}:=y_{0}^{(j)} \quad(j=0,1, \ldots, m-1), \\
\bar{y}_{0}^{(m+q)}:=f^{(q)}\left[x_{0}, y_{0}, y_{0}^{\prime}, \ldots, y_{0}^{(m-1)}\right] \quad(q=0,1, \ldots, r), \\
\bar{y}_{k}^{(q)}:=G_{k}^{(q)}\left(x_{k}\right) \quad(k=1,2, \ldots, n-1 ; q=0,1, \ldots, m+r), \\
\bar{y}_{n}^{(q)}:=G_{n-1}^{(q)}\left(x_{n}\right) \quad(q=0,1, \ldots, m+r),
\end{gathered}
$$

where

$$
\begin{equation*}
G_{0}(x):=\sum_{j=0}^{m-1} \frac{y_{0}^{(j)}}{j!}\left(x-x_{0}\right)^{j}+\sum_{q=0}^{r} \frac{f^{(q)}\left[x_{0}, y_{0}, y_{0}^{\prime}, \ldots, y_{o}^{(m-1)}\right]}{(m+q)!}\left(x-x_{0}\right)^{m+q} \tag{2.1.1}
\end{equation*}
$$

if $x_{0} \leqq x \leqq x_{1}$;

$$
\begin{equation*}
G_{k}(x):=\sum_{j=0}^{m-1} \frac{G_{k-1}^{(j)}\left(x_{k}\right)}{j!}\left(x-x_{k}\right)^{j}+ \tag{2.1.2}
\end{equation*}
$$

$$
+\sum_{q=0}^{r} \frac{f^{(q)}\left[x_{k}, G_{k-1}\left(x_{k}\right), G_{k-1}^{\prime}\left(x_{k}\right), \ldots, G_{k-1}^{(m-1)}\left(x_{k}\right)\right]}{(m+q)!}\left(x-x_{k}\right)^{m+q}
$$

if $x_{k} \leqq x \leqq x_{k+1}(k=1,2, \ldots, n-1)$.
One can see that

$$
G_{k-1}^{(j)}\left(x_{k}\right)=G_{k}^{(j)}\left(x_{k}\right) \quad(k=1,2, \ldots, n-1 ; j=0,1, \ldots, m-1)
$$

2.2. The convergence process. In this section we prove a theorem which shows how the approximate values $\bar{y}_{k}^{(j)}$ converge to the exact values of $y_{k}^{(j)}=$ $=y^{(j)}\left(x_{k}\right)(k=1,2, \ldots, n ; j=0,1, \ldots, m+r)$.

Definition. We shall denote the estimated errors of $\bar{y}_{k}^{(j)}$ and $y_{k}^{(j)}(k=$ $=0,1, \ldots, n ; j=0,1, \ldots, m+r)$ by

$$
e_{k}^{(j)}=\left|y_{k}^{(j)}-\bar{y}_{k}^{(j)}\right| \quad(k=0,1, \ldots, n ; j=0,1, \ldots, m+r) .
$$

Theorem 2.2.1. We have

$$
e_{k+1}^{(j)} \leqq C_{j, k+1} h^{r} \cdot \tau\left(f^{(r)}, h\right) \quad(k=0,1, \ldots, n-1 ; j=0,1, \ldots, m+r)
$$

where the constants $C_{j, k+1}$ are independent of n.
Proof. We shall often use the following Taylor-formulas:

$$
\begin{gather*}
y^{(\nu)}(x)=\sum_{j=\nu}^{m-1} \frac{y_{k}^{(j)}}{(j-\nu)!}\left(x-x_{k}\right)^{j-\nu}+ \tag{2.2.1}\\
+\sum_{q=0}^{r-1} \frac{f^{(q)}\left[x_{k}, y_{k}, \ldots, y_{k}^{(m-1)}\right]}{(m+q-\nu)!}\left(x-x_{k}\right)^{m+q-\nu}+
\end{gather*}
$$

$$
+\frac{1}{(m+r-1-\nu)!} \int_{x_{k}}^{x}(x-t)^{m+r-1-\nu} f^{(r)}\left[t, y(t), \ldots, y^{(m-1)}(t)\right] d t
$$

$$
(k=0,1, \ldots, n-1 ; \nu=0,1, \ldots, m-1)
$$

$$
\begin{align*}
& y^{(m+q)}(x)=\sum_{j=q}^{r-1} \frac{f^{(j)}\left[x_{k}, y_{k}, \ldots, y_{k}^{(m-1)}\right]}{(j-q)!}\left(x-x_{k}\right)^{j-q}+ \tag{2.2.2}\\
& +\frac{1}{(r-1-q)!} \int_{x_{k}}^{x}(x-t)^{r-1-q} f^{(r)}\left[t, y(t), \ldots, y^{(m-1)}(t)\right] d t \\
& \quad(k=0,1, \ldots, n-1 ; q=0,1, \ldots, r-1) .
\end{align*}
$$

Let $x_{k} \leqq x \leqq x_{k+1}(k=0,1, \ldots, n-1)$. Using equations (2.1.2) and (2.2.2) and the Lipschitz condition (1.2) we get

$$
\begin{gathered}
\left|y(x)-G_{k}(x)\right| \leqq \\
\leqq \sum_{j=0}^{m-1} \frac{e_{k}^{(j)}}{j!} h^{j}+L \sum_{q=0}^{r-1}\left\{e_{k}+e_{k}^{\prime}+\cdots+e_{k}^{(m-1)}\right\} \frac{h^{m+q}}{(m+q)!}+\frac{1}{(m+r-1)!}
\end{gathered}
$$

$$
\begin{aligned}
& \cdot \int_{x_{k}}^{x}(x-t)^{m+r-1}\left\{f^{(r)}\left[t, y(t), \ldots, y^{(m-1)}(t)\right]-f^{(r)}\left[x_{k}, y_{k}, \ldots, y_{k}^{(m-1)}\right]\right\} d t+ \\
& +\left|f^{(r)}\left[x_{k}, y_{k}, \ldots, y_{k}^{(m-1)}\right]-f^{(r)}\left[x_{k}, G_{k-1}\left(x_{k}\right), \ldots, G_{k-1}^{(m-1)}\left(x_{k}\right)\right]\right| \frac{h^{m+r}}{(m+r)!}
\end{aligned}
$$

At $x=x_{k+1}$ from this inequality we get

$$
\begin{gathered}
e_{k+1} \leqq e_{k}\left\{1+L \sum_{q=0}^{r} \frac{h^{m+q}}{(m+q)!}\right\}+e_{k}^{\prime}\left\{h+L \sum_{q=0}^{r} \frac{h^{m+q}}{(m+q)!}\right\}+ \\
+e_{k}^{\prime \prime}\left\{\frac{h^{2}}{2!}+L \sum_{q=0}^{r} \frac{h^{m+q}}{(m+q)!}\right\}+\cdots+e_{k}^{(m-1)}\left\{\frac{h^{m-1}}{(m-1)!}+L \sum_{q=0}^{r} \frac{h^{m+q}}{(m+q)!}\right\}+ \\
+\frac{h^{m+r}}{(m+r)!} \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right)
\end{gathered}
$$

Using the inequality $\sum_{q=0}^{r} \frac{h^{q}}{(m+q)!} \leqq \frac{1}{m!} \sum_{q=0}^{r} h^{q}=$ const. we get

$$
\begin{gathered}
e_{k+1} \leqq e_{k}\left\{1+a_{0,0} h^{m}\right\}+e_{k}^{\prime} a_{0,1} h+e_{k}^{\prime \prime} a_{0,2} h^{2}+\cdots+e_{k}^{(m-1)} a_{0, m-1} h^{m-1}+ \\
+\frac{h^{m+r}}{(m+r)!} \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right)
\end{gathered}
$$

Similarly we get

$$
\begin{gathered}
e_{k+1}^{\prime} \leqq e_{k} a_{1,0} h^{m-1}+e_{k}^{\prime}\left\{1+a_{1,1} h^{m-1}\right\}+e_{k}^{\prime \prime} a_{1,2} h+ \\
+\cdots+e_{k}^{(m-1)} a_{1, m-1} h^{m-2}+\frac{h^{m+r-1}}{(m+r-1)!} \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right) \\
e_{k+1}^{\prime \prime} \leqq e_{k} a_{2,0} h^{m-2}+e_{k}^{\prime} a_{2,1} h^{m-2}+e_{k}^{\prime \prime}\left\{1+a_{2,2} h^{m-2}\right\}+\cdots+ \\
+e_{k}^{(m-1)} a_{2, m-1} h^{m-3}+\frac{h^{m+r-2}}{(m+r-2)!} \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right) \\
\vdots \\
e_{k+1}^{(m-1)} \leqq e_{k} a_{m-1,0} h+e_{k}^{\prime} a_{m-1,1} h+e_{k}^{\prime \prime} a_{m-1,2} h+\cdots+ \\
+e_{k}^{(m-1)}\left\{1+a_{m-1, m-1} h\right\}+\frac{h^{r+1}}{(r+1)!} \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right)
\end{gathered}
$$

where

$$
\begin{gathered}
a_{i, 0}=L \sum_{q=0}^{r} \frac{h^{q}}{(m+q)!} \quad(i=0,1, \ldots, m-1) \\
a_{i, 0}=a_{i, 1}=\cdots=a_{i, i} \quad(i=0,1, \ldots, m-1) \\
a_{i, j}=\frac{1}{(j-i)!}+h^{m-j} a_{i, 0} \quad(i=0,1, \ldots, m-1 ; j=i+1, i+2, \ldots, m-1)
\end{gathered}
$$

These inequalities are true for $k=0$, too. Hence

$$
E_{k+1} \leqq\{I+A h\} E_{k}+C \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right) \quad(k=0,1, \ldots, m-1)
$$

where

$$
\begin{gathered}
E_{k}=\left[e_{k}, e_{k}^{\prime}, \ldots, e_{k}^{(m-1)}\right]^{T} \\
C=\left[\frac{h^{m+r}}{(m+r)!}, \frac{h^{m+r-1}}{(m+r-1)!}, \ldots, \frac{h^{r+1}}{(r+1)!}\right]^{T}
\end{gathered}
$$

and I is the identity matrix;

$$
A=\left[\begin{array}{lllll}
a_{0,0} h^{m-1} & a_{0,1} & a_{0,2} h & \ldots & a_{0, m-1} h^{m-2} \\
a_{1,0} h^{m-2} & a_{1,1} h^{m-2} & a_{1,2} & \ldots & a_{1, m-1} h^{m-3} \\
a_{2,0} h^{m-3} & a_{2,1} h^{m-3} & a_{2,2} h^{m-3} & \ldots & a_{2, m-1} h^{m-4} \\
\vdots & \vdots & \vdots & \vdots & \\
a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & \ldots & a_{m-1, m-1}
\end{array}\right]
$$

By the repeated use of this inequality we get

$$
\begin{gathered}
E_{k+1} \leqq\{I+A h\} E_{k}+C \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right) \\
E_{k+1} \leqq\{I+A h\}\left[\{I+A h\} E_{k-1}+C \omega\left(f^{(r)}, x_{k-1+\frac{1}{2}}, h\right)\right]+ \\
+C \omega\left(f^{(r)}, x_{k+\frac{1}{2}}, h\right) \\
\vdots \\
E_{k+1} \leqq\{I+A h\}^{k+1} E_{0}+\sum_{j=0}^{k}\{I+A h\}^{j} C \omega\left(f^{(r)}, x_{k-j+\frac{1}{2}}, h\right) \\
E_{k+1} \leqq \sum_{j=0}^{k}\{I+A h\}^{j} C \omega\left(f^{(r)}, x_{k-j+\frac{1}{2}}, h\right)
\end{gathered}
$$

From this

$$
\begin{gathered}
\left\|E_{k+1}\right\|_{\infty} \leqq C_{1} \frac{h^{r+1}}{(r+1)!} \sum_{j=0}^{k}\left\{1+\|A\|_{\infty} h\right\}^{j} \cdot \omega\left(f^{(r)}, x_{k-j+\frac{1}{2}}, h\right) \leqq \\
\quad \leqq C_{2} h^{r} \sum_{j=0}^{k} \int_{x_{j}}^{x_{j+1}} \omega\left(f^{(r)}, x_{k-j+\frac{1}{2}}, h\right) d x \leqq C_{3} h^{r} \tau\left(f^{(r)}, h\right)
\end{gathered}
$$

that is

$$
e_{k+1}^{(j)} \leqq C_{j, k+1} h^{r} \tau\left(f^{(r)}, h\right) \quad(k=0,1, \ldots, n-1 ; j=0,1, \ldots, m-1)
$$

Using this inequality we get

$$
\begin{gathered}
e_{k}^{(m+q)}=\left|y^{(m+q)}\left(x_{k}\right)-G_{k}^{(m+q)}\left(x_{k}\right)\right|= \\
=\left|f^{(q)}\left[x_{k}, y_{k}, \ldots, y_{k}^{(m-1)}\right]-f\left[x_{k}, G_{k-1}(x), \ldots, G_{k-1}^{(m-1)}\left(x_{k}\right)\right]\right| \leqq \\
\leqq L\left\{e_{k}+e_{k}^{\prime}+\cdots+e_{k}^{(m-1)}\right\} \leqq C_{m+q, k} h^{r} \tau\left(f^{(r)}, h\right)
\end{gathered}
$$

3. The second approximation process

As we have seen before, we have the set of the approximate values

$$
\bar{y}_{0}^{(q)}, \bar{y}_{1}^{(q)}, \ldots, \bar{y}_{n}^{(q)} \quad(q=0,1,2)
$$

which are the approximate values of the exact solution $y(x)$ of (1) and its derivatives at the points $x_{0}, x_{1}, \ldots, x_{n}$.

Using these approximate values $\bar{y}_{k}^{(q)}(k=0,1, \ldots n ; q=0,1,2)$ following the idea of Th. Fawzy in [6] we are going to construct a spline function $\bar{S}_{\Delta}(x)$ interpolating the set $\bar{y}_{k}^{(q)}$ and approximating the solution of (1) and its derivatives. Also, we shall discuss the convergence of this function to $y(x)$.
3.1. The construction of the spline function. Similarly as Fawzy did in [6] we construct the spline function $\bar{S}_{\Delta}(x)\left(\bar{S}_{\Delta}(x)=\bar{S}_{k}(x)\right.$ if $\left.x_{k} \leqq x \leqq x_{k+1}\right)$ in the following theorem:

Theorem 3.1.1. Let $\bar{y}_{k}^{(q)}(k=0,1, \ldots n ; q=0,1,2)$ be the approximate values defined above. Then there exists a unique spline function $\bar{S}_{\Delta}(x)$ satisfying:

$$
\begin{equation*}
\bar{S}_{\Delta}(x) \in C^{2}([0,1]) \tag{3.1.1}
\end{equation*}
$$

$$
\begin{gather*}
\bar{S}_{k}^{(q)}\left(x_{k}\right):=\bar{y}_{k}^{(q)} \quad(k=0,1, \ldots n-1 ; q=0,1,2) \tag{3.1.2}\\
\bar{S}_{n-1}^{(q)}\left(x_{n}\right):=\bar{y}_{n}^{(q)} \quad(q=0,1,2) \tag{3.1.3}
\end{gather*}
$$

$$
\begin{equation*}
\bar{S}_{\Delta}(x) \text { is a polynomial of minimal degree on }\left[x_{k}, x_{k+1}\right] . \tag{3.1.4}
\end{equation*}
$$

We get the following equalities:

$$
\begin{equation*}
\bar{S}_{k}(x)=\bar{y}_{k}+\bar{y}_{k}^{\prime}\left(x-x_{k}\right)+\frac{\bar{y}_{k}^{\prime \prime}}{2!}\left(x-x_{k}\right)^{2}+\sum_{i=1}^{3} \bar{a}_{i, k}\left(x-x_{k}\right)^{2+i}, \tag{3.1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{F}_{k}^{\prime \prime}=\frac{1}{h}\left(\bar{y}_{k+1}^{\prime \prime}-\bar{y}_{k}^{\prime \prime}\right) \tag{3.1.11}
\end{equation*}
$$

3.2. A general convergence process. In this section we prove the essential theorem concerned with the convergence of our spline function constructed in Theorem 3.1.1 to the exact solution of (1) and also we prove that this function satisfies this differential equation as $n \rightarrow \infty$, if $2 \leqq m$ and $m+r \leqq 5$.

Theorem 3.2.1. If $y(x) \in C^{m+r}([0,1])$ is the exact solution of (1) and $\bar{S}_{\Delta}(x)$ is the spline function mentioned in Theorem 3.1.1 then the following inequalities hold:

$$
\left|y^{(q)}(x)-\bar{S}_{k}^{(q)}(x)\right| \leqq B_{q, k} h^{r-q} \tau\left(y^{(m+r)}, h\right)
$$

$(k=0,1, \ldots, n-1 ; q=0,1, \ldots, m+r ; 2 \leqq m+r \leqq 5)$ where the constants $B_{q, k}$ are independent of n.

Theorem 3.2.2. If the function f in (1) satisfies conditions (1.1) and (1.2), then the following inequalities hold:

$$
\left|\bar{S}_{\Delta}^{(m)}(x)-f\left[x, \bar{S}_{\Delta}(x), \ldots, \bar{S}_{\Delta}^{(m-1)}(x)\right]\right| \leqq K h^{r-m} \tau\left(y^{(m+r)}, h\right)
$$

where the constant K is independent of n.
To prove these theorems we need the following lemmas, which can be easily seen using formulas (3.1.5-3.1.11) and Theorem 2.2.1.

Lemma 3.2.1. Let $a_{j, k}(j=1,2,3 ; k=0,1, \ldots, n-1)$ and $\bar{a}_{j, k}$ denote the coefficients of the spline function $S_{\Delta}(x)$ constructed with the exact values $y^{(j)}\left(x_{k}\right)$ and the ones in Theorem 3.1.1. Then we have

$$
\left|a_{j, k}-\bar{a}_{j, k}\right| \leqq A_{j, k} h^{r-3-j} \tau\left(y^{(m+r)}, h\right)(j=1,2,3 ; k=0,1, \ldots, n-1),
$$

where the constants $A_{j, k}$ are independent of n.
Lemma 3.2.2. Let $S_{\Delta}(x)$ and $\bar{S}_{\Delta}(x)$ denote the spline function constructed with the exact values and the one constructed with the approximate values (Theorem 3.1.1), respectively. Then we have

$$
\begin{aligned}
& \left|S_{k}^{(q)}(x)-\bar{S}_{k}^{(q)}(x)\right| \leqq D_{q, k} h^{r-q} \tau\left(y^{(m+r)}, h\right) \\
& (k=0,1, \ldots, n-1 ; \quad q=0,1, \ldots, m+r)
\end{aligned}
$$

where the constants $D_{q, k}$ are independent of n.
Proof of Theorem 3.2.1. Lemma 3.2.2, Theorem 1.1.2 of [10] and the inequality

$$
\begin{gathered}
\left|y^{(q)}(x)-\bar{S}_{k}^{(q)}(x)\right| \leqq\left|y^{(q)}(x)-S_{k}^{(q)}(x)\right|+\left|S_{k}^{(q)}(x)-\bar{S}_{k}^{(q)}(x)\right| \\
(q=0,1, \ldots, m+r)
\end{gathered}
$$

imply Theorem 3.2.1.
Proof of Theorem 3.2.2. Using conditions (1), (1.1) and (1.2) we obtain

$$
\left|\bar{S}_{\Delta}^{(m)}(x)-f\left[x, \bar{S}_{\Delta}(x), \ldots, \bar{S}_{\Delta}^{(m-1)}(x)\right]\right| \leqq
$$

$$
\begin{aligned}
& \leqq\left|\bar{S}_{\Delta}^{(m)}(x)-y^{(m)}(x)\right|+\left|y^{(m)}(x)-f\left[x, \bar{S}_{\Delta}(x), \ldots, \bar{S}_{\Delta}^{(m-1)}(x)\right]\right| \leqq \\
& \leqq\left|\bar{S}_{\Delta}^{(m)}(x)-y^{(m)}(x)\right|+\mid f\left[x, y(x), \ldots, y^{(m-1)}(x)\right]- \\
& -f\left[x, \bar{S}_{\Delta}(x), \ldots, \bar{S}_{\Delta}^{(m-1)}(x)\right] \mid \leqq \\
& \leqq\left|\bar{S}_{\Delta}^{(m)}(x)-y^{(m)}(x)\right|+L \sum_{j=0}^{m-1}\left|y^{(j)}(x)-\bar{S}_{\Delta}^{(j)}(x)\right|
\end{aligned}
$$

which implies Theorem 3.2.2 by the help of Theorem 3.2.1.
Remark. If $f^{(r)}$ has finite variation then $\tau\left(f^{(r)}, h\right)=O(h)$, (see in [11]). Using this equation we get the following theorems from Theorems 2.2.1, 3.2.1 and 3.2.2:

Theorem 2.2.1.a. We have

$$
e_{k+1}^{(j)} \leqq C_{j, k+1}^{*} h^{r+1} \quad(k=0,1, \ldots, n-1 ; j=0,1, \ldots, m+r)
$$

where the constants $C_{j, k+1}^{*}$ are independent of n.
Theorem 3.2.1.a. We have

$$
\left|y^{(q)}(x)-\bar{S}_{k}^{(q)}(x)\right| \leqq B_{q, k}^{*} h^{r+1-q} \quad(k=0,1, \ldots, n ; q=0,1, \ldots, m+r)
$$

where the constants $B_{q, k}^{*}$ are independent of n.
Theorem 3.2.2.a. We have

$$
\left|\bar{S}_{\Delta}^{(m)}(x)-f\left[x, \bar{S}_{\Delta}(x), \ldots, \bar{S}_{\Delta}^{(m-1)}(x)\right]\right| \leqq K^{*} h^{r+1-m},
$$

where the constant K^{*} is independent of n.

References

[1] F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, Bull. Am. Math. Soc., 73 (1967), 438-442.
[2] F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer. Anal., 4 (1967), 433-445.
[3] Th. Fawzy, Spline functions and the Cauchy problems III. Approximate solution of the differential equation $y^{\prime}=f(x, y)$ with spline functions, Annales Univ. Sci. Budapest., Sectio Computatorica, 1 (1978), 35-45.
[4] Gh. Micula, Approximate solution of the differential equation $y^{\prime \prime}=f(x, y)$ with spline functions, Math. of Computation, 27 (1973), 807-816.
[5] Gh. Micula, The numerical solution of nonlinear differential equations by spline functions, Z. A. M. M., 55 (1975), 254-255.
[6] Th. Fawzy, Spline functions and the Cauchy problems I. Approximate solution of the differential equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ with spline functions, Annales Univ. Sci. Budapest., Sectio Computatorica, 1 (1978), 81-98.
[7] Th. Fawzy, Spline functions and the Cauchy problems II. Approximate solution of the differential equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ with spline functions, Acta Math. Acad. Sci. Hungar., 29 (1977), 259-271.
[8] J. Györvári, Numerische Lösung der Differenzialgleichung $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ mit SplineFunction, Annales Univ. Sci. Budapest., Sectio Computatorica, IV (1983), 22-27.
[9] J. Győrvári, Cauchy problem and modified lacunary spline functions, Proceedings of the International Conference on Constructive Theory of Functions '84 (Sofia, 1984), 392-396.
[10] J. Győrvári, Hermite-Birkhoff típusú spline interpoláció és alkalmazásai. Kandidátusi értekezés, Ph.D. dissertation (Budapest-Veszprém, 1984).
[11] Bl. Sendov and V. A. Popov, The Averaged Moduli of Smoothness, in "Pure and Applied Mathematics", J. Wiley and Sons (Chichester-New York-Brisbane-Toronto-Singapore, 1988).
(Received November 28, 1989)

UNIVERSITY OF VESZPRÉM
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
P.O.BOX 158

8201 VESZPRÉM HUNGARY

ON APPROXIMATION OF FUNCTIONS BY POLYNOMIALS WITH WEIGHT

N. X. KY (Budapest)

Introduction

Let

$$
u_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta} \quad(\alpha, \beta>-1, x \in(-1,1))
$$

Denote $L_{\alpha, \beta}^{p}$ the Banach space of all measurable functions defined on the interval $[-1,1]$ for which

$$
\|f\|_{p, \alpha, \beta}=\left(\int_{-1}^{1}|f(x)|^{p} u_{\alpha, \beta}(x) d x\right)^{1 / p}<\infty \quad(1 \leqq p<\infty)
$$

$L_{\alpha, \beta}^{\infty}=L^{\infty}$ is the space of all measurable, essentially bounded functions on $[-1,1]$ with the usual norm

$$
\|f\|_{\infty}=\underset{x \in(-1,1)}{\operatorname{ess} \sup _{x}}|f(x)|
$$

For every $f \in L_{\alpha, \beta}^{p}(1 \leqq p \leqq \infty)$, we define the best approximation

$$
\begin{equation*}
E_{n}(p, \alpha, \beta, f)=\inf _{p_{n} \in \Pi_{n}}\left\|f-p_{n}\right\|_{p, \alpha, \beta} \quad(n \in \mathbf{N}), \tag{1}
\end{equation*}
$$

where Π_{n} denotes the set of all algebraic polynomials of degree at most n, and N is the set of non-negative integers.

The aim of the present paper is to consider some fundamental problems concerning the approximation (1): an inequality of Jackson-type (in §.1), equivalent theorems (in §.2), direct and converse theorems (in §.3 and 4).

§.1. A Jackson type inequality

One of the most important results of the theory of trigonometric approximation is Jackson's inequality (see e.g. [8]). We are going to consider an inequality of similar type for the approximation (1).

Denote by \mathbf{N}^{+}the set of all positive integers. For $k \in \mathbf{N}^{+}, 1 \leqq p \leqq \infty$; $\alpha, \beta>-1$, let $W^{(k)}(p, \alpha, \beta)$ be the set of all measurable functions f defined on the interval $[-1,1]$, whose derivatives of order at most $k-1$ are absolutely continuous on every subinterval $[-1+\varepsilon, 1-\varepsilon](0<\varepsilon<1 / 2),\left(f^{(0)}:=f\right)$ and

$$
\Delta^{\ell}(x) f^{(\ell)}(x) \in L_{\alpha, \beta}^{p} \quad(\ell=0,1, \ldots, k)
$$

where

$$
\Delta(x)=\sqrt{1-x^{2}} \quad(x \in(-1,1))
$$

Theorem 1. Let $k \in \mathbf{N}^{+}, 1 \leqq p<\infty, \alpha, \beta>-1$. For every $f \in W^{(k)}(p, \alpha, \beta)$ we have

$$
\begin{equation*}
E_{n}(p, \alpha, \beta, f) \leqq c(p, \alpha, \beta) n^{-k}\left\|\Delta^{k} f^{(k)}\right\|_{p, \alpha, \beta} \quad(n \in \mathbf{N}) \tag{2}
\end{equation*}
$$

Here and later on $c(., \ldots)$ denotes a constant depending only on variables in the parenthesis.

Inequality (2) is best possible in the sense that the factors n^{-k} on the right-hand side cannot be replaced by $o\left(n^{-k}\right)$.

For the proof of the theorem we need some lemmas.
Let $P_{n}(\alpha, \beta, x)$ be the n-th orthonormal Jacobi polynomial with respect to the parameters α and β. Every function $f \in L_{\alpha, \beta}^{p}$ has the Jacobi-Forier series

$$
\begin{equation*}
f(x) \sim \sum_{k=0}^{\infty} a_{k}(f) P_{k}(\alpha, \beta, x) \tag{3}
\end{equation*}
$$

where

$$
a_{k}(f)=\int_{-1}^{1} f(x) P_{k}(\alpha, \beta, x) u_{\alpha, \beta}(x) d x \quad(k \in \mathbf{N})
$$

Let

$$
\sigma_{n}^{\delta}(f, x)=\sum_{k=0}^{n} \frac{\binom{n-k+\delta}{n-k}}{\binom{n+\delta}{n}} a_{k}(f) P_{k}(\alpha, \beta, x) \quad(\delta>0, n \in \mathbf{N})
$$

Pollard [10] proved the inequality

$$
\begin{gather*}
\left\|\sigma_{n}^{\delta}(f)\right\|_{p, \alpha, \beta} \leqq c(p, \alpha, \beta)\|f\|_{p, \alpha, \beta} \tag{4}\\
\left(f \in L_{\alpha, \beta}^{p}, \quad 1 \leqq p \leqq \infty, \quad \delta>\max (\alpha, \beta), \quad n \in \mathbf{N}^{+}\right)
\end{gather*}
$$

We shall apply the so-called generalization de la Vallée-Poussin means

$$
V_{n}^{\delta}(f, x)=\frac{\sum_{j=0}^{\delta}(-1)^{j+1}\binom{\delta}{j}\binom{(j+1) n+\delta}{\delta} \sigma_{(j+1) n}^{\delta}(f, x)}{\delta!n^{\delta}} \quad\left(\delta, n \in \mathbf{N}^{+}\right)
$$

of the series (3), which was introduced in this form by G. Freud and J. Szabados [2].

Lemma 1. Let $1 \leqq p \leqq \infty, \alpha, \beta>-1, n \in \mathrm{~N}^{+}$and let $\delta>\max (\alpha, \beta)$ be an integer. Then V_{n}^{δ} has the following properties:

$$
\begin{gather*}
V_{n}^{\delta}(f) \in \Pi_{(\delta+1) n} \quad\left(f \in L_{\alpha, \beta}^{p}\right), \tag{5}\\
V_{n}^{\delta}\left(p_{n}\right)=p_{n} \quad\left(p_{n} \in \Pi_{n}\right), \tag{6}\\
\left\|V_{n}^{\delta}(f)\right\|_{p, \alpha, \beta} \leqq c(p, \alpha, \beta)\|f\|_{p, \alpha, \beta} \quad\left(f \in L_{\alpha, \beta}^{p}\right), \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|V_{n}^{\delta}(f)-f\right\|_{p, \alpha, \beta} \leqq c(p, \alpha, \beta) E_{n}(p, \alpha, \beta, f) \quad\left(f \in L_{\alpha, \beta}^{p}\right) . \tag{8}
\end{equation*}
$$

Proof. (5) and (6) were proved in [2]. (7) follows from (4) and the definition of V_{n}^{δ} (see also [2]). Finally, we get (8) by (6) and (7).

Let now $\Pi_{n}^{\perp}(\alpha, \beta)\left(n \in \mathbf{N}^{+}\right)$be the set of all functions $g \in L^{\infty}$ satisfying

$$
\int_{-1}^{1} g p_{n} u_{\alpha, \beta} d x=0
$$

for any $p_{n} \in \Pi_{n}$.
Lemma 2 ([7], Theorem 1). For every $g \in \Pi_{n}^{\perp}(\alpha, \beta), n \in \mathrm{~N}^{+}$we have

$$
\begin{equation*}
\left|\int_{-1}^{x} g(t) u_{\alpha, \beta}(t) d t\right| \leqq \frac{c(\alpha, \beta)}{n} u_{\alpha, \beta}(x) \Delta(x)\|g\|_{\infty} \quad(-1<x<1) . \tag{9}
\end{equation*}
$$

Proof of Theorem 1. First let us prove the theorem for the case $k=1$. Our proof consists of three steps.

1. The case $p=1$. Let $f \in W^{(1)}(1, \alpha, \beta)$. By the duality principle of Nikolskiĭ we have (see e.g. [11], p.22)

$$
\begin{equation*}
E_{n}(1, \alpha, \beta, f)=\sup _{\substack{g \in \prod_{1}^{1}(\alpha, \beta) \\\|g\| \|_{\infty} \leqq 1}} \int_{-1}^{1} g(x) f(x) u_{\alpha, \beta}(x) d x \tag{10}
\end{equation*}
$$

Now for any $g \in \Pi_{n}^{\perp}(\alpha, \beta),\|g\|_{\infty} \leqq 1$ let

$$
G(x):=\int_{-1}^{x} g(t) u_{\alpha, \beta}(t) d t \quad(x \in(-1,1))
$$

Then by (9)

$$
\begin{equation*}
|G(x)| \leqq \frac{c(\alpha, \beta)}{n} u_{\alpha, \beta}(x) \Delta(x) \quad(x \in(-1,1)) . \tag{11}
\end{equation*}
$$

Furthermore it is easy to see that

$$
\begin{equation*}
|G(x)|=O\left[(1-|x|) u_{\alpha, \beta}(x)\right] \quad(|x| \rightarrow 1) . \tag{12}
\end{equation*}
$$

Using these estimates we show that

$$
\begin{equation*}
|f(x) G(x)|=o(1) \quad(|x| \rightarrow 1) \tag{13}
\end{equation*}
$$

Let for example $-1 \leqq x \leqq 0$. Then by (12) we get

$$
\begin{align*}
& |f(x) G(x)|=O\left\{(1+x) u_{\alpha, \beta}(x)\left[\int_{0}^{x} f^{\prime}(t) d t+f(0)\right]\right\}= \tag{14}\\
& =O\left\{(1+x) u_{\alpha, \beta}(x)\right\}+O\left\{(1+x) u_{\alpha, \beta}(x) \int_{0}^{x} f^{\prime}(t) d t\right\}= \\
& =o(1)+O\left\{(1+x) u_{\alpha, \beta}(x) \int_{0}^{x} f^{\prime}(t) d t\right\} \quad(x \rightarrow-1)
\end{align*}
$$

Now if $\beta \geqq-1 / 2$, then

$$
\begin{gathered}
\left|(1+x) u_{\alpha, \beta}(x) \int_{0}^{x} f^{\prime}(t) d t\right|=(1+x)^{1 / 2}\left|\int_{0}^{x} u_{\alpha, \beta}(x) \Delta(x) f^{\prime}(t) d t\right| \leqq \\
\leqq c(1+x)^{1 / 2}\left|\int_{0}^{x} u_{\alpha, \beta}(t) \Delta(t)\right| f^{\prime}(t)|d t| \leqq \\
\leqq c(1+x)^{1 / 2}\left\|\Delta f^{\prime}\right\|_{1, \alpha, \beta} \rightarrow 0 \quad \text { as } \quad x \rightarrow-1 .
\end{gathered}
$$

Acta Mathematica Hungarica 59, 1992

In the case when $-1<\beta<-1 / 2$ from the assumption $f \in W^{(1)}(1, \alpha, \beta)$ it follows that f^{\prime} is integrable over the interval $[-1,0]$. Thus

$$
\left|(1+x) u_{\alpha, \beta}(x) \int_{0}^{x} f^{\prime}(t) d t\right|=o(1) \quad(x \rightarrow-1) .
$$

This together with (14) implies (13) in the case $x \rightarrow-1$. The proof of the case $x \rightarrow 1$ of (13) is the same.

Now, using (11) and (13), by integration by parts we get

$$
\begin{aligned}
& E_{n}(1, \alpha, \beta, f)=\sup _{\substack{g \in \Pi \frac{1}{n}(\alpha, \beta) \\
\|g\| \infty \leqq 1}} \int_{-1}^{1} f(x) g(x) u_{\alpha, \beta}(x) d x \leqq
\end{aligned}
$$

and so the case $p=-1, k=1$ of (2) is proved.
2. In the case $p=\infty, k=1$, (2) indeed follows from the well known Jackson inequality concerning trigonometric approximation (see e.g. [9], p. 177).
3. We obtain (2) in the case $1<p<\infty, k=1$ by application of RieszThorin interpolation theorem and the just proved border line cases $p=1$, ∞ of it (see [13], p. 95). Here the linear operator we are applying for the interpolation is

$$
T(f):=V_{n}^{\delta}(f)-f
$$

So our theorem is proved for $1 \leqq p \leqq \infty, k=1$. The case $k>1$ of (2) follows from the case $k=1$ by induction.

It remains to prove that inequality (2) is best possible. It is enough to see this fact in the case $k=1$.

If $p=\infty$, then this statement follows from the same concerning trigonometric approximation (see e.g. [9], p. 177).

Let now $p=2$. By the formulas (see [12], (4.3.4), (4.5.5))

$$
P_{n+2}^{\prime}(\alpha, \beta, x)=\chi_{n+2} P_{n+1}(\alpha+1, \beta+1, x) \quad(n \in \mathbf{N})
$$

with $\chi_{n+2} \sim n$ we obtain for $f_{0}(x):=\chi_{n+2}^{-1} P_{n+2}(\alpha, \beta, x)$ that

$$
E_{n+1}\left(2, \alpha, \beta, f_{0}\right) \sim(n+2)^{-1}
$$

and

$$
\left\|\Delta f_{0}^{\prime}\right\|_{2, \alpha, \beta} \sim 1
$$

This fact proves that (2) is the best possible in the case $k=1, p=2$.
Now, suppose that in some case $1 \leqq p_{0}<2$, (2) is not the best possible in the above sense. Then by interpolating between p_{0} and ∞ we obtain that the same is true for $p=2$ too, which contradicts the just proved case $p=2$.

By analogous argument we can prove that (2) is the best possible in the case $2<p<\infty$.

The proof of our theorem is now complete.

§.2. An equivalence theorem

We shall apply the concept of K-functional

$$
\begin{gathered}
K_{k}(p, \alpha, \beta, f, t):=\inf _{g \in W^{(k)}(p, \alpha, \beta)}\left\{\|f-g\|_{p, \alpha, \beta}+t\left\|\Delta^{k} g^{(k)}\right\|_{p, \alpha, \beta}\right\} \\
\left(f \in L_{\alpha, \beta}^{p}, \quad 1 \leqq p<\infty, \quad \alpha, \beta>-1, \quad k \in \mathbf{N}^{+}, \quad 0<t<\infty\right)
\end{gathered}
$$

due to J. Peetre.
Let furthermore $p_{n}(f)$ be the n-th polynomial of best approximation of f in $L_{\alpha, \beta}^{p}$, i.e.

$$
E_{n}(p, \alpha, \beta, f)=\left\|f-p_{n}(f)\right\|_{p, \alpha, \beta}
$$

The following theorem is true.
Theorem 2. Let $1 \leqq p<\infty, \alpha, \beta>-1, k, j, r \in \mathbf{N}^{+}, \lambda>0,1 \leqq s \leqq \infty$. For every $f \in L_{\alpha, \beta}^{p}$ the following conditions are equivalent:
a) $\left\{\sum_{n=1}^{\infty}\left[n^{r+\lambda} E_{n}(p, \alpha, \beta, f)\right]^{s} \frac{1}{n}\right\}^{1 / s}<\infty$.
b) $f \in W^{(k)}(p, \alpha, \beta)$ and

$$
\left\{\sum_{n=1}^{\infty}\left(n^{r+\lambda-k}\left\|\Delta^{k}\left[f-p_{n}(f)\right]^{(k)}\right\|_{p, \alpha, \beta}\right)^{s} \frac{1}{n}\right\}^{1 / s}<\infty \quad(k<r+\lambda)
$$

c) $\left\{\sum_{n=1}^{\infty}\left(n^{r+\lambda-j}\left\|\Delta^{j} p_{n}^{(j)}(f)\right\|_{p, \alpha, \beta}\right)^{s} \frac{1}{n}\right\}^{1 / s}<\infty \quad(r+\lambda<j)$.
d) $\left\{\int_{0}^{\infty}\left[t^{-(r+\lambda) / j} K_{j}(p, \alpha, \beta, f, t)\right]^{s} \frac{d t}{t}\right\}^{1 / s}<\infty \quad(r+\lambda<j)$.

Proof. V. I. Ivanov [4] proved the inequality

$$
\begin{gather*}
\left\|\Delta^{k} p_{n}^{(k)}\right\|_{p, \alpha, \beta} \leqq c(k, p, \alpha, \beta) n^{k}\left\|p_{n}\right\|_{p, \alpha, \beta} \tag{15}\\
\left(1 \leqq p<\infty, \quad \alpha, \beta>-1, \quad k, n \in \mathbf{N}^{+}, \quad p_{n} \in \Pi_{n}\right)
\end{gather*}
$$

We obtain Theorem 2 by applying Theorem 3 in [1], and inequalities (2), (15).

§.3. Direct and converse theorems

For a function $f(x)$ defined on $[-1,1]$, let

$$
f^{*}(\theta):=f(\cos \theta) \quad(0 \leqq \theta \leqq \pi) .
$$

Let $0<a<b<\pi$ be two arbitrary constants, which will be fixed in the sequel.

We define the modulus of continuity of a function $f \in L_{\alpha, \beta}^{p}(\alpha, \beta \geqq-1 / 2$, $1 \leqq p \leqq \infty$) as follows:

$$
\begin{gather*}
\omega(f, \delta)_{p}=\omega(a, b, \alpha, \beta, f, \delta)_{p}:= \tag{16}\\
=\sup _{0<h<\delta}\left\{\int_{0}^{b}\left|f^{*}(\theta+h)-f^{*}(\theta)\right|^{p} \Delta^{*}(\theta) u_{\alpha, \beta}^{*}(\theta) d \theta\right\}^{1 / p}+ \\
+\sup _{0<h<\delta}\left\{\int_{a}^{\pi}\left|f^{*}(\theta-h)-f^{*}(\theta)\right|^{p} \Delta^{*}(\theta) u_{\alpha, \beta}^{*}(\theta) d \theta\right\}^{1 / p} \\
(0<\delta<I=\min (a, \pi-b)) .
\end{gather*}
$$

The existence of this modulus of continuity follows from the following inequalities:

$$
\begin{gather*}
\begin{cases}u_{\alpha, \beta}^{*}(\theta) \leqq c(a, b, \delta) u_{\alpha, \beta}^{*}(\theta+h) & (a<\theta \leqq b) \\
u_{\alpha, \beta}^{*}(\theta) \leqq c(a, b, \delta) u_{\alpha, \beta}^{*}(\theta-h) & (a<\theta \leqq \pi)\end{cases} \tag{17}\\
(\alpha, \beta \leqq-1 / 2, \quad 0<h \leqq d<\min (a, \pi-b)) .
\end{gather*}
$$

It is easy to see that $\omega(f, \delta)_{p}$ has the properties of modulus of continuity, i.e. it is a continuous increasing function of δ on $[0, I]$ tending to 0 with δ, and

$$
\omega\left(f, \delta_{1}+\delta_{2}\right) \leqq \omega\left(f, \delta_{1}\right)+\omega\left(f, \delta_{2}\right) \quad\left(0<\delta_{1}, \delta_{2}<\delta_{1}+\delta_{2}<I\right)
$$

Before we state direct and converse theorems, we remark that although (16) depends on the given constants a and b, it has the same order while $\delta \rightarrow 0$ for every pair a, b. Our modulus of continuity is equivalent to the K-functional defined above; more precisely we have

$$
\begin{gather*}
c(p, \alpha, \beta, a, b) K_{1}(p, \alpha, \beta, f, t) \leqq \tag{18}\\
\omega(a, b, \alpha, \beta, f, \delta)_{p} \leqq c(p, \alpha, \beta, a, b) K_{1}(p, \alpha, \beta, f, t) \\
(0<t<I) .
\end{gather*}
$$

The proof of this fact is essentially contained in [5] and [6]. The definition of this type can be applied to many other weights and in many cases it is useful for computation. According to this fact, in [8] we had applied a similar modulus of continuity for consideration of Uljanov type embedding problems, too.

Theorem 3. Let $1 \leqq p<\infty, \alpha, \beta \geqq-1 / 2$. For every $f \in L_{\alpha, \beta}^{p}$ we have

$$
\begin{equation*}
E_{n}(p, \alpha, \beta, f) \leqq c(p, \alpha, \beta, a, b) \omega\left(a, b, \alpha, \beta, f, \frac{1}{n}\right)_{p} \quad\left(n \in \mathbf{N}^{+}\right) \tag{19}
\end{equation*}
$$

$$
(20) \omega(a, b, \alpha, \beta, f, \delta)_{p} \leqq c(p, \alpha, \beta, a, b) \delta \sum_{k=0}^{\left[\delta^{-1}\right]} E_{k}(p, \alpha, \beta, f) \quad(0<\delta<I)
$$

Proof. The case $\alpha=\beta=0,1 \leqq p<\infty$ of the theorem was proved in [5], while the case $\alpha, \beta \geqq-1 / 2, p=2$ in [6]. The proof of the general case is the same, therefore we do not repeat it.

§.4. Direct and converse theorems with the moduli of Ditzian-Totik

Direct and converse theorems concerning the best approximation (1) were also given recently by Z. Ditzian and V. Totik (see [2] Theorems 7.2.1 and 8.2.1). Using new moduli of continuity of functions introduced by them, the authors proved direct and converse theorems for the best approximation by algebraic polynomials in $L^{p}[-1,1]$ with more general weights than $u_{\alpha, \beta}$. Their theorems imply the characterization of many classes of functions having a given order of best approximation, for example the order $n^{-\alpha}(\alpha>0)$. However, in case of the weight $u_{\alpha, \beta}$ with $\alpha, \beta \geqq 0, \alpha+\beta>0$ their result (Theorem 8.2.1) can still be made sharp by using the results of this paper. Let us detail this fact.

Let $1 \leqq p<\infty, \alpha, \beta \geqq 0, r \in \mathbf{N}^{+}$. Let

$$
\left\{\begin{array}{l}
w(x):=u_{\alpha / p, \beta / p}(x) \tag{21}\\
\varphi(x):=\sqrt{1-x^{2}} .
\end{array}\right.
$$

Denote $\omega_{\varphi}^{\tau}(f, t)_{w, p}$ the modulus defined by (B.1) or (B.2) in [2], p.218, with the weights w, φ defined by (21). Then by Theorem 6.1.1 in [2]

$$
\begin{equation*}
\omega_{\varphi}^{r}(f, t)_{w, p} \sim K_{r}(p, \alpha, \beta, f, t) . \tag{22}
\end{equation*}
$$

On the other hand, using inequalities (2) and (15) by a usual method of approximation theory we can prove that for $f \in L_{\alpha, \beta}, r \in \mathbf{N}^{+}, n>r$

$$
\begin{equation*}
E_{n}(p, \alpha, \beta, f) \leqq c(p, \alpha, \beta, r) K_{r}\left(p, \alpha, \beta, f, \frac{1}{n}\right), \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{r}\left(p, \alpha, \beta, f, \frac{1}{n}\right) \leqq c(p, \alpha, \beta, r) \frac{1}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{n}(p, \alpha, \beta, f) . \tag{24}
\end{equation*}
$$

Combining these inequalities with (22) we get
Theorem 4. Let $1 \leqq p<\infty ; \alpha, \beta \geqq 0, r \in \mathbf{N}^{+}, f \in L_{\alpha, \beta}^{p}$. Let $\omega_{\varphi}^{\tau}(f, t)_{w, p}$ be the modulus defined above. Then

$$
\begin{gather*}
E_{n}(p, \alpha, \beta, f) \leqq c(p, \alpha, \beta, r) \omega_{\varphi}^{r}\left(f, \frac{1}{n}\right)_{w, p} \quad(n>r), \tag{25}\\
\omega_{\varphi}^{r}(f, h)_{w, p} \leqq c(p, \alpha, \beta, r) h^{r} \sum_{0 \leqq k<1 / h}(k+1)^{r-1} E_{k}(p, \alpha, \beta, f) . \tag{26}
\end{gather*}
$$

Inequality (26) indeed was proved in [2] (Theorem 8.2.4), while (25) is sharper than (8.2.1) in [2]; this fact follows from Theorem 6.2.2 in the same work. In the case $\alpha=\beta=0$, (25) was proved in [2] (Theorem 7.2.1). The authors proved that case by another method not applying inequality (2).

References

[1] P. L. Butzer and K. Scherer, On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and a theorem of M. Zamansky and S. B. Steckin, Aequationes Mathematicae, 3 (1969), 170-185.
[2] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag (New York, 1987).
[3] G. Freud and J. Szabados, Remark on a Bohr type inequality (in Hungarian), Mat. Lapok, 21 (1970), 253-257.
[4] В. И. Иванов, Некоторые әкстремальные свойства полиномов и обратные неравенства теории приближения, Труды Математияеского ижститута АН СССР, 45 (1980), 79-110.
[5] N. X. Ky, On Jackson and Bernstein type approximation theorem in the case of approximation by algebraic polynomials in L_{p}-space, Studia Math. Hung., 9 (1974), 405-415.
[6] N. X. Ky, On weighted polynomial approximation with a weight $W(x)=(1-x)^{\alpha / 2}(1+$ $+x)^{\beta / 2}$ in L_{2}-space, Acta Math. Acad. Sci. Hung., 27 (1976), 101-107.
[7] N. X. Ky, On a Bohr type inequality, Acta Math. Hung., 48 (1986), 343-346.
[8] N. X. Ky, On embedding theorems for weighted polynomial approximation and modulus of continuity of functions (to appear).
[9] I. P. Natanson, Constructive Theory of Functions, in Hungarian (Budapest, 1952).
[10] H. Pollard, The mean convergence of orthogonal series. III, Duke Math. J., 16 (1949), 189-191.
[11] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspace (New York, 1970).
[12] G. Szegö, Orthogonal Polynomials (New York, 1939).
[13] A. Zygmund, Trigonometric Series, Vol. II (Cambridge, 1968).
(Received May 4, 1984; revised September 8, 1989)
L. EÖTVÖS UNIVERSITY

COMPUTING CENTRE H-1117 BUDAPEST BOGDÁNFY ÚT 10/B

VARIETIES OF AUTOMATA AND TRANSFORMATION SEMIGROUPS

Z. ÉSIK (Szeged)

Introduction

The best formulation of the Krohn-Rhodes Decomposition Theorem in automata theory can perhaps be given in terms of certain 'generalized' α_{0} products (equivalently cascade products) possessing feedback functions that permit encoding input signs with arbitrary nonempty input words of the component automata. Here, such generalized α_{0}-products are referred to as α_{0}^{+}-products as opposed to the α_{0}-product that only admits strict sign to sign encoding facility. It is apparent that there is natural bijective correspondence between α_{0}^{+}-varieties of automata, i.e. varieties of automata closed under the α_{0}^{+}-product, and closed classes of (complete) transformation semigroups in the sense of [2]. The latter are those classes of transformation semigroups closed under division (or covering) and wreath product. As regards α_{0} varieties, i.e. varieties of automata closed under the α_{0}-product, no such natural bijective correspondence exists in general. The aim of this paper is to show that 'large' α_{0}-varieties are α_{0}^{+}-varieties, henceforth establishing a natural bijective correspondence between large α_{0}-varieties and large closed classes of transformation semigroups. An α_{0}-variety is large if it contains the automaton $\mathbf{D}_{0}=(\{1,2\},\{x, y\}, \delta)$ with $\delta(i, x)=1, \delta(i, y)=2, i=1,2$, as well as all the automata $\mathbf{C}_{p}^{1}=\left(\{1, \ldots, p\},\left\{x_{0}, x\right\}, \delta\right)$ with $\delta\left(i, x_{0}\right)=i, \delta(i, x) \equiv i+$ $+1 \bmod p, i=1, \ldots, p$, where p is any prime. In other words, an α_{0}-variety is large if it contains all definite automata and all commutative permutation automata.

The paper is organized as follows. The first section contains all necessary definitions. The second section is devoted to ecalling some results on definite and commutative automata. The third section exhibits an auxiliary construction that will be our fundamental tool in proving the above mentioned main result. A similar construction was used in [3] and then in a number of papers, e.g., [1], [5], [4]. The proof of the main result is given in the fourth section. The paper ends with a few remarks.

1. Preliminaries

An automaton is a system $\mathbf{A}=(A, X, \delta)$ consisting of finite nonempty sets A and X (the state set and the set of input signs, respectively), and transition function $\delta: A \times X \rightarrow A$. The transition is also used in the extended sense, i.e. as a mapping $\delta: A \times X^{*} \rightarrow A$, where X^{*} is the free monoid of all words generated by X. Thus, X^{*} includes the empty word λ. We set $X^{+}=$ $=X^{*}-\{\lambda\}$.

The characteristic monoid $S_{1}(A)$ of the automaton \mathbf{A} is the semigroup of all transformations $A \rightarrow A$ induced by words in X^{*}, i.e. $S_{1}(\mathbf{A})=\left\{\delta_{u}: u \in\right.$ $\left.\in X^{*}\right\}$ where $\delta_{u}: A \rightarrow A$ is given by $\delta_{u}(a)=\delta(a, u)$. We let $S(\mathbf{A})$ denote the subsemigroup of $S_{1}(\mathbf{A})$ consisting of all transformations δ_{u} with $u \in X^{+}$. $S(A)$ is called the characteristic semigroup of \mathbf{A}.

Our fundamental concept is that of the α_{0}-product (see [6]). The $\alpha_{0^{-}}$ -product is known to be equivalent to the cascade composition ([12]) and the loop-free product ([8]). Let $\mathbf{A}_{t}=\left(A_{t}, X_{t}, \delta_{t}\right), t \in[n]=\{1, \ldots, n\}, n \geqq 0$, be automata. Suppose we are given a family of feedback functions

$$
\phi_{t}: A_{1} \times \ldots \times A_{t-1} \times X \rightarrow X_{t}, t \in[n]
$$

where X is a new finite nonempty set. The α_{0}-product $\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \phi)$ is then defined to be the automaton $\mathbf{A}=(A, X, \delta)$ with

$$
A=A_{1} \times \ldots \times A_{n}
$$

and

$$
\begin{gathered}
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \ldots, \delta_{n}\left(a_{n}, x_{n}\right)\right) \\
x_{t}=\phi_{t}\left(a_{1}, \ldots, a_{t-1}, x\right)
\end{gathered}
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in A$ and $x \in X$.
Besides α_{0}-products, we shall be interested in the following generalizations. Suppose that each feedback function ϕ_{t} maps to the set X_{t}^{*} rather than X_{t}. Then, in exact analogue with the definition of the α_{0}-product, we obtain the concept of the α_{0}^{*}-product (see [7]). If only nonempty words occur in the ranges of the feedback functions, we speak about an α_{0}^{+}-product. That is, in case of an α_{0}^{+}-product, the feedback functions are of the form $\phi_{t}: A_{1} \times \ldots \times A_{t-1} \times X \rightarrow X_{t}^{+}$.

An α_{0}^{λ}-product is an α_{0}^{*}-product such that for each t, the feedback function ϕ_{t} can be treated as a mapping $A_{1} \times \ldots \times A_{t-1} \times X \rightarrow X_{t}^{\lambda}=X_{t} \cup\{\lambda\}$.

A special case of the α_{0}-product is the quasidirect product or q-product for short. An α_{0}-product as above is called a q-product if each feedback function ϕ_{t} is independent of any state variable $a_{s}(1 \leqq s<t)$. Thus, in a q-product, we can alternatively think of a feedback function ϕ_{t} as a map
$X \rightarrow X_{t}$. In the same way as for the α_{0}-product, the q-product generalizes to the following concepts: q^{*}-product, q^{+}-product and q^{λ}-product.

Let \mathcal{K} be a (possibly empty) class of automata. We define:
$\mathbf{P}_{\alpha_{0}}(\mathcal{K}):=$ all α_{0}-products of automata from \mathcal{K},
$\mathbf{P}_{\alpha_{0}}^{+}(\mathcal{K}):=$ all α_{0}^{+}-products of automata from \mathcal{K},
$\mathbf{P}_{\alpha_{0}}^{\lambda}(\mathcal{K}):=$ all α_{0}^{λ}-products of automata from \mathcal{K},
$\mathbf{P}_{\alpha_{0}}^{*}(\mathcal{K}):=$ all α_{0}^{*}-products of automata from \mathcal{K},
$\mathbf{P}_{q}(\mathcal{K}):=$ all q-products of automata from \mathcal{K},
$\mathbf{P}_{q}^{+}(\mathcal{K}):=$ all q^{+}-products of automata from \mathcal{K},
$\mathbf{P}_{q}^{\lambda}(\mathcal{K}):=$ all q^{λ}-products of automata from \mathcal{K},
$\mathbf{P}_{q}^{*}(\mathcal{K}):=$ all q^{*}-products of automata from \mathcal{K},
$\mathbf{H}(\mathcal{K})$:= all homomorphic images of automata from \mathcal{K},
$\mathbf{S}(\mathcal{K}) \quad:=$ all subautomata of automata from \mathcal{K},
Given an automaton $\mathbf{A}=(A, X, \delta)$, we define the automata $\mathbf{A}^{*}=$ $=\left(A, S_{1}(\mathbf{A}), \delta^{*}\right), \quad \mathbf{A}^{+}=\left(A, S(\mathbf{A}), \delta^{+}\right) \quad$ and $\quad \mathbf{A}^{\lambda}=\left(A, X \cup\left\{x_{0}\right\}, \delta^{\lambda}\right) \quad$ by $\delta^{*}\left(a, \delta_{u}\right)=\delta(a, u), \delta^{+}\left(a, \delta_{v}\right)=\delta(a, v)$ and $\delta^{\lambda}(a, x)=\delta(a, x), \delta^{\lambda}\left(a, x_{0}\right)=a$, where $a \in A, u \in X^{*}, v \in X^{+}$and $x \in X$. It is assumed that $x_{0} \notin X$. For a class \mathcal{K} we set $\mathcal{K}^{*}=\left\{\mathbf{A}^{*}: \mathbf{A} \in \mathcal{K}\right\}, \mathcal{K}^{+}=\left\{\mathbf{A}^{+}: \mathbf{A} \in \mathcal{K}\right\}$ and $\mathcal{K}^{\lambda}=\left\{\mathbf{A}^{\lambda}: \mathbf{A} \in \mathcal{K}\right\}$. Obviously, $\mathbf{P}_{\alpha_{0}}^{*}(\mathcal{K})=\mathbf{P}_{\alpha_{0}}\left(\mathcal{K}^{*}\right), \mathbf{P}_{\alpha_{0}}^{+}(\mathcal{K})=\mathbf{P}_{\alpha_{0}}\left(\mathcal{K}^{+}\right)$and $\mathbf{P}_{\alpha_{0}}^{\lambda}(\mathcal{K})=\mathbf{P}_{\alpha_{0}}\left(\mathcal{K}^{\lambda}\right)$.

Our main concern will be α_{0}-varieties. By definition, a class \mathcal{K} of automata is an α_{0}-variety if and only if $\mathbf{H}(\mathcal{K}) \cong(\mathcal{K}), \mathrm{S}(\mathcal{K}) \cong \mathcal{K}$ and $\mathbf{P}_{\alpha_{0}}(\mathcal{K}) \cong \mathcal{K}$. Requiring closure under $\mathbf{P}_{\alpha_{0}}^{+}\left(\mathbf{P}_{\alpha_{0}}^{\lambda}, \mathbf{P}_{\alpha_{0}}^{*}\right)$ instead of closure under $\mathbf{P}_{\alpha_{0}}$, we get the notion of the α_{0}^{+}-variety (α_{0}^{λ}-variety, α_{0}^{*}-variety). The concept of a q variety, (q^{+}-variety, q^{λ}-variety, q^{*}-variety $)$ is similarly defined. It is known that $\mathbf{H S P}_{\alpha_{0}}(\mathcal{K})$ is the smallest α_{0}-variety containing a given class \mathcal{K}, i.e. the α_{0}-variety generated by \mathcal{K}. Analogous statements are true for any other variety concept defined above. The easy proofs of the following two propositions are omitted.

Proposition 1.1. Let z be any of the modifiers,$+ \lambda$ and $*$. The following are equivalent for an α_{0}-variety (q-variety) \mathcal{K} :
(i) \mathcal{K} is an α_{0}^{z}-variety (q^{z}-variety),
(ii) $\mathcal{K}^{z} \subseteq \mathcal{K}$,
(iii) $\mathcal{K}=\operatorname{HSP}_{\alpha_{0}}^{z}\left(\mathcal{K}_{0}\right)\left(\mathcal{K}=\operatorname{HSP}_{q}^{z}\left(\mathcal{K}_{0}\right)\right)$ for a class \mathcal{K}_{0}.

Proposition 1.2. Let \mathcal{K} be an α_{0}^{λ}-variety (q^{λ}-variety). Then \mathcal{K} is an α_{0}^{*}-variety if and only if \mathcal{K} is an α_{0}^{+}-variety (q^{+}-variety).

There is an obvious connection between α_{0}^{+}-varieties and classes of transformation semigroups closed under division (or covering) and wreath product.

According to [2], such classes of transformation semigroups will simply be referred to as closed classes. (More exactly, partial transformation semigroups are also treated in the book of Eilenberg [2], but we will not consider this possibility.)

Let \mathbf{A} be an automaton (A, X, δ). We can form the transformation semigroup $(A, S(\mathbf{A}))$, which is just the automaton \mathbf{A}^{+}considered as a transformation semigroup. For a class \mathcal{K} of automata, let $\mathbf{T}(\mathcal{K})$ denote the class of all transformation semigroups so obtained from automata in \mathcal{K}. Now, the obvious connection is this: The operation $\mathcal{K} \rightarrow \mathrm{T}(\mathcal{K})$ is a bijective correspondence between α_{0}^{+}-varietes and (nonempty) closed classes of transformation semigroups. Further, when restricted to α_{0}^{*}-varieties, this operation is a bijective correspondence between α_{0}^{*}-varieties and closed classes of transformation semigroups that are generated by transformation monoids, see [2] for the definition of a transformation monoid. The latter observation follows from the following statement whose easy proof is omitted.

Proposition 1.3. An α_{0}^{+}-variety \mathcal{K} is an α_{0}^{*}-variety if and only if $\mathrm{T}(\mathcal{K})$ is generated by transformation monoids.

We note that a similar bijective correspondence can be established between q^{+}-varieties and so-called weakly closed classes of transformation semigroups.

2. Commutative and definite automata

An automaton $\mathbf{A}=(A, X, \delta)$ is called commutative if $\delta(a, x y)=\delta(a, y x)$ $(a \in A, x, y \in X)$ holds universally, i.e. when $S(\mathbf{A})$, or $S_{1}(\mathbf{A})$, is commutative. If in addition δ_{x} is a permutation of the state set for each input sign x, we call \mathbf{A} a commutative permutation automaton. Clearly, \mathbf{A} is a commutative permutation automaton if and only if $S_{1}(\mathbf{A})$ is an Abelian group. Note that $S_{1}(\mathbf{A})=S(\mathbf{A})$ in this case. Commutative automata form a q^{*}-variety as do commutative permutation automata. Examples of commutative permutation automata are the following.

Counters. A counter is an automaton $\mathbf{C}_{n}=([n],\{x\}, \delta)$ with $\delta(i, x) \equiv i+$ $+1 \bmod n$.

Counters with identity. These are the automata $\mathbf{C}_{n}^{1}=\left([n],\left\{x_{0}, x\right\}, \delta\right)$ with $\delta\left(i, x_{0}\right)=i, \delta(i, x) \equiv i+1 \bmod n$.

The automata \mathbf{Z}_{n}. We set $\mathbf{Z}_{n}=\left([n],\left\{x_{1}, \ldots, x_{n}\right\}, \delta\right)$ with $\delta\left(i, x_{j}\right) \equiv i+$ $+j \bmod n$.

The following result for which we give a simple proof is implicit in [6].
Theorem 2.1. Every q^{λ}-variety \mathcal{K} of commutative automata is a q^{*} -- variety.

Proof. We must show that $\mathcal{K}^{+} \subseteq \mathcal{K}$. This will be obvious once we have proved that if $\mathbf{A}=(A, X, \delta) \in \mathcal{K}$ and $x_{1}, x_{2} \in X$ then the automaton $\mathbf{A}^{\prime}=$
$=\left(A, X \cup\{y\}, \delta^{\prime}\right)$ is also in \mathcal{K}, where $y \notin X, \delta_{y}^{\prime}=\delta_{x_{1} x_{2}}$ and $\delta_{x}^{\prime}=\delta_{x}$ for all $x \in X$.

Suppose first that \mathbf{A}^{\prime} (and thus \mathbf{A} too) is generated by a single state a_{0}. Take the q^{λ}-product $\mathbf{B}=\mathbf{A} \times \mathbf{A}(X, \phi)$ with $\phi_{1}(x)=x, \phi_{2}(x)=\lambda$, all $x \in X$, and $\phi_{1}(y)=x_{1}, \phi_{2}(y)=x_{2}$. A straightforward computation proves that the map

$$
\left(\delta\left(a_{0}, u\right), \delta\left(a_{0}, v\right)\right) \rightarrow \delta^{\prime}\left(a_{0}, u v\right)
$$

where $u, v \in X^{*}$, is a homomorphism of \mathbf{B} onto \mathbf{A}^{\prime}, so that $\mathbf{A}^{\prime} \in \mathcal{K}$. If \mathbf{A}^{\prime} is not generated by a single state then let $\mathbf{A}_{1}^{\prime}, \ldots, \mathbf{A}_{k}^{\prime}(k \geqq 2)$ be all maximal singly generated subautomata of \mathbf{A}^{\prime}. The first part of the proof gives that the automata \mathbf{A}_{i}^{\prime} are in \mathcal{K}. Let \mathbf{C} be the disjoint sum of the \mathbf{A}_{i}^{\prime}. Since \mathcal{K} clearly contains the automaton $(\{0,1\},\{y\}, \bar{\delta})$ with $\bar{\delta}(i, y)=i, i=0,1$, it follows that \mathcal{K} is closed under disjoint sums. So we have $\mathbf{C} \in \mathcal{K}$. Since \mathbf{A}^{\prime} is a homomorphic image of \mathbf{C}, we obtain $\mathbf{A}^{\prime} \in \mathcal{K}$ as claimed.

The Krohn-Rhodes Decomposition Theorem, see [2], and the above result jointly give the following.

Corollary 2.2. For every integer $n \geqq 1$ we have $\mathbf{Z}_{n} \in \operatorname{HSP}_{\alpha_{0}}\left(\left\{\mathbf{C}_{p}^{1}: p\right.\right.$ is a prime divisor of $n\}$).

Besides commutative permutation automata, we shall make use of definite automata. An automaton $\mathbf{A}=(A, X, \delta)$ is called definite with degree $n \geqq 0$ if $\delta\left(a, x_{1} \ldots x_{n}\right)=\delta\left(b, x_{1} \ldots x_{n}\right)$ holds for every $a, b \in A$ and $x_{1}, \ldots, x_{n} \in$ $\in \bar{X}$. Further, an automaton is definite if it is definite with degree n for some n. The proof of the following result (stated in an other form) can be found in [2], p. 95 and p. 141. Recall the definition of \mathbf{D}_{0} from the Introduction.

Theorem 2.3. $\operatorname{HSP}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}\right\}\right)$ is exactly the class of all definite automa$t a$.

As shown in [9], even $\operatorname{ISP}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}\right\}\right)$ contains all the definite automata where \mathbf{I} denotes the formation of isomorphic images. The class of all definite automata is an α_{0}^{+}-variety.

Important examples of definite automata are the shiftregisters. Let X be a finite nonempty set. The shiftregister of degree $n \geqq 1$ over X is the automaton $\mathbf{R}_{n}(X)=\left(R_{n}(X), X, \delta\right)$ with $R_{n}(X)=\left\{x_{1} \ldots x_{n}: x_{1}, \ldots, x_{n} \in X\right\}$ and $\delta\left(x_{1} \ldots x_{n}, x\right)=x_{2} \ldots x_{n} x, x_{1} \ldots x_{n} \in R_{n}(X), x \in X$.

3. An auxiliary result

In this section we present a modified version of a construction used [4] and provide a lemma that will be our fundamental tool. But first some more notation.

Let X be a finite nonempty set and n a nonnegative integer. We denote by $X^{(n)}$ the set of all words $u=x_{1} \ldots x_{n} \in X^{*}, x_{1}, \ldots, x_{n} \in X$. Thus, $X^{(n)}$
is the set of all words $u \in X^{*}$ having length $\|u\|=n$. Let $u, v, w \in X^{*}$ with $w=u v$ and $\|u\|=n$. We write $u=\operatorname{pre}_{n} w$ and $v=w / n$.

Now let A, X and Y be finite nonempty sets, $m, n, k \geqq 1$ integers with $m \geqq n$, and let

$$
\begin{aligned}
& \varrho: Y^{(k)} \rightarrow X^{+}, \\
& \tau_{1}: Y^{(m)} \rightarrow X^{(m-n+1)} \cup \ldots \cup X^{(m)}, \\
& \tau_{2}: Y^{(m)} \rightarrow X^{(m+1)} \cup \ldots \cup X^{(m+n)}
\end{aligned}
$$

be mappings subject to the following two conditions:

$$
\begin{align*}
& m<\|\varrho(v)\|-k \leqq m+n, \text { for all } v \in Y^{(k)}, \tag{1}\\
& \left\|\tau_{1}(v)\right\| \equiv\left\|\tau_{2}(v)\right\| \bmod n, \text { for all } v \in Y^{(m)} . \tag{2}
\end{align*}
$$

To each such system we correspond an automaton $\mathbf{R}_{A, e, \tau_{1}, \tau_{2}}=(R, Y, \delta)$. Set $R=R_{1} \cup R_{2}$,

$$
\begin{gathered}
R_{1}=\left\{(a, v): a \in A, v \in Y^{*},\|v\| \leqq k\right\}, \\
R_{2}=\left\{(v, u): v \in Y^{+}, u \in X^{+},\|v\| \leqq m, m+1 \leqq\|v\|+\|u\| \leqq m+n\right\} .
\end{gathered}
$$

Define for each $y \in Y$,

$$
\delta((a, v), y)= \begin{cases}(a, v y) & \text { if }\|v\|<k \tag{i}\\ (y, \varrho(v) / k+1) & \text { if }\|v\|=k\end{cases}
$$

all $(a, v) \in R_{1}$,

$$
\delta((v, u), y)= \begin{cases}(v y, u / 1) & \text { if }\|v\|<m \tag{ii}\\ (y, w) & \text { if }\|v\|=m\end{cases}
$$

all $(v, u) \in R_{2}$, where $w=(u / 1) \tau_{1}(v)$ or $w=(u / 1) \tau_{2}(v)$ depending on whether or not $j-1+r \geqq n$ with $j, r \in[n]$ given by $j \equiv\|u\| \bmod n$ and $r \equiv\left\|\tau_{1}(v)\right\|-$ $-m \bmod n$. (Note that the second subcase never applies in (ii) above with $\left\|\tau_{2}(v)\right\|=m+n$. Thus, if $n=1$, the definition of $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}$ is independent of τ_{2}.)

Some computation is needed in order to check that our definition of $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}$ works properly. As regards (i) and the first subcase of (ii), this is obvious. For the second subcase of (ii) suppose $u \in X^{+}$with $1 \leqq\|u\| \leqq$ $\leqq n$, and let $j, r \in[n]$ be determined by $j \equiv\|u\| \bmod n$ and $r \equiv\left\|\tau_{1}(v)\right\|-$ $-m \bmod n$, respectively, which is to say that $\|u\|=j,\left\|\tau_{1}(v)\right\|=m-n+r$ and $\left\|\tau_{2}(v)\right\|=m+r$. Assume $j-1+r \geqq n$ and put $w=u / 1 \tau_{1}(v)$. We obtain $m=n+m-n \leqq j-1+r+m-n=j-1+m-n+r=\|u / 1\|+\left\|\tau_{1}(v)\right\|=\|w\|$ and $\|w\|=\|u / 1\|+\left\|\tau_{1}(v)\right\|=j-1+m-n+r=m+j+r-n-1 \leqq m+2 n-$ $-n-1<m+n$. Thus, $m \leqq\|w\|<m+n$, as was to be seen. Next let $j-1+$ $+r<n, w=u / 1 \tau_{2}(v)$. From $\left\|\tau_{2}(v)\right\|=m+r$ and $r \in[n]$ we obtain $m \leqq\|w\|$. On the other hand, $\|w\|=\|u / 1\|+\left\|\tau_{2}(v)\right\|=j-1+m+r=m+j-1+r<$ $<m+n$, proving $m \leqq\|w\|<m+n$.

Lemma 3.1. $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}} \in \operatorname{HSP}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}, \mathbf{C}_{n}^{1}\right\}\right)$.
Proof. We define an α_{0}-product

$$
\mathbf{B}=\left(B, Y, \delta^{\prime}\right)=\mathbf{Q} \times \mathbf{C}_{m} \times \mathbf{R}_{1} \times \mathbf{Z}_{n} \times \mathbf{R}_{2}(Y, \phi)
$$

where $\mathbf{Q}, \mathbf{R}_{1}$ and \mathbf{R}_{2} are definite automata, and show that $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}} \in$ $\in \operatorname{HS}(\{\mathbf{B}\})$. Thus the result follows by Corollary 2.2 and Theorem 2.3. The symbol * will be supposed not to be in $X * \cup Y *$. We define

$$
\begin{gathered}
\mathbf{Q}=\left(\left\{(a, v): a \in A, v \in Y^{*},\|v\| \leqq k\right\} \cup\{*\}, Y, \delta_{1}\right), \\
\delta_{1}((a, v), y)= \begin{cases}(a, v y) & \text { if }\|v\|<k, \\
* & \text { if }\|v\|=k,\end{cases} \\
\delta_{1}(*, y)=*,
\end{gathered}
$$

all $y \in Y, a \in A, v \in Y^{*}$ with $\|v\| \leqq k$;

$$
\begin{gathered}
\mathbf{R}_{1}=\mathbf{R}_{m}(Y), \\
\mathbf{R}_{2}=\left((X \cup\{*\})^{(m+n-1)},[m+n-1] \times\left(X \cup \cdots \cup X^{(m+n-1)}\right) \cup\{*\}, \delta_{2}\right), \\
\delta_{2}\left(z_{1} \ldots z_{m+n-1}, *\right)=z_{2} \ldots z_{m+n-1 *}^{*}, \\
\delta_{2}\left(z_{1} \ldots z_{m+n-1},\left(t, x_{1} \ldots x_{s}\right)\right)= \begin{cases}z_{2} \ldots z_{t} x_{1} \ldots x_{m+n-t} & \text { if } m+n-t \leq s, \\
z_{2} \ldots z_{t} x_{1} \ldots x_{s} * \ldots * & \text { if } m+n-t>s,\end{cases}
\end{gathered}
$$

where $z_{1}, \ldots, z_{m+n-1} \in X \cup\{*\}, t, s \in[m+n-1], x_{1}, \ldots, x_{s} \in X$. Notice that \mathbf{R}_{2} is definite of degree $m+n-1$, and \mathbf{Q} is definite of degree $k+1$. (\mathbf{Q} is even nilpotent.)

The feedback functions are defined as follows. Let $y \in Y, a \in A, v_{0} \in Y^{*}$, $\left\|v_{0}\right\| \leqq k, i \in[m], v \in Y^{(m)}$ and $j \in[n]$. We define
($\alpha) \quad \phi_{1}(y)=y$,
(β) $\quad \phi_{2}\left(\left(a, v_{0}\right), y\right)=x, \quad \phi_{2}(*, y)=x$,
$(\gamma) \quad \phi_{3}\left(\left(a, v_{0}\right), i, y\right)=y, \quad \phi_{3}(*, i, y)=y$,
(δ) $\quad \phi_{4}\left(\left(a, v_{0}\right), i, v, y\right)= \begin{cases}x_{t} & \text { where } t=\left\|\varrho\left(v_{0}\right)\right\|-(m+k) \text { if }\left\|v_{0}\right\|=k, \\ x_{n} & \text { if }\left\|v_{0}\right\|<k,\end{cases}$

$$
\phi_{4}(*, i, v, y)= \begin{cases}x_{r} & \text { where } r \in[n] \text { with }\left\|\tau_{1}(v)\right\|-m \equiv r \bmod n, \\ & \quad \text { if } i \equiv k \bmod m \\ x_{n} & \text { if } i \not \equiv k \bmod m,\end{cases}
$$

(η) $\quad \phi_{5}\left(\left(a, v_{0}\right), i, v, j, y\right)= \begin{cases}* & \text { if }\left\|v_{0}\right\|<k, \\ \left(1, \varrho\left(v_{0}\right) / k+1\right) & \text { if }\left\|v_{0}\right\|=k,\end{cases}$

$$
\phi_{5}(*, i, v, j, y)= \begin{cases}* & \text { if } i \not \equiv k \bmod m \\ (j, w) & \text { if } i \equiv k \bmod m)\end{cases}
$$

where $w=\tau_{1}(v)$ or $w=\tau_{2}(v)$ depending on whether or not $j-1+r \geqq n$ with $r \in[n]$ given by $r \equiv\left\|\tau_{1}(v)\right\|-m \bmod n$.

Set

$$
\begin{gathered}
B_{1}=\left\{\left(\left(a, v_{0}\right), i, v, n, * \ldots *\right): a \in A, v_{0} \in Y^{*},\left\|v_{0}\right\| \leqq k, i \in[m],\right. \\
\left.i \equiv\left\|v_{0}\right\| \bmod m, v \in Y^{(m)}\right\}, \\
B_{2}=\left\{(*, i, v, j, u * \ldots *): i \in[m], v \in Y^{(m)}, j \in[n], u \in X^{+},\right. \\
\nu(i, k)+\|u\|=m+j\},
\end{gathered}
$$

where, for each $r, s \geqq 0, \nu(r, s)=t$ if and only if $t \in[m]$ and $r-s \equiv t \bmod m$. It is obvious that $B_{1}, B_{2} \subseteq B$. Put $B^{\prime}=B_{1} \cup B_{2}$. We claim that $\mathbf{B}^{\prime}=$ $=\left(\boldsymbol{B}^{\prime}, Y^{\prime}, \delta^{\prime}\right)$ is a subautomaton of \mathbf{B} that can be mapped homomorphically onto $\mathbf{R}_{A, \ell, \tau_{1}, \tau_{2}}$.

Let $h: B^{\prime} \rightarrow R$ be the mapping given by

$$
h\left(\left(a, v_{0}\right), i, v, n, * \ldots *\right)=\left(a, v_{0}\right),
$$

all $\left(\left(a, v_{0}\right), i, v, n, * \ldots *\right) \in B_{1}$,

$$
h\left(*, i, v v_{0}, j, u * \ldots *\right)=\left(v_{0}, u\right),
$$

all $\left(*, i, v v_{0}, j, u * \ldots *\right) \in B_{2}$ with $\left\|v_{0}\right\|=\nu(i, k), u \in X^{+}$. Obviously, h maps B^{\prime} onto R. Let $b \in B^{\prime}$ and $y \in Y$. There are two cases.
(1) $b=\left(\left(a, v_{0}\right), i, v, n, * \ldots *\right) \in B_{1}$ so that $i \equiv\left\|v_{0}\right\| \bmod m$. Define $i^{\prime} \in$ $\in[m], i^{\prime} \equiv i+1 \bmod m$. Obviously, $i^{\prime} \equiv\left\|v_{0} y\right\| \bmod m$.
(1.1) $\left\|v_{0}\right\|<k$. Then $\delta^{\prime}(b, y)=\left(\left(a, v_{0} y\right), i^{\prime}, v / 1 y, n, * \ldots *\right)$. We see that $\delta^{\prime}(b, y) \in B_{1}$ and $h\left(\delta^{\prime}(b, y)\right)=\left(a, v_{0} y\right)=\delta\left(\left(a, v_{0}\right), y\right)=\delta(h(b), y)$.
(1.2) $\left\|v_{0}\right\|=k$. Put $t=\left\|\varrho\left(v_{0}\right)\right\|-(m+k)$. By our assumptions on ϱ, we have $t \in[n]$. Obviously, $\left\|\varrho\left(v_{0}\right)\right\|>k+1$ so that $\varrho\left(v_{0}\right) / k+1 \in X^{+}$. Since $i^{\prime} \equiv\left\|v_{0} y\right\| \bmod m$ and $\left\|v_{0}\right\|=k, \nu\left(i^{\prime}, k\right)=1$. We have $\nu\left(i^{\prime}, k\right)+\| \varrho\left(v_{0}\right) / k+$ $+1 \|=1+m+t-1=m+t$. Thus $\delta^{\prime}(b, y)=\left(*, i^{\prime}, v / 1 y, t, \varrho\left(v_{0}\right) / k+1 * \ldots *\right)$ is in B_{2}. Further, $h\left(\delta^{\prime}(b, y)\right)=\left(y, \varrho\left(v_{0}\right) / k+1\right)=\delta\left(\left(a, v_{0}\right), y\right)=\delta(h(b), y)$.
(2) $b=\left(*, i, v v_{0}, j, u * \ldots *\right) \in B_{2}$ with $\left\|v_{0}\right\|=\nu(i, k)$ and $u \in X^{+}$so that $\nu(i, k)+\|u\|=m+j$. Again let $i^{\prime} \in[m]$ with $i^{\prime} \equiv i+1 \bmod m$.
(2.1) $i \not \equiv k \bmod m$, i.e. $1 \leqq \nu(i, k)<m$. We see that $\|u\|>1,\|v\| \geqq$ $\geqq 1, \delta^{\prime}(b, y)=\left(*, i^{\prime}, v / 1 v_{0} y, j, u / 1 * \ldots *\right)$. Since $\nu\left(i^{\prime}, k\right)+\|u / 1\|=\nu(i, k)+$ $+1+\|u\|-1=\nu(i, k)+\|u\|=m+j$, it follows that $\delta^{\prime}(b, y) \in B_{2}$. Moreover, $h\left(\delta^{\prime}(b, y)\right)=\left(v_{0} y, u / 1\right)=\delta\left(\left(v_{0}, u\right), y\right)=\delta(h(b), y)$.
(2.2) $i \equiv k \bmod m$, i.e. $\nu(i, k)=m$. Obviously, $v=\lambda,\|u\|=j$. Define $r \in[n], r \equiv\left\|\tau_{1}(v)\right\|-m \bmod n, j^{\prime} \in[n], j+r \equiv j^{\prime} \bmod n$. We have $\left\|\tau_{1}(v)\right\|=$ $=m-n+r,\left\|\tau_{2}(v)\right\|=m+r$. Since $\nu(i, k)=m$, then $\nu\left(i^{\prime}, k\right)=1$.
(2.2.1) $j-1+r \geqq n . \quad$ Compute $\nu\left(i^{\prime}, k\right)+\left\|u / 1 \tau_{1}(v)\right\|=1+\|u\|-1+$ $+\left\|\tau_{1}(v)\right\|=j+m-n+r=m-n+(j+r)=m-n+\left(n+j^{\prime}\right)=m+j^{\prime}$. (The
use of $u / 1$ is legitimate because $\|u\|=j \in[n]$.) It follows that $\delta^{\prime}(b, y)=$ $=\left(*, i^{\prime}, v_{0} / 1 y, j^{\prime}, u / 1 \tau_{1}(v) * \ldots *\right) \in B_{2}$. Further, $h\left(\delta^{\prime}(b, y)\right)=\left(y, u / 1 \tau_{1}(v)\right)=$ $=\delta\left(\left(v_{0}, u\right), y\right)=\delta(h(b), y)$.
(2.2.2) $j-1+r<n$. We have $\nu\left(i^{\prime}, k\right)+\left\|u / 1 \tau_{2}(v)\right\|=1+\|u\|-1+$ $+\left\|\tau_{2}(v)\right\|=j+m+r=m+(j+r)=m+j^{\prime}$. Thus, $\delta(b, y)=\left(*, i^{\prime}, v_{0} / 1 y, j^{\prime}\right.$, $\left.u / 1 \tau_{2}(v) * \ldots *\right) \in B_{2}$, and $h\left(\delta^{\prime}(b, y)\right)=\left(y, u / 1 \tau_{2}(v)\right)=\delta\left(\left(v_{0}, u\right), y\right)=\delta(h(b), y)$.

The proof of Lemma 3.1 is complete.
As we have already noted, $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}$ does not depend on τ_{2} if $n=1$. This observation gives rise to the following definition.

Let $k, m \geqq 1$ and let A, X, Y, ϱ and $\tau=\tau_{1}$ be as in the definition of $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}$ when $n=1$, i.e.,

$$
\begin{aligned}
& \varrho: Y^{(k)} \rightarrow X^{(m+k+1)} \\
& \tau: Y^{(m)} \rightarrow X^{(m)}
\end{aligned}
$$

We define $\mathbf{R}_{A, \varrho, \tau}=(R, Y, \delta)$ with

$$
\begin{gathered}
R=R_{1} \cup R_{2}, \\
R_{1}=\left\{(a, v): a \in A, v \in Y^{*},\|v\| \leqq k\right\} \\
R_{2}=\left\{(v, u): v \in Y^{+}, u \in X^{+},\|v\|+\|u\|=m+1\right\}, \\
\delta((a, v), y)= \begin{cases}(a, v y) & \text { if }\|v\|<k, \\
(y, \varrho(v) / k+1) & \text { if }\|v\|=k,\end{cases}
\end{gathered}
$$

all $(a, v) \in R_{1}, y \in Y$,

$$
\delta((v, u), y)= \begin{cases}(v y, u / 1) & \text { if }\|v\|<m \\ (y, \tau(v)) & \text { if }\|v\|=m\end{cases}
$$

all $(v, u) \in R_{2}, y \in Y$.
Corollary 3.2. $\mathbf{R}_{A, \varrho, \tau} \in \mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}\right\}\right)$.
Proof. By Lemma 3.1, $\mathbf{R}_{A, \varrho, \tau} \in \mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}, \mathbf{C}_{n}^{1}\right\}\right)$. Since \mathbf{C}_{n}^{1} is trivial, we have $\mathbf{R}_{A, \varrho, \tau} \in \mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}\right\}\right)$.

4. The main result

In this section we prove the following result.
Theorem 4.1. Let \mathcal{K} be an α_{0}-variety of automata containing \mathbf{D}_{0} and all of the automata \mathbf{C}_{p}^{1} where p is any prime. Then \mathcal{K} is an α_{0}^{+}-variety.

Proof. It suffices to prove that $\mathcal{K}^{+} \subseteq \mathcal{K}$. Take an arbitrary automaton $\mathbf{A}=(A, X, \delta) \in \mathcal{K}$ and set $S=S(\mathbf{A})$. We claim that there exist integers m,
$n, k \geqq 1$ with $m \geqq n$ and mappings

$$
\begin{aligned}
\gamma & : S \cup \ldots \cup S^{(k)} \rightarrow X^{+} \\
\tau_{1} & : S^{(m)} \rightarrow X^{(m-n+1)} \cup \ldots \cup X^{(m)} \\
\tau_{2} & : S^{(m)} \rightarrow X^{(m+1)} \cup \ldots \cup X^{(m+n)}
\end{aligned}
$$

satisfying the following conditions:
(1) $\|\gamma(v)\| \geqq\|v\|$ for all $v \in S^{+},\|v\| \leqq k$,
(2) $\operatorname{pre}_{\|v\|} \gamma(v s)=\operatorname{pre}_{\|v\|} \gamma(v)$, for all $v \in S^{+}, s \in S$ with $\|v s\| \leqq k$,
(3) $m<\|\gamma(v)\|-k \leqq m+n$, for all $v \in S^{(k)}$,
(4) $\left\|\tau_{1}(v)\right\| \equiv\left\|\tau_{2}(v)\right\| \bmod n$, for all $v \in S^{(m)}$,
(5) $\bar{v}=\delta_{\gamma(v)}$, for all $v \in S^{(k)}$,
(6) $\bar{v}=\delta_{\tau_{1}(v)}=\delta_{\tau_{2}(v)}$, for all $v \in S^{(m)}$,
where, for any $u=s_{1} \ldots s_{i} \in S^{+}$with $s_{1}, \ldots, s_{i} \in S, \bar{u}$ denotes the product $s_{1} \cdots s_{i}$ in S. For later use we define $\bar{\lambda}=\delta_{\lambda}$, i.e. $\bar{\lambda}$ is the identity map $A \rightarrow A$.

Let $k=\operatorname{card}(S)$ and denote by E the set of all idempotents in S. Obviously, there exists an integer $n \geqq 1$ with $E \subseteq\left\{\delta_{u}: u \in X^{(n)}\right\}$. Let $m_{0} \geqq n$ be any integer with $S \subseteq\left\{\delta_{u}: u \in X^{\mp},\|u\| \leqq m_{0}\right\}$. To each $s \in S$ let us assign a fixed word $u(s) \in X^{+}$such that $s=\delta_{u(s)}$ and $\|u(s)\| \leqq m_{0}$. If $s=e \in E$ choose $u(e)$ with $\|u(e)\|=n$. Finally, let m be an integer with

$$
m \geqq \max \left\{k,\left(m_{0}-1\right) k+(k-2) n, 2 m_{0}+n\right\} .
$$

Denote by Z the collection of all words $v=s_{1} \ldots s_{i}\left(1 \leqq i \leqq k, s_{i} \in S\right)$ for which the following are valid:
(i) there is an $e \in E$ with $\bar{v} e=\bar{v}$,
(ii) $\bar{v}_{j} e \neq \bar{v}_{j}$ for all $v_{j}=s_{1} \ldots s_{j}$ with $1 \leqq j<i$ and $e \in E$. Since $k=$ $=\operatorname{card}(S)$, by Proposition III.9.1 in [2], for every $u \in S^{(k)}$ there is a $v \in Z$ such that v is a prefix of u. Obviously, this v is unique. To define the mapping γ, take an $s_{1} \ldots s_{k} \in S^{(k)}$ with $s_{1}, \ldots, s_{k} \in S$. There is a unique i ($1 \leqq i \leqq k$) with $s_{1} \ldots s_{i} \in Z$. Let e be an idempotent, fixed to $s_{1} \ldots s_{i} \in Z$, such that $\overline{s_{1} \ldots s_{i}} e=\overline{s_{1} \ldots s_{i}}$. Suppose first that $i<k$. Define

$$
\begin{gathered}
\gamma\left(s_{1}\right)=u\left(s_{1}\right), \ldots, \gamma\left(s_{1} \ldots s_{i-1}\right)=u\left(s_{1}\right) \ldots u\left(s_{i-1}\right), \\
\gamma\left(s_{1} \ldots s_{i}\right)=u\left(s_{1}\right) \ldots u\left(s_{i}\right) u(e)^{k-1} \\
\gamma\left(s_{1} \ldots s_{i+1}\right)=u\left(s_{1}\right) \ldots u\left(s_{i}\right) u(e)^{k-1} u\left(s_{i+1}\right), \ldots \\
\gamma\left(s_{1} \ldots s_{k-1}\right)=u\left(s_{1}\right) \ldots u\left(s_{i}\right) u(e)^{k-1} u\left(s_{i+1}\right) \ldots u\left(s_{k-1}\right),
\end{gathered}
$$

finally,

$$
\gamma\left(s_{1} \ldots s_{k}\right)=u\left(s_{1}\right) \ldots u\left(s_{i}\right) u(e)^{k-1+t} u\left(s_{i+1}\right) \ldots u\left(s_{k}\right)
$$

where $t \geqq 0$ is the integer with

$$
m+k<\left\|u\left(s_{1}\right)\right\|+\ldots+\left\|u\left(s_{k}\right)\right\|+(k-1) n+t n \leqq m+k+n .
$$

Since $m_{0} k+(k-1) m \leqq m+k+n$, there exists such a t. Next suppose $i=k$. Define

$$
\begin{gathered}
\gamma\left(s_{1}\right)=u\left(s_{1}\right), \ldots, \gamma\left(s_{1} \ldots s_{k-1}\right)=u\left(s_{1}\right) \ldots u\left(s_{k-1}\right) \\
\gamma\left(s_{1} \ldots s_{k}\right)=u\left(s_{1}\right) \ldots u\left(s_{k}\right) u(e)^{t}
\end{gathered}
$$

where $t \geqq 0$ is determined by the condition

$$
m+k<\left\|u\left(s_{1}\right)\right\|+\ldots+\left\|u\left(s_{k}\right)\right\|+t n \leqq m+k+n .
$$

It is now obvious that γ is well-defined (use the fact that Z is prefix free) and satisfies (1), (2), (3) and (5). Indeed, $\bar{v}=\delta_{\gamma(v)}$ for all $v \in S \cup \ldots \cup S^{(k)}$. For notational convenience, we extend the domain of definition of γ to include the empty word by setting $\gamma(\lambda)=\lambda$.

As regards τ_{1} and τ_{2}, recall that by $m \geqq k, S^{m}=S E S$ (Proposition III.9.2 in [2]). Let $v \in S^{(m)}$. There are $s_{1}, s_{2} \in S$ and $e \in E$ with $\bar{v}=s_{1} e s_{2}$. Since $2 m_{0}+n \leqq m$, there is a (unique) $t \geqq 1$ with

$$
m-n<\left\|u\left(s_{1}\right)\right\|+t n+\left\|u\left(s_{2}\right)\right\| \leqq m .
$$

Set $\tau_{1}(v)=u\left(s_{1}\right) u(e)^{t} u\left(s_{2}\right), \tau_{2}(v)=u\left(s_{1}\right) u(e)^{t+1} u\left(s_{2}\right)$. We have $\left\|\tau_{1}(v)\right\| \equiv$ $\equiv\left\|\tau_{2}(v)\right\| \bmod n$ and $\bar{v}=\delta_{\tau_{1}(v)}=\delta_{\tau_{2}(v)}$.

Define $\varrho: S^{(k)} \rightarrow X^{+}$by $\varrho(v)=\gamma(v), v \in S^{(k)}$. To complete the proof we show that \mathbf{A}^{+}is in $\mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}, \mathbf{A}\right\}\right)$. Thus the result follows by Lemma 3.1. Define the α_{0}-product

$$
\mathbf{B}=\left(B, S, \delta^{\prime}\right)=\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}} \times \mathbf{A}(S, \phi)
$$

by

$$
\phi_{2}((a, v), s)= \begin{cases}\phi_{1}(s)=s, \\ \operatorname{pre}_{1} \gamma(v s) /\|v\| & \text { if }\|v\|<k, \\ \operatorname{pre}_{1} \gamma(v) /\|v\| & \text { if }\|v\|=k,\end{cases}
$$

for all $s \in S, a \in A, v \in S^{*}$ with $\|v\| \leqq k$,

$$
\phi_{2}((v, u), s)=\operatorname{pre}_{1} u
$$

for all $s \in S, v \in S^{+}, u \in X^{+}$with $\|v\| \leqq m, m+1 \leqq\|v\|+\|u\| \leqq m+n$.
Set $B^{\prime}=B_{1} \cup B_{2}$, where

$$
\begin{gathered}
B_{1}=\left\{((a, v), b): a, b \in A, v \in S^{*},\|v\| \leqq k, b=\delta\left(a, \operatorname{pre}_{\|v\|} \gamma(v)\right)\right\} \\
\boldsymbol{B}_{2}=\left\{((v, u), a): a \in A, v \in S^{+}, u \in X^{+},\|v\| \leqq m, m+1 \leqq\|v\|+\|u\| \leqq m+n\right\} .
\end{gathered}
$$

Clearly, $B^{\prime} \subseteq B$. Let $\mathbf{B}^{\prime}=\left(B^{\prime}, S, \delta^{\prime}\right)$, and define

$$
h((a, v), b)=\bar{v}(a)
$$

for all $((a, v), b) \in B_{1}$,

$$
h((v, u), a)=\bar{v}(\delta(a, u))
$$

for all $((v, u), a) \in B_{2}$.
We are going to show that \mathbf{B}^{\prime} is a subautomaton of \mathbf{B} and h is a homomorphism of \mathbf{B}^{\prime} onto \mathbf{A}^{+}. It is clear that h maps B^{\prime} onto A : for any $a \in A$, we have $((a, \lambda), a) \in B^{\prime}$ and $h((a, \lambda), a)=a$. Let $c \in B^{\prime}$ and $s \in S$. We distinguish four cases according to the definition of the transition in $\mathbf{R}_{A, \varrho, \tau_{1}, \tau_{2}}$.

Case 1: $c=((a, v), b) \in B_{1}$ with $\|v\|<k$. We have $b=\delta\left(a, \operatorname{pre}_{\|v\|} \gamma(v)\right)$ and

$$
\begin{gathered}
\delta^{\prime}(c, s)=\left((a, v s), \delta\left(b, \operatorname{pre}_{1} \gamma(v s) /\|v\|\right)\right)= \\
=\left((a, v s), \delta\left(a,\left(\operatorname{pre}_{\|v\|} \gamma(v)\right)\left(\operatorname{pre}_{1} \gamma(v s) /\|v\|\right)\right)\right)= \\
=\left((a, v s), \delta\left(a,\left(\operatorname{pre}_{\|v\|} \gamma(v s)\right)\left(\operatorname{pre}_{1} \gamma(v s) /\|v\|\right)\right)\right)= \\
=\left((a, v s), \delta\left(a, \operatorname{pre}_{\|v s\|} \gamma(v s)\right)\right) \in B_{1} .
\end{gathered}
$$

Further, $h\left(\delta^{\prime}(c, s)\right)=\overline{v s}(a)=\bar{s}(\bar{v}(a))=\bar{s}(h(c))=\delta^{+}(h(c), s)$.
Case 2: $c=((a, v), b) \in B_{1}$ with $\|v\|=k$. Again, $b=\delta\left(a, \operatorname{pre}_{\|v\|} \gamma(v)\right)=$ $=\delta\left(a, \operatorname{pre}_{k} \varrho(v)\right)$. We have

$$
\begin{gathered}
\delta^{\prime}(c, s)=\left((s, \varrho(v) / k+1), \delta\left(b, \operatorname{pre}_{1} \gamma(v) /\|v\|\right)\right)= \\
=\left((s, \varrho(v) / k+1), \delta\left(b, \operatorname{pre}_{1} \varrho(v) / k\right)\right)= \\
=\left((s, \varrho(v) / k+1), \delta\left(a,\left(\operatorname{pre}_{k} \varrho(v)\right)\left(\operatorname{pre}_{1} \varrho(v) / k\right)\right)\right)= \\
=\left((s, \varrho(v) / k+1), \delta\left(a, \operatorname{pre}_{k+1} \varrho(v)\right)\right) \in B_{2} .
\end{gathered}
$$

Moreover, $\quad h\left(\delta^{\prime}(c, s)\right)=\bar{s}\left(\delta\left(a,\left(\operatorname{pre}_{k+1} \varrho(v)\right)(\varrho(v) / k+1)\right)\right)=\bar{s}(\delta(a, \varrho(v))=$ $=\bar{s}(\bar{v}(a))=\bar{s}(h(c))=\delta^{+}(h(c), s)$.

Case 3: $c=((v, u), a) \in B_{2}$ with $\|v\|<m$. We have

$$
\delta^{\prime}(c, s)=\left((v s, u / 1), \delta\left(a, \operatorname{pre}_{1} u\right)\right) \in B_{2}
$$

But then $h\left(\delta^{\prime}(c, s)\right)=\overline{v s}\left(\delta\left(a,\left(\operatorname{pre}_{1} u\right)(u / 1)\right)\right)=\overline{v s}(\delta(a, u))=\bar{s}(\bar{v}(\delta(a, u)))=$ $=\bar{s}(h(c))=\delta^{+}(h(c), s)$.

Case 4: $c=((v, u), a) \in B_{2}$ with $\|v\|=m$. Now

$$
\delta^{\prime}(c, s)=\left(\left(s, u / 1 \tau_{i}(v)\right), \delta\left(a, \operatorname{pre}_{1} u\right)\right) \in B_{2} \text { for } i=1 \text { or } i=2
$$

We obtain $h\left(\delta^{\prime}(c, s)\right)=\bar{s}\left(\delta\left(a,\left(\operatorname{pre}_{1} u\right)\left(u / 1 \tau_{i}(v)\right)\right)\right)=\bar{s}\left(\delta\left(a, u \tau_{i}(v)\right)\right)=$ $=\bar{s}(\bar{v}(\delta(a, u)))=\bar{s}(h(c))=\delta^{+}(h(c), s)$.

The proof of Theorem 4.1 is complete.
Let us denote by \mathbf{A}_{0} the automaton \mathbf{D}_{0}^{λ} which is essentially the automaton \mathbf{D}_{0}^{*}. Thus, \mathbf{A}_{0} is the identity-reset automaton that plays fundamental role in the Krohn-Rhodes Decomposition Theorem, cf. [2].

Corollary 4.2. Every α_{0}-variety containing \mathbf{A}_{0} and all the automata \mathbf{C}_{p}^{1} where p is any prime is an α_{0}^{*}-variety.

Proof. We know that every such α_{0}-variety \mathcal{K} is an α_{0}^{+}-variety. To see that \mathcal{K} is an α_{0}^{*}-variety, by Proposition 1.3 , it suffices to show that $\mathbf{T}(\mathcal{K})$ is generated by transformation monoids. However, this follows from the Krohn-Rhodes Decomposition Theorem.

We note that if $n=1$ in the proof of Theorem 4.1 then, by Corollary 3.2 , the counters suffice instead of the counters with identity. The situation $n=1$ can always be achieved if \mathbf{A} has an input sign inducing the identity state transformation. On the other hand, the integer m can always be taken to be a power of a fixed prime p. These observations lead to the following result proved in [5] by using a much simpler argument:

Theorem 4.3. Every α_{0}^{λ}-variety containing \mathbf{A}_{0} and an automaton \mathbf{C}_{p}^{1} for a prime number p is an α_{0}^{*}-variety.

Note that an α_{0}^{λ}-variety \mathcal{K} contains \mathbf{A}_{0} if and only if it contains \mathbf{D}_{0}, and $\mathbf{C}_{p}^{1} \in \mathcal{K}$ if and only if $\mathbf{C}_{p} \in \mathcal{K}$.

Let us denote by $\mathcal{K}_{l s}$ the α_{0}-variety generated by the automata \mathbf{D}_{0} and \mathbf{C}_{p}^{1} for all prime numbers p, i.e. $\mathcal{K}_{l_{s}}=\mathbf{H S P} \mathbf{\alpha}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{p}^{1}: p\right.\right.$ is a prime $\left.\}\right)$. Moreover, let $\mathcal{K}_{s}=\mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{A}_{0}, \mathbf{C}_{p}^{1}: p\right.\right.$ is a prime $\left.\}\right)$. Now, Theorem 4.1 can be rephrased as follows: Every α_{0}-variety containing $\mathcal{K}_{l s}$ is an α_{0}^{+}-variety. Similarly, Corollary 4.2 says that every α_{0}-variety containing \mathcal{K}_{s} is an α_{0}^{*}-variety. According to results proved in $[10,11], \mathcal{K}_{l s}$ can be called the class of all locally solvable automata, i.e. the class of all automata \mathbf{A} such that $e S(\mathbf{A}) e$ is a solvable group for each idempotent e in $S(\mathbf{A})$. The Krohn-Rhodes Decomposition Theorem implies that \mathcal{K}_{s} consists of all automata \mathbf{A} such that every subgroup of $S(\mathbf{A})$ is solvable. The latter automata can be called solvable, explaining the notation \mathcal{K}_{s}.

Now let \mathscr{L} be the lattice of all α_{0}-varieties \mathcal{K} with $\mathcal{K}_{l s} \subseteq \mathcal{K}$ and \mathscr{L}_{1} the lattice of all α_{0}-varieties containing \mathcal{K}_{s}. Denote by \mathscr{L}^{\prime} the lattice of those closed classes of transformation semigroups containing $\mathbf{T}\left(\mathcal{K}_{l s}\right)$ and by \mathscr{L}_{1}^{\prime} the lattice of closed classes containing $\mathbf{T}\left(\mathscr{L}_{1}\right)$. Each member of \mathscr{L}_{1}^{\prime} is generated by transformation monoids.

Corollary 4.4. \mathscr{L} is isomorphic to \mathscr{L}^{\prime} and \mathscr{L}_{1} is isomorphic to \mathscr{L}_{1}^{\prime} under the correspondence $\mathcal{K} \mapsto \mathbf{T}(\mathcal{K})$.

Given a prime number p, the class

$$
\mathcal{K}_{p}=\mathbf{H S P}_{\alpha_{0}}^{\lambda}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{p}\right\}\right)=\mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{A}_{0}, \mathbf{C}_{p}^{1}\right\}\right)
$$

consists of those automata \mathbf{A} such that each subgroup of $S(\mathbf{A})$ is a p-group. This observation is again a consequence of the Krohn-Rhodes Decomposition Theorem. By Theorem 4.3 , every α_{0}^{λ}-variety containing the class \mathcal{K}_{p} for some prime number is an α_{0}^{*}-variety, and a bijective correspondence as in Corollary 4.4 can be established. By the Krohn-Rhodes Decomposition Theorem, every such α_{0}^{*}-variety \mathcal{K} is uniquely described by those simple groups G for which the automaton obtained by letting G act on itself belongs to \mathcal{K}.

Comparing Theorems 4.1 and 4.3 , it can be asked if each of the automata \mathbf{C}_{p}^{1} is strictly needed in Theorem 4.1. Below we give two examples showing that none of them can be omitted.

Example 4.5. Let Q be any set of prime numbers and define \mathcal{K}_{0} to be the class of all automata $\mathbf{A}=(A, X, \delta)$ such that for each $u \in X^{+}$, the length of the period of the subsemigroup of $S(\mathbf{A})$ generated by δ_{u} is not divisible by any prime $q \in Q$. Thus $\mathbf{A} \in \mathcal{K}_{0}$ if and only if no subgroup of $S(\mathbf{A})$ has order a multiple of a prime $q \in Q$. Let \mathcal{K}_{1} be the class of all counters and $\mathcal{K}=\mathbf{H S P}_{\alpha_{0}}\left(\mathcal{K}_{0} \cup \mathcal{K}_{1}\right)$, so that \mathcal{K} is an α_{0}-variety. \mathcal{K} contains the automaton \mathbf{A}_{0} and thus \mathcal{K} contains \mathbf{D}_{0} and all aperiodic automata. Moreover, for every prime p we have $\mathbf{C}_{p}^{1} \in \mathcal{K}$ if and only if $p \notin Q$. On the other hand, $\mathbf{C}_{p}^{1} \in \operatorname{HSP}_{\alpha_{0}}^{+}$ $+\left(\mathcal{K}_{0} \cup \mathcal{K}_{1}\right)$ for all prime numbers p. Thus \mathcal{K} is an α_{0}^{+}-variety if and only if Q is empty.

Example 4.6. Again let Q be a set of primes. Define \mathcal{K} to be the class of those automata $\mathbf{A}=(A, X, \delta)$ satisfying the following property: If the period of the subsemigroup generated by δ_{u} in $S(\mathbf{A})$ is divisible by a prime $q \in Q$ then $\|u\|$ too is divisible by some prime number in Q. It can be seen that $\mathbf{C}_{p}^{1} \in \mathcal{K}$ whenever p is a prime not in Q, but $\mathbf{C}_{q}^{1} \notin \mathcal{K}$ for all $q \in Q$. Further, \mathcal{K} contains all aperiodic automata. On the other hand, $\operatorname{HSP}_{\alpha_{0}}^{+}(\mathcal{K})$ is the class of all automata whenever there is a prime not in Q. Thus, \mathcal{K} is an α_{0}^{+}-variety if and only if Q is empty.

5. Some remarks

The construction that we used in the proof of Theorem 4.1 can be further generalized to some extent. A few possible extensions are given below.

Let $\mathbf{A}=(A, X, \delta)$ and $\mathbf{B}=\left(B, Y, \delta^{\prime}\right)$ be automata. We write $\mathbf{B} \mid \mathbf{A}$ if there exist $C \subseteq A, h: C \rightarrow B$ and $\gamma^{\prime}: Y \rightarrow X^{+}$such that
(1) \bar{h} is onto,
(2) $\delta\left(c, \gamma^{\prime}(y)\right) \in C, h\left(\delta\left(c, \gamma^{\prime}(y)\right)\right)=\delta^{\prime}(h(c), y)$, for all $a \in C$ and $y \in Y$. (Note that this just means that $(B, S(\mathbf{B}))$ is covered by $(A, S(\mathbf{A})$), see [2].)

Now let $m \geqq n$ be positive integers. We shall write $\left.\mathbf{B}\right|^{(m, n)} \mathbf{A}$ if and only if, there exist $k \geqq 1, C \subseteq A$, and mappings

$$
\begin{aligned}
& h: C \rightarrow B, \\
& \gamma: Y \cup \cdots \cup Y^{(k)} \rightarrow X^{+}, \\
& \tau_{1}: Y^{(m)} \rightarrow X^{(m-n+1)} \cup \cdots \cup X^{(m)}, \\
& \tau_{2}: Y^{(m)} \rightarrow X^{(m+1)} \cup \cdots \cup X^{(m+n)}
\end{aligned}
$$

such that the following hold:
(1) h is onto,
(2) $\|\gamma(v)\| \geqq\|v\|$, for all $v \in Y^{+},\|v\| \leqq k$,
(3) $\operatorname{pre}_{\|v\|} \|^{\gamma}(v y)=\operatorname{pre}_{\|v\|} \gamma(v)$, for all $v \in Y^{*}, y \in Y$ with $\|v y\| \leqq k$,
(4) $m<\|\gamma(v)\|-k \leqq m+n$, for all $v \in Y^{(k)}$,
(5) $\left\|\tau_{1}(v)\right\| \equiv\left\|\tau_{2}(v)\right\| \bmod n$, for all $c \in C, v \in Y^{(k)}$,
(6) $\delta(c, \gamma(v)) \in C, h(\delta(c, \gamma(v)))=\delta^{\prime}(h(c), v)$, for all $c \in C, v \in Y^{(k)}$,
(7) $\delta\left(c, \tau_{i}(v)\right) \in C, h\left(\delta\left(c, \tau_{i}(v)\right)\right)=\delta^{\prime}\left(h(c), \tau_{i}(v)\right)$, for all $c \in C, v \in Y^{(m)}$ and $i=1,2$.

Similarly, we write $\left.\mathbf{B}\right|^{(m)} \mathbf{A}$ if the above conditions, except for (5) and (7) when $i=2$, hold with $n=1$, for some k, C, h, γ and $\tau=\tau_{1}$.

It can be seen that $\mathbf{B} \mid \mathbf{A}$ implies $\left.\mathbf{B}\right|^{(m, n)} \mathbf{A}$ for some m and n. Namely, n can be any positive integer with $E \subseteq\left\{\delta_{u}:\|u\|=n\right\}$, where E is the set of all idempotents in $S(\mathbf{A})$. Another choice can be the following. Suppose $\mathbf{B} \mid \mathbf{A}$ via C, h and γ^{\prime}. We can extend γ^{\prime} to a morphism $Y^{+} \rightarrow X^{+}$. Now, for every idempotent $e \in S(\mathbf{B})$, choose a word $v(e) \in Y^{+}$induring e. Then let $u(e)=\gamma^{\prime}(v(e))$, and $n=$ l.c.m. $\{\|u(e)\|: e \in S(\mathbf{B})$ is an idempotent $\}$. If in either case we have $n=1$, then $\left.\mathbf{B}\right|^{(m)} \mathbf{A}$ for some m.

Proposition 5.1. If $\left.\mathbf{B}\right|^{(m, n)} \mathbf{A}$ then \mathbf{B} is in $\mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}, \mathbf{C}_{n}^{1}, \mathbf{A}\right\}\right)$. If $\left.\mathbf{B}\right|^{(m)} \mathbf{A}$ then \mathbf{B} is in $\mathbf{H S P}_{\alpha_{0}}\left(\left\{\mathbf{D}_{0}, \mathbf{C}_{m}, \mathbf{A}\right\}\right)$.

The proof carries over with a slight modification of the argument applied in proving Theorem 4.1. If $\left.\mathbf{B}\right|^{(m)} \mathbf{A}$ is assumed, one uses Corollary 3.2.

References

[1] P. Dömösi, On cascade products of standard automata, Automata, Languages and Mathematical Systems, Proc. conf., Salgótarján, 1984, No. DM 84-2, Karl Marx Univ. Economics (Budapest, 1984), 37-45.
[2] S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press (LondonNew York, 1976).
[3] Z. Ésik, Homomorphically complete classes of automata with respect to the α_{2}-product, Acta Sci. Math. (Szeged), 48 (1985), 135-141.
[4] Z. Ésik and P. Dömösi, Complete classes of automata for the α_{0}-product, Theoret. Comput. Sci., 47 (1986), 1-14.
[5] Z. Ésik and J. Virágh, On products of automata with identity, Acta Cybernet., 7 (1986), 299-311.
[6] F. Gécseg, Composition of automata, Automata, Languages and Programming, 2nd Colloq., Saarbrücken, 1974, Lecture Notes in Computer Science, SpringerVerlag, Berlin-Hiedelberg-New York-Tokyo, 14 (1974), 351-363.
[7] F. Gécseg, On products of abstract automata, Acta Sci. Math. (Szeged), 38 (1976), 21-43.
[8] J. Hartmanis, Loop-free structure of sequential machines, Information and Control, 5 (1962), 25-43.
[9] B. Imreh, On finite definite automata, Acta Cybernet., 7 (1984), 61-65.
[10] H. Straubing, Finite semigroup varieties of the form $V * D$, J. Pure and Appl. Alg., 36 (1985), 53-94.
[11] D. Therien and A. Weiss, Graph congruences and wreath products, J. Pure and Appl. Alg., 36 (1985), 205-215.
[12] H. B. Zeiger, Cascade synthesis of finite-state machines, Information and Control, 10 (1967), 419-433.
(Received January 18, 1988)

[^0]
ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ ТЕОРИИ ПОЛИНОМИАЛЬНЫХ ОПЕРАТОРОВ

Д. Л. БЕРМАН (Ленинград)

1. Пусть n и m заданные натуральные числа и C - пространство 2π-периодических непрерывных функций $f(x)$ с нормой $\|f(x)\|=$ $=\max |f(x)|$. Через Π_{n} обозначим множество всех тригонометрических полиномов порядка не выше n. Пусть Ω некоторое множество линейных операторов из C в C, обладаюших тем свойством, что если $A \in \Omega$ и $f \in \Pi_{n}$, то $A(f, x)=f(x)$. Пусть $E_{n}(f)$ - наилучшее приближение функции $f(x)$ с помощью полиномов из Π_{n}. Тогда

$$
\begin{equation*}
\|A(f, x)-f(x)\| \leqq(1+\|A\|) E_{n}(f) \tag{*}
\end{equation*}
$$

Следовательно, для того чтобы погрешность $\|A(f, x)-f(x)\|$ была наименьшей нужно, чтобы норма оператора A была минимальна. Стало быть, возникает вопрос о вычислении $\varrho=\inf _{A \in \Omega}\|A\|$ и о нахождении оператора $A \in \Omega$ для которого $\|A\|=\varrho$. Обозначим через L множество всех суммируемых 2π-периодических функций. Введем линейное нормипованное функциональное пространство E, обладающее свойствами: 1) элементы E суть функции из L; 2) если $f \in E$, то смещенная функция $f_{t}(x)=f(x+t)$ при любом $-\infty<t<$ $<\infty$ также из E, причем $\left\|f_{t}\right\| \leqq\|f\|$; 3) E содержит множество всех тригонометрических полиномов. Важнейшим частным случаем пространства E является пространство C. Через $\Omega_{n, n+m}(E)$ обозначим множество всех линейных операторов $U_{n, n+m}(f, x)$ из E в E, обладающих следующими свойствами: 1) для любой $f \in E U_{n, n+m}(f, x) \in$ $\in \Pi_{n+m}$; 2) если $f \in \Pi_{n}$, то $U_{n, n+m}(f, x)=f(x)$. Важнейшей операцией вида $U_{n, n+m}(f, x)$ является частная сумма Валле-Пуссена

$$
\begin{equation*}
\sigma_{n, n+m}(f, x)=\frac{1}{m+1} \sum_{k=n}^{n+m} S_{k}(f, x), \tag{1}
\end{equation*}
$$

где $S_{k}(f, x)$ - частная сумма порядка k ряда Фурье функции $f(x)$. К операциям вида $U_{n, n+m}(f, x)$ относятся также известные интерполяционные процессы С. Н. Бернштейна [1]. Операторы из [2] также тиша $U_{n, n+m}(f, x)$. Положим $\varrho_{n, n+m}=\inf _{U_{n, n+m} \in \Omega_{n, n+m}}\left\|U_{n, n+m}\right\|$. Пусть $\bar{U} \in \Omega_{n, n+m}$. Будем говорить, что оператор \bar{U} экстремальный в классе $\Omega_{n, n+m}$, если $\varrho_{n, n+m}=\|\bar{U}\|$. Возникает естественный

вопрос о нахождении в множестве операторов $\Omega_{n, n+m}(E)$ оператора с наименьшей нормой и о вычислении $\varrho_{n, n+m}(E)$. Эта задача была поставлена в [3], [4]. Видимо при произвольных натуральных n и m её трудно решить. Вместе с тем в статье указываются частные случаи, когда её решения весьма простые. Это когда $m=$ $=n-1$ или $m=2 n-1$, где n - произвольное натуральное число. Класс операторов $\Omega_{n, n+m}(E)$ допускает следующее обобщение. Обозначим через $\Omega_{n, n+m}^{(r)}$ множество всевозможных линейных операторов $U_{n, n+m}(f, x)$ из E в E, обладающих свойствами: 1) для любой $\left.f \in E U_{n, n+m}(f, x) \in \Pi_{n+m} ; 2\right)$ если $f \in \Pi_{n}$, то $U_{n, n+m}(f, x)=$ $=f^{(r)}(x)$. При этом $f^{(r)}(x)$ - производная порядка r от $f(x)$. Положим $\varrho_{n, n+m}^{(r)}(E)=\inf _{U_{n, n+m} \in \Omega_{n, n+m}^{(r)}(E)}\left\|U_{n, n+m}\right\|$. Возникает вопрос о нахождении в множестве $\Omega_{n, n+m}^{(r)}$ экстремального оператора и о вычислении $\varrho_{n, n+m}^{(r)}$. Эта задача также была поставлена в [3], [[4]. Она там была решена для $r=1$ и $m=n-1$. В настоящей статье формулируется полное её решение для любого натурального r и $m=n-1$. При этом n - любое натуральное число. Доказательство упомянутого утверждения находится в [8].
2. Рассмотрим сперва случай, когда $m=2 n-1$, где n - любое натуральное число. Обозначим через $\phi_{n}(t)$ ядро Фейера. Справедлива

Teopema 1. При любом n оператор

$$
\begin{equation*}
A(f, x)=\int_{0}^{2 \pi} f(x+t) \cos n t \phi_{2 n}(t) d t, \quad \phi_{n}(t)=\frac{1}{2 \pi n}\left(\frac{\sin \frac{n t}{2}}{\sin \frac{t}{2}}\right)^{2} \tag{2}
\end{equation*}
$$

является экстремальным в классе $\Omega_{n, 3 n-1}(C)$. При этом $\varrho_{n, 3 n-1}=\frac{4}{\pi}$.
Для доказательства этой теоремы нужны следующие теоремы из [4].

Teopema 2. Среди всех линейжых операторов из $\Omega_{n, n+m}(C)$ операmop

$$
\begin{gather*}
\bar{U}=\bar{U}_{n, n+m}(f, x)=\frac{1}{\pi} \int_{0}^{2 \pi} f(x+t)\left[D_{n}(t)+\sum_{j=1}^{m} \tilde{\alpha}_{j} \cos (n+j) t\right] d t \tag{3}\\
D_{n}(t)=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
\end{gather*}
$$

где числа $\left\{\tilde{\alpha}_{j}\right\}_{j=1}^{m}$ определяются из условия минимума интеграла

$$
Y=Y\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)=\int_{0}^{\pi}\left|D_{n}(t)+\sum_{j=1}^{m} \alpha_{j} \cos (n+j) t\right| d t
$$

обладает наименьшей нормой. При этом

$$
\varrho_{n, n+m}(C)=\frac{2}{\pi} \int_{0}^{\pi}\left|D_{n}(t)+\sum_{j=1}^{m} \tilde{\alpha}_{j} \cos (n+j) t\right| d t .
$$

Если воспользоваться известным фактами теории наилучших приближений в метрике L [5], то теорема 2 можно сформулировать в следующей эквивалентной форме.

TEOPEMA 3. Для того чтобы оператор (3) обладал наименьшей нормой в классе операторов $\Omega_{n, n+m}(C)$ необходимо и достаточно, чтобы числа $\left\{\tilde{\alpha}_{j}\right\}_{j=1}^{m}$ из формул (3) удовлетворяли условиям:
(4) $\int_{0}^{\pi} \cos (n+i) t \operatorname{sign}\left[D_{n}(t)+\sum_{j=1}^{m} \tilde{\alpha}_{j} \cos (n+j) t\right] d t=0, \quad i=1,2, \ldots, m$.

Теперь можно перейти к доказательству теоремы 1. Докажем, что частнал сумма Валле-Пуссена $\sigma_{n, 3 n-1}(f, x)$ совпадает с оператором (2) и является экстремальным оператором в классе $\Omega_{n, 3 n-1}(C)$. Из (1) видно, что $\sigma_{n, 3 n-1} \in{ }^{\prime} \Omega_{n, 3 n-1}$. Хорошо известно что

$$
\begin{equation*}
\sigma_{n, n+m}=\int_{0}^{2 \pi} f(x+t) V_{n, m}(t) d t \tag{5}
\end{equation*}
$$

где

$$
V_{n, m}(t)=\frac{1}{2 \pi(m+1)} \sin \left(n+\frac{m+1}{2}\right) t \sin \frac{m+1}{2} t \sin ^{-2} \frac{t}{2} .
$$

Поәтому при $m=2 n-1$ получим, что

$$
\sigma_{n, 3 n-1}(f, x)=\frac{1}{4 \pi n} \int_{0}^{2 \pi} f(x+t) \sin 2 n t \sin n t \sin ^{-2} \frac{t}{2} d t
$$

или

$$
\sigma_{n, 3 n-1}(f, x)=\frac{1}{2 \pi n} \int_{0}^{2 \pi} f(x+t) \cos n t \sin ^{2} n t \sin ^{-2} \frac{t}{2} d t
$$

Итак, $\sigma_{n, 3 n-1}$ совпадает с оператором (2). Так как $\phi_{n}(t) \geqq 0, t \in$ $\in(-\infty, \infty)$, то для оператора (2) равенства (4) принимают вид:

$$
\begin{equation*}
\int_{0}^{\pi} \cos (n+j) t \operatorname{sign} \cos n t d t=0, \quad 1 \leqq j \leqq 2 n-1 . \tag{6}
\end{equation*}
$$

Известно [5], что

$$
\operatorname{sign} \cos t=\frac{4}{\pi} \sum_{k=0}^{\infty}(-1)^{k} \frac{\cos (2 k+1) t}{2 k+1}
$$

Поэтому очевидно, что равенства (6) выполняются. Их выполнение можно также получить с помощью утверждения из [5], стр. 99-100. Итак, оператор (2) является экстремальным в классе $\Omega_{n, 3 n-1}$. Из (2) следует, что

$$
\begin{equation*}
\varrho_{n, 3 n-1}(C)=\int_{0}^{2 \pi}|\cos n t| \phi_{2 n}(t) d t . \tag{7}
\end{equation*}
$$

Известно [6], стр. 183--184, что

$$
|\sin x|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos 2 k x}{4 k^{2}-1}
$$

Поэтому $|\cos n t|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{i=1}^{\infty}(-1)^{i} \frac{\cos 2 n i t}{4 i^{2}-1}$. Известно, что

$$
\begin{equation*}
\phi_{n}(t)=\frac{1}{\pi}\left(\frac{1}{2}+\sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right) \cos k t\right) . \tag{8}
\end{equation*}
$$

Поэтому из (7), (8) и равенства Парсеваля получим, что $\varrho_{n, 3 n-1}(C)=$ $\frac{4}{\pi}$. Обозначим через $\&$ множество всех функциональных пространств тиша E.

Teорема 4. Имеет место равенство

$$
\begin{equation*}
\sup _{E \in \mathscr{E}} \varrho_{n, 3 n-1}(E)=\frac{4}{\pi} . \tag{9}
\end{equation*}
$$

Доказательство. Будем рассматривать оператор (2), как оператор из E в E. Обозначим его через $A(f, x, E)$. Из доказательства теоремы 1 следует что он принадлежит классу $\Omega_{n, 3 n-1}(E)$. Известно
[7], что для интеграла и нормы имеет место неравенство $\left\|\int f d \mu\right\| \leqq$ $\leqq \int\|f\| d \mu$. Поэтому из (2) получим, что

$$
\begin{equation*}
\|A(f, x, E)\| \leqq \int_{0}^{2 \pi}\|f(x+t)\||\cos n t| \phi_{2 n}(t) d t t \tag{10}
\end{equation*}
$$

Согласно определению пространства типа $E\|f(x+t)\| \leqq\|f\|$. Стало быть, из (10) выводим, что

$$
\begin{equation*}
\|A(f, x, E)\| \leqq\|f\| \int_{0}^{2 \pi}|\cos n t| \phi_{2 n}(t) d t \tag{11}
\end{equation*}
$$

В ходе доказательства теоремы 1 было установлено, что интеграл из правой части неравенства (11) равен $\frac{2}{\pi}$. Итак, из (11) заключаем, что $\|A(E)\| \leqq \frac{4}{\pi}$. Отсюда и из очевидного неравенства $\varrho_{n, 3 n-1}(E) \leqq$ $\leqq\|A(E)\|$ получаем, что $\varrho_{n, 3 n-1}(E) \leqq \frac{4}{\pi}$. Следовательно,

$$
\begin{equation*}
\sup _{E \in \mathscr{E}} \varrho_{n, 3 n-1}(E) \leqq \frac{4}{\pi} \tag{12}
\end{equation*}
$$

C другой стороны, поскольку C пространство типа E, то $\sup _{n, 3 n-1}(e) \geqq \varrho_{n, 3 n-1}(C)$. Согласно теореме $1 \varrho_{n, 3 n-1}(C)=\frac{4}{\pi}$. Стало E $\in \mathscr{E}$ быть,

$$
\sup _{E \in \mathscr{E}} \varrho_{n, 3 n-1}(E) \geqq \frac{4}{\pi}
$$

Отсюда и из (12) выводим (9).
Обозначим через L_{p} пространство интегрируемых с p-ой степенью, $\quad p \geqq 1, \quad 2 \pi$-периодических функций с нормой $\|f(x)\|_{L_{p}}=$ $=\left(\int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p}$. Очевидыо, что L_{p} - пространство типа E. Поэтому справедливо следствие

СледСтвие 1. Справедливо жеравенство $\varrho_{n, 3 n-1}\left(L_{p}\right) \leqq \frac{4}{\pi}$.
Следствие 2. Для любой $f \in C$ выполняется неравенство

$$
\left\|\sigma_{n, 3 n-1}(f, x)-f(x)\right\| \leqq\left(1+\frac{4}{\pi}\right) E_{n}(f)
$$

Константа $1+\frac{4}{\pi}$ на всем классе $\Omega_{n, 3 n-1}(C)$ неулучшаемая.
Доказательство. Следует воспользоваться теоремой 1 и неравенством (*) из пункта 1.
3. Рассмотрим теперь случай $m=n-1$.

Teopema 5. $\Pi р и$ любом n оператор

$$
\begin{equation*}
B(f, x)=\int_{0}^{2 \pi} f(x+t)(1+2 \cos n t) \phi_{n}(t) d t \tag{13}
\end{equation*}
$$

является әхстремальным в классе $\Omega_{n, 2 n-1}(C)$. При этом $\varrho_{n, 2 n-1}(C)=$ $=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi}$.

Доказательство. Докажем, что частная сумма Валле-Пуссена $\sigma_{n, 2 n-1}(f, x)$ совпадает с оператором (13) и лвляется экстремальным оператором в классе $\Omega_{n, 2 n-1}(C)$. Из (5) вытекает, что

$$
\begin{equation*}
\sigma_{n, 2 n-1}(f, x)=\frac{1}{2 \pi n} \int_{0}^{2 \pi} f(x+t) \sin \frac{3 n t}{2} \sin \frac{n t}{2} \sin ^{-2} \frac{t}{2} d t \tag{14}
\end{equation*}
$$

Отметим тождество $\sin \frac{3 \alpha}{2} \sin \frac{\alpha}{2}=\sin ^{2} \alpha-\sin ^{2} \frac{\alpha}{2}$. Поэтому из (14) выводим

$$
\sigma_{n, 2 n-1}(f, x)=\frac{1}{2 \pi n} \int_{0}^{2 \pi} f(x+t)\left(\sin ^{2} n t-\sin ^{2} \frac{n t}{2}\right) \sin ^{-2} \frac{t}{2} d t
$$

Отсюда после простых преобразований получим, что $\sigma_{n, 2 n-1}(f, x)$ совпадает с оператором (13). Поэтому из (1) следует, что оператор (13) из класса $\Omega_{n, 2 n-1}(C)$. Докажем, что он экстремальный в $\Omega_{n, 2 n-1}(C)$. Для этого воспользуемя теоремой 3 . Так как ядро Фейера $\phi_{n}(t) \geqq 0, t \in(-\infty, \infty)$, то равенства (4) из теоремы 3 принимают вид:

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{sign} \varphi(t) \cos (n+i) t d t=0, \quad i=1,2, \ldots, n-1 \tag{15}
\end{equation*}
$$

где $\varphi(t)=1+2 \cos n t$. Разложим в ряд Фурье функцию $\Psi(x)=\operatorname{sign}\left(\frac{1}{2}+\right.$ $+\cos x)$. Так как она четнал, то можно полагать, что

$$
\Psi(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x
$$

где $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \operatorname{sign}\left(\frac{1}{2}+\cos x\right) d x$. Очевидно, что $\frac{1}{2}+\cos x \geqq 0$ при $0 \leqq x \leqq \frac{2 \pi}{3}$ и $\frac{1}{2}+\cos x<0$ при $\frac{2 \pi}{3}<x \leqq \pi$. Поэтому $a_{0}=\frac{1}{3}$. Очевидно, что $\operatorname{sign} \varphi(t)=$ $=\Psi(n t)$. Стало быть, разложение в ряд Фурье функции $\operatorname{sign} \varphi(t)$ имеет вид

$$
\begin{equation*}
\operatorname{sign} \varphi(t)=\frac{1}{3}+\sum_{k=1}^{\infty} a_{k} \cos k n t \tag{16}
\end{equation*}
$$

Из (16) и равенства Парсеваля следует, что равенства (15) выполняются. Поэтому $\sigma_{n, 2 n-1}$ әкстремальный оператор в $\Omega_{n, 2 n-1}(C)$. В силу (13) имеем, что ${ }^{1}$

$$
\begin{equation*}
\varrho_{n, 2 n-1}(C)=\int_{0}^{2 \pi}|\varphi(t)| \phi_{n}(t) d t . \tag{17}
\end{equation*}
$$

Вычислим интеграл (17) с помощью равенства Парсеваля. Для этого составим разложение в ряд Фурье функции $|\varphi(t)|$. Пусть $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ коэффициенты Фурье $|\varphi(t)|$. Имеем, что

$$
\begin{equation*}
\gamma_{0}=\frac{1}{\pi} \int_{0}^{2 \pi}|1+2 \cos n t| d t=\frac{2}{\pi n} \int_{0}^{2 \pi n}\left|\frac{1}{2}+\cos t\right| d t . \tag{18}
\end{equation*}
$$

Очевидно, что $\int_{0}^{2 \pi n}\left|\frac{1}{2}+\cos x\right| d x=n \int_{0}^{2 \pi}\left|\frac{1}{2}+\cos x\right| d x$. Поэтому из (18) вывидим, что

$$
\gamma_{0}=\frac{4}{\pi} \int_{0}^{\pi}\left|\frac{1}{2}+\cos t\right| d t .
$$

Как раньше, учтем распределение знаков функции $f(x)=\frac{1}{2}+\cos x$ в $[0, \pi]$. Получим, что $\gamma_{0}=\frac{2}{3}+\frac{4 \sqrt{3}}{\pi}$. Поэтому разложение $|\varphi(t)|$ имеет вид:

$$
\begin{equation*}
|\varphi(t)|=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi}+\gamma_{1} \cos n t+\gamma_{2} \cos 2 n t+\ldots \tag{19}
\end{equation*}
$$

Из (8), (19) и равенства Парсеваля вытекает, что

$$
\begin{equation*}
\int_{0}^{2 \pi}|\varphi(t)| \phi_{n}(t) d t=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi} . \tag{20}
\end{equation*}
$$

Из (17) и (20) вытекает, что $\varrho_{n, 2 n-1}(C)=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi}$.
Следствие 3. Для любой $f \in C$ выполняется неравенство

$$
\left\|\sigma_{n, 2 n-1}(f, x)-f(x)\right\| \leqq\left(\frac{4}{3}+\frac{2 \sqrt{3}}{\pi}\right) E_{n}(f) .
$$

Констажта $\frac{4}{3}+\frac{2 \sqrt{3}}{\pi}$ на всем классе $\Omega_{n, 2 n-1}(C)$ неулучшаемая.
Доказательство. Следует воспользоваться теоремой 5 и неравенством (*) из пункта 1 .

Замечание 1. Оценкка $\left\|\sigma_{n, 2 n-1}(f, x)-f(x)\right\| \leqq 4 E_{n}(f)$ принадлежит Валле-Пуссену [63].

[^1]Замечание 2. Оператор (13) другим методом изучался в [9]. При вычислении $\varrho_{n, 2 n-1}(C)$ была в [9] донущена ошибка. См. [9] стр. 7. Для её исправления следует в равенстве (20) из [9] правую часть считать равным $(n+1) \sqrt{3}$.

Замечание 3. Экстремальность операторов (2) и (13) следует из нашей общей теоремы [3], [4]. Изложенные здесь доказательства проще чем доказательство упомянутой общей теоремы. Кроме того, здесь найдены $\varrho_{n, 2 n-1}$ и $\varrho_{n, 3 n-1}$, а в [4] әтого нет.

Tеорема 6. Имеет место равенство

$$
\begin{equation*}
\sup _{E \in \mathcal{E}} \varrho_{n, 2 n-1}(E)=\frac{1}{3}+\frac{2 \sqrt{3}}{\pi} . \tag{21}
\end{equation*}
$$

Метод дохазательства равенства (21) не отличается от метода доказательства равенства (9).
4. Для класса операторов $\Omega_{n, 2 n-1}^{(r)}(C)$ имеет место

Teopema 7. Onepamop

$$
C(f, x)=\frac{1}{\pi} \int_{0}^{2 \pi} f(x+t) \cos \left(n t+\frac{r \pi}{2}\right)\left[n^{r}+2 \sum_{k=1}^{n-1} k^{2} \cos (n-k) t\right] d t
$$

принадлежсит классу $\Omega_{n, 2 n-1}^{(r)}(C)$ и является экстремальным в этом классе. При ттом

$$
\varrho_{n, 2 n-1}^{(r)}(C)=\frac{4}{\pi} n^{r}, \quad r=1,2, \ldots
$$

Доказательство теоремы 7 находится в [8].
Teopema 8. Имеет место равенство

$$
\sup _{E \in \mathcal{E}} \varrho_{n, 2 n-1}^{(r)}(E)=\frac{4}{\pi} n^{r}, \quad r=1,2, \ldots
$$

Доказательство теоремы 8 не отличается от доказательства теоремы 4. Нужно только учесть, что

$$
\begin{equation*}
\left.\int_{0}^{\pi}\left|\cos \left(n t+\frac{r \pi}{2}\right)\right| n^{r}+2 \sum_{k=1}^{n-1} k^{r} \cos (n-k) t \right\rvert\, d t=4 n^{r} \tag{22}
\end{equation*}
$$

Для доказательства равенства (22) ннужно воспользоваться неравенством

$$
n^{r}+2 \sum_{k=1}^{\infty} k^{2} \cos (n-k) t \geqq 0, t \in(-\infty, \infty)
$$

разложением в ряд Фурье функции $\left|\cos \left(n t+\frac{r \pi}{2}\right)\right|$ и равенством Парсеваля. При разложении в ряд Фурье функции $\left|\cos \left(n t+\frac{r \pi}{2}\right)\right|$ можно использовать равенство (7^{\prime}).

Примечание при корректуре (6.10.1991). В [3] и [4] было установлено, что для того чтобы оператор (1) был экстремальным в классе $\Omega_{n, n+m}(C)$ необходимо и достаточно, чтобы число $v=\frac{2 n}{m+1}$ было челым. Добавим, что если v - четное чусло, то

$$
\varrho_{n, n+m}=\frac{1}{1+v}+\frac{2}{\pi} \sum_{k=1}^{v / 2} \frac{1}{k} \operatorname{tg} \frac{\pi k}{1+v},
$$

если v - нечетное число, то

$$
\varrho_{n, n+m}=\frac{4}{\pi} \sum_{k=1}^{(1+v) / 2} \frac{1}{2 k-1} \operatorname{tg} \frac{\pi(2 k-1)}{2(1+v)} .
$$

Литература

[1] С. Н. Бернштейн, Собрание сочинежий, т.2, Изд, АН СССР, 1954.
[2] Д. Л. Берман, Об одном новом методе построения вейершрассовых интерполяционных формул, Доклады Академии Наук СССР, 109 (1956), 679--682.
[3] Д. Л. Берман, Экстремальние задачи теории полиномиальных операторов, Доклады Академии Наук СССР, 138 (1961), 747--750.
[4] Д. Л. Берман, Экстремальние задачи теории полиномиальных операторов, Математический Сборжик, 60 (1963), 354--365.
[5] Н. И. Ахиезер, Лекчии по теории аппроксимачии, 1965.
[6] И. І. Натансон, Кокструктиөная теория фуккиий, 1949.
[7] Н. Данфорд, Дж. Т. Шварц, Лижейные операторь, 1962.
[8] Д. Л. Берман, Об одном әкстремальном полиномиальном операторе дифференциробания, Studia Sci. Math. Hungar., 25 (1990).
[9] Д. Л. Берман, Об одном әкстремальном полиномиальном операторе, Известия высиих учебных заведений математиха 5 (1978), 3--8.
(Поступило 25. 4. 1988.)
1357 WEST ESTES NO. Q2
CHICAGO, IL 60626
U.S.A.

TAUBERIAN THEOREMS CONCERNING POWER SERIES WITH NON-NEGATIVE COEFFICIENTS

D. BORWEIN* (London, Ontario)

1. Introduction

Suppose throughout that $\left\{a_{n}\right\}$ is a sequence of non-negative number, that

$$
s_{n}:=\sum_{k=0}^{n} a_{k}
$$

and that

$$
0<f(x):=\sum_{k=0}^{\infty} a_{k} x^{k}<\infty \text { for } 0<x<1 .
$$

Hardy and Littlewood [4, Theorem 10] have proved the following theorem.

Theorem H-L. If

$$
f(x) \sim(1-x)^{-\rho} L(x) \text { as } x \rightarrow 1-,
$$

where $\rho \geqq 0$ and $L\left(1-\frac{1}{u}\right)$ is a logarithmico-exponential function such that

$$
u^{-\delta} \prec L\left(1-\frac{1}{u}\right) \prec u^{\delta},
$$

then

$$
s_{n} \sim \frac{n^{\rho}}{\Gamma(\rho+1)} L\left(1-\frac{1}{n}\right) .
$$

[^2]See [3] for definitions and properties of logarithmico-exponential functions. Examples of logarithmico-exponential functions satisfying the above condition are given by

$$
L\left(1-\frac{1}{u}\right):=(\log u)^{c_{1}}(\log \log u)^{c_{2}} \ldots,
$$

where c_{1}, c_{2}, \ldots are real numbers. Theorem H-L is Tauberian in nature in that it yields information about the asymptotic behavior of s_{n} from the asymptotic behavior of $f(x)$.

The primary object of this note is to supply a simple and straightforward proof of the following generalization of Theorem H-L.

Theorem 1. (i) Suppose

$$
\begin{equation*}
\lim _{x \rightarrow 1-} \frac{f\left(x^{m}\right)}{f(x)}=\lambda_{m}>0 \quad \text { for } \quad m=2 \quad \text { and } \quad m=3 \tag{1}
\end{equation*}
$$

Then

$$
f(x)=(1-x)^{-\rho} \phi(x)
$$

where $\rho=-\log _{2} \lambda_{2} \geqq 0$ and, for all $t \geqq 1$,

$$
\lim _{x \rightarrow 1-} \frac{\phi\left(x^{t}\right)}{\phi(x)}=1
$$

Moreover

$$
s_{n} \sim \frac{n^{\rho}}{\Gamma(\rho+1)} \phi\left(1-\frac{1}{n}\right)=\frac{1}{\Gamma(\rho+1)} f\left(1-\frac{1}{n}\right)
$$

and
(2) $s_{n+1} \sim s_{n}$ and $\lim _{n \rightarrow \infty} \frac{s_{n}}{s_{m n}}=\lambda_{m}>0$ for $m=2$ and $m=3$.
(ii) Conversely, (2) implies (1).

If follows from Theorem 1.8 in [5] that the integers 2, 3 in (1) can be replaced by any two positive numbers $p, q \neq 1$ such that $\log _{q} p$ is irrational. It was proved in [2] that

$$
\begin{equation*}
\lim _{x \rightarrow 1-} \frac{f\left(x^{2}\right)}{f(x)}=\lambda>0 \tag{3}
\end{equation*}
$$

alone does not imply (1) when $\lambda<1$, though (1) and (3) are equivalent when $\lambda=1$. Part (i) of Theorem 1 can be deduced from Karamata's Tauberian theorem and a known result about regularly varying functions (see Theorems 2.3 and 1.8 in [5]). We give an alternate proof which is more direct and more elementary, not involving, in particular, the extended continuity theorem for Laplace-Stieltjes transforms on which the proof of Karamata's theorem is based. Part (ii) of Theorem 1 is interesting in that it shows that (1) and (2) are in fact equivalent.

2. Preliminary results

Theorem 2.. Suppose $b_{n} \geqq 0$ for $n=0,1, \ldots$,

$$
t_{n}:=\sum_{k=0}^{n} b_{k}, \quad \text { and } \quad g(x):=\sum_{n=0}^{\infty} b_{n} x^{n}<\infty \quad \text { for } \quad 0<x<1 .
$$

If (1) holds and $\frac{g(x)}{f(x)} \rightarrow \lambda$ as $x \rightarrow 1-$, then $\frac{t_{n}}{s_{n}} \rightarrow \lambda$.
Proof. The result is evidently true if $f(x)$ tends to a finite limit as $x \rightarrow 1-$. Suppose therefore that $f(x) \rightarrow \infty$ as $x \rightarrow 1-$.

Case (i): $a_{n}>0$ for $n=0,1, \ldots$. This case follows immediately from the theorem in [2].

Case (ii) : $a_{n} \geqq 0$ for $n=0,1, \ldots$. Let

$$
f^{\star}(x):=f(x)+e^{x}, \quad g^{\star}(x):=g(x)+e^{x}
$$

and define $a_{n}^{\star}, s_{n}^{\star}, b_{n}^{\star}, t_{n}^{\star}$ in the obvious way. Then $a_{n}^{\star}>0$ for $n=0,1, \ldots$, and, since $f(x) \rightarrow \infty$ as $x \rightarrow 1-$, (1) is satisfied with f^{\star} in place of f. Further

$$
\frac{g^{\star}(x)}{f^{\star}(x)} \rightarrow \lambda \quad \text { as } \quad x \rightarrow 1-\quad \text { if and only if } \quad \frac{g(x)}{f(x)} \rightarrow \lambda \quad \text { as } \quad x \rightarrow 1-,
$$

and

$$
\frac{t_{n}^{\star}}{s_{n}^{\star}} \rightarrow \lambda \text { if and only if } \frac{t_{n}}{s_{n}} \rightarrow \lambda .
$$

Case (ii) now follows from Case (i).
Lemma 1. If (1) holds, then, for $m=1,2, \ldots$ and $\rho=-\log _{2} \lambda_{2} \geqq 0$,

$$
\lim _{x \rightarrow 1-} \frac{f\left(x^{m}\right)}{f(x)}=m^{-\rho}
$$

and, for every $c \in(0,1)$,

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{f\left(c^{1 / n}\right)}=\frac{(-\log c)^{\rho}}{\Gamma(\rho+1)}
$$

Proof. The result is evidently true with $\rho=0$ if $f(x)$ tends to a finite limit as $x \rightarrow 1-$. Suppose therefore that $f(x) \rightarrow \infty$ as $x \rightarrow 1-$. It has been
shown in [2] that this together with (1) implies the first conclusion. Further, when $\rho>0$,

$$
(m+1)^{-\rho}=\int_{0}^{1} t^{m} d \chi(t) \quad \text { with } \quad \chi(t):=\frac{1}{\Gamma(\rho)} \int_{0}^{t}(-\log u)^{\rho-1} d u
$$

It was proved in [1] that the above implies that, when $\rho=0$,

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{f\left(c^{1 / n}\right)}=1
$$

and, when $\rho>0$,

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{f\left(c^{1 / n}\right)}=\int_{c}^{1} t^{-1} d \chi(t)=\frac{1}{\Gamma(\rho)} \int_{c}^{1} t^{-1}(-\log t)^{\rho-1} d t=\frac{(-\log c)^{\rho}}{\Gamma(\rho+1)}
$$

The next lemma has been proved in essence in [1].
LEMMA 2. If $s_{n+1} \sim s_{n}$ and $\lim _{n \rightarrow \infty} \frac{s_{n}}{s_{m n}}=\lambda>0$ where m is a positive integer, then

$$
\lim _{x \rightarrow 1-} \frac{f\left(x^{m}\right)}{f(x)}=\lambda
$$

3. Proof of Theorem 1

(i) The first conclusion has been proved in [2]. To establish the asymptotic expression for s_{n} observe that, given $\gamma>1$,

$$
e^{-\gamma / n}<1-\frac{1}{n}<e^{-1 / n}
$$

for n sufficiently large. Hence for such n

$$
\frac{s_{n}}{f\left(e^{-\gamma / n}\right)} \geqq \frac{s_{n}}{f(1-1 / n)} \geqq \frac{s_{n}}{f\left(e^{-1 / n}\right)}
$$

and so, by Lemma 1,

$$
\frac{\gamma^{\rho}}{\Gamma(\rho+1)} \geqq \limsup _{n \rightarrow \infty} \frac{s_{n}}{f(1-1 / n)} \geqq \liminf _{n \rightarrow \infty} \frac{s_{n}}{f(1-1 / n)} \geqq \frac{1}{\Gamma(\rho+1)} .
$$

Since $\gamma^{\rho} \rightarrow 1$ as $\gamma \rightarrow 1-$, it follows that

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{f(1-1 / n)}=\frac{1}{\Gamma(\rho+1)},
$$

i.e.,

$$
s_{n} \sim \frac{n^{\rho}}{\Gamma(\rho+1)} \phi\left(1-\frac{1}{n}\right)=\frac{1}{\Gamma(\rho+1)} f\left(1-\frac{1}{n}\right) .
$$

To establish (2) we first observe that, by Lemma 1,

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{s_{m n}}=\lim _{n \rightarrow \infty} \frac{s_{n}}{f\left(e^{-1 / n}\right)} \cdot \frac{f\left(e^{-1 / m n}\right)}{s_{m n}} \cdot \frac{f\left(e^{-1 / n}\right)}{f\left(e^{-1 / n m}\right)}=m^{-\rho}
$$

Next we suppose without loss of generality that $s_{n} \rightarrow \infty$. Then, by Theorem 2 with $b_{n}=a_{n+1}$, we see that

$$
\frac{g(x)}{f(x)}=\frac{f(x)-a_{0}}{f(x)} \rightarrow 1 \text { as } x \rightarrow 1-, \text { and hence } \frac{t_{n}}{s_{n}}=\frac{s_{n+1}-s_{0}}{s_{n}} \rightarrow 1
$$

so that $s_{n+1} \sim s_{n}$.
(ii) This follows immediately from Lemma 2.

References

[1] D. Borwein, Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull., 24 (1981), 309--316.
[2] D. Borwein and A. Meir, A Tauberian theorem concerning weighted means and power series, Math. Proc. Camb. Phil. Soc., 101 (1987), 283--286.
[3] G. H. Hardy, Orders of Infinity, Camb. Math. Tract No. 12.
[4] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc., 13 (1914), 174-191.
[5] E. Senata, Regularly Varying Functions, Lecture Notes in Mathematics, No. 508, Springer-Verlag, 1976.
(Received May 2, 1988)
department of mathematics THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO, CANADA N6A 5B7

RATE OF CONVERGENCE OF HERMITE-FEJÉR POLYNOMIALS FOR FUNCTIONS WITH DERIVATIVES OF BOUNDED VARIATION

R. BOJANIC (Columbus, Ohio) and F. CHENG (Lexington, Kentucky)

1. Introduction

Let f be a function defined on $[-1,1]$. The Hermite-Fejér interpolation polynomial $\mathbf{H}_{n}(f, x)$ of f, based on the zeros

$$
\begin{equation*}
x_{k n}=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1,2, \ldots, n \tag{1.1}
\end{equation*}
$$

of the Chebysev polynomial $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$, is defined by

$$
\begin{equation*}
\mathbf{H}_{n}(f, x)=\sum_{k=1}^{n} f\left(x_{k n}\right)\left(1-x_{k n} x\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2} . \tag{1.2}
\end{equation*}
$$

It was proved by L. Fejér [1] that $\mathbf{H}_{n}(f, x)$ converges uniformly to $f(x)$ if $f(x)$ is a continuous function on $[-1,1]$. The rate of convergence of $\mathbf{H}_{n}(f, x)$ to $f(x)$ when $f(x)$ is a continuous function has been extensively studied before ([2]--[9]). A survey of various quantitative estimates of the rate of convergence can be found in [9], where it was proved that

$$
\begin{gathered}
\left|\mathbf{H}_{n}(f, x)-f(x)\right| \leqq \frac{C_{1}}{n} T_{n}^{2}(x) \sum_{k=1}^{n}\left[W_{f}\left(\frac{\left(1-x^{2}\right)^{1 / 2}}{k}\right)+W_{f}\left(\frac{1}{k^{2}}\right)\right]+ \\
+C_{2} W_{f}\left(\frac{\left|T_{n}(x)\right|}{n}\right) .
\end{gathered}
$$

Here C_{1} and C_{2} are positive constants and W_{f} is the modulus of continuity of f.

The behavior of $\mathbf{H}_{n}(f, x)$ when $f \in \mathbf{B V}[-1,1]$ (i.e., f is of bounded variation on $[-1,1]$) was studied by Bojanic and Cheng [10]. It was proved that if $f \in \mathbf{B V}[-1,1]$ and continuous at $x \in(-1,1)$ then $\mathbf{H}_{n}(f, x)$ converges to $f(x)$ when n tends to $+\infty$ and the rate of convergence of $\mathbf{H}_{n}(f, x)$ to $f(x)$ satisfies the following inequality

$$
\begin{equation*}
\left|\mathbf{H}_{n}(f, x)-f(x)\right| \leqq \frac{64 T_{n}^{2}(x)}{n} \sum_{k=1}^{n} \mathbf{V}_{x-\pi / k}^{x+\pi / k}(f)+2 \mathbf{V}_{x-\pi\left|T_{n}(x)\right| / 2 n}^{x+\pi\left|T_{n}(x)\right| / 2 n}(f) \tag{1.3}
\end{equation*}
$$

where $\mathbf{V}_{a}^{b}(f)$ is the total variation of f on $[a, b]$. (1.3) can not be improved asymptotically.

However, if x is a point of discontinuity of f where $f(x+) \neq f(x-)$, the sequence $\left(H_{n}(f, x)\right)$ is no longer convergent. This follows from the following observation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\inf } H_{n}(f, x)=\frac{1}{2}(f(x+)+f(x-)) \pm \frac{1}{2}|f(x+)-f(x-)| \beta(x) \tag{1.4}
\end{equation*}
$$

where $\beta(x)=1$ if $x=\cos (\alpha \pi)$ and α is irrational, and

$$
\beta(x)=\left(\frac{\sin (\pi / 2 q)}{\pi / 2 q}\right)^{2}\left(1-\sum_{k=1}^{\infty} \frac{8 q k}{\left(4 q^{2} k^{2}-1\right)^{2}}\right)
$$

if $x=\cos (p \pi / q)$.
(1.4) shows that, unlike Fourier series of 2π-periodic functions of bounded variation or Bernstein polynomials of functions of bounded variation which all converge to $(f(x+)+f(x-)) / 2([11],[12])$, the Hermite-Fejér interpolation polynomials of a function of bounded variation converge only if $f(x+)=f(x-)$.

Although smoother functions find more applications in various fields such as computer aided geometric design, computer vision, graphics and image processing, the asymptotic behavior of Hermite-Fejér interpolation polynomials for functions smoother than continuous functions has been studied only for functions with continuous derivatives.

In this paper we shall investigate the asymptotic behavior of HermiteFejér polynomials for functions defined the following way

$$
\begin{equation*}
f(x)=f(-1)+\int_{-1}^{x} \varphi(t) d t, \quad x \in[-1,1] \tag{1.5}
\end{equation*}
$$

where φ is a function of bounded variation on $[-1,1]$. This class of functions can be described as the class of differentiable functions whose derivatives are of bounded variation and will be denoted by $\mathbf{D B V}[-1,1]$. It is clear that this class of functions is much more general than functions with continuous derivatives. However, as it will be seen in the next section, the asymptotic behavior of Hermite-Fejér interpolation polynomials for functions in this category is also much better than the asymptotic behavior of Hermite-Fejér interpolation polynomials for continuous functions. Results for Bernstein polynomials for functions of this type can be found in [13].

2. Results

Let f be a function in $\mathbf{D B V}[-1,1]$ and $\varphi \in \mathbf{B V}[-1,1]$ so that (1.5) is satisfied. For any $x \in(-1,1)$ such that $x \neq x_{k n}$ for $k=1,2, \ldots, n$ we have,
from (1.2) and (1.5),

$$
\begin{gather*}
\mathbf{H}_{n}(f, x)-f(x)=\sum_{k=1}^{n}\left(\int_{x}^{x_{k n}} \varphi(t) d t\right) \mathbf{H}_{k n}(x)= \tag{2.1}\\
=-\sum_{x_{k n}<x}\left(\int_{x_{k n}}^{x} \varphi(t) d t\right) \mathbf{H}_{k n}(x)+\sum_{x_{k n}>x}\left(\int_{x}^{x_{k n}} \varphi(t) d t\right) \mathbf{H}_{k n}(x)
\end{gather*}
$$

where

$$
\mathbf{H}_{k n}(x)=\left(1-x x_{k n}\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2}, \quad k=1,2, \ldots, n .
$$

If we define $\varphi_{x}(t)$ the following way

$$
\varphi_{x}(t)= \begin{cases}\varphi(t)-\varphi(x-), & t<x \\ 0, & t=x \\ \varphi(t)-\varphi(x+), & t>x\end{cases}
$$

then (2.1) can be expressed as

$$
\begin{gather*}
\mathbf{H}_{n}(f, x)-f(x)= \tag{2.2}\\
=-\sum_{x_{k n}<x}\left(\int_{x_{k n}}^{x} \varphi_{x}(t) d t\right) \mathbf{H}_{k n}(x)+\sum_{x_{k n}>x}\left(\int_{x}^{x_{k n}} \varphi_{x}(t) d t\right) \mathbf{H}_{k n}(x) \\
-\varphi(x-) \sum_{x_{k n}<x}\left(x-x_{k n}\right) \mathbf{H}_{k n}(x)+\varphi(x+) \sum_{x_{k n}>x}\left(x_{k n}-x\right) \mathbf{H}_{k n}(x) .
\end{gather*}
$$

Since

$$
\begin{gathered}
\varphi(x+) \sum_{x_{k n}>x}\left(x_{k n}-x\right) \mathbf{H}_{k n}(x)-\varphi(x-) \sum_{x_{k n}<x}\left(x-x_{k n}\right) \mathbf{H}_{k n}(x)= \\
=\frac{\varphi(x+)-\varphi(x-)}{2} \sum_{k=1}^{n}\left|x_{k n}-x\right| \mathbf{H}_{k n}(x)+\frac{\varphi(x+)+\varphi(x-)}{2} \sum_{k=1}^{n}\left(x_{k n}-x\right) \mathbf{H}_{k n}(x)
\end{gathered}
$$

and the two summations on the right-hand side of the equation are the Hermite-Fejér interpolation polynomials of $f_{x}(t)=|t-x|$ and $g_{x}(t)=t-x$, $-1 \leqq t \leqq 1$, respectively, we can further convert (2.2) as follows

$$
\begin{equation*}
\mathbf{H}_{n}(f, x)-f(x)=\frac{\sigma}{2} \mathbf{H}_{n}\left(f_{x}, x\right)+\frac{\lambda}{2} \mathbf{H}_{n}\left(g_{x}, x\right)+\mathbf{P}_{n}(f, x) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\varphi(x+)-\varphi(x-) ; \quad \lambda=\varphi(x+)+\varphi(x-) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathbf{P}_{n}(f, x)= \tag{2.5}\\
=-\sum_{x_{k n}<x}\left(\int_{x_{k n}}^{x} \varphi_{x}(t) d t\right) \mathbf{H}_{k n}(x)+\sum_{x_{k n}>x}\left(\int_{x}^{x_{k n}} \varphi_{x}(t) d t\right) \mathbf{H}_{k n}(x) .
\end{gather*}
$$

Therefore, evaluation of the rate of convergence of $\mathbf{H}_{n}(f, x)$ to $f(x)$ is simply a matter of evaluating $\mathbf{H}_{n}\left(f_{x}, x\right), \mathbf{H}_{n}\left(g_{x}, x\right)$ and $\mathbf{P}_{n}(f, x)$.

We shall give estimates for $\mathbf{H}_{n}\left(f_{x}, x\right)$ and $\mathbf{H}_{n}\left(g_{x}, x\right)$ first and then use these estimates to get an estimate for the rate of convergence of $\mathbf{H}_{n}(f, x)$ to $f(x)$. Since the estimates we get for $\mathbf{H}_{n}\left(f_{x}, x\right)$ and $\mathbf{H}_{n}\left(g_{x}, x\right)$ are of some interest, we shall state them as an independent theorem.

Theorem 1. If $x \in(-1,1)$ and $x \neq x_{k n}$ for any $k=1,2, \ldots, n$ then

$$
\begin{gather*}
\left|\sum_{k=1}^{n}\right| x_{k n}-x\left|\mathbf{H}_{k n}(x)-\frac{2\left(1-x^{2}\right)^{1 / 2} T_{n}^{2}(x)}{\pi} \frac{\log n}{n}\right| \leqq C \frac{\left|T_{n}(x)\right|}{n}, \tag{2.6}\\
\left|\sum_{k=1}^{n}\left(x_{k n}-x\right) \mathbf{H}_{k n}(x)\right| \leqq C \frac{\left|T_{n}(x)\right|}{n} \tag{2.7}
\end{gather*}
$$

where $C=7+\pi$.
The rate of convergence of $\mathbf{H}_{n}(f, x)$ to $f(x)$ can be estimated as follows.
Theorem 2. Let f be a function in $\operatorname{DBV}[-1,1]$ and $\varphi \in \operatorname{BV}[-1,1]$ so that (1.5) is satisfied. Then for any $x \in(-1,1)$ such that $x \neq x_{k n}$ for $k=$ $=1,2, \ldots, n$ we have

$$
\begin{align*}
& \left|\mathbf{H}_{n}(f, x)-f(x)-\frac{\sigma\left(1-x^{2}\right)^{1 / 2} T_{n}^{2}(x)}{\pi} \frac{\log n}{n}\right| \leqq \frac{C(|\sigma|+|\lambda|)}{2} \frac{\left|T_{n}(x)\right|}{n}+ \tag{2.8}\\
& \quad+\frac{\pi\left|T_{n}(x)\right|}{n} \mathbf{V}_{x-\pi\left|T_{n}(x)\right| / n}^{x+\pi\left|T_{n}(x)\right| / n}\left(\varphi_{x}\right)+\frac{12 T_{n}^{2}(x)}{n} \sum_{k=1}^{n} \frac{\mathbf{V}_{x-\pi / k}^{x+\pi / k}\left(\varphi_{x}\right)}{k}
\end{align*}
$$

where $\mathbf{V}_{a}^{b}\left(\varphi_{x}\right)$ is the total variation of φ_{x} on $[a, b],{ }^{*} \sigma$ and λ are defined in (2.4), and C is defined in Theorem 1.

[^3]If f^{\prime} is continuous at x, i.e., $\sigma=0$ and $\lambda=2 f^{\prime}(x)$, then (2.8) can be simplified as follows.

$$
\begin{align*}
\left|\mathbf{H}_{n}(f, x)-f(x)\right| \leqq & \frac{C\left|f^{\prime}(x) T_{n}(x)\right|}{n}+\frac{\pi\left|T_{n}(x)\right|}{n} \mathbf{V}_{x-\pi\left|T_{n}(x)\right| / n}^{x+\pi\left|T_{n}(x)\right| / n}\left(f^{\prime}\right)+ \tag{2.9}\\
& +\frac{12 T_{n}^{2}(x)}{n} \sum_{k=1}^{n} \frac{\mathbf{V}_{x-\pi / k}^{x+\pi / k}\left(f^{\prime}\right)}{k}
\end{align*}
$$

The right-hand side of (2.8) converges to zero as $n \rightarrow \infty$ since continuity of φ_{x} at x implies that

$$
\mathbf{V}_{x-\beta}^{x+\alpha}\left(\varphi_{x}\right) \rightarrow 0 \quad(\alpha, \beta \rightarrow 0+)
$$

Actually, the last term of the right-hand side of (2.8) is $o(\log n / n)$-convergent. Therefore (2.8) can also be expressed as

$$
\mathbf{H}_{n}(f, x)=f(x)+\frac{\sigma\left(1-x^{2}\right)^{1 / 2} T_{n}^{2}(x)}{\pi} \frac{\log n}{n}+o\left(\frac{\log n}{n}\right)
$$

Note that all the estimates mentioned in Section 1 for continuous functions or functions of bounded variation are $o(1)$-convergent only.

As far as the precision of (2.9) is concerned, consider the Hermite-Fejér polynomials of the function $f(x)=x^{2}$ at $x=0$ for even n. Since $T_{n}(0)=1$ if n is an even integer, we have

$$
\mathbf{H}_{n}(f, 0)-f(0)=\sum_{k=1}^{n} \frac{T_{n}^{2}(0)}{n^{2}}=\frac{1}{n}
$$

On the other hand, since $\sigma=\lambda=0$ at $x=0$, it follows from (2.9) that

$$
\left|\mathbf{H}_{n}(f, 0)-f(0)\right| \leqq \frac{\pi}{n} \mathbf{V}_{-\pi / n}^{+\pi / n}\left(\varphi_{0}\right)+\frac{12}{n} \sum_{k=1}^{n} \frac{\mathbf{V}_{-\pi / k}^{+\pi / k}\left(\varphi_{0}\right)}{k}
$$

since $\varphi(t)=2 t$ and $\varphi_{0}(t)=\varphi(t)$, we have

$$
\left|\mathbf{H}_{n}(f, 0)-f(0)\right| \leqq \frac{4 \pi^{2}}{n^{2}}+\frac{12}{n} \sum_{k=1}^{n} \frac{4 \pi}{k^{2}}<\frac{C}{n}
$$

for some $C>0$. Hence for the function $f(x)=x^{2}$ when n is an even integer we have

$$
\frac{1}{n} \leqq\left|\mathbf{H}_{n}(f, 0)-f(0)\right| \leqq \frac{C}{n}
$$

for some positive constant $C>0$. Therefore (2.9) can not be improved asymptotically.

3. Proofs

3.1. Proof of Theorem 1. To prove (2.6), observe that

$$
\begin{equation*}
\left|\mathbf{H}_{n}\left(f_{x}, x\right)-\sum_{k=1}^{n}\right| x_{k n}-x\left|\left(1-x^{2}\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2}\right| \leqq \frac{|x| T_{n}^{2}(x)}{n} . \tag{3.1}
\end{equation*}
$$

Therefore, it is sufficient to study the asymptotic behavior of the second term on the left-hand side of (3.1) only.

Let $x=\cos \vartheta, 0<\vartheta<\pi, x_{k n}=\cos \vartheta_{k n}, \vartheta_{k n}=(2 k-1) \pi /(2 n), k=1,2, \ldots$, n, and define

$$
\delta_{\vartheta}(\alpha)= \begin{cases}1, & \text { if } 0<\alpha<\vartheta \\ -1, & \text { if } \vartheta<\alpha<\pi\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{n}\left|x_{k n}-x\right|\left(1-x^{2}\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2}=\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin ^{2} \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\cos \vartheta_{k n}-\cos \vartheta\right)} \tag{3.2}
\end{equation*}
$$

Since $\cos \vartheta_{k n}-\cos \vartheta=\left(\vartheta-\vartheta_{k n}\right) \sin \bar{\vartheta}_{k n}$ for some $\bar{\vartheta}_{k n}$ between ϑ and $\vartheta_{k n}$, it follows that

$$
\begin{aligned}
& \left|\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin ^{2} \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\cos \vartheta_{k n}-\cos \vartheta\right)}-\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\vartheta-\vartheta_{k n}\right)}\right| \leqq \\
& \quad \leqq \frac{\sin \vartheta \cos ^{2} n \vartheta}{n^{2}} \sum_{k=1}^{n}\left|\left(\frac{\sin \vartheta}{\cos \vartheta_{k n}-\cos \vartheta}-\frac{1}{\vartheta-\vartheta_{k n}}\right)\right| \leqq \\
& \quad \leqq \frac{\sin \vartheta \cos ^{2} n \vartheta}{n^{2}} \sum_{k=1}^{n}\left|\left(\frac{\sin \vartheta}{\sin \bar{\vartheta}_{k n}\left(\vartheta-\vartheta_{k n}\right)}-\frac{1}{\vartheta-\vartheta_{k n}}\right)\right| \leqq \\
& \quad \leqq \frac{\sin \vartheta \cos ^{2} n \vartheta}{n^{2}} \sum_{k=1}^{n}\left|\frac{1}{\vartheta-\vartheta_{k n}}\left(\frac{\sin \vartheta-\sin \bar{\vartheta}_{k n}}{\sin \bar{\vartheta}_{k n}}\right)\right| \leqq \\
& \leqq \frac{\sin \vartheta \cos ^{2} n \vartheta}{n^{2}} \sum_{k=1}^{n}\left|\frac{1}{\vartheta-\vartheta_{k n}} \frac{\vartheta-\bar{\vartheta}_{k n}}{\sin \bar{\vartheta}_{k n}}\right| \leqq \frac{\sin \vartheta \cos ^{2} n \vartheta}{n^{2}} \sum_{k=1}^{n}\left|\frac{1}{\sin \bar{\vartheta}_{k n}}\right|
\end{aligned}
$$

Furthermore, since $\left|\sin \frac{\vartheta}{2}\right| \geqq|\vartheta| / \pi$ if $|\vartheta| \leqq \pi$, we have

$$
\begin{aligned}
& \sin \bar{\vartheta}_{k n}=\left|\frac{\cos \vartheta-\cos \vartheta_{k n}}{\vartheta-\vartheta_{k n}}\right|=\left|\frac{2 \sin \frac{\vartheta+\vartheta_{k n}}{2} \sin \frac{\vartheta-\vartheta_{k n}}{2}}{\vartheta-\vartheta_{k n}}\right| \geqq \\
& \geqq \left\lvert\, \frac{\left.2 \sin \frac{\vartheta+\vartheta_{k n} \frac{\vartheta-\vartheta_{k n}}{\pi}}{\vartheta-\vartheta_{k n}}\left|=\frac{2}{\pi}\right| \sin \left(\frac{\vartheta+\vartheta_{k n}}{2}\right) \right\rvert\, \geqq \frac{2}{\pi} M(\vartheta)}{}=\$\right.
\end{aligned}
$$

where $M(\vartheta)=\min \left(\sin \frac{\vartheta}{2}, \sin \frac{\pi-\vartheta}{2}\right)$. Therefore,

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin ^{2} \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\cos \vartheta_{k n}-\cos \vartheta\right)}-\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\vartheta-\vartheta_{k n}\right)}\right| \leqq \frac{\pi \cos ^{2} n \vartheta}{n} \tag{3.3}
\end{equation*}
$$

by noticing that $M(\vartheta) \geqq \sin \vartheta / 2$.
Let j be the integer such that $\vartheta_{j n}<\vartheta<\vartheta_{j+1, n}$. It is easy to see that

$$
j=\left[\frac{n \vartheta}{\pi}+\frac{1}{2}\right]
$$

Since $n\left(\vartheta-\vartheta_{k n}\right)=\pi\left(\frac{n \vartheta}{\pi}+\frac{1}{2}-k\right)$, we have

$$
\begin{gather*}
\sum_{k=1}^{n} \delta_{\vartheta}\left(\vartheta_{k n}\right) \frac{\sin \vartheta \cos ^{2}(n, \vartheta)}{n^{2}\left(\vartheta-\vartheta_{k n}\right)}= \tag{3.4}\\
=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=1}^{j} \frac{1}{\left(\frac{n \vartheta}{\pi}+\frac{1}{2}-k\right)}-\sum_{k=j+1}^{n} \frac{1}{\left(\frac{n \vartheta}{\pi}+\frac{1}{2}-k\right)}\right)= \\
=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=0}^{j-1} \frac{1}{\frac{n \vartheta}{\pi}+\frac{1}{2}-j+k}-\sum_{k=0}^{n-j-1} \frac{1}{\frac{n \vartheta}{\pi}+\frac{1}{2}-j-1-k}\right)= \\
=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=0}^{j-1} \frac{1}{\frac{n \vartheta}{\pi}+\frac{1}{2}-j+k}+\sum_{k=0}^{n-j-1} \frac{1}{k+1-\left(\frac{n \vartheta}{\pi}+\frac{1}{2}\right)+j}\right)= \\
=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=0}^{j-1} \frac{1}{\rho(n \vartheta)+k}+\sum_{k=0}^{n-j-1} \frac{1}{1-\rho(n \vartheta)+k}\right)=\Delta_{1}+\Delta_{2}
\end{gather*}
$$

where

$$
\begin{equation*}
\rho(x)=\frac{x}{\pi}+\frac{1}{2}-\left[\frac{x}{\pi}+\frac{1}{2}\right] . \tag{3.5}
\end{equation*}
$$

We shall prove that Δ_{1} and Δ_{2} are both asymptotically equal to $\sin \vartheta \cos ^{2} n \vartheta \log n /(n \pi)$.

First, observe that

$$
\begin{equation*}
\Delta_{1}-\frac{\sin \vartheta \cos ^{2} n \vartheta \log n}{n \pi}=\delta_{1,1}+\delta_{1,2} \tag{3.6}
\end{equation*}
$$

where

$$
\delta_{1,1}=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi} \frac{1}{\rho(n \vartheta)}, \quad \delta_{1,2}=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=1}^{j-1} \frac{1}{\rho(n \vartheta)+k}-\log n\right) .
$$

Since $\cos n \vartheta=(-1)^{j} \sin (\rho(n \vartheta) \pi)$ where $j=[n \vartheta / \pi+1 / 2]$, if follows that

$$
\begin{equation*}
\left|\delta_{1,1}\right| \leqq \frac{\sin \vartheta|\cos n \vartheta|}{n} . \tag{3.7}
\end{equation*}
$$

On the other hand, it is easy to see that

$$
\left|\sum_{k=1}^{j-1} \frac{1}{\rho(n \vartheta)+k}-\log n\right| \leqq 5 .
$$

Hence,

$$
\begin{equation*}
\left|\delta_{1,2}\right| \leqq \frac{5 \sin \vartheta \cos ^{2} n \vartheta}{n \pi} . \tag{3.8}
\end{equation*}
$$

Therefore, from (3.6), (3.7) and (3.8) we have

$$
\begin{equation*}
\left|\Delta_{1}-\frac{\sin \vartheta \cos ^{2} n \vartheta \log n}{n \pi}\right| \leqq \frac{3 \sin \vartheta|\cos n \vartheta|}{n} . \tag{3.9}
\end{equation*}
$$

The evaluation of the asymptotic behavior of Δ_{2} can be carried out in a similar way. First, observe that

$$
\begin{equation*}
\Delta_{2}-\frac{\sin \vartheta \cos ^{2} n \vartheta \log n}{n \pi}=\delta_{2,1}+\delta_{2,2} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{gathered}
\delta_{2,1}=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi} \frac{1}{1-\rho(n \vartheta)}, \\
\delta_{2,2}=\frac{\sin \vartheta \cos ^{2} n \vartheta}{n \pi}\left(\sum_{k=1}^{n-j-1} \frac{1}{1-\rho(n \vartheta)+k}-\log n\right) .
\end{gathered}
$$

Since $\cos n \vartheta=(-1)^{j} \sin (1-\rho(n \vartheta) \pi)$ where $j=[n \vartheta / \pi+1 / 2]$, it follows that

$$
\begin{equation*}
\left|\delta_{2,1}\right| \leqq \frac{\sin \vartheta|\cos n \vartheta|}{n} . \tag{3.11}
\end{equation*}
$$

On the other hand, it is also easy to see that

$$
\left|\sum_{k=1}^{n-j-1} \frac{1}{1-\rho(n \vartheta)+k}-\log n\right| \leqq 5 .
$$

Hence,

$$
\begin{equation*}
\left|\delta_{2,2}\right| \leqq \frac{5 \sin \vartheta \cos ^{2} n \vartheta}{n \pi} . \tag{3.12}
\end{equation*}
$$

Therefore, from (3.10), (3.11) and (3.12) we have

$$
\begin{equation*}
\left|\Delta_{2}-\frac{\sin \vartheta \cos ^{2} n \vartheta \log n}{n \pi}\right| \leqq \frac{3 \sin \vartheta|\cos n \vartheta|}{n}, \tag{3.13}
\end{equation*}
$$

and the estimate (2.6) follows from (3.1), (3.2), (3.3), (3.4), (3.6), (3.9) and (3.13).

To prove (2.7), observe that by using a similar technique we can show that

$$
\begin{equation*}
\left|\mathbf{H}_{n}\left(g_{x}, x\right)-\sum_{k=1}^{n}\left(x_{k n}-x\right)\left(1-x^{2}\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2}\right| \leqq \frac{|x| T_{n}^{2}(x)}{n}, \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{n}\left(x_{k n}-x\right)\left(1-x^{2}\right)\left(\frac{T_{n}(x)}{n\left(x-x_{k n}\right)}\right)^{2}=\sum_{k=1}^{n} \frac{\sin ^{2} \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\cos \vartheta_{k n}-\cos \vartheta\right)}, \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \frac{\sin ^{2} \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\cos \vartheta_{k n}-\cos \vartheta\right)}-\sum_{k=1}^{n} \frac{\sin \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\vartheta-\vartheta_{k n}\right)}\right| \leqq \frac{\pi \cos ^{2} n \vartheta}{n}, \tag{3.16}
\end{equation*}
$$

where $x=\cos \vartheta, 0<\vartheta<\pi, x_{k n}=\cos \vartheta_{k n}, \vartheta_{k n}=(2 k-1) \pi / 2 n, k=1,2, \ldots, n$, and

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\sin \vartheta \cos ^{2}(n \vartheta)}{n^{2}\left(\vartheta-\vartheta_{k n}\right)}=\Delta_{1}-\Delta_{2} \tag{3.17}
\end{equation*}
$$

where Δ_{1} and Δ_{2} are defined in (3.4). It follows immediately from (3.9) and (3.13) that

$$
\begin{equation*}
\left|\Delta_{1}-\Delta_{2}\right| \leqq \frac{6 \sin \vartheta|\cos n \vartheta|}{n} . \tag{3.18}
\end{equation*}
$$

Therefore, (2.7) follows from (3.14), (3.15), (3.16), (3.17) and (3.18).
3.2. Proof of Theorem 2. Since the evaluation of $\mathbf{H}_{n}\left(f_{x}, x\right)$ and $\mathbf{H}_{n}\left(g_{x}, x\right)$ is already done in Theorem 1, the only thing we have to do now is the evaluation of $\mathbf{P}_{n}(f, x)$. The technique used here is similar to the one used in [10].

For any $x \in(-1,1)$ such that $x \neq x_{k n}$ for $k=1,2, \ldots, n$ we have

$$
\begin{gathered}
\left|P_{n}(f, x)\right| \leqq \sum_{k=1}^{n}\left|\int_{x_{k n}}^{x} \varphi_{x}(t) d t\right| \mathbf{H}_{k n}(x) \leqq \\
\leqq \sum_{k=1}^{n}\left|\int_{x_{k n}}^{x} \mathbf{V}_{x-t_{k n}}^{x+t_{k n}}\left(\varphi_{x}\right) d t\right| \mathbf{H}_{k n}(x) \leqq \sum_{k=1}^{n}\left|x-x_{k n}\right| \mathbf{V}_{x-t_{k n}}^{x+t_{k n}}\left(\varphi_{x}\right) \mathbf{H}_{k n}(x)
\end{gathered}
$$

where $t_{k n}=\left|x-x_{k n}\right|$ and $\mathbf{V}_{a}^{b}\left(\varphi_{x}\right)$ is the total variation of φ_{x} on $[a, b]$. Let $x=\cos \vartheta, 0<\vartheta<\pi, x_{k n}=\cos \vartheta_{k n}, \vartheta_{k n}=(2 k-1) \pi /(2 n), k=1,2, \ldots, n$, and define

$$
E_{r}(n, \vartheta)=\left\{k: \frac{r \pi}{2 n}<\left|\vartheta-\vartheta_{k n}\right| \leqq \frac{(r+1) \pi}{2 n}\right\}, r=0,1, \ldots, 2 n-1 .
$$

Then we have

$$
\left|\mathbf{P}_{n}(f, x)\right| \leqq \sum_{r=0}^{2 n-1} \sum_{k \in E_{r}(n, \vartheta)}\left|x-x_{k n}\right| \mathbf{V}_{x-t_{k n}}^{x+t_{k n}}\left(\varphi_{x}\right) \mathbf{H}_{k n}(x)
$$

Since $t_{k n}=\left|x-x_{k n}\right| \leqq\left|\vartheta-\vartheta_{k n}\right| \leqq \pi\left|T_{n}(x)\right| / 2 n$ if $k \in E_{0}(n, \vartheta)$ (see [9], p.257) and $E_{0}(n, \vartheta)$ has at most two elements, it follows that

$$
\begin{equation*}
\sum_{k \in E_{0}(n, \vartheta)}\left|x-x_{k n}\right| \mathbf{V}_{x-t_{k n}}^{x+t_{k n}}\left(\varphi_{x}\right) \mathbf{H}_{k n}(x) \leqq \frac{\pi\left|T_{n}(x)\right|}{n} \mathbf{V}_{x-\pi\left|T_{n}(x)\right| / 2 n}^{x+\pi\left|T_{n}(x)\right| / 2 n}\left(\varphi_{x}\right) . \tag{3.19}
\end{equation*}
$$

On the other hand, since $E_{r}(n, \vartheta)$ has at most two elements,

$$
\begin{gathered}
\left|x-x_{k n}\right| \mathbf{H}_{k n}(x) \leqq\left(1-\cos \vartheta \cos \vartheta_{k n}+\sin \vartheta \sin \vartheta_{k n}\right) \frac{T_{n}^{2}(x)}{n^{2}\left|\cos \vartheta-\cos \vartheta_{k n}\right|} \leqq \\
\leqq\left(1-\cos \left(\vartheta_{k n}+\vartheta\right)\right) \frac{T_{n}^{2}(x)}{2 n^{2} \sin \left(\frac{\vartheta+\vartheta_{k n}}{2}\right) \sin \left|\frac{\vartheta-\vartheta_{k n} \mid}{2}\right|} \leqq \\
\leqq 2 \sin ^{2}\left(\frac{\vartheta+\vartheta_{k n}}{2}\right) \frac{T_{n}^{2}(x)}{2 n^{2} \sin \left(\frac{\left.\vartheta+\vartheta_{k n}\right) \sin \left|\frac{\vartheta-\vartheta_{k n}}{2}\right|}{} \leqq\right.} \\
\leqq \frac{T_{n}^{2}(x) \pi}{n^{2}\left|\vartheta-\vartheta_{k n}\right|} \leqq \frac{2 T_{n}^{2}(x)}{n r}
\end{gathered}
$$

and $t_{k n} \leqq(r+1) \pi / 2 n$ if $k \in E_{r}(n, \vartheta)$, we have

$$
\begin{equation*}
\sum_{k \in E_{r}(n, \vartheta)}\left|x-x_{k n}\right| \mathbf{V}_{x-t_{k n}}^{x+t_{k n}}\left(\varphi_{x}\right) \mathbf{H}_{k n}(x) \leqq \frac{4 T_{n}^{2}(x)}{n r} \mathbf{V}_{x-(r+1) \pi / 2 n}^{x+(r+1) \pi / 2 n}\left(\varphi_{x}\right) \tag{3.20}
\end{equation*}
$$

for $r=1,2, \ldots, 2 n-1$. Therefore, by (3.19) and (3.20),

$$
\begin{align*}
& \left|\mathbf{P}_{n}(f, x)\right| \leqq \frac{\pi\left|T_{n}(x)\right|}{n} \mathbf{V}_{x-\pi\left|T_{n}(x)\right| / 2 n}^{x+\pi\left|T_{n}(x)\right| / 2 n}\left(\varphi_{x}\right)+ \tag{3.21}\\
& \quad+\frac{4 T_{n}^{2}(x)}{n} \sum_{r=1}^{2 n-1} \frac{1}{r} \mathbf{V}_{x-(r+1) \pi / 2 n}^{x+(r+1) \pi / 2 n}\left(\varphi_{x}\right)
\end{align*}
$$

Let $Q(t)=\mathbf{V}_{x-t}^{x+t}\left(\varphi_{x}\right)$. Then

$$
\begin{gather*}
\sum_{r=1}^{2 n-1} \frac{1}{r} \mathbf{V}_{x-(r+1) \pi / 2 n}^{x+(r+1) \pi / 2 n}\left(\varphi_{x}\right)= \tag{3.22}\\
=\sum_{r=2}^{2 n} \frac{1}{r-1} Q\left(\frac{r \pi}{2 n}\right) \leqq 2 \sum_{r=2}^{2} \frac{1}{r} Q\left(\frac{r \pi}{2 n}\right) .
\end{gather*}
$$

By virtue of the fact that $Q(t)$ is a non-decreasing function, we have

$$
\int_{r \pi / 2 n}^{(r+1) \pi / 2 n} \frac{Q(t)}{t} d t \geqq Q\left(\frac{r \pi}{2 n}\right) \int_{r \pi / 2 n}^{(r+1) \pi / 2 n} \frac{d t}{t} \geqq Q\left(\frac{r \pi}{2 n}\right) \log \left(1+\frac{1}{r}\right)
$$

or

$$
\frac{1}{r} Q\left(\frac{r \pi}{2 n}\right) \leqq \frac{3}{2} \int_{r \pi / 2 n}^{(r+1) \pi / 2 n} \frac{Q(t)}{t} d t
$$

Hence

$$
\sum_{r=2}^{2 n} \frac{1}{r} Q\left(\frac{r \pi}{2 n}\right) \leqq \frac{3}{2} \int_{\pi / n}^{\pi(2 n+1) / 2 n} \frac{Q(t)}{t} d t
$$

Since $Q(\pi / t)$ is non-decreasing and $Q(\pi / t)=Q(\pi)$ for $0<t \leqq 1$, we have

$$
\begin{aligned}
\int_{2 n /(2 n+1)}^{n} & \frac{Q(\pi / t)}{t} d t \leqq \int_{2 n /(2 n+1)}^{1} \frac{Q(\pi / t)}{t} d t+\int_{1}^{n} \frac{Q(\pi / t)}{t} d t \leqq \\
& \leqq \frac{Q(\pi)}{2 n+1}+\sum_{k=1}^{n} \frac{Q(\pi / k)}{k} \leqq 2 \sum_{k=1}^{n} \frac{Q(\pi / k)}{k}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\sum_{r=2}^{2 n} \frac{1}{r} Q\left(\frac{r \pi}{2 n}\right) \leqq 3 \sum_{k=1}^{n} \frac{Q(\pi / k)}{k} \tag{3.23}
\end{equation*}
$$

The proof of Theorem 2 follows now from (3.21) and (3.23).

References

[1] L. Fejér, Über Interpolation, Nachrichten der Gesellschaft für Wissenschaften zu Göttingen, Math. Phys. Kl., (1916), 66-91.
[2] R. Bojanic, A note on the precision of interpolation by Hermite-Fejér polynomials, Proceedings of the (1969) Conference on Constructive Theory of Functions, Akadémiai Kiadó (Budapest, 1972), 69-76.
[3] T. Popoviciu, Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare, Academia Rep. Pop. Romine, Lucrarile sessiunnii generale stiintifice din 2-12 iunie 1950 (1951), 1664-1667.
[4] O. Shisha, C. Sternin and M. Fekete, On the accuracy of approximation to given functions by certain interpolatory polynomials of given degree, Riveon Lematematica, 8 (1954), 59-64.
[5] E. Moldovan, Observatii asupra unor pocedee de interpolare generalizate, Acad. Rep. Pop. Romine, Bul. Sti. Sect. Sti. Mat. Fiz., 6 (1954), 472-482.
[6] O. Shisha and B. Mond, The rapidity of convergence of the Hermite-Fejér approximation to functions of one or several variables, Proc. Am. Math. Soc., 16 (1965), 1269-1276.
[7] P. O. H. Vértesi, On the convergence of Hermite-Fejér interpolation, Acta Math. Acad. Sci. Hungar., 22 (1971), 151-158.
[8] R. B. Saxena, A note on the rate of convergence of Hermite-Fejér interpolation polynomials, Canad. Math. Bull., 17 (1974), 299-301.
[9] S. J. Goodenough and T. M. Mills, A new estimate for the approximation of functions by Hermite-Fejér interpolation polynomials, J. Approximation Theory, 31 (1981), 253-260.
[10] R. Bojanic and F. Cheng, Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejér polynomials, Second Edmonton Conference on Approximation Theory (1982), Canadian Math. Soc. Conference Proceedings, 3 (1983), 5-17.
[11] R. Bojanic, An estimate of the rate of convergence for Fourier series of functions of bounded variation, Publ. Inst. Math. (Belgrade), 26 (40) (1979), 57-60.
[12] F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approximation Theory, 39 (1983), 259-274.
[13] R. Bojanic and F. Cheng, Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation, J. Math. Anal. Appl., 141 (1989), 136-151.
(Received May 26, 1988)

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
COLUMBUS, OHIO 43210
USA

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY 40506
USA

NOTE ON DECOMPOSITION OF BOUNDED FUNCTIONS INTO THE SUM OF PERIODIC TERMS

Z. GAJDA (Katowice)

A motivation for the present note arises from the paper [2] written jointly by M. Laczkovich and Sz. Révész. The following two definitions are due to the authors of the paper just mentioned.

Definition 1. Let A be a non-empty set and let T be a transformation of A into itself. A real-valued function g defined on A is called T-periodic if and only if $\Delta_{T} g=0$, where $\Delta_{T} g:=g \circ T-g$.

Definition 2. Let \mathscr{F} be a class of real-valued functions defined on a set A and let T_{1}, \ldots, T_{k} map A into itself. The class $\mathcal{F}_{\mathcal{F}}$ is said to have the decomposition property (d.pr.) with respect to T_{1}, \ldots, T_{k} if and only if for every function $f \in \mathscr{F}$ satisfying the condition

$$
\Delta_{T_{1}} \ldots \Delta_{T_{k}} f=0
$$

there exist functions $f_{1}, \ldots, f_{k} \in \mathscr{F}$ such that f_{i} is T_{i}-periodic ($i=1, \ldots, k$) and $f=f_{1}+\ldots+f_{k}$.

It was proved in [2] that numerous important classes of real functions have the d. pr. with respect to reasonable families of transformations. Among others the following result holds true:

Theorem 1. Suppose $\left\{T_{1}, \ldots, T_{k}\right\}$ to be a family of commuting transformations of a set A into itself (i.e. $T_{i} \circ T_{j}=T_{j} \circ T_{i}$ for $i, j=1, \ldots, k$). Then the class $B(A)$ of all bounded real-valued functions defined on A has the d. pr. with respect to T_{1}, \ldots, T_{k}.

The proof of this fact presented in [2] is based on a theorem describing kernels of superpositions of bounded linear operators in some Banach spaces. The main purpose of the present note is to give another quite simple and straightforward proof of the same result (it is mentioned in [2], Remark 4.8). Our method relies on the well known fact (cf. [1], II.4, Exercise 22) that the space ℓ^{∞} of all bounded real sequences admits a linear functional LIM : $\ell^{\infty} \rightarrow \mathbf{R}$ with the following two properties:

$$
\begin{gather*}
\liminf _{n \rightarrow \infty} x_{n} \leqq \operatorname{LIM}_{n \rightarrow \infty} x_{n} \leqq \limsup _{n \rightarrow \infty} x_{n}, \tag{1}\\
\operatorname{LIM} x_{n+1}=\underset{n \rightarrow \infty}{\operatorname{LIM} x_{n}} \tag{2}
\end{gather*}
$$

for all sequences $\left\{x_{n}\right\}_{n \in \mathbf{N}} \in \ell^{\infty}$. Here and in the sequel we write $\operatorname{LIM}_{n \rightarrow \infty} x_{n}$ instead of $\operatorname{LIM}\left(\left\{x_{n}\right\}_{n \in N}\right)$. In particular, (1) implies that $\operatorname{LIM}_{n \rightarrow \infty} 1=1$ and $\|$ LIM $\|=1$. Any linear functional on ℓ^{∞} satisfying (1) and (2) is called a Banach limit.

Proof of Theorem 1. For the sake of simplicity we restrict ourselves to the case $k=2$. The proof of the general case is similar.

Assume that a function $f \in B(A)$ fulfils the condition

$$
\Delta_{T_{1}} \Delta_{T_{2}} f=0
$$

Denoting by I the identity operator and putting $B_{i} f:=f \circ T_{i}(i=1,2)$ we infer that for each positive integer j the following formula holds:

$$
\left(I-B_{i}^{j}\right)=\left(I-\left(\Delta_{T_{i}}+I\right)^{j}\right)=\Delta_{T_{i}} C_{i}
$$

where B_{i}^{j} stands for the j-th iterate of the operator B_{i} and C_{i} is a polynomial of $\Delta_{T_{i}}$. Hence and from the fact that the operators T_{1} and T_{2} commute it follows that

$$
f-B_{1}^{n} f--B_{2}^{m} f+B_{1}^{n} B_{2}^{m} f=\left(I-B_{1}^{n}\right)\left(I-B_{2}^{m}\right) f=0
$$

for all $n, m \in \mathbf{N}$, or more explicitly,

$$
\begin{equation*}
f(x)-f\left(T_{1}^{n}(x)\right)-f\left(T_{2}^{m}(x)\right)+f\left(T_{1}^{n}\left(T_{2}^{m}(x)\right)\right)=0 \tag{3}
\end{equation*}
$$

for all $x \in A$ and $n, m \in \mathbf{N}$.
Let LIM denote a Banach limit defined for all sequences in ℓ^{∞}. For each $x \in A$ the sequence $\left\{f\left(T_{1}^{n}(x)\right)\right\}_{n \in \mathbf{N}}$ is bounded and, therefore, we may correctly define

$$
g(x):=\operatorname{LiM}_{n \rightarrow \infty} f\left(T_{1}^{n}(x)\right), \quad x \in A
$$

Since $\|\mathrm{LIM}\|=1$, we obtain

$$
|g(x)| \leqq \sup _{n \in \mathbf{N}}\left|f\left(T_{1}^{n}(x)\right)\right| \leqq \sup _{y \in A}|f(y)|=\|f\|_{\infty}, \quad x \in A
$$

which ensures that $g \in B(A)$. Now fix an $m \in \mathbf{N}$ in equation (3) and let the functionanl LIM act on both sides of (3) considered as sequences corresponding to the index n running over N. It is clear that a Banach limit of a constant sequence is just the same constant. Thus, equation (3) and linearity of the functional LIM yield

$$
f(x)-g(x)-f\left(T_{2}^{m}(x)\right)+g\left(T_{2}^{m}(x)\right)=0
$$

for all $x \in A$ and $m \in \mathbf{N}$.
Similarly, setting

$$
h(x):=\operatorname{LIM}_{m \rightarrow \infty} f\left(T_{2}^{m}(x)\right)-\operatorname{LIM}_{m \rightarrow \infty} g\left(T_{2}^{m}(x)\right), \quad x \in A
$$

we deduce that $h \in B(A)$ and

$$
f(x)-g(x)-h(x)=0, \quad x \in A .
$$

Moreover,

$$
g\left(T_{1}(x)\right)=\operatorname{LIM}_{n \rightarrow \infty} f\left(T_{1}^{n+1}(x)\right)=\operatorname{LIM}_{n \rightarrow \infty} f\left(T_{1}^{n}(x)\right)=g(x)
$$

and

$$
\begin{aligned}
& h\left(T_{2}(x)\right)=\operatorname{LIM}_{m \rightarrow \infty} f\left(T_{2}^{m+1}(x)\right)-\operatorname{LIM}_{m \rightarrow \infty} g\left(T_{2}^{m+1}(x)\right)= \\
& \quad=\operatorname{LIM}_{m \rightarrow \infty} f\left(T_{2}^{m}(x)\right)-\operatorname{LIM}_{m \rightarrow \infty} g\left(T_{2}^{m}(x)\right)=h(x),
\end{aligned}
$$

which completes the proof.
From now on we assume that the set A is endowed with a uniformity U; in other words (A, U) is a uniform space.

Definition 3. A family $\left\{T_{s}: s \in S\right\}$ of transformations of A into itself is called equicontinuous if and only if for each $U \in U$ there exists a $V \in U$ with the following property:

$$
(x, y) \in V \text { implies that }\left(T_{s}(x), T_{s}(y)\right) \in U \text { for all } s \in S
$$

In what follows we apply this general definition to special families consisting of iterates of given transformations.

Theorem 2. Let T_{1}, \ldots, T_{k} be commuting transformations of A into itself such that for each $i=1, \ldots, k$ the family $\left\{T_{i}^{n}: n \in \mathbf{N}\right\}$ is equicontinuous. Then the class $U C B(A)$ of all real-valued uniiformly continuous bounded functions defined on A has the d.pr. with respect to T_{1}, \ldots, T_{k}.

Proof. A direct inspection of the proof of Theorem 1 shows that the following fact is sufficient to derive the assertion of Theorem 2: if $f \in U C B(A)$ and $T: A \rightarrow A$ is a transformation with the equicontinuous family of its iterates, then the function $g: A \rightarrow \mathbf{R}$ defined by

$$
g(x):=\operatorname{LIM}_{n \rightarrow \infty} f\left(T^{n}(x)\right), \quad x \in A
$$

is also an element of the class $U C B(A)$. To check this let us fix an $\varepsilon>0$. From the uniform continuity of f we infer the existence of such a $U \in U$ that

$$
|f(u)-f(v)| \leqq \varepsilon \quad \text { whenever } \quad(u, v) \in U .
$$

On the other hand, by virtue of the equicontinuity of the family $\left\{T^{n}: n \in \mathbf{N}\right\}$, there exists a $V \in U$ such that $(x, y) \in V$ implies that $\left(T^{n}(x), T^{n}(y)\right) \in U$ for all $n \in \mathbf{N}$. Consequently,

$$
\sup _{n \in \mathbf{N}}\left|f\left(T^{n}(x)\right)-f\left(T^{n}(y)\right)\right| \leqq \varepsilon,
$$

provided $(x, y) \in V$. Since $\|$ LIM $\|=1$, we have

$$
|g(x)-g(y)|=\left|\operatorname{LIM}_{n \rightarrow \infty}\left(f\left(T^{n}(x)\right)-f\left(T^{n}(y)\right)\right)\right| \leqq \varepsilon
$$

whenever $(x, y) \in V$, which proves that g is uniformly continuous. Its boundedness can be verified by the same argument as in the proof of Theorem 1.

Corollary. If G is an Abelian topological group, then the class $U C B(G)$ has the d.pr. with respect to any finite system of translations of G.

Proof. Since G is Abelian, any two translations of G commute. Moreover, let us note that if T is a translation of G, then for each $n \in \mathbf{N}$ and all $(x, y) \in G$ we have

$$
T^{n}(x)-T^{n}(y)=x-y .
$$

This guarantees that the family $\left\{T^{n}: n \in \mathrm{~N}\right\}$ is equcontinuous with respect to the standard uniformity generated by the topology of G. Finally, it suffices to apply Theorem 1.

References

[1] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience Publishers (New York-London, 1958).
[2] M. Laczkovich and Sz. Révész, Decompositions into the sum of periodic functions belonging to a given Banach space, to appear in Acta Math. Hungar.
(Received May 19, 1988)

INSTITUTE OF MATHEMATICS

SILESIAN UNIVERSITY
BANKOWA 14
40-007 KATOWICE
POLAND

INFLUENCE OF NORMALITY ON MAXIMAL SUBGROUPS OF SYLOW SUBGROUPS OF A FINITE GROUP

M. RAMADAN (Cairo)

1. Introduction

Throughout this paper the term group always means a group of finite order. In [5] Srinivasan showed that groups in which maximal subgroups of Sylow subgroups are normal are supersolvable. In Section 3, we prove that if G is a solvable group and all maximal subgroups of Sylow subgroups of Fit (G) are normal in G, then G is supersolvable. We also prove that if all maximal subgroups of Sylow subgroups of G, except possibly for the largest prime dividing $|G|$, are normal in G, then G possesses an ordered Sylow tower and $G / O_{p}(G)$ is supersolvable. Furthermore, using the above results, we also obtain some results concerning the supersolvability of a finite group G.

Our notation is standard and taken mainly from [2].

2. Preliminaries

Let G be a finite group of order $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}$, where $p_{1}>p_{2}>\ldots>$ $>p_{n}$. We say that G has an ordered Sylow tower if there exists a series $1=G_{0}<G_{1}<\ldots<G_{n}=G$ of normal subgroups of G such that for each $i=$ $=1,2, \ldots, n, G_{i} / G_{i-1}$ is isomorphic to a Sylow p_{i}-subgroup of G. If G is supersolvable, then G has an ordered Sylow tower [6].

We shall need the following result in the next section.
2.1 (Baer [4]; see also [1, p. 720]). Let G be a solvable group. Suppose that $\operatorname{Fit}(G)$ possesses a normal series:

$$
\Phi(G)=K_{0} \leqq K_{1} \leqq \ldots \leqq K_{n}=\operatorname{Fit}(G)
$$

such that K_{i} are normal subgroups of G and $\left|K_{j} / K_{j-1}\right|=$ prime, $1 \leqq i \leqq n$. Then G is supersolvable.

3. Main results

In this section, we prove the following theorems.

Theorem 3.1. Assume that G is solvable and every maximal subgroup of the Sylow subgroups of $\operatorname{Fit}(G)$ is normal in G. Then G is supersolvable.

Proof. We prove the theorem by induction on $|G|$. Suppose that $\Phi(G) \neq 1$. Then there exists a prime p such that $p||\Phi(G)|$. Since $\Phi(G) \leqq$ $\leqq \operatorname{Fit}(G)$, it follows that $p\left||\operatorname{Fit}(G)|\right.$. Let P_{1} be a Sylow p-subgroup of $\Phi(G)$. Since $P_{1} \operatorname{char} \Phi(G) \triangleleft G$, we have that $P_{1} \triangleleft G$. Set Fit $\left(G / P_{1}\right)=L / P_{1}$. Since L / P_{1} is a normal nilpotent subgroup of G / P_{1} and $P_{1} \leqq \Phi(G)$, by [6, p. 168], it follows that L is a normal nilpotent subgroup of G, and so $L \leqq \operatorname{Fit}(G)$. Hence $\operatorname{Fit}\left(G / P_{1}\right)=\operatorname{Fit}(G) / P_{1}=L / P_{1}$. Let P_{2} / P_{1} be a maximal subgroup of the Sylow p-subgroup of $\operatorname{Fit}(G) / P_{1}$. Then $P_{2} / P_{1} \triangleleft G / P_{1}$ as $P_{2} \triangleleft G$ by hypothesis. Also, if $Q_{1} P_{1} / P_{1}$ is a maximal subgroup of the Sylow q-subgroup of $\operatorname{Fit}\left(G / P_{1}\right)=\operatorname{Fit}(G) / P_{1}$, then by hypothesis, $Q_{1} \triangleleft G$ and so $Q_{1} P_{1} / P_{1} \triangleleft G / P_{1}$. Hence G / P_{1} is supersolvable by induction on the order of G.

Since $G / P_{1} / \Phi(G) / P_{1} \cong G / \Phi(G)$, it follows that $G / \Phi(G)$ is supersolvable. By [1, p. 713], we have that G is supersolvable. Thus $\Phi(G)=1$. Let P be a Sylow subgroup of Fit (G). Since $P \operatorname{charFit}(G) \triangleleft G$, we have that $P \triangleleft G$. By $[6$, p. 162], $\Phi(P) \leqq \Phi(G)=1$. Hence $\Phi(P)=1$, for every Sylow subgroup P of Fit(G).

Since G is solvable and $\Phi(G)=1$, by $[1$, p. 279], we have that $\operatorname{Fit}(G)=$ $=R_{1} \times R_{2} \times \ldots R_{m}$, where R_{i} are (elementary abelian) minimal normal subgroups of G. Clearly, we may assume that $R_{1} \leqq P$, where P is a Sylow p-subgroup of $\operatorname{Fit}(G)$. If $R_{1}=P$, then there exists a maximal subgroup P_{1} of $P=R_{1}$. By hypothesis, $P_{1} \triangleleft G$. If $P_{1} \neq 1$, then we have a contradiction as R_{1} is a minimal normal subgroup of G. Thus $P_{1}=1$, and so $\left|R_{1}\right|=$ $=$ prime. Now, we may assume that $R_{1}<P$. Since $\Phi(P)=1$, there exists a maximal subgroup P_{2} of P such that $R_{1} \notin P_{2}$. By hypothesis, $P_{2} \triangleleft G$, and so $P_{2} \cap R_{1} \triangleleft G$. Since R_{1} is a minimal normal subgroup of G, we have that $P_{2} \cap R_{1}=1$. Since $P=P_{2} R_{1}$, it follows that $p=\left|P: P_{2}\right|=\mid R_{1}: P_{2} \cap$ $\cap R_{1}\left|=\left|R_{1}\right|\right.$. Set $K_{i}=R_{1} \times R_{2} \times \cdots \times R_{i}$, where $i=1,2, \ldots, m$. Consider the chain $1=\Phi(G) \leqq K_{1} \leqq \ldots \leqq K_{m}=\operatorname{Fit}(G)$. Clearly $K_{i} \triangleleft G$, for each i, and $\left|K_{i} / K_{i-1}\right|=$ prime. Applying Baer's theorem (2.1), it follows that G is supersolvable.

The following example shows that the solvability of G in Theorem 3.1 can not be omitted.

Example 3.2. Set $G=H \times K$, where H is nilpotent and K is a non--abelian simple group. Clearly, G is not solvable. We notice that Fit $(G)=$ $=\operatorname{Fit}(H)=H$ and every maximal subgroup of the Sylow subgroups of Fit (G) is normal in G.

Now, we give an example showing that the converse of our Theorem 3.1 is not true:

Example 3.3. Set $G=Z / 3 Z \times S_{3} ; G$ is supersolvable, but there exists a maximal subgroup of a Sylow subgroup of $\operatorname{Fit}(G)$ which is not normal in G.

As an immediate consequence of theorem 3.1 we have:
Corollary 3.4 (Srinivasan [5]). Let G be a finite group. If every maximal subgroup of every Sylow subgroup of G is normal, then G is supersolvable.

Proof. Every Sylow subgroup of G is either normal or cyclic. Clearly, G is solvable. Now, it follows easily that the maximal subgroups of the Sylow subgroups of $\operatorname{Fit}(G)$ are normal in G. Applying Theorem 3.1, G is supersolvable.

Theorem 3.5. Assume that G / H is supersolvable and all maximal subgroups of the Sylow subgroups of H are normal in G. Then G is supersolvable.

Proof. We consider two cases.
Case 1: $P=H$, where P is a p-subgroup of G. Let $\mathbf{m}(P)=\left\{P_{1}, P_{2}, \ldots\right.$, $\left.P_{n}\right\}$, where $n \geqq 1$, be the set of all maximal subgroups of P. By hypothesis, $P_{i} \triangleleft G$ for all $i=1,2, \ldots, n$. Since $G / P_{i} / P / P_{i} \cong G / P$, we have that $G / P_{i} / P / P_{i}$ is supersolvable. But $\left|P / P_{i}\right|=p$, and so by [6, p. 158], G / P_{i} is supersolvable, $1 \leqq i \leqq n$. Hence by [6, p. 159], $G / P_{1} \times G / P_{2} \times \cdots \times G / P_{n}$ is supersolvable. Since $G /\left(P_{1} \cap P_{2} \cap \ldots \cap P_{n}\right) \tilde{\subset} G / P_{1} \times G / P_{2} \times \cdots \times G / P_{n}$, then $G / \bigcap_{i=1}^{n} P_{i}$ is supersolvable. By [1, p. 713] G is supersolvable.

Case 2: $P<H$. By Corollary 3.4, it follows that H is supersolvable. Hence by [6, p. 158], H possesses an ordered Sylow tower. So, P_{1} is normal in H, where P_{1} is a Sylow p_{1}-subgroup of H and p_{1} is the largest prime dividing the order of H. By induction G / P_{1} is supersolvable. By Case 1 , it follows that G is supersolvable.

We are now in the position to prove the following result:
Theorem 3.6. Assume that p is the largest prime dividing the order of G and that every maximal subgroup of the Sylow q-subgroups of G is normal for all $q \in \Pi(G)-\{p\}$. Then G possesses an ordered Sylow tower and $G / O_{p}(G)$ is supersolvable. In particular, G is solvable.

Proof. Let L be the product of the maximal subgroups of the Sylow $p_{i^{-}}$ subgroups of G for all $p_{i} \in \Pi(G)-\{p\}$. Then G / L is a group of order dividing $p_{1} p_{2} \ldots p_{r} \cdot|P|$, where $p_{1}<p_{2}<\ldots<p_{r}<p$. By [2, p. 257], it follows that G / L possesses an ordered Sylow tower and so G / L is solvable. Clearly L is nilpotent. Hence G is solvable. By Hall's theorem (see [2, p. 232]), there exists a set $\left\{P_{1}, P_{2}, \ldots, P_{n}=P\right\}$ of Sylow subgroups of G, such that $P_{i} P$, $1 \leqq i \leqq n-1$, are subgroups of G. Set $G_{i}=P_{i} P, 1 \leqq i \leqq n-1$. Let $\mathbf{m}\left(P_{i}\right)=$ $=\left\{P_{i 1}, P_{i 2}, \ldots, P_{i s}\right\}$ be the set of all maximal subgroups of P_{i}. By hypothesis $P_{i j} \triangleleft G, 1 \leqq j \leqq s$, and so $\left|G_{i} / P_{i j}\right|=p_{i}|P|, p_{i}<p$. By [2, p. 257], $G_{i} / P_{i j}$ has a normal p_{i}-complement and so $G_{i} / \bigcap_{j=1}^{s} P_{i j}$ has a normal p_{i}-complement, that
is $G_{i} / \Phi\left(P_{i}\right)$ also has one. If P_{i} is not cyclic, then there exist two distinct maximal subgroups $P_{i 1}, P_{i 2}$ of P_{i}. Since $P_{i 1} \triangleleft G ; P_{i 2} \triangleleft G$ by hypothesis, then $P_{i} \triangleleft G$, so $P_{i} \triangleleft G_{i}$. Hence $\Phi\left(P_{i}\right) \leqq \Phi\left(G_{i}\right)$ by $\left[6\right.$, p. 162]. So $G_{i} / \Phi\left(G_{i}\right)$ has a normal p_{i}-complement. Hence by $[1, \mathrm{p} .689] G_{i}$ has one as well. Now suppose that P_{i} is cyclic, by [2, p. 257], G_{i} has a normal p_{i}-complement. Since $P \triangleleft P_{i} P$, we have that $P_{i} P \leqq N_{G}(P), 1 \leqq i \leqq n-1$, and so $P \triangleleft G, P=$ $=O_{p}(G)$. Now $G / O_{p}(G) \cong K$, where K is a p^{\prime}-Hall subgroup of G. Since every maximal subgroup of the Sylow subgroups of K is normal in K, by Corollary 3.4, K is supersolvable. Hence G possesses an ordered Sylow tower and $G / O_{p}(G)$ is supersolvable.

As an immediate consequence of Theorem 3.6 we have:
Corollary 3.7. Assume that $p \geqq q$ for every prime q in $\Pi(G), O_{p}(G)=$ $=1$ and every maximal subgroup of the Sylow q-subgroups of G, for all $q \neq p$ is normal in G. Then G is a supersolvable p^{\prime}-group.

Proof. By Theorem 3.6, G possesses an ordered Sylow tower, and $G / O_{r}(G)$ is supersolvable, where r is the largest prime in $\Pi(G)$.

Since $O_{p}(G)=1$, it follows easily that $p \nmid|G|$ and so G is a p^{\prime}-group. Applying Theorem 3.6, it follows that G is supersolvable.

Acknowledgement. The author wishes to thank Professor Dr. M. Asaad, Math. Dept., Faculty of Science, Cairo University, for his work in reviewing the paper and for a number of valuable suggestions and comments.

References

[1] B. Huppert, Endliche Gruppen 1 (Berlin--Heidelberg--New York, 1967).
[2] D. Gorenstein, Finite Groups (New York, 1968).
[3] J. S. Rose, A Course on Group Theory, Cambridge Univ. Press (London--New York---Melbourne, 1978).
[4] R. Baer, Supersolvable immersion, Can. J. Math., 11 (1959), 353--369.
[5] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Isr. J. Math., 35 (1980), 210--214.
[6] W. R. Scott, Group Theory, Prentice--Hall (Englewood Cliffs, N. J., 1964).
(Received June 14, 1988, revised September 30, 1988)

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
CAIRO UNIVERSITY
GIZA, EGYPT

CERTAIN UNBOUNDED HERMITE-FEJÉR INTERPOLATORY POLYNOMIAL OPERATORS

R. SAKAI (Aichi Nishikamo)

1. Introduction

Let $S_{n}=\left\{x_{k}=x_{k n} ; k=1,2, \ldots, n\right\}$ denote the zeros of the Chebyshev polynomial $T_{n}(x)=\cos (n t), x=\cos t, n=1,2,3, \ldots$ in decreasing order; -$-1<x_{n}<x_{n-1}<\ldots<x_{1}<1$. We consider the generalized Hermite-Fejér interpolatory polynomial $L_{m, n}[f, x]$ corresponding to the abscissas S_{n} as follows:
$L_{m, n}\left[f, x_{k}\right]=f\left(x_{k}\right), \quad L_{m, n}^{(j)}\left[f, x_{k}\right]=0, \quad k=1,2, \ldots, n, \quad j=1,2, \ldots, m-1$, for $f \in C[-1,1]$.

In [1] we showed that for every even m

$$
\left\|L_{m, n}[f]-f\right\|_{C[-1,1]}=O(1) w\left(f, n^{-1} \log n\right)
$$

where $w(f, h)$ is the modulus of continuity of f, and for odd $m \leqq 17$ the operator $L_{m, n}[f]$ is unbounded. We conjectured that for all odd numbers m the operators $L_{m, n}[f]$ are unbounded. In this paper we prove that this is correct.

2. Preliminaries and theorems

The polynomial

$$
\begin{equation*}
\ell_{k}(x)=\ell_{k, n}(x)=\omega_{n}(x) /\left\{\left(x-x_{k}\right) \omega_{n}^{\prime}\left(x_{k}\right)\right\}, \quad k=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $\omega_{n}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ are the fundamental polynomials of Lagrange interpolation corresponding to the set S_{n}. We define the fundamental polynomials of the generalized Hermite-Fejér interpolation by

$$
\begin{equation*}
H_{k}(x)={ }_{m} H_{k, n}(x)=\ell_{k, n}(x)^{m} \sum_{s=0}^{n-1} A_{k}(n, s)\left(x-x_{k}\right)^{s} \tag{2}
\end{equation*}
$$

such that
(3) $H_{k}\left(x_{s}\right)=\delta_{s, k}, \quad H_{k}^{(j)}\left(x_{s}\right)=0, \quad s, k=1,2, \ldots, n, j=1,2, \ldots, m-1$.

Our main purpose is to show the following theorem.

Theorem 1. For each odd number m we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|m H_{k, n}\left(x_{0}\right)\right| \sim \log n, \tag{4}
\end{equation*}
$$

where $-1<x_{0}<1$. Consequently, the operator $L_{m, n}[f]$ is unbounded.
The polynomial $y=T_{n}(x)$ satisfies the following linear homogeneous differential equations:

$$
\left(1-x^{2}\right) y^{(j+2)}-(2 j+1) x y^{(j+1)}+\left(n^{2}-j^{2}\right) y^{(j)}=0, \quad j=0,1,2, \ldots .
$$

Using this for $\left|x_{k}\right| \leqq 1-\varepsilon, 0<\varepsilon<1$, we have

$$
\left\{\begin{array}{l}
T_{n}^{(2 j)}\left(x_{k}\right) / T_{n}^{\prime}\left(x_{k}\right)=(-1)^{j+1} j(2 j-1) x_{k} X_{k}^{-2 j} n^{2 j-2}+O\left(n^{2 j-4}\right), \tag{5}\\
T_{n}^{(2 j+1)}\left(x_{k}\right) / T_{n}^{\prime}\left(x_{k}\right)=(-1)^{j} X_{k}^{-2 j} n^{2 j}+O\left(n^{2 j-2}\right),
\end{array}\right.
$$

where $X_{k}=\sin \left(\cos ^{-1} x_{k}\right)$. From (5) for $\left|x_{k}\right| \leqq 1-\varepsilon$ we obtain

$$
\begin{gather*}
\quad \ell_{k}^{(t)}\left(x_{k}\right)=T_{n}^{(t+1)}\left(x_{k}\right) /\left\{(t+1) T_{n}^{\prime}\left(x_{k}\right)\right\}= \tag{6}\\
= \begin{cases}(-1)^{j}(2 j+1)^{-1} X_{k}^{-2 j} n^{2 j}+O\left(n^{2 j-2}\right) & (t=2 j), \\
(-1)^{j}\{(2 j+1) / 2\} x_{k} X_{k}^{-2 j-2} n^{2 j}+O\left(n^{2 j-2}\right) & (t=2 j+1),\end{cases}
\end{gather*}
$$

In what follows, ε denotes a fixed number with $0<\varepsilon<1 / 2$, and we consider k 's such that $-1+\varepsilon \leqq x_{k} \leqq 1-\varepsilon$. Then we write the above estimation (6) as follows:

$$
\ell^{(t)}\left(x_{k}\right) \approx \begin{cases}(-1)^{j}(2 j+1)^{-1} X_{k}^{-2 j} n^{2 j} & (t=2 j), \tag{7}\\ (-1)^{j}\{(2 j+1) / 2\} x_{k} X_{k}^{-2 j-2} n^{2 j} & (t=2 j+1),\end{cases}
$$

If we set

$$
\begin{equation*}
K_{m, j}(x)=\left[\left\{\ell_{k}(x)\right\}^{m}\right]^{(j)}, \tag{8}
\end{equation*}
$$

from (7) we have

$$
\begin{equation*}
K_{m, 2 j}\left(x_{k}\right) \approx(-1)^{j} b(2 j, m)\left(n / X_{k}\right)^{2 j} \tag{9}
\end{equation*}
$$

where $b(2 j, m)$ is a polynomial in m of degree j. In $[1, \S 4]$ we showed that if $b(2 j, m)$ has the form

$$
\begin{equation*}
b(2 j, m)=\sum_{s=1}^{j}(-1)^{j-s} b_{s, j} m^{s}, \tag{10}
\end{equation*}
$$

where $b_{s j}>0$, the estimation (4) is correct, so we have to prove
Theorem 2. In formula (10),

$$
b_{s j}>0, \quad s=1,2, \ldots, j, j=1,2, \ldots,(m-1) / 2 .
$$

Let us remark that (10) is true in more general cases, too.
Proof. First we investigate $\left\{(d / d m) K_{m, 2 j}\left(x_{k}\right)\right\}_{m=0}$. Since we consider a neighbourhood of $x=x_{k}$ we may assume $\ell_{k}(x)>0$. It can be proved that

$$
\begin{aligned}
& \left\{(d / d m) K_{m, 2 j}\left(x_{k}\right)\right\}_{m=0}=\left[\left(d^{2 j} / d x^{2 j}\right)\left\{\left(\ell_{k}(x)\right)^{m} \log \left(\ell_{k}(x)\right)_{m=0}\right\}_{x=x_{k}}=\right. \\
& \quad=\left[\left(d^{2 j} / d x^{2 j}\right) \log \left(\ell_{k}(x)\right)\right]_{x=x_{k}}=-\sum_{s \neq k}(2 j-1)!\left(x_{s}-x_{k}\right)^{-2 j}<0,
\end{aligned}
$$

thus, by (9) and (10), $b_{1 j}>0$.
Now we consider the other coefficients. We see that

$$
K_{2 m, 2(j+1)}\left(x_{k}\right)=\sum_{s=0}^{2 j+2}\binom{2 j+2}{s} K_{m, s}\left(x_{k}\right) K_{m, 2 j-s+2}\left(x_{k}\right),
$$

thus

$$
\begin{aligned}
& K_{2 m, 2(j+1)}\left(x_{k}\right)-2 K_{m, 2(j+1)}\left(x_{k}\right) K_{m, 0}\left(x_{k}\right)= \\
& =\sum_{s=1}^{2 j+1}\binom{2 j+2}{s} K_{m, s}\left(x_{k}\right) K_{m, 2 j-s+2}\left(x_{k}\right) .
\end{aligned}
$$

Since $K_{m, 2 t+1}\left(x_{k}\right)=o\left(n^{2 t+1}\right)$ and by $[1,(4.10)] b(2 j, m)>0$,

$$
K_{2 m, 2(j+1)}\left(x_{k}\right)-2 K_{m, 2(j+1)}\left(x_{k}\right) \approx \sum_{s=1}^{j}\binom{2 j+2}{2 s} K_{m, 2 s}\left(x_{k}\right) K_{m, 2 j-2 s+2}\left(x_{k}\right),
$$

that is

$$
b(2(j+1), 2 m)-2 b(2(j+1), m)=\sum_{s=1}^{j}\binom{2 j+2}{2 s} b(2 s, m) b(2 j-2 s+2, m)
$$

whence comparing the coefficients and by induction we get Theorem 2 .
Acknowledgement. The author would like to thank the referee and Professor P. Vértesi for their helpful suggestions.

References

[1] R. Sakai, Hermite-Fejér interpolation prescribing higher order derivatives, in Progress in Approximation Theory (edited by P. Nevai and A. Pinkus), Academic Press Inc. (1991), 781-759.
[2] P. Vértesi, Hermite-Fejér interpolations of higher order. I, Acta Math. Hungar., 54 (1989), 135-152.
[3] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston (New York, 1966).
[4] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., Colloquium Publication, vol. 23 (1939).
(Received June 17, 1988; revised April 12, 1989)
DEPT. OF MATH.
AICHI PREFECTURAL
KAMOGAOKA SENIOR HIGH SCHOOL OTASHIRO 1137, FUJIOKA-CHO INO AICHI NISHIKAMO JAPAN

THE MODULUS OF CONTINUITY AND THE BEST APPROXIMATION OVER THE DYADIC GROUP

J. TATEOKA (Akita)

1. Introduction

The connection between the modulus of continuity and the best approximation of functions by Walsh polynomials was studied by Watari [5] for L^{p} space, $1 \leqq p<\infty$. A similar result for $0<p<1$ was obtained by Stroženko, Krotov and Oswal'd [3]. On the other hand, direct and converse theorems for the Hardy space $H^{p}, 0<p<\infty$, over the n-dimensional torus were proved by Colzani [1]. In this paper we shall prove these results for H^{p} space, $0<p \leqq 1$, and VMO space over the dyadic group.

The dyadic group G is the set of the sequences $x=\left(x_{n}, n=1,2, \ldots\right)$, consisting of 0 's and 1 's, with termwise addition modulo 2 , denoted by + . The topology of G is defined by the neighborhoods $V_{n}=\left\{x \in G: x_{1}=\ldots=\right.$ $\left.=x_{n}=0\right\},(n=0,1, \ldots)\left(\right.$ with a convenience $\left.V_{0}=G\right)$, of the identity element. The Walsh functions are given by
$w_{0}(x) \equiv 1, w_{n}(x)=r_{n_{1}}(x) \ldots r_{n_{k}}(x)$ for $n=2^{n_{1}}+\ldots+2^{n_{k}}\left(n_{1}>\ldots n_{k} \geqq 0\right)$, where $r_{n}(x)=(-1)^{x_{n+1}}(n=0,1, \ldots)$. A Walsh polynomial of degree n is a linear combination $\sum_{k=0}^{n-1} c_{k} w_{k}$ with $c_{n-1} \neq 0$; the totality of polynomials of degree not exceeding n is denoted by $\mathfrak{S}(n)$ and the union of the $\mathfrak{S}(n)$'s by \mathfrak{S}. We denote by \mathfrak{S}^{\prime} the set of all formal Walsh series with complex coefficients.

$$
\begin{aligned}
& \text { For } \begin{aligned}
& \hat{f}=\sum_{k=0}^{\infty} \hat{f}(k) w_{k} \in \mathbb{S}^{\prime} \\
& \qquad S_{n} \hat{f}(x)=\sum_{k=0}^{n-1} \hat{f}(k) w_{k}(x), \quad f^{*}(x)=\sup \left\{\left|S_{2^{n}} \hat{f}(x)\right|: n \geqq 0\right\}
\end{aligned}, ~
\end{aligned}
$$

will denote the n-th partial sum and the maximal function, respectively. The spaces considered in this paper are the following ones.
$H^{p}(G)(0<p \leqq 1)$ is the space of all $\hat{f} \in \mathbb{S}^{\prime}$ such that $f^{*} \in L^{p}(G) ;$ the quasi-norm in H^{p} is defined by $\|\hat{f}\|_{H^{p}}=\left\|f^{*}\right\|_{L^{p}} . \operatorname{BMO}(G)$ is the space of
integrable functions f on G such that $\|f\|_{\text {BMO }}=\sup \left\{\left|f-f_{I}\right|_{I}\right\}<\infty$, where $f_{I}=|I|^{-1} \int_{I} f(x) d x$ and the sup is taken over all dyadic intervals I in G. $\mathrm{VMO}(G)$ is the space of all BMO functions f on G such that $\lim _{|I| \rightarrow 0}\left|f-f_{I}\right|_{I}=0$. It is known that for all $\hat{f} \in H^{p}(G)(0<p \leqq 1)$ the limit $f(x)=\lim _{n \rightarrow \infty} S_{2^{n}} \hat{f}(x)$ exists a.e. and $f \in L^{p}(G)$. Moreover, if $p \geqq 1$ then $\hat{f}(n), n \geqq 0$, are the Walsh---Fourier coefficients of f.

We shall use the common notation X for the spaces $H^{p}(G)$ and $\mathrm{BMO}(G)$.
Finally let us write, for the modulus of continuity and the best approximation

$$
\omega^{X}(\delta ; \hat{f})=\sup \left\{\|\hat{f}(\cdot+h)-\hat{f}(\cdot)\|_{X}:|h| \leqq \delta\right\},
$$

and

$$
E_{n}^{X}(\hat{f})=\inf \left\{\|\hat{f}-P\|_{X}: P \in \mathbb{S}(n)\right\}
$$

respectively, where $\hat{f}(\cdot+h)$ has the coefficients $\hat{f}(n) w_{n}(h), n \geqq 0$.
The letter C denotes positive constant which may have different values in each occasion.
2. We begin with some lemmas:

Lemma 1. For any $f \in X$, there is a polynomial of best approximation $P \in \mathfrak{S}(n)$; that is,

$$
E_{n}^{X}(f)=\|f-P\|_{X} .
$$

The assertion follows from standard compactness argument. We omit the proof.

Lemma 2. $E_{2^{n}}^{X}(\hat{f}) \leqq\left\|\hat{f}-S_{2^{n}} f\right\|_{X} \leqq C E_{2^{n}}^{X}(\hat{f})$.
Proof. The first inequality is trivial. By Lemma 1 and $\left\|S_{2^{n}} \hat{f}\right\|_{H^{p}} \leqq$ $\leqq\|\hat{f}\|_{H^{p}}$, we have the second inequality for $X=H^{p}$. The BMO case is deduced from the H^{1} - BMO duality.

Lemma 3. If $\lim _{k \rightarrow \infty}\left\|\hat{f}_{k}-\hat{f}\right\|_{X}=0$, then $\lim _{k \rightarrow \infty} E_{n}^{X}\left(\hat{f}_{k}\right)=E_{n}^{X}(\hat{f})$ and $\lim _{k \rightarrow \infty} \omega^{X}\left(\delta ; \hat{f}_{k}\right)=\omega^{X}(\delta ; \hat{f})$ uniformly with respect to δ.

Proof. The first statement of the Lemma follows from Lemma 2 and the two inequalities:

$$
\begin{aligned}
& \left|E_{n}^{X}\left(\hat{f}_{1}+\hat{f}_{2}\right)\right|^{p} \leqq\left|E_{n}^{X}\left(\hat{f}_{1}\right)\right|^{p}+\left|E_{n}^{X}\left(\hat{f}_{2}\right)\right|^{p}, \hat{f}_{1}, \hat{f}_{2} \in H^{p}, \\
& \left|E_{n}^{X}\left(f_{1}+f_{2}\right)\right| \leqq\left|E_{n}^{X}\left(f_{1}\right)\right|+\left|E_{n}^{X}\left(f_{2}\right)\right|, f_{1}, f_{2} \in \text { BMO. }
\end{aligned}
$$

The second is similar.

Lemma 4. If $H \in \mathfrak{S}\left(2^{n}\right)$, then $E_{2^{k}}^{X}(H) \leqq \omega^{X}\left(2^{-k} ; H\right)$ for any integer $k \geqq$ $\geqq 0$.

Proof. Our proof proceeds along the line of Stroženko, Krotov and Oswal'd [3]. Firstly we consider the H^{p} case.

Let $H(x)=\alpha_{i}$ for $x \in x_{i}+V_{n}\left(i=0,1, \ldots, 2^{n}-1\right)$, where $G=\bigcup_{i=0}^{2^{n}-1}\left(x_{i}+\right.$ $\left.+V_{n}\right)$. Also let $Q(x)=\beta_{j}$ for $x \in y_{j}+V_{k}\left(j=0,1, \ldots, 2^{k}-1\right)$. Then $Q \in$ $\in \mathfrak{S}\left(2^{k}\right)$. We set $G(x)=H(x)-Q(x)$ and $K_{h}(x)=H(x+h)-H(x)$. The lemma easily follows from the inequality

$$
\inf \left\{\|G\|_{H^{p}}^{p} ;\left\{\beta_{0}, \ldots, \beta_{2^{k}-1}\right\} \subset \mathbf{C}\right\} \leqq 2^{k} \int_{V_{k}}\left\|K_{h}\right\|_{H^{p}}^{p} d h .
$$

This is obvious for $k \geqq n$. We may assume that $k<n$. Let $x \in x_{i}+V_{n}$ be fixed. Let us evaluate $\bar{G}_{I}(x)=|I|^{-1} \int_{x \in I} G(t) d t$ and $\left(K_{h}\right)_{I}(x)$ for $I=z+V_{m}$. We have three cases:
(a) $x \in I \subset x_{i}+V_{n} \subset y_{j}+V_{k}(n \leqq m)$,
(b) $x \in x_{i}+V_{n} \subset I \subset y_{j}+V_{k}(k \leqq m \leqq n)$,
(c) $x \in x_{i}+V_{n} \subset y_{j}+V_{k} \subset I(0 \leqq m \leqq k)$.

For the case (a), we have $G_{I}(x)=\alpha_{i}-\overline{\beta_{j}}=G(x)$ and $\left(K_{h}\right)_{I}(x)=\alpha_{i(h)}-\alpha_{i}=$ $=K_{h}(x)$, where $x+h \in x_{i(h)}+V_{n}$ for some integer $i(h)$ depending on i and h. For the case (b), we can write $I=\bigcup_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(x_{i^{\prime}}+V_{n}\right)$ for some integer $\varepsilon(i)$ depending on i. Then we have

$$
G_{I}(x)=\sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(\alpha_{i^{\prime}}-\beta_{j}\right) \text { and }\left(K_{h}\right)_{I}(x)=2^{m-n} \sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(\alpha_{i^{\prime}(h)}-\alpha_{i^{\prime}}\right)
$$

For the case (c), we can write $I=\bigcup_{j^{\prime}=\varepsilon(j)}^{\varepsilon(j)+2^{k-m}-1} \bigcup_{i^{\prime}=j^{\prime} 2^{n-k}}^{\left(j^{\prime}+12^{n-k}-1\right.}\left(x_{i^{\prime}}+V_{n}\right)$ for some integer $\varepsilon(j)$ depending on j. Then we have $G_{I}(x)=2^{m-n} \sum_{j^{\prime}} \sum_{i^{\prime}}\left(\alpha_{i^{\prime}}-\beta_{j^{\prime}}\right)$ and $\left(K_{h}\right)_{I}(x)$ is the same as in case (b).

Since $G(x)$ is locally constant, there exist $I=z+V_{m}$ in some case such that $G^{*}(x)=\left|G_{I}(x)\right|$. (Note that $G^{*}(x)=\sup \left\{\left|G_{I}(x)\right|: x \in I\right\}$.) If $G^{*}(x)=$ $=\left|G_{I}(x)\right|$ as in case (b), then

$$
\begin{gathered}
G_{(\mathrm{b})} \equiv \inf \left\{\|G\|_{H^{p}}^{p}:\left(\beta_{j}\right) \subset \mathbf{C}\right\}=\inf \left\{\left\|G^{*}\right\|_{L^{p}}^{p}:\left(\beta_{j}\right) \subset \mathbf{C}\right\}= \\
= \\
\inf \left\{\sum_{j=0}^{2^{k}-1} \sum_{i=j 2^{n-k}}^{(j+1) 2^{n-k}-1} 2^{-n}\left|2^{m-n} \sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(\alpha_{i^{\prime}}-\beta_{j}\right)\right|^{p}:\left(\beta_{j}\right)\right\} .
\end{gathered}
$$

Similarly if $K_{h}^{*}(x)=\left|\left(K_{h}\right)_{I}(x)\right|$ in case (b), then

$$
\begin{gathered}
K_{(\mathrm{b})} \equiv 2^{k} \int_{V_{k}}\left\|K_{h}\right\|_{H^{p}}^{p} d h=2^{k} \sum_{a=0}^{2^{n-k}-1} \int_{h_{a}+V_{n}}\left\|K_{h}^{*}\right\|_{L^{p}}^{p} d h \geqq \\
\geqq 2^{k} \sum_{a=0}^{2^{n-k}-1} \sum_{j=0}^{2^{k}-1} \sum_{i=j 2^{n-k}}^{(j+1) 2^{n-k}-1} 2^{-2 n}\left|2^{m-n} \sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(\alpha_{i^{\prime}\left(h_{a}\right)}-\alpha_{i^{\prime}}\right)\right|^{p} .
\end{gathered}
$$

Since

$$
\begin{aligned}
& \inf \left\{\sum_{i=j 2^{n-k}}^{(j+1) 2^{n-k}-1} 2^{-n}\left|2^{m-n} \sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1}\left(\alpha_{i^{\prime}}-\beta_{j}\right)\right|^{p}:\left(\beta_{j}\right)\right\} \leqq \\
& \leqq \sum_{i=j 2^{n-k}}^{(j+1) 2^{n-k}-1} 2^{-n}\left|2^{m-n}\left(\sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1} \alpha_{i^{\prime}}-\sum_{k^{\prime}=\varepsilon(s)}^{\varepsilon(s)+2^{n-m}-1} \alpha_{k^{\prime}}\right)\right|^{p}
\end{aligned}
$$

for any $j=0, \ldots, 2^{k}-1$ and $s=j 2^{n-k}, \ldots,(j+1) 2^{n-k}-1$, where $\varepsilon(s)$ is an integer depending on s, we have

$$
\begin{gathered}
G_{(\mathrm{b})} \leqq \\
\leqq \sum_{j=0}^{2^{k}-1} \sum_{i=j 2^{n-k}}^{(j+1) 2^{n-k}-1} 2^{-2 n+k} \sum_{s=j 2^{n-k}}^{(j+1) 2^{n-k}-1} \mid 2^{m-n}\left(\sum_{i^{\prime}=\varepsilon(i)}^{\varepsilon(i)+2^{n-m}-1} \alpha_{i^{\prime}}^{\left.\varepsilon(s)+\sum_{k^{\prime}=\varepsilon(s)}^{\varepsilon\left(2^{n-m}-1\right.} \alpha_{k^{\prime}}\right)\left.\right|^{p}} .\right.
\end{gathered}
$$

It is seen that the right is less than $K_{(\mathrm{b})}$.
If the maximal function is attained in other case, similar arguments show that $G_{(\mathrm{a})} \leqq K_{(\mathrm{a})}$ and $G_{(\mathrm{c})} \leqq K_{(\mathrm{b})}$. Thus we have the desired inequality.

By an argument similar to the H^{p} case, we can see that

$$
\inf \left\{\|G\|_{\mathrm{BMO}}:\left(\beta_{j}\right) \subset \mathbf{C}\right\} \leqq 2^{m} \int_{V_{m}}\left\|K_{h}\right\|_{\mathrm{BMO}} d h .
$$

Therefore the lemma is proved.
3. Now we are in position to state our theorems.

Theorem 1 (direct theorem). Let Y be $H^{p}(G)$ or $\operatorname{VMO}(G)$. Then we lave

$$
E_{2^{k}}^{Y}(f) \leqq \omega^{Y}\left(2^{-k} ; f\right) \text { for any } f \in Y
$$

Proof. The Theorem follows from Lemma 3, Lemma 4 and the following relations:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|f-S_{2^{n}} f\right\|_{H^{p}} & =0 \text { for } f \in H^{p} \\
\lim _{n \rightarrow \infty}\left\|f-S_{2^{n}} f\right\|_{\mathrm{BMO}} & =0 \text { for } f \in \mathrm{VMO} .
\end{aligned}
$$

The first equality is easily deduced from the definition of H^{p}. In order to show the second equality, it is sufficient to note that

$$
\left\|f-S_{2^{n}} f\right\|_{\mathrm{BMO}} \leqq \int_{G} D_{2^{n}}(t)\|f(\cdot+t)-f(\cdot)\|_{\mathrm{BMO}} d t,
$$

where $D_{2^{n}}$ is the Dirichlet kernel of order 2^{n}, since

$$
\|f(\cdot+t)-f(\cdot)\|_{\text {BMO }} \rightarrow 0 \text { as }|t| \rightarrow 0 \text { for } f \in \mathrm{VMO} .
$$

Theorem 2 (converse theorem). If $f \in X$, then

$$
\omega^{X}\left(2^{-k} ; f\right) \leqq C E_{2^{k}}^{X}(f) .
$$

Proof. Let P be the polynomial of order 2^{k} of best approximation to f. Since $P(x+h)=P(x)$ for $h \in V_{k}$, we obtain

$$
\begin{gathered}
\|f(\cdot+h)-f(\cdot)\|_{H^{p}}^{p} \leqq 2\|f-P\|_{H^{p}}^{p}, \quad f \in H^{p}, \\
\|f(\cdot+h)-f(\cdot)\|_{\mathrm{BMO}} \leqq 2\|f-P\|_{\mathrm{BMO}}, \quad f \in \mathrm{BMO},
\end{gathered}
$$

which prove the Theorem.
Theorem 3. For $f \in Y\left(Y=H^{p}\right.$ or VMO), and a positive number α, the following four statements are equivalent:
(a) $\omega^{Y}\left(2^{-k} ; f\right)=O\left(2^{-k \alpha}\right)$,
(b) $E_{2^{k}}^{Y}(f)=O\left(2^{-k \alpha}\right)$,
(c) $\left\|f-S_{2^{k}} f\right\|_{Y}=O\left(2^{-k \alpha}\right)$,
(d) $\left\|S_{2^{k}} f-S_{2^{k-1}} f\right\|_{Y}=O\left(2^{-k \alpha}\right)$.

Proof. Theorem 2, Lemma 2 and Theorem 1 give the equivalence of (a), (b) and (c). Or it is clear that (d) implies (c), the only one to be verified is the implication (c) \rightarrow (d). This is easily deduced once we use the inequality

$$
\sup _{k \geqq 0} 2^{k \alpha} \sum_{n=k}^{\infty} a_{n} \leqq C \sup _{k \geqq 0} 2^{k \alpha} a_{k}
$$

for any $\alpha>0$ and any $a_{k} \geqq 0$. (See Taibleson [4], p. 179.)
Remark. We can find results analogous to those presented here in the context of H^{p} space and VMO space associated with local fields. Furthermore, in the local fields, we have that for any function from X, the second modulus of continuity is estimated from below and above by the first modulus of continuity, that is, $\sup \left\{\|f(\cdot+h)-2 f(\cdot)+f(\cdot-h)\|_{X}:|h| \leqq q^{-k}\right\}$ is equivalent to $\sup \left\{\|f(\cdot+h)-f(\cdot)\|_{X}:|h| \leqq q^{-k}\right\}$. In fact, by the argument of Lemma 4, we obtain

$$
\sup \left\{\|f(\cdot+h)-2 f(\cdot)+f(\cdot-h)\|_{X}:|h| \leqq q^{-k}\right\} \geqq C E_{q^{k}}^{X}(f) .
$$

Combining this inequality with Theorem 2 , we obtain the equivalence. In the case of functions in $L^{2}(G)$ or $C(G)$ defined on a zero-dimensional compact abelian group G, this fact was proved by Rubinshtein [2].

References

[1] L. Colzani, Approximation in Hardy spaces, Ann. Math. Pure Appl., 137 (1984), 207-215.
[2] A. I. Rubinshtein, Moduli of continuity of functions, defined on a zero-dimensional group, Math. Note, 23 (1978), 205-211.
[3] E. A. Stroženko, V. G. Krotov and P. Oswal'd, Direct and converse theorems of Jackson type in L^{p} spaces, $0<p<1$, Math. USSR Sbornik, 27 (1975), 355374.
[4] M. H. Taibleson, Fourier Analysis on Local Fields (Princeton, 1975).
[5] C. Watari, Best approximation by Walsh polynomials, Tôhoku Math. J., 15 (1963), 1-5.
(Received June 28, 1988; revised March 1, 1989)
DEPARTMENT OF MATHEMATICS
AKITA UNIVERSITY
TEGATA, AKITA, 010
JAPAN

COMPLETE QUASI-PSEUDO-METRIC SPACES

H. P. KÜNZI (Berne)

1. Introduction

We will use the terminology of [8]. The letter \mathbf{N} will denote the set of positive integers. First let us recall some definitions.

A quasi-pseudo-metric space is a pair (X, p) where X is a set and p is a mapping from $X \times X$ into the set of real numbers satisfying for all x, y, $z \in X$:
(i) $p(x, y) \geqq 0$; (ii) $p(x, x)=0$; (iii) $p(x, y) \leqq p(x, z)+p(z, y)$.

If p satisfies the additional condition (iv) that $p(x, y)=0$ implies that $x=y$, then p is called a quasi-metric on X. Note that in this case p^{-1} defined by $p^{-1}(x, y)=p(y, x)$ for all $x, y \in X$ is also a quasi-metric on X and p^{*} defined by $p^{*}(x, y)=\max \{p(x, y), p(y, x)\}$ for all $x, y \in X$ is a metric on X.

For a quasi-pseudo-metric space (X, p) the set $B_{n}^{p}(x)=\{y \in X: p(x, y)<$ $\left.<2^{-n}\right\}$ is said to be the p-ball with center $x \in X$ and radius 2^{-n} (where $n \in \mathbf{N}$). The topology $\mathcal{T}(p)$ induced by p on X is the topology generated by the base $\left\{B_{n}^{p}(x): x \in X, n \in \mathrm{~N}\right\}$ on X. A quasi-pseudo-metric space (X, p) is called precompact if for every $n \in \mathbf{N}$ there is a finite subset F of X such that $\bigcup\left\{B_{n}^{p}(f): f \in F\right\}=X$. A sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in a quasi-pseudo-metric space (X, p) is said to be a left p-Cauchy sequence [16, p. 128] if for each real number $\delta>0$ there are a point $x \in X$ and a positive integer k such that $p\left(x, x_{n}\right)<\delta$ whenever $n \in \mathbf{N}$ and $n \geqq k$. A quasi-pseudo-metric space (X, p) is called left p-sequentially complete [16, p. 132] if every left p-Cauchy sequence in X converges to some point in X (with respect to the topology induced by p on X). In this paper it seems helpful to change this well-established terminology slightly. Since in the following left p-Cauchy sequences are the only Cauchy sequences in quasi-pseudo-metric spaces that we consider, it will suffice to call them Cauchy sequences. Furthermore, in order to obtain a clearer terminology we will use the expression "sequentially convergence complete" instead of "left p-sequentially complete". Accordingly, we will call a quasi-pseudo-metric space X sequentially complete if every Cauchy sequence in X has a cluster point in X. Of course, each sequentially convergence complete
quasi-pseudo-metric space is sequentially complete. It is well known that the converse is wrong (see e.g. Example 1 below).

By definition, the quasi-uniformity $\mathcal{U}(p)$ induced by a quasi-pseudo-metric p on a set X is the quasi-uniformity on X that is generated by the base $\left\{U_{n}: n \in \mathrm{~N}\right\}$ where $U_{n}=\left\{(x, y) \in X \times X: p(x, y)<2^{-n}\right\}$ whenever $n \in \mathbf{N}$. We recall that a filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is called a \mathcal{U}-Cauchy filter if for each $V \in \mathcal{U}$ there is an $x \in X$ such that $V(x)=\{y \in X:(x, y) \in$ $\in V\} \in \mathcal{F}$ [8, p. 47]. A quasi-uniform space (X, \mathcal{U}) is called convergence complete if each \mathcal{U}-Cauchy filter on X converges in X and it is said to be complete if each \mathcal{U}-Cauchy filter on X has a cluster point in X [8, p. 50]. Clearly each convergence complete quasi-uniform space is complete. It is well known that the converse does not hold (see e.g. Example 1 below). In this paper we will say that a quasi-pseudo-metric space (X, p) is (convergence) complete if the quasi-uniformity $\mathcal{U}(p)$ is (convergence) complete.

It is easy to see that each (convergence) complete quasi-pseudo-metric space is sequentially (convergence) complete. Correcting a statement in the literature, we show in this paper that a sequentially (convergence) complete quasi-metric space need not be complete. We use our example to construct a complete and sequentially convergence complete quasi-metric space that is not convergence complete. We also observe that while a Tychonoff sequentially complete quasi-metric space need not be complete, a Hausdorff sequentially convergence complete quasi-metric space is convergence complete and a normal sequentially complete quasi-metric space is complete. Furthermore we give an example of a Tychonoff complete quasi-metric space that does not have a G_{δ}-diagonal. This example contradicts another statement in the literature. It follows from our results that an orthocompact Tychonoff space admits a convergence complete quasi-metric if and only if it is a Čech complete space with a G_{δ}-diagonal.

In the second part of this note we obtain several results related to Problem U of [8, p. 179]. This problem asks for a characterization of the class of quasi-metric spaces having a quasi-metric completion. In this paper we present a solution to this problem. Furthermore we show that a quasi-metric space has a quasi-metric sequential convergence completion if and only if it has a quasi-metric convergence completion. Similarly we prove that a quasi-metric space of non-measurable cardinality has a quasi-metric sequential completion if and only if it has a quasi-metric completion. Finally we present an example showing that the condition "of non-measurable cardinality" cannot be omitted in this result.

We would like to thank the referee for his valuable observations. In particular by suggesting an improved version of Lemma 7 he helped to strengthen several results in the section on quasi-metric completions.

In this paper we will use the following well-known method to construct quasi-metrics.

Lemma 1. Let X be a set and for each $n \in \mathbf{N}$ and each $x \in X$ let $T_{n}(x)$ be
a subset of X. For each $n \in \mathbf{N}$ set $T_{n}=\bigcup\left\{\{x\} \times T_{n}(x): x \in X\right\}$. If $\left(T_{n}\right)_{n \in \mathbf{N}}$ is a decreasing sequence of transitive relations on X such that $\bigcap\left\{T_{n}: n \in\right.$ $\in \mathrm{N}\}=\{(x, x): x \in X\}$, then there exists a quasi-metric p on X such that $T_{n}(x)=B_{n}^{p}(x)$ for each $n \in \mathrm{~N}$ and each $x \in X$.

Proof. We sketch the proof. For each $x \in X$ set $T_{0}(x)=X$. For each $x, y \in X$ define $p(x, y)$ as follows: $p(x, y)=0$ if $x=y$, and $p(x, y)=2^{-n}$ if $y \in T_{n-1}(x) \backslash T_{n}(x)$ and $n \in \mathrm{~N}$. We verify that p is a quasi-metric on X. Clearly conditions (i), (ii) and (iv) are satisfied. It remains to check that condition (iii) is fulfilled. Obviously it suffices to consider the case that $p(x, z)=2^{-k}$ and $p(z, y)=2^{-s}$ where k and s are positive integers. Then $z \in T_{k-1}(x)$ and $y \in T_{s-1}(z)$. Thus $y \in T_{f-1}(x)$ where $f=\min \{k, s\}$. Hence $p(x, y) \leqq \max \{p(x, z), p(z, y)\}$, and condition (iii) is satisfied. Let $x \in X$ and $n \in \mathbf{N}$. Clearly the conditions $p(x, y)<2^{-n}$ and $y \in T_{n}(x)$ are equivalent by the construction of the quasi-metric p on X. Thus $B_{n}^{p}(x)=T_{n}(x)$ for each $n \in \mathbf{N}$ and each $x \in X$.

We conclude this introduction with an easy example of a complete quasimetric space that is not sequentially convergence complete.

Example 1. A complete quasi-metric space that is not sequentially convergence complete (see also Example 5 and Example 7).

Let $X=(\mathbf{N} \times\{1,2\}) \cup\{-\infty, \infty\}$. For each $n \in \mathbf{N}$ and each $x \in X$ define a subset $T_{n}(x)$ of X as follows:

$$
T_{n}(x)= \begin{cases}\{x\} & \text { if } x \in \mathbf{N} \times\{1\} ; \\ \{\infty\} \cup\{(k, 1): k \in \mathbf{N}, k \text { even, } k \geqq n\} & \text { if } x=\infty ; \\ \{-\infty\} \cup\{(k, 1): k \in \mathbf{N}, k \text { odd, } k \geqq n\} & \text { if } x=-\infty ; \\ \{(a, 2)\} \cup\{(k, 1): k \in \mathbf{N}, k \geqq n\} & \text { if } x=(a, 2), a \in \mathbf{N}, a \geqq n \\ \{(a, 2)\} & \text { if } x=(a, 2), a \in \mathbf{N}, a<n\end{cases}
$$

It is easy to check that the sets $T_{n}(x)$ satisfy the conditions of Lemma 1. Hence there exists a quasi-metric p on X such that $T_{n}(x)=B_{n}^{p}(x)$ for each $n \in \mathbf{N}$ and each $x \in X$. Since $\{(k, 1): k \in \mathbf{N}, k \geqq n\} \subseteq B_{n}^{p}((n, 2))$ for each $n \in \mathbf{N}$, the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in X defined by $x_{n}=(n, 1)$ for each $n \in \mathbf{N}$ is a Cauchy sequence in (X, p). Clearly $\left(x_{n}\right)_{n \in \mathrm{~N}}$ does not converge in X. Hence (X, p) is not sequentially convergence complete.

We want to show that (X, p) is complete. Let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy ultrafilter on X. Assume that \mathcal{F} does not have a cluster point in X. Since $-\infty$ and ∞ are not cluster points of \mathcal{F} and \mathcal{F} is a free ultrafilter on X, we conclude that $\mathrm{N} \times\{2\} \in \mathcal{F}$. Furthermore since \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X, for each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$. Since $\mathbf{N} \times\{2\} \in$ $\in \mathcal{F}$, this means that there is an $x \in \mathbf{N} \times\{2\}$ such that $\{x\} \in \mathcal{F}$. Hence \mathcal{F} converges - a contradiction. We conclude that each $\mathcal{U}(p)$-Cauchy filter on X has a cluster point in X. Hence (X, p) is complete.

Let us note that the topology induced by the quasi-metric p on X is metrizable.

2. Completeness in quasi-pseudo-metric spaces

Using the terminology of section 1 we can speak of sequentially complete, sequentially convergence complete, complete and convergence complete quasi-pseudo-metric spaces. In this section we study some relations among these four classes of quasi-pseudo-metric spaces. Our investigations are mainly motivated by an error contained in [8] (see Example 2 below). At the end of this section we will use our methods to answer a question of S . Romaguera and A. Gutiérrez about countably compact quasi-pseudo-metric spaces.

The following obvious result is mentioned in [8, § 7.33]. For the sake of completeness we give its elementary proof.

Lemma 2. Each (convergence) complete quasi-pseudo-metric space is sequentially (convergence) complete.

Proof. Let (X, p) be a complete quasi-pseudo-metric space and let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be a Cauchy sequence in X. Then the filter generated by $\left\{\left\{x_{n}: n \in\right.\right.$ $\in \mathbf{N}, n \geqq k\} \mid k \in \mathbf{N}\}$ on X is a $\mathcal{U}(p)$-Cauchy filter on X. Thus it has a cluster point in X. Clearly this cluster point is a cluster point of the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$. Hence (X, p) is sequentially complete.

It remains to show that a convergence complete quasi-pseudo-metric space is sequentially convergence complete. Let (X, p) be a convergence complete quasi-pseudo-metric space and let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be a Cauchy sequence in X. For each $n \in \mathbf{N}$ there are $y_{n} \in X$ and $k_{n} \in \mathbf{N}$ such that $k \in \mathbf{N}$ and $k \geqq k_{n}$ imply that $x_{k} \in B_{n}^{p}\left(y_{n}\right)$. Since X is convergence complete, the filter generated by $\left\{B_{n}^{p}\left(y_{n}\right): n \in \mathrm{~N}\right\}$ on X converges to some point x in X. Obviously the sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ converges to x, too. Hence (X, p) is sequentially convergence complete.

In [8, Theorem 7.33] it is stated that each sequentially complete quasimetric space is complete. Unfortunately the proof of this statement is not correct, as our next example shows. (The error seems to occur in line 2 on page 177.)

Example 2. We construct a sequentially convergence complete quasimetric space that is not complete.

Let $Z=Y \cup \mathcal{A} \cup \mathrm{~N}$ where the sets Y, \mathcal{A} and N are supposed to be pairwise disjoint. Here, as usual, \mathbf{N} denotes the set of positive integers. The set Y is the union of a countable collection $\left\{X_{n}: n \in \mathbf{N}\right\}$ of pairwise disjoint uncountable sets and $\mathcal{A}=\left\{x: x\right.$ is a sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ of elements of Y so that there is a strictly increasing sequence $\left(k_{n}(x)\right)_{n \in \mathrm{~N}}$ of positive integers such that for all $n \in \mathbf{N}$ and all $k \in \mathbf{N}$ with $k \geqq k_{n}(x)$ we have that $x_{k} \in \bigcup\left\{X_{s}\right.$: $s \in \mathbf{N}, s \geqq n\}\}$. For each $n \in \mathbf{N}$ and each $x \in Z$ we define a subset $T_{n}(x)$ of Z
as follows:

$$
T_{n}(x)= \begin{cases}\{x\} & \text { if } x \in Y \\ \{x\} \cup\left\{x_{i}: i \in \mathbf{N}, i \geqq k_{n}(x)\right\} & \text { if } x=\left(x_{i}\right)_{i \in \mathbf{N}} \in \mathcal{A} \\ \{x\} \cup\left(\bigcup\left\{X_{s}: s \in \mathbf{N}, s \geqq n\right\}\right) & \text { if } x \in \mathbf{N} \text { and } x \geqq n \\ \{x\} & \text { if } x \in \mathbf{N} \text { and } x<n\end{cases}
$$

Note that $\bigcup\left\{\{x\} \times T_{n}(x): x \in Z\right\}$ is a transitive relation on Z whenever $n \in \mathbf{N}$. Furthermore $T_{n+1} \subseteq T_{n}$ for each $n \in \mathbf{N}$ and $\bigcap\left\{T_{n}: n \in \mathbf{N}\right\}$ is equal to the diagonal of Z. According to Lemma 1 we can define a quasi-metric p on Z such that $B_{n}^{p}(x)=T_{n}(x)$ for each $n \in \mathbf{N}$ and each $x \in Z$.

Observe that $\mathcal{M}=\left\{\bigcup\left\{X_{s}: s \in \mathbf{N}, s \geqq n\right\} \mid n \in \mathbf{N}\right\} \cup\left\{Z \backslash\left\{x_{i}: i \in \mathbf{N}\right\} \mid\right.$ $\left.\left(x_{i}\right)_{i \in \mathrm{~N}} \in \mathcal{A}\right\}$ has the finite intersection property, because X_{n} is uncountable for each $n \in \mathbf{N}$. Since $B_{n}^{p}(n)=\{n\} \cup\left(\bigcup\left\{X_{s}: s \in \mathbf{N}, s \geqq n\right\}\right)$ whenever $n \in \mathbf{N}$, the filter generated by \mathcal{M} on Z is a $\mathcal{U}(p)$-Cauchy filter on Z. Obviously it does not have a cluster point in Z. Hence (Z, p) is not complete.

Let us prove that (Z, p) is sequentially convergence complete. To this end let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be a Cauchy sequence in (Z, p). We have to show that $\left(x_{n}\right)_{n \in \mathbf{N}}$ converges in Z. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in Z, there are a strictly increasing sequence $\left(k_{n}\right)_{n \in \mathbf{N}}$ of positive integers and a sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ of points of Z such that $x_{k} \in T_{n}\left(y_{n}\right)$ whenever $k \in \mathbf{N}$ and $k \geqq k_{n}$. If there is an $n \in \mathbf{N}$ such that $y_{n} \in Y$, then $x_{k}=y_{n}$ for each $k \in \mathbf{N}$ such that $k \geqq k_{n}$. Hence $\left(x_{n}\right)_{n \in \mathbf{N}}$ converges in Z. Thus it suffices to consider the case that $y_{n} \in \mathcal{A} \cup \mathbf{N}$ for each $n \in \mathbf{N}$.

Assume first that for infinitely many $n \in \mathbf{N}$ we have that $x_{n} \in(\mathcal{A} \cup \mathbf{N})$. We conclude that $(\mathcal{A} \cup \mathbf{N}) \cap T_{n}\left(y_{n}\right) \cap T_{1}\left(y_{1}\right) \neq \emptyset$ whenever $n \in \mathbf{N}$. Hence by the definition of the sets $T_{n}\left(y_{n}\right)$ (where $y_{n} \in \mathcal{A} \cup \mathbf{N}$) we see that $y_{n}=y_{1}$ for each $n \in \mathbf{N}$. Therefore $\left(x_{n}\right)_{n \in \mathbf{N}}$ converges to y_{1} in this case.

It remains to consider the case that there is a $t \in \mathbf{N}$ such that $x_{k} \in Y$ whenever $k \in \mathbf{N}$ and $k \geqq t$. Since we assume that $y_{n} \in \mathcal{A} \cup \mathbf{N}$ for each $n \in \mathbf{N}$, we have that $x_{k} \in\left(T_{n}\left(y_{n}\right) \cap Y\right) \subseteq \bigcup\left\{X_{s}: s \in \mathbf{N}, s \geqq n\right\}$ whenever $n, k \in \mathbf{N}$ and $k \geqq \max \left\{t, k_{n}\right\}$. Hence the sequence b defined by $b=\left(x_{k}\right)_{k \geqq t}$ is an element of \mathcal{A}. (We can set $k_{n}(b)=k_{n+t}$ for each $n \in \mathbf{N}$). Thus we conclude in this case that the sequence $\left(x_{k}\right)_{k \in \mathbf{N}}$ in Z converges to $b \in Z$. This completes the proof.

It is interesting to note that a slight modification of Example 2 yields a complete and sequentially convergence complete quasi-metric space that is not convergence complete.

Example 3. A complete and sequentially convergence complete quasimetric space that is not convergence complete.

Let $E=Z \cup\{\infty,-\infty\}$ where Z denotes the set defined in Example 2 and ∞ and $-\infty$ are two different elements not belonging to Z. For each $n \in \mathbf{N}$
and each $x \in E$ define a subset $S_{n}(x)$ of E as follows:

$$
S_{n}(x)= \begin{cases}T_{n}(x)(\text { as defined in Example 2) } & \text { if } x \in Z \\ \{-\infty\} \cup\left(\bigcup\left\{X_{s}: s \in \mathbf{N}, s \text { odd, } s \geqq n\right\}\right) & \text { if } x=-\infty \\ \{\infty\} \cup\left(\bigcup\left\{X_{s}: s \in \mathbf{N}, s \text { even, } s \geqq n\right\}\right) & \text { if } x=\infty\end{cases}
$$

Again it is easy to check that the conditions of Lemma 1 are satisfied. Hence there is a quasi-metric q on E such that $B_{n}^{q}(x)=S_{n}(x)$ whenever $n \in \mathbf{N}$ and $x \in E$.

Note that the filter generated by $\left\{\bigcup\left\{X_{s}: s \in \mathbf{N}, s \geqq n\right\} \mid n \in \mathbf{N}\right\}$ on E is a $\mathcal{U}(q)$-Cauchy filter on E that does not converge in E. Hence (E, q) is not convergence complete.

Next we want to show that (E, q) is sequentially convergence complete. Let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be a Cauchy sequence in (E, q). By definition, for each $n \in \mathbf{N}$ there are $y_{n} \in E$ and $k_{n} \in \mathbf{N}$ such that $x_{k} \in B_{n}^{q}\left(y_{n}\right)$ whenever $k \in \mathbf{N}$ and $k \geqq$ $\geqq k_{n}$. If $y_{n} \in\{-\infty, \infty\}$ for infinitely many $n \in \mathbf{N}$, then, obviously, $\left(x_{n}\right)_{n \in \mathbf{N}}$ converges in E. Hence it remains to consider the case that there is an $h \in$ $\in \mathbf{N}$ such that $y_{n} \in Z$ whenever $n \in \mathbf{N}$ and $n \geqq h$. In this case we conclude that $x_{k} \in Z$ whenever $k \in \mathrm{~N}$ and $k \geqq k_{h}$. Thus the sequence $\left(x_{n}\right)_{n \geqq} \geqq k_{h}$ is a Cauchy sequence in the subspace Z of E. Therefore the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in E converges to a point in Z, because the subspace Z of E is sequentially convergence complete according to Example 2. We have shown that (E, q) is sequentially convergence complete.

It remains to show that (E, q) is complete. Let \mathcal{F} be a $\mathcal{U}(q)$-Cauchy ultrafilter on E. Assume that \mathcal{F} does not have a cluster point in E. Since $-\infty$ and ∞ are not cluster points of \mathcal{F} and \mathcal{F} is an ultrafilter on E, we have three possibilities to consider: There is an $s \in \mathbf{N}$ such that $X_{s} \in \mathcal{F}$, or $\mathcal{A} \in \mathcal{F}$, or $\mathbf{N} \in \mathcal{F}$.

We want to see that in each of these three cases the filter \mathcal{F} on E contains a singleton. Since \mathcal{F} is a $\mathcal{U}(q)$-Cauchy filter on E, for each $n \in \mathbf{N}$ there is an $x_{n} \in E$ such that $B_{n}^{q}\left(x_{n}\right) \in \mathcal{F}$. Hence by the definition of the sets $S_{n}(x)$ it is immediately clear that \mathcal{F} is fixed if $\mathcal{A} \in \mathcal{F}$ or $\mathrm{N} \in \mathcal{F}$. However, it is also easy to see that \mathcal{F} is fixed if $X_{s} \in \mathcal{F}$ for some $s \in \mathbf{N}$, because $B_{n}^{q}(y) \cap X_{s}=$ $=\emptyset$ whenever $y \in E \backslash X_{s}$ and $n \in \mathbf{N}$ such that $n>s$. We have shown that in each of the three cases under consideration \mathcal{F} contains a singleton. Thus \mathcal{F} converges in E - a contradiction. We conclude that each $\mathcal{U}(q)$-Cauchy filter on E has a cluster point in E. Hence (E, q) is complete.

It is obvious that Example 2 (and thus Example 3) are not Hausdorff spaces. Our first proposition shows that this fact is not an accident. On the other hand, Example 4 below will show that a sequentially complete quasi-metric Tychonoff space need not be complete.

Proposition 1. A quasi-metric Hausdorff space is sequentially convergence complete if and only if it is convergence complete.

The nontrivial implication of this proposition is an immediate consequence of the following two auxiliary results, which seem to be of independent interest and are therefore given in a form more general than needed here.

Lemma 3. Let (X, p) be a sequentially convergence complete quasi-metric Hausdorff space and let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence in X such that $\left\{B_{k}^{p}\left(x_{k}\right)\right.$: $k \in \mathbf{N}\}$ has the finite intersection property. Then $\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\} \mid}\right.$ $n \in \mathbf{N}\}$ is a singleton.

Proof. Let $\left(x_{k}\right)_{k \in \mathbf{N}}$ be a sequence in a sequentially convergence complete quasi-metric Hausdorff space (X, p) such that $\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\}$ has the finite intersection property. Set $K=\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$. For each $n \in \mathbf{N}$ choose $y_{n} \in \cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}$. Then $\left(y_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p) and thus has a cluster point x in X, because X is sequentially complete. Clearly $x \in K$. Assume that there is a $y \in K$ such that $y \neq x$. For each $n \in \mathbf{N}$ there are points a_{n} and b_{n} in X such that $a_{n} \in B_{n}^{p}(x) \bigcap$ $\bigcap\left(\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right)$ and $b_{n} \in B_{n}^{p}(y) \bigcap\left(\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right)$. Set $z_{n}=a_{n}$ if $n \in \mathbf{N}$ and n is even, and set $z_{n}=b_{n}$ if $n \in \mathbf{N}$ and n is odd. Obviously $\left(z_{n}\right)_{n \in \mathrm{~N}}$ is a Cauchy sequence in X. Since X is sequentially convergence complete, $\left(z_{n}\right)_{n \in \mathbf{N}}$ converges in X. Furthermore x and y are two different cluster points of the sequence $\left(z_{n}\right)_{n \in \mathrm{~N}}$ in X. Since X is a Hausdorff space, we have obtained a contradiction. Hence $\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$ is a singleton.

Lemma 4. Let (X, p) be a sequentially (convergence) complete quasi-pseudo-metric space. Assume that for each sequence $\left(x_{k}\right)_{k \in \mathbf{N}}$ in X such that the collection $\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\}$ has the finite intersection property the set $\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$ is a Lindelöf subspace of X. Then (X, p) is (convergence) complete.

Proof. Let (X, p) be a sequentially complete quasi-pseudo-metric space that satisfies the condition mentioned in the lemma and let \mathcal{F} be a $\mathcal{U}(p)$ Cauchy filter on X. For each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in$ $\in \mathcal{F}$. Set $K=\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$. By our assumption, K is a Lindelöf subspace of X. We want to show that \mathcal{F} has a cluster point in X. Assume the contrary. Then for each $x \in K$ there is an open neighborhood G_{x} of x in X such that $\left(X \backslash G_{x}\right) \in \mathcal{F}$. Since K is a Lindelöf subspace of X, there is a sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ of elements of K such that $K \subseteq \bigcup\left\{G_{y_{n}}: n \in \mathbf{N}\right\}$. For each $n \in \mathbf{N}$ set $H_{n}=\left(\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right) \backslash\left(\bigcup\left\{G_{y_{i}}: i=1, \ldots, n\right\}\right)$. Note that $H_{n} \in \mathcal{F}$ whenever $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ choose $y_{n} \in H_{n}$. Since (X, p) is sequentially complete, the Cauchy sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ in (X, p) has a cluster point y in X. Clearly $y \in K$, but $y \not \bigcup \bigcup\left\{G_{y_{i}}: i \in \mathbf{N}\right\}$ - a contradiction. We conclude that \mathcal{F} has a cluster point in X. Hence (X, p) is complete.

In order to prove the second assertion let (X, p) be a sequentially convergence complete quasi-pseudo-metric space that satisfies the condition mentioned in the lemma and let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy filter on X. For each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$. Set $K=\bigcap\left\{\bar{\cap}\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\} \mid\right.$ $n \in \mathbf{N}\}$. By our assumption K is a Lindelöf subspace of X. We want to show that \mathcal{F} converges in X. Assume the contrary. Then for each $x \in K$ there is an open neighborhood G_{x} of x in X such that $G_{x} \notin \mathcal{F}$. Since K is a Lindelöf subspace of X, there is a sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ of elements of K such that $K \subseteq$ $\subseteq \bigcup\left\{G_{y_{i}}: i \in \mathbf{N}\right\}$. For each $n \in \mathbf{N}$ and each $i \in \mathbf{N}$ choose $z_{n, i} \in\left(\cap\left\{B_{k}^{p}\left(x_{k}\right): k=\right.\right.$ $=1, \ldots, n\}) \backslash G_{y_{i}}$. Construct a sequence ($\left.a_{n}\right)_{n \in \mathbb{N}}$ in X by enumerating the elements $z_{n, i}$ (where $n, i \in \mathbf{N}, i \leqq n$) according to the lexicographic order on the indexing set $\mathbf{N} \times \mathbf{N}$. Obviously $\left(a_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p). Since (X, p) is sequentially convergence complete, $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a limit point z in X. Clearly $z \in K$. Hence there is a $k \in \mathrm{~N}$ such that $z \in G_{y_{k}}$. However by the construction of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ we have that $a_{n} \notin G_{y_{k}}$ for infinitely many $n \in \mathbf{N}$. We have reached a contradiction. We conclude that \mathcal{F} converges in X. Thus (X, p) is convergence complete.

Corollary 1. A quasi-metric space in which each Cauchy sequence has exactly one cluster point is convergence complete.

Proof. Let (X, p) be a quasi-metric space in which each Cauchy sequence has exactly one cluster point. Since convergent sequences are Cauchy sequences, it is clear that X is a Hausdorff space. Obviously X is sequentially complete. Since each subsequence of a Cauchy sequence is a Cauchy sequence, and thus has a cluster point in a sequentially complete quasi-metric space, a nonconvergent Cauchy sequence in X would have at least two different cluster points. We conclude that each Cauchy sequence in X is convergent. Hence X is sequentially convergence complete. The result follows from Proposition 1.

Example 4. A zero-dimensional sequentially complete quasi-metric space that is not complete.

We show that the well-known zero-dimensional pseudocompact space Ψ (see e.g. $[11,5 \mathrm{I}]$) can be equipped with a compatible quasi-metric p that is sequentially complete, but not complete. Let \mathcal{A} be an infinite maximal almost disjoint family of infinite subsets of \mathbf{N}. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an injective sequence of elements of \mathcal{A} and let $\mathcal{H}=\mathcal{A} \backslash\left\{a_{n}: n \in \mathbf{N}\right\}$. As usual set $\Psi=\mathcal{A} \cup$ $\cup \mathbf{N}$. For each $n \in \mathbf{N}$ and each $x \in \Psi$ define a subset $T_{n}(x)$ of Ψ as follows:

$$
T_{n}(x)= \begin{cases}\{x\} & \text { if } x \in \mathbf{N} ; \\ \{x\} \cup(x \backslash\{1, \ldots, n\}) & \text { if } x \in \mathcal{H} ; \\ \{x\} \cup(\mathbf{N} \backslash\{1, \ldots, n\}) & \text { if } x=a_{p}, p \in \mathbf{N}, p \geqq n ; \\ \{x\} \cup(x \backslash\{1, \ldots, n\}) & \text { if } x=a_{p}, p \in \mathbf{N}, p<n\end{cases}
$$

Considering Lemma 1 we see that there is a quasi-metric p on Ψ such that $B_{n}^{p}(x)=T_{n}(x)$ for each $n \in \mathbf{N}$ and each $x \in \Psi$. Clearly p induces the
usual topology on Ψ. Set $\mathcal{M}=\{\mathbf{N} \backslash\{n\}: n \in \mathbf{N}\} \cup\{\mathbf{N} \backslash a: a \in \mathcal{A}\}$. Since \mathcal{A} is infinite, \mathcal{M} has the finite intersection property. Since for each $n \in \mathbf{N}$ the set $T_{n}\left(a_{n}\right)$ is a member of the filter \mathcal{F} generated by \mathcal{M} on Ψ, \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X. Clearly it does not have a cluster point in Ψ. We conclude that $\mathcal{U}(p)$ is not complete.

We want to show that (Ψ, p) is sequentially complete. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in (Ψ, p). For each $n \in \mathbf{N}$ there are $k_{n} \in \mathbf{N}$ and $y_{n} \in \Psi$ such that $x_{k} \in T_{n}\left(y_{n}\right)$ whenever $k \in \mathbf{N}$ and $k \geqq k_{n}$. Recall the first three arguments given in that part of the proof of Example 2 where we show that the space Z is sequentially convergence complete. We see by arguments similar to the arguments given there (note that the subspace Y of Z corresponds to the subspace \mathbf{N} of Ψ in an obvious way) that the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point in Ψ, except, maybe, if the following three conditions are satisfied simultaneously:
(i) $y_{n} \in \mathcal{A}$ whenever $n \in \mathbf{N}$;
(ii) there is a $k_{0} \in \mathbf{N}$ such that $x_{k} \in \mathbf{N}$ for each positive integer k such that $k \geqq k_{0}$;
(iii) $x_{k}>n$ whenever $n, k \in \mathbf{N}$ and $k \geqq \max \left\{k_{0}, k_{n}\right\}$.

However, in this case it is clear that the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point in the subspace \mathcal{A} of Ψ, because $\left\{x_{n}: n \in \mathbf{N}\right\}$ has infinitely many elements in \mathbf{N} and \mathcal{A} is maximal. This completes the proof.

Let us remark that in order to show that the quasi-metric space in Example 4 is not complete we could also use the following technical result related to Lemma 4. (Consider the sets $B_{n}^{p}\left(a_{n}\right)$ where $n \in \mathbf{N}$.)

Remark 1. Let (X, p) be a regular complete quasi-metric space and let $\left(x_{k}\right)_{k \in \mathbf{N}}$ be a sequence in X such that $\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\}$ has the finite intersection property. Then $\bigcap\left\{\bar{\cap}\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\} \mid n \in \mathbf{N}\right\}$ is compact.

Proof. Let (X, p) be a regular complete quasi-metric space and let $\left(x_{k}\right)_{k \in \mathbf{N}}$ be a sequence in X such that $\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\}$ has the finite intersection property. Set $K=\bigcap\left\{\overline{\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$. Let \mathcal{C} be a collection of X-open sets that covers K. We want to show that there is a finite subcollection of \mathcal{C} covering K. For each $x \in K$ choose an X-open neighborhood G_{x} of X such that $\overline{G_{x}} \cong D$ for some $D \in \mathcal{C}$. Let $\mathcal{M}=\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\} \cup$ $\cup\left\{X \backslash G_{x}: x \in K\right\}$. If \mathcal{M} has the finite intersection property, then the filter generated by \mathcal{M} on X is a $\mathcal{U}(p)$-Cauchy filter on X without a cluster point in X - a contradiction to the completeness of (X, p). Hence there are an $n \in \mathbf{N}$ and a finite subset P of K such that $\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\} \subseteq \bigcup\left\{G_{f}: f \in\right.$ $\in P\}$. Thus $K \cong \overline{\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \cong \bigcup\left\{\overline{G_{f}}: f \in P\right\} \subseteq \bigcup\{D: D \in \mathcal{H}\}$ for some finite subcollection \mathcal{H} of \mathcal{C}. We conclude that K is compact.

Next we want to study some conditions under whi ${ }^{-h}$ sequentially complete quasi-metric spaces are complete (compare Lemma 4).

Recall that a family of subsets of a topological space is called discrete if each point of the space has a neighborhood that intersects at most one
member of the family. A subset B of a topological space X is called a discrete set in X [18] if the family $\{\{b\}: b \in B\}$ is discrete. A topological space X is said to have property $w D[18$, p. 238] if for each countably infinite discrete set B in X there are a countably infinite subset C of B and a discrete collection $\left\{G_{c}: c \in C\right\}$ of open subsets of X such that $G_{c} \cap C=\{c\}$ for each $c \in C$. It is well known that a Tychonoff space that is realcompact, or countably paracompact, or normal has this property [18, p. 240 and p. 252].

Proposition 2. A quasi-metric space that has property $w D$ is sequentially (convergence) complete if and only if it is (convergence) complete.

Proof. Let (X, p) be a sequentially (convergence) complete quasi-metric space that has property $w D$. In order to prove Proposition 2 it suffices by Lemma 2 to show that (X, p) is (convergence) complete. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence in X such that $\left\{B_{k}^{p}\left(x_{k}\right): k \in \mathbf{N}\right\}$ has the finite intersection property. Set $K=\bigcap\left\{\overline{\left.\cap B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}} \mid n \in \mathbf{N}\right\}$. We want to prove that K is countably compact. Then the assertion will follow from Lemma 4, because a countably compact quasi-metric space is compact [8, Corollary 2.29].

Assume that K is not countably compact. Let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be an injective sequence without a cluster point in K. Since K is a closed subspace of the T_{1} space $X,\left\{x_{n}: n \in \mathbf{N}\right\}$ is a discrete set in X. Since X has property $w D$, there are an (injective) subsequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ of $\left(x_{n}\right)_{n \in \mathbf{N}}$ and a discrete collection $\left\{G_{n}: n \in \mathbf{N}\right\}$ of open subsets of X such that $G_{n} \cap\left\{y_{k}: k \in\right.$ $\in \mathbf{N}\}=\left\{y_{n}\right\}$ for each $n \in \mathbf{N}$. Since $y_{n} \in G_{n} \cap K$ whenever $n \in \mathbf{N}$, we have that $G_{n} \cap\left(\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right) \neq \emptyset$ for each $n \in \mathbf{N}$. Choose $z_{n} \in G_{n} \cap$ $\cap\left(\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right)$ for each $n \in \mathbf{N}$. Since $\left(z_{n}\right)_{n \in \mathrm{~N}}$ is a Cauchy sequence in (X, p) and (X, p) is sequentially (convergence) complete, $\left(z_{n}\right)_{n \in \mathrm{~N}}$ has a cluster point x in X. Hence for each neighborhood G of x we have that $z_{n} \in G$ for infinitely many $n \in \mathbf{N}$ and, thus, G intersects infinitely many different members of the collection $\left\{G_{n}: n \in \mathbf{N}\right\}$. Therefore the collection $\left\{G_{n}: n \in \mathbf{N}\right\}$ is not even locally finite at x - a contradiction. We conclude that K is countably compact. Hence we have shown that (X, p) is (convergence) complete.

It follows from Proposition 2 that each Tychonoff realcompact sequentially complete quasi-metric space is complete. By using the following generalization of realcompactness introduced in [9] we can still strengthen this result further. Recall that a topological space X is called almost realcompact [9] if for each maximal filter \mathcal{U} of open sets in X such that $\{\bar{U}: U \in \mathcal{U}\}$ has the countable intersection property it is the case that \mathcal{U} has a cluster point in X.

PROPOSITION 3. Each regular almost realcompact sequentially complete quasi-metric space is complete.

Proof. Let (X, p) be a regular almost realcompact sequentially complete quasi-metric space. Let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy filter on X and let \mathcal{H} be a
maximal open filter on X such that $\{G \in \mathcal{F}: G$ is open in $X\} \subseteq \mathcal{H}$. We want to show that $\{\bar{G}: G \in \mathcal{H}\}$ has the countable intersection property. For each $n \in \mathbf{N}$ let $G_{n} \in \mathcal{H}$. Since \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X, for each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$. Thus $B_{n}^{p}\left(x_{n}\right) \in \mathcal{H}$ whenever $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ choose $y_{n} \in \bigcap\left\{G_{k} \cap B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}$. Since X is sequentially complete, we conclude that the Cauchy sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ in X has a cluster point in $\bigcap\left\{\overline{G_{n}}: n \in \mathrm{~N}\right\}$. Hence $\{\bar{G}: G \in \mathcal{H}\}$ has the countable intersection property.

Since X is almost realcompact, there is an $x \in X$ such that $x \in \bigcap\{\bar{G}: G \in$ $\in \mathcal{H}\}$. Assume that there is a $U \in \mathcal{F}$ such that $x \notin \bar{U}$. Since X is regular, there are disjoint open sets V and W in X such that $x \in V$ and $\bar{U} \subseteq W$. Therefore $W \in \mathcal{H}$ and $x \notin \bar{W}-$ a contradiction. Thus x is a cluster point of \mathcal{F}. We conclude that $\mathcal{U}(p)$ is a complete quasi-uniformity. Hence (X, p) is complete.

We note that it is shown in [13] that the Dieudonné plank is almost realcompact. On the other hand it is easy to see that it does not have property $w D$. (Consider the countably infinite closed discrete subspace $\left\{\left(\omega_{1}, n\right): n \in\right.$ $\in \mathbf{N}\}$ in this space.)

Finally let us point out that, essentially, the correct part in the argument of Theorem 7.33 in [8] shows that each Tychonoff sequentially complete quasimetric space is Čech complete. (Recall that a Tychonoff space X is Čech complete if and only if there exists a countable family $\left\{\mathcal{G}_{n}: n \in \mathbf{N}\right\}$ of open covers of X such that whenever \mathcal{F} is a family of closed subsets of X that has the finite intersection property and that contains for each $n \in \mathbf{N}$ a member F_{n} with $F_{n} \subseteq G_{n}$ for some $G_{n} \in \mathcal{G}_{n}$, then \mathcal{F} has nonempty intersection [3, Theorem 3.9.2].

Proposition 4. Each Tychonoff sequentially complete quasi-metric space is Čech complete.

Proof. We sketch the proof. It is easy to see that in order to prove Proposition 4 it suffices to show that each sequentially complete quasi-metric space (X, p) has the following property: Whenever \mathcal{F} is a filter on X such that for each $n \in \mathbf{N}$ there is a closed set $F_{n} \in \mathcal{F}$ that is contained in some member of the open cover $\mathcal{G}_{n}=\left\{B_{n}^{p}(x): x \in X\right\}$ of X, then \mathcal{F} has a cluster point in X.

However this is clear by the following two observations.
First note that in this case $\{\bar{F}: F \in \mathcal{F}\}$ has the countable intersection property: Let $H_{n} \in \mathcal{F}$ for each $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ choose $y_{n} \in \bigcap\left\{F_{k} \cap\right.$ $\left.\cap H_{k}: k=1, \ldots, n\right\}$. Then the Cauchy sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ in (X, p) has a cluster point y in $\bigcap\left\{\overline{H_{k}}: k \in \mathrm{~N}\right\}$, because X is sequentially complete. Hence $\{\bar{F}: F \in \mathcal{F}\}$ has the countable intersection property.

Second we conclude that $\bigcap\left\{F_{n}: n \in \mathbf{N}\right\}$ is countably compact, because each sequence in the closed subspace $\bigcap\left\{F_{n}: n \in \mathrm{~N}\right\}$ of X is a Cauchy sequence
in the sequentially complete quasi-metric space (X, p). Hence $\bigcap\left\{F_{n}: n \in\right.$ $\in \mathbf{N}\}$ is compact, because a countably compact quasi-metric space is compact [8, Corollary 2.29]. Using that $\bar{F} \cap\left(\bigcap\left\{F_{n}: n \in \mathbf{N}\right\}\right) \neq \emptyset$ for each $F \in \mathcal{F}$, we deduce that \mathcal{F} has a cluster point in $\bigcap\left\{F_{n}: n \in \mathbf{N}\right\}$.

We conclude this section with some remarks on countably compact quasi-pseudo-metric spaces. In [17, p. 194] Romaguera and Gutiérrez ask whether a precompact left- p-sequentially complete quasi-pseudo-metric space must be compact. As we are going to show now, this question has an affirmative answer. We obtain the answer as Corollary 3 to the following proposition.

Proposition 5. Each countably compact quasi-pseudo-metric space is convergence complete.

Proof. Let (X, p) be a countably compact quasi-pseudo-metric space and let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy filter on X. Then for each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$. Since X is countably compact, the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point $y \in X$. Let $m \in \mathbf{N}$. There is a $k \in \mathbf{N}$ such that $k>m$ and such that $x_{k} \in B_{m+1}^{p}(y)$. Hence $B_{k}^{p}\left(x_{k}\right) \subseteq B_{m}^{p}(y)$. Thus $B_{m}^{p}(y) \in$ $\in \mathcal{F}$. We conclude that \mathcal{F} converges to y. Therefore (X, p) is convergence complete.

Corollary 2. A precompact countably compact quasi-pseudo-metric space is compact.

Proof. Let (X, p) be a precompact countably compact quasi-pseudometric space. By Proposition 5 we know that $(X, \mathcal{U}(p))$ is a precompact (convergence) complete quasi-uniform space. The usual argument shows that X is compact: Let \mathcal{H} be an ultrafilter on X. Since (X, p) is precompact, \mathcal{H} is a $\mathcal{U}(p)$-Cauchy filter on X. Hence \mathcal{H} has a cluster point in X, because $\mathcal{U}(p)$ is complete. We conclude that X is compact.

Corollary 3. A precompact sequentially complete quasi-pseudo-metric space is compact.

Proof. Let (X, p) be a precompact sequentially complete quasi-pseudometric space. It is observed in [17, p. 194] that in a precompact quasi-pseudometric space each sequence has a (left p-)Cauchy subsequence. Thus each sequence in X has a cluster point, because X is sequentially complete. Hence X is countably compact. The result follows from Corollary 2 given above.

Note that a countably compact quasi-pseudo-metric space need not to be compact [5,14].

Recall that a quasi-pseudo-metric space (X, p) is called equinormal, if $p(A, B)=\inf \{p(a, b): a \in A, b \in B\}>0$ whenever A and B are two disjoint nonempty closed subsets of X (see e.g. [8, p. 37]). It is easy to see that each countably compact quasi-pseudo-metric space is equinormal [8, Proposition 2.24].

Example 5. An equinormal quasi-metric space that is not sequentially convergence complete.

Let $Y=\mathbf{N} \times(\mathbf{N} \cup\{0\})$ and set $P_{n}=\{(i, j) \in \mathbf{N} \times \mathbf{N}: 1 \leqq i \leqq n, 1 \leqq j \leqq n\}$ for each $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ and each $x \in Y$ define a subset $T_{n}(x)$ of $\overline{\bar{Y}}$ as follows:

$$
T_{n}(x)= \begin{cases}\{x\} & \text { if } x \in \mathbf{N} \times \mathbf{N} ; \\ \{(m, 0)\} \cup\left[(\mathbf{N} \times \mathbf{N}) \backslash P_{n}\right] & \text { if } x=(m, 0), m \in \mathbf{N}, m \geqq n \\ \{(m, 0)\} \cup\left[(\mathbf{N} \times(\mathbf{N} \backslash\{m\})) \backslash P_{n}\right] & \text { if } x=(m, 0), m \in \mathbf{N}, m<n\end{cases}
$$

By Lemma 1 there is a quasi-metric p on Y such that $B_{n}^{p}(x)=T_{n}(x)$ for each $n \in \mathbf{N}$ and each $x \in Y$. Construct a sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ in Y by enumerating the points of the set $\{(i, j) \in \mathbf{N} \times \mathbf{N}: i \geqq j\}$ according to the lexicographic order on $\mathbf{N} \times \mathbf{N}$. Since $T_{n}((n, 0))=\{(n, 0)\} \cup\left[(\mathbf{N} \times \mathbf{N}) \backslash P_{n}\right]$ for each $n \in \mathbf{N},\left(a_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (Y, p). Clearly $\left(a_{n}\right)_{n \in \mathbf{N}}$ is not convergent. Thus (Y, p) is not sequentially convergence complete. It remains to show that (Y, p) is equinormal. Let F_{1} and F_{2} be disjoint nonempty closed subsets of Y. We want to show that there is an $n \in \mathbf{N}$ such that $F_{1} \cap T_{n}\left(F_{2}\right)=$ $=\emptyset$. First assume that there are two different points in $\mathbf{N} \times\{0\}$ not belonging to F_{1}. Then $F_{1} \cap(\mathbf{N} \times \mathbf{N})$ is finite, because F_{1} is closed. Hence there is an $n \in \mathbf{N}$ such that $F_{1} \cap T_{n}\left(F_{2} \cap(\mathbf{N} \times\{0\})\right)=\emptyset$. Then $F_{1} \cap T_{n}\left(F_{2}\right)=\emptyset$. Second consider the case that $(\mathbf{N} \times\{0\}) \backslash F_{1}$ contains at most one point. Then $F_{2} \cap$ $\cap(\mathbf{N} \times\{0\})$ contains at most one point. Since F_{1} is closed, there is an $n \in \mathbf{N}$ such that $F_{1} \cap T_{n}\left(F_{2} \cap(N \times\{0\})\right)=\emptyset$. Thus $F_{1} \cap T_{n}\left(F_{2}\right)=\emptyset$. We conclude that (Y, p) is equinormal.

Remark 2. The author discovered Example 5 in July 1988. Independently the referee obtained essentially the same example when studying the first version of this paper. The referee also observes that each Hausdorff equinormal quasi-metric space (X, p) is convergence complete. (Proof. The space X is regular, because each closed subset of the Hausdorff space X is of countable character [7, p. 112]. (In fact X is metrizable and the set of nonisolated points of X is compact [7, Proposition 4.1].) Hence the quasiuniformity $\mathcal{U}(p)$ on X is locally symmetric [8, Proposition 2.26], because p is equinormal. Thus each cluster point of a $\mathcal{U}(p)$-Cauchy filter \mathcal{F} on X is a limit point of \mathcal{F} [8, Proposition 3.9]. The assertion is now a consequence of the following proposition.)

The last proposition in this section shows that each equinormal quasimetric space is complete. Note that this result is related to Theorem 7.34 of [8]. In fact the proof of Theorem 7.34 given in [8] shows that an equinormal quasi-metric space is sequentially complete. Our Proposition 6 needs a proof however, because, as we have seen above, there are sequentially complete quasi-metric spaces that are not complete.

Proposition 6. Each equinormal quasi-metric space is complete.
Proof. Let (X, p) be an equinormal quasi-metric space and let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy ultrafilter on X. We have to show that \mathcal{F} converges in X.

Since \mathcal{F} is a $\mathcal{U}(\boldsymbol{p})$-Cauchy filter on X, for each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $\boldsymbol{B}_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$.

If the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point y in X, then, as the proof of Proposition 5 shows, \mathcal{F} converges to y. Hence in the following it suffices to consider the case that $\left\{x_{n}: n \in \mathbf{N}\right\}$ is an infinite closed discrete subspace of X. Let us assume that \mathcal{F} does not converge in X. Since for each $n \in \mathbf{N}$ the filter \mathcal{F} does not converge to x_{n}, there is an $s_{n} \in \mathbf{N}$ such that $B_{s_{n}}^{p}\left(x_{n}\right) \notin \mathcal{F}$. For each $n \in \mathbf{N}$ set $H_{n}=B_{n}^{p}\left(x_{n}\right) \backslash\left(\bigcup\left\{B_{s_{i}}^{p}\left(x_{i}\right): i=1, \ldots, n\right\}\right)$. Then $H_{n} \in \mathcal{F}$ whenever $n \in \mathbf{N}$. Define inductively a sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ of points of X and a strictly increasing sequence $\left(k_{n}\right)_{n \in \mathbf{N}}$ of positive integers as follows. Choose $a_{1} \in H_{1}$, and choose $k_{1} \in \mathbf{N}$ such that $x_{k_{1}} \neq a_{1}$. Let $n \in \mathbf{N} \backslash\{1\}$. Assume that a_{n-1} and k_{n-1} are defined. Since \mathcal{F} is a free ultrafilter, we can choose an $a_{n} \in H_{k_{n-1}} \backslash\left\{a_{1}, a_{2}, \ldots, a_{n-1}, x_{1}, x_{2}, \ldots, x_{k_{n-1}}\right\}$. Moreover, since $\left\{x_{n}: n \in\right.$ $\in \mathbf{N}\}$ has infinitely many elements, we can find a $k_{n} \in \mathbf{N}$ such that $k_{n}>k_{n-1}$ and such that $x_{k_{n}} \notin\left\{a_{1}, a_{2}, \ldots, a_{n}, x_{1}, x_{2}, \ldots, x_{k_{n-1}}\right\}$. This completes the construction of the sequences $\left(a_{n}\right)_{n \in \mathbf{N}}$ and $\left(k_{n}\right)_{n \in \mathbf{N}}$.

It is easy to check that $\left\{a_{n}: n \in \mathbf{N}\right\} \cap\left\{x_{k_{n}}: n \in \mathbf{N}\right\}=\emptyset$. In fact, $\overline{\left\{a_{n}: n \in \mathbf{N}\right\}} \cap\left\{x_{k_{n}}: n \in \mathbf{N}\right\}=\emptyset$, because if $n \in \mathbf{N}$ and $r \in \mathbf{N}$ such that $r>$ $>n$, then $a_{r} \notin B_{s_{k_{n}}}^{p}\left(x_{k_{n}}\right)$, since $a_{r} \in H_{k_{r-1}}$. Because (X, p) is equinormal, there is an $f \in \mathbf{N}$ such that $a_{n} \notin B_{f}^{p}\left(x_{k_{i}}\right)$ for each $n, i \in \mathbf{N}$. Then there is an $m \in \mathbf{N}$ such that $k_{m} \geqq f$. However $a_{m+1} \in H_{k_{m}} \subseteq B_{k_{m}}^{p}\left(x_{k_{m}}\right) \subseteq B_{f}^{p}\left(x_{k_{m}}\right)-\mathrm{a}$ contradiction. We conclude that \mathcal{F} converges. Hence the quasi-uniformity $\mathcal{U}(p)$ is complete.

3. Quasi-metric completions

Let (X, \mathcal{U}) be a T_{1} quasi-uniform space. In [8, § 3.39] a quasi-uniform space (Y, \mathcal{V}) is called a completion of (X, \mathcal{U}) if (Y, \mathcal{V}) is a complete T_{1} quasiuniform space that has a dense subspace quasi-unimorphic (relative to \mathcal{U} and $\mathcal{V})$ to (X, \mathcal{U}). Similarly we will call a quasi-uniform space (Y, \mathcal{V}) a convergence completion of (X, \mathcal{U}) if (Y, \mathcal{V}) is a convergence complete T_{1} quasi-uniform space that has a dense subspace quasi-unimorphic (relative to \mathcal{U} and \mathcal{V}) to (X, \mathcal{U}).

In [8, Theorem 3.43] it is shown that a T_{1} quasi-uniform space (X, \mathcal{U}) has a completion if and only if whenever \mathcal{F} is a \mathcal{U}-Cauchy filter on X and $x \in X$ is a $\mathcal{T}\left(\mathcal{U}^{-1}\right)$-cluster point of \mathcal{F}, then x is a $\mathcal{T}(\mathcal{U})$-cluster point of \mathcal{F}. It is also known that a T_{1} quasi-uniform space (X, \mathcal{U}) has a convergence completion if and only if every fixed \mathcal{U}-Cauchy filter on X is convergent in (X, \mathcal{U}) [2, essentially Theorem 3.9 and Lemma 3.8].

In this section we want to study several variants of Problem U posed by P. Fletcher and W. F. Lindgren in [8, p. 179]. As mentioned above, Problem U asks for a characterization of the class of quasi-metric spaces having
quasi-metric completions. In order to discuss this problem we introduce the following terminology.

Let (X, p) be a quasi-metric subspace of a quasi-metric space (Y, q). We say that (Y, q) is a quasi-metric sequential (convergence) completion of (X, p) if X is dense in Y and Y is sequentially (convergence) complete.

Similarly we say that (Y, q) is a quasi-metric (convergence) completion of (X, p) if X is dense in Y and Y is (convergence) complete. Note that in this case the quasi-uniform space $(Y, \mathcal{U}(q))$ is a (convergence) completion of the quasi-uniform space $(X, \mathcal{U}(p))$.
3.1. Preliminary results. Let us first consider several topological properties that are of interest in this context. We note that Lemma 5 and Lemma 6 below are related to [8, Theorem 7.37] and [6, Proposition 2.10], respectively.

Recall that a T_{1} space X has a base of countable order if and only if there is a sequence $\left(\mathcal{B}_{n}\right)_{n \in \mathbb{N}}$ of bases for X that satisfies the following condition: Whenever $x \in X$ and $\left(b_{n}\right)_{n \in \mathrm{~N}}$ is a decreasing sequence of subsets of X such that $x \in b_{n} \in \mathcal{B}_{n}$ for each $n \in \mathbf{N}$, then $\left\{b_{n}: n \in \mathbf{N}\right\}$ is a neighborhood base at x [19, Theorem 2].

Lemma 5. Each sequentially complete quasi-metric space has a base of countable order.

Proof. Let (X, p) be a sequentially complete quasi-metric space. For each $n \in \mathbf{N}$ set $\mathcal{B}_{n}=\left\{B_{k}^{p}(x): x \in X, k \in \mathbf{N}, k \geqq n\right\}$. Clearly \mathcal{B}_{n} is a base for X whenever $n \in \mathbf{N}$. Let $x \in X$ and let $\left(b_{n}\right)_{n \in \mathbf{N}}$ be a decreasing sequence of subsets of X such that $x \in b_{n} \in \mathcal{B}_{n}$ for each $n \in \mathbf{N}$. Then for each $n \in \mathbf{N}$ there are $y_{n} \in X$ and $k_{n} \in \mathbf{N}$ such, that $b_{n}=B_{k_{n}}^{p}\left(y_{n}\right)$ and $k_{n} \geqq n$. Since $\left(b_{n}\right)_{n \in \mathbb{N}}$ is decreasing, it is clear that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, p). Since (X, p) is sequentially complete, $\left(y_{n}\right)_{n \in \mathbf{N}}$ has a cluster point y in X. Let $m \in \mathbf{N}$. Then there is an $s \in \mathbf{N}$ such that $s>m$ and such that $y_{s} \in B_{m+1}^{p}(y)$. Hence $x \in b_{s}=B_{k_{s}}^{p}\left(y_{s}\right) \subseteq B_{m}^{p}(y)$. Thus $x \in B_{m}^{p}(y)$ for each $m \in N$. Since X is a T_{1} space, we conclude that $x=y$. Hence $\left\{b_{n}: n \in \mathbf{N}\right\}$ is a neighborhood base at x. We have shown that X has a base of countable order.

In the light of Proposition 4 it is interesting to note that by a similar proof one can show that each Tychonoff Čech complete quasi-metric space (X, p) has a base of countable order. (Let $\left(\mathcal{G}_{n}\right)_{n \in \mathbf{N}}$ be a sequence of open covers of X witnessing Čech completeness of X. Set $\mathcal{B}_{n}=\left\{B_{k}^{p}(x): x \in X\right.$, $k \in \mathbf{N}, k \geqq n$ and $\overline{B_{k}^{p}(x)} \subseteq G$ for some $\left.G \in \mathcal{G}_{n}\right\}$ for each $n \in \mathbf{N}$.)

Corollary 4. Each θ-refinable sequentially complete quasi-metric space is developable.

Proof. Each θ-refinable T_{1} ' space with a base of countable order is developable [19, Theorem 3].

Corollary 5. If a quasi-metric space has a quasi-metric sequential completion, then it has a base of countable order.

Proof. A subspace of a topological space that has a base of countable order has a base of countable order [19, Theorem 1].

Corollary 6. Each generalized ordered topological space admitting a sequentially complete quasi-metric is completely metrizable.

Proof. Let X be a generalized ordered topological space that admits a sequentially complete quasi-metric. It is known that each generalized ordered quasi-metrizable topological space is paracompact [4, Theorem 4.1]. Hence X is metrizable, because each paracompact Hausdorff space that has a base of countable order is metrizable (see e.g. [19]). Since by Proposition 4 the space X is Čech complete, it is completely metrizable [3, Theorem 4.3.26].

Example 6. The Michael line and the Sorgenfrey line (see e.g. [8]) are quasi-metrizable generalized ordered topological spaces that do not admit quasi-metrics that have a quasi-metric sequential completion, because these spaces do not have a base of countable order. [A related result is Corollary 7.39 of [8]. Note, however, that this result is based on the incorrect Proposition 7.39 in [8] (see below)].

Let us recall that a topological space X is said to be subdevelopable [8, p. 169] if there exists a sequence $\left(\mathcal{G}_{n}\right)_{n \in \mathrm{~N}}$ of open covers of X such that whenever $x \in X$ and $x \in H_{n} \in \mathcal{G}_{n}$ for each $n \in \mathbf{N}$, then $\left\{H_{n}: n \in \mathbf{N}\right\}$ is a local subbase at x. In this case the sequence $\left(\mathcal{G}_{n}\right)_{n \in \mathbf{N}}$ is called a subdevelopment for X (see also [12, Theorem 3.1, 1; 10]). Note that each subdevelopable T_{1} space has a G_{δ}-diagonal. In fact it is known that a Tychonoff space is subdevelopable if and only if it is a p-space having a G_{δ}-diagonal [10, Theorem 1]. (The characterization given on p. 169 of [8] is not correct.)

Lemma 6. Each sequentially convergence complete quasi-metric space is subdevelopable.

Proof. Let (X, p) be a sequentially convergence complete quasi-metric space. For each $n \in \mathbf{N}$ set $\mathcal{B}_{n}=\left\{B_{n}^{p}(x): x \in X\right\}$. We wish to show that $\left(\mathcal{B}_{n}\right)_{n \in \mathbf{N}}$ is a subdevelopment for X. Assume that $x \in X$ and that for each $n \in \mathbf{N}$ we have that $x \in B_{n}^{p}\left(x_{n}\right)$ where $x_{n} \in X$. We argue that $\left\{B_{n}^{p}\left(x_{n}\right): n \in \mathbf{N}\right\}$ is a local subbase at x. Assume the contrary. Then there is an $m \in \mathbf{N}$ and for each $n \in \mathbf{N}$ there is a $y_{n} \in X$ such that $y_{n} \in\left(\cap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right) \backslash$ $B_{m}^{p}(x)$. Set $z_{n}=y_{n}$ if $n \in \mathbf{N}$ and n is even, and set $z_{n}=x$ if $n \in \mathbf{N}$ and n is odd. The Cauchy sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in (X, p) converges to some point z in X, because X is sequentially convergence complete. Since X is a T_{1} space and $\left(z_{n}\right)_{n \in \mathrm{~N}}$ has a constant subsequence, we conclude that $z=x$, although $z_{n} \notin B_{m}^{p}(x)$ for infinitely many $n \in \mathbf{N}$. We have reached a contradiction. We conclude that X is subdevelopable.

Corollary 7. A quasi-metric space that has a quasi-metric sequential convergence completion is subdevelopable.

Proof. It is clear that a subspace of a subdevelopable space is subdevelopable (see [12, Theorem 3.2]).

In [8, Proposition 7.39] it is stated that if a quasi-metrizable quasi-uniform space has a completion, then it has a subdevelopment. However as we are going to show now there is an example of a zero-dimensional complete quasi-metric space that does not have a G_{δ}-diagonal. Of course this example contradicts Proposition 7.39 of [8]. (The error in [8] seems to occur in line 6 on page 180.)

Example 7. A zero-dimensional complete quasi-metric space without a G_{δ}-diagonal.

Our construction combines an example of J. Gerlits [10, p. 345] with some ideas contained e.g. in [15].

Denote by I the interval $[0,1]$ of the reals and by $\left\{\left(x_{n}(\alpha)\right)_{n \in \mathbb{N}}: \alpha \in \mathcal{A}\right\}$ a family of sequences in I with the following properties:
a) For each $\alpha \in \mathcal{A}$ we have that $\left(x_{n}(\alpha)\right)_{n \in \mathrm{~N}}$ is a convergent injective sequence in I without its limit point.
b) For each $\alpha, \beta \in \mathcal{A}$ with $\alpha \neq \beta$ we have that $\left\{x_{n}(\alpha): n \in \mathbf{N}\right\}$ and $\left\{x_{n}(\beta)\right.$: $n \in \mathbf{N}\}$ have a finite intersection.
c) $\left\{\left(x_{n}(\alpha)\right)_{n \in \mathrm{~N}}: \alpha \in \mathcal{A}\right\}$ is maximal with respect to the properties a) and b).

Now we put $X=(I \times\{1,2\}) \cup \mathcal{A}$. For each $z, y \in X$ define $p(z, y)$ as follows:

$$
p(z, y)= \begin{cases}0 & \text { if } z=y \\ 2^{-n} & \text { if } z \in \mathcal{A}, n \in \mathbf{N}, y=\left(x_{n}(z), j\right) \text { and } j \in\{1,2\} \\ 1 & \text { otherwise }\end{cases}
$$

It is easy to check that p is a quasi-metric on X. Note that for each $n \in \mathrm{~N}$ and each $x \in X$ the set $B_{n}^{p}(x)$ is closed. Thus X is zero-dimensional.

Let us show that the quasi-uniformity $\mathcal{U}(p)$ is complete. Let \mathcal{F} be a $\mathcal{U}(p)$ Cauchy ultrafilter on X. We have to show that \mathcal{F} has a cluster point in X. Assume the contrary. Since \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X, for each $n \in \mathbf{N}$ there is an $x_{n} \in X$ such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$. Since \mathcal{F} does not converge in X, the ultrafilter \mathcal{F} on X cannot contain a finite set. Thus $x_{n} \in \mathcal{A}$ and $x_{n}=x_{1}$ for each $n \in \mathbf{N}$. Hence \mathcal{F} converges to x_{1} - a contradiction. We conclude that each $\mathcal{U}(p)$-Cauchy filter on X has a cluster point in X. Therefore $\mathcal{U}(p)$ is complete.

It remains to show that X does not have a G_{δ}-diagonal. Assume the contrary. Then there exists a sequence $\left(\mathcal{G}_{n}\right)_{n \in \mathrm{~N}}$ of open covers of X so that whenever $x, y \in X$ and $x \neq y$ there is a $k \in \mathbf{N}$ such that $x \notin \operatorname{st}\left(y, \mathcal{G}_{k}\right)$. For each $n \in \mathbf{N}$ set $S_{n}=\left\{i \in I:(i, 2) \notin \operatorname{st}\left((i, 1), \mathcal{G}_{n}\right)\right\}$. Then $I=\bigcup\left\{S_{n}: n \in \mathbf{N}\right\}$. Since I is uncountable, there exists a $k \in \mathrm{~N}$ such that S_{k} is infinite. Therefore, since the collection \mathcal{A} is maximal and since each infinite subset of I has a subset that is the range of an injective and in I (with respect to the usual topology) convergent sequence, there is an $\alpha \in \mathcal{A}$ such that $x_{n}(\alpha) \in S_{k}$ for infinitely many $n \in \mathbf{N}$. There is also a $C \in \mathcal{G}_{k}$ such that $\alpha \in C$. Since C is open, there is an $m \in \mathbf{N}$ such that $\left(x_{n}(\alpha), j\right)$ belongs to C whenever $n \in \mathbf{N}$,
$n \geqq m$ and $j \in\{1,2\}$. Hence there is an $s \in \mathbf{N}$ such that $x_{s}(\alpha) \in S_{k}$, and $\left\{\left(x_{s}(\alpha), 1\right),\left(x_{s}(\alpha), 2\right)\right\} \cong C$. However, this contradicts the definition of S_{k}. We conclude that X does not have a G_{δ}-diagonal. In particular X is not sequentially convergence complete.

Our last result in this section is related to Theorem 4.4 of [6]. Note that it shows that the Niemytzki plane admits a convergence complete quasi-metric [$8,5.17 ; 3,3.9 . \mathrm{D}]$.

Proposition 7. Each Tychonoff orthocompact Čech complete space with a G_{δ}-diagonal admits a convergence complete quasi-metric.

Proof. Let X be a Tychonoff orthocompact Čech complete space with a G_{δ}-diagonal. Since X is a Čech complete Tychonoff space, there is a countable collection $\left\{\mathcal{G}_{n}: n \in \mathbf{N}\right\}$ of open covers of X such that whenever \mathcal{F} is a collection of closed subsets of X that has the finite intersection property and that has the property that for each $n \in \mathbf{N}$ there is an $F_{n} \in \mathcal{F}$ such that $F_{n} \subseteq G_{n}$ for some $G_{n} \in \mathcal{G}_{n}$, then \mathcal{F} has nonempty intersection. Since X has a G_{δ}-diagonal, there is a countable collection $\left\{\mathcal{H}_{n}: n \in \mathrm{~N}\right\}$ of open covers of X so that whenever $x, y \in X$ and $x \neq y$ there is an $n \in \mathbf{N}$ such that $y \notin \operatorname{st}\left(x, \mathcal{H}_{n}\right)$. For each $n \in \mathbf{N}$ set $\mathcal{R}_{n}=\{R$ is open in $X: \bar{R} \cong(H \cap G)$ for some $H \in \mathcal{H}_{n}$ and some $\left.G \in \mathcal{G}_{n}\right\}$. Since X is orthocompact (see e.g. [8, p. 100] for the definition of the notion of orthocompactness), for each $n \in \mathbf{N}$ there is an interior-preserving open refinement \mathcal{P}_{n} of \mathcal{R}_{n}. For each $n \in \mathbf{N}$ and each $x \in X$ set $T_{n}(x)=\bigcap\left\{S \in \mathcal{P}_{k}: x \in S, k \in \mathbf{N}\right.$ and $\left.k \leqq n\right\}$.

Let $x \in X$. First let us show that $\left\{T_{n}(x): n \in \mathbf{N}\right\}$ is a neighborhood base at x. Assume the contrary. Then there is an open neighborhood G of x such that $\mathcal{D}=\left\{\overline{T_{n}(x)} \backslash G: n \in \mathrm{~N}\right\}$ is a closed filterbase on X. By the property of the collection $\left\{\mathcal{G}_{n}: n \in \mathbf{N}\right\}$ the filterbase \mathcal{D} on X has a cluster point y in $X \backslash G$. By the property of the collection $\left\{\mathcal{H}_{n}: n \in \mathbf{N}\right\}$ we have that $\cap\left\{\overline{T_{n}(x)}: n \in \mathbf{N}\right\}=\{x\}$. Hence $y=x-\mathrm{a}$ contradiction. Thus $\left\{T_{n}(x): n \in\right.$ $\in \mathrm{N}\}$ is neighborhood base at x.

By Lemma 1 there is a quasi-metric p on X such that for each $n \in \mathbf{N}$ and each $x \in X$ we have that $B_{n}^{p}(x)=T_{n}(x)$. In particular p induces the topology on X.

Let us show that (X, p) is convergence complete. Because of Corollary 1 it suffices to show that each Cauchy sequence in (X, p) has exactly one cluster point in X. Let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be a Cauchy sequence in (X, p). Then for each $n \in$ $\in \mathbf{N}$ there are $y_{n} \in \mathbf{N}$ and $k_{n} \in \mathbf{N}$ such that $\left\{x_{k}: k \in \mathbf{N}, k \geqq k_{n}\right\} \cong T_{n}\left(y_{n}\right)$. Clearly by the property of the collection $\left\{\mathcal{G}_{n}: n \in \mathbf{N}\right\}$ the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point y in X. By the property of the collection $\left\{\mathcal{H}_{n}: n \in \mathbf{N}\right\}$ we get that $\bigcap\left\{\overline{T_{n}\left(y_{n}\right)}: n \in \mathbf{N}\right\}=\{y\}$. This shows that y is the only cluster point of the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in X. Hence (X, p) is convergence complete.
3.2. Construction of completions. Now we are ready to answer Problem U of [8]. We will give necessary and sufficent conditions in order that a quasimetric space (X, p) has a quasi-metric sequential completion (quasi-metric
sequential convergence completion, quasi-metric completion, quasi-metric convergence completion). Our characterizations of these spaces should be compared with the characterization (given in the beginning of section 3) of the T_{1} quasi-uniform spaces having a (convergence) completion.

Proposition 8. Let p be a quasi-metric on a set X. Then the following conditions are equivalent:
a) The quasi-metric space (X, p) has a quasi-metric sequential completion (Y, q).
b) Whenever $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p) and $x \in X$ is a $\mathcal{T}\left(p^{-1}\right)$-cluster point of the sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$, then x is a $\mathcal{T}(p)$-cluster point of the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$.
c) The quasi-uniform space $(X, \mathcal{U}(p))$ has a completion.

The proof of Proposition 8 is based on following technical lemma.
For later use we formulate it in a fairly general form.
Lemma 7. Let p be a quasi-metric on a set X and let $Y=X \cup \mathcal{A}$ where X and \mathcal{A} are disjoint. For each $x \in \mathcal{A}$ let be given a point $s(x) \in X$ and a decreasing sequence $\left(S_{n}(x)\right)_{n \in \mathrm{~N}}$ of nonempty subsets of X such that $S_{1}(x)=$ $=B_{n}^{p}(s(x))$. For each $x, y \in Y$ define $q(x, y)$ as follows:

$$
q(x, y)= \begin{cases}p(x, y) & \text { if } x, y \in X \\ p(s(x), s(y))+2 & \text { if } x, y \in \mathcal{A}, x \neq y \\ 0 & \text { if } x, y \in \mathcal{A}, x=y \\ p(x, s(y))+3 & \text { if } x \in X, y \in \mathcal{A} \\ \inf \left\{\max \left\{p\left(S_{n}(x), y\right), \frac{\mathbf{1}}{n}\right\}: n \in \mathbf{N}\right\} & \text { if } x \in \mathcal{A}, y \in X\end{cases}
$$

Then q is a quasi-pseudo-metric on Y. Furthermore

$$
B_{m}^{q}(x)=\left(\bigcup\left\{B_{m}^{p}(b): b \in S_{2^{m}+1}(x)\right\}\right) \cup\{x\}
$$

for each $x \in \mathcal{A}$ and $m \in \mathbf{N}$.
If q satisfies the condition
(v) $q(x, y) \neq 0$ whenever $x \in \mathcal{A}$ and $y \in X$,
then q is a quasi-metric on Y.
Proof. First we prove that q satisfies the following condition:

$$
|q(x, y)-p(s(x), y)| \leqq 1 \text { whenever } x \in \mathcal{A} \text { and } y \in X
$$

In order to see this, let $x \in \mathcal{A}$ and $y \in X$. Note that for each $n \in \mathbf{N}$ and each $z \in S_{n}(x)$ we have that $p(s(x), y) \leqq p(s(x), z)+p(z, y) \leqq 1+p(z, y)$. Thus $p(s(x), y)-1 \leqq \inf \left\{\max \left\{p\left(S_{n}(x), y\right), \frac{1}{n}\right\}: n \in \mathbf{N}\right\}=q(x, y)$. Furthermore observe that $q(x, y) \leqq \max \left\{p\left(B_{1}^{p}(s(x)), y\right), 1\right\} \leqq p(s(x), y)+1$. Hence $|q(x, y)-p(s(x), y)| \leqq 1$.

It is obvious that q is a quasi-pseudo-metric on Y provided that q satisfies the triangle inequality. Let us verify that q fulfills this condition. To this end let x, y and z be elements of Y such that $x \neq z$ and $z \neq y$. It is straightforward to check that the inequality $q(x, y) \leqq q(x, z)+q(z, y)$ follows immediately from the definition of q or from the inequality proved above whenever z or y belong to \mathcal{A}. In order to give an example consider the case that $x \in \mathcal{A}, z \in \mathcal{A}$ and $y \in X$. Then $q(x, y) \leqq p(s(x), y)+1 \leqq p(s(x), s(z))+2+p(s(z), y)-1 \leqq$ $\leqq q(x, z)+q(z, y)$. The remaining five cases are similar.

Therefore it remains to consider the case that z and y belong to X. This case is trivial if $x \in X$. Hence it suffices to study the case that $x \in$ $\in \mathcal{A}, z \in X$ and $y \in X$. For convenience set $h=q(x, z)$. Let s be a real number such that $s>h$. By the definition of $q(x, z)$ there are an $n \in \mathbf{N}$ and a $b \in S_{n}(x)$ such that $1 / n<s$ and $p(b, z)<s$. Hence $1 / n<s+p(z, y)$ and $p(b, y) \leqq p(b, z)+p(z, y)<s+p(z, y)$. Thus by the definition of $q(x, y)$ we deduce that $q(x, y) \leqq h+p(z, y)=q(x, z)+q(z, y)$. We have shown that (Y, q) is a quasi-pseudo-metric space.

Since the last assertion made in Lemma 7 is obvious, only the set-theoretic equality remains to be verified. Suppose that $x \in \mathcal{A}$ and $m \in N$. Let $y \in B_{m}^{p}(b)$ for some $b \in S_{2^{m}+1}(x)$. Set $n=2^{m}+1$. Then $\max \left\{\frac{1}{n}, p(b, y)\right\}<$ $<2^{-m}$ and $b \in S_{n}(x)$. Therefore $y \in B_{m}^{q}(x)$. On the other hand let $y \in B_{m}^{q}(x)$ such that $y \neq x$. Then $q(x, y)<2^{-m}$. There are a positive integer n and $b \in$ $\in S_{n}(x)$ such that $1 / n<2^{-m}$ and $p(b, y)<2^{-m}$. Hence $y \in B_{m}^{p}(b)$ and $n>2^{m}$. We conclude that $y \in B_{m}^{p}(b)$ for some $b \in S_{n}(x) \subseteq S_{2^{m}+1}(x)$.

Proof of Proposition 8. We recall that a T_{1} quasi-uniform space (X, \mathcal{U}) has a completion if and only if whenever \mathcal{F} is a \mathcal{U}-Cauchy filter on X and $x \in X$ is a $\mathcal{T}\left(\mathcal{U}^{-1}\right)$-cluster point of \mathcal{F}, then x is a $\mathcal{T}(\mathcal{U})$-cluster point of \mathcal{F} [8, Theorem 3.43]. Using this result we wish to see first that conditions b) and c) are equivalent.
c) \rightarrow b): This is an obvious consequence of the result just cited.
b) \rightarrow c): Let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy filter on X and let $x \in X$ be a $\mathcal{T}\left(p^{-1}\right)$ cluster point of \mathcal{F}. By the result mentioned above it suffices to show that x is a $\mathcal{T}(p)$-cluster point of \mathcal{F}. Assume the contrary. Then there exists a $\mathcal{T}(p)$-closed subset F of X belonging to \mathcal{F} such that $x \notin F$. Since \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X, there exists a sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ of points of X such that $B_{n}^{p}\left(x_{n}\right) \in \mathcal{F}$ whenever $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ choose $y_{n} \in B_{n}^{p^{-1}}(x) \cap F \cap$ $\cap\left(\bigcap\left\{B_{k}^{p}\left(x_{k}\right): k=1, \ldots, n\right\}\right)$. By condition b) the point x is a $\mathcal{T}(p)$-cluster point of the Cauchy sequence $\left(y_{n}\right)_{n \in \mathrm{~N}}$ in (X, p). Hence x belongs to $F-\mathrm{a}$ contradiction. We conclude that x is a $\mathcal{T}(p)$-cluster point of \mathcal{F}. Therefore condition c) is satisfied.

We finish the proof by showing that conditions a) and b) are equivalent.
$\mathrm{a}) \rightarrow \mathrm{b}):$ Assume that $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p) and that $x \in X$ is a $\mathcal{T}\left(p^{-1}\right)$-cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X. Then there is a subsequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ of $\left(x_{n}\right)_{n \in \mathbf{N}}$ such that $x \in B_{n}^{p}\left(z_{n}\right)$ whenever $n \in \mathbf{N}$. Since
$\left(z_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in the sequentially complete quasi-metric space (Y, q), the sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ has a $\mathcal{T}(q)$-cluster point r in Y. Then we have that $\lim _{n \rightarrow \infty} q\left(r, y_{n}\right)=0$ for some subsequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ of $\left(z_{n}\right)_{n \in \mathbf{N}}$. Moreover $\lim _{n \rightarrow \infty} q\left(y_{n}, x\right)=0$. Since q is a quasi-metric on $Y, r=x \in X$. Hence x is a cluster point of $\left(x_{n}\right)_{n \in \mathrm{~N}}$ in (X, p). Therefore (X, p) satisfies condition b).
$\mathrm{b}) \rightarrow \mathrm{a})$: In order to prove this implication we assume that (X, p) is a quasi-metric space that satisfies condition b). We will construct a quasimetric sequential completion of (X, p). Let $\mathcal{A}=\{x: x$ is a Cauchy sequence in (X, p) without $\mathcal{T}(p)$-cluster point in $X\}$.

Set $Y=X \cup \mathcal{A}$. Let $x=\left(x_{n}\right)_{n \in \mathbf{N}} \in \mathcal{A}$. Choose a sequence $([x](n))_{n \in \mathbf{N}}$ of points in X and a strictly increasing sequence $\left(k_{n}(x)\right)_{n \in \mathbb{N}}$ of positive integers such that $\left\{x_{k}: k \in \mathbf{N}, k \geqq k_{n}(x)\right\} \cong B_{n}^{p}([x](n))$. Set $S_{n}(x)=\left\{x_{k}: k \in \mathbf{N}, k \geqq\right.$ $\left.\geqq k_{n}(x)\right\}$ whenever $n \in \mathbf{N} \backslash\{1\}, S_{1}(x)=B_{1}^{p}([x](1))$ and $s(x)=[x](1)$. Clearly, $\left(S_{n}(x)\right)_{n \in \mathbf{N}}$ is a decreasing sequence of nonempty subsets of X. Hence we can use Lemma 7 to construct a quasi-metric q on Y, provided that q satisfies condition (v):

Assume that $y \in X$ and $x=\left(x_{n}\right)_{n \in \mathbf{N}} \in \mathcal{A}$ such that $q(x, y)=0$. We have that $\lim _{n \rightarrow \infty} p\left(y_{n}, y\right)=0$ for some subsequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of the Cauchy sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in X. Because of condition b) the point y is a cluster point of the Cauchy sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in (X, p) - a contradiction, since $x \in \mathcal{A}$. Hence (Y, q) is a quasi-metric space.

Note that the set-theoretic equality proved in Lemma 7 shows that for each $x=\left(x_{n}\right)_{n \in \mathbf{N}} \in \mathcal{A}$ the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of points of Y converges to the point x in Y. In particular X is dense in Y.

Finally we want to show that (Y, q) is sequentially complete. Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in (Y, q). Consider the $\mathcal{U}(q)$-Cauchy filter \mathcal{F} generated by $\left\{\left\{z_{k}: k \in \mathbf{N}, k \geqq n\right\} \mid n \in \mathbf{N}\right\}$ on Y. For each $n \in \mathbf{N}$ there is a $y_{n} \in Y$ such that $B_{n}^{q}\left(y_{n}\right) \in \mathcal{F}$. If $X \notin \mathcal{F}$, then $\bigcap\left\{B_{k}^{q}\left(y_{k}\right): k=1, \ldots, n\right\} \backslash X \neq \emptyset$ for each $n \in \mathbf{N}$. Hence $y_{n} \in \mathcal{A}$ and $y_{n}=y_{1}$ whenever $n \in \mathbf{N}$. Thus \mathcal{F} (and, therefore, $\left.\left(z_{n}\right)_{n \in \mathrm{~N}}\right)$ converge to y_{1}.

It remains to consider the case that $X \in \mathcal{F}$. In this case we want to show that the filter $\{F \cap X: F \in \mathcal{F}\}$ is a $\mathcal{U}(p)$-Cauchy filter on the subspace X of Y. Assume the contrary. Then clearly there is a $k \in \mathbf{N}$ such that $y_{n} \in \mathcal{A}$ whenever $n \in \mathbf{N}$ and $n \geqq k$. Let $s \in \mathbf{N}$ and let $h \in \mathbf{N}$ such that $h>\max \{k, s\}$. By Lemma $7\left(X \cap B_{h}^{q}\left(y_{h}\right)\right) \cong \bigcup\left\{B_{h}^{p}(z): z \in S_{h}\left(y_{h}\right)\right\} \cong B_{h-1}^{p}\left(\left[y_{h}\right](h)\right) \cong B_{s}^{p}\left(\left[y_{h}\right](h)\right)$, because $S_{h}\left(y_{h}\right) \cong B_{h}^{p}\left(\left[y_{h}\right](h)\right)$. Since $X \cap B_{h}^{q}\left(h_{y}\right) \in \mathcal{F}$, we have that $B_{s}^{p}\left(\left[y_{h}\right](h)\right) \in$ $\in \mathcal{F}$. Hence for each $s \in \mathbf{N}$ there is a $w_{s} \in X$ such that $B_{s}^{p}\left(w_{s}\right) \in \mathcal{F}$ - a contradiction. We conclude that, in the case under consideration, $\{F \cap X: F \in \mathcal{F}\}$ is a $\mathcal{U}(p)$-Cauchy filter on the subspace X of Y.

Hence there is a $j \in \mathbf{N}$ such that $\left(z_{n}\right)_{n \geqq j}$ is a Cauchy sequence in the subspace X of Y. If the sequence $\left(z_{n}\right)_{n \geqq j}$ does not have a cluster point in (X, p), then by definition $z:=\left(z_{n}\right)_{n \geqq j} \in \mathcal{A}$ and, thus, the sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ in Y has the limit point $z \in Y$ by an observation made above. Otherwise,
obviously, $\left(z_{n}\right)_{n \in \mathrm{~N}}$ has a cluster point in Y.
We conclude that each Cauchy sequence in (Y, q) has a cluster point in (Y, q). Hence (Y, q) is sequentially complete.

Next we wish to characterize the quasi-metric spaces that have a quasimetric sequential convergence completion.

Proposition 9. Let p be a quasi-metric on a set X. For each $n \in \mathbf{N}$ set $\mathcal{B}_{n}=\left\{B_{n}^{p}(x): x \in X\right\}$. Then the following conditions are equivalent:
a) (X, p) has a quasi-metric sequential convergence completion.
b) The collection $\left\{\mathcal{B}_{n}: n \in \mathbf{N}\right\}$ is a subdevelopment for X.
c) (X, p) has a quasi-metric convergence completion.
d) The quasi-uniform space $(X, \mathcal{U}(p))$ has a convergence completion.

Proof. Again one equivalence is nearly obvious.
d) $\rightarrow \mathrm{b}$) and b$) \rightarrow \mathrm{d}$): It is straightforward to check that the condition "Each nonconvergent $\mathcal{U}(p)$-Cauchy filter on X is free" and condition b) are equivalent. Hence the two implications follow from the result [2, Theorem 3.9 and Lemma 3.8] (cited in the introduction to section 3) that a T_{1} quasiuniform space (X, \mathcal{U}) has a convergence completion if and only if each fixed \mathcal{U}-Cauchy filter on X converges in (X, \mathcal{U}).

We are going to show now that the remaining conditions are equivalent to condition $b)$.
a) $\rightarrow \mathrm{b})$: Let (X, p) be a quasi-metric space that has a quasi-metric sequential convergence completion (Y, q). For each $n \in \mathbf{N}$ set $\mathcal{C}_{n}=\left\{B_{n}^{q}(y): y \in\right.$ $\in Y\}$. Then $\left\{\mathcal{C}_{n}: n \in \mathbf{N}\right\}$ is a subdevelopment for Y by the proof of Lemma 6. Since (X, p) is a subspace of (Y, q), it is clear that $\left\{\mathcal{B}_{n}: n \in \mathbf{N}\right\}$ is a subdevelopment for X.
b) $\rightarrow \mathrm{c})$: Let (X, p) be a quasi-metric space such that $\left\{\mathcal{B}_{n}: n \in \mathbf{N}\right\}$ is a subdevelopment for X. We construct a quasi-metric convergence completion of (X, p). Set $\mathcal{A}=\{x: x$ is a nonconvergent $\mathcal{U}(p)$-Cauchy filter on $X\}$ and $Y=$ $=X \cup \mathcal{A}$. Let $x \in \mathcal{A}$. For each $n \in \mathbf{N}$ choose $[x](n) \in X$ such that $B_{n}^{p}([x](n)) \in$ $\in x$. Set $s(x)=[x](1)$ and for each $n \in \mathbf{N}$ set $S_{n}(x)=\bigcap\left\{B_{k}^{p}([x](k)): k=\right.$ $=1, \ldots, n\}$. We wish to construct a quasi-metric q on Y according to Lemma 7. It remains to check that q satisfies condition (v).

Assume the contrary. Hence $q(x, y)=0$ for some $y \in X$ and some $x \in$ $\in \mathcal{A}$. By the definition of q there is a sequence $\left(z_{n}\right)_{n \in \mathcal{N}}$ in X such that $z_{n} \in \bigcap\left\{B_{k}^{p}([x](k)): k=1, \ldots, n\right\}$ and such that $y \in B_{n}^{p}\left(z_{n}\right)$ whenever $n \in \mathbf{N}$. Hence $y \in B_{n-1}^{p}([x](n))$ for each $n \in \mathbf{N} \backslash\{1\}$. Since $\left\{\mathcal{B}_{n}: n \in \mathbf{N}\right\}$ is a subdevelopment for X, we conclude that the filter x converges to y. Since $x \in \mathcal{A}$, we have reached a contradiction. Hence (Y, q) defined as in Lemma 7 is a quasi-metric space.

It remains to show that (Y, q) is a convergence completion of (X, p). Let $x \in \mathcal{A}$. Since, according to Lemma $7, S_{2^{m}+1}(x) \subseteq B_{m}^{q}(x)$ for each $m \in \mathbf{N}$, the filterbase x on Y converges to the point x in Y. In particular X is dense in Y.

Let \mathcal{F} be a $\mathcal{U}(q)$-Cauchy filter on Y. Assume that \mathcal{F} does not converge in Y. The argument given in the corresponding part of the proof of the last proposition shows that $X \in \mathcal{F}$ and that $\mathcal{H}:=\{F \cap X: F \in \mathcal{F}\}$ is a $\mathcal{U}(p)$ Cauchy filter on the subspace X of Y. Since \mathcal{F} does not converge in Y, we have that $\mathcal{H} \in \mathcal{A}$. Then, clearly \mathcal{F} converges to $\mathcal{H} \in Y$ - a contradiction. Hence we conclude that each $\mathcal{U}(q)$-Cauchy filter on Y converges in Y. Thus (Y, q) is a quasi-metric convergence completion of (X, p).
c) $\rightarrow \mathrm{a}):$ By Lemma 2 each convergence complete quasi-pseudo-metric space is sequentially convergence complete.

Proposition 9 naturally suggests the question whether a quasi-metric space (X, p) has a quasi-metric completion whenever it has a quasi-metric sequential completion. The final paragraphs of this paper are used to point out the set-theoretic nature of this question.

Proposition 10. Let p be a quasi-metric on a set X. Then the following conditions are equivalent:
a) The quasi-metric space (X, p) has a quasi-metric completion.
b) The quasi-uniformity $\mathcal{U}(p)$ has a quasi-uniform completion with a countable base.
c) Each $\mathcal{U}(p)$-Cauchy ultrafilter \mathcal{F} on X without limit point in (X, p) has a countable subcollection of $\mathcal{T}\left(p^{-1}\right)$-closed subsets of X with empty intersection.

Proof. a) $\rightarrow \mathrm{b})$: Let (X, p) be a quasi-metric space that has a quasimetric completion (Y, q). The quasi-uniformity $\mathcal{U}(q)$ satisfies the necessary conditions.
b) $\rightarrow \mathrm{c})$: Let (Y, \mathcal{V}) be a quasi-uniform completion of $(X, \mathcal{U}(p))$ (where we suppose that $(X, \mathcal{U}(p))$ is a dense subspace of $(Y, \mathcal{V}))$ with a countable base $\left\{V_{n}: n \in \mathbf{N}\right\}$ and let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy ultrafilter on X that does not have a limit point in (X, p). Since (Y, \mathcal{V}) is complete, the \mathcal{V}-Cauchy filterbase \mathcal{F} on Y has a cluster point y in (Y, \mathcal{V}). For each $n \in \mathbf{N}$ set $F_{n}=\operatorname{cl}_{\mathcal{T}\left(p^{-1}\right)}\left(V_{n}(y) \cap X\right)$. Then $\left(V_{n}(y) \cap X\right) \subseteq F_{n} \subseteq\left(V_{n}^{2}(y) \cap X\right)$ whenever $n \in \mathbf{N}$. Thus $\bigcap\left\{F_{n}: n \in \mathbf{N}\right\}=$ $=\emptyset$, because $(Y, \mathcal{T}(\mathcal{V}))$ is a T_{1} space. Since y is a cluster point of the filterbase \mathcal{F} on (Y, \mathcal{V}), it is clear that $\left\{F_{n}: n \in \mathbf{N}\right\}$ is a subcollection of the ultrafilter \mathcal{F} on X.
c) $\rightarrow \mathrm{a})$: We want to contruct a quasi-metric completion (Y, q) of (X, p). Set $\mathcal{A}=\{x: x$ is a $\mathcal{U}(p)$-Cauchy ultrafilter on X without limit point in $(X, p)\}$ and $Y=X \cup \mathcal{A}$. Let $x \in \mathcal{A}$. Then for each $n \in \mathrm{~N}$ there is an $[x](n) \in X$ such that $B_{n}^{p}([x](n)) \in x$. By our assumption, x has a countable subcollection $\left\{F_{k}(x): k \in \mathrm{~N}\right\}$ of $\mathcal{T}\left(p^{-1}\right)$-closed subsets of X with empty intersection. Set $s(x)=[x](1), S_{1}(x)=B_{1}^{p}([x](1))$ and $S_{n}(x)=\bigcap\left\{F_{k}(x) \cap B_{k}^{p}([x](k)): k=\right.$ $=1, \ldots, n\}$ whenever $n \in \mathbf{N} \backslash\{1\}$. Then $\left(S_{n}(x)\right)_{n \in \mathbf{N}}$ is a decreasing sequence of nonempty subsets of X. We define a distance function q on Y as in Lemma 7. Let us check that q satisfies condition (v):

Assume that $q(x, y)=0$ for some $x \in \mathcal{A}$ and some $y \in X$. Then there
is a sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ in X such that $\lim _{n \rightarrow \infty} p\left(z_{n}, y\right)=0$ and such that $z_{n} \in$ $\in \bigcap\left\{F_{k}(x): k=1, \ldots, n\right\}$ for each $n \in \mathbf{N}$. Since $F_{n}(x)$ is $\mathcal{T}\left(p^{-1}\right)$-closed whenever $n \in \mathbf{N}$, we have that $y \in \bigcap\left\{F_{n}(x): n \in \mathbf{N}\right\}$ - a contradiction. Thus (Y, q) is a quasi-metric space.

Let $x \in \mathcal{A}$. Since by Lemma 7 we have that $S_{2^{m}+1}(x) \subseteq B_{m}^{q}(x)$ for each $m \in \mathbf{N}$, the filterbase x on Y converges to the point x in Y. In particular X is dense in Y.

It remains to show that (Y, q) is complete. Let \mathcal{F} be a $\mathcal{U}(q)$-Cauchy ultrafilter on Y. We assume that \mathcal{F} does not converge in (Y, q). The same arguments as in the corresponding part of the proof of Proposition 9 show that this assumption is incorrect. (In particular note that in our case the filter \mathcal{H} on X is an ultrafilter.) Hence each $\mathcal{U}(q)$-Cauchy filter on Y has a cluster point in (Y, q). Thus (Y, q) is complete.

Recall that a metric space X is realcompact if and only if every closed discrete subspace of X is of non-measurable cardinality [e.g. 3, 5.5.10 and 11, 12.2].

Proposition 11. Let p be a quasi-metric on a set X such that the metric space $\left(X, p^{*}\right)$ is realcompact. Then the quasi-metric space (X, p) has a quasi-metric sequential completion if and only if it has a quasi-metric completion.

Proof. Let p be a quasi-metric on a set X such that the metric space (X, p^{*}) is realcompact and such that (X, p) has a quasi-metric sequential completion. It suffices to show that (X, p) has a quasi-metric completion. Let \mathcal{F} be a $\mathcal{U}(p)$-Cauchy ultrafilter on X without a $\mathcal{T}(p)$-limit point in X. The ultrafilter \mathcal{F} on X has a countable subcollection $\left\{Z_{n}: n \in \mathbf{N}\right\}$ of $\mathcal{T}\left(p^{*}\right)$ -zero-sets such that $\bigcap\left\{Z_{n}: n \in \mathbf{N}\right\}=\emptyset$, because \mathcal{F} does not have a $\mathcal{T}\left(p^{*}\right)$-limit point in X and $\mathcal{T}\left(p^{*}\right)$ is realcompact [11, 10M.2].

Since \mathcal{F} is a $\mathcal{U}(p)$-Cauchy filter on X, for each $n \in \mathbf{N}$ there is a $y_{n} \in X$ such that $B_{n}^{p}\left(y_{n}\right) \in \mathcal{F}$. For each $n \in \mathbf{N}$ set $H_{n}=\bigcap\left\{Z_{k} \cap B_{k}^{p}\left(y_{k}\right): k=1, \ldots, n\right\}$. Then $H_{n} \in \mathcal{F}$ whenever $n \in \mathbf{N}$.

Assume that there is an $x \in \bigcap\left\{\mathrm{cl}_{\mathcal{T}\left(p^{-1}\right)} H_{n}: n \in \mathbf{N}\right\}$. For each $n \in \mathbf{N}$ choose $z_{n} \in B_{n}^{p^{-1}}(x) \cap H_{n}$. Then $x \in B_{n}^{p}\left(z_{n}\right)$ for each $n \in \mathbf{N}$. Thus x is a $\mathcal{T}\left(p^{-1}\right)$ cluster point of $\left(z_{n}\right)_{n \in \mathbf{N}}$. Moreover $\left(z_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p). Hence according to Proposition 8 we get that x is a cluster point of the sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ in (X, p), because (X, p) has a quasi-metric sequential completion. We deduce that $x \in \operatorname{cl}_{\mathcal{T}\left(p^{*}\right)} H_{n}$ for each $n \in \mathrm{~N}$. Thus $x \in \mathrm{cl}_{\left.\mathcal{T} p^{*}\right)} H_{n} \subseteq$ $\subseteq Z_{n}$ whenever $n \in \mathbf{N}$ - a contradiction. Hence $\bigcap\left\{\mathrm{cl}_{\mathcal{T}\left(p^{-1}\right)} H_{n}: n \in \mathbf{N}\right\}=\emptyset$. Furthermore $\left\{\mathrm{cl}_{\mathcal{T}\left(p^{-1}\right)} H_{n}: n \in \mathrm{~N}\right\}$ is a subcollection of \mathcal{F}. By Proposition 10 we see that (X, p) has a quasi-metric completion.

Our last example shows that we cannot omit the cardinality assumption implicitly contained in Proposition 11.

Example 8. A quasi-metric space (X, p) that has a quasi-metric sequential completion, but does not have a quasi-metric completion.

Let X be a set of measurable cardinality. Then there exists a free ultrafilter \mathcal{P} on X with the countable intersection property (see e.g. [11, 12.2]). Let $\left(x_{n}\right)_{n \in \mathbf{N}}$ be an injective sequence of points of X and let $\left(U_{n}\right)_{n \in \mathbf{N}}$ be a strictly decreasing sequence of subsets of X belonging to \mathcal{P} such that $x_{n} \notin U_{1}$ for each $n \in \mathbf{N}$. For each $n \in \mathbf{N}$ and each $x \in X$ define $T_{n}(x)$ as follows:

$$
T_{n}(x)= \begin{cases}\{x\} & \text { if } x \in\left(X \backslash\left\{x_{k}, k \in \mathbf{N}\right\}\right) \\ U_{n} \cup\{x\} & \text { if } x=x_{k}, k \in \mathbf{N}, k \geqq n \\ \{x\} & \text { if } x=x_{k}, k \in \mathbf{N}, k<n\end{cases}
$$

By Lemma 1 there is a quasi-metric p on X such that $B_{n}^{p}(x)=T_{n}(x)$ whenever $n \in \mathbf{N}$ and $x \in X$. Clearly \mathcal{P} is a $\mathcal{U}(p)$-Cauchy filter on X without cluster point in X. Since \mathcal{P} has the countable intersection property, (X, p) does not have a quasi-metric completion by Proposition 10.
-We want to show that (X, p) has a quasi-metric sequential completion. Let $\left(x_{n}\right)_{n \in \mathrm{~N}}$ be a Cauchy sequence in (X, p) such that $x \in X$ is a $\mathcal{T}\left(p^{-1}\right)$ cluster point of $\left(x_{n}\right)_{n \in \mathbf{N}}$. Then there is a subsequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ of $\left(x_{n}\right)_{n \in \mathbf{N}}$ such that $x \in B_{n}^{p}\left(a_{n}\right)$ for each $n \in \mathbf{N}$. By Proposition 8 in order to show that (X, p) has a quasi-metric sequential completion it will suffice to prove that $\left(a_{n}\right)_{n \in \mathbf{N}}$ is eventually constant, because then, of course, x is a $\mathcal{T}(p)$ cluster point of $\left(a_{n}\right)_{n \in \mathbf{N}}$ and, thus, of $\left(x_{n}\right)_{n \in \mathbf{N}}$. Assume that $\left(a_{n}\right)_{n \in \mathbf{N}}$ is not eventually constant. Since $\left(a_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in (X, p), for each $n \in \mathbf{N}$ there are $y_{n} \in X$ and $h_{n} \in \mathbf{N}$ such that $\left\{a_{k}: k \in \mathbf{N}, k \geqq h_{n}\right\} \subseteq B_{n}^{p}\left(y_{n}\right)$. Then for each $n \in \mathbf{N}$ there is a $k_{n} \in \mathbf{N}$ such that $k_{n} \geqq n$ and $y_{n}=x_{k_{n}}$. In particular the sequence $\left(y_{n}\right)_{n \in \mathbf{N}}$ cannot be constant. Hence there is an $s \in \mathbf{N}$ such that $\left\{a_{n}: n \in \mathbf{N}, n \geqq s\right\} \subseteq\left(X \backslash\left\{x_{n}: n \in \mathbf{N}\right\}\right)$. Since $x \in B_{n}^{p}\left(a_{n}\right)$ for each $n \in \mathbf{N}$, we conclude by the definition of the sets $T_{n}\left(a_{n}\right)$ that, nevertheless, $\left(a_{n}\right)_{n \in \mathbf{N}}$ is eventually constant - a contradiction.

References

[1] D. Burke and D. Lutzer, Functional characterizations of certain p-spaces, Topology Appl., 20 (1985), 161-165.
[2] Á. Császár, Complete extensions of quasi-uniform spaces, in General Topology and its Relations to Modern Analysis and Algebra V, Proc. Fifth Prague Topol. Symp. 1981, J. Novak (ed.), Heldermann (Berlin, 1982), 104-113.
[3] R. Engelking, General Topology, Monografie Mat. 60, Polish Scientific Publishers (Warsaw, 1977).
[4] R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math., 94 (1977), 49-58.
[5] J. Ferrer and V. Gregori, A sequentially compact non-compact quasi-pseudometric space, Monatsh. Math., 96 (1983), 269-270.
[6] P. Fletcher and W. F. Lindgren, Orthocompactness and strong Čech completeness in Moore spaces, Duke Math. J., 39 (1972), 753-766 (Erratum: Duke Math. J., 40 (1973), 959).
[7] P. Fletcher and W. F. Lindgren, Equinormal quasi-uniformities and quasi-metrics, Glasn. Mat., 13 (1978), 111-125.
[8] P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker (New York, 1982).
[9] Z. Frolik, A generalization of realcompact spaces, Czech. Math. J., 13 (1963), 127-137.
[10] J. Gerlits, On $G_{\delta} p$-spaces, Colloq. Math. Soc. János Bolyai 8 North Holland (Amsterdam, 1974), 341-346.
[11] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand (Princeton, N. J., 1960).
[12] R. F. Gittings, Strong quasi-complete spaces, Top. Proc., 1 (1976), 243-251.
[13] A. Kato, Union of realcompact spaces and Lindelöf spaces, Canad. J. Math., 31 (1979), 1247-1268.
[14] H. P. A. Künzi, A note on sequentially compact quasi-pseudo-metric spaces, Monatsh. Math., 95 (1983), 219-220.
[15] V. Popov, A perfect map need not preserve a G_{δ}-diagonal, Topology Appl., 7 (1977), 31-33.
[16] I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 93 (1982), 127-140.
[17] S. Romaguera and A. Gutiérrez, A note on Cauchy sequences in quasi-pseudo-metric spaces, Glasn. Mat., 21 (1986), 191-200.
[18] J. E. Vaughan, Discrete sequences of points, Top. Proc., 3 (1978), 237-265.
[19] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math., 17 (1965), 820-830.
(Received July 27, 1988; revised November 18, 1988)
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERNE
SIDLERSTRASSE 5
3012 BERNE
SWITZERLAND

A NONSTANDARD RESULT ABOUT PATH CONTINUITY

J. MASTERSON (East Lansing)

The purpose of this note is to show that the nonstandard characterization of approximate continuity given in [4] by Wattenberg holds more generally in the context of "continuity paths" described by Bruckner, O'Malley and Thomson [3].

It is assumed that the reader is familiar with the principal elementary tools of nonstandard analysis: the transfer principle, internality and concurrence. [1] is a readily understandable reference. Beyond these, the more powerful extension of concurrence called saturation is of critical importance. [2] (page 27) illucidates this sufficiently.

Let \mathcal{M} denote a higher order structure including \mathbf{R} and its Lebesgue measure space, and * $\mathcal{\mu}$ a x-saturated nonstandard extension of μ. With x assumed to be sufficiently large Wattenberg made the following definition.

Definition 1. $x \in *[0,1]$ is negligible in case there is a standard set $A \subset[0,1]$ so that
(i) $\operatorname{st}(x)$ is a point of dispersion for A,
(ii) $x \in{ }^{*} A$.

Let \mathcal{N} denote the set of negligible points of *[0,1]. Then, Wattenberg proved the following:

Theorem. Suppose $f:[0,1] \rightarrow \mathbf{R}$ and $x \in[0,1]$. Then f is approximately continuous at x if and only if for each $t \in \mu(x) \backslash \mathcal{N},{ }^{*} f(t) \sim{ }^{*} f(x)$.

In some sense, then, the set \mathcal{N} universally selects from each monad the points eliminated from consideration by the local selection of a set of density 1 at each of the points of $[0,1]$.

A proof is not supplied since an examination of the result in [4] indicates that it holds more generally in the setting of continuity paths described by Bruckner, O'Malley and Thomson in [3].

Definition 2. Let $x \in \mathbf{R}$
(1) A path leading to x is a set $E_{x} \subset \mathbf{R}$ such that $x \in E_{x}$ and x is an accumulation point of E_{x}.
(2) A system of paths at x, ε_{x}, is a collection of paths leading to x.
(3) A system of paths is a collection $\varepsilon=\cup\left\{\varepsilon_{x}: x \in \mathbf{R}\right\}$.

The properties listed below are easily shown to hold for several of the well-known systems of paths studied in [3], including the ordinary type, the $(1,1)$-density type and the qualitative type. They are sufficient to give us
the generalization referred to above. The (1,1)-density type is the result in [4].

Definition 3. A system of paths will be called locally thick in case the following conditions are satisfied.
(i) If $E_{x^{(1)}}$ and $E_{x^{(2)}}$ are in ε_{x}, there is $E_{x^{(3)}}$ in ε_{x} so that $E_{x^{(3)}} \subset E_{x^{(1)}} \cap$ $\cap E_{x^{(2)}}$.
(ii) If $E_{x} \in \varepsilon_{x}$, then for $\eta>0, E_{x} \cap(x-\eta, x+\eta) \in \varepsilon_{\chi}$.
(iii) If $E_{x^{n}} \in \varepsilon_{x}$ for $n \in \mathbf{N}$, there is decreasing sequence $\left\langle c_{n}\right\rangle \rightarrow 0$ so that $\bigcup_{n=1}^{\infty}\left(J_{n} \cap E_{x^{n}}\right) \cup\{x\} \in \varepsilon_{x}$ where $J_{n}=\left(x-c_{n}, x-c_{n+1}\right] \cup\left[x+c_{n+1}, x+c_{n}\right)$.

Definition 4. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be ε-continuous at x in case $\exists E_{x} \in \varepsilon_{x}$ so that $\lim _{\substack{y \rightarrow x \\ y \in E_{x}}} f(y)=f(x)$.

For the remainder of this section, the family ε will be assumed to be locally thick. Also, D^{c} denotes the complement of D in \mathbf{R}.

Theorem 1. $f: \mathbf{R} \rightarrow \mathbf{R}$ is ε-continuous at x if and only if for each $\varepsilon>0$, $\{y:|f(y)-f(x)| \geqq \varepsilon\} \subset\left(E_{x}\right)^{c}$ for some $E_{x} \in \varepsilon_{x}$.

Proof. Suppose f is ε-continuous at x. Then, there is $E_{x} \in \varepsilon_{x}$ so that: for each $\varepsilon>0$ there is $\delta>0$ so that $\{y:|f(y)-f(x)| \geqq \varepsilon\} \subset\left[E_{x} \cup(x-\delta, x+\right.$ $+\delta)]^{c}$. Property (ii) of Definition 3 produces $F_{x} \in \varepsilon_{x}$ so $\{y:|f(y)-f(x)| \geqq$ $\geqq \varepsilon\} \subset\left(F_{x}\right)^{c}$.

Suppose for $\varepsilon>0,\{y:|f(y)-f(x)| \geqq \varepsilon\} \subset\left(E_{x}\right)^{c}$. Given $n \in \mathbf{N}$, there is $E_{x^{n}} \in \varepsilon_{x}$ so $E_{x^{n}} \subset\{y:|f(y)-f(x)|<1 / n\}$. By Property (iii) of Definition 4, there is $\left\langle c_{n}\right\rangle \rightarrow 0$ so $F_{x}=\left(E_{x^{n}} \cap J_{n}\right) \cup\{x\} \in \varepsilon_{x}$. It is easily computed that $\lim _{\substack{y \rightarrow x \\ y \in F_{x}}} f(y)=f(x)$.

For the system of paths ε we define the nonstandard set $\mathcal{N}(\varepsilon)$ in ${ }^{*}$ R.
Definition 5. $\mathcal{N}(\varepsilon)=\left\{z \in{ }^{*} \mathbf{R}\right.$ and $E_{x} \in \varepsilon_{x}$ so that $x=s t(z)$ and $z \in$ $\left.\epsilon^{*}\left(E_{x}\right)^{c}\right\} . \mathcal{N}(\varepsilon)$ is called the ε-negligible elements of *R.

Theorem 2. $f: \mathbf{R} \rightarrow \mathbf{R}$ is ε-continuous at x if and only if for every $y \in \mu(x) \backslash \mathcal{N}(\varepsilon),{ }^{*} f(y) \sim^{*} f(x)$.

The proof is by way of the following lemma.
Lemma. Suppose $A \subset \mathbf{R}$ and $x \in \mathbf{R}$. Then $A \subset\left(E_{x}\right)^{c}$ for some $E_{x} \in \varepsilon_{x} \Leftrightarrow$ $\Leftrightarrow \mu(x) \cap^{*} A \subset \mathcal{N}(\varepsilon)$.

Proof. Suppose first that A is not a subset of $\left(E_{x}\right)^{c}$ for any $E_{x} \in \varepsilon_{x}$. By Property (ii), for $\eta>0$ and any $E_{x} \in \varepsilon_{x}, A \cap E_{x} \cap(x-\eta, x+\eta) \neq \emptyset$. The transfer principle gives us ${ }^{*} A \cap^{*} E_{x} \cap^{*}(x-\varrho, x+\varrho) \neq \emptyset$ for ϱ infinitesimal, and hence ${ }^{*} A \cap{ }^{*} E_{x} \cap \mu(x) \neq \emptyset$. Let r be the relation defined on $\varepsilon_{x} \times \mu(x)$ by $\left(E_{x}, y\right) \in r$ in case $E_{x} \in \varepsilon_{x}$ and $y \in{ }^{*} E_{x} \cap^{*} A \cap \mu(x)$. We show that r is a concurrent, nonstandard relation. If $\left\{E_{x^{1}}, \ldots, E_{x^{n}}\right\}$ is a finite subset of ε_{x},
there is by Property (i) an $E_{x} \subset \bigcap_{k=1}^{n} E_{x^{k}}$. Pick $y \in{ }^{*} E_{x} \cap * A \cap \mu(x)$. Then $\left(E_{x^{k}}, y\right) \in r$ for $k=1, \ldots, n$ and the concurrence of r is established. The saturation of our model now gives a $z \in \mu(x)$ so that $\left(E_{x}, z\right) \in r$ for all $E_{x} \in$ $\in \varepsilon_{x}$. But then $z \in \mu(x) \cap^{*} A$ but $z \notin\left(E_{x}\right)^{c}$ for any $E_{x} \in \varepsilon_{x}$. So, $z \notin \mathcal{N}(\varepsilon)$ and the conclusion is negated.

Assume now $A \subset\left(E_{x}\right)^{c}$ for some $E_{x} \in \varepsilon_{x}$. Let $z \in \mu(x) \cap^{*} A$. Then $x=$ $=\operatorname{st}(z)$ and $z \in{ }^{*}\left(E_{x}\right)^{c}$, hence $z \in \mathcal{N}(\varepsilon)$. So $\mu(x) \cap * A \subset \mathcal{N}(\varepsilon)$ and the proof of the lemma is complete.

Proof of Theorem. By Theorem $1, f$ is ε-continuous at $x \Leftrightarrow \forall \varepsilon>0$, $\{y:|f(y)-f(x)| \geqq \varepsilon\} \subset\left(E_{x}\right)^{c}$ for some $E_{x} \in \varepsilon_{x} \Leftrightarrow \forall \varepsilon>0, \mu(x) \cap\left\{y:\left.\right|^{*} f(y)-\right.$ $\left.-{ }^{*} f(x) \mid \geqq \varepsilon\right\} \subset \mathcal{N}(\varepsilon)$ (by above lemma). We need only show this latter statement is equivalent to the conclusion of the theorem.

Assume first the latter statement and let $y \in \mu(x) \sim \mathcal{N}(\varepsilon)$. Then for each real $\varepsilon>0,\left|{ }^{*} f(y)-{ }^{*} f(x)\right|<\varepsilon$, hence * $f(y) \sim{ }^{*} f(x)$.

On the other hand, assume the conclusion of the theorem. For any $\varepsilon>0$, let $z \in \mu(x)) \cap\left\{y:\left.\right|^{*} f(y)-{ }^{*} f(x) \mid \geqq \varepsilon\right\}$. If $z \notin \mathcal{N}(\varepsilon)$ then ${ }^{*} f(z) \sim^{*} f(x)$, contradicting the choice of z. So $z \in \mathcal{N}(\varepsilon)$, verifying the latter statement.

References

[1] M. Davis, Applied Nonstandard Analysis, John Wiley \& Sons (New York, 1977)
[2] W. A. J. Luxemburg (Editor), Applications of Model Theory to algebra, Analysis, and Probability, Holt, Rinehart and Winston (New York, 1969).
[3] R. J. O'Malley, A. M. Bruckner and B. S. Thomson, Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984).
[4] F. Wattenberg, Nonstandard measure theory: avoiding pathological sets, Trans. Amer. Math. Soc., 250 (1979).
(Received August 2, 1988)
MICHIGAN STATE UNIVERSITY
DEPARTMENT OF MATHEMATICS
EAST LANSING, MICHIGAN 48824--1027
USA

REMARKS ON THE OPTIMAL CONTROL PROBLEM FOR A STRONGLY NON LINEAR HYPERBOLIC SYSTEM

J. E. MUÑOZ RIVERA (Rio de Janeiro)

§ 1. Introduction

Let Ω be an open bounded set of \mathbf{R}^{n} with smooth boundary Γ; set $Q=$ $=\Omega \times] 0, T[$ and $\Sigma=\Gamma \times] 0, T[$. In [1], the existence of a singular system of optimality for the optimal control problem was treated, when the state is defined by

$$
\begin{cases}z^{\prime \prime}-\Delta z-f(z)=v & \text { in } D^{\prime}(Q) \tag{1.1}\\ z(x, t)=0 & \text { on } \Sigma \\ z(0)=y_{0}, z^{\prime}(0)=y_{1} & \text { in } \Omega\end{cases}
$$

and the cost function is given by

$$
\begin{equation*}
J(v, z)=\left\|f(z)-z_{d}\right\|_{Q}^{2}+N\|v\|_{Q}^{2} \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|_{Q}$ is the $L^{2}(Q)$-norm, and $N>0$. We consider (1.1) as a set of restrictions for the couple (v, z). Hence the admissible set is

$$
\begin{equation*}
X_{\mathrm{ad}}=\left\{(v, z) \in L^{2}(Q) \times W ;(v, z) \text { satisfy (1.1) and } f(z) \in L^{2}(Q)\right\} \tag{1.3}
\end{equation*}
$$

where $W=\left\{z \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) ; z^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)\right\}$. Let us denote by $\|\cdot\|_{W}$ the norm of W defined by $\|z\|_{W}=\|z\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)}+\left\|z^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}$. Komornik and Tiba showed that there exists at least one solution for

$$
\begin{equation*}
J(u, y)=\inf \left\{J(v, z) ;(v, z) \in X_{\mathrm{ad}}\right\}, \quad(v, z) \in X_{\mathrm{ad}} \tag{1.4}
\end{equation*}
$$

and in order to prove the existence of a singular system of optimality they imposed the two following conditions to $f \in \mathbf{C}^{1}$

$$
\begin{gather*}
c_{0}=\sup _{s \in \mathbf{R}} \frac{\left\|f^{\prime}(s)\right\|}{1+\|f(s)\|}<\infty, \tag{1.5}\\
\sup _{\substack{s, t \in \mathbf{R} \\
\|s-t\|<1}} \frac{\|f(s)\|}{1+\|f(t)\|}<\infty . \tag{1.6}
\end{gather*}
$$

The main result of this paper is to prove that assumption (1.6) is not necessary, that is, we will prove that there exists an optimality system when $f \in C^{1}$ satisfies only condition (1.5).

§ 2. Approximated problem

Let us consider the following approximated η-system for the sequence of continuous functions $\left(F_{\eta}\right)_{\eta \in \mathbf{N}}$:

$$
\begin{cases}z^{\prime \prime}-\Delta z-F_{\eta}(z)=v & \text { in } Q \tag{2.1}\\ z(x, t)=0 & \text { on } \Sigma \\ z(0)=y_{0}, z^{\prime}(0)=y_{1} & \text { in } \Omega\end{cases}
$$

and let us define the η-functional for the sequence $\left(F_{\eta}\right)_{\eta \in \mathbf{N}}$ as

$$
\begin{equation*}
J_{\eta}(v, z)=\left\|F_{\eta}(z)-z_{d}\right\|_{Q}^{2}+N\|v\|_{Q}^{2}+\|z-y\|_{Q}^{2}+\|v-u\|_{Q}^{2} \tag{2.3}
\end{equation*}
$$

The couple (u, y) is the solution of problem (1.4). Let us denote by $X_{a d}^{\eta}=$ $=\left\{(v, z) \in L^{2}(Q) \times W ;(v, z)\right.$ satisfies (2.1) and $\left.f(z) \in L^{2}(Q)\right\}$. Then the η-problem for the sequence $\left(F_{\eta}\right)_{\eta \in \mathbf{N}}$ is given by
(2.3) $\quad J_{\eta}\left(u_{\eta}, y_{\eta}\right)=\inf \left\{J_{\eta}(v, z) ;(v, z) \in X_{\mathrm{ad}}\right\}, \quad\left(u_{\eta}, y_{\eta}\right) \in X_{\mathrm{ad}}^{\eta}$.

In this conditions we have
Lemma 2.1. If $F_{\eta} \rightarrow f$ uniformly on bounded sets of \mathbf{R} and

$$
\begin{equation*}
\left\|F_{\eta}(s)\right\| \leqq c_{1}+c_{1}\|f(s)\| \quad \forall s \in \mathbf{R}, \forall \eta \in \mathbf{R} \tag{2.4}
\end{equation*}
$$

then
(2.5) $\quad\left(u_{\eta}, y_{\eta}, F_{\eta}\left(y_{\eta}\right)\right) \rightarrow(u, y, f(y))$ strongly in $L^{2}(Q) \times W \times L^{2}(Q)$.

Proof. For the existence of the solution of problem (2.3) see [1]. Let us define $v_{\eta}=y^{\prime \prime}-\Delta y-F_{\eta}(y)$; certainly the couple $\left(v_{\eta}, y\right) \in X_{\text {ad }}^{\eta}$ and of course $J_{\eta}\left(u_{\eta}, y_{\eta}\right)$ is bounded. From (2.1) and (2.4) we conclude that $\exists c_{3}>0$ such that

$$
\begin{equation*}
\left\|F_{\eta}\left(y_{\eta}\right)\right\|_{Q}^{2}+\left\|u_{\eta}\right\|_{Q}^{2}+\left\|y_{\eta}\right\|_{W} \leqq c_{3} \tag{2.6}
\end{equation*}
$$

Since $W \hookrightarrow L^{2}(Q)$ compactly we obtain a subsequence such that

$$
\begin{gathered}
u_{\eta} \rightarrow v \text { weakly in } L^{2}(Q), \\
y_{\eta} \rightarrow \theta \text { strongly in } L^{2}(Q), \\
\quad y_{\eta} \rightarrow \theta \text { a.e. in } Q .
\end{gathered}
$$

Then $F_{\eta}\left(y_{\eta}\right) \rightarrow f(\theta)$ a.e. in Q. By (2.7) and Lions' Lemma (see [2]) we have: $F_{\eta}\left(y_{\eta}\right) \rightarrow f(\theta)$ weakly in $L^{2}(Q)$. By (2.6) it follows

$$
\left\|f(\theta)-z_{d}\right\|_{Q}^{2}+N\|v\|_{Q}^{2}+\|y-\theta\|_{Q}^{2}+\|u-v\|_{Q}^{2} \leqq \liminf J_{\eta}\left(u_{\eta}, y_{\eta}\right) \leqq J(u, y)
$$

Since $(v, \theta) \in X_{\text {ad }}$, by (1.4) $(u, y)=(v, \theta)$ and the result follows.
We will prove the existence of sequences $\left(s_{\nu}\right)_{\nu \in \mathbf{N}}$ a $\left(s_{-\nu}\right)_{\nu \in \mathbf{N}}$ such that
$s_{\nu} \geqq \nu \quad \forall \nu \in \mathbf{N}$ and $\left\|f\left(s_{\nu}\right)\right\| \leqq c_{4}+\|f(s)\| \quad \forall s \geqq \nu$,
(2.8) $\quad s_{-\nu} \leqq-\nu \quad \forall \nu \in \mathbf{N}$ and $\left\|f\left(s_{-\nu}\right)\right\| \leqq c_{4}+\|f(s)\| \quad \forall s \leqq-\nu$.

These sequences are going to play an important role in the sequel:

Lemma 2.2. Let f be a continuous function. Then there exists a sequence of numbers $\left(s_{\nu}\right)_{\nu \in \mathbf{N}},\left(s_{-\nu}\right)_{\nu \in \mathrm{N}}$ satisfying (2.7) and (2.8).

Proof. Put $I_{\nu}=\inf \{\|f(s)\| ; s \geqq \nu\}$. If for all $\nu \in \mathbf{N}$, there exist $s_{\nu} \geqq$ $\geqq \nu$ such that $f\left(s_{\nu}\right)=I_{\nu}$, then the sequence $\left(s_{\nu}\right)_{\nu \in \mathbf{N}}$, constructed this way satisfies condition (2.8). We can suppose that there exist a natural number, say ν_{0} such that $\|f(s)\|>I=\inf \left\{\|f(s)\| ; s \geqq \nu_{0}\right\}, \forall s \geqq \nu_{0}$. Denote by $\left(T_{\gamma}\right)_{\gamma \in \mathbb{N}}$ the minimizing sequence. Clearly, this sequence is not bounded; hence there exists a subsequence satisfying $t_{\gamma_{\nu}} \geqq \nu, \forall \nu \in \mathbf{N}$. Taking $s_{\nu}=t_{\gamma_{\nu}}$ we have that condition (2.8) is valid also in this case. To construct $\left(s_{-\nu}\right)_{\nu \in \mathbf{N}}$ consider $I_{-\nu}=\inf \{\|f(s)\| ; s \leqq-\nu\}$ and use the same argument.

Let us construct the sequence $\left(f_{\nu}\right)_{\nu \in \mathrm{N}}$ in the following way:

$$
f_{\nu}(s)= \begin{cases}f(s) & s_{-\nu} \leqq s \leqq s_{\nu} \\ f\left(s_{\nu}\right) & s \geqq s_{\nu} \\ f\left(s_{-\nu}\right) & s \leqq s_{-\nu}\end{cases}
$$

Then f_{ν} is a bounded and lipschitzian function satisfying

$$
\begin{gather*}
\left\|f_{\nu}(s)\right\| \leqq c+\|f(s)\|,\left\|f_{\nu}^{\prime}(s)\right\| \leqq c+c\left\|f_{\nu}(s)\right\|, \forall \nu \in \mathbf{N}, \tag{2.9}\\
f_{\nu} \rightarrow f, f_{\nu}^{\prime} \rightarrow f^{\prime} \text { uniformly on bounded sets of } \mathbf{R}, \tag{2.10}
\end{gather*}
$$

where $c=\max \left\{c_{0}, c_{4}\right\}$. Now denote by $\left(\varrho_{\mu}\right)_{\mu \in \mathbf{N}}$ the regularising sequence, and put $f_{\nu \mu}=f_{\nu} * \varrho_{\mu}$ and $C_{\nu}=\sup \left\{\left\|f_{\nu}(s)\right\|, s \in \mathbf{R}\right\}$. For each ν the sequence $\left(f_{\nu \mu}\right)_{\mu \in \mathbf{N}}$ satisfies

$$
\begin{equation*}
f_{\nu \mu} \rightarrow f_{\nu} \text { uniformly on bounded sets of } \mathbf{R} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{\nu \mu}(s)\right\| \leqq \frac{1}{\mu} C_{\nu}+\left\|f_{\nu}(s)\right\|,\left\|f_{\nu \mu}^{\prime}(s)\right\| \leqq c+c\left(\left\|f_{\nu}\right\| * \varrho_{\mu}\right)(s), \forall \mu \in \mathbf{N} . \tag{2.12}
\end{equation*}
$$

Let us define the state for a fixed $\nu \in \mathbf{N}$:

$$
\left\{\begin{array}{cl}
z^{\prime \prime}-\Delta z-f_{\nu \mu}(z)=v & \text { in } Q \tag{2.13}\\
z(x, t)=0 & \text { on } \Sigma \\
z(0)=y_{0}, z^{\prime}(0)=y_{1} & \text { in } \Omega,
\end{array}\right.
$$

and the cost function

$$
\begin{gathered}
J_{\nu \mu}(v, z)= \\
=\left\|f_{\nu \mu}(z)-z_{d}\right\|_{Q}^{2}+N\|v\|_{Q}^{2}+\left\|z-y_{\nu}\right\|_{Q}^{2}+\left\|v-u_{\nu}\right\|_{Q}^{2}+\|z-y\|_{Q}^{2}+\|v-u\|_{Q}^{2}
\end{gathered}
$$

where $\left(u_{\nu}, y_{\nu}\right)$ is the solution of the ν-problem for the sequence $\left(f_{\nu}\right)_{\nu \in \mathbf{N}}$, and (u, y) solution of problem (1.4). Consider the problem

$$
\begin{equation*}
J_{\nu \mu}\left(u_{\nu \mu}, y_{\nu \mu}\right)=\inf \left\{J_{\nu \mu}(v, z) ;(v, z) \in X_{\mathrm{ad}}^{\nu \mu}\right\} ;\left(u_{\nu \mu}, y_{\nu \mu}\right) \in X_{\mathrm{ad}}^{\nu \mu} \tag{2.14}
\end{equation*}
$$

where $X_{\mathbf{a d}}^{\nu \mu}=\left\{(v, z) \in L^{2}(q) \times W ;(v, z)\right.$ satisfying (2.19) $\}$. In order to obtain a characterization for $\left(u_{\nu \mu}, y_{\nu \mu}\right)$ define

$$
\begin{equation*}
J_{\nu \mu \varepsilon}(v, z)=J_{\nu \mu}(v, z)+\frac{1}{\varepsilon}\left\|z^{\prime \prime}-\Delta z-f_{\nu \mu}(z)\right\|_{Q}^{2}+\left\|z-y_{\nu \mu}\right\|_{Q}^{2}+\left\|v-u_{\nu \mu}\right\|_{Q}^{2} \tag{2.15}
\end{equation*}
$$

If we put $D_{\mathrm{ad}}=\left\{(v, z) \in L^{2}(Q) \times W ; z^{\prime \prime}-\Delta z \in L^{2}(Q), z(Q)=y_{0}, z^{\prime}(0)=y_{1}\right\}$ then the penalised problem is given by

$$
\begin{gather*}
J_{\nu \mu \varepsilon}\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right)=\inf \left\{J_{\nu \mu \varepsilon}(v, z) \in D_{\mathrm{ad}}\right\},\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right) \in D_{\mathrm{ad}} \tag{2.16}\\
\varrho_{\nu \mu \varepsilon}=-\frac{1}{\varepsilon}\left\{y_{\nu \mu \varepsilon}^{\prime \prime}-\Delta y_{\nu \mu \varepsilon}-f_{\nu \mu \varepsilon}\left(y_{\nu \mu \varepsilon}\right)-u_{\nu \mu \varepsilon}\right\}
\end{gather*}
$$

Under these conditions we have:
Lemma 2.3. $\forall \varepsilon>0$ and $\forall \nu, \mu \in \mathbf{N}$, the couple $\left(\varrho_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right)$ satisfies

$$
\begin{gathered}
\left(\varrho_{\nu \mu \varepsilon}, \xi^{\prime \prime}-\Delta \xi-f_{\nu \mu \varepsilon}^{\prime}\left(y_{\nu \mu \varepsilon}\right) \xi\right)_{Q}=\left(f_{\nu \mu \varepsilon}\left(y_{\nu \mu \varepsilon}\right)-\right. \\
\left.-z_{d}, f_{\nu \mu \varepsilon}^{\prime}\left(y_{\nu \mu \varepsilon}\right) \xi\right)_{Q}+\left(y_{\nu \mu \varepsilon}-y_{\nu \mu}, \xi\right)_{Q}+\left(y_{\nu \mu \varepsilon}-y_{\nu}, \xi\right)_{Q}+\left(y_{\nu \mu \varepsilon}-y, \xi\right)_{Q}
\end{gathered}
$$

whenever $\xi \in C^{2}(\bar{Q}), \xi(0)=\xi^{\prime}(0)=0$ in Ω and $\xi=0$ on Σ. Also

$$
\varrho_{\nu \mu \varepsilon}+N u_{\nu \mu \varepsilon}+3 u_{\nu \mu \varepsilon}-u_{\nu \mu}-u_{\nu}-u=0
$$

Proof. Since $\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right)$ is the solution of problem (2.16) we have

$$
\left.\frac{d}{d \lambda} J_{\nu \mu \varepsilon}\left(u_{\nu \mu \mu \varepsilon}, y_{\nu \mu \varepsilon}+\lambda \xi\right)\right|_{\lambda=0}=0
$$

Since for each $\nu, \mu, f_{\nu \mu}$ is a Lipschitz function of class C^{1}, we can pass the derivative into the integral. Then we obtain the first part of the lemma. Finally from (2.21) we have

$$
\left.\frac{1}{\lambda}\left\{J_{\nu \mu \varepsilon}\left(u_{\nu \mu \varepsilon}+\lambda\left(v-u_{\nu \mu \varepsilon}\right), y_{\nu \mu \varepsilon}\right)-J_{\nu \mu \varepsilon}\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right)\right\} \geqq 0, \quad \forall \lambda \in\right] 0,1[
$$

Letting $\lambda \rightarrow 0$ it follows

$$
\int_{Q}\left(\varrho_{\nu \mu \varepsilon}+N u_{\nu \mu \varepsilon}+3 u_{\nu \mu \varepsilon}-u_{\nu \mu}-u_{\nu}-u\right)\left(v-u_{\nu \mu \varepsilon}\right) d x d t \geqq 0, \forall v \in L^{2}(Q)
$$

and from this expression the proof of the lemma is complete.

Lemma 2.4. When $\varepsilon \rightarrow 0$, the solution of problem (2.16) satisfies

$$
\begin{gathered}
\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}, f_{\nu \mu \varepsilon}\left(y_{\nu \mu \varepsilon}\right)\right) \rightarrow\left(u_{\nu \mu}, y_{\nu \mu}, f_{\nu \mu}\left(y_{\nu \mu}\right)\right) \text { strongly } \\
\text { in } L^{2}(Q) \times W \times L^{2}(Q), \\
J_{\nu \mu \varepsilon}\left(u_{\nu \mu \varepsilon}, y_{\nu \mu \varepsilon}\right) \rightarrow J_{\nu \mu}\left(u_{\nu \mu}, y_{\nu \mu}\right), \\
\varrho_{\nu \mu \varepsilon} \rightarrow \varrho_{\nu \mu}=-N u_{\nu}-\left(u_{\nu}-u\right) \text { weakly in } L^{2}(Q) .
\end{gathered}
$$

Proof. See [1].
From Lemma 2.3 and 2.4 it follows

$$
\begin{gather*}
\left(\varrho_{\nu \mu}, \xi^{\prime \prime}-\Delta \xi-f_{\nu \mu}^{\prime}\left(y_{\nu \mu}\right) \xi\right)_{Q}= \tag{2.17}\\
=\left(f_{\nu \mu}\left(y_{\nu \mu}\right)-z_{d}, f_{\nu \mu}^{\prime}\left(y_{\nu \mu}\right) \xi\right)_{Q}+\left(2 y_{\nu \mu}-y_{\nu}-y, \xi\right)_{Q}
\end{gather*}
$$

Corollary 2.5. The solution of problem (2.14) satisfies

$$
\begin{gathered}
\left(u_{\nu \mu}, y_{\nu \mu}, f_{\nu \mu}\left(y_{\nu \mu}\right)\right) \rightarrow\left(u_{\nu}, y_{\nu}, f_{\nu}\left(y_{\nu}\right)\right) \text { strongly in } L^{2}(Q) \times W \times L^{2}(Q), \\
\varrho_{\nu \mu} \rightarrow \varrho_{\nu}=-N u_{\nu}-\left(u_{\nu}-u\right) \text { strongly in } L^{2}(Q) .
\end{gathered}
$$

Proof. Put $f=f_{\nu}$, and $J_{\eta}=J_{\nu \mu}$. From (2.11), (2.12) and Lemma 2.1 the result follows.

Since for all $\mu,\left(f_{\nu \mu}^{\prime}\left(y_{\nu \mu}\right)\right)_{\mu \in \mathbf{N}}$ is uniformly bounded by a constant, say k_{ν}, we can obtain a subsequence and an element χ_{ν} in $L^{2}(Q)$ such that

$$
\begin{equation*}
f_{\nu \mu}^{\prime}\left(y_{\nu \mu}\right) \rightarrow \chi_{\nu} \text { weakly in } L^{2}(Q) . \tag{2.18}
\end{equation*}
$$

By Lemma 2.4, Corollary 2.5 and from this last convergence we have
$(2.19)\left(\varrho_{\nu}, \xi^{\prime \prime}-\Delta \xi-\chi_{\nu} \xi\right)_{Q}=\left(f_{\nu}\left(y_{\nu}\right)-z_{d}, \chi_{\nu} \xi\right)_{Q}+\left(y_{\nu}-y, \xi\right)_{Q}, \forall \nu \in \mathbf{N}$.
Corollary 2.6. The solution of the ν-problem for the sequence $\left(f_{\nu}\right)_{\nu \in \mathrm{N}}$ satisfies

$$
\left(u_{\nu}, y_{\nu}, f_{\nu}\left(y_{\nu}\right)\right) \rightarrow(u, y, f(y)) \text { strongly in } L^{2}(Q) \times W \times L^{2}(Q)
$$

Proof. The result follows from Lemma 2.1, (2.9) and (2.10).
Lemma 2.7. Let O be an open and bounded set of \mathbf{R}^{n} and let $\left(G_{\nu}\right)_{\nu \in \mathbb{N}}$ be a sequence in $L^{p}(O), 1<p<\infty$, weakly convergent to G. Put

$$
L(x)=\liminf _{\nu \rightarrow \infty} G_{\nu}(x) \text { and } U(x)=\underset{\nu \rightarrow \infty}{\limsup } G_{\nu}(x) ;
$$

then we have $L(x) \leqq G(x) \leqq U(x)$.
Proof. Let us define $O_{m}=\left\{x \in O ; L(x)-\varepsilon \leqq G_{\nu}(x) \leqq U(x)+\varepsilon, \forall \nu \geqq\right.$ $\geqq m\}$, for an arbitrary but fixed $\varepsilon>0$, and denote by D_{m} the set of all the
$L^{q}(O)$-functions which have support in O_{m}. Put $D=\bigcup_{m}^{\infty} D_{m}$. Take $\varphi \in D$ such that $\varphi \geqq 0$, then $\exists m^{\prime} \in \mathrm{N}$ such that

$$
[L(x)-\varepsilon] \varphi \leqq G_{\nu}(x) \varphi \leqq[U(x)+\varepsilon] \varphi, \forall \nu \geqq m^{\prime}
$$

integrating the last expression and letting $\nu \rightarrow \infty$ we have

$$
\int_{O}[L(x)-\varepsilon] \varphi(x) d x \leqq \int_{O} G(x) \varphi(x) d x \leqq \int_{O}[U(x)+\varepsilon] \varphi(x) d x
$$

Since this last expression does not depend on m^{\prime} the inequalities are valid for all $\varphi \geqq 0$ in D. Since the measure of O_{m} tends to measure of O we have that D is dense in $L^{q}(O)$ where $\frac{1}{p}+\frac{1}{p}=1$. Hence

$$
\int_{O}[L(x)-\varepsilon] w(x) d x \leqq \int_{O} G(x) w(x) d x \leqq \int_{O}[U(x)+\varepsilon] w(x) d x, \forall w \geqq 0 \text { in } L^{q}(O)
$$

and from which we conclude $L(x)-\varepsilon \leqq G(x) \leqq U(x)+\varepsilon$. Since ε is arbitrary, the result follows.

Theorem 2.8. Let f be a function of class \mathbf{C}^{1} satisfying condition (1.5). Then there exists a subsequence of $\left(\chi_{\nu}\right)_{\nu \in \mathbb{N}}$ satisfying

$$
\chi_{\nu} \rightarrow f^{\prime}(y) \text { strongly in } L^{2}(Q)
$$

Proof. From Corollaries 2.5 and 2.6 there exists a subsequence of $\left(y_{\nu \mu}\right)_{\mu \in \mathbf{N}}$ such that

$$
\begin{align*}
y_{\nu \mu} & \rightarrow y_{\nu} \text { a.e. in } Q \tag{2.21}\\
y_{\nu} & \rightarrow y \text { a.e. in } Q \tag{2.22}
\end{align*}
$$

If we put N_{ν} and M the subsets of Q where the first and the second convergence fails, respectively, then we have that $N=\bigcup_{\nu}^{\infty} N_{\nu} \cup M$ has null measure. Take (x, t) in $Q-N$, then $\exists \nu_{0}$ such that $\left\|y_{\nu}(x, t)\right\|<\nu_{0}, \forall \nu \geqq \nu_{0}$, and also $\exists \mu_{0}$ such that $\left\|y_{\nu \mu}(x, t)\right\|<\nu_{0}, \forall \mu \geqq \mu_{0}$. Since $f_{\nu \mu}^{\prime}$ is uniformly convergent on $\left[s_{-\nu_{0}}, s_{\nu_{0}}\right]$, we have that

$$
f_{\nu \mu}^{\prime}\left(y_{\nu \mu}(x, t)\right) \rightarrow f_{\nu}^{\prime}\left(y_{\nu}(x, t)\right), \quad \forall \nu \geqq \nu_{0}\left(\nu_{0}=\nu_{0}(x, t)\right)
$$

On the other hand by (2.18) and Lemma 2.7 we conclude that

$$
\chi_{\nu}(x, t)=f_{\nu}^{\prime}\left(y_{\nu}(x, t)\right), \quad \forall \nu \geqq \nu_{0}\left(\nu_{0}=\nu_{0}(x, t)\right)
$$

By (2.10) and (2.21) we have that $\chi_{\nu}(x, t) \rightarrow f^{\prime}(y(x, t))$ a.e. in Q and finally from (2.12), (2.20) and Lemma 2.7 we have that

$$
\left\|\chi_{\nu}(x, t)\right\| \leqq c+c\left\|f_{\nu}\left(y_{\nu}(x, t)\right)\right\| .
$$

Then by Corollary 2.6 and Lebesgue's dominated convergence theorem the result follows.

Finally as a Corollary we have
Theorem 2.9. If (u, y) is the solution of problem (1.4), then there exists ϱ in $L^{2}(Q)$ such that the following optimality system holds:

$$
\begin{gathered}
y^{\prime \prime}-\Delta y-f(y)=u \text { in } D^{\prime}(Q), \\
\varrho^{\prime \prime}-\Delta \varrho-f^{\prime}(y) \varrho=\left[f(y)-z_{d}\right] f^{\prime}(y) \text { in } D^{\prime}(Q), \\
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} \text { in } \Omega, \\
y \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), \quad y^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
\varrho(T)=\varrho^{\prime}(T)=0, \quad \varrho=0 \text { on } \Sigma, \\
\varrho=-N u, \quad u \in L^{2}(Q) .
\end{gathered}
$$

Proof. This follows immediately from (2.20), Corollary 2.6 and Theorem (2.11).

References

[1] V. Komornik and D. Tiba, On the control of strongly non linear hyperbolic system, Acta Math. Hung., 49 (1987), 261-266.
[2] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéares, Dunod (Paris, 1968).
[3] J. L. Lions, Contrôle optimal des systèmes gouvernees par des equations aux derivées partielles, Dunod (Paris, 1968).
[4] J. L. Lions, Contrôle des systèmes distribués singuliers, Gauthier-Villars, Collection MMI, Tome 13, 1983.
(Received August 9, 1988)

[^4]

NUMERICAL SOLUTION BY SPLINE METHOD FOR AN ELASTIC PROBLEM

A. S. MOHAMED (Budapest)

1. Introduction

In recent papers [1], [2] we have introduced a spline function method approximating the solution of the partial differential equation

$$
\begin{equation*}
A u:=-\frac{\partial}{\partial r}\left[\frac{1}{r^{3}} \frac{\partial u}{\partial r}\right]-\frac{\partial}{\partial z}\left[\frac{1}{r^{3}} \frac{\partial u}{\partial z}\right]=0 \tag{1.1}
\end{equation*}
$$

for an elastic circular cylinder domain. Spline approximation methods for an ordinary differential equation are discussed in the papers of T. Fawzy [9], [10], and J. Győrvári [11], [12].

In the present paper we shall propagate the method introduced inn [1], [2] for a complicated elastic axisymmetric cylinder domain (see Fig. 1.1). Moreover it is known (see [3]) that if the torqaue T increases then it will appear the plastic region Ω_{p} in the domain of the cylinder. We shall suppose that the problem remains an axisymmetric one, and the consideration will be taken only to the elastic problem in a given domain Ω_{e} separately (see case 2) because it is an important part in finding the solution of the elastic-plastic free boundary problem which will be considered in a subsequent work.

Fig. 1.1. An axisymmetric cylinder

The formulation of the problem [3] can be given in a two dimensional domain Ω or Ω_{e} (see Fig. 2.1, Fig. 2.2) in the $r z$-plane, and the problem is summarized to find the function u which must satisfy (1.1) in Ω or Ω_{e} with
the boundary conditions

$$
\begin{gather*}
u=0, \text { on } \Gamma_{0} \tag{1.2}\\
u=F(z), \text { on } \Gamma_{1} \tag{1.3}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial u}{\partial n}=-\frac{\partial u}{\partial z}=\varphi_{1}(r), \text { on } \Gamma_{2} \tag{1.4}\\
\frac{\partial u}{\partial n}=\frac{\partial u}{\partial z}=\varphi_{2}(r), \text { on } \Gamma_{3} \tag{1.5}
\end{gather*}
$$

where Γ_{i} are as show in Fig. 2.1 and 2.2.

Fig. 2.1. The elastic domain Ω

2. The construction of the spline function

Case 1: the elastic problem in the domain $\Omega_{e} \equiv \Omega$ (Fig. 2.1).
The intervals of the $r z$-plane are defined by the partitions

$$
\begin{gather*}
0=z_{0}<z_{1}<\cdots<z_{N}=z, \tag{2.1}\\
0=r_{0}<r_{1}<\cdots<r_{M}, \tag{2.2}
\end{gather*}
$$

and we suppose that the function $r=R(Z)$, which represents the boundary Γ_{1}, is constant for $z \in\left[0, z_{n_{1}}\right]$ and $z \in\left[z_{n_{2}}, z\right]$, and increasing in the interval $\left(z_{n_{1}}, z_{n_{2}}\right)$. Furthermore, we suppose that ($z_{n_{1}}, r_{m}$) and ($z_{n_{2}}, r_{M}$) are gridpoints, and

$$
\begin{equation*}
r_{m+i}=R\left(z_{n_{1}+i}\right), \quad i=0, \ldots, n_{2}-n_{1} . \tag{2.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
n_{2}-n_{1}=M-m . \tag{2.4}
\end{equation*}
$$

The fourth power of the function $r=R(z)$ (which we shall use later on) is approximated by the pieciewise linear function

$$
\begin{equation*}
R^{4}(z) \approx \tilde{R}^{4}(z):=r_{j}^{4}+\frac{r_{j+1}^{4}-r_{j}^{4}}{z_{i+1}-z_{i}}\left(z-z_{i}\right), \quad z_{i}<z<z_{i+1}, n_{1} \leqq i<n_{2}, \tag{2.5}
\end{equation*}
$$

and the boundary value function $u=F(z)$ on Γ_{1} is approximated by the piecewise linear function

$$
\begin{equation*}
F(z) \approx \tilde{F}(z):=F\left(z_{i}\right)+\frac{F\left(z_{i+1}\right)-F\left(z_{i}\right)}{z_{i+1}-z_{i}}\left(z-z_{i}\right), \quad i=0, \ldots, N-1 . \tag{2.6}
\end{equation*}
$$

Let Ω be partitioned into the elements $\Omega_{i j}$ which are rectangulars into the domain Ω and triangulars with one curved side (2.5) at the neighborhood of Γ_{1} in the interval ($z_{n_{1}}, z_{n_{2}}$), such that

$$
\begin{equation*}
\Omega \cup\left(\bigcup_{i=0}^{3} \Gamma_{i}\right)=\bar{\Omega}=\bigcup_{i, j} \bar{\Omega}_{i j}, \tag{2.7}
\end{equation*}
$$

where $\bar{\Omega}_{i j}=\left\{z, r \mid z_{i} \leqq z_{i+1}, r_{j} \leqq r \leqq j+1, z_{i}=i h_{z}, r_{j}=j h_{r}\right\}$ and the total number of the elements $\Omega_{i j}$ is

$$
\begin{equation*}
N \cdot m+\left(N-n_{2}\right)(M-m)+\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2} \tag{2.8}
\end{equation*}
$$

The form of the spline function inside Ω, which was constructed in [1] is

$$
\begin{equation*}
S_{i j}(z, r)=a_{i j}\left(r^{4}-r_{j}^{4}\right)+b_{i j}\left(r^{4}-r_{j}^{4}\right)\left(z-z_{i}\right)+c_{i j}\left(z-z_{i}\right)+d_{i j}, \tag{2.9}
\end{equation*}
$$

This will have the following forms at the neighborhood of the boundaries Γ_{0}, Γ_{1} :

$$
\begin{gather*}
S_{i, 0}(z, r)=a_{i, 0} r^{4}+b_{i, 0} r^{4}\left(z-z_{i}\right), \quad i=0, \ldots, N-1, \tag{2.10}\\
S_{i, m-1}(z, r)=a_{i, m-1}\left(r^{4}-r_{m}^{4}\right)+b_{i, m-1}\left(r^{4}-r_{m}^{4}\right)\left(z-z_{i}\right)+\tilde{F}(z), \tag{2.11}\\
\quad i=0, \ldots, n_{1}-1, \\
S_{i, j}(z, r)=a_{i, j}\left(r^{4}-\tilde{R}^{4}(z)\right)+\tilde{F}(z), \quad i=n_{1}+\ell, j=m_{1}+\ell \tag{2.12}\\
\ell=0, \ldots, n_{2}-n_{1}-1, \\
S_{i, M-1}(z, r)=a_{i, M-1}\left(r^{4}-r_{M}^{4}\right)+b_{i, M-1}\left(r^{4}-r_{M}^{4}\right)\left(z-z_{i}\right)+\tilde{F}(z), \tag{2.13}\\
\quad i=n_{2}, \ldots, N-1 .
\end{gather*}
$$

From [1], and from Theorem 1 in [2] we can show that there exist continuous spline functions (2.9-2.13) in $\bar{\Omega}$ and a system of

$$
\begin{equation*}
\left(2\left(n_{2}-n_{1}\right)^{2}+(1-M)(2-4 N)+3\left(n_{2}-n_{1}\right)-4 n_{2}(M-m)\right) \tag{2.14}
\end{equation*}
$$

equations with

$$
\begin{equation*}
\left(4\left(n_{2}-n_{1}\right)^{2}+2 N(3+2 M)-n_{2}(M-m)-n_{2}-n_{1}\right) \tag{2.15}
\end{equation*}
$$

The coefficients are obtained from the supposition that the spline functions are continuous in $\bar{\Omega}$. The analysis of the system shows that among these equations there are

$$
\begin{equation*}
\left(\left(n_{2}-n_{1}\right)^{2}-N(1-M)-n_{2}(M-m)-m-\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}-1\right)}{2}+1\right) \tag{2.16}
\end{equation*}
$$

dependent. Deleting the dependent equations from the system we get the independent system of the equations

$$
\begin{array}{ll}
a_{i, j}+b_{i, j}\left(z_{i+1}-z_{i}\right)=a_{i+1, j}, & i=0, \ldots, N-2, j=0, \ldots, m-1 . \\
c_{i, j}\left(z_{i+1}-z_{i}\right)+d_{i, j}=d_{i+1, j}, & i=0, \ldots, N-2, j=1, \ldots, m-2 . \tag{2.17}\\
c_{i, m-1}\left(z_{i+1}-z_{i}\right)+d_{i, m-1}=d_{i+1, m-1}, & i=n_{1}, \ldots, N-2 . \\
a_{i, j}=a_{i+1, j}, & i=n_{1}+\ell, j=m+\ell, \\
& \ell=0, \ldots, n_{2}-n_{1}-1 . \\
a_{i, j}+b_{i, j}\left(z_{i+1}-z_{i}\right)=a_{i+1, j}, & i=n_{1}+\ell+1, j=m+k, \\
& \ell=0, \ldots, n_{2}-n_{1}-k-2, \\
& k=0, \ldots, n_{2}-n_{1}-2 . \\
c_{i, j}\left(z_{i+1}-z_{i}\right)+d_{i, j}=d_{i+1, j}, & i=n_{1}+\ell+1, j=m+k, \\
& \begin{array}{l}
\ell=0, \ldots, n_{2}-n_{1}-k-2, \\
a_{i, j}+b_{i, j}\left(z_{i+1}-z_{i}\right)=a_{i+1, j}, \\
c_{i, j}\left(z_{i+1}-z_{i}\right)+d_{i, j}=d_{i+1, j}, \\
a_{0, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+d_{0, j}=d_{0, j+1}, \\
b_{i, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+c_{i, j}=c_{i, j+1},
\end{array} \\
a_{0, m-1}\left(r_{m-1}^{4}-r_{m-2}^{4}\right)+d_{0, m-2}= & i=n_{2}, \ldots, N-2, j=m, \ldots, M-1 . \\
=a_{0, m-1}\left(r_{m-1}^{4}-r_{m}^{4}\right)+F(0), & i=n_{2}, \ldots, N-2, j=m, \ldots, M-2 . \\
b_{i, m-2}\left(r_{m-1}^{4}-r_{m-2}^{4}\right)+c_{i, m-2}= & i=0, \ldots, N-1, j=0, \ldots, m-3 . \\
=b_{i, m-1}\left(r_{m-1}^{4}-r_{m}^{4}\right)+\frac{F\left(z_{i+1}\right)-F\left(z_{i}\right)}{z_{i+1}-z_{i}}, & i=0, \ldots, n_{1}-1 . \\
b_{i, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+c_{i, j}=c_{i, j+1}, & i=n_{2}, \ldots, N-1, \\
b_{i, M-2}\left(r_{M-1}^{4}-r_{M-2}^{4}\right)+c_{i, m-2}= & j=m-2, \ldots, M-3 . \\
&
\end{array}
$$

$$
\begin{array}{ll}
=b_{i, M-1}\left(r_{M-1}^{4}-r_{M}^{4}\right)+\frac{F\left(z_{i+1}\right)-F\left(z_{i}\right)}{z_{i+1}-z_{i}}, & i=n_{2}, \ldots, N-1 \\
b_{i, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+c_{i, j}=c_{i, j+1}, & i=n_{1}+\ell+k+1, j=m+k-1, \\
& \ell=0, \ldots, n_{2}-n_{1}-k-2 \\
& k=0, \ldots, n_{2}-n_{1}-2 . \\
a_{i, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+d_{i, j}=F\left(z_{i}\right), & \begin{array}{ll}
i=n_{1}+\ell, j=m+\ell-1, \\
& \ell=0, \ldots, n_{2}-n_{1}-1 \\
b_{i, j}\left(r_{j+1}^{4}-r_{j}^{4}\right)+c_{i, j}= & \\
=-a_{i, j+1} \frac{\left(r_{j+2}^{4}-r_{j+1}^{4}\right)}{z_{i+1}-z_{i}}+\frac{F\left(z_{i+1}\right)-F\left(z_{i}\right)}{z_{i+1}-z_{i}}, & i=n_{1}+\ell, j=m+\ell-1 \\
& \\
b_{i, m-2}\left(r_{m-2}^{4}-r_{m-1}^{4}\right)+c_{i, m-2}=c_{i, m-1}, & i=n_{1}, \ldots, n_{2}-1
\end{array}
\end{array}
$$

The number of the equations in (2.17) is
$(2.18)\left(n_{2}-n_{1}\right)^{2}+3\left(n_{2}-n_{1}\right)-3 N(1-M)+m\left(1+3 n_{2}\right)-M\left(2+3 n_{2}\right)+$

$$
+\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}-1\right)}{2}+1
$$

with the number of coefficients (2.15).

Fig. 2.2. The elastic domain Ω_{e}
Case 2: the elastic problem in domain Ω_{e} (Fig. 2.2). Now we suppose that the plastic region Ω_{p} exists in Ω. For z_{i} and r_{j} we have

$$
\begin{gather*}
0=z_{0}<z_{1}<\cdots<z_{N}=Z, \quad 0<n_{1}<n_{2}<n_{3}<N \tag{2.19}\\
0=r_{0}<r_{1}<\cdots<r_{M}, \quad 0<m_{1}<m_{2}<M . \tag{2.20}
\end{gather*}
$$

We have supposed that the function $r=R(z)$ is constant for $z \in\left[0, z_{n_{1}}\right]$ and $z \in\left[z_{n_{3}}, Z\right]$, decreasing in the interval $\left(z_{n_{1}}, z_{n_{2}}\right)$ and increasing in the
interval $\left(z_{n_{2}}, z_{n_{3}}\right)$, where its minimum is attained at the point $\left.z_{n_{2}}, r_{m_{1}}\right)$. Furthermore, $\left(z_{n_{1}}, r_{m_{2}}\right),\left(z_{n_{2}}, r_{m_{1}}\right)$ and $\left(z_{n_{3}}, r_{M}\right)$ are grid-points, and we suppose that

$$
\begin{array}{ll}
r_{m_{2}-i} & =R\left(z_{n_{1}+i}\right), \\
r_{m_{1}+i} & =R\left(z_{n_{2}+i}\right), \tag{2.22}
\end{array} \quad i=1, \ldots, n_{2}-n_{1}, \ldots, n_{3}-n_{2},
$$

therefore,

$$
\begin{equation*}
n_{2}-n_{1}=m_{2}-m_{1}, \quad n_{3}-n_{2}=M-m_{1} \tag{2.23}
\end{equation*}
$$

The fourth power of the function $r=R(z)$ is approximated by the piecewise linear functions

$$
\begin{align*}
& R^{4}(z) \approx \tilde{R}^{4}(z):=r_{j+1}^{4}+\frac{r_{j}^{4}-r_{j+1}^{4}}{z_{i+1}-z_{i}}\left(z-z_{i}\right), \tag{2.24}\\
& n_{1} \leqq i<n_{2} \tag{2.25}\\
& R^{4}(z) \approx \tilde{R}^{4}(z):=r_{j}^{4}+\frac{r_{j+1}^{4}-r_{j}^{4}}{z_{i+1}-z_{i}}\left(z-z_{i}\right),
\end{align*} \quad n_{2} \leqq i<n_{3},
$$

the function $u=F(z)$ on Γ_{1} has been approximated as in (2.6).
Similarly as in Case 1 , the domain Ω_{e} is divided into the elements $\Omega_{i j}$, and the total number of the elements is

$$
\begin{gather*}
N m_{1}+n_{1}\left(m_{2}-m_{1}\right)+\left(N-n_{3}\right)\left(M-m_{1}\right)+ \tag{2.26}\\
+ \\
\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2}+\frac{\left(n_{3}-n_{2}\right)\left(n_{3}-n_{2}+1\right)}{2}
\end{gather*}
$$

The spline function inside Ω_{e} will have the form (2.9) and it will have the following forms at the neighborhood of the boundaries Γ_{0}, Γ_{1} :

$$
\begin{gather*}
S_{i, 0}(z, r)=a_{i, 0} r^{4}+b_{i, 0} r^{4}\left(z-z_{i}\right), \quad i=0, \ldots, N-1 \tag{2.27}\\
S_{i, m_{2}-1}(z, r)=a_{i, m_{2}-1}\left(r^{4}-r_{m_{2}}^{4}\right)+b_{i, m_{2}-1}\left(r^{4}-r_{m_{2}}^{4}\right)\left(z-z_{i}\right)+\tilde{F}(z), \tag{2.28}\\
i=0, \ldots, n_{1}-1 \\
S_{i, j}(z, r)=a_{i, j}\left(r^{4}-\tilde{R}^{4}(z)\right)+\tilde{F}(z) \tag{2.29}\\
i=n_{1}-\ell_{1}-1, \quad j=m_{1}+\ell_{1}, \quad \ell_{1}=0, \ldots, n_{2}-n_{1}-1 \\
S_{i, j}(z, r)=a_{i, j}\left(r^{4}-\tilde{R}^{4}(z)\right)+\tilde{F}(z) \tag{2.30}\\
i=n_{2}+\ell_{2}, \quad j=m_{1}+\ell_{2}, \quad \ell_{2}=0, \ldots, n_{3}-n_{2}-1 \\
 \tag{2.31}\\
\begin{array}{r}
S_{i, M-1}(z, r)=a_{i, M-1}\left(r^{4}-r_{M}^{4}\right)+b_{i, M-1}\left(r^{4}-r_{M}^{4}\right)\left(z-z_{i}\right)+\tilde{F}(z) \\
i=n_{3}, \ldots, N-1
\end{array}
\end{gather*}
$$

From [1] or Theorem 1 in [2] we can show that there exist continuous spline functions $(2.27-2.31)$ and (2.9) in $\bar{\Omega}_{e}$ and a system of

$$
\begin{gather*}
2\left(n_{2}-n_{1}\right)^{2}+2\left(n_{3}-n_{2}\right)^{2}+4 n_{1}\left(m_{2}-m_{1}\right)-N(1-4 M)- \tag{2.32}\\
-4 n_{3}\left(M-m_{1}\right)-M-m_{1}-n_{1}
\end{gather*}
$$

equations with

$$
\begin{gather*}
2\left(n_{2}-n_{1}\right)^{2}+2\left(n_{3}-n_{2}\right)^{2}+4 N(M-1)+4 n_{1}\left(m_{2}-m_{1}\right)+ \tag{2.33}\\
+4 n_{3}\left(m_{1}-M\right)-n_{1}+n_{3}
\end{gather*}
$$

coefficients is obtained from the supposition that the spline functions are continuous in Ω_{e}. The analysis of the system shows that among these equations

$$
\begin{align*}
& \left(n_{2}-n_{1}\right)^{2}+\left(n_{3}-n_{2}\right)^{2}+n_{1}\left(m_{2}-m_{1}\right)+M(N+1)-n_{3} M-m_{1}- \tag{2.34}\\
& -m_{1}+2 n_{1}-n_{3}-\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}-1\right)}{2}-\frac{\left(n_{3}-n_{2}\right)\left(n_{3}-n_{2}-1\right)}{2}
\end{align*}
$$

are dependent. By deleting the dependent equations from the system we get an independent system (similar to (2.17) and the difference is obvious) of

$$
\begin{gathered}
\left(n_{2}-n_{1}\right)^{2}+\left(n_{3}-n_{2}\right)^{2}+3 n_{1}\left(m_{2}-m_{1}\right)-N(1-3 M)-3 n_{3}\left(M-m_{1}\right)-3 n_{1}+ \\
+n_{3}-2 M+\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}-1\right)}{2}+\frac{\left(n_{3}-n_{2}\right)\left(n_{3}-n_{2}-1\right)}{2}
\end{gathered}
$$

equations with the number of coefficients (2.33).

3. The spline function properties

Let the spline functions given in Section 2 have similar properties to those described in Section 3 in [2]. In this section we are going to prove a theorem for the density of the spline functions in Ω_{e}.

Let

$$
\begin{gathered}
{[u, v]=\int_{\Omega} \frac{1}{r^{3}}\left[\frac{\partial u}{\partial r} \frac{\partial v}{\partial r}+\frac{\partial u}{\partial z} \frac{\partial v}{\partial z}\right] d z d r} \\
H_{A}=\left\{u \left\lvert\, \frac{1}{r^{3 / 2}}\left[\left[\frac{\partial u}{\partial r}\right]^{2}+\left[\frac{\partial u}{\partial z}\right]^{2}\right]^{1 / 2} \in L_{2}(\Omega)\right., u(z, 0)=0\right\} \\
{[u]=[u, u]^{1 / 2}}
\end{gathered}
$$

Theorem 1. The set of the spline functions $S_{\Delta}(z, r)$ in (2.9) are dense in H_{A}, that is for every $f(z, r) \in W_{2}^{2} \cap H_{A}$ there exists a spline function $S_{\Delta}(z, r)$ such that

$$
\left[f(z, r)-S_{\Delta}(z, r)\right]=O\left(h_{z}+h_{r}\right)
$$

and for $f(z, r)$ the following estimates are true

$$
\begin{array}{r}
\left\|f(z, r)-S_{\Delta}(z, r)\right\|_{C}=O\left(h_{z}^{2}+h_{r}^{2}\right) \\
\left\|f(z, r)-S_{\Delta}(z, r)\right\|_{W_{2}^{1}}=O\left(h_{z}+h_{r}\right)
\end{array}
$$

Proof. We note that because $f \in W_{2}^{2}$, the grid-points $\left(z_{i}, r_{j}\right)$ can be chosen in such a way that the second derivates $\left(\frac{\partial^{2} f}{\partial z^{2}}, \frac{\partial^{2} f}{\partial z \partial r}, \frac{\partial^{2} f}{\partial r^{2}}\right)$ are bounded at these grid-points.

For the spline functions in the rectangular elements we let

$$
\begin{gather*}
S_{\Delta}(z, r)=S_{i, j}(z, r):=\frac{f_{i, j+1}-f_{i, j}}{r_{j+1}^{4}-r_{j}^{4}}\left(r^{4}-r_{j}^{4}\right)+ \tag{3.1}\\
+\frac{1}{h_{z}\left(r_{j+1}^{4}-r_{j}^{4}\right)}\left(f_{i+1, j+1}-f_{i+1, j}-f_{i, j+1}+f_{i, j}\right)\left(r^{4}-r_{j}^{4}\right)\left(z-z_{i}\right)+ \\
+\frac{f_{i+1, j}-f_{i, j}}{h_{z}}\left(z-z_{i}\right)+f_{i, j} .
\end{gather*}
$$

The estimates of the approximation by (3.1) in the rectangular elements are introduced in Theorem 4 in [1].

For the spline functions in the left-side triangular elements with the points $\left(z_{i}, r_{j}\right),\left(z_{i+1}, r_{j}\right),\left(z_{i+1}, r_{j+1}\right)$ we let

$$
\begin{gather*}
S_{\Delta}(z, r)=S_{i, j}(z, r):= \tag{3.2}\\
:=\frac{f_{i+1, j+1}-f_{i+1, j}}{r_{j+1}^{4}-r_{j}^{4}}\left(r^{4}-r_{j}^{4}-\frac{r_{j+1}^{4}-r_{j}^{4}}{z_{i+1}-z_{i}}\left(z-z_{i}\right)\right)+ \\
+F\left(z_{i}\right)+\frac{F\left(z_{i+1}\right)-F\left(z_{i}\right)}{z_{i+1}-z_{i}}\left(z-z_{i}\right)
\end{gather*}
$$

where

$$
f_{i, j}:=f\left(z_{i}, r_{j}\right) \text { and } F(z):=(z, R(z))
$$

It is obvious that the spline functions given by (3.1) and (3.2) are continuous in Ω_{e}.

The Taylor expansion for the mentioned triangular elements is

$$
\begin{equation*}
f(z, r)=f_{i+1, j}+\left.\lambda_{r} h_{r} \frac{\partial f}{\partial r}\right|_{i+1, j}+\left.\lambda_{z} h_{z} \frac{\partial f}{\partial z}\right|_{i+1, j}+Q_{2}(z, r) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
z=z_{i+1}+\lambda_{z} h_{z} & \left(-1 \leqq \lambda_{z} \leqq 0\right), \tag{3.4}\\
r=r_{j}+\lambda_{r} h_{r} & \left(0 \leqq \lambda_{r} \leqq 1\right) .
\end{align*}
$$

The Peano form of the remainder in (3.3) is [4]

$$
\begin{align*}
Q_{2}(z, r)= & \left.\lambda_{r}^{2} h_{r}^{2} \frac{\partial^{2} f}{\partial r^{2}}\right|_{i+1, j}+\left.2 \lambda_{r} \lambda_{z} h_{r} h_{z} \frac{\partial^{2} f}{\partial z \partial r}\right|_{i+1, j}+ \tag{3.6}\\
& +\left.\lambda_{z}^{2} h_{z}^{2} \frac{\partial^{2} f}{\partial z^{2}}\right|_{i+1, j}+o\left(h_{r}^{2}+h_{z}^{2}\right),
\end{align*}
$$

and from (3.6) we have

$$
\begin{equation*}
\left|Q_{2}(z, r)\right| \leqq c\left(h_{r}^{2}+h_{z}^{2}\right) \tag{3.7}
\end{equation*}
$$

(3.3) can be used to get the functions $f_{i+1, j+1}, f_{i+1, j}$ in (3.2). By subtracting (3.2) from (3.3) we get that

$$
\begin{gather*}
f(z, r)-S_{i, j}(z, r)=Q_{2}(z, r)-\lambda_{r} Q_{2}\left(z_{i+1}, r_{j+1}\right)+ \tag{3.8}\\
+\lambda_{z} Q_{2}\left(z_{i}, r_{j}\right)+O\left(h_{r}^{2}+h_{z}^{2}\right),
\end{gather*}
$$

therefore

$$
\begin{equation*}
\left|f(z, r)-S_{i, j}(z, r)\right|=O\left(h_{z}^{2}+h_{r}^{2}\right) . \tag{3.9}
\end{equation*}
$$

Because $f(z, r)-S_{\Delta}(z, r)$ is continuous in Ω_{e} we get

$$
\begin{equation*}
\left\|f(z, r)-S_{\Delta}(z, r)\right\|_{c}=O\left(h_{z}^{2}+h_{r}^{2}\right) . \tag{3.10}
\end{equation*}
$$

The first partial derivatives of the Taylor expansion (3.3) are

$$
\begin{align*}
& \frac{\partial f}{\partial r}(z, r)=\left.\frac{\partial f}{\partial r}\right|_{i+1, j}+Q_{1}^{r}(z, r), \tag{3.11}\\
& \frac{\partial f}{\partial z}(z, r)=\left.\frac{\partial f}{\partial z}\right|_{i+1, j}+Q_{1}^{z}(z, r), \tag{3.12}
\end{align*}
$$

where the Peano remainders in (3.11) and (3.12) are

$$
\begin{gather*}
Q_{1}^{r}(z, r)=\left.\left(z-z_{i+1}\right) \frac{\partial^{2} f}{\partial r \partial z}\right|_{i+1, j}+\left.\left(r-r_{j}\right) \frac{\partial^{2} f}{\partial r^{2}}\right|_{i+1, j}+ \tag{3.13}\\
+o\left(\left|z-z_{i+1}\right|\right)+o\left(\left|r-r_{j}\right|\right)
\end{gather*}
$$

$$
\begin{gather*}
Q_{1}^{z}(z, r)=\left.\left(z-z_{i+1}\right) \frac{\partial^{2} f}{\partial z^{2}}\right|_{i+1, j}+\left.\left(r-r_{j}\right) \frac{\partial^{2} f}{\partial z \partial r}\right|_{i+1, j}+ \tag{3.14}\\
+o\left(\left|z-z_{i+1}\right|\right)+o\left(\left|r-r_{j}\right|\right)
\end{gather*}
$$

and so

$$
\begin{align*}
& \left|Q_{1}^{r}\right| \leqq c_{1}\left(\left|z-z_{i+1}\right|+\left|r-r_{j}\right|\right) \tag{3.15}\\
& \left|Q_{1}^{z}\right| \leqq c_{2}\left(\left|z-z_{i+1}\right|+\left|r-r_{j}\right|\right) .
\end{align*}
$$

The first partial derivatives of the spline functions (3.2) are

$$
\begin{gather*}
\frac{\partial S_{\Delta}}{\partial r}(z, r)=\left(1+O\left(h_{r}\right)\right) h_{r}\left(\left.\frac{\partial f}{\partial r}\right|_{i+1, j}+\frac{1}{h_{r}} Q_{2}\left(z_{i+1}, r_{j+1}\right)\right) \tag{3.17}\\
\frac{\partial S_{\Delta}}{\partial r}(z, r)=\left(1+O\left(h_{r}\right)\right) h_{r}\left(\left.\frac{\partial f}{\partial r}\right|_{i+1, j}+Q_{2}\left(z_{i+1}, r_{j}\right)\right) \tag{3.18}
\end{gather*}
$$

From the formulas (3.11-3.12) and (3.17-3.18) we get

$$
\begin{align*}
& \left|\frac{\partial f}{\partial r}-\frac{\partial S_{\Delta}}{\partial r}\right|=\left|Q_{1}^{r}(z, r)-\frac{1}{h_{r}} Q_{2}\left(z_{i+1}, r_{j+1}\right)+O\left(h_{r}\right)\right|=O\left(h_{z}+h_{r}\right) \tag{3.19}\\
& \quad\left|\frac{\partial f}{\partial z}-\frac{\partial S_{\Delta}}{\partial z}\right|=\left|Q_{1}^{z}(z, r)+\frac{1}{h_{z}} Q_{2}\left(z_{i+1}, r_{j}\right)\right|=O\left(h_{z}+h_{r}\right) \tag{3.20}
\end{align*}
$$

Similar results can be obtained for the right-side triangular elements too.
The first derivatives of the spline function S_{Δ} are bounded in Ω_{e}, therefore, from (3.10), (3.19-3.20) and the results obtained from Theorem 4 in [1] we have

$$
\begin{equation*}
\left\|f(z, r)-S_{\Delta}(z, r)\right\|_{W_{2}^{1}}=O\left(h_{z}+h_{r}\right) \tag{3.21}
\end{equation*}
$$

For the triangular elements in $\Omega_{i j}$ we have that

$$
\begin{equation*}
\iint_{\Omega_{i j}} \frac{1}{r^{3}}\left(\left(\frac{\partial}{\partial r}\left(f-s_{i j}\right)\right)^{2}+\left(\frac{\partial}{\partial z}\left(f-s_{i j}\right)\right)^{2}\right) d z d r=O\left(h_{r}^{2}+h_{z}^{2}\right) \tag{3.22}
\end{equation*}
$$

Therefore, from theorem 4 in [1] and (3.22) we can write the norm in all the domain Ω_{e} as follows

$$
\begin{gather*}
{\left[f(z, r)-S_{\Delta}(z, r)\right]^{2}=} \tag{3.23}\\
=\sum_{i=0}^{N-1} \sum_{j=1}^{M_{i}} \iint_{\Omega_{i j}} \frac{1}{r^{3}}\left(\left(\frac{\partial}{\partial r}\left(f-s_{i j}\right)\right)^{2}+\left(\frac{\partial}{\partial z}\left(f-s_{i j}\right)\right)^{2}\right) d z d r+ \\
+\sum_{i=0}^{N-1} \int_{0}^{r_{1}} \int_{z_{i}}^{z_{i+1}} \frac{1}{r^{3}}\left(\left(\frac{\partial}{\partial r}\left(f-s_{i j}\right)\right)^{2}+\left(\frac{\partial}{\partial z}\left(f-s_{i j}\right)\right)^{2}\right) d z d r= \\
=O\left(h_{z}^{2}+h_{r}^{2}\right), \quad M_{i}:=\left[\frac{R\left(z_{i}\right)}{h_{r}}\right]+1
\end{gather*}
$$

Finally, from (3.23) the norm in H_{A} space will have the following estimate:

$$
\begin{equation*}
\left[f(z, r)-S_{\Delta}(z, r)\right]=O\left(h_{z}+h_{r}\right) \tag{3.24}
\end{equation*}
$$

4. Convergence of the approximate solution

In this section we introduce a general definition for the partition of the domain Ω_{e}, from which we can define the domains used in cases 1 and 2 precisely, because we have to integrate the spline function over the domain Ω_{e}.

Let

$$
\begin{equation*}
\left(z^{k}, r^{k}\right) \in \Gamma_{1}: \quad R^{\prime}\left(z^{k}\right)=0, \quad R^{\prime \prime}\left(z^{k}\right)>0, \quad k=1, \ldots, n \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
0=z^{0}<z^{1}<\cdots<z^{n}<z^{n+1}=Z \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{z}^{k}, \bar{r}^{k}\right) \in \Gamma_{1}: \quad R^{\prime}\left(\bar{z}^{k}\right)=0, \quad R^{\prime \prime}\left(\bar{z}^{k}\right)<0, \quad k=1, \ldots, n \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
z^{k}<\bar{z}^{k}<z^{k+1} \tag{4.4}
\end{equation*}
$$

Consider the following facts:
a) If $R^{\prime}(z) \geqq 0$ (or $\left.R^{\prime}(z) \leqq 0\right)$ for $z \in[0, Z]$ then $n=1$ and $\bar{z}^{0}=0$ (or $\bar{z}^{0}=$ $=Z$).
b) If $R^{\prime}(0)<0$ then $\bar{z}^{0}=0$.
c) If $R^{\prime}(Z)>0$ then $\bar{z}^{n}=Z$.
d) If $R^{\prime}(0)=0$ and $\max R(z)=R_{1}$ for $z \in\left[0, z^{1}\right]$ then $\bar{z}^{0}=0$.
e) If $R^{\prime}(Z)=0$ and $\max R(z)=R_{2}$ for $z \in\left[z^{n}, Z\right]$ then $\bar{z}^{n}=Z$.

Let the inverse of the boundary functions as follows

$$
\begin{gather*}
\operatorname{inv} R^{k}(r)=\operatorname{inv}(R(z)), \quad z^{k} \leqq z<\bar{z}^{k} \tag{4.5}\\
\operatorname{inv} \tilde{R}^{k}(r)=\operatorname{inv}(R(z)), \quad \bar{z}^{k} \leqq z<z^{k+1} . \tag{4.6}
\end{gather*}
$$

Let us introduce the following functions:

$$
\begin{gather*}
Z^{0}(r)= \begin{cases}0, & 0 \leqq r \leqq r^{0} \\
\operatorname{inv} R^{0}(r), & r^{0}<r \leqq r^{0},\end{cases} \tag{4.7}\\
\bar{Z}^{0}(r)= \begin{cases}\operatorname{inv} \tilde{R}^{0}(r), & r^{0}>r \geqq r^{1} \\
\operatorname{inv} \tilde{R}^{m_{i-1}}(r), & r^{m_{i-1}}>r \leqq r^{m_{i}} \\
Z, & \min _{j} r^{j}>r \geqq 0\end{cases} \tag{4.8}
\end{gather*}
$$

where

$$
\begin{equation*}
m_{0}=1 \text { and } m_{i}=\min \left\{j \mid j>m_{i-1}, r^{j}<r^{m_{i-1}}\right\} . \tag{4.9}
\end{equation*}
$$

Furthermore, let

$$
\begin{gather*}
Z^{k}(r)=\operatorname{inv} R^{k}(r), \quad r^{k} \leqq r<\bar{r}^{k}, \tag{4.10}\\
\bar{Z}^{k}(r)=\left\{\begin{array}{ll}
\operatorname{inv} \tilde{R}^{k}(r), & \bar{r}^{k} \geqq r \geqq \max \left\{r^{k}, r^{k+1}\right\} \\
\operatorname{inv} \tilde{R}^{m_{i-1}^{k}}(r), & r^{m_{i-1}^{k}}>r \geqq \max \left\{r^{k}, r^{m_{i}^{k}}\right\} \\
Z, & r^{k+1}>r \geqq r^{k} \text { if } r^{k}=\min \left\{r^{j} \mid j \geqq k\right\}
\end{array},\right. \tag{4.11}
\end{gather*},
$$

where

$$
\begin{equation*}
m_{0}^{k}=k+1, \quad m_{i}^{k}=\min \left\{j \mid j>m_{k-1}^{k}, r^{j}<r^{m_{i-1}^{k}}\right\} . \tag{4.12}
\end{equation*}
$$

We have $\Omega_{e}=\bigcup_{k=0}^{n} \Omega_{e}^{k}$, where the elements Ω_{e}^{k} are defined as follows:

$$
\begin{gather*}
\Omega_{e}^{0}=\left[0, \bar{r}^{0}\right] \times\left[Z^{0}(r), \bar{Z}^{0}(r)\right], \tag{4.13}\\
\Omega_{e}^{k}=\left[r^{k}, \bar{r}^{k}\right] \times\left[Z^{k}(r), \bar{Z}^{k}(r)\right], \quad k=1, \ldots, n . \tag{4.14}
\end{gather*}
$$

It can be seen that if $\left(z^{*}, r^{*}\right) \in \Omega_{e}^{k}$, then for every $z<z^{*}$,

$$
\begin{equation*}
\left(z, r^{*}\right) \in \Omega_{e}^{k}, \quad k=0, \ldots, n . \tag{4.15}
\end{equation*}
$$

Lemma 1. In problem (1.1), for every $u(z, r) \in H_{A}$ there exists a constant c_{0} such that

$$
\|u\|_{W_{2}^{1}} \leqq c_{0}[u] .
$$

Proof. For the L_{2}-norm of the first derivatives of the function $u(z, r)$ in Ω_{e} we get the same result obtained in Lemma 2 in [1], i.e.

$$
\begin{equation*}
\left\|\frac{\partial u}{\partial r}\right\|_{L_{2}}^{2}+\left\|\frac{\partial u}{\partial z}\right\|_{L_{2}}^{2} \leqq \bar{R}^{3}[u, u] \tag{4.16}
\end{equation*}
$$

where $\bar{R}=\max _{z} R(z)$.
To get the L_{2}-norm of the function $u(z, r)$ in Ω_{e} let

$$
\begin{equation*}
u(z, r)=\int_{0}^{r} \frac{\partial u(z, x)}{\partial x} d x=\int_{0}^{r} x^{3 / 2} \cdot \frac{1}{x^{3 / 2}} \frac{\partial u(z, x)}{\partial x} d x \tag{4.17}
\end{equation*}
$$

By using Cauchy-Bunyakovsky inequality to the square of the integral (4.17) we get

$$
\begin{equation*}
|u(z, r)|^{2} \leqq \int_{0}^{r} x^{3} d x \cdot \int_{0}^{\tau} \frac{1}{x^{3}}\left|\frac{\partial u(z, x)}{\partial x}\right|^{2} d x \leqq \frac{r^{4}}{4} \int_{0}^{R(z)} \frac{1}{x^{3}}\left|\frac{\partial u(z, x)}{\partial x}\right|^{2} d x . \tag{4.18}
\end{equation*}
$$

Integrating both sides of (4.18) over the domain Ω_{e}

$$
\begin{align*}
& \int_{\Omega_{e}}|u(z, r)|^{2} d r d z=\|u\|_{L_{2}}^{2} \leqq \int_{0}^{Z}\left(\int_{0}^{R(z)} \frac{r^{4}}{4} d r \cdot \int_{0}^{R(z)} \frac{1}{x^{3}}\left|\frac{\partial u(z, x)}{\partial x}\right|^{2} d x\right) d z \leqq \tag{4.19}\\
& \leqq \int_{0}^{\bar{R}} \frac{r^{4}}{4} d r \cdot \int_{0}^{Z}\left(\int_{0}^{R(z)} \frac{1}{r^{3}}\left|\frac{\partial u(z, x)}{\partial x}\right|^{2} d r\right) d z=\frac{\bar{R}^{5}}{20} \int_{\Omega_{e}} \frac{1}{r^{3}}\left|\frac{\partial u(z, r)}{\partial r}\right|^{2} d r d z .
\end{align*}
$$

Now let

$$
\begin{gather*}
u(z, r)=\int_{Z^{k}(r)}^{z} \frac{\partial u(y, r)}{\partial y} d y, \quad(z, r) \in \Omega_{e}^{k} \tag{4.20}\\
u(z, r)=0 \text { if }(z, r) \in \Gamma_{1} \cup \Gamma_{2} . \tag{4.21}
\end{gather*}
$$

By using Cauchy-Bunyakovsky inequality to the square of the integral (4.20) we get

$$
\begin{gather*}
|u(z, r)|^{2} \leqq \int_{Z^{k}(r)}^{z} d y \cdot \int_{Z^{k}(r)}^{z}\left|\frac{\partial u(y, r)}{\partial y}\right|^{2} d y \leqq \tag{4.22}\\
\leqq\left(z-Z^{k}(r)\right) \cdot \int_{Z^{k}(r)}^{\bar{Z}^{k}(r)}\left|\frac{\partial u(y, r)}{\partial y}\right|^{2} d y .
\end{gather*}
$$

Integration of the left hand side of (4.22) over the domain Ω_{e} yields

$$
\begin{equation*}
\int_{\Omega_{e}}|u(z, r)|^{2} d z d r=\sum_{k=0}^{n} \int_{\Omega_{e}^{k}}|u(z, r)|^{2} d z d r . \tag{4.23}
\end{equation*}
$$

Integrating both sides of (4.22) over Ω_{e}^{k} we obtain

$$
\begin{align*}
& \int_{\Omega_{e}^{k}}|u(z, r)|^{2} d z d r \leqq \int_{r^{k}}^{\bar{r}^{k}}\left(\int_{Z^{k}(r)}^{\bar{Z}^{k}(r)}\left(z-Z^{k}(r)\right) d z \cdot \int_{Z^{k}(r)}^{\bar{Z}^{k}(r)}\left|\frac{\partial u(y, r)}{\partial y}\right|^{2} d y\right) d r= \tag{4.24}\\
& =\int_{r^{k}}^{\bar{r}^{k}}\left(\frac{\left(\bar{Z}^{k}(r)-Z^{k}(r)\right)^{2}}{2} \cdot r^{3} \int_{Z^{k}(r)}^{\bar{Z}^{k}(r)} \frac{1}{r^{3}}\left|\frac{\partial u(y, r)}{\partial y}\right|^{2} d y\right) d r \leqq \\
& \leqq \frac{Z^{2} \cdot \bar{R}^{3}}{2} \cdot \int_{r^{k}}^{\bar{r}^{k} \bar{Z}^{k}(r)} \int_{Z_{e}^{k}(r)}^{r^{3}} \frac{1}{\partial z}\left|\frac{\partial u(z, r)}{\partial z}\right|^{2} d z d r=\frac{Z^{2} \bar{R}^{3}}{2} \cdot \int_{\Omega_{e}^{k}} \frac{1}{r^{3}}\left|\frac{\partial u(z, r)}{\partial z}\right|^{2} d z d r .
\end{align*}
$$

Hence

$$
\begin{equation*}
\|u\|_{L_{2}}^{2} \leqq \frac{Z^{2} \bar{R}^{3}}{2} \sum_{k=0}^{n} \int_{\Omega_{e}^{k}} \frac{1}{k^{3}}\left|\frac{\partial u(z, r)}{\partial z}\right|^{2} d z d r . \tag{4.25}
\end{equation*}
$$

Now from (4.19) and (4.25) we get the L_{2}-norm of the function $u(z, r)$:

$$
\begin{equation*}
\|u\|_{L_{2}}^{2} \leqq \frac{1}{2} \max \left\{\frac{\bar{R}^{5}}{2}, \frac{Z^{2} \bar{R}^{3}}{2}\right\} \int_{\Omega_{e}} \frac{1}{r^{3}}\left(\left|\frac{\partial u(z, r)}{\partial r}\right|^{2}+\left|\frac{\partial u(z, r)}{\partial z}\right|^{2}\right) d z d r \tag{4.26}
\end{equation*}
$$

Finally, from (4.16) and (4.26) we get the W_{2}^{1}-norm of the function $u(z, r)$:

$$
\begin{equation*}
\|u\|_{W_{2}^{1}}^{2} \leqq\left(\bar{R}^{3}+\max \left\{\frac{\bar{R}^{3}}{40}, \frac{Z^{2} \bar{R}^{3}}{4}\right\}\right)[u]^{2} \tag{4.27}
\end{equation*}
$$

So there exists $c_{0}>0$ such that

$$
\begin{equation*}
\|u\|_{W_{2}^{1}} \leqq c_{0}[u] \tag{4.28}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=\sqrt{\left(R^{3}+\max \left\{\frac{\bar{R}^{3}}{40}, \frac{Z^{2} \bar{R}^{3}}{4}\right\}\right)} \tag{4.29}
\end{equation*}
$$

Theorem 2. The approximate solutions \tilde{S}, obtained by the minimization of the functional (3.8) in [2] over a family of splines (see cases 1 and $2)$, are convergent to the generalized solutions in the W_{2}^{1}-norm:

$$
\left\|u_{0}-\tilde{S}\right\|_{W_{2}^{1}}=O\left(h_{z}+h_{r}\right)
$$

where u_{0} denotes the generalized solutions of the original differential problems.

Proof. In Theorem 5 in [2] we proved the following inequality:

$$
\begin{equation*}
\left[u_{o}-\tilde{S}\right] \leqq \inf _{s}\left[u_{0}-S_{\Delta}\right] \tag{4.30}
\end{equation*}
$$

Therefore, from Theorem 1, Lemma 1 and (4.30) we get that

$$
\begin{equation*}
\left\|u_{0}-\tilde{S}\right\| \leqq c_{3}\left[u_{0}-\tilde{S}\right] \leqq c_{3} \inf _{s}\left[u_{0}-S_{\Delta}\right]=O\left(h_{z}+h_{r}\right) \tag{4.31}
\end{equation*}
$$

Thus the proof is complete.
Acknowledgement. The author express his sincere thanks to Dr. R. Farzan for the valuable advice and comments.

References

[1] A. Sh. Mohamed, Spline function solution of an elastic problem, Fourth Conference of Program Designers, Eötvös Loránd University (Budapest, 1988) (to appear).
[2] A. Sh. Mohamed, Approximate solution for an elastic problem by spline function, Annales Univ. Sci. Budapest, Sectio Comp. (to appear).
[3] C. W. Gryer, Numerical Methods for P. D. E., Academic Press (New York-London, 1979) pp. 177-191.
[4] Г. М. Фихтенгольц, Основы математического анализа, т. I, Наука (Москва, 1964).
[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Company (Amsterdam - New York - Oxford, 1978).
[6] Г. И. Марчук, В. И. Агощков, Введение в проекционносеточные методы, Наука (Москва, 1981).
[7] A. R. Mitchell and R. Wait, The Finite Element Method in P. D. E., John Wiley and Sons (Chichester - New York, 1977).
[8] G. A. Korn, Mathematical Handbook, Mc Graw-Hill (New york - Toronto - London, 1961).
[9] T. Fawzy, Spline functions and the Cauchy problems. II, Acta Math. Acad. Sci. Hung., 29 (1977), 259-271.
[10] T. Fawzy, Spline functions and the Cauchy problems. IV, Acta Math. Acad. Sci. Hung., 30 (1977), 219-226.
[11] J. Györvári, Lakunäre Interpolation mit Spline-Funktionen, Acta Math. Hung., 42 (1983), 25-33.
[12] J. Györvári, Lakunäre Spline-Funktion und das Cauchy-Problem, Acta Math. Hung., 44 (1984), $327-333$.
(Received August 30, 1988)
COMPUTING CENTER OF L. EÖTVÖS UNIVERSITY
1117 BUDAPEST, BOGDÁNFFY $\mathrm{U}, 10 / \mathrm{B}$
HUNGARY

POLYHEDRON COMPLEXES
 WITH SIMPLY TRANSITIVE GROUP ACTIONS AND THEIR REALIZATIONS

E. MOLNÁR (Budapest)*

The purpose of this paper to extend algorithmically Poincare's polyhedron theorem (Theorem 8.1) as far as reasonable so that we could treat the theory of discontinuous transformation groups in d-dimensional spaces of constant curvature by a unified method. For $d \geqq 3$ this problem is very actual now.

We start with a d-dimensional polyhedron \mathscr{P} given by its finite combinatorial flag structure \mathscr{F}.

We describe a computer algorithm for finding all combinatorially different pairings \mathscr{F} of $(d-1)$-facets of \mathscr{P} to generate all possible groups \mathscr{G} for which \mathscr{P} is a fundamental polyhedron (Algorithm 2.2).

In each pairing \mathscr{F} each identifying generator g of $\mathscr{\mathscr { G }}$ maps a facet $\mathrm{f}_{\mathrm{g}^{-1}}$ of \mathscr{P} onto the corresponding facet f_{g} and g maps the polyhedron \mathscr{P} onto its g -image $\mathscr{P B}^{\mathcal{B}}$. These two polyhedra are adjacent along the identified facets $\mathrm{f}_{\mathrm{g}}=\left(\mathrm{f}_{\mathrm{g}^{-1}}\right)^{\mathrm{g}}$. So we shall have a polyhedron complex $\mathscr{P}^{\mathscr{E}}$ on which \mathscr{G} acts simply transitively and the factor space $\mathscr{P}^{\mathscr{L}} / \mathscr{\mathscr { H }}$ (orbit space) is the same as \mathscr{P} equipped with the identifications of \mathscr{F}.

The pairing \mathcal{F}, called also identifications on \mathcal{P}, induces the $\mathscr{\mathscr { C }}$-equivalence of n-faces of \mathscr{P} for every $n(0 \leqq n \leqq d-1)$. For a fixed n-face x^{n} the stabilizer subgroup $\mathscr{E}_{\mathrm{x}^{n}}$ can be determined algorithmically (Algorithm 5.1) by choosing a fundamental domain $\mathscr{P}_{x^{n}}$ for $\mathscr{U}_{x^{n}}$ locally in $\mathscr{P}^{\mathscr{E}}$.

The basic algorithm is due to Poincaré in cases $d=2,3$. For a fixed ($d-2$)-face e (edge if $d=3$) this stabilizer $\mathscr{\mathscr { G }}_{\mathrm{e}}$ will be determined by the $\mathscr{y}_{\text {- }}$ equivalence class of e up to a free choice of the order ν_{e} for the "rotation" subgroup \mathcal{R}_{e} of $\mathscr{\mathscr { G }}_{\mathrm{e}}$ (Algorithm 4.1). This natural number ν_{e} can be chosen arbitrarily: either $1 \leqq \nu_{\mathrm{e}}$ if \mathcal{R}_{e} consists of finitely many "proper" rotations fixing e and its subflags; or $\nu_{\mathrm{e}}=0$ (instead of ∞) if the order of \mathcal{R}_{e} is infinite (e.g. in the hyperbolic space).

A collection of ν_{e} 's, chosen for equivalence classes of $(d-2)$-faces of \mathscr{P}, fixes the group \mathscr{H} by a presentation. In such a presentation of \mathscr{G} we give the pairing \mathcal{I}, which provides the identifying generators of $\mathscr{\mathscr { H }}$, and the defining relations, specifying the order of proper rotations according to edge cycles.

[^5]For a given polyhedron \mathscr{P} and a fixed corresponding group \mathscr{H} the basic problem is whether the polyhedron complex $\mathscr{P}^{\mathscr{E}}$ is realizable in the projective model of a space of constant curvature (Sections 7-9). A number of important results, in the theory of discontinuous isometry groups, acting in spaces of constant curvature, can be reformulated in this manner.

In Section 6 we introduce a topology on the identified polyhedron \mathscr{P}. We show how to construct an atlas $\tilde{\mathbf{P}}$ which contains for every point of the identified \mathscr{P} a connected neighbourhood (Theorem 6.1). Our algorithm provides the atlas by its flag structure, and we do not know apriori whether $\tilde{\mathbf{P}}$ is realizable, e.g. metrically, in a space of constant curvature. Our algorithm prepares this realization, giving necessary conditions based on the knowledge of lower dimensional situations. Since the planar discontinuous groups have already been classified, so we are able to determine the $\mathscr{\mathscr { }}$-stabilizer for each typical point of the identified \mathcal{P} in dimension 3 . So we have an effective method to describe the 3 -dimensional discontinuous groups for a concrete \mathscr{P}. In Section 7 we indicate the tools of the constructions by sketching the vector models of the classical spaces of constant curvature.

In Theorem 8.1 we shall prove that the metric realization of the atlas $\tilde{\mathbf{P}}$ involves that of the global polyhedron complex $\mathscr{P}^{\mathscr{Y}}$. This can be considered as a generalized Poincaré theorem, since it gives "local criteria" to guarantee a global discontinuous group action on a space of constant curvature. In contrast to this investigations so far, we permit for \mathscr{P} concave realizations as well as other more general properties. In the proof we use the covering space argument applied by A. D. Aleksandrov in a different situation.

Of course, our method is also restricted because of the algorithmic unsolvability of the basic problems in the combinatorial theory of groups. However, for polyhedra with few flags (also in higher dimensions) our method seems to be useful as the examples show in Section 9. We suggest the reader to examine the figures to study these examples.

Extremely important are the cases when the group \mathscr{C} acts freely on the complex $\mathscr{P}^{\mathscr{E}}$. Then the identified polyhedron \mathscr{P} may have a manifold structure and we can attack the space form problem which is very actual in the Bolyai-Lobachevskian hyperbolic 3 -space \mathscr{H}^{3}. For this reason we can prescribe additional requirements for the pairing \mathscr{F} of \mathscr{P} to guarantee the torsion free action of the corresponding group $\mathscr{\mathscr { E }}$ on $\mathscr{P}^{\mathscr{E}}$.

I shall mention some results obtained by computer in joint works with I. Prok and illustrate the algorithm and the occurring phenomena by examples in 2 and 3 dimensional spaces of constant curvature.

1. Polyhedra and flag structures, isomorphisms

Suppose we are given a d-dimensional polyhedron \mathscr{P} by a finite incidence
structure. This means, we are given the sets of the n-faces of \mathscr{P}, denoted by $\mathrm{F}^{n}, n=0,1, \ldots, d-2, d-1$ (and the special cases $\mathrm{V}, \mathrm{E}, \mathrm{F}$ in dimension 3), which are identified with the index sets $\left\{1, \ldots, f^{n}\right\}$ (and $\{1, \ldots, v\}$, $\{1, \ldots, e\},\{1, \ldots, f\}$, called vertices, edges, facets, respectively). We suppose that all incidences are given, satisfying some requirements as listed e.g. in $[8,36]$. In Fig. 1 we have described a scheme about the incidence structure of \mathscr{P} (a trigonal prisma) where on different levels the faces, ..., the vertices appear as (numbered) nodes, and chains of arrows indicate the incidences. The facets are groupped into isomorphism classes for the reason to be explained later on.

Fig. 1
Now, we formulate the requirements for the flags of \mathscr{P} which reflect the incidence structure, too.

We define a flag as an ordered d-tuple of incident 0 -face, \ldots, m-face, \ldots, ($d-1$)-facet. A non-empty subset \mathscr{F} of the direct d-product $\mathrm{V} \times \cdots \times \mathrm{E} \times \mathrm{F}$ is
defined as the flag structure of the polyhedron \mathscr{P} iff the following properties F. 1-2 are fulfilled:
F.1. Each flag in \mathscr{P} has exactly one n-adjacent flag for each dimension $n, 0 \leqq n \leqq d-1$, i.e. only their n-faces are different, the other components coincide.

Imagine \mathcal{F} like a graph whose points are the flags, the n-adjacent flags are connected with an edge marked by the n-th colour [11, 22].
F.2. \mathscr{F} is strictly connected, i.e. iff and g are different flags of \mathscr{F}, then there is a finite number of flags $\boldsymbol{\beta}=\boldsymbol{f}_{1}, f_{2}, f_{3}, \ldots, \boldsymbol{f}_{r}=g$, each of them has the common components of f and g, such that f_{s+1} is n-adjacent to f_{s} for certain $n(1 \leqq s \leqq r-1)$.

We see that an n-face x^{n} of \mathscr{P} can be characterized by that subset $\mathcal{F}_{x^{n}}$ of \mathscr{F} where in the flags of $\mathscr{F}_{\mathrm{x}^{n}}, \mathrm{x}^{n}$ is just the common n-th component $(0 \leqq n \leqq$ $\leqq d-1$). The subflags of an n-face as corresponding n-tuples can be defined obviously.

The n-face x^{n} and the m-face y^{m} are incident iff there is a flag whose n-th and m-th component is just x^{n} and y^{m}, respectively; i.e. $\mathscr{F}_{\mathrm{x}^{n}} \cap \mathscr{F}_{\mathrm{y}^{m}} \neq \emptyset$.

We easily conclude that the incidence structure of \mathscr{P} and its flag structure \mathcal{F} determine each other.

Fig. 1 shows two 1 -adjacent flags ${ }^{1} f_{i k}\left(\mathrm{v}_{j}, \mathrm{e}_{r}, \mathrm{f}_{i k}\right)$ and ${ }^{2} f_{i k}\left(\mathrm{v}_{j}, \mathrm{e}_{s}, \mathrm{f}_{i k}\right), \mathrm{e}_{r} \neq$ $\neq \mathrm{e}_{s}$, symbolically and with picture as well $(d=3)$.

Note that the polyhedron \mathscr{P} can be given to a computer as the set \mathscr{F} of its flags, i.e. ordered d-tuples of natural numbers. For instance a 3dimensional tetrahedron is represented by 24 flags, a cube by 48 flags. The one-to-one correspondence between an n-face x^{n} and the flag subset $\mathscr{F}_{\mathrm{x}^{n}}$, defined above, makes possible the convenient translation of geometric facts into flag language, i.e. computer one, and vice versa.

The main purpose of this section is to describe an algorithm for determining the automorphism group of \mathscr{P}, denoted by $\operatorname{Aut} \mathscr{P}$. This automatically describes the automorphism group $\operatorname{Aut} \mathcal{F}$ of the flag structure \mathscr{F}^{\prime}.

Aut \mathcal{P} is a permutation group. Each permutation in Aut \mathcal{P} consists of d component permutations. The n-th component permutes the n-faces of \mathcal{P}, $0 \leqq n \leqq d-1$. Every elements of Aut \mathcal{P} preserves the incidence structure of \mathcal{P}, i.e. if an n-face x^{n} and an m-face y^{m} are incident then for each permutation p from Aut \mathscr{P} the n-th and m-th components of p maps x^{n} onto $\left(\mathrm{x}^{n}\right)^{\mathrm{P}}, \mathrm{y}^{m}$ onto $\left(y^{m}\right)^{\text {P }}$ so that the images are also incident.
 lations for every $n(0 \leqq n \leqq d-1)$. These bijections form a group by the composition as group operation.

Lemma 1.1. An automorphism a from Aut \mathcal{F}, resp. Aut \mathcal{P}, is uniquely determined (if it exists) by a flag f and its a-image \boldsymbol{f}^{a}.

The proof is a trivial consequence of requirements F.1-2. A bijection $\mathrm{a}: \rho \mapsto \boldsymbol{\beta}^{\mathrm{a}}$ extends uniquely, if the extension exists, to the 0 -adjacent flags of \boldsymbol{f} and of $\boldsymbol{f}^{\text {a }}$, respectively, then to the 1 -adjacent ones, and so on. Since \mathcal{F}^{\prime} is connected by F. 2 and finite thus the process ends, or it turns out that the extension does not exist. Q.e.d.

The method in the preceding proof suggests to construct the
Algorithm 1.1 enumerating all flags in \mathcal{F} from 1 up to cardinality $|\mathcal{F}|$, uniquely if the starting fag ${ }^{1} \&$ is presribed:

We choose the 0 -adjacent flag of ${ }^{1} f$ to obtain ${ }^{2} f$. Suppose that we have already listed the flags ${ }^{1} f,{ }^{2} f, \ldots,{ }^{\top} f$. To ${ }^{\top} f$ we consider its 0 -adjacent, 1 adjacent, $\ldots,(d-1)$-adjacent flags in this order. The first flag among them, not listed yet, will be ${ }^{r+1} \mathcal{f}$, if such one exists. If every adjacent flag of ${ }^{r} \mathcal{f}$ has already been listed then we return to ${ }^{r-1} f$ and repeat the previous process with ${ }^{r-1} f$.

Since \mathscr{F} is (strictly) connected and finite, the enumerating algorithm ends at ${ }^{|F| F \mid} \mid$.

We remark that the selection rule of the adjacency relations depends on us, we could start first, e.g., with ($d-1$)-adjacent, flag, then ($d-2$)-adjacent one, etc., in choosing ${ }^{r+1} \rho$ to ${ }^{T} f$.

Now we formulate
Algorithm 1.2 for finding Aut \mathcal{F} and Aut \mathcal{P}.
Fix the numbering of flags ${ }^{1} f,{ }^{2} f, \ldots,{ }^{|F|} \mid f$ by Algorithm 1.1. Choose another starting flag from among them (e.g. first ${ }^{2} f$) and denote it by ${ }^{1} f^{\prime}=:^{1} \boldsymbol{f}^{\text {a }}$. We start with constructing an automorphism $\mathrm{a} \in \operatorname{Aut} \mathscr{F}$ and a permutation a in $A u t \mathscr{P}$, if it is possible. The m-th component of a begins with permuting m-faces: we associate the m-th component of ${ }^{1} f$ with the m-th component of ${ }^{1} f^{\prime}$ for any $m, 0 \leqq m \leqq d-1$. The 0 -adjacent flag of ${ }^{1} f^{\prime}$ is ${ }^{2} f^{\prime}=:^{2} f^{\text {a }}$. This continues also the construction of $\mathrm{a} \in \operatorname{Aut} \mathcal{P}$ with building its 0 -th component associating the 0 -face in ${ }^{2} f$ with the 0 -face in ${ }^{2} f^{\prime}$. Having had the list

$$
{ }^{1} f^{\prime}=:^{1} f^{a},{ }^{2} f^{\prime}={ }^{2} f^{a}, \ldots,{ }^{r} f^{\prime}=:^{\tau} f^{a}
$$

by Algorithm 1.1 and constructed the components of $\mathrm{a} \in \operatorname{Aut} \mathscr{P}$ without contradiction, we turn to ${ }^{r+1} \mathcal{f}^{\prime}={ }^{r+1} \mathrm{f}^{a}$ and continue building components of permutation $\mathrm{a} \in \operatorname{Aut} \mathscr{P}$.

If, for some $m(0 \leqq m \leqq d-1)$, the m-th component (the m-face) of ${ }^{r+1} f^{\prime}$, ordered to that of ${ }^{r+1} \ell$, is different as defined in a previous step of the process, then this a does not extend to an element of Aut \mathscr{P}, respectively of Aut \mathscr{F}, so we drop this ${ }^{1} \boldsymbol{f}^{\prime}$ and the involved constructions and turn to another starting flag (to the next one in the fixed list).

If such a contradiction does not occur, then we take ${ }^{r+2} f^{\prime}=:^{r+2} f^{a}$ and continue constructing $a \in \operatorname{Aut} \mathscr{P}$ till $\left|{ }^{\mid F}\right| \mathcal{f}^{\prime}=:|\mathscr{F}| f^{a}$. Then a will be taken into the list of Aut \mathscr{P}, and we turn to the next starting flag till ${ }^{1} f^{\prime}:={ }^{|\mathscr{F}|} \mid f$.

Note that every element of Aut \mathscr{P} acts on the flags in \mathscr{F} component-wise, equivalently as Aut \mathscr{F} acts on \mathscr{F}. In the following we prefer Aut \mathscr{P}, it need less memory capacity.

To summarize, we generally formulate
Theorem 1.2. Algorithm 1.2 leads to all elements of Aut \mathscr{P} (and Aut \mathscr{F}). If we take the flags of fixed $(d-1)$-th component, i.e. fixed $(d-1)$-facet f , and modify the selection rule in Algorithm 1.1 so that we prefer 0-adjacency up to (d-2)-adjacency in choosing the next flag in \mathcal{F}_{f} (the flag structure of facet f), then Algorithm 1.2 leads to the automorphism group Autf of the facet f (respectively $\operatorname{Aut} \mathscr{F}_{\mathrm{f}}$). The flags with fixed m-th component, i.e. fixed m-face x^{m}, and with fixed components from $(m+1)$-th up to the $(d-1)$-th one, provide us the automorphism group Aut x^{m} by Algorithm 1.2, if we prefer 0-adjacency up to $(m-1)$-adjacency.

Proof. 1) Algorithm 1.2 leads to bijections, preserving incidences by construction. Lemma 1.1 says that we obtain all automorphisms in Aut \mathcal{P}, respectively in Aut \mathcal{F}.
2) Fixing the last component, we also obtain a flag structure of dimension $d-1$.
3) Fixing the m-th component x^{m}, the flags in $\mathscr{F}_{\mathrm{x}^{m}}$ distribute into as many "congruent" classes as many different choices we have at the last d -$-m-1$ components. Fixing any choice of them we obtain a subflag structure of dimension m in the first m components. Q.e.d.

Examples. 1) The 3 -tetrahedron has 24 automorphisms, any face of it has 6 ones, any edge has 2 ones, any vertex has only the trivial automorphism.
2) The trigonal prisma (Fig. 1) has 12 automorphisms, one of its quadrangle faces has 8 , one of its triangle faces has 6 , and so on.
3) The Archimedian 3 -solid of face symbol $(8,8,3)$ (truncated 3 -cube) has 48 automorphisms, as many as the 3 -cube (Section 9, Fig. 10).
4) The 4 -cube has $2 \cdot 4 \cdot 6 \cdot 8=384$ automorphisms, any cube facet of it has 48 , any 2 -face of it, from the 24 , has 8 automorphisms.

2. Involutive pairings on polyhedron \mathscr{P}

In this section our aim is to find all combinatorially different involutive facet pairings of the polyhedron \mathscr{P}.

First we formulate
Algorithm 2.1 determining the isomorphism classes of facets of \mathscr{P}.
For any (i-th) class we start with a flag with fixed last facet component $\mathrm{f}_{i 1}$ and denote it by ${ }^{1} \boldsymbol{f}_{i 1}$. We look for another facet $\mathrm{f}_{i k}$ of \mathscr{P} and a flag ${ }^{\mathbf{1}} \boldsymbol{f}_{i k}$ to
it (with $\mathrm{f}_{i k}$ as last component). Then we proceed with Algorithm 1.2 with ${ }^{1} f_{i k}={ }^{1} f_{i 1}^{\varphi_{i k}}$ to get an isomorphism $\varphi_{i k}$ between ($d-1$)-dimensional facets. If it exists, $\varphi_{i k}$ maps the corresponding faces of $f_{i 1}$ onto those of $f_{i k}$ by a map of $d-2$ components (vertex to vertex, m-face to m-face). If not, then we choose the next flag to $\mathrm{f}_{i k}$ as starting flag. Else we turn to the next facet of \mathscr{P}.

Suppose, we have found k_{i} facets in the i-th isomorphism class, and all the assigning maps $\varphi_{i k}, 1<k \leqq \mathrm{k}_{i}$. Moreover, let \mathcal{A}_{i} denote the automorphism group of the face $f_{i 1}$ (see also Theorem 1.2). Then every isomorphism

$$
\begin{equation*}
\mathrm{g}_{i k m}: \mathrm{f}_{i k} \mapsto \mathrm{f}_{i m}, \quad 1 \leqq k, m \leqq \mathrm{k}_{i}, \tag{1}
\end{equation*}
$$

can be expressed in the form

$$
\begin{equation*}
\mathrm{g}_{i k m}=\varphi_{i k}^{-1} \mathrm{a}_{i k m} \varphi_{i m} \tag{2}
\end{equation*}
$$

where $\mathrm{a}_{i k m}$ runs over the element of \AA_{i}. Note that $m=k$ is also allowed; even more, if e.g. $k=1$ then $\varphi_{i k}=\varphi_{i 1}=i d \mathrm{f}_{i 1}$, the identity of $\mathrm{f}_{i 1}$, holds by agreement.

We form the next isomorphism class by choosing a new facet and a new starting flag to it. The number I of isomorphism classes is finite.

We remark that in a real computer program it is worthwhile to determine first the isomorphism classes of facets and the typical automorphism groups \mathscr{A}_{i} and, only after that, Aut \mathscr{P}. For a particular polyhedron \mathscr{P} these can be given to the computer in advance (e.g. for $d=3$).

Second we define an involutive pairing \mathscr{F}, called also identifications of \mathscr{P}, as a collection of fixed isomorphisms between facets of \mathscr{P} such that
a) every facet is paired in \mathscr{F};
b) if $\mathrm{g}_{i k m}$, by formulas (1) and (2), occurs in \mathcal{G} according to i-th facet class in Algorithm 2.1 then $\mathrm{g}_{i m k}=\mathrm{g}_{i k m}^{-1}: \mathrm{f}_{i m} \mapsto \mathrm{f}_{i k}$ also occurs in \mathcal{F} in the form $\mathrm{g}_{i m k}=\varphi_{i m}^{-1} \mathrm{a}_{i m k} \varphi_{i k}$ where $\mathrm{a}_{i m k}=\mathrm{a}_{i k m}^{-1}$ holds in \mathscr{A}_{i};
c) if a face $\mathrm{f}_{i k}$ paired with itself, i.e. $\mathrm{g}_{i k k}=\varphi_{i k}^{-1} \mathrm{a}_{i k k} \varphi_{i k}: \mathrm{f}_{i k} \mapsto \mathrm{f}_{i k}$, then $\mathrm{g}_{i k k}=\mathrm{g}_{i k k}^{-1}$ and consequently $\mathrm{a}_{i k k}=\mathrm{a}_{i k k}^{-1}$.

Requirement c) is a particular case of b), they say that \mathscr{F} is involutive. To summarize we formulate

Theorem 2.1. Each involutive pairing \mathscr{f} of \mathscr{P} can be given by a collection of involutive permutations

$$
\begin{equation*}
\binom{\ldots, k, \ldots, m, \ldots}{\ldots, m, \ldots, k, \ldots}_{i}, \quad 1 \leqq i \leqq \mathrm{I}, \tag{3}
\end{equation*}
$$

and, for the i-th permutation, by an ordered set of automorphisms from \mathscr{A}_{i}

$$
\begin{equation*}
\left(\ldots, \mathrm{a}_{i k m}, \ldots, \mathrm{a}_{i m k}, \ldots\right) \text { with } \mathrm{a}_{i m k}=\mathrm{a}_{i k m}^{-1} \text { in } \mathscr{A}_{i} . \tag{4}
\end{equation*}
$$

These prescribe the isomorphisms $\mathrm{g}_{i k m}: \mathrm{f}_{i k} \mapsto \mathrm{f}_{i m}$ in \mathcal{F}, according to the i-th isomorphism class of facets of \mathscr{P}, by $\mathrm{g}_{i k m}=\varphi_{i k}^{-1} \mathrm{a}_{i k m} \varphi_{i m}$ where, e.g. $\varphi_{i k}$: $\mathrm{f}_{i 1} \mapsto \mathrm{f}_{i k}$ the fixed assigning isomorphism.

Proof is obvious by requirements of involutive pairing.
Note that each pairing \mathscr{F} (the adjective "involutive" will be omitted later on) can be considered as an involutive self-bijection of the flag set \mathcal{F} of \mathscr{P}, which preserves the incidence structure of facets as $(d-1)$-polyhedra. The automorphisms of \mathscr{P} are also such self-bijections but they preserve the complete incidence structure of \mathscr{P}. So Aut \mathscr{P} acts on the set of involutive pairings by conjugations.

Two involutive pairings \mathscr{S}_{1} and \mathscr{F}_{2} of \mathscr{P} are said to be equivalent if an automorphism a from Aut \mathscr{P} exists so that $\mathscr{F}_{2}=\mathrm{a}^{-1} \mathscr{F}_{1}$ a.

Third, by Theorem 2.1, we can formulate
Algorithm 2.2 determining all non-equivalent involutive facet pairings of \mathscr{P}.

To the i-th facet isomorphism class of \mathscr{P}, for each i, we prepare all involutive permutations according to formula (3). These permute k_{i} elements of the i-th facet class.
$0)$ The identity pairing, of \mathscr{P} is the first in the list of pairings.

1) For a fixed i-permutation we choose a k_{i}-tuple $\mathrm{a}_{i k m}$ of \mathscr{A}_{i} by (4), considering the requirements of involutivity. We take this for each i, i.e. for each isomorphism class. So we obtain a pairing \mathscr{F}.
2) We prepare the conjugates $\mathrm{a}^{-1} \mathscr{\mathscr { G }}$ a with the elements a of Aut \mathscr{P} and compare them with the former pairings listed already.
3) If no conjugate has been listed formerly then we take \mathcal{F} into the list of pairings. If a conjugate of \mathscr{G} has been already listed then we drop \mathcal{F}. We turn to a new pairing by a new choice of the k_{i}-tuple $\mathrm{a}_{i k m}$ from \mathcal{A}_{i} to the i-permutation.
4) If we have exhausted the k_{i}-tuples from \mathscr{A}_{i}, then we turn to the next i-permutation with the starting k_{i}-tuple from \mathcal{A}_{i}.
5) If we have exhausted the i-permutation, then we return to the starting state of i-permutation and of k_{i}-tuple from \mathscr{A}_{i}, and we take the next $\mathrm{k}_{i+1^{-}}$ tuple from \mathbb{A}_{i+1} to the ($i+1$)-permutation.
$6)$ Then we vary the $(i+1)$-permutation, and so on.
6) The process ends and we have got the list of different involutive facet pairings of \mathscr{P}.

Observe that this is a very long algorithm; in general, it is of exponential complexity. Now we do not deal with questions to spare place and time. For particular graph algorithms we refer to [10].

Examples. 1) In [28] we reported that a 3-dimensional tetrahedron has 64 different involutive facet pairings. We listed 15 of them which determine 26 Euclidean space tilings, realized by 21 crystallographic space groups.

Fig. 2
2) The plane triangle has 8 involutive side pairings determining 13 Euclidean tilings and 12 crystallographic groups (Fig. 2). Taking also quadrangle, pentagon, hexagon we obtain the 46 fundamental tilings for the 17 plane crystallographic groups [16, 17].

3. A group generated by a pairing of \mathcal{P}

We generalize a usual construction, see e.g. in $[5,20,33,34]$ for $d=2,3$.
A fixed facet pairing \mathscr{G} of the polyhedron \mathscr{P} is given by a collection

$$
\ldots, \quad \mathrm{g}_{i k m}: \mathrm{f}_{i k} \mapsto \mathrm{f}_{i m}, \quad \mathrm{~g}_{i m k}=\mathrm{g}_{i k m}^{-1}: \mathrm{f}_{i m} \mapsto \mathrm{f}_{i k}, \quad \ldots
$$

of isomorphisms defined in Section 2. Each $\mathrm{g}_{i k m}=: \mathrm{g}$ as a generator of a group \mathscr{G} maps the facet $\mathrm{f}_{i k}=: \mathrm{f}_{\mathrm{g}-1}$ of \mathscr{P} onto the corresponding facet $\mathrm{f}_{i m}=$ $=: \mathrm{f}_{\mathrm{g}}$ and we define g to map the polyhedron $\mathscr{P}=:(\mathcal{P}, 1)$ onto its g-image $(\mathcal{P}, \mathrm{g})$. These two polyhedra are said to be adjacent (neighbouring) along the identified facet $\left(\mathrm{f}_{\mathrm{g}}, 1\right)=\left(\mathrm{f}_{\mathrm{g}-1}, \mathrm{~g}\right)$. Similarly, the inverse $\mathrm{g}_{\text {imk }}=: \mathrm{g}^{-1}$ maps f_{g} onto $\mathrm{f}_{\mathrm{g}^{-1}}$ and we say that g^{-1} maps $\mathscr{P}=:(\mathcal{P}, 1)$ onto $\left(\mathscr{P}, \mathrm{g}^{-1}\right)$ which are adjacent along the identified facet $\left(\mathrm{f}_{\mathrm{g}^{-1}}, 1\right)=\left(\mathrm{f}_{\mathrm{g}}, \mathrm{g}^{-1}\right)$. Note that $\mathrm{f}_{\mathrm{g}}=\mathrm{f}_{\mathrm{g}^{-1}}$ is also allowed, then $(\mathcal{P}, \mathrm{g})=\left(\mathscr{P}, \mathrm{g}^{-1}\right)$ and $\mathrm{g}=\mathrm{g}^{-1}$ is an involutive generator of $\mathscr{H}\left(\mathrm{g}^{2}=1\right.$ is a relation in $\left.\mathscr{G}\right)$ (Fig. 3).

We define a combinatorial space tiling by \mathscr{P} under \mathscr{G}, i.e. a polyhedron complex as a collection

$$
(\mathcal{P}, \mathscr{Y}):=\{(\mathcal{P}, \mathrm{h}): h \in \mathscr{Y}\}
$$

where h is a product of the generators or their inverses from $\mathcal{\rho}$, and some identification in $(\mathcal{P}, \mathscr{\mathscr { C }})$ will be introduced.

Fig. 3
Remark. We mention that a flag structure of $d+1$ components will also be defined.

$$
(\mathcal{F}, \mathscr{G}):=\{(f, \mathrm{~h}): f \in \mathcal{F}, \mathrm{~h} \in \mathscr{\mathcal { E }}\} .
$$

Every flag receives a group element h as a d-dimensional component or solid component. We say that each flag $(z, 1)$, with facet component f_{g} and solid component 1 (the identity), is d-adjacent (solid-adjacent) with the flag $\left(\gamma^{\mathrm{g}^{-1}}, \mathrm{~g}\right)$, whose components from 0 -th to $(d-1)$-th one are the same as those of $\mathfrak{z}^{\mathrm{g}^{-1}}$, as a flag of \mathscr{F}, and the d-th component is the generator g of $\mathscr{\mathscr { G }}$ $(\mathrm{g} \in \mathcal{F})$.

In general, we define the identification of m-faces of $(\mathscr{P}, \mathscr{\mathscr { C }})$. Two m-faces (x, g) and (y, h) in $(\mathscr{P}, \mathscr{\mathscr { E }})$ are identified (glued), iff for m -faces x, y of \mathscr{P} and for $g, h \in \mathscr{G}$ either

1) $(x, g)=(y, h)$
holds, i.e. $\mathrm{x}=\mathrm{y}$ in \mathscr{P} and $\mathrm{g}=\mathrm{h}$ in the group $\mathscr{\mathscr { H }}$ (i.e. they are the same words, may be empty, of the identifying generators g_{j} and g_{j}^{-1} of \mathscr{G}), or
2) for some ($\mathrm{x}_{i}, \mathrm{~h}_{i}$) we have

$$
(\mathrm{x}, \mathrm{~g})=\left(\mathrm{x}_{1}, \mathrm{~h}_{1}\right) \sim\left(\mathrm{x}_{2}, \mathrm{~h}_{2}\right) \sim \cdots \sim\left(\mathrm{x}_{r}, \mathrm{~h}_{r}\right)=(\mathrm{y}, \mathrm{~h})
$$

where $\left(\mathrm{x}_{i}, \mathrm{~h}_{i}\right) \sim\left(\mathrm{x}_{i+1}, \mathrm{~h}_{i+1}\right)$ holds iff an identifying generator (or an inverse) g_{j} exists such that x_{i} is an m-face of the facet $\mathrm{f}_{\mathrm{g}_{j}^{-1}}$ of $\mathscr{P}, \mathrm{x}_{i+1}=\mathrm{x}_{i}^{\mathrm{g}_{j}}$ is the image m-face of the facet $\mathrm{f}_{\mathrm{g}_{j}}$ of \mathscr{P}, and $\mathrm{h}_{i}=\mathrm{g}_{j} \mathrm{~h}_{i+1}$ (Fig. 3).

We write $\langle\mathrm{x}, \mathrm{g}\rangle=\langle\mathrm{y}, \mathrm{h}\rangle$ or $\mathrm{x}^{\mathrm{g}}=\mathrm{y}^{\mathrm{h}}$ defined by the above equivalence relation. This generally defines the quotient space $\langle\mathscr{P}, \mathscr{Y}\rangle$. It will be denoted also by $\mathscr{P}^{\mathscr{E}}$.

Note that if $\langle\mathrm{x}, \mathrm{g}\rangle=\langle\mathrm{y}, \mathrm{h}\rangle$ then $\langle\mathrm{x}, \mathrm{gk}\rangle=\langle\mathrm{y}, \mathrm{hk}\rangle$ also holds for every $\mathrm{g}, \mathrm{h}, \mathrm{k} \in \mathscr{G}$, and every m-faces x, y of \mathscr{P}.

Each $\mathrm{k} \in \mathscr{\mathscr { E }}$ defines an action $\langle\mathrm{k}\rangle$ on $\langle\mathscr{P}, \mathscr{Y}\rangle$ just by $\langle\mathrm{k}\rangle:\langle\mathscr{P}, \mathscr{C}\rangle \rightarrow\langle\mathcal{P}, \mathscr{\mathscr { C }}\rangle$, $\langle\mathrm{x}, \mathrm{h}\rangle \mapsto\langle\mathrm{x}, \mathrm{hk}\rangle$ for any m-face x of $\mathscr{P}, 0 \leqq m \leqq d-1$.

We can easily see that

$$
\left\langle\mathrm{k}^{-1}\right\rangle=\langle\mathrm{k}\rangle^{-1} \quad \text { and } \quad\langle\mathrm{k} \mathrm{l}\rangle=\langle\mathrm{k}\rangle\langle 1\rangle
$$

so we can define a group $\langle\mathscr{Y}\rangle$ of such $\langle\mathrm{k}\rangle$'s as self-bijections of $\langle\mathcal{P}, \mathscr{G}\rangle$, moreover,

$$
\mathscr{Y} \rightarrow\langle\mathscr{Y}\rangle, \quad \mathrm{k} \mapsto\langle\mathrm{k}\rangle
$$

is just an isomorphism. So we shall obtain the polyhedron complex $\langle\mathscr{P}, \mathscr{y}\rangle=$ $=: \mathscr{P}^{\mathscr{L}}$ on which \mathscr{H} acts simply transitively, preserving all the incidences. We formulate these important facts in the language of flags.

Theorem 3.1. Let $\langle\mathscr{P}, \mathrm{g}\rangle$ and $\langle\mathcal{P}, \mathrm{h}\rangle$ be any two polyhedra in the polyhedron complex $\langle\mathcal{P}, \mathscr{Y}\rangle$. Then to any flag $(\mathcal{f}, \mathrm{g})$ of $(\mathscr{F}, \mathrm{g})$ for $(\mathcal{P}, \mathrm{g})$ there exists uniquely the flag $(\mathcal{\ell}, \mathrm{h})$ of $(\mathscr{F}, \mathrm{h})$ for $\langle\mathscr{P}, \mathrm{h}\rangle$ such that $\mathrm{g}^{-1} \mathrm{~h} \in \mathscr{H}$ maps $(\mathcal{f}, \mathrm{g})$ onto $(\mathcal{f}, \mathrm{h}),\langle\mathcal{P}, \mathrm{g}\rangle$ onto $\langle\mathcal{P}, \mathrm{h}\rangle$ and $\langle\mathcal{P}, \mathscr{G}\rangle$ onto itself. Moreover $\mathrm{g}^{-1} \mathrm{~h}$ preserves all incidences of $\langle\mathcal{P}, \mathscr{\mathscr { G }}\rangle$.

Proof. The elements g, h of \mathscr{G} and so $\mathrm{g}^{-1} \mathrm{~h}$ are products of generators from \mathcal{F}. So we reduce the procedure of construction by elementary observations.

First, we restrict ourselves to the polyhedra $\langle\mathscr{P}, \mathrm{h}\rangle$ and $\left\langle\mathcal{P}, \mathrm{g}_{i} \mathrm{~h}\right\rangle$ where $\mathrm{h} \in \mathscr{G}, \mathrm{g}_{i} \in \mathcal{F}$.

These are mapped by

$$
\left\langle\mathrm{h}^{-1} \mathrm{~g}_{i} \mathrm{~h}\right\rangle:\langle\mathscr{P}, \mathrm{h}\rangle \mapsto\left\langle\mathscr{P}, \mathrm{g}_{i} \mathrm{~h}\right\rangle: \mathrm{f}_{\mathrm{g}_{i}}^{\mathrm{g}_{i}^{-1} \mathrm{~h}}=\mathrm{g}_{\mathrm{g}_{i}^{-1}}^{\mathrm{h}} \mapsto \mathrm{f}_{\mathrm{g}_{i}^{-1}}^{\mathrm{g}_{\mathrm{i}} \mathrm{~h}}=\mathrm{f}_{\mathrm{g}_{i}}^{\mathrm{h}}
$$

each onto another. We know that any flag $\mathcal{z} \in \mathscr{F}$ with facet component $\mathrm{f}_{\mathrm{g}_{i}^{-1}}$ and its g_{i}-image $\boldsymbol{z}^{g_{i} \in \mathscr{F}}$, prescribed by \mathcal{F}, determines this mapping uniquely, so that it preserves every m-adjacency of flags $0 \leqq m \leqq d-1$.

We can uniquely extend this mapping to the generalized flags (see Remark of this section)

$$
\left\langle\mathrm{h}^{-1} \mathrm{~g}_{i} \mathrm{~h}\right\rangle:(\mathscr{F}, \mathrm{h}) \mapsto\left(\mathscr{F}, \mathrm{g}_{i} \mathrm{~h}\right), \quad(f, \mathrm{~h}) \mapsto\left(f, \mathrm{~g}_{i} \mathrm{~h}\right), \quad f \in \mathscr{F}
$$

with the requirements that $\left\langle\mathrm{h}^{-1} \mathrm{~g}_{i} \mathrm{~h}\right\rangle$ shall preserve the m-adjacency structure of flags for every dimension $m, 0 \leqq m \leqq d$.

Second, we define for any generator $\mathrm{g}_{i} \in \mathscr{F}$ the mapping

$$
\left\langle\mathrm{g}_{i}\right\rangle:\langle\mathscr{P}, \mathrm{k}\rangle \mapsto\left\langle\mathcal{P}, \mathrm{kg}_{i}\right\rangle ; \quad(\mathcal{f}, \mathrm{k}) \mapsto\left(\mathrm{f}, \mathrm{~kg}_{i}\right)
$$

of the polyhedron complex $\langle\mathscr{P}, \mathscr{\mathscr { C }}\rangle$ and of the generalized flag structure $(\mathscr{F}, \mathscr{\mathscr { Y }})$ inductively.

Let $\mathrm{k}=\mathrm{g}_{\mathrm{k} 1} \mathrm{~g}_{\mathrm{k} 2} \ldots \mathrm{~g}_{\mathrm{k} r}$ be the expression of $\mathrm{k} \in \mathscr{\mathscr { H }}$ by the $\mathrm{g}_{\mathrm{k} j}$'s from \mathcal{F}. Then we apply the previous procedure step by step.

$$
\begin{aligned}
(f, \mathrm{k}) & \mapsto\left(f, \mathrm{~g}_{\mathbf{k} 1}^{-1} \mathrm{k}\right) \mapsto\left(f, \mathrm{~g}_{\mathbf{k} 2}^{-1} \mathrm{~g}_{\mathbf{k} 1}^{-1} \mathrm{k}\right) \mapsto \cdots \mapsto(f, 1) \mapsto\left(f, \mathrm{~g}_{i}\right) \mapsto \\
& \mapsto\left(f, \mathrm{~g}_{\mathbf{k} r} \mathrm{~g}_{i}\right) \mapsto \cdots \mapsto\left(f, \mathrm{~g}_{\mathbf{k} 2} \ldots \mathrm{~g}_{k r} \mathrm{~g}_{i}\right) \mapsto\left(f, \mathrm{~kg}_{i}\right) .
\end{aligned}
$$

Third, we define for any element $\mathrm{h}=\mathrm{g}_{\mathrm{h} 1} \mathrm{~g}_{\mathrm{h} 2} \ldots \mathrm{~g}_{\mathrm{h} s}\left(\mathrm{~g}_{\mathrm{h} j} \in \mathcal{F}\right.$) the mapping

$$
\langle\mathrm{h}\rangle:\langle\mathscr{P}, \mathrm{k}\rangle \mapsto\langle\mathscr{P} \cdot \mathrm{kh}\rangle ; \quad(\mathcal{f}, \mathrm{k}) \mapsto(f, \mathrm{kh})
$$

inductively again. We can check that $\langle\mathrm{h}\rangle$ is uniquely defined by the requirements that it shall preserve the m-adjacency structure of generalized flags for every dimension $m, 0 \leqq m \leqq d$. Q.e.d.

We remark that the automorphism group of the flag structure $(\mathscr{F}, \mathscr{C})$ is a supergroup of $\mathscr{\mathscr { C }}$. Investigation of $\operatorname{Aut}(\mathscr{F}, \mathscr{\mathscr { E }})$ and its subgroups, e.g. the normalizer of $\mathscr{\mathscr { y }}$ in $\operatorname{Aut}(\mathscr{F}, \mathscr{\mathscr { H }})$ seems to be an important problem, e.g. in 3 -dimensional crystallography $[9,26]$.

We see that the factor space $\langle\mathscr{P}, \mathscr{Y}\rangle /\langle\mathscr{Y}\rangle$ as \mathscr{G}-orbits of m-faces of $\mathscr{P}(0 \leqq$ $\leqq m \leqq d$) is the same as m-faces of \mathscr{P} factored by the equivalence induced by \mathcal{I}.

4. Barycentric subdivision of \mathcal{P}, stabilizers of ($d-2$)-faces, presentation of \mathscr{y}

The pairing $\mathscr{\mathscr { G }}$ induces the \mathscr{G}-equivalence of n-faces of \mathscr{P} for every $n(0 \leqq$ $\leqq n \leqq d-1$). Such an equivalence class of an n-face x^{n} of \mathscr{P} is in strict connections with the stabilizer subgroup $\mathscr{E}_{\mathrm{x}^{n}}$ of x^{n} in $\mathscr{\mathscr { L }}$, and this can be described by those images of \mathscr{P} under $\mathscr{\mathscr { H }}$ which join at x^{n} in the complex $\mathscr{P}^{\mathscr{E}}$.

We turn to new notations: $\mathscr{P}^{\mathscr{E}}:=\langle\mathcal{P}, \mathscr{y}\rangle ;\left(\mathrm{x}^{n}\right)^{\mathfrak{g}}:=\left\langle\mathrm{x}^{n}, \mathrm{~g}\right\rangle$. A facet f_{g} of \mathscr{P} which is not self-paired by the generator g in \mathscr{F} has trivial stabilizer in \mathscr{G}. If $\mathrm{f}_{\mathrm{g}}=\mathrm{f}_{\mathrm{g}-1}$, i.e. g is involutive generator of \mathscr{L}, then the stabilizer $\mathscr{E}_{\mathrm{f}_{\mathrm{g}}}$ contains the identity 1 and $\mathrm{g}=\mathrm{g}^{-1}$, only. We know that any involutive transformation g may have geometrically different realizations, e.g. in the 3 -space g is either a plane reflection or a half-turn about an axis or central inversion in a point. These transformations differ in their fixed objects (points, lines, etc.). Other stabilizers also need finer distinctions.

We have not introduced the points and the topology of the polyhedron yet, since we can neglect them in combinatorial algorithms. We formally introduce the barycentric subdivision of \mathscr{P} and $\mathscr{P}^{\mathscr{B}}$ into d-simplices:

To any m-face of \mathscr{P} and of $\mathscr{P}^{\mathscr{E}}, 0 \leqq m \leqq d$ we order a formal midpoint. Any flag $(\mathcal{\ell}, \mathrm{h})$ in $(\mathcal{F}, \mathscr{\mathscr { L }})$, with its vertex component, ..., facet one and solid
one, determines a simplex in $\mathscr{P}^{\mathscr{E}}$, whose (vertex) points are just the formal midpoints of the vertex (it is itself), ..., of the edge, the facet, the solid (this is element of $\mathcal{G})$, respectively. Any $m+1$ vertices of a simplex defined by (ℓ, h) determine its m-face. This m-face is characterized by the corresponding $m+1$ components of the flag $(f, \mathrm{~h})$.

This definition gives more visuality to our flag structures \mathscr{F} and $(\mathscr{F}, \mathscr{Y})$ in general. For instance, flags with common solid component and facet one, describing a facet of a polyhedron considered in $\mathscr{P}^{\mathscr{y}}$, are characterized by the simplices with the corresponding two common midpoints. The ($d-1$)facets of these simplices, opposite to the common solid midpoint, amount the $(d-1)$-facet of the polyhedron considered in $\mathscr{P}^{\mathscr{y}}$.

Briefly and intuitively the stabilizer of any n-face $\left(\mathrm{x}^{n}\right)^{\mathrm{h}}$ will be described by a fundamental polyhedron for it. This will be a connected union of those simplices in $\mathscr{P}^{\mathscr{G}}$ which have the common n-midpoint according to $\left(\mathrm{x}^{n}\right)^{\mathrm{h}}$ and have different $\mathscr{\mathscr { }}$-images in $\mathscr{P}:=\mathscr{P}^{1}$. We glue the simplices at their \mathscr{G}-equivalent $(d-1)$-facets as dictated by $\mathscr{P}^{\mathscr{M}}$. All these simplex facets contain the n-midpoint ordered to $\left(\mathrm{x}^{n}\right)^{h}$ and we take identifications of these facets induced by \mathscr{C}. So we obtain a new d-dimensional polyhedron $\mathscr{P}_{\left(x^{n}\right)^{h}}$ whose flag structure is $(d-1)$-dimensional because of the fixed n-midpoint in common.

It is clear that n-faces in \mathscr{P} which are \mathscr{G}-equivalent to $\left(\mathrm{x}^{n}\right)^{\mathrm{h}}$ have conjugate stabilizers. Thus any of them provides us the typical stabilizer.

We turn to the most important case. This will be the generalized Poincaré algorithm for describing the stabilizer of $(d-2)$-faces (see $[5,20,26]$ for $d=$ $=2,3)$.

AlGorithm 4.1 for finding stabilizer \mathscr{H}_{e} of a fixed $(d-2)$-face e of \mathscr{P} by a fundamental polyhedron \mathscr{P}_{e}.

1) Consider all the flags in \mathscr{F} whose $(d-2)$-component is the edge $\mathrm{e}=\mathrm{e}_{0}$ itself, i.e. consider all the simplices in \mathscr{P} whose common $(d-2)$-midpoint is e_{0}. Their union is denoted by $\mathscr{D}_{\mathrm{e}_{0}}=: \mathscr{D}^{1}$; this is an edge-domain $((d-2)$ domain) in \mathscr{P}.
2) Assume that $f_{g_{1}-1}$ is a facet incident to e_{0} such that $e_{0}^{g_{1}}=: e_{1} \neq e_{0}$ holds for a generator g_{1} from \mathscr{F}. Take the flags in \mathscr{F} whose $(d-2)$-component is e_{1}. Some of them have the facet component $f_{g_{1}}$, the others have another facet component, say $f_{g_{2}^{-1}}$. The corresponding simplices form an edge-domain $\mathscr{D}_{\mathrm{e}_{1}}$ at e_{1} in \mathscr{P}. The g_{1}^{-1}-image if $\mathscr{D}_{\mathrm{e}_{1}}$ is simply denoted by $\mathscr{D}_{1}^{\mathrm{g}_{1}^{-1}} \subset \mathscr{P g}_{1}^{-1}$ which joins \mathscr{D}^{1} at the facet $\mathrm{f}_{\mathrm{g}_{1}^{-1}}$ and e represents the common $(d-2)$-midpoint of the simplices forming \mathscr{D}^{1} and $\mathscr{D}^{\mathrm{s}_{1}^{-1}}$ in $\mathscr{P}^{\mathscr{L}}$.

Then we introduce $e_{2}:=e_{1}^{g_{2}}$ if it is different from e_{1} and e_{0}. The flags in \mathscr{F} with $(d-2)$-component e_{2}, the corresponding simplices and the edgedomain $\mathscr{D}_{\mathrm{e}_{2}}$ are analogously defined. Now $\mathscr{D}_{\mathrm{e}_{2}}^{\mathrm{g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}=: \mathscr{D}^{\mathrm{g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}$ joins $\mathscr{D}^{\mathrm{g}_{1}^{-1}}$ at
$\left(\mathrm{f}_{\mathrm{g}_{2}^{-1}}\right)^{g_{1}^{-1}}$ so that e represents the common $(d-2)$-midpoint of the simplices forming $\mathscr{D}^{1}, \mathscr{D}^{g_{1}^{-1}}, \mathscr{D}^{g_{2}^{-1} g_{1}^{-1}}$.

Assume that we have already defined the different edges

$$
\begin{equation*}
\mathrm{e}=\mathrm{e}_{0}, \mathrm{e}_{1}:=\mathrm{e}_{0}^{\mathrm{g}_{1}}, \mathrm{e}_{2}:=\mathrm{e}_{1}^{\mathrm{g}_{2}}, \ldots, \mathrm{e}_{r-1}:=\mathrm{e}_{r-2}^{g_{r-1}}=\mathrm{e}_{0}^{\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{r-1}} \tag{1}
\end{equation*}
$$

and the corresponding edge domains

$$
\begin{equation*}
\mathscr{D}^{1}, \mathscr{D}^{\mathbb{B}_{1}^{-1}}, \mathscr{D}^{g_{2}^{-1} g_{1}^{-1}}, \ldots, \mathscr{D}^{\mathbb{B}_{r-1}^{-1} \cdots \mathbb{I}_{2}^{-1} g_{1}^{-1}} \tag{2}
\end{equation*}
$$

meeting at e in $\mathscr{P}^{\mathfrak{B}}$ and having the facets

$$
\begin{equation*}
\left(\mathrm{f}_{g_{1}^{-1}}\right),\left(\mathrm{f}_{\mathrm{g}_{2}^{-1}}\right)^{\mathrm{g}_{1}^{-1}}=: \mathrm{f}_{\mathrm{g}_{2}^{-1}}^{*}, \ldots,\left(\mathrm{f}_{\mathrm{g}_{r-1}^{-1}}\right)^{\mathrm{g}_{r-2}^{-1} \cdots \mathrm{~g}_{1}^{-1}}=: \mathrm{f}_{\mathrm{g}_{r-1}^{*-1}}^{*}, \tag{3}
\end{equation*}
$$

after each other, respectively (Fig. 4).

Fig. 4
Then one of the following cases in 3) and 4) occurs.
3) The flags in \mathscr{F}_{F} and the corresponding edge domain $\mathscr{D}_{\mathrm{e}_{r-1}}$ in \mathscr{P} have the facets $\mathrm{f}_{\mathrm{gr}-1}$ and $\mathrm{f}_{\mathrm{g}_{r}^{-1}}$ such that $\mathrm{e}_{r-1}^{\mathrm{g}_{\mathrm{r}}}=\mathrm{e}_{0}^{\mathrm{g}_{1} 8_{2} \ldots \mathrm{~g}^{2}}=\mathrm{e}_{0}$ and f_{gr} is the second facet containing the edge $e=e_{0}$ (the first was $\mathrm{f}_{\mathrm{g}_{1}^{-1}}$).
i) In addition, suppose that

$$
\mathrm{c}_{\mathrm{e}}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{r} \quad \text { and so } \quad \mathrm{c}_{\mathrm{e}}^{-1}:=\mathrm{g}_{r}^{-1} \mathrm{~g}_{r-1}^{-1} \ldots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}
$$

fixes any n-face of e $(0 \leqq n \leqq d-2)$.
Therefore, c_{e} (and its inverse $\mathrm{c}_{\mathrm{e}}^{-1}$) is called cycle rotation to the edge equivalence cycle of e . Now, the union of edge-domains (2) in $\mathscr{P}^{\mathscr{Y}}$ determine a "dihedral" fundamental polyhedron \mathcal{P}_{e} for the stabilizer $\mathscr{\mathscr { E }}_{\mathrm{e}}=\mathcal{R}_{\mathrm{e}}$ (Fig. 5.a, $d=3$), where the facet f_{gr} of \mathscr{D}^{1} and the facet $\mathrm{f}_{\mathrm{g}_{r}^{-1}}^{*}$ of $\mathscr{D}^{\mathrm{g}_{r-1}^{-1} \cdots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}$ are paired by the generating "rotation" c_{e}^{-1} of $\mathscr{\mathscr { L }}_{\mathrm{e}}=\mathcal{R}_{\mathrm{e}}$.

Fig. 5
We can arbitrarily prescribe the order ν_{e} of rotation c_{e} belonging to the e-cycle.

If $2 \leqq \nu_{\mathrm{e}}$ then c_{e} is a proper rotation. if $\nu_{\mathrm{e}}=1$ then $\mathrm{c}_{\mathrm{e}}=1$ the identity, the "dihedral \mathscr{P}_{e} entirely surrounds" the ($d-2$)-midpoint of e . In these cases the relation

$$
\begin{equation*}
1=c_{\mathrm{e}}^{\nu_{e}}=\left(\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{r}\right)^{\nu_{e}} \tag{4}
\end{equation*}
$$

holds in \mathscr{U} which determines the stabilizer \mathscr{E}_{e}. If we prescribe the order of c_{e} to be infinite then we write $\nu_{e}=0$, since (4) trivially holds and the equivalence class of e does not serve a proper relation for \mathcal{G}.
ii) Now we suppose that $d_{e}:=g_{1} g_{2} \ldots g_{r}$ is a non-trivial self-transformation of the edge $\mathrm{e}=\mathrm{e}_{0}$ (Fig. 5.b, $d=3$). Then there exists a natural number $n_{\mathrm{e}} \geqq 2$, determined by the pairing \mathcal{G}, such that

$$
\mathrm{c}_{\mathrm{e}}:=\mathrm{d}_{\mathrm{e}}^{n_{e}}=\left(\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\tau}\right)^{n_{e}} \text { and so } \mathrm{c}_{\mathrm{e}}^{-1}:=\mathrm{d}_{\mathrm{e}}^{-n_{e}}
$$

already fixes any n-face of $\mathrm{e}(0 \leqq n \leqq d-2)$. Such n_{e} is determined by an algorithm as follows. We pick out a ($d-2$)-subflag of $\mathrm{e}=\mathrm{e}_{1}$ and proceed the transformation d_{e} so many times until the subflag maps onto itself.

Again, we arbitrarily prescribe the order ν_{e} of "rotation" c_{e}. Now the rotational subgroup \mathscr{R}_{e} is of index n_{e} in $\mathscr{\mathscr { E }}_{\mathrm{e}}$. The relation

$$
\begin{equation*}
1=\mathrm{d}_{\mathrm{e}}^{n_{e} \nu_{e}}=\left(\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{r}\right)^{n_{e} \nu_{e}} \tag{5}
\end{equation*}
$$

holds in general to the equivalence class of e. In case $\nu_{\mathrm{e}}=0$ this is no proper relation to the edge class of e.

The edge domains (2) in $\mathscr{P}^{\mathscr{y}}$ form a "dihedral" fundamental polyhedron \mathscr{P}_{e} where the facet f_{gr} of \mathscr{D}^{1} and the facet $\mathrm{f}_{\mathrm{gr}^{-1}}^{*}$ of $\mathscr{D}_{\mathrm{b}_{\mathrm{r}-1}^{-1} \cdots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}$ are paired by the unique generator $\mathrm{d}_{\mathrm{e}}^{-1}=\mathrm{g}_{r}^{-1} \mathrm{~g}_{r-1}^{-1} \ldots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}$ for the stabilizer \mathscr{G}_{e}.

We remark that i) is a particular case of ii) when $n_{e}=1$. In both cases in 3) also $r=1$ is permitted.
4) Assume that in the procedure described in 2) we have already defined the edges by (1), the edge domains by (2) which join at the facets listed in (3). Moreover, assume that the flags and the corresponding edge domain $\mathscr{D}_{e_{r-1}}$ in \mathscr{P} have the facets $\mathrm{f}_{\mathrm{g}_{r-1}}$ and $\mathrm{f}_{\mathrm{g}_{-}^{-1}}$ such that $\mathrm{e}_{r-1}^{\mathrm{g}_{r}}=\mathrm{e}_{r-1}$. Then the flag requirement $F .1$ in Section 1 implies that $\mathrm{f}_{\mathrm{g}_{-}^{-1}}$ is paired with itself by $\mathrm{g}_{r}: \mathrm{f}_{\mathrm{g}_{r}^{-1}} \mapsto \mathrm{f}_{\mathrm{g}_{r}}=\mathrm{f}_{\mathrm{g}_{r}^{-1}}$ as involutive generator from $\mathcal{I}\left(\mathrm{g}_{r}^{-1}=\mathrm{g}_{r}\right)$. That means the facet $\left(\mathrm{f}_{\mathrm{g}^{-1}}\right)^{\mathrm{g}_{\mathrm{r}-1} \ldots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}=: f_{\mathrm{g}_{r}^{-1}}^{*}$ of the edge domain $\mathscr{D}^{\mathrm{g}_{r-1}^{-1} \cdots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}$ is paired with itself by the involutive generator u_{r} for the stabilizer $\mathscr{\xi}_{\mathrm{e}}$ where

$$
\begin{equation*}
\mathrm{u}_{r}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{r-1} \mathrm{~g}_{r} \mathrm{~g}_{r-1}^{-1} \ldots \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}^{-1} \tag{6}
\end{equation*}
$$

Now we turn back to the starting edge $e=e_{0}$. Denote by $f_{g_{-1}^{-1}}$ the second facet incident to e_{0} such that $e_{0}^{\mathrm{g}-1}=: \mathrm{e}_{-1} \neq \mathrm{e}_{0}$ holds for a generator g_{-1} from \mathcal{I}. Take the flags in $\mathscr{F}_{\text {F }}$ whose $(d-1)$-component is e_{-1}. Some of them have the facet component $\mathrm{f}_{\mathrm{g}-1}$ the others have another facet component, say $\mathrm{f}_{\mathrm{g}_{-2}^{-1}}$. The corresponding simplices form the edge domain $\mathscr{D}_{\mathrm{e}_{-1}}$ at e_{-1} in \mathscr{P}. The g_{-1}^{-1}-image of $\mathscr{D}_{\mathrm{e}_{-1}}$ is denoted by $\mathscr{D}^{\mathrm{g}_{-1}^{-1}}$ which joins \mathscr{D}^{1} at the facet $\mathrm{f}_{\mathrm{g}_{-1}^{-1}}$, and so on.

Assume that we have already defined the different edges

$$
\begin{equation*}
\mathrm{e}_{0}, \quad \mathrm{e}_{-1}:=\mathrm{e}_{0}^{\mathrm{g}-1}, \quad \ldots, \quad \mathrm{e}_{-s+1}=\mathrm{e}_{-s+2}^{g-s+1} \tag{7}
\end{equation*}
$$

and the edge domains to e

$$
\begin{equation*}
\mathscr{D}^{1}, \quad \mathscr{D}^{\mathrm{B}_{-1}^{-1}}, \quad \mathscr{D}^{\mathrm{g}_{2}^{-1} \mathrm{~g}_{1}^{-1}}, \ldots, \quad \mathscr{D}^{\mathbb{B}_{-s+1}^{-1} \cdots \mathrm{~g}_{-2}^{-1} \mathrm{~g}_{-1}^{-1}} \tag{8}
\end{equation*}
$$

joining in $\mathscr{P}^{\mathscr{E}}$ at the facets

$$
\begin{equation*}
\mathrm{f}_{\mathrm{g}_{-1}^{-1}}, \quad\left(\mathrm{f}_{\mathrm{g}_{-2}^{-1}}\right)^{\mathrm{g}_{-1}^{-1}}=: \mathrm{f}_{\mathrm{g}_{-2}^{*-1}}^{*}, \quad \cdots, \quad\left(\mathrm{f}_{\mathrm{g}_{-s+1}^{-1}}\right)^{\mathrm{g}_{-s+2}^{-1} \cdots \mathrm{~g}_{-1}^{-1}}=: \mathrm{f}_{\mathrm{g}_{-s+1}^{-1}}^{\mathrm{F}^{-1}} \tag{9}
\end{equation*}
$$

after each other.

Finally, $\mathrm{e}_{-s+1}^{\mathrm{g}-s}=\mathrm{e}_{-s+1}$ shall hold with an involutive generator $\mathrm{g}_{-s}: \mathrm{f}_{\mathrm{g}_{-s}^{-1}} \mapsto$ $\mapsto \mathrm{f}_{\mathrm{g}_{-s}}\left(\mathrm{~g}_{-s}^{-1}=\mathrm{g}_{-s}\right.$ from $\left.\mathscr{\mathscr { J }}\right)$. That means, the facet $\mathrm{f}_{\mathrm{g}_{-s}^{-1}}^{*}$ of the edge domain $\mathscr{D}^{\mathrm{g}_{-s+1}^{-1} \cdots \mathrm{~g}_{-2}^{-1} \mathrm{~g}_{-1}^{-1}}$ is paired with itself by the second involutive generator u_{-s} for the stabilizer \mathscr{G}_{e}

$$
\mathrm{u}_{-s}:=\mathrm{g}_{-1} \mathrm{~g}_{-2} \ldots \mathrm{~g}_{-s+1} \mathrm{~g}_{-s} \mathrm{~g}_{-s+1}^{-1} \ldots \mathrm{~g}_{-2}^{-1} \mathrm{~g}_{-1}^{-1}
$$

We have analogous cases as in 3). To be short, we define the transformation

$$
\begin{equation*}
\mathrm{d}_{\mathrm{e}}:=\mathrm{u}_{r} \mathrm{u}_{-s} \tag{10}
\end{equation*}
$$

which maps the staring edge e onto itself. By means of a ($d-2$)-subflag of e we algorithmically determine the exponent n_{e} for which $\mathrm{d}_{\mathrm{e}}^{n_{e}}$ fixes any n-face of e $(0 \leqq n \leqq d-2)$. We arbitrarily prescribe the order ν_{e} of the "rotation" $c_{e}=\mathrm{d}_{\mathrm{e}}^{n_{\mathrm{e}}}$. The relation

$$
\begin{equation*}
1=\mathrm{d}_{\mathrm{e}}^{n_{\mathrm{e}} \nu_{\mathrm{e}}}=\left(\mathrm{u}_{r} \mathrm{u}_{-s}\right)^{n_{\mathrm{e}} \nu_{\mathrm{e}}}=\mathrm{c}_{\mathrm{e}}^{\nu_{\mathrm{e}}} \tag{11}
\end{equation*}
$$

with u_{r} by (6) and u_{-s} by (6'), holds in general to the equivalence class of e. In case $\nu_{\mathrm{e}}=0$ this is no proper relation for \mathscr{G}.

We remark again that $r=1$ and $-s=-1$ are allowed in (6) and (6'). In Fig. 5.c-e we illustrate all possibilities for $d=3$, m's denote plane reflections, r's are half-turns. The edge domains in (2) and (8) form a "dihedral" fundamental domain \mathscr{P}_{e} for the stabilizer $\mathscr{\mathscr { G }}_{\mathrm{e}}$. Both facets of \mathscr{P}_{e} determine involutive generators $\mathrm{u}_{r}, \mathrm{u}_{-s}$, respectively.

The procedure ends, since we have finitely many flags in $(\mathscr{F}, 1)$ or simplices in \mathscr{P} to the equivalence class of the edge e. Moreover, we have finitely many edge equivalence classes.

Presentation of $\mathscr{\mathscr { G }}$. Let \mathcal{F} be a pairing of the polyhedron \mathscr{P} which induces the equivalence of edges $((d-2)$-faces) of \mathscr{P}. For each edge equivalence class e let ν_{e} be an arbitrarily prescribed natural number (zero is in), moreover let $\left\{\nu_{\mathrm{e}}\right\}$ be a fixed collection of them. Then \mathscr{P}, \mathscr{I} and $\left\{\nu_{\mathrm{e}}\right\}$ define a group $\mathscr{\xi}:=\left(\mathscr{P}, \mathscr{F},\left\{\nu_{\mathrm{e}}\right\}\right)$ which is generated by \mathcal{F}, and the occasional reflection relations $\mathbf{g}_{u}^{2}=1$ for each involutive generator g_{u} from \mathcal{G}, furthermore the cycle relations $\mathrm{c}_{\mathrm{e}}^{\nu_{\mathrm{e}}}=1$ provide the defining relations of \mathscr{G}. If $\nu_{\mathrm{e}}=0$ for some e , then this trivial relation has only a geometric importance.

Now the polyhedron complex $\mathscr{P}^{\mathscr{E}}$ is defined by $\mathscr{P}, \mathscr{F},\left\{\nu_{\mathrm{e}}\right\}$ and we have to describe all the stabilizers of m-faces of $\mathscr{P}^{\mathscr{\&}}$ for each $m(0 \leqq m \leqq d-3, d \geqq 3)$.

This will be the main goal of the next section.

5. Stabilizer of an m-face

Let x be an m-face of $\mathscr{P}(0 \leqq m \leqq d-3)$. We construct a fundamental polyhedron $\mathscr{P}_{\mathbf{x}}$ for the stabilizer $\mathscr{\mathscr { G }}_{\mathbf{x}} . \mathscr{P}_{\mathbf{x}}$ will have a $(d-1)$-dimensional flag structure.

Algorithm 5.1 for constructing $\mathscr{P}_{\mathbf{x}}$ and $\mathscr{Y}_{\mathbf{x}}$.

1) Consider all the flags in \mathscr{F} whose m-component is x itself, i.e. consider all the simplices in \mathscr{P} whose common m-points are x . Their union is denoted by $\mathscr{D}_{\mathrm{x}}=: \mathscr{D}^{1}$.
2) Take the first flag of \mathscr{D}_{x} with a facet component, say, $\mathrm{f}_{\mathrm{g}_{1}^{-1}}$ such that $\mathrm{x}^{\mathrm{g}_{1}} \neq \mathrm{x}$ holds for a generator g_{1} from \mathcal{F}. Then we take all the flags in \mathscr{F} with m-component $\mathrm{x}^{\mathrm{g}_{1}}$ and so all the simplices in \mathscr{P} whose common m-points are $\mathrm{x}^{\mathrm{g}_{1}}$. These form the m-domain $\mathscr{D}_{\mathrm{x}^{\varepsilon_{1}}}$ in \mathscr{P} whose g_{1}^{-1}-image is simply denoted by $\mathscr{D}_{1}^{\mathbb{B}_{1}^{-1}}$ (it lies in $\mathscr{P g}_{1}^{-1}$). \mathscr{D}^{1} and $\mathscr{D b}_{1}^{-1}$ meet at the facet $\mathrm{f}_{\mathrm{g}_{1}^{-1}}=\left(\mathrm{f}_{\mathrm{g}_{1}}\right)^{\mathrm{g}_{1}^{-1}}=: \mathrm{f}_{\mathrm{g}_{1}}^{*}$ and they have the m-face x in common in \mathscr{P}^{ξ}.
3) Then we take the next flag of \mathscr{D}_{x} or of $\mathscr{D}_{\mathrm{x}^{5} 1}$, not taken yet, with a facet component, say, $\mathrm{f}_{\mathrm{g}_{2}^{-1}}$ such that $\mathrm{x}^{\mathrm{g}_{2}}$ or $\mathrm{x}^{\mathrm{g}_{1} \mathrm{~g}_{2}}$ is different from the m faces already listed. Again, we take all the flags and simplices with the considered m-component. These form the corresponding m-domain $\mathscr{D}_{x^{82}}$ or $\mathscr{D}_{\mathrm{x}^{\mathrm{g}_{1} \mathrm{~g}_{2}}}$ is \mathscr{P} whose g_{2}^{-1}-image or $\mathrm{g}_{2}^{-1} \mathrm{~g}_{1}^{-1}$-image is denoted by $\mathscr{D}_{2}^{g_{2}^{-1}}$ or $\mathscr{D}^{g_{2}^{-1} \mathrm{~g}_{1}^{-1}}$, respectively. This latter m-domain joins the previous one at the facet $\mathrm{f}_{\mathrm{g}_{2}}^{*}$ where the exponent $*$ means g_{2}^{-1} or $\mathrm{g}_{2}^{-1} \mathrm{~g}_{1}^{-1}$, respectively. So we have a new m-domain in $\mathscr{P}^{\mathscr{E}}$ to the m-face x .
4) The procedure is already clear. We use Algorithm 1.1 to list the flags with fixed m-component, first for x , then for $\mathrm{x}^{\mathrm{g}_{1}}, \ldots, \mathrm{x}^{\mathrm{h}}$. Then we pick out new image $\mathrm{x}^{\mathrm{hg}}{ }_{j}$ on \mathscr{P} and new m-domains $\mathscr{D}_{\mathrm{x}^{\mathrm{hg}}{ }_{j}}$ in \mathscr{P} so that its $\mathrm{g}_{j}^{-1} \mathrm{~h}^{-1}$. image $\mathscr{D}^{g_{j}^{-1} h^{-1}}$ (this lies in $\mathscr{P}_{j}^{8_{j}^{-1} h^{-1}}$) joins the previous $\mathscr{D}^{h^{-1}}$ at the facet $f_{\mathrm{g}_{j}^{-1}}^{*}:=\left(\mathrm{f}_{\mathrm{g}_{j}^{-1}}\right)^{\mathbf{h}^{-1}}=\left(\mathrm{f}_{\mathrm{g}_{j}}\right)^{\mathrm{g}_{j}^{-1} \mathrm{~h}^{-1}}=: \mathrm{f}_{\mathrm{g}_{j}}^{*}$. Here g_{j} is a corresponding generator from \mathcal{F}. So we have a new m-domain in $\mathscr{P}^{\mathscr{E}}$ to the m-face x .
5) The procedure ends if we have exhausted the \mathscr{G}-equivalents of x on \mathscr{P}. Then we have the glued union of the m-domains

$$
\begin{equation*}
\mathscr{D}_{\mathrm{x}}=: \mathscr{D}^{1}, \quad \mathscr{D}^{\mathfrak{s}_{1}^{-1}}, \quad \ldots, \quad \mathscr{D}^{\mathbf{h}^{-1}}, \quad \mathscr{D}^{\mathrm{s}_{j}^{-1} \mathrm{~h}^{-1}}, \ldots \tag{1}
\end{equation*}
$$

in $\mathscr{P}^{\mathscr{E}}$ which form a fundamental polyhedron $\mathscr{P}_{\mathbf{x}}$ for the stabilizer \mathscr{H}_{x}. \mathscr{P}_{x} will have a ($d-1$)-dimensional flag structure \mathscr{F}_{x} with facet identifications induced by the procedure.

Let $\mathrm{f}_{\mathrm{g}_{\mathrm{i}}^{-1}}^{\mathrm{h}^{-1}}$ be any "free" (not yet glued) facet of $\mathscr{D}^{h^{-1}}$ in (1) and let $\mathrm{g}_{\mathrm{g}_{i}}^{\mathrm{k}^{-1}}$ be the corresponding free facet of $\mathscr{D}^{\mathbf{k}^{-1}}$ in (1). That means, the flags of "this part" of $\mathrm{f}_{\mathrm{g}_{\mathrm{i}}^{-1}}$ (having the prescribed m-component) are associated with the corresponding flags of $\mathrm{f}_{\mathrm{g}_{i}}$ in the original polyhedron \mathscr{P} by the generator g_{i} of g. Then

$$
\begin{equation*}
\mathrm{hg}_{i} \mathrm{k}^{-1}: \mathrm{f}_{\mathrm{g}_{\mathrm{i}}^{-1}}^{\mathrm{h}^{-1}} \mapsto \mathrm{f}_{\mathrm{g}_{\mathrm{i}}}^{\mathrm{k}^{-1}}, \quad \mathrm{~g}_{i}:=\mathrm{hg}_{i} \mathrm{k}^{-1} \in \mathscr{F}_{\mathrm{x}} \tag{2}
\end{equation*}
$$

will be a facet identifying generator of $\mathscr{\mathscr { G }}_{\mathrm{x}}$ denoted by $\overline{\mathrm{g}}_{i} \in \mathcal{J}_{\mathrm{x}}$.
6) So we can reduce our problem to investigate the ($d-1$)-dimensional polyhedron \mathscr{P}_{x} equipped by facet identifications \mathscr{I}_{x} which generate the stabilizer \mathscr{G}_{x}. Those $(d-2)$-face classes which contain the \mathscr{G}-equivalents of x provide the relations of \mathscr{G}_{x} determined by the presentation of \mathscr{G}.

Remarks. 1. Each ($d-2$)-face class of \mathscr{P}_{x} which provide a relation of \mathscr{E}_{x} in a form

$$
\begin{equation*}
\overline{\mathrm{g}}_{i} \overline{\mathrm{~g}}_{j}^{-1}=1 \quad \text { with } \quad \overline{\mathrm{g}}_{i}, \overline{\mathrm{~g}}_{j} \in \mathcal{I}_{\mathrm{x}} \tag{3}
\end{equation*}
$$

reduces the number of generators in \mathcal{F}_{x}, since we have the consequence $\overline{\mathrm{g}}_{i}=\overline{\mathrm{g}}_{j}$ in $\mathscr{F}_{\mathbf{x}}$. Such reductions may also yield that the stabilizer $\mathscr{\mathscr { G }}_{\mathbf{x}}$ is trivial.
2. We cannot exclude apriori that the starting polyhedron \mathcal{P} with identifications \mathscr{I} and exponents $\left\{\nu_{\mathrm{e}}\right\}$ involve that the group \mathscr{G} is trivial and so is the polyhedron complex $\mathscr{P}^{\mathscr{E}}$.

This is an accordance with the combinatorial theory of groups [7,18] and indicates also the difficulties of the problem.

Fig. 6
For instance a 2 -dimensional digon with 4 flags (Fig. 6)

$$
(1,1), \quad(1,2), \quad,(2,1), \quad(2,2)
$$

allows the identification

$$
\mathrm{g}_{1}:(1,1) \mapsto(1,2), \quad(2,1) \mapsto(2,2)
$$

to generate a free group. We have two non-equivalent ($d-2$)-faces now, the vertices 1 and 2 , we may choose the exponents ν_{1} and ν_{2} independently. If we choose $\nu_{1}=\nu_{2}=: \nu$, then the relation $\mathrm{g}_{1}^{\nu}=1$ leads to the cyclic group $\mathscr{\mathscr { C }}=\mathscr{C}_{\nu}$ and this is realized metrically on the sphere φ^{2} with a digonal fundamental domain. If $\nu_{1} \neq \nu_{2}$, then the greatest common divisor $\nu=\left(\nu_{1}, \nu_{2}\right)$ gives the order of the corresponding cyclic group $\mathscr{\mathscr { G }}=\mathscr{C}_{\nu}$, especially $\nu=1$ leads to the trivial group. These latter cases are not realizable in the classical sense.

6. Topology on identified polyhedron

In Section 4 we have already introduced the formal barycentric subdivision of $\mathscr{P}^{\mathscr{E}}$ into d-simplices. Any flag $(\mathcal{f}, \mathrm{h})$ in $(\mathscr{F}, \mathscr{y})$ with its vertex component, ..., facet one and solid one determines a simplex first in $\mathscr{P}^{\mathscr{Q}}$, whose vertices are just the formal midpoints of the m-components of $(\boldsymbol{\ell}, \mathrm{h})$, $0 \leqq m \leqq d$.

Now we take a $(d+1)$-dimensional real vector space \mathbf{V} and its dual \mathbf{V}^{*}, and define the points of the projective d-sphere S^{d} as rays of V. The relation $\mathbf{x} \sim \mathbf{y}$ stands for $\mathbf{x}, \mathbf{y} \in \mathbf{V}-\{0\}$ iff there is a positive $c\left(\in \mathbf{R}^{+}\right)$with $\mathbf{y}=$ $=c \mathbf{x}$. The equivalence class of \mathbf{x} will be denoted by (\mathbf{x}) and called the ray of \mathbf{x}. Identifying opposite rays (\mathbf{x}) and $(-x)$, we define the point $[\mathbf{x}]$ of the projective d-space P^{d}. The d-subspaces of \mathbf{V} can be described by the non-zero elements of \mathbf{V}^{*}. A $u \in \mathbf{V}^{*}$ gives us a $(d-1)$-subsphere of S^{d} by

$$
\begin{equation*}
S^{d-1}(u)=\left\{(\mathbf{x}) \subset \mathbf{V}: \mathbf{x} u=0, \quad u \in \mathbf{V}^{*}-\{o\}\right\} \tag{1}
\end{equation*}
$$

A ray (u) in \mathbf{V}^{*} characterizes a half-space in \mathbf{V} or the positive half-sphere

$$
\begin{equation*}
\mathrm{S}^{+}(u)=\{(\mathbf{x}) \subset \mathbf{V}: \mathbf{x} u \geqq 0\} \tag{2}
\end{equation*}
$$

Identifying opposite rays (u) and $(-u)$, we define the $(d-1)$-plane $[u]$ of the projective d-space P^{d}. A point $[\mathrm{x}]$ and a $(d-1)$-plane $[u]$ of P^{d} are incident, i.e.

$$
\begin{equation*}
[\mathrm{x}] \mathrm{I}[u] \quad \text { iff } \quad \mathbf{x} u=0 \tag{3}
\end{equation*}
$$

A set \mathbf{C} of the projective sphere S^{d} is convex iff it does not contain opposite rays, and with any two rays $(\mathbf{x}),(\mathbf{y}) \in \mathbf{C}$ all the rays $(\mathrm{t} \mathbf{x}+(1-\mathrm{t}) \mathbf{y})$, for $0<\mathrm{t}<1$, belong to \mathbf{C}. Clearly, any convex set of S^{d} is contained in a half-sphere.

A half-sphere in (2) has also an affine structure, if we take in \mathbf{V} the d-plane (hyperplane)

$$
\begin{equation*}
A^{d}(u)=\left\{(\mathbf{x}) \subset \mathbf{V}: \mathbf{x} u=c \quad \text { fixed, } \quad \mathbf{c} \in \mathbf{R}^{+}\right\} \tag{4}
\end{equation*}
$$

parallel to the d-plane (u). The rays $(\mathbf{y}),(-\mathbf{y})$ with $\mathbf{y} u=0$ assign one ideal point to $\mathrm{A}^{d}(u)$. The d-plane $[u]$ represents the ideal $(d-1)$-plane of $\mathrm{A}^{d}(u)$.

Fix a basis $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{d}$ in \mathbf{V}. We define the d-simplex

$$
\begin{equation*}
\mathbf{S}^{d}=\operatorname{Span}\left(\mathbf{a}_{i}\right):= \tag{5}
\end{equation*}
$$

$$
:=\left\{\mathbf{x}=x^{0} \mathbf{a}_{0}+x^{1} \mathbf{a}_{1}+\ldots+x^{d} \mathbf{a}_{d}: x^{0}, x^{1}, \ldots, x^{d} \geqq 0, x^{0}+x^{1}+\ldots+x^{d}=1\right\}
$$

in V first. But we can consider a model of \mathbf{S}^{d} also in the projective sphere S^{d} of \mathbf{V}, that means, any vector $\mathbf{x} \in \mathbf{S}^{d}$ will be represented by its ray (\mathbf{x}).

To a basis $\mathbf{a}_{0}, \ldots, \mathbf{a}_{d}$ we can uniquely introduce its dual basis $\iota^{0}, \ldots, \iota^{d}$ in \mathbf{V}^{*} by requiring

$$
\begin{equation*}
\mathbf{a}_{i} b^{b^{j}}=\delta_{i}^{j} \quad \text { (the Kronecker symbol) } \tag{6}
\end{equation*}
$$

Then the simplex \mathbf{S}^{d} by (5) will be described in S^{d} by

$$
\begin{equation*}
\mathbf{S}^{d}\left\{(\mathbf{x}) \subset \mathbf{V}: \mathbf{x} l^{i} \geqq 0 \text { for } i=0,1, \ldots, d\right\} \tag{7}
\end{equation*}
$$

We say \mathbf{S}^{d} is the intersection of its positive half-spheres.
By (4), (5) we can also say that \mathbf{S}^{d} lies in the affine d-space $\mathrm{A}^{d}\left(b^{0}+b^{1}+\right.$ $\left.+\ldots+b^{d}\right)$ with $c=1$.

Algorithm 6.1 for introducing \mathfrak{P} as a simplicial complex.
We know from Algorithm 1.1 how to enumerate the flags in \mathscr{F} on the base of their adjacencies. The first flag ${ }^{1} \rho$ will be associated with $\mathbf{S}^{d}=:^{1} \mathbf{S}$ so that the formal midpoint of the m-component maps onto \mathbf{a}_{m} for each m $(0 \leqq m \leqq d)$. The second flag ${ }^{2} f$ is 0 -adjacent to ${ }^{1} f$, so we can choose ${ }^{2} \mathbf{a}_{0}$ in the interior of the simplex \mathbf{S}_{0}^{d} spanned by $-\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{d}$ just arbitrarily and define the simplex ${ }^{2} \mathbf{S}$ just by (5) taking ${ }^{2} \mathbf{a}_{0},{ }^{2} \mathbf{a}_{1}=\mathbf{a}_{1}, \ldots,{ }^{2} \mathbf{a}_{d}=\mathbf{a}_{d}$ as vertices. The union ${ }^{1} \mathrm{~S} \cup^{2} \mathrm{~S}$ will be a convex polyhedron on the projective sphere S^{d} of \mathbf{V}, whose facets are $(d-1)$-simplices.

Suppose that we have already listed the simplices ${ }^{1} \mathbf{S},{ }^{2} \mathbf{S}, \ldots,{ }^{r} \mathbf{S}$ according to the flags ${ }^{1} f,{ }^{2} f, \ldots,,^{r} f$ in Algorithm 1.1, so that

$$
\begin{equation*}
\mathscr{P}^{r}:=\bigcup_{i=1}^{r}{ }^{i} \mathrm{~S} \tag{8}
\end{equation*}
$$

is convex on S^{d} with simplicial facets. Take ${ }^{r+1} f$ which is m-adjacent, say, with ${ }^{s} f(s \leqq r)$. Then we define ${ }^{r+1} \mathrm{~S}$ to ${ }^{s} \mathrm{~S}$ by taking

$$
\begin{equation*}
\operatorname{Span}_{j}\left({ }^{\tau+1} \mathbf{a}_{j}\right)=:^{r+1} \mathbf{S} \tag{9}
\end{equation*}
$$

with ${ }^{r+1} \mathbf{a}_{j}={ }^{s} \mathbf{a}_{j}$ if $j \in\{0, \ldots, d\}-\{m\}$ and ${ }^{r+1} \mathbf{a}_{m} \in \operatorname{Int}\left({ }^{s} \mathbf{P}^{r}-\mathbf{P}^{r}\right)$.
Here ${ }^{s} \mathbf{P}^{r}$ is a convex hull of the positive half-spheres of all facets of \mathbf{P}^{r} except that of facet $\operatorname{Span}\left({ }^{s} \mathbf{a}_{j}\right)$, and we have taken the interior of the $j \neq m$
difference set.
Since the flag structure \mathscr{F} satisfies the requirements F.1-2 of Section 1 and \mathscr{F} is finite, the convex polyhedron

$$
\begin{equation*}
\mathbf{P}:=\bigcup_{i=1}^{|\mathcal{F}|} \mathbf{S} \quad \text { is well-defined. } \tag{10}
\end{equation*}
$$

The adjacency structure of \mathscr{F} and so the incidence structure of \mathcal{P} will be realized on S^{d}, if we define the rest of adjacencies by identifications of corresponding simplicial facet pairs of \mathbf{P}.

It follows by the construction that \mathbf{P} lies in an open half-sphere bounded by a d-subspace of \mathbf{V}. Introducing a parallel d-plane, called δ (a hyperplane in \mathbf{V}), all the simplices of \mathbf{P} can be assumed to lie in δ which is a real affine d-space A^{d}. The corresponding identifications of simplicial facets of \mathbf{P} are uniquely defined by affinities. Recall that any two m-simplices spanned in \mathbf{V} by $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ and $\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{m}, 0 \leqq m \leqq d$ can be mapped one onto another by the unique affinity

$$
\begin{equation*}
x^{0} \mathbf{a}_{0}+x^{1} \mathbf{a}_{1}+\ldots+x^{m} \mathbf{a}_{m} \mapsto x^{0} \mathbf{b}_{0}+x^{1} \mathbf{b}_{1}+\ldots+x^{m} \mathbf{b}_{m}, \tag{11}
\end{equation*}
$$

with any $x^{0}, x^{1}, \ldots, x^{m} \geqq 0, x^{0}+x^{1}+\ldots+x^{m}=1$.
So we define the points of \mathscr{P} and the topology on \mathscr{P} by means of \mathbf{P}, endowed by facet identifications, and by the affine topology of \mathbf{P}. Clearly, the construction of \mathbf{P} and its topology is determined up to homeomorphisms defined by piece-wise affinities. We can say \mathscr{P} is a simplicial complex realized by \mathbf{P} in the affine d-space $\mathrm{A}^{d}[21,23]$.

Theorem 6.1. Let \mathscr{P} be a d-polyhedron whose flag structure \mathscr{F} satisfies the flag requirements 1.F1-2. Furthermore, let \mathscr{F} be a pairing of the facets of \mathscr{P} which generate a group \mathscr{H} by identifications from \mathcal{F}. There is a finite simplicial complex $\tilde{\mathbf{P}}$ in the affine d-space which provides a convex atlas containing connected neighbourhoods for every point of the identified polyhedron \mathcal{P}.

Proof. For \mathcal{P} we have already glued a convex affine polyhedron \mathbf{P} consisting of d-simplices. Some facets of \mathbf{P} are identified (by 1 of $\mathscr{\mathscr { G }}$) as dictated by \mathscr{F}, or by the incidence structure of \mathscr{P}.

The $\mathscr{\mathscr { y }}$-equivalence defined on \mathscr{P} induces also the \mathscr{C}-equivalence on \mathbf{P}. Any point X of \mathbf{P} lies on an m-face x of a d-simplex from $\mathbf{P}, 0 \leqq m \leqq d$. We have finitely many such faces (of any dimension). The \mathscr{C}-equivalents of m face x , containing all the $\mathscr{\mathscr { }}$-equivalents of X , are distributed in finitely many d-simplices from \mathbf{P}.

Now consider the construction of the fundamental polyhedron $\mathscr{P}_{\mathbf{x}}$ for the stabilizer \mathscr{G}_{x} of the m-face x in Algorithm 5.1. This requires gluing finitely many d-simplices to the common m-face x along $(d-1)$-facets of simplices. \mathscr{G}-equivalent free facets also occur after the procedure by Algorithm 6.1.

So, after finitely many steps, we shall have all "typical" neighbourhoods in the connected union of d-simplices glued to \mathbf{P}. So we get a convex affine polyhedron $\tilde{\mathbf{P}}$ desired in the theorem. Q.e.d.

In Fig. 6 we illustrate the situation in dimension $d=2$ for a digonal \mathscr{P} whose sides are identified by "rotation" g_{1}. A glued collection of 6 simplices constitutes $\tilde{\mathbf{P}}$.

In most cases the atlas $\tilde{\mathbf{P}}$ can be simplified by gluing along neighbouring identified faces (as we intuitively imagine), but such a gluing cannot be
guaranteed in general. We do not know apriori whether \mathscr{P} is realizable in the affine d-space or not.

We shall construct a 3 -polyhedron whose flag structure satisfies the requirements F.1-2, but it has no realization whatsoever in the affine 3 -space, since its surface is homeomorphic to a non-orientable 2-manifold (e.g. to the projective plane, see Section 9, Fig. 9).

7. Spaces of constant curvature modelled on projective sphere

To prepare the promised generalization of Poincaré's theorem, recall that each simply connected d-space ($d \geqq 2$) of constant sectional curvature can be modelled on the projective d-sphere $\mathrm{S}^{d}[25,29,39]$. We fix a basis $\mathbf{e}_{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ in \mathbf{V} and the dual basis $\mathbf{e}^{0}, e^{1}, \ldots, e^{d}$ in \mathbf{V}^{*} with $\mathbf{e}_{i} \mathbf{e}^{j}=\delta_{i}^{j}$ (the Kronecker symbol).

A linear polarity (*) or, equivalently, a symmetric bilinear form or scalar product $\langle;\rangle$ will be introduced by the following notations:

$$
\begin{array}{cl}
(*): \mathbf{V}^{*} \rightarrow \mathbf{V}, & u \mapsto u_{*}=: \mathbf{u} ; \\
\langle;\rangle: \mathbf{V}^{*} \times \mathbf{V}^{*} \rightarrow \mathbf{R}, & \langle u ; u\rangle=\mathbf{u} u=\mathbf{v} u . \tag{2}
\end{array}
$$

To define the spherical d-space φ^{d} we make the basis of \mathbf{V}^{*} orthonormal by

$$
\begin{equation*}
\left\langle e^{i} ; e^{j}\right\rangle=\delta^{i j} \text { for } i, j=0,1, \ldots, d \tag{3}
\end{equation*}
$$

which extends to a bilinear form of signature $\langle+, \ldots,+,+\rangle$.
For the hyperbolic space \mathscr{H}^{d} we define

$$
\left\{\begin{array}{l}
\left\langle e^{0} ; e^{0}\right\rangle=-1 ; \quad\left\langle e^{i} ; e^{i}\right\rangle=1 \text { for } i=1, \ldots, d ; \tag{4}\\
\text { and }\left\langle e^{i} ; e^{j}\right\rangle=0 \text { for } i \neq j=0,1, \ldots, d .
\end{array}\right.
$$

These determine a bilinear form of signature $\langle+, \ldots,+,-\rangle$. For φ^{d} and \mathscr{H}^{d} the polarity (${ }_{*}$) is regular, the inverse map is

$$
\left(^{*}\right): \mathbf{V} \rightarrow \mathbf{V}^{*}, \quad \mathbf{x} \mapsto \mathbf{x}^{*}=x \quad \text { so that } \quad x_{*}=\mathbf{x} .
$$

The induced symmetric bilinear form on \mathbf{V} can also be introduced by

$$
\begin{equation*}
\langle;\rangle: \mathbf{V} \times \mathbf{V} \rightarrow \mathbf{R}, \quad\langle\mathbf{x} ; \mathbf{y}\rangle:=\mathbf{x} y=\mathbf{y} x=\langle x ; y\rangle . \tag{5}
\end{equation*}
$$

So \mathbf{V} and its dual \mathbf{V}^{*} give us an alternative description for $\mathscr{\varphi}^{d}$ and \mathscr{H}^{d}. A polar ($d-1$)-plane (u) and its pole (\mathbf{u}) can be replaced to get dual statements.

The points of φ^{d} are modelled also on the unit d-sphere

$$
\begin{equation*}
\{\mathbf{x} \in \mathbf{V}:\langle\mathbf{x} ; \mathbf{x}\rangle=1\} . \tag{6}
\end{equation*}
$$

Clearly, every ray of \mathbf{V} meets exactly one point of this sphere. From φ^{d} we turn to elliptic d-space if we replace the projective d-sphere S^{d} with the projective d-space P^{d}, keeping the metric (3) on \mathbf{V}^{*} and the induced metric on V.

The proper points and proper $(d-1)$-planes of \mathscr{H}^{d} are described in the projective d-space P^{d} where opposite rays of S^{d} are identified:

$$
\begin{equation*}
\mathscr{C}_{-}:=\{[\mathbf{x}]:\langle\mathbf{x} ; \mathbf{x}\rangle<0\}, \text { resp. } \mathscr{C}_{+}{ }^{*}:=\{[u]:\langle u ; u\rangle>0\} . \tag{7}
\end{equation*}
$$

Their polars and poles

$$
\begin{equation*}
\mathscr{C}_{-}^{*}:=\{[x]:\langle x ; x\rangle<0\} \text { and } \mathscr{C}_{+}:=\{[\mathbf{u}]:\langle\mathbf{u} ; \mathbf{u}\rangle>0\}, \tag{8}
\end{equation*}
$$

respectively, define improper $(d-1)$-planes and improper points of \mathscr{H}^{d}. The incident poles and polars are defined by

$$
\begin{equation*}
\mathscr{C}_{0}:=\{[\mathbf{x}]:\langle\mathbf{x} ; \mathbf{x}\rangle=0\}, \text { resp. } \mathscr{C}_{0}^{*}:=\{[u]:\langle u ; u\rangle=0\} . \tag{9}
\end{equation*}
$$

These provide a conic and its dual which describe the points at infinity (points on the absolute or ends) and the boundary (d-1)-planes, respectively, as improper elements of \mathscr{H}^{d}.

For the proper points of \mathscr{H}^{d} we can take the "imaginary sphere" in \mathbf{V} with equation

$$
\begin{equation*}
\langle\mathbf{x} ; \mathbf{x}\rangle:=-x^{0} x^{0}+x^{1} x^{1}+\ldots+x^{d} x^{d}=-1 \quad\left(=\mathrm{i}^{2}\right), \tag{10}
\end{equation*}
$$

where $\mathbf{x}=x^{0} \mathbf{e}_{0}+x^{1} \mathbf{e}_{1}+\ldots+x^{d} \mathbf{e}_{d}$. Any ray (\mathbf{y}), with $\langle\mathbf{y} ; \mathbf{y}\rangle<0$, meets the imaginary d-sphere exactly at $\mathbf{y} / \sqrt{-\langle\mathbf{y} ; \mathbf{y}\rangle}$. The opposite points of (10) are identified for \mathscr{H}^{d}.

For the Euclidean d-space \mathscr{E}^{d} to the basis of \mathbf{V}^{*} we define

$$
\begin{equation*}
\left\langle e^{0} ; e^{j}\right\rangle=0 \text { for } j=0,1, \ldots, d ;\left\langle e^{i} ; e^{j}\right\rangle=\delta^{i j} \text { for } i, j=1, \ldots, d . \tag{11}
\end{equation*}
$$

This extends to a bilinear form of signature $\langle+, \ldots,+, 0\rangle$. Now

$$
\begin{equation*}
(*): e^{i}+e^{0} \cdot c \mapsto \mathbf{e}_{i} \text { for } \quad i=1, \ldots, d ; \quad c \in \mathbf{R} . \tag{12}
\end{equation*}
$$

This induces a scalar product in the d-subspace $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right)$ of \mathbf{V} which is defined by

$$
\begin{equation*}
\left\langle\mathbf{e}_{i} ; \mathbf{e}_{j}\right\rangle:=\left\langle e^{i}+e^{0} \cdot c ; \boldsymbol{e}^{j}+e^{0} \cdot d\right\rangle=\delta^{i j} \tag{13}
\end{equation*}
$$

In the affine space

$$
\begin{equation*}
\mathrm{A}^{d}\left(e^{0}\right)=\left\{\mathbf{x} \in \mathbf{V} ; \mathbf{x e}^{0}=: \mathbf{x}^{0}=1\right\} \tag{14}
\end{equation*}
$$

we get the classical Euclidean d-space.
The reflection in the $(d-1)$-space (u) with $\langle u ; u\rangle \neq 0$ is defined by

$$
\begin{equation*}
(u) \mapsto(\omega), \quad \omega=u-u \cdot \frac{2\langle u ; u\rangle}{\langle u ; u\rangle} \tag{15}
\end{equation*}
$$

uniformly for $(d-1)$-planes (u) of $\varphi^{d}, \mathscr{H}^{d}$ and \mathscr{E}^{d}. For Euclidean points (\mathbf{x}) the reflection formula is

$$
\begin{equation*}
(\mathbf{x}) \mapsto(\mathbf{y}), \quad \mathbf{y}=\mathbf{x}-\frac{2 \mathbf{x} u}{\langle u ; u\rangle} \mathbf{u} . \tag{16}
\end{equation*}
$$

For spherical and hyperbolic points (x) this formula can be written in the form

$$
\begin{equation*}
(\mathbf{x}) \mapsto(\mathbf{y}), \quad \mathbf{y}=\mathbf{x}-\frac{2\langle\mathbf{x} ; \mathbf{u}\rangle}{\langle\mathbf{u} ; \mathbf{u}\rangle} \mathbf{u} . \tag{16’}
\end{equation*}
$$

In (16) and (16') we have denoted by (\mathbf{u}) the pole of the ($d-1$)-plane (u).
The isometries of our spaces $\mathscr{Y}^{d}, \mathscr{H}^{d}$ and \mathscr{E}^{d} are uniformly defined as compositions (products) of finitely many reflections. The groups Iso $\mathscr{\varphi}^{d}$ and Iso \mathscr{H}^{d} can also be defined by those linear self-bijections of \mathbf{V} (and \mathbf{V}^{*}, respectively) which preserve the corresponding bilinear forms. But it is not true in \mathscr{E}^{d}, although any reflection of the form (16) leaves the affine space (14) and the scalar product (13) in it invariant.

The group of all self-bijections of \mathscr{E}^{d} which preserve the bilinear form of \mathbf{V}^{*} is called similarities of \mathscr{E}^{d}. This contains Iso \mathscr{E}^{d} as a subgroup. But, in addition, there are typical similarities, called dilatations. These are defined by

$$
\begin{align*}
& \mathbf{x}=1 \cdot \mathbf{e}_{0}+x^{1} \mathbf{e}_{1}+\ldots+x^{d} \mathbf{e}_{d} \mapsto \mathbf{y}=c \cdot \mathbf{e}_{0}+x^{1} \mathbf{e}_{1}+\ldots+x^{d} \mathbf{e}_{d} \\
& \text { in } \mathbf{V} \text { with any fixed } c \in \mathbf{R}, \tag{17}
\end{align*}
$$

or by

$$
\begin{equation*}
u=e^{0} \cdot u_{0}+e^{1} u_{1}+\ldots+e^{d} u_{d} \mapsto \omega=e^{0} \frac{u_{0}}{c}+e^{1} u_{1}+\ldots+e^{d} u_{d} \text { in } \mathbf{V}^{*}, \tag{17’}
\end{equation*}
$$

so that $\mathbf{x} u=\mathbf{y} u=u_{0}+x^{1} u_{1}+\ldots+x^{d} u_{d}$ holds for any \mathbf{x} and u and their images \mathbf{y} and \mathbf{v}, respectively. We look at (17') that $\langle;\rangle$ on \mathbf{V}^{*} is invariant for a dilatation, since e^{0} is orthogonal to any other forms in \mathbf{V}^{*}.

We could define the angles of (d-1)-planes and the distances of points in general [29,39]. Now we mention only some hyperbolic cases.

The proper ($d-1$)-planes $[u]$ and $[u]$ intersect in proper ($d-2$)-planes, iff

$$
\begin{equation*}
\langle u ; u\rangle\langle u ; u\rangle-\langle u ; u\rangle^{2}>0 \text { with }\langle u ; u\rangle,\langle u ; u\rangle>0 . \tag{18}
\end{equation*}
$$

We define the angle α of the positive domain, with the inequalities

$$
\begin{equation*}
\mathbf{x} u \geqq 0, \quad \mathbf{x} u \geqq 0, \quad \text { by } \quad \cos \alpha=-\langle u, u\rangle / \sqrt{\langle u ; u\rangle\langle u ; u\rangle} . \tag{19}
\end{equation*}
$$

If the proper points $[\mathbf{x}]$ and $[\mathbf{y}]$ are taken so that

$$
\begin{equation*}
\langle\mathbf{x} ; \mathbf{y}\rangle<0 \quad \text { with } \quad\langle\mathbf{x} ; \mathbf{x}\rangle, \quad\langle\mathbf{y} ; \mathbf{y}\rangle<0, \tag{20}
\end{equation*}
$$

then their distance s is defined by

$$
\begin{equation*}
\operatorname{ch} s=-\langle\mathbf{x}, \mathbf{y}\rangle / \sqrt{\langle\mathbf{x} ; \mathbf{x}\rangle\langle\mathbf{y} ; \mathbf{y}\rangle}>1 . \tag{21}
\end{equation*}
$$

By (19) α lies in the open interval $(0, \pi)$, and by (21) $s>0$ holds. But these formulas can be extended to other ($d-1$)-planes and other points if we think of complex angles and distances, (including ∞), too [25, 29]. The isometries of $\mathscr{E}^{d}, \mathscr{\varphi}^{d}, \mathscr{H}^{d}$ preserve distances and angles.

We mention a characteristic theorem for d-simplices in $\mathscr{\varphi}^{d}, \mathscr{H}^{d}, \mathscr{E}^{d}$.
Theorem 7.1. Let ($b^{i j}$) be a symmetric $(d+1) \times(d+1)$ matrix so that the bilinear form

$$
\begin{equation*}
\langle;\rangle: \mathbf{R}_{d+1}^{*} \times \mathbf{R}_{d+1}^{*} \rightarrow \mathbf{R}, \quad\langle u ; u\rangle:=\sum_{i, j=0}^{d} u_{i} b^{i j} v_{j} \tag{22}
\end{equation*}
$$

has the signature $\langle+, \ldots,+,+\rangle,\langle+, \ldots,+,-\rangle$ or $\langle+, \ldots,+, 0\rangle$. Then there exists a simplex

$$
\begin{equation*}
\mathbf{S}=\left\{(\mathbf{x}): \mathbf{x} b^{i} \geqq 0, \mathbf{x} \in \mathbf{V}, \quad \text { for each } \quad b^{0}, b^{1}, \ldots, l^{d} \in \mathbf{V}^{*}\right\} \tag{23}
\end{equation*}
$$

whose vertices are $\left(\mathbf{a}_{i}\right)$ with $\mathbf{a}_{i} \alpha^{j}=\delta_{i}^{j}$ on the projective metric d-sphere S^{d} $\left(\mathbf{V}, \mathbf{V}^{*}\right)$, which has spherical, hyperbolic or Euclidean metric, respectively, such that the facet forms $b^{0}, \iota^{1}, \ldots, \iota^{d}$ of \mathbf{S} satisfy the relations

$$
\begin{equation*}
\left\langle u^{i}, \iota^{j}\right\rangle=b^{i j} \quad \text { for } \quad i, j=0,1, \ldots, d . \tag{24}
\end{equation*}
$$

For any two such simplices ${ }^{1} \mathbf{S},{ }^{2} \mathbf{S}$ there exists either exactly one isometry for $\mathscr{\varphi}^{d}$ resp. \mathscr{H}^{d}, or exactly one similarity for \mathscr{E}^{d} which maps ${ }^{1} \mathrm{~S}$ onto ${ }^{2} \mathbf{S}$.

The matrix ($b^{i j}$) describes the generalized angles $\alpha^{i j}$ of corresponding facets of \mathbf{S} by

$$
\begin{equation*}
\cos \alpha^{i j}=-b^{i j} / \sqrt{b^{i i} \cdot b^{j j}} . \tag{25}
\end{equation*}
$$

For φ^{d} and \mathscr{H}^{d} the inverse of $\left(b^{i j}\right)$ is just $\left(a_{i j}\right)=\left(\left\langle\mathbf{a}_{i} ; \mathbf{a}_{j}\right\rangle\right)$ and it describes the generalized distances $s_{i j}$ between vertices $\left(\mathbf{a}_{i}\right)$ and $\left(\mathbf{a}_{j}\right)$ of the simplex S by

$$
\begin{array}{ccc}
\cos s_{i j}=a_{i j} / \sqrt{a_{i i} \cdot a_{j j}} & \text { for } & \varphi^{d} \\
\operatorname{ch} s_{i j}=-a_{i j} / \sqrt{a_{i i} \cdot a_{j j}} & \text { for } & \mathscr{H}^{d} \tag{27}
\end{array}
$$

For \mathscr{E}^{d} let $B_{i j}$ be the corresponding signed minor determinants of $\left(b^{i j}\right)$, and assume that $B_{00}>0$. Then the vertex $\left(a_{0}\right)$ of \mathbf{S} is a proper point of \mathscr{E}^{d}. If $B_{0 i}, B_{0 j} \neq 0$ and $B_{00}^{(i j)}$ denotes the corresponding signed $(d-1)$-minor determinants of B_{00}, then $\frac{B_{00}}{B_{0 i}} \mathbf{a}_{i}$ and $\frac{B_{00}}{B_{0 j}} \mathbf{a}_{j}$ are also proper vertices of S and the following distance formulas hold:

$$
\begin{gather*}
s_{0 i}^{2}=B_{00} \cdot B_{00}^{(i i)} /\left(B_{0 i}\right)^{2} \tag{28}\\
s_{i j}^{2}=B_{00}\left[B_{00}^{(i i)} \frac{1}{\left(B_{0 i}\right)^{2}}-2 B_{00}^{(i j)} \frac{1}{B_{0 i} B_{0 j}}+B_{00}^{(j j)} \frac{1}{\left(B_{0 j}\right)^{2}}\right] . \tag{28’}
\end{gather*}
$$

If $B_{i i}=0$ then $\left(\mathbf{a}_{i}\right)$ is an ideal point of S .
The proof is a simple consequence of the preceding facts. For $\mathscr{\varphi}^{d}$ and \mathscr{H}^{d} see e.g. [29]. We only prove the Euclidean distance formulas. To the bilinear form of signature $\langle+, \ldots,+, 0\rangle$ there is a polarity $(*): b^{i} \mapsto \mathbf{b}^{i}=b^{i j} \mathbf{a}_{j}$ with a (radical) form $b=b^{j} b_{j} \mapsto \mathbf{0}, 0=\left\langle b^{i} ; b\right\rangle=b^{i j} b_{j}$ for $i=0,1, \ldots, d$. (We apply Einstein-Schouten's summation convention.) It follows

$$
\begin{equation*}
b_{j}=B_{0 j} \quad \text { for } \quad j=0,1, \ldots, d \tag{29}
\end{equation*}
$$

up to a factor of proportionality.
A vertex $\frac{1}{b_{j}} \mathbf{a}_{j}$ lies in the d-space $\mathbf{x} b=1 \mathrm{iff}$

$$
\begin{equation*}
0 \neq \mathbf{a}_{j} b=\mathbf{a}_{j} b^{i} b_{i}=\delta_{j}^{i} b_{i}=b_{j}=B_{0 j} \quad \text { for } \quad j=0,1, \ldots, d \tag{30}
\end{equation*}
$$

Then the following vector lies in the image d-space at $\left({ }_{*}\right)$:

$$
\begin{equation*}
\frac{1}{b_{i}} \mathbf{a}_{i}-\frac{1}{b_{j}} \mathbf{a}_{j}=c_{r} \mathbf{b}^{r}=c_{r} b^{r s} \mathbf{a}_{s} \quad \text { for } \quad r=1,2, \ldots, d \tag{31}
\end{equation*}
$$

and the distance formula for \mathscr{E}^{d} is defined by

$$
\begin{equation*}
s_{i j}^{2}=\left\langle c_{u} \mathbf{b}^{u} ; c_{v} \mathbf{b}^{v}\right\rangle=c_{u} b^{u v} c_{v} \quad \text { for } \quad u, v=1,2, \ldots, d \tag{32}
\end{equation*}
$$

After having solved equation (31) for c_{r}, we have essentially different cases in (32) for $i=0$ and $0 \neq i, j$ as indicated in (28) and (28'). Q.e.d.

We remark that less explicit criteria for polyhedra are mentioned in [39, 40].

8. The algorithmic extension of Poincaré's polyhedron theorem

In Section 6 we have defined the simplicial complex $\tilde{\mathbf{P}}$ on the projective d-sphere. $\tilde{\mathbf{P}}$ has piece-wise affine topology and provides an atlas containing connected neighbourhoods for every point of the identified d-polyhedron \mathscr{P} by Theorem 6.1. We define the metric realization of $\tilde{\mathbf{P}}$, i.e. the local metric realization of $\left[\mathscr{P}^{\mathscr{G}} ; \mathscr{G}\left(\mathcal{I},\left\{\nu_{\mathrm{e}}\right\}\right)\right]$, which will be denoted by $\tilde{\mathrm{P}}$, with the following properties.

MR.1. $\tilde{\mathrm{P}}$ is a simplicial complex on the projective metric d-sphere S^{d} with spherical, hyperbolic or Euclidean metric. $\tilde{\mathrm{P}}$ has only proper facets.

MR.2. A simplicial homeomorphism $\varphi: \tilde{\mathbf{P}} \rightarrow \tilde{\mathrm{P}}$ is required such that φ is compatible with the actions of \mathscr{G} on $\tilde{\mathbf{P}}$ and

$$
\varphi^{-1} \mathrm{~h} \varphi=: \mathrm{h}: \tilde{\mathrm{P}} \rightarrow \tilde{\mathrm{P}}
$$

is a "simplex-wise" isometry in S^{d} for any occurring action $\mathrm{h} \in \mathscr{G}$ on $\tilde{\mathbf{P}}$. We say that $\mathrm{h} \in \mathscr{E}$ is φ-associated with $\mathrm{h} \in \mathrm{Iso} \mathrm{S}^{d} ; \mathrm{h}=1$ also allowed, then h is a restriction of the identity of S^{d}.

MR.3. We require for each edge class e that the simplices in $\tilde{\mathbf{P}}$, describing the fundamental polyhedron \mathscr{P}_{e} of the stabilizer $\mathscr{\mathscr { G }}_{\mathrm{e}}$, will have images P_{e} in S^{d} such that the generators of $\mathscr{\xi}_{\mathrm{e}}$ are φ-associated with the generators identifying the corresponding facets of P_{e} by isometries. Furthermore, we require that any cycle relation, with exponent ν_{e} (0 is included), shall be isometrically satisfied for these generators in S^{d}.

Remark. Instead of metric realization we can obviously define topologic, affine, conform, etc. realization of $\tilde{\mathbf{P}}$ as well. The existence of these realizations is always questionable as we indicated after Theorem 6.1. It may depend on \mathcal{P}, \mathscr{F} and $\left\{\nu_{\mathrm{e}}\right\}$, too. Examples show these facts in Section 9 .

The main problem is how to realize the global polyhedron complex [$\left.\mathscr{P}^{\mathfrak{H}} ; \mathscr{H}\left(\mathcal{F},\left\{\nu_{\mathrm{e}}\right\}\right)\right]$ on a projective metric d-sphere S^{d}, particularly in $\mathscr{\mathscr { C }}^{d}, \mathscr{H}^{d}$, \mathscr{E}^{d}. The metric realization $\left[\mathrm{P}^{\mathrm{G}}, \mathrm{G}\left(\mathrm{I},\left\{\nu_{\mathrm{e}}\right\}\right)\right]$ exists on S^{d}, modelling $\varphi^{d}, \mathscr{H}^{d}$ or \mathscr{E}^{d}, if there is an equivariant bijection Φ of $\mathscr{P}^{\mathscr{E}}$ onto P^{G} on S^{d}, i.e. there is an isomorphism f of $\mathscr{\mathscr { E }}$ onto an isometry group $\mathrm{G} \subset \mathrm{Iso} \mathrm{S}^{d}$ such that the following diagram is commutative:

that means $\mathrm{g}^{f}=\mathrm{g}=\Phi^{-1} \mathrm{~g} \Phi$ for any $\mathrm{g} \in \mathscr{G}$.
Poincaré made the first steps $[33,34]$ to solve particular cases in dimensions $d=2,3$, by formulating angle conditions for a fundamental polygon, resp. a polyhedron. The d-dimensional formulation is indicated in [20]. A. D. Aleksandrov [1] gave a principal generalization for filling the d-space of constant curvature by face-to-face compact polyhedra from finitely many congruence classes. His criterion says that it is satisfactory to guarantee the (unique) continuation of the filling around ($d-2$)-faces. His topological method, using covering space arguments, is very effective. (For non-compact hyperbolic polyhedra see also [3, 4].) In [40] there is a formulation of the

Poincaré theorem in this sense. Applications can be found in many papers, see e.g. $[6,13,14,19,24,25,26,30,31,32,35,40,41,43]$.

Our formulation will also reduce the problem to checking finitely many cases. The combinatorial algorithms, described in Sections 1-6, can be extended by geometric considerations which need to examine ($d-1$)-dimensional cases, namely the stabilizers of faces of \mathscr{P}. Thus we get a hopeful inductive procedure.

Consider a local metric realization $\tilde{\mathrm{P}}$ which may have curved faces, too $[26,27,30]$. It contains the φ-images of those simplices which amount $\mathbf{P} \subset \tilde{\mathbf{P}}$ corresponding to \mathscr{P} by its flags in \mathscr{F}. We denote $\mathbf{P}^{\varphi}=: \mathrm{P}:=\mathscr{P}^{\Phi}$. Each face identification of \mathscr{P} is also described by simplices in $\tilde{\mathbf{P}}$ and so in $\tilde{\mathbf{P}}$ as defined in Algorithm 6.1. Imagine that these simplices are glued to the corresponding facet by the isometry $\varphi^{-1} \mathrm{~g}_{i}^{-1} \varphi=: \mathrm{g}_{i}^{-1} \in$ Iso S^{d}. So the g_{i}^{-1}-image of P can be defined as an extension of the simplex-wise isometry in S^{d}. Hence, for any element $\mathrm{h}=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{s-1} \mathrm{~g}_{s}$ of $\mathscr{\mathscr { H }}$ with generators $\mathrm{g}_{1} \ldots \mathrm{~g}_{s} \in \mathcal{I}$ we can define the corresponding Φ-image of \mathscr{P}^{h}, i.e. the polyhedron P^{h}, passing through $\mathrm{P}^{\mathrm{g}_{s}}, \mathrm{Pg}_{s-1 \mathrm{~g}_{s}}, \ldots, \mathrm{P}^{\mathrm{g}_{2} \ldots \mathrm{~g}_{s}-1 \mathrm{~g}_{s}}$ as described in Theorem 3.1.

For a while we do not know, whether Φ extends uniquely or not, and the Φ-image of $\mathfrak{P}^{\mathscr{L}}$ cover the proper points of S^{d} or not.

Fig. 7
Now consider the simplices in \tilde{P} which constitute the fundamental domain P_{e} for the stabilizer G_{e} of a ($d-2$)-face e. We have the cases, described in Fig. 7.a-e.

If $1 \leqq \nu_{\mathrm{e}}$ is finite then P_{e} has proper ($d-2$)-face e (Fig. 7.a). The stabilizer G_{e} has the rotation subgroup R_{e} of order ν_{e} in $\mathscr{\varphi}^{d}, \mathscr{H}^{d}$ or \mathscr{E}^{d}.

If $\nu_{\mathrm{e}}=0$, i.e. R_{e} has infinite order, then we may have 4 cases:
Fig. 7.b shows when R_{e} consists of Euclidean translations, since e is an ideal ($d-2$)-face. Fig. 7.c is the case where R_{e} is generated by a "horocyclic translation" in \mathscr{H}^{d} about the end of e.

In Fig. $7 . d$ the $(d-2)$-face e lies out of the absolute of \mathscr{H}^{d}, its 1 -dimensional polar is the proper line e_{*}, R_{e} is generated by a hypercyclic translation along e_{*} which happens not to intersect P.

In the last cases, when e is not proper, the metric data of the corresponding generators of G_{e} are not unique in general.

Fig. 7.e shows such an important 2 -dimensional hyperbolic case, where G_{e} is generated by a hyperbolic translation along a line ℓ. One end of ℓ is the unique end of e. The line ℓ does not meet any G_{e}-images of P_{e}. In this way we cannot get a fundamental domain for the starting group G.

The d-dimensional generalization of this case $(d \geqq 3)$ yields also a hyperbolic translation along a line ℓ, where the ($d-2$)-face e is fixed but not point-wise.

On the (d-1)-plane ε, tangent to the absolute of \mathscr{H}^{d} at the end of e , we have a Euclidean projective metric structure, i.e. a bilinear form of signature $\langle+,+, \ldots, 0\rangle$, so that the vector \mathbf{e}, assigning the end of e , is orthogonal to each vector of the corresponding d-subspace \mathbf{E}^{d} of \mathbf{V}^{d+1} (see Section 7). The hyperbolic translation along ℓ induces a Euclidean dilatation in ε with centre at the end of e , the axis (as ideal ($d-2$)-plane is cut off ε by the $(d-1)$-plane tangent to the absolute at the second end of ℓ. Such a case cannot yield a fundamental domain for G , since ℓ will not be intersected by P_{e}-images under G_{e}, but any neighbourhood of any point on ℓ will.

Now let us consider the simplices in \tilde{P} which constitute the fundamental domain P_{x} for the stabilizer G_{x} of an m-face $\mathrm{x}(0 \leqq m \leqq d-3)$. We have analogous cases as before.
G_{x} is finite iff x is a proper m-face. The midpoint of x is a centre of a ($d-1$)-sphere on which G_{x} will act discontinuously.

If G_{x} is infinite, then x shall be an improper m-face without or with end on the absolute of \mathscr{E}^{d} or \mathscr{H}^{d}.

First, assume x to be an improper m-face without end, then the polar $(d-m-1)$-plane x_{*} is invariant in \mathscr{H}^{d} under G_{x} and so are the $(d-m-$ $-1)$-hyperspheres with base x_{*}. Then we can define an appropriate $(d-1)$ hypersphere (distance surface) with pole in the midpoint of x, intersecting only those ($d-1$)-facets of P_{x} which contain x . On this hypersphere G_{x} acts as a $(d-1)$-dimensional hyperbolic isometry group with a fundamental domain cut off by P_{x} off the ($d-1$)-hypersphere.

Assume that x has one end. Then G_{x} acts either as a Euclidean motion group with invariant $(d-m-1)$-planes, respectively with invariant ($d-m-$ -1)-horospheres (in analogy with Fig. 7.b-c), or as a Euclidean (proper)
similarity group (in analogy with Fig. 7.e).
In this latter case there exists a line ℓ (at least one) which will not be intersected by the P_{x}-images under the stabilizer G_{x}, but any neighbourhood of any point of ℓ will. Thurston [37] developed a method (called Dehn's surgery) which may lead to a discontinuous transformation group also in this case, but then we have additional defining relation and a modified fundamental domain. I only remark that the famous Thurston's manifold of volume 0.98 and the hyperbolic manifold of volume 0.94 discovered by Matveev-Fomenko [12] can also be constructed in our manner by a compact fundamental polyhedron.

Summarizing, if the cases Fig. 7.e occur for the local realization $\tilde{\mathrm{P}}$ in \mathscr{H}^{d}, then this does not extend to a global realization of $\left[\mathscr{P}^{\mathscr{E}}, \mathscr{Y}\left(\mathcal{G},\left\{\nu_{\mathrm{e}}\right\}\right)\right]$ in general.

Theorem 8.1. The d-dimensional polyhedron complex $\left[\mathcal{P}^{\mathscr{Y}} ; \mathscr{H}\left(\mathcal{F},\left\{\nu_{\mathrm{e}}\right\}\right)\right]$ can be realized on the projective metric d-sphere S^{d}, if the corresponding finite simplicial complex $\tilde{\mathbf{P}}$ has a metric realization $\tilde{\mathrm{P}}$ on S^{d} by MR.1-3 such that any stabilizer of any face with exactly one end has only horospherical generators by P .

Proof. We follow A. D. Aleksandrov [1] with some modifications and prove by induction on dimension. We consider the local realization $\tilde{\mathrm{P}}$ as a finite collection of simplices on a projective metric d-sphere S^{d}. Our conditions guarantee that we can uniquely tile S^{d} with G-images of P around ($d-1$)-facets and ($d-2$)-faces of P .

Now we prepare all the typical neighbourhoods for the point equivalence classes on m-faces of \mathbf{P} in the simplices of $\tilde{\mathrm{P}}$ for any $m, 0 \leqq m \leqq d$.

For any proper point X on an m-face we consider a ball B_{X} with centre in X , intersecting only those facets of $\tilde{\mathrm{P}}$ which contain X . The $(d-1)$-dimensional surface S_{X} of B_{X} cut off $\tilde{\mathrm{P}}$ a $(d-1)$-dimensional complex P_{X} which satisfies the conditions of our theorem for dimension $d-1$. By induction we can uniquely tile the whole sphere S_{X} and so the whole ball B_{X}, since on S_{X} we have a spherical metric ($d-1$)-space.

For any improper m-face with exactly one end X we consider the corresponding horoball B_{X} whose surface S_{X} intersects (in proper points) only those facets of \tilde{P} which contain the end X. The horosphere S_{X} cut off \tilde{P} a ($d-1$)-complex P_{X} which satisfies our conditions in less dimension. Therefore, by induction, we can uniquely tile the whole S_{X} and so the whole B_{X}, since on the horosphere S_{X} we have a Euclidean metric ($d-1$)-space. This arguments hold also for \mathscr{E}^{d} where a horoball means a half-space.

Consider any improper m-face in \mathscr{H}^{d} with an outer midpoint X. We take such a hypersphere S_{X} with base ($d-1$)-plane polar to the centre X , and that proper part of \mathscr{H}^{d}, the hyperball BX_{X}, which intersect only the facets of $\tilde{\mathrm{P}}$ having X as common point. This hyperball B_{X} does not contain any
midpoints of the proper m-faces of $\tilde{\mathrm{P}}, 0 \leqq m \leqq d$. The hypersphere S_{X} cut off $\tilde{\mathrm{P}} \mathrm{a}(d-1)$-complex P_{X} which satisfies our conditions in less dimension. Again by induction, we can uniquely tile the whole S_{X} and so the whole B_{X}, since on S_{X} we have a hyperbolic metric ($d-1$)-space.

Now we determine a universal distance δ for $\tilde{\mathrm{P}}$ (Lebesgue-distance). Cutting off \tilde{P} all the open horoballs and hyperballs defined before, we get a compact subset $\tilde{\mathrm{P}}^{c}$ of $\tilde{\mathrm{P}}$. Any point A of $\tilde{\mathrm{P}}^{c}$ has a typical ball-like neighbourhood $\mathrm{B}\left(\mathrm{A}, r_{\mathrm{A}}\right)$ with radius r_{A}. Take the open balls $\mathrm{B}\left(\mathrm{A}, \frac{1}{2} r_{\mathrm{A}}\right)$ at every point A of $\tilde{\mathbf{P}}^{c}$. These balls cover $\tilde{\mathrm{P}}^{c}$. By the Borel lemma, from these balls we can choose a finite covering. The minimal radius of these finitely many balls will be a universal distance δ with the property that any point X of $\tilde{\mathrm{P}}$ has a balllike neighbourhood of radius δ which is contained in a typical generalized neighbourhood. Here "generalized" means that we count also the finitely many horoballs and hyperballs to the typical ball-like neighbourhoods.

Consider any proper point A of the projective metric sphere S^{d}. Connect it with a point C in $\tilde{\mathrm{P}}$ by a geodesic line. We shall prove that A is uniquely covered by a G-iamge of P.

We cover the segment CA by finitely many subsegments $\mathrm{CC}_{1}, \mathrm{C}_{1} \mathrm{C}_{2}, \ldots$, $\mathrm{C}_{n} \mathrm{~A}$ whose length is smaller than δ. We go from C to A step-by-step using the facts that the typical generalized neighbourhoods have uniquely been covered by the induction assumption. We easily see as well that the segment CA is covered by finitely many G-images of P joining each other along adjacent facets.

The covering of the proper part of S^{d} is unique, since it is simply connected.

The theorem is true for $d=2$, since the conditions for facets and ($d-2$)faces, i.e. vertices, guarantee the (unique) tiling of the typical generalized neighbourhoods in $\tilde{\mathrm{P}}$.

We do not claim that the improper points of $\mathrm{S}^{d}=\mathscr{H}^{d}$ will be covered by G -images of P if P has also outer points. This is not true in general. But the covering is unique, since each outer point can be characterized by a bundle of proper lines running inside of a G-image of P. Q.e.d.

9. Examples

In this section we illustrate our method by further examples.

1. Fig. 8 shows a 3 -simplex $A_{0} A_{1} A_{2} A_{3}=: \mathscr{P}$ with a pairing \mathscr{G} of its facets from among the possible 64 different pairings [28, 43]. Now, the generators of $\mathscr{G}(a, b, ; c, d)$ are:

$$
\begin{equation*}
\mathrm{z}_{1}: A_{1} A_{2} A_{3} \rightarrow A_{0} A_{3} A_{2}: \quad \mathrm{z}_{2}: A_{0} A_{1} A_{2} \rightarrow A_{1} A_{0} A_{3} . \tag{1}
\end{equation*}
$$

Fig. 8
The edge classes and the cycle relations are read off Fig. 8, by Section 4.

$$
\begin{align*}
& a \rightarrow:\left(z_{1} z_{1}\right)^{a}=1 ; \quad b \rightarrow:\left(z_{2} z_{2}\right)^{b}=1 ; \tag{2}\\
& c \Rightarrow:\left(z_{1} z_{2}^{-1}\right)^{c}=1 ; \quad d \rightarrow-\left(z_{1} z_{2}\right)^{d}=1 .
\end{align*}
$$

The stabilizers of the edges are: $\mathscr{\mathscr { g }}_{\mathrm{a}}:=\left(\mathrm{z}_{1}-\mathrm{z}_{1}^{2 a}\right) ; \mathscr{y}_{\mathrm{b}}:=\left(\mathrm{z}_{2}-\mathrm{z}_{2}^{2 b}\right) ; \mathscr{\mathscr { y }}_{\mathrm{c}}:=\left(\mathrm{r}_{1}:=\right.$ $\left.:=\mathrm{z}_{1} \mathrm{z}_{2}^{-1}-\mathrm{r}_{1}^{c}\right) ; \mathscr{y}_{\mathrm{d}}:=\left(\mathrm{r}_{2}:=\mathrm{z}_{1} \mathrm{z}_{2}-\mathrm{r}_{2}^{d}\right)$.

The stabilizers of the vertices are also illustrated in Fig. 8 (see [16] for the surface diagram of 2-dimensional groups):

$$
\begin{align*}
& \circ\left\{A_{0}, A_{1}\right\}: \mathscr{G}_{A_{1}}:=\left(\mathrm{r}_{2}:=\mathrm{z}_{1} \mathrm{z}_{2}, \mathrm{r}_{3}:=\mathrm{z}_{2}^{2}-\mathrm{r}_{2}^{d}, \mathrm{r}_{3}^{b},\left(\mathrm{r}_{2} \mathrm{r}_{3}^{-1}\right)^{c}\right) ; \tag{3}\\
& \bullet\left\{A_{2}, A_{3}\right\}: \mathscr{E}_{\mathrm{A}_{3}}:=\left(\mathrm{r}_{4}:=\mathrm{z}_{1}^{2}, \mathrm{r}_{5}:=\mathrm{z}_{1}^{-1} \mathrm{z}_{2}-\mathrm{r}_{4}^{a}, \mathrm{r}_{5}^{c},\left(\mathrm{r}_{4} \mathrm{r}_{5}\right)^{d}\right) .
\end{align*}
$$

We applied the considerations from Section 5.
Now we examine the possible collections of exponents $\left\{\nu_{e}\right\}=\{a, b ; c, d\}$ and the realizations of $\mathscr{P}^{\mathscr{E}}$.
$\{a, b ; c, d\}=\{1,1 ; 1,1\}$ involves the group $\mathscr{G}:=\left\{z_{1}-z_{1}^{2}=1\right\}$ of order two. $\mathscr{P}^{\mathscr{E}}$ has a realization in the spherical space $\mathscr{\varphi}^{3}, \mathrm{z}_{1}$ will be an antiinversion changing P as a ball with the complementary ball $\mathrm{P}^{\mathrm{z}_{1}}$.
$\{a, b ; c, d\}=\{1,1 ; 1,2\}$ involves also $\mathscr{E}:=\left\{\mathrm{z}_{1}-\mathrm{z}_{1}^{2}\right\}$. But $\mathscr{P}^{\mathscr{E}}$ has no metric realization in our sense.

For the general situation we consider a tetrahedron P on a projective metric sphere S^{3} with the congruent facets indicated in Fig. 8. It follows that P has a half-turn with axis $\mathrm{A}_{01} A_{23}$ as a self-symmetry. This implies the angles of P to be $\frac{\pi}{a}, \frac{\pi}{b} ; \frac{\pi}{c}, \frac{\pi}{d}$ and $a, b ; c, d \geqq 2$, thus we have the following

Schläfli-Coxeter matrix [7]:

$$
\left(b^{i j}\right)=\left(\left\langle b^{i} ; b^{j}\right\rangle\right)=\left(\begin{array}{cccc}
1 & -\cos \frac{\pi}{a} & -\cos \frac{\pi}{d} & -\cos \frac{\pi}{c} \tag{4}\\
-\cos \frac{\pi}{a} & 1 & -\cos \frac{\pi}{c} & -\cos \frac{\pi}{d} \\
-\cos \frac{\pi}{d} & -\cos \frac{\pi}{c} & 1 & -\cos \frac{\pi}{b} \\
-\cos \frac{\pi}{c} & -\cos \frac{\pi}{d} & -\cos \frac{\pi}{b} & 1
\end{array}\right), \quad i, j=0,1,2,3
$$

in the sense of Theorem 7.1. The change $a \leftrightarrow b$ or $c \leftrightarrow d$ does not make any difference. These simplices have the Coxeter diagram in Fig. 8 which has an involutive automorphism without fixed nodes, since P has a half-turn as a self-symmetry. Theorem 7.1 provides a complete description of the metric realizations of these simplices.

By (4), the bilinear form

$$
\begin{equation*}
\langle u, u\rangle=\sum_{i, j=0}^{3} u_{i} b^{i j} v_{j} \tag{5}
\end{equation*}
$$

on \mathbf{R}_{4}^{*} with the matrix $\left(b^{i j}\right)$ is of signature $\langle+,+,+,+\rangle$ iff
(6) $\{a, b ; c, d\}=\{m, n ; 2,2\} \quad m, n \geqq 2$;
$=\{2,2 ; m, 2\}$ (this has the same simplex as $\{m, m ; 2,2\}$);

$$
(m \geqq 3)
$$

$=\{3,2 ; 3,2\}$.
So we have got all the metric realizations of $\mathscr{P}^{\mathscr{E}}$ in the spherical space $\mathscr{\varphi}^{3}$.
The signature of (5) is $\langle+,+,+, 0\rangle$ iff (see [28])

$$
\left.\begin{array}{rlrl}
\{a, b ; c, d\} & =\{3,3 ; 3,2\}, & & \text { 203. Fd3 } \tag{7}\\
& =\{2,2 ; 3,3\}, & \text { 219. F43c }
\end{array}\right\} \text { these have the } \text { same simplex. }
$$

These are Euclidean crystallographic groups, realizing $\mathscr{P}^{\mathscr{E}}$ in \mathscr{E}^{3}.
The signature of (5) is $\langle+,+,+,-\rangle$ in the following cases (8)-(10):

$$
\begin{align*}
\{a, b ; c, d\} & =\{5,2 ; 3,2\},\{3,2 ; 5,2\} ; \tag{8}\\
& =\{4,3 ; 3,2\},\{5,3 ; 3,2\},\{5,4 ; 3,2\} ; \\
& =\{4,4 ; 3,2\}-\{3,3 ; 4,2\}-\{2,2 ; 3,4\} \text { for the same simplex; } \\
& =\{5,5 ; 3,2\}-\{3,3 ; 5,2\}-\{2,2 ; 5,3\} \text { for the same simplex. }
\end{align*}
$$

These are so-called Lanner simplices [40], when P is compact in \mathscr{H}^{3}. They realize 11 non-isomorphic $\mathscr{P}^{\mathscr{E}}$ in \mathscr{H}^{3}.

$$
\begin{align*}
\{a, b ; c, d\} & =\{3,2 ; 6,2\},\{6,2 ; 3,2\},\{4,2 ; 4,2\} ; \tag{9}\\
& =\{3,2 ; 3,3\},\{6,3 ; 3,2\},\{6,4 ; 3,2\},\{6,5 ; 3,2\},\{4,3 ; 4,2\} .
\end{align*}
$$

These are non-compact simplices in \mathscr{H}^{3} with 2 proper vertices and 2 ends. They realize 8 non-isomorphic $\mathscr{P}^{\mathscr{E}}$ in \mathscr{H}^{3}.

$$
\begin{align*}
\{a, b ; c, d\} & =\{6,6 ; 3,2\}-\{3,3 ; 6,2\}-\{2,2 ; 6,3\} ; \tag{10}\\
& =\{4,4 ; 4,2\}-\{2,2 ; 4,4\} \\
& =\{3,3 ; 3,3\}
\end{align*}
$$

So we have 3 simplices in \mathscr{H}^{3} with 4 ends as vertices. They realize 6 nonisomorphic $\mathscr{P}^{\mathscr{E}}$ in \mathscr{H}^{3}.

Of course, we may have also non-proper edges for P.
For instance, the case $\{0,2 ; 2,2\}$ is realized by the matrix

$$
\left(b^{i j}\right)=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \tag{11}\\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

of signature $\langle+,+,+, 0\rangle$ (see Theorem 7.1). Then we have a Euclidean simplex P. A_{0}, A_{1} are proper vertices; A_{2}, A_{3} are ideal points. $\mathscr{P}^{\mathscr{L}}$ is realized by a Euclidean "rod group" G, generated by the glide-reflection z_{1} and the rotatory reflection z_{2} about the line $A_{0} A_{1}$.

The extreme case $\{0,0 ; 0,0\}$ is realized, e.g., by the matrix

$$
\left(b^{i j}\right)=\left(\begin{array}{cccc}
1 & -1 & -1 & -1 \tag{12}\\
-1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1
\end{array}\right)
$$

of signature $\langle+,+,+,-\rangle$, since its eigenvalues are $\langle 2,2,2,-2\rangle$. Then we have a hyperbolic simplex P with proper facets. Every edge of P has exactly one end as midpoint. All the vertices lie out of the absolute. So we realize $\mathscr{P}^{\mathscr{G}}$ in \mathscr{H}^{d}, G is generated by two horospherical glide-reflections z_{1} and z_{2} so that $z_{1} z_{2}^{-1}$ and $z_{1} z_{2}$ are horospherical translations. The stabilizers of vertices are plane hyperbolic groups.

The earlier case $\{0,2 ; 2,2\}$ also allows us to define the matrix

$$
\left(b^{i j}\right)=\left(\begin{array}{cccc}
1 & -\operatorname{ch} t & 0 & 0 \tag{11}\\
-\operatorname{ch} t & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

of signature $\langle+,+,+,-\rangle$, since its eigenvalues are $(1,1,1+\operatorname{ch} t, 1-\operatorname{ch} t)$. That means, the planes $\left(b^{0}\right)=A_{1} A_{2} A_{3}$ and $\left(b^{1}\right)=A_{0} A_{2} A_{3}$ have the distance t along the common perpendicular $\mathrm{A}_{0} A_{1}$, polar to the improper edge $A_{2} A_{3}$. The generator \mathbf{z}_{1} is a glide reflection along $A_{0} A_{1}, \mathbf{z}_{2}$ is a rotatory reflection

Fig. 9
about $A_{0} A_{1}$. We have got isomorphic groups by (11) and (13) but different realizations.
2. Fig. 9 shows a polyhedron \mathscr{P} whose surface is homeomorphic to the projective plane and this is while \mathscr{P} cannot be realized in \mathscr{E}^{3} or in $\mathscr{H}^{3}, \varphi^{3}$. We start with a division of the projective plane by three lines into 4 triangles. We introduce the formal midpoint if \mathscr{P} which is connected with the points of the projective plane to form a cone. We shall pair the triangles by associating their flags. The vertices A_{1}, A_{2}, A_{3} divide the lines into 6 numbered segments. All these will be equivalent at the pairing \mathcal{F}, whose generators are

$$
\mathrm{s}_{1}: 125 \rightarrow 234 ; \quad \mathrm{s}_{2}: 631 \rightarrow 546
$$

This yields the cycle rotation $\mathrm{s}_{1}^{2} \mathrm{~s}_{2} \mathrm{~s}_{1}^{-1} \mathrm{~s}_{2}^{-2}$ by Section 4. Taking an exponent a, we get a representation of the group

$$
\begin{equation*}
\mathscr{y}:=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}-\left(\mathrm{s}_{1}^{2} \mathrm{~s}_{2} \mathrm{~s}_{1}^{-1} \mathrm{~s}_{2}^{-2}\right)^{a}=1\right) \tag{14}
\end{equation*}
$$

The stabilizer $\mathscr{\mathscr { L }}_{A_{1}}$ for the equivalence class of vertices A_{1}, A_{2}, A_{3} will be determined by constructing $\mathscr{P}_{A_{1}}$ as in Section 5. $\mathscr{P}_{A_{1}}$ consists of 3 quadrangular vertex domains glued at A_{1}. Fig. 9 shows this 2 -dimensional structure. \mathscr{D}^{1} is the vertex domain of A_{1} with 4 facets, denoted by $\mathrm{f}_{\mathrm{s}_{1}}, \mathrm{f}_{\mathrm{s}_{1}}, \mathrm{f}_{\mathrm{s}_{2}^{-1}}, \mathrm{f}_{\mathrm{s}_{2}}$ (after the generators, the f's are omitted in Fig. 9), and with 4 oriented edges 1 , $2,4,6$. Along the facet $\mathrm{f}_{\mathrm{s}_{1}}$ we glue the s^{1}-image of the vertex domain A_{2} to \mathscr{D}^{1} so that $\mathrm{f}_{\mathrm{s}_{1}}=\left(\mathrm{f}_{\mathrm{s}_{1}^{-1}}\right)^{\mathrm{s}_{1}}$ (in Fig. 9 for brevity $\left.\left(\mathrm{f}_{\mathrm{s}_{1}^{-1}}\right)^{\mathrm{s}_{1}}=:\left(\mathrm{s}_{1}^{-1}\right)^{*}\right), \mathscr{2}=1^{\mathrm{s}_{1}}=: 1^{*}$, $4=5^{*}$. This domain is denoted by $\mathscr{D}^{s_{1}}$. Along $\mathrm{f}_{\mathrm{s}_{2}^{-1}}$ we glue the s_{2}^{-1}-image of the vertex domain A_{3} to \mathscr{D}^{1}, so that $\mathrm{f}_{\mathrm{s}_{2}^{-1}}=\left(\mathrm{f}_{\mathrm{s}_{2}}\right)^{\mathrm{s}_{2}^{-1}}=: \mathrm{s}_{2}^{*}, 6=5^{*}, 1=6^{*}$.

This domain is denoted by $\mathscr{D}^{s_{2}^{-1}}$. Now the facets of $\mathscr{P}_{A_{1}}=\mathscr{D}^{1} \cup D^{s_{1}} \cup D^{s_{2}^{-1}}$ are paired as indicated in Fig. 9 by special lines. So we get the generators of $\mathscr{U}_{\mathrm{A}_{1}}$ as follows:

$$
\begin{array}{ll}
\square & \mathrm{f}_{\mathrm{s}_{1}^{-1}} \mapsto\left(\mathrm{f}_{\mathrm{s}_{1}}\right)^{\mathrm{s}_{2}^{-1}}: \mathrm{g}_{1}:=\mathrm{s}_{1} \mathrm{~s}_{2}^{-1} \\
\sim \sim & \left(\mathrm{f}_{\mathrm{s}_{2}^{-1}}^{\mathrm{s}_{2}^{-1} \mapsto}\right)^{\circ}\left(\mathrm{f}_{\mathrm{s}_{2}}\right)^{\mathrm{s}_{1}}: \mathrm{g}_{2}:=\mathrm{s}_{2}^{2} \mathrm{~s}_{1} ; \tag{15}\\
\cdots & \left(\mathrm{f}_{\mathrm{s}_{2}^{-1}}\right)^{\mathrm{s}_{1} \mapsto f_{\mathrm{s}_{2}}: \mathrm{p}_{1}:=\mathrm{s}_{1}^{-1} \mathrm{~s}_{2}} \\
= & \left(\mathrm{f}_{\mathrm{s}_{1}^{-1}}\right)^{\mathrm{s}_{2}^{-1} \mapsto} \mapsto\left(\mathrm{f}_{\mathrm{s}_{1}}\right)^{\mathrm{s}_{1}}: \mathrm{p}_{2}:=\mathrm{s}_{2} \mathrm{~s}_{1}^{2}
\end{array}
$$

The relations for $\mathscr{\mathscr { G }}_{A_{1}}$ are

$$
\begin{equation*}
\ominus:\left(\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{2}^{-1} \mathrm{~g}_{1}\right)^{a}=1 ; \quad \oplus:\left(\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{p}_{2}^{-1} \mathrm{p}_{1}^{-1}\right)^{a}=1 \tag{16}
\end{equation*}
$$

Both relations are consequences of (14-15). We have described also the surface diagram of $\mathscr{\mathscr { G }}_{A_{1}}$ in Fig. 9 in the sense of [16]. This is a graph on the non-oriented surface of genus 3 (a sphere with 3 cross-graphs) endowed with two centres of a-fold rotation. If we cut the surface along this graph, then we get the fundamental polygon of $\mathscr{\zeta}_{A_{1}}$ described above. The case $a=1$ seems to be very important. Then \mathscr{P} with the above identifications is "almost a manifold" with two exceptional points, the centre of \mathscr{P} and the equivalence class of the vertices.

Fig. 10
3. Now we shall construct a Threlfall's manifold of constant positive curvature by means of the method applied first in [31]. In Fig. 10 we have described a truncated cube as \mathscr{P} and a pairing \mathscr{F} on it, so that each equivalence class of the edges has exactly 3 edges at the joint of a triangle-octagon,
octagon--octagon, octagon--triangle, respectively. All the exponents will be 1. Consequently, each equivalence class of the vertices has exactly 4 vertices starting or ending 4 edge classes. We define the generators step-by-step and get the relations by the scheme as follows.

First we assign the edge class \rightarrow and the facets, joining at these edges, together with two generators:

$$
\begin{equation*}
\mathrm{u}: \mathrm{f}_{\mathrm{u}^{-1}} \mapsto \mathrm{f}_{\mathrm{u}} ; \quad \mathrm{x}: \mathrm{f}_{\mathrm{x}^{-1}} \mapsto \mathrm{f}_{\mathrm{x}} \tag{17}
\end{equation*}
$$

This determines the generator $x^{-1} u: f_{u^{-1}} \mapsto f_{x^{-1}}$ as a product. In Fig. 10 the f's are omitted. Surprisingly, our previous requirements will determine the whole construction. All the generators are expressed by u and x, and we also get the defining relations.

At the joint of f_{u} and f_{x} we choose the edge 1. This has two images on $f_{u^{-1}}$ and on $f_{x^{-1}}$. The joining facets at the previous edge images shall be paired, so the generator $u x^{-1}: f_{x^{-1}} \mapsto f_{u x^{-1}}$ shall be introduced.

At the joint of already marked facets we define a newer edge class containing 3 edges and we get a new generator, a trivial relation, a non-trivial relation or a consequence relation by the following scheme:

$$
\begin{align*}
& \rightarrow-\mathrm{x}^{-1} \mathrm{u} ; \quad 1: \mathrm{ux}^{-1} ; \quad 2: \mathrm{x}^{-1}\left(\mathrm{u}^{-1} \mathrm{x}\right)\left(\mathrm{xu}^{-1}\right)=1 ; \\
& 3: \mathrm{b}:=\mathrm{u}\left(\mathrm{x}^{-1} \mathrm{u}\right) ; \quad 4: \mathrm{c}:=\left(\mathrm{u}^{-1} \mathrm{x}\right)\left(\mathrm{ux}^{-1}\right) \\
& 5: \mathrm{a}:=\left(\mathrm{xu}^{-1}\right) \mathrm{u}^{-1} ; \quad 6: \mathrm{a}^{-1}\left(\mathrm{u}^{-1} \mathrm{x}\right) \mathrm{u} \stackrel{5}{=} \mathrm{xu}^{-3} \mathrm{xu}=1 \\
& 7: \mathrm{a}\left(\mathrm{ux}^{-1}\right)\left(\mathrm{u}^{-1} \mathrm{x}\right) \stackrel{5}{=} \mathrm{xu}^{-1} \mathrm{x}^{-1} \mathrm{u}^{-1} \mathrm{x} \stackrel{2}{=} 1 ; \\
& 8: \mathrm{c}\left(\mathrm{x}^{-1} \mathrm{u}\right) \mathrm{u} \stackrel{4}{=} \mathrm{u}^{-1} \mathrm{xux}^{-2} \mathrm{u}^{2} \stackrel{2}{=} 1 ; \tag{18}\\
& 9: \mathrm{cu}\left(\mathrm{xu}^{-1}\right) \stackrel{4}{=} \mathrm{u}^{-1} \mathrm{xu}\left(\mathrm{x}^{-1} \mathrm{ux}\right) \mathrm{u}^{-1} \stackrel{2}{=} \mathrm{u}^{-1} \mathrm{xu}\left(\mathrm{xu}^{-1}\right) \mathrm{u}^{-1} \stackrel{6}{=} 1 ; \\
& 10: \mathrm{bu}^{-1} \mathrm{xu}^{-1} \stackrel{3}{=} 1 ; \\
& 11: \mathrm{b}\left(\mathrm{xu}^{-1}\right)\left(\mathrm{u}^{-1} \mathrm{x}\right) \stackrel{3}{=} \mathrm{ux}^{-1}\left(\mathrm{uxu}^{-2}\right) \mathrm{x} \stackrel{6}{=} \mathrm{ux}^{-1}\left(\mathrm{x}^{-1} \mathrm{u}\right) \mathrm{x}_{\stackrel{2}{=}}^{=} 1
\end{align*}
$$

As we see, from the relations at 2 and 6 we can derive the others. So we have for $\mathscr{\mathcal { Y }}(\mathscr{P}, \mathscr{F})$ the presentation

$$
\begin{equation*}
y:=\left(u, x-x^{2} u^{-1} x^{-1} u^{-1}=1=u^{3} x^{-1} u^{-1} x^{-1}\right) \tag{19}
\end{equation*}
$$

This is Threlfall's binary octahedral group [7] of symbol $\langle 2,3,4\rangle$ and of order 48 mentioned as $\boldsymbol{\mathscr { G }}_{43}$ in [30] and described there by a spherical tetrahedron. It is shown first by Threlfall that this $\mathscr{\mathcal { H }}$, as a fundamental group. defines a spherical space form $\varphi^{3} / \mathscr{Y}$.

Now we shall prove that $\mathscr{P}^{\mathscr{Y}}$ has a metric realization in the spherical space φ^{3}, indeed. Let us consider the simplex $A_{0} A_{1} A_{2} A_{3}$ whose Schläfli-Coxeter matrix is

$$
\left(b^{i j}\right)=\left(\left\langle b^{i} ; b^{j}\right\rangle\right)=\left(\begin{array}{cccc}
1 & -\cos \frac{\pi}{3} & 0 & 0 \tag{20}\\
-\cos \frac{\pi}{3} & 1 & -\cos \frac{\pi}{4} & 0 \\
0 & -\cos \frac{\pi}{4} & 1 & -\cos \frac{\pi}{3} \\
0 & 0 & -\cos \frac{\pi}{3} & 1
\end{array}\right), \quad i, j=0,1,2,3
$$

of signature $\langle+,+,+,+\rangle$. Hence $A_{0} A_{1} A_{2} A_{3}$ can be realized in φ^{3}. Its Cox-eter-diagram, described in Fig. 10, has a symmetry which induces a half-turn about the axis $D_{1} D_{2}$. Place a plane through $D_{1} D_{2}$ perpendicularly to the edge $A_{0} A_{3}$. This plane divides $A_{0} A_{1} A_{2} A_{3}$ into two halves. Take the part with A_{3} and the side planes $\left(b^{0}\right)=m_{0},\left(\iota^{1}\right)=m_{1},\left(\iota^{2}\right)=m_{2}$. The reflections in m_{0}, m_{1}, m_{2} would generate the Coxeter group C_{3} as the symmetry group of an octahedron \mathcal{O} centred in $A_{3} . A_{2}$ would be a facet centre, A_{1} an edge one, and A_{0} a vertex of \mathcal{O}.

Now we reflect the half simplex around A_{3} under the above group C_{3}, then we just get the truncated cube as an Archimedian solid $(8,8,3)$. To see this we need the fact that the half-turn r changes the planes $m_{1} \leftrightarrow m_{2}$ and $m_{0} \leftrightarrow m_{3}$. So around D_{2} we get a group of order 16 , generated by m_{1} and r , thus we have an octagon in the symmetry plane of $A_{0} A_{3}$.

Summarizing, the group \mathcal{N}, generated by $\mathrm{m}_{0}, \mathrm{~m}_{1}, \mathrm{r}$, forms the orbit of A_{3}. And a Dirichlet-Voronoi cell of this orbit is just the truncated cube considered. In this D-V-tiling 3 domains meet at each edge where a triangle and two octagons join. At every point of the tiling 4 domains meet in 4 edges. Thus we have explained the requirements of the construction and checked the local realization of $\mathscr{P}^{\mathscr{L}}$ in φ^{3}. Theorem 8.1 guarantees the global realization.

We remark that $A_{0} A_{1} A_{2} A_{3}$, as a characteristic simplex of the spherical octahedron \mathcal{O}, allows us to define another spherical manifold with fundamental domain \mathcal{O} and with fundamental group \mathscr{H}_{33} (binary tetrahedral group of Threlfall) as described in [30]. $\varphi^{3} / \mathscr{H}_{33}$ is a twofold covering of $\varphi^{3} / \mathscr{\mathscr { L }}_{43}$. In [31] we have constructed "Archimedian manifolds" of similar structure in \mathscr{H}^{3}.

The method makes it possible to construct manifolds, where all the proper points of \mathscr{P} have trivial stabilizer under \mathscr{G}. Given \mathscr{P}, we can look for those manifolds which are derived from \mathcal{P} by identifications. We are working on this program using computers (see e.g. [28, 32]).

In [28] one can also find non-isomorphic Euclidean space tilings $\mathscr{P}^{\text {E }}$ by simplices where the corresponding groups \mathscr{H} are isomorphic. Such difficulties naturally arise. Although we know that there does not exist a universal algorithm for the isomorphism problem of groups, we expect some partial results also in this field.

Added in proof. After having completed this paper, I got the possibility to study the paper of Takeshi Morokuma, A characterization of fundamental domains of discontinuous groups acting on real hyperbolic spaces, Journal of the Faculty of Science, the University of Tokyo, Section 1A: Mathematics, 25 (1978), 157-183. (MR 80d:32.027, Zbl 418. 57.017.) This paper intends to extend Maskit's result [20] on the 3 -dimensional Poincaré theorem to dimension $n \geqq 3$. Maskit gives necessary and sufficient conditions for a polyhedron D of finite volume to be a fundamental domain for an isometry group G acting discontinuously on the hyperbolic space \mathscr{H}^{3} (and on any 3 -space of
constant curvature). But he restricts himself only to cycle transformations which preserve the orientation of edges of D (condition (h)). So he excludes the involutive line reflections from among the generators of G and, in general, he excludes the orientation reversing isometries which could cause troubles at the cycle transformations (see our Algorithm 4.1 and Figure 5).

Morokuma introduces further restrictions for his discrete group Γ and for the identified polyhedron F. In Definition 1.ii) he requires that Γ has no reflection (involutive transformation?). In Definition 2.ii-3) he requires cycle transformation for any m-face class which fixes the starting m-face point-wise ($1 \leqq m \leqq n-2$? this is understandable for $m=n-2$, see our Section 5).

These are too strong restrictions and exclude the most interesting cases. In his main theorem Morokuma considers the second part to be elementary and proves the first part by restricted assumptions in Definition 2. The second part, however, seems to be not true, even he excludes any involutive transformations from Γ in Definition 1, or considers only orientation preserving isometries in Γ. For dimensions $n \geqq 4$ an ($n-2$)-dimensional face of F may have such stabilizer which does not fix the ($n-2$)-face pointwise (see our Section 4).

References

[1] A. D. Aleksandrov, On filling space by polyhedra, Vestnik Leningrad. Univ., Mat. Fiz. Khim., 9 (1954), 33-43 (Russian).
[2] B. N. Apanasov, Discrete transformation groups and manifold structures, "Nauka" SO AN SSSR (Novosibirsk, 1983) (Russian).
[3] B. N. Apanasov, Incomplete hyperbolic manifolds and local finiteness of a tessellation of space by polyhedra, Soviet Math. Dokl., 28 (1983), 686-689.
[4] B. N. Apanasov, The effect of dimension 4 in Aleksandrov's problem of filling a space by polyhedra, Annales Glob. Anal. and Geom., 4 (1986), 243-261.
[5] A. F. Beardon, The geometry of discrete groups, Springer (New York-HeidelbergBerlin, 1983).
[6] A. L. Best, On torsion-free discrete subgroups of PSL $(2, C)$ with compact orbit space, Canad. J. Math., 23 (1971), 451-460.
[7] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth ed., Springer (Berlin-Heidelberg-New York, 1980).
[8] L. Danzer and E. Schulte, Reguläre Inzidenzkomplexe I, Geommetriae Dedicata, 13 (1982), 295-308.
[9] A. W. M. Dress, Presentation of discrete groups, acting on simply connected manifolds, in terms of parametrized systems of Coxeter matrices - A systematic approach, Adv. in Math., 63 (1987), 196-212.
[10] S. Even, Graph algorithms, Computer Science Press (Rockville, Maryland, 1979).
[11] M. Perri, C. Gagliardi and L. Graselli, A graph-theoretical representation of PL-manifolds - A survey on crystallizations, Aequationes Math., 31 (1986), 121-141.
[12] A. T. Fomenko and S. V. Matveev, Isoenergetic surfaces of Hamiltonian systems, account of three-dimensional manifolds in order of their complexity and computation of closed hyperbolic manifolds, Uspehi Mat. Nauk, 43 (1988), 5-22 (Russian).
[13] I. S. Gutsul, Compact three-dimensional manifolds of constant negative curvature, Trudy Mat. Inst. Steklov, 152 (1980), 89--96 (Russian).
[14] I. S. Gutsul and V. S. Makarov, Non-complete three-dimensional manifolds with locally Lobachevskian metric, Problems of discrete geometry, Mat. issled. 103 (Kishinev, Shtiintsa, 1988) 69--82 (Russian).
[15] F. Löbell, Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Räume negativer Krümmung, Ber. Sachs. Acad. Wiss., 83 (1931), 168--174.
[16] Z. Luccić and E. Molnár, Fundamental domains for planar discontinuous groups and uniform tilings, Geometriae Dedicata, 40 (1991), 125--143.
[17] Z. Lučić and E. Molnár, Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups, Archiv Math., 54 (1990), 511---520.
[18] R. C. Lyndon and P. E. Schupp, Combinatoriacal group theory, Springer (Berlin---Heidelberg--New York, 1977).
[19] V. S. Makarov, Geometric methods for constructing discrete isometry groups of Lobachevskian space. VINITI, Itogi Nauki i Techniki, Problemy Geometrii, 15 (1983), 3--59 (Russian).
[20] B. Maskit, On Poincaré's theorem for fundamental polygons, Adv. in Math., 7 (1971), 219--230.
[21] W. S. Massey, Algebraic topology. An introduction, Springer (New York--Heidelberg---Berlin, 1977).
[22] B. Mohar, Simplicical schemes and some combinatorial applications, Proceedings of Fourth Yugoslav Seminar on Graph Theory, 1983, pp. 209--229.
[23] E. E. Moise, Geometric topology in dimension 2 and 3, Springer (New York--Heidel-berg--Berlin, 1977).
[24] E. Molnár, An infinite series of compact non-orientable 3-dimensional space forms of constant negative curvature, Annals of Global Analysis and Geometry, 1 (1983), 37--49, 2 (1984), 253--254.
[25] E. Molnár, Twice punctured compact Euclidean and hyperbolic manifolds and their twofold coverings, Proceedings of Coll. on Diff. Geom., Debrecen (Hajduszoboszló), Hungary, 1984, Topics in differential geometry, ed. by J. Szenthe and L. Tamássy, Colloq. Math. Soc. J. Bolyai, Vol. 46, North--Holland, 1987, Vol. II, pp. 883--919.
[26] E. Molnár, Minimal presentation of the 10 compact euclidean space forms by fundamental domains, Studia Sci. Math. Hung., 22 (1987), 19--51.
[27] E. Molnár, Minimal presentation of crystallographic groups by fundamental polyhedra, Comput. Math. Applic., 16 (1988), 507--520.
[28] E. Molnár and I. Prok, A polyhedron algorith for finding space groups, Proceedings of Third Int. Conf. on Engineering Graphics and Descriptive Geometry (Vienna, 1988), Vol 2, pp. 37--44.
[29] E. Molnár, Projective metrics and hyperbolic volume, Annalles Univ. Sci. Budapest. Sect. Math., 32 (1989), 127--157.
[30] E. Molnár, Tetrahedron manifolds and space forms, Note di Matematica, 10 (1991).
[31] E. Molnár, Two hyperbolic football manifolds, Proceedings of Int. Conf. on Diff. Geom. and Applic. (Dubrovnik, Yugoslavia, 1988), pp. 217--241.
[32] E. Molnár and M. Šarac, Bipyramidal non-compact hyperbolic space forms with finite volume, Annales Univ. Sci. Budapest. Sect. Math., 33 (1990), 75--103.
[33] H. Poincaré, Theorie des groupes Fuchsiennes, Acta Math. 1 (1982), 1--62.
[34] H. Poincaré, Mémoire sur les groupes Kleinéens, Acta Math., 3 (1883), 49--92.
[35] M. Šarac, A compact hyperbolic space form derived from a plane form, Annales Univ. Sci. Budapest. Sect. Math., 31 (1988), 159--170.
[35] M. Šarac, A compact hyperbolic space form derived from a plane form, Annales Univ. Sci. Budapest. Sect. Math., 31 (1988), 159-170.
[36] E. Schulte, reguläre Inzidenzkomplexe II-III, Geometriae Dedicata, 14 (1983), 35-56, 57-79.
[37] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. Lecture Notes, 1978.
[38] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.
[39] E. B. Vinberg, Hyperbolic reflection groups, Uspehi mat. nauk, 40 (1985), 29-66 (Russian).
[40] E. B. Vinberg and O. V. Švartsman, Discrete transformation groups of spaces of constant curvature, VINITI, Itogi Nauki i Techniki, Sovr. Probl. Math. Fund. Napr., 29 (1988), 147-259 (Russian).
[41] C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z., 37 (1933), 237-253.
[42] J. A. Wolf, Spaces of constant curvature, Berkeley, Univ. of California, 1972. Russian translation: Izd. Nauka (Moscow, 1982).
[43] I. K. Žuk, Fundamental tetrahedra in Euclidean and Lobachevskian spaces, Doklady AN SSSR, 270 (1983), 35-37 (Russian).
(Received March 13, 1989)

TECHNICAL UNIVERSITY
DEPARTMENT OF GEOMETRY
BUDAPEST, MÜEGYETEM RKP. 3-9
H-1521

KONSRUKTION DES REGULÄREN SIEBZEHNECKS MIT LINEAL UND STRECKENÜBERTRAGER

J. STROMMER (Budapest)
Herrn em. o. Prof. Karl Strubecker zum 85. Geburtstag gewidmet

D. Hilbert hat im Jahre 1899 in seiner berühmten Festschrift "Grundlagen der Geometrie" bewiesen, daß diejenigen regulären Vielecke, die mit Zirkel und Lineal konstruierbar sind, notwändig mit Lineal und Streckenübertrager, d. h. mit einem Instrument konstruierbar sind, welches das Abtragen von Strecken ermöglicht.* Im folgenden geben wir die Konnstruktion des regulären Siebzehnecks mit diesen Zeichenhilfsmitteln an.

Zu diesem Zweck tragen wir die Einheitsstrecke von dem Scheitel eines Winkels, der gleich $\pi / 34$ ist, an einem Schenkel desselben ab (Fig. 1); dann schlagen wir um den so erhaltenen Punkt durch den Scheitel des Winkels einen Kreis, der den anderen Schenkel noch in einem Punkt schneidet; um diesen Punkt schlagen wir durch den vorher konstruierten Punkt einen Kreis, der den ersten Schenkel noch in einem Punkt schneidet usw. Wenn wir die nacheinander konstruierten Punkte miteinander verbinden, erhalten wir sechzehn gleichschenklige Dreiecke, deren Schenkel alle gleich 1 sind. In der Figur sind die Maßzahlen der einzelnen Winkel in bezug auf $\pi / 34$ als Winkeleinheit angegeben. Wir bezeichnen diejenigen Basen der einzelnen Dreiecke, die auf demselben Schenkel wie die Einheitsstrecke liegen, mit $x_{1}, x_{2}, \ldots, x_{8}$ und die Basen, die auf dem anderen Schenkel liegen, mit $y_{1}, y_{2}, \ldots, y_{8}$. Unter den Größen x und y besteht eine Reihe von einfachen Relationen:

$$
1: \frac{1}{2} y_{1}=y_{1}:\left(1+\frac{1}{2} x_{1}\right)
$$

oder:

$$
y_{1}^{2}=2+x_{1} ;
$$

ebenso:

$$
1: \frac{1}{2} y_{1}=y_{2}: \frac{1}{2}\left(x_{1}+x_{2}\right)
$$

[^6]| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | y_{1} | y_{2} | y_{3} | y_{4} | y_{5} | y_{6} | y_{7} | y_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{1} | $2+x$ | 3 | $x_{2}+x_{4}$ | $x_{3}+x_{5}$ | $x_{4}+x_{6}$ | $x_{5}+x_{7}$ | $x_{6}+x_{8}$ | $x_{7}-x_{8}$ | $y_{1}+y_{2}$ | $y_{1}+y_{3}$ | $y_{2}+y_{4}$ | $y_{3}+y_{5}$ | $y_{4}+y_{6}$ | $y_{5}+y_{7}$ | $y_{6}+y_{8}$ | y_{7} |
| | | $2+x_{4}$ | | | | | | | $y_{2}+y_{3}$ | $y_{1}+y_{4}$ | $y_{1}+y_{5}$ | $y_{2}+y_{6}$ | y_{7} | y_{8} | | |
| x_{3} | x_{2} | | | | 8 | $x_{3}-x_{8}$ | $x_{4}-x_{7}$ | x_{6} | $y_{3}+y_{4}$ | $y_{2}+y_{5}$ | $y_{1}+y_{6}$ | $y_{1}+y_{7}$ | $y_{2}+y_{8}$ | y_{3} | $y_{4}-y_{8}$ | |
| | | | | | x_{8} | | $x_{3}-x_{6}$ | x_{5} | $y_{4}+y_{5}$ | $y_{3}+y_{6}$ | $y_{2}+y_{7}$ | $y_{1}+y_{8}$ | y_{1} | $y_{2}-y_{8}$ | $y_{3}-y_{7}$ | $y_{4}-y_{6}$ |
| | | | $x_{2}+x_{8}$ | $x_{1}-x_{8}$ | $2-x_{7}$ | $x_{1}-x_{6}$ | $x_{2}-x_{5}$ | - | $+y_{6}$ | $y_{4}+y_{7}$ | $y_{3}+y_{8}$ | y_{2} | $y_{1}-y_{8}$ | $y_{1}-y_{7}$ | $y_{2}-y_{6}$ | $y_{3}-y_{5}$ |
| x_{6} | x_{5} | | | | $x_{1}-x_{6}$ | | | x_{3} | $y_{6}+y_{7}$ | y_{8} | y_{4} | $y_{3}-y_{8}$ | $y_{2}-y_{7}$ | $y_{1}-y_{6}$ | $y_{1}-y_{5}$ | $y_{2}-y_{4}$ |
| | | | | | $x_{2}-x_{5}$ | x_{4} | $2-x_{3}$ | $x_{1}-x_{2}$ | $y_{7}+y_{8}$ | y_{6} | $y_{5}-y_{8}$ | $y_{4}-y_{7}$ | - y_{6} | - y_{5} | y_{4} | $y_{1}-y_{3}$ |
| | | | | | | | | $2-x_{1}$ | y_{8} | y_{7} | $y_{6}-y_{7}$ | $y_{5}-y_{6}$ | 5 | ${ }_{4}$ | y_{3} | 2 |
| y_{1} | $y_{1}+y_{2}$ | $y_{2}+y_{3}$ | $y_{3}+y_{4}$ | $y_{4}+y_{5}$ | $y_{5}+y_{6}$ | $y_{6}+y_{7}$ | $y_{7}+y^{1}$ | y_{8} | $2+x_{1}$ | $x_{1}+x_{2}$ | | | | $x_{5}+x_{6}$ | | |
| y_{2} | y_{1} | y_{1} | y_{2} | y_{3} | y_{4} | | y_{6} | $y_{7}-y_{8}$ | $x_{1}+x_{2}$ | $2+x_{3}$ | | | | | | $x_{6}-x_{8}$ |
| y_{3} | $y_{2}+y_{4}$ | $y_{1}+y_{5}$ | y_{1} | y_{2} | y | y_{4} | y_{5} | $y_{6}-y_{7}$ | | $x_{1}+x_{4}$ | $2+x_{5}$ | $x_{1}+x_{6}$ | | $x_{3}+x_{8}$ | | $x_{5}-x_{4}$ |
| y_{4} | $y_{3}+y_{5}$ | $y_{2}+y_{6}$ | $y_{1}+y_{7}$ | $y_{1}+y_{8}$ | y_{2} | $y_{3}-y_{8}$ | $y_{4}-y_{7}$ | $y_{5}-y_{6}$ | | | | | $x_{1}+x_{8}$ | $x_{2}-x_{8}$ | | $x_{4}-x_{6}$ |
| y_{5} | $y_{4}+y_{6}$ | $y_{3}+y_{7}$ | $y_{2}+y^{\prime}$ | y_{1} | $y_{1}-y_{8}$ | y_{2} | y_{3} | $y_{4}-$ | | | | | $2-x_{8}$ | | | |
| y_{6} | $y_{5}+y_{7}$ | y_{4} | y_{3} | $y_{2}-y_{8}$ | $y_{1}-y_{7}$ | $y_{1}-y_{6}$ | $y_{2}-y_{5}$ | y_{3} | | | | x_{8} | x_{7} | $-x_{6}$ | x_{5} | |
| y_{7} | $y_{6}+y_{8}$ | y_{5} | $y_{4}-y_{8}$ | $y_{3}-y_{7}$ | $y_{2}-y_{6}$ | - y_{5} | $y_{1}-y_{4}$ | $y_{2}-y_{3}$ | | | | | $x_{2}-x_{6}$ | $x_{1}-x_{5}$ | 2- | 3 |
| | ${ }_{8} y_{7}$ | 6 | | | | | | | | | | | | | | $2-x$ |

$$
\begin{gathered}
y_{1} y_{2}=x_{1}+x_{2} ; \\
1: \frac{1}{2} y_{1}=y_{3}: \frac{1}{2}\left(x_{2}+x_{3}\right) \\
y_{1} y_{3}=x_{2}+x_{3} \\
\cdot \\
y_{1}:\left(1+\frac{1}{2} x_{1}\right)=x_{1}: \frac{1}{2}\left(y_{1}+y_{2}\right) \\
x_{1}^{2}=y_{1}^{2}+y_{1} y_{2}-2 x_{1} \\
=2+x_{2} ; \\
y_{1}:\left(1+\frac{1}{2} x_{1}\right)=x_{2}: \frac{1}{2}\left(y_{2}+y_{3}\right) \\
x_{1} x_{2}=y_{1} y_{2}+y_{1} y_{3}-2 x_{2} \\
=x_{1}+x_{2} \\
\cdot \\
\cdot \\
1: \frac{1}{2} y_{1}=x_{1}: \frac{1}{2}\left(y_{1}+y_{2}\right) \\
x_{1} y_{1}=y_{1}+y_{2} \\
\cdot \\
\cdot
\end{gathered}
$$

Die so erhaltenen Produkte von je zwei der Größen x und y stellen wir in der auf S. 218 befindlichen Multiplikationstabelle zusammen.

Fig. 2
Auch die Höhen der einzelnen Dreiecke können wir aus der Figur entnehmen. Z. B. die Höhenlinien der Dreiecke mit den Basen x_{8} und y_{1} teilen
dieselbe in je zwei rechtwinklige Dreiecke mit den Katheten $\frac{1}{2} x_{8}$ und $\frac{1}{2} y_{1}$. So ist die Höhe des Dreiecks, dessen Base x_{8} ist, gleich der Hälfte von y_{1}.

Aus den Dreiecken, deren Base x_{2}, x_{4} und x_{6} sind, sowie aus einer der beiden Hälften des Dreiecks, dessen Base x_{8} ist, kann man ein rechtwinkliges Dreieck zusammenstellen (Fig. 2). Schlägt man nun um die Spitze O des Dreiecks, dessen Base x_{6} ist, einen Kreis mit dem Radius 1, und teilt die Peripherie desselben von dem Punkt A angefangen, der auf der Verlängerung der größeren Kathete des rechtwinkligen Dreiecks liegt, in 17 gleiche Teile, so fäll einer der Eckpunkte dieses Dreiecks mit dem vierten Teilpunkt zusammen. Das von diesem Punkt auf $O A$ gefällte Lot ist gleich $\frac{1}{2} y_{1}$ und die Entfernung des Fußpunktes desselben von O ist gleich $\frac{1}{2} x_{8}$. Unsere Aufgabe wird also gelöst sein, wenn es gelungen ist, die Größen x_{8} und y_{1} als Strecken mit Lineal und Streckenübertrager zu konstruieren, da man ja dann durch wiederholte Winkelhalbierung den Winkel $2 \pi / 17$ herstellen kann.

Fig. 3
Aus denjenigen Dreiecken der ersten Figur, deren Base einer der x Strecken ist, können wir ein gleichschenkliges Dreieck zusammenstellen (Fig. 3), aus dem die Gleichung:

$$
x_{1}+x_{3}+x_{5}+x_{7}-x_{2}-x_{4}-x_{6}-x_{8}=1
$$

folgt.
Ferner ist:

$$
\begin{aligned}
\left(x_{2}+x_{8}+x_{4}-x_{1}\right)\left(x_{3}+x_{5}-x_{6}+x_{7}\right) & =x_{2} x_{3}+x_{3} x_{8}+x_{3} x_{4}-x_{1} x_{3} \\
& +x_{2} x_{5}+x_{5} x_{8}+x_{4} x_{5}-x_{1} x_{5} \\
& -x_{2} x_{6}-x_{6} x_{8}-x_{4} x_{6}+x_{1} x_{6} \\
& +x_{2} x_{7}+x_{7} x_{8}+x_{4} x_{7}-x_{1} x_{7} \\
& =x_{1}+x_{5}-x_{6}+x_{5}+x_{1}+x_{7}-x_{4}-x_{2} \\
& +x_{3}+x_{7}+x_{3}-x_{4}+x_{1}-x_{8}-x_{6}-x_{4} \\
& -x_{4}-x_{8}-x_{2}+x_{3}-x_{2}+x_{7}+x_{5}+x_{7} \\
& +x_{5}-x_{8}+x_{1}-x_{2}-x_{6}+x_{3}-x_{6}-x_{8} .
\end{aligned}
$$

Nach obigem ist also:

$$
\left(x_{2}+x_{8}+x_{4}-x_{1}\right)\left(x_{3}+x_{5}-x_{6}+x_{7}\right)=4 .
$$

So sind die Größen

$$
\begin{gathered}
w_{1}=x_{2}+x_{8}+x_{4}-x_{1}, \\
w_{2}=-x_{3}-x_{5}+x_{6}-x_{7}
\end{gathered}
$$

Wurzeln der quadratischen Gleichung:

$$
w^{2}+w-4=0 .
$$

Nun is $w_{2}<0$, da ja bereits $x_{3}>x_{6}$ ist, und so ist $w_{1}>0$, da ja $w_{1} w_{2}=-4$ ist; also ist:

$$
\begin{aligned}
& w_{1}=-\frac{1}{2}+\frac{1}{2} \sqrt{17} \\
& w_{2}=-\frac{1}{2}-\frac{1}{2} \sqrt{17}
\end{aligned}
$$

Ferner ist:

$$
\begin{aligned}
\left(x_{2}+x_{8}\right)\left(x_{4}-x_{1}\right) & =x_{2} x_{4}+x_{4} x_{8}-x_{1} x_{2}-x_{1} x_{8} \\
& =x_{2}+x_{6}+x_{4}-x_{5}-x_{1}-x_{3}-x_{7}+x_{8}=-1,
\end{aligned}
$$

und so sind die Größen

$$
\begin{align*}
u_{1} & =x_{2}+x_{8}, & (>0) \tag{1}\\
u_{2} & =x_{4}-x_{1} & (<0) \tag{2}
\end{align*}
$$

Wurzeln der quadratischen Gleichung:

$$
u^{2}-w_{1} u-1=0 ;
$$

also ist:

$$
\begin{aligned}
& u_{1}=\frac{1}{2} w_{1}+\frac{1}{2} \sqrt{w_{1}^{2}+4}, \\
& u_{2}=\frac{1}{2} w_{1}-\frac{1}{2} \sqrt{w_{1}^{2}+4} .
\end{aligned}
$$

Ebenso erhält man, daß

$$
\left(x_{7}-x_{6}\right)\left(x_{3}+x_{5}\right)=-1
$$

ist, und so sind die Größen

$$
\begin{align*}
v_{1} & =x_{6}-x_{7}, & & (>0) \tag{3}\\
v_{2} & =-x_{3}-x_{5} & & (<0)
\end{align*}
$$

Wurzeln der quadratischen Gleichung:

$$
v^{2}-w_{2} v-1=0
$$

also ist:

$$
\begin{aligned}
& v_{1}=\frac{1}{2} w_{2}+\frac{1}{2} \sqrt{w_{2}^{2}+4} \\
& v_{2}=\frac{1}{2} w_{2}-\frac{1}{2} \sqrt{w_{2}^{2}+4}
\end{aligned}
$$

Fig. 4

Die Größen $w_{1}, w_{2}, u_{1}, u_{2}, v_{1}, v_{2}$ können wir als Strecken leicht konstruieren (s. Fig. 4), und so auf der Zahlengerade OA, deren Anfangs- und Einheitspunkt O, bzw. A ist, auch die Punkte von der Abszisse w_{1}, w_{2}, u_{1}, u_{2}, v_{1}, v_{2}.

Aus den Gleichungen (1), (2), (3), (4) können wir weitere Gleichungen für die Größen x ableiten, indem wir dieselben der Reiche nach mit $x_{1}, x_{2}, \ldots, x_{8}$ multiplizieren und die Produkte von je zwei Größen x nach der Multiplikationstabelle in eine Summe von denselben umwandeln. So erhalten wir z. B. folgende Gleichungen:

$$
\begin{align*}
x_{4}-x_{1} & =u_{2}, \\
x_{4}^{2}-x_{1} x_{4} & =u_{2} x_{4}, \\
2+x_{8}-x_{3}-x_{5} & =u_{2} x_{4}, \\
u_{2} x_{4}-x_{8} & =2+v_{2} ; \tag{5}
\end{align*}
$$

$$
\begin{aligned}
-x_{3}-x_{5} & =v_{2} \\
-x_{1} x_{3}-x_{1} x_{5} & =v_{2} x_{1}, \\
-x_{2}-2 x_{4}-x_{6} & =v_{2} x_{1},
\end{aligned}
$$

$$
\begin{equation*}
v_{2} x_{1}+x_{2}+2 x_{4}+x_{6}=0 ; \tag{6}
\end{equation*}
$$

$$
x_{3}-x_{5}=v_{2},
$$

$$
-x_{3} x_{8}-x_{5} x_{8}=v_{2} x_{8}
$$

$$
x_{6}-x_{5}-x_{3}+x_{4}=v_{2} x_{8}
$$

$$
\begin{equation*}
x_{4}+x_{6}-v_{2} x_{8}=-v_{2} ; \tag{7}
\end{equation*}
$$

$$
\begin{align*}
x_{6}-x_{7} & =v_{1}, \\
x_{6}^{2}-x_{6} x_{7} & =v_{1} x_{6}, \\
2-x_{5}-x_{1}+x_{4} & =v_{1} x_{6}, \\
x_{5}+v_{1} x_{6} & =2+u_{2} . \tag{8}
\end{align*}
$$

Die Gleichungen (1), (2), (5), (6) und (7) bilden ein unabhängiges Gleichungssystem für die Größen $x_{1}, x_{2}, x_{4}, x_{6}$ und x_{8}, aus dem

$$
x_{8}=\frac{3+v_{2}-u_{2} v_{2}-u_{2}^{2} v_{2}}{v_{2}-u_{2} v_{2}-2}
$$

folgt.

Fig. 5

Mittels dieser Formel kann man die Größe x_{8} leicht konstruieren (s. Fig. 5) und dann aus den Gleichungen (1) bis (8) auch die Größen $x_{1}, x_{2}, \ldots, x_{7}$ als Strecken geometrisch bestimmen (s. Fig. 6).

Fig. 6
Um die Größe y_{1} zu bestimmen, betrachten wir folgende Differenzen:

$$
\begin{aligned}
& y_{2}^{2}-x_{8}^{2}=x_{1}+x_{3}=x_{1} x_{2}, \\
& y_{5}^{2}-x_{5}^{2}=x_{7}-x_{8}=x_{1} x_{8}, \\
& y_{8}^{2}-x_{3}^{2}=-x_{2}-x_{6}=-x_{2} x_{4} \text {, } \\
& y_{7}^{2}-x_{6}^{2}=-x_{4}+x_{5}=-x_{4} x_{8} .
\end{aligned}
$$

Aus denselben folgt, da

$$
\begin{gathered}
x_{1} x_{2}+x_{1} x_{8}-x_{2} x_{4}-x_{4} x_{8}= \\
=\left(x_{2}+x_{8}\right)\left(x_{1}-x_{4}\right)=-u_{1} u_{2}=1
\end{gathered}
$$

ist, daß

$$
\sqrt{y_{2}^{2}+y_{5}^{2}+y_{7}^{2}+y_{8}^{2}}=\sqrt{1+x_{3}^{2}+x_{5}^{2}+x_{6}^{2}+x_{8}^{2}}
$$

ist.

Aus der Gleichung

$$
\left(y_{1} y_{2}\right) y_{2}=y_{1}\left(y_{2} y_{2}\right)
$$

folgt weiter:

$$
\left(x_{1}+x_{2}\right) y_{2}=y_{1}\left(2+x_{3}\right)
$$

oder:

$$
y_{2}=\frac{2+x_{3}}{x_{1}+x_{2}} y_{1}
$$

Ebenso kann man y_{5}, y_{7} und y_{8} durch y_{1} ausdrücken:

$$
\begin{aligned}
y_{5} & =\frac{x_{3}+x_{6}}{x_{1}+x_{2}} y_{1} \\
y_{7} & =\frac{x_{5}+x_{8}}{x_{1}+x_{2}} y_{1} \\
y_{8} & =\frac{x_{6}-x_{8}}{x_{1}+x_{2}} y_{1}
\end{aligned}
$$

und so erhält man:

Fig. 7

Nach dieser Formel kann man die Strecke y_{1} leicht konstruieren (s. Fig. 7), und damit ist die Konstruktion des regelmäßigen Siebzehnecks mit Lineal und Streckenübertrager ausgeführt.
(Eingegangen am 11. August 1989.)
TECHNISCHE UNIVERSITÄT
LEHRSTUHL FÜR GEOMETRIE budapest, stoczek utca $2-4$ H-1111
UNGARN

ON PSEUDOMANIFOLDS WITH BOUNDARY. I

M. BOGNÁR (Budapest)

The aim of this paper is to show an important property of the n-dimensional nonorientable (nonclosed) pseudomanifolds with boundary, namely that these figures are absolutely linked (absolut verschlungen). This property is mentioned without proof in my paper [3] (see [3] I:2.5a) and I:2.7a)). An immediate corollary of this property is the following

Theorem. The topological product of a nondiscrete space and an n-dimensional nonorientable pseudomanifold with boundary cannot be embedded in R^{n+1} (see [3] I:3.2); e.g. the topological product of the Möbius band and a nondiscrete space cannot be embedded in R^{3}.

First we deal with figures, called (n, p)-cells where p is a prime (see [5]). In a certain sense these figures are generalizations of the nonclosed n-dimensional pseudomanifolds with boundary.

1. (n, p)-cells

1.1. Let p be a prime number and Z_{p} the cyclic group $\bmod p$. Let H be the Čech homology theory defined on the category of all compact pairs and all continuous maps of such pairs over the coefficient group Z_{p}. The group Z_{p} can be considered as a compact commutative topological group. Hence the homology sequence of each compact pair is exact (see [12] p. 248). Let n be a positive integer.
1.2. Definition. The compact pair (X, A) (i.e. X is a compact $T_{2^{-}}$ space and A is a closed subspace of X) is called an (n, p)-cell if the following conditions are satisfied:
(a) $X \backslash A$ is a nonvoid connected locally connected space with countable base,
(b) $H_{n}(X, A) \approx Z_{p}$ (\approx means: isomorphic to),
(c) for the inclusion $i:(X, \emptyset) \subset(X, A)$ the induced homomorphism i_{*} : $H_{n}(X) \rightarrow H_{n}(X, A)$ is trivial, i.e. $i_{*}\left(H_{n}(X)\right)=0$.
(d) in every domain i.e. in every connected open nonempty subset V of $X \backslash A$ there exists a nonempty open subset $U \subset V$ such that for the inclusion $j:(X, A) \subset(X, X \backslash U)$ the induced homomorphism $j_{*}: H_{n}(X, A) \rightarrow$ $\rightarrow H_{n}(X, X \backslash U)$ is a monomorphism.
1.3. For each (n, p)-cell (X, A) we clearly have $A \neq \emptyset$.
1.4. Let (X, A) be an (n, p)-cell and let us consider the segment

$$
\tilde{H}_{n-1}(A) \stackrel{\partial}{\longleftarrow} H_{n}(X, A) \stackrel{i_{*}}{\longleftarrow} H_{n}(X)
$$

of the reduced homology sequence of (X, A). Here in the case $n=1, \tilde{H}_{n-1}(A)$ is the reduced 0 -dimensional homology group of A and in the case $n>1$ $\tilde{H}_{n-1}(A)=H_{n-1}(A)$. As a consequence of (c) ∂ is a monomorphism and thus for $0 \neq u \in H_{n}(X, A)$ we have $0 \neq \partial u \in \tilde{H}_{n-1}(A) . \partial u$ is then called the algebraic boundary of (X, A) and we denote it by A_{*}. If $p=2$ then A_{*} is uniquely defined. On the other hand in case $p \neq 2$ for any two algebraic boundaries $A_{*_{1}}$ and $A_{*_{2}}$ there clearly exists an integer m where $0<m<p$ such that $m A_{*_{1}}=A_{*_{2}}$.
1.5. Let (X, A) be an (n, p)-cell and A_{*} an algebraic boundary of (X, A). Let $\partial: H_{n}(X, A) \rightarrow \tilde{H}_{n-1}(A)$ be the same homomorphism as in 1.4. Then for the inclusion $j: A \subset X$ we clearly have $j_{*} \partial=0$ and thus $j_{*}\left(A_{*}\right)=0$.
1.6. Let Y be a topological space. A continuous map $f:[a, b] \rightarrow Y$ (where $[a, b]$ is a closed interval in the space of the real numbers $(a \leqq b))$ is said to be a continuous line in $Y . f(a)$ is the initial and $f(b)$ is the closing point of f. The body of f (it is indicated by \tilde{f}) is the set $f[a, b]$ endowed with the subspace topology of $Y . \tilde{f}$ is clearly a compact space.

For $M \subset Y, f$ is lying in M if $f[a, b] \subset M$.
f is a Jordan line and its body is a Jordan curve if $a \neq b$ and if the following condition holds: $f(x)=f(y)$ if and only if $x=y$ or $x=a, y=b$ or $x=b, y=a$.

The line $f:[a, b] \rightarrow Y$ is said to be degenerate if $a=b$. It is said to be closed if $f(a)=f(b)$.

Now let $f:[a, b] \rightarrow Y$ be a closed line. If $a=b$ then let $f^{*}=0 \in H_{1}(\tilde{f})$. Since \tilde{f} is a singleton it follows that f^{*} is the only element of $H_{1}(\tilde{f})$. Suppose now that $a \neq b$. Then $H_{1}([a, b],\{a, b\}) \approx Z_{p}$. Let v be a nonzero element of $H_{1}([a, b],\{a, b\})$. Let $B=\{f(a)=f(b)\}$ and let $f_{*}: H_{1}([a, b],\{a, b\}) \rightarrow$ $H_{1}(\tilde{f}, B)$ be the homomorphism induced by the mapping $f:([a, b],\{a, b\}) \rightarrow$ $\rightarrow(\tilde{f}, B) . B$ is a singleton, hence it is homologically trivial and therefore by the exactness of the sequence

$$
\tilde{H}_{0}(B) \longleftarrow H_{1}(\tilde{f}, B) \stackrel{j_{*}}{\leftarrow} H_{1}(\tilde{f}) \longleftarrow H_{1}(B)
$$

j_{*} is an isomorphism, where $j:(\tilde{f}, \emptyset) \subset(\tilde{f}, B)$ is the inclusion map. Let

$$
f^{*}=j_{*}^{-1} f_{*}(v)
$$

If $p=2$ then f^{*} is uniquely defined. In case $p \neq 2$ for any two $f^{*_{1}}$ and $f^{*_{2}}$ there clearly exists an integer $m, 0<m<p$, such that $m f^{*_{1}}=f^{*_{2}}$.
1.7. A mapping $\mathfrak{v}: A \times B \rightarrow C$, where A, B and C are abelian groups, is said to be a bihomomorphism if the following condition is satisfied:

$$
\mathfrak{v}\left(a+a^{\prime}, b+b^{\prime}\right)=\mathfrak{v}(a, b)+\mathfrak{v}\left(a^{\prime}, b\right)+\mathfrak{v}\left(a, b^{\prime}\right)+\mathfrak{v}\left(a^{\prime}, b^{\prime}\right)
$$

We say that a bihomomorphism $\mathfrak{v}: A \times B \rightarrow C$ is trivial if $\mathfrak{v}(A \times B)=0$.
1.8. A linking theory $\mathfrak{V}=\mathfrak{V}_{p, n-1,1}$ of compacts in R^{n+1} is a mapping which makes correspond to each ordered pair (M, M^{\prime}) of disjoint compact subspaces of R^{n+1} a bihomomorphism

$$
\mathfrak{v}_{M, M^{\prime}}: \tilde{H}_{n-1}(M) \times H_{1}\left(M^{\prime}\right) \longrightarrow Z_{p}
$$

such that for any compact subspaces $M, M^{\prime}, N, N^{\prime}$ of R^{n+1} satisfying $M \subset N$, $M^{\prime} \subset N^{\prime}$ and of course $N \cap N^{\prime}=\emptyset$ the condition

$$
\mathfrak{v}_{M, M^{\prime}}\left(u, u^{\prime}\right)=\mathfrak{o}_{N, N^{\prime}}\left(i_{*}(u), i_{*}^{\prime}\left(u^{\prime}\right)\right)
$$

is satisfied for every $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$ where $i: M \subset N$ and $i^{\prime}: M^{\prime} \subset N^{\prime}$ are inclusion maps.

Notice as a direct consequence of this definition that if $\mathfrak{V}=\mathfrak{V}_{p, n-1,1}$ is a linking theory of compacts in R^{n+1} and M, N, M^{\prime} are compacts in R^{n+1} such that $M \subset N \subset\left(R^{n+1} \backslash M^{\prime}\right)$ then

$$
\mathfrak{v}_{M, M^{\prime}}\left(u, u^{\prime}\right)=\mathfrak{v}_{N, M^{\prime}}\left(i_{*}(u), u^{\prime}\right)
$$

holds for every $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$ where $i: M \subset N$ is the inclusion map.

Likewise holds the relation

$$
\mathfrak{v}_{M, M^{\prime}}\left(u, u^{\prime}\right)=\mathfrak{o}_{M, N^{\prime}}\left(u, i_{*}^{\prime}\left(u^{\prime}\right)\right)
$$

for every $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$ where $i^{\prime}: M^{\prime} \subset N^{\prime}$ is the inclusion map and $N^{\prime} \subset\left(R^{n+1} \backslash M\right)$.

We shall say that the linking theory \mathfrak{V} is degenerate if for all nonintersecting compact subspaces M, M^{\prime} of $R^{n+1}, \mathfrak{v}_{M, M^{\prime}}$ is a trivial bihomomorphism. According to [11] 8.9 there exists a nondegenerate theory of linking of the required type.
1.9. Let $\mathfrak{V}^{1}=\mathfrak{V}_{p, n-1,1}^{1}$ and $\mathfrak{V}^{2}=\mathfrak{V}_{p, n-1,1}^{2}$ be nondegenerate theories of linking in R^{n+1}. Then there is an integer m where $0<m<p$ such that

$$
\mathfrak{v}_{M, M^{\prime}}^{2}\left(u, u^{\prime}\right)=m \mathfrak{v}_{M, M^{\prime}}^{1}\left(u, u^{\prime}\right)
$$

holds for each ordered pair (M, M^{\prime}) of disjoint compact subspaces of R^{n+1} and for every $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$.

Indeed, let m^{\prime} be an arbitrary integer. For any two disjoint compact subspaces M, M^{\prime} of \boldsymbol{R}^{n+1} and for $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$ let

$$
\mathfrak{v}_{M, M^{\prime}}^{3, m^{\prime}}\left(u, u^{\prime}\right)=\mathfrak{v}_{M, M^{\prime}}^{2}\left(u, u^{\prime}\right)-m^{\prime} \mathfrak{v}_{M, M^{\prime}}^{1}\left(u, u^{\prime}\right)
$$

The map $\mathfrak{v}_{M, M^{\prime}}^{3, m^{\prime}}: \tilde{H}_{n-1}(M) \times H_{1}\left(M^{\prime}\right) \rightarrow Z_{p}$ thus obtained is clearly a bihomomorphism and the mapping which makes correspond to each ordered pair $\left(M, M^{\prime}\right)$ of disjoint compact subspaces of R^{n+1} the bihomomorphism $v_{M, M^{\prime}}^{3, m^{\prime}}$ is clearly a linking theory $\mathfrak{V}^{3, m^{\prime}}=\mathfrak{V}_{p, n-1,1}^{3, m^{\prime}}$ in R^{n+1}.

Now let S and S^{\prime} be spheres in R^{n+1} of dimensions $n-1$ and 1 respectively satisfying the following conditions:
(a) The center of S belongs to S^{\prime} and the center of S^{\prime} belongs to S.
(b) The planes R and R^{\prime} supporting S and S^{\prime} intersect in a line R^{1}.
(c) R and R^{\prime} are perpendicular in the natural sense that any vector a in R and a^{\prime} in R^{\prime} which are perpendicular to the line R^{1} are mutually perpendicular.

Such spheres S and S^{\prime} clearly exist.
Now since for $i=1,2, \mathfrak{V}^{i}$ is nondegenerate, it follows that $\mathfrak{v}_{S, S^{\prime}}^{1}$, and $\mathfrak{v}_{S, S^{\prime}}^{2}$ are nontrivial bihomomorphisms (see [4] Corollary 2). Select $u \in \tilde{H}_{n-1}(S)$ and $u^{\prime} \in H_{1}\left(S^{\prime}\right)$ such that $\mathfrak{o}_{S, S^{\prime}}^{1}\left(u, u^{\prime}\right) \neq 0$. We then clearly have $u \neq 0$ and $u^{\prime} \neq 0$. Since for $i=1,2$ we have $\mathfrak{v}_{S, S^{\prime}}^{i}\left(u, u^{\prime}\right) \in Z_{p}$ it follows that there exists an integer m where $0 \leqq m<p$ such that

$$
\begin{equation*}
\mathfrak{v}_{S, S^{\prime}}^{3, m}\left(u, u^{\prime}\right)=\mathfrak{v}_{S, S^{\prime}}^{2}\left(u, u^{\prime}\right)-m \mathfrak{v}_{S, S^{\prime}}^{1}\left(u, u^{\prime}\right)=0 . \tag{1}
\end{equation*}
$$

However $\tilde{H}_{n-1}(S)$ and $H_{1}\left(S^{\prime}\right)$ are isomorphic to Z_{p} and thus (1) implies that $\mathrm{v}_{S, S^{\prime}}^{3, m}$ is a trivial bihomomorphism, consequently according to [4], Corollary $2, \mathfrak{V}^{3, m}$ is degenerate.

Hence for every ordered pair (M, M^{\prime}) of disjoint compact subspaces of R^{n+1} and for every $u \in \tilde{H}_{n-1}(M)$ and $u^{\prime} \in H_{1}\left(M^{\prime}\right)$ we have

$$
\mathfrak{v}_{M, M^{\prime}}^{3, m}\left(u, u^{\prime}\right)=\mathfrak{v}_{M, M^{\prime}}^{2}\left(u, u^{\prime}\right)-m \mathfrak{v}_{M \cdot M^{\prime}}^{1}\left(u, u^{\prime}\right)=0
$$

and thus

$$
\mathfrak{v}_{M, M^{\prime}}^{2}\left(u, u^{\prime}\right)=m \mathfrak{v}_{M, M^{\prime}}^{1}\left(u, u^{\prime}\right) .
$$

If m were 0 then $\mathfrak{V}^{3, m}$ would be equal to \mathfrak{V}^{2}, but this is impossible since \mathfrak{V}^{2} is nondegenerate. Hence $0<m<p$ as required.

Observe that in case $p=2$ we have $\mathfrak{V}^{1}=\mathfrak{V}^{2}$.
1.10. Let (X, A) be an (n, p)-cell in R^{n+1} i.e. (X, A) is an (n, p)-cell where X is a subspace of R^{n+1}. Let f be a closed line lying in $R^{n+1} \backslash A$ and let $\mathfrak{V}=\mathfrak{V}_{p, n-1,1}$ be a nondegenerate linking theory of compacts in R^{n+1}.

Definition. We say that f is linked to the (n, p)-cell (X, A) if $\mathfrak{v}_{A, \tilde{f}}\left(A_{*}, f^{*}\right) \neq 0$.

Taking $1.9,1.6$ and 1.4 into account we can state that the fact that f is linked to (X, A) or not does not depend on the special choice of A_{*}, f^{*} and \mathfrak{V}.
1.11. Definition. Let (X, A) be an (n, p)-cell in R^{n+1}. We say that (X, A) is a linked cell if there exists a closed line lying in $X \backslash A$ and linked to $(X, A) .(X, A)$ is a nonlinked cell if it fails to be a linked cell.
1.12. Definition. The (n, p)-cell (Y, B) is said to be an absolutely linked cell, if for each topological embedding $\varphi: Y \rightarrow R^{n+1}$ the (n, p)-cell $(\varphi(X), \varphi(A))$ is linked.

2. Properties of (n, p)-cells in R^{n+1}

The main target of this section is the treatment of some properties of (n, p)-cells in R^{n+1}. We start with two elementary facts about nonlinked lines.

Let p, H and n be the same as in 1.1. Let $\mathfrak{V}=\mathfrak{V}_{p, n-1,1}$ be a nondegenerate linking theory in R^{n+1}. Let (X, A) be an (n, p)-cell in R^{n+1} and let A_{*} be the algebraic boundary of (X, A) (see 1.4).
2.1. Remark. Let Q be a compact subspace of $R^{n+1} \backslash X$ and let $u^{\prime} \in$ $\in H_{1}(Q)$. Then $\mathfrak{v}_{A, Q}\left(A_{*}, u^{\prime}\right)=0$.

Indeed, let $j: A \subset X$ be the inclusion map. Then by 1.5 we have $\mathfrak{v}_{A, Q}\left(A_{*}, u^{\prime}\right)=\mathfrak{v}_{X, Q}\left(j_{*}\left(A_{*}\right), u^{\prime}\right)=0$ (cf. also 1.8).
2.2. Corollary. Let f be a closed line lying in $R^{n+1} \backslash X$. Then $f^{*} \in$ $\in H_{1}(\tilde{f})$ where \tilde{f} is a compact subspace of $R^{n+1} \backslash X$ and thus by 2.1 we have $\mathfrak{v}_{A, \tilde{f}}\left(A_{*}, f^{*}\right)=0$. Hence f fails to be linked to (X, A).
2.3. Let G be an open spherical ball in R^{n+1} disjoint to A. Then no closed line lying in G is linked to (X, A).

Indeed, let f be closed line lying in G. Then there is a closed ball M containing \tilde{f} and contained in G. Let $j: \tilde{f} \subset M$ be the inclusion map. Since M is homologically trivial and thus $H_{1}(M)=0$ we have $j_{*}\left(f^{*}\right)=0$. Consequently

$$
\mathfrak{v}_{A, \tilde{f}}\left(A_{*}, f^{*}\right)=\mathfrak{v}_{A, M}\left(A_{*}, j_{*}\left(f^{*}\right)\right)=0 .
$$

f is nonlinked to (X, A) as required.
Now we are going to recall the fundamental notions about continuous paths (see [7]).
2.4. Let Y be a topological space. A continuous path K of Y is a class of equivalence of continuous lines $f:[a, b] \rightarrow Y$ (see 1.6) where the continuous lines $f:[a, b] \rightarrow Y$ and $g:\left[a^{\prime}, b^{\prime}\right] \rightarrow Y$ are said to be equivalent if there exists a strictly monotonous increasing epimorphic function $s:[a, b] \rightarrow\left[a^{\prime}, b^{\prime}\right]$ for which $g \circ s=f$.

An element $f:[a, b] \rightarrow Y$ of the equivalence class K is said to be a representative of the path K.

All the representatives of a path K have the same initial point, the same closing point and the same body and we call them the initial point, the closing point and the body of K respectively. They are indicated with $\triangle(K)$, $\nabla(K)$ and \tilde{K} respectively. We shall use the symbol $K: q \rightarrow z$ to express the relations $\nabla(K)=q$ and $\triangle(K)=z$.

For $M \subset Y, K$ is lying in M if $\tilde{K} \subset M . K$ is a closed path if $\triangle(K)=$ $=\nabla(K)$. In this case we say that the point $\Delta(K)=\nabla(K)$ is the base point of K.

Observe that if at least one of the representatives of K is a Jordan line (degenerate line) then every representative is a Jordan line (degenerate line). In this case we say that K is a Jordan path (degenerate path).

Now let $f_{1}:[c, d] \rightarrow Y$ be a representative of the continuous path $K_{1}: q \rightarrow$ $\rightarrow u$ and $f_{2}:[b, c] \rightarrow Y$ a representative of the path $K_{2}: u \rightarrow z$ of Y. Then $K_{2} K_{1}: q \rightarrow z$ is defined as the equivalence class of the line $g:[b, d] \rightarrow Y$ where $\left.g\right|_{[b, c]}=f_{2}$ and $\left.g\right|_{[c, d]}=f_{1}$.

This multiplication is clearly associative. Moreover if K_{1} is degenerate then $K_{2} K_{1}=K_{2}$ and if K_{2} is degenerate then $K_{2} K_{1}=K_{1}$.

To each path $K: q \rightarrow z$ of Y we can assign a path $K^{\bullet}: z \rightarrow q$ of Y such that if $f:[b, c] \rightarrow Y$ is a representative of K and $h:[b, c] \rightarrow[b, c]$ is defined by the formula $h(x)=b+c-x$ then $f \circ h$ is a representative of K^{\bullet}.

The products $K K^{\bullet}$ and $K^{\bullet} K$ are clearly defined and they are closed paths of Y.

It is to be noted that $\left(K^{\bullet}\right)^{\bullet}=K$. Moreover $K^{\bullet}=K$ whenever K is a degenerate path.

Let v be a simple arc in Y with the endpoints q_{1} and q_{2}. Then there exists a unique continuous path $K: q_{1} \rightarrow q_{2}$ with $\tilde{K}=v$ and such that the representatives of K are injective maps. We denote this path by [$q_{2} v q_{1}$]. Paths of this type are called proper simple paths. We clearly have $\left[q_{2} v q_{1}\right]^{\bullet}=$ $=\left[q_{1} v q_{2}\right.$.

We shall call a singleton of Y a degenerate arc of Y. If $q_{1}=q_{2} \in Y$ then by the degenerate arc of Y with the endpoints q_{1} and q_{2} we understand the singleton $\left\{q_{1}\right\}=\left\{q_{2}\right\}$.

To each degenerate arc $v=\{q\}$ of Y there belongs a unique degenerate continuous path K with $\tilde{K}=v$. Then we shall also write $[q v q]$ instead of $K: q \rightarrow q$ and we have $[q v q]^{\bullet}=[q v q]$. Continuous paths of the form $[q v q]$ of Y are said to be degenerate simple paths of Y.

By an arc of Y we mean a simple arc or a degenerate arc of Y. By a simple path of Y we mean a proper or a degenerate simple path of Y.
2.5. We recall the existence of an important function described in [7], Section 11.

Let Y be a T_{2}-space. Then there exists a function which makes correspond to each continuous closed path K of Y an element K_{*} of $H_{1}(\tilde{K})$ satisfying the following conditions:
(a) For each continuous path K_{1} of $Y\left(K_{1}\right.$ need not be closed) $\left(K_{1} K_{1}^{\bullet}\right)_{*}=$ $=0$ (see [7], Section 14).
(b) If K_{1} and K_{2} are continuous paths of Y such that both of the products $K_{1} K_{2}$ and $K_{2} K_{1}$ are closed paths then $\left(K_{1} K_{2}\right)_{*}=\left(K_{2} K_{1}\right)_{*}$ (see [7], Section 15).
(c) If K_{1} and K_{2} are continuous closed paths of Y with the same base point and $K=K_{1} K_{2}$ then

$$
i_{1 *}\left(K_{1 *}\right)+i_{2 *}\left(K_{2 *}\right)=K_{*}
$$

where for $j=1,2 i_{j *}: H_{1}\left(\tilde{K}_{j}\right) \rightarrow H_{1}(\tilde{K})$ is the homomorphism induced by the inclusion $i_{j}: \tilde{K}_{j} \subset \tilde{K}$ (see [7], Section 16).
(d) If K is a Jordan path of Y then $K_{*} \neq 0$ (see [7], Section 13).
(e) If $f:[a, b] \rightarrow Y$ is a representative of the closed continuous path K then there is an integer m where $0<m<p$ such that $K_{*}=m f^{*}$ (see 1.6 and [7], Sections 11, 7 and 3).
2.6. Let K be a closed path in $R^{n+1} \backslash A . K$ is said to be linked to the (n, p)-cell (X, A) if $\mathfrak{v}_{A, \tilde{K}^{\prime}}\left(A_{*}, K_{*}\right) \neq 0$.

Taking 1.10 and 2.5(e) into account K is clearly linked to (X, A) if their representatives are linked to (X, A). If K fails to be linked to (X, A) then no representative of K is linked to (X, A).

If K fails to be linked to (X, A) then we say that K is nonlinked to the (n, p)-cell (X, A).

If K is a closed continuous path lying in $R^{n+1} \backslash X$ or in an open ball contained in $R^{n+1} \backslash A$ then K is nonlinked to (X, A) (cf. 2.2 and 2.3).
2.7. Let G be a domain (open nonempty connected set) in $R^{n+1} \backslash A$ (in $X \backslash A$ respectively). We say that G is an e-regular domain (i-regular domain respectively) of (X, A) if no continuous closed path of G is linked to (X, A).

According to $2.2,2.3$ and $2.6, G$ is obviously e-regular if it is an open ball or it is lying in $R^{n+1} \backslash X$. The domain G of $X \backslash A$ is clearly i-regular if it is contained in an open ball lying in $R^{n+1} \backslash A$.
2.8. Let K be a continuous path in $R^{n+1} \backslash A$. Then by $2.5(\mathrm{a}), K K^{\bullet}$ is obviously a closed path nonlinked to (X, A).
2.9. Let K_{1} and K_{2} be continuous paths in $R^{n+1} \backslash A$ such that both of the products $K_{1} K_{2}$ and $K_{2} K_{1}$ exist. Suppose that $K_{1} K_{2}$ is linked to (X, A). Then by 2.5(b) the closed path $K_{2} K_{1}$ is linked to (X, A) as well.
2.10. Let K_{1} and K_{2} be continuous closed paths of $R^{n+1} \backslash A$ with the same base point. For $j=1,2$ let $i_{j^{*}}$ be the same as in 2.5(c). Then

$$
\begin{gathered}
\mathfrak{v}_{A, \widehat{K_{1} K_{2}}}\left(A_{*},\left(K_{1} K_{2}\right)_{*}\right)=\mathfrak{v}_{A, \widetilde{K_{1} K_{2}}}\left(A_{*}, i_{1^{*}}\left(K_{1^{*}}\right)+i_{2^{*}}\left(K_{2^{*}}\right)\right)= \\
=\mathfrak{v}_{A, \widetilde{K_{1} K_{2}}}\left(A_{*}, i_{1^{*}}\left(K_{1^{*}}\right)\right)+\mathfrak{v}_{A, \widetilde{K_{1} K_{2}}}\left(A_{*}, i_{2^{*}}\left(K_{2^{*}}\right)\right)= \\
=\mathfrak{v}_{A, \widetilde{K_{1}}}\left(A_{*}, K_{1^{*}}\right)+\mathfrak{v}_{A, \widetilde{K_{2}}}\left(A_{*}, K_{2^{*}}\right) .
\end{gathered}
$$

Hence if $K_{1} K_{2}$ is linked to (X, A) then at least one of the K_{j}-s is linked to (X, A). On the other hand if exactly one of the K_{j}-s is linked to (X, A) then $K_{1} K_{2}$ itself is linked to (X, A).
2.11. Let $q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}, q_{1}^{\prime \prime}, q_{2}^{\prime \prime}$ and $q_{3}^{\prime \prime}$ be points of $R^{n+1} \backslash A$. Let

$$
\begin{gathered}
K_{1}^{\prime}: q_{1}^{\prime} \rightarrow q_{2}^{\prime}, \quad K_{2}^{\prime}: q_{2}^{\prime} \rightarrow q_{3}^{\prime}, \quad K_{1}^{\prime \prime}: q_{2}^{\prime \prime} \rightarrow q_{1}^{\prime \prime}, \\
K_{2}^{\prime \prime}: q_{3}^{\prime \prime} \rightarrow q_{2}^{\prime \prime}, \quad K_{1}: q_{1}^{\prime} \rightarrow q_{1}^{\prime \prime}, \quad K_{2}: q_{2}^{\prime} \rightarrow q_{2}^{\prime \prime} \quad \text { and } \quad K_{3}: q_{3}^{\prime} \rightarrow q_{3}^{\prime \prime}
\end{gathered}
$$

be continuous paths in $R^{n+1} \backslash A$. Let $\bar{K}_{1}=K_{1}^{\bullet} K_{1}^{\prime \prime} K_{2} K_{1}^{\prime}, \bar{K}_{2}=K_{2}^{\bullet} K_{2}^{\prime \prime} K_{3} K_{2}^{\prime}$ and $K_{4}=K_{1}^{\bullet} K_{1}^{\prime \prime} K_{2}^{\prime \prime} K_{3} K_{2}^{\prime} K_{1}^{\prime}$. Suppose that the closed paths \bar{K}_{1} and \bar{K}_{2} are nonlinked to (X, A). Then K_{4} is nonlinked to (X, A) as well.

Indeed by the assumption and by $2.9,2.10,2.9,2.8,2.10$ and 2.9 again

$$
\begin{gathered}
K_{1}^{\prime} K_{1}^{\bullet} K_{1}^{\prime \prime} K_{2}, \quad K_{1}^{\prime} K_{1}^{\bullet} K_{1}^{\prime \prime}\left(K_{2} K_{2}^{\bullet}\right) K_{2}^{\prime \prime} K_{3} K_{2}^{\prime}, \quad K_{2}^{\prime \prime} K_{3} K_{2}^{\prime} K_{1}^{\prime} K_{1}^{\bullet} K_{1}^{\prime \prime}\left(K_{2} K_{2}^{\bullet}\right), \\
K_{2}^{\prime \prime} K_{3} K_{2}^{\prime} K_{1}^{\prime} K_{1}^{\bullet} K_{1}^{\prime \prime} \quad \text { and } \quad K_{4}=K_{1}^{\bullet} K_{1}^{\prime \prime} K_{2}^{\prime \prime} K_{3} K_{2}^{\prime} K_{1}^{\prime}
\end{gathered}
$$

are all nonlinked closed paths of (X, A).
2.12. Let q^{\prime} and $q^{\prime \prime}$ be points of $R^{n+1} \backslash A$. Let K^{\prime} and $K^{\prime \prime}$ be closed paths of $R^{n+1} \backslash A$ with the base points q^{\prime} and $q^{\prime \prime}$ respectively. Let $K: q^{\prime} \rightarrow q^{\prime \prime}$ be a continuous path of $R^{n+1} \backslash A$. Suppose that $K^{\bullet} K^{\prime \prime} K K^{\prime}$ and K^{\prime} are nonlinked closed paths of (X, A). Then $K^{\prime \prime}$ is a nonlinked closed path of (X, A) as well.

Indeed by assumption and by $2.10,2.9,2.8$ and 2.10 again $K^{\bullet} K^{\prime \prime} K$, $K^{\prime \prime}\left(K K^{\bullet}\right)$ and $K^{\prime \prime}$ are nonlinked closed paths of (X, A).
2.13. Let $q_{1}^{\prime}, \ldots, q_{r}^{\prime}, q_{1}^{\prime \prime}, \ldots, q_{r}^{\prime \prime}$ be points of $R^{n+1} \backslash A$. For $i=1, \ldots, r-$ -1 let $K_{i}^{\prime}: q_{i}^{\prime} \rightarrow q_{i+1}^{\prime}, K_{i}^{\prime \prime}: q_{i+1}^{\prime \prime} \rightarrow q_{i}^{\prime \prime}$ and $K_{i}: q_{i}^{\prime} \rightarrow q_{i}^{\prime \prime}$ be continuous paths of $R^{n+1} \backslash A$. Let $K_{r}^{\prime}: q_{r}^{\prime} \rightarrow q_{1}^{\prime}, K_{r}^{\prime \prime}: q_{1}^{\prime \prime} \rightarrow q_{r}^{\prime \prime}$ and $K_{r}: q_{r}^{\prime} \rightarrow q_{r}^{\prime \prime}$ be continuous paths in $R^{n+1} \backslash A$. Suppose that for $i=1, \ldots, r-1$ the closed path $\bar{K}_{i}=$ $=K_{i}^{\bullet} K_{i}^{\prime \prime} K_{i+1} K_{i}^{\prime}$ is nonlinked to (X, A). Moreover that $\bar{K}_{r}=K_{r}^{\bullet} K_{r}^{\prime \prime} K_{1} K_{r}^{\prime}$ and $K^{\prime}=K_{r}^{\prime} \ldots K_{2}^{\prime} K_{1}^{\prime}$ are nonlinked closed paths of (X, A). Let $K^{\prime \prime}=$ $=K_{1}^{\prime \prime} K_{2}^{\prime \prime} \ldots K_{r}^{\prime \prime}$. Then by 2.11 and 2.12 the continuous closed paths $K_{1}^{0} K^{\prime \prime} K_{1} K^{\prime}$ and $K^{\prime \prime}$ are nonlinked to (X, A).

Now we can state the following theorem.
2.14. Theorem. Let G^{\prime} be an i-regular domain of (X, A) (see 2.7). Then there exists an e-regular domain G of (X, A) such that $G \cap X=G^{\prime}$.

Proof. Denoting the spherical neighborhood of $q \in R^{n+1}$ with the radius ϱ by $S(q, \varrho)$ select for each $q \in G^{\prime}$ a $\varrho_{q}^{\prime}>0$ such that $S\left(q, \varrho_{q}^{\prime}\right) \cap A=\emptyset$.

For $q \in G^{\prime}$ let U_{q} be a domain in $G^{\prime} \cap S\left(q, \varrho_{q}^{\prime}\right)$ such that $q \in U_{q}$. Since G^{\prime} is open in $X \backslash A$ and $X \backslash A$ is locally connected (see $1.2(\mathrm{a})$) there exists such a domain $U_{q} \cdot U_{q}$ is a locally compact locally connected and connected subspace of R^{n+1} consequently it is arcwise connected (see [14], p. 27). Select $\varrho_{q}>0$ such that

$$
\begin{equation*}
\varrho_{q}<\varrho_{q}^{\prime} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(q, \varrho_{q}\right) \cap X \subset U_{q} \tag{3}
\end{equation*}
$$

$S\left(q, \varrho_{q}^{\prime}\right)$ and $S\left(q, \frac{1}{2} \varrho_{q}\right)$ are clearly e-regular domains of (X, A). Let

$$
G=\bigcup_{q \in G^{\prime}} S\left(q, \frac{1}{2} \varrho_{q}\right)
$$

Then G is clearly a domain in R^{n+1} and $G \cap X=G^{\prime}$.
We show that G is an e-regular domain of (X, A) i.e. no closed path of G is linked to (X, A).

Indeed let $K^{\prime \prime}$ be a continuous closed path of $G . \Omega=\left\{S\left(q, \frac{1}{2} \varrho_{q}\right) ; q \in G^{\prime}\right\}$ is an open covering of $\tilde{K}^{\prime \prime}$. Hence there is a representation of the form

$$
\begin{equation*}
K^{\prime \prime}=K_{1}^{\prime \prime} K_{3}^{\prime \prime} \ldots K_{2 m-1}^{\prime \prime} \tag{4}
\end{equation*}
$$

such that for $j=1, \ldots, m \tilde{K}_{2 j-1}^{\prime \prime}$ is contained in a member of Ω (see [11], $7.11,7.10$, and 7.8) - say

$$
\begin{equation*}
\tilde{K}_{2 j-1}^{\prime \prime} \subset S\left(q_{2 j}^{\prime}, \frac{1}{2} \varrho_{2 j}^{\prime}\right) \tag{5}
\end{equation*}
$$

For $j=1, \ldots, m$ let

$$
\begin{equation*}
K_{2 j-1}^{\prime \prime}=K_{2 j-1}^{\prime \prime}: q_{2 j}^{\prime \prime} \rightarrow q_{2 j-1}^{\prime \prime} \tag{6}
\end{equation*}
$$

Hence for $j=1, \ldots, m-1$ we have

$$
\begin{equation*}
q_{2 j}^{\prime \prime}=q_{2 j+1}^{\prime \prime} \tag{7}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
q_{2 m}^{\prime \prime}=q_{1}^{\prime \prime} \tag{8}
\end{equation*}
$$

For $j=1, \ldots, m$ let

$$
\begin{equation*}
q_{2 j-1}^{\prime}=q_{2 j}^{\prime} \tag{9}
\end{equation*}
$$

$v_{2 j-1}^{\prime}=\left\{q_{2 j-1}^{\prime}\right\}, v_{2 j}^{\prime \prime}=\left\{q_{2 j}^{\prime \prime}\right\} . K_{2 j-1}^{\prime}=\left[q_{2 j-1}^{\prime} v_{2 j-1}^{\prime} q_{2 j-1}^{\prime}\right]$ and $K_{2 j}^{\prime \prime}=\left[q_{2 j}^{\prime \prime} v_{2 j}^{\prime \prime} q_{2 j}^{\prime \prime}\right]$.
For $j=1, \ldots, m K_{2 j-1}^{\prime}$ and $K_{2 j}^{\prime \prime}$ are degenerate paths and by (9) we have

$$
K_{2 j-1}^{\prime}=K_{2 j-1}^{\prime}: q_{2 j-1}^{\prime} \rightarrow q_{2 j}^{\prime} .
$$

Moreover by (8) one has

$$
K_{2 m}^{\prime \prime}=K_{2 m}^{\prime \prime}: q_{1}^{\prime \prime} \rightarrow q_{2 m}^{\prime \prime}
$$

and by (7) for $j=1, \ldots, m-1$ we have

$$
K_{2 j}^{\prime \prime}=K_{2 j}^{\prime \prime}: q_{2 j+1}^{\prime \prime} \rightarrow q_{2 j}^{\prime \prime} .
$$

Hence $K^{\prime \prime}=K_{1}^{\prime \prime} K_{2}^{\prime \prime} \ldots K_{2 m}^{\prime \prime}$.
For $t=1, \ldots, 2 m$ let v_{t} be the (possibly degenerate) segment $v_{t}=\left[q_{t}^{\prime}, q_{t}^{\prime \prime}\right]$ with the endpoints q_{t}^{\prime} and $q_{t}^{\prime \prime}$ and

$$
K_{t}=\left[q_{t}^{\prime \prime} v_{t} q_{t}^{\prime}\right]: q_{t}^{\prime} \rightarrow q_{t}^{\prime \prime} .
$$

(In case $q_{t}^{\prime}=q_{t}^{\prime \prime}$ we have $v_{t}=\left\{q_{t}^{\prime}\right\}$.)
Then for $j=1, \ldots, m$ the closed path

$$
\bar{K}_{2 j-1}=K_{2 j-1}^{\bullet} K_{2 j-1}^{\prime \prime} K_{2 j} K_{2 j-1}^{\prime}
$$

is lying in the e-regular domain $S\left(q_{2 j}^{\prime}, \frac{1}{2} \varrho_{q_{2}^{\prime}}\right)$ and thus $\bar{K}_{2 j-1}$ is nonlinked to (X, A).

Now let $j \in\{2, \ldots, m\}$. By (5), (6) and (7) the open balls $S\left(q_{2 j-2}^{\prime}\right.$, $\left.\frac{1}{2} \varrho_{q_{2 j-2}^{\prime}}\right)$ and $S\left(q_{2 j}^{\prime}, \frac{1}{2} \varrho_{q_{2 j}^{\prime}}\right)$ have the common point $q_{2 j-1}^{\prime \prime}=q_{2 j-2}^{\prime \prime}$ consequently either $q_{2 j-2}^{\prime} \in S\left(q_{2 j}^{\prime}, \varrho_{q_{2 j}^{\prime}}\right)$ and thus $q_{2 j}^{\prime}, q_{2 j-2}^{\prime} \in U_{q_{2 j}^{\prime}}$ (see (3)) or $q_{2 j}^{\prime} \in$ $\in S\left(q_{2 j-2}^{\prime}, \varrho_{q_{2 j-2}^{\prime}}\right)$ and thus $q_{2 j}^{\prime}, q_{2 j-2}^{\prime} \in U_{q_{2 j-2}^{\prime}}$. Let $v_{2 j-2}^{\prime}$ be a degenerate or a simple arc with the endpoints $q_{2 j}^{\prime}=q_{2 j-1}^{\prime}$ (see (9)) and $q_{2 j-2}^{\prime}$ lying in $U_{q_{2 j}^{\prime}}$ (in the first case) or in $U_{q_{2 j-2}^{\prime}}$ (in the second case). Since the domains $U_{q_{2 j}^{\prime}}$ and $U_{q_{2 j-2}^{\prime}}$ are arcwise connected, such a $v_{2 j-2}^{\prime}$ exists. Let

$$
K_{2 j-2}^{\prime}=\left[q_{2 j-1}^{\prime} v_{2 j-2}^{\prime} q_{2 j-2}^{\prime}\right]: q_{2 j-2}^{\prime} \rightarrow q_{2 j-1}^{\prime}
$$

Then taking also (2) into account the closed path

$$
\bar{K}_{2 j-2}=\left[K_{2 j-2}^{\bullet} K_{2 j-2}^{\prime \prime} K_{2 j-1} K_{2 j-2}^{\prime}\right]
$$

is lying either in the e-regular domain $S\left(q_{2 j}^{\prime}, \varrho_{q_{2 j}^{\prime}}^{\prime}\right)$ (in the first case) or in $S\left(q_{2 j-2}^{\prime}, \varrho_{q_{2 j-2}^{\prime}}\right)$ (in the second case). Hence in both cases $\bar{K}_{2 j-2}$ is nonlinked to (X, A).

Likewise we have either $\left\{q_{2 m}^{\prime}, q_{2}^{\prime}\right\} \subset U_{q_{2 m}^{\prime}}$ or $\left\{q_{2 m}^{\prime}, q_{2}^{\prime}\right\} \subset U_{q_{2}^{\prime}}$. Let $v_{2 m}^{\prime}$ be a degenerate or a simple arc with the endpoints $q_{2 m}^{\prime}$ and $q_{2}^{\prime}=q_{1}^{\prime}$ contained in $U_{q_{2 m}^{\prime}}$ (in the first case) or in $U_{q_{2}^{\prime}}$ (in the second case). Let

$$
K_{2 m}^{\prime}=\left[q_{1}^{\prime} v_{2 m}^{\prime} q_{2 m}^{\prime}\right]: q_{2 m}^{\prime} \rightarrow q_{1}^{\prime} .
$$

Then the closed path $\bar{K}_{2 m}=K_{2 m}^{*} K_{2 m}^{\prime \prime} K_{1} K_{2 m}^{\prime}$ is lying either in $S\left(q_{2 m}^{\prime}, \varrho_{q_{2 m}^{\prime}}^{\prime}\right)$ (in the first case) or in $S\left(q_{2}^{\prime}, \varrho_{q_{2}^{\prime}}^{\prime}\right)$ (in the second case). Hence in both cases $\bar{K}_{2 m}$ is nonlinked to (X, A).

Now let $K^{\prime}=K_{2 m}^{\prime} \ldots K_{2}^{\prime} K_{1}^{\prime} . K^{\prime}$ is a continuous closed path lying in the i-regular domain G^{\prime} of (X, A) and thus K^{\prime} is nonlinked to (X, A). Hence by $2.13, K^{\prime \prime}$ is a nonlinked closed path of (X, A). consequently G is an e-regular domain of (X, A) as required.

The theorem is proved.
2.15. Theorem. Let G be an e-regular domain of (X, A) that meets X. Then there are points q_{1}, q_{2} in $G \backslash X$ and continuous paths $K_{1}: q_{1} \rightarrow q_{2}$ and $K_{2}: q_{2} \rightarrow q_{1}$ in $R^{n+1} \backslash A$ such that
(a) q_{1} and q_{2} are in distinct components of $G \backslash X$,
(b) $\tilde{K}_{1} \subset G$,
(c) $\tilde{K}_{2} \subset R^{n+1} \backslash X$ and
(d) the closed path $K_{2} K_{1}$ is linked to (X, A).

Proof. Let $q \in G \cap X$. Since $G \cap A=\emptyset$ we have $q \in X \backslash A$. Let V be a domain of $X \backslash A$ contained in $G \cap X$. Since $X \backslash A$ is locally connected, such a domain V clearly exists. Let U be a nonempty open subset of V such that for the inclusion $j:(X, A) \subset(X, X \backslash U)$ the induced homomorphism $j_{*}: H_{n}(X, A) \rightarrow H_{n}(X, X \backslash U)$ is a monomorphism (see 1.2(d)). Let $i_{1}:(X, \emptyset) \subset(X, X \backslash U)$ and $i:(X, \emptyset) \subset(X, A)$ be inclusions. Then $i_{1}=j \circ i$ and thus according to 1.2(c) the induced $i_{1^{*}}: H_{n}(X) \rightarrow H_{n}(X, X \backslash U)$) is a trivial homomorphism. Hence considering the segment

$$
\tilde{H}_{n-1}(X \backslash U) \stackrel{\partial^{\prime}}{\leftrightarrows} H_{n}(X, X \backslash U) \stackrel{i_{1}^{*}}{\rightleftarrows} H_{n}(X)
$$

of the exact reduced homology sequence of $(X, X \backslash U)$ we obtain that ∂^{\prime} is a monomorphism. Let $s:(A, \emptyset) \subset(X, \emptyset)$ be the inclusion map and consider
the commutative diagram

we get $s_{*}\left(A_{*}\right)=\partial^{\prime} j_{*}(u)$ where $A_{*}=\partial u$ and $u \neq 0$ (see 1.4). Consequently since ∂^{\prime} and j_{*} are monomorphisms we obtain that

$$
\begin{equation*}
s_{*}\left(A_{*}\right) \neq 0 \tag{10}
\end{equation*}
$$

Let J be a linking Jordan curve of $s_{*}\left(A_{*}\right)$ i.e., J is a Jordan curve in $R^{n+1} \backslash(X \backslash U)$ such that for each nonzero element u^{\prime} of $H_{1}(J)$ we have

$$
\mathfrak{v}_{X \backslash U, J}\left(s_{*}\left(A_{*}\right), u^{\prime}\right) \neq 0
$$

and thus

$$
\begin{equation*}
\mathfrak{v}_{A, J}\left(A_{*}, u^{\prime}\right) \neq 0 \tag{11}
\end{equation*}
$$

(see also 1.8). According to (10) and [10], Theorem 2.3, such a curve J exists (see also [10], 2.1 and 2.2).

It is to be noted that each Jordan path K with the body J is linked to (X, A).

Indeed, let K be such a Jordan path. Then $K_{*} \neq 0$ (see $2.5(\mathrm{~d})$) and thus according to (11) we have

$$
\begin{equation*}
\mathfrak{v}_{A, \tilde{K}^{\prime}}\left(A_{*}, K_{*}\right) \neq 0 \tag{12}
\end{equation*}
$$

Hence K is linked to the (n, p)-cell (X, A) as required.
Now let K be a Jordan path with $\tilde{K}=J$. Such a Jordan path clearly exists. By (12), $\tilde{K}=J$ cannot lie in G or in $R^{n+1} \backslash X$ (see 2.6). On the other hand

$$
\tilde{K}=J \subset R^{n+1} \backslash(X \backslash U)=U \cup\left(R^{n+1} \backslash X\right) \subset G \cup\left(R^{n+1} \backslash X\right)
$$

Hence by Lemma 7.16 of [11] there is a subdivision $K=K^{2 \prime} K^{1 \prime}$ of K and a subdivision $K^{\prime \prime}=K_{1}^{\prime \prime} K_{2}^{\prime \prime} \ldots K_{2 m}^{\prime \prime}$ of $K^{\prime \prime}=K^{1 \prime} K^{2 \prime}$ such that the relations $\tilde{K}_{2 i-1}^{\prime \prime} \subset R^{n+1} \backslash X, \tilde{K}_{2 i-1}^{\prime \prime} \not \subset G, \tilde{K}_{2 i}^{\prime \prime} \subset G$ and $\tilde{K}_{2 i}^{\prime \prime} \not \subset\left(R^{n+1} \backslash X\right)$ hold for $i=$ $=1, \ldots, m$ (see also [11], 7.12 and 7.14). Since K is a linked closed path of $(X, A), 2.9$ shows that $K^{\prime \prime}$ is a linked closed path of (X, A) as well. For $j=1, \ldots, 2 m-1$ let $K_{j}^{\prime \prime}=K_{j}^{\prime \prime}: q_{j+1} \rightarrow q_{j}$ and let $K_{2 m}^{\prime \prime}=K_{2 m}^{\prime \prime}: q_{1} \rightarrow q_{2 m}$. The points $q_{1}, \ldots, q_{2 m}$ belong to $G \cap\left(R^{n+1} \backslash X\right)=G \backslash X$.

For $j=1, \ldots, 2 m-1$ let $K_{j}^{\prime}=K_{j}^{\prime}: q_{j} \rightarrow q_{j+1}$ be a continuous path lying in G and suppose that $\tilde{K}_{j} \subset G \backslash X$ whenever q_{j} and q_{j+1} lie in the same component of $G \backslash X$. Let $K_{2 m}^{\prime}=K_{2 m}^{\prime}: q_{2 m} \rightarrow q_{1}$ be a continuous path lying in G.

For $j=1, \ldots, 2 m$ let $K^{j}: q_{j} \rightarrow q_{j}$ be a degenerate path. Let $\overline{K_{j}}=$ $=\left(K^{j}\right)^{\bullet} K_{j}^{\prime \prime} K^{j+1} K_{j}^{\prime}$ for $j=1, \ldots, 2 m-1$ and $\overline{K_{2 m}}=\left(K^{2 m}\right)^{\bullet} K_{2 m}^{\prime \prime} K^{1} K_{2 m}^{\prime}$. Then the closed paths $\overline{K_{2}}, \overline{K_{4}}, \ldots, \overline{K_{2 m}}$ and the closed path $K^{\prime}=$ $=K_{2 m}^{\prime} \ldots K_{2}^{\prime} K_{1}^{\prime}$ are lying in G. Hence they are nonlinked to (X, A). On the other hand $\overline{K_{2 i-1}}$ is lying in $R^{n+1} \backslash X$ whenever $q_{2 i-1}$ and $q_{2 i}$ belong to the same component of $G \backslash X$ and thus all the closed paths of this kind are nonlinked to (X, A).

However $K^{\prime \prime}=K_{1}^{\prime \prime} K_{2}^{\prime \prime} \ldots K_{2 m}^{\prime \prime}$ is linked to (X, A) and thus according to 2.13 there is a $t \in\{1, \ldots, m\}$ such that $\overline{K_{2 t-1}}$ is linked to (X, A) and for this $t, q_{2 t-1}$ and $q_{2 t}$ lie in distinct components of $G \backslash X$. Further since ($\left.K^{2 t-1}\right)^{\bullet}$ and $K^{2 t}$ are degenerate paths we have $\overline{K_{2 t-1}}=K_{2 t-1}^{\prime \prime} K_{2 t-1}^{\prime}$. Hence denoting $K_{2 t-1}^{\prime}, K_{2 t-1}^{\prime \prime}, q_{2 t-1}$ and $q_{2 t}$ by K_{1}, K_{2}, q_{1} and q_{2}, resp., the points q_{1}, q_{2} and the continuous paths K_{1}, K_{2} satisfy the requirements (a), (b), (c), (d).

The theorem is proved.
2.16. Corollary. $X \backslash A$ is nowhere dense in R^{n+1}.

Indeed, let G^{\prime} be a nonempty open set in R^{n+1}. If $G^{\prime} \cap(X \backslash A) \neq \emptyset$ then let G be an open ball in G^{\prime} meeting X and missing A. Such a ball G clearly exists. G is an e-regular domain of (X, A) (see 2.7) and thus by $2.15, G \backslash X$ is a nonempty open set in $G^{\prime} \backslash(X \backslash A)$. If $G^{\prime} \cap(X \backslash A)=\emptyset$ then G^{\prime} itself is a nonempty open set in $G^{\prime} \backslash(X \backslash A)$.
$X \backslash A$ is nowhere dense in R^{n+1} as required (cf. [13] 1.3.5).
2.17. Theorem. Let (Y, B) be a compact pair. Let p^{\prime} be a prime distinct from p and H^{\prime} the Čech homology theory defined on the category of compact pairs over the coefficient group $Z_{p^{\prime}}$. Suppose that (Y, B) is an (n, p)-cell and $H_{n}^{\prime}(Y, B)=0$. Then (Y, B) is an absolutely linked ($\left.n, p\right)$-cell.

Proof. We argue by contradiction. Suppose the existence of a topological embedding $\varphi: Y \rightarrow R^{n+1}$ such that $(X, A)=(\varphi(Y), \varphi(B))$ is a nonlinked (n, p)-cell in R^{n+1}. According to 1.11, 2.6 and $2.7, X \backslash A$ is an i-regular domain of (X, A) and thus by 2.14 there exists an e-regular domain G of (X, A) such that $G \cap X=X \backslash A$. G meets X, consequently by $2.15, G \backslash X$ has at least two components. However by $H_{n}^{\prime}(X, A)=0, G \backslash X$ is connected (see [8], consequence of Theorem 2). This is a contradiction.

The theorem is proved.
2.18. Theorem. The topological product of an absolutely linked (n, p)cell and of a nondiscrete space cannot be embedded in R^{n+1}.

Proof. We argue by contradiction.

Suppose the existence of a topological embedding $\varphi: Y \times C \rightarrow R^{n+1}$ where (Y, B) is an absolutely linked (n, p)-cell and C is a nondiscrete space. Let c be an accumulation point of C (see [13], p. 43). Since C is nondiscrete, such a c exists. Let $X=\varphi(Y \times\{c\})$ and $A=\varphi(B \times\{c\}) .(X, A)$ is an (n, p)-cell in R^{n+1}. Let f be a continuous closed line in $X \backslash A$. Let $\varepsilon=\varrho(\tilde{f}, A)$ where ϱ is the metric in R^{n+1} (cf. 1.6). Since \tilde{f} is compact we have $\varepsilon>0$. Select $c^{\prime} \in C \backslash\{c\}$ such that for each $y \in Y$

$$
\varrho\left(\varphi(y, c), \varphi\left(y, c^{\prime}\right)\right)<\varepsilon .
$$

Since Y is compact and c is an accumulation point of C the existence of such a c^{\prime} follows (see also [11], 9.6).

For each $q=\varphi(y, c) \in X$ let $\psi(q)=\varphi\left(y, c^{\prime}\right) . \psi: X \rightarrow \varphi\left(Y \times\left\{c^{\prime}\right\}\right)$ is clearly a topological mapping and $X \cap \psi(X)=\emptyset$. Let $Q=\psi(\tilde{f})$ and

$$
W=\bigcup_{q \in \tilde{f}}[q, \psi(q)]
$$

where $[q, \psi(q)]$ is the segment with the endpoints q and $\psi(q) . W$ is clearly a compact set in R^{n+1} disjoint to A and $(\tilde{f} \cup Q) \subset W$. Let $i_{1}: \tilde{f} \subset W$ and $i_{2}: Q \subset W$ be inclusions and let

$$
\psi^{\prime}=\left.\psi\right|_{\tilde{f}}: \tilde{f} \rightarrow Q
$$

Then the mappings i_{1} and $i_{2} \circ \psi^{\prime}$ are clearly homotopic and thus

$$
i_{1^{*}}\left(f^{*}\right)=i_{2^{*}} \psi_{*}^{\prime}\left(f^{*}\right) .
$$

$\psi_{*}^{\prime}\left(f^{*}\right) \in H_{1}(Q)$ where Q is disjoint to X and thus by 2.1 we have

$$
\mathfrak{v}_{A, Q}\left(A_{*}, \psi_{*}^{\prime}\left(f^{*}\right)\right)=0,
$$

consequently

$$
\begin{gathered}
\mathfrak{v}_{A, \tilde{f}}\left(A_{*}, f^{*}\right)=\mathfrak{v}_{A, W}\left(A_{*}, i_{1} *\left(f^{*}\right)\right)= \\
=\mathfrak{v}_{A, W}\left(A_{*}, i_{2} \psi_{*}^{\prime}\left(f^{*}\right)\right)=\mathfrak{v}_{A, Q}\left(A_{*}, \psi_{*}^{\prime}\left(f^{*}\right)\right)=0
\end{gathered}
$$

(see also 1.8).
Hence f fails to be linked to the (n, p)-cell (X, A) (see 1.10) and thus (X, A) is a nonlinked (n, p)-cell in $R^{n+1} .(Y, B)$ is not absolutely linked. This is a contradiction.

The theorem is proved.

3. Pseudomanifolds with boundary

We shall take the terminology and notations of the books P. S. Aleksandrov, Combinatorial topology 1, 2 ([1], [2]).

Let p and Z_{p} be the same as in 1.1.
3.1. Let K be a triangulation (see [1] p. 118) situated in some euclidean space R^{m}. Suppose that K is an n-dimensional combinatorial pseudomanifold with boundary L where $n \geqq 1$ and $L \neq \emptyset$ (see [2] p. 72). L is a triangulation as well. Let Y and B be the bodies of K and L respectively (see [1] p. 136) i.e., $(Y, B)=(\|K\|,\|L\|)$. Y and B are compact Hausdorff spaces.

Compact pairs of such type are called topological nonclosed n-pseudomanifolds with boundary.

Let R^{m} be a hyperplane of the euclidean ($m+1$)-space R^{m+1}. Let c be a point in $R^{m+1} \backslash R^{m}$ and let M^{*} be the set of all open cones with the vertex c where the base of the cones runs over all (open) simplexes of L (see [1], p. 214). M^{*} is clearly a set of open simplexes of R^{m+1}. Let $M=M^{*} \cup L \cup$ $\cup\{\{c\}\}$ where $\{c\}$ is the 0 -simplex with the vertex $c . M$ and $K \cup M$ are clearly triangulations in R^{m+1}. Moreover if T^{n} is an n-simplex of K then $K \backslash\left\{T^{n}\right\}$ and $(K \cup M) \backslash\left\{T^{n}\right\}$ are triangulations in R^{m+1} as well.

An easy computation shows the following equalities. $\triangle_{p}^{n}(K)=0$ (cf. [2] p. 50), $\triangle_{p}^{n}\left((K \cup M) \backslash\left\{T^{n}\right\}\right)=0, \triangle_{p}^{n}(K \cup M) \approx Z_{p}$ if $p=2$ or if $p \neq 2$ and the pseudomanifold K is orientable (cf. [2] p. 74), $\triangle_{p}^{n}(K \cup M)=0$ if $p \neq 2$ and K is nonorientable.
3.2. Let H^{p} be the Čech homology theory defined on the category of compact pairs over the coefficient group Z_{p}. Let K, L, M, T^{n}, Y and B be the same as in 3.1.

Since for any triangulation K_{α} of a polyhedron Φ and for an arbitrary coefficient domain Γ the groups $\Delta^{n}\left(K_{\alpha}, \Gamma\right)$ and $\triangle^{n}(\Phi, \Gamma)$ are isomorphic to each other (see Theorem XI.4.1 and Definition XI.1.1 of [2], pp. 164 and 159), moreover since $\Delta^{n}(\Phi, \Gamma)$ is isomorphic to $H_{n}(\Phi ; \Gamma)$ where $H_{n}(\Phi ; \Gamma)$ is the n-dimensional Čech homology group of Φ over the coefficient group Γ (see [9], Section 24), from 3.1 we get the following results:

$$
\begin{gather*}
H_{n}^{p}(\|K\|)=H_{n}^{p}(Y)=0, \tag{13}\\
H_{n}^{p}\left(\left\|(K \cup M) \backslash\left\{T^{n}\right\}\right\|\right)=0, \tag{14}\\
H_{n}^{p}(\|K \cup M\|) \approx Z_{p} \text { if } p=2 \text { or if } p \neq 2 \text { and } K \text { is orientable. } \tag{15}\\
H_{n}^{p}(\|K \cup M\|)=0 \text { if } p \neq 2 \text { and } K \text { is nonorientable. } \tag{16}
\end{gather*}
$$

Let $\Phi=\|K \cup M\|$ and $\Psi=\|M\| . \Phi$ and Ψ are compact subsets of R^{m+1}. Ψ is clearly contractible to a point over itself and thus it is homologically trivial (see [12] p. 30). Hence $H_{n}^{p}(\Phi)$ and $H_{n}^{p}(\Phi, \Psi)$ are isomorphic groups. Consequently by (15) and (16), $H_{n}^{p}(\Phi, \Psi) \approx Z_{p}$ if $p=2$ or $p \neq 2$ and K is orientable, $H_{n}^{p}(\Phi, \Psi)=0$ if $p \neq 2$ and K is nonorientable.

Let $j^{\prime}:(Y, B) \subset(\Phi, \Psi)$ be the inclusion map. Since $Y \backslash B=\Phi \backslash \Psi=$ $=\|K \backslash L\|$ it follows that j^{\prime} is a relative homeomorphism and thus $H_{n}^{p}(Y, B) \approx$ $\approx H_{n}^{p}(\Phi, \Psi)$ (see [12] p. 266). Consequently
(a) if K is orientable then for every prime p

$$
\begin{equation*}
H_{n}^{p}(Y, B) \approx Z_{p}, \tag{17}
\end{equation*}
$$

and
(b) if K is nonorientable then

$$
\begin{equation*}
H_{n}^{2}(Y, B) \approx Z_{2} \tag{18}
\end{equation*}
$$

and for every $p \neq 2$

$$
\begin{equation*}
H_{n}^{p}(Y, B)=0 . \tag{19}
\end{equation*}
$$

In the first case we say that (Y, B) is an orientable topological n-pseudomanifold with boundary and in the second case we say that (Y, B) is a nonorientable topological n-pseudomanifold with boundary.
3.3. Proposition. Let K, L, Y and B be the same as in 3.1. Let U be a domain in $Y \backslash B$. Let H^{p} be the same as in 3.2. Then the homomorphism $j_{*}: H_{n}^{p}(Y, B) \rightarrow H_{n}^{p}(Y, Y \backslash U)$ induced by the inclusion $j:(Y, B) \subset(Y, Y \backslash U)$ is a monomorphism.

Proof. First observe that a successive barycentric subdivision K^{ν} of K of an arbitrary order ν (see [1], p. 140) is clearly an n-dimensional combinatorial pseudomanifold with boundary as well and the boundary L^{ν} of K^{ν} consists of all simplexes of K^{ν} lying in $\|L\|$. Hence $\left\|K^{\nu}\right\|=\|K\|$ and $\left\|L^{\nu}\right\|=\|L\|$. Let c and M be the same as in 3.1 and let $M^{\nu *}$ be the set of all open cones with the vertex c where the base of the cones runs over all open simplexes of L^{ν}. Let $M^{\nu}=M^{\nu *} \cup L^{\nu} \cup\{\{c\}\}$. Then M^{ν} is a triangulation in R^{m+1} and $\left\|M^{\nu}\right\|=\|M\|$.

There clearly exist an integer ν and an n-simplex T^{n} of K^{ν} such that $T^{n} \subset U . T^{n}$ is clearly a nonempty open subset of $\|K \backslash L\|$. Let $V=T^{n}$. Then by 3.2 (14) we have

$$
H_{n}^{p}\left(\left\|\left(K^{\nu} \cup M^{\nu}\right) \backslash\left\{T^{n}\right\}\right\|\right)=H_{n}^{p}(\Phi \backslash V)=0
$$

where $\Phi=\left\|K^{\nu} \cup M^{\nu}\right\|=\|K \cup M\|=Y \cup\|M\| . \Psi=\left\|M^{\nu}\right\|=\|M\|$ is homologically trivial and thus

$$
H_{n}^{p}(\Phi \backslash V, \Psi) \approx H_{n}^{p}(\Phi \backslash V)=0 .
$$

On the other hand the inclusion $j^{\prime \prime}:(Y \backslash V, B) \subset(\Phi \backslash V, \Psi)$ is a relative homeomorphism and thus

$$
H_{n}^{p}(Y \backslash V, B) \approx H_{n}^{p}(\Phi \backslash V, \Psi)=0
$$

Let $j^{\prime}:(Y, Y \backslash U) \subset(Y, Y \backslash V)$ be the inclusion map and let $i^{\prime}=j^{\prime} \circ j$: $(Y, B) \subset(Y, Y \backslash V)$. Consider the segment

$$
H_{n}^{p}(Y, Y \backslash V) \stackrel{i_{\leftarrow}^{\prime}}{\leftarrow} H_{n}^{p}(Y, B) \longleftarrow H_{n^{p}}(Y \backslash V, B)
$$

of the exact homology sequence of the triple $(Y, Y \backslash V, B)$ (see [12] p. 25). This segment has the form

$$
H_{n}^{p}(Y, Y \backslash V) \stackrel{i_{*}^{\prime}}{\longleftarrow} H_{n}^{p}(Y, B) \longleftarrow 0
$$

and thus i_{*}^{\prime} is a monomorphism. Since $i_{*}^{\prime}=j_{*}^{\prime} j_{*}$ it follows that j_{*} is a monomorphism as required.
3.4. Theorem. Let (Y, B) be the same as in 3.1. Then (Y, B) is an (n, p)-cell whenever $p=2$ or whenever $p \neq 2$ and (Y, B) is orientable.

Proof. Let K and L be the same as in 3.1. Since K is a triangulation and L is a subcomplex of K, it follows that $Y \backslash B=\|K \backslash L\|$ is a locally connected space with countable base. However $K \backslash L$ is nonempty and connected (see [2], p. 72) and thus $Y \backslash B$ is nonempty and connected as well. Hence condition $1.2(\mathrm{a})$ is fulfilled for the pair (Y, B).
$3.2(13)$ shows that condition $1.2(\mathrm{c})$ is satisfied for the pair (Y, B) as well.
According to Proposition 3.3, condition $1.2(\mathrm{~d})$ is satisfied for the pair (Y, B), too.

As to condition $1.2(\mathrm{~b}), 3.2(17)$ and $3.2(18)$ show that this condition is satisfied if $p=2$ or if $p \neq 2$ and (Y, B) is orientable.

The theorem is proved.
3.5. Theorem. Let (Y, B) be the same as in 3.1. Suppose that the topological n-pseudomonifold (Y, B) is nonorientable. Then (Y, B) is an absolutely linked ($n, 2$)-cell.

The theorem is an immediate corollary of the formula 3.2 (19) and Theorems 3.4 and 2.17 .

Our program is finished.
In the next paper we shall prove an analogous theorem concerning orientable pseudomanifolds, namely that each orientable nonclosed n-dimensional pseudomanifold with boundary and without homological singular interior points (i.e., without interior points having non cyclic n-dimensional local Betti groups with respect to the coefficient group Z) is absolutely nonlinked. This latter theorem was also stated in my paper [3] without proof.

References

[1] P. S. Aleksandrov, Combinatorial Topology 1 (Rochester, 1956).
[2] P. S. Aleksandrov, Combinatorial Topology 2 (Rochester, 1957).
[3] M. Bognár, n-dimensionale berandete Pseudomannigfaltigkeiten im ($n+1$)-dimensionalen euklidischen Raume I, Acta Math. Acad. Sci. Hung., 10 (1959), 363373.
[4] M. Bognár, Axiomatization of the theory of linking, Soviet Math. Dokl., 13 (1972), 477-480.
[5] M. Bognár, On generalized manifolds, Colloquia Math. Soc. J. Bolyai 8, Topics in topology (Keszthely, 1972), 111-126.
[6] M. Bognár, Die i-Kategorie der stetigen Wege, Acta Math. Acad. Sci. Hung., 24 (1973), 155-178.
[7] M. Bognár, Continuous paths and homology, Acta Math. Acad. Sci. Hung., 34 (1979), 121-127.
[8] M. Bognár, Some consequences of the decomposition theorem, Colloquia Math. Soc. J. Bolyai 41, Topology and applications (Eger, 1983), 89-92.
[9] M. Bognár, On axiomatization of the theory of linking, Acta Math. Hung., 49 (1987), 3-28.
[10] M. Bognár, On linking Jordan curves, Acta Math. Hung., 51 (1988), 15-22.
[11] M. Bognár, On embedding of locally compact abelian topological groups in euclidean spaces. II, Acta Math. Hung., 52 (1988), 101-131.
[12] S. Eilenberg and N. Steenrod, Foundations of algebraic topology (Princeton, 1952).
[13] R. Engelking, General topology (Warszawa, 1977).
[14] G. T. Whyburn, Topological analysis (Princeton, 1964).
(Received August 14, 1989)
EÖTVÖS LORÁND UNIIVERSITY
DEPARTMENT OF ANALYSIS BUDAPEST, MÚZEUM KRT. 6-8
H-1088
HUNGARY

A REMARK ON THE VIBRATION OF A CIRCULAR MEMBRANE IN DIFFERENT POINTS

I. JOÓ (Budapest)

To the memory of my father

1. Let

$$
\Omega:=\left\{(x, y): x^{2}+y^{2}<1\right\} \subset \mathbf{R}^{2}
$$

be the unit circle. Define U as the vector space of all functions

$$
u(t, x, y) \in C^{\infty}(\mathbf{R} \times \Omega) \cap C(\mathbf{R} \times \bar{\Omega})
$$

satisfying

$$
\begin{equation*}
u_{t t}=\Delta u \text { on } \mathbf{R} \times \Omega, u=0 \text { on } \mathbf{R} \times \partial \Omega . \tag{1}
\end{equation*}
$$

Denote for $m=0,1, \ldots$ by $J_{m}(x)$ the Bessel function of order m and arrange its positive zeros increasingly into the sequence

$$
0^{\prime}<\lambda_{1}^{(m)}<\lambda_{2}^{(m)}<\ldots
$$

As it is known ([1]), the finite sums of the form

$$
\begin{gather*}
u(t, x, y)=\sum_{m, k}\left(a_{m k} e^{i \lambda_{k}^{(m)} t}+b_{m k} e^{-i \lambda_{k}^{(m)} t}\right) \sin m \varphi J_{m}\left(\lambda_{k}^{(m)} r\right)+ \tag{2}\\
\quad+\sum_{m, k}\left(c_{m k} e^{i \lambda_{k}^{(m)} t}+d_{m k} e^{-i \lambda_{k}^{(m)} t}\right) \cos m \varphi J_{m}\left(\lambda_{k}^{(m)} r\right)
\end{gather*}
$$

are solutions of (1) if we use the polar coordinates $x=r \cos \varphi, y=r \sin \varphi$. In this note we prove the following

Theorem. Let $N \in \mathbf{N}$ and $P_{1}, \ldots, P_{N} \in \Omega \backslash\{0\}$ be different points. Then the mapping

$$
A: U \rightarrow C^{\infty}\left(\mathbf{R}, \mathbf{C}^{N}\right), \quad A u:=\left(u\left(., P_{1}\right), \ldots, u\left(., P_{N}\right)\right)
$$

has a dense range in $C^{\infty}\left(\mathbf{R}, \mathbf{C}^{N}\right)$.
This theorem proves a conjecture of V. Komornik formulated in [5]. For rectangular membranes analogous results were obtained earlier by the author
of the present paper in [9] and independently by M. Horváth in [8]. In [7] the authors proved a weaker version of the above theorem. The result proved in [7] is also a special case of Theorem 2 of [5].
2. We begin the proof with the remark that it is enough to prove the density of $A U$ in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for any $T>0$; the density in C^{∞} follows easily from it [10]. Secondly if we restrict ourselves to the solutions given by finite sums (2) then our Theorem reduces to the following statement. Denote

$$
e_{m k}:=\left(\begin{array}{c}
\sin m \varphi_{1} J_{m}\left(\lambda_{k}^{(m)} r_{1}\right) \\
\vdots \\
\sin m \varphi_{N} J_{m}\left(\lambda_{k}^{(m)} r_{N}\right)
\end{array}\right)
$$

and

$$
f_{m k}:=\left(\begin{array}{c}
\cos m \varphi_{1} J_{m}\left(\lambda_{k}^{(m)} r_{1}\right) \\
\vdots \\
\cos m \varphi_{N} J_{m}\left(\lambda_{k}^{(m)} r_{N}\right)
\end{array}\right) .
$$

Then the system

$$
e(\Lambda):=\left\{e_{m k} e^{ \pm i \lambda_{k}^{(m)} t}, f_{m k} e^{ \pm i \lambda_{k}^{(m)} t}: m=0,1, \ldots ; k=1,2, \ldots\right\}
$$

is complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for any $T>0$.
In what follows we shall prove this last statement. We begin with
Proposition. Arrange the positive zeros $\lambda_{k}^{(m)}$ of J_{m}, considered together for all m into a sequence $0<\mu_{1}<\mu_{2}<\ldots$. Then $\mu_{n+1}-\mu_{n} \rightarrow 0(n \rightarrow \infty)$.

Proof. The starting point of the proof is the Langer formula ([2])

$$
\begin{gathered}
J_{m}(x)=\sqrt{1-\frac{\arctan w}{w}} \frac{1}{\sqrt{3}}\left[J_{1 / 3}(z)+J_{-1 / 3}(z)\right]+O\left(m^{-4 / 3}\right), \\
x>m, \quad w:=\sqrt{\frac{x^{2}}{m^{2}}-1}, \quad z:=m(w-\arctan w)
\end{gathered}
$$

where the O-term is uniform in x. We apply it for

$$
x=m \sqrt{c^{2}+1}+t, \quad t=O\left(m^{1 / 3}\right)
$$

where $c \geqq 1$. Applying the asymptotical formula of Bessel functions ([1]) for $J_{ \pm 1 / 3}$ we obtain

$$
\begin{equation*}
J_{m}(x)=\sqrt{\frac{2}{\pi}}\left(x^{2}-m^{2}\right)^{-1 / 4}\left[\cos \left(z-\frac{\pi}{4}\right)+O\left(m^{-5 / 6}\right)\right] . \tag{3}
\end{equation*}
$$

So to any value $z=\frac{3 \pi}{4}+k \pi+O\left(m^{-5 / 6}\right)$ there corresponds a zero $\mu_{k}^{(m)}$ of J_{m}. A counting shows that
(4) $\mu_{k}^{(m)}=m \sqrt{c^{2}+1}+t_{k}^{(m)}=\pi \frac{\sqrt{c^{2}+1}}{c}\left(k+\frac{3}{4}+m \frac{\arctan c}{\pi}\right)+O\left(m^{-1 / 3}\right)$.

If $\frac{\arctan c}{\pi}$ is irrational, then its multiplies have a uniform distribution mod 1 . Since m can be changed in an interval of length $O\left(m^{1 / 3}\right)$, this implies easily the Proposition.

Lemma 1. If $0 \leqq \varphi_{1}, \ldots, \varphi_{N} \leqq 2 \pi$ are different numbers, then the vectors

$$
\left(\begin{array}{c}
\sin m \varphi_{1} \\
\vdots \\
\sin m \varphi_{N}
\end{array}\right), \quad\left(\begin{array}{c}
\cos m \varphi_{1} \\
\vdots \\
\cos m \varphi_{N}
\end{array}\right), \quad m=0,1, \ldots, N-1
$$

span the space \mathbf{R}^{N}.
The proof is standard, hence we omit it.
Denote $P_{j}=P_{j}\left(r_{j}, \varphi_{j}\right), 0<r_{j}<1,0 \leqq \varphi_{j}<2 \pi$ the polar coordinates of P_{1}, \ldots, P_{N}. We can suppose that the values $r_{1}, \ldots, r_{N_{0}}$ are different and the other r_{j} do not give new values. Suppose that c is large enough, namely

$$
r_{j}^{2}\left(c^{2}+1\right) \geqq 4
$$

and denote

$$
d_{j}:=\sqrt{r_{j}^{2}\left(c^{2}+1\right)-1}
$$

these quantities arise when we count $J_{m}\left(\mu_{k}^{(m)} r_{j}\right)$ by (3).
Lemma 2. There exists a residual set $D \subset[1, \infty)$ such that for any $c \in D$ any equality

$$
\begin{equation*}
0=n \pi+n_{0} \arctan c+\sum_{j=1}^{N_{0}} n_{j} \arctan d_{j}+\sum_{j=1}^{N} n_{j}^{\prime} \varphi_{j} \tag{5}
\end{equation*}
$$

with integer coefficients n, n_{j}, n_{j} necessarily implies

$$
n_{0}=n_{1}=\ldots=n_{N_{0}}=0 .
$$

Proof. Indeed, the set of $c \in[1, \infty)$ satisfying (5) with fixed coefficients is obviously closed. If we show that in the case $\left|n_{0}\right|+\left|n_{1}\right|+\ldots\left|n_{N_{0}}\right|>0$ this set does not contain an interval, then Lemma 2 will follow from Baire
category theorem. If (5) holds in an interval, we can differentiate it with respect to the variable c; by repeated differentiation we get the relations

$$
0=\frac{n_{0}}{c^{2 \ell+1}}+\sum_{j=1}^{N_{0}} n_{j} \frac{r_{j}^{2}}{d_{j}^{2 \ell+1}} \quad(\ell=0,1, \ldots)
$$

Consider them as linear equations with variables n_{j}. Since $\frac{d_{1}}{r_{1}}, \ldots, \frac{d_{N_{0}}}{r_{N_{0}}}$ are all different, the only solution is $n_{0}=n_{1}=\ldots=n_{N_{0}}=0$.
3. Next we count the asymptotics for $J_{m}\left(\mu_{k}^{(m)} r_{j}\right)$. The values z_{j} corresponding to $x=\mu_{k}^{(m)} r_{j}$ by the Langer formula have the form

$$
\begin{equation*}
z_{j}=\frac{d_{j}}{c} \pi\left(k+\frac{3}{4}+\frac{1}{\pi}\left(\arctan c-\frac{c}{d_{j}} \arctan d_{j}\right) m\right)+O\left(m^{-1 / 3}\right) \tag{6}
\end{equation*}
$$

Consider a large number y and m_{0} with $m_{0} \sqrt{c^{2}+1}=y+O(1)$ and k_{0} with $\mu_{k_{0}}^{\left(m_{0}\right)}=y+O(1)$. Take $m=m_{0}+O(1)$ satisfying

$$
\begin{equation*}
\left\|m \frac{\arctan c}{\pi}+\left(\frac{3}{4}-\frac{y c}{\pi \sqrt{c^{2}+1}}\right)\right\|<\varepsilon / 16 N \tag{7}
\end{equation*}
$$

here $\|\alpha\|$ denotes the distance between α and the nearest integer. By (4) there exists $k=k_{0}+O(1)$ satisfying $\left|y-\mu_{k}^{(m)}\right|<\varepsilon / 8 N$. Expressing $k+\frac{3}{4}$ by (7) we can improve (6):

$$
\begin{equation*}
z_{j}=-m \arctan d_{j}+\frac{y d_{j}}{\sqrt{c^{2}+1}}+\vartheta_{j} \frac{\varepsilon}{16 N}, \quad\left|\vartheta_{j}\right|<1 \tag{8}
\end{equation*}
$$

Define the vectors

$$
\begin{gathered}
e_{m k}^{0}:=\sqrt{\frac{\pi m}{2}}\left(\begin{array}{c}
\sin m \varphi_{1} J_{m}\left(\mu_{k}^{(m)} r_{1}\right) \\
\vdots \\
\sin m \varphi_{N} J_{m}\left(\mu_{k}^{(m)} r_{N}\right)
\end{array}\right) \\
f_{m k}^{0}:=\sqrt{\frac{\pi m}{2}}\left(\begin{array}{c}
\cos m \varphi_{1} J_{m}\left(\mu_{k}^{(m)} r_{1}\right) \\
\vdots \\
\cos m \varphi_{N} J_{m}\left(\mu_{k}^{(m)} r_{N}\right)
\end{array}\right), \\
e_{m k}^{1}:=\left(\begin{array}{c}
\frac{1}{\sqrt{d_{1}}} \sin m \varphi_{1} \cos \left(m \arctan d_{1}-\gamma_{1}\right) \\
\vdots \\
\frac{1}{\sqrt{d_{N}}} \sin m \varphi_{N} \cos \left(m \arctan d_{N}-\gamma_{N}\right)
\end{array}\right), \\
f_{m k}^{1}:=\left(\begin{array}{c}
\frac{1}{\sqrt{d_{1}}} \cos m \varphi_{1} \cos \left(m \arctan d_{1}-\gamma_{1}\right) \\
\vdots \\
\frac{1}{\sqrt{d_{N}}} \cos m \varphi_{N} \cos \left(m \arctan d_{N}-\gamma_{N}\right)
\end{array}\right),
\end{gathered}
$$

with

$$
\gamma_{j}:=y \frac{d_{j}}{\sqrt{c^{2}+1}}-\frac{\pi}{4}
$$

then from (3) and (8) we get

$$
\begin{equation*}
\left|e_{m k}^{0}-e_{m k}^{1}\right|<\varepsilon / 8, \quad\left|f_{m k}^{0}-f_{m k}^{1}\right|<\varepsilon / 8 \tag{9}
\end{equation*}
$$

The central statement of the proof is the following
Lemma 3. There exists a basis e_{1}, \ldots, e_{N} of \mathbf{C}^{N} with the following property. Let $\varepsilon, T>0$. Then the set

$$
e^{0}(\Lambda):=\left\{e_{m k}^{0} e^{ \pm i \mu_{k}^{(m)} t}, f_{m k}^{0} e^{ \pm i \mu_{k}^{(m)} t}: t_{k}^{(m)}=O\left(m^{1 / 3}\right)\right\}
$$

contains a subsystem

$$
\Phi=\left\{e_{n}^{j} e^{ \pm i \lambda_{n, j} t}: j=1, \ldots, N ; n=1,2, \ldots\right\} \cup\left\{e_{0}^{j} e^{i \lambda_{0, j} t}: j=1, \ldots, N\right\}
$$

such that
(a)

$$
\left|e_{n}^{j}-e_{j}\right|<\varepsilon, \quad j=1, \ldots, N ; n=0,1, \ldots,
$$

(b)

$$
\left|\lambda_{n, j}-2 \pi \frac{n}{T}\right|<\varepsilon, \quad j=1, \ldots, N ; n \geqq n_{0}
$$

for some large number n_{0}.

Proof. For the proof take $y=2 \pi \frac{n}{T}$ with large n. If m satisfies (7) then for the coorresponding k we have $\left|2 \pi \frac{n}{T}-\mu_{k}^{(m)}\right|<\varepsilon / 8 N$. By (9) we can consider the vectors $e_{m k}^{1}, f_{m k}^{1}$. Since $1, \frac{\arctan c}{\pi}, \frac{\arctan d_{j}}{\pi}\left(j=1, \ldots, N_{0}\right)$ are linearly independent over Q (rationals) we can choose m such that $\cos \left(m \arctan d_{j}-\right.$ $-\gamma_{j}$) is approximately 1 when $d_{j}=d_{j_{0}}$ and approximately zero when $d_{j} \neq d_{j_{0}}$. In the coordinates j with $d_{j}=d_{j_{0}}$ the corresponding φ_{j} are different, so by Lemma 1 we get there a basis with vectors

$$
\frac{1}{\sqrt{d_{j_{j}}}}\left(\begin{array}{c}
\vdots \\
\cos m^{\prime} \varphi_{j} \\
\vdots
\end{array}\right) \quad \text { or } \quad \frac{1}{\sqrt{d_{j_{0}}}}\left(\begin{array}{c}
\vdots \\
\sin m^{\prime} \varphi_{j} \\
\vdots
\end{array}\right)
$$

where $0 \leqq m^{\prime}<N$. Let the other coordinates $\left(d_{j} \neq d_{j_{0}}\right)$ of these vectors be zeros; considering them together for all j_{0} we get a basis in \mathbf{R}^{N}. Now for $j=1$ the construction goes as follows. Take $c \in D$ satisfying $r_{j} \sqrt{c^{2}+1} \geqq 2$, $j=1, \ldots, N_{0}$ and

$$
\begin{equation*}
\left\|2 \frac{n}{T} \frac{c}{\sqrt{c^{2}+1}}-\frac{3}{4}\right\|<\varepsilon / 16 N \tag{10}
\end{equation*}
$$

and consider the following system of simultaneous diophantine approximation:

$$
\left\{\begin{array}{l}
\left\|m \frac{\operatorname{arctanc}}{2 \pi}\right\|<\varepsilon / 16 N, \quad\left\|m \frac{\arctan d}{2 \pi}-\frac{\gamma_{1}}{2 \pi}\right\|<\varepsilon / 16 N, \tag{11}\\
\left\|m \frac{\arctan d_{j}}{2 \pi}-\frac{\gamma_{j}+\frac{\pi}{2}}{2 \pi}\right\|<\varepsilon / 16 N \quad\left(j=2, \ldots, N_{0}\right), \\
\left\|m \frac{\varphi_{j}}{2 \pi}-m^{\prime} \frac{\varphi_{j}}{2 \pi}\right\|<\varepsilon / 16 N \quad\left(d_{j}=d_{1}\right) .
\end{array}\right.
$$

By Kronecker's theorem ([4], p. 58) this has a solution $m=m_{0}+O$ (1) for any $\varepsilon>0$ if and only if for any integers n_{j}, n_{j}^{\prime} for which

$$
n_{0} \frac{\arctan c}{2 \pi}+\sum_{j=1}^{N_{0}} n_{j} \frac{\arctan d_{j}}{2 \pi}+\sum_{d_{j}=d_{1}} n_{j}^{\prime} \frac{\varphi_{j}}{2 \pi}
$$

is an integer, the expression

$$
n_{1} \frac{\gamma_{1}}{2 \pi}+\sum_{j=2}^{N_{0}} n_{j} \frac{\gamma_{j}+\frac{\pi}{2}}{2 \pi}+\sum_{d_{j}=d_{1}} n_{j}^{\prime} m^{\prime} \frac{\varphi_{j}}{2 \pi}
$$

is also an integer. But this is true, since Lemma 2 implies that $n_{0}=n_{1}=$ $=\ldots=n_{N_{0}}=0$. So (11) has a solution and the construction is ready for $j=1$ and analogously for other j.

Now the proof of the Theorem can be finished just as in the case of the rectangular membrane in [8] and [9]. Namely, we can prove that Φ is complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for any $T^{\prime}<T$. Let

$$
\Phi_{0}:=\left\{e_{|n|}^{j} e^{i 2 \pi n t / T}: n \in \mathbf{Z}, j=1, \ldots, N\right\} .
$$

By Lemma 3(a) this is a Riesz basis in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for small $\varepsilon>0$ and

$$
c_{1} \sum_{n \in \mathbf{Z}} \sum_{j=1}^{N}\left|\alpha_{n j}\right|^{2} \leqq\left\|\sum_{n \in \mathbf{Z}} \sum_{j=1}^{N} \alpha_{n j} e_{|n|}^{j} e^{i 2 \pi n t / T}\right\|_{L_{2}}^{2} \leqq c_{2} \sum_{n \in \mathbf{Z}} \sum_{j=1}^{N}\left|\alpha_{n j}\right|^{2}
$$

where $0<c_{1} \leqq c_{2}<\infty$ is independent of ε. We have
Lemma 4 ([3] for $N=1$). Let $\left\{e_{n} e^{i \lambda_{n} t}: n \in \mathbf{Z}\right\}$ be a Riesz basis in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ and define $0<c_{1} \leqq c_{2}<\infty$ such that

$$
c_{1} \sum\left|\alpha_{n}\right|^{2} \leqq\left\|\alpha_{n} e_{n} e^{i \lambda_{n} t}\right\|_{L_{2}}^{2} \leqq c_{2} \sum\left|\alpha_{n}\right|^{2}
$$

for all sequences $\left(\alpha_{n}\right)$. Let further $\varepsilon>0$ be small enough namely $e^{T \varepsilon}-1<$ $<\sqrt{c_{1} / c_{2}}$. Then for every sequence $\left(\lambda_{n}^{\prime}\right)$ with $\lambda_{n}^{\prime} \in \mathbf{C},\left|\lambda_{n}-\lambda_{n}^{\prime}\right|<\varepsilon(n \in \mathbf{Z})$ the new system $\left\{e_{n} e^{i \lambda_{n}^{\prime} t}\right\}$ is a Riesz basis in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$.

This implies that for small $\varepsilon>0$ the system

$$
\begin{aligned}
\hat{\Phi}_{0} & :=\left\{e_{|n|}^{j} e^{i 2 \pi n t / T}:|n| \leqq n_{0}, j=1, \ldots, N\right\} \cup \\
& \cup\left\{e_{n}^{j} e^{ \pm i \lambda_{n j} t}: n \geqq n_{0}+1, j=1, \ldots, N\right\}
\end{aligned}
$$

is also Riesz basis in $L^{2}\left(0, T: \mathbf{C}^{N}\right)$. Finally
Lemma 5 [9]. Let $\left\{e_{n} e^{i \lambda_{n} t}: n \in \mathbf{Z}\right\}$ be complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$. If we remove finitely many elements, the remaining system is complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for all $0<T^{\prime}<T$.

Applying this to $\hat{\Phi}_{0}$ we obtain that Φ is complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for all $T^{\prime}<T$, so $e(\Lambda)$ complete in $L^{2}\left(0, T ; \mathbf{C}^{N}\right)$ for all $T<\infty$ as asserted.

References

[1] G. N. Watson, A treatise of the theory of Bessel functions, University Press (Cambridge, 1952).
[2] H. Bateman and A. Erdélyi, Higher transcendental functions, vol. 2, Mc Graw - Hill (New York, 1953).
[3] R. M. Young, An introduction to nonharmonic Fourier series, Acad. Press (New York, 1980).
[4] J. W. S. Cassels, An introduction to diophantine approximation, University Press (Cambridge, 1957).
[5] V. Komornik, On the vibration of solid balls, Acta Math. Hung. (to appear).
[6] V. Komornik and E. Zuazua, On the vibration of a spherical membrane, Houston J. Math. (to appear).
[7] A. Bogmér, M. Horváth and I. Joó, Notes to some papers of V. Komornik on vibrating membranes, Periodica Math. Hung., 20 (1989), 193-205.
[8] M. Horváth, The vibration of a membrane in different points, Annales Univ. Sci. Budapest. Sectio Math. (to appear).
[9] I. Joó, On some Riesz bases, Periodica Math. Hung. (to appear).
[10] I. Joó, On the control of a circular membrane, Acta Math. Hung. (to appear).
(Received October 29, 1989)
MATHEMATICAL INSTITUTE OF THE hUNGARIAN ACADEMY OF SCIENCES reáltanoda u. 13-15.
H-1053 BUDAPEST

Instructions for authors. Manuscripts should be typed on standard size paper (25 rows; 50 characters in each row). When listing references, please follow the following pattern:
[1] G. Szegő, Orthogonal polynomials, AMS Coll. Publ. Vol. XXXIII (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the references give the author's affiliation.

If your manuscript is prepared by a word processor (possibly AMS or plain $\mathrm{TEX}_{\mathrm{E}}$), please provide the floppy disk as well. This will speed up processing the paper.

Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 50 reprints free of charge. Additional copies may be ordered from the publisher.

Manuscripts and editorial correspondence should be addressed to
Acta Mathematica, H-1364 Budapest, P.O.Box 127.

CONTENTS

Szabó, Gy., ϕ-orthogonally additive mappings. II. 1
Erdős, L., On some problems of P. Turán concerning power sums of com- plex numbers 11
Joó, I., On the control of a rectangular membrane 25
Kovács, Katalin, On total additive solution of some equations 33
Győrvári, J. and Mihálykó, Cs., The numerical solution of nonlinear dif- ferential equations by spline functions 39
$K y, N . X$., On approximation of functions by polynomials with weight 49
Ésik, Z., Varieties of automata and transformation semigroups 59
Берман, Д. Л., Экстремальные задачи теории полиномиальных операторов 75
Borwein, D., Tauberian theorems concerning power series with non-nega- tive coefficients 85
Bojanic, R. and Cheng, F., Rate of convergence of Hermite-Fejér polyno- mials for functions with derivatives of bounded variation 91
Gajda, Z., Note on decomposition of bounded functions into the sum of periodic terms 103
Ramadan, M., Influence of normality of maximal subgroups of Sylow sub- groups of a finite group 107
Sakai, R., Certain unbounded Hermite-Fejér interpolatory polynomial op- erators 111
Tateoka, J., The modulus of continuity and the best approximation over the dyadic group 115
Künzi, H. P. A., Complete quasi-pseudo metric spaces 121
Masterson, J. J., A nonstandard result about path continuity 147
Muñoz Rivera, J. E., Remarks on the optimal control problem for a strong- ly non-linear hyperbolic system 151
Mohamed, A. S., Numerical solution by spline method for an elastic prob- lem 159
Molnár, E., Polyhedron complexes with simply transitive group actions and their realizations 175
Strommer, J., Konstruktion des regulären Siebzehnecks mit Lineal und Streckenübertrager 217
Bognár, M., On pseudomanifolds with boundary. I 227
Joó, I., A remark on the vibration of a circular membrane in different points 245

Acta Mathematica Hungarica

VOLUME 59, NUMBERS 3-4, 1992

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD
L. BABAI, Á. CSÁSZAR, I. CSISZAR, Z. DARÓCZY, P. ERDÓS,
L. FEJES TÓTH, T. GALLAI, F. GÉCSEG, B. GYIRES, A. HAJNAL,
G. HALÁSz, I. KÁtal, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA,
A. RAPCSÁK, P. RĖVÉSZ, D. SZÁSZ, E. SZEMERÉDI, B. SZ.-NAGY. VERAT. SÓS

Akadémiai Kiadó Budapest

ACTA MATHEMATICA
 HUNGARICA

Acta Mathematica publishes papers on mathematics in English, German, French and Russian.

Distributors:
For Albania, Bulgaria, China, Cuba, Czech and Slovak Federal Republic, Hungary, Korean People's Republic, Mongolia, Poland, Romania, successor states of the U.S.S.R., successor states of Yugoslavia, Vietnam

AKADÉMIAI KIADÓ

P.O. Box 254, 1519 Budapest, Hungary

For all other countries with

> KLUWER ACADEMIC PUBLISHERS
> P.O. Box 17,3300 AA Dordrecht, Holland

Publication programme: 1992: Volumes 59-60 (eight issues)
Subscription price per volume: Dfl 206,- / US \$ 105 (incl. postage)

Acta Mathematica Hungarica is abstracted/indexed in Current Contents - Physical, Chemical and Earth Sciences, Mathematical Reviews.

Copyright (c) 1992 by Akadémiai Kiadó, Budapest. Printed in Hungary.

ENDOMORPHISM RINGS OF ABELIAN GROUPS AS ISOMORPHIC RESTRICTIONS OF FULL ENDOMORPHISM RINGS. II

N. T. ĐÀO (Debrecen)

In 1963, A. L. S. Corner has published his famous theorem that every countable, reduced, torsion-free Abelian group is isomorphic to the endomorphism ring of some countable, reduced, torsion-free Abelian group (cf. [2]).

Consider an arbitrary countable, reduced, torsion-free Abelian group A. Let R be a subring of the endomorphism ring of A containing the identity. In our paper [4], with the aid of Corners technique, we have proved that there exists a reduced, torsion-free Abelian group B containing A as a fully invariant subgroup such that the mapping which takes each endomorphism of B to its restriction on A is an isomorphic mapping of the endomorphism ring of B onto R. Moreover, our group B contains A as a pure subgroup.

In their paper [7], M. Dugas and R. Göbel have proved that if a settheoretic axiom $\nabla_{\mathcal{K}}$ is assumed, then every cotorsion-free ring is isomorphic to the endomorphism ring of some cotorsion-free Abelian group. Making use of their technique, we prove in the present paper that if $V=L$ is assumed, A is a cotorsion-free Abelian group and R is a subring of the endomorphism ring of A containing the identity, then there exists a cotorsion-free Abelian group B containing A as a pure, fully invariant subgroup such that the endomorphism ring of B is isomorphic to R.

In this paper all groups that are written additively are Abelian. By a ring we shall always mean an associative ring with identity. Every module is right module and unital (i.e. the identity of the ring acts as the identity operator on the group).

A group is cotorsion-free if it is reduced, torsion-free and contains no subgroups which are isomorphic to the additive group of the ring of p-adic integers for some prim $p \neq 1$. A ring is called cotorsion-free if its additive group is cotorsion-free. \aleph will always denote a regular, not weakly compact cardinal greater than ω_{1}. Each ordinal α will be identified with the set of all ordinals $\beta<\alpha$. The system $\left\{X_{\alpha} \mid \alpha<\aleph\right\}$ is a \aleph-filtration of the set X is $X_{\alpha} \cong X(\alpha<\aleph), X_{\nu} \cong X_{\mu}(\nu<\mu<\aleph), X_{\delta}=\bigcup_{\nu<\delta} X_{\nu}$ for limit ordinals $\delta<\aleph, X=\bigcup_{\nu<\aleph} X_{\nu}$ and $\left|X_{\alpha}\right|<\aleph(\alpha<\aleph)$. A subset S of the ordinal α is stationary in α if $S \cap C \neq \emptyset$ for each closed unbounded subset C of α. A subset of $\mathcal{\aleph}$ is sparse if $S \cap \alpha$ is not stationary in α for all limit ordinals
$\alpha<\aleph$. We denote the ordinal $\inf \{|S| \mid S \subseteq \alpha, \sup (S)=\alpha\}$ by $\operatorname{cf}(\alpha)$. Let $S \subseteq \aleph$ and $\left\{X_{\nu} \mid \nu<\aleph\right\}$ be a \aleph-filtration of the set X of cardinality $\aleph . S$ is non-small (cf. Devlin and Shelah [6]) if S satisfies the following set-theoretic condition $\Phi_{\mathcal{K}}(S)$.
$\Phi_{\aleph}(S)$: given for each $\nu \in S$ a function $P_{\nu}: \mathbf{P}\left(X_{\nu}\right) \rightarrow\{0,1\}$ of the subsets of X_{ν} into $\{0,1\}$, there is a function $\varphi: S \rightarrow\{0,1\}$ such that for all $Y \subseteq X$ the set $\left\{\nu \in S \mid P_{\nu}\left(Y \cap X_{\nu}\right)=\varphi(\nu)\right\}$ is stationary in \aleph.

We say that $\nabla_{\mathcal{K}}(S)$ holds for a set $S \subseteq \aleph(c f$. Dugas and Göbel [7]) if
(i) S is non-small and is sparse if $\aleph>\omega_{1}$;
(ii) if $\lambda \in S$, then $\operatorname{cf}(\lambda)=\omega$.

An R-module M is faithful if for $r \in R, M r=\{0\}$ implies $r=0$.
We need the following lemmas. (They can be found in [7].)
Lemma 1 [7]. An Abelian group G is cotorsion-free if and only if the additive group of the endomorphism ring of G is cotorsion-free.
Z will always denote the ring of integers. \hat{Z} denotes the completion of Z with respect to its Z-adic topology.

Lemma 2 [7]. Let R be a ring with unit element. If the additive group of R is cotorsion-free, then $\{0\}$ is the only \hat{Z}-module contained in R.

ZFC denotes the system of Zermelo-Fraenkel axioms and the Axiom of Choice.

Lemma 3 [7] $(\mathrm{ZFC}+V=L)$. Let \aleph be a regular not weakly compact cardinal. Then there are \aleph many disjoint subsets S_{β} of \aleph for all $\beta<\aleph$ such that $\nabla_{\aleph}\left(S_{\beta}\right)$ holds for all $\beta<\aleph$ and $\bigcup_{\beta<\aleph} S_{\beta}$ is sparse in \aleph.

In the same way as the proofs of Step-Lemma 2.7 and Corollary 2.8 of [7] we can prove the following statement:

Lemma 4. Let R be a cotorsion-free ring and let M be an R-module. Let F_{M} be the free R-module with free basis $E_{M}=\left\{e_{m} \mid m \in M\right\}$ and let K be the kernel of the homomorphism $h: F_{M} \rightarrow M$ which takes each e_{m} to m. Let $F=\bigcup_{n \in \omega} F_{n}$ be the union of free R-modules such that $F_{M} \subseteq F_{n}$ and F_{n+1} / F_{n} is a free R-module for almost all $n \in \omega$. Let $b \in F$ be such that $\{b\} \cup E_{M}$ can be extended to a free basis of F_{n} for some $n \in \omega$. Assume that the rank of F_{n+1} / F_{n} is not smaller than the rank of F_{n} for almost all $n \in \omega$ and the rank of F is at least 2^{ω}.

Then there exist two extensions F^{0}, F^{1} of F such that the following conditions hold:
(i) F^{δ} is a free R-module for $\delta=0,1$;
(ii) F^{δ} / F_{n} is a free R-module for almost all $n \in \omega$ for $\delta=0,1$;
(iii) if the endomorphism φ of F / K extends to endomorphisms of F^{0} / K and F^{1} / K, then $(b+K) \varphi \in(b+K) R$.

Proof. The proof is similar to that of Step-Lemma 2.7 in [7].
We may assume without loss of generality that
(1) $\{b\} \cup E_{M}$ extends to a free basis of F_{0};
(2) F_{n+1} / F_{n} is a free R-module for every $n \in \omega$;
(3) the rank of $F_{0} / b R$ is not smaller than 2^{ω}.

Let $E_{n+2}=\left\{e_{n+2, i} \mid i \in I_{n+2}\right\}$ be a free basis of the R-module F_{n+1} / F_{n} for every $n \in \omega$. We denote the set $\left\{m \in M \mid e_{m} \neq b\right\}$ by M^{\prime}. Let $E_{1}=$ $=\left\{e_{1 i} \mid i \in I_{1}\right\}$ be a free basis of the free R-module $F_{0} / b R$ such that $I_{1} \supseteqq M^{\prime}$ and $e_{1, m}=e_{m}$ for all $m \in M^{\prime}$. Let $E_{0}=\left\{e_{00}=b\right\}$. Assume without loss of generality that $I_{0}=\{0\} \subseteq I_{n} \subseteq I_{n+1} \subseteq \mathcal{\aleph}$ for all $n \in \omega$. First, we will select special elements $z_{n i}^{\delta} \in Z$ for $n \in \omega, \delta=0,1$, and $i \in I_{n}$.

Choose elements $z_{n i}^{1} \in Z$ such that $\left\{\sum_{n=2}^{\infty}(n-2)!z_{n i}^{1} \mid i \in I_{1}\right\}=\hat{Z}$. This is possible because $\left|I_{1}\right| \geqq 2^{\omega}=|\hat{Z}|$. If $r\left\{\sum_{n=2}^{\infty}(n-2)!z_{n i}^{1} \mid i \in I_{1}\right\} \cong R$ for $r \in R$, then according to Lemma 2 we get that $r \hat{Z}=\{0\}$. So $r=0$ because $1 \in \hat{Z}$. We shall refer to this result as the statement of reduction. Put $z_{\boldsymbol{n i}}^{1}=0$ for all $i \in I_{n} \backslash I_{1}$ and $z_{n i}^{0}=0$ for all $i \in I_{n}$ and all $n \in \omega$.

Let ψ^{δ} be the R-endomorphism of F for $\delta=0,1$ which acts on the set $E=\bigcup_{n \in \omega} E_{n}$ as $e_{00} \psi^{\delta}=e_{00}, e_{1 j} \psi^{\delta}=e_{1 j}, e_{n i} \psi^{\delta}=e_{n i}-(n-1) e_{n+1, i}+e_{00} z_{n i}^{\delta}$, for all $j \in I_{1}$ and all $i \in I_{n}(n \geqq 2)$. It is easy to see that ψ^{0}, ψ^{1} are R monomorphisms and $F / F_{n} \psi^{0}, F / F_{n} \psi^{1}$ are free R-modules for almost all $n \in \omega$. Let $F^{0}=F^{1}=F \oplus \underset{|F|}{\oplus(R)}$ and let us identify F with $F \psi^{0} \cong F^{0}$, $F \psi^{1} \cong F^{1}$. Then (i) and (ii) indeed hold.

In order to prove (iii) let φ be an endomorphism of the group F / K such that φ extends to endomorphisms φ^{δ} of the groups F^{δ} / K for $\delta=0,1$. Let

$$
\left(e_{k \ell}+K\right) \varphi=\sum_{n \in \omega} \sum_{i \in I_{n}} e_{n i} a_{k \ell}^{n i}+K
$$

and

$$
\left(e_{k \ell}+K\right) \varphi^{\delta}=\sum_{n \in \omega} \sum_{i \in I_{n}} e_{n i} \delta_{k \ell}^{n i}+y_{k \ell}+K
$$

be the images of the element $e_{k \ell}+K$ for $k \in \omega$ and $\ell \in I_{k}$. Here $y_{k \ell} \in \underset{|F|}{\oplus} R$ and $a_{k \ell}^{n i}, \delta_{k \ell}^{n i} \in R$ such that $a_{k \ell}^{n i}=\delta_{k \ell}^{n i}=0$ for fixed (k, ℓ) and almost all n, i. Then the images of $e_{k \ell}+K$ under $\varphi \psi^{\delta}=\psi^{\delta} \varphi^{\delta}$ for any $k \in w, \ell \in I_{k}$ and for $\delta=0,1$ are deduced as

$$
\left(e_{k \ell}+K\right) \varphi \psi^{\delta}=\left(\sum_{n \in \omega} \sum_{i \in I_{n}} e_{n i} a_{k \ell}^{n i}+K\right) \psi^{\delta}=
$$

$$
\begin{aligned}
&=e_{00} a_{k \ell}^{00}+\sum_{i \in I_{1}} e_{1 i} a_{k \ell}^{1 i}+\sum_{n=2}^{\infty} \sum_{i \in I_{n}}\left(e_{n i}-(n-1) e_{n+1, i}+e_{00} z_{n i}^{\delta}\right) a_{k \ell}^{n i}+ \\
&+K= e_{00}\left(a_{k \ell}^{00}+\sum_{n=2}^{\infty} \sum_{i \in I_{n}} a_{k l}^{n i} z_{n i}^{\delta}\right)+\sum_{n=1,2} \sum_{i \in I_{n}} e_{n i} a_{k \ell}^{n i}+ \\
&+\sum_{n=3}^{\infty} \sum_{i \in I_{n}} e_{n i}\left(a_{k \ell}^{n i}-(n-2) a_{k \ell}^{n-1, i}\right)+K
\end{aligned}
$$

and

$$
\begin{gathered}
\left(e_{k \ell}+K\right) \varphi^{\delta} \psi^{\delta}=\left(e_{k \ell}-\max (k-1,0) \cdot e_{k+1, \ell}+\min ((k-1) k, 1) .\right. \\
\left.\cdot e_{00} z_{k \ell}^{\delta}+K\right) \varphi^{\delta}=\sum_{n, i} e_{n i}\left(\delta_{k l}^{n i}-\max (k-1,0) \cdot \delta_{k+1, \ell}^{n i}+\right. \\
\left.+\min ((k-1) k, 1) z_{k}^{\delta} \ell_{00}^{n i}\right)+\left(y_{k \ell}-\max (k-1,0) \cdot y_{k+1, \ell}+\right. \\
\left.+\min ((k-1) k, 1) z_{k \ell}^{\delta} y_{00}\right)+K .
\end{gathered}
$$

Comparing these equalities we get

$$
\begin{gather*}
\delta_{k \ell}^{n i}-\max (k-1,0) \cdot \delta_{k+1, \ell}^{n i}+\min ((k-1) k, 1) \cdot z_{k \ell}^{\delta} \delta_{00}^{n i}= \tag{*}\\
=a_{k \ell}^{n i}-\max (n-2,0) \cdot a_{k \ell}^{n-1, i}+t_{k \ell}^{n i}
\end{gather*}
$$

for all $n \in \omega \backslash\{0\}, i \in I_{n}$. Here $t_{k l}^{n i} \in R$ such that $\sum_{n, i} e_{n i} t_{k \ell}^{n i} \in K$. If $k=0$, then we have from (*)

$$
\begin{equation*}
\delta_{00}^{n i}=a_{00}^{n i}-\max (n-2,0) \cdot a_{00}^{n-1, i}+t_{00}^{n i} . \tag{**}
\end{equation*}
$$

Moreover, we gain from (*) by induction $N \geqq 2$ the following equality for $n \in \omega \backslash\{0\}, i \in I_{n}, \ell \in I_{1}:$

$$
\begin{aligned}
\delta_{2 \ell}^{n i}= & \sum_{k=2}^{N}\left(a_{k \ell}^{n i}-\max (n-2,0) \cdot a_{k \ell}^{n-1, i}+t_{k \ell}^{n i}\right)(k-2)!- \\
& -\sum_{k=2}^{N} \delta_{00}^{n i} z_{k \ell}^{\delta}(k-2)!+\delta_{N+1, \ell}^{n i} \cdot(N-1)!.
\end{aligned}
$$

Since $\lim _{N \rightarrow \infty} \delta_{N+1, \ell}^{n i}(N-1)!=0$ because $\bigcap_{n \in \omega \backslash\{0\}} n R=\{0\}$, we get

$$
\delta_{2 \ell}^{n i}=\sum_{k=2}^{\infty}\left(a_{k \ell}^{n i}-\max (n-2,0) \cdot a_{k \ell}^{n-1, i}+t_{k \ell}^{n i}\right)(k-2)!-\delta_{00}^{n i} \sum_{k=2}^{\infty}(k-2)!z_{k \ell}^{\delta} .
$$

Therefore

$$
1_{00}^{n i} \cdot \sum_{k=2}^{\infty} z_{k \ell}^{1}(k-2)!=0_{2 \ell}^{n i}-1_{2 \ell}^{n i} \in R
$$

for all $\ell \in I_{1}$. According to the statement of reduction, this means that $1_{00}^{n i}=0$ for all $n \in \omega \backslash\{0\}$ and all $i \in I_{n}$. So (**) reduces to

$$
a_{00}^{n i}=\max (n-2,0) \cdot a_{00}^{n-1, i}-t_{00}^{n i} .
$$

Since $\sum_{n, i} e_{n i} t_{00}^{n i} \in K$, we have $t_{00}^{n i}=0$ if $n \geqq 2$ or if $n=1$ and $i \notin M$. Consequently, $a_{00}^{n i}=0$ if $n \geqq 2$ or if $n=1$ and $i \notin M$. Furthermore $a_{00}^{1 i}=-t_{00}^{1 i}$ if $i \in M^{\prime}$. Finally, we have
(a) if $b=e_{1 m_{0}}$ where $m_{0} \in M$, then

$$
(b+K) \varphi=b\left(a_{00}^{00}+t_{00}^{1 m_{0}}\right)+K
$$

(b) if $b \notin E_{M}$, then $(b+K) \varphi=b a_{00}^{00}+K$.

Thus Lemma 4 is proved.
Theorem $1(\mathrm{ZFC}+V=L)$. Let A be a cotorsion-free Abelian group and let R be a subring of the endomorphism ring of A containing the identity. Then there exists a cotorsion-free Abelian group B containing A as a fully invariant subgroup (i.e. mapped into itself by all endomorphisms of B) such that the mapping which takes each endomorphism of B to its restriction on A is an isomorphic mapping of the full endomorphism ring of B onto R. Moreover, our group B contains A as a pure subgroup.

Proof. The proof of this theorem is similar to that of Theorem 3.2 in [7].

Let M be the direct sum of A and the additive group of R. Then M is naturally a faithful R-module. We have proved a similar theorem as Theorem 1 for countable, reduced, torsion-free A (cf. [4]). So we can assume that A is not countable. Hence $|M|>\omega$. Let \aleph be a regular, not weakly compact cardinal with $\aleph>|M|$. Let $\left\{S_{\beta} \mid \beta<\aleph\right\}$ be the family of subsets of $\mathcal{\aleph}$ given by Lemma 3 and let $S=\bigcup_{\beta<\aleph} S_{\beta}$. Since $\operatorname{cf}(\lambda)=\omega$ for all $\lambda \in S$, we can fix an ascending sequence $\left\{\lambda_{n} \mid n \in \omega\right\}$ of ordinals such that $\lambda=\bigcup_{n \in \omega} \lambda_{n}$ and $\lambda_{n} \in \mathbb{\aleph} \backslash S$. Let F_{M} denote the free R-module with free basis $E_{M}=\left\{e_{m} \mid m \in M\right\}$ and let K denote the kernel of the homomorphism $h: F_{M} \rightarrow M$ which takes each e_{m} to m. Then M is isomorphic to the factor module F_{M} / K.

Now we will define inductively the R-modules F_{α} for all $\alpha<\aleph$. Let $F_{0}=F_{M}$. Assume F_{β} to be defined for all $\beta<\alpha<\kappa$. If α is a limit ordinal, then let $F_{\alpha}=\bigcup_{\beta<\alpha} F_{\beta}$. Otherwise, if $\alpha=\beta+1$, then let F_{α} be the direct
$\operatorname{sum} F_{\beta} \oplus\left(\underset{\left|F_{\beta}\right|}{\oplus} R\right)$ of F_{β} and $\left|F_{\beta}\right|$ many copies of R. We prove by transfinite induction on $\mu<\aleph$ that
(i) F_{μ} is a free R-module;
(ii) if $\eta \in \mu \backslash S$, then F_{ν} / F_{η} is a free R-module for all $\eta<\nu \leqq \mu$.

Indeed, $F_{0}=F_{M}$ is a free R-module. Assume that (i) and (ii) hold for all $\mu<\alpha$.

Case 1: α is a limit ordinal. Then $F_{\alpha}=\bigcup_{\mu<\alpha} F_{\mu}$. Since S is a sparse subset of \aleph, there are ordinals $\alpha_{\nu} \in \alpha \backslash S$ for $\nu<\operatorname{cf}(\alpha)$ such that $F_{\alpha}=\bigcup_{\nu<\operatorname{cf}(\alpha)} F_{\alpha_{\nu}}$. Hence $F_{\alpha_{\nu}} / F_{\alpha_{\mu}}$ is a free R-module for all $\mu<\nu<\operatorname{cf}(\alpha)$. Thus F_{α} is a free R-module. If $\eta \in \alpha \backslash S$, then there is $\nu<\operatorname{cf}(\alpha)$ such that $\eta<\alpha_{\nu}$. So F_{α} / F_{η} is a free R-module, because $F_{\alpha} / F_{\alpha_{\nu}}$ and $F_{\alpha_{\nu}} / F_{\eta}$ are free R-modules.

Case 2: $\alpha=\mu+1$. Then $F_{\alpha}=F_{\mu} \oplus\left(\underset{\left|F_{\mu}\right|}{\oplus} R\right)$. Therefore (i) and (ii) hold trivially.

Assume that $\mu \in S$ and $e_{00}, \dot{e}_{00} \in F_{\mu}$ are such that $\left\{e_{00}\right\} \cup E_{M}$ and $\left\{\dot{e}_{00}\right\} \cup E_{M}$ extend, respectively, to free bases $E_{1}=\left\{e_{1 i} \mid i \in I_{1}\right\}$ and $\dot{E}_{1}=$ $=\left\{\dot{e}_{1 i} \mid i \in I_{1}\right\}$ of $F_{\mu_{n}}$ for some $n_{0} \in \omega$. Let $E_{n+2}=\left\{e_{n+2, i} \mid i \in I_{n+2}\right\}$ and $\dot{E}_{n+2}=\left\{\dot{e}_{n+2, i} \mid i \in I_{n+2}\right\}$ be free bases of the free R-module $F_{\mu_{n_{0}+n+1}} / F_{\mu_{n_{0}+n}}$ for all $n \in \omega$. We may assume without loss of generality that $I_{0}=\{0\} \subseteq$ $\subseteq I_{n} \subseteq I_{n+1} \subseteq \mathcal{N}$ for all $n \in \omega$. Let us denote the sequences $\left\{e_{n i} \mid n \in \omega, i \in\right.$ $\left.\in I_{n}\right\}$ and $\left\{\dot{e}_{n i} \mid n \in \omega, i \in I_{n}\right\}$ by \vec{e} and $\dot{\vec{e}}$, respectively. Then $\dot{\vec{e}}=\vec{e} T$, where T is a matrix over R. We denote by \mathbf{X} the set of all sequences $\left\{x_{n i} \mid n \in \omega, i \in\right.$ $\left.\in I_{n}\right\}$, where $x_{n i} \in R$, and $x_{n i}=0$ for almost all $n \in \omega, i \in I_{n}$. Then every $f \in F_{\mu}$ can be written in the forms $\vec{e} \vec{x}$ and $\dot{\vec{e}} \vec{y}$, where $\vec{x}, \vec{y} \in \mathbf{X}$. Let ψ^{0} be the R-monomorphism which embeds F_{μ} in $F_{\mu}^{0}=F^{0}\left(e_{00}, \cup F_{\mu_{n}}\right)$ and let L be the matrix which represents ψ^{0}. Consider an arbitrary element $f=\vec{e} \vec{x}$ of $\boldsymbol{F}_{\boldsymbol{\mu}}$. We denote the element $f\left(1+\left(1-\psi^{0}\right)+\cdots+\left(1-\psi^{0}\right)^{n}\right)$ and the matrix $1+(1-L)+\cdots+(1-L)^{n}$ by f_{n} and L_{n}, respectively. Then $f=\lim _{n \rightarrow \infty} f_{n} \psi^{0}$ holds with respect to the Z-adic topology of F_{μ}. Consider an endomorphism φ of F_{μ} / K which extends to an endomorphism φ^{0} of F_{μ}^{0} / K. Then

$$
(f+K) \varphi^{0}=\lim _{n \rightarrow \infty}\left(f_{n} \psi^{0}+K\right) \varphi^{0}=\lim _{n \rightarrow \infty}\left(f_{n}+K\right) \varphi \psi^{0}
$$

Since $(f+K) \varphi^{0} \in F_{\mu}^{0} / K$, we have $\lim _{n \rightarrow \infty}\left(f_{n}+K\right) \varphi \in F_{\mu} / K$ with respect to the Z-adic topology of F_{μ} / K. It is true that $\dot{\vec{e}} \vec{x}=\vec{e} \cdot T(\vec{x}) \cdot \vec{x}$ with a finite matrix $T(\vec{x})$ for all $\vec{x} \in \mathbf{X}$. It is easy to see that $T(\vec{x}) \cdot L_{n}=L_{n} \cdot T^{\prime}(\vec{x})$ with
a finite matrix $T^{\prime}(\vec{x})$ for all $\vec{x} \in \mathbf{X}$ and for almost all $n \in \omega$. We get

$$
\dot{\vec{e}} L_{n} \vec{x}=\vec{e} \cdot T(\vec{x}) \cdot L_{n} \cdot \vec{x}=\vec{e} \cdot L_{n} \cdot T^{\prime}(\vec{x}) \cdot \vec{x} .
$$

Thus

$$
\lim _{n \rightarrow \infty}\left(\dot{\vec{e}} L_{n} \stackrel{\rightharpoonup}{x}+K\right) \varphi=\lim _{n \rightarrow \infty}\left(\stackrel{\rightharpoonup}{e} L_{n} T^{\prime}(\stackrel{\rightharpoonup}{x}) \stackrel{\rightharpoonup}{x}+K\right) \varphi \in F_{\mu} / K .
$$

Therefore φ can be extended to an endomorphism of \dot{F}_{μ}^{0} / K, too, where $\dot{F}_{\mu}^{0}=F^{0}\left(\dot{e}_{00}, \cup F_{\mu_{n}}\right)$ which is given according to Lemma 4 by making use of the family $\left\{\dot{E}_{n} \mid n \in \omega\right\}$ of free bases.

Let $\left\{f_{\nu} \mid \nu<\aleph\right\}$ be an enumeration of the elements of $F=\bigcup_{\alpha<\aleph} F_{\alpha}$ such that $f_{\beta} \in F_{\nu}$ for all $\nu \in S_{\beta}$. Let X_{α} be the underlying set of F_{α} / K for all $\alpha<\aleph$ and let $X=\bigcup_{\alpha<\aleph} X_{\alpha}$. Then $\left\{X_{\alpha} \mid \alpha<\aleph\right\}$ is a \aleph-filtration of X. Consider the sets

$$
A_{\alpha}=X_{\alpha} \times X_{\alpha} \times X_{\alpha}, \quad M_{\alpha}=X_{\alpha} \times R \times X_{\alpha}, \quad H_{\alpha}=X_{\alpha} \times X_{\alpha}
$$

and their disjoint unions $U_{\alpha}=A_{\alpha} \cup M_{\alpha} \cup H_{\alpha}$ for all $\alpha<\aleph$. Then $\left\{U_{\alpha} \mid \alpha<\aleph\right\}$ is an \aleph-filtration of $U=\bigcup_{\alpha<\aleph} U_{\alpha}$. Let us define functions $P_{\nu}^{\beta}: \mathbf{P}\left(U_{\nu}\right) \rightarrow\{0,1\}$ for every $\beta<\aleph, \nu \in S_{\beta}$. Put $P_{\nu}^{\beta}(Y)=0$ if the following conditions (1) and (2) are satisfied for the $Y \cong U_{\nu}$:
(1) (a) $Y \cap\left(A_{\nu} \cup M_{\nu}\right)$ defines an R-module F_{ν}^{\prime} / K on X_{ν} such that $F_{\nu}^{\prime} \cong F_{\nu}$, and $F_{\nu}^{\prime}, F_{\nu}$ have the same underlying set;
(b) $Y \cap\left(A_{\nu_{n}} \cup M_{\nu_{n}}\right)$ defines an R-module $F_{\nu_{n}}^{\prime} / K$ on $X_{\nu_{n}}$ for all $n \in \omega$ such that $F_{\nu_{n}}^{\prime} \cong F_{\nu_{n}}$, and $F_{\nu_{n}}^{\prime}, F_{\nu_{n}}$ have the same underlaying set;
(c) $F_{M} \cong F_{\nu_{0}}^{\prime} \cong F_{\nu_{n}}^{\prime} \cong F_{\nu_{n+1}}^{\prime} \cong F_{\nu}^{\prime}=\bigcup_{n \in \omega} F_{\nu_{n}}^{\prime}$ for all $n \in \omega$; and the R-modules $f_{\beta} R, F_{\nu_{n}}^{\prime} / F_{M}, F_{\nu_{n+1}}^{\prime} / F_{\nu_{n}}^{\prime}, F_{\nu_{n}}^{\prime} / f_{\beta} R$ are free for almost all $n \in \omega ;$
(2) (a) $Y \cap H_{\nu}$ defines an endomorphism φ of F_{ν}^{\prime} / K;
(b) if $F_{\nu}^{0}=F^{0}\left(f_{\beta}, \cup F_{\nu_{n}}^{\prime}\right) \supseteqq F_{\nu}^{\prime}$ according to Lemma 4 , then φ does not extend to an endomorphism of F_{ν}^{0} / K.
We define $P_{\nu}^{\beta}(Y)=1$ in the other cases. So according to Lemma 3 we find that there are functions $\varphi_{\beta}: S_{\beta} \rightarrow\{0,1\}$ such that $\left\{\nu \in S_{\beta} \mid P_{\nu}^{\beta}\left(Y \cap U_{\nu}\right)=\right.$ $\left.=\varphi_{\beta}(\nu)\right\}$ is stationary in \aleph for all $Y \cong U$ and all $\beta<\aleph$.

Now we will define inductively the free R-module F_{α}^{\prime} on the underlying set of F_{α} for all $\alpha<\aleph$ such that
(i)' F_{α}^{\prime} is isomorphic to F_{α} for all $\alpha<\mathcal{K}_{\text {; }}$
(ii)' if $\eta \notin S$, then $F_{\alpha}^{\prime} / F_{\eta}^{\prime}$ is a free R-module for all $\eta<\alpha<\aleph$.

Choose $F_{0}^{\prime}=F_{0}$ and assume F_{μ}^{\prime} to be defined for all $\mu<\alpha$. If α is a limit ordinal, then we choose $F_{\alpha}^{\prime}=\bigcup_{\beta<\alpha} F_{\beta}^{\prime}$. Assume that $\alpha=\mu+1$ where $\mu \in S_{\beta}$ such that $f_{\beta} R, F_{\mu_{n}}^{\prime} / f_{\beta} R$ are free R-modules for almost all $n \in \omega$. Then apply Lemma 4 for $F_{\mu}^{\prime}=\bigcup_{n \in \omega} F_{\mu_{n}}^{\prime}$ and put $F_{\alpha}^{\prime}=F^{\varphi_{\beta}(\mu)}\left(f_{\beta}, \cup F_{\mu_{n}}^{\prime}\right)$. In the other cases we define $F_{\alpha}^{\prime}=F_{\mu}^{\prime} \oplus\left(\underset{\left|F_{\mu}^{\prime}\right|}{\oplus} R\right)$, if $\alpha=\mu+1$. Conditions (i)' and (ii)' can be proved similarly as (i) and (ii).

Let $F^{\prime}=\bigcup_{\alpha<\aleph} F_{\alpha}^{\prime}$ and $B=F^{\prime} / K$. Then B contains A as a pure subgroup. The operations of distinct elements of R on B are distinct, because B contains the identity of R. In order to prove that R is isomorphic with the whole of the endomorphism ring of B, we consider an arbitrary endomorphism φ of B. Let

$$
C=\left\{\nu<\aleph \mid \nu \text { is a limit ordinal and }\left(F_{\nu}^{\prime} / K\right) \varphi \sqsubseteq F_{\nu}^{\prime} / K\right\}
$$

Then C is a closed unbounded subset of \aleph. We shall prove that φ operates on F_{μ}^{\prime} / K as an element of R for every $\mu \in S \cap C$. Consider an element μ of $S \cap C$, e.g. $\mu \in S_{\beta} \cap C$. First, we assume that $f_{\beta} R$ and $F_{\mu_{n}}^{\prime} / f_{\beta} R$ are free R-modules for almost all $n \in \omega$. Let $A_{B} \subseteq X \times X \times X$ define the addition and let $M_{B} \subseteq X \times R \times X$ define the ring multiplication on the R-module B. Let $H_{\varphi} \subseteq X \times X$ define the endomorphism φ. Then

$$
E=\left\{\nu \in S_{\beta} \mid P_{\nu}^{\beta}\left(\left(A_{B} \cup M_{B} \cup H_{\varphi}\right) \cap U_{\nu}\right)=\varphi_{\beta}(\nu)\right\}
$$

is stationary in \aleph. Let $\eta \in C \cap E$ with $\eta \geqq \mu$. Then there is an ordinal $\eta<$ $<\tau<\aleph$ such that $\left(F_{\eta+1}^{\prime} / K\right) \varphi \cong F_{\tau}^{\prime} / \mathrm{K}$. Since S contains only limit ordinals, we have $\eta+1 \in \mathcal{\aleph} \backslash S$. So $F_{\tau}^{\prime} / F_{\eta+1}^{\prime}$ is a free R-module by (ii)'. Hence F_{τ}^{\prime} splits over $F_{\eta+1}^{\prime}$. Let $\rho: F_{\tau}^{\prime} / K \rightarrow F_{\eta+1}^{\prime} / K$ be the canonical projection such that $\left.\rho\right|_{\left(F_{\eta+1}^{\prime} / K\right)}$ acts on $F_{\eta+1}^{\prime} / K$ as the identity operator. Hence $\left.\varphi\right|_{\left(F_{\eta+1}^{\prime} / K\right)} \circ \rho$ is an endomorphism from $F_{\eta+1}^{\prime} / K$ which is an extension of $\left.\varphi\right|_{\left(F_{\eta}^{\prime} / K\right)}$. Therefore we derive $\varphi_{\beta}(\eta)=1$ by the definition of the function P_{η}^{β}. Hence $\left.\varphi\right|_{\left(F_{\eta}^{\prime} / K\right)}$ extends to endomorphism of $F^{0}\left(f_{\beta}, \cup F_{\eta_{n}}^{\prime}\right) / K$ and $F^{1}\left(f_{\beta}, \cup F_{\eta_{n}}^{\prime} / K\right)$. We have according to Lemma 4 that $\left(f_{\beta}+K\right) \varphi \in\left(f_{\beta}+K\right) R$.

Now let μ be an arbitrary element of $S \cap C$. Choose the free bases D_{n} of the free R-modules $F_{\mu_{n}}^{\prime}$ such that $E_{M} \subseteq D_{n} \subseteq D_{n+1}$ for all $n \in \omega$. This is possible because $F_{\mu_{n+1}}^{\prime} / F_{\mu_{n}}^{\prime}$ and $F_{\mu_{n}}^{\prime} / F_{M}$ are free R-modules for all $n \in \omega$. Let $b \in D=\bigcup_{n \in \omega} D_{n}$. Assume that $b=f_{\alpha}$ where $\alpha<\aleph$. Then there exists $\eta \in S_{\alpha} \cap C$ such that $F_{\eta_{n}}^{\prime} / f_{\alpha} R$ is a free R-module for almost all $n \in \omega$. Hence $(b+K) \varphi=(b+K) r_{b}$ where $r_{b} \in R$. It is true that $F_{\mu}^{\prime} / K \cong\left(F_{M} / K\right) \oplus \tilde{F}_{\mu}$ where \tilde{F}_{μ} is a free R-module. If x, y are distinct elements of a free basis of
\tilde{F}_{μ}, then $x r-y$ is an element of a free basis of \tilde{F}_{μ} for every $r \in R$. Therefore we can easily prove that φ acts on \tilde{F}_{μ} as an element r_{0} of R. Next we see that φ operates on F_{M} / K as an element of R. Let us denote briefly the element $b+K$ by \bar{b}. We get $\bar{e}_{m} \varphi=\bar{e}_{m} \cdot r_{m} \in \bar{e}_{m} R$ for all $m \in M$. Let a be an arbitrary element of A and let 1 be the identity of R. Then, partly $\bar{e}_{1+a} \varphi=\bar{e}_{1+a} \cdot r_{1+a}$ holds, partly $\bar{e}_{1+a} \varphi=\bar{e}_{1} \varphi+\bar{e}_{a} \varphi=\bar{e}_{1} \cdot r_{1}+\bar{e}_{a} \cdot r_{a}$ is satisfied. So $r_{1+a}+a \cdot r_{1+a}=r_{1}+a r_{a}$. Hence $a r_{1}=a r_{a}$, i.e. $\bar{e}_{a} \varphi=\bar{e}_{a} \cdot r_{1}$. We can see similarly that $\bar{e}_{t} \varphi=\bar{e}_{t} \cdot r_{1}$ for every $t \in R$ from the derivation of the image $\bar{e}_{t+a t} \varphi$. It is clear that $r_{1}=r_{0}$. So φ operates on F_{μ}^{\prime} / K as the element $r_{0} \in R$. This is true for all $\mu \in S \cap C$. Since $S \cap C$ is cofinal in \aleph, φ acts on B as an element of R.

Thus Theorem 1 is proved.
Theorem $2(\mathrm{ZFC}+V=L)$. (The reformulation of Theorem 1 in terms of modules.) Let R be a ring with unit element and let A be a module over R where the group A is cotorsion-free. Then A is embedded in an R-module B as a submodule such that every endomorphism of the group B is the operation of an element of R. Furthermore, A and B have the same annullator in R.

Proof. Let J be the annulator of A in R. Then A is naturally a faithful module over R / J. According to Theorem 1 there exists a faithful module B over R / J containing A as a submodule, and every endomorphism of the group B acts on B as an element of R / J. Thus B is naturally an R-module with the required properties.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics 13, Springer (New York 1973).
[2] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., 13 (1963), 687-710.
[3] A. L. S. Corner, Endomorphism rings of torsion-free Abelian groups, Proc. Internat. Conf. Theory of Groups (Austral. Nat. Univ. Canberra, August 1965), 59-69; Gordon and Breach Science Publishers, Inc. (1967).
[4] N. T. Dào, Endomorphism rings of Abelian groups as isomorphic restrictions of full endomorphism rings, Periodica Math. Hungar., to appear.
[5] G. D'Este, A theorem on the endomorphism ring of reduced torsion-free Abelian groups and some applications, Ann. Mat. Pure Appl., 116 (1979), 381-392.
[6] K. J. Devlin and S. Shelah, A weak version of \diamond which follows from $2^{\aleph_{0}}<2^{\aleph_{1}}$, Israel J. Math., 29(1978), 239-247.
[7] M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc., 45(1982), 319-336.
[8] P. C. Eklof and A. V. Mekler, On constructing indecomposable groups in L, J. Algebra, 49(1977), 96-103.
[9] P. C. Eklof, Set Theoretic Methods in Homological Algebra and Abelian Groups, Les Presses de l'Université de Montréal (Montréal, 1980).
[10] L. Fuchs, Infinite Abelian Groups, Vol I (1970), Vol II (1973), Pure and Applied Math., Series 36, Academic Press (New York).
[11] T. Jech, Set Theory, Academic Press (New York, 1978).
[12] R. Jensen, The fine structure of the constructible universe, Ann. Math. Logic, 4(1972), 229-308.
[13] A. Orsatti, A class of rings which are the endomorphism rings of some torsion-free Abelian groups, Ann. Scuola Norm. Sup. Pisa, 23(1969), 143-153.
[14] S. Shelah, Infinite Abelian groups, the Whitehead problem and some constructions, Israel J. Math., 18(1974), 243-256.
(Received April 28, 1988)

AGM RT

1081 BUDAPEST
VIII., KÖZTÁRSASÁG TÉR 20

HUNGARY

ON THE EXTENSION OF TWO THEOREMS BY MADDOX TO GENERALIZED SETS OF CESÅRO SUMMABLE SEQUENCES

E. MALKOWSKY (Gießen)

1. Introduction

We denote the set of all complex sequences by ω. As usual, c, c_{0} and ℓ_{∞} are the sets of all convergent, null and bounded sequences, respectively. For each positive integer $n, e^{(n)}$ is the sequence such that $e_{k}^{(n)}:=0(k \neq n)$, $e_{n}^{(n)}:=1$, and e is the sequence such that $e_{k}:=1(k=1,2, \ldots)$.

For any real δ, let $A_{n}^{\delta}:=\binom{n+\delta}{n}(n=0,1,2, \ldots)$ be the n-th Cesàro coefficient of order δ. Let (m_{ν}) be a sequence of integers such that $1 \leqq m_{0}<$ $<m_{1}<\cdots<m_{\nu}<\ldots$, then for each non-negative integer $\nu, K_{\left(m_{\nu}\right)}$ denotes the set of all integers k that satisfy the inequality $m_{\nu} \leqq k \leqq m_{\nu+1}-1$.

Let $\alpha>0$ and let $t=\left(t_{k}\right)$ be a real sequence such that $t_{k} \neq 0(k=$ $=1,2, \ldots),\left(m_{\nu}\right)$ a sequence of integers as above. Then given any sequence x, we define the sequence $x\left(\alpha ;\left(m_{\nu}\right),(t)\right)$ by

$$
x_{k}\left(\alpha ;\left(m_{\nu}\right),(t)\right):=\left[\frac{A_{m_{\nu+1}-k}^{\alpha-1}}{A_{m_{\nu}-1}^{\alpha}}\right]^{1 / t_{k}} \cdot x_{k} \quad\left(k \in K_{\left(m_{\nu}\right)} ; \quad \nu=0,1,2, \ldots\right),
$$

and for each non-negative integer ν, and for each subset K of $K_{\left(m_{\nu}\right)}$, we define the sequence $x^{[K]}(\alpha ;(t))$ by

$$
x_{k}^{[K]}(\alpha ;(t)):= \begin{cases}x_{k}\left(\alpha ;\left(m_{\nu}\right),(t)\right) & k \in K \\ 0 & k \notin K ;\end{cases}
$$

we shall write $x^{\left[m_{\nu}\right]}(\alpha ;(t)):=x^{\left[K\left(m_{\nu}\right)\right]}(\alpha ;(t))$ for short.
If $t=\left(t_{k}\right)$ is a strictly positive sequence, and K_{ν} is a subset of $K_{\left(m_{\nu}\right)}$, then let

$$
h_{\left[K_{\nu}\right]}^{\alpha, t}(x):=\sum_{k=1}^{\infty}\left|x_{k}^{\left[K_{\nu}\right]}(\alpha ;(t))\right|^{t_{k}} \quad(\nu=0,1,2, \ldots ; \quad \alpha>0 ; \quad x \in \omega) ;
$$

and we shall write $h_{\left[m_{\nu}\right]}^{\alpha, t}(x):=h_{\left[K_{\left(m_{\nu}\right)}\right]}^{\alpha, t}(x)$ for short.
Let $\alpha>0, p=\left(p_{k}\right)$ be a strictly positive sequence and $\left(m_{\nu}\right)$ a sequence of integers as above. Then we define the sets

$$
\begin{gathered}
{\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}:=} \\
:=\left\{x \in \omega:\left(h_{\left[m_{\nu}\right]}^{\alpha, p}(x-\ell e)\right) \in c_{0} \text { for some complex number } \ell\right\},
\end{gathered}
$$

$$
\left[C_{a} ;\left(m_{\nu}\right)\right]_{0}^{(p)}:=\left\{x \in \omega:\left(h_{\left[m_{\nu}\right]}^{\alpha, p}(x)\right) \in c_{0}\right\}
$$

and

$$
\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}:=\left\{x \in \omega:\left(h_{\left[m_{\nu}\right]}^{\alpha, p}(x)\right) \in \ell_{\infty}\right\}
$$

In the special case where $p_{k}=p=$ const. $(k=1,2, \ldots)$ and $m_{\nu}=2^{\nu}$ $(\nu=0,1,2, \ldots)$, these sets reduce to the sets $\left[\tilde{C}_{\alpha}\right]^{p},\left[\tilde{C}_{\alpha}\right]_{0}^{p}$ and $\left[\tilde{C}_{\alpha}\right]_{\infty}^{p}$ defined in [5].

Proposition 1. The sets $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)},\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)}$ and $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ are linear spaces if and only if $p \in \ell_{\infty}$.

Proof. For the sets $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ and $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)}$ this is an immediate consequence of Theorem 1 in [4], and for the set $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ this is an immediate consequence of Theorem 1 in [2].

Therefore, we shall assume $p \in \ell_{\infty}$. We put

$$
\begin{equation*}
M:=\sup _{k} p_{k}, \quad H:=\max \{1, M\} \tag{1.1}
\end{equation*}
$$

Proposition 2. The following inclusions hold:
(a) $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)},\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$;
(b) $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ if and only if there is a constant γ such that

$$
\begin{equation*}
\frac{m_{\nu+1}}{m_{\nu}}<\gamma \quad(\nu=0,1,2, \ldots) \tag{1.2}
\end{equation*}
$$

Proof. (a) The inclusions in part (a) are obvious from the definition of the sets involved (even without the restriction $p \in \ell_{\infty}$).
(b) By a well known property of the Cesàro coefficients, there exist two constants $C_{1}(\alpha), C_{2}(\alpha)$ depending on α only such that for $\nu=0,1,2, \ldots$

$$
\begin{gathered}
C_{1}(\alpha)\left[\frac{m_{\nu+1}-m_{\nu}}{m_{\nu}}\right]^{\alpha}-\frac{1}{A_{m_{\nu}-1}^{\alpha}} \leqq h_{\left[m_{\nu}\right]}^{\alpha, p}(e)= \\
=\frac{A_{m_{\nu+1}-m_{\nu}}^{\alpha}}{A_{m_{\nu}-1}^{\alpha}}-\frac{1}{A_{m_{\nu}-1}^{\alpha}} \leqq C_{2}(\alpha)\left[\frac{m_{\nu+1}-m_{\nu}}{m_{\nu}}\right]^{\alpha}-\frac{1}{A_{m_{\nu-1}}^{\alpha}}
\end{gathered}
$$

and since $\lim _{\nu \rightarrow \infty} \frac{1}{A_{m_{\nu-1}}^{\alpha}}=0$ for $\alpha>0$, we have $\sup _{\nu} h_{\left[m_{\nu}\right]}^{\alpha, p}(e)<\infty$ if and only if condition (1.2) holds. Part (b) now is obvious (cf. [2], p. 318).

Let $\left(m_{\nu}\right)$ be a sequence of integers satisfying (1.2). Then we define

$$
\begin{equation*}
g(x):=g^{\alpha, p}(x):=\sup _{\nu}\left(h_{\left[m_{\nu}\right]}^{\alpha, p}(x)\right)^{1 / H} \quad \text { for } \quad x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)} \tag{1.3}
\end{equation*}
$$

(where H is defined in (1.1)).
Remark. In view of Proposition 2, the restriction on the sequence (m_{ν}) is imposed in order to make sure that g is defined on all of $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$.

The function g induces a metric on each of the spaces $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)}$, $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ and $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ (cf. [2], p. 318) and it is known that $\left[C_{\alpha} ;\right.$ $\left.\left(m_{\nu}\right)\right]_{0}^{(p)}$ is paranormed by g (cf. [3], Theorem 18, p. 190).

The proof of the following is routine and therefore omitted.
Proposition 3. Let $p \in \ell_{\infty}$ and let $\left(m_{\nu}\right)$ be a sequence of integers satisfying condition (1.2). Then
(a) $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ is paranormed by g if and only if $\inf _{k} p_{k}>0$,
(b) $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ is paranormed by g if $\inf _{k} p_{k}>0$,
(c) $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)}$ and $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ are complete with respect to g (cf. [2], p. 318).

2. The completeness of $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$

We now turn to the completeness of $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ which is more difficult to handle. The following is an immediate consequence of Theorem 5 in [2].

Proposition 4. Let $p \in \ell_{\infty}$ and $\lim _{\nu \rightarrow \infty} \frac{m_{\nu+1}}{m_{\nu}}=1$. Then $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ is complete with respect to g.

We now consider the case in which $\varlimsup_{\nu \rightarrow \infty} \frac{m_{\nu+1}}{m_{\nu}}>1$. We need the following
Lemma 1. Let $p \in \ell_{\infty}$ and let $\left(m_{\nu}\right)$ be a sequence of integers such that (1.2) and

$$
\begin{equation*}
\varlimsup_{\nu \rightarrow \infty} \frac{m_{\nu+1}}{m_{\nu}}>1 \tag{2.1}
\end{equation*}
$$

hold. If $\left(x^{(i)}\right)$ is a Cauchy sequence in $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ and

$$
\left[h_{\left[m_{\nu}\right]}^{\alpha, p}\left(x^{(i)}-\ell^{(i)} e\right)\right] \in c_{0} \quad \text { for } \quad i=1,2, \ldots
$$

then given $\varepsilon>0$ there is a complex number ℓ and an integer i_{0} such that for all $i \geqq i_{0}$, we have $\left|\ell^{(i)}-\ell\right|<\min \{1, \varepsilon\}$.

Proof. In the proof, we shall write $h_{\nu}:=h_{\left[m_{\nu}\right]}^{\alpha, p}$ for short. Let $c:=$ $:=\varlimsup_{\nu \rightarrow \infty} \frac{m_{\nu+1}}{m_{\nu}}>1$. Then there is a number δ satisfying $1<\delta<c$ such that for some subsequence $(\nu(n))$, we have

$$
\frac{m_{\nu(n)+1}}{m_{\nu(n)}}>\delta \quad(n=1,2, \ldots)
$$

This and a well known property of the Cesàro coefficients yield the existence of a constant $C_{1}(\alpha)$ depending on α only such that

$$
\begin{equation*}
C_{1}(\alpha)(\delta-1)^{\alpha}-\frac{1}{A_{m_{\nu(n)}-1}^{\alpha}} \leqq h_{\nu(n)}(e) \quad(n=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Furthermore, similarly it follows from condition (1.2) that

$$
\begin{equation*}
h_{\nu}(e) \leqq C_{2}(\alpha)(\gamma-1)^{\alpha}-\frac{1}{A_{m_{\nu}-1}^{\alpha}} \quad(\nu=0,1,2, \ldots) \tag{2.3}
\end{equation*}
$$

where $C_{2}(\alpha)$ depends on α only.
We put $C_{1}:=C_{1}(\alpha)(\delta-1)^{\alpha}, C_{2}:=C_{2}(\alpha)(\gamma-1)^{\alpha}$. Let $\left(x^{(i)}\right)$ be a Cauchy sequence in $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$. Then there is a non-negative integer I_{0} such that

$$
g\left(x^{(i)}-x^{(j)}\right)<\frac{1}{3}\left[\frac{C_{1}}{2}\right]^{1 / H} \quad\left(i, j \geqq I_{0}\right) .
$$

Let $i, j \geqq I_{0}$. Since $h_{\nu}\left(x^{(i)}-\ell^{(i)} e\right) \rightarrow 0, h_{\nu}\left(x^{(i)}-\ell^{(j)} e\right) \rightarrow 0(\nu \rightarrow \infty)$ there exists a non-negative integer $\nu_{0}(i, j)$ such that

$$
h_{\nu}\left(x^{(i)}-\ell^{(i)} e\right)<\frac{C_{1}}{3^{H} \cdot 2}, \quad h_{\nu}\left(x^{(j)}-\ell^{(j)} e\right)<\frac{C_{1}}{3^{H} \cdot 2} \quad\left(\nu \geqq \nu_{0}(i, j)\right) .
$$

Then for all $\nu \geqq \nu_{0}(i, j)$, we have

$$
\begin{gather*}
{\left[h_{\nu}\left(\left(\ell^{(i)}-\ell^{(j)}\right) e\right)\right]^{1 / H} \leqq\left[h_{\nu}\left(x^{(i)}-\ell^{(i)} e\right)\right]^{1 / H}+} \tag{2.4}\\
+\left[h_{\nu}\left(x^{(i)}-x^{(j)}\right)\right]^{1 / H}+\left[h_{\nu}\left(x^{(j)}-\ell^{(j)} e\right)\right]^{1 / H}<\left[\frac{C_{1}}{2}\right]^{1 / H} .
\end{gather*}
$$

We must have $\left|\ell^{(i)}-\ell^{(j)}\right|<1$ for all $i, j \geqq I_{0}$. For otherwise, if $\left|\ell^{(i)}-\ell^{(j)}\right| \geqq 1$ for some $i, j \geqq I_{0}$, then by (2.2), the definition of C_{1} and the fact that $\frac{1}{A_{m_{\nu}-1}^{\alpha}} \rightarrow 0(\nu \rightarrow \infty)$, we would be able to choose an integer $\nu(n) \geqq \nu_{0}(i, j)$ such that

$$
h_{\nu(n)}(e)>\frac{3}{4} C_{1} .
$$

This would imply

$$
h_{\nu(n)}\left[\left(\ell^{(i)}-\ell^{(j)}\right) e\right] \geqq h_{\nu(n)}(e)>\frac{3}{4} C_{1}>\frac{1}{2} C_{1},
$$

a contradiction to (2.4). Therefore, we must have $\left|\ell^{(i)}-\ell^{(j)}\right|<1$ for all $i, j \geqq I_{0}$, and it follows that

$$
\begin{equation*}
\left|\ell^{(i)}-\ell^{(j)}\right|^{M} h_{\nu}(e) \leqq h_{\nu}\left(\left(\ell^{(i)}-\ell^{(j)}\right) e\right) \quad\left(i, j \geqq I_{0} ; \quad \nu=0,1,2, \ldots\right) . \tag{2.5}
\end{equation*}
$$

Let $\varepsilon>0$ be given. By the same argument that yielded (2.4) using the fact that $\left(x^{(\mathbf{i})}\right)$ is a Cauchy sequence in $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$, we can choose a nonnegative integer $i_{0}:=i_{0}(\varepsilon)>I_{0}$ such that for all $i, j \geqq i_{0}$, there exists a non-negative integer $\nu(i, j)$ such that for all $\nu \geqq \nu(i, j)$

$$
h_{\nu}\left(\left(\ell^{(i)}-\ell^{(j)}\right) e\right)<\varepsilon^{M} \cdot \frac{3}{4} C_{1} .
$$

Therefore by (2.5)

$$
\left|\ell^{(i)}-\ell^{(j)}\right|^{M} \cdot h_{\nu}(e)<\varepsilon^{M} \cdot \frac{3}{4} C_{1} .
$$

By (2.2) we can choose an integer $\nu(n) \geqq \nu(i, j)$ such that

$$
h_{\nu(n)}(e)>\frac{3}{4} C_{1} .
$$

It follows that

$$
\left|\ell^{(i)}-\ell^{(j)}\right|^{M}<\varepsilon^{M} \quad \text { and } \quad\left|\ell^{(i)}-\ell^{(j)}\right|<\varepsilon \quad\left(i, j \geqq i_{0}\right) .
$$

Hence $\left(\ell^{(i)}\right)$ is a Cauchy sequence of complex numbers and $\ell:=\lim _{i \rightarrow \infty} \ell^{(i)}$ exists. This implies the existence of an integer i_{0} such that for all $i \geqq i_{0}$

$$
\left|\ell^{(i)}-\ell\right|<\min \{1, \varepsilon\} .
$$

Theorem 1. Let $p \in \ell_{\infty}$ and let the sequence $\left(m_{\nu}\right)$ satisfy conditions (1.2) and (2.1). Then $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ is complete with respect to g.

Proof. Let $\left(x^{(i)}\right)$ be a Cauchy sequence in $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$. Then

$$
g\left(x^{(i)}-x^{(j)}\right) \rightarrow 0 \quad(i, j \rightarrow \infty)
$$

and for each integer i, there is a complex number $\ell^{(i)}$ such that

$$
h_{\nu}\left(x^{(i)}-\ell^{(i)} e\right) \rightarrow 0 \quad(\nu \rightarrow \infty)
$$

(Again we write $h_{\nu}:=h_{\left[m_{\nu}\right]}^{\alpha, p}$ for short.) Since $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ by Proposition 2, and since $\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ is complete by Proposition 3(c), there is an element $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{\infty}^{(p)}$ such that

$$
g\left(x^{(i)}-x\right) \rightarrow 0 \quad(i \rightarrow \infty)
$$

We have to show that $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$, i.e. that there is a complex number ℓ such that

$$
\begin{equation*}
h_{\nu}(x-\ell e) \rightarrow 0 \quad(\nu \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left(h_{\nu}(x-\ell e)\right)^{1 / H} \leqq & \left(h_{\nu}\left(x-x^{(i)}\right)\right)^{1 / H}+\left(h_{\nu}\left(x^{(i)}-\ell^{(i)} e\right)\right)^{1 / H}+ \\
& +\left(h_{\nu}\left(\left(\ell^{(i)}-\ell\right) e\right)\right)^{1 / H}
\end{aligned}
$$

condition (2.6) can be proved by showing that

$$
h_{\nu}\left(\left(\ell^{(i)}-\ell\right) e\right) \rightarrow 0 \quad(\nu \rightarrow \infty) \text { for all sufficiently large } i
$$

Let $y>0$, and define for $\nu=0,1,2, \ldots$,

$$
K_{\nu}(y):=\left\{k \in K_{\left(m_{\nu}\right)}: p_{k}<y\right\}, \quad h_{\nu, y}:=h_{\left[K_{\nu}(y)\right]}^{\alpha, p}(e) .
$$

Then two cases are possible:
(i) $\inf _{y>0} \varlimsup_{\nu \rightarrow \infty} h_{\nu, y}=0$,
(ii) $\inf _{y>0} \varlimsup_{\nu \rightarrow \infty} h_{\nu, y}>0$,

In case (i), let $\varepsilon>0$ be given. Then there exists a number $y_{0}>0$ such that

$$
\varlimsup_{\nu \rightarrow \infty} h_{\nu, y_{0}}<\frac{\varepsilon}{2}
$$

whence $h_{\nu, y_{0}}<\varepsilon$ for all sufficiently large ν. By Lemma 1 , there is a complex number ℓ and a non-negative integer i_{0}, such that for all $i \geqq i_{0}$

$$
\left|\ell-\ell^{(i)}\right|<\min \left\{1, \varepsilon^{1 / y_{0}}\right\} .
$$

Now for all sufficiently large ν and for all $i \geqq i_{0}$, we have by (2.3):

$$
\begin{gathered}
h_{\nu}\left(\left(\ell-\ell^{(i)}\right) e\right)=h_{\left[K_{\left.\nu\left(y_{0}\right)\right]}^{\alpha, p}\right.}^{\alpha, p}\left(\left(\ell-\ell^{(i)}\right) e\right)+h_{\left[K_{\left(m_{\nu}\right)}^{\alpha, p} K_{\nu}\left(y_{0}\right)\right]}^{\alpha,}\left(\left(\ell-\ell^{(i)}\right) e\right)< \\
<h_{\nu, y_{0}}+\varepsilon h_{\nu}(e) \leqq \varepsilon\left(1+C_{2}\right)
\end{gathered}
$$

where C_{2} is defined as in the proof of Lemma 1.
Now we deal with case (ii). We put

$$
c:=\frac{1}{2} \inf _{y>0} \varlimsup_{\nu \rightarrow \infty} h_{\nu, y}>0 .
$$

Then there is an integer $\nu(1)$ such that $h_{\nu(1), 1}>c$. Also there exists an integer $\nu(2)>\nu(1)$ such that $h_{\nu(2), 1 / 2}>c$. Continuing in this way we can determine a strictly increasing sequence $(\nu(s))$ of integers such that

$$
h_{\nu(s), 1 / s}>c
$$

By the same argument that led to (2.4), there exists an integer $I:=I(c)$ such that for all $i>I$ there exists an integer ν_{i} such that for all $\nu \geqq \nu_{i}$

$$
\begin{equation*}
h_{\nu}\left(\left(\ell^{(i)}-\ell^{(I)}\right) e\right)<\frac{c}{2} \tag{2.7}
\end{equation*}
$$

Now we must have $\ell^{(i)}=\ell^{(I)}$ for every $i>I$. For otherwise, if $\left|\ell^{(i)}-\ell^{(I)}\right|>0$ for some $i>I$, then for $\nu=\nu(s)$, we would have, since $\left|\ell^{(i)}-\ell^{(I)}\right|<1$,

$$
h_{\nu(s)}\left(\left(\ell^{(i)}-\ell^{(I)}\right) e\right) \geqq h_{\nu(s), 1 / s} \cdot\left|\ell^{(i)}-\ell^{(I)}\right|^{1 / s}>\frac{c}{2}
$$

for all sufficiently large s, a contradiction to (2.7).
We close this section with a remark on the uniqueness of the limit ℓ.
REmARK. If the sequence (m_{ν}) satisfies condition (2.1), then for every $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$ the limit ℓ is unique (cf. [1], Theorem 2).

3: An inclusion theorem

In this section, we shall discuss the inclusion

$$
\left[C_{a} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(e)}
$$

Here there is no restriction on the sequence p except positivity. The following theorem is a generalization of Theorem 7 in [2].

Theorem 2. Let the sequence (m_{ν}) satisfy condition (1.2). Then the inclusion $\left[C_{a} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \subset\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(e)}$ holds if and only if the following two conditions are satisfied:
(i) $H_{\nu}(N):=\max _{k \in K\left(m_{\nu}\right)}\left[N^{-1 / p_{k}} e_{k}\left(\alpha ;\left(m_{\nu}\right),(e-p)\right)\right]$ for some integer $N>1$, and
(ii) $\inf _{y>1} \varlimsup_{\nu \rightarrow \infty} h_{\nu, y}=0$ where $h_{\nu, y}:=h_{\left[K_{\nu}(y)\right]}^{\alpha, p}(e)$ and $K_{\nu}(y):=\left\{k \in K_{\left(m_{\nu}\right)}:\right.$ $\left.p_{k} \geqq y\right\}$.

Proof. (a) First we show the necessity of condition (i). We assume that for all integers $N>1, H_{\nu}(N) \neq O(1)$. For $N:=2$, there is an integer $\nu(2)$ such that $H_{\nu(2)}(2)>2$. For $N:=3$, there is an integer $\nu(3)>\nu(2)$ such that $H_{\nu(3)}(3)>3$. Continuing in this way we can determine a strictly increasing
sequence $(\nu(N))$ of integers such that $H_{\nu(N)}(N)>N$. For $N=2,3, \ldots$, let $k(N) \in K_{\left(m_{\nu(N)}\right)}$ be the smallest integer such that

$$
N^{-1 / p_{k(N)}} e_{k(N)}\left(\alpha ;\left(m_{\nu}\right),(e-p)\right)=H_{\nu(N)}(N)
$$

Define the sequence x by

$$
x_{k}:=\left\{\begin{array}{ll}
N^{-1 / p_{k(N)}} \cdot e_{k(N)}\left(\alpha ;\left(m_{\nu}\right),(-p)\right) & (k=k(N)) \\
0 & (k \neq k(N))
\end{array} \quad(N=2,3, \ldots)\right.
$$

Then obviously $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \backslash\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(e)}$.
(b) Now we prove the necessity of condition (ii). We assume that

$$
c:=\inf _{y>1} \varlimsup_{\nu \rightarrow \infty} h_{\nu, y}>0 .
$$

Then for all $y>1$, we have $\varlimsup_{\nu \rightarrow \infty} h_{\nu, y} \geqq c$. For $y:=2$, there is an integer $\nu(2)$ such that $h_{\nu(2), 2} \geqq c / 2$. For $y:=3$, there is an integer $\nu(3)>\nu(2)$ such that $h_{\nu(3), 3} \geqq c / 2$. Continuing in this way we can determine a strictly increasing sequence $(\nu(s))$ of integers such that $h_{\nu(s), s} \geqq c / 2$. Define the sequence x by

$$
x_{k}:=\left\{\begin{array}{ll}
\frac{1}{2}\left(h_{\nu(s), s}\right)^{-1 / p_{k}} & \left(k \in K_{\nu(s)}(s)\right) \\
0 & \left(k \notin K_{\nu(s)}(s)\right)
\end{array} \quad(s=2,3, \ldots)\right.
$$

Then

$$
h_{\nu(s)}(x) \leqq(1 / 2)^{s} \rightarrow 0 \quad(s \rightarrow \infty)
$$

and

$$
h_{\left[m_{\nu(s)}\right.}^{\alpha, e}(x)=\frac{1}{2} \sum_{k \in K_{\nu(s)}(s)} e_{k}\left(\alpha ;\left(m_{\nu}\right),(e)\right)\left(h_{\nu(s), s}\right)^{-1 / p_{k}}
$$

If $h_{\nu(s), s} \leqq 1$, then $\left(h_{\nu(s), s}\right)^{-1 / p_{k}} \geqq 1$, hence $h_{\left[m_{\nu(s)}\right]}^{\alpha, e}(x) \geqq \frac{1}{2} h_{\nu(s), s} \geqq c / 4$.
If $h_{\nu(s), s}>1$, then $\left(h_{\nu(s), s}\right)^{-1 / p_{k}} \geqq\left(h_{\nu(s)}\right)^{-1 / s}$, hence

$$
h_{\left[m_{\nu(s)}\right]}^{\alpha, e}(x) \geqq \frac{1}{2}\left(h_{\nu(s), s}\right)^{1-1 / s} \geqq \frac{1}{2}\left(\frac{c}{2}\right)^{1-1 / s} \rightarrow \frac{1}{4} c \quad(s \rightarrow \infty)
$$

Therefore we have $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)} \backslash\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(e)}$.
(c) Finally we prove the sufficiency of conditions (i) and (ii). Let $x \in$ $\in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]_{0}^{(p)}$. Then there is an integer $\nu(N)$ such that for all $\nu \geqq \nu(N)$

$$
\begin{equation*}
h_{\nu}(x)<1 / N \tag{3.1}
\end{equation*}
$$

(where N is the same as in condition (i)). Let $\varepsilon>0$ be given. Then, by condition (ii), there exists a $y_{0}>1$ such that $h_{\nu, y_{0}}<\varepsilon$ for all sufficiently large ν. For $\nu=0,1,2, \ldots$, we define the following sets:

$$
\begin{array}{ll}
K_{\nu}^{(1)}:=\left\{k \in K_{\left(m_{\nu}\right)}: p_{k}<1\right\}, & K_{\nu}^{(2)}:=\left\{k \in K_{\left(m_{\nu}\right)}: p_{k} \geqq 1\right\} \\
K_{\nu}^{(3)}:=\left\{k \in K_{\nu}^{(2)}:\left|x_{k}\right| \leqq 1\right\}, & K_{\nu}^{(4)}:=\left\{k \in K_{\nu}^{(2)}:\left|x_{k}\right|>1\right\} \\
K_{\nu}^{(5)}:=\left\{k \in K_{\nu}^{(3)}: 1 \leqq p_{k} \leqq y_{0}\right\}, & K_{\nu}^{(6)}:=\left\{k \in K_{\nu}^{(3)}: p_{k}>y_{0}\right\}
\end{array}
$$

and we put $h_{\nu}^{(r)}:=h_{\left[K_{\nu}^{(r)}\right]}^{\alpha, p}, h_{\nu}^{(r), e}:=h_{\left[K_{\nu}^{(r)}\right]}^{\alpha, e}(r=1, \ldots, 6)$. For $k \in K_{\nu}^{(1)}$, it follows from (3.1) that

$$
N^{1 / p_{k}}\left|x_{k}\left(\alpha ;\left(m_{\nu}\right),(p)\right)\right|<1
$$

and since $p_{k}<1$ for $k \in K_{\nu}^{(1)}$, we have

$$
\begin{gathered}
N^{1 / p_{k}}\left|x_{k}\left(\alpha ;\left(m_{\nu}\right),(p)\right)\right|<N\left|x_{k}\left(\alpha ;\left(m_{\nu}\right),(p)\right)\right|^{p_{k}} \\
\left|x_{k}\right| \leqq N^{1-1 / p_{k}} e_{k}\left(\alpha ;\left(m_{\nu}\right),(e-p)\right)\left|x_{k}\right|^{p_{k}}
\end{gathered}
$$

This implies

$$
\begin{gathered}
h_{\nu}^{(1), e}(x) \leqq N \sum_{k \in K_{\nu}^{(1)}} e_{k}\left(\alpha ;\left(m_{\nu}\right),(2 e-p)\right) \cdot N^{-1 / p_{k}}\left|x_{k}\right|^{p_{k}} \leqq \\
\leqq N H_{\nu}(N) h_{\nu}(x)=o(1) O(1)
\end{gathered}
$$

We must show that

$$
\begin{equation*}
h^{(2), e}(x)=o(1) \tag{3.2}
\end{equation*}
$$

Let $k \in K_{\nu}^{(4)}$. Then $p_{k} \geqq 1,\left|x_{k}\right|>1$ and

$$
\begin{equation*}
h_{\nu}^{(4), e}(x) \leqq h_{\nu}^{(4)}(x) \leqq h_{\nu}(x)=o(1) \tag{3.3}
\end{equation*}
$$

Now let $k \in K_{\nu}^{(6)}$. Then $p_{k}>y_{0},\left|x_{k}\right| \leqq 1$ and

$$
\begin{equation*}
h_{\nu}^{(6), e}(x) \leqq h_{\nu}^{(6), e}(e) \leqq h_{\nu, y_{0}}<\varepsilon \tag{3.4}
\end{equation*}
$$

for all sufficiently large ν.
Finally let $k \in K_{\nu}^{(5)}$. Then $1 \leqq p_{k} \leqq y_{0},\left|x_{k}\right| \leqq 1$ and by a result by Maddox (cf. [1], p. 351)

$$
h_{\nu}^{(5), e}(x) \leqq h_{\nu}(x)+\left(h_{\nu}(x)\right)^{1 / y_{0}}\left[\sup _{\nu} h_{\nu}(e)\right]^{1-1 / y_{0}}
$$

It follows from condition (1.2) that

$$
C:=\left[\sup _{\nu} h_{\nu}(e)\right]^{1-1 / y_{0}}<\infty
$$

Since $x \in\left[C_{\alpha} ;\left(m_{\nu}\right)\right]^{(p)}$, we have

$$
\begin{equation*}
h_{\nu}^{(5), e}(x) \leqq \varepsilon+\varepsilon^{1 / y_{0}} \cdot C \text { for all sufficiently large } \nu . \tag{3.5}
\end{equation*}
$$

Since

$$
h_{\nu}^{(2), e}(x)=h_{\nu}^{(4), e}(x)+h_{\nu}^{(5), e}(x)+h_{\nu}^{(6), e}(x),
$$

condition (3.2) follows from (3.3), (3.4) and (3.5).
Acknowledgement. The major part of this paper was written while I served a term at the University of Wisconsin, Milwaukee, and I wish to express my gratitude to everybody who supported me in my work.

References

[1] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18 (1967), 345-355.
[2] I. J. Maddox, Some properties of paranormed sequence spaces, London J. Math. Soc., 1 (1969), 316-322.
[3] I. J. Maddox, Elements of Functional Analysis, Camb. University Press (1971).
[4] I. J. Maddox, An addendum on some properties of paranormed sequence spaces, J. London Math Soc., 8 (1974), 593-594.
[5] E. Malkowsky, Toeplitz Kriterien für Matrizenklassen bei Räumen stark limitierbarer Folgen, Acta Sci. Math. (Szeged), 48 (1985), 297-313.
(Received May 6, 1988)

[^7]
CONVERGENCE AND LATTICE PROPERTIES OF A CLASS OF MARTINGALE-LIKE SEQUENCES

D. Q. LUU (Hanoi)

0. Introduction

Let E be a Banach space, N the set of all positive integers. Given an infinite subset S of N we shall introduce the class of E-valued $L^{1} S$-games which is different from the class of E-valued games fairer with time, given first by Blake [3] and studied later by Mucci [12]. It is shown in Section 2 that a sequence (X_{n}) of E-valued Bochner integrable random variables is an $L^{1} S$-game if and only if it has a unique Riesz decomposition: $X_{n}=$ $=M_{n}+P_{n}$, where (M_{n}) is a martingale, $\left(P_{n}\right)$-converges to zero in probability and the subsequence (P_{s}) is an L^{1}-potential. Thus, all L^{1}-bounded E-valued $L^{1} S$-games convergence in probability if (and only if) E has the RadonNikodym property (RNP). This extends a result of Subramanian [15] on uniformly integrable real-valued games fairer with time and parallels a result of Talagrand [17] on L^{1}-bounded E-valued mils. In the case, when E lacks the (RNP) we give also a necessary and sufficient condition under which an L^{1}-bounded E-valued $L^{1} S$-game converges in probability. In Section 3, we shall use the characterization result of the previous section to prove that endowed with the norm

$$
\left\|\left(X_{n}\right)\right\|_{N}=\sup _{N} E\left(\left\|X_{n}\right\|\right)
$$

the class of L^{1}-bounded $L^{1} S$-games in ℓ^{1} becomes a Banach lattice. This parallels similar results of Austin-Edgar-Tulcea [1] on L^{1}-bounded real-valued amarts, Ghoussoub [6] on L^{1}-bounded order amarts, Talagrand [17] on L^{1}-bounded real-valued pramarts and a most recent result of Schmidt (to appear in Ann. Probab.) on L^{1}-bounded uniform amarts in ℓ^{1}. For definitions and related results we refer to the next section.

1. Definitions and related results

Throughout this paper, let (Ω, \mathcal{A}, P) be a complete probability space and $\left(\mathcal{A}_{n}\right)$ an increasing sequence of sub- σ-algebras of the σ-algebra \mathcal{A}. A function $\tau: \Omega \rightarrow N$ is called a bounded stopping time, write $\tau \in T$, if each $\{\tau=n\} \in \mathcal{A}_{n}$ and τ is bounded. Thus, T is a directed set with
the usual order (\leq), given by $\sigma \leqq \tau$ iff $\sigma(\omega) \leqq \tau(\omega)$, a.s. Now, let E be a (real) separabie Banach space and let L_{E}^{1} stand for the Banach space of all (equivalence classes of) \mathcal{A}-measurable functions $X: \Omega \rightarrow E$ with $E(\|X\|)=\int_{\Omega}\|X\| d P<\infty$. Unless otherwise stated, we shall consider only sequences $\left(X_{n}\right)$ in L_{E}^{1} which are assumed to be adapted to $\left(\mathcal{A}_{n}\right)$, i.e., each X_{n} is \mathcal{A}_{n}-measurable. Now given a sequence $\left(X_{n}\right)$ and $\tau \in T$ we define X_{τ} and \mathcal{A}_{τ} by $X_{\tau}(\omega)=X_{\tau(\omega)}(\omega), \mathcal{A}_{\tau}=\left\{A \in \mathcal{A}:\{\tau=n\} \cap A \in \mathcal{A}_{n}, \forall n\right\}$. Then $\left(\mathcal{A}_{\tau}\right)$ is an increasing family of sub- σ-algebras of \mathcal{A} and each X_{τ} is \mathcal{A}_{τ}-measurable.

Definition 1.1 (cf. [3]). A sequence $\left(X_{n}\right)$ is said to be a game which becomes fairer with time iff for each $\varepsilon>0$ there exists p such that for all $n \geqq q \geqq p$ we have $P\left(\left\|X_{q}(n)-X_{q}\right\|>\varepsilon\right)<\varepsilon$, where given $\sigma, \tau \in T, X_{\sigma}(\tau)$ denotes the $\mathcal{A}_{\boldsymbol{\sigma}}$-conditional expectation of X_{τ} (cf. [13]).

The following result was (independently) proved by Mucci [12] and Subramanian [15].

Theorem 1.1. Every uniformly integrable real-valued game which becomes fairer with time converges in L^{1}.

Definition 1.2 (cf. [2]). A sequence (X_{n}) is said to be a uniform amart iff for each $\varepsilon>0$ there exists p such that for all $\sigma, \tau \in T$ with $\tau \geqq \sigma \geqq p$ we have $E\left(\left\|X_{\sigma}(\tau)-X_{\sigma}\right\|\right)<\varepsilon$.

Uniform amarts were introduced by Bellow [2] who proved that all L^{1} bounded E-valued uniform amarts converge a.s. if (and only if) E has the (RNP). But here, we are interested in the following recent result of Schmidt [14].

Theorem 1.2. The L^{1}-bounded uniform amarts in ℓ^{1} form a Banach lattice.

Definition 1.3 (cf. [11]). A sequence $\left(X_{n}\right)$ is said to be a pramart if for each $\varepsilon>0$ there exists p such that for all $\sigma, \tau \in T$ with $\tau \geqq \sigma \geqq p$ we have $P\left(\left\|X_{\sigma}(\tau)-X_{\sigma}\right\|>\varepsilon\right)$.

Pramarts have been introduced and extensively studied by Millet-Sucheston [11] who proved that real-valued pramarts have the optimal sampling property. Here, we are interested however in the following result due to Talagrand [17].

Theorem 1.3. The L^{1}-bounded real-valued pramarts from a vector lattice.
Definition 1.4 (cf. [17]). A sequence (X_{n}) is said to be a mil if for each $\varepsilon>0$ there exists p such that for all $n \geqq p$ one has

$$
P\left(\sup _{p \leqq q \leqq n}\left\|X_{q}(n)-X_{q}\right\|>\varepsilon\right)<\varepsilon .
$$

Since every pramart is a mil, the following famous result of Talagrand [17] gives in particular, an affirmative answer to a question posed by L.

Sucheston in 1979, whether Chatterji's result in [4] for martingales holds true for the case of pramarts.

Theorem 1.4. All L^{1}-bounded E-valued mils converge a.s. if (and only if) E has the (RNP).

For other related results and references on amarts, the reader is referred to Edgar-Sucheston [5], Gut-Schmidt [7] and Luu [9].

2. Convergence of a class of martingale-like sequences

Throughout this and next section, let S be an infinite subset of N. In order to introduce the new class of $L^{1} S$-games we need the following definition and result, given by the author in $[8,10]$.

Definition 2.1. A sequence $\left(X_{n}\right)$ is an L^{1}-amart iff for each $\varepsilon>0$ there exists p such that for all $n \geqq q \geqq p$ one has $E\left(\left\|X_{q}(n)-X_{q}\right\|\right)<\varepsilon$.

Clearly, every uniform amart is an L^{1}-amart and every L^{1}-amart is a game which becomes fairer with time.

Lemma 2.1 (cf. [8]). A sequence $\left(X_{n}\right)$ is an L^{1}-amart if and only if it has a unique Riesz decomposition $X_{n}=M_{n}+P_{n}$, where $\left(M_{n}\right)$ is a martingale and $\left(P_{n}\right)$ is an L^{1}-potential, i.e. $\lim _{n} E\left(\left\|P_{n}\right\|\right)=0$.

Moreover, if this occurs then the martingale $\left(M_{n}\right)$ is given by

$$
\lim _{m} E\left(\left\|X_{n}(m)-M_{n}\right\|\right)=0 \quad(n \in N) .
$$

Definition 2.2. A sequence $\left(X_{n}\right)$ is said to be an S-game (which becomes fairer with the only time subset S), if for each $\varepsilon>0$ there exists p such that for all $q \in N, s \in S$ with $s \geqq q \geqq p$ we have $P\left(\left\|X_{q}(s)-X_{q}\right\|>\varepsilon\right)<\varepsilon$.

It is clear that by definition, a sequence $\left(X_{n}\right)$ is a game which becomes fairer with time if and only if $\left(X_{n}\right)$ is an S-game for some S such that the set $(N \backslash S)$ is finite. After proving the main results of this section we shall show that if $(N \backslash S)$ is infinite then there exists an L^{1}-bounded real-valued S-game which fails to be a game fairer with time.

The decomposition and convergence results we shall prove in this section are concerned with the following class of martingale-like sequences:

Definition 2.3. A sequence $\left(X_{n}\right)$ is called an $L^{1} S$-game if it is an S game and the subsequence $\left(X_{s}\right)$ is an L^{1}-amart.

Theorem 2.2. A sequence $\left(X_{n}\right)$ is an $L^{1} S$-game if and only if $\left(X_{n}\right)$ has a Riesz decomposition $X_{n}=M_{n}+P_{n}$, where $\left(M_{n}\right)$ is a martingale, $\left(P_{n}\right)$ converges to zero in probability and the subsequence $\left(P_{s}\right)$ is an L_{1}-potential.

Proof. Let $\left(X_{n}\right)$ be a sequence in L_{E}^{1}. Suppose first that $\left(X_{n}\right)$ is an $L^{1} S$-game. Then in particular, the subsequence (X_{s}) is an L^{1}-amart. Thus by Lemma 2.1, it follows that (X_{s}) can be written in the form $X_{s}=M_{s}+P_{s}$, where $\left(M_{s}\right)$ is a martingale and $\left(P_{s}\right)$ is an L^{1}-potential, i.e. $\lim E\left(\left\|P_{s}\right\|\right)=0$. Hence, $\left(X_{n}\right)$ has also a Riesz decomposition $X_{n}=M_{n}+\stackrel{s}{P_{n}}$, where $\left(M_{n}\right)$ is the martingale defined by the martingale (M_{n}) in the usual way. i.e. $M_{n}=M_{n}\left(s_{n}\right)$, were for each $n \in N, s_{n}=\inf \{s \in S: n \leqq s\}$ and $\left(P_{s}\right)$ goes to zero in L^{1}. The main part of the proof of the necessity condition consists in showing that $\left(P_{n}\right)$ goes to zero in probability. To see this let $\varepsilon>0$ be given. Since $\left(X_{n}\right)$ is also an S-game, by Definition 2.2 there exists $p_{0} \in N$ such that if $q \in N, s \in S$ with $s \geqq q \geqq p_{0}$ we have

$$
\begin{equation*}
P\left(\left\|X_{q}(s)-X_{q}\right\|>\varepsilon / 2\right)<\varepsilon / 2 . \tag{2.1}
\end{equation*}
$$

On the other hand, since $\left(P_{s}\right)$ goes to zero in L^{1}, there exists $p \geqq p_{0}$ such that for all $s \in S$ with $s \geqq p$ one has

$$
\begin{equation*}
E\left(\left\|P_{s}\right\|\right)<\varepsilon^{2} / 4 . \tag{2.2}
\end{equation*}
$$

This with (2.1) implies that for all $n \in N$ with $n \geqq p$ we have

$$
\begin{gathered}
P\left(\left\|P_{n}\right\|>\varepsilon\right)=P\left(\left\|X_{n}-M_{n}\right\|>\varepsilon\right) \leq \\
\leqq P\left(\left\|X_{n}(s)-X_{n}\right\|>\varepsilon / 2\right)+P\left(\left\|X_{n}(s)-M_{n}\right\|>\varepsilon / 2\right) \leq \\
\leqq \varepsilon / 2+2 / \varepsilon \cdot E\left(\left\|X_{n}(s)-M_{n}\right\|\right) \leq \\
\leqq \varepsilon / 2+2 / \varepsilon \cdot E\left(\left\|X_{s}-M_{s}\right\|\right)=\varepsilon / 2+2 / \varepsilon \cdot E\left(\left\|P_{s}\right\|\right) \leq \\
\leqq \varepsilon / 2+2 / \varepsilon \cdot \varepsilon^{2} / 4=\varepsilon
\end{gathered}
$$

by taking any $s \in S$ with $s \geqq n$. Thus (P_{n}) converges to zero in probability which completes the proof of the necessity condition.

Conversely, suppose now that (X_{n}) has the Riesz decomposition, given in the theorem. Then by Lemma 2.1, the subsequence (X_{s}) is an L^{1}-smart. Thus to prove the sufficiency, it suffices to show that $\left(X_{n}\right)$ is an S-game. To see this, let $\varepsilon>0$ be given. Since (P_{s}) converges to zero in L^{1}, there exists $p_{0} \in N$ such that for all $s \in S$ with $s \geqq p_{0}$, (2.2) is satisfied. On the other hand, since (P_{n}) converges to zero in probability, there exists $p \in N$ with $p \geqq p_{0}$ such that for all $q \geqq p$ one has

$$
P\left(\left\|P_{q}\right\|>\varepsilon / 2\right)<\varepsilon / 2 .
$$

This with (2.2) shows that for all $q \in N, s \in S$ with $s \geqq q \geqq p$ we have

$$
\begin{gathered}
P\left(\left\|X_{q}(s)-X_{q}\right\|>\varepsilon\right) \leqq P\left(\left\|X_{q}(s)-M_{q}\right\|>\varepsilon / 2\right)+P\left(\left\|X_{q}-M_{q}\right\|>\varepsilon / 2\right) \leq \\
\leqq 2 / \varepsilon \cdot E\left(\left\|X_{q}(s)-M_{q}\right\|\right)+\varepsilon / 2 \leqq 2 / \varepsilon \cdot E\left(\left\|X_{s}-M_{s}\right\|\right)+\varepsilon / 2=
\end{gathered}
$$

$$
=2 / \varepsilon \cdot E\left(\left\|P_{s}\right\|\right)+\varepsilon / 2 \leqq 2 / \varepsilon \cdot \varepsilon^{2} / 4+\varepsilon / 2=\varepsilon
$$

Thus by Definition $2.2,\left(X_{n}\right)$ must be an S-game which completes the proof of the theorem.

Now let $\left(X_{n}\right)$ be an S-game such that the subsequence $\left(X_{s}\right)$ is uniformly integrable. Then for each $\varepsilon>0$, there exists $\alpha \geqq 2$ such that if $A \in \mathcal{A}$ with $P(A)<\varepsilon / \alpha$ then $\sup _{s} \int_{A}\left\|X_{s}\right\| d P<\varepsilon / 4$. On the other hand, since $\left(X_{n}\right)$ is an S-game, there exists p such that in particular, for all $s, s^{\prime} \in S$ with $s^{\prime} \geqq s \geqq p$ one has

$$
P\left(\left\|X_{s}\left(s^{\prime}\right)-X_{s}\right\|>\varepsilon / \alpha\right)<\varepsilon / \alpha
$$

Consequently,

$$
\begin{gathered}
E\left(\left\|X_{s}\left(s^{\prime}\right)-X_{s}\right\|\right) \leqq \varepsilon / \alpha+\int_{\left.\left\{\left\|X_{s}\left(s^{\prime}\right)-X_{s}\right\|\right)>\varepsilon / \alpha\right\}}\left\|X_{s}\left(s^{\prime}\right)-X_{s}\right\| d P \leq \\
\leqq \varepsilon / \alpha+2 \sup _{s \in S}\left\{\int_{A}\left\|X_{s}\right\| d P, \quad A \in \mathcal{A}, \quad P(A)<\varepsilon / \alpha\right\} \leqq \varepsilon / 2+2 \cdot \varepsilon / 4=\varepsilon .
\end{gathered}
$$

This means that $\left(X_{s}\right)$ is an L^{1}-amart. Therefore, $\left(X_{n}\right)$ is an $L^{1} S$-game. The above argument shows that the real-valued version of the following corollary is an extension of Theorem 1.1 of Mucci [12] and Subramanian [15], mentioned in the previous section.

Corollary 2.3. Let $\left(X_{n}\right)$ be a sequence in L_{E}^{1} such that its subsequence $\left(X_{s}\right)$ is an L^{1}-bounded L^{1}-amart. Suppose more that E has the (RNP). Then $\left(X_{n}\right)$ is an $L^{1} S$-game if and only if it converges in probability.

Proof. Let $\left(X_{n}\right)$ and E be as in the corollary. Suppose first that $\left(X_{n}\right)$ is an $L^{1} S$-game such that $\sup _{S} E\left\|X_{s}\right\|<\infty$. Then the proof of Theorem 2.2 shows that the martingale $\left(M_{n}\right)$ in the Riesz decomposition of $\left(X_{n}\right)$ is L^{1} bounded. This with Chatterji's result in [4] implies that (X_{n}) must converge in probability. To prove the converse, we note first that since $\left(X_{s}\right)$ is an L^{1} bounded L^{1}-amart, by Lemma 2.1, $\left(X_{n}\right)$ can be written in the form $X_{n}=$ $=M_{n}+P_{n}$, where $\left(M_{n}\right)$ is an L^{1}-bounded martingale and the subsequence $\left(P_{s}\right)$ of $\left(P_{n}\right)$ converges to zero in L^{1}. Now suppose that $\left(X_{n}\right)$ converges in probability. Then it is clear that both sequences $\left(X_{n}\right)$ and $\left(M_{n}\right)$ must converge in probability to the same limit, since $\left(P_{s}\right)$ converges to zero in L^{1} and E has the (RNP). Therefore, $\left(P_{n}\right)$ converges to zero in probability. This with Theorem 2.2 shows that $\left(X_{n}\right)$ must be an $L^{1} S$-game. Thus the proof of the corollary is complete.

In the case when E lacks the (RNP), the above theorem and Theorem 5 of Uhl [13] give us the following result:

Corollary 2.4. An L^{1}-bounded E-valued $L^{1} S$-game $\left(X_{n}\right)$ converges in probability if and only if $\left(X_{s}\right)$ satisfies the Uhl's condition, i.e., for each $\varepsilon>0$ there exists a convex compact subset K_{ε} of E such that for any choice of $\delta>0$ there exists $s_{0} \in S$ and $A_{0} \in \mathcal{A}_{s_{0}}$ with $P\left(A_{0}\right) \geqq 1-\varepsilon$ such that for all $s^{\prime} \in S, A \in \mathcal{A}_{s}$ with $s \geqq s_{0}, A \subset A_{0}$ we have $\int_{A} X_{s} d P \in K_{\varepsilon}+\delta U$, where U is the unit ball of E.

Example 2.5. Let $S=\left(n_{k}\right)$ be an increasing subsequence of N. There exists an L^{1}-bounded positive real-valued $L^{1} S$-game which converges a.s., but it fails to be even a V-game for any infinite subset of V of N such that $(V \backslash S)$ is infinite.

Construction. Let (Ω, \mathcal{A}, P) be the usual Lebesgue probability measure space on the unit interval. For each $n \in N$, let $a_{n}=\prod_{i \leqq n} 2^{i}, Q_{n}$ the partition of $[0,1]$ in a_{n} intervals of equal length and $\mathcal{A}_{n}=\sigma-\left(Q_{n}\right)$. Given any $X_{\infty} \in L_{R_{+}}^{1}$ we define $M_{n}=X_{n}(\infty)\left(=E\left(X_{\infty} \mid \mathcal{A}_{n}\right)\right)$ and P_{n} as follows:
(a) $P_{n_{k}}=0(k \in N)$.
(b) For an interval I of Q_{n-1} with $n \in(N \backslash S)$ let $P_{n}=2^{n}$ on the first interval of Q_{n} that is contained in I and $P_{n}=0$ elsewhere (hence (P_{n}) converges to zero a.s.).
(c) $X_{n}=M_{n}+P_{n}(n \in N)$.

It is clear that by Theorem $2.2,\left(X_{n}\right)$ is an L^{1}-bounded $L^{1} S$-game which converges also a.s. to X_{∞}. On the other hand, for all $n, p \in(N \backslash S)$ with $n>p$ we have $P_{p}(n)=1$. Therefore, $\left(X_{n}\right)$ cannot be a V-game for any subset V of N such that the set $(V \backslash S)$ is infinite (hence in particular, $\left(X_{n}\right)$ cannot be a mil either). So the results presented in this section are independent of Theorem 1.4 of Talagrand [17], recalled in the previous section.

3. Lattice properties

Recall that a Banach space E, equipped with the partial order \leq, is said to be a Banach lattice if the following conditions hold:
(i) $x \leqq y$ implies $x+z \leqq y+z$ for all $x, y, z \in E$,
(ii) if $\bar{x} \geqq 0$ and α is a nonnegative real number then $\alpha x \geqq 0$,
(iii) for every pair $x, y \in E$ there exist the least upper bound $x \vee y$ and the greatest lower bound $x \wedge y$.
(iv) the norm is monotone, i.e., if $|x| \leqq|y|$ then $\|x\| \leqq\|y\|$, where $|x|=$ $=x \vee-x$.

Furthermore, if $\|x+y\|=\|x\|+\|y\|$ for all $x, y \geqq 0$ then E is called an $(A L)$-space. Throughout this section we assume that E is an $(A L)$-space having (RNP). Therefore, E is isomorphic (as a topological vector lattice) to
$\ell^{1}(\Gamma)$ for some index set Γ. For further characterizations of Banach lattices isomorphic to $\ell^{1}(\Gamma)$, the interested reader is referred to $[16,6]$.

In what follows we shall need the following result which has been recently proved by Schmidt [14].

Lemma 3.1 (cf. [14]). Let $\left(M_{n}\right)$ be an L^{1}-bounded martingale in L_{E}^{1} with limit measure φ.
a) If E has the (RNP) then $\left(M_{n}\right)$ is a difference of two positive L^{1}-bounded martingales $\left(Y_{n}^{1}\right)$ and $\left(Y_{n}^{2}\right)$ such that $\int_{A} Y_{n}^{1} d P \leqq \varphi^{+}(A)$ and $\int_{A} Y_{n}^{2} d P \leqq \varphi^{-}(A)$ for all $n \in N$ and $A \in \mathcal{A}_{n}$.
b) Furthermore, if E is isomorphic (as a topological vector lattice) to $\ell^{1}(\Gamma)$ for some index set Γ then $\left(Y_{n}^{1} \wedge Y_{n}^{2}\right)$ is a uniform potential, i.e. $\lim _{\tau \in T} E\left(\left\|Y_{\tau}^{1} \wedge Y_{\tau}^{2}\right\|\right)=0$.

The main purpose of this section is to prove the following theorem.
Theorem 3.2. Let E be a Banach lattice isomorphic (as a topological vector lattice) to $\ell^{1}(\Gamma)$ for some index set Γ. Then endowed with the norm

$$
\left\|\left(X_{n}\right)\right\|_{N}=\sup _{N} E\left(\left\|N_{n}\right\|\right),
$$

the class of all L^{1}-bounded E-valued $L^{1} S$-games becomes a Banach lattice.
Proof. Let E be as in the theorem. For convenience, let \mathcal{L} denote the space of all L^{1}-bounded E-valued $L^{1} S$-games. By Theorem $2.2, \mathcal{L}$ is a normed space. Further, since L^{1}-norm is always a lattice norm, it remains to prove only the followings:
a) \mathcal{L} is a lattice,
b) $\|(.)\|_{N}$ is complete.

To prove a), let $\left(X_{n}\right) \in \mathcal{L}$. Then by Theorem $2.2\left(X_{n}\right)$ can be written in a form $X_{n}=M_{n}+P_{n}$, where $\left(M_{n}\right)$ is a martingale, $\left(P_{n}\right)$ converges to zero in probability and its subsequence $\left(P_{s}\right)$ is an L^{1}-potential. Consequently, $\left(P_{n}^{ \pm}\right)$, $\left(\left|P_{n}\right|\right)$ converge to zero in probability and $\left(P_{s}^{ \pm}\right),\left(\left|P_{s}\right|\right)$ are L^{1}-potentials.

Now let $M_{n}=Y_{n}^{1}-Y_{n}^{2}$, where $\left(Y_{n}^{1}\right)$ and $\left(Y_{n}^{2}\right)$ are the positive L^{1}-bounded martingale taken from Lemma 3.1. Then $\left(Y_{n}^{1} \wedge Y_{n}^{2}\right)$ is a uniform potential, i.e. $\lim _{\tau \in T} E\left(\left\|T_{\tau}^{1} \wedge Y_{\tau}^{2}\right\|\right)=0$. Thus, if we define $Z_{n}=\left(Y_{n}^{1}+P_{n}^{+}\right) \wedge\left(Y_{n}^{2}+P_{n}^{-}\right)$ then

$$
0 \leqq Z_{n} \leqq\left(Y_{n}^{1} \wedge Y_{n}^{2}\right)+\left|P_{n}\right| \quad(n \in N)
$$

This implies that $\left(Z_{n}\right)$ converges to zero in probability and $\left(Z_{s}\right)$ is an L^{1} potential. Therefore, by Theorem 2.2, $\left(Y_{n}^{1}+P_{n}^{+}-Z_{n}\right),\left(Y_{n}^{2}+P_{n}^{+}-Z_{n}\right) \in \mathcal{L}$. On the other hand, since

$$
\begin{gathered}
X_{n}=\left(Y_{n}^{1}+P_{n}^{+}-Z_{n}\right)-\left(Y_{n}^{2}+P_{n}^{-}-Z_{n}\right), \\
0=\left(Y_{n}^{1}+P_{n}^{+}-Z_{n}\right) \wedge\left(Y_{n}^{2}+P_{n}^{-}-Z_{n}\right),
\end{gathered}
$$

we have

$$
X_{n}^{+}=\left(Y_{n}^{1}+P_{n}^{+}-Z_{n}\right) \quad \text { and } \quad X_{n}^{-}=\left(Y_{n}^{2}+P_{n}^{-}-Z_{n}\right) \quad(n \in N)
$$

This proves $\left|X_{n}\right| \in \mathcal{L}$ and the condition (a).
To prove (b), let $\left(X_{n}^{k}\right)_{k=1}^{\infty}$ be a sequence in \mathcal{L} which is Cauchy in the $\|(.)\|_{N}$-norm. It is clear that for each n, the sequence $\left(X_{n}^{k}, k \geqq 1\right)$ converges in L^{1} to some $X_{n} \in L_{E}^{1}$. We have to show that $\left(X_{n}\right) \in \mathcal{L}$. To see this, let $\varepsilon>0$ be given. Then there exists some $k \in N$ such that

$$
\sup _{n \in N} E\left(\left\|X_{n}^{k}-X_{n}\right\|\right)<\varepsilon^{2} / 9
$$

Further, since $\left(X_{n}^{k}\right) \in \mathcal{L}$, there exists $p \in N$ such that for all $s \in S, q \in N$ with $s \geqq q \geqq p$, one has

$$
P\left(\left\|X_{q}^{k}(s)-X_{q}^{k}\right\|>\varepsilon / 3\right)<\varepsilon / 3
$$

Thus,

$$
\begin{gathered}
P\left(\left\|X_{q}(s)-X_{q}\right\|>\varepsilon\right) \leq \\
\leqq P\left(\left\|X_{q}(s)-X_{q}^{k}(s)\right\|>\varepsilon / 3\right)+P\left(\left\|X_{q}^{k}(s)-X_{q}^{k}\right\|>\varepsilon / 3\right)+ \\
+P\left(\left\|X_{q}^{k}(s)-X_{q}\right\|>\varepsilon / 3\right) \leqq \\
\leqq 3 / \varepsilon \cdot E\left(\left\|X_{s}-X_{s}^{k}\right\|\right)+\varepsilon / 3+3 \varepsilon \cdot E\left(\left\|X_{q}^{k}-X_{q}\right\|\right) \leq \\
\leqq 3 / \varepsilon \cdot \varepsilon^{2} / 9+\varepsilon / 3+3 / \varepsilon \cdot \varepsilon^{2} / 9=\varepsilon
\end{gathered}
$$

This shows that $\left(X_{n}\right)$ is an S-game.
Similarly, using a 3ε-argument one can show also that $\left(X_{s}\right)$ is an L^{1} amart. Therefore, $\left(X_{n}\right)$ belongs to \mathcal{L}. This completes the proof.

REMARK 2.3. Theorems 2.2 and 3.2 remain valid if we replace the subset S of N by a cofinal subset π of T and the norm $\|(.)\|_{N}$ by the norm $\|(.)\|_{\pi}$, given by

$$
\left\|\left(X_{n}\right)\right\|_{\pi}=\sup _{\alpha \in N \cup \pi} E\left(\|X\|_{\alpha}\right)
$$

respectively. Thus in particular, if $\pi=T$ then \mathcal{L} coincides with the class of all L^{1}-bounded E-valued uniform amarts. Therefore, Theorem 1.2 of Schmidt [14], mentioned in Section 1 could be regarded as a special case of Theorem 3.2.

Acknowledgement. I would like to express my thanks to my colleague Dr. Klaus D. Schmidt for a fruitful cooperation and for sending me a copy of [14] which plays an important role in proving the main result of the last section.

References

[1] D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Z. Wahrsch. verw. Gebiete, 30 (1974), 17-26.
[2] A. Bellow, Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains, Z. Wahrsch. verw. Gebiete, 41 (1977), 177-191.
[3] L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283.
[4] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Mat. Scand., 22 (1968), 21-41.
[5] G. A. Edgar and L. Sucheston, Amarts: A class of asymptotic martingales. A. Discrete parameter, J. Multiv. Anal., 6 (1976), 193-221.
[6] N. Ghoussoub, Orderamarts: A class of asymptotic martingales, J. Multiv. Anal., 9 (1979), 165-172.
[7] A. Gut and K. D. Schmidt, Amarts and Set Function Processes, Lecture Notes in Math. 1042 (1983).
[8] Dinh Quang Luu, Applications of set-valued Radon-Nikodym theorem to convergence of multivalued L^{1} amarts, Math. Scand., 54 (1984), 101-113.
[9] Dinh Quang Luu, Stability and convergence of amarts in Frechet spaces, Acta Math. Hung., 45 (1985), 99-106.
[10] Dinh Quang Luu, Representation theorems for multivalued (regular) L^{1}-amarts, Math. Scand., 58 (1986), 5-22.
[11] A. Millet and L. Sucheston, Convergence of classes of amarts indexed by directed sets, Canadian J. Math., 32 (1980), 86-125.
[12] A. G. Mucci, Limits for martingale-like sequences, Pacific J. Math., 48 (1973), 197-202.
[13] J. Neveu, Martingales a Temps Discret, Masson (Paris, 1972).
[14] K. D. Schmidt, The lattice property of uniform amarts, Ann. Probability, 17 (1989), 372-378.
[15] R. Subramanian, On a generalization of martingales due to Blake, Pacific J. Mat., 48 (1973), 275-278.
[16] J. Szulga, On the submartingale characterization of Banach lattice isomorphic to $\boldsymbol{\ell}^{1}$, Bull. Acad. Polon. Sci. Serie Sci. Math. Astronom. Phys., 26 (1978), 65-68.
[17] M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann. Probability, 13 (1985), 1192-1203.
[18] J. J. Uhl Jr., Applications of Radon-Nikodym theorems to martingale convergence, T. A. A. M. S., 145 (1969), 271-285.
(Received August 30, 1988)

[^8]
THE NUMERICAL RADIUS OF A COMPLETELY BOUNDED MAP

C.-Y. SUEN (Galveston)

Introduction

Stinespring [7] defined completely positive linear maps on C^{*}-algebras and then generalized Naimarks' dilation theorem for positive operator-valued measures. Arveson [1] further broadened the connection between completely positive maps and dilation theory of operator algebras. Recently, much of the theory of completely positive maps has been quite easily extended to a considerably broader class of maps [$2,4,8$], the completely bounded maps.

Let A and B be C^{*}-algebras and denote M_{n} the C^{*}-algebra of complex $n \times n$ matrices. If U is a subspace of A and $L: U \rightarrow B$ is a linear map, then we set $L_{n}=L \otimes I_{n}: U \otimes M_{n} \rightarrow B \otimes M_{n}$ by

$$
L_{n}(a \otimes b)=L(a) \otimes b .
$$

The map L is positive if $L(a) \geqq 0$ whenever $a \in U$ and $a \geqq 0$, and is completely positive if L_{n} is positive for all $n=1,2, \ldots . L$ is completely bounded if $\sup \left\|L_{n}\right\|$ is finite, and we let

$$
\|L\|_{\mathrm{cb}}=\sup _{n}\left\|L_{n}\right\| .
$$

If $U \subseteq A$ is a linear subspace with $U^{*}=U$ and $L: U \rightarrow B$ is linear, then we define a linear map $L^{*}: U \rightarrow B$ by

$$
L^{*}(a)=L\left(a^{*}\right)^{*} .
$$

Let $\operatorname{Re}(L): U \rightarrow B$ and $\operatorname{Im}(L): U \rightarrow B$ be defined by

$$
\operatorname{Re}(L)=\frac{1}{2}\left(L+L^{*}\right) \quad \text { and } \quad \operatorname{Im}(L)=\frac{1}{2 i}\left(L-L^{*}\right) .
$$

L is self-adjoint, if $L=L^{*}$. Finally, given $S \subseteq L(H)$, we let S^{\prime} denote its commutant.

In [5], it was shown that every completely bounded map L from a C^{*} algebra A into $L(H)$ had a representation as $L(a)=V^{*} T \pi(a) V$, where π is a $*$-homomorphism, T is in the commutant of $\pi(A)$ and V is an isometry. Such a realization of L was called a commutant representation with isometry.

For any commutant representation with isometry it was shown that $\|L\|_{\mathrm{cb}} \leqq\|T\|$, and that such a representation existed for which $\|T\|$ was a
minimum. This minimum was denoted $\left|\left||L| \|\right.\right.$ with $\|L\|_{\mathrm{cb}} \leqq\left|\left||L|\|\leqq 2\| L \|_{\mathrm{cb}}\right.\right.$. In particular, there exist maps for which $\|L\|_{\text {cb }}<\|||L \||$.

The purpose of this paper is an analogous study, with $\|T\|$ replaced by the numerical radius $W(T)$ of T. We show that among all commutant representations with isometry for L, there exist ones for which $W(T)$ is a $\operatorname{minimum}$ with $W(T)=\min \left\{\|\phi\|_{\mathrm{cb}}: \phi \pm \operatorname{Re} \alpha L\right.$ is completely positive for all $|\alpha|=1\}$ and $W(T) \leqq\|L\|_{\text {cb }} \leqq 2 W(T)$. In particular, there exist maps for which $W(T)<\|L\|_{\mathrm{cb}}$. We give an alternative characterization of this minimum, and prove some inequalities aimed at showing to what extent this number behaves like a numerical radius of L. Finally, the author gratefully acknowledges several valuable conversations with Professor V. Paulsen.

2. Representations

Throughout this section let A be a unital C^{*}-algebra and $L(H)$ be the algebra of all bounded linear operators on a Hilbert space H.

Definition 2.1. Let $L: A \rightarrow L(H)$ be completely bounded. We define $S(L)=\inf \left\{\|\phi\|_{\mathrm{cb}}: \phi \pm \operatorname{Re} \alpha L\right.$ is completely positive for all $\left.|\alpha|=1\right\}$.

Remark 2.2. Since $L(H)$ is injective, the set $\{\phi: \phi \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1\}$ is not empty $[4,8]$. It is not difficult to see that $S(L)$ is a norm.

Lemma 2.3. Let $L: A \rightarrow L(H)$ be a completely bounded map. Then there exists a map ϕ such that $\phi \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$ and $\|\phi\|_{\text {cb }}=S(L)$. That is $S(L)=\min \left\{\|\phi\|_{\text {cb }}: \phi \pm \operatorname{Re} \alpha L\right.$ is completely positive for all $|\alpha|=1\}$.

Proof. Let n be a fixed positive integer, then there exists a map $\phi^{(n)}$: $A \rightarrow L(H)$ such that $\phi^{(n)} \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$ and $\left\|\phi^{(n)}\right\| \leqq S(L)+\frac{1}{n}$. Thus we have a sequence of completely positive maps $\left\{\phi^{(n)}\right\}$. Let $S_{m}=\left\{\phi^{(j)}: j \geqq m\right\}$ for $m=1,2,3, \ldots$, then $\ldots \overline{S_{m}} \subseteq \overline{S_{m-1}} \subseteq$ $\subseteq \cdots \subseteq \overline{S_{1}}$, with closure in the BW-topology [1]. Since each $\overline{S_{m}}$ is compact in the BW-topology and the family $\left\{\overline{S_{m}}\right\}$ has finite intersection property, then $\bigcap_{m}^{\infty} \overline{S_{m}}$ is nonempty. Let $\tilde{\phi} \in \bigcap_{m=1}^{\infty} S_{m}$. We claim that $\|\tilde{\phi}\|_{\mathrm{cb}} \leqq S(L)$ and $\underset{\sim}{m}=1$ $m=1$
$\tilde{\phi} \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$. For fixed $m_{0}(=1,2, \ldots)$, there is a net $\left\{\phi_{\beta}^{\left(m_{0}\right)}\right\} \cong S_{m_{0}}$, such that $\lim _{\beta} \phi_{\beta}^{\left(m_{0}\right)}(I)=\tilde{\phi}(I)$ in the weak operator topology.

Let $\varepsilon>0$ be given. Then there exist h_{0}, k_{0} in H with $\left\|h_{0}\right\|=\left\|k_{0}\right\|=1$ such that

$$
\|\tilde{\phi}(I)\| \leqq\left|\left\langle\tilde{\phi}(I) h_{0}, k_{0}\right\rangle\right|+\varepsilon
$$

Since

$$
\left\langle\tilde{\phi}(I) h_{0}, k_{0}\right\rangle=\lim _{\beta}\left\langle\phi_{\beta}^{\left(m_{0}\right)}(I) h_{0}, k_{0}\right\rangle
$$

and

$$
\left|\left\langle\phi_{\beta}^{\left(m_{0}\right)}(I) h_{0}, k_{0}\right\rangle\right| \leqq\left\|\phi_{\beta}^{\left(m_{0}\right)}(I)\right\| \leqq S(L)+\frac{1}{m_{0}} \quad \text { for all } \quad \beta,
$$

we have $\|\tilde{\phi}(I)\| \leqq S(L)+\frac{1}{m_{0}}+\varepsilon$. Hence $\|\tilde{\phi}\|_{\mathrm{cb}}=\|\tilde{\phi}(I)\| \leqq S(L)$. From above we know that there is a net $\left\{\phi_{\beta}\right\} \cong\left\{\phi^{(n)}\right\}$, such that $\lim _{\beta} \phi_{\beta}=\tilde{\phi}$ in the BW-topology. Let ($a_{i j}$) be positive in $A \otimes M_{n}$, then

$$
\begin{aligned}
& \left\langle\left(\tilde{\phi}\left(a_{i j}\right)\right) \pm\left((\operatorname{Re} \alpha L)\left(a_{i j}\right)\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right\rangle= \\
= & \lim _{\beta}\left\langle\left(\phi_{\beta} \pm \operatorname{Re} \alpha L\right)_{n}\left(\left(a_{i j}\right)\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right\rangle \geqq 0 .
\end{aligned}
$$

Hence $\tilde{\phi} \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$. Thus

$$
\|\tilde{\phi}\|_{\mathrm{cb}}=S(L)=
$$

$=\min \left\{\|\phi\|_{\mathrm{cb}}: \phi \pm \operatorname{Re} \alpha L\right.$ is completely positive for all $\left.|\alpha|=1\right\}$.
Definition 2.4. Let $L: A \rightarrow L(H)$ be a completely bounded map. We say that L has a minimal commutant representation with isometry, if there exist a Hilbert space K, a $*$-homomorphism $\pi: A \rightarrow L(K)$, an isometry $V: H \rightarrow K$ and an operator $T \in \pi(A)^{\prime}$ such that span $\pi(A) V H$ is dense in K and $L()=.V^{*} T \pi()$.$V .$

Remark 2.5. From [5, Theorem 2.2], we know that every completely bounded map from A to $L(H)$ has a minimal commutant representation with isometry. A completely bounded map may have non-unitarily equivalent minimal commutant representations with isometries. See the following example.

Example 2.6. Let $L: C \oplus C \rightarrow L\left(C^{2}\right)$ be a map defined by

$$
L(a \oplus b)=\left(\begin{array}{ll}
a / \sqrt{2} & 0 \\
b / \sqrt{2} & 0
\end{array}\right)
$$

then L is completely bounded with $\|L\|_{\text {cb }} \leqq 1$.

$$
V_{1}=\left(\begin{array}{cc}
\sqrt{3} / 2 & 0 \\
0 & 1 / 2 \\
1 / 2 & 0 \\
0 & \sqrt{3} / 2
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
\sqrt{3} / 2 & 0 \\
0 & 1 / \sqrt{3} \\
1 / 2 & 0 \\
0 & \sqrt{2} / \sqrt{3}
\end{array}\right)
$$

$$
T_{1}=\left(\begin{array}{cccc}
2 \sqrt{2} / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 \sqrt{2} / \sqrt{3} & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{cccc}
\sqrt{2} / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0
\end{array}\right)
$$

and

$$
\pi_{1}(a \oplus b)=\pi_{2}(a \oplus b)=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & b
\end{array}\right)
$$

then

$$
L(a \oplus b)=V_{1}^{*} T_{1} \pi_{1}(a \oplus b) V_{1}=V_{2}^{*} T_{2} \pi_{2}(a \oplus b) V_{2} \quad \text { for all } a \oplus b \text { in } C \oplus C
$$

but there is no unitary such that $U^{*} \pi_{1} U=\pi_{2}, U^{*} T_{1} U=T_{2}$ and $U V_{2}=V_{1}$ since in particular $V_{1}^{*} \pi_{1} V_{1} \neq V_{2}^{*} \pi_{2} V_{2}$. Note also that $W\left(T_{1}\right) \neq W\left(T_{2}\right)$, so that even $W(T)$ is not an invariant for minimal commutant representations with isometry.

Theorem 2.7. Let $L: A \rightarrow L(H)$ be a completely bounded map, then L has a minimal commutant representation with isometry $\tilde{V}^{*} \tilde{T} \pi \tilde{V}$ such that $W(\tilde{T})=\min \left\{W(T): L\right.$ has a minimal commutant representation $\left.V^{*} T \pi V\right\}=$ $=S(L)$. Moreover, $S(L) \leqq\|L\|_{\mathrm{cb}} \leqq\|\tilde{T}\| \leqq 2 S(L)$.

Proof. From Lemma 2.3, there exists a map $\tilde{\phi}$ such that $\phi \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$ and $\|\tilde{\phi}\|_{\mathrm{cb}}=\|\tilde{\phi}(I)\|=S(L)$. Let $\tilde{\phi}(I)=P$ and θ be any unital completely positive map, then the map $\tilde{\theta}=$ $=\tilde{\phi}+(S(L)-P)^{\frac{1}{2}} \theta(S(L)-P)^{\frac{1}{2}}$ is completely positive with $\tilde{\theta}(I)=S(L) I$. By Stinespring Theorem $[7], \tilde{\theta}$ has a representation $S(L) \tilde{V}^{*} \tilde{\pi} \tilde{V}$, where $\tilde{V}^{*} \tilde{\pi} \tilde{V}$ is unital and minimal. Since $\tilde{\theta} \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$, by [1, Theorem 1.4.2], we have $\operatorname{Re} L=\tilde{V}^{*} H \tilde{\pi} \tilde{V}$ and $\operatorname{Im} L=\tilde{V}^{*} K \tilde{\pi} \tilde{V}$ where H and K are operators.

Hence $L=\tilde{V}^{*}(H+i K) \tilde{\pi} \tilde{V}$ and $\operatorname{Re} \alpha L=\tilde{V}^{*}(\operatorname{Re} \alpha(H+i K)) \tilde{\pi} \tilde{V}$ for all $|\alpha|=1$. Since $\tilde{\theta} \pm \operatorname{Re} \alpha L$ is completely positive for all $|\alpha|=1$, we have $\pm \operatorname{Re} \alpha(H+i K) \leqq S(L) I$. Hence $W(H+i K) \leqq S(L)$. Let $\tilde{T}=H+i K$, we have $L=\tilde{V}^{*} \tilde{T} \tilde{\pi} \tilde{V}$ and $W(\tilde{T}) \leqq S(L)$.

Now, we claim that $S(L) \leqq W(\tilde{T})$: If L has a minimal commutant representation with isometry $V^{*} T \pi V$, then

$$
\pm \operatorname{Re} \alpha L= \pm V^{*}(\operatorname{Re} \alpha T) \pi V \leqq W(T) V^{*} \pi V \quad \text { for all } \quad|\alpha|=1
$$

We have

$$
W(T) \geqq S(L)=
$$

$=\min \left\{\|\phi\|_{\mathrm{cb}}: \phi \pm \operatorname{Re} \alpha L \quad\right.$ is completely positive for all $\left.\quad|\alpha|=1\right\}$.

Hence $S(L) \leqq W(\tilde{T})$. Thus

$$
W(\tilde{T})=
$$

$=\min \left\{W(T): L\right.$ has a minimal commutant representation $\left.V^{*} T \pi V\right\}=$ $=\min \left\{\|\phi\|_{\mathbf{c b}}: \phi \pm \operatorname{Re} \alpha L\right.$ is completely positive for all $\left.|\alpha|=1\right\}=S(L)$. By [5, Theorem 2.2], we have $S(L) \leqq\|L\|_{\text {cb }} \leqq\|\tilde{T}\| \leqq 2 S(L)$.

Example 2.8. We can have $S(L)<\|L\|_{\text {cb }}$. Let $L: C \oplus C \rightarrow M_{2}(C)$ be defined by

$$
a \oplus b \rightarrow\left(\begin{array}{ll}
a / \sqrt{2} & 0 \\
b / \sqrt{2} & 0
\end{array}\right) .
$$

Then $\|L\|_{\mathrm{cb}}=1$ and

$$
(\operatorname{Re} \alpha L)(a \oplus b)=\left(\begin{array}{cc}
(\operatorname{Re} \alpha) a \sqrt{2} & \bar{\alpha} b / 2 \sqrt{2} \\
\alpha b / 2 \sqrt{2} & 0
\end{array}\right) .
$$

Let

$$
\phi(a \oplus b)=\left(\begin{array}{cc}
(a / \sqrt{2})+((\sqrt{2}-1) b / 2 \sqrt{2}) & 0 \\
0 & b
\end{array}\right) \geqq 0,
$$

then it is not difficult to see that $\phi \pm \operatorname{Re} \alpha L$ is completely positive and $\|\phi\|_{\mathrm{cb}}=S(L)=\min \{W(T): L$ has a minimal commutant representation with isometry $\left.V^{*} T \pi V\right\}=(1+\sqrt{2}) / 2 \sqrt{2}<\|L\|_{\mathrm{cb}}=1$.

Corollary 2.9. Let $L: A \rightarrow L(H)$ be a self-adjoint completely bounded map, then L has a minimal commutant representation with isometry $\tilde{V}^{*} \tilde{T} \tilde{\pi} \tilde{V}$ such that $\|L\|_{\mathrm{cb}}=\|\tilde{T}\|=S(L)=\min \left\{W(T): L=V^{*} T \pi V\right\}$.

Proof. By Theorem 2.7 and [5, Theorem 2.2], L has a minimal commutant representation with isometry $\tilde{V}^{*} \tilde{T} \tilde{\pi} \tilde{V}$ such that $\tilde{T}=\tilde{T}^{*}$ and $W(\tilde{T})=$ $=S(L)$. By $\left[5\right.$, Theorem 2.10], we have $\|\tilde{T}\|=W(\tilde{T}) \geqq\|L\|_{\mathrm{cb}}$. By Theorem 2.7, we have $W(\tilde{T})=\|L\|_{\text {cb }}$.

3. Applications

Theorem 3.1. Let $L: A \rightarrow L(H)$ be a completely bounded map, then $W\left(L_{n}(a)\right) \leqq\|a\| S(L)$ for all a in $A \otimes M_{n}$ and $n \geqq 1$.

Proof. By Theorem 2.7, L has a minimal commutant representation with isometry $\tilde{V}^{*} \tilde{T} \tilde{\pi} \tilde{V}$ such that $W(\tilde{T})=S(L)$. Since \tilde{T} and \tilde{T}^{*} are in $\pi(A)^{\prime}$, by [3, Theorem 3.4], we have

$$
\left|\left\langle L_{n}(a)\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)\right\rangle\right|=
$$

$$
\begin{aligned}
& =\left\lvert\,\left\langle\left(\begin{array}{cccc}
\tilde{T} & 0 & \ldots & 0 \\
0 & \tilde{T} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \tilde{\tilde{T}}
\end{array}\right)\left(\tilde{\pi} \otimes I_{n}\right)(a)\left(\begin{array}{cccc}
\tilde{V} & 0 & \ldots & 0 \\
0 & \tilde{V} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \tilde{\tilde{V}}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right),\right.\right. \\
& \left.\left(\begin{array}{cccc}
\tilde{V} & 0 & \ldots & 0 \\
0 & \tilde{V} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \tilde{\tilde{V}}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)\right\rangle \leqq \\
& \leqq\left(\left(\begin{array}{cccc}
\tilde{T} & 0 & \ldots & 0 \\
0 & \tilde{T} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \dot{\tilde{T}}
\end{array}\right)\left(\tilde{\pi} \otimes I_{n}\right)(a)\right) \leqq \\
& \leqq\|a\| W\left(\left(\begin{array}{cccc}
\tilde{T} & 0 & \ldots & 0 \\
0 & \tilde{T} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \tilde{\tilde{T}}
\end{array}\right)\right) \leqq\|a\| W(\tilde{T}), \\
& \text { where }\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right) \in L(H) \otimes M_{n} \text { with }\left\|\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)\right\|=1 \text { and } a \in A \otimes M_{n} \text {. Hence }
\end{aligned}
$$

$W\left(L_{n}(a)\right) \leqq\|a\| W(\tilde{T})=\|a\| S(L)$.
Example 3.2. $S(L)$ is the best constant in the inequality of Theorem 3.1. Taking the same map as in Example 2.6, we have

$$
\begin{gathered}
W(L(1 \oplus 1))=W\left(\left(\begin{array}{cc}
1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0
\end{array}\right)\right)=\sup _{|\alpha|=1}\left\|\operatorname{Re} \alpha\left(\begin{array}{cc}
1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0
\end{array}\right)\right\| \geqq \\
\geqq\left\|\left(\begin{array}{cc}
1 / \sqrt{2} & 1 /(2 \sqrt{2}) \\
1 /(2 \sqrt{2}) & 0
\end{array}\right)\right\|=(1+\sqrt{2}) /(2 \sqrt{2}) .
\end{gathered}
$$

By Theorem 3.1, we have $W(L(1 \oplus 1)) \leqq\|1 \oplus 1\| S(L)=S(L)=(1+$ $+\sqrt{2}) /(2 \sqrt{2})$. Hence $W(L(1 \oplus 1))=\|(1 \oplus 1)\| S(L)$.

Corollary 3.3. If $L: A \rightarrow C$ is a bounded linear functional, then $S(L)=\|L\|_{\mathrm{cb}}=\|L\|$.

Proof. Let $a \in A$ with $\|a\| \leqq 1$, then $W(L(a))=|L(a)| \leqq S(L)$. By [6, Theorem 2.10], we have $\|L\|_{\mathrm{cb}}=\|L\| \leqq S(L)$. Theorem 2.7 implies $\|L\|=S(L)$.

Example 3.4. We can have $\sup \left\{\|\operatorname{Re} \alpha L\|_{\mathrm{cb}}\right\}<S(L)$.

$$
|\alpha|=1
$$

Let $L: C \oplus C \rightarrow C$ be a bounded linear map defined by $L(a \oplus b)=2 i a-b$, then $\|L\|_{\mathrm{cb}}=\|L\|=3=S(L)$ and

$$
\begin{gathered}
|(\operatorname{Re}(\alpha L))(a \oplus b)|= \\
=|-2 a \operatorname{Im} \alpha-b \operatorname{Re} \alpha| \leqq \sqrt{4|a|^{2}+|b|^{2}} \leqq \sqrt{5\|\mid a \oplus b\|^{2}} \quad \text { for all } \quad|\alpha|=1 .
\end{gathered}
$$

Hence $\sup \left\{\|\operatorname{Re} \alpha L\|_{\mathrm{cb}}\right\} \leqq \sqrt{5}<S(L)$.
$|\alpha|=1$
Corollary 3.5. T is similar to a contraction if and only if there exists a best constant $K \geqq 0$ such that

$$
W\left(\left(f_{i j}\right)(T)\right) \leqq K\left\|\left(f_{i j}\right)\right\|_{\infty} \quad \text { for } \quad\left(f_{i j}\right) \in C(T) \otimes M_{n},
$$

where $C(T)$ is the C^{*}-algebra of all continuous linear functionals on the unit circle.

Proof. If T is similar to a contraction, then the map $L:$ Disk algebra \rightarrow $\rightarrow L(H)$ defined by $L(f)=f(T)$ is completely bounded [4, Theorem 3.2]. By [4, Theorem 2.4], there exists a completely bounded extension $\tilde{L}: C(T) \rightarrow$ $\rightarrow L(H)$. By Theorem 3.1, we have $W\left(\left(f_{i j}\right)(T)\right) \leqq\left\|\left(f_{i j}\right)\right\| S(L)$, for $\left(f_{i j}\right) \in$ $\in C(T) \otimes M_{n}$. Let $K=\inf \{S(\tilde{L}): \tilde{L}$ is a completely bounded extension of $L\}$, then

$$
W\left(f_{i j}(T)\right) \leqq K\left\|\left(f_{i j}\right)\right\| .
$$

Conversely, if $W\left(f_{i j}(T)\right) \leqq K\left\|\left(f_{i j}\right)\right\|$, then $\|\left(f_{i j}(T)\|\leqq 2 K\|\left(f_{i j}\right) \|\right.$. By [4, Corollary 3.5], we have the sufficient condition.

References

[1] W. B. Arveson, Subalgebras of C^{*}-algebra, Acta. Math., 123(1963), 141-224.
[2] U. Haagerup, Decomposition of completely bounded maps on operator algebras.
[3] I. A. R. Holbrook, Multiplicative properties of the numerical radius in operator theory, J. Reine Angew. Math., 237 (1969), 166-174.
[4] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal., 55 (1984), 1-17.
[5] V. I. Paulsen and C. Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory, 13 (1985), 87-101.
[6] R. R. Smith, Completely bounded maps between C^{*}-algebras, J. London Math. Soc., 27 (1983), 157-166.
[7] W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216.
[8] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal., 40 (1981), 127-150.

A NOTE ON GENERALIZED KÖTHE-TOEPLITZ DUALS

J. I. OKUTOYI (Nairobi)

1. Introduction

In 1980 Ivor J. Maddox determined the necessary and sufficient conditions for $\left(A_{k}\right)_{0}^{\infty}$ to belong to $Z^{\beta}(X)$ where $Z=c_{0}, c, \ell_{\infty}, A_{k} \in B(X, Y), X$ and Y are any Banach spaces. The purpose of this paper is firstly to determine the most general continuous linear functional f in X^{*}, the dual space of X, where X is a semi-conservative $B K$-space with $\Delta^{+}=\left\{\delta, \delta^{0}, \delta^{1}, \delta^{2}, \ldots\right\}$ as its Schauder basis, and secondly to determine the necessary and sufficient conditions for $\left(A_{k}\right)_{0}^{\infty}$ to belong to $\mathrm{bv}_{0}^{\beta}(X), \mathrm{bv}^{\beta}(X)$, where $A_{k} \varepsilon B(X, Y), X$ and Y any Banach spaces.

2. Notations and definitions

$s ; c_{0} ; c ; \ell_{p}(1 \leqq p<\infty) ; \ell_{\infty} ; \mathrm{bv} ; \mathrm{bv}_{0} ; \delta ; \delta^{k} ; X^{\beta} ; \mathrm{cs} ; E^{\infty}$ will denote the set of all sequences; all sequences convergent to zero; convergent sequences; sequences such that $\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty$; bounded sequences; sequences of bounded variation, i.e. sequences x such that $\lim _{k \rightarrow \infty} x_{k}$ exists and $\sum_{k=0}^{\infty} \mid x_{k+1}-$ $-x_{k} \mid<\infty$; sequences of bounded variation with $\lim _{k \rightarrow \infty} x_{k}=0 ;(1,1,1, \ldots)$; $(0,0, \ldots, 0,1,0, \ldots)$; all sequences $x \in s$ such that $\sum_{k=0}^{\infty} x_{k} y_{k}$ is convergent for each $y \in X$; convergent series; finite sequences, respectively.

A $B K$-space X is said to be semi-conservative if $X^{f} \subset$ cs, where $X^{f}=$ $=\left\{\left(f\left(\delta^{k}\right)\right)_{k=0}^{\infty}: f \in X^{*}\right\}$, that is, $X \supset E^{\infty}$ and $\sum_{k=0}^{\infty} f\left(\delta^{k}\right)$ exists for all $f \in X^{*}$.

Let X be a paranormed or normed space, then $s(X)$ will denote the space of all sequences with values in X, i.e. $s(X)=\left\{x=\left(x_{k}\right)_{0}^{\infty}: x_{k} \in X\right\}$.

3. The main results

Let us note that if X is any $B K$-space with $\Delta^{+}=\left\{\delta, \delta^{0}, \delta^{1}, \delta^{2}, \ldots\right\}$ as
its Schauder basis, then every $x \in X$ is of the form

$$
\begin{equation*}
x=\lambda \delta+\sum_{k=0}^{\infty} \lambda_{k} \delta^{k} \tag{3.1}
\end{equation*}
$$

where $\left(\lambda, \lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)$ is a sequence of scalars in \mathbf{C}. (3.1) is equivalent to

$$
\begin{equation*}
x=\lambda \delta+\sum_{k=0}^{\infty}\left(x_{k}-\lambda\right) \delta^{k} \tag{3.2}
\end{equation*}
$$

Theorem 3.1. Let X be a $B K$-space with Δ^{+}as its Schauder basis and define $P: X \rightarrow \mathbf{C}$ by $P(x)=\lambda$, where X is given by (3.2) and let $\operatorname{Ker}(P)=$ $=P^{-1}(\{0\})=\{x \in X: P(x)=\theta\}=X_{0}, \theta$ is the zero sequence. Then
(i) P is a continuous linear functional on X,
(ii) X_{0} is a $B K$-space with $A K$ in the X-topology.

Proof. (i) By hypothesis X is a $B K$-space and so all coordinate functionals are continuous with respect to any basis (see [3], p. 207). Hence $P \in X^{*}$.
(ii) Since P is continuous, $P^{-1}(\{0\})$ is a closed subspace of X, but $P^{-1}(\{0\})=\operatorname{Ker}(P)=X_{0}$. Now, every $x \in X$ has the representation

$$
x=\sum_{k=0}^{\infty} x_{k} \delta^{k}
$$

in the X-topology, therefore X_{0} is a $B K$-space with $A K$.
Theorem 3.2. Let X be a semi-conservative BK-space with Δ^{+}as its Schauder basis. Then the most general continuous linear functional $f \in X^{*}$ is of the form

$$
f(x)=\lambda \alpha+\sum_{k=0}^{\infty} x_{k} t_{k}
$$

where $\alpha \in \mathbf{C}, t_{k} \in X^{\beta}$ and x is given by (3.2)
Moreover,

$$
\|f\| \leqq\|P\||\alpha|+\|t\|_{x^{\beta}}
$$

where $P: X \rightarrow \mathbf{C}$ is the projection map $P(x)=\lambda$ and

$$
\|t\|_{X^{\beta}}=\sup _{\|x\| \leqq 1}\left|\sum_{k=0}^{\infty} x_{k} t_{k}\right| .
$$

Proof. Let $f \in X^{*}$, then from (3.2)

$$
\begin{equation*}
f(x)=\lambda f(\delta)+\sum_{k=0}^{\infty}\left(x_{k}-\lambda\right) f\left(\delta^{k}\right) \tag{3.3}
\end{equation*}
$$

But X is a semi-conservative $B K$-space and so $\sum_{k=0}^{\infty} f\left(\delta^{k}\right)$ exists for all $f \in X^{*}$ and therefore $\sum_{k=0}^{\infty} x_{k} f\left(\delta^{k}\right)=\sum_{k=0}^{\infty} x_{k} t_{k}$ is convergent for all $x \in X$ which implies that $\left(f\left(\delta^{k}\right)\right)_{0}^{\infty}=\left(t_{k}\right)_{0}^{\infty} \in X^{\beta}$ and so

$$
\begin{equation*}
f(x)=\lambda\left(f(\delta)-\sum_{k=0}^{\infty} t_{k}\right)+\sum_{k=0}^{\infty} x_{k} t_{k}=\lambda \alpha+\sum_{k=0}^{\infty} x_{k} t_{k} \tag{3.4}
\end{equation*}
$$

where $\alpha=f(\delta)-\sum_{k=0}^{\infty} t_{k}$.
Conversely, given $\alpha^{\prime} \in \mathbf{C}, t^{\prime} \in X^{\beta}$ and $x \in X$ where x is given by (3.2), define $g: X \rightarrow \mathbf{C}$ by

$$
g(x)=\alpha^{\prime} \lambda+\sum_{k=0}^{\infty} x_{k} t_{k}^{\prime} .
$$

Then

$$
g_{n}(x)=\alpha^{\prime} \lambda+\sum_{k=0}^{n} x_{k} t_{k}^{\prime}
$$

is a continuous linear functional on X since $x \mapsto \lambda$ is by Theorem 3.1 continuous. $x \mapsto \sum_{k=0}^{n} x_{k} t_{k}^{\prime}$, as $n \rightarrow \infty$, is continuous by the Banach-Steinhaus theorem. Hence g has the required representation.

Now $f(x)=\lambda \alpha+\sum_{k=0}^{\infty} x_{k} t_{k}$, therefore

$$
|f(x)| \leqq|\lambda \alpha|+\left|\sum_{k=0}^{\infty} x_{k} t_{k}\right|
$$

i.e.

$$
|f(x)| \leqq|P(x)||\alpha|+\left|\sum_{k=0}^{\infty} x_{k} t_{k}\right|
$$

by Theorem 3.1, therefore

$$
\|f\| \leqq\|P\||\alpha|+\sup _{\|x\| \leqq 1}\left|\sum_{k=0}^{\infty} x_{k} t_{k}\right|,
$$

i.e. $\|f\| \leqq\|P\|| | \alpha \mid+\|t\|_{X^{\beta}}$.

Note. I have not been able to show that $\|f\|=\|P\|| | \alpha \mid+\|t\|_{X^{\beta}}$. In fact I doubt if equality holds.

Theorem 3.3. Let X be defined as in Theorems 3.1 and 3.2. Then $X^{\beta}=$ $=X_{0}^{\beta}$.

Proof. Let $t \in X^{\beta}$. Then $\sum_{k=0}^{\infty} x_{k} t_{k}$ exists for all $x \in X$ and in particular for $x \in X_{0}$, since $X_{0} \subset X$. Hence $t \in X_{0}^{\boldsymbol{\beta}}$ and so $X^{\beta} \subset X_{0}^{\beta}$.

Now if $t \in X_{0}^{\beta}$ and $x \in X$ is given by (3.2) then $x-\lambda \delta \in X_{0}$ and so $\sum_{k=0}^{\infty}\left(x_{k}-\lambda\right) t_{k}$ is convergent. Define $g: X \rightarrow \mathbf{C}$ by

$$
\begin{equation*}
g(x)=\sum_{k=0}^{\infty}\left(x_{k}-\lambda\right) t_{k} \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
g_{n}(x)=\sum_{k=0}^{n}\left(x_{k}-\lambda\right) t_{k} \tag{3.6}
\end{equation*}
$$

is a continuous linear functional on X and by letting $n \rightarrow \infty$ in (3.6), $g \in X^{*}$ by the Banach-Steinhaus theorem. Clearly $g\left(\delta^{k}\right)=t_{k}$ implies that $\sum_{k=0}^{\infty} g\left(\delta^{k}\right)=\sum_{k=0}^{\infty} t_{k}$ which exists since X is semi-conservative. Since $\sum_{k=0}^{\infty}\left(x_{k}-\lambda\right) t_{k}$ exists it follows that $\sum_{k=0}^{\infty} x_{k} t_{k}$ is convergent hence $t \in X^{\beta}$ so that $X_{0}^{\beta} \subset X^{\beta}$ whence $X_{0}^{\beta}=X^{\beta}$.

Theorem 3.4. Let X and Y be Banach spaces and suppose that $\left(A_{k}\right)_{0}^{\infty}$ is a sequence of operators on X into Y, then $\left(A_{k}\right)_{0}^{\infty} \in \mathrm{bv}_{0}^{\beta}(X)$ iff there exists a non-negative integer m such that
(i) $A_{k} \in B(X, Y)$ for all $k \geqq m$,
(ii) $\sup _{n \geqq m}\left\|\sum_{k=m}^{n} A_{k}\right\|<\infty$.

Proof. Let $x \in \operatorname{bv}_{0}(X)$ and define $s_{k}=x_{k}-x_{k-1}, x_{-1}=0, s_{0}=x_{0}$, that is, $x_{n}=\sum_{k=0}^{n} s_{k}, s=\left(s_{k}\right)_{0}^{\infty} \in \ell(X)$.

Then $\left(x_{n}\right)_{0}^{\infty}$ is a Cauchy sequence in X. To see this let $n \geqq N$, where n, N are large enough so that

$$
\left\|x_{n}-x_{N}\right\|=\left\|\sum_{k=0}^{\infty} s_{k}-\sum_{k=0}^{N} s_{k}\right\|=\left\|\sum_{k=N+1}^{n} s_{k}\right\| \leqq \sum_{k=N+1}^{n}\left\|s_{k}\right\| \rightarrow 0
$$

as $N \rightarrow \infty$ since $s \in \ell(X)$. Applying summation by parts on $\sum_{k=\mu}^{N} A_{k} x_{k}$, where $\mu \geqq m$ we obtain

$$
\begin{equation*}
\sum_{k=\mu}^{N} A_{k} s_{k}=\left(\sum_{k=\mu}^{N} A_{k}\right)\left(\sum_{\nu=0}^{\mu} s_{\nu}\right)+\sum_{v=\mu+1}^{N}\left(\sum_{k=\nu}^{N} A_{k}\right) s_{\nu} \tag{3.7}
\end{equation*}
$$

whence

$$
\begin{align*}
\left\|\sum_{k=\mu}^{N} A_{k} x_{k}\right\| & \leqq \sum_{k=\mu}^{N} A_{k}\left(\sum_{\nu=0}^{\mu} s_{\nu}\right)\|+\| \sum_{\nu=\mu+1}^{N}\left(\sum_{k=\nu}^{N} A_{k}\right) s_{\nu} \| \leqq \tag{3.8}\\
& \leqq M\left\|\sum_{\nu=0}^{\mu} s_{\nu}\right\|+M \sum_{\nu=\mu+1}^{N}\left\|s_{\nu}\right\| \rightarrow 0
\end{align*}
$$

as $\mu, N \rightarrow \infty$ since $\left(S_{\nu}\right)_{0}^{\infty}$ is a Cauchy sequence and $x_{\mu}=\sum_{\nu=0}^{\mu} s_{\nu} \rightarrow 0$ as $\mu \rightarrow \infty$. Thus $\left(\sum_{k=0}^{N} A_{k} x_{k}\right)_{N=0}^{\infty}$ is a Cauchy sequence and hence it converges in Y so that $\left(A_{k}\right)_{0}^{\infty} \in \mathrm{bv}_{0}^{\boldsymbol{\beta}}(X)$.

To show that (i) is satisfied we suppose that no such non-negative integer m exists for which $A_{k} \in B(X, Y), k \geqq m$. If no such m exists, then there must exist a strictly increasing sequence of non-negative integers $\left(k_{i}\right)_{i=1}^{\infty}$ and a sequence $\left(z_{i}\right)_{i=1}^{\infty}$ in $\mathcal{D}=\left\{\left\|z_{i}\right\| \leqq 1\right\}$ such that $\left\|A_{k_{i}} z_{i}\right\|>i^{2}, i \in \mathbf{N}$ and $k_{i+1}>k_{i}+1$. Now define x by

$$
x_{k}=\left\{\begin{array}{l}
z_{i} / i^{2}, k=k_{i}, \quad i \in \mathbf{N} \tag{3.9}\\
\theta, k \neq k_{i}
\end{array}\right.
$$

Then $x \in \mathrm{bv}_{0}(X)$ since $x_{k} \rightarrow 0$ as $k \rightarrow \infty$ and also

$$
\sum_{k=0}^{\infty}\left\|x_{k+1}-x_{k}\right\|=\sum_{i=1}^{\infty}\left\|\frac{z_{i}}{i^{2}}\right\|<\infty
$$

since $\left\|z_{i}\right\| \leqq 1$.
But $\left\|A_{k_{i}} x_{k_{i}}\right\|=\left\|A_{k_{i}}\left(\frac{z_{i}}{i^{2}}\right)\right\|>1$ for $i \geqq 1$ contrary to the fact that $\sum_{k=0}^{\infty} A_{k} x_{k}$ converges which implies that $A_{k} x_{k} \rightarrow 0$ in Y. Hence the A_{k} 's are ultimately bounded, i.e. there exists $m \in \mathbf{R}$ such that $\left\|A_{k}\right\|<\infty$ for $k>m$.

We now show that condition (ii) is satisfied whenever $\sum_{k=0}^{\infty} A_{k} x_{k}$ converges for all $x=\left(x_{k}\right)_{0}^{\infty} \in \mathrm{bv}_{0}(X)$. Since $\sum_{k=0}^{\infty} A_{k} x_{k}$ converges by hypothesis, the Banach-Steinhaus theorem tells us that there exists a positive constant K such that

$$
\left\|\sum_{k=m}^{\infty} A_{k} x_{k}\right\| \leqq K\|x\|_{\mathrm{bv}_{0}(X)}<K
$$

with $x=\left(x_{k}\right)_{0}^{\infty} \in \mathcal{D}$. Let $T_{N}=\sum_{k=m}^{N} A_{k}: X \rightarrow Y$ and suppose that $\sup \left\|T_{N}\right\|=\infty$. Then there exists a strictly increasing sequence of non$N \geqq m$ negative integers $\left(N_{i}\right)_{i=1}^{\infty}$ and a sequence $\left(W_{i}\right)_{i=1}^{\infty}$ in \mathcal{D} such that

$$
\left\|T_{N_{i}}\left(W_{i}\right)\right\|=\left\|\left(\sum_{k=m}^{N_{i}} A_{k}\right) W_{i}\right\|>i^{2}, \quad N_{i}, \quad i \in \mathbf{N}
$$

and as $N_{i} \rightarrow \infty, T_{N_{i}} \rightarrow T=\sum_{k=m}^{\infty} A_{k}: \mathrm{bv}_{0}(X) \rightarrow Y$.
Now define $x=\left(x_{k}\right)_{0}^{\infty}=x^{i}$ by

$$
x_{k}= \begin{cases}W_{i} / i, 0 \leqq k \leqq N_{i}, & i \in \mathbf{N} \tag{3.10}\\ \theta, k>N_{i}, & i \in \mathbf{N}\end{cases}
$$

i.e. $x=x^{i}=\left(W_{i} / i, W_{i} / i, \ldots, W_{i} / i, \theta, \theta, \ldots\right)$ (the last W_{i} / i is in the N_{i} th position). Then $x=x^{i} \in \mathrm{bv}_{0}(X)$ and

$$
\|x\|_{\mathrm{bv}_{0}(X)}=\frac{1}{i}\left\|W_{i}\right\| \leqq 1
$$

since $W_{i} \in \mathcal{D}$. However,

$$
\left\|T\left(x^{i}\right)\right\|=\left\|\left(\sum_{k=m}^{\infty} A_{k}\right) W_{i} / i\right\|=\left\|\left(\sum_{k=m}^{N_{i}} A_{k}\right) W_{i} / i\right\| \geqq i
$$

i.e. $\sup \left\|T\left(x^{i}\right)\right\|=\infty$ and so T is unbounded contrary to the fact that $i \geqq 1$
$T x=\sum_{k=m}^{\infty} A_{k} x_{k}$ converges and so condition (ii) is satisfied.
Theorem 3.5. Let X and Y be any Banach spaces and suppose that $\left(A_{k}\right)_{0}^{\infty}$ is a sequence of operators on X into Y.

Then $\left(A_{k}\right)_{0}^{\infty} \in \operatorname{bv}^{\beta}(X)$ iff
(i) $\left(A_{k}\right)_{0}^{\infty} \in \mathrm{bv}_{0}^{\beta}(X)$,
(ii) $\sum_{k=0}^{\infty} A_{k} x$ converges for each $x \in X$.

Proof. Suppose $x \in \operatorname{bv}(X)$ and $x_{k} \rightarrow \ell$ as $k \rightarrow \infty$, then $\left(x_{k}-\ell\right)_{0}^{\infty} \in$ $\in \mathrm{bv}_{0}(X) . \sum_{k=0}^{\infty} A_{k} \ell$ converges by condition (ii) so we see that $\sum_{k=0}^{\infty} A_{k} \ell+$ $+\sum_{k=0}^{\infty} A_{k}\left(x_{k}-\ell\right)$ exists and is equal to $\sum_{k=0}^{\infty} A_{k} x_{k}$.

Condition (i) follows from Theorem 3.4 since $\mathrm{bv}_{0}(X) \subset \mathrm{bv}(X)$. To show that condition (ii) holds, take any $x \in X$, then the sequence $(x, x, \ldots) \in$ $\in \operatorname{bv}(X)$ with $x_{k}=x_{k+1}=x$ so $\sum_{k=0}^{\infty} A_{k} x$ exists.

Theorem 3.6. The general form for each $F \in c^{*}(X), X$ any Banach space, is

$$
F(x)=F(y)-\sum_{k=0}^{\infty} f_{k}(\ell)+\sum_{k=0}^{\infty} f_{k}\left(x_{k}\right)=\chi_{F}(\ell)+\sum_{k=0}^{\infty} f_{k}\left(x_{k}\right)
$$

where $\chi_{F}(\ell)=F(y)-\sum_{k=0}^{\infty} f_{k}(\ell), \ell=\lim _{k \rightarrow \infty} x_{k}, y=(\ell, \ell, \ldots) \in c(X), f_{k}(x)=$ $=F(\theta, \theta, \ldots \theta, x, \theta \ldots)$ with x in the kth coordinate, $\chi_{F}, f_{k} \in X^{*}$ and $\sum_{k=0}^{\infty}\left\|f_{k}\right\|<\infty$. Moreover,

$$
\|F\|=\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\| .
$$

Proof. The general form for each $F \in c^{*}(X)$ was proved by Maddox [2], p. 94. So all we need to prove is that $\|F\|=\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\|$.

If $F \in c^{*}(X)$ and F is of the given form, then the triangle inequality gives

$$
\begin{aligned}
|F(x)| & \leqq\left|F(y)-\sum_{k=0}^{\infty} f_{k}(\ell)\right|+\sum_{k=0}^{\infty}\left\|f_{k}\right\|\left\|x_{k}\right\| \leqq \\
& \leqq \sup _{k \geqq 0}\left\|x_{k}\right\|\left(\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\|\right)
\end{aligned}
$$

Since $\|\ell\| \geqq \sup \left\|x_{k}\right\|$, we have

$$
k \geqq 0
$$

$$
\begin{equation*}
\|F\| \leqq\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\| . \tag{3.11}
\end{equation*}
$$

Let $\varepsilon>0$ and $n \in \mathbf{N}$ be given. Then for $0 \leqq k \leqq n$ there exists $z_{k} \in \mathcal{U}=\{z \in X:\|z\|=1\}$ such that $\left|f_{k}\left(z_{k}\right)\right| \geqq\left\|f_{k}\right\|-\frac{\varepsilon}{2^{k}}$. Define x by

$$
x_{k}= \begin{cases}e^{i \theta_{k}} \cdot z_{k}, & 0 \leqq k \leqq n \tag{3.12}\\ \ell^{\prime} \neq \theta, \text { where } \ell^{\prime} \in \mathcal{U}, & k>n\end{cases}
$$

i.e. $\quad x=\left(x_{0}, x_{1}, x_{2} \ldots, x_{n}, \ell^{\prime}, \ell^{\prime}, \ldots\right)$, where θ_{k} is chosen such that $f_{k}\left(e^{i \theta_{k}} \cdot z_{k}\right)=\left|f_{k}\left(z_{k}\right)\right|$ and ℓ^{\prime} so that $\chi_{F}\left(\ell^{\prime}\right)=\left|\chi_{F}\left(\ell^{\prime}\right)\right| \geqq\left\|\chi_{F}\right\|-\varepsilon$. So we have

$$
\begin{gather*}
F(x)=F\left(\theta, \theta, \ldots, \ell^{\prime}, \ell^{\prime}, \ldots\right)+\sum_{k=0}^{n} f_{k}\left(x_{k}\right)= \tag{3.13}\\
=F\left(y^{\prime}\right)-\sum_{k=0}^{n} f_{k}\left(\ell^{\prime}\right)+\sum_{k=0}^{n} f_{k}\left(x_{k}\right)=\chi_{F}\left(\ell^{\prime}\right)+\sum_{k=n+1}^{\infty} f_{k}\left(\ell^{\prime}\right)+\sum_{k=0}^{n} f_{k}\left(x_{k}\right)
\end{gather*}
$$

where

$$
y^{\prime}=\left(\ell^{\prime}, \ell^{\prime}, \ldots\right), \quad \chi_{F}\left(\ell^{\prime}\right)=F\left(y^{\prime}\right)-\sum_{k=0}^{\infty} f_{k}\left(\ell^{\prime}\right) .
$$

Applying the triangle inequality in the form $|x+y| \geqq|x|-|y|$ to (3.13) we obtain

$$
\begin{aligned}
& |F(x)| \geqq\left|\chi_{F}\left(\ell^{\prime}\right)+\sum_{k=0}^{n} f_{k}\left(x_{k}\right)\right|-\left|\sum_{k=n+1}^{\infty} f_{k}\left(\ell^{\prime}\right)\right| \geqq \\
& \geqq\left\|\chi_{F}\right\|-\varepsilon+\sum_{k=0}^{n}\left\|f_{k}\right\|-\sum_{k=0}^{n} \frac{\varepsilon}{2^{k}}-\left|\sum_{k=n+1}^{\infty} f_{k}\left(\ell^{\prime}\right)\right|
\end{aligned}
$$

that is,

$$
\begin{gather*}
\|F\| \geqq\left\|\chi_{f}\right\|+\sum_{k=0}^{n}\left\|f_{k}\right\|-\varepsilon-\sum_{k=0}^{n} \frac{\varepsilon}{2^{k}}-\sum_{k=n+1}^{\infty}\left\|f_{k}\right\| \geqq \tag{3.14}\\
\geqq\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\|
\end{gather*}
$$

as $n \rightarrow \infty$ and $\varepsilon \rightarrow 0$. Combining (3.11) with (3.14) we obtain

$$
\|F\|=\left\|\chi_{F}\right\|+\sum_{k=0}^{\infty}\left\|f_{k}\right\| .
$$

References

[1] I. J. Maddox, Kuttner's theorem for operators, Composition Mathematica, 29 (1974), 34-42.
[2] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Mathematics No. 786, Springer Verlag (1980).
[3] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill H. U. (1978).
[4] A. Wilansky, Summability Through Functional Analysis, North Holland (1984).
(Received September 15, 1988)
KENYATTA UNIVERSITY
MATHEMATICS DEPARTMENT
P.O.BOX 43844

NAIROBI
KENYA

ON THE EXISTENCE OF NASH EQUILIBRIUM POINT FOR A GAME BETWEEN INFINITELY MANY PLAYERS WITH NONCOMPACT STRATEGY SETS

E. TARAFDAR (Brisbane)

Introduction

Theorems concerning sets with convex sections, as these are usually referred to, have many applications. Such applications have been given in Fan [4], [5] and [6] and Ma [7] and many others. These theorems usually are concerned with convex sections of compact convex sets, each in a topological vector space. Recently in [8] these theorems have been extended to the case of convex sections of noncompact convex sets. The object of this note is to obtain as application of these theorems the extended version of a theorem on game concerning Nash equilibrium point and related results. In this note we will describe a game simply by the family $\left\{X_{\alpha}, g_{\alpha}: \alpha \in I\right\}$ where I is the set of players, finite or infinite, X_{α} is the strategy set for the player $\alpha \in I$ and $g_{\alpha}: X=\prod_{\alpha \in I} X_{\alpha} \rightarrow \mathbf{R}$ is the pay off function for the player $\alpha \in I$. A point $y \in X=\prod_{\alpha \in I} X_{\alpha}$ is called a Nash equilibrium point of the game if for each $\alpha \in I$,

$$
g_{\alpha}(y)=\sup _{x_{\alpha} \in X_{\alpha}} g_{\alpha}\left[x_{\alpha}, \hat{y}_{\alpha}\right]
$$

where \hat{y}_{a} is the projection of y in $\hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$. Sometimes an auxiliary payoff function $f_{\alpha}: X \rightarrow \mathbf{R}$ for each $\alpha \in I$ will be involved.

In this note we will use the following notations. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ as above be a family of sets where I is an index set. Then $X=\prod_{\alpha \in I} X_{\alpha}$ and for each $\alpha \in I, \hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$. Thus for each $\alpha \in I$, we can write $X=X_{\alpha} \times \hat{X}_{\alpha}$
(with proper order). \hat{x}_{α} will denote an element of \hat{X}_{α} so that we can write $\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}=X$. The following theorem has been obtained in Fan ([6], Theorem (6)).

Theorem 1. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ be a family of nonempty compact convex sets, each in a Hausdorff topological vector space E_{α}, where I is an index set. Let $X=\prod_{\alpha \in I} X_{\alpha}$ and $\hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$ for each $\alpha \in I$. Let $\left\{A_{\alpha}: \alpha \in I\right\}$
and $\left\{B_{\alpha}: \alpha \in I\right\}$ be two families of subsets of X satisfying the following conditions:
(a) for each $\alpha \in I$ and $x_{\alpha} \in X_{\alpha}$, the set $B_{\alpha}\left(x_{\alpha}\right)=\left\{\hat{x}_{\alpha} \in \hat{X}_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in\right.$ $\left.\in B_{\alpha}\right\}$ is open in \hat{X}_{α};
(b) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}$, the set $B_{\alpha}\left(\hat{x}_{\alpha}\right)=\left\{x_{\alpha} \in X_{\alpha}\right.$: $\left.:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in B_{\alpha}\right\}$ is nonempty, and the set $A_{\alpha}\left(\hat{x}_{\alpha}\right)=\left\{x_{\alpha} \in X_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in\right.$ $\left.\in A_{\alpha}\right\}$ contains the convex hull of $B_{\alpha}\left(\hat{x}_{\alpha}\right)$.

Then $\bigcap_{\alpha \in I} A_{\alpha} \neq 0$.
The following generalization, of the above theorem which is stated as Theorem 2 has recently been obtained in [8].

Theorem 2. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ be a family of nonempty convex sets, each in a Hausdorff topological vector space E_{α}, I being index set. Let $X=\prod_{\alpha \in I} X_{\alpha}$ and $\hat{X}_{\alpha}=\prod_{\beta \in I} X_{\beta}$. Let $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ be two families of $\beta \neq \alpha$
subsets of X satisfying the conditions (a) and (b) above. Further assume that
(c) there is a nonempty compact subset K of X such that for every $x \in$ $\in X \backslash K, x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$, there exists $y=\left[y_{\alpha}, \hat{y}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$ satisfying $\left[y_{\alpha}, \hat{x}_{\alpha}\right] \in B_{\alpha}$ for each $\alpha \in I$.

Then there exists at least one point x_{0} such that $x_{0} \in \bigcap_{\alpha \in I} A_{\alpha}$.
Remark. It is already noted in [6] that the idea of introducing two families $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ is inspired by a generalization of the Knaster-Kuratowski-Mazurkiewicz theorem by Dugundji and Granas [3] and a result of Ben-El-Mechaiekh et al ([1], Theorem 5).

Theorem 3. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ be a family of nonempty convex sets, each in a Hausdorff topological vector space. Let $X=\prod_{\alpha \in I} X_{\alpha}$ and for each $\alpha \in I$, let $\hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$. Let $\left\{f_{\alpha}: \alpha \in I\right\}$ and $\left\{g_{\alpha}: \alpha \in I\right\}$ be two families of real valued functions defined on X satisfying the following conditions:
(i) $f(x) \leqq g(x)$ for all $x \in X$;
(ii) for each $\alpha \in I$ and each $x_{\alpha} \in X_{\alpha}, f_{\alpha}\left[x_{\alpha}, \cdot\right]$ is a lower semicontinuous function on \hat{X}_{α};
(iii) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}, g_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ is quasiconcave function on X_{α};
(iv) there exists a family $\left\{t_{\alpha}: \alpha \in I\right\}$ of real numbers such that for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}$ there exists $y_{\alpha} \in X_{\alpha}$ with $f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]>t_{\alpha}$;
(v) there is a nonempty compact subset K of X such that for every $x \in$ $\in X \backslash K, x=\left[x_{\alpha}, \hat{x}_{\alpha}\right]=X_{\alpha} \times \hat{X}_{\alpha}$, there exists $y \in K, y=\left[y_{\alpha}, \hat{y}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$
satisfying $f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]>t_{\alpha}$ for each $\alpha \in I$. Then there exists a point $u \in X$ such that for each $\alpha \in I, g_{\alpha}(u)>t_{\alpha}$.

Proof. For each $\alpha \in I$, we define the sets

$$
B_{\alpha}=\left\{x \in X: f_{\alpha}(x)>t_{\alpha}\right\} \quad \text { and } \quad A_{\alpha}=\left\{x \in X: g_{\alpha}(x)>t_{\alpha}\right\} .
$$

By condition (ii) for each $\alpha \in I$ and each $x_{\alpha} \in X_{\alpha}$, the set $B_{\alpha}\left(x_{\alpha}\right)=\left\{\hat{x}_{\alpha} \in\right.$ $\left.\in \hat{X}_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in B_{\alpha}\right\}$ is open in \hat{X}_{α} and hence condition (a) of Theorem 2 is satisfied. By virtue of condition (i) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}$, the set $B_{\alpha}\left(\hat{x}_{\alpha}\right)=\left\{x_{\alpha} \in X_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in B_{\alpha}\right\}$ is a subset of the set $A_{\alpha}\left(\hat{x}_{\alpha}\right)=$ $=\left\{x_{\alpha} \in X_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in A_{\alpha}\right\}$ and by virtue of condition (iii) $A_{\alpha}\left(\hat{x}_{\alpha}\right)$ is convex. Also by condition (iv) for each $\alpha \in I$ and $\hat{x}_{\alpha} \in \hat{X}_{\alpha}$, the set $B_{\alpha}\left(\hat{x}_{\alpha}\right)$ is nonempty. Hence condition (b) of Theorem 2 is fulfilled. Finally condition (v) implies condition (c) of Theorem 2. Thus by Theorem 2 there exists a point $y \in X$ such that $y \in \bigcap_{\alpha \in I} A_{\alpha}$, i.e. $g_{\alpha}(y)>t_{\alpha}$ for each $\alpha \in I$.

Corollary 1. Let $\left\{X_{\alpha}: \alpha \in I\right\},\left\{\hat{X}_{\alpha}: \alpha \in I\right\}$ and X as in Theorem 3. Let $\left\{f_{\alpha}: \alpha \in I\right\}$ be a family of real valued functions defined on X satisfying the following conditions:
(i) for each $\alpha \in I$ and each $x_{\alpha} \in X_{\alpha}, f_{\alpha}\left[x_{\alpha}, \cdot\right]$ is a lower semicontinuous function on \hat{X}_{α};
(ii) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}, f_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ is a quasiconcave function on X_{α};
(iii) there exists a family $\left\{t_{\alpha}: \alpha \in I\right\}$ of real numbers such that for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}$ there exists $y_{\alpha} \in X_{\alpha}$ with $f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]>t_{\alpha}$;
(iv) there exists a nonempty compact subset K of X such that for each $x \in X \backslash K, x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$, there exists $y \in K, y=\left[y_{\alpha}, \hat{y}_{\alpha}\right] \in$ $\in X_{\alpha} \times \hat{X}_{\alpha}$ satisfying $f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]>t_{\alpha}$.

Then there exists a point $u \in X$ such that $f_{\alpha}(u)>t_{\alpha}$ for each $\alpha \in I$.
Proof. Taking $f_{\alpha}=g_{\alpha}$ for each $\alpha \in I$ in Theorem 3 we obtain the corollary.

The above corollary is a generalization of a theorem of Ma ([7], Theorem 3) which includes a Theorem of Fan ([5], Theorem 3) and also Browder ([2], Theorem 2).

Existence theorem of Nash equilibrium point

Theorem 4. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ be a family of nonempty convex sets, each in a Hausdorff topological vector space E_{α}. Let $X=\prod_{\alpha \in I} X_{\alpha}$ and for
each $\alpha \in I$, let $\hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$. Let $\left\{f_{\alpha}: \alpha \in I\right\}$ and $\left\{g_{\alpha}: \alpha \in I\right\}$ be two families of real valued functions defined on X. Further assume that
(i) for each $\alpha \in I, f_{\alpha}$ is continuous;
(ii) for each $\alpha \in I$ and each $x \in X, f_{\alpha}(x) \leqq g_{\alpha}(x)$;
(iii) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}, \sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=\sup _{y_{\alpha} \in X_{\alpha}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]$;
(iv) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}, g_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ is a quasiconcave function on X_{α};
(v) there exists a nonempty compact subset K of X such that for each $x \in X \backslash K, x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$, there exists $y=\left[y_{\alpha}, \hat{y}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$, $y \in K$ such that $f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right] \geqq f_{\alpha}\left[x_{\alpha}, \hat{x}_{\alpha}\right]$ for every $\alpha \in I$.

Then there exists a point $w \in X$ such that for each $\alpha \in I, g_{\alpha}(w)=$ $=\sup _{u_{\alpha} \in X_{\alpha}} g_{\alpha}\left[u_{\alpha}, \hat{w}_{\alpha}\right]$ where \hat{w}_{α} is the projection of w in \hat{X}_{α} for each $\alpha \in I$. In other words $w \in X$ is a Nash equilibrium of the game $\left\{X_{\alpha}, g_{\alpha}, I\right\}$.

Remark. Conditions (ii) and (iii) will disappear in our next corollary.
Proof. We will apply Theorem 1 to prove this theorem. Let for each $\alpha \in I, P_{\alpha}: X \rightarrow X_{\alpha}$ be the projection of X onto X_{α}. For each $\alpha \in I$, let $P_{\alpha}(K)=X_{\alpha}^{\prime}$ which is nonempty compact and convex. Let $X^{\prime}=\prod_{\alpha \in I} X_{\alpha}^{\prime}$ and for each $\alpha \in I, \hat{X}_{\alpha}^{\prime}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\alpha}^{\prime}$.

We first prove that
(A) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$,

$$
\sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right] .
$$

It is clear that $\sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right] \geqq \sup _{y_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=f_{\alpha}\left[v_{\alpha}, \hat{x}_{\alpha}\right]$ for some $v_{\alpha} \in$ $\in X_{\alpha}^{\prime}$ as X_{α}^{\prime} is compact and $f_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ is continuous by condition (i). If possible, let $\sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]>f_{\alpha}\left[v_{\alpha}, \hat{x}_{\alpha}\right]$. Then there must exist $u_{\alpha} \in X_{\alpha}$ and $u_{\alpha} \notin X_{\alpha}^{\prime}$ such that $f_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]>f_{\alpha}\left[v_{\alpha}, \hat{x}_{\alpha}\right]$. Thus $x=\left[u_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times$ $\times \hat{X}_{\alpha}=X$ but $x \notin K$ as $K \subset X^{\prime}$. Hence by condition (v) there exists $z=\left[z_{\alpha}, \hat{z}_{\alpha}\right] \in K$ such that $f_{\alpha}\left[z_{\alpha}, \hat{x}_{\alpha}\right] \geqq f_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]$. Thus $f_{\alpha}\left[v_{\alpha}, \hat{x}_{\alpha}\right] \geqq$ $\geqq f_{\alpha}\left[z_{\alpha}, \hat{x}_{\alpha}\right] \geqq f_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]$, the first inequality being due to the fact that $z_{\alpha} \in$ $\in X_{\alpha}^{\prime}$. Hence we have arrived at a contradiction which proves our assertion.

Now by using (iii) and (A) above we obtain that for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$

$$
\sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right] \leqq \sup _{u_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right] \leqq
$$

$$
\leqq \sup _{y_{\alpha} \in X_{\alpha}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=\sup _{y_{\alpha} \in X_{\alpha}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]
$$

by (ii). Hence
(B) $\sup _{y_{\alpha} \in X_{\alpha}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]=\sup _{u_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]$ for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$.

We note that all the quantities in (A) and (B) are finite.
Now as in the proof of Theorem 4 in Fan [5] and Ma [7] we define for each real number $\varepsilon>0$ and each $\alpha \in I$, the sets

$$
\begin{aligned}
& A_{\alpha, \varepsilon}=\left\{x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X^{\prime}: g_{\alpha}(x)>\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon\right\} ; \\
& B_{\alpha, \varepsilon}=\left\{x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X^{\prime}: f_{\alpha}(x)>\sup _{g_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon\right\} ;
\end{aligned}
$$

and

$$
C_{\alpha, e}=\left\{x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X: g_{\alpha}(x)>\sup _{y_{\alpha} \in X_{\alpha}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon\right\} .
$$

From the uniform continuity of f_{α} on the compact set X^{\prime} it follows that for each $\alpha \in I$, the function $\phi_{\alpha}\left(\hat{x}_{\alpha}\right)=\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]$ is continuous on $\hat{X}_{\alpha}^{\prime}$. Hence for each $\alpha \in I$ and each $x_{\alpha} \in X_{\alpha}^{\prime}$, the set $B_{\alpha, \varepsilon}\left(x_{\alpha}\right)=\left\{\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}\right.$: $\left.\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in B_{\alpha, \varepsilon}\right\}$ is open in \hat{X}_{α}. Also from the quasiconcavity of $g_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ on X_{α}, it follows that for each $\alpha \in I$ and each \hat{x}_{α} in \hat{X}_{α}, the set $C_{\alpha, \varepsilon}\left(\hat{x}_{\alpha}\right)=$ $=\left\{x_{\alpha} \in X_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in C_{\alpha, \varepsilon}\right\}$ is convex. Since X_{α}^{\prime} is convex for each $\alpha \in I$, it is easy to see that for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$, the set $A_{\alpha, \varepsilon}\left(\hat{x}_{\alpha}\right)=\left\{x_{\alpha} \in X_{\alpha}^{\prime}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in A_{\alpha, \varepsilon}\right\}=\left\{x_{\alpha} \in X_{\alpha}:\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in C_{\alpha, \varepsilon}\right\} \cap X_{\alpha}^{\prime}$ is convex.

Further due to the continuity of f_{α} on the compact set X^{\prime}, it is trivial to see that for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$ the set $B_{\alpha, \varepsilon}\left(\hat{x}_{\alpha}\right)$ is nonempty. Finally for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}^{\prime}$, the set $B_{\alpha, \varepsilon}\left(\hat{x}_{\alpha}\right) \subset A_{\alpha, \varepsilon}\left(\hat{x}_{\alpha}\right)$. This follows from the fact that for each $\alpha \in I, B_{\alpha, \varepsilon} \subset A_{\alpha, \varepsilon}$. To see this let $x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X^{\prime}$. Then

$$
\begin{aligned}
f_{\alpha}(x) & >\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} f_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon=\sup _{u_{\alpha} \in X_{\alpha}} f_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon= \\
& =\sup _{u_{\alpha} \in X_{\alpha}} g_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon=\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[u_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon
\end{aligned}
$$

by (A), (B) and condition (iii). Thus

$$
g_{\alpha}(x) \geqq f_{\alpha}(x)>\sup _{y_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right]-\varepsilon
$$

i.e. $x \in A_{\alpha, \varepsilon}$. Hence applying Theorem 1 to the system $\left\{X_{\alpha}^{\prime} A_{\alpha, \varepsilon}, B_{\alpha, \varepsilon}: \alpha \in\right.$ $\in I\}$ we obtain a point $y \in \bigcap_{\alpha \in I} A_{\alpha, \varepsilon}$. Since $\varepsilon>0$ is arbitrary, it follows from the definition of $A_{\alpha, \varepsilon}$ that the family of closed subsets $\left\{\bigcap_{\alpha \in I} \bar{A}_{\alpha, \varepsilon}: \varepsilon>0\right\}$ of the compact set X^{\prime} has finite intersection property. Hence there exists a point $w \in X^{\prime}$ such that $w \in \bigcap_{\alpha \in I} \bar{A}_{\alpha, \varepsilon}$ for all $\varepsilon>0$. This point $w \in X^{\prime}$ has the property that $g_{\alpha}(w)=\sup _{u_{\alpha} \in X_{\alpha}^{\prime}} g_{\alpha}\left[u_{\alpha}, \hat{w}_{\alpha}\right]$ for each $\alpha \in I$ where \hat{w}_{α} is the projection of w in $\hat{X}_{\alpha}^{\prime}$ and hence in \hat{X}_{α}. Hence by (B) $g_{\alpha}(w)=$ $=\sup _{u_{\alpha} \in X_{\alpha}} g_{\alpha}\left[u_{\alpha}, \hat{w}_{\alpha}\right]$ for each $\alpha \in I$.

Corollary 2. Let $\left\{X_{\alpha}: \alpha \in I\right\}$ be a family of nonempty convex sets, each in a Hausdorff topological space E_{α}. Let $X=\prod_{\alpha \in I} X_{\alpha}$ and for each $\alpha \in I$, let $\hat{X}_{\alpha}=\prod_{\substack{\beta \in I \\ \beta \neq \alpha}} X_{\beta}$. Let $\left\{g_{\alpha}: \alpha \in I\right\}$ be a family of real valued functions defined on X. Further assume that
(i) for each $\alpha \in I, g_{\alpha}(x)$ is continuous;
(ii) for each $\alpha \in I$ and each $\hat{x}_{\alpha} \in \hat{X}_{\alpha}, g_{\alpha}\left[\cdot, \hat{x}_{\alpha}\right]$ is a quasiconcave function on X_{α};
(iii) there exists a compact subset K of X such that for each $x \in X \backslash K$, $x=\left[x_{\alpha}, \hat{x}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}$, there exists $y=\left[y_{\alpha}, \hat{y}_{\alpha}\right] \in X_{\alpha} \times \hat{X}_{\alpha}, y \in K$ such that $g_{\alpha}\left[y_{\alpha}, \hat{x}_{\alpha}\right] \geqq g_{\alpha}\left[x_{\alpha}, \hat{x}_{\alpha}\right]$ for each $\alpha \in I$.

Then there exists a point $v \in X$ such that for each $\alpha \in I, g_{\alpha}(v)=$ $=\sup _{u_{\alpha} \in X_{\alpha}} g_{\alpha}\left[u_{\alpha}, \hat{v}_{\alpha}\right]$ where \hat{v}_{α} is the projection of v in \hat{X}_{α} for each $\alpha \in I$. In other words there exists a Nash equilibrium point $v \in X$ for the game $\left\{X_{\alpha}, g_{\alpha}: \alpha \in I\right\}$.

Proof. We take $f_{\alpha}=g_{\alpha}$ for each $\alpha \in I$. Then the families $\left\{f_{\alpha}: \alpha \in I\right\}$ and $\left\{g_{\alpha}: \alpha \in I\right\}$ satisfy all the conditions of Theorem 4. Hence the corollary follows from Theorem 4.

The above corollary generalizes the corresponding theorem of Ma ([7], Theorem 4) and Fan ([5], Theorem 4). Results dual, in the sense of [9], to those of Theorems 3 and 4 and Corollaries 1 and 2 can similarly be formulated and proved.

References

[1] H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Une alterative nonlineare en analyse convexe et applications, C. R. Acad. Sci. Paris Ser. 1 Math., 295 (1982), 257-259.
[2] F. E. Browder, The fixed point theory of multivalued mappings in topological vector. spaces, Math. Ann., 177 (1968), 283-301.
[3] J. Dugundji and A. Granas, KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 679-682.
[4] K. Fan, Sur un Theoreme minimax, C. R. Acad. Sci. Paris, 259 (1964), 3925-3928.
[5] K. Fan, Applications of a theorem concerning sets with convex sections, Math. Ann., 163 (1966), 189-203.
[6] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.
[7] T. W. Ma, On sets with convex sections, J. Math. Anal. Appl., 27 (1969), 413-416.
[8] E. Tarafdar, On two theorems concerning sets with convex sections, to appear in Bull. Austral. Math. Soc.
[9] E. Tarafdar and T. Husain, Duality in fixed point theory of multivalued mappings with applications, J. Math. Anal. Appl., 63 (1978), 371-376.
(Received September 16, 1988)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF QUEENSLAND
ST. LUCIA
BRISBANE
AUSTRALIA 4067

ON $U(\cdot)$-INVARIANCE FOR FINITE AND INFINITE DIMENSIONAL CONTROL SYSTEMS*

E. AVGERINOS (Thessaloniki), E. FLYTZANIS (Athens), and N. S. PAPAGEORGIOU* (Athens)

1. Introduction

The purpose of this paper is to study the property of set invariance in connection with finite and infinite dimensional, nonlinear control systems. Our work was motivated by the papers of Feuer-Heymann [5], [6], who investigated this problem in the context of nonlinear, finite dimensional control systems. Using some recent results and techniques from the theory of multifunctions and the theory of differential inclusions, we are able to relax some of the restrictive hypotheses that Feuer-Heymann [5], [6] have and also consider infinite dimensional control systems (distributed parameter systems).

In the next section, we establish our notation and recall some basic definitions and facts from nonsmooth analysis and the theory of multifunctions. In Section 3 we study the problem of $U(\cdot)$-invariance for nonlinear, finite dimensional control systems, extending the works of Feuer-Heymann [5], [6]. Finally, in Section 4 we address similar questions in the context of infinite dimensional, generally nonlinear, control systems.

2. Preliminaries

Let X be a Banach space. Throughout this paper we will be using the following notations:

$$
P_{f(c)}(X)=\{A \cong X: \text { nonempty, closed, (convex) }\}
$$

and

$$
P_{(w) k(c)}(X)=\{A \leqq X: \text { nonempty, }(w) \text {-compact },(\text { convex })\} .
$$

Let K be nonempty and $x \in \bar{K}$. The Bouligand (or contingent) cone $T_{K}(x)$ to K at x is defined by

$$
T_{K}(x)=\left\{h \in X: \varliminf_{\lambda \downharpoonright 0} \frac{d_{K}(x+\lambda h)}{\lambda}=0\right\}
$$

[^9]where for any $z \in X, d_{K}(z)=\inf \left\{\left\|z-x^{\prime}\right\|: x^{\prime} \in K\right\}$ (see for example Aubin-Ekeland [1)). It is clear that $T_{K}(x)=T_{\bar{K}}(x)$ and that the cone is always closed, but need not be convex. It is convex, when K is convex (or more generally locally convex at x). For details the interested reader can consult the book of Aubin-Ekeland [1].

Let Y, Z be Hausdorff topological spaces. A multifunction $G: Y \rightarrow$ $\rightarrow 2^{Z} \backslash\{\emptyset\}$ is said to be upper semicontinuous (u.s.c.), if for every $K \subseteq Z$ nonempty, closed, the set $G^{-}(K)=\{y \in Y: G(y) \cap K \neq \emptyset\}$ is closed in Y. If $G(\cdot)$ has compact values, then it maps compact sets into compact sets i.e. if $K \subseteq Y$ is compact, then $G(K)=\bigcup_{y \in K} G(y)$ is compact in Z (see Klein-Thompson [7], Theorem 7.4.2, p. 90).

Also if X is a metric space, then on $P_{f}(X)$ we can define the following (generalized) metric

$$
h(A, B)=\max \left\{\sup _{a \in A} d_{B}(a), \sup _{b \in B} d_{A}(b)\right\},
$$

known in the literature as the Hausdorff metric.
Recall that if X is complete, then so are the metric spaces $\left(P_{f}(X), h\right)$ and $\left(P_{f c}(X), h\right)$. Finally if X is a Banach space and $A \in 2^{X} \backslash\{\emptyset\}$, the support function of $A, \sigma_{A}: X^{*} \rightarrow \mathbf{R}=\mathbf{R} \cup\{+\infty\}$ is defined by $\sigma_{A}\left(x^{*}\right)=$ $=\sup \left\{\left(x^{*}, a\right): a \in A\right\}$.

3. Finite dimensional control systems

In this section we examine the invariance properties of the following nonlinear, finite dimensional control system, with state dependent control constraints (feedback or closed loop constraints):

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \quad \text { a.e. on } \quad T=[0, b] \tag{*}\\
x(0)=x_{0}, \quad u(t) \in U(x(t)) \quad \text { a.e. }
\end{array}\right\}
$$

Let $K \subseteq \mathbf{R}^{n}$ be a nonempty, closed subset in the state space of (*). In analogy with the classical theory of dynamical systems, we say that K is $U(\cdot)$-invariant, if for each $x_{0} \in K$ there exists admissible "state-control" pair $(x(\cdot), u(\cdot))$ such that $x(t) \in K$ for all $t \in T$. Throughout this paper, we will assume that to each feasible control function $u(\cdot)$, there corresponds a unique trajectory $x(\cdot)$.

We will start with a sufficient condition for invariance. Our result extends the corresponding sufficiency part of Theorem 3.2 of Feuer-Heymann [5].

We will need the following hypotheses concerning the data of system (*).
$\mathrm{H}(f): f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ is a control vector field such that
(1) $(x, u) \rightarrow f(x, u)$ is continuous,
(2) $\|f(x, u)\| \leqq c(1+\|x\|)$ for all $u \in U(x)$,
(3) $f(x, U(x))$ is convex.
$\mathrm{H}(U): U: \mathbf{R}^{n} \rightarrow P_{k}\left(\mathbf{R}^{m}\right)$ is an u.s.c. multifunction.
$\mathrm{H}(K): K \subseteq \mathbf{R}^{n}$ is nonempty, closed.
H_{τ} : for every $x \in K$ there exists $u \in U(x)$ such that $f(x, u) \in T_{K}(x)$.
Theorem 3.1. If hypotheses $\mathrm{H}(f), \mathrm{H}(U), \mathrm{H}(K)$ and H_{τ} hold, then K is $U(\cdot)$-invariant.

Proof. Let $F: \mathbf{R}^{n} \rightarrow P_{k c}(\mathbf{R})$ be defined by $F(x)=\underset{u \in U(x)}{ } f(x, u)$. We claim that $F(\cdot)$ is u.s.c. To this end, we will show that given $C \cong \mathbf{R}^{n}$ nonempty, closed, the set $F^{-}(C)=\left\{x \in \mathbf{R}^{n}: F(x) \cap C \neq \emptyset\right\}$ is closed. So let $x_{n} \rightarrow x, x_{n} \in F^{-}(C)$. Pick $h_{n} \in F\left(x_{n}\right) \cap C$. So $h_{n}=f\left(x_{n}, u_{n}\right)$ with $u_{n} \in$ $\in U\left(x_{n}\right)$. Since $U(\cdot)$ is u.s.c. and compact valued, we have that $\bigcup_{n \geqq 1} U\left(x_{n}\right)$ is compact in \mathbf{R}^{m} (see Section 2). So by passing to a subsequence if necessary we may assume that $u_{n} \rightarrow u$. Recall that an u.s.c. multifunction with closed values has closed graph (see Klein-Thompson [7]) and so (x, u) $\in \mathrm{Gr} U \Longrightarrow$ $\Longrightarrow u \in U(x)$. Then $f\left(x_{n}, u_{n}\right) \rightarrow f(x, u) \Longrightarrow h_{n} \rightarrow f(x, u) \Longrightarrow f(x, u) \in$ $\in F(x) \cap C \Longrightarrow x \in F^{-}(C) \Longrightarrow F^{-}(C)$ is closed and so $F(\cdot)$ is u.s.c.

Next, because of hypothesis H_{τ} we have $F(x) \cap T_{K}(x) \neq \emptyset$ for all $x \in K$. Invoking Theorem 1, p. 24 of Deimling [2], we get a solution $x(\cdot)$ of the differential inclusion $\dot{x}(t) \in F(x(t))$ a.e. that leaves K invariant. Then let $L: T \rightarrow 2^{\mathbf{R}^{m}}$ be defined by

$$
L(t)=\{u \in U(x(t)): \dot{x}(t)=f(x(t), u)\} .
$$

Clearly $L(t) \neq \emptyset$ a.e. and by redefining it on a Lebesgue null set, we may assume that $L(t) \neq \emptyset$ for all $t \in T$. Because of $\mathrm{H}(U), t \rightarrow U(x(t))$ is a measurable multifunction (i.e. $\operatorname{Gr} U(x(\cdot))=\left\{(t, u) \in T \times \mathbf{R}^{m}: u \in\right.$ $\left.\in U(x(t))\} \in B(T) \times B\left(\mathbf{R}^{m}\right)\right)$, while because of $\mathrm{H}(f),(t, u) \rightarrow \dot{x}(t)-$ $-f(x(t), u)=k(t, u)$ is measurable too. Hence

$$
\operatorname{Gr} L=\left\{(t, u) \in T \times \mathbf{R}^{m}: k(t, u)=0\right\} \cap \operatorname{Gr} U(x(\cdot)) \in \widehat{B(T)} \times B\left(\mathbf{R}^{m}\right)
$$

where $\widehat{B(T)}$ is the Lebesgue completion of the Borel σ-field $B(T)$. Apply Aumann's selection theorem (see for example Wagner [12]), to get $u: T \rightarrow \mathbf{R}^{m}$ Lebesgue measurable such that $u(t) \in U(x(t)), t \in T$ and $\dot{x}(t)=f(x(t), u(t))$ a.e. So (x, u) is an admissible state control pair and $x(\cdot)$ leaves K invariant. Q.E.D.

Remark. Our result generalizes Theorem 3.2 of Feuer-Heymann [5] in various ways. More specifically in [5] the control vector field $f(x, u)$ is assumed to be jointly continuous and continuously differentiable in x (hypothesis A_{1}). Here we drop the differentiability hypothesis. Also in [5] the control
constraint set is constant, while here is in "closed-loop" form. Finally in [5], the invariance domain K is compact and convex. Here we drop both those requirements.

We want to have a converse of Theorem 3.1, extending this way the necessity part of Theorem 3.2 of Feuer-Heymann [5].

Theorem 3.2. If hypotheses $\mathrm{H}(f), \mathrm{H}(U), \mathrm{H}(K)$ hold and for every $x_{0} \in$ $\in K$, the control system (*) admits a K-invariant trajectory, then H_{τ} holds.

Proof. Let $x_{0} \in K$ and let $x(\cdot)$ be the K-invariant trajectory of (*) emanating from x_{0}. Recall from the proof of Theorem 3.2 that $F(x)=$ $=\bigcup_{u \in U(x)} f(x, u)$ is u.s.c. and $P_{k c}\left(\mathbf{R}^{n}\right)$-valued. So for all $n \geqq 1$, there exists $\delta(n)>0$ such that for $t<\delta$, we have $F(x(t)) \subseteq F\left(x_{0}\right)+\frac{1}{2 n} B_{1}$, with B_{1} being the open unit ball in \mathbf{R}^{n}. Let $t_{n} \in \mathbf{R}_{+}$such that $t_{n} \downarrow 0$ and $\dot{x}\left(t_{n}\right)$ exists. Then since $\dot{x}(t) \in F(x(t)) \cong F\left(x_{0}\right)+\frac{1}{2 n} B_{1}$ a.e. on $[0, \delta]$, for $n \geqq 1$ large enough we have

$$
0=d_{K}\left(x\left(t_{n}\right)\right)=d_{K}\left(x_{0}+\int_{0}^{t_{n}} \dot{x}_{n}(s) d s\right)=d_{K}\left(x_{0}+t_{n} q_{n}\right)
$$

where $q_{n} \in F\left(x_{0}\right)+\frac{1}{2 n} B_{1}$. Let $p_{n} \in F\left(x_{0}\right)$ such that $\left\|p_{n}-q_{n}\right\|<\frac{1}{2 n}$. We have

$$
\frac{1}{t_{n}} d_{K}\left(x_{0}+t_{n} p_{n}\right) \leqq\left\|p_{n}-q_{n}\right\|<\frac{1}{2 n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Recall that $F\left(x_{0}\right) \in P_{k c}\left(\mathbf{R}^{n}\right)$. So by passing to a subsequence, we may assume that $p_{n} \rightarrow p \in F\left(x_{0}\right)$. We have

$$
\frac{1}{t_{n}} d_{K}\left(x_{0}+t_{n} p\right) \leqq\left\|p-p_{n}\right\|+\frac{1}{t_{n}} d_{K}\left(x_{0}+t_{n} p_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

whence $p \in T_{K}\left(x_{0}\right) \cap F\left(x_{0}\right)$ and $T_{K}\left(x_{0}\right) \cap F\left(x_{0}\right) \neq \emptyset$. Since $x_{0} \in K$ was arbitrary, we conclude that H_{τ} holds. Q.E.D.

Remark. Again our hypotheses are considerably weaker than those in Feuer-Heymann [5].

The tangential condition H_{τ} is also related to the existence of rest points for the system (*). Recall that a point $\hat{x} \in K$ is called a $U(\cdot)$-rest point of (*), if there exists $\hat{u} \in U(\hat{x})$ such that $f(\hat{x}, \hat{u})=0$. Our result extends Theorem 3.3 of Feuer-Heymann [5].

We will need the following stronger hypothesis on the invariance domain K.
$\mathrm{H}(K)^{\prime}: K \subseteq \mathbf{R}^{n}$ is nonempty, compact, convex.

Theorem 3.3. If hypotheses $\mathrm{H}(f), \mathrm{H}(U), \mathrm{H}(K)^{\prime}$ hold and K is $U(\cdot)$ invariant then the control system (*) has a rest point.

Proof. From the proof of Theorem 3.1 we know that $F: \mathbf{R}^{n} \rightarrow P_{k c}\left(\mathbf{R}^{n}\right)$ defined by $F(x)=\bigcup_{u \in U(x)} f(x, u)$ is u.s.c. Also from Theorem 3.2 we know that since K is $U(\cdot)$-invariant, the tangential hypothesis H_{τ} is satisfied. So we can apply Theorem 11, p. 341 of Aubin-Ekeland [1] and conclude that there exists $\hat{x} \in K$ such that $0 \in F(\hat{x})$. Then from the definition of $F(\cdot)$, we know that there exists $\hat{u} \in F(x)$ such that $f(\hat{x}, \hat{u})=0$. So \hat{x} is the desired $U(\cdot)$-rest point of (*). Q.E.D.

Remark. The compactness hypothesis on K cannot be dropped as the following counterexample shows (we thank the referee for it): $n=2, m=1$, $f(x, u)=(1, u)^{T}, U(x)=[-1,1] \leqq \mathbf{R}$ and $K=\left\{x \in \mathbf{R}^{2}: x_{1} \geqq 0,\left|x_{2}\right| \leqq x_{1}\right\}$. It is easy to check that K is U-invariant, but $f(x, u) \neq 0$ for all $(x, u) \in$ $\in \mathbf{R}^{2} \times U$.

We will close this section with a convergence result. We will need the following hypothesis:
$\mathrm{H}\left(K_{r}\right):\left\{K_{r}\right\}_{r \geqq 1} \cong P_{f}\left(\mathbf{R}^{n}\right)$ are $U(\cdot)$-invariant for the system (*) and $K_{r} \xrightarrow{h} K$ as $r \rightarrow \infty$.

Theorem 3.4. If hypotheses $\mathrm{H}(f), \mathrm{H}(U)$ and $\mathrm{H}\left(K_{r}\right)$ hold, then K is $U(\cdot)$-invariant too.

Proof. Let $x \in K$. Then because of $\mathrm{H}\left(K_{r}\right)$ we can find $x_{r} \in K_{r}$ such that $x_{r} \rightarrow x$. Since K_{r} is by hypothesis $U(\cdot)$-invariant, Theorem 3.2 tells us that hypothesis H_{τ} is satisfied. So we can find $u_{r} \in U\left(x_{r}\right)$ such that $f\left(x_{r}, u_{r}\right) \in T_{K_{r}}\left(x_{r}\right)$. Because of hypothesis $\mathrm{H}(U)$, we know that $\bigcup U\left(x_{r}\right)$ is

$$
r \geqq 1
$$

compact in \mathbf{R}^{m}. So by passing to a subsequence if necessary, we may assume that $u_{r} \rightarrow u \in U(x)$. Then, since by hypothesis $\mathrm{H}(f), f\left(x_{r}, u_{r}\right) \rightarrow f(x, u)$, we have $d_{K_{r}}\left(x_{r}+\lambda f\left(x_{r}, u_{r}\right)\right) \rightarrow d_{K}(x+\lambda f(x, u))$ as $r \rightarrow \infty$, uniformly for λ in a bounded interval of \mathbf{R}_{+}.

Thus given $\varepsilon>0$, we can find $r_{0} \geqq 1$ such that for $r \geqq r_{0}$ we have

$$
\frac{d_{K}(x+\lambda f(x, u))}{\lambda} \leqq \frac{d_{K_{r}}\left(x_{r}+\lambda f\left(x_{r}, u_{r}\right)\right)}{\lambda}+\varepsilon \text { for all } \lambda \in[0, M],
$$

whence

$$
\varliminf_{\lambda \downarrow 0} \frac{d_{K}(x+\lambda f(x, u))}{\lambda} \leqq \frac{\varliminf_{\lambda}}{\lambda \downarrow 0} \frac{d_{K_{r}}\left(x_{r}+\lambda f\left(x_{r}, u_{r}\right)\right)}{\lambda}+\varepsilon
$$

and

$$
\varliminf_{\lambda \downharpoonright 0} \frac{d_{K}(x+\lambda f(x, u))}{\lambda} \leqq \varepsilon
$$

(since $f\left(x_{r}, u_{r}\right) \in T_{K_{r}}\left(x_{r}\right)$).
Let $\varepsilon \downarrow 0$. We get $\frac{l i m}{\lambda \downarrow 0} \frac{d_{K}(x+\lambda f(x, u))}{\lambda}=0 \Longrightarrow f(x, u) \in T_{K}(x)$ and since $x \in K$ was arbitrary, Theorem 3.1 tells us that K is $U(\cdot)$-invariant. Q.E.D.

4. Infinite dimensional control systems

In this section we turn our attention to infinite dimensional control systems (distributed parameter systems).

The mathematical setting follows that of Lions [8].
Let X, H be separable Hilbert spaces, with X continuously and densely embedded into H. By identifying H with its dual (pivot space), we have $X \hookrightarrow H \hookrightarrow X^{*}$ with all embeddings continuous and dense. We will also assume that they are compact. To have a concrete example in mind let $H=L^{2}(0,1)$ and $X=H_{0}^{1}(0,1)$. Then $X^{*}=H^{-1}(0,1)$. Usually such a triple of spaces $\left(X, H, X^{*}\right)$ is known as "Gelfand triple". By \| $\cdot \|$ (resp. | $\cdot \mid$, $\|\cdot\|_{*}$) we will denote the norm in X (resp. in H, X^{*}) and by $\langle\cdot, \cdot\rangle$ the duality brackets for the pair (X, X^{*}). Furthermore let Z be a separable Banach space (modelling the control space) and as before $T=[0, b]$.

The nonlinear controlled evolution under consideration is the following:

$$
(* *)
$$

$$
\left\{\begin{array}{l}
\dot{x}(t)+A x(t)=f(x(t), u(t)) \quad \text { a.e. on } T=[0, b] \tag{**}\\
x(0)=x_{0}, u(t) \in U(x(t)) \quad \text { a.e. }
\end{array}\right\}
$$

By $X_{w}, H_{w}, X_{w}^{*}, Z_{w}$ we will denote the space X, H, X^{*}, Z with their respective weak topologies. Also note that since X^{*} is a separable Hilbert space, it admits an orthonormal basis $\left\{e_{k}^{*}\right\}_{k \geqq 1}$. Let $X_{n}^{*}=\left\{e_{k}^{*}\right\}_{k=1}^{n}$. Then clearly $X^{*}=\bigcup_{n \geqq 1} X_{n}^{*}\|\cdot\|^{*}$. Denote by $p_{n}: X^{*} \rightarrow X_{n}^{*}$ the corresponding linear projections.

We will need the following hypotheses on the data of (**).
$\mathrm{H}(A): A: X \rightarrow X^{*}$ is an operator such that
(1) it is sequentially continuous from X_{w} into X_{w}^{*} and monotone,
(2) $\|A x\|_{*} \leqq c(1+\|x\|) c>0$,
(3) $\langle A x, x\rangle \geqq c^{\prime}\|x\|^{2}, c^{\prime}>0$.
$\mathrm{H}(f)^{\prime}: f: H \times Z \rightarrow H$ is a function such that
(1) $(x, u) \rightarrow f(x, u)$ is sequentially continuous from $H \times Z_{w}$ into H_{w},
(2) $|f(x, u)| \leqq k|x|, k>0$,
(3) $f(x, U(x))=\bigcup_{u \in U(x)} f(x, u)$ is convex.
$\mathrm{H}(K)^{\prime \prime}: K \subseteq X$ is bounded, closed, convex. $\mathrm{H}(U)^{\prime \prime}: U: H \rightarrow P_{w k c}(Z)$ is u.s.c. from H into Z_{w},
$\mathrm{H}_{\tau}^{\prime}$: for every $x \in K$, there exists $u \in U(x)$ such that $(-A x+f(x, u)) \in$ $\in T_{K}^{\prime}(x)$, where $T_{K}^{\prime}(x)$ is the tangent cone to K at x in the Hilbert space X^{*}.
Theorem 4.2. If hypotheses $\mathrm{H}(A), \mathrm{H}(f)^{\prime}, \mathrm{H}(K)^{\prime \prime}, \mathrm{H}(U)^{\prime}$ and $\mathrm{H}_{\tau}^{\prime}$ hold, then K is $U(\cdot)$-invariant.

Proof. Consider the multifunction $F: H \rightarrow P_{w k c}(H)$ defined by $F(x)=$ $=f(x, U(x))$. Since by hypothesis $H \hookrightarrow X^{*}$ compactly, we have $F(x) \in$ $\in P_{k c}\left(X^{*}\right)$. Also we claim that $F(\cdot)$ is u.s.c. from H into X^{*}. To get this it suffices to show that for any $C \leqq X^{*}$ closed, the set $F^{-}(C)=\{x \in H$: $: F(x) \cap C \neq \emptyset\}$ is closed in H. Let $x_{n} \rightarrow x, x_{n} \in F^{-}(C)$. Then by definition there exist $u_{n} \in U\left(x_{n}\right)$ such that $f\left(x_{n}, u_{n}\right) \in C$. Since $U(\cdot)$ is u.s.c. from H into Z_{w} (see hypothesis $\left.\mathrm{H}(U)^{\prime}\right)$ and has values in $P_{w k c}(Z)$, we get that $\bigcup_{n \geqq 1} \overline{U\left(x_{n}\right)}{ }^{w}$ is w-compact in Z. So by passing to a subsequence if necessary, we may assume that

$$
\begin{gathered}
u_{n} \stackrel{w}{\longrightarrow} u \in w-\overline{\lim } U\left(x_{n}\right)= \\
=\left\{z \in Z: z=w-\lim z_{n_{k}}, z_{n_{k}} \in U\left(x_{n_{k}}\right), k \geqq 1\right\} .
\end{gathered}
$$

But using once again hypothesis $\mathrm{H}(U)^{\prime}$, we have that $w-\overline{\lim } U\left(x_{n}\right) \subseteq U(x)$ (see Delahaye-Denel [3]) $\Longrightarrow u \in U(x)$. Also $f\left(x_{n}, u_{n}\right) \xrightarrow{w} f(x, u)$ in H and since H embeds compactly in $X^{*}, f\left(x_{n}, u_{n}\right) \xrightarrow{s} f(x, u)$ in $X^{*} \Longrightarrow f(x, u) \in$ $\in C, u \in U(x) \Longrightarrow x \in F^{-}(C) \Longrightarrow F^{-}(C)$ is closed in $H \Longrightarrow F(\cdot)$ is u.s.c. from H into X^{*}.

Consider the projections of (**) on the finite dimensional subspaces $X_{n}^{*}=$ $=p_{n} X=p_{n} H=p_{n} X^{*}$ (Galerkin approximations):
$(* *)_{n}$

$$
\left\{\begin{array}{l}
\dot{x}_{n}(t)+p_{n} A x_{n}(t) \in p_{n} F\left(x_{n}(t)\right) \quad \text { a.e. } \\
x_{n}(0)=p_{n} x_{0}=x_{0}^{n}
\end{array}\right\}
$$

From hypothesis $\mathrm{H}_{\tau}^{\prime}$, we know that for all $x \in p_{n} K=K \cap p_{n} X=K \cap X_{n}^{*}$, we have $(-A(x)+F(x)) \cap T_{K}(x) \neq \emptyset$, i.e. $p_{n}\left[(-A(x)+F(x)) \cap T_{K}(x)\right] \neq \emptyset$, whence $p_{n}(-A(x)+F(x)) \cap p_{n} T_{K}(x) \neq \emptyset$.

From Proposition 14, p. 173 of Aubin-Ekeland [1], we know that

$$
p_{n} T_{K}(x)=T_{p_{n} K}(x)
$$

So we have

$$
\left(-p_{n} A(x)+p_{n} F(x)\right) \cap T_{p_{n} K}(x) \neq \emptyset .
$$

This tells us that to the approximating, finite dimensional problems $(* *)_{n}$ we can apply Theorem 3.1 of this paper (see also Theorem 1 of Deimling [2]) and get trajectories $x_{n}(\cdot)$ emanating from $x_{0}^{n}=p_{n} x_{0}$ and leaving $p_{n} K=$ $=K \cap p_{n} X$ invariant.

From [10] we know that $\left\{x_{n}\right\}_{n \geqq 1}$ is relatively sequentially compact in $C\left(T, X_{w}\right)$. So by passing to a subsequence if necessary, we may assume that $x_{n} \rightarrow x$ in $C\left(T, X_{w}\right) \Longrightarrow x_{n}(t) \xrightarrow{w} x(t)$ in $C\left(T, X_{w}\right)$ and since $X \hookrightarrow H$ compactly, we get $x_{n}(t) \xrightarrow{s} x(t)$ in H for every $t \in T$. Also from Lemma 6.2 of [10], we know that $\dot{x}_{n} \xrightarrow{w} \dot{x}$ in $L^{2}\left(X^{*}\right)$. So invoking Theorem 3.1 of [9], we get that

$$
\dot{x}(t) \in \overline{\operatorname{conv}} w-\varlimsup \overline{\operatorname{lom}}\left(-p_{n} A\left(x_{n}(t)\right)+p_{n} F\left(x_{n}(t)\right)\right) \quad \text { a.e. }
$$

But for every $h \in X$, we have

$$
\left\langle h, p_{n} A\left(x_{n}(t)\right)\right\rangle=\left\langle p_{n}^{*} h, A\left(x_{n}(t)\right)\right\rangle
$$

and since $p_{n}^{*} \rightarrow$ Id in the strong operator topology and $A\left(x_{n}(t)\right) \xrightarrow{w} A(x(t))$ (because of $\mathrm{H}(A)$ (1)), we get

$$
\left\langle h, p_{n} A\left(x_{n}(t)\right)\right\rangle \rightarrow\langle h, A(x(t))\rangle .
$$

Also from [10] we know $\left\|x_{n}(t)\right\| \leqq \hat{M}$ for some $\hat{M}>0$ and all $n \geqq 1$, $t \in T$. So for $v \in X$, we have

$$
\begin{gathered}
\sigma\left(v, p_{n} F\left(x_{n}(t)\right)\right)=\sigma\left(p_{n}^{*} v, F\left(x_{n}(t)\right)\right)= \\
=\sigma\left(p_{n}^{*} v, F\left(x_{n}(t)\right)\right)-\sigma\left(v, F\left(x_{n}(t)\right)\right)+\sigma\left(v, F\left(x_{n}(t)\right)\right) \leqq \\
\leqq \sigma\left(p_{n}^{*} v-v, F\left(x_{n}(t)\right)\right)+\sigma\left(v, F\left(x_{n}(t)\right)\right) \leqq \\
\leqq\left\|p_{n}^{*} v-v\right\| c(1+\hat{M})+\sigma\left(v, F\left(x_{n}(t)\right)\right)
\end{gathered}
$$

whence

$$
\begin{gathered}
\overline{\lim } \sigma\left(v, p_{n} F\left(x_{n}(t)\right)\right) \leqq \\
\leqq \lim \left\|p_{n}^{*} v-v\right\| c(1+\hat{M})+\overline{\lim } \sigma\left(v, F\left(x_{n}(t)\right)\right) \leqq \sigma(v, F(x(t))) .
\end{gathered}
$$

Invoking Proposition 4.1 of [9], we conclude that $w-\varlimsup p_{n} F\left(x_{n}(t)\right) \cong$ $\subseteq F(x(t))$ a.e., whence $\dot{x}(t) \in-A x(t)+F(x(t))$ a.e., $x(0)=x_{0}, x(t) \in K$.

An application of Aumann's selection theorem, as in the proof of Theorem 3.1, gives us a control function $u(\cdot)$ such that

$$
\dot{x}(t)+A x(t)=f(x(t), u(t)) \quad \text { a.e., and } \quad x(0)=x_{0}, u(t) \in U(x(t)) \quad \text { a.e. }
$$

Since $x_{0} \in K$ was arbitrary, we conclude that K is $U(\cdot)$-invariant. Q.E.D.
Finally we will check how invariance for the relaxed and original systems are related. We will do this in the context of semilinear systems.

So consider the following two controlled systems:

$$
\left\{\begin{array}{l}
\dot{x}(t)+A x(t)=f(x(t), u(t)) \quad \text { a.e. } \\
x(0)=x_{0}, u(t) \in W \in P_{w k c}(Z)
\end{array}\right\}
$$

which is called the original system and
$(* * *)_{r} \quad\left\{\begin{array}{l}\dot{x}(t)+A x(t)=\int_{Z} f(x(t), z) \lambda(t)(d z) \quad \text { a.e. } \\ x(0)=x_{0}, \lambda(\cdot) \in R\left(T, W_{w}\right)\end{array}\right\}$
which is called the relaxed system. Here by $R\left(T, W_{w}\right)$ we denote the space of transition probabilities on $T \times W$ (recall that W_{w} i.e. W with the relative weak topology, is compact metrizable, see Dunford-Schwartz [4], Theorem 3, p. 434).

The hypotheses on the data are now the following:
$\mathrm{H}(A)^{\prime}: A: X \rightarrow X^{*}$ is a continuous, linear operator such that $\langle A x, x\rangle \geqq$ $\geqq c^{\prime}\|x\|^{2}, c^{\prime}>0$.
$\mathrm{H}(f)^{\prime \prime}: f: H \times Z \rightarrow H$ is a function such that
(1) $(x, u) \rightarrow f(x, u)$ is sequentially continuous from $H \times Z_{w}$ into H_{w},
(2) $|f(x, u)| \leqq k|x| k>0$.
$\mathrm{H}(K)^{\prime \prime}: K \subseteq H$ is nonempty and closed.
From Tanabe [11] we know that $A(\cdot)$ generates an evolution operator $\Phi: \Delta=\{0 \leqq s \leqq t \leqq b\} \rightarrow \mathcal{L}(H)$, for which we will also assume the following:
$\mathrm{H}(\Phi): \Phi(t, s)=\Phi(t-s)$ is compact for $t-s>0$.
We say that K is approximately W-invariant, if given $\varepsilon>0$ and $x_{0} \in K$, we can find a trajectory $x(\cdot)$ of $(* * *)$ such that $x(t) \in K_{\varepsilon}=\left\{y \in H: d_{K}(y) \leqq\right.$ $\leqq \varepsilon\}$ for all $t \in T$. Also note that by $R\left(t, x_{0}\right)$ we will denote the reachable set of system $(* * *)$ at time t i.e. $R\left(t, x_{0}\right)=\{y=x(t): x(\cdot)=$ trajectory of $(* * *)\}$. The next theorem relates the invariance properties of $(* * *)$ and $(* * *)_{r}$ and reads as follows:

Theorem 4.2. If hypotheses $\mathrm{H}(A)^{\prime}, \mathrm{H}(f)^{\prime \prime}, \mathrm{H}(K)^{\prime \prime \prime}$ and $\mathrm{H}(\Phi)$ hold, then K is approximately W-invariant for $(* * *)$ if and only if K is $R\left(T, W_{w}\right)$ invariant for $(* * *)_{r}$.

Proof. From the definition of the approximate W-invariance given above, for every $\varepsilon>0$ and every $x_{0} \in K$, we have $R\left(t, x_{0}\right) \cap K_{\varepsilon} \neq \emptyset$ for all $t \in T$. Let $\varepsilon_{n} \downarrow 0$ and pick $x_{n} \in R\left(t, x_{0}\right) \cap K_{\varepsilon_{n}}$. From Theorem 3.2 of [10] we know that $\overline{R\left(t, x_{0}\right)}{ }^{|\cdot|}=R_{r}\left(t, x_{0}\right) \in P_{k c}(H)$ (where $R_{r}\left(t, x_{0}\right)=\{y=$ $=x(t): x(\cdot)=$ trajectory of $\left.(* * *)_{r}\right\}=$ reachable set at time t of $\left.(* * *)_{r}\right)$. So by passing to a subsequence if necessary, we may assume that $x_{n} \longrightarrow x$ in $H \Longrightarrow x \in \overline{R\left(t, x_{0}\right)} \cdot|\cdot|=R_{r}\left(t, x_{0}\right)$. Also $\overline{\lim } K_{\varepsilon_{n}}=K$. Hence $x \in$ $\in R_{r}\left(t, x_{0}\right) \cap K \Longrightarrow K$ is $R\left(T, W_{w}\right)$-invariant.

By hypothesis for every $t \in T$ and every $x_{0} \in K, R_{r}\left(t, x_{0}\right) \cap K \neq \emptyset \Longrightarrow$ $\Longrightarrow \overline{R\left(t, x_{0}\right)}{ }^{1 \cdot \mid} \cap K \neq \emptyset \Longrightarrow R\left(t, x_{0}\right) \cap K_{\varepsilon} \neq \emptyset$ for all $\varepsilon>0 \Longrightarrow K$ is approximately W-invariant. Q.E.D.

Remark. Note that $\cup\left\{\int_{W} f(x, u) \lambda(d u): \lambda \in M_{+}^{1}\left(W_{w}\right)\right\}=\overline{\operatorname{conv}} F(x)$ (see [10]). So the relaxed system is the "convexification" of the original system.

Acknowledgement. The authors wish to express their gratitude to the referee for his (her) many suggestions, corrections and remarks, that improved the content of this paper considerably.

References

[1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley (New York, 1984).
[2] K. Deimling, Multivalued differential equations on closed sets, Diff. and Integral Eqns., 1 (1988), 23-30.
[3] J.-P. Delahave and J. Denel, The continuities of the point to set maps. Definitions and equivalences, Math. Programming Study, 10 (1979), 8-12.
[4] N. Dunford and J. Schwartz, Linear Operators I, Wiley (New York, 1958).
[5] A. Feuer and M. Heymann, Ω-invariance in control systems with bounded controls, J. Math. Anal. Appl., 53 (1976), 266-276.
[6] A. Feuer and M. Heymann, Admissible sets in linear systems with bounded controls, Intern. J. Control, 23 (1976), 381-392.
[7] E. Klein and A. Thompson, Theory of Correspondences, Wiley (New York 1984)
[8] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer (Berlin, 1971).
[9] N. S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci., 10 (1987), 433-442.
[10] N. S. Papageorgiou, Properties of the relaxed trajectories of evolution equations and optimal control, SIAM J. Control. Optim., 27 (1989), 266-287.
[11] H. Tanabe, Equations of Evolution, Pitman (London, 1979).
[12] D. Wagner, Survey of measurable selection theorems, SIAM J. Control, Optim., 15 (1977), 859-903.
(Received September 16, 1988; revised May 2, 1989)

UNIVERSITY OF THESSALONIKI
SCHOOL OF TECHNOLOGY
THESSALONIKI 54006
GREECE
ATHENS SCHOOL OF ECONOMICS
AND BUSINESS SCIENCE
ATHENS 10434
GREECE
NATIONAL TECHNICAL UNIVERSITY
DEPARTMENT OF MATHEMATICS
ATHENS 15773
GREECE

DECOMPOSITIONS OF BAER-LIKE RINGS

G. F. BIRKENMEIER (Lafayette)

Introduction

In this paper we will define an ideal $\left\langle N_{E}(R)\right\rangle$ which provides a link between the set of nilpotents and the set of idempotents of a ring R. In the first section various properties of $\left\langle N_{E}(R)\right\rangle$ are developed. Also we present four conditions which are equivalent to the quasi-Baer condition for a semiprime ring. In the second section these conditions are used to achieve decompositions for several classes of rings, including right self-injective rings, right FPF rings, and dual rings. The decompositions contain direct summands which are "essentially generated by nilpotents" in the sense that they are essential extensions of $\left\langle N_{E}(R)\right\rangle, P(R)$ (i.e., the prime radical of R), or $Z_{2}(R)$ (i.e., the second singular ideal of R). Also, these decompositions are somewhat reminiscent of Kaplansky's theory of types for Baer rings and they extend results in [2] and [22].

All rings are associative and have a unity unless indicated otherwise. R and I will always denote a ring with unity and the integers, respectively. $E(R), U(R), N(R), N_{j}(R)$, and $Z_{r}(R)$ symbolize the set of idempotents, units, nilpotents, nilpotents of index j, and the right singular ideal of R, respectively. For $X \subseteq R, \ell(X), r(X)$, and $\langle X\rangle$ denote the left annihilator of X, the right annihilator of X, and the subring (not necessarily with unity) generated by X, respectively; X is reduced if $X \cap N(R)=0$. For $e \in E(R)$, $e R$ is a ring (ideal) direct summand if e is central ($e R$ is an ideal). Recall from [3] that an idempotent $e \in R$ is said to be right semicentral if $e R=e R e$ (equivalently, if $r \in R$ then er =ere). Basic properties of right semicentral idempotents will be used implicitly throughout this paper and can be found in [3]. Of particular importance is the fact that if $R=A \oplus B$ (right ideal decomposition) and B is an ideal of R then there exists a right semicentral idempotent e such that $A=e R, B=(1-e) R, A$ is a ring with unity e, and every right ideal of A is a right ideal of R while every left ideal of B is a left ideal of R. From [10] and [18], R is a (quasi-)Baer ring if the right annihilator of every (ideal) nonempty subset of R is a direct summand of R. For $e \in E(R)$, we define $N_{e}(R)=e R(1-e) \cup(1-e) R e$ and $N_{E}(R)=\bigcup_{e \in E(R)} e R(1-e)$. The word "essential" will be used in the context of "right" R-modules. Other terminology can be found in [14].

1. Preliminary results

Proposition 1.1. Let $e \in E(R)$.
(i) $\left\langle N_{E}(R)\right\rangle$ is an ideal of R.
(ii) $\left\langle N_{E}(R)\right\rangle \subseteq\langle E(R)\rangle$ and $\left\langle N_{E}(R)\right\rangle \subseteq\langle U(R)\rangle$.
(iii) Let $M_{n}(R)$ denote the $n \times n$ matrix ring over R and $c \in M_{n}(R)$ with a one on the main diagonal, and zero elsewhere. Then $M_{n}(R)=\left\langle N_{c}\left(M_{n}(R)\right)\right\rangle$.
(iv) Let $R[x]$ denote the ring of polynomials in the commuting indeterminate x over R and $c=b+b_{1} x+\cdots+b_{n} x^{n} \in E(R[x])$. Then $b^{2}=b$ and $b_{i} \in\left\langle N_{b}(R)\right\rangle$ for $i \in\{1,2, \ldots, n\}$, and $\left\langle N_{E}(R[x])\right\rangle=\left\langle N_{E}(R)\right\rangle[x]$.
(v) If R is a right p.p. ring (principal right ideals projective), $\left\langle N_{E}(R)\right\rangle$ is the ideal generated by $N(R)$.
(vi) $N_{e}(R) \subseteq e R$ if and only if $1-e$ is a right semicentral idempotent.
(vii) For $r \in R, e r-r e=e r(1-e)+(1-e) r e \in\left\langle N_{e}(R)\right\rangle$.
(viii) If X is a right ideal of R and $e \in X$, then $e x=x e$ for all $x \in X$ if and only if $X \cap N_{e}(R)=0$.
(ix) If J is an ideal, then ey $=y$ for all $y \in J$ if and only if $J \cap N_{e}(R)=$ $=0$.
(x) $e \in\left\langle N_{e}(R)\right\rangle$ if and only if there exists $x \in N$ such that $e \in x R$ or $e \in R x$.
(xi) If J is an ideal, then $J \cap\left\langle N_{E}(R)\right\rangle \neq 0$ if and only if there exists $e \in E(R)$ such that $J \cap N_{e}(R) \neq 0$.

Proof. (i) Let $s, t \in R$. Then et $(1-e) s=[e t(1-e)][(1-e) s e]+e t(1-$ $-e) s(1-e) \in\left\langle N_{e}(R)\right\rangle$. It follows that $\left\langle N_{e}(R)\right\rangle$ is a right ideal and similarly it can be shown that $\left\langle N_{e}(R)\right\rangle$ is a left ideal.
(ii) Let $x \in e R(1-e)$. Then $e+x \in E(R)$. Hence, $x=e+x-e \in$ $\in\langle E(R)\rangle$. Thus $\left\langle N_{E}(R)\right\rangle \subseteq\langle E(R)\rangle$. Also, $x=(x-1)+1 \in\langle U(R)\rangle$. Hence $\left\langle N_{E}(R)\right\rangle \cong\langle U(R)\rangle$.
(iii) Routine.
(iv) Since $c=c^{2}$, then $b_{k}=\sum_{i+j=k} b_{i} b_{j}$ where i and j are nonnegative integers and $b=b_{0}$. Now $b b_{1}=b\left(b b_{1}+b_{1} b\right)=b b_{1}+b b_{1} b$. Thus $b b_{1} b=0$. Hence $b_{1}=b b_{1}+b_{1} b=\left[b b_{1} b+b b_{1}(1-b)\right]+\left[b b_{1} b+(1-b) b_{1} b\right]=b b_{1}(1-$ $-b)+(1-b) b_{1} b \in\left\langle N_{b}(R)\right\rangle$. Now assume for $0<h<k, b_{h} \in\left\langle N_{b}(R)\right\rangle$. Then $b b_{k}=b\left(\sum_{i+j=k} b_{i} b_{j}\right)=b b_{k}+b b_{k} b+b d$ where $d=\sum_{i+j=k} b_{i} b_{j}$ with $0<i<k$. Hence $b b_{k} b=-b d \in\left\langle N_{b}(R)\right\rangle$. Now $b_{k}=b b_{k}+b_{k} b+d$. But $b b_{k}=b b_{k} b+b b_{k}(1-$ $-b) \in\left\langle N_{b}(R)\right\rangle$. Similarly, $b_{k} b \in\left\langle N_{b}(R)\right\rangle$. Hence $b_{k} \in\left\langle N_{b}(R)\right\rangle$. By induction, $b_{i} \in\left\langle N_{b}(R)\right\rangle$ for $i \in\{1,2, \ldots, n\}$. Consequently, $c R[x](1-c) \in$ $\left\langle N_{b}(R)\right\rangle[x]$. Clearly, $\left\langle N_{E}(R)\right\rangle[x] \cong\left\langle N_{E}(R[x])\right\rangle$. Therefore, $\left\langle N_{E}(R)\right\rangle[x]=$ $\left\langle N_{E}(R[x])\right\rangle$.
(v) Let $y \in N_{2}$; then there exists $e=e^{2}$ such that $y \in e R=r(y)$. Thus $y=e y e+e y(1-e)=e y(1-e) \in N_{E}$. Hence, $N_{2} \cong\left\langle N_{E}(R)\right\rangle$. Now assume $N_{j} \subseteq\left\langle N_{E}(R)\right\rangle$ for all $2<j \leqq k$. Let $s \in N_{k+1}$. Then there exists $c=c^{2}$
such that $s \in c R=r\left(s^{k}\right)$. Now $s=s c+c s(1-c)$. But $(s c)^{k}=s^{k} c=0$. Thus $\left.s \in N_{E}(R)\right\rangle$. By induction $N(R) \subseteq\left\langle N_{E}(R)\right\rangle$. Consequently, $\left\langle N_{E}(R)\right\rangle$ equals the ideal generated by $N(R)$.
(vi) If $N_{e}(R) \subseteq e R$, then $e R$ is an ideal. By [3, Lemma 1], $1-e$ is right semicentral. If $1-e$ is right semicentral, then $(1-e) R e=0$. Hence $N_{e}(R)=e R(1-e) \subseteq e R$.
(vii) Routine.
(viii) For $0 \neq r \in R$, if $e r=r e$, then $r \notin\left(N_{e}(R)\right.$. Hence $e x=x e$ for all $x \in X$ implies $X \cap N_{e}(R)=0$. Conversely, assume $X \cap N_{e}(R)=0$. By part (vii) $(1-e) x e=e x-x e-e x(1-e) \in X \cap N_{e}(R)=0$. Thus $e x-x e=e x(1-e) \in X \cap N_{e} E(R)=0$.
(ix) Similar to part (viii).
(x) If $e \in\left\langle N_{e}(R)\right\rangle$, then there exist $r, s \in R$ such that $e=e r(1-e) s e \in$ $\in e r(1-e) R$. Conversely, assume $e=x r$ for some $r \in R$ (the proof is similar for $e \in R x$) and $x^{n}=0$. Then

$$
\begin{aligned}
e= & x r e=x(1-e) r e+x^{2} r^{2} e=x(1-e) r e+x^{2}(1-e) r^{2} e+x^{3} r^{3} e=\cdots= \\
& =x(1-e) r e+x^{2}(1-e) r^{2} e+\cdots+x^{n-1}(1-e) r^{n-1} e \in\left\langle N_{e}(R)\right\rangle .
\end{aligned}
$$

(xi) This part follows from part (ix).

Part (v) generalizes a result of W. Stephenson indicated in [15, Proposition 3.3]. Furthermore, part (xi) does not hold for right ideals since there exists a ring R which has nonzero reduced right ideals such that $R=\left\langle N_{E}(R)\right\rangle$ [6, Proposition 6].

Example A. Let S be a commutative ring with ideals X and Y. Define the matrix ring $R=\left(\begin{array}{cc}S & X \\ Y & S\end{array}\right)$. A straightforward calculation shows that $\left\langle N_{E}(R)\right\rangle=\left(\begin{array}{cc}X Y & X \\ Y & X Y\end{array}\right)=\left\langle N_{e}(R)\right\rangle$ where $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. If S is a domain, then R is a prime (hence a quasi-Baer) ring. Thus, for $R=\left(\begin{array}{cc}I & 2 I \\ 2 I & I\end{array}\right)$, then R is a prime ring such that $\left\langle N_{E}(R)\right\rangle$ is essential in R and $R=\langle E(R)\rangle$. However, since $\left(\begin{array}{cc}2 & 2 \\ -2 & -2\end{array}\right) \in N(R)$, we see that $N(R) \nsubseteq\left\langle N_{e}(R)\right\rangle$. Thus, by Proposition $1.1(\mathrm{v}), R$ is not a Baer ring.

We say R satisfies the (ideal) intersection left annihilator sum property, (IILAS) ILAS, if whenever X and Y are (ideals) right ideals such that $X \cap$ $\cap Y=0$, then $(\ell(X)+\ell(Y)=R) \ell(X) R+\ell(Y) R=R$. Right FPF rings [11, p. 168], right self-injective rings [21, p. 275], and dual rings [17] have the ILAS property. The following result, which is proved in [4], provides the motivation for the various decompositions in Section 2.

Proposition 1.2. Let R be semiprime. Then the following conditions are equivalent:
(i) R is a quasi-Baer ring.
(ii) Every ideal is essential in a ring direct summand of R.
(iii) Every ideal which is a closed right ideal is a direct summand of R.
(iv) R is an IILAS ring.
(v) For every ideal X of $R, r(X)$ is essential in a direct summand of R.

Proposition 1.3. Let R be a quasi-Baer ring such that $N_{E}(R)=0$. Then R is a semiprime ring such that $R=A \oplus B$ (ring decomposition) where A is an essential extension of the ideal generated by $N_{2}(R)$ and B is an Abelian Baer ring.

Proof. Let J be an ideal of R such that $J^{2}=0$. Hence there is a central idempotent e such that $r(J)=e R$. Then $e J=J=J e=0$. Hence R is semiprime. The remainder of the proof follows from Proposition 1.2 and [2, Lemma ${ }^{1}$].

Example B. The example of Zalesskii, and Neroslavskii as discussed in [16, pp. 1431-1432], is a simple (hence semiprime quasi-Baer) Noetherian ring R such that $N_{E}(R)=0$ but R is generated as an ideal by $N_{2}(R)$.

Proposition 1.4. Let be a ring such that every ideal is essential in a direct summand of R. Then R is IILAS, and if $Z_{r}(R)=0$, then R is quasiBaer.

Proof. From [4, Lemma 2.3] R is IILAS. If $Z_{r}(R)=0$, a proof similar to that of $[9$, Theorem 2.1] will show that R is quasi-Baer.

2. Decompositions

In this section various decompositions are determined in terms of $\left\langle N_{E}(R)\right\rangle, Z_{2}(R)$, and $P(R)$ (i.e., prime radical of $\left.R\right) . Z_{2}(R)$ is defined by the rule $Z_{2}(R) / Z_{r}(R)=Z_{r}\left(R / Z_{r}(R)\right)[14, \mathrm{p} .37]$. We note that $Z_{2}(R)$ is a closed ideal which is densely nil [1, Lemma 3.3].

Lemma 2.1. Let R be a ring which satisfies any of the following conditions:
(i) Every ideal is essential in a direct summand of R.
(ii) Every ideal which is closed as a right ideal is a direct summand of R.
(iii) $r(X)$ is (essential in) a direct summand whenever X is a closed right ideal.
(iv) R is ILAS.

If e is a right semicentral idempotent, then eRe satisfies the same conditions as R.

Proof. (i) Let J be an ideal of the ring $e R$. Now J is a right ideal of R, so let $R J$ denote the ideal of R generated by J. There exists $b=b^{2}$
such that $R J$ is essential in $b R$. Thus $J \subseteq e b R$. Let $0 \neq y \in e b R$. Hence there exists $r \in R$ such that $0 \neq$ byr $\in R J$. But byr $=$ bebyr. Hence $0 \neq e b y r \in e R J=J$. Thus J is essential in $e b R$.
(ii) Let X be an ideal in $e R e$. Then $X=e J$ where $J=R X$ is an ideal of R. Assume $e J$ is closed in $e R e$. Then $e J \oplus(1-e) R$ is an ideal of R which is closed as a right ideal in R. Hence there exists $c=c^{2}$ such that $e J \oplus(1-e) R=c R$. Now $e R \cap c R=e c R$ and $e c$ is an idempotent. But $e J=e c R=e c e(e R e)$. Therefore, $e J$ is a direct summand of $e R e$.
(iii) This part follows from the fact that every right ideal of $e R e$ is a right ideal of R.
(iv) Let X, Y be right ideals of e Re such that $X \cap Y=0$. Since X, Y are also right ideals of R, then $\ell(X) R+\ell(Y) R=R$. Hence $(e \ell(X) e) e R e+$ $+(e \ell(Y) e) e R e=e R e$.

Theorem 2.2. Let R be a ring such that every ideal is essential in a direct summand of R. Then R has the following right ideal decompositions:
(1) $R=H^{\prime} \oplus A^{\prime} \oplus B^{\prime} \oplus C$ where $H^{\prime}=Z_{2}(R)$;
(i) $S^{\prime}=A^{\prime} \oplus B^{\prime} \oplus C$ is a quasi-Baer ring such that every ideal of S^{\prime} is essential in an ideal direct summand of S^{\prime};
(ii) A^{\prime} is an essential extension of $P\left(S^{\prime}\right)$;
(iii) $T^{\prime}=B^{\prime} \oplus C$ is a semiprime quasi-Baer ring where B^{\prime} is an essential extension of $\left\langle N_{E}\left(T^{\prime}\right)\right\rangle$;
(iv) C is a semiprime quasi-Baer ring with $N_{E}(C)=0$;
(v) $A^{\prime} \oplus B^{\prime}$ is an essential extension of $\left\langle N\left(S^{\prime}\right)\right\rangle$;
(2) $R=H^{\prime \prime} \oplus A^{\prime \prime} \oplus B^{\prime \prime} \oplus C$ where $H^{\prime \prime}$ is an essential extension of $\left\langle N_{E}(R)\right\rangle$;
(i) $S^{\prime \prime}=A^{\prime \prime} \oplus B^{\prime \prime} \oplus C$ is a ring decomposition in which every ideal of $S^{\prime \prime}$ is essential in a ring direct summand of $S^{\prime \prime}$;
(ii) $A^{\prime \prime}$ is an essential extension of $P\left(S^{\prime \prime}\right)$;
(iii) $T^{\prime \prime}=B^{\prime \prime} \oplus C$ is a semiprime quasi-Baer ring where $B^{\prime \prime}=$ $=Z_{2}\left(T^{\prime \prime}\right)$;
(iv) $A^{\prime \prime} \oplus B^{\prime \prime}=Z_{2}\left(S^{\prime \prime}\right)$;
(v) $H^{\prime} \oplus A^{\prime} \oplus B^{\prime}=H^{\prime \prime} \oplus A^{\prime \prime} \oplus B^{\prime \prime}$.

Proof. (1) Since $Z_{2}(R)$ is a closed right ideal, then $R=Z_{2}(R) \oplus S^{\prime}$ where S^{\prime} is a right nonsingular ring. By Proposition 1.4 and [14, p. 47, Exercise 1], S^{\prime} is a quasi-Baer ring such that every ideal of S^{\prime} is essential in an ideal direct summand of S^{\prime}. Parts (ii), (iii), and (iv) follow from Proposition 1.2 and repeated application of Lemma 2.1. For part (iv) we note that $\left\langle N_{E}\left(S^{\prime}\right)\right\rangle \cong A^{\prime} \oplus B^{\prime}$. Also from Lemma 2.1 and Proposition 1.3 $S^{\prime}=W \oplus K$ (right ideal decomposition) where W is an essential extension of $\left\langle N_{E}\left(S^{\prime}\right)\right\rangle$ and K is a semiprime ring. Hence $P\left(S^{\prime}\right) \subseteq W$. Clearly $\left\langle N_{E}\left(T^{\prime}\right)\right\rangle \subseteq$ $\leqq\left\langle N_{E}\left(S^{\prime}\right)\right\rangle$. Hence $W=A^{\prime} \oplus B^{\prime}$.
(2) Let $H^{\prime \prime}$ denote the unique direct summand of R which is an essential extension of $\left\langle N_{E}(R)\right\rangle$. Since the complement of C is unique, $R=H^{\prime \prime} \oplus$ $\oplus S^{\prime \prime}$ where $C \subseteq S^{\prime \prime}$. Parts (i), (ii), and (iii) follow from Proposition 1.1,

Proposition 1.2, and Lemma 2.1. From part (1), C is right nonsingular. Hence $Z_{2}\left(S^{\prime \prime}\right) \cong A^{\prime \prime} \oplus B^{\prime \prime}$. From [13, p. 1214], $Z_{2}\left(A^{\prime \prime}\right)=A^{\prime \prime}$. Thus, $Z_{2}\left(S^{\prime \prime}\right)=$ $=A^{\prime \prime} \oplus B^{\prime \prime}$. Part (v) follows from the fact that C has a unique complement.

We note that whenever a direct summand of R is an essential extension of $\left\langle N_{E}(R)\right\rangle$, then it is the unique such direct summand. As an application of Theorem 2.2 and Proposition 1.3, we see that if R is a prime ring, then either R is an essential extension of $\left\langle N_{E}(R)\right\rangle$, or R has only trivial idempotents and is an essential extension of the ideal generated by N_{2}, or R is a domain (see Examples A and B). Also Theorem 2.2 is a generalization of a result of Utumi [22, p. 604].

Theorem 2.3. Let R be a ring such that every ideal which is closed as a right ideal is a direct summand. Then $R=A \oplus Z_{2}(R)$ (right ideal decomposition) where A is a quasi-Baer ring such that every ideal of A is essential in an ideal direct summand of A.

Proof. The proof follows from Lemma 2.1, [14, p. 47, Exercise 1], and Proposition 1.4.

We note that any right CS ring [8], in particular any right selfinjective or right uniform ring, satisfies the hypotheses of Theorems 2.2 and 2.3.

Theorem 2.4. Let R be a ring such that $r(X)$ is a direct summand whenever X is a closed right ideal. Then R has the following right ideal decompositions:
(i) $R=A \oplus B$ where A is a semiprime quasi-Baer ring and B is an essential extension of $P(R)$.
(ii) $R=C \oplus D$ where C is a ring such that each of its ideals is essential in a ring direct summand of C and D is an essential extension of $\left\langle N_{E}(R)\right\rangle$. In particular, if R is a Baer ring, then C is an Abelian Baer ring.

Proof. Let J be an ideal of R and X is a relative complement of J. Hence $r(X)=e R$ where $e=e^{2}$ and $J \subseteq e R$. But $X \cap e R \subseteq\left\langle N_{E}(R)\right\rangle \cap P(R)$. Thus if $J=\left\langle N_{E}(R)\right\rangle$ or $J=P(R)$, then $X \cap e R=0$; hence J is essential in $e R$. Part (i) follows from Lemma 2.1 and Proposition 1.2. Part (ii) is a consequence of Lemma 2.1, the above argument, and Proposition 1.1(v).

The condition stated in Theorem 2.4 is a proper generalization of the quasi-Baer condition since a uniform ring satisfies the condition of Theorem 2.4 but is not necessarily quasi-Baer (e.g., integers modulo four).

Theorem 2.5. Let R be a ring such that $r(X)$ is essential in a direct summand whenever X is a closed right ideal. Then $R=A \oplus B \oplus C$ (right ideal decomposition) such that:
(i) A is an essential extension of $Y \oplus\left\langle N_{E}(R)\right\rangle$ where Y is a right ideal of R with $Y^{2}=0$.
(ii) B is a ring which is an essential extension of $P(B)$.
(iii) C is a semiprime quasi-Baer ring with $N_{E}(C)=0$.

Proof. Let J be an ideal of R and X is a relative complement of J. Hence there exists $e=e^{2}$ such that $e R$ is an essential extension of $r(X)$. A straightforward argument shows that $e R$ is an essential extension of $[X \cap$ $\cap r(X)] \oplus J$. Thus, if we let $J=\left\langle N_{E}(R)\right\rangle$ and $Y=X \cap r(X)$, then the result follows from Lemma 2.1, Proposition 1.2, and the above argument.

We note that if R is right nonsingular, then the hypotheses for Theorems 2.4 and 2.5 coincide. The next proposition is a slight generalization of Faith's Splitting Theorem [11, p. 184].

Proposition 2.6. Let R satisfy the ILAS condition and let K be a right ideal containing all nilpotent index two right ideals. Then $R=A \oplus L$ (right ideal decomposition) where A is an ideal such that K is ideal essential in A and L is a semiprime ILAS (hence quasi-Baer) ring.

Proof. Let B be an ideal maximal with respect to $B \cap K=0$. Let $A=\ell(B)$, hence $K \subseteq A$. Since $(A \cap B)^{2}=0$, then $A \cap B \subseteq K \cap B=0$. Thus $R=A+\ell(A)$. Hence $1=a+x$ where $a \in A$ and $x \in \ell(A)$. Then $A=a R$ and $a^{2}=a$. Let I be a nonzero ideal of R such that $I \subseteq A$. Now there exists $k \in(B+I) \cap K$ such that $0 \neq k=b+y$ where $b \in B$ and $y \in I$. But $b=k-y \in A \cap B=0$. Hence $I \cap K \neq 0$. Let $L=(1-a) R$. By Lemma 2.1 and Proposition 1.2, L is a semiprime ILAS quasi-Baer ring.

Example C. Corollary 8 of [5] indicates how one can construct a large class of ILAS rings which are not quasi-Baer. In particular, if R is a strongly right bounded quasi-Baer ring (e.g., a commutative Baer ring), then the split-null extension S of R by R is strongly right bounded and ILAS but not quasi-Baer. Note that $P(S)$ is essential in S.

Example D. Let T be the semigroup ring of A over I_{2} (integers modulo two) where A is the semigroup on the set $\{a, b\}$ satisfying the relation $x y=y$ for $x, y \in A$. Thus $T=\{0, a, b, a+b\}$. Let T_{1} denote the ring with unity formed by extending (i.e., Dorroh extension) T to $T \times I . T_{1}$ exhibits the decompositions of this section in a nontrivial way. It provides an example of a ring which is neither right CS nor is the right annihilator of a closed right ideal necessarily a direct summand (e.g., $r(T, 0)=(0,2 I))$ hence it is not quasi-Baer. However, it satisfies the following conditions:
(i) every ideal is essential in a direct summand, thus the right annihilator of a closed right ideal is essential in a direct summand;
(ii) every closed ideal is a direct summand;
(iii) T_{1} is I (but not ILAS). We have $T_{1}=(a, 0) T_{1} \oplus(a, 1) T_{1}$ where $\left\langle N_{E}\left(T_{1}\right)\right\rangle=P\left(T_{1}\right) \cong Z_{2}\left(T_{1}\right)=(a, 0) T_{1}$ and $(a, 1) T_{1}$ is an Abelian Baer ring. Further details of this example can be found in [5, Example 9] and [7].

References

[1] G. F. Birkenmeier, Self-injective rings and the minimal direct summand containing the nilpotents, Comm. Algebra, 4 (1976), 705-721.
[2] G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math., 97 (1981), 283-292.
[3] G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra, 11 (1983), 567-580.
[4] G. F. Birkenmeier, A generalization of FPF rings, Comm. Algebra, 17(1989), 855-884.
[5] G. F. Birkenmeier, Split-null extensions of strongly right bounded rings, Publ. Mate., 33(1989), 37-44.
[6] G. F. Birkenmeier and R. P. Tucci, Does every right ideal of a matrix ring contain a nilpotent element? Amer. Math. Monthly, 84 (1977), 613-633.
[7] G. F. Birkenmeier and H. E. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Algebra, 17(1989), 573-586.
[8] A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford, 28 (1977), 61-80.
[9] A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc., 21 (1980), 434-444.
[10] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1967), 417-423.
[11] C. Faith, Injective Quotient Rings of Commutative Rings, Springer Lecture Notes 700, Springer-Verlag (Berlin, 1979).
[12] C. Faith and S. Page, FPF Ring Theory: Faithful Modules and Generators of Mod-R, London Mathematical Society Lecture Note Series 88, Cambridge University Press (Cambridge, 1984).
[13] J. W. Fisher, On the nilpotency of nil subrings, Canad. J. Math., 22 (1970), 12111216.
[14] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker (New York, 1976).
[15] K. R. Goodearl, Von Neumann Regular Rings, Pitman (London, 1979).
[16] K. R. Goodearl, Simple Noetherian rings not isomorphic to matrix rings over domains, Comm. Algebra, 12 (1984), 14421-1434.
[17] C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra, 93 (1985), 253-266.
[18] I. Kaplansky, Rings of Operators, W. A. Benjamin (New York, 1968).
[19] B. Müller, Noncommutative localization and invariant theory, Comm. Algebra, 6 (1978), 839-862.
[20] A. Pollingher and A. Zaks, On Baer and quasi-Baer Rings, Duke Math. J., 37 (1970), 127-138.
[21] B. Stenstrom, Rings of Quotients, Springer-Verlag (New York, 1975).
[22] Y. Utumi, On continuous regular rings and semisimple self-injective rings, Canad. J. Math., 12 (1960), 597-605.
(Received September 20, 1988)
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHWESTERN LOUISIANA
LAFAYETTE, LA 70504
U.s.A.

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ СХОДИМОСТИ РАСШИРЕННЫХ ИНТЕРПОЛЯЦИОННЫХ ПРОЦЕССОВ ВЫСШЕГО ПОРЯДКА В МЕТРИКЕ L_{p}

Д. Л. БЕРМАН (Ленинград)

1. Пусть

$$
\begin{equation*}
x_{k}=x_{k}^{(n)}=\cos \frac{(2 k-1) \pi}{2 n}, \quad k=1,2, \ldots, n \tag{1}
\end{equation*}
$$

и пусть C - множество всех функций, непрерывных в $[-1,1]$. Пусть $H_{n}(f, x)$ - полином степени $2 n-1$, однозначно определяющийся из условий

$$
H_{n}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad H_{n}\left(f, x_{k}\right)=0, \quad k=1,2, \ldots, n, \quad n=1,2, \ldots .
$$

Классическая теорема Л. Фейера [1] утверждает, что для любой $f \in C$ вышолняется равномерно в $[-1,1]$ соотношение $H_{n}(f, x) \rightarrow f(x)$, $n \rightarrow \infty$. Н. М. Крылов и И. Я. Штаерман [2] удлинили процесс $\left\{H_{n}(f, x)\right\}_{n=1}^{\infty}$ в том смысле, что они заменили полином $H_{n}(f, x)$ степени $2 n-1$ на полином $p_{n}(f, x)$ степени $4 n-1$, однозначно определяемый из условий

$$
p_{n}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad p_{n}^{(i)}\left(f, x_{k}\right)=0, \quad i=1,2,3, \quad k=1,2, \ldots n .
$$

Процесс $\left\{p_{n}(f, x)\right\}_{n=1}^{\infty}$ обычно называется интерполяционным процессом Эрмита-Фейера высшего порядка. В [2] и [3] доказано, что для любой $f \in C$ выполняется равномерно в $[-1,1]$ соотношение

$$
\begin{equation*}
p_{n}(f, x) \rightarrow f(x), \quad n \rightarrow \infty . \tag{2}
\end{equation*}
$$

Для $f \in C$ и натурального n рассмотрим алгебраический полином $S_{n, r}(f, x), r=1,2 . S_{n, r}(f, x)$ полином степени $4 n+2 r+1$, однозначно определяемый из условий

$$
\begin{gathered}
S_{n, r}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad S_{n, r}^{(i)}\left(f, x_{k}\right)=0, \quad i=1,2,3, \quad k=1,2, \ldots, n ; \\
S_{n, r}(f, \pm 1)=f(\pm 1), \quad S_{n, r}^{(j)}(f, \pm 1)=0, \quad j=1, \ldots, r .
\end{gathered}
$$

Очевидно, что последние условия при $r=0$ опускаются. В [4] доказана

Теорема. Интерполяционный процесс

$$
\left\{S_{n, r}(f, x)\right\}, \quad r=1,2, \quad n=1,2, \ldots
$$

построенный при узлах (1) для функции f сходится х f равномерно в [-1, 1], если

$$
\begin{equation*}
\left|f^{(r+1)}(x)\right| \leq C \tag{3}
\end{equation*}
$$

для $x \in[-1,1] u$

$$
\begin{equation*}
f^{\prime}(\pm 1)=\ldots=f^{(r)}(\pm 1)=0 . \tag{4}
\end{equation*}
$$

В [5] показано, что если равенства (4) не выполняются, то процесс $\left\{S_{n, r}(f, x)\right\}_{n=1}^{\infty}$ расходится в каждой точке из $(-1,1)$. Поэтому естественно изучить сходимость процессов $\left\{S_{n, r}(f, x)\right\}_{n=1}^{\infty}$ в метрике $L_{p}, 0<p<\infty$, когда расстояние между функциями f и g задается но формуле

$$
\begin{equation*}
\varrho(f, g)=\left(\int_{-1}^{1}|f-g|^{p} d x\right)^{1 / p} \tag{5}
\end{equation*}
$$

Аналогичная задача для расширенного интерполяционного процесса Эрмита-Фейера решена в [6]. Любошытно, что при изучении сходимости процессов $\left\{S_{n, r}(f, x)\right\}, r=1,2$, в метрике $L_{p}, 0<p<\infty$, можно неравенства (3) отбросить.
2. Введем классы функций K_{1} и K_{2}. Пусть $f \in C$. Будем говорить, что $f \in K_{1}$, если $f(x)$ имеет правую и левую производные соответственно в точках $x=\mp 1$. Будем говорить, что функция из C принадлежит классу K_{2}, если существуют конечные производные $f^{\prime}(\mp 1)$ и пределы

$$
\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{(x+1)^{2}}, \quad \lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}}
$$

конечные. Справедливы следующие теоремы:
Teopema 1. Пусть $S_{n, 1}(f, x)$ полином степени $4 n+3$, однозначно определяемый из условий

$$
\begin{gathered}
S_{n, 1}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad S_{n, 1}^{(i)}\left(f, x_{k}\right)=0, \quad i=1,2,3, \\
S_{n, 1}(f, \pm 1)=f(\pm 1), \quad S_{n, 1}^{\prime}(f, \pm 1)=0 .
\end{gathered}
$$

Пусть процесс $\left\{S_{n, 1}(f, x)\right\}_{n=1}^{\infty}$ построен при узлах (1) для функции $f(x)$ из класса K_{1}. Для того чтобы он сходился в метрике $L_{p}, 0<p<\infty$, необходимо и достаточно, чтобы $f^{\prime}(-1)=f^{\prime}(1)=0$.

Теорема 2. Пусть $S_{n, 2}(f, x)$ полином степени $4 n+5$, однозначно определяемый из условий

$$
\begin{aligned}
& S_{n, 2}\left(f, x_{k}\right)=f\left(x_{k}\right), \quad S_{n, 2}^{(i)}\left(f, x_{k}\right)=0, \quad i=1,2,3, \\
& S_{n, 2}(f, \pm 1)=f(\pm 1), \quad S_{n, 2}^{(j)}(f, \pm 1)=0, \quad j=1,2 .
\end{aligned}
$$

Пусть $f \in K_{2} u$

$$
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}}=\alpha, \quad \lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{(x+1)^{2}}=\beta
$$

Пусть процесс $\left\{S_{n, 2}(f, x)\right\}_{n=1}^{\infty}$ построен при узлах (1) для функции $f(x)$ из класса K_{2}. Для того чтобы он сходился в метрике $L_{p}, 0<p<\infty$, необходимо и достаточно, чтобы $\alpha=\beta=0$.
3. Докажем сперва теорему 1. Из определения полиномов $S_{n, 1}(f, x)$ и $p_{n}(f, x)$ следует, что
$S_{n, 1}(f, x)-p_{n}(f, x)=T_{n}^{4}(x)\left(a_{n} x^{3}+b_{n} x^{2}+c_{n} x+d_{n}\right), \quad T_{n}(x)=\cos n \arccos x$, где коэффициенты $a_{n}, b_{n}, c_{n}, d_{n}$ определяются из системы уравнений

$$
\begin{equation*}
a_{n}+b_{n}+c_{n}+d_{n}=f(1)-p_{n}(f, 1) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
-a_{n}+b_{n}-c_{n}+d_{n}=f(-1)-p_{n}(f,-1) \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
4 n^{2}\left(a_{n}+b_{n}+c_{n}+d_{n}\right)+\left(3 a_{n}+2 b_{n}+c_{n}\right)=-p_{n}^{\prime}(f, 1), \tag{8}\\
\left.4 n^{2}\left(a_{n}-b_{n}+c_{n}-d_{n}\right)+3 a_{n}-2 b_{n}+c_{n}\right)=-p_{n}^{\prime}(f,-1) .
\end{gather*}
$$

Из (6) и (7), в силу (2), получаем $a_{n}+c_{n} \rightarrow 0, b_{n}+d_{n} \rightarrow 0, n \rightarrow \infty$. Поэтому

$$
\begin{equation*}
S_{n, 1}(f, x)-p_{n}(f, x)=T_{n}^{4}(x)\left[\left(x^{2}-1\right)\left(a_{n} x+b_{n}\right)+o(1)\right] . \tag{9}
\end{equation*}
$$

Из системы (8) следует, что
$a_{n}=-\frac{p_{n}^{\prime}(f, 1)}{2}-2 n^{2}\left(f(1)-p_{n}(f, 1)\right)-\frac{1}{2}\left[f(1)-p_{n}(f, 1)-f(-1)+p_{n}(f,-1)\right]-b_{n}$,
(11) $b_{n}=\frac{1}{4}\left[p_{n}^{\prime}(f, 1)-p_{n}^{\prime}(f,-1)-4 n^{2}\left(f(1)-p_{n}(f, 1)+f(-1)-p_{n}(f,-1)\right)\right]$.

Изучим функционалы

$$
\left\{\begin{array}{c}
\alpha_{n}(f)=p_{n}^{\prime}(f, 1)+4 n^{2}\left(f(1)-p_{n}(f, 1)\right) \tag{12}\\
\beta_{n}(f)=p_{n}^{\prime}(f,-1)+4 n^{2}\left(f(-1)-p_{n}(f,-1)\right)
\end{array}\right.
$$

Очевидно, что

$$
\begin{equation*}
b_{n}=\frac{1}{4}\left(\alpha_{n}(f)-\beta_{n}(f)\right) . \tag{13}
\end{equation*}
$$

Известно [7], [8], что при узлах (1)

$$
\begin{equation*}
p_{n}(f, x)=\frac{1}{n^{4}} \sum_{k=1}^{n} f\left(x_{k}^{(n)}\right) A_{k}(x) B_{k}(x), \tag{14}
\end{equation*}
$$

где

$$
\left\{\begin{array}{c}
A_{k}(x)=\left(\frac{T_{n}(x)}{x-x_{k}}\right)^{4} \tag{15}\\
B_{k}(x)=\left(1-x x_{k}\right)^{2}+\left(x-x_{k}\right)^{2}\left[\frac{2\left(n^{2}-1\right)\left(1-x x_{k}\right)}{3}-\frac{x x_{k}}{2}\right]
\end{array}\right.
$$

Из определения полинома $p_{n}(f, x)$ следует, что если $f(x)=$ const., то $p_{n}(f, x)=f(x)$. Стало быть, имеет место тождество $\sum_{k=1}^{n} A_{k}(x) B_{k}(x)=$ $=n^{4}$. Поэтому $\sum_{k=1}^{n}\left(A_{k}^{\prime}(x) B_{k}(x)+A_{k}(x) B_{k}^{\prime}(x)\right)=0$. Из сказанного вытекает, что

$$
\begin{equation*}
f(1)-p_{n}(f, 1)=\frac{1}{n^{4}} \sum_{k=1}^{n}\left(f(1)-f\left(x_{k}\right)\right) A_{k}(1) B_{k}(1), \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
p_{n}^{\prime}(f, 1)=-\frac{1}{n^{4}} \sum_{k=1}^{n}\left(f(1)-f\left(x_{k}\right)\right)\left(A_{k}^{\prime}(1) B_{k}(1)+A_{k}(1) B_{k}^{\prime}(1)\right) . \tag{17}
\end{equation*}
$$

В силу (12), (16), (17) имеем, что

$$
\begin{equation*}
\alpha_{n}(f)=-\frac{1}{n^{4}} \sum_{k=1}^{n}\left(f(1)-f\left(x_{k}\right)\right) \Delta_{k}, \tag{18}
\end{equation*}
$$

где

$$
\begin{equation*}
\Delta_{k}=A_{k}^{\prime}(1) B_{k}(1)+A_{k}(1) B_{k}^{\prime}(1)-4 n^{2} A_{k}(1) B_{k}(1) \tag{19}
\end{equation*}
$$

Учтем, что $A_{k}(1)=\frac{1}{\left(1-x_{k}\right)^{4}}$ и $A_{k}^{\prime}(1)=\frac{4 n^{2}}{\left(1-x_{k}\right)^{4}}-\frac{4}{\left(1-x_{k}\right)^{5}}$. Поэтому из (19) выводим, что

$$
\begin{equation*}
\Delta_{k}=\frac{B_{k}^{\prime}(1)}{\left(1-x_{k}\right)^{4}}-\frac{4 B_{k}(1)}{\left(1-x_{k}\right)^{3}} \tag{20}
\end{equation*}
$$

Из (18) получаем, что

$$
\begin{equation*}
\alpha_{n}(f)=-\frac{1}{n^{4}} \sum_{k=1}^{n} \frac{f(1)-f\left(x_{k}\right)}{1-x_{k}} \Delta_{k, 1}, \quad \Delta_{k, 1}=\Delta_{k}\left(1-x_{k}\right) \tag{21}
\end{equation*}
$$

Из (21) вытекает, что
$\alpha_{n}(f)=-\frac{1}{n^{4}} \sum_{k=1}^{n}\left(\frac{f(1)-f\left(x_{k}\right)}{1-x_{k}}-f^{\prime}(1)\right) \Delta_{k, 1}-\frac{f^{\prime}(1)}{n^{4}} \sum_{k=1}^{n} \Delta_{k, 1} \equiv S_{1}^{(n)}+S_{2}^{(n)}$.
Из (15) выводим, что

$$
\begin{gathered}
B_{k}(1)=\frac{\left(1-x_{k}\right)^{2}}{2}+\frac{4 n^{2}-1}{6}\left(1-x_{k}\right)^{3} \\
B_{k}^{\prime}(1)=\frac{4 n^{2}-1}{6}\left(1-x_{k}\right)^{3}+\frac{4 n^{2}+11}{6}\left(1-x_{k}\right)-3\left(1-x_{k}\right)
\end{gathered}
$$

Поэтому из (20) следует, что

$$
\begin{equation*}
\Delta_{k, 1}=\frac{4 n^{2}-1}{6}-\frac{4 n^{2}-5}{2\left(1-x_{k}\right)}-\frac{5}{\left(1-x_{k}\right)^{2}} \tag{23}
\end{equation*}
$$

Рассмотрим сперва сумму $S_{1}^{(n)}$ из (22). По условию существует $f^{\prime}(1)$. Поэтому по $\varepsilon>0$ можно найти такое $\delta>0$, что

$$
\left|\frac{f(1)-f\left(x_{k}\right)}{1-x_{k}}-f^{\prime}(1)\right|<\varepsilon
$$

если $1-x_{k}<\delta$. Из определения $S_{1}^{(n)}$ имеем:

$$
\begin{gather*}
\left|S_{1}^{(n)}\right|<\frac{\varepsilon}{n^{4}} \sum_{k=1}^{n}\left|\Delta_{k, 1}\right|+\frac{1}{n^{4}}\left(\frac{2\|f\|}{\delta}+\left|f^{\prime}(1)\right|\right) \sum_{1-x_{k} \geqq \delta}\left|\Delta_{k, 1}\right| \equiv \sum_{1}+\sum_{2} \tag{24}\\
\|f\|=\max _{-1 \leqq x \leqq 1}|f(x)|
\end{gather*}
$$

В силу равенства (23) получим, что

$$
\begin{equation*}
\sum_{1} \leqq\left[O\left(\frac{1}{n}\right)+\frac{4 n^{2}-5}{2 n^{4}} \sum_{k=1}^{n} \frac{1}{1-x_{k}}+\frac{5}{n^{4}} \sum_{k=1}^{n} \frac{1}{\left(1-x_{k}\right)^{2}}\right] \varepsilon \tag{25}
\end{equation*}
$$

Воспользуемся тождествами

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{1-x_{k}}=n^{2}, \quad \sum_{k=1}^{n} \frac{1}{\left(1-x_{k}\right)^{2}}=\frac{n^{2}\left(2 n^{2}+1\right)}{3} \tag{26}
\end{equation*}
$$

Тогда из (25), (26) вытекает, что $\sum_{1}=O(1) \varepsilon$. Итак,

$$
\begin{equation*}
\sum_{1}<C \varepsilon \tag{27}
\end{equation*}
$$

где C - абсолютная константа. Переходим к оценке $\sum_{1-x_{k} \geqq \delta}\left|\Delta_{k, 1}\right|$. В силу (23) имеем, что

$$
\begin{equation*}
\sum_{1-x_{k} \geqq \delta}\left|\Delta_{k, 1}\right| \leqq \frac{n\left(4 n^{2}-1\right)}{6}+\frac{n\left(4 n^{2}-5\right)}{2 \delta}+\frac{5 n}{\delta^{2}} \tag{28}
\end{equation*}
$$

Из неравенств $(24),(27-28)$ выводим, что

$$
\begin{equation*}
S_{1}^{(n)} \rightarrow 0, \quad n \rightarrow \infty \tag{29}
\end{equation*}
$$

Рассмотрим $S_{2}^{(n)}$, когда $n \rightarrow \infty$. Из (23) следует, что

$$
\frac{1}{n^{4}} \sum_{k=1}^{n} \Delta_{k, 1}=\frac{4 n^{2}-1}{6 n^{3}}-\frac{4 n^{2}-5}{2 n^{4}} \sum_{k=1}^{n} \frac{1}{1-x_{k}}-\frac{5}{n^{4}} \sum_{k=1}^{n} \frac{1}{\left(1-x_{k}\right)^{2}}
$$

Отсюда, в силу тождеств (26), получим, что

$$
\frac{1}{n^{4}} \sum_{k=1}^{n} \Delta_{k, 1}=-\frac{16}{3}+O\left(\frac{1}{n}\right)
$$

Стало быть, $\lim _{n \rightarrow \infty} S_{2}^{(n)}=\frac{16}{3} f^{\prime}(1)$. Отсюда и из $(22),(29)$ выводим, что

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}(f)=\frac{16}{3} f^{\prime}(1) \tag{30}
\end{equation*}
$$

Аналогичным образом доказывается, что при узлах (1) и $f \in K_{1}$ выполняется равенство

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{n}(f)=\frac{16}{3} f^{\prime}(-1) \tag{31}
\end{equation*}
$$

Из равенств (10-12), (30-31) выводим, что при узлах (1) и $f \in K_{1}$ выполняются равенства

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=-\frac{4}{3}\left(f^{\prime}(-1)+f^{\prime}(1)\right), \lim _{n \rightarrow \infty} b_{n}=\frac{4}{3}\left(f^{\prime}(-1)-f^{\prime}(1)\right) \tag{32}
\end{equation*}
$$

Введем обозначение $r_{n}=\varrho\left(p_{n}(f), S_{n, 1}(f)\right)$, где $\varrho(f, g)$ определяется согласно (5). Ясно, что

$$
\begin{equation*}
r_{n}-\varrho\left(f, p_{n}(f)\right) \leqq \varrho\left(f, S_{n, 1}(f)\right) \leqq r_{n}+\varrho\left(f, p_{n}(f)\right) . \tag{33}
\end{equation*}
$$

В силу (33) и (2) получим, что для любой

$$
\begin{equation*}
r_{n}-o(1) \leqq \varrho\left(f, S_{n, 1}(f)\right) \leqq r_{n}+o(1), \quad n \rightarrow \infty . \tag{34}
\end{equation*}
$$

Поэтому для доказательства теоремы 1 нужно доказать, что $r_{n} \rightarrow 0$, $n \rightarrow \infty$. Из (32) и (9) заключаем, что $r_{n} \rightarrow 0, n \rightarrow \infty$, тогда и только тогда, когда

$$
V_{n}^{(p)} \equiv \int_{-1}^{1} T_{n}^{4 p}(x)\left|\left(f^{\prime}(-1)+f^{\prime}(1)\right) x+f^{\prime}(1)-f^{\prime}(-1)\right|^{p}\left(1-x^{2}\right)^{p} d x \rightarrow 0, n \rightarrow \infty
$$

Очевидно, что

$$
\begin{equation*}
V_{n}^{(p)}=\int_{0}^{\pi} \cos ^{4 p} n \theta\left|a_{1}+b_{1} \cos \theta\right|^{p} \sin ^{2 p+1} \theta d \theta \tag{35}
\end{equation*}
$$

где $a_{1}=f^{\prime}(1)-f^{\prime}(-1), b_{1}=f^{\prime}(1)+f^{\prime}(-1)$. Для дальнейшего нам нужна лемма из [6]

Лемма. Пусть $\varphi(\theta)$ непрерывна в $[0, \pi]$. Если $\varphi(\theta) \geqq 0, \theta \in[0, \pi]$ и при некотором $p, 0 \leqq p<\infty$, выполняется равенство

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \varphi(\theta) \cos ^{2 p} n \theta d \theta=0
$$

$\operatorname{mo} \varphi(\theta) \equiv 0, \theta \in[0, \pi]$.
Доказательство леммы находится в [6]. Применим эту лемму к интегралу (35), где $\varphi(\theta)=\left|a_{1}+b_{1} \cos \theta\right|^{p} \sin ^{2 p+1} \theta$. Тогда получим, что $a_{1}=b_{1}=0$. Теорема 1 доказана.

Доказательство теоремы 2. Очевидно, что $f(x)=\varphi_{1}(x)+\varphi_{2}(x)$, где φ_{1} - четная функция и φ_{2} - нечетная функция. Поскольку $p_{n}(f, x)$ и $S_{n, 2}(f, x)$ - линейные операторы, то без ограничения общности можно предположить, что $f(x)$ четная функция, или же $f(x)$ нечетная функция. Ограничимся рассмотрением случая, когда $f(x)$ - четная функция. Случай, когда $f(x)$ нечетная функция рассматривается аналогично. Без ограничения общности можно считать что $f(1)=0$. В противном случае можно рассматривать функцию
$F(x)=f(x)-f(1)$. Из определения $p_{n}(f, x)$ и $S_{n, 2}(f, x)$ для четной $f(x)$ получим

$$
S_{n, 2}(f, x)-p_{n}(f, x)=T_{n}^{4}(x)\left(a_{n}^{(1)} x^{4}+b_{n}^{(1)} x^{2}+c_{n}^{(1)}\right),
$$

где коэффициенты $a_{n}^{(1)}, b_{n}^{(1)}, c_{n}^{(1)}$ определяются из системы уравнений

$$
\left\{\begin{array}{c}
a_{n}^{(1)}+b_{n}^{(1)}+c_{n}^{(1)}=f(1)-p_{n}(f, 1) \tag{36}\\
\left.4 n^{2}\left(a^{(1)}\right)_{n}+b_{n}^{(1)}+c_{n}^{(1)}\right)+4 a_{n}^{(1)}+2 b_{n}^{(1)}=-p_{n}^{\prime}(f, 1)
\end{array}\right.
$$

$$
\begin{align*}
\frac{4 n^{2}\left(10 n^{2}-1\right)}{3}\left(a_{n}^{(1)}+b_{n}^{(1)}+\right. & \left.c_{n}^{(1)}\right)+8 n^{2}\left(4 a_{n}^{(1)}+2 b_{n}^{(1)}\right)+\left(12 a_{n}^{(1)}+2 b_{n}^{(1)}\right)= \tag{37}\\
& =-p_{n}^{\prime \prime}(f, 1)
\end{align*}
$$

потому что $\left(T_{n}^{4}(x)\right)_{x=1}^{\prime}=4 n^{2},\left(T_{n}^{4}(x)\right)_{x=1}^{\prime \prime}=\frac{4 n^{2}\left(10 n^{2}-1\right)}{3}$. Из (36) и (2) заключаем, что $a_{n}^{(1)}+b_{n}^{(1)}+c_{n}^{(1)} \rightarrow 0, n \rightarrow \infty$. Поэтому

$$
\begin{equation*}
S_{n, 2}(f, x)-p_{n}(f, x)=T_{n}^{4}(x)\left(x^{2}-1\right)\left[a_{n}^{(1)}\left(x^{2}+1\right)+b_{n}^{(1)}\right] . \tag{38}
\end{equation*}
$$

Из уравнений (36-37) вытекает, что
(39) $4 b_{n}^{(1)}=p^{\prime \prime}-\left(8 n^{2}+3\right) p^{\prime}+\frac{8 n^{2}}{3}\left(6 n^{2}+5\right) p, p^{(j)}=p_{n}^{(j)}(f, 1), j=0,1,2$.

Введем функционалы

$$
\begin{equation*}
\Phi_{n, 1}(p)=p^{\prime}-4 n^{2} p, \quad \Phi_{n, 2}(p)=p^{\prime \prime}-\left(8 n^{2}+1\right) p^{\prime}+\frac{8 n^{2}}{3}\left(7 n^{2}+2\right) p, \tag{40}
\end{equation*}
$$

где $p^{(j)}=p_{n}^{(j)}(f, 1)$. Из равенств (39-40) вытекает, что

$$
\begin{equation*}
4 b_{n}^{(1)}=\Phi_{n, 2}(p)-2 \Phi_{n, 1}(p) . \tag{41}
\end{equation*}
$$

В силу (14) и линейности функционалов $\Phi_{n, i}(p), i=1,2$, имеем, что

$$
\begin{equation*}
\Phi_{n, i}\left(p_{n}\right)=\frac{1}{n^{4}} \sum_{k=1}^{n} f\left(x_{k}\right) \Phi_{n, i}\left(A_{k} B_{k}\right) . \tag{42}
\end{equation*}
$$

В [4] доказаны равенства

$$
\Phi_{n, 1}\left(A_{k} B_{k}\right)=\frac{x_{k}^{2}-3 x_{k}-8}{2\left(1-x_{k}\right)^{3}}-\frac{2\left(n^{2}-1\right)\left(x_{k}+2\right)}{3\left(1-x_{k}\right)^{2}}
$$

$$
\Phi_{n, 2}\left(A_{k} B_{k}\right)=\frac{16 n^{2} x_{k}}{\left(1-x_{k}\right)^{3}}-\frac{191 n^{2}+2 x_{k}\left(5 n^{2}+1\right)-3}{3\left(1-x_{k}\right)^{2}} .
$$

Отсюда и из (41-42) выводим, что

$$
\begin{align*}
4 b_{n}^{(1)}=\frac{1}{n^{4}} & \sum_{k=1}^{n} f\left(x_{k}\right)\left[\frac{16 n^{2} x_{k}}{\left(1-x_{k}\right)^{3}}-\frac{191 n^{2}+2 x_{k}\left(5 n^{2}+1\right)-3}{3\left(1-x_{k}\right)^{2}}-\right. \tag{43}\\
& \left.-\frac{x_{k}^{2}-3 x_{k}-8}{\left(1-x_{k}\right)^{3}}+\frac{4\left(n^{2}-1\right)\left(x_{k}+2\right)}{3\left(1-x_{k}\right)^{2}}\right] .
\end{align*}
$$

Из (43) после элементарных преобразований получим

$$
\begin{equation*}
4 b_{n}^{(1)}=\frac{1}{n^{4}} \sum_{k=1}^{n} \frac{f\left(x_{k}\right)-f(1)}{\left(x_{k}-1\right)^{2}} \Delta_{k, 2}, \tag{44}
\end{equation*}
$$

$\Delta_{k, 2}=\frac{x_{k}^{2}-\left(16 n^{2}+3\right) x_{k}-8}{1-x_{k}}+4\left(n^{2}-1\right)\left(x_{k}+2\right)-2 x_{k}\left(5 n^{2}+1\right)-191 n^{2}+3$.
При этом учтено, что $f(1)=0$. Стало быть,

$$
\begin{gather*}
4 b_{n}^{(1)}=\frac{1}{n^{4}} \sum_{k=1}^{n}\left(\frac{f\left(x_{k}\right)-f(1)}{\left(x_{k}-1\right)^{2}}-\alpha\right) \Delta_{k, 2}+\frac{\alpha}{n^{4}} \sum_{k=1}^{n} \Delta_{k, 2} \equiv \sigma_{n}^{(1)}+\sigma_{n}^{(2)}, \tag{45}\\
\alpha=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}} .
\end{gather*}
$$

Рассмотрим сперва $\sigma_{n}^{(1)}$. Поскольку $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}}=\alpha$, то по $\varepsilon>0$ можно найти такое $\delta>0$, что

$$
\left|\frac{f\left(x_{k}\right)-f(1)}{\left(x_{k}-1\right)^{2}}-\alpha\right|<\varepsilon,
$$

если $1-x_{k}<\delta$. Следовательно,
(46) $\left|\sigma_{n}^{(1)}\right|<\frac{\varepsilon}{n^{4}} \sum_{k=1}^{n}\left|\Delta_{k, 2}\right|+\frac{1}{n^{4}}\left(\frac{\|f\|}{\delta^{2}}+|\alpha|\right) \sum_{1-x_{k} \geqq \delta}\left|\Delta_{k, 2}\right| \equiv \tilde{\sigma}_{n}^{(1)}+\tilde{\sigma}_{n}^{(2)}$.

Из (44) видно, что

$$
\frac{1}{n^{4}} \sum_{k=1}^{n}\left|\Delta_{k, 2}\right| \leqq \frac{1}{n^{4}}\left(O\left(n^{3}\right)+O\left(n^{2}\right) \sum_{k=1}^{n} \frac{1}{1-x_{k}}\right) .
$$

Отсюда с помощью тождества (26) получим, что

$$
\begin{equation*}
\frac{1}{n^{4}} \sum_{k=1}^{4}\left|\Delta_{k, 2}\right|=O(1) \tag{47}
\end{equation*}
$$

Из (46) и (47) заключаем, что

$$
\begin{equation*}
\left|\tilde{\sigma}_{n}^{(1)}\right| \leqq C \varepsilon, \tag{48}
\end{equation*}
$$

где $C>0$ - константа. Далее, из (44) видно, что

$$
\frac{1}{n^{4}} \sum_{1-x_{k} \geqq \delta}\left|\Delta_{k, 2}\right|=O\left(\frac{1}{n}\right)\left(1+\frac{1}{\delta}\right) .
$$

Отсюда и из (46) выводим, что

$$
\begin{equation*}
\left|\tilde{\sigma}_{n}^{(2)}\right| \leqq\left(\frac{\|f\|}{\delta^{2}}+|\alpha|\right)\left(1+\frac{1}{\delta}\right) O\left(\frac{1}{n}\right) . \tag{49}
\end{equation*}
$$

Из (46), (47-48), (49) заключаем, что

$$
\begin{equation*}
\sigma_{n}^{(1)} \rightarrow 0, \quad n \rightarrow \infty . \tag{50}
\end{equation*}
$$

Рассмотрим $\sigma_{n}^{(2)}$. Из (44-45) видно, что

$$
\begin{equation*}
\sigma_{n}^{(2)}=\frac{\alpha}{n^{4}} \sum_{k=1}^{n} \frac{x_{k}^{2}-\left(16 n^{2}+3\right)-8}{1-x_{k}}+O\left(\frac{1}{n}\right) . \tag{51}
\end{equation*}
$$

Отсюда с помощью тождеств (26) получим, что

$$
\begin{equation*}
\sigma_{n}^{(2)} \rightarrow-16 \alpha, \quad n \rightarrow \infty . \tag{52}
\end{equation*}
$$

Из (45), (50), (52) вытекает, что

$$
\begin{equation*}
b_{n}^{(1)} \rightarrow-4 \alpha, \quad n \rightarrow \infty . \tag{53}
\end{equation*}
$$

Равенство (36) можно записать в виде $4 a_{n}^{(1)}+2 b_{n}^{(1)}=-\alpha_{n}(f)$, где $\alpha_{n}(f)$ определяется согласно (12). Из соотношений (30), (53) выводим, что

$$
\begin{equation*}
a_{n}^{(1)} \rightarrow-2\left(2 f^{\prime}(1) / 3-\alpha\right), \quad n \rightarrow \infty . \tag{54}
\end{equation*}
$$

По условию $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}}=\alpha$, где $\alpha-$ конечное число. Поэтому $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=0$. Следовательно, $f^{\prime}(1)=0$. Поэтому соотношение (54) принимает вид

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}^{(1)}=2 \alpha . \tag{55}
\end{equation*}
$$

Положим $R_{n}=\varrho\left(p_{n}(f, x), S_{n, 2}(f, x)\right)$. Ясно, что

$$
\begin{equation*}
R_{n}-\varrho\left(f, p_{n}(f, x)\right) \leqq \varrho\left(f, S_{n, 2}(f, x)\right) \leqq R_{n}+\varrho\left(f, p_{n}(f, x)\right) \tag{56}
\end{equation*}
$$

В силу (2), (56) получим, что для любой $f \in C$

$$
R_{n}-o(1) \leqq \varrho\left(f, S_{n, 2}(f, x)\right) \leqq R_{n}+o(1)
$$

Поэтому для доказательства Теоремы 2 нужно доказать, что $R_{n} \rightarrow 0$, $n \rightarrow \infty$.

Из (38), (53), (55) заключаем, что $R_{n} \rightarrow 0, n \rightarrow \infty$, тогда и только тогда, когда

$$
y_{n}^{(p)} \equiv \int_{-1}^{1} T_{n}^{4 p}(x)\left(1-x^{2}\right)^{p}\left|2 \alpha\left(1+x^{2}\right)-4 \alpha\right|^{p} d x \rightarrow 0, \quad n \rightarrow \infty
$$

Очевидно, что

$$
\begin{equation*}
y_{n}^{(p)}=|2 \alpha|^{p} \int_{0}^{\pi} \cos ^{4 p} n \theta \sin ^{4 p+1} \theta d \theta \tag{57}
\end{equation*}
$$

К интегралу (57) применим лемму, тогда получим, что $\alpha=0$. Теорема 2 доказана.

Наряду с классом функций K_{2} введем класс функций K_{3}. Пусть $f \in C$. Будем говорить, что $f \in K_{3}$, если $f^{\prime}(\mp 1)=0$ и существуют конечные вторые производные $f^{\prime \prime}(\mp 1)$. Покажем, что $K_{3} \subset K_{2}$. Действительно, имеем

$$
f(x)=f(1)+\frac{f^{\prime \prime}(1)}{2}(x-1)^{2}+o\left((x-1)^{2}\right)
$$

См. [9]. Следовательно, $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)^{2}}=\frac{f^{\prime \prime}(1)}{2}$. Аналогично доказывается, что $\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{(x+1)^{2}}=\frac{f^{\prime \prime}(-1)}{2}$. Итак, $K_{3} \subset K_{2}$. Поэтому из Teopeмы 2 следует

TеОРемА 3. Пусть интерполячионный прочесс $\left\{S_{n, 2}(f, x)\right\}_{n=1}^{\infty}$ построен при узлах (1) для $f \in K_{3}$. Для того чтобь он сходился в метрике $L_{p}, 0<p<\infty$, необходимо и достаточно, чтобь $f^{\prime \prime}(\mp 1)=0$.

Литература

[1] L. Fejér, Über Interpolation, Gött. Nachr., (1916), 66-91.
[2] Н. М. Крылов и Я. Штаерман, Sur quelques formules d'interpolation convergentes pour toute fonction continue, Bull. Sci. Phys. Math. Acad. Sc. Ukraine, 1 (1922), 12-13.
[3] H. N. Laden, An application of the classical orthogonal polynomials to the theory of interpolation, Duke Math. J., 8 (1941).
[4] D. L. Berman, A remark on the extended Hermite-Fejér type interpolation of higher order, Per. Math. Hungar., 18 (1987), 279-286.
[5] Д. Л. Берман, Обобщение одной теоремы Саксена и Мисра, Acta Math. Hungar., 57 (1991).
[6] Д. Л. Берман, Необходимые и достаточные условия сходимости расширенного интерполяционного процесса Эрмита-Фейера в метрике L_{p}, Acta Math. Hungar., 48 (1986), 67-71.
[7] W. Haussman and H.-B. Knoop, Konvergenzordnung einer Folge positiver linearer Operatoren, Rev. Anal. Numer. Théor. Approx., 4 (1975), 123-130.
[8] A. Sharma and J. Tzimbalario, Quasi-Hermite-Fejér type interpolation of higher order, J. Approx. Theory, 13 (1975), 431-442.
[9] Г. М. Фихтенгольц, Курс дифференциального и иятегрального исчисления, т. 1, ОГИЗ, 1947.
(Поступило 11. 10. 1988.)

192238 ЛЕНИНГРАД
ВАССЕЙНАЯ 68, КВ. 90 CCCP

POSITIVE SOLUTIONS OF NONLINEAR PROBLEMS AT RESONANCE

J. J. NIETO (Santiago de Compostela)

1. Introduction

In the study of both ordinary and partial differential equations it is natural to consider the operator equation

$$
\begin{equation*}
L u=N u \tag{1}
\end{equation*}
$$

where $L: D(L) \subset E \rightarrow F$ is a linear operator, $N: E \rightarrow F$ is a nonlinear operator, and E and F are Banach spaces.

If L is noninvertible we say that (1) is a problem at resonance. In that case, one can use the Lyapunov-Schmidt method [15] or some of its extensions, such as the alternative method $[1,2,4,5]$, to give existence results for the operator equation (1).

On the other hand, in numerous cases it is of interest to determine the existence of positive solutions. For instance, in the study of a model of an infectious disease [7] or in the analysis of a nuclear reactor [14],

By a positive solution of (1) we mean a solution which belongs to a given cone C of E. In applications, one usually takes E as a subspace of $L^{2}(A)$, A a domain of \mathbf{R}^{n}, and C as the cone of the positive functions, that is, $C=\{u \in E: u \geqq 0$ a.e. in $A\}$.

In Section 2, we present an existence result in a cone (Theorem 2) for nonlinear problems at resonance of type (1). Theorem 2 generalizes the result in [10] since we do not require $N(C)$ to be bounded.

In Section 3, we use the method of upper and lower solutions to show the existence of positive periodic solutions for a second order nonlinear differential equation (Theorem 6). Taking into account the symmetries of the equation, we give sufficient conditions for the problem to have a negative periodic solution (Theorem 7). These two theorems improve some of the results of Nieto and Rao in [11].

2. Existence of solutions in a cone

Let E be a Banach space. We say that C is a cone in E if C is a nonempty convex subset of E such that $r C \subset C$ for every $r \geqq 0$. We shall assume that there exists a continuous map $\gamma: E \rightarrow C$ such that $\gamma(c)=c$ for $c \in C$ and γ maps bounded sets into bounded sets.

To apply the alternative method, suppose that there exists projections $P: E \rightarrow E, Q: F \rightarrow F$ and a linear operator $H:(I-Q) F \rightarrow(I-P) E$ such that

$$
\begin{cases}H(I-Q) L u=(I-P) u, & \forall u \in D(L) \tag{2}\\ Q L u=L P u, & \forall u \in D(L) \\ L H(I-Q) N u=(I-Q) N u, & \forall u \in E .\end{cases}
$$

Then, $E=E_{0} \oplus E_{1}, F=F_{0} \oplus F_{1}$ where $E_{0}=P E$ and $F_{0}=Q F$. For $u \in E$, we write $u=u_{0}+u_{1}, u_{0} \in E_{0}, u_{1} \in E_{1}$.

In addition, suppose that

$$
\begin{equation*}
E_{0}=\operatorname{Ker} L, F_{1}=\text { Range } L, D(H)=F_{1}, E_{1}=\text { Range } H, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dim} E_{0}=\operatorname{dim} F_{0}<+\infty, \tag{4}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { there exists continuous maps } B: E \times F \rightarrow \mathbf{R} \\
\text { and } J: F_{0} \rightarrow E_{0} \text { such that } \\
\text { i) } B \text { is bilinear and } J \text { is one-to-one and onto. } \\
\text { ii) If } v_{0} \in F_{0}, v_{0}=0 \text { iff } B\left(u_{0}, v_{0}\right)=0 \forall u_{0} \in E_{0} \text {. } \\
\text { iii) } J v_{0}=0 \text { iff } v_{0}=0 . \\
\text { iv) } B\left(J v_{0}, v_{0}\right) \geqq 0 \forall v_{0} \in F_{0} . \\
\text { v) } B\left(J v_{0}, v_{0}\right)=0 \text { iff } v_{0}=0 . \\
\text { vi) } B\left(u_{0}, J^{-1} u_{0}\right)=0 \text { iff } u_{0}=0 . \\
\text { vii) } B\left(u_{0}, v_{0}\right)=B\left(J v_{0}, J^{-1} u_{0}\right), \forall u_{0} \in E_{0}, \forall v_{0} \in F .
\end{array}\right.
$$

Note that if $E \subset F$ and F is a Hilbert space with inner product $\langle u, v\rangle$ we can define $B(u, v)=\langle u, v\rangle$.

Under assumptions (2-5), the operator equation (1) is equivalent to

$$
u=P u+H(I-Q) N u+J Q N u .
$$

In [10] we proved the following existence result:
Theorem 1. Assume that (2)-(5) hold and
(6) there exists $J_{0}>0$ such that $\|N u\| \leqq J_{0}$ for $u \in C$;
(7) there exists $R_{0}>0$ such that $B\left(u_{0}, Q N u\right) \leqq 0$ for $u=u_{0}+u_{1} \in C$ with $\left\|u_{0}\right\|=R_{0}$ and $u_{1}=H(I-Q) N(u)$;
(8) there exists $r_{0}>\|H(I-Q)\| \cdot J_{0}$ such that $(P+J Q N) \gamma u \in C$ and $H(I-Q) N \gamma u \in C$ for $u \in S\left(R_{0}, r_{0}\right)$ where

$$
S\left(R_{0}, r_{0}\right)\left\{u \in E:\left\|u_{0}\right\| \leqq R_{0},\left\|u_{1}\right\| \leqq r_{0}\right\} .
$$

Then, there exists at least one solution $u \in C$ of $L u=N u$.
Note that (6) means that $N(C)$ is bounded in F. In the following theorem we remove that condition.

Theorem 2. Suppose (2)-(5) hold and the following conditions are satisfied:
(9) there exists $R>0$ such that the set $C(R)=\left\{u_{1}: u_{1}=\lambda H(I-\right.$ $\left.-Q) N \gamma\left(u_{0}+u_{1}\right), \lambda \in[0,1],\left\|u_{0}\right\| \leqq R\right\}$ is bounded;
(10) there exists $R \in\left(0, R_{0}\right]$ such that $B\left(u_{0}, Q N \gamma(u)\right) \leqq 0$ for every $u \in C$ with $\left\|u_{0}\right\|=R_{0}$ and $u_{1}=\lambda H(I-Q) N \gamma\left(u_{0}+u_{1}\right)$ for some $\lambda \in[0,1]$;
(11) there exists $r_{0}>r=\operatorname{Sup}\left\{\left\|u_{1}\right\|: u_{1} \in C(R)\right\}$ such that $(P+$ $+J Q N) \gamma u \in C$ and $H(I-Q) N \gamma u \in C$ for every $u \in S\left(R_{0}, r_{0}\right)=S$.

Then, there exists a solution $u \in C$ of (1).
Proof. Define the homotopy $T:[0,1] \times S \rightarrow E, T(\lambda, u)=\lambda W u$ being $W u=[P+J Q N+H(I-Q) N] \gamma u$. Hence, $T(\lambda, \cdot)$ is compact for every $\lambda \in[0,1]$, and for $\lambda=0, T(0, u)=0$. Thus, $T(0, \partial S) \subset S$. If $\lambda \in[0,1)$, $u \in S$ and $T(\lambda, u)=u$, we obtain

$$
\begin{equation*}
u_{1}=\lambda H(I-Q) N \gamma\left(u_{0}+u_{1}\right) \quad \text { and } \quad u_{0}=\lambda[P+J Q N] \gamma\left(u_{0}+u_{1}\right) \tag{12}
\end{equation*}
$$

Since $u \in S$, there are two possibilities:
a) $\left\|u_{1}\right\|=r_{0}$. Taking into account (12) we can write that $\left\|u_{1}\right\|<r$ which is a contradiction.
b) $\left\|u_{0}\right\|=R_{0}$. In this case, using (11) we have that $T(\lambda, u) \in C$ since C is a cone. In consequence, $u \in C$ and $\gamma u=u$, and from (12) we get $u_{0}=\lambda P u+\lambda J Q N u$.

Now, using that $\lambda<1$, we have $B\left((1-\lambda) u_{0}, J^{-1} u_{0}\right)=B(J Q N u$, $\left.J^{-1} u_{0}\right)>0$. On the other hand, using (5 -vii) and (10) we can write

$$
B\left(J Q N u, J^{-1} u_{0}\right)=B\left(u_{0}, Q N u\right) \leqq 0 .
$$

This last inequality is a contradiction. Therefore, $T(\lambda, u) \neq u$ for every $(\lambda, u) \in[0,1) \times \partial S$, and $T(1, \cdot)$ has a fixed point u in S [8, Theorem 4.4.11]. Reasoning as in b), it is easy to show that $u \in C$. Therefore u is a solution of $L u=N u$ such that $u \in C \cap S$. This concludes the proof.

Another version of this last theorem is the following
Theorem 3. Suppose that in Theorem 2 instead of (11) we have

$$
\begin{equation*}
[P+H(I-Q) N+J Q N] \gamma u \in C \quad \text { for every } \quad u \in S \tag{13}
\end{equation*}
$$

Then there exists $u \in C$ such that $L u=N u$.

3. Positive solutions and the method of upper and lower solutions

In this section we study the existence of positive periodic solutions of the equation

$$
\begin{equation*}
u^{\prime \prime}+u+\mu u^{2}=\varepsilon \cos \omega t \tag{14}
\end{equation*}
$$

where $\mu \neq 0, \varepsilon \neq 0$ and $\omega>0$.
The existence of periodic solutions for this equation was considered by Maekawa [9] and Ezeilo [3]. On the other hand, Nieto and Rao in [11] gave the following result:

Theorem 4. Equation (14) has a periodic solution if $4|\mu| \cdot|\varepsilon|<1$.
Using the method of upper and lower solutions we shall prove the existence of positive and negative periodic solutions for (14).

Making $s=\omega t$, (14) becomes

$$
\begin{equation*}
u^{\prime \prime}+\omega^{-2}\left[u+\mu u^{-2}-\varepsilon \cos s\right]=0 \tag{15}
\end{equation*}
$$

Thus we are interested in the existence of 2π-periodic solutions of (15) and note that it is of the form

$$
\begin{equation*}
u^{\prime \prime}+c u^{\prime}+g(u)=e(t), \quad t \in[0,2 \pi] \tag{16}
\end{equation*}
$$

This last equation is studied, for instance, in [11, 13, 14].
We say that $\alpha \in C^{2}[0,2 \pi]$ is a lower solution of (16) if $\alpha^{\prime \prime}(t) \geqq f(t, \alpha(t))$ for $t \in[0,2 \pi], \alpha(0)=\alpha(2 \pi)$ and $\alpha^{\prime}(0) \geqq \alpha^{\prime}(2 \pi)$. Similarly, $\beta \in C^{2}[0,2 \pi]$ is an upper solution of (16) if $\beta^{\prime \prime}(t) \leqq f(\bar{t}, \beta(t))$ for $t \in[0,2 \pi], \beta(0)=\beta(2 \pi)$ and $\beta^{\prime}(0) \leqq \beta^{\prime}(2 \pi)$.

Theorem 5. If (16) has an upper solution β and a lower solution α such that $\alpha \leqq \beta$ in $[0,2 \pi]$, then there exists at least one solution u of (16) with $\alpha \leqq u \leqq \beta$ in $[0,2 \pi]$.

Proof. See [6].
We are now in a position to prove
Theorem 6. If $\mu<0, \varepsilon>0$ and $4|\mu| \cdot|\varepsilon|<1$, then there exists a positive $(2 \pi \omega)$-periodic solution of (14).

Proof. Let $a_{1}<0<a_{2}$ be the real roots of $\mu a^{2}+a-\varepsilon=0$ and $b_{1}<b_{2}$ the real roots of $\mu b^{2}+b+\varepsilon=0$. Note that $0<b_{1}<b_{2}<a_{2}$. Choose $r, R \in\left(0, b_{1}\right)$ such that $r<R$, and define $\alpha(t)=r$ and $\beta(t)=R$ for $t \in[0,2 \pi]$. Hence we can write

$$
\begin{gathered}
f(t, \beta(t))=-\omega^{-2}\left(R+\mu R^{2}-\varepsilon \cos t\right) \leqq-\omega^{-2}\left(R+\mu R^{2}-\varepsilon\right) \leqq 0 \\
f(t, \alpha(t))=-\omega^{-2}\left(r+\mu r^{2}-\varepsilon \cos t\right) \geqq-\omega\left(r+\mu r^{2}+\varepsilon\right) \geqq 0
\end{gathered}
$$

since $R \in\left(a_{1}, a_{2}\right)$ and $r \notin\left[b_{l}, b_{2}\right]$. Therefore, by Theorem 5 , there exists a solution u of (15) such that $u \geqq r>0$. This completes the proof.

Taking into account the symmetries of (14) we have the following

Theorem 7. If $\mu>0, \varepsilon<0$ and $4|\mu| \cdot|\varepsilon|<1$, then (14) has a negative $(2 \pi / \omega)$-periodic solution.

Proof. The equation $u^{\prime \prime}+u-\mu u^{2}=-\varepsilon \cos \omega t$ admits a positive periodic solution by Theorem 6. Setting $v=-u$ we get a negative periodic solution of (14).

Note. This paper was presented at the VIII ${ }^{\text {th }}$ Congress on Differential Equations and Applications (VIII CEDYA) held at the University of Santander (Spain) during September 23-26, 1985. The proceedings of this conference have never been published.

References

[1] L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, in Nonlinear Analysis and Differential Eqquations (Eds. L. Cesari, R. Kannan and J. Schuur), Marcel Dekker (1976), 1-197.
[2] L. Cesari and R. Kannan, An abstract theorem at resonance, Proc. Amer. Math. Soc., 63 (1977), 221-225.
[3] J. O. C. Ezeilo, A Leray-Schauder technique for the investigation of periodic solutions of the equation $\bar{x}+x+\mu x^{2}=\varepsilon \cos \omega t(\varepsilon \neq 0)$, Acta Math. Acad. Sci. Hungar., 39 (1982), 59-63.
[4] S. Fucik, Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publ. Co. (London, 1980).
[5] J. Hale, Applications of Alternative Problems, Lecture Notes of Brown University, 1971.
[6] R. Kannan, and V. Lakshmikantham, Existence of periodic solutions of nonlinear boundary value problems and the method of upper and lower solutions, Applicable Analysis, 17 (1984), 103-113.
[7] R. Leggett and L. Williams, A fixed point theorem with applications to an infectious disease model, J. Math. Anal. Appl., 76 (1980), 91-97.
[8] N. G.Lloyd, Degree Theory, Cambridge University Press, 1978.
[9] T. Maekawa, On a harmonic solution of $\ddot{x}+x+\mu x^{2}=\varepsilon \cos \omega t$, Math. Japonicae, 13 (1968), 143-148.
[10] J. J. Nieto, Existence of solutions in a cone for nonlinear alternative problems, Proc. Amer. Math. Soc., 94 (1985), 433-436.
[11] J. J. Nieto and V. S. H. Rao, Periodic solutions of second order nonlinear differential equations, Acta Math. Hungar., 48 (1986), 59-66.
[12] J. J. Nieto and V. S. H. Rao, Periodic solutions for scalar Lienard equations, Acta Math. Hungar., 57(1991), 15-27.
[13] R. Reissig, Contractive mappings and periodically perturbed nonconservative systems, in Stability of Dynamical Systems (Ed. J. R. Graef), Marcel Dekker (1977), 73-87.
[14] I. Stakgold and L. Payne, Nonlinear Problems in Nuclear Reactor Analysis, Lecture Notes in Mathematics 322, Springer-Verlag, 1973.
[15] M. Vainberg and V. Tregonin, The method of Lyapunov-Schmidt in the theory of nonlinear equations and their further developments, Russian Math. Surveys, 17 (1962), 1-60.
(Received October 10, 1988)

[^10]
UNIFORM ASYMPTOTIC STABILITY AND CONTRACTIVE SEMIGROUPS OF MAPPINGS IN UNIFORM SPACES

V. G. ANGELOV (Sofia)

The main purpose of the present paper is to extend the results of [4] to uniform spaces. In some previous results fixed point theorems for ϕ-contractive mappings in uniform spaces have been obtained [2]. Having in mind the reuniformization result [2] for ϕ-contractive mappings in uniform spaces it is natural to ask what is the relation between the uniform asymptotic stability and contractive semigroups of mappings. Moreover there are dynamical systems whose space of possible states consists of functions which form a locally convex space.

In what follows, we shall give simple examples of linear partial differential equations whose set of solutions forms a dynamical system in a locally convex space of functions. Let us consider the following equation:

$$
\begin{equation*}
u_{t}=a u+b_{1} u_{x_{1}}+\cdots+b_{n} u_{x_{n}} \tag{1}
\end{equation*}
$$

where a, b_{1}, \ldots, b_{n} are real constants and $u=u\left(t, x_{1} \ldots, x_{n}\right)$ is the unknown function.

The set of all functions $f\left(x_{1}, x_{2}, \ldots x_{n}\right): R^{n} \rightarrow R^{1}$ continuous together with their first partial derivatives form a locally convex space. A saturated family of seminorms generating a topology of $C^{1}\left(R^{n}\right)$ is $\left\{\|f\|_{K}\right\}$, where K runs over all compact subsets of R^{n} and

$$
\begin{aligned}
& \|f\|_{K}=\sup \left\{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|:\left(x_{1}, \ldots, x_{n}\right) \in K\right\}+ \\
& +\sum_{i=1}^{n} \sup \left\{\left|f_{x_{i}}\left(x_{1}, \ldots, x_{n}\right)\right|:\left(x_{1}, \ldots, x_{n}\right) \in K\right\} .
\end{aligned}
$$

To every function $f \in C^{1}\left(R^{n}\right)$ there belongs a solution of (1) the following way. Easy to verify that the explicit form of the solution is $u(f, t)=$ $=\exp (a t) f\left(x_{1}+b_{1} t, \ldots, x_{n}+b_{n} t\right)$. Obviously $u(f, 0)=f\left(x_{1}, \ldots, x_{n}\right)$. The set of solutions of (1) when $f \in C^{1}\left(R^{n}\right)$ forms a one-parametric family of self-mappings of $C^{1}\left(R^{n}\right)$, acting by the formula $u_{t}(f)=u(f, t)$.

Let us define a map $j: \mathcal{B} \rightarrow \mathcal{B}$ where \mathcal{B} consists of all compact subsets of R^{n}, in the following way : for every $K \subset R^{n}$ let $j(K)=K_{t_{1}} \cup K_{t_{2}}$ where

$$
\begin{gathered}
K_{t_{i}}=\left\{\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in R^{n}:\right. \\
\left.\bar{x}_{1}=x_{1}+b_{1} t_{i}, \ldots, \bar{x}_{n}=x_{n}+b_{n} t_{i} ;\left(x_{1}, \ldots, x_{n}\right) \in K\right\} \quad(i=1,2) .
\end{gathered}
$$

We shall show that the family of operators $u_{t}(f)$ is continuous, that is, for every $\varepsilon>0$ and every compact $K \subset R^{n}$ there is a $\delta>0$ such that $\left|t_{1}-t_{2}\right|<\delta$ and $\|f-\bar{f}\|_{j(K)}<\delta$ implies $\left\|u_{t_{1}}(f)-u_{t_{2}}(\bar{f})\right\|_{K}<\varepsilon$. Indeed,

$$
\begin{gathered}
u_{t_{1}}(f)-u_{t_{2}}(\bar{f}) \leqq \\
\leqq \exp \left(a t_{1}\right)\left[f\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)-\bar{f}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)\right]+ \\
+\left(\exp \left(\boldsymbol{a} t_{1}\right)-\exp \left(\boldsymbol{a} t_{2}\right)\right) \bar{f}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)+ \\
+\exp \left(a t_{2}\right)\left[\bar{f}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)-\bar{f}\left(x_{1}+b_{1} t_{2}, \ldots, x_{n}+b_{n} t_{2}\right)\right] \\
{\left[u_{t_{1}}(f)-u_{t_{2}}(\bar{f})\right]_{x_{i}} \leqq} \\
\leqq \exp \left(a t_{1}\right)\left[f_{x_{i}}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)-\bar{f}_{x_{i}}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)\right]+ \\
+\left(\exp \left(a t_{1}\right)-\exp \left(a t_{2}\right)\right) \bar{f}_{x_{i}}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)+ \\
+\exp \left(a t_{2}\right)\left[\bar{f}_{x_{i}}\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)-\bar{f}_{x_{i}}\left(x_{1}+b_{1} t_{2}, \ldots, x_{n}+b_{n} t_{2}\right)\right] \\
\quad(i=1, \ldots, n) .
\end{gathered}
$$

Then for the first summands we obtain $\exp \left(a t_{1}\right)\|f-\bar{f}\|_{j(K)}<\frac{\varepsilon}{3}$ when $\| f-$ $-\bar{f} \|_{K}<\delta_{1}$, for the second summands $\left(\exp \left(a t_{1}\right)-\exp \left(a t_{2}\right)\right)\|\bar{f}\|_{K}<\frac{\varepsilon}{3}$ when $\left|t_{1}-t_{2}\right|<\delta_{2}$ for the third $\exp \left(a t_{2}\right) \mid f\left(x_{1}+b_{1} t_{1}, \ldots, x_{n}+b_{n} t_{1}\right)-\bar{f}\left(x_{1}+\right.$ $\left.+b_{1} t_{2}, \ldots, x_{n}+b_{n} t_{2}\right) \left\lvert\,<\frac{\varepsilon}{3}\right.$ when $\left|t_{1}-t_{2}\right|<\delta_{3}$, because $f\left(x_{1}, \ldots, x_{n}\right)$ is uniformly continuous on K, Consequently the inequalities $\left|t_{1}-t_{2}\right|<\delta$ and $\|f-\bar{f}\|_{j(K)}<\delta$ imply $\left\|u_{t_{1}}(f)-u_{t_{2}}(f)\right\|_{K}<\varepsilon$, where $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. It is easy to verify $u\left(u\left(f, t_{1}\right), t_{2}\right)=u\left(f, t_{1}+t_{2}\right)$ and for every $f \in C^{1}\left(R^{n}\right)$ there exists a unique solution $u(f, t)$ of (1), such that $u(f, 0)=f$. A oneparametric family of operators $u(f, t)$ with the above properties forms a dynamical system in the locally convex space $C^{1}\left(R^{n}\right)$.

Let us consider the known hyperbolic system

$$
\begin{equation*}
u_{t}(t, x)=v_{x}(t, x), \quad v_{t}(t, x)=u_{x}(t, x) \tag{2}
\end{equation*}
$$

with initial conditions $u(0, x)=f(x), v(0, x)=g(x)$. Then the family of all continuous pairs $(f(x), g(x))$ forms a locally convex space $C^{1}\left(R^{1}\right) \times C^{1}\left(R^{1}\right)$ with a saturated family of seminorms $\|(f, g)\|_{K}=\|f\|_{K_{1}}+\|g\|_{K_{2}}$, where $\|f\|_{K_{1}}=\sup \left\{|f(x)|: x \in K_{1}\right\},\|g\|_{K_{2}}=\sup \left\{|g(x)|: x \in K_{2}\right\} ; K_{1}$ and K_{2} run over all compact subsets of R^{1}. It is known that the pair

$$
\begin{aligned}
& u(f, g, t)=\frac{1}{2}(f(x-t)+f(x+t)+g(x-t)-g(x-t)) \\
& v(f, g, t)=\frac{1}{2}(g(x-t)+g(x+t)+f(x-t)-f(x-t))
\end{aligned}
$$

is a solution of (2) such that $u(f, g, 0)=f, v(f, g, 0)=g$. One can easily verify that the family of operators $T_{t}(f, g)=(u(f, g, t), v(f, g, t))$ forms a dynamical system in the space $C^{1}\left(R^{1}\right) \times C^{1}\left(R^{1}\right)$.

Throughout the remainder of this paper we shall denote by X a uniform Hausdorff space with a uniformity generated by a saturated family of pseudometrics (cf. [1]). Let $\mathcal{A}=\left\{d_{\alpha}(x, y): \alpha \in A\right\}, A$ being an index set. We shall suppose also that X is complete; nevertheless for our purposes we need only a sequential completeness.

Let us recall some results and notations from [2]. If $j: A \rightarrow A$ is a mapping by $j^{k}(\alpha)$ we denote the k-th iterate of j, that is, $j^{k}(\alpha)=j\left(j^{k-1}(\alpha)\right)$, $j^{0}(\alpha)=\alpha ; j^{-1}\left(\alpha_{0}\right)=\left\{\alpha \in A: j(\alpha)=\alpha_{0}\right\}, j^{-2}\left(\alpha_{0}\right)=\{\alpha \in$ $\in A: j(\alpha)=\bar{\alpha}$, where $\bar{\alpha}$ runs over all elements of $\left.j^{-1}\left(\alpha_{0}\right)\right\}$ and inductively $j^{-n}\left(\alpha_{0}\right)=\{\alpha \in A: j(\alpha)=\bar{\alpha}$, where $\bar{\alpha}$ runs over all elements of $\left.j^{-(n-1)}\left(\alpha_{0}\right)\right\}$; and so on.

The space X is called j-bounded if for every $x, y \in X$ and $\alpha \in A$ there exists a constant $Q=Q(\alpha, x, y)>0$ such that $d_{j^{-n}(\alpha)}(x, y) \leqq Q(\alpha, x, y)(n=$ $=0,1, \ldots)$, or more precisely Q is an upper bound of the set $\left\{d_{\alpha}(x, y)\right.$, $\left.d_{\alpha_{1}}(x, y), \ldots, d_{\alpha_{n}}(x, y), \ldots\right\}$ for every sequence $\left\{\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right\}$ where $\alpha_{1} \in j^{-1}(\alpha), \alpha_{2} \in j^{-2}(\alpha), \ldots, \alpha_{n} \in j^{-n}(\alpha), \ldots$

Let (ϕ) be a family of contractive functions $\phi_{\alpha}(t): R_{+}^{1} \rightarrow R_{+}^{1}\left(R_{+}^{1}=\right.$ $=[0, \infty)$), that is, every $\phi_{\alpha}(t)$ has the properties:
$(\phi 1) \phi_{\alpha}(t)$ is continuous, strictly increasing and superadditive (cf. [3], Ch. VII) and $0<\phi_{\alpha}(t)<t$ for $t>0$.
($\phi 2$) for every $\alpha \neq \alpha^{\prime} \max \left\{\phi_{\alpha}(t), \phi_{\alpha^{\prime}}(t)\right\}$ is superadditive;
$(\phi 3) \lim _{n \rightarrow \infty} \phi_{\alpha}\left(\phi_{j^{-1}(\alpha)}\left(\ldots \phi_{j^{-n}(\alpha)}(t) \ldots\right)\right)=0$ for $t>0$ and $\phi_{j(\alpha)}(t) \leqq$ $\leqq \phi_{\alpha}(t)$.

The last equality means that $\lim _{n \rightarrow \infty} \phi_{\alpha}\left(\phi_{j(\alpha)}\left(\ldots \phi_{j^{n}(\alpha)}(t) \ldots\right)\right)=0$ for every sequence $\left\{\alpha, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right\}$ where $\alpha_{1} \in j^{-1}(\alpha), \ldots, \alpha_{n} \in j^{-n}(\alpha), \ldots$.

The mapping $T: X \rightarrow X$ is said to be ϕ-contractive if $d_{j(\alpha)}(T x, T y) \leqq$ $\leqq \phi_{\alpha}\left(d_{\alpha}(x, y)\right)$ for every $x, y \in X, \alpha \in A . T$ is called j-regular if the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ is not d_{α}-Cauchy sequence, then for every $\varepsilon>0$ there is $\delta>0$ such that $d_{\alpha}\left(T^{m+p} x, T^{m} x\right) \geqq \varepsilon$ implies $d_{j(\alpha)}\left(T^{m+p} x, T^{m} x\right) \geqq \delta$.

Two families of pseudometrics $\mathcal{A}=\left\{d_{\alpha}(x, y): \alpha \in A\right\}$ and $\mathcal{A}^{*}=$ $=\left\{d_{\alpha^{*}}^{*}(x, y): \alpha^{*} \in A^{*}\right\}$ are topologically equivalent if the uniformities generated by them coincide. Let

$$
\begin{equation*}
\operatorname{card} A=\operatorname{card} A^{*} \tag{3}
\end{equation*}
$$

and let $h: A \rightarrow A^{*}$ be a bijective map. It induces the map $j^{*}: A^{*} \rightarrow A^{*}$ by
the commutativity of the diagram

that is, $h(j(\alpha))=j^{*}(h(\alpha))$. The families \mathcal{A} and \mathcal{A}^{*} are called equivalent if (3) is satisfied and if every Cauchy net $\left\{x_{\gamma}\right\}_{\gamma \in \Gamma}$ (Γ is a directed set) in d_{α} is a Cauchy net in $d_{\alpha^{*}}^{*}$ for every $\alpha \in A$ where $\alpha^{*}=h(\alpha)$, and vice versa, every Cauchy net $\left\{x_{\gamma}\right\}_{\gamma \in \Gamma}$ in $d_{\alpha^{*}}^{*}$ is a Cauchy net in d_{α} for every $\alpha^{*} \in A^{*}$, where $\alpha=h^{-1}\left(\alpha^{*}\right)$. The equivalence of two families \mathcal{A} and \mathcal{A}^{*} implies their topological equivalence. Conversely, the topological equivalence implies their equivalence when X is a complete uniform space. \mathcal{A} and \mathcal{A}^{*} are said to be j-topologically equivalent if the j-regularity of T implies its j^{*}-regularity and j-boundedness of X implies j^{*}-boundedness of X.

As usual, $U\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)(x, \varepsilon)=\left\{y \in X: d_{\alpha_{1}}(x, y)<\varepsilon, \ldots, d_{\alpha_{p}}(x, y)<\right.$ $<\varepsilon\}$ is an ε-neighbourhood of x in the pseudometrics $d_{\alpha_{1}}, \ldots, d_{\alpha_{p}}$. We say that the sequence $T^{n}\left(U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)\right)(n=0,1, \ldots)$ tends uniformly to ξ if for every $\varepsilon>0$ there is n_{0} such that for $n \geqq n_{0}$,

$$
T^{n}\left(U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)\right) \subset U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \varepsilon)
$$

Further on, we shall assume that the following conditions (H1)-(H2) are fulfilled:
(H1) if $T^{n} x \bar{\epsilon} \mathrm{cl} U\left(j\left(\alpha_{1}\right), \ldots, j\left(\alpha_{p}\right)\right)(\xi, \eta)$ then $T^{n} x \overline{\operatorname{El}} U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta) ;$
(H2) if $x \in \operatorname{cl} T^{n}\left(U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)\right)$ then $x \in \operatorname{cl} T^{n}\left(U\left(j\left(\alpha_{1}\right), \ldots, j\left(\alpha_{p}\right)\right)\right.$ (ξ, η)).

Theorem 1 [2]. Every ϕ-contractive j-regular mapping $T: X \rightarrow X$ has a unique fixed point \bar{x} and $\lim _{n \rightarrow \infty} T^{n} x=\bar{x}$ for arbitrary $x \in X$.

Let $(X, \mathcal{A}), \mathcal{A}=\left\{d_{\alpha}(x, y): \alpha \in A\right\}$, be a complete j-bounded Hausdorff space and let $T: X \rightarrow X$ be a continuous j-regular mapping.

Theorem 2 [2]. The following conditions:
(E1) T has a fixed point $\xi \in X$;
(E2) $\lim _{n \rightarrow \infty} d_{\alpha}\left(T^{n} x, \xi\right)=0$ for every $x \in X, \alpha \in A$;
(E3) for every finite collection $\alpha_{1}, \ldots, \alpha_{p} \in A$ there is $\eta>0$ such that the sequence $\left\{T^{n}\left(U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)\right)\right\}_{n=0}^{\infty}$ tends uniformly to $\xi ;$
are necessary and sufficient for the existence of a family of pseudometrics $\mathcal{A}^{*}=\left\{d_{\alpha^{*}}(x, y): \alpha^{*} \in A^{*}\right\} j$-topologically equivalent to \mathcal{A}, such that T
is ϕ-contractive with respect to \mathcal{A}^{*} for an arbitrarily chosen family (ϕ) of contractive functions.

Let G be a commutative topological semigroup (written additively) with zero element. Then a family $\left\{T_{t}: t \in G\right\}$ of continuous selfmappings of X will be called a G-semigroup if it possesses the properties:
(1) $T_{0}(x)=x$ for every $x \in X$;
(2) $T_{t_{1}}\left(T_{t_{2}}(x)\right)=T_{t_{1}+t_{2}}(x)$ for every $t_{1}, t_{2} \in G$ and $x \in X$;
(3) $\sup \left\{d_{\alpha}\left(T_{t}(x), T_{t_{0}}(x)\right): x \in X\right\} \rightarrow 0$ as $t \rightarrow t_{0}$ for every $\alpha \in A$.

We shall consider only the particular case $G=[0, \infty)$ or an infinite subsemigroup of $[0, \infty)$.

A semigroup of operators is said to be contractive if for some family (ϕ) and some j there is a collection of families $\left\{\left(\mathcal{A}_{t}, j_{t}\right): t \in[0, \infty)\right\}$ of pseudometrics of X each j-topologically equivalent to \mathcal{A} such that T_{t} is ϕ contractive with respect to $\left(\mathcal{A}_{t}, j_{t}\right)$ for every $t>Q$.

The semigroup defined by the formula $T_{t}(f)=\exp (a t) f\left(x_{1}+b_{1} t, \ldots, x_{n}+\right.$ $\left.+b_{n} t\right)$ for $t \geqq 0$ when $a<0$, is an example of a contractive semigroup. Indeed, let us fix $t \in(0, \infty)$ and let $K \subset R^{n}$ be a compact set. Define j in the following way:
$j(K)=\left\{\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right): \bar{x}_{1}=x_{1}+b_{1} t, \ldots, \bar{x}_{n}=x_{n}+b_{n} t \quad\left(x_{1}, \ldots, x_{n}\right) \in K\right\}$.
Then

$$
\left\|T_{t}(f)-T_{t}(\bar{f})\right\|_{j(K)} \leqq \exp (a t)\|f-\bar{f}\|_{K}
$$

for every $f, \bar{f} \in C^{1}\left(R^{n}\right)$.
Following [4] we shall call $\xi \in X$ an equilibrium state if it is a common fixed point of the semigroup of operators, that is $T_{t}(\xi)=\xi$ for every $t \in$ $\in[0, \infty)$. It is easy to verify that if T_{t} has ξ as a unique fixed point for some $t_{0} \in(0, \infty)$, then $T_{t}(\xi)=\xi$ for any $t \in[0, \infty)$. In our example if $a+b_{1}+\cdots+b_{n}=0$, then $f\left(x_{1}, \ldots, x_{n}\right)=\exp \left(x_{1}+\cdots+x_{n}\right)$ is a common fixed point of the semigroup as the following equalities show:

$$
\begin{gathered}
T_{t}(f)=\exp (a t) \exp \left(x_{1}+b_{1} t+x_{2}+b_{2} t+\cdots+x_{n}+b_{n} t\right)= \\
=\exp \left(x_{1}+x_{2}+\cdots+x_{n}\right)=f .
\end{gathered}
$$

In what follows we shall need extensions of the notions of stability, asymptotic stability and uniform asymptotic stability in a uniform space. An equilibrium state ξ is called stable if for every neighbourhood V of ξ, there exists a neighbourhood W of ξ such that $x \in W$ implies $T_{t}(x) \in V$ for all $t \in[0, \infty)$. The stable equilibrium state ξ is called asymptotically stable if there is a neighbourhood U of ξ such that $x \in U$ implies $\lim _{t \rightarrow \infty} T_{t}(x)=\xi$, and called uniformly asymptotically stable if U can be chosen so that $T_{t}(U)$ tends uniformly to ξ as $t \rightarrow \infty$.

As usual, by $\boldsymbol{B}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)(x, r)$ we shall denote the closed ball of radius $r>0$ with center at x in pseudometrics $d_{\alpha_{1}}(x, y), \ldots, d_{\alpha_{p}}(x, y)$, that is $B\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)(x, r)=\left\{y \in X: d_{\alpha_{1}}(x, y) \leqq r, \ldots, d_{\alpha_{p}}(x, y) \leqq r\right\}$.

Lemma 1. If $\xi \in X$ is an equilibrium state of $\left\{T_{t}: t \in[0, \infty)\right\}$, then for each $t_{0}>0, \eta>0$ and for every finite collection of pseudometrics $d_{\alpha_{1}}, \ldots, d_{\alpha_{p}}$ there is a $\delta>0, \delta=\delta\left(t_{0}, \eta, \alpha_{1}, \ldots, \alpha_{p}\right)$, such that $T_{t}\left(B\left(\alpha_{1}, \ldots\right.\right.$, $\left.\left.\ldots, \alpha_{p}\right)(\xi, \delta)\right) \subseteq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)$ for every $t \in\left[0, t_{0}\right]$.

Proof. Suppose, by contradiction, that there is a $\bar{t}_{0}>0$, an $\bar{\eta}>0$, a finite collection of pseudometrics $d_{\bar{\alpha}_{1}}, \ldots d_{\bar{\alpha}_{p}}$, a sequence of positive numbers $\delta_{n}(n=1,2, \ldots)$ with $\lim _{n \rightarrow \infty} \delta_{n}=0$, corresponding sequences of points $x_{n} \in B\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)\left(\xi, \delta_{n}\right)$ and numbers $t_{n} \in\left[0, \bar{t}_{0}\right]$ such that $T_{t_{n}}\left(x_{n}\right) \in$ $\in X \backslash B\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)\left(\xi, \delta_{n}\right)$. One can choose a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ so that $\lim _{k \rightarrow \infty} t_{n_{k}}=t \in\left[0, \bar{t}_{0}\right]$. Then

$$
d_{\bar{\alpha}_{i}}\left(\xi, T_{t_{n_{k}}}\left(x_{n_{k}}\right)\right) \leqq d_{\bar{\alpha}_{i}}\left(T_{t}(\xi), T_{t}\left(x_{n_{k}}\right)\right)+d_{\bar{\alpha}_{i}}\left(T_{t}\left(x_{n_{k}}\right), T_{t_{n_{k}}}\left(x_{n_{k}}\right)\right)
$$

for $i=1, \ldots, p$. The first term on the right tends to zero as $k \rightarrow \infty$ because $x_{n_{k}} \rightarrow \xi$. The continuity condition for the semigroup ensures that $\lim _{k \rightarrow \infty} d_{\bar{\alpha}_{i}}\left(T_{t}\left(x_{n_{k}}\right), T_{t_{n_{k}}}\left(x_{n_{k}}\right)\right)=0$. The obtained contradiction completes the proof of Lemma 1.

Now we are going to formulate the main results:
Theorem 3. For $a[0, \infty)$-semigroup $\left\{T_{t}: t \in[0, \infty)\right\}$ on X to be contractive, it is necessary and sufficient for some t_{0} the operator $T_{t_{0}}$ to possess conditions (E1)-(E3).

Proof. Since the necessity is obvious we shall prove the sufficiency.
Let us assume that for some $t_{0}, T_{t_{0}}$ possesses condition (E1). We shall show that T_{t} satisfies (E1) for any $t \in[0, \infty)$. Indeed, the equality $T_{t}(\xi)=$ $=T_{t}\left(T_{t_{0}}(\xi)\right)=T_{t+t_{0}}(\xi)=T_{t_{0}+t}(\xi)=T_{t_{0}}\left(T_{t}(\xi)\right)$ implies that $T_{t}(\xi)$ is a fixed point of $T_{t_{0}}(\xi)$, so that $T_{t}(\xi)=\xi$ for $t \in[0, \infty)$.

In order to prove that T_{t} satisfies (E2) we shall consider an arbitrary $x \in X$ and $\eta>0$ for $t>0$. T_{0} cannot satisfy (E2) except for the trivial case $X=\{\xi\}$. We can choose an arbitrary finite collection of pseudometrics $d_{\alpha_{1}}, \ldots, d_{\alpha_{p}}$ and $N>0$ so large that $d_{\alpha_{i}}\left(\xi, T_{t_{0}}^{n}(x)\right)<\delta$ for $n \geqq N$ $(i=1,2, \ldots, p)$, where $\delta=\delta\left(t_{0}, \eta, \alpha_{1}, \ldots, \alpha_{p}\right)$. Next we choose $M>0$ so large that $m t \geqq N t_{0}$ for $m \geqq M$. Then for $m \geqq M$ we have $m t=$ $=n t_{0}+\sigma(n \geqq N, 0 \leqq \sigma<t)$. Lemma 1 implies $T_{\sigma}\left(\bar{B}\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \delta)\right) \subseteq$ $\subseteq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)$ while $T_{t}^{m}(x)=T_{m t}(x)=T\left(T_{t_{0}}^{n}(x)\right) \in T_{\sigma}\left(B\left(\alpha_{1}, \ldots\right.\right.$, $\left.\left.\ldots, \alpha_{p}\right)(\xi, \delta)\right)$ and hence for $m \geqq M=M(\eta), T_{t}^{m}(x) \in B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)$ so that $T_{t}(x)$ satisfies (E2).

In order to prove (E3) for T_{t}, we shall consider an arbitrary $\eta>0$. Let $\delta=\delta\left(t, \eta, \alpha_{1}, \ldots, \alpha_{p}\right)$ be chosen as in Lemma 1. On the other hand $T_{t_{0}}$ satisfies (E3). Let $U\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \varepsilon)$ be a neighbourhood of ξ such that $T_{t_{0}}^{n}(U)$ tends uniformly to ξ as $n \rightarrow \infty$. Let us fix $N>0$ so large that $T_{t_{0}}^{n}(U)=$
$=B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \delta)$ for $n \geqq N$ and M so large that $m t>N t_{0}$ for $m \geqq M$. Then for $m \geqq M$ we can proceed as above to prove $T_{t}^{m}(U)=B\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ (ξ, η)

Theorem 3 is thus proved.
Theorem 4. The equilibrium state ξ of $a[0, \infty)$-semigroup is uniformly asymptotically stable if and only if there exists a subset $X_{0} \subset X\left(\xi \in \operatorname{int} X_{0}\right)$ such that the restriction of the semigroup to X_{0} is contractive.

Proof. Sufficiency. Let $V=V\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi)$ be an arbitrary neighbourhood of ξ. Let us fix $\bar{t}>0$ and choose $\eta>0$ such that $B\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ $(\xi, \eta) \subseteq V \cap X_{0}$. Let $\delta=\delta\left(\bar{t}, \eta, \alpha, \ldots, \alpha_{p}\right)>0$ be chosen related to $\bar{t}>0$ and $\eta>0$ as in Lemma $1(\delta \leqq \eta)$.

By the definition of a contractive semigroup there exists a family of pseudometrics $\mathcal{A}_{\bar{t}}=\left\{d_{\bar{\alpha}}^{\bar{t}}(x, y): \bar{\alpha} \in A_{\bar{t}}\right\}$ on $X_{0} j$-topologically equivalent to \mathcal{A} on X_{0}. This means that there is a bijection $h_{\bar{t}}: A \rightarrow A_{\bar{t}}$ and card $A=$ $=\operatorname{card} A_{\bar{t}}$ such that $\left.T_{\bar{t}}\right|_{X_{0}}$ is ϕ-contractive on $\left(X_{0}, \mathcal{A}_{\bar{t}}\right)$.

On the other hand there is a $\Delta>0$ such that $W=W\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)$ $(\xi, \Delta)=\left\{y \in X_{0}: d_{\bar{\alpha}_{1}}^{\bar{t}}(y, \xi)<\Delta, \ldots, d_{\bar{\alpha}_{p}}^{\bar{t}}(y, \xi)<\Delta\right\} \subseteq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \delta)$ where $\bar{\alpha}_{i}=h_{\bar{t}}\left(\alpha_{i}\right)$. We shall show that $T_{\bar{t}}^{n}(W) \cong W$. Indeed, let $y \in W$. Then we have

$$
\left.\left.\left.\begin{array}{c}
\quad d_{\bar{\alpha}_{i}}^{\bar{t}}\left(T_{t}^{n}(y), \xi\right)=d_{\bar{\alpha}_{i}}^{\bar{t}}\left(T_{t}^{n}(y), T_{t}^{n}(\xi)\right) \leqq \\
\leqq \phi_{j_{\bar{t}}^{-1}\left(\bar{\alpha}_{i}\right)}\left(\phi _ { j _ { \overline { t } } ^ { - 2 } (\overline { \alpha } _ { i }) } \left(\ldots \phi _ { j _ { \overline { t } } ^ { - n } (\overline { \alpha } _ { \overline { \alpha } _ { i } }) } \left(d_{j_{t}}\left(\alpha_{i}\right)\right.\right.\right.
\end{array}(y, \xi)\right) \ldots\right)\right)<\Delta \mathrm{l} .
$$

for sufficiently large n, i.e. $n \geqq n_{0}$ implies $T_{t}^{n}(y) \in W$. In order to ensure $T_{\bar{t}}^{n}(W) \leqq W$ for $0 \leqq n \leqq n_{0}-\overline{1}$, we can introduce the set

$$
\bar{W}=\bigcap_{l=0}^{n_{0}-1} T_{t}^{l}(W)
$$

and consider $W \cap \bar{W}$ instead of W.
Having in mind that every $t>0$ can be written in the form $t=n \bar{t}+\sigma, 0 \leqq$ $\leqq \sigma<\bar{t}$ we have $T_{t}(W)=T_{\sigma}\left(T_{\bar{t}}^{n}(W)\right) \subseteq T_{\sigma}(W) \subseteq T_{\sigma}\left(B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \delta)\right) \subseteq$ $\leqq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta)=V$ which shows that ξ is stable.

Since $T_{\bar{t}}(x)$ is contractive for every fixed $\bar{t} \in[0, \infty)$ on X_{0}, there is an $\eta_{0}>0$ such that $\left\{T_{\bar{t}}^{n}\left(U\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)\left(\xi, \eta_{0}\right)\right)\right\}_{n=0}^{\infty}$ tends uniformly to ξ for every finite collection $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}$ and $U \subset X_{0}, T_{\bar{t}}(U) \subseteq X_{0}$.

For the given $V\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi)$ we choose $\eta>0$ and $\delta>0$ as above. Let $N>0$ be so large that $T_{\bar{t}}^{n}(U) \leqq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \delta)$ for $n \geqq N$. Then any t can be written in the form $t=n \bar{t}+\sigma, n \geqq N$ and $0 \leqq \sigma<\bar{t}$, so that
$T_{\boldsymbol{t}}\left(U\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)\left(\xi, \eta_{0}\right)\right)=T_{\sigma}\left(T_{\bar{t}}^{n}\left(U\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right)\left(\xi, \eta_{0}\right)\right)\right) \subseteq T_{\sigma}\left(B\left(\alpha_{1}, \ldots, \alpha_{p}\right)\right.$ $(\xi, \delta)) \subseteq B\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi, \eta) \subseteq V\left(\alpha_{1}, \ldots, \alpha_{p}\right)(\xi)$. Hence $T_{t}(U) \rightarrow\{\xi\}$ as $t \rightarrow \infty$, that is, ξ is uniformly asymptotically stable.

Necessity. Let ξ be a uniformly asymptotically stable equilibrium state. Define the set $X_{0}=\left\{x \in X: T_{t}(x) \rightarrow \xi\right.$ as $\left.t \rightarrow \infty\right\}$. The definition of asymptotic stability ensures that X_{0} contains a neighbourhood of ξ, and so is itself such a neighbourhood. On the other hand the semigroup property implies that $T_{t}\left(X_{0}\right) \subseteq X_{0}$ for every $t \in[0, \infty)$. Indeed, for $x \in X_{0}$, we have $T_{t_{1}}\left(T_{t_{2}}(x)\right)=T_{t_{1}+t_{2}}(x)$ and when $t_{1} \rightarrow \infty, T_{t_{1}+t_{2}}(x) \rightarrow \xi$, that is, $T_{t_{2}}(x) \in$ $\in X_{0}$. Therefore $\left\{\left.T_{t}\right|_{X_{0}}: t \in[0, \infty)\right\}$ is an $[0, \infty)$-semigroup of operators on X_{0}.

The definition of X_{0} implies that $\left.T_{t}\right|_{X_{0}}$ for every $t \in[0, \infty)$ satisfies conditions (E1) and (E2). We shall verify condition (E3).

The uniform asymptotic stability of ξ guarantees the existence of an $\eta_{0}>$ >0 such that for every finite collection $d_{\alpha_{1}}, \ldots, d_{\alpha_{p}}$ there is a neighbourhood $U\left(\alpha_{1}, \ldots, \alpha_{p}\right)\left(\xi, \eta_{0}\right) \subseteq X_{0}$ such that $T_{t}(U)$ tends uniformly to ξ as $t \rightarrow \infty$. Consequently $T_{t}^{n}(U)=T_{n t}(U) \rightarrow \xi$ as $n \rightarrow \infty$ and T_{t} is ϕ-contractive, which completes the proof.

Finally, we shall apply Theorem 4 to our first example. Define the set X_{0} in the following way: $X_{0}=\left\{f \in C^{1}\left(R^{n}\right): \exp \left(x_{1}+\cdots+x_{n}\right)-q \leqq\right.$ $\left.\leqq f\left(x_{1}, \ldots, x_{n}\right) \leqq \exp \left(x_{1}+\cdots+x_{n}\right)+q\right\}$ where $q>0$ is a constant. It is easy to verify that $T_{t}\left(X_{0}\right) \subset X_{0}$. Indeed, let us put $x_{1}=\bar{x}_{1}+b_{1} t, \ldots, x_{n}=$ $=\bar{x}_{n}+b_{n} t$. If $a<0$ and $a+b_{1}+\cdots+b_{n}=0$, then we obtain $(\exp (a t) \leqq 1)$:

$$
\begin{gathered}
\exp \left(a t+x_{1}+\cdots+x_{n}\right)-q \exp (a t) \leqq \exp (a t) f\left(x_{1}, \ldots, x_{n}\right) \leqq \\
\leqq \exp \left(a t+x_{1}+\cdots+x_{n}\right)+q \exp (a t) \\
\exp \left(\bar{x}_{1}+\cdots+\bar{x}_{n}\right)-q \leqq \exp (a t) f\left(\bar{x}_{1}+b_{1} t, \ldots, \bar{x}_{n}+b_{n} t\right) \leqq \\
\leqq \exp \left(\bar{x}_{1}+\cdots+\bar{x}_{n}\right)+q \\
\exp \left(x_{1}+\cdots+x_{n}\right)-q \leqq T_{t}(f) \leqq \exp \left(x_{1}+\cdots+x_{n}\right)+q
\end{gathered}
$$

In order to apply Theorem 4 we must verify the continuity property of the semigroup. Having in mind $\|f\|_{K} \leqq\left\|\exp \left(x_{1}+\cdots+x_{n}\right)\right\|_{K}+q=\Delta_{K}$ we have

$$
\begin{gathered}
A=\sup \left\{\left|T_{t}(f)-T_{t_{0}}(f)\right|:\left(x_{1}, \ldots, x_{n}\right) \in K\right\} \leqq \\
\leqq\left|\exp (a t)-\exp \left(a t_{0}\right)\right| \sup \left\{\left|f\left(x_{1}+b_{1} t, \ldots, x_{n}+b_{n} t\right)\right|:\left(x_{1}, \ldots, x_{n}\right) \in K\right\}+ \\
\quad+\exp \left(a t_{0}\right) \sup \left\{\mid f\left(x_{1}+b_{1} t, \ldots, x_{n}+b_{n} t\right)-\right. \\
\left.-f\left(x_{1}+b_{1} t_{0}, \ldots, x_{n}+b_{n} t_{0}\right) \mid:\left(x_{1}, \ldots, x_{n}\right) \in K\right\} \leqq \\
\leqq \max \left\{\Delta_{K_{t}}: t \in N_{t_{0}}\right\}\left|\exp (a t)-\exp \left(a t_{0}\right)\right|+ \\
\quad+\exp \left(a t_{0}\right) \sup \left\{\mid f\left(x_{1}+b_{1} t, \ldots, x_{n}+b_{n} t\right)-\right. \\
\left.-f\left(x_{1}+b_{1} t, \ldots, x_{n}+b_{n} t\right) \mid:\left(x_{1}, \ldots, x_{n}\right) \in K\right\}
\end{gathered}
$$

where $N_{t_{0}}$ is some neighbourhood of t_{0}. Then if $K_{t} \cap K_{t_{0}} \neq \emptyset, A \rightarrow 0$ as $t \rightarrow t_{0}$. When $K_{t} \cap K_{t_{0}}=\emptyset$, then $A=0$.

References

[1] A. Weil, Sur les espaces a structure uniforme et sur la topologie generale, Hermann \& C-ie Editeurs (Paris, 1937).
[2] V. G. Angelov, A reuniformization for contractive mappings in uniform spaces, Math. Nach., 127 (1986), 211-221.
[3] E. Hille and R. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Vol. XXXI (Providence, R. I., 1957).
[4] P. R. Meyers, On contractive semigroups and uniform asymptotic stability J. Res. Nat. Bur. Stand. (U. S.), 74 B (Math. Sci.), (1970), 115-120.
(Received October 13, 1988)
higher institute of mining and geology
sofia 1156
BULGARIA

IDEMPOTENTS IN POLYNOMIAL RINGS

A. A. M. KAMAL (Giza)

1. Introduction

Throughout this paper all rings are associative with unit and the following notations will be preserved: σ is an automorphism of a ring A and D is a σ-derivation on A (i.e. $D(a+b)=D(a)+D(b)$ and $D(a b)=D(a) b+\sigma(a) D(b)$, for each $a, b \in A)$. The Ore extension $A[X, \sigma, D]$ is the ring of polynomials in X over A with the usual addition and with multiplication subject to the rule $X a=\sigma(a) X+D(a)$ for each $a \in A$. If $\sigma=1_{A}$, then $A[X, \sigma, D] \equiv A[X, D]$ is called the differential operator ring, if $D=0$, then $A[X, \sigma, D] \equiv A[X, \sigma]$ is called the twisted (skew) polynomial ring, and if $\sigma=1_{A}$ and $D=0$, then $A[X, \sigma, D] \equiv A[X]$ is the usual polynomial ring. Finally the set of all central idempotents in a ring A is denoted by $B(A)$ and $(B(A))^{\sigma}=\{e \in B(A): \sigma(e)=e\}$.

In 1977, Chon [1] has determined the center of Ore extension $A[X, \sigma]$, when A is a division ring. Shortly thereafter, J. D. Rosen and M. P. Rosen generalized this result to prime rings [5]. In this paper we study the idempotents in polynomial rings and we show that, for a ring $A, B(A[X, D])=$ $=B(A), B(A[X, \sigma])=(B(A))^{\sigma}$ and every central idempotent in $A[X, \sigma, D]$ with constant coefficient that commutes with the other coefficients, is in A. Moreover if A is a semiprime ring, then $B(A[X, \sigma, D])=(B(A))^{\sigma}$. Finally we show that, every faithful Abelian idempotent in A is also faithful Abelian idempotent in $A[X]$, and a counterexample is given to show that this result is not true for the ring $A[X, \sigma]$. Special attention is given for obtaining a condition under which the result is true for $A[X, \sigma]$.

2. Preliminaries

In this section we collect some of the definitions and results that are needed in this paper.

A ring A is regular provided that for every $x \in A$, there exists $y \in A$ such that $x y x=x$. A regular ring A is Abelian provided that all idempotents in A are central. An idempotent e in a ring A is called an Abelian idempotent whenever the idempotents in $e A e$ are central in $e A e$. Let e be an idempotent in a ring A, then e is faithful in A, if 0 is the only central idempotent of A which is orthogonal to e. For more details about regular rings, Abelian
regular rings, Abelian idempotents and faithful idempotents, we refer the reader to [2].

A ring A is said to be reduced if A contains no nonzero nilpotent elements and it is σ-reduced if $x \sigma(x)=0$ implies that $x=0$, for each $x \in A$.
(2.1) A regular ring A is σ-reduced if and only if A is a reduced ring and $\sigma(e)=e$ for each idempotent e in A.

We refer the reader to ([3], Ch. VI) for the proof of (2.1) and the properties of a regular σ-reduced ring.
(2.2) We give an example which is required for 3.8. Let

$$
\begin{gathered}
A=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in Z_{36}\right\}, \\
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad \text { and } B=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right): a, c \in Z_{36}\right\} .
\end{gathered}
$$

Then A is a ring, B a commutative subring and e, f are orthogonal idempotents which are not central in A.

Notice that the central idempotents in A are $\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)$, with x an idempotent in Z_{36}, therefore $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right)$ and $\left(\begin{array}{cc}28 & 0 \\ 0 & 28\end{array}\right)$ are the central idempotents in A, which implies that e and f are faithful idempotents in A.

Since $e A e \subset B$ and $f A f \subset B$, then e and f are orthogonal faithful Abelian idempotents in A.

We now give two examples of Ore extension over a ring of matrices A with an automorphism σ such that $\sigma^{2}=1_{A}$ and inner σ-derivation D on A. In the first we have a nontrivial idempotent polynomial. In the second example we have a nontrivial central polynomial.
(2.3) Let A be the ring of 2×2 matrices over a ring $B=C \times C$, where C is any ring. Define $\sigma^{\prime} \in \operatorname{Aut}(B)$ such that $\sigma^{\prime}(\alpha, \beta)=(\beta, \alpha)$ and $\sigma \in \operatorname{Aut}(A)$ such that

$$
\sigma\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\sigma^{\prime}(a) & \sigma^{\prime}(b) \\
\sigma^{\prime}(c) & \sigma^{\prime}(d)
\end{array}\right), \quad a, b, c, d \in B .
$$

A σ-derivation D on A is defined by

$$
D\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
(1,1) & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\sigma\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
(1,1) & 0 \\
0 & 0
\end{array}\right) .
$$

Let $a_{1}=\left(\begin{array}{cc}0 & (1,1) \\ 0 & 0\end{array}\right)$ and $a_{0}=\left(\begin{array}{cc}(1,1) & 0 \\ 0 & 0\end{array}\right)$. Then the polynomial $P(X)=$ $=a_{1} X+a_{0}$ is an idempotent in $A[X, \sigma, D] \square$
(2.4) Let B be a commutative ring and $A=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in B\right\}$. We define $\sigma \in \operatorname{Aut}(A)$ such that

$$
\sigma\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
0 & c
\end{array}\right) .
$$

A σ-derivation D on A is defined such that

$$
D\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
0 & \alpha \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right)-\left(\begin{array}{cc}
a & -b \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
0 & \alpha \\
0 & 0
\end{array}\right)
$$

where $\alpha \in B$ is a fixed element.
Let $a_{1}=\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\alpha\end{array}\right)$ and $a_{0}=\left(\begin{array}{cc}\beta & -\alpha^{2} \\ 0 & \beta\end{array}\right)$, where $\beta \in B$ is a fixed element. Then $P(X)=a_{1} X+a_{0}$ is a nontrivial central element in $A[X, \sigma, D]$.

More precisely, we state the conditions found by A. Leroy [4] under which the Ore extension $A[X, \sigma, D]$ contains nontrivial central elements, as follows:
(2.5) Let A be a simple ring such that A is algebraic over its center and there exists an integer $m>1$ such that σ^{m} is inner. Then the following conditions are equivalent:

1) D is algebraic,
2) $A[X, \sigma, D]$ is not simple,
3) The center of $A[X, \sigma, D]$ is nontrivial.
(This is Theorem 2.4 of [4], p. 1311.)

3. Idempotents in polynomial rings

In this section we study the relationship between the central idempotents and the faithful Abelian idempotents in a ring A and in each of the polynomial rings $A[X] A[X, \sigma], A[X, D]$ and $A[X, \sigma, D]$.

Proposition 3.1. For a ring A, every central idempotent in $A[X, \sigma]$ is in A. Moreover $B(A[X, \sigma])=(B(A))^{\sigma}$.

Proof. Let $f=\sum_{i=0}^{n} a_{i} \cdot X^{i} \in B(A[X, \sigma])$. Then

$$
\begin{equation*}
a_{j}=\sum_{i=0}^{j} a_{i} \sigma^{i}\left(a_{j-i}\right), \quad j=0, \ldots, n, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i+j=k} a_{i} \sigma^{i}\left(a_{j}\right)=0, \quad k=n+1, \ldots, 2 n \quad \text { and } \quad i, j=0, \ldots, n . \tag{2}
\end{equation*}
$$

From $f a_{j}=a_{j} f, j=0,1, \ldots, n$ we get

$$
\begin{equation*}
a_{t} a_{\ell}=a_{\ell} \sigma^{\ell}\left(a_{t}\right), \quad t=0, \ldots, n \tag{*}
\end{equation*}
$$

If we take $\ell=1$ and $t=0$ in (*) then $a_{0} a_{1}=a_{1} \sigma\left(a_{0}\right)$. By taking $j=1$ in (1) we get that $a_{1}=a_{0} a_{1}+a_{1} \sigma\left(a_{0}\right)$, therefore $a_{1}=2 a_{0} a_{1}$. Since a_{0} is an idempotent from (1), then $a_{0} a_{1}=0$ and hence from (1) with $j=1$ again, $a_{1}=0$. By induction we can prove that $a_{k}=0,1 \leqq k \leqq n$. Therefore $f=a_{0} \in A$.

Corollary 3.2. For a ring $A, B(A)=B(A[X])$.
Corollary 3.3. If A is a ring and $f=\sum_{i=0}^{n} a_{i} X^{i}$ is an idempotent in $A[X, \sigma]$ such that $a_{0} f=f a_{0}$, then $f=a_{0} \in A$.

Lemma 3.4. For a ring A, every central idempotent in $A[X, D]$ is in A.
Proof. Let $f=\sum_{i=0}^{n} a_{i} X^{i} \in B(A[X, D]) . X f=f X$ implies $D\left(a_{i}\right)=0$, $i=0,1, \ldots, n$. Also $f=f^{2}$ implies

$$
\begin{equation*}
a_{j}=\sum_{i=0}^{j} a_{i} a_{j-i}, \quad j=0, \ldots, n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i+j=k} a_{i} a_{j}=0, \quad k=n+1, \ldots, 2 n, \quad i, j=0, \ldots, n \tag{2}
\end{equation*}
$$

From $f a_{j}=a_{j} f$ we get that $a_{i} a_{j}=a_{j} a_{i}, i, j=0, \ldots, n$. As in the proof of Proposition 3.1, we can show that $a_{j}=0, j=1, \ldots, n$. Hence $f=a_{0} \in A$.

Lemma 3.5. For a derivation D in a ring $A, D(e)=0$ for each $e \in B(A)$.
Proof. It is clear that $D(e)=2 e D(e)$ and $D(1-e)=2(1-e) D(1-e)$, also $D(1)=0$, hence $D(1-e)=-D(e)$. Therefore $D(e) \in A e \cap A(1-e)=$ $=0$.

Proposition 3.6. For a ring $A, B(A[X, D])=B(A)$.
Proof. Follows form Lemmas 3.4 and 3.5.
Proposition 3.7. For a ring A, every faithful Abelian idempotent in A is a faithful Abelian idempotent in $A[X]$.

Proof. Assume that e is a faithful Abelian idempotent in A, hence $\boldsymbol{B}(A)=B(A[X])$ implies that e is a faithful idempotent in $A[X]$. Let $f=$
$=\sum_{i=0}^{n}\left(e a_{i} e\right) X^{i} \in e A[X] e$ such that $f=f^{2}$, therefore we get that

$$
\begin{equation*}
e a_{j} e=\sum_{i=0}^{j}\left(e a_{i} e\right)\left(e a_{j-i} e\right), \quad j=0, \ldots, n . \tag{1}
\end{equation*}
$$

From (1) by taking $j=0$ we get that $e a_{0} e \in B(e A e)$ and by taking $j=1$ in (1) we get that $e a_{1} e=0$. Assume that $e a_{1} e=\cdots=e a_{k-1} e=0$, and take $j=k$ in (1), we get that $e a_{k} e=0$ and therefore $f=e a_{0} e \in B(e A[X] e)$.

Example 3.8. Let A be a ring which contains orthogonal faithful Abelian idempotents e and f. Define $R=A \times A$ with $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)$ and $\sigma: R \longrightarrow R$ such that $(a, b) \mapsto(b, a)$, hence R is a ring and $\sigma \in \operatorname{Aut}(R)$. Notice that (e, f) is a faithful Abelian idempotent in R. Let $h=(0,1) X+$ $+(0,1) \in R[X, \sigma]$, hence $g=(e, f) h(e, f)=(0, f)$ is an idempotent in the ring $(e, f) R[X, \sigma](e, f)$. Let $P=\left(a_{1}, b_{1}\right) X+\left(a_{0}, b_{0}\right) \in R[X, \sigma]$, where a_{0}, a_{1}, b_{0} and $b_{1} \in A$, hence $(0, f)[(e, f) P(e, f)]=\left(0, f b_{1} e\right) X+\left(0, f b_{0} f\right)$ and $[(e, f) P(e, f)](0, f)=\left(e a_{1} f, 0\right) X+\left(0, f b_{0} f\right)$ which implies that g is not central in $(e, f) R[X, \sigma](e, f)$, hence (e, f) is not an Abelian idempotent in $R[X, \sigma]$. Therefore Proposition 3.7 is not true for $A[X, \sigma]$.

Proposition 3.9. If A is a ring such that $\sigma(e)=e$ for each $e=e^{2} \in A$, then every faithful Abelian idempotent in A is a faithful Abelian idempotent in $A[X, \sigma]$.

Proof. First, notice that $B(A[X, \sigma])=B(A)$ and hence the proof is similar to that of Proposition 3.7.

Corollary 3.10. If A is a reduced ring, then the set of all idempotents in A is equal to the set of all idempotents in $A[X, D]$; also every faithful Abelian idempotent in A is a faithful Abelian idempotent in $A[X, D]$ and vice versa.

Proof. Notice that, A is a reduced ring implies that $A[X, D]$ is a reduced ring and every idempotent in a reduced ring is central. Hence the proof follows from Lemma 3.5, Proposition 3.6 and Proposition 3.7.

Example 3.11 . Let K be a field, then $A=K \times K$ is a commutative regular self-injective ring, hence A is a reduced ring. Define $\sigma: A \longrightarrow A$ such that $(a, b) \mapsto(b, a)$. Therefore $\sigma \in \operatorname{Aut}(A)$. Let $P(X)=(0,1) X \in A[X, \sigma]$, then $P(X) \neq 0$. But $P^{2}=(0,1) . \sigma(0,1) X^{2}=0$, hence $A[X, \sigma]$ is not reduced, therefore Corollary 3.10 is not true for $A[X, \sigma]$.

Proposition 3.12. If A is a regular σ-reduced ring, then the set of all idempotents in A is equal to the set of all idempotents in $A[X, \sigma, D]$; also every faithful Abelian idempotent in A is a faithful Abelian idempotent in $A[X, \sigma, D]$ and vice versa.

Theorem 3.13. For a ring A, every central idempotent in $A[X, \sigma, D]$ with constant coefficient which commutes with the other coefficients, is in $B(A)$.

Proof. Let $f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in B(A[X, \sigma, D])$ such that $a_{0} a_{j}=a_{j} a_{0}$ for $j=1,2, \ldots, n$. We can write

$$
f^{2}=\sum_{k=0}^{2 n}\left(\sum_{i+j=k} a_{i} X^{i} a_{j} X^{j}\right)
$$

where
(0)*

$$
\begin{gathered}
\sum_{i+j=k} a_{i} X^{i} a_{j} X^{j}=\left(\sum_{\ell+t=k} a_{\ell} \sigma^{\ell}\left(a_{t}\right)\right) X^{k}+ \\
+\left[\sum_{m=1}^{k}\left(a_{m} \sum_{\ell+t=m-1} \sigma^{\ell} D \sigma^{t}\left(a_{k-m}\right)\right)\right] X^{k-1}+ \\
+\left[\sum_{m=2}^{k}\left(a_{m} \sum_{\ell_{1}+\ell_{2}+\ell_{3}=m-2} \sigma^{\ell_{1}} D \sigma^{\ell_{2}} D \sigma^{\ell_{3}}\left(a_{k-m}\right)\right)\right] X^{k-2}+ \\
+\cdots+\left[a_{k-1} D^{k-1}\left(a_{1}\right)+a_{k}\left(\sum_{\ell_{1}+\ell_{2}=k-1} D^{\ell_{1}} \sigma D^{\ell_{2}}\left(a_{2}\right)\right)\right] X+ \\
+a_{k} D^{k}\left(a_{0}\right), \quad \text { for } \quad k=0, \ldots, n,
\end{gathered}
$$

(1)*

$$
\begin{aligned}
& \sum_{\ell=1}^{n} a_{\ell} X^{\ell} a_{(n+1)-\ell} X^{(n+1)-\ell}=\left[\sum_{\ell=1}^{n} a_{\ell} \sigma^{\ell}\left(a_{(n+1)-\ell}\right)\right] X^{n+1}+ \\
& +\left[\sum_{m=1}^{n}\left(a_{m} \sum_{\ell+t=m-1} \sigma^{\ell} D \sigma^{t}\left(a_{(n+1)-m}\right)\right)\right] X^{n}+\cdots+ \\
& +\left[a_{n-1} D^{n-1}\left(a_{0}\right)+a_{n} \sum_{\ell+t=n-1} D^{\ell} \sigma D^{t}\left(a_{1}\right)\right] X^{2}+a_{n} D^{n}\left(a_{1}\right) X+
\end{aligned}
$$

$(n)^{*} \quad+a_{n} X^{n} a_{n} X^{n}=a_{n}\left[\sigma^{n}\left(a_{n}\right) X^{2 n}+\left(\sum_{\ell+t=n-1} \sigma^{\ell} D \sigma^{t}\left(a_{n}\right)\right) X^{2 n-1}+\right.$

$$
\left.+\cdots+\left(\sum_{\ell+t=n-1} D^{\ell} \sigma D^{t}\left(a_{n}\right)\right) X^{n+1}+D^{n}\left(a_{n}\right) X^{n}\right] .
$$

Since f is central, we have $f a_{j}=a_{j} f, j=0,1, \ldots, n$ and therefore we have the following equations, for $j=0,1, \ldots, n$

$$
\begin{equation*}
a_{j} a_{0}=\sum_{i=0}^{n} a_{i} D^{i}\left(a_{j}\right), \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
a_{j} a_{1}=\sum_{m=1}^{n}\left(a_{m} \sum_{\ell+t=m-1} D^{\ell} \sigma D^{t}\left(a_{j}\right)\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a_{j} a_{2}=\sum_{m=2}^{n}\left(a_{m} \sum_{\ell_{1}+\ell_{2}+\ell_{3}=m-2} D^{\ell_{1}} \sigma D^{\ell_{2}} \sigma D^{\ell_{3}}\left(a_{j}\right)\right), \tag{2}
\end{equation*}
$$

$$
\vdots
$$

$(n-1)$

$$
a_{j} a_{n-1}=a_{n-1} \sigma^{n-1}\left(a_{j}\right)+a_{n} \sum_{\ell+t=n-1} \sigma^{\ell} D \sigma^{t}\left(a_{j}\right),
$$

$(n) \quad a_{j} a_{n}=a_{n} \sigma^{n}\left(a_{j}\right)$.
From $f^{2}=f$ and $(0)^{*}$, we have $a_{0}=\sum_{i=0}^{n} a_{i} D^{i}\left(a_{0}\right)$. Also by putting $j=0$ in (0), we get $a_{0}^{2}=\sum_{i=0}^{n} a_{i} D^{i}\left(a_{0}\right)$ hence $a_{0}^{2}=a_{0}$. By using (0$)^{*}$ and (1)*, we can show that the coefficient of X in f^{2} is equal to $\sum_{i=0}^{n} a_{i} D^{i}\left(a_{1}\right)+$ $+\sum_{m=1}^{n}\left(a_{m} \sum_{\ell+t=m-1} D^{\ell} \sigma D^{t}\left(a_{0}\right)\right)$. Putting $j=1$ in (0) and $j=0$ in (1), we obtain that the coefficient of X in f^{2} is equal to $a_{1} a_{0}+a_{0} a_{1}$, hence $a_{1} a_{0}+a_{0} a_{1}=a_{1}$ which implies that $a_{1}=0$. By using (0)*, $k=2, \ldots, n$, (1)* and (2)*, we can write the coefficient of X^{2} in f^{2} as follows:

$$
\begin{aligned}
& \sum_{i=0}^{n} a_{i} D^{i}\left(a_{2}\right)+\sum_{m=1}^{n} a_{m}\left(\sum_{\ell+t=m-1} D^{\ell} \sigma D^{t}\left(a_{1}\right)\right)+ \\
& +\sum_{m=2}^{n}\left[a_{m}\left(\sum_{\ell_{1}+\ell_{2}+\ell_{3}=m-2} D^{\ell_{1}} \sigma D^{\ell_{2}} \sigma D^{\ell_{3}}\left(a_{0}\right)\right)\right] .
\end{aligned}
$$

Putting $j=2$ in (0) and $j=0$ in (2), we get that the coefficient of X^{2} in f^{2} is equal to $a_{2} a_{0}+a_{0} a_{2}$. Hence $a_{2} a_{0}+a_{0} a_{2}=a_{2}$, which implies that $a_{2}=0$. Now assume that $a_{1}=a_{2}=\ldots a_{s-1}=0$. Therefore the coefficient of X^{s} in f^{2} is equal to

$$
\begin{gathered}
\sum_{i=0}^{n} a_{i} D^{i}\left(a_{s}\right)+\left[a_{n} \sum_{\ell_{1}+\cdots+\ell_{s+1}=n-s} D^{\ell_{1}} \sigma D^{\ell_{2}} \ldots D^{\ell_{s+1}}\left(a_{0}\right)+\right. \\
\left.+\cdots+a_{s+1} \sum_{\ell+t=s} \sigma^{\ell} D \sigma^{t}\left(a_{0}\right)+a_{s} \sigma^{s}\left(a_{0}\right)\right]
\end{gathered}
$$

Taking $j=s$ in (0) and $j=0$ in (s), we get that the coefficient of X^{s} in f^{2} is equal to $a_{s} a_{0}+a_{0} a_{s}$, which implies that $a_{s} a_{0}+a_{0} a_{s}=a_{s}$. Hence $a_{s}=0$, therefore by induction we get that $a_{1}=a_{2}=\cdots=a_{n}=0$, and hence $f=a_{0} \in A$ is a central idempotent in $A[X, \sigma, D]$.

Remark 3.14. Proposition 3.1 and hence Theorem 3.13 are false in the case of rings which are not associative, as the following counterexample shows.

Let Q be the ring of rationals and Q^{0} the zero-ring built on the additive group of rationals. On the Cartesian product $Q \times Q^{0}$ let us define addition componentwise and multiplication by $(a, \alpha)(b, \beta)=\left(a b, \frac{a \beta}{2}+\frac{\alpha b}{2}\right)$ where $a, b \in Q$ and $\alpha, \beta \in Q^{0}$ and $a \alpha$ means the usual product of rationals. This multiplication is commutative and distributive, but not associative. Hence we have got a commutative ring A which is not associative. Let A^{1} denote the usual unital extension of A and $\sigma=1_{A^{1}}$. The polynomial $f=(1,0)+(0,1) X$ is an idempotent, as $(1,0)^{2}=(1,0),(1,0) .(0,1)=(0,1 / 2)$ and $(0,1)^{2}=0$. Hence f is a non-constant central idempotent in $A[X] \subseteq A^{1}[X]$.

Theorem 3.15. If A is a semiprime ring, then $B(A[X, \sigma, D])=(B(A))^{\sigma}$.
Proof. Suppose that there exist nontrivial central idempotents in $A[X$, σ, D] and let $f=\sum_{i=0}^{n} a_{i} X^{i}$ be a central idempotent with minimal length. Since $f X=X f$, then a_{n} is fixed under σ. For each $s \in A, f s(1-f)=0$ which implies that $a_{n} \sigma^{n}(s) a_{n}=0$. Therefore $a_{n} A a_{n}=0$ and since A is a semiprime ring, then $a_{n}=0$ which is a contradiction. Hence $f=a_{0}$ and $B(A[X, \sigma, D])=(B(A))^{\sigma}$.

References

[1] P. M. Chon, Skew Field Constructions, LMS Lecture Note Series 27, Cambridge University Press (Cambridge, 1977).
[2] K. R. Goodearl, Von Neumann Regular Rings, Pitman (1979).
[3] J. M. Goursaud, Sur les anneaux introduits par la notion de module projectif, Thèse présentée a l'université de Poitiers (France) (1977).
[4] A. Leroy, J. P. Tignol and P. Von Praac, Sur les anneaux simples differentiels, Comm. Algebra, 10 (1982), 1307-1314.
[5] J. D. Rosen and M. P. Rosen, Extended centroids of skew polynomial rings, Canad. Math. Bull., 28 (1985), 67-76.
(Received October 13, 1988; revised June 28, 1989)
CAIRO UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS
GIZA
EGYPT

ON THE OPTIMAL CONTROL OF CIRCULAR MEMBRANES

I. JOÓ (Budapest)

1. The present paper is motivated by my earlier papers [3], [4] where the set of movement states of a controlled string reachable in a fixed time is studied (see also the works [5]-[7]). I have proved among others that the reachability sets $D(T)$ are growing for $T \leqq T_{0}$ and $D(T)=D\left(T_{0}\right)$ for $T \geqq T_{0}$. Here we shall prove this phenomenon for the circular membrane and in a subsequent paper for rectangular membrane (because the last problem needs essentially different mathematical tools). We shall determine the critical time T_{0} for both cases.

For multidimensional balls (containing the case of the circle) the same control problem was studied by K. D. Graham and D. L. Russel [20]. They showed the following statements :
(a) $D(T) \nsupseteq H^{1}(\Omega) \oplus L_{2}(\Omega)$ for $T<2$,
(b) $D(T) \underset{\neq}{ } H^{1}(\Omega) \oplus L_{2}(\Omega)$ for $T>2$,
(c) for the two-dimensional case $D(T) \cong H^{2 / 3}(\Omega) \oplus H^{-1 / 3}(\Omega)$ for $T>2$.

Our results have a rather different character, although we apply, as in [20], the theory of Riesz bases for solving moment problems. We are able to investigate $D(T)$ for the critical time $T=2$; in this subject [20] provides no information. Finally we call the attention to the problem raised in [20] to describe $D(T)$ by some classical function spaces. The difficulty arises in the investigation of the constant sequence $J_{m}\left(\lambda_{n}^{(m)}\right) /\left\|\varphi_{n k}\right\|^{2}$ in (7) below. We return to this question in a subsequent paper [21].
2. Consider the unit circle

$$
\Omega:\left\{(x, y): x^{2}+y^{2}<1\right\} .
$$

Let $z(t, x, y)$ denote the height of the point $(x, y) \in \Omega$ at time t. Consider the system

$$
\begin{cases}z_{t t}=\Delta z & \text { on }(0, T) \times \Omega \tag{1}\\ \frac{\partial z}{\partial \nu}=u & \text { on }(0, T) \times \Gamma, \Gamma:=\partial \Omega \\ z=z_{t}=0 & \text { on }\{0\} \times \Omega \text { (i.e. for } t=0)\end{cases}
$$

It describes the motion of the membrane controlled at the boundary by the control $u \in L^{2}((0, T) \times \Gamma)$. Take a function $w(t, x, y) C^{2}([0, T] \times \bar{\Omega})$ with
$w=w_{t}=0$ for $t=T$ and $\frac{\partial w}{\partial \nu}=0$ on $(0, T) \times \Gamma$. Then we can count formally

$$
\int_{(0, T) \times \Omega} z w_{t t}=\int_{\Omega}\left[z w_{t}-z_{t} w\right]_{t=0}^{T}+\int_{(0, T) \times \Omega} z_{t t} w=\int_{(0, T) \times \Omega} z_{t t} w
$$

and by the formal application of the Green formula

$$
\begin{gathered}
\int_{(0, T) \times \Omega} z \Delta w=\int_{0}^{T} \int_{\partial \Omega}\left(z \frac{\partial w}{\partial \nu}-w \frac{\partial z}{\partial \nu}\right)+\int_{\Omega} w \Delta z= \\
=-\int_{(0, T) \times \Omega} w u+\int_{(0, T) \times \Omega} w \Delta z
\end{gathered}
$$

This justifies the following
Definition. By the solution of the system (1) we mean a function $z(t, x, y)$ satisfying

$$
\begin{equation*}
\int_{(0, T) \times \Omega} z\left(w_{t t}-\Delta w\right)=\int_{(0, T) \times \Omega} u w \tag{2}
\end{equation*}
$$

for all $w(t, x, y)$ with properties $w \in C^{2}([0, T] \times \bar{\Omega})$ and

$$
\begin{equation*}
w=w_{t}=0 \quad \text { for } \quad t=T, \quad \frac{\partial w}{\partial \nu}=0 \quad \text { on } \quad(0, T) \times \partial \Omega \tag{3}
\end{equation*}
$$

Consider the system

$$
\begin{cases}-\Delta \varphi_{n k}=\left(\lambda_{n}^{(k)}\right)^{2} \varphi_{n k} & \text { on } \Omega \tag{4}\\ \frac{\partial \varphi_{n k}}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

Using polar coordinates $x=r \cos \alpha, y=r \sin \alpha$ we get ([1]) that the system

$$
\varphi_{n k}(x, y):=e^{i k \alpha} J_{m}\left(\lambda_{n}^{(m)} r\right), \quad m:=|k|, \quad k \in \mathbf{Z}, \quad n=1,2, \ldots
$$

is complete and orthogonal in $L^{2}(\Omega)$ weighted with $r=\sqrt{x^{2}+y^{2}}$, if

$$
0<\lambda_{1}^{(m)}<\lambda_{2}^{(m)} \ldots
$$

are the positive zeros of the derivative J_{m}^{\prime} of the Bessel function of order m (and in (4), $\lambda_{n}^{(-m)}:=\lambda_{n}^{(m)}$).

From [2], 7.14.1 (1D) and 7.2.8 (56)-(57) we know that

$$
\begin{gather*}
\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}^{2}=2 \pi \int_{0}^{1} r\left|J_{m}\left(\lambda_{n}^{(m)} r\right)\right|^{2} d r= \tag{5}\\
=\frac{\pi}{2}\left[2 J_{m}^{2}\left(\lambda_{n}^{(m)}\right)-2 J_{m-1}\left(\lambda_{n}^{(m)}\right) J_{m+1}\left(\lambda_{n}^{(m)}\right)\right]= \\
=\left|J_{m}\left(\lambda_{n}^{(m)}\right)\right|^{2}\left(1-\frac{m^{2}}{\left(\lambda_{n}^{(m)}\right)^{2}}\right), \quad m=|k| .
\end{gather*}
$$

We give the solution z as an expansion

$$
z(t, x, y)=\sum_{n=1}^{\infty} \sum_{k \in \mathbf{Z}} c_{n k}(t) \varphi_{n k}(x, y)
$$

convergent in $L^{2}(\Omega)$ for every fixed t. In this case we have

$$
\begin{equation*}
c_{n k}(t)=\frac{1}{\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}^{2}} \int_{\Omega} z \overline{\varphi_{n k}} . \tag{6}
\end{equation*}
$$

Now define the function

$$
w(t, x, y):=b(t) \varphi_{n k}(x, y),
$$

where $b \in C^{2}[0, T]$ is real-valued and $b(T)=b^{\prime}(T)=0$. From (2) we obtain

$$
\begin{gathered}
\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}^{2} \int_{0}^{T}\left(b^{\prime \prime}(t)+\left(\lambda_{n}^{(m)}\right)^{2} b(t)\right) c_{n k}(t) d t= \\
=J_{m}\left(\lambda_{n}^{(m)}\right) \int_{0}^{T} b(t) \int_{0}^{2 \pi} u(\alpha, t) e^{-i k \alpha} d \alpha d t= \\
=J_{m}\left(\lambda_{n}^{(m)}\right) \int_{0}^{T} b(t) u_{k}(t) d t, \quad u_{k}(t):=\int_{0}^{2 \pi} u(\alpha, t) e^{-i k \alpha} d \alpha .
\end{gathered}
$$

This means (as in [3], [4]) that

$$
\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}^{2} c_{n k}(t)=\int_{0}^{t} \frac{\sin \lambda_{n}^{(m)}(t-\tau)}{\lambda_{n}^{(m)}} u_{k}(\tau) d \tau \cdot J_{m}\left(\lambda_{n}^{(m)}\right)
$$

and

$$
\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}^{2} c_{n k}(t)=\int_{0}^{t} \cos \lambda_{n}^{(m)}(t-\tau) u_{k}(\tau) d \tau \cdot J_{m}\left(\lambda_{n}^{(m)}\right)
$$

These can be unified in the formulae

$$
\begin{equation*}
c_{n k}^{\prime}(t) \pm i \lambda_{n}^{(m)} c_{n k}(t)= \tag{7}
\end{equation*}
$$

$$
=\frac{J_{m}\left(\lambda_{n}^{(m)}\right)}{\left\|\varphi_{n k}\right\|_{L^{2}(\Omega)}} \cdot \int_{0}^{t} e^{ \pm i \lambda_{n}^{(m)}(t-\tau)} u_{k}(\tau) d \tau, \quad m=|k|
$$

$$
u_{k}(t):=\int_{0}^{2 \pi} u(\alpha, t) e^{-i k \alpha} d \alpha
$$

Using the coefficients $c_{n k}$ given in (7), we get a solution of (2), (3). This is a repetition of some ideas given in [3] so we omit the details.

Now we list some facts about the zeros of Bessel functions. Denote

$$
0<\mu_{1}^{(m)}<\mu_{2}^{(m)}<\ldots
$$

the positive zeros of the m-th Bessel function $J_{m}, m=0,1, \ldots$ It is proved in [1], 15.4 that for large $N=N(m) \in \mathbf{N}$ the function J_{m} has exactly N zeros in the interval $\left(0,\left(N+\frac{m}{2}+\frac{1}{4}\right) \pi\right)$. By the asymptotical formula

$$
\begin{equation*}
J_{m}(x)=\sqrt{\frac{2}{\pi x}}\left[\cos \left(x-\pi \frac{m}{2}-\frac{\pi}{4}\right)+O\left(\frac{1}{x}\right)\right], \quad x>0 \tag{8}
\end{equation*}
$$

where the implicit constant in the O-term depends on m. This shows that for large x the zeros of $J_{m}(x)$ are near the sequence $\ell \pi+\frac{3}{4}+\frac{m}{2} \pi$. Consequently

$$
\begin{equation*}
\mu_{n}^{(m)}=\left(n+\frac{m}{2}-\frac{1}{4}\right) \pi+O\left(\frac{1}{n}\right) \quad(n=1,2, \ldots) \tag{9}
\end{equation*}
$$

and the implicit constant depends on m. On the other hand

$$
\begin{equation*}
J_{m}^{\prime}(x)=\frac{1}{2}\left(J_{m-1}(x)-J_{m+1}(x)\right)= \tag{10}
\end{equation*}
$$

$$
=\frac{1}{2} \sqrt{\frac{2}{\pi x}}\left[\cos \left(x-\pi \frac{m-1}{2}-\frac{\pi}{4}\right)-\cos \left(x-\pi \frac{m+1}{2}-\frac{\pi}{4}\right)+O\left(\frac{1}{x}\right)\right]=
$$

$$
=-\sqrt{\frac{2}{\pi x}}\left[\sin \left(x-\pi \frac{m}{2}-\frac{\pi}{4}\right)+O\left(\frac{1}{x}\right)\right]
$$

Since the zeros of J_{m} and J_{m}^{\prime} separate each other [1], 15.23 i.e.

$$
\begin{aligned}
& 0<\lambda_{1}^{(m)}<\mu_{1}^{(m)}<\lambda_{2}^{(m)}<\mu_{2}^{(m)}<\ldots \text { for } m \geqq 1 \\
& 0<\mu_{1}^{(0)}<\lambda_{1}^{(0)}<\mu_{2}^{(0)}<\lambda_{2}^{(0)}<\ldots
\end{aligned}
$$

(and $\lambda_{n}^{(0)}=\mu_{n}^{(1)}$ by $J_{0}^{\prime}=-J_{1}$), hence

$$
\begin{align*}
\lambda_{n}^{(m)} & =\left(n+\frac{m}{2}-\frac{3}{4}\right) \pi+O\left(\frac{1}{n}\right), \quad m \geqq 1 \quad \text { fixed, } \quad n=1,2, \ldots \tag{11}\\
& \lambda_{n}^{(0)}=\mu_{n}^{(1)}=\left(n+\frac{1}{4}\right) \pi+O\left(\frac{1}{n}\right), \quad n=1,2, \ldots
\end{align*}
$$

Introduce the reachability sets

$$
D(T):=\left\{\left(z(T, ., .), \quad z_{t}(T, ., .)\right): u \in L^{2}((0, T) \times \partial \Omega)\right\}
$$

for $0<T<\infty$. We shall prove the following
ThEOREM. (a) $D\left(T_{1}\right) \varsubsetneqq D\left(T_{2}\right)$ for $T_{1}<T_{2} \leqq 2$,
(b) $D(2) \varsubsetneqq D\left(T_{1}\right)=D\left(T_{2}\right)$ for $2<T_{1}<T_{2}$.

That is, the critical time is the diameter of Ω. Since $z(T, .,$.$) , resp.$ $z_{t}(T, .,$.$) are determined by the coefficients c_{n k}(T)$ resp. $c_{n k}^{\prime}(T)$, we can consider the sequences $c_{n k}^{\prime}(T) \pm i \lambda_{n}^{(m)} c_{n k}(T)$, or the set

$$
\begin{gathered}
\tilde{D}(T):=\left\{\left(\int_{0}^{T} e^{ \pm i \lambda_{n}^{(m)} \tau} u_{k}(T-\tau) d \tau\right),\right. \\
\left.k \in \mathbf{Z}, \quad n=1,2, \cdots: u \in L^{2}((0, T) \times \partial \Omega)\right\} .
\end{gathered}
$$

Clearly

$$
D\left(T_{1}\right) \subset D\left(T_{2}\right) \text { if and only if } \quad \tilde{D}\left(T_{1}\right) \subset \tilde{D}\left(T_{2}\right)
$$

and

$$
D\left(T_{1}\right)=D\left(T_{2}\right) \quad \text { if and only if } \quad \tilde{D}\left(T_{1}\right)=\tilde{D}\left(T_{2}\right)
$$

we shall prove the Theorem for \tilde{D} instead of D. The proof requires some preliminary lemmas. Introduce the notation (for $a_{n}, b_{n} \geqq 0$) $a_{n} \asymp b_{n}$ to abbreviate the inequalities $c_{1} a_{n} \leqq b_{n} \leqq c_{2} a_{n}$ for every n with $0<c_{1} \leqq c_{2}<$ $<\infty$ independent of n.

Lemma 1 [19]. The distance between the consecutive zeros of J_{m}^{\prime} tends monotone decreasingly to $\pi: \lambda_{n+1}^{(m)}-\lambda_{n}^{(m)} \searrow \pi, n \rightarrow \infty, m=0,1,2, \ldots$.

Lemma 2 ([11], or [8], p. 96). Let $\left\{\lambda_{k}: k \in \mathbf{Z}\right\} \subset \mathbf{C}$ be a sequence satisfying $\left|\operatorname{Im} \lambda_{k}\right| \leqq H<\infty, \inf _{k_{1} \neq k_{2}}\left|\lambda_{k_{1}}-\lambda_{k_{2}}\right| \geqq \delta>0$. Let further $T<\infty$ be fixed. Then

$$
\sum_{k \in \mathbf{Z}}\left|\int_{T}^{T} \varphi(x) e^{-i \lambda_{k} x} d x\right|^{2} \leqq \frac{4}{\pi \delta^{2}} \frac{e^{2 T\left(\frac{\delta}{2}+H\right)}}{T} \int_{-T}^{T}|\varphi(x)|^{2} d x
$$

holds for every $\varphi \in L^{2}(-T, T)$.
Lemma 3. $\tilde{D}(T) \subset \ell_{2}$ holds for every $T<\infty$.
Proof. Applying Lemmas 1 and 2 for any fixed $\in \mathbf{Z}$ we get

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{T} e^{e \pm i \lambda_{n}^{(m)}} u_{k}(T-\tau) d \tau\right|^{2} \leqq c\left\|u_{k}\right\|_{L^{2}(0, T)}^{2}
$$

where $c=c(T)$ is independent of k. Since

$$
\sum\left\|u_{k}\right\|_{L^{2}(0, T)}^{2}=\|u\|_{L^{2}((0, T) \times \partial \Omega)}^{2}
$$

the proof is complete.
The notion of sine type function is due to Levin [9], [10]. The entire function $F(z)$ is called of sine type if it is of exponential type, all zeros λ_{n} lay in a horizontal strip $|\operatorname{Im} z| \leqq \tau$ and for all $|H| \geqq \tau+1$ we have

$$
\begin{equation*}
0<m \leqq|F(t+i H)| e^{-\sigma|H|} \leqq M<\infty \quad(t \in \mathbf{R}) . \tag{12}
\end{equation*}
$$

In this case the indicator diagram of F is $[-i \sigma, i \sigma]$. Levin proved in [9] that if λ_{n} are the zeros of the above described sine type function F and if $\inf _{n \neq k}\left|\lambda_{n}-\lambda_{k}\right|>0$ then the system $\left\{e^{i \lambda_{n} t}\right\}$ gives a Riesz basis in $L^{2}(0,2 \sigma)$ (see also [16]). Then many authors investigated how "large" perturbation $\hat{\lambda}_{n}$ of λ_{n} is allowed if we want $\left\{e^{i \hat{\lambda}_{n} t}\right\}$ to be a Riesz basis in $L^{2}(0,2 \sigma)$. We mention the works [11] and [12]. In [12] S. A. Avdonin introduced the notion of A-partition of the set $\left\{\lambda_{n}\right\}$; the j-th class of the partition is

$$
\left\{\lambda_{n}: a_{j} \leqq \operatorname{Re} \lambda_{n} \leqq a_{j+1}\right\}
$$

where $\lim _{j \rightarrow \pm \infty} a_{j}= \pm \infty$ and $\ell_{j}:=a_{j+1}-a_{j}$ is bounded. We can also suppose e.g. that $\ell_{\boldsymbol{j}} \geqq 1$ for all j. Introduce the notation

$$
K_{j}:=\left\{n: a_{j} \leqq \operatorname{Re} \lambda_{n}<a_{j+1}\right\} .
$$

The famous perturbation theorem of Avdonin reads as follows :

Theorem A [12]. Let $\left\{\delta_{n}\right\} \subset \mathbf{C}$ be a bounded sequence and $\left\{\lambda_{n}\right\} \subset \mathbf{C}$ the zero set of a sine type function. Suppose that there exists an A-partition satisfying

$$
\left|\sum_{n \in K_{j}} \operatorname{Re} \delta_{n}\right| \leqq d \ell_{j} \quad(j \in \mathbf{Z})
$$

for some $d<1 / 4$. Now if

$$
\inf _{n \neq k}\left|\left(\lambda_{n}+\delta_{n}\right)-\left(\lambda_{k}+\delta_{k}\right)\right|=\eta>0
$$

then $\left\{e^{i\left(\lambda_{n}+\delta_{n}\right) t}\right\}$ is a Riesz basis in $L_{2}(0,2 \sigma)$.
As it is known from the theory of Riesz bases, this means that

$$
\begin{align*}
& c_{1} \sum_{n}\left|\int_{0}^{2 \sigma} \varphi(t) e^{-i\left(\lambda_{n}+\delta_{n}\right) t} d t\right|^{2} \leqq\|\varphi\|_{L^{2}(0,2 \sigma)}^{2} \leqq \tag{13}\\
& \quad \leqq c_{2} \sum_{n}\left|\int_{0}^{2 \sigma} \varphi(t) e^{-i\left(\lambda_{n}+\delta_{n}\right) t} d t\right|^{2}
\end{align*}
$$

for some $0<c_{1}, c_{2}<\infty$. In what follows we need the fact that in Theorem A the constants c_{1}, c_{2} depend only on $\sigma, \tau_{0}, m_{0}, M_{0}, L_{0}, D_{0}, d_{0}, \eta_{0}$, where $\tau_{0} \geqq \tau, 0<m_{0} \leqq m, M \leqq M_{0}, \sup _{j} \ell_{j} \leqq L_{0}, \sup _{n}\left|\delta_{n}\right| \leqq D_{0}$ further $d \leqq d_{0}<$ $<1 / 4$ and $0<\eta_{0} \leqq \eta$. One can check this by repeating the proof of [12] step by step, hence we omit it.

Proof of the Theorem. As we have seen in Lemma $3, \tilde{D}(T) \subset \ell_{2}$ for all T. We shall prove that $\tilde{D}(T)=\ell_{2}$ for $T>2$ and \varsubsetneqq for $T \leqq 2$.
(a) Recall that $\tilde{D}(T)$ consists of the sequences

$$
\left(\int_{0}^{T} e^{ \pm i \lambda_{n}^{(|k|)}} u_{k}(T-\tau) d \tau\right), \quad k \in \mathbf{Z}, \quad n=1,2, \ldots
$$

where

$$
u_{k}(t):=\int_{0}^{2 \pi} u(\alpha, t) e^{-i k \alpha} d \alpha, \quad u(\alpha, t) \in L^{2}
$$

This means that the functions $u_{k}(t)$ can be chosen arbitrarily under the condition

$$
\begin{equation*}
\sum_{k \in \mathbf{Z}}\left\|u_{k}\right\|_{L^{2}(0, T)}^{2}<\infty \tag{14}
\end{equation*}
$$

Now we prove for $T_{1}<T_{2}<2$ that $D\left(T_{1}\right) \varsubsetneqq D\left(T_{2}\right)$: for the case $T_{2}=2$ the same result will then follow.

We have to investigate only the moments for $k=0$; it is the moment space of the system $\left\{e^{ \pm i \lambda_{n}^{(0)} \tau}: n=1,2, \ldots\right\}$, and by (11), $\lambda_{n}^{(0)}=\left(n+\frac{1}{4}\right) \pi+$ $+O\left(\frac{1}{n}\right)$. We need the following two results.

Theorem \mathbf{B} [18]. Let $\lambda_{n}, n \in \mathbf{Z}$ be complex numbers satisfying

$$
\sup _{n}\left|\operatorname{Im} \lambda_{n}\right|<\infty, \quad \inf _{n \neq k}\left|\lambda_{n}-\lambda_{k}\right|>0
$$

Suppose that for every $\varepsilon>0$ there exists $d_{0}>0$ such that for $d>d_{0}$ we have

$$
\left|\frac{1}{d} \sum_{x<\operatorname{Re} \lambda_{n}<x+d} 1-\frac{a}{2 \pi}\right|<\varepsilon \quad(x \in \mathbf{R}) .
$$

Then for every $0<a^{\prime}<a$ there is a subsystem of $\left\{e^{i \lambda_{n} x}: n \in \mathbf{Z}\right\}$ forming a Riesz basis in $L^{2}\left(0, a^{\prime}\right)$.

Theorem C [17]. If a system $e(\Lambda):=\left\{e^{i \lambda_{n} x}: n \in \mathbf{Z}\right\}$ is a Riesz basis in $L^{2}(0, a)$ then for every $0<a^{\prime}<a$ there exists a subsystem of $e(\Lambda)$ forming a Riesz basis in $L^{2}\left(0, a^{\prime}\right)$.

Returning to the proof of our Theorem, by Theorem B the system $\left\{e^{ \pm i \lambda_{n}^{(0)}}: n=1,2, \ldots\right\}$ contains a subsystem ϕ_{2} which is Riesz basis in $L^{2}\left(0, T_{2}\right)$ and there exists $\phi_{1} \subset \phi_{2}$, which is a Riesz basis in $L^{2}\left(0, T_{1}\right)$. Hence in $\tilde{D}\left(T_{2}\right)$ we have the whole ℓ_{2} space in the coordinates corresponding to the elements of ϕ_{2}. In $\tilde{D}\left(T_{1}\right)$ this is not true: any element $\varphi \in \phi_{2} \backslash \phi_{1}$ can be expanded by the basis in ϕ_{1} in $L^{2}\left(0, T_{1}\right)$, and this relation gives a connection between the corresponding moments in $\tilde{D}\left(T_{1}\right)$. This proves (a).
(b) We shall show that $\tilde{D}(2)$ is not the whole ℓ_{2}, but $\tilde{D}(T)=\ell_{2}$ for $T>2$. To see the first statement we restrict ourselves to the coordinates $k=1$. Let $e(\Lambda):=\left\{e^{ \pm \lambda_{n}^{(1)} x}: n=1,2, \ldots\right\}$ and $e_{o}(\Lambda):=\left\{e^{ \pm i\left(n-\frac{1}{2}\right) x}: n=1,2, \ldots\right\}$. We know from (11) that $\lambda_{n}^{(1)}=\left(n-\frac{1}{4}\right) \pi+O\left(\frac{1}{n}\right)$. Suppose indirectly that the moment space of $e(\Lambda)$ is ℓ_{2}. Then $e(\Lambda)$ is a Riesz basis in the closed linear hull $V(e(\Lambda))$ of its elements, see [8], p. 169. Consequently

$$
\sum\left|\int_{0}^{2} e^{ \pm \lambda_{n}^{(1)} x} v(x) d x\right|^{2} \asymp \int_{0}^{2}|v(x)|^{2} d x, \quad v \in V(e(\Lambda))
$$

This property remains valid if we choose exponents μ_{n}

$$
\left|\lambda_{n}^{(1)}-\mu_{n}\right|<\varepsilon, \quad n=1,2, \ldots
$$

for sufficiently small $\varepsilon>0$ ([8], p. 181); namely

$$
\sum\left|\int_{0}^{2} e^{ \pm i \mu_{n} x} v(x) d x\right|^{2} \asymp \int_{0}^{2}|v(x)|^{2} d x, \quad v \in V(e(\Lambda))
$$

and hence

$$
\begin{equation*}
\sum\left|\int_{0}^{2} e^{ \pm i \mu_{n} x} v(x) d x\right|^{2} \geqq c \int_{0}^{2}|v(x)|^{2} d x, \quad v \in V\left(e^{ \pm i \mu_{n} x}\right) . \tag{15}
\end{equation*}
$$

The converse inequality is contained in Lemma 2, therefore the moment operator

$$
P: V\left(e^{ \pm i \mu_{n} x}\right) \rightarrow \ell_{2}, \quad v \mapsto\left(\int_{0}^{2} e^{ \pm i \mu_{n} x} v(x) d x\right)
$$

is an isomorphic imbedding. But we shall prove that the system $\left\{e^{ \pm i \mu_{n} x}\right\}$ is minimal. Indeed, let $\left(c_{n}\right) \in \ell_{2}$ be fixed and suppose that

$$
\sum_{n=1}^{\infty} c_{n} F\left(\mu_{n}\right)+\sum_{n=-\infty}^{-1} c_{n} F\left(-\mu_{n}\right)=0 \quad\left(F \in B_{2}^{2}\right) .
$$

Use [8], p. 181 to obtain

$$
\begin{gather*}
\left|\sum_{1}^{\infty} c_{n} F\left(\lambda_{n}^{(1)}\right)+\sum_{-\infty}^{-1} c_{n} F\left(-\lambda_{n}^{(1)}\right)\right|= \tag{16}\\
=\left|\sum_{1}^{\infty} c_{n}\left[F\left(\lambda_{n}^{(1)}\right)-F\left(\mu_{n}\right)\right]+\sum_{-\infty}^{-1} c_{n}\left[F\left(-\lambda_{n}^{(1)}\right)-F\left(-\mu_{n}\right)\right]\right| \leqq \\
\leqq c\left(e^{\pi \varepsilon}-1\right)\left(\int_{\mathbf{R}}|f(t)|^{2} d t\right)^{\frac{1}{2}}\left(\sum_{\substack{n \in \mathbf{Z} \\
n \neq 0}}\left|c_{n}\right|^{2}\right)^{\frac{1}{2}} .
\end{gather*}
$$

Since $e(\Lambda)$ is a Riesz basis in $V(e(\Lambda))$, we can give $F \in B_{2}^{2}$ with

$$
\begin{gathered}
F\left(\lambda_{n}^{(1)}\right)=\overline{c_{n}}, \quad n=1,2, \ldots, \quad F\left(-\lambda_{n}^{(1)}\right)=\overline{c_{n}}, \quad n=-1,-2, \ldots, \\
\int_{\mathbf{R}}|F(t)|^{2} d t \asymp \sum_{n \neq 0}\left|c_{n}\right|^{2} .
\end{gathered}
$$

Now if $\varepsilon>0$ is sufficiently small, (16) can be true only if $c_{n}=0$ for every n. Hence $\left\{e^{ \pm i \mu_{n} x}\right\}$ is indeed minimal and then the range of P contains the finite moment sequences. Consequently P maps isomorphically onto ℓ_{2} and then $\left\{e^{ \pm i \mu_{n} x}\right\}$ is a Riesz basis in $V\left(e^{ \pm i \mu_{n} x}\right)$. In particular the system

$$
e_{1}(\Lambda):=\left\{e^{ \pm i\left(n-\frac{1}{4}\right) x}: n>N\right\} \cup\left\{e^{ \pm i \lambda_{n}^{(1)} x}: n \leqq N\right\}
$$

is a Riesz basis in $V\left(e_{1}(\Lambda)\right)$ for sufficiently large N. Since $e_{0}(\Lambda)$ is complete in $L^{2}(0,2)([8]$, p. 122) and changing finitely many exponents leaves the completeness unchanged ([8], p. 129), hence $e_{1}(\Lambda)$ is a complete Riesz basis in $L^{2}(0,2)$. The Riesz basis property is also unaffected by the change of finitely many exponents (since the completeness remains true), hence $e_{0}(\Lambda)$ is a Riesz basis in $L^{2}(0,2)$. Then for sufficiently small $\varepsilon>0$ the system

$$
e_{\varepsilon}(\Lambda):=\left\{e^{ \pm i(n-0.25+\varepsilon) x}: n=1,2, \ldots\right\}
$$

is also a Riesz basis. But Theorem A implies that $\{1\} \cup e_{\varepsilon}(\Lambda)$ is a Riesz basis in $L^{2}(0,2)$, hence $e_{\varepsilon}(\Lambda)$ is not complete. This contradiction proves that the moment space of $e(\Lambda)$ is strictly contained in ℓ_{2}.

Next we shall show that for $T>2 \tilde{D}(T)=\ell_{2}$. Since for the functions $u_{k} \in L^{2}(0, T)$ the only restriction is

$$
\sum_{k \in \mathbf{Z}}\left\|u_{k}\right\|_{L^{2}(0, T)}<\infty
$$

it is enough to prove the following statement. The systems

$$
e^{(m)}(\Lambda):=\left\{e^{ \pm i \lambda_{n}^{(1)} x}: n=1,2, \ldots\right\}
$$

can be completed to an exponential basis $E^{(m)}(\Lambda)$ of $L^{2}(0, T)$ such that the implicit constants c_{1}, c_{2} mentioned in Theorem A do not depend on m. To prove this, fix a value m. We shall use Theorem A with the mentioned modification and start with the system

$$
E:=\left\{e^{i 2 \pi k x / T}: k \in \mathbf{Z}\right\}
$$

the standard orthonormal basis in $L^{2}(0, T)$. First observe that there exists $d_{0}>0$ independent of m such that any interval of length d_{0} contains more numbers $k \frac{2 \pi}{T}$ than $\lambda_{n}^{(m)}$. This follows from the fact that the distance between consecutive zeros of J_{m} tends monotone decreasingly to π. Consider a segment I and define the upper translation of $k \frac{2 \pi}{T} \in I$ as follows. Shift the largest value $k \frac{2 \pi}{T} \in I$ to the largest value $\lambda_{n}^{(m)} \in I$, the second largest
value $k \frac{2 \pi}{T} \in I$ to the second largest $\lambda_{n}^{(m)}$ etc. If $|I|>d_{0}$, then all $\lambda_{n}^{(m)}$ can be represented as a shifted value. The lower translation is the reversed process: we shift the smallest $k \frac{2 \pi}{T} \in I$ to the smallest $\lambda_{n}^{(m)} \in I$, the second smallest one to the second smallest one etc. Since in a segment of length d_{0} there is an excess of the values $k \frac{2 \pi}{T}$ we can choose d_{1} such that for the upper translation the sum of the shifts be positive. If we denote

$$
\delta_{n}^{(m)}:=k \frac{2 \pi}{T}-\lambda_{n}^{(m)}
$$

this means that

$$
0 \leqq \sum_{\lambda_{n}^{(m)} \in I} \delta_{n}^{(m)} \leqq c\left(d_{1}\right)
$$

and for the lower translation

$$
0 \geqq \sum_{\lambda_{n}^{(m)} \in I} \delta_{n}^{(m)} \geqq-c\left(d_{1}\right),
$$

where $c\left(d_{1}\right)$ is independent of m. This means that if we take an interval I_{1} of length $d_{1} N$ and in its N intervals of length d_{1} we apply upper and lower translation, we can obtain that

$$
\begin{equation*}
\left|\sum_{\lambda_{n}^{(m)} \in I_{1}} \delta_{n}^{(m)}\right| \leqq c\left(d_{1}\right)=\frac{c\left(d_{1}\right)}{N d_{1}}\left|I_{1}\right| . \tag{17}
\end{equation*}
$$

Take N satisfying $\frac{c\left(d_{1}\right)}{N d_{1}}<\frac{1}{4}$. We know by Lemma 3 that the values $\lambda_{n}^{(m)}$ are separated but it may occur that some $\lambda_{n}^{(m)}$ are close (or are equal) to some non-shifted $k \frac{2 \pi}{T}$. But we know that in any interval of length $\pi / 2$ there exist no more than two numbers $\lambda_{n}^{(m)}$, so we shift these values $k \frac{2 \pi}{T}$ at a small distance to ensure the separability (with a positive lower bound independent of m). By Theorem A the shifted exponents give an exponential basis in $L^{2}(0, T)$ whose implicit constants do not depend on m. As we have remarked above, this is enough to prove (b). Thus the Theorem is completely proved.

References

[1] G. N. Watson, A Treatise on the Theory of Bessel Functions I, II (in Russian), IL (Moscow, 1949).
[2] H. Bateman, A. Erdélyi, Higher Transcendental Functions, vol. 2, Mc Graw-Hill (New York 1953).
[3] I. Joó, On the vibration of a string, Studia Sci. Math. Hung., 22 (1987), 1-9.
[4] I. Joó, On the reachability set of a string, Acta Math. Hung., 49 (1987), 203-211.
[5] M. Horváth, Vibrating strings with free ends, Acta Math. Hung., 51 (1988), 171-180.
[6] M. Horváth, Infinite strings with discrete spectrum, Periodica Math. Hung., 20 (1989), 261-278.
[7] A. Bogmér, A string equation with special boundary conditions, Acta Math. Hung., 53 (1989), 367-376.
[8] R. M. Young, An Introduction to Nonharmonic Fourier Series, Acad. Press (New York, 1980).
[9] B. Ja. Levin, On the basis from exponential functions in L^{2} (in Russian), Zapiski fiz-mat. fakult. Harkovskovo Univ.-ta, 27 (1961), 39-48.
[10] B. Ja. Levin, I. V. Ostrovski, On small perturbations of the zero set of sine type functions (in Russian), Izv. A. N. SSSR Ser. Mat., 43 (1979), 87-110.
[11] B. E. Katznelson, On exponential bases in L^{2} (in Russian), Funkc. Analiz i jevo prilozsenyija, 5 (1971), 37-47.
[12] S. A. Avdonin, On the question of Riesz bases from exponential functions (in Russian), Vestnik Leningradskovo Univ., Ser. Mat., 13 (1974), 5-12.
[13] N. K. Nikolskii, B. S. Pavlov, S. V. Hruscev, Unconditional Bases from Exponentials and of Reproducing Kernels, Lecture Notes in Math. vol. 864, Springer 1981, 214-335.
[14] H. Ja. Levin, Distribution of the Zeros of Entire Functions (in Russian), GITTL (Moscow, 1956).
[15] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Coll. Publ. XXVI (New York, 1940).
[16] V. D. Golovin, On biorthogonal expansions in L^{2} by linear combinations of exponential functions, Zapiski Mech.-Mat. fakult. Harkovskovo Univ., 30 (1964), 18-29.
[17] M. Horváth and I. Joó, On the Basis Properties of Exponential Systems, Preprint of the Math. Inst. of the Hung. Acad. of Sci. No. 3/1988.
[18] S. A. Avdonin, M. Horváth and I. Joó, Riesz bases from elements of the form $x^{k} e^{i \lambda_{k} x}$ (in Russian), Vestnik Leningradskovo Gos. Univ., Ser. Mat., 4(22) (1989), 3-7.
[19] K. D. Graham, Separation of eigenvalues of the wave equation for the unit ball in R^{N} Studies in Appl. Math., 52 (1973), 329-343.
[20] K. D. Graham and D. L. Russel, Boundary value control of the wave equation in a spherical region SIAM J. Control, 13 (1975), 174-196.
[21] I. Joó, On the control of a circular membrane, Acta Math. Hung. (to appear).
(Received November 1, 1989; revised March 27, 1990)

[^11]
RESTRICTIONS OF NORMAL OPERATORS

Z. SEBESTYÉN (Budapest) J. STOCHEL (Krakow) and J. PAEZ (Valencia)

This note is a continuation of a recent work [6] on characterization of restrictions of compact normal operators to a closed subspace in a (complex) Hilbert space. Omitting the very restriction on compactness we could only arrive at a subprojection valued operator measure characterization as answer to Problems 1 and 3 of Halmos [1]. We do not see hope to give a more satisfactory solution of this question by Halmos on a characterization of subnormal suboperators in the language of [1] of restrictions of normal operators. But what about restrictions of subnormal operators?

Let now D be a closed subspace of a (complex) Hilbert space H, let $F: \mathcal{A} \rightarrow B(D, H)$ be a (σ-additive) (sub)operator valued measure on a σ algebra \mathcal{A} of subsets in Ω with values as bounded operators from D into H with $F(\Omega)=I$; in notation F is $B(D, H)$-valued. The following is a characterization of restrictions of spectral measures.

Lemma 1. A (sub)operator valued measure $F: \mathcal{A} \rightarrow B(D, H)$ is restriction to D of a spectral measure $E: \mathcal{A} \rightarrow B(H)$ if and only if the following two properties are satisfied:
(a) $\|F(\sigma) x\|^{2}=(F(\sigma) x, x) \quad(\sigma \in \mathcal{A} ; x \in D)$,
(b) $\quad(F(\sigma) x, F(\tau) y)=0 \quad(\sigma, \tau \in \mathcal{A}, \sigma \cap \tau=\emptyset ; x, y \in D)$.

Proof. The necessity of the properties are obvious. To see the sufficiency let $K=V\{F(\sigma) D: \sigma \in \mathcal{A}\}$ be the closed subspace spanned by the rangespaces of the operators as the values in the operator measure F. Define $E(\sigma)(\sigma \in \mathcal{A})$ as an operator on K as follows:

$$
\begin{equation*}
E(\sigma) F(\tau) x=F(\sigma \cap \tau) x \quad(\tau \in \mathcal{A}, x \in D) . \tag{1}
\end{equation*}
$$

We will prove that $E(\sigma)$ is well-defined, bounded and that $E: \mathcal{A} \rightarrow B(K)$ is a spectral measure: a projection valued operator measure. Doing so we first mention the following identity:

$$
\begin{equation*}
(F(\sigma) x, F(\tau) y)=(F(\sigma \cap \tau) x, y) \quad(\sigma, \tau \in \mathcal{A} ; x, y \in D) \tag{2}
\end{equation*}
$$

Indeed, (b) implies that

$$
\begin{gathered}
(F(\sigma) x, F(\tau) y)=(F(\sigma \cap \tau) x+F(\sigma \backslash \tau) x, F(\tau) y)= \\
=(F(\sigma \cap \tau) x, F(\sigma \cap \tau) y+F(\tau \backslash \sigma) y)=(F(\sigma \cap \tau) x, F(\sigma \cap \tau) y)
\end{gathered}
$$

Assumption (a) says [5] that an orthogonal projection P exists such that $F(\sigma \cap \tau)$ is a restriction of P to D, whence the proof of (2):

$$
(F(\sigma \cap \tau) x, F(\sigma \cap \tau) y)=(P x, P y)=(P x, y)=(F(\sigma \cap \tau) x, y) .
$$

The next identity we need is the following (with finite sums):

$$
\begin{equation*}
\left\|\sum_{n} F\left(\sigma \cap \tau_{n}\right) x_{n}\right\|^{2} \leqq\left\|\sum_{n} F\left(\tau_{n}\right) x_{n}\right\|^{2} \quad\left(\sigma, \tau_{n} \in \mathcal{A} ; x_{n} \in D\right) . \tag{3}
\end{equation*}
$$

To prove (3) let $\left\{\delta_{p}\right\}$ be a disjointisation of $\left\{\tau_{n}\right\}$ in \mathcal{A}, i.e. $\tau_{n}=\sum_{p \in I_{n}} \delta_{p}$, then we have by disjointness and by (2)

$$
\begin{gathered}
\left\|\sum_{n} F\left(\sigma \cap \tau_{n}\right) x_{n}\right\|^{2}=\sum_{m, n}\left(F\left(\sigma \cap \tau_{m}\right) x_{m}, F\left(\sigma \cap \tau_{n}\right) x_{n}\right)= \\
=\sum_{m, n}\left(F\left(\sigma \cap \tau_{m} \cap \tau_{n}\right) x_{m}, x_{n}\right)=\sum_{m, n} \sum_{p \in I_{m}} \sum_{q \in I_{n}}\left(F\left(\sigma \cap \delta_{p} \cap \delta_{q}\right) x_{m}, x_{n}\right)= \\
=\sum_{m, n} \sum_{p, q} \chi_{I_{m}}(p) \chi_{I_{n}}(q)\left(F\left(\sigma \cap \delta_{p} \cap \delta_{q}\right) x_{m}, x_{n}\right)= \\
=\sum_{m, n} \sum_{p} \chi_{I_{m}}(p) \chi_{n}(p)\left(F\left(\sigma \cap \delta_{p}\right) x_{m}, x_{n}\right)= \\
=\sum_{p}\left(F\left(\sigma \cap \delta_{p}\right) \sum_{m} \chi_{I_{m}}(p) x_{m}, \sum_{n} \chi_{I_{n}}(p) x_{n}\right) \leqq \\
\leqq \sum_{p}\left(F\left(\delta_{p}\right) \sum_{m} \chi_{I_{m}}(p) x_{m}, \quad \sum_{n} \chi_{I_{n}}(p) x_{n}\right)= \\
=\sum_{m, n}\left(F\left(\tau_{m} \cap \tau_{n}\right) x_{m}, x_{n}\right)=\sum_{m, n}\left(F\left(\tau_{m}\right) x_{m}, F\left(\tau_{n}\right) x_{n}\right)=\left\|\sum_{n} F\left(\tau_{n}\right) x_{n}\right\|^{2} .
\end{gathered}
$$

Identity (3) shows that $F(\sigma)$ is well-defined and contractive so it can be extended in a unique way to a contraction on K. Denote it also by $E(\sigma)$.

We now prove that $E^{*}(\sigma)=E(\sigma)=E(\sigma)^{2}$, i.e. that $E(\sigma)$ is an orthogonal projection. To see self-adjointness we have by (2)

$$
\begin{gathered}
(E(\sigma) F(\tau) x, F(\delta) y)=(F(\sigma \cap \tau) x, F(\delta) y)= \\
=(F(\sigma \cap \tau \cap \delta) x, y)=(F(\tau) x, F(\sigma \cap \delta) y)=(F(\tau) x, E(\sigma) F(\delta) y)
\end{gathered}
$$

for σ, τ, δ from \mathcal{A}, and x, y from D. The definition of $E(\sigma)$ in (1) implies that $E(\sigma)$ is idempotent too. To see that $E: \mathcal{A} \rightarrow B(K)$ is a spectral measure
choose a pairwise disjoint sequence $\left\{\sigma_{n}\right\}$ in \mathcal{A}. Since (1) implies that E is finitely additive and monotone, we have that

$$
\sum_{n=1}^{N} E\left(\sigma_{n}\right)=E\left(\bigcup_{n=1}^{N} \sigma_{n}\right) \leqq E\left(\bigcup_{n} \sigma_{n}\right) \leqq I .
$$

The series $\sum_{n} E\left(\sigma_{n}\right)$ is weakly convergent, hence it converges in the strong operator topology. Conversely,

$$
\begin{aligned}
& E\left(\bigcup_{n} \sigma_{n}\right) F(\tau) x=F\left(\bigcup_{n}\left(\sigma_{n} \cap \tau\right)\right) x= \\
& =\sum_{n} F\left(\sigma_{n} \cap \tau\right) x=\left(\sum_{n} E\left(\sigma_{n}\right)\right) F(\tau) x
\end{aligned}
$$

means that $E\left(\bigcup_{n} \sigma_{n}\right)=\sum_{n} E\left(\sigma_{n}\right)$ indeed. $\left.E(\Omega)\right|_{K}=F(\Omega)$ is the identity operator on K, therefore $D \subset K$, moreover $E(\sigma)$ extends $F(\sigma)$ since

$$
F(\sigma) x=E(\sigma) F(\Omega) x=E(\sigma) x \quad \text { for } \quad \sigma \in \mathcal{A}, x \in D
$$

Defining $E(\sigma)$ on K^{\perp}, the orthocompletement of K in H with fixed $\omega \in \Omega$, as zero if $\omega \notin \sigma$ and identity otherwise we have the spectral measure stated above.

Proposition. If $G: \mathcal{A} \rightarrow B(H)$ is any spectral measure whose restriction to D is F then K reduces G and

$$
G(\sigma) F(\tau) x=F(\sigma \cap \tau) x \quad(\sigma, \tau \in \mathcal{A}, x \in D)
$$

holds true.
Proof. We see that

$$
G(\sigma) F(\tau) x=G(\sigma) G(\tau) x=G(\sigma \cap \tau) x=F(\sigma \cap \tau) x
$$

We note also that if D is invariant for an operator A in $B(K)$ then E commutes with A whenever the restriction of A to D commutes with F :

$$
\begin{gathered}
A E(\sigma) F(\tau) x=A F(\sigma \cap \tau) x=F(\sigma \cap \tau) A x= \\
=E(\sigma) F(\tau) A x=E(\sigma) A F(\tau) x
\end{gathered}
$$

for σ, τ from \mathcal{A}, x from D.

Theorem. The operator $A: D \rightarrow H$ is a restriction of a normal operator N on H if and only if there exists a $B(D, H)$-valued measure F on the complex plane with compact support satisfying (a), (b) in the Lemma and
(c) $A x=\int z F(d z) x$ for any x from D.

Proof. The necessity follows from the spectral theorem, the spectral resolution of any normal extension being restricted to D. The sufficiency is seen by the Lemma applied to F from the assumption since $\int z E(d z)$ is seen to be the desired normal extension of A. The proof is complete.

Corollary. Let N be a normal operator on $H, N=\int z E(d z)$ such that the restrictions $\left.E()\right|_{D$.$} maps D$ into a closed subspace $K \supset D$ of H. Then $N \mid D$ can be extended to a normal operator on K.

Proof. Any restriction of a normal operator satisfies properties (a), (b) in Lemma and (c) in the Theorem. Hence the assertion is a consequence of the Theorem.

Remark. Concerning positive and semi-bounded self-adjoint extension see the recent constructions [2-7], especially the projection extension [5].

References

[1] P. R. Halmos, Subnormal suboperators and the subdiscrete topology, Anniversary Volume on Approximation Theory and Functional Analysis,, eds. P. L. Butzer, R. L. Stens, B. Sz.-Nagy, Birkhauser (Basel, 1984), pp. 49-56.
[2] Z. Sebestyén, Restrictions of positive operators, Acta Sci. Math. (Szeged), 46 (1983), 299-301.
[3] Z. Sebestyén, On the existence of certain semi-bounded self-adjoint operators in Hilbert space, Acta Math. Hung., 47 (1986), 29-32.
[4] Z. Sebestyén and L. Kapos, Extremal positive and self-adjoint extensions of suboperators, Periodica Math. Hung., 20 (1989), 75-80.
[5] Z. Sebestyén, Characterizations of subprojection suboperators, Acta Math. Hung., 56(1990), 115-119.
[6] Z. Sebestyén, J. Stochel and J. Paez, Restrictions of compact normal operators, Acta Math. Hung. (to appear).
[7] Z. Sebestyén and J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged), 55 (1991), 149-154.
(Received November 27, 1989; revised February 28, 1991)

DEPARTMENT OF APPLIED ANALYSIS
EÖTVÖS LORÁND UNIVERSITY
MÚZEUM KRT. 6-8.
1088. BUDAPEST
HUNGARY
INSTYTUT MATEMATYKI
UNIVERSITET JAGIELLONSKI
UL. REYMONTA 4.
30-059 KRAKOW
POLAND
DEPARTEMENTO DE MATEMATICAS
FAC. CIENCIAS
DE LA EDUCATION UNIVERSIADED DE CARABOBO
BAR-BULA-VALENCIA
VENEZUELA

A v-INTEGRABLE FUNCTION WHICH IS NOT LEBESGUE INTEGRABLE ON ANY PORTION OF THE UNIT SQUARE

Z. BUCZOLICH* (Budapest)

Introduction

To obtain an integration process which leads to a very general divergence theorem W. F. Pfeffer [6] introduced the c-integral. The domain of this integration is the family of sets with bounded variation ($B V$ sets), [3], [4]. During the definition of the c-integral first an averaging process, called v-integral, is defined on $B V$ sets. Then using an extension method due to Marrik the v-integral is extended to the c-integral. The extension is necessary because the v-integral is not additive [1], [6]. For most of the generalizations of the Lebesgue integral if a function is integrable in the general sense then one can find a portion, that is, a non-empty open subset on which the function is integrable in the ordinary Lebesgue sense. W. F. Pfeffer asked whether the v - or c-integral has this property. In this paper we answer this question in the negative for the v-integral (Theorem 2). Since the c-integral is an extension of the v-integral our example also holds for the c-integral. In fact for the c-integral there exist simpler examples than the example presented in this paper.

Preliminaries

In this paper we work in the Euclidean plane \mathbf{R}^{2}. For a $B V$ set A we denote by $|A|, \operatorname{cl}(A), \operatorname{int}(A), \operatorname{bd}(A),\|A\|$, and $d(A)$ respectively the Lebesgue measure, the closure, the interior, the boundary, the perimeter, and the diameter of A. The open disk of radius r and center x is denoted by $S(x, r)$. A set T is thin if it is of σ-finite one-dimensional Hausdorff measure. The set of all density points of a set E is called the essential interior of E, denoted by $\operatorname{int}_{e}(E)$ and the complement of the set of all dispersion points of E is called the essential closure of E denoted by $\mathrm{cl}_{e}(E)$. We define the regularity of a $B V$ set A by

$$
r(A)= \begin{cases}\frac{|A|}{d(A) \mid A \|} & \text { if } d(A)\|A\|>0 \\ 0 & \text { otherwise }\end{cases}
$$

[^12]We put $E_{x}=\{(y, x): y \in \mathbf{R}\}$ and $E^{y}=\{(y, x): x \in \mathbf{R}\}$.
We recall from [6] the definitions of additive, v-continuous functions, and the Riemann definition of the variational integral. In [7] one can find a summary of these definitions.

A division of a $B V$ set A is a finite disjoint family of $B V$ sets whose union is A.

Definition 1. Let $A \in B V$ and let F be a function defined on the $B V$ subsets of A. We say that F is:

1. additive if $F(A)=\sum_{D \in \mathcal{D}} F(D)$ for each division D of A;
2. v-contionuous if given $\varepsilon>0$ there is a $\delta>0$ such that $|F(B)|<\varepsilon$ for each $B V$ subset B of A with $|B|<\delta$ and $\|B\|<1 / \varepsilon$.

Definition 2. Let $B \in B V$ and let T be a thin set. Furthermore, let $\varepsilon>0$ and let δ be a positive function on $\mathrm{cl}_{e}(A) \backslash T$. A partition in $B \bmod T$ is a collection $P=\left\{\left(A_{1}, x_{1}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ where A_{1}, \ldots, A_{p} are disjoint $B V$ subsets of B and $x_{i} \in \operatorname{cl}\left(A_{i}\right) \cap\left(\mathrm{cl}_{e} A \backslash T\right), i=1, \ldots, p$. We say that the partition P is:

1. an ε-partition if $r\left(A_{i}\right)>\varepsilon, i=1, \ldots, p$;
2. δ-fine if $d\left(A_{i}\right)<\delta\left(x_{i}\right) i=1, \ldots, p$.

Definition 3. Let $B \in B V$ and let f be a function on $\mathrm{cl}_{e}(A)$. We say that f is v-integrable in B if there is a v-continuous additive function F defined on the $B V$ subsets of B which satisfies the following condition: given $\varepsilon>0$, there is a thin set T and a positive function δ on $\operatorname{cl}_{e} A \backslash T$ such that

$$
\sum_{i=1}^{p}\left|f\left(x_{i}\right)\right| A_{i}\left|-F\left(A_{i}\right)\right|<\varepsilon
$$

for each δ-fine ε-partition $P=\left\{\left(A_{1}, x_{1}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ in $B \bmod T$.
We remark that the integral defined above was called R-integral by W. F. Pfeffer (cf. Definition 7.3, and Proposition 7.7 in [6]), but Proposition 7.8 of [6] shows that the R-integral and the v-integral are equivalent.

We shall use the following corollary of Theorems 4 and 33 of [5].
Theorem 1. Suppose $B \subset[0,1]^{2}$ is a $B V$-set. Then there exists a Borel subset K of \mathbf{R} with the following properties:

1) $|\mathbf{R} \backslash K|_{1}=0$ (we remark that here $|.|_{1}$ denotes the one-dimensional Lebesgue measure).
2) For each $y \in K$ there exist a (unique) non-negative integer r, and real numbers $a_{1}<b_{1}<\cdots<a_{r}<b_{r}$ such that $E^{y} \cap B$ equals $\bigcup_{j=1}^{r}\left(a_{j}, b_{j}\right)$ modulo a set of one diménsional Lebesgue measure zero. If we put $r=\phi(y)$ then ϕ is a Borel function on K and

$$
2 \int_{\mathbf{R}} \phi(y) d y \leqq\|A\| .
$$

Lemma 1. Suppose that $n, N \in \mathbf{N}, M>1$, and a square I of sides $1 / n$ is divided into N^{2} squares I_{k} of sides $1 / n N\left(k=1, \ldots, N^{2}\right)$. For each I_{k} denote by J_{k} the open square of sides $1 / n N M$ concentric with I_{k}. Put $G=\bigcup_{k=1}^{N^{2}} J_{k}$. If $\operatorname{dist}(x, G)>c / \sqrt{n \cdot N \cdot M}$ for a $c>0$ then for every $r>0$ we have

$$
\frac{|S(x, r) \cap G|}{|S(x, r)|} \leqq \frac{4}{n \cdot N \cdot M \cdot c^{2}}+\frac{N^{2}}{M^{2}} .
$$

Proof of Lemma 1. If $r<c / \sqrt{n \cdot N \cdot M}$ then $S(x, r) \cap G=\emptyset$ and hence

$$
\frac{|S(x, r) \cap G|}{|S(x, r)|}=0 .
$$

If $c / \sqrt{n \cdot N \cdot M} \leqq r<1 / \sqrt{2} n N$ then $S(x, r)$ can intersect at most four squares J_{k} and hence $|S(x, r) \cap G| \leqq 4 / n^{2} N^{2} M^{2}$ and $|S(x, r)| \geqq c^{2} \pi / n N M$. Thus

$$
\frac{|S(x, r) \cap G|}{|S(x, r)|} \leqq \frac{4 \cdot n \cdot N \cdot M}{n^{2} \cdot N^{2} \cdot M^{2} \cdot c^{2} \cdot \pi}<\frac{4}{n \cdot N \cdot M \cdot c^{2}} .
$$

If $r>1 / \sqrt{2} n N$ then $S(x, r)$ can intersect at most N^{2} different squares J_{k}. Thus $|S(x, r) \cap G| \leqq N^{2} \frac{1}{n^{2} N^{2} M^{2}}=\frac{1}{n^{2} M^{2}}$ and hence

$$
\frac{|S(x, r) \cap G|}{|S(x, r)|} \leqq \frac{1}{n^{2} M^{2} r^{2} \pi}<\frac{N^{2}}{M^{2}} .
$$

Therefore for any r we have

$$
\frac{|S(x, r) \cap G|}{|S(x, r)|} \leqq \frac{4}{n \cdot N \cdot M \cdot c^{2}}+\frac{N^{2}}{M^{2}} .
$$

Theorem 2. There exists a v-integrable function $f:[0,1]^{2} \rightarrow \mathbf{R}$ such that f is not Lebesgue integrable on any portion of $[0,1]^{2}$.

Proof of Theorem 2. The proof of this theorem is organized as follows. In Part 1 we define a dense open subset $G(I)$ in a given square I and study the properties of $G(I)$. In Part 2 we iterate the process of Part 1 and obtain a dense G_{δ} set G. In Part 3 using the set G we define our function f. In Part 4 we show that there is no portion of $[0,1]^{2}$ on which f is Lebesgue integrable. In Part 5 we define the function F defined on $B V$ sets and show that it is v-continuous. In Part 6 we define a thin set H which will play an essential role in Part 7. Finally in Part 7 we prove that F is the indefinite v-integral of f.

Part 1. Suppose that I is a square of sides $1 / n$. Choose a sequence of natural numbers c_{k} with the following properties:
i) $c_{1}=4 n^{6} \cdot 2^{n}+2$;
ii) $c_{k}>2$ is even for any k, and

$$
\sum_{k=1}^{\infty} \frac{1}{c_{k}}<\infty ;
$$

iii) If $C_{0}=1$ and $C_{k}=\prod_{\ell=1}^{k} c_{\ell}, k=1,2, \ldots$ then

$$
\sum_{k=1}^{\infty} \frac{C_{k-1}^{2}}{C_{k}^{2}}<\frac{1}{2 n^{2}}=\frac{1}{2}|I| ;
$$

iv) $c_{k}>C_{k-1}$ and

$$
\sum_{k=1}^{\infty} \frac{C_{k-1}^{2}}{c_{k}^{2}}<\infty
$$

v)

$$
\sum_{k=1}^{\infty} \frac{C_{k-1}^{2}}{\sqrt{C_{k}}}<\frac{1}{4}
$$

We remark that all the above conditions can be satisfied if c_{k} converges rapidly to infinity, we leave the details to the reader.

When $k=1$ then divide $I=I_{1,1}$ into c_{1}^{2} subsquares of sides $1 / n C_{1}$. Denote by J_{1} the square of sides $2 / n C_{1}$ concentric with I, that is, J_{1} is the middle $2 / n C_{1} \times 2 / n C_{1}$ subsquare of I.

Put $G(I, 1)=J_{1}$. If $k>1$ then first divide I into C_{k-1}^{2} subsquares $I_{m, k}$ of sides $1 / n C_{k-1}\left(m=1,2, \ldots, C_{k-1}^{2}\right)$. Then divide each $I_{m, k}$ into c_{k}^{2} subsquares of sides $1 / n C_{k}$ and denote by $J_{m, k}$ the square of sides $2 / n C_{k}$ concentric with $I_{m, k}$. Plainly $d\left(J_{m, k}\right)=\sqrt{8} / n C_{k}$ and $\left|J_{m, k}\right|=4 / n^{2} C_{k}^{2}$.

Put $G(I, k)=\bigcup_{m=1}^{C_{k-1}^{2}} J_{m, k}$ and $G(I)=\bigcup_{k=1}^{\infty} G(I, k)$. Obviously $G(I)$ is a dense open set in $I, \stackrel{m=1}{\text { and }}$ consists of countably many disjoint open squares.

The next property states that $G(I)$ has smaller volume than half the volume of I.

By using iii) we obtain

$$
\begin{equation*}
|G(I)|<\sum_{k=1}^{\infty}|G(I, k)|=\sum_{k=1}^{\infty} \sum_{m=1}^{C_{k-1}^{2}}\left|J_{m, k}\right|=\sum_{k=1}^{\infty} \frac{4 C_{k-1}^{2}}{n^{2} C_{k}^{2}}<\frac{|I|}{2} \tag{1}
\end{equation*}
$$

We also need an estimation by using v) for the sum of the square root of the diameters of the intervals $J_{m, k}$, that is:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{m=1}^{C_{k-1}^{2}} \sqrt{d\left(J_{m, k}\right)}=\sqrt[4]{8} \sum_{k=1}^{\infty} \frac{C_{k-1}^{2}}{\sqrt{n C_{k}}}<\frac{\sqrt[4]{8}}{4 \sqrt{n}}<\frac{\sqrt{d(I)}}{2} \tag{2}
\end{equation*}
$$

We also have to study the dispersion points of $G(I)$.
Claim. If $c>0, x \in \operatorname{int}(I), x \notin G(I) \cup \bigcup_{m, k} \operatorname{bd}\left(J_{m, k}\right)$, and there exists $c>0, N(x) \in \mathbf{N}$ such that $\operatorname{dist}\left(x, J_{m, k}\right) \geqq c \sqrt{d\left(J_{m, k}\right)}$ for $k=N(x)+$ $+1, N(x)+2, \ldots$, and $m=1,2, \ldots, C_{k-1}^{2}$ then x is a dispersion point of $G(I)$.

Applying Lemma 1 in I for $k>N(x)$ with $N=C_{k-1}, M=c_{k} / 2$ we obtain that

$$
\frac{|S(x, r) \cap G(I, k)|}{|S(x, r)|} \leqq \frac{8}{n C_{k-1} \cdot c_{k} \cdot c^{2}}+4 \frac{C_{k-1}^{2}}{c_{k}^{2}} .
$$

Thus

$$
\frac{|S(x, r) \cap G(I)|}{|S(x, r)|} \leqq \sum_{k=1}^{\infty} \frac{8}{n C_{k-1} \cdot c_{k} \cdot c^{2}}+4 \frac{C_{k-1}^{2}}{c_{k}^{2}}<\infty
$$

where we used ii) and iv). If $0<r<\operatorname{dist}\left(x, J_{m, k}\right)$ for $k=1,2, \ldots, K,(K>$ $>N(x))$ and $m=1,2, \ldots, C_{k-1}^{2}$ then $|S(x, r) \cap G(I, k)|=0$ for $k=1, \ldots, K$ and hence

$$
\frac{|S(x, r) \cap G(I)|}{|S(x, r)|} \leqq \sum_{k=K+1}^{\infty} \frac{8}{n C_{k-1} \cdot c_{k} \cdot c^{2}}+4 \frac{C_{k-1}^{2}}{c_{k}^{2}}=\varepsilon_{K} .
$$

Obviously $\varepsilon_{K} \rightarrow 0$ as $K \rightarrow \infty$ and hence x is a dispersion point of $G(I)$.
Part 2. Put $G_{0}=S_{0,1}=[0,1]^{2}$ and $G_{1}=G\left(S_{0,1}\right)$. Suppose that $k \geqq 2, G_{k-1}$ is given and G_{k-1} is a dense open set consisting of countably many disjoint open squares $S_{k-1, m}$, that is, $G_{k-1}=\bigcup_{m=1}^{\infty} S_{k-1, m}$. Then put $G_{k}=\bigcup_{m=1}^{\infty} G\left(S_{k-1, m}\right)$. Obviously $G_{k} \subset G_{k-1}$ is a dense open set in $[0,1]^{2}$, consisting of countably many disjoint open squares. Put $G=\bigcap_{k=1}^{\infty} G_{k}$. From (2) it follows that

$$
\sum_{m=1}^{\infty} \sqrt{d\left(S_{k-1, m}\right)} \leqq 2^{-1} \sum_{m=1}^{\infty} \sqrt{d\left(S_{k-2, m}\right)} \leqq \cdots \leqq 2^{-k+1} \sqrt{d\left(S_{0,1}\right)}<2^{-k+2}
$$

Thus

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sqrt{d\left(S_{k-1, m}\right)}<\infty . \tag{3}
\end{equation*}
$$

Part 3. Now we turn to the definition of the v-integrable function f. Put $f(x)=0$ if $x \in G$. Denote $[0,1]^{2} \backslash G_{k}$ by ${ }^{\circ} F_{k}, k=0,1, \ldots$. Then $F_{k} \backslash F_{k-1} \subset \bigcup_{m=1}^{\infty} S_{k-1, m}=G_{k-1}$. We define f on the sets $\Psi_{k, m}=\left(F_{k} \backslash\right.$ $\left.\backslash F_{k-1}\right) \cap S_{k-1, m}$ for each $k=1,2, \ldots$, and $m=1,2, \ldots$. Suppose that k and m are given and $S_{k-1, m}$ is of sides $1 / n$. From (1) it follows that $\left|G\left(S_{k-1, m}\right)\right|<\left|S_{k-1, m}\right| / 2=1 / 2 n^{2}$, and hence

$$
\begin{equation*}
\left|\Psi_{k, m}\right|>1 / 2 n^{2} . \tag{4}
\end{equation*}
$$

In the definition of $G\left(S_{k-1, m}\right)$ at the first step we divide $S_{k-1, m}$ into $c_{1}^{2}=\left(4 n^{6} 2^{n}+2\right)^{2}$ subsquares. Denote them by $K_{\ell}, \ell=1,2, \ldots,\left(4 n^{6} 2^{n}+2\right)^{2}$. We can choose the indices ℓ so that if K_{ℓ} and $K_{\ell^{\prime}}, \ell \neq \ell^{\prime}$ have a common side then one of the indices ℓ, ℓ^{\prime} is even and the other is odd. That is, if we think of $S_{k-1, m}$ as a $\left(4 n^{6} 2^{n}+2\right)^{2} \times\left(4 n^{6} 2^{n}+2\right)^{2}$ chessboard then ℓ is even when K_{ℓ} is "white" and is odd when K_{ℓ} is "black". Put $f(x)=\left|\Psi_{k, m}\right|^{-1} \cdot n$ if $x \in \operatorname{int}\left(K_{\ell}\right) \cap \Psi_{k, m}$ and ℓ is odd; and put $f(x)=-\left|\Psi_{k, m}\right|^{-1} \cdot n$ if $x \in$ $\in \operatorname{int}\left(K_{\ell}\right) \cap \Psi_{k, m}$ and ℓ is even. Otherwise, that is, when $x \in \operatorname{bd}\left(K_{\ell}\right) \cap \Psi_{k, m}$ for an $\ell=1, \ldots,\left(4 n^{6} 2^{n}+2\right)^{2}$ put $f(x)=0$.

Part 4. The construction of the sets $G\left(S_{k-1, m}\right)$ implies that if K_{ℓ} and $K_{\ell^{\prime}}$ ($\ell \neq \ell^{\prime}$) have a common vertical side then $K_{\ell} \cap \Psi_{k, m}$ can be obtained from $K_{\ell^{\prime}} \cap \Psi_{k, m}$ by a horizontal translation of length $h=1 / n\left(4 n^{6} 2^{n}+2\right)$ (recall that $S_{k-1, m}$ is of sides $\left.1 / n\right)$. Therefore the definition of f and i) imply that if $(x, y),(x+2 h, y) \in \cup\left\{K_{\ell}: K_{\ell}\right.$ does not belong to the four middle squares of sides h removed from $S_{k-1, m}$ during the definition of $G\left(S_{k-1, m}\right)$) then

$$
\int_{x}^{x+2 h} f(x, y) \chi_{\Psi_{k, m}}(x, y) d x=0
$$

where

$$
\chi_{\Psi_{k, m}}(x, y)= \begin{cases}1 & \text { if }(x, y) \in \Psi_{k, m} \\ 0 & \text { otherwise } .\end{cases}
$$

Using (4) we obtain that

$$
\left|f(x, y) \chi_{\Psi_{k, m}}(x, y)\right| \leqq\left|\Psi_{k, m}\right|^{-1} \cdot n \leqq 2 n^{3} .
$$

From the above properties and the chessboard like definition of f it follows that for any $a, b \in[0,1]$ we have

$$
\begin{equation*}
\left|\int_{a}^{b} f(x, y) \chi_{\Psi_{k, m}}(x, y) d x\right| \leqq 2 n^{3} h=\frac{2 n^{2}}{4 n^{6} 2^{n}+2}<\frac{1}{n^{2} \cdot 2^{n}} \tag{5}
\end{equation*}
$$

From the definition of f it follows also that

$$
\int_{S_{k-1, m}}|f| \geqq\left|\Psi_{k, m}\right|^{-1} \cdot n \cdot\left|\Psi_{k, m}\right|=n
$$

and hence by the density of the sets G_{k} there is no portion of $[0,1]^{2}$ on which f is Lebesgue integrable.

Part 5. We have to show that f is v-integrable on $[0,1]^{2}$. First we find a v-continuous additive function F defined on $B V$ sets. Later in Part 7 we show that this function is the indefinite v-integral of f. We use the fact that f is Lebesgue integrable on the sets $\Psi_{k, m}$. Given B, a $B V$ subset of $[0,1]^{2}$ put

$$
F(B)=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \int_{\Psi_{k, m} \cap B} f .
$$

First we have to show that F is well defined, that is, the double sum in the definition converges. Since B is a $B V$ set $\|B\|$ is finite. Apply Theorem 1. Then the function $\phi(y)$ is almost everywhere finite and (5) implies that if $S_{k-1, m}$ is of sides $1 / n$ then

$$
\left|\int_{0}^{1} \chi_{\Psi_{k, m} \cap B}(x, y) f(x, y) d x\right|<\frac{\phi(y)}{n^{2} 2^{n}} .
$$

Thus

$$
\begin{gather*}
\left|\int_{[0,1]^{2}} \chi_{\Psi_{k, m} \cap B}\right| \leqq \int_{0}^{1}\left|\int_{0}^{1} \chi_{\Psi_{k, m} \cap B}(x, y) f(x, y) d x\right| d y< \tag{6}\\
<\frac{\int_{0}^{1} \phi(y) d y}{n^{2} 2^{n}} \leqq \frac{\|B\|}{2 n^{2} 2^{n}} \leqq\|B\| \cdot\left|S_{k-1, m}\right|
\end{gather*}
$$

From (1) it follows that $\left|G_{1}\right|<1 / 2$, and $\left|G_{k}\right|<\left|G_{k-1}\right| / 2$ and hence

$$
\sum_{k=1}^{\infty}\left|G_{k}\right|=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty}\left|S_{k, m}\right|<\infty
$$

Therefore

$$
|F(B)|=\left|\sum_{k, m} \int_{\Psi_{k, m} \cap B} f\right| \leqq \sum_{k, m}\|B\| \cdot\left|S_{k-1, m}\right|<\infty .
$$

It follows from our construction that if $S_{k, m}$ and $S_{k^{\prime}, m^{\prime}}$ are different squares of sides $1 / n$ then they are disjoint. Plainly there are at most n^{2} different squares $S_{k, m}$ of sides $1 / n$ in $[0,1]^{2}$. By rearranging the sequence $\left\{S_{k, m}: k=1,2, \ldots, m=1,2, \ldots\right\}$ we introduce the notation $\left\{S_{n, j}^{\prime}: n=\right.$ $=1,2, \ldots, j=1, \ldots, J(n)\}$ where for a given $n \in \mathbf{N},\left\{S_{n, j}^{\prime}: j=1, \ldots, J(n)\right\}$ consists of the squares $S_{k, m}$ of sides $1 / n, J(n) \leqq n^{2}$. If $S_{k-1, m}=S_{n, j}^{\prime}$ then we put $\Psi_{n, j}^{\prime}=\left(F_{k} \backslash F_{k-1}\right) \cap S_{n, j}^{\prime}$. For a given $\varepsilon>0$ choose $K \in \mathbf{N}$ such that

$$
\begin{equation*}
\sum_{n=K+1}^{\infty} 2^{-n}<\frac{\varepsilon^{2}}{2} \tag{7}
\end{equation*}
$$

Since f is bounded on $H=\bigcup_{n=1}^{K} \bigcup_{j=1}^{J(n)} S_{n, j}^{\prime}$ there is a $\delta>0$ such that for every measurable set B if $|B|<\delta$ then

$$
\begin{equation*}
\left|\int_{H \cap B} f\right|<\frac{\varepsilon}{2} . \tag{8}
\end{equation*}
$$

Suppose that B is a $B V$ set and $\|B\|<1 / \varepsilon$. Then

$$
\begin{aligned}
& |F(B)|=\left|\sum_{n=1}^{\infty} \sum_{j=1}^{J(n)} \int_{\Psi_{n, j}^{\prime} \cap B} f\right| \leqq\left|\sum_{n=1}^{K} \sum_{j=1}^{J(n)} \int_{\Psi_{n, j}^{\prime} \cap B} f\right|+ \\
& +\sum_{n=K+1}^{\infty} \sum_{j=1}^{J(n)}\left|\int_{\Psi_{n, j}^{\prime} \cap B} f\right| \leqq \frac{\varepsilon}{2}+\sum_{n=K+1}^{\infty} \frac{n^{2} \cdot\|B\|}{2 n^{2} 2^{n}} \leqq \varepsilon
\end{aligned}
$$

where we used (6), (7), and (8). Therefore F is v-continuous.
Part 6. For a given square $S_{n, j}^{\prime}$ denote by $Q_{n, j}$ the squares of sides $1 / \sqrt{n}$ concentric with $S_{n, j}^{\prime}$. Hence for every $n \geqq 2$, and $x \notin Q_{n, j}$ we have

$$
\begin{gather*}
\operatorname{dist}\left(x, S_{n, j}^{\prime}\right) \geqq \frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{n}\right)=\frac{1}{2 \sqrt{n}}\left(1-\frac{1}{\sqrt{n}}\right) \geqq \tag{9}\\
\geqq \frac{1}{2 \cdot \sqrt[4]{2}}\left(1-\frac{1}{\sqrt{2}}\right) \sqrt{d\left(S_{n, j}^{\prime}\right)}=c \sqrt{d\left(S_{n, j}^{\prime}\right)}
\end{gather*}
$$

where $c=\frac{1}{2 \cdot \sqrt[4]{2}}\left(1-\frac{1}{\sqrt{2}}\right)$. Obviously $d\left(Q_{n, j}\right)=\sqrt[4]{2} \cdot \sqrt{d\left(S_{n, j}^{\prime}\right)}$ and hence by

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{j=1}^{J(n)} d\left(Q_{n, j}\right)=\sum_{n=1}^{\infty} \sum_{j=1}^{J(n)} \sqrt[4]{2} \cdot \sqrt{d\left(S_{n, j}^{\prime}\right)}= \tag{10}\\
\quad=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sqrt[4]{2} \cdot \sqrt{d\left(S_{k-1, m}\right)}<\infty
\end{gather*}
$$

Put $H_{N}=\bigcup_{n=N}^{\infty} \bigcup_{j=1}^{J(n)} Q_{n, j}$ and $H=\bigcap_{N=1}^{\infty} H_{N}$. Then it is easy to see that $\bigcap_{k=1}^{\infty} G_{k}=G \subset H$. Furthermore if $x \notin H$ then there exists an $N(x) \in \mathbf{N}$ such that $x \notin H_{N(x)}$, that is, if $n \geqq N(x)$ then (9) holds for every $j=1, \ldots, J(n)$. It is also easy to check that (10) implies that H is of zero one-dimensional Hausdorff measure, and hence H is thin.

Part 7. We have to prove that F is the indefinite v-integral of f. For a given $B V$ set B, and $\varepsilon>0$ we have to find a $\delta>0$ gauge function, and a thin set T such that

$$
\sum_{i=1}^{p}\left|f\left(x_{i}\right)\right| A_{i}\left|-F\left(A_{i}\right)\right|<\varepsilon
$$

for each δ-fine ε-partition $\left\{\left(A_{i}, x_{i}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ in $B \bmod T$.
Put $T=H \cup\{x: f(x)=0\} \cup \bigcup_{n, j} \operatorname{bd}\left(S_{n, j}^{\prime}\right)$. We recall that $H \supset G$ is thin and $f(x)=0$ whenever $x \in G$ or x belongs to the boundary of the sets K_{ℓ} defined in Part 2. From our construction it follows that the union of the boundaries of all the sets K_{ℓ} is of σ-finite one-dimensional Hausdorff measure, that is, a thin set. Similarly $\bigcup_{n, j} \operatorname{bd}\left(S_{n, j}^{\prime}\right)$ is also thin. Therefore T is thin.

Put $\delta(x)=1$ for $x \in T$. If $x \in[0,1]^{2} \backslash T$ then there exist n^{\prime} and j^{\prime} such that $x \in \Psi_{n^{\prime}, j^{\prime}}^{\prime}, x \notin \mathrm{bd}\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)$. Part 6, the claim in Part 1 and the choice of $T \supset H$ imply that x is a dispersion point of $G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)$. Given a constant $a>0$ choose $\delta_{1}(x)>0$ such that if $0<r<\delta_{1}(x)$ then $S(x, r) \subset S_{n^{\prime}, j^{\prime}}^{\prime}$ and

$$
\begin{equation*}
\frac{\left|G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right) \cap S(x, r)\right|}{|S(x, r)|} \leqq \frac{\varepsilon^{3} a^{2}}{8|f(x)|} . \tag{11}
\end{equation*}
$$

Since $x \in \Psi_{n^{\prime}, j^{\prime}}^{\prime}$ and $x \notin T \supset \bigcup_{n, j} \mathrm{bd}\left(S_{n, j}^{\prime}\right)$ we can choose for any given $K>0$ a $\delta_{2}(x)>0$ such that $\cup\left\{S_{n, j}^{\prime}: S_{n, j}^{\prime} \subset G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right) ; n=1, \ldots, K, j=\right.$
$=1, \ldots, J(n)\} \cap S\left(x, \delta_{2}(x)\right)=\emptyset$. We may also assume that $K>\max \left(n^{\prime}\right.$, $N(x)$), that is (9) holds for every $n>K$, and $j=1, \ldots, J(n)$.

Since x does not belong to the boundary of the sets K_{ℓ} we can find a $\delta_{3}(x)>0$ such that if $y \in S\left(x, \delta_{3}(x)\right) \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}$ then $f(y)=f(x)$, that is x and y are in the same K_{ℓ}.

Put $\delta(x)=\min \left(\delta_{1}(x), \delta_{2}(x), \delta_{3}(x)\right)$. For any ε-regular $B V$-set A such that $A \subset S(x, \delta(x)) \cap B$ we have

$$
\begin{gathered}
|f(x)| A|-F(A)| \leqq|f(x) \cdot| A \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}\left|-F\left(A \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}\right)\right|+ \\
+|f(x) \cdot| A \cap G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)| |+\left|F\left(A \cap G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)\right)\right|=\rho_{1}+\rho_{2}+\rho_{3},
\end{gathered}
$$

where we used that $S_{n^{\prime}, j^{\prime}}^{\prime}=\Psi_{n^{\prime}, j^{\prime}}^{\prime} \cup G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)$ and $A \subset S(x, \delta(x)) \subset S_{n^{\prime}, j^{\prime}}^{\prime}$.
Since by definition $F\left(A \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}\right)=\int_{A \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}} f=f(x) \cdot\left|A \cap \Psi_{n^{\prime}, j^{\prime}}^{\prime}\right|$ we obtain that $\rho_{1}=0$.

Since A is ε-regular $|A| / d(A)\|A\| \geqq \varepsilon$ and hence $|A| \geqq d(A)\|A\| \varepsilon$. By the isoperimetric inequality, [4, Theorem 1.29 , p. 25], $\|A\| \geqq a \cdot \sqrt{|A|}$ with a constant $a>0$. Thus $\sqrt{|A|} / a \varepsilon \geqq d(A)$. Since $x \in \operatorname{cl}(A)$ (cf. Def. 2), we have $A \subset S(x, \sqrt{|A|} / a \varepsilon)$ and hence

$$
\begin{aligned}
& |f(x) \cdot| G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right) \cap A\left||\leqq|f(x)| \cdot| G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right) \cap S(x, \sqrt{|A|} / a \varepsilon)\right| \leqq \\
& \quad \leqq|f(x)| \cdot|S(x, \sqrt{|A|} / a \varepsilon)| \frac{\varepsilon^{3} a^{2}}{8|f(x)|}=\frac{|A| \varepsilon^{3} a^{2} \pi}{8 \varepsilon^{2} a^{2}}<\frac{|A| \varepsilon}{2},
\end{aligned}
$$

where we used (11). Thus $\rho_{2}<|A| \varepsilon / 2$.
Since $\delta(x)<\delta_{2}(x)$ we have $A \cap G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right) \subset A \cap \bigcup_{n=K+1}^{\infty} \bigcup_{j=1}^{J(n)} S_{n, j}^{\prime}$. Using that $x \notin H \subset T$ we obtain $\operatorname{dist}\left(x, S_{n, j}^{\prime}\right) \geqq c \sqrt{d\left(S_{n, j}^{\prime}\right)}=c \sqrt{\sqrt{2} / n}$ for every (n, j) such that $n=K+1, \ldots, j=1, \ldots, J(n)$. Thus if $\left|A \cap \Psi_{n, j}^{\prime}\right| \neq 0$ then $d(A) \geqq c \sqrt{d\left(S_{n, j}^{\prime}\right)}=c \sqrt{\sqrt{2} / n}$. Thus by the ε-regularity of A we have $|A| / \varepsilon>d(A) \cdot\|A\|$, that is,

$$
\frac{|A| \sqrt{n}}{c \varepsilon \sqrt[4]{2}}>\|A\|
$$

Therefore by (6)

$$
\left|F\left(A \cap \Psi_{n, j}^{\prime}\right)\right| \leqq \frac{\|A\|}{2 n^{2} 2^{n}}<\frac{|A| \sqrt{n}}{c \varepsilon \sqrt[4]{2} 2 n^{2} 2^{n}} .
$$

Finally using that there are at most $J(n)<n^{2}$ different sets $\Psi_{n, j}^{\prime}$ for a fixed n we obtain that

$$
\left|F\left(A \cap G\left(S_{n^{\prime}, j^{\prime}}^{\prime}\right)\right)\right| \leqq \sum_{n=K+1}^{\infty} \frac{|A| \sqrt{n} n^{2}}{c \varepsilon \sqrt[4]{2} 2 n^{2} 2^{n}}<\frac{\varepsilon|A|}{2}
$$

where the last inequality holds if K is sufficiently big.
Thus if we use the above a and K in the definition of δ then $|f(x)| A \mid-$ $-F(A)\left|<\rho_{1}+\rho_{2}+\rho_{3}<\varepsilon\right| A \mid$. Therefore if $\left\{\left(A_{i}, x_{i}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ is a δ-fine ε-partition in $B \bmod T$ then

$$
\sum_{i=1}^{p}\left|f\left(x_{i}\right)\right| A_{i}\left|-F\left(A_{i}\right)\right|<\varepsilon \sum_{i=1}^{p}\left|A_{i}\right|<\varepsilon
$$

Thus F is the indefinite v-integral of F and the proof of Theorem 2 is complete.

References

[1] Z. Buczolich, Functions with all singular sets of Hausdorff dimension bigger than one (to appear in Real Analysis Exchange).
[2] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press (Cambridge, 1985).
[3] H. Federer, Geometric Measure Theory, Springer-Verlag (New York, 1969).
[4] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser (Basel, 1984).
[5] J. Mařik, The surface integral, Czechoslovak Mat. J., 6 (1956), 522-558.
[6] W. F. Pfeffer, The Gauss-Green Theorem (to appear).
[7] W. F. Pfeffer, The Gauss-Green Theorem, Real Analysis Exchange, 14 (1988-89), 523-527.
(Received January 4, 1990)
EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF ANALYSIS BUDAPEST, MÚZEUM KRT 6-8 H-1088 HUNGARY

ON MONOTONE AND DOUBLY MONOTONE POLYNOMIAL APPROXIMATION

S. G. GAL (Oradea) and J. SZABADOS* (Budapest)

In several papers [2-10] the first named author has obtained some results concerning approximation by monotone sequences of polynomials, as for example the following:

Theorem A (Gal [3]). For any $f \in C[0,1]$, there exist two polynomial sequences $\left\{Q_{n}\right\}_{n=0}^{\infty}$ and $\left\{P_{n}\right\}_{n=0}^{\infty}$, uniformly convergent towards f and satisfying

$$
Q_{n}(x)<Q_{n+1}(x)<f(x)<P_{n+1}(x)<P_{n}(x)
$$

for all $0 \leqq x \leqq 1$ and all $n \in \mathbf{N}$.
Although the construction of $Q_{n}(x)$ and $P_{n}(x)$ in some cases remains an open question, in some particular cases like $f(x) \in \operatorname{Lip} \alpha$, these polynomials were effectively constructed by the help of the Bernstein polynomials. A shortcoming of these constructions was the high degree of the polynomials compared to the order of approximation (see [10]).

In this paper, starting from a fairly general class of approximating polynomials, we construct the polynomials P_{n}, Q_{n} above with good approximating properties. Our result will also be suitable for constructing doubly monotone polynomial sequences in case $f(x)$ is a monotone function. In what follows, let $\|\cdot\|$ denote the supremum norm over the interval $[0,1]$, and let $E_{n}(f)$ denote the best approximation of an $f \in C[0,1]$ by polynomials from Π_{n} (the set of polynomials of degree at most n).

Theorem. Let $f(x) \in C[0,1]$ and assume that

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{-1} E_{k}(f)<\infty \tag{1}
\end{equation*}
$$

Then there exist polynomials $P_{n}, Q_{n} \in \Pi_{n}$ such that
(2) $\quad Q_{n}(x) \leqq Q_{n+1}(x) \leqq f(x) \leqq P_{n+1}(x) \leqq P_{n}(x) \quad(0 \leqq x \leqq 1, n \leqq 4)$

[^13]and
\[

$$
\begin{equation*}
\left\|P_{n}(x)-Q_{n}(x)\right\| \leqq 8 \sum_{k=[n / 2]-1}^{\infty} k^{-1} E_{k}(f) \quad(n \geqq 4) \tag{3}
\end{equation*}
$$

\]

Proof. Let $p_{k}(x) \in \Pi_{k}$ be the best approximating polynomial of $f(x)$, i.e.

$$
\begin{equation*}
\left\|f-p_{k}\right\|=E_{k}(f) \quad(k=0,1, \ldots) \tag{4}
\end{equation*}
$$

Define

$$
P_{n}(x)= \begin{cases}\frac{2}{n+2} \sum_{k=n / 2-1}^{n-1} p_{k}(x)+4 \sum_{k=n / 2-1}^{\infty} k^{-1} E_{k}(f), & \text { if } n \geqq 4 \text { is even } \tag{5}\\ \frac{P_{n-1}(x)+P_{n+1}(x)}{2}, & \text { if } n \geqq 5 \text { is odd }\end{cases}
$$

Evidently, $P_{n}(x) \in \Pi_{n}(n \geqq 4)$. For even $n \geqq 4$ we obtain by (4) and (5)

$$
\begin{gather*}
P_{n+1}(x)-P_{n}(x)=\frac{P_{n+2}(x)-P_{n}(x)}{2}= \tag{6}\\
=\frac{1}{n+4} \sum_{k=n / 2}^{n+1} p_{k}(x)+2 \sum_{k=n / 2}^{\infty} k^{-1} E_{k}(f)-\frac{1}{n+2} \sum_{k=n / 2-1}^{n-1} p_{k}(x)-
\end{gather*}
$$

$$
-2 \sum_{k=n / 2-1}^{\infty} k^{-1} E_{k}(f)=-\frac{2}{(n+2)(n+4)} \sum_{k=n / 2}^{n-1} p_{k}(x)+
$$

$$
+\frac{p_{n}(x)+p_{n+1}(x)}{n+4}-\frac{p_{n / 2-1}(x)}{n+2}-\frac{4}{n-2} E_{n / 2-1}(f)=
$$

$$
=-\frac{2}{(n+2)(n+4)} \sum_{k=n / 2}^{n-1}\left(p_{k}(x)-f(x)\right)+\frac{p_{n}(x)-f(x)+p_{n+1}(x)-f(x)}{n+4}-
$$

$$
-\frac{p_{n / 2-1}(x)-f(x)}{n+2}-\frac{4}{n-2} E_{n / 2-1}(f) \leqq
$$

$$
\leqq \frac{2}{(n+2)(n+4)} \sum_{k=n / 2}^{n-1}\left\|p_{k}-f\right\|+\frac{\left\|p_{n}-f\right\|+\left\|p_{n+1}-f\right\|}{n+4}+
$$

$$
+\frac{\left\|p_{n / 2-1}-f\right\|}{n+2}-\frac{4}{n-2} E_{n / 2-1}(f) \leqq
$$

$$
\leqq\left(\frac{n}{(n+2)(n+4)}+\frac{2}{n+4}+\frac{1}{n+2}-\frac{4}{n-2}\right) E_{n / 2-1}(f)=
$$

$$
=-\frac{24}{(n+4)(n-2)} E_{n / 2-1}(f) \leqq 0
$$

while for odd $n \geqq 5$ we get from (5) and (6)

$$
\begin{equation*}
P_{n+1}(x)-P_{n}(x)=\frac{P_{n+1}(x)-P_{n-1}(x)}{2} \leqq 0 \tag{7}
\end{equation*}
$$

(6) and (7) together show that the right hand side inequality in (2) holds. Now if we define
(8)

$$
Q_{n}(x)= \begin{cases}\frac{2}{n+2} \sum_{k=n / 2-1}^{n-1} p_{k}(x)-4 \sum_{k=n / 2-1}^{\infty} k^{-1} E_{k}(f), & \text { if } n \geqq 4 \text { is even } \\ \frac{Q_{n-1}(x)+Q_{n+1}(x)}{2}, & \text { if } n \geqq 5 \text { is odd }\end{cases}
$$

then $Q_{n}(x) \in \Pi_{n}(n \geqq 4)$, and the left hand side inequality in (2) is proved analogously. The inequalities for $f(x)$ in (2) follow from the obvious fact that

$$
\lim _{n \rightarrow \infty} P_{n}(x)=\lim _{n \rightarrow \infty} Q_{n}(x)=f(x) \quad(0 \leqq x \leqq 1)
$$

Finally, (3) follows from (5) and (8). The theorem is completely proved.
Denote by $\omega(\cdot, h)$ the modulus of continuity of the corresponding function. Then

Corollary 1. (a) If $f(x) \in C[0,1]$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \omega\left(f, \frac{1}{k}\right)<\infty \tag{9}
\end{equation*}
$$

then there exist polynomials $P_{n}, Q_{n} \in \Pi_{n}$ such that (2) holds and

$$
\begin{equation*}
\left\|P_{n}-Q_{n}\right\|=O\left(\sum_{k=n}^{\infty} \frac{1}{k} \omega\left(f, \frac{1}{k}\right)\right) \tag{10}
\end{equation*}
$$

(b) If $f^{(r)}(x) \in C[0,1](r \geqq 1)$, then then there exist polynomials P_{n}, $Q_{n} \in \Pi_{n}$ such that (2) holds and

$$
\left\|P_{n}-Q_{n}\right\|=O\left(\frac{1}{n^{r}}\right) \omega\left(f^{(r)}, \frac{1}{n}\right) .
$$

Namely, both (a) and (b) follow from Jackson's theorem

$$
E_{n}(f)=O\left(n^{-r}\right) \omega\left(f^{(r)}, 1 / n\right) \quad\left(f^{(r)}(x) \in C[0,1]\right)
$$

This is trivial in case (a), and in case (b) it follows from the estimates

$$
\begin{aligned}
& \left\|P_{n}-Q_{n}\right\|=O\left(\sum_{k=[n / 2]-1}^{\infty} k^{-1} E_{k}(f)\right)=O\left(\sum_{k=[n / 2]-1}^{\infty} k^{-r-1} \omega\left(f^{(r)}, 1 / k\right)\right)= \\
& =O\left(\omega\left(f^{(r)}, 1 / n\right) \sum_{k=[n / 2]-1}^{\infty}\left(\frac{n}{k}+1\right) k^{-r-1}\right)=O\left(n^{-r}\right) \omega\left(f^{(r)}, 1 / n\right) \quad(r \geqq 1)
\end{aligned}
$$

A particular case of Corollary 1(a) is when $f(x) \in \operatorname{Lip} \alpha(0<\alpha \leqq 1)$. Then (9) obviously holds and (10) yields $\left\|Q_{n}-P_{n}\right\|=O\left(n^{-\alpha}\right)$.

Now assume that $f(x)$ is a monotone* function and $f^{(r)}(x) \in C[0,1](r \geqq$ $\geqq 0$). Then by well-known theorems on monotone approximation (see $[1]$, [11] or [12]), there exist monotone polynomials $p_{k}(x) \in \Pi_{k}(k \geqq r)$ such that

$$
\left\|f-p_{k}\right\|=O\left(k^{-r}\right) \omega\left(f^{(r)}, 1 / k\right)
$$

It is clear from the proof of Theorem 2.1 of [3] (see also Corollary 2.2 there), that the polynomials P_{n}, Q_{n} in Theorem A in this case can be chosen to be monotone, hence giving a solution for the problem of doubly monotone approximation. Under additional assumptions we can get more quantitative results: since the arithmetic means of monotone polynomials are again monotone polynomials, we obtain from our Theorem:

Corollary 2. If $f(x)$ is a monotone function and $f^{(r)}(x) \in C[0,1](r \geqq$ $\geqq 0$), then under the assumptions of Corollary 1 the same conclusions hol \bar{d}, with the additional property that $P_{n}(x)$ and $Q_{n}(x)$ are monotone polynomials.

Remark. Condition (1) holds if $f(x)$ has higher smoothness properties (e.g. analytic or entire), but then the result expressed in our Theorem can be obtained much simpler than described in the proof. The question which remains to settle is: what happens if (1) does not hold?

References

[1] R. A. DeVore, Monotone approximation by polynomials, SIAM J. Math. Anal., 8 (1977), 906-921.
[2] S. G. Gal, Sur le théorème d'approximation de Stone-Weierstrass, Studia Univ. BabesBolyai, Ser. Mathematica (Cluj), 4 (1981), 33-39.
[3] S. G. Gal, Sur les théorèmes d'approximation de Weierstrass, Mathematica (Cluj), 23 (46) (1981), 25-30.

[^14][4] S. G. Gal, Sur l'approximation par des polynômes dans $C^{p}[0,1]$, Studia Univ. BabesBolyai, Ser. Mathematica (Cluj), 27 (1982), 57-60.
[5] S. G. Gal, On the approximation by polynomials in $C^{q}[0,1]$, J. Approx. Theory, 42 (1984), 27-29.
[6] S. G. Gal, Sur les ensembles denses dans quelques espaces de fonctions réelles, Mathematica (Cluj), 26 (1984), 45-51.
[7] S. G. Gal, Sur l'approximation des fonctions semicontinues par des suites de polynômes, Studia Univ. Babes-Bolyai, Ser. Mathematica (Cluj), 30 (1985), 5-8.
[8] S. G. Gal, Approximation of real-valued functions by monotone sequences of polynomials, Babes-Bolyai University (Cluj), Faculty of Mathematics and Physics, Research Seminars, Seminar on Mathematical Analysis, Preprint No. 7 (1988), 55-64.
[9] S. G. Gal, Approximation of continuous functions by monotone sequences of polynomials with restricted coefficients, Publ. Inst. Math. (Beograd), N. S., 44 (58) (1988), 45-48.
[10] S. G. Gal, Constructive approximation by monotonous polynomial sequences in $\operatorname{Lip}_{M} \alpha$ with $\alpha \in(0,1]$, J. Approx. Theory, 59 (1989), 356-358.
[11] G. G. Lorentz, Monotone approximation, in Inequalities III (O. Shisha, Ed.), Academic Press (New-York, London, 1972), pp. 201-205.
[12] G. G. Lorentz and K. Zeller, Degree of approximation by monotone polynomials I, J. Approx. Theory, 12 (1968), 501-504.
(Received January 22, 1990; revised September 17, 1990)

STR. CANTACUZINO 21
BLOC AN - 45, AP. 8
3700 ORADEA
ROMANIA
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
H-1364 BUDAPEST, P.O.B. 127
HUNGARY

COMPLEX-VALUED MULTIPLICATIVE FUNCTIONS WITH MONOTONICITY PROPERTIES

KATALIN KOVÁCS (Budapest)

Let f denote a complex-valued multiplicative arithmetical function. In [2] and [3] we proved that if at least two of the functions $|f|, \operatorname{Re} f$ and $\operatorname{Im} f$ are monotonic, then f is real and $|f(n)|=n^{k}$ or $f(n)=0$ for $n>2$. Our theorem generalized the results of Erdős [1] and Moser and Lambek [5].

We got a similar result on sets of upper density one and on suitably constructed rare sets. (This means that to any function $h: \mathbf{N} \rightarrow \mathbf{R}$ there exists a set A such that $a_{n+1}-a_{n}>h(n)$ and if two of the functions $|f|$, $\operatorname{Re} f$ and $\operatorname{Im} f$ are monotonic on A, then $f(a)$ is real and $f(a)=a^{k}$ for all $a \in A, a \geqq a_{0}$ or $f(a)=0$ for all $\left.a \in A, a \geqq a_{0}\right)$.

For completely multiplicative functions we prove a stronger result:
Theorem 1. Let f be a completely multiplicative function and A a set of upper density one.
a) If $\operatorname{Re} f$ is monotonic on A, then $f(n)=n^{k}$ for all $n \in \mathbf{N}$ or $\operatorname{Re} f(a)=$ $=0$ for all $a \in A, a \geqq a_{0}$. In the case $A=\mathbf{N}$ we have $f(n)=n^{k}$ or $f \equiv 0$.
b) If $\operatorname{Im} f$ is monotonic on A, then $\operatorname{Im} f(a)=0$ for all $a \in A, a \geqq a_{0}$. In the case $A=\mathbf{N}$ we have $\operatorname{Im} f \equiv 0$.

For multiplicative functions we have only the following weaker result:
Theorem 2. Let f be a multiplicative function and $Q=P_{1} \ldots P_{r}$ where P_{1}, \ldots, P_{r} are the only primes such that $\operatorname{Im} f\left(P_{i}^{\alpha_{i}}\right) \neq 0$ for some α_{i}. If $\operatorname{Re} f$ is monotonic on a set A of upper density one, then either $r \leqq 1, f(n)=n^{k}$ for all $\left(n, P_{1}\right)=1$ and $\operatorname{Re} f(n)=n^{k}$ for all $n \in \mathbf{N}$ or $f(a)=0$ for all $a \in A^{\prime}=\left\{a \in A \mid a \geqq a_{0}\right.$ and $\left.(a, Q)=1\right\}$ and $\operatorname{Re} f(a)=0$ for all $a \in A$, $a \geqq a_{0}$.

If $A=\mathbf{N}$, then either

$$
f\left(p^{k \nu}\right)= \begin{cases}p^{k \nu} & \text { for all } p \neq p_{0} \\ p^{k \nu} e^{i \varphi} / \cos \varphi & \text { if } p=p_{0}\end{cases}
$$

where p_{0} is a prime and $\varphi \in[0, \pi / 2)$ or $f(n)=0$ for all $n \geqq 4$ except at most on the powers of one prime.

Proof of Theorem 1. a) If $f(m)=0$ for some $m \in \mathbf{N}$, then $f(m t)=0$ for all $t \in \mathbf{N}$. The monotonicity of $\operatorname{Re} f$ on A yields $\operatorname{Re} f(a)=0$ for all $a \in A$
large enough. Thus $f(n) \neq 0$ for all $n \in \mathbf{N}$ in the opposite case. Assume $\operatorname{Im} f(s) \neq 0$ for some $s \in \mathbf{N}$. Choose a natural number d such that

$$
\pi / 3 \leqq \arg f(s)^{d} \leqq \pi / 2,
$$

if there is any. The only case when such a d does not exist is $|\arg f(s)|=$ $=2 \pi / 3$; in this case let d be such that $\arg f(s)^{d}=2 \pi / 3$. There exists an $a \in \mathbf{N}$ such that $a s^{d j} \in A, j=1, \ldots, 6 . \operatorname{Re} f\left(a s^{d j}\right)$ changes sign twice, which contradicts the assumption. Hence f is real-valued and we get $f(n)=n^{k}$ by the above mentioned theorem of Moser and Lambek.

In the case $A=\mathbf{N}$, it is sufficient to prove that "Re $f(n)=0$ for $n \geqq n_{0}$ " implies $f \equiv 0$. Indeed, if $f(w) \neq 0$ for some $w \in \mathbf{N}$, then $\operatorname{Re} f\left(w^{\alpha}\right) \neq 0$ for infinitely many $\alpha \in \mathbf{N}$, which is a contradiction.
b) The proof is similar to the proof of Case a). If we take $A=\mathbf{N}$, then $\operatorname{Im} f(w) \neq 0$ yields $\operatorname{Im} f\left(v^{\alpha}\right) \neq 0$ for infinitely many $\alpha \in \mathbf{N}$, which contradicts the assertion of b).

Proof of Theorem 2. If there exists an $m \in \mathbf{N}$ for which $f(m)=0$, then $f(m t)=0$ for all $(m, t)=1$. Thus $\operatorname{Re} f(a)=0$ for all $a \in A, a \geqq a_{0}$ and $\operatorname{Re} f(a)=f(a)=0$ for all $a \in A^{\prime}$.

Assume that f does not vanish. Write $N_{Q}=\{n \in \mathbf{N} \mid(n, Q)=1\} . f$ is real and monotonic on $N_{Q} \cap A$. This yields that f is positive on $N_{Q} \cap A^{\prime}$ with some $a_{0} \in A$. For any numbers $b, d \in N_{Q}$ there exists an x such that $x, b x, d x \in N_{Q} \cap A^{\prime}$. Thus the monotonicity of f implies that f is real and monotonic on N_{Q}. We apply our theorem from [4]: If a function $g: \mathbf{N} \rightarrow \mathbf{R}^{k}$ is additive and its Euclidean norm is monotonic on an arbitrary fixed reduced residue class mod $q(q \in \mathbf{N}, q \geqq 2)$ from a number m_{0} on, then $g(m)=c \log m$ for all $(m, q)=1$. (This theorem is a generalized form of the above mentioned theorem of Erdös.) This yields $\left.\log f\right|_{N_{Q}}=\left.k \log \right|_{N_{Q}}$. For any $n \in N_{Q}$ there exist infinitely many $t \in \mathbf{N}$ such that $t \equiv 1 \bmod Q n$ and

$$
U_{n t}\{n(t-1)+1, n t, n(t-1+Q)+1\} \subset N_{Q} \cap A .
$$

The monotonicity of f on $U_{n t}$'s, by $f(n)=n^{k}$ on N_{Q}, implies

$$
\begin{equation*}
\operatorname{Re} f(n)=n^{k} \quad \text { for all } \quad n \in N_{Q} . \tag{1}
\end{equation*}
$$

If $r \geqq 2$, let us substitute $P_{1}^{\alpha_{1}}, P_{2}^{\alpha_{2}}$ and $P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}}$ into (1). We get the contradiction from the relation

$$
\operatorname{Re} f\left(P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}}\right)=\operatorname{Re} f\left(P_{1}^{\alpha_{1}}\right) \operatorname{Re} f\left(P_{2}^{\alpha_{2}}\right)-\operatorname{Im} f\left(P_{1}^{\alpha_{1}}\right) \operatorname{Im} f\left(P_{2}^{\alpha_{2}}\right)
$$

Therefore $r \leqq 1$ and (1) is satisfied.
The case $A=\mathbf{N}$: Either (1) implies our assertion using that $r \leqq 1$ or we have $\operatorname{Re} f(n)=0$ for all $\geqq n_{0}$. The monotonicity of $\operatorname{Re} f$ yields that $\operatorname{Re} f(n) \neq 0$ for all $n<n_{0}$. If $\left.n\right) \geqq 6$, then there exists a $t \in$
$\in\left[\left[\frac{n_{0}}{2}\right]+1, n_{0}-1\right]$ for which $(t, 6)=1$. All the elements of $\{2 t, 3 t, 6 t\}$ are larger than n_{0}. Therefore

$$
\operatorname{Re} f(2 t)=\operatorname{Re} f(3 t)=\operatorname{Re} f(6 t)=0 .
$$

This implies

$$
\arg f(2) \equiv \arg f(3) \equiv \arg f(6)(\bmod \pi) .
$$

Thus $f(2)$ and $f(3)$ are non-zero real numbers. Let D denote the maximal prime power for which

$$
\begin{equation*}
\operatorname{Re} f(D) \neq 0 \tag{2}
\end{equation*}
$$

There exists a prime p in $(D, 2 D)$, for which $\operatorname{Re} f(p)=0$. Thus, using the monotonicity of $\operatorname{Re} f$, we get

$$
\begin{equation*}
\operatorname{Re} f(2 D)=\operatorname{Re} f(3 D)=0 \tag{3}
\end{equation*}
$$

For at least one of $b \in\{2,3\}$ we have $(b, D)=1$. Using that $f(b) \in R$, we get, by (2),

$$
\operatorname{Re} f(b D)=f(b) \operatorname{Re} f(D) \neq 0,
$$

which contradicts (3).
We have proved $n_{0} \leqq 5$. Now we show that there is at most one prime p such that $f\left(p^{k}\right) \neq 0$ for some $k, p^{k} \geqq 5$. If there exist Q_{1}, Q_{2} coprime prime powers which are bigger than n_{0} with $\operatorname{Im} f\left(Q_{i}\right) \neq 0$, then $\operatorname{Re} f\left(Q_{1} Q_{2}\right) \neq 0$ yields a contradiction.

Our main problem whether there exists a multiplicative (but not completely multiplicative) function such that $\operatorname{Re} f$ is monotonic and $\operatorname{Im} f\left(P_{i}^{\delta_{i}}\right) \neq$ $\neq 0$ on some powers of infinitely many primes, is still unsolved.

I am indebted to Imre Ruzsa for his valuable remarks.

References

[1] P. Erdős, On the distribution function of additive functions, Annales of Math., 47 (1946), 1-20.
[2] K. Kovács, The characterization of complex-valued multiplicative functions. I, Acta Math. Hung., 44 (1984), 401-406.
[3] K. Kovács, The characterization of complex-valued multiplicative functions. II, Acta Math. Hung., 45 (1985), 163-166.
[4] K. Kovács, The characterization of additive functions on residue classes, Acta Math. Hung., 50 (1987), 123-125.
[5] L. Moser and J. Lambek, On monotone multiplicative functions, Comp. Math., 29 (1974), 265-271.
(Received January 23, 1990; revised July 24, 1990)

[^15]
YANO-LEDGER CONNECTION AND INDUCED CONNECTION ON VECTOR BUNDLES

Z. KOVÁCS (Nyíregyháza) and L. TAMÁSSY (Debrecen)

Introduction

K. Yano and A. J. Ledger [13] constructed from a linear connection ∇ on a manifold B a torsion-free linear connection on $T B$ (called the Yano-Ledger connection). M. Matsumoto [7] proved that: a) ∇ determines a Finsler connection $(\mathcal{H}, \bar{\nabla})$ in the space $V T B$ of Finsler vectors; b) the symmetrization of the extension ∇^{\prime} of $(\mathcal{H}, \bar{\nabla})$ to TTB is exactly the Yano-Ledger connection on TB; c) the Levi-Civita connection of the Riemannian metric on TB derived from a Riemannian metric g on B coincides with the Yano-Ledger connection derived from the Levi-Civita connection ∇ of g iff the Riemannian curvature tensor of g vanishes (see also [2]). On the other hand R. Miron [8] developed a theory of Finsler connections on vector bundles.

The purpose of this paper is to construct a Yano-Ledger connection on vector bundles, and then to prove the analogues of Matsumoto's theorems a), b), and c) for vector bundles and vector bundle Finsler connections. In our considerations and constructions we apply pullback of pseudoconnections. They are developed and investigated in $\S \S 1,2$, and 3 . $\S 4$ yields the Yano-Ledger connection for vector bundles, and $\S \S 4,5$, and 6 present the mentioned theorems analogous to those of Matsumoto.

Concerning notation and terminology we refer to the monographs [1], [5].

§1. Preliminaries

A) Pseudoconnections. This notion is a generalization of the linear connection. Pseudoconnection was introduced by Y. Wong [12]. In this paper pseudoconnection is defined over a pair of vector bundles $\xi=\left(E, \pi, B, V^{r}\right)$ and $\tilde{\xi}=\left(\tilde{E}, \tilde{\pi}, B, V^{s}\right)$ with common base space $B . E$ denotes the total space, $\pi: E \rightarrow B$ is the projection, and V^{r} is a real vector space of rank r. A pseudoconnection in ξ w.r.t. (with respect to) $\tilde{\xi}$ is a pair (∇, A) of maps. $A: \tilde{\xi} \rightarrow \tau_{B}$ is a strong vector bundle mapping, i.e. such that the fiber $\tilde{\pi}^{-1}(x), x \in B$ is linearly mapped into the tangent space $T_{x} B$. $\nabla: \operatorname{Sec} \tilde{\xi} \times \operatorname{Sec} \xi \rightarrow \operatorname{Sec} \xi,(\tilde{\sigma}, \eta) \mapsto \nabla_{\tilde{\sigma}} \eta$ is additive in both variables $\tilde{\sigma} \in \operatorname{Sec} \tilde{\xi}$
and $\eta \in \operatorname{Sec} \xi$, it is $C^{\infty}(B)$ linear in $\tilde{\sigma}$, and also the property

$$
\begin{equation*}
\nabla_{\tilde{\sigma}} f \eta=[(A \circ \tilde{\sigma}) f] \eta+f \nabla_{\tilde{\sigma}} \eta, \quad f \in C^{\infty}(B) \tag{1}
\end{equation*}
$$

is satisfied. (Sec ξ denotes the family of all sections of ξ over B, and τ_{B} is the tangent bundle of B). For details we refer to the paper [11]. Throughout the paper manifolds are supposed to be paracompact, and mappings, vector and tensor fields, functions, etc. to be of class C^{∞}.
B) Some basic notions and facts. Let ξ and ξ^{\prime} be two vector bundles with base spaces B and B^{\prime}, and let $\varphi: \xi \rightarrow \xi^{\prime}$ be a bundle map. The induced map $B \rightarrow B^{\prime}$ determined by φ is denoted by Ψ, and the restriction of φ to the fiber $\pi^{-1}(x)$ is denoted by $\varphi_{x}=\left.\varphi\right|_{\pi^{-1}(x)}$. We assume each φ_{x} to be a linear isomorphism. In this case $\varphi^{\#}: \operatorname{Sec} \xi^{\prime} \rightarrow \operatorname{Sec} \xi$ is given by

$$
\left[\varphi^{\#}\left(\tau^{\prime}\right)\right](x)=\varphi_{x}^{-1}\left(\tau^{\prime}(\Psi(x))\right), \quad \tau^{\prime} \in \operatorname{Sec} \xi^{\prime}
$$

$\varphi^{\#}$ is additive and satisfies the relation

$$
\begin{equation*}
\varphi^{\#}\left(f^{\prime} r^{\prime}\right)=\left(f^{\prime} \circ \Psi\right) \varphi^{\#}\left(\tau^{\prime}\right), \quad \tau^{\prime} \in \operatorname{Sec} \xi^{\prime}, \quad f^{\prime} \in C^{\infty}\left(B^{\prime}\right) . \tag{2}
\end{equation*}
$$

The sections $\varphi^{\#}\left(\tau^{\prime}\right)$ and τ^{\prime} are called φ-related.
Let

$$
\begin{equation*}
0 \longrightarrow \pi^{*}(\xi) \xrightarrow{\lambda} \tau_{E} \xrightarrow{\mu} \pi^{*}\left(\tau_{B}\right) \longrightarrow 0 \tag{3}
\end{equation*}
$$

be an exact sequence, where $*$ is the symbol of the pullback. Since $\operatorname{Im} \lambda$ is $V \xi$ (the vertical subbundle of τ_{E}), therefore $\hat{\lambda}: \pi^{*}(\xi) \rightarrow V \xi, \hat{\lambda}(\eta):=\lambda(\eta)$ is an isomorphism. Let $\alpha: V \xi \rightarrow \xi, \alpha=\operatorname{pr}_{2} \circ \hat{\lambda}^{-1}$ with pr_{2} denoting the projection of $\pi^{*}(\xi)$ on its second factor. α is a bundle map, and its induced map is π.

We fix a horizontal map $\mathcal{H}: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}$ of (3). $\operatorname{Im} \mathcal{H}=: H \xi$ is the horizontal subbundle of τ_{E}. Then an element X of the vector space $\mathfrak{X}(E)$ of the tangent vector fields of E uniquely splits into $H X \in \operatorname{Sec} H \xi$ and $V X \in$ $\in \operatorname{Sec} V \xi \cdot a^{\#}: \operatorname{Sec} \xi \rightarrow \operatorname{Sec} V \xi$ and $\left(\left.\operatorname{pr}_{2} \circ \mu\right|_{H E}\right)^{\#}=\left(\left.\pi_{*}\right|_{H E}\right)^{\#}: \mathfrak{X}(B) \rightarrow$ Sec $H \xi$ are mappings of sections. $\alpha^{\#}(\eta)$ is the vertical lift of $\eta \in \operatorname{Sec} \xi$ denoted by η^{v}, and $\left(\left.\pi_{*}\right|_{H E}\right)^{\#}(X)$ is the horizontal lift of $X \in \mathfrak{X}(B)$ denoted by X^{h}.

The following facts are well known (cf. [3]):
(i) $\pi_{*} X^{h}=X, \alpha \circ \eta^{v}=\eta \circ \pi$
(ii) $X^{h}(f \circ \pi)=(X f \circ \pi), \eta^{v}(f \circ \pi)=0$
(iii) $\left[\eta^{v}, \zeta^{v}\right]=0, H\left[X^{h}, Y^{h}\right]=[X, Y]^{h}$,

$$
X, Y \in \mathfrak{X}(B), \quad \eta, \zeta \in \operatorname{Sec} \xi, \quad f \in C^{\infty}(B), \quad(f \circ \pi) \in C^{\infty}(E) .
$$

§2 Pullback of the mapping A^{\prime}

1. In $\S \S 2$ and 3 let ξ and $\tilde{\xi}$ (resp. ξ^{\prime} and $\tilde{\xi}^{\prime}$) be two vector bundles with a common base space B (resp. B^{\prime}). Let $A^{\prime}: \tilde{\xi}^{\prime} \rightarrow \tau_{B^{\prime}}$ be a strong vector bundle mapping, and $\varphi: \xi \rightarrow \xi^{\prime}, \chi: \tilde{\xi} \rightarrow \tilde{\xi}^{\prime}$ two vector bundle mappings with common induced mapping $\Psi: B \rightarrow B^{\prime}$. We assume each φ_{x} and χ_{x} $(x \in B)$ to be linear isomorphisms. We call a strong vector bundle mapping $A: \tilde{\xi} \rightarrow \tau_{B}$ the pullback of A^{\prime} if $A \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)$ and $A^{\prime} \circ \tilde{\sigma}^{\prime}$ are Ψ-related vector fields for any $\tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}$; i.e. if

$$
\begin{equation*}
\left[\left(A^{\prime} \circ \tilde{\sigma}^{\prime}\right) g^{\prime}\right] \circ \Psi=\left[A \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)\right]\left(g^{\prime} \circ \Psi\right) \quad \forall g^{\prime} \in C^{\infty}\left(B^{\prime}\right), \quad \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}, \tag{4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left(A^{\prime} \circ \tilde{\sigma}^{\prime}\right)(\Psi(x))=d \Psi\left[\left(A \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)\right)(x)\right], \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime} . \tag{5}
\end{equation*}
$$

We want to show the existence of such an A, and determine its form. After this we want to investigate the same questions for the pullback of a pseudoconnection ($\nabla^{\prime}, A^{\prime}$) in ξ^{\prime} w.r.t. $\tilde{\xi}^{\prime}$. Fig. 1 shows the most relevant ones of the above mappings.

Fig. 1
If $\Psi(B) \neq B^{\prime}$, then $B^{\prime} \backslash \Psi(B)$ plays no role in the investigations concerning pullback. So it means no restriction to assume that $\Psi(B)=B^{\prime}$. Surjectivity of the differential $d \Psi_{x}$ will also be assumed.

In order to prove the existence of A we consider the pullbacks $\Psi^{*}\left(\tau_{B^{\prime}}\right)$, $\Psi^{*}\left(\tilde{\xi}^{\prime}\right)$ and the strong vector bundle mappings

$$
F: \tau_{B} \rightarrow \Psi^{*}\left(\tau_{B^{\prime}}\right), \quad F(x, y)=\left(x, d \Psi_{x}(y)\right) \in B \times_{\Psi} T B^{\prime}, \quad y \in \pi_{B}^{-1}(x)
$$

and

$$
K: \tilde{\xi} \rightarrow \Psi^{*}\left(\tilde{\xi}^{\prime}\right), \quad K(x, \tilde{\sigma})=(x, \chi(\tilde{\sigma})) \in B \times_{\Psi} \tilde{E}^{\prime} .
$$

Fig. 2
Then $d \Psi=\operatorname{pr}_{2} \circ F$ and $\chi=\operatorname{pr}_{2} \circ K$. Since F is surjective for any $x \in B$, there exists at least one strong vector bundle mapping $\Phi: \Psi^{*}\left(\tau_{B^{\prime}}\right) \rightarrow$ $\rightarrow \tau_{B}$ such that $F \circ \Phi=\mathrm{id}$ ([5] Vol. 1, p. 77, Lemma III). We show that $A=\Phi \circ\left(\mathrm{id} \times A^{\prime}\right) \circ K$ satisfies (5):

$$
\begin{gathered}
d \Psi_{x}\left[A \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)(x)\right]= \\
=d \Psi_{x}\left\{\Phi \circ\left(\mathrm{id} \times A^{\prime}\right) \circ K \circ\left[\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)(x)\right]\right\}= \\
=\operatorname{pr}_{2} \circ F \circ \Phi \circ\left(\mathrm{id} \times A^{\prime}\right)\left[x, \chi\left(\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)\right)(\Psi(x))\right]= \\
=\operatorname{pr}_{2} \circ\left(\mathrm{id} \times A^{\prime}\right)\left[x, \tilde{\sigma}^{\prime}(\Psi(x))\right]=A^{\prime}\left(\tilde{\sigma}^{\prime}(\Psi(x))\right), \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime} .
\end{gathered}
$$

This proves the existence of A.
2. The local expression of A shows its dependence on A^{\prime} and gives the grade of its arbitrariness.

Since χ_{x} is an isomorphism, we have $\operatorname{rank} \tilde{\xi}=\operatorname{rank} \tilde{\xi}^{\prime}(=s)$, and since Ψ is a submersion, we have $n=\operatorname{dim} B \geqq \operatorname{dim} B^{\prime}=m$. Let U and $U^{\prime}=\Psi(U)$ be coordinate neighbourhoods in B, resp. B^{\prime} with local coordinates (x^{i}) $(i, j=1,2, \ldots, n)$ and $\left(z^{\alpha}\right)(\alpha, \beta=1,2, \ldots, m)$. For appropriately chosen (x) and $(z),\left.\Psi\right|_{U}$ is described by $z^{\alpha} \circ \Psi=x^{\alpha}$. Thus $d \Psi_{x} \frac{\partial}{\partial x^{\alpha}}(x)=\frac{\partial}{\partial z^{\alpha}}(\Psi(x))$, and $d \Psi_{x} \frac{\partial}{\partial x^{\bar{\alpha}}}(x)=0(\bar{\alpha}=m+1, \ldots, n)$. Let A be a mapping satisfying (5), and $\left.\tilde{\sigma}_{a}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}\right|_{U^{\prime}}(a, b=1,2, \ldots, s)$ such that they form a basis in any fiber of $\tilde{\xi}^{\prime}$ over U^{\prime}. Then $\chi^{\#}\left(\tilde{\sigma}_{a}^{\prime}\right)=: \tilde{\sigma}_{a}$ have the same property in the fibers of $\tilde{\xi}$ over U. Finally $A \circ \tilde{\sigma}_{a}=\sum_{i} A_{a}^{i} \frac{\partial}{\partial x^{i}}$, where A_{a}^{i} are the components of the mapping $A: \tilde{\pi}^{-1}(x) \rightarrow T_{x} B$ in the frames $\left(\frac{\partial}{\partial x^{x}}, \tilde{\sigma}_{a}\right)$. Similarly $A^{\prime} \circ \tilde{\sigma}_{a}^{\prime}=\sum_{\alpha} A_{a}^{\prime \alpha} \frac{\partial}{\partial z^{\alpha}}$.

According to (5)

$$
\begin{equation*}
\left(A^{\prime} \circ \tilde{\sigma}_{a}^{\prime}\right) \Psi(x)=d \Psi_{x}\left(A \circ \tilde{\sigma}_{a}\right) . \tag{6}
\end{equation*}
$$

Expressing both sides in the coordinate systems described we obtain

$$
\begin{equation*}
A_{a}^{\alpha}(x)=A_{a}^{\prime \alpha}(\Psi(x)) . \tag{7}
\end{equation*}
$$

for any A satisfying (5). Conversely, (7) implies (6) for $a=1,2, \ldots, s$, which is equivalent to (5). This yields however that the components $A_{a}^{\bar{\alpha}}$, $\bar{\alpha}=m+1, \ldots, n$ of $A(x)$ can be chosen freely. Our result is expressed by

Theorem 1. a) Given two vector bundles $\tilde{\xi}$ and $\tilde{\xi}^{\prime}$ and a strong vector bundle mappiny $A^{\prime}: \tilde{\xi}^{\prime} \rightarrow \tau_{B^{\prime}}$, as at the beginning of this paragraph, then there exists a strong vector bundle mapping $A: \tilde{\xi} \rightarrow \tau_{B}$ (the pullback of A^{\prime}) such that A and A^{\prime} are Ψ-related.
b) The local components $A_{a}^{\alpha}(x)$ of this A are determined by (7), and its other components $A_{a}^{\bar{\alpha}}(x)$ are arbitrary. In case of $n=m$ there is no $A_{a}^{\bar{\alpha}}(x)$ and A is uniquely determined by (7).
3. Section 2 of this \S is a local, but constructive construction of all possible A, thus it means a local existence proof of A too. Section 1 was a relatively short and global proof of the existence of A. We remark that Section 2 can be extended to another proof of the global existence of A. Let $\left\{U_{\iota}\right\}, \iota \in \mathcal{I}$ be a local finite open covering of B and $\left\{a_{\iota}\right\}, a_{\iota} \in C^{\infty}(B)$ a partition of unity subordinate to $\left\{U_{\iota}\right\}$. Let $A_{\iota}:\left.\left.\tilde{\xi}\right|_{\tilde{\pi}^{-1}\left(U_{\imath}\right)} \rightarrow \tau_{B}\right|_{\pi^{-1}\left(U_{\iota}\right)}$ be mappings satifying (4) over U_{ι}. Such A_{ι} were constructed in Secion 2. We define $a_{\iota} A_{\iota}$ over U_{ι} as $\left(a_{\iota} A_{\iota}\right)(\tilde{\sigma})=a_{\iota}\left(A_{\iota}(\tilde{\sigma})\right)$, and as $\left(a_{\iota} A_{\iota}\right)(\tilde{\sigma}) \equiv 0$ on the complement of U_{ι}. Thus $a_{\iota} A_{\iota}$ is a differentiable mapping taking $\tilde{\xi}$ into τ_{B}, and satisfying

$$
\begin{gathered}
{\left[a_{\imath} A_{\iota} \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)\right]\left(f^{\prime} \circ \Psi\right)=\left(\left[a_{\imath} A^{\prime} \circ \tilde{\sigma}^{\prime}\right] f^{\prime}\right) \circ \Psi} \\
\forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}, \quad f^{\prime} \in C^{\infty}\left(B^{\prime}\right)
\end{gathered}
$$

The sum of these yields

$$
\left[\sum_{\iota}\left(a_{\iota} A_{\iota}\right) \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)\right]\left(f^{\prime} \circ \Psi\right)=\left(\left[\left(\sum_{\iota} a_{\iota}\right) A^{\prime} \circ \tilde{\sigma}^{\prime}\right] f^{\prime}\right) \circ \Psi
$$

Here $\sum_{\iota} a_{\iota}=1$. Hence $A:=\sum_{\iota}\left(a_{\iota} A_{\iota}\right)$ globally satisfies (4), and so it is a pullback of A^{\prime}.

§3. Pullback of the pseudoconnection $\left(\nabla^{\prime}, A^{\prime}\right)$

1. Let $\left(\nabla^{\prime}, A^{\prime}\right)$ be a pseudoconnection in ξ^{\prime} w.r.t. $\tilde{\xi}^{\prime}$. We call a pseudoconnection (∇, A) in ξ w.r.t $\tilde{\xi}$ a pullback of $\left(\nabla^{\prime}, A^{\prime}\right)^{1}$ if

$$
\begin{equation*}
\nabla_{\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)} \varphi^{\#}\left(\eta^{\prime}\right)=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right), \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}, \quad \eta^{\prime} \in \operatorname{Sec} \xi^{\prime} \tag{8}
\end{equation*}
$$

We show that for any pseudoconnection $\left(\nabla^{\prime}, A^{\prime}\right)$ there exist pullbacks (∇, A), where A must be a pullback of A^{\prime}. This A is not uniquely determined by

[^16]($\nabla^{\prime}, A^{\prime}$) except the case $\operatorname{dim} B=\operatorname{dim} B^{\prime}$, but ∇ is unique provided we fix a pullback A of A^{\prime}.

First we show that A must satisfy (4). We shall denote the pullback $\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)$ of a $\tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}$ by $\tilde{\sigma}_{1}$, similarly $\varphi^{\#}\left(\eta^{\prime}\right) \equiv \eta_{1}$ for $\eta^{\prime} \in \operatorname{Sec} \xi^{\prime}$, and $\varphi^{\#} f^{\prime}=f^{\prime} \circ \Psi \equiv f_{1}$ for $f^{\prime} \in C^{\infty}\left(B^{\prime}\right)$. Since both $\left(\nabla^{\prime}, A^{\prime}\right)$ and (∇, A) are pseudoconnetions, in view of (8) we obtain

$$
\begin{gathered}
\nabla_{\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)} \varphi^{\#}\left(f^{\prime} \eta^{\prime}\right)=\nabla_{\tilde{\sigma}_{1}} f_{1} \eta_{1}=\left[\left(A \circ \tilde{\sigma}_{1}\right) f_{1}\right] \eta_{1}+f_{1} \nabla_{\tilde{\sigma}_{1}} \eta_{1}= \\
=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}}^{\prime} f^{\prime} \eta^{\prime}\right)=\varphi^{\#}\left\{\left[\left(A^{\prime} \circ \tilde{\sigma}^{\prime}\right) f^{\prime}\right] \eta^{\prime}\right\}+\varphi^{\#}\left(f^{\prime} \nabla_{\tilde{\sigma}^{\prime}} \eta^{\prime}\right)= \\
=\left\{\left[\left(A^{\prime} \circ \tilde{\sigma}^{\prime}\right) f^{\prime}\right] \circ \Psi\right\} \eta_{1}+f_{1} \nabla_{\tilde{\sigma}_{1}} \eta_{1}, \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}, f^{\prime} \in C^{\infty}\left(B^{\prime}\right) .
\end{gathered}
$$

Comparison of the first terms in the third and sixth expressions gives (4).
2. Now we construct ∇ and show its uniqueness. In view of (8) the definition of ∇ for $\tilde{\sigma}_{1}$ and η_{1} can only be

$$
\begin{equation*}
\nabla_{\tilde{\sigma}_{1}} \eta_{1}=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right), \quad \forall \tilde{\sigma}_{1} \in \operatorname{Sec} \tilde{\xi}, \quad \eta_{1} \in \operatorname{Sec} \xi . \tag{9}
\end{equation*}
$$

We show that the value of ∇ over sections "deferring" from pullback sections must be 0 . Thus we have only one possibility for the definition of ∇. Finally we show that the ∇ defined in this single possible way coupled with an A satisfying (4) is a pseudoconnection.

We define ∇ at an arbitary point $x_{0} \in B$ for any $\tilde{\sigma} \in \operatorname{Sec} \tilde{\xi}$ and $\eta \in$ Sec ξ. Let $B_{1} \subset B$ be a (possibly small) submanifold of B through x_{0} such that $\Psi: B_{1} \rightarrow \Psi\left(B_{1}\right) \equiv B_{1}^{\prime} \subset B^{\prime}$ is a bijection and $A \circ \tilde{\sigma}\left(x_{0}\right) \in T_{x_{0}} B_{1}$. Clearly B_{1} is not uniquely determined by these conditions. We define on B_{1}^{\prime} $\eta^{\prime}:=\varphi\left(\left.\eta\right|_{B_{1}}\right), \quad \tilde{\sigma}^{\prime}:=\chi\left(\left.\tilde{\sigma}\right|_{B_{1}}\right)$ and on $\Psi^{-1}\left[B_{1}^{\prime}\right] \quad \eta_{1}=\varphi^{\#}\left(\eta^{\prime}\right), \eta_{2}=\eta-\eta_{1} ;$ $\tilde{\sigma}_{1}=\chi^{\#}\left(\tilde{\sigma}^{\prime}\right), \tilde{\sigma}_{2}=\tilde{\sigma}-\tilde{\sigma}_{1}$. Thus any $\tilde{\sigma}$, or η splits w.r.t. the chosen B_{1} as

$$
\begin{equation*}
\tilde{\sigma}=\tilde{\sigma}_{1}+\tilde{\sigma}_{2}, \quad \eta=\eta_{1}+\eta_{2} . \tag{10}
\end{equation*}
$$

We have the relations

$$
\begin{equation*}
\text { a) }\left.\tilde{\sigma}\right|_{B_{1}}=\tilde{\sigma}_{1}, \quad \text { b) }\left.\eta\right|_{B_{1}}=\eta_{1}, \quad \text { c) }\left.\tilde{\sigma}_{2}\right|_{B_{1}}=\left.\eta_{2}\right|_{B_{1}}=0 . \tag{11}
\end{equation*}
$$

Assume (∇, A) to be a pseudoconnection satisfying (8). Then, because of the additivity of ∇

$$
\begin{equation*}
\nabla_{\tilde{\sigma}} \eta=\nabla_{\tilde{\sigma}_{1}} \eta_{1}+\nabla_{\tilde{\sigma}_{2}} \eta_{1}+\nabla_{\tilde{\sigma}_{1}} \eta_{2}+\nabla_{\tilde{\sigma}_{2}} \eta_{2} \tag{12}
\end{equation*}
$$

on B_{1}. For any linear connection ∇^{L} in $\xi \quad \nabla_{\tilde{\sigma}} \eta-\nabla_{A \circ \tilde{\sigma}}^{L} \eta=T(\tilde{\sigma}, \eta)$ is a function-bilinear mapping $\operatorname{Sec} \tilde{\xi} \times \operatorname{Sec} \xi \rightarrow \operatorname{Sec} \xi$, i.e. T is a homomorphism: $T \in \operatorname{Hom}(\operatorname{Sec} \tilde{\xi}, \operatorname{Sec} \xi ; \operatorname{Sec} \xi)$. Hence we obtain on B_{1} a representation of ∇ in the form

$$
\nabla_{\tilde{\sigma}} \eta=\nabla_{A \circ \tilde{\sigma}}^{L} \eta+T(\tilde{\sigma}, \eta)
$$

and

$$
\nabla_{\tilde{\sigma}_{1}} \eta_{1}=\nabla_{A \circ \tilde{\sigma}_{1}}^{L} \eta_{1}+T\left(\tilde{\sigma}_{1}, \eta_{1}\right)
$$

However $\tilde{\sigma}\left(x_{0}\right)=\tilde{\sigma}_{1}\left(x_{0}\right)$, from this $A \circ \tilde{\sigma}\left(x_{0}\right)=A \circ \tilde{\sigma}_{1}\left(x_{0}\right)$, furthermore $\eta\left(x_{0}\right)=\eta_{1}\left(x_{0}\right)$. Moreover on $B_{1} \eta(x)=\eta_{1}(x)$, and we assumed $A \circ \tilde{\sigma}\left(x_{0}\right) \in$ $\in T_{x_{0}} B_{1}$. From these we obtain $\left.\nabla_{\tilde{\sigma}} \eta\right|_{x_{0}}=\left.\nabla_{\tilde{\sigma}_{1}} \eta_{1}\right|_{x_{0}}$. Hence the sum of the last three terms in (12) is zero at x_{0}. Moreover this sum must vanish for given $\tilde{\sigma}_{1}, \eta_{1}$ and for arbitrary $\tilde{\sigma}_{2}, \eta_{2}$ satisfying (11.c). Thus these three terms must vanish also separately at x_{0}. Hence the definition of a ∇ satisfying (8) for arbitrary $\tilde{\sigma}$, and η can only be

$$
\begin{equation*}
\nabla_{\tilde{\sigma}} \eta=\nabla_{\tilde{\sigma}_{1}} \eta_{1}=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}, \eta^{\prime}}^{\prime}\right) . \tag{13}
\end{equation*}
$$

We alo obtain that

$$
\begin{equation*}
\nabla_{\tilde{\sigma}_{2}} \eta_{1}=\nabla_{\tilde{\sigma}_{1}} \eta_{2}=\nabla_{\tilde{\sigma}_{2}} \eta_{2}=0 \tag{14}
\end{equation*}
$$

which are consequences of (13).
In this definition we made use of the splitting (10), which depends on the choice of B_{1}. Using another B_{1} (satisfying the same conditions) we obtain another splitting $\tilde{\sigma}=\stackrel{\tilde{\tilde{\sigma}}}{1}^{+}+\stackrel{\tilde{\sigma}}{2}_{2}, \eta=\stackrel{*}{\eta}_{1}+\stackrel{*}{\eta}_{2}$ and then

$$
\begin{equation*}
\nabla_{\tilde{\sigma}} \eta=\nabla_{\tilde{\sigma}_{1}} \eta_{1}=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right)=\varphi^{\#}\left[\nabla_{A^{\prime} \circ \tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}+T\left(\tilde{\sigma}^{\prime}, \eta^{\prime}\right)\right] \tag{15}
\end{equation*}
$$

resp.
at x_{0}. But $\tilde{\sigma}_{1}=\stackrel{\tilde{\sigma}_{1}}{1}$ and $\eta_{1}=\stackrel{*}{\eta}_{1}$ at x_{0}, resp. in the direction of $A \circ \tilde{\sigma}\left(x_{0}\right)$. Consequently the same hold true also for $\tilde{\sigma}^{\prime}, \stackrel{\tilde{\sigma}^{\prime}}{ }$ and $\eta^{\prime}, \stackrel{*}{\eta^{\prime}}$ at $\Psi\left(x_{0}\right)=x_{0}^{\prime}$, resp. in the direction of $A \circ \tilde{\sigma}^{\prime}\left(x_{0}^{\prime}\right)$. Therefore the right hand sides of (15) and (16) equal. Hence $\nabla_{\tilde{\sigma}_{1}} \eta_{1}=\nabla_{\tilde{\sigma}_{1}} \stackrel{\eta}{1}_{*}^{*}$ at x_{0}, and thus the definition of ∇ does not depend from the choice of B_{1}.
3. We have still to show that the (∇, A) just constructed is a pseudoconnection. ∇ is additive both in $\tilde{\sigma}$ and η, for ∇^{\prime} is so in $\tilde{\sigma}^{\prime}$ and η^{\prime}. Consider now for an $x_{0}, \tilde{\sigma}$ and for a B_{1} corresponding to these $x_{0}, \tilde{\sigma}$ a correspondence $x \mapsto x_{1}=\Psi^{-1}[\Psi(x)] \cap B_{1}(x \in B)$. Define for an $f \in C^{\infty}(B)$ the functions $f_{1}(x)=f\left(x_{1}\right), f_{2}(x)=f(x)-f_{1}(x)$, and $f^{\prime} \in C^{\infty}\left(B^{\prime}\right)$ as $f^{\prime}=f_{1} \circ \Psi$. Then $\left.f_{2}\right|_{B_{1}}=0$ and $f \tilde{\sigma}_{1}=f_{1} \tilde{\sigma}_{1}+f_{2} \tilde{\sigma}_{1}$. Here $\tilde{\nu}_{1} \equiv f_{1} \tilde{\sigma}_{1}$ is a pullback field, and $f_{2} \tilde{\sigma}_{1}$ is a $\tilde{\nu}_{2}$, for $\left.\left(f_{2} \tilde{\sigma}_{1}\right)\right|_{B_{1}}=0$. In view of (13) and (14)

$$
\nabla_{f \tilde{\sigma}} \eta=\nabla_{f \tilde{\sigma}_{1}} \eta_{1}=\nabla_{\tilde{\nu}_{1}} \eta_{1}+\nabla_{\bar{\nu}_{2}} \eta_{1}=\varphi^{\#}\left(\nabla_{f^{\prime} \tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right)=\varphi^{\#}\left(f^{\prime} \nabla_{\tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right)=f_{1} \nabla_{\tilde{\sigma}_{1}} \eta_{1}
$$

at x_{0}. We may add $f_{2} \nabla_{\tilde{\sigma}_{1}} \eta_{1}$ to the last expression, since $f_{2}\left(x_{0}\right)=0$. Thus we have at $x_{0} \nabla_{f \tilde{\sigma}_{1}} \eta_{1}=f \nabla_{\tilde{\sigma}_{1}} \eta_{1}$ i.e. ∇ is $C^{\infty}(B)$ linear in $\tilde{\sigma}$. Finally $\nabla_{\tilde{\sigma}} f \eta=\nabla_{\tilde{\sigma}_{1}} f \eta_{1}=\nabla_{\tilde{\sigma}_{1}} f_{1} \eta_{1}+\nabla_{\tilde{\sigma}_{1}} f_{2} \eta_{1}$. Here $f_{2} \eta_{1}$ is again a ρ_{2}, and in view of (14) $\nabla_{\tilde{\sigma}_{1}} f_{2} \eta_{1}=0$ at x_{0}. Thus in view of (4) and (13)

$$
\begin{gathered}
\nabla_{\tilde{\sigma}_{1}} f \eta_{1}=\nabla_{\tilde{\sigma}_{1}} f_{1} \eta_{1}=\varphi^{\#}\left(\nabla_{\tilde{\sigma}^{\prime}}^{\prime} f^{\prime} \eta^{\prime}\right)= \\
=\varphi^{\#}\left\{\left[\left(A^{\prime} \circ \tilde{\sigma}^{\prime}\right) f^{\prime}\right] \eta^{\prime}+f^{\prime} \nabla_{\tilde{\sigma}^{\prime}}^{\prime} \eta^{\prime}\right\}=\left[\left(A \circ \tilde{\sigma}_{1}\right) f_{1}\right] \eta_{1}+f_{1} \nabla_{\tilde{\sigma}_{1}} \eta_{1}
\end{gathered}
$$

We can add again at $x_{0} f_{2} \nabla_{\tilde{\sigma}_{1}} \eta_{1}$ and $\left[\left(A \circ \tilde{\sigma}_{1}\right) f_{2}\right] \eta_{1}$ to the right hand side, since $A \circ \tilde{\sigma}_{1}\left(x_{0}\right) \in T_{x_{0}} B_{1},\left.f_{2}\right|_{B_{1}}=0$, and hence $\left.\left[\left(A \circ \tilde{\sigma}_{1}\right) f_{2}\right]\right|_{x_{0}}=0$. Thus $\nabla_{\tilde{\sigma}_{1}} f \eta_{1}=\left[\left(A \circ \tilde{\sigma}_{1}\right) f\right] \eta_{1}+f \nabla_{\tilde{\sigma}_{1}} \eta_{1}$ at x_{0}, i.e. ∇ satisfies (1). These show that (∇, A) is indeed a pseudoconnection.

We have the following
Theorem 2. a) If (∇, A) is the pullback of the pseudoconnection $\left(\nabla^{\prime}, A^{\prime}\right)$, then A must be a pullback of A^{\prime}.
b) If $\left(\nabla^{\prime}, A^{\prime}\right)$ is a pseudoconnection, and A is a pullback of A^{\prime}, then there exists a unique pullback pseudoconnection (∇, A), whose ∇ is determined by (13).

If we want to emphasize that (∇, A) is pullback of a $\left(\nabla^{\prime}, A^{\prime}\right)$ then we write $\nabla^{\prime \#}$ in place of ∇.
4. $\nabla: \mathfrak{X}(B) \times \mathfrak{X}(B) \rightarrow \mathfrak{X}(B),(X, Y) \mapsto \nabla_{X} Y=0$ is clearly no linear connection over B, for it does not satisfy the fourth Koszul axiom $\nabla_{X} f Y=$ $=(X f) Y+f \nabla_{X} Y, f \in C^{\infty}(B)$. But for a pseudoconnection (∇, A), where $A: \tilde{\xi} \rightarrow 0 \in \tau_{B}$ (i.e. A is trivial) $\nabla_{\tilde{\sigma}} \eta=\nabla_{A \circ \tilde{\sigma}}^{L} \eta$ with a linear connection ∇^{L} on B (in this case we say that ∇ is associated to $\nabla^{L}[6]$), we have $\nabla_{\tilde{\sigma}} \eta=0$, $\forall \tilde{\sigma}, \eta$. We want to study a similar case.

Proposition 1. For given $\xi, \tilde{\xi}, \xi^{\prime}, \tilde{\xi}^{\prime}, \varphi, \chi$ and $A: \tilde{\xi} \rightarrow \tau_{B}$ there exist pseudoconnections (∇, A) such that

$$
\begin{equation*}
\nabla_{\chi^{\#}\left(\tilde{\sigma}^{\prime}\right)} \varphi^{\#}\left(\eta^{\prime}\right)=0, \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}, \quad \eta^{\prime} \in \operatorname{Sec} \xi^{\prime} \tag{17}
\end{equation*}
$$

In this case

$$
\begin{equation*}
A \circ \chi^{\#}\left(\tilde{\sigma}^{\prime}\right)(x) \in \operatorname{Ker} d \Psi_{x}, \quad \forall \tilde{\sigma}^{\prime} \in \operatorname{Sec} \tilde{\xi}^{\prime}, \quad x \in B \tag{18}
\end{equation*}
$$

Proof. Define in ξ a ∇^{L} and a homomorphism $T(\tilde{\sigma}, \eta)$ such that

$$
\nabla_{A \circ \tilde{\sigma}_{1}}^{L} \eta_{1}=T\left(\tilde{\sigma}_{1}, \eta_{1}\right)=0
$$

Then

$$
\nabla_{\tilde{\sigma}} \eta=\nabla_{A \circ \tilde{\sigma}}^{L} \eta+T(\tilde{\sigma}, \eta)
$$

satisfies (17), and (∇, A) is a pseudoconnection. Definition of the linear connection ∇^{L} and of the homomorphism T for any other $\tilde{\sigma}$ and η may be arbitrary. Thus (∇, A) need not be an associated pseudoconnection. For a pseudoconnection (∇, A) we have

$$
\nabla_{\tilde{\sigma}_{1}} f_{1} \eta_{1}=\left[\left(A \circ \tilde{\sigma}_{1}\right) f_{1}\right] \eta_{1}+f_{1} \nabla_{\tilde{\sigma}_{1}} \eta_{1}, \quad \forall f_{1}, \eta_{1} .
$$

From this and (17) we get $\left(A \circ \tilde{\sigma}_{1}\right) f_{1}=0, \forall f_{1}$. According to the derivation of f_{1} from an $f \in C^{\infty}(B) f_{1}$ is constant on every $\Psi^{-1}\left[x^{\prime}\right]$, otherwise it can be arbitrary. So $X \in T_{x} B$ is tangent to $\Psi^{-1}[\Psi(x)]$ iff $X f_{1}=0, \forall f_{1}$. Hence $A \circ \tilde{\sigma}_{1}$ must be such an X, i.e. $A \circ \tilde{\sigma}_{1}(x) \in \operatorname{Ker} d \Psi_{x}$. Q.E.D.
(18) is obviously a weaker condition than $A: \tilde{\xi} \rightarrow 0$. Hence, in case of Ker $d \Psi_{x} \neq 0$, (17) may be satisfied even if A is not trivial.

§4. Induced vector bundle Finsler connections

1. M. Matsumoto [7] (see also P. Dombrowski [2]) considers a Finsler connection on B as a pair $(\mathcal{H}, \bar{\nabla})$ of a horizontal map \mathcal{H} to $T T B$ and of a linear connection $\bar{\nabla}$ in the vertical subbundle $V \tau_{B}$ of the tangent bundle τ_{B}. He induces a Finsler connection $(\mathcal{H}, \bar{\nabla})$ from a linear connection ∇ of \boldsymbol{B} (from a single data), and calls it the ∇-linear Finsler connection. He also extends a Finsler connection ($\mathcal{H}, \bar{\nabla}$) to a linear connection ∇^{\prime} on $T M$ (in $T T M$). In this paragraph we consider vector bundle Finsler connection in the sense of R. Miron [8], and by making use of the just established Theorem 2 we derive an induced vector bundle Finsler connection from three data (sources). In a special case this gives the extended Finsler connection ∇^{\prime} of Matsumoto.

Let $\xi=\left(E, \pi, B, V^{r}\right)$ be a vector bundle, $\mathcal{H}: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}$ a horizontal map, $H \xi=\left(H E, \pi_{E}, E, V^{n}\right)$ the horizontal subbundle, $V \xi=\left(V E, \pi_{E}, E, V^{r}\right)$ the vertical subbundle of $\tau_{\dot{E}} ; h$ resp. v the horizontal, resp. vertical lifts, as in $\S 1$. Consider four pseudoconnections

$$
\left\{\begin{array}{c}
\left(\nabla^{1}, H\right) \quad \nabla^{1}: \mathfrak{X}(E) \times \mathfrak{X}_{H}(E) \rightarrow \mathfrak{X}_{H}(E) \tag{19}\\
\left(\nabla^{2}, H\right) \quad \nabla^{2}: \mathfrak{X}(E) \times \mathfrak{X}_{V}(E) \rightarrow \mathfrak{X}_{V}(E) \\
\left(\nabla^{3}, V\right) \quad \nabla^{3}: \mathfrak{X}(E) \times \mathfrak{X}_{V}(E) \rightarrow \mathfrak{X}_{V}(E) \\
\left(\nabla^{4}, V\right) \nabla^{4}: \mathfrak{X}(E) \times \mathfrak{X}_{H}(E) \rightarrow \mathfrak{X}_{H}(E) \\
\mathfrak{X}_{V}(E) \equiv \operatorname{Sec} V \xi, \quad \mathfrak{X}_{H}(E) \equiv \operatorname{Sec} H \xi .
\end{array}\right.
$$

As well known, a linear connection $\nabla: \mathfrak{X}(E) \times \mathfrak{X}(E) \rightarrow \mathfrak{X}(E)$ is a Finsler connection in the sense of Miron [8] w.r.t. \mathcal{H} if $\nabla_{X} H Y$ is always a horizontal and $\nabla_{X} V Y$ a vertical vector. It is easy to see that any such Finsler connection can be represented in the form

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X}^{1} H Y+\nabla_{X}^{2} V Y+\nabla_{X}^{3} V Y+\nabla_{X}^{4} H Y \tag{20}
\end{equation*}
$$

where $\nabla^{1}, \ldots, \nabla^{4}$ are pseudoconnections of type (19), and conversely, any sum as on the right hand side of (20) is a Finsler connection w.r.t \mathcal{H} in the sense of Miron. This result formulated in another way can be found in [11].

Theorem 3. Consider a tangent bundle τ_{B} with a linear connection

$$
\nabla^{T}: \mathfrak{X}(B) \times \mathfrak{X}(B) \rightarrow \mathfrak{X}(B),
$$

a vector bundle $\xi=\left(E, \pi, B, V^{r}\right)$ with a linear connection

$$
\nabla^{L}: \mathfrak{X}(B) \times \operatorname{Sec} \xi \rightarrow \operatorname{Sec} \xi
$$

on it, and a horizontal map

$$
\mathcal{H}: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}
$$

Then there exists a unique Finsler connection $\nabla: \mathfrak{X}(E) \times \mathfrak{X}(E) \rightarrow \mathfrak{X}(E)$ w.r.t \mathcal{H} such that

$$
\begin{array}{ll}
\text { a) } & \nabla_{X^{h}} Y^{h}=\left(\nabla_{X}^{T} Y\right)^{h} \\
\text { b) } & \nabla_{X^{h}} \eta^{v}=\left(\nabla_{X}^{L} \eta\right)^{v} \quad X, Y \in \mathfrak{X}(B) \\
\text { c), d) } & \nabla_{\sigma^{v}} Y^{h}=\nabla_{\sigma^{v}} \eta^{v}=0 \tag{21}
\end{array} \quad \sigma, \eta \in \operatorname{Sec} \xi .
$$

Proof. Let us specialize the objects $\xi, \tilde{\xi}, \xi^{\prime}, \tilde{\xi}^{\prime}, \varphi, \chi, \nabla^{\prime}, A^{\prime}$ and A playing a role in the considerations of $\S 3$ in the four case a) to d) as

	ξ	$\tilde{\xi}$	ξ^{\prime}	$\tilde{\xi}^{\prime}$	φ	$\varphi^{\#}$
a)	$H \xi$	$H \xi$	τ_{B}	τ_{B}	π_{*}	h
b)	$V \xi$	$H \xi$	ξ	τ_{B}	α	v
c)	$V \xi$	$V \xi$	ξ	ξ	α	v
d)	$H \xi$	$V \xi$	τ_{B}	ξ	π_{*}	h
	χ	$\chi^{\#}$	∇^{\prime}	A^{\prime}	A	∇
a)	π_{*}	h	∇^{T}	id	H	$\nabla^{1 \#}$
b)	π_{*}	h	∇^{L}	id	H	$\nabla^{2 \#}$
c)	α	v	-	-	V	$\tilde{\nabla}^{3}$
d)	α	v	-	-	V	$\tilde{\nabla}^{4}$

(the roles of B, B^{\prime} and Ψ are assumed in each case by E, B and π). Then in cases a), b) according to Theorem 2, and in cases c), d) according to Proposition 1, there exist unique pullback pseudoconnections $\left(\nabla^{1 \#}, H\right),\left(\nabla^{2 \#}, H\right)$ and pseudoconnections $\left(\tilde{\nabla}^{3}, V\right)$ and $\left(\tilde{\nabla}^{4}, V\right)$ with the following properties:
a) $\nabla^{1 \#}: \mathfrak{X}_{H}(E) \times \mathfrak{X}_{H}(E) \rightarrow \mathfrak{X}_{H}(E) \quad \nabla_{X^{h}}^{1 \#} Y^{h}=\left(\nabla_{X}^{T} Y\right)^{h}$
b) $\quad \nabla^{2 \#}: \mathfrak{X}_{H}(E) \times \mathfrak{X}_{V}(E) \rightarrow \mathfrak{X}_{V}(E) \quad \nabla_{X^{h}}^{2 \#} \eta^{v}=\left(\nabla_{X}^{L} \eta\right)^{v}$
c) $\quad \tilde{\nabla}^{3} \quad: \mathfrak{X}_{V}(E) \times \mathfrak{X}_{V}(E) \rightarrow \mathfrak{X}_{V}(E) \quad \tilde{\nabla}_{\sigma}{ }^{3} \eta^{v}=0$
d) $\quad \tilde{\nabla}^{4} \quad: \mathfrak{X}_{V}(E) \times \mathfrak{X}_{H}(E) \rightarrow \mathfrak{X}_{H}(E) \quad \tilde{\nabla}_{\sigma^{v}}^{4} Y^{h}=0$.

Hence

$$
\begin{gathered}
\nabla_{U}^{1} H Z=\nabla_{H U}^{1 \#} H Z, \quad \nabla_{U}^{2} V Z=\nabla_{H U}^{2 \#} V Z, \\
\nabla_{U}^{3} V Z=\tilde{\nabla}_{V U}^{3} V Z, \quad \nabla_{U}^{4} H Z=\tilde{\nabla}_{V U}^{4} H Z, \quad U, Z \in \mathfrak{X}(E)
\end{gathered}
$$

together with the mapping H, or V are four pseudoconnections as those of (19). Thus the sum (20) formed from these last pseudoconnections yields a Finsler connection

$$
\begin{equation*}
\nabla_{U} Z=\nabla_{H U}^{1} H Z+\nabla_{H U}^{2} V Z+\nabla_{V U}^{3} V Z+\nabla_{V U}^{4} H Z, \quad U, Z \in \mathfrak{X}(E) \tag{23}
\end{equation*}
$$

Making use of the listed properties of the pseudoconnections (22) one can easily check that the constructed Finsler connection (23) satisfies the required properties (21) of the theorem.

We show still the uniqueness of this Finsler connection ∇. Suppose namely that ∇^{\prime} is another Finsler connection with properties (21). Then the difference tensor $D(U, Z)=\nabla_{U} Z-\nabla_{U}^{\prime} Z$ vanishes for any vertical and horizontal lifts: $D\left(X^{h}, Y^{h}\right)=D\left(X^{h}, \sigma^{v}\right)=D\left(\eta^{v}, Y^{h}\right)=D\left(\sigma^{v}, \eta^{v}\right)=0$. Hence $D \equiv 0$, and $\nabla_{X} Y=\nabla_{X}^{\prime} Y$. Q.E.D.

The problem of Theorem 3 is dealt with by different method also in [11].
The Finsler connection ∇ defined by (23) is deduced from three independent data $\nabla^{T}, \nabla^{L}, \mathcal{H}$ as given at the beginning of our theorem, and thus this ∇ is a Finsler connection induced from three sources. It can be denoted by $\nabla=\left(\nabla^{T}, \nabla^{L}, \mathcal{H}\right)$. Assuming that \mathcal{H} is the horizontal mapping \mathcal{H}^{L} of ∇^{L}, or equivalently that \mathcal{H} satisfies the homogeneity condition (see [9] p.311) and hence $\mathcal{H}=\mathcal{H}^{L} \Longleftrightarrow \nabla^{L}$, we obtain a Finsler connection $\left(\nabla^{T}, \mathcal{H}^{L}\right)$ induced by two sources. If $\xi=\tau_{B}, \nabla^{T}=\nabla^{L}$ and $\mathcal{H}=\mathcal{H}^{L} \Longleftrightarrow \nabla^{L}$, then $\left(\nabla^{T}, \nabla^{L}, \mathcal{H}\right)$ is the extended Finsler connection ∇^{\prime} of a ∇-linear Finsler connection $(\mathcal{H}, \bar{\nabla})$ of Matsumoto. Thus $\left(\nabla^{T}, \nabla^{L}, \mathcal{H}\right)$ can be conidered a generalization of this ∇^{\prime} to a vector bundle Finsler connection.

A simple local calculation gives the
Proposition 2. In an induced Finsler connection $\nabla=\left(\nabla^{T}, \mathcal{H}\right)$

$$
\nabla_{X^{h}} \eta^{v}=\left[X^{h}, \eta^{v}\right] .
$$

Proof. It is easy to see that $(\stackrel{*}{\nabla}, h)$, where

$$
\stackrel{*}{\nabla}: \mathfrak{X}_{H}(E) \times \mathfrak{X}_{V}(E) \rightarrow \mathfrak{X}_{V}(E), \quad\left(X^{h}, \eta^{v}\right) \mapsto V\left[X^{h}, \eta^{v}\right],
$$

is a pseudoconnection. We want to show that

$$
\stackrel{*}{\nabla}_{X^{h}} \eta^{v}=\left(\nabla_{X}^{L} \eta\right)^{v},
$$

where ∇^{L} is the linear connection determined by \mathcal{H}^{L}.
Let $\left(x^{i}, y^{\mu}\right), i=1,2, \ldots, n ; \mu, \nu=1,2, \ldots, r=\operatorname{rank} \xi$ be a local coordinate system on $\pi^{-1}(U), U \subset B$, and $\left.e_{\mu} \in \operatorname{Sec} \xi\right|_{U}$ a base in each $\pi^{-1}(x)$, $x \in U$. Let $N_{i}^{\mu}(x, y)$ be the local components of \mathcal{H}^{L}, i.e.

$$
\left(\frac{\partial}{\partial x^{i}}(x)\right)^{h}=\frac{\partial}{\partial x^{i}}(x, y)-N_{i}^{\mu} \frac{\partial}{\partial y^{\mu}}(x, y),
$$

and $\Gamma_{i \nu}^{\mu}$ the local components of ∇^{L}. Then

$$
\Gamma_{i \nu}^{\mu}=\frac{\partial N_{i}^{\mu}}{\partial y^{\nu}} .
$$

For $X \in \mathfrak{X}(B)$

$$
\left.X\right|_{U}=X^{i} \frac{\partial}{\partial x^{i}},\left.\quad X^{h}\right|_{\pi^{-1(U)}}=\left(X^{i} \circ \pi\right)\left(\frac{\partial}{\partial x^{i}}-N_{i}^{\mu} \frac{\partial}{\partial y^{\mu}}\right),
$$

for $\eta \in \operatorname{Sec} \xi,\left.\eta\right|_{U}=\eta^{\mu} e_{\mu}, \eta^{v}=\left(\eta^{\mu} \circ \pi\right) \frac{\partial}{\partial y^{\mu}}$, and

$$
\left[X^{h}, \eta^{v}\right]=\left[\left(X^{i} \circ \pi\right)\left(\frac{\partial}{\partial x^{i}}-N_{i}^{\mu} \frac{\partial}{\partial y^{\mu}}\right),\left(\eta^{\mu} \circ \pi\right) \frac{\partial}{\partial y^{\mu}}\right] .
$$

Computing this and reforming the result we obtain

$$
\begin{aligned}
{\left[X^{h}, \eta^{v}\right]=} & \left(X^{i} \circ \pi\right) \frac{\partial\left(y^{\mu} \circ \pi\right)}{\partial x^{i}} \frac{\partial}{\partial y^{\mu}}+\left(X_{i} \circ \pi\right)\left(\eta^{v} \circ \pi\right) \Gamma_{i \nu}^{\mu} \frac{\partial}{\partial y^{\mu}}= \\
& =\left(X^{i} \frac{\partial y^{\mu}}{\partial x^{i}} e_{\mu}+X^{i} \eta^{\nu} \Gamma_{i \nu}^{\mu} e_{\mu}\right)^{v}=\left(\nabla_{X}^{L} \eta\right)^{v},
\end{aligned}
$$

where ∇^{L} is the linear connection uniquely determined by \mathcal{H}^{L}. The last expression is vertical vector. Thus

$$
\begin{equation*}
\stackrel{*}{\nabla}_{X^{h}} \eta^{v}=V\left[X^{h}, \eta^{v}\right]=\left[X^{h}, \eta^{v}\right]=\left(\nabla_{X}^{L} \eta\right)^{v} . \tag{24}
\end{equation*}
$$

The induced Finsler connection $\nabla=\left(\nabla^{T}, \mathcal{H}^{L}\right)$ of our Proposition is clearly the same as $\nabla=\left(\nabla^{T}, \nabla^{L}, \mathcal{H}^{L}\right)$ of Theorem 3 , for ∇^{T} and \mathcal{H}^{L} are the same in both connections and ∇^{L} is determined by \mathcal{H}^{L}. Hence we can apply the statement $(21, \mathrm{~b})$ of Theorem 3 which together with (24) yields the statement of the Proposition. Q.E.D.

§5. Yano-Ledger connection on vector bundles

Starting with a linear connection on a manifold M, K. Yano and A. J. Ledger [13] constructed a unique torsion-free linear connection on $T M$ satisfying certain simple conditions. We perform the same replacing $T M$ by the total space E of a vector bundle ξ, and replacing M by the base space B of ξ. Thus our result gives back Yano and Ledger's theorem, provided $\xi=\tau_{B}$. Moreover, the resulting connection turns out to be an induced vector bundle Finsler connection in case if it is torsion-free, and its symmetrisation otherwise. Our proof is completely different from that of Yano and Ledger's theorem, not only for the difference between the tangent bundle used by Yano and Ledger, and the vector bundle we have considered, but rather because we arrive to our result on a quite different way.

Theorem 4. Let $\nabla^{T}: \mathfrak{X}(B) \times \mathfrak{X}(B) \rightarrow \mathfrak{X}(B)$ be a linear connection on the base space B of a vector bundle $\xi=\left(E, \pi, B, V^{r}\right)$, and let

$$
\mathcal{H}: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}
$$

be a fixed horizontal map satisfying the homogeneity condition [9]. Then there is exactly one torsion-free linear connection

$$
\stackrel{\circ}{\nabla}: \mathfrak{X}(E) \times \mathfrak{X}(E) \rightarrow \mathfrak{X}(E)
$$

satisfying the conditions

$$
\begin{gather*}
\stackrel{\circ}{\nabla}_{\sigma^{v}} \eta^{v}=0, \tag{25}\\
\stackrel{\circ}{\nabla}_{\sigma^{v}} Y^{h}=0, \tag{26}\\
\stackrel{\circ}{\nabla}_{X^{h}} Y^{h}=\left(\nabla_{X}^{T} Y-\frac{1}{2} \operatorname{Tor}(X, Y)\right)^{h}+\frac{1}{2} V\left[X^{h}, Y^{h}\right] \tag{27}
\end{gather*}
$$

where $X, Y \in \mathfrak{X}(B) ; \sigma, \eta \in \operatorname{Sec} \xi ;$ and $\stackrel{T}{T}$ Tor denotes the torsion of ∇^{T}.
Proof. Let $\nabla=\left(\nabla^{T}, \mathcal{H}\right)$ be the Finsler connection induced by ∇^{T} and \mathcal{H} (see §4), and let

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{V} Z=\nabla_{V} Z-\frac{1}{2} \operatorname{\nabla } \operatorname{Tor}(V, Z), \quad V, Z \in \mathfrak{X}(E) \tag{28}
\end{equation*}
$$

Then

$$
\stackrel{\circ}{\nabla}_{V} Z=\frac{1}{2}\left(\nabla_{V} Z+\nabla_{Z} V+[V, Z]\right)
$$

and $\stackrel{\circ}{\nabla}$ satisfies (25)-(27). Indeed, in view of (21,d)

$$
\stackrel{\circ}{\nabla}_{\sigma^{v}} \eta^{v}=\frac{1}{2}\left(\nabla_{\sigma^{v}} \eta^{v}+\nabla_{\eta^{v}} \sigma^{v}+\left[\sigma^{v}, \eta^{v}\right]\right)=\frac{1}{2}\left[\sigma^{v}, \eta^{v}\right] .
$$

Vanishing of this bracket is a known fact (see (iii) at the end of §1.) Hence $\stackrel{\circ}{\nabla}_{\sigma^{v}} \eta^{v}=0$. Again, in view of $(21, \mathrm{c})$ and Proposition 2

$$
\stackrel{\circ}{\nabla}_{\sigma^{v}} Y^{h}=\frac{1}{2}\left(\nabla_{Y^{h}} \sigma^{v}+\left[\sigma^{v}, Y^{h}\right]\right)=\frac{1}{2}\left(\left[Y^{h}, \sigma^{v}\right]+\left[\sigma^{v}, Y^{h}\right]\right)=0 .
$$

Finally in view of $(21, a)$

$$
\stackrel{\circ}{\nabla}_{X^{h}} Y^{h}=\frac{1}{2}\left\{\left(\nabla_{X}^{T} Y\right)^{h}+\left(\nabla_{Y}^{T} X\right)^{h}+\left[X^{h}, Y^{h}\right]\right\} .
$$

Splitting the last term in a vertical and a horizontal part, and taking into account that $H\left[X^{h}, Y^{h}\right]=[X, Y]^{h}$, since X^{h} and Y^{h} are π-related to X and Y, we obtain

$$
\begin{aligned}
\stackrel{\circ}{\nabla}_{X^{h}} Y^{h} & =\left\{\frac{1}{2} \nabla_{X}^{T} Y+\frac{1}{2} \nabla_{Y}^{T} X+\frac{1}{2}[X, Y]\right\}^{h}+\frac{1}{2} V\left[X^{h}, Y^{h}\right]= \\
& =\left(\nabla_{X}^{T} Y-\frac{1}{2} \underset{\operatorname{Tor}}{T}(X, Y)\right)^{h}+\frac{1}{2} V\left[X^{h}, Y^{h}\right]
\end{aligned}
$$

These prove the existence part of our theorem. A short and straightforward calculation using (28) shows that $\stackrel{\circ}{\nabla}$ is torsion-free.
 from (26) we obtain

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{Y^{h}} \sigma^{v}=\stackrel{\circ}{\nabla}_{\sigma^{v}} Y^{h}+\left[Y^{h}, \sigma^{v}\right]=\left[Y^{h}, \sigma^{v}\right] \tag{29}
\end{equation*}
$$

Now suppose that $\stackrel{*}{\nabla}$ is another torsion-free linear connection satisfying (25)(27). Then it satisfies (29) too. Hence the difference tensor

$$
D(U, V)=\stackrel{\circ}{\nabla}_{U} Z-\stackrel{*}{\nabla}_{U} Z
$$

vanishes for any horizontal and vertical lifts:

$$
D\left(X^{\boldsymbol{h}}, Y^{\boldsymbol{h}}\right)=D\left(X^{\boldsymbol{h}}, \sigma^{v}\right)=D\left(\sigma^{v}, Y^{\boldsymbol{h}}\right)=D\left(\sigma^{v}, \eta^{v}\right)=0
$$

and thus $D=0$. Q.E.D.
In case $\xi=\tau_{B}, \nabla^{T}=\nabla^{L}, \stackrel{\circ}{\nabla}$ is the Yano-Ledger connection. Thus $\stackrel{\circ}{\nabla}$ can be called a Yano-Ledger connection on vector bundles.

Furthermore, from Proposition 2 and (24) we obtain
Corollary 1. $\stackrel{\circ}{\nabla}_{X}{ }^{h} \eta^{v}=\left(\nabla_{X}^{L} \eta\right)^{v}$.
Since a horizontal map \mathcal{H} satisfying the homogeneity condition determines a unique linear connection ∇^{L}, and conversely, so we may denote it by \mathcal{H}^{L}, and we obtain the following

Theorem 5. If the induced Finsler connection $\nabla=\left(\nabla^{T}, \nabla^{L}\right)$ has a torsion $\stackrel{\nabla}{\mathrm{T}} \mathrm{r}$, then $\nabla-\frac{1}{2} \stackrel{\nabla}{\mathrm{~T}}$ or is the Yano-Ledger connection induced by the same ∇^{T} and ∇^{L} (or equivalently \mathcal{H}^{L}). If the induced Finsler connection $\nabla=\left(\nabla^{T}, \nabla^{L}\right)$ is torsion-free, then $\nabla=\left(\nabla^{T}, \nabla^{L}\right)$ coincides with the YanoLedger connection $\stackrel{\circ}{\nabla}\left(\nabla^{T}, \mathcal{H}^{L}\right)$.

This means a generalization of Matsumoto's extended connection ∇^{\prime} (i.e. of the ∇-linear connection $(\mathcal{H}, \bar{\nabla})$ for $T M$; [7]) to vector bundle Finsler connection and to vector bundle Yano-Ledger connection.

§6. Metrical Yano-Ledger connection on vector bundles

Let g be a Riemannian metric in τ_{B} (i.e. on B), \hat{g} a Riemannian metric in $\xi=\left(E, \pi, B, V^{r}\right)$, and $\mathcal{H}: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}$ a horizontal map. Then

$$
\begin{gathered}
G_{p}\left(U_{p}, Z_{p}\right)=g_{\pi(p)}\left(\pi_{*} U_{p}, \pi_{*} Z_{p}\right)+\hat{g}_{\pi(p)}\left(\alpha\left(V U_{p}\right), \alpha\left(V Z_{p}\right)\right), \\
U, Z \in \mathfrak{X}(E), p \in E
\end{gathered}
$$

is a Riemannian metric in τ_{E} (i.e. on E; [4]). Clearly

$$
\left\{\begin{array}{l}
G\left(X^{h}, Y^{h}\right)=g(X, Y) \circ \pi \tag{30}\\
G\left(\sigma^{v}, \eta^{v}\right)=\hat{g}(\sigma, \eta) \circ \pi \\
G\left(X^{h}, \sigma^{v}\right)=0, X, Y \in \mathfrak{X}(B) ; \sigma, \eta \in \operatorname{Sec} \xi
\end{array}\right.
$$

Let ∇^{T} be the Levi-Civita connection on $(B, g), \nabla^{L}$ a metrical linear connection of (ξ, \hat{g}), and ∇ the Levi-Civita connection on (E, G). Let us derive from ∇^{T} and ∇^{L} the Yano-Ledger connection $\stackrel{\circ}{\nabla}$ in τ_{E}. One can put the question whether or not this Yano-Ledger connection is the Levi-Civita connection in τ_{E}. The answer depends on the properties of ∇^{L} and \hat{g}.

Theorem 6. The Yano-Ledger connection $\stackrel{\circ}{\nabla}$ (induced by ∇^{T} and ∇^{L}) in τ_{E} is the Levi-Civita connection in τ_{E} iff the Riemann-Christoffel curvature tensor $R(\sigma, \eta, X, Y):=\hat{g}(\hat{R}(X, Y) \eta, \sigma), \sigma, \eta \in \operatorname{Sec} \xi ; X, Y \in \mathfrak{X}(B)$ of ∇^{L} vanishes (\hat{R} is the curvature map of ∇^{L}).

Proof. We shall first compute $\stackrel{\circ}{\nabla} G$ and then our theorem easily follows. Every vector field $U, Z, W \in \mathfrak{X}(E)$ can be written as a finite $C^{\infty}(E)$-linear combination of vertical and horizontal lifts. Therefore it is sufficient to compute $(\stackrel{\circ}{\nabla} G)(U, Z, W)$ for vertical and horizontal lifts. Using the explantation

$$
(\nabla G)(U, Z, W) \equiv \nabla_{U} G(Z, W)-G\left(\nabla_{U} Z, W\right)-G\left(Z, \nabla_{U} W\right)
$$

properties (30) of G, and properties (25)-(27), (29) of $\stackrel{\circ}{\nabla}$ we obtain

$$
\begin{gathered}
(\stackrel{\circ}{\nabla} G)\left(\kappa^{v}, \sigma^{v}, \eta^{v}\right)=\kappa^{v} G\left(\sigma^{v}, \eta^{v}\right)=\kappa^{v}(\hat{g}(\sigma, \eta) \circ \pi)=0 \\
(\stackrel{\circ}{\nabla} G)\left(\sigma^{v}, X^{h}, Y^{h}\right)=\sigma^{v} G\left(X^{h}, Y^{h}\right)=\sigma^{v}(g(X, Y) \circ \pi)=0 \\
(\stackrel{\circ}{\nabla} G)\left(\sigma^{v}, \eta^{v}, X^{h}\right)=0
\end{gathered}
$$

Making use also of Corollary 1 we get

$$
\begin{gathered}
(\stackrel{\circ}{\nabla} G)\left(X^{h}, \sigma^{v}, \eta^{v}\right)= \\
=X^{h} G\left(\sigma^{v}, \eta^{v}\right)-G\left(\stackrel{\circ}{\nabla}_{X^{h}} \sigma^{v}, \eta^{v}\right)-G\left(\sigma^{v}, \stackrel{\circ}{\nabla}_{X^{h}} \eta^{v}\right)= \\
=X^{h}\left(\hat{g}\left(\sigma^{v}, \eta^{v}\right) \circ \pi\right)-G\left(\left(\nabla_{X}^{L} \sigma\right)^{v}, \eta^{v}\right)-G\left(\sigma^{v},\left(\nabla_{X}^{L} \eta\right)^{v}\right)= \\
=X^{h}(\hat{g}(\sigma, \eta) \circ \pi)-\hat{g}\left(\nabla_{X}^{L} \sigma, \eta\right) \circ \pi-\hat{g}\left(\sigma, \nabla_{X}^{L} \eta\right) \circ \pi= \\
=X^{h}(\hat{g}(\sigma, \eta) \circ \pi)-(X \hat{g}(\sigma, \eta)) \circ \pi=0, \\
(\stackrel{\circ}{\nabla} G)\left(X^{h}, Y^{h}, Z^{h}\right)=X^{h} G\left(Y^{h}, Z^{h}\right)-G\left(\stackrel{\circ}{\nabla}_{X^{h}} Y^{h}, Z^{h}\right)-G\left(Y^{h}, \stackrel{\circ}{\nabla}_{X^{h}} Z^{h}\right)= \\
=X^{h}(g(X, Y) \circ \pi)-g\left(\nabla_{X}^{T} Y, Z\right) \circ \pi-g\left(Y, \nabla_{X}^{T} Z\right) \circ \pi= \\
=X^{h}(g(X, Y) \circ \pi)-(X g(Y, Z)) \circ \pi=0
\end{gathered}
$$

and

$$
\begin{aligned}
& \left(\stackrel{\circ}{\nabla}_{\nabla}^{G}\right)\left(X^{h}, \sigma^{v}, Y^{h}\right)=-G\left(\stackrel{\circ}{\nabla}_{X^{h}} \sigma^{v}, Y^{h}\right)-G\left(\sigma^{v}, \stackrel{\circ}{\nabla}_{X^{h}} Y^{h}\right)= \\
& \quad=-G\left(\sigma^{v}, \frac{1}{2} V\left[X^{h}, Y^{h}\right]\right)=\frac{1}{2} \hat{g}\left(\sigma^{v},-\alpha \circ V\left[X^{h}, Y^{h}\right]\right)
\end{aligned}
$$

J. Szilasi [10] has shown that $\alpha \circ V\left[X^{h}, Y^{h}\right] \circ \rho=\tilde{R}(X, Y)(\rho), \rho \in \operatorname{Sec} \xi$. Hence

$$
\begin{gathered}
(\stackrel{\circ}{\nabla} G)\left(X^{h}, \sigma^{v} Y^{h}\right) \circ \rho= \\
=-\frac{1}{2} \hat{g}\left(\sigma, \alpha \circ V\left[X^{h}, Y^{h}\right] \circ \rho\right)=\frac{1}{2} \hat{g}(\sigma, \tilde{R}(X, Y)(\rho))=R(\sigma, \rho, X, Y)
\end{gathered}
$$

Thus $R=0 \Longleftrightarrow \stackrel{\circ}{\nabla} G=0$, i.e. $\stackrel{\circ}{\nabla}$ is the Levi-Civita connection for (E, G). Q.E.D.

As well known, the Nijenhuis torsion of \mathcal{H} is

$$
N_{\mathcal{H}}(X, Y)=[H X, H Y]+H[X, Y]-H[H X, Y]-H[X, H Y]
$$

Hence

$$
N_{\mathcal{H}}\left(X^{h}, Y^{h}\right)=\left[X^{h}, Y^{h}\right]-H\left[X^{h}, Y^{h}\right]=V\left[X^{h}, Y^{h}\right]
$$

Thus we also get the
Corollary 2. The Yano-Ledger connection in τ_{E} is the Levi-Civita connection on (E, G) iff the Nijenhuis torsion of \mathcal{H} vanishes, i.e. iff $V\left[X^{h}, Y^{h}\right]=0$.

References

[1] J. Dieudonné, Treatise on Analysis, Volume 3, Academic Press (New York, 1972).
[2] P. Dombrowski, \# 3469. MR. 37 .
[3] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.
[4] T. V. Duc, Sur la geometrie differentielle des fibres vectoriels, Kodai Math. Sem. Rep., 26 (1975), 349-408.
[5] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Volume I, II, Academic Press (New York, 1972, 1973).
[6] Z. Kovács, Some properties of associated pseudoconnections, Per. Math. Hung., to appear.
[7] M. Matsumoto, Connections, metrics and almost complex structures of tangent bundles, J. Math. Kyoto Univ., 5 (1965-1966), 251-278.
[8] R. Miron, Vector bundles Finsler geometry, in Proc. Sem. on Finsler Spaces (Brasov, 1983), pp. 147-188.
[9] J. Szilasi, Horizontal maps with homogeneity conditions, Rend. Palermo, Suppl., 3 (1984), 307-320.
[10] J. Szilasi, On the curvature and integrability of horizontal maps, Acta Math. Hung., 46 (1985), 183-188.
[11] J. Szilasi and Z. Kovács, Pseudoconnections and Finsler type connections, in Coll. Math. Soc. J. Bolyai, 46 (1984), pp. 1165-1184.
[12] Y. Wong, Linear connections and quasi connections on a differentiable manifold, Tohoku Math. J., 14 (1962), 48-63.
[13] K. Yano and A. J. Ledger, Linear connections on tangent bundles, J. London Math. Soc., 39 (1964), 495-500.
(Received February 2, 1990)

[^17]
WEIGHTED L^{p} CONVERGENCE OF HERMITE INTERPOLATION OF HIGHER ORDER

P. VÉRTESI* (Budapest) and Y. XU (Austin)

1. Introduction

Let n be a positive integer, and let

$$
\begin{equation*}
-1<x_{n n}(w)<x_{n-1, n}(w)<\cdots<x_{1 n}(w)<1 \tag{1.1}
\end{equation*}
$$

be the zeros of the Jacobi polynomials $p_{n}(w, x)$, which are orthonormal with respect to the Jacobi weight w defined by

$$
w(x)= \begin{cases}(1-x)^{\alpha}(1+x)^{\beta}, & |x| \leqq 1, \tag{1.2}\\ 0, & |x|>1,\end{cases}
$$

where $\alpha>-1$ and $\beta>-1$. For every integer $m \geqq 1$, we consider the Hermite interpolation operator $H_{n m}(w, f)$ which is defined to be the unique polynomial of degree at most $m n-1$ satisfying

$$
\begin{equation*}
H_{n m}^{(j)}\left(w, f, x_{k n}\right)=f^{(j)}\left(x_{k n}\right), \quad 1 \leqq k \leqq n, \quad 0 \leqq j \leqq m-1, \tag{1.3}
\end{equation*}
$$

where $x_{k n}=x_{k n}(w)$. If w is a nonnegative measurable function and $1 \leqq p<$ $<+\infty$ then weighted L^{p} norm is defined by

$$
\begin{equation*}
\|f\|_{u, p}:=\left(\int_{-1}^{1}|f(t)|^{p} u(t) d t\right)^{1 / p} . \tag{1.4}
\end{equation*}
$$

For $0<p<1$, of course (1.4) is not a norm anymore, but we keep this notation for convenience. $\|\cdot\|_{\infty}$ is the usual uniform norm on $[-1,1]$.

The main purpose of this paper is to investigate the convergence properties of $H_{n m}(w, f)$ using the norm (1.4). The interesting and important problem is to determine necessary and sufficient conditions for convergence and for the rate of convergence as well. For $m=1$ (Lagrange interpolating polynomial), this problem has a long history. It is P. Nevai who proves the final results for even more general weight functions. For results and history,

[^18]we refer to [5], [6] and the references given there. For $m=2$, the closely related Hermite-Fejér interpolating polynomial has been studied by P. Nevai and P. Vértesi [8], P. Vértesi and Y. Xu [14], and A. Máté and P. Nevai [3]. The $H_{n 2}(w, f)$ itself is investigated in A. Máté, P. Nevai and Y. Xu [4], where the first order derivative of $H_{n 2}(w, f)$ is considered as well. For higher order cases ($m>2$), only Hermite-Fejér interpolating polynomials have been considered ([10], [12], [13]). In the following, we will present several theorems concerning the necessary and sufficient conditions for the convergence and the rate of convergence of $H_{n m}(w, f)$ and its derivatives. Unlike the cases of Hermite-Fejér interpolating polynomials, $H_{n m}(w, f)$ are projectors, therefore we only need to prove norm inequalities for $H_{n m}(w, f)$ and its derivatives. We list these inequalities as separate theorems.

Throughout this paper, we shall adopt the following convention. The letters c, c_{1}, c_{2}, \ldots will denote positive constants being independent of variables and indices, unless otherwise indicated. Their value may be different at different occurrences, even within a single formula. $A \sim B$ will mean that $c_{1} A \leqq B \leqq c_{2} A$. We reserve the letter v for $\sqrt{1-x^{2}}$, that is

$$
\begin{equation*}
v(x)=\sqrt{1-x^{2}} \tag{1.5}
\end{equation*}
$$

We define w_{m} by

$$
\begin{equation*}
w_{m}(x)=\left(w(x) \sqrt{1-x^{2}}\right)^{m / 2} \tag{1.6}
\end{equation*}
$$

We also define $\left\|f^{(t)}\right\|_{*}$ by

$$
\begin{equation*}
\left\|f^{(t)}\right\|_{*}=\max _{1 \leqq k \leqq n}\left|v\left(x_{k n}\right)^{t} f^{(t)}\left(x_{k n}\right)\right| \tag{1.7}
\end{equation*}
$$

and

$$
E_{n}(f)=\min \left\|f-P_{n}\right\|_{\infty}
$$

where the minimum is taken over all polynomials of degree at most n. Finally we define

$$
\begin{equation*}
A_{m}=-\frac{1}{2}-\frac{2}{m}, \quad C_{m}=-\frac{1}{2}-\frac{1}{m} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma=\max \{\alpha, \beta\} \quad \text { and } \quad \gamma=\min \{\alpha, \beta\} \tag{1.9}
\end{equation*}
$$

We shall always assume that w is the weight function with which the interpolating knots are associated and α, β are the parameters of w. Furthermore, we shall assume

$$
\begin{equation*}
\gamma \geqq A_{m} \quad \text { for odd integer } \quad m \tag{1.10}
\end{equation*}
$$

ard
(1.11)
$\gamma \geqq C_{m} \quad$ or $\quad A_{m} \leqq \alpha, \beta<C_{m} \quad$ and $\quad \Gamma-\gamma \leqq \frac{2}{m} \quad$ for even integer $\quad m$, from now on (cf. [12]).

Our main results are the following.
Theorem 1.1. Let m be an even integer, $0<p<+\infty$. Let u be a Jacobi weight function, $u v^{-j p} \in L^{1}$, for a fixed $j, 0 \leqq j \leqq m-2$. Then with $\varepsilon_{n}>0, \varepsilon \rightarrow 0(n \rightarrow \infty)$,

$$
\begin{equation*}
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c n^{m-2}\left[\|f\|_{\infty}+\varepsilon_{n} \sum_{t=1}^{m-1} \frac{1}{n^{t-1}}\left\|f^{(t)}\right\|_{\infty}\right] \quad \forall f \in C^{m-1} \tag{1.12}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
w_{m}^{-p} v^{(m-2 j-1) p} u \in L^{1} \tag{1.13}
\end{equation*}
$$

Theorem 1.2. Let $m \geqq 2$ be an integer, $0<p<+\infty$. Let $\gamma>C_{m}$ for odd m. Let u be a Jacobi weight function, $u v^{-j p} \in L^{1}$ for a fixed j, $0 \leqq j \leqq m-2$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|H_{n m}^{(j)}(w, f)-f^{(j)}\right\|_{u, p}=0, \quad \forall f \in C^{m-1} \tag{1.14}
\end{equation*}
$$

if (1.13) holds. Furthermore, if m is even, then (1.14) is true if and only if (1.13) holds.

Theorem 1.3. Let $m \geqq 2$ be an integer, $\gamma>C_{m}$ and $0<p<+\infty$. Let u be a Jacobi weight function, $u v^{-j p} \in L^{1}$ for a fixed integer $j, 0 \leqq j \leqq m-1$. Then

$$
\begin{equation*}
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c n^{j} \sum_{t=0}^{m-1}\left\|f^{(t)}\right\|_{*} / n^{t}, \quad \forall f \in C^{m-1} \tag{1.15}
\end{equation*}
$$

if

$$
\begin{equation*}
w_{m}^{-p} v^{-j p} u \in L^{1} \tag{1.16}
\end{equation*}
$$

Furthermore, if m is even, (1.15) implies

$$
\begin{equation*}
w_{m}^{-p^{*}} v^{-j p^{*}} u \in L^{1}, \quad \forall p^{*}<p \tag{1.17}
\end{equation*}
$$

Theorem 1.4. Let $m \geqq 2$ be an integer, $\gamma>C_{m}$ and $0<p<+\infty$. Let u be a Jacobi weight function, uv ${ }^{-j p} \in L^{1}$ for a fixed integer $j, 0 \leqq j \leqq m-1$. Then

$$
\begin{equation*}
\left\|H_{n m}^{(j)}(w, f)-f^{(j)}\right\|_{u, p} \leqq c \frac{E_{n}\left(f^{(m-1)}\right)}{n^{m-j-1}}, \quad \forall f \in C^{m-1} \tag{1.18}
\end{equation*}
$$

if (1.16) holds. Furthermore, if m is even, (1.18) implies (1.17).
Remark. In Theorems $1.2-1.4$ we proved the necessary part only for even m. To handle the case of odd m, we need

$$
\sum_{k=1}^{n}\left(\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right)^{m} \geqq \frac{c}{n^{m-1}}
$$

(see (4.6) below) which we are not able to prove at present. In Theorems 1.3 and 1.4 , we have weaker necessary conditions. However, if the inequalities

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n^{j}}\left\|\frac{d^{j}}{d x^{j}} p_{n}^{m}(w)\right\|_{u, p} \geqq c\left\|w_{m}^{-1} v^{-1}\right\|_{u, p} \tag{1.19}
\end{equation*}
$$

can be proved, then our theorems will be "if and only if" using (1.16). At present, we can prove (1.19) only for $j=0$ and 1.

For $m=1$, see [6]. For $m=2$, see [3]. In these cases, all the results are proved as "if and only if" statements, and the weight functions are more general. When $j=m-1$, (1.13) and (1.16) are the same, which means that if we have the convergence, we have it with rate. For $j<m-1,(1.16)$ is stronger than (1.13).

2. Preliminaries

The Hermite interpolation operator (1.3) can be written as

$$
\begin{equation*}
H_{n m}(w, f, x)=\sum_{t=0}^{m-1} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) h_{t k}(x), \quad m=1,2, \ldots \tag{2.1}
\end{equation*}
$$

where the polynomials $h_{t k}$ of degree exactly $m n-1$ are uniquely defined by

$$
\begin{equation*}
h_{t k}^{(i)}\left(x_{j n}\right)=\delta_{t i} \delta_{k j} . \tag{2.2}
\end{equation*}
$$

Following [13], we have
(2.3) $h_{t k}(x)=\left[\ell_{k n}(x)\right]^{m} \frac{\left(x-x_{k n}\right)^{t}}{t!} \sum_{i=0}^{m-1-t} e_{t i k}\left(x-x_{k n}\right)^{i}, \quad 0 \leqq t \leqq m-1$,
where $\ell_{k n}(x)$ are the fundamental polynomials of the Lagrange interpolation. By [11, pp. 48]

$$
\begin{equation*}
\ell_{k n}(x)=\frac{\gamma_{n-1}}{\gamma_{n}} \lambda_{k n} p_{n-1}\left(w, x_{k n}\right) \frac{p_{n}(w, x)}{x-x_{k n}}, \tag{2.4}
\end{equation*}
$$

where $\lambda_{n}(x)=\lambda_{n}(w, x)$ is the Christoffel function, $\lambda_{k n}=\lambda_{n}\left(x_{k n}\right)$, and $\gamma_{n}=\gamma_{n}(w)$ is the leading coefficient of $p_{n}(x)=p_{n}(w, x)$. Notice that $h_{t k}$ and $e_{t i k}$ also depend on n and m. Furthermore, we have from [13],

$$
\begin{equation*}
e_{t r k}=e_{0 r k}, \quad r=0,1, \ldots, m-1-t, \quad 0 \leqq t \leqq m-1, \tag{2.5}
\end{equation*}
$$

and

$$
\left|e_{0 r k}\right| \leqq c \begin{cases}\left(\frac{n}{\sqrt{1-x_{k n}^{2}}}\right)^{r}, & \text { if } \quad r=0,2,4, \ldots \tag{2.6}\\ \frac{n^{r-1}}{\left(\sqrt{1-x_{k n}^{2}}\right)^{r+1}}, & \text { if } \quad r=1,3,5 \ldots\end{cases}
$$

From (2.2), we can easily get that

$$
\begin{equation*}
h_{m-1, k}(x)=\frac{\left(x-x_{k n}\right)^{m-1}}{(m-1)!}\left[\ell_{k n}(x)\right]^{m} . \tag{2.7}
\end{equation*}
$$

For any polynomial P of degree at most $m n-1$, we have

$$
\begin{equation*}
P(x)=H_{n m}(w, P, x) . \tag{2.8}
\end{equation*}
$$

We collect some useful estimates in the following Lemma (see [13] for references).

Lemma 2.1. Let w be a Jacobi weight function, and let $x_{k n}=\cos \vartheta_{k n}$ $\left(x_{0 n}=1, x_{n+1, n}=-1,0 \leqq \vartheta_{k n} \leqq \pi\right)$. Then

$$
\begin{equation*}
\vartheta_{k+1, n}-\vartheta_{k n} \sim \frac{1}{n} \quad \text { uniformly for } 0 \leqq k \leqq n, n \in \mathbf{N} \tag{2.9}
\end{equation*}
$$

(2.10) $\quad \lambda_{k n}(w) \sim \frac{1}{n} w\left(x_{k n}\right) \sqrt{1-x_{k n}^{2}} \quad$ uniformly for $1 \leqq k \leqq n, n \in \mathbf{N}$,
$\left|p_{n-1}\left(w, x_{k n}\right)\right| \sim w\left(x_{k n}\right)^{-1 / 2}\left(1-x_{k n}^{2}\right)^{1 / 4} \quad$ uniformly for $\quad 1 \leqq k \leqq n, n \in \mathbf{N}$, and

$$
\begin{equation*}
\left|p_{n}(w, x)\right| \sim \frac{n\left|\theta-\theta_{j n}\right|}{\left(w\left(x_{j n}\right) \sqrt{1-x_{j n}^{2}}\right)^{1 / 2}} \tag{2.12}
\end{equation*}
$$

where j is the index determined by $\left|x_{j}-x\right|=\min _{1 \leqq k \leqq n}\left|x-x_{k}\right|$. Finally,

$$
\begin{equation*}
\gamma_{n}(w) \sim 2^{n} \tag{2.13}
\end{equation*}
$$

We also need the weighted Bernstein-Markov inequality (see e.g., [7]).
Lemma 2.2. Let $0<p<+\infty$, and u be a Jacobi weight. Then for each polynomial P_{n} of degree at most n,

$$
\begin{equation*}
\left\|P_{n}^{\prime} v\right\|_{u, p} \leqq c n\left\|P_{n}\right\|_{u, p} \tag{2.14}
\end{equation*}
$$

Finally, we note that the derivative of the Jacobi polynomial $p_{n}(w, x)$ satisfies the following relation ([11, pp. 63])

$$
\begin{equation*}
p_{n}^{\prime}(w, x)=\frac{1}{2}(n+\alpha+\beta+1) p_{n-1}\left(w v^{2}, x\right) \tag{2.15}
\end{equation*}
$$

3. Main lemmas

The following Lemmas are critical to our proofs.
Lemma 3.1. Let w be a Jacobi weight function. If j is the index determined as in (2.12), then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right| \leqq \frac{c}{n^{t}}\left[1+\frac{\log n}{n} w_{m}\left(x_{j n}\right)^{-1}\right], m-t=\text { even } \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right| \leqq c \frac{\log n}{n^{t}}\left[1+w_{m}\left(x_{j n}\right)^{-1}\right], m-t=o d d \tag{3.2}
\end{equation*}
$$

Proof. For $k=j$ (see (2.12)), it can be estimated as in [13]. For $k \neq j$ and $m-t$ even, we have from [13]

$$
\left|h_{t k}(x)\right| \leqq c\left|\ell_{k n}^{m}(x)\right|\left|x-x_{k n}\right|^{t}\left(\frac{n\left|x-x_{k n}\right|}{\sqrt{1-x_{k n}^{2}}}\right)^{m-t-2}\left(1+\frac{n\left|x-x_{k n}\right|}{1-x_{k n}^{2}}\right), k \neq j
$$

If \sum_{k}^{\prime} means we omit the term $k=j$, then from the above inequality, (2.4) and Lemma 2.1, we have

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right| \leqq \\
\leqq \frac{c}{n^{t}}\left[\sum_{k}^{\prime} \frac{w_{m}\left(x_{k n}\right)}{w_{m}\left(x_{j n}\right)} \frac{1-x_{k n}^{2}}{n^{2}\left|x_{j n}-x_{k n}\right|^{2}}+\sum_{k}^{\prime} \frac{w_{m}\left(x_{k n}\right)}{w_{m}\left(x_{j n}\right)} \cdot \frac{1}{n^{2}\left|x_{j n}-x_{k n}\right|}\right]
\end{gathered}
$$

which can be estimated as $[13,(3.10)]$ for $t=0$. Similarly, the argument holds when $m-t$ is odd (cf. [13, (3.13)]).

Remark. Our restrictions (1.10) and (1.11) are from this lemma. For the sharpness of the restrictions, we refer to [13].

To state our next lemma, we write for odd $m-t$,

$$
\begin{equation*}
Q_{t k}(x):=\frac{1}{t!} e_{t, m-1-t, k}\left(x-x_{k n}\right)^{m-1}\left(\ell_{k n}(x)\right)^{m} \tag{3.3}
\end{equation*}
$$

(cf. (2.3)) and

$$
\begin{equation*}
R_{t k}(x):=h_{t k}(x)-Q_{t k}(x) \tag{3.4}
\end{equation*}
$$

Lemma 3.2. Let w be a Jacobi weight function. Then if $m-t$ is odd,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)}\left|R_{t k}(x)\right| \leqq \frac{c}{n^{t}}\left[1+\frac{\log n}{n} w_{m}\left(x_{j n}\right)^{-1}\right] \tag{3.5}
\end{equation*}
$$

Proof. By (2.1), (2.3), (2.5), (2.6) and (3.4), we get

$$
\begin{aligned}
& \left|R_{t k}(x)\right| \leqq c\left|\ell_{k n}^{m}(x)\right|\left|x-x_{k n}\right|^{t}\left[1+\frac{\left|x-x_{k n}\right|}{1-x_{k n}^{2}}+\left(\frac{n\left|x-x_{k n}\right|}{\sqrt{1-x_{k n}^{2}}}\right)^{2}+\ldots\right. \\
& \left.\quad+\left(\frac{n\left|x-x_{k n}\right|}{\sqrt{1-x_{k n}^{2}}}\right)^{m-t-3}+\left(\frac{n\left|x-x_{k n}\right|}{\sqrt{1-x_{k n}^{2}}}\right)^{m-t-3} \frac{\left|x-x_{k n}\right|}{1-x_{k n}^{2}}\right]
\end{aligned}
$$

whence by $n\left|x-x_{k n}\right| / \sqrt{1-x_{k n}^{2}} \geqq c(k \neq j)$

$$
\left|R_{t k}(x)\right| \leqq c\left|\ell_{k n}^{m}(x)\right|\left|x-x_{k n}\right|^{t}\left(\frac{n\left|x-x_{k n}\right|}{\sqrt{1-x_{k n}^{2}}}\right)^{m-t-3}\left(1+\frac{\left|x-x_{k n}\right|}{1-x_{k n}^{2}}\right), k \neq j
$$

Therefore the desired estimate follows from the proof of Lemma 3.1.
The following Lemma is a partial case of a more general theorem proved in [6, Theorem 1].

Lemma 3.3. Let w and u be Jacobi weight functions. If $0<p<+\infty$, $w_{m}^{-p} v^{\lambda p} u \in L^{1}, \lambda \geqq 0$ and $\gamma>C_{m}$, then for every bounded function f in $[-1,1]$

$$
\left\|L_{n}(w, F) w_{m-1}^{-1} v^{\lambda}\right\|_{u, p} \leqq c\|f\|_{*}
$$

where $L_{n}(w)=H_{n 1}(w)$ and $F=f w_{m-1}$.
We now construct a special Hermite spline function s_{n}, which will help us to get the necessary conditions in our theorems. For each given integer n, s_{n} is a polynomial of degree at most $2 m-1$ on each $\left[x_{k+1, n}, x_{k n}\right]$ and it is uniquely determined by

$$
\left\{\begin{array}{lll}
s_{n}^{(j)}\left(x_{k n}\right)=0, & 0 \leqq j \leqq m-2, & 0 \leqq k \leqq n+1 \tag{3.6}\\
s_{n}^{(m-1)}\left(x_{k n}\right)=1, & 0 \leqq k \leqq n+1, & (m \leqq 2)
\end{array}\right.
$$

It is easy to verify the following explicit formula for s_{n} on $\left[x_{k+1, n}, x_{k n}\right]$:

$$
\begin{gathered}
s_{n}(x)=\frac{\left(x_{k+1, n}-x_{k n}\right)^{m-2}}{(m-1)!}\left(\frac{x-x_{k n}}{x_{k+1, n}-x_{k n}}\right)^{m-1}\left(\frac{x_{k+1, n}-x}{x_{k+1, n}-x_{k n}}\right)^{m-1} \times \\
\times\left[(-1)^{m-1}\left(x-x_{k n}\right)+\left(x_{k+1, n}-x\right)\right]
\end{gathered}
$$

whence

$$
\begin{equation*}
\left\|s_{n}^{(t)}\right\|_{\infty} \leqq c / n^{m-1-t}, \quad 0 \leqq t \leqq m-1 . \tag{3.7}
\end{equation*}
$$

By definition, s_{n} is a function in C^{m-1}.

4. Proofs of Theorems 1.1 and 1.3

We start with the following special case of Theorem 1.1.
Lemma 4.1. Let $m \geqq 2$ be an even integer, u be an integrable Jacobi weight function. Then for each $0 \leqq \lambda \leqq m-1$

$$
\begin{equation*}
\left\|H_{n m}(w, f)\right\|_{u, p} \leqq c n^{\lambda}\left[\|f\|_{*}+\varepsilon \sum_{t=1}^{m-1} \frac{1}{n^{t-1}}\left\|f^{(t)}\right\|_{*}\right] \tag{4.1}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, if

$$
\begin{equation*}
w_{m}^{-p} v^{(\lambda+1) p} u \in L^{1} . \tag{4.2}
\end{equation*}
$$

Proof. By Theorem 6.3.14 in [5, p.113], for every $0<p<+\infty$, and Jacobi weight u, there exists a constant $\sigma=\sigma(p, u)>0$ such that for every polynomial P of degree at most $m n$

$$
\begin{equation*}
\int_{-1}^{1}|P(t)|^{p} u(t) d t \leqq 2 \int_{-1+\sigma n^{-2}}^{1-\sigma n^{2}}|P(t)|^{p} u(t) d t \tag{4.3}
\end{equation*}
$$

Applying (4.3) with $P=H_{n m}(w, f)$ we have

$$
\begin{gathered}
\left\|H_{n m}(w, f)\right\|_{u, p}^{p} \leqq \\
\leqq c \sum_{t=0}^{m-1}\left\|f^{(t)}\right\|_{*}^{p} \int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}}\left(\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right|\right)^{p} u(x) d x
\end{gathered}
$$

where by Lemma 3.1, we get for $m-t=$ even

$$
\begin{gathered}
\int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}}\left(\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right|\right)^{p} u(x) d x \leq \\
\leqq c\left[\frac{1}{n^{t p}}+\left(\frac{\log n}{n^{t+1}}\right)^{p} \int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}} w_{m}(x)^{-p} u(x) d x\right] \leq \\
\leqq c n^{\lambda p}\left[\frac{1}{n^{(t+\lambda) p}}+\left(\frac{\log n}{n^{t+1}}\right)^{p} \int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}} w_{m}(x)^{-p}\left(\sqrt{1-x^{2}}\right)^{\lambda p} u(x) d x\right]
\end{gathered}
$$

by $\frac{1}{n} \leqq \sqrt{1-x^{2}}$. By (4.2), there exists a $0<\delta<1$, such that $w_{m}^{-p} v^{(\lambda+1-\delta) p} u \in$ $\in L^{1}$. By the triangular inequality and $\left(n \sqrt{1-x^{2}}\right)^{1-\delta} \geqq c$,

$$
\begin{array}{r}
\int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}}\left(\sum_{k=1}^{n} \frac{1}{\left(\sqrt{1-x_{k n}^{2}}\right)^{t}}\left|h_{t k}(x)\right|\right)^{p} u(x) d x \leq \\
\leqq c n^{\lambda p}\left[\frac{1}{n^{(t+\lambda) p}}+\left(\frac{\log n}{n^{t+\delta}}\right)^{p} \int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}} w_{m}^{-p} v^{(\lambda+1-\delta) p} u(x) d x\right]
\end{array}
$$

$$
\begin{cases}\leqq c n^{\lambda p}\left[\frac{1}{n^{(t+\lambda) p}}+\left(\frac{\log n}{n^{t+\delta}}\right)^{p}\right] \leqq c n^{\lambda p} & \text { if } \quad t=0 \\ :=c n^{\lambda p}\left(\frac{1}{n^{t-1}}\right) \varepsilon_{n}^{p} & \text { if } \quad t \geqq 1\end{cases}
$$

where $\varepsilon_{n}^{p}=\frac{1}{n^{(\lambda+1) p}}+\left(\frac{\log n}{n^{1+\delta}}\right)^{p}$. Similarly for $m-t=$ odd we have

$$
\begin{gathered}
\int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}}\left(\sum_{k=1}^{n} \frac{1}{\left.\left(\sqrt{1-x_{k n}^{2}}\right)^{t}\left|h_{t k}(x)\right|\right)^{p} u(x) d x \leqq}\right. \\
\leqq c n^{\lambda p}\left(\frac{1}{n^{t-1}}\right)^{p}\left[\left(\frac{\log n}{n^{(t+\lambda) p}}\right)^{p}+\left(\frac{\log n}{n^{t+1}}\right)^{p}\right]:=c n^{\lambda p}\left(\frac{1}{n^{t-1}}\right)^{p} \varepsilon_{n}^{p},
\end{gathered}
$$

which completes the proof.
Proof of Theorem 1.1. By Bernstein-Markov inequality (Lemma 2.2),

$$
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c n^{j}\left\|H_{n m}(w, f) / v^{j}\right\|_{u, p}
$$

Suppose $0 \leqq j \leqq m-2$. Then we can apply Lemma 4.1 with $\lambda=m-2-j$ in (4.1), and we get

$$
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c n^{m-2}\left[\|f\|_{\infty}+\varepsilon_{n} \sum_{t=1}^{m-1} \frac{1}{n^{t-1}}\left\|f^{(t)}\right\|_{\infty}\right]
$$

where (4.2) with weight function $v^{-j p} u$ instead of u gives

$$
w_{m}^{-p} v^{(m-j-1) p} v^{-j p} u \in L^{1}
$$

which is exactly (1.12). This proves the sufficiency of (1.13) for $0 \leqq j \leqq m-2$.
For the necessary part, we use our spline function s_{n}. Let $f_{1}(x)=x$. By (2.1) and (3.6)

$$
\begin{gathered}
x H_{n m}\left(s_{n}, x\right)-H_{n m}\left(f_{1} s_{n}, x\right)=\sum_{k=1}^{n}\left(x-x_{k n}\right) h_{m-1, k}(x)= \\
=\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{n} \sum_{k=1}^{n}\left(\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right)^{m} p_{n}(x)^{m}
\end{gathered}
$$

where $p_{n}(x)=p_{n}(w, x)$, and the second equality follows from (2.7) and (2.4). Taking derivatives, we then have

$$
\begin{align*}
& j H_{n m}^{(j-1)}\left(s_{n}, x\right)+x H_{n m}^{(j)}\left(s_{n}, x\right)-H_{n m}^{(j)}\left(f_{1} s_{n}, x\right)= \tag{4.4}\\
& =\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}(x)\right)\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{m} \sum_{k=1}^{n}\left(\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right)^{m} .
\end{align*}
$$

Now by (1.12) and (3.7)

$$
\begin{gather*}
\left\|j H_{n m}^{(j-1)}\left(s_{n}\right)+f_{1} H_{n m}^{(j)}\left(s_{n}\right)-H_{n m}^{(j)}\left(f_{1} s_{n}\right)\right\|_{u, p} \leqq \tag{4.5}\\
\leqq c n^{m-2}\left[\frac{1}{n^{m-1}}+\varepsilon_{n} \sum_{t=1}^{m-1} \frac{1}{n^{t-1}} \cdot \frac{1}{n^{m-1-t}}\right] \leqq c \varepsilon_{n} \rightarrow 0,
\end{gather*}
$$

and by Lemma 2.1, it is easy to see that

$$
\begin{equation*}
\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{m} \sum_{k=1}^{n}\left(\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right)^{m} \geqq \frac{c}{n^{m-1}} . \tag{4.6}
\end{equation*}
$$

From (4.4), (4.5) and (4.6), we then have

$$
\begin{equation*}
\frac{1}{n^{m-1}}\left\|\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}(x)\right)\right\|_{u, p} \leqq c \varepsilon_{n} \rightarrow 0 \tag{4.7}
\end{equation*}
$$

Since the derivative of $p_{n}(w, x)$ is also a Jacobi polynomial with weight function $w(x)\left(1-x^{2}\right)$ (see (2.15)), and for some positive integers c_{k} depending on m and j,

$$
\begin{equation*}
\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}(x)\right)=\sum_{\substack{\lambda_{1}+\ldots+\lambda_{k}=m \\ \alpha_{1} \lambda_{1}+\cdots+\alpha_{k} \lambda_{k}=j}} c_{k}\left(\frac{d^{\alpha_{1}} p_{n}}{d x^{\alpha_{1}}}\right)^{\lambda_{1}} \ldots\left(\frac{d^{\alpha_{k}} p_{n}}{d x^{\alpha_{k}}}\right)^{\lambda_{k}} \tag{4.8}
\end{equation*}
$$

we can conclude from (2.12) that
(4.9) $\left\|\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}(x)\right)\right\|_{u, p}^{p} \geqq \int_{\left(1+x_{1 n}\right) / 2}^{1}\left|\sum c_{k} \prod_{i=1}^{k}\left(p_{n}^{\left(\alpha_{i}\right)}(x)\right)^{\lambda_{i}}\right|^{p} u(x) d x \sim$

$$
\sim\left[\prod_{\substack{\lambda_{1}+\cdots+\lambda_{k}=m \\ \alpha_{1} \lambda_{1}+\cdots+\alpha_{k} \lambda_{k}=j}}\left(\sqrt{n} w\left(1-n^{-2}\right)^{-1 / 2} n^{\alpha_{i}}\right)^{\lambda_{i}} n^{\alpha_{i} \lambda_{i}}\right]^{p} \int_{\left(1+x_{i n}\right) / 2}^{1} u(x) d x \sim
$$

$$
\sim n^{\left(\frac{m}{2}+2 j\right) p} w\left(1-n^{-2}\right)^{-\frac{m}{2} p} \int_{\left(1+x_{1 n}\right) / 2}^{1} u(x) d x,
$$

since every Jacobi polynomial is positive when $x>x_{1 n}$. If $w(x)=$ $=(1-x)^{\alpha}(1+x)^{\beta}, u(x)=(1-x)^{a}(1+x)^{b}$, then (4.7) and (4.9) is equivalent to

$$
-(m-1) p+\frac{m p}{2}+2 j p+\alpha m p-2 a-2<0
$$

or

$$
-\left(\alpha+\frac{1}{2}\right) \frac{m p}{2}+(m-1-2 j) \frac{p}{2}+a>-1
$$

which means that $w_{m}^{-p} v^{(m-2 j-1) p} u$ is integrable on $[0,1]$. The interval $[-1,0]$ can be handled similarly. Therefore the proof is complete.

Lemma 4.2. Let w and u be integrable Jacobi weight functions. Then for each $0 \leqq m-1$ and $0 \leqq \lambda \leqq m-1$

$$
\begin{equation*}
\left\|H_{n m}(w, f)\right\|_{u, p} \leqq c n^{\lambda} \sum_{t=0}^{m-1} \frac{1}{n^{t}}\left\|f^{(t)}\right\|_{*} \tag{4.10}
\end{equation*}
$$

if

$$
\begin{equation*}
w_{m}^{-p} v^{\lambda p} u \in L^{1} \quad \text { and } \quad \gamma>C_{m} \tag{4.11}
\end{equation*}
$$

Proof. By (2.1, (3.3) and (3.4), we have

$$
\begin{aligned}
& H_{n m}(w, f)=\sum_{t=0}^{m-1} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) h^{t k}(x)=\left(\sum_{m-t=\text { even }} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) h_{t k}(x)+\right. \\
& \left.+\sum_{m-t=\text { odd }} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) R_{t k}(x)\right)+\sum_{m-t=\text { odd }} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) Q_{t k}(x):=\Sigma_{1}+\Sigma_{2}
\end{aligned}
$$

Applying (4.3) with $P=\Sigma_{1}$, we have by Lemma 3.1 , Lemma 3.2 and $1 / n \leqq$ $\leqq c \sqrt{1-x^{2}}$ that

$$
\begin{equation*}
\left\|\Sigma_{1}\right\|_{u, p} \leqq \tag{4.12}
\end{equation*}
$$

$$
\begin{gathered}
\leqq c \sum_{t}\left\|f^{(t)}\right\|_{*}\left\{\int_{-1+\sigma n^{-2}}^{1-\sigma n^{-2}}\left\{\frac{1}{n^{t}}\left[1+\frac{\log n}{n} w_{m}(x)^{-1}\right]\right\}^{p} u(x) d x\right\}^{1 / p} \leqq \\
\leqq c n^{\lambda} \sum_{t} \frac{\left\|f^{(t)}\right\|_{*}}{n^{t}}\left[\frac{1}{n^{\lambda}}+\left\|w_{m}^{-1} v^{\lambda}\right\|_{u, p}\right] \leqq c n^{\lambda} \sum_{t} \frac{\left\|f^{(t)}\right\|_{*}}{n^{t}}
\end{gathered}
$$

By (2.4) and (3.3), we have for $m-t=o d d$

$$
\begin{gather*}
S_{t}:=\sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) Q_{t k}(x)= \tag{4.13}\\
=\sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) \frac{1}{t!} e_{t, m-1-t, k}\left(x-x_{k n}\right)^{m-1}\left(\ell_{k n}(x)\right)^{m}=
\end{gather*}
$$

$$
=\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{m-1} p_{n}(x)^{m-1} \sum_{k=1}^{n} f^{(t)}\left(x_{k n}\right) \frac{1}{t!} e_{t, m-t-1, k} \ell_{k n}(x)\left[\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right]^{m-1}
$$

Since $m-t$ is odd, by (2.6) and Lemma 2.1,

$$
\begin{gathered}
\left|\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{m-1} \frac{1}{t!} e_{t, m-t-1, k}\left[\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right]^{m-1}\right| \leqq \\
\leqq c\left(\frac{n}{\sqrt{1-x_{k n}^{2}}}\right)^{m-t-1} \frac{1}{n^{m-1}}\left(1-x_{k n}^{2}\right)^{\frac{3}{4}(m-1)} w\left(x_{k n}\right)^{\frac{m-1}{2}}= \\
=\frac{c}{n^{t}} w_{m-1}\left(x_{k n}\right)\left(\sqrt{1-x_{k n}^{2}}\right)^{t}
\end{gathered}
$$

We now write

$$
\begin{align*}
& \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{m-1} f^{(t)}\left(x_{k n}\right) \frac{1}{t!} e_{t, m-t-1, k}\left[\lambda_{k n} p_{n-1}\left(x_{k n}\right)\right]^{m-1}= \tag{4.14}\\
= & c_{k n} f^{(t)}\left(x_{k n}\right) w_{m-1}\left(x_{k n}\right) v\left(x_{k n}\right)^{t} / n^{t}:=g_{n}\left(x_{k n}\right) w_{m-1}\left(x_{k n}\right)
\end{align*}
$$

where by defining $c_{n}(x)$ to be the uniformly bounded function satisfying $c_{n}\left(x_{k n}\right)=c_{k n}$, we have

$$
\begin{equation*}
\|g\|_{*}=\left\|c_{n} f^{(t)} / n^{t}\right\|_{*} \leqq c\left\|f^{(t)}\right\|_{*} / n^{t} \tag{4.15}
\end{equation*}
$$

Using (4.14) we can rewrite (4.13) as

$$
S_{t}=\left(p_{n}(x)\right)^{m-1} L_{n}\left(w, g_{n} w_{m-1}, x\right)
$$

Therefore by (4.3), (2.12) and $1 / n \leqq c \sqrt{1-x_{k n}^{2}}$, we have

$$
\left\|S_{t}\right\|_{u, p} \leqq c n^{\lambda}\left\|L_{n}\left(w, g_{n} w_{m-1}\right) w_{m-1}^{-1} v^{\lambda}\right\|_{u, p} \leqq c n^{\lambda}\left\|f^{(t)}\right\|_{*} / n^{t}
$$

where the last inequality follows from Lemma 3.3 and (4.15). Therefore,

$$
\left\|\Sigma_{2}\right\|_{u, p} \leqq c n^{\lambda} \sum_{t}\left\|f^{(t)}\right\|_{*} / n^{t}
$$

This and (4.12) complete the proof of this lemma.
Proof of Theorem 1.3. By the Bernstein-Markov inequality (2.14),

$$
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c n^{j}\left\|H_{n m}(w, f) / v^{j}\right\|_{u, p} .
$$

Applying Lemma 4.2 with $\lambda=0$ and $u / v^{j p}$ in place of u, we get (1.15) under the conditions (1.16). Now we prove that (1.17) are necessary for $m=$ even.

Let s_{n} be the spline function defined in (3.6). Then by (4.4) and (4.6), we get

$$
\begin{equation*}
\left|j H_{n m}^{(j-1)}\left(s_{n}, x\right)+x H_{n m}^{(j)}\left(s_{n}, x\right)-H_{n m}^{(j)}\left(f_{1} s_{n}, x\right)\right| \geqq \frac{c}{n^{m-1}}\left|\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}(x)\right)\right| \tag{4.16}
\end{equation*}
$$

Since $\left\|H_{n m}^{(j-1)}\left(s_{n}\right)\right\|_{u, p} \leqq c\left\|H_{n m}^{(j)}\left(s_{n}\right)\right\|_{u, p}$, by (1.15) and (3.7) we get $\left\|j H_{n m}^{(j-1)}\left(s_{n}\right)+f_{1} H_{n m}^{(j)}\left(s_{n}\right)-H_{n m}^{(j)}\left(s_{n}\right)\right\|_{u, p} \leqq c n^{j} \sum_{t=0}^{m-1} \frac{1}{n^{m-1-t}} \cdot \frac{1}{n^{t}} \leqq c \frac{1}{n^{m-1-j}}$.

Then by (4.16),

$$
\begin{equation*}
\frac{1}{n^{j}}\left\|\frac{d^{j}}{d x^{j}}\left(p_{n}^{m}\right)\right\|_{u, p} \leqq c \tag{4.17}
\end{equation*}
$$

If (1.19) were true, then we have from (4.17) that (1.16) is a necessary condition. Since we do not know how to prove (1.19) at this time, we can only conclude from (4.17) a weaker result, (1.17). Its proof is similar to that of Theorem 1.1.

5. Proof of Theorems 1.2 and 1.4

We need the following result by Leviatan [2, Corollary 1].
Lemma 5.1. Let $f \in C^{m-1}$ and P_{n} be the $n^{\text {th }}$ degree polynomial of best approximation to f. Then

$$
\begin{equation*}
\left|f^{(j)}(x)-P_{n}^{(j)}(x)\right| \leqq c \frac{1}{\Delta_{n}(x)^{j}} \frac{1}{n^{m-1}} E_{n}\left(f^{(m-1)}\right) \tag{5.1}
\end{equation*}
$$

where $\Delta_{n}(x)=\frac{\sqrt{1-x^{2}}}{n}+\frac{1}{n^{2}}$.
From (5.1), we have

$$
\begin{equation*}
\left\|f^{(j)}-P_{n}^{(j)}\right\|_{*} \leqq c E_{n}\left(f^{(m-1)}\right) / n^{m-j-1} \tag{5.2}
\end{equation*}
$$

Proof of Theorem 1.2. Suppose (1.13) is true. By (2.8) we have (5.3) $\left\|H_{n m}^{(j)}(w, f)-f^{(j)}\right\|_{u, p} \leqq c\left\|f^{(j)}-P_{n}^{(j)}\right\|_{u, p}+c\left\|H_{n m}^{(j)}\left(w, f-P_{n}\right)\right\|_{u, p}$. If m is odd, then by Lemma 2.2 and Lemma 4.2 with $\lambda=m-j-1$,

$$
\begin{aligned}
& \left\|H_{n m}^{(j)}\left(w, f-P_{n}\right)\right\|_{u, p} \leqq c n^{j}\left\|H_{n m}^{(j)}\left(w, f-P_{n}\right) / v^{j}\right\|_{u, p} \leqq \\
& \quad \leqq c n^{m-1} \sum_{t=0}^{m-1}\left\|f^{(t)}-P_{n}^{(t)}\right\|_{*} / n^{t} \leqq c E_{n}\left(f^{(m-1)}\right)
\end{aligned}
$$

where the last inequality follows from (5.2). Similarly, if m is even, then by Lemma 2.2 and Lemma 4.1 with $\lambda=m-j-2$,

$$
\begin{aligned}
\left\|H_{n m}^{(j)}\left(w, f-P_{n}\right)\right\|_{u, p} \leqq c n^{m-2}\left[\left\|f-P_{n}\right\|_{*}+\varepsilon_{n} \sum_{t=1}^{m-1} \frac{1}{n^{t-1}}\left\|f-P_{n}\right\|_{*}\right] \leqq \\
\leqq c\left[\frac{E_{n}\left(f^{(m-1)}\right)}{n}+\varepsilon_{n} E_{n}\left(f^{(m-1)}\right)\right]
\end{aligned}
$$

By (5.3) and the definition of P_{n}, we proved (1.14). On the other hand, if (1.14) is true and m is even, then it follows from

$$
\begin{equation*}
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c\left\|H_{n m}^{(j)}(w, f)-f^{(j)}\right\|_{u, p}+c\left\|f^{(j)}\right\|_{u, p} \tag{5.4}
\end{equation*}
$$

and (3.7) that for $0 \leqq j \leqq m-2$,

$$
\left\|j H_{n m}^{(j-1)}\left(w, s_{n}\right)+f_{1} H_{n m}^{(j)}\left(w, s_{n}\right)-H_{n m}^{(j)}\left(w, f_{1} s_{n}\right)\right\|_{u, p} \leqq
$$

$$
\leqq c\left(\frac{1}{n^{m-j-1}}+\left\|H_{n m}^{(j)}\left(w, s_{n}\right)-s_{n}^{(j)}\right\|_{u, p}+\left\|H_{n m}^{(j)}\left(w, 1 s_{n} f\right)-\left(f_{1} s_{n}\right)^{(j)}\right\|_{u, p}\right) \rightarrow 0 .
$$

For $j=m-1$, we have from (1.14) and (5.4) that

$$
\left\|(m-1) H_{n m}^{(m-2)}+f_{1} H_{n m}^{(m-1)}\left(w, s_{n}\right)-H_{n m}^{(m-1)}\left(w, f_{1}, s_{n}\right)\right\|_{u, p} \leqq c .
$$

The rest of the proof follows similarly as the proof of Theorem 1.1.
Proof of Theorem 1.4. Suppose (1.16) holds. By Theorem 1.3 and (5.2), we get by Lemma 2.2 that

$$
\begin{gathered}
\left\|H_{n m}^{(j)}\left(w, f-P_{n}\right)\right\|_{u, p} \leqq c n^{j}\left\|H_{n m}\left(w, f-P_{n}\right) / v^{j}\right\|_{u, p} \leqq \\
\leqq c n^{j} \sum_{t=0}^{m-1} \frac{1}{n^{t}} \frac{1}{n^{m-1-t}} E_{n}\left(f^{(m-1)}\right)=c E_{n}\left(f^{(m-1)}\right) / n^{m-1-j}
\end{gathered}
$$

By a well known property of the best approximation polynomial (cf. [9, p. 23]),

$$
\left\|f^{(j)}-P_{n}^{(j)}\right\|_{\infty} \leqq c E_{n}\left(f^{(m-1)}\right) / n^{m-j-1},
$$

(1.18) follows from (5.3). On the other hand, from (1.18) we have

$$
\begin{gathered}
\left\|H_{n m}^{(j)}(w, f)\right\|_{u, p} \leqq c\left\|f^{(j)}\right\|_{\infty}+c\left\|H_{n m}^{(j)}(w, f)-f^{(j)}\right\|_{u, p} \leqq \\
\leqq c\left\|f^{(j)}\right\|_{\infty}+c E_{n}\left(f^{(m-1)}\right) / n^{m-j-1} \leqq \\
\leqq c n^{j}\left[\left\|f^{(j)}\right\|_{\infty} / n^{j}+\left\|f^{(m-1)}\right\|_{\infty} / n^{m-1}\right] .
\end{gathered}
$$

Notice that in the proof of the necessity part of Theorem 1.3, we only need (1.5) with $\|f\|$ in place of $\|f\|_{*}$. Therefore, (1.17) follows from Theorem 1.3.

References

[1] G. Freud, Orthogonal Polynomials, Pergamon (New York, 1971).
[2] D. Leviatan, The behaviour of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory, 35 (1982), 169-176.
[3] A. Máté and P. Nevai, Necessary conditions for mean convergence of Hermite-Fejér interpolation, in Tribute to Paul Erdős (Eds. A. Baker, B. Bollobás and A. Hajnal), Cambridge Univ. Press (Cambridge, 1990), pp. 461-475.
[4] A. Máté, P. Nevai and Y. Xu, Mean convergence of Hermite interpolation. (To appear.)
[5] P. Nevai, Orthogonal Polynomials, in: AMS Memoirs, 213, Amer. Math. Soc. (Providence, R. I., 1979).
[6] P. Nevai, Mean convergence of Lagrange interpolations III, Trans. Amer. Math. Soc., 282 (1984), 669-698.
[7] P. Nevai, Bernstein's inequality in L^{p} for $0<p<1$, J. Approx. Theory, 27 (1979), 239-243.
[8] P. Nevai and P. Vértesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl., 105 (1985), 26-58.
[9] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell (Waltham, Mass., 1969).
[10] J. Szabados and A. K. Varma, On higher order Hermite-Fejér interpolation in weighted L^{p}-metric, Acta Math. Hung., 58 (1991), 133-140.
[11] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. (New York, 1967).
[12] P. Vértesi, Hermite-Fejér interpolations of higher order. I, Acta Math. Hung., 54 (1989), 135-152.
[13] P. Vértesi, Hermite and Hermite-Fejér interpolations of higher order. II, Acta Math. Hung., 56(1990), 369-380.
[14] P. Vértesi and Y. Xu, Order of mean convergence of Hermite-Fejér interpolation, Studia Sci. Math. Hung., 24(1989), 391-401.
(Received February 8, 1990)
MATHEMATICAL INSTITUTE OF THE
hUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, P.O.BOX 127, HUNGARY 1364
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712
USA

ON THE NUMBER OF SUMS
 AND DIFFERENCES

I. Z. RUZSA ${ }^{1}$ (Budapest)

1. Introduction

Let A be a set of integers. Write

$$
\begin{aligned}
& A+A=\left\{a_{1}+a_{2}: a_{1}, a_{2} \in A\right\}, \\
& A-A=\left\{a_{1}-a_{2}: a_{1}, a_{2} \in A\right\} .
\end{aligned}
$$

If $|A|=n$, then we have

$$
\begin{gathered}
2 n-1 \leqq|A+A| \leqq \frac{n^{2}+n}{2}, \\
2 n-1 \leqq|A-A| \leqq n^{2}-n+1,
\end{gathered}
$$

where there is equality on the left side for arithmetical progressions and on the right side for "generic" sets, in which there is no nontrivial coincidence between sums or differences.

Observe that the conditions of genericity for sums or differences are equivalent: a nontrivial coincidence of sums, say $a+b=a^{\prime}+b^{\prime}$ implies a nontrivial coincidence of differences, namely $a-a^{\prime}=b^{\prime}-b$, and vice versa.

We shall show the counterintuitive fact that "almost" versions of these conditions are far from equivalent; almost all sums may be different while almost all differences are represented multiply, and conversely.

Theorem. For every $n>n_{0}$ there is a set A such that

$$
\begin{equation*}
|A|=n, \quad|A+A| \leqq n^{2-c} \tag{1.1}
\end{equation*}
$$

but

$$
\begin{equation*}
|A-A| \geqq n^{2}-n^{2-c}, \tag{1.2}
\end{equation*}
$$

where c is a positive absolute constant. Also there is a set B such that

$$
\begin{gather*}
|B|=n,|B-B| \leqq n^{2-c} \tag{1.3}\\
|B+B| \geqq \frac{n^{2}}{2}-n^{2-c} \tag{1.4}
\end{gather*}
$$

[^19]We do not compute numerical values for c. If we did, we would get a much smaller value for (1.3-4) than for (1.1-2). I do not know whether this is necessary.

Neither c can be larger than $1 / 2$. This follows from the inequalities

$$
|A-A|^{3 / 4} \leqq|A+A| \leqq|A-A|^{4 / 3}
$$

see Freiman and Pigaev [1], Ruzsa [2, 3, 4].
The idea of the proof is the following. Take a set U such that

$$
\begin{equation*}
D=|U-U|>S=|U+U| \tag{1.5}
\end{equation*}
$$

and form the set

$$
V=U^{k} \subset \mathbf{Z}^{k}, \quad V=\left\{\left(u_{1}, \ldots, u_{k}\right): u_{1}, \ldots, u_{k} \in U\right\}
$$

This set has $|V+V|=S^{k},|V-V|=D^{k}$, thus $V-V$ is much larger than $V+V$. Now consider a random subset X of V. Since there is much more room for differences than for sums, with some luck the sums already start to coincide while the differences do not. (Actually in the course of the proof we shall find that it is not (1.5) what really counts but a more complicated inequality.)

We got a set of integer vectors. If a set of integers is required, we can map it into \mathbf{Z} by

$$
\left(x_{1}, \ldots, x_{k}\right) \rightarrow x_{1}+m x_{2}+\cdots+m^{k-1} x_{k}
$$

say. If m is sufficiently large, then this mapping does not change the number of sums and differences of our set.

2. Random subsets

Let $V \mathrm{~b}$ a finite set (of integers, or vectors, or elements in any Abelian group), $|V|=m$. We take a random subset X of V by selecting elements of V into X independently, with probability $0<\varrho<1$. Then we have

$$
\mathbf{E}|X|=\varrho m
$$

where \mathbf{E} denotes expectation, and almost certainly $|X|$ will be near to ϱm. For instance, Chebyshev's inequality says that

$$
\begin{equation*}
\mathbf{P}\left(|\||X|-\varrho m\| \geqq K) \leqq \frac{\varrho(1-\varrho) m}{K^{2}}\right. \tag{2.1}
\end{equation*}
$$

thus this probability is small as soon as $K / \sqrt{\varrho m} \rightarrow \infty$. If necessary, much stronger inequalities are available (Bernstein's inequality); for our purposes (2.1) is sufficient.

We also need estimates for $|X \pm X|$. Write

$$
D=\mathbf{E}|X-X|, \quad S=\mathbf{E}|X+X| .
$$

(We shall not deduce that these cardinalities are often near to their expectations, though this seems to be possible.)

Let $\sigma(n)$ denote the number of solutions of $n=u+v, u, v \in V$, similarly $\delta(n)$ the number of solutions of $n=u-v$, and for a number k and set V write

$$
k V=\{k v: v \in V\} .
$$

2.1. Lemma. We have

$$
\mathbf{P}(n \notin X+X)= \begin{cases}\left(1-\varrho^{2}\right)^{\sigma(n) / 2} & \text { for } n \notin 2 V, \tag{2.2}\\ (1-\varrho)\left(1-\varrho^{2}\right)^{(\sigma(n)-1) / 2} & \text { for } n \in 2 V\end{cases}
$$

Proof. The $\sigma(n)$ representations of n in the form $n=u+v$ can be groupped into $\sigma(n) / 2$ pairs by combining $u+v$ and $v+u$, or into $(\sigma(n)-1) / 2)$ such pairs and a single representation in the form $u+u$ if $n \in 2 V$. These representations depend on disjoint pairs, thus they induce independent events, and in (2.2) we have the product of the corresponding probabilities.

The case of the differences is somewhat trickier, because the pairs (u, v) with $u-v=n$ are not necessarily disjoint. We start with some preparation.
2.2. Lemma. Take a random subset of $\{0,1,2, \ldots, n\}$ by selecting each number independently with probability ϱ. Let β_{n} be the probability that no two consecutive integers are selected. We have

$$
\begin{equation*}
\left(1-\varrho^{2}\right)^{n} \leqq \beta_{n} \leqq\left(1-\varrho^{2}+\varrho^{3}\right)^{n} \tag{2.4}
\end{equation*}
$$

Proof. We have $\beta_{0}=1, \beta_{1}=1-\varrho^{2}$ and the recurrence relation

$$
\beta_{n}=(1-\varrho) \beta_{n-1}+\varrho(1-\varrho) \beta_{n-2} \quad(n \geqq 2) .
$$

These yield (2.4) by an easy induction.
2.3. Remark. We could write the exact solution of this recurrence, but for the following calculations we need bounds in this exponential form. The lower bound we gave is exact, with equality at $n=1$, while the best upper bound of the form γ^{n} is given by

$$
\gamma=\frac{1-\varrho+\sqrt{(1-\varrho)(1+3 \varrho)}}{2}=1-\varrho^{2}+\varrho^{3}+O\left(\varrho^{4}\right) .
$$

2.4. Lemma. We have

$$
\begin{equation*}
\left(1-\varrho^{2}\right)^{\delta(n)} \leqq \mathbf{P}(n \notin X-X) \leqq\left(1-\varrho^{2}+\varrho^{3}\right)^{\delta(n)} . \tag{2.5}
\end{equation*}
$$

Proof. Consider all maximal arithmetical progressions of difference n in V :

$$
\begin{gathered}
a_{1}, a_{1}+n, \ldots, a_{1}+b_{1} n \\
\vdots \\
a_{t}, a_{t}+n, \ldots, a_{t}+b_{t} n
\end{gathered}
$$

These are disjoint, and a difference n appears in X if and only if it contains two consecutive terms from some of them, consequently

$$
\mathbf{P}(n \notin X-X)=\beta_{b_{1}} \beta_{b_{2}} \ldots \beta_{b_{t}} .
$$

Now (2.5) follows from the previous lemma and the observation

$$
b_{1}+b_{2}+\cdots+b_{t}=\delta(n) .
$$

2.5. Lemma. We have

$$
\begin{equation*}
\sum_{n}\left(1-\left(1-\varrho^{2}\right)^{\sigma(n) / 2}\right)-\varrho m \leqq S \leqq \sum_{n}\left(1-\left(1-\varrho^{2}\right)^{\sigma(n) / 2}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n}\left(1-\left(1-\varrho^{2}\right)^{\delta(n)}\right) \leqq D \leqq \sum_{n}\left(1-\left(1-\varrho^{2}+\varrho^{3}\right)^{\delta(n)}\right) \tag{2.7}
\end{equation*}
$$

Proof. To obtain (2.6), we start from

$$
S=\sum_{n} \mathbf{P}(n \in X+X)
$$

To each term we apply (2.2), and for $n \in 2 V$ we also use the inequality

$$
\left(1-\varrho^{2}\right)^{\sigma(n) / 2}-\varrho \leqq\left(1-\varrho^{2}\right)^{(\sigma(n)-1) / 2}(1-\varrho) \leqq\left(1-\varrho^{2}\right)^{\sigma(n) / 2}
$$

(2.7) follows similarly from (2.5).

The exponential sums appearing in (2.6-7) are difficult to calculate; we estimate them by powers.
2.6. Lemma. For every $0 \leqq x \leqq 1, y \geqq 0$ integer and $0<\varepsilon<1$ we have

$$
\begin{gather*}
1-(1-x)^{y} \leqq(x y)^{1-\varepsilon} \tag{2.8}\\
1-(1-x)^{y} \leqq x y-(x y)^{1+e} .
\end{gather*}
$$

Proof. To get (2.8), observe that

$$
1-(1-x)^{y} \leqq \min (1, x y) \leqq(x y)^{1-\varepsilon} .
$$

To prove (2.9), recall that

$$
e^{-t} \leqq 1-t+t^{2} / 2
$$

for $t \geqq 0$, hence

$$
(1-x)^{y} \leqq e^{-x y} \leqq 1-x y+\frac{(x y)^{2}}{2}
$$

thus

$$
1-(1-x)^{y} \geqq x y-\frac{(x y)^{2}}{2} \geqq x y-\frac{(x y)^{1+\varepsilon}}{2} \geqq x y-(x y)^{1+\varepsilon}
$$

if $x y \leqq 1$. In case $x y>1$, the left side of (2.9) is positive, while the right side is negative.

Write

$$
\Sigma(t)=\sum \sigma(n)^{t}, \quad \Delta(t)=\sum \delta(n)^{t}
$$

2.7. Statement. For every $0<\varepsilon<1$ we have

$$
\begin{gather*}
S \leqq\left(\varrho^{2} / 2\right)^{1-\varepsilon} \Sigma(1-\varepsilon), \tag{2.10}\\
S \geqq \frac{\varrho^{2}}{2} m^{2}-\varrho m-\left(\varrho^{2} / 2\right)^{1+\varepsilon} \Sigma(1+\varepsilon), \tag{2.11}\\
D \leqq \varrho^{2(1-\varepsilon)} \Delta(1-\varepsilon), \tag{2.12}\\
D \geqq \varrho^{2} m^{2}-\varrho^{3} m^{2}-\varrho^{2(1+\varepsilon)} \Delta(1+\varepsilon) . \tag{2.13}
\end{gather*}
$$

Proof. We substitute Lemma 2.5 into Lemmas 2.2 and 2.4, and use the relation

$$
\sum \sigma(n)=\sum \delta(n)=m^{2}
$$

which follows immediately from the definitions.

3. Proof of the Theorem

We start with a finite set $U \subset \mathbf{Z},|U|=l$ and define

$$
V=U^{k}=\left\{\left(u_{1}, \ldots, u_{k}\right): u_{1}, \ldots u_{k} \in U\right\} \subset \mathbf{Z}^{k}
$$

We have

$$
m=|V|=|U|^{k}=l^{k}
$$

We take a number ϱ, which will actually be of the form $\varrho=m^{-\eta}$ with a fixed small number η and take a random subset X of V. To get many differences and few sums, we want to keep S small and D near to $(\varrho m)^{2}$ which is a typical value of $|X|^{2}$, that is, we want

$$
D^{\prime}=(\varrho m)^{2}-D
$$

to be small. By Statement 2.7 these can be estimated by

$$
\begin{gather*}
S \leqq\left(\varrho^{2} / 2\right)^{1-\varepsilon} \Sigma(1-\varepsilon) \tag{3.1}\\
D^{\prime} \leqq \varrho^{3} m^{2}+\varrho^{2(1+\varepsilon)} \Delta(1+\varepsilon) \tag{3.2}
\end{gather*}
$$

Now we study the growth of $\Sigma(t)$ and $\Delta(t)$ near $t=1$. We have

$$
\begin{equation*}
\Sigma(t)=\Sigma_{0}(t)^{k}, \quad \Delta(t)=\Delta_{0}(t)^{k} \tag{3.3}
\end{equation*}
$$

where Σ_{0}, Δ_{0} are the analogous quantities for the set U (and we shall also use σ_{0}, δ_{0} accordingly).

We have

$$
\begin{align*}
\Sigma_{0}(1+\varepsilon)= & \sum \sigma_{0}(n)^{1+\varepsilon}=\sum \sigma_{0}(n)+\varepsilon \sum \sigma_{0}(n) \log \sigma_{0}(n)+O\left(\varepsilon^{2}\right)= \tag{3.4}\\
& =l^{2}\left(1+\varepsilon \sigma^{\prime}+O\left(\varepsilon^{2}\right)\right)=l^{2} \exp \left(\varepsilon \sigma^{\prime}+O\left(\varepsilon^{2}\right)\right)
\end{align*}
$$

where

$$
\begin{equation*}
\sigma^{\prime}=l^{-2} \sum \sigma_{0}(n) \log \sigma_{0}(n) \tag{3.5}
\end{equation*}
$$

and the constant of the O depends on the set U. By (3.3) we get

$$
\begin{equation*}
\Sigma(1+\varepsilon)=m^{2} \exp \left(k \varepsilon \sigma^{\prime}+O\left(k \varepsilon^{2}\right)\right) \tag{3.6}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\Delta(1+\varepsilon)=m^{2} \exp \left(k \varepsilon \delta^{\prime}+O\left(k \varepsilon^{2}\right)\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta^{\prime}=l^{-2} \sum \delta_{0}(n) \log \delta_{0}(n) \tag{3.5}
\end{equation*}
$$

Let L be a constant that works in the O both for (3.6) and (3.7) for $|\varepsilon| \leqq 1 / 2$. Substituting these bounds into (3.1) and (3.2) we get

$$
\begin{align*}
& S \leqq m^{2} \varrho^{2(1-\varepsilon)} e^{-k \sigma^{\prime} \varepsilon+L k \varepsilon^{2}}, \tag{3.8}\\
& D^{\prime} \leqq m^{2} \varrho^{2(1+\varepsilon)} e^{k \delta^{\prime} \varepsilon+L k \varepsilon^{2}} \tag{3.9}
\end{align*}
$$

We can keep both small if

$$
\begin{equation*}
\sigma^{\prime}>\delta^{\prime} \tag{3.10}
\end{equation*}
$$

and a proper choice of ϱ is

$$
\begin{equation*}
\varrho=e^{-k\left(\sigma^{\prime}+\delta^{\prime}\right) / 4}=m^{-\eta} \tag{3.11}
\end{equation*}
$$

with

$$
\eta=\frac{\sigma^{\prime}+\delta^{\prime}}{4 \log l} .
$$

Observe that $\sigma_{0}(n) \leqq l$ for every n, thus $\sigma^{\prime} \leqq \log l$ and similarly $\delta^{\prime} \leqq \log l$, consequently $\eta \leqq 1 / \overline{2}$. With this ϱ we have

$$
S, D^{\prime} \leqq m^{2} \varrho^{2}\left(\varrho+\exp k\left(-\varepsilon \frac{\sigma^{\prime}-\delta^{\prime}}{2}+L \varepsilon^{2}\right)\right) .
$$

To minimize this we now choose

$$
\varepsilon=\frac{\sigma^{\prime}-\delta^{\prime}}{4 L} ;
$$

this satisfies $0<\varepsilon<1 / 2$ if we assume (2.10) and $L>\log l$.
We want to exclude the following three things:
$|X|$ is far from $\rho m ; \quad|X+X|$ is too big; $\quad|X-X|$ is too small.
If each of these events, when properly interpreted, has probability \leqq $\leqq 1 / 4$, then we know that with probability $1 / 4$ all are avoided. A suitable interpretation of the first is

$$
||X|-\varrho m| \geqq 2 \sqrt{\varrho m}
$$

by (2.1). For the second we apply Markov's inequality; a good interpretation is

$$
|X+X|>4 S
$$

For the third we apply Markov's inequality to the quantity

$$
|X|^{2}-|X-X|
$$

which must be positive. Since $\mathbf{E}|X|^{2}=(\rho m)^{2}+\rho(1-\rho) m$, a good interpretation of the third is

$$
|X-X|<4\left(D^{\prime}+\rho m\right)
$$

Thus we got a set X that has about $M=\rho m=m^{1-\eta}$ elements and a nice small number of sums and large number of differences.

Observe that the number m was not arbitrary, it had to be of the form l^{k}. Thus to get a set of exactly n elements as stated in the Theorem we need an additional consideration.

Select k so that $M=l^{(1-\eta) k}$ satisfies $2 n<M<2 l n$. Then our set X will satisfy

$$
\begin{gathered}
n<|X|<C n, \\
|X+X|<n^{1-c}, \\
|X|^{2}-|X-X|<n^{1-c} .
\end{gathered}
$$

Let A be an arbitrary n-element subset of X. We have obviously

$$
|A+A| \leqq|X+X|,
$$

thus there is no problem with the sums. We claim that also

$$
\begin{equation*}
|A|^{2}-|A-A| \leqq|X|^{2}-|X-X| . \tag{3.12}
\end{equation*}
$$

To see this, observe that when we omit a point from a set of p elements, the number of differences decreases at most by the $2 p-1$ differences involving this point (the difference 0 remains), while the square of the cardinality decreases exactly by $2 p-1$. Repeating this process we get (3.12).

We have yet to exhibit a set U that satisfies (3.10). In fact, a "typical" set does this, say

$$
U=\{0,1,3\}
$$

is an example.
This finishes the proof of the first half of the theorem. To prove the second half we proceed very similarly; to get the proof work we have now to find a set U with $\delta^{\prime}>\sigma^{\prime}$. A short computer search found the set

$$
U=\{0,1,3,4,5,6,7,10\} .
$$

This set is the "shortest" in the sense that it is contained in the shortest possible interval; I do not know whether it is of the smallest cardinality.

References

[1] G. A. Freiman and V. P. Pigaev, The relation between the invariants R and T (Russian), Kalinin. Gos. Univ. Moscow, (1973), 172-174.
[2] I. Z. Ruzsa, On the cardinality of $A+A$ and $A-A$, in: Coll. Math. Soc. Bolyai, 18 Combinatorics (Keszthely, 1976), Akadémiai Kiadó (Budapest, 1979), pp. 933-938.
[3] I. Z. Ruzsa, Sets of sums and differences, in: Séminaire de Théorie des Nombres, Paris 1982/83, Birkhäuser (1984), pp. 267-273.
[4] I. Z. Ruzsa, An application of graph theory to additive number theory, Scientia, 3 (1991), 97-109.
(Received February 13, 1990)
MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES H-1364 BUDAPEST, P.O.B. 127
HUNGARY

CHARACTERIZATION OF THE RELATIVE ENTROPY OF STATES OF MATRIX ALGEBRAS

D. PETZ (Budapest)

For two finite probability distributions $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ the quantity

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left(\log p_{k}-\log q_{k}\right) \tag{1}
\end{equation*}
$$

was introduced in 1951 by Kulback and Leibler. They called it information for discrimination ([5,6]). Some years later Rényi suggested the name information gain ([12]). As a natural analogue of (1) Umegaki [14] defined the relative entropy of two density matrices in 1962 by the formula

$$
\begin{equation*}
\operatorname{Tr} \varrho(\log \varrho-\log \varphi) . \tag{2}
\end{equation*}
$$

Properties of the relative entropy functional were established in many papers and the highlight of this development was Lieb's convexity theorem ([7]). The notion received much attention in quantum mechanics ([8]). Concerning the details we refer to the survey papers [2] and [9].

The aim of the present paper is to characterize the relative entropy functional through its wellknown properties. As a frame we consider finite dimensional C^{*}-algebras ([13], p.50). Such algebras are decomposed into a direct sum of full matrix algebras and the commutative ones are isomorphic to the n-tuples of complex numbers for some positive integer n. By a state we mean a positive normalized functional. Each finite dimensional C^{*}-algebra possesses a natural "uniform distribution" which, more precisely, is a positive functional taking the value one on each minimal projection. It is unique and we denote it by Tr. In case of a matrix algebra Tr reduces to the usual matrix trace and on complex n-tuples

$$
\operatorname{Tr}\left(c_{1}, \ldots, c_{n}\right)=\sum_{n=1}^{n} c_{i} .
$$

To each state φ one associates a density D_{φ} such that

$$
\varphi(a)=\operatorname{Tr} D_{\varphi} a
$$

and we call φ faithful if D_{φ} is invertible. For a faithful state φ and an arbitrary state ω on a finite dimensional C^{*}-algebra \mathcal{A} their relative entropy is defined as

$$
\begin{equation*}
S(\varphi, \omega)=\operatorname{Tr} D_{\omega}\left(\log D_{\omega}-\log D_{\varphi}\right) \tag{3}
\end{equation*}
$$

(Note that $D_{\omega} \log D_{\omega}$ is well defined even if D_{ω} is not invertible.)
Our crucial postulate for the relative entropy includes the notion of conditional expectation. Let us recall that in the setting of operator algebras conditional expectation (or projection of norm one) is defined as a positive unital idempotent linear mapping onto a subalgebra ([13], p. 131).

Now we list properties of the relative entropy functional which will be used in an axiomatic characterization:
(i) Conditional expectation property: Assume that \mathcal{A} is a subalgebra of \mathcal{B} and there exists a projection E of \mathcal{B} onto \mathcal{A} of norm one such that $\varphi \circ E=\varphi$. Then for every state ω of \mathcal{B}

$$
S(\varphi, \omega)=S(\varphi|\mathcal{A}, \omega| \mathcal{A})+S(\omega \circ E, \omega)
$$

holds.
(ii) Invariance property: For every automorphism α of \mathcal{B} we have

$$
S(\varphi, \omega)=S(\varphi \circ \alpha, \omega \circ \alpha) .
$$

(iii) Direct sum property: Assume that $\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2}$ and

$$
\varphi_{12}(a \oplus b)=\lambda \varphi_{1}(a)+(1-\lambda) \varphi_{2}(b), \quad \omega_{12}(a \oplus b)=\lambda \omega_{1}(a)+(1-\lambda) \omega_{2}(b)
$$

for every $a \in \mathcal{B}_{1}, b \in \mathcal{B}_{2}$ and some $0<\lambda<1$. Then

$$
S\left(\varphi_{12}, \omega_{12}\right)=\lambda S\left(\varphi_{1}, \omega_{1}\right)+(1-\lambda) S\left(\varphi_{2}, \omega_{2}\right) .
$$

(iv) Nilpotence property: $S(\varphi, \varphi)=0$.
(v) Measurability property: The function

$$
(\varphi, \omega) \mapsto S(\varphi, \omega)
$$

is measurable on the state space of the finite dimensional C^{*}-algebra \mathcal{B} (when φ is assumed to be faithful).

Properties (i)-(v) are wellknown for the relative entropy functional. Among them the conditional expectation property is the most crucial (it was obtained in [11] in full generality). There are plenty of information quantities sharing properties (ii)-(v), all the quasientropies discussed in [10] are so.

Our main result is the following.
Theorem. If a real valued functional $S^{\prime}(\varphi, \omega)$ defined for faithful states φ and arbitrary states ω of finite dimensional C^{*}-algebras shares properties (i)-(v) then there exists a constant $C \in \mathbf{R}$ such that

$$
S^{\prime}(\varphi, \omega)=C \operatorname{Tr} D_{\omega}\left(\log D_{\omega}-\log D_{\varphi}\right)
$$

The proof consists of several steps. We show that for larger and larger class of states

$$
S^{\prime}(\varphi, \omega)=C S(\varphi, \omega)
$$

must hold.
Consider the three dimensional commutative algebra \mathbf{C}^{3}. Its states correspond to probability distributions (p_{1}, p_{2}, p_{3}) (i.e. $0 \leqq p_{i}, p_{1}+p_{2}+p_{3}=1$).

Lemma 1. For probability distributions $\left(p_{1}, p_{2}, p_{3}\right)$ and $\left(q_{1}, q_{2}, q_{3}\right)$ the recursive relation

$$
\begin{align*}
& S^{\prime}\left(\left(q_{1}, q_{2}, q_{3}\right),\left(p_{1}, p_{2}, p_{3}\right)\right)=S^{\prime}\left(\left(q_{1}+q_{2}, q_{3}\right),\left(p_{1}+p_{2}, p_{3}\right)\right)+ \tag{4}\\
& +\left(p_{1}+p_{2}\right) S^{\prime}\left(\left(\frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}}\right),\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)\right)
\end{align*}
$$

holds.
We benefit from the conditional expectation property in the situation $\mathbf{C}^{2} \cong\left\{\left(c_{1}, c_{1}, c_{2}\right): c_{1}, c_{2} \in \mathbf{C}\right\} \subset \mathbf{C}^{3}$. There exists a conditional expectation $E: \mathbf{C}^{3} \rightarrow \mathbf{C}^{2}$ preserving the state $\varphi=\varphi_{\left(q_{1}, q_{2}, q_{3}\right)}$ and it is given by

$$
E:\left(c_{1}, c_{2}, c_{3}\right) \mapsto\left(\frac{q_{1} c_{1}+q_{2} c_{2}}{q_{1}+q_{2}}, \frac{q_{1} c_{1}+q_{2} c_{2}}{q_{1}+q_{2}}, c_{3}\right) .
$$

The state $\omega_{\left(p_{1}, p_{2}, p_{3}\right)} \circ E$ corresponds to the measure

$$
\left(\frac{p_{1}+p_{2}}{q_{1}+q_{2}} q_{1}, \frac{p_{1}+p_{2}}{q_{1}+q_{2}} q_{2}, p_{3}\right)
$$

and we obtain

$$
\begin{aligned}
& S^{\prime}\left(\left(q_{1}, q_{2}, q_{3}\right),\left(p_{1}, p_{2}, p_{3}\right)\right)=S^{\prime}\left(\left(q_{1}+q_{2}, q_{3}\right),\left(p_{1}+p_{2}, p_{3}\right)\right)+ \\
& \quad+S^{\prime}\left(\left(\frac{p_{1}+p_{2}}{q_{1}+q_{2}} q_{1}, \frac{p_{1}+p_{2}}{q_{1}+q_{2}} q_{2}, p_{3}\right),\left(p_{1}, p_{2}, p_{3}\right)\right) .
\end{aligned}
$$

Due to the direct sum condition the last term here equals the last term of (4) and the lemma follows.

Interchanging in \mathbf{C}^{3} the second and third coordinates by means of the invariance condition we conclude the equation

$$
\begin{align*}
& S^{\prime}\left(\left(q_{1}+q_{2}, q_{3}\right),\left(p_{1}+p_{2}, p_{3}\right)\right)+\left(p_{1}+p_{2}\right) . \tag{5}\\
& \cdot S^{\prime}\left(\left(\frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}}\right),\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)\right)= \\
& =S^{\prime}\left(\left(q_{1}+q_{3}, q_{2}\right),\left(p_{1}+p_{3}, p_{2}\right)\right)+\left(p_{1}+p_{3}\right) . \\
& \cdot S^{\prime}\left(\left(\frac{q_{1}}{q_{1}+q_{3}}, \frac{q_{3}}{q_{1}+q_{3}}\right),\left(\frac{p_{1}}{p_{1}+p_{3}}, \frac{p_{3}}{p_{1}+p_{3}}\right)\right) .
\end{align*}
$$

With the notation

$$
F(x, y)=S^{\prime}((1-y, y),(1-x ; x))
$$

equation (5) is of the following form:

$$
\begin{equation*}
F(x, y)+(1-x) F\left(\frac{u}{1-x}, \frac{v}{1-y}\right)=F(u, v)+(1-u) F\left(\frac{x}{1-u}, \frac{y}{1-v}\right) \tag{6}
\end{equation*}
$$

The functional equation (6) has been solved under the special nilpotence condition $F(1 / 2,1 / 2)=0$ in [4]. A lengthy but elementary analysis yields that the only measurable solution of (6) is

$$
F(x, y)=C\left(x \log \frac{x}{y}+(1-x) \log \frac{1-x}{1-y}\right)
$$

(See also pp. 204-207 of [1].)
The recursion (4) remains true if p_{3} and q_{3} are replaced by $p_{3}, p_{4}, \ldots, p_{n}$ and $q_{3}, q_{4}, \ldots, q_{n}$ respectively. In this way we obtain that

$$
S^{\prime}(\varphi, \omega)=C S(\varphi, \omega)
$$

whenever φ and ω are states of commutative finite dimensional C^{*}-algebras.
Now let φ and ω be states of an algebra \mathcal{B} such that the densities D_{φ} and D_{ω} commute. Let \mathcal{A} be the maximal abelian subalgebra generated by D_{φ} and D_{ω}. If E is the conditional expectation of \mathcal{B} onto \mathcal{A} which preserves Tr then $\varphi \circ E=\varphi$ and $\omega \circ E=\omega$. The conditional expectation property tells us that

$$
S^{\prime}(\varphi, \omega)=S^{\prime}(\varphi|\mathcal{A}, \omega| \mathcal{A})+S^{\prime}(\omega \circ E, \omega)
$$

By nilpotence the second term vanishes and we arrive at

$$
\begin{equation*}
S^{\prime}(\varphi, \omega)=C S(\varphi, \omega) \tag{7}
\end{equation*}
$$

for commuting states.
The next step is $\mathcal{B}=M_{n}(\mathbf{C})$. Our aim is to show that (7) holds for arbitrary states on \mathcal{B}. (As always, φ is supposed to be faithful.)

Lemma 2. If $\sigma=\lambda \sigma_{1}+(1-\lambda) \sigma_{2} \quad(0<\lambda<1)$ then

$$
\begin{equation*}
\lambda S^{\prime}\left(\varphi, \sigma_{1}\right)+(1-\lambda) S^{\prime}\left(\varphi, \sigma_{2}\right)=S^{\prime}(\varphi, \sigma)+\lambda S^{\prime}\left(\sigma, \sigma_{1}\right)+(1-\lambda) S^{\prime}\left(\sigma, \sigma_{2}\right) \tag{8}
\end{equation*}
$$

The proof of (8) is quite similar to that of Lemma 1. The conditional expectation property should be applied to $\mathcal{B} \oplus \mathcal{B}$ and its subalgebra $\{b \oplus b$: $b \in \mathcal{B}\}$. The mapping

$$
E(a \oplus b)=(\lambda a+(1-\lambda) b) \oplus(\lambda a+(1-\lambda) b)
$$

is a conditional expectation leaving the state

$$
\varphi_{12}(a \oplus b)=\lambda \varphi(a)+(1-\lambda) \varphi(b)
$$

invariant. The argument is completed by referring to the invariance and direct sum properties.

Now we resume the determination of $S(\varphi, \omega)$ for states of $\mathcal{B}=M_{n}(\mathbf{C})$. We choose a basis such that the density of φ is diagonal. Then the density of ω is of the form

$$
\left(\begin{array}{cc}
A_{k} & 0 \\
0 & D_{n-k}
\end{array}\right)=D_{\omega}
$$

where $A_{k} \in M_{k}(\mathbf{C})$ and $D_{n-k} \in M_{n-k}(\mathbf{C})$ is a diagonal matrix. We are going to prove (7) by mathematical induction on k. If $k=0$ then D_{φ} and D_{ω} commute and (7) holds.

Let U be a diagonal unitary matrix such that

$$
U_{i i}= \begin{cases}1 & i \neq k \\ -1 & i=k\end{cases}
$$

Then

$$
D_{\sigma_{2}}=U D_{\omega} U
$$

differs from $D_{\sigma_{1}} \equiv D_{\omega}$ only in the sign of the entries in the k th row and k th column but they are the same along the diagonal. The density

$$
D_{\sigma}=\frac{1}{2}\left(D_{\sigma_{1}}+D_{\sigma_{2}}\right)
$$

is of the form

$$
\left(\begin{array}{cc}
A_{k-1} & 0 \\
0 & D_{n-k+1}
\end{array}\right)
$$

where D_{n-k+1} is an $(n-k+1) \times(n-k+1)$ diagonal matrix. From the induction hypothesis we have

$$
\begin{equation*}
S^{\prime}(\varphi, \sigma)=C S(\varphi, \sigma) \tag{9}
\end{equation*}
$$

Write (8) with $\tau=\operatorname{Tr} / n$ and $\lambda=\frac{1}{2}$. Then

$$
\begin{equation*}
\frac{1}{2} S^{\prime}\left(\tau, \sigma_{1}\right)+\frac{1}{2} S^{\prime}\left(\tau, \sigma_{2}\right)=S^{\prime}(\tau, \sigma)+\frac{1}{2} S^{\prime}\left(\sigma, \sigma_{1}\right)+\frac{1}{2} S^{\prime}\left(\sigma, \sigma_{2}\right) \tag{10}
\end{equation*}
$$

The invariance, more precisely the relations $\tau(U \cdot U)=\tau(\cdot), \sigma_{1}(U \cdot U)=$ $=\sigma_{2}(\cdot), \sigma(U \cdot U)=\sigma(\cdot)$, ensures

$$
S^{\prime}\left(\tau, \sigma_{1}\right)=S^{\prime}\left(\tau, \sigma_{2}\right) \quad \text { and } \quad S^{\prime}\left(\sigma, \sigma_{1}\right)=S^{\prime}\left(\sigma, \sigma_{2}\right)
$$

Therefore

$$
S^{\prime}\left(\tau, \sigma_{1}\right)=S^{\prime}(\tau, \sigma)+S^{\prime}\left(\sigma, \sigma_{1}\right)
$$

and (7) yields

$$
\begin{equation*}
S^{\prime}\left(\sigma, \sigma_{1}\right)=C S\left(\sigma, \sigma_{1}\right) \tag{11}
\end{equation*}
$$

In our special case

$$
S^{\prime}\left(\varphi, \sigma_{1}\right)=S^{\prime}\left(\varphi, \sigma_{2}\right) \quad \text { and } \quad S^{\prime}\left(\sigma, \sigma_{1}\right)=S^{\prime}\left(\sigma, \sigma_{2}\right)
$$

hold due to the invariance under the automorphism Ad U. Hence (8) reads as

$$
S^{\prime}\left(\varphi, \sigma_{1}\right)=S^{\prime}(\varphi, \sigma)+S^{\prime}\left(\sigma, \sigma_{1}\right)
$$

where both terms on the right hand side have been compared with the relative entropy ((9) and (11)). So (7) holds for all states φ and ω on $M_{n}(\mathbf{C})$. Since a finite dimensional C^{*}-algebra is the direct sum of full matrix algebras, the direct sum property extends (7) to all C^{*}-algebras of finite dimension.

We note that (8) is Donald's mixing axiom and the subsequent argument is due to him ([3]).

By more complicated mathematical tools the concept of relative entropy may be extended to states of infinite dimensional C^{*}-algebras ([2]). If we restrict ourselves to C^{*}-algebras with good approximation property (nuclear algebras) then the characterization in the present paper may be modified easily. It is sufficient to choose instead of (ii) the monotonicity and instead of measurability the lower semicontinuity property given below.
(ii)' Monotonicity property: For every completely positive unital mapping α we have

$$
S(\varphi, \omega) \geqq S(\varphi \circ \alpha, \omega \circ \alpha) .
$$

(v)' Lower semicontinuity: The functional

$$
(\varphi, \omega) \mapsto S(\varphi, \omega)
$$

is lower semicontinuous with respect to the weak topology.
These postulates (i), (ii)', (iii), (iv) and (v)' constitute the definition of the relative entropy functional up to a constant factor. Details of this remark are out of the scope of the present paper and they will be discussed in forthcoming publications.

References

[1] J. Aczél and Z. Daróczy, On Measures of Information and their Characterizations, Academic Press (New York, 1975).
[2] H. Araki, Recent Progress on Entropy and Relative Entropy, VIIIth International Congress on Mathematical Physics (Eds: M. Mebkhout, R. Sénéor), pp. 354365, World Scientific, 1987.
[3] M. J. Donald, Further results on the relative entropy, Math. Proc. Camb. Phil. Soc., 101 (1987), 363-373.
[4] Pl. Kannappan and C.T. Ng, Measurable solutions of functional equations related to information theory, Proc. Amer. Math. Soc., 38 (1973), 303-310.
[5] S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
[6] S. Kullback, Information Theory and Statistics, Wiley (New York, 1959).
[7] E. H. Lieb, Some convexity and subadditivity properties of entropy, Bull. Amer. Math. Soc., 81 (1975), 1-14.
[8] G. Lindblad, Expectations and entropy inequalities for finite quantum systems, Commun. Math. Phys., 39 (1974), 111-119.
[9] D. Petz, Properties of quantum entropy, Quantum Probability and Applications II (Eds: L. Accardi, W. von Waldenfels), 428-441, Lecture Notes in Math., 1136, Springer, 1985.
[10] D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys., 23 (1986), 57-65.
[11] D. Petz, Properties of the relative entropy of states of a von Neumann algebra, Acta Math. Hung., 47 (1986), 65-72.
[12] R. Rényi, Wahrscheinlichkeitsrechnung, Deutscher Verlag der Wissenschaften (Berlin, 1962).
[13] M. Takesaki, Operator Algebras I, Springer, 1979.
[14] H. Umegaki, Conditional expectations in an operator algebra IV (entropy and information), Kodai Math. Sem. Rep., 14 (1962), 59-85.
(Received February 27, 1990)

[^20]Instructions for authors. Manuscripts should be typed on standard size paper (25 rows; 50 characters in each row). When listing references, please follow the following pattern:
[1] G. Szegő, Orthogonal polynomials, AMS Coll. Publ. Vol. XXXIII (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the references give the author's affiliation.

If your manuscript is prepared by a word processor (possibly AMS or plain TEX), please provide the floppy disk as well. This will speed up processing the paper.

Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 50 reprints free of charge. Additional copies may be ordered from the publisher.

Manuscripts and editorial correspondence should be addressed to
Acta Mathematica, H-1364 Budapest, P.O.Box 127.

ACTA MATHEMATICA HUNGARICA / VOL. 59 No. 3-4

CONTENTS

Đào, N. T., Endomorphism rings of abelian groups as isomorphic restric- tions of full endomorphism rings. II 253
Malkowsky, \boldsymbol{E}., On the extension of two theorems by Maddox to general- ized sets of Cesàro summable sequences 263
Luu, D. Q., Convergence and lattice properties of a class of martingale-like sequences 273
Suen, C.-Y., The maximal radius of a completely bounded map 283
Okutoyi, J. I., A note on generalized Köthe-Toeplitz duals 291
Tarafdar, E., On the existence of Nash equilibrium point for a game be- tween infinitely many players with noncompact strategy sets 301
Avgerinos, E. P., Flytzanis, E. and Papageorgiou, N. S., On $U(\cdot)$-invari- ance for finite and infinite dimensional control systems 309
Birkenmeyer, G. F., Decompositions of Baer-like rings 319
Берман, Д. Л., Необходимые и достаточные условия сходимости расширенных интерполяционных процессов высшего порядка в метрике L_{p} 327
Nieto, J. J., Positive solutions of nonlinear problems at resonance 339
Angelov, V. G., Uniform asymptotic stability and contractive semigroups 345
Kamal, A. A. M., Idempotents in polynomial rings 355
Joó, I., On. the optimal control of circular membranes 365
Sebestyén, Z., Stochel, J. and Paez, J., Restrictions of normal operators 377
Buczolich, Z., A v-integrable function which is not Lebesgue integrable on any portion of the unit square 383
Gal, S. G. and Szabados, J., On monotone and doubly monotone polyno- mial approximation 395
Kovács, Katalin, Complex-valued multiplicative functions with monotonic properties 401
Kovács, Z. and Tamássy, L., Yano-Ledger connection and induced con- nection on vector bundles 405
Vértesi, P. and $X u, Y$., Weighted L^{p} convergence of Hermite interpolation of higher order 423
Ruzsa, I. Z., On the number of sums and differences 439
Petz, D., Characterization of the relative entropy of states of matrix alge- bras 449

[^0]: A. JÓzSEF UNIVERSITY BOLYAI INSTITUTE SZEGED, ARADI V. TERE 1
 6720 HUNGARY

[^1]: ${ }^{1} \varrho_{n, 2 n-1}(C)$ можно также вычислить по формулам (3'), (16).

[^2]: * This research was supported in part by Natural Sciences and Engineering Research Council of Canada.

[^3]: *We assume here and in the rest of the paper that f is extended to the entire real line by $f(x)=f(1)$ for $x>1$ and $f(x)=f(-1)$ for $x<-1$.

[^4]: national laboratory of cientific computation (Lncc)
 RUA LaURO MULLER 455 (LNCC-CNPQ)
 BOTAFOGO 22290. RIO DE JANEIRO. BRASIL
 imuFrj p. P. box 68530 , Rio de Janeiro, r. J. brasil

[^5]: * Supported by Hungarian National Foundation for Scientific Research (OTKA) No. 424 (86) and 1238 (86).

[^6]: *Mit Lineal und Streckenübertrager kann man durch einen gegebenen Punkt zu einer Geraden die Parallele ziehen, auf einer Geraden eine Senkrechte errichten, und alle Ausdrücke konstruieren, welche durch Addieren, Subtrahieren, Multiplizieren, Dividieren und aus einer Summe von Streckenquadraten durch Quadratwurzelziehen hervorgehen.

[^7]: MATHEMATISCHES INSTITUT
 JUSTUS-LIEBIG-UNIVERSITÄT
 D-6300 GIESSEN
 IHERINGSTR. 6
 GERMANY

[^8]: institute of mathematics p.o. bох 631, во но
 hanoi
 vietnam

[^9]: * Research supported by N.S.F. Grant DMS-8802688.

[^10]: DEPARTAMENTO DE ANÁLISIS MATEMÁTICO facultad de matemáticas
 UNIVERSIDAD DE SANTIAGO DE COMPOSTELA SPAIN

[^11]: MATHEMATICAL INSTITUTE OF THE
 hUNGARIAN ACADEMY OF SCIENCES
 REÁLTANODA U. 13-15.
 H-1053 BUDAPEST
 HUNGARY

[^12]: * This work has been completed when the author visited University of California at Davis.

[^13]: * Research of this author supported by the Hungarian National Science Foundation for Research, Grant No. 1801.

[^14]: * In what follows, under monotone we mean either monotone increasing or monotone decreasing, but always the same in the same context.

[^15]: EÖTVÖS LORÁND UNIVERSITY
 department of algebra and number theory h-1088 BUDAPEST, MÚZEUM KRT. 6-8. HUNGARY

[^16]: ${ }^{1}$ Notions for linear connections more or less analogous to this can be found e.g. in [4] p. 363, or in [5] II, p. 324.

[^17]: KOSSUTH LAJOS UNIVERSITY DEPARTMENT OF MATHEMATICS h-4010 DEBRECEN, P.o.box 12

[^18]: * The first author was supported by Hungarian National Foundation for Scientific Research Grant No. 1801.

[^19]: ${ }^{1}$ Supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center - NSF-STC8809648, and by Hungarian National Foundation for Scientific Research, Grant No. 1811.

[^20]: MATHEMATICAL INSTITUTE
 of THE HUNGARIAN ACADEMY OF SCIENCES
 H-1364 BUDAPEST, P.O.B. 127.
 HUNGARY

